
http://www.motorola.com/ColdFire

© MOTOROLA INC., 1992

MC68020
MC68EC020

MICROPROCESSORS
USER’S MANUAL

First Edition

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

MOTOROLA M68020 USER’S MANUAL iii

PREFACE
The M68020 User’s Manual describes the capabilities, operation, and programming of the
MC68020 32-bit, second-generation, enhanced microprocessor and the MC68EC020 32-
bit, second-generation, enhanced embedded microprocessor.

Throughout this manual, “MC68020/EC020” is used when information applies to both the
MC68020 and the MC68EC020. “MC68020” and “MC68EC020” are used when
information applies only to the MC68020 or MC68EC020, respectively.

For detailed information on the MC68020 and MC68EC020 instruction set, refer to
M68000PM/AD, M68000 Family Programmer’s Reference Manual.

This manual consists of the following sections:

Section 1 Introduction
Section 2 Processing States
Section 3 Signal Description
Section 4 On-Chip Cache Memory
Section 5 Bus Operation
Section 6 Exception Processing
Section 7 Coprocessor Interface Description
Section 8 Instruction Execution Timing
Section 9 Applications Information
Section 10 Electrical Characteristics
Section 11 Ordering Information and Mechanical Data
Appendix A Interfacing an MC68EC020 to a DMA Device That Supports a Three-Wire

Bus Arbitration Protocol

NOTE

In this manual, assert and negate are used to specify forcing a
signal to a particular state. In particular, assertion and assert
refer to a signal that is active or true; negation and negate
indicate a signal that is inactive or false. These terms are used
independently of the voltage level (high or low) that they
represent.

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL vii

TABLE OF CONTENTS
Paragraph Page

Number Title Number

Section 1
Introduction

1.1 Features .. 1-2
1.2 Programming Model .. 1-4
1.3 Data Types and Addressing Modes Overview .. 1-8
1.4 Instruction Set Overview ... 1-10
1.5 Virtual Memory and Virtual Machine Concepts 1-10
1.5.1 Virtual Memory .. 1-10
1.5.2 Virtual Machine .. 1-12
1.6 Pipelined Architecture ... 1-12
1.7 Cache Memory .. 1-13

Section 2
Processing States

2.1 Privilege Levels ... 2-2
2.1.1 Supervisor Privilege Level ... 2-2
2.1.2 User Privilege Level ... 2-3
2.1.3 Changing Privilege Level ... 2-3
2.2 Address Space Types ... 2-4
2.3 Exception Processing.. 2-5
2.3.1 Exception Vectors .. 2-5
2.3.2 Exception Stack Frame ... 2-6

Section 3
Signal Description

3.1 Signal Index .. 3-2
3.2 Function Code Signals (FC2–FC0) ... 3-2
3.3 Address Bus (A31–A0, MC68020)(A23–A0, MC68EC020) 3-2
3.4 Data Bus (D31–D0) ... 3-2
3.5 Transfer Size Signals (SIZ1, SIZ0) ... 3-2
3.6 Asynchronous Bus Control Signals ... 3-4
3.7 Interrupt Control Signals.. 3-5
3.8 Bus Arbitration Control Signals ... 3-6
3.9 Bus Exception Control Signals .. 3-6
3.10 Emulator Support Signal ... 3-7
3.11 Clock (CLK) ... 3-7

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

viii M68020 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

3.12 Power Supply Connections ... 3-7
3.13 Signal Summary.. 3-8

Section 4
On-Chip Cache Memory

4.1 On-Chip Cache Organization and Operation .. 4-1
4.2 Cache Reset ... 4-3
4.3 Cache Control ... 4-3
4.3.1 Cache Control Register (CACR) ... 4-3
4.3.2 Cache Address Register (CAAR) .. 4-4

Section 5
Bus Operation

5.1 Bus Transfer Signals... 5-1
5.1.1 Bus Control Signals ... 5-2
5.1.2 Address Bus .. 5-3
5.1.3 Address Strobe .. 5-3
5.1.4 Data Bus.. 5-3
5.1.5 Data Strobe ... 5-4
5.1.6 Data Buffer Enable .. 5-4
5.1.7 Bus Cycle Termination Signals.. 5-4
5.2 Data Transfer Mechanism... 5-5
5.2.1 Dynamic Bus Sizing .. 5-5
5.2.2 Misaligned Operands... 5-14
5.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 5-20
5.2.4 Address, Size, and Data Bus Relationships .. 5-21
5.2.5 Cache Interactions .. 5-22
5.2.6 Bus Operation ... 5-24
5.2.7 Synchronous Operation with DSACK1/DSACK0 5-24
5.3 Data Transfer Cycles .. 5-25
5.3.1 Read Cycle .. 5-26
5.3.2 Write Cycle .. 5-33
5.3.3 Read-Modify-Write Cycle... 5-39
5.4 CPU Space Cycles ... 5-44
5.4.1 Interrupt Acknowledge Bus Cycles .. 5-45
5.4.1.1 Interrupt Acknowledge Cycle—Terminated Normally 5-45
5.4.1.2 Autovector Interrupt Acknowledge Cycle ... 5-48
5.4.1.3 Spurious Interrupt Cycle .. 5-48
5.4.2 Breakpoint Acknowledge Cycle ... 5-50
5.4.3 Coprocessor Communication Cycles .. 5-53
5.5 Bus Exception Control Cycles... 5-53
5.5.1 Bus Errors ... 5-55

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL ix

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

5.5.2 Retry Operation ... 5-56
5.5.3 Halt Operation.. 5-60
5.5.4 Double Bus Fault ... 5-60
5.6 Bus Synchronization.. 5-62
5.7 Bus Arbitration ... 5-62
5.7.1 MC68020 Bus Arbitration .. 5-63
5.7.1.1 Bus Request (MC68020) ... 5-66
5.7.1.2 Bus Grant (MC68020) .. 5-66
5.7.1.3 Bus Grant Acknowledge (MC68020) ... 5-66
5.7.1.4 Bus Arbitration Control (MC68020) .. 5-67
5.7.2 MC68EC020 Bus Arbitration ... 5-70
5.7.2.1 Bus Request (MC68EC020) .. 5-71
5.7.2.2 Bus Grant (MC68EC020) ... 5-71
5.7.2.3 Bus Arbitration Control (MC68EC020) ... 5-73
5.8 Reset Operation .. 5-76

Section 6
Exception Processing

6.1 Exception Processing Sequence .. 6-1
6.1.1 Reset Exception... 6-4
6.1.2 Bus Error Exception ... 6-4
6.1.3 Address Error Exception.. 6-6
6.1.4 Instruction Trap Exception ... 6-6
6.1.5 Illegal Instruction and Unimplemented Instruction Exceptions 6-7
6.1.6 Privilege Violation Exception ... 6-8
6.1.7 Trace Exception ... 6-9
6.1.8 Format Error Exception ... 6-10
6.1.9 Interrupt Exceptions ... 6-11
6.1.10 Breakpoint Instruction Exception ... 6-17
6.1.11 Multiple Exceptions.. 6-17
6.1.12 Return from Exception ... 6-19
6.2 Bus Fault Recovery ... 6-21
6.2.1 Special Status Word (SSW)... 6-21
6.2.2 Using Software to Complete the Bus Cycles 6-23
6.2.3 Completing the Bus Cycles with RTE .. 6-24
6.3 Coprocessor Considerations ... 6-25
6.4 Exception Stack Frame Formats ... 6-25

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

x M68020 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 7
Coprocessor Interface Description

7.1 Introduction ... 7-1
7.1.1 Interface Features ... 7-2
7.1.2 Concurrent Operation Support .. 7-2
7.1.3 Coprocessor Instruction Format .. 7-3
7.1.4 Coprocessor System Interface .. 7-4
7.1.4.1 Coprocessor Classification .. 7-4
7.1.4.2 Processor-Coprocessor Interface .. 7-5
7.1.4.3 Coprocessor Interface Register Selection 7-6
7.2 Coprocessor Instruction Types ... 7-7
7.2.1 Coprocessor General Instructions ... 7-8
7.2.1.1 Format ... 7-8
7.2.1.2 Protocol.. 7-9
7.2.2 Coprocessor Conditional Instructions.. 7-10
7.2.2.1 Branch on Coprocessor Condition Instruction 7-12
7.2.2.1.1 Format .. 7-12
7.2.2.1.2 Protocol .. 7-12
7.2.2.2 Set on Coprocessor Condition Instruction 7-13
7.2.2.2.1 Format .. 7-13
7.2.2.2.2 Protocol .. 7-14
7.2.2.3 Test Coprocessor Condition, Decrement, and Branch Instruction ... 7-14
7.2.2.3.1 Format .. 7-14
7.2.2.3.2 Protocol .. 7-15
7.2.2.4 Trap on Coprocessor Condition Instruction 7-15
7.2.2.4.1 Format .. 7-15
7.2.2.4.2 Protocol .. 7-16
7.2.3 Coprocessor Context Save and Restore Instructions 7-16
7.2.3.1 Coprocessor Internal State Frames ... 7-17
7.2.3.2 Coprocessor Format Words... 7-18
7.2.3.2.1 Empty/Reset Format Word ... 7-18
7.2.3.2.2 Not-Ready Format Word .. 7-19
7.2.3.2.3 Invalid Format Word ... 7-19
7.2.3.2.4 Valid Format Word ... 7-20
7.2.3.3 Coprocessor Context Save Instruction .. 7-20
7.2.3.3.1 Format .. 7-20
7.2.3.3.2 Protocol .. 7-21
7.2.3.4 Coprocessor Context Restore Instruction .. 7-22
7.2.3.4.1 Format .. 7-22
7.2.3.4.2 Protocol .. 7-23
7.3 Coprocessor Interface Register Set .. 7-24

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xi

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

7.3.1 Response CIR ... 7-24
7.3.2 Control CIR .. 7-24
7.3.3 Save CIR ... 7-25
7.3.4 Restore CIR ... 7-25
7.3.5 Operation Word CIR .. 7-25
7.3.6 Command CIR ... 7-25
7.3.7 Condition CIR .. 7-26
7.3.8 Operand CIR ... 7-26
7.3.9 Register Select CIR ... 7-27
7.3.10 Instruction Address CIR ... 7-27
7.3.11 Operand Address CIR ... 7-27
7.4 Coprocessor Response Primitives .. 7-27
7.4.1 ScanPC ... 7-28
7.4.2 Coprocessor Response Primitive General Format 7-28
7.4.3 Busy Primitive .. 7-30
7.4.4 Null Primitive .. 7-31
7.4.5 Supervisor Check Primitive ... 7-33
7.4.6 Transfer Operation Word Primitive .. 7-33
7.4.7 Transfer from Instruction Stream Primitive .. 7-34
7.4.8 Evaluate and Transfer Effective Address Primitive 7-35
7.4.9 Evaluate Effective Address and Transfer Data Primitive 7-35
7.4.10 Write to Previously Evaluated Effective Address Primitive 7-37
7.4.11 Take Address and Transfer Data Primitive.. 7-39
7.4.12 Transfer to/from Top of Stack Primitive ... 7-40
7.4.13 Transfer Single Main Processor Register Primitive 7-40
7.4.14 Transfer Main Processor Control Register Primitive 7-41
7.4.15 Transfer Multiple Main Processor Registers Primitive 7-42
7.4.16 Transfer Multiple Coprocessor Registers Primitive 7-42
7.4.17 Transfer Status Register and ScanPC Primitive.................................. 7-44
7.4.18 Take Preinstruction Exception Primitive .. 7-45
7.4.19 Take Midinstruction Exception Primitive .. 7-47
7.4.20 Take Postinstruction Exception Primitive .. 7-48
7.5 Exceptions ... 7-49
7.5.1 Coprocessor-Detected Exceptions .. 7-49
7.5.1.1 Coprocessor-Detected Protocol Violations 7-50
7.5.1.2 Coprocessor-Detected Illegal Command or Condition Words 7-51
7.5.1.3 Coprocessor Data-Processing-Related Exceptions 7-51
7.5.1.4 Coprocessor System-Related Exceptions 7-51
7.5.1.5 Format Errors ... 7-52
7.5.2 Main-Processor-Detected Exceptions ... 7-52
7.5.2.1 Protocol Violations ... 7-52
7.5.2.2 F-Line Emulator Exceptions ... 7-54

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

xii M68020 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

7.5.2.3 Privilege Violations... 7-55
7.5.2.4 cpTRAPcc Instruction Traps .. 7-55
7.5.2.5 Trace Exceptions ... 7-55
7.5.2.6 Interrupts .. 7-56
7.5.2.7 Format Errors ... 7-57
7.5.2.8 Address and Bus Errors... 7-57
7.5.3 Coprocessor Reset .. 7-58
7.6 Coprocessor Summary ... 7-58

Section 8
Instruction Execution Timing

8.1 Timing Estimation Factors .. 8-1
8.1.1 Instruction Cache and Prefetch ... 8-1
8.1.2 Operand Misalignment .. 8-2
8.1.3 Bus/Sequencer Concurrency... 8-2
8.1.4 Instruction Execution Overlap ... 8-3
8.1.5 Instruction Stream Timing Examples ... 8-4
8.2 Instruction Timing Tables .. 8-9
8.2.1 Fetch Effective Address .. 8-13
8.2.2 Fetch Immediate Effective Address... 8-14
8.2.3 Calculate Effective Address .. 8-16
8.2.4 Calculate Immediate Effective Address... 8-17
8.2.5 Jump Effective Address... 8-19
8.2.6 MOVE Instruction .. 8-20
8.2.7 Special-Purpose MOVE Instruction ... 8-29
8.2.8 Arithmetic/Logical Instructions... 8-30
8.2.9 Immediate Arithmetic/Logical Instructions ... 8-31
8.2.10 Binary-Coded Decimal Operations .. 8-32
8.2.11 Single-Operand Instructions .. 8-33
8.2.12 Shift/Rotate Instructions .. 8-34
8.2.13 Bit Manipulation Instructions ... 8-35
8.2.14 Bit Field Manipulation Instructions... 8-36
8.2.15 Conditional Branch Instructions... 8-37
8.2.16 Control Instructions.. 8-38
8.2.17 Exception-Related Instructions .. 8-39
8.2.18 Save and Restore Operations ... 8-40

Section 9
Applications Information

9.1 Floating-Point Units ... 9-1
9.2 Byte Select Logic for the MC68020/EC020... 9-5
9.3 Power and Ground Considerations ... 9-9

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xiii

TABLE OF CONTENTS (Concluded)
Paragraph Page

Number Title Number

9.4 Clock Driver... 9-10
9.5 Memory Interface .. 9-11
9.6 Access Time Calculations ... 9-12
9.7 Module Support ... 9-14
9.7.1 Module Descriptor.. 9-14
9.7.2 Module Stack Frame ... 9-16
9.8 Access Levels ... 9-17
9.8.1 Module Call.. 9-18
9.8.2 Module Return ... 9-19

Section 10
Electrical Characteristics

10.1 Maximum Ratings ... 10-1
10.2 Thermal Considerations .. 10-1
10.2.1 MC68020 Thermal Characteristics and

DC Electrical Characteristics ... 10-2
10.2.2 MC68EC020 Thermal Characteristics and

DC Electrical Characteristics ... 10-4
10.3 AC Electrical Characteristics ... 10-5

Section 11
Ordering Information and Mechanical Data

11.1 Standard Ordering Information.. 11-1
11.1.1 Standard MC68020 Ordering Information.. 11-1
11.1.2 Standard MC68EC020 Ordering Information 11-1
11.2 Pin Assignments and Package Dimensions .. 11-2
11.2.1 MC68020 RC and RP Suffix—Pin Assignment 11-2
11.2.2 MC68020 RC Suffix—Package Dimensions 11-3
11.2.3 MC68020 RP Suffix—Package Dimensions...................................... 11-4
11.2.4 MC68020 FC and FE Suffix—Pin Assignment 11-5
11.2.5 MC68020 FC Suffix—Package Dimensions 11-6
11.2.6 MC68020 FE Suffix—Package Dimensions 11-7
11.2.7 MC68EC020 RP Suffix—Pin Assignment.. 11-8
11.2.8 MC68EC020 RP Suffix—Package Dimensions 11-9
11.2.9 MC68EC020 FG Suffix—Pin Assignment.. 11-10
11.2.10 MC68EC020 FG Suffix—Package Dimensions 11-11

Appendix A
Interfacing an MC68EC020 to a DMA Device That
Supports a Three-Wire Bus Arbitration Protocol

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

xiv M68020 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS
Figure Page

Number Title Number

1-1 MC68020/EC020 Block Diagram ... 1-3
1-2 User Programming Model .. 1-5
1-3 Supervisor Programming Model Supplement .. 1-6
1-4 Status Register (SR) .. 1-7
1-5 Instruction Pipe .. 1-13

2-1 General Exception Stack Frame .. 2-6

3-1 Functional Signal Groups ... 3-1

4-1 MC68020/EC020 On-Chip Cache Organization .. 4-2
4-2 Cache Control Register .. 4-3
4-3 Cache Address Register .. 4-4

5-1 Relationship between External and Internal Signals.. 5-2
5-2 Input Sample Window .. 5-2
5-3 Internal Operand Representation ... 5-6
5-4 MC68020/EC020 Interface to Various Port Sizes .. 5-6
5-5 Long-Word Operand Write to Word Port Example... 5-10
5-6 Long-Word Operand Write to Word Port Timing .. 5-11
5-7 Word Operand Write to Byte Port Example ... 5-12
5-8 Word Operand Write to Byte Port Timing... 5-13
5-9 Misaligned Long-Word Operand Write to Word Port Example 5-14
5-10 Misaligned Long-Word Operand Write to Word Port Timing............................ 5-15
5-11 Misaligned Long-Word Operand Read from Word Port Example 5-16
5-12 Misaligned Word Operand Write to Word Port Example.................................. 5-16
5-13 Misaligned Word Operand Write to Word Port Timing 5-17
5-14 Misaligned Word Operand Read from Word Bus Example 5-18
5-15 Misaligned Long-Word Operand Write to Long-Word Port Example 5-18
5-16 Misaligned Long-Word Operand Write to Long-Word Port Timing 5-19
5-17 Misaligned Long-Word Operand Read from Long-Word Port Example 5-20
5-18 Byte Enable Signal Generation for 16- and 32-Bit Ports.................................. 5-23
5-19 Long-Word Read Cycle Flowchart ... 5-26
5-20 Byte Read Cycle Flowchart .. 5-27
5-21 Byte and Word Read Cycles—32-Bit Port ... 5-28
5-22 Long-Word Read—8-Bit Port ... 5-29
5-23 Long-Word Read—16- and 32-Bit Ports .. 5-30

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xv

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

5-24 Write Cycle Flowchart .. 5-33
5-25 Read-Write-Read Cycles—32-Bit Port ... 5-34
5-26 Byte and Word Write Cycles—32-Bit Port .. 5-35
5-27 Long-Word Operand Write—8-Bit Port .. 5-36
5-28 Long-Word Operand Write—16-Bit Port... 5-37
5-29 Read-Modify-Write Cycle Flowchart ... 5-40
5-30 Byte Read-Modify-Write Cycle—32-Bit Port (TAS Instruction) 5-41
5-31 MC68020/EC020 CPU Space Address Encoding .. 5-45
5-32 Interrupt Acknowledge Cycle Flowchart ... 5-46
5-33 Interrupt Acknowledge Cycle Timing.. 5-47
5-34 Autovector Operation Timing ... 5-49
5-35 Breakpoint Acknowledge Cycle Flowchart ... 5-50
5-36 Breakpoint Acknowledge Cycle Timing .. 5-51
5-37 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 5-52
5-38 Bus Error without DSACK1/DSACK0 ... 5-57
5-39 Late Bus Error with DSACK1/DSACK0 .. 5-58
5-40 Late Retry... 5-59
5-41 Halt Operation Timing .. 5-61
5-42 MC68020 Bus Arbitration Flowchart for Single Request 5-64
5-43 MC68020 Bus Arbitration Operation Timing for Single Request 5-65
5-44 MC68020 Bus Arbitration State Diagram ... 5-67
5-45 MC68020 Bus Arbitration Operation Timing—Bus Inactive 5-69
5-46 MC68EC020 Bus Arbitration Flowchart for Single Request 5-71
5-47 MC68EC020 Bus Arbitration Operation Timing for Single Request 5-72
5-48 MC68EC020 Bus Arbitration State Diagram .. 5-73
5-49 MC68EC020 Bus Arbitration Operation Timing—Bus Inactive 5-75
5-50 Interface for Three-Wire to Two-Wire Bus Arbitration 5-76
5-51 Initial Reset Operation Timing .. 5-77
5-52 RESET Instruction Timing .. 5-78

6-1 Reset Operation Flowchart .. 6-5
6-2 Interrupt Pending Procedure .. 6-12
6-3 Interrupt Recognition Examples ... 6-13
6-4 Assertion of IPEND (MC68020 Only) ... 6-14
6-5 Interrupt Exception Processing Flowchart .. 6-15
6-6 Breakpoint Instruction Flowchart .. 6-18
6-7 RTE Instruction for Throwaway Four-Word Frame .. 6-20
6-8 Special Status Word Format .. 6-22

7-1 F-Line Coprocessor Instruction Operation Word.. 7-3
7-2 Asynchronous Non-DMA M68000 Coprocessor Interface Signal Usage 7-5
7-3 MC68020/EC020 CPU Space Address Encodings .. 7-6

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

xvi M68020 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

7-4 Coprocessor Address Map in MC68020/EC020 CPU Space 7-7
7-5 Coprocessor Interface Register Set Map ... 7-7
7-6 Coprocessor General Instruction Format (cpGEN) .. 7-8
7-7 Coprocessor Interface Protocol for General Category Instructions.................. 7-10
7-8 Coprocessor Interface Protocol for Conditional Category Instructions 7-11
7-9 Branch on Coprocessor Condition Instruction Format (cpBcc.W) 7-12
7-10 Branch on Coprocessor Condition Instruction Format (cpBcc.L) 7-12
7-11 Set on Coprocessor Condition Instruction Format (cpScc) 7-13
7-12 Test Coprocessor Condition, Decrement, and Branch

Instruction Format (cpDBcc)... 7-14
7-13 Trap on Coprocessor Condition Instruction Format (cpTRAPcc) 7-15
7-14 Coprocessor State Frame Format in Memory .. 7-17
7-15 Coprocessor Context Save Instruction Format (cpSAVE) 7-20
7-16 Coprocessor Context Save Instruction Protocol .. 7-21
7-17 Coprocessor Context Restore Instruction Format (cpRESTORE) 7-22
7-18 Coprocessor Context Restore Instruction Protocol .. 7-23
7-19 Control CIR Format .. 7-25
7-20 Condition CIR Format .. 7-26
7-21 Operand Alignment for Operand CIR Accesses .. 7-26
7-22 Coprocessor Response Primitive Format .. 7-28
7-23 Busy Primitive Format .. 7-30
7-24 Null Primitive Format.. 7-31
7-25 Supervisor Check Primitive Format.. 7-33
7-26 Transfer Operation Word Primitive Format .. 7-33
7-27 Transfer from Instruction Stream Primitive Format .. 7-34
7-28 Evaluate and Transfer Effective Address Primitive Format.............................. 7-35
7-29 Evaluate Effective Address and Transfer Data Primitive Format 7-35
7-30 Write to Previously Evaluated Effective Address Primitive Format 7-37
7-31 Take Address and Transfer Data Primitive Format .. 7-39
7-32 Transfer to/from Top of Stack Primitive Format ... 7-40
7-33 Transfer Single Main Processor Register Primitive Format 7-40
7-34 Transfer Main Processor Control Register Primitive Format 7-41
7-35 Transfer Multiple Main Processor Registers Primitive Format 7-42
7-36 Register Select Mask Format ... 7-42
7-37 Transfer Multiple Coprocessor Registers Primitive Format.............................. 7-43
7-38 Operand Format in Memory for Transfer to –(An) ... 7-44
7-39 Transfer Status Register and ScanPC Primitive Format.................................. 7-44
7-40 Take Preinstruction Exception Primitive Format .. 7-45
7-41 MC68020/EC020 Preinstruction Stack Frame ... 7-46
7-42 Take Midinstruction Exception Primitive Format .. 7-47
7-43 MC68020/EC020 Midinstruction Stack Frame ... 7-47
7-44 Take Postinstruction Exception Primitive Format... 7-48

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xvii

LIST OF ILLUSTRATIONS (Concluded)
Figure Page

Number Title Number

7-45 MC68020/EC020 Postinstruction Stack Frame.. 7-48

8-1 Concurrent Instruction Execution ... 8-3
8-2 Instruction Execution for Instruction Timing Purposes 8-3
8-3 Processor Activity for Example 1 ... 8-5
8-4 Processor Activity for Example 2 ... 8-6
8-5 Processor Activity for Example 3 ... 8-7
8-6 Processor Activity for Example 4 ... 8-8

9-1 32-Bit Data Bus Coprocessor Connection.. 9-2
9-2 Chip Select Generation PAL .. 9-3
9-3 Chip Select PAL Equations .. 9-4
9-4 Bus Cycle Timing Diagram ... 9-4
9-5 Example MC68020/EC020 Byte Select PAL System Configuration 9-7
9-6 MC68020/EC020 Byte Select PAL Equations .. 9-8
9-7 High-Resolution Clock Controller ... 9-11
9-8 Alternate Clock Solution ... 9-11
9-9 Access Time Computation Diagram ... 9-12
9-10 Module Descriptor Format .. 9-15
9-11 Module Entry Word .. 9-15
9-12 Module Call Stack Frame ... 9-16
9-13 Access Level Control Bus Registers .. 9-17

10-1 Drive Levels and Test Points for AC Specifications 10-6
10-2 Clock Input Timing Diagram ... 10-7
10-3 Read Cycle Timing Diagram .. 10-11
10-4 Write Cycle Timing Diagram... 10-12
10-5 Bus Arbitration Timing Diagram ... 10-13

A-1 Bus Arbitration Circuit—MC68EC020 (Two-Wire) to DMA (Three-Wire) A-1

9/29/95 SECTION 1: OVERVIEW UM Rev.1.0

xviii M68020 USER’S MANUAL MOTOROLA

LIST OF TABLES
Table Page

Number Title Number

1-1 Addressing Modes ... 1-9
1-2 Instruction Set .. 1-11

2-1 Address Space Encodings ... 2-4

3-1 Signal Index ... 3-3
3-2 Signal Summary... 3-8

5-1 DSACK1/DSACK0 Encodings and Results .. 5-5
5-2 SIZ1, SIZ0 Signal Encoding ... 5-7
5-3 Address Offset Encodings ... 5-7
5-4 Data Bus Requirements for Read Cycles .. 5-8
5-5 MC68020/EC020 Internal to External Data Bus Multiplexer—

Write Cycles ... 5-9
5-6 Memory Alignment and Port Size Influence on Read/Write Bus Cycles 5-20
5-7 Data Bus Byte Enable Signals for Byte, Word, and Long-Word Ports 5-22
5-8 DSACK1/DSACK0, BERR, HALT Assertion Results 5-54

6-1 Exception Vector Assignments .. 6-3
6-2 Tracing Control .. 6-9
6-3 Interrupt Levels and Mask Values.. 6-12
6-4 Exception Priority Groups .. 6-18
6-5 Exception Stack Frames .. 6-26

7-1 cpTRAPcc Opmode Encodings.. 7-16
7-2 Coprocessor Format Word Encodings ... 7-18
7-3 Null Coprocessor Response Primitive Encodings.. 7-32
7-4 Valid Effective Address Field Codes .. 7-36
7-5 Main Processor Control Register Select Codes... 7-41
7-6 Exceptions Related to Primitive Processing .. 7-53

8-1 Examples 1–4 Instruction Stream Execution Comparison 8-8
8-2 Instruction Timings from Timing Tables ... 8-11
8-3 Observed Instruction Timings .. 8-11

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xix

LIST OF TABLES (Continued)
Table Page

Number Title Number

9-1 Data Bus Activity for Byte, Word, and Long-Word Ports 9-6
9-2 VCC and GND Pin Assignments—MC68EC020 PPGA (RP Suffix) 9-10
9-3 VCC and GND Pin Assignments—MC68EC020 PQFP (FG Sufffix)................. 9-10
9-4 Memory Access Time Equations at 16.67 and 25 MHz 9-13
9-5 Calculated tAVDV Values for Operation at Frequencies

Less Than or Equal to the CPU Maximum Frequency Rating........................ 9-14
9-6 Access Status Register Codes... 9-18

10-1 θJA vs. Airflow—MC68020 CQFP Package ... 10-3
10-2 Power vs. Rated Frequency (at TJ Maximum = 110°C) 10-3
10-3 Temperature Rise of Board vs. PD—MC68020 CQFP Package 10-3
10-4 θJA vs. Airflow—MC68EC020 PQFP Package .. 10-4

MOTOROLA M68020 USER’S MANUAL v

MC68020/EC020 ACRONYM LIST

BCD — Binary-Coded Decimal
CAAR — Cache Address Register
CACR — Cache Control Register

CCR — Condition Code Register
CIR — Coprocessor Interface Register

CMOS — Complementary Metal Oxide Semiconductor
CPU — Central Processing Unit

CQFP — Ceramic Quad Flat Pack
DDMA — Dual-Channel Direct Memory Access

DFC — Destination Function Code Register
DMA — Direct Memory Access

DRAM — Dynamic Random Access Memory
FPCP — Floating-Point Coprocessor

HCMOS — High-Density Complementary Metal Oxide Semiconductor
IEEE — Institute of Electrical and Electronic Engineers

ISP — Interrupt Stack Pointer
LMB — Lower Middle Byte

LRAR — Limited Rate Auto Request
LSB — Least Significant Byte

MMU — Memory Management Unit
MPU — Microprocessor Unit
MSB — Most Significant Byte
MSP — Master Stack Pointer

NMOS — n-Type Metal Oxide Semiconductor
PAL — Programmable Array Logic
PC — Program Counter

PGA — Pin Grid Array
PMMU — Paged Memory Management Unit
PPGA — Plastic Pin Grid Array
PQFP — Plastic Quad Flat Pack
RAM — Random Access Memory
SFC — Source Function Code Register

SP — Stack Pointer
SR — Status Register

SSP — Supervisor Stack Pointer
SSW — Special Status Word
UMB — Upper Middle Byte
USP — User Stack Pointer
VBR — Vector Base Register
VLSI — Very Large Scale Integration

MOTOROLA M68020 USER’S MANUAL 1-1

SECTION 1
INTRODUCTION

The MC68020 is the first full 32-bit implementation of the M68000 family of
microprocessors from Motorola. Using VLSI technology, the MC68020 is implemented
with 32-bit registers and data paths, 32-bit addresses, a rich instruction set, and versatile
addressing modes.

The MC68020 is object-code compatible with earlier members of the M68000 family and
has the added features of new addressing modes in support of high-level languages, an
on-chip instruction cache, and a flexible coprocessor interface with full IEEE floating-point
support (the MC68881 and MC68882). The internal operations of this microprocessor
operate in parallel, allowing multiple instructions to be executed concurrently.

The asynchronous bus structure of the MC68020 uses a nonmultiplexed bus with 32 bits
of address and 32 bits of data. The processor supports a dynamic bus sizing mechanism
that allows the processor to transfer operands to or from external devices while
automatically determining device port size on a cycle-by-cycle basis. The dynamic bus
interface allows access to devices of differing data bus widths, in addition to eliminating all
data alignment restrictions.

The MC68EC020 is an economical high-performance embedded microprocessor based
on the MC68020 and has been designed specifically to suit the needs of the embedded
microprocessor market. The major differences in the MC68EC020 and the MC68020 are
that the MC68EC020 has a 24-bit address bus and does not implement the following
signals: ECS, OCS, DBEN, IPEND, and BGACK. Also, the available packages and
frequencies differ for the MC68020 and MC68EC020 (see Section 11 Ordering
Information and Mechanical Data.) Unless otherwise stated, information in this manual
applies to both the MC68020 and the MC68EC020.

1-2 M68020 USER’S MANUAL MOTOROLA

1.1 FEATURES

The main features of the MC68020/EC020 are as follows:

• Object-Code Compatible with Earlier M68000 Microprocessors

• Addressing Mode Extensions for Enhanced Support of High-Level Languages

• New Bit Field Data Type Accelerates Bit-Oriented Applications—e.g., Video Graphics

• An On-Chip Instruction Cache for Faster Instruction Execution

• Coprocessor Interface to Companion 32-Bit Peripherals—the MC68881 and
MC68882 Floating-Point Coprocessors and the MC68851 Paged Memory
Management Unit

• Pipelined Architecture with High Degree of Internal Parallelism Allowing Multiple
Instructions To Be Executed Concurrently

• High-Performance Asynchronous Bus Is Nonmultiplexed and Full 32 Bits

• Dynamic Bus Sizing Efficiently Supports 8-/16-/32-Bit Memories and Peripherals

• Full Support of Virtual Memory and Virtual Machine

• Sixteen 32-Bit General-Purpose Data and Address Registers

• Two 32-Bit Supervisor Stack Pointers and Five Special-Purpose Control Registers

• Eighteen Addressing Modes and Seven Data Types

• 4-Gbyte Direct Addressing Range for the MC68020

• 16-Mbyte Direct Addressing Range for the MC68EC020

• Selection of Processor Speeds for the MC68020: 16.67, 20, 25, and 33.33 MHz

• Selection of Processor Speeds for the MCEC68020: 16.67 and 25 MHz

A block diagram of the MC68020/EC020 is shown in Figure 1-1.

MOTOROLA M68020 USER’S MANUAL 1-3

SEQUENCER AND CONTROL

 CONTROL
STORE

CONTROL
LOGIC

INSTRUCTION
CACHE

STAGE
B

STAGE
C

STAGE
D

CACHE
HOLDING

REGISTER
(CAHR)

INTERNAL
DATA
BUS

INSTRUCTION PIPE

 INSTRUCTION
ADDRESS

BUS

ADDRESS
SECTION

PROGRAM
COUNTER
SECTION

DATA
SECTION

EXECUTION UNIT

MISALIGNMENT
MULTIPLEXER

SIZE
MULTIPLEXER

WRITE PENDING
BUFFER

PREFETCH PENDING
BUFFER

 MICROBUS
 CONTROL LOGIC

BUS CONTROLLER

BUS CONTROL
SIGNALS

ADDRESS
BUS

ADDRESS
PADS

DATA
PADS

DATA
BUS

32-BIT

ADDRESS
BUS

32-BIT*

* 24-Bit for MC68EC020

Figure 1-1. MC68020/EC020 Block Diagram

1-4 M68020 USER’S MANUAL MOTOROLA

1.2 PROGRAMMING MODEL

The programming model of the MC68020/EC020 consists of two groups of registers, the
user model and the supervisor model, that correspond to the user and supervisor privilege
levels, respectively. User programs executing at the user privilege level use the registers
of the user model. System software executing at the supervisor level uses the control
registers of the supervisor level to perform supervisor functions.

As shown in the programming models (see Figures 1-2 and 1-3), the MC68020/EC020
has 16 32-bit general-purpose registers, a 32-bit PC two 32-bit SSPs, a 16-bit SR, a 32-bit
VBR, two 3-bit alternate function code registers, and two 32-bit cache handling (address
and control) registers.

The user programming model remains unchanged from earlier M68000 family
microprocessors. The supervisor programming model supplements the user programming
model and is used exclusively by MC68020/EC020 system programmers who utilize the
supervisor privilege level to implement sensitive operating system functions. The
supervisor programming model contains all the controls to access and enable the special
features of the MC68020/EC020. All application software, written to run at the
nonprivileged user level, migrates to the MC68020/EC020 from any M68000 platform
without modification.

Registers D7–D0 are data registers used for bit and bit field (1 to 32 bits), byte (8 bit),
word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers A6–A0 and
the USP, ISP, and MSP are address registers that may be used as software stack
pointers or base address registers. Register A7 (shown as A7 in Figure 1-2 and as A7 ′
and A7″ in Figure 1-3) is a register designation that applies to the USP in the user
privilege level and to either the ISP or MSP in the supervisor privilege level. In the
supervisor privilege level, the active stack pointer (interrupt or master) is called the SSP.
In addition, the address registers may be used for word and long-word operations. All of
the 16 general-purpose registers (D7–D0, A7–A0) may be used as index registers.

The PC contains the address of the next instruction to be executed by the
MC68020/EC020. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate.

MOTOROLA M68020 USER’S MANUAL 1-5

078151631

D0

D1

D2

D3

D4

D5

D6

D7

DATA
REGISTERS

0151631

A0

A1

A2

A3

A4

A5

A6

ADDRESS
REGISTERS

0151631

A7 (USP)

PC

CCR
CONDITION CODE
REGISTER

78

031

15

0

PROGRAM
COUNTER

USER STACK
POINTER

0

Figure 1-2. User Programming Model

1-6 M68020 USER’S MANUAL MOTOROLA

0

78

151631

SR

VBR

031

CACR

CAAR

031
CACHE ADDRESS
REGISTER

CACHE CONTROL
REGISTER

1516

15

0

0

0

31

(CCR)

023

31

31

SFC

A7' (ISP)

A7'' (MSP)

INTERRUPT STACK
POINTER

MASTER STACK
POINTER

STATUS
REGISTER

VECTOR BASE
REGISTER

DFC

ALTERNATE
FUNCTION CODE
REGISTERS

Figure 1-3. Supervisor Programming Model Supplement

MOTOROLA M68020 USER’S MANUAL 1-7

The SR (see Figure 1-4) stores the processor status. It contains the condition codes that
reflect the results of a previous operation and can be used for conditional instruction
execution in a program. The condition codes are extend (X), negative (N), zero (Z),
overflow (V), and carry (C). The user byte, which contains the condition codes, is the only
portion of the SR information available in the user privilege level, and it is referenced as
the CCR in user programs. In the supervisor privilege level, software can access the entire
SR, including the interrupt priority mask (three bits) and control bits that indicate whether
the processor is in:

1. One of two trace modes (T1, T0)

2. Supervisor or user privilege level (S)

3. Master or interrupt mode (M)

015

C

1

V

2

Z

3

N

4

X

5

0

6

0

7

0

8

I0

9

I1

10

I2

11

0

12

M

13

S

14

T0T1

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE
ENABLE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER LEVEL

MASTER/INTERRUPT MODE

CARRY

OVERFLOW

ZERO

NEGATIVE

EXTEND

Figure 1-4. Status Register (SR)

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

The alternate function code registers, SFC and DFC, contain 3-bit function codes. For the
MC68020, function codes can be considered extensions of the 32-bit linear address that
optionally provide as many as eight 4-Gbyte address spaces; for the MC68EC020,
function codes can be considered extensions of the 24-bit linear address that optionally
provide as many as eight 16-Mbyte address spaces. Function codes are automatically
generated by the processor to select address spaces for data and program at the user
and supervisor privilege levels and to select a CPU address space for processor functions
(e.g., coprocessor communications). Registers SFC and DFC are used by certain
instructions to explicitly specify the function codes for operations.

The CACR controls the on-chip instruction cache of the MC68020/EC020. The CAAR
stores an address for cache control functions.

1-8 M68020 USER’S MANUAL MOTOROLA

1.3 DATA TYPES AND ADDRESSING MODES OVERVIEW

For detailed information on the data types and addressing modes supported by the
MC68020/EC020, refer to M68000PM/AD, M68000 Family Programmer’s Reference
Manual.

The MC68020/EC020 supports seven basic data types:
1. Bits

2. Bit Fields (Fields of consecutive bits, 1–32 bits long)

3. BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)

4. Byte Integers (8 bits)

5. Word Integers (16 bits)

6. Long-Word Integers (32 bits)

7. Quad-Word Integers (64 bits)

In addition, the MC68020/EC020 instruction set supports operations on other data types
such as memory addresses. The coprocessor mechanism allows direct support of floating-
point operations with the MC68881 and MC68882 floating-point coprocessors as well as
specialized user-defined data types and functions.

The 18 addressing modes listed in Table 1-1 include nine basic types:
1. Register Direct

2. Register Indirect

3. Register Indirect with Index

4. Memory Indirect

5. PC Indirect with Displacement

6. PC Indirect with Index

7. PC Memory Indirect

8. Absolute

9. Immediate

The register indirect addressing modes have postincrement, predecrement, displacement,
and index capabilities. The PC modes have index and offset capabilities. Both modes are
extended to provide indirect reference through memory. In addition to these addressing
modes, many instructions implicitly specify the use of the CCR, stack pointer, and/or PC.

MOTOROLA M68020 USER’S MANUAL 1-9

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct
Data
Address

Dn
An

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16, An)

Address Register Indirect with Index
8-Bit Displacement
Base Displacement

(d8, An, Xn)
(bd, An, Xn)

Memory Indirect
Postindexed
Preindexed

([bd, An], Xn, od)
([bd, An, Xn], od)

PC Indirect with Displacement (d16, PC)

PC Indirect with Index
8-Bit Displacement
Base Displacement

(d8, PC, Xn)
(bd, PC, Xn)

PC Indirect
Postindexed
Preindexed

([bd, PC], Xn, od)
([bd, PC, Xn], od)

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

Immediate #<data>

NOTE:
Dn = Data Register, D7–D0
An = Address Register, A7–A0

d8, d16 = A twos complement or sign-extended displacement added as part
of the effective address calculation; size is 8 (d8) or 16 (d16) bits;
when omitted, assemblers use a value of zero.

Xn = Address or data register used as an index register; form is
Xn.SIZE*SCALE, where SIZE is .W or .L (indicates index register
size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by
SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement; when present, size can be
16 or 32 bits.

od = Outer displacement added as part of effective address calculation
after any memory indirection; use is optional with a size of 16 or 32
bits.

PC = Program Counter
<data> = Immediate value of 8, 16, or 32 bits

() = Effective Address
[] = Use as indirect access to long-word address.

1-10 M68020 USER’S MANUAL MOTOROLA

1.4 INSTRUCTION SET OVERVIEW

For detailed information on the MC68020/EC020 instruction set, refer to M68000PM/AD,
M68000 Family Programmer’s Reference Manual.

The instructions in the MC68020/EC020 instruction set are listed in Table 1-2. The
instruction set has been tailored to support structured high-level languages and
sophisticated operating systems. Many instructions operate on bytes, words, or long
words, and most instructions can use any of the 18 addressing modes.

1.5 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68020 is 4 Gbytes (4,294,967,296 bytes) in each of
eight address spaces; the full addressing range of the MC68EC020 is 16 Mbytes
(16,777,216 bytes) in each of the eight address spaces. Even though most systems
implement a smaller physical memory, the system can be made to appear to have a full 4
Gbytes (MC68020) or 16 Mbytes (MC68EC020) of memory available to each user
program by using virtual memory techniques.

In a virtual memory system, a user program can be written as if it has a large amount of
memory available, although the physical memory actually present is much smaller.
Similarly, a system can be designed to allow user programs to access devices that are not
physically present in the system, such as tape drives, disk drives, printers, terminals, and
so forth. With proper software emulation, a physical system can appear to be any other
M68000 computer system to a user program, and the program can be given full access to
all of the resources of that emulated system. Such an emulated system is called a virtual
machine.

1.5.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device such as a large-capacity disk
drive. When the processor attempts to access a location in the virtual memory map that is
not resident in physical memory, a page fault occurs. The access to that location is
temporarily suspended while the necessary data is fetched from secondary storage and
placed in physical memory. The suspended access is then either restarted or continued.

The MC68020/EC020 uses instruction continuation to support virtual memory. When a
bus cycle is terminated with a bus error, the microprocessor suspends the current
instruction and executes the virtual memory bus error handler. When the bus error handler
has completed execution, it returns control to the program that was executing when the
error was detected, reruns the faulted bus cycle (when required), and continues the
suspended instruction.

MOTOROLA M68020 USER’S MANUAL 1-11

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description

ABCD Add Decimal with Extend MOVE USP Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Peripheral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND MULS Signed Multiply
ANDI Logical AND Immediate MULU Unsigned Multiply

ASL, ASR Arithmetic Shift Left and Right NBCD Negate Decimal with Extend

Bcc Branch Conditionally NEG Negate
BCHG Test Bit and Change NEGX Negate with Extend
BCLR Test Bit and Clear NOP No Operation
BFCHG Test Bit Field and Change NOT Logical Complement

BFCLR Test Bit Field and Clear OR Logical Inclusive OR
BFEXTS Signed Bit Field Extract ORI Logical Inclusive OR Immediate
BFEXTU Unsigned Bit Field Extract ORI CCR Logical Inclusive Or Immediate to Condition Codes
BFFFO Bit Field Find First One ORI SR Logical Inclusive OR Immediate to Status Register

BFINS Bit Field Insert PACK Pack BCD
BFSET Test Bit Field and Set PEA Push Effective Address

BFTST Test Bit Field RESET Reset External Devices
BKPT Breakpoint ROL, ROR Rotate Left and Right
BRA Branch Always ROXL,ROXR Rotate with Extend Left and Right
BSET Test Bit and Set RTD Return and Deallocate
BSR Branch to Subroutine RTE Return from Exception
BTST Test Bit RTM Return from Module

CALLM Call Module RTR Return and Restore Codes
CAS Compare and Swap Operands RTS Return from Subroutine

CAS2 Compare and Swap Dual Operands SBCD Subtract Decimal with Extend
CHK Check Register Against Bound Scc Set Conditionally
CHK2 Check Register Against Upper and Lower Bound STOP Stop
CLR Clear SUB Subtract
CMP Compare SUBA Subtract Address
CMPA Compare Address SUBI Subtract Immediate
CMPI Compare Immediate SUBQ Subtract Quick
CMPM Compare Memory to Memory SUBX Subtract with Extend
CMP2 Compare Register Against Upper and Lower Bounds SWAP Swap Register Words

DBcc Test Condition, Decrement and Branch TAS Test and Set an Operand
DIVS, DIVSL Signed Divide TRAP Trap
DIVU, DIVUL Unsigned Divide TRAPcc Trap Conditionally

EOR Logical Exclusive OR TRAPV Trap on Overflow
EORI Logical Exclusive Or Immediate TST Test Operand

EXG Exchange Registers UNLK Unlink
EXT, EXTB Sign Extend UNPK Unpack BCD

ILLEGAL Take Illegal Instruction Trap

JMP Jump COPROCESSOR INSTRUCTIONS

JSR Jump to Subroutine Mnemonic Description

LEA Load Effective Address cpBcc Branch Conditionally
LINK Link and Allocate cpDBcc Test Coprocessor Condition, Decrement and Branch
LSL, LSR Logical Shift Left and Right cpGEN Coprocessor General Instruction

MOVE Move cpRESTORE Restore Internal State of Coprocessor
MOVEA Move Address cpSAVE Save Internal State of Coprocessor
MOVE CCR Move Condition Code Register cpScc Set Conditionally
MOVE SR Move Status Register cpTRAPcc Trap Conditionally

1-12 M68020 USER’S MANUAL MOTOROLA

1.5.2 Virtual Machine

A typical use for a virtual machine system is the development of software, such as an
operating system, for a new machine also under development and not yet available for
programming use. In a virtual machine system, a governing operating system emulates
the hardware of the new machine and allows the new software to be executed and
debugged as though it were running on the new hardware. Since the new software is
controlled by the governing operating system, it is executed at a lower privilege level than
the governing operating system. Thus, any attempts by the new software to use virtual
resources that are not physically present (and should be emulated) are trapped to the
governing operating system and performed by its software.

In the MC68020/EC020 implementation of a virtual machine, the virtual application runs at
the user privilege level. The governing operating system executes at the supervisor
privilege level and any attempt by the new operating system to access supervisor
resources or execute privileged instructions causes a trap to the governing operating
system.

Instruction continuation is used to support virtual I/O devices in memory-mapped
input/output systems. Control and data registers for the virtual device are simulated in the
memory map. An access to a virtual register causes a fault, and the function of the
register is emulated by software.

1.6 PIPELINED ARCHITECTURE

The MC68020/EC020 contains a three-word instruction pipe where instruction opcodes
are decoded. As shown in Figure 1-5, instruction words (instruction operation words and
all extension words) enter the pipe at stage B and proceed to stages C and D. An
instruction word is completely decoded when it reaches stage D of the pipe. Each stage
has a status bit that reflects whether the word in the stage was loaded with data from a
bus cycle that was terminated abnormally. Stages of the pipe are only filled in response to
specific prefetch requests issued by the sequencer.

Words are loaded into the instruction pipe from the cache holding register. Although the
individual stages of the pipe are only 16 bits wide, the cache holding register is 32 bits
wide and contains the entire long word. This long word is obtained from the instruction
cache or the external bus in response to a prefetch request from the sequencer. When the
sequencer requests an even-word (long-word-aligned) prefetch, the entire long word is
accessed from the instruction cache or the external bus and loaded into the cache holding
register, and the high-order word is also loaded into stage B of the pipe. The instruction
word for the next sequential prefetch can then be accessed directly from the cache
holding register, and no external bus cycle or instruction cache access is required. The
cache holding register provides instruction words to the pipe regardless of whether the
instruction cache is enabled or disabled.

MOTOROLA M68020 USER’S MANUAL 1-13

SEQUENCER

CACHE
HOLDING

REGISTER

CONTROL
UNIT

EXECUTION
UNIT

STAGE
D

INSTRUCTION PIPE

STAGE
C

STAGE
B

INSTRUCTION
FLOW FROM
CACHE AND

MEMORY

Figure 1-5. Instruction Pipe

The sequencer is either executing microinstructions or awaiting completion of accesses
that are necessary to continue executing microcode. The bus controller is responsible for
all bus activity. The sequencer controls the bus controller, instruction execution, and
internal processor operations such as the calculation of effective addresses and the
setting of condition codes. The sequencer initiates instruction word prefetches and
controls the validation of instruction words in the instruction pipe.

Prefetch requests are simultaneously submitted to the cache holding register, the
instruction cache, and the bus controller. Thus, even if the instruction cache is disabled,
an instruction prefetch may hit in the cache holding register and cause an external bus
cycle to be aborted.

1.7 CACHE MEMORY

Due to locality of reference, instructions that are used in a program have a high probability
of being reused within a short time. Additionally, instructions that reside in proximity to the
instructions currently in use also have a high probability of being utilized within a short
period. To exploit these locality characteristics, the MC68020/EC020 contains an on-chip
instruction cache.

The cache improves the overall performance of the system by reducing the number of bus
cycles required by the processor to fetch information from memory and by increasing the
bus bandwidth available for other bus masters in the system.

MOTOROLA M68020 USER’S MANUAL 2-1

SECTION 2
PROCESSING STATES

This section describes the processing states of the MC68020/EC020. It describes the
functions of the bits in the supervisor portion of the SR and the actions taken by the
processor in response to exception conditions.

Unless the processor has halted, it is always in either the normal or the exception
processing state. Whenever the processor is executing instructions or fetching instructions
or operands, it is in the normal processing state. The processor is also in the normal
processing state while it is storing instruction results or communicating with a
coprocessor.

NOTE

Exception processing refers specifically to the transition from
normal processing of a program to normal processing of
system routines, interrupt routines, and other exception
handlers. Exception processing includes all stacking
operations, the fetch of the exception vector, and the filling of
the instruction pipe caused by an exception. Exception
processing has completed when execution of the first
instruction of the exception handler routine begins.

The processor enters the exception processing state when an interrupt is acknowledged,
when an instruction is traced or results in a trap, or when some other exception condition
arises. Execution of certain instructions or unusual conditions occurring during the
execution of any instruction can cause exceptions. External conditions, such as interrupts,
bus errors, and some coprocessor responses, also cause exceptions. Exception
processing provides an efficient transfer of control to handlers and routines that process
the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus error or
generates an address error while in the exception processing state. This type of failure
halts the processor. For example, if during the exception processing of one bus error
another bus error occurs, the MC68020/EC020 has not completed the transition to normal
processing and has not completed saving the internal state of the machine; therefore, the
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. (When the processor executes a STOP instruction, it is in a
special type of normal processing state—one without bus cycles. It is stopped, not halted.)

2-2 M68020 USER’S MANUAL MOTOROLA

2.1 PRIVILEGE LEVELS

The processor operates at one of two privilege levels: the user level or the supervisor
level. The supervisor level has higher privileges than the user level. Not all processor or
coprocessor instructions are permitted to execute at the lower privileged user level, but all
are available at the supervisor level. This arrangement allows a separation of supervisor
and user so the supervisor can protect system resources from uncontrolled access. The
S-bit in the SR is used to select either the user or supervisor privilege level and either the
USP or an SSP for stack operations. The processor identifies a bus access (supervisor or
user mode) via the function codes so that differentiation between supervisor level and
user level can be maintained.

In many systems, the majority of programs execute at the user level. User programs can
access only their own code and data areas and can be restricted from accessing other
information. The operating system typically executes at the supervisor privilege level. It
has access to all resources, performs the overhead tasks for the user-level programs, and
coordinates user-level program activities.

2.1.1 Supervisor Privilege Level

The supervisor level is the higher privilege level. The privilege level is determined by the
S-bit of the SR; if the S-bit is set, the supervisor privilege level applies, and all instructions
are executable. The bus cycles for instructions executed at the supervisor level are
normally classified as supervisor references, and the values of the FC2–FC0 signals refer
to supervisor address spaces.

In a multitasking operating system, it is more efficient to have a supervisor stack space
associated with each user task and a separate stack space for interrupt-associated tasks.
The MC68020/EC020 provides two supervisor stacks, master and interrupt; the M bit of
the SR selects which of the two is active. When the M-bit is set, references to the SSP
implicitly or to address register seven (A7) explicitly, access the MSP. The operating
system sets the MSP for each task to point to a task-related area of supervisor data
space. This arrangement separates task-related supervisor activity from asynchronous,
I/O-related supervisor tasks that may be only coincidental to the currently executing task.
The MSP can separately maintain task control information for each currently executing
user task, and the software updates the MSP when a task switch is performed, providing
an efficient means for transferring task-related stack items. The other supervisor stack
pointer, the ISP, can be used for interrupt control information and workspace area as
interrupt handling routines require.

When the M-bit is clear, the MC68020/EC020 is in the interrupt mode of the supervisor
privilege level, and operation is the same as supervisor mode in the MC68000,
MC68HC001, MC68008, and MC68010. (The processor is in this mode after a reset
operation.) All SSP references access the ISP in this mode.

MOTOROLA M68020 USER’S MANUAL 2-3

The value of the M-bit in the SR does not affect execution of privileged instructions; both
master and interrupt modes are at the supervisor privilege level. Instructions that affect the
M-bit are MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, and RTE. Also, the
processor automatically saves the M-bit value and clears it in the SR as part of exception
processing for interrupts.

All exception processing is performed at the supervisor privilege level. All bus cycles
generated during exception processing are supervisor references, and all stack accesses
use the active SSP.

2.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined by the S-bit of
the SR; if the S-bit is clear, the processor executes instructions at the user privilege level.

Most instructions execute at either privilege level, but some instructions that have
important system effects are privileged and can only be executed at the supervisor level.
For instance, user programs are not allowed to execute the STOP instruction or the
RESET instruction. To prevent a user program from entering the supervisor privilege level
except in a controlled manner, instructions that can alter the S-bit in the SR are privileged.
The TRAP #n instruction provides controlled access to operating system services for user
programs.

The bus cycles for an instruction executed at the user privilege level are classified as user
references, and the values of the FC2–FC0 signals specify user address spaces. While
the processor is at the user level, references to the system stack pointer implicitly, or to
address register seven (A7) explicitly, refer to the USP.

2.1.3 Changing Privilege Level

To change from the user to the supervisor privilege level, one of the conditions that
causes the processor to perform exception processing must occur. This causes a change
from the user level to the supervisor level and can cause a change from the master mode
to the interrupt mode. Exception processing saves the current values of the S and M bits
of the SR (along with the rest of the SR) on the active supervisor stack, and then sets the
S-bit, forcing the processor into the supervisor privilege level. When the exception being
processed is an interrupt and the M-bit is set, the M-bit is cleared, putting the processor
into the interrupt mode. Execution of instructions continues at the supervisor level to
process the exception condition.

To return to the user privilege level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute at the supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed and is refilled from the
appropriate address space.

The RTE instruction returns to the program that was executing when the exception
occurred. It restores the exception stack frame saved on the supervisor stack. If the frame

2-4 M68020 USER’S MANUAL MOTOROLA

on top of the stack was generated by an interrupt, trap, or instruction exception, the RTE
instruction restores the SR and PC to the values saved on the supervisor stack. The
processor then continues execution at the restored PC address and at the privilege level
determined by the S-bit of the restored SR. If the frame on top of the stack was generated
by a bus fault (bus error or address error exception), the RTE instruction restores the
entire saved processor state from the stack.

2.2 ADDRESS SPACE TYPES

The processor specifies a target address space for every bus cycle with the FC2–FC0
signals according to the type of access required. In addition to distinguishing between
supervisor/user and program/data, the processor can identify special processor cycles,
such as the interrupt acknowledge cycle, and the memory management unit can control
accesses and translate addresses appropriately. Table 2-1 lists the types of accesses
defined for the MC68020/EC020 and the corresponding values of the FC2–FC0 signals.

Table 2-1. Address Space Encodings

FC2 FC1 FC0 Address Space

0 0 0 (Undefined, Reserved)*

0 0 1 User Data Space

0 1 0 User Program Space

0 1 1 (Undefined, Reserved)*

1 0 0 (Undefined, Reserved)*

1 0 1 Supervisor Data Space

1 1 0 Supervisor Program Space

1 1 1 CPU Space

* Address space 3 is reserved for user definition; 0 and 4 are reserved
for future use by Motorola.

The memory locations of user program and data accesses are not predefined; neither are
the locations of supervisor data space. During reset, the first two long words beginning at
memory location zero in the supervisor program space are used for processor
initialization. No other memory locations are explicitly defined by the MC68020/EC020.

A function code of $7 selects the CPU address space. This is a special address space
that does not contain instructions or operands but is reserved for special processor
functions. The processor uses accesses in this space to communicate with external
devices for special purposes. For example, all M68000 processors use the CPU space for
interrupt acknowledge cycles. The MC68020/EC020 also generate CPU space accesses
for breakpoint acknowledge and coprocessor operations.

Supervisor programs can use the MOVES instruction to access all address spaces,
including the user spaces and the CPU address space. Although the MOVES instruction
can be used to generate CPU space cycles, this may interfere with proper system
operation. Thus, the use of MOVES to access the CPU space should be done with
caution.

MOTOROLA M68020 USER’S MANUAL 2-5

2.3 EXCEPTION PROCESSING

An exception is defined as a special condition that preempts normal processing. Both
internal and external conditions can cause exceptions. External conditions that cause
exceptions are interrupts from external devices, bus errors, coprocessor-detected errors,
and reset. Instructions, address errors, tracing, and breakpoints are internal conditions
that cause exceptions. The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE,
BKPT, CALLM, RTM, cp RESTORE, DIVS and DIVU instructions can generate exceptions
as part of their normal execution. In addition, illegal instructions, privilege violations, and
coprocessor protocol violations cause exceptions.

Exception processing, which is the transition from the normal processing of a program to
the processing required for the exception condition, involves the exception vector table
and an exception stack frame. The following paragraphs describe the exception vectors
and a generalized exception stack frame. Exception processing is discussed in detail in
Section 6 Exception Processing. Coprocessor-detected exceptions are discussed in
detail in Section 7 Coprocessor Interface Description.

2.3.1 Exception Vectors

The VBR contains the base address of the 1024-byte exception vector table, which
consists of 256 exception vectors. Exception vectors contain the memory addresses of
routines that begin execution at the completion of exception processing. These routines
perform a series of operations appropriate for the corresponding exceptions. Because the
exception vectors contain memory addresses, each consists of one long word, except for
the reset vector. The reset vector consists of two long words: the address used to initialize
the ISP and the address used to initialize the PC.

The address of an exception vector is derived from an 8-bit vector number and the VBR.
The vector numbers for some exceptions are obtained from an external device; others are
supplied automatically by the processor. The processor multiplies the vector number by
four to calculate the vector offset, which it adds to the VBR. The sum is the memory
address of the vector. All exception vectors are located in supervisor data space, except
the reset vector, which is located in supervisor program space. Only the initial reset vector
is fixed in the processor's memory map; once initialization is complete, there are no fixed
assignments. Since the VBR provides the base address of the vector table, the vector
table can be located anywhere in memory; it can even be dynamically relocated for each
task that is executed by an operating system. Details of exception processing are provided
in Section 6 Exception Processing , and Table 6-1 lists the exception vector
assignments.

2-6 M68020 USER’S MANUAL MOTOROLA

2.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on
the top of the supervisor stack. This context is organized in a format called the exception
stack frame. This information always includes a copy of the SR, the PC, the vector offset
of the vector, and the frame format field. The frame format field identifies the type of stack
frame. The RTE instruction uses the value in the format field to properly restore the
information stored in the stack frame and to deallocate the stack space. The general form
of the exception stack frame is illustrated in Figure 2-1. Refer to Section 6 Exception
Processing for a complete list of exception stack frames.

015

SSP

12

FORMAT

STATUS REGISTER

PROGRAM COUNTER

VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2, 6, 12, OR 42 WORDS, IF NEEDED)

Figure 2-1. General Exception Stack Frame

MOTOROLA M68020 USER’S MANUAL 3-1

SECTION 3
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups, as shown in Figure 3-1. Each signal is explained in a brief paragraph with
reference to other sections that contain more detail about the signal and the related
operations.

NOTE

In this section and in the remainder of the manual, assert and
negate are used to specify forcing a signal to a particular state.
In particular, assertion and assert refer to a signal that is active
or true; negation and negate indicate a signal that is inactive or
false. These terms are used independently of the voltage level
(high or low) that they represent.

FC2–FC0

A31–A0

D31–D0

FUNCTION CODES

ADDRESS BUS

DATA BUS

TRANSFER SIZE

ASYNCHRONOUS
BUS CONTROL

EMULATOR SUPPORT

BUS ARB
CONTRO

INTERRU
CONTRO

BUS EXC
CONTRO

MC68020

SIZ0

SIZ1

OCS

ECS

R/W

RMC

AS

DS

DBEN

DSACK0

DSACK1

CDIS GND

V

CLK

BERR

HALT

RESET

BGACK

BG

BR

AVEC

IPEND

IPL2

IPL1

IPL0

CC

*

*

*

**

*

*

Figure 3-1. Functional Signal Groups

3-2 M68020 USER’S MANUAL MOTOROLA

3.1 SIGNAL INDEX

The input and output signals for the MC68020/EC020 are listed in Table 3-1. Both the
names and mnemonics are shown along with brief signal descriptions. Signals that are
implemented in the MC68020, but not in the MC68EC020, have an asterisk (*) preceding
the signal name in Table 3-1. Also, note that the address bus is 32 bits wide for the
MC68020 and 24 bits wide for the MC68EC020. For more detail on each signal, refer to
the paragraph in this section named for the signal and the reference in that paragraph to a
description of the related operations.

Timing specifications for the signals listed in Table 3-1 can be found in Section 10
Electrical Characteristics.

3.2 FUNCTION CODE SIGNALS (FC2–FC0)

These three-state outputs identify the address space of the current bus cycle. Table 2-1
shows the relationships of the function code signals to the privilege levels and the address
spaces. Refer to Section 2 Processing States for more information.

3.3 ADDRESS BUS (A31–A0, MC68020)(A23–A0, MC68EC020)

These three-state outputs provide the address for the current bus cycle, except in the
CPU address space. Refer to Section 2 Processing States for more information on the
CPU address space. A31 is the most significant address signal for the MC68020; A23 is
the most significant address signal for the MC68EC020. The upper eight bits (A31–A24)
are used internally by the MC68EC020 to access the internal instruction cache address
tag. Refer to Section 5 Bus Operation for information on the address bus and its
relationship to bus operation.

3.4 DATA BUS (D31–D0)

These three-state bidirectional signals provide the general-purpose data path between the
MC68020/EC020 and all other devices. The data bus can transfer 8, 16, 24, or 32 bits of
data per bus cycle. D31 is the most significant bit of the data bus. Refer to Section 5 Bus
Operation for more information on the data bus and its relationship to bus operation.

3.5 TRANSFER SIZE SIGNALS (SIZ1, SIZ0)

These three-state outputs indicate the number of bytes remaining to be transferred for the
current bus cycle. Signals A1, A0, DSACK1, DSACK0, SIZ1, and SIZ0 define the number
of bits transferred on the data bus. Refer to Section 5 Bus Operation for more
information on SIZ1 and SIZ0 and their use in dynamic bus sizing.

MOTOROLA M68020 USER’S MANUAL 3-3

Table 3-1. Signal Index

Signal Name Mnemonic Function

Function Codes FC2–FC0 3-bit function code used to identify the address space of each bus cycle.

Address Bus
MC68020
MC68EC020

A31–A0
A23–A0

32-bit address bus
24-bit address bus

Data Bus D31–D0 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus
cycle.

Size SIZ1, SIZ0 Indicates the number of bytes remaining to be transferred for this cycle.
These signals, together with A1 and A0, define the active sections of the
data bus.

*External Cycle Start ECS Provides an indication that a bus cycle is beginning.

*Operand Cycle Start OCS Identical operation to that of ECS except that OCS is asserted only during
the first bus cycle of an operand transfer.

Read/Write R/W Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an indivisible
read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by an external
device or has been placed on the data bus by the MC68020/EC020.

*Data Buffer Enable DBEN Provides an enable signal for external data buffers.

Data Transfer and Size
Acknowledge

DSACK1,
DSACK0

Bus response signals that indicate the requested data transfer operation
has completed. In addition, these two lines indicate the size of the
external bus port on a cycle-by-cycle basis and are used for
asynchronous transfers.

Interrupt Priority Level IPL2–IPL0 Provides an encoded interrupt level to the processor.

*Interrupt Pending IPEND Indicates that an interrupt is pending.

Autovector AVEC Requests an autovector during an interrupt acknowledge cycle.

Bus Request BR Indicates that an external device requires bus mastership.

Bus Grant BG Indicates that an external device may assume bus mastership.

*Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus mastership.

Reset RESET System reset.

Halt HALT Indicates that the processor should suspend bus activity or that the
processor has halted due to a double bus fault.

Bus Error BERR Indicates that an erroneous bus operation is being attempted.

Cache Disable CDIS Statically disables the on-chip cache to assist emulator support.

Clock CLK Clock input to the processor.

Power Supply VCC Power supply.

Ground GND Ground connection.

*This signal is implemented in the MC68020 and not implemented in the MC68EC020.

3-4 M68020 USER’S MANUAL MOTOROLA

3.6 ASYNCHRONOUS BUS CONTROL SIGNALS

The following signals control synchronous bus transfer operations for the
MC68020/EC020. Note that OCS, ECS, and DBEN are implemented in MC68020 and not
implemented in the MC68EC020.

Operand Cycle Start (OCS, MC68020 only)
This output signal indicates the beginning of the first external bus cycle for an instruction
prefetch or a data operand transfer. OCS is not asserted for subsequent cycles that are
performed due to dynamic bus sizing or operand misalignment. Refer to Section 5 Bus
Operation for information about the relationship of OCS to bus operation.

OCS is not implemented in the MC68EC020.

External Cycle Start (ECS, MC68020 only)
This output signal indicates the beginning of a bus cycle of any type. Refer to Section 5
Bus Operation for information about the relationship of ECS to bus operation.

ECS is not implemented in the MC68EC020.

Read/Write (R/W)
This three-state output signal defines the type of bus cycle. A high level indicates a read
cycle; a low level indicates a write cycle. Refer to Section 5 Bus Operation for
information about the relationship of R/W to bus operation.

Read-Modify-Write Cycle (RMC)
This three-state output signal identifies the current bus cycle as part of an indivisible
read-modify-write operation; it remains asserted during all bus cycles of the read-
modify-write operation. Refer to Section 5 Bus Operation for information about the
relationship of RMC to bus operation.

Address Strobe (AS)
This three-state output signal indicates that a valid address is on the address bus. The
FC2–FC0, SIZ1, SIZ0, and R/W signals are also valid when AS is asserted. Refer to
Section 5 Bus Operation for information about the relationship of AS to bus operation.

Data Strobe (DS)
During a read cycle, this three-state output signal indicates that an external device
should place valid data on the data bus. During a write cycle, DS indicates that the
MC68020/EC020 has placed valid data on the bus. During two-clock synchronous write
cycles, the MC68020/EC020 does not assert DS. Refer to Section 5 Bus Operation for
more information about the relationship of DS to bus operation.

MOTOROLA M68020 USER’S MANUAL 3-5

Data Buffer Enable (DBEN, MC68020 only)
This output signal is an enable signal for external data buffers. This signal may not be
required in all systems. Refer to Section 5 Bus Operation for more information about
the relationship of DBEN to bus operation.

DBEN is not implemented in the MC68EC020.

Data Transfer and Size Acknowledge (DSACK1, DSACK0)
These input signals indicate the completion of a requested data transfer operation. In
addition, they indicate the size of the external bus port at the completion of each cycle.
These signals apply only to asynchronous bus cycles. Refer to Section 5 Bus
Operation for more information on these signals and their relationship to dynamic bus
sizing.

3.7 INTERRUPT CONTROL SIGNALS

The following signals are the interrupt control signals for the MC68020/EC020. Note that
IPEND is implemented in the MC68020 and not implemented in the MC68EC020.

Interrupt Priority Level Signals (IPL2–IPL0)
These input signals provide an indication of an interrupt condition and the encoding of
the interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most
significant bit of the level number. For example, since the IPL2–IPL0 signals are active
low, IPL2–IPL0 equal to $5 corresponds to an interrupt request at interrupt level 2.
Refer to Section 6 Exception Processing for information on MC68020/EC020
interrupts.

Interrupt Pending (IPEND, MC68020 only)
This output signal indicates that an interrupt request exceeding the current interrupt
priority mask in the SR has been recognized internally. This output is for use by external
devices (coprocessors and other bus masters, for example) to predict processor
operation on the following instruction boundaries. Refer to Section 6 Exception
Processing for interrupt information. Also, refer to Section 5 Bus Operation for bus
information related to interrupts.

IPEND is not implemented in the MC68EC020.

Autovector (AVEC)
This input signal indicates that the MC68020/EC020 should generate an automatic
vector during an interrupt acknowledge cycle. Refer to Section 5 Bus Operation for
more information about automatic vectors.

3-6 M68020 USER’S MANUAL MOTOROLA

3.8 BUS ARBITRATION CONTROL SIGNALS

The following signals are the bus arbitration control signals used to determine which
device in a system is the bus master. Note that BGACK is implemented in the MC68020
and not implemented in the MC68EC020.

Bus Request (BR)
This input signal indicates that an external device needs to become the bus master. BR
is typically a “wire-ORed” input (but does not need to be constructed from open-collector
devices). Refer to Section 5 Bus Operation for more information on MC68020 bus
arbitration. Refer to Section 5 Bus Operation and Appendix A Interfacing an
MC68EC020 to a DMA Device That Supports a Three-Wire Bus Arbitration
Protocol for more information on MC68EC020 bus arbitration.

Bus Grant (BG)
This output signal indicates that the MC68020/EC020 will release ownership of the bus
when the current processor bus cycle completes. Refer to Section 5 Bus Operation for
more information on MC68020 bus arbitration. Refer to Section 5 Bus Operation and
Appendix A Interfacing an MC68EC020 to a DMA Device That Supports a Three-
Wire Bus Arbitration Protocol for more information on MC68EC020 bus arbitration.

Bus Grant Acknowledge (BGACK, MC68020 only)
This input signal indicates that an external device has become the bus master. Refer to
Section 5 Bus Operation for more information on MC68020 bus arbitration. Refer to
Section 5 Bus Operation and Appendix A Interfacing an MC68EC020 to a DMA
Device That Supports a Three-Wire Bus Arbitration Protocol for more information
on MC68EC020 bus arbitration.

BGACK is not implemented in the MC68EC020.

3.9 BUS EXCEPTION CONTROL SIGNALS

The following signals are the bus exception control signals for the MC68020/EC020.

Reset (RESET)
This bidirectional open-drain signal is used to initiate a system reset. An external reset
signal resets the MC68020/EC020 as well as all external devices. A reset signal from
the processor (asserted as part of the RESET instruction) resets external devices only;
the internal state of the processor is not altered. Refer to Section 5 Bus Operation for
a description of reset bus operation and Section 6 Exception Processing for
information about the reset exception.

MOTOROLA M68020 USER’S MANUAL 3-7

Halt (HALT)
The assertion of this bidirectional open-drain signal indicates that the processor should
suspend bus activity or, when used with BERR, that the processor should retry the
current cycle. Refer to Section 5 Bus Operation for a description of the effects of
HALT on bus operations. When the processor has stopped executing instructions due
to a double bus fault condition, the HALT line is asserted by the processor to indicate to
external devices that the processor has stopped.

Bus Error (BERR)
This input signal indicates that an invalid bus operation is being attempted or, when
used with HALT, that the processor should retry the current cycle. Refer to Section 5
Bus Operation for a description of the effects of BERR on bus operations.

3.10 EMULATOR SUPPORT SIGNAL

The following signal supports emulation by providing a means for an emulator to disable
the on-chip cache by supplying internal status information to an emulator. Refer to
Section 7 Coprocessor Interface Description for more detailed information on
emulation support.

Cache Disable (CDIS)
This input signal statically disables the on-chip cache to assist emulator support. Refer
to Section 4 On-Chip Cache Memory for information about the cache; refer to Section
9 Applications Information for a description of the use of this signal by an emulator.
CDIS does not flush the instruction cache; entries remain unaltered and become
available again when CDIS is negated.

3.11 CLOCK (CLK)

The CLK signal is the clock input to the MC68020/EC020. This TTL-compatible signal
should not be gated off at any time while power is applied to the processor. Refer to
Section 9 Applications Information for suggestions on clock generation. Refer to
Section 10 Electrical Characteristics for electrical characteristics.

3.12 POWER SUPPLY CONNECTIONS

The MC68020/EC020 requires connection to a VCC power supply, positive with respect to
ground. The VCC connections are grouped to supply adequate current for the various
sections of the processor. The ground connections are similarly grouped. Section 11
Ordering Information and Mechanical Data describes the groupings of VCC and ground
connections, and Section 9 Applications Information describes a typical power supply
interface.

3-8 M68020 USER’S MANUAL MOTOROLA

3.13 SIGNAL SUMMARY

Table 3-2 provides a summary of the characteristics of the signals discussed in this
section. Signal names preceded by an asterisk (*) are implemented in the MC68020 and
not implemented in the MC68EC020.

Table 3-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State

Function Codes FC2–FC0 Output High Yes

Address Bus
MC68020
MC68EC020

A31–A0
A23–A0

Output High Yes

Data Bus D31–D0 Input/Output High Yes

Transfer Size SIZ1, SIZ0 Output High Yes

*Operand Cycle Start OCS Output Low No

*External Cycle Start ECS Output Low No

Read/Write R/W Output High/Low Yes

Read-Modify-Write Cycle RMC Output Low Yes

Address Strobe AS Output Low Yes

Data Strobe DS Output Low Yes

*Data Buffer Enable DBEN Output Low Yes

Data Transfer and Size Acknowledge DSACK1, DSACK0 Input Low —

Interrupt Priority Level IPL2–IPL0 Input Low —

*Interrupt Pending IPEND Output Low No

Autovector AVEC Input Low —

Bus Request BR Input Low —

Bus Grant BG Output Low No

*Bus Grant Acknowledge BGACK Input Low —

Reset RESET Input/Output Low No**

Halt HALT Input/Output Low No**

Bus Error BERR Input Low —

Cache Disable CDIS Input Low —

Clock CLK Input — —

Power Supply VCC Input — —

Ground GND Input — —

*This signal is implemented in the MC68020 and not implemented in the MC68EC020.
**Open-drain

MOTOROLA M68020 USER’S MANUAL 4-1

SECTION 4
ON-CHIP CACHE MEMORY

The MC68020/EC020 incorporates an on-chip cache memory as a means of improving
performance. The cache is implemented as a CPU instruction cache and is used to store
the instruction stream prefetch accesses from the main memory.

An increase in instruction throughput results when instruction words required by a
program are available in the on-chip cache and the time required to access them on the
external bus is eliminated. In systems with more than one bus master (e.g., a processor
and a DMA device), reduced external bus activity increases overall performance by
increasing the availability of the bus for use by external devices without degrading the
performance of the MC68020/EC020.

4.1 ON-CHIP CACHE ORGANIZATION AND OPERATION

The MC68020/EC020 on-chip instruction cache is a direct-mapped cache of 64 long-word
entries. Each cache entry consists of a tag field (A31–A8 and FC2), one valid bit, and 32
bits (two words) of instruction data. Figure 4-1 shows a block diagram of the on-chip
cache organization.

Externally, the MC68EC020 does not use the upper eight bits of the address (A31–A24),
and addresses $FF000000 and $00000000 from the MC68EC020 appear the same.
However, the MC68EC020 does use A31–A24 internally in the instruction cache address
tag, and addresses $FF000000 and $00000000 appear different in the MC68EC020
instruction cache. The MC68020, MC68030/EC030, and MC68040/EC040 use all 32 bits
of the address externally. To maintain object-code upgrade compatibility when designing
with the MC68EC020, the upper eight bits should be considered part of the address when
assigning address spaces in hardware.

When enabled, the MC68020/EC020 instruction cache is used to store instruction
prefetches (instruction words and extension words) as they are requested by the CPU.
Instruction prefetches are normally requested from sequential memory addresses except
when a change of program flow occurs (e.g., a branch taken) or when an instruction is
executed that can modify the SR. In these cases, the instruction pipe is automatically
flushed and refilled.

4–2 M68020 USER’S MANUAL MOTOROLA

F
C
2

F
C
1

F
C
0

A
3
1

A
2
3

A
2
2

A
2
1

A
2
0

A
1
9

A
1
8

A
1
7

A
1
6

A
1
5

A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

TAG

INDEX

TAG V WORD WORD

WORD SELECT

1 OF
64 SELECT

TAG REPLACE

COMPARATOR

REPLACEMENT
DATA

TO
INSTRUCTION
PATH

CACHE
CONTROL

ENTRY HIT

MC68020/EC020 PREFETCH ADDRESS

LINE
HIT

VALID

Figure 4-1. MC68020/EC020 On-Chip Cache Organization

When an instruction fetch occurs, the cache (if enabled) is first checked to determine if the
word required is in the cache. This check is achieved by first using the index field (A7–A2)
of the access address as an index into the on-chip cache. This index selects one of the 64
entries in the cache. Next, A31–A8 and FC2 are compared to the tag of the selected entry.
(Note that in the MC68EC020, A31–A24 are used for internal on-chip cache tag
comparison.) If there is a match and the valid bit is set, a cache hit occurs. A1 is then used
to select the proper word from the cache entry, and the cycle ends. If there is no match or
if the valid bit is clear, a cache miss occurs, and the instruction is fetched from external
memory. This new instruction is automatically written into the cache entry, and the valid bit
is set unless the F-bit in the CACR is set. Since the processor always prefetches
instructions externally with long-word-aligned bus cycles, both words of the entry will be
updated, regardless of which word caused the miss.

NOTE

Data accesses are not cached, regardless of their associated
address space.

MOTOROLA M68020 USER’S MANUAL 4-3

4.2 CACHE RESET

During processor reset, the cache is cleared by resetting all of the valid bits. The E and F
bits in the CACR are also cleared.

4.3 CACHE CONTROL

Only the MC68020/EC020 cache control circuitry can directly access the cache array, but
a supervisor program can set bits in the CACR to exercise control over cache operations.
The supervisor level also has access to the CAAR, which contains the address for a
cache entry to be cleared.

System hardware can assert the CDIS signal to disable the cache. The assertion of CDIS
disables the cache, regardless of the state of the E-bit in the CACR. CDIS is primarily
intended for use by in-circuit emulators.

4.3.1 Cache Control Register (CACR)

The CACR, shown in Figure 4-2, is a 32-bit register than can be written or read by the
MOVEC instruction or indirectly modified by a reset. Four of the bits (3–0) control the
instruction cache. Bits 31–4 are reserved for Motorola definition. They are read as zeros
and are ignored when written. For future compatibility, writes should not set these bits.

031

E

1

F

2

CE

3

C

4

0

5

0

6

0

7

0

8

0

Figure 4-2. Cache Control Register

C—Clear Cache
The C-bit is set to clear all entries in the instruction cache. Operating systems and other
software set this bit to clear instructions from the cache prior to a context switch. The
processor clears all valid bits in the instruction cache when a MOVEC instruction sets
the C-bit. The C-bit is always read as a zero.

CE—Clear Entry In Cache
The CE bit is set to clear an entry in the instruction cache. The index field of the CAAR
(see Figure 4-3), corresponding to the index and long-word select portion of an address,
specifies the entry to be cleared. The processor clears only the specified long word by
clearing the valid bit for the entry when a MOVEC instruction sets the CE bit, regardless
of the states of the E and F bits. The CE bit is always read as a zero.

4–4 M68020 USER’S MANUAL MOTOROLA

F—Freeze Cache
The F-bit is set to freeze the instruction cache. When the F-bit is set and a cache miss
occurs, the entry (or line) is not replaced. When the F-bit is clear, a cache miss causes
the entry (or line) to be filled. A reset operation clears the F-bit.

E—Enable Cache
The E-bit is set to enable the instruction cache. When it is clear, the instruction cache is
disabled. A reset operation clears the E-bit. The supervisor normally enables the
instruction cache, but it can clear the E-bit for system debugging or emulation, as
required. Disabling the instruction cache does not flush the entries. If the cache is
reenabled, the previously valid entries remain valid and may be used.

4.3.2 Cache Address Register (CAAR)

The format of the 32-bit CAAR is shown in Figure 4-3.

031

RESERVED

12

INDEX

78

RESERVED

Figure 4-3. Cache Address Register

Bits 31–8, 1, and 0—Reserved
These bits are reserved for use by Motorola.

Index Field
The index field contains the address for the “clear cache entry” operations. The bits of
this field, which correspond to A7–A2, specify the index and a long word of a cache line.

MOTOROLA M68020 USER’S MANUAL 5-1

SECTION 5
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the bus is the same whether
the processor or an external device is the bus master; the names and descriptions of bus
cycles are from the point of view of the bus master. For exact timing specifications, refer to
Section 10 Electrical Characteristics .

The MC68020/EC020 architecture supports byte, word, and long-word operands, allowing
access to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled
by the DSACK1 and DSACK0 input signals.

The MC68020/EC020 allows byte, word, and long-word operands to be located in memory
on any byte boundary. For a misaligned transfer, more than one bus cycle may be
required to complete the transfer, regardless of port size. For a port less than 32 bits wide,
multiple bus cycles may be required for an operand transfer due to either misalignment or
a port width smaller than the operand size. Instruction words and their associated
extension words must be aligned on word boundaries. The user should be aware that
misalignment of word or long-word operands can cause the MC68020/EC020 to perform
multiple bus cycles for the operand transfer; therefore, processor performance is
optimized if word and long-word memory operands are aligned on word or long-word
boundaries, respectively.

5.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68020/EC020 and an external memory,
coprocessor, or peripheral device. External devices can accept or provide 8 bits, 16 bits,
or 32 bits in parallel and must follow the handshake protocol described in this section. The
maximum number of bits accepted or provided during a bus transfer is defined as the port
width. The MC68020/EC020 contains an address bus that specifies the address for the
transfer and a data bus that transfers the data. Control signals indicate the beginning of
the cycle, the address space and size of the transfer, and the type of cycle. The selected
device then controls the length of the cycle with the signal(s) used to terminate the cycle.
Strobe signals, one for the address bus and another for the data bus, indicate the validity
of the address and provide timing information for the data.

The bus operates in an asynchronous mode for any port width. The bus and control input
signals are internally synchronized to the MC68020/EC020 clock, introducing a delay. This
delay is the time period required for the MC68020/EC020 to sample an input signal,
synchronize the input to the internal clocks of the processor, and determine whether the

5-2 M68020 USER’S MANUAL MOTOROLA

input is high or low. Figure 5-1 shows the relationship between the clock signal, a typical
input, and its associated internal signal.

Furthermore, for all inputs, the processor latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 5-2.
To ensure that an input signal is recognized on a specific falling edge of the clock, that
input must be stable during the sample window. If an input transitions during the window,
the level recognized by the processor is not predictable; however, the processor always
resolves the latched level to either a logic high or logic low before using it. In addition to
meeting input setup and hold times for deterministic operation, all input signals must obey
the protocols described in this section.

SYNC DELAY

CLK

EXT

INT

Figure 5-1. Relationship between External and Internal Signals

t su

th

SAMPLE
WINDOW

CLK

EXT

Figure 5-2. Input Sample Window

5.1.1 Bus Control Signals

The MC68020/EC020 initiates a bus cycle by driving the A1–A0, SIZ1, SIZ0, FC2–FC0,
and R/W outputs. However, if the MC68020/EC020 finds the required instruction in the on-
chip cache, the processor aborts the cycle before asserting the AS.The assertion of AS

ensures that the cycle has not been aborted by these internal conditions.

MOTOROLA M68020 USER’S MANUAL 5-3

When initiating a bus cycle, the MC68020 asserts ECS in addition to A1–A0, SIZ1, SIZ0,
FC2–FC0, and R/W . ECS can be used to initiate various timing sequences that are
eventually qualified with AS. Qualification with AS may be required since, in the case of an
internal cache hit, a bus cycle may be aborted after ECS has been asserted. During the
first MC68020 external bus cycle of an operand transfer, OCS is asserted with ECS. When
several bus cycles are required to transfer the entire operand, OCS is asserted only at the
beginning of the first external bus cycle. With respect to OCS , an “operand” is any entity
required by the execution unit, whether a program or data item. Note that ECS and OCS

are not implemented in the MC68EC020.

The FC2–FC0 signals select one of eight address spaces (see Table 2-1) to which the
address applies. Five address spaces are presently defined. Of the remaining three, one
is reserved for user definition, and two are reserved by Motorola for future use. FC2–FC0
are valid while AS is asserted.

The SIZ1 and SIZ0 signals indicate the number of bytes remaining to be transferred
during an operand cycle (consisting of one or more bus cycles) or during a cache fill
operation from a device with a port size that is less than 32 bits. Table 5-2 lists the
encoding of SIZ1 and SIZ0. SIZ1 and SIZ0 are valid while AS is asserted.

The R/W signal determines the direction of the transfer during a bus cycle. When required,
this signal changes state at the beginning of a bus cycle and is valid while AS is asserted.
R/W only transitions when a write cycle is preceded by a read cycle or vice versa. This
signal may remain low for two consecutive write cycles.

The RMC signal is asserted at the beginning of the first bus cycle of a read-modify-write
operation and remains asserted until completion of the final bus cycle of the operation.
The RMC signal is guaranteed to be negated before the end of state 0 for a bus cycle
following a read-modify-write operation.

5.1.2 Address Bus

A31–A0 (for the MC68020) or A23–A0 (for the MC68EC020) define the address of the
byte (or the most significant byte) to be transferred during a bus cycle. The processor
places the address on the bus at the beginning of a bus cycle. The address is valid while
AS is asserted. In the MC68EC020, A31–A24 are used internally, but not externally.

5.1.3 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and of
many control signals. It is asserted one-half clock after the beginning of a bus cycle.

5.1.4 Data Bus

D31–D0 comprise a bidirectional, nonmultiplexed parallel bus that contains the data being
transferred to or from the processor. A read or write operation may transfer 8, 16, 24, or
32 bits of data (one, two, three, or four bytes) in one bus cycle. During a read cycle, the
data is latched by the processor on the last falling edge of the clock for that bus cycle. For

5-4 M68020 USER’S MANUAL MOTOROLA

a write cycle, all 32 bits of the data bus are driven, regardless of the port width or operand
size. The processor places the data on the data bus one-half clock cycle after AS is
asserted in a write cycle.

5.1.5 Data Strobe

DS is a timing signal that applies to the data bus. For a read cycle, the processor asserts
DS to signal the external device to place data on the bus. DS is asserted at the same time
as AS during a read cycle. For a write cycle, DS notifies the external device that the data
to be written is valid. The processor asserts DS one full clock cycle after the assertion of
AS during a write cycle.

5.1.6 Data Buffer Enable

The MC68020 DBEN signal is used to enable external data buffers while data is present
on the data bus. During a read operation, DBEN is asserted one clock cycle after the
beginning of the bus cycle and is negated as DS is negated. In a write operation, DBEN is
asserted at the time AS is asserted and is held active for the duration of the cycle. Note
that DBEN is implemented in the MC68020 and is not implemented in the MC68EC020.

5.1.7 Bus Cycle Termination Signals

During bus cycles, external devices assert DSACK1/DSACK0 as part of the bus protocol.
During a read cycle, DSACK1/DSACK0 assertion signals the processor to terminate the
bus cycle and to latch the data. During a write cycle, the assertion of DSACK1/DSACK0

indicates that the external device has successfully stored the data and that the cycle may
terminate. DSACK1/DSACK0 also indicate to the processor the size of the port for the bus
cycle just completed, as shown in Table 5-1. Refer to 5.3.1 Read Cycle for timing
relationships of DSACK1/DSACK0.

The BERR signal is also a bus cycle termination indicator and can be used in the absence
of DSACK1/DSACK0 to indicate a bus error condition. It can also be asserted in
conjunction with DSACK1/DSACK0 to indicate a bus error condition, provided it meets the
appropriate timing described in this section and in Section 10 Electrical Characteristics.
Additionally, the BERR and HALT signals can be asserted together to indicate a retry
termination. Again, the BERR and HALT signals can be simultaneously asserted in lieu of,
or in conjunction with, the DSACK1/DSACK0 signals.

Finally, the AVEC signal can be used to terminate interrupt acknowledge cycles, indicating
that the MC68020/EC020 should generate a vector number to locate an interrupt handler
routine. AVEC is ignored during all other bus cycles.

MOTOROLA M68020 USER’S MANUAL 5-5

5.2 DATA TRANSFER MECHANISM

The MC68020/EC020 architecture supports byte, word, and long-word operands allowing
access to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled
by DSACK1/DSACK0 . Byte, word, and long-word operands can be located on any byte
boundary, but misaligned transfers may require additional bus cycles, regardless of port
size.

5.2.1 Dynamic Bus Sizing

The MC68020/EC020 dynamically interprets the port size of the addressed device during
each bus cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an
operand transfer cycle, the slave device signals its port size (byte, word, or long word) and
indicates completion of the bus cycle to the processor with the DSACK1/DSACK0 signals.
Refer to Table 5-1 for DSACK1/DSACK0 encodings and assertion results.

Table 5-1. DSACK1/DSACK0 Encodings and Results

DSACK1 DSACK0 Result

Negated Negated Insert Wait States in Current Bus Cycle

Negated Asserted Complete Cycle—Data Bus Port Size is 8 Bits

Asserted Negated Complete Cycle—Data Bus Port Size is 16 Bits

Asserted Asserted Complete Cycle—Data Bus Port Size is 32 Bits

For example, if the processor is executing an instruction that reads a long-word operand
from a long-word-aligned address, it attempts to read 32 bits during the first bus cycle.
(Refer to 5.2.2 Misaligned Operands for the case of a word or byte address.) If the port
responds that it is 32 bits wide, the MC68020/EC020 latches all 32 bits of data and
continues with the next operation. If the port responds that it is 16 bits wide, the
MC68020/EC020 latches the 16 bits of valid data and runs another bus cycle to obtain the
other 16 bits. The operation for an 8-bit port is similar, but requires four read cycles. The
addressed device uses the DSACK1/DSACK0 signals to indicate the port width. For
instance, a 32-bit device always returns DSACK1/DSACK0 for a 32-bit port, regardless of
whether the bus cycle is a byte, word, or long-word operation.

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 32-bit port must reside on D31–D0, a 16-bit port must
reside on D32–D16, and an 8-bit port must reside on D31–D24. This requirement
minimizes the number of bus cycles needed to transfer data to 8- and 16-bit ports and
ensures that the MC68020/EC020 correctly transfers valid data. The MC68020/EC020
always attempts to transfer the maximum amount of data on all bus cycles; for a long-
word operation, it always assumes that the port is 32 bits wide when beginning the bus
cycle.

The bytes of operands are designated as shown in Figure 5-3. The most significant byte of
a long-word operand is OP0; the least significant byte is OP3. The two bytes of a word-
length operand are OP2 (most significant) and OP3. The single byte of a byte-length
operand is OP3. These designations are used in the figures and descriptions that follow.

5-6 M68020 USER’S MANUAL MOTOROLA

OP0 OP1 OP2 OP3

31 0

15 0

OP2 OP3

7 0

LONG-WORD OPERAND

WORD OPERAND

BYTE OPERAND OP3

Figure 5-3. Internal Operand Representation

Figure 5-4 shows the required organization of data ports on the MC68020/EC020 bus for
8-, 16-, and 32-bit devices. The four bytes shown in Figure 5-4 are connected through the
internal data bus and data multiplexer to the external data bus. This path is the means
through which the MC68020/EC020 supports dynamic bus sizing and operand
misalignment. Refer to 5.2.2 Misaligned Operands for the definition of misaligned
operand. The data multiplexer establishes the necessary connections for different
combinations of address and data sizes.

0 1 2 3

ROUTING AND DUPLICATION

BYTE 0

BYTE 2

BYTE 1

BYTE 3
16-BIT PORT

REGISTER

MULTIPLEXER

EXTERNAL DATA BUS

ADDRESS
xxxxxxx0

xxxxxxx0

 2

INCREASING
MEMORY

ADDRESSES

D31– D24 D23–D16 D15–D8 D7–D0

BYTE 0 BYTE 1 BYTE 2 BYTE 3

BYTE 0

BYTE 1

BYTE 2

BYTE 3

8-BIT PORT
2

3

1

xxxxxxx0

EXTERNAL BUS

INTERNAL TO
THE MC68020/EC020

32-BIT PORT

OP0 OP1 OP2 OP3

Figure 5-4. MC68020/EC020 Interface to Various Port Sizes

MOTOROLA M68020 USER’S MANUAL 5-7

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required
positions. For example, OP0 can be routed to D31–D24, as would be the normal case, or
it can be routed to any other byte position to support a misaligned transfer. The same is
true for any of the operand bytes. The positioning of bytes is determined by the SIZ1,
SIZ0, A1, and A0 outputs.

The SIZ1 and SIZ0 outputs indicate the remaining number of bytes to be transferred
during the current bus cycle, as listed in Table 5-2.

Table 5-2. SIZ1, SIZ0 Signal Encoding

SIZ1 SIZ0 Size

Negated Asserted Byte

Asserted Negated Word

Asserted Asserted 3 Bytes

Negated Negated Long Word

The number of bytes transferred during a write or read bus cycle is equal to or less than
the size indicated by the SIZ1 and SIZ0 outputs, depending on port width and operand
alignment. For example, during the first bus cycle of a long-word transfer to a word port,
the SIZ1 and SIZ0 outputs indicate that four bytes are to be transferred, although only two
bytes are moved on that bus cycle.

A1–A0 also affect operation of the data multiplexer. During an operand transfer, A31–A2
(for the MC68020) or A23–A2 (for the MC68EC020) indicate the long-word base address
of that portion of the operand to be accessed; A1 and A0 indicate the byte offset from the
base. Table 5-3 lists the encodings of A1 and A0 and the corresponding byte offsets from
the long-word base.

Table 5-3. Address Offset Encodings

A1 A0 Offset

Negated Negated +0 Bytes

Negated Asserted +1 Byte

Asserted Negated +2 Bytes

Asserted Asserted +3 Bytes

5-8 M68020 USER’S MANUAL MOTOROLA

Table 5-4 lists the bytes required on the data bus for read cycles. The entries shown as
OP3, OP2, OP1, and OP0 are portions of the requested operand that are read or written
during that bus cycle and are defined by SIZ1, SIZ0, A1, and A0 for the bus cycle.

Table 5-4. Data Bus Requirements for Read Cycles

Byte Port
External

Data Bytes
Required

Word Port
External Data Bytes

Required

Long-Word Port
External Data Bytes

Required
AddressSizeTransfer

Size

SIZ1 SIZ0 A1 A0

OP3 OP3

OP3

OP3

OP3 OP3

OP3

OP3

OP3

D31–D24D23–D16D31–D24D23–D16D31–D24 D7–D0D15–D8

OP3

OP3

OP3

Byte 0

1

1

1

1 0 0

0

0

0

1

1

0 1

0

1

OP2 OP2

OP2

OP2

OP2 OP2

OP2

OP2

OP2

OP2

OP2

OP2

Word 1

0

1

1

0 0 0

1

1

1

0

0

0 1

0

1

OP1 OP1

OP1

OP1

OP1 OP1

OP1

OP1

OP1

OP1

OP1

OP1

3 Bytes 1

1

1

1

1 0 0

1

1

1

1

1

0 1

0

1

OP0 OP0

OP0

OP0

OP0 OP0

OP0

OP0

OP0

OP0

OP0

OP0

Long Word 0

0

1

1

0 0 0

0

0

0

0

0

0 1

0

1

OP3

OP3

OP2

OP2

OP1

OP1

OP1

OP1

OP2

OP1

OP2

OP3

OP2

OP3OP2

OP3OP2

OP3

OP3

OP3

MOTOROLA M68020 USER’S MANUAL 5-9

Table 5-5 lists the combinations of SIZ1, SIZ0, A1, and A0 and the corresponding pattern
of the data transfer for write cycles from the internal multiplexer of the MC68020/EC020 to
the external data bus.

Table 5-5. MC68020/EC020 Internal to External Data Bus
Multiplexer—Write Cycles

OP0*

External Data Bus
ConnectionAddressSizeTransfer

Size

SIZ1 SIZ0 A1 A0

OP3

D23–D16D31–D24 D7–D0D15–D8

Byte 0 1 x x

OP2

OP2

Word 1

0

0 x 0

1 x 1

OP1

OP1

OP1

OP1

3 Bytes 1

1

1

1

1 0 0

1

1

1

1

1

0 1

0

1

OP0

OP0

OP0

OP0

Long Word 0

0

1

1

0 0 0

0

0

0

0

0

0 1

0

1

OP1

OP1

OP2

OP1

OP2

OP3

OP2

OP3OP2

OP3OP2

OP3

OP3

OP3

OP2

OP3

OP2

OP3

OP3

OP1

OP1

OP1

OP2

OP1

OP0

OP0

OP0

OP1

OP0 OP1*

OP2

OP2*

*Due to the current implementation, this byte is output but never used.
x = Don't care
NOTE: The OP tables on the external data bus refer to a particular byte of the operand that
														is written on that section of the data bus.

5-10 M68020 USER’S MANUAL MOTOROLA

Figure 5-5 shows the transfer (write) of a long-word operand to a word port. In the first bus
cycle, the MC68020/EC020 places the four operand bytes on the external bus. Since the
address is long-word aligned in this example, the multiplexer follows the pattern in the
entry of Table 5-5 corresponding to SIZ0, SIZ1, A0, A1 = 0000. The port latches the data
on D31–D16, asserts DSACK1 (DSACK0 remains negated), and the processor terminates
the bus cycle. It then starts a new bus cycle with SIZ1, SIZ0, A1, A0 = 1010 to transfer the
remaining 16 bits. SIZ1 and SIZ0 indicate that a word remains to be transferred; A1 and
A0 indicate that the word corresponds to an offset of two from the base address. The
multiplexer follows the pattern corresponding to this configuration of SIZ1, SIZ0, A1, and
A0 and places the two least significant bytes of the long word on the word portion of the
bus (D31–D16). The bus cycle transfers the remaining bytes to the word-sized port. Figure
5-6 shows the timing of the bus transfer signals for this operation.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

OP0 OP1

OP2 OP3

MC68020/EC020

SIZ1 SIZ0 A1 A0

0 0 0 0

1 0 1 0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

Figure 5-5. Long-Word Operand Write to Word Port Example

MOTOROLA M68020 USER’S MANUAL 5-11

WORD WRITE

 LONG-WORD OPERAND WRITE TO 16-BIT PORT

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD WRITE

OP0

OP1

OP2

OP3

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-6. Long-Word Operand Write to Word Port Timing

5-12 M68020 USER’S MANUAL MOTOROLA

Figure 5-7 shows a word write to an 8-bit bus port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. SIZ1 and SIZ0
for the first cycle specify two bytes; for the second cycle, one byte. Figure 5-8 shows the
associated bus transfer signal timing.

OP2 OP3

15 0WORD OPERAND

D31 DATA BUS D24

BYTE MEMORY

OP2

OP3

MC68020/EC020

SIZ1 SIZ0 A1 A0
1 0 0 0

0 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
H L

H L

Figure 5-7. Word Operand Write to Byte Port Example

MOTOROLA M68020 USER’S MANUAL 5-13

BYTE WRITE

 WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

BYTE WRITE

 D15–D8

D7–D0

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-8. Word Operand Write to Byte Port Timing

5-14 M68020 USER’S MANUAL MOTOROLA

5.2.2 Misaligned Operands

Since operands may reside at any byte boundary, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68000, MC68008, and MC68010 implementations allow long-word transfers on odd-
word boundaries but force exceptions if word or long-word operand transfers are
attempted at odd-byte addresses. Although the MC68020/EC020 does not enforce any
alignment restrictions for data operands (including PC relative data addresses), some
performance degradation occurs when additional bus cycles are required for long-word or
word operands that are misaligned. For maximum performance, data items should be
aligned on their natural boundaries. All instruction words and extension words must reside
on word boundaries. Attempting to prefetch an instruction word at an odd address causes
an address error exception.

Figure 5-9 shows the transfer (write) of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, SIZ1 and SIZ0
specify a long-word transfer, and A2–A0 = 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, SIZ1 and SIZ0 specify that three bytes remain to be
transferred with A2–A0 = 010. The next two bytes are transferred during this cycle. The
processor then initiates the third cycle, with SIZ1 and SIZ0 indicating one byte remaining
to be transferred with A2–A0 = 100. The port latches the final byte, and the operation is
complete. Figure 5-10 shows the associated bus transfer signal timing. Figure 5-11 shows
the equivalent operation for a data read cycle.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP3 XXX

A0

1

0

0 1 1 0 0 L H

Figure 5-9. Misaligned Long-Word Operand Write to Word Port Example

MOTOROLA M68020 USER’S MANUAL 5-15

BYTE WRITE

 LONG-WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD WRITE

 D15–D8

D7–D0

S0 S2 S4

OP0

OP0

OP1

OP2

OP1

OP2

OP1

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.

Figure 5-10. Misaligned Long-Word Operand Write to Word Port Timing

5-16 M68020 USER’S MANUAL MOTOROLA

OP0 OP1 OP2 OP3

31 0LONG-WORD OPERAND (REGISTER)

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

OP3 XXX

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0 1

1 1 0 1 0

0 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

L H

Figure 5-11. Misaligned Long-Word Operand Read
from Word Port Example

Figures 5-12 and 5-13 show a word transfer (write) to an odd address in word-organized
memory. This example is similar to the one shown in Figures 5-9 and 5-10 except that the
operand is word sized and the transfer requires only two bus cycles. Figure 5-14 shows
the equivalent operation for a data read cycle.

MC68020/EC020

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

Figure 5-12. Misaligned Word Operand Write to Word Port Example

MOTOROLA M68020 USER’S MANUAL 5-17

 WORD OPERAND WRITE TO A1, A0 = 01

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD WRITE

 D15–D8

D7–D0

OP2

OP2

OP3

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-13. Misaligned Word Operand Write to Word Port Timing

5-18 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND (REGISTER)

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

Figure 5-14. Misaligned Word Operand Read from Word Bus Example

Figures 5-15 and 5-16 show an example of a long-word transfer (write) to an odd address
in long-word-organized memory. In this example, a long-word access is attempted
beginning at the least significant byte of a long-word-organized memory. Only one byte
can be transferred in the first bus cycle. The second bus cycle then consists of a three-
byte access to a long-word boundary. Since the memory is long word organized, no
further bus cycles are necessary. Figure 5-17 shows the equivalent operation for a data
read cycle.

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

31 0LONG-WORD OPERAND

DATA BUSD31 D0

LONG-WORD MEMORY

MSB UMB

XXX

OP1 OP2

XXX

OP2 OP3

XXX

OP3

OP0

XXX

LMB LSB

L

Figure 5-15. Misaligned Long-Word Operand Write
to Long-Word Port Example

MOTOROLA M68020 USER’S MANUAL 5-19

 LONG-WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

BYTE WRITE

 D15–D8

D7–D0

OP0

OP0

OP1

OP0

OP1

OP2

OP3

OP1

3-BYTE WRITE

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-16. Misaligned Long-Word Operand Write
to Long-Word Port Timing

5-20 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

31 0LONG-WORD OPERAND (REGISTER)

DATA BUSD31 D0

LONG-WORD MEMORY

MSB UMB

XXX

OP1 OP2

XXX

OP2 OP3

XXX

OP3

OP0

XXX

LMB LSB

L

Figure 5-17. Misaligned Long-Word Operand Read
from Long-Word Port Example

5.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determine the number
of bus cycles required to perform a particular memory access. Table 5-6 lists the number
of bus cycles required for different operand sizes to different port sizes with all possible
alignment conditions for read/write cycles.

Table 5-6. Memory Alignment and Port Size
Influence on Read/Write Bus Cycles

Number of Bus Cycles
(Data Port Size = 32 Bits:16 Bits:8 Bits)

A1, A0

Operand Size 00 01 10 11

Instruction* 1:2:4 N/A N/A N/A

Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1

Word Operand 1:1:2 1:2:2 1:1:2 2:2:2

Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

*Instruction prefetches are always two words from a long-word boundary

Table 5-6 reveals that bus cycle throughput is significantly affected by port size and
alignment. The MC68020/EC020 system designer and programmer should be aware of
and account for these effects, particularly in time-critical applications.

MOTOROLA M68020 USER’S MANUAL 5-21

Table 5-6 demonstrates that the processor always prefetches instructions by reading a
long word from a long-word address (A1, A0 = 00), regardless of port size or alignment.
When the required instruction begins at an odd-word boundary, the processor attempts to
fetch the entire 32 bits and loads both words into the instruction cache, if possible,
although the second one is the required word. Even if the instruction access is not cached,
the entire 32 bits are latched into an internal cache holding register from which the two
instructions words can subsequently be referenced. Refer to Section 8 Instruction
Execution Timing for a complete description of the cache holding register and pipeline
operation.

5.2.4 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68020/EC020 drives data onto or receives
data from the correct byte sections of the data bus. Table 5-7 shows the combinations of
the SIZ1, SIZ0, A1, and A0 signals that can be used to generate byte enable signals for
each of the four sections of the data bus for read and write cycles if the addressed device
requires them. The port size also affects the generation of these enable signals as shown
in the table. The four columns on the right correspond to the four byte enable signals.
Letters B, W, and L refer to port sizes: B for 8-bit ports, W for 16-bit ports, and L for 32-bit
ports. The letters B, W, and L imply that the byte enable signal should be true for that port
size. A dash (—) implies that the byte enable signal does not apply.

The MC68020/EC020 always drives all sections of the data bus because, at the beginning
of a write cycle, the bus controller does not know the port size.

Table 5-7 reveals that the MC68020/EC020 transfers the number of bytes specified by
SIZ1, SIZ0 to or from the specified address unless the operand is misaligned or unless the
number of bytes is greater than the port width. In these cases, the device transfers the
greatest number of bytes possible for the port. For example, if the size is four and A1, A0
= 01, a 32-bit slave can only receive three bytes in the current bus cycle. A 16- or 8-bit
slave can only receive one byte. The table defines the byte enables for all port sizes. Byte
data strobes can be obtained by combining the enable signals with the DS signal. Devices
residing on 8-bit ports can use the data strobe by itself since there is only one valid byte
for every transfer. These enable or strobe signals select only the bytes required for write
or read cycles. The other bytes are not selected, which prevents incorrect accesses in
sensitive areas such as I/O.

5-22 M68020 USER’S MANUAL MOTOROLA

Table 5-7. Data Bus Byte Enable Signals for Byte, Word, and Long-Word Ports

Data Bus Active Sections
Byte (B), Word (W) , Long-Word (L) Ports

Transfer Size SIZ1 SIZ0 A1 A0 D31–D24 D23–D16 D15–D8 D7–D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

—
W L
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

—
L
L
—

—
—
L
L

3 Bytes 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

L
L
L
L

Figure 5-18 shows a logic diagram of one method for generating byte enable signals for
16- and 32-bit ports from the SIZ1, SIZ0, A1, and A0 encodings and the R/W signal.

5.2.5 Cache Interactions

The organization and requirements of the on-chip instruction cache affect the
interpretation of DSACK1 and DSACK0. Since the MC68020/EC020 attempts to load all
instructions into the on-chip cache, the bus may operate differently when caching is
enabled. Specifically, on read cycles that terminate normally, the A1, A0, SIZ1, and SIZ0
signals do not apply.

The cache can also affect the assertion of AS and the operation of a read cycle. The
search of the cache by the processor begins when the sequencer requires an instruction.
At this time, the bus controller may also initiate an external bus cycle in case the
requested item is not resident in the instruction cache. If an internal cache hit occurs, the
external cycle aborts, and AS is not asserted.

For the MC68020, if the bus is not occupied with another read or write cycle, the bus
controller asserts the ECS signal (and the OCS signal, if appropriate). It is possible to have
ECS asserted on multiple consecutive clock cycles. Note that there is a minimum time
specified from the negation of ECS to the next assertion of ECS (refer to Section 10
Electrical Characteristics). Instruction prefetches can occur every other clock so that if,
after an aborted cycle due to an instruction cache hit, the bus controller asserts ECS on
the next clock, this second cycle is for a data fetch. Note that, if the bus controller is
executing other cycles, these aborted cycles due to cache hits may not be seen externally.

MOTOROLA M68020 USER’S MANUAL 5-23

A1

SIZ0

SIZ1

R/W

LD

UD

LLD

LMD

UMD

UUD

A0

UUD
UMD
LMD
LLD
UD
LD

UPPER UPPER DATA (32-BIT PORT)
UPPER MIDDLE DATA (32-BIT PORT)
LOWER MIDDLE DATA (32-BIT PORT)
LOWER LOWER DATA (32-BIT PORT)
UPPER DATA (16-BIT PORT)
LOWER DATA (16-BIT PORT)

=
=
=
=
=
=

Figure 5-18. Byte Enable Signal Generation for 16- and 32-Bit Ports

5-24 M68020 USER’S MANUAL MOTOROLA

5.2.6 Bus Operation

The MC68020/EC020 bus is used in an asynchronous manner allowing external devices
to operate at clock frequencies different from the MC68020/EC020 clock. Bus operation
uses the handshake lines (AS, DS, DSACK0, DSACK1, BERR, and HALT) to control data
transfers. AS signals the start of a bus cycle, and DS is used as a condition for valid data
on a write cycle. Decoding SIZ1, SIZ0, A1, and A0 provides byte enable signals that select
the active portion of the data bus. The slave device (memory or peripheral) then responds
by placing the requested data on the correct portion of the data bus for a read cycle or
latching the data on a write cycle and by asserting the DSACK0/DSACK1 combination that
corresponds to the port size to terminate the cycle. If no slave responds or the access is
invalid, external control logic asserts BERR to abort or BERR and HALT to retry the bus
cycle.

DSACK1/DSACK0 can be asserted before the data from a slave device is valid on a read
cycle. The length of time that DSACK1/DSACK0 may precede data is given by parameter
#31, and it must be met in any asynchronous system to ensure that valid data is latched
into the processor. (Refer to Section 10 Electrical Characteristics for timing
parameters.) Note that no maximum time is specified from the assertion of AS to the
assertion of DSACK1/DSACK0. Although the processor can transfer data in a minimum of
three clock cycles when the cycle is terminated with DSACK1/DSACK0, the processor
inserts wait cycles in clock period increments until DSACK1/DSACK0 is recognized.

The BERR and/or HALT signals can be asserted after DSACK1/DSACK0 is asserted.
BERR and/or HALT must be asserted within the time given (parameter #48), after
DSACK1/DSACK0 is asserted in any asynchronous system. If this maximum delay time is
violated, the processor may exhibit erratic behavior.

5.2.7 Synchronous Operation with DSACK1/DSACK0

Although cycles terminated with DSACK1/DSACK0 are classified as asynchronous, cycles
terminated with DSACK1/DSACK0 can also operate synchronously in that signals are
interpreted relative to clock edges. The devices that use these synchronous cycles must
synchronize the responses to the MC68020/EC020 clock. Since these devices terminate
bus cycles with DSACK1/DSACK0 , the dynamic bus sizing capabilities of the
MC68020/EC020 are available. In addition, the minimum cycle time for these synchronous
cycles is three clocks.

To support systems that use the system clock to generate DSACK1/DSACK0 and other
asynchronous inputs, the asynchronous input setup time (parameter #47A) and the
asynchronous input hold time (parameter #47B) are provided in Section 10 Electrical
Characteristics. (Note: although a misnomer, these “asynchronous” parameters are the
setup and hold times for synchronous operation.) If the setup and hold times are met for
the assertion or negation of a signal, such as DSACK1/DSACK0, the processor can be
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACK1/DSACK0 is recognized on a particular falling edge of the clock,
valid data is latched into the processor (for a read cycle) on the next falling clock edge
provided the data meets the data setup time (parameter #27). In this case, parameter #31

MOTOROLA M68020 USER’S MANUAL 5-25

for asynchronous operation can be ignored. All timing parameters referred to are
described in Section 10 Electrical Characteristics. If a system asserts
DSACK1/DSACK0 for the required window around the falling edge of state 2 and obeys
the proper bus protocol by maintaining DSACK1/DSACK0 (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time specified by parameter #47B), no wait states are inserted. The bus cycle runs at its
maximum speed of three clocks per cycle for bus cycles terminated with
DSACK1/DSACK0.

To ensure proper operation in a synchronous system when BERR or BERR/HALT is
asserted after DSACK1/DSACK0, BERR (and HALT) must meet the appropriate setup time
(parameter #27A) prior to the falling clock edge one clock cycle after DSACK1/DSACK0 is
recognized. This setup time is critical, and the MC68020/EC020 may exhibit erratic
behavior if it is violated.

When operating synchronously, the data-in setup (parameter #27) and hold (parameter
#30) times for synchronous cycles may be used instead of the timing requirements for
data relative to the DS signal.

5.3 DATA TRANSFER CYCLES

The transfer of data between the processor and other devices involves the following
signals:

• Address Bus (A31–A0 for the MC68020) (A23–A0 for the MC68EC020)

• Data Bus (D31–D0)

• Control Signals

The address and data buses are both parallel, nonmultiplexed buses. The bus master
moves data on the bus by issuing control signals, and the bus uses a handshake protocol
to ensure correct movement of the data. In all bus cycles, the bus master is responsible
for de-skewing all signals it issues at both the start and end of the cycle. In addition, the
bus master is responsible for de-skewing DSACK1/DSACK0, D31–D0, BERR, HALT, and,
for the MC68020, DBEN from the slave devices. The following paragraphs define read,
write, and read-modify-write cycle operations.

Each of the bus cycles is defined as a succession of states. These states apply to the bus
operation and are different from the processor states described in Section 2 Processing
States. The clock cycles used in the descriptions and timing diagrams of data transfer
cycles are independent of the clock frequency. Bus operations are described in terms of
external bus states.

5-26 M68020 USER’S MANUAL MOTOROLA

5.3.1 Read Cycle

During a read cycle, the processor receives data from a memory, coprocessor, or
peripheral device. If the instruction specifies a long-word operation, the MC68020/EC020
attempts to read four bytes at once. For a word operation, it attempts to read two bytes at
once and for a byte operation, one byte. For some operations, the processor requests a
three-byte transfer. The processor properly positions each byte internally. The section of
the data bus from which each byte is read depends on the operand size, A1–A0, and the
port size. Refer to 5.2.1 Dynamic Bus Sizing and 5.2.2 Misaligned Operands for more
information on dynamic bus sizing and misaligned operands.

Figure 5-19 is a flowchart of a long-word read cycle. Figure 5-20 is a flowchart of a byte
read cycle. Figures 5-21–5-23 are read cycle timing diagrams in terms of clock periods.
Figure 5-21 corresponds to byte and word read cycles from a 32-bit port. Figure 5-22
corresponds to a long-word read cycle from an 8-bit port. Figure 5-23 also applies to a
long-word read cycle, but from 16- and 32-bit ports.

PROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION CODE ON FC2–FC0
5) DRIVE SIZ1, SIZ0 (FOUR BYTES)
6) ASSERT AS
7) ASSERT DS
8) ASSERT DBEN

ACQUIRE DATA

1) LATCH DATA
2) NEGATE AS AND DS
3) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE DSACK1/DSACK0

EXTERNAL DEVICE

*

*

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.

*

**

Figure 5-19. Long-Word Read Cycle Flowchart

MOTOROLA M68020 USER’S MANUAL 5-27

ACQUIRE DATA

1) LATCH DATA
2) NEGATE AS AND DS
3) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31–D24 OR
 D23–D16 OR
 D15–D8 OR
 D7–D0
 (BASED ON A1, A0, AND BUS WIDTH)
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE DSACK1/DSACK0

EXTERNAL DEVICEPROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION CODE ON FC2–FC0
5) DRIVE SIZ1, SIZ0 (FOUR BYTES)
6) ASSERT AS
7) ASSERT DS
8) ASSERT DBEN*

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*

**

*

Figure 5-20. Byte Read Cycle Flowchart

5-28 M68020 USER’S MANUAL MOTOROLA

WORD READ

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

BYTE READ

 D15–D8

D7–D0

S0 S2 S4

OP2

OP3

OP3

OP3

WORD BYTE

BYTE READ

**

**

**

*

*

Figure 5-21. Byte and Word Read Cycles—32-Bit Port

MOTOROLA M68020 USER’S MANUAL 5-29

BYTE READ

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

 D15–D8

D7–D0

OP0 OP1 OP3

 LONG WORD 3-BYTE

BYTE READ

CLK

WORD BYTE

OP2

BYTE READBYTE READ

LONG-WORD OPERAND READ FROM 8-BIT PORT

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.

Figure 5-22. Long-Word Read—8-Bit Port

5-30 M68020 USER’S MANUAL MOTOROLA

WORD READ

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD READ

 D15–D8

D7–D0

S0 S2 S4

OP0

OP1 OP3

OP3

LONG WORD WORD

LONG-WORD READ
FROM 32-BIT PORT

OP2

OP1

OP0OP2

LONG WORD

LONG-WORD OPERAND READ FROM 16-BIT PORT

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-23. Long-Word Read—16- and 32-Bit Ports

MOTOROLA M68020 USER’S MANUAL 5-31

State 0
MC68020—The read cycle starts in state 0 (S0). The processor asserts ECS, indicating
the beginning of an external cycle. If the cycle is the first external cycle of a read
operation, OCS is asserted simultaneously. During S0, the processor places a valid
address on A31–A0 and valid function codes on FC2–FC0. The function codes select
the address space for the cycle. The processor drives R/W high for a read cycle and
negates DBEN to disable the data buffers. SIZ0 and SIZ1 become valid, indicating the
number of bytes requested to be transferred.

MC68EC020—The read cycle starts in S0. During S0, the processor places a valid
address on A23–A0 and valid function codes on FC2–FC0. The function codes select
the address space for the cycle. The processor drives R/W high for a read cycle. SIZ0
and SIZ1 become valid, indicating the number of bytes requested to be transferred.

State 1
MC68020—One-half clock later in state 1 (S1), the processor asserts AS, indicating that
the address on the address bus is valid. The processor also asserts DS during S1. In
addition, the ECS (and OCS , if asserted) signal is negated during S1.

MC68EC020—One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DS during S1.

State 2
MC68020—During state 2 (S2), the processor asserts DBEN to enable external data
buffers. The selected device uses R/W, SIZ1–SIZ0, A1–A0, and DS to place its
information on the data bus. Any or all of the bytes (D31–D24, D23–D16, D15–D8, and
D7–D0) are selected by SIZ1–SIZ0 and A1–A0. Concurrently, the selected device
asserts DSACK1/DSACK0 .

MC68EC020—During S2, the selected device uses R/W, SIZ1–SIZ0, A1–A0, and DS to
place its information on the data bus. Any or all of the bytes (D31–D24, D23–D16,
D15–D8, and D7–D0) are selected by SIZ1–SIZ0 and A1–A0. Concurrently, the
selected device asserts DSACK1/DSACK0.

State 3
MC68020/EC020—As long as at least one of the DSACK1/DSACK0 signals is
recognized by the end of S2 (meeting the asynchronous input setup time requirement),
data is latched on the next falling edge of the clock, and the cycle terminates. If
DSACK1/DSACK0 is not recognized by the start of state 3 (S3), the processor inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and D S A C K 0 must remain negated throughout the
asynchronous input setup and hold times around the end of S2. If wait states are
added, the processor continues to sample the DSACK1/DSACK0 signals on the falling
edges of the clock until an assertion is recognized.

5-32 M68020 USER’S MANUAL MOTOROLA

State 4
MC68020/EC020—At the end of state 4 (S4), the processor latches the incoming data.

State 5
MC68020—The processor negates AS, DS, and DBEN during state 5 (S5). It holds the
address valid during S5 to provide address hold time for memory systems. R/W, SIZ1–
SIZ0, and FC2–FC0 also remain valid throughout S5.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
its data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

MC68EC020—The processor negates AS and DS during state S5. It holds the address
valid during S5 to provide address hold time for memory systems. R/W , SIZ1, SIZ0,
and FC2–FC0 also remain valid throughout S5.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
its data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next bus cycle.

MOTOROLA M68020 USER’S MANUAL 5-33

5.3.2 Write Cycle

During a write cycle, the processor transfers data to memory or a peripheral device.
Figure 5-24 is a flowchart of a write cycle operation for a long-word transfer. Figures 5-25–
5-28 are write cycle timing diagrams in terms of clock periods. Figure 5-25 shows two
write cycles (between two read cycles with no idle time in between) for a 32-bit port.
Figure 5-26 shows byte and word write cycles to a 32-bit port. Figure 5-27 shows a long-
word write cycle to an 8-bit port. Figure 5-28 shows a long-word write cycle to a 16-bit
port.

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31–A0
3) DRIVE FUNCTION CODES ON FC2–FC0
4) DRIVE SIZ1, SIZ0 (FOUR BYTES)
5) SET R/W TO WRITE
6) ASSERT AS
7) ASSERT DBEN
8) DRIVE DATA LINES D31–D0
9) ASSERT DS

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31–D0
3) NEGATE DBEN

EXTERNAL DEVICEPROCESSOR

1) NEGATE DSACK1/DSACK0

TERMINATE CYCLE

ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM D31–D0
3) ASSERT DSACK1/DSACK0

ADDRESS DEVICE

TERMINATE OUTPUT TRANSFER

START NEXT CYCLE

*

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*
**

*

Figure 5-24. Write Cycle Flowchart

5-34 M68020 USER’S MANUAL MOTOROLA

WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D0

 LONG WORD

CLK

WRITEBYTE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4

READ WITH WAIT STATES

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-25. Read-Write-Read Cycles—32-Bit Port

MOTOROLA M68020 USER’S MANUAL 5-35

WORD WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

BYTE WRITE

 D15–D8

D7–D0

S0 S2 S4

OP2

OP3 OP3

OP3

 WORD

OP3

OP3

OP3OP3

BYTE

OP2

OP3 OP3

OP3

BYTE WRITE

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.

Figure 5-26. Byte and Word Write Cycles—32-Bit Port

5-36 M68020 USER’S MANUAL MOTOROLA

BYTE WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

 D15–D8

D7–D0

 LONG WORD 3-BYTE

BYTE WRITE

CLK

WORD BYTE

BYTE WRITEBYTE WRITE

LONG-WORD OPERAND WRITE TO 8-BIT PORT

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

OP0 OP3OP2OP1

OP1 OP3OP3OP1

OP2 OP3OP2OP2

OP3 OP3OP3OP3

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.

Figure 5-27. Long-Word Operand Write—8-Bit Port

MOTOROLA M68020 USER’S MANUAL 5-37

WORD WRITE

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD WRITE

 D15–D8

D7–D0

S0 S2 S4

OP0

OP1 OP3

OP3

 LONG WORD

OP2

OP1

OP0OP2

WORD

OP2

OP3 OP3

OP2

LONG-WORD WRITE
TO 32-BIT PORT

LONG-WORD OPERAND WRITE TO 16-BIT PORT

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

 LONG WORD

Figure 5-28. Long-Word Operand Write—16-Bit Port

5-38 M68020 USER’S MANUAL MOTOROLA

State 0
MC68020—The write cycle starts in S0. The processor negates ECS, indicating the
beginning of an external cycle. If the cycle is the first external cycle of a write
operation, OCS is asserted simultaneously. During S0, the processor places a valid
address on A31–A0 and valid function codes on FC2–FC0. The function codes select
the address space for the cycle. The processor drives R/W low for a write cycle. SIZ1–
SIZ0 become valid, indicating the number of bytes to be transferred.

MC68EC020—The write cycle starts in S0. During S0, the processor places a valid
address on A23–A0 and valid function codes on FC2–FC0. The function codes select
the address space for the cycle. The processor drives R/W low for a write cycle. SIZ1,
SIZ0 become valid, indicating the number of bytes to be transferred.

State 1
MC68020—One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid. The processor also asserts DBEN during S1,
which can enable external data buffers. In addition, the ECS (and OCS , if asserted)
signal is negated during S1.

MC68EC020—One-half clock later in S1, the processor asserts AS, indicating that the
address on the address bus is valid.

State 2
MC68020/EC020—During S2, the processor places the data to be written onto D31–D0.
At the end of S2, the processor samples DSACK1/DSACK0 .

State 3
MC68020/EC020—The processor asserts DS during S3, indicating that the data on the
data bus is stable. As long as at least one of the DSACK1/DSACK0 signals is
recognized by the end of S2 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACK1/DSACK0 is not recognized by the start
of S3, the processor inserts wait states instead of proceeding to S4 and S5. To ensure
that wait states are inserted, both DSACK1 and DSACK0 must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the processor continues to sample the DSACK1/DSACK0 signals on
the falling edges of the clock until one is recognized.
The external device uses R/W , DS, SIZ1, SIZ0, A1, and A0 to latch data from the
appropriate byte(s) of the data bus (D31–D24, D23–D16, D15–D8, and D7–D0). SIZ1,
SIZ0, A1, and A0 select the bytes of the data bus. If it has not already done so, the
device asserts DSACK1/DSACK0 to signal that it has successfully stored the data.

MOTOROLA M68020 USER’S MANUAL 5-39

State 4
MC68020/EC020—The processor issues no new control signals during S4.

State 5
MC68020—The processor negates AS and DS during S5. It holds the address and data
valid during S5 to provide address hold time for memory systems. R/W , SIZ1, SIZ0,
FC2–FC0, and DBEN also remain valid throughout S5.
The external device must keep DSACK1/DSACK0 asserted until it detects the negation
of AS or DS (whichever it detects first). The device must negate DSACK1/DSACK0

within approximately one clock period after sensing the negation of A S or DS.
DSACK1/DSACK0 signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

MC68EC020—The processor negates AS and DS during S5. It holds the address and
data valid during S5 to provide address hold time for memory systems. R/W , SIZ1,
SIZ0, and FC2–FC0 also remain valid throughout S5.
The external device must keep DSACK1/DSACK0 asserted until it detects the negation
of AS or DS (whichever it detects first). The device must negate DSACK1/DSACK0

within approximately one clock period after sensing the negation of A S or DS.
DSACK1/DSACK0 signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

5.3.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68020/EC020, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68020/EC020 asserts RMC to
indicate that an indivisible operation is occurring. The MC68020/EC020 does not issue a
BG signal in response to a BR signal during this operation.

The TAS, CAS, and CAS2 instructions are the only MC68020/EC020 instructions that
utilize read-modify-write operations. Depending on the compare results of the CAS and
CAS2 instructions, the write cycle(s) may not occur.

Figure 5-29 is a flowchart of the read-modify-write cycle operation. Figure 5-30 is an
example timing diagram of a TAS instruction specified in terms of clock periods.

5-40 M68020 USER’S MANUAL MOTOROLA

LOCK BUS

1) ASSERT RMC

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION CODES ON FC2–FC0
5) DRIVE SIZ1, SIZ0
6) ASSERT AS
7) ASSERT DS
8) ASSERT DBEN

ACQUIRE DATA

1) LATCH DATA
2) NEGATE AS AND DS
3) NEGATE DBEN
4) START DATA MODIFICATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31–A0 (IF DIFFERENT)
3) DRIVE SIZ1, SIZ0
4) SET R/W TO WRITE
5) ASSERT AS
6) ASSERT DBEN
7) PLACE DATA ON D31–D0
8) ASSERT DS

TERMINATE OUTPUT TRANSFER

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31–D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE DSACK1/DSACK0

ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM D31–D0
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

A

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A ;
IF OPERANDS DO NOT
MATCH, THEN GO TO

C ; ELSE GO TO B
C

B

1) NEGATE DSACK1/DSACK0

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND

WRITTEN, THEN GO TO
D ; ELSE GO TO E

E

D

PROCESSOR EXTERNAL DEVICE

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*

**

*

*

*

*
**

*

Figure 5-29. Read-Modify-Write Cycle Flowchart

MOTOROLA M68020 USER’S MANUAL 5-41

INDIVISIBLE CYCLE NEXT CYCLE

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

R/W

AS

DS

DSACK0

DBEN

D31–D24

SIZ0

DSACK1

S0 S2 S4 Si S6 S8 S10 S0

D7–D0

D23–D16

RMC

ECS

OP3

OP3

OP3OP3

OP3

BERR

HALT

BG

D15–8

S11

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Si

OCS

Figure 5-30. Byte Read-Modify-Write Cycle—32-Bit Port (TAS Instruction)

5-42 M68020 USER’S MANUAL MOTOROLA

State 0
MC68020—The processor asserts ECS and OCS in S0 to indicate the beginning of an
external operand cycle. The processor also asserts RMC in S0 to identify a read-
modify-write cycle. The processor places a valid address on A31–A0 and valid function
codes on FC2–FC0. The function codes select the address space for the operation.
SIZ1, SIZ0 become valid in S0 to indicate the operand size. The processor drives R/W
high for the read cycle.

MC68EC020—The processor asserts RMC in S0 to identify a read-modify-write cycle.
The processor places a valid address on A23–A0 and valid function codes on FC2–
FC0. The function codes select the address space for the operation. SIZ1–SIZ0
become valid in S0 to indicate the operand size. The processor drives R/W high for the
read cycle.

State 1
MC68020—One-half clock later in S1, the processor asserts AS to indicate that the
address on the address bus is valid. The processor also asserts DS during S1. In
addition, the ECS (and OCS , if asserted) signal is negated during S1.

MC68EC020—One-half clock later in S1, the processor asserts AS to indicate that the
address on the address bus is valid. The processor also asserts DS during S1.

State 2
MC68020—During S2, the processor asserts DBEN to enable external data buffers. The
selected device uses R/W , SIZ1, SIZ0, A1, A0, and DS to place information on the
data bus. Any or all of the bytes (D31–D24, D23–D16, D15–D8, and D7–D0) are
selected by SIZ1, SIZ0, A1, and A0. Concurrently, the selected device may assert the
DSACK1/DSACK0 signals.

MC68EC020—During S2, the selected device uses R/W, SIZ1, SIZ0, A1, A0, and DS to
place information on the data bus. Any or all of the bytes (D31–D24, D23–D16, D15–
D8, and D7–D0) are selected by SIZ1, SIZ0, A1, and A0. Concurrently, the selected
device may assert the DSACK1/DSACK0 signals.

State 3
MC68020/EC020—As long as at least one of the DSACK1/DSACK0 signals is
recognized by the end of S2 (meeting the asynchronous input setup time requirement),
data is latched on the next falling edge of the clock, and the cycle terminates. If
DSACK1/DSACK0 is not recognized by the start of S3, the processor inserts wait
states instead of proceeding to S4 and S5. To ensure that wait states are inserted,
both DSACK0 and DSACK1 must remain negated throughout the asynchronous input
setup and hold times around the end of S2. If wait states are added, the processor
continues to sample the DSACK1/DSACK0 signals on the falling edges of the clock
until one is recognized.

State 4
MC68020/EC020—At the end of S4, the processor latches the incoming data.

MOTOROLA M68020 USER’S MANUAL 5-43

State 5
MC68020—The processor negates AS, DS, and DBEN during S5. If more than one read
cycle is required to read in the operand(s), S0–S5 are repeated for each read cycle.
When the read cycle(s) are complete, the processor holds the address, R/W , and
FC2–FC0 valid in preparation for the write portion of the cycle.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
the data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next portion of the operation.

MC68EC020—The processor negates AS, DS, and DBEN during S5. If more than one
read cycle is required to read in the operand(s), S0–S5 are repeated for each read
cycle. When the read cycle(s) is complete, the processor holds the address, R/W, and
FC2–FC0 valid in preparation for the write portion of the cycle.
The external device keeps its data and DSACK1/DSACK0 signals asserted until it
detects the negation of AS or DS (whichever it detects first). The device must remove
the data and negate DSACK1/DSACK0 within approximately one clock period after
sensing the negation of AS or DS. DSACK1/DSACK0 signals that remain asserted
beyond this limit may be prematurely detected for the next portion of the operation.

Idle States
MC68020/EC020—The processor does not assert any new control signals during the
idle states, but it may internally begin the modify portion of the cycle at this time. S6–
S11 are omitted if no write cycle is required. If a write cycle is required, the R/W signal
remains in the read mode until S6 to prevent bus conflicts with the preceding read
portion of the cycle; the data bus is not driven until S8.

State 6
MC68020—The processor asserts ECS and OCS in S6 to indicate that another external
cycle is beginning. The processor drives R/W low for a write cycle. Depending on the
write operation to be performed, the address lines may change during S6.

MC68EC020—During S6, the processor drives R/W low for a write cycle. Depending on
the write operation to be performed, the address lines may change during S6.

State 7
MC68020—During S7, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DBEN, which can be used to enable
data buffers. In addition, ECS (and OCS, if asserted) is negated during S7.

MC68EC020—During S7, the processor asserts AS, indicating that the address on the
address bus is valid.

State 8
MC68020/EC020—During S8, the processor places the data to be written onto the data
bus.

5-44 M68020 USER’S MANUAL MOTOROLA

State 9
MC68020/EC020—The processor asserts DS during S9, indicating that the data on the
data bus is stable. As long as at least one of the DSACK1/DSACK0 signals is
recognized by the end of S8 (meeting the asynchronous input setup time requirement),
the cycle terminates one clock later. If DSACK1/DSACK0 is not recognized by the start
of S9, the processor inserts wait states instead of proceeding to S10 and S11. To
ensure that wait states are inserted, both DSACK1 and DSACK0 must remain negated
throughout the asynchronous input setup and hold times around the end of S8. If wait
states are added, the processor continues to sample DSACK1/DSACK0 signals on the
falling edges of the clock until one is recognized.
The external device uses R/W , DS, SIZ1, SIZ0, A1, and A0 to latch data from the
appropriate section(s) of the data bus (D31–D24, D23–D16, D15–D8, and D7–D0).
SIZ1, SIZ0, A1, and A0 select the data bus sections. If it has not already done so, the
device asserts DSACK1/DSACK0 when it has successfully stored the data.

State 10
MC68020/EC020—The processor issues no new control signals during S10.

State 11
MC68020/EC020—The processor negates AS and DS during S11. It holds the address
and data valid during S11 to provide address hold time for memory systems. R/W and
FC2–FC0 also remain valid throughout S11.
If more than one write cycle is required, S6–S11 are repeated for each write cycle.
The external device keeps DSACK1/DSACK0 asserted until it detects the negation of
AS or DS (whichever it detects first). The device must remove its data and negate
DSACK1/DSACK0 within approximately one clock period after sensing the negation of
AS or DS.

5.4 CPU SPACE CYCLES

FC2–FC0 select user and supervisor program and data areas as listed in Table 2-1. The
area selected by FC2–FC0 = 111 is classified as the CPU space. The interrupt
acknowledge, breakpoint acknowledge, module operations, and coprocessor
communication cycles described in the following paragraphs utilize CPU space.

The CPU space type is encoded on A19–A16 during a CPU space operation and indicates
the function that the processor is performing. On the MC68020/EC020, four of the
encodings are implemented as shown in Figure 5-31. All unused values are reserved by
Motorola for future use.

MOTOROLA M68020 USER’S MANUAL 5-45

1 1 1

1 1 1

1 1 1

1 1 1

BREAKPOINT
ACKNOWLEDGE

ACCESS LEVEL
CONTROL

COPROCESSOR
COMMUNICATION

INTERRUPT
ACKNOWLEDGE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LEVEL 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 CpID 0 0 0 0 0 0 0 0 CP REG

15 13 4 0

3 1 031

31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 0

MMU REG

BKPT # 0 0

31

31 4 2 0

0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 16232 0

FUNCTION
CODE

ADDRESS BUS

CPU SPACE
TYPE FIELD

24 20 15 5 1

719 1620 15

12161920

1920

5

41516

Figure 5-31. MC68020/EC020 CPU Space Address Encoding

5.4.1 Interrupt Acknowledge Bus Cycles

When a peripheral device signals the processor (with the IPL2–IPL0 signals) that the
device requires service and when the internally synchronized value on these signals
indicates a higher priority than the interrupt mask in the status register (or that a transition
has occurred in the case of a level 7 interrupt), the processor makes the interrupt a
pending interrupt. Refer to Section 6 Exception Processing for details on the recognition
of interrupts.

The MC68020/EC020 takes an interrupt exception for a pending interrupt within one
instruction boundary (after processing any other pending exception with a higher priority).
The following paragraphs describe the various kinds of interrupt acknowledge bus cycles
that can be executed as part of interrupt exception processing.

5.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
MC68020/EC020 processes an interrupt exception, it performs an interrupt acknowledge
cycle to obtain the number of the vector that contains the starting location of the interrupt
service routine.

Some interrupting devices have programmable vector registers that contain the interrupt
vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices cannot
supply a vector number and use the autovector cycle described in 5.4.1.2 Autovector
Interrupt Acknowledge Cycle.

5-46 M68020 USER’S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
5.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are:

1. FC2–FC0 are set 111 for CPU address space.

2. A3, A2, and A1 are set to the interrupt request level (the inverted values of IPL2,
IPL1, and IPL0, respectively).

3. The CPU space type field (A19–A16) is set to 1111, the interrupt acknowledge code.

4. Other address signals (A31–A20, A15–A4, and A0 for the MC68020; A23–A20,
A15–A4, and A0 for the MC68EC020) are set to one.

The responding device places the vector number on the data bus during the interrupt
acknowledge cycle. Beyond this, the cycle is terminated normally with DSACK1/DSACK0.
Figure 5-32 is the flowchart of the interrupt acknowledge cycle.

Figure 5-33 shows the timing for an interrupt acknowledge cycle terminated with
DSACK1/DSACK0 .

REQUEST INTERRUPT

 INTERRUPTING DEVICEPROCESSOR

1) PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA PORT
 (DEPENDS ON PORT SIZE)
2) ASSERT DSACK1/DSACK0
 OR
 ASSERT AVEC FOR AUTOMATIC GENERA-
 TION OF VECTOR NUMBER

PROVIDE VECTOR INFORMATION

ACKNOWLEDGE INTERRUPT

1) INTERRUPT PENDING CONDITION (IPEND FOR
MC68020) RECOGNIZED BY CURRENT INSTRUC-
TION—WAIT FOR INSTRUCTION BOUNDARY.
2) SET R/W TO READ
3) SET FUNCTION CODE TO CPU SPACE
4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3.
 TYPE FIELD = IACK
5) SET SIZE TO BYTE
6) NEGATE IPEND
7) ASSERT AS AND DS

ACQUIRE VECTOR NUMBER

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

CONTINUE INTERRUPT EXCEPTION PROCESSING

RELEASE

1) REMOVE VECTOR NUMBER FROM DATA BUS
2) NEGATE DSACK1/DSACK0

* This step does not apply to the MC68EC020.

*

Figure 5-32. Interrupt Acknowledge Cycle Flowchart

MOTOROLA M68020 USER’S MANUAL 5-47

READ CYCLE INTERRUPT
ACKNOWLEDGE WRITE STACK

CLK

A31–A4

A3–A1

A0

FC2–FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D24–D31

IPL2–IPL0

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

IPEND

D7–D0

D23–D16

VECTOR # FROM 8-BIT PORT

VECTOR # FROM 16-BIT PORT

VECTOR # FROM 32-BIT PORT

**

**

**

*

* For the MC68EC020, A23–A4.
This signal does not apply to the MC68EC020.**

**

Figure 5-33. Interrupt Acknowledge Cycle Timing

5-48 M68020 USER’S MANUAL MOTOROLA

5.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector or
autovector. Instead of placing a vector number on the data bus and asserting
DSACK1/DSACK0 , the device asserts AVEC to terminate the cycle. The DSACK1/DSACK0

signals may not be asserted during an interrupt acknowledge cycle terminated by AVEC.

The vector number supplied in an autovector operation is derived from the interrupt level
of the current interrupt. When AVEC is asserted instead of DSACK1/DSACK0 during an
interrupt acknowledge cycle, the MC68020/EC020 ignores the state of the data bus and
internally generates the vector number, the sum of the interrupt level plus 24 ($18). Seven
distinct autovectors, which correspond to the seven levels of interrupt available with IPL2–
IPL0, can be used. Figure 5-34 shows the timing for an autovector operation.

5.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an interrupt
acknowledge cycle with AVEC or DSACK1/DSACK0, the external logic typically returns
BERR. In this case, the MC68020/EC020 automatically generates 24, the spurious
interrupt vector number. If HALT is also asserted, the processor retries the cycle.

MOTOROLA M68020 USER’S MANUAL 5-49

READ CYCLE
INTERRUPT

ACKNOWLEDGE
AUTOVECTORED

WRITE STACK

CLK

A31–A4

A1–A3

A0

FC2–FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31–D0

IPL2–IPL0

AVEC

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

**

**

**

*

* For the MC68EC020, A23–A4.
This signal does not apply to the MC68EC020.**

Figure 5-34. Autovector Operation Timing

5-50 M68020 USER’S MANUAL MOTOROLA

5.4.2 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle is generated by the execution of a BKPT instruction.
The breakpoint acknowledge cycle allows the external hardware to provide an instruction
word directly into the instruction pipeline as the program executes. This cycle accesses
the CPU space with a type field of zero and provides the breakpoint number specified by
the instruction on address lines A4–A2. If the external hardware terminates the cycle with
DSACK1/DSACK0 , the data on the bus (an instruction word) is inserted into the instruction
pipe, replacing the breakpoint opcode, and is executed after the breakpoint acknowledge
cycle completes. The BKPT instruction requires a word to be transferred so that if the first
bus cycle accesses an 8-bit port, a second cycle is required. If the external logic
terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available), the processor takes an illegal instruction exception. Figure 5-35 is a flowchart
of the breakpoint acknowledge cycle. Figure 5-36 shows the timing for a breakpoint
acknowledge cycle that returns an instruction word. Figure 5-37 shows the timing for a
breakpoint acknowledge cycle that signals an exception.

1) PLACE REPLACEMENT OPCODE ON DATA
 BUS
2) ASSERT DSACK1/DTACK0
 OR
1) ASSERT BERR TO INITIATE EXCEPTION
PROCESSING

PROCESSOR

1) SET R/W TO READ
2) SET FUNCTION CODE TO CPU SPACE
3) PLACE CPU SPACE TYPE 0 ON A19–A16
4) PLACE BREAKPOINT NUMBER ON A4–A2
5) SET SIZE TO WORD
6) ASSERT AS AND DS

 BREAKPOINT ACKNOWLEDGE

1) PLACE LATCHED DATA IN INSTRUCTION
 PIPELINE
2) CONTINUE PROCESSING

1) INITIATE ILLEGAL INSTRUCTION PROCESSING

SLAVE NEGATES DSACK1/DSACK0 OR BERR

EXTERNAL DEVICE

 IF DSACK1/DSACK0 ASSERTED:
 1) LATCH DATA
 2) NEGATE AS AND DS
 3) GO TO A

IF BERR ASSERTED:
 1) NEGATE AS AND DS
 2) GO TO B A B

Figure 5-35. Breakpoint Acknowledge Cycle Flowchart

MOTOROLA M68020 USER’S MANUAL 5-51

BREAKPOINT
ACKNOWLEDGE

INSTRUCTION WORD
FETCH

READ CYCLE

CLK

A31–A20

A19–A16

A15–A2

FC2–FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D23–D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7–D0

D15–D8

BREAKPOINT NUMBER

WORD

FETCHED
INSTRUCTION
EXECUTION

(0000)
BREAKPOINT ENCODING

A1–A0

HALT

BERR

**

**

**

*

Figure 5-36. Breakpoint Acknowledge Cycle Timing

5-52 M68020 USER’S MANUAL MOTOROLA

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1–SIZ0

DSACK1

S0 S2 S4 S0 S2

HALT

Sw Sw Sw S4

D31–D0

BERR

READ WITH BERR ASSERTED INTERNAL
PROCESSING STACK WRITE

**

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-37. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

MOTOROLA M68020 USER’S MANUAL 5-53

5.4.3 Coprocessor Communication Cycles

The MC68020/EC020 coprocessor interface provides instruction-oriented communication
between the processor and as many as eight coprocessors. Coprocessor accesses use
the MC68020/EC020 bus protocol except that the address bus supplies access
information rather than a 32-bit address. The CPU space type field (A19–A16) for a
coprocessor operation is 0010. A15–A13 contain the coprocessor identification number
(CpID), and A5–A0 specify the coprocessor interface register to be accessed. The
memory management unit of an MC68020/EC020 system is always identified by a CpID of
zero and has an extended register select field (A7–A0) in CPU space 0001 for use by the
CALLM and RTM access level checking mechanism. Refer to Section 9 Applications
Information for more details.

5.5 BUS EXCEPTION CONTROL CYCLES

The MC68020/EC020 bus architecture requires assertion of DSACK1/DSACK0 from an
external device to signal that a bus cycle is complete. DSACK1/DSACK0 or AVEC is not
asserted if:

• The external device does not respond,

• No interrupt vector is provided, or

• Various other application-dependent errors occur.

External circuitry can assert B E R R when no device responds by asserting
DSACK1/DSACK0 or AVEC within an appropriate period of time after the processor
asserts AS. Assertion of BERR allows the cycle to terminate and the processor to enter
exception processing for the error condition.

HALT is also used for bus exception control. HALT can be asserted by an external device
for debugging purposes to cause single bus cycle operation or can be asserted in
combination with BERR to cause a retry of a bus cycle in error.

To properly control termination of a bus cycle for a retry or a bus error condition,
DSACK1/DSACK0 , BERR, and HALT can be asserted and negated with the rising edge of
the MC68020/EC020 clock. This procedure ensures that when two signals are asserted
simultaneously, the required setup time (#47A) and hold time (#47B) for both of them is
met for the same falling edge of the processor clock. (Refer to Section 10 Electrical
Characteristics for timing requirements.) This or some equivalent precaution should be
designed into the external circuitry that provides these signals.

5-54 M68020 USER’S MANUAL MOTOROLA

The acceptable bus cycle terminations for asynchronous cycles are summarized in
relation to DSACK1/DSACK0 assertion as follows (case numbers refer to Table 5-8):

Normal Termination:
DSACK1/DSACK0 is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted at same time or before DSACK1/DSACK0, and BERR remains
negated (case 2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before DSACK1/DSACK0 (case 3) or
after DSACK1/DSACK0 (case 4), and HALT remains negated; BERR is negated at the
same time or after DSACK1/DSACK0 .

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before DSACK1/DSACK0

(case 5) or after DSACK1/DSACK0 (case 6); BERR is negated at the same time or after
DSACK1/DSACK0 ; HALT may be negated at the same time or after BERR.

Table 5-8. DSACK1/DSACK0 , BERR, HALT Assertion Results

Asserted on Rising
Edge of State

Case No. Control Signal n n+2 Result

1 DSACK1/DSACK0

BERR

HALT

A
N
N

S
N
X

Normal cycle terminate and continue.

2 DSACK1/DSACK0

BERR

HALT

A
N

A/S

S
N
S

Normal cycle terminate and halt. Continue when
HALT negated.

3 DSACK1/DSACK0

BERR

HALT

N/A
A
N

X
S
N

Terminate and take bus error exception, possibly
deferred.

4 DSACK1/DSACK0

BERR

HALT

A
N
N

X
A
N

Terminate and take bus error exception, possibly
deferred.

5 DSACK1/DSACK0

BERR

HALT

N/A
A

A/S

X
S
S

Terminate and retry when HALT negated.

6 DSACK1/DSACK0

BERR

HALT

A
N
N

X
A
A

Terminate and retry when HALT negated.

Legend:
n—The number of current even bus state (e.g., S2, S4, etc.)
A—Signal is asserted in this bus state
N—Signal is not asserted and/or remains negated in this bus state
X—Don’t care
S—Signal was asserted in previous state and remains asserted in this state

MOTOROLA M68020 USER’S MANUAL 5-55

Table 5-8 lists various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to parameters #28 and #57 in Section 10 Electrical Characteristics.
DSACK1/DSACK0 , BERR, and HALT may be negated after AS. If DSACK1/DSACK0 or
BERR remain asserted into S2 of the next bus cycle, that cycle may be terminated
prematurely.

Example A:
A system uses a watchdog timer to terminate accesses to an unpopulated address
space. The timer asserts BERR after timeout (case 3).

Example B:
A system uses error detection and correction on RAM contents. The designer may:

1. Delay DSACK1/DSACK0 assertion until data is verified and assert BERR and
HALT simultaneously to indicate to the processor to automatically retry the error
cycle (case 5) or, if data is valid, assert DSACK1/DSACK0 (case 1).

2. Delay DSACK1/DSACK0 assertion until data is verified and assert BERR with or
without DSACK1/DSACK0 if data is in error (case 3). This configuration initiates
exception processing for software handling of the condition.

3. Assert DSACK1/DSACK0 prior to data verification. If data is invalid, BERR is
asserted on the next clock cycle (case 4). This configuration initiates exception
processing for software handling of the condition.

4. Assert DSACK1/DSACK0 prior to data verification; if data is invalid, assert BERR
and HALT on the next clock cycle (case 6). The memory controller can then
correct the RAM prior to or during the automatic retry.

5.5.1 Bus Errors

The BERR signal can be used to abort the bus cycle and the instruction being executed.
BERR takes precedence over DSACK1/DSACK0, provided it meets the timing constraints
described in Section 10 Electrical Characteristics. If BERR does not meet these
constraints, it may cause unpredictable operation of the MC68020/EC020. If BERR

remains asserted into the next bus cycle, it may cause incorrect operation of that cycle.

When BERR is issued to terminate a bus cycle, the MC68020/EC020 may enter exception
processing immediately following the bus cycle, or it may defer processing the exception.
The instruction prefetch mechanism requests instruction words from the bus controller and
the instruction cache before it is ready to execute them. If a bus error occurs on an
instruction fetch, the processor does not take the exception until it attempts to use that
instruction word. Should an intervening instruction cause a branch or should a task switch
occur, the bus error exception does not occur.

5-56 M68020 USER’S MANUAL MOTOROLA

BERR is recognized during a bus cycle in any of the following cases:
1. DSACK1/DSACK0 and HALT are negated and BERR is asserted.

2. HALT and BERR are negated and DSACK1/DSACK0 is asserted. BERR is then
asserted within one clock cycle (HALT remains negated).

3. BERR and HALT are asserted (see 5.5.2 Retry Operation).

When the processor recognizes a bus error condition, it terminates the current bus cycle
in the normal way. Figure 5-38 shows the timing of a bus error for the case in which
DSACK1/DSACK0 is not asserted. Figure 5-39 shows the timing for a bus error for the
case in which BERR is asserted after DSACK1/DSACK0 . Exceptions are taken in both
cases. (Refer to Section 6 Exception Processing for details of bus error exception
processing.) When BERR is asserted during a read cycle that supplies an instruction to
the on-chip cache, the instruction in the cache is marked invalid.

When BERR is asserted after DSACK1/DSACK0 , BERR must be asserted within
parameter #48 (refer to Section 10 Electrical Characteristics) for purely asynchronous
operation, or it must be asserted and remain stable during the sample window, defined by
parameters #27A and #47B, around the next falling edge of the clock after
DSACK1/DSACK0 is recognized. If BERR is not stable at this time, the processor may
exhibit erratic behavior. In this case, data may be present on the bus, but may not be
valid. This sequence may be used by systems that have memory error detection and
correction logic and by external cache memories.

5.5.2 Retry Operation

When BERR and HALT are asserted simultaneously by an external device during a bus
cycle, the processor enters the retry sequence. A delayed retry similar to the delayed
BERR signal described previously can also occur.

The processor terminates the bus cycle, negates the control signals (AS, DS, R/W, SIZ1,
SIZ0, RMC, and, for the MC68020 only, ECS and OCS), and does not begin another bus
cycle until the BERR and HALT signals have been negated by external logic. After a
synchronization delay, the processor retries the previous cycle using the same access
information (address, function code, size, etc.) The BERR signal should be negated before
S2 of the read cycle to ensure correct operation of the retried cycle. Figure 5-40 shows a
late retry operation of a cycle.

The processor retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence.

Asserting BR along with BERR and HALT provides a relinquish and retry operation. The
MC68020/EC020 does not relinquish the bus during a read-modify-write operation. Any
device that requires the processor to give up the bus and retry a bus cycle during a read-
modify-write cycle must assert BERR and BR only (HALT must not be included). The bus
error handler software should examine the read-modify-write bit in the special status word
(refer to Section 6 Exception Processing) and take the appropriate action to resolve this
type of fault when it occurs.

MOTOROLA M68020 USER’S MANUAL 5-57

BREAKPOINT
ACKNOWLEDGE

BUS ERROR
FETCH

READ CYCLE

CLK

A31–A20

A19–A16

A15–A2

FC2–FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D23–D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7–D0

D15–D8

BREAKPOINT NUMBER

WORD

EXCEPTION
STACKING

(0000)
BREAKPOINT ENCODING

A1–A0

HALT

BERR

CPU SPACE

D31–D24

**

**

**

*

* For the MC68EC020, A23–A20.
This signal does not apply to the MC68EC020.**

Figure 5-38. Bus Error without DSACK1/DSACK0

5-58 M68020 USER’S MANUAL MOTOROLA

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31–D0

IPL2–IPL0

DSACK1

S0 S2 Sw S4 S0 S2Sw S4

SIZ1–SIZ0

BERR

HALT

WRITE WITH BERR ASSERTED INTERNAL
PROCESSING

STACK WRITE

**

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-39. Late Bus Error with DSACK1/DSACK0

MOTOROLA M68020 USER’S MANUAL 5-59

A31–A0

FC2–FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1–SIZ0

R/W

DSACK0

D31–D0
DATA BUS NOT DRIVEN

BERR

HALT

WRITE CYCLE RETRY SIGNALED HALT RETRY CYCLE

S2 Sw S2 S4

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-40. Late Retry

5-60 M68020 USER’S MANUAL MOTOROLA

5.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68020/EC020 halts external
bus activity at the next bus cycle boundary. HALT by itself does not terminate a bus cycle.
Negating and reasserting HALT in accordance with the correct timing requirements
provides a single-step (bus cycle to bus cycle) operation. The HALT signal affects external
bus cycles only; thus, a program that resides in the instruction cache and does not require
use of the external bus may continue executing unaffected by HALT.

The single-cycle mode allows the user to proceed through (and debug) external processor
operations, one bus cycle at a time. Figure 5-41 shows the timing requirements for a
single-cycle operation. Since the occurrence of a bus error while HALT is asserted causes
a retry operation, the user must anticipate retry cycles while debugging in the single-cycle
mode. The single-step operation and the software trace capability allow the system
debugger to trace single bus cycles, single instructions, or changes in program flow.
These processor capabilities, along with a software debugging package, give complete
debugging flexibility.

When the processor completes a bus cycle with the HALT signal asserted, the data bus is
placed in the high-impedance state, and the bus control signals (AS, DS, and, for the
MC68020 only, ECS and OCS) are negated (not placed in the high-impedance state);
A31–A0 for the MC68020 or A23–A0 for the MC68EC020, FC2–FC0, SIZ1, SIZ0, and
R/W remain in the same state. The halt operation has no effect on bus arbitration (refer to
5.7 Bus Arbitration). When bus arbitration occurs while the MC68020/EC020 is halted,
the address and control signals (A31–A0, FC2–FC0, SIZ1, SIZ0, R/W, AS, DS, and, for
the MC68020 only, ECS and OCS) are also placed in the high-impedance state. Once bus
mastership is returned to the MC68020/EC020, if HALT is still asserted, A31–A0 for the
MC68020 or A23–A0 for the MC68EC020, FC2–FC0, SIZ1, SIZ0, and R/W are again
driven to their previous states. The MC68020/EC020 does not service interrupt requests
while it is halted (although the MC68020 may assert the IPEND signal as appropriate).

5.5.4 Double Bus Fault

When a bus error or an address error occurs during the exception processing sequence
for a previous bus error, a previous address error, or a reset exception, a double bus fault
occurs. For example, the processor attempts to stack several words containing
information about the state of the machine while processing a bus error exception. If a bus
error exception occurs during the stacking operation, the second error is considered a
double bus fault. When a double bus fault occurs, the processor halts and asserts HALT.
Only an external reset operation can restart a halted processor. However, bus arbitration
can still occur (refer to 5.7 Bus Arbitration).

A second bus error or address error that occurs after exception processing has completed
(during the execution of the exception handler routine or later) does not cause a double
bus fault. A bus cycle that is retried does not constitute a bus error or contribute to a
double bus fault. The processor continues to retry the same bus cycle as long as the
external hardware requests it.

MOTOROLA M68020 USER’S MANUAL 5-61

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

DSACK1

S0 S2 S0

BERR

HALT

S4 S2

SIZ1–SIZ0

S4

D31–D0

**

**

**

*

READ
HALT

(BUS ARBITRATION
PERMITTED

WHILE THE PROCESSOR
IS HALTED)

READ

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-41. Halt Operation Timing

5-62 M68020 USER’S MANUAL MOTOROLA

5.6 BUS SYNCHRONIZATION

The MC68020/EC020 overlaps instruction execution—that is, during bus activity for one
instruction, instructions that do not use the external bus can be executed. Due to the
independent operation of the on-chip cache relative to the operation of the bus controller,
many subsequent instructions can be executed, resulting in seemingly nonsequential
instruction execution. When this is not desired and the system depends on sequential
execution following bus activity, the NOP instruction can be used. The NOP instruction
forces instruction and bus synchronization by freezing instruction execution until all
pending bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write
operation of control information to an external register in which the external hardware
attempts to control program execution based on the data that is written with the
conditional assertion of BERR. Since the MC68020/EC020 cannot process the bus error
until the end of the bus cycle, the external hardware has not successfully interrupted
program execution. To prevent a subsequent instruction from executing until the external
cycle completes, the NOP instruction can be inserted after the instruction causing the
write. In this case, bus error exception processing proceeds immediately after the write
and before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

5.7 BUS ARBITRATION

The bus design of the MC68020/EC020 provides for a single bus master at any one time:
either the processor or an external device. One or more of the external devices on the bus
can have the capability of becoming bus master. Bus arbitration is the protocol by which
an external device becomes bus master; the bus controller in the MC68020/EC020
manages the bus arbitration signals so that the processor has the lowest priority.

Bus arbitration differs in the MC68020 and MC68EC020 due to the absence of BGACK in
the MC68EC020. Because of this difference, bus arbitration of the MC68020 and
MC68EC020 is discussed separately.

External devices that need to obtain the bus must assert the bus arbitration signals in the
sequences described in 5.7.1 MC68020 Bus Arbitration or 5.7.2 MC68EC020 Bus
Arbitration. Systems having several devices that can become bus master require
external circuitry to assign priorities to the devices, so that when two or more external
devices attempt to become bus master at the same time, the one having the highest
priority becomes bus master first.

MOTOROLA M68020 USER’S MANUAL 5-63

5.7.1 MC68020 Bus Arbitration

The sequence of the MC68020 bus arbitration protocol is as follows:
1. An external device asserts the BR signal.

2. The processor asserts the BG signal to indicate that the bus will become available at
the end of the current bus cycle.

3. The external device asserts the BGACK signal to indicate that it has assumed bus
mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR; it is usually asserted as soon as BR has been synchronized and
recognized, except when the MC68020 has made an internal decision to execute a bus
cycle. Then, the assertion of BG is deferred until the bus cycle has begun. Additionally, BG

is not asserted until the end of a read-modify-write operation (when RMC is negated) in
response to a BR signal. When the requesting device receives BG and more than one
external device can be bus master, the requesting device should begin whatever
arbitration is required. The external device asserts BGACK when it assumes bus
mastership, and maintains BGACK during the entire bus cycle (or cycles) for which it is
bus master. The following conditions must be met for an external device to assume
mastership of the bus through the normal bus arbitration procedure:

• The external device must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the external
device must ensure that all appropriate processor signals have been placed in the
high-impedance state (by observing specification #7 in Section 10 Electrical
Specifications).

• The termination signal (DSACK1/DSACK0) for the most recent cycle must have been
negated, indicating that external devices are off the bus (optional, refer to 5.7.1.3 Bus
Grant Acknowledge (MC68020)).

• BGACK must be inactive, indicating that no other bus master has claimed ownership
of the bus.

Figure 5-42 is a flowchart of MC68020 bus arbitration for a single device. Figure 5-43 is a
timing diagram for the same operation. This technique allows processing of bus requests
during data transfer cycles.

5-64 M68020 USER’S MANUAL MOTOROLA

1) ASSERT BG

GRANT BUS ARBITRATION

TERMINATE ARBITRATION

1) NEGATE BG AND WAIT FOR BGACK TO
 BE NEGATED

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

REQUEST THE BUS

1) ASSERT BR

REQUESTING DEVICEPROCESSOR

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS BGACK
TO BECOME NEW MASTER
4) BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1) PERFORM DATA TRANSFERS
 (READ AND WRITE CYCLES)

1) NEGATE BGACK

Figure 5-42. MC68020 Bus Arbitration Flowchart for Single Request

The timing diagram (see Figure 5-43) shows that BR is negated at the time that BGACK is
asserted. This type of operation applies to a system consisting of the processor and one
device capable of bus mastership. In a system having a number of devices capable of bus
mastership, the BR line from each device can be wire-ORed to the processor. In such a
system, more than one bus request can be asserted simultaneously.

The timing diagram in Figure 5-43 shows that BG is negated a few clock cycles after the
transition of BGACK. However, if bus requests are still pending after the negation of BG,
the processor asserts another BG within a few clock cycles after it was negated. This
additional assertion of BG allows external arbitration circuitry to select the next bus master
before the current bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET assertion,
HALT assertion, and when the processor has halted due to a double bus fault.

MOTOROLA M68020 USER’S MANUAL 5-65

A31–A0

FC2–FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1–SIZ0

R/W

DSACK0

DBEN

S2 S2

BGACK

BG

BR

D31–D0

PROCESSOR DMA DEVICE PROCESSOR

Figure 5-43. MC68020 Bus Arbitration Operation Timing for Single Request

5-66 M68020 USER’S MANUAL MOTOROLA

5.7.1.1 BUS REQUEST (MC68020). External devices capable of becoming bus masters
request the bus by asserting BR. BR can be a wire-ORed signal (although it need not be
constructed from open-collector devices) that indicates to the processor that some
external device requires control of the bus. The processor is at a lower bus priority level
than the external device and relinquishes the bus after it has completed the current bus
cycle (if one has started).

If no BGACK is received while BR is asserted, the processor remains bus master once BR

is negated. This prevents unnecessary interference with ordinary processing if the
arbitration circuitry inadvertently responds to noise or if an external device determines that
it no longer requires use of the bus before it has been granted mastership.

5.7.1.2 BUS GRANT (MC68020). The processor asserts BG as soon as possible after
receipt of the bus request. BG assertion immediately follows internal synchronization
except during a read-modify-write cycle or follows an internal decision to execute a bus
cycle. During a read-modify-write cycle, the processor does not assert BG until the entire
operation has completed. RMC is asserted to indicate that the bus is locked. In the case of
an internal decision to execute another bus cycle, BG is deferred until the bus cycle has
begun.

BG may be routed through a daisy-chained network or through a specific priority-encoded
network. The processor allows any type of external arbitration that follows the protocol.

5.7.1.3 BUS GRANT ACKNOWLEDGE (MC68020). Upon receiving BG, the requesting
device waits until AS, DSACK1/DSACK0 , and BGACK are negated before asserting its
own BGACK. The negation of AS indicates that the previous master releases the bus after
specification #7 (refer to Section 10 Electrical Characteristics). The negation of
DSACK1/DSACK0 indicates that the previous slave has completed its cycle with the
previous master. Note that in some applications, DSACK1/DSACK0 might not be used in
this way.

General-purpose devices are connected to be dependent only on AS. When BGACK is
asserted, the device is the bus master until it negates BGACK. BGACK should not be
negated until all bus cycles required by the alternate bus master have been completed.
Bus mastership terminates at the negation of BGACK. The BR from the granted device
should be negated after BGACK is asserted. If another BR is still pending after the
assertion of BGACK, another BG is asserted within a few clocks of the negation of the the
first BG, as described in 5.7.1.4 Bus Arbitration Control (MC68020). Note that the
processor does not perform any external bus cycles before it reasserts BG in this case.

MOTOROLA M68020 USER’S MANUAL 5-67

5.7.1.4 BUS ARBITRATION CONTROL (MC68020). The bus arbitration control unit in the
MC68020 is implemented with a finite state machine. As discussed previously, all
asynchronous inputs to the MC68020 are internally synchronized in a maximum of two
cycles of the processor clock.

As shown in Figure 5-44, input signals labeled R and A are internally synchronized
versions of the BR and BGACK signals, respectively. The BG output is labeled G, and the
internal high-impedance control signal is labeled T. If T is true, the address, data, and
control buses are placed in the high-impedance state after the next rising edge following
the negation of AS and RMC . All signals are shown in positive logic (active high),
regardless of their true active voltage level.

GT

GT

GT

GT

GT

GT

GT

RA

RA

XX

RA
RA

RA

XX

RX

RA

XA

RA

RX

XA

RA

STATE 1

STATE 0

STATE 4

STATE 5

STATE 6

STATE 2

STATE 3

XX

R—BUS REQUEST
A—BUS GRANT ACKNOWLEDGE
G—BUS GRANT
T—THREE-STATE CONTROL TO BUS CONTROL LOGIC
X—DON'T CARE

NOTE: The BG output will not be asserted while RMC is asserted.

Figure 5-44. MC68020 Bus Arbitration State Diagram

5-68 M68020 USER’S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is
recognized as valid. The BG signal transitions on the falling edge of the clock after a state
is reached during which G changes. The bus control signals (controlled by T) are driven
by the processor immediately following a state change when bus mastership is returned to
the MC68020.

State 0, at the top center of the diagram, in which both G and T are negated, is the state
of the bus arbiter while the processor is bus master. Request R and acknowledge A keep
the arbiter in state 0 as long as they are both negated. When a request R is received, both
grant G and signal T are asserted (in state 1 at the top left). The next clock causes a
change to state 2, at the lower left, in which G and T are held. The bus arbiter remains in
that state until acknowledge A is asserted or request R is negated. Once either occurs, the
arbiter changes to the center state, state 3, and negates grant G. The next clock takes the
arbiter to state 4, at the upper right, in which grant G remains negated and signal T
remains asserted. With acknowledge A asserted, the arbiter remains in state 4 until A is
negated or request R is again asserted. When A is negated, the arbiter returns to the
original state, state 0, and negates signal T. This sequence of states follows the normal
sequence of signals for relinquishing the bus to an external bus master. Other states apply
to other possible sequences of combinations of R and A.

The MC68020 does not allow arbitration of the external bus during the read-modify-write
sequence. For the duration of this sequence, the MC68020 ignores the BR input. If
mastership of the MC68020 bus is required during a read-modify-write operation, BERR

must be used to abort the read-modify-write sequence. The bus arbitration sequence
while the bus is inactive (i.e., executing internal operations such as a multiply instruction)
is shown in Figure 5-45.

MOTOROLA M68020 USER’S MANUAL 5-69

A31–A0

FC2–FC0

ECS

OCS

AS

DS

DSACK1

CLK

S4 S0

SIZ1–SIZ0

R/W

DSACK0

DBEN

BGACK

BG

BR

D31–D0

PROCESSOR PROCESSORALTERNATE MASTER
BUS INACTIVE

(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS

INACTIVE OR HALTED)

Figure 5-45. MC68020 Bus Arbitration Operation Timing—Bus Inactive

5-70 M68020 USER’S MANUAL MOTOROLA

5.7.2 MC68EC020 Bus Arbitration

The sequence of the MC68EC020 bus arbitration protocol is as follows:
1. An external device asserts the BR signal.

2. The processor asserts the BG signal to indicate that the bus will become available at
the end of the current bus cycle.

3. The external device asserts the BR signal throughout its bus mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR; it is usually asserted as soon as BR has been synchronized and
recognized, except when the MC68020 has made an internal decision to execute a bus
cycle. Then, the assertion of BG is deferred until the bus cycle has begun. Additionally, BG

is not asserted until the end of a read-modify-write operation (when RMC is negated) in
response to a BR signal. When the requesting device receives BG and more than one
external device can be bus master, the requesting device should begin whatever
arbitration is required. The external device continues to assert BR when it assumes bus
mastership, and maintains BR during the entire bus cycle (or cycles) for which it is bus
master. The following conditions must be met for an external device to assume mastership
of the bus through the normal bus arbitration procedure:

• The external device must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the external
device must ensure that all appropriate processor signals have been placed in the
high-impedance state (by observing specification #7 in Section 10 Electrical
Specifications).

• The termination signal (DSACK1/DSACK0) for the most recent cycle must have been
negated, indicating that external devices are off the bus.

• No other bus master has claimed ownership of the bus.

Figure 5-46 is a flowchart of MC68EC020 bus arbitration for a single device. Figure 5-47 is
a timing diagram for the same operation. This technique allows processing of bus
requests during data transfer cycles.

Bus arbitration requests are recognized during normal processing, RESET assertion,
HALT assertion, and when the processor has halted due to a double bus fault.

MOTOROLA M68020 USER’S MANUAL 5-71

1) ASSERT BG

GRANT BUS ARBITRATION

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

REQUEST THE BUS

1) ASSERT BR

REQUESTING DEVICEPROCESSOR

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) PERFORM DATA TRANSFERS
 (READ AND WRITE CYCLES)

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1) NEGATE BR

Figure 5-46. MC68EC020 Bus Arbitration Flowchart for Single Request

5.7.2.1 BUS REQUEST (MC68EC020). External devices capable of becoming bus
masters request the bus by asserting BR. BR can be a wire-ORed signal (although it need
not be constructed from open-collector devices) that indicates to the processor that some
external device requires control of the bus. The processor is at a lower bus priority level
than the external device and relinquishes the bus after it has completed the current bus
cycle (if one has started). BR remains asserted throughout the external device’s bus
mastership.

5.7.2.2 BUS GRANT (MC68EC020). The processor asserts BG as soon as possible after
receipt of the bus request. BG assertion immediately follows internal synchronization
except during a read-modify-write cycle or follows an internal decision to execute a bus
cycle. During a read-modify-write cycle, the processor does not assert BG until the entire
operation has completed. RMC is asserted to indicate that the bus is locked. In the case of
an internal decision to execute another bus cycle, BG is deferred until the bus cycle has
begun.

BG may be routed through a daisy-chained network or through a specific priority-encoded
network. The processor allows any type of external arbitration that follows the protocol.

5-72 M68020 USER’S MANUAL MOTOROLA

A23–A0

FC2–FC0

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1–SIZ0

R/W

DSACK0

S2 S2

BG

BR

D31–D0

PROCESSOR DMA DEVICE PROCESSOR

Figure 5-47. MC68EC020 Bus Arbitration Operation Timing for Single Request

MOTOROLA M68020 USER’S MANUAL 5-73

5.7.2.3 BUS ARBITRATION CONTROL (MC68EC020). The bus arbitration control unit in
the MC68EC020 is implemented with a finite state machine. As discussed previously, all
asynchronous inputs to the MC68EC020 are internally synchronized in a maximum of two
cycles of the processor clock.

As shown in Figure 5-48, the input signal labeled R is an internally synchronized version
of the BR signal. The BG output is labeled G, and the internal high-impedance control
signal is labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high), regardless of their true active voltage
level.

GT

GT

GT
STATE 3

GT

GT

GT
STATE 2

GT

STATE1

STATE 0

STATE 4

STATE 5

STATE 6

R—BUS REQUEST
G—BUS GRANT
T —THREE-STATE CONTROL TO BUS CONTROL LOGIC
X—DON'T CARE

R

R

R

R

X R
X

R

R
X

R

Figure 5-48. MC68EC020 Bus Arbitration State Diagram

5-74 M68020 USER’S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is
recognized as valid. The BG signal transitions on the falling edge of the clock after a state
is reached during which G changes. The bus control signals (controlled by T) are driven
by the processor immediately following a state change when bus mastership is returned to
the MC68EC020.

State 0, at the top center of the diagram, in which both G and T are negated, is the state
of the bus arbiter while the processor is bus master. Request R keeps the arbiter in state 0
as long as it is negated. When a request R is received, both grant G and signal T are
asserted (in state 1 at the top left). The next clock causes a change to state 2, at the lower
left, in which G and T are held. The bus arbiter remains in that state until request R is
negated. Then the arbiter changes to the center state, state 3, and negates grant G. The
next clock takes the arbiter to state 4, at the upper right, in which grant G remains negated
and signal T remains asserted. The arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of signals for
relinquishing the bus to an external bus master. Other states apply to other possible
sequences of R.

The MC68EC020 does not allow arbitration of the external bus during the read-modify-
write sequence. For the duration of this sequence, the MC68EC020 ignores the BR input.
If mastership of the MC68EC020 bus is required during a read-modify-write operation,
BERR must be used to abort the read-modify-write sequence. The bus arbitration
sequence while the bus is inactive (i.e., executing internal operations such as a multiply
instruction) is shown in Figure 5-49.

MOTOROLA M68020 USER’S MANUAL 5-75

A23–A0

FC2–FC0

AS

DS

DSACK1

CLK

S4 S0

SIZ1–SIZ0

R/W

DSACK0

BG

BR

D31–D0

PROCESSOR PROCESSORALTERNATE MASTER
BUS INACTIVE

(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS

INACTIVE OR HALTED)

Figure 5-49. MC68EC020 Bus Arbitration Operation Timing—Bus Inactive

The existing three-wire arbitration design (BR, BG, and BGACK) of some peripherals can
be converted to the MC68EC020 two-wire arbitration with the addition of an AND gate.
Figure 5-50 shows the combination of BR and BGACK for a three-wire arbitration system
to BR of the MC68EC020 or BR and BG from an MC68EC020 to BG for a three-wire
arbitration system. The speed of the AND gate must be faster than the time between the
assertion of BGACK and the negation of BR by the alternate bus master. Figure 5-50
assumes the alternate bus master does not assume bus mastership until the MC68EC020
AS is negated and MC68EC020 BG is asserted.

5-76 M68020 USER’S MANUAL MOTOROLA

An example of MC68EC020 bus arbitration to a DMA device that supports three-wire bus
arbitration is described in Appendix A Interfacing an MC68EC020 to a DMA Device
That Supports a Three-Wire Bus Arbitration Protocol .

AS

BG

BR

BGACK

ALTERNATE
 BUS MASTER

AS

BG

MC68EC020

BR

Figure 5-50. Interface for Three-Wire to Two-Wire Bus Arbitration

5.8 RESET OPERATION

RESET is a bidirectional signal with which an external device resets the system or the
processor resets external devices. When power is applied to the system, external circuitry
should assert RESET for a minimum of 520 clocks after VCC and clock timing have
stabilized and are within specification limits. Figure 5-51 is a timing diagram of the power-
up reset operation, showing the relationships between RESET, VCC, and bus signals. The
clock signal is required to be stable by the time VCC reaches the minimum operating
specification. During the reset period, the entire bus three-states (except for non-three-
statable signals, which are driven to their inactive state). Once RESET negates, all control
signals are negated, the data bus is in read mode, and the address bus is driven. After
this, the first bus cycle for reset exception processing begins.

The external RESET signal resets the processor and the entire system. Except for the
initial reset, RESET should be asserted for at least 520 clock periods to ensure that the
processor resets. Asserting RESET for 10 clock periods is sufficient for resetting the
processor logic; the additional clock periods prevent a RESET instruction from overlapping
the external RESET signal.

MOTOROLA M68020 USER’S MANUAL 5-77

ISP
READ
STARTS

ALL CONTROL SIGNALS
NEGATED, DATA BUS IN
READ MODE, ADDRESS

BUS DRIVEN

ENTIRE BUS
THREE-
STATED

BUS STATE UNKNOWN

t ≥ 520 CLOCKS

t < 4 CLOCKS

4 CLOCKS

CLK

 +5 V

VCC

BUS
CYCLES

RESET

Figure 5-51. Initial Reset Operation Timing

Resetting the processor causes any bus cycle in progress to terminate as if
DSACK1/DSACK0 or BERR had been asserted. In addition, the processor initializes
registers appropriately for a reset exception. Exception processing for a reset operation is
described in Section 6 Exception Processing.

When a RESET instruction is executed, the processor drives the RESET signal for 512
clock cycles. In this case, the processor resets the external devices of the system, and the
internal registers of the processor are unaffected. The external devices connected to the
RESET signal are reset at the completion of the RESET instruction. An external RESET

signal that is asserted to the processor during execution of a RESET instruction must
extend beyond the reset period of the instruction by at least eight clock cycles to reset the
processor. Figure 5-52 shows the timing information for the RESET instruction.

5-78 M68020 USER’S MANUAL MOTOROLA

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1–SIZ0

DSACK1

HALT

S0 S2S4

D31–D0

S2S0

RESET

READ RESET INTERNAL
512 CLOCKS

RESUME NORMAL
OPERATION

**

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-52. RESET Instruction Timing

MOTOROLA M68020 USER’S MANUAL 6-1

SECTION 6
EXCEPTION PROCESSING

Exception processing is defined as the activities performed by the processor in preparing
to execute a handler routine for any condition that causes an exception. In particular,
exception processing does not include execution of the handler routine itself. An
introduction to exception processing, as one of the processing states of the
MC68020/EC020, is given in Section 2 Processing States .

This section describes exception processing in detail, describing the processing for each
type of exception. It describes the return from an exception and bus fault recovery. This
section also describes the formats of the exception stack frames. For more detail on
protocol violation and coprocessor-related exceptions, refer to Section 7 Coprocessor
Interface Description . Also, for more detail on exceptions defined for floating-point
coprocessors, refer to MC68881UM/AD, MC68881/MC68882 Floating-Point Coprocessor
User's Manual.

6.1 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not
guaranteed to occur in the order in which they are described in this section. Nonetheless,
all addresses and offsets from the stack pointer are guaranteed to be as described.

The first step of exception processing involves the SR. The processor makes an internal
copy of the SR, then sets the S-bit in the SR, changing to the supervisor privilege level.
Next, the processor inhibits tracing of the exception handler by clearing the T1 and T0 bits
in the SR. For the reset and interrupt exceptions, the processor also updates the interrupt
priority mask (bits 10–8 of the SR).

In the second step, the processor determines the vector number of the exception. For
interrupts, the processor performs an interrupt acknowledge cycle (a read from the CPU
address space type 1111; see Figures 5-32 and 5-33) to obtain the vector number. For
coprocessor-detected exceptions, the vector number is included in the coprocessor
exception primitive response. (Refer to Section 7 Coprocessor Interface Description for
a complete discussion of coprocessor exceptions.) For all other exceptions, internal logic
provides the vector number. This vector number is used in the last step to calculate the
address of the exception vector. Throughout this section, vector numbers are given in
decimal notation.

6-2 M68020 USER’S MANUAL MOTOROLA

For all exceptions other than reset, the third step is to save the current processor context.
The processor creates an exception stack frame on the active supervisor stack and fills it
with context information appropriate for the type of exception. Other information may also
be stacked, depending on which exception is being processed and the state of the
processor prior to the exception. If the exception is an interrupt and the M-bit in the SR is
set, the processor clears the M-bit and builds a second stack frame on the interrupt stack.

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. The processor then adds
the offset to the value stored in the VBR to obtain the memory address of the exception
vector. Next, the processor loads the PC (and the ISP for the reset exception) from the
exception vector table in memory. After prefetching the first three words to fill the
instruction pipe, the processor resumes normal processing at the address in the PC. Table
6-1 contains a description of all the exception vector offsets defined for the
MC68020/EC020.

As shown in Table 6-1, the first 64 vectors are defined by Motorola, and 192 vectors are
reserved for interrupt vectors defined by the user. However, external devices may use
vectors reserved for internal purposes at the discretion of the system designer.

MOTOROLA M68020 USER’S MANUAL 6-3

Table 6-1. Exception Vector Assignments

Vector Offset

Vector Number Hex Space Assignment

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Bus Error
Address Error

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
cpTRAPcc, TRAPcc, TRAPV Instructions

8
9

10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator

12
13
14
15

030
034
038
03C

SD
SD
SD
SD

(Unassigned, Reserved)
Coprocessor Protocol Violation
Format Error
Uninitialized Interrupt

16–23 040
05C

SD
SD

Unassigned, Reserved

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080
0BC

SD
SD

TRAP #0–15 Instruction Vectors

48
49
50
51

0C0
0C4
0C8
0CC

SD
SD
SD
SD

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

52
53
54
55

0D0
0D4
0D8
0DC

SD
SD
SD
SD

FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
Unassigned, Reserved

56
57
58

0E0
0E4
0E8

SD
SD
SD

PMMU Configuration
PMMU Illegal Operation
PMMU Access Level Violation

59–63 0EC
0FC

SD
SD

Unassigned, Reserved

64–255 100
3FC

SD
SD

User-Defined Vectors (192)

SP—Supervisor Program Space
SD—Supervisor Data Space

6-4 M68020 USER’S MANUAL MOTOROLA

6.1.1 Reset Exception

Assertion of the RESET signal by external hardware causes a reset exception. For details
on the requirements for the assertion of RESET, refer to Section 5 Bus Operation.

The reset exception has the highest priority of any exception; it provides for system
initialization and recovery from catastrophic failure. When a reset exception is recognized,
it aborts any processing in progress and that processing cannot be recovered. Figure 6-1
is a flowchart of the reset exception, which performs the following operations:

1. Clears the T1 and T0 bits in the SR to disable tracing.

2. Places the processor in the interrupt mode of the supervisor privilege level by setting
the S-bit and clearing the M-bit in the SR.

3. Sets the I2–I0 bits in the SR to the highest priority level (level 7).

4. Initializes the VBR to zero ($00000000).

5. Clears the E and F bits in the CACR.

6. Invalidates all entries in the instruction cache.

7. Generates a vector number to reference the reset exception vector (two long words)
at offset zero in the supervisor program address space.

8. Loads the first long word of the reset exception vector into the interrupt stack pointer.

9. Loads the second long word of the reset exception vector into the PC.

After the initial instruction prefetches, program execution begins at the address in the PC.
The reset exception does not save the value of either the PC or the SR.

As described in Section 5 Bus Operation, if a bus error or address error occurs during
the exception processing sequence for a reset, a double bus fault occurs. The processor
halts and asserts the HALT signal to indicate the halted condition.

Execution of the RESET instruction does not cause a reset exception, nor does it affect
any internal registers, but it does cause the MC68020/EC020 to assert the RESET signal,
resetting all external devices.

6.1.2 Bus Error Exception

A bus error exception occurs when external logic aborts a bus cycle by asserting the
BERR signal. If the aborted bus cycle is a data access, the processor immediately begins
exception processing. If the aborted bus cycle is an instruction prefetch, the processor
may delay taking the exception until it attempts to use the prefetched information.

MOTOROLA M68020 USER’S MANUAL 6-5

OTHERWISE
SP (VECTOR #0)

EXIT

FETCH VECTOR #0

(DOUBLE BUS FAULT)

 S (SR)
M (SR)

T1, T0 (SR)
I2–I0 (SR)

VBR
CACR

1
0
0
$7
$00000000
$00000000

➧
➧
➧
➧
➧
➧

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE

INSTRUCTION CACHE
ENTRIES INVALIDATED

➧

FETCH VECTOR #1

PC (VECTOR #1)

➧

PREFETCH 3 WORDS

EXIT

EXIT

EXIT

BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

Figure 6-1. Reset Operation Flowchart

The processor begins exception processing for a bus error by making an internal copy of
the current SR. The processor then enters the supervisor privilege level (by setting the S-
bit in the SR) and clears the T1 and T0 bits in the SR. The processor generates exception
vector number 2 for the bus error vector. It saves the vector offset, PC, and the internal
copy of the SR on the active supervisor stack. The saved PC value is the logical address
of the instruction that was executing at the time the fault was detected. This is not
necessarily the instruction that initiated the bus cycle since the processor overlaps

6-6 M68020 USER’S MANUAL MOTOROLA

execution of instructions. The processor also saves the contents of some of its internal
registers. The information saved on the stack is sufficient to identify the cause of the bus
fault and recover from the error.

For efficiency, the MC68020/EC020 uses two different bus error stack frame formats.
When the bus error exception is taken at an instruction boundary, less information is
required to recover from the error, and the processor builds the short bus fault stack frame
as shown in Table 6-5. When the exception is taken during the execution of an instruction,
the processor must save its entire state for recovery and uses the long bus fault stack
frame shown in Table 6-5. The format code in the stack frame distinguishes the two stack
frame formats. Stack frame formats are described in detail in 6.4 Exception Stack Frame
Formats.

If a bus error occurs during the exception processing for a bus error, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs and the processor enters the
halted state. In this case, the processor does not attempt to alter the current state of
memory. Only an external RESET can restart a processor halted by a double bus fault.

6.1.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This exception is similar to a bus error exception but is internally
initiated. A bus cycle is not executed, and the processor begins exception processing
immediately. After exception processing commences, the sequence is the same as that
for bus error exceptions described in the preceding paragraphs, except that the vector
number is 3 and the vector offset in the stack frame refers to the address error vector.
Either a short or long bus fault stack frame may be generated. If an address error occurs
during the exception processing for a bus error, address error, or reset, a double bus fault
occurs.

6.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the
user program detects an error, which may be an arithmetic overflow or a subscript value
that is out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is attempted with
a divisor of zero.

When a trap exception occurs, the processor copies the SR internally, enters the
supervisor privilege level (by setting the S-bit in the SR), and clears the T1 and T0 bits in
the SR. If tracing is enabled for the instruction that caused the trap, a trace exception is
taken after the RTE instruction from the trap handler is executed, and the trace
corresponds to the trap instruction; the trap handler routine is not traced. The processor
generates a vector number according to the instruction being executed; for the TRAP

MOTOROLA M68020 USER’S MANUAL 6-7

instruction, the vector number is 32 plus n. The stack frame saves the trap vector offset,
the PC, and the internal copy of the SR on the supervisor stack. The saved value of the
PC is the logical address of the instruction following the instruction that caused the trap.
For all instruction traps other than TRAP, a pointer to the instruction that caused the trap
is also saved. Instruction execution resumes at the address in the exception vector after
the required instruction prefetches.

6.1.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first word that does
not correspond to the bit pattern of the first word of a valid MC68020/EC020 instruction or
a MOVEC instruction with an undefined register specification field in the first extension
word. An illegal instruction exception corresponds to vector number 4 and occurs when
the processor attempts to execute an illegal instruction.

An illegal instruction exception is also taken if a breakpoint acknowledge bus cycle (see
Section 5 Bus Operation) is terminated with the assertion of the BERR signal. This
implies that the external circuitry did not supply an instruction word to replace the BKPT
instruction word in the instruction pipe.

Instruction word patterns with bits 15–12 = 1010 are referred to as unimplemented
instructions with A-line opcodes. When the processor attempts to execute an
unimplemented instruction with an A-line opcode, an exception is generated with vector
number 10, permitting efficient emulation of unimplemented instructions.

Instructions that have word patterns with bits 15–12 = 1111, bits 11–9 = 000, and defined
word patterns for subsequent words, are legal PMMU instructions. Instructions that have
bits 15–12 of the first words = 1111, bits 11–9 = 000, and undefined patterns in the
subsequent words, are treated as unimplemented instructions with F-line opcodes when
execution is attempted in the supervisor privilege level. When execution of the same
instruction is attempted in the user privilege level, a privilege violation exception is taken.
The exception vector number for an unimplemented instruction with an F-line opcode is
11.

The word patterns with bits 15–12 = 1111 and bits 11–9 ≠ 000 are used for coprocessor
instructions. When the processor identifies a coprocessor instruction, it runs a bus cycle
referencing CPU space type $2 (refer to Section 2 Processing States) and addressing
one of eight coprocessors (0–7, according to bits 11–9). If the addressed coprocessor is
not included in the system and the cycle terminates with the assertion of BERR, the
instruction takes an unimplemented instruction (F-line opcode) exception. The system can
emulate the functions of the coprocessor with an F-line exception handler. Refer to
Section 7 Coprocessor Interface Description for more details.

6-8 M68020 USER’S MANUAL MOTOROLA

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented
instruction, it initiates exception processing instead of attempting to execute the
instruction. The processor copies the SR, enters the supervisor privilege level (by setting
the S bit in the SR), and clears the T1 and T0 bits in the SR, disabling further tracing. The
processor generates the vector number, either 4, 10, or 11, according to the exception
type. The illegal or unimplemented instruction vector offset, current PC, and copy of the
SR are saved on the supervisor stack, with the saved value of the PC being the address
of the illegal or unimplemented instruction. Instruction execution resumes at the address
contained in the exception vector. It is the responsibility of the handling routine to adjust
the stacked PC if the instruction is emulated in software or is to be skipped on return from
the handler.

6.1.6 Privilege Violation Exception

To provide system security, the following instructions are privileged:

ANDI to SR
EORI to SR
cpRESTORE
cpSAVE
MOVE from SR
MOVE to SR
MOVE USP
MOVEC
MOVES
ORI to SR
RESET
RTE
STOP

An attempt to execute one of the privileged instructions while at the user privilege level
causes a privilege violation exception. Also, a privilege violation exception occurs if a
coprocessor requests a privilege check and the processor is at the user level.

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before
executing the instruction. The processor copies the SR, enters the supervisor privilege
level by setting the S-bit in the SR, and clears the T1 and T0 bits in the SR. The processor
generates vector number 8, the privilege violation exception vector, and saves the
privilege violation vector offset, the current PC value, and the internal copy of the SR on
the supervisor stack. The saved value of the PC is the logical address of the first word of
the instruction that caused the privilege violation. Instruction execution resumes after the
required prefetches from the address in the privilege violation exception vector.

MOTOROLA M68020 USER’S MANUAL 6-9

6.1.7 Trace Exception

To aid in program development, the M68000 processors include an instruction-by-
instruction tracing capability. The MC68020/EC020 can be programmed to trace all
instructions or only instructions that change program flow. In the trace mode, an
instruction generates a trace exception after it completes execution, allowing a debugger
program to monitor execution of a program.

The T1 and T0 bits in the supervisor portion of the SR control tracing. The state of these
bits when an instruction begins execution determines whether the instruction generates a
trace exception after the instruction completes. Clearing both the T1 and T0 bits disables
tracing, and instruction execution proceeds normally. Clearing the T1 bit and setting the
T0 bit causes an instruction that forces a change of flow to take a trace exception.
Instructions that increment the PC normally do not take the trace exception. Instructions
that are traced in this mode include all branches, jumps, instruction traps, returns, and
coprocessor instructions that modify the PC flow. This mode also includes SR
manipulations because the processor must re-prefetch instruction words to fill the pipe
again any time an instruction that can modify the SR is executed. The execution of the
BKPT instruction causes a change of flow if the opcode replacing the BKPT is an
instruction that causes a change of flow (i.e., a jump, branch, etc.). Setting the T1 bit and
clearing the T0 bit causes the execution of all instructions to force trace exceptions. Table
6-2 shows the trace mode selected by each combination of T1 and T0.

Table 6-2. Tracing Control

TI T0 Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow (BRA, JMP, etc.)

1 0 Trace on Instruction Execution (Any Instruction)

1 1 Undefined, Reserved

In general terms, a trace exception is an extension to the function of any traced
instruction—i.e., the execution of a traced instruction is not complete until completion of
trace exception processing. If an instruction does not complete due to a bus error or
address error exception, trace exception processing is deferred until after the execution of
the suspended instruction is resumed, and the instruction execution completes normally. If
an interrupt is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces an
exception as part of its normal execution, the forced exception processing occurs before
the trace exception is processed. See 6.1.11 Multiple Exceptions for a more complete
discussion of exception priorities.

When tracing is enabled and the processor attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since it is not
executed. This is of particular importance to an instruction emulation routine that performs
the instruction function, adjusts the stacked PC to skip the unimplemented instruction, and
returns. Before returning, the T1 and T0 bits of the SR on the stack should be checked. If

6-10 M68020 USER’S MANUAL MOTOROLA

tracing is enabled, the trace exception processing should also be emulated for the trace
exception handler to account for the emulated instruction.

The exception processing for a trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. The processor makes an internal
copy of the SR and enters the supervisor privilege level (by setting the S-bit in the SR). It
also clears the T0 and T1 bits of the SR, disabling further tracing. The processor supplies
vector number 9 for the trace exception and saves the trace exception vector offset, PC
value, and the copy of the SR on the supervisor stack. The saved value of the PC is the
logical address of the next instruction to be executed. Instruction execution resumes after
the required prefetches from the address in the trace exception vector.

The STOP instruction does not perform its function when it is traced. A STOP instruction
that begins execution with T1, T0 = 10 forces a trace exception after it loads the SR. Upon
return from the trace handler routine, execution continues with the instruction following the
STOP instruction, and the processor never enters the stopped condition.

6.1.8 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the processor (with the
aid of a coprocessor, if needed) also performs some checks of data values for control
operations, including the type and option fields of the descriptor for CALLM, the
coprocessor state frame format word for a cpRESTORE instruction, and the stack frame
format for an RTE or an RTM instruction.

The RTE instruction checks the validity of the stack format code. For long bus fault format
frames, the RTE instruction also compares the internal version number of the processor to
that contained in the frame at memory location SP + 54 (SP + $36). This check ensures
that the processor can correctly interpret internal state information from the stack frame.

The CALLM and RTM both check the values in the option and type fields in the module
descriptor and module stack frame, respectively. If these fields do not contain proper
values or if an illegal access rights change request is detected by an external memory
management unit, then an illegal call or return is being requested and is not executed.
Refer to Section 9 Applications Information for more information on the module
call/return mechanism.

The cpRESTORE instruction passes the format word of the coprocessor state frame to the
coprocessor for validation. If the coprocessor does not recognize the format value, it
signals the MC68020/EC020 to take a format error exception. Refer to Section 7
Coprocessor Interface Description for details of coprocessor-related exceptions.

If any of the checks previously described determine that the format of the stacked data is
improper, the instruction generates a format error exception. This exception saves a short
bus fault stack frame, generates exception vector number 14, and continues execution at
the address in the format exception vector. The stacked PC value is the logical address of
the instruction that detected the format error.

MOTOROLA M68020 USER’S MANUAL 6-11

6.1.9 Interrupt Exceptions

When a peripheral device requires the services of the MC68020/EC020 or is ready to
send information that the processor requires, it may signal the processor to take an
interrupt exception. The interrupt exception transfers control to a routine that responds
appropriately.

The peripheral device uses the IPL2–IPL0 signals to signal an interrupt condition to the
processor and to specify the priority of that condition. These three signals encode a value
of zero through seven (IPL0 is the least significant bit). When IPL2–IPL0 are all negated,
the interrupt request level is zero. IPL2–IPL0 values 1–7 specify one of seven levels of
prioritized interrupts; level 7 has the highest priority. External circuitry can chain or
otherwise merge signals from devices at each level, allowing an unlimited number of
devices to interrupt the processor.

The IPL2–IPL0 signals must maintain the interrupt request level until the
MC68020/EC020 acknowledges the interrupt to guarantee that the interrupt is recognized.
The MC68020/EC020 continuously samples the IPL2–IPL0 signals on consecutive falling
edges of the processor clock to synchronize and debounce these signals. An interrupt
request that is the same for two consecutive falling clock edges is considered a valid
input. Although the protocol requires that the request remain until the processor runs an
interrupt acknowledge cycle for that interrupt value, an interrupt request that is held for as
short a period as two clock cycles could be recognized.

The I2–I0 bits in the SR specify the interrupt priority mask. The value in the interrupt mask
is the highest priority level that the processor ignores. When an interrupt request has a
priority higher than the value in the mask, the processor makes the request a pending
interrupt. Figure 6-2 is a flowchart of the procedure for making an interrupt pending.

When several devices are connected to the same interrupt level, each device should hold
its interrupt priority level constant until its corresponding interrupt acknowledge cycle to
ensure that all requests are processed.

Table 6-3 lists the interrupt levels, the states of IPL2–IPL0 that define each level, and the
mask value that allows an interrupt at each level.

6-12 M68020 USER’S MANUAL MOTOROLA

RESET

SAMPLE AND SYNCH
IPL2–IPL0

INTERRUPT PENDING
(MC68020 ASSERTS IPEND)

(COMPARE INTERRUPT LEVEL
WITH STATUS REGISTER MASK)

INTERRUPT LEVEL I2–I0,
OR TRANSITION ON LEVEL 7

>

*

* IPEND is not implemented in the MC68EC020.

OTHERWISE

Figure 6-2. Interrupt Pending Procedure

Table 6-3. Interrupt Levels and Mask Values

Control Line Status

Requested
Interrupt Level IPL2 IPL1 IPL0

Interrupt Mask Value
Required for Recognition

0* N N N N/A*

1 N N A 0

2 N A N 1–0

3 N A A 2–0

4 A N N 3–0

5 A N A 4–0

6 A A N 5–0

7 A A A 7–0

*Indicates that no interrupt is requested.
A—Asserted
N—Negated

Priority level 7, the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be
masked by the interrupt priority mask, and they are transition sensitive. The processor
recognizes an interrupt request each time the external interrupt request level changes
from some lower level to level 7, regardless of the value in the mask. Figure 6-3 shows
two examples of interrupt recognitions, one for level 6 and one for level 7. When the
MC68020/EC020 processes a level 6 interrupt, the interrupt priority mask is automatically
updated with a value of 6 before entering the handler routine so that subsequent level 6
interrupts are masked. Provided no instruction that lowers the mask value is executed, the

MOTOROLA M68020 USER’S MANUAL 6-13

external request can be lowered to level 3 and then raised back to level 6, and a second

6-14 M68020 USER’S MANUAL MOTOROLA

level 6 interrupt is not processed. However, if the MC68020/EC020 is handling a level 7
interrupt (I2–I0 in the SR set to 111) and the external request is lowered to level 3 and
then raised back to level 7, a second level 7 interrupt is processed. The second level 7
interrupt is processed because the level 7 interrupt is transition sensitive. A level 7
interrupt is also generated by a level comparison if the request level and mask level are at
7 and the priority mask is then set to a lower level (with the MOVE to SR or RTE
instruction, for example). As shown in Figure 6-3 for level 6 interrupt request level and
mask level, this is the case for all interrupt levels.

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1–6 from
being recognized. In addition, neither masks a transition to an interrupt request level of 7.
The only difference between mask values of 6 and 7 occurs when the interrupt request
level is 7 and the mask value is 7. If the mask value is lowered to 6, a second level 7
interrupt is recognized.

EXTERNAL IPL2–IPL0 INTERRUPT PRIORITY MASK (I2–I0 IN SR) ACTION

LEVEL 6 EXAMPLE

INITIAL CONDITIONS100 ($3) 101 ($5)

(LEVEL COMPARISON)IF 001 ($6) THEN 110 ($6) AND LEVEL 6 INTERRUPT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(TRANSITION)

LEVEL 7 EXAMPLE

INITIAL CONDITIONS100 ($3) 101 ($5)

IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN NO ACTION

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

Figure 6-3. Interrupt Recognition Examples

MOTOROLA M68020 USER’S MANUAL 6-15

The MC68020 asserts IPEND (note that IPEND is not implemented in the MC68EC020)
when it makes an interrupt request pending. Figure 6-4 shows the assertion of IPEND
relative to the assertion of an interrupt level on IPL2–IPL0. IPEND signals to external
devices that an interrupt exception will be taken at an upcoming instruction boundary
(following any higher priority exception). The state of the IPEND signal is internally
checked by the processor once per instruction, independently of bus operation. In
addition, it is checked during the second instruction prefetch associated with exception
processing.

Figure 6-5 is a flowchart of the interrupt recognition and associated exception processing
sequence.

CLK

IPL2–IPL0

IPEND

COMPARE REQUEST
WITH MASK IN SR

ASSERT IPENDIPL2–IPL0 RECOGNIZED

IPL2–IPL0 SYNCHRONIZED

Figure 6-4. Assertion of IPEND (MC68020 Only)

6-16 M68020 USER’S MANUAL MOTOROLA

TEMP
S

T1, T0

SR
1
0

➧
➧

➧

UPDATE I2–I0

➧
➧

➧
➧

– (SP) TEMP
– (SP) PC

– (SP) FORMAT WORD
– (SP) OTHER EXCEPTION
DEPENDENT INFORMATION

ONCE PER INSTRUCTION

EXECUTE INTERRUPT
ACKNOWLEDGE CYCLE

AT INSTRUCTION
BOUNDARY

EXIT

M = 1

TEMP SR
M 0

➧
➧

M = 0
PC VECTOR TABLE ENTRY

➧

PREFETCH 3 WORDS

END OF EXCEPTION PROCESSING
FOR THE INTERRUPT

BEGIN EXECUTION OF THE INTERRUPT
HANDLER ROUTINE OR PROCESS A
HIGHER PRIORITY EXCEPTION

THESE
INDIVIDUAL

BUS CYCLES
MAY OCCUR

IN ANY ORDER

NEGATE IPEND*

OTHERWISE

IPEND ASSERTED*

Does not apply to the MC68EC020.*

Figure 6-5. Interrupt Exception Processing Flowchart

MOTOROLA M68020 USER’S MANUAL 6-17

For the MC68020, if no higher priority interrupt has been synchronized, the IPEND signal
is negated during state 0 (S0) of an interrupt acknowledge cycle, and the IPL2–IPL0
signals for the interrupt being acknowledged can be negated at this time. For the
MC68EC020, if no higher priority interrupt has been synchronized, the IPL2–IPL0 signals
for the interrupt being acknowledged can be negated at this time. Refer to Section 5 Bus
Operation for more information on interrupt acknowledge cycles.

When processing an interrupt exception, the MC68020/EC020 first makes an internal copy
of the SR, sets the privilege level to supervisor, suppresses tracing, and sets the
processor interrupt mask level to the level of the interrupt being serviced. The processor
attempts to obtain a vector number from the interrupting device using an interrupt
acknowledge bus cycle with the interrupt level number output on pins A3–A1 of the
address bus. For a device that cannot supply an interrupt vector, the AVEC signal can be
asserted, and the MC68020/EC020 uses an internally generated autovector, which is one
of vector numbers 31–25, that corresponds to the interrupt level number. If external logic
indicates a bus error during the interrupt acknowledge cycle, the interrupt is considered
spurious, and the processor generates the spurious interrupt vector number (24). Refer to
Section 5 Bus Operation for complete interrupt bus cycle information.

Once the vector number is obtained, the processor saves the exception vector offset, PC
value, and the internal copy of the SR on the active supervisor stack. The saved value of
the PC is the logical address of the instruction that would have been executed had the
interrupt not occurred. If the interrupt was acknowledged during the execution of a
coprocessor instruction, further internal information is saved on the stack so that the
MC68020/EC020 can continue executing the coprocessor instruction when the interrupt
handler completes execution.

If the M-bit in the SR is set, the processor clears the M-bit and creates a throwaway
exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same PC value and vector offset as the frame
created on top of the master stack, but has a format number of 1 instead of 0 or 9. The
copy of the SR saved on the throwaway frame is exactly the same as that placed on the
master stack except that the S-bit is set in the version placed on the interrupt stack. (It
may or may not be set in the copy saved on the master stack.) The resulting SR (after
exception processing) has the S-bit set and the M-bit cleared.

The processor loads the address in the exception vector into the PC, and normal
instruction execution resumes after the required prefetches for the interrupt handler
routine.

Most M68000 family peripherals use programmable interrupt vector numbers as part of
the interrupt request/acknowledge mechanism of the system. If this vector number is not
initialized after reset and the peripheral must acknowledge an interrupt request, the
peripheral usually returns the uninitialized interrupt vector number (15).

6-18 M68020 USER’S MANUAL MOTOROLA

6.1.10 Breakpoint Instruction Exception

To use the MC68020/EC020 in a hardware emulator, it must provide a means of inserting
breakpoints in the emulator code and of performing appropriate operations at each
breakpoint. For the MC68000 and MC68008, this can be done by inserting an illegal
instruction at the breakpoint and detecting the illegal instruction exception from its vector
location. However, since the VBR on M68000 family processors MC68010 and later
allows arbitrary relocation of exception vectors, the exception address cannot reliably
identify a breakpoint. The MC68020/EC020 processor provides a breakpoint capability
with a set of breakpoint instructions, $4848–$484F, for eight unique breakpoints. The
breakpoint facility also allows external hardware to monitor the execution of a program
residing in the on-chip instruction cache without severe performance degradation.

When the MC68020/EC020 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) from CPU space type $0 with address lines A4–A2
corresponding to the breakpoint number. Refer to Section 5 Bus Operation for a
description of the breakpoint acknowledge cycle. The external hardware can return either
BERR or DSACK1/DSACK0 with an instruction word on the data bus. If the bus cycle
terminates with BERR, the processor performs illegal instruction exception processing. If
the bus cycle terminates with DSACK1/DSACK0, the processor uses the data returned to
replace the breakpoint instruction in the internal instruction pipe and begins execution of
that instruction. The remainder of the pipe remains unaltered. In addition, no stacking or
vector fetching is involved with the execution of the instruction. Figure 6-6 is a flowchart of
the breakpoint instruction execution.

6.1.11 Multiple Exceptions

When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 6-4 lists the exceptions grouped by characteristics. Each group has a
priority from 4–0. Priority 0 has the highest priority.

As soon as the MC68020/EC020 has completed exception processing for a condition
when another exception is pending, it begins exception processing for the pending
exception instead of executing the exception handler for the original exception condition.
Also, whenever a bus error or address error occurs, its exception processing takes
precedence over lower priority exceptions and occurs immediately. For example, if a bus
error occurs during the exception processing for a trace condition, the system processes
the bus error and executes its handler before completing the trace exception processing.
However, most exceptions cannot occur during exception processing, and very few
combinations of the exceptions shown in Table 6-4 can be pending simultaneously.

MOTOROLA M68020 USER’S MANUAL 6-19

EXIT

ENTRY

INITIATE READ BUS CYCLE

CYCLE TERMINATED WITH
BERR

PIPE STAGE D INSTRUCTION WORD ON DATA BUS
EXECUTE INSTRUCTION WORD

➧

TAKE ILLEGAL INSTRUCTION
EXCEPTION

A19–A16 $0
A4–A2 BREAKPOINT NUMBER

➧

➧

CYCLE TERMINATED WITH
DSACK1/DSACK0

Figure 6-6. Breakpoint Instruction Flowchart

Table 6-4. Exception Priority Groups

Group/
Priority Exception and Relative Priority Characteristic

0 0.0—Reset Aborts all processing (instruction or exception) and
does not save old context.

1 1.0—Address Error
1.1—Bus Error

Suspends processing (instruction or exception) and
saves internal context.

2 2.0—BKPT, CALLM, CHK, CHK2,
cp Midinstruction, cp Protocol Violation,
cpTRAPcc, Divide by Zero, RTE, RTM,
TRAP, TRAPcc, TRAPV

Exception processing is part of instruction execution.

3 3.0—Illegal Instruction, Line A, Unimplemented
Line F, Privilege Violation, cp Preinstruction

Exception processing begins before instruction is
executed.

4 4.0—cp Postinstruction
4.1—Trace
4.2—Interrupt

Exception processing begins when current instruction
or previous exception processing has completed.

NOTE: 0.0 is the highest priority; 4.2 is the lowest.

6-20 M68020 USER’S MANUAL MOTOROLA

The priority scheme is very important in determining the order in which exception handlers
execute when several exceptions occur at the same time. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. For
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception
processing for the trap occurs first, followed immediately by exception processing for the
trace, and then for the interrupt. When the processor resumes normal instruction
execution, it is in the interrupt handler, which returns to the trace handler, which returns to
the trap exception handler. This rule does not apply to the reset exception; its handler is
executed first even though it has the highest priority because the reset operation clears all
other exceptions.

6.1.12 Return from Exception

After the MC68020/EC020 has completed exception processing for all pending
exceptions, it resumes normal instruction execution at the address in the vector for the last
exception processed. Once the exception handler has completed execution, the processor
must return to the system context prior to the exception (if possible). The RTE instruction
returns from the handler to the previous system context for any exception.

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. The following paragraphs describe the processing for each of the
stack frame types; refer to 6.3 Coprocessor Considerations for a description of the
stack frame type formats.

For a normal four-word frame, the processor updates the SR and PC with the data read
from the stack, increments the stack pointer by eight, and resumes normal instruction
execution.

For the throwaway four-word frame, the processor reads the SR value from the frame,
increments the active stack pointer by eight, updates the SR with the value read from the
stack, and then begins RTE processing again, as shown in Figure 6-7. The processor
reads a new format word from the stack frame on top of the active stack (which may or
may not be the same stack used for the previous operation) and performs the proper
operations corresponding to that format. In most cases, the throwaway frame is on the
interrupt stack and when the SR value is read from the stack, the S and M bits are set. In
that case, there is a normal four-word frame or a ten-word coprocessor midinstruction
frame on the master stack. However, the second frame may be any format (even another
throwaway frame) and may reside on any of the three system stacks.

For the six-word stack frame, the processor restores the SR and PC values from the
stack, increments the active supervisor stack pointer by 12, and resumes normal
instruction execution.

MOTOROLA M68020 USER’S MANUAL 6-21

ENTRY

SR TEMP
SP SP + 6

➧

➧

TEMP (SP) +
READ FORMAT WORD

➧

OTHERWISE

FORMAT CODE = $1

(THROWAWAY FRAME)

OTHERWISE

PC (SP) +
SP SP + 6
SR TEMP

➧
➧
➧

EXIT

OTHER FORMATS

TAKE FORMAT
ERROR EXCEPTION

OTHERWISE

FORMAT CODE = $0 (FOUR-WORD FRAME)

INVALID FORMAT WORD

Figure 6-7. RTE Instruction for Throwaway Four-Word Frame

For the coprocessor midinstruction stack frame, the processor reads the SR, PC,
instruction address, internal register values, and the evaluated effective address from the
stack, restores these values to the corresponding internal registers, and increments the
stack pointer by 20. The processor then reads from the response register of the
coprocessor that initiated the exception to determine the next operation to be performed.
Refer to Section 7 Coprocessor Interface Description for details of coprocessor-related
exceptions.

For both the short and long bus fault stack frames, the processor first checks the format
value on the stack for validity. In addition, for the long stack frame, the processor
compares the version number in the stack with its own version number. The version
number is located in the most significant nibble (bits 15–12) of the word at location SP +
$36 in the long stack frame. This validity check is required in a multiprocessor system to
ensure that the data is properly interpreted by the RTE instruction. The RTE instruction
also reads from both ends of the stack frame to make sure it is accessible. If the frame is
invalid or inaccessible, the processor takes a format error or a bus error exception,
respectively. Otherwise, the processor reads the entire frame into the proper internal
registers, deallocates the stack, and resumes normal processing. Once the processor
begins to load the frame to restore its internal state, the assertion of the BERR signal

6-22 M68020 USER’S MANUAL MOTOROLA

causes the processor to enter the halted state. Refer to 6.2 Bus Fault Recovery for a
description of the processing that occurs after the frame is read into the internal registers.

If a format error or bus error exception occurs during the frame validation sequence of the
RTE instruction, either due to any of the errors previously described or due to an illegal
format code, the processor creates a normal four-word or a bus fault stack frame below
the frame that it was attempting to use. In this way, the faulty stack frame remains intact.
The exception handler can examine or repair the faulty frame. In a multiprocessor system,
the faulty frame can be left to be used by another processor of a different type (e.g., an
MC68010 or a future M68000 family processor) when appropriate.

6.2 BUS FAULT RECOVERY

An address error exception or a bus error exception indicates a bus fault. The saving of
the processor state for a bus error or address error is described in 6.1.2 Bus Error
Exception, and the restoring of the processor state by an RTE instruction is described in
6.1.12 Return from Exception.

Processor accesses of either data items or the instruction stream can result in bus errors.
When a bus error exception occurs while accessing a data item, the exception is taken
immediately after the bus cycle terminates. The processor may never access an
instruction that is part of the instruction stream. In this case, the bus error would not be
processed. For instruction faults, when the short bus fault stack frame applies, the
address of the pipe stage B word is the value in the PC plus four, and the address of the
stage C word is the value in the PC plus two. For the long format, the long word at SP +
$24 contains the address of the stage B word; the address of the stage C word is the
address of the stage B word minus two. Address error faults occur only for instruction
stream accesses, and the exceptions are taken before the bus cycles are attempted.

6.2.1 Special Status Word (SSW)

The internal SSW (see Figure 6-8) is one of several registers saved as part of the bus
fault exception stack frame. Both the short bus fault format and the long bus fault format
include this word at offset $A. The bus cycle fault stack frame formats are described in
detail in 6.4 Exception Stack Frame Formats.

The SSW information indicates whether the fault was caused by an access to the
instruction stream, data stream, or both. The high-order half of the SSW contains two
status bits each for the B and C stages of the instruction pipe. If an address error
exception occurs, the fault bits written to the stack frame are not set (they are only set due
to a bus error, as previously described), and the rerun bits alone show the cause of the
exception. Depending on the state of the pipeline, either RB and RC are set, or only RC is
set. To correct the pipeline contents and continue execution of the suspended instruction,
software must place the correct instruction stream data in the stage C and/or stage B
images requested by the rerun bits and must clear the rerun bits. The least significant half
of the SSW applies to data cycles only. Data and instruction stream faults may be pending
simultaneously; the fault handler should be able to recognize any combination of the FC,
FB, RC, RB, and DF bits.

MOTOROLA M68020 USER’S MANUAL 6-23

15 0

FC FB RC

14 13 12

RB

11 10 9 8 7 6 5 4 3 2

0 0 0 DF RM RW SIZE 0 FC2–FC0

Figure 6-8. Special Status Word Format

FC—Fault on Stage C
When the FC bit is set, the processor attempted to use stage C and found it to be
marked invalid due to a bus error on the prefetch for that stage. FC can be used by a
bus error handler to determine the cause(s) of a bus error exception.

FB—Fault on Stage B
When the FB bit is set, the processor attempted to use stage B and found it to be
marked invalid due to a bus error on the prefetch for that stage. FB can be used by a
bus error handler to determine the cause(s) of a bus error exception.

RC—Rerun Flag for Stage C
The RC bit is set to indicate that a fault occurred during a prefetch for stage C. The RC
bit is always set when the FC bit is set. The RC bit indicates that the word in stage C of
the instruction pipe is invalid, and the state of the bit can be used by a handler to repair
the values in the pipe after an address error or a bus error, if necessary. If the RC bit is
set when the processor executes an RTE instruction, the processor may execute a bus
cycle to prefetch the instruction word for stage C of the pipe (if it is required). If the RC
and FC bits are set, the RTE instruction automatically reruns the prefetch cycle for
stage C. The address space for the bus cycle is the program space for the privilege
level indicated in the copy of the SR on the stack. If the RC bit is clear, the words on the
stack for stage C of the pipe are accepted as valid; the processor assumes that there is
no prefetch pending for stage C and that software has repaired or filled the image of
stage C, if necessary.

1 = Rerun faulted bus cycle or run pending prefetch
0 = Do not rerun bus cycle

RB—Rerun Flag for Stage B
The RB bit is set to indicate that a fault occurred during a prefetch for stage B. The RB
bit is always set when the FB bit is set. The RB bit indicates that the word in stage B of
the instruction pipe is invalid, and the state of the bit can be used by a handler to repair
the values in the pipe after an address error or a bus error, if necessary. If the RB bit is
set when the processor executes an RTE instruction, the processor may execute a bus
cycle to prefetch the instruction word for stage B of the pipe (if it is required). If the RB
and FB bits are set, the RTE instruction automatically reruns the prefetch cycle for stage
B. The address space for the bus cycle is the program space for the privilege level
indicated in the copy of the SR on the stack. If the RB bit is clear, the words on the

6-24 M68020 USER’S MANUAL MOTOROLA

stack for stage B of the pipe are accepted as valid; the processor assumes that there is
no prefetch pending for stage B and that software has repaired or filled the image of
stage B, if necessary.

1 = Rerun faulted bus cycle or run pending prefetch
0 = Do not rerun bus cycle

Bits 11–9—Reserved by Motorola

DF—Fault/Rerun Flag
If the DF bit is set, a data fault has occurred and caused the exception. If the DF bit is
set when the processor reads the stack frame, it reruns the faulted data access;
otherwise, it assumes that the data input buffer value on the stack is valid for a read or
that the data has been correctly written to memory for a write (or that no data fault
occurred).

1 = Rerun faulted bus cycle or run pending prefetch
0 = Do not rerun bus cycle

RM—Read-Modify-Write
1 = Read-modify-write operation on data cycle
0 = Not a read-modify-write operation

RW—Read/Write
1 = Read on data cycle
0 = Write on data cycle

SIZE—Size Code
The SIZE field indicates the size of the operand access for the data cycle.

Bit 3—Reserved by Motorola

FC2–FC0—Specifies the address space for data cycle

6.2.2 Using Software to Complete the Bus Cycles

One method of completing a faulted bus cycle is to use a software handler to emulate the
cycle. This is the only method for correcting address errors. The handler should emulate
the faulted bus cycle in a manner that is transparent to the instruction that caused the
fault. For instruction stream faults, the handler may need to run bus cycles for both the B
and C stages of the instruction pipe. The RB and RC bits of the SSW identify the stages
that may require a bus cycle; the FB and FC bits of the SSW indicate that a stage was
invalid when an attempt was made to use its contents. Those stages must be repaired.
For each faulted stage, the software handler should copy the instruction word from the
proper address space as indicated by the S-bit of the copy of the SR saved on the stack to
the image of the appropriate stage in the stack frame. In addition, the handler must clear
the RB or RC bit associated with the stage that it has corrected. The handler should not
change the FB and FC bits.

MOTOROLA M68020 USER’S MANUAL 6-25

To repair data faults (indicated by DF = 1), the software should first examine the RM bit in
the SSW to determine if the fault was generated during a read-modify-write operation. If
RM = 0, the handler should then check the RW bit of the SSW to determine if the fault was
caused by a read or a write cycle. For data write faults, the handler must transfer the
properly sized data from the data output buffer on the stack frame to the location indicated
by the data fault address in the address space defined by the SSW. (Both the data output
buffer and the data fault address are part of the stack frame at SP + $18 and SP + $10,
respectively.) Data read faults only generate the long bus fault frame, and the handler
must transfer properly sized data from the location indicated by the fault address and
address space to the image of the data input buffer at location SP + $2C of the long
format stack frame. Byte, word, and 3-byte operands are right justified in the 4-byte data
buffers. In addition, the software handler must clear the DF bit of the SSW to indicate that
the faulted bus cycle has been corrected.

To emulate a read-modify-write cycle, the exception handler must first read the operation
word at the PC address (SP + 2 of the stack frame). This word identifies the CAS, CAS2,
or TAS instruction that caused the fault. Then the handler must emulate this entire
instruction (which may consist of up to four long-word transfers) and update the CCR
portion of the SR appropriately, because the RTE instruction expects the entire operation
to have been completed if the RM bit is set and the DF bit is cleared. This is true even if
the fault occurred on the first read cycle.

To emulate the entire instruction, the handler must save the data and address registers for
the instruction (with a MOVEM instruction, for example). Next, the handler reads and
modifies (if necessary) the memory location. It clears the DF bit in the SSW of the stack
frame and modifies the condition codes in the SR copy and the copies of any data or
address registers required for the CAS and CAS2 instructions. Last, the handler restores
the registers that it saved at the beginning of the emulation. Except for the data input
buffer, the copy of the SR, and the SSW, the handler should not modify a bus fault stack
frame. The only bits in the SSW that may be modified are DF, RB, and RC; all other bits,
including those defined for internal use, must remain unchanged.

Address error faults must be repaired in software. Address error faults can be
distinguished from bus error faults by the value in the vector offset field of the format word.

6.2.3 Completing the Bus Cycles with RTE

Another method of completing a faulted bus cycle is to allow the processor to rerun the
bus cycles during execution of the RTE instruction that terminates the exception handler.
This method cannot be used to recover from address errors. The RTE instruction is
always executed. Unless the handler routine has corrected the error and cleared the fault
(and cleared the RB/RC and DF bits of the SSW), the RTE instruction cannot complete
the bus cycle(s). If the DF bit is still set at the time of the RTE execution, the faulted data
cycle is rerun by the RTE instruction. If the FB or FC bit is set and the corresponding rerun
bit (RB or RC) was not cleared by the software, the RTE reruns the associated instruction
prefetch. The fault occurs again unless the cause of the fault, such as a nonresident page
in a virtual memory system, has been corrected. If the RB or RC bit is set and the

6-26 M68020 USER’S MANUAL MOTOROLA

corresponding fault bit (FB or FC) is cleared, the associated prefetch cycle may or may
not be run by the RTE instruction (depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), the processor
creates a new stack frame on the supervisor stack after deallocating the previous frame,
and address error or bus error exception processing starts in the normal manner.

The read-modify-write operations of the MC68020/EC020 can also be completed by the
RTE instruction that terminates the handler routine. The rerun operation, executed by the
RTE instruction with the DF bit of the SSW set, reruns the entire instruction. If the cause of
the error has been corrected, the handler does not need to emulate the instruction but can
leave the DF bit set and execute the RTE instruction.

6.3 COPROCESSOR CONSIDERATIONS

Exception handler programmers should consider carefully whether to save and restore the
context of a coprocessor at the beginning and end of handler routines for exceptions that
can occur during the execution of a coprocessor instruction (i.e., bus errors, interrupts,
and coprocessor-related exceptions). The nature of the coprocessor and the exception
handler routine determines whether or not saving the state of one or more coprocessors
with the cpSAVE and cpRESTORE instructions is required. If the coprocessor allows
multiple coprocessor instructions to be executed concurrently, it may require its state to be
saved and restored for all coprocessor-generated exceptions, regardless of whether or not
the coprocessor is accessed during the handler routine. The MC68882 floating-point
coprocessor is an example of this type of coprocessor. On the other hand, the MC68881
floating-point coprocessor requires FSAVE and FRESTORE instructions within an
exception handler routine only if the exception handler itself uses the coprocessor.

6.4 EXCEPTION STACK FRAME FORMATS

The MC68020/EC020 provides six different stack frames for exception processing. The
set of frames includes the normal four- and six-word stack frames, the four-word
throwaway stack frame, the coprocessor midinstruction stack frame, and the short and
long bus fault stack frames.

When the MC68020/EC020 writes or reads a stack frame, it uses long-word operand
transfers wherever possible. Using a long-word-aligned stack pointer with memory that is
on a 32-bit port greatly enhances exception processing performance. The processor does
not necessarily read or write the stack frame data in sequential order.

The system software should not depend on a particular exception generating a particular
stack frame. For compatibility with future devices, the software should be able to handle
any type of stack frame for any type of exception.

Table 6-5 summarizes the stack frames defined for the MC68020/EC020.

MOTOROLA M68020 USER’S MANUAL 6-27

Table 6-5. Exception Stack Frames

SIX-WORD
STACK FRAME — FORMAT $2

Exception Types (Stacked PC Points to)Stack Frames

Interrupt
Format Error
TRAP #N
Illegal Instruction
A-Line Instruction
F-Line Instruction
Privilege Violation

Coprocessor
				Preinstruction

[Next instruction]
[RTE or cpRESTORE instruction
[NEXT instruction]
[Illegal instruction]
[A-line instruction]
[F-line instruction]
[First word of instruction causing
				Privilege Violation]

[Opword of instruction that
				returned the 'take preinstruction'
				primitive]

THROWAWAY FOUR-WORD
STACK FRAME — FORMAT $1

Created on
				Interrupt Stack
				during interrupt
				exception processing
				when transition from
				master state to
				interrupt state occurs

[Next instruction — same as on
				master stack]

STATUS REGISTER

15 0

PROGRAM COUNTER

VECTOR OFFSET0 0 1 0

SP

+$06

+$02

CHK
CHK2
cpTRAPcc
TRAPcc
TRAPPV
Trace
Zero Divide
MMU Configuration
Coprocessor
				Postinstruction

[Next instruction for all these
exceptions]

INSTRUCTION ADDRESS
				is the address of the instruction
				that caused the exception

INSTRUCTION ADDRESS
+$08

STATUS REGISTER

15 0

PROGRAM COUNTER
VECTOR OFFSET1 0 0 1

SP

+$06

+$02

Coprocessor
				Midinstruction
				Main-Detected
				Protocol Violation
Interrupt Detected
				During Coprocessor
				Instruction
				(supported with 'null
				come again with
				interrupts allowed'
				primitive)

INSTRUCTION ADDRESS+$08

COPROCESSOR MIDINSTRUCTION
STACK FRAME (10 WORDS) — FORMAT $9

INTERNAL REGISTERS,
4 WORDS

+$0C

+$12

[Next word to be fetched from
				instruction stream for all these
				exceptions]

INSTRUCTION ADDRESS
				is the address of the instruction
				that caused the exception

FOUR-WORD STACK FRAME — FORMAT $0

STATUS REGISTER

15 0

PROGRAM COUNTER

VECTOR OFFSET0 0 0 0

SP

+$06

+$02

STATUS REGISTER

15 0

PROGRAM COUNTER

VECTOR OFFSET0 0 0 1

SP

+$06

+$02

6-28 M68020 USER’S MANUAL MOTOROLA

Table 6-5. Exception Stack Frames (Continued)

Exception Types (Stacked PC Points to)Stack Frames

Address Error or
				Bus Error —
				Execution Unit
				at Instruction
				Boundary

[Next instruction]SP

SP

INTERNAL INFORMATION

STATUS REGISTER

15 0

PROGRAM COUNTER

VECTOR OFFSET1 0 1 0+$06

+$02

INTERNAL REGISTER+$08
SPECIAL STATUS REGISTER+$0A
INSTRUCTION PIPE STAGE C+$0C
INSTRUCTION PIPE STAGE B+$0E

+$10
+$12

INTERNAL REGISTER+$14

INTERNAL REGISTER+$16
+$18
+$1A

INTERNAL REGISTER+$1C

DATA CYCLE FAULT ADDRESS

DATA OUTPUT BUFFER

INTERNAL REGISTER+$1E

STATUS REGISTER

15 0

PROGRAM COUNTER

VECTOR OFFSET1 0 1 1+$06

+$02

INTERNAL REGISTER+$08
SPECIAL STATUS REGISTER+$0A
INSTRUCTION PIPE STAGE C+$0C
INSTRUCTION PIPE STAGE B+$0E

+$10
+$12

INTERNAL REGISTER+$14

INTERNAL REGISTER+$16
+$18

INTERNAL REGISTER,
4 WORDS

DATA CYCLE FAULT ADDRESS

DATA OUTPUT BUFFER

+$22

+$2A

+$24

INTERNAL REGISTERS,
2 WORDS

+$2C

+$30
INTERNAL REGISTERS,

3 WORDS
+$36
+$38

INTERNAL REGISTERS,
18 WORDS

+$5A

+$28

+$1A
+$1C

VERSION #

DATA INPUT BUFFER

STAGE B ADDRESS

SHORT BUS FAULT STACK FRAME
(16 WORDS) — FORMAT $A

Address Error or
				Bus Error —
				Instruction
				Execution in
				Progress

[Address of instruction in
				execution when fault occurred —
				may not be the instruction that
				generated the faulted bus cycle]

LONG BUS FAULT STACK FRAME
(46 WORDS) — FORMAT $B

MOTOROLA M68020 USER’S MANUAL 7-1

SECTION 7
COPROCESSOR INTERFACE DESCRIPTION

The M68000 family of general-purpose microprocessors provides a level of performance
that satisfies a wide range of computer applications. Special-purpose hardware, however,
can often provide a higher level of performance for a specific application. The coprocessor
concept allows the capabilities and performance of a general-purpose processor to be
enhanced for a particular application without encumbering the main processor
architecture. A coprocessor can efficiently meet specific capability requirements that must
typically be implemented in software by a general-purpose processor. With a general-
purpose main processor and the appropriate coprocessor(s), the processing capabilities of
a system can be tailored to a specific application.

The MC68020/EC020 supports the M68000 coprocessor interface described in this
section. This section is intended for designers who are implementing coprocessors to
interface with the MC68020/EC020.

The designer of a system that uses one or more Motorola coprocessors (the MC68881 or
MC68882 floating-point coprocessor, for example) does not require a detailed knowledge
of the M68000 coprocessor interface. Motorola coprocessors conform to the interface
described in this section. Typically, they implement a subset of the interface, and that
subset is described in the coprocessor user's manual. These coprocessors execute
Motorola-defined instructions that are described in the user's manual for each
coprocessor.

7.1 INTRODUCTION

The distinction between standard peripheral hardware and an M68000 coprocessor is
important from a programming model perspective. The programming model of the main
processor consists of the instruction set, register set, and memory map. An M68000
coprocessor is a device or set of devices that communicates with the main processor
through the protocol defined as the M68000 coprocessor interface. The programming
model for a coprocessor is different than that for a peripheral device. A coprocessor adds
additional instructions and generally additional registers and data types to the
programming model that are not directly supported by the main processor architecture.
The additional instructions are dedicated coprocessor instructions that utilize the
coprocessor capabilities. The necessary interactions between the main processor and the
coprocessor that provide a given service are transparent to the programmer. That is, the
programmer does not need to know the specific communication protocol between the
main processor and the coprocessor because this protocol is implemented in hardware.
Thus, the coprocessor can provide capabilities to the user without appearing separate
from the main processor.

7-2 M68020 USER’S MANUAL MOTOROLA

In contrast, standard peripheral hardware is generally accessed through interface
registers mapped into the memory space of the main processor. To use the services
provided by the peripheral, the programmer accesses the peripheral registers with
standard processor instructions. While a peripheral could conceivably provide capabilities
equivalent to a coprocessor for many applications, the programmer must implement the
communication protocol between the main processor and the peripheral necessary to use
the peripheral hardware.

The communication protocol defined for the M68000 coprocessor interface is described in
7.2 Coprocessor Instruction Types. The algorithms that implement the M68000
coprocessor interface are provided in the microcode of the MC68020/EC020 and are
completely transparent to the MC68020/EC020 programming model. For example,
floating-point operations are not implemented in the MC68020/EC020 hardware. In a
system utilizing both the MC68020/EC020 and the MC68881 or MC68882 floating-point
coprocessor, a programmer can use any of the instructions defined for the coprocessor
without knowing that the actual computation is performed by the MC68881 or MC68882
hardware.

7.1.1 Interface Features

The M68000 coprocessor interface design incorporates a number of flexible capabilities.
The physical coprocessor interface uses the main processor external bus, which simplifies
the interface since no special-purpose signals are involved. With the MC68020/EC020, a
coprocessor uses the asynchronous bus transfer protocol. Since standard bus cycles
transfer information between the main processor and the coprocessor, the coprocessor
can be implemented in whatever technology is available to the coprocessor designer. A
coprocessor can be implemented as a VLSI device, as a separate system board, or even
as a separate computer system.

Since the main processor and a M68000 coprocessor can communicate using the
asynchronous bus, they can operate at different clock frequencies. The system designer
can choose the speeds of a main processor and coprocessor that provide the optimum
performance for a given system. Both the MC68881 and MC68882 floating-point
coprocessors use the asynchronous bus handshake protocol.

The M68000 coprocessor interface also facilitates the design of coprocessors. The
coprocessor designer must only conform to the coprocessor interface and does not need
an extensive knowledge of the architecture of the main processor. Also, the main
processor can operate with a coprocessor without having explicit provisions made in the
main processor for the capabilities of that coprocessor. This type of interface provides a
great deal of freedom in the implementation of a given coprocessor.

7.1.2 Concurrent Operation Support

The programming model for the M68000 family of microprocessors is based on
sequential, nonconcurrent instruction execution, which implies that the instructions in a
given sequence must appear to be executed in the order in which they occur. To maintain
a uniform programming model, any coprocessor extensions should also maintain the

MOTOROLA M68020 USER’S MANUAL 7-3

model of sequential, nonconcurrent instruction execution at the user level. Consequently,
the programmer can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence accessing these
registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations necessary for
nonconcurrent operation of the main processor and its associated coprocessors. Although
the M68000 coprocessor interface allows concurrency in coprocessor execution, the
coprocessor designer is responsible for implementing this concurrency while maintaining a
programming model based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction B does not use or alter
resources to be altered or used by instruction A, instruction B can be executed
concurrently (if the execution hardware is also available). Thus, the required instruction
interdependencies and sequences of the program are always respected. The MC68882
coprocessor offers concurrent instruction execution; whereas, the MC68881 coprocessor
does not. However, the MC68020/EC020 can execute instructions concurrently with
coprocessor instruction execution in the MC68881.

7.1.3 Coprocessor Instruction Format

The instruction set for a given coprocessor is defined by the design of that coprocessor.
When a coprocessor instruction is encountered in the main processor instruction stream,
the MC68020/EC020 hardware initiates communication with the coprocessor and
coordinates any interaction necessary to execute the instruction with the coprocessor. A
programmer needs to know only the instruction set and register set defined by the
coprocessor to use the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words
in the M68000 instruction set. The operation word is the first word of any M68000 family
instruction. The F-line operation word contains ones in bits 15–12 (refer to Figure 7-1); the
remaining bits are coprocessor and instruction dependent. The F-line operation word may
be followed by as many extension words as are required to provide additional information
necessary for the execution of the coprocessor instruction.

15 0

1 1 1

14 13 12

1

11

CpID

9 8

TYPE

6 5

TYPE DEPENDENT

Figure 7-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 7-1, bits 11–9 of the F-line operation word encode the coprocessor
identification (CpID) field. The MC68020/EC020 uses the CpID field to indicate the
coprocessor to which the instruction applies. F-line operation words, in which the CpID is
zero, are not coprocessor instructions for the MC68020/EC020. Instructions with a CpID of
zero and a nonzero type field are unimplemented instructions that cause the

7-4 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020 to begin exception processing. The MC68020/EC020 never generates
coprocessor interface bus cycles with the CpID equal to zero (except via the MOVES
instruction).

CpID codes of 000–101 are reserved for current and future Motorola coprocessors, and
CpID codes of 110–111 are reserved for user-defined coprocessors. The Motorola CpID
code of 001 designates the MC68881 or MC68882 floating-point coprocessor. By default,
Motorola assemblers will use a CpID code of 001 when generating the instruction
operation codes for the MC68881 or MC68882.

The encoding of bits 8–0 of the coprocessor instruction operation word is dependent on
the particular instruction being implemented (refer to 7.2 Coprocessor Instruction
Types).

7.1.4 Coprocessor System Interface

The communication protocol between the main processor and coprocessor necessary to
execute a coprocessor instruction uses a group of interface registers, CIRs, resident
within the coprocessor. By accessing one of the CIRs, the MC68020/EC020 hardware
initiates coprocessor instructions. The coprocessor uses a set of response primitive codes
and format codes defined for the M68000 coprocessor interface to communicate status
and service requests to the main processor through these registers. The CIRs are also
used to pass operands between the main processor and the coprocessor. The CIR set,
response primitives, and format codes are discussed in 7.3 Coprocessor Interface
Register Set and 7.4 Coprocessor Response Primitives.

7.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classified into
two categories depending on their bus interface capabilities. The first category, non-DMA
coprocessors, consists of coprocessors that always operate as bus slaves. The second
category, DMA coprocessors, consists of coprocessors that operate as bus slaves while
communicating with the main processor across the coprocessor interface. These
coprocessors also have the ability to operate as bus masters, directly controlling the
system bus.

If the operation of a coprocessor does not require a large portion of the available bus
bandwidth or has special requirements not directly satisfied by the main processor, that
coprocessor can be efficiently implemented as a non-DMA coprocessor. Since non-DMA
coprocessors always operate as bus slaves, all external bus-related functions that the
coprocessor requires are performed by the main processor. The main processor transfers
operands from the coprocessor by reading the operand from the appropriate CIR and then
writing the operand to a specified effective address with the appropriate address space
specified on the FC2–FC0. Likewise, the main processor transfers operands to the
coprocessor by reading the operand from a specified effective address (and address
space) and then writing that operand to the appropriate CIR using the coprocessor
interface. The bus interface circuitry of a coprocessor operating as a bus slave is not as
complex as that of a device operating as a bus master.

MOTOROLA M68020 USER’S MANUAL 7-5

To improve the efficiency of operand transfers between memory and the coprocessor, a
coprocessor that requires a relatively high amount of bus bandwidth or has special bus
requirements can be implemented as a DMA coprocessor. The DMA coprocessor
provides all control, address, and data signals necessary to request and obtain the bus
and then performs DMA transfers using the bus. DMA coprocessors, however, must still
act as bus slaves when they require information or services of the main processor using
the M68000 coprocessor interface protocol.

7.1.4.2 PROCESSOR-COPROCESSOR INTERFACE. Figure 7-2 is a block diagram of
the signals involved in an asynchronous non-DMA M68000 coprocessor interface. Since
the CpID on signals A15–A13 of the address bus is used with other address signals to
select the coprocessor, the system designer can use several coprocessors of the same
type and assign a unique CpID to each one.

FC2–FC0

A19–A13

COPROCESSOR
DECODE

LOGIC

CS COPROCESSOR

ASYNCHRONOUS
BUS

INTERFACE
LOGIC

AS

DS

R/W

A4–A1

D31–D0

DSACK1 / DSACK0

MAIN PROCESSOR
MC68020/EC020

FC2–FC0 = 111
A19–A16 = 0010
A15–A13 = xxx
A4–A1 = rrrr

*Chip select logic may be integrated into the coprocessor.

 Address lines not specified above are "0" during coprocessor access.

➧
➧
➧
➧

*

CPU SPACE CYCLE
COPROCESSOR ACCESS IN CPU SPACE
COPROCESSOR IDENTIFICATION
COPROCESSOR INFERFACE REGISTER SELECTOR

Figure 7-2. Asynchronous Non-DMA M68000
Coprocessor Interface Signal Usage

The MC68020/EC020 accesses the registers in the CIR set using standard asynchronous
bus cycles. Thus, the bus interface implemented by a coprocessor for its interface register
set must satisfy the MC68020/EC020 address, data, and control signal timing. The
MC68020/EC020 bus operation is described in detail in Section 5 Bus Operation.

7-6 M68020 USER’S MANUAL MOTOROLA

During coprocessor instruction execution, the MC68020/EC020 executes CPU space bus
cycles to access the CIR set. The MC68020/EC020 asserts FC2–FC0, identifying a CPU
space bus cycle. The CIR set is mapped into CPU space in the same manner that a
peripheral interface register set is generally mapped into data space. The information
encoded on FC2–FC0 and the address bus of the MC68020/EC020 during a coprocessor
access is used to generate the chip select signal for the coprocessor being accessed.
Other address lines select a register within the interface set. The information encoded on
the function code and address lines of the MC68020/EC020 during a coprocessor access
is illustrated in Figure 7-3.

0

CIRCpID0 10000000000001 0 000000

4512131519203102

000

16

11

FUNCTION
CODE

ADDRESS
BUS

CPU SPACE
TYPE FIELD

Figure 7-3. MC68020/EC020 CPU Space Address Encodings

Signals A19–A16 of the MC68020/EC020 address bus specify the CPU space cycle type
for a CPU space bus cycle. The types of CPU space cycles currently defined for the
MC68020/EC020 are interrupt acknowledge, breakpoint acknowledge, module support
operations, and coprocessor access cycles. CPU space type $2 (A19–A16 = 0010)
specifies a coprocessor access cycle.

A15–A13 specify the CpID code for the coprocessor being accessed. This code is
transferred from bits 11–9 of the coprocessor instruction operation word (refer to Figure
7-1) to the address bus during each coprocessor access. Thus, decoding the
MC68020/EC020 FC2–FC0 and A19–A13 signals provides a unique chip select signal for
a given coprocessor. The FC2–FC0 and A19–A16 signals indicate a coprocessor access;
A15–A13 indicate which of the possible eight coprocessors (000–111) is being accessed.
Bits A31–A20 and A12–A5 of the MC68020 address bus and bits A23–A20 and A12–A5
of the MC68EC020 address bus are always zero during a coprocessor access.

7.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION. Figure 7-4 shows that
the value on the MC68020/EC020 address bus during a coprocessor access addresses a
unique region of the main processor's CPU address space. Signals A4–A0 of the
MC68020/EC020 address bus select the CIR being accessed. The register map for the
M68000 coprocessor interface is shown in Figure 7-5. The individual registers are
described in detail in 7.3 Coprocessor Interface Register Set.

MOTOROLA M68020 USER’S MANUAL 7-7

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

CPU SPACE ADDRESS

$20000

$2001F

$22000

$2201F

$24000

$2E000

$2E01F

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 0

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 1

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 7

Figure 7-4. Coprocessor Address Map in MC68020/EC020 CPU Space

31 15 0

$00

$04

$08

$0C

$10

$14

$18

$1C

OPERAND

(RESERVED)

INSTRUCTION ADDRESS

OPERAND ADDRESS

REGISTER SELECT

CONDITION(RESERVED)

COMMANDOPERATION WORD

RESTORESAVE

CONTROLRESPONSE

16

Figure 7-5. Coprocessor Interface Register Set Map

7.2 COPROCESSOR INSTRUCTION TYPES

The M68000 coprocessor interface supports four categories of coprocessor instructions:
general, conditional, context save, and context restore. The category name indicates the
type of operations provided by the coprocessor instructions in the category. The
instruction category also determines the CIR accessed by the MC68020/EC020 to initiate
instruction and communication protocols between the main processor and the
coprocessor necessary for instruction execution.

During the execution of instructions in the general or conditional categories, the
coprocessor uses the set of coprocessor response primitive codes defined for the M68000
coprocessor interface to request services from and indicate status to the main processor.
During the execution of the instructions in the context save and context

7-8 M68020 USER’S MANUAL MOTOROLA

restore categories, the coprocessor uses the set of coprocessor format codes defined for
the M68000 coprocessor interface to indicate its status to the main processor.

7.2.1 Coprocessor General Instructions

The coprocessor general instruction category contains data processing instructions and
other general-purpose instructions for a given coprocessor.

7.2.1.1 FORMAT. Figure 7-6 shows the format of a coprocessor general instruction.

COPROCESSOR COMMAND

1

15

1

14

1

13

1

12 11

CpID

9

0

8

0

7

0

6 5

EFFECTIVE ADDRESS

0

OPTIONAL EFFECTIVE ADDRESS OR COPROCESSOR-DEFINED EXTENSION WORDS

Figure 7-6. Coprocessor General Instruction Format (cpGEN)

The mnemonic cpGEN is a generic mnemonic used in this discussion for all general
instructions. The mnemonic of a specific general instruction usually suggests the type of
operation it performs and the coprocessor to which it applies. The actual mnemonic and
syntax used to represent a coprocessor instruction is determined by the syntax of the
assembler or compiler that generates the object code.

A coprocessor general instruction consists of at least two words. The first word of the
instruction is an F-line operation code (bits 15–12 = 1111). The CpID field of the F-line
operation code is used during the coprocessor access to indicate which coprocessor in
the system executes the instruction. During accesses to the CIRs (refer to 7.1.4.2
Processor-Coprocessor Interface), the processor places the CpID on address lines
A15–A13.

Bits 8–6 = 000 of the first word of an instruction indicate that the instruction is in the
general instruction category. Bits 5–0 of the F-line operation code sometimes encode a
standard M68000 effective address specifier (refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual). During the execution of a cpGEN instruction, the
coprocessor can use a coprocessor response primitive to request that the
MC68020/EC020 perform an effective address calculation necessary for that instruction.
Using the effective address specifier field of the F-line operation code, the processor then
determines the effective addressing mode. If a coprocessor never requests effective
address calculation, bits 5–0 can have any value (don't cares).

The second word of the general type instruction is the coprocessor command word. The
main processor writes this command word to the command CIR to initiate execution of the
instruction by the coprocessor.

An instruction in the coprocessor general instruction category optionally includes a
number of extension words following the coprocessor command word. These words can
provide additional information required for the coprocessor instruction. For example, if

MOTOROLA M68020 USER’S MANUAL 7-9

the coprocessor requests that the MC68020/EC020 calculate an effective address during
coprocessor instruction execution, information required for the calculation must be
included in the instruction format as effective address extension words.

7.2.1.2 PROTOCOL. The execution of a cpGEN instruction follows the protocol shown in
Figure 7-7. The main processor initiates communication with the coprocessor by writing
the instruction command word to the command CIR. The coprocessor decodes the
command word to begin processing the cpGEN instruction. Coprocessor design
determines the interpretation of the coprocessor command word; the MC68020/EC020
does not attempt to decode it.

While the coprocessor is executing an instruction, it requests any required services from
and communicates status to the main processor by placing coprocessor response
primitive codes in the response CIR. After writing to the command CIR, the main
processor reads the response CIR and responds appropriately. When the coprocessor
has completed the execution of an instruction or no longer needs the services of the main
processor to execute the instruction, it provides a response to release the main processor.
The main processor can then execute the next instruction in the instruction stream.
However, if a trace exception is pending, the MC68020/EC020 does not terminate
communication with the coprocessor until the coprocessor indicates that it has completed
all processing associated with the cpGEN instruction (refer to 7.5.2.5 Trace Exceptions).

The coprocessor interface protocol shown in Figure 7-7 allows the coprocessor to define
the operation of each coprocessor general type instruction. That is, the main processor
initiates the instruction execution by writing the instruction command word to the
command CIR and by reading the response CIR to determine its next action. The
execution of the coprocessor instruction is then defined by the internal operation of the
coprocessor and by its use of response primitives to request services from the main
processor. This instruction protocol allows a wide range of operations to be implemented
in the general instruction category.

7-10 M68020 USER’S MANUAL MOTOROLA

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR COMMAND WORD TO
COMMAND CIR

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE
FROM RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE
INDICATES "COME AGAIN") GO TO M3
(SEE NOTE 1)

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2)

C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

C2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW
1) REQUEST SERVICE BY PLACING APPROPRIATE

RESPONSE PRIMITIVE CODE IN RESPONSE CIR
2) RECEIVE SERVICE FROM MAIN PROCESSOR

C3 REFLECT "NO COME AGAIN" IN RESPONSE CIR

C4 COMPLETE COMMAND EXECUTION

C5 REFLECT "PROCESSING FINISHED" STATUS IN
RESPONSE CIR

MAIN PROCESSOR COPROCESSOR

NOTES: 1. "Come Again" indicates that further service of the main processor is being requested by the coprocessor.
2. The next instruction should be the operation word pointed to by the ScanPC at this point. The operation of
				the MC68020/EC020 ScanPC is discussed in 7.4.1 ScanPC.

Figure 7-7. Coprocessor Interface Protocol
for General Category Instructions

7.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction
based on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of
both the main processor and the coprocessor hardware. The condition specified for the
instruction is related to the coprocessor operation and is therefore evaluated by the
coprocessor. However, the instruction completion following the condition evaluation is
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Figure 7-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition
selector to the condition CIR. The coprocessor decodes the condition selector to
determine the condition to evaluate. The coprocessor can use response primitives to
request that the main processor provide services required for the condition evaluation.

MOTOROLA M68020 USER’S MANUAL 7-11

After evaluating the condition, the coprocessor returns a true/false indicator to the main
processor by placing a null primitive (refer to 7.4.4 Null Primitive) in the response CIR.
The main processor completes the coprocessor instruction execution when it receives the
condition indicator from the coprocessor.

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR CONDITION SELECTOR TO
CO NDITION CIR

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE
FROM RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE
INDICATES "COME AGAIN") GO TO M3
(SEE NOTE)

M4 COMPLETE EXECUTION OF INSTRUCTION BASED
ON THE TRUE/FALSE CONDITION INDICATOR
RETURNED IN THE RESPONSE CIR

C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

C2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW
1) REQUEST SERVICE BY PLACING APPROPRIATE

RESPONSE PRIMITIVE CODE IN RESPONSE CIR
2) RECEIVE SERVICE FROM MAIN PROCESSOR

C3 COMPLETE CONDITION EVALUATION

C4 REFLECT "NO COME AGAIN" STATUS WITH TRUE/FALSE
CONDITION INDICATOR IN RESPONSE CIR

MAIN PROCESSOR COPROCESSOR

NOTE: All coprocessor response primitives, except the Null primitive, that allow the "Come Again" primitive attribute 					
must indicate "Come Again" when used during the execution of a conditional category instruction. If a "Come 					
Again" attribute is not indicated in one of these primitives, the main processor will initiate protocol violation 											
exception processing (see 7.5.2.1 Protocol Violations).

Figure 7-8. Coprocessor Interface Protocol
for Conditional Category Instructions

7-12 M68020 USER’S MANUAL MOTOROLA

7.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION. The conditional
instruction category includes two formats of the M68000 family branch instruction. These
instructions branch on conditions related to the coprocessor operation. They execute
similarly to the conditional branch instructions provided in the M68000 family instruction
set.

7.2.2.1.1 Format. Figure 7-9 shows the format of the branch on coprocessor condition
instruction that provides a word-length displacement. Figure 7-10 shows the format of this
instruction that includes a long-word displacement.

DISPLACEMENT

1

15

1

14

1

13

1

12 11

CpID

9

0

8

1

7

0

6 5

CONDITION SELECTOR

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

Figure 7-9. Branch on Coprocessor Condition
Instruction Format (cpBcc.W)

DISPLACEMENT — HIGH

1

15

1

14

1

13

1

12 11

CpID

9

0

8

1

7

1

6 5

CONDITION SELECTOR

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT — LOW

Figure 7-10. Branch on Coprocessor Condition
Instruction Format (cpBcc.L)

The first word of the branch on coprocessor condition instruction is the F-line operation
word. Bits 15–12 = 1111 and bits 11–9 contain the CpID code of the coprocessor that is to
evaluate the condition. The value in bits 8–6 identifies either the word or the long-word
displacement format of the branch instruction, which is specified by the cpBcc.W or
cpBcc.L mnemonic, respectively. Bits 5–0 of the F-line operation word contain the
coprocessor condition selector field. The MC68020/EC020 writes the entire operation
word to the condition CIR to initiate execution of the branch instruction by the
coprocessor. The coprocessor uses bits 5–0 to determine which condition to evaluate.

If the coprocessor requires additional information to evaluate the condition, the branch
instruction format can include this information in extension words. Following the F-line
operation word, the number of extension words is determined by the coprocessor design.
The final word(s) of the cpBcc instruction format contains the displacement used by the
main processor to calculate the destination address when the branch is taken.

7.2.2.1.2 Protocol. Figure 7-8 shows the protocol for the cpBcc.L and cpBcc.W
instructions. The main processor initiates the instruction by writing the F-line operation
word to the condition CIR to transfer the condition selector to the coprocessor. The main

MOTOROLA M68020 USER’S MANUAL 7-13

processor then reads the response CIR to determine its next action. The coprocessor can

7-14 M68020 USER’S MANUAL MOTOROLA

return a response primitive to request services necessary to evaluate the condition. If the
coprocessor returns the false condition indicator, the main processor executes the next
instruction in the instruction stream. If the coprocessor returns the true condition indicator,
the main processor adds the displacement to the MC68020/EC020 scanPC (refer to 7.4.1
ScanPC) to determine the address of the next instruction for the main processor to
execute. The scanPC must be pointing to the location of the first word of the displacement
in the instruction stream when the address is calculated. The displacement is a twos-
complement integer that can be either a 16-bit word or a 32-bit long word. The main
processor sign-extends the 16-bit displacement to a long-word value for the destination
address calculation.

7.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION. The set on coprocessor
condition instruction sets or resets a flag (a data alterable byte) according to a condition
evaluated by the coprocessor. The operation of this instruction type is similar to the
operation of the Scc instruction in the M68000 family instruction set. Although the Scc
instruction and the cpScc instruction do not explicitly cause a change of program flow,
they are often used to set flags that control program flow.

7.2.2.2.1 Format. Figure 7-11 shows the format of the set on coprocessor condition
instruction, denoted by the cpScc mnemonic.

1

15

1

14

1

13

1

12 11

CpID

9

0

8

0

7

1

6 5

EFFECTIVE ADDRESS

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS (0–5 WORDS)

CONDITION SELECTORRESERVED

Figure 7-11. Set on Coprocessor Condition Instruction Format (cpScc)

The first word of the cpScc instruction, the F-line operation word, contains the CpID field in
bits 11–9 and 001 in bits 8–6 to identify the cpScc instruction. Bits 5–0 of the F-line
operation word are used to encode an M68000 family effective addressing mode (refer to
M68000PM/AD, M68000 Family Programmer’s Reference Manual).

The second word of the cpScc instruction format contains the coprocessor condition
selector field in bits 5–0. Bits 15–6 of this word are reserved by Motorola and should be
zero to ensure compatibility with future M68000 products. This word is written to the
condition CIR to initiate execution of the cpScc instruction.

If the coprocessor requires additional information to evaluate the condition, the instruction
can include extension words to provide this information. The number of these extension
words, which follow the word containing the coprocessor condition selector field, is
determined by the coprocessor design.

MOTOROLA M68020 USER’S MANUAL 7-15

The final portion of the cpScc instruction format contains zero to five effective address
extension words. These words contain any additional information required to calculate the
effective address specified by bits 5–0 of the F-line operation word.

7.2.2.2.2 Protocol. Figure 7-8 shows the protocol for the cpScc instruction. The
MC68020/EC020 transfers the condition selector to the coprocessor by writing the word
following the F-line operation word to the condition CIR. The main processor then reads
the response CIR to determine its next action. The coprocessor can return a response
primitive to request services necessary to evaluate the condition. The operation of the
cpScc instruction depends on the condition evaluation indicator returned to the main
processor by the coprocessor. When the coprocessor returns the false condition indicator,
the main processor evaluates the effective address specified by bits 5–0 of the F-line
operation word and sets the byte at that effective address to FALSE (all bits cleared).
When the coprocessor returns the true condition indicator, the main processor sets the
byte at the effective address to TRUE (all bits set to one).

7.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT, AND BRANCH
INSTRUCTION. The operation of the test coprocessor condition, decrement, and branch
instruction is similar to that of the DBcc instruction provided in the M68000 family
instruction set. This operation uses a coprocessor-evaluated condition and a loop counter
in the main processor. It is useful for implementing DO UNTIL constructs used in many
high-level languages.

7.2.2.3.1 Format. Figure 7-12 shows the format of the test coprocessor condition,
decrement, and branch instruction, denoted by the cpDBcc mnemonic.

1

15

1

14

1

13

1

12 11

CpID

9

0

8

0

7

1

6 5

REGISTER

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT

CONDITION SELECTOR

0

5

0

4

1

3 2

(RESERVED)

Figure 7-12. Test Coprocessor Condition, Decrement, and Branch
Instruction Format (cpDBcc)

The first word of the cpDBcc instruction, F-line operation word, contains the CpID field in
bits 11–9 and 001001 in bits 8–3 to identify the cpDBcc instruction. Bits 2–0 of this
operation word specify the main processor data register used as the loop counter during
the execution of the instruction.

The second word of the cpDBcc instruction format contains the coprocessor condition
selector field in bits 5–0 and should contain zeros in bits 15–6 (reserved by Motorola) to
maintain compatibility with future M68000 products. This word is written to the condition
CIR to initiate execution of the cpDBcc instruction.

7-16 M68020 USER’S MANUAL MOTOROLA

If the coprocessor requires additional information to evaluate the condition, the cpDBcc
instruction can include this information in extension words. These extension words follow
the word containing the coprocessor condition selector field in the cpDBcc instruction
format.

The last word of the instruction contains the displacement for the cpDBcc instruction. This
displacement is a twos-complement 16-bit value that is sign-extended to long-word size
when it is used in a destination address calculation.

7.2.2.3.2 Protocol. Figure 7-8 shows the protocol for the cpDBcc instructions. The
MC68020/EC020 transfers the condition selector to the coprocessor by writing the word
following the operation word to the condition CIR. The main processor then reads the
response CIR to determine its next action. The coprocessor can use a response primitive
to request any services necessary to evaluate the condition. If the coprocessor returns the
true condition indicator, the main processor executes the next instruction in the instruction
stream. If the coprocessor returns the false condition indicator, the main processor
decrements the low-order word of the register specified by bits 2–0 of the F-line operation
word. If this register contains minus one (–1) after being decremented, the main processor
executes the next instruction in the instruction stream. If the register does not contain
minus one (–1) after being decremented, the main processor branches to the destination
address to continue instruction execution.

The MC68020/EC020 adds the displacement to the scanPC (refer to 7.4.1 ScanPC) to
determine the address of the next instruction. The scanPC must point to the 16-bit
displacement in the instruction stream when the destination address is calculated.

7.2.2.4 TRAP ON COPROCESSOR CONDITION INSTRUCTION. The trap on
coprocessor condition instruction allows the programmer to initiate exception processing
based on conditions related to the coprocessor operation.

7.2.2.4.1 Format. Figure 7-13 shows the format of the trap on coprocessor condition
instruction, denoted by the cpTRAPcc mnemonic.

1

15

1

14

1

13

1

12 11

CpID

9

0

8

0

7

1

6 5

OPMODE

0

OPTIONAL COPROCESSOR-DEFINED EXTENSION WORDS

OPTIONAL WORD

CONDITION SELECTOR

1

5

1

4

1

3 2

(RESERVED)

OR LONG-WORD OPERAND

Figure 7-13. Trap on Coprocessor Condition
Instruction Format (cpTRAPcc)

The first word of the cpTRAPcc instruction, the F-line operation word contains the CpID
field in bits 11–9 and 001111 in bits 8–3 to identify the cpTRAPcc instruction. Bits 2–0 of
the cpTRAPcc F-line operation word specify the opmode, which selects the instruction
format. The instruction format can include zero, one, or two operand words.

MOTOROLA M68020 USER’S MANUAL 7-17

The second word of the cpTRAPcc instruction format contains the coprocessor condition
selector in bits 5–0 and should contain zeros in bits 15–6 (these bits are reserved by
Motorola) to maintain compatibility with future M68000 products. This word is written to the
condition CIR to initiate execution of the cpTRAPcc instruction.

If the coprocessor requires additional information to evaluate a condition, the instruction
can include this information in extension words. These extension words follow the word
containing the coprocessor condition selector field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the coprocessor-defined
extension words. These operand words are not explicitly used by the MC68020/EC020,
but can be used to contain information referenced by the cpTRAPcc exception handling
routines. The valid encodings for bits 2–0 of the F-line operation word and the
corresponding numbers of operand words are listed in Table 7-1. Other encodings of
these bits are invalid for the cpTRAPcc instruction.

Table 7-1. cpTRAPcc Opmode Encodings

Opmode Operand Words in Instruction Format

010 One

011 Two

100 Zero

7.2.2.4.2 Protocol. Figure 7-8 shows the protocol for the cpTRAPcc instructions. The
MC68020/EC020 transfers the condition selector to the coprocessor by writing the word
following the operation word to the condition CIR. The main processor then reads the
response CIR to determine its next action. The coprocessor can return a response
primitive to request any services necessary to evaluate the condition. If the coprocessor
returns the true condition indicator, the main processor initiates exception processing for
the cpTRAPcc exception (refer to 7.5.2.4 cpTRAPcc Instruction Traps). If the
coprocessor returns the false condition indicator, the main processor executes the next
instruction in the instruction stream.

7.2.3 Coprocessor Context Save and Restore Instructions

The coprocessor context save and context restore instruction categories in the M68000
coprocessor interface support multitasking programming environments. In a multitasking
environment, the context of a coprocessor may need to be changed asynchronously with
respect to the operation of that coprocessor. That is, the coprocessor may be interrupted
at any point in the execution of an instruction in the general or conditional category to
begin context change operations.

In contrast to the general and conditional instruction categories, the context save and
context restore instruction categories do not use the coprocessor response primitives. A
set of format codes defined by the M68000 coprocessor interface communicates status

7-18 M68020 USER’S MANUAL MOTOROLA

information to the main processor during the execution of these instructions. These
coprocessor format codes are discussed in detail in 7.2.3.2 Coprocessor Format Words.

7.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and
context restore (cpRESTORE) instructions transfer an internal coprocessor state frame
between memory and a coprocessor. This internal coprocessor state frame represents the
state of coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is
possible to interrupt coprocessor operation, save the context associated with the current
operation, and initiate coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor internal state frame as a sequence of long-
word entries in memory. Figure 7-14 shows the format of a coprocessor state frame. The
format and length fields of the coprocessor state frame format comprise the format word.
During execution of the cpSAVE instruction, the MC68020/EC020 calculates the state
frame effective address from information in the operation word of the instruction and
stores a format word at this effective address. The processor writes the long words that
form the coprocessor state frame to descending memory addresses, beginning with the
address specified by the sum of the effective address and the length field multiplied by
four. During execution of the cpRESTORE instruction, the MC68020/EC020 reads the
state frame from ascending addresses beginning with the effective address specified in
the instruction operation word.

31

FORMAT

24 23

LENGTH

16 15

(UNUSED, RESERVED)

0

COPROCESSOR-DEPENDENT INFORMATION

0

SAVE
ORDER

0

RESTORE
ORDER

n 1

n–1 2

n–2 3

1 n

Figure 7-14. Coprocessor State Frame Format in Memory

The processor stores the coprocessor format word at the lowest address of the state
frame in memory, and this word is the first word transferred for both the cpSAVE and
cpRESTORE instructions. The word following the format word does not contain
information relevant to the coprocessor state frame, but serves to keep the information in
the state frame a multiple of four bytes in size. The number of entries following the format
word (at higher addresses) is determined by the format word length for a given
coprocessor state.

MOTOROLA M68020 USER’S MANUAL 7-19

The information in a coprocessor state frame describes a context of operation for that
coprocessor. This description of a coprocessor context includes the program invisible
state information and, optionally, the program visible state information. The program
invisible state information consists of any internal registers or status information that
cannot be accessed by the program but is necessary for the coprocessor to continue its
operation at the point of suspension. Program visible state information includes the
contents of all registers that appear in the coprocessor programming model and that can
be directly accessed using the coprocessor instruction set. The information saved by the
cpSAVE instruction must include the program invisible state information. If cpGEN
instructions are provided to save the program visible state of the coprocessor, the
cpSAVE and cpRESTORE instructions should only transfer the program invisible state
information to minimize interrupt latency during a save or restore operation.

7.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates status
information to the main processor during the execution of cpSAVE and cpRESTORE
instructions using coprocessor format words. The format words defined for the M68000
coprocessor interface are listed in Table 7-2.

Table 7-2. Coprocessor Format Word Encodings

Format Code Length Meaning

$00 $xx Empty/Reset

$01 $xx Not Ready, Come Again

$02 $xx Invalid Format

$03–$OF $xx Undefined, Reserved

$10–$FF Length Valid Format, Coprocessor Defined

xx—Don’t care

The upper byte of the coprocessor format word contains the code used to communicate
coprocessor status information to the main processor. The MC68020/EC020 recognizes
four types of format words: empty/reset, not ready, invalid format, and valid format. The
MC68020/EC020 interprets the reserved format codes ($03–$0F) as invalid format words.
The lower byte of the coprocessor format word specifies the size in bytes (which must be
a multiple of four) of the coprocessor state frame. This value is only relevant when the
code byte contains the valid format code (refer to 7.2.3.2.4 Valid Format Word).

7.2.3.2.1 Empty/Reset Format Word. The coprocessor returns the empty/reset format
code during a cpSAVE instruction to indicate that the coprocessor contains no user-
specific information. That is, no coprocessor instructions have been executed since either
a previous cpRESTORE of an empty/reset format code or the previous hardware reset. If
the main processor reads the empty/reset format word from the save CIR during the
initiation of a cpSAVE instruction, it stores the format word at the effective address
specified in the cpSAVE instruction and executes the next instruction.

7-20 M68020 USER’S MANUAL MOTOROLA

When the main processor reads the empty/reset format word from memory during the
execution of the cpRESTORE instruction, it writes the format word to the restore CIR. The
main processor then reads the restore CIR and, if the coprocessor returns the empty/reset
format word, executes the next instruction. The main processor can then initialize the
coprocessor by writing the empty/reset format code to restore the CIR. When the
coprocessor receives the empty/reset format code, it terminates any current operations
and waits for the main processor to initiate the next coprocessor instruction. In particular,
after the cpRESTORE of the empty/reset format word, the execution of a cpSAVE should
cause the empty/reset format word to be returned when a cpSAVE instruction is executed
before any other coprocessor instructions. Thus, an empty/reset state frame consists only
of the format word and the following reserved word in memory (refer to Figure 7-14).

7.2.3.2.2 Not-Ready Format Word. When the main processor initiates a cpSAVE
instruction by reading the save CIR, the coprocessor can delay the save operation by
returning a not-ready format word. The main processor then services any pending
interrupts and reads the save CIR again. The not-ready format word delays the save
operation until the coprocessor is ready to save its internal state. The cpSAVE instruction
can suspend execution of a general or conditional coprocessor instruction; the
coprocessor can resume execution of the suspended instruction when the appropriate
state is restored with a cpRESTORE. If no further main processor services are required to
complete coprocessor instruction execution, it may be more efficient to complete the
instruction and thus reduce the size of the saved state. The coprocessor designer should
consider the efficiency of completing the instruction or of suspending and later resuming
the instruction when the main processor executes a cpSAVE instruction.

When the main processor initiates a cpRESTORE instruction by writing a format word to
the restore CIR, the coprocessor should usually terminate any current operations and
restore the state frame supplied by the main processor. Thus, the not-ready format word
should usually not be returned by the coprocessor during the execution of a cpRESTORE
instruction. If the coprocessor must delay the cpRESTORE operation for any reason, it
can return the not-ready format word when the main processor reads the restore CIR. If
the main processor reads the not-ready format word from the restore CIR during the
cpRESTORE instruction, it reads the restore CIR again without servicing any pending
interrupts.

7.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR to initiate
a cpRESTORE instruction does not describe a valid coprocessor state frame, the
coprocessor returns the invalid format word in the restore CIR. When the main processor
reads this format word during the cpRESTORE instruction, it sets the abort bit in the
control CIR and initiates format error exception processing.

A coprocessor usually should not place an invalid format word in the save CIR when the
main processor initiates a cpSAVE instruction. A coprocessor, however, may not be able
to support the initiation of a cpSAVE instruction while it is executing a previously initiated
cpSAVE or cpRESTORE instruction. In this situation, the coprocessor can return the
invalid format word when the main processor reads the save CIR to initiate the cpSAVE
instruction while either another cpSAVE or cpRESTORE instruction is executing. If the

MOTOROLA M68020 USER’S MANUAL 7-21

main processor reads an invalid format word from the save CIR, it writes the abort mask to
the control CIR and initiates format error exception processing (refer to 7.5.1.5 Format
Errors).

7.2.3.2.4 Valid Format Word. When the main processor reads a valid format word from
the save CIR during the cpSAVE instruction, it uses the length field to determine the size
of the coprocessor state frame to save. The length field in the lower eight bits of a format
word is relevant only in a valid format word. During the cpRESTORE instruction, the main
processor uses the length field in the format word read from the effective address in the
instruction to determine the size of the coprocessor state frame to restore.

The length field of a valid format word, representing the size of the coprocessor state
frame, must contain a multiple of four. If the main processor detects a value that is not a
multiple of four in a length field during the execution of a cpSAVE or cpRESTORE
instruction, the main processor writes the abort mask (refer to 7.2.3.2.3 Invalid Format
Word) to the control CIR and initiates format error exception processing.

7.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coprocessor
context save instruction category consists of one instruction. The coprocessor context
save instruction, denoted by the cpSAVE mnemonic, saves the context of a coprocessor
dynamically without relation to the execution of coprocessor instructions in the general or
conditional instruction categories. During the execution of a cpSAVE instruction, the
coprocessor communicates status information to the main processor by using the
coprocessor format codes.

7.2.3.3.1 Format. Figure 7-15 shows the format of the cpSAVE instruction. The first word
of the instruction, the F-line operation word, contains the CpID code in bits 11–9 and an
M68000 effective address code in bits 5–0. The effective address encoded in the cpSAVE
instruction is the address at which the state frame associated with the current context of
the coprocessor is saved in memory.

1

15

1

14

1

13

1

12 11

CpID

9

1

8

0

7

0

6 5

EFFECTIVE ADDRESS

0

EFFECTIVE ADDRESS EXTENSION WORDS (0–5 WORDS)

Figure 7-15. Coprocessor Context Save Instruction Format (cpSAVE)

The control alterable and predecrement addressing modes are valid for the cpSAVE
instruction. Other addressing modes cause the MC68020/EC020 to initiate F-line emulator
exception processing as described in 7.5.2.2 F-Line Emulator Exceptions.

The instruction can include as many as five effective address extension words following
the F-line operation word. These words contain any additional information required to
calculate the effective address specified by bits 5–0 of the F-line operation word.

7-22 M68020 USER’S MANUAL MOTOROLA

7.2.3.3.2 Protocol. Figure 7-16 shows the protocol for the coprocessor context save
instruction. The main processor initiates execution of the cpSAVE instruction by reading
the save CIR. Thus, the cpSAVE instruction is the only coprocessor instruction that begins
by reading from a CIR. All other coprocessor instructions write to a CIR to initiate
execution of the instruction by the coprocessor. The coprocessor communicates status
information associated with the context save operation to the main processor by placing
coprocessor format codes in the save CIR.

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 READ SAVE CIR TO INITIATE THE cpSAVE INSTRUCTION

M3 IF (FORMAT = NOT READY) DO STEPS 1) AND 2) BELOW
1) SERVICE PENDING INTERRUPTS
2) GO TO M2

M4 EVALUATE EFFECTIVE ADDRESS SPECIFIED IN
F-LINE OPWORD AND STORE FORMAT WORD AT
EFFECTIVE ADDRESS

M5 IF (FORMAT = EMPTY) GO TO M6 ELSE, TRANSFER
NUMBER OF BYTES INDICATED IN FORMAT WORD
FROM OPERAND CIR TO EFFECTIVE ADDRESS

M6 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

MAIN PROCESSOR COPROCESSOR

Figure 7-16. Coprocessor Context Save Instruction Protocol

If the coprocessor is not ready to suspend its current operation when the main processor
reads the save CIR, it returns a not-ready format code. The main processor services any
pending interrupts and then reads the save CIR again. After placing the not-ready format
code in the save CIR, the coprocessor should either suspend or complete the instruction it
is currently executing.

Once the coprocessor has suspended or completed the instruction it is executing, it places
a format code representing the internal coprocessor state in the save CIR. When the main
processor reads the save CIR, it transfers the format word to the effective address
specified in the cpSAVE instruction. The lower byte of the coprocessor format word
specifies the number of bytes of state information, not including the format word and
associated null word, to be transferred from the coprocessor to the effective address
specified. If the state information is not a multiple of four bytes in size, the
MC68020/EC020 initiates format error exception processing (refer to 7.5.1.5 Format
Errors). The coprocessor and main processor coordinate the transfer of the internal state
of the coprocessor using the operand CIR. The MC68020/EC020 completes the
coprocessor context save by repeatedly reading the operand CIR and writing the

MOTOROLA M68020 USER’S MANUAL 7-23

information obtained into memory until all the bytes specified in the coprocessor format
word have been transferred. Following a cpSAVE instruction, the coprocessor should be
in an idle state—that is, not executing any coprocessor instructions.

The cpSAVE instruction is a privileged instruction. When the MC68020/EC020 identifies a
cpSAVE instruction, it checks the S-bit in the SR to determine whether it is operating at
the supervisor privilege level. If the MC68020/EC020 attempts to execute a cpSAVE
instruction while at the user privilege level (S-bit in the SR is clear), it initiates privilege
violation exception processing without accessing any of the CIRs (refer to 7.5.2.3
Privilege Violations).

The MC68020/EC020 initiates format error exception processing if it reads an invalid
format word (or a valid format word whose length field is not a multiple of four bytes) from
the save CIR during the execution of a cpSAVE instruction (refer to 7.2.3.2.3 Invalid
Format Word). The MC68020/EC020 writes an abort mask (refer to 7.2.3.2.3 Invalid
Format Word) to the control CIR to abort the coprocessor instruction prior to beginning
exception processing. Figure 7-16 does not include this case since a coprocessor usually
returns either a not-ready or a valid format code in the context of the cpSAVE instruction.
The coprocessor can return the invalid format word, however, if a cpSAVE is initiated
while the coprocessor is executing a cpSAVE or cpRESTORE instruction and the
coprocessor is unable to support the suspension of these two instructions.

7.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000
coprocessor context restore instruction category includes one instruction. The
coprocessor context restore instruction, denoted by the cpRESTORE mnemonic, forces a
coprocessor to terminate any current operations and to restore a former state. During
execution of a cpRESTORE instruction, the coprocessor can communicate status
information to the main processor by placing format codes in the restore CIR.

7.2.3.4.1 Format. Figure 7-17 shows the format of the cpRESTORE instruction.

1

15

1

14

1

13

1

12 11

CpID

9

1

8

0

7

1

6 5

EFFECTIVE ADDRESS

0

EFFECTIVE ADDRESS EXTENSION WORDS (0–5 WORDS)

Figure 7-17. Coprocessor Context Restore
Instruction Format (cpRESTORE)

The first word of the instruction, the F-line operation word, contains the CpID code in bits
11–9 and an M68000 effective addressing code in bits 5–0. The effective address
encoded in the cpRESTORE instruction is the starting address in memory where the
coprocessor context is stored. The effective address is that of the coprocessor format
word that applies to the context to be restored to the coprocessor.

7-24 M68020 USER’S MANUAL MOTOROLA

The instruction can include as many as five effective address extension words following
the F-line operation word in the cpRESTORE instruction format. These words contain any
additional information required to calculate the effective address specified by bits 5–0 of
the F-line operation word.

All memory addressing modes except the predecrement addressing mode are valid.
Invalid effective address encodings cause the MC68020/EC020 to initiate F-line emulator
exception processing (refer to 7.5.2.2 F-Line Emulator Exceptions).

7.2.3.4.2 Protocol. Figure 7-18 shows the protocol for the coprocessor context restore
instruction. When the main processor executes a cpRESTORE instruction, it first reads
the coprocessor format word from the effective address in the instruction. This format
word contains a format code and a length field. During cpRESTORE operation, the main
processor retains a copy of the length field to determine the number of bytes to be
transferred to the coprocessor during the cpRESTORE operation and writes the format
word to the restore CIR to initiate the coprocessor context restore.

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 READ COPROCESSOR FORMAT CODE FROM
EFFECTIVE ADDRESS SPECIFIED IN OPERATION WORD

M3 WRITE COPROCESSOR FORMAT WORD TO
RESTORE CIR

M4 READ RESTORE CIR

M5 IF (FORMAT = INVALID FORMAT) WRITE $0001 ABORT
CODE TO CONTROL CIR AND INITIATE FORMAT ERROR
EXCEPTION PROCESSING (SEE NOTE 1)

M6 IF (FORMAT = EMPTY/RESET) GO TO M7; ELSE, TRANSFER
NUMBER OF BYTES SPECIFIED BY FORMAT WORD TO
OPERAND CIR (SEE NOTE 2)

M7 PROCEED WITH EXECUTION OF NEXT INSTRUCTION

C1 TERMINATE CURRENT OPERATIONS AND EVALUATE
FORMAT WORD

C2 IF (INVALID FORMAT) PLACE INVALID FORMAT CODE
IN THE RESTORE CIR

C3 IF (VALID FORMAT) RECEIVE NUMBER OF BYTES
INDICATED IN FORMAT WORD THROUGH OPERAND CIR

MAIN PROCESSOR COPROCESSOR

NOTES: 1. See 7.6.1.5 Format Error.
2. The MC68020/EC020 uses the length field in the format word read during M2 to determine the number of
					bytes to read from memory and write to the operand CIR.

Figure 7-18. Coprocessor Context Restore Instruction Protocol

When the coprocessor receives the format word in the restore CIR, it must terminate any
current operations and evaluate the format word. If the format word represents a valid
coprocessor context as determined by the coprocessor design, the coprocessor returns
the format word to the main processor through the restore CIR and prepares to receive
the number of bytes specified in the format word through its operand CIR.

MOTOROLA M68020 USER’S MANUAL 7-25

After writing the format word to the restore CIR, the main processor continues
cpRESTORE dialog by reading that same register. If the coprocessor returns a valid
format word, the main processor transfers the number of bytes specified by the format
word at the effective address to the operand CIR.

If the format word written to the restore CIR does not represent a valid coprocessor state
frame, the coprocessor places an invalid format word in the restore CIR and terminates
any current operations. The main processor receives the invalid format code, writes an
abort mask (refer to 7.2.3.2.3 Invalid Format Word) to the control CIR, and initiates
format error exception processing (refer to 7.5.1.5 Format Errors).

The cpRESTORE instruction is a privileged instruction. When the MC68020/EC020
accesses a cpRESTORE instruction, it checks the S-bit in the SR. If the MC68020/EC020
attempts to execute a cpRESTORE instruction while at the user privilege level (S-bit in the
SR is clear), it initiates privilege violation exception processing without accessing any of
the CIRs (refer to 7.5.2.3 Privilege Violations).

7.3 COPROCESSOR INTERFACE REGISTER SET

The instructions of the M68000 coprocessor interface use registers of the CIR set to
communicate with the coprocessor. These CIRs are not directly related to the coprocessor
programming model.

Figure 7-4 is a memory map of the CIR set. The response, control, save, restore,
command, condition, and operand registers must be included in a coprocessor interface
that implements all four coprocessor instruction categories. The complete register model
must be implemented if the system uses all coprocessor response primitives defined for
the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

7.3.1 Response CIR

The coprocessor uses the 16-bit response CIR to communicate all service requests
(coprocessor response primitives) to the main processor. The main processor reads the
response CIR to receive the coprocessor response primitives during the execution of
instructions in the general and conditional instruction categories. The offset from the base
address of the CIR set for the response CIR is $00. Refer to 7.4 Coprocessor Response
Primitives for additional information.

7.3.2 Control CIR

The main processor writes to the 2-bit control CIR to acknowledge coprocessor-requested
exception processing or to abort the execution of a coprocessor instruction. The offset
from the base address of the CIR set for the control CIR is $02. The control CIR occupies
the two least significant bits of the word at that offset. The 14 most significant bits of the
word are undefined and reserved by Motorola. Figure 7-19 shows the format of this
register.

7-26 M68020 USER’S MANUAL MOTOROLA

15

(UNDEFINED, RESERVED)

2

XA

1

AB

0

Figure 7-19. Control CIR Format

When the MC68020/EC020 receives one of the three take exception coprocessor
response primitives, it acknowledges the primitive by setting the exception acknowledge
bit (XA) in the control CIR. The MC68020/EC020 sets the abort bit (AB) in the control CIR
to abort any coprocessor instruction in progress. (The 14 most significant bits of both
masks are undefined.) The MC68020/EC020 aborts a coprocessor instruction when it
detects one of the following exception conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in response to a
supervisor check primitive

• A format error exception when it receives an invalid format word or a valid format
word that contains an invalid length

7.3.3 Save CIR

The coprocessor uses the 16-bit save CIR to communicate status and state frame format
information to the main processor while executing a cpSAVE instruction. The main
processor reads the save CIR to initiate execution of the cpSAVE instruction by the
coprocessor. The offset from the base address of the CIR set for the save CIR is $04.
Refer to 7.2.3.2 Coprocessor Format Words for more information on the save CIR.

7.3.4 Restore CIR

The main processor initiates the cpRESTORE instruction by writing a coprocessor format
word to the 16-bit restore register. During the execution of the cpRESTORE instruction,
the coprocessor communicates status and state frame format information to the main
processor through the restore CIR. The offset from the base address of the CIR set for the
restore CIR is $06. Refer to 7.2.3.2 Coprocessor Format Words for more information on
the restore CIR.

7.3.5 Operation Word CIR

The main processor writes the F-line operation word of the instruction in progress to the
16-bit operation word CIR in response to a transfer operation word coprocessor response
primitive (refer to 7.4.6 Transfer Operation Word Primitive). The offset from the base
address of the CIR set for the operation word CIR is $08.

7.3.6 Command CIR

The main processor initiates a coprocessor general category instruction by writing the
instruction command word, which follows the instruction F-line operation word in the
instruction stream, to the 16-bit command CIR. The offset from the base address of the
CIR set for the command CIR is $0A.

MOTOROLA M68020 USER’S MANUAL 7-27

7.3.7 Condition CIR

The main processor initiates a conditional category instruction by writing the condition
selector to bits 5–0 of the 16-bit condition CIR. Bits 15–6 are undefined and reserved by
Motorola. The offset from the base address of the CIR set for the condition CIR is $0E.
Figure 7-20 shows the format of the condition CIR.

15

(UNDEFINED, RESERVED)

0

CONDITION SELECTOR

56

Figure 7-20. Condition CIR Format

7.3.8 Operand CIR

When the coprocessor requests the transfer of an operand, the main processor performs
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base
address of the CIR set for the operand CIR is $10.

The MC68020/EC020 aligns all operands transferred to and from the operand CIR to the
most significant byte of this CIR. The processor performs a sequence of long-word
transfers to read or write any operand larger than four bytes. If the operand size is not a
multiple of four bytes, the portion remaining after the initial long-word transfer is aligned to
the most significant byte of the operand CIR. Figure 7-21 shows the operand alignment
used by the MC68020/EC020 when accessing the operand CIR.

031 7

NO TRANSFER

WORD OPERAND

THREE-BYTE OPERAND

LONG-WORD OPERAND

23 15

NO TRANSFER

NO TRANSFER

NO TRANSFEROPERAND

BYTE-

TEN-

BYTE OPERAND

24 16 8

Figure 7-21. Operand Alignment for Operand CIR Accesses

7-28 M68020 USER’S MANUAL MOTOROLA

7.3.9 Register Select CIR

When the coprocessor requests the transfer of one or more main processor registers or a
group of coprocessor registers, the main processor reads the 16-bit register select CIR to
identify the number or type of registers to be transferred. The offset from the base address
of the CIR set for the register select CIR is $14. The format of this register depends on the
primitive that is currently using it (refer to 7.4 Coprocessor Response Primitives).

7.3.10 Instruction Address CIR

When the coprocessor requests the address of the instruction it is currently executing, the
main processor transfers this address to the 32-bit instruction address CIR. Any transfer of
the scanPC is also performed through the instruction address CIR (refer to 7.4.17
Transfer Status Register and ScanPC Primitive). The offset from the base address of
the CIR set for the instruction address CIR is $18.

7.3.11 Operand Address CIR

When a coprocessor requests an operand address transfer between the main processor
and the coprocessor, the address is transferred through the 32-bit operand address CIR.
The offset from the base address of the CIR set for the operand address CIR is $1C.

7.4 COPROCESSOR RESPONSE PRIMITIVES

The response primitives are primitive instructions that the coprocessor issues to the main
processor during the execution of a coprocessor instruction. The coprocessor uses
response primitives to communicate status information and service requests to the main
processor. In response to an instruction command word written to the command CIR or a
condition selector in the condition CIR, the coprocessor returns a response primitive in the
response CIR. Within the general and conditional instruction categories, individual
instructions are distinguished by the operation of the coprocessor hardware and by
services specified by coprocessor response primitives and provided by the main
processor.

Subsequent paragraphs, beginning with 7.4.2 Coprocessor Response Primitive
General Format, consist of detailed descriptions of the M68000 coprocessor response
primitives supported by the MC68020/EC020. Any response primitive that the
MC68020/EC020 does not recognize causes it to initiate protocol violation exception
processing (refer to 7.5.2.1 Protocol Violations). This processing of undefined primitives
supports emulation of extensions to the M68000 coprocessor response primitive set by
the protocol violation exception handler. Exception processing related to the coprocessor
interface is discussed in 7.5 Exceptions.

MOTOROLA M68020 USER’S MANUAL 7-29

7.4.1 ScanPC

Several of the response primitives involve the scanPC, and many of them require the main
processor to use it while performing services requested. These paragraphs describe the
scanPC and its operation.

During the execution of a coprocessor instruction, the PC in the MC68020/EC020 contains
the address of the F-line operation word of that instruction. A second register, called the
scanPC, sequentially addresses the remaining words of the instruction.

If the main processor requires extension words to calculate an effective address or
destination address of a branch operation, it uses the scanPC to address these extension
words in the instruction stream. Also, if a coprocessor requests the transfer of extension
words, the scanPC addresses the extension words during the transfer. As the processor
references each word, it increments the scanPC to point to the next word in the instruction
stream. When an instruction has completed, the processor transfers the value in the
scanPC to the PC to address the operation word of the next instruction.

The value in the scanPC when the main processor reads the first response primitive after
beginning to execute an instruction depends on the instruction being executed. For a
cpGEN instruction, the scanPC points to the word following the coprocessor command
word. For the cpBcc instructions, the scanPC points to the word following the instruction
F-line operation word. For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC
points to the word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words with a general
or conditional instruction, the coprocessor must use these words consistently so that the
scanPC is updated accordingly during the instruction execution. Specifically, during the
execution of general category instructions, when the coprocessor terminates the
instruction protocol, the MC68020/EC020 assumes that the scanPC is pointing to the
operation word of the next instruction to be executed. During the execution of conditional
category instructions, when the coprocessor terminates the instruction protocol, the
MC68020/EC020 assumes that the scanPC is pointing to the word following the last of
any coprocessor-defined extension words in the instruction format.

7.4.2 Coprocessor Response Primitive General Format

The M68000 coprocessor response primitives are encoded in a 16-bit word that is
transferred to the main processor through the response CIR. Figure 7-22 shows the
format of the coprocessor response primitives.

15

FUNCTION

0

PARAMETERCA PC DR

14 13 12 8 7

Figure 7-22. Coprocessor Response Primitive Format

7-30 M68020 USER’S MANUAL MOTOROLA

The encoding of bits 12–0 of a coprocessor response primitive depends on the individual
primitive. Bits 15–13, however, specify optional additional operations that apply to most of
the primitives defined for the M68000 coprocessor interface.

The CA bit specifies the come-again operation of the main processor. When the main
processor reads a response primitive from the response CIR with the CA bit set, it
performs the service indicated by the primitive and then reads the response CIR again.
Using the CA bit, a coprocessor can transfer several response primitives to the main
processor during the execution of a single coprocessor instruction.

The PC bit specifies the pass program counter operation. When the main processor reads
a primitive with the PC bit set from the response CIR, the main processor immediately
passes the current value in its program counter to the instruction address CIR as the first
operation in servicing the primitive request. The value in the program counter is the
address of the F-line operation word of the coprocessor instruction currently executing.
The PC bit is implemented in all coprocessor response primitives currently defined for the
M68000 coprocessor interface.

When an undefined primitive or a primitive that requests an illegal operation is passed to
the main processor, the main processor initiates exception processing for either an F-line
emulator or a protocol violation exception (refer to 7.5.2 Main-Processor-Detected
Exceptions). If the PC bit is set in one of these response primitives, however, the main
processor passes the program counter to the instruction address CIR before it initiates
exception processing.

When the main processor initiates a cpGEN instruction that can be executed concurrently
with main processor instructions, the PC bit is usually set in the first primitive returned by
the coprocessor. Since the main processor proceeds with instruction stream execution
once the coprocessor releases it, the coprocessor must record the instruction address to
support any possible exception processing related to the instruction. Exception processing
related to concurrent coprocessor instruction execution is discussed in 7.5.1
Coprocessor-Detected Exceptions .

The DR bit is the direction bit. It applies to operand transfers between the main processor
and the coprocessor. If the DR bit is clear, the direction of transfer is from the main
processor to the coprocessor (main processor write). If the DR bit is set, the direction of
transfer is from the coprocessor to the main processor (main processor read). If the
operation indicated by a given response primitive does not involve an explicit operand
transfer, the value of this bit depends on the particular primitive encoding.

MOTOROLA M68020 USER’S MANUAL 7-31

7.4.3 Busy Primitive

The busy response primitive causes the main processor to reinitiate a coprocessor
instruction. This primitive applies to instructions in the general and conditional categories.
Figure 7-23 shows the format of the busy primitive.

15 0

1 PC 1

14 13 12

0 0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-23. Busy Primitive Format

The busy primitive uses the PC bit as described in 7.4.2 Coprocessor Response
Primitive General Format.

Coprocessors that can operate concurrently with the main processor but cannot buffer
write operations to their command or condition CIR use the busy primitive. A coprocessor
may execute a cpGEN instruction concurrently with an instruction in the main processor. If
the main processor attempts to initiate an instruction in the general or conditional
instruction category while the coprocessor is executing a cpGEN instruction, the
coprocessor can place the busy primitive in the response CIR. When the main processor
reads this primitive, it services pending interrupts using a preinstruction exception stack
frame (refer to Figure 7-41). The processor then restarts the general or conditional
coprocessor instruction that it had attempted to initiate earlier.

The busy primitive should only be used in response to a write to the command or condition
CIR. It should be the first primitive returned after the main processor attempts to initiate a
general or conditional category instruction. In particular, the busy primitive should not be
issued after program-visible resources have been altered by the instruction. (Program-
visible resources include coprocessor and main processor program-visible registers and
operands in memory, but not the scanPC.) The restart of an instruction after it has altered
program-visible resources causes those resources to have inconsistent values when the
processor reinitiates the instruction.

The MC68020/EC020 responds to the busy primitive differently in a special case that can
occur during a breakpoint operation (refer to Section 6 Exception Processing). This
special case occurs when a breakpoint acknowledge cycle initiates a coprocessor F-line
instruction, the coprocessor returns the busy primitive in response to the instruction
initiation, and an interrupt is pending. When these three conditions are met, the processor
reexecutes the breakpoint acknowledge cycle after completion of interrupt exception
processing. A design that uses a breakpoint to monitor the number of passes through a
loop by incrementing or decrementing a counter may not work correctly under these
conditions. This special case may cause several breakpoint acknowledge cycles to be
executed during a single pass through a loop.

7-32 M68020 USER’S MANUAL MOTOROLA

7.4.4 Null Primitive

The null coprocessor response primitive communicates coprocessor status information to
the main processor. This primitive applies to instructions in the general and conditional
categories. Figure 7-24 shows the format of the null primitive.

15 0

CA PC 0

14 13 12

0 1

11

0

10

0

9

IA

8

0

7

0

6

0

5

0

4

0

3

0

2

PF

1

TF

Figure 7-24. Null Primitive Format

The null primitive uses the CA and PC bits as described in 7.4.2 Coprocessor Response
Primitive General Format.

The IA bit specifies the interrupts allowed optional operation. This bit determines whether
the MC68020/EC020 services pending interrupts prior to rereading the response CIR after
receiving a null primitive. Interrupts are allowed when the IA bit is set.

The PF bit shows the processing-finished status of the coprocessor. That is, PF = 1
indicates that the coprocessor has completed all processing associated with an
instruction.

The TF bit indicates the true/false condition during execution of a conditional category
instruction. TF = 1 is the true condition specifier; TF = 0 is the false condition specifier.
The TF bit is only relevant for null primitives with CA = 0 that are used by the coprocessor
during the execution of a conditional instruction.

The MC68020/EC020 processes a null primitive with CA = 1 in the same manner whether
executing a general or conditional category coprocessor instruction. If the coprocessor
sets CA and IA in the null primitive, the main processor services pending interrupts using
a midinstruction stack frame (refer to Figure 7-43) and reads the response CIR again. If
the coprocessor sets CA and clears IA in the null primitive, the main processor reads the
response CIR again without servicing any pending interrupts.

A null primitive with CA = 0 provides a condition evaluation indicator to the main processor
during the execution of a conditional instruction and ends the dialogue between the main
processor and coprocessor for that instruction. The main processor completes the
execution of a conditional category coprocessor instruction when it receives the primitive.
The PF bit is not relevant during conditional instruction execution since the primitive itself
implies completion of processing.

Usually, when the main processor reads any primitive that does not have CA = 1 while
executing a general category instruction, it terminates the dialogue between the main
processor and coprocessor. If a trace exception is pending, however, the main processor
does not terminate the instruction dialogue until it reads a null primitive with CA = 0 and
PF = 1 from the response CIR (refer to 7.5.2.5 Trace Exceptions). Thus, the main
processor continues to read the response CIR until it receives a null primitive with CA = 0

MOTOROLA M68020 USER’S MANUAL 7-33

and PF = 1, and then performs trace exception processing. When IA = 1, the main
processor services pending interrupts before reading the response CIR again.

A coprocessor can be designed to execute a cpGEN instruction concurrently with the
execution of main processor instructions and, also, buffer one write operation to either its
command or condition CIR. This type of coprocessor issues a null primitive with CA = 1
when it is concurrently executing a cpGEN instruction, and the main processor initiates
another general or conditional coprocessor instruction. This primitive indicates that the
coprocessor is busy and the main processor should read the response CIR again without
reinitiating the instruction. The IA bit of this null primitive usually should be set to minimize
interrupt latency while the main processor is waiting for the coprocessor to complete the
general category instruction.

Table 7-3 summarizes the encodings of the null primitive.

Table 7-3. Null Coprocessor Response Primitive Encodings

CA PC IA PF TF General Instructions Conditional Instructions

x 1 x x x Pass Program Counter to Instruction
Address CIR, Clear PC Bit, and Proceed
with Operation Specified by CA, IA, PF,
and TF Bits

Same as General Category

1 0 0 x x Reread Response CIR, Do Not Service
Pending Interrupts

Same as General Category

1 0 1 x x Service Pending Interrupts and Reread the
Response CIR

Same as General Category

0 0 0 0 c If (Trace Pending) Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c

0 0 1 0 c If (Trace Pending) Service Pending
Interrupts and Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c

0 0 x 1 c Coprocessor Instruction Completed;
Service Pending Exceptions or Execute
Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c.

x = Don't Care
c = 1 or 0 Depending on Coprocessor Condition Evaluation

7-34 M68020 USER’S MANUAL MOTOROLA

7.4.5 Supervisor Check Primitive

The supervisor check primitive verifies that the main processor is operating in the
supervisor privilege level while executing a coprocessor instruction. This primitive applies
to instructions in the general and conditional coprocessor instruction categories. Figure
7-25 shows the format of the supervisor check primitive.

15 0

1 PC 0

14 13 12

0 0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-25. Supervisor Check Primitive Format

The supervisor check primitive uses the PC bit as described in 7.4.2 Coprocessor
Response Primitive General Format . Bit 15 is shown as one, but during execution of a
general category instruction, this primitive performs the same operations, regardless of the
value of bit 15. However, if this primitive is issued with bit 15 = 0 during a conditional
category instruction, the main processor initiates protocol violation exception processing.

When the MC68020/EC020 reads the supervisor check primitive from the response CIR, it
checks the value of the S-bit in the SR. If S = 0 (main processor operating at user privilege
level), the main processor aborts the coprocessor instruction by writing an abort mask to
the control CIR (refer to 7.3.2 Control CIR). The main processor then initiates privilege
violation exception processing (refer to 7.5.2.3 Privilege Violations). If the main
processor is at the supervisor privilege level when it receives this primitive, it reads the
response CIR again.

The supervisor check primitive allows privileged instructions to be defined in the
coprocessor general and conditional instruction categories. This primitive should be the
first one issued by the coprocessor during the dialog for an instruction that is implemented
as privileged.

7.4.6 Transfer Operation Word Primitive

The transfer operation word primitive requests a copy of the coprocessor instruction
operation word for the coprocessor. This primitive applies to general and conditional
category instructions. Figure 7-26 shows the format of the transfer operation word
primitive.

15 0

CA PC 0

14 13 12

0 0

11

1

10

1

9

1

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-26. Transfer Operation Word Primitive Format

MOTOROLA M68020 USER’S MANUAL 7-35

The transfer operation word primitive uses the CA and PC bits as described in 7.4.2
Coprocessor Response Primitive General Format. If this primitive is issued with CA = 0
during a conditional category instruction, the main processor initiates protocol violation
exception processing.

When the main processor reads this primitive from the response CIR, it transfers the
F-line operation word of the currently executing coprocessor instruction to the operation
word CIR. The value of the scanPC is not affected by this primitive.

7.4.7 Transfer from Instruction Stream Primitive

The transfer from instruction stream primitive initiates transfers of operands from the
instruction stream to the coprocessor. This primitive applies to general and conditional
category instructions. Figure 7-27 shows the format of the transfer from instruction stream
primitive.

15 0

CA PC 0

14 13 12

0 1

11

1

10

1

9

1

8 7

LENGTH

Figure 7-27. Transfer from Instruction Stream Primitive Format

The transfer from instruction stream primitive uses the CA and PC bits as described in
7.4.2 Coprocessor Response Primitive General Format. If this primitive is issued with
CA = 0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

The length field of this primitive specifies the length, in bytes, of the operand to be
transferred from the instruction stream to the coprocessor. The length must be an even
number of bytes. If an odd length is specified, the main processor initiates protocol
violation exception processing (refer to 7.5.2.1 Protocol Violations).

This primitive transfers coprocessor-defined extension words to the coprocessor. When
the main processor reads this primitive from the response CIR, it copies the number of
bytes indicated by the length field from the instruction stream to the operand CIR. The first
word or long word transferred is at the location pointed to by the scanPC when the
primitive is read by the main processor. The scanPC is incremented after each word or
long word is transferred. When execution of the primitive has completed, the scanPC has
been incremented by the total number of bytes transferred and points to the word
following the last word transferred. The main processor transfers the operands from the
instruction stream, using a sequence of long-word writes, to the operand CIR. If the length
field is not an even multiple of four bytes, the last two bytes from the instruction stream are
transferred using a word write to the operand CIR.

7-36 M68020 USER’S MANUAL MOTOROLA

7.4.8 Evaluate and Transfer Effective Address Primitive

The evaluate and transfer effective address primitive evaluates the effective address
specified in the coprocessor instruction operation word and transfers the result to the
coprocessor. This primitive applies to general category instructions. If this primitive is
issued by the coprocessor during the execution of a conditional category instruction, the
main processor initiates protocol violation exception processing. Figure 7-28 shows the
format of the evaluate and transfer effective address primitive.

15 0

CA PC 0

14 13 12

0 1

11

0

10

1

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-28. Evaluate and Transfer Effective Address Primitive Format

The evaluate and transfer effective address primitive uses the CA and PC bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

When the main processor reads this primitive while executing a general category
instruction, it evaluates the effective address specified in the instruction. At this point, the
scanPC contains the address of the first of any required effective address extension
words. The main processor increments the scanPC by two after it references each of
these extension words. After the effective address is calculated, the resulting 32-bit value
is written to the operand address CIR.

The MC68020/EC020 only calculates effective addresses for control alterable addressing
modes in response to this primitive. If the addressing mode in the operation word is not a
control alterable mode, the main processor aborts the instruction by writing a $0001 to the
control CIR and initiates F-line emulation exception processing (refer to 7.5.2.2 F-Line
Emulator Exceptions).

7.4.9 Evaluate Effective Address and Transfer Data Primitive

The evaluate effective address and transfer data primitive transfers an operand between
the coprocessor and the effective address specified in the coprocessor instruction
operation word. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 7-29 shows the format
of the evaluate effective address and transfer data primitive.

15 0

CA PC DR

14 13 12

1 0

11 10 9

VALID EA

8 7

LENGTH

Figure 7-29. Evaluate Effective Address and
Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as described in 7.4.2 Coprocessor
Response Primitive General Format.

MOTOROLA M68020 USER’S MANUAL 7-37

The valid EA field of the primitive format specifies the valid effective address categories
for this primitive. If the effective address specified in the instruction operation word is not a
member of the class specified by the valid EA field, the main processor aborts the
coprocessor instruction by writing an abort mask to the control CIR (refer to 7.3.2 Control
CIR) and by initiating F-line emulation exception processing. Table 7-4 lists the valid
effective address field encodings.

Table 7-4. Valid Effective Address Field Codes

Field Category

000 Control Alterable

001 Data Alterable

010 Memory Alterable

011 Alterable

100 Control

101 Data

110 Memory

111 Any Effective Address (No Restriction)

Even when the valid EA fields specified in the primitive and in the instruction operation
word match, the MC68020/EC020 initiates protocol violation exception processing if the
primitive requests a write to an unalterable effective address.

The length in bytes of the operand to be transferred is specified by the length field of the
primitive format. Several restrictions apply to operand lengths for certain effective
addressing modes. If the effective address is a main processor register (register direct
mode), only operand lengths of one, two, or four bytes are valid; all other lengths cause
the main processor to initiate protocol violation exception processing. Operand lengths of
0–255 bytes are valid for the memory addressing modes.

The length of 0–255 bytes does not apply to an immediate operand. The length of an
immediate operand must be one byte or an even number of bytes (less than 256), and the
direction of transfer must be to the coprocessor; otherwise, the main processor initiates
protocol violation exception processing.

When the main processor receives the evaluate effective address and transfer data
primitive during the execution of a general category instruction, it verifies that the effective
address encoded in the instruction operation word is in the category specified by the
primitive. If so, the processor calculates the effective address using the appropriate
effective address extension words at the current scanPC address and increments the
scanPC by two for each word referenced. Using long-word transfers whenever possible,
the main processor then transfers the number of bytes specified in the primitive between
the operand CIR and the effective address. Refer to 7.3.8 Operand CIR for information
concerning operand alignment for transfers involving the operand CIR.

7-38 M68020 USER’S MANUAL MOTOROLA

The DR bit specifies the direction of the operand transfer. DR = 0 requests a transfer from
the main processor to the coprocessor, and DR = 1 specifies a transfer from the
coprocessor to the main processor.

If the effective addressing mode specifies the predecrement mode, the address register
used is decremented by the size of the operand before the transfer. The bytes within the
operand are then transferred to or from ascending addresses beginning with the location
specified by the decremented address register. In this mode, if A7 is used as the address
register and the operand length is one byte, A7 is decremented by two to maintain a word-
aligned stack.

For the postincrement effective addressing mode, the address register used is
incremented by the size of the operand after the transfer. The bytes within the operand
are transferred to or from ascending addresses beginning with the location specified by
the address register. In this mode, if A7 is used as the address register and the operand
length is one byte, A7 is incremented by two after the transfer to maintain a word-aligned
stack. Transferring odd length operands longer than one byte using the –(A7) or (A7)+
addressing modes can result in a stack pointer that is not word aligned.

The processor repeats the effective address calculation each time this primitive is issued
during the execution of a given instruction. The calculation uses the current contents of
any required address and data registers. The instruction must include a set of effective
address extension words for each repetition of a calculation that requires them. The
processor locates these words at the current scanPC location and increments the scanPC
by two for each word referenced in the instruction stream.

The MC68020/EC020 sign-extends a byte or word-sized operand to a long-word value
when it is transferred to an address register (A7–A0) using this primitive with the register
direct effective addressing mode. A byte or word-sized operand transferred to a data
register (D7–D0) only overwrites the lower byte or word of the data register.

7.4.10 Write to Previously Evaluated Effective Address Primitive

The write to previously evaluated effective address primitive transfers an operand from the
coprocessor to a previously evaluated effective address. This primitive applies to general
category instructions. If the coprocessor uses this primitive during the execution of a
conditional category instruction, the main processor initiates protocol violation exception
processing. Figure 7-30 shows the format of the write to previously evaluated effective
address primitive.

15 0

CA PC 1

14 13 12

0 0

11 10 9 8 7

LENGTH0 0 0

Figure 7-30. Write to Previously Evaluated Effective Address Primitive Format

MOTOROLA M68020 USER’S MANUAL 7-39

The write to previously evaluated effective address primitive uses the CA and PC bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

The length field of the primitive format specifies the length of the operand in bytes. The
MC68020/EC020 transfers operands of 0–255 bytes in length.

When the main processor receives this primitive during the execution of a general
category instruction, it transfers an operand from the operand CIR to an effective address
specified by a temporary register within the MC68020/EC020. When a previous primitive
for the current instruction has evaluated the effective address, this temporary register
contains the evaluated effective address. Primitives that store an evaluated effective
address in a temporary register of the main processor are the evaluate and transfer
effective address, evaluate effective address and transfer data, and transfer multiple
coprocessor registers primitive. If this primitive is used during an instruction in which the
effective address specified in the instruction operation word has not been calculated, the
effective address used for the write is undefined. Also, if the previously evaluated effective
address was register direct, the address written to in response to this primitive is
undefined.

The function code value during the write operation indicates either supervisor or user data
space, depending on the value of the S-bit in the MC68020/EC020 SR when the
processor reads this primitive. While a coprocessor should request writes to only alterable
effective addressing modes, the MC68020/EC020 does not check the type of effective
address used with this primitive. For example, if the previously evaluated effective address
was PC relative and the MC68020/EC020 is at the user privilege level (S = 0 in SR), the
MC68020/EC020 writes to user data space at the previously calculated program relative
address (the 32-bit value in the temporary internal register of the processor).

Operands longer than four bytes are transferred in increments of four bytes (operand
parts) when possible. The main processor reads a long-word operand part from the
operand CIR and transfers this part to the current effective address. The transfers
continue in this manner using ascending memory locations until all of the long-word
operand parts are transferred, and any remaining operand part is then transferred using a
one-, two-, or three-byte transfer as required. The operand parts are stored in memory
using ascending addresses beginning with the address in the MC68020/EC020 temporary
register, which is internal to the processor and not for user use.

The execution of this primitive does not modify any of the registers in the
MC68020/EC020 programming model, even if the previously evaluated effective address
mode is the predecrement or postincrement mode. If the previously evaluated effective
addressing mode used any of the MC68020/EC020 internal address or data registers, the
effective address value used is the final value from the preceding primitive. That is, this
primitive uses the value from an evaluate and transfer effective address, evaluate effective
address and transfer data, or transfer multiple coprocessor registers primitive without
modification.

7-40 M68020 USER’S MANUAL MOTOROLA

The take address and transfer data primitive described in 7.4.11 Take Address and
Transfer Data Primitive does not replace the effective address value that has been
calculated by the MC68020/EC020. The address that the main processor obtains in
response to the take address and transfer data primitive is not available to the write to
previously evaluated effective address primitive.

A coprocessor can issue an evaluate effective address and transfer data primitive followed
by this primitive to perform a read-modify-write operation that is not indivisible. The bus
cycles for this operation are normal bus cycles that can be interrupted, and the bus can be
arbitrated between the cycles.

7.4.11 Take Address and Transfer Data Primitive

The take address and transfer data primitive transfers an operand between the
coprocessor and an address supplied by the coprocessor. This primitive applies to general
and conditional category instructions. Figure 7-31 shows the format of the take address
and transfer data primitive.

15 0

CA PC DR

14 13 12

0 0

11 10 9 8 7

LENGTH1 0 1

Figure 7-31. Take Address and Transfer Data Primitive Format

The take address and transfer data primitive uses the CA, PC, and DR bits as described
in 7.4.2 Coprocessor Response Primitive General Format. If the coprocessor issues
this primitive with CA = 0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

The length field of the primitive format specifies the operand length, which can be from
0–255 bytes.

The main processor reads a 32-bit address from the operand address CIR. Using a series
of long-word transfers, the processor transfers the operand between this address and the
operand CIR. The DR bit determines the direction of the transfer. The processor reads or
writes the operand parts to ascending addresses, starting at the address from the operand
address CIR. If the operand length is not a multiple of four bytes, the final operand part is
transferred using a one-, two-, or three-byte transfer as required.

The function code used with the address read from the operand address CIR indicates
either supervisor or user data space according to the value of the S-bit in the
MC68020/EC020 SR.

MOTOROLA M68020 USER’S MANUAL 7-41

7.4.12 Transfer to/from Top of Stack Primitive

The transfer to/from top of stack primitive transfers an operand between the coprocessor
and the top of the active system stack of the main processor. This primitive applies to
general and conditional category instructions. Figure 7-32 shows the format of the transfer
to/from top of stack primitive.

15 0

CA PC DR

14 13 12

0 1

11 10 9 8 7

LENGTH1 1 0

Figure 7-32. Transfer to/from Top of Stack Primitive Format

The transfer to/from top of stack primitive uses the CA, PC, and DR bits as described in
7.4.2 Coprocessor Response Primitive General Format. If the coprocessor issues this
primitive with CA = 0 during a conditional category instruction, the main processor initiates
protocol violation exception processing.

The length field of the primitive format specifies the length in bytes of the operand to be
transferred. The operand may be one, two, or four bytes in length; other length values
cause the main processor to initiate protocol violation exception processing.

If DR = 0, the main processor transfers the operand from the active system stack to the
operand CIR. The implied effective address mode used for the transfer is the (A7)+
addressing mode. A one-byte operand causes the stack pointer to be incremented by two
after the transfer to maintain word alignment of the stack.

If DR = 1, the main processor transfers the operand from the operand CIR to the active
system stack. The implied effective address mode used for the transfer is the –(A7)
addressing mode. A one-byte operand causes the stack pointer to be decremented by two
before the transfer to maintain word alignment of the stack.

7.4.13 Transfer Single Main Processor Register Primitive

The transfer single main processor register primitive transfers an operand between one of
the main processor's data or address registers and the coprocessor. This primitive applies
to general and conditional category instructions. Figure 7-33 shows the format of the
transfer single main processor register primitive.

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 0

2

REGISTER

3

D/A

4

0

5

0

6

000

8

Figure 7-33. Transfer Single Main Processor Register Primitive Format

The transfer single main processor register primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

7-42 M68020 USER’S MANUAL MOTOROLA

The D/A bit specifies whether the primitive transfers an address or data register. D/A = 0
indicates a data register, and D/A = 1 indicates an address register. The register field
contains the register number.

If DR = 0, the main processor writes the long-word operand in the specified register to the
operand CIR. If DR = 1, the main processor reads a long-word operand from the operand
CIR and transfers it to the specified data or address register.

7.4.14 Transfer Main Processor Control Register Primitive

The transfer main processor control register primitive transfers a long-word operand
between one of its control registers and the coprocessor. This primitive applies to general
and conditional category instructions. Figure 7-34 shows the format of the transfer main
processor control register primitive.

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 0

2

0

3

0

4

0

5

0

6

001

8

0 0

1

Figure 7-34. Transfer Main Processor Control Register Primitive Format

The transfer main processor control register primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a control register select code
from the register select CIR. This code determines which main processor control register
is transferred. Table 7-5 lists the valid control register select codes. If the control register
select code is not valid, the MC68020/EC020 initiates protocol violation exception
processing (refer to 7.5.2.1 Protocol Violations).

Table 7-5. Main Processor Control
Register Select Codes

Select Code Control Register

$x000 SFC

$x001 DFC

$x002 CACR

$x800 USP

$x801 VBR

$x802 CAAR

$x803 MSP

$x804 ISP

All other codes cause a protocol violation exception.

MOTOROLA M68020 USER’S MANUAL 7-43

After reading a valid code from the register select CIR, if DR = 0, the main processor
writes the long-word operand from the specified control register to the operand CIR. If
DR = 1, the main processor reads a long-word operand from the operand CIR and places
it in the specified control register.

7.4.15 Transfer Multiple Main Processor Registers Primitive

The transfer multiple main processor registers primitive transfers long-word operands
between one or more of its data or address registers and the coprocessor. This primitive
applies to general and conditional category instructions. Figure 7-35 shows the format of
the transfer multiple main processor registers primitive.

15

CA PC DR

14 13 12

0 0

11 10 9 07

1 1

2

0

3

0

4

0

5

0

6

000

8

0 0

1

Figure 7-35. Transfer Multiple Main Processor Registers Primitive Format

The transfer multiple main processor registers primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a 16-bit register select mask
from the register select CIR. The format of the register select mask is shown in Figure
7-36. A register is transferred if the bit corresponding to the register in the register select
mask is set. The selected registers are transferred in the order D7–D0 and then A7–A0.

15

A7 A6 A5

14 13 12

A4 A3

11 10 9 07

A2 A1

2

D1

3

D3

4

D4

5

D5

6

D6D7A0

8

D2 D0

1

Figure 7-36. Register Select Mask Format

If DR = 0, the main processor writes the contents of each register indicated in the register
select mask to the operand CIR using a sequence of long-word transfers. If DR = 1, the
main processor reads a long-word operand from the operand CIR into each register
indicated in the register select mask. The registers are transferred in the same order,
regardless of the direction of transfer indicated by the DR bit.

7.4.16 Transfer Multiple Coprocessor Registers Primitive

The transfer multiple coprocessor registers primitive transfers from 0–16 operands
between the effective address specified in the coprocessor instruction and the
coprocessor. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 7-37 shows the format
of the transfer multiple coprocessor registers primitive.

7-44 M68020 USER’S MANUAL MOTOROLA

15 0

CA PC DR

14 13 12

0 0

11 10 9 8 7

LENGTH0 0 1

Figure 7-37. Transfer Multiple Coprocessor Registers Primitive Format

The transfer multiple coprocessor registers primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

The length field of the primitive format indicates the length in bytes of each operand
transferred. The operand length must be an even number of bytes; odd length operands
cause the MC68020/EC020 to initiate protocol violation exception processing (refer to
7.5.2.1 Protocol Violations).

When the main processor reads this primitive, it calculates the effective address specified
in the coprocessor instruction. The scanPC should be pointing to the first of any necessary
effective address extension words when this primitive is read from the response CIR; the
scanPC is incremented by two for each extension word referenced during the effective
address calculation. For transfers from the effective address to the coprocessor (DR = 0),
the control addressing modes and the postincrement addressing mode are valid. For
transfers from the coprocessor to the effective address (DR = 1), the control alterable and
predecrement addressing modes are valid. Invalid addressing modes cause the
MC68020/EC020 to abort the instruction by writing an abort mask to the control CIR (refer
to 7.3.2 Control CIR) and to initiate F-line emulator exception processing (refer to 7.5.2.2
F-Line Emulator Exceptions).

After performing the effective address calculation, the MC68020/EC020 reads a 16-bit
register select mask from the register select CIR. The coprocessor uses the register select
mask to specify the number of operands to transfer; the MC68020/EC020 counts the
number of ones in the register select mask to determine the number of operands. The
order of the ones in the register select mask is not relevant to the operation of the main
processor. As many as 16 operands can be transferred by the main processor in response
to this primitive. The total number of bytes transferred is the product of the number of
operands transferred and the length of each operand specified in the length field of the
primitive format.

If DR = 1, the main processor reads the number of operands specified in the register
select mask from the operand CIR and writes these operands to the effective address
specified in the instruction using long-word transfers whenever possible. If DR = 0, the
main processor reads the number of operands specified in the register select mask from
the effective address and writes them to the operand CIR.

For the control addressing modes, the operands are transferred to or from memory using
ascending addresses. For the postincrement addressing mode, the operands are read
from memory with ascending addresses also, and the address register used is
incremented by the size of an operand after each operand is transferred. The address
register used with the (An)+ addressing mode is incremented by the total number of bytes
transferred during the primitive execution.

MOTOROLA M68020 USER’S MANUAL 7-45

For the predecrement addressing mode, the operands are written to memory with
descending addresses, but the bytes within each operand are written to memory with
ascending addresses. As an example, Figure 7-38 shows the format in long-word-
oriented memory for two 12-byte operands transferred from the coprocessor to the
effective address using the –(An) addressing mode. The processor decrements the
address register by the size of an operand before the operand is transferred. It writes the
bytes of the operand to ascending memory addresses. When the transfer is complete, the
address register has been decremented by the total number of bytes transferred. The
MC68020/EC020 transfers the data using long-word transfers whenever possible.

31 15 0

OP1, BYTE (0)

723

OP0, BYTE (0) OP1, BYTE (L – 1)

OP0, BYTE (L – 1)

An – LENGTH

INITIAL An

OP0, Byte (0) is the first byte written to memory
OP0, Byte (L–1) is the last byte of the first operand written to memory
OP1, Byte (0) is the first byte of the second operand written to memory
OP1, Byte (L–1) is the last byte written to memory

NOTE:

16 824
An – 2 LENGTH

= FINAL An
*

Figure 7-38. Operand Format in Memory for Transfer to –(An)

7.4.17 Transfer Status Register and ScanPC Primitive

The transfer status register and the scanPC primitive transfers values between the
coprocessor and the MC68020/EC020 SR. On an optional basis, the scanPC also makes
transfers. This primitive applies to general category instructions. If the coprocessor issues
this primitive during the execution of a conditional category instruction, the main processor
initiates protocol violation exception processing. Figure 7-39 shows the format of the
transfer status register and scanPC primitive.

15

CA PC DR

14 13 12

0 0

11 10 9 07

0 1

2

0

3

0

4

0

5

0

6

00SP

8

0 0

1

Figure 7-39. Transfer Status Register and ScanPC Primitive Format

The transfer status register and scanPC primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

The SP bit selects the scanPC option. If SP = 1, the primitive transfers both the scanPC
and SR. If SP = 0, only the SR is transferred.

7-46 M68020 USER’S MANUAL MOTOROLA

If SP = 0 and DR = 0, the main processor writes the 16-bit SR value to the operand CIR. If
SP = 0 and DR = 1, the main processor reads a 16-bit value from the operand CIR into the
main processor SR.

If SP = 1 and DR = 0, the main processor writes the long-word value in the scanPC to the
instruction address CIR and then writes the SR value to the operand CIR. If SP = 1 and
DR = 1, the main processor reads a 16-bit value from the operand CIR into the SR and
then reads a long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main processor program
flow by placing a new value in the SR, in the scanPC, or new values in both the SR and
the scanPC. By accessing the SR, the coprocessor can determine and manipulate the
main processor condition codes, supervisor status, trace modes, selection of the active
stack, and interrupt mask level.

The MC68020/EC020 discards any instruction words that have been prefetched beyond
the current scanPC location when this primitive is issued with DR = 1 (transfer to main
processor). The MC68020/EC020 then refills the instruction pipe from the scanPC
address in the address space indicated by the S-bit of the SR.

If the MC68020/EC020 is operating in the trace on change of flow mode (T1, T0 in the SR
= 01) when the coprocessor instruction begins to execute and if this primitive is issued
with DR = 1 (from coprocessor to main processor), the MC68020/EC020 prepares to take
a trace exception. The trace exception occurs when the coprocessor signals that it has
completed all processing associated with the instruction. Changes in the trace modes due
to the transfer of the SR to the main processor take effect on execution of the next
instruction.

7.4.18 Take Preinstruction Exception Primitive

The take preinstruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the preinstruction exception stack
frame format. This primitive applies to general and conditional category instructions.
Figure 7-40 shows the format of the take preinstruction exception primitive.

15 0

0 PC 0

14 13 12

1 1

11 10 9 8 7

VECTOR NUMBER1 0 0

Figure 7-40. Take Preinstruction Exception Primitive Format

The take preinstruction exception primitive uses the PC bit as described in 7.4.2
Coprocessor Response Primitive General Format. The vector number field contains
the exception vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask to the control CIR (refer to
7.3.2 Control CIR). The MC68020/EC020 then proceeds with exception processing as

MOTOROLA M68020 USER’S MANUAL 7-47

described in Section 6 Exception Processing. The vector number for the exception is
taken from the vector number field of the primitive, and the MC68020/EC020 uses the
four-word stack frame format shown in Figure 7-41.

0111215

STATUS REGISTER

0 0 0 0 VECTOR NUMBER

PROGRAM COUNTER

+06

+02

SP

Figure 7-41. MC68020/EC020 Preinstruction Stack Frame

The value of the PC saved in this stack frame is the F-line operation word address of the
coprocessor instruction during which the primitive was received. Thus, if the exception
handler routine does not modify the stack frame, an RTE instruction causes the
MC68020/EC020 to return and reinitiate execution of the coprocessor instruction.

The take preinstruction exception primitive can be used when the coprocessor does not
recognize a value written to either its command CIR or condition CIR to initiate a
coprocessor instruction. This primitive can also be used if an exception occurs in the
coprocessor instruction before any program-visible resources are modified by the
instruction operation. This primitive should not be used during a coprocessor instruction if
program-visible resources have been modified by that instruction. Otherwise, since the
MC68020/EC020 reinitiates the instruction when it returns from exception processing, the
restarted instruction receives the previously modified resources in an inconsistent state.

One of the most important uses of the take preinstruction exception primitive is to signal
an exception condition in a cpGEN instruction that was executing concurrently with the
main processor's instruction execution. If the coprocessor no longer requires the services
of the main processor to complete a cpGEN instruction and if the concurrent instruction
completion is transparent to the programming model, the coprocessor can release the
main processor by issuing a primitive with CA = 0. The main processor usually executes
the next instruction in the instruction stream, and the coprocessor completes its operations
concurrently with the main processor operation. If an exception occurs while the
coprocessor is executing an instruction concurrently, the exception is not processed until
the main processor attempts to initiate the next general or conditional instruction. After the
main processor writes to the command or condition CIR to initiate a general or conditional
instruction, it then reads the response CIR. At this time, the coprocessor can return the
take preinstruction exception primitive. This protocol allows the main processor to proceed
with exception processing related to the previous concurrently executing coprocessor
instruction and then return and reinitiate the coprocessor instruction during which the
exception was signaled. The coprocessor should record the addresses of all general
category instructions that can be executed concurrently with the main processor and that
support exception recovery. Since the exception is not reported until the next coprocessor
instruction is initiated, the processor usually requires the instruction address to determine

7-48 M68020 USER’S MANUAL MOTOROLA

which instruction the coprocessor was executing when the exception occurred. A
coprocessor can record the instruction address by setting PC = 1 in one of the primitives it
uses before releasing the main processor.

7.4.19 Take Midinstruction Exception Primitive

The take midinstruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the midinstruction exception stack
frame format. This primitive applies to general and conditional category instructions.
Figure 7-42 shows the format of the take midinstruction exception primitive.

15 0

0 PC 0

14 13 12

1 1

11 10 9 8 7

VECTOR NUMBER1 0 1

Figure 7-42. Take Midinstruction Exception Primitive Format

The take midinstruction exception primitive uses the PC bit as described in 7.4.2
Coprocessor Response Primitive General Format. The vector number field contains
the exception vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 7.3.2 Control CIR)
to the control CIR. The MC68020/EC020 then performs exception processing as
described in Section 6 Exception Processing. The vector number for the exception is
taken from the vector number field of the primitive, and the MC68020/EC020 uses the
10-word stack frame format shown in Figure 7-43.

0111215

STATUS REGISTER

1 0 0 1 VECTOR NUMBER

SCAN PC

+06

+02

SP

PROGRAM COUNTER

+0C

OPERATION WORD

EFFECTIVE ADDRESS
+10

INTERNAL REGISTER

+08

+0E

Figure 7-43. MC68020/EC020 Midinstruction Stack Frame

MOTOROLA M68020 USER’S MANUAL 7-49

The PC value saved in this stack frame is the operation word address of the coprocessor
instruction during which the primitive is received. The scanPC field contains the value of
the MC68020/EC020 scanPC when the primitive is received. If the current instruction does
not evaluate an effective address prior to the exception request primitive, the value of the
effective address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an exception
during the instruction dialog with the main processor. If the exception handler does not
modify the stack frame, the MC68020/EC020 returns from the exception handler and
reads the response CIR. Thus, the main processor attempts to continue executing the
suspended instruction by reading the response CIR and processing the primitive it
receives.

7.4.20 Take Postinstruction Exception Primitive

The take postinstruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the postinstruction exception stack
frame format. This primitive applies to general and conditional category instructions.
Figure 7-44 shows the format of the take postinstruction exception primitive.

15 0

0 PC 0

14 13 12

1 1

11 10 9 8 7

VECTOR NUMBER1 1 0

Figure 7-44. Take Postinstruction Exception Primitive Format

The take postinstruction exception primitive uses the PC bit as described in 7.4.2
Coprocessor Response Primitive General Format. The vector number field contains
the exception vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask to the control CIR (refer to
7.3.2 Control CIR). The MC68020/EC020 then performs exception processing as
described in Section 6 Exception Processing. The vector number for the exception is
taken from the vector number field of the primitive, and the MC68020/EC020 uses the six-
word stack frame format shown in Figure 7-45.

0111215

STATUS REGISTER

0 0 1 0 VECTOR NUMBER

SCAN PC

+06

+02

SP

PROGRAM COUNTER
+08

Figure 7-45. MC68020/EC020 Postinstruction Stack Frame

7-50 M68020 USER’S MANUAL MOTOROLA

The value in the main processor scanPC at the time this primitive is received is saved in
the scanPC field of the postinstruction exception stack frame. The value of the PC saved
is the F-line operation word address of the coprocessor instruction during which the
primitive is received.

When the MC68020/EC020 receives the take postinstruction exception primitive, it
assumes that the coprocessor either completed or aborted the instruction with an
exception. If the exception handler does not modify the stack frame, the MC68020/EC020
returns from the exception handler to begin execution at the location specified by the
scanPC field of the stack frame. This location should be the address of the next instruction
to be executed.

The coprocessor uses this primitive to request exception processing when it completes or
aborts an instruction while the main processor is awaiting a normal response. For a
general category instruction, the response is a release; for a conditional category
instruction, it is an evaluated true/false condition indicator. Thus, the operation of the
MC68020/EC020 in response to this primitive is compatible with standard M68000 family
instruction related exception processing (for example, the divide-by-zero exception).

7.5 EXCEPTIONS

Various exception conditions related to the execution of coprocessor instructions may
occur. Whether an exception is detected by the main processor or by the coprocessor, the
main processor coordinates and performs exception processing. Servicing these
coprocessor-related exceptions is an extension of the protocol used to service standard
M68000 family exceptions. That is, when either the main processor detects an exception
or is signaled by the coprocessor that an exception condition has occurred, the main
processor proceeds with exception processing as described in Section 6 Exception
Processing.

7.5.1 Coprocessor-Detected Exceptions

Coprocessor interface exceptions that the coprocessor detects, as well as those that the
main processor detects, are usually classified as coprocessor-detected exceptions.
Coprocessor-detected exceptions can occur during M68000 coprocessor interface
operations, internal operations, or other system-related operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main processor through the use
of one of the three take exception primitives defined for the M68000 coprocessor
interface. The main processor responds to these primitives as described in 7.4.18 Take
Preinstruction Exception Primitive, 7.4.19 Take Midinstruction Exception Primitive,
and 7.4.20 Take Postinstruction Exception Primitive. However, not all coprocessor-
detected exceptions are signaled by response primitives. Coprocessor-detected format
errors during the cpSAVE or cpRESTORE instruction are signaled to the main processor
using the invalid format word described in 7.2.3.2.3 Invalid Format Words.

MOTOROLA M68020 USER’S MANUAL 7-51

7.5.1.1 COPROCESSOR-DETECTED PROTOCOL VIOLATIONS. Protocol violation
exceptions are communication failures between the main processor and coprocessor
across the M68000 coprocessor interface. Coprocessor-detected protocol violations occur
when the main processor accesses entries in the CIR set in an unexpected sequence.
The sequence of operations that the main processor performs for a given coprocessor
instruction or coprocessor response primitive has been described previously in this
section.

A coprocessor can detect protocol violations in various ways. According to the M68000
coprocessor interface protocol, the main processor always accesses the operation word,
operand, register select, instruction address, or operand address CIRs synchronously with
respect to the operation of the coprocessor. That is, the main processor accesses these
five registers in a certain sequence, and the coprocessor expects them to be accessed in
that sequence. As a minimum, all M68000 coprocessors should detect a protocol violation
if the main processor accesses any of these five registers when the coprocessor is
expecting an access to either the command or condition CIR. Likewise, if the coprocessor
is expecting an access to the command or condition CIR and the main processor
accesses one of these five registers, the coprocessor should detect and signal a protocol
violation.

According to the M68000 coprocessor interface protocol, the main processor can perform
a read of either the save CIR or response CIR or a write of either the restore CIR or
control CIR asynchronously with respect to the operation of the coprocessor. That is, an
access to one of these registers without the coprocessor explicitly expecting that access
at that point can be a valid access. Although the coprocessor can anticipate certain
accesses to the restore, response, and control CIRs, these registers can be accessed at
other times also.

The coprocessor cannot signal a protocol violation to the main processor during execution
of a cpSAVE or cpRESTORE instruction. If a coprocessor detects a protocol violation
during execution of the cpSAVE or cpRESTORE instruction, it should signal the exception
to the main processor when the next coprocessor instruction is initiated.

The main philosophy of the coprocessor-detected protocol violation is that the
coprocessor should always acknowledge an access to one of its interface registers. If the
coprocessor determines that the access is not valid, it should assert DSACK1/DSACK0 to
the main processor and signal a protocol violation when the main processor next reads
the response CIR. If the coprocessor fails to assert DSACK1/DSACK0, the main
processor waits for the assertion of that signal (or some other bus termination signal)
indefinitely. The protocol previously described ensures that the coprocessor cannot halt
the main processor.

The coprocessor can signal a protocol violation to the main processor with the take
midinstruction exception primitive. To maintain consistency, the vector number should be
13, as it is for a protocol violation detected by the main processor. When the main
processor reads this primitive, it proceeds as described in 7.4.19 Take Midinstruction
Exception Primitive. If the exception handler does not modify the stack frame, the
MC68020/EC020 returns from the exception handler and reads the response CIR.

7-52 M68020 USER’S MANUAL MOTOROLA

7.5.1.2 COPROCESSOR-DETECTED ILLEGAL COMMAND OR CONDITION WORDS.
Illegal coprocessor command or condition words are values written to the command CIR
or condition CIR that the coprocessor does not recognize. If a value written to either of
these registers is not valid, the coprocessor should return the take preinstruction
exception primitive in the response CIR. When it receives this primitive, the main
processor takes a preinstruction exception as described in 7.4.18 Take Preinstruction
Exception Primitive. If the exception handler does not modify the main processor stack
frame, an RTE instruction causes the MC68020/EC020 to reinitiate the instruction that
took the exception. The coprocessor designer should ensure that the state of the
coprocessor is not irrecoverably altered by an illegal command or condition exception if
the system supports emulation of the unrecognized command or condition word.

All M68000 coprocessors signal illegal command and condition words by returning the
take preinstruction exception primitive with the F-line emulator exception vector number
11.

7.5.1.3 COPROCESSOR DATA-PROCESSING-RELATED EXCEPTIONS. Exceptions
related to the internal operation of a coprocessor are classified as data-processing-related
exceptions. These exceptions are analogous to the divide-by-zero exception defined by
M68000 microprocessors and should be signaled to the main processor using one of the
three take exception primitives containing an appropriate exception vector number. Which
of these three primitives is used to signal the exception is usually determined by the point
in the instruction operation where the main processor should continue the program flow
after exception processing. Refer to 7.4.18 Take Preinstruction Exception Primitives,
7.4.19 Take Midinstruction Exception Primitive, and 7.4.20 Take Postinstruction
Exception Primitive.

7.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related exceptions
detected by a DMA coprocessor include those associated with bus activity and any other
exceptions (interrupts, for example) occurring external to the coprocessor. The actions
taken by the coprocessor and the main processor depend on the type of exception that
occurs.

When an address or bus error is detected by a DMA coprocessor, the coprocessor should
store any information necessary for the main processor exception handling routines in
system-accessible registers. The coprocessor should place one of the three take
exception primitives encoded with an appropriate exception vector number in the
response CIR. Which of the three primitives is used depends upon the point in the
coprocessor instruction at which the exception was detected and the point in the
instruction execution at which the main processor should continue after exception
processing. Refer to 7.4.18 Take Preinstruction Exception Primitives, 7.4.19 Take
Midinstruction Exception Primitive, and 7.4.20 Take Postinstruction Exception
Primitive.

MOTOROLA M68020 USER’S MANUAL 7-53

7.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected exceptions
that are not signaled to the main processor with a response primitive. When the main
processor writes a format word to the restore CIR during the execution of a cpRESTORE
instruction, the coprocessor decodes this word to determine if it is valid (refer to 7.2.3.3
Coprocessor Context Save Instruction). If the format word is not valid, the coprocessor
places the invalid format code in the restore CIR. When the main processor reads the
invalid format code, it aborts the coprocessor instruction by writing an abort mask to the
control CIR (refer to 7.3.2 Control CIR). The main processor then performs exception
processing using a four-word preinstruction stack frame and the format error exception
vector number 14. Thus, if the exception handler does not modify the stack frame, the
MC68020/EC020 restarts the cpRESTORE instruction when the RTE instruction in the
handler is executed. If the coprocessor returns the invalid format code when the main
processor reads the save CIR to initiate a cpSAVE instruction, the main processor
performs format error exception processing as outlined for the cpRESTORE instruction.

7.5.2 Main-Processor-Detected Exceptions

A number of exceptions related to coprocessor instruction execution are detected and
serviced by the main processor instead of the coprocessor. These exceptions can be
related to the execution of coprocessor response primitives, communication across the
M68000 coprocessor interface, or completion of conditional coprocessor instructions by
the main processor.

7.5.2.1 PROTOCOL VIOLATIONS. The main processor detects a protocol violation when
it reads a primitive from the response CIR that is not a valid primitive. The protocol
violations that can occur in response to the primitives defined for the M68000 coprocessor
interface are summarized in Table 7-6.

7-54 M68020 USER’S MANUAL MOTOROLA

Table 7-6. Exceptions Related to Primitive Processing

Primitive Protocol F-Line Other

Busy

Null

Supervisory Check*
Other: Privilege Violation if S-Bit in the SR = 0 X

Transfer Operation Word*

Transfer from Instruction Stream*
Protocol: If Length Field Is Odd (Zero Length Legal) X

Evaluate and Transfer Effective Address
Protocol: If Used with Conditional Instruction
F-Line: If EA in Opword Is NOT Control Alterable

X
X

Evaluate Effective Address and Transfer Data
Protocol:

1. If Used with Conditional Instructions
2. Length Is Not 1, 2, or 4 and EA = Register Direct
3. If EA = Immediate and Length Odd and Greater Than 1
4. Attempt to Write to Unalterable Address

Even if Address Declared Legal in Primitive
F-Line: Valid EA Field Does Not Match EA in Opword

X

X

Write to Previously Evaluated Effective Address
Protocol: If Used with Conditional Instruction X

Take Address and Transfer Data*

Transfer to/from Top of Stack*
Protocol: Length Field Other Than 1, 2, or 4 X

Transfer Single Main Processor Register*

Transfer Main Processor Control Register
Protocol: Invalid Control Register Select Code X

Transfer Multiple Main Processor Registers*

Transfer Multiple Coprocessor Registers
Protocol:

1. If Used with Conditional Instructions
2. Odd Length Value

F-Line:
1. EA Not Control Alterable or (An)+ for CP to Memory Transfer
2. EA Not Control Alterable or –(An) for Memory to CP Transfer

X

X

Transfer Status and ScanPC
Protocol: If Used with Conditional Instruction
Other:

1. Trace—Trace Made Pending if MC68020/EC020 in “Trace on Change of
Flow” Mode and DR = 1

2. Address Error—If Odd Value Written to ScanPC

X
X

Take Preinstruction, Midinstruction, or Postinstruction Exception
Exception Depends on Vector Supplies in Primitive

X X X

*Use of this primitive with CA = 0 will cause protocol violation on conditional instructions.
Abbreviations:

EA—Effective Address
CP—Coprocessor

MOTOROLA M68020 USER’S MANUAL 7-55

When the MC68020/EC020 detects a protocol violation, it does not automatically notify the
coprocessor of the resulting exception by writing to the control CIR. However, the
exception handling routine may use the MOVES instruction to read the response CIR and
thus determine the primitive that caused the MC68020/EC020 to initiate protocol violation
exception processing. The main processor initiates exception processing using the
midinstruction stack frame (refer to Figure 7-43) and the coprocessor protocol violation
exception vector number 13. If the exception handler does not modify the stack frame, the
main processor reads the response CIR again following the execution of an RTE
instruction to return from the exception handler. This protocol allows extensions to the
M68000 coprocessor interface to be emulated in software by a main processor that does
not provide hardware support for these extensions. Thus, the protocol violation is
transparent to the coprocessor if the primitive execution can be emulated in software by
the main processor.

7.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions detected by
the MC68020/EC020 are either explicitly or implicitly related to the encodings of F-line
operation words in the instruction stream. If the main processor determines that an F-line
operation word is not valid, it initiates F-line emulator exception processing. Any F-line
operation word with bits 8–6 = 110 or 111 causes the MC68020/EC020 to initiate
exception processing without initiating any communication with the coprocessor for that
instruction. Also, an operation word with bits 8–6 = 000–101 that does not map to one of
the valid coprocessor instructions in the instruction set causes the MC68020/EC020 to
initiate F-line emulator exception processing. If the F-line emulator exception is either of
these two situations, the main processor does not write to the control CIR prior to initiating
exception processing.

F-line exceptions can also occur if the operations requested by a coprocessor response
primitive are not compatible with the effective address type in bits 5–0 of the coprocessor
instruction operation word. The F-line emulator exceptions that can result from the use of
the M68000 coprocessor response primitives are summarized in Table 7-6. If the
exception is caused by receiving an invalid primitive, the main processor aborts the
coprocessor instruction in progress by writing an abort mask (refer to 7.3.2 Control CIR)
to the control CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs during the CIR
access that initiates a coprocessor instruction. The main processor assumes that the
coprocessor is not present and takes the exception.

When the main processor initiates F-line emulator exception processing, it uses the four-
word preinstruction exception stack frame (refer to Figure 7-41) and the F-line emulator
exception vector number 11. Thus, if the exception handler does not modify the stack
frame, the main processor attempts to restart the instruction that caused the exception
after it executes an RTE instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler stores the
results of the emulation in the appropriate registers of the programming model and in the
status register field of the saved stack frame. The exception handler adjusts the program

7-56 M68020 USER’S MANUAL MOTOROLA

counter field of the saved stack frame to point to the next instruction operation word and
executes the RTE instruction. The MC68020/EC020 then executes the instruction
following the instruction that was emulated.

The exception handler should also check the copy of the SR on the stack to determine
whether tracing is enabled. If tracing is enabled, the trace exception processing should
also be emulated. Refer to Section 6 Exception Processing for additional information.

7.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE and
cpRESTORE instructions and from the supervisor check coprocessor response primitive.
The MC68020/EC020 initiates privilege violation exception processing if it attempts to
execute either the cpSAVE or cpRESTORE instruction when it is in the user state (S = 0
in the SR). The main processor initiates this exception processing prior to any
communication with the coprocessor associated with the cpSAVE or cpRESTORE
instructions.

If the main processor is executing a coprocessor instruction in the user state when it reads
the supervisor check primitive, it aborts the coprocessor instruction in progress by writing
an abort mask to the control CIR (refer to 7.3.2 Control CIR). The main processor then
performs privilege violation exception processing.

If a privilege violation occurs, the main processor initiates exception processing using the
four-word preinstruction stack frame (refer to Figure 7-41) and the privilege violation
exception vector number 8. Thus, if the exception handler does not modify the stack
frame, the main processor attempts to restart the instruction during which the exception
occurred after it executes an RTE to return from the handler.

7.5.2.4 cpTRAPcc INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc
instruction, the coprocessor returns the TRUE condition indicator to the main processor
with a null primitive, the main processor initiates trap exception processing. The main
processor uses the six-word postinstruction exception stack frame (refer to Figure 7-45)
and the trap exception vector number 7. The scanPC field of this stack frame contains the
address of the instruction following the cpTRAPcc instruction. The processing associated
with the cpTRAPcc instruction can then proceed, and the exception handler can locate
any immediate operand words encoded in the cpTRAPcc instruction using the information
contained in the six-word stack frame. If the exception handler does not modify the stack
frame, the main processor executes the instruction following the cpTRAPcc instruction
after it executes an RTE instruction to exit from the handler.

7.5.2.5 TRACE EXCEPTIONS. The MC68020/EC020 supports two modes of instruction
tracing, as discussed in Section 6 Exception Processing . In the trace on instruction
execution mode, the MC68020/EC020 takes a trace exception after completing each
instruction. In the trace on change of flow mode, the MC68020/EC020 takes a trace
exception after each instruction that alters the SR or places an address other than the
address of the next instruction in the PC.

MOTOROLA M68020 USER’S MANUAL 7-57

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or conditional category
instructions does not change when a trace exception is pending in the main processor.
The main processor performs a pending trace on instruction execution exception after
completing the execution of that instruction. If the main processor is in the trace on
change of flow mode and an instruction places an address other than that of the next
instruction in the PC, the processor takes a trace exception after it executes the
instruction.

If a trace exception is not pending during a general category instruction, the main
processor terminates communication with the coprocessor after reading any primitive with
CA = 0. Thus, the coprocessor can complete a cpGEN instruction concurrently with the
execution of instructions by the main processor. When a trace exception is pending,
however, the main processor must ensure that all processing associated with a cpGEN
instruction has been completed before it takes the trace exception. In this case, the main
processor continues to read the response CIR and to service the primitives until it receives
either a null primitive with CA = 0 and PF = 1 or until exception processing caused by a
take postinstruction exception primitive has completed. The coprocessor should return the
null primitive with CA = 0 and PF = 0 while it is completing the execution of the cpGEN
instruction. The main processor may service pending interrupts between reads of the
response CIR if IA = 1 in these primitives (refer to Table 7-3). This protocol ensures that a
trace exception is not taken until all processing associated with a cpGEN instruction has
completed.

If T1, T0 = 01 in the MC68020/EC020 SR (trace on change of flow mode) when a general
category instruction is initiated, a trace exception is taken for the instruction only when the
coprocessor issues a transfer status register and scanPC primitive with DR = 1 during the
execution of that instruction. In this case, it is possible that the coprocessor is still
executing the cpGEN instruction concurrently when the main processor begins execution
of the trace exception handler. A cpSAVE instruction executed during the trace on change
of flow exception handler could thus suspend the execution of a concurrently operating
cpGEN instruction.

7.5.2.6 INTERRUPTS. Interrupt processing, discussed in Section 6 Exception
Processing, can occur at any instruction boundary. Interrupts are also serviced during the
execution of a general or conditional category instruction under either of two conditions. If
the main processor reads a null primitive with CA = 1 and IA = 1, it services any pending
interrupts prior to reading the response CIR. Similarly, if a trace exception is pending
during cpGEN instruction execution and the main processor reads a null primitive with CA
= 0, IA = 1, and PF = 0 (refer to 7.5.2.5 Trace Exceptions), the main processor services
pending interrupts prior to reading the response CIR again.

The MC68020/EC020 uses the 10-word midinstruction stack frame (see Figure 7-43)
when it services interrupts during the execution of a general or conditional category
coprocessor instruction. Since it uses this stack frame, the main processor can perform all
necessary processing and then return to read the response CIR. Thus, it can continue
execution of the coprocessor instruction during which the interrupt exception occurred.

7-58 M68020 USER’S MANUAL MOTOROLA

The MC68020/EC020 also services interrupts if it reads the not-ready format word from
the save CIR during a cpSAVE instruction. The MC68020/EC020 uses the normal four-
word preinstruction stack frame (see Figure 7-41) when it services interrupts after reading
the not-ready format word. Thus, the processor can service any pending interrupts and
execute an RTE to return and reinitiate the cpSAVE instruction by reading the save CIR.

7.5.2.7 FORMAT ERRORS. The MC68020/EC020 can detect a format error while
executing a cpSAVE or cpRESTORE instruction if the length field of a valid format word is
not a multiple of four bytes. If the MC68020/EC020 reads a format word with an invalid
length field from the save CIR during the cpSAVE instruction, it aborts the coprocessor
instruction by writing an abort mask to the control CIR (refer to 7.3.2 Control CIR) and
initiates format error exception processing. If the MC68020/EC020 reads a format word
with an invalid length field from the effective address specified in the cpRESTORE
instruction, the MC68020/EC020 writes that format word to the restore CIR and then reads
the coprocessor response from the restore CIR. The MC68020/EC020 then aborts the
cpRESTORE instruction by writing an abort mask to the control CIR (refer to 7.3.2
Control CIR) and initiates format error exception processing.

The MC68020/EC020 uses the four-word preinstruction stack frame (see Figure 7-41) and
the format error vector number 14 when it initiates format error exception processing.
Thus, if the exception handler does not modify the stack frame, the main processor, after it
executes an RTE to return from the handler, attempts to restart the instruction during
which the exception occurred.

7.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults can
occur during main processor bus cycles to CPU space to communicate with a coprocessor
or during memory cycles run as part of the coprocessor instruction execution. If a bus
error occurs during the CIR access that is used to initiate a coprocessor instruction, the
main processor assumes that the coprocessor is not present and takes an F-line emulator
exception as described in 7.5.2.2 F-Line Emulator Exceptions. That is, the processor
takes an F-line emulator exception when a bus error occurs during the initial access to a
CIR by a coprocessor instruction. If a bus error occurs on any other coprocessor access
or on a memory access made during the execution of a coprocessor instruction, the main
processor performs bus error exception processing as described in Section 6 Exception
Processing. After the exception handler has corrected the cause of the bus error, the
main processor can return to the point in the coprocessor instruction at which the fault
occurred.

An address error occurs if the MC68020/EC020 attempts to prefetch an instruction from
an odd address. This can occur if the calculated destination address of a cpBcc or cpDBcc
instruction is odd or if an odd value is transferred to the scanPC with the transfer status
register and the scanPC response primitive. If an address error occurs, the
MC68020/EC020 performs exception processing for a bus fault as described in Section 6
Exception Processing.

MOTOROLA M68020 USER’S MANUAL 7-59

7.5.3 Coprocessor Reset

Either an external reset signal or a RESET instruction can reset the external devices of a
system. The system designer can design a coprocessor to be reset and initialized by both
reset types or by external reset signals only. To be consistent with the MC68020/EC020
design, the coprocessor should be affected by external reset signals only and not by
RESET instructions, because the coprocessor is an extension to the main processor
programming model and to the internal state of the MC68020/EC020.

7.6 COPROCESSOR SUMMARY

Coprocessor instruction formats are included with the instruction formats in the
M68000PM/AD, M68000 Family Programmer's Reference Manual.

The M68000 coprocessor response primitive formats are shown in this section. Any
response primitive with bits 13–8 = $00 or $3F causes a protocol violation exception.
Response primitives with bits 13–8 = $0B, $18–$1B, $1F, $28–$2B, and $38–3B currently
cause protocol violation exceptions; they are undefined and reserved for future use by
Motorola.

7-60 M68020 USER’S MANUAL MOTOROLA

15

1 PC 1

14 13 12

0 0

11 10 9 07

1 0

2

0

3

0

4

0

5

0

6

000

8

0 0

1

15

CA PC DR

14 13 12

0 0

11 10 9 07

0 0 LENGTH1

8

15

CA PC DR

14 13 12

0 0

11 10 9 07

0 1

2

0

3

0

4

0

5

0

6

00SP

8

0 0

1

15

1 PC 0

14 13 12

0 0

11 10 9 07

1 0

2

0

3

0

4

0

5

0

6

000

8

0 0

1

15

CA PC DR

14 13 12

0 0

11 10 9 07

1 1

2

0

3

0

4

0

5

0

6

000

8

0 0

1

15

CA PC 0

14 13 12

0 0

11 10 9 07

1 1

2

0

3

0

4

0

5

0

6

001

8

0 0

1

15

CA PC 0

14 13 12

0 1

11 10 9 07

0 0

2

PF

3

0

4

0

5

0

6

00IA

8

0 TF

1

15

CA PC 0

14 13 12

0 1

11 10 9 07

0 1

2

0

3

0

4

0

5

0

6

000

8

0 0

1

15

CA PC DR

14 13 12

0 0

11 10 9 07

1 0 LENGTH1

8

Busy

Transfer Multiple Coprocessor Registers

Transfer Status Register and ScanPC

Supervisor Check

Take Address and Transfer Data

Transfer Multiple Main Processor Registers

Transfer Operation Word

Null

Evaluate and Transfer Effective Address

MOTOROLA M68020 USER’S MANUAL 7-61

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 1 LENGTH0

8

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 0

2

0

3

0

4

0

5

0

6

001

8

0 0

1

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 0

2

REGISTER

3

D/A

4

0

5

0

6

000

8

15

CA PC 0

14 13 12

0 1

11 10 9 07

1 1 LENGTH1

8

15

CA PC DR

14 13 12

1 0

11 10 9 07

VALID EA LENGTH

8

15

0 PC 0

14 13 12

1 1

11 10 9 07

1 0 VECTOR NUMBER0

8

15

0 PC 0

14 13 12

1 1

11 10 9 07

1 0 VECTOR NUMBER1

8

15

0 PC 0

14 13 12

1 1

11 10 9 07

1 1 VECTOR NUMBER0

8

15

CA PC 1

14 13 12

0 0

11 10 9 07

0 0 LENGTH0

8

Transfer Single Main Processor Register

Transfer Main Processor Control Register

Transfer to/from Top of Stack

Transfer from Instruction Stream

Evaluate Effective Address and Transfer Data

Take Preinstruction Exception

Take Midinstruction Exception

Take Postinstruction Exception

Write to Previously Evaluated Effective Address

MOTOROLA M68020 USER’S MANUAL 8-1

SECTION 8
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution and operations (table searches, etc.) of
the MC68020/EC020 in terms of external clock cycles. It provides accurate execution and
operation timing guidelines but not exact timings for every possible circumstance. This
approach is used since exact execution time for an instruction or operation is highly
dependent on memory speeds and other variables. The timing numbers presented in this
section allow the assembly language programmer or compiler writer to predict timings
needed to evaluate the performance of the MC68020/EC020.

In this section, instruction and operation times are shown in clock cycles, which eliminates
clock frequency dependencies.

8.1 TIMING ESTIMATION FACTORS

The advanced architecture of the MC68020/EC020 makes exact instruction timing
calculations difficult due to the effects of:

1. An On-Chip Instruction Cache and Instruction Prefetch

2. Operand Misalignment

3. Bus Controller/Sequence Concurrency

4. Instruction Execution Overlap

These factors make MC68020/EC020 instruction set timing difficult to calculate on a single
instruction basis since instructions vary in execution time from one context to another. A
detailed explanation of each of these factors follows.

8.1.1 Instruction Cache and Prefetch

The on-chip cache of the MC68020/EC020 is an instruction-only cache. Its purpose is to
increase execution efficiency by providing a quick store for instructions.

Instruction prefetches that hit in the cache will occur with no delay in instruction execution.
Instruction prefetches that miss in the cache will cause an external memory cycle to be
performed, which may overlap with internal instruction execution. Thus, while the
execution unit of the microprocessor is busy, the bus controller prefetches the next
instruction from external memory. Both cases are illustrated in later examples.

8-2 M68020 USER’S MANUAL MOTOROLA

When prefetching instructions from external memory, the microprocessor will utilize long-
word read cycles. When the read is aligned on a long-word address boundary, the
processor reads two words, which may load two instructions at once or two words of a
multiword instruction. The subsequent instruction prefetch will find the second word is
already available, and there is no need to run an external bus cycle (read).

The MC68020/EC020 always prefetches long words. When an instruction prefetch falls on
an odd-word boundary (e.g., due to a branch to an odd-word location), the
MC68020/EC020 will read the even word associated with the long-word base address at
the same time as (32-bit memory) or before (8- or 16-bit memory) the odd word is read.
When an instruction prefetch falls on an even-word boundary (as would be the normal
case), the MC68020/EC020 reads both words at the long-word address, thus effectively
prefetching the next two words.

8.1.2 Operand Misalignment

Another significant factor affecting instruction timing is operand misalignment. Operand
misalignment has impact on performance when the microprocessor is reading or writing
external memory. In this case, the address of a word operand falls across a long-word
boundary, or a long-word operand falls on a byte or word address that is not a long-word
boundary. Although the MC68020/EC020 will automatically handle all occurrences of
operand misalignment, it must use multiple bus cycles to complete such transfers.

8.1.3 Bus/Sequencer Concurrency

The bus controller is responsible for all bus activity. The sequencer controls the bus
controller, instruction execution, and internal processor operation, such as calculation of
effective addresses and setting of condition codes.

The bus controller and sequencer can operate on an instruction concurrently. The bus
controller can perform a read or write while the sequencer controls an effective address
calculation or sets the condition codes. The sequencer may also request a bus cycle that
the bus controller cannot immediately perform. In this case, the bus cycle is queued and
the bus controller runs the cycle when the current cycle is complete.

MOTOROLA M68020 USER’S MANUAL 8-3

8.1.4 Instruction Execution Overlap

Overlap is the time, measured in clocks, when two instructions execute concurrently. In
Figure 8-1, instructions A and B execute concurrently, and the overlapped portion of
instruction B is absorbed in the instruction execution time of A (the previous instruction).
The overlap time is deducted from the execution time of instruction B. Similarly, there is an
overlap period between instruction B and instruction C, which reduces the attributed
execution time for C.

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP OVERLAP

Figure 8-1. Concurrent Instruction Execution

The execution time attributed to instructions A, B, and C (after considering the overlap) is
depicted in Figure 8-2.

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION B)

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION A)

Figure 8-2. Instruction Execution for Instruction Timing Purposes

It is possible that the execution time of an instruction will be absorbed by the overlap with
a previous instruction for a net execution time of zero clocks.

Because of this overlap, a NOP is required between a write to a peripheral to clear an
interrupt request and a subsequent MOVE to SR instruction to lower the interrupt mask
level. Otherwise, the MOVE to SR instruction may complete before the write is
accomplished, and a new interrupt exception will be generated for an old interrupt request.

8-4 M68020 USER’S MANUAL MOTOROLA

8.1.5 Instruction Stream Timing Examples

A programming example allows a more detailed examination of these effects. The effect of
instruction execution overlap on instruction timing is illustrated by the following example
instruction stream.

Instruction

#1) MOVE.L D4,(A1)+

#2) ADD.L D4,D5

#3) MOVE.L (A1), –(A2)

#4) ADD.L D5,D6

Example 1

For the first example, the assumptions are:
1. The data bus is 32 bits,

2. The first instruction is prefetched from an odd-word address,

3. Memory access occurs with no wait states, and

4. The instruction cache is disabled.

For example 1, the instruction stream is positioned in 32-bit memory as follows:

Address n ••• MOVE #1

n + 4 ADD #2 MOVE #3

n + 8 ADD #4 •••

Figure 8-3 shows processor activity on the first example instruction stream. It shows the
activity of the external bus, the bus controller, the sequencer, and the attributed instruction
execution time.

MOTOROLA M68020 USER’S MANUAL 8-5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CLOCK

BUS
ACTIVITY

PREFETCH WRITE READ PREFETCH WRITE

PREFETCH
BYTES n + 8

BUS
CONTROLLER WRITE TO (A1)+ PREFETCH

BYTES n + 12 WRITE TO –(A2)READ FROM (A1) IDLE

PERFORM
MOVE #1 IDLE PERFORM

ADD #2

CALCULATE
SOURCE EA

MOVE #3

CALCULATE
DESTINATION

EA
MOVE #3

IDLE PERFORM
MOVE #3

PERFORM
ADD #4

MOVE.L D4,(A1)+ MOVE.L (A1),–(A2) ADD.L
D5,D6

SEQUENCER

INSTRUCTION
EXECUTION TIME

(6) (9) (1)CLOCK
COUNT

LEGEND:

 1) MOVE.L D4,(A1)+

2) ADD.L D4,D5

3) MOVE.L (A1),–(A2)

4) ADD.L D5,D6

Figure 8-3. Processor Activity for Example 1

For the first three clocks of this example, the bus controller and sequencer are both
performing tasks associated with the MOVE #1 instruction. The next three clocks (clocks
4, 5, and 6) demonstrate instruction overlap. The bus controller is performing a write to
memory as part of the MOVE #1 instruction. The sequencer, on the other hand, is
performing the ADD #2 instruction for two clocks (clocks 4 and 5) and beginning source
effective address (EA) calculations for the MOVE #3 instruction. The bus controller activity
completely overlaps the execution of the ADD #2 instruction, causing the ADD #2
attributed execution time to be zero clocks. The overlap also shortens the effective
execution time of the MOVE #3 instruction by one clock because the bus controller
completes the MOVE #1 write operation while the sequencer begins the MOVE #3 EA
calculation.

The sequencer continues the source EA calculation for one more clock period (clock 7)
while the bus controller begins a read for MOVE #3. When counting instruction execution
time in bus clocks, the MOVE #1 completes at the end of clock 6, and the execution of
MOVE #3 begins on clock 7.

Both the sequencer and bus controller continue with MOVE #3 until the end of clock 14,
when the sequencer begins to perform ADD #4. Timing for MOVE #3 continues because
the bus controller is still performing the write to the destination of MOVE #3. The bus
activity for MOVE #3 completes at the end of clock 15. The effective execution time for
MOVE #3 is nine clocks.

The one clock cycle (clock 15) when the sequencer is performing ADD #4 and the bus
controller is writing to the destination of MOVE #3 is absorbed by the execution time of
MOVE #3. This overlap shortens the effective execution time of ADD #4 by one clock,
giving it an attributed execution time of one clock.

8-6 M68020 USER’S MANUAL MOTOROLA

Example 2

Using the same instruction stream, the second example demonstrates the different effects
of instruction execution overlap on instruction timing when the same instructions are
positioned slightly differently in 32-bit memory:

Address n MOVE #1 ADD #2

n + 4 MOVE #3 ADD #4

n + 8 ••• •••

The assumptions for example 2 (see Figure 8-4) are:
1. The data bus is 32 bits,

2. The first instruction is prefetched from an even-word address,

3. Memory access occurs with no wait states, and

4. The cache is disabled.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CLOCK

BUS
ACTIVITY

PREFETCHWRITE READ PREFETCHWRITE

PREFETCH
BYTES n + 12

BUS
CONTROLLER WRITE TO (A1)+ PREFETCH

BYTES n + 8 WRITE TO –(A2)READ FROM (A1)IDLE

PERFORM
MOVE #1

PERFORM
ADD #2

CALCULATE
SOURCE EA

MOVE #3

CALCULATE
DESTINATION

EA
MOVE #3

PERFORM
MOVE #3

MOVE.L D4,(A1)+ MOVE.L (A1),–(A2) ADD.L D5,D6

SEQUENCER

INSTRUCTION
EXECUTION TIME

(4) (3) (3)CLOCK
COUNTER

LEGEND:

 1) MOVE.L D4,(A1)+

2) ADD.L D4,D5

3) MOVE.L (A1),–(A2)

4) ADD.L D5,D6

IDLE NEXT
INSTRUCTION

ADD.L D4,D5

(6)

PERFORM
ADD #4IDLE

Figure 8-4. Processor Activity for Example 2

Although the total execution time of the instruction segment does not change in this
example, the individual instruction times are significantly different. This example
demonstrates that the effects of overlap are not only instruction-sequence dependent but
are also dependent upon the alignment of the instruction stream in memory.

MOTOROLA M68020 USER’S MANUAL 8-7

Example 3

Both Figures 8-3 and 8-4 show instruction execution without benefit of the
MC68020/EC020 instruction cache. Figure 8-5 shows a third example for the same
instruction stream executing in the cache. Note that once the instructions are in the cache,
the original location in external memory is no longer a factor in timing.

The assumptions for Example 3 are:
1. The data bus is 32 bits,

2. The cache is enabled and instructions are in the cache, and

3. Memory access occurs with no wait states.

1 2 3 4 5 6 7 8 9 10 11 12 13

CLOCK

BUS
ACTIVITY

WRITE READ WRITE

BUS
CONTROLLER WRITE TO (A1)+ WRITE TO –(A2)READ FROM (A1)IDLE

PERFORM
MOVE #1

PERFORM
ADD #2

CALCULATE
SOURCE EA

MOVE #3

CALCULATE
DESTINATION

EA
MOVE #3

PERFORM
MOVE #3

MOVE.L D4,(A1)+ MOVE.L (A1),–(A2) ADD.L
D5,D6

SEQUENCER

INSTRUCTION
EXECUTION TIME

(4) (1)CLOCK
COUNTER

LEGEND:

 1) MOVE.L D4,(A1)+

2) ADD.L D4,D5

3) MOVE.L (A1),–(A2)

4) ADD.L D5,D6

(7)

PERFORM
ADD #4

IDLE IDLE

Figure 8-5. Processor Activity for Example 3

Figure 8-5 illustrates the benefits of the instruction cache. The total number of clock cycles
is reduced from 16 to 12 clocks. Since the instructions are resident in the cache, the
instruction prefetch activity does not require the bus controller to perform external bus
cycles. Since prefetch occurs with no delay, the bus controller is idle more often.

Example 4

Idle clock cycles, such as those shown in example 3, are useful in MC68020/EC020
systems that require wait states when accessing external memory. This fact is illustrated
in example 4 (see Figure 8-6) with the following assumptions:

1. The data bus is 32 bits,

2. The cache is enabled and instructions are in the cache, and

3. Memory access occurs with one wait state.

8-8 M68020 USER’S MANUAL MOTOROLA

1 2 3 4 5 6 7 8 9 10 11 12 13 14

CLOCK

BUS
ACTIVITY

WRITE READ WRITE

BUS
CONTROLLER

WRITE TO (A1)+ WRITE TO –(A2)READ FROM (A1)IDLE

PERFORM
MOVE #1

PERFORM
ADD #2

CALCULATE
SOURCE EA

MOVE #3

PERFORM
MOVE #3

MOVE.L D4,(A1)+ MOVE.L (A1),–(A2)

SEQUENCER

INSTRUCTION
EXECUTION TIME

(5)CLOCK
COUNTER

LEGEND:

 1) MOVE.L D4,(A1)+

2) ADD.L D4,D5

3) MOVE.L (A1),–(A2)

4) ADD.L D5,D6

IDLE PERFORM
ADD #4

(8)

CALCULATE
DESTINATION

EA
MOVE #3

Figure 8-6. Processor Activity for Example 4

Figure 8-6 shows the same instruction stream executing with four clocks for every read
and write. The idle bus cycles coincide with the wait states of the memory access;
therefore, the total execution time is only 13 clocks.

Examples 1–4 demonstrate the complexity of instruction timing calculation for the
MC68020/EC020. It is impossible to anticipate individual instruction timing as an absolute
number of clock cycles due to the dependency of overlap on the instruction sequence and
alignment as well as the number of wait states in memory. This can be seen by comparing
individual and composite time for Figures 8-3 through 8-6. These instruction timings are
compared in Table 8-1, where timing varies for each instruction as the context varies.

Table 8-1. Examples 1–4 Instruction Stream Execution Comparison

Instruction
Example 1

(Odd Alignment)
Example 2

(Even Alignment)
Example 3

(Cache)

Example 4
(Cache with
Wait States)

#1) MOVE.L
#2) ADD.L
#3) MOVE.L
#4) ADD.L

D4,(A1)+
D4,D5
(A1),–(A2)
D5,D6

6
0
9
1

4
3
6
3

4
0
7
1

5
0
8
0

Total Clock Cycles 16 16 12 13

MOTOROLA M68020 USER’S MANUAL 8-9

8.2 INSTRUCTION TIMING TABLES

The instruction times given in the following illustration include the following assumptions
about the MC68020/EC020 system:

1. All operands are long-word aligned as is the stack,

2. The data bus is 32 bits, and

3. Memory access occurs with no wait states (three-cycle read/write).

There are three values given for each instruction and addressing mode:
1. The best case (BC), which reflects the time (in clocks) when the instruction is in the

cache and benefits from maximum overlap due to other instructions,

2. The cache-only case (CC) when the instruction is in the cache but has no overlap,
and

3. The worst case (WC) when the instruction is not in the cache or the cache is
disabled and there is no instruction overlap.

The only instances for which the size of the operand has any effect are the instructions
with immediate operands. Unless specified otherwise, immediate byte and word operands
have identical execution times.

Within each set or column of instruction timings are four sets of numbers, three of which
are enclosed in parentheses. The bolded outer number is the total number of clocks for
the instruction. The first number inside the parentheses is the number of operand read
cycles performed by the instruction. The second value inside parentheses is the number
of instruction accesses performed by the instruction, including all prefetches to keep the
instruction pipe filled. The third value within parentheses is the number of write cycles
performed by the instruction. One example from the instruction timing table is:

TOTAL NUMBER OF CLOCKS

NUMBER OF READ CYCLES

 NUMBER OF INSTRUCTION ACCESS CYCLES

NUMBER OF WRITE CYCLES

24 (2 3 0)/ /

The total number of bus-activity clocks for the previous example is derived in the following
way:

(2 Reads * 3 Clocks/Read) + (3 Instruction Accesses * 3 Clocks/Access)
+ (0 Writes * 3 Clocks/Write) = 15 Clocks of Bus Activity

24 Total Clocks – 15 Clocks (Bus Activity) = 9 Internal Clocks

The example used here was taken from a worst-case fetch effective address time. The
addressing mode was ([d32,B],I,d32). The same addressing mode under the best-case

8-10 M68020 USER’S MANUAL MOTOROLA

entry is 17 (2/0/0). For the best case, there are no instruction accesses because the cache
is enabled and the sequencer does not have to go to external memory for the instruction
words.

The first tables deal exclusively with fetching and calculating effective addresses and
immediate operands. The tables are arranged in this manner because some instructions
do not require effective address calculation or fetching. For example, the instruction CLR
<ea> (found in the table under 8.2.11 Single Operand Instructions) only needs to have a
calculated effective address time added to its table entry because no fetch of an operand
is required. This instruction only writes to memory or a register. Some instructions use
specific addressing modes which exclude timing for calculation or fetching of an operand.
When these instances arise, they are footnoted to indicate which other tables are needed
in the timing calculation.

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the fetch
immediate effective address time or the calculate immediate effective address time in the
execution time calculation. The timing for immediate data of word length (#<data>.W) is
used for these calculations. If the instruction has a source and a destination, the source
effective address is used for the table lookup. If the instruction is single operand, the
effective address of that operand is used.

The following example includes multiword instructions that refer to the fetch immediate
effective address and calculate immediate effective address tables in 8.2 Instruction
Timing Tables .

Instruction

#1) MULU.L D7,D1:D2

#2) BFCLR $6000{0:8}

#3) DIVS.L #$10000,D3:D4

CC

1.MULU.L (D7),D1:D2

#<data>.W,Dn 2

MUL.L EA,Dn 43

2.BFCLR $6000{0:8}

#<data>.W.,$XXX.W 5

BFCLR Mem (<5 bytes) 16

3.DIVS.L #$10000,D3:D4

#<data>.W,#<data>.L 6

DIVS.L EA, Dn 90

Execution time = 2 + 43 + 5 + 16 + 6 + 90
= 102 clock periods

MOTOROLA M68020 USER’S MANUAL 8-11

NOTE

This CC time is a maximum since the times given for the
MULU.L and DIVS.L are maximums.

The MOVE instruction timing tables include all necessary timing for extension word fetch,
address calculation, and operand fetch.

The instruction timing tables are used to calculate a best-case and worst-case bounds for
some target instruction stream. Calculating exact timing from the timing tables is
impossible because the tables cannot anticipate how the combination of factors will
influence every particular sequence of instructions. This is illustrated by comparing the
observed instruction timing from the prior four examples with instruction timing derived
from the instruction timing tables.

Table 8-2 lists the original instruction stream and the corresponding clock timing from the
appropriate timing tables for the best case, cache-only case, and worst case.

Table 8-2. Instruction Timings from Timing Tables

Instruction Best Case Cache Case Worst Case

#1) MOVE.L
#2) ADD.L
#3) MOVE.L
#4) ADD.L

D4,(A1)+
D4,D5
(A1),–(A2)
D5,D6

4
0
6
0

4
2
7
2

6
3
9
3

Total 10 15 21

Table 8-3 summarizes the observed instruction timings for the same instruction stream as
executed according to the assumptions of the four examples. For each example, Table 8-
3 shows which entry (BC/CC/WC) from the timing tables corresponds to the observed
timing for each of the four instructions. Some of the observed instruction timings cannot be
found in the timing tables and appear in Table 8-3 within parentheses in the most
appropriate column. These timings occur when instruction execution overlap dynamically
alters what would otherwise be a BC, CC, or WC timing.

Table 8-3. Observed Instruction Timings

Example 1 Example 2 Example 3 Example 4

Instruction BC CC WC BC CC WC BC CC WC BC CC WC

#1) MOVE.L
#2) ADD.L
#3) MOVE.L
#4) ADD.L

D4,(A1)+
D4,D5
(A1),–(A2)
D5,D6

0

(1)

6

9

4

6
3

3

0

(1)

4

7
0

0

(5)

(8)

Total (16) (16) (12) (13)

8-12 M68020 USER’S MANUAL MOTOROLA

Comparing Tables 8-2 and 8-3 demonstrates that calculation of instruction timing cannot
be a simple lookup of only BC or only WC timings. Even when the assumptions are known
and fixed, as in the four examples summarized in Table 8-3, the microprocessor can
sometimes achieve best-case timings under worst-case assumptions.

Looking across the four examples in Table 8-3 for an individual instruction, it is difficult to
predict which timing table entry is used, since the influence of instruction overlap may or
may not improve the BC, WC, or CC timings. When looking at the observed instruction
timings for one example, it is also difficult to determine which combination of BC/CC/WC
timing is required. Just how the instruction stream will fit and run with the cache enabled,
how instructions are positioned in memory, and the degree of instruction overlap are
factors that are impossible to account for in all combinations of the timing tables.

Although the timing tables cannot accurately predict the instruction timing that would be
observed when executing an instruction stream on the MC68020/EC020, the tables can
be used to calculate best-case and worst-case bounds for instruction timing. Absolute
instruction timing must be measured by using the microprocessor itself to execute the
target instruction stream.

MOTOROLA M68020 USER’S MANUAL 8-13

8.2.1 Fetch Effective Address

The fetch effective address table indicates the number of clock periods needed for the
processor to calculate and fetch the specified effective address. The total number of clock
cycles is outside the parentheses; the number of read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). These cycles are included in the total clock cycle
number.

Address Mode Best Case Cache Case Worst Case

Dn 0(0/0/0) 0(0/0/0) 0(0/0/0)

An 0(0/0/0) 0(0/0/0) 0(0/0/0)

(An) 3(1/0/0) 4(1/0/0) 4(1/0/0)

(An)+ 4(1/0/0) 4(1/0/0) 4(1/0/0)

–(An) 3(1/0/0) 5(1/0/0) 5(1/0/0)

(d16,An) of (d16,PC) 3(1/0/0) 5(1/0/0) 6(1/1/0)

(xxx).W 3(1/0/0) 4(1/0/0) 6(1/1/0)

(xxx).L 3(1/0/0) 4(1/0/0) 7(1/1/0)

#<data>.B 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.W 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.L 0(0/0/0) 4(0/0/0) 5(0/1/0)

(d8,An,Xn) or (d8,PC,Xn) 4(1/0/0) 7(1/0/0) 8(1/1/0)

(d16,An,Xn) or (d16,PC,Xn) 4(1/0/0) 7(1/0/0) 9(1/1/0)

(B) 4(1/0/0) 7(1/0/0) 9(1/1/0)

(d16,B) 6(1/0/0) 9(1/0/0) 12(1/1/0)

(d32,B) 10(1/0/0) 13(1/0/0) 16(1/2/0)

([B],I) 9(2/0/0) 12(2/0/0) 13(2/1/0)

([B],I,d16) 11(2/0/0) 14(2/0/0) 16(2/1/0)

([B],I,d32) 11(2/0/0) 14(2/0/0) 17(2/2/0)

([d16,B],I) 11(2/0/0) 14(2/0/0) 16(2/1/0)

([d16,B],I,d16) 13(2/0/0) 16(2/0/0) 19(2/2/0)

([d16,B],I,d32) 13(2/0/0) 16(2/0/0) 20(2/2/0)

([d32,B],I) 15(2/0/0) 18(2/0/0) 20(2/2/0)

([d32,B],I,d16) 17(2/0/0) 20(2/0/0) 22(2/2/0)

([d32,B],I,d32) 17(2/0/0) 20(2/0/0) 24(2/3/0)

B = Base address; 0, An, PC, Xn, An + Xn. Form does not affect timing.
I = Index; 0, Xn
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

8-14 M68020 USER’S MANUAL MOTOROLA

8.2.2 Fetch Immediate Effective Address

The fetch immediate effective address table indicates the number of clock periods needed
for the processor to fetch the immediate source operand and calculate and fetch the
specified destination operand. The total number of clock cycles is outside the
parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Address Mode Best Case Cache Case Worst Case

#<data>.W,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.L,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.W,(An) 3(1/0/0) 4(1/0/0) 4(1/1/0)

#<data>.L,(An) 3(1/0/0) 4(1/0/0) 7(1/1/0)

#<data>.W,(An)+ 4(1/0/0) 6(1/0/0) 7(1/1/0)

#<data>.L,(An)+ 5(1/0/0) 8(1/0/0) 9(1/1/0)

#<data>.W,–(An) 3(1/0/0) 5(1/0/0) 6(1/1/0)

#<data>.L,–(An) 4(1/0/0) 7(1/0/0) 8(1/1/0)

#<data>.W,(bd,An) 3(1/0/0) 5(1/0/0) 7(1/1/0)

#<data>.L,(bd,An) 4(1/0/0) 7(1/0/0) 10(1/2/0)

#<data>.W,xxx.W 3(1/0/0) 5(1/0/0) 7(1/1/0)

#<data>.L,xxx.W 4(1/0/0) 7(1/0/0) 10(1/2/0)

#<data>.W,xxx.L 3(1/0/0) 6(1/0/0) 10(1/2/0)

#<data>.L,xxx.L 4(1/0/0) 8(1/0/0) 12(1/2/0)

#<data>.W,#<data>.B,W 0(0/0/0) 4(0/0/0) 6(0/2/0)

#<data>.L,#<data>.B,W 1(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.W,#<data>.L 0(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.L,#(data>.L 1(0/0/0) 8(0/0/0) 10(0/2/0)

#<data>.W,(d8,An,Xn) or (d8,PC,Xn) 4(1/0/0) 9(1/0/0) 11(1/2/0)

#<data>.L,(d8,An,Xn) or (d8,PC,Xn) 5(1/0/0) 11(1/0/0) 13(1/2/0)

#<data>.W,(d16,An,Xn) or (d16,PC,Xn) 4(1/0/0) 9(1/0/0) 12(1/2/0)

#<data>.L,(d16,An,Xn) or (d16,PC,Xn) 5(1/0/0) 11(1/0/0) 15(1/2/0)

#<data>.W,(B) 4(1/0/0) 9(1/0/0) 12(1/1/0)

#<data>.L,(B) 5(1/0/0) 11(1/0/0) 14(1/2/0)

#<data>.W,(bd,PC) 10(1/0/0) 15(1/0/0) 19(1/3/0)

#<data>.L,(bd,PC) 11(1/0/0) 17(1/0/0) 21(1/3/0)

#<data>.W,(d16,B) 6(1/0/0) 11(1/0/0) 15(1/2/0)

#<data>.L,(d16,B) 7(1/0/0) 13(1/0/0) 17(1/2/0)

#<data>.W,(d32,B) 10(1/0/0) 15(1/0/0) 19(1/3/0)

#<data>.L,(d32,B) 11(1/0/0) 17(1/0/0) 21(1/3/0)

#<data>.W,([B],I) 9(2/0/0) 14(2/0/0) 16(2/2/0)

#<data>.L,([B],I) 10(2/0/0) 16(2/0/0) 18(2/2/0)

#<data>.W,([B],I,d16) 11(2/0/0) 16(2/0/0) 19(2/2/0)

#<data>.L,([B],I,d16) 12(2/0/0) 18(2/0/0) 21(2/2/0)

MOTOROLA M68020 USER’S MANUAL 8-15

Address Mode Best Case Cache Case Worst Case

#<data>.W,([B],I,d32) 11(2/0/0) 16(2/0/0) 20(2/2/0)

#<data>.L,([d16,B],I,d32) 12(2/0/0) 18(2/0/0) 22(2/3/0)

#<data>.W,([d16,B],I) 11(2/0/0) 16(2/0/0) 19(2/2/0)

#<data>.L,([d16,B],I) 12(2/0/0) 18(2/0/0) 21(2/2/0)

#<data>.W,([d16,B],I,d16) 13(2/0/0) 18(2/0/0) 22(2/2/0)

#<data>.L,([d16,B],I,d16) 14(2/0/0) 20(2/0/0) 24(2/3/0)

#<data>.W,([d32,B],I) 15(2/0/0) 20(2/0/0) 23(2/3/0)

#<data>.L,([d32,B],I) 16(2/0/0) 22(2/0/0) 25(2/3/0)

#<data>.W,([d32,B],I,d16) 17(2/0/0) 22(2/0/0) 25(2/3/0)

#<data>.L,([d32,B],I,d16) 18(2/0/0) 24(2/0/0) 27(2/3/0)

#<data>.W,([d32,b],I,d32) 17(2/0/0) 22(2/0/0) 27(2/3/0)

#<data>.L,([d32,b],I,d32) 18(2/0/0) 24(2/0/0) 29(2/4/0)

B = Base address; 0, An, PC, Xn, An + Xn. Form does not affect timing.
I = Index; 0, Xn
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

8-16 M68020 USER’S MANUAL MOTOROLA

8.2.3 Calculate Effective Address

The calculate immediate effective address table indicates the number of clock periods
needed for the processor to calculate the specified effective address. Fetch time is only
included for the first level of indirection on memory indirect addressing modes. The total
number of clock cycles is outside the parentheses; the number of read, prefetch, and write
cycles is given inside the parentheses as (r/p/w). These cycles are included in the total
clock cycle number.

Address Mode Best Case Cache Case Worst Case

Dn 0(0/0/0) 0(0/0/0) 0(0/0/0)

An 0(0/0/0) 0(0/0/0) 0(0/0/0)

(An) 2(0/0/0) 2(0/0/0) 2(0/0/0)

(An)+ 2(0/0/0) 2(0/0/0) 2(0/0/0)

–(An) 2(0/0/0) 2(0/0/0) 2(0/0/0)

(d16,An) or (d16,PC) 2(0/0/0) 2(0/0/0) 3(0/1/0)

<data>.W 2(0/0/0) 2(0/0/0) 3(0/1/0)

<data>.L 1(0/0/0) 4(0/0/0) 5(0/1/0)

(d8,An,Xn) or (d8,PC,Xn) 1(0/0/0) 4(0/0/0) 5(0/1/0)

(d16,An,Xn) or (d16,PC,Xn) 3(0/0/0) 6(0/0/0) 7(0/1/0)

(B) 3(0/0/0) 6(0/0/0) 7(0/1/0)

(d16,B) 5(0/0/0) 8(0/0/0) 10(0/1/0)

(d32,B) 9(0/0/0) 12(0/0/0) 15(0/2/0)

([B],I) 8(1/0/0) 11(1/0/0) 12(1/1/0)

([B],I,d16) 10(1/0/0) 13(1/0/0) 15(1/1/0)

([B],I,d32) 10(1/0/0) 13(1/0/0) 16(1/2/0)

([d16,B],I) 10(1/0/0) 13(1/0/0) 15(1/1/0)

([d16,B],I,d16) 12(1/0/0) 15(1/0/0) 18(1/2/0)

([d16,B],I,d32) 12(1/0/0) 15(1/0/0) 19(1/2/0)

([d32,B],I) 14(1/0/0) 17(1/0/0) 19(1/2/0)

([d32,B],I,d16) 16(1/0/0) 19(1/0/0) 21(1/2/0)

([d32,B],I,d32) 16(1/0/0) 19(1/0/0) 24(1/3/0)

B = Base address; 0, An, PC, Xn, An + Xn. Form does not affect timing.
I = Index; 0, Xn
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

MOTOROLA M68020 USER’S MANUAL 8-17

8.2.4 Calculate Immediate Effective Address

The calculate immediate effective address table indicates the number of clock periods
needed for the processor to fetch the immediate source operand and calculate the
specified destination effective address. Fetch time is only included for the first level of
indirection on memory indirect addressing modes. The total number of clock cycles is
outside the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Address Mode Best Case Cache Case Worst Case

#<data>.W,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.L,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.W,(An) 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.L,(An) 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.W,(An)+ 2(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.L,(An)+ 3(0/0/0) 6(0/0/0) 7(0/1/0)

#<data>.W,(bd,An) 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.L,(bd,An) 3(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.W,xxx.W 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.L,xxx.W 3(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.W,xxx.L 2(0/0/0) 4(0/0/0) 6(0/2/0)

#<data>.L,xxx.L 3(0/0/0) 8(0/0/0) 10(0/2/0)

#<data>.W,(d8,An,Xn) or (d8,PC,Xn) 0(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.L,(d8,An,Xn) or (d8,PC,Xn) 2(0/0/0) 8(0/0/0) 10(0/2/0)

#<data>.W,(d16,An,Xn) or (d16,PC,Xn) 3(0/0/0) 8(0/0/0) 10(0/2/0)

#<data>.L,(d16,An,Xn) or (d16,PC,Xn) 4(0/0/0) 10(0/0/0) 12(0/2/0)

#<data>.W,(B) 3(0/0/0) 8(0/0/0) 10(0/1/0)

#<data>.L,(B) 4(0/0/0) 10(0/0/0) 12(0/2/0)

#<data>.W,(bd,PC) 9(0/0/0) 14(0/0/0) 18(0/3/0)

#<data>.L,(bd,PC) 10(0/0/0) 16(0/0/0) 20(0/3/0)

#<data>.W,(d16,B) 5(0/0/0) 10(0/0/0) 13(0/2/0)

#<data>.L,(d16,B) 6(0/0/0) 12(0/0/0) 15(0/2/0)

#<data>.W,(d32,B) 9(0/0/0) 14(0/0/0) 18(0/2/0)

#<data>.L,(d32,B) 10(0/0/0) 16(0/0/0) 20(0/3/0)

#<data>.W,([B],I) 8(1/0/0) 13(1/0/0) 15(1/2/0)

#<data>.L,([B],I) 9(1/0/0) 15(1/0/0) 17(1/2/0)

#<data>.W,([B],I,d16) 10(1/0/0) 15(1/0/0) 18(1/2/0)

#<data>.L,([B],I,d16) 11(1/0/0) 17(1/0/0) 20(1/2/0)

#<data>.W,([B],I,d32) 10(1/0/0) 15(1/0/0) 19(1/2/0)

#<data>.L,([d16,B],I,d32) 11(1/0/0) 17(1/0/0) 21(1/3/0)

#<data>.W,([d16,B],I) 10(1/0/0) 15(1/0/0) 18(1/2/0)

#<data>.L,([d16,B],I) 11(1/0/0) 17(1/0/0) 20(1/2/0)

#<data>.W,([d16,B],I,d16) 12(1/0/0) 17(1/0/0) 21(1/2/0)

8-18 M68020 USER’S MANUAL MOTOROLA

Address Mode Best Case Cache Case Worst Case

#<data>.L,([d16,B],I,d16) 13(1/0/0) 19(1/0/0) 23(1/3/0)

#<data>.([d16,B],I,d32) 12(1/0/0) 17(1/0/0) 22(1/3/0)

#<data>.([d16,B],I,d32) 13(1/0/0) 19(1/0/0) 24(1/3/0)

#<data>.W,([d32,B],I) 14(1/0/0) 19(1/0/0) 22(1/3/0)

#<data>.L,([d32,B],I) 15(1/0/0) 21(1/0/0) 24(1/3/0)

#<data>.W,([d32,B],I,d16) 16(1/0/0) 21(1/0/0) 24(1/3/0)

#<data>.L,([d32,B],I,d16) 17(1/0/0) 23(1/0/0) 26(1/3/0)

#<data>.W,([d32,B],I,d32) 16(1/0/0) 21(1/0/0) 24(1/3/0)

#<data>.L,([d32,B],I,d32) 17(1/0/0) 23(1/0/0) 29(1/4/0)

B = Base address; 0, An, PC, Xn, An + Xn. Form does not affect timing.
I = Index; 0, Xn
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

MOTOROLA M68020 USER’S MANUAL 8-19

8.2.5 Jump Effective Address

The jump effective address table indicates the number of clock periods needed for the
processor to calculate the specified effective address. Fetch time is only included for the
first level of indirection on memory indirect addressing modes. The total number of clock
cycles is outside the parentheses; the number or read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). These cycles are included in the total clock cycle
number.

Address Mode Best Case Cache Case Worst Case

(An) 0(0/0/0) 2(0/0/0) 2(0/0/0)

(d16,An) 1(0/0/0) 4(0/0/0) 4(0/0/0)

(xxx).W 0(0/0/0) 2(0/0/0) 2(0/0/0)

(xxx).L 0(0/0/0) 2(0/0/0) 2(0/0/0)

(d8,An,Xn) or (d8,PC,Xn) 3(0/0/0) 6(0/0/0) 6(0/0/0)

(d16,An,Xn) or (d16,PC,Xn) 3(0/0/0) 6(0/0/0) 6(0/0/0)

(B) 3(0/0/0) 6(0/0/0) 6(0/0/0)

(B,d16) 5(0/0/0) 8(0/0/0) 8(0/1/0)

(B,d32) 9(0/0/0) 12(0/0/0) 12(0/1/0)

([B],I) 8(1/0/0) 11(1/0/0) 11(1/1/0)

([B],I,d16) 10(1/0/0) 13(1/0/0) 14(1/1/0)

([B],I,d32) 10(1/0/0) 13(1/0/0) 14(1/1/0)

([d16,B],I) 10(1/0/0) 13(1/0/0) 14(1/1/0)

([d16,B],I,d16) 12(1/0/0) 15(1/0/0) 17(1/1/0)

([d16,B],I,d32) 12(1/0/0) 15(1/0/0) 17(1/1/0)

([d32,B],I) 14(1/0/0) 17(1/0/0) 19(1/2/0)

([d32,B],I,d16) 16(1/0/0) 19(1/0/0) 21(1/2/0)

([d32,B],I,d32) 16(1/0/0) 19(1/0/0) 23(1/2/0)

B = Base address; 0, An, PC, Xn, An + Xn, PC + Xn. Form does not affect timing.
I = Index; 0, Xn
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

8-20 M68020 USER’S MANUAL MOTOROLA

8.2.6 MOVE Instruction

The MOVE instruction table indicates the number of clock periods needed for the
processor to fetch, calculate, and perform the MOVE or MOVEA with the specified source
and destination effective addresses, including both levels of indirection on memory indirect
addressing modes. No additional tables are needed to calculate the total effective
execution time for the MOVE or MOVEA instruction. The total number of clock cycles is
outside the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

BEST CASE

Destination

Source Address Mode An Dn (An) (An)+ –(An) (d16,An) (xxx).W (xxx).L

Rn 0(0/0/0) 0(0/0/0) 3(0/0/1) 4(0/0/1) 3(0/0/1) 3(0/0/1) 3(0/0/1) 5(0/0/1)

#<data>.B,W 0(0/0/0) 0(0/0/0) 3(0/0/1) 4(0/0/1) 3(0/0/1) 3(0/0/1) 3(0/0/1) 5(0/0/1)

#<data>.L 0(0/0/0) 0(0/0/0) 3(0/0/1) 4(0/0/1) 3(0/0/1) 3(0/0/1) 3(0/0/1) 5(0/0/1)

(An) 3(1/0/0) 3(1/0/0) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 8(1/0/1)

(An)+ 4(1/0/0) 4(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

–(An) 3(1/0/0) 3(1/0/0) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 8(1/0/1)

(d16,An) or (d16,PC) 3(1/0/0) 3(1/0/0) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 8(1/0/1)

(xxx).W 3(1/0/0) 3(1/0/0) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 8(1/0/1)

(xxx).L 3(1/0/0) 3(1/0/0) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 6(1/0/1) 8(1/0/1)

(d8,An,Xn) or (d8,PC,Xn) 4(1/0/0) 4(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(d16,An,Xn) or (d16,PC,Xn) 4(1/0/0) 4(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(B) 4(1/0/0) 4(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(d16,B) 6(1/0/0) 6(1/0/0) 9(1/0/1) 9(1/0/1) 9(1/0/1) 9(1/0/1) 9(1/0/1) 11(1/0/1)

(d32,B) 10(1/0/0) 10(1/0/0) 13(1/0/1) 13(1/0/1) 13(1/0/1) 13(1/0/1) 13(1/0/1) 15(1/0/1)

([B],I) 9(2/0/0) 9(2/0/0) 12(2/0/1) 12(2/0/1) 12(2/0/1) 12(2/0/1) 12(2/0/1) 14(2/0/1)

([B],I,d16) 11(2/0/0) 11(2/0/0) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 16(2/0/1)

([B],I,d32) 11(2/0/0) 11(2/0/0) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 16(2/0/1)

([d16,B],I) 11(2/0/0) 11(2/0/0) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 14(2/0/1) 16(2/0/1)

([d16,B],I,d16) 13(2/0/0) 13(2/0/0) 16(2/0/1) 16(2/0/1) 16(2/0/1) 16(2/0/1) 16(2/0/1) 18(2/0/1)

([d16,B],d32) 13(2/0/0) 13(2/0/0) 16(2/0/1) 16(2/0/1) 16(2/0/1) 16(2/0/1) 16(2/0/1) 18(2/0/1)

([d32,B],I) 15(2/0/0) 15(2/0/0) 18(2/0/1) 18(2/0/1) 18(2/0/1) 18(2/0/1) 18(2/0/1) 20(2/0/1)

([d32,B],I,d16) 17(2/0/0) 17(2/0/0) 20(2/0/1) 20(2/0/1) 20(2/0/1) 20(2/0/1) 20(2/0/1) 22(2/0/1)

([d32,B],I,d32) 17(2/0/0) 17(2/0/0) 20(2/0/1) 20(2/0/1) 20(2/0/1) 20(2/0/1) 20(2/0/1) 22(2/0/1)

MOTOROLA M68020 USER’S MANUAL 8-21

BEST CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,d32)

Rn 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

#<data>.B,W 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

#<data>.L 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

(An) 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(An)+ 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

–(An) 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(d16,An) or
(d16,PC)

8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(xxx).W 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(xxx).L 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

9(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(B) 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d16,B) 11(1/0/1) 13(1/0/1) 12(1/0/1) 14(1/0/1) 18(1/0/1) 16(2/0/1) 18(2/0/1) 19(2/0/1)

(d32,B) 15(1/0/1) 17(1/0/1) 18(1/0/1) 18(1/0/1) 22(1/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

([B],I) 14(2/0/1) 16(2/0/1) 17(2/0/1) 17(2/0/1) 21(2/0/1) 19(3/0/1) 21(3/0/1) 22(3/0/1)

([B],I,d16) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([B],I,d32) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([d16,B],I) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([d16,B],I,d16) 18(2/0/1) 20(2/0/1) 21(2/0/1) 21(2/0/1) 25(2/0/1) 23(3/0/1) 25(3/0/1) 26(3/0/1)

([d16,B],I,d32) 18(2/0/1) 20(2/0/1) 21(2/0/1) 21(2/0/1) 25(2/0/1) 23(3/0/1) 25(3/0/1) 26(3/0/1)

([d32,B],I) 20(2/0/1) 22(2/0/1) 23(2/0/1) 23(2/0/1) 27(2/0/1) 25(3/0/1) 27(3/0/1) 28(3/0/1)

([d32,B],I,d16) 22(2/0/1) 24(2/0/1) 25(2/0/1) 25(2/0/1) 29(2/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

([d32,B],I,d32) 22(2/0/1) 24(2/0/1) 25(2/0/1) 25(2/0/1) 29(2/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

8-22 M68020 USER’S MANUAL MOTOROLA

BEST CASE (Concluded)

Source Destination

Address Mode ([d16,B],I) ([d16,B],I,d16) ([d16,B],I,d32) ([d32,B],I) ([d32,B],I,d16) ([d32,B],I,d32)

Rn 11(1/0/1) 13(1/0/1) 14(1/0/1) 15(1/0/1) 17(1/0/1) 18(1/0/1)

#<data>.B,W 11(1/0/1) 13(1/0/1) 14(1/0/1) 15(1/0/1) 17(1/0/1) 18(1/0/1)

#<data>.L 11(1/0/1) 13(1/0/1) 14(1/0/1) 15(1/0/1) 17(1/0/1) 18(1/0/1)

(An) 15(2/0/1) 17(2/0/1) 18(2/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(An)+ 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

–(An) 15(2/0/1) 17(2/0/1) 18(2/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(d16,An) or (d16,PC) 15(2/0/1) 17(2/0/1) 18(2/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(xxx).W 15(2/0/1) 17(2/0/1) 18(2/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(xxx).L 15(2/0/1) 17(2/0/1) 18(2/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(B) 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(d16,B) 18(2/0/1) 20(2/0/1) 21(2/0/1) 22(2/0/1) 24(2/0/1) 25(2/0/1)

(d32,B) 22(2/0/1) 24(2/0/1) 25(2/0/1) 26(2/0/1) 28(2/0/1) 29(2/0/1)

([B],I) 21(3/0/1) 23(3/0/1) 24(3/0/1) 25(3/0/1) 27(3/0/1) 28(3/0/1)

([B],I,d16) 23(3/0/1) 25(3/0/1) 26(3/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

([B],I,d32) 23(3/0/1) 25(3/0/1) 26(3/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

([d16,B],I) 23(3/0/1) 25(3/0/1) 26(3/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

([d16,B],I,d16) 25(3/0/1) 27(3/0/1) 28(3/0/1) 29(3/0/1) 31(3/0/1) 32(3/0/1)

([d16,B],I,d32) 25(3/0/1) 27(3/0/1) 28(3/0/1) 29(3/0/1) 31(3/0/1) 32(0/0/1)

([d32,B],I) 27(3/0/1) 29(3/0/1) 30(3/0/1) 31(3/0/1) 33(3/0/1) 34(3/0/1)

([d32,B],I,d16) 29(3/0/1) 31(3/0/1) 32(3/0/1) 33(3/0/1) 35(3/0/1) 36(3/0/1)

([d32,B],I,d32) 29(3/0/1) 31(3/0/1) 32(3/0/1) 33(3/0/1) 35(3/0/1) 36(3/0/1)

MOTOROLA M68020 USER’S MANUAL 8-23

CACHE CASE

Source Destination

Address Mode An Dn (An) (An)+ –(An) (d16,An) (xxx).W (xxx).L

Rn 2(0/0/0) 2(0/0/0) 4(0/0/1) 4(0/0/1) 5(0/0/1) 5(0/0/1) 4(0/0/1) 6(0/0/1)

#<data>.B,W 4(0/0/0) 4(0/0/0) 6(0/0/1) 6(0/0/1) 7(0/0/1) 7(0/0/1) 6(0/0/1) 8(0/0/1)

#<data>.L 6(0/0/0) 6(0/0/0) 8(0/0/1) 8(0/0/1) 9(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1)

(An) 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(An)+ 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

–(An) 7(1/0/0) 7(1/0/0) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 10(1/0/1)

(d16,An) or
(d16,PC)

7(1/0/0) 7(1/0/0) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 10(1/0/1)

(xxx).W 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(xxx).L 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(B) 9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(d16,B) 11(1/0/0) 11(1/0/0) 12(1/0/1) 12(1/0/1) 12(1/0/1) 12(1/0/1) 12(1/0/1) 14(1/0/1)

(d32,B) 15(1/0/0) 15(1/0/0) 16(1/0/1) 16(1/0/1) 16(1/0/1) 16(1/0/1) 16(1/0/1) 18(1/0/1)

([B],I) 14(2/0/0) 14(2/0/0) 15(2/0/1) 15(2/0/1) 15(2/0/1) 15(2/0/1) 15(2/0/1) 17(2/0/1)

([B],I,d16) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([B],I,d32) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([d16,B],I) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([d16,B],I,d16) 18(2/0/0) 18(2/0/0) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 21(2/0/1)

([d16,B],d32) 18(2/0/0) 18(2/0/0) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 21(2/0/1)

([d32,B],I) 20(2/0/0) 20(2/0/0) 21(2/0/1) 21(2/0/1) 21(2/0/1) 21(2/0/1) 21(2/0/1) 23(2/0/1)

([d32,B],I,d16) 22(2/0/0) 22(2/0/0) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 25(2/0/1)

([d32,B],I,d32) 22(2/0/0) 22(2/0/0) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 25(2/0/1)

8-24 M68020 USER’S MANUAL MOTOROLA

CACHE CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,d32)

Rn 7(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1) 14(0/0/1) 12(1/0/1) 14(1/0/1) 15(1/0/1)

#<data>.B,W 7(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1) 14(0/0/1) 12(1/0/1) 14(1/0/1) 15(1/0/1)

#<data>.L 9(0/0/1) 11(0/0/1) 10(0/0/1) 12(0/0/1) 16(0/0/1) 14(1/0/1) 16(1/0/1) 17(1/0/1)

(An) 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(An)+ 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

–(An) 10(1/0/1) 12(1/0/1) 11(1/0/1) 13(1/0/1) 17(1/0/1) 15(2/0/1) 17(2/0/1) 18(2/0/1)

(d16,An) or
(d16,PC)

10(1/0/1) 12(2/0/1) 11(1/0/1) 13(1/0/1) 17(1/0/1) 15(2/0/1) 17(2/0/1) 18(2/0/1)

(xxx).W 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(xxx).L 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(B) 12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(d16,B) 14(1/0/1) 16(1/0/1) 15(1/0/1) 17(1/0/1) 21(1/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(d32,B) 18(1/0/1) 20(1/0/1) 19(1/0/1) 21(1/0/1) 25(1/0/1) 23(2/0/1) 25(2/0/1) 26(2/0/1)

([B],I) 17(2/0/1) 19(2/0/1) 18(2/0/1) 20(2/0/1) 24(2/0/1) 22(3/0/1) 24(3/0/1) 25(3/0/1)

([B],I,d16) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([B],I,d32) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([d16,B],I) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([d16,B],I,d16) 21(2/0/1) 23(2/0/1) 22(2/0/1) 24(2/0/1) 28(2/0/1) 26(3/0/1) 28(3/0/1) 29(3/0/1)

([d16,B],I,d32) 21(2/0/1) 23(2/0/1) 22(2/0/1) 24(2/0/1) 28(2/0/1) 26(3/0/1) 28(3/0/1) 29(3/0/1)

([d32,B],I) 23(2/0/1) 25(2/0/1) 24(2/0/1) 26(2/0/1) 30(2/0/1) 28(3/0/1) 30(3/0/1) 31(3/0/1)

([d32,B],I,d16) 25(2/0/1) 27(2/0/1) 26(2/0/1) 28(2/0/1) 32(2/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

([d32,B],I,d32) 25(2/0/1) 27(2/0/1) 26(2/0/1) 28(2/0/1) 32(2/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

MOTOROLA M68020 USER’S MANUAL 8-25

CACHE CASE (Concluded)

Source Destination

Address Mode ([d16,B],I) ([d16,B],I,d16) ([d16,B],I,d32) ([d32,B],I) ([d32,B],I,d16) ([d32,B],I,d32)

Rn 14(1/0/1) 16(1/0/1) 17(1/0/1) 18(1/0/1) 20(1/0/1) 21(1/0/1)

#<data>.B,W 14(1/0/1) 16(1/0/1) 17(1/0/1) 18(1/0/1) 20(1/0/1) 21(1/0/1)

#<data>.L 16(1/0/1) 18(1/0/1) 19(1/0/1) 20(1/0/1) 22(1/0/1) 23(1/0/1)

(An) 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(An)+ 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

–(An) 17(2/0/1) 19(2/0/1) 20(2/0/1) 21(2/0/1) 23(2/0/1) 24(2/0/1)

(d16,An) or (d16,PC) 17(2/0/1) 19(2/0/1) 20(2/0/1) 21(2/0/1) 23(2/0/1) 24(2/0/1)

(xxx).W 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(xxx).L 16(2/0/1) 18(2/0/1) 19(2/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

19(2/0/1) 21(2/0/1) 22(2/0/1) 23(2/0/1) 25(2/0/1) 26(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

19(2/0/1) 21(2/0/1) 22(2/0/1) 23(2/0/1) 25(2/0/1) 26(2/0/1)

(B) 19(2/0/1) 21(2/0/1) 22(2/0/1) 23(2/0/1) 25(2/0/1) 26(2/0/1)

(d16,B) 21(2/0/1) 23(2/0/1) 24(2/0/1) 25(2/0/1) 27(2/0/1) 28(2/0/1)

(d32,B) 25(2/0/1) 27(2/0/1) 28(2/0/1) 29(2/0/1) 31(2/0/1) 32(2/0/1)

([B],I) 24(3/0/1) 26(3/0/1) 27(3/0/1) 28(3/0/1) 30(3/0/1) 31(3/0/1)

([B],I,d16) 26(3/0/1) 28(3/0/1) 29(3/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

([B],I,d32) 26(3/0/1) 28(3/0/1) 29(3/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

([d16,B],I) 26(3/0/1) 28(3/0/1) 29(3/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

([d16,B],I,d16) 28(3/0/1) 30(3/0/1) 31(3/0/1) 32(3/0/1) 34(3/0/1) 35(3/0/1)

([d16,B],I,d32) 28(3/0/1) 30(3/0/1) 31(3/0/1) 32(3/0/1) 34(3/0/1) 35(3/0/1)

([d32,B],I) 30(3/0/1) 32(3/0/1) 33(3/0/1) 34(3/0/1) 36(3/0/1) 37(3/0/1)

([d32,B],I,d16) 32(3/0/1) 34(3/0/1) 35(3/0/1) 36(3/0/1) 38(3/0/1) 39(3/0/1)

([d32,B],I,d32) 32(3/0/1) 34(3/0/1) 35(3/0/1) 36(3/0/1) 38(3/0/1) 39(3/0/1)

8-26 M68020 USER’S MANUAL MOTOROLA

WORST CASE

Destination

Source Address Mode An Dn (An) (An)+ –(An) (d16,An) (xxx).W (xxx).L

Rn 3(0/1/0) 3(0/1/0) 5(0/1/0) 5(0/1/1) 6(0/1/1) 7(0/1/1) 7(0/1/1) 9(0/2/1)

#<data>.B,W 3(0/1/0) 3(0/1/0) 5(0/1/0) 8(0/1/1) 6(0/1/1) 7(0/1/1) 7(0/1/1) 9(0/2/1)

#<data>.L 5(0/1/0) 5(0/1/0) 7(0/0/1) 7(0/1/1) 8(0/1/1) 9(0/1/1) 9(0/1/1) 11(0/2/1)

(An) 7(1/1/0) 7(1/1/0) 9(1/1/1) 9(1/1/1) 9(1/1/1) 11(1/1/1) 11(1/1/1) 13(1/2/1)

(An)+ 7(1/1/0) 7(1/1/0) 9(1/1/1) 9(1/1/1) 9(1/1/1) 11(1/1/1) 11(1/1/1) 13(1/2/1)

–(An) 8(1/1/0) 8(1/1/0) 10(1/1/1) 10(1/1/1) 10(1/1/1) 12(1/1/1) 12(1/1/1) 14(1/2/1)

(d16,An) or (d16,PC) 9(1/2/0) 9(1/2/0) 11(1/2/1) 11(1/2/1) 11(1/2/1) 13(1/2/1) 13(1/2/1) 15(1/3/1)

(xxx).W 8(1/2/0) 8(1/2/0) 10(1/2/1) 10(1/2/1) 10(1/2/1) 12(1/2/1) 12(1/2/1) 14(1/3/1)

(xxx).L 10(1/2/0) 10(1/2/0) 12(1/2/1) 12(1/2/1) 12(1/2/1) 14(1/2/1) 14(1/2/1) 16(1/3/1)

(d8,An,Xn) or (d8,PC,Xn) 11(1/2/0) 11(1/2/0) 13(1/2/1) 13(1/2/1) 13(1/2/1) 15(1/2/1) 15(1/2/1) 17(1/3/1)

(d16,An,Xn) or (d16,PC,Xn) 12(1/2/0) 12(1/2/0) 14(1/2/1) 14(1/2/1) 14(1/2/1) 16(1/2/1) 16(1/2/1) 18(1/3/1)

(B) 12(1/2/0) 12(1/2/0) 14(1/2/1) 14(1/2/1) 14(1/2/1) 16(1/2/1) 16(1/2/1) 18(1/3/1)

(d16,B) 15(1/2/0) 15(1/2/0) 17(1/2/1) 17(1/2/1) 17(1/3/1) 19(1/2/1) 19(1/2/1) 21(1/3/1)

(d32,B) 19(1/3/0) 19(1/3/0) 21(1/3/1) 21(1/3/1) 21(1/3/1) 23(1/3/1) 23(1/3/1) 25(1/4/1)

([B],I) 16(2/2/0) 16(2/2/0) 18(2/2/1) 18(2/2/1) 18(2/2/1) 20(2/2/1) 20(2/2/1) 22(2/3/1)

([B],I,d16) 19(2/2/0) 19(2/2/0) 21(2/2/1) 21(2/2/1) 21(2/2/1) 23(2/2/1) 23(2/2/1) 25(2/3/1)

([B],I,d32) 20(2/3/0) 20(2/3/0) 22(2/3/1) 22(2/3/1) 22(2/3/1) 24(2/3/1) 24(2/3/1) 26(2/4/1)

([d16,B],I) 19(2/2/0) 19(2/2/0) 21(2/2/1) 21(2/2/1) 21(2/2/1) 23(2/2/1) 23(2/2/1) 25(2/3/1)

([d16,B],I,d16) 22(2/3/0) 22(2/3/0) 24(2/3/1) 24(2/3/1) 24(2/3/1) 26(2/3/1) 26(2/3/1) 28(2/4/1)

([d16,B],d32) 23(2/3/0) 23(2/3/0) 25(2/3/1) 25(2/3/1) 25(2/3/1) 27(2/3/1) 27(2/3/1) 29(2/4/1)

([d32,B],I) 23(2/3/0) 23(2/3/0) 25(2/3/1) 25(2/3/1) 25(2/3/1) 27(2/3/1) 27(2/3/1) 29(2/4/1)

([d32,B],I,d16) 25(2/3/0) 25(2/3/0) 27(2/3/1) 27(2/3/1) 27(2/3/1) 29(2/3/1) 29(2/3/1) 31(2/4/1)

([d32,B],I,d32) 27(2/4/0) 27(2/4/0) 29(2/4/1) 29(2/4/1) 29(2/4/1) 31(2/4/1) 31(2/4/1) 33(2/5/1)

MOTOROLA M68020 USER’S MANUAL 8-27

WORST CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,D32)

Rn 9(0/1/1) 12(0/2/1) 10(0/1/1) 14(0/2/1) 19(0/2/1) 14(1/1/1) 17(1/2/1) 20(1/2/1)

#<data>.B,W 9(0/1/1) 12(0/2/1) 10(0/1/1) 14(0/2/1) 19(0/2/1) 14(1/1/1) 17(1/2/1) 20(1/2/1)

#<data>.L 11(0/1/1) 14(0/2/1) 12(0/1/1) 16(0/2/1) 21(0/2/1) 16(1/1/1) 19(1/2/1) 22(1/2/1)

(An) 11(1/1/1) 14(1/2/1) 12(1/1/1) 16(1/2/1) 21(1/2/1) 12(2/1/1) 19(2/2/1) 22(2/2/1)

(An)+ 11(1/1/1) 14(1/2/1) 12(1/1/1) 16(1/2/1) 21(1/2/1) 12(2/1/1) 19(2/2/1) 22(2/2/1)

–(An) 12(1/1/1) 15(1/2/1) 13(1/1/1) 17(1/2/1) 22(1/2/1) 13(2/1/1) 20(2/2/1) 23(2/2/1)

(d16,An) or
(d16,PC)

13(1/2/1) 16(1/3/1) 14(1/2/1) 18(1/3/1) 23(1/3/1) 14(2/2/1) 21(2/3/1) 24(2/3/1)

(xxx).W 12(1/2/1) 15(1/3/1) 13(1/2/1) 17(1/3/1) 22(1/3/1) 13(2/2/1) 20(2/3/1) 23(2/3/1)

(xxx).L 14(1/2/1) 17(1/3/1) 15(1/2/1) 19(1/3/1) 24(1/3/1) 15(2/2/1) 22(2/3/1) 25(2/3/1)

(d8,An,Xn) or
(d8,PC,Xn)

15(1/2/1) 18(1/3/1) 16(1/2/1) 20(1/3/1) 25(1/3/1) 16(2/2/1) 23(2/3/1) 26(2/3/1)

(d16,An,Xn) or
(d16,PC,Xn)

16(1/2/1) 19(1/3/1) 17(1/2/1) 21(1/3/1) 26(1/3/1) 17(2/2/1) 24(2/3/1) 27(2/3/1)

(B) 16(1/2/1) 19(1/3/1) 17(1/2/1) 21(1/3/1) 26(1/3/1) 17(2/2/1) 24(2/3/1) 27(2/3/1)

(d16,B) 19(1/2/1) 22(1/3/1) 20(1/2/1) 24(1/3/1) 29(1/3/1) 20(2/2/1) 27(2/3/1) 30(2/3/1)

(d32,B) 23(1/3/1) 26(1/4/1) 24(1/3/1) 28(1/4/1) 33(1/4/1) 24(2/3/1) 31(2/4/1) 34(2/4/1)

([B],I) 20(2/2/1) 23(2/3/1) 21(2/2/1) 25(2/3/1) 30(2/3/1) 21(3/2/1) 28(3/3/1) 31(3/3/1)

([B],I,d16) 23(2/2/1) 26(2/3/1) 24(2/2/1) 28(2/3/1) 33(2/3/1) 24(3/2/1) 31(3/3/1) 34(3/3/1)

([B],I,d32) 24(2/3/1) 27(2/4/1) 25(2/3/1) 29(2/4/1) 34(2/4/1) 25(3/3/1) 32(3/4/1) 35(3/4/1)

([d16,B],I) 23(2/2/1) 26(2/3/1) 24(2/2/1) 28(2/3/1) 33(2/3/1) 24(3/2/1) 31(3/3/1) 34(3/3/1)

([d16,B],I,d16) 26(2/3/1) 29(2/4/1) 27(2/3/1) 31(2/4/1) 36(2/4/1) 27(3/3/1) 34(3/4/1) 37(3/4/1)

([d16,B],I,d32) 27(2/3/1) 30(2/4/1) 28(2/3/1) 32(2/4/1) 37(2/4/1) 28(3/3/1) 35(3/4/1) 38(3/4/1)

([d32,B],I) 27(2/3/1) 30(2/4/1) 28(2/3/1) 32(2/4/1) 37(2/4/1) 28(3/3/1) 35(3/4/1) 38(3/4/1)

([d32,B],I,d16) 29(2/3/1) 32(2/4/1) 30(2/3/1) 34(2/4/1) 39(2/4/1) 30(3/3/1) 37(3/4/1) 40(3/4/1)

([d32,B],I,d32) 31(2/4/1) 34(2/5/1) 32(2/4/1) 36(2/5/1) 41(2/5/1) 32(3/4/1) 39(3/5/1) 42(3/5/1)

8-28 M68020 USER’S MANUAL MOTOROLA

WORST CASE (Concluded)

Source Destination

Address Mode ([d16,B],I) ([d16,B],I,d16) ([d16,B],I,d32) ([d32,B],I) ([d32,B],I,d16) ([d32,B],I,d32)

Rn 17(1/2/1) 20(1/2/1) 23(1/3/1) 22(1/2/1) 25(1/3/1) 27(1/3/1)

#<data>.B,W 17(1/2/1) 20(1/2/1) 23(1/3/1) 22(1/2/1) 25(1/3/1) 27(1/3/1)

#<data>.L 19(1/2/1) 22(1/2/1) 25(1/3/1) 24(1/2/1) 27(1/3/1) 29(1/3/1)

(An) 19(2/2/1) 22(2/2/1) 25(2/3/1) 24(2/2/1) 27(2/3/1) 29(2/3/1)

(An)+ 19(2/2/1) 22(2/2/1) 25(2/3/1) 24(2/2/1) 27(2/3/1) 29(2/3/1)

–(An) 20(2/2/1) 23(2/2/1) 26(2/3/1) 25(2/2/1) 28(2/3/1) 30(2/3/1)

(d16,An) or (d16,PC) 21(2/3/1) 24(2/3/1) 27(2/4/1) 26(2/3/1) 29(2/4/1) 31(2/4/1)

(xxx).W 20(2/3/1) 23(2/3/1) 26(2/4/1) 27(2/3/1) 28(2/4/1) 30(2/4/1)

(xxx).L 22(2/3/1) 25(2/3/1) 28(2/4/1) 29(2/3/1) 30(2/4/1) 32(2/4/1)

(d8,An,Xn) or
(d8,PC,Xn)

23(2/3/1) 26(2/3/1) 29(2/4/1) 30(2/3/1) 31(2/4/1) 33(2/4/1)

(d16,An,Xn) or
(d16,PC,Xn)

24(2/3/1) 27(2/3/1) 30(2/4/1) 31(2/3/1) 32(2/4/1) 34(2/4/1)

(B) 24(2/3/1) 27(2/3/1) 30(2/4/1) 31(2/3/1) 32(2/4/1) 34(2/4/1)

(d16,B) 27(2/3/1) 30(2/3/1) 33(2/4/1) 34(2/3/1) 35(2/4/1) 37(2/4/1)

(d32,B) 31(2/4/1) 34(2/4/1) 37(2/5/1) 38(2/4/1) 39(2/5/1) 41(2/5/1)

([B],I) 28(3/3/1) 31(3/3/1) 34(3/4/1) 35(3/3/1) 36(3/4/1) 38(3/4/1)

([B],I,d16) 31(3/3/1) 34(3/3/1) 37(3/4/1) 38(3/3/1) 39(3/4/1) 41(3/4/1)

([B],I,d32) 32(3/4/1) 35(3/4/1) 38(3/5/1) 39(3/4/1) 40(3/5/1) 42(3/5/1)

([d16,B],I) 31(3/3/1) 34(3/3/1) 37(3/4/1) 38(3/3/1) 39(3/4/1) 41(3/4/1)

([d16,B],I,d16) 34(3/4/1) 37(3/4/1) 40(3/5/1) 41(3/4/1) 42(3/5/1) 44(3/5/1)

([d16,B],I,d32) 35(3/4/1) 38(3/4/1) 41(3/5/1) 42(3/4/1) 43(3/5/1) 45(3/5/1)

([d32,B],I) 35(3/4/1) 38(3/4/1) 41(3/5/1) 42(3/4/1) 43(3/5/1) 45(3/5/1)

([d32,B],I,d16) 37(3/4/1) 40(3/4/1) 43(3/5/1) 44(3/4/1) 45(3/5/1) 47(3/5/1)

([d32,B],I,d32) 39(3/5/1) 42(3/5/1) 45(3/6/1) 46(3/5/1) 47(3/6/1) 49(3/6/1)

MOTOROLA M68020 USER’S MANUAL 8-29

8.2.7 Special-Purpose MOVE Instruction

The special-purpose MOVE instruction table indicates the number of clock periods needed
for the processor to fetch, calculate, and perform the special-purpose MOVE operation on
the control registers or specified effective address. The total number of clock cycles is
outside the parentheses, the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

EXG Ry,Rx 0(0/0/0) 2(0/0/0) 3(0/1/0)

MOVEC Cr,Rn 3(0/0/0) 6(0/0/0) 7(0/1/0)

MOVEC Rn,Cr 9(0/0/0) 12(0/0/0) 13(0/1/0)

MOVE PSW,Rn 1(0/0/0) 4(0/0/0) 5(0/1/0)

† MOVE PSW,Mem 5(0/0/1) 5(0/0/1) 7(0/1/1)

* MOVE EA,CCR 4(0/0/0) 4(0/0/0) 5(0/1/0)

* MOVE EA,SR 8(0/0/0) 8(0/0/0) 11(0/2/0)

‡ MOVEM EA,RL 8 + 4n (n/0/0) 8 + 4n (n/0/0) 9 + 4n (n/1/0)

‡ MOVEM RL,EA 4 + 3n (0/0/n) 4 + 3n (0/0/n) 5 + 3n (0/1/n)

MOVEP.W Dn,(d16,An) 8(0/0/2) 11(0/0/2) 11(0/1/2)

MOVEP.L Dn,(d16,An) 14(0/0/4) 17(0/0/4) 17(0/1/4)

MOVEP.W (d16,An),Dn 10(2/0/0) 12(2/0/0) 12(2/1/0)

MOVEP.L (d16,An),Dn 16(4/0/0) 18(4/0/0) 18(4/1/0)

‡ MOVES EA,Rn 7(1/0/0) 7(1/0/0) 8(1/1/0)

‡ MOVES Rn,EA 5(0/0/1) 5(0/0/1) 7(0/1/1)

MOVE USP 0(0/0/0) 2(0/0/0) 3(0/1/0)

SWAP Rx,Ry 1(0/0/0) 4(0/0/0) 4(0/1/0)

n—Number of Registers to Transfer
RL—Register List
*Add Fetch Effective Address Time
†Add Calculate Effective Address Time
‡Add Calculate Immediate Address Time

8-30 M68020 USER’S MANUAL MOTOROLA

8.2.8 Arithmetic/Logical Instructions

The arithmetic/logical instructions table indicates the number of clock periods needed for
the processor to perform the specified arithmetic/logical operation using the specified
addressing mode. It also includes, in worst case, the amount of time needed to prefetch
the next instruction. Footnotes specify when to add either fetch address or fetch
immediate effective address time. This sum gives the total effective execution time for the
operation using the specified addressing mode. The total number of clock cycles is
outside the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

* ADD EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* ADDA EA,An 0(0/0/0) 2(0/0/0) 3(0/1/0)

* ADD Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* AND EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* AND Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* EOR Dn,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* EOR Dn,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

* OR EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* OR Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* SUB EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* SUBA EA,An 0(0/0/0) 2(0/0/0) 3(0/1/0)

* SUB Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* CMP EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* CMPA EA,An 1(0/0/0) 4(0/0/0) 4(0/1/0)

** CMP2 EA,Rn 16(1/0/0) 18(1/0/0) 18(1/1/0)

* MUL.W EA,Dn 25(0/0/0) 27(0/0/0) 28(0/1/0)

** MUL.L EA,Dn 41(0/0/0) 43(0/0/0) 44(0/1/0)

* DIVU.W EA,Dn 42(0/0/0) 44(0/0/0) 44(0/1/0)

** DIVU.L EA,Dn 76(0/0/0) 78(0/0/0) 79(0/1/0)

* DIVS.W EA,Dn 54(0/0/0) 56(0/0/0) 57(0/1/0)

** DIVS.L EA,Dn 88(0/0/0) 90(0/0/0) 91(0/1/0)

*Add Fetch Effective Address Time
**Add Fetch Immediate Address Time

MOTOROLA M68020 USER’S MANUAL 8-31

8.2.9 Immediate Arithmetic/Logical Instructions

The immediate arithmetic/logical instructions table indicates the number of clock periods
needed for the processor to fetch the source immediate data value and perform the
specified arithmetic/logical operation using the specified destination addressing mode.
Footnotes indicate when to add appropriate fetch effective or fetch immediate effective
address time. This computation will give the total execution time needed to perform the
appropriate immediate arithmetic/logical operation. The total number of clock cycles is
outside the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

MOVEQ #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

ADDQ #<data>,Rn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* ADDQ #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

SUBQ #<data>,Rn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* SUBQ #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** ADDI #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

** ADDI #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** ANDI #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

** ANDI #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** EORI #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

** EORI #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** ORI #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

** ORI #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** SUBI #<data>,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

** SUBI #<data>,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

** CMPI #<data>,EA 0(0/0/0) 2(0/0/0) 3(0/1/0)

*Add Fetch Effective Address Time
**Add Fetch Immediate Address Time

8-32 M68020 USER’S MANUAL MOTOROLA

8.2.10 Binary-Coded Decimal Operations

The binary-coded decimal operations table indicates the number of clock periods needed
for the processor to perform the specified operation using the given addressing modes,
with complete execution times given. No additional tables are needed to calculate total
effective execution time for these instructions. The total number of clock cycles is outside
the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

ABCD Dn,Dn 4(0/0/0) 4(0/0/0) 5(0/1/0)

ABCD –(An),–(An) 14(2/0/1) 16(2/0/1) 17(2/1/1)

SBCD Dn,Dn 4(0/0/0) 4(0/0/0) 5(0/1/0)

SBCD –(An),–(An) 14(2/0/1) 16(2/0/1) 17(2/1/1)

ADDX Dn,Dn 2(0/0/0) 2(0/0/0) 3(0/1/0)

ADDX –(An),–(An) 10(2/0/1) 12(2/0/1) 13(2/1/1)

SUBX Dn,Dn 2(0/0/0) 2(0/0/0) 3(0/1/0)

SUBX –(An),–(An) 10(2/0/1) 12(2/0/1) 13(2/1/1)

CMPM (An)+,(An)+ 8(2/0/0) 9(2/0/0) 10(2/1/0)

PACK Dn,Dn,#<data> 3(0/0/0) 6(0/0/0) 7(0/1/0)

PACK –(An),–(An),#<data> 11(1/0/1) 13(1/0/1) 13(1/1/1)

UNPK Dn,Dn,#<data> 5(0/0/0) 8(0/0/0) 9(0/1/0)

UNPK –(An),–(An),#<data> 11(1/0/1) 13(1/0/1) 13(1/1/1)

MOTOROLA M68020 USER’S MANUAL 8-33

8.2.11 Single-Operand Instructions

The single-operand instructions table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to add another table entry to calculate the total effective
execution time for the instruction. The total number of clock cycles is outside the
parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

CLR Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

† CLR Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

NEG Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* NEG Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

NEGX Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* NEGX Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

NOT Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* NOT Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

EXT Dn 1(0/0/0) 4(0/0/0) 4(0/1/0)

NBCD Dn 6(0/0/0) 6(0/0/0) 6(0/1/0)

Scc Dn 1(0/0/0) 4(0/0/0) 4(0/1/0)

† Scc Mem 6(0/0/1) 6(0/0/1) 6(0/1/1)

TAS Dn 1(0/0/0) 4(0/0/0) 4(0/1/0)

† TAS Mem 12(1/0/1) 12(1/0/1) 13(1/1/1)

* TST EA 0(0/0/0) 2(0/0/0) 3(0/1/0)

*Add Fetch Effective Address Time
†Add Calculate Effective Address Time

8-34 M68020 USER’S MANUAL MOTOROLA

8.2.12 Shift/Rotate Instructions

The shift/rotate instructions table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to add another table entry to calculate the total effective
execution time for the instruction. The number of bits shifted does not affect execution
time. The total number of clock cycles is outside the parentheses, the number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). These cycles are
included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

LSL Dn (Static) 1(0/0/0) 4(0/0/0) 4(0/1/0)

LSR Dn (Static) 1(0/0/0) 4(0/0/0) 4(0/1/0)

LSL Dn (Dynamic) 3(0/0/0) 6(0/0/0) 6(0/1/0)

LSR Dn (Dynamic) 3(0/0/0) 6(0/0/0) 6(0/1/0)

* LSL Mem by 1 5(0/0/1) 5(0/0/1) 6(0/1/1)

* LSR Mem by 1 5(0/0/1) 5(0/0/1) 6(0/1/1)

ASL Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

ASR Dn 3(0/0/0) 6(0/0/0) 6(0/1/0)

* ASL Mem by 1 6(0/0/1) 6(0/0/1) 7(0/1/1)

* ASR Mem by 1 5(0/0/1) 5(0/0/1) 6(0/1/1)

ROL Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

ROR Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

* ROL Mem by 1 7(0/0/1) 7(0/0/1) 7(0/1/1)

* ROR Mem by 1 7(0/0/1) 7(0/0/1) 7(0/1/1)

ROXL Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

ROXR Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

* ROXd Mem by 1 5(0/0/1) 5(0/0/1) 6(0/1/1)

*Add Fetch Effective Address Time
d—Direction of Shift/Rotate, L or R

MOTOROLA M68020 USER’S MANUAL 8-35

8.2.13 Bit Manipulation Instructions

The bit manipulation instructions table indicates the number of clock periods needed for
the processor to perform the specified bit operation on the given addressing mode.
Footnotes indicate when it is necessary to add another table entry to calculate the total
effective execution time for the instruction. The total number of clock cycles is outside the
parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BTST #<data>,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

BTST Dn,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

** BTST #<data>,Mem 4(0/0/0) 4(0/0/0) 5(0/1/0)

* BTST Dn,Mem 4(0/0/0) 4(0/0/0) 5(0/1/0)

BCHG #<data>,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

BCHG Dn,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

** BCHG #<data>,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

* BCHG Dn,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

BCLR #<data>,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

BCLR Dn,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

** BCLR #<data>,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

* BCLR Dn,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

BSET #<data>,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

BSET Dn,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

** BSET #<data>,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

* BSET Dn,Mem 4(0/0/1) 4(0/0/1) 5(0/1/1)

*Add Fetch Effective Address Time
**Add Fetch Immediate Address Time

8-36 M68020 USER’S MANUAL MOTOROLA

8.2.14 Bit Field Manipulation Instructions

The bit field manipulation instructions table indicates the number of clock periods needed
for the processor to perform the specified bit field operation using the given addressing
mode. Footnotes indicate when it is necessary to add another table entry to calculate the
total effective execution time for the instruction. The total number of clock cycles is outside
the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BFTST Dn 3(0/0/0) 6(0/0/0) 7(0/1/0)

‡ BFTST Mem (< 5 Bytes) 11(1/0/0) 11(1/0/0) 12(1/1/0)

‡ BFTST Mem (5 Bytes) 15(2/0/0) 15(2/0/0) 16(2/1/0)

BFCHG Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFCHG Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFCHG Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFCLR Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFCLR Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFCLR Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFSET Dn 9(0/0/0) 12(0/0/0) 12(0/1/0)

‡ BFSET Mem (< 5 Bytes) 16(1/0/1) 16(1/0/1) 16(1/1/1)

‡ BFSET Mem (5 Bytes) 24(2/0/2) 24(2/0/2) 24(2/1/2)

BFEXTS Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

‡ BFEXTS Mem (< 5 Bytes) 13(1/0/0) 13(1/0/0) 13(1/1/0)

‡ BFEXTS Mem (5 Bytes) 18(2/0/0) 18(2/0/0) 18(2/1/0)

BFEXTU Dn 5(0/0/0) 8(0/0/0) 8(0/1/0)

‡ BFEXTU Mem (< 5 Bytes) 13(1/0/0) 13(1/0/0) 13(1/1/0)

‡ BFEXTU Mem (5 Bytes) 18(2/0/0) 18(2/0/0) 18(2/1/0)

BFINS Dn 7(0/0/0) 10(0/0/0) 10(0/1/0)

‡ BFINS Mem (< 5 Bytes) 14(1/0/1) 14(1/0/1) 15(1/1/1)

‡ BFINS Mem (5 Bytes) 20(2/0/2) 20(2/0/2) 21(2/1/2)

BFFFO Dn 15(0/0/0) 18(0/0/0) 18(0/1/0)

‡ BFFFO Mem (< 5 Bytes) 24(1/0/0) 24(1/0/0) 24(1/1/0)

‡ BFFFO Mem (5 Bytes) 32(2/0/0) 32(2/0/0) 32(2/1/0)

‡Add Calculate Immediate Address Time
NOTE: A bit field of 32 bits may span five bytes that require two operand cycles to access or may span four bytes that

require only one operand cycle to access.

MOTOROLA M68020 USER’S MANUAL 8-37

8.2.15 Conditional Branch Instructions

The conditional branch instructions table indicates the number of clock periods needed for
the processor to perform the specified branch on the given branch size, with complete
execution times given. No additional tables are needed to calculate total effective
execution time for these instructions. The total number of clock cycles is outside the
parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

Bcc (Taken) 3(0/0/0) 6(0/0/0) 9(0/2/0)

Bcc.B (Not Taken) 1(0/0/0) 4(0/0/0) 5(0/1/0)

Bcc.W (Not Taken) 3(0/0/0) 6(0/0/0) 7(0/1/0)

Bcc.L (Not Taken) 3(0/0/0) 6(0/0/0) 9(0/2/0)

DBcc (cc = False, Count Not Expired) 3(0/0/0) 6(0/0/0) 9(0/2/0)

DBcc (cc = False, Count Expired) 7(0/0/0) 10(0/0/0) 10(0/3/0)

DBcc (cc = True) 3(0/0/0) 6(0/0/0) 7(0/1/0)

8-38 M68020 USER’S MANUAL MOTOROLA

8.2.16 Control Instructions

The control instructions table indicates the number of clock periods needed for the
processor to perform the specified operation. Footnotes specify when it is necessary to
add an entry from another table to calculate the total effective execution time for the given
instruction. The total number of clock cycles is outside the parentheses; the number of
read, prefetch, and write cycles is given inside the parentheses as (r/p/w). These cycles
are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

ANDI to SR 9(0/0/0) 12(0/0/0) 15(0/2/0)

EORI to SR 9(0/0/0) 12(0/0/0) 15(0/2/0)

ORI to SR 9(0/0/0) 12(0/0/0) 15(0/2/0)

ANDI to CCR 9(0/0/0) 12(0/0/0) 15(0/2/0)

EORI to CCR 9(0/0/0) 12(0/0/0) 15(0/2/0)

ORI to CCR 9(0/0/0) 12(0/0/0) 15(0/2/0)

BSR 5(0/0/1) 7(0/0/1) 13(0/2/1)

** CALLM (Type 0) 28(2/0/6) 30(2/0/6) 36(2/2/6)

** CALLM (Type 1)—No Stack Copy 48(5/0/8) 50(5/0/8) 56(5/2/8)

** CALLM (Type 1)—No Stack Copy 55(6/0/8) 57(6/0/8) 64(6/2/8)

** CALLM (Type 1)—Stack Copy 63 + 6n (7 + n/0/8 + n) 65 + 6n (7 + n/0/8 + n) 71 + 6n (7 + n/2/8 + n)

‡ CAS (Successful Compare) 15(1/0/1) 15(1/0/1) 16(1/1/1)

‡ CAS (Unsuccessful Compare) 12(1/0/0) 12(1/0/0) 13(1/1/0)

CAS2 (Successful Compare) 23(2/0/2) 25(2/0/2) 28(2/2/2)

CAS2 (Unsuccessful Compare) 19(2/0/0) 22(2/0/0) 25(2/2/0)

* CHK 8(0/0/0) 8(0/0/0) 8(0/1/0)

** CHK2 EA,Rn 16(2/0/0) 18(2/0/0) 18(2/1/0)

% JMP 1(0/0/0) 4(0/0/0) 7(0/2/0)

% JSR 3(0/0/1) 5(0/0/1) 11(0/2/1)

† LEA 2(0/0/0) 2(0/0/0) 3(0/1/0)

LINK.W 3(0/0/1) 5(0/0/1) 7(0/1/1)

LINK.L 4(0/0/1) 6(0/0/1) 10(0/2/1)

NOP 2(0/0/0) 2(0/0/0) 3(0/1/0)

† PEA 3(0/0/1) 5(0/0/1) 6(0/1/1)

RTD 9(1/0/0) 10(1/0/0) 12(1/2/0)

RTM (Type 0) 18(4/0/0) 19(4/0/0) 22(4/2/0)

RTM (Type 1) 31(6/0/1) 32(6/0/1) 35(6/2/1)

RTR 13(2/0/0) 14(2/0/0) 15(2/2/0)

RTS 9(1/0/0) 10(1/0/0) 12(1/2/0)

UNLK 5(1/0/0) 6(1/0/0) 7(1/1/0)

n—Number of Operand Transfers Required %—Add Jump Effective Address Time
*Add Fetch Effective Address Time **Add Fetch Immediate Address Time
†Add Calculate Effective Address Time ‡Add Calculate Immediate Address Time

MOTOROLA M68020 USER’S MANUAL 8-39

8.2.17 Exception-Related Instructions

The exception-related instructions table indicates the number of clock periods needed for
the processor to perform the specified exception-related action. Footnotes specify when it
is necessary to add the entry from another table to calculate the total effective execution
time for the given instruction. The total number of clock cycles is outside the parentheses;
the number of read, prefetch, and write cycles is given inside the parentheses as (r/p/w).
These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BKPT 9(1/0/0) 10(1/0/0) 10(1/0/0)

Interrupt (I-Stack) 26(2/0/4) 26(2/0/4) 33(2/2/4)

Interrupt (M-Stack) 41(2/0/8) 41(2/0/8) 48(2/2/8)

RESET Instruction 518(0/0/0) 518(0/0/0) 519(0/1/0)

STOP 8(0/0/0) 8(0/0/0) 8(0/0/0)

Trace 25(1/0/5) 25(1/0/5) 32(1/2/5)

TRAP #n 20(1/0/4) 20(1/0/4) 27(1/2/4)

Illegal Instruction 20(1/0/4) 20(1/0/4) 27(1/2/4)

A-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

F-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

Privilege Violation 20(1/0/4) 20(1/0/4) 27(1/2/4)

TRAPcc (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPcc (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

TRAPcc.W (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.W (No Trap) 3(0/0/0) 6(0/0/0) 7(0/1/0)

TRAPcc.L (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.L (No Trap) 5(0/0/0) 8(0/0/0) 10(0/2/0)

TRAPV (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPV (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

8-40 M68020 USER’S MANUAL MOTOROLA

8.2.18 Save and Restore Operations

The save and restore operations table indicates the number of clock periods needed for
the processor to perform the specified state save or return from exception, with complete
execution times and stack length given. No additional tables are needed to calculate total
effective execution time for these operations. The total number of clock cycles is outside
the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Operation Best Case Cache Case Worst Case

Bus Cycle Fault (Short) 42(1/0/10) 43(1/0/10) 50(1/2/10)

Bus Cycle Fault (Long) 79(1/0/24) 79(1/0/24) 86(1/2/24)

RTE (Normal) 20(4/0/0) 21(4/0/0) 24(4/2/0)

RTE (Six Word) 20(4/0/0) 21(4/0/0) 24(4/2/0)

RTE (Throwaway)* 15(4/0/0) 16(4/0/0) 39(4/0/0)

RTE (Coprocessor) 31(7/0/0) 32(7/0/0) 33(7/1/0)

RTE (Short Fault) 42(10/0/0) 43(10/0/0) 45(10/2/0)

RTE (Long Fault) 91(24/0/0) 92(24/0/0) 94(24/2/0)

*Add the time for RTE on second stack frame.

MOTOROLA M68020 USER’S MANUAL 9-1

SECTION 9
APPLICATIONS INFORMATION

This section, which provides guidelines for using the MC68020/EC020, contains
information on floating-point units, byte select logic, power and ground considerations,
clock driver, memory interface, access time calculations, module support, and access
levels.

9.1 FLOATING-POINT UNITS

Floating-point support for the MC68020/EC020 is provided by the MC68881 floating-point
coprocessor or the MC68882 enhanced floating-point coprocessor. Both devices offer a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (754). The
MC68882 is a pin- and software-compatible upgrade of the MC68881, with an optimized
MPU interface that provides over 1.5 times the performance of the MC68881 at the same
clock frequency.

Both coprocessors provide a logical extension to the integer data processing capabilities
of the main processor. They contain a high-performance floating-point arithmetic unit and
a set of floating-point data registers that are utilized in a manner that is analogous to the
use of the integer data registers of the processor. The MC68881/MC68882 instruction set,
a natural extension of all earlier members of the M68000 family, supports all addressing
modes and data types of the host MC68020/EC020. The programmer perceives the
MC68020/EC020 coprocessor execution model as if both devices are implemented on
one chip. In addition to supporting the full IEEE standard, the MC68881 and MC68882
provide a full set of trigonometric and transcendental functions, on-chip constants, and a
full 80-bit extended-precision real data format.

The interface of the MC68020/EC020 to the MC68881 or MC68882 is easily tailored to
system cost/performance needs. The MC68020/EC020 and the MC68881/MC68882
communicate via standard asynchronous M68000 bus cycles. All data transfers are
performed by the main processor at the request of the MC68881/MC68882; thus, memory
management, bus errors, address errors, and bus arbitration function as if the
MC68881/MC68882 instructions are executed by the main processor. The floating-point
unit and the processor can operate at different clock speeds, and up to seven floating-
point coprocessors can simultaneously reside in an MC68020/EC020 system.

Figure 9-1 illustrates the coprocessor interface connection of an MC68881/MC68882 to an
MC68020/EC020 (uses entire 32-bit data bus). The MC68881/MC68882 is configured to
operate with a 32-bit data bus when both its A0 and SIZE pins are connected to VCC.
Refer to the MC68881UM/AD, MC68881/MC68882 Floating-Point Coprocessor User's
Manual, for configuring the MC68881/MC68882 for smaller data bus widths.

9-2 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020 MC68881/MC68882

CHIP
SELECT
DECODE

FC2–FC0

A31–A20
A19–A16
A15–A13

A12–A5
A4–A1

A0

 AS
DS

R/W

D31–D24
D23–D16

D15–D8
D7–D0

DSACK0
DSACK1

MAIN PROCESSOR
CLOCK

CS

SIZE
A4–A1
A0

AS
DS
R/W

D31–D24
D23–D16
D15–D8
D7–D0

DSACK0
DSACK1

COPROCESSOR
CLOCK

VCC

VCC

*

*For the MC68EC020, A23–A0.

Figure 9-1. 32-Bit Data Bus Coprocessor Connection

The chip select (CS) decode circuitry is asynchronous logic that detects when a particular
floating-point coprocessor is addressed. The MC68020/EC020 signals used by the logic
include FC2–FC0 and A19–A13. Refer to Section 7 Coprocessor Interface Description
for more information concerning the encoding of these signals. All or just a subset of these
lines may be decoded, depending on the number of coprocessors in the system and the
degree of redundant mapping allowed in the system.

For example, if a system has only one coprocessor, the full decoding of the ten signals
(FC2–FC0 and A19–A13), provided by the PAL equations in Figure 9-3, is not absolutely
necessary. It may be sufficient to use only FC1–FC0 and A17–A16. FC1–FC0 indicate
when a bus cycle is operating in either CPU space ($7) or user-defined space ($3), and
A17–A16 encode the CPU space type as coprocessor space ($2). A15–A13 can be
ignored in this case because they encode the coprocessor identification code (CpID) used
to differentiate between multiple coprocessors in a system. Motorola assemblers always
default to a CpID of $1 for floating-point instructions; this can be controlled with assembler
directives if a different CpID is desired or if multiple coprocessors exist in the system.

MOTOROLA M68020 USER’S MANUAL 9-3

The major concern of a system designer is to design a CS interface that meets the AC
electrical specifications for both the MC68020/EC020 (MPU) and the MC68881/MC68882
(FPCP) without adding unnecessary wait states to FPCP accesses. The following
maximum specifications (relative to CLK low) meet these objectives:

tCLK low to AS low ≤ (MPU Spec 1 – MPU Spec 47A – FPCP Spec 19) (9-1)

tCLK low to CS low ≤ (MPU Spec 1 – MPU Spec 47A – FPCP Spec 19) (9-2)

Even though requirement (9-1) is not met under worst-case conditions, if the MPU AS is
loaded within specifications and the AS input to the FPCP is unbuffered, the requirement
is met under typical conditions. Designing the CS generation circuit to meet requirement
(9-2) provides the highest probability that accesses to the FPCP occur without
unnecessary wait states. A PAL 16L8 (see Figure 9-2) with a maximum propagation delay
of 10 ns, programmed according to the equations in Figure 9-3, can be used to generate
CS. For a 25-MHz system, tCLK low to CS low is less than or equal to 10 ns when this
design is used. Should worst-case conditions cause tCLK low to AS low to exceed
requirement (1), one wait state is inserted in the access to the FPCP; no other adverse
effects occur. Figure 9-4 shows the bus cycle timing for this interface. Refer to
MC68881UM/AD, MC68881/MC68882 Floating-Point Coprocessor User's Manual, for
FPCP specifications.

The circuit that generates CS must meet another requirement. When a nonfloating-point
access immediately follows a floating-point access, CS (for the floating-point access) must
be negated before AS and DS (for the subsequent access) are asserted. The PAL circuit
previously described also meets this requirement.

PAL 16L8
10 ns

CLK
AS

FC2

FC1
FC0
A19
A18

A17
A16

GND

V
NC
NC

NC
NC
A13
A14

CLKD
CS
A15

CC

Figure 9-2. Chip Select Generation PAL

9-4 M68020 USER’S MANUAL MOTOROLA

PAL16L8

FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION

MOTOROLA INC., AUSTIN, TEXAS

INPUTS: CLK ~AS FC2 FC1 FC0 A19 A18 A17 A16 A15 A14 A13

OUTPUTS: ~CS CLKD

!~CS = FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!CLK ;qualified by MPU clock low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!~AS ;qualified by address strobe low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*CLKD ;qualified by CLKD (delayed CLK)

CLKD = CLK

Description: There are three terms to the CS generation. The first term denotes the earliest time CS can be asserted.
The second term is used to assert CS until the end of the FPCP access. The third term is to ensure that no race
condition occurs in case of a late AS.

Figure 9-3. Chip Select PAL Equations

9

CLK

AS

CS

8

DSACK1/DSACK0

47A

START

19

FPCP SPECIFICATION MPU SPECIFICATION

Figure 9-4. Bus Cycle Timing Diagram

MOTOROLA M68020 USER’S MANUAL 9-5

9.2 BYTE SELECT LOGIC FOR THE MC68020/EC020

The MC68020/EC020 architecture supports byte, word, and long-word operand transfers
to any 8-, 16-, or 32-bit data port, regardless of alignment. This feature allows the
programmer to write code that is not bus-width specific. When accessed, the peripheral or
memory subsystem reports its actual port size to the controller, and the MC68020/EC020
then dynamically sizes the data transfer accordingly, using multiple bus cycles when
necessary. The following paragraphs describe the generation of byte select control signals
that enable the dynamic bus sizing mechanism, the transfer of differently sized operands,
and the transfer of misaligned operands to operate correctly.

The following signals control the MC68020/EC020 operand transfer mechanism:

A1, A0 — Address signals. The most significant byte of the operand to be
transferred is addressed directly.

SIZ1, SIZ0 — Transfer size signals. Output of the MC68020/EC020. These
indicate the number of bytes of an operand remaining to be
transferred during a given bus cycle.

R/W — Read/Write signal. Output of the MC68020/EC020. For byte
select generation in MC68020/EC020 systems.

DSACK1, DSACK0 — Data transfer and size acknowledge signals. Driven by an
asynchronous port to indicate the actual bus width of
the port.

The MC68020/EC020 assumes that 16-bit ports are situated on data lines D31–D16, and
that 8-bit ports are situated on data lines D31–D24. This ensures that the following logic
works correctly with the MC68020/EC020's on-chip internal-to-external data bus
multiplexer. Refer to Section 5 Bus Operation for more details on the dynamic bus sizing
mechanism.

The need for byte select signals is best illustrated by an example. Consider a long-word
write cycle to an odd address in word-organized memory. The transfer requires three bus
cycles to complete. The first bus cycle transfers the most significant byte of the long word
on D23–D16. The second bus cycle transfers a word on D31–D16, and the last bus cycle
transfers the least significant byte of the original long word on D31–D24. To prevent
overwriting those bytes that are not used in these transfers, a unique byte data strobe
must be generated for each byte when using devices with 16- and 32-bit port widths.

For noncachable read cycles and all write cycles, the required active bytes of the data bus
for any given bus transfer are a function of the SIZ1, SIZ0 and A1, A0 outputs (see Table
9-1). Individual strobes or select signals can be generated by decoding these four signals
for every bus cycle. Devices residing on 8-bit ports can utilize DS or AS since there is only
one valid byte for any transfer.

9-6 M68020 USER’S MANUAL MOTOROLA

Table 9-1. Data Bus Activity for Byte, Word, and Long-Word Ports

Data Bus Active Sections
Byte (B), Word (W), Long-Word (L) Ports

Transfer Size SIZ1 SIZ0 A1 A0 D31–D24 D23–D16 D15–D8 D7–D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

—
W L
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

—
L
L
—

—
—
L
L

3 Bytes 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

L
L
L
L

During cachable read cycles, the addressed device must provide valid data over its full
bus width as indicated by DSACK1/DSACK0. While instructions are always prefetched as
long-word-aligned accesses, data fetches can occur with any alignment and size.
Because the MC68020/EC020 assumes that the entire data bus port size contains valid
data, cachable data read bus cycles must provide as much data as signaled by the port
size during a bus cycle. To satisfy this requirement, the R/W signal must be included in
the byte select logic for the MC68020/EC020.

Figure 9-5 shows a block diagram of an MC68020/EC020 system with a single memory
bank. The PAL provides memory-mapped byte select signals for an asynchronous 32-bit
port and unmapped byte select signals for other memory banks or ports. Figure 9-6
provides sample equations for the PAL.

The PAL equations and circuits presented here cannot be the optimal implementation for
every system. Depending on the CPU clock frequency, memory access times, and system
architecture, different circuits may be required.

MOTOROLA M68020 USER’S MANUAL 9-7

SIZ0
SIZ1

A0
A1

FC0
FC1

A31–A2
AS

R/W

D31–D0

UUDA
UMDA
LMDA
LLDA

LLDB
LMDB
UMDB
UUDB

MC68020/EC020 PAL16L8

D7–D0 D15–D8 D23–D16 D31–D24

W E W E W E W E

A31–A2

32-BIT PORT

UUDA
UMDA
LMDA
LLDA

UNMAPPED BYTE
SELECTS FOR OTHER
32-BIT PORTS

CPU

MC74F32
MC74F32

MC74F32

MCM60256A MCM60256A MCM60256A MCM60256A

MC74F00

A21–A18
MC74F32

*

*For the MC68EC020, A23–A2.

*

Figure 9-5. Example MC68020/EC020 Byte Select PAL System Configuration

9-8 M68020 USER’S MANUAL MOTOROLA

PAL16L8

BYTE_SELECT

MC68020/EC020 BYTE DATA SELECT GENERATION FOR 32-BIT PORTS, MAPPED AND UNMAPPED.

MOTOROLA INC., AUSTIN, TEXAS

INPUTS: A0 A1 SIZ0 SIZ1 RW A18 A19 A20 A21 ~CPU

OUTPUTS: ~UUDA ~UMDA ~LMDA ~LLDA ~UUDA ~UMDB ~LMDB ~LLDB

!~UUDA = RW ;enable upper byte on read of 32-bit port

+!A0 *!A1 ;directly addressed, any size

!~UMDA = RW ;enable upper middle byte on read of 32-bit port

+A0 *!A1 ;directly addressed, any size

+!A1 *!SIZ0 ;even word aligned, size word or long word

+!A1 *SIZ1 ;even word aligned, size is word or three byte

!~LMDA = RW ;enable lower middle byte on read of 32-bit port +!A0 *A1
;directly addressed, any size

+!A1 *!SIZ0 *!SIZ1 ;even word aligned, size is long word

+!A1 *SIZ0 *SIZ1 ;even word aligned, size is three byte

+!A1 *A0 *!SIZ0 ;even word aligned, size is word or long word

!~LLDA = RW ;enable lower byte on read of 32-bit port

+A0 *A1 ;directly addressed, any size

+A0 *SIZ0 *SIZ1 ;odd byte alignment, three byte size

+!SIZ0 *!SIZ1 ;size is long word, any address

+A1 *SIZ1 ;odd word aligned, word or three byte size

!~UUDB = RW *!~CPU * (addressb) ;enable upper byte on read of 32-bit port

+!A0 *!A1 *!~CPU * (addressb) ;directly addressed, any size

!~UMDB = RW *!~CPU * (addressb) ;enable upper middle byte on read of 32-bit port

+ A0 *!A1 *!~CPU * (addressb) ;directly addressed, any size

+!A1 *!SIZ0 *!~CPU * (addressb) ;even word aligned, size word or long word

+!A1 *SIZ1 *!~CPU * (addressb) ;even word aligned, size is word or three byte

!~LMDB =RW *!~CPU * (addressb) ;enable lower middle byte on read of 32-bit port

+!A0 * A1 *!~CPU * (addressb) ;directly addressed, any size

+!A1 *!SIZ0 *!SIZ1 *!~CPU * (addressb) ;even word aligned, size is long word

+!A1 * SIZ0 * SIZ1 *!~CPU * (addressb) ;even word aligned, size is three byte

+!A1 * A0 *!SIZ0 *!~CPU * (addressb) ;even word aligned, size is word or long word

!~LLDB =RW *!~CPU * (addressb) ;enable lower byte on read of 32-bit port

+A0 * A1 *!~CPU * (addressb) ;directly addressed, any size

+ A0 * SIZ0 * SIZ1 *!~CPU * (addressb) ;odd byte alignment, three byte size

+!SIZ0 *!SIZ1 *!~CPU * (addressb) ;size is long word, any address

+A1 * SIZ1 *!~CPU * (addressb) ;odd word aligned, word or three byte size

DESCRIPTION: Byte select signals for writing. On reads, all byte selects are asserted if the respective memory block is addressed.
The input signal CPU prevents byte select assertion during CPU space cycles and is derived from NANDing FC1–FC0 or FC2–FC0.
The label (addressb) is a designer-selectable combination of address lines used to generate the proper address decode for the
system's memory bank. With the address lines given here, the decode block size is 256 Kbytes to 2 Mbytes. A similar address might
be included in the equations for UUDA, UMDA, etc. if the designer wishes them to be memory mapped also.

Figure 9-6. MC68020/EC020 Byte Select PAL Equations

MOTOROLA M68020 USER’S MANUAL 9-9

9.3 POWER AND GROUND CONSIDERATIONS

The MC68020/EC020 is fabricated in Motorola's advanced HCMOS process and is
capable of operating at clock frequencies of up to 25 MHz. While the use of CMOS for a
device containing such a large number of transistors allows significantly reduced power
consumption compared to an equivalent NMOS circuit, the high clock speed makes the
characteristics of power supplied to the device very important. The power supply must be
able to furnish large amounts of instantaneous current when the MC68020/EC020
performs certain operations, and it must remain within the rated specification at all times.
To meet these requirements, more detailed attention must be given to the power supply
connection to the MC68020/EC020 than is required for NMOS devices operating at slower
clock rates.

To reduce the amount of noise in the power supply connected to the MC68020/EC020
and to provide for the instantaneous current requirements, common capacitive decoupling
techniques should be observed. While there is no recommended layout for this capacitive
decoupling, it is essential that the inductance and distance between these devices and the
MC68020/EC020 be minimized to provide sufficiently fast response time to satisfy
momentary current demands and to maintain a constant supply voltage. It is suggested
that high-frequency, high-quality capacitors be placed as close to the MC68020/EC020 as
possible. Table 9-2 lists the VCC and GND pin assignments for the MC68EC020 PPGA
(RP suffix) package. Table 9-3 lists the VCC and GND pin assignments for the
MC68EC020 PQFP (FG suffix) package. Refer to Section 11 Ordering Information and
Mechanical Data for the VCC and GND pin assignments for the MC68020 packages.
When assigning capacitors to the VCC and GND pins, the noisier pins (address and data
buses) should be heavily decoupled from the internal logic pins. Typical decoupling
practices include a high-frequency, high-quality capacitor to decouple every device on the
printed circuit board; however, due to the power requirements and drive capability of the
MC68020/EC020, each VCC pin should be decoupled with an individual capacitor.
Motorola recommends using a capacitor in the range of 0.01 µF to 0.1 µF on each VCC
pin on each device to provide filtering for most frequencies prevalent in a digital system. In
addition to the individual decoupling, several bulk decoupling capacitors should be placed
onto the printed circuit board with typical values in the range of 33 µF to 330 µF. When
power and ground planes are used with an adequate number of high-frequency, high-
quality capacitors, the system noise will be reduced to the required levels, and the
MC68020/EC020 will function properly. Similar decoupling techniques should also be
observed for other VLSI devices in the system.

In addition to the capacitive decoupling of the power supply, care must be taken to ensure
a low-impedance connection between all MC68020/EC020 VCC and GND pins and the
system power supply. A solid power supply connection from the power and ground planes
to the MC68020/EC020 VCC and GND pins, respectively, will meet this requirement.
Failure to provide connections of sufficient quality between the MC68020/EC020 power
pins and the system power supplies will result in increased assertion delays for external
signals, decreased voltage noise margins, increased system noise, and possible errors in
MC68020/EC020 internal logic.

9-10 M68020 USER’S MANUAL MOTOROLA

Table 9-2. VCC and GND Pin Assignments—
MC68EC020 PPGA (RP Suffix)

Pin Group VCC GND

Address Bus B7, C7 A1, A7, C8, D13

Data Bus K12, M9, N9 J13, L8, M1, M8

Internal Logic D1, D2, E12, E13 F11, F12, J1, J2

Clock — B1

Table 9-3. VCC and GND Pin Assignments—
MC68EC020 PQFP (FG Suffix)

Pin Group VCC GND

Address Bus 90 72, 89, 100

Data Bus 44, 57 26, 43, 58, 59

Internal Logic 7, 8, 70, 71 3, 20, 21, 68, 69

Clock — 4

9.4 CLOCK DRIVER

The MC68020/EC020 is designed to sustain high performance while using low-cost
memory subsystems. The MC68020/EC020 requires a stable clock source that is free of
ringing and ground bounce, has sufficient rise and fall times, and meets the minimum and
maximum high and low cycle times. The individual system may require additional clocks
for peripherals with a minimum amount of clock skew. Two possible clock solutions are
provided with the MC88916 and MC74F803. Many other clock solutions can be used.
Some crystal clock drivers are capable of driving the MC68020/EC020 directly. For slower
speed designs, a simple 74F74 flip-flop meets the clocking needs of the MC68020/EC020.
Coupled with the MC88916 or MC74F803 clock generation and distribution circuit, the
MC68020/EC020 provides simple interface to lower speed memory subsystems. The
MC88916 (see Figure 9-7) and MC74F803 (see Figure 9-8) generate the clock signals
required to minimize the skew between different clocks to multiple devices such as
coprocessors, synchronous state machines, DRAM controllers, and memory subsystems.
The MC88916 clock driver can be used in doubling and synchronizing a low-frequency
clock source. The MC74F803 will provide a controlled skew output for clocking other
peripherals.

MOTOROLA M68020 USER’S MANUAL 9-11

MC68020/EC020
25 MHz

12.5-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC88916

CLOCK
(50 MHz)

12.5 MHz

2

CLOCK
(25 MHz)

Figure 9-7. High-Resolution Clock Controller

MC68020/EC020
25 MHz

50-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC74F803

CLOCK
(25 MHz)

2

Figure 9-8. Alternate Clock Solution

9.5 MEMORY INTERFACE

The MC68020/EC020 is capable of running an external bus cycle in a minimum of three
clocks (refer to Section 5 Bus Operation). The MC68020/EC020 runs an asynchronous
bus cycle, terminated by the DSACK1/DSACK0 signals, and has a minimum duration of
three controller clock periods in which up to four bytes (32 bits) are transferred.

During read operations, the MC68020/EC020 latches data on the last falling clock edge of
the bus cycle, one-half clock before the bus cycle ends. Latching data here, instead of the
next rising clock edge, helps to avoid data bus contention with the next bus cycle and
allows the MC68020/EC020 to receive the data into its execution unit sooner for a net
performance increase.

Write operations also use this data bus timing to allow data hold times from the negating
strobes and to avoid any bus contention with the following bus cycle. This
MC68020/EC020 characteristic allows the system to be designed with a minimum of bus
buffers and latches.

One benefit of the MC68020/EC020 on-chip instruction cache is that the effect of external
wait states on performance is lessened because the caches are always accessed in fewer
than “no wait states,” regardless of the external memory configuration.

9-12 M68020 USER’S MANUAL MOTOROLA

9.6 ACCESS TIME CALCULATIONS

The timing paths that are critical in any memory interface are illustrated and defined in
Figure 9-9.

The type of device that is interfaced to the MC68020/EC020 determines exactly which of
the paths is most critical. The address-to-data paths are typically the critical paths for
static devices since there is no penalty for initiating a cycle to these devices and later
validating that access with the appropriate bus control signal. Conversely, the address-
strobe-to-data-valid path is often most critical for dynamic devices since the cycle must be
validated before an access can be initiated. For devices that signal termination of a bus
cycle before data is validated (e.g., error detection and correction hardware and some
external caches), to improve performance, the critical path may be from the address or
strobes to the assertion of BERR (or BERR and HALT). Finally, the address-valid-to-
DSACK1/DSACK0-asserted path is most critical for very fast devices and external
caches, since the time available between the address becoming valid and the
DSACK1/DSACK0 assertion to terminate the bus cycle is minimal. Table 9-4 provides
the equations required to calculate the various memory access times assuming a 50-
percent duty cycle clock.

CLK

A31–A0

S0 S1 S2 S0

AS

DSACK1/DSACK0

a c e

b d f

BERR, HALT

D31–D0

NOTE: This diagram illustrates access time calculations only

*

*For the MC68EC020, A23–A0.

Parameter Description System Equation
a Address Valid to DSACK1/DSACK0 Asserted tAVDL 9-3

b AS Asserted to DSACK1/DSACK0 Asserted tSADL 9-4

c Address Valid to BERR/HALT Asserted tAVBHL 9-5

d AS Asserted to BERR/HALT Asserted tSABHL 9-6

e Address Valid to Data Valid tAVDV 9-7
f AS Asserted to Data Valid tSADV 9-8

MOTOROLA M68020 USER’S MANUAL 9-13

Figure 9-9. Access Time Computation Diagram

9-14 M68020 USER’S MANUAL MOTOROLA

Table 9-4. Memory Access Time Equations at 16.67 and 25 MHz

Equation 16.667 MHz N = 3 N = 4 N = 5 N = 6 N = 7 Unit

9-3 tAVDL = (N – 1) • t1 – t2 – t6 – t47A 61 121 181 241 301 ns

9-4 tSADL = (N – 1) • t1 – t9 – t60 25 85 145 205 265 ns

9-5 tAVBHL = N • t1 – t2 – t6 – t27A 22 46 70 94 118 ns

9-6 tSABHL = (N – 1) • t1 – t9 – t27A 40 70 100 130 160 ns

9-7 tAVDV = N • t1 – t2 – t6 – t27 121 181 241 301 361 ns

9-8 tSADV = (N – 1) • t1 – t9 – t27 85 145 205 265 325 ns

Equation 25 MHz N = 3 N = 4 N = 5 N = 6 N = 7 Unit

9-3 tAVDL = (N – 1) • t1 – t2 – t6 – t47A 31 71 111 151 191 ns

9-4 tSADL = (N – 1) • t1 – t9 – t60 17 57 97 137 177 ns

9-5 tAVBHL = N • t1 – t2 – t6 – t27A 22 41 60 79 98 ns

9-6 tSABHL = (N – 1) • t1 – t9 – t27A 26 44 62 80 98 ns

9-7 tAVDV = N • t1 – t2 – t6 – t27 71 111 151 191 231 ns

9-8 tSADV = (N – 1) • t1 – t9 – t27 57 97 137 177 217 ns

Where:
tX = Refers to AC Electrical Specification X
t1 = The Clock Period
t2 = The Clock Low Time
t3 = The Clock High Time
t6 = The Clock High to Address Valid Time
t9 = The Clock Low to AS Low Delay

t27 = The Data-In to Clock Low Setup Time
t27A = The BERR/HALT to Clock Low Setup Time
t47A = The Asynchronous Input Setup Time

N = The Total Number of Clock Periods in the Bus Cycle (N ≥ 3 Cycles)

During asynchronous bus cycles, DSACK1/DSACK0 are used to terminate the current
bus cycle. In true asynchronous operations, such as accesses to peripherals operating at
a different clock frequency, either or both signals may be asserted without regard to the
clock, and then data must be valid a certain amount of time later as defined by
specification 31. With a 25-MHz controller, this time is 32 ns after DSACK1/DSACK0
asserts; with a 16.67-MHz controller, this time is 50 ns after DSACK1/DSACK0 asserts
(both numbers vary with the actual clock frequency).

However, many local memory systems do not operate in a truly asynchronous manner
because either the memory control logic can be related to the MC68020/EC020 clock or
worst-case propagation delays are known; thus, asynchronous setup times for the
DSACK1/DSACK0 signals can be guaranteed. The timing requirements for this pseudo-
synchronous DSACK1/DSACK0 generation is governed by the equation for tAVDL.

MOTOROLA M68020 USER’S MANUAL 9-15

Another way to optimize the CPU-to-memory access times in a system is to use a clock
frequency less than the rated maximum of the specific MC68020/EC020 device. Table 9-5
provides calculated tAVDV (see Equation 9-7 of Table 9-4) results for a 16 MHz
MC68020/EC020 and a 25 MHz MC68020/EC020 operating at various clock frequencies.
If the system uses other clock frequencies, the above equations can be used to calculate
the exact access times.

Table 9-5. Calculated tAVDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating

Equation 9-7 tAVDV 16-MHz MC68020/EC020 25-MHz MC68020/EC020

Clocks Per (N) and Type
Bus Cycle

Wait
States

Clock at
12.5 MHz

Clock at
16.67 MHz

Clock at
16.67 MHz

Clock at
20 MHz

Clock at
25 MHz

3 Clock Asynchronous 0 181 121 131 101 71

4 Clock Asynchronous 1 261 181 191 151 111

5 Clock Asynchronous 2 341 241 251 201 151

6 Clock Asynchronous 3 421 301 311 251 191

9.7 MODULE SUPPORT

The MC68020/EC020 includes support for modules with the CALLM and RTM
instructions. The CALLM instruction references a module descriptor. This descriptor
contains control information for entry into the called module. The CALLM instruction
creates a module stack frame and stores the current module state in that frame and loads
a new module state from the referenced descriptor. The RTM instruction recovers the
previous module state from the stack frame and returns to the calling module.

The module interface facilitates finer resolution of access control by external hardware.
Although the MC68020/EC020 does not interpret the access control information, it
communicates with external hardware when the access control is to be changed and
relies on the external hardware to verify that the changes are legal.

9.7.1 Module Descriptor

Figure 9-10 illustrates the format of the module descriptor. The first long word contains
control information used during execution of the CALLM instruction. The remaining
locations contain data that can be loaded into processor registers by the CALLM
instruction.

9-16 M68020 USER’S MANUAL MOTOROLA

OPT TYPE ACCESS LEVEL (RESERVED, MUST BE ZERO)

31 28 23 15 0

BASE
+$04

MODULE ENTRY WORD POINTER

MODULE DATA AREA POINTER

ADDITIONAL USER-DEFINED INFORMATION

+$08

+$0C

+$10

29 24 16

Figure 9-10. Module Descriptor Format

The opt field specifies how arguments are to be passed to the called module; the
MC68020/EC020 recognizes only the options of 000 and 100; all others cause a format
exception. The 000 option indicates that the called module expects to find arguments from
the calling module on the stack just below the module stack frame. In cases where there is
a change of stack pointer during the call, the MC68020/EC020 will copy the arguments
from the old stack to the new stack. The 100 option indicates that the called module will
access the arguments from the calling module through an indirect pointer in the stack of
the calling module. Hence, the arguments are not copied, but the MC68020/EC020 puts
the value of the stack pointer from the calling module in the module stack frame.

The type field specifies the type of the descriptor; the MC68020/EC020 only recognizes
descriptors of type $00 and $01; all others cause a format exception. The $00 type
descriptor defines a module for which there is no change in access rights, and the called
module builds its stack frame on top of the stack used by the calling module. The $01 type
descriptor defines a module for which there may be a change in access rights; such a
called module may have a separate stack area from that of the calling module.

The access level field is used only with the type $01 descriptor and is passed to external
hardware to change the access control.

The module entry word pointer specifies the entry address of the called module. The first
word at the entry address (see Figure 9-11) specifies the register to be saved in the
module stack frame and then loaded with the module descriptor data area pointer; the first
instruction of the module starts with the next word. The module descriptor data area
pointer field contains the address of the called module data area.

If the access change requires a change of stack pointer, the old value is saved in the
module stack frame, and the new value is taken from the module descriptor stack pointer
field. Any further information in the module descriptor is user defined.

OPERATION WORD OF FIRST INSTRUCTION

D/A

15 14

REGISTER

12 11 9

0

8

0

7

0

6 5 0

0 0

4

0

3

0

2

0

1

000

10

0

Figure 9-11. Module Entry Word

MOTOROLA M68020 USER’S MANUAL 9-17

All module descriptor types $10–$1F are reserved for user definition and cause a format
error exception. This provides the user with a means of disabling any module by setting a
single bit in its descriptor without loss of any descriptor information.

If the called module does not wish the module data area pointer to be loaded into a
register, the module entry word can select register A7, and the loaded value will be
overwritten with the correction stack pointer value after the module stack frame is created
and filled.

9.7.2 Module Stack Frame

Figure 9-12 illustrates the format of the module stack frame. This frame is constructed by
the CALLM instruction and is removed by the RTM instruction. The first and second long
words contain control information passed by the CALLM instruction to the RTM instruction.
The module descriptor pointer contains the address of the descriptor used during the
module call. All other locations contain information to be restored on return to the calling
module.

The PC is the saved address of the instruction following the CALLM instruction. The opt
and type fields, which specify the argument options and type of module stack frame, are
copied to the frame from the module descriptor by the CALLM instruction; the RTM
instruction will cause a format error if the opt and type fields do not have recognizable
values. The access level is the saved access control information, which is saved from
external hardware by the CALLM instruction and restored by the RTM instruction. The
argument count field is set by the CALLM instruction and is used by the RTM instruction to
remove arguments from the stack of the calling module. The contents of the CCR are
saved by the CALLM instruction and restored by the RTM instruction. The saved stack
pointer field contains the value of the stack pointer when the CALLM instruction started
execution, and that value is restored by RTM. The saved module data area pointer field
contains the saved value of the module data area pointer register from the calling module.

TYPE SAVED ACCESS LEVEL

15 12 7 0

SP

+$08

SAVED PROGRAM COUNTER

SAVED MODULE DATA AREA POINTER

ARGUMENTS (OPTIONAL)

+$0C

+$10

MODULE DESCRIPTION POINTER

(RESERVED)

CONDITION CODES

ARGUMENT COUNT

OPT

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

+$18

13 8

Figure 9-12. Module Call Stack Frame

9-18 M68020 USER’S MANUAL MOTOROLA

9.8 ACCESS LEVELS

The MC68020/EC020 module mechanism supports a finer level of access control beyond
the distinction between user and supervisor privilege levels. The module mechanism
allows a module with limited access rights to call a module with greater access rights. With
the help of external hardware, the processor can verify that an increase in access rights is
allowable or can detect attempts by a module to gain access rights to which it is not
entitled.

Type $01 module descriptors and module stack frames indicate a request to change
access levels. While processing a type $01 descriptor or frame, the CALLM and RTM
instructions communicate with external access control hardware via accesses in the CPU
space. For these accesses, A19–A16 equal 0001. Figure 9-13 shows the address map for
these CPU space accesses. If the processor receives a bus error on any of these CPU
space accesses during the execution of a CALLM or RTM instruction, the processor will
take a format error exception.

31 0

CAL

23

DAL

24

ACCESS STATUS REGISTER

IAL

$00

$04

$08

$0C

$40

$44

$48

$4C

$50

$54

$58

$5C

(UNUSED, RESERVED)

(UNUSED, RESERVED)

(UNUSED, RESERVED)

(UNUSED, RESERVED)

FUNCTION CODE 5 DESCRIPTOR ADDRESS (SUPERVISOR PROGRAM)

FUNCTION CODE 6 DESCRIPTOR ADDRESS

FUNCTION CODE 7 DESCRIPTOR ADDRESS (CPU SPACE)

FUNCTION CODE 4 DESCRIPTOR ADDRESS (SUPERVISOR DATA)

FUNCTION CODE 3 DESCRIPTOR ADDRESS

FUNCTION CODE 2 DESCRIPTOR ADDRESS (USER PROGRAM)

FUNCTION CODE 1 DESCRIPTOR ADDRESS (USER DATA)

FUNCTION CODE 0 DESCRIPTOR ADDRESS

Figure 9-13. Access Level Control Bus Registers

The current access level register (CAL) contains the access level rights of the currently
executing module. The increase access level register (IAL) is the register through which
the processor requests increased access rights. The decrease access level register (DAL)
is the register through which the processor requests decreased access rights. The formats
of these three registers are undefined to the main processor, but the main processor
assumes that information read from the module descriptor stack frame or the CAL can be
meaningfully written to the IAL or the DAL. The access status register allows the
processor to query the external hardware as to the legality of intended access level
transitions. Table 9-6 lists the valid values of the access status register.

MOTOROLA M68020 USER’S MANUAL 9-19

Table 9-6. Access Status Register Codes

Value Validity Processor Action

$00 Invalid Format Error

$01 Valid No Change in Access Rights

$02–$03 Valid Change Access Rights with No Change of Stack Pointer

$04–$07 Valid Change Access Rights and Change Stack Pointer

Other Undefined Undefined (Take Format Error Exception)

The processor uses the descriptor address registers during the CALLM instruction to
communicate the address of the type $01 descriptor, allowing external hardware to verify
that the address is a valid address for a type $01 descriptor. This validation prevents a
module from creating a type $01 descriptor to increase its access rights.

9.8.1 Module Call

The CALLM instruction is used to make the module call. For the type $00 module
descriptor, the processor creates and fills the module stack frame at the top of the active
system stack. The condition codes of the calling module are saved in the CCR field of the
frame. If opt is equal to 000 (arguments passed on the stack) in the module descriptor, the
MC68020/EC020 does not save the stack pointer or load a new stack pointer value. The
processor uses the module entry word to save and load the module data area pointer
register and then begins execution of the called module.

For the type $01 module descriptor, the processor must first obtain the current access
level from external hardware. It also verifies that the calling module has the right to read
from the area pointed to by the current value of the stack pointer by reading from that
address. It passes the descriptor address and increase access level to external hardware
for validation and then reads the access status. If external hardware determines that the
change in access rights should not be granted, the access status is zero, and the
processor takes a format error exception. No visible processor registers are changed, nor
should the current access level enforced by external hardware be changed. If external
hardware determines that a change should be granted, the external hardware changes its
access level, and the processor proceeds. If the access status register indicates that a
change in the stack pointer is required, the stack pointer is saved internally, a new value is
loaded from the module descriptor, and arguments are copied from the calling stack to the
new stack. Finally, the module stack frame is created and filled on the top of the current
stack. The condition codes of the calling module are saved in the CCR field of the frame.
Execution of the called module then begins as with a type $00 descriptor.

9-20 M68020 USER’S MANUAL MOTOROLA

9.8.2 Module Return

The RTM instruction is used to return from a module. For the type $00 module stack
frame, the processor reloads the condition codes, the PC, and the module data area
pointer register from the frame. The frame is removed from the top of the stack, the
argument count is added to the stack pointer, and execution returns to the calling module.

For the type $01 module stack frame, the processor reads the access level, condition
codes, PC, saved module data area pointer, and saved stack pointer from the module
stack frame. The access level is written to the DAL for validation by external hardware; the
processor then reads the access status to check the validation. If the external hardware
determines that the change in access right should not be granted, the access status is
zero, and the processor takes a format error exception. No visible processor registers are
changed, nor should the current access level enforced by external hardware be changed.
If the external hardware determines that the change in access rights should be granted,
the external hardware changes its access level, the values read from the module stack
frame are loaded into the corresponding processor registers, the argument count is added
to the new stack pointer value, and execution returns to the calling module.

If the called module does not wish the saved module data pointer to be loaded into a
register, the RTM instruction word can select register A7, and the loaded value will be
overwritten with the correct stack pointer value after the module stack frame is
deallocated.

MOTOROLA M68020 USER’S MANUAL 10-1

The device contains circuitry to
protect the inputs against damage
due to high static voltages or electric
fields; however, normal precautions
should be taken to avoid application
of voltages higher than maximum-
rated voltages to these high-
impedance circuits. Tying unused
inputs to the appropriate logic
voltage level (e.g., either GND or
VC C) enhances reliability of
operation.

SECTION 10
ELECTRICAL CHARACTERISTICS

This section provides the thermal characteristics and electrical specifications for the
MC68020/EC020. Note that the thermal and DC electrical characteristics are listed
separately for the MC68020 and the MC68EC020. All other data applies to both the
MC68020 and the MC68EC020 unless otherwise noted.

10.1 MAXIMUM RATINGS
Rating Symbol Value Unit

Supply Voltage VCC –0.3 to +7.0 V

Input Voltage Vin –0.5 to +7.0 V

Operating Temperature Range
Minimum Ambient Temperature
Maximum Ambient Temperature

PGA, PPGA, PQFP
Maximum Junction Temperature

CQFP

TA

TA

TJ

0

70

110

°C

°C

°C

Storage Temperature Range Tstg –55 to 150 °C

10.2 THERMAL CONSIDERATIONS
The average chip-junction temperature, TJ, in °C can be obtained from:

TJ = TA + (PD • θJA) (10-1)

where:

TA = Ambient Temperature, °C
θJA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD = PINT + PI/O

PINT = ICC X VCC, Watts—Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins—User Determined

For most applications, PI/O < PINT and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

PD = K ÷ (TJ + 273°C) (10-2)

10-2 M68020 USER’S MANUAL MOTOROLA

Solving Equations (10-1) and (10-2) for K gives:

K = PD • (TA + 273°C) + θJA•PD2 (10-3)

where K is a constant pertaining to the particular part. K can be determined from equation
(10-3) by measuring PD (at thermal equilibrium) for a known TA. Using this value of K, the
values of PD and TJ can be obtained by solving equations (10-1) and (10-2) iteratively for
any value of TA.

The total thermal resistance of a package (θJA) can be separated into two components,
θJC and θCA. θJC represents the barrier to heat flow from the semiconductor junction to
the package (case) surface, and θCA represents the barrier to heat flow from the case to
the ambient air. These terms are related by the equation:

θJA=θJC + θCA (10-4)

θJC is device related and cannot be influenced by the user. However, θC A is user
dependent and can be minimized by such thermal management techniques as heat sinks,
forced air cooling, and use of thermal convection to increase air flow over the device.
Thus, good thermal design on the part of the user can significantly reduce θCA so that θJA
approximately equals θJC. Substitution of θJC for θJA in equation (10-1) results in a lower
semiconductor junction temperature.

10.2.1 MC68020 Thermal Characteristics and
DC Electrical Characteristics

MC68020 Thermal Resistance (°C/W)

The following table provides thermal resistance characteristics for junction to ambient and
junction to case for the MC68020 packages with natural convection and no heatsink.

Characteristic—Natural Convection and No Heatsink θJA θJC

Thermal Resistance
PGA Package (RC Suffix)
PPGA Package (RP Suffix)
CQFP Package (FE Suffix)
PQFP Package (FC Suffix)

26
32
46
42

3
10
15
20

Resistance is to bottom center (pin side) of case for PGA and PPGA packages, top center of case
for CQFP and PQFP packages.

MC68020 CQFP Package

Table 10-1 provides typical and worst case thermal characteristics for the MC68020
CQFP package both with and without a heatsink. The heatsink used is black anodized
aluminum alloy, 0.72"x0.75"x0.6" high with an omnidirectional 5x6 array of fins.
Attachment was made using Epolite 6400 one part epoxy.

MOTOROLA M68020 USER’S MANUAL 10-3

Table 10-1. θJA vs. Airflow—MC68020 CQFP Package

Airflow in Linear Feet/Minute

θJA 0* 200 500

Maximum
No Heatsink
With Heatsink

46
35

28
20

24
18

Typical
No Heatsink
With Heatsink

43
32

25
17

21
15

*Natural convection

Table 10-2 shows the relationship between clock speed and power dissipation for any
package type. The worst case operating conditions are used for thermal management
design, while typical values are used for reliability analysis.

Table 10-2. Power vs. Rated Frequency
(at TJ Maximum = 110°C)

Rated Frequency (MHz) PD Maximum (Watts) PD Typical (Watts)

33
25
20
16

1.4
1.2
1.0
0.9

0.84
0.72
0.60
0.54

Table 10-3 shows the relationship between board temperature rise and power dissipation
in the test environment for the CQFP package. Derate θJA based on measurements made
in the application by adding (0.8/PD) * [Tba(application) – Tba(table)] to the θJA values in the
table. Board temperature was measured on the top surface of the board directly under the
device.

Table 10-3. Temperature Rise of Board vs. PD
—MC68020 CQFP Package

PD

Natural Convection 0.6W 1.0W 1.75W

Tba (°C)—No Heatsink 18 27 53

Values for thermal resistance presented in this document were derived using the
procedure described in Motorola Reliability Report 7843, “Thermal Resistance
Measurement Method for MC68XX Microcomponent Devices,” and are provided for
design purposes only. Thermal measurements are complex and dependent on procedure
and setup. User-derived values for thermal resistance may differ.

10-4 M68020 USER’S MANUAL MOTOROLA

MC68020 DC Electrical Characteristics
(VCC = 5.0 Vdc ± 5%; GND = 0 Vdc; Temperature within defined ranges)

Characteristics Symbol Min Max Unit

Input High Voltage VIH 2.0 VCC V

Input Low Voltage VIL GND
–0.5

0.8 V

Input Leakage Current
GND ≤ V in ≤ VCC

BERR, BR , BGACK, CLK, IPL2–IPL0 ,
AVEC ,DSACK1, DSACK0, CDIS

HALT, RESET

Iin
–1.0
–20

1.0
20

µA

Hi-Z (Off-State) Leakage Current
@ 2.4 V/0.5 V

A31–A0, AS, DBEN, DS, D31–D0, FC2 –
FC0, R/W, RMC, SIZ1–SIZ0

ITSI
–20 20

µA

Output High Voltage
IOH = 400 µA

A31–A0, AS, BG, D31–D0, DBEN, DS,
R/W,

ECS, IPEND, RMC, SIZ1–SIZ0, FC2–FC0

VOH
2.4 —

V

Output Low Voltage
IOL = 3.2 mA
IOL = 5.3 mA
IOL = 2.0 mA
IOL = 10.7 mA

A31–A0, FC2–FC0, SIZ1–SIZ0, BG, D31–0
AS, DS , R/W, RMC , DBEN, IPEND,

ECS , OCS
HALT, RESET

VOL
—
—
—
—

0.5
0.5
0.5
0.5

V

Power Dissipation (TA = 0°C) PD — 2.0 W

Capacitance (see Note)
Vin = 0 V, TA = 25˚C, f = 1
MHz

Cin — 20 pF

Load Capacitance ECS, OCS
All Other

CL —
—

50
130

pF

NOTE: Capacitance is periodically sampled rather than 100% tested.

10.2.2 MC68EC020 Thermal Characteristics and DC Electrical
Characteristics

MC68EC020 Thermal Resistance (°C/W)

The following table provides thermal resistance characteristics for junction to ambient and
junction to case for the MC68EC020 packages with natural convection and no heatsink.

Characteristic – Natural Convection and No Heatsink θJA θJC

Thermal Resistance
PPGA Package (RP Suffix)
PQFP Package (FG Suffix)

32
53

10
18

MC68EC020 PQFP Package

Table 10-4 provides typical and worst case thermal characteristics for the MC68EC020
PQFP package without a heatsink.

Table 10-4. θJA vs. Airflow—MC68EC020 PQFP Package

Airflow in Linear Feet/Minute

θJA 0* 50 100 200 300 400

Maximum—No Heatsink 53 49 45 41 38 36

Typical—No Heatsink 51 47 43 39 37 35

MOTOROLA M68020 USER’S MANUAL 10-5

MC68EC020 DC Electrical Characteristics
(VCC = 5.0 Vdc ± 5%; GND = 0 Vdc; Temperature within defined ranges)

Characteristics Symbol Min Max Unit

Input High Voltage VIH 2.0 VCC V

Input Low Voltage VIL GND
–0.5

0.8 V

Input Leakage Current
GND ≤ V in ≤ VCC

BERR, BR , CLK, IPL2–IPL0,
AVEC,DSACK1, DSACK0, CDIS,

HALT, RESET

Iin
–1.0
–20

1.0
20

µA

Hi-Z (Off-State) Leakage Current
@ 2.4 V/0.5 V

A23–A0, AS , DS, D31–D0, FC2–FC0,
R/ W, RMC, SIZ1–SIZ0

ITSI
–20 20

µA

Output High Voltage
IOH = 400 µA

A23–A0, AS , BG , D31–D0, DS, R/W ,
RMC, SIZ1–SIZ0, FC2–FC0

VOH
2.4 —

V

Output Low Voltage
IOL = 3.2 mA
IOL = 5.3 mA
IOL = 10.7 mA

A23–A0, FC2–FC0, SIZ1–SIZ0, BG , D31–D0
AS , DS, R /W, RMC,

HALT , RESET

VOL
—
—
—

0.5
0.5
0.5

V

Power Dissipation (TA = 0°C) f = 25 MHz
f = 16 MHz

PINT —
—

1.5
1.2

W

Capacitance (see Note)
Vin = 0 V, TA = 25˚C, f = 1 MHz

Cin — 20 pF

Load Capacitance CL — 130 pF

NOTE: Capacitance is periodically sampled rather than 100% tested.

10.3 AC ELECTRICAL CHARACTERISTICS

The AC specifications presented consist of output delays, input setup and hold times, and
signal skew times. All signals are specified relative to an appropriate edge of the clock and
possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure
10-1. To test the parameters guaranteed by Motorola, inputs must be driven to the voltage
levels specified in Figure 10-1. Outputs are specified with minimum and/or maximum
limits, as appropriate, and are measured as shown in Figure 10-1. Inputs are specified
with minimum setup and hold times, and are measured as shown. Finally, the
measurement for signal-to-signal specifications is also shown.

Note that the testing levels used to verify conformance to the AC specifications do not
affect the guaranteed DC operation of the device as specified in the DC electrical
specifications. The 20 MHz and 33.33 MHz specifications do not apply to the
MC68EC020.

10-6 M68020 USER’S MANUAL MOTOROLA

Figure 10-1. Drive Levels and Test Points for AC Specifications

MOTOROLA M68020 USER’S MANUAL 10-7

AC ELECTRICAL CHARACTERISTICS—CLOCK INPUT (see Figure 10-2)

16.67 MHz 20 MHz 25 MHz* 33.33 MHz

Num. Characteristic Min Max Min Max Min Max Min Max Unit

Frequency of Operation 8 16.67 12.5 20 12.5 25 12.5 33.33 MHz

1 Cycle Time 60 125 50 80 40 80 30 80 ns

2,3 Clock Pulse Width
(Measured from 1.5 V to 1.5 V)

24 95 20 54 19 61 14 66 ns

4,5 Clock Rise and Fall Times — 5 — 5 — 4 — 3 ns

*These specifications represent an improvement over previously published specifications for the 25-MHz MC68020 and
are valid only for products bearing date codes of 8827 and later.

Figure 10-2. Clock Input Timing Diagram

10-8 M68020 USER’S MANUAL MOTOROLA

AC ELECTRICAL CHARACTERISTICS—READ AND WRITE CYCLES
(VCC = 5.0 Vdc ± 5%; GND = 0 Vdc; Temperature within defined ranges; see Figures 10-3–10-5)

16.67 MHz 20 MHz 25 MHz** 33.33 MHz

Num. Characteristics Min Max Min Max Min Max Min Max Unit

6 Clock High to FC, Size, RMC, Address Valid 0 30 0 25 0 25 0 21 ns

*6A Clock High to ECS, OCS Asserted 0 20 0 15 0 12 0 10 ns

7 Clock High to Address, Data, FC, Size, RMC

High Impedance
0 60 0 50 0 40 0 30 ns

8 Clock High to Address, FC, Size,
RMC Invalid

0 — 0 — 0 — 0 — ns

9 Clock Low to AS, DS Asserted 3 30 3 25 3 18 3 15 ns

9A1 AS to DS Assertion Skew (Read) –15 15 –10 10 –10 10 –10 10 ns

9B11 AS Asserted to DS Asserted (Write) 37 — 32 — 27 — 22 — ns

*10 ECS Width Asserted 20 — 15 — 15 — 10 — ns

*10A OCS Width Asserted 20 — 15 — 15 — 10 — ns

*10B7 ECS, OCS Width Negated 15 — 10 — 5 — 5 — ns

11 Address, FC, Size, RMC Valid to AS

(and DS Asserted, Read)
15 — 10 — 6 — 5 — ns

12 Clock Low to AS, DS Negated 0 30 0 25 0 15 0 15 ns

*12A Clock Low to ECS, OCS Negated 0 30 0 25 0 15 0 15 ns

13 AS, DS Negated to Address, FC, Size,
RMC Invalid

15 — 10 — 10 — 5 — ns

14 AS (and DS Read) Width Asserted 100 — 85 — 70 — 50 — ns

14A DS Width Asserted (Write) 40 — 38 — 30 — 25 — ns

15 AS, DS Width Negated 40 — 38 — 30 — 23 — ns

15A8 DS Negated to AS Asserted 35 — 30 — 25 — 18 — ns

16 Clock High to AS, DS , R/W, DBEN

High Impedance
— 60 — 50 — 40 — 30 ns

17 AS, DS Negated to R/W Invalid 15 — 10 — 10 — 5 — ns

18 Clock High to R/W High 0 30 0 25 0 20 0 15 ns

20 Clock High to R/W Low 0 30 0 25 0 20 0 15 ns

21 R/W High to AS Asserted (Read) 15 — 10 — 5 — 5 — ns

22 R/W Low to DS Asserted (Write) 75 — 60 — 50 — 35 — ns

23 Clock High to Data-Out Valid — 30 — 25 — 25 — 18 ns

25 AS , DS Negated to Data-Out Invalid 15 — 10 — 5 — 5 — ns

*25A9 DS Negated to DBEN Negated (Write) 15 — 10 — 5 — 5 — ns

26 Data-Out Valid to DS Asserted (Write) 15 — 10 — 5 — 5 — ns

27 Data-In Valid to Clock Low (Setup) (Read) 5 — 5 — 5 — 5 — ns

27A Late BERR/HALT Asserted to Clock Low
(Setup)

20 — 15 — 10 — 5 — ns

28 AS, DS Negated to DSACK≈, BERR, HALT ,
AVEC Negated

0 80 0 65 0 50 0 40 ns

MOTOROLA M68020 USER’S MANUAL 10-9

AC ELECTRICAL CHARACTERISTICS—READ AND WRITE CYCLES
(Continued)

16.67 MHz 20 MHz 25 MHz** 33.33 MHz

Num. Characteristics Min Max Min Max Min Max Min Max Unit

29 AS, DS Negated to Data-In Invalid
(Data-In Hold Time)

0 — 0 — 0 — 0 — ns

29A AS, DS Negated to Data-In
(High Impedance)

— 60 — 50 — 40 — 30 ns

30 Clock Low to Data-In Invalid
(Data-In Hold Time)

15 — 15 — 10 — 10 — ns

312 DSACK≈ Asserted to Data-In Valid — 50 — 43 — 32 — 17 ns

31A3 DSACK≈ Asserted to DSACK≈ Valid
(DSACK≈ Asserted Skew)

— 15 — 10 — 10 — 10 ns

32 RESET Input Transition Time — 1.5 — 1.5 — 1.5 — 1.5 Clks

33 Clock Low to BG Asserted 0 30 0 25 0 20 0 20 ns

34 Clock Low to BG Negated 0 30 0 25 0 20 0 20 ns

35 BR Asserted to BG Asserted (RMC Not
Asserted)

1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clks

*37 BGACK Asserted to BG Negated 1.5 3.5 1.5 3.5 1.5 3.5 1.5 3.5 Clks

*37A6 BGACK Asserted to BR Negated 0 1.5 0 1.5 0 1.5 0 1.5 Clks

39 BG Width Negated 90 — 75 — 60 — 50 — ns

39A BG Width Asserted 90 — 75 — 60 — 50 — ns

*40 Clock High to DBEN Asserted (Read) 0 30 0 25 0 20 0 15 ns

*41 Clock Low to DBEN Negated (Read) 0 30 0 25 0 20 0 15 ns

*42 Clock Low to DBEN Asserted (Write) 0 30 0 25 0 20 0 15 ns

*43 Clock High to DBEN Negated (Write) 0 30 0 25 0 20 0 15 ns

*44 R/W Low to DBEN Asserted (Write) 15 — 10 — 10 — 5 — ns

*455 DBEN Width Asserted Read
Write

60
120

—
—

50
100

—
—

40
80

—
—

30
60

—
—

ns

46 R/W Width Valid (Write or Read) 150 — 125 — 100 — 75 — ns

47A Asynchronous Input Setup Time 5 — 5 — 5 — 5 — ns

47B Asynchronous Input Hold Time 15 — 15 — 10 — 10 — ns

484 DSACK≈ Asserted to BERR, HALT Asserted — 30 — 20 — 18 — 15 ns

53 Data-Out Hold from Clock High 0 — 0 — 0 — 0 — ns

55 R/W Valid to Data Bus Impedance Change 30 — 25 — 20 — 20 — ns

56 RESET Pulse Width (Reset Instruction) 512 — 512 — 512 — 512 — Clks

57 BERR Negated to HALT Negated (Rerun) 0 — 0 — 0 — 0 — ns

*5810 BGACK Negated to Bus Driven 1 — 1 — 1 — 1 — Clks

5910 BG Negated to Bus Driven 1 — 1 — 1 — 1 — Clks

*This specification does not apply to the MC68EC020.
**These specifications represent an improvement over previously published specifications for the 25-MHz MC68020

and are valid only for product bearing date codes of 8827 and later.

10-10 M68020 USER’S MANUAL MOTOROLA

AC ELECTRICAL CHARACTERISTICS—READ AND WRITE CYCLES
(Concluded)

NOTES:
1. This number can be reduced to 5 ns if strobes have equal loads.
2. If the asynchronous setup time (#47A) requirements are satisfied, the DSACK≈ low to data setup time (#31) and

DSACK≈ low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in clock low
setup time (#27) for the following clock cycle, and BERR must only satisfy the late BERR low to clock low setup
time (#27A) for the following clock cycle.

3. This parameter specifies the maximum allowable skew between DSACK0 to DSACK1 asserted or DSACK1 to
DSACK0 asserted; specification #47A must be met by DSACK0 or DSACK1.

4. This specification applies to the first (DSACK0 or DSACK1) DSACK≈ signal asserted. In the absence of
DSACK≈, BERR is an asynchronous input using the asynchronous input setup time (#47A).

5. DBEN may stay asserted on consecutive write cycles.
6. The minimum values must be met to guarantee proper operation. If this maximum value is exceeded, BG may

be reasserted.
7. This specification indicates the minimum high time for ECS and OCS in the event of an internal cache hit

followed immediately by a cache miss or operand cycle.
8. This specification guarantees operation with the MC68881/MC68882, which specifies a minimum time for DS

negated to AS asserted (specification #13A in MC68881UM/AD, MC68881/MC68882 Floating-Point
Coprocessor User's Manual). Without this specification, incorrect interpretation of specifications #9A and #15
would indicate that the MC68020/EC020 does not meet the MC68881/MC68882 requirements.

9. This specification allows a system designer to guarantee data hold times on the output side of data buffers that
have output enable signals generated with DBEN.

10. These specifications allow system designers to guarantee that an alternate bus master has stopped driving the
bus when the MC68020/EC020 regains control of the bus after an arbitration sequence.

11. This specification allows system designers to qualify the CS signal of an MC68881/MC68882 with AS (allowing
7 ns for a gate delay) and still meet the CS to DS setup time requirement (specification 8B of MC68881UM/AD,
MC68881/MC68882 Floating-Point Coprocessor User's Manual).

MOTOROLA M68020 USER’S MANUAL 10-11

Figure 10-3. Read Cycle Timing Diagram

10-12 M68020 USER’S MANUAL MOTOROLA

Figure 10-4. Write Cycle Timing Diagram

MOTOROLA M68020 USER’S MANUAL 10-13

Figure 10-5. Bus Arbitration Timing Diagram

MOTOROLA MC68838 USER’S MANUAL 13-1

SECTION 11
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68020 and
the MC68EC020. In addition, detailed information is provided to be used as a guide when
ordering.

11.1 STANDARD ORDERING INFORMATION

11.1.1 Standard MC68020 Ordering Information

Package Type Frequency (MHz) Temperature (°C) Order Number

Ceramic Pin Grid Array
RC Suffix 16.67

20.0
25.0

33.33

0 to 70
0 to 70
0 to 70
0 to 70

MC68020RC16
MC68020RC20
MC68020RC25
MC68020RC33

Plastic Quad Flat Pack
FC Suffix 16.67

20.0
25.0

0 to 70
0 to 70
0 to 70

MC68020FC16
MC68020FC20
MC68020FC25

Plastic Pin Grid Array
RP Suffix 16.67

20.0
25.0

0 to 70
0 to 70
0 to 70

MC68020RP16
MC68020RP20
MC68020RP25

Ceramic Quad Flat Pack
FE Suffix 16.67

20.0
25.0

33.33

0 to 70
0 to 70
0 to 70
0 to 70

MC68020FE16
MC68020FE20
MC68020FE25
MC68020FE33

11.1.2 Standard MC68EC020 Ordering Information

Package Type Frequency (MHz) Temperature (°C) Order Number

Plastic Pin Grid Array
RP Suffix 16.67

25.0
0 to 70
0 to 70

MC68EC020RP16
MC68EC020RP25

Plastic Quad Flat Pack
FG Suffix 16.67

25.0
0 to 70
0 to 70

MC68EC020FG16
MC68EC020FG25

13-2 MC68838 USER’S MANUAL MOTOROLA

11.2 PIN ASSIGNMENTS AND PACKAGE DIMENSIONS

11.2.1 MC68020 RC and RP Suffix—Pin Assignment

GND

ECS

SIZ0

FC0

RESET

GND

BGACK

HALT

FC2

RMC

A1

GND

GND

BR

A31

A30

A28

A27

A26

A24

A23

A20

A22

A18

A19

A17 A16

GND

A12

A15

GND

DSACK1 BERR

AVEC DSACK0

SIZ1

1 2 3 4 5 6 7 8 9 10

A

B

C

D

E

F

G

H

J

K

BG

L

M

N

11 12 13

D1 D0

AS R/W D30 D27 D23 D19 GND D15 D11 D7 GND D3 D2

DS D29 D26 D24 D21 D18 D16 D13 D10 D6 D5 D4

D31 D28 D25 D22 D20 D17 GND D14 D12 D9 D8

IPL0 IPL1

IPL2 GND

GND

GND IPEND

A2 OCS

A4 A3

A9 A7 A5

A13 A10 A6

A14 A11 A8

A21A25A29A0

CDIS

DBEN

FC1

V V

V

V V

V

V V

V

CLK GND

V

CC CC

CC

CC

CC

CC CC

CC

CC

CC

MC68020

The VCC and GND pins are separated into four groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic. It is recommended that all pins be connected to power and ground as
indicated.

Group VCC GND

Address Bus A9, D3 A10, B9, C3, F12

Data Bus M8, N8, N13 L7, L11, N7, K3

Logic D1, D2, E3, G11, G13 G12, H13, J3, K1

Clock — B1

MOTOROLA MC68838 USER’S MANUAL 13-3

11.2.2 MC68020 RC Suffix—Package Dimensions

C

K

1 2 3 4 5 6 7 8 9 10 11 12 13

A
B
C
D
E
F
G
H

K
L
M
N

J

G

G

RC SUFFIX
CASE 791-01
MC68020 T

NOTES:
 1. A AND B ARE DATUMS AND T IS A DATUM SURFACE.
 2. POSITIONAL TOLERANCE FOR LEADS (114 PLACES).

 3. DIMENSIONING AND TOLERANCING PER Y14.5M,1982.
 4. CONTROLLING DIMENSION: INCH.

D

0.13 (0.005) M T A S B S

DIM

MILLIMETERS INCHES

MIN MAX MIN MAX

A

B

C

D

G

1.340 1.380

1.340 1.380

0.100 0.150

34.04 35.05

34.04 35.05

2.54 3.81

0.43 0.55 0.017 0.022

0.100 BSC2.54 BSC

K 4.32 4.95 0.170 0.195

φB

A

13-4 MC68838 USER’S MANUAL MOTOROLA

11.2.3 MC68020 RP Suffix—Package Dimensions

C

K

1 2 3 4 5 6 7 8 9 10 11 12 13

A
B
C
D
E
F
G
H

K
L
M
N

J

G

G

RP SUFFIX
CASE 789E-02
MC68020

A

B

T

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION D INCLUDES LEAD FINISH.
 4. 789E-01 OBSOLETE. NEW STANDARD 789E-02.

D 114 PL

DIM

MILLIMETERS INCHES

MIN MAX MIN MAX

A

B

C

D

G

1.340 1.380

1.340 1.380

0.115 0.135

34.04 35.05

34.04 35.05

2.92 3.18

0.44 0.55 0.017 0.022

0.100 BSC2.54 BSC

K 2.79 3.81 0.110 0.150

V

V

0.76 (0.030) M T A S B Sφ

T

0.25 (0.010)φ X

0.17 (0.007)

M

M

X

L

L

V

1.02 1.52 0.040 0.060

30.48 BSC 1.200 BSC

PIN
A-1

MOTOROLA MC68838 USER’S MANUAL 13-5

11.2.4 MC68020 FC and FE Suffix—Pin Assignment

18

50

17 1

34

VC
C

67

132

N
C

*

N
C

*

N
C

*
A9 A8 A7 A6 A5 A4 A3 A2

G
ND

G
ND

G
ND D0 D1 D2 D3 D4

G
ND G
ND D5 N
C

*

N
C

*

V
CC

V
CC V C

C

VC
C

N
C

*

N
C

*

G
ND BG G
ND

G
ND CL

K
RE

SE
T

V C
C

V C
C

RM
C

FC
0

FC
1

FC
2

SI
Z0

SI
Z1

D
BE

N

EC
S

CD
IS

AV
EC

D
SA

C
K0

D
SA

C
K1

BE
R

R

G
ND

G
ND HA

LT

AS R/
W

N
C

*

D
S

G
ND G
ND

IP
EN

D
O

C
S

IP
L2

IP
L1

IP
L0

NC*

BGACK

BR

A0

A1

A31

A30

A29

A28

A27

A26

A25

A24
A23

A22

A21

A20

A19

A18

A17

V

V

GND

GND

A16

A15

A14

A13

A12

A11

A10

NC*

NC*

CC

CC

TOP VIEW

The VCC and GND pins are separated into four groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic. It is recommended that all pins be connected to power and ground as
indicated. NC pins are reserved by Motorola for future use and should have no external
connection.

Group VCC GND

Address Bus 13, 38, 39 15, 40, 41, 62

Data Bus 79, 80, 96, 97 77, 78, 98, 99, 119, 120

Logic 7, 8, 65, 66 67, 68, 124, 125

Clock — 11, 12

13-6 MC68838 USER’S MANUAL MOTOROLA

11.2.5 MC68020 FC Suffix—Package Dimensions

Z PIN 1 INDE

X

0.25 (0.010) T X Y ZS

D 132 PL

DIM
A

MILLIMETERS INCHES
MIN MAX MIN MAX

24.06 24.20 0.947 0.953
24.06 24.20 0.947 0.953
4.07 4.57 0.160 0.180
0.21 0.30 0.008 0.012

0.64 BSC 0.025 BSC
0.51 1.01 0.020 0.040
0.16 0.20 0.006 0.008

0.030

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
 3. DIMENSIONS A, B, N, AND R DO NOT INCLUDE MOLD PROTRUSION
 ALLOWABLE MOLD PROTRUSION FOR DIMENSIONS A AND B IS
 0.25 (0.010), FOR DIMENSIONS N AND R IS 0.18 (0.007).
 4. DATUM PLANE -W- IS LOCATED AT THE UNDERSIDE OF LEADS
 WHERE LEADS EXIT PACKAGE BODY.
 5. DATUMS -X-, -Y-, AND -Z- TO BE DETERMINED WHERE CENTER LEA
								PACKAGE BODY AT DATUM -W-.

Y

G

P P

S S S

0.05. (0.002)

0.20 (0.008) T X Y ZS S S S

0.20 (0.008) T X Y ZS S S S

0.25 (0.010) T X Y ZS S S S

0.05 (0.002)

N

S

A

H

C

0.20 (0.008) T X Y ZS S S S K

J
SEATING PLANE

.10 (0.004)

T

SECTION P-P

B
C
D
G
H
J
K

FC SUFFIX
CASE 831A-01
MC68020

VLBR

MOTOROLA MC68838 USER’S MANUAL 13-7

11.2.6 MC68020 FE Suffix—Package Dimensions

FE SUFFIX
CASE 831-01
MC68020

DIM
A
B
C
D
G
H
J
K
L
M
R

MILLIMETERS INCHES
MIN MAX MIN MAX

21.85 22.86 0.860 0.900
21.85 22.86 0.860 0.900
3.94 4.31 0.155 0.170

0.204 0.292 0.0080 0.0115
0.64 BSC 0.025 BSC

0.64 0.88 0.025 0.035
0.13 0.20 0.005 0.008
0.51 0.76 0.020 0.030

0° 8 0 8
20.32 REF 0.800 REF

° ° °
0.64 0.025

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
 3. DIMENSIONS A AND B DEFINE MAXIMUM CERAMIC BODY DIMENSIONS
 INCLUDING GLASS PROTRUSION AND MISMATCH OF CERAMIC BODY
								TOP AND BOTTOM.
 4. DATUM PLANE -W- IS LOCATED AT THE UNDERSIDE OF LEADS
 WHERE LEADS EXIT PACKAGE BODY.
 5. DATUMS -X-, -Y-, AND -Z- TO BE DETERMINED WHERE CENTER LEADS
 EXIT PACKAGE BODY AT DATUM -W-.
 6. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM -T-.
 7. DIMENSIONS A AND B TO BE DETERMINED AT DATUM PLANE -W-.

W

0.10∩
SEATING PLANE

D 132 PL

J

K

H

C

PIN 1 INDENT

X

0.51 (0.020) T X — Y

0.20 (0.008) T X — Y ZM S S S

S S Z SM

0.51 (0.020) T X — YS S Z SM

0.20 (0.008) T X — Y ZM S S S

R

0.20 (0.008) T X — Y ZM S S S

(0.004)
T M

V B L

S

A

— —

13-8 MC68838 USER’S MANUAL MOTOROLA

11.2.7 MC68EC020 RP Suffix—Pin Assignment

FC0RMC

SIZ0

AVEC

RESETCLK GND

A16

A15

A18

A17A20A22

A21A23A0BG

BR A1

1 2 3 4 5 6 7 8

(BOTTOM VIEW)

N

M

L

K

J

H

G

F

E

D

C

B

A

D31 D29 D28 D26 D24 D22 D19

D30 D27 D23 D21 D18

DS R/W D17

AS

DSACK1 BERR D2 D3

IPL0 D0

GND

IPL2

A3

A5

A6

A7

A8A9

A10A12

A11

11 12 13

D16 D15 D13 D11

GND D14 D12 D9 D8

D6 D7

9 10

A14

A4

SIZ1

GND

D5

D4

A2

MC68EC020

VCC

VCCD25

D20

HALT

DSACK0

FC2

A19

D10

GND

CDIS

FC1

GND

GND

IPL1

D1

VCC

GND GND

GND GND

VCC VCC

GND

GND

VCC

VCC VCC

VCC

A13

The VCC and GND pins are separated into four groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic. It is recommended that all pins be connected to power and ground as
indicated.

Group VCC GND

Address Bus B7, C7 A1, A7, C8, D13

Data Bus K12, M9, N9 J13, L8, M1, M8

Logic D1, D2, E12, E13 F11, F12, J1, J2

Clock — B1

MOTOROLA MC68838 USER’S MANUAL 13-9

11.2.8 MC68EC020 RP Suffix—Package Dimensions

C

S

1 2 3 4 5 6 7 8 9 10 11 12 13

A
B
C
D
E
F
G
H

K
L
M
N

J

G

G

RP SUFFIX
CASE 789H-01
MC68EC020

A

B

T

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
 3. DIMENSION D INCLUDES LEAD FINISH.

D 100 PL

DIM

MILLIMETERS INCHES

MIN MAX MIN MAX

A

B

C

D

G

1.340 1.380

1.340 1.380

0.115 0.135

34.04 35.05

34.04 35.05

2.92 3.18

0.44 0.55 0.017 0.022

0.100 BSC2.54 BSC

K 3.05 3.55 0.120 0.140

V

V

0.76 (0.030) M T A S B Sφ

T

0.25 (0.010)φ X

0.17 (0.007)

M

M

X

L

L 1.02 1.52 0.040 0.060

S
V

4.32 4.83 0.170 0.190
30.48 BSC 1.200 BSC

KPIN
A-1

13-10 MC68838 USER’S MANUAL MOTOROLA

11.2.9 MC68EC020 FG Suffix—Pin Assignment

A9

1 30
31

50
5180

81

100

A10

A11

A12

A13

A14

A15

A16

GND

A17

A18

A19

A20

A21

A22

A23

A1

A0

BR

VCC

BG
A8

*

CL
K

RE
SE

T

G
ND

G
ND

RM
C

FC
0

FC
1

FC
2

SI
Z0

SI
Z1

CD
IS

AV
EC

D
SA

C
K0

D
SA

C
K1

BE
RR

D7 D8

HA
LT AS DS

R/
W D3
1

D3
0

D2
9

D2
8

D9

V C
C

D27

D26

D25

D24

D23

D22

D21

D20

D19

D18

D17

D16

GND

D14

D13

D12

D11

D10

VCC

D15

G
ND V C
C

D6D5G
ND

D4D3D2D1D0IP
L0

IP
L1

IP
L2

G
ND

G
ND

G
NDA2A3A4A5A6A7 V C
C

V C
C

MC68EC020
(TOP VIEW)

NC
*

NC

V C
C

G
ND

G
ND

G
ND

GND

*NC—Do not connect to this pin.

The VCC and GND pins are separated into four groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic. It is recommended that all pins be connected to power and ground as
indicated. NC pins are reserved by Motorola for future use and should have no external
connection.

Group VCC GND

Address Bus 90 72, 89, 100

Data Bus 44, 57 26, 43, 58, 59

Logic 7, 8, 70, 71 3, 20, 21, 68, 69

Clock — 4

MOTOROLA MC68838 USER’S MANUAL 13-11

11.2.10 MC68EC020 FG Suffix—Package Dimensions

0.25

A B

AA

0.20 (0.008) C A – B DM S S

0.50 (0.002)

D
1 30

A

Z

50

31

51

B

80

Y

0.
20

 (0
.0

08
)

H
A

–
B

D
M

S
S

0.
20

 (0
.0

08
)

C
A

–
B

D
M

S
S

0.
05

 (0
.0

02
)

D

A – B

0.20 (0.008) H A – B DM S S

S

DETAIL "C"

UR

T

Q

K
X

DIM
A

MILLIMETERS INCHES
MIN MAX MIN MAX

19.90 20.10 0.783 0.791

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
			3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS
								COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE
								PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 4. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT DATUM PLANE -H-.
			5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-.
			6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWA
								PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUD
								MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
			7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABL
								DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D
								DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE
								LOCATED ON THE LOWER RADIUS OR THE FOOT.

FG SUFFIX
CASE 842D-01
MC68EC020

C M

MH G

E

C
SEATING
PLANE

H
∩ 0.10 (0

DATUM
PLANE

DETAIL "C

DETAIL "B"

F

N

BASE METAL
D

J

0.20 (0.008) C A – BM

DETAIL "A"

LV

DETAIL "A"

P

A, B, D

HDATUM
PLANE

B 13.90 14.10 0.547 0.555
C 3.30 0.130
D 0.22 0.38 0.009 0.015
E 2.55 3.05 0.100 0.120
F 0.22 0.33 0.009 0.013
G 0.65 BSC 0.026 BSC
H 0.10 0.36 0.004 0.014
J 0.13 0.23 0.005 0.009
K 0.65 0.95 0.026 0.037
L 12.35 REF 0.486 REF
M 5 16 5 16
N 0.13 0.17 0.005 0.007
P 0.325 BSC 0.013 BSC
Q 0 7 0 7
R 0.35 0.010 0.014
S 23.65 24.15 0.931 0.951
T 0.13 0.005
U 0 0
V 17.65 18.15 0.695 0.715

° °

° ° ° °

° °

° °

81

100

— —

— —
— —

MOTOROLA M68020 USER’S MANUAL A-1

APPENDIX A
INTERFACING AN MC68EC020 TO A DMA DEVICE
THAT SUPPORTS A THREE-WIRE BUS ARBITRATION
PROTOCOL

The MC68EC020 supports a two-wire bus arbitration protocol; however, it may become
necessary to interface the MC68EC020 to a device that supports a three-wire arbitration
protocol. Figure A-1 shows a method by which this can be achieved.

BG
PR

Q

Q

CLR

CLK

D

+5 V

74F74

4

74LS08

BR
BGACK

BR

74LS04

74LS04

BG
(MC68EC020)

(DMA)

(DMA)

(DMA)

(MC68EC020)

MC68EC020

BG

BR

BGACK

BR

BG DMA

Figure A-1. Bus Arbitration Circuit—
MC68EC020 (Two-Wire) to DMA (Three-Wire)

MOTOROLA M68020 USER’S MANUAL INDEX-1

INDEX

— A —
A1, A0 Signals, 5-2, 5-7, 5-9, 5-21, 9-5
A15–A13 Signals, 7-6
A19–A16 Signals, 7-6
A31–A24 Signals, 4-1, 5-3
AC Specifications, 10-5
Access Level, 9-17
Access Time Calculations, 9-12
Address Bus, 3-2, 5-3, 5-25
Address Error Exception, 5-14, 6-6
Address Registers, 1-4
Address Space, 2-4, 5-3
Addressing Modes, 1-8
Arithmetic/Logical Instruction, 8-30, 8-31
AS Signal, 3-4, 5-2, 5-3
Autovector, 5-48
Autovector Interrupt Acknowledge Cycle, 5-48
AVEC Signal, 3-5, 5-4, 5-48, 5-53

— B —
BERR Signal, 3-7, 5-4, 5-25, 5-53, 5-55, 6-4
BG Signal, 3-6, 5-63, 5-66, 5-70
BGACK Signal, 3-6, 5-62, 5-63, 5-66
Binary-Coded Decimal, 8-32
Bit Field Manipulation Instructions, 8-36
Bit Manipulation Instructions, 8-35
BKPT Instruction, 5-50

Flowchart, 6-17
Block Diagram, 1-2
BR Signal, 3-6, 5-63, 5-66, 5-70, 5-71
Breakpoint Acknowledge Cycle, 5-50, 6-17

Flowchart, 5-50
Timing, 5-50

Breakpoint Instruction Exception, 6-17
Bus, 5-24

Arbitration, 5-62
Cycles, 5-1
Master, 5-1
Operation, 5-1, 5-24

Bus Arbitration (MC68020), 5-63

Control Unit, 5-67
Flowchart, 5-63
Read-Modify-Write, 5-68
Timing, 5-63

Bus Arbitration (MC68EC020), 5-70
Control Unit, 5-73
Flowchart, 5-70
Timing, 5-70
Two-Wire, 5-75, A-1

Bus Controller, 5-22, 8-2, 8-5
Bus Cycles, 5-1, 5-25
Bus Error Exception, 6-4, 6-21
Bus Fault, 6-21
Bus Master, 5-1, 5-25, 5-62
Bus Operation, 5-24
Byte Enable Signals, 5-21
Byte Select Control Signals, 9-5

— C —
Cache, 1-13, 4-1, 5-2, 5-22, 5-62, 8-1, 8-7, 9-11

Control, 4-3
Internal Cache Holding Register, 5-21
Reset, 4-3

Cache Address Register (CAAR), 1-7, 4-3, 4-4
Cache Control Register (CACR), 1-7, 4-2, 4-3
CALLM Instruction, 9-14, 9-16, 9-18
CAS Instruction, 5-39
CAS2 Instruction, 5-39
CDIS Signal, 3-7, 4-3
CLK Signal, 3-7
Clock Drivers, 9-10
Condition Codes, 1-7
Conditional Branch Instructions, 8-37
Control Instructions, 8-38
Coprocessor, 6-25, 7-1

Classification, 7-4
Communication Protocol, 7-4
Conditional Instruction Category, 7-10
Coprocessor Context Restore Instruction

Category, 7-22

INDEX-2 M68020 USER’S MANUAL MOTOROLA

Coprocessor Context Save and Context
Restore Instruction Categories, 7-16

Coprocessor Context Save Instruction
Category, 7-20

Coprocessor General Instruction Category,
7-8

Coprocessor Instructions, 7-1, 7-7
Format Words, 7-18
Instruction, 6-25, 7-3
Instruction Execution, 7-6

Coprocessor Detected
Data-Processing-Related Exceptions, 7-51
Exception, 7-49
Format Errors, 7-52
Illegal Coprocessor Command or Condition

Words, 7-51
Protocol Violation Exceptions, 7-50
System-Related Exceptions, 7-51

Coprocessor Instruction, 6-25, 7-3
Coprocessor Interface, 5-53, 7-1, 7-2
Coprocessor Interface Register (CIR), 7-4, 7-5,

7-6, 7-24
Command CIR, 7-25
Condition CIR, 7-26
Control CIR, 7-24
Instruction Address CIR, 7-27
Memory Map, 7-24
Operand Address CIR, 7-27
Operand CIR, 7-26
Operation Word CIR, 7-25
Register Select CIR, 7-27
Response CIR, 7-24
Restore CIR, 7-25
Save CIR, 7-25
Selection, 7-6

CPU Address Space, 2-4, 5-44, 7-6
CPU Space Type, 5-44, 5-53
Cycle

Asynchronous Cycles, 5-1, 5-5
Autovector Interrupt Acknowledge Cycle,

5-45, 5-48
Breakpoint Acknowledge Cycle, 5-50
Coprocessor Interface Bus Cycles, 7-4
Interrupt Acknowledge Cycle, 5-4, 5-45
Operand Transfer Cycle, 5-5
Synchronous Cycle, 5-24

— D —
Data Accesses, 4-2
Data Bus (D31–D0), 3-2, 5-3, 5-5, 5-21, 5-25
Data Registers, 1-4
Data Types, 1-8
DBEN Signal, 3-5, 5-4
DC Electrical Characteristics

MC68020, 10-4
MC68EC020, 10-5

Destination Function Code Register (DFC), 1-7
Differences between MC68020 and MC68EC020,

1-1, 5-62
Double Bus Fault, 5-60
DS Signal, 3-4, 5-4, 5-21
DSACK1, DSACK0 Signals, 3-5, 5-4, 5-5, 5-24,

5-46, 5-53, 9-5
Dynamic Bus Sizing, 5-5

— E —
ECS Signal, 3-4, 5-3
Effective Address, 8-13, 8-14, 8-16, 8-17, 8-19
Electrical Specifications, 10-1
Exception, 2-5, 7-57

Address Error Exception, 5-14, 6-6, 7-57
Breakpoint Instruction, 6-17
Bus Error Exception, 6-4, 6-21
Coprocessor-Detected Exception, 7-49
cpTRAPcc Instruction Traps, 7-55
Data-Processing-Related Exception, 7-51
F-Line Emulator Exception, 7-54
Format Error Exception, 6-10, 7-57
Illegal Instruction, 6-7
Interrupt Exception, 5-45, 6-11, 7-56
Multiple, 6-17
Privilege Violation Exception, 6-7, 6-8, 7-55
Protocol Violation, 7-50
Reset Exception, 6-4
Stack Frames, 6-25
System-Related Exception, 7-51
Trace Exception, 6-9, 7-55
Trap Exception, 6-6
Unimplemented Instruction, 6-7

Exception Handler, 6-2
Exception Processing, 2-1, 2-5, 6-1
Exception-Related Instructions, 8-39
Exception Stack Frame, 2-6, 6-25
Exception Vector Table, 2-5, 6-2

MOTOROLA M68020 USER’S MANUAL INDEX-3

— F —
FC2–FC0 Signals, 2-2, 2-4, 3-2, 5-2, 5-3,

5-44, 7-6
Features, 1-2
F-Line Operation Words, 7-3
Floating-Point Coprocessor, 7-1, 9-1
Flowchart

Breakpoint Acknowledge Cycle, 5-50
Byte Read Cycle, 5-26
Interrupt Acknowledge Cycle, 5-46
Long-Word Read Cycle, 5-26
MC68EC020 Bus Arbitration, 5-70
MC68020 Bus Arbitration, 5-63
Read-Modify-Write Cycle, 5-39
Reset Exception, 6-4
Write Cycle, 5-33

Format Error Exception, 6-10

— G —
Ground Connections, 3-7, 9-9

— H —
HALT Signal, 3-7, 5-4, 5-25, 5-53, 5-60

— I —
Idle Clock Cycles, 8-7
Illegal Instruction Exception, 6-7
Instruction

Arithmetic/Logical, 8-30, 8-31
Bcc, 8-37
Bit Field Manipulation, 8-36
Bit Manipulation, 8-35
BKPT, 5-50
CALLM, 9-14, 9-16, 9-18
CAS, 5-39
CAS2, 5-39
Control, 8-38
Coprocessor Conditional Instructions, 7-10
Coprocessor Context Restore Instruction

Category, 7-22
Coprocessor Context Save Instruction

Category, 7-20
Coprocessor Instruction, 6-25, 7-1, 7-3, 7-7
Coprocessor Instruction Execution, 7-6

Coprocessor Context Save and Context
Restore Instruction Categories, 7-16

Coprocessor General Instruction Category,
7-8

cpBcc, 7-12
cpDBcc, 7-14
cpRESTORE, 7-17, 7-22
cpSAVE, 7-17, 7-20
cpScc, 7-13
cpTRAPcc, 7-15, 7-55
Exception-Related, 8-39
Illegal Instruction, 6-7
MOVE, 8-20
MOVE SR, 8-3
MOVEA, 8-20
MOVEC, 4-3
NOP, 5-62, 8-3
Prefetches, 4-1
Primitive Instructions, 7-27
RESET, 5-76, 7-58
RTE, 6-19, 6-24
RTM, 9-14, 9-16, 9-19
Shift/Rotate, 8-34
Single-Operand Instructions, 8-33
Special-Purpose MOVE, 8-29
STOP, 6-10
TAS, 5-39
Unimplemented Instruction, 6-7

Instruction Execution, 5-62, 8-1
Instruction Execution Overlap, 8-4
Instruction Pipe, 1-12, 4-1, 6-21
Instruction Prefetches, 8-1
Instruction Set, 1-10
Instruction Timing, 8-8, 8-9
Internal Cache Holding Register, 5-21
Interrupt, 6-1

Flowchart, 6-14
Interrupt Exception, 6-11
Nonmaskable, 6-12

Interrupt Acknowledge Cycle, 5-4, 5-45, 6-16
Timing, 5-46

Interrupt Exception, 5-45, 6-11
Interrupt Priority Mask, 5-45, 6-11
Interrupt Stack Pointer (ISP), 1-4, 2-2
IPEND Signal, 3-5, 6-14
IPL2–IPL0 Signals 3-5, 5-45, 6-11

INDEX-4 M68020 USER’S MANUAL MOTOROLA

— L —
Long-Word Operand, 5-10, 5-14
Long-Word Read Cycle, 5-26
Long-Word Write Cycle, 5-33

— M —
M-Bit (SR), 1-7, 2-2
Main Processor Detected

Address Error, 7-57
Bus Faults, 7-57
cpTRAPcc Instruction Traps, 7-55
Exceptions, 7-52
F-Line Emulator Exception, 7-54
Format Error, 7-57
Interrupts, 7-56
Privilege Violations, 7-55
Protocol Violation, 7-52
Trace Exception, 7-55

Master Stack Pointer (MSP), 1-4, 2-2
Maximum Ratings, 10-1
MC68881/MC68882 Floating-Point Coprocessors,

9-1
Memory Interface, 9-11
Misaligned

Operand, 5-6, 5-14, 8-2
Transfer, 5-1, 5-5

Module, 9-14
Module Call, 9-18
Module Return, 9-19
Module Stack Frame, 9-16
MOVE Instruction, 8-20
MOVE SR Instruction, 8-3
MOVEA Instruction, 8-20
MOVEC Instruction, 4-3

— N —
Nonmaskable Interrupt, 6-12
NOP Instruction, 5-62, 8-3
Normal Processing State, 2-1

— O —
OCS Signal, 3-4, 5-3
Ordering Information

MC68020, 11-1
MC68EC020, 11-1

Overlap, 8-3

— P —
Package Dimensions

MC68020 FC Suffix, 11-6
MC68020 FE Suffix, 11-7
MC68020 RC Suffix, 11-3
MC68020 RP Suffix, 11-4
MC68EC020 FG Suffix, 11-11
MC68EC020 RP Suffix, 11-9

Pin Assignment
MC68020 FC Suffix, 11-5
MC68020 FE Suffix, 11-5
MC68020 RC Suffix, 11-2
MC68020 RP Suffix, 11-2
MC68EC020 FG Suffix, 11-10
MC68EC020 RP Suffix, 11-8

Port Size, 5-1, 5-5, 5-21, 9-5
Power Supply, 3-7, 9-9
Primitive, 7-4, 7-27

Busy Response Primitive, 7-30
CA Bit, 7-29
DR Bit, 7-29
Evaluate and Transfer Effective Address

Primitive, 7-35
Evaluate Effective Address and Transfer Data

Primitive, 7-35
Format, 7-28
Null Coprocessor Response Primitive, 7-31
PC Bit, 7-29
Supervisor Check Primitive, 7-33
Take Address and Transfer Data Primitive,

7-39
Take Midinstruction Exception Primitive, 7-47
Take Postinstruction Exception Primitive,

7-48
Take Preinstruction Exception Primitive, 7-45
Transfer from Instruction Stream Primitive,

7-34
Transfer Main Processor Control Register

Primitive, 7-41
Transfer Multiple Coprocessor Registers

Primitive, 7-42
Transfer Multiple Main Processor Registers

Primitive, 7-42
Transfer Operation Word Primitive, 7-33
Transfer Single Main Processor Register

Primitive, 7-40

MOTOROLA M68020 USER’S MANUAL INDEX-5

Transfer Status Register and the scanPC
Primitive, 7-44

Transfer to/from Top of Stack Primitive, 7-40
Write to Previously Evaluated Effective

Address Primitive, 7-37
Privilege Level, 2-2

Changing, 2-3
Supervisor Level, 1-4, 2-2
User Level, 1-4, 2-2

Privilege Violation Exception, 6-7, 6-8
Processing States, 2-1
Program Counter (PC), 1-4
Programming Model, 1-4, 7-1, 7-2

— R —
Read Cycle, 5-3, 5-4, 5-8, 5-14, 5-16, 5-18, 5-22,

5-26
Byte Read Cycle, 5-26
Long-Word Read Cycle, 5-26, 8-2
Timing, 5-26

Read-Modify-Write Cycle, 5-3, 5-39, 5-42
Timing, 5-39

Registers
Address Registers, 1-4
CAAR, 1-7, 4-3, 4-4
CACR, 1-7, 4-2, 4-3
Data Registers, 1-4
DFC, 1-7
Internal Cache Holding Register, 5-21
Program Counter (PC), 1-4
SFC, 1-7
SR, 1-7, 4-1
VBR, 1-7

Reset, 4-3
Flowchart, 6-4
Reset Exception, 6-4
RESET Instruction, 7-58
RESET Signal, 3-6, 5-76, 6-4

Reset Exception, 6-4
RESET Instruction, 5-76
RESET Signal, 3-6, 5-76, 6-4
Retry, 5-56
RMC Signal, 3-4, 5-3, 5-39
RTE Instruction, 6-19, 6-24
RTM Instruction, 9-14, 9-16, 9-19
R/W Signal, 3-4, 5-2, 5-3, 9-5

— S —
S-bit (SR), 1-7, 2-2, 2-3
Save and Restore Operations, 8-40
scanPC, 7-28
Sequencer, 8-2, 8-5
Shift/Rotate Instructions, 8-34
Signal(s), 3-8

A1,A0, 5-2, 5-7, 5-9, 5-21, 9-5
A15–A13, 7-6
A19–A16, 7-6
A31–A24, 4-1, 5-3
Address Bus, 3-2, 5-3
AS, 3-4, 5-2, 5-3
AVEC, 3-5, 5-4, 5-48, 5-53
BERR, 3-7, 5-4, 5-25, 5-53, 5-55, 6-4
BG, 3-6, 5-63, 5-66, 5-70, 5-71
BGACK, 3-6, 5-62, 5-63, 5-66
BR, 3-6, 5-63, 5-66, 5-70
Byte Select Control Signals, 9-5
CDIS, 3-7, 4-3
CLK, 3-7
D31–D0, 3-2, 5-3
DBEN, 3-5, 5-4
DS, 3-4, 5-4, 5-21
DSACK1, DSACK0, 3-5, 5-4, 5-5, 5-24, 5-46,

5-53, 9-5
ECS, 3-4, 5-3
FC2–FC0, 2-4, 3-2, 5-2, 5-3, 5-44, 7-6
Functional Groups, 3-1
HALT, 3-7, 5-4, 5-25, 5-53, 5-60
Input Signal, 5-2
Internal Signal, 5-2
IPEND, 3-5, 6-14
IPL2–IPL0, 3-5, 6-11
OCS, 3-4, 5-3
RESET, 3-6, 5-76, 6-4
RMC, 3-4, 5-3, 5-39
R/W, 3-4, 5-2, 5-3, 9-5
SIZ1, SIZ0, 3-2, 5-2, 5-3, 5-7, 5-9, 5-21, 9-5

Single-Operand Instruction, 8-33
SIZ1, SIZ0 Signals, 3-2, 5-2, 5-3, 5-7, 5-9,

5-21, 9-5
Source Function Code Register (SFC), 1-7
Special-Purpose MOVE Instruction, 8-29
Special Status Word (SSW), 6-21
Spurious Interrupt, 5-48

INDEX-6 M68020 USER’S MANUAL MOTOROLA

Stack Frame
Midinstruction, 7-47
Postinstruction, 7-48
Preinstruction, 7-46

Status Register (SR), 1-7, 4-1, 5-45, 6-1
STOP Instruction, 6-10
Supervisor Privilege Level, 1-4, 2-2
Supervisor Stack Pointer (SSP), 1-4, 2-2
Synchronous Cycles, 5-24

— T —
T1, T0 Bits (SR), 1-7, 6-9
TAS Instruction, 5-39
Thermal Characteristics, 10-1

MC68020, 10-2
MC68020 CQFP Package, 10-2
MC68EC020, 10-4
MC68EC020 PQFP Package, 10-4

Thermal Resistance, 10-2, 10-4
Timing, 5-26, 5-33
Trace Exception, 6-9
Trace Modes, 1-7
Tracing, 6-9

Transfer, 5-10, 5-14, 5-25
Bus Transfer, 5-1
Direction, 5-3
Misaligned, 5-1, 5-5
Operand Transfer, 5-1, 5-5

Trap Exception, 6-6
— U —

Unimplemented Instruction (F-Line Opcode)
Exception, 6-7

User Privilege Level, 1-4, 2-2
User Stack Pointer (USP), 1-4, 2-2

— V —
VCC Connections, 3-7, 9-9
Vector Base Register (VBR), 1-7, 2-5, 6-2
Virtual Machine, 1-12
Virtual Memory, 1-10

— W —
Write Cycle, 5-3, 5-9, 5-10, 5-12, 5-14, 5-16,

5-18, 5-22, 5-33, 5-38
Long-Word Write Cycle, 5-33
Timing, 5-33

MOTOROLA INC., 1992

MOTOROLA
MC68030

ENHANCED 32-BIT
MICROPROCESSOR

USER’S MANUAL

Third Edition

MOTOROLA

MC68030 USER’S MANUAL

xxiii

PREFACE

The

MC68030 User's Manual

 describes the capabilities, operation, and programming of the
MC68030 32-bit second-generation enhanced microprocessor. The manual consists of the
following sections and appendix. For detailed information on the MC68030 instruction set
refer to M68000PM/AD,

M68000 Family Programmer's Reference Manual.

Section 1. Introduction

Section 2. Data Organization and Addressing Capabilities

Section 3. Instruction Set Summary

Section 4. Processing States

Section 5. Signal Description

Section 6. On-Chip Cache Memories

Section 7. Bus Operation

Section 8. Exception Processing

Section 9. Memory Management Unit

Section 10. Coprocessor Interface Description

Section 11. Instruction Execution Timing

Section 12. Applications Information

Section 13. Electrical Characteristics

Section 14. Ordering Information and Mechanical Data

Appendix A. M68000 Family Summary

Index

NOTE

In this manual, assertion and negation are used to specify forc-
ing a signal to a particular state. In particular, assertion and as-
sert refer to a signal that is active or true; negation and negate
indicate a signal that is inactive or false. These terms are used
independently of the voltage level (high or low) that they repre-
sent.

The audience of this manual includes systems designers, systems programmers, and
applications programmers. Systems designers need some knowledge of all sections, with
particular emphasis on Sections 1, 5, 6, 7, 13, 14, and Appendix A. Designers who
implement a coprocessor for their system also need a thorough knowledge of Section 10.

xxiv

MC68030 USER’S MANUAL

MOTOROLA

Systems programmers should become familiar with Sections 1, 2, 3, 4, 6, 8, 9, 11, and
Appendix A. Applications programmers can find most of the information they need in
Sections 1, 2, 3, 4, 9, 11, 12, and Appendix A.

From a different viewpoint, the audience for this book consists of users of other M68000
Family members and those who are not familiar with these microprocessors. Users of the
other family members can find references to similarities to and differences from the other
Motorola microprocessors throughout the manual. However, Section 1 and Appendix A
specifically identify the MC68030 within the rest of the family and contrast its differences.

MOTOROLA

MC68030 USER’S MANUAL

xxv

TABLE OF CONTENTS

Paragraph
Number

Title Page
Number

Section 1
Introduction

1.1 Features . 1-3
1.2 MC68030 Extensions to the M68000 Family 1-4
1.3 Programming Model . 1-4
1.4 Data Types and Addressing Modes . 1-10
1.5 Instruction Set Overview . 1-10
1.6 Virtual Memory and Virtual Machine Concepts 1-12
1.6.1 Virtual Memory . 1-12
1.6.2 Virtual Machine . 1-14
1.7 The Memory Management Unit . 1-15
1.8 Pipelined Architecture . 1-16
1.9 The Cache Memories . 1-16

Section 2
Data Organization and Addressing Capabilities

2.1 Instruction Operands . 2-1
2.2 Organization of Data in Registers . 2-2
2.2.1 Data Registers. 2-2
2.2.2 Address Registers . 2-4
2.2.3 Control Registers. 2-4
2.3 Organization of Data in Memory. 2-5
2.4 Addressing Modes . 2-8
2.4.1 Data Register Direct Mode . 2-9
2.4.2 Address Register Direct Mode. 2-10
2.4.3 Address Register Indirect Mode . 2-10
2.4.4 Address Register Indirect with Postincrement Mode. 2-10
2.4.5 Address Register Indirect with Predecrement Mode 2-11
2.4.6 Address Register Indirect with Displacement Mode 2-12
2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode . . 2-12
2.4.8 Address Register Indirect with Index (Base Displacement) Mode. . 2-13
2.4.9 Memory Indirect Postindexed Mode . 2-14
2.4.10 Memory Indirect Preindexed Mode . 2-15
2.4.11 Program Counter Indirect with Displacement Mode 2-16
2.4.12 Program Counter Indirect with Index (8-Bit Displacement) Mode . . 2-16
2.4.13 Program Counter Indirect with Index (Base Displacement) Mode. . 2-17
2.4.14 Program Counter Memory Indirect Postindexed Mode 2-18
2.4.15 Program Counter Memory Indirect Preindexed Mode 2-19
2.4.16 Absolute Short Addressing Mode . 2-20
2.4.17 Absolute Long Addressing Mode. 2-20
2.4.18 Immediate Data . 2-21
2.5 Effective Address Encoding Summary. 2-22

xxvi

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

2.6 Programmer`s View of Addressing Modes. 2-24
2.6.1 Addressing Capabilities . 2-25
2.6.2 General Addressing Mode Summary . 2-31
2.7 M68000 Family Addressing Compatibility . 2-36
2.8 Other Data Structures . 2-36
2.8.1 System Stack. 2-36
2.8.2 User Program Stacks . 2-38
2.8.3 Queues . 2-39

Section 3
Instruction Set Summary

3.1 Instruction Format . 3-1
3.2 Instruction Summary . 3-2
3.2.1 Data Movement Instructions . 3-4
3.2.2 Integer Arithmetic Instructions . 3-5
3.2.3 Logical Instructions . 3-6
3.2.4 Shift and Rotate Instructions . 3-7
3.2.5 Bit Manipulation Instructions . 3-8
3.2.6 Bit Field Operations . 3-9
3.2.7 Binary–coded Decimal Instructions . 3-10
3.2.8 Program Control Instructions. 3-11
3.2.9 System Control Instructions. 3-12
3.2.10 Memory Management Unit Instructions. 3-13
3.2.11 Multiprocessor Instructions . 3-13
3.3 Integer Condition Codes. 3-14
3.3.1 Condition Code Computation . 3-15
3.3.2 Conditional Tests. 3-17
3.4 Instruction Set Summary . 3-18
3.5 Instruction Examples . 3-25
3.5.1 Using the CAS and CAS2 Instructions . 3-25
3.5.2 Nested Subroutine Calls . 3-30
3.5.3 Bit Field Operations . 3-31
3.5.4 Pipeline Synchronization with the Nop Instruction. 3-32

Section 4
Processing States

4.1 Privilege Levels . 4-2
4.1.1 Supervisor Privilege Level . 4-2
4.1.2 User Privilege Level. 4-3
4.1.3 Changing Privilege Level. 4-4
4.2 Address Space Types . 4-5
4.3 Exception Processing. 4-6

MOTOROLA

MC68030 USER’S MANUAL

xxvii

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

4.3.1 Exception Vectors . 4-6
4.3.2 Exception Stack Frame . 4-7

Section 5
Signal Description

5.1 Signal Index . 5-2
5.2 Function Code Signals (FC0–FC2) . 5-4
5.3 Address Bus (A0–A31). 5-4
5.4 Data Bus (D0–D31) . 5-4
5.5 Transfer Size Signals (SIZ0, SIZ1). 5-4
5.6 Bus Control Signals . 5-5
5.6.1 Operand Cycle Start (OCS). 5-5
5.6.2 External Cycle Start (ECS) . 5-5
5.6.3 Read/Write (R/W) . 5-5
5.6.4 Read-Modify-Write Cycle (RMC) . 5-5
5.6.5 Address Strobe (AS) . 5-5
5.6.6 Data Strobe (DS) . 5-6
5.6.7 Data Buffer Enable (DBEN). 5-6
5.6.8 Data Transfer and Size Acknowledge (DSACK0, DSACK1) 5-6
5.6.9 Synchronous Termination (STERM) . 5-6
5.7 Cache Control Signals . 5-7
5.7.1 Cache Inhibit Input (CIIN) . 5-7
5.7.2 Cache Inhibit Output (CIOUT) . 5-7
5.7.3 Cache Burst Request (CBREQ) . 5-7
5.7.4 Cache Burst Acknowledge (CBACK). 5-7
5.8 Interrupt Control Signals. 5-8
5.8.1 Interrupt Priority Level Signals. 5-8
5.8.2 Interrupt Pending (IPEND). 5-8
5.8.3 Autovector (AVEC) . 5-8
5.9 Bus Arbitration Control Signals . 5-8
5.9.1 Bus Request (BR) . 5-8
5.9.2 Bus Grant (BG) . 5-9
5.9.3 Bus Grant Acknowledge (BGACK) . 5-9
5.10 Bus Exception Control Signals . 5-9
5.10.1 Reset (RESET) . 5-9
5.10.2 Halt (HALT) . 5-9
5.10.3 Bus Error (BERR) . 5-9
5.11 Emulator Support Signals. 5-10
5.11.1 Cache Disable (CDIS) . 5-10
5.11.2 MMU Disable (MMUDIS) . 5-10
5.11.3 Pipeline Refill (REFILL) . 5-10
5.11.4 Internal Microsequencer Status (STATUS) 5-10

xxviii

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

5.12 Clock (CLK) . 5-11
5.13 Power Supply Connections . 5-11
5.14 Signal Summary. 5-11

Section 6
On-Chip Cache Memories

6.1 On-Chip Cache Organization and Operation 6-3
6.1.1 Instruction Cache. 6-4
6.1.2 Data Cache . 6-6
6.1.2.1 Write Allocation . 6-8
6.1.2.2 Read-Modify-Write Accesses. 6-10
6.1.3 Cache Filling . 6-10
6.1.3.1 Single Entry Mode . 6-10
6.1.3.2 Burst Mode Filling . 6-15
6.2 Cache Reset. 6-20
6.3 Cache Control . 6-20
6.3.1 Cache Control Register . 6-20
6.3.1.1 Write Allocate. 6-21
6.3.1.2 Data Burst Enable . 6-21
6.3.1.3 Clear Data Cache . 6-21
6.3.1.4 Clear Entry in Data Cache . 6-21
6.3.1.5 Freeze Data Cache . 6-22
6.3.1.6 Enable Data Cache . 6-22
6.3.1.7 Instruction Burst Enable. 6-22
6.3.1.8 Clear Instruction Cache . 6-22
6.3.1.9 Clear Entry in Instruction Cache . 6-22
6.3.1.10 Freeze Instruction Cache. 6-23
6.3.1.11 Enable Instruction Cache. 6-23
6.3.2 Cache Address Register . 6-23

Section 7
Bus Operation

7.1 Bus Transfer Signals . 7-1
7.1.1 Bus Control Signals . 7-3
7.1.2 Address Bus . 7-4
7.1.3 Address Strobe . 7-4
7.1.4 Data Bus . 7-5
7.1.5 Data Strobe . 7-5
7.1.6 Data Buffer Enable . 7-5
7.1.7 Bus Cycle Termination Signals . 7-5
7.2 Data Transfer Mechanism . 7-6
7.2.1 Dynamic Bus Sizing. 7-6

MOTOROLA

MC68030 USER’S MANUAL

xxix

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

7.2.2 Misaligned Operands. 7-13
7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment 7-19
7.2.4 Address, Size, and Data Bus Relationships 7-22
7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing 7-24
7.2.6 Cache Filling . 7-24
7.2.7 Cache Interactions. 7-26
7.2.8 Asynchronous Operation . 7-27
7.2.9 Synchronous Operation with DSACKx . 7-28
7.2.10 Synchronous Operation with STERM . 7-29
7.3 Data Transfer Cycles . 7-30
7.3.1 Asynchronous Read Cycle . 7-31
7.3.2 Asynchronous Write Cycle . 7-37
7.3.3 Asynchronous Read-Modify-Write Cycle. 7-43
7.3.4 Synchronous Read Cycle . 7-48
7.3.5 Synchronous Write Cycle . 7-51
7.3.6 Synchronous Read-Modify-Write Cycle. 7-54
7.3.7 Burst Operation Cycles . 7-59
7.4 CPU Space Cycles. 7-68
7.4.1 Interrupt Acknowledge Bus Cycles . 7-69
7.4.1.1 Interrupt Acknowledge Cycle — Terminated Normally 7-70
7.4.1.2 Autovector Interrupt Acknowledge Cycle 7-71
7.4.1.3 Spurious Interrupt Cycle . 7-74
7.4.2 Breakpoint Acknowledge Cycle . 7-74
7.4.3 Coprocessor Communication Cycles . 7-74
7.5 Bus Exception Control Cycles . 7-75
7.5.1 Bus Errors . 7-82
7.5.2 Retry Operation . 7-89
7.5.3 Halt Operation . 7-91
7.5.4 Double Bus Fault . 7-94
7.6 Bus Synchronization. 7-95
7.7 Bus Arbitration . 7-96
7.7.1 Bus Request . 7-98
7.7.2 Bus Grant . 7-99
7.7.3 Bus Grant Acknowledge . 7-100
7.7.4 Bus Arbitration Control . 7-100
7.8 Reset Operation . 7-103

Section 8
Exception Processing

8.1 Exception Processing Sequence . 8-1
8.1.1 Reset Exception . 8-5
8.1.2 Bus Error Exception. 8-7

xxx

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

8.1.3 Address Error Exception . 8-8
8.1.4 Instruction Trap Exception. 8-9
8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions 8-9
8.1.6 Privilege Violation Exception . 8-11
8.1.7 Trace Exception. 8-12
8.1.8 Format Error Exception . 8-14
8.1.9 Interrupt Exceptions. 8-14
8.1.10 MMU Configuration Exception. 8-21
8.1.11 Breakpoint Instruction Exception . 8-22
8.1.12 Multiple Exceptions . 8-23
8.1.13 Return from Exception. 8-24
8.2 Bus Fault Recovery . 8-27
8.2.1 Special Status Word (SSW) . 8-28
8.2.2 Using Software to Complete the Bus Cycles. 8-29
8.2.3 Completing the Bus Cycles with Rte . 8-31
8.3 Coprocessor Considerations . 8-32
8.4 Exception Stack Frame Formats . 8-32

Section 9
Memory Management Unit

9.1 Translation Table Structure . 9-6
9.1.1 Translation Control . 9-8
9.1.2 Translation Table Descriptors . 9-10
9.2 Address Translation . 9-13
9.2.1 General Flow for Address Translation . 9-13
9.2.2 Effect of RESET On MMU . 9-15
9.2.3 Effect of MMUDIS On Address Translation 9-15
9.3 Transparent Translation . 9-16
9.4 Address Translation Cache . 9-17
9.5 Translation Table Details . 9-20
9.5.1 Descriptor Details . 9-20
9.5.1.1 Descriptor Field Definitions . 9-20
9.5.1.2 Root Pointer Descriptor . 9-23
9.5.1.3 Short-Format Table Descriptor . 9-24
9.5.1.4 Long-Fomat Table Descriptor . 9-24
9.5.1.5 Short-Format Early Termination Page Descriptor 9-25
9.5.1.6 Long-Format Early Termination Page Descriptor 9-25
9.5.1.7 Short-Format Page Descriptor . 9-26
9.5.1.8 Long-Format Page Descriptor . 9-26
9.5.1.9 Short-Format Invalid Descriptor . 9-26
9.5.1.10 Long-Format Indirect Descriptor . 9-27
9.5.1.11 Short-Format Indirect Descriptor . 9-27

xxxi

MC68030 USER’S MANUAL

MOTOROLA

TABLE OF CONTENTS

 (

Concluded

)

Paragraph
Number

Title Page
Number

9.5.1.12 Long-Format Indirect Descriptor . 9-28
9.5.2 General Table Search . 9-28
9.5.3 Variations in Translation Table Structure . 9-33
9.5.3.1 Early Termination and Contiguous Memory. 9-33
9.5.3.2 Indirection . 9-34
9.5.3.3 Table Sharing Between Tasks. 9-37
9.5.3.4 Paging of Tables . 9-37
9.5.3.5 Dynamic Allocation of Tables. 9-40
9.5.4 Detail of Table Search Operations . 9-40
9.5.5 Protection . 9-43
9.5.5.1 Function Code Lookup. 9-45
9.5.5.2 Supervisor Translation Tree. 9-48
9.5.5.3 Supervisor Only . 9-48
9.5.5.4 Write Protect . 9-48
9.6 MC68030 and MC68851 Mmu Differences . 9-51
9.7 Registers . 9-52
9.7.1 Root Pointer Registers . 9-52
9.7.2 Translation Control Register . 9-54
9.7.3 Transparent Translation Registers . 9-57
9.7.4 MMU Status Register . 9-59
9.7.5 Register Programming Considerations . 9-61
9.7.5.1 Register Side Effects . 9-61
9.7.5.2 MMU Status Register Decoding. 9-61
9.7.5.3 MMU Configuration Exception . 9-62
9.8 Mmu Instructions . 9-63
9.9 Defining and Using Page Tables in An Operating System. 9-65
9.9.1 Root Pointer Registers . 9-65
9.9.2 Task Memory Map Definition. 9-66
9.9.3 Impact of MMU Features On Table Definition 9-68
9.9.3.1 Number of Table Levels. 9-68
9.9.3.2 Initial Shift Count . 9-69
9.9.3.3 Limit Fields. 9-70
9.9.3.4 Early Termination Page Descriptors . 9-70
9.9.3.5 Indirect Descriptors . 9-71
9.9.3.6 Using Unused Descriptor Bits . 9-71
9.10 An Example of Paging Implementation in an Operating System 9-72
9.10.1 System Description . 9-72
9.10.2 Allocation Routines . 9-78
9.10.3 Bus Error Handler Routine . 9-82

Section 10
Coprocessor Interface Description

xxxii

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.1 Introduction. 10-1
10.1.1 Interface Features . 10-2
10.1.2 Concurrent Operation Support . 10-3
10.1.3 Coprocessor Instruction Format . 10-4
10.1.4 Coprocessor System Interface . 10-5
10.1.4.1 Coprocessor Classification . 10-5
10.1.4.2 Processor-Coprocessor Interface . 10-6
10.1.4.3 Coprocessor Interface Register Selection. 10-8
10.2 Coprocessor Instruction Types. 10-9
10.2.1 Coprocessor General Instructions . 10-9
10.2.1.1 Format . 10-10
10.2.1.2 Protocol.. 10-11
10.2.2 Coprocessor Conditional Instructions . 10-12
10.2.2.1 Branch On Coprocessor Condition Instruction. 10-13
10.2.2.1.1 Format. . 10-14
10.2.2.1.2 Protocol. . 10-15
10.2.2.2 Set On Coprocessor Condition Instruction. 10-15
10.2.2.2.1 Format . 10-15
10.2.2.2.2 Protocol. . 10-16
10.2.2.3 Test Coprocessor Condition, Decrement and Branch Instruction 10-17
10.2.2.3.1 Format . 10-17
10.2.2.3.2 Protocol . 10-18
10.2.2.4 Trap On Coprocessor Condition. 10-18
10.2.2.4.1 Format . 10-18
10.2.2.4.2 Protocol . 10-19
10.2.3 Coprocessor Save and Restore Instructions 10-20
10.2.3.1 Coprocessor Internal State Frames. 10-20
10.2.3.2 Coprocessor Format Words. 10-22
10.2.3.2.1 Empty/Reset Format Word. 10-22
10.2.3.2.2 Not Ready Format Word.. 10-23
10.2.3.2.3 Invalid Format Word . 10-23
10.2.3.2.4 Valid Format Word. 10-24
10.2.3.3 Coprocessor Context Save Instruction . 10-24
10.2.3.3.1 Format . 10-24
10.2.3.3.2 Protocol . 10-25
10.2.3.4 Coprocessor Context Restore Instruction. 10-27
10.2.3.4.1 Format . 10-27
10.2.3.4.2 Protocol. . 10-28
10.3 Coprocessor Interface Register Set . 10-29
10.3.1 Response CIR . 10-29
10.3.2 Control CIR . 10-30
10.3.3 Save CIR . 10-30

MOTOROLA

MC68030 USER’S MANUAL

xxxiii

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.3.4 Restore CIR. 10-31
10.3.5 Operation Word CIR . 10-31
10.3.6 Command CIR. 10-31
10.3.7 Condition CIR . 10-31
10.3.8 Operand CIR . 10-32
10.3.9 Register Select CIR . 10-32
10.3.10 Instruction Address CIR. 10-33
10.3.11 Operand Address CIR . 10-33
10.4 Coprocessor Response Primitives . 10-33
10.4.1 ScanPC . 10-34
10.4.2 Coprocessor Response Primitive General Format 10-35
10.4.3 Busy Primitive . 10-36
10.4.4 Null Primitive . 10-37
10.4.5 Supervisor Check Primitive . 10-40
10.4.6 Transfer Operation Word Primitive . 10-40
10.4.7 Transfer from Instruction Stream Primitive 10-41
10.4.8 Evaluate and Transfer Effective Address Primitive 10-42
10.4.9 Evaluate Effective Address and Transfer Data Primitive. 10-43
10.4.10 Write to Previously Evaluated Effective Address Primitive 10-46
10.4.11 Take Address and Transfer Data Primitive 10-48
10.4.12 Transfer to/from Top of Stack Primitive . 10-49
10.4.13 Transfer Single Main Processor Register Primitive 10-50
10.4.14 Transfer Main Processor Control Register Primitive 10-50
10.4.15 Transfer Multiple Main Processor Registers Primitive. 10-52
10.4.16 Transfer Multiple Coprocessor Registers Primitive 10-52
10.4.17 Transfer Status Register and ScanPC Primitive 10-55
10.4.18 Take Pre-Instruction Exception Primitive. 10-56
10.4.19 Take Mid-Instruction Exception Primitive . 10-58
10.4.20 Take Post-Instruction Exception Primitive . 10-60
10.5 Exceptions . 10-61
10.5.1 Coprocessor-Detected Exceptions . 10-61
10.5.1.1 Coprocessor-Detected Protocol Violations 10-62
10.5.1.2 Coprocessor-Detected Illegal Command or Condition Words . . . 10-63
10.5.1.3 Coprocessor Data-Processing Exceptions 10-63
10.5.1.4 Coprocessor System-Related Exceptions 10-64
10.5.1.5 Format Errors. 10-64
10.5.2 Main-Processor-Detected Exceptions . 10-65
10.5.2.1 Protocol Violations . 10-65
10.5.2.2 F-Line Emulator Exceptions. 10-68
10.5.2.3 Privilege Violations. 10-69
10.5.2.4 cpTRAPcc Instruction Traps . 10-69
10.5.2.5 Trace Exceptions . 10-70

xxxiv

MC68030 USER’S MANUAL

 MOTOROLA

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

10.5.2.6 Interrupts . 10-71
10.5.2.7 Format Errors. 10-71
10.5.2.8 Address and Bus Errors. 10-72
10.5.3 Coprocessor Reset . 10-72
10.6 Coprocessor Summary. 10-72

Section 11
Instruction Execution Timing

11.1 Performance Tradeoffs. 11-1
11.2 Resource Scheduling . 11-2
11.2.1 Microsequencer . 11-2
11.2.2 Instruction Pipe . 11-2
11.2.3 Instruction Cache. 11-4
11.2.4 Data Cache . 11-4
11.2.5 Bus Controller Resources . 11-4
11.2.5.1 Instruction Fetch Pending Buffer . 11-5
11.2.5.2 Write Pending Buffer . 11-5
11.2.5.3 Micro Bus Controller . 11-5
11.2.6 Memory Management Unit . 11-6
11.3 Instruction Execution Timing Calculations . 11-6
11.3.1 Instruction-Cache Case . 11-6
11.3.2 Overlap and Best Case . 11-7
11.3.3 Average No-Cache Case. 11-8
11.3.4 Actual Instruction-Cache-Case Execution Time Calculations 11-11
11.4 Effect of Data Cache . 11-16
11.5 Effect of Wait States. 11-18
11.6 Instruction Timing Tables . 11-24
11.6.1 Fetch Effective Address (fea) . 11-26
11.6.2 Fetch Immediate Effective Address (fiea) . 11-28
11.6.3 Calculate Effective Address (cea) . 11-30
11.6.4 Calculate Immediate Effective Address (ciea). 11-32
11.6.5 Jump Effective Address. 11-35
11.6.6 MOVE Instruction . 11-37
11.6.7 Special-Purpose Move Instruction. 11-39
11.6.8 Arithmetical/Logical Instructions . 11-40
11.6.9 Immediate Arithmetical/Logical Instructions 11-42
11.6.10 Binary-Coded Decimal and Extended Instructions 11-43
11.6.11 Single Operand Instructions . 11-44
11.6.12 Shift/Rotate Instructions . 11-45
11.6.13 Bit Manipulation Instructions . 11-46
11.6.14 Bit Field Manipulation Instructions. 11-47
11.6.15 Conditional Branch Instructions. 11-48

MOTOROLA

MC68030 USER’S MANUAL

xxxv

TABLE OF CONTENTS

 (

Continued

)

Paragraph
Number

Title Page
Number

11.6.16 Control Instructions . 11-49
11.6.17 Exception-Related Instructions and Operations 11-50
11.6.18 Save and Restore Operations . 11-51
11.7 Address Translation Tree Search Timing. 11-51
11.7.1 MMU Effective Address Calculation . 11-58
11.7.2 MMU Instruction Timing. 11-60
11.8 Interrupt Latency . 11-61
11.9 Bus Arbitration Latency . 11-62

Section 12
Applications Information

12.1 Adapting the MC68030 to MC68020 Designs 12-1
12.1.1 Signal Routing . 12-2
12.1.2 Hardware Differences . 12-3
12.1.3 Software Differences . 12-4
12.2 Floating-Point Units . 12-5
12.3 Byte Select Logic for the MC68030 . 12-9
12.4 Memory Interface . 12-11
12.4.1 Access Time Calculations . 12-14
12.4.2 Burst Mode Cycles . 12-17
12.5 Static RAM Memory Banks . 12-18
12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS 12-18
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS 12-24
12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS 12-27
12.6 External Caches. 12-30
12.6.1 Cache Implementation. 12-32
12.6.2 Instruction-Only External Cache Implementations 12-35
12.7 Debugging Aids . 12-35
12.7.1 Status and Refill . 12-36
12.7.2 Real-Time Instruction Trace . 12-39
12.8 Power and Ground Considerations . 12-43

Section 13
Electrical Characteristics

13.1 Maximum Ratings. 13-1
13.2 Thermal Characteristics — PGA Package . 13-1

xxxvi

MC68030 USER’S MANUAL

MOTOROLA

TABLE OF CONTENTS

 (

Concluded

)

Paragraph
Number

Title Page
Number

Section 14
Ordering Information
and Mechanical Data

14.1 Standard MC68030 Ordering Information . 14-1
14.2 Pin Assignments — Pin Grid Array (RC Suffix) 14-2
14.3 Pin Assignments — Ceramic Surface Mount (FE Suffix) 14-3
14.4 Package Dimensions . 14-4

Appendix A
M68000 Family Summary

MOTOROLA

MC68030 USER’S MANUAL

xxxvii

LIST OF ILLUSTRATIONS

Figure
Number

Title Page
Number

1-1 Block Diagram . 1-2
1-2 User Programming Model . 1-6
1-3 Supervisor Programming Model Supplement. 1-7
1-4 Status Register. 1-8

2-1 Memory Operand Address . 2-6
2-2 Memory Data Organization . 2-7
2-3 Single Effective Address . 2-8
2-4 Effective Address Specification Formats . 2-23
2-5 Using SIZE in the Index Selection . 2-25
2-6 Using Absolute Address with Indexes . 2-26
2-7 Addressing Array Items . 2-27
2-8 Using Indirect Absolute Memory Addressing . 2-28
2-9 Accessing an Item in a Structure Using a Pointer 2-28
2-10 Indirect Addressing, Suppressed Index Register . 2-29
2-11 Preindexed Indirect Addressing . 2-29
2-12 Postindexed Indirect Addressing . 2-30
2-13 Preindexed Indirect Addressing with Outer Displacement 2-30
2-14 Postindexed Indirect Addressing with Outer Displacement 2-31
2-15 M68000 Family Address Extension Words . 2-37

3-1 Instruction Word General Format . 3-1
3-2 Linked List Insertion . 3-26
3-3 Linked List Deletion . 3-27
3-4 Doubly Linked List Insertion . 3-29
3-5 Doubly Linked List Deletion . 3-30

4-1 General Exception Stack Frame . 4-7

5-1 Functional Signal Groups . 5-1

6-1 Internal Caches and the MC68030. 6-2
6-2 On-Chip Instruction Cache Organization . 6-5
6-3 On-Chip Data Cache Organization. 6-7
6-4 No-Write-Allocation and Write-Allocation Mode Examples 6-9
6-5 Single Entry Mode Operation — 8-Bit Port . 6-11
6-6 Single Entry Mode Operation — 16-Bit Port . 6-12
6-7 Single Entry Mode Operation — 32-Bit Port . 6-12
6-8 Single Entry Mode Operation — Misaligned Long Word and 8-Bit Port. . . 6-13
6-9 Single Entry Mode Operation — Misaligned Long Word and 16-Bit Port. . 6-14
6-10 Single Entry Mode Operation — Misaligned Long Word and 32-Bit

DSACKx Port . 6-15

xxxviii

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Title Page
Number

6-11 Burst Operation Cycles and Burst Mode . 6-17
6-12 Burst Filling Wraparound Example. 6-17
6-13 Deferred Burst Filling Example. 6-18
6-14 Cache Control Register . 6-21
6-15 Cache Address Register . 6-23

7-1 Relationship between External and Internal Signals 7-2
7-2 Asynchronous Input Sample Window. 7-3
7-3 Internal Operand Representation . 7-8
7-4 MC68030 Interface to Various Port Sizes . 7-9
7-5 Example of Long-Word Transfer to Word Port . 7-11
7-6 Long-Word Operand Write Timing (16-Bit Data Port) 7-12
7-7 Example of Word Transfer to Byte Port . 7-13
7-8 Word Operand Write Timing (8-Bit Data Port) . 7-14
7-9 Misaligned Long-Word Transfer to Word Port Example. 7-15
7-10 Misaligned Long-Word Transfer to Word Port . 7-16
7-11 Misaligned Cachable Long-Word Transfer from Word Port Example 7-17
7-12 Misaligned Word Transfer to Word Port Example 7-17
7-13 Misaligned Word Transfer to Word Port . 7-18
7-14 Example of Misaligned Cachable Word Transfer from Word Bus 7-20
7-15 Misaligned Long-Word Transfer to Long-Word Port. 7-20
7-16 Misaligned Write Cycles to Long-Word Port. 7-21
7-17 Misaligned Cachable Long-Word Transfer from Long-Word Bus. 7-22
7-18 Byte Data Select Generation for 16- and 32-Bit Ports 7-25
7-19 Asynchronous Long-Word Read Cycle Flowchart 7-32
7-20 Asynchronous Byte Read Cycle Flowchart . 7-32
7-21 Asynchronous Byte and Word Read Cycles — 32-Bit Port 7-33
7-22 Long-Word Read — 8-Bit Port with CIOUT Asserted. 7-34
7-23 Long-Word Read — 16-Bit and 32-Bit Port . 7-35
7-24 Asynchronous Write Cycle Flowchart. 7-37
7-25 Asynchronous Read-Write-Read Cycles — 32-Bit Port 7-38
7-26 Asynchronous Byte and Word Write Cycles — 32-Bit Port 7-39
7-27 Long-Word Operand Write — 8-Bit Port. 7-40
7-28 Long-Word Operand Write — 16-Bit Port. 7-41
7-29 Asynchronous Read-Modify-Write Cycle Flowchart 7-44
7-30 Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port

(TAS Instruction with CIOUT or CIIN Asserted) . 7-45
7-31 Synchronous Long-Word Read Cycle Flowchart —

No Burst Allowed . 7-49
7-32 Synchronous Read with CIIN Asserted and CBACK Negated 7-50
7-33 Synchronous Write Cycle Flowchart . 7-52
7-34 Synchronous Write Cycle with Wait States — CIOUT Asserted 7-53

MOTOROLA

MC68030 USER’S MANUAL

xxxix

Figure
Number

Title Page
Number

LIST OF ILLUSTRATIONS (Continued)

7-35 Synchronous Read-Modify-Write Cycle Flowchart. 7-55
7-36 Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted 7-56
7-37 Burst Operation Flowchart — Four Long Words Transferred. 7-62
7-38 Long-Word Operand Request from $07 with

Burst Request and Wait Cycle . 7-63
7-39 Long-Word Operand Request from $07 with

Burst Request — CBACK Negated Early. 7-64
7-40 Long-Word Operand Request from $0E — Burst Fill Deferred 7-65
7-41 Long-Word Operand Request from $07 with

Burst Request — CBACK and CIIN Asserted . 7-66
7-42 MC68030 CPU Space Address Encoding . 7-69
7-43 Interrupt Acknowledge Cycle Flowchart . 7-71
7-44 Interrupt Acknowledge Cycle Timing . 7-72
7-45 Autovector Operation Timing . 7-73
7-46 Breakpoint Operation Flow. 7-75
7-47 Breakpoint Acknowledge Cycle Timing . 7-76
7-48 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 7-77
7-49 Bus Error without DSACKx. 7-84
7-50 Late Bus Error with DSACKx . 7-85
7-51 Late Bus Error with STERM — Exception Taken. 7-86
7-52 Long-Word Operand Request — Late BERR on Third Access 7-87
7-53 Long-Word Operand Request — BERR on Second Access 7-88
7-54 Asynchronous Late Retry . 7-90
7-55 Synchronous Late Retry. 7-91
7-56 Late Retry Operation for a Burst . 7-92
7-57 Halt Operation Timing . 7-93
7-58 Bus Synchronization Example . 7-96
7-59 Bus Arbitration Flowchart for Single Request. 7-98
7-60 Bus Arbitration Operation Timing . 7-99
7-61 Bus Arbitration State Diagram . 7-101
7-62 Single-Wire Bus Arbitration Timing Diagram . 7-103
7-63 Bus Arbitration Operation (Bus Inactive) . 7-104
7-64 Initial Reset Operation Timing . 7-105
7-65 Processor-Generated Reset Operation . 7-106

8-1 Reset Operation Flowchart. 8-6
8-2 Interrupt Pending Procedure . 8-15
8-3 Interrupt Recognition Examples . 8-17
8-4 Assertion of IPEND . 8-18
8-5 Interrupt Exception Processing Flowchart . 8-19
8-6 Examples of Interrupt Recognition and Instruction Boundaries 8-20
8-7 Breakpoint Instruction Flowchart . 8-23

xl

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Continued)

Figure
Number

Title Page
Number

8-8 RTE Instruction for Throwaway Four-Word Frame 8-26
8-9 Special Status Word (SSW) . 8-28

9-1 MMU Block Diagram . 9-3
9-2 MMU Programming Model . 9-4
9-3 Translation Table Tree . 9-5
9-4 Example Translation Table Tree . 9-7
9-5 Example Translation Tree Layout in Memory. 9-8
9-6 Derivation of Table Index Fields. 9-9
9-7 Example Translation Tree Using Different Format Descriptors 9-12
9-8 Address Translation General Flowchart . 9-14
9-9 Root Pointer Descriptor Format . 9-23
9-10 Short-Format Table Descriptor. 9-24
9-11 Long-Format Table Descriptor . 9-24
9-12 Short-Format Page Descriptor and Short-Format Early

Termination Page Descriptor . 9-25
9-13 Long-Format Early Termination Page Descriptor. 9-25
9-14 Long-Format Page Descriptor . 9-26
9-15 Short-Format Invalid Descriptor . 9-26
9-16 Long-Format Invalid Descriptor . 9-27
9-17 Short-Format Indirect Descriptor . 9-27
9-18 Long-Format Indirect Descriptor. 9-28
9-19 Simplified Table Search Flowchart. 9-29
9-20 Five-Level Table Search . 9-31
9-21 Example Translation Tree Using Contiguous Memory. 9-35
9-22 Example Translation Tree Using Indirect Descriptors 9-36
9-23 Example Translation Tree Using Shared Tables . 9-38
9-24 Example Translation Tree with Nonresident Tables. 9-39
9-25 Detailed Flowchart of MMU Table Search Operation. 9-41
9-26 Table Search Initialization Flowchart . 9-42
9-27 ATC Entry Creation Flowchart . 9-42
9-28 Limit Check Procedure Flowchart . 9-43
9-29 Detailed Flowchart of Descriptor Fetch Operation 9-44
9-30 Logical Address Map Using Function Code Lookup 9-45
9-31 Example Translation Tree Using Function Code Lookup. 9-46
9-32 Example Translation Tree Structure for Two Tasks 9-47
9-33 Exmple Logical Address Map with Shared Supervisor

and User Address Spaces . 9-49
9-34 Exmple Translation Tree Using S and WP Bits to Set Protection 9-50
9-35 Root Pointer Register (CRP, SRP) Format . 9-54
9-36 Translation Control Register (TC) Format . 9-54
9-37 Transparent Translation Register (TT0 and TT1) Format 9-57

MOTOROLA

MC68030 USER’S MANUAL

xli

Figure
Number

Title Page
Number

LIST OF ILLUSTRATIONS (Continued)

9-38 MMU Status Register (MMUSR) Format . 9-59
9-39 MMU Status Interpretation PTEST Level 0 . 9-62
9-40 MMU Status Interpretation PTEST Level 7 . 9-63

10-1 F-Line Coprocessor Instruction Operation Word . 10-4
10-2 Asynchronous Non-DMA M68000 Coprocessor Interface Signal Usage . . 10-6
10-3 MC68030 CPU Space Address Encodings . 10-7
10-4 Coprocessor Address Map in MC68030 CPU Space. 10-8
10-5 Coprocessor Interface Register Set Map . 10-9
10-6 Coprocessor General Instruction Format (cpGEN) 10-10
10-7 Coprocessor Interface Protocol for General Category Instructions 10-11
10-8 Coprocessor Interface Protocol for Conditional Category Instructions. . . . 10-13
10-9 Branch on Coprocessor Condition Instruction (cpBcc.W) 10-14
10-10 Branch On Coprocessor Condition Instruction (cpBcc.L). 10-14
10-11 Set On Coprocessor Condition (cpScc) . 10-15
10-12 Test Coprocessor Condition, Decrement and Branch

Instruction Format (cpDBcc). 10-17
10-13 Trap On Coprocessor Condition (cpTRAPcc) . 10-18
10-14 Coprocessor State Frame Format in Memory . 10-21
10-15 Coprocessor Context Save Instruction Format (cpSAVE) 10-25
10-16 Coprocessor Context Save Instruction Protocol. 10-26
10-17 Coprocessor Context Restore Instruction Format (cpRESTORE) 10-27
10-18 Coprocessor Context Restore Instruction Protocol 10-28
10-19 Control CIR Format . 10-30
10-20 Condition CIR Format. 10-31
10-21 Operand Alignment for Operand CIR Accesses. 10-32
10-22 Coprocessor Response Primitive Format. 10-35
10-23 Busy Primitive Format . 10-36
10-24 Null Primitive Format . 10-37
10-25 Supervisor Check Primitive Format . 10-40
10-26 Transfer Operation Word Primitive Format . 10-41
10-27 Transfer from Instruction Stream Primitive Format 10-41
10-28 Evaluate and Transfer Effective Address Primitive Format 10-42
10-29 Evaluate Effective Address and Transfer Data Primitive 10-43
10-30 Write to Previously Evaluated EffectiveAddress Primitive Format 10-46
10-31 Take Address and Transfer Data Primitive Format 10-48
10-32 Transfer To/From Top of Stack Primitive Format . 10-49
10-33 Transfer Single Main Processor Register Primitive Format 10-50
10-34 Transfer Main Processor Control Register Primitive Format 10-51
10-35 Transfer Multiple Main Processor Registers Primitive Format 10-52
10-36 Register Select Mask Format . 10-52
10-37 Transfer Multiple Coprocessor Registers Primitive Format 10-53

xlii

MC68030 USER’S MANUAL

MOTOROLA

LIST OF ILLUSTRATIONS (Concluded)

Figure
Number

Title Page
Number

10-38 Operand Format in Memory for Transfer to —(An) 10-54
10-39 Transfer Status Register and ScanPC Primitive Format 10-55
10-40 Take Pre-Instruction Exception Primitive Format . 10-56
10-41 MC68030 Pre-Instruction Stack Frame . 10-57
10-42 Take Mid-Instruction Exception Primitive Format. 10-58
10-43 MC68030 Mid-Instruction Stack Frame . 10-59
10-44 Take Post-Instruction Exception Primitive Format 10-60
10-45 MC68030 Post-Instruction Stack Frame . 10-60

11-1 Block Diagram – Eight Independent Resources. 11-3
11-2 Simultaneous Instruction Execution . 11-7
11-3 Derivation of Instruction Overlap Time . 11-8
11-4 Processor Activity – Even Alignment . 11-9
11-5 Processor Activity – Odd Alignment . 11-10

12-1 Signal Routing for Adapting the MC68030 to MC68020 Designs 12-2
12-2 32-Bit Data Bus Coprocessor Connection . 12-6
12-3 Chip-Select Generation PAL . 12-8
12-4 PAL Equations . 12-8
12-5 Bus Cycle Timing Diagram. 12-9
12-6 Example MC68030 Byte Select PAL System Configuration 12-12
12-7 MC68030 Byte Select PAL Equations . 12-13
12-8 Access Time Computation Diagram. 12-15
12-9 Example Two-Clock Read, Three-Clock Write Memory Bank 12-19
12-10 Example PAL Equations for Two-Clock Memory Bank 12-20
12-11 Additional Memory Enable Circuits . 12-21
12-12 Example Two-Clock Read and Write Memory Bank 12-22
12-13 Example PAL Equation for Two-Clock Read and Write Memory Bank . . . 12-23
12-14 Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes 12-25
12-15 Example 3-1-1-1 Pipelined Burst Mode Memory Bank at

20 MHz, 256K Bytes. 12-28
12-16 Additional Memory Enable Circuits . 12-29
12-17 Example MC68030 Hardware Configuration with

External Physical Cache . 12-33
12-18 Example Early Termination Control Circuit . 12-34
12-19 Normal Instruction Boundaries . 12-37
12-20 Trace or Interrupt Exception. 12-38
12-21 Other Exceptions . 12-38
12-22 Processor Halted . 12-39
12-23 Trace Interface Circuit . 12-41
12-24 PAL Pin Definition . 12-44
12-25 Logic Equations . 12-45

MOTOROLA

MC68030 USER’S MANUAL

xliii

LIST OF TABLES

Table
Number

Title Page
Number

1-1 Addressing Modes . 1-11
1-2 Instruction Set . 1-13

2-1 IS–I/IS Memory Indirection Encodings. 2-22

3-1 Data Movement Operations . 3-5
3-2 Integer Arithmetic Operations . 3-6
3-3 Logical Operations . 3-7
3-4 Shift and Rotate Operations. 3-8
3-5 Bit Manipulation Operations. 3-9
3-6 Bit Field Operations . 3-9
3-7 BCD Operations. 3-10
3-8 Program Control Operations . 3-11
3-9 System Control Operations . 3-12
3-10 MMU Instructions . 3-13
3-11 Multiprocessor Operations (Read-Modify-Write) . 3-13
3-12 Condition Code Computations (Sheet 1 of 2) . 3-15
3-13 Conditional Tests . 3-17
3-14 Instruction Set Summary (Sheet 1 of 5) . 3-20

4-1 Address Space Encodings. 4-5

5-1 Signal Index (Sheet 1 of 2). 5-2
5-2 Signal Summary. 5-12

7-1 DSACK Codes and Results . 7-7
7-2 Size Signal Encoding . 7-9
7-3 Address OffsetEncodings. 7-9
7-4 Data Bus Requirements for Read Cycles. 7-10
7-5 MC68030 Internal to External Data Bus. 7-11
7-6 Memory Alignment and Port Size Influence on Write Bus Cycles 7-19
7-7 Data Bus Write Enable Signals for Byte, Word, and Long-Word Ports . . . 7-23
7-8 DSACK, BERR, and HALT Assertion Results . 7-79
7-9 STERM, BERR, and HALT Assertion Results . 7-81

8-1 Exception Vector Assignments (Sheet 2 of 2) . 8-2
8-2 Exception Vector Assignments (Sheet 1 of 2) . 8-3
8-3 Microsequencer STATUS Indications . 8-4
8-4 Tracing Control. 8-13
8-5 Interrupt Levels and Mask Values . 8-16
8-6 Exception Priority Groups . 8-24

xliv

MC68030 USER’S MANUAL

MOTOROLA

Table
Number

Title Page
Number

LIST OF TABLES (Continued)

9-1 Size Restrictions . 9-10
9-2 Translation Tree Selection . 9-30
9-3 MMUSR Bit Definitions. 9-60

10-1 cpTRAPcc Opmode . 10-19
10-2 Coprocessor Format Word Encodings. 10-22
10-3 Null Coprocessor Response Primitive Encodings 10-39
10-4 Valid EffectiveAddress Codes . 10-43
10-5 Main Processor Control Register . 10-51
10-6 Exceptions Related to Primitive Processing. 10-66

12-1 Data Bus Activity for Byte, Word, and Long-Word Ports 12-11
12-2 Memory Access Time Equations at 20 MHz . 12-16
12-3 Calculated t

AVDV

 Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating 12-17

12-4 Microsequencer STATUS Indications . 12-36
12-5 List of Parts . 12-42
12-6 AS and ECSC Indicates. 12-43
12-7 V

CC

 and GND Pin Assignments. 12-46

MOTOROLA

MC68030 USER’S MANUAL

1-1

SECTION 1
INTRODUCTION

The MC68030 is a second-generation full 32-bit enhanced microprocessor from Motorola.
The MC68030 is a member of the M68000 Family of devices that combines a central
processing unit (CPU) core, a data cache, an instruction cache, an enhanced bus controller,
and a memory management unit (MMU) in a single VLSI device. The processor is designed
to operate at clock speeds beyond 20 MHz. The MC68030 is implemented with 32-bit
registers and data paths, 32-bit addresses, a rich instruction set, and versatile addressing
modes.

The MC68030 is upward object code compatible with the earlier members of the M68000
Family and has the added features of an on-chip MMU, a data cache, and an improved bus
interface. It retains the flexible coprocessor interface pioneered in the MC68020 and
provides full IEEE floating-point support through this interface with the MC68881 or
MC68882 floating-point coprocessor. Also, the internal functional blocks of this
microprocessor are designed to operate in parallel, allowing instruction execution to be
overlapped. In addition to instruction execution, the internal caches, the on-chip MMU, and
the external bus controller all operate in parallel.

The MC68030 fully supports the nonmultiplexed bus structure of the MC68020, with 32 bits
of address and 32 bits of data. The MC68030 bus has an enhanced controller that supports
both asynchronous and synchronous bus cycles and burst data transfers. It also supports
the MC68020 dynamic bus sizing mechanism that automatically determines device port
sizes on a cycle-by-cycle basis as the processor transfers operands to or from external
devices.

A block diagram of the MC68030 is shown in Figure 1-1. The instructions and data required
by the processor are supplied from the internal caches whenever possible. The MMU
translates the logical address generated by the processor into a physical address utilizing
its address translation cache (ATC). The bus controller manages the transfer of data
between the CPU and memory or devices at the physical address.

Introduction

1-2

MC68030 USER’S MANUAL

MOTOROLA

Figure 1-1. Block Diagram

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-3

1.1 FEATURES

The features of the MC68030 microprocessor are:

• Object Code Compatible with the MC68020 and Earlier M68000 Microprocessors

• Complete 32-Bit Nonmultiplexed Address and Data Buses

• 16 32-Bit General-Purpose Data and Address Registers

• Two 32-Bit Supervisor Stack Pointers and 10 Special-Purpose Control Registers

• 256-Byte Instruction Cache and 256-Byte Data Cache Can Be Accessed Simulta-
neously

• Paged MMU that Translates Addresses in Parallel with Instruction Execution and Inter-
nal Cache Accesses

• Two Transparent Segments Allow Untranslated Access to Physical Memory To Be D
fined for Systems That Transfer Large Blocks of Data between Predefined Physical Ad-
dresses — e.g., Graphics Applications

• Pipelined Architecture with Increased Parallelism Allows Accesses to Internal Caches
To Occur in Parallel with Bus Transfers and Instruction Execution To Be Overlapped

• Enhanced Bus Controller Supports Asynchronous Bus Cycles (three clocks minimum),
Synchronous Bus Cycles (two clocks minimum), and Burst Data Transfers (one clock
minimum) all to the Physical Address Space

• Dynamic Bus Sizing Supports 8-, 16-, 32-Bit Memories and Peripherals

• Support for Coprocessors with the M68000 Coprocessor Interface — e.g., Full IEEE
Floating-Point Support Provided by the MC68881/MC68882 Floating-Point Coproces-
sors

• 4-Gbyte Logical and Physical Addressing Range

• Implemented in Motorola's HCMOS Technology That Allows CMOS and HMOS (High-
Density NMOS) Gates to be Combined for Maximum Speed, Low Power, and Optimum
Die Size

• Processor Speeds Beyond 20 MHz

Both improved performance and increased functionality result from the on-chip
implementation of the MMU and the data and instruction caches. The enhanced bus
controller and the internal parallelism also provide increased system performance. Finally,
the improved bus interface, the reduction in physical size, and the lower power consumption
combine to reduce system costs and satisfy cost/performance goals of the system designer.

Introduction

1-4

MC68030 USER’S MANUAL

MOTOROLA

1.2 MC68030 EXTENSIONS TO THE M68000 FAMILY

In addition to the on-chip instruction cache present in the MC68020, the MC68030 has an
internal data cache. Data that is accessed during read cycles may be stored in the on-chip
cache, where it is available for subsequent accesses. The data cache reduces the number
of external bus cycles when the data operand required by an instruction is already in the
data cache.

Performance is enhanced further because the on-chip caches can be internally accessed in
a single clock cycle. In addition, the bus controller provides a two-clock cycle synchronous
mode and burst mode accesses that can transfer data in as little as one clock per long word.

The MC68030 enhanced microprocessor contains an on-chip MMU that allows address
translation to operate in parallel with the CPU core, the internal caches, and the bus
controller.

Additional signals support emulation and system analysis. External debug equipment can
disable the on-chip caches and the MMU to freeze the MC68030 internal state during
breakpoint processing. In addition, the MC68030 indicates:

1. The start of a refill of the instruction pipe

2. Instruction boundaries

3. Pending trace or interrupt processing

4. Exception processing

5. Halt conditions

This status and control information allows external debugging equipment to trace the
MC68030 activity and interact nonintrusively with the MC68030 to effectively reduce system
debug effort.

1.3 PROGRAMMING MODEL

The programming model of the MC68030 consists of two groups of registers: the user model
and the supervisor model. This corresponds to the user and supervisor privilege levels. User
programs executing at the user privilege level use the registers of the user model. System
software executing at the supervisor level uses the control registers of the supervisor level
to perform supervisor functions.

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-5

Figure 1-2 shows the user programming model, consisting of 16 32-bit general-purpose reg-
isters and two control registers:

• General-Purpose 32-Bit Registers (D0–D7, A0–A7)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

The supervisor programming model consists of the registers available to the user plus 14
control registers:

• Two 32-Bit Supervisor Stack Pointers (ISP and MSP)

• 16-Bit Status Register (SR)

• 32-Bit Vector Base Register (VBR)

• 32-Bit Alternate Function Code Registers (SFC and DFC)

• 32-Bit Cache Control Register (CACR)

• 32-Bit Cache Address Register (CAAR)

• 64-Bit CPU Root Pointer (CRP)

• 64-Bit Supervisor Root Pointer (SRP)

• 32-Bit Translation Control Register (TC)

• 32-Bit Transparent Translation Registers (TT0 and TT1)

• 16-Bit MMU Status Register (MMUSR)

The user programming model remains unchanged from previous M68000 Family
microprocessors. The supervisor programming model supplements the user programming
model and is used exclusively by the MC68030 system programmers who utilize the
supervisor privilege level to implement sensitive operating system functions, I/O control, and
memory management subsystems. The supervisor programming model contains all the
controls to access and enable the special features of the MC68030. This segregation was
carefully planned so that all application software is written to run at the nonprivileged user
level and migrates to the MC68030 from any M68000 platform without modification. Since
system software is usually modified by system programmers when ported to a new design,
the control features are properly placed in the supervisor programming model. For example,
the transparent translation feature of the MC68030 is new to the family supervisor
programming model for the MC68030 and the two translation registers are new additions to
the family supervisor programming model for the MC68030. Only supervisor code uses this
feature, and user application programs remain unaffected.

Introduction

1-6

MC68030 USER’S MANUAL

MOTOROLA

Registers D0–D7 are used as data registers for bit and bit field (1 to 32 bits), byte (8 bit),
word (16 bit), long-word (32 bit), and quad-word (64 bit) operations. Registers A0–A6 and
the user, interrupt, and master stack pointers are address registers that may be used as
software stack pointers or base address registers. Register A7 (shown as A7' and A7'' in
Figure 1-3) is a register designation that applies to the user stack pointer in the user privilege
level and to either the interrupt or master stack pointer in the supervisor privilege level. In
the supervisor privilege level, the active stack pointer (interrupt or master) is called the
supervisor stack pointer (SSP). In addition, the address registers may be used for word and
long-word operations. All of the 16 general-purpose registers (D0–D7, A0–A7) may be used
as index registers.

Figure 1-2. User Programming Model

31 16 15 8 7

7

0

31 16 15 0

31 16 15

15

0

31 0

0

CCR

PC

A7 (USP)

D0

D1

D2

D3

D4

D5

D6

D7

A0

A1

A2

A3

A4

A5

A6

DATA
REGISTERS

ADDRESS
REGISTERS

USER STACK
POINTER

PROGRAM
COUNTER

CONDITION
CODE
REGISTER

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-7

The program counter (PC) contains the address of the next instruction to be executed by the
MC68030. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate.

The status register, SR, (see Figure 1-4) stores the processor status. It contains the
condition codes that reflect the results of a previous operation and can be used for
conditional instruction execution in a program. The condition codes are extend (X), negative
(N), zero (Z), overflow (V), and carry (C). The user byte containing the condition codes is the
only portion of the status register information available in the user privilege level, and it is
referenced as the CCR in user programs. In the supervisor privilege level, software can
access the full status register, including the interrupt priority mask (three bits) as well as
additional control bits. These bits indicate whether the processor is in:

1. One of two trace modes (T1, T0)

2. Supervisor or user privilege level (S)

3. Master or interrupt mode (M)

The vector base register (VBR) contains the base address of the exception vector table in
memory. The displacement of an exception vector is added to the value in this register to
access the vector table.

Figure 1-3. Supervisor Programming Model Supplement

31 16 15 0

31 16 15 0

15 8 7 0

(CCR) SR

A7" (MSP)

A7' (ISP)

31 0

VBR

SFC

DFC

CACR

CAAR

INTERRUPT
STACK POINTER

MASTER STACK
POINTER

STATUS REGISTER

VECTOR BASE
REGISTER

ALTERNATE FUNCTION
CODE REGISTERS

CACHE CONTROL
REGISTER

CACHE ADDRESS
REGISTER

0

0

0

31

31

31

AC0
ACCESS
CONTROL
REGISTER 0

031

AC1
ACCESS
CONTROL
REGISTER 1

031

ACUSR
ACU STATUS
REGISTER

015

Introduction

1-8

MC68030 USER’S MANUAL

MOTOROLA

Alternate function code registers, SFC and DFC, contain 3-bit function codes. Function
codes can be considered extensions of the 32-bit linear address that optionally provide as
many as eight 4-Gbyte address spaces. Function codes are automatically generated by the
processor to select address spaces for data and program at the user and supervisor
privilege levels and a CPU address space for processor functions (e.g., coprocessor
communications). Registers SFC and DFC are used by certain instructions to explicitly
specify the function codes for operations.

The cache control register (CACR) controls the on-chip instruction and data caches of the
MC68030. The cache address register (CAAR) stores an address for cache control
functions.

The CPU root pointer (CRP) contains a pointer to the root of the translation tree for the
currently executing task of the MC68030. This tree contains the mapping information for the
task's address space. When the MC68030 is configured to provide a separate address
space for supervisor routines, the supervisor root pointer (SRP) contains a pointer to the root
of the translation tree describing the supervisor's address space.

The translation control register (TC) consists of several fields that control address
translation. These fields enable and disable address translation, enable and disable the use
of SRP for the supervisor address space, and select or ignore the function codes in
translating addresses. Other fields define the size of memory pages, the number of address
bits used in translation, and the translation table structure.

The transparent translation registers, TT0 and TT1, can each specify separate blocks of
memory as directly accessible without address translation. Logical addresses in these areas
become the physical addresses for memory access. Function codes and the eight most
significant bits of the address can be used to define the area of memory and type of access;
either read, write, or both types of memory access can be directly mapped. The transparent
translation feature allows rapid movement of large blocks of data in memory or I/O space
without disturbing the context of the on-chip address translation cache or incurring delays
associated with translation table lookups. This feature is useful to graphics, controller, and
real-time applications.

Figure 1-4. Status Register

T1 T0 S M 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE
ENABLE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER
STATE

MASTER/INTERRUPT
STATE EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-9

The MMU status register (MMUSR) contains memory management status information
resulting from a search of the address translation cache or the translation tree for a particular
logical address.

1.4 DATA TYPES AND ADDRESSING MODES

Seven basic data types are supported:

1. Bits

2. Bit Fields (Fields of consecutive bits, 1–32 bits long)

3. BCD Digits (Packed: 2 digits/byte, Unpacked: 1 digit/byte)

4. Byte Integers (8 bits)

5. Word Integers (16 bits)

6. Long-Word Integers (32 bits)

7. Quad-Word Integers (64 bits)

In addition, the instruction set supports operations on other data types such as memory
addresses. The coprocessor mechanism allows direct support of floating-point operations
with the MC68881 and MC68882 floating-point coprocessors as well as specialized user-
defined data types and functions.

The 18 addressing modes, shown in Table 1-1, include nine basic types:

1. Register Direct

2. Register Indirect

3. Register Indirect with Index

4. Memory Indirect

5. Program Counter Indirect with Displacement

6. Program Counter Indirect with Index

7. Program Counter Memory Indirect

8. Absolute

9. Immediate

The register indirect addressing modes can also postincrement, predecrement, offset, and
index addresses. The program counter relative mode also has index and offset capabilities.
As in the MC68020, both modes are extended to provide indirect reference through memory.
In addition to these addressing modes, many instructions implicitly specify the use of the
condition code register, stack pointer, and/or program counter.

1.5 INSTRUCTION SET OVERVIEW

The instructions in the MC68030 instruction set are listed in Table 1-2. The instruction set
has been tailored to support structured high-level languages and sophisticated operating
systems. Many instructions operate on bytes, words, or long words, and most instructions
can use any of the 18 addressing modes.

Introduction

1-10

MC68030 USER’S MANUAL

MOTOROLA

NOTES:
Dn = Data Register, D0–D7
An = Address Register, A0–A7

8,

d

16 = A twos-complement or sign-extended displacement; added as part of the effective address
calculation; size is 8 (d

8

) or 16 (d

16

) bits; when omitted, assemblers use a value of zero.
Xn = Address or data register used as an index register; form is Xn.SIZE*SCALE, where SIZE is .W

or .L indicates index register size) and SCALE is 1, 2, 4, or 8 (index register is multiplied by
SCALE); use of SIZE and/or SCALE is optional.

bd = A twos-complement base displacement;when present, size can be 16 or 32 bits.
od = Outer displacement, added as part of effective address calculation after any memory

indirection; use is optional with asize of 16 or 32 bits.
PC = Program Counter

(data) = Immediate value of 8, 16, or 32 bits
() = Effective Address
[] = Use as indirect access to long-word address.

Table 1-1. Addressing Modes

Addressing Modes Syntax

Register Direct
Data Register Direct
Address Register Direct

Dn
An

Register Indirect
Address Register Indirect
Address Register Indirect with Postincrement
Address Register Indirect with Predecrement
Address Register Indirect with Displacement

(An)
(An)
–(An)
(d

16

,An)

Register Indirect with Index
Address Register Indirect with Index (8-BitDisplacement)
Address Register Indirect with Index (Base Displacement)

(d

8

,An,Xn)
(bd,An,Xn)

Memory Indirect
Memory Indirect Postindexed
Memory Indirect Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect with Displacement (d

16

,PC)

Program Cou nter Indirect with IndexPC Indirect with Index (8-Bit
Displacement)
PC Indirect with Index (Base Displacement)

(d

8

,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
PC Memory Indirect Postindexed
PC Memory Indirect Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute
Absolute Short
Absolute Long

(xxx).W
(xxx).L

Immediate #(data)

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-11

1.6 VIRTUAL MEMORY AND VIRTUAL MACHINE CONCEPTS

The full addressing range of the MC68030 is 4 Gbytes (4,294,967,296 bytes) in each of eight
address spaces. Even though most systems implement a smaller physical memory, the
system can be made to appear to have a full 4 Gbytes of memory available to each user
program by using virtual memory techniques.

In a virtual memory system, a user program can be written as if it has a large amount of
memory available, when the physical memory actually present is much smaller. Similarly, a
system can be designed to allow user programs to access devices that are not physically
present in the system, such as tape drives, disk drives, printers, terminals, and so forth. With
proper software emulation, a physical system can appear to be any other M68000 computer
system to a user program, and the program can be given full access to all of the resources
of that emulated system. Such an emulated system is called a virtual machine.

1.6.1 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical memory
that can be accessed directly by the processor and maintains an image of a much larger
virtual memory on a secondary storage device such as a large-capacity disk drive. When
the processor attempts to access a location in the virtual memory map that is not resident in
physical memory, a page fault occurs. The access to that location is temporarily suspended
while the necessary data is fetched from secondary storage and placed in physical memory.
The suspended access is then either restarted or continued.

The MC68030 uses instruction continuation to support virtual memory. When a bus cycle is
terminated with a bus error, the microprocessor suspends the current instruction and
executes the virtual memory bus error handler. When the bus error handler has completed
execution, it returns control to the program that was executing when the error was detected,
reruns the faulted bus cycle (when required), and continues the suspended instruction.

Introduction

1-12

MC68030 USER’S MANUAL

MOTOROLA

Table 1-2. Instruction Set

Mnemonic Description Mnemonic Description

ABCD Add Decimal with Extend MOVE USP Move User Stack Pointer
ADD Add MOVEC Move Control Register
ADDA Add Address MOVEM Move Multiple Registers
ADDI Add Immediate MOVEP Move Periphral
ADDQ Add Quick MOVEQ Move Quick
ADDX Add with Extend MOVES Move Alternate Address Space
AND Logical AND MULS Signed Multiply
ANDI Logical AND Immediate MULU Unsigned Multiply
ASL, ASR Arithmatic Shift Left and Right NBCD Negate Decimal with Extend
Bcc Branch Conditionally NEG Negate
BCHG Test Bit and Change NEGX Negate with Extend
BCLR Test Bit and Clear NOP No Operation
BFCHG Test Bit Feild and Change NOT Logical Compliment
BFCLR Test Bit Feild and Clear OR Logical Inclusive OR
BFEXTS Signed Bit Feild Extract ORI Logical Inclusive OR Immediate
BFEXTU Unsigned Bit Feild Extract ORI CCR Logical Inclusive OR Immediate to
BFFO Bit Feild Find First One Condition Codes
BFINS Bit Feild Insert ORI SR Logical Inclusive OR Immediate to
BFSET Test Bit Feild and Set Status Register
BFTST Test Bit Feild PACK Pack BCD
BKPT Breakpoint PEA Push Effective Address
BRA Branch PFLUSH Flush Entry(ies) in the ATC
BSET Test Bit and Set PFLUSHA Flush All Entries in the ATC
BSR Branch to Subroutine PLOADR, Load Entry into the ATC
BTST Test Bit PLOADW
CAS Compare and Swap Operands PMOVE Move to-from MMU Registers
CAS 2 Compare and Swap Dual Operands PMOVEFD Move to-from MMU Registers with
CHK Check Register Against Bound Flush Disable
CHK2 Check Register Against Upper and PTESTR Test a Logical Address

Lower Bounds PTESTW
CLR Clear RESET Reset External Devices
CMP Compare ROL, ROR Rotate Left and Right
CMPA Compare Address ROXL, ROXR Rotate With Extend Left and Right
CMPI Compare Immediate RTD Return and Deallocate
CMPM Compare Memory to Memory RTE Return from Exception
CMP2 Compare Registre Against Upper and RTR Return and Restore Codes

Lower Bounds RTS Return from Subroutine
DBcc Test Condition, Decrement and Branch SBCD Subtract Decimal With Extend
DIVS, DIVSL Signed Divide Scc Set Conditionally
DIVU, DIVUL Unsigned Divide STOP Stop
EOR Logical Exclusive OR SUB Subtract
EORI Logical Exclusive OR Immediate SUBA Subtract Immediate
EXG Exchange Registers SUBI Subtract Quick
EXT, EXTB Sign Extend SUBQ Subtract with Extend
ILLEGAL Take Illegal Instruction Trap SUBX Swap Register Words
JMP Jump SWAP Test Operand and Set
JSR Jump to Subroutine TAS Trap
LEA Load Effective Address TRAP Trap Conditionally
LINK Link and Allocate TRAPcc Trap on Overflow
LSL, LSR Logical Shift Left and Right TRAPV Test on Overflow
MOVE Move TST Test Operand
MOVEA Move Address UNLK

UNPK
Unlink
Unpack BCD

MOVE CCR Move Condition Code Register
MOVE SR Move Status Register

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-13

1.6.2 Virtual Machine

A typical use for a virtual machine system is the development of software, such as an
operating system, for a new machine also under development and not yet available for
programming use. In a virtual machine system, a governing operating system emulates the
hardware of the new machine and allows the new software to be executed and debugged
as though it were running on the new hardware. Since the new software is controlled by the
governing operating system, it is executed at a lower privilege level than the governing
operating system. Thus, any attempts by the new software to use virtual resources that are
not physically present (and should be emulated) are trapped to the governing operating
system and performed by its software.

In the MC68030 implementation of a virtual machine, the virtual application runs at the user
privilege level. The governing operating system executes at the supervisor privilege level
and any attempt by the new operating system to access supervisor resources or execute
privileged instructions causes a trap to the governing operating system.

Instruction continuation is used to support virtual I/O devices in memory-mapped input/
output systems. Control and data registers for the virtual device are simulated in the memory
map. An access to a virtual register causes a fault and the function of the register is
emulated by software.

Mnemonic Description Mnemonic Description

cpBcc
cpDBcc

cpGEN

Branch Conditionally
Test Coprocessor Condition,

Decrement and Branch
Coprocessor General Instruction

cpRESTORE
cpSAVE
cpScc
cpTRAPcc

Restore Internal State of Coprocessor
Save Internal State of Coprocessor
Set Conditionally
Trap Conditionally

Introduction

1-14

MC68030 USER’S MANUAL

MOTOROLA

1.7 THE MEMORY MANAGEMENT UNIT

The MMU supports virtual memory systems by translating logical addresses to physical ad-
dresses using translation tables stored in memory. The MMU stores address mappings in
an address translation cache (ATC) that contains the most recently used translations. When
the ATC contains the address for a bus cycle requested by the CPU, a translation table
search is not performed. Features of the MMU include:

• Multiple Level Translation Tables with Short- and Long-Format Descriptors for Efficient
Table Space Usage

• Table Searches Automatically Performed in Microcode

• 22-Entry Fully Associative ATC

• Address Translations and Internal Instruction and Data Cache Accesses Performed in
Parallel

• Eight Page Sizes Available Ranging from 256 to 32K Bytes

• Two Optional Transparent Blocks

• User and Supervisor Root Pointer Registers

• Write Protection and Supervisor Protection Attributes

• Translations Enabled/Disabled by Software

• Translations Can Be Disabled with External MMUDIS Signal

• Used and Modified Bits Automatically Maintained in Tables and ATC

• Cache Inhibit Output (CIOUT) Signal Can Be Asserted on a Page-by-Page Basis

• 32-Bit Internal Logical Address with Capability To Ignore as many as 15 Upper Address
Bits

• 3-Bit Function Code Supports Separate Address Spaces

• 32-Bit Physical Address

The memory management function performed by the MMU is called demand paged memory
management. Since a task specifies the areas of memory it requires as it executes, memory
allocation is supported on a demand basis. If a requested access to memory is not currently
mapped by the system, then the access causes a demand for the operating system to load
or allocate the required memory image. The technique used by the MC68030 is paged
memory management because physical memory is managed in blocks of a specified
number of bytes, called page frames. The logical address space is divided into fixed-size
pages that contain the same number of bytes as the page frames. Memory management
assigns a physical base address to a logical page. The system software then transfers data
between secondary storage and memory one or more pages at a time.

Introduction

MOTOROLA

MC68030 USER’S MANUAL

1-15

1.8 PIPELINED ARCHITECTURE

The MC68030 uses a three-stage pipelined internal architecture to provide for optimum
instruction throughput. The pipeline allows as many as three words of a single instruction or
three consecutive instructions to be decoded concurrently.

1.9 THE CACHE MEMORIES

Due to locality of reference, instructions and data that are used in a program have a high
probability of being reused within a short time. Additionally, instructions and data operands
that reside in proximity to the instructions and data currently in use also have a high
probability of being utilized within a short period. To exploit these locality characteristics, the
MC68030 contains two on-chip logical caches, a data cache, and an instruction cache.

Each of the caches stores 256 bytes of information, organized as 16 entries, each containing
a block of four long words (16 bytes). The processor fills the cache entries either one long
word at a time or, during burst mode accesses, four long words consecutively. The burst
mode of operation not only fills the cache efficiently but also captures adjacent instruction or
data items that are likely to be required in the near future due to locality characteristics of
the executing task.

The caches improve the overall performance of the system by reducing the number of bus
cycles required by the processor to fetch information from memory and by increasing the
bus bandwidth available for other bus masters in the system. Addition of the data cache in
the MC68030 extends the benefits of cache techniques to all memory accesses. During a
write cycle, the data cache circuitry writes data to a cached data item as well as to the item
in memory, maintaining consistency between data in the cache and that in memory.
However, writing data that is not in the cache may or may not cause the data item to be
stored in the cache, depending on the write allocation policy selected in the cache control
register (CACR).

MOTOROLA

MC68030 USER’S MANUAL

2-1

SECTION 2
DATA ORGANIZATION AND ADDRESSING
CAPABILITIES

Most external references to memory by a microprocessor are either program references or
data references; they either access instruction words or operands (data items) for an
instruction. Program references are references to the program space, the section of memory
that contains the program instructions and any immediate data operands that reside in the
instruction stream. Refer to M68000PM/AD,

M68000 Programmer's Reference Manual

, for
descriptions of the instructions in the program space. Data references refer to the data
space, the section of memory that contains the program data. Data items in the instruction
stream can be accessed with the program counter relative addressing modes, and these
accesses are classified as program references. A third type of external reference used for
coprocessor communications, interrupt acknowledge cycles, and breakpoint acknowledge
cycles is classified as a CPU space reference. The MC68030 automatically sets the function
codes to access the program space, the data space, or the CPU space for special functions
as required. The function codes can be used by the memory management unit to organize
separate program (read only) and data (read-write) memory areas.

This section describes the data organization and addressing capabilities of the MC68030. It
lists the types of operands used by instructions and describes the registers and their use as
operands. Next, the section describes the organization of data in memory and the
addressing modes available to access data in memory. Last, the section describes the
system stack and user program stacks and queues.

2.1 INSTRUCTION OPERANDS

The MC68030 supports a general-purpose set of operands to serve the requirements of a
large range of applications. Operands of MC68030 instructions may reside in registers, in
memory, or within the instructions themselves. An instruction operand might also reside in
a coprocessor. An operand may be a single bit, a bit field of from 1 to 32 bits in length, a byte
(8 bits), a word (16 bits), a long word (32 bits), or a quad word (64 bits). The operand size
for each instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation. Coprocessors are designed to support special computation models
that require very specific but widely varying data operand types and sizes. Hence,
coprocessor instructions can specify operands of any size.

Data Organization and Addressing Capabilities

2-2

MC68030 USER’S MANUAL

MOTOROLA

2.2 ORGANIZATION OF DATA IN REGISTERS

The eight data registers can store data operands of 1, 8, 16, 32, and 64 bits, addresses of
16 or 32 bits, or bit fields of 1 to 32 bits. The seven address registers and the three stack
pointers are used for address operands of 16 or 32 bits. The control registers (SR, VBR,
SFC, DFC, CACR, CAAR, CRP, SRP, TC, TT0, TT1, and MMUSR) vary in size according
to function. Coprocessors may define unique operand sizes and support them with on-chip
registers accordingly.

2.2.1 Data Registers

Each data register is 32 bits wide. Byte operands occupy the low-order 8 bits, word
operands the low-order 16 bits, and long-word operands the entire 32 bits. When a data
register is used as either a source or destination operand, only the appropriate low-order
byte or word (in byte or word operations, respectively) is used or changed; the remaining
high-order portion is neither used nor changed. The least significant bit of a long-word
integer is addressed as bit zero, and the most significant bit is addressed as bit 31. For bit
fields, the most significant bit is addressed as bit zero, and the least significant bit is
addressed as the width of the field minus one. If the width of the field plus the offset is greater
than 32, the bit field wraps around within the register. The following illustration shows the
organization of various types of data in the data registers.

Quad-word data consists of two long words; for example, the product of 32-bit multiply or
the quotient of 32-bit divide operations (signed and unsigned). Quad words may be
organized in any two data registers without restrictions on order or pairing. There are no
explicit instructions for the managment of this data type, although the MOVEM instruction
can be used to move a quad word into or out of the registers.

Binary-coded decimal (BCD) data represents decimal numbers in binary form. Although
many BCD codes have been devised, the BCD instructions of the M68000 Family support
formats which the four least significant bits consist of a binary number having the numeric
value of the corresponding decimal number. Two BCD formats are used. In the unpacked
BCD format, a byte contains one digit; the four least significant bits contain the binary value
and the four most significant bits are undefined. Each byte of the packed BCD format
contains two digits; the least significant four bits contain the least significant digit.

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-3

Note: If width + offset < 32, bit filed wraps around within the register.

Data Organization in Data Registers

Bit

≤

 (0 Modulo (Offset)<31, Offset of 0 = MSB)

31 30 29 1 0

MSB

• • •

LSB

Byte

31 24 23 16 15 8 7 0

High-Order Byte Middle-High Byte Middle-Low Byte Low-Order Byte

16-Bit Word

31 16 15 0

High-Order Word Low-Order Word

Long Word

31 0

Long Word

Quad Word

63 62 32

MSB Any Dx

31 0

Offset MSB

• • •

LSB

Bit Field (0

≤

 Offset<32, 0<Width

≤

 32)

31 0

Long Word

Unpacked BCD (a = MSB)

31 8 7 6 5 4 3 2 1 0

x x x x a b c d

Packed BCD (a = MSB First Digit, e = MSB Second Digit)

31 8 7 6 5 4 3 2 1 0

a b c d e f g h

Data Organization and Addressing Capabilities

2-4

MC68030 USER’S MANUAL

MOTOROLA

2.2.2 Address Registers

Each address register and stack pointer is 32 bits wide and holds a 32-bit address. Address
registers cannot be used for byte-sized operands. Therefore, when an address register is
used as a source operand, either the low-order word or the entire long-word operand is
used, depending upon the operation size. When an address register is used as the
destination operand, the entire register is affected, regardless of the operation size. If the
source operand is a word size, it is first sign-extended to 32 bits and then used in the
operation to an address register destination. Address registers are used primarily for
addresses and to support address computation. The instruction set includes instructions
that add to, subtract from, compare, and move the contents of address registers. The
following example shows the organization of addresses in address registers.

Address Organization in Address Registers

2.2.3 Control Registers

The control registers described in this section contain control information for supervisor
functions and vary in size. With the exception of the user portion of the status register (CCR),
they are accessed only by instructions at the supervisor privilege level.

The status register (SR), shown in Figure 1–4, is 16 bits wide. Only 12 bits of the status
register are defined; all undefined values are reserved by Motorola for future definition. The
undefined bits are read as zeros and should be written as zeros for future compatibility. The
lower byte of the status register is the CCR. Operations to the CCR can be performed at the
supervisor or user privilege level. All operations to the status register and CCR are word-
sized operations, but for all CCR operations, the upper byte is read as all zeros and is
ignored when written, regardless of privilege level.

31 16 15 0
Sign-Extended 16-Bit Address Operand

31 0
Full 32-Bit Address Operand

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-5

The supervisor programming model (see Figure 1–3) shows the control registers. The cache
control register (CACR) provides control and status information for the on-chip instruction
and data caches. The cache address register (CAAR) contains the address for cache control
functions. The vector base register (VBR) provides the base address of the exception vector
table. All operations involving the CACR, CAAR, and VBR are long-word operations,
whether these registers are used as the source or the destination operand.

The alternate function code registers (SFC and DFC)

 are 32-bit registers with only bits 2:0 implemented that contain the address space values
(FC0-FC2) for the read or write operands of MOVES, PLOAD, PFLUSH, and PTEST
instructions. The MOVEC instruction is used to transfer values to and from the alternate
function code registers. These are long-word transfers; the upper 29 bits are read as zeros
and are ignored when written.

The remaining control registers in the supervisor programming model are used by the
memory management unit (MMU). The CPU root pointer (CRP) and supervisor root pointer
(SRP) contain pointers to the user and supervisor address translation trees. Transfers of
data to and from these 64-bit registers are quad-word transfers. The translation control
register (TC) contains control information for the MMU. The MC68030 always uses long-
word transfers to access this 32-bit register. The transparent translation registers (TT0 and
TT1) also contain 32 bits each; they identify memory areas for direct addressing without
address translation. Data transfers to and from these registers are long-word transfers. The
MMU status register (MMUSR) stores the status of the MMU after execution of a PTEST
instruction. It is a 16-bit register, and transfers to and from the MMUSR are word transfers.
Refer to

Section 9 Memory Management Unit

 for more detail.

2.3 ORGANIZATION OF DATA IN MEMORY

Memory is organized on a byte-addressable basis where lower addresses correspond to
higher order bytes. The address, N, of a long-word data item corresponds to the address of
the most significant byte of the highest order word. The lower order word is located at
address N + 2, leaving the least significant byte at address N + 3 (refer to Figure 2–1). Notice
that the MC68030 does not require data to be aligned on word boundaries (refer to Figure
2–2), but the most efficient data transfers occur when data is aligned on the same byte
boundary as its operand size. However, instruction words must be aligned on word
boundaries.

Data Organization and Addressing Capabilities

2-6

MC68030 USER’S MANUAL

MOTOROLA

The data types supported in memory by the MC68030 are bit and bit field data; integer data
of 8, 16, or 32 bits; 32-bit addresses; and BCD data (packed and unpacked). These data
types are organized in memory as shown in Figure 2–2. Note that all of these data types can
be accessed at any byte address.

Coprocessors can implement any data types and lengths up to 255 bytes. For example, the
MC68881/MC68882 floating-point coprocessors support memory accesses for quad-word-
sized items (double-precision floating-point values).

Figure 2A bit operand is specified by a base address that selects one byte in memory (the
base byte) and a bit number that selects the one bit in this byte. The most significant bit of
the byte is bit 7.

Figure 2-1. Memory Operand Address

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-7

Figure 2-2. Memory Data Organization

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 77 0 7 0 7 0

0 7 0 7 0 7 0

BYTE n - 1 BYTE n + 17 6 5 4 3 2 1 0 BYTE n + 2

BASE ADDRESS BIT NUMBER

BIT DATA

BYTE n - 1

BIT FIELD DATA BASE BIT

BYTE n 0 1 2 3 w - 1

WIDTHOFFSETOFFSET
 ...3-2-1 0 1 2...
BASE ADDRESS

BYTE n - 1 BYTE n + 2

BYTE INTEGER DATA

BYTE n + 1MSB BYTE n LSB

ADDRESS

WORD INTEGER BYTE n + 2 BYTE n + 3

ADDRESS

WORD INTEGER DATA
7077 0

70 0 7 0 7 07077 0

 LONG-WORD INTEGER BYTE n + 4

70 0 7 0 7 07077 0

ADDRESS

BYTE n - 1

 QUAD WORD
BYTE n + 8

BYTE n - 1

QUAD-WORD DATA

BYTE n - 1 BYTE n + 2BYTE n + 1MSD LSD

ADDRESS

PACKED BINARY-CODED DATA

4 3

BYTE n - 1 BYTE n + 2XX MSD

ADDRESS

4 3

XX LSD

4 3

XX = USER DEFINED VALUE

ADDRESS

UNPACKED BINARY-CODED DATA

BYTE n - 1

Data Organization and Addressing Capabilities

2-8

MC68030 USER’S MANUAL

MOTOROLA

A bit field operand is specified by:

1. A base address that selects one byte in memory,

2. A bit field offset that indicates the leftmost (base) bit of the bit field in relation to the
most significant bit of the base byte, and

3. A bit field width that determines how many bits to the right of the base bit are in the bit
field.

The most significant bit of the base byte is bit field offset 0, the least significant bit of the
base byte is bit field offset 7, and the least significant bit of the previous byte in memory is
bit offset –1. Bit field offsets may have values in the range of –2

31

 to 2

31

–1, and bit field
widths may range between 1 and 32 bits.

2.4 ADDRESSING MODES

The addressing mode of an instruction can specify the value of an operand (with an
immediate operand), a register that contains the operand (with the register direct addressing
mode), or how the effective address of an operand in memory is derived. An assembler
syntax has been defined for each addressing mode.

Figure 2–3 shows the general format of the single effective address instruction operation
word. The effective address field specifies the addressing mode for an operand that can use
one of the numerous defined modes. The (eaL designation is composed of two 3-bit fields:
the mode field and the register field. The value in the mode field selects one or a set of
addressing modes. The register field specifies a register for the mode or a submode for
modes that do not use registers.

Figure 2-3. Single Effective Address

Many instructions imply the addressing mode for one of the operands. The formats of these
instructions include appropriate fields for operands that use only one addressing mode.

15 14 13 12 11 10 9 8 7 6 5 0

X X X X X X X X X X
EFFECTIVE ADDRESS

MODE REGISTER

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-9

The effective address field may require additional information to fully specify the operand
address. This additional information, called the effective address extension, is contained in
an additional word or words and is considered part of the instruction. Refer to

 2.5 Effective
Address Encoding Summary

 for a description of the extension word formats.

The notational conventions used in the addressing mode descriptions in this section are:

EA — Effective address
An — Address register n

Example: A3 is address register 3
Dn — Data register n

Example: D5 is data register 5
Xn.SIZE*SCALE — Denotes index register n (data or address), the index size

(W for word, L for long word), and a scale factor (1, 2, 4,
or 8 for no, word, long-word, or quad-word scaling, respectively).

PC — The program counter
d

n

— Displacement value, n bits wide
bd — Base displacement
od — Outer displacement
L — Long-word size

W — Word size
() — Identify an indirect address in a register
[] — Identify an indirect address in memory

When the addressing mode uses a register, the register field of the operation word specifies
the register to be used. Other fields within the instruction specify whether the register
selected is an address or data register and how the register is to be used.

2.4.1 Data Register Direct Mode

In the data register direct mode, the operand is in the data register specified by the effective
address register field.

OPERAND

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
DATA REGISTER:
NUMBER OF EXTENSION WORDS:

EA = Dn
Dn
000
n
Dn
0

31 0

OPERAND

Data Organization and Addressing Capabilities

2-10

MC68030 USER’S MANUAL

MOTOROLA

2.4.2 Address Register Direct Mode

In the address register direct mode, the operand is in the address register specified by the
effective address register field.

2.4.3 Address Register Indirect Mode

In the address register indirect mode, the operand is in memory, and the address of the
operand is in the address register specified by the register field.

2.4.4 Address Register Indirect with Postincrement Mode

In the address register indirect with postincrement mode, the operand is in memory, and the
address of the operand is in the address register specified by the register field. After the
operand address is used, it is incremented by one, two, or four depending on the size of the
operand: byte, word, or long word. Coprocessors may support incrementing for any size of
operand up to 255 bytes. If the address register is the stack pointer and the operand size is
byte, the address is incremented by two rather than one to keep the stack pointer aligned to
a word boundary.

31 0

OPERAND

EA = An
An
001
n
An
0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:
NUMBER OF EXTENSION WORDS:

31 0

31 0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (An)
(An)
010
n
An

OPERAND

MEMORY ADDRESS

0

31 0

31 0

+

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

OPERAND LENGTH (1, 2, OR 4):

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

0

EA = (An)
An = An + SIZE
(An) +
011
n
An

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-11

2.4.5 Address Register Indirect with Predecrement Mode

In the address register indirect with predecrement mode, the operand is in memory, and the
address of the operand is in the address register specified by the register field. Before the
operand address is used, it is decremented by one, two, or four depending on the operand
size: byte, word, or long word. Coprocessors may support decrementing for any operand
size up to 255 bytes. If the address register is the stack pointer and the operand size is byte,
the address is decremented by two rather than one to keep the stack pointer aligned to a
word boundary.

31 0

31 0

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 0

OPERAND LENGTH (1, 2, OR 4):

An = An – SIZE
EA = (An)

 – (An)
100
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

Data Organization and Addressing Capabilities

2-12

MC68030 USER’S MANUAL

MOTOROLA

2.4.6 Address Register Indirect with Displacement Mode

In the address register indirect with displacement mode, the operand is in memory. The
address of the operand is the sum of the address in the address register plus the sign-
extended 16-bit displacement integer in the extension word. Displacements are always sign-
extended to 32 bits prior to being used in effective address calculations.

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

This addressing mode requires one extension word that contains the index register indicator
and an 8-bit displacement. The index register indicator includes size and scale information.
In this mode, the operand is in memory. The address of the operand is the sum of the
contents of the address register, the sign-extended displacement value in the low-order
eight bits of the extension word, and the sign-extended contents of the index register
(possibly scaled). The user must specify the displacement, the address register, and the
index register in this mode.

31 0

31 0

EA = (An) + d
(d ,An)
101
n
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

OPERAND

+SIGN EXTENDED INTEGER

031 15

16
16

MEMORY ADDRESS

DISPLACEMENT:

31 0

31 0

31 0

MEMORY ADDRESS

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

EA = (An) + (XN) + d
(d ,An,Xn.SIZE*SCALE)
110
n
An

GENERATION:

ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

INTEGER

SIGN-EXTENDED VALUE

SCALE VALUE

+
0

0

+X

31

DISPLACEMENT:

INDEX REGISTER

SCALE:

1

7 0

7

SIGN EXTENDED

8
8

31

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-13

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

This addressing mode requires an index register indicator and an optional 16- or 32-bit sign-
extended base displacement. The index register indicator includes size and scaling
information. The operand is in memory. The address of the operand is the sum of the
contents of the address register, the scaled contents of the sign-extended index register,
and the base displacement.

In this mode, the address register, the index register, and the displacement are all optional.
If none is specified, the effective address is zero. This mode provides a data register indirect
address when no address register is specified and the index register is a data register (Dn).

31 0

31 0

31 0

31 0

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, OR 3

EA = (An) + (Xn) + bd
(bd,An,Xn.SIZE*SCALE)
110
n
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
ADDRESS REGISTER:

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+X

BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

7 0

Data Organization and Addressing Capabilities

2-14

MC68030 USER’S MANUAL

MOTOROLA

2.4.9 Memory Indirect Postindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An) and base displacement
(bd). The processor accesses a long word at this address and adds the index operand
(Xn.SIZE*SCALE) and the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + An) + Xn.SIZE*SCALE + od
([bd,An],Xn.SIZE*SCALE,od)
110
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
ADDRESS REGISTER:

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+

31 0

BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY ADDRESS

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-15

2.4.10 Memory Indirect Preindexed Mode

In this mode, the operand and its address are in memory. The processor calculates an
intermediate indirect memory address using the base register (An), a base displacement
(bd), and the index operand (Xn.SIZE * SCALE). The processor accesses a long word at
this address and adds the outer displacement to yield the effective address. Both
displacements and the index register contents are sign-extended to 32 bits.

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. Both the base and outer
displacements may be null, word, or long word. When a displacement is omitted or an
element is suppressed, its value is taken as zero in the effective address calculation.

31 0

SIGN-EXTENDED VALUE

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + An + Xn.SIZE*SCALE) + od
([bd,An,Xn.SIZE*SCALE],od)
110
An

GENERATION:
ASSEMBLER SYNTAX:
MODE:
ADDRESS REGISTER:

SCALE VALUE

OPERAND

+

7

+BASE DISPLACEMENT:

INDEX REGISTER:

SCALE:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY ADDRESS

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

 OUTER DISPLACEMENT:

0

Data Organization and Addressing Capabilities

2-16

MC68030 USER’S MANUAL

MOTOROLA

2.4.11 Program Counter Indirect with Displacement Mode

In this mode, the operand is in memory. The address of the operand is the sum of the
address in the PC and the sign-extended 16-bit displacement integer in the extension word.
The value in the PC is the address of the extension word. The reference is a program space
reference and is only allowed for reads (refer to

4.2 Address Space Types

).

2.4.12 Program Counter Indirect with Index (8-Bit Displacement) Mode

This mode is similar to the address register indirect with index (8-bit displacement) mode
described in

2.4.7 Address Register Indirect with Index (8-Bit Displacement) Mode

, but
the PC is used as the base register. The operand is in memory. The address of the operand
is the sum of the address in the PC, the sign-extended displacement integer in the lower
eight bits of the extension word, and the sized, scaled, and sign-extended index operand.
The value in the PC is the address of the extension word. This reference is a program space
reference and is only allowed for reads. The user must include the displacement, the PC,
and the index register when specifying this addressing mode.

31 0

31 0

EA = (PC) + d
d ,PC)
111
010

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

OPERAND

+ SIGN EXTENDED

031 15

16
16

 ADDRESS OF EXTENSION WORD

DISPLACEMENT: INTEGER

31 0

31 0

31 0

31 0

EA = (PC) + (Xn) + d
(d , PC,Xn. SIZE*SCALE)
111
011

+

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

INTEGER

SIGN-EXTENDED VALUE

SCALE VALUE +X

DISPLACEMENT:

INDEX REGISTER

SCALE:

1

ADDRESS OF EXTENSION WORD

SIGN EXTENDED

7

8
8

7 0

Data Organization and Addressing Capabilities

MOTOROLA

MC68030 USER’S MANUAL

2-17

2.4.13 Program Counter Indirect with Index (Base Displacement) Mode

This mode is similar to the address register indirect with index (base displacement) mode
described in

2.4.8 Address Register Indirect with Index (Base Displacement) Mode

, but
the PC is used as the base register. It requires an index register indicator and an optional
16- or 32-bit sign-extended base displacement. The operand is in memory. The address of
the operand is the sum of the contents of the PC, the scaled contents of the sign-extended
index register, and the base displacement. The value of the PC is the address of the first
extension word. The reference is a program space reference and is only allowed for reads
(refer to

4.2 Address Space Types

).

In this mode, the PC, the index register, and the displacement are all optional. However, the
user must supply the assembler notation "ZPC'' (zero value is taken for the PC) to indicate
that the PC is not used. This allows the user to access the program space without using the
PC in calculating the effective address. The user can access the program space with a data
register indirect access by placing ZPC in the instruction and specifying a data register (Dn)
as the index register.

31 0

31 0

31 0

31 0

 EA = (PC) + (Xn) + bd
(bd, PC, Xn. SIZE*SCALE)
111
011

+

OPERANDMEMORY ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE +X

 BASE DISPLACEMENT:

INDEX REGISTER

SCALE:

1, 2 OR 3

ADDRESS OF EXTENSION WORD

SIGN-EXTENDED VALUE

07

Data Organization and Addressing Capabilities

2-18 MC68030 USER’S MANUAL MOTOROLA

2.4.14 Program Counter Memory Indirect Postindexed Mode
This mode is similar to the memory indirect postindexed mode described in 2.4.9 Memory
Indirect Postindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding a base displacement (bd) to the PC contents. The processor accesses a
long word at that address and adds the scaled contents of the index register and the optional
outer displacement (od) to yield the effective address. The value of the PC used in the
calculation is the address of the first extension word. The reference is a program space
reference and is only allowed for reads (refer to 4.2 Address Space Types).

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. However, the user must supply
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not
used. This allows the user to access the program space without using the PC in calculating
the effective address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value is taken as
zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

EFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS: 1,2, 3, 4, OR 5

EA = (bd + PC) + Xn.SIZE*SCALE + od
([bd, PC], Xn.SIZE*SCALE,od)
111
011

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE

OPERAND

+

+

31 0

BASE DISPLACEMENT:

INDEX REGISTER:

MEMORY ADDRESS

INDIRECT MEMORY ADDRESS

VALUE AT INDIRECT MEMORY
ADDRESS IN PROGRAM SPACE

POINTS TO

SIGN-EXTENDED VALUE

SIGN-EXTENDED VALUE

+X

 OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-19

2.4.15 Program Counter Memory Indirect Preindexed Mode
This mode is similar to the memory indirect preindexed mode described in 2.4.10 Memory
Indirect Preindexed Mode, but the PC is used as the base register. Both the operand and
operand address are in memory. The processor calculates an intermediate indirect memory
address by adding the PC contents, a base displacement (bd), and the scaled contents of
an index register. The processor accesses a long word at that address and adds the optional
outer displacement (od) to yield the effective address. The value of the PC is the address of
the first extension word. The reference is a program space reference and is only allowed for
reads (refer to 4.2 Address Space Types).

In the syntax for this mode, brackets enclose the values used to calculate the intermediate
memory address. All four user-specified values are optional. However, the user must supply
the assembler notation ZPC (zero value is taken for the PC) to indicate that the PC is not
used. This allows the user to access the program space without using the PC in calculating
the effective address. Both the base and outer displacements may be null, word, or long
word. When a displacement is omitted or an element is suppressed, its value is taken as
zero in the effective address calculation.

31 0

31 0

31 0

31 0

31 0

31 0

31 0

 EA = (bd + PC + Xn . SIZE * SCALE) + od
([bd, PC, Xn. SIZE*SCALE],od)
111
011

+

OPERANDEFFECTIVE ADDRESS:
NUMBER OF EXTENSION WORDS:

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
PROGRAM COUNTER:

SIGN-EXTENDED VALUE

SCALE VALUE +X

 BASE DISPLACEMENT:

INDEX REGISTER

1, 2, 3, 4 OR 5

ADDRESS OF EXTENSION WORD

SIGN-EXTENDED VALUE

INDIRECT MEMORY ADDRESS

POINTS TO

VALUE AT INDIRECT MEMORY
ADDRESS IN PROGRAM SPACE

SIGN-EXTENDED VALUE +OUTER DISPLACEMENT:

07

Data Organization and Addressing Capabilities

2-20 MC68030 USER’S MANUAL MOTOROLA

2.4.16 Absolute Short Addressing Mode
In this addressing mode, the operand is in memory, and the address of the operand is in the
extension word. The 16-bit address is sign-extended to 32 bits before it is used.

2.4.17 Absolute Long Addressing Mode
In this mode, the operand is in memory, and the address of the operand occupies the two
extension words following the instruction word in memory. The first extension word contains
the high-order part of the address; the low-order part of the address is the second extension
word.

31 0

31 0
OPERAND

MEMORY ADDRESSSIGN EXTENDED

15

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
EXTENSION WORD:

EA GIVEN
(xxx).W
111
000

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 1

31 0

31 0

GENERATION:
ASSEMBLER SYNTAX:
MODE:
REGISTER FIELD:
FIRST EXTENSION WORD:

EA GIVEN
(xxx).L
111
001

CONCATENATION

OPERAND

SECOND EXTENSION WORD:

MEMORY ADDRESS:
NUMBER OF EXTENSION WORDS: 2

ADDRESS HIGH

ADDRESS LOW

0

015

15

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-21

2.4.18 Immediate Data
In this addressing mode, the operand is in one or two extension words:

Byte Operation

Operand is in the low-order byte of the extension word

Word Operation

Operand is in the extension word

Long-Word Operation

The high-order 16 bits of the operand are in the first extension word; the low-order 16
bits are in the second extension word.

Coprocessor instructions can support immediate data of any size. The instruction word is
followed by as many extension words as are required.

Generation: Operand given
Assembler Syntax: #xxx
Mode Field: 111
Register Field: 100
Number of Extension Words: 1 or 2, except for coprocessor instructions

Data Organization and Addressing Capabilities

2-22 MC68030 USER’S MANUAL MOTOROLA

2.5 EFFECTIVE ADDRESS ENCODING SUMMARY
Most of the addressing modes use one of the three formats shown in Figure 2–4. The single
effective address instruction is in the format of the instruction word. The encoding of the
mode field of this word selects the addressing mode. The register field contains the general
register number or a value that selects the addressing mode when the mode field contains
"111.'' Table 2–2 shows the encoding of these fields. Some indexed or indirect modes use
the instruction word followed by the brief format extension word. Other indexed or indirect
modes consist of the instruction word and the full format of extension words. The longest
instruction for the MC68030 contains 10 extension words. It is a MOVE instruction with full
format extension words for both source and destination effective addresses and with 32-bit
base displacements and 32-bit outer displacements for both addresses. However,
coprocessor instructions can have any number of extension words. Refer to the coprocessor
instruction formats in Section 10 Coprocessor Interface Description.

For effective addresses that use the full format, the index suppress (IS) bit and the index/
indirect selection (I/IS) field determine the type of indexing and indirection. Table 2–1 lists
the indexing and indirection operations corresponding to all combinations of IS and I/IS
values.

Table 2-1. IS–I/IS Memory Indirection Encodings

IS Index/Indirect Operation
0 000 No Memory Indirection
0 001 Indirect Preindexed with Null Outer Displacement
0 010 Indirect Preindexed with Word Outer Displacement
0 011 Indirect Preindexed with Long Outer Displacement
0 100 Reserved
0 101 Indirect Postindexed with Mull Outer Displacement
0 110 Indirect Postindexed with Word Outer Displacement
0 111 Indirect Postindexed with Long Outer Displacement
1 000 No Memory Indirection
1 001 Memory Indirect with Mull Outer Displacement
1 010 Memory Indirect with Word Outer Displacement
1 011 Memory Indirect with Long Outer Displacement
1 100–111 Reserved

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-23

Field Definition Field Definition

Instruction: BS Base Register Suppress:
Register General Register Number 0 = Base Register Added

Extensions: 1 = Base Register Suppressed
Register Index Register Number IS Index Suppress:
D/A Index Register Type 0 = Evaluate and Add Index

0 = Dn Operand
1 = An 1 = Suppress Index Operand

W/L Word/Long-Word Index Size BD SIZE Base Displacement Size:
0 = Sign-Extended Word 00 = Reserved
1 = Long Word 01 = Null Displacement

Scale Scale Factor 10 = Word Displacement
00 =1 11 Long Displacement
01 =2 I/IS Index/Indirect Selection
10 = 4 Indirect and Indexing Operand
11 = 8 Determined in Conjunction with

Bit 6, Index Suppress

Figure 2-4. Effective Address Specification Formats

Effective address modes are grouped according to the use of the mode. They can be
classified as follows:

Data A data addressing effective address mode is one that refers to data operands.

Memory A memory addressing effective address mode is one that refers to memory
operands.

Alterable An alterable addressing effective address mode is one that refers to alterable
(writable) operands.

Control A control addressing effective address mode is one that refers to memory
operands without an associated size.

Single Effective Address Instruction Format

15 14 13 12 11 10 9 8 7 6 5 0

X X X X X X X X X X
EFFECTIVE ADDRESS

MODE REGISTER

Brief Format Extension Word

15 14 12 11 10 9 8 7 0

D/A REGISTER W/L SCALE 0 DISPLACEMENT

Full Format Extension Word(s)

15 14 12 11 10 9 8 7 6 5 4 3 2 0
D/A REGISTER W/L SCALE 1 BS IS BD SIZE 0 I/IS

BASE DISPLACEMENT (0, 1, OR 2 WORDS)
OUTER DISPLACEMENT (0, 1, OR 2 WORDS)

Data Organization and Addressing Capabilities

2-24 MC68030 USER’S MANUAL MOTOROLA

Table 2–2 shows the categories to which each of the effective addressing modes belong.

These categories are sometimes combined, forming new categories that are more
restrictive. Two combined classifications are alterable memory or data alterable. The former
refers to those addressing modes that are both alterable and memory addresses, and the
latter refers to addressing modes that are both data and alterable.

2.6 PROGRAMMER`S VIEW OF ADDRESSING MODES
Extensions to the indexed addressing modes, indirection, and full 32-bit displacements
provide additional programming capabilities for both the MC68020 and the MC68030. This
section describes addressing techniques that exploit these capabilities and summarizes the
addressing modes from a programming point of view.

Addressing Modes Mode Register Data Memory Control Alterable
Assembler

Syntax
Data Register Direct 000 reg. no. X — — X Dn
Address Register Direct 001 reg. no. — — — X An
Address Register Indirect
Address Register Indirect

with Postincrement
Address Register Indirect

with Predecrement
Address Register Indirect

with Displacement

010

011

100

101

reg. no

reg. no.

reg. no.

reg. no.

X

X

X

X

X

X

X

X

X

—

—

X

X

X

X

X

(An)

(An)+

-(An)

(d16,An)

Address Register Indirect with
Index (8-Bit Displacement)

Address Register Indirect with
Index (Base Displacement)

Memory Indirect Postindexed
Memory Indirect Preindexed

110

110
110
110

reg. no.

reg. no.
reg. no
reg. no.

X

X
X
X

X

X
X
X

X

X
X
X

X

X
X
X

(d8,An,Xn)

(bd,An,Xn)
([bd,An],Xn,od)
([bd,An,Xn],od)

Absolute Short
Absolute Long

111
111

000
001

X
X

X
X

X
X

X
X

(xxx).W
(xxx).L

Program Counter Indirect
with Displacement

Program Counter Indirect
with Index (8-Bit) Displacement

Program Counter Indirect
with Index (Base Displacement)

PC Memory Indirect
Postindexed

PC Memory Indirect
Preindexed

111

111

111

111

111

010

011

011

011

011

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

—

—

—

—

—

(d16,PC)

(d8,PC,Xn)

(bd,PC,Xn)

([bd,PC],Xn,od)

([bd,PC,Xn],od)
Immediate 111 100 X X — — #〈data〉

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-25

Several of the addressing techniques described in this section use data registers and
address registers interchangeably. While the MC68030 provides this capability, its
performance has been optimized for addressing with address registers. The performance of
a program that uses address registers in address calculations is superior to that of a
program that similarly uses data registers.The performance has been optimized for
addressing registers in address calculations is superior to that of a program that similarly
uses data registers. The specification of addresses with data registers should be used
sparingly (if at all), particularly in programs that require maximum performance.

2.6.1 Addressing Capabilities
In both the MC68020 and the MC68030, setting the base register suppress (BS) bit in the
full format extension word (see Figure 2–4) suppresses use of the base address register in
calculating the effective address. This allows any index register to be used in place of the
base register. Since any of the data registers can be index registers, this provides a data
register indirect form (Dn). The mode could be called register indirect (Rn) since either a
data register or an address register can be used. This addressing mode is an extension to
the M68000 Family because the MC68030 and MC68020 can use both the data registers
and the address registers to address memory. The capabilities of specifying the size and
scale of an index register (Xn.SIZE*SCALE) in these modes provides additional addressing
flexibility. Using the SIZE parameter, either the entire contents of the index register can be
used, or the least significant word can be sign-extended to provide a 32-bit index value (refer
to Figure 2–5).

Figure 2-5. Using SIZE in the Index Selection

D1.L

D1.W

D1

D1

31

16 1531 0

0

USED IN ADDRESS CALCULATION

Data Organization and Addressing Capabilities

2-26 MC68030 USER’S MANUAL MOTOROLA

For both the MC68020 and the MC68030, the register indirect modes can be extended
further. Since displacements can be 32 bits wide, they can represent absolute addresses or
the results of expressions that contain absolute addresses. This allows the general register
indirect form to be (bd,Rn) or (bd,An,Rn) when the base register is not suppressed. Thus,
an absolute address can be directly indexed by one or two registers (refer to Figure 2–6).

Scaling provides an optional shifting of the value in an index register to the left by zero, one,
two, or three bits before using it in the effective address allocation (the actual value in the
index register remains unchanged). This is equivalent to multiplying the register by one, two,
four, or eight or direct subscripting into an array of elements of corresponding size using an
arithmetic value residing in any of the 16 general registers. Scaling does not add to the
effective address calculation time. However, when combined with the appropriate derived
modes, it produces additional capabilities. Arrayed structures can be addressed absolutely
and then subscripted, (bd,Rn*scale). Another variation that can be derived is (An,Rn*scale).
In the first case, the array address is the sum of the contents of a register and a
displacement, as shown in Figure 2–7. In the second example. An contains the address of
an array and Rn contains a subscript.

Figure 2-6. Using Absolute Address with Indexes

An

Rn

bd

SYNTAX (bd,An,Rn)

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-27

Figure 2-7. Addressing Array Items

A6 = 1
2

3
4

SIMPLE ARRAY
(SCALE = 1)

RECORD OF 2 WORDS
(SCALE = 2)

A6 = 1

2

2

A6 = 1

2

A6 = 1

15 015 0

SYNTAX: MOVE.W (A5, A6.L*SCALE),(A7)
WHERE:

A5 = ADDRESS OF ARRAY STRUCTURE
A6 = INDEX NUMBER OF ARRAY ITEM
A7 = STACK POINTER

RECORD OF 4 WORDS
(SCALE = 4)

RECORD OF 8 WORDS
(SCALE = 8)

NOTE: Regardless of array structure, software increments
 index by the appropriate amount to point to next record.

15 0 15 0

Data Organization and Addressing Capabilities

2-28 MC68030 USER’S MANUAL MOTOROLA

The memory indirect addressing modes use a long-word pointer in memory to access an
operand. Any of the modes previously described can be used to address the memory
pointer. Because the base and index registers can both be suppressed, the displacement
acts as an absolute address, providing indirect absolute memory addressing (refer to Figure
2–8).

The outer displacement (od) available in the memory indirect modes is added to the pointer
in memory. The syntax for these modes is ([bd,An],Xn,od) and ([bd,An,Xn],od). When the
pointer is the address of a structure in memory and the outer displacement is the offset of
an item in the structure, the memory indirect modes can access the item efficiently (refer to
Figure 2–9).

Memory indirect addressing modes are used with a base displacement in five basic forms:

1. [bd,An] — Indirect, suppressed index register

2. ([bd,An,Xn]) — Preindexed indirect

3. ([bd,An],Xn) — Postindexed indirect

4. ([bd,An,Xn],od) — Preindexed indirect with outer displacement

5. ([bd,An],Xn,od) — Postindexed indirect with outer displacement

The indirect, suppressed index register mode (see Figure 2–10) uses the contents of
register An as an index to the pointer located at the address specified by the displacement.
The actual data item is at the address in the selected pointer.

The preindexed indirect mode (see Figure 2–11) uses the contents of An as an index to the
pointer list structure at the displacement. Register Xn is the index to the pointer, which
contains the address of the data item.

Figure 2-8. Using Indirect Absolute Memory Addressing

POINTER DATA ITEMbd

SYNTAX: ([bd])

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-29

Figure 2-9. Accessing an Item in a Structure Using a Pointer

Figure 2-10. Indirect Addressing, Suppressed Index Register

POINTER

DATA ITEM

An

od

MEMORY STRUCTURE

SYNTAX: ([An],od)

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An])

An

Data Organization and Addressing Capabilities

2-30 MC68030 USER’S MANUAL MOTOROLA

Figure 2-11. Preindexed Indirect Addressing

POINTER

DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An,Xn])

Xn

An

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-31

The postindexed indirect mode (see Figure 2–12) uses the contents of An as an index to the
pointer list at the displacement. Register Xn is used as an index to the structure of data items
located at the address specified by the pointer. Figure 2–13 shows the preindexed indirect
addressing with outer displacement mode.

Figure 2-12. Postindexed Indirect Addressing

Figure 2-13. Preindexed Indirect Addressing with Outer Displacement

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An],Xn)

Xn

An

POSTINDEXED STRUCTURE

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An,Xn],od)

od

An

Xn

STRUCTURE

Data Organization and Addressing Capabilities

2-32 MC68030 USER’S MANUAL MOTOROLA

The postindexed indirect mode with outer displacement (see Figure 2–14) uses the contents
of An as an index to the pointer list at the displacement. Register Xn is used as an index to
the structure of data structures at the address in the pointer. The outer displacement (od) is
the displacement of the data item within the selected data structure.

2.6.2 General Addressing Mode Summary
The addressing modes described in the previous section are derived from specific
combinations of options in the indexing mode or a selection of two alternate addressing
modes. For example, the addressing mode called register indirect (Rn) assembles as the
address register indirect if the register is an address register. If Rn is a data register, the
assembler uses the address register indirect with index mode using the data register as the
indirect register and suppresses the address register by setting the base suppress bit in the
effective address specification. Assigning an address register as Rn provides higher
performance than using a data register as Rn. Another case is (bd,An), which selects an
addressing mode depending on the size of the displacement. If the displacement is 16 bits
or less, the address register indirect with displacement mode (d16,An) is used. When a 32-
bit displacement is required, the address register indirect with index (bd,An,Xn) is used with
the index register suppressed.

Figure 2-14. Postindexed Indirect Addressing with Outer Displacement

POINTER DATA ITEM

bd

POINTER LIST

SYNTAX: ([bd,An],Xn,od)

od
An

POSTINDEXED STRUCTURE
WITH OUTER DISPLACEMENT

Xn

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-33

It is useful to examine the derived addressing modes available to a programmer (without
regard to the MC68030 effective addressing mode actually encoded) because the
programmer need not be concerned about these decisions. The assembler can choose the
more efficient addressing mode to encode.

In the list of derived addressing modes that follows, common programming terms are used.
The following definitions apply:

pointer — long-Word value in a register or in memory which represents an
address.

base — A pointer combined with a displacement to represent an address.

index — A constant or variable value added into an effective address calcula-
tion. A constant index is a displacement. A variable index is always
represented by a register containing the value.

disp — Displacement, a constant index.

subscript — The use of any of the data or address registers as a variable index
subscript into arrays of items 1, 2, 4 or 8 bytes in size.

relative — An address calculated from the program counter contents. The
address is position independent and is in program space. All other
addresses but psaddr are in data space.

addr — An absolute address.

psaddr — An absolute address in program space. All other addresses but PC
relative are in data space.

preindexed — All modes from absolute address through program counter relative.

postindexed— Any of the following modes:

addr — Absolute address in data space

psaddr,ZPC — Absolute address in program space

An — Register pointer with constant displacement

disp.An — Register pointer with constant displacement

addr,An — Absolute address with single variable name

disp,Pc — Simple PC relative

The addressing modes defined in programming terms, which are derivations of the
addressing modes provided by the MC68030 architecture, are as follows:

Immediate Data — #data:
The data is a constant located in the instruction stream.

Register Direct — Rn:
The contents of a register contain the operand.

Scanning Modes:
(An)+

Data Organization and Addressing Capabilities

2-34 MC68030 USER’S MANUAL MOTOROLA

Address register pointer automatically incremented after use.

– (An)
Address register pointer automatically decremented before use.

Absolute Address:
(addr)

Absolute address in data space.

(psaddr,ZPC)
Absolute address in program space. Symbol ZPC suppresses the PC,
but retains PC relative mode to directly access the program space.

Register Pointer:
(Rn)

Register as a pointer.

(disp,Rn)
Register as a pointer with constant index (or base address).

Indexing

(An,Rn)

Register pointer An with variable index Rn.

(disp,An,Rn)

Register pointer with constant and variable index (or a base address
with a variable index).

(addr,Rn)

Absolute address with two variable indexes.

Subscripting:

(An,Rn*scale)

Address register pointer subscript.

(disp,An,Rn*scale)

Address register pointer subscript with constant displacement
(or base address with subscript).

(addr,Rn*scale)

Absolute address with subscript.

(addr,An,Rn*scale)

Absolute address subscript with variable index.

Program Relative:

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-35

(disp,PC)

Simple PC relative.

(disp,PC,Rn)

PC relative with variable index.

(disp,PC,Rn*scale)

PC relative with subscript.

Memory Pointer:

([preindexed])

Memory pointer directly to data operand.

([preindexed],disp)

Memory pointer as base with displacement to data operand.

([postindexed],Rn)

Memory pointer with variable index.

([postindexed],disp,Rn)

Memory pointer with constant and variable index.

([postindexed],Rn*scale)

Memory pointer subscripted.

([postindexed],disp,Rn*scale)

Memory pointer subscripted with constant index.

Data Organization and Addressing Capabilities

2-36 MC68030 USER’S MANUAL MOTOROLA

2.7 M68000 FAMILY ADDRESSING COMPATIBILITY
Programs can be easily transported from one member of the M68000 Family to another in
an upward compatible fashion. The user object code of each early member of the family is
upward compatible with newer members and can be executed on the newer microprocessor
without change. The address extension word(s) are encoded with the information that allows
the MC68020/MC68030 to distinguish the new address extension words for the early
MC68000/MC68008/MC68010 microprocessors and for the newer 32-bit MC68020/
MC68030 microprocessors are shown in Figure 2–15. Notice the encoding for SCALE used
by the MC68020/MC68030 is a compatible extension of the M68000 architecture. A value
of zero for SCALE is the same encoding for both extension words; hence, software that uses
this encoding is both upward and downward compatible across all processors in the product
line. However, the other values of SCALE are not found in both extension formats; thus,
while software can be easily migrated in an upward compatible direction, only nonscaled
addressing is supported in a downward fashion. If the MC68000 were to execute an
instruction that encoded a scaling factor, the scaling factor would be ignored and not access
the desired memory address. The earlier microprocessors have no knowledge of the
extension word formats implemented by newer processors; while they do detect illegal
instructions, they do not decode invalid encodings of the extension words as exceptions.

2.8 OTHER DATA STRUCTURES
Stacks and queues are widely used data structures. The MC68030 implements a system
stack and also provides instructions that support the use of user stacks and queues.

2.8.1 System Stack
Address register seven (A7) is used as the system stack pointer (SP). Any of the three
system stack registers is active at any one time. The M and S bits of the status register
determine which stack pointer is used. When S = 0 indicating user mode (user privilege
level), the user stack pointer (USP) is the active system stack pointer, and the master and
interrupt stack pointers cannot be referenced. When S = 1 indicating supervisor mode (at
supervisor privilege level) and M = 1, the master stack pointer (MSP) is the active system
stack pointer. When S = 1 and M = 0, the interrupt stack pointer (ISP) is the active system
stack pointer. This mode is the MC68030 default mode after reset and corresponds to the
MC68000, MC68008, and MC68010 supervisor mode. The term supervisor stack pointer
(SSP) refers to the master or interrupt stack pointers, depending on the state of the M bit.
When M = 1, the term SSP (or A7) refers to the MSP address register. When M = 0, the term
is implicitly referenced by all instructions that use the system stack. Each system stack fills
from high to low memory.

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-37

A subroutine call saves the program counter on the active system stack, and the return
restores it from the active system stack. During the processing of traps and interrupts, both
the program counter and the status register are saved on the supervisor stack (either master
or interrupt). Thus, the execution of supervisor code is independent of user code and the
condition of the user stack; conversely, user programs use the user stack pointer
independently of supervisor stack requirements.

To keep data on the system stack aligned for maximum efficiency, the active stack pointer
is automatically decremented or incremented by two for all byte-sized operands moved to
or from the stack. In long-word-organized memory, aligning the stack pointer on a long-word
address signed significantly increases the efficiency of stacking exception frames,
subroutine calls and returns, and other stacking operations.

(UNABLE TO LOCATE ART. MUST BE RECREATED.)

Figure 2-15. M68000 Family Address Extension Words

Data Organization and Addressing Capabilities

2-38 MC68030 USER’S MANUAL MOTOROLA

2.8.2 User Program Stacks
The user can implement stacks with the address register indirect with postincrement and
predecrement addressing modes. With address register An (n = 0–6), the user can
implement a stack that is filled wither from high to low memory or from low to high memory.
Important considerations are:

• Use the predecrement mode to decrement the register before its contents are used as
the pointer to the stack.

• Use the postincrement mode to increment the register after its contents are used as the
pointer to the stack.

• Maintain the stack pointer correctly when byte, word, and long-word items are mixed in
these stacks.

To implement stack growth from high to low memory, use:

–(An) to push data on the stack,

(An)+ to pull data from the stack.

For this type of stack, after either a push or a pull operation, register An points to the top item
on the stack. This is illustrated as:

To implement stack growth from low to high memory, use:

(An)+ to push data on the stack,

–An to pull data from the stack.

An

 LOW MEMORY

(FREE)

TOP OF STACK

BOTTOM OF STACK

HIGH MEMORY

Data Organization and Addressing Capabilities

MOTOROLA MC68030 USER’S MANUAL 2-39

In this case, after either a push or pull operation, register An points to the next available
space on the stack. This is illustrated as:

2.8.3 Queues
The user can implement queues with the address register indirect with postincrement or
predecrement addressing modes. Using a pair of address registers (who of A0–A6), the user
can implement a queue which is filled either from high to low memory or from low to high
memory. Two registers are used because queues are pushed from one end and pulled from
the other. One register, An, contains the "put'' pointer; the other, Am, the "get'' pointer.

To implement growth of the queue from low to high memory, use:

(An)+ to put data into the queue,

(Am)+ to get data from the queue.

After a "put'' operation, the "put'' address register points to the next available space in the
queue, and the unchanged "get'' address register points to the next item to be removed from
the queue. After a "get'' operation, the "get'' address register points to the next item to be
removed from the queue, and the unchanged "put'' address register points to the next
available space in the queue. This is illustrated as:

To implement the queue as a circular buffer, the relevant address register should be
checked and adjusted, if necessary, before performing the "put'' or "get'' operation. The
address register is adjusted by subtracting the buffer length (in bytes) from the register.

 LOW MEMORY

TOP OF STACK

HIGH MEMORY

An

BOTTOM OF STACK

(FREE)

GET (Am) +

 LOW MEMORY

(FREE)

HIGH MEMORY

LAST GET (FREE)

LAST PUT

NEXT GET

PUT (An) +

Data Organization and Addressing Capabilities

2-40 MC68030 USER’S MANUAL MOTOROLA

To implement growth of the queue from high to low memory, use:

–(An) to put data into the queue,

–(Am) to get data from the queue.

After a "put'' operation, the "put'' address register points to the last item place din the queue,
and the unchanged "get'' address register points to the last item removed from the queue.
After a "get'' operation, the "get'' address register points to the last item removed from the
queue, and the unchanged "put'' address register points to the last item placed in the queue.
This is illustrated as:

To implement the queue as a circular buffer, the "get'' or "put'' operation should be
performed first, and then the relevant address register should be checkout and adjusted, if
necessary. The address register is adjusted by adding the buffer length (in bytes) to the
register contents.

 LOW MEMORY

(FREE)

HIGH MEMORY

LAST GET (FREE)

LAST PUT

NEXT GET

PUT - (An)

GET - (Am)

MOTOROLA

MC68030 USER’S MANUAL

3-1

SECTION 3
INSTRUCTION SET SUMMARY

This section briefly describes the MC68030 instruction set. Refer to the MC68000PM/AD,

MC68000 Programmer's Reference Manual

, for complete details on the MC68030
instruction set.

The following paragraphs include descriptions of the instruction format and the operands
used by instructions, followed by a summary of the instruction set. The integer condition
codes and floating-point details are discussed. Programming examples for selected
instructions are also presented.

3.1 INSTRUCTION FORMAT

All MC68030 instructions consist of at least one word; some have as many as 11 words (see
Figure 3–1). The first word of the instruction, called the operation word, specifies the length
of the instruction and the operation to be performed. The remaining words, called extension
words, further specify the instruction and operands. These words may be floating-point
command words, conditional predicates, immediate operands, extensions to the effective
address mode specified in the operation word, branch displacements, bit number or bit field
specifications, special register specifications, trap operands, pack/unpack constants, or
argument counts.

Figure 3-1. Instruction Word General Format

15 0
OPERATION WORD(ONE WORD,

SPECIFIES OPERATION AND MODES)
SPECIAL OPERAND SPECIFIERS
(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE EFFECTIVE ADDRESS EXTENSION(
IF ANY, ONE TO SIX WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION
(IF ANY, ONE TO SIX WORDS)

Instruction Set Summary

3-2

MC68030 USER’S MANUAL

MOTOROLA

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

1. Register Specification — A register field of the instruction contains the number of the
register.

2. Effective Address — An effective address field of the instruction contains address
mode information.

3. Implicit Reference — The definition of an instruction implies the use of specific regis-
ters.

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register selected is an address or data register and how
the register is to be used.

Section 1 Introduction

 contains register information.

Effective address information includes the registers, displacements, and absolute
addresses for the effective address mode.

Section 2 Data Organization and Addressing
Capabilities

 describes the effective address modes in detail.

Certain instructions operate on specific registers. These instructions imply the required
registers.

3.2 INSTRUCTION SUMMARY

The instructions form a set of tools to perform the following operations:

Each instruction type is described in detail in the following paragraphs

Data Movement
Integer Arithmetic
Logical
Shift and Rotate
Bit Manipulation

Bit Field Manipulation
Binary-Coded Decimal Arithmetic
Program Control
System Control
Multiprocessor Communications

Instruction Set Summary

MOTOROLA

MC68030 USER’S MANUAL

3-3

The following notations are used in this section. In the operand syntax statements of the
instruction definitions, the operand on the right is the destination operand.

An = any address register, A7–A0
Dn = any data register, D7–D0
Rn = any address or data register

CCR = condition code register (lower byte of status register)
cc = condition codes from CCR

SR = status register
SP = active stack pointer

USP = user stack pointer
ISP = supervisor/interrupt stack pointer

MSP = supervisor/master stack pointer
SSP = supervisor (master or interrupt) stack pointer
DFC = destination function code register
SFC = source function code register

Rc = control register (VBR, SFC, DFC, CACR)

MRc
= MMU control register (SRP, URP, TC, DTT0, DTT1, ITT0,

ITT1, MMUSR)
MMUSR = MMU status register
B, W, L = specifies a signed integer data type (twos complement) of

byte, word, or long word
S = single-precision real data format (32 bits)
D = double-precision real data format (64 bits)
X = extended-precision real data format (96 bits, 16 bits unused)
P = packed BCD real data format (96 bits, 12 bytes)

FPm, FPn = any floating-point data register, FP7-FP0

PFcr
= floating-point system control register (FPCR, FPSR, or

FPIAR)
k = a twos-complement signed integer (–64 to +17) that specifies

the format of a number to be stored in the packed BCD format
d = displacement; d

16

 is a 16-bit displacement

〈

ea

〉

= effective address
list = list of registers, for example D3 — D0

#

〈

data

〉

= immediate data; a literal integer
{offset:width} = bit field selection

label = assemble program label
[m] = bit m of an operand

[m:n] = bits m through n of operand

Instruction Set Summary

3-4

MC68030 USER’S MANUAL

MOTOROLA

3.2.1 Data Movement Instructions

The MOVE instructions with their associated addressing modes are the basic means of
transferring and storing addresses and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory, and
register to register. Address movement instructions (MOVE or MOVEA) transfer word and
long-word operands and ensure that only valid address manipulations are executed. In
addition to the general MOVE instructions, there are several special data movement
instructions: move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK).

X = extend (X) bit in CCR
N = negative (N) bit in CCR
Z = Zero (Z) bit in CCR
V = overflow (V) bit in CCR
C = carry (C) bit in CCR
+ = arithmetic addition or postincrement indicator
– = arithmetic subtraction or predecrement indicator
x = arithmetic multiplication

÷

= arithmetic division or conjunction symbol
~ = invert; operand is logically complemented

Λ

= logical AND
V = logical OR

⊕

= logical exclusive OR
Dc = data register, D7-D0 used during compare
Du = data register, D7-D0 used during update

Dr, Dq = data registers, remainder or quotient of divide
Dh, Dl = data registers, high or lo

•

order 32 bits of product
MSW = most significant word
LSW = least significant word
MSB = most significant bit

FC = function code
{R/W} = read or write indicator

[An] = address extensions

Instruction Set Summary

MOTOROLA

MC68030 USER’S MANUAL

3-5

Table 3–1 is a summary of the integer and floating-point data movement operations.

3.2.2 Integer Arithmetic Instructions

The integer arithmetic operations include the four basic operations of add (ADD), subtract
(SUB), multiply (MUL), and divide (DIV) as well as arithmetic compare (CMP, CMPM,
CMP2), clear (CLR), and negate (NEG). The instruction set includes ADD, CMP, and SUB
instructions for both address and data operations with all operand sizes valid for data
operations. Address operands consist of 16 or 32 bits. The clear and negate instructions
apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

• Word multiply to produce a long-word product

• Long-word multiply to produce and long-word or quad-word product

• Division of a long word divided by a word divisor (word quotient and word remainder)

• Division of a long word or quad word dividend by a long-word divisor (long-word quo-
tient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extended (EXT),
and negate binary with extend (NEGX). Refer to Table 3–2 for a summary of the integer
arithmetic operations.

Table 3-1. Data Movement Operations

Instruction Operand Syntax Operand Size Operation

EXG Rn,Rn 32 Rn

↔

 Rn
LEA

〈

ea

〉

,An 32

〈

ea

〉

→

 An
LINK An,#

〈

d

〉

 16, 32 Sp - 4

→

 SP; An

→

 (SP); SP

→

 An, SP + D

→

 SP
MOVE

MOVEA

〈

ea

〉

,

〈

ea

〉

,An 8, 16, 32
16, 32

→

 32
source

→

 destination

MOVEM list,

〈

ea

〉

,list 16, 32
16, 32

→

 32
listed registers

→

 destination
source

→

 listed registers
MOVEP

 Dn,(d

16

,An)

(d

16

,An),Dn

16, 32

Dn[31:24]

→

 (An + d); Dn[23:16]

→

 An + d + 2);
Dn[15:8]

→

 (An + d + 4); Dn[7:0]

→

 (An + d + 6)
(An + d)

→

 Dn[31:24]; (An + d + 2)

→

 Dn[23:16];
(An + d + 4)

→

 Dn[15:8]; (An + d + 6)

→

 Dn[7:0]

MOVEQ #

〈

data

〉

,Dn 8

→

 32 immediate data

→

 destination
PEA

〈

ea

〉

 32 SP — 4

→

 SP;

〈

ea

〉

→

 (SP)
UNLK An 32 An

→

 SP; (SP)

→

 An; SP + 4

→

 SP

Instruction Set Summary

3-6

MC68030 USER’S MANUAL

MOTOROLA

3.2.3 Logical Instructions

The logical operation instructions (AND, OR, EOR, and NOT) perform logical operations
with all sizes of integer data operands. A similar set of immediate instructions (ANDI, ORI,
and EORI) provide these logical operations with all sizes of immediate data. The TST
instruction compares the operand with zero arithmetically, placing the result in the condition
code register. Table 3–3 summarizes the logical operations.

Table 3-2. Integer Arithmetic Operations

Instruction Operand Syntax Operand Size Operation

ADD

ADDA

Dn,

〈

ea

〉
〈

ea

〉

,Dn

〈

ea

〉

,An

 8, 16, 32
 8, 16, 32
 16, 32

source + destination

→

 destination

ADDI
ADDQ

#

〈

data

〉

,

〈

ea

〉

#

〈

data

〉

,

〈

ea

〉

 8, 16, 32
 8, 16, 32

immediate data + destination

→

 destination

ADDX Dn,Dn

 –(An),–(An)
 8, 16, 32
 8, 16, 32

source + destination + X

→

 destination

CLR

〈

ea

〉

 8, 16, 32 0

→

 destination
CMP
CMPA

〈

ea

〉

,Dn

〈

ea

〉

,An
 8, 16, 32
 16, 32

destination - source

CMPI #

〈

data

〉

,

〈

ea

〉

 8, 16, 32 destination - immediate data
CMPM (An) +,(An) + 8, 16, 32 destination - source
CMP2

〈

ea

〉

,Rn 8, 16, 32 lower bound < = Rn < = upper bound
DIVS/DIVU

DIVSL/DIVUL

〈

ea〉,Dn
〈ea〉,Dr:Dq

〈ea〉,Dq
〈ea〉,Dr:Dq

32/16 → 16:16
64/32 → 32:32

32/32 → 32
32/32 → 32:32

destination/source → destination (signed or unsigned)

EXT

EXTB

 Dn
 Dn
 Dn

8 → 16
16 → 32
8 → 32

sign-extended destination → destination

MULS/MULU 〈ea〉,Dn
〈ea〉,Dl

(ea〉,Dh:Dl

16x16 → 32
32x32 → 32
32x32 → 64

source y destination → destination (signed or unsigned)

NEG 〈ea〉 8, 16, 32 0 - destination → destination
NEGX 〈ea〉 8, 16, 32 0 - destination - X → destination
SUB

SUBA

〈ea〉,Dn
Dn,〈ea〉
〈ea〉,An

 8, 16, 32
 8, 16, 32
 16, 32

destination = source → destination

SUBI
SUBQ

#〈data〉,〈ea〉
#〈data〉,〈ea〉

 8, 16, 32
 8, 16, 32

destination - immediate data → destination

SUBX Dn,Dn
 –(An),–(An)

 8, 16, 32
 8, 16, 32

destination - source — X → destination

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-7

3.2.4 Shift and Rotate Instructions
The arithmetic shift instructions (ASR and ASL) and logical shift instructions (LSR and LSL)
provide shift operations in both directions. The ROR, ROL, ROXR, and ROXL instructions
perform rotate (circular shift) operations, with and without the extend bit. All shift and rotate
operations can be performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be specified
in the instruction operation word (to shift from 1–8 places) or in a register (modulo 64 shift
count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 3–4 is a summary of the shift and rotate operations.

Table 3-3. Logical Operations

Instruction Operand Syntax Operand Size Operation
AND 〈ea〉,Dn

Dn,〈ea〉
 8, 16, 32
 8, 16, 32

source Λ destination → destination

ANDI #〈data〉,〈ea〉 8, 16, 32 immediate data Λ destination → destination
EOR Dn,〈data〉,〈ea〉 8, 16, 32 source ⊕ destination → destination
EORI #〈data〉,〈ea〉 8, 16, 32 immediate data x destination → destination
NOT 〈ea〉 8, 16, 32 ∼ destination → destination
OR 〈ea〉,Dn

Dn,〈ea〉
 8, 16, 32
 8, 16, 32

source V destination → destination

ORI #〈data〉,〈ea〉 8, 16, 32 immediate data V destination → destination
TST #〈ea〉 8, 16, 32 source — 0 to set condition codes

Instruction Set Summary

3-8 MC68030 USER’S MANUAL MOTOROLA

Table 3-4. Shift and Rotate Operations.

3.2.5 Bit Manipulation Instructions
Bit manipulation operations are accomplished using the following instructions: bit test
(BTST), bit test and set (BSET), bit test and clear (BCLR), and bit test and change (BCHG).
All bit manipulation operations can be performed on either registers or memory. The bit
number is specified as immediate data or in a data register. Register operands are 32 bits
long, and memory operands are 8 bits long. In Table 3–5, the summary of the bit
manipulation operations, Z refers to bit 2, the zero bit of the status register.

 X/C

 X/C 0

 X/C0

C

C

XC

 X/C 0

X C

MSW LSW

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-9

3.2.6 Bit Field Operations
The MC68030 supports variable-length bit field operations on fields of up to 32 bits. The bit
field insert (BFINS) instruction inserts a value into a bit field. Bit field extract unsigned
(BFEXTU) and bit field extract signed (BFEXTS) extract a value from the field. Bit field find
first one (BFFFO) finds the first bit that is set in a bit field. Also included are instructions that
are analogous to the bit manipulation operations; bit field test (BFTST), bit field test and set
(BFSET), bit field test and clear (BFCLR), and bit field test and change (BFCHG). Table 3–
6 is a summary of the bit field operations.

NOTE: All bit field instructions set the N and Z bits as shown for BFTST before performing the specified operation.

Table 3-5. Bit Manipulation Operations

 Instruction Operand Syntax Operand Size Operation
BCHG Dn,〈ea〉

#〈data〉,ea
 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z → bit of destination

BCLR Dn,〈ea〉
#〈data〉,ea

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z;
 — 0 → bit of destination

BSET Dn,〈ea〉
#〈data〉,〈ea〉

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z;
 — 1 → bit of destination

BTST Dn,〈ea〉
#〈data〉,ea

 8, 32
 8, 32

∼ (〈bit number〉 of destination) → Z

Table 3-6. Bit Field Operations

 Instruction Operand Syntax Operand Size Operation
BFCHG 〈ea〉 {offset:width} 1 — 32 ∼ Field → Field
BFCLR 〈ea〉 {offset:width} 1 — 32 0's → Field
BFEXTS 〈ea〉 {offset:width},Dn 1—32 Field → Dn; Sign Extended
BFEXTU 〈ea〉 {offset:width},Dn 1 — 32 Field → Dn; Zero Extended
BFFFO 〈ea〉 {offset:width},Dn 1 — 32 Scan for first bit set in field; offset → Dn
BFINS Dn,〈ea〉 {offset:width} 1 — 32 Dn → Field
BFSET 〈ea〉 {offset:width} 1 — 32 1's → Field
BFTST 〈ea〉 {offset:width} 1 — 32 Field MSB → N; ∼ (OR of all bits in field) → Z

Instruction Set Summary

3-10 MC68030 USER’S MANUAL MOTOROLA

3.2.7 Binary–coded Decimal Instructions
Five instructions support operations on binary-coded decimal (BCD) numbers. The
arithmetic operations on packed BCD numbers are add decimal with extend (ABCD),
subtract decimal with extend (SBCD), and negate decimal with extend (NBCD). PACK and
UNPACK instructions aid in the conversion of byte encoded numeric data, such as ASCII or
EBCDIC strings, to BCD data and vice versa. Table 3–7 is a summary of the BCD
operations.

Table 3-7. BCD Operations

Instruction Operand Syntax Operand Size Operation
ABCD Dn,Dn

–(An)
8
 8

source10 + destination10 + X → destination

NBCD 〈ea〉 8 0 - destination10 –X → destination

PACK –(An),–(An)
#〈data〉

Dn,Dn,# 〈data〉

16→8

16→8

unpackaged source + immediate data → packed
destination

SBCD Dn,Dn
 –(An),–(An)

 8
 8

destination10 - source10 – X → destination

UNPK –(An)
#〈data〉

Dn,Dn,#〈data〉

8→16

8→16

packed source → unpacked source
unpacked source + immediate data →

unpacked destination

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-11

3.2.8 Program Control Instructions
A set of subroutine call and return instructions and conditional and unconditional branch
instructions perform program control operations. The no operation instruction (NOP) may be
used to force synchronization of the internal pipelines. Table 3–8 summarizes these
instructions.

Letters cc in the integer instruction mnemonics Bcc, DBcc, and Scc specify testing one of the following conditions:
CC — Carry clear GE — Greater or equal
LS — Lower or same PL — Plus
CS — Carry set GT — Greater than
LT — Less than T — Always true*
EQ — Equal HI — Higher
MI — Minus VC — Overflow clear
F — Never true* LE — -Less or equal
NE — Not equal VS — Overflow set
*Not applicable to the Bcc instructions.

Table 3-8. Program Control Operations

Instruction Operand Syntax Operand Size Operation
Integer and Floating-Point Conditional

Bcc 〈 label〉 8, 16, 32 if condition true, then PC + d → PC
DBcc Dn,〈 label〉 16 if condition false, then Dn — 1 → Dn

if Dn ≠ -1, then PC + d → PC
Scc 〈ea〉 8 if condition true, then 1's → destination;

else 0's → destination
Unconditional

BRA 〈 label〉 8, 16, 32 PC + d → PC
BSR 〈 label〉 8, 16, 32 SP — 4 → SP; PC→(SP); PC + d → PC
JMP 〈ea〉 none destination → PC
JSR 〈ea〉 none SP — 4 → SP; PC→ (SP); destination → PC
NOP none none PC + 2 → PC

Returns
RTD #〈d〉 16 (SP) → PC; SP + 4 + d → SP
RTR none none (SP) → CCR; SP + 2 → SP; (SP) → PC; SP + 4 → SP
RTS none none (SP) → PC; SP + 4→ SP

Instruction Set Summary

3-12 MC68030 USER’S MANUAL MOTOROLA

3.2.9 System Control Instructions
Privileged instructions, trapping instructions, and instructions that use or modify the
condition code register (CCR) provide system control operations. Table 3–9 summarizes
these instructions. The TRAPcc instruction uses the same conditional tests as the
corresponding program control instructions. All of these instructions cause the processor to
flush the instruction pipe.

Table 3-9. System Control Operations

Instruction Operand Syntax Operand Size Operation

Privileged

ANDI #〈data〉,SR 16 immediate data Λ SR → SR

EORI #〈data〉,SR 16 immediate data x SR → SR

MOVE 〈ea〉,SR
 SR,〈ea〉

 16
 16

source → SR
SR → destination

MOVE USP,An
 An,USP

 32
 32

USP → An
An → USP

MOVEC Rc,Rn
 Rn,Rc

 32
 32

Rc → Rn
Rn → Rc

MOVES Rn, 〈ea〉
 〈ea〉,Rn

 8, 16, 32 Rn → destination using DFC
source using SFC → Rn

ORI #〈data〉,SR 16 immediate data V SR → SR

RESET none none assert RESET line

RTE none none (SP) → SR; SP + 2 → SP; (SP) → PC; SP + 4 → SP;
Restore stack according to format

STOP #〈data〉 16 immediate data → SR; STOP

Trap Generating

BKPT #〈data〉 none run breakpoint cycle, then trap as illegal instruction

CHK 〈ea〉,Dn 16, 32 if Dn < 0 or Dn > (ea), then CHK exception

CHK2 〈ea〉,Rn 8, 16, 32 if Rn < -lower bound or Rn > -upper bound, then CHK
exception

ILLEGAL none none SSP — 2 → SSP; Vector Offset→ (SSP);
SSP — 4 → SSP; PC→ (SSP);
SSP — 2 → SSP; SR→ (SSP);
Illegal Instruction Vector Address → PC

TRAP #〈data〉 none SSP — 2 → SSP; Format and Vector Offset→(SSP)
SSP — 4 → SSP; PC→(SSP); SSP — 2 → SSP;
SR→(SSP); Vector Address → PC

TRAPcc none
 #〈data〉

 none
 16, 32

if cc true, then TRAP exception

TRAPV none none if V, then take overflow TRAP exception

Condition Code Register

ANDI #〈data〉,CCR 8 immediate data Λ CCR → CCR

EORI #〈data〉,CCR 8 immediate data ⊕ CCR → CCR

MOVE 〈ea〉,CCR
 CCR,〈ea〉

 16
 16

source → CCR
CCR → destination

ORI #〈data〉,CCR 8 immediate data V CCR → CCR

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-13

3.2.10 Memory Management Unit Instructions
The PFLUSH instructions flush the address translation caches (ATCs) and can optionally
select only nonglobal entries for flushing. PTEST performs a search of the address
translation tables, storing results in the MMU status register and loading the entry into the
ATC. Table 3–10 summarizes these instructions.

3.2.11 Multiprocessor Instructions
The TAS, CAS, and CAS2 instructions coordinate the operations of processors in
multiprocessing systems. These instructions use read-modify-write bus cycles to ensure
uninterrupted updating of memory. Coprocessor instructions control the coprocessor
operations. Table 3–11 lists these instructions.

Table 3-10. MMU Instructions

Instruction Operand Syntax Operand Size Operation
PFLUSHA none none Invalidate all ATC entries
PFLUSHA.N none none Invalidate all nonglobal ATC entries
PFLUSH (An) none Invalidate ATC entries at effective address
PFLUSH.N (An) none Invalidate nonglobal ATC entries at effective address
PTEST (An) none Information about logical address → MMU status register

Table 3-11. Multiprocessor Operations (Read-Modify-Write)

Instruction Operand Syntax Operand Size Operation
Read-Modify-Write

CAS Dc,Du,〈ea〉 8, 16, 32 destination — Dc → CC; if Z then Du → destination
else destination→Dc

CAS2 Dc1:Dc2,Du1:Du2,(
Rn):(Rn)

8, 16, 32 dual operand CAS

TAS 〈ea〉 8 destination — 0; set condition codes; 1 → destination [7]
Coprocessor

cpBcc 〈 label〉 16, 32 if cpcc true, then PC + d → PC
cpDBcc label,Dn 16 if cpcc false then Dn –1 → Dn

if Dn ≠ –1, then PC + d → PC
cpGEN User Defined User Defined operand → coprocessor
cpRESTORE 〈ea〉 none restore coprocessor state from 〈ea〉
cpSAVE 〈ea〉 none save coprocessor state at 〈ea〉
cpScc 〈ea〉 8 if cpcc true, then 1's → destination; else 0's → destination
cpTRAPcc none

#〈data〉
none
16, 32

if cpc true, then TRAPcc exception

Instruction Set Summary

3-14 MC68030 USER’S MANUAL MOTOROLA

3.3 INTEGER CONDITION CODES
The CCR portion of the SR contains five bits which indicate the results of many integer
instructions. Program and system control instructions use certain combinations of these bits
to control program and system flow.

The first four bits represent a condition resulting from a processor operation. The X bit is an
operand for multiprecision computations; when it is used, it is set to the value of the C bit.
The carry bit and the multiprecision extend bit are separate in the M68000 Family to simplify
programming techniques that use them (refer to Table 3–8 as an example).

The condition codes were developed to meet two criteria:

• Consistency across instructions, uses, and instances

• Meaningful Results no change unless it provides useful information

Consistency across instructions means that all instructions that are special cases of more
general instructions affect the condition codes in the same way. Consistency across
instances means that all instances of an instruction affect the condition codes in the same
way. Consistency across uses means that conditional instructions test the condition codes
similarly and provide the same results, regardless of whether the condition codes are set by
a compare, test, or move instruction.

In the instruction set definitions, the CCR is shown as follows:

where:

X (extend)

Set to the value of the C bit for arithmetic operations. Otherwise not affected or set to
a specified result.

N (negative)

Set if the most significant bit of the result is set. Cleared otherwise.

Z (zero)

Set if the result equals zero. Cleared otherwise.

V (overflow)

Set if arithmetic overflow occurs. This implies that the result cannot be represented in
the operand size. Cleared otherwise.

C (carry)

Set if a carry out of the most significant bit of the operand occurs for an addition. Also
set if a borrow occurs in a subtraction. Cleared otherwise.

X N Z V C

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-15

3.3.1 Condition Code Computation
Most operations take a source operand and a destination operand, compute, and store the
result in the destination location. Single-operand operations take a destination operand,
compute, and store the result in the destination location. Table 3–12 lists each instruction
and how it affects the condition code bits.

Table 3-12. Condition Code Computations (Sheet 1 of 2)

Operations X N Z V C Special Definition

ABCD * U ? U ? C =-Decimal Carry
Z =-Z Λ Rm Λ . . . Λ R0

ADD, ADDI, ADDQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

ADDX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ . . . Λ R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR, ORI
CLR, EXT, NOT, TAS, TST

— * * 0 0

CHK — * U U U

CHK2, CMP2 — U ? U ? Z = (R = LB) V (R = UB)
C = (LB < = UB) Λ (IR < LB) V (R > UB))
V = (UB <LB) Λ (R >UB) Λ (R <LB)

SUB, SUBI, SUBQ * * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

SUBX * * ? ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm
Z = Z Λ Rm Λ . . . Λ R0

CAS, CAS2, CMP, CMPI,
CMPM

— * * ? ? V = Sm Λ Dm Λ Rm V Sm Λ Dm Λ Rm
C = Sm Λ Dm V Rm Λ Dm V Sm Λ Rm

DIVS, DUVI — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 V = Multiplication Overflow

SBCD, NBCD * U U ? C = Decimal Borrow
Z = Z Λ Rm Λ . . . Λ R0

NEG * * * ? ? V = Dm Λ Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ Rm Λ . . . Λ R0

Instruction Set Summary

3-16 MC68030 USER’S MANUAL MOTOROLA

— = Not Affected Rm = Result Operand — Most Significant Bit
U = Undefined, Result Meaningless R = Register Tested
? = Other — See Special Definition n = Bit Number
* = General Case r = Shift Count

X = C LB = Lower Bound
N = Rm UB = Upper Bound
Z = Rm Λ . . . Λ R0 Λ = Boolean AND

Sm = Destination Operand — Most Significant Bit V = Boolean OR
Dm = Destination Operand — Most Significant Bit Rm = NOT Rm

Table 3-12. Condition Code Computations (Continued)

Operations X N Z V C Special Definition

BTST, BCHG, BSET, BCLR — — ? — — Z = Dn

BFTST, BFCHG, BFSET,
BFCLR

 — ? ? 0 0 N = Dm
Z = Dm Λ DM –1 Λ . . . Λ D0

BFEXTS, BFEXTU, BFFFO — ? ? 0 0 N = Sm
Z = Sm Λ Sm –1 Λ . . . Λ S0

BFINS — ? ? 0 0 N = Dm
Z = Dm Λ DM–1 Λ . . . Λ D0

ASL * * * V = Dm Λ (Dm –1 V . . . V Dm –r) V Dm Λ
(Dm –1 V . . . + Dm –r)

C = Dm –r + 1

ASL (R = 0) * * 0 0

LSL, ROXL * * * 0 ? C = Dm –r + 1

LSR (r = 0) — * * 0 0

ROXL (r = 0) — * * 0 ? C = X

ROL — * * 0 ? C = Dm –r + 1

ROL (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr –1

ASR, LSR (r = 0) — * * 0 0

ROXR (r = 0) — * * 0 ? C = X

ROR — * * 0 ? C = Dr –1

ROR (r = 0) — * * 0 0

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-17

3.3.2 Conditional Tests
Table 3–13 lists the condition names, encodings, and tests for the conditional branch and
set instructions. The test associated with each condition is a logical formula using the current
states of the condition codes. If this formula evaluates to one, the condition is true. If the
formula evaluates to zero, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z bit condition code is currently true.

• = Boolean AND
+ = Boolean OR
N = Boolean NOT N
*Not available for the Bcc instruction.

Table 3-13. Conditional Tests

Mnemonic Condition Encoding Test

T* True 0000 1

F* False 0001 0

HI High 0010 C •Z

LS Low or Same 0011 C + Z

CC(HS) Carry Clear 0100 C

CS(LO) Carry Set 0101 C

NE Not Equal 0110 Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N

 GE Greater or Equal 1100 N •V + N •V

 LT Less Than 1101 N •V + N •V

 GT Greater Than 1110 N •V •Z + N • V •Z

 LE Less or Equal 1111 Z + N •V + N • V

Instruction Set Summary

3-18 MC68030 USER’S MANUAL MOTOROLA

3.4 INSTRUCTION SET SUMMARY
Table 3–14 provides a alphabetized listing of the MC68030 instruction set listed by opcode,
operation, and syntax.

Table 3–14 use notational conventions for the operands, the subfields and qualifiers, and
the operations performed by the instructions. In the syntax descriptions, the left operand is
the source operand, and the right operand is the destination operand. The following list
contains the notations used in Table 3–14.

Notation for operands:

PC — Program counter

SR — Status register

V — Overflow condition code

Immediate Data — Immediate data from the instruction

Source — Source contents

Destination — Destination contents

Vector — Location of exception vector

+ inf — Positive infinity

–inf — Negative infinity

〈fmt〉 — Operand data format: byte (B) word (W), long
(L), single (S), double (D), extended (X), or
packed (P)

FPm — One of eight floating-point data registers (always
specifies the source register)

FPn — One of eight floating-point data registers (always
specifies the destination register)

Notation for subfields and qualifiers:

〈bit〉 of (operand〉 — Selects a single bit of the operand

〈ea〉 {offset:width} — Selects a bit field

(〈operand〉) — The contents of the referenced location

〈operand〉 10 — The operand is binary-coded decimal; operations are per-
formed in decimal

(〈address register〉) — The register indirect operation

–(〈address register〉) — Indicates that the operand register points to the memory

(〈address register〉) + — Location of the instruction operand — the optional mode
qualifiers are -, +, (d), and (d,ix)

#xxx or #〈data〉 — Immediate data that follows the instruction word(s)

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-19

Notations for operations that have two operands, written 〈operand〉 〈op〉 〈operand〉 , where
〈op〉 is one of the following:

→ — The source operand is moved to the destination operand

↔ — The two operands are exchanged

+ — The operands are added

– — The destination operand is subtracted from the source
operand

x — The operands are multiplied

÷ — The source operand is divided by the destination operand

< — Relational test, true if source operand is less than destina-
tion operand

> — Relational test, true if source operand is greater than des-
tination operand

V — Logical OR

⊕ — Logical exclusive OR

Λ — Logical AND

shifted by, rotated by — The source operand is shifted or rotated by the number of
positions specified by the second operand

Notation for single-operand operations:
~〈operand〉 — The operand is logically complemented

〈operand〉 sign-extended— The operand is sign extended; all bits of the upper portion
are made equal to the high-order bit of the lower portion

〈operand〉 tested — The operand is compared to zero and the condition codes
are set appropriately

Notation for other operations:
TRAP — Equivalent to Format/Offset Word→ (SSP); SSP –2

→ SSP; PC→ (SSP); SSP – 4 → SSP; SR→ (SSP);
SSP–2 → SSP; (vector) → PC

STOP — Enter the stopped state, waiting for the interrupts

If 〈condition〉 then — The condition is tested. If true, the operations

〈operations〉 else — after "then'' are performed. If the condition is

〈operations〉 — false and the optional "else'' clause is present, the opera-
tions after "else" are performed. If the condition is false and
else is omitted, the instruction performs no operation. Refer
to the Bcc instruction description as an example.

Instruction Set Summary

3-20 MC68030 USER’S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 1 of 5)

Opcode Operation Syntax
 ABCD Source10 + Destination10 + X → Destination ABCD Dy,Dx

ABCD –(Ay),–(Ax)
 ADD Source + Destination → -Destination ADD 〈ea〉,Dn

ADD Dn,〈ea〉
 ADDA Source + Destination → Destination ADDA 〈ea〉,An
 ADDI Immediate Data + Destination → Destination ADDI #〈data〉,〈ea〉
 ADDQ Immediate Data + Destination → Destination ADDQ #〈data〉,〈ea〉
 ADDX Source + Destination + X → Destination ADDX Dy,Dx

ADDX –(Ay),–(Ax)
 AND Source Λ Destination → Destination AND 〈ea〉,Dn

AND Dn,〈ea〉
 ANDI Immediate Data Λ Destination → Destination ANDI #〈data〉,〈ea〉
 ANDI

to CCR
Source Λ CCR → CCR ANDI #〈data〉,CCR

 ANDI
to SR

If supervisor state
then Source Λ SR → SR

else TRAP

ANDI #〈data〉,SR

 ASL,ASR Destination Shifted by 〈count〉 → Destination ASd Dx,Dy
ASd #〈data〉,Dy
ASd 〈ea〉

Bcc If (condition true) then PC + d → PC Bcc (label〉
 BCHG ∼ (〈number〉 of Destination) → Z;

∼ (〈number〉 of Destination) → 〈bit number〉 of Destination
BCHG Dn,〈ea〉BCHG #〈data〉,〈ea〉

 BCLR ∼ (〈bit number〉 of Destination) → Z;
0 → 〈bit number〉 of Destination

BCLR Dn,〈ea〉BCLR #〈data〉,〈ea〉

 BFCHG ∼ (〈bit field〉 of Destination) → 〈bit field〉 of Destination BFCHG 〈ea〉{offset:width}
 BFCLR 0 → 〈bit field〉 of Destination BFCLR 〈ea〉{offset:width}
BFEXTS 〈bit field〉 of Source → Dn BFEXTS 〈ea〉{offset:width},Dn
BFEXTU (bit offset〉 of Source → Dn BFEXTU 〈ea〉{offset:width},Dn
BFFFO (bit offset〉 of Source Bit Scan → Dn BFFFO 〈ea〉{offset:width},Dn
BFINS Dn → 〈bit field〉 of Destination BFINS Dn,〈ea〉{offset:width}
BFSET 1s → 〈bit field〉 of Destination BFSET 〈ea〉{offset:width}
BFTST 〈bit field〉 of Destination BFTST 〈ea〉{offset:width}

 BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction

BKPT # 〈data〉

BRA PC + d → PC BRA (label〉
 BSET ~ (〈bit number〉 of Destination) → Z;

1 → 〈bit number〉 of Destination
BSET Dn,〈ea〉BSET #〈data〉,〈ea〉

 BSR SP – 4 → SP; PC → (SP); PC + d → PC BSR (label〉
 BTST –(〈bit number〉 of Destination) → Z; BTST Dn,〈ea〉BTST #〈data〉,〈ea〉

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-21

Table 3-14. Instruction Set Summary (Sheet 2 of 5)

Opcode Operation Syntax
 CAS
 CAS2

CAS Destination Compare Operand → cc;
if Z, Update Operand → Destination
else Destination → Compare Operand

CAS2 Destination 1 Compare 1 → cc;
if Z, Destination 2 Compare → cc;
if Z, Update 1 → Destination 1; Update 2 → Destination 2
else Destination 1 → Compare 1; Destination 2 →Compare 2

CAS Dc,Du,〈ea〉CAS2
Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)

 CHK If Dn < 0 or >-Source then TRAP CHK 〈ea〉,Dn
 CHK2 If Rn < lower bound or

Rn > upper bound
then TRAP

CHK2 〈ea〉,Rn

 CLR 0 → Destination CLR 〈ea〉
 CMP Destination — Source → cc CMP 〈ea〉,Dn

 CMPA Destination — Source CMPA 〈ea〉,An
 CMPI Destination — Immediate Data CMPI #〈data〉,〈ea〉
 CMPM Destination — Source → cc CMPM (Ay) +,(Ax) +
 CMP2 Compare Rn < lower-bound or

Rn > upper-bound
and Set Condition Codes

CMP2 〈ea〉,Rn

cpBcc If cpcc true then scanPC + d → PC cpBcc (label〉
cpDBcc If cpcc false then (Dn –1 → Dn;

if Dn ≠ –1 then scanPC + d → PC
cpDBcc Dn,(label〉

cpGEN Pass Command Word to Coprocessor cpGEN (parameters as defined by
coprocessorL

cpRESTORE If supervisor state
then Restore Internal State of Coprocessor

else TRAP

cpRESTORE 〈ea〉

cpSAVE If supervisor state
the Save Internal State of Coprocessor

else TRAP

cpSAVE 〈save〉

cpScc If cpcc true then 1s → Destination
else 0s → Destination

cpTRAPcc If cpcc true then TRAP cpTRAPcc
cpTRAPcc #〈data〉

 DBcc If condition false then (Dn–1 → Dn;
If Dn ≠ –1 then PC + d → PC)

DBcc Dn,(label〉

 DIVS
 DIVSL

Destination/Source → Destination DIVS.W 〈ea〉,Dn32/16 → 16r:16q
DIVS.L 〈ea〉,Dq 32/32 → 32q
DIVS.L 〈ea〉,Dr:Dq 64/32 → 32r:32q
DIVSL.L 〈ea〉,Dr:Dq32/32 → 32r:32q

 DIVU
 DIVUL

Destination/Source → Destination DIVU.W 〈ea〉,Dn32/16 → 16r:16q
DIVU.L 〈ea〉,Dq 32/32 → 32q
DIVU.L 〈ea〉,Dr:Dq 64/32 → 32r:32q
DIVUL.L 〈ea〉,Dr:Dq32/32 → 32r:32q

 EOR Source ⊕ Destination → Destination EOR Dn,〈ea〉
 EORI Immediate Data ⊕ Destination → Destination EORI #〈data〉,〈ea〉

Instruction Set Summary

3-22 MC68030 USER’S MANUAL MOTOROLA

Table 3-14. Instruction Set Summary (Sheet 3 of 5)

Opcode Operation Syntax
 EORI
to CCR

Source ⊕ CCR → CCR EORI #〈data〉,CCR

 EORI
to SR

If supervisor state
then Source ⊕ SR → SR

else TRAP

EORI #〈data〉,SR

 EXG Rx ↔ Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

 EXT
EXTB

Destination Sign-Extended → Destination EXT.W Dn extend byte to word
EXT.L L Dn extend word to long word
EXTB.L Dn extend byte to long word

 ILLEGAL SSP–2 → SSP; Vector Offset → (SSP);
SSP–4 → SSP; PC → (SSP);
SSP–2 → SSP; SR → (SSP);
Illegal Instruction Vector Address → PC

ILLEGAL

 JMP Destination Address → PC JMP 〈ea〉
 JSR SP–4 → SP; PC → (SP)

Destination Address → PC
JSR 〈ea〉

 LEA 〈ea〉 → An LEA 〈ea〉,An
 LINK SP — 4 → SP; An → (SP)

SP → An, SP + d → SP
LINK An, #(displacement〉

 LSL,LSR Destination Shifted by 〈count〉 → Destination LSd5 Dx,Dy

LSd5 #〈data〉,Dy

LSd5 〈ea〉
 MOVE Source → Destination MOVE 〈ea〉,〈ea〉

 MOVEA Source → Destination MOVEA 〈ea〉,An
 MOVE

from CCR
CCR → Destination MOVE CCR,〈ea〉

 MOVE
to CCR

Source → CCR MOVE 〈ea〉,CCR

 MOVE
from SR

If supervisor state
then SR → Destination

else TRAP

MOVE SR,〈ea〉

 MOVE
to SR

If supervisor state
then Source → SR

else TRAP

MOVE 〈ea〉,SR

 MOVE
USP

If supervisor state
then USP → An or An → USP

 else TRAP

MOVE USP,An
MOVE An,USP

 MOVEC If supervisor state
then Rc → Rn or Rn → Rc

else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

 MOVEM Registers → Destination
Source → Registers

MOVEM register list,〈ea〉MOVEM
〈ea〉,register list

 MOVEP Source → Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx

 MOVEQ Immediate Data → Destination MOVEQ #〈data〉,Dn

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-23

Table 3-14. Instruction Set Summary (Sheet 4 of 5)

Opcode Operation Syntax
 MOVES If supervisor state

then Rn → Destination [DFC] or Source [SFC] → Rn
else TRAP

MOVES Rn,〈ea〉MOVES 〈ea〉,Rn

 MULS Source y-Destination → Destination MULS.W 〈ea〉,Dn 16 x 16 → 32
MULS.L 〈ea〉,Dl 32 x 32 → 32
MULS.L 〈ea〉,Dh:Dl 32 x 32 → 64

 MULU Source y-Destination → Destination MULU.W 〈ea〉,Dn 16 x 16 → 32
MULU.L 〈ea〉,Dl 32 x 32 → 32
MULU.L 〈ea〉,Dh:Dl 32 x 32 → 64

 NBCD 0 — (Destination10) — X → Destination NBCD 〈ea〉
 NEG 0 — (Destination) → Destination NEG 〈ea〉

 NEGX 0 — (Destination) — X → Destination NEGX 〈ea〉
 NOP None NOP
 NOT ∼ Destination → Destination NOT 〈ea〉
 OR Source V Destination → Destination OR 〈ea〉,Dn

OR Dn,〈ea〉
 ORI Immediate Data V Destination → Destination ORI #〈data〉,〈ea〉
 ORI

to CCR
Source V CCR → CCR ORI #〈data〉,CCR

 ORI
to SR

If supervisor state
then Source V SR → SR

else TRAP

ORI #〈data〉,SR

 PACK Source (Unpacked BCD) + adjustment → Destintion
 (Packed BCD)

PACK –(Ax),–(Ay),#(adjustment〉
PACK Dx,Dy,#(adjustment〉

 PEA Sp –4 → SP; 〈ea〉 → (SP) PEA 〈ea〉
PFLUSH If supervisor state

then invalidate instruction and data ATC entries for
destination address

else TRAP
PLOAD If supervisor state

then entry → ATC
else TRAP

PMOVE If supervisor state
then (Source) → MRn or MRn → (Destination)

PTEST If supervisor state
then logical address status → MMUSR; entry → ATC

else TRAP
 RESET If supervisor state

then Assert RSTO Line
else TRAP

RESET

ROL,ROR Destination Rotated by 〈count〉 → Destination ROd5 Rx,Dy

ROd5 #〈data〉,Dy

ROd5 〈ea〉
 ROXL,
ROXR

Destination Rotated with X by 〈count〉 → Destination ROXd5 Dx,Dy

ROXd5 #〈data〉,Dy

ROXd5 〈ea〉

Instruction Set Summary

3-24 MC68030 USER’S MANUAL MOTOROLA

NOTES:
1. Specifies either the instruction (IC), data (DC), or IC/DC caches.
2. Where r is rounding precision, S or D.
3. A list of any combination of the eight floating-point data registers, with individual register names separated by a

slash (/) and/or contiguous blocks of registers specified by the first and last register names separated by a dash
(–).

4. A list of any combination of the three floating-point system control registers (FPCR, FPSR, and FPIAR) with
indvidual register names separated by a slash (/).

5. Where d is direction, L or R.

Table 3-14. Instruction Set Summary (Concluded)

Opcode Operation Syntax
 RTD (SP) → PC; SP + 4 + d → SP RTD #〈displacement〉
RTE If-supervisor-state

then (SP) → SR; SP+2 → SP; (SP) → PC;
SP + 4 → SP;
restore state and deallocate stack according to (SP)

else TRAP

RTE

 RTM Reload Saved Module State from Stack RTM Rn
 RTR (SP) → CCR; SP + 2 → SP;

(SP) → PC; SP + 4 → SP
RTR

 RTS (SP) → PC; SP + 4 → SP RTS
 SBCD Destination10 --Source10 –X → Destination SBCD Dx,Dy

SBCD –(Ax),–(Ay)
 Scc If condition true

then 1s → Destination
else 0s → Destination

Scc 〈ea〉

 STOP If supervisor state
then Immediate Data → SR; STOP

else TRAP

STOP #〈data〉

 SUB Destination — Source → Destination SUB 〈ea〉,Dn
SUB Dn,〈ea〉

 SUBA Destination — Source → Destination SUBA 〈ea〉,An
 SUBI Destination — Immediate Data → Destination SUBI #〈data〉,〈ea〉
 SUBQ Destination — Immediate Data → Destination SUBQ #〈data〉,〈ea〉
 SUBX Destination — Source – X → Destination SUBX Dx,Dy

SUBX –(Ax),–(Ay)
 SWAP Register [31:16] ↔ Register [15:0] SWAP Dn
 TAS Destination Tested → Condition Codes; 1 → bit 7 of Destination TAS 〈ea〉

 TRAP SSP –2 → SSP; Format/Offset → (SSP);
SSP – 4 → SSP; PC → (SSP); SSP – 2 → SSP;

SR → (SSP); Vector Address → PC

TRAP # (vector〉

 TRAPcc If cc then TRAP TRAPcc
TRAPcc.W # 〈data〉TRAPcc.L # 〈data〉

 TRAPV If V then TRAP TRAPV
 TST Destination Tested → Condition Codes TST 〈ea〉

 UNLK An → SP; (SP) → An; SP + 4 → SP UNLK An
 UNPK Source (Packed BCD) + adjustment → Destination (Unpacked BCD) UNPACK –(Ax),–(Ay),#(adjustment〉

UNPACK Dx,Dy,#(adjustment〉

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-25

3.5 INSTRUCTION EXAMPLES
The following paragraphs provide examples of how to use selected instructions.

3.5.1 Using the CAS and CAS2 Instructions
The CAS instruction compares the value in a memory location with the value in a data
register, and copies a second data register into the memory location if the compared values
are equal. This provides a means of updating system counters, history information, and
globally shared pointers. The instruction uses an indivisible read-modify-write cycle; after
CAS reads the memory location, no other instruction can change that location before CAS
has written the new value. This provides security in single-processor systems, in
multitasking environments, and in multiprocessor environments. In a single-processor
system, the operation is protected from instructions of an interrupt routine. In a multitasking
environment, no other task can interfere with writing the new value of a system variable. In
a multiprocessor environment, the other processors must wait until the CAS instruction
completes before accessing a global pointer.

The following code fragment shows a routine to maintain a count, in location SYS_CNTR,
of the executions of an operation that may be performed by any process or processor in a
system. The routine obtains the current value of the count in register D0 and stores the new
count value in register D1. The CAS instruction copies the new count into SYS_CNTR if it
is valid. However, if another user has incremented the counter between the time the count
was stored and the read-modify-write cycle of the CAS instruction, the write portion of the
cycle copies the new count in SYS_CNTR into D0, and the routine branches to repeat the
test. The following code sequence guarantees that SYS_CNTR is correctly incremented.

MOVE.W SYS_CNTR,D0 get the old value of the counter
INC_LOOP MOVE.W D0,D1 make a copy of it

ADDQ.W #1,D1 and increment it
CAS.W D0,D1,SYS_CNTR if countr value is still the same, update it
BNE INC_LOOP if not, try again

Instruction Set Summary

3-26 MC68030 USER’S MANUAL MOTOROLA

The CAS and CAS2 instructions together allow safe operations in the manipulation of
system linked lists. Controlling a single location, HEAD in the example, manages a last-in-
first-out linked list (see Figure 3–2). If the list is empty, HEAD contains the NULL pointer (0);
otherwise, HEAD contains the address of the element most recently added to the list. The
code fragment shown in Figure 3–2 illustrates the code for inserting an element. The MOVE
instructions load the address in location HEAD into D0 and into the NEXT pointer in the
element being inserted, and the address of the new element into D1. The CAS instruction
stores the address of the inserted element into location HEAD if the address in HEAD
remains unaltered. If HEAD contains a new address, the instruction loads the new address
into D0 and branches to the second MOVE instruction to try again.

The CAS2 instruction is similar to the CAS instruction except that it performs two
comparisons and updates two variables when the results of the comparisons are equal. If
the results of both comparisons are equal, CAS2 copies new values into the destination
addresses. If the result of either comparison is not equal, the instruction copies the values
in the destination addresses into the compare operands.

Figure 3-2. Linked List Insertion

SINSERT
MOVE.L HEAD.D0
MOVE.L D0, (NEXT, A1)
MOVE.L A1, D1
CAS.L D0, D1, HEAD
BNE SILOOP

ALLOCATE NEW ENTRY, ADDRESS IN A1
MOVE HEAD POINTER VALUE TO D0
ESTABLISH FORWARD LINK IN NEW ENTRY
MOVE NEW ENTRY POINTER VALUE TO D1
IF WE STILL POINT TO TOP OF STACK, UPDATE THE HEAD POINTER
IF NOT, TRY AGAIN

SILOOP

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

NEW
HEAD

NEW HEAD

AFTER INSERTING AN ELEMENT:

BEFORE INSERTING AN ELEMENT:

ENTRY

+ NEXT

ENTRY

+ NEXT

?

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-27

The next code (see Figure 3–3) fragment shows the use of a CAS2 instruction to delete an
element from a linked list. The first LEA instruction loads the effective address of HEAD into
A0. The MOVE instruction loads the address in pointer HEAD into D0. The TST instruction
checks for an empty list, and the BEQ instruction branches to a routine at label SDEMPTY
if the list is empty. Otherwise, a second LEA instruction loads the address of the NEXT
pointer in the newest element on the list into A1, and the following MOVE instruction loads
the pointer contents into D1. The CAS2 instruction compares the address of the newest
structure to the value in HEAD and the address in D1 to the pointer in the address in A1. If
no element has been inserted or deleted by another routine while this routine has been
executing, the results of these comparisons are equal, and the CAS2 instruction stores the
new value into location HEAD. If an element has been inserted or deleted, the CAS2
instruction loads the new address in location HEAD into D0, and the BNE instruction
branches to the TST instruction to try again.

Figure 3-3. Linked List Deletion

HEAD

AFTER DELETING AN ELEMENT:

BEFORE DELETING AN ELEMENT:

SDELETE

SDLOOP

SDEMPTY

LEA HEAD, A0
MOVE.L (A0), D0
TST.L D0
BEQ SDEMPTY
LEA (NEXT, D0), A1
MOVE.L (A1), D1
CAS2.L D0:D1, D1:D1, (A0):(A1)

BNE SDLOOP

LOAD ADDRESS OF HEAD POINTER INTO A0
MOVE VALUE OF HEAD POINTER INTO D0
CHECK FOR NULL HEAD POINTER
IF EMPTY, NOTHING TO DELETE
LOAD ADDRESS OF FORWARD LINK INTO A1
PUT FORWARD LINK VALUE IN D1
IF STILL POINT TO ENTRY TO BE DELETED, THEN UPDATE HEAD
AND FORWARD POINTERS
IF NOT, TRY AGAIN
SUCCESSFUL DELETION, ADDRESS OF DELETED ENTRY IN D0
(MAY BE NULL)

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

ENTRY

+ NEXT

HEAD

ENTRY

+ NEXT

ENTRY

+ NEXT

Instruction Set Summary

3-28 MC68030 USER’S MANUAL MOTOROLA

The CAS2 instruction can also be used to correctly maintain a first-in-first-out doubly linked
list. A doubly linked list needs two controlled locations, LIST_PUT and LIST_GET, which
contain pointers to the last element inserted in the list and the next to be removed,
respectively. If the list is empty, both pointers are NULL (0).

The code fragment shown in Figure 3–4 illustrates the insertion of an element in a doubly
linked list. The first two instructions load the effective addresses of LIST_PUT and
LIST_GET into registers A0 and A1, respectively. The next instruction moves the address
of the new element into register D2. Another MOVE instruction moves the address in
LIST_PUT into register D0. At label DILOOP, a TST instruction tests the value in D0, and
the BEQ instruction branches to the MOVE instruction when D0 is equal to zero. Assuming
the list is empty, this MOVE instruction is executed next; it moves the zero in D0 into the
NEXT and LAST pointers of the new element. Then the CAS2 instruction moves the address
of the new element into both LIST_PUT and LIST_GET, assuming that both of these
pointers still contain zero. If not, the BNE instruction branches to the TST instruction at label
DILOOP to try again. This time, the BEQ instruction does not branch, and the following
MOVE instruction moves the address in D0 to the NEXT pointer of the new element. The
CLR instruction clears register D1 to zero, and the MOVE instruction moves the zero into
the LAST pointer of the new element. The LEA instruction loads the address of the LAST
pointer of the most recently inserted element into register A1. Assuming the LIST_PUT
pointer and the pointer in A1 have not been changed, the CAS2 instruction stores the
address of the new element into these pointers.

The code fragment to delete an element from a doubly linked list is similar (see Figure 3–5).
The first two instructions load the effective addresses of pointers LIST_PUT and LIST_GET
into registers A0 and A1, respectively. The MOVE instruction at label DDLOOP moves the
LIST_GET pointer into register D1. The BEQ instruction that follows branches out of the
routine when the pointer is zero. The MOVE instruction moves the LAST pointer of the
element to be deleted into register D2. Assuming this is not the last element in the list, the
Z condition code is not set, and the branch to label DDEMPTY does not occur. The LEA
instruction loads the address of the NEXT pointer of the element at the address in D2 into
register A2. The next instruction, a CLR instruction, clears register D0 to zero. The CAS2
instruction compares the address in D1 to the LIST-GET pointer and to the address in
register A2. If the pointers have not been updated, the CAS2 instruction loads the address
in D2 into the LIST_GET pointer and zero into the address in register A2.

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-29

When the list contains only one element, the routine branches to the CAS2 instruction at
label DDEMPTY after moving a zero pointer value into D2. This instruction checks the
addresses in LIST_PUT and LIST_GET to verify that no other routine has inserted another
element or deleted the last element. Then the instruction moves zero into both pointers, and
the list is empty.

Figure 3-4. Doubly Linked List Insertion

BEFORE INSERTING NEW ENTRY:

DINSERT

DILOOP

DIEMPTY

DIDONE

LEA LIST_PUT, A0
LEA LIST_GET, A1
MOVE.L A2, D2
MOVE.L (A0), D0
TST.L D0
BEQ DIEMPTY
MOVE.L D0, (NEXT, A2)
CLR.L D1
MOVE.L D1, (LAST, A2)
LEA (LAST, D0), A1
CAS2.L D0:D1,D2:D2,(A0):(A1)
BNE DILOOP
BRA DIDONE
MOVE.L D0, (NEXT, A2)
MOVE.L D0, (LAST, A2)
CAS2.L D0:D0,D2:D2,(A0):(A1)
BNE DILOOP

(ALLOCATE NEW LIST ENTRY, LOAD ADDRESS INTO A2)
LOAD ADDRESS OF HEAD POINTER INTO A0
LOAD ADDRESS OF TAIL POINTER INTO A1
LOAD NEW ENTRY POINTER INTO D2
LOAD POINTER TO HEAD ENTRY INTO D0
IS HEAD POINTER NULL, (0 ENTRIES IN LIST)?
IF SO, WE NEED ONLY TO ESTABLISH POINTERS
PUT HEAD POINTER INTO FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER VALUE INTO D1
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
LOAD BACKWARD POINTER OF OLD HEAD ENTRY INTO A1
IF WE STILL POINT TO OLD HEAD ENTRY, UPDATE POINTERS
IF NOT, TRY AGAIN

PUT NULL POINTER IN FORWARD POINTER OF NEW ENTRY
PUT NULL POINTER IN BACKWARD POINTER OF NEW ENTRY
IF WE STILL HAVE NO ENTRIES, SET BOTH POINTERS TO THIS ENTRY
IF NOT, TRY AGAIN
SUCCESSFUL LIST ENTRY INSERTION

ENTRY ENTRY ENTRY

+ NEXT + NEXT + NEXT

AFTER INSERTING NEW ENTRY:

+ LAST+ LAST+ LAST

NEW ENTRY LIST_PUT LIST_GET

LIST_PUT

ENTRY ENTRY

+ NEXT + NEXT+ LAST+ LAST

LIST_GET

ENTRY

+ NEXT+ LAST

Instruction Set Summary

3-30 MC68030 USER’S MANUAL MOTOROLA

3.5.2 Nested Subroutine Calls
The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack. Using this instruction in a series of
subroutine calls results in a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an address
into the stack pointer and pulling the value at that address from the stack. When the operand
of the instruction is the address of the link address at the bottom of a stack frame, the effect
is to remove the stack frame from the stack and from the linked list.

Figure 3-5. Doubly Linked List Deletion

AFTER DELETING ENTRY:

BEFORE DELETING ENTRY:

DDELETE

DDLOOP

DDEMPTY

DDDONE

LEA LIST_PUT, A0
LEA LIST_GET, A1
MOVE.L (A1),D1
BEQ DDDONE
MOVE.L (LAST,D1),D2
BEQ DDEMPTY
LEA (NEXT,D2),A2
CLR.L D0
CAS2.L D1:D1,D2:D0,(A1):(A2)
BNE DDLOOP
BRA DDDONE
CAS2.L D1:D1,D2:D2,(A1):(A0)
BNE DDLOOP

GET ADDRESS OF HEAD POINTER IN A0
GET ADDRESS OF TAIL POINTER IN A1
MOVE TAIL POINTER INTO D1
IF NO LIST, QUIT
PUT BACKWARD POINTER IN D2
IF ONLY ONE ELEMENT, UPDATE POINTERS
PUT ADDRESS OF FORWARD POINTER IN A2
PUT NULL POINTER VALUE IN D0
IF BOTH POINTERS STILL POINT TO THIS ENTRY , UPDATE THEM
IF NOT, TRY AGAIN

IF STILL FIRST ENTRY, SET HEAD AND TAIL POINTERS TO NULL
IF NOT, TRY AGAIN
SUCCESSFUL ENTRY DELETION, ADDRESS OF DELETED ENTRY IN D1
(MAY BE NULL)

ENTRY ENTRY ENTRY

+ NEXT + NEXT + NEXT+ LAST+ LAST+ LAST

LIST_PUT LIST_GET

LIST_PUT

ENTRY ENTRY

+ NEXT + NEXT+ LAST+ LAST

DELETED ENTRYLIST_GET

ENTRY

+ NEXT+ LAST

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-31

3.5.3 Bit Field Operations
One data type provided by the MC68030 is the bit field, consisting of as many as 32
consecutive bits. A bit field is defined by an offset from an effective address and a width
value. The offset is a value in the range of 231 through 231 1 from the most significant bit
(bit 7) at the effective address. The width is a positive number, 1–32. The most significant
bit of a bit field is bit 0; the bits number in a direction opposite to the bits of an integer.

The instruction set includes eight instructions that have bit field operands. The insert bit field
(BFINS) instruction inserts a bit field stored in a register into a bit field. The extract bit field
signed (BFEXTS) instruction loads a bit field into the least significant bits of a register and
extends the sign to the left, filling the register. The extract bit field unsigned (BFEXTU) also
loads a bit field, but zero fills the unused portion of the destination register.

The set bit field (BFSET) instruction sets all the bits of a field to ones. The clear bit field
(BFCLR) instruction clears a field. The change bit field (BFCHG) instruction complements
all the bits in a bit field. These three instructions all test the previous value of the bit field,
setting the condition codes accordingly. The test bit field (BFTST) instruction tests the value
in the field, setting the condition codes appropriately without altering the bit field. The find
first one in bit field (BFFFO) instruction scans a bit field from bit 0 to the right until it finds a
bit set to one and loads the bit offset of the first set bit into the specified data register. If no
bits in the field are set, the field offset and the field width is loaded into the register.

An important application of bit field instructions is the manipulation of the exponent field in a
floating-point number. In the IEEE standard format, the most significant bit is the sign bit of
the mantissa. The exponent value begins at the next most significant bit position; the
exponent field does not begin on a byte boundary. The extract bit field (BFEXTU) instruction
and the BFTST instruction are the most useful for this application, but other bit field
instructions can also be used.

Programming of input and output operations to peripherals requires testing, setting, and
inserting of bit fields in the control registers of the peripherals, which is another application
for bit field instructions. However, control register locations are not memory locations;
therefore, it is not always possible to insert or extract bit fields of a register without affecting
other fields within the register.

Instruction Set Summary

MOTOROLA MC68030 USER’S MANUAL 3-32

Another widely used application for bit field instructions is bit-mapped graphics. Because
byte boundaries are ignored in these areas of memory, the field definitions used with bit field
instructions are very helpful.

3.5.4 Pipeline Synchronization with the Nop Instruction
Although the no operation (NOP) instruction performs no visible operation, it serves an
important purpose. It forces synchronization of the integer unit pipeline by waiting for all
pending bus cycles to complete. All previous integer instructions and floating-point external
operand accesses complete execution before the NOP begins. The NOP instruction does
not synchronize the FPU pipeline; floating-point instructions with floating-point register
operand destinations can be executing when the NOP begins.

MOTOROLA

MC68030 USER’S MANUAL

4-1

SECTION 4
PROCESSING STATES

This section describes the processing states of the MC68030. It describes the functions of
the bits in the supervisor portion of the status register and the actions taken by the processor
in response to exception conditions.

Unless the processor has halted, it is always in either the normal or the exception processing
state. Whenever the processor is executing instructions or fetching instructions or operands,
it is in the normal processing state. The processor is also in the normal processing state
while it is storing instruction results or communicating with a coprocessor.

NOTE

Exception processing refers specifically to the transition from
normal processing of a program to normal processing of system
routines, interrupt routines, and other exception handlers. Ex-
ception processing includes all stacking operations, the fetch of
the exception vector, and filling of the instruction pipe caused by
an exception. It has completed when execution of the first in-
struction of the exception handler routine begins.

The processor enters the exception processing state when an interrupt is acknowledged,
when an instruction is traced or results in a trap, or when some other exceptional condition
arises. Execution of certain instructions or unusual conditions occurring during the execution
of any instructions can cause exceptions. External conditions, such as interrupts, bus errors,
and some coprocessor responses, also cause exceptions. Exception processing provides
an efficient transfer of control to handlers and routines that process the exceptions.

A catastrophic system failure occurs whenever the processor receives a bus error or
generates an address error while in the exception processing state. This type of failure halts
the processor. For example, if during the exception processing of one bus error another bus
error occurs, the MC68030 has not completed the transition to normal processing and has
not completed saving the internal state of the machine, so the processor assumes that the
system is not operational and halts. Only an external reset can restart a halted processor.
(When the processor executes a STOP instruction, it is in a special type of normal
processing state, one without bus cycles. It is stopped, not halted.)

Processing States

4-2

MC68030 USER’S MANUAL

MOTOROLA

4.1 PRIVILEGE LEVELS

The processor operates at one of two levels of privilege: the user level or the supervisor
level. The supervisor level has higher privileges than the user level. Not all processor or
coprocessor instructions are permitted to execute in the lower privileged user level, but all
are available at the supervisor level. This allows a separation of supervisor and user so the
supervisor can protect system resources from uncontrolled access. The processor uses the
privilege level indicated by the S bit in the status register to select either the user or
supervisor privilege level and either the user stack pointer or a supervisor stack pointer for
stack operations. The processor identifies a bus access (supervisor or user mode) via the
function codes so that differentiation between supervisor and user can be maintained. The
memory management unit uses the indication of privilege level to control and translate
memory accesses to protect supervisor code, data, and resources from access by user
programs.

In many systems, the majority of programs execute at the user level. User programs can
access only their own code and data areas and can be restricted from accessing other
information. The operating system typically executes at the supervisor privilege level. It has
access to all resources, performs the overhead tasks for the user level programs, and
coordinates their activities.

4.1.1 Supervisor Privilege Level

The supervisor level is the higher privilege level. The privilege level is determined by the S
bit of the status register; if the S bit is set, the supervisor privilege level applies, and all
instructions are executable. The bus cycles for instructions executed at the supervisor level
are normally classified as supervisor references, and the values of the function codes on
FC0–FC2 refer to supervisor address spaces.

In a multitasking operating system, it is more efficient to have a supervisor stack space
associated with each user task and a separate stack space for interrupt associated tasks.
The MC68030 provides two supervisor stacks, master and interrupt; the M bit of the status
register selects which of the two is active. When the M bit is set to one, supervisor stack
pointer references (either implicit or by specifying address register A7) access the master
stack pointer (MSP). The operating system sets the MSP for each task to point to a task-
related area of supervisor data space. This separates task-related supervisor activity from
asynchronous, I/O-related supervisor tasks that may be only coincidental to the currently
executing task. The master stack (MSP) can separately maintain task control information for
each currently executing user task, and the software updates the MSP when a task switch
is performed, providing an efficient means for transferring task-related stack items. The
other supervisor stack (ISP) can be used for interrupt control information and workspace
area as interrupt handling routines require.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-3

When the M bit is clear, the MC68030 is in the interrupt mode of the supervisor privilege
level, and operation is the same as in the MC68000, MC68008, and MC68010 supervisor
mode. (The processor is in this mode after a reset operation.) All supervisor stack pointer
references access the interrupt stack pointer (ISP) in this mode.

The value of the M bit in the status register does not affect execution of privileged
instructions; both master and interrupt modes are at the supervisor privilege level.
Instructions that affect the M bit are MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, and
RTE. Also, the processor automatically saves the M-bit value and clears it in the SR as part
of the exception processing for interrupts.

All exception processing is performed at the supervisor privilege level. All bus cycles
generated during exception processing are supervisor references, and all stack accesses
use the active supervisor stack pointer.

4.1.2 User Privilege Level

The user level is the lower privilege level. The privilege level is determined by the S bit of
the status register; if the S bit is clear, the processor executes instructions at the user
privilege level.

Most instructions execute at either privilege level, but some instructions that have important
system effects are privileged and can only be executed at the supervisor level. For instance,
user programs are not allowed to execute the STOP instruction or the RESET instruction.
To prevent a user program from entering the supervisor privilege level, except in a controlled
manner, instructions that can alter the S bit in the status register are privileged. The TRAP
#n instruction provides controlled access to operating system services for user programs.

Processing States

4-4

MC68030 USER’S MANUAL

MOTOROLA

The bus cycles for an instruction executed at the user privilege level are classified as user
references, and the values of the function codes on FC0-FC2 specify user address spaces.
The memory management unit of the processor, when it is enabled, uses the value of the
function codes to distinguish between user and supervisor activity and to control access to
protected portions of the address space. While the processor is at the user level, references
to the system stack pointer implicitly, or to address register seven (A7) explicitly, refer to the
user stack pointer (USP).

4.1.3 Changing Privilege Level

To change from the user to the supervisor privilege level, one of the conditions that causes
the processor to perform exception processing must occur. This causes a change from the
user level to the supervisor level and can cause a change from the master mode to the
interrupt mode. Exception processing saves the current values of the S and M bits of the
status register (along with the rest of the status register) on the active supervisor stack, and
then sets the S bit, forcing the processor into the supervisor privilege level. When the
exception being processed is an interrupt and the M bit is set, the M bit is cleared, putting
the processor into the interrupt mode. Execution of instructions continues at the supervisor
level to process the exception condition.

To return to the user privilege level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. The MOVE, ANDI,
EORI, and ORI to SR and RTE instructions execute at the supervisor privilege level and can
modify the S bit of the status register. After these instructions execute, the instruction
pipeline is flushed and is refilled from the appropriate address space. This is indicated
externally by the assertion of the REFILL signal.

The RTE instruction returns to the program that was executing when the exception occurred.
It restores the exception stack frame saved on the supervisor stack. If the frame on top of
the stack was generated by an interrupt, trap, or instruction exception, the RTE instruction
restores the status register and program counter to the values saved on the supervisor
stack. The processor then continues execution at the restored program counter address and
at the privilege level determined by the S bit of the restored status register. If the frame on
top of the stack was generated by a bus fault (bus error or address error exception), the RTE
instruction restores the entire saved processor state from the stack.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-5

4.2 ADDRESS SPACE TYPES

The processor specifies a target address space for every bus cycle with the function code
signals according to the type of access required. In addition to distinguishing between
supervisor/user and program/data, the processor can identify special processor cycles,
such as the interrupt acknowledge cycle, and the memory management unit can control
accesses and translate addresses appropriately. Table 4-1 lists the types of accesses
defined for the MC68030 and the corresponding values of function codes FC0–FC2.

*Address space 3 is reserved for user definition; whereas, 0 and 4
are reserved for future use by Motorola.

The memory locations of user program and data accesses are not predefined. Neither are
the locations of supervisor data space. During reset, the first two long words beginning at
memory location zero in the supervisor program space are used for processor initialization.
No other memory locations are explicitly defined by the MC68030.

A function code of $7 ([FC2:FC0] = 111) selects the CPU address space. This is a special
address space that does not contain instructions or operands but is reserved for special
processor functions. The processor uses accesses in this space to communicate with
external devices for special purposes. For example, all M68000 processors use the CPU
space for interrupt acknowledge cycles. The MC68020 and MC68030 also generate CPU
space accesses for breakpoint acknowledge and coprocessor operations.

Supervisor programs can use the MOVES instruction to access all address spaces,
including the user spaces and the CPU address space. Although the MOVES instruction can
be used to generate CPU space cycles, this may interfere with proper system operation.
Thus, the use of MOVES to access the CPU space should be done with caution.

Table 4-1. Address Space Encodings

FC2 FC1 FC0 Address Space

0 0 0 (Undefined, Reserved)*
0 0 1 User Data Space
0 1 0 User Program Space
0 1 1 (Undefined, Reserved)*
1 0 0 (Undefined, Reserved)*
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space

Processing States

4-6

MC68030 USER’S MANUAL

MOTOROLA

4.3 EXCEPTION PROCESSING

An exception is defined as a special condition that pre-empts normal processing. Both
internal and external conditions cause exceptions. External conditions that cause
exceptions are interrupts from external devices, bus errors, coprocessor detected errors,
and reset. Instructions, address errors, tracing, and breakpoints are internal conditions that
cause exceptions. The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE, and DIV
instructions can all generate exceptions as part of their normal execution. In addition, illegal
instructions, privilege violations, and coprocessor protocol violations cause exceptions.

Exception processing, which is the transition from the normal processing of a program to the
processing required for the exception condition, involves the exception vector table and an
exception stack frame. The following paragraphs describe the vector table and a
generalized exception stack frame. Exception processing is discussed in detail in

Section
8 Exception Processing

.

Coprocessor detected exceptions are discussed in detail in

Section 10 Coprocessor Interface Description

.

4.3.1 Exception Vectors

The vector base register (VBR) contains the base address of the 1024-byte exception vector
table, which consists of 256 exception vectors. Exception vectors contain the memory
addresses of routines that begin execution at the completion of exception processing. These
routines perform a series of operations appropriate for the corresponding exceptions.
Because the exception vectors contain memory addresses, each consists of one long word,
except for the reset vector. The reset vector consists of two long words: the address used
to initialize the interrupt stack pointer and the address used to initialize the program counter.

The address of an exception vector is derived from an 8-bit vector number and the VBR. The
vector numbers for some exceptions are obtained from an external device; others are
supplied automatically by the processor. The processor multiplies the vector number by four
to calculate the vector offset, which it adds to the VBR. The sum is the memory address of
the vector. All exception vectors are located in supervisor data space, except the reset
vector, which is located in supervisor program space. Only the initial reset vector is fixed in
the processor's memory map; once initialization is complete, there are no fixed
assignments. Since the VBR provides the base address of the vector table, the vector table
can be located anywhere in memory; it can even be dynamically relocated for each task that
is executed by an operating system. Details of exception processing are provided in

Section
8 Exception Processing

, and Table 8-1 lists the exception vector assignments.

Processing States

MOTOROLA

MC68030 USER’S MANUAL

4-7

4.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on the
top of the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes a copy of the status register, the program counter,
the vector offset of the vector, and the frame format field. The frame format field identifies
the type of stack frame. The RTE instruction uses the value in the format field to properly
restore the information stored in the stack frame and to deallocate the stack space. The
general form of the exception stack frame is illustrated in Figure 4-1. Refer to

Section 8
Exception Processing

 for a complete list of exception stack frames.

Figure 4-1. General Exception Stack Frame

STATUS REGISTER

FORMAT VECTOR OFFSET

15 12 0

SP

PROGRAM COUNTER

ADDITIONAL PROCESSOR STATE INFORMATION
 (2, 6, 12, OR 42 WORDS, IF NEEDED)

MOTOROLA

MC68030 USER’S MANUAL

5-1

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups, as shown in Figure 5-1. Each signal is explained in a brief paragraph with reference
to other sections that contain more detail about the signal and the related operations.

Figure 5-1. Functional Signal Groups

DSACK0

FUNCTION CODES

ADDRESS BUS

TRANSFER
SIZE

ASYNCHRONOUS
BUS CONTROL

CACHE
CONTROL

EMULATOR
SUPPORT

SYNCHRONOUS
BUS CONTROL

BUS EXCEPTION
CONTROL

BUS ARBITRATION
CONTROL

INTERRUPT
CONTROL

FC2-FC0

A31-A0

D31-D0

SIZ0
SIZ1

OCS

ECS
R/W

RMC

AS
DS

DBEN

DSACK1

CIIN
CIOUT

CBREQ

CBACK GND (14)

CLK

CDIS
STATUS

REFILL

STERM

BERR
HALT

RESET

IPL0
IPL1

IPL2
IPEND
AVEC

BR
BG

BGACK

V (10)CC

DATA BUS

MC68EC030

Signal Description

5-2

MC68030 USER’S MANUAL

MOTOROLA

NOTE

In this section and in the remainder of the manual,

assertion

and

negation

 are used to specify forcing a signal to a particular
state. In particular, assertion and assert refer to a signal that is
active or true; negation and negate indicate a signal that is inac-
tive or false. These terms are used independently of the voltage
level (high or low) that they represent.

5.1 SIGNAL INDEX

The input and output signals for the MC68030 are listed in Table 5-1. Both the names and
mnemonics are shown along with brief signal descriptions. For more detail on each signal,
refer to the paragraph in this section named for the signal and the reference in that
paragraph to a description of the related operations.

Guaranteed timing specifications for the signals listed in Table 5-1 can be found in
M68030EC/D,

MC68030 Electrical Specifications

.

Table 5-1. Signal Index (Sheet 1 of 2)

Signal Name Mnemonic Function

Function Codes FC0–FC2 3-bit function code used to identify the address space of each bus cycle.

Address Bus A0–A31 32-bit address bus.

Data Bus D0–D31 32-bit data bus used to transfer 8, 16, 24, or 32 bits of data per bus cycle.

Size SIZ0/SIZ1 Indicates the number of bytes remaining to be transferred for this cycle.
These signals, together with A0 and A1, define the active sections of the
data bus.

Operand Cycle Start OCS Identical operation to that of ECS except that OCS is asserted only
during the first bus cycle of an operand transfer.

External Cycle Start ECS Provides an indication that a bus cycle is beginning.

Read/Write R/W Defines the bus transfer as a processor read or write.

Read-Modify-Write Cycle RMC Provides an indicator that the current bus cycle is part of an indivisible
read-modify-write operation.

Address Strobe AS Indicates that a valid address is on the bus.

Data Strobe DS Indicates that valid data is to be placed on the data bus by an external
device or has been placed on the data bus by the MC68030.

Data Buffer Enable DBEN Provides an enable signal for external data buffers.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-3

Table 5-1. Signal Index (Sheet 2 of 2)

Signal Name Mnemonic Function

Data Transfer and
Size Acknowledge

DSACK0/
DSACK1

Bus response signals that indicate the requested data transfer operation
is completed. In addition, these two lines indicate the size of the external
bus port on a cycle-by-cycle basis and are used for asynchronous
transfers.

Synchronous
Termination

STERM Bus response signal that indicates a port size of 32 bits and that data
may be latched on the next falling clock edge.

Cache Inhibit In CIIN Prevents data from being loaded into the MC68030 instruction and data
caches.

Cache Inhibit Out CIOUT Reflects the CI bit in ATC entries or TTx register; indicates that external
caches should ignore these accesses

Cache Burst Request CBREQ Indicates a burst request for the instruction or data cache.

Cache Burst
Acknowledge

CBACK Indicates that the accessed device can operate in burst mode.

Interrupt Priority Level IPL0–IPL2 Provides an encoded interrupt level to the processor.

Interrupt Pending IPEND Indicates that an interrupt is pending.

Autovector AVEC Requests an autovector during an interrupt acknowledge cycle.

Bus Request BR Indicates that an external device requires bus mastership.

Bus Grant BG Indicates that an external device may assume bus mastership.

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus mastership.

Reset RESET System reset.

Halt HALT Indicates that the processor should suspend bus activity.

Bus Error BERR Indicates that an erroneous bus operation is being attempted.

Cache Disable CDIS Dynamically disables the on-chip cache to assist emulator support.

MMU Disable MMUDIS Dynamically disables the translation mechanism of the MMU.

Pipe Refill REFILL Indicates when the MC68030 is beginning to fill pipeline.

Microsequencer Status STATUS Indicates the state of the microsequencer

Clock CLK Clock input to the processor.

Power Supply V

CC

Power supply.

Ground GND Ground connection

Signal Description

5-4

MC68030 USER’S MANUAL

MOTOROLA

5.2 FUNCTION CODE SIGNALS (FC0

–

FC2)

These three-state outputs identify the address space of the current bus cycle. Table 4-1
shows the relationship of the function code signals to the privilege levels and the address
spaces. Refer to

4.2 Address Space Types

 for more information.

5.3 ADDRESS BUS (A0

–

A31)

These three-state outputs provide the address for the current bus cycle, except in the CPU
address space. Refer to

4.2 Address Space Types

 for more information on the CPU
address space. A31 is the most significant address signal. Refer to

7.1.2 Address Bus

 for
information on the address bus and its relationship to bus operation.

5.4 DATA BUS (D0

–

D31)

These three-state bidirectional signals provide the general-purpose data path between the
MC68030 and all other devices. The data bus can transfer 8, 16, 24, or 32 bits of data per
bus cycle. D31 is the most significant bit of the data bus. Refer to

7.1.4 Data Bus

 for more
information on the data bus and its relationship to bus operation.

5.5 TRANSFER SIZE SIGNALS (SIZ0, SIZ1)

These three-state outputs indicate the number of bytes remaining to be transferred for the
current bus cycle. With A0, A1, DSACK0, DSACK1, and STERM, SIZ0 and SIZ1 define the
number of bits transferred on the data bus. Refer to

7.2.1 Dynamic Bus Sizing

for more
information on the size signals and their use in dynamic bus sizing.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-5

5.6 BUS CONTROL SIGNALS

The following signals control synchronous bus transfer operations for the MC68030.

5.6.1 Operand Cycle Start (OCS)

This output signal indicates the beginning of the first external bus cycle for an instruction
prefetch or a data operand transfer. OCS is not asserted for subsequent cycles that are
performed due to dynamic bus sizing or operand misalignment.

7.1.1 Bus Control Signals

for information about the relationship of OCS to bus operation.

5.6.2 External Cycle Start (ECS)

This output signal indicates the beginning of a bus cycle of any type.

7.1.1 Bus Control
Signals

 for information about the relationship of ECS to bus operation.

5.6.3 Read/Write (R/W)

This three-state output signal defines the type of bus cycle. A high level indicates a read
cycle; a low level indicates a write cycle. Refer to

7.1.1 Bus Control Signals

 for information
about the relationship of R/W to bus operation.

5.6.4 Read-Modify-Write Cycle (RMC)

This three-state output signal identifies the current bus cycle as part of an indivisible read-
modify-write operation; it remains asserted during all bus cycles of the read-modify-write
operation. Refer to

7.1.1 Bus Control Signals

 for information about the relationship of RMC
to bus operation.

5.6.5 Address Strobe (AS)

This three-state output indicates that a valid address is on the address bus. The function
code, size, and read/write signals are also valid when AS is asserted. Refer to

7.1.3
Address Strobe

 for information about the relationship of AS to bus operation.

Signal Description

5-6

MC68030 USER’S MANUAL

MOTOROLA

5.6.6 Data Strobe (DS)

During a read cycle, this three-state output indicates that an external device should place
valid data on the data bus. During a write cycle, the data strobe indicates that the MC68030
has placed valid data on the bus. During two-clock synchronous write cycles, the MC68030
does not assert DS. Refer to

7.1.5 Data Strobe

for more information about the relationship
of DS to bus operation.

5.6.7 Data Buffer Enable (DBEN)

This output is an enable signal for external data buffers. This signal may not be required in
all systems. The timing of this signal may preclude its use in a system that supports two-
clock synchronous bus cycles. Refer to

7.1.6 Data Buffer Enable

 for more information
about the relationship of DBEN to bus operation.

5.6.8 Data Transfer and Size Acknowledge (DSACK0, DSACK1)

These inputs indicate the completion of a requested data transfer operation. In addition, they
indicate the size of the external bus port at the completion of each cycle. These signals apply
only to asynchronous bus cycles. Refer to

7.1.7 Bus Cycle Termination Signals

for more
information on these signals and their relationship to dynamic bus sizing.

5.6.9 Synchronous Termination (STERM)

This input is a bus handshake signal indicating that the addressed port size is 32 bits and
that data is to be latched on the next falling clock edge for a read cycle. This signal applies
only to synchronous operation. Refer to

7.1.7 Bus Cycle Termination Signals

 for more
information about the relationship of STERM to bus operation.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-7

5.7 CACHE CONTROL SIGNALS

The following signals relate to the on-chip caches.

5.7.1 Cache Inhibit Input (CIIN)

This input signal prevents data from being loaded into the MC68030 instruction and data
caches. It is a synchronous input signal and is interpreted on a bus-cycle-by-bus-cycle
basis. CIIN is ignored during all write cycles. Refer to

6.1 On-Chip Cache Organization
and Operation

 for information on the relationship of CIIN to the on-chip caches.

5.7.2 Cache Inhibit Output (CIOUT)

This three-state output signal reflects the state of the CI bit in the address translation cache
entry for the referenced logical address, indicating that an external cache should ignore the
bus transfer. When the referenced logical address is within an area specified for transparent
translation, the CI bit of the appropriate transparent translation register controls the state of
CIOUT. Refer to

Section 9 Memory Management Unit

 for more information about the
address translation cache and transparent translation. Also, refer to

Section 6 On-Chip
Cache Memories

 for the effect of CIOUT on the internal caches.

5.7.3 Cache Burst Request (CBREQ)

This three-state output signal requests a burst mode operation to fill a line in the instruction
or data cache. Refer to

6.1.3 Cache Filling

 for filling information and

7.3.7 Burst Operation
Cycles

for bus cycle information pertaining to burst mode operations.

5.7.4 Cache Burst Acknowledge (CBACK)

This input signal indicates that the accessed device can operate in the burst mode and can
supply at least one more long word for the instruction or data cache. Refer to

7.3.7 Burst
Operation Cycles

for information about burst mode operation.

Signal Description

5-8

MC68030 USER’S MANUAL

MOTOROLA

5.8 INTERRUPT CONTROL SIGNALS

The following signals are the interrupt control signals for the MC68030.

5.8.1 Interrupt Priority Level Signals

These input signals provide an indication of an interrupt condition and the encoding of the
interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most significant
bit of the level number. For example, since the IPLn signals are active low, IPL0–IPL2 equal
to $5 corresponds to an interrupt request at interrupt level 2. Refer to

8.1.9 Interrupt
Exceptions

for information on MC68030 interrupts.

5.8.2 Interrupt Pending (IPEND)

This output signal indicates that an interrupt request has been recognized internally and
exceeds the current interrupt priority mask in the status register (SR). This output is for use
by external devices (coprocessors and other bus masters, for example) to predict processor
operation on the following instruction boundaries. Refer to

8.1.9 Interrupt Exceptions

 for
interrupt information. Also, refer to

7.4.1 Interrupt Acknowledge Bus Cycles

 for bus
information related to interrupts.

5.8.3 Autovector (AVEC)

This input signal indicates that the MC68030 should generate an automatic vector during an
interrupt acknowledge cycle. Refer to

7.4.1.2 Autovector Interrupt Acknowledge Cycle

for more information about automatic vectors.

5.9 BUS ARBITRATION CONTROL SIGNALS

The following signals are the three bus arbitration control signals used to determine which
device in a system is the bus master.

5.9.1 Bus Request (BR)

This input signal indicates that an external device needs to become the bus master. This is
typically a "wire-ORed” input (but does not need to be constructed from open-collector
devices). Refer to

7.7 Bus Arbitration

 for more information.

Signal Description

MOTOROLA

MC68030 USER’S MANUAL

5-9

5.9.2 Bus Grant (BG)

This output indicates that the MC68030 will release ownership of the bus master when the
current processor bus cycle completes. Refer to

7.7.2 Bus Grant

 for more information.

5.9.3 Bus Grant Acknowledge (BGACK)

This input indicates that an external device has become the bus master. Refer to

 7.7.3 Bus
Grant Acknowledge

for more information.

5.10 BUS EXCEPTION CONTROL SIGNALS

The following signals are the bus exception control signals for the MC68030.

5.10.1 Reset (RESET)

This bidirectional open-drain signal is used to initiate a system reset. An external reset signal
resets the MC68030 as well as all external devices. A reset signal from the processor
(asserted as part of the RESET instruction) resets external devices only; the internal state
of the processor is not altered. Refer to

7.8 Reset Operation

 for a description of reset bus
operation and 8.1.1 Reset Exception for information about the reset exception.

5.10.2 Halt (HALT)
The halt signal indicates that the processor should suspend bus activity or, when used with
BERR, that the processor should retry the current cycle. Refer to 7.5 Bus Exception
Control Cycles for a description of the effects of HALT on bus operations.

5.10.3 Bus Error (BERR)
The bus error signal indicates that an invalid bus operation is being attempted or, when used
with HALT, that the processor should retry the current cycle. Refer to 7.5 Bus Exception
Control Cycles for a description of the effects of BERR on bus operations.

Signal Description

5-10 MC68030 USER’S MANUAL MOTOROLA

5.11 EMULATOR SUPPORT SIGNALS
The following signals support emulation by providing a means for an emulator to disable the
on-chip caches and memory management unit and by supplying internal status information
to an emulator. Refer to Section 12 Applications Information for more detailed
information on emulation support.

5.11.1 Cache Disable (CDIS)
The cache disable signal dynamically disables the on-chip caches to assist emulator
support. Refer to 6.1 On-Chip Cache Organization and Operation for information about
the caches; refer to Section 12 Applications Information for a description of the use of
this signal by an emulator. CDIS does not flush the data and instruction caches; entries
remain unaltered and become available again when CDIS is negated.

5.11.2 MMU Disable (MMUDIS)
The MMU disable signal dynamically disables the translation of addresses by the MMU.
Refer to 9.4 Address Translation Cache for a description of address translation; refer to
Section 12 Applications Information for a description of the use of this signal by an
emulator. The assertion of MMUDIS does not flush the address translation cache (ATC);
ATC entries become available again when MMUDIS is negated.

5.11.3 Pipeline Refill (REFILL)
The pipeline refill signal indicates that the MC68030 is beginning to refill the internal
instruction pipeline. Refer to Section 12 Applications Information for a description of the
use of this signal by an emulator.

5.11.4 Internal Microsequencer Status (STATUS)
The microsequencer status signal indicates the state of the internal microsequencer. The
varying number of clocks for which this signal is asserted indicates instruction boundaries,
pending exceptions, and the halted condition. Refer to Section 12 Applications
Information for a description of the use of this signal by an emulator.

Signal Description

5-11 MC68030 USER’S MANUAL MOTOROLA

5.12 CLOCK (CLK)
The clock signal is the clock input to the MC68030. It is a TTL-compatible signal. Refer to
Section 12 Applications Information for suggestions on clock generation.

5.13 POWER SUPPLY CONNECTIONS
The MC68030 requires connection to a VCC power supply, positive with respect to ground.
The VCC connections are grouped to supply adequate current for the various sections of the
processor. The ground connections are similarly grouped. Section 14 Ordering
Information and Mechanical Data describes the groupings of VCC and ground
connections, and Section 12 Applications Information describes a typical power supply
interface.

5.14 SIGNAL SUMMARY
Table 5-2 provides a summary of the electrical characteristics of the signals discussed in
this section.

Signal Description

5-12 MC68030 USER’S MANUAL MOTOROLA

Table 5-2. Signal Summary

Signal Function Signal Name Input/Output Active State Three-State

Function Codes FC0–FC2 Output High Yes

Address Bus A0–A31 Output High Yes

Data Bus D0–D31 Input/Output High Yes

Transfer Size SIZ0/SIZ1 Output High Yes

Operand Cycle Start OCS Output Low No

External Cycle Start ECS Output Low No

Read/Write R/W Output High/Low Yes

Read-Modify-Write Cycle RMC Output Low Yes

Address Strobe AS Output Low Yes

Data Strobe DS Output Low Yes

Data Buffer Enable DBEN Output Low Yes

Data Transfer and Size
Acknowledge

DSACK0/
DSACK1

Input Low —

Synchronous Termination STERM Input Low —

Cache Inhibit In CIIN Input Low —

Cache Inhibit Out CIOUT Output Low Yes

Cache Burst Request CBREQ Output Low Yes

Cache Burst Acknowledge CBACK Input Low —

Interrupt Priority Level IPL0–IPL2 Input Low —

Interrupt Pending IPEND Output Low No

Autovector AVEC Input Low —

Bus Request BR Input Low —

Bus Grant BG Output Low No

Bus Grant Acknowledge BGACK Input Low —

Reset RESET Input/Output Low No

Halt HALT Input Low —

Bus Error BERR Input Low —

Cache Disable CDIS Input Low —

MMU Disable MMUDIS Input Low —

Pipeline Refill REFILL Output Low No

Microsequencer Status STATUS Output Low No

Clock CLK Input — —

Power Supply VCC Input — —

Ground GND Input — —

MOTOROLA

MC68030 USER’S MANUAL

6-1

SECTION 6
ON-CHIP CACHE MEMORIES

The MC68030 microprocessor includes a 256-byte on-chip instruction cache and a 256-byte
on-chip data cache that are accessed by logical (virtual) addresses. These caches improve
performance by reducing external bus activity and increasing instruction throughput.

Reduced external bus activity increases overall performance by increasing the availability
of the bus for use by external devices (in systems with more than one bus master, such as
a processor and a DMA device) without degrading the performance of the MC68030. An
increase in instruction throughput results when instruction words and data required by a
program are available in the on-chip caches and the time required to access them on the
external bus is eliminated. Additionally, instruction throughput increases when instruction
words and data can be accessed simultaneously.

As shown in Figure 6-1, the instruction cache and the data cache are connected to separate
on-chip address and data buses. The address buses are combined to provide the logical
address to the memory management unit (MMU). The MC68030 initiates an access to the
appropriate cache for the requested instruction or data operand at the same time that it
initiates an access for the translation of the logical address in the address translation cache
of the MMU. When a hit occurs in the instruction or data cache and the MMU validates the
access on a write, the information is transferred from the cache (on a read) or to the cache
and the bus controller (on a write). When a hit does not occur, the MMU translation of the
address is used for an external bus cycle to obtain the instruction or operand. Regardless
of whether or not the required operand is located in one of the on-chip caches, the address
translation cache of the MMU performs logical-to-physical address translation in parallel
with the cache lookup in case an external cycle is required.

On-Chip Cache Memories

6-2

MC68030 USER’S MANUAL

MOTOROLA

Figure 6-1. Internal Caches and the MC68030

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-3

6.1 ON-CHIP CACHE ORGANIZATION AND OPERATION

Both on-chip caches are 256-byte direct-mapped caches, each organized as 16 lines. Each
line consists of four entries, and each entry contains four bytes. The tag field for each line
contains a valid bit for each entry in the line; each entry is independently replaceable. When
appropriate, the bus controller requests a burst mode operation to replace an entire cache
line. The cache control register (CACR) is accessible by supervisor programs to control the
operation of both caches.

System hardware can assert the cache disable (CDIS) signal to disable both caches. The
assertion of CDIS disables the caches, regardless of the state of the enable bits in CACR.
CDIS is primarily intended for use by in-circuit emulators.

Another input signal, cache inhibit in (CIIN), inhibits caching of data reads or instruction
prefetches on a bus-cycle by bus-cycle basis. Examples of data that should not be cached
are data for I/O devices and data from memory devices that cannot supply a full port width
of data, regardless of the size of the required operand.

Subsequent paragraphs describe how CIIN is used during the filling of the caches.

An output signal, cache inhibit out (CIOUT), reflects the state of the cache inhibit (CI) bit from
the MMU of either the address translation cache entry that corresponds to a specified logical
address or the transparent translation register that corresponds to that address. Whenever
the appropriate CI bit is set for either a read or a write access and an external bus cycle is
required, CIOUT is asserted and the instruction and data caches are ignored for the access.
This signal can also be used by external hardware to inhibit caching in external caches.

Whenever a read access occurs and the required instruction word or data operand is
resident in the appropriate on-chip cache (no external bus cycle is required), the MMU is
completely ignored, unless an invalid translation resides in the MMU at that time (see next
two paragraphs). Therefore, the state of the corresponding CI bits in the MMU are also
ignored. The MMU is used to validate all accesses that require external bus cycles; an
address translation must be available and valid, protections are checked, and the CIOUT
signal is asserted appropriately.

On-Chip Cache Memories

6-4

MC68030 USER’S MANUAL

MOTOROLA

An external access is defined as “cachable” for either the instruction or data cache when all
the following conditions apply:

• The cache is enabled with the appropriate bit in the CACR set.

• The CDIS signal is negated.

• The CIIN signal is negated for the access.

• The CIOUT signal is negated for the access.

• The MMU validates the access.

Because both the data and instruction caches are referenced by logical addresses, they
should be flushed during a task switch or at any time the logical-to-physical address
mapping changes, including when the MMU is first enabled. In addition, if a page descriptor
is currently marked as valid and is later changed to the invalid type (due to a context switch
or a page replacement operation)

entries in the on-chip instruction or data cache
corresponding to the physical page must be first cleared (invalidated)

. Otherwise, if on-chip
cache entries are valid for pages with descriptors in memory marked invalid, processor
operation is unpredictable.

Data read and write accesses to the same address should also have consistent cachability
status to ensure that the data in the cache remains consistent with external memory. For
example, if CIOUT is negated for read accesses within a page and the MMU configuration
is changed so that CIOUT is subsequently asserted for write accesses within the same
page, those write accesses do not update data in the cache, and stale data may result.
Similarly, when the MMU maps multiple logical addresses to the same physical address, all
accesses to those logical addresses should have the same cachability status.

6.1.1 Instruction Cache

The instruction cache is organized with a line size of four long words, as shown in Figure 6-
2. Each of these long words is considered a separate cache entry as each has a separate
valid bit. All four entries in a line have the same tag address. Burst filling all four long words
can be advantageous when the time spent in filling the line is not long relative to the
equivalent bus-cycle time for four nonburst long-word accesses, because of the probability
that the contents of memory adjacent to or close to a referenced operand or instruction is
also required by subsequent accesses. Dynamic RAMs supporting fast access modes
(page, nibble, or static column) are easily employed to support the MC68030 burst mode.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-5

When enabled, the instruction cache is used to store instruction prefetches (instruction
words and extension words) as they are requested by the CPU. Instruction prefetches are
normally requested from sequential memory addresses except when a change of program
flow occurs (e.g., a branch taken) or when an instruction is executed that can modify the
status register, in which cases the instruction pipe is automatically flushed and refilled. The
output signal REFILL indicates this condition. For more information on the operation of this
signal, refer to

Section 12 Applications Information

.

In the instruction cache, each of the 16 lines has a tag consisting of the 24 most significant
logical address bits, the FC2 function code bit (used to distinguish between user and
supervisor accesses), and the four valid bits (one corresponding to each long word). Refer
to Figure 6-2 for the instruction cache organization. Address bits A7–A4 select one of 16
lines and its associated tag. The comparator compares the address and function code bits
in the selected tag with address bits A31–A8 and FC2 from the internal prefetch request to
determine if the requested word is in the cache. A cache hit occurs when there is a tag match
and the corresponding valid bit (selected by A3–A2) is set. On a cache hit, the word selected
by address bit A1 is supplied to the instruction pipe.

When the address and function code bits do not match or the requested entry is not valid, a
miss occurs. The bus controller initiates a long-word prefetch operation for the required

Figure 6-2. On-Chip Instruction Cache Organization

F F F
C C C 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 01 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

COMPARATOR

TAG

1 OF 16
SELECT

VALIDTAG REPLACE

INDEXTAG

LINE HIT

DATA FROM INSTRUCTION
CACHE DATA BUS

CACHE CONTROL LOGIC

V V VV

ACCESS ADDRESS

DATA TO INSTRUCTION
CACHE HOLDING REGISTER

ENTRY HIT

A

LONG-WORD
SELECT

CACHE SIZE = 64 (LONG WORDS)
 LINE SIZE = 4 (LONG WORDS)
 SET SIZE = 1

A A

On-Chip Cache Memories

6-6

MC68030 USER’S MANUAL

MOTOROLA

instruction word and loads the cache entry, provided the entry is cachable. A burst mode
operation may be requested to fill an entire cache line. If the function code and address bits
match and the corresponding long word is not valid (but one or more of the other three valid
bits for that line are set) a single entry fill operation replaces the required long word only,
using a normal prefetch bus cycle or cycles (no burst).

6.1.2 Data Cache

The data cache stores data references to any address space except CPU space (FC=$7),
including those references made with PC relative addressing modes and accesses made
with the MOVES instruction. Operation of the data cache is similar to that of the instruction
cache, except for the address comparison and cache filling operations. The tag of each line
in the data cache contains function code bits FC0, FC1, and FC2 in addition to address bits
A31–A8. The cache control circuitry selects the tag using bits A7–A4 and compares it to the
corresponding bits of the access address to determine if a tag match has occurred. Address
bits A3–A2 select the valid bit for the appropriate long word in the cache to determine if an
entry hit has occurred. Misaligned data transfers may span two data cache entries. In this
case, the processor checks for a hit one entry at a time. Therefore, it is possible that a
portion of the access results in a hit and a portion results in a miss. The hit and miss are
treated independently. Figure 6-3 illustrates the organization of the data cache.

The operation of the data cache differs for read and write cycles. A data read cycle operates
exactly like an instruction cache read cycle; when a miss occurs, an external cycle is initiated
to obtain the operand from memory, and the data is loaded into the cache if the access is
cachable. In the case of a misaligned operand that spans two cache entries, two long words
are required from memory. Burst mode operation may also be initiated to fill an entire line of
the data cache. Read accesses from the CPU address space and address translation table
search accesses are not stored in the data cache.

The data cache on the MC68030 is a writethrough cache. When a hit occurs on a write cycle,
the data is written both to the cache and to external memory (provided the MMU validates
the access), regardless of the operand size and even if the cache is frozen. If the MMU
determines that the access is invalid, the write is aborted, the corresponding entry is
invalidated, and a bus error exception is taken. Since the write to the cache completes
before the write to external memory, the cache contains the new value even if the external
write terminates in a bus error. The value in the data cache might be used by another
instruction before the external write cycle has completed, although this should not have any
adverse consequences. Refer to

7.6 Bus Synchronization

 for the details of bus
synchronization.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-7

6.1.2.1 WRITE ALLOCATION.

The supervisor program can configure the data cache for
either of two types of allocation for data cache entries that miss on write cycles. The state
of the write allocation (WA) bit in the cache control register specifies either no write
allocation or write allocation with partial validation of the data entries in the cache on writes.

When no write allocation is selected (WA=0), write cycles that miss do not alter the data
cache contents. In this mode, the processor does not replace entries in the cache during
write operations. The cache is updated only during a write hit.

When write allocation is selected (WA=1), the processor always updates the data cache on
cachable write cycles, but only validates an updated entry that hits or an entry that is
updated with long-word data that is long-word aligned. When a tag miss occurs on a write
of long-word data that is long-word aligned, the corresponding tag is replaced, and only the
long word being written is marked as valid. The other three entries in the cache line are
invalidated when a tag miss occurs on a misaligned long-word write or on a byte or word
write, the data is not written in the cache, the tag is unaltered, and the valid bit(s) are cleared.
Thus, an aligned long-word data write may replace a previously valid entry; whereas, a
misaligned data write or a write of data that is not long word may invalidate a previously valid
entry or entries.

Figure 6-3. On-Chip Data Cache Organization

DATA FROM DATA
CACHE DATA BUS

CACHE CONTROL LOGIC

DATA TO
EXECUTION UNIT

F F F
C C C 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 1 0 1 3 2 01 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

COMPARATOR

TAG

1 OF 16
SELECT

VALIDTAG REPLACE

INDEXTAG

LINE HIT

V V VV

ACCESS ADDRESS

ENTRY HIT

A

LONG-WORD
SELECT

CACHE SIZE = 64 (LONG WORDS)
 LINE SIZE = 4 (LONG WORDS)
 SET SIZE = 1

A A

On-Chip Cache Memories

6-8

MC68030 USER’S MANUAL

MOTOROLA

Write allocation eliminates stale data that may reside in the cache because of either of two
unique situations: multiple mapping of two or more logical addresses to one physical
address within the same task or allowing the same physical location to be accessed by both
supervisor and user mode cycles. Stale data conditions can arise when operating in the no-
write-allocation mode and all the following conditions are satisfied:

• Multiple mapping (object aliasing) is allowed by the operating system.

• A read cycle loads a value for an “aliased” physical address into the data cache.

• A write cycle occurs, referencing the same aliased physical object as above but using
a different logical address, causing a cache miss and no update to the cache (has the
same page offset).

• The physical object is then read using the first alias, which provides stale data from the
cache.

In this case, the data in the cache no longer matches that in physical memory and is stale.
Since the write-allocation mode updates the cache during write cycles, the data in the cache
remains consistent with physical memory. Note that when CIOUT is asserted, the data
cache is completely ignored, even on write cycles operating in the write-allocation mode.
Also note that since the CIIN signal is ignored on write cycles, cache entries may be created
for noncachable data (when CIIN is asserted on a write) when operating in the write-
allocation mode. Figure 6-4 shows the manner in which each mode operates in five different
situations.

Figure 6-4. No-Write-Allocation and Write-Allocation Mode Examples

USER DATA, $000010 b0-b3, V0 = 1 b4-b7, V1 = 0 b8-bB, V2 = 1 bC-bF, V3 = 1
LINE

SELECT
($5)

LOGICAL ADDRESS = FC2-FC0, A31-A8, A7-A4, A3-A2

TAG'

TAG

EXAMPLE 1:
 USER WORD WRITE OF b2'-b3' to $00001052
 (CACHE HIT, ALWAYS UPDATE CACHE AND MEMORY)

EXAMPLE 2:
 USER LONG-WORD WRITE OF b6'-b9' to $00001056
 (TAG MATCH, LONG-WORD DATA, MISALIGNED,
 b6-b7 RESULT IN A CACHE MISS,
 b8-b9 RESULT IN A CACHE HIT)

 A) START EXTERNAL CYCLE
 B) b2-b3 b2'-b3'

NO WRITE ALLOCATE

 A) START EXTERNAL CYCLE
 B) b8-b9 b8'-b9'

 A) START EXTERNAL CYCLE
 B) b2-b3 b2'-b3'

 WRITE ALLOCATE

 A) START EXTERNAL CYCLE
 B) b8-b9 b8'-b9'

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-9

6.1.2.2 READ-MODIFY-WRITE ACCESSES.

The read portion of a read-modify-write cycle
is always forced to miss in the data cache. However, if the system allows internal caching
of read-modify-write cycle operands (CIOUT and CIIN both negated), the processor either
uses the data read from memory to update a matching entry in the data cache or creates a
new entry with the read data in the case of no matching entry. The write portion of a read-
modify-write operation also updates a matching entry in the data cache. In the case of a
cache miss on the write, the allocation of a new cache entry for the data being written is
controlled by the WA bit. Table search accesses, however, are completely ignored by the
data cache; it is never updated for a table search access.

6.1.3 Cache Filling

The bus controller can load either cache in either of two ways:

• Single entry mode

• Burst fill mode

In the single entry mode, the bus controller loads a single long-word entry of a cache line.
In the burst fill mode, an entire line (four long words) can be filled. Refer to

Section 7 Bus
Operation

for detailed information about the bus cycles required for both modes.

6.1.3.1 SINGLE ENTRY MODE.

When a cachable access is initiated and a burst mode
operation is not requested by the MC68030 or is not supported by external hardware, the
bus controller transfers a single long word for the corresponding cache entry. An entire long
word is required. If the port size of the responding device is smaller than 32 bits, the
MC68030 executes all bus cycles necessary to fill the long word.

When a device cannot supply its entire port width of data, regardless of the size of the
transfer, the responding device must consistently assert the cache inhibit input (CIIN) signal.
For example, a 32-bit port must always supply 32 bits, even for 8- and 16-bit transfers; a 16-
bit port must supply 16 bits, even for 8-bit transfers. The MC68030 assumes that a 32-bit
termination signal for the bus cycle indicates availability of 32 valid data bits, even if only 16
or 8 bits are requested. Similarly, the processor assumes that a 16-bit termination signal
indicates that all 16 bits are valid. If the device cannot supply its full port width of data, it must
assert CIIN for all bus cycles corresponding to a cache entry.

On-Chip Cache Memories

6-10

MC68030 USER’S MANUAL

MOTOROLA

When a cachable read cycle provides data with both CIIN and BERR negated, the MC68030
attempts to fill the cache entry. Figure 6-5 shows the organization of a line of data in the
caches. The notation b0, b1, b2, and so forth identifies the bytes within the line. For each
entry in the line, a valid bit in the associated tag corresponds to a long-word entry to be
loaded. Since a single valid bit applies to an entire long word, a single entry mode operation
must provide a full 32 bits of data. Ports less than 32 bits wide require several read cycles
for each entry.

Figure 6-5 shows an example of a byte data operand read cycle starting at byte address $03
from an 8-bit port. Provided the data item is cachable, this operation results in four bus
cycles. The first cycle requested by the MC68030 reads a byte from address $03. The 8-bit
DSACKx response causes the MC68030 to fetch the remainder of the long word starting at
address $00. The bytes are latched in the following order: b3, b0, b1, and b2. Note that
during cache loading operations, devices must indicate the same port size consistently
throughout all cycles for that long-word entry in the cache.

Figure 6-6 shows the access of a byte data operand from a 16-bit port. This operation
requires two read cycles. The first cycle requests the byte at address $03. If the device
responds with a 16-bit DSACKx encoding, the word at address $02 (including the requested
byte) is accepted by the MC68030. The second cycle requests the word at address $00.
Since the device again responds with a 16-bit DSACKx encoding, the remaining two bytes
of the long word are latched, and the cache entry is filled.

With a 32-bit port, the same operation is shown in Figure 6-7. Only one read cycle is
required. All four bytes (including the requested byte) are latched during the cycle.

If a requested access is misaligned and spans two cache entries, the bus controller attempts
to fill both associated long-word cache entries. An example of this is an operand request for
a long word on an odd-word boundary. The MC68030 first fetches the initial byte(s) of the
operand (residing in the first long word) and then requests the remaining bytes to fill that
cache entry (if the port size is less than 32 bits) before it requests the remainder of the
operand and corresponding long word to fill the second cache entry. If the port size is 32
bits, the processor performs two accesses, one for each cache entry.

(UNABLE TO LOCATE ART)

Figure 6-5. Single Entry Mode Operation — 8-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-6. Single Entry Mode Operation — 16-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-7. Single Entry Mode Operation — 32-Bit Port

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-11

Figure 6-8 shows a misaligned access of a long word at address $06 from an 8-bit port
requiring eight bus cycles to complete. Reading this long-word operand requires eight read
cycles, since accesses to all eight addresses return 8-bit port-size encodings. These cycles
fetch the two cache entries that the requested long-word spans. The first cycle requests a
long word at address $06 and accepts the first requested byte (b6). The subsequent
transfers of the first long word are performed in the following order: b7, b4, b5. The
remaining four read cycles transfer the four bytes of the second cache entry. The sequence
of access for the entire operation is b6, b7, b4, b5, b8, b9, bA, and bB.

The next example, shown in Figure 6-9, is a read of a misaligned long-word operand from
devices that return 16-bit DSACKx encodings. The processor accepts the first portion of the
operand, the word from address $06, and requests a word from address $04 to fill the cache
entry. Next, the processor reads the word at address $08, the second portion of the operand,
and stores it in the cache also. Finally, the processor accesses the word at $0A to fill the
second long-word cache entry.

Two read cycles are required for a misaligned long-word operand transfer from devices that
return 32-bit DSACKx encodings. As shown in Figure 6-10, the first read cycle requests the
long word at address $06 and latches the long word at address $04. The second read cycle
requests and latches the long word corresponding to the second cache entry at address
$08. Two read cycles are also required if STERM is used to indicate a 32-bit port instead of
the 32-bit DSACKx encoding.

If all bytes of a long word are cachable, CIIN must be negated for all bus cycles required to
fill the entry. If any byte is not cachable, CIIN must be asserted for all corresponding bus
cycles. The assertion of the CIIN signal prevents the caches from being updated during read
cycles. Write cycles (including the write portion of a read-modify-write cycle) ignore the
assertion of the CIIN signal and may cause the data cache to be altered, depending on the
state of the cache (whether or not the write cycle hits), the state of the WA bit in the CACR,
and the conditions indicated by the MMU.

The occurrence of a bus error while attempting to load a cache entry aborts the entry fill
operation but does not necessarily cause a bus error exception. If the bus error occurs on a
read cycle for a portion of the required operand (not the remaining bytes of the cache entry)
to be loaded into the data cache, the processor immediately takes a bus error exception. If

(UNABLE TO LOCATE ART)

Figure 6-8. Single Entry Mode Operation —
Misaligned Long Word and 8-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-9. Single Entry Mode Operation —
Misaligned Long Word and 16-Bit Port

(UNABLE TO LOCATE ART)

Figure 6-10. Single Entry Mode Operation —
Misaligned Long Word and 32-Bit DSACKx Port

On-Chip Cache Memories

6-12

MC68030 USER’S MANUAL

MOTOROLA

the read cycle in error is made only to fill the data cache (the data is not part of the target
operand), no exception occurs, but the corresponding entry is marked invalid. For the
instruction cache, the processor marks the entry as invalid, but only takes an exception if
the execution unit attempts to use the instruction word(s).

6.1.3.2 BURST MODE FILLING.

Burst mode filling is enabled by bits in the cache control
register. The data burst enable bit must be set to enable burst filling of the data cache.
Similarly, the instruction burst enable bit must be set to enable burst filling of the instruction
cache. When burst filling is enabled and the corresponding cache is enabled, the bus
controller requests a burst mode fill operation in either of these cases:

• A read cycle for either the instruction or data cache misses due to the indexed tag not
matching.

• A read cycle tag matches, but all long words in the line are invalid.

The bus controller requests a burst mode fill operation by asserting the cache burst request
signal (CBREQ). The responding device may sequentially supply one to four long words of
cachable data, or it may assert the cache inhibit input signal (CIIN) when the data in a long
word is not cachable. If the responding device does not support the burst mode and it
terminates cycles with STERM, it should not acknowledge the request with the assertion of
the cache burst acknowledge (CBACK) signal. The MC68030 ignores the assertion of
CBACK during cycles terminated with DSACKx.

The cache burst request signal (CBREQ) requests burst mode operation from the
referenced external device. To operate in the burst mode, the device or external hardware
must be able to increment the low-order address bits if required, and the current cycle must
be a 32-bit synchronous transfer (STERM must be asserted) as described in

Section 7 Bus
Operation

. The device must also assert CBACK (at the same time as STERM) at the end
of the cycle in which the MC68030 asserts CBREQ. CBACK causes the processor to
continue driving the address and bus control signals and to latch a new data value for the
next cache entry at the completion of each subsequent cycle (as defined by STERM), for a
total of up to four cycles (until four long words have been read).

When a cache burst is initiated, the first cycle attempts to load the cache entry
corresponding to the instruction word or data item explicitly requested by the execution unit.
The subsequent cycles are for the subsequent entries in the cache line. In the case of a
misaligned transfer when the operand spans two cache entries within a cache line, the first
cycle corresponds to the cache entry containing the portion of the operand at the lower
address.

Figure 6-11 illustrates the four cycles of a burst operation and shows that the second, third,
and fourth cycles are run in burst mode. A distinction is made between the first cycle of a
burst operation and the subsequent cycles because the first cycle is requested by the
microsequencer and the burst fill cycles are requested by the bus controller. Therefore,
when data from the first cycle is returned, it is immediately available for the execution unit
(EU). However, data from the burst fill cycles is not available to the EU until the burst
operation is complete. Since the microsequencer makes two separate requests for
misaligned data operands, only the first portion of the misaligned operand returned during a

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-13

burst operation is available to the EU after the first cycle is complete. The microsequencer
must wait for the burst operation to complete before requesting the second portion of the
operand. Normally, the request for the second portion results in a data cache hit unless the
second cycle of the burst operation terminates abnormally.

The bursting mechanism allows addresses to wrap around so that the entire four long words
in the cache line can be filled in a single burst operation, regardless of the initial address and
operand alignment. Depending on the structure of the external memory system, address bits
A2 and A3 may have to be incremented externally to select the long words in the proper
order for loading into the cache. The MC68030 holds the entire address bus constant for the
duration of the burst cycle. Figure 6-12 shows an example of this address wraparound. The
initial cycle is a long-word access from address $6. Because the responding device returns
CBACK and STERM (signaling a 32-bit port), the entire long word at base address $04 is
transferred. Since the initial address is $06 when CBREQ is asserted, the next entry to be
burst filled into the cache should correspond to address $08, then $0C, and last, $00. This
addressing is compatible with existing nibble-mode dynamic RAMs, and can be supported
by page and static column modes with an external modulo 4 counter for A2 and A3.

The MC68030 does not assert CBREQ during the first portion of a misaligned access if the
remainder of the access does not correspond to the same cache line. Figure 6-13 shows an
example in which the first portion of a misaligned access is at address $0F. With a 32-bit
port, the first access corresponds to the cache entry at address $0C, which is filled using a
single-entry load operation. The second access, at address $10 corresponding to the
second cache line, requests a burst fill and the processor asserts CBREQ. During this burst
operation, long words $10, $14, $18, and $1C are all filled in that order.

Figure 6-11. Burst Operation Cycles and Burst Mode

(UNABLE TO LOCATE ART)

Figure 6-12. Burst Filling Wraparound Example

(UNABLE TO LOCATE ART)

Figure 6-13. Deferred Burst Filling Example

FIRST ACCESS OF BURST
OPERATION REQUIRED

OPERAND OR PREFETCH
BURST FILL CYCLE BURST FILL CYCLE BURST FILL CYCLE

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

BURST MODE
REQUESTED AND
ACKNOWLEDGED

BURST MODE BEGINS HERE

BURST OPERATION

On-Chip Cache Memories

6-14

MC68030 USER’S MANUAL

MOTOROLA

The processor does not assert CBREQ if any of the following conditions exist:

• The appropriate cache is not enabled

• Burst filling for the cache is not enabled

• The cache freeze bit for the appropriate cache is set

• The current operation is the read portion of a read-modify-write operation

• The MMU has inhibited caching for the current page

• The cycle is for the first access of an operand that spans two cache lines (crosses a
modulo 16 boundary)

Additionally, the assertion of CIIN and BERR and the premature negation of CBACK affect
burst operation as described in the following paragraphs.

The assertion of CIIN during the first cycle of a burst operation causes the data to be latched
by the processor, and if the requested operand is aligned (the entire operand is latched in
the first cycle), the data is passed on to the instruction pipe or execution unit. However, the
data is not loaded into its corresponding cache. In addition, the MC68030 negates CBREQ,
and the burst operation is aborted. If a portion of the requested operand remains to be read
(due to misalignment), a second read cycle is initiated at the appropriate address with
CBREQ negated.

The assertion of CIIN during the second, third, or fourth cycle of a burst operation prevents
the data during that cycle from being loaded into the appropriate cache and causes CBREQ
to negate, aborting the burst operation. However, if the data for the cycle contains part of
the requested operand, the execution unit uses that data.

The premature negation of the CBACK signal during the burst operation causes the current
cycle to complete normally, loading the data successfully transferred into the appropriate
cache. However, the burst operation aborts and CBREQ negates.

A bus error occurring during a burst operation also causes the burst operation to abort. If the
bus error occurs during the first cycle of a burst (i.e., before burst mode is entered), the data
read from the bus is ignored, and the entire associated cache line is marked “invalid”. If the
access is a data cycle, exception processing proceeds immediately. If the cycle is for an
instruction fetch, a bus error exception is made pending. This bus error is processed only if
the execution unit attempts to use either instruction word. Refer to

11.2.2 Instruction Pipe

for more information about pipeline operation.

For either cache, when a bus error occurs after the burst mode has been entered (that is,
on the second cycle or later), the cache entry corresponding to that cycle is marked invalid,
but the processor does not take an exception (the microsequencer has not yet requested
the data). In the case of an instruction cache burst, the data from the aborted cycle is
completely ignored. Pending instruction prefetches are still pending and are subsequently
run by the processor. If the second cycle is for a portion of a misaligned data operand fetch
and a bus error occurs, the processor terminates the burst operation and negates CBREQ.
Once the burst terminates, the microsequencer requests a read cycle for the second portion.
Since the burst terminated abnormally for the second cycle of the burst, the data cache

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-15

results in a miss, and a second external cycle is required. If BERR is again asserted, the
MC68030 then takes an exception.

On the initial access of a burst operation, a “retry'“(indicated by the assertion of BERR and
HALT) causes the processor to retry the bus cycle and assert CBREQ again. However,
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth cycle
of a burst operation does not cause a retry operation, even if the requested operand is
misaligned. Assertion of BERR and HALT during burst fill cycles of a burst operation causes
independent bus error and halt operations. The processor remains halted until HALT is
negated, and then handles the bus error as described in the previous paragraphs.

6.2 CACHE RESET

When a hardware reset of the processor occurs, all valid bits of both caches are cleared.
The cache enable bits, burst enable bits, and the freeze bits in the cache control register
(CACR) for both caches (refer to Figure 6-14) are also cleared, effectively disabling both
caches. The WA bit in the CACR is also cleared.

6.3 CACHE CONTROL

Only the MC68030 cache control circuitry can directly access the cache arrays, but the
supervisor program can set bits in the CACR to exercise control over cache operations. The
supervisor also has access to the cache address register (CAAR), which contains the
address for a cache entry to be cleared.

6.3.1 Cache Control Register

The CACR, shown in Figure 6-14, is a 32-bit register that can be written or read by the
MOVEC instruction or indirectly modified by a reset. Five of the bits (4-0) control the
instruction cache; six other bits (13-8) control the data cache. Each cache is controlled
independently of the other, although a similar operation can be performed for both caches
by a single MOVEC instruction. For example, loading a long word in which bits 3 and 11 are
set into the CACR clears both caches. Bits 31-14 and 7-5 are reserved for Motorola
definition. They are currently read as zeros and are ignored when written. For future
compatibility, writes should not set these bits.

WA = Write Allocate
DBE = Data Burst Enable

CD = Clear Data Cache
CED = Clear Entry in Data Cache

FD = Freeze Data Cache
ED = Freeze Data Cache
IBE = Instruction Burst Enable

CI = Clear Instruction Cache
CEI = Clear Entry in Instruction Cache

FI = Freeze Instruction Cache
EI = Enable Instruction Cache

Figure 6-14. Cache Control Register

31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 000000000000000000 WA DBE CD CED FD ED 0 0 0 IBE CI CEI FI EI

On-Chip Cache Memories

6-16

MC68030 USER’S MANUAL

MOTOROLA

6.3.1.1 WRITE ALLOCATE.

Bit 13, the WA bit, is set to select the write-allocation mode
(refer to

6.1.2.1 Write Allocation

) for write cycles. Clearing this bit selects the no-write-
allocation mode. A reset operation clears this bit. The supervisor should set this bit when it
shares data with the user task or when any task maps multiple logical addresses to one
physical address. If the data cache is disabled or frozen, the WA bit is ignored.

6.3.1.2 DATA BURST ENABLE.

Bit 12, the DBE bit, is set to enable burst filling of the data
cache. Operating systems and other software set this bit when burst filling of the data cache
is desired. A reset operation clears the DBE bit.

6.3.1.3 CLEAR DATA CACHE.

Bit 11, the CD bit, is set to clear all entries in the data cache.
Operating systems and other software set this bit to clear data from the cache prior to a
context switch. The processor clears all valid bits in the data cache at the time a MOVEC
instruction loads a one into the CD bit of the CACR. The CD bit is always read as a zero.

6.3.1.4 CLEAR ENTRY IN DATA CACHE.

Bit 10, the CED bit, is set to clear an entry in the
data cache. The index field of the CAAR (see Figure 6-15) corresponding to the index and
long-word select portion of an address specifies the entry to be cleared. The processor
clears only the specified long word by clearing the valid bit for the entry at the time a MOVEC
instruction loads a one into the CED bit of the CACR, regardless of the states of the ED and
FD bits. The CED bit is always read as a zero.

On-Chip Cache Memories

MOTOROLA

MC68030 USER’S MANUAL

6-17

6.3.1.5 FREEZE DATA CACHE.

Bit 9, the FD bit, is set to freeze the data cache. When the
FD bit is set and a miss occurs during a read or write of the data cache, the indexed entry
is not replaced. However, write cycles that hit in the data cache cause the entry to be
updated even when the cache is frozen. When the FD bit is clear, a miss in the data cache
during a read cycle causes the entry (or line) to be filled, and the filling of entries on writes
that miss are then controlled by the WA bit. A reset operation clears the FD bit.

6.3.1.6 ENABLE DATA CACHE.

Bit 8, the ED bit, is set to enable the data cache. When it
is cleared, the data cache is disabled. A reset operation clears the ED bit. The supervisor
normally enables the data cache, but it can clear ED for system debugging or emulation, as
required. Disabling the data cache does not flush the entries. If it is enabled again, the
previously valid entries remain valid and can be used.

6.3.1.7 INSTRUCTION BURST ENABLE.

Bit 4, the IBE bit, is set to enable burst filling of
the instruction cache. Operating systems and other software set this bit when burst filling of
the instruction cache is desired. A reset operation clears the IBE bit.

6.3.1.8 CLEAR INSTRUCTION CACHE.

Bit 3, the CI bit, is set to clear all entries in the
instruction cache. Operating systems and other software set this bit to clear instructions from
the cache prior to a context switch. The processor clears all valid bits in the instruction cache
at the time a MOVEC instruction loads a one into the CI bit of the CACR. The CI bit is always
read as a zero.

6.3.1.9 CLEAR ENTRY IN INSTRUCTION CACHE.

Bit 2, the CEI bit, is set to clear an
entry in the instruction cache. The index field of the CAAR (see Figure 6-15) corresponding
to the index and long-word select portion of an address specifies the entry to be cleared.
The processor clears only the specified long word by clearing the valid bit for the entry at the
time a MOVEC instruction loads a one into the CEI bit of the CACR, regardless of the states
of the EI and FI bits. The CEI bit is always read as a zero.

On-Chip Cache Memories

6-18

MC68030 USER’S MANUAL

MOTOROLA

6.3.1.10 FREEZE INSTRUCTION CACHE.

Bit 1, the FI bit, is set to freeze the instruction
cache. When the FI bit is set and a miss occurs in the instruction cache, the entry (or line)
is not replaced. When the FI bit is cleared to zero, a miss in the instruction cache causes the
entry (or line) to be filled. A reset operation clears the FI bit.

6.3.1.11 ENABLE INSTRUCTION CACHE.

Bit 0, the EI bit, is set to enable the instruction
cache. When it is cleared, the instruction cache is disabled. A reset operation clears the EI
bit. The supervisor normally enables the instruction cache, but it can clear EI for system
debugging or emulation, as required. Disabling the instruction cache does not flush the
entries. If it is enabled again, the previously valid entries remain valid and may be used.

6.3.2 Cache Address Register

The CAAR is a 32-bit register shown in Figure 6-15. The index field (bits 7-2) contains the
address for the “clear cache entry” operations. The bits of this field correspond to bits 7-2 of
addresses; they specify the index and a long word of a cache line. Although only the index
field is used currently, all 32 bits of the register are implemented and are reserved for use
by Motorola.

Figure 6-15. Cache Address Register

31 8 7 2 1 0
CACHE FUNCTION ADDRESS INDEX

MOTOROLA

MC68030 USER’S MANUAL

7-1

SECTION 7
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and the reset operation. Operation of the bus is the same
whether the processor or an external device is the bus master; the names and descriptions
of bus cycles are from the point of view of the bus master. For exact timing specifications,
refer to

Section 13 Electrical Characteristics

.

The MC68030 architecture supports byte, word, and long-word operands, allowing access
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by the
data transfer and size acknowledge inputs (DSACK0 and DSACK1).

Synchronous bus cycles controlled by the synchronous termination signal (STERM) can
only be used to transfer data to and from 32-bit ports.

The MC68030 allows byte, word, and long-word operands to be located in memory on any
byte boundary. For a misaligned transfer, more than one bus cycle may be required to
complete the transfer, regardless of port size. For a port less than 32 bits wide, multiple bus
cycles may be required for an operand transfer due to either misalignment or a port width
smaller than the operand size. Instruction words and their associated extension words must
be aligned on word boundaries. The user should be aware that misalignment of word or
long-word operands can cause the MC68030 to perform multiple bus cycles for the operand
transfer; therefore, processor performance is optimized if word and long-word memory
operands are aligned on word or long-word boundaries, respectively.

7.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68030 and an external memory, coprocessor,
or peripheral device. External devices can accept or provide 8 bits, 16 bits, or 32 bits in
parallel and must follow the handshake protocol described in this section. The maximum
number of bits accepted or provided during a bus transfer is defined as the port width. The
MC68030 contains an address bus that specifies the address for the transfer and a data bus
that transfers the data. Control signals indicate the beginning of the cycle, the address space
and the size of the transfer, and the type of cycle. The selected device then controls the
length of the cycle with the signal(s) used to terminate the cycle. Strobe signals, one for the
address bus and another for the data bus, indicate the validity of the address and provide
timing information for the data.

Bus Operation

7-2

MC68030 USER’S MANUAL

MOTOROLA

The bus can operate in an asynchronous mode identical to the MC68020 bus for any port
width. The bus and control input signals used for asynchronous operation are internally
synchronized to the MC68030 clock, introducing a delay. This delay is the time period
required for the MC68030 to sample an asynchronous input signal, synchronize the input to
the internal clocks of the processor, and determine whether it is high or low. Figure 7-1
shows the relationship between the clock signal and the associated internal signal of a
typical asynchronous input.

Furthermore, for all asynchronous inputs, the processor latches the level of the input during
a sample window around the falling edge of the clock signal. This window is illustrated in
Figure 7-2. To ensure that an input signal is recognized on a specific falling edge of the
clock, that input must be stable during the sample window. If an input makes a transition
during the window time period, the level recognized by the processor is not predictable;
however, the processor always resolves the latched level to either a logic high or low before
using it. In addition to meeting input setup and hold times for deterministic operation, all input
signals must obey the protocols described in this section.

Figure 7-1. Relationship between External and Internal Signals

SYNC DELAY

CLK

EXT

INT

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-3

A device with a 32-bit port size can also provide a synchronous mode transfer. In
synchronous operation, input signals are externally synchronized to the processor clock,
and the synchronizing delay is not incurred.

Synchronous inputs (STERM, CBACK, and CIIN) must remain stable during a sample
window for all rising edges of the clock during a bus cycle (i.e., while address strobe (AS) is
asserted), regardless of when the signals are asserted or negated, to ensure proper
operation. This sample window is defined by the synchronous input setup and hold times
(see MC68030EC/D,

MC68030 Electrical Specifications

).

7.1.1 Bus Control Signals

The external cycle start (ECS) signal is the earliest indication that the processor is initiating
a bus cycle. The MC68030 initiates a bus cycle by driving the address, size, function code,
read/write, and cache inhibit-out outputs and by asserting ECS. However, if the processor
finds the required program or data item in an on-chip cache, if a miss occurs in the address
translation cache (ATC) of the memory management unit (MMU), or if the MMU finds a fault
with the access, the processor aborts the cycle before asserting AS. ECS can be used to
initiate various timing sequences that are eventually qualified with AS. Qualification with AS
may be required since, in the case of an internal cache hit, an ATC miss, or an MMU fault,
a bus cycle may be aborted after ECS has been asserted. The assertion of AS ensures that
the cycle has not been aborted by these internal conditions.

During the first external bus cycle of an operand transfer, the operand cycle start (OCS)
signal is asserted with ECS. When several bus cycles are required to transfer the entire
operand, OCS is asserted only at the beginning of the first external bus cycle. With respect
to OCS, an "operand'' is any entity required by the execution unit, whether a program or data
item.

The function code signals (FC0–FC2) are also driven at the beginning of a bus cycle. These
three signals select one of eight address spaces (refer to Table 4-1) to which the address
applies. Five address spaces are presently defined. Of the remaining three, one is reserved

Figure 7-2. Asynchronous Input Sample Window

t su

th

SAMPLE
WINDOW

CLK

EXT

Bus Operation

7-4

MC68030 USER’S MANUAL

MOTOROLA

for user definition and two are reserved by Motorola for future use. The function code signals
are valid while AS is asserted.

At the beginning of a bus cycle, the size signals (SIZ0 and SIZ1) are driven along with ECS
and the FC0–FC2. SIZ0 and SIZ1 indicate the number of bytes remaining to be transferred
during an operand cycle (consisting of one or more bus cycles) or during a cache fill
operation from a device with a port size that is less than 32 bits. Table 7-2 shows the
encoding of SIZ0 and SIZ1. These signals are valid while AS is asserted.

The read/write (R/W) signal determines the direction of the transfer during a bus cycle. This
signal changes state, when required, at the beginning of a bus cycle and is valid while AS
is asserted. R/W only transitions when a write cycle is preceded by a read cycle or vice
versa. The signal may remain low for two consecutive write cycles.

The read-modify-write cycle signal (RMC) is asserted at the beginning of the first bus cycle
of a read-modify-write operation and remains asserted until completion of the final bus cycle
of the operation. The RMC signal is guaranteed to be negated before the end of state 0 for
a bus cycle following a read-modify-write operation.

7.1.2 Address Bus

The address bus signals (A0–A31) define the address of the byte (or the most significant
byte) to be transferred during a bus cycle. The processor places the address on the bus at
the beginning of a bus cycle. The address is valid while AS is asserted.

7.1.3 Address Strobe

AS is a timing signal that indicates the validity of an address on the address bus and of many
control signals. It is asserted one-half clock after the beginning of a bus cycle.

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-5

7.1.4 Data Bus

The data bus signals (D0–D31) comprise a bidirectional, nonmultiplexed parallel bus that
contains the data being transferred to or from the processor. A read or write operation may
transfer 8, 16, 24, or 32 bits of data (one, two, three, or four bytes) in one bus cycle. During
a read cycle, the data is latched by the processor on the last falling edge of the clock for that
bus cycle. For a write cycle, all 32 bits of the data bus are driven, regardless of the port width
or operand size. The processor places the data on the data bus one-half clock cycle after
AS is asserted in a write cycle.

7.1.5 Data Strobe

The data strobe (DS) is a timing signal that applies to the data bus. For a read cycle, the
processor asserts DS to signal the external device to place data on the bus. It is asserted at
the same time as AS during a read cycle. For a write cycle, DS signals to the external device
that the data to be written is valid on the bus. The processor asserts DS one full clock cycle
after the assertion of AS during a write cycle.

7.1.6 Data Buffer Enable

The data buffer enable signal (DBEN) can be used to enable external data buffers while data
is present on the data bus. During a read operation, DBEN is asserted one clock cycle after
the beginning of the bus cycle and is negated as DS is negated. In a write operation, DBEN
is asserted at the time AS is asserted and is held active for the duration of the cycle. In a
synchronous system supporting two-clock bus cycles, DBEN timing may prevent its use.

7.1.7 Bus Cycle Termination Signals

During asynchronous bus cycles, external devices assert the data transfer and size
acknowledge signals (DSACK0 and/or DSACK1) as part of the bus protocol. During a read
cycle, the assertion of DSACKx signals the processor to terminate the bus cycle and to latch
the data. During a write cycle, the assertion of DSACKx indicates that the external device
has successfully stored the data and that the cycle may terminate. These signals also
indicate to the processor the size of the port for the bus cycle just completed, as shown in
Table 7-1. Refer to

7.3.1 Asynchronous Read Cycle

for timing relationships of DSACK0
and DSACK1.

Bus Operation

7-6

MC68030 USER’S MANUAL

MOTOROLA

For synchronous bus cycles, external devices assert the synchronous termination signal
(STERM) as part of the bus protocol. During a read cycle, the assertion of STERM causes
the processor to latch the data. During a write cycle, it indicates that the external device has
successfully stored the data. In either case, it terminates the cycle and indicates that the
transfer was made to a 32-bit port. Refer to

7.3.2 Asynchronous Write Cycle

 for timing
relationships of STERM.

The bus error (BERR) signal is also a bus cycle termination indicator and can be used in the
absence of DSACKx or STERM to indicate a bus error condition. It can also be asserted in
conjunction with DSACKx or STERM to indicate a bus error condition, provided it meets the
appropriate timing described in this section and in MC68030EC/D,

MC68030 Electrical
Specifications

. Additionally, the BERR and HALT signals can be asserted together to
indicate a retry termination. Again, the BERR and HALT signals can be asserted
simultaneously in lieu of or in conjunction with the DSACKx or STERM signals.

Finally, the autovector (AVEC) signal can be used to terminate interrupt acknowledge
cycles, indicating that the MC68030 should internally generate a vector number to locate an
interrupt handler routine. AVEC is ignored during all other bus cycles.

7.2 DATA TRANSFER MECHANISM

The MC68030 architecture supports byte, word, and long-word operands allowing access
to 8-, 16-, and 32-bit data ports through the use of asynchronous cycles controlled by
DSACK0 and DSACK1. It also supports synchronous bus cycles to and from 32-bit ports,
terminated by STERM. Byte, word, and long-word operands can be located on any byte
boundary, but misaligned transfers may require additional bus cycles, regardless of port
size.

When the processor requests a burst mode fill operation, it asserts the cache burst request
(CBREQ) signal to attempt to fill four entries within a line in one of the on-chip caches. This
mode is compatible with nibble, static column, or page mode dynamic RAMs. The burst fill
operation uses synchronous bus cycles, each terminated by STERM, to fetch as many as
four long words.

7.2.1 Dynamic Bus Sizing

The MC68030 dynamically interprets the port size of the addressed device during each bus
cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. During an
asynchronous operand transfer cycle, the slave device signals its port size (byte, word, or
long word) and indicates completion of the bus cycle to the processor through the use of the
DSACKx inputs. Refer to Table 7-1 for DSACKx encodings and assertion results.

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-7

For example, if the processor is executing an instruction that reads a long-word operand
from a long-word aligned address, it attempts to read 32 bits during the first bus cycle. (Refer
to

7.2.2 Misaligned Operands

 for the case of a word or byte address.) If the port responds
that it is 32 bits wide, the MC68030 latches all 32 bits of data and continues with the next
operation. If the port responds that it is 16 bits wide, the MC68030 latches the 16 bits of valid
data and runs another bus cycle to obtain the other 16 bits. The operation for an 8-bit port
is similar, but requires four read cycles. The addressed device uses the DSACKx signals to
indicate the port width. For instance, a 32-bit device

always

 returns DSACKx for a 32-bit port
(regardless of whether the bus cycle is a byte, word, or long-word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from a
particular port size be fixed. A 32-bit port must reside on data bus bits 0–31, a 16-bit port
must reside on data bus bits 16-32, and an 8-bit port must reside on data bus bits 24-31.
This requirement minimizes the number of bus cycles needed to transfer data to 8- and 16-
bit ports and ensures that the MC68030 correctly transfers valid data. The MC68030 always
attempts to transfer the maximum amount of data on all bus cycles; for a long-word
operation, it always assumes that the port is 32 bit wide when beginning the bus cycle.

The bytes of operands are designated as shown in Figure 7-3. The most significant byte of
a long-word operand is OP0, and OP3 is the least significant byte. The two bytes of a word-
length operand are OP2 (most significant) and OP3. The single byte of a byte-length
operand is OP3. These designations are used in the figures and descriptions that follow.

Table 7-1. DSACK Codes and Results

DSACK1 DSACK0

Result

H H Insert Wait States in Current Bus Cycle

H L Complete Cycle — Data Bus Port Size is 8 Bits

L H Complete Cycle — Data Bus Port Size is 16 Bits

L L Complete Cycle — Data Bus Port Size is 32 Bits

Bus Operation

7-8

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-4 shows the required organization of data ports on the MC68030 bus for 8, 16, and
32-bit devices. The four bytes shown in Figure 7-4 are connected through the internal data
bus and data multiplexer to the external data bus. This path is the means through which the
MC68030 supports dynamic bus sizing and operand misalignment. Refer to

7.2.2
Misaligned Operands

 for the definition of misaligned operand. The data multiplexer
establishes the necessary connections for different combinations of address and data sizes.

The multiplexer takes the four bytes of the 32-bit bus and routes them to their required
positions. For example, OP0 can be routed to D24–D31, as would be the normal case, or it
can be routed to any other byte position to support a misaligned transfer. The same is true
for any of the operand bytes. The positioning of bytes is determined by the size (SIZ0 and
SIZ1) and address (A0 and A1) outputs.

The SIZ0 and SIZ1 outputs indicate the remaining number of bytes to be transferred during
the current bus cycle, as shown in Table 7-2.

The number of bytes transferred during a write or noncachable read bus cycle is equal to or
less than the size indicated by the SIZ0 and SIZ1 outputs, depending on port width and
operand alignment. For example, during the first bus cycle of a long-word transfer to a word
port, the size outputs indicate that four bytes are to be transferred, although only two bytes
are moved on that bus cycle. Cachable read cycles must always transfer the number of
bytes indicated by the port size.

A0 and A1 also affect operation of the data multiplexer. During an operand transfer, A2–A31
indicate the long-word base address of that portion of the operand to be accessed; A0 and
A1 indicate the byte offset from the base. Table 7-3 shows the encodings of A0 and A1 and
the corresponding byte offsets from the long-word base.

Figure 7-3. Internal Operand Representation

OP0 OP1 OP2 OP3

31 0

15 0

OP2 OP3

7 0

LONG WORD OPERAND

WORD OPERAND

BYTE OPERAND OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-9

Table 7-4 lists the bytes required on the data bus for read cycles that are cachable. The
entries shown as OPn are portions of the requested operand that are read or written during
that bus cycle and are defined by SIZ0, SIZ1, A0, and A1 for the bus cycle. The PRn and
the Nn bytes correspond to the previous and next bytes in memory, respectively, that must
be valid on the data bus for the specified port size (long word or word) so that the internal
caches operate correctly. (For cachable accesses, the MC68030 assumes that all portions
of the data bus for a given port size are valid.) This same table applies to noncachable read
cycles except that the bytes labeled PRn and Nn are not required and can be replaced by
“don't cares”.

Figure 7-4. MC68030 Interface to Various Port Sizes

Table 7-2. Size Signal
Encoding

Table 7-3. Address Offset
Encodings

SIZ1 SIZ0 Size A1 A0 Offset

0 1 Byte 0 0 +0 Bytes
1 0 Word 0 1 +1 Byte
1 1 3 Bytes 1 0 +2 Bytes
0 0 Long Word 1 1 +3 Bytes

0 1 2 3

ROUTING AND DUPLICATION

BYTE 0

BYTE 2

BYTE 1

BYTE 3
16-BIT PORT

REGISTER

MULTIPLEXER

EXTERNAL
DATA BUS

ADDRESS
xxxxxxxx0

xxxxxxxx0

2

INCREASING
MEMORY

ADDRESSES

D31- D24 D23-D16 D15-D8 D7-D0

BYTE 0 BYTE 1 BYTE 2 BYTE 3

BYTE 0

BYTE 1

BYTE 2

BYTE 3

8-BIT PORT
2

3

1

xxxxxxxx0

EXTERNAL BUS

INTERNAL TO
THE MC68EC030

32-BIT PORT

OP0 OP1 OP2 OP3

FIG 7-4

a b

Bus Operation

7-10

MC68030 USER’S MANUAL

MOTOROLA

Table 7-4. Data Bus Requirements for Read Cycles.

Table 7-5 lists the combinations of SIZ0, SIZ1, A0, and A1 and the corresponding pattern of
the data transfer for write cycles from the internal multiplexer of the MC68030 to the external
data bus.

Figure 7-5 shows the transfer of a long-word operand to a word port. In the first bus cycle,
the MC68030 places the four operand bytes on the external bus. Since the address is long-
word aligned in this example, the multiplexer follows the pattern in the entry of Table 7-5
corresponding to SIZ0_SIZ1_A0_A1=0000. The port latches the data on bits D16–D31 of
the data bus, asserts DSACK1 (DSACK0 remains negated), and the processor terminates
the bus cycle. It then starts a new bus cycle with SIZ0_SIZ1_A0_A1=1010 to transfer the
remaining 16 bits. SIZ0 and SIZ1 indicate that a word remains to be transferred; A0 and A1
indicate that the word corresponds to an offset of two from the base address. The
multiplexer follows the pattern corresponding to this configuration of the size and address
signals and places the two least significant bytes of the long word on the word portion of the
bus (D16–D31). The bus cycle transfers the remaining bytes to the word-size port. Figure 7-
6 shows the timing of the bus transfer signals for this operation.

(Table did not make it over in the conversion from Word)

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-11

Table 7-5. MC68030 Internal to External Data Bus.

(Table did not make it over in the conversion from Word)

Figure 7-5. Example of Long-Word Transfer to Word Port

DATA BUSD31 D16

LONG WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

OP0 OP1

OP2 OP3

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 0 1 0

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

Bus Operation

7-12

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-7 shows a word transfer to an 8-bit bus port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. The size signals
for the first cycle specify two bytes; for the second cycle, one byte. Figure 7-8 shows the
associated bus transfer signal timing.

Figure 7-6. Long-Word Operand Write Timing (16-Bit Data Port)

WORD WRITE

 LONG WORD OPERAND WRITE TO 16-BIT PORT

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

OP0

OP1

OP2

OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-13

7.2.2 Misaligned Operands

Since operands may reside at any byte boundaries, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd address;
a long word is misaligned at an address that is not evenly divisible by four. The MC68000,
MC68008, and MC68010 implementations allow long-word transfers on odd-word
boundaries but force exceptions if word or long-word operand transfers are attempted at
odd-byte addresses. Although the MC68030 does not enforce any alignment restrictions for
data operands (including PC relative data addresses), some performance degradation
occurs when additional bus cycles are required for long-word or word operands that are
misaligned. For maximum performance, data items should be aligned on their natural
boundaries. All instruction words and extension words must reside on word boundaries.
Attempting to prefetch an instruction word at an odd address causes an address error
exception.

Figure 7-7. Example of Word Transfer to Byte Port

DATA BUSD31 D24

WORD OPERAND

OP2 OP3

15 0

BYTE MEMORY

OP2

OP3

MC68EC030

SIZ1 SIZ0 A1 A0
1 0 0 0

0 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
LH

LH

Bus Operation

7-14

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-8. Word Operand Write Timing (8-Bit Data Port)

BYTE WRITE

 WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

BYTE WRITE

 D15-D8

D7-D0 OP3

OP2

OP3

OP2

OP3

OP3

OP3

OP3

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-15

Figure 7-9 shows the transfer of a long-word operand to an odd address in word-organized
memory, which requires three bus cycles. For the first cycle, the size signals specify a long-
word transfer, and the address offset (A2:A0) is 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the processor
starts the second cycle, the size signals specify that three bytes remain to be transferred
with an address offset (A2:A0) of 010. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the size signals indicating one byte
remaining to be transferred. The address offset (A2:A0) is now 100; the port latches the final
byte; and the operation is complete. Figure 7-10 shows the associated bus transfer signal
timing.

Figure 7-11 shows the equivalent operation for a cachable data read cycle.

Figures 7-12 and 7-13 show a word transfer to an odd address in word-organized memory.
This example is similar to the one shown in Figures 7-9 and 7-10 except that the operand is
word sized and the transfer requires only two bus cycles.

Figure 7-14 shows the equivalent operation for a cachable data read cycle.

Figure 7-9. Misaligned Long-Word Transfer to Word Port Example

DATA BUSD31 D16

LONG WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

XXXOP3

L H

A0
1

0

0 1 1 0 0

Bus Operation

7-16

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-10. Misaligned Long-Word Transfer to Word Port

BYTE WRITE

 LONG WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

 D15-D8

D7-D0

S0 S2 S4

OP0

OP0

OP1

OP2

OP1

OP2

OP1

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-17

Figure 7-11. Misaligned Cachable Long-Word Transfer from Word Port Example

Figure 7-12. Misaligned Word Transfer to Word Port Example

LONG WORD OPERAND (REGISTER)

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

PR OP0

OP1 OP2

MC68EC030

SIZ1 SIZ0 A1 A0
0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
L H

L H

NOP3

L H

A0
1

0

0 1 1 0 0

CACHE ENTRIES

PR OP0 OP1 OP2

31 0

OP3 N N1 N2

31 0

DATA BUS

D31 D16

N2N1

1 0 1 1 0 L H

MC68030

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

Bus Operation

7-18

MC68030 USER’S MANUAL

MOTOROLA

Figure 7-13. Misaligned Word Transfer to Word Port

 WORD OPERAND WRITE TO A1/A0=01

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

WORD WRITE

 D15-D8

D7-D0

OP2

OP2

OP3

OP2

OP3

OP3

OP3

OP3

BYTE WRITE

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-19

Figures 7-15 and 7-16 show an example of a long-word transfer to an odd address in long-
word-organized memory. In this example, a long-word access is attempted beginning at the
least significant byte of a long-word-organized memory. Only one byte can be transferred in
the first bus cycle. The second bus cycle then consists of a three-byte access to a long-word
boundary. Since the memory is long-word organized, no further bus cycles are necessary.

Figure 7-17 shows the equivalent operation for a cachable data read cycle.

7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determines the number
of bus cycles required to perform a particular memory access. Table 7-6 shows the number
of bus cycles required for different operand sizes to different port sizes with all possible
alignment conditions for write cycles and noncachable read cycles.

Data Port Size — 32 Bits:16 Bits:8 Bits
*Instruction prefetches are always two words from a long-word boundary.

This table shows that bus cycle throughput is significantly affected by port size and
alignment. The MC68030 system designer and programmer should be aware of and
account for these effects, particularly in time-critical applications.

Table 7-6. Memory Alignment and Port Size Influence on Write Bus Cycles

A1/A0 Number of Bus Cycles
00 01 10 11

Instruction* 1:2:4 N/A N/A N/A
Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1
Word Operand 1:1:2 1:2:2 1:1:2 2:2:2
Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

Bus Operation

7-20

MC68030 USER’S MANUAL

MOTOROLA

Table 7-6 shows that the processor always prefetches instructions by reading a long word
from a long-word address (A1:A0=00), regardless of port size or alignment. When the
required instruction begins at an odd-word boundary, the processor attempts to fetch the
entire 32 bits and loads both words into the instruction cache, if possible, although the
second one is the required word. Even if the instruction access is not cached, the entire 32
bits are latched into an internal cache holding register from which the two instructions words
can subsequently be referenced. Refer to

Section 11 Instruction Execution Timing

 for a
complete description of the cache holding register and pipeline operation.

Figure 7-14. Example of Misaligned Cachable Word Transfer from Word Bus

Figure 7-15. Misaligned Long-Word Transfer to Long-Word Port

MC68EC030

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND (REGISTER)

DATA BUS
D31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

PR OP2

31 0CACHE ENTRY

OP3 N

MC68EC030

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

15 0LONG WORD OPERAND

DATA BUSD31 D0

LONG WORD MEMORY

MSB UMB

XXX

OP1 OP2

XXX XXX

OP2 OP3

OP3

OP0

XXX

LMB LSB

L

Bus Operation

MOTOROLA

MC68030 USER’S MANUAL

7-21

Figure 7-16. Misaligned Write Cycles to Long-Word Port

 LONG WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

BYTE WRITE

 D15-D8

D7-D0

OP0

OP0

OP1

OP0

OP1

OP2

OP3

OP1

3 - BYTE WRITE

Bus Operation

7-22

MC68030 USER’S MANUAL

MOTOROLA

7.2.4 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68030 drives data onto or receives data from
the correct byte sections of the data bus. Table 7-7 shows the combinations of the size
signals and address signals that are used to generate byte enable signals for each of the
four sections of the data bus for noncachable read cycles and all write cycles if the
addressed device requires them. The port size also affects the generation of these enable
signals as shown in the table. The four columns on the right correspond to the four byte
enable signals. Letters B, W, and L refer to port sizes: B for 8-bit ports, W for 16-bit ports,
and L for 32-bit ports. The letters B, W, and L imply that the byte enable signal should be
true for that port size. A dash (—) implies that the byte enable signal does not apply.

The MC68030 always drives all sections of the data bus because, at the start of a write
cycle, the bus controller does not know the port size. The byte enable signals in the table
apply only to read operations that are not to be internally cached and to write operations.
For cachable read cycles, during which the data is cached, the addressed port must drive
all sections of the bus on which it resides.

Figure 7-17. Misaligned Cachable Long-Word Transfer from Long-Word Bus

MC68EC030

SIZ1 SIZ0 A2 A1

0 0 0 1 1

1 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

31 0LONG WORD OPERAND (REGISTER)

DATA BUS
D31 D0

LONG WORD MEMORY

MSB UMB

PR2

OP1 OP2

PR1

OP2 OP3

PR

OP3

OP0

N

LMB LSB

L

PR2 PR1

31 0CACHE ENTRIES

PR OP0

OP1 OP2

31 0

OP3 N

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-23

The table shows that the MC68030 transfers the number of bytes specified by the size
signals to or from the specified address unless the operand is misaligned or the number of
bytes is greater than the port width. In these cases, the device transfers the greatest number
of bytes possible for the port. For example, if the size is four bytes and the address offset
(A1:A0) is 01, a 32-bit slave can only receive three bytes in the current bus cycle. A 16- or
8-bit[lz slave can only receive one byte. The table defines the byte enables for all port sizes.
Byte data strobes can be obtained by combining the enable signals with the data strobe
signal. Devices residing on 8-bit ports can use the data strobe by itself since there is only
one valid byte for every transfer. These enable or strobe signals select only the bytes
required for write cycles or for noncachable read cycles. The other bytes are not selected,
which prevents incorrect accesses in sensitive areas such as I/O.

Figure 7-18 shows a logic diagram for one method for generating byte data enable signals
for 16- and 32-bit ports from the size and address encodings and the read/write signal.

Table 7-7. Data Bus Write Enable Signals for
Byte, Word, and Long-Word Ports

Transfer
Size

SIZ1 SIZ0 A1 A0
Data Bus Active Sections

Byte (B) - Word (W) - Long-Word (L) Ports
D31:D24 D23:D16 D15:D8 D7:D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

—
WL
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

—
L
L
—

—
—
L
L

3 Byte 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

L
L
L
L

Bus Operation

7-24 MC68030 USER’S MANUAL MOTOROLA

7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing
The MC68030 supports the dynamic bus sizing mechanism of the MC68020 for
asynchronous bus cycles (terminated with DSACKx) with two restrictions. First, for a
cachable access within the boundaries of an aligned long word, the port size must be
consistent throughout the transfer of each long word. For example, when a byte port resides
at address $00, addresses $01, $02, and $03 must also correspond to byte ports. Second,
the port must supply as much data as it signals as port size, regardless of the transfer size
indicated with the size signals and the address offset indicated by A0 and A1 for cachable
accesses. Otherwise, dynamic bus sizing is identical in the two processors.

7.2.6 Cache Filling
The on-chip data and instruction caches, described in Section 6 On-Chip Cache
Memories, are each organized as 16 lines of four long-word entries each. For each line, a
tag contains the most significant bits of the logical address, FC2 (instruction cache) or FC0–
FC2 (data cache), and a valid bit for each entry in the line. An entry fill operation loads an
entire long word accessed from memory into a cache entry. This type of fill operation is
performed when one entry of a line is not valid and an access is cachable. A burst fill
operation is requested when a tag miss occurs for the current cycle or when all four entires
in the cache line are invalid (provided the cache is enabled and burst filling for the cache is
enabled). The burst fill operation attempts to fill all four entries in the line. To support burst
filling, the slave device must have a 32-bit port and must have a burst mode capability; that
is, it must acknowledge a burst request with the cache burst acknowledge (CBACK) signal.
It must also terminate the burst accesses with STERM and place a long word on the data
bus for each transfer. The device may continue to supply successive long words, asserting
STERM with each one, until the cache line is full. For further information about filling the
cache, both entry fills and burst mode fills, refer to 6.1.3 Cache Filling, 7.3.4 Synchronous
Read Cycle, 7.3.5 Synchronous Write Cycle, and 7.3.7 Burst Operation Cycles, which
discuss in detail the required bus cycles.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-25

7.2.7 Cache Interactions
The organization and requirements of the on-chip instruction and data caches affect the
interpretation of the DSACKx and STERM signals. Since the MC68030 attempts to load all
data operands and instructions that are cachable into the on-chip caches, the bus may
operate differently when caching is enabled. Specifically, on cachable read cycles that
terminate normally, the low-order address signals (A0 and A1) and the size signals do not
apply.

The slave device must supply as much aligned data on the data bus as its port size allows,
regardless of the requested operand size. This means that an 8-bit port must supply a byte,
a 16-bit port must supply a word, and a 32-bit port must supply an entire long word. This
data is loaded into the cache. For a 32-bit port, the slave device ignores A0 and A1 and
supplies the long word beginning at the long-word boundary on the data bus. For a 16-bit[lz
port, the device ignores A0 and supplies the entire word beginning at the lower word
boundary on D16–D31 of the data bus. For a byte port, the device supplies the addressed
byte on D24–D31.

If the addressed device cannot supply port-sized data or if the data should not be cached,
the device must assert cache inhibit in (CIIN) as it terminates the read cycle. If the bus cycle
terminates abnormally, the MC68030 does not cache the data. For details of interactions of
port sizes, misalignments, and cache filling, refer to 6.1.3 Cache Filling.

The caches can also affect the assertion of AS and the operation of a read cycle. The search
of the appropriate cache by the processor begins when the microsequencer requires an
instruction or a data item. At this time, the bus controller may also initiate an external bus
cycle in case the requested item is not resident in the instruction or data cache. If the bus is
not occupied with another read or write cycle, the bus controller asserts the ECS signal (and
the OCS signal, if appropriate). If an internal cache hit occurs, the external cycle aborts, and
AS is not asserted. This makes it possible to have ECS asserted on multiple consecutive
clock cycles. Notice that there is a minimum time specified from the negation of ECS to the
next assertion of ECS (refer to MC68030EC/D, MC68030 Electrical Specifications.

Instruction prefetches can occur every other clock so that if, after an aborted cycle due to an
instruction cache hit, the bus controller asserts ECS on the next clock, this second cycle is
for a data fetch. However, data accesses that hit in the data cache can also cause the
assertion of ECS and an aborted cycle. Therefore, since instruction and data accesses are
mixed, it is possible to see multiple successive ECS assertions on the external bus if the
processor is hitting in both caches and if the bus controller is free. Note that, if the bus
controller is executing other cycles, these aborted cycles due to cache hits may not be seen
externally. Also, OCS is asserted for the first external cycle of an operand transfer.
Therefore, in the case of a misaligned data transfer where the first portion of the operand
results in a cache hit (but the bus controller did not begin an external cycle and then abort
it) and the second portion in a cache miss, OCS is asserted for the second portion of the
operand.

Bus Operation

7-26 MC68030 USER’S MANUAL MOTOROLA

Figure 7-18. Byte Data Select Generation for 16- and 32-Bit Ports

A1

SIZ0

SIZ1

R/W

LD

UD

LLD

LMD

UMD

UUD

UUD = UPPER UPPER DATA (32-BIT PORT)
UMD = UPPER MIDDLE DATA (32-BIT PORT)
LMD = LOWER MIDDLE DATA (32-BIT PORT)
LLD = LOWER LOWER DATA (32-BIT PORT)
UD = UPPER DATA (16-BIT PORT)
LD = LOWER DATA (16-BIT PORT)

NOTE: These select lines can be combined with the address decode circuitry or all can be generated within the same
 programmed array logic unit.

A0

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-27

7.2.8 Asynchronous Operation
The MC68030 bus may be used in an asynchonous manner. In that case, the external
devices connected to the bus can operate at clock frequencies different from the clock for
the MC68030. Asynchronous operation requires using only the handshake line (AS, DS,
DSACK1, DSACK0, BERR, and HALT) to control data transfers. Using this method, AS
signals the start of a bus cycle, and DS is used as a condition for valid data on a write cycle.
Decoding the size outputs and lower address lines (A0 and A1) provides strobes that select
the active portion of the data bus. The slave device (memory or peripheral) then responds
by placing the requested data on the correct portion of the data bus for a read cycle or
latching the data on a write cycle, and asserting the DSACK1/DSACK0 combination that
corresponds to the port size to terminate the cycle. If no slave responds or the access is
invalid, external control logic asserts the BERR or BERR and HALT signal(s) to abort or retry
the bus cycle, respectively.

The DSACKx signals can be asserted before the data from a slave device is valid on a read
cycle. The length of time that DSACKx may precede data is given by parameter #31, and it
must be met in any asynchronous system to insure that valid data is latched into the
processor. (Refer to MC68030EC/D, MC68030 Electrical Specifications for timing
parameters.) Notice that no maximum time is specified from the assertion of AS to the
assertion of DSACKx. Although the processor can transfer data in a minimum of three clock
cycles when the cycle is terminated with DSACKx, the processor inserts wait cycles in clock
period increments until DSACKx is recognized.

The BERR and/or HALT signals can be asserted after the DSACKx signal(s) is asserted.
BERR and/or HALT must be asserted within the time given as parameter #48, after DSACKx
is asserted in any asynchronous system. If this maximum delay time is violated, the
processor may exhibit erratic behavior.

Bus Operation

7-28 MC68030 USER’S MANUAL MOTOROLA

For asynchronous read cycles, the value of CIIN is internally latched on the rising edge of
bus cycle state 4. Refer to 7.3.1 Asynchronous Read Cycle for more details on the states
for asynchonous read cycles.

During any bus cycle terminated by DSACKx or BERR, the assertion of CBACK is
completely ignored.

7.2.9 Synchronous Operation with DSACKx
Although cycles terminated with the DSACKx signals are classified as asynchronous and
cycles terminated with STERM are classified as synchronous, cycles terminated with
DSACKx can also operate synchronously in that signals are interpreted relative to clock
edges.

The devices that use these cycles must synchronize the responses to the MC68030 clock
to be synchronous. Since they terminate bus cycles with the DSACKx signals, the dynamic
bus sizing capabilities of the MC68030 are available. In addition, the minimum cycle time for
these cycles is also three clocks.

To support those systems that use the system clock to generate DSACKx and other
asynchronous inputs, the asynchronous input setup time (parameter #47A) and the
asynchronous input hold time (parameter #47B) are given. If the setup and hold times are
met for the assertion or negation of a signal, such as DSACKx, the processor can be
guaranteed to recognize that signal level on that specific falling edge of the system clock. If
the assertion of DSACKx is recognized on a particular falling edge of the clock, valid data is
latched into the processor (for a read cycle) on the next falling clock edge provided the data
meets the data setup time (parameter #27). In this case, parameter #31 for asynchronous
operation can be ignored. The timing parameters referred to are described in MC68030EC/
D, MC68030 Electrical Specifications. If a system asserts DSACKx for the required window
around the falling edge of S2 and obeys the proper bus protocol by maintaining DSACKx
(and/or BERR/HALT) until and throughout the clock edge that negates AS (with the
appropriate asynchronous input hold time specified by parameter #47B), no wait states are
inserted. The bus cycle runs at its maximum speed (three clocks per cycle) for bus cycles
terminated with DSACKx.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-29

To assure proper operation in a synchronous system when BERR or BERR and HALT is
asserted after DSACKx, BERR (and HALT) must meet the appropriate setup time
(parameter #27A) prior to the falling clock edge one clock cycle after DSACKx is recognized.
This setup time is critical, and the MC68030 may exhibit erratic behavior if it is violated.

When operating synchronously, the data-in setup and hold times for synchronous cycles
may be used instead of the timing requirements for data relative to the DS signal.

The value of CIIN is latched on the rising edge of bus cycle state 4 for all cycles terminated
with DSACKx.

7.2.10 Synchronous Operation with STERM
The MC68030 supports synchronous bus cycles terminated with STERM. These cycles, for
32-bit ports only, are similar to cycles terminated with DSACKx. The main difference is that
STERM can be asserted (and data can be transferred) earlier than for a cycle terminated
with DSACKx, causing the processor to perform a minimum access time transfer in two
clock periods. However, wait cycles can be inserted by delaying the assertion of STERM
appropriately.

Using STERM instead of DSACKx in any bus cycle makes the cycle synchronous. Any bus
cycle is synchronous if:

1. Neither DSACKx nor AVEC is recognized during the cycle.

2. The port size is 32 bits.

3. Synchronous input setup and hold time requirements (specifications #60 and #61) for
STERM are met.

Burst mode operation requires the use of STERM to terminate each of its cycles. The first
cycle of any burst transfer must be a synchronous cycle as described in the preceding
paragraph. The exact timing of this cycle is controlled by the assertion of STERM, and wait
cycles can be inserted as necessary. However, the minimum cycle time is two clocks. If a
burst operation is initiated and allowed to terminate normally, the second, third, and fourth
cycles latch data on successive falling edges of the clock at a minimum. Again, the exact
timing for these subsequent cycles is controlled by the timing of STERM for each of these
cycles, and wait cycles can be inserted as necessary.

Bus Operation

7-30 MC68030 USER’S MANUAL MOTOROLA

Although the synchronous input signals (STERM, CIIN, and CBACK) must be stable for the
appropriate setup and hold times relative to every rising edge of the clock during which AS
is asserted, the assertion or negation of CBACK and CIIN is internally latched on the rising
edge of the clock for which STERM is asserted in a synchronous cycle.

The STERM signal can be generated from the address bus and function code value and
does not need to be qualified with the AS signal. If STERM is asserted and no cycle is in
progress (even if the cycle has begun, ECS is asserted and then the cycle is aborted),
STERM is ignored by the MC68030.

Similarly, CBACK can be asserted independently of the assertion of CBREQ. If a cache
burst is not requested, the assertion of CBACK is ignored.

The assertion of CIIN is ignored when the appropriate cache is not enabled or when cache
inhibit out (CIOUT) is asserted. It is also ignored during write cycles or translation table
searches.

NOTE

STERM and DSACKx should never be asserted during the same
bus cycle.

7.3 DATA TRANSFER CYCLES
The transfer of data between the processor and other devices involves the following signals:

• Address Bus A0–A31

• Data Bus D0–D31

• Control Signals

The address and data buses are both parallel nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the asynchronous/synchronous bus uses a
handshake protocol to insure correct movement of the data. In all bus cycles, the bus master
is responsible for de-skewing all signals it issues at both the start and the end of the cycle.
In addition, the bus master is responsible for de-skewing the acknowledge and data signals
from the slave devices. The following paragraphs define read, write, and read-modify-write
cycle operations. An additional paragraph describes burst mode transfers.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-31

Each of the bus cycles is defined as a succession of states. These states apply to the bus
operation and are different from the processor states described in Section 4 Processing
States. The clock cycles used in the descriptions and timing diagrams of data transfer
cycles are independent of the clock frequency. Bus operations are described in terms of
external bus states.

7.3.1 Asynchronous Read Cycle
During a read cycle, the processor receives data from a memory, coprocessor, or peripheral
device. If the instruction specifies a long-word operation, the MC68030 attempts to read four
bytes at once. For a word operation, it attempts to read two bytes at once, and for a byte
operation, one byte. For some operations, the processor requests a three-byte transfer. The
processor properly positions each byte internally. The section of the data bus from which
each byte is read depends on the operand size, address signals (A0–A1), CIIN and CIOUT,
whether the internal caches are enabled, and the port size. Refer to 7.2.1 Dynamic Bus
Sizing, 7.2.2 Misaligned Operands, and 7.2.6 Cache Filling for more information on
dynamic bus sizing, misaligned operands, and cache interactions.

Figure 7-19 is a flowchart of an asynchronous long-word read cycle. Figure 7-20 is a
flowchart of a byte read cycle. The following figures show functional read cycle timing
diagrams specified in terms of clock periods. Figure 7-21 corresponds to byte and word read
cycles from a 32-bit port. Figure 7-22 corresponds to a long-word read cycle from an 8-bit
port. Figure 7-23 also applies to a long-word read cycle, but from a 16-bit port.

State 0
The read cycle starts in state 0 (S0). The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first external cycle of a read operand
operation, operand cycle start (OCS) is driven low at the same time. During S0, the
processor places a valid address on A0–A31 and valid function codes on FC0–FC2. The
function codes select the address space for the cycle. The processor drives R/W high for
a read cycle and drives DBEN inactive to disable the data buffers. SIZ0–SIZ1 become
valid, indicating the number of bytes requested to be transferred. CIOUT also becomes
valid, indicating the state of the MMU CI bit in the address translation descriptor or in the
appropriate TTx register.

Bus Operation

7-32 MC68030 USER’S MANUAL MOTOROLA

Figure 7-19. Asynchronous Long-Word Read Cycle Flowchart

Figure 7-20. Asynchronous Byte Read Cycle Flowchart

CONTROLLER

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2-FC0
5) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACK

EXTERNAL DEVICE

1) SAMPLE CACHE IN (CIN)

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D324 OR
 D23-D16 OR
 D15-D8 OR
 D7-D0
 (BASED ON A1,A0, CACHE AND BUS WIDTH)
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACK

EXTERNAL DEVICECONTROLLER

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2-FC0
5) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

1)SAMPLE CACHE INHIBIT IN (CIIN)

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-33

Figure 7-21. Asynchronous Byte and Word Read Cycles — 32-Bit Port

WORD READ

S0 S2 S4 S0 S2 S4

BYTE READ

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

S0 S2 S4

OP2

OP3

OP3

OP3

BYTEWORD

BYTE READ

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-35

Figure 7-22. Long-Word Read — 8-Bit Port with CIOUT Asserted

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

CIOUT

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

BYTE READ

OP0 OP1 OP3

 LONG WORD 3-BYTE

BYTE READ

WORD BYTE

OP2

BYTE READBYTE READ

LONG WORD OPERAND READ FROM 8-BIT PORT

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

Bus Operation

7-36 MC68030 USER’S MANUAL MOTOROLA

Figure 7-23. Long-Word Read — 16-Bit and 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD READ

S0 S2 S4 S0 S2 S4

WORD READ

S0 S2 S4

OP0

OP1 OP3

OP3

LONG WORD WORD

LONG WORD READ
FROM 32- BIT PORT

OP2

OP1

OP0OP2

LONG WORD

LONG WORD OPERAND READ FROM 16-BIT PORT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-37

State 1
One-half clock later in state 1 (S1), the processor asserts AS indicating that the address
on the address bus is valid. The processor also asserts DS also during S1. In addition,
the ECS (and OCS, if asserted) signal is negated during S1.

State 2
During state 2 (S2), the processor asserts DBEN to enable external data buffers. The
selected device uses R/W, SIZ0–SIZ1, A0–A1, CIOUT, and DS to place its information on
the data bus, and drives CIIN if appropriate. Any or all of the bytes (D24–D31, D16–D23,
D8–D15, and D0–D7) are selected by SIZ0–SIZ1 and A0–A1. Concurrently, the selected
device asserts DSACKx.

State 3
As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting
the asynchronous input setup time requirement), data is latched on the next falling edge
of the clock, and the cycle terminates. If DSACKx is not recognized by the start of state 3
(S3), the processor inserts wait states instead of proceeding to states 4 and 5. To ensure
that wait states are inserted, both DSACK0 and DSACK1 must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the processor continues to sample the DSACKx signals on the falling
edges of the clock until one is recognized.

State 4
The processor samples CIIN at the beginning of state 4 (S4). Since CIIN is defined as a
synchronous input, whether asserted or negated, it must meet the appropriate
synchronous input setup and hold times on every rising edge of the clock while AS is
asserted. At the end of S4, the processor latches the incoming data.

State 5
The processor negates AS, DS, and DBEN during state 5 (S5). It holds the address valid
during S5 to provide address hold time for memory systems. R/W, SIZ0–SIZ1, and FC0–
FC2 also remain valid throughout S5.

The external device keeps its data and DSACKx signals asserted until it detects the
negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACKx within approximately one clock period after sensing the negation of AS
or DS. DSACKx signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

Bus Operation

7-38 MC68030 USER’S MANUAL MOTOROLA

7.3.2 Asynchronous Write Cycle
During a write cycle, the processor transfers data to memory or a peripheral device.

Figure 7-24 is a flowchart of a write cycle operation for a long-word transfer. The following
figures show the functional write cycle timing diagrams specified in terms of clock periods.
Figure 7-25 shows two write cycles (between two read cycles with no idle time) for a 32-bit
port. Figure 7-26 shows byte and word write cycles to a 32-bit port. Figure 7-27 shows a
long-word write cycle to an 8-bit port. Figure 7-28 shows a long-word write cycle to a 16-bit
port.

Figure 7-24. Asynchronous Write Cycle Flowchart

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31-A0
3) DRIVE FUNCTION CODE ON FC2-FC0
4) DRIVE SIZE (SIZ1-SIZ0) (FOUR BYTES)
5) SET R/W TO WRITE
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA BUFFER ENABLE (DBEN)
9) DRIVE DATA LINES D31-D0

10) ASSERT DATA STROBE (DS)

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-D0
3) NEGATE DBEN

EXTERNAL DEVICECONTROLLER

1) NEGATE DSACKx

TERMINATE CYCLE

ACCEPT DATA

1) DECODE ADDRSS
2) STORE DATA FROM D31-D0
3) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx)

ADDRESS DEVICE

TERMINATE OUTPUT TRANSFER

START NEXT CYCLE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-39

State 0
The write cycle starts in S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first external cycle of a write operation, OCS is
driven low at the same time. During S0, the processor places a valid address on A0–A31
and valid function codes on FC0–FC2. The function codes select the address space for
the cycle. The processor drives R/W low for a write cycle. SIZ0–SIZ1 become valid,
indicating the number of bytes to be transferred. CIOUT also becomes valid, indicating

Figure 7-25. Asynchronous Read-Write-Read Cycles — 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D0

WRITE

 LONG WORD

WRITE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4

READ WITH WAIT STATES

Bus Operation

7-40 MC68030 USER’S MANUAL MOTOROLA

the state of the MMU CI bit in the address translation descriptor or in the appropriate TTx
register.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-41

Figure 7-26. Asynchronous Byte and Word Write Cycles — 32-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD WRITE

S0 S2 S4 S0 S4

BYTE WRITE

S0 S2S2 S4

OP2

OP3 OP3

OP3

 WORD

OP3

OP3

OP3OP3

BYTE

OP2

OP3 OP3

OP3

BYTE WRITE

Bus Operation

7-42 MC68030 USER’S MANUAL MOTOROLA

Figure 7-27. Long-Word Operand Write — 8-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

BYTE WRITE

 LONG WORD 3-BYTE

BYTE WRITE

WORD BYTE

BYTE WRITEBYTE WRITE

LONG WORD OPERAND READ TO 8-BIT PORT

S0 S2 S2S4 S0 S4 S0 S2 S4 S0 S2 S4

OP0 OP3OP2OP1

OP1 OP3OP3OP1

OP2 OP3OP2OP2

OP3 OP3OP3OP3

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-43

Figure 7-28. Long-Word Operand Write — 16-Bit Port

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31-D24

D23-D16

 D15-D8

D7-D0

WORD WRITE

S0 S2 S2S4 S0 S4

WORD WRITE

S0 S2 S4

OP0

OP1 OP3

OP3

 LONG WORD

OP2

OP1

OP0OP2

WORD

OP2

OP3 OP3

OP2

LONG WORD WRITE
TO 32-BIT PORT

LONG WORD OPERAND WRITE TO 16-BIT PORT

 LONG WORD

Bus Operation

7-44 MC68030 USER’S MANUAL MOTOROLA

State 1
One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DBEN during S1, which can enable
external data buffers. In addition, the ECS (and OCS, if asserted) signal is negated during
S1.

State 2
During S2, the processor places the data to be written onto the D0–D31, and samples
DSACKx at the end of S2.

State 3
The processor asserts DS during S3, indicating that the data is stable on the data bus. As
long as at least one of the DSACKx signals is recognized by the end of S2 meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKx is not recognized by the start of S3, the processor inserts wait states instead of
proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK0 and
DSACK1 must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the processor continues to sample the
DSACKx signals on the falling edges of the clock until one is recognized. The selected
device uses R/W, DS, SIZ0–SIZ1, and A0–A1 to latch data from the appropriate byte(s)
of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–SIZ1 and A0–A1
select the bytes of the data bus. If it has not already done so, the device asserts DSACKx
to signal that it has successfully stored the data.

State 4
The processor issues no new control signals during S4.

State 5
The processor negates AS and DS during S5. It holds the address and data valid during
S5 to provide address hold time for memory systems. R/W, SIZ0–SIZ1, FC0–FC2, and
DBEN also remain valid throughout S5.

The external device must keep DSACKx asserted until it detects the negation of AS or
DS (whichever it detects first). The device must negate DSACKx within approximately
one clock period after sensing the negation of AS or DS. DSACKx signals that remain
asserted beyond this limit may be prematurely detected for the next bus cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-45

7.3.3 Asynchronous Read-Modify-Write Cycle
The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68030 processor, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems. During
the entire read-modify-write sequence, the MC68030 asserts the RMC signal to indicate that
an indivisible operation is occurring. The MC68030 does not issue a bus grant (BG) signal
in response to a bus request (BR) signal during this operation. The read portion of a read-
modify-write operation is forced to miss in the data cache because the data in the cache
would not be valid if another processor had altered the value being read. However, read-
modify-write cycles may alter the contents of the data cache as described in 6.1.2 Data
Cache.

No burst filling of the data cache occurs during a read-modify-write operation.

The test and set (TAS) and compare and swap (CAS and CAS2) instructions are the only
MC68030 instructions that utilize read-modify-write operations. Depending on the compare
results of the CAS and CAS2 instructions, the write cycle(s) may not occur. Table search
accesses required for the MMU are always read-modify-write cycles to the supervisor data
space. During these cycles, a write does not occur unless a descriptor is updated. No data
is internally cached for table search accesses since the MMU uses physical addresses to
access the tables. Refer to Section 9 Memory Management Unit for information about the
MMU.

Figure 7-29 is a flowchart of the asynchronous read-modify-write cycle operation. Figure 7-
30 is an example of a functional timing diagram of a TAS instruction specified in terms of
clock periods.

State 0

The processor asserts ECS and OCS in S0 to indicate the beginning of an external
operand cycle. The processor also asserts RMC in S0 to identify a read-modify-write
cycle. The processor places a valid address on A0–A31 and valid function codes on FC0–
FC2. The function codes select the address space for the operation. SIZ0–SIZ1 become
valid in S0 to indicate the operand size. The processor drives R/W high for the read cycle
and sets 4 according to the value of the MMU CI bit in the address translation descriptor
or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor asserts DS during S1. In addition, the ECS (and OCS,
if asserted) signal is negated during S1.

Bus Operation

7-46 MC68030 USER’S MANUAL MOTOROLA

Figure 7-29. Asynchronous Read-Modify-Write Cycle Flowchart

LOCK BUS

1) ASSERT READ-MODIFY-WRITE
 CYCLE (RMC)

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31-A0
4) DRIVE FUNCTION CODE ON FC2- FC0
5) DRIVE SIZE (SIZ1-SIZ0)
6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

ACQUIRE DATA

2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN
5) START DATA MODIFICATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE ADDRESS ON A31-A0 (IF DIFFERENT)
3) DRIVE SIZE (SIZ1-SIZ0)
4) SET R/W TO WRITE
5) ASSERT AS
6) ASSERT DBEN
7) PLACE DATA ON D31-D0
8) ASSERT DS

TERMINATE OUTPUT TRANSFER

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT DATA TRANSFER AND
 SIZE ACKNOWLEDGE (DSACKx)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE DSACKx

ACCEPT DATA

1) DECODE ADDRESS
2) STORE DATA FROM D31-D0
3) ASSERT DSACKx

TERMINATE CYCLE

A

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A ;
IF OPERANDS DO NOT
MATCH, THEN GO TO

C ; ELSE GO TO
B C

B

1) NEGATE DSACKx

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND

WRITTEN, THEN GO TO
D ; ELSE GO TO E

E

D

1) SAMPLE CACHE INHIBIT IN

CONTROLLER EXTERNAL DRIVE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-47

State 2

During state 2 (S2), the processor drives DBEN active to enable external data buffers. The
selected device uses R/W, SIZ0–SIZ1, A0–A1, and DS to place information on the data
bus. Any or all of the bytes (D24–D31, D16–D23, D8–D15, and D0–D7) are selected by
SIZ0–SIZ1 and A0–A1. Concurrently, the selected device may assert the DSACKx
signals.

State 3

As long as at least one of the DSACKx signals is recognized by the end of S2 (meeting
the asynchronous input setup time requirement), data is latched on the next falling edge
of the clock, and the cycle terminates. If DSACKx is not recognized by the start of S3, the
processor inserts wait states instead of proceeding to S4 and S5. To ensure that wait
states are inserted, both DSACK0 and DSACK1 must remain negated throughout the
asynchronous input setup and hold times around the end of S2. If wait states are added,
the processor continues to sample the DSACKx signals on the falling edges of the clock
until one is recognized.

State 4

The processor samples the level of CIIN at the beginning of S4. At the end of S4, the
processor latches the incoming data.

State 5

The processor negates AS, DS, and DBEN during S5. If more than one read cycle is
required to read in the operand(s), S0–S5 are repeated for each read cycle. When
finished reading, the processor holds the address, R/W, and FC0–FC2 valid in
preparation for the write portion of the cycle.

The external device keeps its data and DSACKx signals asserted until it detects the
negation of AS or DS (whichever it detects first). The device must remove the data and
negate DSACKx within approximately one clock period after sensing the negation of AS
or DS. DSACKx signals that remain asserted beyond this limit may be prematurely
detected for the next portion of the operation.

Idle States

The processor does not assert any new control signals during the idle states, but it may
internally begin the modify portion of the cycle at this time. S6-S11 are omitted if no write
cycle is required. If a write cycle is required, the R/W signal remains in the read mode until
S6 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S8.

Bus Operation

7-48 MC68030 USER’S MANUAL MOTOROLA

Figure 7-30. Asynchronous Byte Read-Modify-Write Cycle — 32-Bit Port
(TAS Instruction with CIOUT or CIIN Asserted)

Si

INDIVISIBLE CYCLE NEXT CYCLE

DS

DSACK0

DBEN

D31-D24

DSACK1

D7-D0

D23-D16

OP3

OP3

OP3

OP3

OP3

BERR

HALT

BG

D15-D8

AS

CLK

A31-A2

A1

A0

FC2-FC0

SIZ1

R/W

SIZ0

S0 S2 S4 Si S6 S8 S10 S0

RMC

ECS

CIIN

CIOUT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-49

State 6

The processor asserts ECS and OCS in S6 to indicate that another external cycle is
beginning. The processor drives R/W low for a write cycle. CIOUT also becomes valid,
indicating the state of the MMU CI bit in the address translation descriptor or in a relevant
TTx register. Depending on the write operation to be performed, the address lines may
change during S6.

State 7

In S7, the processor asserts AS, indicating that the address on the address bus is valid.
The processor also asserts DBEN, which can be used to enable data buffers during S7.
In addition, the ECS (and OCS, if asserted) signal is negated during S7.

State 8

During S8, the processor places the data to be written onto D0–D31.

State 9

The processor asserts DS during S9 indicating that the data is stable on the data bus. As
long as at least one of the DSACKx signals is recognized by the end of S8 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACKx is not recognized by the start of S9, the processor inserts wait states instead of
proceeding to S10 and S11. To ensure that wait states are inserted, both DSACK0 and
DSACK1 must remain negated throughout the asynchronous input setup and hold times
around the end of S8. If wait states are added, the processor continues to sample
DSACKx signals on the falling edges of the clock until one is recognized.

The selected device uses R/W, DS, SIZ0–SIZ1, and A0–A1 to latch data from the
appropriate section(s) of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7).
SIZ0–SIZ1 and A0–A1 select the data bus sections. If it has not already done so, the
device asserts DSACKx when it has successfully stored the data.

State 10

The processor issues no new control signals during S10.

Bus Operation

7-50 MC68030 USER’S MANUAL MOTOROLA

State 11

The processor negates AS and DS during S11. It holds the address and data valid during
S11 to provide address hold time for memory systems. R/W and FC0–FC2 also remain
valid throughout S11.

If more than one write cycle is required, S6-S11 are repeated for each write cycle.

The external device keeps DSACKx asserted until it detects the negation of AS or DS
(whichever it detects first). The device must remove its data and negate DSACKx within
approximately one clock period after sensing the negation of AS or DS.

7.3.4 Synchronous Read Cycle
A synchronous read cycle is terminated differently from an asynchronous read cycle;
otherwise, the cycles assert and respond to the same signals, in the same sequence.
STERM rather than DSACKx is asserted by the addressed external device to terminate a
synchronous read cycle. Since STERM must meet the synchronous setup and hold times
with respect to all rising edges of the clock while AS is asserted, it does not need to be
synchronized by the processor. Only devices with 32-bit ports may assert STERM. STERM
is also used with the CBREQ and CBACK signals during burst mode operation. It provides
a two-clock (minimum) bus cycle for 32-bit ports and single-clock (minimum) burst accesses,
although wait states can be inserted for these cycles as well. Therefore, a synchronous
cycle terminated with STERM with one wait cycle is a three-clock bus cycle. However, note
that STERM is asserted one-half clock later than DSACKx would be for a similar
asynchronous cycle with zero wait cycles (also three clocks). Thus, if dynamic bus sizing is
not needed, STERM can be used to provide more decision time in an external cache design
than is available with DSACKx for three-clock accesses.

Figure 7-31 is a flowchart of a synchronous long-word read cycle. Byte and word operations
are similar. Figure 7-32 is a functional timing diagram of a synchronous long-word read
cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-51

State 0

The read cycle starts with S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first cycle of a read operand operation, OCS is
driven low at the same time. During S0, the processor places a valid address on A0–A31
and valid function codes on FC0–FC2. The function codes select the address space for
the cycle. The processor drives R/W high for a read cycle and drives DBEN inactive to
disable the data buffers. SIZ1-SIZ0 become valid, indicating the number of bytes to be
transferred. CIOUT also becomes valid, indicating the state of the MMU CI bit in the
address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DS during S1. If the burst mode is
enabled for the appropriate on-chip cache and all four long words of the cache entry are
invalid, (i.e., four long words can be read in), CBREQ is asserted. In addition, the ECS
(and OCS, if asserted) signal is negated during S1.

Figure 7-31. Synchronous Long-Word Read Cycle Flowchart —
No Burst Allowed

CONTROLLER

 1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
 2) DRIVE R/W TO READ
 3) DRIVE ADDRESS ON A31–A0
 4) DRIVE FUNCTION ON FC2–FC0
 5) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
 6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
 7) ASSERT ADDRESS STROBE (AS)
 8) ASSERT CACHE BURST REQUEST (CBREQ)
 (IF BURST POSSSIBLE)
 9) ASSERT DATA STROBE (DS)
10) ASSERT DATA BUFFER ENABLE (DBEN)

1) SAMPLE CACHE INHIBIT IN (CIIN)
 AND CACHE BURST ACKNOWLEDGE (CBACK)
2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE STERM

EXTERNAL DEVICE

ADDRESS DEVICE

ACQUIRE DATA

START NEXT CYCLE

Bus Operation

7-52 MC68030 USER’S MANUAL MOTOROLA

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place its information on
the data bus. Any or all of the byte sections of the data bus (D24–D31, D16–D23, D8–
D15, and D0–D7) are selected by SIZ0–SIZ1 and A0–A1. During S2, the processor
drives DBEN active to enable external data buffers. In systems that use two-clock
synchronous bus cycles, the timing of DBEN may prevent its use. At the beginning of S2,
the processor samples the level of STERM. If STERM is recognized, the processor
latches the incoming data at the end of S2. If the selected data is not to be cached for the

Figure 7-32. Synchronous Read with CIIN Asserted and CBACK Negated

S0 S2

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-53

current cycle or if the device cannot supply 32 bits, CIIN must be asserted at the same
time as STERM. In addition, the state of CBACK is latched when STERM is recognized.

Since CIIN, CBACK, and STERM are synchronous signals, they must meet the
synchronous input setup and hold times for all rising edges of the clock while AS is
asserted. If STERM is negated at the beginning of S2, wait states are inserted after S2,
and STERM is sampled on every rising edge thereafter until it is recognized. Once
STERM is recognized, data is latched on the next falling edge of the clock
(corresponding to the beginning of S3).

State 3

The processor negates AS, DS, and DBEN during S3. It holds the address valid during
S3 to simplify memory interfaces. R/W, SIZ0–SIZ1, and FC0–FC2 also remain valid
throughout S3.

The external device must keep its data asserted throughout the synchronous hold time
for data from the beginning of S3. The device must remove its data within one clock
after asserting STERM and negate STERM within two clocks after asserting STERM;
otherwise, the processor may inadvertently use STERM for the next bus cycle.

7.3.5 Synchronous Write Cycle
A synchronous write cycle is terminated differently from an asynchronous write cycle and
the data strobe may not be useful. Otherwise, the cycles assert and respond to the same
signal, in the same sequence. STERM is asserted by the external device to terminate a
synchronous write cycle. The discussion of STERM in the preceding section applies to write
cycles as well as to read cycles.

DS is not asserted for two-clock synchronous write cycles; therefore, the clock (CLK) may
be used as the timing signal for latching the data. In addition, there is no time from the latest
assertion of AS and the required assertion of STERM for any two-clock synchronous bus
cycle. The system must qualify a memory write with the assertion of AS to ensure that the
write is not aborted by internal conditions within the MC68030.

Bus Operation

7-54 MC68030 USER’S MANUAL MOTOROLA

Figure 7-33 is a flowchart of a synchronous write cycle. Figure 7-34 is a functional timing
diagram of this operation with wait states.

State 0

The write cycle starts with S0. The processor drives ECS low, indicating the beginning of
an external cycle. When the cycle is the first cycle of a write operation, OCS is driven low
at the same time. During S0, the processor places a valid address on A0–A31 and valid
function codes on FC0–FC2. The function codes select the address space for the cycle.
The processor drives R/W low for a write cycle. SIZ0–SIZ1 become valid, indicating the
number of bytes to be transferred. CIOUT also becomes valid, indicating the state of the
MMU CI bit in the address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DBEN during S1, which may be used to
enable the external data buffers. In addition, the ECS (and OCS, if asserted) signal is
negated during S1.

Figure 7-33. Synchronous Write Cycle Flowchart

CONTROLLER

 1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
 2) DRIVE ADDRESS ON A31–A0
 3) DRIVE FUNCTION ON FC2–FC0
 4) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
 5) SET R/W TO WRITE
 6) CACHE INHIBIT OUT (CIOUT) BECOMES VALID
 7) ASSERT ADDRESS STROBE (AS)
 8) ASSERT DATA BUFFER ENABLE (DBEN)
 ASSERT DATA BUFFER ENABLE (DBEN)
 9) DRIVE DATA LINES D31–D0
10) ASSERT DATA STROBE (DS) IF WAIT STATES)

1) NEGATE AS AND DS
2) REMOVE DATA FROM D31-0
3) NEGATE DBEN

1) DECODE ADDRESS
2) STORE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)

TERMINATE CYCLE

1) NEGATE STERM

EXTERNAL DEVICE

ADDRESS DEVICE

START NEXT CYCLE

TERMINATE OUTPUT TRANSFER

ACCEPT DATA

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-55

State 2

During S2, the processor places the data to be written onto D0–D31. The selected device
uses R/W, CLK, SIZ0–SIZ1, and A0–A1 to latch data from the appropriate section(s) of
the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–SIZ1 and A0–A1 select
the data bus sections. The device asserts STERM when it has successfully stored the
data. If the device does not assert STERM by the rising edge of S2, the processor inserts
wait states until it is recognized. The processor asserts DS at the end of S2 if wait states
are inserted. For zero-wait-state synchronous write cycles, DS is not asserted.

Figure 7-34. Synchronous Write Cycle with Wait States — CIOUT Asserted

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

S0 S2 SwS1 Sw S3

Bus Operation

7-56 MC68030 USER’S MANUAL MOTOROLA

State 3

The processor negates AS (and DS, if necessary) during S3. It holds the address and data
valid during S3 to simplify memory interfaces. R/W, SIZ0–SIZ1, FC0–FC2, and DBEN
also remain valid throughout S3.

The addressed device must negate STERM within two clock periods after asserting it, or
the processor may use STERM for the next bus cycle.

7.3.6 Synchronous Read-Modify-Write Cycle
A synchronous read-modify-write operation differs from an asynchronous read-modify-write
operation only in the terminating signal of the read and write cycles and in the use of CLK
instead of DS latching data in the write cycle. Like the asynchronous operation, the
synchronous read-modify-write operation is indivisible. Although the operation is
synchronous, the burst mode is never used during read-modify-write cycles.

Figure 7-35 is a flowchart of the synchronous read-modify-write operation. Timing for the
cycle is shown in Figure 7-36.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-57

Figure 7-35. Synchronous Read-Modify-Write Cycle Flowchart

1) ASSERT READ-MODIFY-WRITE CYCLE
 (RMC)

LOCK BUS

CONTROLLER

START INPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE R/W TO READ
3) DRIVE FUNCTION CODE ON FC2–FC0
4) DRIVE ADDRESS ON A31–A0
5) DRIVE SIZE (SIZ1–SIZ0)
6) CACHE INHIBIT OUT (CIOUT) BECOMES
 VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT DATA STROBE (DS)
9) ASSERT DATA BUFFER ENABLE (DBEN)

TERMINATE INPUT TRANSFER

1) SAMPLE CACHE INHIBIT IN (CIIN)
2) LATCH DATA
3) NEGATE AS AND DS
4) NEGATE DBEN
5) START DATA MODICIATION

START OUTPUT TRANSFER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO WRITE
3) DRIVE ADDRESS ON A31–A0 (IF DIFFERENT)
4) DRIVE SIZE (SIZ1–SIZ0)
5) CIOUT BECOMES VALID
6) ASSERT AS
7) ASSERT DBEN
8) PLACE DATA ON D31–D0
9) ASSERT DS (IF WAIT STATES)

TERMINATE OUTPUT TRANSFER

1) NEGATE AS (AND DS)
2) REMOVE DATA FROM D31–D0
3) NEGATE DBEN

UNLOCK BUS

1) NEGATE RMC

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS
 TERMINATION (STERM)

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE STERM

ACCEPT DATA

TERMINATE CYCLE

1) DECODE ADDRESS
2) STORE DATA FROM D31-D0
3) ASSERT STERM

1) NEGATE STERM

IF CAS2 INSTRUCTION
AND ONLY ONE

OPERAND
WRITTEN, THEN GO TO
 D : ELSE GO TO E

E

D

IF CAS2 INSTRUCTION
AND ONLY ONE OPERAND
READ, THEN GO TO A :

IF OPERANDS DO NOT
MATCH, THEN GO TO C :

ELSE GO TO B

A

CB

EXTERNAL DEVICE

Bus Operation

7-58 MC68030 USER’S MANUAL MOTOROLA

State 0

The processor asserts ECS and OCS in S0 to indicate the beginning of an external
operand cycle. The processor also asserts RMC in S0 to identify a read-modify-write
cycle. The processor places a valid address on A0–A31 and valid function codes on FC0–
FC2. The function codes select the address space for the operation. SIZ0–SIZ1 become
valid in S0 to indicate the operand size. The processor drives R/W high for a read cycle

Figure 7-36. Synchronous Read-Modify-Write Cycle Timing — CIIN Asserted

S0 S2 SiS1 S3 Si S4 S5 S6 S7

CLK

A31-A0

D31-D0

ECS

FC2-FC0

SIZ1

SIZ0

R/W

OCS

AS

DS

DSACK1

DSACK0

STERM

CIIN

CIOUT

CBREQ

CBACK

DBEN

RMC

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-59

and sets CIOUT to the value of the MMU CI bit in the address translation descriptor or in
the appropriate TTx register. The processor drives DBEN inactive to disable the data
buffers.

State 1

One-half clock later in S1, the processor asserts AS, indicating that the address on the
address bus is valid. The processor also asserts DS during S1. In addition, the ECS (and
OCS, if asserted) signal is negated during S1.

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place its information on
the data bus. Any or all of the byte sections (D24–D31, D16–D23, D8–D15, and D0–D7)
are selected by SIZ0–SIZ1 and A0–A1. During S2, the processor drives DBEN active to
enable external data buffers. In systems that use two-clock synchronous bus cycles, the
timing of DBEN may prevent its use. At the beginning of S2, the processor samples the
level of STERM. If STERM is recognized, the processor latches the incoming data. If the
selected data is not to be cached for the current cycle or if the device cannot supply 32
bits, CIIN must be asserted at the same time as STERM.

Since CIIN and STERM are synchronous signals, they must meet the synchronous nput
setup and hold times for all rising edges of the clock while AS is asserted. If STERM is
negated at the beginning of S2, wait states are inserted after S2, and STERM is sampled
on every rising edge thereafter until it is recognized. Once STERM is recognized, data is
latched on the next falling edge of the clock (corresponding to the beginning of S3).

Bus Operation

7-60 MC68030 USER’S MANUAL MOTOROLA

State 3

The processor negates AS, DS, and DBEN during S3. If more than one read cycle is
required to read in the operand(s), S0–S3 are repeated accordingly. When finished with
the read cycle, the processor holds the address, R/W, and FC0–FC2 valid in preparation
for the write portion of the cycle.

The external device must keep its data asserted throughout the synchronous hold time for
data from the beginning of S3. The device must remove the data within one-clock cycle
after asserting STERM to avoid bus contention. It must also negate STERM within two
clocks after asserting STERM; otherwise, the processor may inadvertently use STERM
for the next bus cycle.

Idle States

The processor does not assert any new control signals during the idle states, but it may
begin the modify portion of the cycle at this time. The R/W signal remains in the read mode
until S4 to prevent bus conflicts with the preceding read portion of the cycle; the data bus
is not driven until S6.

State 4

The processor asserts ECS and OCS in S4 to indicate that an external cycle is beginning.
The processor drives R/W low for a write cycle. CIOUT also becomes valid, indicating the
state of the MMU CI bit in the address translation descriptor or in the appropriate TTx
register. Depending on the write operation to be performed, the address lines may change
during S4.

State 5

In state 5 (S5), the processor asserts AS to indicate that the address on the address bus
is valid. The processor also asserts DBEN during S5, which can be used to enable
external data buffers.

State 6

During S6, the processor places the data to be written onto the D0–D31.

The selected device uses R/W, CLK, SIZ0–SIZ1, and A0–A1 to latch data from the
appropriate byte(s) of the data bus (D24–D31, D16–D23, D8–D15, and D0–D7). SIZ0–
SIZ1 and A0–A1 select the data bus sections. The device asserts STERM when it has
successfully stored the data. If the device does not assert STERM by the rising edge of
S6, the processor inserts wait states until it is recognized. The processor asserts DS at
the end of S6 if wait states are inserted. Note that for zero-wait-state synchronous write
cycles, DS is not asserted.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-61

State 7

The processor negates AS (and DS, if necessary) during S7. It holds the address and
data valid during S7 to simplify memory interfaces. R/W and FC0–FC2 also remain valid
throughout S7.

If more than one write cycle is required, S8-S11 are repeated for each write cycle.

The external device must negate STERM within two clock periods after asserting it, or the
processor may inadvertently use STERM for the next bus cycle.

7.3.7 Burst Operation Cycles
The MC68030 supports a burst mode for filling the on-chip instruction and data caches.

The MC68030 provides a set of handshake control signals for the burst mode. When a miss
occurs in one of the caches, the MC68030 initiates a bus cycle to obtain the required data
or instruction stream fetch. If the data or instruction can be cached, the MC68030 attempts
to fill a cache entry. Depending on the alignment for a data access, the MC68030 may
attempt to fill two cache entries. The processor may also assert CBREQ to request a burst
fill operation. That is, the processor can fill additional entries in the line. The MC68030 allows
a burst of as many as four long words.

The mechanism that asserts the CBREQ signal for burstable cache entries is enabled by
the data burst enable (DBE) and instruction burst enable (IBE) bits of the cache control
register (CACR) for the data and instruction caches, respectively. Either of the following
conditions cause the MC68030 to initiate a cache burst request (and assert CBREQ) for a
cachable read cycle:

• The logical address and function code signals of the current instruction or data fetch do
not match the indexed tag field in the respective instruction or data cache.

• All four long words corresponding to the indexed tag in the appropriate cache are
marked invalid.

However, the MC68030 does not assert CBREQ during the first portion of a misaligned
access if the remainder of the access does not correspond to the same cache line. Refer to
6.1.3.1 Single Entry Mode for details.

Bus Operation

7-62 MC68030 USER’S MANUAL MOTOROLA

If the appropriate cache is not enabled or if the cache freeze bit for the cache is set, the
processor does not assert CBREQ. CBREQ is not asserted during the read or write cycles
of any read-modify-write operation.

The MC68030 allows burst filling only from 32-bit ports that terminate bus cycles with
STERM and respond to CBREQ by asserting CBACK. When the MC68030 recognizes
STERM and CBACK and it has asserted CBREQ, it maintains AS, DS, R/W, A0–A31, FC0–
FC2, SIZ0–SIZ1 in their current state throughout the burst operation. The processor
continues to accept data on every clock during which STERM is asserted until the burst is
complete or an abnormal termination occurs.

CBACK indicates that the addressed device can respond to a cache burst request by
supplying one more long word of data in the burst mode. It can be asserted independently
of the CBREQ signal, and burst mode is only initiated if both of these signals are asserted
for a synchronous cycle. If the MC68030 executes a full burst operation and fetches four
long words, CBREQ is negated after STERM is asserted for the third cycle, indicating that
the MC68030 only requests one more long word (the fourth cycle). CBACK can then be
negated, and the MC68030 latches the data for the fourth cycle and completes the cache
line fill.

The following conditions can abort a burst fill:

• CIIN asserted,

• BERR asserted, or

• CBACK negated prematurely.

The processing of a bus error during a burst fill operation is described in 7.5.1 Bus Errors.

For the purposes of halting the processor or arbitrating the bus away from the processor with
BR, a burst operation is a single cycle since AS remains asserted during the entire
operation. If the HALT signal is asserted during a burst operation, the processor halts at the
end of the operation. Refer to 7.5.3 Halt Operation for more information about the halt
operation. An alternate bus master requesting the bus with BR may become bus master at
the end of the operation provided BR is asserted early enough to be internally synchronized
before another processor cycle begins. Refer to 7.7 Bus Arbitration for more information
about bus arbitration.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-63

The simultaneous assertion of BERR and HALT during a bus cycle normally indicates that
the cycle should be retried. However, during the second, third, or fourth cycle of a burst
operation, this signal combination indicates a bus error condition, which aborts the burst
operation. In addition, the processor remains in the halted state until HALT is negated. For
information about bus error processing, refer to 7.5.1 Bus Errors.

Figure 7-37 is a flowchart of the burst operation. The following timing diagrams show various
burst operations. Figure 7-38 shows burst operations for long-word requests with two wait
states inserted in the first access and one wait cycle inserted in the subsequent accesses.
Figure 7-39 shows a burst operation that fails to complete normally due to CBACK negating
prematurely. Figure 7-40 shows a burst operation that is deferred because the entire
operand does not correspond to the same cache line. Figure 7-41 shows a burst operation
aborted by CIIN. Because CBACK corresponds to the next cycle, three long words are
transferred even though CBACK is only asserted for two clock periods.

The burst operation sequence begins with states S0–S3, which are very similar to those
states for a synchronous read cycle except that CBREQ is asserted. S4-S9 perform the final
three reads for a complete burst operation.

State 0

The burst operation starts with S0. The processor drives ECS low, indicating the
beginning of an external cycle. When the cycle is the first cycle of a read operation, OCS
is driven low at the same time. During S0, the processor places a valid address on A0–
A31 and valid function codes on FC0–FC2. The function codes select the address space
for the cycle. The processor drives R/W high, indicating a read cycle, and drives DBEN
inactive to disable the data buffers. SIZ0–SIZ1 become valid, indicating the number of
operand bytes to be transferred. CIOUT also becomes valid, indicating the state of the
MMU CI bit in the address translation descriptor or in the appropriate TTx register.

State 1

One-half clock later in S1, the processor asserts AS to indicate that the address on the
address bus is valid. The processor also asserts DS during S1. CBREQ is also asserted,
indicating that the MC68030 can perform a burst operation into one of its caches and can
read in four long words. In addition, ECS (and OCS, if asserted) is negated during S1.

State 2

The selected device uses R/W, SIZ0–SIZ1, A0–A1, and CIOUT to place the data on the
data bus. (The first cycle must supply the long word at the corresponding long-word
boundary.) All of the byte sections (D24–D31, D16–D23, D8–D15, and D0–D7) of the data
bus must be driven since the burst operation latches 32 bits on every cycle. During S2,
the processor drives DBEN active to enable external data buffers. In systems that use
two-clock synchronous bus cycles, the timing of DBEN may prevent its use. At the
beginning of S2, the processor tests the level of STERM. If STERM is recognized, the
processor latches the incoming data at the end of S2. For the burst operation to proceed,
CBACK must be asserted when STERM is recognized. If the data for the current cycle is

Bus Operation

7-64 MC68030 USER’S MANUAL MOTOROLA

not to be cached, CIIN must be asserted at the same time as STERM. The assertion of
CIIN also has the effect of aborting the burst operation.

Figure 7-37. Burst Operation Flowchart — Four Long Words Transferred

END OF BURST

1) NEGATE AS AND DS
2) NEGATE DBEN

CONTROLLER

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) DRIVE R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION ON FC2–FC0
5) DRIVE SIZE (SIZ1–SIZ0) (FOUR BYTES)
6) CACHE INHIBIT OUT (CIOUT) BECOMES
 VALID
7) ASSERT ADDRESS STROBE (AS)
8) ASSERT CACHE BURST REQUEST (CBREQ)
9) ASSERT DATA STROBE (DS)

10) ASSERT DATA BUFFER ENABLE (DBEN)

1) SAMPLE CACHE INHIBIT IN (CIIN)
 AND CACHE BURST ACKNOWLEDGE
 (CBACK)
2) LATCH DATA

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31-D0
3) ASSERT SYNCHRONOUS TERMINATION (STERM)
4) ASSERT CACHE BURST ACKNOWLEDGE (CBACK)

TERMINATE CYCLE

1) REMOVE DATA FROM D31-D0
2) NEGATE STERM (IF NECESSARY)
3) NEGATE CBACK (IF NECESSARY)

EXTERNAL DEVICE

ADDRESS DEVICE

ACQUIRE DATA

WHEN 4 LONG WORDS TRANSFERRED UNTIL 4 LONG WORDS TRANSFERRED

START NEXT CYCLE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-65

Figure 7-38. Long-Word Operand Request from $07 with
Burst Request and Wait Cycle

S0 S2 SwS1 Sw Sw Sw SwS4 S5 Sw SwS6 S9S8SwS7

b4–b7 bC–bFbC–bFb8–bB

SwSw SwSw S3

A31-A4

A3

A2–A0

FC2-FC0

R/W

ECS

OCS

CLK

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

SIZ1–SIZ0

CIIN

CIOUT

01 10 11 00

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

7-66 MC68030 USER’S MANUAL MOTOROLA

Figure 7-39. Long-Word Operand Request from $07 with
Burst Request — CBACK Negated Early

CLK

A31–A4

A3

A2–A0

FC2–FC0

SIZ1–SIZ0

R/W

S0 S2 S4 S6

ECS

OCS

AS

DS

b4–b7 b8–bB bC–bF

01 10 11

1 2

VALUE OF CBACK
CONTROL NEXT CYCLE

3

STERM

CIIN

CIOUT

CBREQ

CBACK

D31–D0

DBEN

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

NOTES:
 1. Assertion of CBACK causes data to be placed on D31–D0.
 2. Continued assertion of CBACK causes data to be placed on D31–D0.
 3. Negation of CBACK causes AS to be negated.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-67

Figure 7-40. Long-Word Operand Request from $0E — Burst Fill Deferred

A31-A5

A4

A3–A1

FC2-FC0

SIZ1

R/W

ECS

OCS

CLK

S0 S2 Sw S0S1 Sw S3 S1 S2 Sw Sw S3 Sw Sw S4 S5 Sw Sw S6 S9S8SwSwS7

A0

SIZ0

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

b4–b7 bC–bFbC–bF b0–b3 b8–bB

PREVIOUS CACHE BLOCK NEXT CACHE BLOCK - START BURST CYCLE

Bus Operation

7-68 MC68030 USER’S MANUAL MOTOROLA

Figure 7-41. Long-Word Operand Request from $07 with
Burst Request — CBACK and CIIN Asserted

A31–A0

FC2–FC0

R/W

ECS

OCS

CLK

S0 S2

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

CIIN

CIOUT

S4

SIZ1

SIZ0

DSACK1

DSACK0

b4-b7

BURST MODE ENDS,
DATA NOT CACHED

01 10 11

VALUE OF A3:A2 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-69

Since CIIN, CBACK, and STERM are synchronous signals, they must meet the
synchronous input setup and hold times for all rising edges of the clock while AS is
asserted. If STERM is negated at the beginning of S2, wait states are inserted after S2,
and STERM is sampled on every rising edge of the clock thereafter until it is recognized.
Once STERM is recognized, data is latched on the next falling edge of the clock
(corresponding to the beginning of S3).

State 3

The processor maintains AS, DS, and DBEN asserted during S3. It also holds the address
valid during S3 for continuation of the burst. R/W, SIZ0–SIZ1, and FC0–FC2 also remain
valid throughout S3.

The external device must keep the data driven throughout the synchronous hold time for
data from the beginning of S3. The device must negate STERM within one clock after
asserting STERM; otherwise, the processor may inadvertently use STERM prematurely
for the next burst access. STERM need not be negated if subsequent accesses do not
require wait cycles.

State 4

At the beginning of S4, the processor tests the level of STERM. This state signifies the
beginning of burst mode, and the remaining states correspond to burst fill cycles. If
STERM is recognized, the processor latches the incoming data at the end of S4. This data
corresponds to the second long word of the burst. If STERM is negated at the beginning
of S4, wait states are inserted instead of S4 and S5, and STERM is sampled on every
rising edge of the clock thereafter until it is recognized. As for synchronous cycles, the
states of CBACK and CIIN are latched at the time STERM is recognized. The assertion
of CBACK at this time indicates that the burst operation should continue, and the assertion
of CIIN indicates that the data latched at the end of S4 should not be cached and that the
burst should abort.

State 5

The processor maintains all the signals on the bus driven throughout S5 for continuation
of the burst. The same hold times for STERM and data described for S3 apply here.

State 6

This state is identical to S4 except that once STERM is recognized, the third long word of
data for the burst is latched at the end of S6.

Bus Operation

7-70 MC68030 USER’S MANUAL MOTOROLA

State 7

During this state, the processor negates CBREQ, and the memory device may negate
CBACK. Aside from this, all other bus signals driven by the processor remain driven.
The same hold times for STERM and data described for S3 apply here.

State 8

This state is identical to S4 except that CBREQ is negated, indicating that the processor
cannot continue to accept more data after this. The data latched at the end of S8
corresponds to the fourth long word of the burst.

State 9

The processor negates AS, DS, and DBEN during S9. It holds the address, R/W, SIZ0–
SIZ1, and FC0–FC2 valid throughout S9. The same hold times for data described for S3
apply here.

Note that the address bus of the MC68030 remains driven to a constant value for the
duration of a burst transfer operation (including the first transfer before burst mode is
entered). If an external memory system requires incrementing of the long-word base
address to supply successive long words of information, this function must be performed by
external hardware. Additionally, in the case of burst transfers that cross a 16-byte boundary
(i.e., the first long word transferred is not located at A3/A2=00), the external hardware must
correctly control the continuation or termination of the burst transfer as desired. The burst
may be terminated by negating CBACK during the transfer of the most significant long word
of the 16-byte image (A3/A2=11) or may be continued (with CBACK asserted) by providing
the long word located at A3/A2=00 (i.e., the count sequence wraps back to zero and
continues as necessary). The MC68030 caches assume the higher order address lines (A4-
A31) remain unchanged as the long-word accesses wrap back around to A3/A2=00.

7.4 CPU SPACE CYCLES
FC0–FC2 select user and supervisor program and data areas as listed in Table 4-1. The
area selected by FC0–FC2=$7 is classified as the CPU space. The interrupt acknowledge,
breakpoint acknowledge, and coprocessor communication cycles described in the following
sections utilize CPU space.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-71

The CPU space type is encoded on A16-A19 during a CPU space operation and indicates
the function that the processor is performing. On the MC68030, three of the encodings are
implemented as shown in Figure 7-42. All unused values are reserved by Motorola for future
additional CPU space types.

7.4.1 Interrupt Acknowledge Bus Cycles
When a peripheral device signals the processor (with the IPL0–IPL2 signals) that the device
requires service, and the internally synchronized value on these signals indicates a higher
priority than the interrupt mask in the status register (or that a transition has occurred in the
case of a level 7 interrupt), the processor makes the interrupt a pending interrupt. Refer to
8.1.9 Interrupt Exceptions for details on the recognition of interrupts.

The MC68030 takes an interrupt exception for a pending interrupt within one instruction
boundary (after processing any other pending exception with a higher priority). The following
paragraphs describe the various kinds of interrupt acknowledge bus cycles that can be
executed as part of interrupt exception processing.

Figure 7-42. MC68030 CPU Space Address Encoding

1 1 1

1 1 1

1 1 1

BREAKPOINT
ACKNOWLEDGE

COPROCESSOR
COMM.

INTERRUPT
ACKNOWLEDGE

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LEVEL 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 CPID 0 0 0 0 0 0 0 0 CP REG

15 13 4 0

3 1 031

31

BKPT # 0 0

31 4 2 0

0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 16232 0

FUNCTION
CODE

ADDRESS BUS

CPU SPACE
TYPE FIELD

Bus Operation

7-72 MC68030 USER’S MANUAL MOTOROLA

7.4.1.1 INTERRUPT ACKNOWLEDGE CYCLE — TERMINATED NORMALLY. When
the MC68030 processes an interrupt exception, it performs an interrupt acknowledge cycle
to obtain the number of the vector that contains the starting location of the interrupt service
routine.

Some interrupting devices have programmable vector registers that contain the interrupt
vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices cannot supply
a vector number and use the autovector cycle described in 7.4.1.2 Autovector Interrupt
Acknowledge Cycle.

The interrupt acknowledge cycle is a read cycle. It differs from the asynchronous read cycle
described in 7.3.1 Asynchronous Read Cycle or the synchronous read cycle described in
7.3.4 Synchronous Read Cycle in that it accesses the CPU address space. Specifically,
the differences are:

1. FC0–FC2 are set to seven (FC0/FC1/FC2=111) for CPU address space.

2. A1, A2, and A3 are set to the interrupt request level (the inverted values of IPL0, iPL1,
and IPL2, respectively).

3. The CPU space type field (A16-A19) is set to $F, the interrupt acknowledge code.

4. A20–A31, A4–A15, and A0 are set to one.

The responding device places the vector number on the data bus during the interrupt
acknowledge cycle. Beyond this, the cycle is terminated normally with either STERM or
DSACKx. Figure 7-43 is the flowchart of the interrupt acknowledge cycle.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-73

Figure 7-44 shows the timing for an interrupt acknowledge cycle terminated with DSACKx.

7.4.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector or
autovector. Instead of placing a vector number on the data bus and asserting DSACKx or
STERM, the device asserts the autovector signal (AVEC) to terminate the cycle. Neither
STERM nor DSACKx may be asserted during an interrupt acknowledge cycle terminated by
AVEC.

The vector number supplied in an autovector operation is derived from the interrupt level of
the current interrupt. When AVEC is asserted instead of DSACK or STERM during an
interrupt acknowledge cycle, the MC68030 ignores the state of the data bus and internally
generates the vector number, the sum of the interrupt level plus 24 ($18). There are seven
distinct autovectors that can be used, corresponding to the seven levels of interrupt
available with signals IPL0–IPL2. Figure 7-45 shows the timing for an autovector operation.

Figure 7-43. Interrupt Acknowledge Cycle Flowchart

REQUEST INTERRUPT

 INTERRUPTING DEVICECONTROLLER

1) PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA PORT
 (DEPENDS ON PORT SIZE)
2) ASSERT DATA AND SIZE ACKNOWLEDGE
 (DSACKx)
 OR
 ASSERT SYNCHRONOUS TERMINATION
 (STERM)

PROVIDE VECTOR INFORMATION

ACKNOWLEDGE INTERRUPT

1) INTERRUPT PENDING (IPEND) RECOGNIZED BY
 CURRENT INSTRUCTION – WAIT FOR
 INSTRUCTION BOUNDARY
2) SET R/W TO READ
3) SET FUNCTION CODE TO CPU SPACE
4) PLACE INTERRUPT LEVEL ON A1,A2, AND A3.
 TYPE FIELD = INTERRUPT ACKNOWLEDGE (IACK)
5) SET SIZE TO BYTE
6) NEGATE IPEND
7) ASSERT ADDRESS STROBE (AS) AND DATA
 STROBE (DS)

ACQUIRE VECTOR NUMBER

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

CONTINUE INTERRUPT EXCEPTION PROCESSING

RELEASE

1) REMOVE VECTOR NUMBER FROM DATA BUS
2) NEGATE DSACKx

Bus Operation

7-74 MC68030 USER’S MANUAL MOTOROLA

Figure 7-44. Interrupt Acknowledge Cycle Timing

READ CYCLE INTERRUPT
ACKNOWLEDGE

WRITE STACK

CLK

A31-A4

A3-A1

A0

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D24

IPL2-IPL0

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

IPEND

D7-D0

D23-D16

VECTOR # FROM 8-BIT PORT

VECTOR # FROM 16-BIT PORT

VECTOR # FROM 32-BIT PORT

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-75

Figure 7-45. Autovector Operation Timing

READ CYCLE
INTERRUPT

ACKNOWLEDGE
AUTOVECTORED

WRITE STACK

CLK

A31-A4

A3-A1

A0

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D0

IPL2-IPL0

AVEC

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

INTERRUPT LEVEL

Bus Operation

7-76 MC68030 USER’S MANUAL MOTOROLA

7.4.1.3 SPURIOUS INTERRUPT CYCLE. When a device does not respond to an interrupt
acknowledge cycle with AVEC, STERM, or DSACKx, the external logic typically returns
BERR. The MC68030 automatically generates the spurious interrupt vector number, 24,
instead of the interrupt vector number in this case. If HALT is also asserted, the processor
retries the cycle.

7.4.2 Breakpoint Acknowledge Cycle
The breakpoint acknowledge cycle is generated by the execution of a breakpoint instruction
(BKPT). The breakpoint acknowledge cycle allows the external hardware to provide an
instruction word directly into the instruction pipeline as the program executes. This cycle
accesses the CPU space with a type field of zero and provides the breakpoint number
specified by the instruction on address lines A2–A4. If the external hardware terminates the
cycle with DSACKx or STERM, the data on the bus (an instruction word) is inserted into the
instruction pipe, replacing the breakpoint opcode, and is executed after the breakpoint
acknowledge cycle completes. The breakpoint instruction requires a word to be transferred
so that if the first bus cycle accesses an 8-bit port, a second cycle is required. If the external
logic terminates the breakpoint acknowledge cycle with BERR (i.e., no instruction word
available), the processor takes an illegal instruction exception. Figure 7-46 is a flowchart of
the breakpoint acknowledge cycle. Figure 7-47 shows the timing for a breakpoint
acknowledge cycle that returns an instruction word. Figure 7-48 shows the timing for a
breakpoint acknowledge cycle that signals an exception.

7.4.3 Coprocessor Communication Cycles
The MC68030 coprocessor interface provides instruction-oriented communication between
the processor and as many as seven coprocessors. The bus communication required to
support coprocessor operations uses the MC68030 CPU space with a type field of $2.

Coprocessor accesses use the MC68030 bus protocol except that the address bus supplies
access information rather than a 32-bit address. The CPU space type field (A16-A19) for a
coprocessor operation is $2. A13-A15 contain the coprocessor identification number (CpID),
and A0–A4 specify the coprocessor interface register to be accessed. Coprocessor
accesses to a CpID of zero correspond to MMU instructions and are not generated by the
MC68030 as a result of the coprocessor interface. These cycles can only be generated by
the MOVES instruction. Refer to Section 10 Coprocessor Interface Description for
further information.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-77

7.5 BUS EXCEPTION CONTROL CYCLES
The MC68030 bus architecture requires assertion of either DSACKx or STERM from an
external device to signal that a bus cycle is complete. DSACKx, STERM, or AVEC is not
asserted if:

• The external device does not respond.

• No interrupt vector is provided.

• Various other application-dependent errors occur.

External circuitry can provide BERR when no device responds by asserting DSACKx,
STERM, or AVEC within an appropriate period of time after the processor asserts AS. This
allows the cycle to terminate and the processor to enter exception processing for the error
condition.

The MMU can also detect an internal bus error. This occurs when the processor attempts to
access an address in a protected area of memory (a user program attempts to access
supervisor data, for example) or after the MMU receives a bus error while searching the
address table for an address translation description.

Figure 7-46. Breakpoint Operation Flow

1) PLACE REPLACEMENT OPCODE ON DATA
 BUS
2) ASSERT DATA TRANSFER AND SIZE
 ACKNOWLEDGE (DSACKx) SYNCHRONOUS
 TERMINATION (STERM)
 OR
1) ASSERT BUS ERRROR (BERR) TO INITIATE
 EXCEPTION PROCESSING

CONTROLLER

1) SET R/W TO READ
2) SET FUNCTION CODE TO CPU SPACE
3) PLACE CPU SPACE TYPE 0 ON A19-A16
4) PLACE BREAKPOINT NUMBER ON A4-A2
5) SET SIZE TO WORD
6) ASSERT ADDRESS STROBE (AS) AND DATA
 STROBE (DS)

 BREAKPOINT ACKNOWLEDGE

1) PLACE LATCHED DATA IN INSTRUCTION
 PIPELINE
2) CONTINUE PROCESSING

1) INITIATE ILLEGAL INSTRUCTION PROCESSING

SLAVE NEGATES DSACKx, STERM OR BERR

EXTERNAL DEVICE

 IF DSACKx OR STERM
 1) LATCH DATA
 2) NEGATE AS AND DS
 3) GO TO A

IF BERR ASSERTED:
 1) NEGATE AS AND DS
 2) GO TO B A B

Bus Operation

7-78 MC68030 USER’S MANUAL MOTOROLA

Figure 7-47. Breakpoint Acknowledge Cycle Timing

BREAKPOINT
ACKNOWLEDGE

INSTRUCTION WORD
FETCH

READ CYCLE

CLK

A31-A20

A19-A16

A15-A2

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DSACK0

D31-D24

D23-D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7-D0

D15-D8

BREAKPOINT NUMBER

WORD

FETCHED
INSTRUCTION
EXECUTION

(0000)
BREAKPOINT ENCODING

A1-A0

HALT

BERR

CPU SPACE

DS

DBEN

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-79

Another signal that is used for bus exception control is HALT. This signal can be asserted
by an external device for debugging purposes to cause single bus cycle operation or (in
combination with BERR) a retry of a bus cycle in error.

Figure 7-48. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1-SIZ0

DSACK1

S0 S2 S4 S0 S2

HALT

SwSw Sw S4

D31-D0

BERR

READ WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

7-80 MC68030 USER’S MANUAL MOTOROLA

To properly control termination of a bus cycle for a retry or a bus error condition, DSACKx,
BERR, and HALT can be asserted and negated with the rising edge of the MC68030 clock.
This assures that when two signals are asserted simultaneously, the required setup time
(#47A) and hold time (#47B) for both of them is met for the same falling edge of the
processor clock. (Refer to MC68030EC/D, MC68030 Electrical Specifications for timing
requirements.) This or some equivalent precaution should be designed into the external
circuitry that provides these signals.

The acceptable bus cycle terminations for asynchronous cycles are summarized in relation
to DSACKx assertion as follows (case numbers refer to Table 7-8):

Normal Termination:

DSACKx is asserted; BERR and HALT remain negated (case 1).

Halt Termination:

HALT is asserted at same time or before DSACKx, and BERR remains negated (case
2).

Bus Error Termination:

BERR is asserted in lieu of, at the same time, or before DSACKx (case 3) or after
DSACKx (case 4), and HALT remains negated; BERR is negated at the same time or
after DSACKx.

Retry Termination:

HALT and BERR are asserted in lieu of, at the same time, or before DSACKx (case 5)
or after DSACKx (case 6); BERR is negated at the same time or after DSACKx; HALT
may be negated at the same time or after BERR.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-81

LEGEND:
N — The number of current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state
NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

Table 7-8 shows various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications in MC68030EC/D, MC68030 Electrical Specifications.
DSACKx, BERR, and HALT may be negated after AS. If DSACKx or BERR remain asserted
into S2 of the next bus cycle, that cycle may be terminated prematurely.

The termination signal for a synchronous cycle is STERM. An analogous set of bus cycle
termination cases exists in relationship to STERM assertion. Note that STERM and
DSACKx must never both be asserted in the same cycle. STERM has setup time (#60) and
hold time (#61) requirements relative to each rising edge of the processor clock while AS is
asserted. Bus error and retry terminations during burst cycles operate as described in
6.1.3.2 Burst Mode Filling, 7.5.1 Bus Errors, and 7.5.2 Retry Operation.

Table 7-8. DSACK, BERR, and HALT Assertion Results

Case
No.

Control
Signal

Asserted on Rising
Edge of State

Result

N N+2

1 DSACKx
BERR
HALT

A
NA
NA

S
NA
X

Normal cycle terminate and continue.

2 DSACKx
BERR
HALT

A
NA
A/S

S
NA
S

Normal cycle terminate and halt. Continue when HALT
negated.

3 DSACKx
BERR
HALT

NA/A
A

NA

X
S

NA

Terminate and take bus error exception, possibly
deferred.

4 DSACKx
BERR
HALT

A
NA
NA

X
A

NA

Terminate and take bus error exception, possibly
 deferred.

5 DSACKx
BERR
HALT

NA/A
A

A/S

X
S
S

Terminate and retry when HALT negated.

6 DSACKx
BERR
HALT

A
NA
NA

X
A
A

Terminate and retry when HALT negated.

Bus Operation

7-82 MC68030 USER’S MANUAL MOTOROLA

For STERM, the bus cycle terminations are summarized as follows (case numbers refer to
Table 7-9):

Normal Termination:

STERM is asserted; BERR and HALT remain negated (case 1).

Halt Termination:

HALT is asserted before STERM, and BERR remains negated (case 2).

Bus Error Termination:

BERR is asserted in lieu of, at the same time, or before STERM (case 3) or after
STERM (case 4), and HALT remains negated; BERR is negated at the same time or
after STERM.

Retry Termination:

HALT and BERR are asserted in lieu of, at the same time, or before STERM (case 5)
or after STERM (case 6); BERR is negated at the same time or after STERM; HALT
may be negated at the same time or after BERR.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-83

LEGEND:
N —The number of current even bus state (e.g., S2, S4, etc.)
A —Signal is asserted in this bus state
NA —Signal is not asserted in this state
X —Don't care
S —Signal was asserted in previous state and remains asserted in this state
— —State N+2 not part of bus cycle

EXAMPLE A:

A system uses a watchdog timer to terminate accesses to an unpopulated address
space. The timer asserts BERR after timeout (case 3).

Table 7-9. STERM, BERR, and HALT Assertion Results

Case
No.

Control
Signal

Asserted on Rising
Edge of State

Result

N N+2

1 STERM
BERR
HALT

A
NA
NA

—
—
—

Normal cycle terminate and continue.

2 STERM
BERR
HALT

NA
NA
A/S

A
NA
S

Normal cycle terminate and halt. Continue when HALT
negated.

3 STERM
BERR
HALT

NA
A/S
NA

A
S

NA

Terminate and take bus error exception, possibly
deferred.

4 STERM
BERR
HALT

A
A

N/A

—
—
—

Terminate and take bus error exception, possibly
deferred.

5 STERM
BERR
HALT

NA
A

A/S

A
S
S

Terminate and retry when HALT negated.

6 STERM
BERR
HALT

A
A
A

—
—
—

Terminate and retry when HALT negated.

Bus Operation

7-84 MC68030 USER’S MANUAL MOTOROLA

EXAMPLE B:

A system uses error detection and correction on RAM contents. The designer may:

1. Delay DSACKx until data is verified; assert BERR and HALT simultaneously to indi-
cate to the processor to automatically retry the error cycle (case 5) or, if data is valid,
assert DSACKx (case 1).

2. Delay DSACKx until data is verified and assert BERR with or without DSACKx if data
is in error (case 3). This initiates exception processing for software handling of the
condition.

3. Return DSACKx prior to data verification. If data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

4. Return DSACKx prior to data verification; if data is invalid, assert BERR and HALT on
the next clock cycle (case 6). The memory controller can then correct the RAM prior
to or during the automatic retry.

7.5.1 Bus Errors
The bus error signal can be used to abort the bus cycle and the instruction being executed.
BERR takes precedence over DSACKx or STERM provided it meets the timing constraints
described in MC68030EC/D, MC68030 Electrical Specifications. If BERR does not meet
these constraints, it may cause unpredictable operation of the MC68030. If BERR remains
asserted into the next bus cycle, it may cause incorrect operation of that cycle.

When the bus error signal is issued to terminate a bus cycle, the MC68030 may enter
exception processing immediately following the bus cycle, or it may defer processing the
exception. The instruction prefetch mechanism requests instruction words from the bus
controller and the instruction cache before it is ready to execute them. If a bus error occurs
on an instruction fetch, the processor does not take the exception until it attempts to use that
instruction word. Should an intervening instruction cause a branch or should a task switch
occur, the bus error exception does not occur.

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-85

The bus error signal is recognized during a bus cycle in any of the following cases:

• DSACKx (or STERM) and HALT are negated and BERR is asserted.

• HALT and BERR are negated and DSACKx is asserted. BERR is then asserted within
one clock cycle (HALT remains negated).

• BERR is asserted and recognized on the next falling clock edge following the rising
clock edge on which STERM is asserted and recognized (HALT remains negated).

When the processor recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 7-49 shows the timing of a bus error for the case in which neither
DSACKx nor STERM is asserted. Figure 7-50 shows the timing for a bus error that is
asserted after DSACKx. Exceptions are taken in both cases. (Refer to 8.1.2 Bus Error
Exception for details of bus error exception processing.) When BERR is asserted during a
read cycle that supplies data to either on-chip cache, the data in the cache is marked invalid.
However, when a write cycle that writes data into the data cache results in an externally
generated bus error, the data in the cache is not marked invalid.

In the second case, where BERR is asserted after DSACKx is asserted, BERR must be
asserted within specification #48 (refer to MC68030EC/D, MC68030 Electrical
Specifications) for purely asynchronous operation, or it must be asserted and remain stable
during the sample window, defined by specifications #27A and #47B, around the next falling
edge of the clock after DSACKx is recognized. If BERR is not stable at this time, the
processor may exhibit erratic behavior. BERR has priority over DSACKx. In this case, data
may be present on the bus, but may not be valid. This sequence may be used by systems
that have memory error detection and correction logic and by external cache memories.

The assertion of BERR described in the third case (recognized after STERM) has
requirements similar to those described in the preceding paragraph. BERR must be stable
throughout the sample window for the next falling edge of the clock, as defined by
specifications #27A and #28A. Figure 7-51 shows the timing for this case.

Bus Operation

7-86 MC68030 USER’S MANUAL MOTOROLA

Figure 7-49. Bus Error without DSACKx

BREAKPOINT
ACKNOWLEDGE

BUS ERROR
ASSERTED

READ CYCLE

CLK

A31-A20

A19-A16

A15-A2

FC2-FC0

SIZ1

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D23-D16

SIZ0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2

D7-D0

D15-D8

BREAKPOINT NUMBER

WORD

FETCHED
INSTRUCTION
EXECUTION

(0000)
BREAKPOINT ENCODING

A1-A0

HALT

BERR

CPU SPACE

D31 -D24

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-87

A bus error occurring during a burst fill operation is a special case. If a bus error occurs
during the first cycle of a burst, the data is ignored, the entire cache line is marked invalid,
and the burst operation is aborted. If the cycle is for an instruction fetch, a bus error
exception is made pending. This bus error is processed only if the execution unit attempts
to use either of the two words latched during the bus cycle. If the cycle is for a data fetch,
the bus error exception is taken immediately. Refer to Section 11 Instruction Execution
Timing for more information about pipeline operation.

Figure 7-50. Late Bus Error with DSACKx

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31-D0

IPL0-IPL2

DSACK1

S0 S2 Sw S4 S0 S2Sw S4

SIZ1-SIZ0

BERR

HALT

WRITE WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

7-88 MC68030 USER’S MANUAL MOTOROLA

When a bus error occurs after the burst mode has been entered (that is, on the second
access or later), the processor terminates the burst operation, and the cache entry
corresponding to that cycle is marked invalid, but the processor does not take an exception
(see Figure 7-52). If the second cycle is for a portion of a misaligned operand fetch, the
processor runs another read cycle for the second portion with CBREQ negated, as shown
in Figure 7-53. If BERR is asserted again, the MC68030 then takes an exception. The
MC68030 supports late bus errors during a burst fill operation; the timing is the same relative
to STERM and the clock as for a late bus error in a normal synchronous cycle.

Figure 7-51. Late Bus Error with STERM — Exception Taken

AS

CLK

A31-A0

FC2-FC0

SIZ1–SIZ0

S0 S2 S3 S0 S2SwSwSw Sw

R/W

ECS

OCS

DS

STERM

DBEN

BERR

D31-D0

HALT

WRITE WITH BUS ERROR ASSERTED INTERNAL
PROCESSING

STACK WRITE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-89

Figure 7-52. Long-Word Operand Request — Late BERR on Third Access

CLK

A31–A4

A3

A2–A0

FC2–FC0

SIZ1–SIZ0

R/W

S0 S2 S4 S6

ECS

OCS

AS

DS

b4–b7 b8–bB

0111 1000 1100

STERM

CIIN

CIOUT

CBREQ

CBACK

D31–D0

DBEN

BERR

HALT
LATE BERR ENDS BURST;
NO EXCEPTION TAKEN

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

7-90 MC68030 USER’S MANUAL MOTOROLA

Figure 7-53. Long-Word Operand Request — BERR on Second Access

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2 SwS1 Sw Sw Sw SwS4 S5 Sw Sw

AS

DS

STERM

CBREQ

CBACK

D31–D0

DBEN

b4–b7 bC–bF

SwSw SwSw S3

SIZ1–SIZ0

CIIN

CIOUT

Sw Sw S0 S1 S2 S3 S4 S5Sw

A31-A0 A3:A0 = 1000

DSACK1

DSACK0

BERR

HALT

BURST ABORTED
BUS ERROR ASSERTED INTERNAL

PROCESSING

RERUN CYCLE TO GET LAST
3 BYTES OF OPERAND

0111 1000

VALUE OF A3:A0 INCREMENTED BY THE SYSTEM HARDWARE

Bus Operation

MOTOROLA MC68030 USER’S MANUAL 7-91

7.5.2 Retry Operation
When the BERR and HALT signals are both asserted by an external device during a bus
cycle, the processor enters the retry sequence. A delayed retry, similar to the delayed bus
error signal described previously, can also occur, both for synchronous and asynchronous
cycles.

The processor terminates the bus cycle, places the control signals in their inactive state, and
does not begin another bus cycle until the HALT signal is negated by external logic. After a
synchronization delay, the processor retries the previous cycle using the same access
information (address, function code, size, etc.) The BERR signal should be negated before
S2 of the read cycle to ensure correct operation of the retried cycle. Figure 7-54 shows a
retry operation of an asynchronous cycle, and Figure 7-55 shows a retry operation of a
synchronous cycle.

The processor retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence.

On the initial access of a burst operation, a retry (indicated by the assertion of BERR and
HALT) causes the processor to retry the bus cycle and assert CBREQ again. Figure 7-56
shows a late retry operation that causes an initial burst operation to be repeated. However,
signaling a retry with simultaneous BERR and HALT during the second, third, or fourth cycle
of a burst operation does not cause a retry operation, even if the requested operand is
misaligned. Assertion of BERR and HALT during a subsequent cycle of a burst operation
causes independent BERR and HALT operations. The external bus activity remains halted
until HALT is negated and the processor acts as previously described for the bus error
during a burst operation.

Asserting BR along with BERR and HALT provides a relinquish and retry operation. The
MC68030 does not relinquish the bus during a read-modify-write operation, except during
the first read cycle. Any device that requires the processor to give up the bus and retry a bus
cycle during a read-modify-write cycle must either assert BERR and BR only (HALT must
not be included) or use the single wire arbitration method discussed in 7.7.4 Bus
Arbitration Control. The bus error handler software should examine the read-modify-write
bit in the special status word (refer to 8.2.1 Special Status Word (SSW)) and take the
appropriate action to resolve this type of fault when it occurs.

Bus Operation

7-92 MC68030 USER’S MANUAL MOTOROLA

Figure 7-54. Asynchronous Late Retry

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2 SwS1

AS

DS

D31–D0

Sw

SIZ1–SIZ0

S3 S4 S5 S0 S2 S4

DSACK1

DSACK0

DATA BUS NOT DRIVEN

BERR

HALT

WRITE CYCLE RETRY SIGNALED HALT RETRY CYCLE

Bus Operation

7-93 MC68030 USER’S MANUAL MOTOROLA

7.5.3 Halt Operation
When HALT is asserted and BERR is not asserted, the MC68030 halts external bus activity
at the next bus cycle boundary. HALT by itself does not terminate a bus cycle. Negating and
reasserting HALT in accordance with the correct timing requirements provides a single-step
(bus cycle to bus cycle) operation. The HALT signal affects external bus cycles only; thus,
a program that resides in the instruction cache and performs no data writes (or reads that
miss in the data cache) may continue executing, unaffected by the HALT signal.

Figure 7-55. Synchronous Late Retry

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2S1

AS

DS

STERM

SIZ1–SIZ0

S3 S0 S1 S2 S3

D31–D0

BERR

HALT

READ CYCLE
RETRY SIGNALED

HALT RETRY CYCLE

Bus Operation

7-94 MC68030 USER’S MANUAL MOTOROLA

The single-cycle mode allows the user to proceed through (and debug) external processor
operations, one bus cycle at a time. Figure 7-57 shows the timing requirements for a single-
cycle operation. Since the occurrence of a bus error while HALT is asserted causes a retry
operation, the user must anticipate retry cycles while debugging in the single-cycle mode.
The single-step operation and the software trace capability allow the system debugger to
trace single bus cycles, single instructions, or changes in program flow. These processor
capabilities, along with a software debugging package, give complete debugging flexibility.

Figure 7-56. Late Retry Operation for a Burst

A31-A0

FC2-FC0

R/W

ECS

OCS

CLK

S0 S2S1

AS

DS

STERM

SIZ1–SIZ0

S3 S0 S1 S2 S3

D31–D0

BERR

HALT

S4

CIIN

CIOUT

CBREQ

CBACK

READ HALT RETRY

Bus Operation

7-95 MC68030 USER’S MANUAL MOTOROLA

Figure 7-57. Halt Operation Timing

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

DSACK1

S0 S2 S0

BERR

HALT

S4 S2

SIZ1/SIZ0

S4

D31-D0

BR

BG

BGACK

READ HALT
(ARBITRATION PERMITTED
WHILE THE CONTROLLER

IS HALTED)

READ

Bus Operation

7-96 MC68030 USER’S MANUAL MOTOROLA

When the processor completes a bus cycle with the HALT signal asserted, the data bus is
placed in the high-impedance state, and bus control signals are driven inactive (not high-
impedance state); the address, function code, size, and read/write signals remain in the
same state. The halt operation has no effect on bus arbitration (refer to 7.7 Bus
Arbitration). When bus arbitration occurs while the MC68030 is halted, the address and
control signals are also placed in the high-impedance state. Once bus mastership is
returned to the MC68030, if HALT is still asserted, the address, function code, size, and
read/write signals are again driven to their previous states. The processor does not service
interrupt requests while it is halted, but it may assert the IPEND signal as appropriate.

7.5.4 Double Bus Fault
When a bus error or an address error occurs during the exception processing sequence for
a previous bus error, a previous address error, or a reset exception, the bus or address error
causes a double bus fault. For example, the processor attempts to stack several words
containing information about the state of the machine while processing a bus error
exception. If a bus error exception occurs during the stacking operation, the second error is
considered a double bus fault. Only an external reset operation can restart a halted
processor. However, bus arbitration can still occur (refer to 7.7 Bus Arbitration).

The MC68030 indicates that a double bus fault condition has occurred by continuously
asserting the STATUS signal until the processor is reset. The processor asserts STATUS
for one, two, or three clock periods to signal other microsequencer status indications. Refer
to Section 12 Applications Information for a description of the interpretation of the
STATUS signal.

A second bus error or address error that occurs after exception processing has completed
(during the execution of the exception handler routine or later) does not cause a double bus
fault. A bus cycle that is retried does not constitute a bus error or contribute to a double bus
fault. The processor continues to retry the same bus cycle as long as the external hardware
requests it.

Bus Operation

7-97 MC68030 USER’S MANUAL MOTOROLA

7.6 BUS SYNCHRONIZATION
The MC68030 overlaps instruction execution; that is, during bus activity for one instruction,
instructions that do not use the external bus can be executed. Due to the independent
operation of the on-chip caches relative to the operation of the bus controller, many
subsequent instructions can be executed, resulting in seemingly nonsequential instruction
execution. When this is not desired and the system depends on sequential execution
following bus activity, the NOP instruction can be used. The NOP instruction forces
instruction and bus synchronization in that it freezes instruction execution until all pending
bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write operation
of control information to an external register, where the external hardware attempts to
control program execution based on the data that is written with the conditional assertion of
BERR. If the data cache is enabled and the write cycle results in a hit in the data cache, the
cache is updated. That data, in turn, may be used in a subsequent instruction before the
external write cycle completes. Since the MC68030 cannot process the bus error until the
end of the bus cycle, the external hardware has not successfully interrupted program
execution. To prevent a subsequent instruction from executing until the external cycle
completes, a NOP instruction can be inserted after the instruction causing the write. In this
case, bus error exception processing proceeds immediately after the write before
subsequent instructions are executed. This is an irregular situation, and the use of the NOP
instruction for this purpose is not required by most systems.

Note that even in a system with error detection/correction circuitry, the NOP is not required
for this synchronization. Since the MMU always checks the validity of write cycles before
they proceed to the data cache and are executed externally, the MC68030 is guaranteed to
write correct data to the cache. Thus, there is no danger in subsequent instructions using
erroneous data from the cache before an external bus error signals an error.

A bus synchronization example is given in Figure 7-58.

Bus Operation

7-98 MC68030 USER’S MANUAL MOTOROLA

7.7 BUS ARBITRATION
The bus design of the MC68030 provides for a single bus master at any one time: either the
processor or an external device. One or more of the external devices on the bus can have
the capability of becoming bus master. Bus arbitration is the protocol by which an external
device becomes bus master; the bus controller in the MC68030 manages the bus arbitration
signals so that the processor has the lowest priority. External devices that need to obtain the
bus must assert the bus arbitration signals in the sequences described in the following
paragraphs. Systems having several devices that can become bus master require external
circuitry to assign priorities to the device so that, when two or more external devices attempt
to become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is:

1. An external device asserts the bus request signal.

2. The processor asserts the bus grant signal to indicate that the bus will become avail-
able at the end of the current bus cycle.

3. The external device asserts the bus grant acknowledge signal to indicate that it has
assumed bus mastership.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR; it is usually asserted as soon as BR has been synchronized and
recognized, except when the MC68030 has made an internal decision to execute a bus
cycle. Then, the assertion of BG is deferred until the bus cycle has begun. Additionally, BG
is not asserted until the end of a read-modify-write operation (when RMC is negated) in
response to a BR signal. When the requesting device receives BG and more than one
external device can be bus master, the requesting device should begin whatever arbitration
is required. The external device asserts BGACK when it assumes bus mastership and

Figure 7-58. Bus Synchronization Example

S0 Sw

EXTERNAL WRITE

 WRITE TO D. CACHE D. CACHE READ

MOVE. L D0, (A0)

NOP PREVENTS EXECUTION OF SUBSEQUENT
INSTRUCTIONS UNTIL MOVE. L D0, (A0)
WRITE CYCLE COMPLETES

MOVE . L (A0), D1

Bus Operation

7-99 MC68030 USER’S MANUAL MOTOROLA

maintains BGACK during the entire bus cycle (or cycles) for which it is bus master. The
following conditions must be met for an external device to assume mastership of the bus
through the normal bus arbitration procedure:

• It must have received BG through the arbitration process.

• AS must be negated, indicating that no bus cycle is in progress, and the external device
must ensure that all appropriate processor signals have been placed in the high-imped-
ance state (by observing specification #7 in MC68030EC/D, MC68030 Electrical Spec-
ifications).

• The termination signal (DSACKx or STERM) for the most recent cycle must have be-
come inactive, indicating that external devices are off the bus (optional, refer to 7.7.3
Bus Grant Acknowledge).

• BGACK must be inactive, indicating that no other bus master has claimed ownership
of the bus.

Figure 7-59 is a flowchart showing the detail involved in bus arbitration for a single device.
Figure 7-60 is a timing diagram for the same operation. This technique allows processing of
bus requests during data transfer cycles.

The timing diagram shows that BR is negated at the time that BGACK is asserted. This type
of operation applies to a system consisting of the processor and one device capable of bus
mastership. In a system having a number of devices capable of bus mastership, the bus
request line from each device can be wire-ORed to the processor. In such a system, more
than one bus request can be asserted simultaneously.

The timing diagram in Figure 7-60 shows that BG is negated a few clock cycles after the
transition of the BGACK signal. However, if bus requests are still pending after the negation
of BG, the processor asserts another BG within a few clock cycles after it was negated. This
additional assertion of BG allows external arbitration circuitry to select the next bus master
before the current bus master has finished with the bus. The following paragraphs provide
additional information about the three steps in the arbitration process.

Bus arbitration requests are recognized during normal processing, RESET assertion, HALT
assertion, and even when the processor has halted due to a double bus fault.

Bus Operation

7-100 MC68030 USER’S MANUAL MOTOROLA

7.7.1 Bus Request
External devices capable of becoming bus masters request the bus by asserting BR. This
can be a wire-ORed signal (although it need not be constructed from open-collector devices)
that indicates to the processor that some external device requires control of the bus. The
processor is effectively at a lower bus priority level than the external device and relinquishes
the bus after it has completed the current bus cycle (if one has started).

If no acknowledge is received while the BR is active, the processor remains bus master once
BR is negated. This prevents unnecessary interference with ordinary processing if the
arbitration circuitry inadvertently responds to noise or if an external device determines that
it no longer requires use of the bus before it has been granted mastership.

Figure 7-59. Bus Arbitration Flowchart for Single Request

1) ASSERT BUS GRANT (BG)

GRANT BUS ARBITRATION

TERMINATE ARBITRATION

1) NEGATE BG AND WAIT FOR BGACK TO
 BE NEGATED

REARBITRATE OR RESUME
CONTROLLER OPERATION

REQUEST THE BUS

1) ASSERT BUS REQUEST (BR)

REQUESTING DEVICECONTROLLER

ACKNOWLEDGE BUS MASTERSHIP

1) EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS BUS
 GRANT ACKNOWLEDGE (BGACK) TO
 BECOME NEW MASTER
4) BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1) PERFORM DATA TRANSFERS
 (READ AND WRITE CYCLES)

1) NEGATE BGACK

Bus Operation

7-101 MC68030 USER’S MANUAL MOTOROLA

7.7.2 Bus Grant
The processor asserts BG as soon as possible after receipt of BR. This is immediately
following internal synchronization except during a read-modify-write cycle or following an
internal decision to execute a bus cycle. During a read-modify-write cycle, the processor
does not assert BG until the entire operation has completed. RMC is asserted to indicate

Figure 7-60. Bus Arbitration Operation Timing

A31-A0

FC2-FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1-SIZ0

R/W

DSACK0

DBEN

S2 S2

BGACK

BG

BR

D31-D0

CONTROLLER DMA DEVICE CONTROLLER

Bus Operation

7-102 MC68030 USER’S MANUAL MOTOROLA

that the bus is locked. In the case an internal decision to execute another bus cycle, BG is
deferred until the bus cycle has begun.

BG may be routed through a daisy-chained network or through a specific priority-encoded
network. The processor allows any type of external arbitration that follows the protocol.

7.7.3 Bus Grant Acknowledge
Upon receiving BG, the requesting device waits until AS, DSACKx (or synchronous
termination, STERM), and BGACK are negated before asserting its own BGACK. The
negation of the AS indicates that the previous master releases the bus after specification #7
(refer to MC68030EC/D, MC68030 Electrical Specifications). The negation of DSACKx or
STERM indicates that the previous slave has completed its cycle with the previous master.
Note that in some applications, DSACKx might not be used in this way.

General-purpose devices are then connected to be dependent only on AS. When BGACK
is asserted, the device is the bus master until it negates BGACK. BGACK should not be
negated until all bus cycles required by the alternate bus master are completed. Bus
mastership terminates at the negation of BGACK. The BR from the granted device should
be negated after BGACK is asserted. If a BR is still pending after the assertion of BGACK,
another BG is asserted within a few clocks of the negation of BG, as described in the 7.7.4
Bus Arbitration Control. Note that the processor does not perform any external bus cycles
before it reasserts BG in this case.

7.7.4 Bus Arbitration Control
The bus arbitration control unit in the MC68030 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68030 are internally
synchronized in a maximum of two cycles of the processor clock.

As shown in Figure 7-61, input signals labeled R and A are internally synchronized versions
of the BR and BGACK signals, respectively. The BG output is labeled G, and the internal
high-impedance control signal is labeled T. If T is true, the address, data, and control buses
are placed in the high-impedance state after the next rising edge following the negation of
AS and RMC. All signals are shown in positive logic (active high), regardless of their true
active voltage level.

Bus Operation

7-103 MC68030 USER’S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is valid. The
BG signal transitions on the falling edge of the clock after a state is reached during which G
changes. The bus control signals (controlled by T) are driven by the processor, immediately
following a state change, when bus mastership is returned to the MC68030.

State 0, at the top center of the diagram, in which G and T are both negated, is the state of
the bus arbiter while the processor is bus master. Request R and acknowledge A keep the
arbiter in state 0 as long as they are both negated. When a request R is received, both grant
G and signal T are asserted (in state 1 at the top left). The next clock causes a change to
state 2, at the lower left, in which G and T are held. The bus arbiter remains in that state until
acknowledge A is asserted or request R is negated. Once either occurs, the arbiter changes
to the center state, state 3, and negates grant G. The next clock takes the arbiter to state 4,
at the upper right, in which grant G remains negated and signal T remains asserted. With
acknowledge A asserted, the arbiter remains in state 4 until A is negated or request R is

Figure 7-61. Bus Arbitration State Diagram

RA

RA

XX

RA
RA

RA

XX

RX

RA

XA

RA

RX

XA

RA

GT

STATE 1

GT

STATE 0

GT

STATE 4

GT

STATE 5

GT

STATE 6

GT

STATE 2

GT

STATE 3

XX

R - BUS REQUEST
A - BUS GRANT ACKNOWLEDGE
G - BUS GRANT
T - THREE-STATE CONTROL TO BUS CONTROL LOGIC
X - DON'T CARE

NOTE: The BG output will not be asserted while RMC is asserted.

Bus Operation

7-104 MC68030 USER’S MANUAL MOTOROLA

again asserted. When A is negated, the arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of signals for
relinquishing the bus to an external bus master. Other states apply to other possible
sequences of combinations of R and A. As shown by the path from state 0 to state 4, BGACK
alone can be used to place the processor's external bus buffers in the high-impedance state,
providing single-wire arbitration capability.

The read-modify-write sequence is normally indivisible to support semaphore operations
and multiprocessor synchronization. During this indivisible sequence, the MC68030 asserts
the RMC signal and causes the bus arbitration state machine to ignore bus requests
(assertions of BR) that occur after the first read cycle of the read-modify-write sequence by
not issuing bus grants (asserting BG).

In some cases, however, it may be necessary to force the MC68030 to release the bus
during an read-modify-write sequence. One way for an alternate bus master to force the
MC68030 to release the bus applies only to the first read cycle of an read-modify-write
sequence. The MC68030 allows normal bus arbitration during this read cycle; a normal
relinquish and retry operation (asserting BERR, HALT, and BR at the same time) is used.
Note that this method applies only to the first read cycle of the read-modify-write sequence,
but this method preserves the integrity of the read-modify-write sequence without imposing
any constraint on the alternate bus master.

A second method is single-wire arbitration, the timing of which is shown in Figure 7-62. An
alternate master forces the MC68030 to release the bus by asserting BGACK and waits for
AS to negate before taking the bus. It applies to all bus cycles of a read-modify-write
sequence, but can cause system integrity problems if used improperly. The alternate bus
master must guarantee the integrity of the read-modify-write sequence by not altering the
contents of memory locations accessed by the read-modify-write sequence. Note that for
the method to operate properly, AS must be observed to be negated (high) on two
consecutive clock edges before the alternate bus master takes the bus. Waiting for this
condition ensures that any current or pending bus activity has completed or has been pre-
empted.

Bus Operation

7-105 MC68030 USER’S MANUAL MOTOROLA

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in
Figure 7-60. The bus arbitration sequence while the bus is inactive (i.e., executing internal
operations such as a multiply instruction) is shown in Figure 7-63.

7.8 RESET OPERATION
RESET is a bidirectional signal with which an external device resets the system or the
processor resets external devices. When power is applied to the system, external circuitry
should assert RESET for a minimum of 520 clocks after VCC is within tolerance. Figure 7-64
is a timing diagram of the powerup reset operation, showing the relationships between
RESET, VCC, and bus signals. The clock signal is required to be stable by the time VCC
reaches the minimum operating specification. During the reset period, the entire bus three-
states (except for non-three-statable signals, which are driven to their inactive state). Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for reset exception
processing begins.

Figure 7-62. Single-Wire Bus Arbitration Timing Diagram

NOTE: The alternate bus master must sample AS high on two consecutive rising edges of the clock (after BGACK is
recognized low) before taking the bus.

16

7

47A

12

TAKE BUS

SEE NOTE

DO NOT
TAKE BUS

912

47A

CLK

AS

BGACK

ADDRESS

Bus Operation

7-106 MC68030 USER’S MANUAL MOTOROLA

The external RESET signal resets the processor and the entire system. Except for the initial
reset, RESET should be asserted for at least 520 clock periods to ensure that the processor
resets. Asserting RESET for 10 clock periods is sufficient for resetting the processor logic;
the additional clock periods prevent a reset instruction from overlapping the external RESET
signal.

Figure 7-63. Bus Arbitration Operation (Bus Inactive)

A31-A0

FC2-FC0

ECS

OCS

AS

DS

DSACK1

CLK

S4 S0

SIZ1-SIZ0

R/W

DSACK0

DBEN

BGACK

BG

BR

D31-D0

CONTROLLER CONTROLLERALTERNATE MASTER

BUS INACTIVE
(ARBITRATION PERMITTED
WHILE THE CONTROLLER IS

INACTIVE OR HALTED)

Bus Operation

7-107 MC68030 USER’S MANUAL MOTOROLA

Resetting the processor causes any bus cycle in progress to terminate as if DSACKx,
BERR, or STERM had been asserted. In addition, the processor initializes registers
appropriately for a reset exception. Exception processing for a reset operation is described
in 8.1.1 Reset Exception.

When a reset instruction is executed, the processor drives the RESET signal for 512 clock
cycles. In this case, the processor resets the external devices of the system, and the internal
registers of the processor are unaffected. The external devices connected to the RESET
signal are reset at the completion of the reset instruction. An external RESET signal that is
asserted to the processor during execution of a reset instruction must extend beyond the
reset period of the instruction by at least eight clock cycles to reset the processor. Figure 7-
65 shows the timing information for the reset instruction.

Figure 7-64. Initial Reset Operation Timing

ISP
READ

STARTS

ALL CONTROL SIGNALS
INACTIVE. DATA BUS IN
READ MODE. ADDRESS

BUS DRIVEN

ENTIRE
BUS HIGH

IMPEDANCE
BUS STATE UNKNOWN

t = >520 CLOCKS

1<4 CLOCKS

4 CLOCKS

CLK

 +5
VOLTS

VCC

BUS
CYCLES

RESET

Bus Operation

7-108 MC68030 USER’S MANUAL MOTOROLA

Figure 7-65. Processor-Generated Reset Operation

CLK

A31-A0

FC2-FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

SIZ1-SIZ0

DSACK1

HALT

S0 S2S4

D31-D0

S2S0

RESET

READ RESET INTERNAL
512 CLOCKS

RESUME NORMAL
OPERATION

MOTOROLA

MC68030 USER’S MANUAL

8-1

SECTION 8
EXCEPTION PROCESSING

Exception processing is defined as the activities performed by the processor in preparing to
execute a handler routine for any condition that causes an exception. In particular, exception
processing does not include execution of the handler routine itself. An introduction to
exception processing, as one of the processing states of the MC68030 processor, was given
in

Section 4 Processing States

. This section describes exception processing in detail,
describing the processing for each type of exception. It describes the return from an
exception and bus fault recovery. This section also describes the formats of the exception
stack frames. For details of MMU-related exceptions, refer to

Section 9 Memory
Management Unit

. For more detail on protocol violation and coprocessor-related
exceptions, refer to

Section 10 Coprocessor Interface Description

. Also, for more detail
on exceptions defined for floating-point coprocessors, refer to the user's manual for the
MC68881/MC68882.

8.1 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not guaranteed
to occur in the order in which they are described in this section. Nonetheless, all addresses
and offsets from the stack pointer are guaranteed to be as described.

The first step of exception processing involves the status register. The processor makes an
internal copy of the status register. Then the processor sets the S bit, changing to the
supervisor privilege level. Next, the processor inhibits tracing of the exception handler by
clearing the T1 and T0 bits. For the reset and interrupt exceptions, the processor also
updates the interrupt priority mask.

In the second step, the processor determines the vector number of the exception. For
interrupts, the processor performs an interrupt acknowledge cycle (a read from the CPU
address space type $F; see Figures 7-45 and 7-46) to obtain the vector number. For
coprocessor-detected exceptions, the vector number is included in the coprocessor
exception primitive response.

Exception Processing

8-2

MC68030 USER’S MANUAL

MOTOROLA

(Refer to

Section 10 Coprocessor Interface Description

 for a complete discussion of
coprocessor exceptions.) For all other exceptions, internal logic provides the vector number.
This vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, 9 vector numbers are given in decimal notation.

For all exceptions other than reset, the third step is to save the current processor context.
The processor creates an exception stack frame on the active supervisor stack and fills it
with context information appropriate for the type of exception. Other information may also
be stacked, depending on which exception is being processed and the state of the processor
prior to the exception. If the exception is an interrupt and the M bit of the status register is
set, the processor clears the M bit in the status register and builds a second stack frame on
the interrupt stack.

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. It adds the offset to the value
stored in the vector base register to obtain the memory address of the exception vector.
Next, the processor loads the program counter (and the interrupt stack pointer (ISP) for the
reset exception) from the exception vector table in memory. After prefetching the first three
words to fill the instruction pipe, the processor resumes normal processing at the address in
the program counter. Table 8-1 contains a description of all the exception vector offsets
defined for the MC68030.

Table 8-1. Exception Vector Assignments (Sheet 1 of 2)

Vector
Number(s)

Vector Offset Assignment
STATUS
Asserted

Hex Space

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Bus Error
Address Error

—
—

YES
YES

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
cpTRAPcc, TRAPcc, TRAPV Instructions

NO
NO
NO
NO

8
9
10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator

NO
YES
NO
YES

12
13
14
15

030
034
038
03C

SD
SD
SD
SD

(Unassigned, Reserved)
Coprocessor Protocol Violation
Format Error
Uninitialized Interrupt

—
NO
NO
YES

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-3

SP = Supervisor Program Space
SD = Supervisor Data Space

As shown in Table 8-1, the first 64 vectors are defined by Motorola and 192 vectors are
reserved for interrupt vectors defined by the user. However, external devices may use
vectors reserved for internal purposes at the discretion of the system designer.

Table 8-1. Exception Vector Assignments (Sheet 2 of 2)

Vector
Number(s)

Vector Offset Assignment
STATUS
Asserted

Hex Space

16
Through

23

040

05C

SD

SD
Unassigned, Reserved —

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

Yes
Yes
Yes
Yes

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

Yes
Yes
Yes
Yes

32
Through

47

080

0BC

SD

SD
TRAP #0-15 Instruction Vectors No

48
49
50
51

0C0
0C4
0C8
0CC

SD
SD
SD
SD

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

No
No
No
No

52
53
54
55

0D0
0D4
0D8
0DC

SD
SD
SD
SD

FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
Unassigned, Reserved

No
No
No
No

56
57
58

0E0
0E4
0E8

SD
SD
SD

MMU Configuration Error
Defined for MC68851 not used by MC68030
Defined for MC68851 not used by MC68030

No
—
—

59
Through

63

0EC

0FC

SD

SD
Unassigned, Reserved —

64
Through

255

100

3FC

SD

SD
User Defined Vectors (192) Yes

Exception Processing

8-4

MC68030 USER’S MANUAL

MOTOROLA

The MC68030 provides the STATUS signal to identify instruction boundaries and some
exceptions. As shown in Table 8-2, STATUS indicates an instruction boundary and
exceptions to be processed, depending on the state of the internal microsequencer. In
addition, STATUS indicates when an MMU address translation cache miss has occurred
and the processor is about to begin a table search access for the logical address that caused
the miss. Instruction-related exceptions do not cause the assertion of STATUS as shown in
Table 8-1. For STATUS signal timing information, refer to

Section 12 Applications
Information

.

Table 8-2. Microsequencer STATUS Indications

Asserted for Indicates

1 Clock Sequencer at instruction boundary will begin execution of next instruction.
2 Clocks Sequencer at instruction boundary but will not begin the next instruction

immediately due to:

•

 pending trace exception
OR

•

 pending interrupt exception
3 Clocks MMU address translation cache miss — processor to begin table serach

OR
Exception processing to begin for:

•

 reset OR

•

 bus error OR

•

 address error OR

•

 spurious interrupt OR

•

 autovectored interrupt OR

•

 F-line instruction (no coprocessor responded)
Continuously Processor halted due to double bus fault.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-5

8.1.1 Reset Exception

Assertion by external hardware of the RESET signal causes a reset exception. For details
on the requirements for the assertion of RESET, refer to

7.8 Reset Operation

.

The reset exception has the highest priority of any exception; it provides for system
initialization and recovery from catastrophic failure. When reset is recognized, it aborts any
processing in progress, and that processing cannot be recovered. Figure 8-1 is a flowchart
of the reset exception, which performs the following operations:

1. Clears both trace bits in the status register to disable tracing.

2. Places the processor in the interrupt mode of the supervisor privilege level by setting
the supervisor bit and clearing the master bit in the status register.

3. Sets the processor interrupt priority mask to the highest priority level (level 7).

4. Initializes the vector base register to zero ($00000000).

5. Clears the enable, freeze, and burst enable bits for both on-chip caches and the write-
allocate bit for the data cache in the cache control register.

6. Invalidates all entries in the instruction and data caches.

7. Clears the enable bit in the translation control register and the enable bits in both trans-
parent translation registers of the MMU.

8. Generates a vector number to reference the reset exception vector (two long words)
at offset zero in the supervisor program address space.

9. Loads the first long word of the reset exception vector into the interrupt stack pointer.

10. Loads the second long word of the reset exception vector into the program counter.

After the initial instruction prefetches, program execution begins at the address in the
program counter. The reset exception does not flush the address translation cache (ATC),
nor does it save the value of either the program counter or the status register.

Exception Processing

8-6

MC68030 USER’S MANUAL

MOTOROLA

.

Figure 8-1. Reset Operation Flowchart

BUS ERROR OR ADDRESS ERROR

OTHERWISE
SP (VECTOR #0)

EXIT

FETCH VECTOR #0

(DOUBLE BUS FAULT)

 S
M

T0, T1
I2-I0
VBR

CACR

1
0
0
$7
$0
$0

➧
➧
➧
➧
➧
➧

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

BUS ERROROTHERWISE

INSTRUCTION AND
DATA CACHE

ENTRIES INVALIDATED

➧

FETCH VECTOR #1

PC (VECTOR #1)

➧

PREFETCH 3 WORDS

EXIT

EXIT

BUS ERROR

EXIT

ASSERT STATUS
CONTINUOUSLY

ASSERT STATUS
CONTINUOUSLY

ASSERT STATUS
CONTINUOUSLY

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-7

As described in

7.5.4 Double Bus Fault

, if bus error or address error occur during the
exception processing sequence for a reset, a double bus fault occurs. The processor halts,
and the STATUS signal is asserted continuously to indicate the halted condition.

Execution of the reset instruction does not cause a reset exception, nor does it affect any
internal registers, but it does cause the MC68030 to assert the RESET signal, resetting all
external devices.

8.1.2 Bus Error Exception

A bus error exception occurs when external logic aborts a bus cycle by asserting the BERR
input signal. If the aborted bus cycle is a data access, the processor immediately begins
exception processing. If the aborted bus cycle is an instruction prefetch, the processor may
delay taking the exception until it attempts to use the prefetched information. The assertion
of the BERR signal during the second, third, or fourth access of a burst operation does not
cause a bus error exception, but the burst is aborted. Refer to

6.1.3.2 Burst Mode Filling

and

7.5.1 Bus Errors

 for details on the effects of bus errors during burst operation.

A bus error exception also occurs when the MMU detects that a successful address
translation is not possible. Furthermore, when an ATC miss occurs and an external bus
cycle is required, the MMU must abort the bus cycle, search the translation tables in memory
for the mapping, and then retry the bus cycle. If a valid translation for the logical address is
not available due to a problem encountered during the table search (the attempt to access
the appropriate page descriptor in the translation tables for that page), a bus error exception
occurs when the aborted bus cycle is retried.

The problem encountered could be a limit violation, an invalid descriptor, or the assertion of
the BERR signal during a bus cycle used to access the translation tables. A miss in the ATC
causes the processor to automatically initiate a table search but does not cause a bus error
exception unless one of the specific conditions mentioned above is encountered.

Exception Processing

8-8

MC68030 USER’S MANUAL

MOTOROLA

The processor begins exception processing for a bus error by making an internal copy of the
current status register. The processor then enters the supervisor privilege level (by setting
the S bit in the status register) and clears the trace bits. The processor generates exception
vector number 2 for the bus error vector. It saves the vector offset, program counter, and the
internal copy of the status register on the stack. The saved program counter value is the
logical address of the instruction that was executing at the time the fault was detected. This
is not necessarily the instruction that initiated the bus cycle, since the processor overlaps
execution of instructions. The processor also saves the contents of some of its internal
registers. The information saved on the stack is sufficient to identify the cause of the bus
fault and recover from the error.

For efficiency, the MC68030 uses two different bus error stack frame formats. When the bus
error exception is taken at an instruction boundary, less information is required to recover
from the error, and the processor builds the short bus fault stack frame as shown in Table
8-7. When the exception is taken during the execution of an instruction, the processor must
save its entire state for recovery and uses the long bus fault stack frame shown in Table 8-
7. The format code in the stack frame distinguishes the two stack frame formats. Stack
frame formats are described in detail in

8.4 Exception Stack Frame Formats

.

If a bus error occurs during the exception processing for a bus error, address error, or reset
or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs, and the processor enters the
halted state as indicated by the continuous assertion of the STATUS signal. In this case, the
processor does not attempt to alter the current state of memory. Only an external RESET
can restart a processor halted by a double bus fault.

8.1.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This exception is similar to a bus error exception, but is internally
initiated. A bus cycle is not executed, and the processor begins exception processing
immediately. After exception processing commences, the sequence is the same as that for
bus error exceptions described in the preceding paragraphs, except that the vector number
is 3 and the vector offset in the stack frame refers to the address error vector. Either a short
or long bus fault stack frame may be generated. If an address error occurs during the
exception processing for a bus error, address error, or reset, a double bus fault occurs.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-9

8.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP #n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the user
program detects an error, which may be an arithmetic overflow or a subscript value that is
out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is attempted with a
divisor of zero.

When a trap exception occurs, the processor copies the status register internally, enters the
supervisor privilege level, and clears the trace bits. If tracing is enabled for the instruction
that caused the trap, a trace exception is taken after the RTE instruction from the trap
handler is executed, and the trace corresponds to the trap instruction; the trap handler
routine is not traced. The processor generates a vector number according to the instruction
being executed; for the TRAP #n instruction, the vector number is 32 plus n. The stack frame
saves the trap vector offset, the program counter, and the internal copy of the status register
on the supervisor stack. The saved value of the program counter is the logical address of
the instruction following the instruction that caused the trap. For all instruction traps other
than TRAP #n, a pointer to the instruction that caused the trap is also saved. Instruction
execution resumes at the address in the exception vector after the required instruction
prefetches.

8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction is an instruction that contains any bit pattern in its first word that does
not correspond to the bit pattern of the first word of a valid MC68030 instruction or is a
MOVEC instruction with an undefined register specification field in the first extension word.
An illegal instruction exception corresponds to vector number 4 and occurs when the
processor attempts to execute an illegal instruction.

Exception Processing

8-10

MC68030 USER’S MANUAL

MOTOROLA

An illegal instruction exception is also taken if a breakpoint acknowledge bus cycle (see

7.4.2 Breakpoint Acknowledge Cycle

) is terminated with the assertion of the bus error
signal. This implies that the external circuitry did not supply an instruction word to replace
the BKPT instruction word in the instruction pipe.

Instruction word patterns with bits [15:12] equal to $A are referred to as unimplemented
instructions with A-line opcodes. When the processor attempts to execute an
unimplemented instruction with an A-line opcode, an exception is generated with vector
number 10, permitting efficient emulation of unimplemented instructions.

Instructions that have word patterns with bits [15:12] equal to $F, bits [11:9] equal to $0, and
defined word patterns for subsequent words are legal MMU instructions. Instructions that
have bits [15:12] of the first words equal to $F, bits [11:9] equal to $0, and undefined patterns
in subsequent words are treated as unimplemented instructions with F-line opcodes when
execution is attempted in supervisor mode. When execution of the same instruction is
attempted in user mode, a privilege violation exception is taken. The exception vector
number for an unimplemented instruction with an F-line opcode is number 11.

The word patterns with bits [15:12] equal to $F and bits [11:9] not equal to zero are used for
coprocessor instructions. When the processor identifies a coprocessor instruction, it runs a
bus cycle referencing CPU space type $2 (refer to

4.2 Address Space Types

) and
addressing one of seven coprocessors (1-7, according to bits [11:9]). If the addressed
coprocessor is not included in the system and the cycle terminates with the assertion of the
bus error signal, the instruction takes an unimplemented instruction (F-line opcode)
exception. The system can emulate the functions of the coprocessor with an F-line
exception handler. Refer to

Section 10 Coprocessor Interface Description

for more
details.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-11

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented instruction,
it initiates exception processing instead of attempting to execute the instruction. The
processor copies the status register, enters the supervisor privilege level, and clears the
trace bits, disabling further tracing. The processor generates the vector number, either 4,
10, or 11, according to the exception type. The illegal or unimplemented instruction vector
offset, current program counter, and copy of the status register are saved on the supervisor
stack, with the saved value of the program counter being the address of the illegal or
unimplemented instruction. Instruction execution resumes at the address contained in the
exception vector. It is the responsibility of the handling routine to adjust the stacked program
counter if the instruction is emulated in software or is to be skipped on return from the
handler.

8.1.6 Privilege Violation Exception

To provide system security, the following instructions are privileged:

 ANDI TO SR

 EOR to SR

 cpRESTORE

 cpSAVE

 MOVE from SR

 MOVE to SR

 MOVE USP

 MOVEC

 MOVES

 ORI to SR

 PFLUSH

 PLOAD

 PMOVE

 PTEST

 RESET

 RTE

 STOP

An attempt to execute one of the privileged instructions while at the user privilege level
causes a privilege violation exception. Also, a privilege violation exception occurs if a
coprocessor requests a privilege check and the processor is at the user level.

Exception Processing

8-12

MC68030 USER’S MANUAL

MOTOROLA

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before executing
the instruction. The processor copies the status register, enters the supervisor privilege
level, and clears the trace bits. The processor generates vector number 8, the privilege
violation exception vector, and saves the privilege violation vector offset, the current
program counter value, and the internal copy of the status register on the supervisor stack.
The saved value of the program counter is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes after the
required prefetches from the address in the privilege violation exception vector.

8.1.7 Trace Exception

To aid in program development, the M68000 processors include instruction-by-instruction
tracing capability. The MC68030 can be programmed to trace all instructions or only
instructions that change program flow. In the trace mode, an instruction generates a trace
exception after it completes execution, allowing a debugger program to monitor execution
of a program.

The T1 and T0 bits in the supervisor portion of the status register control tracing. The state
of these bits when an instruction begins execution determines whether the instruction
generates a trace exception after the instruction completes. Clearing both T bits disables
tracing, and instruction execution proceeds normally. Clearing the T1 bit and setting the T0
bit causes an instruction that forces a change of flow to take a trace exception. Instructions
that increment the program counter normally do not take the trace exception. Instructions
that are traced in this mode include all branches, jumps, instruction traps, returns, and
coprocessor instructions that modify the program counter flow. This mode also includes
status register manipulations, because the processor must re-prefetch instruction words to
fill the pipe again any time an instruction that can modify the status register is executed. The
execution of the BKPT instruction causes a change of flow if the opcode replacing the BKPT
is an instruction that causes a change of flow (i.e., a jump, branch, etc.). Setting the T1 bit
and clearing the T0 bit causes the execution of all instructions to force trace exceptions.
Table 8-3 shows the trace mode selected by each combination of T1 and T0.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-13

In general terms, a trace exception is an extension to the function of any traced instruction
— that is, the execution of a traced instruction is not complete until the trace exception
processing is completed. If an instruction does not complete due to a bus error or address
error exception, trace exception processing is deferred until after the execution of the
suspended instruction is resumed and the instruction execution completes normally. If an
interrupt is pending at the completion of an instruction, the trace exception processing
occurs before the interrupt exception processing starts. If an instruction forces an exception
as part of its normal execution, the forced exception processing occurs before the trace
exception is processed. See

8.1.12 Multiple Exceptions

 for a more complete discussion of
exception priorities.

When the processor is in the trace mode and attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since it is not
executed. This is of particular importance to an instruction emulation routine that performs
the instruction function, adjusts the stacked program counter to skip the unimplemented
instruction, and returns. Before returning, the trace bits of the status register on the stack
should be checked. If tracing is enabled, the trace exception processing should also be
emulated for the trace exception handler to account for the emulated instruction.

The exception processing for a trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. The processor makes an internal copy
of the status register and enters the supervisor privilege level. It also clears the T0 and T1
bits of the status register, disabling further tracing. The processor supplies vector number 9
for the trace exception and saves the trace exception vector offset, program counter value,
and the copy of the status register on the supervisor stack. The saved value of the program
counter is the logical address of the next instruction to be executed. Instruction execution
resumes after the required prefetches from the address in the trace exception vector.

Table 8-3. Tracing Control

T1 T0 Tracing Function

0 0 No Tracing
0 1 Trace on Change of Flow (BRA, JMP, etc.)
1 0 Trace on Instruction Execution (Any Instruction)
1 1 Undefined, Reserved

Exception Processing

8-14

MC68030 USER’S MANUAL

MOTOROLA

The STOP instruction does not perform its function when it is traced. A STOP instruction that
begins execution with T1=1 and T0=0 forces a trace exception after it loads the status
register. Upon return from the trace handler routine, execution continues with the instruction
following the STOP, and the processor never enters the stopped condition.

8.1.8 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the processor (with the
aid of a coprocessor, if needed) also performs some checks of data values for control
operations, including the coprocessor state frame format word for a cpRESTORE instruction
and the stack frame format for an RTE instruction.

The RTE instruction checks the validity of the stack format code. For long bus cycle fault
format frames, the RTE instruction also compares the internal version number of the
processor to that contained in the frame at memory location SP+54 (SP+$36). This check
ensures that the processor can correctly interpret internal state information from the stack
frame.

The cpRESTORE instruction passes the format word of the coprocessor state frame to the
coprocessor for validation. If the coprocessor does not recognize the format value, it signals
the MC68030 to take a format error exception. Refer to

Section 10 Coprocessor Interface
Description

 for details of coprocessor-related exceptions.

If any of the checks previously described determine that the format of the stacked data is
improper, the instruction generates a format error exception. This exception saves a short
format stack frame, generates exception vector number 14, and continues execution at the
address in the format exception vector. The stacked program counter value is the logical
address of the instruction that detected the format error.

8.1.9 Interrupt Exceptions

When a peripheral device requires the services of the MC68030 or is ready to send
information that the processor requires, it may signal the processor to take an interrupt
exception. The interrupt exception transfers control to a routine that responds appropriately.

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-15

The peripheral device uses the active-low interrupt priority level signals (IPL0–IPL2) to
signal an interrupt condition to the processor and to specify the priority of that condition. The
three signals encode a value of zero through seven (IPL0 is the least significant bit). High
levels on all three signals correspond to no interrupt requested (level 0) and low levels on
IPL0–IPL2 correspond to interrupt request level 7. Values 1-7 specify one of seven levels of
prioritized interrupts; level seven has the highest priority. External circuitry can chain or
otherwise merge signals from devices at each level, allowing an unlimited number of devices
to interrupt the processor.

The IPL0–IPL2 interrupt signals must maintain the interrupt request level until the MC68030
acknowledges the interrupt to guarantee that the interrupt is recognized. The MC68030
continuously samples the IPL0–IPL2 signals on consecutive falling edges of the processor
clock to synchronize and debounce these signals. An interrupt request that is the same for
two consecutive falling clock edges is considered a valid input. Although the protocol
requires that the request remain until the processor runs an interrupt acknowledge cycle for
that interrupt value, an interrupt request that is held for as short a period as two clock cycles
could be recognized.

The status register of the MC68030 contains an interrupt priority mask (I2, I1, I0, bits 10-8).
The value in the interrupt mask is the highest priority level that the processor ignores. When
an interrupt request has a priority higher than the value in the mask, the processor makes
the request a pending interrupt. Figure 8-2 is a flowchart of the procedure for making an
interrupt pending.

Figure 8-2. Interrupt Pending Procedure

RESET

SAMPLE AND SYNCH
IPL2-IPL0

ASSERT IPEND

(COMPARE INTERRUPT LEVEL
WITH STATUS REGISTER MASK)

OTHERWISE INTERRUPT LEVEL I2-I0,
OR TRANSITION ON LEVEL 7

>

Exception Processing

8-16

MC68030 USER’S MANUAL

MOTOROLA

When several devices are connected to the same interrupt level, each device should hold
its interrupt priority level constant until its corresponding interrupt acknowledge cycle to
ensure that all requests are processed.

Table 8-4 lists the interrupt levels, the states of IPL2-IPL0 that define each level, and the
mask value that allows an interrupt at each level.

*Indicates that no interrupt is requested.

Priority level 7, the nonmaskable interrupt (NMI), is a special case. Level 7 interrupts cannot
be masked by the interrupt priority mask, and they are transition sensitive. The processor
recognizes an interrupt request each time the external interrupt request level changes from
some lower level to level 7, regardless of the value in the mask. Figure 8-3 shows two
examples of interrupt recognitions, one for level 6 and one for level 7. When the MC68030
processes a level 6 interrupt, the status register mask is automatically updated with a value
of 6 before entering the handler routine so that subsequent level 6 interrupts are masked.
Provided no instruction that lowers the mask value is executed, the external request can be
lowered to level 3 and then raised back to level 6 and a second level 6 interrupt is not
processed. However, if the MC68030 is handling a level 7 interrupt (status register mask set
to 7) and the external request is lowered to level 3 and than raised back to level 7, a second
level 7 interrupt is processed. The second level 7 interrupt is processed because the level 7
interrupt is transition sensitive. A level 7 interrupt is also generated by a level comparison if
the request level and mask level are at seven and the priority mask is then set to a lower
level (with the MOVE to SR or RTE instruction, for example). As shown in Figure 8-3 for level
6 interrupt request level and mask level, this is the case for all interrupt levels.

Table 8-4. Interrupt Levels and Mask Values

Requested
Interrupt Level

Control Line Status
Interrupt Mask Level

Required for Recognition
IP2 IP1 IP0

0* High High High N/A*
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-17

Note that a mask value of 6 and a mask value of 7 both inhibit request levels 1-6 from being
recognized. In addition, neither masks a transition to an interrupt request level of 7. The only
difference between mask values of 6 and 7 occurs when the interrupt request level is 7 and
the mask value is 7. If the mask value is lowered to 6, a second level 7 interrupt is
recognized.

The MC68030 asserts the interrupt pending signal (IPEND) when it makes an interrupt
request pending. Figure 8-4 shows the assertion of IPEND relative to the assertion of an
interrupt level on the IPL lines. IPEND signals to external devices that an interrupt exception
will be taken at an upcoming instruction boundary (following any higher priority exception).

Figure 8-3. Interrupt Recognition Examples

EXTERNAL IPL2-IPL0 SR MASK (I2-I0) ACTION

LEVEL 6 EXAMPLE:

INITIAL CONDITIONS100 ($3) 101 ($5)

(LEVEL COMPARISON)IF 001 ($6) THEN 110 ($6) AND LEVEL 6 INTERRUPT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(TRANSITION)

LEVEL 7 EXAMPLE:

INITIAL CONDITIONS100 ($3) 101 ($5)

IF 000 ($7) THEN 111 ($7) AND LEVEL 7 INTERRUPT

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN

NO ACTION

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

LEVEL 7 INTERRUPT

Exception Processing

8-18

MC68030 USER’S MANUAL

MOTOROLA

The state of the IPEND signal is internally checked by the processor once per instruction,
independently of bus operation. In addition, it is checked during the second instruction
prefetch associated with exception processing. Figure 8-5 is a flowchart of the interrupt
recognition and associated exception processing sequence.

To predict the instruction boundary during which a pending interrupt is processed, the timing
relationship between the assertion of IPEND for that interrupt and the assertion of STATUS
must be examined. Figure 8-6 shows two examples of interrupt recognition. The first
assertion of STATUS after IPEND is denoted as STAT0. The next assertion of STATUS is
denoted as STAT1. If STAT0 begins on the falling edge of the clock immediately following
the clock edge that caused IPEND to assert (as shown in example 1), STAT1 is at least two
clocks long, and, when there are no other pending exceptions, the interrupt is acknowledged
at the boundary defined by STAT1. If IPEND is asserted with more setup time to STAT0, the
interrupt may be acknowledged at the boundary defined by STAT0 (as shown in example
2). In that case, STAT0 is asserted for two clocks, signaling this condition.

If no higher priority interrupt has been synchronized, the IPEND signal is negated during
state 0 (S0) of an interrupt acknowledge cycle (refer to

7.4.1.1 Interrupt Acknowledge
Cycle — Terminated Normally

), and the IPLx signals for the interrupt being acknowledged
can be negated at this time.

Figure 8-4. Assertion of IPEND

CLK

IPL2-IPL0

IPEND

COMPARE REQUEST
WITH MASK IN SR

ASSERT IPENDIPLs RECOGNIZED

IPLs SYNCHRONIZED

Exception Processing

MOTOROLA

MC68030 USER’S MANUAL

8-19

Figure 8-5. Interrupt Exception Processing Flowchart

TEMP
S

T0,T1

SR
1
0

➧
➧
➧

UPDATE 12-10

➧
➧

➧
➧

-(SP) TEMP
-(SP) PC

-(SP) FORMAT WORD
-(SP) OTHER EXCEPTION-DEPENDENT

ONCE PER INSTRUCTION

NEGATE IPEND
EXECUTE INTERRUPT

ACKNOWLEDGE CYCLE

IPEND BEFORE STATUS

(CHECK RELATIONSHIP BETWEEN IPEND AND STATUS)

EXIT

OTHERWISE

M = 1

TEMP SR
M 0

➧
➧

M = 0
PC VECTOR TABLE ENTRY

➧

PREFETCH 3 WORDS

END OF EXCEPTION PROCESSING
FOR THE INTERRUPT

BEGIN EXECUTION OF THE INTERRUPT
HANDLER ROUTINE OR PROCESS A
HIGHER PRIORITY EXCEPTION

THESE
INDIVIDUAL

BUS CYCLES
MAY OCCUR

IN ANY ORDER

WAIT FOR STAT0 OR STAT1*
INDICATE INTERRUPT TO BE PROCESSED

(ASSERT STATUS FOR 2 CLOCKS)

STAT0 THIS INSTRUCTION BOUNDARY

➧

STAT1 NEXT INSTRUCTION BOUNDARY

➧

*EXPLAINED FURTHER IN TEXT

INFORMATION

Exception Processing

8-20

MC68030 USER’S MANUAL

MOTOROLA

When processing an interrupt exception, the processor first makes an internal copy of the
status register, sets the privilege level to supervisor, suppresses tracing, and sets the
processor interrupt mask level to the level of the interrupt being serviced. The processor
attempts to obtain a vector number from the interrupting device using an interrupt
acknowledge bus cycle with the interrupt level number output on pins A1–A3 of the address
bus. For a device that cannot supply an interrupt vector, the autovector signal (AVEC) can
be asserted, and the MC68030 uses an internally generated autovector, which is one of
vector numbers 25-31, that corresponds to the interrupt level number. If external logic
indicates a bus error during the interrupt acknowledge cycle, the interrupt is considered
spurious, and the processor generates the spurious interrupt vector number, 24. Refer to
7.4.1 Interrupt Acknowledge Bus Cycles for complete interrupt bus cycle information.

Figure 8-6. Examples of Interrupt Recognition and Instruction Boundaries

CLK

IPEND

STATUS

STAT0 STAT1

EXAMPLE 1: INTERRUPT EXCEPTION SIGNALED DURING STAT1

PROCEED TO INTERRUPT
EXCEPTION PROCESSING

CLK

IPEND

STATUS

STAT1

EXAMPLE 2: INTERRUPT EXCEPTION SIGNALED DURING STAT0

PROCEED TO INTERRUPT
EXCEPTION PROCESSING

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-21

Once the vector number is obtained, the processor saves the exception vector offset,
program counter value, and the internal copy of the status register on the active supervisor
stack. The saved value of the program counter is the logical address of the instruction that
would have been executed had the interrupt not occurred. If the interrupt was acknowledged
during the execution of a coprocessor instruction, further internal information is saved on the
stack so that the MC68030 can continue executing the coprocessor instruction when the
interrupt handler completes execution.

If the M bit of the status register is set, the processor clears the M bit and creates a
throwaway exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same program counter value and vector offset
as the frame created on top of the master stack, but has a format number of 1 instead of 0
or 9. The copy of the status register saved on the throwaway frame is exactly the same as
that placed on the master stack except that the S bit is set in the version placed on the
interrupt stack. (It may or may not be set in the copy saved on the master stack.) The
resulting status register (after exception processing) has the S bit set and the M bit cleared.

The processor loads the address in the exception vector into the program counter, and
normal instruction execution resumes after the required prefetches for the interrupt handler
routine.

Most M68000 Family peripherals use programmable interrupt vector numbers as part of the
interrupt request/acknowledge mechanism of the system. If this vector number is not
initialized after reset and the peripheral must acknowledge an interrupt request, the
peripheral usually returns the vector number for the uninitialized interrupt vector, 15.

8.1.10 MMU Configuration Exception
When the MC68030 executes a PMOVE instruction that attempts to move invalid data into
the TC, CRP, or SRP register of the MMU, the PMOVE instruction causes an MMU
configuration exception. The exception is a post-instruction exception; it is processed after
the instruction completes. The processor generates exception vector number 56 when an
MMU configuration exception occurs. Refer to Section 9 Memory Management Unit for a
description of the valid configurations for the MMU registers.

Exception Processing

8-22 MC68030 USER’S MANUAL MOTOROLA

The processor copies the status register, enters the supervisor privilege level, and clears
the trace bits. The processor saves the vector offset, the scanPC value (which points to the
next instruction), and the copy of the status register on the supervisor stack. It also saves
the logical address of the PMOVE instruction on the stack. Then the processor resumes
normal instruction execution after the required prefetches from the address in the exception
vector.

8.1.11 Breakpoint Instruction Exception
To use the MC68030 in a hardware emulator, it must provide a means of inserting
breakpoints in the emulator code and of performing appropriate operations at each
breakpoint. For the MC68000 and MC68008, this can be done by inserting an illegal
instruction at the breakpoint and detecting the illegal instruction exception from its vector
location. However, since the vector base register on the MC68010, MC68020, and
MC68030 allows arbitrary relocation of exception vectors, the exception address cannot
reliably identify a breakpoint. The MC68020 and MC68030 processors provide a breakpoint
capability with a set of breakpoint instructions, $4848-$484F, for eight unique breakpoints.
The breakpoint facility also allows external hardware to monitor the execution of a program
residing in the on-chip instruction cache without severe performance degradation.

When the MC68030 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) from CPU space type $0 with address lines A2-A4
corresponding to the breakpoint number. Refer to Figure 7-44 for the CPU space type $0
addresses and to 7.4.2 Breakpoint Acknowledge Cycle for a description of the breakpoint
acknowledge cycle. The external hardware can return either BERR, DSACKx, or STERM
with an instruction word on the data bus. If the bus cycle terminates with BERR, the
processor performs illegal instruction exception processing. If the bus cycle terminates with
DSACKx or STERM, the processor uses the data returned to replace the breakpoint
instruction in the internal instruction pipe and begins execution of that instruction. The
remainder of the pipe remains unaltered. In addition, no stacking or vector fetching is
involved with the execution of the instruction. Figure 8-7 is a flowchart of the breakpoint
instruction execution.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-23

8.1.12 Multiple Exceptions
When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 8-5 lists the exceptions, grouped by characteristics. Each group has a priority
from 0-4. Priority 0 has the highest priority.

As soon as the MC68030 has completed exception processing for a condition when another
exception is pending, it begins exception processing for the pending exception instead of
executing the exception handler for the original exception condition. Also, whenever a bus
error or address error occurs, its exception processing takes precedence over lower priority
exceptions and occurs immediately. For example, if a bus error occurs during the exception
processing for a trace condition, the system processes the bus error and executes its
handler before completing the trace exception processing. However, most exceptions
cannot occur during exception processing, and very few combinations of the exceptions
shown in Table 8-5 can be pending simultaneously.

Figure 8-7. Breakpoint Instruction Flowchart

EXIT

ENTRY

A19-A16 $0
A4-A2 BREAKPOINT NUMBER

➧
➧

INITIATE READ BUS CYCLE

DSACKx OR STERM BERR

CYCLE TERMINATED WITH

PIPE STAGE D INSTRUCTION WORD ON DATA BUS
EXECUTE INSTRUCTION WORD

➧ TAKE ILLEGAL INSTRUCTION
EXCEPTION

Exception Processing

8-24 MC68030 USER’S MANUAL MOTOROLA

 0.0 is the highest priority, 4.2 is the lowest.

The priority scheme is very important in determining the order in which exception handlers
execute when several exceptions occur at the same time. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. For
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception
processing for the trap occurs first, followed immediately by exception processing for the
trace and then for the interrupt. When the processor resumes normal instruction execution,
it is in the interrupt handler, which returns to the trace handler, which returns to the trap
exception handler. This rule does not apply to the reset exception; its handler is executed
first even though it has the highest priority because the reset operation clears all other
exceptions.

8.1.13 Return from Exception
After the processor has completed exception processing for all pending exceptions, the
processor resumes normal instruction execution at the address in the vector for the last
exception processed. Once the exception handler has completed execution, the processor
must return to the system context prior to the exception (if possible). The RTE instruction
returns from the handler to the previous system context for any exception.

Table 8-5. Exception Priority Groups

Group/Priority Exception and Relative Priority Characteristics
0 0.0 — Reset Aborts all processing (instruction or

exception) and does not save old context.
1 1.0 — Address Error

1.1 — Bus Error
Suspends processing (instruction or
exception) and saves internal context.

2 2.0 — BKPT #n, CHK, CHK2, cp Mid-Instruction, cp
Protocol Violation, cpTRAPcc, Divide by Zero,
RTE, TRAP #n, TRAPV, MMU Configuration

Exception processing is part of instruction
execution.

3 3.0 — Illegal Instruction, Line A, Unimplemented Line
F, Privilege Violation, cp Pre-Instruction

Exception processing begins before
instruction is executed.

4 4.0 — cp Post-Instruction
4.1 — Trace
4.2 — Interrupt

Exception processing begins when current
instruction or previous exception processing
is completed.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-25

When the processor executes an RTE instruction, it examines the stack frame on top of the
active supervisor stack to determine if it is a valid frame and what type of context restoration
it requires. This section describes the processing for each of the stack frame types; refer to
8.3 COPROCESSOR CONSIDERATIONS for a description of the stack frame type formats.

For a normal four-word frame, the processor updates the status register and program
counter with the data read from the stack, increments the stack pointer by eight, and
resumes normal instruction execution.

For the throwaway four-word stack, the processor reads the status register value from the
frame, increments the active stack pointer by eight, updates the status register with the
value read from the stack, and then begins RTE processing again, as shown in Figure 8-8.
The processor reads a new format word from the stack frame on top of the active stack
(which may or may not be the same stack used for the previous operation) and performs the
proper operations corresponding to that format. In most cases, the throwaway frame is on
the interrupt stack and when the status register value is read from the stack, the S and M
bits are set. In that case, there is a normal four-word frame or a ten-word coprocessor mid-
instruction frame on the master stack. However, the second frame may be any format (even
another throwaway frame) and may reside on any of the three system stacks.

For the six-word stack frame, the processor restores the status register and program counter
values from the stack, increments the active supervisor stack pointer by 12, and resumes
normal instruction execution.

For the coprocessor mid-instruction stack frame, the processor reads the status register,
program counter, instruction address, internal register values, and the evaluated effective
address from the stack, restores these values to the corresponding internal registers, and
increments the stack pointer by 20. The processor then reads from the response register of
the coprocessor that initiated the exception to determine the next operation to be performed.
Refer to Section 10 Coprocessor Interface Description for details of coprocessor-related
exceptions.

For both the short and long bus fault stack frames, the processor first checks the format
value on the stack for validity. In addition, for the long stack frame, the processor compares
the version number in the stack with its own version number. The version number is located
in the most significant nibble (bits 15-12) of the word at location SP+$36 in the long stack
frame. This validity check is required in a multiprocessor system to ensure that the data is
properly interpreted by the RTE instruction. The RTE instruction also reads from both ends
of the stack frame to make sure it is accessible. If the frame is invalid or inaccessible, the
processor takes a format error or a bus error exception, respectively. Otherwise, the
processor reads the entire frame into the proper internal registers, deallocates the stack,
and resumes normal processing. Once the processor begins to load the frame to restore its
internal state, the assertion of the BERR signal causes the processor to enter the halted
state with the continuous assertion of the STATUS signal. Refer to 8.2 Bus Fault Recovery
for a description of the processing that occurs after the frame is read into the internal
registers.

Exception Processing

8-26 MC68030 USER’S MANUAL MOTOROLA

If a format error or bus error exception occurs during the frame validation sequence of the
RTE instruction, either due to any of the errors previously described or due to an illegal
format code, the processor creates a normal four-word or a bus fault stack frame below the
frame that it was attempting to use. In this way, the faulty stack frame remains intact. The
exception handler can examine or repair the faulty frame. In a multiprocessor system, the
faulty frame can be left to be used by another processor of a different type (e.g., an
MC68010, MC68020, or a future M68000 processor) when appropriate.

Figure 8-8. RTE Instruction for Throwaway Four-Word Frame

ENTRY

SR TEMP
SP SP + 6

➧

➧

TEMP (SP) +
READ FORMAT WORD

➧

OTHERWISE

FORMAT CODE = $1

(THROWAWAY FRAME)

FORMAT CODE = $0 (4-WORD FRAME)

OTHERWISE

PC (SP) +
SP SP + 6
SR TEMP

➧
➧
➧

EXIT

OTHER FORMATS

INVALID FORMAT WORD

TAKE FORMAT
ERROR EXCEPTION

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-27

8.2 BUS FAULT RECOVERY
An address error exception or a bus error exception indicates a bus fault. The saving of the
processor state for a bus error or address error is described in 8.1.2 Bus Error Exception,
and the restoring of the processor state by an RTE instruction is described in 8.1.13 Return
from Exception

Processor accesses of either data items or the instruction stream can result in bus errors.
When a bus error exception occurs while accessing a data item, the exception is taken
immediately after the bus cycle terminates. Bus errors reported by the on-chip MMU are also
processed immediately. A bus error occurring during an instruction stream access is not
processed until the processor attempts to use the information (if ever) that the access should
have provided. For instruction faults, when the short format frame applies, the address of
the pipe stage B word is the value in the program counter plus four, and the address of the
stage C word is the value in the program counter plus two. For the long format, the long word
at SP+$24 contains the address of the stage B word; the address of the stage C word is the
address of the stage B word minus two. Address error faults occur only for instruction stream
accesses, and the exceptions are taken before the bus cycles are attempted.

Exception Processing

8-28 MC68030 USER’S MANUAL MOTOROLA

8.2.1 Special Status Word (SSW)
The internal SSW (see Figure 8-9) is one of several registers saved as part of the bus fault
exception stack frame. Both the short bus cycle fault format and the long bus cycle fault
format include this word at offset $A. The bus cycle fault stack frame formats are described
in detail at the end of this section.

FC — Fault on stage C of the instruction pipe
FB — Fault on stage B of the instruction pipe
RC — Rerun flag for stage C of the instruction pipe*
RB — Rerun flag for stage B of the instruction pipe*
DF — Fault/rerun flag for data cycle*
RM — Read-modify-write on data cycle
RW — Read/write for data cycle — 1=read, 0=write
SIZE — Size code for data cycle
FC2-FC0 — Address space for data cycle
*1=Rerun Faulted bus Cycle, or run pending prefetch
 0=Do not rerun bus sycle
 X=For internal use only

Figure 8-9. Special Status Word (SSW)

The SSW information indicates whether the fault was caused by an access to the instruction
stream, data stream, or both. The high-order half of the SSW contains two status bits each
for the B and C stages of the instruction pipe. The fault bits (FB and FC) indicate that the
processor attempted to use a stage (B or C) and found it to be marked invalid due to a bus
error on the prefetch for that stage. The fault bits can be used by a bus error handler to
determine the cause(s) of a bus error exception. The rerun flag bits (RB and RC) are set to
indicate that a fault occurred during a prefetch for the corresponding stage. A rerun bit is
always set when the corresponding fault bit is set. The rerun bits indicate that the word in a
stage of the instruction pipe is invalid, and the state of the bits can be used by a handler to
repair the values in the pipe after an address error or a bus error, if necessary. If a rerun bit
is set when the processor executes an RTE instruction, the processor may execute a bus
cycle to prefetch the instruction word for the corresponding stage of the pipe (if it is required).
If the rerun and fault bits are set for a stage of the pipe, the RTE instruction automatically
reruns the prefetch cycle for that stage. The address space for the bus cycle is the program
space for the privilege level indicated in the copy of the status register on the stack. If a rerun
bit is cleared, the words on the stack for the corresponding stages of the pipe are accepted
as valid; the processor assumes that there is no prefetch pending for the corresponding
stage and that software has repaired or filled the image of the stage, if necessary.

15 14 13 12 11 10 9 8 7 6
5
4

3
2

 0

FC FB RC RB X X X DF RM RW SIZE X
FC2-
FC0

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-29

If an address error exception occurs, the fault bits written to the stack frame are not set (they
are only set due to a bus error, as previously described), and the rerun bits alone show the
cause of the exception. Depending on the state of the pipeline, either RB and RC are both
set, or RC alone is set. To correct the pipeline contents and continue execution of the
suspended instruction, software must place the correct instruction stream data in the stage
C and/or stage B images requested by the rerun bits and clear the rerun bits. The least
significant half of the SSW applies to data cycles only. If the DF bit of the SSW is set, a data
fault has occurred and caused the exception. If the DF bit is set when the processor reads
the stack frame, it reruns the faulted data access; otherwise, it assumes that the data input
buffer value on the stack is valid for a read or that the data has been correctly written to
memory for a write (or that no data fault occurred). The RM bit of the SSW identifies a read-
modify-write operation and the RW bit indicates whether the cycle was a read or write
operation. The SIZE field indicates the size of the operand access, and the FC field specifies
the address space for the data cycle. Data and instruction stream faults may be pending
simultaneously; the fault handler should be able to recognize any combination of the FC, FB,
RC, RB, and DF bits.

8.2.2 Using Software to Complete the Bus Cycles
One method of completing a faulted bus cycle is to use a software handler to emulate the
cycle. This is the only method for correcting address errors. The handler should emulate the
faulted bus cycle in a manner that is transparent to the instruction that caused the fault. For
instruction stream faults, the handler may need to run bus cycles for both the B and C stages
of the instruction pipe. The RB and RC bits identify the stages that may require a bus cycle;
the FB and FC bits indicate that a stage was invalid when an attempt was made to use its
contents. Those stages must be repaired. For each faulted stage, the software handler
should copy the instruction word from the proper address space as indicated by the S bit of
the copy of the status register saved on the stack to the image of the appropriate stage in
the stack frame. In addition, the handler must clear the rerun bit associated with the stage
that it has corrected. The handler should not change the fault bits FB and FC.

Exception Processing

8-30 MC68030 USER’S MANUAL MOTOROLA

To repair data faults (indicated by DF=1), the software should first examine the RM bit in the
SSW to determine if the fault was generated during a read-modify-write operation. If RM=0,
the handler should then check the R/W bit of the SSW to determine if the fault was caused
by a read or a write cycle. For data write faults, the handler must transfer the properly sized
data from the data output buffer (DOB) on the stack frame to the location indicated by the
data fault address in the address space defined by the SSW. (Both the DOB and the data
fault address are part of the stack frame at SP+$18 and SP+$10, respectively.) Data read
faults only generate the long bus fault frame and the handler must transfer properly sized
data from the location indicated by the fault address and address space to the image of the
data input buffer (DIB) at location SP+$2C of the long format stack frame. Byte, word, and
3-byte[lz operands are right-justified in the 4-byte data buffers. In addition, the software
handler must clear the DF bit of the SSW to indicate that the faulted bus cycle has been
corrected.

To emulate a read-modify-write cycle, the exception handler must first read the operation
word at the program counter address (SP+2 of the stack frame). This word identifies the
CAS, CAS2, or TAS instruction that caused the fault. Then the handler must emulate this
entire instruction (which may consist of up to four long word transfers) and update the
condition code portion of the status register appropriately, because the RTE instruction
expects the entire operation to have been completed if the RM bit is set and the DF bit is
cleared. This is true even if the fault occurred on the first read cycle.

To emulate the entire instruction, the handler must save the data and address registers for
the instruction (with a MOVEM instruction, for example). Next, the handler reads and
modifies (if necessary) the memory location. It clears the DF bit in the SSW of the stack
frame and modifies the condition codes in the status register copy and the copies of any data
or address registers required for the CAS and CAS2 instructions. Last, the handler restores
the registers that it saved at the beginning of the emulation. Except for the data input buffer
(DIB), the copy of the status register, and the SSW, the handler should not modify a bus fault
stack frame. The only bits in the SSW that may be modified are DF, RB, and RC; all other
bits, including those defined for internal use, must remain unchanged.

Address error faults must be repaired in software. Address error faults can be distinguished
from bus error faults by the value in the vector offset field of the format word.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-31

8.2.3 Completing the Bus Cycles with Rte
Another method of completing a faulted bus cycle is to allow the processor to rerun the bus
cycles during execution of the RTE instruction that terminates the exception handler. This
method cannot be used to recover from address errors. The RTE instruction is always
executed. Unless the handler routine has corrected the error and cleared the fault (and
cleared the rerun and DF bits of the SSW), the RTE instruction can complete the bus
cycle(s). If the DF bit is still set at the time of the RTE execution, the faulted data cycle is
rerun by the RTE instruction. If the fault bit for a stage of the pipe is set and the
corresponding rerun bit was not cleared by the software, the RTE reruns the associated
instruction prefetch. The fault occurs again unless the cause of the fault, such as a non-
resident page in a virtual memory system, has been corrected. If the rerun bit is set for a
stage of the pipe and the fault bit is cleared, the associated prefetch cycle may or may not
be run by the RTE instruction (depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), the processor
creates a new stack frame on the supervisor stack after deallocating the previous frame, and
address error or bus error exception processing starts in the normal manner.

The read-modify-write operations of the MC68030 can also be completed by the RTE
instruction that terminates the handler routine. The rerun operation, executed by the RTE
instruction with the DF bit of the SSW set, reruns the entire instruction. If the cause of the
error has been corrected, the handler does not need to emulate the instruction but can leave
the DF bit set and execute the RTE instruction.

Systems programmers and designers should be aware that the MMU of the MC68030 treats
any bus cycle with RMC asserted as a write operation for protection checking, regardless of
the state of R/W signal. Otherwise, the potential for partially destroying system pointers with
CAS and CAS2 instructions exists since one portion of the write operation could take place
and the remainder be aborted by a bus error.

Exception Processing

8-32 MC68030 USER’S MANUAL MOTOROLA

8.3 COPROCESSOR CONSIDERATIONS
Exception handler programmers should consider carefully whether to save and restore the
context of a coprocessor at the beginning and end of handler routines for exceptions that
can occur during the execution of a coprocessor instruction (i.e., bus errors, interrupts, and
coprocessor-related exceptions). The nature of the coprocessor and the exception handler
routine determines whether or not saving the state of one or more coprocessors with the
cpSAVE and cpRESTORE instructions is required. If the coprocessor allows multiple
coprocessor instructions to be executed concurrently, it may require its state to be saved
and restored for all coprocessor-generated exceptions, regardless of whether or not the
coprocessor is accessed during the handler routine. The MC68882 floating-point
coprocessor is an example of this type of coprocessor. On the other hand, the MC68881
floating-point coprocessor requires FSAVE and FRESTORE instructions within an
exception handler routine only if the exception handler itself uses the coprocessor.

8.4 EXCEPTION STACK FRAME FORMATS
The MC68030 provides six different stack frames for exception processing. The set of
frames includes the normal four- and six-word stack frames, the four-word throwaway stack
frame, the coprocessor mid-instruction stack frame, and the short and long bus fault stack
frames.

When the MC68030 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer with memory that is on a 32-bit
port greatly enhances exception processing performance. The processor does not
necessarily read or write the stack frame data in sequential order.

The system software should not depend on a particular exception generating a particular
stack frame. For compatibility with future devices, the software should be able to handle any
type of stack frame for any type of exception.

Table 8-6 summarizes the stack frames defined for the M68000 Family.

Exception Processing

MOTOROLA MC68030 USER’S MANUAL 8-33

Exception Stack Frames (Sheet 1 of 2).

Exception Processing

8-34 MC68030 USER’S MANUAL MOTOROLA

Table 8-5. Exception Stack Frames (Sheet 2 of 2).

MOTOROLA

MC68030 USER’S MANUAL

9-1

SECTION 9
MEMORY MANAGEMENT UNIT

The MC68030 includes a memory management unit (MMU) that supports a demand-paged
virtual memory environment. The memory management is "demand in that programs do not
specify required memory areas in advance, but request them by accessing logical
addresses. The physical memory is paged, meaning that it is divided into blocks of equal
size called page frames. The logical address space is divided into pages of the same size.
The operating system assigns pages to page frames as they are required to meet the needs
of programs.

The principal function of the MMU is the translation of logical addresses to physical
addresses using translation tables stored in memory. The MMU contains an address
translation cache (ATC) in which recently used logical-to-physical address translations are
stored. As the MMU receives each logical address from the CPU core, it searches the ATC
for the corresponding physical address. When the translation is not in the ATC, the
processor searches the translation tables in memory for the translation information. The
address calculations and bus cycles required for this search are performed by microcode
and dedicated logic in the MC68030. In addition, the MMU contains two transparent
translation registers (TT0 and TT1) that identify blocks of memory that can be accessed
without translation. The features of the MMU are:

• 32-Bit Logical Address Translated to 32-Bit Physical Address with 3-Bit Function Code

• Supports Two-Clock Cycle Processor Accesses to Physical Address Spaces

• Addresses Translated in Parallel with Accesses to Data and Instruction Caches

• On-Chip Fully Associative 22-Entry ATC

• Translation Table Search Controlled by Microcode

• Eight Page Sizes: 256, 512, 1K, 2K, 4K, 8K, 16K and 32K Bytes

• Separate User and Supervisor Translation Table Trees Are Supported

• Two Independent Blocks Can Be Defined as Transparent (Untranslated)

• Multiple Levels of Translation Tables

Memory Management Unit

9-2

MC68030 USER’S MANUAL

MOTOROLA

• 0-15 Upper Logical Address Bits Can Be Ignored (Using Initial Shift)

• Portions of Tables Can Be Undefined (Using Limits)

• Write Protection and Supervisor Protection

• History Bits Automatically Maintained in Page Descriptors

• Cache Inhibit Output (CIOUT) Signal Asserted on Page Basis

• External Translation Disable Input Signal (MMUDIS)

• Subset of Instruction Set Defined by MC68851

The MMU completely overlaps address translation time with other processing activity when
the translation is resident in the ATC. ATC accesses operate in parallel with the on-chip
instruction and data caches.

Figure 9-1 is a block diagram of the MC68030 showing the relationship of the MMU to the
execution unit and the bus controller. For an instruction or operand access, the MC68030
simultaneously searches the caches and searches for a physical address in the ATC. If the
translation is available, the MMU provides the physical address to the bus controller and
allows the bus cycle to continue. When the instruction or operand is in either of the on-chip
caches on a read cycle, the bus controller aborts the bus cycle before address strobe is
asserted. Similarly, the MMU causes a bus cycle to abort before the assertion of address
strobe when a valid translation is not available in the ATC or when an invalid access is
attempted.

An MMU disable input signal (MMUDIS) is provided that dynamically disables address
translation for emulation, diagnostic, or other purposes.

The programming model of the MMU (see Figure 9-2) consists of two root pointer registers,
a control register, two transparent translation registers, and a status register. These
registers can only be accessed by supervisor programs. The CPU root pointer register
points to an address translation tree structure in memory that describes the logical-to-
physical mapping for user accesses or for both user and supervisor accesses. The
supervisor root pointer register optionally points to an address translation tree structure for
supervisor mappings. The translation control register is comprised of fields that control the
translation operation. Each transparent translation register can define a block of logical
addresses that are used as physical addresses (without translation). The MMU status
register contains accumulated status information from a translation performed as a part of a
PTEST instruction.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-3

Figure 9-1. MMU Block Diagram

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Memory Management Unit

9-4

MC68030 USER’S MANUAL

MOTOROLA

The ATC in the MMU is a fully associative cache that stores 22 logical-to-physical address
translations and associated page information. It compares the logical address and function
code internally supplied by the processor with all tag entries in the ATC. When the access
address and function code matches a tag in the ATC (a hit occurs) and no access violation
is detected, the ATC outputs the corresponding physical address to the bus controller, which
continues the external bus cycle. Function codes are routed to the bus controller unmodified.

Each ATC entry contains a logical address, a physical address, and status bits. Among the
status bits are the write protect and cache inhibit bits.

When the ATC does not contain the translation for a logical address (a miss occurs) and an
external bus cycle is required, the MMU aborts the access and causes the processor to
initiate bus cycles that search the translation tables in memory for the correct translation. If
the table search completes without any errors, the MMU stores the translation in the ATC
and provides the physical address for the access, allowing the bus controller to retry the
original bus cycle.

An MMU translation table has a tree structure with the base of the first table defined by a
root pointer descriptor. The root pointer descriptor of the current translation table is resident
in one of two root pointer registers. The general tree structure is shown in Figure 9-3. Table
entries at the upper levels of a tree point to other tables. The table leaf entries are page
frame addresses. All addresses stored in the translation tables are physical addresses; the
translation tables reside in the physical address space.

System software selects the parameters for the translation tables by configuring the
translation control register (TC) appropriately. The function codes or a portion of the logical
address can be defined as the index into the first level of lookup in the table. The TC register
specifies how many bits of the logical address are used as the index for each level of the
lookup (as many as 15 bits can be used at a given level).

Figure 9-2. MMU Programming Model
FIG. 9-2

ACCESS CONTROL 0

31 0

ACCESS CONTROL 1

31 0

ACU STATUS (ACUSR)

15 0

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-5

Figure 9-3. Translation Table Tree

ADDRESS BASE ADDRESS MASK

31 24 23 16

E 0 0 0 0 CI R/W RWN 0 FC BASE 0 FC MASK

15 8 7 0

FIG 9-3

ADDRESS BASE - VALUE OF A31-A24 THAT DEFINES BLOCK
ADDRESS MASK - BITS A31-A24 TO BE IGNORED

 E - ENABLE
 CI - CACHE INHIBIT
 R/W - READ/WRITE
 RWM - READ WRITE MASK
 FC BASE - FUNCTION CODE VALUE FOR BLOCK
 FC MASK - FUNCTION CODE BITS TO BE IGNORED

Memory Management Unit

9-6

MC68030 USER’S MANUAL

MOTOROLA

9.1 TRANSLATION TABLE STRUCTURE

The M68030 uses the ATC and translation tables stored in memory to perform the
translation from a logical to a physical address. Translation tables for a program are loaded
into memory by the operating system.

The general translation table structure supported by the MC68030 is a tree structure of
tables. The pointer tables form the branches of the tree. These tables contain the base
addresses of other tables. Page descriptors can reside in pointer tables and, in that case,
are called early termination descriptors. The tables at the leaves of the tree are called page
tables. Only a portion of the translation table for the entire logical address space is required
to be resident in memory at any time: specifically, only the portion of the table that translates
the logical addresses that the currently executing process(es) use(s) must be resident.
Portions of translation tables can be dynamically allocated as the process requires
additional memory.

As shown in Figure 9-4, the root pointer for a table is a descriptor that contains the base
address of the top level table for the tree. The pointer tables and page tables also consist of
descriptors. A descriptor in a pointer table typically contains the base address of a table at
the next level of the tree. A table descriptor can also contain limits for the index into the next
table, protection information, and history information pertaining to the descriptor. Each table
is indexed by a field extracted from the logical address. In the example shown in Figure 9-
4, the A field of the logical address, $00A, is added to the root pointer value to select a
descriptor at the A level of the translation tree. The selected descriptor points to the base of
the appropriate page table, and the B field of the logical address ($006) is added to this base
address to select a descriptor within the page table. A descriptor in a page table contains
the physical base address of the page, protection information, and history information for the
page. A page descriptor can also reside in a pointer table or even in a root pointer to define
a contiguous block of pages. A two-level page task is shown. The 32-bit logical address
space is divided into 4096 segments of 1024 bytes each.

Figure 9-5 shows a possible layout of this example translation tree in memory.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-7

Figure 9-4. Example Translation Table Tree

15 7 0

FIG 9-4

AC - ACCESS CONTROLLED

6 5

AC

Memory Management Unit

9-8

MC68030 USER’S MANUAL

MOTOROLA

9.1.1 Translation Control

The translation control register (TC) defines the size of pages in memory, selects the root
pointer register to be used for supervisor accesses, indicates whether the top level of the
translation tree is indexed by function code, and specifies the number of logical address bits
used to index into the various levels of the translation tree. The initial shift (IS) field of the
TC register defines the size of the logical address space; it contains the number of most
significant address bits that are ignored in the translation table lookup. For example, if the
IS field is set to zero, the logical address space is 2

32

 bytes. On the other hand, if the IS field
is set to 15, the logical address space contains only 2

32

—2

1

 bytes.

The page size (PS) field of the TC register specifies the page size for the system. The
number of pages in the system is equal to the logical address space divided by the page
size. The maximum number of pages that can be defined by a translation tree is greater than
16 million (2

32

/2

8

). The minimum number is 4 (2

17

/2

15

). The function code can also be used
in the table lookup, defining as many as seven regions of the above size (FC=0-6). The
entire range of the logical address space(s) can be defined by translation tables of many
sizes. The MC68030 provides flexibility that simplifies the implementation of large
translation tables.

The use of a tree structure with as many as five levels of tables provides granularity in
translation table design. The LIMIT field of the root pointer can limit the value of the first
index and limits the actual number of descriptors required. Optionally, the top level of the
structure can be indexed by function code bits. In this case, the pointer table at this level
contains eight descriptors. The next level of the structure (or the top level when the FCL bit
of the TC register is set to zero) is indexed by the most significant bits of the logical address
(disregarding the number of bits specified by the IS field). The number of logical address bits
used for this index is specified by the TIA field of the TC register. If, for example, the TIA
field contains the value 5, the index for this level contains five bits, and the pointer table at
this level contains at most 32 descriptors.

Similarly, the TIB, TIC, and TID fields of the TC register define the indexes for lower levels
of the translation table tree. When one of these fields contains zero, the remaining TIx fields
are ignored; the last nonzero TIx field defines the index into the lowest level of the tree
structure. The tables selected by the index at this level are page tables; every descriptor in
these tables is (or represents) a page descriptor. Figure 9-6 shows how the TIx fields of the
TC register apply to a function code and logical address.

(UNABLE TO LOCATE ART)

Figure 9-5. Example Translation Tree Layout in Memory

(UNABLE TO LOCATE ART)

Figure 9-6. Derivation of Table Index Fields

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-9

For example, a TC register in which the FCL bit is set to one, the TIA field contains five, the
TIB field contains nine, and the TIC and TID fields contain zero defines a three-level
translation tree. The top level is indexed by the function code, the next level by five logical
address bits, and the bottom level by nine logical address bits. If the TIC field contained nine
instead of zero, the translation tree would have four levels, and the two bottom levels would
each be indexed by 9-bit portions of the logical address.

The following equation for fields in the TC register must be satisfied:

IS+PS+TIA+TIB

1

+TIC

1

+TID

1

 = 32

That is, every bit of the logical address either addresses a byte within the page, is part of the
index at some level of the address table, or is explicitly ignored by initial shift.

Table 9-1 lists the valid sizes of the table indexes at each of the levels indexed by the TIx
fields and the position of each table index within the logical address. When the function code
is also used to select a descriptor, a total of five levels can be defined by the logical address.
The function code lookup level and levels B, C, and D can be suppressed.

9.1.2 Translation Table Descriptors

The address translation trees consist of tables of descriptors. These descriptors can be one
of four basic types: table descriptors, page descriptors (normal or early termination), invalid
descriptors, or indirect descriptors. Each of these descriptors has both a long-format and a
short-format representation.

A root pointer descriptor defines the root of a tree and can be a table descriptor or an early
termination page descriptor. A table descriptor points to a descriptor table in memory that
defines the next lower level in the translation tree. An early termination page descriptor
causes immediate termination of the table search and contains the physical address of an
area in memory that contains page frames corresponding to contiguous logical addresses
(Refer to

9.5.3.1 Early Termination and Contiguous Memory

).

1.NOTE 1: If any of these fields are zero, the remaining fields are ignored.

Table 9-1. Size Restrictions

Field Starting Bit Position Size Restrictions

A 31-IS 1-15 (TIA must be greater than zero; minimum of two if TIB=0)
B 31-IS-TIA 0-15
C 31-IS-TIA-TIB 0-15 (ignored if TIB is zero)
D 31-IS-TIA-TIB-TIC 31-IS-TIA-TIB-TIC 0-15 (ignored if TIB or TIC is zero)

Memory Management Unit

9-10

MC68030 USER’S MANUAL

MOTOROLA

Tables at intermediate levels of a translation tree contain descriptors that are similar to the
root pointer descriptors. They can contain table descriptors or early termination page
descriptors and can also contain invalid descriptors.

The descriptor tables at the lowest level of a translation tree can only contain page
descriptors, indirect descriptors, and invalid descriptors. A page descriptor in the lowest
level of a translation tree defines the physical address of a page frame in memory that
corresponds to the logical address of a page. An indirect descriptor contains a pointer to the
actual page descriptor and can be used when a single page descriptor is accessed by two
or more logical addresses.

To enhance the flexibility of translation table design, descriptors (except for root pointer
descriptors) can be either short or long format. The short-format descriptors consist of one
long word and have no index-limiting capabilities or supervisor-only protection. The long-
format descriptors consist of two long words and contain all defined descriptor fields for the
MC68030. The pointer and page tables can each contain either short- or long-format
descriptors, but no single table can contain both sizes. Tables at different levels of the
translation tree can contain different formats of descriptors. Tables at the same level can
also contain descriptors of different formats, but all descriptors in a particular pointer table
or page table must be of the same format. Figure 9-7 shows a translation tree that uses
several different format descriptors.

All descriptors contain a descriptor type (DT) field, which identifies the descriptor or specifies
the size of the descriptors in the table to which the descriptor points. It is always the two least
significant bits of the most significant (or only) long word of a descriptor.

Invalid descriptors can be used at any level of the translation tree except the root. When a
table search for a normal translation encounters an invalid descriptor, the processor takes
a bus error exception. The invalid descriptor can be used to identify either a page or branch
of the tree that has been stored on an external device and is not resident in memory or a
portion of the translation table that has not yet been defined. In these two cases, the
exception routine can either restore the page from disk or add to the translation table.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-11

All long-format descriptors and short-format invalid descriptors include one or two unused
fields. The operating system can use these fields for its own purposes. For example, the
operating system can encode these fields to specify the type of invalid descriptor.
Alternately, the external device address of a page that is not resident in main memory can
be stored in the unused field.

9.2 ADDRESS TRANSLATION

The function of the MMU is to translate logical addresses to physical addresses according
to control information stored by the system in the MMU registers and in translation table
trees resident in memory.

9.2.1 General Flow for Address Translation

A CPU space address (FC0-FC2=$7) is a special case that is immediately used as a
physical address without translation. For other accesses, the translation process proceeds
as follows:

1. Search the on-chip data and instruction caches for the required instruction word or op-
erand on read accesses.

2. Compare the logical address and function code to the transparent translation param-
eters in the transparent translation registers, and use the logical address as a physical
address for the memory access when one or both of the registers match.

3. Compare the logical address and function code to the tag portions of the entries in the
ATC and use the corresponding physical address for the memory access when a
match occurs.

4. When no on-chip cache hit occurs (on a read) and no TTx register matches or valid
ATC entry matches, initiate a table search operation to obtain the corresponding phys-
ical address from the corresponding translation tree, create a valid ATC entry for the
logical address, and repeat step 3.

Figure 9-8 is a general flowchart for address translation. The top branch of the flowchart
applies to CPU space accesses (FC0-FC2=$7). The next branch applies to read accesses
only. When either of the on-chip caches hits (contains the required data or instruction), no
memory access is necessary. The third branch applies to transparent translation. The
bottom three branches apply to ATC translation as follows. If the requested access misses
in the ATC, the memory cycle is aborted, and a table search operation proceeds. An ATC
entry is created after the table search, and the access is retried. If an access hits in the ATC
but a bus error was detected during the table search that created the ATC entry, the memory
access is aborted, and a bus error exception is taken.

(UNABLE TO LOCATE ART)

Figure 9-7. Example Translation Tree Using Different Format Descriptors

Memory Management Unit

9-12

MC68030 USER’S MANUAL

MOTOROLA

If an access results in an ATC hit but the access is either a write or read-modify-write access
and the page is write protected, the memory cycle is also aborted, and a bus error exception
is taken. For a write or read-modify-write access, when the modified bit of the ATC entry is
not set, the memory cycle is aborted, a table search proceeds to set the modified bit in both
the page descriptor in memory and in the ATC, and the access is retried. If the modified bit
of the ATC entry is set and the bus error bit is not, assuming that neither TTx register
matches and the access is not to CPU space, the ATC provides the address translation to
the bus controller under two conditions: 1) if a read access does not hit in either on-chip
cache and 2) if a write or read-modify-write access is not write protected.

The preceding description of the general flowchart specifies several conditions that cause
the memory cycle to be aborted. In these cases, the bus cycle is aborted before the
assertion of AS.

9.2.2 Effect of RESET On MMU

When the MC68030 is reset by the assertion of the RESET signal, the E bits of the TC and
TTx registers are cleared, disabling address translation. This causes logical addresses to
be passed through as physical addresses to the bus controller, allowing an operating system
to set up the translation tables and MMU registers, as required. After it has initialized the
translation tables and registers, the E bit of the TC register can be set, enabling address
translation. A reset of the processor does not invalidate any entries in the ATC. An MMU
instruction (such as PMOVE) that flushes the ATC must be executed to flush all existing
valid entries from the ATC after a reset operation and before translation is enabled.

9.2.3 Effect of MMUDIS On Address Translation

The assertion of MMUDIS prevents the MMU from performing searches of the ATC and the
execution unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. When an initial access to a long-word-aligned
data operand that is larger than the addressed port size is performed, the successive bus
cycles for additional portions of the operand always use the same higher order address bits
that were used for the initial bus cycle (changing A0 and A1 appropriately). Thus, if MMUDIS
is asserted during this type of operation, the disabling of address translation does not
become effective until the entire transfer is complete. Note that the assertion of MMUDIS
does not affect the operation of the transparent translation registers.

(UNABLE TO LOCATE ART)

Figure 9-8. Address Translation General Flowchart

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-13

9.3 TRANSPARENT TRANSLATION

Two independent transparent translation registers (TT0 and TT1) in the MMU optionally
define two blocks of the logical address space that are directly translated to the physical
address spaces. The MMU does not explicitly check write protection for the addresses in
these blocks, but a block can be specified as transparent only for read cycles. The blocks of
addresses defined by the TTx registers include at least 16M bytes of logical address space;
the two blocks can overlap, or they can be separate.

The following description of the address comparison assumes that both TT0 and TT1 are
enabled; however, each TTx register can be independently disabled. A disabled TTx
register is completely ignored.

When the MMU receives an address to be translated, the function code and the eight high-
order bits of the address are compared to the block of addresses defined by TT0 and TT1.
The address space block for each TTx register is defined by the base function code, the
function code mask, the logical base address, and the logical address mask. When a bit in
a mask field is set, the corresponding bit of the base function code or logical base address
is ignored in the function code and address comparison. Setting successively higher order
bits in the address mask increases the size of the transparently translated block.

The address for the current bus cycle and a TTx register address match when the function
code bits and address bits (not including masked bits) are equal. Each TTx register can
specify read accesses or write accesses as transparent. In that case, the internal read/write
signal must match the R/W bit in the TTx register for the match to occur. The selection of
the type of access (read or write) can also be masked. The read/write mask bit (RWM) must
be set for transparent translation of addresses used by instructions that execute read-
modify-write operations. Otherwise, neither the read nor write portions of read-modify-write
operations are mapped transparently with the TTx registers, regardless of the function code
and address bits for the individual cycles within a read-modify-write operation.

Memory Management Unit

9-14

MC68030 USER’S MANUAL

MOTOROLA

By appropriately configuring a transparent translation register, flexible transparent mapping
can be specified. For instance, to transparently translate user program space with a TTx
register, the RWM bit of the register is set to 1, the FC BASE is set to $2, and the FC MASK
is set to $0. To transparently translate supervisor data read accesses of addresses
$00000000-$0FFFFFFF, the LOGICAL BASE ADDRESS field is set to $0X, the LOGICAL
ADDRESS MASK is set to $0F, the R/W bit is set to 1, the RWM bit is set to 0, the FC BASE
is set to $5, and the FC MASK field is set to $0. Since only read cycles are specified by the
TTx register for this example, write accesses for this address range can be translated with
the translation tables and write protection can be implemented as required.

Each TTx register can specify that the contents of logical addresses in its block should not
be stored in either an internal or external cache. The cache inhibit out signal (CIOUT) is
asserted when an address matches the address specified by a TTx register and the cache
inhibit bit in that TTx register is set. CIOUT is used by the on-chip instruction and data
caches to inhibit caching of data associated with this address. The signal is available to
external caches for the same purpose.

For an access, if either of these registers match, the access is transparently translated. If
both registers match, the CI bits are ORed together to generate the CIOUT signal.

Transparent translation can also be implemented by the translation tables of the translation
trees if the physical addresses of pages are set equal to the logical addresses.

9.4 ADDRESS TRANSLATION CACHE

The ATC is a 22-entry fully associative (content addressable) cache that contains address
translations in a form similar to the corresponding page descriptors in memory to provide
fast address translation of a recently used logical address.

The MC68030 is organized such that the translation time of the ATC is always completely
overlapped by other operations; thus, no performance penalty is associated with ATC
searches. The address translation occurs in parallel with on-chip instruction and data cache
accesses before an external bus cycle begins.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-15

If possible, when the ATC stores a new address translation, it replaces an entry that is no
longer valid. When all entries in the ATC are valid, the ATC selects a valid entry to be
replaced, using a pseudo least recently used algorithm. The ATC uses a validity bit and an
internal history bit to implement this replacement algorithm. ATC hit rates are application
dependent, but hit rates ranging from 98% to greater than 99% can be expected.

Each ATC entry consists of a logical address and information from a corresponding page
descriptor that contains the physical address. The 28-bit logical (or tag) portion of each entry
consists of three fields:

V — VALID
This bit indicates the validity of the entry. If V is set, this entry is valid. This bit is set
when the MC68030 loads an entry. A flush operation clears the bit. Specifically, any of
these operations clear the V bit of an entry:

• A PMOVE instruction with the FD bit equal to zero that loads a value into the CRP,
SRP, TC, TT0, or TT1 register.

• A PFLUSHA instruction.

• A PFLUSH instruction that selects this entry.

• A PLOAD instruction for a logical address and FC that matches the tag for this entry.
The instruction writes a new entry (with the V bit set) for the specified logical address.

• The selection of this entry for replacement by the replacement algorithm of the ATC.

FC — FUNCTION CODE
This 3-bit field contains the function code bits (FC0-FC2) corresponding to the logical ad-
dress in this entry.

LOGICAL ADDRESS
This 24-bit field contains the most significant logical address bits for this entry. All 24 bits
of this field are used in the comparison of this entry to an incoming logical address when
the page size is 256 bytes. For larger page sizes, the appropriate number of least signifi-
cant bits of this field are ignored.

27 26 24 23 0
V FC LOGICAL ADDRESS

Memory Management Unit

9-16

MC68030 USER’S MANUAL

MOTOROLA

Each logical portion of an entry has a corresponding 28-bit physical (or data) portion. The
physical portion contains these fields:

B — BUS ERROR
This bit is set for an entry if a bus error, an invalid descriptor, a supervisor violation, or a
limit violation is encountered during the table search corresponding to this entry. When B
is set, a subsequent access to the logical address causes the MC68030 to take a bus er-
ror exception. Since an ATC miss causes an immediate retry of the access after the table
search operation, the bus error exception is taken on the retry. The B bit remains set until
a PFLUSH instruction or a PLOAD instruction for this entry invalidates the entry or until
the replacement algorithm for the ATC replaces it.

CI — CACHE INHIBIT
This bit is set when the cache inhibit bit of the page descriptor corresponding to this entry
is set. When the MC68030 accesses the logical address of an entry with the CI bit set, it
asserts the cache inhibit out signal (CIOUT) during the corresponding bus cycle. This sig-
nal inhibits caching in the on-chip caches and can also be used for external caches.

WP — WRITE PROTECT
This bit is set when a WP bit is set in any of the descriptors encountered during the table
search for this entry. Setting a WP bit in a table descriptor write protects all pages access-
ed with that descriptor. When the WP bit is set, a write access or a read-modify-write ac-
cess to the logical address corresponding to this entry causes a bus error exception to be
taken immediately.

M — MODIFIED
This bit is set when a valid write access to the logical address corresponding to the entry
occurs. If the M bit is clear and a write access to this logical address is attempted, the
MC68030 aborts the access and initiates a table search, setting the M bit in the page de-
scriptor, invalidating the old ATC entry, and creating a new entry with the M bit set. The
MMU then allows the original write access to be performed. This assures that the first
write operation to a page sets the M bit in both the ATC and the page descriptor in the
translation tables even when a previous read operation to the page had created an entry
for that page in the ATC with the M bit clear.

27 26 25 24 23 0
B CI WP M PHYSICAL ADDRESS

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-17

PHYSICAL ADDRESS
This 24-bit field contains the physical address bits (A31-A8) from the page descriptor cor-
responding to the logical address. When the page size is larger than 256 bytes, not all bits
in the physical address field are used. All page index bits of the logical address are trans-
ferred to the bus controller without translation.

9.5 TRANSLATION TABLE DETAILS

The details of translation tables and their use include detailed descriptions of the
descriptors, table searching, translation table structure variations, and the protection
techniques available with the MC68030 MMU.

9.5.1 Descriptor Details

The descriptor details include detailed descriptions of the short- and long-format descriptors
used in the translation trees. The fields that apply to all descriptors are described in the first
paragraph.

9.5.1.1 DESCRIPTOR FIELD DEFINITIONS.

All descriptor fields are used in more than
one type of descriptor. This section lists these fields and describes the use of each field.

DT
This 2-bit field contains the descriptor type; the first two types apply to the descriptor it-
self. The other two types apply to the descriptors in the table at the next level of the tree.
The values are defined as follows:

$0 INVALID
This code identifies the current descriptor as an invalid descriptor. A table search
ends when an invalid descriptor is encountered.

$1 PAGE DESCRIPTOR
This code identifies the current descriptor as a page descriptor. The page descrip-
tor is a normal page descriptor when it resides in a page table (in the bottom level
of the translation tree). A page descriptor at a higher level is an early termination
page descriptor. A table search ends when a page descriptor of either type is en-
countered.

Memory Management Unit

9-18

MC68030 USER’S MANUAL

MOTOROLA

$2 VALID 4 BYTE
This code specifies that the next table to be accessed contains short-format de-
scriptors. The MC68030 multiplies the index for the next table by four to access the
next descriptor. (Short-format descriptors must be long-word aligned.) When used
in a page table (bottom level of an translation tree), this code identifies an indirect
descriptor that points to a short-format page descriptor.

$3 VALID 8 BYTE
This code specifies that the next table to be accessed contains long-format de-
scriptors. The MC68030 multiplies the index for the next table by eight to access
the next descriptor. (Long-format descriptors must be quad-word aligned.) When
used in a page table (bottom level of an address translation tree), this code identi-
fies an indirect descriptor that points to a long-format page descriptor.

U
This bit is automatically set by the processor when a descriptor is accessed in which the
U bit is clear except after a supervisor violation is detected. In a page descriptor table, this
bit is set to indicate that the page corresponding to the descriptor has been accessed. In
a pointer table, this bit is set to indicate that the pointer has been accessed by the
MC68030 as part of a table search. Note that a pointer may be fetched, and its U bit set,
for an address to which access is denied at another level of the tree. Updates of the U bit
are performed before the MC68030 allows a page to be accessed. The processor never
clears this bit.

WP
This bit provides write protection. The states of all WP bits encountered during a table
search are logically ORed, and the result is copied to the ATC entry at the end of a table
search for a logical address. During a table search for a PTEST instruction, the processor
copies this result into the MMU status register (MMUSR). When WP is set, the MC68030
does not allow the logical address space mapped by that descriptor to be written by any
program (i.e., this protection is absolute). If the WP bit is clear, the MC68030 allows write
accesses using this descriptor (unless access is restricted at some other level of the trans-
lation tree).

CI
This bit is set to inhibit caching of items within this page by the on-chip instruction and data
caches and, also, to cause the assertion of the CIOUT signal by the MC68030 for bus cy-
cles accessing items within this page.

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-19

L/U
This bit specifies the type of limit in the LIMIT field. When the L/U bit is set, the LIMIT field
contains the unsigned lower limit; the index value for the next level of the tree must be
greater than or equal to the value in the LIMIT field. When the bit is cleared, the limit is an
unsigned upper limit, and the index value must be less than or equal to the LIMIT. An out-
of-bounds access causes the B bit in the ATC entry for the address to be set and causes
the table search to abort.

LIMIT
This 15-bit field contains a limit to which the index portion of an address is compared to
detect an out-of-bounds index. The limit check applies to the index into the table at the
next lower level of the translation tree. If the descriptor is an early termination page de-
scriptor, the limit field is still used as a check on the next index field of the logical address.

M
This bit identifies a modified page. The MC68030 sets the M bit in the corresponding page
descriptor before a write operation to a page for which the M bit is zero, except after a
descriptor with the WP bit set is encountered, or after a supervisor violation is encoun-
tered. An access is considered to be a write for updating purposes if either the R/W or
RMC signal is low. The MC68030 never clears this bit.

PAGE ADDRESS
 This 24-bit field contains the physical base address of a page in memory. The low-order
bits of the address are supplied by the logical address. When the page size is larger than
256 bytes, one or more of the least significant bits of this field are not used. The number
of unused bits is equal to the PS field value in the TC register minus eight.

S
This bit identifies a pointer table or a page as a supervisor only table or page. When the
S bit is set, only programs operating at the supervisor privilege level are allowed to access
the portion of the logical address mapped by this descriptor. If this bit is clear, accesses
using this descriptor are not restricted to supervisor-only unless the access is restricted
by some other level of the translation tree.

TABLE ADDRESS
This 28-bit field contains the physical base address of a table of descriptors. The low-or-
der bits of the address are supplied by the logical address.

Memory Management Unit

9-20

MC68030 USER’S MANUAL

MOTOROLA

DESCRIPTOR ADDRESS
This 30-bit field, which contains the physical address of a page descriptor, is only used in
short- and long-format indirect descriptors.

UNUSED
The bits in this field are not used by the MC68030 and may be used by the system soft-
ware.

RESERVED
Descriptor fields designated by a one or a zero are reserved by Motorola for future defini-
tion. These bits should be consistently written as either a one or a zero as appropriate. In
the root pointers, these bits are not alterable. In memory-resident descriptors, the values
in these fields are neither checked nor altered by the MC68030. Use of these bits by sys-
tem software for any purpose may not be supported in future products.

9.5.1.2 ROOT POINTER DESCRIPTOR.

A root pointer descriptor contains the address of
the top-level pointer table of a translation tree. This type of descriptor is loaded into the CRP
and SRP registers with the PMOVE instruction. The field descriptions in the preceding
section apply to corresponding fields of the CRP and SRP with two minor exceptions. A
descriptor-type code of $00 (invalid) is not allowed; an attempt to load zero into the DT field
of the CRP or SRP register results in an MMU configuration exception. Also, when the FCL
field of the TC register is set, the L/U and LIMIT fields of the root pointer registers are
unused. Figure 9-9 shows the root pointer descriptor format.

9.5.1.3 SHORT-FORMAT TABLE DESCRIPTOR.

The field descriptions in

9.5.1.1
DESCRIPTOR FIELD DEFINITIONS

apply to corresponding fields of this descriptor. Figure
9-10 shows the format of the short-format table descriptor.

9.5.1.4 LONG-FOMAT TABLE DESCRIPTOR.

The field descriptions in

9.5.1.1
DESCRIPTOR FIELD DEFINITIONS

 apply to corresponding fields of this descriptor. During
address computations, the MC68030 internally replaces the UNUSED field with zeros.
Figure 9-11 shows the format of the long-format table descriptor.

(UNABLE TO LOCATE ART)

Figure 9-9. Root Pointer Descriptor Format

(UNABLE TO LOCATE ART)

Figure 9-10. Short-Format Table Descriptor

(UNABLE TO LOCATE ART)

Figure 9-11. Long-Format Table Descriptor

Memory Management Unit

MOTOROLA

MC68030 USER’S MANUAL

9-21

9.5.1.5 SHORT-FORMAT EARLY TERMINATION PAGE DESCRIPTOR.

The short-
format early termination page descriptor contains the page descriptor code in the DT field
but resides in a pointer table. That is, the table in which an early termination page descriptor
is located is not at the bottom level of the address translation tree. The field descriptions in

9.5.1.1 Descriptor Field Definitions

 apply to corresponding fields of this descriptor. Figure
9-12 shows the format of the short-format early termination page descriptor.

9.5.1.6 LONG-FORMAT EARLY TERMINATION PAGE DESCRIPTOR.

The long-format
early termination page descriptor contains the page descriptor code in the DT field but
resides in a pointer table like the short-format early termination page descriptor. The field
descriptions in

9.5.1.1 Descriptor Field Definitions

 apply to corresponding fields of this
descriptor. Figure 9-13 shows the format of the long-format early termination page
descriptor. The LIMIT field of the long-format descriptor provides a means of limiting the
number of pages to which the descriptor applies.

(UNABLE TO LOCATE ART)

Figure 9-12. Short-Format Page Descriptor and
Short-Format Early Termination Page Descriptor

(UNABLE TO LOCATE ART)

Figure 9-13. Long-Format Early Termination Page Descriptor

Memory Management Unit

9-22

MC68030 USER’S MANUAL

MOTOROLA

9.5.1.7 SHORT-FORMAT PAGE DESCRIPTOR. The short-format page descriptor is used
in the page tables (the bottom level of the address table). The field descriptions in 9.5.1.1
Descriptor Field Definitions apply to the corresponding fields of this descriptor. The short-
format page descriptor is identical to of the short-format early termination page descriptor
shown in Figure 9-12.

9.5.1.8 LONG-FORMAT PAGE DESCRIPTOR. The long-format page descriptor is also
used in the page tables. The field descriptions in 9.5.1.1 Descriptor Field Definitions apply
to the corresponding fields of this descriptor. Figure 9-14 shows the format of the long-
format page descriptor.

9.5.1.9 SHORT-FORMAT INVALID DESCRIPTOR. The short-format invalid descriptor
consists of a DT field that contains zeros, identifying it as an invalid descriptor. It can be used
at any level of the address translation tree except at the root pointer level. The 30-bit unused
field is available to the operating system to identify unallocated portions of the table or
portions of the table that reside on an external device. For example, the disk address of disk-
resident tables or pages can be stored in this field. Figure 9-15 shows the format of a short-
format invalid descriptor.

(UNABLE TO LOCATE ART)

Figure 9-14. Long-Format Page Descriptor

(UNABLE TO LOCATE ART)

Figure 9-15. Short-Format Invalid Descriptor

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-23

9.5.1.10 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format invalid descriptor is
used in pointer and page tables that contain long-format descriptors. It is used in the same
way as the short-format invalid descriptor in the preceding section. The first long word
contains the DT field in the lowest order bits. The second long word is an unused field, also
available to the operating system. Figure 9-16 shows the format of the long-format invalid
descriptor.

9.5.1.11 SHORT-FORMAT INDIRECT DESCRIPTOR. The short-format indirect descriptor
does not have a unique descriptor-type code. Rather, it resides in a page table (the bottom
level of the address translation tree) that contains short-format descriptors and is neither a
page descriptor nor an invalid descriptor. The descriptor-type field contains either the code
for a valid 4-byte descriptor or for a valid 8-byte descriptor, depending upon the size of the
referenced page descriptor. The field descriptions in 9.5.1.1 Descriptor Field Definitions
apply to the corresponding fields of this descriptor. Figure 9-17 shows the format of a short-
format indirect descriptor.

(UNABLE TO LOCATE ART)

Figure 9-16. Long-Format Invalid Descriptor

(UNABLE TO LOCATE ART)

Figure 9-17. Short-Format Indirect Descriptor

Memory Management Unit

9-24 MC68030 USER’S MANUAL MOTOROLA

9.5.1.12 LONG-FORMAT INDIRECT DESCRIPTOR. The long-format indirect descriptor
has all the attributes of the short-format indirect descriptor described in the preceding
section. The only differences are that it is used in a page table that contains long-format
descriptors and that it has two unused fields. The field descriptions in 9.5.1.1 Descriptor
Field Definitions apply to corresponding fields of this descriptor. Figure 9-18 shows the
format of a long-format indirect descriptor.

9.5.2 General Table Search
When the ATC does not contain a descriptor for the logical address of a processor access
and a translation is required, the MC68030 searches the translation tables in memory and
obtains the physical address and status information for the page corresponding to the logical
address. When a table search is required, the CPU suspends instruction execution activity
and, at the end of a successful table search, stores the address mapping in the ATC and
retries the access. The access then results in a match (it hits) and the translated address is
transferred to the bus controller (provided no exceptions were encountered).

The table search begins by selecting the translation tree, using function code bit FC2 and
the SRE bit of the TC register, as shown in Table 9-2. SRE is set to enable the supervisor
root pointer, and FC2 is set for supervisor-level accesses. The translation tree with its root
defined by the SRP register is selected only when SRE and FC2 are both set. Otherwise,
the translation table with its root defined by the CRP register is selected. A simplified
flowchart of the table search procedure is shown in Figure 9-19.

(UNABLE TO LOCATE ART)

Figure 9-18. Long-Format Indirect Descriptor

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-25

The table search procedure uses physical addresses to access the translation tables. The
read-modify-write (RMC) signal is asserted on the first bus cycle of the search and remains
asserted throughout, ensuring that the entire table search completes without interruption.

The first bus cycle of the search uses the table address field of the appropriate root pointer
as the base address of the first table. The low-order bits of the address are supplied by the
logical address. The table is indexed by either the function code or the set of logical address
bits defined by the TIA field of the TC register. The FCL field of the TC register determines
whether or not the function code is used. In either case, the descriptor-type field of the root
pointer selects the scale factor (or multiplier) for the index.

The first access obtains a descriptor. If the descriptor is a table descriptor, the MC68030
again accesses memory. The next access uses the table address in the descriptor as the
base address for the next table. The low-order bits of the address are supplied by the logical
address. The table is indexed by a set of bits from the logical address using a scale factor
determined by the descriptor type code in the descriptor. If the first table access used the
function code, the second access uses the bits selected by the TIA field of the TC register.
Otherwise, the second access uses the bits selected by the TIB field.

Additional accesses are performed, using the logical address bits specified in TIB, TIC, or
TID in order, until an access obtains a page descriptor or an invalid descriptor or until a limit
violation occurs. At this point, whether or not all levels of the address table have been
accessed, the table search is over. The page descriptor contains the physical address and
other information needed for the ATC entry; the MC68030 creates the ATC entry and retries
the original bus access.

Figure 9-20 shows a table search using the function code and all four TIx fields.

(UNABLE TO LOCATE ART)

Figure 9-19. Simplified Table Search Flowchart

Table 9-2. Translation Tree Selection

FC2 SRE Translation Table Root Pointer
0 0 CRP
0 1 CRP
1 0 CRP
1 1 SRP

Memory Management Unit

9-26 MC68030 USER’S MANUAL MOTOROLA

The MC68030 enforces a limit on the index value for the next level of a table search when
long-format descriptors are used.

The root pointer includes a limit field that applies when the function code lookup is not used
(the FCL bit of the TC register is zero). The index used to access the next level table is
compared to the contents of the limit field. The limit field effectively reduces the portion of
the address space to which a descriptor applies and also reduces the size of the translation
table. The index must reside within the range defined by the limit field. The limit can be a
lower limit or an upper limit, according to the L/U bit value. When the L/U bit is set, the limit
is a lower limit, and an index less than the limit is out of bounds. When the L/U bit is zero,
the limit is an upper limit, and an index greater than the limit is out of bounds. The limit field
is effectively disabled if L/U is set and the limit field contains zero or if L/U is clear and the
limit field contains $7FFF.

During a table search for an normal translation or a PLOAD instruction, if a limit violation is
detected, the ATC is loaded with an entry having the bus error (B) bit set. If a limit violation
is detected during a table search for a PTEST instruction, the invalid (I) and limit (L) bits are
set in the MMUSR.

During a table search, the U bit in each descriptor that is encountered is checked and set if
it is not already set. Similarly, when the table search is for a write access and the M bit of
the page descriptor is clear, the processor sets the bit if the table search does not encounter
a set WP bit or a supervisor violation. Since the read-modify-write (RMC) signal is asserted
throughout the entire table search operation, the read and write operations to update the
history bits are guaranteed to be uninterrupted.

A table search terminates successfully when a page descriptor is encountered. The
occurrence of an invalid descriptor, a limit violation, or a bus error also terminates a table
search, and the MC68030 takes an exception on the retry of the cycle because of these
conditions. The exception routine should distinguish between anticipated conditions and
true error conditions. The routine can correct an invalid descriptor that indicates a
nonresident page or one that identifies a portion of the translation table yet to be allocated.
A limit violation or a bus error due to a system malfunction may result in an error message
and termination of the task.

(UNABLE TO LOCATE ART)

Figure 9-20. Five-Level Table Search

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-27

9.5.3 Variations in Translation Table Structure
Many aspects of the MMU translation tree structure are software configurable, allowing the
system designer flexibility to optimize the performance of the MMU for a particular system.
The following paragraphs discuss the variations of the tree structure from the general
structure discussed previously.

9.5.3.1 EARLY TERMINATION AND CONTIGUOUS MEMORY. The MMU provides the
ability to map a contiguous range of the logical address space (an integral number of logical
pages) to an equivalent contiguous physical address range with a single descriptor. This is
done by placing the code for page descriptor ($1) in the descriptor type (DT) field of a
descriptor at a level of the tree that would normally contain a table pointer, thereby deleting
a subtree of the table.

The table search ends when the search encounters a page descriptor, whether or not the
page descriptor is in a page descriptor table at the lowest level of the translation tree.

Termination of the table search by a page descriptor in a pointer descriptor table (i.e., the
MC68030 has not encountered a TIx field of zero) is called an early termination. The
terminating page descriptor is called an early termination page descriptor.

An early termination page descriptor takes the place of many page descriptors in a
translation table. It applies to all pages that would exist on the branch on which the
descriptor has been placed, and on any branches from that branch. An early termination
page descriptor can be used where contiguous pages in physical memory correspond to
contiguous logical pages. If an early termination page descriptor is a long format, the limit
field is applied to the next index field of the logical address. This allows the number of pages
mapped contiguously to be restricted. Refer to 9.1.2 Translation Table Descriptors for
additional information.

If n low-order bits of the logical page address are unused when a page descriptor encoding
is encountered, the single descriptor creates a mapping of a contiguous region of the logical
address space starting at the logical page address (with n unused bits set to zero) to a
contiguous region in the physical address space starting at the page frame base address
with a size of 2PS+n bytes.

Memory Management Unit

9-28 MC68030 USER’S MANUAL MOTOROLA

When a search is made for a logical address to which an early termination page descriptor
applies, the MC68030 creates an entry in the ATC for the logical address; the physical
address in the ATC entry is the sum of the page address field in the descriptor plus an offset.
The offset is the logical address with the bits used in the search set to zero.

Although the early termination page descriptor creates a contiguous logical-to-physical
mapping without having to maintain individual descriptors in the translation tree for each
page that is a member of the contiguous region, the ATC contains one entry for each page
mapped. These entries are created internally each time a page boundary (as determined by
the page size) is crossed in the contiguous region. Figure 9-21 shows an example
translation table with a portion of the logical address space translated as a contiguous block.

Note that the DT field can be set to page descriptor at any level of the translation tree
including the root pointer level. Setting the DT field of a root pointer to page descriptor
creates a direct mapping from the logical to the physical address space with a constant
offset as determined by the value in the table address field of the root pointer.

9.5.3.2 INDIRECTION. The MC68030 provides the ability to replace an entry in a page table
with a pointer to an alternate entry. The indirection capability allows multiple tasks to share
a physical page while maintaining only a single set of history information for the page (i.e.,
the "modified" indication is maintained only in the single descriptor). The indirection
capability also allows the page frame to appear at arbitrarily different addresses in the logical
address spaces of each task.

Using the indirection capability, single entries or entire tables can be shared between
multiple tasks. Figure 9-22 shows two tasks sharing a page using indirect descriptors.

When the MC68030 has completed a normal table search (has exhausted all index fields of
the logical page address), it examines the descriptor-type field of the last entry fetched from
the translation tables. If the DT field contains a "valid long" ($2) or "valid short" ($3)
encoding, this indicates that the address contained in the highest order 30 bits of the table
address field of the descriptor is a pointer to the page descriptor that is to be used to map
the logical address. The processor then fetches the page descriptor of the indicated format
from this address and uses the page address field of the page descriptor as the physical
mapping for the logical address.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-29

(UNABLE TO LOCATE ART)

Figure 9-21. Example Translation Tree Using Contiguous Memory

Memory Management Unit

9-30 MC68030 USER’S MANUAL MOTOROLA

The page descriptor located at the address given by the indirect descriptor must not have a
DT field with a long or short encoding (it must either be a page descriptor or invalid).
Otherwise, the descriptor is treated as invalid, and the MC68030 creates an ATC entry with
an error condition signaled (bit set).

9.5.3.3 TABLE SHARING BETWEEN TASKS . A page or pointer table can be shared
between tasks by placing a pointer to the shared table in the address translation tables of
more than one task. The upper (nonshared) tables can contain different settings of
protection bits allowing different tasks to use the area with different permissions. In Figure
9-23 two tasks share the memory translated by the table at the B level. Note that task "A"
cannot write to the shaded area. Task "B", however, has the WP bit clear in its pointer to the
shared table; thus, it can read and write the shared area. Also note that the shared area
appears at different logical addresses for each task.

9.5.3.4 PAGING OF TABLES. It is not required that the entire address translation tree for
an active task be resident in main memory at once. In the same way that only the working
set of pages must reside in main memory, only the tables that describe the resident set of
pages need be available in main memory. This paging of tables is implemented by placing
the "invalid" code ($0) in the DT field of the table descriptor that points to the absent table(s).
When a task attempts to use an address that would be translated by an absent table, the
MC68030 is unable to locate a translation and takes a bus error exception when the
execution unit retries the bus cycle that caused the table search to be initiated.

It is the responsibility of the system software to determine that the invalid code in the
descriptor corresponds to nonresident tables. This determination can be facilitated by using
the unused bits in the descriptor to store status information concerning the invalid encoding.
When the MC68030 encounters an invalid descriptor, it makes no interpretation (or
modification) of any fields of this descriptor other than the DT field, allowing the operating
system to store system-defined information in the remaining bits. Typical information that is
stored includes the reason for the invalid encoding (tables paged-out, region not allocated,
. . .etc.) and possibly the disk address for nonresident tables.

Figure 9-24 shows an address translation table in which only a single page table (table n) is
resident and all other page tables are not resident.

(UNABLE TO LOCATE ART)

Figure 9-22. Example Translation Tree Using Indirect Descriptors

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-31

(UNABLE TO LOCATE ART)

Figure 9-23. Example Translation Tree Using Shared Tables

Memory Management Unit

9-32 MC68030 USER’S MANUAL MOTOROLA

9.5.3.5 DYNAMIC ALLOCATION OF TABLES. Similar to the case of paged tables, it is not
required that a complete translation tree exist for an active task. The translation tree can be
dynamically allocated by the operating system based on requests for access to particular
areas.

As in the case of demand paging, it is difficult, if not impossible, to predict the areas of
memory that are used by a task over any extended period of time. Instead of attempting to
predict the requirements of the task, the operating system performs no action for a task until
a demand is made requesting access to a previously unused area or an area that is no
longer resident in memory. This same technique can be used to efficiently create a
translation tree for a task.

For example, consider an operating system that is preparing the system to execute a
previously unexecuted task that has no translation tree. Rather than guessing what the
memory usage requirements of the task are, the operating system creates a translation tree
for the task that maps one page corresponding to the initial value of the program counter for
that task, and possibly, one page corresponding to the initial stack pointer of the task. All
other branches of the translation tree for this task remain unallocated until the task requests
access to the areas mapped by these branches. This technique allows the operating system
to construct a minimal translation tree for each task, conserving physical memory utilization
and minimizing operating system overhead.

9.5.4 Detail of Table Search Operations
The table search operations described in this section are shown in detail in Figures 9-25-9-
29.

(UNABLE TO LOCATE ART)

Figure 9-24. Example Translation Tree with Nonresident Tables

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-33

(UNABLE TO LOCATE ART)

Figure 9-25. Detailed Flowchart of MMU Table Search Operation

Memory Management Unit

9-34 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Figure 9-26. Table Search Initialization Flowchart

(UNABLE TO LOCATE ART)

Figure 9-27. ATC Entry Creation Flowchart

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-35

9.5.5 Protection
M68000 Family processors provide an indication of the context in which they are operating
on a cycle-by-cycle basis by means of the function code signals. These signals identify
accesses to the user program space, the user data space, the supervisor program space,
and the supervisor data space. The function code signals can be used for protection
mechanisms by setting the function code lookup (FCL) bit in the translation control (TC)
register.

The MC68030 MMU provides the capability for separate translation trees for supervisor and
user spaces to be used. When the supervisor root pointer enable bit (SRE) in the TC register
is set, the root pointer register for the supervisor space translation tree is selected for
supervisor program or data accesses.

The translation table trees contain both mapping and protection information. Each table and
page descriptor includes a write-protect (WP) bit, which can be set to provide write
protection at any level. Each long-format table and page descriptor also contains a
supervisor-only (S) bit, which can limit access to programs operating at the supervisor
privilege level.

(UNABLE TO LOCATE ART)

Figure 9-28. Limit Check Procedure Flowchart

Memory Management Unit

9-36 MC68030 USER’S MANUAL MOTOROLA

The protection mechanisms can be used individually or in any combination to protect:

• Supervisor program and data spaces from access by user programs.

• User program and data spaces from access by other user programs or supervisor pro-
grams (except with the MOVES instruction).

• Supervisor and user program spaces from write accesses (except by the supervisor us-
ing the MOVES instruction).

• One or more pages of memory from write accesses.

9.5.5.1 FUNCTION CODE LOOKUP. One way of protecting supervisor and user spaces
from unauthorized access is to set the FCL bit in the TC register. This effectively segments
the logical address space into a supervisor program space, a supervisor data space, a user
program space, and a user data space, as shown in Figure 9-30. Each task has an address
translation tree with unique mappings for the logical addresses in its user spaces. The
translation tables for mapping the supervisor spaces can be copied into each task's
translation tree. Figure 9-31 shows a translation tree using function code lookup, and Figure
9-32 shows translation trees for two tasks that share common supervisor spaces.

(UNABLE TO LOCATE ART)

Figure 9-29. Detailed Flowchart of Descriptor Fetch Operation

(UNABLE TO LOCATE ART)

Figure 9-30. Logical Address Map Using Function Code Lookup

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-37

(UNABLE TO LOCATE ART)

Figure 9-31. Example Translation Tree Using Function Code Lookup

Memory Management Unit

9-38 MC68030 USER’S MANUAL MOTOROLA

9.5.5.2 SUPERVISOR TRANSLATION TREE. A second protection mechanism uses a
supervisor translation tree. A supervisor translation tree protects supervisor programs and
data from access by user programs and user programs and data from access by supervisor
programs. Access is granted to the supervisor programs which can access any area of
memory with the move address space (MOVES) instruction. When the SRE bit in the TC
register is set, the translation tree pointed to by the SRP is selected for all supervisor level
accesses. This translation tree can be common to all tasks. This technique segments the
logical address space into user and supervisor areas without adding the function code level
to the translation trees.

9.5.5.3 SUPERVISOR ONLY. A third mechanism protects supervisor programs and data
without segmenting the logical address space into supervisor and user address spaces. The
long formats of table descriptors and page descriptors contain S bits to protect areas of
memory from access by user programs. When a table search for a user access encounters
an S bit set in any table or page descriptor, the table search is completed and an ATC
descriptor corresponding to the logical address is created with the B bit set. The subsequent
retry of the user access results in a bus error exception being taken. The S bit can be used
to protect the entire area of memory defined in a branch of the translation tree or only one
or more pages from user program access.

9.5.5.4 WRITE PROTECT. The MC68030 provides write protection independently of the
segmented address spaces for programs and data. All table and page descriptors contain
WP bits to protect areas of memory from write accesses of any kind. When a table search
encounters a WP bit set in any table or page descriptor, the table search is completed and
an ATC descriptor corresponding to the logical address is created with the WP bit set. The
subsequent retry of the write access results in a bus error exception being taken. The WP
bit can be used to protect the entire area of memory defined in a branch of the translation
tree, or only one or more pages from write accesses. Figure 9-33 shows a memory map of
the logical address space organized to use S and WP bits for protection. Figure 9-34 shows
an example translation tree for this technique.

(UNABLE TO LOCATE ART)

Figure 9-32. Example Translation Tree Structure for Two Tasks

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-39

(UNABLE TO LOCATE ART)

Figure 9-33. Exmple Logical Address Map with Shared Supervisor
and User Address Spaces

Memory Management Unit

9-40 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Figure 9-34. Exmple Translation Tree Using S and WP Bits to Set Protection

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-41

9.6 MC68030 AND MC68851 MMU DIFFERENCES
The MC68851 paged memory management unit provides memory management for the
MC68020 as a coprocessor. The on-chip MMU of the MC68030 provides many of the
features of the MC68020/MC68851 combination. The following functions of the MC68851
are not available in the MC68030 MMU:

• Access Levels

• Breakpoint Registers

• Root Pointer Table

• Aliases for Tasks

• Lockable Entries in the ATC

• ATC Entries Defined as Shared Globally

In addition, the following features of the MC68030 MMU differ from the MC68020/MC68851
pair:

• 22-Entry ATC

• Reduced Instruction Set

• Only Control-Alterable Addressing Modes Supported for MMU Instructions

In general, the MC68030 is program compatible with the MC68020/MC68851 combination.
However, in a program for the MC68030, the following instructions must be avoided or
emulated in the exception routine for F-line unimplemented instructions: PVALID,
PFLUSHR, PFLUSHS, PBcc, PDBcc, PScc, PTRAPcc, PSAVE, PRESTORE, and PMOVE
for unsupported registers (CAL, VAL, SCC, BAD, BACx, DRP, and AC). Additionally, the
effective addressing modes supported on the MC68851 that are not emulated by the
MC68030 must be simulated or avoided.

Memory Management Unit

9-42 MC68030 USER’S MANUAL MOTOROLA

9.7 REGISTERS
The registers of the MMU described here are part of the supervisor programming model for
the MC68030.

The six registers that control and provide status information for address translation in the
MC68030 are the CPU root pointer register (CRP), the supervisor root pointer register
(SRP), the translation control register (TC), two independent transparent translation control
registers (TT0 and TT1), and the MMU status register (MMUSR). These registers can be
accessed directly by programs that execute only at the supervisor level.

9.7.1 Root Pointer Registers
The supervisor root pointer (SRP), used for supervisor accesses only, is enabled or disabled
in software. The CPU root pointer (CRP) corresponds to the current translation table for user
space (when the SRP is enabled) or for both user and supervisor space (when the SRP is
disabled). The CRP is a 64-bit[lz register that contains the address and related status
information of the root of the translation table tree for the current task. When a new task
begins execution, the operating system typically writes a new root pointer descriptor to the
CRP. A new translation table address implies that the contents of the address translation
cache (ATC) may no longer be valid. Therefore, the instruction that loads the CRP can
optionally flush the ATC.

The SRP is a 64-bit register that optionally contains the address and related status
information of the root of the translation table for supervisor area accesses. The SRP is used
when operating at the supervisor privilege level only when the supervisor root pointer enable
bit (SRE) of the translation control register (TC) is set. The instruction that loads the SRP
can optionally flush the ATC. The format of the CRP and SRP is shown in Figure 9-35 and
defines the following fields:

Lower/Upper (L/U)
Specifies that the value contained in the limit field is to be used as the unsigned lower
limit of indexes into the translation tables when this bit is set. When this bit is cleared,
the limit field is the unsigned upper limit of the translation table indexes.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-43

Limit
Specifies a maximum or minimum value for the index to be used at the next level of table
search (the function code level cannot be limited). To suppress the limit function, the L/U
bit is cleared and the limit field is set to ones ($7FFF in the word containing both fields),
or the L/U bit is set and the limit field is cleared ($8000 in that word).

Descriptor Type (DT)
Specifies the type of descriptor contained in either the root pointer or in the first level of
the translation table identified by the root pointer. The values are:

$0 INVALID
This value is not allowed at the root pointer level. When a root pointer register is
loaded with an invalid root pointer descriptor, an MMU configuration exception is
taken.

$1 PAGE DESCRIPTOR
A translation table for this root pointer does not exist. The MC68030 internally cal-
culates an ATC entry (page descriptor) for accesses using this root pointer within
the current page by adding (unsigned) the value in the table address field to the
incoming logical address. This results in direct mapping with a constant offset (the
table address). For this case, the processor performs a limit check, regardless of
the state of the FCL bit in the TC register.

$2 VALID 4 BYTE
The translation table at the root of the translation tree contains short-format de-
scriptors. The MC68030 must scale the table index for this level of the table
search by 4 bytes to access the next descriptor.

$3 VALID 8 BYTE
The translation table at the root of the translation tree contains long-format de-
scriptors. The MC68030 must scale the table index for this level of the table
search by 8 bytes to access the next descriptor.

Table Address
Contains the physical base address (in bits 31-4) of the translation table at the root
pointer level. When the DT field contains $1, the value in the table address field is the
offset used to calculate the physical address for the page descriptor. The table address
field can contain zero (for zero offset).

Unused
Bits 3-0 of the root pointer are not used and are ignored when written. All other unused
bits must always be zeros.

Memory Management Unit

9-44 MC68030 USER’S MANUAL MOTOROLA

9.7.2 Translation Control Register
The translation control register (TC) is a 32-bit register that contains the control fields for
address translation. All unimplemented fields of this register are read as zeros and must
always be written as zeros.

Writing to this register optionally causes a flush of the entire ATC. When written with the E
bit (bit 31) set (translation enabled), a consistency check is performed on the values of PS,
IS, and TIx as follows. The TIx fields are added together until a zero field is reached, and
this sum is added to PS and IS. The total must be 32, or an MMU configuration exception
(refer to 9.7.5.3 MMU Configuration Exception) is taken. If an MMU configuration
exception occurs, the TC register is updated with the data, and the E bit is cleared. The
translation control register is shown in Figure 9-36.

The fields of the TC register are:

Enable (E)
 This bit enables and disables address translation:

 0 — Translation disabled

 1 — Translation enabled
 A reset operation clears this bit. When translation is disabled, logical addresses are used
as physical addresses. The MMU instructions (PTEST, PLOAD, PMOVE, PFLUSH) can
be executed successfully, regardless of the state of the E bit. Additionally, even if the E
bit is set, the TC register can be updated with a value whose E bit is set. The state of the
E bit does not affect the use of the transparent translation registers.

Supervisor Root Pointer Enable (SRE)
 This bit controls the use of the supervisor root pointer register (SRP):

 0 — SRP disabled

 1 — SRP enabled
 When the SRP is disabled, both user and supervisor accesses use the translation table
defined by the CRP. When the SRP is enabled, user accesses use the CRP, and super-
visor accesses use the SRP.

(UNABLE TO LOCATE ART)

Figure 9-35. Root Pointer Register (CRP, SRP) Format

(UNABLE TO LOCATE ART)

Figure 9-36. Translation Control Register (TC) Format

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-45

Function Code Lookup (FCL)
 This bit enables the use of function code lookup for searching the address translation ta-
bles:

 0 — Function code lookup disabled

 1 — Function code lookup enabled
 When function code lookup is disabled, the first level of pointer tables within the transla-
tion table structure is indexed by the logical address field defined by TIA. When function
code lookup is enabled, the first table of the translation table structure is indexed by func-
tion code. In this case, the limit field of CRP or SRP is ignored.

Memory Management Unit

9-46 MC68030 USER’S MANUAL MOTOROLA

Page Size (PS)
 This 4-bit field specifies the system page size:

 1000 — 256 bytes
 1001 — 512 bytes
 1010 — 1K bytes
 1011 — 2K bytes
 1100 — 4K bytes
 1101 — 8K bytes
 1110 — 16K bytes
 1111 — 32K bytes

 All other bit combinations are reserved by Motorola for future use; an attempt to load oth-
er values into this field of the TC register causes an MMU configuration exception.

Initial Shift (IS)
This 4-bit field contains the number of high-order bits of the logical address that are ig-
nored during table search operations. The field contains an integer, 0-15, which sets the
effective size of the logical address to 32-17 bits, respectively. Since all 32 bits of the ad-
dress are compared during address translation, bits ignored due to initial shift cannot have
random values. They must be specified and be consistent with the translation table values
in order to ensure that subsequent address translations match the corresponding entries
in the ATC.

Table Index (TIA, TIB, TIC, and TID)
These 4-bit fields specify the numbers of logical address bits used as the indexes for the
four possible levels of the translation tables (not including the optional level indexed by
the function codes). The index into the highest level table (following the function code,
when used) is specified by TIA, and the lowest level, by TID. The fields contain integers,
0-15. When a zero value in a TIx field is encountered during a table search operation, the
search is over unless the indexed descriptor is a table (indirect) descriptor.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-47

9.7.3 Transparent Translation Registers
The transparent translation registers (TT0 and TT1) are 32-bit registers that define blocks
of logical address space that are transparently translated. Logical addresses in a
transparently translated block are used as physical addresses, without modification and
without protection checking. The minimum size block that can be defined by either TTx
register is 16 Mbytes of logical address space. The two TTx registers can specify blocks that
overlap. The TTx registers operate independently of the E bit in the TC register and the state
of the MMUDIS signal. A transparent translation register is shown in Figure 9-37.

The fields of the transparent translation register are:

Enable (E)
 This bit enables transparent translation of the block defined by this register:

 0 — Transparent translation disabled

 1 — Transparent translation enabled

 A reset operation clears this bit.

Cache Inhibit (CI)
 This bit inhibits caching for the transparent block:

 0 — Caching allowed

 1 — Caching inhibited
 When this bit is set, the contents of a matching address are not stored in the internal in-
struction or data cache. Additionally, the cache inhibit out signal (CIOUT) is asserted
when this bit is set, and a matching address is accessed, signaling external caches to in-
hibit caching for those accesses.

Read/Write (R/W)
 This bit defines the type of access that is transparently translated (for a matching ad-
dress):

 0 — Write accesses transparent

 1 — Read accesses transparent

Read/Write Mask (RWM)
 This bit masks the R/W field:

 0 — R/W field used

 1 — R/W field ignored

(UNABLE TO LOCATE ART)

Figure 9-37. Transparent Translation Register (TT0 and TT1) Format

Memory Management Unit

9-48 MC68030 USER’S MANUAL MOTOROLA

 When RWM is set to one, both read and write accesses of a matching address are trans-
parently translated. For transparent translation of read-modify-write cycles with matching
addresses, RWM must be set to one. If the RWM bit equals zero, neither the read nor the
write of any read-modify-write cycle is transparently translated with the TTx register.

Function Code Base (FC BASE)
This 3-bit field defines the base function code for accesses to be transparently translated
with this register. Addresses with function codes that match the FC BASE field (and are
otherwise eligible) are transparently translated.

Function Code Mask (FC MASK)
This 3-bit field contains a mask for the FC BASE field. Setting a bit in this field causes
the corresponding bit of the FC BASE field to be ignored.

LOGICAL ADDRESS BASE
This 8-bit field is compared with address bits A31-A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-49

LOGICAL ADDRESS MASK
This 8-bit field contains a mask for the LOGICAL ADDRESS BASE field. Setting a bit in
this field causes the corresponding bit of the LOGICAL ADDRESS BASE field to be ig-
nored. Blocks of memory larger than 16 Mbytes can be transparently translated by setting
some of the logical address mask bits to ones. Normally, the low-order bits of this field are
set to define contiguous blocks larger than 16 Mbytes, although this is not required.

9.7.4 MMU Status Register
The MMU status register (MMUSR) is a 16-bit register that contains the status information
returned by execution of the PTEST instruction. The PTEST instruction searches either the
ATC (PTEST with level 0) or the translation tables (PTEST with levels of 1-7) to determine
status information about the translation of a specified logical address. The MMUSR is shown
in Figure 9-38.

(UNABLE TO LOCATE ART)

Figure 9-38. MMU Status Register (MMUSR) Format

Memory Management Unit

9-50 MC68030 USER’S MANUAL MOTOROLA

The bits in the MMUSR have different meanings for the two kinds of PTEST instructions, as
shown in Table 9-3.

Table 9-3. MMUSR Bit Definitions

MMUSR Bit PTEST, Level 0 PTEST, Level 1-7
Bus Error (B) This bit is set if the bus error bit is

set in the ATC entry for the
specified logical address.

This bit is set if a bus error is
encountered during the table
search for the PTEST instruction.

Limit (L) This bit is cleared. This bit is set if an index exceeds a
limit during the table search

Supervisor Violation (S) This bit is cleared This bit is set if the S bit of a long (S)
format table descriptor or long
format page descriptor
encountered during the search is
set, and the FC2 bit of the function
code specified by the PTEST
instruction is not equal to one. The
S bit is undefined if the I bit is set.

Write Protected (W) This bit is set if the WP bit of the
ATC entry is set. It is undefined if
the I bit is set

This bit is set if a descriptor or page
descriptor is encountered with the
WP bit set during the table search.
The W bit is undefined if the I bit is
set.

Invalid (I) This bit indicates an invalid
translation. The I bit is set if the
translation for the specified logical
address is not resident in the ATC
or if the B bit of the corresponding
ATC entry is set.

This bit indicates an invalid
translation. The I bit is set if the DT
field of a table or a page descriptor
encountered during the serach is
set to invalid or if either the B or L
bits of the MMUSR are set during
the table search.

Modified (M) This bit is set if the ATC entry
corresponding to the specified
address has the modified bit set. It
is undefined if the I bit is set.

This bit is set if the page descriptor
for the specified address has the
modified bit set. It is undefined if I is
set.

Transparent (T) This bit is set if a match occurred in
either (or both) of the transparent
translation registers (TT0 or TT1). If
the T bit is set, all remaining
MMUSR bits are undefined.

This bit is set to zero.

Number of Levels (N) This 3-bit field is cleared to zero. This 3-bit field contains the actual
number of tables accessed during
the search.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-51

9.7.5 Register Programming Considerations
If the entries in the address translation cache (ATC) are no longer valid when a reset
operation occurs, an explicit flush operation must be specified by the software. The
assertion of RESET disables translations by clearing the E bits of the TC and TTx registers,
but it does not flush the ATC. Flushing of the ATC is optional under control of the FD bit of
the PMOVE instruction that loads a new value into the SRP, CRP, TT0, TT1, or TC register.

The programmer of the MMU must be aware of effects resulting from loading certain
registers. A subsequent section describes these effects. The MMUSR values lend
themselves to the use of a case structure for branching to appropriate routines in a bus error
handler. An example of a flowchart that implements this technique is shown in another
section. A third section describes the conditions that result in MMU exceptions.

9.7.5.1 REGISTER SIDE EFFECTS. The PMOVE instruction is used to load or read any of
the MMU registers (CRP, SRP, TC, MMUSR, TT0, and TT1). Since loading the root
pointers, the translation control register, or the transparent translation registers with new
values can cause some or all of the address translations to change, it may be desired to
flush the ATC of its contents any time these registers are written. The opcodes of the
PMOVE instructions that write to CRP, SRP, TC, TT0, and TT1 contain a flush disable (FD)
bit that optionally flushes the ATC when these instructions are executed. If the FD bit equals
one, the ATC is not flushed when the instruction is executed. If the FD bit equals zero, the
ATC is flushed during the execution of the PMOVE instruction.

9.7.5.2 MMU STATUS REGISTER DECODING. The seven status bits in the MMU status
register (MMUSR) indicate conditions to which the operating system should respond. In a
typical bus error handler routine, the flows shown in Figures 9-39 and 9-40 can be used to
determine the cause of an MMU fault. The PTEST instructions set the bits in the MMUSR
appropriately, and the program can branch to the appropriate code segment for the
condition. Figure 9-39 shows the flow for a PTEST instruction for the ATC (level 0), and
Figure 9-40 shows the flow for a PTEST instruction that accesses an address translation
tree (levels 1-7).

Memory Management Unit

9-52 MC68030 USER’S MANUAL MOTOROLA

9.7.5.3 MMU CONFIGURATION EXCEPTION. The exception vector table in the MC68030
assigns a vector for an MMU configuration error exception. The configuration exception
occurs as the result of loading invalid data into the TC, SRP, or CRP register.

When the TC register is loaded with the E bit set, the MMU performs a consistency check
of the values in all the four bit fields. The values in the TIx fields are added until the first zero
is encountered. The values in the PS and IS fields are added to the sum of the TIx fields. If
the sum is not equal to 32, the PMOVE instruction causes an MMU configuration exception.
The instruction also causes a configuration exception when a reserved value ($0-$7) is
placed in the PS field of the TC register.

A PMOVE instruction that loads either the CRP or the SRP causes an MMU configuration
exception if the new value of the DT field is zero (invalid). In this case, the register is loaded
with the new value before the exception is taken.

(UNABLE TO LOCATE ART)

Figure 9-39. MMU Status Interpretation PTEST Level 0

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-53

9.8 MMU INSTRUCTIONS
The MC68030 instruction set includes four privileged instructions that perform MMU
operations. A brief description of each of these instructions follows.

The PMOVE instruction transfers data between a CPU register or memory location and any
one of the six MMU registers. The operating system uses the PMOVE instruction to control
and monitor MMU operation by manipulating and reading these registers. Optionally, a
PMOVE instruction flushes the ATC when it loads a value into the TC, SRP, CRP, TT0, or
TT1 register.

(UNABLE TO LOCATE ART)

Figure 9-40. MMU Status Interpretation PTEST Level 7

Memory Management Unit

9-54 MC68030 USER’S MANUAL MOTOROLA

The PFLUSH instruction flushes (invalidates) address translation descriptors in the ATC.
PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH instruction
flushes all entries with a specified function code or the entry with a specified function code
and logical address.

The PLOAD instruction performs a table search operation for a specified function code and
logical address and then loads the translation for the address into the ATC. The operating
system can use this instruction to initialize the ATC to minimize table searching during
program execution. Any existing entry in the ATC that translates the specified address is
flushed. The preload can be executed for either read or write attributes. If the write attribute
is selected (PLOADW), the MC68030 performs the table search and updates all history
information in the translation tables (used and modified bits) as if a write operation to that
address had occurred. Similarly, if the read attribute is selected (PLOADR), the history
information in the translation table (used bit) is updated as if a read operation had occurred.
The PLOAD instruction does not alter the MMUSR.

The PTEST instruction either searches the ATC or performs a table search operation for a
specified function code and logical address, and sets the appropriate bits in the MMUSR to
indicate conditions encountered during the search. The physical address of the last
descriptor fetched can be returned in an address register. The exception routines of the
operating system can use this instruction to identify MMU faults. The PTEST instruction
does not alter the ATC.

This instruction is primarily used in bus error handling routines. For example, if a bus error
has occurred, the handler can execute an instruction such as:

PTESTW #1,([A7, offset]),#7,A0

This instruction requests that the MC68030 search the translation tables for an address in
user data space (#1) and examine protection information. This particular logical address is
obtained from the exception stack frame ([A7, offset]). The MC68030 is instructed to search
to the bottom of the table (#7 — there cannot be more than six levels) and return the physical
address of the last table entry used in register A0. After executing this instruction, the
handler can examine the MMUSR for the source of the fault and use A0 to access the last
descriptor. Note that the PTESTR and PTESTW instructions have identical results except
for PTEST0 when either TTx register matches the logical address and the R/W bit of that
register is not masked.

The MMU instructions use the same opcodes and coprocessor identification (CpID) as the
corresponding instructions of the MC68851. All F-line instructions with CpID=0 (including
MC68851 instructions) that the MC68030 does not support automatically cause F-line
unimplemented instruction exceptions when their execution is attempted in the supervise
mode. If execution of a unimplemented F-line instruction with CpID=0 is attempted in the
user mode, the MC68030 takes a privilege violation exception. F-line instructions with a
CpID other than zero are executed as coprocessor instructions by the MC68030.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-55

9.9 DEFINING AND USING PAGE TABLES IN AN OPERATING SYSTEM
Many factors must be considered when determining how to use the MMU in an operating
system. The MC68030 provides the flexibility required to optimize an operating system for
many system implementations. The example operating system described in the next section
presents one approach to operating system design, with many of the tradeoffs discussed.

9.9.1 Root Pointer Registers
An operating system can use the CPU root pointer (CRP) register alone or both the CRP
and the supervisor root pointer (SRP) registers to point to the top level address translation
table(s). The choice depends on the complexity of the memory layout for the system. When
only the CRP is used, it must point to a translation table that maps all supervisor and user
references. However, the supervisor and user translation tables can be separate even when
only the CRP register is used. When the index to the top level translation table is the function
code value (FCL in TC register is set), supervisor and user tables are separate at all lower
levels. With proper structuring of the address tables, both methods can provide the same
functionality, but each has its advantages.

When the translation tables use the CRP and function code lookup, supervisor and user
accesses are separate, and each task can have different supervisor and user mappings.
Alternatively, the entries in the function code tables that correspond to the supervisor spaces
for each task can all point to the same tables to provide a common mapping for all supervisor
references.

When the mapping of the supervisor address space is identical for all tasks, the SRP can be
used in conjunction with the CRP to provide a more simple and efficient way to define the
mapping. This technique suppresses the use of the function code (unless the program and
data spaces require distinct mappings) and separates supervisor and user accesses at the
root pointer level of the translation tables. A single translation table maps all supervisor
accesses without maintaining a large number of supervisor pointers in the translation tables
for each task, resulting in reduced bus activity for table searches.

Memory Management Unit

9-56 MC68030 USER’S MANUAL MOTOROLA

9.9.2 Task Memory Map Definition
The MC68030 provides several different means by which the supervisor can access the
user address spaces. The supervisor can access any user address, regardless of how the
virtual space is partitioned, with the MOVES (move space) instruction. Some systems
provide a complete 4-Gbyte virtual memory map for each task. Indeed, an operating system
that runs other operating systems in a virtual machine environment must provide a complete
map to accurately emulate the full addressing range for the subordinate operating system.

With the large address space of the MC68030, each individual user task or all user tasks
can share the address space with the operating system. One method of performing this
function is implemented in the example operating system in the next section. Sharing the
address space provides direct access to user data items by the operating system. Another
advantage of this mapping method is that tasks can easily share code. Common routines
such as file I/O handlers and arithmetic conversion packages can be written re-entrantly and
be restricted to read-only access from all user tasks in the system.

The simplest example of a shared virtual address space system is one in which each user
and supervisor process is given a unique virtual address range within the single 4-Gbyte
virtual address space. In other words, the system has only one linear virtual address space;
all processes run somewhere in that space. Only one translation table tree is required for
the entire system, but each task can have individual tables if desired. With the common tree
approach, the operating system can access any item of any task without modifying the root
pointer. Otherwise, only the currently active task is immediately accessible, which often is
adequate. To switch tasks, the operating system only has to update the user program and
user data pointers in the highest level translation table indexed by the function code. This
gives each task access to its own data only. This scheme has the advantages of simple table
management and easy sharing of common items by giving them the same virtual address
for all tasks in the system. This scheme might be ideal for real-time systems that do not
require more complexity in memory management facilities.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-57

The next logical step toward increased operating system complexity, with shared user and
supervisor virtual memory maps, is to keep the supervisor addresses separate but to give
each user task its own use of the remainder of the virtual space. For example, each user
task could have the virtual memory space from zero to 512 Mbytes; the operating system
programs and data would occupy the remainder of the space, from 512 Mbytes up to 4
Gbytes. Each user task has its own set of translation tables. The supervisor root pointer may
or may not be used, depending on whether the user tables also map the supervisor space.
As in the preceding method, the user cannot access the operating system portion of the
address space unless the operating system allows it or wishes to share common routines.
The advantages of this scheme are that it provides a much larger virtual address space for
each user task and it avoids virtual memory fragmentation problems. Disadvantages of this
scheme include the requirement for slightly more complex table management and the
restriction of operating system access to only the current user task.

There are few absolute rules in the use of the MC68030 MMU. In general, the statement
regarding restricting operating system access to only one user task using the scheme
described in the preceding paragraph holds true. However, by using the entire 4-Gbyte
virtual address space and cross mapping the address space, the supervisor can access
each user task space as a distinct portion of its own supervisor map. If each user task is
limited to a 16-Mbyte virtual address space and the supervisor only requires a 16-Mbyte
address space, 256 such address spaces can be mapped simultaneously. The supervisor
translation tables can include each of these spaces, and the supervisor can access each
task using indexed addressing with a register that contains the proper constant for a
particular task. This constant provides a supervisor-to-user virtual address conversion. A
systems programmer can implement some very sophisticated functions that exploit the
flexibility of the MMU.

The most complex systems and those that implement virtual machine capability completely
separate the virtual address spaces of the supervisor and all user tasks, or possibly even
those of individual supervisor tasks. Each user or supervisor task has its own virtual memory
space starting at zero and extending to 4 Gbytes. Using the function code, a 4-Gbyte
address space for the program and another for its data can be provided for each task. Both
the SRP and the CRP are probably used, since nothing is common among the various
spaces. The operating system uses the MOVES instruction to interact with the user space.
The advantages of this implementation are the maximum availability of the virtual space and
a complete logical separation of addresses. Virtual machine implementations require
maximum availability of virtual space. The disadvantages are the more complex table
management and the more restrictive accesses to other address spaces.

Memory Management Unit

9-58 MC68030 USER’S MANUAL MOTOROLA

9.9.3 Impact of MMU Features On Table Definition
The features of the MMU that impact table definition are usually considered after deciding
how to map memory for the tasks. For some systems, these features can affect the mapping
decision and should be considered when making that decision.

9.9.3.1 NUMBER OF TABLE LEVELS. The MMU supports from zero to five levels (six
levels with the use of indirection) in the address translation tables. The zero-level case is
early termination at the root pointer. This provides a limit check on the range of physical
addresses for the system. It is used primarily in systems that require the limit check on
physical addresses.

Systems that support large page sizes or that require only limited amounts of virtual memory
space can use single-level tables. A single-level translation tree with 32K-byte pages may
be the best choice for systems that are primarily numerically intensive (i.e., the system is
involved in arithmetic manipulations rather than data movement) where the overhead of
virtual page faults and paging I/O must be minimized. This type of system can map a 16-
Mbyte address space with only 2K bytes of page table space. With this much mapped
address space, table search time becomes insignificant.

At another extreme is a single-user business system that only needs a 2-Mbyte[lz virtual
address space. A 512-byte page size might be best for this system, because the block size
formats of many Winchester hard disk file systems is 512 bytes. A page table that
completely maps the 2-Mbyte space requires only 16K bytes of memory, and the ATC
entries directly map 11K bytes of virtual space at any one time. The page tables for this
system and the one described in the preceding paragraph are small enough to be
permanently allocated in the operating system data area. They incur virtually no
management or swapping overhead.

A two-level address translation table provides a lower page level similar to the page tables
in the two preceding paragraphs and additional direction at a higher level. For example, in
a system using 32K-byte pages and 512-entry page tables, the upper level translation table
contains 256 entries of short-format descriptors, requiring 1K bytes for the table. Each of the
upper table entries maps a 16-Mbyte region of the virtual address space. The primary
advantage of a two-level table for large "number-crunching" system is the operating system
designer's ability to make a tradeoff between page size and table size. The system designer
may choose a smaller page size to fit the block sizes on available I/O devices, yet keep the
tables manageable. However, the designer must also consider the performance penalty
associated with smaller page sizes. Systems with smaller page sizes have a higher
frequency of page faults requiring more table search time and paging I/O. With the flexibility
of the MC68030 MMU, the designer has enough choices to optimize table structure design
and page size.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-59

Three-level translation tables are useful when the operating system makes heavy use of
shared memory spaces and/or shared page tables. Sophisticated systems often share
translation tables or program and data areas defined at the page table level. When a table
entry can point to a translation table also used by a different task, sharing memory areas
becomes efficient. The direct access to user address space by the supervisor is an example
of sharing memory.

Some artificial intelligence systems require very large virtual address spaces with only small
fragments of memory allocated among these widely differing addresses. This fragmentation
is due to the complex and recursive actions the system performs on lists of data. These
actions require the system to constantly allocate and free sophisticated pointers and linked
lists in the memory map. The fragmentation suggests a small page size to utilize memory
most efficiently. However, small pages in a large virtual memory map require relatively large
translation tables. For example, to map 4 Gbytes of virtual address space with 256-byte
pages, the page tables alone require 64 Mbytes. With a three- or four-level table structure,
the number of actual translation table entries can be drastically reduced. The designer can
use invalid descriptors to represent blocks of unused addresses and the limit fields in valid
descriptors to minimize the sizes of pointer and page tables. In addition, paging of the
address tables themselves reduces memory requirements.

9.9.3.2 INITIAL SHIFT COUNT. The initial shift field (IS) of the translation control register
(TC) can decrease the size of translation tables. When the required virtual address space
can be addressed with fewer than 32 bits, the IS field reduces the size of the virtual address
space by discarding the appropriate number of the most significant logical address bits. This
technique inhibits the system's ability to detect very large illegal (i.e., out-of-bounds)
addresses. Using the full 32-bit address and reducing the table size with invalid descriptors
and limited pointer and page table sizes prevents this problem.

Memory Management Unit

9-60 MC68030 USER’S MANUAL MOTOROLA

9.9.3.3 LIMIT FIELDS. Except for a table indexed by function code, every pointer and page
table can have a defined limit on its size. Defining limits provides flexibility in the operating
system and saves memory in the translation tables. The limit field of a table descriptor limits
the size of the table to which it points. The limit can be either an upper or a lower limit, using
either the lower or higher addresses within the range of the table. Since a task seldom
requires the maximum number of possible virtual pages, this reduction in table size is
practical.

For example, when an operating system uses 4K-byte pages and runs numerous small
tasks that average 80K bytes each in size, each task requires a 20-entry page table. The
system can limit the size of each table to 80 bytes, or 800 bytes for ten tasks. Without the
limit, an operating system running ten of these tasks would require 40K bytes of space for
the page tables alone (one table per page).

Memory savings required for translation tables is especially significant for artificial
intelligence systems these systems tend to require very large memory maps. By using limit
fields, each table is only as large as the number of active entries within it. This limit can
change as the table grows. For higher level tables, each table only grows as the additional
entries require. The use of three or four levels of tables facilitates the management of these
tables.

9.9.3.4 EARLY TERMINATION PAGE DESCRIPTORS. A page descriptor residing in a
pointer table is an early termination page descriptor mapping an entire block of pages. That
is, it maps a contiguous range of virtual addresses to a contiguous range of physical
addresses. For example, an operating system could reserve a 32K-byte area for special
supervisor I/O peripheral devices. This area can be mapped with a single early termination
descriptor to save translation table size and table search overhead. The descriptor can use
the limit field to reduce the size of the contiguous block when the block size is smaller than
the virtual address space that the particular descriptor represents. The MC68030 creates
multiple ATC entries (one for each page) for the range of virtual addresses represented by
the early termination descriptor as the pages are accessed.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-61

An operating system can use an early termination page descriptor to map a contiguous
block of memory for each task (both program and data). The tasks can be relocated by
changing the physical address portion of the descriptor. This scheme is useful when the
tasks in a system consist of one or a few sequential blocks of memory that can be swapped
as a group. The operating system memory map can treat the entire address space within
these blocks as a uniform virtual space available for all tasks. The system only requires one
translation table; by the use of limit fields and early termination page descriptors, it maps
complete segments of memory.

9.9.3.5 INDIRECT DESCRIPTORS. An indirect descriptor is a table descriptor residing in a
page table. It points to another page descriptor in the translation tree. Using an indirect
descriptor for a page makes the page common to several tasks. History information for a
common page is maintained in only one descriptor. Access to the page sets the used (U)
bit, and a write operation to the page sets the M (modified) bit for that page. When the
operating system is searching for an available page, it simply checks the page table
containing the descriptor for the common page to determine its status. With other methods
of page sharing, the system would have to check page tables for all sharing tasks to
determine the status of the common page.

9.9.3.6 USING UNUSED DESCRIPTOR BITS. In general, the bits in the unused fields of
many types of descriptors are available to the operating system for its own purposes. The
invalid descriptor, in particular, uses only two bits of the 32 (short) or 64 (long) bits available
with that format. An operating system typically uses these fields for the software flags,
indicating whether the virtual address space is allocated and whether an image resides on
the paging device. Also, these fields often contain the physical address of the image.

The operating system often maintains information in an unused field about a page resident
in memory. This information may be an aging counter or some other indication of the page's
frequency of use. This information helps the operating system to identify the pages that are
least likely to impact system performance if they are reallocated. The system should first use
physical page frames that are not allocated to a virtual page. Next it should use pages with
the longest time since the most recent access. Pages that do not have the M (modified) bit
set should be taken first, since they do not need to be copied to the paging device (the
existing image remains valid).

Memory Management Unit

9-62 MC68030 USER’S MANUAL MOTOROLA

An aging counter can be set up in an unused field of a page descriptor. The system can
periodically check the U (used) bit for the page and increment the count when the page has
not been used since the previous check. The system can identify the least recently used
page from the counts in the aging counter. When the counter for a page overflows, the
system can list the page in a queue of least recently used pages from which it chooses the
next page to be reallocated.

Many schemes afford the operating system designer a variety in selecting a page to be
taken. One operating system scans page tables, starting at the lowest priority task, looking
for aged pages to steal. Another system maintains a system-wide list of all page frames as
they are used and scans the list, starting at the oldest, to find a page to steal. A sophisticated
system keeps a working set model of active pages for each individual task. From this
information, it can swap a complete block of pages in and out with a single I/O operation.
The method chosen can have a dramatic impact on limiting page fault overhead in a heavily
used system.

9.10 AN EXAMPLE OF PAGING IMPLEMENTATION IN AN
OPERATING SYSTEM

This section describes an example operating system design that illustrates some of the
MMU features. The description suggests alternatives to provide variations of the design.
Memory management algorithms that can be implemented to derive the actual code are
shown. A bus error handler routine is shown also. Implementing the algorithms develops the
basic code for the memory management services of an operating system.

9.10.1 System Description
The example system has the ability to map a large virtual memory task space, which is
required for execution of predominantly numerically intensive processing tasks. Most of
these tasks do not need more than 16 Mbytes of memory, but the system can supply a larger
virtual memory space (as large as 496 Mbytes) to the occasional task that requires more.
The system uses the relatively large page size of 8K bytes to minimize thrashing and
translation table searches. With a larger page size, fewer descriptors can map a large area
of virtual memory. Also, in a given period of time, the MC68030 experiences fewer ATC
misses and performs fewer table searches. The larger page size requires the paging I/O
operations to transfer larger blocks of data, and sometimes only a small part of the page is
actually used. However, preliminary software model simulations show that 8K-byte pages
provide optimum performance for this type of processing.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-63

The average task for this system is a compiler or text editor that requires only 192K bytes of
memory, or 24 8K-byte pages. Using short page descriptors, the page table occupies 96
bytes.

Page tables can reside at any 16-byte boundary; the limit fields of the MMU can provide the
area needed without requiring excess space. This results in an address table area small
enough to be completely resident in physical memory. The operating system does not need
to page the table areas.

The paging hardware of many computer systems requires lower level tables to reside at
page boundaries, effectively using one or more entire pages. This requires 80K bytes for the
page tables for 10 tasks (10 tables, one 8K-byte page per table). Then, when the memory
required for an upper level of tables is added, at a minimum of 8K bytes per task, the total
comes to over 160K bytes. Table base addresses in the MC68030 are zero modulo 16
addresses. This results in a dramatic savings of memory for address table space; instead of
using 80K bytes for the page tables for 10 tasks, (10 tables, one 8K-byte page per table),
the MC68030 needs 960 bytes. Instead of 8K bytes per task for the upper level of tables,
the tables require 2560 bytes in the MC68030. The fragmentation that may occur in
allocating smaller tables could increase the memory requirement but would still remain less
than 160K bytes.

The translation table tree for the example system consists of two levels. The upper level is
a fixed table that contains 32 entries, each of which is a long-format table descriptor that
points to a lower level page table. Each page table maps as many as 16 Mbytes of virtual
address space. Since the upper level table is small (256 bytes), it can easily fit in the main
control block of the task. When the system dispatches a new task, it loads a pointer to the
upper level table for the task into the CRP register. Each lower level table consists of 0-2048
short-format page descriptors. The limit entry in the table descriptor for a page table
determines the size of the table. For the average 192K-byte task, the upper level table
usually has one valid entry, and this entry points to a lower level table with an average size
of 96 bytes. A task that requires more than 16 Mbytes uses more than one valid entry in the
higher level table.

Memory Management Unit

9-64 MC68030 USER’S MANUAL MOTOROLA

In a typical computer system, with 64K bytes of boot and diagnostics ROM, a 64K I/O area,
and 1 Mbyte of RAM, the physical mapping appears as follows:

The operating system must control memory allocation for physical memory (page frames)
to hold the pages of virtual memory. All available physical memory is divided into page
frames, each of which can hold a page of virtual memory. A system with 4 Mbytes of actual
memory is divided into 512 8K-byte frames that can theoretically hold 512 pages of active
virtual memory at any one time. Usually, operating system components (exception handlers,
the kernel, private memory pool) permanently reside in some of the memory. Only the
remaining page frames are available for virtual memory pages.

The operating system maintains a linked list of all unallocated page frames. One simple way
to do this is for each unallocated frame to contain a pointer to the next frame. The operating
system takes the first page frame on the list when a frame is required. An operating system
primitive called GetFrame performs this function and returns the physical address of an
available frame. When all frames are allocated, GetFrame steals a frame from another task.
GetFrame first looks for an unmodified frame to steal. An unmodified frame could be stolen
without waiting for the page to be copied back to the external storage device that stores
virtual page images. (This device is called the paging device or the backing store.) If no
unmodified page frame is available, GetFrame must wait while the system copies a modified
page to the paging device, then steals the page frame and returns to the caller with the
physical address.

Next, the operating system needs physical memory management routines to allocate and
free supervisor work memory. The routine must allocate pieces of memory on boundaries
of at least modulo 16, the requirement for address translation tables. Typically, this type of
routine allocates pieces of certain sizes. GetReal is the allocation routine; ReturnReal is the
return routine. They use physical addresses.

With physical memory allocation provided for, the operating system must be able to manage
virtual memory for all tasks. To do this, the system must be aware of the virtual memory map.
It must know the total amount of virtual memory space, how much is allocated, and which
areas are available to be assigned to tasks. The virtual memory map looks like this:

Virtual addresses for this virtual memory are subdivided:

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-65

The translation table structure consists of:

 CRP → upper level table in the task control block, which contains 32 long pointers:

 [0] → lower level table common to all tasks; maps all operating system areas (first 4
Mbytes of virtual space). This common table contains 512 short-page entries
(2K bytes).

 [1] → lower level table for first 16 Mbytes of user program/data/stack area.

 •
 •
 •

 [31] → lower level table for last 16 Mbytes (of 496 total) of user program/data/stack
area.

The user program can only access virtual addresses starting at 16 Mbytes and extending
upward to the limit of 512 Mbytes. The code, the data, and the stacks for user tasks are
allocated in this area of virtual memory. Supervisor programs can access the entire virtual
map; they can access addresses that directly access the I/O ports as well as the entire
physical memory at untranslated addresses. The address tables are set up so that virtual
addresses are equal to the physical addresses for the supervisor between 1 and 3 Mbytes.
Folding the physical address space into the virtual space greatly simplifies operations that
use physical addresses. The folding does not necessarily mean that the virtual addresses
are the same as the physical addresses. For example, the boot/diagnostic ROM at physical
address zero could be assigned a virtual address of 3 Mbytes. However, any external bus
masters or circuitry (such as breakpoint registers) resident on the physical side of the bus
must have physical addresses. This requires the overhead of operating system code to
perform address translation.

This virtual memory map provides supervisor addresses that are unique with respect to user
addresses; all supervisor routines can directly access any user area without being restricted
to certain instructions or addressing modes. The separate user and supervisor maps
suggest that two root pointers should be used, one for the supervisor map and one for the
user map. However, the supervisor must be able to access user translation tables for proper
access to user data items. With separate root pointers, the supervisor table structure must
be linked to that of the user. To do this requires an additional level of table lookup (function
code level) for the supervisor address table.

This example uses a simpler scheme instead. Only the CPU root pointer is used, and, for
each task, the first entry of the upper level table (for the supervisor portion, the first 16
Mbytes of virtual address space) points to the same lower level table. This common lower
level table has supervisor protection and maps the entire virtual operating system, physical
I/O, and physical memory areas. This scheme avoids the requirement for extra lookup levels
or pointer manipulations during a task switch to furnish correct access across the user/
supervisor boundary. All the operating system has to do when creating the address table for
a new task is to set the first upper level table entry to point to the common page table of the
supervisor.

Memory Management Unit

9-66 MC68030 USER’S MANUAL MOTOROLA

To solve the problem of accounting for virtual memory areas assigned to a user task, the
operating system uses the existing translation tables to identify these areas. When a valid
descriptor points to a given virtual address page, this 8K-byte page of memory has been
allocated. This scheme provides areas of memory that are multiples of the 8K-byte page
size. Due to the 8K granularity, this scheme would be inadequate for tasks that continually
request and return virtual memory space. As a result, some other technique would be used
(perhaps auxiliary tables to show virtual space availability). The tasks in this system seldom
request additional memory space; any request made is for a large area. This scheme
suffices. The application programs and utilities that run in the UNIX (r) environment have
similar requirements for memory.

The operating system primitive GetVirtual allocates virtual memory space for tasks. The
input parameter is a block size, in bytes; GetVirtual returns the virtual address for the new
block. GetVirtual first checks that the requested size is not too large. Then it scans the
translation tables looking for an unallocated virtual memory area large enough to hold the
requested block. If it does not find enough space, GetVirtual attempts to increase the page
table size to its maximum. If this does not provide the space, GetVirtual returns an error
indication. When the routine finds enough virtual space for the block, it sets the page
descriptors for the block to virgin status (invalid, but allocated). When these pages are first
used, a page fault is generated. The operating system allocates a page frame for the page
and replaces the descriptor with a valid page descriptor. The status (indicated by a software
flag in the invalid descriptor) tells the operating system that the paging device does not have
a page image for this page; no read operation from the paging device is required.

When the status of an invalid descriptor indicates that a page image must be read in,
primitive SwapInPage, reads in the image. The input parameter for this routine is the invalid
descriptor, which contains the disk address of the page image. Before returning,
SwapInPage replaces the invalid descriptor with a valid page descriptor that contains the
page address. The page is now ready for use.

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-67

These routines provide many of the functions required for the memory management
services of an operating system, but a complete memory management system requires a
complementary function for each routine. The complementary function usually performs the
same steps in the reverse order. The complement of GetVirtual could be ReturnVirtual; for
SwapInPage, the complement might be SwapOutPage. These counterparts can be derived
to perform similar steps in the reverse order.

9.10.2 Allocation Routines
This section describes the central routine Vallocate, which user programs call to obtain
memory. In this section (and the next), a loose high-level language syntax is used for the
code. The code takes many liberties to enhance readability. For example, the code assigns
descriptive strings for return status values. These strings typically represent binary values.
Also, the code uses empty brackets to represent obvious subscripts in loops that scan
tables. In such a loop, the subscript on the second line is obvious:

 for Upper-Table-Index=1 to 31 do
 if Upper-Table [Upper-Table-Index].Status=invalid then ...

In the code shown here, the second line is:

 if Upper-Table [].Status=invalid then ...

The code uses flag operations that are assumed to be defined elsewhere in the system.
They may imply more complex operations than bit manipulations. For example, page table
status of invalid virgin can be implemented with an invalid descriptor instead of the page
descriptor, and a software flag bit in the descriptor that indicates the page is allocated but
has never been used (the paging device has no page image).

Vallocate has a single input parameter, the required memory size in bytes. It returns status
information and the virtual address of the start of the area (if the memory is allocated). To
simplify the routine, it always returns a multiple of the system page size and never allocates
a block that crosses a 16-Mbyte boundary. It could allocate a portion of a page by
implementing a control structure to subdivide a page, but, if the control structure were within
the allocated page, the user could corrupt it. The block could cross a 16-Mbyte boundary if
the routine included code to keep track of consecutive free blocks when scanning the lower
level tables, each of which represents 16 Mbytes of address space. Once the total area is
located, Vallocate allocates the consecutive blocks and returns the address of the lowest
block.

The 32 upper level table entries are long pointer types; each represents 16 Mbytes of virtual
address space. Each entry is either invalid (has no lower page tables) or allocated (has
lower page tables and a limit field that defines the table size). By convention, the first entry
maps the supervisor address space and has supervisor protection. The routine never
modifies this first entry. The 31 entries after the first are available to be allocated as user
address space.

Memory Management Unit

9-68 MC68030 USER’S MANUAL MOTOROLA

A routine similar to this that linearly extends (grows) a previously allocated memory block
could be written. A stack is a good example. The operating system can allocate the top of
the memory (the thirty-second upper level table entry) as a stack that grows downward from
the highest address. If a task needs several large stacks, a 16-Mbyte block can be used for
each stack, with a software flag set to indicate growth in a downward direction.

The logic of Vallocate is:

1. Validate the request and calculate number of pages required.

2. Scan each upper table entry's lower page tables (where they exist) looking for an ad-
equate group of unallocated pages.

3. If no space is found, see if the lower table is less than its maximum size and if the block
can be allocated by expanding it at the end.

4. If still no space is found, use the next free upper table entry and initialize its new lower
level page table to allocate the block here.

5. Set allocated page entries to indicate virgin status (allocated, invalid, and not swapped
out).

6. Return status. If status is OK, also return virtual address.

The code for Vallocate is:

9.10.3 Bus Error Handler Routine
The routine that processes bus error exceptions is the most critical part of the memory
management services provided by the example operating system. This routine must
determine the validity of page faults and perform the necessary processing. It must identify
the conditions that aborted the executing task. The PTEST instruction can investigate the
cause of a bus error by performing a table search using the address and type of access that
produced the error, accumulating status information during the search.

When the PTEST instruction does not find any error, the bus error was most likely a
malfunction (for example, a transient memory failure). The operating system must respond
appropriately.

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

MOTOROLA MC68030 USER’S MANUAL 9-69

The table search performed by the PTEST instruction may end in a bus error termination.
Either the address translation tables are not correctly built or main memory has failed (either
a transient or permanent failure).

A supervisor protection violation or a write protection violation usually indicates that the task
generating the exception attempted to access an area of the virtual address space that is
not part of the task's address space. The operating system usually recovers from such an
error by terminating (aborting) the task.

When the PTEST instruction returns the invalid status, the bus error is a page fault, and the
operating system must identify the specific type of page fault. When the limit violation bit
returned by the PTEST instruction is set, the task that took the exception was trying to
access a page that has not been allocated. The example system aborts the task in this case.
In other systems, this is an implicit request for more virtual memory, particularly if the
reference is in a stack area.

When no limit violation occurred, a descriptor is invalid. Typically, the descriptor contains
software flags that provide relevant information. The example operating system checks to
see if the invalid descriptor is in an upper level or a lower level table. When the descriptor is
in the upper level table, the task was attempting to access unallocated virtual memory, and
the system aborts the task. When the descriptor is in a lower level table, the system checks
software flags to identify the invalid descriptor.

When the software flags indicate that the descriptor corresponds to an unallocated page,
the system aborts the task. When the descriptor refers to a virgin page (allocated, but not
yet accessed) and the request for the page was a read request, the page is actually invalid
because the read operation reads unknown data. However, the example operating system
does not consider the type of request, but assigns a physical page frame to the page and
writes the page descriptor to the page table. Some systems clear virgin pages to zero.

Memory Management Unit

9-70 MC68030 USER’S MANUAL MOTOROLA

When the software flags indicate that the page is allocated and the image has been copied
to the paging device, the operating system assigns a page frame, reads the page image into
the frame, and writes the page descriptor to the page table. Another possible type of invalid
descriptor is one that requires special processing, such as one that refers to a virtual I/O
device area in a virtual machine.

Obtaining a page frame for a virtual page may be an obvious operation. However, when no
idle page frame is available, the system must steal one. If the page in the stolen frame has
been modified in memory, the system must save the page image on the paging device. The
system must alter the translation table of the task that loses the frame to show that the page
is allocated and swapped out. Typically, the translation table entry shows the address of the
page image on the paging device.

The method a system uses to select a page frame to steal varies a great deal from system
to system. A simple system may just steal a page from the lowest priority task. More
advanced systems select the page frame that has not been accessed for the longest time.
This process, called aging, is done in several ways. One method uses bits of the page
descriptor as an aging counter. Periodically, the operating system examines the U (used)
bits and increments the count for pages that have not been used. The system maintains a
list of pages with aging counters that have overflowed. The pages on this list are available
for stealing.

Some systems keep a separate list of pages that have not been modified since the page
image was read from memory. The page frames that contain these pages can be stolen
without swapping out because the existing page image on the paging device remains valid.

Page stealing software can involve many dynamics of the system. It can consider task
priority, I/O activity, working-set determinations, the number of executing tasks, a thrashing
level, and other factors.

Memory Management Unit

9-71 MC68030 USER’S MANUAL MOTOROLA

The example bus error exception routine is called BusErrorHandler. It is more general than
Vallocate because it relies on several operating-system-dependent items. The variable
pointer VictimTask is assumed to point to a table from a task that is losing a page frame.
This assumption is necessary because control block layout and the method of searching for
and finding other tasks in the example operating system are not defined. The code is further
simplified by omitting the function code value and the read/write status, which do not affect
the basic logic of the program.

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Memory Management Unit

9-72 MC68030 USER’S MANUAL MOTOROLA

MOTOROLA

MC68030 USER’S MANUAL

10-1

SECTION 10
COPROCESSOR INTERFACE DESCRIPTION

The M68000 Family of general-purpose microprocessors provides a level of performance
that satisfies a wide range of computer applications. Special-purpose hardware, however,
can often provide a higher level of performance for a specific application. The coprocessor
concept allows the capabilities and performance of a general-purpose processor to be
enhanced for a particular application without encumbering the main processor architecture.
A coprocessor can efficiently meet specific capability requirements that must typically be
implemented in software by a general-purpose processor. With a general-purpose main
processor and the appropriate coprocessor(s), the processing capabilities of a system can
be tailored to a specific application.

The MC68030 supports the M68000 coprocessor interface described in this section. The
section is intended for designers who are implementing coprocessors to interface with the
MC68030.

The designer of a system that uses one or more Motorola coprocessors (the MC68881 or
MC68882 floating-point coprocessor, for example) does not require a detailed knowledge of
the M68000 coprocessor interface. Motorola coprocessors conform to the interface
described in this section. Typically, they implement a subset of the interface, and that subset
is described in the coprocessor user's manual. These coprocessors execute Motorola
defined instructions that are described in the user's manual for each coprocessor.

10.1 INTRODUCTION

The distinction between standard peripheral hardware and a M68000 coprocessor is
important from a perspective of the programming model. The programming model of the
main processor consists of the instruction set, register set, and memory map available to the
programmer. An M68000 coprocessor is a device or set of devices that communicates with
the main processor through the protocol defined as the M68000 coprocessor interface. The
programming model for a coprocessor is different than that for a peripheral device. A
coprocessor adds additional instructions and generally additional registers and data types
to the programming model that are not directly supported by the main processor
architecture. The additional instructions are dedicated coprocessor instructions that utilize
the coprocessor capabilities. The necessary interactions between the main processor and
the coprocessor that provide a given service are transparent to the programmer. That is, the
programmer does not need to know the specific communication protocol between the main
processor and the coprocessor because this protocol is implemented in hardware. Thus, the
coprocessor can provide capabilities to the user without appearing separate from the main
processor.

Coprocessor Interface Description

10-2

MC68030 USER’S MANUAL

MOTOROLA

In contrast, standard peripheral hardware is generally accessed through interface registers
mapped into the memory space of the main processor. To use the services provided by the
peripheral, the programmer accesses the peripheral registers with standard processor
instructions. While a peripheral could conceivably provide capabilities equivalent to a
coprocessor for many applications, the programmer must implement the communication
protocol between the main processor and the peripheral necessary to use the peripheral
hardware.

The communication protocol defined for the M68000 coprocessor interface is described in

10.2 Coprocessor Instruction Types

. The algorithms that implement the M68000
coprocessor interface are provided in the microcode of the MC68030 and are completely
transparent to the MC68030 programmer's model. For example, floating-point operations
are not implemented in the MC68030 hardware. In a system utilizing both the MC68030 and
the MC68881 or MC68882 floating-point coprocessor, a programmer can use any of the
instructions defined for the coprocessor without knowing that the actual computation is
performed by the MC68881 or MC68882 hardware.

10.1.1 Interface Features

The M68000 coprocessor interface design incorporates a number of flexible capabilities.
The physical coprocessor interface uses the main processor external bus, which simplifies
the interface since no special-purpose signals are involved. With the MC68030, a
coprocessor can use either the asynchronous or synchronous bus transfer protocol. Since
standard bus cycles transfer information between the main processor and the coprocessor,
the coprocessor can be implemented in whatever technology is available to the coprocessor
designer. A coprocessor can be implemented as a VLSI device, as a separate system
board, or even as a separate computer system.

Since the main processor and a M68000 coprocessor can communicate using the
asynchronous bus, they can operate at different clock frequencies. The system designer
can choose the speeds of a main processor and coprocessor that provide the optimum
performance for a given system. If the coprocessor uses the synchronous bus interface all
coprocessor signals and data must be synchronized with the main processor clock. Both the
MC68881 and MC68882 floating-point coprocessors use the asynchronous bus handshake
protocol.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-3

The M68000 coprocessor interface also facilitates the design of coprocessors. The
coprocessor designer must only conform to the coprocessor interface and does not need an
extensive knowledge of the architecture of the main processor. Also, the main processor can
operate with a coprocessor without having explicit provisions made in the main processor
for the capabilities of that coprocessor. This provides a great deal of freedom in the
implementation of a given coprocessor.

10.1.2 Concurrent Operation Support

The programmer's model for the M68000 Family of microprocessors is based on sequential,
nonconcurrent instruction execution. This implies that the instructions in a given sequence
must appear to be executed in the order in which they occur. To maintain a uniform
programmer's model, any coprocessor extensions should also maintain the model of
sequential, nonconcurrent instruction execution at the user level. Consequently, the
programmer can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence accessing these
registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations necessary for
nonconcurrent operation of the main processor and its associated coprocessors. Although
the M68000 coprocessor interface allows concurrency in coprocessor execution, the
coprocessor designer is responsible for implementing this concurrency while maintaining a
programming model based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction “B” does not use or alter
resources to be altered or used by instruction “A”, instruction “B” can be executed
concurrently (if the execution hardware is also available). Thus, the required instruction
interdependencies and sequences of the program are always respected. The MC68882
coprocessor offers concurrent instruction execution while the MC68881 coprocessor does
not. However, the MC68030 can execute instructions concurrently with coprocessor
instruction execution in the MC68881.

Coprocessor Interface Description

10-4

MC68030 USER’S MANUAL

MOTOROLA

10.1.3 Coprocessor Instruction Format

The instruction set for a given coprocessor is defined by the design of that coprocessor.
When a coprocessor instruction is encountered in the main processor instruction stream, the
MC68030 hardware initiates communication with the coprocessor and coordinates any
interaction necessary to execute the instruction with the coprocessor. A programmer needs
to know only the instruction set and register set defined by the coprocessor in order to use
the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words
in the M68000 instruction set. The operation word is the first word of any M68000 Family
instruction. The F-line operation word contains ones in bits 15-12 [15:12]=1111; refer to
Figure 10-1); the remaining bits are coprocessor and instruction dependent. The F-line
operation word may be followed by as many extension words as are required to provide
additional information necessary for the execution of the coprocessor instruction.

Figure 10-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 10-1, bits 9-11 of the F-line operation word encode the coprocessor
identification code (CpID). The MC68030 uses the coprocessor identification field to indicate
the coprocessor to which the instruction applies. F-line operation words, in which the CpID
is zero, are not coprocessor instructions for the MC68030. If the CpID (bits 9-11) and the
type field (bits 6-8) contain zeros, the instruction accesses the on-chip memory
management unit of the MC68030. Instructions with a CpID of zero and a nonzero type field
are unimplemented instructions that cause the MC68030 to begin exception processing.
The MC68030 never generates coprocessor interface bus cycles with the CpID equal to
zero (except via the MOVES instruction).

CpID codes of 001-101 are reserved for current and future Motorola coprocessors and CpID
codes of 110-111 are reserved for user-defined coprocessors. The Motorola CpID code that
is currently defined is 001 for the MC68881 or MC68882 floating-point coprocessor. By
default, Motorola assemblers will use CpID code 001 when generating the instruction
operation codes for the MC68881 or MC68882 coprocessor instructions.

15 14 13 12 11 9 8 6 5 0
1 1 1 1 CpID TYPE TYPE DEPENDENT

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-5

The encoding of bits 0-8 of the coprocessor instruction operation word is dependent on the
particular instruction being implemented (see

10.2 Coprocessor Instruction Types

).

10.1.4 Coprocessor System Interface

The communication protocol between the main processor and coprocessor necessary to
execute a coprocessor instruction uses a group of interface registers, called coprocessor
interface registers, resident within the coprocessor. By accessing one of these interface
registers, the MC68030 hardware initiates coprocessor instructions. The coprocessor uses
a set of response primitive codes and format codes defined for the M68000 coprocessor
interface to communicate status and service requests to the main processor through these
registers. The coprocessor interface registers (CIRs) are also used to pass operands
between the main processor and the coprocessor. The CIR set, response primitives, and
format codes are discussed in

10.3 Coprocessor Interface Register Set

and

 10.4
Coprocessor Response Primitives

.

10.1.4.1 COPROCESSOR CLASSIFICATION.

M68000 coprocessors can be classified
into two categories depending on their bus interface capabilities. The first category, non-
DMA coprocessors, consists of coprocessors that always operate as bus slaves. The
second category, DMA coprocessors, consists of coprocessors that operate as bus slaves
while communicating with the main processor across the coprocessor interface, but also
have the ability to operate as bus masters, directly controlling the system bus.

If the operation of a coprocessor does not require a large portion of the available bus
bandwidth or has special requirements not directly satisfied by the main processor, that
coprocessor can be efficiently implemented as a non-DMA coprocessor. Since non-DMA
coprocessors always operate as bus slaves, all external bus-related functions that the
coprocessor requires are performed by the main processor. The main processor transfers
operands from the coprocessor by reading the operand from the appropriate CIR and then
writing the operand to a specified effective address with the appropriate address space
specified on the function code lines. Likewise, the main processor transfers operands to the
coprocessor by reading the operand from a specified effective address (and address space)
and then writing that operand to the appropriate CIR using the coprocessor interface. The
bus interface circuitry of a coprocessor operating as a bus slave is not as complex as that
of a device operating as a bus master.

Coprocessor Interface Description

10-6

MC68030 USER’S MANUAL

MOTOROLA

To improve the efficiency of operand transfers between memory and the coprocessor, a
coprocessor that requires a relatively high amount of bus bandwidth or has special bus
requirements can be implemented as a DMA coprocessor. DMA coprocessors can operate
as bus masters. The coprocessor provides all control, address, and data signals necessary
to request and obtain the bus and then performs DMA transfers using the bus. DMA
coprocessors, however, must still act as bus slaves when they require information or
services of the main processor using the M68000 coprocessor interface protocol.

10.1.4.2 PROCESSOR-COPROCESSOR INTERFACE.

 Figure 10-2 is a block diagram of
the signals involved in an asynchronous non-DMA M68000 coprocessor interface. The
synchronous interface is similar. Since the CpID on signals A13-A15 of the address bus is
used with other address signals to select the coprocessor, the system designer can use
several coprocessors of the same type and assign a unique CpID to each one.

The MC68030 accesses the registers in the CIR set using standard asynchronous or
synchronous bus cycles. Thus, the bus interface implemented by a coprocessor for its
interface register set must satisfy the MC68030 address, data, and control signal timing. The
MC68030 timing information for read and write cycles is illustrated in Figures 13-5-13-8 on
foldout pages in the back of this manual. The MC68030 never requests a burst operation

Figure 10-2. Asynchronous Non-DMA M68000 Coprocessor
Interface Signal Usage

FC2-FC0

A19-A13

COPROCESSOR
DECODE

LOGIC

CS COPROCESSOR

ASYNCHRONOUS
BUS

INTERFACE
LOGIC

AS

DS

R/W

A4-A1

D31-D0

DSACK1/DSACK0

MAIN CONTROLLER
MC68EC030

FC2-FC0 = 111 CPU SPACE CYCLE
A19-A16 = 0010 COPROCESSOR ACCESS IN CPU SPACE
A15-A13 = xxx COPROCESSOR IDENTIFICATION
A4-A1 = rrrr COPROCESSOR INTERFACE REGISTER SELECTOR

Chip select logic may be integrated into the coprocessor.
Address lines not specified above are "0" during coprocessor access.

➧
➧
➧
➧

*

*

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-7

during a coprocessor (CPU space) bus cycle, nor does it internally cache data read or
written during coprocessor (CPU space) bus cycles. The MC68030 bus operation is
described in detail in

Section 7 Bus Operation

.

During coprocessor instruction execution, the MC68030 executes CPU space bus cycles to
access the CIR set. The MC68030 drives the three function code outputs high
(FC2:FC0=111) identifying a CPU space bus cycle. The CIR set is mapped into CPU space
in the same manner that a peripheral interface register set is generally mapped into data
space. The information encoded on the function code lines and address bus of the MC68030
during a coprocessor access is used to generate the chip select signal for the coprocessor
being accessed. Other address lines select a register within the interface set. The
information encoded on the function code and address lines of the MC68030 during a
coprocessor access is illustrated in Figure 10-3.

Address signals A16-A19 specify the CPU space cycle type for a CPU space bus cycle. The
types of CPU space cycles currently defined for the MC68030 are interrupt acknowledge,
breakpoint acknowledge, and coprocessor access cycles. CPU space type $2
(A19:A16=0010) specifies a coprocessor access cycle.

Signals A13-A15 of the MC68030 address bus specify the coprocessor identification code
CpID for the coprocessor being accessed. This code is transferred from bits 9-11 of the
coprocessor instruction operation word (refer to Figure 10-1) to the address bus during each
coprocessor access. Thus, decoding the MC68030 function code signals and bits A13-A19
of the address bus provides a unique chip select signal for a given coprocessor. The function
code signals and A16-A19 indicate a coprocessor access; A13-A15 indicate which of the
possible seven coprocessors (001-111) is being accessed. Bits A20-A31 and A5-A12 of the
MC68030 address bus are always zero during a coprocessor access.

The MC68010 can emulate coprocessor access cycles in CPU space using the MOVES
instruction.

10.1.4.3 COPROCESSOR INTERFACE REGISTER SELECTION.

 Figure 10-4 shows that
the value on the MC68030 address bus during a coprocessor access addresses a unique
region of the main processor's CPU address space. Signals A0–A4 of the MC68030 address
bus select the CIR being accessed. The register map for the M68000 coprocessor interface
is shown in Figure 10-5. The individual registers are described in detail in

10.3 Coprocessor
Interface Register Set

.

Figure 10-3. MC68030 CPU Space Address Encodings

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 01 CpID 0 0 0 0 0 0 0 CIR0 0

FUNCTION
CODE

2 0 31 19 15 12 4 0

ADDRESS BUS

CPU SPACE
 TYPE FIELD

1320 16 5

Coprocessor Interface Description

10-8

MC68030 USER’S MANUAL

MOTOROLA

Figure 10-4. Coprocessor Address Map in MC68030 CPU Space

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

INTERFACE REGISTER SET

RESERVED

CPU SPACE ADDRESS

2000

2001F

22000

2201F

24000

2E000

2E01F

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 0

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 1

ADDRESS SPACE FOR
COPROCESSOR WITH
CpID = 7

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-9

Figure 10-5. Coprocessor Interface Register Set Map

10.2 COPROCESSOR INSTRUCTION TYPES

The M68000 coprocessor interface supports four categories of coprocessor instructions:
general, conditional, context save, and context restore. The category name indicates the
type of operations provided by the coprocessor instructions in the category. The instruction
category also determines the CIR accessed by the MC68030 to initiate instruction and
communication protocols between the main processor and the coprocessor necessary for
instruction execution.

During the execution of instructions in the general or conditional categories, the coprocessor
uses the set of coprocessor response primitive codes defined for the MC68000 coprocessor
interface to request services from and indicate status to the main processor. During the
execution of the instructions in the context save and context restore categories, the
coprocessor uses the set of coprocessor format codes defined for the M68000 coprocessor
interface to indicate its status to the main processor.

10.2.1 Coprocessor General Instructions

The general coprocessor instruction category contains data processing instructions and
other general-purpose instructions for a given coprocessor.

31 15 0

00 RESPONSE* CONTROL*
04 SAVE* RESTORE*
08 OPERATION WORD COMMAND*
0C (RESERVED) CONDITION*
10 OPERAND*
14 REGISTER SELECT (RESERVED)
18 INSTRUCTION ADDRESS
1C OPERAND ADDRESS

Coprocessor Interface Description

10-10

MC68030 USER’S MANUAL

MOTOROLA

10.2.1.1 FORMAT.

Figure 10-6 shows the format of a general type instruction.

Figure 10-6. Coprocessor General Instruction Format (cpGEN)

The mnemonic cpGEN is a generic mnemonic used in this discussion for all general
instructions. The mnemonic of a specific general instruction usually suggests the type of
operation it performs and the coprocessor to which it applies. The actual mnemonic and
syntax used to represent a coprocessor instruction is determined by the syntax of the
assembler or compiler that generates the object code.

A coprocessor general type instruction consists of at least two words. The first word of the
instruction is an F-line operation code (bits [15:12]=1111). The CpID field of the F-line
operation code is used during the coprocessor access to indicate which of the coprocessors
in the system executes the instruction. During accesses to the coprocessor interface
registers (refer to

10.1.4.2 Processor-Coprocessor Interface

), the processor places the
CpID on address lines A13-A15.

Bits [8:6]=000 indicate that the instruction is in the general instruction category. Bits 0-5 of
the F-line operation code sometimes encodes a standard M68000 effective address
specifier (refer to

2.5 Effective Address Encoding Summary

). During the execution of a
cpGEN instruction, the coprocessor can use a coprocessor response primitive to request
that the MC68030 perform an effective address calculation necessary for that instruction.
Using the effective address specifier field of the F-line operation code, the processor then
determines the effective addressing mode. If a coprocessor never requests effective
address calculation, bits 0-5 can have any value (don't cares).

The second word of the general-type instruction is the coprocessor command word. The
main processor writes this command word to the command CIR to initiate execution of the
instruction by the coprocessor.

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 0 0 EFFECTIVE ADDRESS

COPROCESSOR COMMAND

OPTIONAL EFFECTIVE ADDRESS OR COMPRESSOR-DEFINED EXTENSION WORDS

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-11

An instruction in the coprocessor general instruction category optionally includes a number
of extension words following the coprocessor command word. These words can provide
additional information required for the coprocessor instruction. For example, if the
coprocessor requests that the MC68030 calculate an effective address during coprocessor
instruction execution, information required for the calculation must be included in the
instruction format as effective address extension words.

10.2.1.2 PROTOCOL.

 The execution of a cpGEN instruction follows the protocol shown in
Figure 10-7. The main processor initiates communication with the coprocessor by writing the
instruction command word to the command CIR. The coprocessor decodes the command
word to begin processing the cpGEN instruction. Coprocessor design determines the
interpretation of the coprocessor command word; the MC68030 does not attempt to decode
it.

While the coprocessor is executing an instruction, it requests any required services from and
communicates status to the main processor by placing coprocessor response primitive
codes in the response CIR. After writing to the command CIR, the main processor reads the
response CIR and responds appropriately. When the coprocessor has completed the
execution of an instruction or no longer needs the services of the main processor to execute
the instruction, it provides a response to release the processor. The main processor can
then execute the next instruction in the instruction stream. However, if a trace exception is
pending, the MC68030 does not terminate communication with the coprocessor until the
coprocessor indicates that it has completed all processing associated with the cpGEN
instruction (refer to

10.5.2.5 Trace Exceptions

).

The coprocessor interface protocol shown in Figure 10-7 allows the coprocessor to define
the operation of each general category instruction. That is, the main processor initiates the
instruction execution by writing the instruction command word to the command CIR and by
reading the response CIR to determine its next action. The execution of the coprocessor
instruction is then defined by the internal operation of the coprocessor and by its use of
response primitives to request services from the main processor. This instruction protocol
allows a wide range of operations to be implemented in the general instruction category.

10.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction based
on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of both
the main processor's and the coprocessor's hardware. The condition specified for the
instruction is related to the coprocessor operation and is, therefore, evaluated by the

(UNABLE TO LOCATE ART)

Figure 10-7. Coprocessor Interface Protocol for
General Category Instructions

Coprocessor Interface Description

10-12

MC68030 USER’S MANUAL

MOTOROLA

coprocessor. The instruction completion following the condition evaluation is, however,
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-13

Figure 10-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition selector
to the condition CIR. The coprocessor decodes the condition selector to determine the
condition to evaluate. The coprocessor can use response primitives to request that the main
processor provide services required for the condition evaluation. After evaluating the
condition, the coprocessor returns a true/false indicator to the main processor by placing a
null primitive (refer to

10.4.4 Null Primitive

) in the response CIR. The main processor
completes the coprocessor instruction execution when it receives the condition indicator
from the coprocessor.

10.2.2.1 BRANCH ON COPROCESSOR CONDITION INSTRUCTION.

The conditional
instruction category includes two formats of the M68000 Family branch instruction. These
instructions branch on conditions related to the coprocessor operation. They execute
similarly to the conditional branch instructions provided in the M68000 Family instruction set.

10.2.2.1.1 Format.

 Figure 10-9 shows the format of the branch on coprocessor condition
instruction that provides a word-length displacement. Figure 10-10. shows the format of the
instruction that includes a long-word displacement.

Figure 10-9. Branch on Coprocessor Condition Instruction (cpBcc.W)

Figure 10-10. Branch On Coprocessor Condition Instruction (cpBcc.L)

The first word of the branch on coprocessor condition instruction is the F-line operation
word. Bits [15:12]=1111 and bits [11:9] contain the identification code of the coprocessor
that is to evaluate the condition. The value in bits [8:6] identifies either the word or the long-
word displacement format of the branch instruction, which is specified by the cpBcc.W or
cpBcc.L mnemonic, respectively.

(UNABLE TO LOCATE ART)

Figure 10-8. Coprocessor Interface Protocol for Conditional
Category Instructions

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 1 0 CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

DISPLACEMENT

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 1 1 CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

DISPLACEMENT-HIGH

DISPLACEMENT-LOW

Coprocessor Interface Description

10-14

MC68030 USER’S MANUAL

MOTOROLA

Bits [0-5] of the F-line operation word contain the coprocessor condition selector field. The
MC68030 writes the entire operation word to the condition CIR to initiate execution of the
branch instruction by the coprocessor. The coprocessor uses bits [0-5] to determine which
condition to evaluate.

If the coprocessor requires additional information to evaluate the condition, the branch
instruction format can include this information in extension words. Following the F-line
operation word, the number of extension words is determined by the coprocessor design.
The final word(s) of the cpBcc instruction format contains the displacement used by the main
processor to calculate the destination address when the branch is taken.

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-15

10.2.2.1.2 Protocol.

 Figure 10-8 shows the protocol for the cpBcc.L and cpBcc.W
instructions. The main processor initiates the instruction by writing the F-line operation word
to the condition CIR to transfer the condition selector to the coprocessor. The main
processor then reads the response CIR to determine its next action. The coprocessor can
return a response primitive to request services necessary to evaluate the condition. If the
coprocessor returns the false condition indicator, the main processor executes the next
instruction in the instruction stream. If the coprocessor returns the true condition indicator,
the processor adds the displacement to the MC68030 scanPC (refer to

10.4.1 ScanPC

) to
determine the address of the next instruction for the main processor to execute. The scanPC
must be pointing to the location of the first word of the displacement in the instruction stream
when the address is calculated. The displacement is a twos-complement integer that can be
either a 16-bit word or a 32-bit long word. The processor sign-extends the 16-bit
displacement to a long-word value for the destination address calculation.

10.2.2.2 SET ON COPROCESSOR CONDITION INSTRUCTION.

 The set on coprocessor
condition instructions set or reset a flag (a data alterable byte) according to a condition
evaluated by the coprocessor. The operation of this instruction is similar to the operation of
the Scc instruction in the M68000 Family instruction set. Although the Scc instruction and
the cpScc instruction do not explicitly cause a change of program flow, they are often used
to set flags that control program flow.

10.2.2.2.1 Format.

Figure 10-11 shows the format of the set on coprocessor condition
instruction, denoted by the cpScc mnemonic.

Figure 10-11. Set On Coprocessor Condition (cpScc)

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 0 0 1 EFFECTIVE ADDRESS

CONDITION SELECTOR

OPTIONAL COPROCESSOR-DEFINED WORDS

OPTIONAL EFFECTIVE ADDRESS EXTENSION WORDS(0-5WORDS)

Coprocessor Interface Description

10-16

MC68030 USER’S MANUAL

MOTOROLA

The first word of the cpScc instruction is the F-line operation word. This word contains the
CpID field in bits [9-11] and 001 in bits [8:6] to identify the cpScc instruction. The lower six
bits of the F-line operation word are used to encode an M68000 Family effective addressing
mode (refer to

2.5 Effective Address Encoding Summary

).

The second word of the cpScc instruction format contains the coprocessor condition
selector in bits [0-5]. Bits [6-15] of this word are reserved by Motorola and should be zero to
ensure compatibility with future M68000 products. This word is written to the condition CIR
to initiate the cpScc instruction.

If the coprocessor requires additional information to evaluate the condition, the instruction
can include extension words to provide this information. The number of these extension
words, which follow the word containing the coprocessor condition selector field, is
determined by the coprocessor design.

The final portion of the cpScc instruction format contains zero to five effective address
extension words. These words contain any additional information required to calculate the
effective address specified by bits [0-5] of the F-line operation word.

10.2.2.2.2 Protocol.

 Figure 10-8 shows the protocol for the cpScc instruction. The
MC68030 transfers the condition selector to the coprocessor by writing the word 22following
the F-line operation word to the condition CIR. The main processor then reads the response
CIR to determine its next action. The coprocessor can return a response primitive to request
services necessary to evaluate the condition. The operation of the cpScc instruction
depends on the condition evaluation indicator returned to the main processor by the
coprocessor. When the coprocessor returns the false condition indicator, the main
processor evaluates the effective address specified by bits [0-5] of the F-line operation word
and sets the byte at that effective address to FALSE (all bits cleared). When the coprocessor
returns the true condition indicator, the main processor sets the byte at the effective address
to TRUE (all bits set to one).

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-17

10.2.2.3 TEST COPROCESSOR CONDITION, DECREMENT AND BRANCH
INSTRUCTION.

The operation of the test coprocessor condition, decrement and branch
instruction is similar to that of the DBcc instruction provided in the M68000 Family instruction
set. This operation uses a coprocessor evaluated condition and a loop counter in the main
processor. It is useful for implementing DO-UNTIL constructs used in many high-level
languages.

10.2.2.3.1 Format.

Figure 10-12 shows the format of the test coprocessor condition,
decrement and branch instruction, denoted by the cpDBcc mnemonic.

Figure 10-12. Test Coprocessor Condition, Decrement and Branch
Instruction Format (cpDBcc)

The first word of the cpDBcc instruction is the F-line operation word. This word contains the
CpID field in bits [9-11] and 001001 in bits [8:3] to identify the cpDBcc instruction. Bits [0:2]
of this operation word specify the main processor data register used as the loop counter
during the execution of the instruction.

The second word of the cpDBcc instruction format contains the coprocessor condition
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with
future M68000 products. This word is written to the condition CIR to initiate execution of the
cpDBcc instruction by the coprocessor.

If the coprocessor requires additional information to evaluate the condition, the cpDBcc
instruction can include this information in extension words. These extension words follow
the word containing the coprocessor condition selector field in the cpDBcc instruction
format.

The last word of the instruction contains the displacement for the cpDBcc instruction. This
displacement is a twos-complement 16-bit value that is sign-extended to long-word size
when it is used in a destination address calculation.

15 14 13 12 11 9 8 7 6 5 4 3 2 0

1 1 1 1 CpID 0 0 1 0 0 1 EFFECTIVE ADDRESS

(RESERVED) CONDITION SELECTOR

OPTIONAL COPRCESSOR-DEFINED EXTENSION WORDS

DISPLACEMENT

Coprocessor Interface Description

10-18

MC68030 USER’S MANUAL

MOTOROLA

10.2.2.3.2 Protocol.

Figure 10-8 shows the protocol for the cpDBcc instructions. The
MC68030 transfers the condition selector to the coprocessor by writing the word following
the operation word to the condition CIR. The main processor then reads the response CIR
to determine its next action. The coprocessor can use a response primitive to request any
services necessary to evaluate the condition. If the coprocessor returns the true condition
indicator, the main processor executes the next instruction in the instruction stream. If the
coprocessor returns the false condition indicator, the main processor decrements the low-
order word of the register specified by bits [0-2] of the F-line operation word. If this register
contains minus one (—1) after being decremented, the main processor executes the next
instruction in the instruction stream. If the register does not contain minus one (—1) after
being decremented, the main processor branches to the destination address to continue
instruction execution.

The MC68030 adds the displacement to the scanPC (refer to

10.4.1 ScanPC

) to determine
the address of the next instruction. The scanPC must point to the 16-bit displacement in the
instruction stream when the destination address is calculated.

10.2.2.4 TRAP ON COPROCESSOR CONDITION.

The trap on coprocessor condition
instruction allows the programmer to initiate exception processing based on conditions
related to the coprocessor operation.

10.2.2.4.1 Format.

Figure 10-13 shows the format of the trap on coprocessor condition
instruction, denoted by the cpTRAPcc mnemonic.

Figure 10-13. Trap On Coprocessor Condition (cpTRAPcc)

15 14 13 12 11 9 8 7 6 5 4 3 2 0

1 1 1 1 CpID 0 0 1 1 1 1 OPMODE

(RESERVED) CONDITION SELECTOR

OPTIONAL COPRCESSOR-DEFINED EXTENSION WORDS

OPTIONAL WORD

OR LONG-WORD OPERAND

Coprocessor Interface Description

MOTOROLA

MC68030 USER’S MANUAL

10-19

The F-line operation word contains the CpID field in bits [9-11] and 001111 in bits [8:3] to
identify the cpTRAPcc instruction. Bits [0-2] of the cpTRAPcc F-line operation word specify
the number of optional operand words in the instruction format. The instruction format can
include zero, one, or two operand words.

The second word of the cpTRAPcc instruction format contains the coprocessor condition
selector in bits [0-5] and should contain zeros in bits [6-15] to maintain compatibility with
future M68000 products. This word is written to the condition CIR of the coprocessor to
initiate execution of the cpTRAPcc instruction by the coprocessor.

If the coprocessor requires additional information to evaluate a condition, the instruction can
include this information in extension words. These extension words follow the word
containing the coprocessor condition selector field in the cpTRAPcc instruction format.

The operand words of the cpTRAPcc F-line operation word follow the coprocessor-defined
extension words. These operand words are not explicitly used by the MC68030, but can be
used to contain information referenced by the cpTRAPcc exception handling routines. The
valid encodings for bits [0-2] of the F-line operation word and the corresponding numbers of
operand words are listed in Table 10-1. Other encodings of these bits are invalid for the
cpTRAPcc instruction.

10.2.2.4.2 Protocol. Figure 10-8 shows the protocol for the cpTRAPcc instructions. The
MC68030 transfers the condition selector to the coprocessor by writing the word following
the operation word to the condition CIR. The main processor then reads the response CIR
to determine its next action. The coprocessor can, using a response primitive, request any
services necessary to evaluate the condition. If the coprocessor returns the true condition
indicator, the main processor initiates exception processing for the cpTRAPcc exception
(refer to 10.5.2.4 cpTRAPcc Instruction Traps). If the coprocessor returns the false
condition indicator, the main processor executes the next instruction in the instruction
stream.

Table 10-1. cpTRAPcc Opmode

Opmode
Optional Words in

instructional Format
010 One
011 Two
100 Zero

Coprocessor Interface Description

10-20 MC68030 USER’S MANUAL MOTOROLA

10.2.3 Coprocessor Save and Restore Instructions
The coprocessor context save and context restore instruction categories in the M68000
coprocessor interface support multitasking programming environments. In a multitasking
environment, the context of a coprocessor may need to be changed asynchronously with
respect to the operation of that coprocessor. That is, the coprocessor may be interrupted at
any point in the execution of an instruction in the general or conditional category to begin
context change operations.

In contrast to the general and conditional instruction categories, the context save and
context restore instruction categories do not use the coprocessor response primitives. A set
of format codes defined by the M68000 coprocessor interface communicates status
information to the main processor during the execution of these instructions. These
coprocessor format codes are discussed in detail in 10.2.3.2 Coprocessor Format Words.

10.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and
context restore (cpRESTORE) instructions transfer an internal coprocessor state frame
between memory and a coprocessor. This internal coprocessor state frame represents the
state of coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is
possible to interrupt coprocessor operation, save the context associated with the current
operation, and initiate coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor's internal state frame as a sequence of long-
word entries in memory. Figure 10-14 shows the format of a coprocessor state frame. During
execution of the cpSAVE instruction, the MC68030 calculates the state frame effective
address from information in the operation word of the instruction and stores a format word
at this effective address. The processor writes the long words that form the coprocessor
state frame to descending memory addresses, beginning with the address specified by the
sum of the effective address and the format word-length field multiplied by four. During
execution of the cpRESTORE instruction, the MC68030 reads the format word and long
words in the state frame from ascending addresses, beginning with the effective address
specified in the instruction operation word.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-21

The processor stores the coprocessor format word at the lowest address of the state frame
in memory, and this word is the first word transferred for both the cpSAVE and the
cpRESTORE instructions. The word following the format word does not contain information
relevant to the coprocessor state frame, but serves to keep the information in the state frame
a multiple of four bytes in size. The number of entries following the format word (at higher
addresses) is determined.

The information in a coprocessor state frame describes a context of operation for that
coprocessor. This description of a coprocessor context includes the program invisible state
information and, optionally, the program visible state information. The program invisible
state information consists of any internal registers or status information that cannot be
accessed by the program but is necessary for the coprocessor to continue its operation at
the point of suspension. Program visible state information includes the contents of all
registers that appear in the coprocessor programming model and that can be directly
accessed using the coprocessor instruction set. The information saved by the cpSAVE
instruction must include the program invisible state information. If cpGEN instructions are
provided to save the program visible state of the coprocessor, the cpSAVE and
cpRESTORE instructions should only transfer the program invisible state information to
minimize interrupt latency during a save or restore operation.

Figure 10-14. Coprocessor State Frame Format in Memory

 SAVE
ORDER

RESTORE
ORDER

0

n

n-1

n-2

0

1

2

3

FORMAT LENGTH (UNUSED, RESERVED)

31 23 15 0

COPROCESSOR-DEPENDENT INFORMATION

n1

Coprocessor Interface Description

10-22 MC68030 USER’S MANUAL MOTOROLA

10.2.3.2 COPROCESSOR FORMAT WORDS. The coprocessor communicates status
information to the main processor during the execution of cpSAVE and cpRESTORE
instructions using coprocessor format words. The format words defined for the M68000
coprocessor interface are listed in Table 10-2.

The upper byte of the coprocessor format word contains the code used to communicate
coprocessor status information to the main processor. The MC68030 recognizes four types
of format words: empty/reset, not ready, invalid format, and valid format. The MC68030
interprets the reserved format codes ($03-$0F) as invalid format words. The lower byte of
the coprocessor format word specifies the size in bytes (which must be a multiple of four) of
the coprocessor state frame. This value is only relevant when the code byte contains the
valid format code (refer to 10.2.3.2.4 Valid Format Word).

10.2.3.2.1 Empty/Reset Format Word. the Coprocessor Returns the Empty/Reset Format
Code During a Cpsave Instruction to Indicate That the Coprocessor Contains No User-
Specific InformaTion. That Is, No Coprocessor Instructions Have Been Executed Since
Either a Previous CpreStore of An Empty/Reset Format Code or the Previous Hardware
Reset. If the Main Processor Reads the Empty/Reset Format Word from the Save Cir During
the Initiation of a Cpsave InstrucTion, It Stores the Format Word At the Effective Address
Specified in the Cpsave Instruction and Executes the Next Instruction.

When the main processor reads the empty/reset format word from memory during the
execution of the cpRESTORE instruction, it writes the format word to the restore CIR. The
main processor then reads the restore CIR and, if the coprocessor returns the empty/reset
format word, executes the next instruction. The main processor can initialize the
coprocessor by writing the empty/reset format code to the restore CIR. When the
coprocessor receives the empty/reset format code, it terminates any current operations and
waits for the main processor to initiate the next coprocessor instruction. In particular, after
the cpRESTORE of the empty/reset format word, the execution of a cpSAVE should cause
the empty/reset format word to be returned when a cpSAVE instruction is executed before
any other coprocessor instructions. Thus, an empty/reset state frame consists only of the
format word and the following reserved word in memory (refer to Figure 10-14).

Table 10-2. Coprocessor Format Word Encodings

Format Code Length Meaning
00 xx Empty/Reset
01 xx Not Ready, Come Again
02 xx Invalid Format

03-0F xx Undefined, Reserved
10-FF Length Valid Format, Coprocessor Defined

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-23

10.2.3.2.2 Not Ready Format Word. When the main processor initiates a cpSAVE
instruction by reading the save CIR the coprocessor can delay the save operation by
returning a not ready format word. The main processor then services any pending interrupts
and reads the save CIR again. The not ready format word delays the save operation until
the coprocessor is ready to save its internal state. The cpSAVE instruction can suspend
execution of a general or conditional coprocessor instruction; the coprocessor can resume
execution of the suspended instruction when the appropriate state is restored with a
cpRESTORE. If no further main processor services are required to complete coprocessor
instruction execution, it may be more efficient to complete the instruction and thus reduce
the size of the saved state. The coprocessor designer should consider the efficiency of
completing the instruction or of suspending and later resuming the instruction when the main
processor executes a cpSAVE instruction.

When the main processor initiates a cpRESTORE instruction by writing a format word to the
restore CIR, the coprocessor should usually terminate any current operations and restore
the state frame supplied by the main processor. Thus, the not ready format word should
usually not be returned by the coprocessor during the execution of a cpRESTORE
instruction. If the coprocessor must delay the cpRESTORE operation for any reason, it can
return the not ready format word when the main processor reads the restore CIR. If the main
processor reads the not ready format word from the restore CIR during the cpRESTORE
instruction, it reads the restore CIR again without servicing any pending interrupts.

10.2.3.2.3 Invalid Format Word. When the format word placed in the restore CIR to initiate
a cpRESTORE instruction does not describe a valid coprocessor state frame, the
coprocessor returns the invalid format word in the restore CIR. When the main processor
reads this format word during the cpRESTORE instruction, it writes the abort mask to the
control CIR and initiates format error exception processing. The two least significant bits of
the abort mask are 01; the fourteen most significant bits are undefined.

Coprocessor Interface Description

10-24 MC68030 USER’S MANUAL MOTOROLA

A coprocessor should usually not place an invalid format word in the save CIR when the
main processor initiates a cpSAVE instruction. A coprocessor, however, may not be able to
support the initiation of a cpSAVE instruction while it is executing a previously initiated
cpSAVE or cpRESTORE instruction. In this situation, the coprocessor can return the invalid
format word when the main processor reads the save CIR to initiate the cpSAVE instruction
while either another cpSAVE or cpRESTORE instruction is executing. If the main processor
reads an invalid format word from the save CIR, it writes the abort mask to the control CIR
and initiates format error exception processing (refer to 10.5.1.5 Format Errors).

10.2.3.2.4 Valid Format Word. When the main processor reads a valid format word from
the save CIR during the cpSAVE instruction, it uses the length field to determine the size of
the coprocessor state frame to save. The length field in the lower eight bits of a format word
is relevant only in a valid format word. During the cpRESTORE instruction, the main
processor uses the length field in the format word read from the effective address in the
instruction to determine the size of the coprocessor state frame to restore.

The length field of a valid format word, representing the size of the coprocessor state frame,
must contain a multiple of four. If the main processor detects a value that is not a multiple of
four in a length field during the execution of a cpSAVE or cpRESTORE instruction, the main
processor writes the abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control
CIR and initiates format error exception processing.

10.2.3.3 COPROCESSOR CONTEXT SAVE INSTRUCTION. The M68000 coprocessor
context save instruction category consists of one instruction. The coprocessor context save
instruction, denoted by the cpSAVE mnemonic, saves the context of a coprocessor
dynamically without relation to the execution of coprocessor instructions in the general or
conditional instruction categories. During the execution of a cpSAVE instruction, the
coprocessor communicates status information to the main processor by using the
coprocessor format codes.

10.2.3.3.1 Format. Figure 10-15 shows the format of the cpSAVE instruction. The first word
of the instruction is the F-line operation word, which contains the coprocessor identification
code in bits [9-11] and an M68000 effective address code in bits [0-5]. The effective address
encoded in the cpSAVE instruction is the address at which the state frame associated with
the current context of the coprocessor is saved in memory.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-25

Figure 10-15. Coprocessor Context Save Instruction Format (cpSAVE)

The control alterable and predecrement addressing modes are valid for the cpSAVE
instruction. Other addressing modes cause the MC68030 to initiate F-line emulator
exception processing as described in 10.5.2.2 F-Line Emulator Exceptions.

The instruction can include as many as five effective address extension words following the
cpSAVE instruction operation word. These words contain any additional information
required to calculate the effective address specified by bits [0-5] of the operation word.

10.2.3.3.2 Protocol. Figure 10-16 shows the protocol for the coprocessor context save
instruction. The main processor initiates execution of the cpSAVE instruction by reading the
save CIR. Thus, the cpSAVE instruction is the only coprocessor instruction that begins by
reading from a CIR. (All other coprocessor instructions write to a CIR to initiate execution of
the instruction by the coprocessor.) The coprocessor communicates status information
associated with the context save operation to the main processor by placing coprocessor
format codes in the save CIR.

If the coprocessor is not ready to suspend its current operation when the main processor
reads the save CIR, it returns a “not ready'“ format code. The main processor services any
pending interrupts and then reads the save CIR again. After placing the not ready format
code in the save CIR, the coprocessor should either suspend or complete the instruction it
is currently executing.

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 1 0 0 EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Coprocessor Interface Description

10-26 MC68030 USER’S MANUAL MOTOROLA

Once the coprocessor has suspended or completed the instruction it is executing, it places
a format code representing the internal coprocessor state in the save CIR. When the main
processor reads the save CIR, it transfers the format word to the effective address specified
in the cpSAVE instruction. The lower byte of the coprocessor format word specifies the
number of bytes of state information, not including the format word and associated null word,
to be transferred from the coprocessor to the effective address specified. If the state
information is not a multiple of four bytes in size, the MC68030 initiates format error
exception processing (refer to 10.5.1.5 Format Errors). The coprocessor and main
processor coordinate the transfer of the internal state of the coprocessor using the operand
CIR. The MC68030 completes the coprocessor context save by repeatedly reading the
operand CIR and writing the information obtained into memory until all the bytes specified
in the coprocessor format word have been transferred. Following a cpSAVE instruction, the
coprocessor should be in an idle state =m that is, not executing any coprocessor
instructions.

The cpSAVE instruction is a privileged instruction. When the main processor identifies a
cpSAVE instruction, it checks the supervisor bit in the status register to determine whether
it is operating at the supervisor privilege level. If the MC68030 attempts to execute a
cpSAVE instruction while at the user privilege level (status register bit [13]=0), it initiates
privilege violation exception processing without accessing any of the coprocessor interface
registers (refer to 10.5.2.3 Privilege Violations).

The MC68030 initiates format error exception processing if it reads an invalid format word
(or a valid format word whose length field is not a multiple of four bytes) from the save CIR
during the execution of a cpSAVE instruction (refer to 10.2.3.2.3 Invalid Format Word). The
MC68030 writes an abort mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR
to abort the coprocessor instruction prior to beginning exception processing. Figure 10-16
does not include this case since a coprocessor usually returns either a not ready or a valid
format code in the context of the cpSAVE instruction. The coprocessor can return the invalid
format word, however, if a cpSAVE is initiated while the coprocessor is executing a cpSAVE
or cpRESTORE instruction and the coprocessor is unable to support the suspension of
these two instructions.

10.2.3.4 COPROCESSOR CONTEXT RESTORE INSTRUCTION. The M68000
coprocessor context restore instruction category includes one instruction. The coprocessor
context restore instruction, denoted by the cpRESTORE mnemonic, forces a coprocessor
to terminate any current operations and to restore a former state. During the execution of a
cpRESTORE instruction, the coprocessor can communicate status information to the main
processor by placing format codes in the restore CIR.

10.2.3.4.1 Format. Figure 10-17 shows the format of the cpRESTORE instruction.

(UNABLE TO LOCATE ART)

Figure 10-16. Coprocessor Context Save Instruction Protocol

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-27

Figure 10-17. Coprocessor Context Restore Instruction Format (cpRESTORE)

The first word of the instruction is the F-line operation word, which contains the coprocessor
identification code in bits [9-11] and an M68000 effective addressing code in bits [0-5]. The
effective address encoded in the cpRESTORE instruction is the starting address in memory
where the coprocessor context is stored. The effective address is that of the coprocessor
format word that applies to the context to be restored to the coprocessor.

The instruction can include as many as five effective address extension words following the
first word in the cpRESTORE instruction format. These words contain any additional
information required to calculate the effective address specified by bits [0-5] of the operation
word.

All memory addressing modes except the predecrement addressing mode are valid. Invalid
effective address encodings cause the MC68030 to initiate F-line emulator exception
processing (refer to 10.5.2.2 F-Line Emulator Exceptions).

15 14 13 12 11 9 8 7 6 5 0

1 1 1 1 CpID 1 0 1 EFFECTIVE ADDRESS

EFFECTIVE ADDRESS EXTENSION WORDS (0-5 WORDS)

Coprocessor Interface Description

10-28 MC68030 USER’S MANUAL MOTOROLA

10.2.3.4.2 Protocol. Figure 10-18 shows the protocol for the coprocessor context restore
instruction. When the main processor executes a cpRESTORE instruction, it first reads the
coprocessor format word from the effective address in the instruction. This format word
contains a format code and a length field. During cpRESTORE operation, the main
processor retains a copy of the length field to determine the number of bytes to be
transferred to the coprocessor during the cpRESTORE operation and writes the format word
to the restore CIR to initiate the coprocessor context restore.

When the coprocessor receives the format word in the restore CIR, it must terminate any
current operations and evaluate the format word. If the format word represents a valid
coprocessor context as determined by the coprocessor design, the coprocessor returns the
format word to the main processor through the restore CIR and prepares to receive the
number of bytes specified in the format word through its operand CIR.

After writing the format word to the restore CIR the main processor continues the
cpRESTORE dialog by reading that same register. If the coprocessor returns a valid format
word, the main processor transfers the number of bytes specified by the format word at the
effective address to the operand CIR.

If the format word written to the restore CIR does not represent a valid coprocessor state
frame, the coprocessor places an invalid format word in the restore CIR and terminates any
current operations. The main processor receives the invalid format code, writes an abort
mask (refer to 10.2.3.2.3 Invalid Format Word) to the control CIR, and initiates format error
exception processing (refer to 10.5.1.5 Format Errors).

The cpRESTORE instruction is a privileged instruction. When the main processor accesses
a cpRESTORE instruction, it checks the supervisor bit in the status register. If the MC68030
attempts to execute a cpRESTORE instruction while at the user privilege level (status
register bit [13]=0), it initiates privilege violation exception processing without accessing any
of the coprocessor interface registers (refer to 10.5.2.3 Privilege Violations).

10.3 COPROCESSOR INTERFACE REGISTER SET
The instructions of the M68000 coprocessor interface use registers of the CIR set to
communicate with the coprocessor. These CIRs are not directly related to the coprocessor's
programming model.

Figure 10-4 is a memory map of the CIR set. The registers denoted by asterisks (*) must be
included in a coprocessor interface that implements coprocessor instructions in all four
categories. The complete register model must be implemented if the system uses all of the
coprocessor response primitives defined for the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

(UNABLE TO LOCATE ART)

Figure 10-18. Coprocessor Context Restore Instruction Protocol

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-29

10.3.1 Response CIR
The coprocessor uses the 16-bit response CIR to communicate all service requests
(coprocessor response primitives) to the main processor. The main processor reads the
response CIR to receive the coprocessor response primitives during the execution of
instructions in the general and conditional instruction categories. The offset from the base
address of the CIR set for the response CIR is $00. Refer to 10.4 Coprocessor Response
Primitives.

Coprocessor Interface Description

10-30 MC68030 USER’S MANUAL MOTOROLA

10.3.2 Control CIR
The main processor writes to the 2-bit control CIR to acknowledge coprocessor-requested
exception processing or to abort the execution of a coprocessor instruction. The offset from
the base address of the CIR set for the control CIR is $02. The control CIR occupies the two
least significant bits of the word at that offset. The 14 most significant bits of the word are
undefined. Figure 10-19 shows the format of this register.

Figure 10-19. Control CIR Format

When the MC68030 receives one of the three take exception coprocessor response
primitives, it acknowledges the primitive by writing the exception acknowledge mask (102)
to the control CIR, which sets the exception acknowledge (XA) bit. The MC68030 writes the
abort mask (012), which sets the abort (AB) bit, to the control CIR to abort any coprocessor
instruction in progress. (The most significant 14 bits of both masks are undefined.) The
MC68030 aborts a coprocessor instruction when it detects one of the following exception
conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in response to a su-
pervisor check primitive

• A format error exception when it receives an invalid format word or a valid format word
that contains an invalid length

10.3.3 Save CIR
The coprocessor uses the 16-bit save CIR to communicate status and state frame format
information to the main processor while executing a cpSAVE instruction. The main
processor reads the save CIR to initiate execution of the cpSAVE instruction by the
coprocessor. The offset from the base address of the CIR set for the save CIR is $04. Refer
to 10.2.3.2 Coprocessor Format Words.

15 2 1 0

(UNDEFINED, RESERVED) XA AB

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-31

10.3.4 Restore CIR
The main processor initiates the cpRESTORE instruction by writing a coprocessor format
word to the 16-bit restore register. During the execution of the cpRESTORE instruction, the
coprocessor communicates status and state frame format information to the main processor
through the restore CIR. The offset from the base address of the CIR set for the restore CIR
is $06. Refer to 10.2.3.2 Coprocessor Format Words.

10.3.5 Operation Word CIR
The main processor writes the F-line operation word of the instruction in progress to the 16-
bit operation word CIR in response to a transfer operation word coprocessor response
primitive (refer to 10.4.6 Transfer Operation Word Primitive). The offset from the base
address of the CIR set for the operation word CIR is $08.

10.3.6 Command CIR
The main processor initiates a general category instruction by writing the instruction
command word, which follows the instruction F-line operation word in the instruction stream,
to the 16-bit command CIR. The offset from the base address of the CIR set for the
command CIR is $0A.

10.3.7 Condition CIR
The main processor initiates a conditional category instruction by writing the condition
selector to the 16-bit condition CIR. The offset from the base address of the CIR set for the
condition CIR is $0E. Figure 10-20 shows the format of the condition CIR.

Figure 10-20. Condition CIR Format

15 6 5 0

(UNDEFINED, RESERVED) CONDITION SELECTOR

Coprocessor Interface Description

10-32 MC68030 USER’S MANUAL MOTOROLA

10.3.8 Operand CIR
When the coprocessor requests the transfer of an operand, the main processor performs
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base
address of the CIR set for the operand CIR is $10.

The MC68030 aligns all operands transferred to and from the operand CIR to the most
significant byte of this CIR. The processor performs a sequence of long-word transfers to
read or write any operand larger than four bytes. If the operand size is not a multiple of four
bytes, the portion remaining after the initial long-word transfers is aligned to the most
significant byte of the operand CIR. Figure 10-21 shows the operand alignment used by the
MC68030 when accessing the operand CIR.

Figure 10-21. Operand Alignment for Operand CIR Accesses

10.3.9 Register Select CIR
When the coprocessor requests the transfer of one or more main processor registers or a
group of coprocessor registers, the main processor reads the 16-bit register select CIR to
identify the number or type of registers to be transferred. The offset from the base address
of the CIR set for the register select CIR is $14. The format of this register depends on the
primitive that is currently using it. Refer to 10.4 Coprocessor Response Primitives.

31 23 15 7 0

BYTE OPERAND NO TRANSFER

WORD OPERAND

THREE BYTE OPERAND NO TRANSFER

LONG WORD OPERAND

TEN

BYTE

OPERAND NO TRANSFER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-33

10.3.10 Instruction Address CIR
When the coprocessor requests the address of the instruction it is currently executing, the
main processor transfers this address to the 32-bit instruction address CIR. Any transfer of
the scanPC is also performed through the instruction address CIR (refer to 10.4.17 Transfer
Status Register and ScanPC Primitive). The offset from the base address of the CIR set
for the instruction address CIR is $18.

10.3.11 Operand Address CIR
When a coprocessor requests an operand address transfer between the main processor
and the coprocessor, the address is transferred through the 32-bit operand address CIR.
The offset from the base address of the CIR set for the operand address CIR is $1C.

10.4 COPROCESSOR RESPONSE PRIMITIVES
The response primitives are primitive instructions that the coprocessor issues to the main
processor during the execution of a coprocessor instruction. The coprocessor uses
response primitives to communicate status information and service requests to the main
processor. In response to an instruction command word written to the command CIR or a
condition selector in the condition CIR, the coprocessor returns a response primitive in the
response CIR. Within the general and conditional instruction categories, individual
instructions are distinguished by the operation of the coprocessor hardware and also by
services specified by coprocessor response primitives provided by the main processor.

Subsequent paragraphs, beginning with 10.4.2 Coprocessor Response Primitive
General Format, consist of detailed descriptions of the M68000 coprocessor response
primitives supported by the MC68030. Any response primitive that the MC68030 does not
recognize causes it to initiate protocol violation exception processing (refer to 10.5.2.1
Protocol Violations). This processing of undefined primitives supports emulation of
extensions to the M68000 coprocessor response primitive set by the protocol violation
exception handler. Exception processing related to the coprocessor interface is discussed
in 10.5 Exceptions.

Coprocessor Interface Description

10-34 MC68030 USER’S MANUAL MOTOROLA

10.4.1 ScanPC
Several of the response primitives involve the scanPC, and many of them require the main
processor to use it while performing services requested. These paragraphs describe the
scanPC and tell how it operates.

During the execution of a coprocessor instruction, the program counter in the MC68030
contains the address of the F-line operation word of that instruction. A second register,
called the scanPC, sequentially addresses the remaining words of the instruction.

If the main processor requires extension words to calculate an effective address or
destination address of a branch operation, it uses the scanPC to address these extension
words in the instruction stream. Also, if a coprocessor requests the transfer of extension
words, the scanPC addresses the extension words during the transfer. As the processor
references each word, it increments the scanPC to point to the next word in the instruction
stream. When an instruction is completed, the processor transfers the value in the scanPC
to the program counter to address the operation word of the next instruction.

The value in the scanPC when the main processor reads the first response primitive after
beginning to execute an instruction depends on the instruction being executed. For a cpGEN
instruction, the scanPC points to the word following the coprocessor command word. For
the cpBcc instructions, the scanPC points to the word following the instruction F-line
operation word. For the cpScc, cpTRAPcc, and cpDBcc instructions, the scanPC points to
the word following the coprocessor condition specifier word.

If a coprocessor implementation uses optional instruction extension words with a general or
conditional instruction, the coprocessor must use these words consistently so that the
scanPC is updated accordingly during the instruction execution. Specifically, during the
execution of general category instructions, when the coprocessor terminates the instruction
protocol, the MC68030 assumes that the scanPC is pointing to the operation word of the
next instruction to be executed. During the execution of conditional category instructions,
when the coprocessor terminates the instruction protocol, the MC68030 assumes that the
scanPC is pointing to the word following the last of any coprocessor-defined extension
words in the instruction format.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-35

10.4.2 Coprocessor Response Primitive General Format
The M68000 coprocessor response primitives are encoded in a 16-bit word that is
transferred to the main processor through the response CIR. Figure 10-22 shows the format
of the coprocessor response primitives.

Figure 10-22. Coprocessor Response Primitive Format

The encoding of bits [0-12] of a coprocessor response primitive depends on the individual
primitive. Bits [13-15], however, specify optional additional operations that apply to most of
the primitives defined for the M68000 coprocessor interface.

Bit [15], the CA bit, specifies the “come again'” operation of the main processor. When the
main processor reads a response primitive from the response CIR with the come again bit
set to one, it performs the service indicated by the primitive and then reads the response
CIR again. Using the CA bit, a coprocessor can transfer several response primitives to the
main processor during the execution of a single coprocessor instruction.

Bit [4], the PC bit, specifies the pass program counter operation. When the main processor
reads a primitive with the PC bit set from the response CIR, the main processor immediately
passes the current value in its program counter to the instruction address CIR as the first
operation in servicing the primitive request. The value in the program counter is the address
of the F-line operation word of the coprocessor instruction currently executing. The PC bit is
implemented in all of the coprocessor response primitives currently defined for the M68000
coprocessor interface.

When an undefined primitive or a primitive that requests an illegal operation is passed to the
main processor, the main processor initiates exception processing for either an F-line
emulator or a protocol violation exception (refer to 10.5.2 Main-Processor-Detected
Exceptions). If the PC bit is set in one of these response primitives, however, the main
processor passes the program counter to the instruction address CIR before it initiates
exception processing.

When the main processor initiates a cpGEN instruction that can be executed concurrently
with main processor instructions, the PC bit is usually set in the first primitive returned by the
coprocessor. Since the main processor proceeds with instruction stream execution once the
coprocessor releases it, the coprocessor must record the instruction address to support any
possible exception processing related to the instruction. Exception processing related to
concurrent coprocessor instruction execution is discussed in 10.5.1 Coprocessor-
Detected Exceptions.

15 14 13 12 8 7 0

CA PC DR FUNCTION PARAMETER

Coprocessor Interface Description

10-36 MC68030 USER’S MANUAL MOTOROLA

Bit [13], the DR bit, is the direction bit. It applies to operand transfers between the main
processor and the coprocessor. If DR=0, the direction of transfer is from the main processor
to the coprocessor (main processor write). If DR=1, the direction of transfer is from the
coprocessor to the main processor (main processor read). If the operation indicated by a
given response primitive does not involve an explicit operand transfer, the value of this bit
depends on the particular primitive encoding.

10.4.3 Busy Primitive
The busy response primitive causes the main processor to reinitiate a coprocessor
instruction. This primitive applies to instructions in the general and conditional categories.
Figure 10-23 shows the format of the busy primitive.

Figure 10-23. Busy Primitive Format

This primitive uses the PC bit as previously described.

Coprocessors that can operate concurrently with the main processor but cannot buffer write
operations to their command or condition CIR use the busy primitive. A coprocessor may
execute a cpGEN instruction concurrently with an instruction in the main processor. If the
main processor attempts to initiate an instruction in the general or conditional instruction
category while the coprocessor is concurrently executing a cpGEN instruction, the
coprocessor can place the busy primitive in the response CIR. When the main processor
reads this primitive, it services pending interrupts (using a pre-instruction exception stack
frame, refer to Figure 10-41). The processor then restarts the general or conditional
coprocessor instruction that it had attempted to initiate earlier.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-37

The busy primitive should only be used in response to a write to the command or condition
CIR. It should be the first primitive returned after the main processor attempts to initiate a
general or conditional category instruction. In particular, the busy primitive should not be
issued after program-visible resources have been altered by the instruction. (Program-
visible resources include coprocessor and main processor program-visible registers and
operands in memory, but not the scanPC.) The restart of an instruction after it has altered
program-visible resources causes those resources to have inconsistent values when the
processor reinitiates the instruction.

The MC68030 responds to the busy primitive differently in a special case that can occur
during a breakpoint operation (refer to 8.1.12 Multiple Exceptions). This special case
occurs when a breakpoint acknowledge cycle initiates a coprocessor F-line instruction, the
coprocessor returns the busy primitive in response to the instruction initiation, and an
interrupt is pending. When these three conditions are met, the processor re-executes the
breakpoint acknowledge cycle after the interrupt exception processing has been completed.
A design that uses a breakpoint to monitor the number of passes through a loop by
incrementing or decrementing a counter may not work correctly under these conditions. This
special case may cause several breakpoint acknowledge cycles to be executed during a
single pass through a loop.

10.4.4 Null Primitive
The null coprocessor response primitive communicates coprocessor status information to
the main processor. This primitive applies to instructions in the general and conditional
categories. Figure 10-24 shows the format of the null primitive.

Figure 10-24. Null Primitive Format

This primitive uses the CA and PC bits as previously described.

Bit [8], the IA bit, specifies the interrupts allowed optional operation. This bit determines
whether the MC68030 services pending interrupts prior to rereading the response CIR after
receiving a null primitive. Interrupts are allowed when the IA bit is set.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 `

CA PC 0 0 1 0 0 IA 0 0 0 0 0 0 PF TF

Coprocessor Interface Description

10-38 MC68030 USER’S MANUAL MOTOROLA

Bit [1], the PF bit, shows the “processing finished”status of the coprocessor. That is, PF=1
indicates that the coprocessor has completed all processing associated with an instruction.

Bit [0], the TF bit, indicates the true/false condition during the execution of a conditional
category instruction. TF=1 is the true condition specifier, and TF=0 is the false condition
specifier. The TF bit is only relevant for null primitives with CA=0 that are used by the
coprocessor during the execution of a conditional instruction.

The MC68030 processes a null primitive with CA=1 in the same manner whether executing
a general or conditional category coprocessor instruction. If the coprocessor sets CA and IA
to one in the null primitive, the main processor services pending interrupts (using a mid-
instruction stack frame, refer to Figure 10-43) and reads the response CIR again. If the
coprocessor sets CA to one and IA to zero in the null primitive, the main processor reads
the response CIR again without servicing any pending interrupts.

A null, CA=0 primitive provides a condition evaluation indicator to the main processor during
the execution of a conditional instruction and ends the dialogue between the main processor
and coprocessor for that instruction. The main processor completes the execution of a
conditional category coprocessor instruction when it receives the primitive. The PF bit is not
relevant during conditional instruction execution since the primitive itself implies completion
of processing.

Usually, when the main processor reads any primitive that does not have CA=1 while
executing a general category instruction, it terminates the dialogue between the main
processor and coprocessor. If a trace exception is pending, however, the main processor
does not terminate the instruction dialogue until it reads a null, CA=0, PF=1 primitive from
the response CIR (refer to 10.5.2.5 Trace Exceptions). Thus, the main processor continues
to read the response CIR until it receives a null, CA=0, PF=1 primitive, and then performs
trace exception processing. When IA=1, the main processor services pending interrupts
before reading the response CIR again.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-39

A coprocessor can be designed to execute a cpGEN instruction concurrently with the
execution of main processor instructions and, also, buffer one write operation to either its
command or condition CIR. This type of coprocessor issues a null primitive with CA=1 when
it is concurrently executing a cpGEN instruction, and the main processor initiates another
general or conditional coprocessor instruction. This primitive indicates that the coprocessor
is busy and the main processor should read the response CIR again without reinitiating the
instruction. The IA bit of this null primitive usually should be set to minimize interrupt latency
while the main processor is waiting for the coprocessor to complete the general category
instruction.

Table 10-3 summarizes the encodings of the null primitive.

x = Don't Care
c = 1 or 0 Depending on Coprocessor Condition Evaluation

Table 10-3. Null Coprocessor Response Primitive Encodings

CA PC IA PF TF General Instructions Conditional Instructions
x 1 x x x Pass Program Counter to Instruction

Address CIR, Clear PC Bit, and Proceed
with Operation Specified by CA, IA, PF,
and TF Bits

Same as General Category

1 0 0 x x Reread Response CIR, Do Not Service
Pending Interrupts

Same as General Category

1 0 1 x x Service Pending Interrupts and Reread
the Response CIR

Same as General Category

0 0 0 0 c If (Trace Pending) Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

0 0 1 0 c If (Trace Pending) Service Pending
Interrupts and Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

0 0 x 1 c Coprocessor Instruction Completed;
Service Pending Exceptions or Execute
Next Instruction

Main Processor Completes Instruction
Execution Based on TF=c.

Coprocessor Interface Description

10-40 MC68030 USER’S MANUAL MOTOROLA

10.4.5 Supervisor Check Primitive
The supervisor check primitive verifies that the main processor is operating in the supervisor
state while executing a coprocessor instruction. This primitive applies to instructions in the
general and conditional coprocessor instruction categories. Figure 10-25 shows the format
of the supervisor check primitive.

Figure 10-25. Supervisor Check Primitive Format

This primitive uses the PC bit as previously described. Bit [15] is shown as one, but during
execution of a general category instruction, this primitive performs the same operations
regardless of the value of bit [15]. If this primitive is issued with bit [15]=0 during a conditional
category instruction, however, the main processor initiates protocol violation exception
processing.

When the main processor reads the supervisor check primitive from the response CIR, it
checks the value of the S bit in the status register. If S=0 (main processor operating at user
privilege level), the main processor aborts the coprocessor instruction by writing an abort
mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then initiates
privilege violation exception processing (refer to 10.5.2.3 Privilege Violations). If the main
processor is at the supervisor privilege level when it receives this primitive, it reads the
response CIR again.

The supervisor check primitive allows privileged instructions to be defined in the
coprocessor general and conditional instruction categories. This primitive should be the first
one issued by the coprocessor during the dialog for an instruction that is implemented as
privileged.

10.4.6 Transfer Operation Word Primitive
The transfer operation word primitive requests a copy of the coprocessor instruction
operation word for the coprocessor. This primitive applies to general and conditional
category instructions. Figure 10-26 shows the format of the transfer operation word
primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-41

Figure 10-26. Transfer Operation Word Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive is issued with
CA=0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

When the main processor reads this primitive from the response CIR, it transfers the F-line
operation word of the currently executing coprocessor instruction to the operation word CIR.
The value of the scanPC is not affected by this primitive.

10.4.7 Transfer from Instruction Stream Primitive
The transfer from instruction stream primitive initiates transfers of operands from the
instruction stream to the coprocessor. This primitive applies to general and conditional
category instructions. Figure 10-27 shows the format of the transfer from instruction stream
primitive.

Figure 10-27. Transfer from Instruction Stream Primitive Format

This primitive uses the CA and PC bits as previously described. If this primitive is issued with
CA=0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

Bits [0-7] of the primitive format specify the length, in bytes, of the operand to be transferred
from the instruction stream to the coprocessor. The length must be an even number of bytes.
If an odd length is specified, the main processor initiates protocol violation exception
processing (refer to 10.5.2.1 Protocol Violations).

This primitive transfers coprocessor-defined extension words to the coprocessor. When the
main processor reads this primitive from the response CIR, it copies the number of bytes
indicated by the length field from the instruction stream to the operand CIR. The first word
or long word transferred is at the location pointed to by the scanPC when the primitive is
read by the main processor, and the scanPC is incremented after each word or long word
is transferred. When execution of the primitive has completed, the scanPC has been
incremented by the total number of bytes transferred and points to the word following the
last word transferred. The main processor transfers the operands from the instruction
stream using a sequence of long-word writes to the operand CIR. If the length field is not an
even multiple of four bytes, the last two bytes from the instruction stream are transferred
using a word write to the operand CIR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 0 1 1 1 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 0

CA PC 0 0 1 1 1 1 LENGTH

Coprocessor Interface Description

10-42 MC68030 USER’S MANUAL MOTOROLA

10.4.8 Evaluate and Transfer Effective Address Primitive
The evaluate and transfer effective address primitive evaluates the effective address
specified in the coprocessor instruction operation word and transfers the result to the
coprocessor. This primitive applies to general category instructions. If this primitive is issued
by the coprocessor during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 10-28 shows the format
of the evaluate and transfer effective address primitive.

Figure 10-28. Evaluate and Transfer Effective Address Primitive Format

This primitive uses the CA and PC bits as previously described.

When the main processor reads this primitive while executing a general category instruction,
it evaluates the effective address specified in the instruction. At this point, the scanPC
contains the address of the first of any required effective address extension words. The main
processor increments the scanPC by two after it references each of these extension words.
After the effective address is calculated, the resulting 32-bit value is written to the operand
address CIR.

The MC68030 only calculates effective addresses for control alterable addressing modes in
response to this primitive. If the addressing mode in the operation word is not a control
alterable mode, the main processor aborts the instruction by writing a $0001 to the control
CIR and initiates F-line emulation exception processing (refer to 10.5.2.2 F-Line Emulator
Exceptions).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 1 0 0 0 0 0 0 0 0 0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-43

10.4.9 Evaluate Effective Address and Transfer Data Primitive
The evaluate effective address and transfer data primitive transfers an operand between the
coprocessor and the effective address specified in the coprocessor instruction operation
word. This primitive applies to general category instructions. If the coprocessor issues this
primitive during the execution of a conditional category instruction, the main processor
initiates protocol violation exception processing. Figure 10-29 shows the format of the
evaluate effective address and transfer data primitive.

Figure 10-29. Evaluate Effective Address and Transfer Data Primitive

This primitive uses the CA, PC, and DR bits as previously described.

The valid effective address field (bits [8-10]) of the primitive format specifies the valid
effective address categories for this primitive. If the effective address specified in the
instruction operation word is not a member of the class specified by bits [8-10], the main
processor aborts the coprocessor instruction by writing an abort mask (refer to 10.3.2
Control CIR) to the control CIR and by initiating F-line emulation exception processing.
Table 10-4 lists the valid effective address field encodings.

15 14 13 12 11 10 8 7 0

CA PC DR 1 0 VALID EA LENGTH

Table 10-4. Valid EffectiveAddress Codes

Field Category
000 Control Alterable
001 Data Alterable
010 Memory Alterable
011 Alterable
100 Control
101 Data
110 Memory
111 Any Effective Address

(No Restriction)

Coprocessor Interface Description

10-44 MC68030 USER’S MANUAL MOTOROLA

Even when the valid effective address fields specified in the primitive and in the instruction
operation word match, the MC68030 initiates protocol violation exception processing if the
primitive requests a write to a nonalterable effective address.

The length in bytes of the operand to be transferred is specified by bits [0-7] of the primitive
format. Several restrictions apply to operand lengths for certain effective addressing modes.
If the effective address is a main processor register (register direct mode), only operand
lengths of one, two, or four bytes are valid; all other lengths (zero, for example) cause the
main processor to initiate protocol violation exception processing. Operand lengths of 0-255
bytes are valid for the memory addressing modes.

The length of 0-255 bytes does not apply to an immediate operand. The length of an
immediate operand must be one byte or an even number of bytes (less than 256), and the
direction of transfer must be to the coprocessor; otherwise, the main processor initiates
protocol violation exception processing.

When the main processor receives this primitive during the execution of a general category
instruction, it verifies that the effective address encoded in the instruction operation word is
in the category specified by the primitive. If so, the processor calculates the effective
address using the appropriate effective address extension words at the current scanPC
address and increments the scanPC by two for each word referenced. The main processor
then transfers the number of bytes specified in the primitive between the operand CIR and
the effective address using long-word transfers whenever possible. Refer to 10.3.8
Operand CIR for information concerning operand alignment for transfers involving the
operand CIR.

The DR bit specifies the direction of the operand transfer. DR=0 requests a transfer from the
effective address to the operand CIR, and DR=1 specifies a transfer from the operand CIR
to the effective address.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-45

If the effective addressing mode specifies the predecrement mode, the address register
used is decremented by the size of the operand before the transfer. The bytes within the
operand are then transferred to or from ascending addresses beginning with the location
specified by the decremented address register. In this mode, if A7 is used as the address
register and the operand length is one byte, A7 is decremented by two to maintain a word-
aligned stack.

For the postincrement effective addressing mode, the address register used is incremented
by the size of the operand after the transfer. The bytes within the operand are transferred to
or from ascending addresses beginning with the location specified by the address register.
In this mode, if A7 is used as the address register and the operand length is one byte, A7 is
incremented by two after the transfer to maintain a word aligned stack. Transferring odd
length operands longer than one byte using the –(A7) or (A7)+ addressing modes can result
in a stack pointer that is not word aligned.

The processor repeats the effective address calculation each time this primitive is issued
during the execution of a given instruction. The calculation uses the current contents of any
required address and data registers. The instruction must include a set of effective address
extension words for each repetition of a calculation that requires them. The processor
locates these words at the current scanPC location and increments the scanPC by two for
each word referenced in the instruction stream.

The MC68030 sign-extends a byte or word-sized operand to a long-word value when it is
transferred to an address register (A0–A7) using this primitive with the register direct
effective addressing mode. A byte or word-sized operand transferred to a data register (D0–
D7) only overwrites the lower byte or word of the data register.

Coprocessor Interface Description

10-46 MC68030 USER’S MANUAL MOTOROLA

10.4.10 Write to Previously Evaluated Effective Address Primitive
The write to previously evaluated effective address primitive transfers an operand from the
coprocessor to a previously evaluated effective address. This primitive applies to general
category instructions. If the coprocessor uses this primitive during the execution of a
conditional category instruction, the main processor initiates protocol violation exception
processing. Figure 10-30 shows the format of the write to previously evaluated effective
address primitive.

Figure 10-30. Write to Previously Evaluated EffectiveAddress Primitive Format

This primitive uses the CA and PC bits as previously described.

Bits [0-7] of the primitive format specify the length of the operand in bytes. The MC68030
transfers operands between zero and 255 bytes in length.

When the main processor receives this primitive during the execution of a general category
instruction, it transfers an operand from the operand CIR to an effective address specified
by a temporary register within the MC68030. When a previous primitive for the current
instruction has evaluated the effective address, this temporary register contains the
evaluated effective address. Primitives that store an evaluated effective address in a
temporary register of the main processor are the evaluate and transfer effective address,
evaluate effective address and transfer data, and transfer multiple coprocessor registers
primitive. If this primitive is used during an instruction in which the effective address
specified in the instruction operation word has not been calculated, the effective address
used for the write is undefined. Also, if the previously evaluated effective address was
register direct, the address written to in response to this primitive is undefined.

The function code value during the write operation indicates either supervisor or user data
space, depending on the value of the S bit in the MC68030 status register when the
processor reads this primitive. While a coprocessor should request writes to only alterable
effective addressing modes, the MC68030 does not check the type of effective address
used with this primitive. For example, if the previously evaluated effective address was
program counter relative and the MC68030 is at the user privilege level (S=0 in status
register), the MC68030 writes to user data space at the previously calculated program
relative address (the 32-bit value in the temporary internal register of the processor).

15 14 13 12 11 10 9 8 7 0

CA PC 1 0 0 0 0 0 LENGTH

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-47

Operands longer than four bytes are transferred in increments of four bytes (operand parts)
when possible. The main processor reads a long-word operand part from the operand CIR
and transfers this part to the current effective address. The transfers continue in this manner
using ascending memory locations until all of the long-word operand parts are transferred,
and any remaining operand part is then transferred using a one-, two-, or three-byte transfer
as required. The operand parts are stored in memory using ascending addresses beginning
with the address in the MC68030 temporary register.

The execution of this primitive does not modify any of the registers in the MC68030
programmer's model, even if the previously evaluated effective address mode is the
predecrement or postincrement mode. If the previously evaluated effective addressing
mode used any of the MC68030 internal address or data registers, the effective address
value used is the final value from the preceding primitive. That is, this primitive uses the
value from an evaluate and transfer effective address, evaluate effective address and
transfer data, or transfer multiple coprocessor registers primitive without modification.

The take address and transfer data primitive described in the next section does not replace
the effective address value that has been calculated by the MC68030. The address that the
main processor obtains in response to the take address and transfer data primitive is not
available to the write to previously evaluated effective address primitive.

A coprocessor can issue an evaluate effective address and transfer data primitive followed
by this primitive to perform a read-modify-write operation that is not indivisible. The bus
cycles for this operation are normal bus cycles that can be interrupted, and the bus can be
arbitrated between the cycles.

Coprocessor Interface Description

10-48 MC68030 USER’S MANUAL MOTOROLA

10.4.11 Take Address and Transfer Data Primitive
The take address and transfer data primitive transfers an operand between the coprocessor
and an address supplied by the coprocessor. This primitive applies to general and
conditional category instructions. Figure 10-31 shows the format of the take address and
transfer data primitive.

Figure 10-31. Take Address and Transfer Data Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the operand length, which can be from 0-255 bytes.

The main processor reads a 32-bit address from the operand address CIR. Using a series
of long-word transfers, the processor transfers the operand between this address and the
operand CIR. The DR bit determines the direction of the transfer. The processor reads or
writes the operand parts to ascending addresses, starting at the address from the operand
address CIR. If the operand length is not a multiple of four bytes, the final operand part is
transferred using a one-, two-, or three-byte transfer as required.

The function code used with the address read from the operand address CIR indicates either
supervisor or user data space according to the value of the S bit in the MC68030 status
register.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 1 0 1 LENGTH

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-49

10.4.12 Transfer to/from Top of Stack Primitive
The transfer to/from top of stack primitive transfers an operand between the coprocessor
and the top of the currently active main processor stack (refer to 2.8.1 System Stack). This
primitive applies to general and conditional category instructions. Figure 10-32 shows the
format of the transfer to/from top of stack primitive.

Figure 10-32. Transfer To/From Top of Stack Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bits [0-7] of the primitive format specify the length in bytes of the operand to be transferred.
The operand may be one, two, or four bytes in length; other length values cause the main
processor to initiate protocol violation exception processing.

If DR=0, the main processor transfers the operand from the currently active system stack to
the operand CIR. The implied effective address mode used for the transfer is the (A7)+
addressing mode. A one-byte operand causes the stack pointer to be incremented by two
after the transfer to maintain word alignment of the stack.

If DR=1, the main processor transfers the operand from the operand CIR to the currently
active stack. The implied effective address mode used for the transfer is the —(A7)
addressing mode. A one-byte operand causes the stack pointer to be decremented by two
before the transfer to maintain word alignment of the stack.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 1 1 1 0 LENGTH

Coprocessor Interface Description

10-50 MC68030 USER’S MANUAL MOTOROLA

10.4.13 Transfer Single Main Processor Register Primitive
The transfer single main processor register primitive transfers an operand between one of
the main processor's data or address registers and the coprocessor. This primitive applies
to general and conditional category instructions. Figure 10-33 shows the format of the
transfer single main processor register primitive.

Figure 10-33. Transfer Single Main Processor Register Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

Bit [3], the D/A bit, specifies whether the primitive transfers an address or data register. D/
A=0 indicates a data register, and D/A=1 indicates an address register. Bits [2-0] contain the
register number.

If DR=0, the main processor writes the long-word operand in the specified register to the
operand CIR. If DR=1, the main processor reads a long-word operand from the operand CIR
and transfers it to the specified data or address register.

10.4.14 Transfer Main Processor Control Register Primitive
The transfer main processor control register primitive transfers a long-word operand
between one of its control registers and the coprocessor. This primitive applies to general
and conditional category instructions. Figure 10-34 shows the format of the transfer main
processor control register primitive. This primitive uses the CA, PC, and DR bits as
previously described. If the coprocessor issues this primitive with CA=0 during a conditional
category instruction, the main processor initiates protocol violation exception processing.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-51

Figure 10-34. Transfer Main Processor Control Register Primitive Format

When the main processor receives this primitive, it reads a control register select code from
the register select CIR. This code determines which main processor control register is
transferred. Table 10-5 lists the valid control register select codes. If the control register
select code is not valid, the MC68030 initiates protocol violation exception processing (refer
to 10.5.2.1 Protocol Violations).

After reading a valid code from the register select CIR, if DR=0, the main processor writes
the long-word operand from the specified control register to the operand CIR. If DR=1, the
main processor reads a long-word operand from the operand CIR and places it in the
specified control register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 1 1 0 1 0 0 0 0 0 0 0 0

Table 10-5. Main Processor Control Register

Hex Control Register
x000 Source Function Code (SFC) Register
x001 Destination Function Code (DFC) Register
x002 Cache Control Register (CACR)
x800 User Stack Pointer (USP)
x801 Vector Base Register (VBR)
x802 Cache Address Register (CAAR)
x803 Master Stack Pointer (MSP)
x804 Interrupt Stack Pointer (ISP)

All other codes cause a protocol violation exception

Coprocessor Interface Description

10-52 MC68030 USER’S MANUAL MOTOROLA

10.4.15 Transfer Multiple Main Processor Registers Primitive
The transfer multiple main processor registers primitive transfers long-word operands
between one or more of its data or address registers and the coprocessor. This primitive
applies to general and conditional category instructions. Figure 10-35 shows the format of
the transfer multiple main processor registers primitive.

Figure 10-35. Transfer Multiple Main Processor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described. If the coprocessor
issues this primitive with CA=0 during a conditional category instruction, the main processor
initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a 16-bit register select mask from
the register select CIR. The format of the register select mask is shown in Figure 10-36. A
register is transferred if the bit corresponding to the register in the register select mask is set
to one. The selected registers are transferred in the order D0–D7 and then A0–A7.

Figure 10-36. Register Select Mask Format

If DR=0, the main processor writes the contents of each register indicated in the register
select mask to the operand CIR using a sequence of long-word transfers. If DR=1, the main
processor reads a long-word operand from the operand CIR into each register indicated in
the register select mask. The registers are transferred in the same order, regardless of the
direction of transfer indicated by the DR bit.

10.4.16 Transfer Multiple Coprocessor Registers Primitive
The transfer multiple coprocessor registers primitive transfers from 0-16 operands between
the effective address specified in the coprocessor instruction and the coprocessor. This
primitive applies to general category instructions. If the coprocessor issues this primitive
during the execution of a conditional category instruction, the main processor initiates
protocol violation exception processing. Figure 10-37 shows the format of the transfer
multiple coprocessor registers primitive.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 1 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-53

Figure 10-37. Transfer Multiple Coprocessor Registers Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bits [7-0] of the primitive format indicate the length in bytes of each operand transferred. The
operand length must be an even number of bytes; odd length operands cause the MC68030
to initiate protocol violation exception processing (refer to 10.5.2.1 Protocol Violations).

When the main processor reads this primitive, it calculates the effective address specified
in the coprocessor instruction. The scanPC should be pointing to the first of any necessary
effective address extension words when this primitive is read from the response CIR; the
scanPC is incremented by two for each extension word referenced during the effective
address calculation. For transfers from the effective address to the coprocessor (DR=0), the
control addressing modes and the postincrement addressing mode are valid. For transfers
from the coprocessor to the effective address (DR=1), the control alterable and
predecrement addressing modes are valid. Invalid addressing modes cause the MC68030
to abort the instruction by writing an abort mask (refer to 10.3.2 Control CIR) to the control
CIR and to initiate F-line emulator exception processing (refer to 10.5.2.2 F-Line Emulator
Exceptions).

After performing the effective address calculation, the MC68030 reads a 16-bit register
select mask from the register select CIR. The coprocessor uses the register select mask to
specify the number of operands to transfer; the MC68030 counts the number of ones in the
register select mask to determine the number of operands. The order of the ones in the
register select mask is not relevant to the operation of the main processor. As many as 16
operands can be transferred by the main processor in response to this primitive. The total
number of bytes transferred is the product of the number of operands transferred and the
length of each operand specified in bits [0-7] of the primitive format.

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 0 0 1 LENGTH

Coprocessor Interface Description

10-54 MC68030 USER’S MANUAL MOTOROLA

If DR=1, the main processor reads the number of operands specified in the register select
mask from the operand CIR and writes these operands to the effective address specified in
the instruction using long-word transfers whenever possible. If DR=0, the main processor
reads the number of operands specified in the register select mask from the effective
address and writes them to the operand CIR.

For the control addressing modes, the operands are transferred to or from memory using
ascending addresses. For the postincrement addressing mode, the operands are read from
memory with ascending addresses also, and the address register used is incremented by
the size of an operand after each operand is transferred. The address register used with the
(An)+ addressing mode is incremented by the total number of bytes transferred during the
primitive execution.

For the predecrement addressing mode, the operands are written to memory with
descending addresses, but the bytes within each operand are written to memory with
ascending addresses. As an example, Figure 10-38 shows the format in long-word-oriented
memory for two 12-byte operands transferred from the coprocessor to the effective address
using the —(An) addressing mode. The processor decrements the address register by the
size of an operand before the operand is transferred. It writes the bytes of the operand to
ascending memory addresses. When the transfer is complete, the address register has
been decremented by the total number of bytes transferred. The MC68030 transfers the
data using long-word transfers whenever possible.

NOTE: OP0, Byte (0) is the first byte written to memory
OP0, Byte (L-1) is the last byte of the first operand written to memory
OP1, Byte (0) is the first byte of the second operand written to memory
OP1, Byte (L-1) is the last byte written to memory

Figure 10-38. Operand Format in Memory for Transfer to —(An)

31 23 15 7 0
An-2•LENGTH=FINAL An → OP1, BYTE (0)

OP1, BYTE (L-1)
An-LENGTH → OP0, BYTE (0)

INITIAL An → OP0, BYTE (L-1)

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-55

10.4.17 Transfer Status Register and ScanPC Primitive
Both the transfer status register and the scanPC primitive transfers values between the
coprocessor and the main processor status register. On an optional basis, the scanPC also
makes transfers. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 10-39 shows the format
of the transfer status register and scanPC primitive.

Figure 10-39. Transfer Status Register and ScanPC Primitive Format

This primitive uses the CA, PC, and DR bits as previously described.

Bit [8], the SP bit, selects the scanPC option. If SP=1, the primitive transfers both the
scanPC and status register. If SP=0, only the status register is transferred.

If SP=0 and DR=0, the main processor writes the 16-bit status register value to the operand
CIR. If SP=0 and DR=1, the main processor reads a 16-bit value from the operand CIR into
the main processor status register.

If SP=1 and DR=0, the main processor writes the long-word value in the scanPC to the
instruction address CIR and then writes the status register value to the operand CIR. If SP=1
and DR=1, the main processor reads a 16-bit value from the operand CIR into the status
register and then reads a long-word value from the instruction address CIR into the scanPC.

With this primitive, a general category instruction can change the main processor program
flow by placing a new value in the status register, in the scanPC, or new values in both the
status register and the scanPC. By accessing the status register, the coprocessor can
determine and manipulate the main processor condition codes, supervisor status, trace
modes, selection of the active stack, and interrupt mask level.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0

Coprocessor Interface Description

10-56 MC68030 USER’S MANUAL MOTOROLA

The MC68030 discards any instruction words that have been prefetched beyond the current
scanPC location when this primitive is issued with DR=1 (transfer to main processor). The
MC68030 then refills the instruction pipe from the scanPC address in the address space
indicated by the status register S bit.

If the MC68030 is operating in the trace on change of flow mode (T1:T0 in the status register
contains 01) when the coprocessor instruction begins to execute and if this primitive is
issued with DR=1 (from coprocessor to main processor), the MC68030 prepares to take a
trace exception. The trace exception occurs when the coprocessor signals that it has
completed all processing associated with the instruction. Changes in the trace modes due
to the transfer of the status register to main processor take effect on execution of the next
instruction.

10.4.18 Take Pre-Instruction Exception Primitive
The take pre-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the pre-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-40 shows the format of the take pre-instruction exception primitive.

Figure 10-40. Take Pre-Instruction Exception Primitive Format

The primitive uses the PC bit as previously described. Bits [0-7] contain the exception vector
number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then proceeds with exception processing as described in
8.1 Exception Processing Sequence. The vector number for the exception is taken from
bits [0-7] of the primitive, and the MC68030 uses the four-word stack frame format shown in
Figure 10-41.

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 0 VECTOR NUMBER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-57

The value of the program counter saved in this stack frame is the F-line operation word
address of the coprocessor instruction during which the primitive was received. Thus, if the
exception handler routine does not modify the stack frame, an RTE instruction causes the
MC68030 to return and reinitiate execution of the coprocessor instruction.

The take pre-instruction exception primitive can be used when the coprocessor does not
recognize a value written to either its command CIR or condition CIR to initiate a
coprocessor instruction. This primitive can also be used if an exception occurs in the
coprocessor instruction before any program-visible resources are modified by the instruction
operation. This primitive should not be used during a coprocessor instruction if program-
visible resources have been modified by that instruction. Otherwise, since the MC68030
reinitiates the instruction when it returns from exception processing, the restarted instruction
receives the previously modified resources in an inconsistent state.

One of the most important uses of the take pre-instruction exception primitive is to signal an
exception condition in a cpGEN instruction that was executing concurrently with the main
processor's instruction execution. If the coprocessor no longer requires the services of the
main processor to complete a cpGEN instruction and the concurrent instruction completion
is transparent to the programmer's model, the coprocessor can release the main processor
by issuing a primitive with CA=0. The main processor usually executes the next instruction
in the instruction stream, and the coprocessor completes its operations concurrently with the
main processor operation. If an exception occurs while the coprocessor is executing an
instruction concurrently, the exception is not processed until the main processor attempts to
initiate the next general or conditional instruction. After the main processor writes to the
command or condition CIR to initiate a general or conditional instruction, it then reads the
response CIR. At this time, the coprocessor can return the take pre-instruction exception
primitive. This protocol allows the main processor to proceed with exception processing
related to the previous concurrently executing coprocessor instruction and then return and
reinitiate the coprocessor instruction during which the exception was signaled. The
coprocessor should record the addresses of all general category instructions that can be
executed concurrently with the main processor and that support exception recovery. Since
the exception is not reported until the next coprocessor instruction is initiated, the processor
usually requires the instruction address to determine which instruction the coprocessor was
executing when the exception occurred. A coprocessor can record the instruction address
by setting PC=1 in one of the primitives it uses before releasing the main processor.

10.4.19 Take Mid-Instruction Exception Primitive
The take mid-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the mid-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-42 shows the format of the take mid-instruction exception primitive.

(UNABLE TO LOCATE ART)

Figure 10-41. MC68030 Pre-Instruction Stack Frame

Coprocessor Interface Description

10-58 MC68030 USER’S MANUAL MOTOROLA

Figure 10-42. Take Mid-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits ;ob7-0] contain the exception
vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then performs exception processing as described in 8.1
Exception Processing Sequence. The vector number for the exception is taken from bits
[0-7] of the primitive and the MC68030 uses the 10-word stack frame format shown in Figure
10-43.

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 1 VECTOR NUMBER

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-59

The program counter value saved in this stack frame is the operation word address of the
coprocessor instruction during which the primitive is received. The scanPC field contains the
value of the MC68030 scanPC when the primitive is received. If the current instruction does
not evaluate an effective address prior to the exception request primitive, the value of the
effective address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an exception during
the instruction dialog with the main processor. If the exception handler does not modify the
stack frame, the MC68030 returns from the exception handler and reads the response CIR.
Thus, the main processor attempts to continue executing the suspended instruction by
reading the response CIR and processing the primitive it receives.

(UNABLE TO LOCATE ART)

Figure 10-43. MC68030 Mid-Instruction Stack Frame

Coprocessor Interface Description

10-60 MC68030 USER’S MANUAL MOTOROLA

10.4.20 Take Post-Instruction Exception Primitive
The take post-instruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the post-instruction exception stack
frame format. This primitive applies to general and conditional category instructions. Figure
10-44 shows the format of the take post-instruction exception primitive.

Figure 10-44. Take Post-Instruction Exception Primitive Format

This primitive uses the PC bit as previously described. Bits [0-7] contain the exception vector
number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask (refer to 10.3.2 Control CIR)
to the control CIR. The MC68030 then performs exception processing as described in 8.1
Exception Processing Sequence. The vector number for the exception is taken from bits
[0-7] of the primitive, and the MC68030 uses the six-word stack frame format shown in
Figure 10-45.

The value in the main processor scanPC at the time this primitive is received is saved in the
scanPC field of the post-instruction exception stack frame. The value of the program counter
saved is the F-line operation word address of the coprocessor instruction during which the
primitive is received.

When the MC68030 receives the take post-instruction exception primitive, it assumes that
the coprocessor either completed or aborted the instruction with an exception. If the
exception handler does not modify the stack frame, the MC68030 returns from the exception
handler to begin execution at the location specified by the scanPC field of the stack frame.
This location should be the address of the next instruction to be executed.

The coprocessor uses this primitive to request exception processing when it completes or
aborts an instruction while the main processor is awaiting a normal response. For a general
category instruction, the response is a release; for a conditional category instruction, it is an
evaluated true/false condition indicator. Thus, the operation of the MC68030 in response to
this primitive is compatible with standard M68000 Family instruction related exception
processing (for example, the divide-by-zero exception).

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 1 0 VECTOR NUMBER

(UNABLE TO LOCATE ART)

Figure 10-45. MC68030 Post-Instruction Stack Frame

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-61

10.5 EXCEPTIONS
Various exception conditions related to the execution of coprocessor instructions may occur.
Whether an exception is detected by the main processor or by the coprocessor, the main
processor coordinates and performs exception processing. Servicing these coprocessor-
related exceptions is an extension of the protocol used to service standard M68000 Family
exceptions. That is, when either the main processor detects an exception or is signaled by
the coprocessor that an exception condition has occurred, the main processor proceeds
with exception processing as described in 8.1 Exception Processing Sequence.

10.5.1 Coprocessor-Detected Exceptions
Exceptions that the coprocessor detects, also those that the main processor detects, are
usually classified as coprocessor-detected exceptions. These exceptions can occur during
M68000 coprocessor interface operations, internal operations, or other system-related
operations of the coprocessor.

Most coprocessor-detected exceptions are signaled to the main processor through the use
of one of the three take exception primitives defined for the M68000 coprocessor interface.
The main processor responds to these primitives as previously described. However, not all
coprocessor-detected exceptions are signaled by response primitives. Coprocessor-
detected format errors during the cpSAVE or cpRESTORE instruction are signaled to the
main processor using the invalid format word described in 10.2.3.2.3 Invalid Format Word.

Coprocessor Interface Description

10-62 MC68030 USER’S MANUAL MOTOROLA

10.5.1.1 COPROCESSOR-DETECTED PROTOCOL VIOLATIONS. Protocol violation
exceptions are communication failures between the main processor and coprocessor
across the M68000 coprocessor interface. Coprocessor-detected protocol violations occur
when the main processor accesses entries in the coprocessor interface register set in an
unexpected sequence. The sequence of operations that the main processor performs for a
given coprocessor instruction or coprocessor response primitive has been described
previously in this section.

A coprocessor can detect protocol violations in various ways. According to the M68000
coprocessor interface protocol, the main processor always accesses the operation word,
operand, register select, instruction address, or operand address CIRs synchronously with
respect to the operation of the coprocessor. That is, the main processor accesses these five
registers in a certain sequence, and the coprocessor expects them to be accessed in that
sequence. As a minimum, all M68000 coprocessors should detect a protocol violation if the
main processor accesses any of these five registers when the coprocessor is expecting an
access to either the command or condition CIR. Likewise, if the coprocessor is expecting
an access to the command or condition CIR and the main processor accesses one of these
five registers, the coprocessor should detect and signal a protocol violation.

According to the M68000 coprocessor interface protocol, the main processor can perform a
read of either the save or response CIRs or a write of either the restore or control CIRs
asynchronously with respect to the operation of the coprocessor. That is, an access to one
of these registers without the coprocessor explicitly expecting that access at that point can
be a valid access. Although the coprocessor can anticipate certain accesses to the restore,
response, and control coprocessor interface registers, these registers can be accessed at
other times also.

The coprocessor cannot signal a protocol violation to the main processor during the
execution of cpSAVE or cpRESTORE instructions. If a coprocessor detects a protocol
violation during the cpSAVE or cpRESTORE instruction, it should signal the exception to the
main processor when the next coprocessor instruction is initiated.

The main philosophy of the coprocessor-detected protocol violation is that the coprocessor
should always acknowledge an access to one of its interface registers. If the coprocessor
determines that the access is not valid, it should assert DSACKx, to the main processor and
signal a protocol violation when the main processor next reads the response CIR. If the
coprocessor fails to assert DSACKx, the main processor waits for the assertion of that signal
(or some other bus termination signal) indefinitely. The protocol previously described
ensures that the coprocessor cannot halt the main processor.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-63

The coprocessor can signal a protocol violation to the main processor with the take mid-
instruction exception primitive. To maintain consistency, the vector number should be 13, as
it is for a protocol violation detected by the main processor. When the main processor reads
this primitive, it proceeds as described in 10.4.19 Take Mid-Instruction Exception
Primitive. If the exception handler does not modify the stack frame, the MC68030 returns
from the exception handler and reads the response CIR.

10.5.1.2 COPROCESSOR-DETECTED ILLEGAL COMMAND OR CONDITION WORDS.
 Illegal coprocessor command or condition words are values written to the command CIR or
condition CIR that the coprocessor does not recognize. If a value written to either of these
registers is not valid, the coprocessor should return the take pre-instruction exception
primitive in the response CIR. When it receives this primitive, the main processor takes a
pre-instruction exception as described in 10.4.18 Take Pre-Instruction Exception
Primitive. If the exception handler does not modify the main processor stack frame, an RTE
instruction causes the MC68030 to reinitiate the instruction that took the exception. The
coprocessor designer should ensure that the state of the coprocessor is not irrecoverably
altered by an illegal command or condition exception if the system supports emulation of the
unrecognized command or condition word.

All Motorola M68000 coprocessors signal illegal command and condition words by returning
the take pre-instruction exception primitive with the F-line emulator exception vector number
11.

10.5.1.3 COPROCESSOR DATA-PROCESSING EXCEPTIONS. Exceptions related to the
internal operation of a coprocessor are classified as data-processing-related exceptions.
These exceptions are analogous to the divide-by-zero exception defined by M68000
microprocessors and should be signaled to the main processor using one of the three take
exception primitives containing an appropriate exception vector number. Which of these
three primitives is used to signal the exception is usually determined by the point in the
instruction operation where the main processor should continue the program flow after
exception processing. Refer to 110.4.18 Take Pre-Instruction Exception Primitive,
10.4.19 Take Mid-Instruction Exception Primitive, and 10.4.20 Take Post-Instruction
Exception Primitive.

Coprocessor Interface Description

10-64 MC68030 USER’S MANUAL MOTOROLA

10.5.1.4 COPROCESSOR SYSTEM-RELATED EXCEPTIONS. System-related
exceptions detected by a DMA coprocessor include those associated with bus activity and
any other exceptions (interrupts, for example) occurring external to the coprocessor. The
actions taken by the coprocessor and the main processor depend on the type of exception
that occurs.

When an address or bus error is detected by a DMA coprocessor, the coprocessor should
store any information necessary for the main processor exception handling routines in
system-accessible registers. The coprocessor should place one of the three take exception
primitives encoded with an appropriate exception vector number in the response CIR. Which
of the three primitives is used depends upon the point in the coprocessor instruction at which
the exception was detected and the point in the instruction execution at which the main
processor should continue after exception processing.

10.5.1.5 FORMAT ERRORS. Format errors are the only coprocessor-detected exceptions
that are not signaled to the main processor with a response primitive. When the main
processor writes a format word to the restore CIR during the execution of a cpRESTORE
instruction, the coprocessor decodes this word to determine if it is valid (refer to 10.2.3.3
Coprocessor Context Save Instruction). If the format word is not valid, the coprocessor
places the invalid format code in the restore CIR. When the main processor reads the invalid
format code, it aborts the coprocessor instruction by writing an abort mask (refer to 10.3.2
Control CIR) to the control CIR. The main processor then performs exception processing
using a four-word pre-instruction stack frame and the format error exception vector number
14. Thus, if the exception handler does not modify the stack frame, the MC68030 restarts
the cpRESTORE instruction when the RTE instruction in the handler is executed. If the
coprocessor returns the invalid format code when the main processor reads the save CIR
to initiate a cpSAVE instruction, the main processor performs format error exception
processing as outlined for the cpRESTORE instruction.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-65

10.5.2 Main-Processor-Detected Exceptions
A number of exceptions related to coprocessor instruction execution are detected by the
main processor instead of the coprocessor (they are still serviced by the main processor).
These exceptions can be related to the execution of coprocessor response primitives,
communication across the M68000 coprocessor interface, or the completion of conditional
coprocessor instructions by the main processor.

10.5.2.1 PROTOCOL VIOLATIONS . The main processor detects a protocol violation when
it reads a primitive from the response CIR that is not a valid primitive. The protocol violations
that can occur in response to the primitives defined for the M68000 coprocessor interface
are summarized in Table 10-6.

Coprocessor Interface Description

10-66 MC68030 USER’S MANUAL MOTOROLA

Table 10-6. Exceptions Related to Primitive Processing (Sheet 1 of 2)

Primitive Protocol F-Line Other
Busy
NULL
Supervisory Check*

Other: Priveledge Violation if “S” Bit =0
X

Transfer Operation Word*
Transfer From Instruction Seam*

Protocol: If Length Field is Odd (Zero Length Legal)
X

Evaluate and Transfer Effective Address
Protocol: If Used with Conditional Instruction
F-Line: If EA in OP - Word is NOT Control Alterable

X
X

Evaluate Effective Address and Transfer DataProtocol:
1. If Used with Conditional Instructions
2. Length is Not 1, 2, or 4 and EA=Register Direct
3. If EA=Immediate and Length Odd and Greater Than 1
4. Attempt to Write to Nonalterable Address Even if Address

Declared Legal in Primitive
F-Line: Valid EA Field Does Not Match EA in Op-Word

X

X

Write to Previously Evaluated Effective Address
Protocol: If Used with Conditional Instruction X

Busy
Take Address and Transfer Data*
Transfer To/From Top of Stack*

Protocol: Length Field Other Than 1, 2, or 4 X
Transfer To/From Main Processor Register*
Transfer To/From Main Processor Control Register

Protocol: Invalid Control Register Select Code X
Transfer Multiple Main Processor Registers*
Transfer Multiple Coprocessor Registers

Protocol:
1. If Used with Conditional Instructions
2 .Odd Length Value

F-Line:
1. EA Not Control Alterable or (An);pl for CP to Memory Transfer
 2. EA Not Control Alterable or —(An) for Memory to CP Transfer

X
X

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-67

*Use of this primitive with CA=0 will cause protocol violation on conditional instructions.
Abbreviations:
 EA=Effective Address
 CP=Coprocessor

When the MC68030 detects a protocol violation, it does not automatically notify the
coprocessor of the resulting exception by writing to the control CIR. The exception handling
routine may, however, use the MOVES instruction to read the response CIR and thus
determine the primitive that caused the MC68030 to initiate protocol violation exception
processing. The main processor initiates exception processing using the mid-instruction
stack frame (refer to Figure 10-43) and the coprocessor protocol violation exception vector
number 13. If the exception handler does not modify the stack frame, the main processor
reads the response CIR again following the execution of an RTE instruction to return from
the exception handler. This protocol allows extensions to the M68000 coprocessor interface
to be emulated in software by a main processor that does not provide hardware support for
these extensions. Thus, the protocol violation is transparent to the coprocessor if the
primitive execution can be emulated in software by the main processor.

Primitive Protocol F-Line Other
Transfer Status and/or ScanPC

Protocol: If Used with Conditional Instruction
Other:

1. Trace — Trace Made Pending if MC68020 in ``Trace on Change
of Flow'' Mode and DR=1

2. Address Error — If Odd value Written to ScanPC

X

X

Take Pre-Instruction, Mid-Instruction, or Post-Instruction Exception
Exception Depends on Vector Supplies in Primitive

X X X

Coprocessor Interface Description

10-68 MC68030 USER’S MANUAL MOTOROLA

10.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions detected by
the MC68030 are either explicitly or implicitly related to the encodings of F-line operation
words in the instruction stream. If the main processor determines that an F-line operation
word is not valid, it initiates F-line emulator exception processing. Any F-line operation word
with bits [8:6]=110 or 111 causes the MC68030 to initiate exception processing without
initiating any communication with the coprocessor for that instruction. Also, an operation
word with bits [8:6]=000-101 that does not map to one of the valid coprocessor instructions
in the instruction set causes the MC68030 to initiate F-line emulator exception processing.
If the F-line emulator exception is either of these two situations, the main processor does
not write to the control CIR prior to initiating exception processing.

F-line exceptions can also occur if the operations requested by a coprocessor response
primitive are not compatible with the effective address type in bits [0-5] of the coprocessor
instruction operation word. The F-line emulator exceptions that can result from the use of
the M68000 coprocessor response primitives are summarized in Table 10-6. If the exception
is caused by receiving an invalid primitive, the main processor aborts the coprocessor
instruction in progress by writing an abort mask (refer to 10.3.2 Control CIR) to the control
CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs during the
coprocessor interface register access that initiates a coprocessor instruction. The main
processor assumes that the coprocessor is not present and takes the exception.

When the main processor initiates F-line emulator exception processing, it uses the four-
word pre-instruction exception stack frame (refer to Figure 10-41) and the F-line emulator
exception vector number 11. Thus, if the exception handler does not modify the stack frame,
the main processor attempts to restart the instruction that caused the exception after it
executes an RTE instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler stores the
results of the emulation in the appropriate registers of the programmer's model and in the
status register field of the saved stack frame. The exception handler adjusts the program
counter field of the saved stack frame to point to the next instruction operation word and
executes the RTE instruction. The MC68030 then executes the instruction following the
instruction that was emulated.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-69

The exception handler should also check the copy of the status register on the stack to
determine whether tracing is on. If tracing is on, the trace exception processing should also
be emulated. Refer to 8.1.7 Trace Exception.

10.5.2.3 PRIVILEGE VIOLATIONS. Privilege violations can result from the cpSAVE and
cpRESTORE instructions and, also, from the supervisor check coprocessor response
primitive. The main processor initiates privilege violation exception processing if it attempts
to execute either the cpSAVE or cpRESTORE instruction when it is in the user state (S=0
in status register). The main processor initiates this exception processing prior to any
communication with the coprocessor associated with the cpSAVE or cpRESTORE
instructions.

If the main processor is executing a coprocessor instruction in the user state when it reads
the supervisor check primitive, it aborts the coprocessor instruction in progress by writing an
abort mask (refer to 10.3.2 Control CIR) to the control CIR. The main processor then
performs privilege violation exception processing.

If a privilege violation occurs, the main processor initiates exception processing using the
four-word pre-instruction stack frame (refer to Figure 10-41) and the privilege violation
exception vector number 8. Thus, if the exception handler does not modify the stack frame,
the main processor attempts to restart the instruction during which the exception occurred
after it executes an RTE to return from the handler.

10.5.2.4 CPTRAPCC INSTRUCTION TRAPS. If, during the execution of a cpTRAPcc
instruction, the coprocessor returns the TRUE condition indicator to the main processor with
a null primitive, the main processor initiates trap exception processing. The main processor
uses the six-word post-instruction exception stack frame (refer to Figure 10-45) and the trap
exception vector number 7. The scanPC field of this stack frame contains the address of the
instruction following the cpTRAPcc instruction. The processing associated with the
cpTRAPcc instruction can then proceed, and the exception handler can locate any
immediate operand words encoded in the cpTRAPcc instruction using the information
contained in the six-word stack frame. If the exception handler does not modify the stack
frame, the main processor executes the instruction following the cpTRAPcc instruction after
it executes an RTE instruction to exit from the handler.

Coprocessor Interface Description

10-70 MC68030 USER’S MANUAL MOTOROLA

10.5.2.5 TRACE EXCEPTIONS. The MC68030 supports two modes of instruction tracing,
discussed in 8.1.7 Trace Exception. In the trace on instruction execution mode, the
MC68030 takes a trace exception after completing each instruction. In the trace on change
of flow mode, the MC68030 takes a trace exception after each instruction that alters the
status register or places an address other than the address of the next instruction in program
counter.

The protocol used to execute coprocessor cpSAVE, cpRESTORE, or conditional category
instructions does not change when a trace exception is pending in the main processor. The
main processor performs a pending trace on instruction execution exception after
completing the execution of that instruction. If the main processor is in the trace on change
of flow mode and an instruction places an address other than that of the next instruction in
the program counter, the processor takes a trace exception after it executes the instruction.

If a trace exception is not pending during a general category instruction, the main processor
terminates communication with the coprocessor after reading any primitive with CA=0.
Thus, the coprocessor can complete a cpGEN instruction concurrently with the execution of
instructions by the main processor. When a trace exception is pending, however, the main
processor must ensure that all processing associated with a cpGEN instruction has been
completed before it takes the trace exception. In this case, the main processor continues to
read the response CIR and to service the primitives until it receives either a null, CA=0,
PF=1 primitive, or until exception processing caused by a take post-instruction exception
primitive has completed. The coprocessor should return the null, CA=0 primitive with PF=0,
while it is completing the execution of the cpGEN instruction. The main processor may
service pending interrupts between reads of the response CIR if IA=1 in these primitives
(refer to Table 10-3). This protocol ensures that a trace exception is not taken until all
processing associated with a cpGEN instruction has completed.

If T1:T0=01 in the MC68030 status register (trace on change of flow) when a general
category instruction is initiated, a trace exception is taken for the instruction only when the
coprocessor issues a transfer status register and scanPC primitive with DR=1 during the
execution of that instruction. In this case, it is possible that the coprocessor is still executing
the cpGEN instruction concurrently when the main processor begins execution of the trace
exception handler. A cpSAVE instruction executed during the trace on change of flow
exception handler could thus suspend the execution of a concurrently operating cpGEN
instruction.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-71

10.5.2.6 INTERRUPTS. Interrupt processing, discussed in 8.1.9 Interrupt Exceptions, can
occur at any instruction boundary. Interrupts are also serviced during the execution of a
general or conditional category instruction under either of two conditions. If the main
processor reads a null primitive with CA=1 and IA=1, it services any pending interrupts prior
to reading the response CIR. Similarly, if a trace exception is pending during cpGEN
instruction execution and the main processor reads a null primitive with CA=0, IA=1, and
PF=0 (refer to 10.5.2.5 Trace Exceptions), the main processor services pending interrupts
prior to reading the response CIR again.

The MC68030 uses the ten-word mid-instruction stack frame when it services interrupts
during the execution of a general or conditional category coprocessor instruction. Since it
uses this stack frame, the main processor can perform all necessary processing and then
return to read the response CIR. Thus, it can continue the coprocessor instruction during
which the interrupt exception was taken.

The MC68030 also services interrupts if it reads the not ready format word from the save
CIR during a cpSAVE instruction. The MC68030 uses the normal four word pre-instruction
stack frame when it services interrupts after reading the not ready format word. Thus, the
processor can service any pending interrupts and execute an RTE to return and re-initiate
the cpSAVE instruction by reading the save CIR.

10.5.2.7 FORMAT ERRORS . The MC68030 can detect a format error while executing a
cpSAVE or cpRESTORE instruction if the length field of a valid format word is not a multiple
of four bytes in length. If the MC68030 reads a format word with an invalid length field from
the save CIR during the cpSAVE instruction, it aborts the coprocessor instruction by writing
an abort mask (refer to 10.3.2 Control CIR) to the control CIR and initiates format error
exception processing. If the MC68030 reads a format word with an invalid length field from
the effective address specified in the cpRESTORE instruction, the MC68030 writes that
format word to the restore CIR and then reads the coprocessor response from the restore
CIR. The MC68030 then aborts the cpRESTORE instruction by writing an abort mask (refer
to 10.3.2 Control CIR) to the control CIR and initiates format error exception processing.

The MC68030 uses the four-word pre-instruction stack frame and the format error vector
number 14 when it initiates format error exception processing. Thus, if the exception handler
does not modify the stack frame, the main processor attempts to restart the instruction
during which the exception occurred after it executes an RTE to return from the handler.

Coprocessor Interface Description

10-72 MC68030 USER’S MANUAL MOTOROLA

10.5.2.8 ADDRESS AND BUS ERRORS. Coprocessor-instruction-related bus faults can
occur during main processor bus cycles to CPU space to communicate with a coprocessor
or during memory cycles run as part of the coprocessor instruction execution. If a bus error
occurs during the coprocessor interface register access that is used to initiate a coprocessor
instruction, the main processor assumes that the coprocessor is not present and takes an
F-line emulator exception as described in 10.5.2.2 F-Line Emulator Exceptions. That is,
the processor takes an F-line emulator exception when a bus error occurs during the initial
access to a CIR by a coprocessor instruction. If a bus error occurs on any other coprocessor
access or on a memory access made during the execution of a coprocessor instruction, the
main processor performs bus error exception processing as described in 8.1.2 Bus Error
Exception. After the exception handler has corrected the cause of the bus error, the main
processor can return to the point in the coprocessor instruction at which the fault occurred.

An address error occurs if the MC68030 attempts to prefetch an instruction from an odd
address. This can occur if the calculated destination address of a cpBcc or cpDBcc
instruction is odd or if an odd value is transferred to the scanPC with the transfer status
register and the scanPC response primitive. If an address error occurs, the MC68030
performs exception processing for a bus fault as described in 8.1.3 Address Error
Exception.

10.5.3 Coprocessor Reset
Either an external reset signal or a RESET instruction can reset the external devices of a
system. The system designer can design a coprocessor to be reset and initialized by both
reset types or by external reset signals only. To be consistent with the MC68030 design, the
coprocessor should be affected by external reset signals only and not by RESET
instructions, because the coprocessor is an extension to the main processor programming
model and to the internal state of the MC68030.

10.6 COPROCESSOR SUMMARY
Coprocessor instruction formats are presented for reference. Refer to the M68000PM/AD,
M68000 Programmer's Reference Manual, for detailed information on coprocessor
instructions.

Coprocessor Interface Description

MOTOROLA MC68030 USER’S MANUAL 10-73

The M68000 coprocessor response primitive formats are shown in this section. Any
response primitive with bits [13:8]=$00 or $3F causes a protocol violation exception.
Response primitives with bits [13:8]=$0B, $18-$1B, $1F, $28-$2B, and $38-3B currently
cause protocol violation exceptions; they are undefined and reserved for future use by
Motorola.

BUSY

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 1 0 0 1 0 0 0 0 0 0 0 0 0 0

TRANSFER MULTIPLE COPROCESSOR REGISTERS

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 0 0 0 1 LENGTH

TRANSFER STATUS REGISTER AND SCANPC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 0 1 SP 0 0 0 0 0 0 0 0

SUPERVISOR CHECK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PC 0 0 0 1 0 0 0 0 0 0 0 0 0 0

TAKE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 0 1 LENGTH

TRANSFER MULTIPLE MAIN PROCESSOR REGISTERS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 0 1 1 0 0 0 0 0 0 0 0 0

TRANSFER OPERATION WORD

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 0 1 1 1 0 0 0 0 0 0 0 0

Coprocessor Interface Description

10-74 MC68030 USER’S MANUAL MOTOROLA

NULL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 0 IA 0 0 0 0 0 0 PF TF

EVALUATE AND TRANSFER EFFECTIVE ADDRESS

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC 0 0 1 0 1 0 0 0 0 0 0 0 0 0

TRANSFER SINGLE MAIN PROCESSOR REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

CA PC DR 0 1 1 0 0 0 0 0 0 D/A REGISTER

TRANSFER MAIN PROCESSOR CONTROL REGISTER

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CA PC DR 0 1 1 0 1 0 0 0 0 0 0 0 0

TRANSFER TO/FROM TOP OF STACK

15 14 13 12 11 10 9 8 7 0

CA PC DR 0 1 1 1 0 LENGTH

TRANSFER FROM INSTRUCTION STREAM

15 14 13 12 11 10 9 8 7 0

CA PC 0 0 1 1 1 1 LENGTH

EVALUATE EFFECTIVE ADDRESS AND TRANSFER DATA

15 14 13 12 11 10 9 8 7 0

CA PC DR 1 0 VALID EA LENGTH

TAKE PRE-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 0 VECTOR NUMBER

Coprocessor Interface Description

10-75 MC68030 USER’S MANUAL MOTOROLA

TAKE MID-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 0 1 VECTOR NUMBER

TAKE POST-INSTRUCTION EXCEPTION

15 14 13 12 11 10 9 8 7 0

0 PC 0 1 1 1 1 0 VECTOR NUMBER

WRITE TO PREVIOUSLY EVALUATED EFFECTIVE ADDRESS

15 14 13 12 11 10 9 8 7 0

CA PC 1 0 0 0 0 0 LENGTH

MOTOROLA

MC68030 USER’S MANUAL

11-1

SECTION 11
INSTRUCTION EXECUTION TIMING

This section describes the instruction execution and operations (table searches, etc.) of the
MC68030 in terms of external clock cycles. It provides accurate execution and operation
timing guidelines but not exact timings for every possible circumstance. This approach is
used since exact execution time for an instruction or operation is highly dependent on
memory speeds and other variables. The timing numbers presented in this section allow the
assembly language programmer or compiler writer to predict actual cache-case and
average no-cache-case timings needed to evaluate the performance of the MC68030.
Additionally, the timings for exception processing, context switching, and interrupt
processing are included so that designers of multi-tasking or real-time systems can predict
task switch overhead, maximum interrupt latency, and similar timing parameters.

In this section, instruction and operation times are shown in clock cycles to eliminate clock
frequency dependencies.

11.1 PERFORMANCE TRADEOFFS

The MC68030 maximizes average performance at the expense of worst case performance.
The time spent executing one instruction can vary from zero to over 100 clocks. Factors
affecting the execution time are the preceding and following instructions, the instruction
stream alignment, residency of operands and instruction words in the caches, residency of
address translations in the address translation cache, and operand alignment.

To increase the average performance of the MC68030, certain tradeoffs were made to
increase best case performance and to decrease the occurrence of worst case behavior. For
example, burst filling increases performance by prefetching data for later accesses, but it
commits the external bus controller and a cache for a longer period.

The MC68030 can overlap data writes with instruction cache reads, data cache reads, and/
or microsequencer execution. Instruction cache reads can be overlapped with data cache
fills and/or microsequencer activity. Similarly, data cache reads can be overlapped with
instruction cache fills and/or microsequencer activity. The execution of an instruction that
only accesses on-chip registers can be overlapped entirely with a concurrent data write
generated by a previous instruction, if prefetches generated by that instruction are resident
in the instruction cache.

Instruction Execution Timing

11-2

MC68030 USER’S MANUAL

MOTOROLA

11.2 RESOURCE SCHEDULING

Some of the variability in instruction execution timings results from the overlap of resource
utilization. The processor can be viewed as consisting of eight independently scheduled
resources. Since very little of the scheduling is directly related to instruction boundaries, it
is impossible to make accurate estimates of the time required to execute a particular
instruction without knowing the complete context within which the instruction is executing.
The position of these resources within the MC68030 is shown in Figure 11-1.

11.2.1 Microsequencer

The microsequencer is either executing microinstructions or awaiting completion of
accesses that are necessary to continue executing microcode. The bus controller is
responsible for all bus activity. The microsequencer controls the bus controller, instruction
execution, and internal processor operations such as calculation of effective addresses and
setting of condition codes. The microsequencer initiates instruction word prefetches and
controls the validation of instruction words in the instruction pipe.

11.2.2 Instruction Pipe

The MC68030 contains a three-word instruction pipe where instruction opcodes are
decoded. As shown in Figure 11-1, instruction words (instruction operation words and all
extension words) enter the pipe at stage B and proceed to stages C and D. An instruction
word is completely decoded when it reaches stage D of the pipe. Each of the pipe stages
has a status bit that reflects whether the word in the stage was loaded with data from a bus
cycle that was terminated abnormally. Stages of the pipe are only filled in response to
specific prefetch requests issued by the microsequencer.

Words are loaded into the instruction pipe from the cache holding register. While the
individual stages of the pipe are only 16 bits wide, the cache holding register is 32 bits wide
and contains the entire long word. This long word is obtained from the instruction cache or
the external bus in response to a prefetch request from the microsequencer. When the
microsequencer requests an even-word (long-word aligned) prefetch, the entire long word
is accessed from the instruction cache or the external bus and loaded into the cache holding
register, and the high-order word is also loaded into stage B of the pipe. The instruction word
for the next sequential prefetch can then be accessed directly from the cache holding
register, and no external bus cycle or instruction cache access is required. The cache
holding register provides instruction words to the pipe, regardless of whether the instruction
cache is enabled or disabled.

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-3

Prefetch requests are simultaneously submitted to the cache holding register, the instruction
cache, and the bus controller. Thus, even if the instruction cache is disabled, an instruction
prefetch may hit in the cache holding register and cause an external bus cycle to be aborted.

11.2.3 Instruction Cache

The instruction cache services the instruction prefetch portion of the microsequencer. The
prefetch of an instruction that hits in the on-chip instruction cache causes no delay in
instruction execution since no external bus activity is required for the prefetch. The
instruction cache also interacts with the external bus during instruction cache fills following
instruction cache misses.

11.2.4 Data Cache

The data cache services data reads and is updated on data writes. Data operands required
by the execution unit that are accessed from the data cache cause no delay in instruction
execution due to external bus activity for the data fetch. The data cache also interacts with
the external bus during data cache fills following data cache misses.

11.2.5 Bus Controller Resources

Prefetches that miss in the instruction cache cause an external memory cycle to be
performed. Similarly, when data reads miss in the on-chip data cache, an external memory
cycle is required. The time required for either of these bus cycles may be overlapped with
other internal activity.

The bus controller and microsequencer can operate on an instruction concurrently. The bus
controller can perform a read or write while the microsequencer controls an effective
address calculation or sets the condition codes. The microsequencer may also request a
bus cycle that the bus controller cannot perform immediately. In this case, the bus cycle is
queued and the bus controller runs the cycle when the current cycle is complete.

Instruction Execution Timing

11-4

MC68030 USER’S MANUAL

MOTOROLA

Figure 11-1. Block Diagram – Eight Independent Resources

 M
IC

R
O

SE
Q

U
EN

C
ER

 A
N

D
C

O
N

TR
O

L

C
O

N
TR

O
L

ST
O

R
E

IN
ST

R
U

C
TI

O
N

C
AC

H
E

ST
AG

E
B

ST
AG

E
C

ST
AG

E
D

IN
TE

R
N

AL
D

AT
A

BU
S

IN
ST

R
U

C
TI

O
N

 P
IP

E

 IN
ST

R
U

C
TI

O
N

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
SE

C
TI

O
N

PR
O

G
R

AM
C

O
U

N
TE

R
SE

C
TI

O
N

D
AT

A
SE

C
TI

O
N

EX
EC

U
TI

O
N

 U
N

IT

M
IS

AL
IG

N
M

EN
T

M
U

LT
IP

LE
XE

R

SI
ZE

M
U

LT
IP

LE
XE

R
D

AT
A

PA
D

S
D

AT
A

BU
S

W
R

IT
E

PE
N

D
IN

G
BU

FF
ER

PR
EF

ET
C

H
 P

EN
D

IN
G

BU
FF

ER

 M
IC

R
O

BU
S

 C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
LL

ER

BU
S

C
O

N
TR

O
L

SI
G

N
AL

S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S
PA

D
S

AD
D

R
ES

S
BU

S

AD
D

R
ES

S

D
AT

A
C

AC
H

E

D
AT

A
AD

D
R

ES
S

BU
S

C
AC

H
E

H
O

LD
IN

G
R

EG
IS

TE
R

(C
AH

R
)

AC
C

ES
S

C
O

N
TR

O
L

U
N

IT

C
O

N
TR

O
L

LO
G

IC

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-5

The bus controller consists of the micro bus controller, the instruction fetch pending buffer,
and the write pending buffer. These three resources carry out all writes and reads that miss
in the on-chip caches.

11.2.5.1 INSTRUCTION FETCH PENDING BUFFER.

The instruction prefetch mechanism
includes a single long-word instruction fetch pending buffer. Interlocks are provided to
prevent this buffer from being overwritten by an instruction prefetch request before a
previously requested prefetch is completed.

11.2.5.2 WRITE PENDING BUFFER.

The MC68030 incorporates a single write pending
buffer, allowing the microsequencer to continue execution after the request for a write cycle
proceeds to the bus controller. Interlocks prevent the microsequencer from overwriting this
buffer.

11.2.5.3 MICRO BUS CONTROLLER.

The micro bus controller performs the bus cycles
issued to the bus controller by the rest of the processor. It implements any dynamic bus
sizing required and also controls burst operations.

When prefetching instructions from external memory, the micro bus controller utilizes long-
word read cycles. The processor reads two words, which may load two instructions at once
or two words of a multi-word instruction into the cache holding register (and the instruction
cache if it is enabled and not frozen). A special case occurs when prefetch, that corresponds
to an instruction word at an odd-word boundary, is not found in the cache holding register
(e.g., due to a branch to an odd-word location) with an instruction cache miss. From a 32-
bit memory, the MC68030 reads both the even and odd words associated with the long-word
base address in one bus cycle. From an 8- or 16-bit memory, the processor reads the even
word before the odd word. Both the even and odd word are loaded into the cache holding
register (and the instruction cache if it is enabled and not frozen).

Instruction Execution Timing

11-6

MC68030 USER’S MANUAL

MOTOROLA

11.2.6 Memory Management Unit

The MC68030 includes a memory management unit (MMU) that translates logical
addresses to physical addresses for external accesses when required. The MMU uses an
address translation cache (ATC) to store recently used translations. When the physical
address corresponding to a logical address resides in the ATC, the address translation time
is completely overlapped with on-chip cache accesses and has no effect on instruction
timing.

When the ATC does not contain the translation for a logical address, the processor performs
a table search operation to external memory. The amount of time required for a table search
depends on the structure of the address translation tree and whether a nonresident portion
of the translation tree is required.

The MMU supports demand-paged virtual memory. When a table search terminates with an
exception, indicating that the requested instruction or data is not resident, additional time to
bring the appropriate page into memory is required. The time required is dependent on the
handling routine for the exception.

11.3 INSTRUCTION EXECUTION TIMING CALCULATIONS

The instruction-cache-case timing, overlap, average no-cache-case timing, and actual
instruction-cache-case execution time calculations are discussed in the following
paragraphs.

11.3.1 Instruction-Cache Case

The instruction-cache-case (CC) time for an instruction is the total number of clock periods
required to execute the instruction, provided all the corresponding instruction prefetches are
resident in the on-chip instruction cache. All bus cycles are assumed to take two clock
periods. The instruction-cache-case time does not assume any overlap with other
instructions nor does it take into account hits in the on-chip data cache. The overall
instruction-cache-case time for some instructions is divided into the instruction-cache-case
time for the required effective address calculation (CCea) and the instruction-cache-case
time for the remainder of the operation (CCop). The instruction-cache-case times for all
instructions and addressing modes are listed in the tables of

11.6 Instruction Timing
Tables

.

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-7

11.3.2 Overlap and Best Case

Overlap is the time, measured in clock periods, that an instruction executes concurrently
with the previous instruction. In Figure 11-2, a portion of instructions A and B execute
simultaneously. The overlap time decreases the overall execution time for the two
instructions. Similarly, an overlap period between instructions B and C reduces the overall
execution time of these two instructions.

Each instruction contributes to the total overlap time. As shown in Figure 11-2, a portion of
time at the beginning of the execution of instruction B can overlap the end of the execution
time of instruction A. This time period is called the head of instruction B. The portion of time
at the end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The total overlap time between instructions A and B consists of the lesser of
the tail of instruction A or the head of instruction B. Refer to the instruction timing tables in

11.6 Instruction Timing Tables

for head and tail times.

Figure 11-3 shows the timing relationship of the factors that comprise the instruction-cache
case time for either an effective address calculation (CCea) or for an operation (CCop). In
Figure 11-12, the best case execution time for instruction B occurs when the instruction-
cache-case times for instruction B and instruction A overlap so that the head of instruction
B is completely overlapped with the tail of instruction A.

Figure 11-2. Simultaneous Instruction Execution

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

OVERLAP OVERLAP

Instruction Execution Timing

11-8

MC68030 USER’S MANUAL

MOTOROLA

The nature of the instruction overlap and the fact that the heads of some instructions equal
the total instruction-cache-case time for those instructions makes a zero net execution time
possible. The execution time of an instruction is completely absorbed by overlap with the
previous instruction.

11.3.3 Average No-Cache Case

The average no-cache-case (NCC) time for an instruction takes into account the time
required for the microcode to execute plus the time required for all external bus activity. This
time is calculated assuming both caches miss and the associated instruction prefetches
require one external bus cycle per two instruction prefetches. Refer to

11.2.2 Instruction
Pipe

. The average no-cache-case time also assumes no overlap.

All bus cycles are
assumed to take two clock periods

. Average no-cache-case times for instructions and
effective address calculations are listed in

11.6 Instruction Timing Tables.

Because the
no-cache-case times assume no overlap, the head and tail values listed in these tables do
not apply to the no-cache-case values

.

Since the actual no-cache-case time depends on the alignment of prefetches associated
with an instruction, both alignment cases were considered, and the value shown in the table
is the average of the odd-word-aligned case and the even-word-aligned case (rounded up
to an integral number of clocks). Similarly, the number of prefetch bus cycles is the average
of these two cases rounded up to an integral number of bus cycles.

Figure 11-3. Derivation of Instruction Overlap Time

CACHE CASE

BEST CASE

HEAD

MICROCODE TIME

TAIL

READ/WRITE BUS
TIME OR SYNC WRITE BUS TIME

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-9

The effect of instruction alignment on timing is illustrated by the following example. The
assumptions referred to in

11.6 Instruction Timing Tables

 apply. Both the data cache and
instruction cache miss on all accesses.

Instruction

1.MOVE.L (d

16

,An,Dn),Dn
2.CMPI.W #<data>.W,(d

16

,An)

The instruction stream is positioned with even alignment in 32-bit memory as:

Figure 11-4 shows processor activity for even alignment of the given instruction stream. It
shows the activity of the external bus, the bus controller, and the sequencer.

Figure 11-5 shows processor activity for odd alignment. The instruction stream is positioned
in 32-bit memory as:

Address n MOVE EA Ext
n+4 d

16

CMPI

n+8 #(data. W) d

16

n+12

Figure 11-4. Processor Activity – Even Alignment

Address n ... MOVE
n+4 EA Ext d

16

n+8 CMPI #(data.W)
n+12 d

16

...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLOCK

BUS
ACTIVITY

PREFETCH READ PREFETCH

BUS
CONTROLLER

SEQUENCER

INSTRUCTION
EXECUTION TIME

CLOCK
COUNT

LEGEND:

2) #(data).W,(d ,An)

READ PREFETCH

IDLE PREFETCH
n + 8

READ FROM
d ,An,Dn16

CALCULATE AND FETCH
SOURCE EA
FOR MOVE

MOVE.L (d ,An,Dn),Dn16

IDLE READ FROM
(d ,An)16

CALCULATE AND FETCH
SOURCE EA

FOR CMPI

CMPI.W #(data).W,(d ,An)16

8

IDLEPREFETCH
n + 16

IDLE
PERFORM

CMPI

1) MOVE.L (d ,An,Dn),Dn16

16

PREFETCH
n + 12

PERFORM
MOVE

8

Instruction Execution Timing

11-10

MC68030 USER’S MANUAL

MOTOROLA

Comparing the two alignments, the execution time of the MOVE instruction is eight clocks
for even alignment and 10 clocks for odd alignment, an average of nine clocks. Referring to
the table in

11.6.6 MOVE Instruction

 and the table in

11.6.1 Fetch Effective Address
(fea)

, the average no-cache-case time is 2+7 = 9 clocks. A similar calculation can be made
of the CMPI instruction, which has an average no-cache-case time of seven clocks.

The average no-cache-case timing rather than the maximum no-cache-case timing gives a
closer approximation of the actual timing of an instruction stream in many cases. The total
execution time of the two instructions in the previous example is 16 clocks for both even and
odd alignment. Adding the average no-cache-case timing of the given instructions also gives
16 clocks (9+7 = 16 clocks). It should be noted again that the no-cache-case time assumes
no overlap. Therefore, the actual execution time of an instruction stream may be less than
that given by adding the no-cache-case times. To factor in the effect of wait states for the
no-cache case, refer to

11.5 Effect of Wait States

.

11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

The overall execution time for an instruction may depend on the overlap with the previous
and following instructions. Therefore, to calculate instruction execution time estimations, the
entire code sequence to be evaluated must be analyzed as a whole. To derive the actual
instruction-cache-case execution times for an instruction sequence (under the assumptions
listed in

11.6 Instruction Timing Tables)

, the instruction-cache-case times listed in the
tables must be used, and the proper overlap must be subtracted for the entire sequence.
The formula for this calculation is:

CC

1

+[CC

2

–min(H

2

,T

1

)]+[(CC

3

–min(H

3

,T

2

)]+. . . (11-1)

where:

Figure 11-5. Processor Activity – Odd Alignment

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CLOCK

BUS
ACTIVITY

READ PREFETCH

BUS
CONTROLLER

SEQUENCER

INSTRUCTION
EXECUTION TIME

CLOCK
COUNT

LEGEND:

2) #(data).W,(d ,An)

PREFETCHREADPREFETCH

IDLE IDLE

IDLE

READ FROM
d ,An,Dn16

CALCULATE AND FETCH
SOURCE EA
FOR MOVE

MOVE.L (d ,An,Dn),Dn16

READ FROM
(d ,An)16

CALCULATE AND FETCH
SOURCE EA

FOR CMPI

CMPI.W #(data).W,(d ,An)16

10

PREFETCH
n + 16

PREFETCH
n + 12

PERFORM
CMPI

1) MOVE.L (d ,An,Dn),Dn16

16

PREFETCH
n + 8

PERFORM
MOVE

6

Instruction Execution Timing

MOTOROLA

MC68030 USER’S MANUAL

11-11

CC

n

 is the instruction-cache-case time for an instruction,

T

n

 is the tail time for an instruction,

H

n

 is the head time for an instruction, and

min(a,b) is the minimum of parameters a and b.

The instruction-cache-case time for most instructions is composed of the instruction-cache-
case time for the effective address calculation (CCea) overlapped with the instruction-
cache-case time for the operation (CCop). The more specific formula is:

CCea

1

+[CCop

1

–min(Hop

1

,Tea

1

)]+[CCea

2

–min(Hea

2

,Top

1

)]+
[CCop

2

–min(Hop

2

,Tea

2

)]+[CCea

3

–min(Hea

3,

Top

2

)]+. . . (11-2)

where:

CCea

n

 is the effective address time for the instruction-cache case,

CCop

n

 is the instruction-cache-case time for the operation portion of an instruction,

Tea

n

 is the tail time for the effective address of an instruction,

Hop

n

 is the head time for the operation portion of an instruction,

Top

n is the tail time for the operation portion of an instruction,

Hean is the head time for the effective address of an instruction, and

min(a,b) is the minimum of parameters a and b.

Instruction Execution Timing

11-12 MC68030 USER’S MANUAL MOTOROLA

The instructions that require the instruction-cache case, head, and tail of an effective
address (CCea, Hea, and Tea) to be overlapped with CCop, Hop, and Top are footnoted in
11.6 Instruction Timing Tables.

The actual instruction-cache-case execution time for a stream of instructions can be
computed using Equation (11-1) or the general Equation (11-2). Equation (11-1) is used
unless the instruction-cache case, head, and tail of an effective address are required.

An example using a series of instructions that require Equation (11-1) to calculate the
instruction-cache-case execution time follows. The assumptions referred to in 11.6
Instruction Timing Tables apply.

Instruction

1. ADD.L A1,D1
2. SUBA.L D1,A2

Referring to the timing table in 11.6.8 Arithmetical/Logical Instructions, the head, tail, and
instruction-cache-case (CC) times for ADD.L A1,D1 and SUBA.L D1,A2 are found. There is
no footnote directing the user to add an effective address time for either instruction. Since
both of the instructions use register operands only, there is no need to add effective address
calculation times. Therefore, the general Equation (11-1) can be used for both.

Head Tail CC

1.ADD.L A1,D1 2 0 2
2.SUBA.L D1,A2 4 0 4

NOTE

The underlined numbers show the typical pattern for the com-
parison of head and tail in the following equation.

The following computations use Equation (11-1):

Execution Time = CC1+[CC2-min(H2,T1)]
 = 2+[4-min(4,0)]
 = 2+[4-0]
 = 6 clocks

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-13

Instructions that require the addition of an effective address calculation time from an
appropriate table use the general Equation (11-2) to calculate the actual CC time. The
CCea, Hea, and Tea values must be extracted from the appropriate effective address table
(either fetch effective address, fetch immediate effective address, calculate effective
address, calculate immediate effective address, or jump effective address) as indicated and
included in Equation (11-2). All of the following instructions (except the last) require general
Equation (11-2). The last instruction uses Equation (11-1).

Instruction

 1. ADD.L -(A1),D1
 2. AND.L D1,([A2])
 3. MOVE.L (A6),(8,A1)
 4. TAS (A3)+
 5. NEG D3

Using the appropriate operation and effective address tables from 11.6 Instruction Timing
Tables:

Head Tail CC

1. ADD.L -(A1),D1
Fetch Effective Address (fea) -(An) 2 2 4
ADD EA,Dn 0 0 2

2. AND.L D1,(A2)
fea ([B]) 4 0 10
AND Dn,EA 0 1 3

3. MOVE.L (A6),(8,A1)
fea (An) 1 1 3
MOVE Source,(d 16,An) 2 0 4

4. TAS (A3)+
Calculate Effective Address (cea) (An)+ 0 0 2
TAS Mem 3 0 12

5. NEG D3 2 0 2

The following calculations use Equations (11-1) and (11-2):

ExecutionTime = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hop4,Top3)]+
[CCop4-min(Hop4,Top3)]+[CCop5-min(Hop5,Top4)]

 = 4+[2-min(0,2)]+[10-min(4,0)]+[3-min(0,0)]+[3-min(1,1)]+
 = [4-min(2,1)]+[2-min(0,0)]+[12-min(3,0)]+[2-min(2,0)]
 = 4+2+10+3+2+3+2+12+2
 = 40 clock periods

Instruction Execution Timing

11-14 MC68030 USER’S MANUAL MOTOROLA

Notice that the last instruction did not require the general Equation (11-2) since there were
no effective address (ea) additions. Therefore, Equation (11-1) is used:

CCop5–min(Hop5,Top4)

When using the fetch immediate effective address (fiea) or the calculate immediate effective
address (ciea) tables, the size of the data is significant in the timing calculations. For each
effective address, a line is listed for word data, #<data>.W, and for long data, #<data>.L.

The total head of some effective address types extends through the effective address
calculation and includes the head of the operation. These effective address calculations are
marked in the head column as follows:

X+op head

where:

X is the head of the effective address alone.

An example using the fiea table and the X+op head notation is:

Instruction

 EORI.W #$400,-(A1)
 ADDI.L #$6000FF,D1

Head Tail CC

1. EORI.W #$400,-(A1)
fiea #<data>.W,-(An) 2 2 4
EORI #<data>,Mem

2. ADDI.L #$6000FF,D1
fiea #<data>.L,D1 4+op head 0 4

6 0 4
ADDI #<data>,Dn 2(op head) 0 2

The following calculations use the general Equation (11-2):

Execution Time: = CCea1+[CCop1-min(Hop1,Tea1]+[CCea2- min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]

 = 4+[3-min(0,2)]+[4-min(6,1)]+[2-min(2,0)]
 = 4+3+3+2
 = 2 clock periods

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-15

Note that for the head of fiea #<data>.L,D1, 4+op head, the resulting head of 6 is larger than
the instruction-cache-case time of the fetch. A negative number for the execution time of that
portion could result (e.g., 4 –min(6,6) = –2). This result would produce the correct execution
time since the fetch was completely overlapped and the operation was partially overlapped
by the same tail. No changes in the calculation for the operation execution time are required.

Many two-word instructions (e.g., MULU.L, DIV.L, BFSET, etc.) include the fetch immediate
effective address (fiea) time or the calculate immediate effective address (ciea) time in the
execution time calculation. The timing for immediate data of word length (#<data>.W) is
used for these calculations. If the instruction has a source and a destination, the source EA
is used for the table lookup. If the instruction is single operand, the effective address of that
operand is used.

The following example includes multi-word instructions that refer to the fetch immediate
effective address and calculate immediate effective address tables in 11.6 Instruction
Timing Tables.

Instruction

 MULU.L (D7),D1:D2
 BFCLR $6000{0:8}
 DIVS.L #$10000,D3:D4

Head Tail CC

1. MULU.L (D7),D1:D2
fiea #<data>.W,Dn 2+op head 0 2

4 0 2
MUL.L EA, Dn 2(op head) 0 44

2. BFCLR $6000{0:8}
fiea #<data>.W,$XXX.W 4 2 6
BFCLR Mem(<5 bytes) 6 0 14

3. DIVS.L #$10000,D3:D4
fiea #<data>.W,#<data>.L 6+op head 0 6

6 0 6
DIVS.L EA,Dn 0(op head) 0 90

Instruction Execution Timing

11-16 MC68030 USER’S MANUAL MOTOROLA

Use the general Equation (11-2) to compute:

Execution Time: = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3- min(Hop3,Tea3)]

 = 2+[44-min(2,0)]+[6-min(4,0)]+[14-min(6,2)]+[6 -min(6,0)]+
[90 -min(0,0)]

 = 2+44+6+12+6+90
 = 60 clock periods

NOTE

This CC time is a maximum since the times given for the MU-
LU.L and DIVS.L are maximums.

11.4 EFFECT OF DATA CACHE

When the data accesses required by an instruction are in the data cache, reading these
operands requires no bus cycles, and the execution time for the instruction may be
minimized. Write accesses, however, always require bus cycles because the data cache is
a write through cache.

The effect of the data cache on operand read accesses can be factored into the actual
instruction execution time as follows.

When a data cache hit occurs for the data fetch corresponding to either the fetch effective
address table or the fetch immediate effective address table in 11.6 Instruction Timing
Tables, the following rules apply:

1a. if Tailt = 0: No change in timing.

1b. f Tailt = 1: Tail = Tailt–1
CC = CCt–1

1c. f Tailt>1: Tail = Tailt–(Tailt–1) = 1
CC = CCt–(Tailt–1)

where:

Tailt and CCt are the values listed in the tables.

2. If the EA mode is memory indirect (two data reads), the tail and CC time are calculated
as for one data read.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-17

NOTE

Data cache hits cannot easily be accounted for in instruction and
operation timings that include an operand fetch in the CCop
(e.g., BFFFO and CHK2). The effect of a data cache hit on such
CCop's has been ignored for computational purposes.

RMC cycles (e.g., TAS and CAS) are forced to miss on data
cache reads. Therefore, a data cache hit has no effect on these
instructions.

The following example assumes data cache hits. The lines that are corrected for data cache
hits are printed in boldface type. These lines are used to calculate the instruction-cache-
case execution time. References are to the preceding rules.

Instruction

1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A1)
4. TAS (A3)

Head Tail CC

1. ADD.L -(A1),D1
Fetch Effective Address
fea -(An) 2 2-1 4-1(1/0/0)
*1c 2 1 3(1/0/0)
*ADD EA,Dn 0 0 2(0/0/1)

2. AND.L D1,([A2])
*1a & 2 fea ([B]) 4 0 10(2/0/0)
*AND Dn,EA 0 1 3(0/0/1)

3. MOVE.L (A6),(8,A1)
 fea (An) 1 1-1 3–1(1/0/0)
*1b 1 0 2(1/0/0)
*MOVE Source, (d16,An) 2 0 4(0/0/1)

4.TAS (A3)+
*Cea (An)+ 0 0 2(0/0/0)
*TAS Mem 0 0 12(1/0/1)

*Corrected for data cache hits.

NOTE

It is helpful to include the number of operand reads and writes
along with the number of instruction accesses in the CC column
for computing the effect of data cache hits on execution time.

Instruction Execution Timing

11-18 MC68030 USER’S MANUAL MOTOROLA

The following computations use the general Equation (11-2):

Execution Time = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-
min(Hea2,Top1)]+[CCop2-min(Hop2,Tea2)[+]CCea3-
min(Hea3,Top2)]+[CCop3-min(Hop3,Tea3)]+[CCea4-
min(Hea4,Top3)]+[CCop4-min(Hop4,Tea4)]

 = 3+[2-min(0,1)]+[10-min(4,0)]+[3-min(0,0)]+[2-min(1,1)]+
[4 -min(2,0)]+[2-min(0,0)[+]12-min(0,0)]

 = 3+2+10+3+1+4+2+12
 = 37 clock periods

11.5 EFFECT OF WAIT STATES

The constraints of a system design may require the insertion of wait states in memory
cycles. When the bus or the memory device requires many wait states, instruction execution
time is increased. However, one or two wait states may have little effect on instruction
timing. Often the only effect of one or more wait states is to reduce bus idle time.

The effect of wait states on data accesses may be accounted for in the instruction-cache-
case timings.

To add the effect of wait states on data accesses:

1a. For nonmemory indirect effective address timings that include an operand read, add
the number of wait states (in clocks) to the tail and instruction-cache-case (CC)
times. The head is not affected.

1b. For memory indirect effective address timings that use the calculate <ea> tables and
have only one data read (for the address fetch), add the number of wait states to the
CC time only. The head and tail are not affected.

1c. For memory indirect effective address timings (fetch <ea>) that have two data reads
(for the address fetch), add the number of wait states for two reads to the CC time.
Add the number of wait states for one data read to the tail. The head is not affected.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-19

2a. For operation timings that include a data read (e.g., BFFF0 and TAS), add the num-
ber of wait states to the CC time only. Neither the head nor the tail are affected.

NOTE

The CC timing and tail of the MOVEM instruction are special
cases for both data reads and writes. Equations for both the CC
timing and the tail as a function of wait states are footnoted in the
table in 11.6.7 Special-Purpose Move Instruction.

2b. If the operation has more than one data read, add the total amount of wait states for
all reads to the CC time. Neither the head nor the tail are affected. Refer to preceding
note.

3a. For operation timings that include a data write, the number of wait states is added
to the tail and the CC time. The head is not affected. Refer to preceding note.

3b. If there is more than one write in the operation, the tail is only increased by the wait
states for one write. The CC timing is increased by the total amount of wait states for
all writes. Refer to preceding note.

The following example calculates the instruction-cache-case execution time for the specified
instruction stream with two wait states (four-clock reads and writes). The lines that are
corrected for wait states are printed in boldface type and are used to calculate the instruction
execution time. References are to the preceding rules.

Instruction

1. MOVE.L ($800,A2,D3),(A5,D2)
2. ADD.L D1,([$30,A4])
3. BFCLR ($20,A5){1:5} - (<5 bytes)
4. BFTST ($10,A3,D3){31:31} - (5 bytes)
5. MOVEM ([A1,D1]),A1-A4 - 4 registers

Instruction Execution Timing

11-20 MC68030 USER’S MANUAL MOTOROLA

Wait States = 2

Head Tail CC

1. MOVE.L ($800,A2,D3),(A5,D2)
fea (d16,An,Xn) 4 0+2 6+2(1/0/0)
*1a 4 2 8(1/0/0)
MOVE Source,(B) 4 0+2 8+2(0/0/1)
*3a 4 2 10(0/0/1)

2. ADD.L D1,([$30,A4])
fea ([d16,B]) 4 0+2 12+4(2/0/0)
*1c 4 2 16(2/0/0)
ADD Dn,EA 0 1+2 3+2(0/0/1)
*3a 0 3 5(0/0/1)

3. BFCLR ($20,A5){1:5}
*ciea #<data>.W,(d16,An)
Single EA Format 10 0 4(0/0/0)
BFCLR Mem (< 5 bytes) 6 0+2 14+4(1/0/1)
*2a & 3a 6 2 18(1/0/1)

4. BFTST ($10,A3,D3){31:31}
*ciea (d16,An,Xn) 14 0 8(0/0/0)
BFTST Mem (5 bytes) 6 0 14+4(2/0/0)
*2b 6 0 18(2/0/0)

5. MOVEM ([A1,D1]),A1-A4
ciea ([B]) 6 0 12+2(1/0/0)
*1b 6 0 14(1/0/0)
MOVEM EA,RL 2 0 24+0(4/0/0)
*2a & 2b 2 0 24(4/0/0)

*Corrected for wait states.

NOTE

It is helpful to include the number of operand read and writes
along with the number of instruction accesses in the CC column
for computing the effect of wait states on execution time.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-21

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1+[CCop1-min(Hop1,Tea1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hea4,Top3)]+
[CCop4-min(Hop4,Tea4)]+[CCea5-min(Hea5,Top4)]+
[CCop5-min(Hop5,Tea5)]

 = 8+[10-min(4,2)]+[16-min(4,2)]+
[5-min(0,2)]+[4-min(10,3)]+[18-min(6,0)]+[8-min(14,2)]+
[18-min(6,0)]+[14-min(6,0)]+[24-min(2,0)

 = 8+8+14+5+1+18;+6+18+14+24
 = 116 clock periods

The next example is the data cache hit example from 11.4 Effect of Data Cache with two
wait states per cycle (four-clock read/write). Hits in the data cache and instruction cache are
assumed. Three lines are shown for each timing. The first is the timing from the appropriate
table. The second is the timing adjusted for a data cache hit. The third adds wait states only
to write operations, since the read operations hit in the cache and cause no delay. The third
line for each timing is used to calculate the instruction cache execution time; it is shown in
boldface type.

Instruction

1. ADD.L -(A1),D1
2. AND.L D1,([A2])
3. MOVE.L (A6),(8,A1)
4. TAS (A3)+

Instruction Execution Timing

11-22 MC68030 USER’S MANUAL MOTOROLA

Head Tail CC

1. ADD.L -(A1),D1
fea -(An) 2 2 4(1/0/0)
* 2 1 3(1/0/0)
** 2 1 3(1/0/0)

ADD.L EA,Dn 0 0 2(0/1/0)
* 0 0 2(0/1/0)
** 0 0 2(0/1/0)

2. AND.L D1,([A1])
fea ([B]) 4 0 10(1/0/0)
* 4 0 10(1/0/0)
*** 4 0 12(1/0/0)

AND Dn,EA 0 1 3(0/0/1)
* 0 1 3(0/0/1)
** 0 3 5(0/0/1)

3. MOVE.L (A6),(8,A1)
fea (An) 1 1 3(1/0/0)
* 1 0 2(1/0/0)
** 1 0 2(1/0/0)

MOVE Source,(d16,An) 2 0 4(0/0/1)
* 2 0 4(0/0/1)
** 2 2 6(0/0/1)

4. TAS (A3)+
Cea (An) 0 0 2(0/0/0)
* 0 0 2(0/0/0)
** 0 0 2(0/0/0)

TAS Mem 3 0 12(1/0/1)
* 3 0 12(1/0/1)
** 3 0 14(1/0/1)

NOTES:
 *Corrected for data cache hits.
 **Corrected for wait states also (only on data writes).
***No data cache hit assumed for address fetch.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-23

Using the general Equation (11-2), calculate as follows:

Execution Time = CCea1+[CCop1-min(Hea1,Top1)]+[CCea2-min(Hea2,Top1)]+
[CCop2-min(Hop2,Tea2)]+[CCea3-min(Hea3,Top2)]+
[CCop3-min(Hop3,Tea3)]+[CCea4-min(Hea4,Top3)]+
[CCop4-min(Hop4,Tea4)]

 = 3+[2-min(0,1)]m+[12-min(4,0)]+
[5-min(0,0)]+[2-min(1,3)]+
[6-min(2,0)]+[2-min(0,2)]+
[14-min(3,0)

 = 3+2+12+5+1+6+2+14
 = 45 clock periods

A similar analysis can be constructed for the average no-cache case. Since the average no-
cache-case time assumes two clock periods per bus cycle (i.e., no wait states), the timing
given in the tables does not apply directly to systems with wait states. To approximate the
average no-cache-case time for an instruction or effective address with W wait states, use
the following formula:

NCC = NCCt+(# of data reads and writes)•W+
(max. # of instruction accesses)•W

where:

NCCt is the no-cache-case timing value from the appropriate table.

The number of data reads, data writes, and maximum instruction accesses are found in
the appropriate table.

The average no-cache-case timing obtained from this formula is equal to or greater than the
actual no-cache-case timing since the number of instruction accesses used is a maximum
(the values in the tables are always rounded up) and no overlap is assumed.

Instruction Execution Timing

11-24 MC68030 USER’S MANUAL MOTOROLA

11.6 INSTRUCTION TIMING TABLES

All the following assumptions apply to the times shown in the tables in this section:

• All memory accesses occur with two-clock bus cycles and no wait states.

• All operands in memory, including the system stack, are long-word aligned.

• A 32-bit bus is used for communications between the MC68030 and system memory.

• The data cache is not enabled.

• No exceptions occur (except as specified).

• Required address translations for all external bus cycles are resident in the address
translation cache.

Four values are listed for each instruction and effective address:

1. Head,

2. Tail,

3. Instruction-cache case (CC) when the instruction is in the cache but has no overlap,
and

4. Average no-cache case (NCC) when the instruction is not in the cache or the cache
is disabled and there is no instruction overlap.

The only instances for which the size of the operand has any effect are the instructions with
immediate operands and the ADDA and SUBA instructions. Unless specified otherwise,
immediate byte and word operands have identical execution times.

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-25

The instruction-cache-case and average no-cache-case columns of the instruction timing
tables contain four sets of numbers, three of which are enclosed in parentheses. The outer
number is the total number of clocks for the given cache case and instruction. The first
number inside the parentheses is the number of operand read cycles performed by the
instruction. The second value inside the parentheses is the maximum number of instruction
bus cycles performed by the instruction, including all prefetches to keep the instruction pipe
filled. Because the second value is the average of the odd-word-aligned case and the even-
word-aligned case (rounded up to an integral number of bus cycles), it is always greater than
or equal to the actual number of bus cycles (one bus cycle per two instruction prefetches).
The third value within the parentheses is the number of write cycles performed by the
instruction. One example from the instruction timing table is:

The total numbers of bus-activity clocks and internal clocks (not overlapped by bus activity)
of the instruction in this example are derived as follows:

(2 Reads•2 Clocks/Read)+l(3 Instruction Accesses•2 Clocks/Access)+
(0 Writes•2 Clocks/Write) = 10 Clocks of Bus Activity

21 Total Clocks–10 Bus Activity Clocks = 11 Internal Clocks

The example used here is taken from a no-cache-case ‘fetch effective address' time. The
addressing mode is ([d32,B],I,d32). The same addressing mode under the instruction-
cache-case execution time entry is 18(2/0/0). For the instruction-cache-case execution time,
no instruction accesses are required because the cache is enabled and the sequencer does
not have to access external memory for the instruction words.

The first five timing tables deal exclusively with fetching and calculating effective addresses
and immediate operands. The remaining tables are instruction and operation timings. Some
instructions use addressing modes that are not included in the corresponding instruction
timings. These cases refer to footnotes that indicate the additional table needed for the
timing calculation. All read and write accesses are assumed to take two clock periods.

11.6.1 Fetch Effective Address (fea)

The fetch effective address table indicates the number of clock periods needed for the
processor to calculate and fetch the specified effective address. The effective addresses are
divided by their formats (refer to 2.5 Effective Address Encoding Summary). For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

TOTAL NUMBER OF CLOCKS

NUMBER OF READ CYCLES

MAXIMUM NUMBER OF INSTRUCTION ACCESS CYCLES

NUMBER OF WRITE CYCLES

21 (2 3 0)/ /

Instruction Execution Timing

11-26 MC68030 USER’S MANUAL MOTOROLA

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn – – 0(0/0/0) 0(0/0/0)
% An – – 0(0/0/0) 0(0/0/0)

(An) 1 1 3(1/0/0) 3(1/0/0)
(An)+ 0 1 3(1/0/0) 3(1/0/0)
–(An) 2 2 4(1/0/0) 4(1/0/0)
(d16,An) or (d16,PC) 2 2 4(1/0/0) 4(1/1/0)

(xxx).W 2 2 4(1/0/0) 4(1/1/0)
(xxx).L 1 0 4(1/0/0) 5(1/1/0)
#〈data〉.B 2 0 2(0/0/0) 2(0/1/0)
#〈data〉.W 2 0 2(0/0/0) 2(0/1/0)
#〈data〉.L 4 0 4(0/0/0) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 4 2 6(1/0/0) 6(1/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-27

11.6.1 Fetch Effective Address (fea) (Continued)

B = Base Address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = No clock cycles incurred by effective address fetch.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(1/0/0) 7(1/1/0)

(d16,An,Xn) or (d16,PC,Xn) 4 0 6(1/0/0) 7(1/1/0)

([d16,An]) or ([d16,PC]) 2 0 10(2/0/0) 10(2/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(2/0/0) 10(2/1/0)

[d16,An],d16) or ([d16,PC],d16) 2 0 12(2/0/0) 13(2/2/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(2/0/0) 13(2/2/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(2/0/0) 14(2/2/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(2/0/0) 14(2/2/0)

(B) 4 0 6(1/0/0) 7(1/1/0)
(d16,B) 4 0 8(1/0/0) 10(1/1/0)

(d32,B) 4 0 12(1/0/0) 13(1/2/0)

([B]) 4 0 10(2/0/0) 10(2/1/0)
([B],I) 4 0 10(2/0/0) 10(2/1/0)
([B],d16) 4 0 12(2/0/0) 13(2/1/0)

([B],I,d16) 4 0 12(2/0/0) 13(2/1/0)

([B],d32) 4 0 12(2/0/0) 14(2/2/0)

([B],I,d32) 4 0 12(2/0/0) 14(2/2/0)

([d16,B]) 4 0 12(2/0/0) 13(2/1/0)

([d16,B],I) 4 0 12(2/0/0) 13(2/1/0)

([d16,B],d16) 4 0 14(2/0/0) 16(2/2/0)

([d16B],I,d16) 4 0 14(2/0/0) 16(2/2/0)

([d16,B],d32) 4 0 14(2/0/0) 17(2/2/0)

([d16,B\,I,d32) 4 0 14(2/0/0) 17(2/2/0)

([d32,B]) 4 0 16(2/0/0) 17(2/2/0)

([d32,B],I) 4 0 16(2/0/0) 17(2/2/0)

([d32,B],d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B],I,d16) 4 0 18(2/0/0) 20(2/2/0)

([d32,B],d32) 4 0 18(2/0/0) 21(2/3/0)

([d32,B],I,d32) 4 0 18(2/0/0) 21(2/3/0)

Instruction Execution Timing

11-28 MC68030 USER’S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea)

The fetch immediate effective address table indicates the number of clock periods needed
for the processor to fetch the immediate source operand and to calculate and fetch the
specified destination operand. In the case of two-word instructions, this table indicates the
number of clock periods needed for the processor to fetch the second word of the instruction
and to calculate and fetch the specified source operand or single operand. The effective
addresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total number of clock
cycles is outside the parentheses. The number of read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the
total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #〈data〉. W, Dn 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉. L, Dn 4+op head 0 4(0/0/0) 4(0/1/0)

#〈data〉.W,(An) 1 1 3(1/0/0) 4(1/1/0)
#〈data〉.L,(An) 1 0 4(1/0/0) 5(1/1/0)
#〈data〉.W,(An)+ 2 1 5(1/0/0) 5(1/1/0)
#〈data〉.L,(An)+ 4 1 7(1/0/0) 7(1/1/0)
#〈data〉.W,–(An) 2 2 4(1/0/0) 4(1/1/0)
#〈data〉.L,–(An) 2 0 4(1/0/0) 5(1/1/0)
#〈data〉.W,(d16,An) 2 0 4(1/0/0) 5(1/1/0)

#〈data〉.L,(d16,An) 4 0 6(1/0/0) 8(1/2/0)

#〈data〉.W,$XXX.W 4 2 6(1/0/0) 6(1/1/0)
#〈data〉.L,$XXX.W 6 2 8(1/0/0) 8(1/2/0)
#〈data〉.W,$XXX.L 3 0 6(1/0/0) 7(1/2/0)
#〈data〉.L,$XXX.L 5 0 8(1/0/0) 9(1/2/0)
〈data〉.W, #〈data〉. L 6+op head 0 6(0/0/0) 6(0/2/0)

BRIEF FORMAT EXTENSION WORD

#〈data〉.W,(d8,An,Xn) or (d8,PC,Xn) 6 2 8(1/0/0) 8(1/2/0)

#〈data〉.L,(d8,An,Xn) or (d8,PC,Xn) 8 2 10(1/0/0) 10(1/2/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-29

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)
Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

#〈data〉.W(d16,An) or (d16,PC) 4 0 8(1/0/0) 9(1/2/0)

#〈data〉.L(d16,An) or (d16,PC) 6 0 10(1/0/0) 11(1/2/0)

#〈data〉.W,(d16,An,Xn) or (d16,PC,Xn) 6 0 8(1/0/0) 9(1/2/0)

#〈data〉.L,(d16,An,Xn) or (d16,PC,Xn) 8 0 10(1/0/0) 11(1/2/0)

#〈data〉.W,([d16,An]) or ([d16,PC]) 4 0 12(2/0/0) 12(2/2/0)

#[data].L,([d16,An]) or ([d16,PC]) 6 0 14(2/0/0) 14(2/2/0)

#〈data〉.W,([d16,An],Xn) or (d16,PC],Xn) 4 0 12(2/0/0) 12(2/2/0)

#〈data〉.L,([d16,An],Xn) or ([d16,PC],Xn) 6 0 14(2/0/0) 14(2/2/0)

#〈data〉.W,([d16,An],d16) or ([d16,PC],d16) 4 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([d16,An],d16) or ([d16,PC],d16) 6 0 16(2/0/0) 17(2/3/0)

#〈data〉.W,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 4 0 14(2/0/0) 15(2/3/0)

#〈data〉.L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 6 0 16(2/0/0) 17(2/3/0)

#〈data〉.W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(2/0/0) 16(2/3/0)

#〈data〉.L,([d16,An],d32) or ([d16,PC],d32) 6 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 4 0 14(2/0/0) 16(2/3/0)

#〈data〉.L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,(B) 6 0 8(1/0/0) 9(1/1/0)
#〈data〉.L,(B) 8 0 10(1/0/0) 11(1/2/0)
#〈data〉.W,(d16,B) 6 0 10(1/0/0) 12(1/2/0)

#〈data〉.L,(d16,B) 8 0 12(1/0/0) 14(1/2/0)

#〈data〉.W,(d32,B) 10 0 14(1/0/0) 16(1/2/0)

#〈data〉.L,(d32,B) 12 0 16(1/0/0) 18(1/3/0)

#〈data〉.W,([B]) 6 0 12(2/0/0) 12(2/1/0)
#〈data〉.L,([B]) 8 0 14(2/0/0) 14(2/2/0)
#〈data〉.W,([B],I) 6 0 12(2/0/0) 12(2/1/0)
#〈data〉.L,([B],I) 8 0 14(2/0/0) 14(2/2/0)
#〈data〉.W,([B],d16) 6 14(2/0/0) 15(2/2/0)

#〈data〉.L,([B],d16) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([B],I,d16) 6 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([B],I,d16) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([B],d32) 6 0 14(2/0/0) 16(2/2/0)

#〈data〉.L,([B],d32) 8 0 16(2/0/0) 18(2/3/0)

#〈data〉.W,([B],I,d32) 6 0 14(2/0/0) 16(2/2/0)

#〈data〉.L,([B],I,d32) 8 0 16(2/0/0) 18(2/3/0)

#〈data〉W,([d16,B]) 6 0 14(2/0/0) 15(2/0/0)

#〈data〉.L,([d16,B]) 8 0 16(2/0/0) 17(2/2/0)

#〈data〉.W,([d16,B],I) 6 0 14(2/0/0) 15(2/2/0)

#〈data〉.L,([d16,B],I) 8 0 16(2/0/0) 17(2/2/0)

Instruction Execution Timing

11-30 MC68030 USER’S MANUAL MOTOROLA

11.6.2 Fetch Immediate Effective Address (fiea) (Continued)

B = Base Address: 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index: 0, Xn
% = Total head for fetch immediate effective address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.3 Calculate Effective Address (cea)

The calculate effective address table indicates the number of clock periods needed for the
processor to calculate the specified effective address. Fetch time is only included for the first
level of indirection on memory indirect addressing modes. The effective addresses are
divided by their formats (refer to 2.5 Effective Address Encoding Summary). For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

#〈data〉.W, ([d16, B],d16) 6 0 16(2/0/0) 18(2/2/0)

#〈data〉.L, ([d16, B}, d16) 8 0 18(2/0/0) 20(2/3/0)

#〈data〉.W,([d16,B],I,d16) 6 0 16(2/0/0) 18(2/2/0)

#〈data〉.L, ([d16,B],I,d16) 8 0 18(2/0/0) 20(2/3/0)

#〈data〉.W,([d16,B],d32) 6 0 16(2/0/0) 19(2/3/0)

#〈data〉.L, ([d16,B],d32) 8 0 18(2/0/0) 21(2/3/0)

#〈data〉.W,([d16,B],I,d32) 6 0 16(2/0/0) 19(2/3/0)

#〈data〉.L,([d16,B],I,d16) 8 0 18(2/0/0) 21(2/3/0)

#〈data〉.W,([d16,B]) 6 0 18(2/0/0) 19(2/2/0)

#〈data〉.L,([d16,B]) 8 0 20(2/0/0) 21(2/3/0)

#〈data〉.W,([d32,B],I) 6 0 18(2/0/0) 19(2/2/0)

#〈data〉.L,([d32,B],I) 8 0 20(2/0/0) 21(2/3/0)

#〈data〉.W,([d32,B],d16) 6 0 20(2/0/0) 22(2/3/0)

#〈data〉.L,([d32,B],d16) 8 0 22(2/0/0) 24(2/3/0)

#〈data〉.W,([d32,B],I,d16) 6 0 20(2/0/0) 22(2/3/0)

#〈data〉.L,([d32,B],I,d16) 8 0 22(2/0/0) 24(2/3/0)

#〈data〉.W,([d32,B],d32) 6 0 20(2/0/0) 23(2/3/0)

#〈data〉.L,([d32,B],d32) 8 0 22(2/0/0) 25(2/4/0)

#〈data〉.W,([d32,B],I,d32) 6 0 20(2/0/0) 23(2/3/0)

#〈data〉.L,([d32,B],I,d32) 8 0 22(2/0/0) 25(2/4/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-31

11.6.3 Calculate Effective Address (cea) (Continued)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn – – 0(0/0/0) 0(0/0/0)
% An – – 0(0/0/0) 0(0/0/0)

(An) 2 + op head 0 2(0/0/0) 2(0/0/0)
(An)+ 0 0 2(0/0/0) 2(0/0/0)
–(An) 2 + op head 0 2(0/0/0) 2(0/0/0)
(d16,An) or (d16,PC) 2 + op head 0 2(0/0/0) 2(0/1/0)

(xxx).W 2 + op head 0 2(0/0/0) 2(0/1/0)
(xxx).L 4+ op head 0 4(0/0/0) 4(0/1/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 4+ op head 0 4(0/0/0) 4(0/1/0)

FULL FORMAT EXENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(0/0/0) 6(0/1/0)

(d16,An,Xn) or (d16,PC,Xn) 6 + op head 0 6(0/0/0) 6(0/1/0)

([d16,An]) or ([d16,PC]) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/0) 10(1/1/0)

[d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(1/0/0) 13(1/2/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(1/0/0) 13(1/2/0)

(B) 6 + op head 0 6(0/0/0) 6(0/1/0)
(d16,B) 4 0 8(0/0/0) 9(0/1/0)

(d32,B) 4 0 12(0/0/0) 12(0/2/0)

([B]) 4 0 10(1/0/0) 10(1/1/0)
([B],I) 4 0 10(1/0/0) 10(1/1/0)
([B],d16) 4 0 12(1/0/0) 13(1/1/0)

([B],I,d16) 4 0 12(1/0/0) 13(1/1/0)

([B],d32) 4 0 12(1/0/0) 13(1/2/0)

([B],I,d32) 4 0 12(2/0/0) 13(1/2/0)

([d16,B]) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],I) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],d16) 4 0 14(1/0/0) 16(2/2/0)

([d16B],I,d16) 4 0 14(1/0/0) 16(2/2/0)

Instruction Execution Timing

11-32 MC68030 USER’S MANUAL MOTOROLA

11.6.3 Calculate Effective Address (cea) (Continued)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = No clock cycles incurred by effective address calculation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

11.6.4 Calculate Immediate Effective Address (ciea)

The calculate immediate effective address table indicates the number of clock periods
needed for the processor to fetch the immediate source operand and calculate the specified
destination effective address. In the case of two-word instructions, this table indicates the
number of clock periods needed for the processor to fetch the second word of the instruction
and calculate the specified source operand or single operand. Fetch time is only included
for the first level of indirection on memory indirect addressing modes. The effective
addresses are divided by their formats (refer to 2.5 Effective Address Encoding
Summary). For instruction-cache case and for no-cache case, the total number of clock
cycles is outside the parentheses. The number of read, prefetch, and write cycles is given
inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included in the
total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

([d16,B],d32) 4 0 14(1/0/0) 16(1/2/0)

[d16,B],I,d32) 4 0 14(1/0/0) 16(1/2/0)

[d16,B]) 4 0 16(1/0/0) 17(1/2/0)

([d16,B]I) 4 0 16(1/0/0) 17(1/2/0)

([d16,B]d16) 4 0 18(1/0/0) 20(1/2/0)

([d16,B],I,d16) 4 0 18(1/0/0) 20(1/2/0)

([d16,B],d32) 4 0 18(1/0/0) 20(1/3/0)

([d16,B],I,d32) 4 0 18(1/0/0) 20(1/3/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-33

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% #〈data〉.W,Dn 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,Dn 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.W,(An) 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,(An) 4+op head 0 4(0/0/0) 4(0/1/0)

#〈data〉.W,(An)+ 2 0 4(0/0/0) 4(0/1/0)
#〈data〉.L,(An)+ 4 0 6(0/0/0) 6(0/1/0)

% #〈data〉.W,–(An) 2+op head 0 2(0/0/0) 2(0/1/0)
% #〈data〉.L,–(An) 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.W,(d16,An) 4+op head 0 4(0/0/0) 4(0/1/0)

% #〈data〉.L,(d16,An) 6+op head 0 6(0/0/0) 7(0/2/0)

% #〈data〉.W,$XXX.W 4+op head 0 4(0/0/0) 4(0/1/0)
% #〈data〉.L,$XXX.W 6+op head 0 6(0/0/0) 6(0/2/0)
% #〈data〉.W,$XXX.L 6+op head 0 6(0/0/0) 6(0/2/0)
% #〈data〉.L,$XXX.L 8+op head 0 8(0/0/0) 8(0/2/0)

BRIEF FORMAT EXTENSION WORD

#〈data〉.W,(d8,An,Xn) or (d8,PC,Xn) 6 + op head 0 6(0/0/0) 6(0/2/0)

#〈data〉.L,(d8,An,Xn) or (d8,PC,Xn) 8 + op head 0 8(0/0/0) 8(0/2/0)

FULL FORMAT EXENSION WORD(S)

#〈data〉.W,(d16,An) or (d16,PC) 4 0 8(0/0/0) 8(0/2/0)

#〈data〉.L,(d16,An) or (d16,PC) 6 0 10(0/0/0) 10(0/2/0)

% #〈data〉.W,(d16,An,Xn) or (d16,PC,Xn) 8 + op head 0 8(0/0/0) 8(0/2/0)

% #〈data〉.L,(d16,An,Xn) or (d16,PC,Xn) 10 + op head 0 10(0/0/0) 10(0/2/0)

#〈data〉.W,([d16,An]) or ([d16,PC]) 4 0 12(1/0/0) 12(1/2/0)

#〈data〉.L,([d16,An]) or ([d16,PC]) 6 0 14(1/0/0) 14(1/1/0)

#〈data〉.W,([d16,An],Xn) or [d16,PC],Xn) 4 0 12(1/0/0) 12(1/2/0)

#〈data〉.L,([d16,An],Xn) or [d16,PC],Xn) 6 0 14(1/0/0) 14(1/1/0)

#〈data〉.W,([d16,An],d16) or [d16,PC],d16) 4 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,An],d16) or [d16,PC],d16) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 4 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],d32) or ([d16,PC],d32) 4 0 14(1/0/0) 16(1/3/0)

#〈data〉.L,([d16,An],d32) or ([d16,PC],d32) 6 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 4 0 14(1/0/0) 15(1/3/0)

#〈data〉.L,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 6 0 16(1/0/0) 17(1/3/0)

% #〈data〉.W,(B) 8 + op head 0 8(0/0/0) 8(0/1/0)
% #〈data〉.L,(B) 10 + op head 0 10(0/0/0) 10(0/2/0)

Instruction Execution Timing

11-34 MC68030 USER’S MANUAL MOTOROLA

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S) (CONTINUED)
#〈data〉.W,(d16,B) 6 0 10(0/0/0) 11(0/2/0)

#〈data〉.L,(d16,B) 8 0 12(0/0/0) 13(0/2/0)

#〈data〉.W,(d32,B) 6 0 14(0/0/0) 15(0/2/0)

#〈data〉.L,(d32,B) 8 0 16(0/0/0) 17(0/3/0)

#〈data〉.W,([B]) 6 0 12(1/0/0) 12(1/1/0)
#〈data〉.L,([B]) 8 0 14(1/0/0) 14(1/2/0)
#〈data〉.W,([B],I) 6 0 12(1/0/0) 12(1/1/0)
#〈data〉.L,([B],I) 8 0 14(1/0/0) 14(1/2/0)
#〈data〉.W,([B],d16) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],d16) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([B],I,d16) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],I,d16) 8 0 16(2/0/0) 17(1/2/0)

#〈data〉.W,([B],d32) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],d32) 8 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([B],I,d32) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([B],I,d32) 8 0 16(1/0/0) 17(1/3/0)

#〈data〉.W,([d16,B]) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,B]) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([d16,B],I) 6 0 14(1/0/0) 15(1/2/0)

#〈data〉.L,([d16,B],I) 8 0 16(1/0/0) 17(1/2/0)

#〈data〉.W,([d16,B],d16) 6 0 16(1/0/0) 18(1/2/0)

#〈data〉.L,([d16,B],d16) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],I,d16) 6 0 16(1/0/0) 18(1/2/0)

#〈data〉.L,([d16,B],I,d16) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],d32) 6 0 16(1/0/0) 18(1/3/0)

#〈data〉.L,([d16,B],d32) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d16,B],I,d32) 6 0 16(1/0/0) 18(1/3/0)

#〈data〉.L,([d16,B],I,d32) 8 0 18(1/0/0) 20(1/3/0)

#〈data〉.W,([d32,B]) 6 0 18(1/0/0) 19(1/2/0)

#〈data〉.L,([d32,B]) 8 0 20(1/0/0) 21(1/3/0)

#〈data〉.W,([d32,B],I) 6 0 18(1/0/0) 19(1/2/0)

#〈data〉.L,([d32,B],I) 8 0 20(1/0/0) 21(1/3/0)

#〈data〉.W,([d32,B],d16) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],d16) 8 0 22(1/0/0) 24(1/3/0)

#〈data〉.W,([d32,B],I,d16) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],I,d16) 8 0 22(1/0/0) 24(1/3/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-35

11.6.4 Calculate Immediate Effective Address (ciea) (Continued)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = Total head for address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing

11.6.5 Jump Effective Address

The jump effective address table indicates the number of clock periods needed for the
processor to calculate the specified effective address for the JMP or JSR instructions. Fetch
time is only included for the first level of indirection on memory indirect addressing modes.
The effective addresses are divided by their formats (refer to 2.5 Effective Address
Encoding Summary). For instruction-cache case and for no-cache case, the total number
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S) (CONTINUED)
#〈data〉.W,([d32,B],d32) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],d32) 8 0 22(1/0/0) 24(1/4/0)

#〈data〉.W,([d32,B],I,d32) 6 0 20(1/0/0) 22(1/3/0)

#〈data〉.L,([d32,B],I,d32) 8 0 22(1/0/0) 24(1/4/0)

Address Mode Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT

% Dn 2+op head 0 2(0/0/0) 2(0/0/0)
% An 4+op head 0 4(0/0/0) 4(0/0/0)
% (xxx).W 2+op head 0 2(0/0/0) 2(0/0/0)
% (xxx).L 2+op head 0 2(0/0/0) 2(0/0/0)

BRIEF FORMAT EXTENSION WORD

(d8,An,Xn) or (d8,PC,Xn) 6+op head 0 6(0/0/0) 6(0/0/0)

Instruction Execution Timing

11-36 MC68030 USER’S MANUAL MOTOROLA

11.6.5 Jump Effective Address (Continued)

)

B = Base address; 0, An, PC, Xn, An+Xn, PC+Xn. Form does not affect timing.
I = Index; 0, Xn
% = Total head for effective address timing includes the head time for the operation.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

(d16,An) or (d16,PC) 2 0 6(0/0/0) 6(0/0/0)

% (d16,An,Xn) or (d16,PC,Xn) 6+op head 0 6(0/0/0) 6(0/0/0)

([d16,An]) or ([d16,PC]) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/0) 10(1/1/0)

([d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],d32) or ([d16,PC],d32) 2 0 12(1/0/0) 12(1/1/0)

([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 12(1/0/0) 12(1/1/0)

% (B) 6+op head 0 6(0/0/0) 6(0/0/0)
(d16,B) 4 0 8(0/0/0) 9(0/1/0)

(d32,B) 4 0 12(0/0/0) 13(0/1/0)

([B]) 4 0 10(1/0/0) 10(1/1/0)
([B],I) 4 0 10(1/0/0) 10(1/1/0)
([B],d16) 4 0 12(1/0/0) 12(1/1/0)

([B],I,d16) 4 0 12(1/0/0) 12(1/1/0)

([B],d32) 4 0 12(1/0/0) 12(1/1/0)

([B],d32) 4 0 12(1/0/0) 12(1/1/0)

([B],I,d32) 4 0 12(1/0/0) 12(1/1/0)

([d16,B]) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],I) 4 0 12(1/0/0) 13(1/1/0)

([d16,B],d16) 4 0 14(1/0/0) 15(1/1/0)

([d16,B],I,d16) 4 0 14(1/0/0) 15(1/1/0)

 ([d16,B],d32) 4 0 14(1/0/0) 15(1/1/0)

([d16,B],I,d32) 4 0 14(1/0/0) 15(1/1/0)

 ([d32,B]) 4 0 16(1/0/0) 17(1/2/0)

([d32,B],I) 4 0 16(1/0/0) 17(1/2/0)

([d32,B],d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],I,d16) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],d32) 4 0 18(1/0/0) 19(1/2/0)

([d32,B],I,d32) 4 0 18(1/0/0) 19(1/2/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-37

11.6.6 MOVE Instruction

The MOVE instruction timing table indicates the number of clock periods needed for the
processor to calculate the destination effective address and perform the MOVE or MOVEA
instruction, including the first level of indirection on memory indirect addressing modes. The
fetch effective address table is needed on most MOVE operations (source, destination
dependent). The destination effective addresses are divided by their formats (refer to 2.5
Effective Address Encoding Summary). For instruction-cache case and for no-cache
case, the total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and
write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.
MOVE Source,Destination Head Tail I-Cache Case No-Cache Case

SINGLE EFFECTIVE ADDRESS INSTRUCTION FORMAT
MOVE Rn, Dn 2 0 2(0/0/0) 2(0/1/0)
MOVE Rn, An 2 0 2(0/0/0) 2(0/1/0)
MOVE EA,An 0 0 2(0/0/0) 2(0/1/0)
MOVE EA,Dn 0 0 2(0/0/0) 2(0/1/0)
MOVE Rn,(An) 0 1 3(0/0/1) 4(0/1/1)
MOVE SOURCE, (An) 2 0 4(0/0/1) 5(0/1/1)
MOVE Rn,(An)+ 0 1 3(0/0/1) 4(0/1/1)
MOVE SOURCE, (An)+ 2 0 4(0/0/1) 5(0/1/1)
MOVE Rn,–(An) 0 2 4(0/0/1) 4(0/1/1)
MOVE SOURCE, –(An) 2 0 4(0/0/1) 5(0/1/1)
MOVE EA, (d16,An) 2 0 4(0/0/1) 5(0/1/1)

MOVE EA,XXX.W 2 0 4(0/0/1) 5(0/1/1)
MOVE EA,XXX.L 0 0 6(0/0/1) 7(0/2/1)

BRIEF FORMAT EXTENSION WORD
MOVE EA, (d8,An,Xn) 4 0 6(0/0/1) 7(0/1/1)

Instruction Execution Timing

11-38 MC68030 USER’S MANUAL MOTOROLA

11.6.6 MOVE Instruction (Continued)

* Add Fetch Effective Address Time SOURCE Is Memory or Immediate Data Address Mode
Rn Is a Data or Address Register EA Is any Effective Address

MOVE Source,Destination Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)
MOVE EA, (d16,An) or (d16,PC) 2 0 8(0/0/1) 9(0/2/1)

MOVE EA, (d16,An,Xn) or (d16,PC,Xn) 2 0 8(0/0/1) 9(0/2/1)

MOVE EA, ([d16,An],Xn) or ([d16,PC],Xn) 2 0 10(1/0/1) 11(1/2/1)

MOVE EA,([d16,An],d16) or ([d16,PC],d16) 2 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,An],Xn,d16) or ([d16,PC],Xn,d16) 2 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,An],d32) or [d16,PC],d32) 2 0 14(1/0/1) 16(1/3/1)

MOVE EA,([d16,An],Xn,d32) or ([d16,PC],Xn,d32) 2 0 14(1/0/1) 16(1/3/1)

MOVE EA,(B) 4 0 8(0/0/1) 9(0/1/1)
MOVE EA,(d16,B) 4 0 10(0/0/1) 12(0/2/1)

MOVE EA,(d32,B) 4 0 14(0/0/1) 16(0/2/1)

MOVE EA,([B]) 4 0 10(1/0/1) 11(1/1/1)
MOVE EA,([B],I) 4 0 10(1/0/1) 11(1/1/1)
MOVE EA,([B],d16) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([B],I,d16) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([B],d32) 4 0 14(1/0/1) 16(1/2/1)

MOVE EA,([B],I,d32) 4 0 14(1/0/1) 16(1/2/1)

MOVE EA,([d16,B]) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,B],I) 4 0 12(1/0/1) 14(1/2/1)

MOVE EA,([d16,B],d16) 4 0 14(1/0/1) 17(1/2/1)

MOVE EA,([d16,B],I,d16) 4 0 14(1/0/1) 17(1/2/1)

MOVE EA,([d16,B],d32) 4 0 16(1/0/1) 19(1/3/1)

MOVE EA,([d16,B],I,d32) 4 0 16(1/0/1) 19(1/3/1)

MOVE EA,([d32,B]) 4 0 16(1/0/1) 18(1/2/1)

MOVE EA,([d32,B],I) 4 0 16(1/0/1) 18(1/2/1)

MOVE EA,([d32,B],d16) 4 0 18(1/0/1) 21(1/3/1)

MOVE EA,([d32,B],I,d16) 4 0 18(1/0/1) 21(1/3/1)

MOVE EA,([d32,B],d32) 4 0 20(1/0/1) 23(1/3/1)

MOVE EA,([d32,B],I,d32) 4 0 20(1/0/1) 23(1/3/1)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-39

11.6.7 Special-Purpose Move Instruction

The special-purpose MOVE timing table indicates the number of clock periods needed for
the processor to fetch, calculate, and perform the special-purpose MOVE operation on the
control registers or specified effective address. Footnotes indicate when to account for the
appropriate effective address times. The total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

CA-A Control Registers USP, VBR, CAAR, MSP, and ISP + MOVEM RL,EA – For n Registers (n > 0) and w Wait States
CR-B Control Registers SFC, DFC, and CACR I-Cache Case Timing = w < 2: (8+4n)
n Number of Register to Transfer (n>0) w > 2: (8+4n)+(w–2)n
RL Register List Tail = 0 for all Wait States
* Add Calculate Effective Address Time MOVEM EA,RL – For n Registers (n > 0) and w Wait States
Add Fetch Effective Address Time I-Cache Case Timing = w ≤ 2: (4+2n)+(n–1)w
% Add Calculate Immediate Address Time w > 2: (4+2n)+(n–1)w+(w–2)

Tail = w ≤ 2: (n–1)w
w > 2: (n)w+(n)(w–2)

Instruction Head Tail I-Cache Case No-Cache Case
EXG Ry,Rx 4 0 4(0/0/0) 4(0/1/0)
MOVEC Cr,Rn 6 0 6(0/0/0) 6(0/1/0)
MOVEC Rn,Cr–A 6 0 6(0/0/0) 6(0/1/0)
MOVEC Rn,Cr–B 4 0 12(0/0/0) 12(0/1/0)
MOVE CCR,Dn 2 0 4(0/0/0) 4(0/1/0)
MOVE CCR,Mem 2 0 4(0/0/1) 5(0/1/1)
MOVE Dn,CCR 4 0 4(0/0/0) 4(0/1/0)
MOVE EA,CCR 0 0 4(0/0/0) 4(0/1/0)
MOVE SR,Dn 2 0 4(0/0/0) 4(0/1/0)
MOVE SR,Mem 2 0 4(0/0/1) 5(0/1/1)

MOVE EA,SR 0 0 8(0/0/0) 10(0/2/0)
% + MOVEM EA,RL 2 0 8+4n(n/0/0) 8+4n(n/1/0)
% + MOVEM RL,EA 2 0 4+2n(0/0/n) 4+2n(0/1/n)

MOVEP.W Dn,(d16,An) 4 0 10(0/0/2) 10(0/1/2)

MOVEP.W (d16,An),Dn 2 0 10(2/0/0) 10(2/1/0)

MOVEP.L Dn,(d16,An) 4 0 14(0/0/4) 14(0/1/4)

MOVEP.L (d16,An),Dn 2 0 14(4/0/0) 14(4/1/0)

% MOVES EA,Rn 3 0 7(1/0/0) 7(1/1/0)
% MOVE Rn,EA 2 1 5(0/0/1) 6(0/1/1)

MOVE USP,An 4 0 4(0/0/0) 4(0/1/0)
MOVE An,USP 4 0 4(0/0/0) 4(0/1/0)
SWAP Dn 4 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

11-40 MC68030 USER’S MANUAL MOTOROLA

11.6.8 Arithmetical/Logical Instructions

The arithmetical/logical operation timing table indicates the number of clock periods needed
for the processor to perform the specified arithmetical/logical instruction using the specified
addressing mode. Footnotes indicate when to account for the appropriate fetch effective
address or fetch immediate effective address times. For instruction-cache case and for no-
cache case, the total number of clock cycles is outside the parentheses. The number of
read, prefetch, and write cycles is given inside the parentheses as (r/p/w). The read,
prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case
ADD Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDA.W Rn,An 4 0 4(0/0/0) 4(0/1/0)
ADDA.L Rn,An 2 0 2(0/0/0) 2(0/1/0)
ADD EA,Dn 0 0 2(0/0/0) 2(0/1/0)
ADD.W EA,An 0 0 4(0/0/0) 4(0/1/0)
ADDA.L EA,An 0 0 2(0/0/0) 2(0/1/0)
ADD Dn,EA 0 1 3(0/0/1) 4(0/1/1)
AND Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
AND EA,Dn 0 0 2(0/0/0) 2(0/1/0)
AND Dn,EA 0 1 3(0/0/1) 4(0/1/1)
EOR Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
EOR Dn,EA 0 1 3(0/0/1) 4(0/1/1)
OR Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
OR EA,Dn 0 0 2(0/0/0) 2(0/1/0)
OR Dn,EA 0 1 3(0/0/1) 4(0/1/1)
SUB Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
SUB EA,Dn 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-41

11.6.8 Arithmetical/Logical Instructions (Continued)

 * Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time
 + Indicates Maximum Time (Acutal time is data dependent)

Instruction Head Tail I-Cache Case
No-Cache

Case
* SUB Dn,EA 0 1 3(0/0/1) 4(0/1/1)

SUBA.W Rn,An 4 0 4(0/0/0) 4(0/1/0)
SUBA.L Rn,An 2 0 2(0/0/0) 2(0/1/0)

* SUBA.W EA,An 0 0 4(0/0/0) 4(0/1/0)
* SUBA.L EA,An 0 0 2(0/0/0) 2(0/1/0)

CMP Rn,Dn 2 0 2(0/0/0) 2(0/1/0)
* CMP EA,Dn 0 0 2(0/0/0) 2(0/1/0)

CMPA Rn,An 4 0 4(0/0/0) 4(0/1/0)
* CMPA EA,An 0 0 4(0/0/0) 4(0/1/0)
** + CMP2 EA,Rn 2 0 20(1/0/0) 20(1/1/0)
* + MULS.W EA,Dn 2 0 28(0/0/0) 28(0/1/0)
** + MULS.L EA,Dn 2 0 44(0/0/0) 44(0/1/0)
* + MULU.W EA,Dn 2 0 28(0/0/0) 28(0/1/0)
** + MULU.L EA,Dn 2 0 44(0/0/0) 44(0/1/0)
+ DIVS.W Dn,Dn 2 0 56(0/0/0) 56(0/1/0)
* + DIVS.W EA,Dn 0 0 56(0/0/0) 56(0/1/0)
** + DIVS.L Dn,Dn 6 0 90(0/0/0) 90(0/1/0)
** + DIVS.L EA,Dn 0 0 90(0/0/0) 90(0/1/0)
+ DIVU.W Dn,Dn 2 0 44(0/0/0) 44(0/1/0)
* + DIVU.W EA,Dn 0 0 44(0/0/0) 44(0/1/0)
** + DIVU.L Dn,Dn 6 0 78(0/0/0) 78(0/1/0)
** + DIVU.L EA,Dn 0 0 78(0/0/0) 78(0/1/0)

Instruction Execution Timing

11-42 MC68030 USER’S MANUAL MOTOROLA

11.6.9 Immediate Arithmetical/Logical Instructions

The immediate arithmetical/logical operation timing table indicates the number of clock
periods needed for the processor to fetch the source immediate data value and to perform
the specified arithmetic/logical operation using the specified destination addressing mode.
Footnotes indicate when to account for the appropriate fetch effective or fetch immediate
effective address times. For instruction-cache case and for no-cache case, the total number
of clock cycles is outside the parentheses. The number of read, prefetch, and write cycles
is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are included
in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
**Add Fetch Immediate Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
MOVEQ #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDQ #〈data〉,Rn 2 0 2(0/0/0) 2(0/1/0)
ADDQ #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
SUBQ #〈data〉,Rn 2 0 2(0/0/0) 2(0/1/0)
SUBQ #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ADDI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ANDI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ANDI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
EORI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
EORI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
ORI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
ORI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
SUBI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
SUBI #〈data〉,Mem 0 1 3(0/0/1) 4(0/1/1)
CMPI #〈data〉,Dn 2 0 2(0/0/0) 2(0/1/0)
CMPI #〈data〉,Mem 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-43

11.6.10 Binary-Coded Decimal and Extended Instructions

The binary-coded decimal and extended instruction table indicates the number of clock
periods needed for the processor to perform the specified operation using the given
addressing modes. No additional tables are needed to calculate total effective execution
time for these instructions. For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parentheses. The number of read, prefetch, and write
cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are
included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case No-Cache Case
ABCD Dn,Dn 0 0 4(0/0/0) 4(0/1/0)
ABCD –(An),–(An) 2 1 13(2/0/1) 14(2/1/1)
SBCD Dn,Dn 0 0 4(0/0/0) 4(0/1/0)
SBCD –(An),–(An) 2 1 13(2/0/1) 14(2/1/1)
ADDX Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
ADDX –(An),–(An) 2 1 9(2/0/1) 10(2/1/1)
SUBX Dn,Dn 2 0 2(0/0/0) 2(0/1/0)
SUBX –(An) 2 1 9(2/0/1) 10(2/1/1)
CMPM (An)+,(An)+ 0 0 8(2/0/0) 8(2/1/0)
PACK Dn,Dn,#〈data〉 6 0 6(0/0/0) 6(0/1/0)
PACK –(An),–(An),#〈data〉 2 1 11(1/0/1) 11(1/1/1)
UNPK Dn,Dn,#〈data〉 8 0 8(0/0/0) 8(0/1/0)
UNPK –(An),–(An),#〈data〉 2 1 11(1/0/1) 11(1/1/1)

Instruction Execution Timing

11-44 MC68030 USER’S MANUAL MOTOROLA

11.6.11 Single Operand Instructions

The single operand instruction table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
**Add Calculate Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
CLR Dn 2 0 2(0/0/0) 2(0/1/0)

** CLR Mem 0 1 3(0/0/1) 4(0/1/1)
NEG Dn 2 0 2(0/0/0) 2(0/1/0)

* NEG Mem 0 1 3(0/0/1) 4(0/1/1)
NEGX Dn 2 0 2(0/0/0) 2(0/1/0)

* NEGX Mem 0 1 3(0/0/1) 4(0/1/1)
NOT Dn 2 0 2(0/0/0) 2(0/1/0)

* NOT Mem 0 1 3(0/0/1) 4(0/1/1)
EXT Dn 4 0 4(0/0/0) 4(0/1/0)
NBCD Dn 0 0 6(0/0/0) 6(0/1/0)
Scc Dn 4 0 4(0/0/0) 4(0/1/0)

** Scc Mem 0 1 5(0/0/1) 5(0/1/1)
TAS Dn 4 0 4(0/0/0) 4(0/1/0)

** TAS Mem 3 0 12(1/0/1) 12(1/1/1)
TST Dn 0 0 2(0/0/0) 2(0/1/0)

* TST Mem 0 0 2(0/0/0) 2(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-45

11.6.12 Shift/Rotate Instructions

The shift/rotate instruction table indicates the number of clock periods needed for the
processor to perform the specified operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. The
number of bits shifted does not affect the execution time, unless noted. For instruction-cache
case and for no-cache case, the total number of clock cycles is outside the parentheses. The
number of read, prefetch, and write cycles is given inside the parentheses as (r/p/w). The
read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

d Direction of shift/rotate: L or R
* Add Fetch Effective Address Time
% Indicates shift count is less than or equal to the size of data
+ Indicates shift count is greater than size of data

Instruction Head Tail I-Cache Case
No-Cache

Case
LSd #〈data〉,Dy 4 0 4(0/0/0) 4(0/1/0)

% LSd Dx,Dy 6 0 6(0/0/0) 6(0/1/0)
+ LSd Dx,Dy 8 0 8(0/0/0) 8(0/1/0)
* LSd Mem by 1 0 0 4(0/0/1) 4(0/1/1)

ASL #〈data〉,Dy 2 0 6(0/0/0) 6(0/1/0)
ASL Dx,Dy 4 0 8(0/0/0) 8(0/1/0)

* ASL Mem by 1 0 0 6(0/0/1) 6(0/1/1)
ASR #〈data〉,Dy 4 0 4(0/0/0) 4(0/1/0)

% ASR Dx,Dy 6 0 6(0/0/0) 6(0/1/0)
+ ASR Dx,Dy 10 0 10(0/0/0) 10(0/1/0)
* ASR Mem by 1 0 0 4(0/0/1) 4(0/1/1)

ROd #〈data〉,Dy 4 0 6(0/0/0) 6(0/1/0)
ROd Dx,Dy 6 0 8(0/0/0) 8(0/1/0)

* ROd Mem by 1 0 0 6(0/0/1) 6(0/1/1)
ROXd Dn 10 0 12(0/0/0) 12(0/1/0)

* ROXd Mem by 1 0 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

11-46 MC68030 USER’S MANUAL MOTOROLA

11.6.13 Bit Manipulation Instructions

The bit manipulation instruction table indicates the number of clock periods needed for the
processor to perform the specified bit operation on the given addressing mode. Footnotes
indicate when it is necessary to account for the appropriate effective address time. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

 * Add Fetch Effective Address Time
Add Fetch Immediate Effective Address Time

Instruction Head Tail I-Cache Case No-Cache Case
BTST #〈data〉,Dn 4 0 4(0/0/0) 4(0/1/0)
BTST Dn,Dn 4 0 4(0/0/0) 4(0/1/0)

BTST #〈data〉,Mem 0 0 4(0/0/0) 4(0/1/0)
* BTST Dn,Mem 0 0 4(0/0/0) 4(0/1/0)

BCHG #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BCHG Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BCHG #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BCHG Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

BCLR #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BCLR Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BCLR #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BCLR Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

BSET #〈data〉,Dn 6 0 6(0/0/0) 6(0/1/0)
BSET Dn,Dn 6 0 6(0/0/0) 6(0/1/0)

BSET #〈data〉,Mem 0 0 6(0/0/1) 6(0/1/1)
* BSET Dn,Mem 0 0 6(0/0/1) 6(0/1/1)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-47

11.6.14 Bit Field Manipulation Instructions

The bit field manipulation instruction table indicates the number of clock periods needed for
the processor to perform the specified bit field operation using the given addressing mode.
Footnotes indicate when it is necessary to account for the appropriate effective address
time. For instruction-cache case and for no-cache case, the total number of clock cycles is
outside the parentheses. The number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). The read, prefetch, and write cycles are included in the total clock
cycle number.

All timing data assumes two-clock reads and writes.

*Add Calculate Immediate Effective Address Time
NOTE: A bit field of 32 bits may span 5 bytes that require two operand cycles to access or may span 4 bytes that

require only one operand cycle to access.

Instruction Head Tail I-Cache Case
No-Cache

Case
BFTST Dn 8 0 8(0/0/0) 8(0/1/0)

* BFTST Mem (<5 Bytes) 6 0 10(1/0/0) 10(1/1/0)
* BFTST Mem (5 Bytes) 6 0 14(2/0/0) 14(2/1/0)

BFCHG Dn 14 0 14(0/0/0) 14(0/1/0)
* BFCHG Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFCHG Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFCLR Dn 14 0 14(0/0/0) 14(0/1/0)
* BFCLR Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFCLR Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFSET Dn 14 0 14(0/0/0) 14(0/1/0)
* BFSET Mem (<5 Bytes) 6 0 14(1/0/1) 14(1/1/1)
* BFSET Mem (5 Bytes) 6 0 22(2/0/2) 22(2/1/2)

BFEXTS Dn 10 0 10(0/0/0) 10(0/1/0)
* BFEXTS Mem (<5 Bytes) 6 0 12(1/0/0) 12(1/1/0)
* BFEXTS Mem (5 Bytes) 6 0 18(2/0/0) 18(2/1/0)

BFEXTU Dn 10 0 10(0/0/0) 10(0/1/0)
* BFEXTU Mem (<5 Bytes) 6 0 12(1/0/0) 12(1/1/0)
* BFEXTU Mem (5 Bytes) 6 0 18(2/0/0) 18(2/1/0)

BFINS Dn 12 0 12(0/0/0) 12(0/1/0)
* BFINS Mem (<5 Bytes) 6 0 12(1/0/1) 12(1/1/1)
* BFINS Mem (5 Bytes) 6 0 18(2/0/2) 18(2/1/2)

BFFFO Dn 20 0 20(0/0/0) 20(0/1/0)
* BFFFO Mem (<5 Bytes) 6 0 22(1/0/0) 22(1/1/0)
* BFFFO Mem (5 Bytes) 6 0 28(2/0/0) 28(2/1/0)

Instruction Execution Timing

11-48 MC68030 USER’S MANUAL MOTOROLA

11.6.15 Conditional Branch Instructions

The conditional branch instruction table indicates the number of clock periods needed for
the processor to perform the specified branch on the given branch size, with complete
execution times given. No additional tables are needed to calculate total effective execution
time for these instructions. For instruction-cache case and for no-cache case, the total
number of clock cycles is outside the parenthees. The number of read, prefetch, and write
cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write cycles are
included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case
No-Cache

Case
Bcc (Taken) 6 0 6(0/0/0) 8(0/2/0)
Bcc.B (Not Taken) 4 0 4(0/0/0) 4(0/1/0)
Bcc.W (Not Taken) 6 0 6(0/0/0) 6(0/1/0)
Bcc.L (Not Taken) 6 0 6(0/0/0) 8(0/2/0)
DBcc (cc = False, Count Not Expired) 6 0 6(0/0/0) 8(0/2/0)
DBcc (cc = False, Count Expired) 10 0 10(0/0/0) 13(0/3/0)
DBcc (cc = True) 6 0 6(0/0/0) 8(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-49

11.6.16 Control Instructions

The control instruction table indicates the number of clock periods needed for the processor
to perform the specified operation. Footnotes indicate when it is necessary to account for
the appropriate effective address time. For instruction-cache case and for no-cache case,
the total number of clock cyclces is outside the parentheses. The number of read, prefetch,
and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and write
cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

+ Indicates Maximum Time
Add Fetch Immediate Address Time
* Add Fetch Effective Address Time

Add Calculate Immediate Address Time
** Add Calculate Effective Address Time
% Add Jump Effective Address Time

Instruction Head Tail I-Cache Case
No-Cache

Case
ANDI to SR 4 0 12(0/0/0) 14(0/2/0)
EORI to SR 4 0 12(0/0/0) 14(0/2/0)
ORI to SR 4 0 12(0/0/0) 14(0/2/0)
ANDI to CCR 4 0 12(0/0/0) 14(0/2/0)
EORI to CCR 4 0 12(0/0/0) 14(0/2/0)
ORI to CCR 4 0 12(0/0/0) 14(0/2/0)
BSR 2 0 6(0/0/1) 9(0/2/1)

CAS (Successful Compare) 1 0 13(1/0/1) 13(1/1/1)
CAS (Unsuccessful Compare) 1 0 11(1/0/0) 11(1/1/0)
+ CAS2 (Successful Compare) 2 0 24(2/0/2) 26(2/2/2)
+ CAS2 (Unsuccessful Compare) 2 0 24(2/0/0) 24(2/2/0)

CHK Dn,Dn (No Exception) 8 0 8(0/0/0) 8(0/1/0)
+ CHK Dn,Dn(Exception Taken) 4 0 28(1/0/4) 30(1/3/4)
* CHK EA,Dn (No Exception) 0 0 8(0/0/0) 8(0/1/0)
* + CHK EA,Dn (Exception Taken) 0 0 28(1/0/4) 30(1/3/4)
+ CHK2 Mem,Rn (No Exception) 2 0 18(1/0/0) 18(1/1/0)
+ CHK2 Mem,Rn (Exception Taken) 2 0 40(2/0/4) 42(2/3/4)
% JMP 4 0 4(0/0/0) 6(0/2/0)
% JSR 0 0 4(0/0/1) 7(0/2/1)
** LEA 2 0 2(0/0/0) 2(0/1/0)

LINK.W 0 0 4(0/0/1) 5(0/1/1)
LINK.L 2 0 6(0/0/1) 7(0/2/1)
NOP 0 0 2(0/0/0) 2(0/1/0)

** PEA 0 2 4(0/0/1) 4(0/1/1)
RTD 2 0 10(1/0/0) 12(1/2/0)
RTR 1 0 12(2/0/0) 14(2/2/0)
RTS 1 0 9(1/0/0) 11(1/2/0)
UNLK 0 0 5(1/0/0) 5(1/1/0)

Instruction Execution Timing

11-50 MC68030 USER’S MANUAL MOTOROLA

11.6.17 Exception-Related Instructions and Operations

The exception-related instruction and operation table indicates the number of clock periods
needed for the processor to perform the specified exception-related action. No additional
tables are needed to calculate total effective execution time for these operations. For
instruction-cache case and for no-cache case, the total number of clock cycles is outside the
parentheses. The number of read, prefetch, and write cycles is given inside the parentheses
as (r/p/w). The read, prefetch, and write cycles are included in the total clock cycle number.

All timing data assumes two-clock reads and writes.

Instruction Head Tail I-Cache Case
No-Cache

Case
BKPT 1 0 9(1/0/0) 9(1/0/0)
Interrupt (I-Stack) 0 0 23(2/0/4) 24(2/2/4)
Interrupt (M-Stack) 0 0 33(2/0/8) 34(2/2/8)
RESET Instruction 0 0 518(0/0/0) 518(0/1/0)
STOP 0 0 8(0/0/0) 8(0/2/0)
TRACE 0 0 22(1/0/5) 24(1/2/5)
TRAP #n 0 0 18(1/0/4) 20(1/2/4)
Illegal Instruction 0 0 18(1/0/4) 20(1/2/4)
A-Line Trap 0 0 18(1/0/4) 20(1/2/4)
F-Line Trap 0 0 18(1/0/4) 20(1/2/4)
Privilege Violation 0 0 18(1/0/4) 20(1/2/4)
TRAPcc (Trap) 2 0 22(1/0/5) 24(1/2/5)
TRAPcc (No Trap) 4 0 4(0/0/0) 4(0/1/0)
TRAPcc.W (Trap) 5 0 24(1/0/5) 26(1/3/5)
TRAPcc.W (No Trap) 6 0 6(0/0/0) 6(0/1/0)
TRAPcc.L (Trap) 6 0 26(1/0/5) 28(1/3/5)
TRAPcc.L (No Trap) 8 0 8(0/0/0) 8(0/2/0)
TRAPV (Trap) 2 0 22(1/0/5) 24(1/2/5)
TRAPV (No Trap) 4 0 4(0/0/0) 4(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-51

11.6.18 Save and Restore Operations

The save and restore operation table indicates the number of clock periods needed for the
processor to perform the specified state save or to return from exception, with complete
execution times and stack length given. No additional tables are needed to calculate total
effective execution time for these operations. For instruction-cache case and for no-cache
case, the total number of clock cycles is outside the parentheses. The number of read,
prefetch, and write cycles is given inside the parentheses as (r/p/w). The read, prefetch, and
write cycles are included in the total clock cycle number.

All timing data ssumes two-clock reads and writes.

11.7 ADDRESS TRANSLATION TREE SEARCH TIMING

The time required for a search of the address translation tree depends on the configuration
of the tree structure and the descriptors in the tree, the states of the used (U) and modified
(M) bits in the descriptors, bus cycle time, and other factors. The large number of variables
involved implies that search time can best be calculated by a program. To determine the
time required for the MC68030 to perform the table search for a specific configuration, the
following interactive program can be used. It is a shell script suitable for use with sh(1) on
either UNIX System V or BSD 4.2. To use the program, run the script and answer the
questions about the system configuration and current state. The values shown in square
brackets at the ends of the question lines are the default values that the program uses when
carriage returns are entered.

The shell script assumes that the data bus between the MC68030 and memory is 32 bits
wide. To calculate the search time for a narrower bus, enter the appropriate multiple of the
bus cycle time in response to the bus cycle time prompt. Use the time required for two bus
cycles in the case of a 16-bit data bus. Use the time required for four bus cycles in the case
of an 8-bit data bus.

UNIX is a registered trademark of AT&T Bell Laboratories.

Operation Head Tail I-Cache Case
No-Cache

Case
Bus Cycle Fault (Short) 0 0 36(1/0/10) 38(1/2/10)
Bus Cycle Fault (Long) 0 0 62(1/0/24) 64(1/2/24)
RTE (Normal Four Word) 1 0 18(4/0/0) 20(4/2/0)
RTE (Six Word) 1 0 18(4/0/0) 20(4/2/0)
RTE (Throwaway) 1 0 12(4/0/0) 12(4/0/0)
RTE (Coprocessor) 1 0 26(7/0/0) 26(7/2/0)
RTE (Short Fault) 1 0 36(10/0/0) 26(10/2/0)
RTE (Long Fault) 1 0 76(25/0/0) 76(25/2/0)

Instruction Execution Timing

11-52 MC68030 USER’S MANUAL MOTOROLA

The times provided by this program include all phases of the translation tree search. With
various mask versions of the MC68030, times may differ slightly from those calculated by
the program.

(UNABLE TO LOCATE ART)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-53

(UNABLE TO LOCATE ART)

Instruction Execution Timing

11-54 MC68030 USER’S MANUAL MOTOROLA

(UNABLE TO LOCATE ART)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-55

(UNABLE TO LOCATE ART)

Instruction Execution Timing

11-56 MC68030 USER’S MANUAL MOTOROLA

The following table gives some sample times obtained using the shell script. Each row of the
table indicates a translation table configuration. The identifier on each row consists of five
positions. Each position may have either an "x", meaning that there is no table at the level;
an "S", meaning that the table at the level is composed of short-format descriptors; or an "L",
meaning that the table at the level is composed of long-format descriptors. The format of the
entries is:

Each entry in the table consists of three numbers that give the number of clock cycles, the
number of bus reads, and the number of bus writes required for a table search. An RMC
cycle to set the U bit is counted as one read and one write. The format of the entires is:

The table is calculated based on the following assumptions:

1. Bus cycle time is two clock cycles,

2. There are no indirect descriptors,

3. There are no page descriptors encountered unexpectedly (no early termination), and

4. The memory port is 32 bits wide.

(UNABLE TO LOCATE ART)

Table
Format

All U and M Bits
Must be Set

Page U and M Bits
Only Must be Set

No U and M Bits
Must be Set

LLxxx 41/4/2 37/4/1 35/4/0
LLLxx 53/6/3 45/6/1 43/6/0
LLLLx 65/8/4 53/8/1 51/8/0
LLLLL 77/10/5 61/10/1 59/10/0
SSxxx 37/2/2 33/2/1 31/2/0
SSSxx 46/3/3 38/3/1 36/3/0
SSSSx 55/4/4 43/4/1 41/4/0
SSSSS 64/5/5 48/5/1 46/5/0
xSSxx 39/2/2 35/2/1 33/2/0

XX XX/ /XX

FUNCTION CODE TABLE

XX/XX/

LEVEL A TABLE

LEVEL B TABLE

LEVEL C TABLE

LEVEL D TABLE

XX XX XX/ /

 NUMBER OF CLOCK CYCLES

NUMBER OF READ BUS CYCLES

NUMBER OF WRITE BUS CYCLES

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-57

11.7.1 MMU Effective Address Calculation

The calculate effective address table for MMU instructions lists the number of clock periods
needed for the processor to calculate various effective addresses. Fetch time is only
included for the first level of indirection on memory indirect addressing modes. The total
number of clock cycles is outside the parentheses. This total includes the number of read,
prefetch, and write cycles, which are shown inside the parentheses as (r/pr/w).

xSLxx 40/3/2 36/3/1 34/3/0
xLSxx 42/3/2 38/3/1 36/3/0
xLLxx 43/4/2 39/4/1 37/4/0
xSSSx 48/3/3 40/3/1 38/3/0
xSSLx 49/4/3 41/4/1 39/4/0
xSLSx 51/4/3 43/4/1 41/4/0
xSLLx 52/5/3 44/5/1 44/5/0
xLSSx 51/4/3 43/4/1 41/4/0
xLSLx 52/5/3 44/5/1 42/5/0
xLLSx 54/5/3 46/5/1 44/5/0
xLLLx 55/6/3 47/6/1 45/6/0

Address Mode Head Tail I-Cache Case
No-Cache

Case
(An) 4+op head 0 4(0/0/0) 4(0/1/0)
(d16,An) 4+op head 0 4(0/0/0) 4(0/1/0)

(xxx).W 4+op head 0 4(0/0/0) 4(0/1/0)
(xxx).L 6+op head 0 6(0/0/0) 6(0/2/0)
(d8,An,Xn) 4+op head 0 4(0/0/0) 4(0/1/0)

FULL FORMAT EXTENSION WORD(S)

(d16,An) 4 0 8(0/0/0) 8(0/2/0)

(d16,An,Xn) 4 0 8(0/0/0) 8(0/2/0)

([d16,An]) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],Xn) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],d16) 2 0 12(1/0/0) 12(1/2/0)

([d16,An],Xn,d16) 4 0 12(1/0/0) 12(1/2/0)

([d16,An],d32) 4 0 14(1/0/0) 14(1/3/0)

([d16,An],Xn,d32) 4 0 14(1/0/0) 14(1/3/0)

(B) 8+op head 0 8(0/0/0) 8(0/1/0)
(d16,B) 6 0 10(0/0/0) 10(0/2/0)

(d32,B) 6 0 16(0/0/0) 16(0/2/0)

([B]) 6 0 12(1/0/0) 12(1/1/0)
([B],I) 6 0 12(1/0/0) 12(1/1/0)
([B],d16) 6 0 12(1/0/0) 12(1/2/0)

([B],I,d16) 6 0 12(1/0/0) 12(1/2/0)

([B],d32) 6 0 14(1/0/0) 14(1/2/0)

([B],I,d32) 6 0 14(1/0/0) 14(1/2/0)

([d16,B]) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I) 6 0 14(1/0/0) 14(1/2/0)

Instruction Execution Timing

11-58 MC68030 USER’S MANUAL MOTOROLA

([d16,B],d16) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I,d16) 6 0 14(1/0/0) 14(1/2/0)

([d16,B],I,d32) 6 0 16(1/0/0) 16(1/3/0)

FULL FORMAT EXTENSION WORD(S)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-59

11.7.1 MMU Effective Address Calculation (Continued)

B = Base address; O, An, Xn, An+Xn. Form does not affect timing.
I = Index; O, Xn
*No separation on effective address and operation in timing. Head and tail are the operation's.
NOTE: Xn cannot be in B and I at the same time. Scaling and size of Xn do not affect timing.

Address Mode Head Tail I-Cache Case No-Cache Case

FULL FORMAT EXTENSION WORD(S)

([d32,B]) 6 0 20(1/0/0) 20(1/2/0)

([d32,B],I) 6 0 20(1/0/0) 20(1/2/0)

([d32,B],d16) 6 0 20(1/0/0) 20(1/3/0)

([d32,B],I,d16) 6 0 20(1/0/0) 20(1/3/0)

([d32,B],d32) 6 0 22(1/0/0) 22(1/3/0)

([d32,B],I,d32) 6 0 22(1/0/0) 22(1/3/0)

Instruction Execution Timing

11-60 MC68030 USER’S MANUAL MOTOROLA

11.7.2 MMU Instruction Timing

The MMU instruction timing table lists the numbers of clock periods needed for the MMU to
perform the MMU instructions. The total number of clock cycles is outside the parentheses.
It includes the numbers of read, prefetch, and write cycles, which are shown inside the
parentheses as (r/pr/w).

NOTES:
1. Attempt to load invalid root pointer.
2. Translation enabled.
3. Number is maximum, assuming valid page size but TIx fields do not add up to 32. Translation enabled.
4. Translation disabled.
 * Add the appropriate effective address calculation time.
 ** Add the appropriate effective address calculation time and the table search time.
*** Number given is the maximum for a six-level table (FC lookup, a, b, c, and d levels with indirect level, all long

descriptors).

Instruction Head Tail I-Cache Case No-Cache Case
PMOVE (from CRP, SRP)* 0 0 4(0/0/2) 5(0/1/2)
PMOVE (to CRP, SRP, valid)* 0 0 12(2/0/0) 14(2/2/0)

PMOVE (to CRP, SRP, invalid)1* 0 0 28(3/0/4) 30(3/2/4)

PMOVE (from TT0, TT1)* 0 0 8(0/0/1) 8(0/1/1)
PMOVE (to TT0, TT1)* 0 0 12(1/0/0) 14(1/2/0)
PMOVE (from MMUSR)* 2 0 4(0/0/1) 5(0/1/1)
PMOVE (to MMUSR)* 0 0 6(1/0/0) 6(1/1/0)
PMOVE (from TC)* 2 0 4(0/0/1) 5(0/1/1)

PMOVE (to TC, valid)2* 0 0 38(1/0/0) 40(1/2/0)

PMOVE (to TC, invalid)3* 0 0 56(2/0/4) 58(2/2/4)

PMOVE (to TC)4* 0 0 14(1/0/0) 16(1/2/0)

PFLUSHA 0 0 12(0/0/0) 14(0/2/0)
PFLUSH (fc),#〈mask〉 (fc is immediate or data register) 0 0 16(0/0/0) 18(0/2/0)
PFLUSH (fc),#〈mask〉 (fc is in SFC or DFC register) 0 0 20(0/0/0) 22(0/2/0)
PFLUSH (fc),#〈mask〉,〈ea〉 (fc is immediate or data register)* 0 0 16(0/0/0) 18(0/2/0)
PFLUSH (fc),#〈mask〉,〈ea〉 (fc is in SFC or DFC register)* 0 0 20(0/0/0) 22(0/2/0)
PLOAD[R:W] (fc),〈ea〉 (fc is immediate or data register)** 0 0 8(0/0/0) 10(0/2/0)
PLOAD[R:W] (fc),〈ea〉 (fc is in SFC or DFC register)** 0 0 12(0/0/0) 14(0/2/0)
PTEST[R:W] (fc),〈ea〉,#6 * *** 0 1 88(12/0/0) 88(12/1/0)
PTEST[R:W] (fc),〈ea〉,#0* 0 0 22(0/0/0) 22(0/1/0)

Instruction Execution Timing

MOTOROLA MC68030 USER’S MANUAL 11-61

11.8 INTERRUPT LATENCY

In real-time systems, the response time required for a processor to service an interrupt is a
very important factor pertaining to overall system performance. Processors in the M68000
Family support asynchronous assertion of interrupts and begin processing them on
subsequent instruction boundaries. The average interrupt latency is quite short, but the
maximum latency is often critical because real-time interrupts cannot require servicing in
less than the maximum interrupt latency. The maximum interrupt latency for the MC68030
alone is approximately 200 clock cycles (for the MOVEM.L ([d32,An],Xn,d32), D0-D7/A0-A7
instruction where the last data fetch is aborted with a bus error), but when the MMU is
enabled, some operations can take several times longer to execute.

Interrupt latency in systems using the MMU is affected by the length of the main processor
instructions, the address translation tree configuration, the number of translation tree
searches required by the instructions, the access time of main memory, and the width of the
data bus connecting the MC68030 to main memory. It is important to note that the address
translation tree configuration is under software control and can strongly affect the system
interrupt latency. The maximum interrupt latency for a given system configuration can be
computed by adding the length of the longest main processor instruction to the time required
for the maximum number of translation tree searches that the instruction could require. For
the MC68030 microprocessor, one instruction of particular interest is a memory-to-memory
move with memory indirect addressing for both the source and destination, with all of the
code and data items crossing page boundaries. The assembler syntax for this instruction is:

MOVE.L (od,[bd,An,Rm]),(od,[bd,An,Rm])

This instruction can cause ten address translation tree searches: two for the instruction
stream, two for the source indirect address, two for the destination indirect address, two for
the operand fetch, and two for the destination write. System software can reduce the
maximum number of translation searches by placing additional restrictions on generated
code. For example, if the language translators in the system only generate long words
aligned on long-word boundaries, the indirect address and operands can cause only one
translation search each. This reduces the number of searches for the instruction to a
maximum of six.

Instruction Execution Timing

11-62 MC68030 USER’S MANUAL MOTOROLA

11.9 BUS ARBITRATION LATENCY

In a system that uses the MMU, the bus arbitration latency is affected by several factors.
The MC68030 does not relinquish the physical bus while it is performing a read-modify-write
operation. Since the address translation search is an extended read-modify-write operation,
the no-cache-case latency is incurred by the longest address translation search required by
the system.

Another bus arbitration delay occurs when a coprocessor or other device delays or fails to
assert DSACKx or STERM signals to terminate a bus cycle. The maximum delay in this case
is undefined; it depends on the length of the delay in asserting the signals.

MOTOROLA

MC68030 USER’S MANUAL

12-1

SECTION 12
APPLICATIONS INFORMATION

This section provides guidelines for using the MC68030. First, it discusses the requirements
for adapting the MC68030 to MC68020 designs. Then, it describes the use of the MC68881
and MC68882 coprocessors with the MC68030. The byte select logic is described next,
followed by memory interface information. A description of external caches, the use of the
STATUS and REFILL signals, and power and ground considerations complete the section.

12.1 ADAPTING THE MC68030 TO MC68020 DESIGNS

Perhaps the easiest way to first utilize the MC68030 is in a system designed for the
MC68020. This is possible due to the complete compatibility of the asynchronous buses of
the MC68020 and MC68030. This section describes how to configure an adapter for the
MC68030 to allow insertion into an existing MC68020-based system. Software and
architectural differences between the two processors are also discussed. The need for an
adapter is absolute because the MC68020 and MC68030 are NOT pin compatible. Use of
the adapter board provides the immediate capability for evaluating the programmer's model
and instruction set of the MC68030 and for developing software to utilize the MC68030's
additional enhanced features. This adapter board also provides a relatively simple method
for increasing the performance of an existing MC68020 or MC68020/MC68851 system by
insertion of a more advanced 32-bit MPU with an on-chip data cache and an on-chip MMU.
Since the adapter board does not support of the synchronous bus interface of the MC68030,
performance measurements for the MC68030 used in this manner may be misleading when
compared to a system designed specifically for the MC68030.

The adapter board plugs into the CPU socket of an MC68020 target system, drawing power,
ground, and clock signals through the socket and running bus cycles in a fashion compatible
with the MC68030. The only support hardware necessary is a single 1K-ohm pullup resistor
and two capacitors for decoupling power and ground on the adapter board.

Applications Information

12-2

MC68030 USER’S MANUAL

MOTOROLA

12.1.1 Signal Routing

Figure 12-1 shows the complete schematic for routing the signals of the MC68030 to the
MC68020 header. All signals common to both processors are directly routed to the
corresponding signal of the other processor. The signals on the MC68030 that do not have
a compatible signal on the MC68020 are either pulled up or left unconnected:

Pulled Up No Connect

TERM STATUS

CBACK REFILL

CIIN CBREQ

MMUDIS CIOUT

12.1.2 Hardware Differences

Before enabling the on-chip caches of the MC68030, an important system feature must be
checked. Because of the MC68030 cache organization and implementation, cachable read
bus cycles are expected to transfer the entire port width of data (as indicated by the DSACKx
encoding), regardless of how many bytes are actually requested by the SIZx pins. The
MC68020 did not have this requirement, and system memory banks or peripherals may or
may not supply the amount of data required by the MC68030. If the target system does not
supply the full port width with valid data for any cachable instruction or data access the user
should either designate that area of memory as noncachable (with the MMU) or not enable
the corresponding on-chip cache(s). In some systems, modifying the target system
hardware may also be an option; frequently, the byte select logic is generated by a single
PAL, which might easily be replaced or reprogrammed to select all bytes during read cycles
from multibyte ports.

The HALT input-only signal of the MC68030 is slightly different than the bidirectional HALT
signal of the MC68020. However, this should not cause any problems beyond eliminating
an indication to the external system (e.g., lighting an LED) that the processor has halted due
to a double bus fault.

When used in a system originally designed for both an MC68020 and an MC68851, the
MC68851 may be left in the system or removed (and replaced with a jumpered header).
However, if left in the system, the MC68851 is not accessible to the programmer with the
M68000 coprocessor interface. All MMU instructions access the MC68030's on-chip MMU.
This is true even if the MC68030's MMUDIS signal is asserted. The benefit in removing the
MC68851 is that the minimum asynchronous bus cycle time to the physical bus is reduced
from four clock cycles to three.

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-3

Figure 12-1. Signal Routing for Adapting the MC68030 to MC68020 Designs

STATUS
REFILL

IPL2
IPL1
IPL0
IPEND
AVEC

CLK

RESET

ECS
OCS

CDIS
CIOUT
CBREQ
CBACK
CIIN

STERM

BR
BG
BGACK

HALT
BERR

DSACK1
DSACK0

SIZ0
SIZ1

RMC
DBEN
R/W
DS
AS

D31–D0

FC2–FC0

A31–A0

IPL2
IPL1
IPL0

IPEND
AVEC

CLK

RESET

ECS
OCS

CDIS

BR
BG

BGACK

HALT
BERR

DSACK1
DSACK0

SIZ0
SIZ1

RMC
DBEN

R/W
DS
AS

D31–D0

FC2–FC0

A31–A0

MC68EC030 MC68020 HEADER

1k

Applications Information

12-4

MC68030 USER’S MANUAL

MOTOROLA

If the MC68851 is removed and replaced with a jumpered header, the following MC68851
signals may need special system-specific consideration: CLI, RMC, LBRO, LBG, LBGACK,
and LBGI. During translation table searches, the MC68851 asserts the cache load inhibit
(CLI) signal but not RMC; whereas, the MC68030 asserts RMC but not CIOUT. In simple
MC68020/MC68851 systems without logical bus arbitration or logical caches, the
MC68851's jumper can have the following signals connected together:

LAS

↔

 PAS

LBRO

↔

 PBR

LBGI

↔

 PBG

LBGACK

↔

 PBGACK

LA(8-31)

↔

 PA(8-31)

CLI

↔

 no connect or LAS

CLI has two connection options because some systems may use CLI to qualify the
occurrence of CPU space cycles since the MC68851's PAS does not assert.

12.1.3 Software Differences

The instruction cache control bits in the cache control register (CACR) of the MC68030 are
in the identical bit positions as the corresponding bits as the MC68020's CACR. However,
the MC68030 has additional control bits for burst enable and data cache control. Because
this adapter board does not support synchronous bus cycles (and thus burst mode),
enabling burst mode through the CACR does not affect system operation in any way. Refer
to

Section 6 On-Chip Cache Memories

 for more information on the bit positions and
functions of the CACR bits.

When used in a system originally designed for an MC68020, a difference a programmer
must be aware of is that the MC68030 does not support the CALLM and RTM instructions
of the MC68020. If code is executed on the MC68030 using either the CALLM or RTM
instructions, an unimplemented instruction exception is taken. If no MMU software
development capability is desired and the cache behavior described under hardware
differences is understood, the user may ignore the MC68030 MMU.

When the adapter is used in a system originally designed for the MC68020/MC68851 pair,
the software differences described below also apply. The MC68030's MMU offers a subset
of the MC68851 features. The features not supported by the MC68030 MMU are listed be-
low:

• On-chip breakpoint registers

• Task aliasing

• Instructions: PBcc, PDBcc, PRESTORE, PSAVE, PScc, PTRAPcc, PVALID

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-5

Only control-alterable addressing modes are allowed for MMU instructions on the MC68030.

A feature new to the MC68030 MMU (and not on the MC68851) is the transparent
translation of two logical address blocks with the transparent translation registers. See

Section 9 Memory Management Unit

.

12.2 FLOATING-POINT UNITS

Floating-point support for the MC68030 is provided by the MC68881 floating-point
coprocessor and the MC68882 enhanced floating-point coprocessor. Both devices offer a
full implementation of the

IEEE Standard for Binary Floating-Point Arithmetic

(754). The
MC68882 is a pin and software-compatible upgrade of the MC68881, with an optimized
MPU interface that provides over 1.5 times the performance of the MC68881 at the same
clock frequency.

Both coprocessors provide a logical extension to the integer data processing capabilities of
the main processor. They contain a very high performance floating-point arithmetic unit and
a set of floating-point data registers that are utilized in a manner that is analagous to the use
of the integer data registers of the processor. The MC68881/MC68882 instruction set is a
natural extension of all earlier members of the M68000 Family and supports all of the
addressing modes and data types of the host MC68030. The programmer perceives the
MC68030/coprocessor execution model as if both devices are implemented on one chip. In
addition to supporting the full IEEE standard, the MC68881 and MC68882 provide a full set
of trigonometric and transcendental functions, on-chip constants, and a full 80-bit extended-
precision-real data format.

The interface of the MC68030 to the MC68881 or the MC68882 is easily tailored to system
cost/performance needs. The MC68030 and the MC68881/MC68882 communicate via
standard asynchronous M68000 bus cycles. All data transfers are performed by the main
processor at the request of the MC68881/MC68882; thus memory management, bus errors,
address errors, and bus arbitration function as if the MC68881/MC68882 instructions are
executed by the main processor. The floating-point unit and the processor may operate at
different clock speeds, and up to seven floating-point coprocessors may reside in an
MC68030 system simultaneously.

Figure 12-2 illustrates the coprocessor interface connection of an MC68881/MC68882 to an
MC68030 (uses entire 32-bit data bus). The MC68881/MC68882 is configured to operate
with a 32-bit data bus when both the A0 SIZE and pins are connected to V

CC

. Refer to the
MC68881UM/AD

MC68881/MC68882 Floating-Point Coprocessor User's Manual

for
configuring the MC68881/MC68882 for smaller data bus widths. Note that the MC68030
cache inhibit input (CIIN) signal is not used for the coprocessor interface because the
MC68030 does not cache data obtained during CPU space accesses.

Applications Information

12-6

MC68030 USER’S MANUAL

MOTOROLA

The chip select (CS) decode circuitry is asynchronous logic that detects when a particular
floating-point coprocessor is addressed. The MC68030 signals used by the logic include the
function code signals (FC=FC2), and the address lines (A13=A19). Refer to

Section 10
Coprocessor Interface Description

for more information concerning the encoding of these
signals. All or just a subset of these lines may be decoded depending on the number of
coprocessors in the system and the degree of redundant mapping allowed in the system.

Figure 12-2. 32-Bit Data Bus Coprocessor Connection

MC68EC030 MC68881/MC68882

CHIP
SELECT
DECODE

FC2–FC0

A31–A20
A19–A16
A15–A13

A12–A5
A4–A1

A0

 AS
DS

R/W

D31–D24
D23–D16
D15–D8

D7–D0

DSACK0
DSACK1

CIIN

MAIN CONTROLLER
CLOCK

CS

SIZE
A4–A1
A0

AS
DS
R/W

D31–D24
D23–D16
D15–D8
D7–D0

DSACK0
DSACK1

COPROCESSOR
CLOCK

VCC

VCC

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-7

The major concern of a system designer is to design a CS interface that meets the AC
electrical specifications for both the MC68030 (MPU) and the MC68881/MC68882 (FPCP)
without adding unnecessary wait states to FPCP accesses. The following maximum
specifications (relative to CLK low) meet these objectives:

 t

CLK

 low to AS low

≤

(MPU Spec 1–MPU Spec 47A–FPCP Spec 19) (1)

 t

CLK

 low to CS low

≤

(MPU Spec 1–MPU Spec 47A–FPCP Spec 19) (2)

Even though requirement (1) is not met under worst case conditions, if the MPU AS is
loaded within specifications and the AS input to the FPCP is unbuffered, the requirement is
met under typical conditions. Designing the CS generation circuit to meet requirement (2)
provides the highest probability that accesses to the FPCP occur without unnecessary wait
states. A PAL 16L8 (see Figure 12-3) with a maximum propagation delay of 10 ns,
programmed according to the equations in Figure 12-4, can be used to generate CS. For a
25-MHz system,

t

CLK low to CS low is less than or equal to 10 ns when this design is used.
Should worst case conditions cause t

CLK

 low to AS low to exceed requirement (1), one wait
state is inserted in the access to the FPCP; no other adverse effect occurs. Figure 12-5
shows the bus cycle timing for this interface. Refer to MC68881UM/AD,

MC68881/MC68882
Floating-Point Coprocessor User's Manual

, for FPCP specifications.

The circuit that generates CS must meet another requirement. When a nonfloating-point
access immediately follows a floating-point access, CS (for the floating-point access) must
be negated before AS and DS (for the subsequent access) are asserted. The PAL circuit
previously described also meets this requirement.

For example, if a system has only one coprocessor, the full decoding of the ten signals
(FC0–FC2 and A13–A19) provided by the PAL equations in Figure 12-4 is not absolutely
necessary. It may be sufficient to use only FC0–FC1 and A16–A17. FC0–FC1 indicate when
a bus cycle is operating in either CPU space ($7) or user-defined space ($3), and A16–A17
encode CPU space type as coprocessor space ($2). A13–A15 can be ignored in this case
because they encode the coprocessor identification code (CpID) used to differentiate
between multiple coprocessors in a system. Motorola assemblers always default to a CpID
of $1 for floating-point instructions; this can be controlled with assembler directives if a
different CpID is desired or if multiple coprocessors exist in the system.

Applications Information

12-8

MC68030 USER’S MANUAL

MOTOROLA

12.3 BYTE SELECT LOGIC FOR THE MC68030

The architecture of the MC68030 allows it to support byte, word, and long-word operand
transfers to any 8-, 16-, or 32-bit data port regardless of alignment. This feature allows the
programmer to write code that is not bus-width specific. When accessed, the peripheral or
memory subsystem reports its actual port size to the processor, and the MC68030 then
dynamically sizes the data transfer accordingly, using multiple bus cycles when necessary.
Hardware designers also have the flexibility to choose implementations independent of
software prejudices. The following paragraphs describe the generation of byte select control
signals that enable the dynamic bus sizing mechanism, the transfer of differently sized
operands, and the transfer of misaligned operands to operate correctly.

The following signals control the MC68030 operand transfer mechanism:

• A1, A0 = Address lines. The most significant byte of the operand to be transferred is
addressed directly.

• SIZ1, SIZ0 = Transfer size. Output of the MC68030. These indicate the number of
bytes of an operand remaining to be transferred during a given bus cycle.

• R/W = Read/Write. Output of the MC68030. For byte select generation in MC68030
systems, R/W must be included in the logic if the data from the device is cach-
able.

Figure 12-3. Chip-Select Generation PAL

(UNABLE TO LOCATE ART)

Figure 12-4. PAL Equations

(UNABLE TO LOCATE ART)

Figure 12-5. Bus Cycle Timing Diagram

CLK
AS

FC2

FC1
FC0
A19
A18

A17
A16

GND

V
NC
NC

NC
NC
A13
A14

CLKD
CS
A15

CC

PAL 16L8
10 ns

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-9

• DSACK1, DSACK0 = Data transfer and size acknowledge. Driven by an asynchronous
port to indicate the actual bus width of the port.

• STERM = Synchronous termination. Driven by a 32-bit synchronous port only.

The MC68030 assumes that 16-bit ports are situated on data lines D16–D31, and that 8-bit
ports are situated on data lines D24–D31. This ensures that the following logic works
correctly with the MC68030's on-chip internal-to-external data bus multiplexer. Refer to

Section 7 Bus Operation

 for more details on the dynamic bus sizing mechanism.

The need for byte select signals is best illustrated by an example. Consider a long-word
write cycle to an odd address in word-organized memory. The transfer requires three bus
cycles to complete. The first bus cycle transfers the most significant byte of the long word
on D16–D23. The second bus cycle transfers a word on D16–D31, and the last bus cycle
transfers the least significant byte of the original long word on D24–D31. In order not to
overwrite those bytes which are not used these transfers, a unique byte data strobe must be
generated for each byte when using devices with 16- and 32-bit port widths.

For noncachable read cycles and all write cycles, the required active bytes of the data bus
for any given bus transfer are a function of the size (SIZ0/SIZ1) and lower address (A0/A1)
outputs and are shown in Table 12-1. Individual strobes or select signals can be generated
by decoding these four signals for every bus cycle. Devices residing on 8-bit ports can utilize
data strobe (DS) alone since there is only one valid byte for any transfer.

During cachable read cycles, the addressed device must provide valid data over its full bus
width (as indicated by DSACKx or STERM). While instructions are always prefetched as
long-word-aligned accesses, data fetches can occur with any alignment and size. Because
the MC68030 assumes that the entire data bus port size contains valid data, cachable data
read bus cycles must provide as much data as signaled by the port size during a bus cycle.
To satisfy this requirement, the R/W signal must be included in the byte select logic for the
MC68030.

Figure 12-6 shows a block diagram of an MC68030 system with two memory banks. The
PAL provides memory-mapped byte select signals for an asynchronous 32-bit port and
unmapped byte select signals for other memory banks or ports. Figure 12-7 provides sample
equations for the PAL.

Applications Information

12-10

MC68030 USER’S MANUAL

MOTOROLA

The PAL equations and circuits presented here are not intended to be the optimal
implementation for every system. Depending on the CPU's clock frequency, memory
access times, and system architecture, different circuits may be required.

12.4 MEMORY INTERFACE

The MC68030 is capable of running three types of external bus cycles as determined by the
cycle termination and handshake signals (refer to

Section 7 Bus Operation

). These three
types of bus cycles are:

1. Asynchronous cycles, terminated by the DSACKx signals, have a minimum duration
of three processor clock periods in which up to four bytes are transferred.

2. Synchronous cycles, terminated by the STERM signal, have a minimum duration of
two processor clock periods in which up to four bytes are transferred.

3. Burst operation cycles, terminated by the STERM and CBACK signals, have a dura-
tion of as little as five processor clock periods in which up to four long words (16 bytes)
are transferred.

Table 12-1. Data Bus Activity for Byte, Word, and Long-Word Ports

TransferSi
ze SIZ1 SIZ0 A1 A0

Data Bus Active Sections
Byte (B) ;en Word (W) ;en Long-Word (L) Ports

D31-D24 D23-D16 D15-D8 D7-D0

Byte 0
0
0
0

1
11

1

0
0
1
1

0
1
0
1

BWL
B
BW
B

—
WL
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

—
L
L
—

—
—
L
L

Three Byte 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

BWL
B
BW
B

WL
WL
W
W

L
L
L
—

L
L
L
L

Applications Information

12-12

MC68030 USER’S MANUAL

MOTOROLA

Figure 12-6. Example MC68030 Byte Select PAL System Configuration

SY
N

C
H

R
O

N
O

U
S

M
O

D
E

AN
D

BU
R

ST
 M

O
D

E
C

O
N

TR
O

L
LO

G
IC

U
U

D
A

U
M

D
A

LM
D

A
LL

D
A

U
U

D
B

U
M

D
B

LM
D

B
LL

D
B

M
C

68
EC

03
0

PA
L1

6L
8

D
7–

D
0

D
15

–D
8

D
23

–D
16

D
31

–D
24

W
E

W
E

W
E

W
E

A3
1–

A2

32
-B

IT
 P

O
R

T

32
-B

IT
 B

U
R

ST
 M

O
D

E
PO

R
T

D
7–

D
0

D
15

–D
8

D
23

–D
16

D
31

–D
24

C
O

N
TR

O
L

AN
D

AD
D

R
ES

S

LL
D

A
LM

D
A

U
M

D
A

U
U

D
A

U
N

M
AP

PE
D

 B
YT

E
SE

LE
C

TS
 F

O
R

 O
TH

ER
32

-B
IT

 P
O

R
TS

C
PU

A1
,A

0

SI
Z0

SI
Z1 A0 A1 FC
0

FC
1

A3
1–

A0 AS R
/W

D
31

–D
0

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-13

During read operations, M68000 processors latch data on the last falling clock edge of the
bus cycle, one-half clock before the bus cycle ends (burst mode is a special case). Latching
data here, instead of the next rising clock edge, helps to avoid data bus contention with the
next bus cycle and allows the MC68030 to receive the data into its execution unit sooner for
a net performance increase.

Write operations also use this data bus timing to allow data hold times from the negating
strobes and to avoid any bus contention with the following bus cycle. This usually allows the
system to be designed with a minimum of bus buffers and latches.

One of the benefits of the MC68030's on-chip caches is that the effect of external wait states
on performance is lessened because the caches are always accessed in fewer than “no wait
states” regardless of the external memory configuration. This feature makes the MC68030
(and MC68020) unique among other general-purpose microprocessors.

12.4.1 Access Time Calculations

The timing paths that are typically critical in any memory interface are illustrated and defined
in Figure 12-8. For burst transfers, the first long word transferred also uses these
parameters, but the subsequent transfers are different and are discussed in

12.4.2 Burst
Mode Cycles

.

The type of device that is interfaced to the MC68030 determines exactly which of the paths
is most critical. The address-to-data paths are typically the critical paths for static devices
since there is no penalty for initiating a cycle to these devices and later validating that access
with the appropriate bus control signal. Conversely, the address-strobe-to-data-valid path is
often most critical for dynamic devices since the cycle must be validated before an access
can be initiated. For devices that signal termination of a bus cycle before data is validated
(e.g., error detection and correction hardware and some external caches) to improve
performance, the critical path may be from the address or strobes to the assertion of BERR
(or BERR and HALT). Finally, the address-valid-to-DSACKx-or-STERM-asserted path is
most critical for very fast devices and external caches, since the time available between
when the address is valid and when DSACKx or STERM must be asserted to terminate the
bus cycle is minimal. Table 12-2 provides the equations required to calculate the various
memory access times assuming a 50-percent duty cycle clock.

(UNABLE TO LOCATE ART)

Figure 12-7. MC68030 Byte Select PAL Equations

Applications Information

12-14

MC68030 USER’S MANUAL

MOTOROLA

During asynchronous bus cycles, DSACK1 and DSACK0 are used to terminate the current
bus cycle. In true asynchronous operations, such as accesses to peripherals operating at a
different clock frequency, either or both signals may be asserted without regard to the clock,
and then data must be valid a certain amount of time later as defined by specification #31.
With a 16.67-MHz processor, this time is 50 ns after DSACKx asserts; with a 20.0-MHz
processor, this time is 43 ns after DSACK asserts (both numbers vary with the actual clock
frequency).

Figure 12-8. Access Time Computation Diagram

Parameter Description System Equation

a

b

c

d

e

f

g

h

Address Valid to DSACKx Asserted

Address Strobe Asserted to DSACKx Asserted

Address Valid to STERM Asserted

Address Strobe Asserted to STERM Asserted

Address Valid to BERR/HALT Asserted

Address Strobe Asserted to BERR/HALT Asserted

Address Valid to Data Valid

Address Strobe Asserted to Data Valid

t

AVDL

t

AVSL

t

SADL

t

SASL

t

AVBHL

t

SABHL

t

AVDV

t

SADV

12-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

MC68EC030
(40 MHz)

10-MHz
OSCILLATOR

CONTROLLER
CLOCK (40 MHz)

BUS CLOCKS
(20 MHz)

3

FIG 12-8
M

C
88

91
6

Applications Information

MOTOROLA

MC68030 USER’S MANUAL

12-15

where:
tX = Refers to AC Electrical Specification #X
t1 = The Clock Period
t2 = The Clock Low Time
t3 = The Clock High Time
t6 = The Clock High to Address Valid Time
t9 = he Clock Low to AS Low Delay
t27 = The Data-In to Clock Low Setup Time
t27A = The BERR/HALT to Clock Low Setup Time
t47A = The Asynchronous Input Setup Time
t60 = The Synchronous Input to CLK High Setup Time
N = The Total Number of Clock Periods in the Bus Cycle (Nonburst)

(N

≥

2 for Synchronous Cycles; N

≥

3 for Asynchronous Cycles)

However, many local memory systems do not operate in a truly asynchronous manner
because the memory control logic can either be related to the MC68030's clock or worst
case propagation delays are known; thus, asynchronous setup times for the DSACKx
signals can be guaranteed. The timing requirements for this pseudo-synchronous DSACKx
generation is governed by the equation for t

AVDL

.

Synchronous cycles use the STERM signal to terminate the current bus cycle. In bus cycles
of equal length, STERM has more relaxed timing requirements than DSACKx since an
additional 30 ns is available when comparing t

AVSL

(or t

SASL

) to t

AVDL

 (or t

SADL

). The only
additional restriction is that STERM must meet the setup and hold times as defined by
specifications #60 and #61, respectively, for all rising edges of the clock during a bus cycle.
The value for tSASL when the total number of clock periods (N) equals two in Table 12-2
requires further explanation. Because the calculated value of this access time (see Equation
12-4 of Table 12-2) is zero under certain conditions, hardware cannot always qualify STERM
with AS at all frequencies. However, such qualification is not a requirement for the
MC68030. STERM can be generated by the assertion of ECS, the falling edge of S0, or most
simply by the output(s) of an address decode or comparator logic. Note that other devices
in the system may require qualification of the access with AS since the MC68030 has the
capability to initiate bus cycles and then abort them before the assertion of AS.

Table 12-2. Memory Access Time Equations at 20 MHz

N=2 N=3 N=4 N=5 N=6

(12-1) t

AVDL

=(N-1)

•

t1–t2–t6–t47A
(12-2) t

SADL

=(N-2)t

•

1–t9–t47A
—
—

46 ns
26 ns

96 ns
76 ns

146 ns
126 ns

196 ns
176 ns

(12-3) t

AVSL

=(N-1)t

•

1–t6–t60
(12-4) t

SASL=(N-1)t•1–t3–t9–t60
21 ns
 1 ns

71 ns
51 ns

121 ns
101 ns

171 ns
151 ns

221 ns
201 ns

(12-5) tAVBHL=Nt•1;mst2–t6–t27A
(12-6) tSABHL=(N-1)t•1–t9–t27A

40 ns
20 ns

90 ns
70 ns

140 ns
120 ns

190 ns
170 ns

240 ns
220 ns

(12-7) tAVDV=Nt•1–t2–t6–t27
(12-8) tSADV=(N-1)t•1–t9–t27

46 ns
26 ns

96 ns
76 ns

146 ns
126 ns

196 ns
176 ns

246 ns
226 ns

Applications Information

12-16 MC68030 USER’S MANUAL MOTOROLA

Another way to optimize the CPU to memory access times in a system is to use a clock
frequency less than the rated maximum of the specific MC68030 device. Table 12-3
provides calculated tAVDV (see Equation 12-7 of Table 12-2) results for an MC68030RC16
and MC68030RC20 operating at various clock frequencies. If the system uses other clock
frequencies, the above equations can be used to calculate the exact access times.

12.4.2 Burst Mode Cycles
The memory access times for burst mode bus cycles follow the above equations for the first
access only. For the subsequent (second, third, and fourth) accesses, the memory access
time calculations depend on the architecture of the burst mode memory system.

Architectural tradeoffs include the width of the burst memory and the type of memory used.
If the memory is 128 bits wide, the subsequent operand accesses do not affect the critical
timing paths. For example, if a 3-1-1-1 burst accesses 128-bit-wide memory, the first access
is governed by the equations in Table 12-2 for N equal to three. The subsequent accesses
also use these values as a base but have additional clock periods added in. The second
access has one additional clock period, the third access has two additional clock periods,
and the fourth has three additional clock periods. Thus, the access time for the first cycle
determines the critical timing paths.

Table 12-3. Calculated tAVDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating

Equation 12-7 tAVDV MC68030RC20 MC68030RC25
Clocks Per BusCycle (N) and

Type
Wait

States
Clock at

16.67 MHz
Clock at
20 MHz

Clock at
16.67 MHz

Clock at
20 MHz

Clock at
25 MHz

2 Clock Synchronous 0 61 46 68 53
38
—

3 Clock Synchronous
3 Clock Asynchronous

1
0

121
121

96
96

128
128

103
103

78
78

4 Clock Synchronous
4 Clock Asynchronous

2
1

181
181

146
146

188
188

153
153

118
118

5 Clock Synchronous
5 Clock Asynchronous

3
2

241
241

196
196

248
248

203
203

158
158

6 Clock Synchronous
6 Clock Asynchronous

4
3

301
301

246
246

308
308

253
253

198
198

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-17

Memory that is 64 bits wide presents a compromise between the two configurations listed
above.

12.5 STATIC RAM MEMORY BANKS
When the MC68030 is operating at a high clock frequency, a no-wait-state external memory
system will most likely be composed of static RAMs. The following paragraphs discuss three
static memory banks, which may be used as shown or as a starting point for an external
cache design. The designs offer different levels of performance, bus utilization, and cost.

12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS
The MC68030 normally attains its highest performance when the external memory system
can support a two-clock synchronous bus protocol. This section describes a complete
memory bank containing 64K bytes that can operate with a 20-MHz MC68030 using two-
clock accesses. Also discussed are several options and minor alterations to reduce cost or
power consumption.

Figure 12-9 shows the complete memory bank and its connection to the MC68030. As
drawn, the required parts include:

(8) 16K•4 SRAMs, 35-ns access time with separate I/O pins

(4) 74F244 buffers

(2) 74F32 OR gates

(1) PAL16L8D (or equivalent)

The system must also provide any STERM consolidation circuitry as required (e.g., by the
presence of multiple synchronous memory banks or ports). In Figure 12-9, this consolidation
circuitry is shown as an AND gate.

The memory bank can be divided into three sections:

1. The byte select and address decode section (provided by the PAL),

2. The actual memory section (SRAMs), and

3. The buffer section.

Applications Information

12-18 MC68030 USER’S MANUAL MOTOROLA

The first section consists of two 74F32 OR gates, a 74F74 D-type flip-flop, and a PAL16L8D.
Example PAL equations are provided in Figure 12-10. The PAL generates six memory-
mapped signals; four byte select signals for write operations, a buffer control signal, and the
cycle termination signal. The byte select signals are only asserted during write operations
when the processor is addressing the 64K bytes contained in the memory bank, and then
only when the appropriate byte (or bytes) is being written to as indicated by the SIZ0, SIZ1,
A0, and A1 signals. The four signals, UUCS, UMCS, LMCS, and LLCS, control data bits
D24=D31, D16=D23, D8=D15, and D0=D7, respectively. AS is used to qualify the byte
select signals to avoid spurious writes to memory before the address is valid. During read
operations, the read chip select (RDCS) signal, qualified with AS, controls the data buffers
only (since the memory is already enabled with its E input grounded). The last signal
generated by the PAL is the TERM signal. As its equation shows, TERM consists of two
events: one for read cycles and the other for write cycles. For read cycles, TERM is an
address decode signal that is asserted whenever the address corresponds to the encoded
memory-mapped bank of SRAM. For write operations, a delayed form of AS (DAS) is used
to qualify the same address decode, which lengthens write operations to three clock cycles.
The DAS signal generation is delayed from the clock edge by running the clock signal
through two 74F32 OR gates before connecting to the 74F74 D-type flip-flop. This
guarantees that the maximum propagation delay to generate the TERM signal does not
violate the synchronous input hold time of the MC68030. By increasing write operation to
three clock cycles, the MC68030 can easily meet the specified data setup time to the
SRAMs before the negation of the write strobes (W). TERM is then connected to the
system's STERM consolidation circuity. The consolidation circuitry should have no more
than 15 ns of propagation delay. If the system has no other synchronous memory or ports,
TERM may be connected directly to STERM.

Figure 12-9. Example Two-Clock Read, Three-Clock Write Memory Bank

MC68EC030
(40 MHz)

20-MHz
OSCILLATOR

CONTROLLER
CLOCK (40 MHz)

BUS CLOCKS
(40 MHz)

3

M
C

88
91

6

FIG 12-9

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-19

Figure 12-10. Example PAL Equations for Two-Clock Memory Bank

CLK

A31-A0

FIG 12-10

S0 S1 S2 S0

AS

DSACK1/DSACK0

STERM

a c e g

b d f h

BERR, HALT

D31-D0

NOTE: This diagram illustrates access time calculations only. DSACK1/DSACK0 and STERM should never be asserted
 together during the same bus cycle.

Applications Information

12-20 MC68030 USER’S MANUAL MOTOROLA

The second section contains the memory devices. Eight devices are used, but some
designs may wish to increase this to support EDAC or to increase density. The most
important feature of the memory devices used in this design is the separate data-in and
data-out pins, which allow the SRAMs to be enabled before address decode is complete
without causing data bus contention. The enable pins on the SRAMs have been grounded
for both simplicity and improved memory access timing. If the designer wishes to include
some type of enable circuitry to take advantage of low bus utilization for lower power
consumption, the timing in this design will be preserved if the memory's E signal is asserted
before the falling edge of state S0 (at the same time as or before the address becomes
valid). Two possible enable circuits are shown in Figure 12-11.

The third section of the memory bank is the data buffers. The data buffers are shown as
74F244, but 74AS244s may also be used. The RDCS signal, qualified with AS, controls the
data buffers during read operations as described above.

To maximize performance, both read and write operations should be capable of completing
in two clock cycles. Figure 12-12 shows a two-clock read and write memory bank. The
required parts include:

(8) 16K*4 SRAMs, 25-ns access time with separate I/O pins

(4) 74F244 buffers

(2) 74F32 OR gates

(1) PAL16L8D (or equivalent)

(1) 74F74 D-type flip-flop

(2) 74F373 transparent latches

(1) 74AS21 AND gate

(1) 74F04 inverter

Figure 12-11. Additional Memory Enable Circuits

CLK

REFILL

STATUS

INSTRUCTION
BOUNDARIES

FIG 12-11

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-21

The structure of this design is very similiar to the previous design and can similarly be
divided into three main sections:

1. The byte select and address decode section (provided by the PAL).

2. The actual memory section (SRAMs).

3. The buffer/latch section (address and data).

The same PAL equations listed in Figure 12-10 are used with the exception of the TERM
signal. Figure 12-13 shows the equation for TERM, which is used by the two clock read and
write design.

TERM = /A16 * /A17 * /A16 * A30 ;immediate STERM for both reads and writes

Figure 12-13. Example PAL Equation for Two-Clock Read and Write
Memory Bank

TERM is simply an address decode signal in this design because both read and write
operations complete in two clock periods. The other signals generated by the PAL have
already been discussed in the previous design and are not repeated here. A latched version
of AS is generated by a 74F74 D-type flip-flop and used to qualify the individual byte select
signals from the PAL. The required SRAM data setup time on write cycles is ensured by
keeping the write strobes (W) active to the SRAMs until the rising edge of the clock that
completes the MC68030 write operation.

The memory section in this design uses 25-ns SRAMs rather than the 35-ns SRAMs used
in the previous design. The faster SRAMs compensate for the 74F373 transparent latches
used on the address lines. Since the memory write operations complete after the MC68030
write bus cycle, both address and data are latched and held valid to the SRAMs until the
write strobes (W) negate. During read operations, the transparent latches on the address
lines remain in the transparent mode, allowing the SRAMs to provide data through the
74F244 buffers in time to meet the specified data setup time to the MC68030.

Figure 12-12. Example Two-Clock Read and Write Memory Bank

CLK

REFILL

STATUS

INSTRUCTION
BOUNDARIES

FIG 12-12

PENDING TRACE OR
INTERRUPT EXCEPTION
PROCESSING

Applications Information

12-22 MC68030 USER’S MANUAL MOTOROLA

Not all systems require the performance of 20-MHz two-clock bus cycles, nor will all systems
be able to afford the fast devices. Fortunately, several small changes to this design could
assist designers with different cost/performance ratios. The simplest and most direct
method is to reduce the clock frequency of the MC68030. For instance, if the clock
frequency is below approximately 18.1 MHz, the same control logic supports two-clock bus
cycles with 45-ns memory (55 ns if < 15.8 MHz). If 20 MHz is still the frequency of choice,
the designer may choose to run three-clock bus cycles. This can be accomplished with the
addition of a flip-flop to delay the TERM signal by one clock. The resulting memory access
time is over 85 ns with a 20-MHz processor running with three-clock bus cycles.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-23

12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS
The MC68030 normally attains its lowest bus utilization when the external memory system
can support a 2-1-1-1 burst protocol. However, exceptions to this can occur. For instance,
when a large amount of memory accesses are not governed by the locality of reference
principles, burst accesses may not decrease bus utilization. This section describes a
complete 2-1-1-1 memory bank with 256K bytes that can operate with a 20-MHz MC68030.
Nonburst reads and all write cycles execute in two clocks.

Figure 12-14 shows the complete memory bank and its connection to the MC68030. The
required parts include:

(32) 64K x 1 SRAMs 25 ns access time (Motorola's MCM6287-25 or equivalent)

(2) 74ALS244 buffers

(4) 74AS373 latches

(2) 74F32 OR gates

(4) 74F191 counters

(1) PAL16L8D (or equivalent)

(1) 74F04 inverter

The system must also provide any STERM or CBACK consolidation circuitry as required
(e.g., due to the presence of multiple synchronous memory banks or ports). In Figure 12-14,
this consolidation circuitry is shown as an AND gate.

The memory bank can be divided into four sections:

1. The byte select and address decode section (provided by the PAL).

2. The burst address generator (provided by the counters).

3. The actual memory section (SRAMs).

4. The buffer section (address and data).

Applications Information

12-24 MC68030 USER’S MANUAL MOTOROLA

The first section is completely contained within the PAL16L8D. The PAL equations are the
same as those provided in Figure 12-8 for the two-clock read, three-clock write memory
bank, although slightly modified to support the larger block of memory (use A18=A20
instead of A16=A18). The PAL generates six memory-mapped signals: four byte select
signals for write operations, a buffer control signal, and the cycle termination signal. The
byte select signals are only asserted during write operations when the processor is
addressing the 256K bytes contained in the memory bank, and then only when the
appropriate byte or bytes is being written to as indicated by the SIZ0, SIZ1, A0, and A1
signals. The four signals, UUCS, UMCS, LMCS, and LLCS, control data bits D24=D31,
D16=D23, D8=15, and D0=D7 respectively. AS is used to qualify the byte select signals to
avoid spurious writes to memory before the address is valid. During read operations, the
read chip select (RDCS) signal, qualified with AS, controls the data latches only (since the
memory is already enabled with its E input grounded). The last signal generated by the PAL
is the TERM signal. As the equation shows, TERM consists of two events: one for read
cycles and the other for write cycles. For read cycles, TERM is an address decode signal
that is asserted whenever the address corresponds to the encoded memory-mapped bank
of SRAM. Write operations use the DAS signal to qualify the address decode, which
lengthens write cycles to three clock periods. If a two-clock write cycle is required, this
design can be modified to incorporate the address and data latches used in Figure 12-12.
TERM is connected to the system's STERM and CBACK consolidation circuitry such that
both are asserted when TERM is asserted. The consolidation circuitry should have a
maximum propagation delay of 15 ns or less. If the system has no other synchronous
memory or ports, TERM can be connected directly to STERM, and CBACK may be
grounded.

The second section is the burst address generator which contains the four counters and the
inverter. The counters serve to both buffer the MC68030's address lines (A2 and A3) and to
provide the next long-word address during a burst operation. The 74F191s are
asynchronously preset at the beginning of every bus cycle when AS is negated. When AS
asserts, the counting is dependent on the CBREQ signal and the CLK signal. During writes,
CBREQ is always negated, and the counters serve only as address buffers. During reads,
if CBREQ asserts, the current value of counter bits Q1:Q0 are incremented on every falling

Figure 12-14. Example 2-1-1-1 Burst Mode Memory Bank at 20 MHz, 256K Bytes

CLK

REFILL

STATUS

FIG 12-14

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-25

clock edge of the MC68030's clock after AS asserts. Four counters are used to provide
enough drive capability to avoid an additional buffer propagation delay. Each counter drives
eight memory devices.

The third section contains the memory devices. The most important feature of the memory
devices used in this design is the separate data-in and data-out pins, which allow the
SRAMs to be constantly enabled before address decode is complete without causing data
bus contention. If the designer wishes to include some type of enable circuitry to take
advantage of low bus utilization, the timing in this design will be preserved if the memory's
E signal is asserted within 13 ns after the falling edge of state S0.

Applications Information

12-26 MC68030 USER’S MANUAL MOTOROLA

The fourth and last section of the memory bank is the address and data buffers. The address
buffers are shown as 74ALS244s, but 74AS244s and 74F244s are also acceptable. Two
inputs to the address buffers remain unused allowing the possibility for expansion up to 1
Mbyte without any additional devices when SRAMs of suitable density become available.
The RDCS signal, qualified with AS, controls the data buffers during read operations. The
address buffers are always enabled.

Some modifications to this design can improve performance. Specifically, circuitry to control
CBACK and thus prevent or discontinue a burst cycle is a simple addition. The circuitry
should have two functions: to prevent wraparound and to prevent bursting when a data
operand crosses a long-word boundary.

Not all systems require the performance of 20-MHz 2-1-1-1 burst cycles, nor will all systems
be able to afford the fast devices of this design. If the clock frequency is below approximately
17.5 MHz, the same support logic supports 2-1-1-1 burst cycles with 35-ns memory. If 20
MHz is still the frequency of choice, the designer may choose to run 3-1-1-1 burst cycles.

12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS
Figure 12-15 shows the complete 3-1-1-1 memory bank with 256K bytes that can operate
with a 20-MHz MC68030. The required parts include:

(32) 64K x 1 SRAMs 35-ns access time (Motorola's MCM6287-35 or equivalent)

(4) 74ALS244 buffers

(4) 74F374 latches

(2) 74F32 OR gates

(4) 74F191 counters

(1) PAL16L8D (or equivalent)

(2) inverters

(1) flip-flop

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-27

The structure of this memory bank is very similiar to the 2-1-1-1 memory bank described in
12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS. In fact, the PAL and address
buffers are exactly the same. The PAL equations are provided in Figure 12-10. The most
important differences occur in the data latches, which are now flip-flops. Also, the D-type flip-
flop has been moved from the input side of the PAL to the TERM output.

The data flip-flops allow the long words out of the memory to be pipelined such that setup
and hold times are easier to satisfy. The memory devices are generating the next long word
of data even before the MC68030 has latched the “current”long word. This alteration eases
access timing requirements such that 35-ns memory can be used with a clock frequency of
20 MHz. If the clock frequency is less than 17 MHz, 45-ns memory can be used. Another
benefit of the slower cycle is a relaxed timing requirement for the enable inputs of the
SRAMs. Although Figure 12-15 has all the SRAM chip enables grounded, the timing in this
design will be preserved if the memory's E signal is asserted within 10 ns after the rising
edge of state S2. Figure 12-16 shows four possible enable circuits.

Figure 12-15. Example 3-1-1-1 Pipelined Burst Mode Memory Bank at
20 MHz, 256K Bytes

(UNABLE TO LOCATE ART)

Figure 12-16. Additional Memory Enable Circuits

STATUSQ

VCC

I
I
I
I
I
I
I
I SAMPLE

CLKOUT

20

Q
Q
Q
Q
Q
Q

2
3
4
5
6

7
8
9

18
17
16
15
14
13

19
12

SECS

PHALT
FILL

EP
IE

PAL 16R6D

VCC

1

11
10

VSS

OE

CP

10
10

6

2

33

DSQ0

SD
Q

Q

CD

CP

D
9

SD
Q

Q

CD

CP

D
5

DSACK

13

VCC

DSACK0

1

2

74F00

DSACK1 12

11 8

DSQ1

74F00
4 6
5

VCC

CLK

AS
RESET

REFILLQ

STERMQ

ECSC

SD

Q

Q

CD

CP

D
9

VCC

10 74F74

8

13

12

11

SD

Q

Q

CD

CP

D
5

VCC

4 74F74

6

1

2

3

74F004

5
6

ECSQ

STERM
ECS

SD1
SD2
J1
K1
 CP
J2
K2

Q1
Q1
Q2
Q2

4
10

3
2

13
11
12

9
8

5
6

CD

VCC

STATUS
REFILL

74F114

1

10 74F74

74F744

DSACK
CLK
AS
RESET

ECSQ

1

FIG 12-15

Applications Information

12-28 MC68030 USER’S MANUAL MOTOROLA

The flip-flop connected to the TERM signal serves two purposes: first, the TERM signal is
delayed at the beginning of the cycle to insert the wait state for the first long word, and
second, the burst address generator is also prevented from incrementing the long word base
address until the first long-word has been latched by the 74F374s.

The performance enhancing modifications described for the 2-1-1-1 design also apply to this
design. Specifically, circuitry can be added to control CBACK and thus prevent or
discontinue a burst cycle. The circuitry should have two functions: first, to prevent
wraparound and second, to prevent bursting when a data operand crosses a long-word
boundary. Another enhancement might be to alter the TERM control circuitry with the
addition of a write latch mechanism to run two-clock writes.

The critical path for the 3-1-1-1 memory bank is not the first long-word access as in the 2-1-
1-1 memory bank, but rather the subsequent long words during burst cycles. No alternative
architecture can correct the critical path for the 2-1-1-1 burst cycle. However, for 3-1-1-1
burst cycles, the designer might consider memory banks which are 64 or 128 bits wide. In
this manner, the access time for the subsequent long words can be hidden underneath the
access of the previous long word(s).

12.6 EXTERNAL CACHES
To provide lower average access times to memory, some systems implement caches local
to the main processor that store recently used instructions and/or data. For the MC68030,
several architectural options are available to the cache designer. The primary decisions are
whether to configure the cache as an asynchronous or synchronous device and whether the
cache accesses are terminated early (before the cache lookup is complete) or only after
validation.

The MC68030 late BERR/HALT facility allows an external device to signal completion of a
bus cycle by asserting DSACKx or STERM and later (approximately one clock period or
one-half clock, respectively) aborting or retrying that cycle if an error condition is detected.
Since one critical access path in many memory structures is the assertion of DSACKx/
STERM to avoid additional wait states, the late abort capability allows the memory controller
to terminate a bus cycle before data is valid on the processor data bus. If the data validation
fails, the memory controller can then abort (BERR) or retry (BERR/HALT) the cycle. This
technique is useful in memory error detection schemes where the cycle can be terminated
as soon as data becomes available and the error checking can occur during the period
between the signaling of termination of the cycle and the latching of data by the processor
with a late retry or abort signaled upon error indication. Likewise, this technique can be used
in cache implementations in which the cache tag validation cannot be completed before
termination of the cycle must be signaled but the validation is completed before late abort or
retry must be indicated.

The major consideration in choosing whether or not to utilize late retry for an external cache
miss is the overhead involved in retrying a bus cycle after a miss in the cache. The minimum
penalty is the four clock periods required to retry the cycle (two clocks during which the miss
is detected and two clocks idle bus time), assuming that the bus control strobes (BERR and
HALT) are negated soon enough after the completion of the aborted cycle that the next cycle
can begin immediately. In evaluating this overhead, the projected cache miss rate

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-29

determines the percentage of cycles that must be retried. Additionally, the degree of
parallelism in the system should be considered. If, after a cache miss, it is possible to
continue the bus cycle to main memory while the processor is retrying the cycle, it is possible
to avoid some, or all, of the performance penalty associated with late retry (although the
control circuitry required may be more complex).

Applications Information

12-30 MC68030 USER’S MANUAL MOTOROLA

For a two-clock bus or burst capability, use of the synchronous bus is mandated, but for a
three or more clock, nonburst cache, the choice of synchronous versus asynchronous
operation must be made. If the bus cycle is terminated only after validation, use of the
synchronous bus is recommended since the address-valid-to-STERM-asserted timing
requirement is longer than the address-valid-to-DSACK-asserted timing for bus cycles of the
same length. If the cache implements late retry, the choice of which bus control mode to use
is less important and depends on system-specific features and control structures. Some
external caches might use both synchronous and asynchronous transfers: synchronous for
hits and asynchronous for misses or vice versa. The following discussion assumes that the
external cache uses the synchronous two-clock protocol, but most statements also apply to
the asynchronous protocol.

If the MC68030 MMU is disabled, all bus cycles use logical addresses. If the MMU is
enabled, the external address bus uses physical addresses (including directly mapped
logical-to-physical addresses from the transparent translation (TTx) registers). These two
modes of operation, logical and physical, affect the maintenance of external caches. For
example, when the external cache uses physical addresses, the cache need not be flushed
on each context switch. Since each task in a system may have its own unique mapping of
the logical address space, a logical cache must be flushed of all entries any time the logical-
to-physical mapping of the system changes (as occurs during a context switch). Since there
is only a single physical address space, this problem does not occur with a physical cache
because all references to a particular operand must utilize the same physical address.

The intended cache size should be evaluated when considering the utility of allowing
multiple tasks to maintain cache entries. If the cache is relatively small and the time between
context switches is large, each task will tend to fill the cache and remove all entries created
during the execution of previous tasks. Conversely, if the cache size is relatively large and
the period between context switches is relatively small, the cache may provide an efficient
sharing of entries.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-31

12.6.1 Cache Implementation
An example organization of an external cache is shown in Figure 12-15. With this
organization, the cache timing controller does not terminate a bus cycle until the cache has
had sufficient time to validate the access as a “hit”or a “miss”. When a hit decision is made,
the cache controller asserts the STERM signal and also blocks propagation of AS (A) to the
external system. If the cache decision cannot be completed before AS would normally be
asserted by the MC68030, some provision must be made to delay the propagation of AS
until the decision is valid. Otherwise, spurious assertions of the AS signal are likely to occur.

The cache control circuit (B) contains all logic required to clear or create cache entries. Also
contained in (B) is the decision logic required to determine whether a hit or miss has
occurred and the timing logic that is required to prevent propagation of the ``hit'' signal until
the lookup and compare circuitry has had sufficient time to generate a valid decision. The
critical path in the design of this cache is from the output of valid address by the MC68030
to the assertion of STERM by the cache controller (see Equation 12-3 of Table 12-2). After
a cache hit decision has been made, the hit signal directly drives the STERM signal.
Qualifying STERM with AS is not necessary assuming the appropriate setup and hold times
are respected when AS is asserted. Operating at 20 MHz with no wait states, 21 ns are
available from the presentation of valid address by the MC68030 to the assertion of STERM
by the cache controller while 46 ns are available from valid address to data valid at the
processor.

If the access times cannot be met due to the particular cache architecture, size, cost, or
other consideration, the system designer may choose to utilize an early termination
approach, as discussed above, that increases the decision time available to the cache
controller by meeting the critical path from address valid to BERR/HALT asserted (see
Equation 12-5 of Table 12-2). The only required changes to the cache structure shown in
Figure 12-17 is the generation of STERM. Figure 12-18 shows an example circuit that could
be positioned between the MC68030 and the external cache to provide the early termination
or late retry function.

Applications Information

12-32 MC68030 USER’S MANUAL MOTOROLA

Normally, as soon as AS is asserted, circuit (C) immediately asserts the STERM signal to
terminate the bus cycle, assuming that the cache will produce a valid hit later in the cycle.
Circuit (C) also prevents the early termination from occurring from those cycles that access
operands that are noncachable or had missed in the cache on the previous cycle (and have
not already been retried). In this example, (C) prevents early termination of all CPU space
accesses, all write cycles (assuming a writethrough cache is implemented), cycles with
CIOUT asserted, and all cycles that missed in the cache on the previous cycle and were not
accesses to noncachable locations. The flip-flop in (C) latches the termination condition of
the current bus cycle at the rising edge of AS, and this status is used during the next cycle.
Other conditions to suppress early termination may be included as required by a particular
system, but propagation delays must be carefully considered in order that the output of (C)
be valid before the rising edge of state S1 (see Equation 12-3 of Table 12-2).

(UNABLE TO LOCATE ART)

Figure 12-17. Example MC68030 Hardware Configuration with
External Physical Cache

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-33

The late termination circuit is formed by the gates (D) and (E). If the current cycle is
accessing a cachable location, as determined by the output of (C), and a cache hit has not
occurred (D), then the BERR and HALT signals are driven low (E).

Note that the logic depicted in Figure 12-18 is designed to support a cache operating with
no wait states. A provision for generating wait states may be included by placing additional
timing stages between (C) and the MC68030 to delay propagation of this output by the
required number of clock periods.

(UNABLE TO LOCATE ART)

Figure 12-18. Example Early Termination Control Circuit

Applications Information

12-34 MC68030 USER’S MANUAL MOTOROLA

To minimize the potential for delays in retrying a bus cycle, the negation path of the bus error
and halt signals should be carefully controlled. Light capacitive loading of these signals lines
as well as the use of a properly sized pullup resistor for any open collector drivers, or some
equivalent method, is recommended.

The available cache tag lookup, compare, and logic delay (D) and (E) time for this
implementation is given by Equation 12-5 of Table 12-2 (40 ns at 20.0 MHz with no wait
states).

A further design consideration is the response of the main memory controller to accesses
that miss in the cache and are retried. During a retry operation and in the absence of
arbitration for the logical bus, the MC68030 continuously drives the address bus with the
address that caused the retry to be signaled. This presents the designer with the opportunity
to utilize this information to continue (or initiate) the access in the main memory (by latching
the state of the AS signal during the initial bus cycle and holding it asserted for the duration
of the retry), thus decreasing the overhead associated with retrying the cycle.

12.6.2 Instruction-Only External Cache Implementations
In some cases, particularly in multiprocessing systems where cache coherence is a
concern, it is desirable to store only instruction operands since they are not considered to
be alterable and, hence, cannot generate stale data. In general, this is feasible with the
MC68000 architecture as long as PC relative addressing modes are not used. This
restriction allows program and data accesses to be distinguished externally by decoding the
function code signals.

12.7 DEBUGGING AIDS
The MC68030 supports the monitoring of internal microsequencer activity with the STATUS
and REFILL signals. The use of these signals is described in the following paragraph. A
useful device to aid programming debugging is described in 12.7.2 Real-Time Instruction
Trace.

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-35

12.7.1 Status and Refill
The MC68030 provides the STATUS and REFILL signals to identify internal
microsequencer activity associated with the processing of data in the pipeline. Since bus
cycles are independently controlled and scheduled by the bus controller, information
concerning the processing state of the microsequencer is not available by monitoring bus
signals by themselves. The internal activity identified by the STATUS and REFILL signals
include instruction boundaries, some exception conditions, when the microsequencer has
halted, and instruction pipeline refills. STATUS and REFILL track only the internal
microsequencer activity and are not directly related to bus activity.

As shown in Table 12-4, the number of consecutive clocks during which STATUS is
asserted indicates an instruction boundary, an exception to be processed, or that the
processor has halted. Note that the processor halted condition is an internal error state in
which the microsequencer has shut itself down due to a double bus fault and is not related
to the external assertion of the HALT input signal. The HALT signal only affects bus
operation, not the microsequencer.

The REFILL signal identifies when the microsequencer requests an instruction pipeline refill.
Refill requests are a result of having to break sequential instruction execution to handle
nonsequential events. Both exceptions and instructions can cause the assertion of REFILL.
Instructions that cause refills include branches, jumps, instruction traps, returns,
coprocessor general instructions that modify the program counter flow, and status register
manipulations. Logical and arithmetic operations affecting the condition codes of the status
register do not result in a refill request. However, operations like the MOVE <ea>,SR
instruction, which updates the status register, cause a refill request since this can change
the program space as defined by the function codes. When the program space changes, the
processor must fetch data from the new space to replace data already prefetched from the
old program space. Similarly, operations which affect the address translation mechanism of
the memory management unit (MMU) cause a refill request. An instruction like the PMOVE
<ea>,TC, which changes the translation control register, requires the processor to fetch data

Table 12-4. Microsequencer STATUS Indications

Asserted for Indicates
1 Clock Sequencer at instruction boundary will begin execution of next instruction
2 Clocks Sequencer at instruction boundary but will not begin next instruction

immediately due to:
• pending trace exception

OR
• pending interrupt exception

3 Clocks MMU address translation cache miss — processor to begin table search
OR

Exception processing to begin for:
• reset OR
• bus error OR
• address error OR
• spurious interrupt OR
• autovectored interrupt OR
• F-line instruction (no coprocessor responded)

Continuously Processor halted due to double bus fault

Applications Information

12-36 MC68030 USER’S MANUAL MOTOROLA

from the new address translation base. The Test Condition, Decrement, and Branch (DBcc)
instruction causes two refill requests when the condition being tested is false. To optimize
branching performance, the DBcc instruction requests a refill before the condition is tested.
If the condition is false, another refill is requested to continue with the next sequential
instruction.

Figure 12-19 illustrates the relation between the CLK signal and normal instruction
boundaries as identified by the STATUS signal. STATUS asserting for one clock cycle
identifies normal instruction boundaries. Note that the assertion of REFILL does not
necessarily correspond to the assertion of STATUS. Both STATUS and REFILL assert and
negate from the falling edge of the CLK signal.

Figure 12-20 shows a normal instruction boundary followed by a trace or interrupt exception
boundary. STATUS asserting for two clock cycles identifies a trace or interrupt exception.
Instruction boundary information is still present since both trace and interrupt exceptions are
processed only at instruction boundaries. Before the exception handler instructions are
prefetched, the REFILL signal asserts (not shown) to identify a change in program flow.

(UNABLE TO LOCATE ART)

Figure 12-19. Normal Instruction Boundaries

Applications Information

MOTOROLA MC68030 USER’S MANUAL 12-37

Figure 12-21 illustrates the assertion of the STATUS signal for other exception conditions,
which include MMU address translation cache miss, reset, bus error, address error,
spurious interrupt, autovectored interrupt, and F-line instruction when no coprocessor
responds. Exception processing causes STATUS to assert for three clock cycles to indicate
that normal instruction processing has stopped. Instruction boundaries cannot be
determined in this case since these exceptions are processed immediately, not just at
instruction boundaries.

Figure 12-22 shows the assertion of STATUS, indicating that the processor has halted due
to a double bus fault. Once a bus error has occurred, any additional bus error exception
occurring before the execution of the first instruction of the bus error handler routine
constitutes a double bus fault. The processor also halts if it receives a bus error or address
error during the vector table read operations or the prefetch for the first instruction after an
external reset. STATUS remains asserted until the processor is reset.

(UNABLE TO LOCATE ART)

Figure 12-20. Trace or Interrupt Exception

(UNABLE TO LOCATE ART)

Figure 12-21. Other Exceptions

Applications Information

12-38 MC68030 USER’S MANUAL MOTOROLA

12.7.2 Real-Time Instruction Trace
Microprocessor-based systems used for real-time applications typically lack development
aids for program debug. The real-time environment does not allow program instruction
execution to arbitrarily stop to handle debugging events. These systems include control
applications where mechanical events cannot halt, such as robotics, automotive, and
industrial control and emulator systems which may need to keep the target system executing
in real time.

To solve the problems inherent with real-time systems, the MC68030 incorporates extra
hardware-based features to enhance program debug. Real-time systems cannot take
advantage of the trace exception mechanism built into all M68000 Family processors since
this takes processing time away from real-time events. Additional output pins have been
incorporated into the MC68030 to gain real-time visibility into the processor. Tracing
capability can be added by decoding MC68030 control signals to detect which cycles are
important for tracking. Post analysis of collected data allows for program debug.

Several problems exist with an external trace mechanism. These problems include
determining which cycles are important for tracking program flow, detecting if instructions
obtained in prefetch operations are discarded by the execution unit, and the inability of
external trace circuitry to capture accesses to on-chip cache memories.

External trace hardware used for program debug must be synchronized to the MC68030 bus
activity. Since all clock cycles are not traced in a program debug environment, the trace
hardware requires a sampling signal. For external read and write operations, trace sampling
occurs when the data bus contains valid data. Two modes of external bus operation are
possible: the synchronous mode in which the system returns the STERM signal and the
asynchronous mode in which the system responds with the DSACK1 and/or the DSACK0
signals. Both modes of bus operation need to generate a sampling signal when valid data
is present on the bus. This allows for tracing data flow in and out of the processor, which is
the basis for tracking program execution.

(UNABLE TO LOCATE ART)

Figure 12-22. Processor Halted

Applications Information

12-39 MC68030 USER’S MANUAL MOTOROLA

The pipelined architecture of the MC68030 prefetches instructions and operands to keep the
three stages of the instruction pipe full. The pipeline allows concurrent operations to occur
for up to three words of a single instruction or for up to three consecutive instructions. While
sequential instruction execution is the norm, it is possible that prefetched data is not used
by the execution unit due to a nonsequential event. The STATUS signal allows trace
hardware to mark the progress of the execution unit as it processes program memory
operands and allows marking of some exceptions. Nonsequential events, where the entire
pipeline needs to reload before continuing execution, are marked by the REFILL signal.

External hardware typically has no visibility into on-chip cache memory operations.
However, the MC68030 provides a local address reference to increase visibility. Write
operations are totally visible since the MC68030 implements a writethrough policy allowing
external hardware to capture data. For read operations from on-chip cache memories, the
least significant byte of the address bus provides a local address reference.

The MC68030 begins an external cycle by driving the address bus and asserting the
external cycle start (ECS) signal. Address strobe (AS) asserts later in the cycle to validate
the address. If a hit occurs in the cache or the cache holding register, then the external cycle
is aborted and AS is not asserted. In addition, the low-order address bits (A0=A7) are not
involved in the address translation process performed by the on-chip MMU, creating a local
address reference which can be used by trace functions. All read cycles from the on-chip
cache memories cannot be captured externally since the cache access does not depend on
the availability of the external bus.

Figure 12-23 shows a trace interface circuit which can be used with a logic analyzer for
program debug. The nine input signals (DSACK1, DSACK0, CLK, AS, RESET, STATUS,
REFILL, STERM, and ECS) are connected to the MC68030 processor in the system under
development. Six output signals are generated to aid in capturing and analyzing data. In
addition to connecting the logic analyzer to the address bus, the data bus, and the bus
control signals, the trace interface signals (SAMPLE, PHALT, FILL, EP, IE, and ECSC)
should also be connected. The external clock probe of the logic analyzer connects to the
system CLK signal for synchronization. Setting up the logic analyzer for data capture
requires that samples be taken on the falling edge of the CLK signal when the SAMPLE
signal is high. Table 12-5 lists the parts required to implement this circuit.

Applications Information

12-40 MC68030 USER’S MANUAL MOTOROLA

The sample signal (SAMPLE) is an active-high signal which qualifies the next falling edge
of the CLK signal as the sampling point. Five types of conditions cause SAMPLE to assert:

1. An external bus cycle

2. An internal cache hit, including a hit in the cache holding register

3. An instruction boundary

4. Exception processing as marked by the EP signal discussed below

5. The processor halting

The remaining five output signals are used to qualify the information collected.

The processor halt (PHALT) signal indicates that the MC68030 has received a double bus
fault and needs a reset operation to continue processing. PHALT asserts after the assertion
of STATUS for greater than three clock cycles and generates a SAMPLE signal.

The FILL signal indicates a break in sequential instruction execution. FILL is a latched
version of the REFILL signal and remains asserted until a sample is collected as indicated
by the assertion of SAMPLE. The assertion of FILL does not generate a SAMPLE signal.

The exception pending (EP) signal indicates that the MC68030 is beginning exception
processing for either a reset, bus error, address error, spurious interrupt, autovectored
interrupt, F-line instruction, MMU address translation cache miss, trace exception, or
interrupt exception. The EP signal asserts after STATUS negates from a two- or three-clock
cycle assertion. The assertion of EP does generate a SAMPLE signal.

(UNABLE TO LOCATE ART)

Figure 12-23. Trace Interface Circuit

Table 12-5. List of Parts

Quantity Part Part Description
1 74F00 Quad 2 Input NAND Gate
2 74F114 Dual JK Negative Edge-Triggered Flip-Flop
1 74F74 Dual D-Type Positive Edge-Triggered Flip-Flop
1 PAL16R6D Programmable Logic Array, Ultra High Speed

Applications Information

12-41 MC68030 USER’S MANUAL MOTOROLA

The instruction executed (IE) signal indicates the execution unit has just finished processing
an instruction. The IE signal asserts after STATUS negates from a one-clock cycle
assertion. The assertion of IE also generates a SAMPLE signal.

The external cycle start condition (ECSC) signal is used in conjunction with the AS signal to
determine if the address bus and data bus are valid in the current trace sample. Table 12-
6 lists the possible combinations of AS and ECSC and shows what parts of the traced
address and data bus are valid. The assertion of ECSC does not generate a SAMPLE
signal.

Figure 12-24 shows the pin definitions for the PAL16R6 package used in the trace circuit.
These definitions are used by the PAL equations listed in Figure 12-25.

12.8 POWER AND GROUND CONSIDERATIONS
The MC68030 is fabricated in Motorola's advanced HCMOS process, contains
approximately 275,000 total transistor sites, and is capable of operating at clock frequencies
of up to 33.33 MHz. While the use of CMOS for a device containing such a large number of
transistors allows significantly reduced power consumption in comparison to an equivalent
NMOS circuit, the high clock speed makes the characteristics of power supplied to the
device very important. The power supply must be able to supply large amounts of
instantaneous current when the MC68030 performs certain operations, and it must remain
within the rated specification at all times. To meet these requirements, more detailed
attention must be given to the power supply connection to the MC68030 than is required for
NMOS devices that operate at slower clock rates.

Table 12-6. AS and ECSC Indicates

AS ECSC Indicates
0 0 Both Address and Data Bus Are Valid
0 1 Both Address and Data Bus Are Valid
1 0 Address Bits (A0=A7) are Valid

Address Bits (A8=A31) Are Invalid
Data Bus Is Invalid

1 1 Both Address and Data Bus Are Invalid

Applications Information

12-42 MC68030 USER’S MANUAL MOTOROLA

To supply a solid power supply interface, 10 VCC pins and 14 GND pins are provided. This
allows two VCC and four GND pins to supply power for the address bus and two VCC and
four GND pins to supply the data bus; the remaining VCC and GND pins are used by the
internal logic and clock generation circuitry. Table 12-7 lists the VCC and GND pin
assignments.

To reduce the amount of noise in the power supplied to the MC68030 and to provide for
instantaneous current requirements, common capacitive decoupling techniques should be
observed. While there is no recommended layout for this capacitive decoupling, it is
essential that the inductance between these devices and the MC68030 be minimized to
provide sufficiently fast response time to satisfy momentary current demands and to
maintain a constant supply voltage. It is suggested that a combination of low, middle, and
high frequency, high-quality capacitors be placed as close to the MC68030 as possible (e.g.,
a set of 10 µF, 0.1 µF, and 330 pF capacitors in parallel provides filtering for most
frequencies prevalent in a digital system). Similar decoupling techniques should also be
observed for other VLSI devices in the system.

(UNABLE TO LOCATE ART)

Figure 12-24. PAL Pin Definition

Applications Information

12-43 MC68030 USER’S MANUAL MOTOROLA

In addition to the capacitive decoupling of the power supply, care must be taken to ensure
a low-impedance connection between all MC68030 VCC and GND pins and the system
power supply planes. Failure to provide connections of sufficient quality between the
MC68030 power supply pins and the system supplies will result in increased assertion
delays for external signals, decreased voltage noise margins, and potential errors in internal
logic.

(UNABLE TO LOCATE ART)

Figure 12-25. Logic Equations

Table 12-7. VCC and GND Pin Assignments

Pin Group VCC GND

Address Bus C6, D10 C5, C7, C9, E11

Data Bus L6, K10 J11, L9, L7, L5

ECS, SIZx, DS, AS, DBEN, CBREQ, R/W K4 J3

FC0=FC2, RMC, OCS, CIOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

MOTOROLA

MC68030 USER’S MANUAL

13-1

SECTION 13
ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68030. Detail information on timing specifications for power
considerations, DC electrical characteristics and AC timing specifications can be found in
the MC68030EC/D,

MC68030 Electrical Specifications

.

13.1 MAXIMUM RATINGS

*A continuous clock must be supplied to the MC68030 when it is powered up.

13.2 THERMAL CHARACTERISTICS — PGA PACKAGE

*Estimated

Rating Symbol Value Unit

Supply Voltage V

CC

–0.3 to +7.0 V

Input Voltage V

in

–0.5 to +7.0 V

Operating Temperature Range T

A

0 to 70

°

C

Storage Temperature Range T

stg

–55 to 150

°

C

Characteristic Symbol Value Rating

Thermal Resistance - Plastic
Junction to Ambient
Junction to case

θ

JA

θ

JC

32*
15*

°

C/W

MOTOROLA

MC68030 USER’S MANUAL

14-1

SECTION 14
ORDERING INFORMATION
AND MECHANICAL DATA

This section contains the pin assignments and package dimensions of the MC68030. In
addition, detailed information is provided to be used as a guide when ordering.

14.1 STANDARD MC68030 ORDERING INFORMATION

Package Type
Frequency

(MHz)
Temperature Order Number

Pin Grid Array
RC Suffix

20.0
25.0
33.33

0

°

C to 70

°

C
0

°

C to 70

°

C
0

°

C to 70

°

C

MC68030RC20
MC68030RC25
MC68030RC33

Ceramic Surface Mount
FE Suffix

20.0
25.0
33.33

0

°

C to 70

°

C
0

°

C to 70

°

C
0

°

C to 70

°

C

MC68030FE20
MC68030FE25
MC68030FE33

Ordering Information and Mechanical Data

14-2

MC68030 USER’S MANUAL

MOTOROLA

14.2 PIN ASSIGNMENTS — PIN GRID ARRAY (RC SUFFIX)

The V

CC

 and GND pins are separated into three groups to provide individual power supply
connections for the address bus buffers, data bus buffers, and all other output buffers and
internal logic.

14.3 PIN ASSIGNMENTS — CERAMIC SURFACE MOUNT (FE SUFFIX)

Pin Group V

CC

GND

Address Bus C6, D10 C5, C7, C9, E11

Data Bus L6, K10 J11, L9, L7, L5

ECS, SIZx, DS, AS, DBEN, CBREQ, R/W K4 J3

FC0-FC2, RMC, OCS, CIOUT, BG D4 E3

Internal Logic, RESET, STATUS, REFILL, Misc. H3, F2, F11, H11 L8, G3, F3, G11

(UNABLE TO LOCATE ART)

(UNABLE TO LOCATE ART)

Ordering Information and Mechanical Data

MOTOROLA

MC68030 USER’S MANUAL

14-3

14.4 PACKAGE DIMENSIONS

MC68030

 RC Suffix Package
 Case 789C-01

(UNABLE TO LOCATE ART)

Ordering Information and Mechanical Data

14-4

MC68030 USER’S MANUAL

MOTOROLA

MC68030

 FE Suffix Package
 Case 831-01

(UNABLE TO LOCATE ART)

MOTOROLA

MC68030 USER’S MANUAL

A-1

APPENDIX A
M68000 FAMILY SUMMARY

This Appendix summarizes the characteristics of the microprocessors in the M68000 Family.
Refer to M68000 PM/AD, M68000 Programmer's Reference Manual, for more detailed infor-
mation about MC68000 and MC68010 differences.

Note 1. The MC68010 supports a three-word cache for the loop mode.

Virtual Memory/Machine

MC68010,
MC68020, and Provide Bus Error Detection, Fault Recovery
MC68030
MC68030 On-Chip MMU

Coprocessor Interface

MC68000,
MC68008, and Emulated in Software
MC68010
MC68020 and
MC68030 In Microcode

MC68000 MC68008 MC68010 MC68020 MC68030

Data Bus Size (Bits) 16 8 16 8,16,32 8,16,32

 Address Bus Size

(Bits)
24 20 24 32 32

Instruction Cache

(in words)
— — 3

1

128 128

Data Cache (in words) — — — — 128

M68000 Family Summary

A-2

MC68030 USER’S MANUAL

MOTOROLA

Word/Long-Word Data Alignment

MC68000,
MC68008, and Word/Long Data, Instructions, and Stack Must be
MC68010 Word Aligned
MC68020 and Only Instructions Must be Word Aligned
MC68030 (Data Alignment Improves Performance)

Control Registers

MC68000 and
MC68008 None
MC68010 SFC, DFC, VBR
MC68020 SFC, DFC, VBR, CACR, CAAR
MC68030 SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC, TT0,

 TT1, PSR

Stack Pointers

MC68000,
MC68008, and USP, SSP
MC68010
MC68020 and
MC68030 USP, SSP (MSP, ISP)

Status Register Bits

MC68000,
MC68008, and T, S, I0/I1/I2, X/N/Z/V/C
MC68010
MC68020 and
MC68030 T0/T1, S, M, I0/I1/I2, X/N/Z/V/C

M68000 Family Summary

MOTOROLA

MC68030 USER’S MANUAL

A-3

Function Code/Address Space

MC68000 and
MC68008 FC0–FC2=7 is Interrupt Acknowledge Only
MC68010,
MC68020, and FC0–FC2=7 is CPU Space
MC68030

Indivisible Bus Cycles

MC68000,
MC68008, and Use AS Signal
MC68010
MC68020 and
MC68030 Use RMC Signal

Stack Frames

MC68000 and
MC68008 Support Original Set
MC68010 Supports Formats $0, $8
MC68020 and
MC68030 Support Formats $0, $1, $2, $9, $A, $B

Addressing Modes

MC68020 and Memory indirect addressing modes, scaled index,
MC68030 extensions: and larger displacements. Refer to specific data

sheets for details.

M68000 Family Summary

A-4

MC68030 USER’S MANUAL

MOTOROLA

MC68020 and MC68030 Instruction Set Extensions

Bcc Supports 32-Bit Displacements
BFxxxx Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,

BFFFO, BFINS, BFSET, BFTST)
BKPT New Instruction Functionality
BRA Supports 32-Bit Displacements
BSR Supports 32-Bit Displacements
CALLM New Instruction (MC68020 only)
CAS, CAS2 New Instructions
CHK Supports 32-Bit Operands
CHK2 New Instruction
CMPI Supports Program Counter Relative Addressing Modes
CMP2 New Instruction
cp Coprocessor Instructions
DIVS/DIVU Supports 32-Bit and 64-Bit Operands
EXTB Supports 8-Bit Extend to 32 Bits
LINK Supports 32-Bit Displacement
MOVEC Supports New Control Registers
MULS/MULU Supports 32-Bit Operands
PACK New Instruction
PFLUSH MMU Instruction (MC68030 only)
PLOAD MMU Instruction (MC68030 only)
PMOVE MMU Instruction (MC68030 only)
PTEST MMU Instruction (MC68030 only)
RTM New Instruction (MC68020 only)
TST Supports Program Counter Relative Addressing Modes
TRAPcc New Instruction
UNPK New Instruction

MOTOROLA

MC68030 USER’S MANUAL

Index-1

INDEX

A

Abort Task Routine 9-82
Absolute Long Address Mode 2-20
Absolute Short Address Mode 2-20
Access Time Calculations, Memory 12-14
Accesses, Read-Modify-Write 6-10
Acknowledge, Breakpoint 8-10
Activity

Data Bus 12-11
Processor

Even Alignment 11-9
Odd Alignment 11-10

Actual Instruction Cache Case 11-11
Adapter Board

MC68020 12-1
Signal Routing 12-2

Address Bus 5-4, 7-4, 7-30, 12-4
Address Encoding, CPU Space 7-69
Address Error Exception 8-8, 10-72
Address Offset Encoding 7-8
Address Register

Direct Mode 2-10
Indirect Displacement Mode 2-12
Indirect Index (Base Displacement)

Mode 2-13
Indirect Index (8-Bit Displacement) Mode

2-12
Indirect Mode 2-10
Indirect Postincrement Mode 2-10
Indirect Predecrement Mode 2-11

Address Registers 1-6, 2-4
Address Space Types 4-5
Address Strobe Signal 5-5, 7-3–7-4, 7-26
Address Translation 9-13

Cache 7-3, 9-4, 9-17
Cache Entry 9-18
General Flowchart 9-13

Addressing
Capabilities 2-25
Compatibility, M68000 2-36
Indexed 2-26
Indirect 2-28
Indirect Absolute Memory 2-28
Mode Summary 2-31

Modes 1-10, 2-8
Structure 2-36

Aids, Debugging 12-35
Arbitration, Bus 7-96
Arithmetic/Logical Instruction

Immediate, Timing Table 11-42
Timing Table 11-40

AS Signal 5-5, 7-3–7-4, 7-26
Assignments, Exception Vector 8-2
Assignment, Pin 14-2–14-3
Asynchronous

Bus Operation 7-27
Byte

Read Cycle Flowchart 7-31
Read Cycle, 32-Bit Port, Timing 7-31
Read-Modify-Write Cycle, 32-Bit

Port, Timing 7-43
Write Cycle, 32-Bit Port, Timing 7-37

Cycle Signal Assertion Results 7-78
Long-Word Read Cycle Flowchart 7-31
Read Cycle 7-31

32-Bit Port, Timing 7-31
Read-Modify-Write Cycle 7-43

Flowchart 7-43
Sample Window 7-3
Word

Read Cycle, 32-Bit Port, Timing 7-31
Write Cycle, 32-Bit Port, Timing 7-37

Write Cycle 7-37
Flowchart 7-37
32-8it Port, Timing 7-37

ATC 7-3, 9-4, 9-17
Entry 9-17

Creation Flowchart 9-42
Autovector Interrupt Acknowledge Cycle 7-71

Timing 7-71
Autovector Signal 5-8, 7-6, 7-29, 7-71, 8-20
AVEC Signal 5-8, 7-6, 7-29, 7-71, 8-20
Average No Cache Case 11-8
A0-A1 Signals 7-8, 7-22
A0-A31 Signals 5-4, 7-4, 7-31
A0-A7 1-6

Index

Index

-2

MC68030 USER’S MANUAL

MOTOROLA

B

BERR Signal 5-9, 6-11, 7-6, 7-27, 8-7, 8-22,
8-25

Best Case 11-7
BG Signal 5-9, 7-43, 7-95–7-96
BGACK Signal 5-9, 7-97
Binary-Coded Decimal Instruction Timing

Table 11-43
Binary-Coded Decimal Instructions 3-10
Bit

CA 10-35
CD 6-21
CED 6-21
CEI 6-22
CI 6-22
Clear Data Cache 6-21
Clear Entry in Data Cache 6-21
Clear Entry in Instruction Cache 6-22
Clear Instruction Cache 6-22
Data Burst Enable 6-21
DBE 6-21
DR 10-36
ED 6-22
EI 6-23
Enable Data Cache 6-22
Enable Instruction Cache 6-23
FD 6-22
FI 6-23
Freeze Data Cache 6-22
Freeze Instruction Cache 6-23
IBE 6-22
Instruction Burst Enable 6-22
PC 10-35
WA 6-21
Write Allocate 6-21

Bit Field
Instruction Timing Table 11-47
Instructions 3-9
Operations 3-31

Bit Manipulation
Instruction Timing Table 11-46
Instructions 3-8

BKPT Instruction 7-74, 8-12, 8-22
Block Diagram 1-2, 9-2

MMU 9-2
Processor Resource 11-3

BR Signal 5-8, 7-43, 7-60, 7-96

Branch on Coprocessor Condition Instruction
10-13

Breakpoint Acknowledge 8-10
Cycle 7-74

Exception Signaled, Timing 7-74
Timing 7-74

Flowchart 7-74
Breakpoint Instruction 7-74, 8-22

Exception 8-22
Buffer

Instruction Fetch Pending 11-5
Write Pending 11-5

Burst
Cycle 7-59, 12-17
Mode

Cache Filling 6-10
Static RAM 12-24

Operation 7-59
Flowchart 7-61

Bus
Address 5-4, 7-3, 7-30, 12-4
Arbitration 7-96

Bus Inactive, Timing 7-103
Control 7-100
Flowchart 7-97
Latency 11-62
State Diagram 7-100
Timing 7-97

Control Signals 7-3
Controller 11-4
Data 5-4, 7-5, 7-30, 12-9, 12-24
Error

Exception 8-7, 10-72
Late, STERM, Timing 7-83
Late, Third Access, Timing 7-86
Late, With DSACKx, Timing 7-83
Second Access, Timing 7-86
Signal 5-9, 6-11, 7-6, 7-27, 8-7, 8-22
Without DSACKx Timing 7-83

Errors 7-82
Exceptions 7-75
Fault Recovery 8-27
Operation

Asynchronous 7-27
Synchronous 7-28–7-29

Synchronization 7-95
Timing 7-96

Transfer Signals 7-1

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-3

Bus Grant 7-99
Signal 5-9, 7-43, 7-96

Bus Grant Acknowledge 7-100
Signal 5-9, 7-97

Bus Request 7-98
Signal 5-8, 7-43, 7-60, 7-96

Busy Primitive 10-36
Byte

Data Select 7-23
Read Cycle, Asynchronous

Flowchart 7-31
32-Bit Port, Timing 7-31

Select Logic 12-9
Write Cycle, Asynchronous, 32-Bit Port,

Timing 7-37

C

CA Bit 10-35
CAAR 1-9, 2-5, 6-23
Cache

Address Translation 7-3, 9-4, 9-17
Data 1-16, 6-6, 11-4, 11-16
External 12-32
Filling 7-24

Burst Mode 6-15
Single Entry 6-10

Instruction 1-16, 6-1, 6-4, 11-4
Interactions 7-26
Organization 6-1
Reset 6-20

Cache Address Register 1-9, 2-5, 6-23
Cache Burst Acknowledge Signal 5-7, 6-16,

7-24, 7-30
Cache Burst Request Signal 5-7, 6-16, 7-6,

7-30, 7-48
Cache Control Register 1-9, 2-5, 6-3–6-4,

6-20–6-21
Cache Disable Signal 5-10, 6-3
Cache Inhibit Input Signal 5-7, 6-3, 6-9, 6-15,

7-3, 7-26
Cache Inhibit Output Signal 5-7, 6-3, 6-9,

7-30, 9-2, 9-13
CACR 1-5, 2-5, 6-3–6-4, 6-20
Calculate Effective Address Timing Table

11-30
Calculate Immediate Effective Address

Timing

Table 11-32
Calculations, Execution Time 11-6
Capabilities, Addressing 2-25
CAS Instruction 7-43

Example 3-25
Case

Actual Instruction Cache 11-11
Average No Cache 11-8
Best 11-7
Instruction Cache 11-6

CAS2 Instruction 7-43
Example 3-26

CBACK Signal 5-7, 6-16, 7-24, 7-30
CBREQ Signal 5-7, 6-16, 7-6, 7-30, 7-48
CCR 2-4, 3-14
CD Bit 6-21
CDIS Signal 5-10, 6-3
CED Bit 6-21
CEI Bit 6-22
Changing Privilege Level 4-4
CI Bit 6-22
CIIN Signal 5-7, 6-3, 6-9, 6-15, 7-3, 7-26
CIOUT Signal 5-7, 6-3, 6-9, 7-30, 9-2, 9-17
CIR 10-8, 10-29

Command 10-31
Condition 10-31
Control 10-30
Instruction Address 10-33
Operand 10-32
Operand Address 10-33
Operation Word 10-31
Register Select 10-32
Response 10-29
Restore 10-31
Save 10-30

Clear Data Cache Bit 6-21
Clear Entry in Data Cache Bit 6-21
Clear Entry in Instruction Cache Bit 6-22
Clear Instruction Cache Bit 6-22
CLK Signal 5-11, 7-54
Clock Signal 5-11, 7-54
Command CIR 10-31
Command Words, Illegal, Coprocessor

Detected 10-63
Compare and Swap Instruction 7-43
Compatibility, M68000 Addressing 2-36
Computation, Condition Code 3-15
Concurrent Operation 10-3

Index

Index

-4

MC68030 USER’S MANUAL

MOTOROLA

Condition CIR 10-31
Condition Code

Computation 3-15
Register 2-4, 3-14

Condition Tests 3-17
Conditional Branch Instruction Timing Table

11-48
Connections, Power Supply 5-11
Considerations

Ground 12-43
Power 12-43

Contiguous Memory 9-33–9-34
Example 9-34

Control
Bus Arbitration 7-100
Early Termination 12-34

Control CIR 10-30
Control Instruction Timing Table 11-49
Controller

Bus 11-4
Micro Bus 11-5

Coprocessor
Communication Cycle 7-74
Conditional Instructions 10-12
Context Restore Instruction 10-27
Context Save Instruction 10-24
Data Processing Exceptions 10-63
DMA 10-6
Format Words 10-22
General Instruction Protocol 10-11
General Instructions 10-9
Identification Code 10-4
Instruction Format 10-4
Instruction Summary 10-72
Instructions 3-21
Interface 10-1, 10-6
MC68881 12-5
MC68882 12-5
Non-DMA 10-6
Reset 10-72
Response Primitive 10-33
Response Primitive Format 10-35
State Frames 10-20–10-21
System Related Exceptions 10-64

Coprocessor Detected
Exceptions 10-61
Format Errors 10-64
Illegal Command Words 10-63

Illegal Condition Words 10-63
Protocol Violations 10-62

Coprocessor Interface Register 10-8, 10-29
Count, Initial Shift 9-69
cpBcc Instruction 10-14
cpDBcc Instruction 10-17
CpID 7-74, 10-4
cpRESTORE Instruction 10-27
cpSAVE Instruction 10-25
cpScc Instruction 10-15
cpTRAPcc Instruction 10-18
cpTRAPcc Instruction Exception 10-69
CPU Root Pointer 1-9, 2-5, 9-23, 9-52, 9-54,

9-65
CPU Space 7-68, 7-70, 10-7
CPU Space Address Encoding 7-69
CRP 1-9, 2-5, 9-23, 9-52, 9-54, 9-65
Cycle

Asynchronous Read 7-31
Breakpoint Acknowledge 7-74
Burst 7-59, 12-17
Coprocessor Communication 7-74
Interrupt Acknowledge 7-69
Interrupt Acknowledge, Autovector 7-71

Cycles, Data Transfer 7-30

D

Data
Bus 5-4, 7-5, 7-30, 12-9

Activity 12-11
Requirements, Read Cycle 7-9
Write Enable Signals 7-22

Cache 1-16, 6-1, 6-6, 11-4, 11-16
Movement Instructions 3-4
Port Organization 7-8
Register Direct Mode 2-9
Registers 1-6, 2-2
Select, Byte 7-23
Transfer

Cycles 7-30
Transfer Mechanism 7-6

Types 1-10
Data Buffer Enable Signal 5-6, 7-5, 7-31
Data Burst Enable Bit 6-21
Data Strobe Signal 5-6, 7-5, 7-27
Data Transfer and Size Acknowledge Signals

5-6, 6-11, 6-14, 7-5–7-6, 7-26

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-5

Data, Immediate 2-21
DBE Bit 6-21
DBEN Signal 5-6, 7-5, 7-31
Debugging Aids 12-35
Decoding, MMU Status Register 9-61
Definition, Task Memory Map 9-66
Delay, Input 7-2
Derivation, Table Index 9-9
Description, General 1-1
Descriptor

Bits, Unused 9-71
Fetch Operation Flowchart 9-44
Indirect

Long Format 9-28
Short Format 9-27

Invalid
Long Format 9-28
Short Format 9-26

Page
Long Format 9-26
Short Format 9-26

Page, Early Termination
Long Format 9-25
Short Format 9-25

Root Pointer 9-23
Table

Long Format 9-24
Short Format 9-24

Descriptors, Translation Table 9-10, 9-20
DFC 1-8, 2-2, 2-5
Differences

MC68020 Hardware 12-3
MC68020 Software 12-4
MMU 9-51

DMA Coprocessor 10-5
Double Bus Fault 7-94, 8-7
Doubly-Linked List

Deletion Example 3-28
Insertion Example 3-28

DR Bit 10-36
DS Signal 5-6, 7-5, 7-27
DSACK0 Signal 5-6, 6-11, 6-14, 7-5–7-6,

7-26
DSACK1 Signal 5-6, 6-11, 6-14, 7-5–7-6,

7-26
Dynamic Allocation, Table 9-40
Dynamic Bus Sizing 7-6, 7-19, 7-24
D0-D31 Signals 5-4, 7-5, 7-30

D0-D7 1-6

E

Early Termination 9-25, 9-70
Early Termination Control 12-34
ECS Signal 5-5, 7-3, 7-26
ED Bit 6-22
Effective Address Encoding Summary 2-22
EI Bit 6-23
Empty/Reset Format Word 10-22
Enable Data Cache Bit 6-22
Enable Instruction Cache Bit 6-23
Encoding

Address Offset 7-8
Size Signal 7-9

Entry, Address Translation Cache 9-17
Errors, Bus 7-82
EU 6-16
Example

CAS Instruction 3-25
CAS2 Instruction 3-26
Contiguous Memory 9-34
Doubly-Linked List

Deletion 3-28
Insertion 3-28

Function Code Lookup 9-46
Indirection 9-34
Linked List

Deletion 3-27
Insertion 3-26

Protection, Translation Tree 9-50
System Paging Implementation 9-72
Table Paging 9-37
Table Sharing 9-34
Two Task Translation Tree 9-47

Exception
Address Error 8-8, 10-72
Breakpoint Instruction 8-22
Bus Error 8-7, 10-72
cpTRAPcc Instruction 10-69
Format Error 8-14
Illegal Instruction 8-9
Instruction Trap 8-9
Interrupt 8-14, 10-71
MMU Configuration 8-21, 9-62
Priority 8-16
Privilege Violation 8-11, 10-69

Index

Index

-6

MC68030 USER’S MANUAL

MOTOROLA

Processing 4-6
Sequence 8-1
State 4-1

Reset 8-2, 8-5
Return from 8-24
Stack Frame 4-6, 8-32
Trace 8-12, 10-70
Unimplemented Instruction 8-9
Vector

Assignments 8-2
Numbers 8-1

Vectors 4-6
Exception Related

Instruction Timing Table 11-50
Operation Timing Table 11-50

Exceptions
Bus 7-75
Coprocessor Data Processing 10-63
Coprocessor Detected 10-62
Coprocessor System Related 10-64
F-Line Emulator 8-10, 10-68
Multiple 8-23
Primitive Processing 10-66

Execution Time Calculations 11-6
Execution Unit 6-16
Extended Instruction Timing Table 11-43
External Cache 12-32

Implementation 12-32
Instruction Only 12-35

External Cycle Start Signal 5-5, 7-3, 7-26

F

Fault, Double Bus 7-94, 8-7
FC0-FC2 Signals 5-4, 6-6, 7-4, 7-31
FD Bit 6-22
Fetch Effective Address Timing Table 11-26
Fetch Immediate Effective Address Timing

Table 11-28
FI Bit 6-23
Fields, Limit 9-70
F-Line 10-4

Emulator Exceptions 8-10, 10-68
Floating Point Units 12-5
Flowchart

Address Translation, General 9-13
Asynchronous Byte Read Cycle 7-31
Asynchronous Long Word Read Cycle

7-31
Asynchronous Read-Modify-Write Cycle

7-43
Asynchronous Write Cycle 7-37
ATC Entry Creation 9-42
Breakpoint Acknowledge 7-74
Burst Operation 7-61
Bus Arbitration 7-97
Descriptor Fetch Operation 9-44
Interrupt Acknowledge Cycle 7-70
Limit Check Procedure 9-43
Synchronous Long-Word Read Cycle

7-48
Synchronous Read-Modify-Write Cycle

7-54
Table Search

Detailed 9-41
Initialization 9-42
Simplified 9-28

Format
Coprocessor Instruction 10-4
Coprocessor Response Primitive 10-35
Instruction 3-1
Instruction Description 3-18

Format Error Exception 8-14
Format Errors

Coprocessor Detected 10-61
Main Processor Detected 10-71

Format Word
Empty/Reset 10-22
Invalid 10-23
Not Ready 10-23
Valid 10-24

Format Words, Coprocessor 10-22
Formula, Instruction Cache Case Time 11-11
Freeze Data Cache Bit 6-22
Freeze Instruction Cache Bit 6-23
Function Code Lookup 9-45–9-46

Example 9-46
Logical Address Map 9-46

Function Code Registers 1-8, 2-5
Function Code Signals 5-4, 6-6, 7-4, 7-31

G

General Description 1-1
GetFrame Routine 9-74
GND Pin Assignments 12-46

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-7

Grant, Bus 7-99
Ground Considerations 12-43
Groups, Signal 5-1

H

Halt Operation 7-91
Timing 7-92

HALT Signal 5-9, 7-6, 7-27
Halt Signal 5-9, 7-6, 7-27
Halted State 4-1

I

IBE Bit 6-22
Identification Code, Coprocessor 10-4
Illegal Instruction Exception 8-9
Immediate Data 2-21
Indexed Addressing 2-26
Index, Signal 5-2
Indirect Absolute Memory Addressing 2-29
Indirect Addressing 2-29
Indirection 9-34

Example 9-34
Information, Ordering 14-1
Initial Reset Timing 7-103
Initial Shift Count 9-69
Input Delay 7-2
Instruction

BKPT 8-22
Branch on Coprocessor Condition 10-13
Breakpoint 7-74, 8-22
CAS 7-43
CAS2 7-43
Compare and Swap 7-43
Coprocessor Context Restore 10-27
Coprocessor Context Save 10-24
cpBcc 10-14
cpDBcc 10-17
cpRESTORE 10-27
cpSAVE 10-25
cpScc 10-15
cpTRAPcc 10-18
Move Address Space 7-74
MOVES 7-74
No Operation 7-95
NOP 7-95
Set on Coprocessor Condition 10-15
STOP 8-14

TAS 7-43
Test and Set 7-43
Test Coprocessor Condition, Decrement

and
Branch 10-17

Trap on Coprocessor Condition 10-18
Instruction Address CIR 10-33
Instruction Boundary Signals 12-37
Instruction Burst Enable Bit 6-22
Instruction Cache 1-16, 6-1, 6-4, 11-4

Case 11-6
Instruction Description

Format 3-18
Notation 3-3

Instruction Fetch Pending Buffer 11-5
Instruction Format 3-1

Summary 3-18
Instruction Set 1-13
Instruction Timing Tables 11-24
Instruction Trace, Real-Time 12-39
Instruction Trap Exception 8-9
Instructions

Binary Coded Decimal 3-10
Bit Field 3-9
Bit Manipulation 3-8
Coprocessor 3-21

Conditional 10-12
General 10-9

Data Movement 3-4
Integer Arithmetic 3-5
Logical 3-6
MMU 3-13, 9-62
Multiprocessor 3-13
Privileged 8-11
Program Control 3-11
Rotate 3-7
Shift 3-7
System Control 3-12

Integer Arithmetic Instructions 3-5
Interactions, Cache 7-26
Interface

Coprocessor 10-1, 10-5
Memory 12-11

Internal Microsequencer Status Signal 5-10,
7-94

Internal Operand Representation 7-7
Internal to External Data Bus Multiplexer 7-10
Interrupt

Index

Index

-8

MC68030 USER’S MANUAL

MOTOROLA

Cycle, Spurious 7-74
Exception 8-14, 10-71
Latency 11-61
Levels 8-16

Interrupt Acknowledge Cycle 7-69
Flowchart 7-70
Timing 7-71

Interrupt Pending Signal 5-8, 8-17–8-18
Interrupt Priority Level Signals 5-8, 7-69, 8-15
Invalid Format Word 10-23
IPEND_Signal 5-8, 8-17–8-18
IPL0-IPL2 Signals 5-8, 7-69, 8-15

J

Jump Effective Address Timing Table 11-35

L

Late Bus Error
STERM, Timing 7-83
Third Access, Timing 7-86
With DSACKx, Timing 7-83

Late Retry Operation, Burst, Timing 7-89
Latency

Bus Arbitration 11-62
Interrupt 11-61

Levels, Interrupt 8-16
Limit Check Procedure Flowchart 9-43
Limit Fields 9-70
Linked List

Deletion Example 3-27
Insertion Example 3-26

Logical Address Map
Function Code Lookup 9-45
Shared Supervisor/User Address Space

9-46
Logical Instructions 3-6
Logic, Byte Select 12-9
Long Format

Early Termination Page Descriptor 9-25
Indirect Descriptor 9-28
Invalid Descriptor 9-28
Page Descriptor 9-26
Table Descriptor 9-24

Long-Word Operand Request
Burst Fill Deferred, Timing 7-61
Burst Request

CBACK Negated, Timing 7-61

Wait States, Timing 7-61
Burst, CBACK and CIIN Asserted, Timing

7-61
Long-Word Read Cycle

Asynchronous, Flowchart 7-31
Synchronous, Flowchart 7-48
16-Bit Port, Timing 7-31
32-Bit Port, Timing 7-31
8-Bit Port, CIOUT Asserted, Timing 7-31

Long-Word to Long-Word Transfer
Misaligned 7-19

Cachable 7-19
Long-Word to Word Transfer 7-10

Misaligned 7-15
Long-Word Write Cycle

16-Bit Port, Timing 7-37
8-Bit Port, Timing 7-37

Lookup, Function Code 9-45–9-46

M

Machine, Virtual 1-14
Main Processor Detected

Format Errors 10-71
Protocol Violations 10-67

MC68020
Adapter Board 12-1
Hardware Differences 12-3
Software Differences 12-4

MC68851 Signals 12-4
MC68881 Coprocessor 12-6
MC68882 Coprocessor 12-6
Mechanism, Data Transfer 7-6
Memory

Contiguous 9-33–9-34
Interface 12-11
Virtual 1-12, 9-76

Memory Access Time Calculations 12-14
Memory Data Organization 2-5
Memory Indirect Postindexed Mode 2-14
Memory Indirect Preindexed Mode 2-15
Memory Management Unit 1-15, 7-3,

7-37–7-38, 7-43, 9-1, 11-6
Micro Bus Controller 11-5
Microsequencer 11-2
Mid-Instruction Stack Frame 10-59
Misaligned

Cachable

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-9

Long-Word to Long-Word Transfer
7-19

Word to Long-Word Transfer 7-15
Word to Word Transfer 7-15

Long-Word to Long-Word Transfer 7-19
Long-Word to Word Transfer 7-15

Timing 7-15
Operand 7-13, 7-19
Word to Word Transfer 7-15
Word to Word Transfer Timing 7-15

MMU 1-15, 7-3, 7-37–7-38, 7-43, 9-1, 11-6
Block Diagram 9-2
Configuration Exception 8-21, 9-62
Differences 9-51
Disable Signal 5-10, 9-2, 9-15
Effective Address Timing Table 11-58
Instruction Timing Table 11-60
Instructions 3-13, 9-62
Programming Model 9-2
Register Side Effects 9-61
Status Register 1-9, 2-5, 9-59, 9-61–9-63

Decoding 9-61
MMUDIS Signal 5-10, 9-2, 9-15, 12-2–12-3
MMUSR 1-9, 2-5, 9-59
Mode

Absolute
Long Address 2-20
Short Address 2-20

Address Registers
Direct 2-10
Indirect 2-10
Indirect Displacement 2-12
Indirect Index (Base Displacement)

2-13
Indirect Index (8-Bit Displacement)

2-12
Indirect Postincrement 2-10
Indirect Predecrement 2-11

Data Register Direct 2-9
Memory Indirect

Postindexed 2-14
Preindexed 2-15

Program Counter
Indirect Displacement 2-16
Indirect Index (Base Displacement)

2-17
Indirect Index (8-Bit Displacement)

2-16

Memory Indirect Postindexed 2-14
Memory Indirect Preindexed 2-15

Model, Programming 1-7, 9-2
Modes, Addressing 1-10, 2-8
Move Address Space Instruction 7-74
MOVE Instruction

Special-Purpose, Timing Table 11-39
Timing Table 11-37

MOVES Instruction 7-74
Multiple Exceptions 8-23
Multiplexer, Data Bus, Internal to External

7-10
Multiprocessor Instructions 3-13
M68000 Family 1-4, 2-36

Summary A-1

N

Nested Subroutine Calls 3-30
No Operation Instruction 7-95
Non-DMA Coprocessor 10-5
NOP Instruction 7-95
Normal Processing State 4-1
Not Ready Format Word 10-23
Notation, Instruction Description 3-3
Null Primitive 10-37–10-38
Number of Table Levels 9-68

O

OCS Signal 5-5, 7-3, 7-31
Operand Address CIR 10-33
Operand CIR 10-32
Operand Cycle Start Signal 5-5, 7-3, 7-26
Operands 2-1
Operand, Misaligned 7-13, 7-19
Operation

Burst 7-59
Concurrent 10-3
Halt 7-91
Reset 7-103
Retry 7-89

Operation Word CIR 10-31
Operations, Bit Field 3-31
Ordering Information 14-1
Organization

Cache 6-3
Data Port 7-8
Memory Data 2-5

Index

Index

-10

MC68030 USER’S MANUAL

MOTOROLA

Register Data 2-2
Overlap 11-7

P

Package Dimensions 14-4
Paging

Implementation Example System 9-72
Table 9-37

Performance Tradeoffs 11-1
Pin Assignment 14-2–14-3
Pin Assignments

GND 12-46
V

CC

 12-46
Pipeline 1-12, 1-16, 11-2
Pipeline Refill Signal 5-10, 6-5
Pipeline Synchronization 3-32
Pipelined Burst Mode Static RAM 12-30
Pointer

CPU Root 1-9, 2-5, 9-23, 9-52, 9-54, 9-65
Supervisor Root 1-9, 2-5, 9-23, 9-52,

9-54, 9-65
Post-instruction Stack Frame 10-60
Power Supply Connections 5-11
Pre-Instruction Stack Frame 10-57
Primitive

Busy 10-36
Coprocessor Response 10-11, 10-33
Evaluate and Transfer Effective Address

10-42
Evaluate Effective Address and Transfer

Data 10-43
Null 10-37–10-38
Supervisor Check 10-40
Take Address and Transfer Data 10-48
Take Mid-instruction Exception 10-58
Take Post-Instruction Exception 10-60
Take Pre-Instruction Exception 10-56
Transfer from Instruction Stream 10-41
Transfer Main Processor Control

Register 10-50, 10-52
Transfer Multiple Coprocessor Registers

10-52
Transfer Multiple Main Processor

Registers 10-52
Transfer Operation Word 10-40
Transfer Single Main Processor Register

10-50, 10-52

Transfer Status Register and ScanPC
10-55

Transfer to
from Top of Stack 10-49

Write to Previously Evaluated Effective
Address 10-46

Primitive Processing Exception 10-66
Priority, Exception 8-16
Privilege Level

Changing 4-4
Supervisor 4-2
User 4-3

Privilege Violation Exception 8-11, 10-69
Privileged Instructions 8-11
Processing, Exception 4-6
Processor Activity

Even Alignment 11-9
Odd Alignment 11-10

Processor Generated Reset Timing 7-105
Processor Resource Block Diagram 11-3
Program Control Instructions 3-11
Program Counter

Indirect Displacement Mode 2-12
Indirect Index (Base Displacement)

Mode 2-13
Indirect Index (8-Bit Displacement) Mode

2-12
Memory Indirect Postindexed Mode 2-14
Memory Indirect Preindexed Mode 2-14

Programming Model 1-4, 9-2
MMU 9-2

Protection 9-43
Supervisor Only 9-48
Write 9-48

Protocol
Processor General Instruction 10-7
Violations

Coprocessor Detected 10-62
Main Processor Detected 10-65

Q

Queue 2-39

R

RAM, Static 12-18
Ratings, Maximum 13-1
Read Cycle

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-11

Asynchronous, 32-Bit Port, Timing 7-31
Data Bus Requirements 7-9
Synchronous 7-48

CIIN Asserted, CBACK Negated,
Timing 7-48

Read-Modify-Write
Accesses 6-10
Cycle

Asynchronous 7-43
Asynchronous, Byte, 32-Bit Port,

Timing 7-43
Asynchronous, Flowchart 7-43
Synchronous 7-54
Synchronous, CIIN Asserted, Flow-

chart 7-54
Synchronous, Flowchart 7-54

Signal 5-5, 7-4, 7-43, 12-4
Read/Write Signal 5-5, 7-4, 7-36
Real Time Instruction Trace 12-39
Recovery

Bus Fault 8-27
RTE 8-25

REFILL Signal 5-10, 6-5
Register

Cache Address 1-9, 2-5, 6-23
Cache Control 1-9, 2-5, 6-3–6-4,

6-20–6-21
Condition Code 2-4, 3-14
Coprocessor interface 10-8, 10-29
Data Organization 2-2
MMU Status 1-9, 2-5, 9-59
Status 1-5, 2-4, 6-5
Translation Control 1-9, 2-5, 9-8, 9-54
Vector Base 1-8, 2-5

Register Select CIR 10-32
Registers

Address 1-6, 2-4
Data 1-6, 2-2
Function Code 1-8, 2-5
Transparent Translation 1-9, 2-5, 9-16,

9-57
Representation, Internal Operand 7-7
Request, Bus 7-98
Requirements, Data Bus, Read Cycle 7-9
Reset

Cache 6-20
Coprocessor 10-72
Exception 8-5

Operation 7-103
Signal 5-9, 7-97, 9-15, 9-61

RESET Signal 5-9, 7-97, 9-15, 9-61
Resource Scheduling 11-2
Response CIR 10-29
Restore CIR 10-31
Restore Operation Timing Table 11-51
Retry Operation 7-89

Late
Asynchronous, Timing 7-89
Burst, Timing 7-89
Synchronous, Timing 7-89

Return from Exception 8-24
RMC Signal 5-5, 7-4, 7-43
Root Pointer Descriptor 9-23
Rotate Instructions 3-7
Routine

AbortTask 9-82
Bus Error 9-82
GetFrame 9-74
SwapPagein 9-83
Vallocate 9-79

RTE
Bus Fault Recovery 8-25
Instruction 8-24

R/W Signal 5-5, 7-4, 7-36

S

Save CIR 10-30
Save Operation Timing Table 11-51
ScanPC 10-15, 10-18, 10-34
Scheduling, Resource 11-2
Script, Table Search Timing 11-51
Search, Table 9-28, 9-30
Sequence, Exception Processing 8-1
Set on Coprocessor Condition Instruction

10-15
Set, Instruction 1-10, 1-13
SFC 1-8, 2-5
Shared Supervisor/User Address Space

Logical
Address Map 9-49

Sharing, Table 9-37
Shift Instructions 3-7
Shift/Rotate Instruction Timing Table 11-45
Short Format

Early Termination Page Descriptor 9-25

Index

Index

-12

MC68030 USER’S MANUAL

MOTOROLA

Indirect Descriptor 9-27
Invalid Descriptor 9-26
Page Descriptor 9-25
Table Descriptor 9-24

Side Effects, MMU Register 9-61
Signal

Address Strobe 5-5, 7-3–7-4, 7-26
AS 5-5, 7-3–7-4, 7-26
Autovector 5-8, 7-6, 7-29, 7-71
AVEC 5-8, 7-6, 7-29, 7-71
BERR 5-9, 6-19, 7-6, 7-27, 8-7, 8-22,

8-25
BG 5-9, 7-43, 7-96
BGACK 5-9, 7-97
BR 5-8, 7-43, 7-60, 7-96
Bus Error 5-9, 6-11, 7-6, 7-27, 8-7, 8-22,

8-25
Bus Grant 5-9, 7-43, 7-96
Bus Grant Acknowledge 5-9, 7-97
Bus Request 5-8, 7-43, 7-60, 7-96
Cache Burst Acknowledge 5-7, 6-16,

7-24, 7-30
Cache Burst Request 5-7, 6-16, 7-6,

7-30, 7-48
Cache Disable 5-10, 6-3
Cache Inhibit Input 5-7, 6-3, 6-9, 7-3,

7-30
Cache Inhibit Output 5-7, 6-3, 6-9, 7-30,

9-2, 9-13
CBACK 5-7, 6-16, 7-3, 7-24, 7-30
CBREQ 5-7, 6-16, 7-6, 7-30, 7-48
CDIS 5-10, 6-3
CIIN 5-7, 6-3, 6-9, 6-15, 7-3, 7-26
CIOUT 5-7, 6-3, 6-9, 7-30, 9-2, 9-17
CLK 5-11, 7-54
Clock 5-11, 7-54
Data Buffer Enable 5-6, 7-5, 7-51
Data Strobe 5-6, 7-5, 7-27
DBEN 5-6, 7-5, 7-31
DS 5-6, 7-5, 7-27
DSACK0 5-6, 6-11, 6-14, 7-5–7-6, 7-26
DSACK1 5-6, 6-11, 6-14, 7-5–7-6, 7-26
ECS 5-5, 7-3, 7-26
External Cycle Start 5-5, 7-3, 7-26
HALT 5-9, 7-6, 7-27
Halt 5-9, 7-6, 7-27
Internal Microsequencer Status 5-10,

7-94, 8-4, 8-18, 8-25

Interrupt Pending 5-8, 8-17–8-18
IPEND 5-8, 8-17–8-18
MMU Disable 5-10, 9-2, 9-15
MMUDIS 5-10, 9-2, 9-15
OCS 5-5, 7-3, 7-31
Operand Cycle Start 5-5, 7-3, 7-31
Pipeline Refill 5-10, 6-5
Read-Modify-Write 5-5, 7-4, 7-43
Read/Write 5-5, 7-4, 7-36
REFILL 5-10, 6-5
RESET 5-9, 7-97, 9-15, 9-61, 12-40
Reset 5-9, 7-97, 9-15, 9-61, 12-40
RMC 5-5, 7-4, 7-43, 12-4
R/W 5-5, 7-4, 7-36
SIZ0 5-4, 7-4, 7-8–7-9, 7-13, 7-22
SIZ1 5-4, 7-4, 7-8–7-9, 7-13, 7-22
STATUS 5-10, 7-94, 8-4, 8-7–8-8
STERM 5-6, 6-14, 6-16, 7-3, 7-6, 7-26

Signal Assertion Results, Asynchronous
Cycle 7-78

Signal Groups 5-1
Signal Index 5-2
Signal Routing, Adapter Board 12-2
Signal Summary 5-11
Signals

A0-A1 7-8, 7-22
A0-A31 5-4, 7-4, 7-31
Bus Control 7-3
Bus Transfer 7-1
Data Bus Write Enable 7-22
Data Transfer and Size Acknowledge

5-6, 6-11, 6-14, 7-5–7-6, 7-26
D0-D31 5-4, 7-5, 7-30
FC0-FC2 5-4, 6-6, 7-4, 7-31
Function Code 5-4, 6-6, 7-4, 7-31
Instruction Boundary 12-37
Interrupt Exception 12-38
Interrupt Priority Level 5-8, 7-69, 8-13
IPL0-IPL2 5-8, 7-69, 8-13
MC68851 12-4
Other Exception 12-38
Processor Halted 12-39
Trace Exception 12-38
Transfer Size 5-4, 7-4, 7-8–7-9, 7-22

Single Entry Cache Filling 6-10
Single Operand Instruction Timing Table

11-44
Size Restrictions, Table Index 9-10

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-13

Size Signal Encoding 7-8
Sizing, Dynamic Bus 7-6, 7-19, 7-24
SIZ0 Signal 5-4, 7-4, 7-8–7-9, 7-22
SIZ1 Signal 5-4, 7-4, 7-8–7-9, 7-22
Software Bus Fault Recovery 8-27
Space, CPU 7-68, 7-70, 10-7
Special Status Word 8-28
Spurious Interrupt Cycle 7-74
SR 1-8, 2-4, 6-5, 8-11, 8-13, 8-15
SRP 1-5, 1-9, 2-5, 9-23, 9-52, 9-65
Stack

System 2-36
User Program 2-38

Stack Frame
Exception 4-7, 8-32
Mid-Instruction 10-59
Post-Instruction 10-60
Pre-Instruction 10-57

State
Diagram, Bus Arbitration 7-101
Exception Processing 4-1
Halted 4-1
Normal Processing 4-1

State Frames, Coprocessor 10-20–10-21
States, Wait 11-18
Static RAM 12-18

Burst Mode 12-24
Pipelined Burst Mode 12-30
Two Clock Synchronous 12-18

Status Register 1-8, 2-4, 6-5, 8-11, 8-13, 8-15
STATUS Signal 5-10, 7-94, 8-4, 8-7–8-8
Status Word, Special 8-28
STERM Signal 5-6, 6-14, 6-16, 7-3, 7-6, 7-26
Structure Addressing 2-25
Subroutine Calls, Nested 3-30
Summary

Addressing Mode 2-31
Coprocessor Instruction 10-72
Effective Address Encoding 2-22
M68000 Family A-1
Signal 5-11

Supervisor
Privilege Level 4-2
Root Pointer 1-9, 2-5, 9-23, 9-52, 9-54,

9-65
Translation Tree 9-48

Supervisor Check Primitive 10-40
Supervisor Only Protection 9-48

Synchronization
Bus 7-95
Pipeline 3-32

Synchronous
Bus Operation 7-28–7-29
CIIN Asserted, CBACK Negated, Timing

7-48
Cycle Signal Assertion Results 7-78
Long Word Read Cycle Flowchart 7-48
Read Cycle 7-48
Read-Modify-Write Cycle 7-52
Read-Modify-Write Cycle Flowchart 7-54
Read-Modify-Write Cycle, CIIN Asserted,

Timing 7-54
Termination Signal 5-6, 6-14, 6-16, 7-3,

7-6, 7-26
Write Cycle

Flowchart 7-52
Wait States, CIOUT Asserted, Tim-

ing 7-52
Synchronous Termination 5-6, 6-16, 7-3, 7-6,

7-26
System

Control Instructions 3-12
Stack 2-36

T

Table
Dynamic Allocation 9-40
Index

Derivation 9-10
Size Restrictions 9-10

Levels, Number of 9-68
Paging 9-37

Example 9-37
Sharing 9-34, 9-37

Example 9-37
Table Search 9-30

Flowchart
Detailed 9-41
Simplified 9-28

Initialization Flowchart 9-42
Timing 11-52

Script 11-52
Table 11-57

Tables, Instruction Timing 11-24
Take Address and Transfer Data Primitive

Index

Index

-14

MC68030 USER’S MANUAL

MOTOROLA

10-48
Take Mid-instruction Exception Primitive

10-58
Take Post-instruction Exception Primitive

10-60
Take Pre-Instruction Exception Primitive

10-56
TAS Instruction 7-43
Task Memory Map Definition 9-66
TC 1-9, 2-5, 9-8, 9-54
Test and Set Instruction 7-43
Tests, Condition 3-17
Timing

Asynchronous
Byte Read Cycle, 32-Bit Port 7-31
Byte Read-Modify-Write Cycle,

32-Bit Port 7-43
Byte Write Cycle, 32-Bit Port 7-37
Read Cycle, 32-Bit Port 7-31
Word Read Cycle, 32-Bit Port 7-31
Word Write Cycle, 32-Bit Port 7-37
Write Cycle, 32-Bit Pori 7-37

Autovector Interrupt Acknowledge Cycle
7-71

Breakpoint Acknowledge Cycle 7-74
Exception Signaled 7-74

Bus Arbitration 7-95
Bus Inactive 7-103

Bus Error
Late, STERM 7-83
Late, Third Access 7-86
Late, With DSACKx 7-83
Second Access 7-86
Without DSACKx 7-83

Bus Synchronization 7-95
Halt Operation 7-89
Initial Reset 7-103
Interrupt Acknowledge Cycle 7-69
Long Word

Operand Request, Burst Fill De-
ferred 7-61

Operand Request, Burst Request
CBACK Negated 7-61

Operand Request, Burst Request,
Wait States 7-61

Operand Request, Burst, CBACK
and CIIN Assert 7-61

Read Cycle, 16-Bit Port 7-31

Read Cycle, 32-Bit Port 7-31
Read Cycle, 8-Bit Port, CIOUT As-

serted 7-31
Write 7-10
Write Cycle, 16-Bit Port 7-37
Write Cycle, 8-Bit Port 7-37

Misaligned
Long-Word to Word Transfer 7-10
Word to Word Transfer 7-19

Processor-Generated Reset 7-105
Retry Operation, Late

Asynchronous 7-89
Burst 7-89
Synchronous 7-89

Synchronous
Read Cycle, CIIN Asserted, CBACK

Negated 7-48
Read-Modify-Write Cycle, CIIN As-

serted 7-54
Table Search 11-51
Write Cycle, Wait States, CIOUT As-

serted 7-52
Write, Long-Word 7-10
Write, Word 7-13

Timing Table
Arithmetic/Logical Instruction 11-40

Immediate 11-42
Binary Coded Decimal Instruction 11-43
Bit Field Instruction 11-47
Bit Manipulation Instruction 11-46
Calculate Effective Address 11-30
Calculate Immediate Effective Address

11-32
Conditional Branch Instruction 11-48
Control Instruction 11-49
Exception Related

Instruction 11-50
Operation 11-50

Extended Instruction 11-43
Fetch Effective Address 11-26
Fetch Immediate Effective Address

11-28
Jump Effective Address 11-35
MMU

Effective Address 11-58
Instruction 11-60

MOVE Instruction 11-37
Special Purpose 11-39

 Index

MOTOROLA

MC68030 USER’S MANUAL

Index-15

Restore Operation 11-51
Save Operation 11-51
Shift/Rotate Instruction 11-45
Single Operand Instruction 11-44
Table Search 11-51

Trace Exception 8-12, 10-70
Signals 12-38

Tradeoffs, Performance 11-1
Transfer

Long Word to Long Word, Misaligned
Cachable 7-19

Long Word to Word 7-10
Misaligned

Cachable Word to Long Word 7-15
Cachable Word to Word 7-15
Long Word to Long Word 7-19
Long Word to Word 7-15
Word to Word 7-15
Word to Word, Timing 7-15

Word to Byte 7-13
Transfer Main Processor Control Register

Primitive 10-50, 10-52
Transfer Multiple Coprocessor Registers

Primitive 10-52
Transfer Multiple Main Processor Registers

Primitive 10-52
Transfer Operation Word Primitive 10-40
Transfer Single Main Processor Register

Primitive 10-50, 10-52
Transfer Size Signals 5-4, 7-4, 7-8–7-9, 7-22
Transfer Status Register and ScanPC

Primitive 10-55
Transfer to/from Top of Stack Primitive 10-49
Translation Control Register 1-9, 2-5, 9-8,

9-54
Translation Table Descriptors 9-10, 9-20
Translation Table Tree 9-5–9-6, 9-11, 9-28,

9-47–9-48, 9-65
Translation Tree, Supervisor 9-48

Protection Example 9-50
Translation, Address 9-13
Transparent Translation Registers 1-9, 2-5,

9-16, 9-57
Tree, Translation Table 9-5–9-6, 9-11, 9-28,

9-47–9-48, 9-65
TT0 1-9, 2-5, 9-16, 9-57
TT1 1-9, 2-5, 9-16, 9-57
Two Clock Synchronous Static RAM 12-18

Types
Address Space 4-5
Data 1-10

U

Unimplemented Instruction Exception 8-9
Unit

Execution 6-16
Memory Management 1-15, 7-3,

7-37–7-38, 7-43, 9-1, 11-6, 12-5
Units, Floating Point 12-5
Unused Descriptor Bits 9-71
User Privilege Level 4-2, 4-4
User Program Stack 2-38

V

Valid Format Word 10-24
Vallocate Routine 9-78
VBR 1-8, 2-5
V

CC

 Pin Assignments 12-46
Vector

Base Register 1-8, 2-5
Numbers, Exception 8-1

Vectors, Exception 4-6
Virtual Machine 1-12
Virtual Memory 1-12, 9-77

W

WA Bit 6-21
Wait States 11-18
Window

Asynchronous Sample 7-3
Word Read Cycle, Asynchronous, 32-Bit Port

Timing 7-31
Word to Byte Transfer 7-13
Word to Long-Word Transfer, Misaligned

7-15
Word to Word Transfer, Misaligned Cachable

7-15
Word Write Cycle, Asynchronous, 32-Bit Port

Timing 7-37
Word Write Timing 7-13
Word, Special Status 8-28
Write Allocate Bit 6-21
Write Cycle

Asynchronous 7-37

Index

Index

-16

MC68030 USER’S MANUAL

MOTOROLA

Flowchart 7-37
32-Bit Port, Timing 7-37

Synchronous 7-51
Flowchart 7-52

Wait States, CIOUT Asserted, Timing
7-52

Write Pending Buffer 11-5
Write Protection 9-48
Write Timing

Long Word 7-10
Word 7-13

Write to Previously Evaluated Effective
Address

Primitive 10-46

©MOTOROLA INC., 1990
Revised 1992, 1993

M68040 User’s Manual
Including the

MC68040,
MC68040V,

MC68LC040,
MC68EC040,

and
MC68EC040V

µ MOTOROLA

©MOTOROLA INC., 1992

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

iv M68040 USER’S MANUAL MOTOROLA

PREFACE

The complete documentation package for the MC68040, MC68040V, MC68LC040,
MC68EC040, and MC68EC040V (collectively called M68040) consists of the
M68040UM/AD, M68040 User’s Manual, and the M68000PM/AD, M68000 Family
Programmer’s Reference Manual. The M68040 User’s Manual describes the capabilities,
operation, and programming of the M68040 32-bit third-generation microprocessors. The
M68000 Family Programmer’s Reference Manual contains the complete instruction set for
the M68000 family.

The introduction of this manual includes general information concerning the MC68040 and
summarizes the differences between the M68040 member devices. Additionally, three
appendices provide detailed information on how these M68040 dirivatives operate
differently from the MC68040. For detailed information on one of these M68040
dirivatives, use the following table to determine which appendices to read in conjunction
with the rest of this manual.

Device Number Appendices

MC68040V Appendix A MC68LC040 and Appendix C MC68040V and MC68EC040V

MC68LC040 Appendix A MC68LC040

MC68EC040 Appendix B MC68EC040

MC68EC040V Appendix B MC68EC040 and Appendix C MC68040V and MC68EC040V

When reading this manual, remember to disregard information concerning floating-point
in reference to the MC68040V and MC68LC040, and to disregard information concerning
floating-point and memory management in reference to the MC68EC040 and
MC68EC040V. The organization of this manual is as follows:

Section 1 Introduction
Section 2 Integer Unit
Section 3 Memory Management Unit (Except MC68EC040 and MC68EC040V)
Section 4 Instruction and Data Caches
Section 5 Signal Description
Section 6 IEEE 1149.1 Test Access Port (JTAG)
Section 7 Bus Operation
Section 8 Exception Processing
Section 9 Floating-Point Unit (MC68040)
Section 10 Instruction Timings
Section 11 MC68040 Electrical and Thermal Characteristics
Section 12 Ordering Information and Mechanical Data
Appendix A MC68LC040
Appendix B MC68EC040
Appendix C MC68040V and MC68EC040V
Appendix D M68000 Family Summary
Appendix E Floating-Point Emulation (M68040FPSP)
Index

vi M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS
Paragraph Page

Number Title Number

Section 1
Introduction

1.1 Differences .. 1-1
1.1.1 MC68040V and MC68LC040 .. 1-1
1.1.2 MC68EC040 and MC68EC040V ... 1-2
1.2 Features .. 1-3
1.3 Extensions to the M68000 Family ... 1-3
1.4 Functional Blocks .. 1-3
1.5 Processing States ... 1-5
1.6 Programming Model .. 1-5
1.7 Data Format Summary.. 1-9
1.8 Addressing Capabilities Summary .. 1-9
1.9 Notational Conventions ... 1-11
1.10 Instruction Set Overview ... 1-13

Section 2
Integer Unit

2.1 Integer Unit Pipeline.. 2-1
2.2 Integer Unit Register Description .. 2-4
2.2.1 Integer Unit User Programming Model .. 2-4
2.2.1.1 Data Registers (D7–D0) .. 2-4
2.2.1.2 Address Registers (A6–A0) ... 2-4
2.2.1.3 System Stack Pointer (A7) ... 2-5
2.2.1.4 Program Counter ... 2-5
2.2.1.5 Condition Code Register .. 2-5
2.2.2 Integer Unit Supervisor Programming Model 2-5
2.2.2.1 Interrupt and Master Stack Pointers .. 2-6
2.2.2.2 Status Register .. 2-7
2.2.2.3 Vector Base Register ... 2-7
2.2.2.4 Alternate Function Code Registers .. 2-7
2.2.2.5 Cache Control Register ... 2-8

MOTOROLA M68040 USER’S MANUAL vii

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 3
Memory Management Unit

(Except MC68EC040 and MC68EC040V)

3.1 Memory Management Programming Model .. 3-3
3.1.1 User and Supervisor Root Pointer Registers..................................... 3-3
3.1.2 Translation Control Register .. 3-4
3.1.3 Transparent Translation Registers .. 3-5
3.1.4 MMU Status Register .. 3-6
3.2 Logical Address Translation .. 3-7
3.2.1 Translation Tables ... 3-7
3.2.2 Descriptors .. 3-12
3.2.2.1 Table Descriptors ... 3-12
3.2.2.2 Page Descriptors ... 3-13
3.2.2.3 Descriptor Field Definitions .. 3-13
3.2.3 Translation Table Example .. 3-16
3.2.4 Variations in Translation Table Structure .. 3-16
3.2.4.1 Indirect Action .. 3-16
3.2.4.2 Table Sharing Between Tasks ... 3-18
3.2.4.3 Table Paging .. 3-19
3.2.4.4 Dynamically Allocated Tables .. 3-21
3.2.5 Table Search Accesses ... 3-21
3.2.6 Address Translation Protection ... 3-23
3.2.6.1 Supervisor and User Translation Tables.. 3-23
3.2.6.2 Supervisor Only.. 3-23
3.2.6.3 Write Protect .. 3-24
3.3 Address Translation Caches ... 3-26
3.4 Transparent Translation .. 3-29
3.5 Address Translation Summary .. 3-30
3.6 MMU Effect on RSTI and MDIS ... 3-31
3.6.1 Effect of RSTI on the MMUs .. 3-31
3.6.2 Effect of MDIS on Address Translation .. 3-31
3.7 MMU Instructions .. 3-33
3.7.1 MOVEC ... 3-33
3.7.2 PFLUSH... 3-33
3.7.3 PTEST ... 3-33
3.7.4 Register Programming Considerations.. 3-34

viii M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 4
Instruction and Data Caches

4.1 Cache Operation ... 4-2
4.2 Cache Management.. 4-5
4.3 Caching Modes ... 4-6
4.3.1 Cachable Accesses ... 4-6
4.3.1.1 Write-Through Mode .. 4-6
4.3.1.2 Copyback Mode ... 4-6
4.3.2 Cache-Inhibited Accesses ... 4-7
4.3.3 Special Accesses .. 4-7
4.4 Cache Protocol ... 4-7
4.4.1 Read Miss ... 4-8
4.4.2 Write Miss .. 4-8
4.4.3 Read Hit .. 4-8
4.4.4 Write Hit ... 4-8
4.5 Cache Coherency ... 4-9
4.6 Memory Accesses for Cache Maintenance... 4-11
4.6.1 Cache Filling.. 4-11
4.6.2 Cache Pushes ... 4-13
4.7 Cache Operation Summary... 4-13
4.7.1 Instruction Cache... 4-14
4.7.2 Data Cache.. 4-15

Section 5
Signal Description

5.1 Address Bus (A31–A0) ... 5-4
5.2 Data Bus (D31–D0) ... 5-5
5.3 Transfer Attribute Signals.. 5-5
5.3.1 Transfer Type (TT1, TT0) .. 5-5
5.3.2 Transfer Modifier (TM2–TM0) ... 5-6
5.3.3 Transfer Line Number (TLN1, TLN0)... 5-6
5.3.4 User-Programmable Attributes (UPA1, UPA0) 5-7
5.3.5 Read/Write (R/W) .. 5-7
5.3.6 Transfer Size (SIZ1, SIZ0) .. 5-7
5.3.7 Lock (LOCK) .. 5-7
5.3.8 Lock End (LOCKE) .. 5-7
5.3.9 Cache Inhibit Out (CIOUT) .. 5-8
5.4 Bus Transfer Control Signals .. 5-8
5.4.1 Transfer Start (TS) ... 5-8

MOTOROLA M68040 USER’S MANUAL ix

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

5.4.2 Transfer in Progress (TIP) ... 5-8
5.4.3 Transfer Acknowledge (TA) ... 5-8
5.4.4 Transfer Error Acknowledge (TEA) .. 5-8
5.4.5 Transfer Cache Inhibit (TCI) .. 5-9
5.4.6 Transfer Burst Inhibit (TBI) ... 5-9
5.5 Snoop Control Signals... 5-9
5.5.1 Snoop Control (SC1, SC0) .. 5-9
5.5.2 Memory Inhibit (MI).. 5-9
5.6 Arbitration Signals ... 5-10
5.6.1 Bus Request (BR) .. 5-10
5.6.2 Bus Grant (BG) .. 5-10
5.6.3 Bus Busy (BB).. 5-10
5.7 Processor Control Signals ... 5-10
5.7.1 Cache Disable (CDIS).. 5-10
5.7.2 Reset In (RSTI) .. 5-11
5.7.3 Reset Out (RSTO).. 5-11
5.8 Interrupt Control Signals.. 5-11
5.8.1 Interrupt Priority Level (IPL2–IPL0).. 5-11
5.8.2 Interrupt Pending Status (IPEND) .. 5-12
5.8.3 Autovector (AVEC) ... 5-12
5.9 Status And Clock Signals .. 5-12
5.9.1 Processor Status (PST3–PST0) .. 5-12
5.9.2 Bus Clock (BCLK) .. 5-14
5.9.3 Processor Clock (PCLK)—Not on MC68040V and MC68EC040V ... 5-14
5.10 MMU Disable (MDIS)—Not on MC68EC040 ... 5-14
5.11 Data Latch Enable (DLE)—Only on MC68040...................................... 5-14
5.12 Test Signals .. 5-15
5.12.1 Test Clock (TCK) ... 5-15
5.12.2 Test Mode Select (TMS) .. 5-15
5.12.3 Test Data In (TDI) .. 5-15
5.12.4 Test Data Out (TDO) ... 5-15
5.12.5 Test Reset (TRST)—Not on MC68040V and MC68EC040V............. 5-15
5.13 Power Supply Connections ... 5-15
5.14 Signal Summary .. 5-16

Section 6
IEEE 1149.1 Test Access Port (JTAG)

6.1 Overview ... 6-2
6.2 Instruction Shift Register ... 6-3
6.2.1 EXTEST ... 6-3

x M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

6.2.2 HIGHZ ... 6-4
6.2.3 SAMPLE/PRELOAD.. 6-4
6.2.4 DRVCTL.T ... 6-4
6.2.5 SHUTDOWN ... 6-5
6.2.6 PRIVATE ... 6-5
6.2.7 DRVCTL.S... 6-5
6.2.8 BYPASS .. 6-6
6.3 Boundary Scan Register ... 6-6
6.4 Restrictions ... 6-12
6.5 Disabling The IEEE Standard 1149.1A Operation 6-13
6.6 Motorola M68040 BSDL Description (Version 2.2) 6-15
6.7 MC68040, MC68LC040, MC68EC040

 JTAG Electrical Characteristics .. 6-21

Section 7
Bus Operation

7.1 Bus Characteristics ... 7-1
7.2 Data Transfer Mechanism... 7-3
7.3 Misaligned Operands .. 7-6
7.4 Processor Data Transfers ... 7-9
7.4.1 Byte, Word, and Long-Word Read Transfers 7-10
7.4.2 Line Read Transfer .. 7-12
7.4.3 Byte, Word, and Long-Word Write Transfers 7-20
7.4.4 Line Write Transfers .. 7-22
7.4.5 Read-Modify-Write Transfers (Locked Transfers) 7-26
7.5 Acknowledge Bus Cycles .. 7-29
7.5.1 Interrupt Acknowledge Bus Cycles .. 7-29
7.5.1.1 Interrupt Acknowledge BUS Cycle (Terminated Normally) 7-31
7.5.1.2 Autovector Interrupt Acknowledge bus Cycle 7-33
7.5.1.3 Spurious Interrupt Acknowledge Bus Cycle................................... 7-34
7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle 7-35
7.6 Bus Exception Control Cycles... 7-36
7.6.1 Bus Errors ... 7-37
7.6.2 Retry Operation ... 7-41
7.6.3 Double Bus Fault ... 7-43
7.7 Bus Synchronization ... 7-43
7.8 Bus Arbitration And Examples .. 7-44
7.8.1 Bus Arbitration ... 7-45
7.8.2 Bus Arbitration Examples .. 7-52
7.8.2.1 Dual M68040 Fairness Arbitration ... 7-52
7.8.2.2 Dual M68040 Prioritized Arbitration ... 7-54

MOTOROLA M68040 USER’S MANUAL xi

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

7.8.2.3 M68040 Synchronous DMA Arbitration .. 7-55
7.8.2.4 M68040 Asynchronous DMA Arbitration .. 7-57
7.9 Bus Snooping Operation ... 7-59
7.9.1 Snoop-Inhibited Cycle.. 7-60
7.9.2 Snoop-Enabled Cycle (No Intervention Required) 7-61
7.9.3 Snoop Read Cycle (Intervention Required) 7-63
7.9.4 Snoop Write Cycle (Intervention Required) 7-63
7.10 Reset Operation .. 7-65
7.11 Special Modes of Operation .. 7-68
7.11.1 Output Buffer Impedance Selection ... 7-68
7.11.2 Multiplexed Bus Mode ... 7-68
7.11.3 Data Latch Enable Mode ... 7-69

Section 8
Exception Processing

8.1 Exception Processing Overview .. 8-1
8.2 Integer Unit Exceptions ... 8-5
8.2.1 Access Fault Exception ... 8-6
8.2.2 Address Error Exception.. 8-8
8.2.3 Instruction Trap Exception ... 8-8
8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions 8-9
8.2.5 Privilege Violation Exception ... 8-9
8.2.6 Trace Exception ... 8-10
8.2.7 Format Error Exception ... 8-11
8.2.8 Breakpoint Instruction Exception ... 8-12
8.2.9 Interrupt Exception .. 8-12
8.2.10 Reset Exception... 8-17
8.3 Exception Priorities ... 8-19
8.4 Return From Exceptions.. 8-20
8.4.1 Four-Word Stack Frame (Format $0) .. 8-21
8.4.2 Four-Word Throwaway Stack Frame (Format $1) 8-21
8.4.3 Six-Word Stack Frame (Format $2) ... 8-22
8.4.4 Floating-Point Post-Instruction Stack Frame (Format $3) 8-23
8.4.5 Eight-Word Stack Frame (Format $4).. 8-23
8.4.6 Access Error Stack Frame (Format $7) ... 8-24
8.4.6.1 Effective Address ... 8-24
8.4.6.2 Special Status Word (SSW) ... 8-24
8.4.6.3 Write-Back Status .. 8-26
8.4.6.4 Fault Address ... 8-26

xii M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

8.4.6.5 Write-Back Address and Write-Back Data 8-26
8.4.6.6 Push Data .. 8-27
8.4.6.7 Access Error Stack Frame Return From Exception 8-27

Section 9
Floating-Point Unit (MC68040 Only)

9.1 Floating-Point Unit Pipeline ... 9-1
9.2 Floating-Point User Programming Model .. 9-2
9.2.1 Floating-Point Data Registers (FP7–FP0) ... 9-2
9.2.2 Floating-Point Control Register (FPCR) .. 9-3
9.2.2.1 Exception Enable Byte ... 9-3
9.2.2.2 Mode Control Byte ... 9-3
9.2.3 Floating-Point Status Register (FPSR) .. 9-4
9.2.3.1 Floating-Point Condition Code Byte... 9-4
9.2.3.2 Quotient Byte ... 9-5
9.2.3.3 Exception Status Byte.. 9-5
9.2.3.4 Accrued Exception (AEXC) Byte. .. 9-5
9.2.4 Floating-Point Instruction Address Register (FPIAR) 9-6
9.3 Floating-Point Data Formats and Data Types....................................... 9-7
9.4 Computational Accuracy ... 9-11
9.4.1 Intermediate Result ... 9-12
9.4.2 Rounding the Result .. 9-13
9.5 Postprocessing Operation... 9-15
9.5.1 Underflow, Round, Overflow ... 9-16
9.5.2 Conditional Testing .. 9-16
9.6 Floating-Point Exceptions ... 9-20
9.6.1 Unimplemented Floating-Point Instructions....................................... 9-20
9.6.2 Unsupported Floating-Point Data Types ... 9-22
9.7 Floating-Point Arithmetic Exceptions .. 9-24
9.7.1 Branch/Set on Unordered (BSUN) .. 9-25
9.7.1.1 Maskable Exception Conditions... 9-26
9.7.1.2 Nonmaskable Exception Conditions .. 9-27
9.7.2 Signaling Not-a-Number (SNAN)... 9-27
9.7.2.1 Maskable Exception Conditions... 9-27
9.7.2.2 Nonmaskable Exception Conditions .. 9-27
9.7.3 Operand Error ... 9-28
9.7.3.1 Maskable Exception Conditions... 9-29
9.7.3.2 Nonmaskable Exception Conditions .. 9-30
9.7.4 Overflow .. 9-31
9.7.4.1 Maskable Exception Conditions... 9-31
9.7.4.2 Nonmaskable Exception Conditions .. 9-31

MOTOROLA M68040 USER’S MANUAL xiii

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

9.7.5 Underflow .. 9-33
9.7.5.1 Maskable Exception Conditions ... 9-34
9.7.5.2 Nonmaskable Exception Conditions .. 9-34
9.7.6 Divide by Zero.. 9-36
9.7.7 Inexact Result .. 9-36
9.8 Floating-Point State Frames.. 9-39

Section 10
Instruction Timings

10.1 Overview ... 10-3
10.2 Instruction Timing Examples ... 10-5
10.3 CINV and CPUSH Instruction Timing.. 10-8
10.4 MOVE Instruction Timing .. 10-9
10.5 Miscellaneous Integer Unit Instruction Timings..................................... 10-11
10.6 Integer Unit Instruction Timings .. 10-13
10.7 Floating-Point Unit Instruction Timings ... 10-29
10.7.1 Miscellaneous Integer Unit Support Timings 10-29
10.7.2 Integer Unit Support Timings ... 10-30
10.7.3 Timings in the Floating-Point Unit .. 10-35

Section 11
MC68040 Electrical and Thermal Characteristics

11.1 Maximum Ratings ... 11-1
11.2 Thermal Characteristics .. 11-1
11.3 DC Electrical Specifications .. 11-2
11.4 Power Dissipation ... 11-2
11.5 Clock AC Timing Specifications .. 11-3
11.6 Output AC Timing Specifications .. 11-4
11.7 Input AC Timing Specifications ... 11-5
11.8 MC68040 Thermal Device Characteristics.. 11-12
11.8.1 MC68040 Die and Package ... 11-12
11.8.2 MC68040 Power Considerations ... 11-12
11.9 MC68040 Thermal Management Techniques 11-14
11.9.1 Still Air.. 11-17
11.9.2 Forced Air .. 11-18
11.9.3 With Heat Sink ... 11-19
11.9.4 With Heat Sink and Forced Air .. 11-22

xiv M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 12
Ordering Information and Mechanical Data

12.1 Ordering Information ... 12-1
12.2 Pin Assignments ... 12-1
12.2.1 MC68040 Pin Grid Array ... 12-2
12.2.2 MC68LC040 Pin Grid Array... 12-3
12.2.3 MC68EC040 Pin Grid Array .. 12-4
12.2.4 MC68040V and MC68EC040V Pin Grid Array 12-5
12.2.5 MC68LC040 Quad Flat Pack... 12-6
12.2.6 MC68EC040 Quad Flat Pack .. 12-6
12.2.7 MC68040V and MC68EC040V Quad Flat Pack................................ 12-7
12.3 Mechanical Data ... 12-9

Appendix A
MC68LC040

A.1 MC68LC040 Differences... A-5
A.2 Interrupt Priority Level (IPL2–IPL0) ... A-5
A.3 JTAG Scan (JS0) .. A-5
A.4 Data Latch And Multiplexed Bus Modes ... A-5
A.5 Floating-Point Unit (FPU) .. A-5
A.5.1 Unimplemented Floating-Point Instructions and Exceptions A-6
A.5.2 MC68LC040 Stack Frames ... A-7
A.6 MC68LC040 Electrical Characteristics ... A-7
A.6.1 Maximum Ratings .. A-8
A.6.2 Thermal Characteristics .. A-8
A.6.3 DC Electrical Specifications .. A-8
A.6.4 Power Dissipation.. A-9
A.6.5 Clock AC Timing Specifications .. A-9
A.6.6 Output AC Timing Specifications ... A-11
A.6.7 Input AC Timing Specifications.. A-12

Appendix B
MC68EC040

B.1 MC68EC040 Differences .. B-4
B.2 JTAG Scan (JS1–JS0) .. B-5
B.3 Access Control Units... B-5
B.3.1 Access Control Registers .. B-5
B.3.2 Address Comparison ... B-7
B.3.3 Effect of RSTI on the ACU... B-8

MOTOROLA M68040 USER’S MANUAL xv

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

B.4 Special Modes Of Operation ... B-8
B.5 Exception Processing.. B-10
B.5.1 Unimplemented Floating-Point Instructions and Exceptions B-10
B.5.2 MC68EC040 Stack Frames ... B-11
B.6 Software Considerations ... B-12
B.7 MC68EC040 Electrical Characteristics ... B-12
B.7.1 Maximum Ratings .. B-12
B.7.2 Thermal Characteristics ... B-12
B.7.3 DC Electrical Specifications ... B-13
B.7.4 Power Dissipation .. B-13
B.7.5 Clock AC Timing Specifications ... B-14
B.7.6 Output AC Timing Specifications ... B-15
B.7.7 Input AC Timing Specifications.. B-16

Appendix C
MC68040V and MC68EC040V

C.1 Additional Signals.. C-1
C.1.1 Low Frequency Operation (LFO) ... C-2
C.1.2 Loss of Clock (LOC) .. C-2
C.1.3 System Clock Disable (SCD)... C-2
C.2 Low-Power Stop Mode .. C-3
C.2.1 Bus Arbitration and Snooping .. C-5
C.2.2 Low Frequency Operation ... C-5
C.2.3 Changing BCLK Frequency ... C-5
C.2.4 LPSTOP Instruction Summary .. C-6
C.3 Clocking During Normal Operation ... C-7
C.4 Reset Operation .. C-7
C.5 Power Cycling ... C-9
C.6 MC68040V and MC68EC040V JTAG (Preliminary) C-10
C.6.1 Instruction Shift Register ... C-11
C.6.1.1 EXTEST ... C-12
C.6.1.2 HIGHZ .. C-12
C.6.1.3 SAMPLE/PRELOAD .. C-12
C.6.1.4 CLAMP... C-12
C.6.1.5 BYPASS... C-13
C.6.2 Boundary Scan Register.. C-13
C.6.3 Restrictions .. C-16
C.6.4 Disabling The IEEE Standard 1149.1A Operation............................. C-16
C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics C-17

xvi M68040 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

C.7 MC68040V and MC68EC040V Electrical Characteristics..................... C-19
C.7.1 Maximum Ratings .. C-19
C.7.2 Thermal Characteristics .. C-19
C.7.3 DC Electrical Specifications .. C-20
C.7.4 Power Dissipation.. C-20
C.7.5 Clock AC Timing Specifications .. C-21
C.7.6 Output AC Timing Specifications ... C-22
C.7.7 Input AC Timing Specifications.. C-23

Appendix D
M68000 Family Summary

Appendix E
Floating-Point Emulation (M68040FPSP)

Index

MOTOROLA M68040 USER’S MANUAL xvii

LIST OF ILLUSTRATIONS
Figure Page

Number Title Number

1-1 Block Diagram .. 1-4
1-2 Programming Model ... 1-7

2-1 Integer Unit Pipeline ... 2-2
2-2 Write-Back Cycle Block Diagram ... 2-3
2-3 Integer Unit User Programming Model... 2-4
2-4 Integer Unit Supervisor Programming Model ... 2-6
2-5 Status Register... 2-7

3-1 Memory Management Unit ... 3-2
3-2 Memory Management Programming Model ... 3-3
3-3 URP and SRP Register Formats.. 3-4
3-4 Translation Control Register Format .. 3-4
3-5 Transparent Translation Register Format .. 3-5
3-6 MMU Status Register Format... 3-6
3-7 Translation Table Structure .. 3-8
3-8 Logical Address Format ... 3-9
3-9 Detailed Flowchart of Table Search Operation .. 3-10
3-10 Detailed Flowchart of Descriptor Fetch Operation 3-11
3-11 Table Descriptor Formats... 3-13
3-12 Page Descriptor Formats ... 3-13
3-13 Example Translation Table .. 3-17
3-14 Translation Table Using Indirect Descriptors ... 3-18
3-15 Translation Table Using Shared Tables ... 3-19
3-16 Translation Table with Nonresident Tables .. 3-20
3-17 Translation Table Structure for Two Tasks .. 3-24
3-18 Logical Address Map with Shared Supervisor and User Address Spaces... 3-24
3-19 Translation Table Using S-Bit and W-Bit To Set Protection 3-25
3-20 ATC Organization... 3-26
3-21 ATC Entry and Tag Fields .. 3-27
3-22 Address Translation Flowchart... 3-32
3-23 MMU Status Interpretation ... 3-35

4-1 Overview of Internal Caches .. 4-2
4-2 Cache Line Formats ... 4-3
4-3 Caching Operation ... 4-4
4-4 Cache Control Register .. 4-5

xviii M68040 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

4-5 Instruction-Cache Line State Diagram ... 4-14
4-6 Data-Cache Line State Diagram .. 4-16

5-1 Functional Signal Groups ... 5-4

6-1 M68040 Test Logic Block Diagram .. 6-2
6-2 Bypass Register ... 6-6
6-3 Output Latch Cell (O.Latch) ... 6-7
6-4 Input Pin Cell (I.Pin) ... 6-7
6-5 Output Control Cells (IO.Ctl) .. 6-8
6-6 General Arrangement of Bidirectional Pins .. 6-8
6-7 Circuit Disabling IEEE Standard 1149.1A .. 6-14
6-8 Clock Input Timing Diagram ... 6-22
6-9 TRST Timing Diagram .. 6-22
6-10 Boundary Scan Timing Diagram .. 6-23
6-11 Test Access Port Timing Diagram ... 6-23

7-1 Signal Relationships to Clocks... 7-2
7-2 Internal Operand Representation ... 7-3
7-3 Data Multiplexing ... 7-4
7-4 Byte Enable Signal Generation and PAL Equation 7-5
7-5 Example of a Misaligned Long-Word Transfer... 7-7
7-6 Example of a Misaligned Word Transfer .. 7-7
7-7 Misaligned Long-Word Read Transfer Timing ... 7-8
7-8 Byte, Word, and Long-Word Read Transfer Flowchart 7-10
7-9 Byte, Word, and Long-Word Read Transfer Timing..................................... 7-11
7-10 Line Read Transfer Flowchart.. 7-14
7-11 Line Read Transfer Timing .. 7-15
7-12 Burst-Inhibited Line Read Transfer Flowchart ... 7-18
7-13 Burst-Inhibited Line Read Transfer Timing .. 7-19
7-14 Byte, Word, and Long-Word Write Transfer Flowchart 7-20
7-15 Long-Word Write Transfer Timing .. 7-21
7-16 Line Write Transfer Flowchart .. 7-23
7-17 Line Write Transfer Timing... 7-24
7-18 Locked Transfer for TAS Instruction Timing .. 7-27
7-19 Interrupt Pending Procedure .. 7-30
7-20 Assertion of IPEND .. 7-30
7-21 Interrupt Acknowledge Bus Cycle Flowchart ... 7-32
7-22 Interrupt Acknowledge Bus Cycle Timing .. 7-33
7-23 Autovector Interrupt Acknowledge Bus Cycle Timing 7-34
7-24 Breakpoint Interrupt Acknowledge Bus Cycle Flowchart 7-35
7-25 Breakpoint Interrupt Acknowledge Bus Cycle Timing 7-36

MOTOROLA M68040 USER’S MANUAL xix

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

7-26 Word Write Access Terminated with TEA Timing .. 7-39
7-27 Line Read Access Terminated with TEA Timing .. 7-40
7-28 Retry Read Transfer Timing ... 7-41
7-29 Retry Operation on Line Write .. 7-42
7-30 M68040 Internal Interpretation State Diagram and

 External Bus Arbiter Circuit .. 7-47
7-31 Lock Violation Example .. 7-49
7-32 Processor Bus Request Timing.. 7-50
7-33 Arbitration During Relinquish and Retry Timing ... 7-51
7-34 Implicit Bus Ownership Arbitration Timing.. 7-52
7-35 Dual M68040 Fairness Arbitration State Diagram .. 7-53
7-36 Dual M68040 Prioritized Arbitration State Diagram 7-55
7-37 M68040 Synchronous DMA Arbitration .. 7-56
7-38 Sample Synchronizer Circuit .. 7-57
7-39 M68040 Asynchronous DMA Arbitration .. 7-58
7-40 Snoop-Inhibited Bus Cycle ... 7-61
7-41 Snoop Access with Memory Response.. 7-62
7-42 Snooped Line Read, Memory Inhibited .. 7-64
7-43 Snooped Long-Word Write, Memory Inhibited ... 7-65
7-44 Initial Power-On Reset Timing.. 7-66
7-45 Normal Reset Timing ... 7-67
7-46 Multiplexed Address and Data Bus (Line Write)... 7-69
7-47 DLE Mode Block Diagram .. 7-70
7-48 DLE versus Normal Data Read Timing .. 7-71

8-1 General Exception Processing Flowchart .. 8-3
8-2 General Form of Exception Stack Frame ... 8-4
8-3 Interrupt Recognition Examples ... 8-14
8-4 Interrupt Exception Processing Flowchart .. 8-16
8-5 Reset Exception Processing Flowchart.. 8-18
8-6 Flowchart of RTE Instruction for Throwaway Four-Word Frame 8-22
8-7 Special Status Word Format .. 8-24
8-8 Write-Back Status Format .. 8-26

9-1 Floating-Point User Programming Model ... 9-2
9-2 Floating-Point Control Register .. 9-4
9-3 FPSR Condition Code Byte.. 9-4
9-4 FPSR Quotient Byte ... 9-5
9-5 FPSR Exception Status Byte ... 9-5
9-6 FPSR Accrued Exception Byte .. 9-6
9-7 Intermediate Result Format.. 9-12
9-8 Rounding Algorithm Flowchart ... 9-14

xx M68040 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

9-9 Format of Denormalized Operand in State Frame 9-24
9-10 MC68040 Floating-Point State Frames .. 9-40
9-11 Mapping of Command Bits for CMDREG3B Field 9-42

10-1 Simple Instruction Timing Example .. 10-5
10-2 Instruction Overlap with Multiple Clocks .. 10-6
10-3 Interlocked Stages ... 10-7

11-1 Clock Input Timing Diagram ... 11-3
11-2 Drive Levels and Test Points for AC Specifications 11-6
11-3 Read/Write Timing ... 11-7
11-4 Bus Arbitration Timing.. 11-8
11-5 Snoop Hit Timing ... 11-9
11-6 Snoop Miss Timing .. 11-10
11-7 Other Signal Timing ... 11-11
11-8 MC68040 Termination Network ... 11-15
11-9 Typical Configuration for RC Termination Network 11-15
11-10 Heat Sink with Adhesive .. 11-20
11-11 Heat Sink with Attachment ... 11-21

12-1 PGA Package Dimensions... 12-9
12-2 QFP Package Dimensions ... 12-10

A-1 MC68LC040 Block Diagram .. A-2
A-2 MC68LC040 Programming Model ... A-3
A-3 MC68LC040 Functional Signal Groups.. A-4
A-4 Clock Input Timing Diagram ... A-10
A-5 Read/Write Timing ... A-13
A-6 Bus Arbitration Timing.. A-14
A-7 Snoop Hit Timing ... A-15
A-8 Snoop Miss Timing .. A-16
A-9 Other Signal Timing ... A-17

B-1 MC68EC040 Block Diagram .. B-2
B-2 MC68EC040 Programming Model ... B-3
B-3 MC68EC040 Functional Signal Groups ... B-4
B-4 MC68EC040 Access Control Register Format .. B-6
B-5 MC68EC040 Initial Power-On Reset Timing.. B-8
B-6 MC68EC040 Normal Reset Timing .. B-9
B-7 Clock Input Timing Diagram ... B-14
B-8 Read/Write Timing ... B-17
B-9 Bus Arbitration Timing.. B-18

MOTOROLA M68040 USER’S MANUAL xxi

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

B-10 Snoop Hit Timing.. B-19
B-11 Snoop Miss Timing... B-20
B-12 Other Signal Timing ... B-21

C-1 MC68040V and MC68EC040V Functional Signal Groups C-3
C-2 MC68040V and MC68EC040V Initial Power-On Reset Timing C-8
C-3 MC68040V and MC68EC040V Normal Reset Timing.................................. C-9
C-4 MC68040V and MC68EC040V Test Logic Block Diagram C-11
C-5 Bypass Register ... C-13
C-6 Output Latch Cell (O.Latch) ... C-14
C-7 Input Pin Cell (I.Pin) ... C-14
C-8 Output Control Cells (IO.Ctl) .. C-15
C-9 General Arrangement of Bidirectional Pins .. C-15
C-10 Circuit Disabling IEEE Standard 1149.1A ... C-17
C-11 Drive Levels and Test Points for AC Specifications C-18
C-12 Clock Input Timing Diagram ... C-21
C-13 Read/Write Timing.. C-24
C-14 Bus Arbitration Timing .. C-25
C-15 Snoop Hit Timing.. C-26
C-16 Snoop Miss Timing... C-27
C-17 Other Signal Timing ... C-28
C-18 Going into LPSTOP with Arbitration ... C-29
C-19 LPSTOP no Arbitration, CPU is Master ... C-30
C-20 Exiting LPSTOP with Interrupt.. C-31
C-21 Exiting of LPSTOP with RESET ... C-31

xxii M68040 USER’S MANUAL MOTOROLA

LIST OF TABLES
Table Page

Number Title Number

1-1 M68040 Data Formats ... 1-9
1-2 Effective Addressing Modes .. 1-10
1-3 Notational Conventions .. 1-11
1-4 Instruction Set Summary.. 1-14

3-1 Updating U-Bit and M-Bit for Page Descriptors.. 3-22
3-2 SFC and DFC Values... 3-22

4-1 Snoop Control Encoding .. 4-9
4-2 TLNx Encoding .. 4-11
4-3 Instruction-Cache Line State Transitions ... 4-15
4-4 Data-Cache Line State Transitions .. 4-17

5-1 Signal Index ... 5-2
5-2 Transfer-Type Encoding .. 5-5
5-3 Normal and MOVE16 Access Transfer Modifier Encoding 5-6
5-4 Alternate Access Transfer Modifier Encoding .. 5-6
5-5 Output Driver Control Groups .. 5-11
5-6 Processor Status Encoding .. 5-13
5-7 Signal Summary... 5-16

6-1 IEEE Standard 1149.1A Instructions ... 6-3
6-2 Boundary Scan Bit Definitions ... 6-10

7-1 Data Bus Requirements for Read and Write Cycles 7-4
7-2 Summary of Access Types versus Bus Signal Encodings........................... 7-6
7-3 Memory Alignment Influence on Noncachable and

 Write-Through Bus Cycles ... 7-9
7-4 Interrupt Acknowledge Termination Summary ... 7-31
7-5 TA and TEA Assertion Results ... 7-37
7-6 M68040 Bus Arbitration States .. 7-48

8-1 Exception Vector Assignments .. 8-5
8-2 Tracing Control .. 8-11
8-3 Interrupt Levels and Mask Values.. 8-12
8-4 Exception Priority Groups .. 8-19

MOTOROLA M68040 USER’S MANUAL xxiii

LIST OF TABLES (Continued)
Table Page

Number Title Number

8-5 Write-Back Data Alignment .. 8-27
8-6 Access Error Stack Frame Combinations .. 8-31

9-1 Floating-Point Control Register Encodings .. 9-3
9-2 MC68040 FPU Data Formats and Data Types .. 9-7
9-3 Single-Precision Real Format Summary .. 9-8
9-4 Double-Precision Real Format Summary... 9-9
9-5 Extended-Precision Real Format Summary ... 9-10
9-6 Packed Decimal Real Format Summary .. 9-11
9-7 Floating-Point Condition Code Encodings.. 9-17
9-8 Floating-Point Conditional Tests .. 9-19
9-9 Floating-Point Exception Vectors ... 9-20
9-10 Unimplemented Instructions ... 9-21
9-11 Possible Operand Errors Exceptions ... 9-29
9-12 Overflow Rounding Mode Values... 9-32
9-13 Underflow Rounding Mode Values... 9-34
9-14 Possible Divide by Zero Exceptions ... 9-36
9-15 Divide by Zero Rounding Mode Values.. 9-37
9-16 State Frame Field Information .. 9-44

10-1 Instruction Timing Index ... 10-1
10-2 Number of Memory Accesses .. 10-3
10-3 CINV Timing ... 10-8
10-4 CPUSH Best and Worst Case Timing .. 10-8

11-1 Maximum Power Dissipation for Output Buffer Mode Configuration 11-13
11-2 Thermal Parameters with No Heat Sink or Airflow 11-17
11-3 Thermal Parameters with Forced Airflow and

 No Heat Sink for the MC68040 .. 11-18
11-4 Thermal Parameters with Forced Airflow and

 No Heat Sink for the MC68LC040 and MC68EC040 11-19
11-5 Thermal Parameters with Heat Sink and No Airflow 11-21
11-6 Thermal Parameters with Heat Sink and Airflow.. 11-22

C-1 Additional MC68040V and MC68EC040V Signals....................................... C-2
C-2 Bus Encodings During LPSTOP Broadcast Cycle C-4
C-3 IEEE Standard 1149.1A Instructions.. C-12

E-1 MC68040 Floating-Point Instructions ... E-2
E-2 MC68040FPSP Floating-Point Instructions.. E-3
E-3 Support for Data Types and Data Formats .. E-4
E-4 Exception Conditions ... E-4

MOTOROLA M68040 USER’S MANUAL 1-1

SECTION 1
INTRODUCTION

The MC68040, MC68040V, MC68LC040, MC68EC040, and MC68EC040V (collectively
called M68040) are Motorola’s third generation of M68000-compatible, high-performance,
32-bit microprocessors. All five devices are virtual memory microprocessors employing
multiple concurrent execution units and a highly integrated architecture that provides very
high performance in a monolithic HCMOS device. They integrate an MC68030-compatible
integer unit (IU) and two independent caches. The MC68040, MC68040V, and
MC68LC040 contain dual, independent, demand-paged memory management units
(MMUs) for instruction and data stream accesses and independent, 4-Kbyte instruction
and data caches. The MC68040 contains an MC68881/MC68882-compatible floating-
point unit (FPU). The use of multiple independent execution pipelines, multiple internal
buses, and a full internal Harvard architecture, including separate physical caches for both
instruction and data accesses, achieves a high degree of instruction execution parallelism
on all three processors. The on-chip bus snoop logic, which directly supports cache
coherency in multimaster applications, enhances cache functionality.

The M68040 family is user object-code compatible with previous M68000 family members
and is specifically optimized to reduce the execution time of compiler-generated code. All
five processors implement Motorola’s latest HCMOS technology, providing an ideal
balance between speed, power, and physical device size.

1.1 DIFFERENCES

Because the functionality of individual M68040 family members are similar, this manual is
organized so that the reader will take the following differences into account while reading
the rest of this manual. Unless otherwise noted, all references to M68040, with the
exception of the differences outlined below, will apply to the MC68040, MC68040V,
MC68LC040, MC68EC040, and MC68EC040V. The following paragraphs describe the
differences of MC68040V, MC68LC040, MC68EC040, and the MC68EC040V from the
MC68040.

1.1.1 MC68040V and MC68LC040

The MC68040V and MC68LC040 are derivatives of the MC68040. They implement the
same IU and MMU as the MC68040, but have no FPU. The MC68LC040 is pin compatible
with the MC68040. The MC68040V is not pin compatible with the MC68040 and contains
some additional features. The following differences exist between the MC68040V,
MC68LC040, and MC68040:

1-2 M68040 USER’S MANUAL MOTOROLA

• The DLE pin name has been changed to JS0 on both the MC68040V and
MC68LC040. In addition, the MC68040V contains three new pins, system clock
disable (SCD), low frequency operation (LFO), and loss of clock (LOC).

• The MC68040V and MC68LC040 do not implement the data latch enable (DLE),
multiplexed, or output buffer impedance selection modes of operation. They
implement only the small output buffer mode of operation. All timing and drive
capabilities on both devices are equivalent to those of the MC68040 in small output
buffer impedance mode. The MC68040V has an additional mode of operation, the
low-power stop mode of operation.

• The MC68040V and MC68LC040 do not contain an FPU, causing unimplemented
floating-point exceptions to occur using a new stack frame format.

• The MC68040V is a 3.3 volt static microprocessor that operates down to 0 MHz.

For specific details on the MC68LC040, refer to Appendix A MC68LC040 . For specific
details on the MC68040V, refer to both Appendix A MC68LC040 and Appendix C
MC68040V and MC68EC040V. Disregard all information concerning the FPU when
reading the following subsections.

1.1.2 MC68EC040 and MC68EC040V

The MC68EC040 and MC68EC040V are derivatives of the MC68040. They implement the
same IU as the MC68040, but have no FPU or MMU, which embedded control
applications generally do not require. The MC68EC040 is pin compatible with the
MC68040. The following differences exist between the MC68EC040, MC68EC040V, and
the MC68040:

• The DLE and MDIS pin names have been changed to JS0 and JS1, respectively.

• PTEST and PFLUSH instructions cause an undetermined number of bus cycles; the
user should not execute these instructions.

• The access control unit (ACU) replaces the MMU. The MC68EC040 and
MC68EC040V ACU has two data and two instruction registers that are called data
and instruction transparent translation registers in the MC68040.

• The MC68EC040 and MC68EC040V do not implement the DLE, multiplexed, or
output buffer impedance selection modes of operation. They only implement the small
output buffer mode of operation. All MC68EC040 and MC68EC040V timing and drive
capabilities are equivalent to the MC68040 in small output buffer mode.

• The MC68EC040 and MC68EC040V do not contain an FPU, causing unimplemented
floating-point exceptions to occur using a new stack frame format.

• The MC68040V is a 3.3 volt static microprocessor that operates down to 0 MHz.

Refer to Appendix B MC68EC040 for specific details on the MC68EC040. Refer to
Appendix B MC68EC040 and Appendix C MC68040V and MC68EC040V for specific
details on the MC68EC040V. Disregard information concerning the FPU and MMU
when reading the following subsections.

MOTOROLA M68040 USER’S MANUAL 1-3

1.2 FEATURES

The main features of the M68040 are as follows:

• 6-Stage Pipeline, MC68030-Compatible IU

• MC68881/MC68882-Compatible FPU

• Independent Instruction and Data MMUs

• Simultaneously Accessible, 4-Kbyte Physical Instruction Cache and 4-Kbyte Physical
Data Cache

• Low-Latency Bus Accesses for Reduced Cache Miss Penalty

• Multimaster/Multiprocessor Support via Bus Snooping

• Concurrent IU, FPU, MMU, and Bus Controller Operation Maximizes Throughput

• 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Interface

• User Object-Code Compatible with All Earlier M68000 Microprocessors

• 4-Gbyte Direct Addressing Range

• Software Support Including Optimizing C Compiler and UNIX® System V Port

The on-chip FPU and large physical instruction and data caches yield improved system
performance and increased functionality. The independent instruction and data MMUs and
increased internal parallelism also improve performance.

1.3 EXTENSIONS TO THE M68000 FAMILY

The M68040 is compatible with the ANSI/IEEE Standard 754 for Binary Floating-Point
Arithmetic. The MC68040’s FPU has been optimized to execute the most commonly used
subset of the MC68881/MC68882 instruction sets and includes additional instruction
formats for single- and double-precision rounding results. Software emulates floating-point
instructions not directly supported in hardware. Refer to Appendix E M68040 Floating-
Point Emulation (MC68040FPSP) for details on software emulation. The MOVE16 user
instruction is new to the instruction set, supporting efficient 16-byte memory-to-memory
data transfers.

1.4 FUNCTIONAL BLOCKS

Figure 1-1 illustrates a simplified block diagram of the MC68040. Refer to Appendix A
MC68LC040 for information on the MC68LC040’s and MC68040V's functional blocks; and
Appendix B MC68EC040 for information on the MC68EC040’s and MC68EC040V's
functional blocks.

The M68040 IU pipeline has been expanded from the MC68030 to include effective
address calculation (<ea> calculate) and operand fetch (<ea> fetch) stages with
commonly used effective addressing modes. Conditional branches are optimized for the

® UNIX is a registered trademark of AT&T Bell Laboratories.

1-4 M68040 USER’S MANUAL MOTOROLA

more common case of the branch taken, and both execution paths of the branch are
fetched and decoded to minimize refilling of the instruction pipeline.

DECODE

EA
CALCULATE

WRITE-
BACK

INTEGER
UNIT

CONVERT

EXECUTE

WRITE-
BACK

INSTRUCTION
ATC

INSTRUCTION
MMU/CACHE/SNOOP

CONTROLLER

BUS
CONTROL
SIGNALS

DATA
BUS

ADDRESS
BUS

DATA
ATC

DATA
MMU/CACHE/SNOOP

CONTROLLER

OPERAND DATA BUS

INSTRUCTION DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

DATA MEMORY UNIT

INSTRUCTION MEMORY UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

INSTRUCTION
ADDRESS

DATA
ADDRESS

INSTRUCTION
FETCH

EXECUTE

EA
FETCH

Figure 1-1. Block Diagram

To improve memory management, the M68040 includes separate, independent paged
MMUs for instruction and data accesses. Each MMU stores recently used address
mappings in separate 64-entry address translation caches (ATCs). Each MMU also has
two transparent translation registers that define a one-to-one mapping for address space
segments ranging in size from 16 Mbytes to 4 Gbytes each.

Two memory units independently interface with the IU and FPU. Each unit consists of an
MMU, an ATC, a main cache, and a snoop controller. The MMUs perform memory
management on a demand-page basis. By translating logical-to-physical addresses using
translation tables stored in memory, the MMUs support virtual memory systems. Each
MMU stores recently used address mappings in an ATC, reducing the average translation
time.

Separate on-chip instruction and data caches operate independently and are accessed in
parallel with address translation. The caches improve the overall performance of the
system by reducing the number of bus transfers required by the processor to fetch
information from memory and by increasing the bus bandwidth available for alternate bus

MOTOROLA M68040 USER’S MANUAL 1-5

masters in the system. Both caches are organized as four-way set associative with 64
sets of four lines. Each line contains four long words for a storage capability of 4 Kbytes
for each cache (8 Kbytes total). Each cache and corresponding MMU is allocated
separate internal address and data buses, allowing simultaneous access to both. The
data cache provides write-through or copyback write modes that can be configured on a
page-by-page basis. The caches are physically mapped, reducing software support for
multitasking operating systems, and support external bus snooping to maintain cache
coherency in multimaster systems.

The bus snoop logic provides cache coherency in multimaster applications. The bus
controller executes bus transfers on the external bus and prioritizes external memory
requests from each cache. The M68040 bus controller supports a high-speed,
nonmultiplexed, synchronous, external bus interface supporting burst accesses for both
reads and writes to provide high data transfer rates to and from the caches. Additional bus
signals support bus snooping and external cache tag maintenance.

The MC68040 contains an on-chip FPU, which is user object-code compatible with the
MC68881/MC68882 floating-point coprocessors. The FPU has pipelined instruction
execution. Floating-point instructions in the FPU execute concurrently with integer
instructions in the IU.

1.5 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing,
or halted. It is in the normal processing state when executing instructions, fetching
instructions and operands, and storing instruction results.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe caused after an exception. The processor
enters exception processing when an exceptional internal condition arises such as tracing
an instruction, an instruction results in a trap, or executing specific instructions. External
conditions, such as interrupts and access errors, also cause exceptions. Exception
processing ends when the first instruction of the exception handler begins to execute.

The processor halts when it receives an access error or generates an address error while
in the exception processing state. For example, if during exception processing of one
access error another access error occurs, the MC68040 is unable to complete the
transition to normal processing and cannot save the internal state of the machine. The
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. Note that when the processor executes a STOP
instruction, it is in a special type of normal processing state, one without bus cycles. The
processor stops, but it does not halt.

1.6 PROGRAMMING MODEL

The MC68040 programming model is separated into two privilege modes: supervisor and
user. The S-bit in the status register (SR) indicates the privilege mode that the processor

1-6 M68040 USER’S MANUAL MOTOROLA

uses. The IU identifies a logical address by accessing either the supervisor or user
address space, maintaining the differentiation between supervisor and user modes. The
MMUs use the indicated privilege mode to control and translate memory accesses,
protecting supervisor code, data, and resources from user program accesses. Refer to
Appendix B MC68EC040 for details concerning the MC68EC040 address translation.

Programs access registers based on the indicated mode. User programs can only access
registers specific to the user mode; whereas, system software executing in the supervisor
mode can access all registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information, and the
operating system performs management and service tasks for the user programs by
coordinating their activities. This difference allows the supervisor mode to protect system
resources from uncontrolled accesses.

Most instructions execute in either mode, but some instructions that have important
system effects are privileged and can only execute in the supervisor mode. For instance,
user programs cannot execute the STOP or RESET instructions. To prevent a user
program from entering the supervisor mode, except in a controlled manner, instructions
that can alter the S-bit in the SR are privileged. The TRAP instructions provide controlled
access to operating system services for user programs.

If the S-bit in the SR is set, the processor executes instructions in the supervisor mode.
Because the processor performs all exception processing in the supervisor mode, all bus
cycles generated during exception processing are supervisor references, and all stack
accesses use the active supervisor stack pointer. If the S-bit of the SR is clear, the
processor executes instructions in the user mode. The bus cycles for an instruction
executed in the user mode are user references. The values on the transfer modifier pins
indicate either supervisor or user accesses.

The processor utilizes the user mode and the user programming model when it is in
normal processing. During exception processing, the processor changes from user to
supervisor mode. Exception processing saves the current value of the SR on the active
supervisor stack and then sets the S-bit, forcing the processor into the supervisor mode.
To return to the user mode, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE, which execute in
the supervisor mode, modifying the S-bit of the SR. After these instructions execute, the
instruction pipeline is flushed and is refilled from the appropriate address space.

The MC68040 integrates the functions of the IU, FPU, and MMU. The registers depicted
in the programming model (see Figure 1-2) provide operand storage and control for these
three units. The registers are partitioned into two levels of privilege modes: user and
supervisor. The user programming model is the same as the user programming model of
the MC68030, which consists of 16, general-purpose, 32-bit registers and two control
registers. The MC68040 user programming model also incorporates the
MC68881/MC68882 programming model consisting of eight, 80-bit, floating-point data
registers, a floating-point control register, a floating-point status register, and a floating-
point instruction address register.

MOTOROLA M68040 USER’S MANUAL 1-7

Only system programmers can use the supervisor programming model to implement
operating system functions, I/O control, and memory management subsystems. This
supervisor/user distinction in the M68000 family architecture allows for the writing of
application software that executes in the user mode and migrates to the MC68040 from
any M68000 family platform without modification. The supervisor programming model
contains the control features that system designers need to modify system software when
porting to a new design. For example, only the supervisor software can read or write to
the transparent translation registers of the MC68040. The existence of the transparent
translation registers does not affect the programming resources of user application
programs.

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0

31 0

DATA
REGISTERS

ADDRESS
REGISTERS

31 0

79 0

FP0
FP1
FP2
FP3
FP4
FP5
FP6
FP7

FPCR
FPSR
FPIAR

FLOATING-POINT
DATA

REGISTERS

FP CONTROL REGISTER
FP STATUS REGISTER

FP INSTRUCTION ADDRESS REGISTER

31 0

A7'/ISP
A7"/MSP
SR
VBR
SFC
DFC
CACR
URP
SRP
TC
DTT0
DTT1
ITT0
ITT1
MMUSR

(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

INTERRUPT STACK POINTER
MASTER STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER

 USER ROOT POINTER REGISTER
SUPERVISOR ROOT POINTER REGISTER
TRANSLATION CONTROL REGISTER
DATA TRANSPARENT TRANSLATION REGISTER 0
DATA TRANSPARENT TRANSLATION REGISTER 1
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMU STATUS REGISTER

USER STACK POINTER

15
0

Figure 1-2. Programming Model

1-8 M68040 USER’S MANUAL MOTOROLA

The user programming model includes eight data registers, seven address registers, and
a stack pointer register. The address registers and stack pointer can be used as base
address registers or software stack pointers, and any of the 16 registers can be used as
index registers. Two control registers are available in the user mode—the program
counter (PC), which usually contains the address of the instruction that the MC68040 is
executing, and the lower byte of the SR, which is accessible as the condition code register
(CCR). The CCR contains the condition codes that reflect the results of a previous
operation and can be used for conditional instruction execution in a program.

The supervisor programming model includes the upper byte of the SR, which contains
operation control information. The vector base register (VBR) contains the base address
of the exception vector table, which is used in exception processing. The source function
code (SFC) and destination function code (DFC) registers contain 3-bit function codes.
These function codes can be considered extensions to the 32-bit logical address. The
processor automatically generates function codes to select address spaces for data and
program accesses in the user and supervisor modes. Some instructions use the alternate
function code registers to specify the function codes for various operations.

The cache control register (CACR) controls enabling of the on-chip instruction and data
caches of the MC68040. The supervisor root pointer (SRP) and user root pointer (URP)
registers point to the root of the address translation table tree to be used for supervisor
and user mode accesses.

The translation control register (TCR) enables logical-to-physical address translation and
selects either 4- or 8-Kbyte page sizes. There are four transparent translation registers,
two for instruction accesses and two for data accesses. These registers allow portions of
the logical address space to be transparently mapped and accessed without the use of
resident descriptors in an ATC. The MMU status register (MMUSR) contains status
information derived from the execution of a PTEST instruction. The PTEST instruction
searches the translation tables for the logical address, specified by this instruction’s
effective address field and the DFC, and returns status information corresponding to the
translation.

The user programming model can also access the entire floating-point programming
model. The eight 80-bit floating-point data registers are analogous to the integer data
registers. A 32-bit floating-point control register (FPCR) contains an exception enable byte
that enables and disables traps for each class of floating-point exceptions and a mode
byte that sets the user-selectable rounding and precision modes. A floating-point status
register (FPSR) contains a condition code byte, quotient byte, exception status byte, and
accrued exception byte. A floating-point exception handler can use the address in the 32-
bit floating-point instruction address register (FPIAR) to locate the floating-point instruction
that has caused an exception. Instructions that do not modify the FPIAR can be used to
read the FPIAR in the exception handler without changing the previous value.

MOTOROLA M68040 USER’S MANUAL 1-9

1.7 DATA FORMAT SUMMARY

The M68040 supports the basic data formats of the M68000 family. Some data formats
apply only to the IU, some only to the FPU, and some to both. In addition, the instruction
set supports operations on other data formats such as memory addresses.

The operand data formats supported by the IU are the standard twos-complement data
formats defined in the M68000 family architecture plus a new data format (16-byte block)
for the MOVE16 instruction. Registers, memory, or instructions themselves can contain IU
operands. The operand size for each instruction is either explicitly encoded in the
instruction or implicitly defined by the instruction operation.

Whenever an integer is used in a floating-point operation, the FPU automatically converts
it to an extended-precision floating-point number before using the integer. The FPU
implements single- and double-precision floating-point data formats as defined by the
IEEE 754 standard. The FPU does not directly support packed decimal real format.
However, by trapping as an unimplemented data format instead of as an illegal instruction,
software emulation supports the packed decimal format. Additionally, each data format
has a special encoding that represents one of five data types: normalized numbers,
denormalized numbers, zeros, infinities, and not-a-numbers (NANs). Table 1-1 lists the
data formats for both the IU and the FPU. Refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual, for details on data format organization in registers and
memory.

Table 1-1. M68040 Data Formats

Operand Data Format Size Supported In Notes

Bit 1 Bit IU —

Bit Field 1–32 Bits IU Field of Consecutive Bits

Binary-Coded Decimal (BCD) 8 Bits IU Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte

Byte Integer 8 Bits IU, FPU —

Word Integer 16 Bits IU, FPU —

Long-Word Integer 32 Bits IU, FPU —

Quad-Word Integer 64 Bits IU Any Two Data Registers

16-Byte 128 Bits IU Memory Only, Aligned to 16-Byte Boundary

Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Fraction

Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Fraction

Extended-Precision Real 80 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

1.8 ADDRESSING CAPABILITIES SUMMARY

The M68040 supports the basic addressing modes of the M68000 family. The register
indirect addressing modes support postincrement, predecrement, offset, and indexing,
which are particularly useful for handling data structures common to sophisticated

1-10 M68040 USER’S MANUAL MOTOROLA

applications and high-level languages. The program counter indirect mode also has
indexing and offset capabilities. This addressing mode is typically required to support
position-independent software. Besides these addressing modes, the M68040 provides
index sizing and scaling features.

An instruction’s addressing mode can specify the value of an operand, a register
containing the operand, or how to derive the effective address of an operand in memory.
Each addressing mode has an assembler syntax. Some instructions imply the addressing
mode for an operand. These instructions include the appropriate fields for operands that
use only one addressing mode. Table 1-2 lists a summary of the effective addressing
modes for the M68040. Refer to M68000PM/AD, M68000 Family Programmer’s
Reference Manual, for details on instruction format and addressing modes.

Table 1-2. Effective Addressing Modes

Addressing Modes Syntax

Register Direct
Data
Address

Dn
An

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16,An)

Address Register Indirect with Index
8-Bit Displacement
Base Displacement

(d8,An,Xn)
(bd,An,Xn)

Memory Indirect
Postindexed
Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect
with Displacement (d16,PC)

Program Counter Indirect with Index
8-Bit Displacement
Base Displacement

(d8,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
Postindexed
Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

Immediate #<xxx>

MOTOROLA M68040 USER’S MANUAL 1-11

1.9 NOTATIONAL CONVENTIONS

Table 1-3 lists the notation conventions used throughout this manual unless otherwise
specified.

Table 1-3. Notational Conventions

Single- And Double-Operand Operations

+ Arithmetic addition or postincrement indicator.

– Arithmetic subtraction or predecrement indicator.

× Arithmetic multiplication.

÷ Arithmetic division or conjunction symbol.

~ Invert; operand is logically complemented.

Λ Logical AND

V Logical OR

⊕ Logical exclusive OR

ø Source operand is moved to destination operand.

ł ø Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format ÷ Offset Word ø (SSP); SSP – 2 ø SSP; PC ø (SSP); SSP – 4 ø SSP; SR
ø (SSP); SSP – 2 ø SSP; (Vector) ø PC

STOP Enter the stopped state, waiting for interrupts.

<operand>10 The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>

else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false
and the optional “else” clause is present, the operations after “else” are performed. If the
condition is false and else is omitted, the instruction performs no operation. Refer to the Bcc
instruction description as an example.

Register Specification

An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.

BR Base Register—An, PC, or suppressed.

Dc Data register D7–D0, used during compare.

Dh, Dl Data registers high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.

Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.

MRn Any Memory Register n.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.

1-12 M68040 USER’S MANUAL MOTOROLA

Table 1-3. Notational Conventions (Continued)

Data Format And Type

+ inf Positive Infinity

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.

D Double-precision real data format (64 bits).

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in
the packed decimal format.

P Packed BCD real data format (96 bits, 12 bytes).

S Single-precision real data format (32 bits).

X Extended-precision real data format (96 bits, 16 bits unused).

– inf Negative Infinity

Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).

() Identifies an indirect address in a register.

[] Identifies an indirect address in memory.

bd Base Displacement

ccc Index into the MC68881/MC68882 Constant ROM

dn Displacement Value, n Bits Wide (example: d16 is a 16-bit displacement).

LSB Least Significant Bit

LSW Least Significant Word

MSB Most Significant Bit

MSW Most Significant Word

od Outer Displacement

SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).

SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.

Register Names

CCR Condition Code Register (lower byte of status register)

DFC Destination Function Code Register

FPcr Any Floating-Point System Control Register (FPCR, FPSR, or FPIAR)

FPm, FPn Any Floating-Point Data Register specified as the source or destination, respectively.

IC, DC, IC/DC Instruction, Data, or Both Caches

MMUSR MMU Status Register

PC Program Counter

Rc Any Non Floating-Point Control Register

SFC Source Function Code Register

SR Status Register

MOTOROLA M68040 USER’S MANUAL 1-13

Table 1-3. Notational Conventions (Concluded)

Register Codes

* General Case.

C Carry Bit in CCR

cc Condition Codes from CCR

FC Function Code

N Negative Bit in CCR

U Undefined, Reserved for Motorola Use.

V Overflow Bit in CCR

X Extend Bit in CCR

Z Zero Bit in CCR

— Not Affected or Applicable.

Stack Pointers

ISP Supervisor/Interrupt Stack Pointer

MSP Supervisor/Master Stack Pointer

SP Active Stack Pointer

SSP Supervisor (Master or Interrupt) Stack Pointer

USP User Stack Pointer

Miscellaneous

<ea> Effective Address

<label> Assemble Program Label

<list> List of registers, for example D3–D0.

LB Lower Bound

m Bit m of an Operand

m–n Bits m through n of Operand

UB Upper Bound

1.10 INSTRUCTION SET OVERVIEW

The instruction set is tailored to support high-level languages and is optimized for those
instructions most commonly executed. The floating-point instructions for the M68040 are a
commonly used subset of the MC68881/MC68882 instruction set with new arithmetic
instructions to explicitly select single- or double-precision rounding. The remaining
unimplemented instructions are less frequently used and are efficiently emulated in the
M68040FPSP, maintaining compatibility with the MC68881/MC68882 floating-point
coprocessors. The M68040 instruction set includes MOVE16, a new user instruction that
allows high-speed transfers of 16-byte blocks between external devices such as memory
to memory or coprocessor to memory. Table 1-4 provides an alphabetized listing of the
M68040 instruction set’s opcode, operation, and syntax. Refer to Table 1-3 for notations
used in Table 1-4. The left operand in the syntax is always the source operand, and the
right operand is the destination operand. Refer to M68000PM/AD, M68000 Family
Programmer’s Reference Manual, for details on instructions used by the M68040.

1-14 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary

Opcode Operation Syntax

ABCD BCD Source + BCD Destination + X ø Destination ABCD Dy,Dx
ABCD –(Ay),–(Ax)

ADD Source + Destination ø Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination ø Destination ADDA <ea>,An

ADDI Immediate Data + Destination ø Destination ADDI #<data>,<ea>

ADDQ Immediate Data + Destination ø Destination ADDQ #<data>,<ea>

ADDX Source + Destination + X ø Destination ADDX Dy,Dx
ADDX –(Ay),–(Ax)

AND Source Λ Destination ø Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data Λ Destination ø Destination ANDI #<data>,<ea>

ANDI to CCR Source Λ CCR ø CCR ANDI #<data>,CCR

ANDI to SR If supervisor state
then Source Λ SR ø SR

else TRAP

ANDI #<data>,SR

ASL, ASR Destination Shifted by count ø Destination ASd Dx,Dy1

ASd #<data>,Dy1

ASd <ea>1

Bcc If condition true
then PC + dn ø PC

Bcc <label>

BCHG ~(bit number of Destination) ø Z;
~(bit number of Destination) ø (bit number) of
Destination

BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR ~(bit number of Destination) ø Z;
0 ø bit number of Destination

BCLR Dn,<ea>
BCLR #<data>,<ea>

BFCHG ~(bit field of Destination) ø bit field of Destination BFCHG <ea>{offset:width}

BFCLR 0 ø bit field of Destination BFCLR <ea>{offset:width}

BFEXTS bit field of Source ø Dn BFEXTS <ea>{offset:width},Dn

BFEXTU bit offset of Source ø Dn BFEXTU <ea>{offset:width},Dn

BFFFO bit offset of Source Bit Scan ø Dn BFFFO <ea>{offset:width},Dn

BFINS Dn ø bit field of Destination BFINS Dn,<ea>{offset:width}

BFSET 1s ø bit field of Destination BFSET <ea>{offset:width}

BFTST bit field of Destination BFTST <ea>{offset:width}

BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction

BKPT #<data>

BRA PC + dn ø PC BRA <label>

BSET ~(bit number of Destination) ø Z;
1 ø bit number of Destination

BSET Dn,<ea>
BSET #<data>,<ea>

BSR SP – 4 ø SP; PC ø (SP); PC + dn ø PC BSR <label>

MOTOROLA M68040 USER’S MANUAL 1-15

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax

BTST –(bit number of Destination) ø Z; BTST Dn,<ea>
BTST #<data>,<ea>

CAS CAS Destination – Compare Operand ø cc;
if Z, Update Operand ø Destination
else Destination ø Compare Operand

CAS Dc,Du,<ea>

CAS2 CAS2 Destination 1 – Compare 1 ø cc;
if Z, Destination 2 – Compare ø cc;
if Z, Update 1 ø Destination 1;

Update 2 ø Destination 2
else Destination 1 ø Compare 1;

Destination 2 ø Compare 2

CAS2 Dc1–Dc2,Du1–Du2,(Rn1)–(Rn2)

CHK If Dn < 0 or Dn > Source
then TRAP

CHK <ea>,Dn

CHK2 If Rn < LB or If Rn > UB
then TRAP

CHK2 <ea>,Rn

CINV If supervisor state
then invalidate selected cache lines

else TRAP

CINVL <caches>, (An)
CINVP <caches>, (An)
CINVA <caches>

CLR 0 ø Destination CLR <ea>

CMP Destination – Source ø cc CMP <ea>,Dn

CMPA Destination – Source CMPA <ea>,An

CMPI Destination – Immediate Data CMPI #<data>,<ea>

CMPM Destination – Source ø cc CMPM (Ay)+,(Ax)+

CMP2 Compare Rn < LB or Rn > UB
and Set Condition Codes

CMP2 <ea>,Rn

CPUSH If supervisor state
then if data cache push selected dirty data
cache lines; invalidate selected cache lines

else TRAP

CPUSHL <caches>, (An)
CPUSHP <caches>, (An)
CPUSHA <caches>

DBcc If condition false
then (Dn–1 ø Dn;

If Dn ≠ –1
then PC + dn ø PC)

DBcc Dn,<label>

DIVS, DIVSL Destination ÷ Source ø Destination DIVS.W <ea>,Dn 32 ÷ 16 ø 16r:16q
DIVS.L <ea>,Dq 32 ÷ 32 ø 32q
DIVS.L <ea>,Dr:Dq 64 ÷ 32 ø 32r:32q
DIVSL.L <ea>,Dr:Dq 32 ÷ 32 ø 32r:32q

DIVU, DIVUL Destination ÷ Source ø Destination DIVU.W <ea>,Dn 32 ÷ 16 ø 16r:16q
DIVU.L <ea>,Dq 32 ÷ 32 ø 32q
DIVU.L <ea>,Dr:Dq 64 ÷ 32 ø 32r:32q
DIVUL.L <ea>,Dr:Dq 32 ÷ 32 ø 32r:32q

EOR Source ⊕ Destination ø Destination EOR Dn,<ea>

EORI Immediate Data ⊕ Destination ø Destination EORI #<data>,<ea>

EORI to CCR Source ⊕ CCR ø CCR EORI #<data>,CCR

EORI to SR If supervisor state
then Source ⊕ SR ø SR

else TRAP

EORI #<data>,SR

1-16 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax

EXG Rx ł ø Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT
EXTB

Destination Sign – Extended ø Destination EXT.W Dn extend byte to word
EXT.L L Dn extend word to long word
EXTB.L Dn extend byte to long word

FABS2 Absolute Value of Source ø FPn FABS.<fmt> <ea>,FPn
FABS.X FPm,FPn
FABS.X FPn
FrABS.<fmt> <ea>,FPn3

FrABS.X FPm,FPn3

FrABS.X FPn3

FADD2 Source + FPn ø FPn FADD.<fmt> <ea>,FPn
FADD.X FPm,FPn
FrADD.<fmt> <ea>,FPn3

FrADD.X FPm,FPn3

FBcc2 If condition true
then PC + dn ø PC

FBcc.SIZE <label>

FCMP2
FPn – Source FCMP.<fmt> <ea>,FPn

FCMP.X FPm,FPn

FDBcc2 If condition true
then no operation

else Dn – 1 ø Dn
if Dn ≠ –1

then PC + dn ø PC
else execute next instruction

FDBcc Dn,<label>

FDIV2 FPn ÷ Source ø FPn FDIV.<fmt> <ea>,FPn
FDIV.X FPm,FPn
FrDIV.<fmt> <ea>,FPn3

FrDIV.X FPm,FPn3

FMOVE2 Source ø Destination FMOVE.<fmt> <ea>,FPn
FMOVE.<fmt> FPM,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}
FrMOVE.<fmt> <ea>,FPn3

FMOVE2
Source ø Destination FMOVE.L <ea>,FPcr

FMOVE.L FPcr,<ea>

FMOVEM2 Register List ø Destination
Source ø Register List

FMOVEM.X <list>,<ea>4

FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>4

FMOVEM.X <ea>,Dn

FMOVEM2 Register List ø Destination
Source ø Register List

FMOVEM.L <list>,<ea>5

FMOVEM.L <ea>,<list>5

FMUL2 Source × FPn ø FPn FMUL.<fmt> <ea>,FPn
FMUL.X FPm,FPn
FrMUL<fmt> <ea>,FPn3

FrMUL.X FPm,FPn3

MOTOROLA M68040 USER’S MANUAL 1-17

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax

FNEG2 –(Source) ø FPn FNEG.<fmt> <ea>,FPn
FNEG.X FPm,FPn
FNEG.X FPn
FrNEG.<fmt> <ea>,FPn3

FrNEG.X FPm,FPn3

FrNEG.X FPn3

FNOP2 None FNOP

FRESTORE2 If in supervisor state
then FPU State Frame ø Internal State

else TRAP

FRESTORE <ea>

FSAVE2 If in supervisor state
then FPU Internal State ø State Frame

else TRAP

FSAVE <ea>

FScc2 If condition true
then 1s ø Destination

else 0s ø Destination

FScc.SIZE <ea>

FSGLDIV FPn ÷ Source ø FPn FSGLDIV.<fmt> <ea>,FPn
FSGLDIV.X FPm,FPn

FSGLMUL Source × FPn ø FPn FSGMUL.<fmt> <ea>,FPn
FSGLMUL.X FPm, FPn

FSQRT2 Square Root of Source ø FPn FSQRT.<fmt> <ea>,FPn
FSQRT.X FPm,FPn
FSQRT.X FPn
FrSQRT.<fmt> <ea>,FPn3

FrSQRT FPm,FPn3

FrSQRT FPn3

FSUB2 FPn – Source ø FPn FSUB.<fmt> <ea>,FPn
FSUB.X FPm,FPn
FrSUB.<fmt> <ea>,FPn3

FrSUB.X FPm,FPn3

FTRAPcc2 If condition true
then TRAP

FTRAPcc
FTRAPcc.W #<data>
FTRAPcc.L #<data>

FTST2 Condition Codes for Operand ø FPCC FTST.<fmt> <ea>
FTST.X FPm

ILLEGAL SSP – 2 ø SSP; Vector Offset ø (SSP);
SSP – 4 ø SSP; PC ø (SSP);
SSp – 2 ø SSP; SR ø (SSP);
Illegal Instruction Vector Address ø PC

ILLEGAL

JMP Destination Address ø PC JMP <ea>

JSR SP – 4 ø SP; PC ø (SP)
Destination Address ø PC

JSR <ea>

LEA <ea> ø An LEA <ea>,An

LINK SP – 4 ø SP; An ø (SP)
SP ø An, SP+d ø SP

LINK An,dn

1-18 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax

LPSTOP6 If supervisor state
immediate data ø SR
SR ø broadcast cycle
STOP

else TRAP

LPSTOP #<data>

LSL, LSR Destination Shifted by count ø Destination LSd Dx,Dy1

LSd #<data>,Dy1

LSd <ea>1

MOVE Source ø Destination MOVE <ea>,<ea>

MOVEA Source ø Destination MOVEA <ea>,An

MOVE
from CCR

CCR ø Destination MOVE CCR,<ea>

MOVE to CCR Source ø CCR MOVE <ea>,CCR

MOVE from SR If supervisor state
then SR ø Destination

else TRAP

MOVE SR,<ea>

MOVE to SR If supervisor state
then Source ø SR

else TRAP

MOVE <ea>,SR

MOVE USP If supervisor state
then USP ø An or An ø USP

else TRAP

MOVE USP,An
MOVE An,USP

MOVE16 Source block ø Destination block MOVE16 (Ax)+, (Ay)+7

MOVE16 (xxx).L, (An)
MOVE16 (An), (xxx).L
MOVE16 (An)+, (xxx).L

MOVEC If supervisor state
then Rc ø Rn or Rn ø Rc

else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

MOVEM Registers ø Destination
Source ø Registers

MOVEM <list>,<ea>4

MOVEM <ea>,<list>4

MOVEP Source ø Destination MOVEP Dx,(dn,Ay)
MOVEP (dn,Ay),Dx

MOVEQ Immediate Data ø Destination MOVEQ #<data>,Dn

MOVES If supervisor state
then Rn ø Destination [DFC] or
Source [SFC] ø Rn

else TRAP

MOVES Rn,<ea>
MOVES <ea>,Rn

MULS Source × Destination ø Destination MULS.W <ea>,Dn 16 × 16 ø 32
MULS.L <ea>,Dl 32 × 32 ø 32
MULS.L <ea>,Dh–Dl 32 × 32 ø 64

MULU Source × Destination ø Destination MULU.W <ea>,Dn 16 × 16 ø 32
MULU.L <ea>,Dl 32 × 32 ø 32
MULU.L <ea>,Dh–Dl 32 × 32 ø 64

NBCD 0 – (Destination10) – X ø Destination NBCD <ea>

NEG 0 – (Destination) ø Destination NEG <ea>

NEGX 0 – (Destination) – X ø Destination NEGX <ea>

MOTOROLA M68040 USER’S MANUAL 1-19

Table 1-4. Instruction Set Summary (Continued)

Opcode Operation Syntax

NOP None NOP

NOT ~ Destination ø Destination NOT <ea>

OR Source V Destination ø Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination ø Destination ORI #<data>,<ea>

ORI to CCR Source V CCR ø CCR ORI #<data>,CCR

ORI to SR If supervisor state
then Source V SR ø SR

else TRAP

ORI #<data>,SR

PACK Source (Unpacked BCD) + adjustment ø
Destination (Packed BCD)

PACK –(Ax),–(Ay),#(adjustment)
PACK Dx,Dy,#(adjustment)

PEA SP – 4 ø SP; <ea> ø (SP) PEA <ea>

PFLUSH8 If supervisor state
then invalidate instruction and data ATC entries
for destination address

else TRAP

PFLUSH (An)
PFLUSHN (An)
PFLUSHA
PFLUSHAN

PTEST8 If supervisor state
then logical address status ø MMUSR;
entry ø ATC

else TRAP

PTESTR (An)
PTESTW (An)

RESET If supervisor state
then Assert RSTO Line

else TRAP

RESET

ROL, ROR Destination Rotated by count ø Destination ROd Rx,Dy1

ROd #<data>,Dy1

ROXL, ROXR Destination Rotated with X by count ø Destination ROXd Dx,Dy1

ROXd #<data>,Dy1

ROXd <ea>1

RTD (SP) ø PC; SP + 4 + dn ø SP RTD #(dn)

RTE If supervisor state
then (SP) ø SR; SP + 2 ø SP; (SP) ø PC;
SP + 4 ø SP; restore state and deallocate
stack according to (SP)

else TRAP

RTE

RTR (SP) ø CCR; SP + 2 ø SP;
(SP) ø PC; SP + 4 ø SP

RTR

RTS (SP) ø PC; SP + 4 ø SP RTS

SBCD Destination10 – Source10 – X ø Destination SBCD Dx,Dy
SBCD –(Ax),–(Ay)

Scc If condition true
then 1s ø Destination

else 0s ø Destination

Scc <ea>

STOP If supervisor state
then Immediate Data ø SR; STOP

else TRAP

STOP #<data>

SUB Destination – Source ø Destination SUB <ea>,Dn
SUB Dn,<ea>

1-20 M68040 USER’S MANUAL MOTOROLA

Table 1-4. Instruction Set Summary (Concluded)

Opcode Operation Syntax

SUBA Destination – Source ø Destination SUBA <ea>,An

SUBI Destination – Immediate Data ø Destination SUBI #<data>,<ea>

SUBQ Destination – Immediate Data ø Destination SUBQ #<data>,<ea>

SUBX Destination – Source – X ø Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register 31–16 ¯ ø Register 15–0 SWAP Dn

TAS Destination Tested ø Condition Codes;
1 ø bit 7 of Destination

TAS <ea>

TRAP SSP – 2 ø SSP; Format ÷ Offset ø (SSP);
SSP – 4 ø SSP; PC ø (SSP); SSP – 2 ø SSP;
SR ø (SSP); Vector Address ø PC

TRAP #<vector>

TRAPcc If cc
then TRAP

TRAPcc
TRAPcc.W #<data>
TRAPcc.L #<data>

TRAPV If V
then TRAP

TRAPV

TST Destination Tested ø Condition Codes TST <ea>

UNLK An ø SP; (SP) ø An; SP + 4 ø SP UNLK An

UNPK Source (Packed BCD) + adjustment ø Destination
(Unpacked BCD)

UNPACK –(Ax),–(Ay),#(adjustment)
UNPACK Dx,Dy,#(adjustment)

NOTES:
1. Where d is direction, left or right.
2. Available only on the MC68040.
3. Where r is rounding precision, single or double precision.
4. List refers to register.
5. List refers to control registers only.
6. Available only on the MC68040V and MC68EC040V.
7. MOVE16 (ax)+,(ay)+ is functionally the same as MOVE16 (ax),(ay)+ when ax = ay. The address register is only

incremented once, and the line is copied over itself rather than to the next line.
8. Not available for the MC68EC040 or MC68EC040V.

MOTOROLA M68040 USER’S MANUAL 2-1

SECTION 2
INTEGER UNIT

This section describes the organization of the M68040 integer unit (IU) and presents a
brief description of the associated registers. Refer to Section 3 Memory Management
Unit (Except MC68EC040 and MC68EC040V) for details concerning the memory
management unit (MMU) programming model, and to Section 9 Floating-Point Unit
(MC68040 Only) for details concerning the floating-point unit (FPU) programming model.

2.1 INTEGER UNIT PIPELINE

The IU carries out logical and arithmetic operations using six separate subunits. Each unit
is dedicated to a different stage of the IU pipeline, handling a total of six separate
instructions simultaneously. Pipelining is a technique that overlaps the processing of
different parts of several instructions. Pipelining simulates an assembly line with the IU
containing a number of instructions in different phases of processing. The IU pipeline
consists of six stages:

1. Instruction Fetch—Fetching an instruction from memory.

2. Decode—Converting an instruction into micro-instructions.

3. <ea> Calculate—If the instruction calls for data from memory, the location of the
data, its memory address is calculated.

4. <ea> Fetch—Data is fetched from memory.

5. Execute—The data is manipulated during execution.

6. Write-Back—The result of the computation is written back to on-chip caches or
external memory.

The pipeline contains special shadow registers that can begin processing future
instructions for conditional branches while the main pipeline is processing current
instructions. The <ea> calculate stage eliminates pipeline blockage for instructions with
postincrement, postdecrement, or immediate add and load to address register for updates
that occur in the <ea> calculate stage. The write-back stage can write data over the
system bus to store a result in external memory or directly to on-chip caches. These write-
backs to memory can be deferred until the most opportune moment because of the
M68040 bus interface. Figure 2-1 illustrates the IU pipeline.

2-2 M68040 USER’S MANUAL MOTOROLA

INSTRUCTION DATA
FROM CACHE OR BUS

CONTROLLER

TO FPU

<ea> CALCULATE

<ea> FETCH TO CACHE OR
BUS CONTROLLER

EXECUTE

WRITE-BACK

SHADOW

SHADOW

INSTRUCTION
FETCH

DECODE

TO CACHE OR
BUS CONTROLLER

Figure 2-1. Integer Unit Pipeline

An instruction stream is fetched from the instruction memory unit and decoded on an
instruction-by-instruction basis in the decode stage. Multiple instructions are fetched to
keep the pipeline stages full so that the pipeline will not stall.

The decoded instruction is then passed to the <ea> calculate stage to calculate the
effective addresses that the instruction requires. The <ea> calculate stage initiates
additional fetches from the instruction stream to obtain the effective address extension
words and performs the effective address calculation. The initial execution of the
instruction in the execute stage handles any data registers required for the calculation,
which passes the register back to the <ea> calculate stage.

The resulting effective address is passed to the <ea> fetch stage, which initiates an
operand fetch from the data memory controller if the effective address is for a source
operand. The fetched operand is returned to the execute stage, which completes
execution of the instruction and writes any result to either a data register, memory, or back
to the <ea> calculate stage for storage in an address register. For a memory destination,
the <ea> fetch stage passes the address to the execution stage.

The previously described sequence of effective address calculation and fetch can occur
multiple times for an instruction, depending on the source and/or destination addressing
modes. For memory indirect addressing modes, the <ea> calculate stage initiates an
operand fetch from the intermediate indirect memory address, then calculates the final

MOTOROLA M68040 USER’S MANUAL 2-3

effective address. Also, some instructions access multiple memory operands and initiate
fetches for each operand.

The instruction finishes execution in the execute stage. Instructions with write-back
operands to memory generate pending write accesses that are passed to the write-back
stage. The write occurs to the data memory unit if it is not busy. If the following instruction,
which is in the <ea> fetch stage, requires an operand fetch, the write-back stalls in the
write-back stage since it is at a lower priority. The write-back can stall indefinitely until
either the data memory unit is free or another write is pending from the execution stage.

Figure 2-2 illustrates a write cycle, which begins in the IU pipeline. The IU stores the
logical address and data for a write operation in a temporary holding register (WB3). Write
operation control passes from the IU to the data memory unit once the data memory unit
is idle. When the data memory unit receives the logical address and data from the IU, it
stores the logical address and data to a second temporary holding register (WB2). The
data memory unit then translates the logical address into a physical address. If the
address translation is successful, the data memory unit either stores an address
translation in the data cache (write hit) or passes it to the bus controller (write-through with
write miss). Once the bus controller is ready to execute the external write operation, it
multiplexes the data to the correct data byte lanes and stores the multiplexed data and
physical address into a third holding register (WB1). WB1 is used in the actual write
operation seen on the address and data buses. Appendix B MC68EC040 contains details
on address translation in the MC68EC040.

DECODE

<ea>
CALCULATE

WRITE-
BACK (WB3)

INTEGER UNIT

INSTRUCTION MEMORY UNIT

INSTRUCTION
FETCH

EXECUTE

<ea>
FETCH

ADDRESS
BUS

DATA
BUS

DATA CACHE

BUS
CONTROLLER

WB1

DATA
ATC

DATA MEMORY UNIT

DATA MMU/
CACHE/SNOOP
CONTROLLER

WB2

DATA MUX

PUSH
BUFFER

BUS
CONTROL
SIGNALS

LO
G

IC
AL

 A
D

D
R

ES
S

PHYSICAL ADDRESS

Figure 2-2. Write-Back Cycle Block Diagram

2-4 M68040 USER’S MANUAL MOTOROLA

2.2 INTEGER UNIT REGISTER DESCRIPTION

The following paragraphs describe the IU registers in the user and supervisor
programming models. Refer to Section 3 Memory Management Unit (Except
MC68EC040 and MC68EC040V) for details on the MMU programming model and
Section 9 Floating-Point Unit (MC68040 Only) for details on the FPU programming
model.

2.2.1 Integer Unit User Programming Model

Figure 2-3 illustrates the IU portion of the user programming model. The model is the
same as for previous M68000 family microprocessors, consisting of the following
registers:

• 16 General-Purpose 32-Bit Registers (D7–D0, A7–A0)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

2.2.1.1 DATA REGISTERS (D7–D0). These registers are used as data registers for bit
and bit field (1 to 32 bits), byte (8 bit), word (16 bit), long-word (32 bit), and quad-word (64
bit) operations. These registers may also be used as index registers.

2.2.1.2 ADDRESS REGISTERS (A6–A0). These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used
for word and long-word operations.

A0
A1
A2
A3
A4
A5
A6

A7
(USP)

PC

D0
D1
D2
D3
D4
D5
D6
D7

DATA
REGISTERS

ADDRESS
REGISTERS

USER
STACK
POINTER
PROGRAM
COUNTER

CCR
CONDITION
CODE
REGISTER

01531

01531

0715

031

01531

Figure 2-3. Integer Unit User Programming Model

MOTOROLA M68040 USER’S MANUAL 2-5

2.2.1.3 SYSTEM STACK POINTER (A7). A7 is used as a hardware stack pointer during
stacking for subroutine calls and exception handling. The register designation A7 refers to
three different uses of the register: the user stack pointer (USP) (A7) in the user
programming model and either the interrupt stack pointer (ISP) or master stack pointer
(MSP) (A7' or A7", respectively) in the supervisor programming model. When the S-bit in
the status register (SR) is clear, the USP is the active stack pointer. Explicit references to
the system stack pointer (SSP) refer to the USP while the processor is operating in the
user mode.

A subroutine call saves the program counter (PC) on the active system stack, and the
return restores it from the active system stack. Both the PC and the SR are saved on the
supervisor stack (either ISP or MSP) during the processing of exceptions and interrupts.
Thus, the execution of supervisor level code is independent of user code and condition of
the user stack. Conversely, user programs use the USP independently of supervisor stack
requirements.

2.2.1.4 PROGRAM COUNTER. The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative
addressing.

2.2.1.5 CONDITION CODE REGISTER. The CCR consists of five bits of the SR least
significant byte. The first four bits represent a condition of the result generated by a
processor operation. The fifth bit, the extend bit (X-bit), is an operand for multiprecision
computations. The carry bit (C-bit) and the X-bit are separate in the M68000 family to
simplify programming techniques that use them.

2.2.2 Integer Unit Supervisor Programming Model

Only system programmers use the supervisor programming model (see Figure 2-4) to
implement sensitive operating system functions, I/O control, and MMU subsystems. All
accesses that affect the control features of the M68040 are in the supervisor programming
model. Thus, all application software is written to run in the user mode and migrates to the
M68040 from any M68000 platform without modification.

2-6 M68040 USER’S MANUAL MOTOROLA

31 15 0

31 0

A7 '(ISP)

15 7 0

31 15
A7 "(MSP)

031 2

31 0

SR

VBR

SFC

DFC

CACR

(CCR)

ALTERNATE SOURCE AND DESTINATION
FUNCTION CODE REGISTERS

INTERRUPT STACK POINTER

MASTER STACK POINTER

STATUS REGISTER

VECTOR BASE REGISTER

CACHE CONTROL REGISTER

0

Figure 2-4. Integer Unit Supervisor Programming Model

The supervisor programming model consists of the registers available to the user as well
as the following control registers:

• Two 32-Bit Supervisor Stack Pointers (ISP, MSP)

• 16-Bit Status Register (SR)

• 32-Bit Vector Base Register (VBR)

• Two 32-Bit Alternate Function Code Registers: Source Function Code (SFC) and
Destination Function Code (DFC)

• 32-Bit Cache Control Register (CACR)

The following paragraphs describe the supervisor programming model registers.
Additional information on the ISP, MSP, SR, and VBR registers can be found in Section 8
Exception Processing.

2.2.2.1 INTERRUPT AND MASTER STACK POINTERS. In a multitasking operating
system, it is more efficient to have a supervisor stack pointer associated with each user
task and a separate stack pointer for interrupt-associated tasks. The M68040 provides two
supervisor stack pointers, master and interrupt. Explicit references to the SSP refer to
either the MSP or ISP while the processor is operating in the supervisor mode. All
instructions that use the SSP implicitly reference the active stack pointer. The ISP and
MSP are general-purpose registers and can be used as software stack pointers, index
registers, or base address registers. The ISP and MSP can be used for word and long-
word operations.

The M-bit of the SR selects whether the ISP or MSP is active. SSP references access the
ISP when the M-bit is clear, putting the processor into the interrupt mode. If an exception
being processed is an interrupt and the M-bit is set, the M-bit is cleared, putting the
processor into the interrupt mode. The interrupt mode is the default condition after reset,
and all SSP references access the ISP. The ISP can be used for interrupt control
information and for workspace area as interrupt exception handling requires.

SSP references access the MSP when the M-bit is set. The operating system uses the
MSP for each task pointing to a task-related area of supervisor data space. This

MOTOROLA M68040 USER’S MANUAL 2-7

procedure separates task-related supervisor activity from asynchronous, I/O-related
supervisor tasks that can only be coincidental to the currently executing task. The MSP
can separately maintain task control information for each currently executing user task,
and the software updates the MSP when a task switch is performed, providing an efficient
means for transferring task-related stack items. The value of the M-bit does not affect
execution of privileged instructions. Instructions that affect the M-bit are MOVE to SR,
ANDI to SR, EORI to SR, ORI to SR, and RTE. The processor automatically saves the M-
bit value and clears it in the SR as part of the exception processing for interrupts.

2.2.2.2 STATUS REGISTER. The SR (see Figure 2-5) stores the processor status. In the
supervisor mode, software can access the full SR, including the CCR available in user
mode (see 2.2.1.5 Condition Code Register) and the interrupt priority mask and
additional control bits available only in the supervisor mode. These bits indicate the
following states for the processor: one of two trace modes (T1, T0), supervisor or user
mode (S), and master or interrupt mode (M).

The term SSP refers to the ISP and MSP. The M and S bits of the SR decide which SSP
to use. When the S-bit is one and the M-bit is zero, the ISP is the active stack pointer;
when the S-bit is one and the M-bit is one, the MSP is the active stack pointer. The ISP is
the default mode after reset and corresponds to the MC68000, MC68008, MC68010, and
CPU32 supervisor mode.

T1 T0 S M 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE
ENABLE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER STATE

MASTER/INTERRUPT STATE EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

Figure 2-5. Status Register

2.2.2.3 VECTOR BASE REGISTER. The VBR contains the base address of the exception
vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. Refer to Section 8 Exception Processing for
information on exception vectors.

2.2.2.4 ALTERNATE FUNCTION CODE REGISTERS. The alternate function code
registers contain 3-bit function codes. Function codes can be considered extensions of the
32-bit logical address that optionally provides as many as eight 4-Gbyte address spaces.
The processor automatically generates function codes to select address spaces for data
and programs at the user and supervisor modes. Certain instructions use the SFC and
DFC registers to specify the function codes for operations.

2-8 M68040 USER’S MANUAL MOTOROLA

2.2.2.5 CACHE CONTROL REGISTER. The CACR contains two enable bits that allow
the instruction and data caches to be independently enabled or disabled. Setting an
enable bit enables the associated cache without affecting the state of any lines within the
cache. A hardware reset clears the CACR, disabling both caches.

MOTOROLA M68040 USER'S MANUAL 3-1

SECTION 3
MEMORY MANAGEMENT UNIT
(EXCEPT MC68EC040 AND MC68EC040V)

NOTE

This section does not apply to the MC68EC040 and
MC68EC040V. Refer to Appendix B MC68EC040 for details.
All references to M68040 in this section only, refer to the
MC68040, MC68040V, and MC68LC040.

The M68040 supports a demand-paged virtual memory environment. Demand means that
programs request memory accesses through logical addresses, and paged means that
memory is divided into blocks of equal size, called page frames. Each page frame is
divided into pages of the same size. The operating system assigns pages to page frames
as they are required to meet the needs of the program.

The M68040 memory management includes the following features:

• Independent Instruction and Data Memory Management Units (MMUs)

• 32-Bit Logical Address Translation to 32-Bit Physical Address

• User-Defined 2-Bit Physical Address Extension

• Addresses Translated in Parallel with Indexing into Data or Instruction Cache

• 64-Entry Four-Way Set-Associative Address Translation Cache (ATC) for Each MMU
(128 Total Entries)

• Global Bit Allowing Flushes of All Nonglobal Entries from ATCs

• Selectable 4K or 8K Page Size

• Separate Supervisor and User Translation tables

• Two Independent Blocks for Each MMU Can Be Defined as Transparent
(Untranslated)

• Three-Level Translation Tables with Optional Indirection

• Supervisor and Write Protections

• History Bits Automatically Maintained in Descriptors

• External Translation Disable Input Signal (MDIS) for Emulator Support

• Caching Mode Selected on Page Basis

The MMUs completely overlap address translation time with other processing activities
when the translation is resident in one of the ATCs. ATC accesses operate in parallel with

3-2 M68040 USER'S MANUAL MOTOROLA

indexing into the on-chip instruction and data caches. The MMU MDIS signal dynamically
disables address translation for emulation and diagnostic support.

Figure 3-1 illustrates the MMUs contained in the two memory units, one for instructions
(supporting instruction prefetches) and one for data (supporting all other accesses). Each
unit contains an MMU, main cache, and snoop controller. The corresponding MMUs
contain two transparent translation registers, which identify blocks of memory that can be
accessed without translation. The MMUs also contain control logic and corresponding
address translation caches (ATCs) in which recently used logical-to-physical address
translations are stored. The data memory unit contains a data write and data read buffer,
and the instruction memory unit contains an instruction line read buffer. These buffers
temporarily hold data until an opportune moment arises to write the data to external
memory or read the operand/instruction into the integer unit.

INSTRUCTION
FETCH

DECODE

EA
CALCULATE

EXECUTE

WRITE-
BACK

EA
FETCH

INTEGER
UNIT

CONVERT

EXECUTE

WRITE-
BACK

INSTRUCTION
ATC

INSTRUCTION
MMU/CACHE/SNOOP

CONTROLLER

BUS
CONTROL
SIGNALS

DATA
BUS

ADDRESS
BUS

DATA
ATC

DATA
MMU/CACHE/SNOOP

CONTROLLER

OPERAND DATA BUS

INSTRUCTION DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

DATA MEMORY UNIT

INSTRUCTION MEMORY UNIT B
U
S

C
O
N
T
R
O
L
L
E
R

INSTRUCTION
ADDRESS

DATA
ADDRESS

Figure 3-1. Memory Management Unit

The principal MMU function is to translate logical addresses to physical addresses using
translation tables stored in memory. As the MMU receives a logical address from the
integer unit, it searches its ATC for the corresponding physical address using the upper

MOTOROLA M68040 USER'S MANUAL 3-3

logical address bits. If the translation is resident, the MMU provides the physical address
to the cache controller, which determines if the instruction or data being accessed is
cached. The cache controller uses the lower address bits to index into memory. An
external bus cycle is performed only when explicitly requested by the cache controller.
When the translation is not in the ATC, the MMU searches the translation tables in
memory for the translation information. Microcode and dedicated logic perform the
address calculations and bus cycles required for this search.

3.1 MEMORY MANAGEMENT PROGRAMMING MODEL

The memory management programming model is part of the supervisor programming
model for the M68040. The eight registers that control and provide status information for
address translation in the M68040 are: the user root pointer register (URP), the supervisor
root pointer register (SRP), the translation control register (TCR), four independent
transparent translation registers (ITT0, ITT1, DTT0, and DTT1), and the MMU status
register (MMUSR). Only programs that execute in the supervisor mode can directly
access these registers. Figure 3-2 illustrates the memory management programming
model.

31 0

31 0

31 0

0

31 0

31 0

31 0

31 0

URP

SRP

TCR

DTTR0

ITTR0

DTTR1

ITTR1

MMUSR

15

DATA TRANSPARENT TRANSLATION REGISTER 0

USER ROOT POINTER REGISTER

SUPERVISOR ROOT POINTER REGISTER

TRANSLATION CONTROL REGISTER

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 0

MMU STATUS REGISTER

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 1

DATA TRANSPARENT TRANSLATION REGISTER 1

Figure 3-2. Memory Management Programming Model

3.1.1 User and Supervisor Root Pointer Registers

The SRP and URP registers each contain the physical address of the translation table’s
root, which the MMU uses for supervisor and user accesses, respectively. The URP points
to the translation table for the current user task. When a new task begins execution, the
operating system typically writes a new root pointer to the URP. A new translation table
address implies that the contents of the ATCs may no longer be valid. A PFLUSH
instruction should be executed to flush the ATCs before loading a new root pointer value,
if necessary. Figure 3-3 illustrates the format of the 32-bit URP and SRP registers. Bits 8–

3-4 M68040 USER'S MANUAL MOTOROLA

0 of an address loaded into the URP or the SRP must be zero. Transfers of data to and
from these 32-bit registers are long-word transfers.

31 9 8 0

USER ROOT POINTER 0 0 0 0 0 0 0 0 0

SUPERVISOR ROOT POINTER 0 0 0 0 0 0 0 0 0

Figure 3-3. URP and SRP Register Formats

3.1.2 Translation Control Register

The 16-bit TCR contains two control bits to enable paged address translation and to select
page size. The operating system must flush the ATCs before enabling address translation
since the TCR accesses and reset do not flush the ATCs. All unimplemented bits of this
register are read as zeros and must always be written as zeros. The M68040 always uses
word transfers to access this 16-bit register. The fields of the TCRs are defined following
Figure 3-4, which illustrates the TCR.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E P 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOTE: Bits 13–0 are undefined (reserved).

Figure 3-4. Translation Control Register Format

E—Enable
This bit enables and disables paged address translation.

0 = Disable
1 = Enable

A reset operation clears this bit. When translation is disabled, logical addresses are
used as physical addresses. The MMU instruction, PFLUSH, can be executed
successfully despite the state of the E-bit. PTEST results are undefined if the MMU is
disabled and no table search occurs. If translation is disabled and an access does not
match a transparent translation register (TTR), the access has the following default
attributes on the TTR: the caching mode is cachable/write-through, write protection is
disabled, and the user attribute signals (UPA1 and UPA0) are zero.

P—Page Size
This bit selects the memory page size.

0 = 4 Kbytes
1 = 8 Kbytes

A reset operation does not affect this bit. The bit must be initialized after a reset.

MOTOROLA M68040 USER'S MANUAL 3-5

3.1.3 Transparent Translation Registers

The data transparent translation registers (DTTR0 and DTTR1) and instruction
transparent translation registers (ITTR0 and ITTR1) are 32-bit registers that define blocks
of logical address space. The TTRs operate independently of the E-bit in the TCR and the
state of the MDIS signal. Data transfers to and from these registers are long-word
transfers. The TTR fields are defined following Figure 3-5, which illustrates TTR format.
Bits 12–10, 7, 4, 3, 1, and 0 always read as zero.

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK E S-FIELD 0 0 0 U1 U 0 0 C M 0 0 W 0 0

Figure 3-5. Transparent Translation Register Format

Logical Address Base
This 8-bit field is compared with address bits A31–A24. Addresses that match in this
comparison (and are otherwise eligible) are transparently translated.

Logical Address Mask
Since this 8-bit field contains a mask for the Logical Address Mask field, setting a bit in
this field causes the corresponding bit in the Logical Address Base field to be ignored.
Blocks of memory larger than 16 Mbytes can be transparently translated by setting
some of the logical address mask bits to ones. The low-order bits of this field can be set
to define contiguous blocks larger than 16 Mbytes.

E—Enable
This bit enables or disables transparent translation of the block defined by this register:

0 = Transparent translation disabled
1 = Transparent translation enabled

S—Supervisor Mode
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 = 0 (user mode access)
01 = Match only if FC2 = 1 (supervisor mode access)
1X = Ignore FC2 when matching

U0, U1—User Page Attributes
The user defines these bits, and the M68040 does not interpret them. U0 and U1 are
echoed to the UPA0 and UPA1 signals, respectively, if an external bus transfer results
from an access. These bits can be programmed by the user to support external
addressing, bus snooping, or other applications.

3-6 M68040 USER'S MANUAL MOTOROLA

CM—Cache Mode
This field selects the cache mode and access serialization as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

W—Write Protect
This bit indicates if the transparent block is write protected. If set, write and read-modify-
write accesses are aborted as if the resident bit in a table descriptor were clear.

0 = Read and write accesses permitted
1 = Write accesses not permitted

3.1.4 MMU Status Register

The MMUSR is a 32-bit register that contains the status information returned by execution
of the PTEST instruction. The PTEST instruction searches the translation tables to
determine status information about the translation of a specified logical address. Transfers
to and from the MMUSR are long-word transfers. The fields of the MMUSR are defined
following Figure 3-6, which illustrates the MMUSR.

31 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYSICAL ADDRESS B G U1 U 0 S C M M O W T R

Figure 3-6. MMU Status Register Format

Physical Address
This 20-bit field contains the upper bits of the translated physical address. Merging
these bits with the lower bits of the logical address forms the actual physical address.
Bit 12 is undefined if a PTEST is executed with 8-Kbyte pages selected.

B—Bus Error
The B-bit is set if a transfer error is encountered during the table search for the PTEST
instruction. If the B-bit is set, all other bits are zero.

G—Global
This bit is set if the G-bit is set in the page descriptor.

U1, U0—User Page Attributes
These bits are set if corresponding bits in the page descriptor are set.

MOTOROLA M68040 USER'S MANUAL 3-7

S—Supervisor Protection
This bit is set if the S-bit in the page descriptor is set. Setting this bit does not indicate
that a violation has occurred.

CM—Cache Mode
This 2-bit field is copied from the CM bits in the page descriptor.

M—Modified
This bit is set if the M-bit is set in the page descriptor associated with the address.

W—Write Protect
This bit is set if the W-bit is set in any of the descriptors encountered during the table
search. Setting this bit does not indicate that a violation has occurred.

T—Transparent Translation Register Hit
If the T-bit is set, then the PTEST address matches an instruction or data TTR, the R-bit
is set, and all other bits are zero.

R—Resident
The R-bit is set if the PTEST address matches an instruction or data TTR or if the table
search completes by obtaining a valid page descriptor.

3.2 LOGICAL ADDRESS TRANSLATION

The function of the MMUs is to translate logical addresses to physical addresses. The
MMUs perform translations according to control information in translation tables. The
operating system creates these translation tables and stores them in memory. The
processor then fetches a translation table as needed and stores it in an ATC.

3.2.1 Translation Tables

The M68040 uses the ATCs in the instruction and data memory units with translation
tables stored in memory to perform the translations from logical to physical addresses.
The operating system loads the translation tables for a program into memory. No
distinction is made in the translation of instruction accesses versus data accesses
because the instruction and data MMUs access the same translation table for a specific
privilege mode, either user or supervisor. This lack of distinction results in a merged
instruction and data address space.

Figure 3-7 illustrates the three-level tree structure of a general translation table supported
by the M68040. The root- and pointer-level tables contain the base addresses of the
tables at the next level. The page-level tables contain either the physical address for the
translation or a pointer to the memory location containing the physical address. Only a
portion of the translation table for the entire logical address space is required to be
resident in memory at any time—specifically, only the portion of the table that translates

3-8 M68040 USER'S MANUAL MOTOROLA

the logical addresses of the currently executing process. Portions of translation tables can
be dynamically allocated as the process requires additional memory.

ROOT POINTER

PAGE
TABLES

FIRST
LEVEL

SECOND
LEVEL

THIRD
LEVEL

POINTER
TABLES

ROOT
TABLES

Figure 3-7. Translation Table Structure

The current privilege mode determines the use of the URP or SRP for translation of the
access. The root pointer contains the base address of the translation table’s root-level
table. The translation table consists of tables of descriptors. The table descriptors of the
root- and pointer-levels can be either resident or invalid. The page descriptors of the page-
level table can be resident, indirect, or invalid. A page descriptor defines the physical
address of a page frame in memory that corresponds to the logical address of a page. An
indirect descriptor, which contains a pointer to the actual page descriptor, can be used
when two or more logical addresses access a single page descriptor.

The table search uses logical addresses to access the translation tables. Figure 3-8
illustrates a logical address format, which is segmented into four fields: root index (RI),
pointer index (PI), page index (PGI), and page offset. The first three fields extracted from
the logical address index the base address for each table level. The seven bits of the
logical address RI field are multiplied by 4 or shifted to the left by two bits. This sum is
concatenated with the upper 23 bits of the appropriate root pointer (URP or SRP) to yield
the physical address of a root-level table descriptor. Each of the 128 root-level table
descriptors corresponds to a 32-Mbyte block of memory and points to the base of a
pointer-level table.

MOTOROLA M68040 USER'S MANUAL 3-9

7 BITS

31 25 24 18 17 13 12 11 0

7 BITS
8K PAGE
4K PAGE

8K PAGE
4K PAGE

ROOT INDEX FIELD
(RI)

POINTER INDEX FIELD
(PI)

PAGE INDEX FIELD
(PGI)

PAGE OFFSET

Figure 3-8. Logical Address Format

The seven bits of a logical address PI field are multiplied by 4 (shifted to the left by two
bits) and concatenated with the fetched root-level descriptor’s upper 23 bits to produce the
physical address of the pointer-level table descriptor. Each of the 128 pointer-level table
descriptors corresponds to a 256-Kbyte block of memory.

For 8-Kbyte pages, the five bits of the PGI field are multiplied by 4 (shifted to the left by
two bits) and concatenated with the fetched pointer-level descriptor’s upper 25 bits to
produce the physical address of the 8-Kbyte page descriptor. The upper 19 bits of the
page descriptor are the page frame’s physical address. There are 32 8-Kbyte page
descriptors in a page-level table.

Similarly, for 4-Kbyte pages, the six bits of the PGI field are multiplied by 4 (shifted to the
left by two bits) and concatenated with the fetched pointer-level descriptor’s upper 24 bits
to produce the physical address of the 4-Kbyte page descriptor. The upper 20 bits of the
page descriptor are the page frame’s physical address. There are 64 4-Kbyte page
descriptors in a page-level table.

Write-protect status is accumulated from each level’s descriptor and combined with the
status from the page descriptor to form the ATC entry status. The M68040 creates the
ATC entry from the page frame address and the associated status bits and retries the
original bus access. Refer to 3.3 Address Translation Caches for details on ATC entries.

If the descriptor from a page table is an indirect descriptor, the page descriptor pointed to
by this descriptor is fetched. Invalid descriptors can be used at any level of the tree except
the root. When a table search for a normal translation encounters an invalid descriptor, the
processor takes an access fault exception. The invalid descriptor can be used to identify
either a page or branch of the tree that has been stored on an external device and is not
resident in memory or a portion of the translation table that has not yet been defined. In
these two cases, the exception routine can either restore the page from disk or add to the
translation table. Figures 3-9 and 3-10 illustrate detailed flowcharts of table search and
descriptor fetch operations.

A table search terminates successfully when a page descriptor is encountered. The
occurrence of an invalid descriptor or a transfer error acknowledge also terminates a table
search, and the M68040 takes an exception on the retry of the cycle because of these
conditions. The exception handler should distinguish between anticipated conditions and
true error conditions. The exception handler can correct an invalid descriptor that indicates
a nonresident page or one that identifies a portion of the translation table yet to be
allocated. An access error due to a system malfunction can require the exception handler
to write an error message and terminate the task.

3-10 M68040 USER'S MANUAL MOTOROLA

ENTRY

SELECT ROOT POINTER
FC2 = 0:URP, 1:SRP

FETCH ROOT
DESCRIPTOR

FETCH POINTER
DESCRIPTOR

FETCH PAGE
DESCRIPTOR

TYPE 'INDIRECT'

FETCH INDIRECT
DESCRIPTOR

EXIT TABLE SEARCH

CREATE ATC ENTRY
WITH R-BIT CLEAR

EXIT TABLE SEARCH

(INITIALIZE ACCRUED
STATUS)

CREATE ATC ENTRY WITH R-BIT SET

ATC ENTRY PFA, DF[U1,U0,S,CM,M],WP
ATC TAG FC2, LA, DF[G]

ABBREVIATIONS:

PFA - PAGE FRAME ADDRESS
DF[] - DESCRIPTOR FIELD
WP - ACCUMULATED WRITE-
 PROTECTION STATUS
 ASSIGNMENT OPERATOR

➧WP 0

TYPE 'POINTER'
UPDATE FALSE➧

➧

➧
➧

➧

➧

TYPE 'PAGE'

 'RESIDENT' 'INVALID'

'RESIDENT'

'INVALID' 'RESIDENT'

'RESIDENT'OTHERWISE

'INDIRECT'

PFA = PHYSICAL ADDRESS
FIELD OF DESCRIPTOR

 'INVALID'

(CHECK DESCRIPTOR TYPE)

(CHECK DESCRIPTOR TYPE)

➧

(CHECK DESCRIPTOR TYPE)

(CHECK DESCRIPTOR TYPE)

Figure 3-9. Detailed Flowchart of Table Search Operation

MOTOROLA M68040 USER'S MANUAL 3-11

CREATE ATC ENTRY
WITH R-BIT CLEAR

FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS

FETCH DESCRIPTOR
AT PA = TA + (INDEX*4)

FETCH DESCRIPTOR AT
PA = DESCRIPTOR ADDRESS

WP = WP V W

OR 'INDIRECT'

EXECUTE
WRITE ACCESS

U 1, M 1

EXECUTE
LOCKED

RMW ACCESS
U 1

U = 1 &U = 0 &

SCHEDULE
WRITE ACCESS

U 1
(SEE NOTE)

WP = WP V W

IF SCHEDULED, EXECUTE
WRITE ACCESS (U 1) FOR

PREVIOUS DESCRIPTOR

CREATE ATC ENTRY
WITH R-BIT CLEAR

➧

➧

➧ ➧

WP – ACCUMULATED WRITE-
 PROTECTION STATUS
V – LOGICAL "OR" OPERATOR
 – ASSIGNMENT OPERATOR

DUE TO ACCESS PIPELINING, A POINTER
DESCRIPTOR WRITE ACCESS TO UPDATE
THE U-BIT OCCURS AFTER THE READ OF
THE NEXT LEVEL DESCRIPTOR.

NOTE :

ABBREVIATIONS:

➧

RETURNRETURN

RETURN

RETURN EXIT TABLE SEARCH

EXIT TABLE SEARCH

TYPE = 'PAGE' OR 'POINTER'

OTHERWISE

TYPE = 'PAGE'

'INVALID'

'RESIDENT''RESIDENT'

U = 1U = 0

 'INVALID'

TYPE =
'POINTER'

READ ACCESS

U = 0 (WP = 1 OR M = 1) (WP = 1 OR M = 1)

WP = 0 & M = 0
U = 1

WRITE ACCESS

OTHERWISE

➧

TYPE = 'INDIRECT'

(INDEX = RI, PI, OR PGI)

(SEE NOTE)

NORMAL TERMINATION
OF ALL BUS TRANSFERS

NORMAL TERMINATION
OF ALL BUS TRANSFERS

OR 'INDIRECT'

Figure 3-10. Detailed Flowchart of Descriptor Fetch Operation

3-12 M68040 USER'S MANUAL MOTOROLA

Motorola highly recommends that the translation tables be placed in cache-inhibited
memory space. Motorola also highly recommends table descriptors must not be left in
states that are incoherent to the processor. Future processors may treat these
recommendations as mandatory. The following paragraphs apply only to M68040 systems
that cannot meet these recommendations.

The processor never allocates table descriptors in the data cache when the processor
performs a table search. Only normal accesses to the translation tables cause descriptors
to be allocated in the data cache. If table descriptors are allocated in the data cache and
the cache is disabled, the processor locks up trying to access a cached descriptor during
a table search. Ensuring that the data cache is invalidated before enabling the MMU or
disabling the data cache and ensuring that the pages containing table descriptors are
pushed and invalidated prevents lockup during table searches.

Table and page descriptors must not be left in a state that is incoherent to the processor.
Violation of this restriction can result in an undefined operation. Page descriptors must not
have an encoding of U-bit = 0, M-bit = 1 and PDT field = 01 or 11. This encoding indicates
that the page descriptor is resident, not used, and modified. The processor’s table search
algorithm never leaves a descriptor in this state. This state is possible through direct
manipulation by the operating system for this specific instance. A table search for a
MOVE16 write can corrupt the cache line being written if the table descriptors are marked
copyback.

3.2.2 Descriptors

There are two types of descriptors used in the translation tables, table and page. Table-
and page-level descriptors can be further divided into types of descriptors. Root table
descriptors are used in root-level tables and pointer table descriptors are used in pointer-
level tables. Descriptors in the page-level tables contain either a page descriptor for the
translation or an indirect descriptor that points to a memory location containing the page
descriptor. The P-bit in the TCR selects the page size as either 4 or 8 Kbytes.

3.2.2.1 TABLE DESCRIPTORS. Figure 3-11 illustrates the formats of the root and pointer
table descriptors. Two descriptor formats are possible at the pointer-level tables to support
4-Kbyte and 8-Kbyte page sizes.

MOTOROLA M68040 USER'S MANUAL 3-13

31 9 8 7 6 5 4 3 2 1 0

POINTER TABLE ADDRESS X X X X X U W UDT

ROOT TABLE DESCRIPTOR (ROOT LEVEL)

31 8 7 6 5 4 3 2 1 0

PAGE TABLE ADDRESS X X X X U W UDT

4K POINTER TABLE DESCRIPTOR (POINTER LEVEL)

31 7 6 5 4 3 2 1 0

PAGE TABLE ADDRESS X X X U W UDT

8K POINTER TABLE DESCRIPTOR (POINTER LEVEL)

Figure 3-11. Table Descriptor Formats

3.2.2.2 PAGE DESCRIPTORS. Figure 3-12 illustrates the page descriptors for both
4-Kbyte and 8-Kbyte page sizes. Refer to Section 4 Instruction and Data Caches for
details concerning caching page descriptors.

31 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYSICAL ADDRESS UR G U1 U0 S CM M U W PDT

4K PAGE DESCIPTOR (PAGE LEVEL)

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYSICAL ADDRESS UR UR G U1 U0 S CM M U W PDT

8K PAGE DESCRIPTOR (PAGE LEVEL)

31 2 1 0

DESCRIPTOR ADDRESS PDT

INDIRECT PAGE DESCRIPTOR (PAGE LEVEL)

Figure 3-12. Page Descriptor Formats

3.2.2.3 DESCRIPTOR FIELD DEFINITIONS. The field definitions for the table- and page-
level descriptors are listed in alphabetical order:

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

3-14 M68040 USER'S MANUAL MOTOROLA

Descriptor Address
This 30-bit field, which contains the physical address of a page descriptor, is only used
in indirect descriptors.

G—Global
When this bit is set, it indicates the entry is global. PFLUSH instruction variants that
specify nonglobal entries do not invalidate global entries, even when all other selection
criteria are satisfied. If these PFLUSH variants are not used, then system software can
use this bit.

M—Modified
This bit identifies a modified page. The M68040 sets the M-bit in the corresponding
page descriptor before a write operation to a page for which the M-bit is clear, except for
write-protect or supervisor violations. The read portion of a read-modify-write access is
considered a write for updating purposes. The M68040 never clears this bit.

PDT—Page Descriptor Type
This field identifies the descriptor as an invalid descriptor, a page descriptor for a
resident page, or an indirect pointer to another page descriptor.

00 = Invalid
This code indicates that the descriptor is invalid. An invalid descriptor can
represent a nonresident page or a logical address range that is out of
bounds. All other bits in the descriptor are ignored. When an invalid
descriptor is encountered, an ATC entry is created for the logical address
with the resident bit in the MMUSR clear.

01 or 11 = Resident
These codes indicate that the page is resident.

10 = Indirect
This code indicates that the descriptor is an indirect descriptor. Bits 31–2
contain the physical address of the page descriptor. This encoding is invalid
for a page descriptor pointed to by an indirect descriptor.

Physical Address
This 20-bit field contains the physical base address of a page in memory. The logical
address supplies the low-order bits of the address required to index into the page.
When the page size is 8-Kbyte, the least significant bit of this field is not used.

S—Supervisor Protected
This bit identifies a page as supervisor only. Only programs operating in the supervisor
mode are allowed to access the portion of the logical address space mapped by this
descriptor when the S-bit is set. If the bit is clear, both supervisor and user accesses are
allowed.

MOTOROLA M68040 USER'S MANUAL 3-15

Page Table Address
This field contains the physical base address of a table of page descriptors. The low-
order bits of the address required to index into the page table are supplied by the logical
address.

U—Used
The processor automatically sets this bit when a descriptor is accessed in which the
U-bit is clear. In a page descriptor table, this bit is set to indicate that the page
corresponding to the descriptor has been accessed. In a pointer table, this bit is set to
indicate that the pointer has been accessed by the M68040 as part of a table search.
The U-bit is updated before the M68040 allows a page to be accessed. The processor
never clears this bit.

U0, U1—User Page Attributes
These bits are user defined and the processor does not interpret them. U0 and U1 are
echoed to the UPA0 and UPA1 signals, respectively, if an external bus transfer results
from the access. Applications for these bits include extended addressing and snoop
protocol selection.

UDT—Upper Level Descriptor Type
These bits indicate whether the next level table descriptor is resident.
00 or 01 = Invalid

These codes indicate that the table at the next level is not resident or that
the logical address is out of bounds. All other bits in the descriptor are
ignored. When an invalid descriptor is encountered, an ATC entry is created
for the logical address with the resident bit in the MMUSR clear.

10 or 11 = Resident
These codes indicate that the page is resident.

UR—User Reserved
These single bit fields are reserved for use by the user.

W—Write Protected
Setting the W-bit in a table descriptor write protects all pages accessed with that
descriptor. When the W-bit is set, a write access or a read-modify-write access to the
logical address corresponding to this entry causes an access error exception to be
taken.

X—Motorola Reserved
These bit fields are reserved for future use by Motorola.

3-16 M68040 USER'S MANUAL MOTOROLA

3.2.3 Translation Table Example

Figure 3-13 illustrates an access example to the logical address $76543210 while in the
supervisor mode with an 8-Kbyte memory page size. The RI field of the logical address,
$3B, is mapped into bits 8–2 of the SRP value to select a 32-bit root table descriptor at a
root-level table. The selected root table descriptor points to the base of a pointer-level
table, and the PI field of the logical address, $15, is mapped into bits 8–2 of this base
address to select a pointer descriptor within the table. This pointer table descriptor points
to the base of a page-level table, and the PGI field of the logical address, $1, is mapped
into bits 6–2 of this base address to select a page descriptor within the table.

3.2.4 Variations in Translation Table Structure

Several aspects of the MMU translation table structure are software configurable, allowing
the system designer flexibility to optimize the performance of the MMUs for a particular
system. The following paragraphs discuss the variations of the translation table structure.

3.2.4.1 INDIRECT ACTION. The M68040 provides the ability to replace an entry in a page
table with a pointer to an alternate entry. The indirection capability allows multiple tasks to
share a physical page while maintaining only a single set of history information for the
page (i.e., the modified indication is maintained only in the single descriptor). The
indirection capability also allows the page frame to appear at arbitrarily different addresses
in the logical address spaces of each task.

MOTOROLA M68040 USER'S MANUAL 3-17

ROOT LEVEL
TABLES

POINTER LEVEL
TABLES

PAGE LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15
SUPERVISOR
MODE

TABLE $00

TABLE $7F TABLE $1F

TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

$00001800 $00003000 FRAME ADDRESS

SRP

$15 $01

Figure 3-13. Example Translation Table

Using the indirection capability, single entries or entire tables can be shared between
multiple tasks. Figure 3-14 illustrates two tasks sharing a page using indirect descriptors.

When the M68040 has completed a normal table search, it examines the PDT field of the
last entry fetched from the page tables. If the PDT field contains an indirect ($2) encoding,
it indicates that the address contained in the highest order 30 bits of the descriptor is a
pointer to the page descriptor that is to be used to map the logical address. The processor
then fetches the page descriptor from this address and uses the physical address field of
the page descriptor as the physical mapping for the logical address.

The page descriptor located at the address given by the indirect descriptor must not have
a PDT field with an indirect encoding (it must be either a resident descriptor or invalid).
Otherwise, the descriptor is treated as invalid, and the M68040 creates an ATC entry with
a signaled error condition (R-bit in MMUSR is clear).

3-18 M68040 USER'S MANUAL MOTOROLA

ROOT-LEVEL
TABLES

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15

TABLE $00

TABLE $7F TABLE $1F

TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

$00001800 $00003000 $80000010$15 $01

ROOT POINTER

TASK A

TASK B
ROOT POINTER

FRAME ADDRESS

Figure 3-14. Translation Table Using Indirect Descriptors

3.2.4.2 TABLE SHARING BETWEEN TASKS. More than one task can share a pointer- or
page-level table by placing a pointer to a shared table in the address translation tables.
The upper (nonshared) tables can contain different write-protected settings, allowing
different tasks to use the memory areas with different write permissions. In Figure 3-15,
two tasks share the memory translated by the table at the pointer table level. Task A
cannot write to the shared area; task B, however, has the W-bit clear in its pointer to the
shared table so that it can read and write the shared area. Also, the shared area appears
at different logical addresses for each task. Figure 3-15 illustrates shared tables in a
translation table structure.

MOTOROLA M68040 USER'S MANUAL 3-19

ROOT-LEVEL
TABLES

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15

TABLE $00 TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

FRAME ADDRESS*

ROOT POINTER

$15 $01

TASK A

TASK B
ROOT POINTER

W-BIT CLEAR

* Page frame address shared by task A and B; write protected from task A.

W-BIT SET

$00003000

Figure 3-15. Translation Table Using Shared Tables

3.2.4.3 TABLE PAGING. The entire translation table for an active task need not be
resident in main memory. In the same way that only the working set of pages must be
allocated in main memory, only the tables that describe the resident set of pages need be
available. Placing the invalid code ($0 or $1) in the UDT field of the table descriptor that
points to the absent table(s) implements this paging of tables. When a task attempts to
use an address that an absent table would translate, the M68040 is unable to locate a
translation and takes access error exception when the execution unit retries the bus
access that caused the table search to be initiated.

The operating system determines that the invalid code in the descriptor corresponds to
nonresident tables. This determination can be facilitated by using he unused bits in the
descriptor to store status information concerning the invalid encoding. The M68040 does
not interpret or modify an invalid descriptor’s fields except for the UDT field. This

3-20 M68040 USER'S MANUAL MOTOROLA

interpretation allows the operating system to store system-defined information in the
remaining bits. Information typically stored includes the reason for the invalid encoding
(tables paged out, region unallocated, etc.) and possibly the disk address for nonresident
tables. Figure 3-16 illustrates an address translation table in which only a single page
table (table $15) is resident; all other page tables are not resident.

$15 $01

TABLE $3B

$3B

SUPERVISOR
TABLE $00 TABLE $00

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = INVALID
UDT = RESIDENT

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

TABLE $7F

TABLE $15

TABLE $00

TABLE $1F

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = RESIDENT

SRP

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =
$EC $54 $04ADDRESS OFFSET =

FRAME ADDRESS

NONRESIDENT
(PAGED OR

UNALLOCATED)

ROOT-LEVEL
TABLES

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

Figure 3-16. Translation Table with Nonresident Tables

MOTOROLA M68040 USER'S MANUAL 3-21

3.2.4.4 DYNAMICALLY ALLOCATED TABLES. Similar to paged tables, a complete
translation table need not exist for an active task. The operating system can dynamically
allocate the translation table based on requests for access to particular areas.

As in demand paging, it is difficult, if not impossible, to predict the areas of memory that a
task uses over any extended period. Instead of attempting to predict the requirements of
the task, the operating system performs no action for a task until a demand is made
requesting access to a previously unused area or an area that is no longer resident in
memory. This technique can be used to efficiently create a translation table for a task.

For example, consider an operating system that is preparing the system to execute a
previously unexecuted task that has no translation table. Rather than guessing what the
memory-usage requirements of the task are, the operating system creates a translation
table for the task that maps one page corresponding to the initial value of the program
counter (PC) for that task and one page corresponding to the initial stack pointer of the
task. All other branches of the translation table for this task remain unallocated until the
task requests access to the areas mapped by these branches. This technique allows the
operating system to construct a minimal translation table for each task, conserving
physical memory utilization and minimizing operating system overhead.

3.2.5 Table Search Accesses

The cache treats table search accesses that are not read-modify-write accesses as
cachable/write-through but do not allocate in the cache for misses. Read-modify-write
table search accesses (required to update some descriptor U-bit and M-bit combinations)
are treated as noncachable and force a matching cache line to be pushed and invalidated.
Table search bus accesses are locked only for the specific portions of the table search
that requires a read-modify-write access.

During a table search, the U-bit in each encountered descriptor is checked and set if not
already set. Similarly, when the table search is for a write access and the M-bit of the
page descriptor is clear, the processor sets the bit if the table search does not encounter a
set W-bit or a supervisor violation. Repeating the descriptor access as part of a read-
modify-write access updates specific combinations of the U and M bits, allowing the
external arbiter to prevent the update operation from being interrupted.

The M68040 asserts the LOCK signal during certain portions of the table search to ensure
proper maintenance of the U-bit and M-bit. The U-bit and M-bit are updated before the
M68040 allows a page to be accessed or written. As descriptors are fetched, the U-bit and
M-bit are monitored. Write cycles modify these bits when required. For a table descriptor,
a write cycle that sets the U-bit occurs only if the U-bit was clear. Table 3-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and
read or write access type.

3-22 M68040 USER'S MANUAL MOTOROLA

Table 3-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status Access Page Descriptor New Status

U-Bit M-Bit WP Bit Type Update Operation U-Bit M-Bit

0 0 Locked RMW Access to Set U 1 0

0 1 Locked RMW Access to Set U 1 1

1 0 X Read None 1 0

1 1 None 1 1

0 0 Write to Set U and M 1 1

0 1 Locked RMW Access to Set U 1 1

1 0 0 Write to Set M 1 1

1 1 Write None 1 1

0 0 Locked RMW Access to Set U 1 0

0 1 Locked RMW Access to Set U 1 1

1 0 1 None 1 0

1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

An alternate address space access is a special case that is immediately used as a
physical address without translation. Because the M68040 implements a merged
instruction and data space, the integer unit translates MOVES accesses to instruction
address spaces (SFC/DFC = $6 or $2) into data references (SFC/DFC = $5 or $1). The
data memory unit handles these translated accesses as normal data accesses. If the
access fails due to an ATC fault or a physical bus error, the resulting access error stack
frame contains the converted function code in the TM field for the faulted access.
Invalidation of the instruction cache line containing the referenced location to maintain
cache coherency must precede MOVES accesses that write the instruction address
space. The SFC and DFC values and results are listed in Table 3-2.

Table 3-2. SFC and DFC Values

Results

SFC/DFC Value TT TM

000 10 000

001 00 001

010 00 001

011 10 011

100 10 100

101 00 101

110 00 101

111 10 111

MOTOROLA M68040 USER'S MANUAL 3-23

3.2.6 Address Translation Protection

The M68040 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each
table and page descriptor includes a write-protect (W) bit that can be set to provide write
protection at any level. Page descriptors also contain a supervisor-only (S) bit that can
limit access to programs operating at the supervisor privilege level.

The protection mechanisms can be used individually or in any combination to protect:

• Supervisor address space from accesses by user programs.

• User address space from accesses by other user programs.

• Supervisor and user program spaces from write accesses (implicitly supported by
designating all memory pages used for program storage as write protected).

• One or more pages of memory from write accesses.

3.2.6.1 SUPERVISOR AND USER TRANSLATION TABLES. One way of protecting
supervisor and user address spaces from unauthorized accesses is to use separate
supervisor and user translation tables. Separate trees protect supervisor programs and
data from accesses by user programs and user programs and data from access by
supervisor programs. Access is granted to the supervisor programs that can accesses any
area of memory with MOVES. The translation table pointed to by the SRP is selected for
all other supervisor mode accesses. This translation table can be common to all tasks.
Figure 3-17 illustrates separate translation tables for supervisor accesses and for two user
tasks that share the common supervisor space. Each user task has an translation table
with unique mappings for the logical addresses in its user address space.

3.2.6.2 SUPERVISOR ONLY. A second mechanism protects supervisor programs and
data without requiring segmenting of the logical address space into supervisor and user
address spaces. Page descriptors contain S-bits to protect areas of memory from access
by user programs. When a table search for a user access encounters an S-bit set in a
page descriptor, the table search ends, and an ATC descriptor corresponding to the
logical address is created with the S-bit set. A subsequent retry of the user access results
in an access error exception being taken. The S-bit can be used to protect one or more
pages from user program access. Supervisor and user mode accesses can share
descriptors by using indirect descriptors or by sharing tables. The entire user and
supervisor address spaces can be mapped together by loading the same root pointer
address into both the SRP and URP registers.

3-24 M68040 USER'S MANUAL MOTOROLA

FOR TASK 'A'

URP FOR TASK 'A'
USER A LEVEL TABLE

TRANSLATION
TABLE FOR
TASK 'A'

•

•
•

FOR TASK 'B'

URP FOR TASK 'B'
USER A LEVEL TABLE

TRANSLATION
TABLE FOR
TASK 'B'

•

•
•

POINTER

COMMON SRP
SUPERVISOR A LEVEL TABLE

TRANSLATION
TABLE FOR
ALL SUPERVISOR
ACCESSES

•

•
•

Figure 3-17. Translation Table Structure for Two Tasks

3.2.6.3 WRITE PROTECT. The M68040 provides write protection independent of other
protection mechanisms. All table and page descriptors contain W-bits to protect areas of
memory from write accesses of any kind, including supervisor writes. An ATC descriptor
corresponding to the logical address is created with the W-bit set after the table search is
completed when a table search encounters a W-bit set in any table or page descriptor.
The subsequent retry of the write access results in an access error exception being taken.
The W-bit can be used to protect the entire area of memory defined by a branch of the
translation table or protect only one or more pages from write accesses. Figure 3-18
illustrates a memory map of the logical address space organized to use supervisor-only
and write-protect bits for protection. Figure 3-19 illustrates an example translation table for
this technique.

SUPERVISOR AND USER SPACE

THIS AREA IS SUPERVISOR ONLY, READ-ONLY

THIS AREA IS SUPERVISOR ONLY, READ/WRITE

THIS AREA IS SUPERVISOR OR USER, READ-ONLY

THIS AREA IS SUPERVISOR OR USER, READ/WRITE

Figure 3-18. Logical Address Map with Shared
Supervisor and User Address Spaces

MOTOROLA M68040 USER'S MANUAL 3-25

PRIVILEGE
MODE

SRP
URP

URP & SRP POINT
TO SAME A LEVEL

TABLE

W =1

W = 1

W = 0

W = 0

S = 1,W = X

THIS PAGE
SUPERVISOR ONLY,

READ ONLY

W = 0 S = 1,W = 0

POINTER-LEVEL
TABLE

PAGE-LEVEL
TABLE

W = 0 S = 0,W = 0

THIS PAGE
SUPERVISOR ONLY,

READ/WRITE

THIS PAGE
SUPERVISOR/USER,

READ ONLY

THIS PAGE
SUPERVISOR/USER,

READ/WRITE

W = X S = 0,W = X

NOTE: X = Don’t care.

W = X

ROOT-LEVEL
TABLE

Figure 3-19. Translation Table Using S-Bit and W-Bit To Set Protection

3-26 M68040 USER'S MANUAL MOTOROLA

3.3 ADDRESS TRANSLATION CACHES

The ATCs in the MMUs are four-way set-associative caches that each store 64 logical-to-
physical address translations and associated page information similar in form to the
corresponding page descriptors in memory. The purpose of the ATC is to provide a fast
mechanism for address translation by avoiding the overhead associated with a table
search of the logical-to-physical mapping of recently used logical addresses. Figure 3-20
illustrates the organization of the ATC.

3

PAGE FRAME PAGE OFFSET

MUX

MUX

MUX

2
1

COMPARATOR
0

STATUS

PA(31–13)

PA(11–0)

PA(12)

PAGE SIZE

PAGE SIZE

116

3

1 12

1

17

29

19

9

1

4

17

0121631

HIT 3
HIT 2
HIT 1
HIT 0

HITHIT
DETECT

LINE SELECT

TAG ENTRY

29

F
C

SET 0

SET 1

SET 15

TAG ENTRY

•
•
•

•
•
•

SET
SELECT

2

Figure 3-20. ATC Organization

MOTOROLA M68040 USER'S MANUAL 3-27

Each ATC entry consists of a physical address, attribute information from a corresponding
page descriptor, and a tag that contains a logical address and status information. Figure
3-21, which illustrates the entry and tag fields, is followed by field definitions listed in
alphabetical order.

U1 U0 S CM M W R PHYSICAL ADDRESS*

ENTRY

V G FC2 LOGICAL ADDRESS*

TAG

* For 4-Kbyte page sizes this field uses address bits 31–12; for 8-Kbyte page sizes, bits 31–13.

Figure 3-21. ATC Entry and Tag Fields

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Section 4 Instruction and Data Caches provides detailed information on caching
modes, and Section 7 Bus Operation provides information on serialization.

FC2—Function Code Bit 2 (Supervisor/User)
This bit contains the function code corresponding to the logical address in this entry.
FC2 is set for supervisor mode accesses and cleared for user mode accesses.

G—Global
When set, this bit indicates the entry is global. Global entries are not invalidated by the
PFLUSH instruction variants that specify nonglobal entries, even when all other
selection criteria are satisfied.

Logical Address
This 13-bit field contains the most significant logical address bits for this entry. All 16
bits of this field are used in the comparison of this entry to an incoming logical address
when the page size is 4 Kbytes. For 8-Kbytes pages, the least significant bit of this field
is ignored.

M—Modified
The modified bit is set when a valid write access to the logical address corresponding to
the entry occurs. If the M-bit is clear and a write access to this logical address is
attempted, the M68040 suspends the access, initiates a table search to set the M-bit in
the page descriptor, and writes over the old ATC entry with the current page descriptor
information. The MMU then allows the original write access to be performed. This

3-28 M68040 USER'S MANUAL MOTOROLA

procedure ensures that the first write operation to a page sets the M-bit in both the ATC
and the page descriptor in the translation tables, even when a previous read operation
to the page had created an entry for that page in the ATC with the M-bit clear.

Physical Address
The upper bits of the translated physical address are contained in this field.

R—Resident
This bit is set if the table search successfully completes without encountering either a
nonresident page or a transfer error acknowledge during the search.

S—Supervisor Protected
This bit identifies a pointer table or a page as a supervisor-only table or page. Only
programs operating in the supervisor privilege mode are allowed to access the portion
of the logical address space mapped by this descriptor when the S-bit is set. If the bit is
clear, both supervisor and user accesses are allowed.

U0, U1—User Page Attributes
These user-defined bits are not interpreted by the M68040. U0 and U1 are echoed to
the UPA0 and UPA1 signals, respectively, if an external bus transfer results from the
access.

V—Valid
When set, this bit indicates the validity of the entry. This bit is set when the M68040
loads an entry. A flush operation by a PFLUSH or PFLUSHA instruction that selects this
entry clears the bit.

W—Write Protected
This write-protect bit is set when a W-bit is set in any of the descriptors encountered
during the table search for this entry. Setting a W-bit in a table descriptor write protects
all pages accessed with that descriptor. When the W-bit is set, a write access or a read-
modify-write access to the logical address corresponding to this entry causes an access
error exception to be taken immediately.

For each access to a memory unit, the MMU uses the four bits of the logical address
located just above the page offset (LA16–LA13 for 8K pages, LA15–LA12 for 4K pages) to
index into the ATC. The tags are compared with the remaining upper bits of the logical
address and FC2. If one of the tags matches and is valid, then the multiplexer choses the
corresponding entry to produce the physical address and status information. The ATC
outputs the corresponding physical address to the cache controller, which accesses the
data within the cache and/or requests an external bus cycle. Each ATC entry contains a
logical address, a physical address, and status bits.

When the ATC does not contain the translation for a logical address, a miss occurs. The
MMU aborts the current access and searches the translation tables in memory for the
correct translation. If the table search completes without any errors, the MMU stores the

MOTOROLA M68040 USER'S MANUAL 3-29

translation in the ATC and provides the physical address for the access, allowing the
memory unit to retry the original access.

There are some variations in the logical-to-physical mapping because of the two page
sizes. If the page size is 4 Kbytes, then logical address bit 12 is used to access the ATC's
memory, the tag comparators use bit 16, and physical address bit 12 is an ATC output. If
the page size is 8 Kbytes, then logical address bit 16 is used to access the ATC's
memory, and physical address bit 12 is driven by logical address bit 12. It is advisable that
a translation always be disabled before changing size and that the ATCs are flushed
before enabling translation again.

The M68040 is organized such that other operations always completely overlap the
translation time of the ATCs; thus, no performance penalty is associated with ATC
searches. The address translation occurs in parallel with indexing into the on-chip
instruction and data caches.

The MMU replaces an invalid entry when the ATC stores a new address translation. When
all entries in an ATC set are valid, the ATC selects a valid entry to be replaced, using a
pseudo-random replacement algorithm. A 2-bit counter, which is incremented for each
ATC access, points to the entry to replace when an access misses in the ATC. ATC hit
rates are application and page-size dependent, but hit rates ranging from 98% to greater
than 99% can be expected. These high rates are achieved because the ATCs are
relatively large (64 entries) and utilization efficiency is high with 8-Kbyte and 4-Kbyte page
sizes.

3.4 TRANSPARENT TRANSLATION

Four independent TTRs (DTT0 and DTT1 in the data MMU, ITT0 and ITT1 in the
instruction MMU) define four blocks of logical address space to be translated to physical
address space. These logical address spaces must be at least 16 Mbytes and can overlap
or be separate. Each TTR can be disabled and completely ignored. The following
description assumes that the TTRs are enabled.

When an MMU receives an address to be translated, the privilege mode and the eight
high-order bits of the address are compared to the logical address spaces defined by the
two TTRs for the corresponding MMU. The logical address space for each TTR is defined
by an S-field, logical base address field, and logical address mask field. The S-field allows
matching either user or supervisor accesses or both accesses. When a bit in the logical
address mask field is set, the corresponding bit of the logical base address is ignored in
the address comparison and privilege mode. Setting successively higher order bits in the
address mask increases the size of the physical address space.

The address for the current bus cycle and a TTR address match when the privilege mode
and logical base address bits are equal. Each TTR can specify write protection for the
block. When write protection is enabled for a block, write or read-modify-write accesses to
the block are aborted.

3-30 M68040 USER'S MANUAL MOTOROLA

By appropriately configuring a TTR, flexible transparent mappings can be specified (refer
to 3.1.3 Transparent Translation Registers for field identification). For instance, to
transparently translate the user address space, the S-field is set to $0, and the logical
address mask is set to $FF in both an instruction and data TTR. To transparently translate
supervisor accesses of addresses $00000000–$0FFFFFFF with write protection, the
logical base address field is set to $0x, the logical address mask is set to $0F, the W-bit is
set to one, and the S-field is set to $1. The inclusion of independent TTRs in both the
instruction and data MMUs provides an exception to the merged instruction and data
address space, allowing different translations for instruction and operand accesses. Also,
since the instruction memory unit is only used for instruction prefetches, different
instruction and data TTRs can cause PC relative operand fetches to be translated
differently from instruction prefetches.

If either of the TTRs matched during an access to a memory unit (either instruction or
data), the access is transparently translated. If both registers match, the TT0 status bits
are used for the access. Transparent translation can also be implemented by the
translation tables of the translation tables if the physical addresses of pages are set equal
to their logical addresses.

3.5 ADDRESS TRANSLATION SUMMARY

The instruction and data MMUs process translations by first comparing the logical address
and privilege mode with the parameters of the TTRs. If there is a match, the MMU uses
the logical address as a physical address for the access. If there is no match, the MMU
compares the logical address and privilege mode with the tag portions of the entries in the
ATC and uses the corresponding physical address for the access when a match occurs.
When neither a TTR nor a valid ATC entry matches, the MMU initiates a table search
operation to obtain the corresponding physical address from the translation table. When a
table search is required, the processor suspends instruction execution activity and, at the
end of a successful table search, stores the address mapping in the appropriate ATC and
retries the access. The MMU creates a valid ATC entry for the logical address, and the
access is retried. If an access hits in the ATC but an access error or invalid page
descriptor was detected during the table search that created the ATC entry, the access is
aborted, and a bus error exception is taken.

If a write or read-modify-write access results in an ATC hit but the page is write protected,
the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in memory and in the ATC; the access is retried.
The ATC provides the address translation for the access if the modified bit of the ATC
entry is set for a write or read-modify-write access to an unprotected page, if the resident
bit is set (indicating the table search for the entry completed successfully), and if none of
the TTRs (instruction or data, as appropriate) match.

An ATC access error is not reported immediately, if the last 16 bits of a page is either an
A-line, illegal, CHK, or unimplemented instruction and the next page is non-resident.
Instead, the M68040 attempts to prefetch the next instruction on the missing page, then
the ATC access error exception is reported. The stacked PC points to the exceptional

MOTOROLA M68040 USER'S MANUAL 3-31

instruction, and the stacked FA points to the first longword in the missing page. When an
ATC access error occurs while prefetching the next instruction on the non-existant page
after a change of flow instruction, the exception should be cleared by execution of the new
instruction flow. Either avoid this scenario, or have a dummy resident page following the
exceptional instruction.

Figure 3-22 illustrates a general flowchart for address translation. The top branch of the
flowchart applies to transparent translation. The bottom three branches apply to ATC
translation.

3.6 MMU EFFECT ON RSTI AND MDIS

The following paragraphs describe MMU effects on the RSTI and MDIS pins.

3.6.1 Effect of RSTI on the MMUs

When the M68040 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses
to be passed through as physical addresses, allowing an operating system to set up the
translation tables and MMU registers as required. After the translation tables and registers
are initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the attribute bits for an access that an ATC entry or a TTR
normally supplies are zero, selecting write-through cachable mode, no write protection,
and user page attribute bits cleared. RSTI does not affect the P-bit of the TCR.

A reset of the processor does not invalidate any entries in the ATCs or alter the page size.
A PFLUSH instruction must be executed to flush all existing valid entries from the ATCs
after a reset operation and before translation is enabled. PFLUSH can be executed even if
the E-bit is cleared.

3.6.2 Effect of MDIS on Address Translation

The assertion of MDIS prevents the MMUs from performing ATC searches and the
execution unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. MDIS disables the MMUs on the next internal
access boundary when asserted and enables the MMUs on the next boundary after the
signal is negated. The assertion of this signal does not affect the operation of the
transparent translation registers or execution of the PFLUSH or PTEST instructions.

3-32 M68040 USER'S MANUAL MOTOROLA

ENTRY

EXIT

OTHERWISE

TAKE ACCESS ERROR
EXCEPTION

ABORT CYCLE

ATC HIT

OTHERWISE

ABORT CYCLE

TABLE SEARCH
OPERATION

TAKE ACCESS ERROR
EXCEPTION

EXIT

OTHERWISE

 PA ATC ENTRY [PA]
UPA ATC ENTRY [U1,U0]
 CM ATC ENTRY [CM]

➧

➧
➧

 PA LOGICAL ADDRESS
UPA TTR1* [U1,U0]
 CM TTR1* [CM]

➧
➧

➧

EXIT

 PA LOGICAL ADDRESS
UPA TTR0* [U1,U0]
 CM TTR0* [CM]

➧
➧
➧

ABORT CYCLE

(TTR1*[W] = 1) AND
(WRITE OR RMW

ACCESS)

(TTR0*[W] = 1) AND
(WRITE OR RMW

ACCESS)

LOGICAL ADDRESS
MATCHES WITH TTR0*OTHERWISEATC MISS

(R = 0) OR
[(W = 1) AND

(WRITE OR RMW CYCLE)]

LOGICAL ADDRESS
MATCHES WITH

TTRx*

OTHERWISE

OTHERWISE(M = 0) AND
(WRITE OR RMW CYCLE)

* Refers to either instruction or data transparent translation register.

Figure 3-22. Address Translation Flowchart

MOTOROLA M68040 USER'S MANUAL 3-33

3.7 MMU INSTRUCTIONS

The M68040 instruction set includes three privileged instructions that perform MMU
operations. The following paragraphs briefly describe each of these instructions. For
detailed descriptions of these instructions, refer to M68000PR/AD, M68000 Family
Programmer's Reference Manual.

3.7.1 MOVEC

The MOVEC instruction transfers data between an integer data register, or memory
location, and any of the M68040 control and status registers. The operating system uses
the MOVEC instruction to control and monitor MMU operation by manipulating and
reading the eight MMU registers.

3.7.2 PFLUSH

The PFLUSH instruction flushes or invalidates address translation descriptors in the
ATCs. PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The PFLUSH
instruction flushes a user or supervisor entry with a specified logical address. The
PFLUSHAN and PFLUSHN instruction variants qualify entry selection further by flushing
only entries that are nonglobal, indicated by a cleared G-bit in the entry.

3.7.3 PTEST

The PTEST instruction performs a table search operation for a specified function code and
logical address and sets the appropriate bit fields in the MMUSR to indicate conditions
encountered during the search. PTEST automatically flushes the corresponding entry from
the cache before searching the tables and loads the latest information from the translation
tables into the ATC. The exception routines of the operating system can use this
instruction to identify MMU faults.

PTEST is primarily used in access error exception handlers. For example, if a bus error
has occurred, the handler can execute an instruction sequence such as the following
sequence:

MOVE.B (A7,offset1),D0 Copy transfer modifier field from stack frame
MOVEC D0,DFC into DFC register
MOVEA.L (A7,offset2),A0 Copy fault address from stack frame into address register
PTESTW (A0) Test address in A0 with function code in DFC registers

The transfer modifier field copied into the destination function code (DFC) register
indicates whether the faulted access was a supervisor or user mode access and whether
it was an instruction prefetch or data access. The PTEST instruction uses the DFC value
to determine which translation table (supervisor or user) to search and which ATC (data or
instruction) to create the entry in. After executing this code sequence, the handler can
examine the MMUSR for the source of the fault.

The M68040 MMU instructions use opcodes that are different from those for the
corresponding instructions in the MC68030 and MC68851. All MMU opcodes for the

3-34 M68040 USER'S MANUAL MOTOROLA

MC68030 and MC68851 cause F-line unimplemented instruction exceptions if executed in
either supervisor or user mode by the M68040.

3.7.4 Register Programming Considerations

If the entries in the ATCs are no longer valid when a reset operation occurs (as is normally
expected), an explicit flush operation must be specified by the system software. The
assertion of RSTI disables translation by clearing the E-bits of the TCR, DTTRx, and
ITTRx, but it does not flush the ATCs. Reading or writing any of the MMU registers (URP,
SRP, TCR, MMUSR, DTTR0, DTTR1, ITTR0, ITTR1) does not flush the ATCs. Since a
write to these registers can cause some or all the address translations to change, the write
should be followed by a PFLUSH operation to flush the ATCs if necessary.

The status bits in the MMUSR indicate conditions to which the operating system should
respond. In a typical access error exception handler, the flowchart illustrated in Figure
3-23 can be used to determine the cause of an MMU fault. The PTEST instruction sets
the bits in the MMUSR appropriately, and the program can branch to the appropriate code
segment for the condition.

MOTOROLA M68040 USER'S MANUAL 3-35

BRANCH TO "SUPERVISOR
VOILATION" CODE

BRANCH TO "WRITE
VIOLATION" CODE

BRANCH TO "WRITE
VIOLATION" CODE

PTEST (An)

BRANCH TO "PAGE FAULT" OR
"INVALID DESCRIPTOR" CODE

BRANCH TO "BUS ERROR
DURING TABLE SEARCH" CODE

NOT MMU

R = 0

B = 0B = 1R = 1

T = 1T = 0

OTHERWISE MATCH TTR0*

OTHERWISE OTHERWISE

MATCH TTR1*

OTHERWISE

TTR1*[W] = 1 AND (WRITE OR
RMW ACCESS INDICATED IN

STACK FRAME)

TTR0*[W] = 1 AND (WRITE OR
RMW ACCESS INDICATED IN

STACK FRAME)

WRITE OR RMW ACCESS
INDICATED IN STACK

FRAME

W = 1

OTHERWISE

W = 0

OTHERWISE

S = 1 AND (USER ACCESS
INDICATED IN STACK FRAME)

NOT MMU

* Refers to either instruction or data transparent translation register.

Figure 3-23. MMU Status Interpretation

MOTOROLA M68040 USER’S MANUAL 4-1

SECTION 4
INSTRUCTION AND DATA CACHES

NOTE

Ignore all references to the memory management unit (MMU)
when reading for the MC68EC040 and MC68EC040V. The
functionality of the MC68040 transparent translation registers
has been changed in the MC68EC040 and MC68EC040V to
the access control registers. Refer to Appendix B
MC68EC040 for details.

The M68040 contains two independent, 4-Kbyte, on-chip caches located in the physical
address space. Accessing instruction words and data simultaneously through separate
caches increases instruction throughput. The M68040 caches improve system
performance by providing cached data to the on-chip execution unit with very low latency.
Systems with an alternate bus master receive increased bus availability.

Figure 4-1 illustrates the instruction and data caches contained in the instruction and data
memory units. The appropriate memory unit independently services instruction prefetch
and data requests from the integer unit (IU). The memory units translate the logical
address in parallel with indexing into the cache. If the translated address matches one of
the cache entries, the access hits in the cache. For a read operation, the memory unit
supplies the data to the IU, and for a write operation, the memory unit updates the cache.
If the access does not match one of the cache entries (misses in the cache) or a write
access must be written through to memory, the memory unit sends an external bus
request to the bus controller. The bus controller then reads or writes the required data.

Cache coherency in the M68040 is optimized for multimaster applications in which the
M68040 is the caching master sharing memory with one or more noncaching masters
(such as DMA controllers). The M68040 implements a bus snooper that maintains cache
coherency by monitoring an alternate bus master’s access and performing cache
maintenance operations as requested by the alternate bus master. Matching cache entries
can be invalidated during the alternate bus master’s access to memory, or memory can be
inhibited to allow the M68040 to respond to the access as a slave. For an external write
operation, the processor can intervene in the access and update its internal caches (sink
data). For an external read operation, the processor supplies cached data to the alternate
bus muster (source data). This prevents the M68040 caches from accumulating old or
invalid copies of data (stale data). Alternate bus masters are allowed access to locally
modified data within the caches that is no longer consistent with external memory (dirty
data). Allowing memory pages to be specified as write-through instead of copyback also
supports cache coherency. When a processor writes to write-through pages, external

4-2 M68040 USER'S MANUAL MOTOROLA

memory is always updated through an external bus access after updating the cache,
keeping memory and cached data consistent.

INSTRUCTION
FETCH

DECODE

EA
CALCULATE

EXECUTE

WRITEBACK

EA
FETCH

INTEGER
UNIT

CONVERT

EXECUTE

WRITE-
BACK

INSTRUCTION
ATC

INSTRUCTION
MMU/CACHE/SNOOP

CONTROLLER

BUS
CONTROL
SIGNALS

DATA
BUS

ADDRESS
BUS

DATA
ATC

DATA
MMU/CACHE/SNOOP

CONTROLLER

OPERAND DATA BUS

INSTRUCTION DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT UNIT

DATA MEMORY UNIT

INSTRUCTION MEMORY UNIT B
U
S

C
O
N
T
R
O
L
L
E
R

INSTRUCTION
ADDRESS

DATA
ADDRESS

Figure 4-1. Overview of Internal Caches

4.1 CACHE OPERATION

Both four-way set-associative caches have 64 sets of four 16-byte lines. There are two
formats that define each cache line, an instruction cache line format and a data cache line
format. Each format contains an address tag consisting of the upper 22 bits of the physical
address, status information, and four long words (128 bits) of data. The status information
for the instruction cache line address tag consists of a single valid bit for the entire line.
The status information for the data cache line address tag contains a valid bit and four
additional bits to indicate dirty status for each long word in the line. Note that only the data
cache supports dirty cache lines. Figure 4-2 illustrates the instruction cache line format (a)
and the data cache line format (b).

MOTOROLA M68040 USER’S MANUAL 4-3

TAG V LW3 LW2 LW1 LW0

(a) Instruction Cache Line

TAG V LW3 D3 LW2 D2 LW1 D1 LW0 D0

TAG — 22-Bit Physical Address Tag
V — Line VALID Bit

LW — Long Word n (32-Bit) Data Entry
Dn — DIRTY Bit for Long Word n

(b) Data Cache Line

Figure 4-2. Cache Line Formats

The cache stores an entire line, providing validity on a line-by-line basis. Only burst mode
accesses that successfully read four long words can be cached. Memory devices unable
to support bursting can respond to a cache line read or write access by asserting the
transfer burst inhibit (TBI) signal, forcing the processor to complete the access as a
sequence of three long-word accesses. The cache recognizes burst accesses as if the
access were never inhibited, detecting no difference.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit
set and D-bits cleared, indicating all four long words in the line contain valid data
consistent with memory. Dirty cache lines have the V-bit and one or more D-bits set,
indicating that the line has valid long-word entries that have not been written to memory
(long words whose D-bit is set). A cache line changes from valid to invalid if the execution
of the CINV or CPUSH instruction explicitly invalidates the cache line; if a snooped write
access hits the cache line and the line is not dirty; or if the SCx signals for a snooped read
access invalidates the line. Both caches should be explicitly cleared after a hardware reset
of the processor since reset does not invalidate the cache lines.

Figure 4-3 illustrates the general flow of a caching operation. The corresponding memory
unit translates the logical address of each access to a physical address allowing the IU to
access the data in the cache. To minimize latency of the requested data, the lower
untranslated bits of the logical address map directly to the physical address bits and are
used to access a set of cache lines in parallel with the translation. Physical address bits
9–4 are used to index into the cache and select one of the 64 sets of four cache lines. The
four tags from the selected cache set are compared with the translated physical address
bits 31–12 and bits 11 and 10 of the untranslated page offset. If any one of the four tags
matches and the tag status is either valid or dirty, then the cache has a hit. During read
accesses, a half-line (two long words) is accessed at a time, requiring two cache accesses
for reads that are greater than a half-line or two long words. Write accesses within a cache
line require a single cache access. If a misaligned access crosses two pages, then the
partial access to the first page always happens twice, even if the pages are serialized.
Consequently, if the accesses span page boundaries, misaligned accesses to peripherals
are not possible unless the peripheral can tolerate double reads or writes.

4-4 M68040 USER'S MANUAL MOTOROLA

S PAGE FRAME PAGE OFFSET

31 12 0

ADDRESS
TRANSLATION

CACHE

PA11–PA10

0COMPARATOR

1

3

2
HIT 3

HIT 2

HIT 1

HIT 0

HIT

TAG STATUS

TAG STATUS

SET 0

SET 1

SET 63

LINE 0

LINE 1

LINE 2

LINE 3

D0 D1 D2 D3

D0 D1 D2 D3

MUX

LOGICAL OR

LINE SELECT

DATA OR
INSTRUCTION

PHYSICAL
SET SELECT

PA9–PA4

SUPERVISOR
BIT

LA31–LA12

LOGICAL ADDRESS

PA31–PA12

TRANSLATED
PHYSICAL
ADDRESS
PA31–PA10

Figure 4-3. Caching Operation

Both caches contain circuitry to automatically determine which cache line in a set to use
for a new line. The cache controller locates the first invalid line and uses it; if no invalid
lines exist, then a pseudo-random replacement algorithm is used to select a valid line,
replacing it with the new line. Each cache contains a 2-bit counter, which is incremented
for each access to the cache. The instruction cache counter is incremented for each half-
line accessed in the instruction cache. The data cache counter is incremented for each
half-line accessed during reads, for each full line accessed during writes in copyback
mode, and for each bus transfer resulting from a write in write-through mode. When a
miss occurs and all four lines in the set are valid, the line pointed to by the current counter
value is replaced, after which the counter is incremented.

MOTOROLA M68040 USER’S MANUAL 4-5

4.2 CACHE MANAGEMENT

Using the MOVEC instruction, the caches are individually enabled to access the 32-bit
cache control register (CACR) illustrated in Figure 4-4. The CACR contains two enable
bits that allow the instruction and data caches to be independently enabled or disabled.
Setting one of these bits enables the associated cache without affecting the state of any
lines within the cache. A hardware reset clears the CACR, disabling both caches;
however, reset does not affect the tags, state information, and data within the caches. The
CINV instruction must clear the caches before enabling them. It is not recommended that
page descriptors be cached. Specifically, the M68040 does not support the caching of
page descriptors in copyback mode with the bit pattern U = 0, M = 1, and R = 1 in a page
descriptor. The M68040 table search algorithm will never leave this bit pattern for a page
descriptor.

31 30 16 15 14 0

DE UNDEFINED IE UNDEFINED

DE = Enable Data Cache
IE = Enable Instruction Cache

Figure 4-4. Cache Control Register

System hardware can assert the cache disable (CDIS) signal to dynamically disable both
caches, regardless of the state of the enable bits in the CACR. The caches are disabled
immediately after the current access completes. If CDIS is asserted during the access for
the first half of a misaligned operand spanning two cache lines, the data cache is disabled
for the second half of the operand. Accesses by the execution units bypass the caches
while they are disabled and do not affect their contents (with the exception of CINV and
CPUSH instructions). Disabling the caches with CDIS does not affect snoop operations.
CDIS is intended primarily for use by in-circuit emulators to allow swapping between the
tags and emulator memories.

Even if the instruction cache is disabled, the M68040 can cache instructions because of
an internal cache line register. This happens for instruction loops that are completely
resident within the first six bytes of a half-line. Thus, the cache line holding register can
operate as a small cache. If a loop fits anywhere within the first three words of a half-line,
then it becomes cached.

The CINV and CPUSH instructions support cache management in the supervisor mode.
CINV allows selective invalidation of cache entries. CPUSH performs two operations: 1)
any selected data cache lines containing dirty data are pushed to memory; 2) all selected
cache lines are invalidated. This operation can be used to update a page in memory
before swapping it out with snooping disabled or to push dirty data when changing a page
caching mode to write-through. Because of the size of the caches, pushing pages or an
entire cache incurs a significant time penalty. However, these instructions are
interruptable to avoid large interrupt latencies. The state of the CDIS signal or the cache
enable bits in the CACR does not affect the operation of CINV and CPUSH. Both
instructions allow operation on a single cache line, all cache lines in a specific page, or an

4-6 M68040 USER'S MANUAL MOTOROLA

entire cache, and can select one or both caches for the operation. For line and page
operations, a physical address in an address register specifies the memory address.

4.3 CACHING MODES

Every IU access to the cache has an associated caching mode that determines how the
cache handles the access. An access can be cachable in either the write-through or
copyback modes, or it can be cache inhibited in nonserialized or serialized modes. The
CM field corresponding to the logical address of the access normally specifies, on a page-
by-page basis, one of these caching modes. The default memory access caching mode is
nonserialized. When the cache is enabled and memory management is disabled, the
default caching mode is write-through. The transparent translation registers and MMUs
allow the defaults to be overridden. In addition, some instructions and IU operations
perform data accesses that have an implicit caching mode associated with them. The
following paragraphs discuss the different caching accesses and their related cache
modes.

4.3.1 Cachable Accesses

If a page descriptor’s CM field indicates write-through or copyback, then the access is
cachable. A read access to a write-through or copyback page is read from the cache if
matching data is found. Otherwise, the data is read from memory and used to update the
cache. Since instruction cache accesses are always reads, the selection of write-through
or copyback modes do not affected them. The following paragraphs describe the write-
through and copyback modes in detail.

4.3.1.1 WRITE-THROUGH MODE. Accesses to pages specified as write-through are
always written to the external address, although the cycle can be buffered, keeping
memory and cache data consistent. Writes in write-through mode are handled with a no-
write-allocate policy—i.e., writes that miss in a data cache are written to memory but do
not cause the corresponding line in memory to be loaded into the cache. Write accesses
always write through to memory and update matching cache lines. Specifying write-
through mode for the shared pages maintains cache coherency for shared memory areas
in a multiprocessing environment. The cache supplies data to instruction or data read
accesses that hit in the appropriate cache; misses cause a new cache line to be loaded
into the cache, replacing a valid cache line if there are no invalid lines.

4.3.1.2 COPYBACK MODE. Copyback pages are typically used for local data structures
or stacks to minimize external bus usage and reduce write access latency. Write accesses
to pages specified as copyback that hit in the data cache update the cache line and set
the corresponding D-bits without an external bus access. The dirty cached data is only
written to memory if 1) the line is replaced due to a miss, 2) a cache inhibited access
matches the line, or 3) the CPUSH instruction explicitly pushes the line. If a write access
misses in the cache, the memory unit reads the needed cache line from memory and
updates the cache. When a miss causes a dirty cache line to be selected for replacement,
the memory unit places the line in an internal copyback buffer. The replacement line is
read into the cache, and writing the dirty cache line back to memory updates memory.

MOTOROLA M68040 USER’S MANUAL 4-7

4.3.2 Cache-Inhibited Accesses

Address space regions containing targets such as I/O devices and shared data structures
in multiprocessing systems can be designated cache inhibited. If a page descriptor’s CM
field indicates nonserialized or serialized, then the access is cache inhibited. The caching
operation is identical for both cache-inhibited modes. If the CM field of a matching address
indicates either nonserialized or serialized modes, the cache controller bypasses the
cache and performs an external bus transfer. The data associated with the access is not
cached internally, and the cache inhibited out (CIOUT) signal is asserted during the bus
transfer to indicate to external memory that the access should not be cached. If the data
cache line is already resident in an internal cache, then the data cache line is pushed from
the cache if it is dirty or the data cache line is invalidated if it is valid.

If the CM field indicates serialized, then the sequence of read and write accesses to the
page is guaranteed to match the sequence of the instruction order. Without serialization,
the IU pipeline allows read accesses to occur before completion of a write-back for a
previous instruction. Serialization forces operand read accesses for an instruction to occur
only once by preventing the instruction from being interrupted after the operand fetch
stage. Otherwise, the instruction is aborted, and the operand is accessed when the
instruction is restarted. These guarantees apply only when the CM field indicates the
serialized mode and the accesses are aligned. Regardless of the selected cache mode,
locked accesses are implicitly serialized. The TAS, CAS, and CAS2 instructions use
locked accesses for operands in memory and for updating translation table entries during
table search operations.

4.3.3 Special Accesses

Several other processor operations result in accesses that have special caching
characteristics besides those with an implied cache-inhibited access in the serialized
mode. Exception stack accesses, exception vector fetches, and table searches that miss
in the cache do not allocate cache lines in the data cache, preventing replacement of a
cache line. Cache hits by these accesses are handled in the normal manner according to
the caching mode specified for the accessed address.

Accesses by the MOVE16 instruction also do not allocate cache lines in the data cache for
either read or write misses. Read hits on either valid or dirty cache lines are read from the
cache. Write hits invalidate a matching line and perform an external access. Interacting
with the cache in this manner prevents a large block move or block initialization
implemented with a MOVE16 from being cached, since the data may not be needed
immediately.

If the data cache is re-enabled after a locked access has hit and the data cache was
disabled, the next non-locked access that results in a data cache miss will not be cached.

4.4 CACHE PROTOCOL

The cache protocol for processor and snooped accesses is described in the following
paragraphs. In all cases, an external bus transfer will cause a cache line state to change

4-8 M68040 USER'S MANUAL MOTOROLA

only if the bus transfer is marked as snoopable on the bus. The protocols described in the
following paragraphs assume that the data is cachable (i.e., write-through and copyback).

4.4.1 Read Miss

A processor read that misses in the cache causes the cache controller to request a bus
transaction that reads the needed line from memory and supplies the required data to the
IU. The line is placed in the cache in the valid state. Snooped external reads that miss in
the cache have no affect on the cache.

4.4.2 Write Miss

The cache controller handles processor writes that miss in the cache differently for write-
through and copyback pages. Write misses to copyback pages cause the processor to
perform a bus transaction that writes the needed cache line into its cache from memory in
the same manner as for a read miss. The new cache line is then updated with the write
data, and the D-bits are set for each long word that has been modified, leaving the cache
line in the dirty state. Write misses to write-through pages write directly to memory without
loading the corresponding cache line in the cache. Snooped external writes that miss in
the cache have no affect on the cache.

4.4.3 Read Hit

The cache controller handles processor reads that hit in the cache differently for write-
through and copyback pages. No bus transaction is performed, and the state of the cache
line does not change. Physical address bit 3 selects either the upper or lower half-line
containing the required operand. This half-line is driven onto the internal bus. If the
required data is allocated entirely within the half-line, only one access into the cache is
required. Because the organization of the cache does not allow selection of more than one
half-line at a time, misalignment across a half-line boundary requires two accesses into
the cache.

A snooped external read that hits in the cache is ignored if the cache line is valid. If the
snooped access hits a dirty line, memory is inhibited from responding, and the data is
sourced from the cache directly to the alternate bus master. A snooped read hit does not
change the state of the cache line unless the snooped access also indicates mark invalid,
which causes the line to be invalidated after the access, even if it is dirty. Alternate bus
masters should indicate mark invalid only for line reads to ensure the entire line is
transferred before invalidating.

4.4.4 Write Hit

The cache controller handles processor writes that hit in the cache differently for write-
through and copyback pages. For write-through accesses, a processor write hit causes
the cache controller to update the affected long-word entries in the cache line and to
request an external memory write transfer to update memory. The cache line state does
not change. A write-through access to a line containing dirty data constitutes a system
programming error even if the D-bits for the line are unchanged. This situation can be

MOTOROLA M68040 USER’S MANUAL 4-9

avoided by pushing cache lines when a page descriptor is changed and ensuring that
alternate bus masters indicate the appropriate snoop operation for writes to corresponding
pages (i.e., mark invalid for write-through pages and sink data for copyback pages). If the
access is copyback, the cache controller updates the cache line and sets the D-bit for of
the appropriate long words in the cache line. An external write is not performed, and the
cache line state changes to, or remains in, the dirty state.

An alternate bus master can drive the SCx signals for a write access with an encoding that
indicates to the M68040 that it should sink the data, inhibit memory, and respond as a
slave if the access hits in the cache. The cache operation depends on the access size and
current line state. A snooped line write that hits a valid line always causes the
corresponding cache line to be invalidated. For snooped writes of byte, word, or long-word
size that hit a dirty line, the processor inhibits memory and responds to the alternate bus
master as a slave, sinking the data. Data received from the alternate bus master is written
to the appropriate long word in the cache line, and the D-bit is set for that entry. The cache
controller invalidates a cache line if the snoop control pins have indicated that a matching
cache line is marked invalid for a snoop write.

4.5 CACHE COHERENCY

The M68040 provides several different mechanisms to assist in maintaining cache
coherency in multimaster systems. Both write-through and copyback memory update
techniques are supported to maintain coherency between the data cache and memory.

Alternate bus master accesses can reference data that the M68040 caches, causing
coherency problems if the accesses are not handled properly. The M68040 snoops the
bus during alternate bus master transfers. If a write access hits in the cache, the M68040
can update its internal caches, or if a read access hits, it can intervene in the access to
supply dirty data. Caches can be snooped even if they are disabled. The alternate bus
master controls snooping through the snoop control signals, indicating which access can
be snooped and the required operation for snoop hits. Table 4-1 lists the requested snoop
operation for each encoding of the snoop control signals. Since the processor and the bus
snooper must both access the caches, the snoop controller has priority over the processor
for snoopable accesses to maintain cache coherency.

Table 4-1. Snoop Control Encoding

Requested Snoop Operation

SC1 SC0 Alternate Bus Master Read Access Alternate Bus Master Write Access

0 0 Inhibit Snooping Inhibit Snooping

0 1 Supply Dirty Data and Leave Dirty Data Sink Byte/Word/Long/Long Word

1 0 Supply Dirty Data and Mark Line Invalid Invalidate Line

1 1 Reserved (Snoop Inhibited) Reserved (Snoop Inhibited)

The snooping protocol and caching mechanism supported by the M68040 are optimized to
support multimaster systems with the M68040 as the single caching master. In systems

4-10 M68040 USER'S MANUAL MOTOROLA

implementing multiple MC68040s as bus masters, shared data should be stored in write-
through pages. This procedure allows each processor to cache shared data for read
access while forcing a processor write to shared data to appear as an external write to
memory, which the other processors can snoop.

If shared data is stored in copyback pages, only one processor at a time can cache the
data since writes to copyback pages do not access the external bus. If a processor
accesses shared data cached by another processor, the slave can source the data to the
master without invalidating its own copy only if the transfer to the master is cache
inhibited. For the master processor to cache the data, it must force invalidation of the
slave processor’s copy of the data (by specifying mark invalid for the snoop operation),
and the memory controller must monitor the data transfer between the processors and
update memory with the transferred data. The memory update is required since the
master processor is unaware of the sourced data (valid data from memory or dirty data
from a snooping processor) and initially creates a valid cache line, losing dirty status if a
snooping processor supplies the data.

Coherency between the instruction cache and the data cache must be maintained in
software since the instruction cache does not monitor data accesses. Processor writes
that modify code segments (i.e., resulting from self-modifying code or from code executed
to load a new page from disk) access memory through the data memory unit. Because the
instruction cache does not monitor these data accesses, stale data occurs in the
instruction cache if the corresponding data in memory is modified. Invalidating instruction
cache lines before writing to the corresponding memory lines can prevent this coherency
problem, but only if the data cache line is in write-through mode and the page is marked
serialized. A cache coherency problem could arise if the data cache line is configured as
copyback and no serialization is done.

To fully support self-modifying code in any situation, it is imperative that a CPUSHA
instruction be executed before the execution of the first self-modified instruction. The
CPUSHA instruction has the effect of ensuring that there is no stale data in memory, the
pipeline is flushed, and instruction prefetches are repeated and taken from external
memory.

Another potential coherency problem exists due to the relationship between the cache
state information and the translation table descriptors. Because each cache line reflects
page state information, a page should be flushed from the cache before any of the page
attributes are changed. The presence of a valid or dirty cache line implicitly indicates that
accesses to the page containing the line are cachable. The presence of a dirty cache line
implies that the page is not write protected and that writes to the page are in copyback
mode. A system programming error occurs when page attributes are changed without
flushing the corresponding page from the cache, resulting in cache line states inconsistent
with their page definitions. Even with these inconsistencies, the cache is defined and
predictable.

MOTOROLA M68040 USER’S MANUAL 4-11

4.6 MEMORY ACCESSES FOR CACHE MAINTENANCE

The cache controller in each memory unit performs all maintenance activities that supply
data from the cache to the execution units. The activities include requesting accesses to
the bus interface unit for reading new cache lines and writing dirty cache lines to memory.
The following paragraphs describe the memory accesses resulting from cache fill
operations (by both caches) and push operations (by the data cache). Refer to Section 7
Bus Operation for detailed information about the bus cycles required.

4.6.1 Cache Filling

When a new cache line is required, the cache controller requests a line read from the bus
controller. The bus controller requests a burst read transfer by indicating a line access
with the size signals (SIZ1, SIZ0) and indicates which line in the set is being loaded with
the transfer line number signals (TLN1, TLN0). TLN1 and TLN0 are undefined for the
instruction cache. These pins indicate the appropriate line numbers for data cache
transfers only. Table 4-2 lists the definition of the TLNx encoding.

Table 4-2. TLNx Encoding

TLN1 TLN0 Line

0 0 Zero

0 1 One

1 0 Two

1 1 Three

The responding device sequentially supplies four long words of data and can assert the
transfer cache inhibit signal (TCI) if the line is not cachable. If the responding device does
not support the burst mode, it should assert the TBI signal for the first long word of the line
access. The bus controller responds by terminating the line access and completes the
remainder of the line read as three, sequential, long-word reads.

Bus controller line accesses implicitly request burst mode operations from external
memory. To operate in the burst mode, the device or external hardware must be able to
increment the low-order address bits as described in Section 7 Bus Operation. The
device indicates its ability to support the burst access by acknowledging the initial long-
word transfer with transfer acknowledge (TA) asserted and TBI negated. This procedure
causes the processor to continue to drive the address and bus control signals and to latch
a new data value for the cache line at the completion of each subsequent cycle (as
defined by TA) for a total of four cycles. The bursting mechanism requires addresses to
wrap around so that the entire four long words in the cache line are filled in a single
operation.

When a cache line read is initiated, the first cycle attempts to load the line entry
corresponding to the instruction half-line or data item requested by the IU. Subsequent
transfers are for the remaining entries in the cache line. In the case of a misaligned

4-12 M68040 USER'S MANUAL MOTOROLA

access in which the operand spans two line entries, the first cycle corresponds to the line
entry containing the portion of the operand at the lower address.

The cache controller temporarily stores the data from each cycle in a line read buffer,
where it is immediately available to the IU. If a misaligned access spans two entries in the
line, the second portion of the operand is available to the IU as soon as the second
memory cycle completes. A new IU access that hits the cache line being filled is also
supplied data as soon as the required long word has been received from the bus
controller. During the period required to fill the buffer, other IU accesses that hit in the
cache are supplied data. This is vertical for a short cache-inhibited code loop that is less
than eight bytes in length. Subsequent interactions of the loop hit in the buffer, but appear
to hit in the cache since there is no external bus activity associated with the reads.

The assertion of TCI during the first cycle of a burst read operation inhibits loading of the
buffered line into the cache, but it does not cause the burst transfer (or pseudo-burst
transfer if TBI is asserted with TCI) to be terminated early. The data placed in the buffer is
accessible by the IU until the last long word of the burst is transferred from the bus
controller, after which the contents of the buffer are invalidated without being copied into
the cache. The assertion of TCI is ignored during the second, third, or fourth cycle of a
burst operation and is ignored for write operations.

A bus error occurring during a burst operation causes the burst operation to abort. If the
bus error occurs during the first cycle of a burst, the data from the bus is ignored. If the
access is a data cycle, exception processing proceeds immediately. If the cycle is for an
instruction prefetch, a bus error exception is pending. The bus error is processed only if
the IU attempts to use either instruction word. Refer to Section 7 Bus Operation for more
information about pipeline operation.

For either cache, when a bus error occurs on the second cycle or later, the burst operation
is aborted and the line buffer is invalidated. The processor may or may not take an
exception, depending on the status of the pending data request. If the bus error cycle
contains a portion of a data operand that the processor is specifically waiting for (e.g., the
second half of a misaligned operand), the processor immediately takes an exception.
Otherwise, no exception occurs, and the cache line fill is repeated the next time data
within the line is required. In the case of an instruction cache line fill, the data from the
aborted cycle is completely ignored.

On the initial access of a line read, a retry (indicated by the assertion of TA and TEA)
causes the bus controller to retry the bus cycle. However, a retry signaled during the
remaining cycles of the line access (either burst or pseudo-burst) is recognized as a bus
error, and the processor handles it as described in the previous paragraphs.

A cache inhibit or bus error on a line read can change the state of the line being replaced,
even though the new line is not copied into the cache. Before loading a new line, the
cache line being replaced is copied to the push buffer; if it is dirty, the cache line is
invalidated. If a cache inhibit or bus error occurs on a replacement line read, a dirty line is
restored to the cache from the push buffer. However, the line being replaced is not
restored in the cache if it was originally valid and the cache line remains invalid. If the line

MOTOROLA M68040 USER’S MANUAL 4-13

read resulting from a write miss in copyback mode is cache inhibited, the write access
misses in the cache and writes through to memory.

4.6.2 Cache Pushes

When the cache controller selects a dirty data cache line for replacement, memory must
be updated with the dirty data before the line is replaced. This occurs when a CPUSH
instruction execution explicitly selects the cache and when a cache inhibit access hits in
the cache. To reduce the requested data’s latency in the new line, the dirty line being
replaced is temporarily placed in a push buffer while the new line is fetched from memory.
When a line is allocated to the push buffer, an alternate bus master can snoop it, but the
execution units cannot access it. After the bus transfer for the new line successfully
completes, the dirty cache line is copied back to memory, and the push buffer is
invalidated. If the operation to access the replacement line is abnormally terminated or
signaled as cache inhibited, the line in the push buffer is copied back into its original
position in the cache, and the processor continues operation as described in the previous
paragraphs.

The number of dirty long words in the line to be pushed determines the size of the push
transfer on the bus, minimizing bus bandwidth required for the push. A single long word is
written to memory using a long-word push transfer if it is dirty. A push transfer is
distinguished from a normal write transfer by an encoding of 000 on the transfer modifier
signals (TM2–TM0) for the push. Asserting TA and TEA retries the transfer; a bus-error -
asserted TEA terminates it. If a bus error terminates a push transfer, the processor
immediately takes an exception.

A line containing two or more dirty long words is copied back to memory, using a line push
transfer. For a line push, the bus controller requests a burst write transfer by indicating a
line access with SIZ1 and SIZ0. The responding device sequentially accepts four long
words of data. If the responding device does not support the burst mode, it should assert
TBI for the first long word of the line access. The bus controller responds by terminating
the line access and completes the remainder of the line push as three, sequential, long-
word writes. The first cycle of the burst can be retried, but the bus controller interprets a
retry for any of the three remaining cycles as a bus error. If a bus error occurs in any cycle
in the line push transfer, the processor immediately takes an exception.

A dirty cache line hit by a cache-inhibited access is pushed before the external bus access
occurs. If the access is part of a locked transfer sequence for TAS, CAS, or CAS2
operand accesses or translation table updates, the LOCK signal is also asserted for the
push access.

4.7 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the IU. The following paragraphs discuss the operational details for the caches and
present state diagrams depicting the cache line state transitions.

4-14 M68040 USER'S MANUAL MOTOROLA

4.7.1 Instruction Cache

The IU uses the instruction cache to store instruction prefetches as it requests them.
Instruction prefetches are normally requested from sequential memory locations except
when a change of program flow occurs (e.g., a branch taken) or when an instruction that
can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol
that allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the half-line selected by physical
address bit 3 is multiplexed onto the internal instruction data bus. When an access misses
in the cache, the cache controller requests the line containing the required data from
memory and places it in the cache. If available, an invalid line is selected and updated
with the tag and data from memory. The line state then changes from invalid to valid by
setting the V-bit. If all lines in the set are already valid, a pseudo-random replacement
algorithm is used to select one of the four cache lines replacing the tag and data contents
of the line with the new line information. Figure 4-5 illustrates the instruction-cache line
state transitions resulting from processor and snoop controller accesses. Transitions are
labeled with a capital letter, indicating the previous state, followed by a number indicating
the specific case listed in Table 4-3.

INVALID VALID

I1-CPU READ MISS

I3–CINV/CPUSH V1–CPU READ MISS
V2–CPU READ HIT

V3–CINV/CPUSH
V5–SNOOP READ HIT
V6–SNOOP WRITE HIT

Figure 4-5. Instruction-Cache Line State Diagram

MOTOROLA M68040 USER’S MANUAL 4-15

Table 4-3. Instruction-Cache Line State Transitions

Current State

Cache Operation Invalid Cases Valid Cases

CPU Read Miss I1 Read line from memory;
supply data to CPU and
update cache; go to valid
state.

V1 Read line from memory; supply
data to CPU and update cache
(replacing old line); remain in
current state.

CPU Read Hit I2 Not Possible V2 Supply data to CPU; remain in
current state.

Cache Invalidate or Push
(CINV or CPUSH)

I3 No action; remain in
current state.

V3 No action; go to invalid state.

Alternate Master Read Hit
(Snoop Control = 01 — Leave Dirty)

I4 Not possible; not snooped. V4 Not possible; not snooped.

Alternate Master Read Hit
(Snoop Control = 10 — Invalidate)

I5 Not Possible V5 No action; go to invalid state.

Alternate Master Write Hit
(Snoop Control = 01 — Leave Dirty or

Snoop Control = 10 — Invalidate)

I6 Not Possible V6 No action; go to invalid state.

4.7.2 Data Cache

The IU uses the data cache to store operand data as it generates the data. The data
cache supports a line-based protocol allowing individual cache lines to be in one of three
states: invalid, valid, or dirty. To maintain coherency with memory, the data cache
supports both write-through and copyback modes, specified by the CM field for the page.

Read misses and write misses to copyback pages cause the cache controller to read a
new cache line from memory into the cache. If available, an invalid line in the selected set
is updated with the tag and data from memory. The line state then changes from invalid to
valid by setting the V-bit for the line. If all lines in the set are already valid or dirty, the
pseudo-random replacement algorithm is used to select one of the four lines and replace
the tag and data contents of the line with the new line information. Before replacement,
dirty lines are temporarily buffered and later copied back to memory after the new line has
been read from memory. If a snoop access occurs before the buffered line is written to
memory, the snoop controller snoops the buffer and the caches. Figure 4-6 illustrates the
three possible states for a data cache line, with the possible transitions caused by either
the processor or snooped accesses. Transitions are labeled with a capital letter, indicating
the previous state, followed by a number indicating the specific case listed in Table 4-4.

4-16 M68040 USER'S MANUAL MOTOROLA

VALID

DIRTY

INVALID

I4—CPU WRITE MISS/WT
I7—CINV
I8—CPUSH

I3—CPU WRITE MISS/CB

V1—CPU READ MISS
V2—CPU READ HIT
V4—CPU WRITE MISS/WT
V6—CPU WRITE HIT/WT
V9—SNOOP READ HIT/LEAVE DIRTY

ABBREVIATIONS:
WT—WRITE-THROUGH MODE
CB—COPYBACK MODE

SNOOP OPERATION INDICATES:
READ OR WRITE / SNOOP CONTROL
ENCODING

I1—CPU READ MISS

V7—CINV
V8—CPUSH
V10—SNOOP READ HIT/INVALIDATE
V11—SNOOP WRITE HIT/INVALIDATE
V12—SNOOP WRITE HIT/SINK DATA &
 SIZE = LINE
V13—SNOOP WRITE HIT/SINK DATA &
 SIZE = LINE

D2—CPU READ HIT
D3—CPU WRITE MISS/CB
D4—CPU WRITE MISS/WT
D5—CPU WRITE HIT/CB
D6—CPU WRITE HIT/WT
D9—SNOOP READ HIT/LEAVE DIRTY
D12—SNOOP WRITE HIT/SINK DATA
 & SIZE = LINE

D7—CINV
D8—CPUSH
D10—SNOOP READ
 HIT/INVALIDATE
D11—SNOOP WRITE HIT/
 INVALIDATE
D13—SNOOP WRITE HIT/SINK
 DATA & SIZE = LINE

V3—CPU WRITE MISS/CB
V5—CPU WRITE HIT/CB

D1—CPU READ MISS

Figure 4-6. Data-Cache Line State Diagram

MOTOROLA M68040 USER’S MANUAL 4-17

Table 4-4. Data-Cache Line State Transitions

Current State

Cache Operation Invalid Cases Valid Cases Dirty Cases

CPU Read Miss I1 Read line from
memory; supply data
to CPU and update
cache; go to valid
state.

V1 Read line from
memory; supply data
to CPU and update
cache (replacing old
line); remain in current
state.

D1 Buffer dirty cache line;
read new line from
memory; supply data
to CPU and update
cache; write buffered
dirty data to memory;
go to valid state.

CPU Read Hit I2 Not Possible V2 Supply data to CPU;
remain in current state.

D2 Supply data to CPU;
remain in current state.

CPU Write Miss
(Copyback)

I3 Read line from
memory into cache;
write data to cache;
set Dn bits of modified
long words; go to dirty
state.

V3 Read line from
memory into cache
(replacing old line);
write data to cache
and set Dn bits; go to
dirty state.

D3 Buffer dirty cache line;
read new line from
memory; write data to
cache and set Dn bits;
write buffered dirty
data to memory;
remain in current state.

CPU Write Miss
(Write-through)

I4 Write data to memory;
remain in current state.

V4 Write data to memory;
remain in current state.

D4 Write data to memory;
remain in current state
(see note).

CPU Write Hit
(Copyback)

I5 Not Possible V5 Write data into cache;
set Dn bits of modified
long words; go to dirty
state.

D5 Write data in cache;
set Dn bits of modified
long words; remain in
current state.

CPU Write Hit
(Write-through)

I6 Not Possible V6 Write data to cache;
write data to memory;
remain in current state.

D6 Write data into cache
(no change to Dn bits);
write data to memory;
remain in current state
(see note).

Cache Invalidate
(CINV)

I7 No action; remain in
current state.

V7 No action; go to invalid
state.

D7 No action (dirty data
lost); go to invalid
state.

Cache Push
(CPUSH)

I8 No action; remain in
current state.

V8 No action; go to invalid
state.

D8 Write dirty data to
memory; go to invalid
state.

Alternate Master Read Hit
(Snoop Control = 01
— Leave Dirty)

I9 Not Possible V9 No action; remain in
current state.

D9 Inhibit memory and
source data; remain in
current state.

NOTE: Dirty state transitions D4 and D6 are the result of a system programming error and should be avoided even
though they are technically valid.

4-18 M68040 USER'S MANUAL MOTOROLA

Table 4-4. Data-Cache Line State Transitions (Continued)

Current State

Cache Operation Invalid Cases Valid Cases Dirty Cases

Alternate Master Read Hit
(Snoop Control = 10
— Invalidate)

I10 Not Possible V10 No action; go to invalid
state.

D10 Inhibit memory and
source data; go to
invalid state

Alternate Master Write Hit
(Snoop Control = 10
—Invalidate)

I11 Not Possible V11 No action; go to invalid
state.

D11 No action; go to invalid
state.

Alternate Master Write Hit
(Snoop Control = 01
— Sink Data and
Size ≠ Line)

I12 Not Possible V12 No action; go to invalid
state.

D12 Inhibit memory and
sink data; set Dn bits
of modified long
words; remain in
current state.

Alternate Master Write Hit
(Snoop Control = 01
— Sink Data and
Size = Line)

I13 Not Possible V13 No action; go to invalid
state.

D13 No action; go to invalid
state.

MOTOROLA M68040 USER’S MANUAL 5-1

SECTION 5
SIGNAL DESCRIPTION

This section contains brief descriptions of the input and output signals in their functional
groups (see Figure 5-1). Each signal’s function is briefly explained, referencing other
sections that contain detailed information about the signal and related operations. Table
5-1 lists the signal names, mnemonics, and functional descriptions of the input and output
signals for the M68040. Timing specifications for these signals can be found in Section 11
MC68040 Electrical and Thermal Characteristics.

NOTES

Assertion and negation are used to specify forcing a signal to a
particular state. Assertion and assert refer to a signal that is
active or true. Negation and negate refer to a signal that is
inactive or false. These terms are used independent of the
voltage level (high or low) that they represent.

For the MC68040V, MC68LC040, MC68EC040, and
MC68EC040V ignore all references to the floating-point unit
(FPU). For the MC68EC040 and MC68EC040V only, ignore all
references to the memory management unit (MMU). Some pin
names are different on these parts; please refer to the
appropriate appendix in the back of this book for more
information.

5-2 M68040 USER’S MANUAL MOTOROLA

Table 5-1. Signal Index

Signal Name Mnemonic Function

Address Bus A31–A0 32-bit address bus used to address any of 4-Gbytes.

Data Bus D31–D0 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

Transfer Type TT1,TT0 Indicates the general transfer type: normal, MOVE16, alternate logical
function code, and acknowledge.

Transfer Modifier TM2–TM0 Indicates supplemental information about the access.

Transfer Line Number TLN1,TLN0 Indicates which cache line in a set is being pushed or loaded by the current
line transfer.

User-Programmable
Attributes

UPA1,UPA0 User-defined signals, controlled by the corresponding user attribute bits from
the address translation entry.

Read/Write R/W Identifies the transfer as a read or write.

Transfer Size SIZ1,SIZ0 Indicates the data transfer size. These signals, together with A0 and A1,
define the active sections of the data bus.

Bus Lock LOCK Indicates a bus transfer is part of a read-modify-write operation, and the
sequence of transfers should not be interrupted.

Bus Lock End LOCKE Indicates the current transfer is the last in a locked sequence of transfers.

Cache Inhibit Out CIOUT Indicates the processor will not cache the current bus transfer.

Transfer Start TS Indicates the beginning of a bus transfer.

Transfer in Progress TIP Asserted for the duration of a bus transfer.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Transfer Error
Acknowledge

TEA Indicates an error condition exists for a bus transfer.

Transfer Cache Inhibit TCI Indicates the current bus transfer should not be cached.

Transfer Burst Inhibit TBI Indicates the slave cannot handle a line burst access.

Data Latch Enable1 DLE Alternate clock input used to latch input data when the processor is operating
in DLE mode.

Snoop Control SC1,SC0 Indicates the snooping operation required during an alternate master access.

Memory Inhibit MI Inhibits memory devices from responding to an alternate master access
during snooping operations.

Bus Request BR Asserted by the processor to request bus mastership.

Bus Grant BG Asserted by an arbiter to grant bus mastership to the processor.

Bus Busy BB Asserted by the current bus master to indicate it has assumed ownership of
the bus.

Cache Disable CDIS Dynamically disables the internal caches to assist emulator support.

MMU Disable2 MDIS Disables the translation mechanism of the MMUs.

Reset In RSTI Processor reset.

Reset Out RSTO Asserted during execution of a RESET instruction to reset external devices.

Interrupt Priority Level3 IPL2—IPL0 Provides an encoded interrupt level to the processor.

Interrupt Pending IPEND Indicates an interrupt is pending.

Autovector AVEC Used during an interrupt acknowledge transfer to request internal generation
of the vector number.

Processor Status PST3–PST0 Indicates internal processor status.

Bus Clock BCLK Clock input used to derive all bus signal timing.

MOTOROLA M68040 USER’S MANUAL 5-3

Table 5-1. Signal Index (Continued)

Signal Name Mnemonic Function

Processor Clock PCLK4 Clock input used for internal logic timing. The PCLK frequency is exactly 2 ×
the BCLK frequency.

Test Clock TCK Clock signal for the IEEE P1149.1 Test Access Port (TAP).

Test Mode Select TMS Selects the principle operations of the test-support circuitry.

Test Data Input TDI Serial data input for the TAP.

Test Data Output TDO Serial data output for the TAP.

Test Reset TRST4 Provides an asynchronous reset of the TAP controller.

Power Supply VCC Power supply.

Ground GND Ground connection.

NOTES:
1. This signal is only available on the MC68040.
2. This signal is not available on the MC68EC040 and the MC68EC040V.
3. These signals are different on power-up for the MC68LC040 and MC68EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

5-4 M68040 USER’S MANUAL MOTOROLA

MC68040

VCC

GND

BUS ARBITRATIONBG
BR

BB

BUS SNOOP CONTROL
AND RESPONSE

M I

INTERRUPT
CONTROL

IPL03

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

PCLK4
BCLK

TEST

TRST4

TMS
TCK

TDI

POWER SUPPLY

TDO

SC0
SC1

IPL13

IPL23

STATUS AND
CLOCKS

PST0
PST1
PST2

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS
BUS

TS

TIP

TCI
SLAVE

TRANSFER
CONTROL

TEA

TBI

R/W

LOCKE
CIOUT

TT0
TT1
TM0
TM1
TM2

TLN0
TLN1
UPA0
UPA1

SIZ0
SIZ1

LOCK

TA

DLE1

MDIS2

1. This signal is only available on the MC68040.�
2. This signal is not available on the MC68EC040 and MC68EC040V.�
3. These signals are different on power-up for the MC68LC040 and MC68EC040.
4. These signals are not available on the MC68040V and MC68EC040V.

NOTES:

PST3

Figure 5-1. Functional Signal Groups

5.1 ADDRESS BUS (A31–A0)

These three-state bidirectional signals provide the address of the first item of a bus
transfer (except for acknowledge transfers) when the M68040 is the bus master. When an
alternate bus master is controlling the bus, the processor examines (snoops) these signals
to determine whether the processor should intervene in the access to maintain cache
coherency.

The level on CDIS can select a multiplexed bus mode during processor reset, which
allows the address bus and data bus to be physically tied together for multiplexed bus

MOTOROLA M68040 USER’S MANUAL 5-5

applications. Refer to Section 7 Bus Operation for detailed information about the
relationship of the address bus to bus operation and the multiplexed bus mode. Refer to
Appendix A MC68LC040 and Appendix B MC68EC040 for details concerning the CDIS
level and multiplexed bus mode.

5.2 DATA BUS (D31–D0)

These three-state bidirectional signals provide the general-purpose data path between the
M68040 and all other devices. The data bus can transfer 8, 16, or 32 bits of data per bus
transfer. During a burst transfer, the data lines are time-multiplexed to carry all 128 bits of
the burst request using four 32-bit transfers.

The level on CDIS can select a multiplexed bus mode during processor reset, which
allows the data bus and address bus to be physically tied together for multiplexed bus
applications. The level on MDIS can select a data latch mode during processor reset,
which allows the memory interface to specify when the processor should latch input data
through the DLE signal. Section 7 Bus Operation provides detailed information about the
relationship of the data bus to bus operation, the multiplexed bus mode, and the data latch
mode. Refer to Appendix A MC68LC040 and Appendix B MC68EC040 for details
concerning the CDIS level and multiplexed bus mode.

5.3 TRANSFER ATTRIBUTE SIGNALS

The following paragraphs describe the transfer attribute signals, which provide additional
information about the bus transfer. Refer to Section 7 Bus Operation for detailed
information about the relationship of the transfer attribute signals to bus operation.

5.3.1 Transfer Type (TT1, TT0)

The processor drives these three-state bidirectional signals to indicate the type of access
for the current bus transfer. During bus transfers by an alternate bus master, the
processor samples these signals to determine if it should snoop the transfer; only normal
and MOVE16 accesses can be snooped. Table 5-2 lists the definition of the transfer-type
encoding. The acknowledge access (TT1 = 1 and TT0 = 1) is used for both interrupt and
breakpoint acknowledge transfers, and for LPSTOP broadcast cycles on the MC68040V
and MC68EC040V.

Table 5-2. Transfer-Type Encoding

TT1 TT0 Transfer Type

0 0 Normal Access

0 1 MOVE16 Access

1 0 Alternate Logical Function Code Access

1 1 Acknowledge Access

5-6 M68040 USER’S MANUAL MOTOROLA

5.3.2 Transfer Modifier (TM2–TM0)

These three-state outputs provide supplemental information for each transfer type. Table
5-3 lists the encoding for normal and MOVE16 transfers, and Table 5-4 lists the encoding
for alternate access transfers. For interrupt acknowledge transfers, the TMx signals carry
the interrupt level being acknowledged; for breakpoint acknowledge transfers and
LPSTOP broadcast cycles on the MC68040V and MC68EC040V, the TMx signals are low.
When the M68040 is not the bus master, the TMx signals are set to a high-impedance
state.

Table 5-3. Normal and MOVE16 Access
Transfer Modifier Encoding

TM2 TM1 TM0 Transfer Modifier

0 0 0 Data Cache Push Access

0 0 1 User Data Access*

0 1 0 User Code Access

0 1 1 MMU Table Search Data Access

1 0 0 MMU Table Search Code Access

1 0 1 Supervisor Data Access*

1 1 0 Supervisor Code Access

1 1 1 Reserved

* MOVE16 accesses use only these encodings.

Table 5-4. Alternate Access Transfer Modifier Encoding

TM2 TM1 TM0 Transfer Modifier

0 0 0 Logical Function Code 0

0 0 1 Reserved

0 1 0 Reserved

0 1 1 Logical Function Code 3

1 0 0 Logical Function Code 4

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Logical Function Code 7

5.3.3 Transfer Line Number (TLN1, TLN0)

These three-state outputs indicate which line in the set of four data cache lines is being
accessed for normal push and line data read accesses. TLNx signals are undefined for all
other accesses to instruction space and are placed in a high-impedance state when the
processor relinquishes the bus.

MOTOROLA M68040 USER’S MANUAL 5-7

The TLNx signals can be used in high-performance systems to build an external snoop
filter with a duplicate set of cache tags. The TLNx signals and address bus provide a
direct indication of the state of the data caches and can be used to help maintain the
duplicate tag store. The TLNx pins do not indicate the correct TLN number when an
instruction cache burst fill occurs.

5.3.4 User-Programmable Attributes (UPA1, UPA0)

The UPAx signals are three-state outputs. If they match the logical address, the user-
programmable attribute bits in the address translation entry or the transparent translation
register determine the UPAx signal level. These signals are only for normal code, data,
and MOVE16 accesses. For all other accesses, including table search and cache line
push accesses, which may result from a normal access, the UPAx signals are zero. If the
transparent translation register and the memory management unit are disabled, the UPAx
signals are also zero. When the M68040 is not the bus master, these signals are set to a
high-impedance state.

5.3.5 Read/Write (R/W)

This bidirectional three-state signal defines the data transfer direction for the current bus
cycle. A high level indicates a read cycle, and a low level indicates a write cycle. The bus
snoop controller examines this signal when the processor is not the bus master.

5.3.6 Transfer Size (SIZ1, SIZ0)

These bidirectional three-state signals indicate the data size for the bus transfer. The bus
snoop controller examines this signal when the processor is not the bus master. Refer to
Section 7 Bus Operation for more information on the encoding of these signals.

5.3.7 Lock (LOCK)

This three-state output indicates that the current transfer is part of a sequence of locked
transfers for a read-modify-write operation. The external arbiter can use LOCK to prevent
an alternate bus master from gaining control of the bus and accessing the same operand
between processor accesses for the locked sequence of transfers. Although LOCK
indicates that the processor requests the bus be locked, the processor will give up the bus
if the external arbiter negates the BG signal. When the M68040 is not the bus master, the
LOCK signal is set to a high-impedance state. LOCK drives high before three-stating.
Refer to Section 7 Bus Operation for information on locked transfers.

5.3.8 Lock End (LOCKE)

This three-state output indicates that the current transfer is the last in a sequence of
locked transfers for a read-modify-write operation. The external arbiter can use LOCKE to
support arbitration between unrelated locked transfer sequences while still maintaining the
indivisible nature of each read-modify-write operation. When the M68040 is not the bus
master, the LOCKE signal is set to a high-impedance state. LOCKE drives high before

5-8 M68040 USER’S MANUAL MOTOROLA

three-stating. Do not use LOCKE if it is possible to retry the last write of a read-write-
modify operation.

5.3.9 Cache Inhibit Out (CIOUT)

This three-state output reflects the state of the cache mode field in one of the address
translation caches and is asserted for accesses to noncachable pages to indicate that an
external cache should ignore the bus transfer. When the referenced logical address is
within an area specified for transparent translation, the cache mode field of the
appropriate transparent translation register controls the state of CIOUT. Refer to Section
3 Memory Management Unit (Except MC68EC040 and MC68EC040V) for more
information about the address translation caches and transparent translation. When the
M68040 is not the bus master, the CIOUT signal is set to a high-impedance state.

5.4 BUS TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus transfers. Refer to Section 7 Bus
Operation for detailed information about the relationship of the bus transfer control
signals to bus operation.

5.4.1 Transfer Start (TS)

The processor asserts this three-state bidirectional signal for one clock period to indicate
the start of each transfer. During alternate bus master accesses, the processor monitors
this signal to detect the start of each transfer to be snooped.

5.4.2 Transfer in Progress (TIP)

This three-state output is asserted to indicate that a bus transfer is in progress and is
negated during idle bus cycles if the bus is still granted to the processor. When the
processor loses the bus, TIP negates after completion of the current transfer and goes to
a high-impedance state. Note that TIP is kept asserted on back-to-back bus cycles.

5.4.3 Transfer Acknowledge (TA)

This three-state bidirectional signal indicates the completion of a requested data transfer
operation. During transfers by the M68040, TA is an input signal from the referenced slave
device indicating completion of the transfer. During alternate bus master accesses, TA is
normally three-stated to allow the referenced slave device to respond, and the M68040
samples it to detect the completion of each bus transfer. The M68040 can inhibit memory
and intervene in the access to source or sink data in its internal caches by asserting TA to
acknowledge the data transfer. This capability applies to alternate bus master accesses
that reference modified (dirty) data in the M68040 caches.

5.4.4 Transfer Error Acknowledge (TEA)

The current slave asserts this input signal to indicate an error condition for the bus
transaction. When asserted with TA, this signal indicates that the processor should retry

MOTOROLA M68040 USER’S MANUAL 5-9

the access. During alternate bus master accesses, the M68040 samples TEA to detect
completion of each bus transfer.

5.4.5 Transfer Cache Inhibit (TCI)

This input signal inhibits read data from being loaded into the M68040 instruction or data
caches. TCI is ignored during all writes and after the first data transfer for both burst line
reads and burst-inhibited line reads. TCI is also ignored during all alternate bus master
transfers.

5.4.6 Transfer Burst Inhibit (TBI)

This input signal indicates to the processor that the accessed device cannot support burst
mode accesses and that the requested line transfer should be divided into individual long-
word transfers. Asserting TBI with TA terminates the first data transfer of a line access,
which causes the processor to terminate the burst and access the remaining data for the
line as three successive long-word transfers. During alternate bus master accesses, the
M68040 samples the TBI to detect completion of each bus transfer.

5.5 SNOOP CONTROL SIGNALS

The following signals control the operation of the M68040 on-chip snoop logic. Section 4
Instruction and Data Caches provides information about the relationship of the snoop
control signals to the caches, and Section 7 Bus Operation discusses the relationship of
these signals to bus operation.

5.5.1 Snoop Control (SC1, SC0)

These input signals specify the snoop operation to be performed by the M68040 for an
alternate bus master transfer. If the M68040 is allowed to snoop an alternate bus master
read transfer, it can intervene in the access to supply data from its data cache when the
memory copy is stale, ensuring that the alternate bus master receives valid data. Writes
by an alternate bus master can also be snooped to either update the M68040 internal data
cache with the new data or invalidate the matching cache lines, ensuring that subsequent
M68040 reads access valid data. These signals are ignored when the processor is the bus
master.

5.5.2 Memory Inhibit (MI)

This output signal prevents an alternate bus master from accessing possibly stale data in
memory while the M68040 is unable to respond. MI is asserted during reset preventing
external memory from responding. When the SCx signals indicate an access should be
snooped, the M68040 keeps MI asserted until it determines if intervention in the access is
required. If no intervention is required, MI is negated and memory is allowed to respond to
complete the access. Otherwise, MI remains asserted and the M68040 completes the
transfer as a slave. It updates its caches on a write or supplies data to the alternate bus
master on a read. MI is negated when the M68040 is the bus master. During a snoop

5-10 M68040 USER’S MANUAL MOTOROLA

cycle, the M68040 ignores all TA and TEA assertions while MI is asserted; when RSTI is
asserted, MI is asserted.

5.6 ARBITRATION SIGNALS

The following control signals support requests to an external arbiter to become the bus
master. Refer to Section 7 Bus Operation for detailed information about the relationship
of the arbitration signals to bus operation.

5.6.1 Bus Request (BR)

This output signal indicates to the external arbiter that the processor needs to become bus
master for one or more bus transfers. BR is negated when the M68040 begins an access
to the external bus with no other accesses pending, and BR remains negated until another
access is required. There are some situations in which the M68040 asserts BR and then
negates it without having run bus transfers; this is a disregard request condition. Refer to
Section 7 Bus Operation for details about this state.

5.6.2 Bus Grant (BG)

This input signal from an external arbiter indicates that the bus is available to the M68040
as soon as the current bus access completes. BG must be asserted and BB must be
negated (indicating the bus is free) before the M68040 assumes ownership of the bus.

5.6.3 Bus Busy (BB)

This three-state bidirectional signal indicates that the bus is currently owned. BB is
monitored as a processor input to determine when a alternate bus master has released
control of the bus. BG must be asserted and BB must be negated (indicating the bus is
free) before the M68040 asserts BB as an output to assume ownership of the bus. The
processor keeps BB asserted until the external arbiter negates BG and the processor
completes the bus transfer in progress. When releasing the bus, the processor negates
BB , then sets it to a high-impedance state for use again as an input.

5.7 PROCESSOR CONTROL SIGNALS

The following signals control disabling caches and memory management units (MMUs)
and support processor and external device initialization.

5.7.1 Cache Disable (CDIS)

CDIS dynamically disables the on-chip caches on the next internal cache access
boundary. CDIS does not flush the data and instruction caches; entries remain unaltered
and become available after CDIS is negated. The assertion of CDIS does not affect
snooping. During a processor reset, the level on CDIS is latched and used to select the
normal bus mode (CDIS high) or multiplexed bus mode (CDIS low). Refer to Section 4
Instruction and Data Caches for information about the caches and to Section 7 Bus
Operation for information about the multiplexed bus mode. Refer to Appendix E

MOTOROLA M68040 USER’S MANUAL 5-11

MC68040 Floating-Point Emulation (MC68040FPSP) for descriptions of emulator use of
this signal.

5.7.2 Reset In (RSTI)

This input signal causes the M68040 to enter reset exception processing. The RSTI signal
is an asynchronous input that is internally synchronized to the next rising edge of the
BCLK signal. All three-state signals are set to the high-impedance state, and all outputs,
except MI, are negated when RSTI is recognized. The assertion of RSTI does not affect
the test pins. Refer to Section 7 Bus Operation for a description of reset operation and to
Section 8 Exception Processing for information about the reset exception.

5.7.3 Reset Out (RSTO)

The M68040 asserts this output during execution of the RESET instruction to initialize
external devices. Refer to Section 7 Bus Operation for a description of reset out bus
operation.

5.8 INTERRUPT CONTROL SIGNALS

The following signals control the interrupt functions.

5.8.1 Interrupt Priority Level (IPL2–IPL0)

These input signals provide an indication of an interrupt condition and the encoding of the
interrupt level from a peripheral or external prioritizing circuitry. IPL2 is the most significant
bit of the level number. For example, since the IPL ̄signals are active low, IPL2–IPL0 = $5
corresponds to an interrupt request at interrupt priority level 2.

During a processor reset, the levels on the IPL ̄ lines are latched and used to select the
output driver characteristics for three signal groups listed in Table 5-5. Refer to Section 8
Exception Processing for information on interrupts and to Section 11 MC68040
Electrical and Thermal Characteristics for information on driver characteristics. Refer to
Appendix A MC68LC040 and Appendix B MC68EC040 for how these signals are
different on power-up.

Table 5-5. Output Driver Control Groups

Signal Output Buffers Controlled

IPL2 Data-Bus: D31–D0

IPL1 Address Bus and Transfer Attributes:
A31–A0, CIOUT, LOCK, LOCKE , R/W, SIZ1–SIZ0,
TLN1–TLN0, TM2–TM0, TT1–TT0, UPA1–UPA0

IPL0 Miscellaneous Control Signals:
BB, BR , IPEND, MI, PST3–PST0, RSTO , TA, TDO, TIP, TS

NOTE: High input level = small buffers enabled; low input level = large buffers enabled.

5-12 M68040 USER’S MANUAL MOTOROLA

5.8.2 Interrupt Pending Status (IPEND)

This output signal indicates that an interrupt request has been recognized internally and
exceeds the current interrupt priority mask in the status register (SR). External devices
(other bus masters) can use IPEND to predict processor operation on the next instruction
boundaries. IPEND is not intended for use as an interrupt acknowledge to external
peripheral devices. Refer to Section 7 Bus Operation for bus information related to
interrupts and to Section 8 Exception Processing for interrupt information.

5.8.3 Autovector (AVEC)

This input signal is asserted with TA during an interrupt acknowledge transfer to request
internal generation of the vector number. Refer to Section 7 Bus Operation for more
information about automatic vectors.

5.9 STATUS AND CLOCK SIGNALS

The following paragraphs explain the signals that provide timing, test control, and the
internal processor status.

5.9.1 Processor Status (PST3–PST0)

These outputs indicate the internal execution unit’s status. The timing is synchronous with
BCLK, and the status may have nothing to do with the current bus transfer. The PSTx
signal is updated depending on the type of PSTx encoding. There are two classes of
PSTx encodings. The first class is associated with instruction boundaries, and the second
class indicates the processor’s present status. Table 5-6 lists the definition of the
encodings.

The encodings 0, 8, 4, 5, C, D, E, and F indicate the present status and do not reflect a
specific stage of the pipe. These encodings persist as long as the processor stays in the
indicated state. The default encoding 0 (user) or 8 (supervisor) is indicated if none of the
above conditions apply. The encodings 1, 2, 3, 9, A, and B belong to the first class of
PSTx encoding. This class indicates that the instruction is in its last instruction execution
stage. These encodings exist for only one BCLK period per instruction and are mutually
exclusive.

MOTOROLA M68040 USER’S MANUAL 5-13

Table 5-6. Processor Status Encoding

Hex PST3 PST2 PST1 PST0 Internal Status

0 0 0 0 0 User, Start/Continue Current Instruction

1 0 0 0 1 User, End Current Instruction

2 0 0 1 0 User, Branch Not Taken/End Current Instruction

3 0 0 1 1 User, Branch Taken/End Current Instruction

4 0 1 0 0 User, Table Search

5 0 1 0 1 Halted State (Double Bus Fault)

6 0 1 1 0 Low-Power Stop Mode (Supervisor Instruction)*

7 0 1 1 1 Reserved

8 1 0 0 0 Supervisor, Start/Continue Current Instruction

9 1 0 0 1 Supervisor, End Current Instruction

A 1 0 1 0 Supervisor, Branch Not Taken/End Current Instruction

B 1 0 1 1 Supervisor, Branch Taken/End Current Instruction

C 1 1 0 0 Supervisor, Table Search

D 1 1 0 1 Stopped State (Supervisor Instruction)

E 1 1 1 0 RTE Executing

F 1 1 1 1 Exception Stacking

NOTE: *MC68040V and MC68EC040V only.

When a ‘branch taken/end current instruction’ is indicated, it means that a change of
instruction flow is pending. Along with the following instructions, an exception stacking
(encoding F) sequence is ended with the ‘supervisor, branch taken/end current instruction’
encoding as though it were a virtual JMP instruction. This includes all the possible
exceptions listed in the processor’s vector table. Instructions that cause a ‘branch
taken/end current instruction’ encoding when they are executed are as follows:

ANDI to SR DBcc (Taken) MOVE to SR RTD

Bcc (Taken) FBcc (Taken) MOVE USP RTE

BRA FDBcc (Always) MOVEC RTR

BSR FMOVEM Rc,MRn MOVES RTS

CAS FMOVEM FPm,MRn NOP STOP

CAS2 FSAVE ORI to SR TAS

CINV JMP PFLUSH

CPUSH JSR PTEST

The Bcc (not taken) and DBcc (not taken) are the only instructions that cause a ‘branch
not taken/end current instruction’ encoding. Note that the FBcc (not taken) is not included
in this category. The FBcc (not taken) instruction ends with an ‘end current instruction’
encoding. All other instructions and conditions end with the ‘end current instruction’
encoding. For instance, if the processor is running back-to-back single clock instructions,
the encoding ‘end current instruction’ remains asserted for as many clock cycles as
instructions.

5-14 M68040 USER’S MANUAL MOTOROLA

The following examples are for PSTx encodings:

1. An access error terminates an instruction such that the instruction execution stage is
not reached. In this case, an ‘end current instruction’ is not indicated. Exception
processing starts, the exception stacking status is indicated, and then the virtual
JMP causes the ‘supervisor, branch taken/end current instruction’ encoding.

2. An FTRAPcc that does not take an exception ending with the ‘end current
instruction’ encoding. The exception stacking status is indicated and then reaches
the ‘supervisor, branch taken/end current instruction’ encoding if the FTRAPcc ends
in an exception.

3. Two simultaneous interrupt exception processing sequences follow an ADD
instruction. The ADD instruction ends with ‘end current instruction’, followed by
exception stacking, followed by ‘branch taken/end current instruction’, followed by
exception stacking, followed by ‘branch taken/end current instruction’.

4. An RTE instruction follows an ADD instruction. The ‘end current instruction’ is
followed by RTE executing followed by a branch taken/end current instruction.

5.9.2 Bus Clock (BCLK)

This input signal is used as a reference for all bus timing. It is a TTL-compatible signal and
cannot be gated off. Refer to Section 11 MC68040 Electrical and Thermal
Characteristics for electrical specifications.

5.9.3 Processor Clock (PCLK)—Not on MC68040V and MC68EC040V

PCLK is used to derive all internal timing. This clock is also TTL compatible and cannot be
gated off. Refer to Section 11 MC68040 Electrical and Thermal Characteristics for
electrical specifications.

5.10 MMU DISABLE (MDIS)—NOT ON MC68EC040

The MMU disable signal dynamically disables the translation of addresses by the MMUs.
The assertion of MDIS does not flush the address translation caches (ATCs); ATC entries
become available again when MDIS is negated. During a processor reset, the level on
MDIS is latched and used to select the normal data latch mode (MDIS high) or DLE mode
(MDIS low). Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MC68EC040V) for a description of address translation and to Section 7 Bus Operation
for information about DLE mode.

5.11 DATA LATCH ENABLE (DLE)—ONLY ON MC68040

This input signal is used in DLE mode to latch the input data bus on read transfers. DLE
mode can be used to support asynchronous memory interfaces by allowing the interface
to specify when data should be latched instead of requiring data to be valid on the rising
edge of BCLK.

MOTOROLA M68040 USER’S MANUAL 5-15

5.12 TEST SIGNALS

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the IEEE Test Technology Committee and Joint Test Action Group (JTAG)
sponsorship. The M68040 implementation supports circuit board test strategies based on
this standard. However, the JTAG interface is not intended to provide an in-circuit test to
verify M68040 operations; therefore, it is impossible to test M68040 operations using this
interface. Section 6 IEEE 1149.1 Test Access Port (JTAG) describes the M68040
implementation of the IEEE 1149.1 and is intended to be used with the supporting IEEE
document.

5.12.1 Test Clock (TCK)

This input signal is used as a dedicated clock for the test logic. Since clocking of the test
logic is independent of the normal operation of the MC68040, several other components
on a board can share a common test clock with the processor even though each
component may operate from a different system clock. The design of the test logic allows
the test clock to run at low frequencies, or to be gated off entirely as required for test
purposes.

5.12.2 Test Mode Select (TMS)

This input signal is decoded by the TAP controller and distinguishes the principle
operationas of the test support circuitry.

5.12.3 Test Data In (TDI)

This input signal provides a serial data input to the TAP.

5.12.4 Test Data Out (TDO)

This three-state output signal provides a serial data output from the TAP. The TDO output
can be placed in a high-impedance mode to allow parallel connection of board-level test
data paths.

5.12.5 Test Reset (TRST)—Not on MC68040V and MC68EC040V

This input signal provides an asynchronous reset of the TAP controller.

5.13 POWER SUPPLY CONNECTIONS

The M68040 requires connection to a VCC power supply, positive with respect to ground.
The VCC and ground connections are grouped to supply adequate current to the various
sections of the processor. Section 12 Ordering Information and Mechanical Data
describes the groupings of VCC and ground connections.

5-16 M68040 USER’S MANUAL MOTOROLA

5.14 SIGNAL SUMMARY

Table 5-7 provides a summary of the electrical characteristics of the signals discussed in
this section.

Table 5-7. Signal Summary

Signal Name Mnemonic Type Active Three-State

Address Bus A31–A0 Input/Output High Yes

Autovector AVEC Input Low —

Bus Busy BB Input/Output Low Yes

Bus Clock BCLK Input — —

Bus Grant BG Input Low —

Bus Request BR Output Low No

Cache Disable CDIS Input Low —

Cache Inhibit Out CIOUT Output Low Yes

Data Bus D31–D0 Input/Output High Yes

Data Latch Enable1 DLE Input High —

Ground GND Ground — —

Interrupt Pending IPEND Output Low No

Interrupt Priority Level2 IPL2–IPL0 Input Low —

Bus Lock LOCK Output Low Yes

Bus Lock End LOCKE Output Low Yes

Memory Inhibit MI Output Low No

MMU Disable3 MDIS Input Low —

Processor Clock PCLK Input — —

Processor Status PST3–PST0 Output High No

Read/Write R/W Input/Output High/Low Yes

Reset In RSTI Input Low —

Reset Out RSTO Output Low No

Snoop Control SC1, SC0 Input High —

Transfer Acknowledge TA Input/Output Low Yes

Transfer Burst Inhibit TBI Input Low —

Transfer Cache Inhibit TCI Input Low —

Transfer Error Acknowledge TEA Input Low —

Transfer in Progress TIP Output Low Yes

Transfer Line Number TLN1, TLN0 Output High Yes

Transfer Modifier TM2–TM0 Output High Yes

Transfer Size SIZ1, SIZ0 Input/Output High Yes

MOTOROLA M68040 USER’S MANUAL 5-17

Table 5-7 Signal Summary (Continued)

Signal Name Mnemonic Type Active Three-State

Transfer Start TS Input/Output Low Yes

Transfer Type TT1, TT0 Input/Output High Yes

Test Clock TCK Input — —

Test Data Input TDI Input High —

Test Data Output TDO Output High Yes

Test Mode Select TMS Input High —

Test Reset TRST Input Low —

User-Programmable Attributes UPA1, UPA0 Output High Yes

Power Supply VCC Power — —

NOTES:
1. This signal is not available on the MC68LC040 and MC68EC040.
2. These signals are different on power-up for the MC68LC040 and MC68EC040.
3. This signal is not available on the MC68EC040.

MOTOROLA M68040 USER’S MANUAL 6-1

SECTION 6
IEEE 1149.1A TEST ACCESS PORT (JTAG)

NOTE

This section does not apply to the MC68040V and
MC68EC040V. Refer to Appendix C MC68040V and
MC68EC040 for details. All references to M68040 in this
section only, refer to the MC68040, MC68LC040, and
MC68EC040.

The M68040 includes dedicated user-accessible test logic that is fully compatible with the
IEEE standard 1149.1A Standard Test Access Port and Boundary Scan Architecture.
Problems associated with testing high-density circuit boards have led to the standard’s
development under the sponsorship of the IEEE Test Technology Committee and the
Joint Test Action Group (JTAG).

This section is to be used in conjunction with the supporting IEEE document and includes
those chip-specific items that the IEEE standard requires to be defined and additional
information specific to the M68040 implementation. For example, the IEEE standard
1149.1A test access port (TAP) controller states are referenced in this section but are not
described. For these details and application information regarding the standard, refer to
the IEEE standard 1149.1A document.

The M68040 implementation supports circuit board test strategies based on the standard.
The test logic utilizes static logic design and is system logic independent of the device.
The M68040 implementation provides capabilities to:

a. Perform boundary scan operations to test circuit board electrical continuity,

b. Bypass the M68040 by reducing the shift register path to a single cell,

c. Sample the M68040 system pins during operation and transparently shift out the
result,

d. Disable the output drive to output-only pins during circuit board testing, and

e. Select one of two output drivers on a pin-by-pin basis.

NOTE

The IEEE standard 1149.1A test logic cannot be considered
completely benign to those planning not to use this capability.
Certain precautions must be observed to ensure that this logic
does not interfere with system operation. Refer to 6.5
Disabling the IEEE Standard 1149.1A Operation.

6-2 M68040 USER’S MANUAL MOTOROLA

6.1 OVERVIEW

Figure 6-1 illustrates a block diagram of the M68040 implementation of IEEE standard
1149.1A. The test logic includes a 16-state dedicated TAP controller. These 16 controller
states are defined in detail in the IEEE standard 1149.1A, but only 8 are included in this
section.

Test-Logic-Reset Run-Test/Idle
Capture-IR Capture-DR
Update-IR Update-DR
Shift-IR Shift-DR

The TAP controller provides access to five dedicated signal pins:

TCK—A test clock input that synchronizes the test logic.

TMS—A test mode select input with an internal pullup resistor sampled on the rising
 edge of TCK to sequence the TAP controller.

TDI—A test data input with an internal pullup resistor sampled on the rising edge of
 TCK.

TDO—A three-state test data output actively driven only in the shift-IR and shift-DR
 controller states that changes on the falling edge of TCK.

TRST—An active-low asynchronous reset with an internal pullup resistor that forces
 the TAP controller into the test-logic-reset state.

The test logic also includes an instruction shift register and two test data registers, a
boundary scan register and a bypass register. The boundary scan register links all device
signal pins into the instruction shift register.

TDI

TDO

TMS

TCK

TRST

3-BIT INSTRUCTION SHIFT REGISTER

LATCHED DECODER

184-BIT BOUNDARY SCAN REGISTER

TEST DATA REGISTERS

BYPASS

M
U

X

TA
P

C
O

N
TR

O
LL

ER

M
U

X

183 0

02

Figure 6-1. M68040 Test Logic Block Diagram

MOTOROLA M68040 USER’S MANUAL 6-3

6.2 INSTRUCTION SHIFT REGISTER

The M68040 IEEE standard 1149.1A implementation includes a 3-bit instruction shift
register without parity. The register shifts one of eight instructions, which can either select
the test to be performed or access a test data register, or both. Data is transferred from
the instruction shift register to latched decoded outputs during the update-IR state. The
instruction shift register is reset to all ones in the TAP controller test-logic-reset state,
which is equivalent to selecting the BYPASS instruction. During the capture-IR state, the
binary value 001 is loaded into the parallel inputs of the instruction shift register.

The M68040 IEEE standard 1149.1A implementation includes three mandatory public
instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST) and four manufacturer's public
instructions. The four manufacturer’s public instructions provide the capability to disable all
device output drivers, operate the device in a BYPASS configuration without a system
clocking requirement, and select one of two output drive capabilities on a pin-by-pin basis.
The M68040 implementation does not support the optional standard public instructions.
Table 6-1 lists the three bits used in the instruction shift register to decode the instructions
and their related encodings. Note that the least significant bit of the instruction (bit 0) is the
first bit to be shifted into the instruction shift register.

Table 6-1. IEEE Standard 1149.1A Instructions

Bit 2 Bit 1 Bit 0 Instruction Selected Test Data Register Accessed

0 0 0 EXTEST Boundary Scan

0 0 1 HIGHZ Bypass

0 1 0 SAMPLE/PRELOAD Boundary Scan

0 1 1 DRVCTL.T Boundary Scan

1 0 0 SHUTDOWN Bypass

1 0 1 PRIVATE Bypass

1 1 0 DRVCTL.S Boundary Scan

1 1 1 BYPASS Bypass

EXTEST, HIGHZ, DRVCTL.T, SHUTDOWN, and PRIVATE have a PCLK and BCLK
restriction. Failure to comply with this restriction results in potential internal damage to the
device (see 6.4 Restrictions). Once the restriction is complied with, SHUTDOWN,
EXTEST, HIGHZ, and DRVCTL.T can be entered regardless of order. The system clocks
(PCLK and BCLK) must be kept running while in the SAMPLE/PRELOAD, DRVCLT.S,
and BYPASS instructions. Failure to do so could result in potential internal damage to the
device.

6.2.1 EXTEST

The external test instruction (EXTEST) selects the 184-bit boundary scan register. This
instruction also activates two internal functions that are intended to protect the device from
potential damage while performing boundary scan operations.

6-4 M68040 USER’S MANUAL MOTOROLA

EXTEST asserts internal reset for the M68040 system logic to force a predictable benign
internal state and activates an internal keep-alive clock to protect the device from potential
internal damage. This internal clock eliminates the requirement to keep the system clocks
(PCLK and BCLK) running during EXTEST operations and allows these two system clock
pins to be included in boundary scan testing.

6.2.2 HIGHZ

The HIGHZ instruction is an optional instruction provided as a Motorola public instruction
to anticipate the need to backdrive output pins during circuit board testing. The HIGHZ
instruction activates an internal keep-alive clock, asserts internal system reset, selects the
bypass register, and forces all output and bidirectional pins to the high-impedance state.

Asserting TRST or holding TMS high and clocking TCK for at least five rising edges
causes the TAP controller to enter the test-logic-reset state. Using only the TMS and TCK
pins and the capture-IR and update-IR states invokes the HIGHZ instruction. This scheme
works because the value captured by the instruction shift register during the capture-IR
state is identical to the HIGHZ opcode.

6.2.3 SAMPLE/PRELOAD

The SAMPLE/PRELOAD instruction provides two separate functions. First, it provides a
means to obtain a sample system data and control signal. Sampling occurs on the rising
edge of TCK in the capture-DR state. The user can observe the data by shifting it through
the boundary scan register to output TDO using the shift-DR state. Both the data capture
and the shift operations are transparent to system operation. The user must provide some
form of external synchronization to achieve meaningful results since there is no internal
synchronization between TCK and BCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells before selecting EXTEST, which is accomplished by ignoring
data being shifted out of TDO while shifting in initialization data. The update-DR state can
then be used to initialize the boundary scan register and ensure that known data and
output state will occur on the outputs after entering the EXTEST instruction.

6.2.4 DRVCTL.T

The DRVCTL.T instruction is a Motorola public instruction that provides the ability to select
one of two output drivers on a pin-by-pin basis. It is intended for use with EXTEST or
SHUTDOWN to provide an IEEE-compatible environment to select the output drivers for
board-level test environments. This instruction allows data in the boundary scan register to
select the output driver. A logic zero in the appropriate boundary scan output cell (see
Table 6-1) selects the large buffer, and a logic one selects the small buffer (see Section 7
Bus Operation). Data captured in the capture-DR state for this instruction is identical to
that captured during EXTEST: output data cells for outputs and pin state for inputs. Note
that no data relevant to the drive control function is captured during the capture-DR state.

MOTOROLA M68040 USER’S MANUAL 6-5

The DRVCTL.T instruction is intended to be used in test applications in conjunction with
the EXTEST and SHUTDOWN instructions and not for system applications. It therefore
differs from DRVCTL.S in that this instruction invokes the keep-alive clock, asserts the
internal reset, and the test logic, not the system logic, has control of the I/O pins.

When the system logic has control of signal pin I/O directions and levels, the drive control
latch is loaded from the IPL2–IPL0 pins during the negation of RSTI. DRVCTL.T overwrites
this value with boundary scan data in the update-DR state. The selected output driver
state remains unchanged if only the DRVCTL.T, EXTEST, or SHUTDOWN instructions
are invoked. If an instruction other than one of these three is executed, the system logic
protocol regains control of the output driver state and overwrites the value that the
DRVCTL.T instruction previously defined.

Note that the output drive control state does not change while the 1149.1A instruction is
one of the three instructions DRVCTL.T, EXTEST, or SHUTDOWN. If DRVCTL.T changes
the output driver state and then the test-logic-reset state is entered, the instruction shift
register is reset to BYPASS, and the system logic can change the output driver state.

6.2.5 SHUTDOWN

This instruction provides an opcode for automatic test pattern generation (ATPG)
programs to cope with the clocking protocol required to stop the system clocks. This
instruction asserts internal system reset, activates an internal keep alive clock, and selects
the bypass register. Internal decoding of the instruction selects the bypass register, and
the test logic, not the system logic, has control of the I/O ports. Note that initializing the
boundary scan data register and then selecting the SHUTDOWN instruction provides a
clamping function. The test logic controls the I/O state, and the bypass register is
selected.

6.2.6 PRIVATE

Motorola reserves this instruction for manufacturing use. The instruction does not change
pin I/O as defined for system operation.

6.2.7 DRVCTL.S

The DRVCTL.S instruction controls the output driver selection on a pin-by-pin basis. This
instruction allows data in the boundary scan register to select the output driver during the
update-DR state when the system logic has control of the signal I/O directions and levels.
A logic zero selects the large buffer or driver; a logic one selects the small buffer or driver
(see Table 6-1).

The DRVCTL.S instruction is intended to be used in system applications and not in test
applications. In system applications, the system logic has control of the signal pin I/O
directions and levels; whereas, in test applications, the 1149.1A test logic has control of it.
It therefore differs from DRVCTL.T in that this instruction does not invoke the internal keep
alive clock, it does not assert the internal reset, and the system logic, not the test logic,

6-6 M68040 USER’S MANUAL MOTOROLA

has control of the I/O pins. The 1149.1A interface is transparent to system operation
except for drive control selection during execution of this instruction.

When the system logic has control of the signal I/O directions and levels, the drive control
latches are loaded from the IPL2–IPL0 pins at the negation of the RSTI signal. After RSTI
has been negated, and the 128-clock internal reset cycle has expired (see Section 7 Bus
Operation), the DRVCTL.S instruction is executed. Each drive control latch is modified
during the update-DR state. Any subsequent RSTI signal negation while in a system
configuration (i.e., system logic has control of the signal I/O directions and levels) can
cause the drive control latches to be overwritten with new IPL ̄signal values. The system
bus can be suspended in a wait state while this function is being performed.

6.2.8 BYPASS

The BYPASS instruction selects the single-bit bypass register, creating a single-bit shift-
register path from TDI to the bypass register to TDO. The instruction enhances test
efficiency when a component other than the M68040 becomes the device under test.
When the bypass register is initially selected, the instruction shift register stage is set to a
logic zero on the rising edge of TCK following entry into the capture-DR state. Therefore,
the first bit to be shifted out after selecting the bypass register is always a logic zero.
Figure 6-2 illustrates the bypass register.

1
MUX

1

G1

1D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

Figure 6-2. Bypass Register

6.3 BOUNDARY SCAN REGISTER

The 184-bit boundary scan register uses the TAP controller to scan user-defined values
into the output buffers, capture values presented to input pins, and control the direction of
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out)
is defined as bit zero. The last bit to be shifted out is bit 183. This register includes cells
for all device signal pins and clock pins along with associated control signals.

The M68040 boundary scan register consists of three cell structure types, O.Latch, I.Pin,
and IO.Ctl, that are associated with a boundary scan register bit. All boundary scan output
cells capture the logic level of the device output latch during the capture-DR state. Figures
6-3 through 6-5 illustrate these three cell types. Figure 6-6 illustrates the general
arrangement of these cells.

MOTOROLA M68040 USER’S MANUAL 6-7

DATA FROM
SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR UPDATE DR2
(DRVCTL.X)

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER

1 = EXTEST, DRVCTL.T,
AND SHUTDOWN
0 = OTHERWISE

1
MUX

1

G1

1D

C1

UPDATE DR1
(DRVCTL.X)

TO OUTPUT
DRIVER SELECT

1D

C1
1D

C11
MUX

1

G1

Figure 6-3. Output Latch Cell (O.Latch)

FROM
LAST
CELL

TO
SYSTEM

LOGIC

SHIFT DRCLOCK DR

TO NEXT CELL

1D

C1
1

MUX
1

G1

INPUT
 PIN

Figure 6-4. Input Pin Cell (I.Pin)

6-8 M68040 USER’S MANUAL MOTOROLA

OUTPUT CONTROL
FROM SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER
(1 = DRIVE)

1 = EXTEST
0 = OTHERWISE

1D

C1

1
MUX

1

G1

1
MUX

1

G1

UPDATE DR

1D

C1

R

RESET

Figure 6-5. Output Control Cells (IO.Ctl)

FROM
LAST CELL

OUTPUT
DATA

INPUT
DATA

OUTPUT
ENABLE

TO NEXT CELL

TO NEXT
PIN PAIR

I/O.CTL

O.LATCH

I.PIN

EN INPUT
 PIN

Figure 6-6. General Arrangement of Bidirectional Pins

MOTOROLA M68040 USER’S MANUAL 6-9

All M68040 bidirectional pins include two boundary scan data cells, an input, and an
output. One of five associated boundary scan control cells controls each bidirectional pin.
If these cells contain a logic one, the associated bidirectional or three-state pin will be
configured as an output and enabled. The cell captures the current value during the
capture-DR state. All five control cells are reset (i.e., logic zero) in the test-logic-reset
state. The five bidirectional/three-state control cells and their boundary scan register bit
positions are as follows:

Cell Name Bit

io.ab 150

io.db 151

io.2 154

io.1 155

io.0 156

Table 6-2 lists the 184 boundary scan bit definitions. The first column in the table defines
the bit position in the boundary scan register. The second column references one of the
three cell types. The third column lists the pin name for all pin-related cells. The fourth
column lists the system pin type for convenience where TS-Output indicates a three-state
output pin and I/O indicates a bidirectional pin. The last column lists the name of the
associated control bit of the boundary scan register for three-state output and bidirectional
pins. The boundary scan description language (BSDL) type for each cell can be found in
note 1.

6-10 M68040 USER’S MANUAL MOTOROLA

Table 6-2. Boundary Scan Bit Definitions1

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

0 O.Latch RSTO Output2 (Note 3)

1 O.Latch IPEND Output2 (Note 3)

2 O.Latch CIOUT TS-Output2 io.0

3 O.Latch UPA0 TS-Output2 io.0

4 O.Latch UPA1 TS-Output2 io.0

5 O.Latch TT0 I/O2 io.0

6 I.Pin TT0 I/O io.0

7 O.Latch TT1 I/O2 io.0

8 I.Pin TT1 I/O io.0

9 O.Latch A10 I/O2 io.ab

10 I.Pin A10 I/O io.ab

11 O.Latch A11 I/O2 io.ab

12 I.Pin A11 I/O io.ab

13 O.Latch A12 I/O2 io.ab

14 I.Pin A12 I/O io.ab

15 O.Latch A13 I/O2 io.ab

16 I.Pin A13 I/O io.ab

17 O.Latch A14 I/O2 io.ab

18 I.Pin A14 I/O io.ab

19 O.Latch A15 I/O2 io.ab

20 I.Pin A15 I/O io.ab

21 O.Latch A16 I/O2 io.ab

22 I.Pin A16 I/O io.ab

23 O.Latch A17 I/O2 io.ab

24 I.Pin A17 I/O io.ab

25 O.Latch A18 I/O2 io.ab

26 I.Pin A18 I/O io.ab

27 O.Latch A19 I/O2 io.ab

28 I.Pin A19 I/O io.ab

29 O.Latch A20 I/O2 io.ab

30 I.Pin A20 I/O io.ab

31 O.Latch A21 I/O2 io.ab

32 I.Pin A21 I/O io.ab

33 O.Latch A22 I/O2 io.ab

34 I.Pin A22 I/O io.ab

35 O.Latch A23 I/O2 io.ab

36 I.Pin A23 I/O io.ab

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

37 O.Latch A24 I/O2 io.ab

38 I.Pin A24 I/O io.ab

39 O.Latch A25 I/O2 io.ab

40 I.Pin A25 I/O io.ab

41 O.Latch A26 I/O2 io.ab

42 I.Pin A26 I/O io.ab

43 O.Latch A27 I/O2 io.ab

44 I.Pin A27 I/O io.ab

45 O.Latch A28 I/O2 io.ab

46 I.Pin A28 I/O io.ab

47 O.Latch A29 I/O2 io.ab

48 I.Pin A29 I/O io.ab

49 O.Latch A30 I/O2 io.ab

50 I.Pin A30 I/O io.ab

51 O.Latch A31 I/O2 io.ab

52 I.Pin A31 I/O io.ab

53 O.Latch D0 I/O2 io.db

54 O.Latch D1 I/O2 io.db

55 O.Latch D2 I/O2 io.db

56 O.Latch D3 I/O2 io.db

57 O.Latch D4 I/O2 io.db

58 O.Latch D5 I/O2 io.db

59 O.Latch D6 I/O2 io.db

60 O.Latch D7 I/O2 io.db

61 O.Latch D8 I/O2 io.db

62 O.Latch D9 I/O2 io.db

63 O.Latch D10 I/O2 io.db

64 O.Latch D11 I/O2 io.db

65 O.Latch D12 I/O2 io.db

66 O.Latch D13 I/O2 io.db

67 O.Latch D14 I/O2 io.db

68 O.Latch D15 I/O2 io.db

69 O.Latch D16 I/O2 io.db

70 O.Latch D17 I/O2 io.db

71 O.Latch D18 I/O2 io.db

72 O.Latch D19 I/O2 io.db

73 O.Latch D20 I/O2 io.db

MOTOROLA M68040 USER’S MANUAL 6-11

Table 6-2. Boundary Scan Bit Definitions (Continued)

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

74 O.Latch D21 I/O2 io.db

75 O.Latch D22 I/O2 io.db

76 O.Latch D23 I/O2 io.db

77 O.Latch D24 I/O2 io.db

78 O.Latch D25 I/O2 io.db

79 O.Latch D26 I/O2 io.db

80 O.Latch D27 I/O2 io.db

81 O.Latch D28 I/O2 io.db

82 O.Latch D29 I/O2 io.db

83 O.Latch D30 I/O2 io.db

84 O.Latch D31 I/O2 io.db

85 I.Pin D0 I/O io.db

86 I.Pin D1 I/O io.db

87 I.Pin D2 I/O io.db

88 I.Pin D3 I/O io.db

89 I.Pin D4 I/O io.db

90 I.Pin D5 I/O io.db

91 I.Pin D6 I/O io.db

92 I.Pin D7 I/O io.db

93 I.Pin D8 I/O io.db

94 I.Pin D9 I/O io.db

95 I.Pin D10 I/O io.db

96 I.Pin D11 I/O io.db

97 I.Pin D12 I/O io.db

98 I.Pin D13 I/O io.db

99 I.Pin D14 I/O io.db

100 I.Pin D15 I/O io.db

101 I.Pin D16 I/O io.db

102 I.Pin D17 I/O io.db

103 I.Pin D18 I/O io.db

104 I.Pin D19 I/O io.db

105 I.Pin D20 I/O io.db

106 I.Pin D21 I/O io.db

107 I.Pin D22 I/O io.db

108 I.Pin D23 I/O io.db

109 I.Pin D24 I/O io.db

110 I.Pin D25 I/O io.db

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

111 I.Pin D26 I/O io.db

112 I.Pin D27 I/O io.db

113 I.Pin D28 I/O io.db

114 I.Pin D29 I/O io.db

115 I.Pin D30 I/O io.db

116 I.Pin D31 I/O io.db

117 O.Latch A9 I/O2 io.ab

118 I.Pin A9 I/O io.ab

119 O.Latch A8 I/O2 io.ab

120 I.Pin A8 I/O io.ab

121 O.Latch A7 I/O2 io.ab

122 I.Pin A7 I/O io.ab

123 O.Latch A6 I/O2 io.ab

124 I.Pin A6 I/O io.ab

125 O.Latch A5 I/O2 io.ab

126 I.Pin A5 I/O io.ab

127 O.Latch A4 I/O2 io.ab

128 I.Pin A4 I/O io.ab

129 O.Latch A3 I/O2 io.ab

130 I.Pin A3 I/O io.ab

131 O.Latch A2 I/O2 io.ab

132 I.Pin A2 I/O io.ab

133 O.Latch A1 I/O2 io.ab

134 I.Pin A1 I/O io.ab

135 O.Latch A0 I/O2 io.ab

136 I.Pin A0 I/O io.ab

137 O.Latch TM2 TS-Output2 io.0

138 O.Latch TM1 TS-Output2 io.0

139 O.Latch TM0 TS-Output2 io.0

140 O.Latch TLN1 TS-Output2 io.0

141 O.Latch TLN0 TS-Output2 io.0

142 O.Latch SIZ0 I/O2 io.0

143 I.Pin SIZ0 I/O io.0

144 O.Latch R/W I/O2 io.0

145 I.Pin R/W I/O io.0

146 O.Latch LOCKE TS-Output2 io.1

147 O.Latch SIZ1 I/O2 io.0

6-12 M68040 USER’S MANUAL MOTOROLA

Table 6-2. Boundary Scan Bit Definitions (Concluded)

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

148 I.Pin SIZ1 I/O io.0

149 O.Latch LOCK TS-Output2 io.1

150 IO.Ctl io.ab — (Note 4)

151 IO.Ctl io.db — (Note 4)

152 O.Latch MI Output2 (Note 3)

153 O.Latch BR Output2 (Note 3)

154 IO.Ctl io.2 — (Note 4)

155 IO.Ctl io.1 — (Note 4)

156 IO.Ctl io.0 — (Note 4)

157 O.Latch TS I/O2 io.0

158 I.Pin TS I/O io.0

159 O.Latch BB I/O2 io.1

160 I.Pin BB I/O io.1

161 O.Latch TIP TS-Output2 io.1

162 O.Latch PST3 Output2 (Note 3)

163 O.Latch PST2 Output2 (Note 3)

164 O.Latch PST1 Output2 (Note 3)

165 O.Latch PST0 Output2 (Note 3)

Bit Cell Type
Pin/Cell
Name Pin Type

Output
Ctrl Cell

166 O.Latch TA I/O2 io.2

167 I.Pin TA I/O io.2

168 I.Pin TEA Input —

169 I.Pin BG Input —

170 I.Pin SC1 Input —

171 I.Pin SC0 Input —

172 I.Pin TBI Input —

173 I.Pin AVEC Input —

174 I.Pin TCI Input —

175 I.Pin DLE5 Input —

176 I.Pin PCLK Input —

177 I.Pin BCLK Input —

178 I.Pin IPL0 Input —

179 I.Pin IPL1 Input —

180 I.Pin IPL2 Input —

181 I.Pin RSTI Input —

182 I.Pin CDIS Input —

183 I.Pin MDIS6 Input —

NOTES:
1. I.Pin, IO.Ctl, and O.Latch are equivalent to the BSDL descriptions: BC_4, BC_2, and BC_2, respectively.
2. Boundary scan register bit positions that are used during the drive control (DRVCTL.X) instructions.
3. These output-only cells can be turned off (high impedance) by using the HIGHZ instruction.
4. All of the control signals (IO.Ctl) are cleared in the test-logic-reset state.
5. Renamed JS0 on the MC68LC040 and MC68EC040.
6. Renamed JS1 on the MC68EC040.

6.4 RESTRICTIONS

The test logic is implemented using static logic design, and TCK can be stopped in either
a high or low state without loss of data. The system logic, however, includes considerable
dynamic logic. For this reason, the system clocks (PCLK and BCLK) cannot be stopped or
allowed to run slower than the specified frequency except when the EXTEST, HIGHZ,
DRVCTL.T, or SHUTDOWN instructions have been properly invoked.

PCLK and BCLK must be kept running for two additional BCLK periods upon initial entry
into any of the four instructions, EXTEST, HIGHZ, DRVCTL.T, or SHUTDOWN. This
restriction is necessary to allow time for an internal reset to propagate through an internal
synchronizer. After this period, the user has complete time-domain freedom with the two
system clock pins. After any of the four instructions has been properly entered, these
instructions can be executed in any order without a time-domain clocking restriction.
Entering any instruction other than one of these four requires that the system clocks be

MOTOROLA M68040 USER’S MANUAL 6-13

restarted, and a proper reentry into any of the four instructions is again required before the
system clocks can be stopped.

Control over the output enable signals using the boundary scan register and the EXTEST
and HIGHZ instructions requires a compatible circuit-board test environment to avoid
destructive configurations. The user is responsible for avoiding situations in which the
M68040 output drivers are enabled into actively driven networks.

The TRST signal provides the ability for an asynchronous reset of the test logic and
requires no internal clocking to force the TAP controller into the test-logic-reset state. This
signal should be asserted during system power-up to initialize the 1149.1A test interface
and avoid the potential for board-level bus conflicts. Essentially the TRST signal provides
the ability to prevent possible board-level bus contention during power-up due to the test
logic having control of the pins. The device has no internal power-up reset circuit. The
TRST signal should be treated similar to the RSTI signal for board design considerations
concerning power-up conditions.

Negation of the TRST signal requires certain precautions to achieve a predictable TAP
controller state. The TMS signal is sampled on the rising edge of TCK and sequences the
TAP controller. If TMS is low and TRST is negated simultaneously with the rising edge of
TCK, the resultant TAP controller state is unpredictable but will be either test-logic-reset or
run-test/idle. To avoid this uncertainty, either 1) the negation of TRST can be synchronized
with the falling edge of TCK or 2) TMS can remain high until after TRST negation.
Alternatively, holding TMS low for two or more TCK periods following TRST negation
ensures that the TAP controller is in the run-test/idle state.

6.5 DISABLING THE IEEE STANDARD 1149.1A OPERATION

There are two considerations for non-IEEE standard 1149.1A operation. First, TCK does
not include an internal pullup resistor and should not be left unconnected to preclude mid-
level inputs. The second consideration is to ensure that the IEEE standard 1149.1A test
logic remains transparent to the system logic by providing the ability to force the test-logic-
reset state.

Figure 6-7 illustrates disabling the IEEE standard 1149.1A operation through connecting
TRST directly or through a resistor to ground or a suitable logic network. Connecting TRST
to RSTI while TCK is held either high or low meets the two considerations. If a pulse
asserts TRST , the TAP controller is forced into the test-logic-reset state and can remain in
this state as long as a rising edge on the TCK signal does not occur when TMS is low.

6-14 M68040 USER’S MANUAL MOTOROLA

TDI

TMS

TRST

TCLK

TD0 NO CONNECTION

+5V

1K

Figure 6-7. Circuit Disabling
IEEE Standard 1149.1A

MOTOROLA M68040 USER’S MANUAL 6-15

6.6 MOTOROLA M68040 BSDL DESCRIPTION (VERSION 2.2)

Revision List:
1. LOCK and LOCKE controlled by io.1 vice io.0 (4D98D).

3. No other changes to Version 2.1 BSDL.

2. Instruction opcodes changed for SAMPLE, SHUTDOWN, and BYPASS.

3. New instructions DRVCTL.T, DRVCTL.S and PRIVATE added.

4. New instructions DRVCTL.T and DRVCTL.S renamed to DRVCTL_T and
DRVCTL_S for syntax compatibility.

5. Register access specified for DRVCTL_T, DRVCTL_S, and PRIVATE instructions.

6. No other changes to Version 1.0 BSDL.

Package Type: 18 x 18 PGA

This BSDL is for the newer MC68040 mask sets of E26A and after (roughly after the
second half of 1992). It does not include the 0.8-µm mask sets D43B, D50D, and D98D.
For MC68LC040 and MC68EC040, two pin names have changed. To make the necessary
modifications, change all occurrences of DLE to JS0 and MDIS to JS1.

entity MC68040 is

generic(PHYSICAL_PIN_MAP:string := "PGA_18x18");

port (TDI: in bit;
TDO: out bit;
TMS: in bit;
TCK: in bit;
TRST: in bit;
RSTO: buffer bit;
IPEND: buffer bit;
CIOUT: out bit;
UPA: out bit_vector(0 to 1);
TT: inout bit_vector(0 to 1);
A: inout bit_vector(0 to 31);
D: inout bit_vector(0 to 31);
LOCKE: out bit;
LOCK: out bit;
R_W: inout bit;
TLN: out bit_vector(0 to 1);
TM: out bit_vector(0 to 2);
SIZ: inout bit_vector(0 to 1);
MI: buffer bit;
BR: buffer bit;
TS: inout bit;
BB: inout bit;
TIP: out bit;
PST: buffer bit_vector(0 to 3);
TA: inout bit;
TEA: in bit;
BG: in bit;
SC: in bit_vector(0 to 1);
TBI: in bit;
AVEC: in bit;
TCI: in bit;

6-16 M68040 USER’S MANUAL MOTOROLA

DLE: in bit;
PCLK: in bit;
BCLK: in bit;
IPL: in bit_vector(0 to 2);
RSTI: in bit;
CDIS: in bit;
MDIS: in bit;
EGND: linkage bit_vector(1 to 23);
EVDD: linkage bit_vector(1 to 12);
IGND: linkage bit_vector(1 to 12);
IVDD: linkage bit_vector(1 to 7);
CGND: linkage bit_vector(1 to 2);
CVDD: linkage bit_vector(1 to 6);
PGND: linkage bit_vector(1 to 3);
PVDD: linkage bit_vector(1 to 2)
);

use STD_1149_1_1990.all;
attribute PIN_MAP of MC68040 : entity is PHYSICAL_PIN_MAP;

—18x18 PGA Pin Map

constant PGA_18x18 : PIN_MAP_STRING :=
"TDI: S3, " &
"TDO: T2, " &
"TMS: S5, " &
"TCK: S4, " &
"TRST: T3, " &
"RSTO: R3, " &
"IPEND: S1, " &
"CIOUT: R1, " &
"UPA: (Q3, Q1), " &
"TT: (P3, P2), " &
"A: (L18, K18, J17, J18, H18, G18, G16, F18, E18, F16, P1, N3, " &
" N1, M1, L1, K1, K2, J1, H1, J2, G1, F1, E1, G3, " &
" D1, F3, E2, C1, E3, B1, D3, A1), " &
"D: (C3, B3, C4, A2, A3, A4, A5, A6, B7, A7, A8, A9, " &
" A10, A11, A12, A13, B11, A14, B12, A15, A16, A17, B16, C15, " &
" A18, C16, B18, D16, C18, E16, E17, D18), " &
"LOCKE: R18, " &
"LOCK: S18, " &
"R_W: N16, " &
"TLN: (Q18, P18), " &
"TM: (N18, M18, K17), " &
"SIZ: (P17, P16), " &
"MI: Q16, " &
"BR: T18, " &
"TS: R16, " &
"BB: T17, " &
"TIP: R15, " &
"PST: (T15, S14, R14, T16), " &
"TA: T14, " &
"TEA: S13, " &
"BG: T13, " &
"SC: (T12, S12), " &
"TBI: S11, " &
"AVEC: T11, " &

MOTOROLA M68040 USER’S MANUAL 6-17

"TCI: T10, " &
"DLE: T9, " &
"PCLK: R9, " &
"BCLK: R7, " &
"IPL: (T8, T7, T6), " &
"RSTI: S7, " &
"CDIS: T5, " &
"MDIS: S6, " &
"EGND: (S2, Q2, N2, L2, H2, F2, D2, B2, B4, B6, B8, B10, " &
" B13, B15, B17, D17, F17, H17, L17, N17, Q17, S17, S15), " &
"EVDD: (R2, M2, G2, C2, B5, B9, B14, C17, G17, M17, R17, S16), " &
"IGND: (T4, R4, L3, K3, C7, C9, C11, K16, M16, R13, R11, S10), " &
"IVDD: (R5, M3, C8, C10, C12, L16, R12), " &
"CGND: (C6, C13), " &
"CVDD: (J3, H3, C5, C14, H16, J16), " &
"PGND: (S9, R10, R6), " &
"PVDD: (S8, R8) " ;

—Other Pin Maps here when documented

attribute TAP_SCAN_IN of TDI:signal is true;
attribute TAP_SCAN_OUT of TDO:signal is true;
attribute TAP_SCAN_MODE of TMS:signal is true;
attribute TAP_SCAN_CLOCK of TCK:signal is (10.0e6, BOTH);
attribute TAP_SCAN_RESET of TRST:signal is true;
attribute INSTRUCTION_LENGTH of MC68040:entity is 3;
attribute INSTRUCTION_OPCODE of MC68040:entity is

"EXTEST (000), " &
"HI_Z (001), " &
"SAMPLE (010), " &
"DRVCTL.T (011), " &
"SHUTDOWN (100), " &
"PRIVATE (101), " &
"DRVCTL.S (110), " &
"BYPASS (111) " ;

attribute INSTRUCTION_CAPTURE of MC68040:entity is "001";
attribute INSTRUCTION_DISABLE of MC68040:entity is "HI_Z";
attribute REGISTER_ACCESS of MC68040:entity is

"BYPASS (SHUTDOWN, HI_Z, PRIVATE), " &
"BOUNDARY (DRVCTL_T, DRVCTL_S) " ;

attribute BOUNDARY_CELLS of MC68040:entity is

"BC_2, BC_4 " ;

attribute BOUNDARY_LENGTH of MC68040:entity is 184;
attribute BOUNDARY_REGISTER of MC68040:entity is

6-18 M68040 USER’S MANUAL MOTOROLA

num cell port function safe ccell dsval rslt

"0 (BC_2, RSTO, output2, X), " &
"1 (BC_2, IPEND, output2, X), " &
"2 (BC_2, CIOUT, output3, X, 156, 0, Z), " & —156 = io.0
"3 (BC_2, UPA(0), output3, X, 156, 0, Z), " &
"4 (BC_2, UPA(1), output3, X, 156, 0, Z), " &
"5 (BC_2, TT(0), output3, X, 156, 0, Z), " &
"6 (BC_4, TT(0), input, X), " &
"7 (BC_2, TT(1), output3, X, 156, 0, Z), " &
"8 (BC_4, TT(1), input, X), " &
"9 (BC_2, A(10), output3, X, 150, 0, Z), " & —150 = io.ab
"10 (BC_4, A(10), input, X), " &
"11 (BC_2, A(11), output3, X, 150, 0, Z), " &
"12 (BC_4, A(11), input, X), " &
"13 (BC_2, A(12), output3, X, 150, 0, Z), " &
"14 (BC_4, A(12), input, X), " &
"15 (BC_2, A(13), output3, X, 150, 0, Z), " &
"16 (BC_4, A(13), input, X), " &
"17 (BC_2, A(14), output3, X, 150, 0, Z), " &
"18 (BC_4, A(14), input, X), " &
"19 (BC_2, A(15), output3, X, 150, 0, Z), " &
"20 (BC_4, A(15), input, X), " &
"21 (BC_2, A(16), output3, X, 150, 0, Z), " &
"22 (BC_4, A(16), input, X), " &
"23 (BC_2, A(17), output3, X, 150, 0, Z), " &
"24 (BC_4, A(17), input, X), " &
"25 (BC_2, A(18), output3, X, 150, 0, Z), " &
"26 (BC_4, A(18), input, X), " &
"27 (BC_2, A(19), output3, X, 150, 0, Z), " &
"28 (BC_4, A(19), input, X), " &
"29 (BC_2, A(20), output3, X, 150, 0, Z), " &
"30 (BC_4, A(20), input, X), " &
"31 (BC_2, A(21), output3, X, 150, 0, Z), " &
"32 (BC_4, A(21), input, X), " &
"33 (BC_2, A(22), output3, X, 150, 0, Z), " &
"34 (BC_4, A(22), input, X), " &
"35 (BC_2, A(23), output3, X, 150, 0, Z), " &
"36 (BC_4, A(23), input, X), " &
"37 (BC_2, A(24), output3, X, 150, 0, Z), " &
"38 (BC_4, A(24), input, X), " &
"39 (BC_2, A(25), output3, X, 150, 0, Z), " &
"40 (BC_4, A(25), input, X), " &
"41 (BC_2, A(26), output3, X, 150, 0, Z), " &
"42 (BC_4, A(26), input, X), " &
"43 (BC_2, A(27), output3, X, 150, 0, Z), " &
"44 (BC_4, A(27), input, X), " &
"45 (BC_2, A(28), output3, X, 150, 0, Z), " &
"46 (BC_4, A(28), input, X), " &
"47 (BC_2, A(29), output3, X, 150, 0, Z), " &
"48 (BC_4, A(29), input, X), " &
"49 (BC_2, A(30), output3, X, 150, 0, Z), " &
"50 (BC_4, A(30), input, X), " &
"51 (BC_2, A(31), output3, X, 150, 0, Z), " &
"52 (BC_4, A(31), input, X), " &
"53 (BC_2, D(0), output3, X, 151, 0, Z), " & — 151 = io.db
"54 (BC_2, D(1), output3, X, 151, 0, Z), " &
"55 (BC_2, D(2), output3, X, 151, 0, Z), " &
"56 (BC_2, D(3), output3, X, 151, 0, Z), " &

MOTOROLA M68040 USER’S MANUAL 6-19

num cell port function safe ccell dsval rslt

"57 (BC_2, D(4), output3, X, 151, 0, Z), " &
"58 (BC_2, D(5), output3, X, 151, 0, Z), " &
"59 (BC_2, D(6), output3, X, 151, 0, Z), " &
"60 (BC_2, D(7), output3, X, 151, 0, Z), " &
"61 (BC_2, D(8), output3, X, 151, 0, Z), " &
"62 (BC_2, D(9), output3, X, 151, 0, Z), " &
"63 (BC_2, D(10), output3, X, 151, 0, Z), " &
"64 (BC_2, D(11), output3, X, 151, 0, Z), " &
"65 (BC_2, D(12), output3, X, 151, 0, Z), " &
"66 (BC_2, D(13), output3, X, 151, 0, Z), " &
"67 (BC_2, D(14), output3, X, 151, 0, Z), " &
"68 (BC_2, D(15), output3, X, 151, 0, Z), " &
"69 (BC_2, D(16), output3, X, 151, 0, Z), " &
"70 (BC_2, D(17), output3, X, 151, 0, Z), " &
"71 (BC_2, D(18), output3, X, 151, 0, Z), " &
"72 (BC_2, D(19), output3, X, 151, 0, Z), " &
"73 (BC_2, D(20), output3, X, 151, 0, Z), " &
"74 (BC_2, D(21), output3, X, 151, 0, Z), " &
"75 (BC_2, D(22), output3, X, 151, 0, Z), " &
"76 (BC_2, D(23), output3, X, 151, 0, Z), " &
"77 (BC_2, D(24), output3, X, 151, 0, Z), " &
"78 (BC_2, D(25), output3, X, 151, 0, Z), " &
"79 (BC_2, D(26), output3, X, 151, 0, Z), " &
"80 (BC_2, D(27), output3, X, 151, 0, Z), " &
"81 (BC_2, D(28), output3, X, 151, 0, Z), " &
"82 (BC_2, D(29), output3, X, 151, 0, Z), " &
"83 (BC_2, D(30), output3, X, 151, 0, Z), " &
"84 (BC_2, D(31), output3, X, 151, 0, Z), " &
"85 (BC_4, D(0), input, X), " &
"86 (BC_4, D(1), input, X), " &
"87 (BC_4, D(2), input, X), " &
"88 (BC_4, D(3), input, X), " &
"89 (BC_4, D(4), input, X), " &
"90 (BC_4, D(5), input, X), " &
"91 (BC_4, D(6), input, X), " &
"92 (BC_4, D(7), input, X), " &
"93 (BC_4, D(8), input, X), " &
"94 (BC_4, D(9), input, X), " &
"95 (BC_4, D(10), input, X), " &
"96 (BC_4, D(11), input, X), " &
"97 (BC_4, D(12), input, X), " &
"98 (BC_4, D(13), input, X), " &
"99 (BC_4, D(14), input, X), " &
"100 (BC_4, D(15), input, X), " &
"101 (BC_4, D(16), input, X), " &
"102 (BC_4, D(17), input, X), " &
"103 (BC_4, D(18), input, X), " &
"104 (BC_4, D(19), input, X), " &
"105 (BC_4, D(20), input, X), " &
"106 (BC_4, D(21), input, X), " &
"107 (BC_4, D(22), input, X), " &
"108 (BC_4, D(23), input, X), " &
"109 (BC_4, D(24), input, X), " &
"110 (BC_4, D(25), input, X), " &
"111 (BC_4, D(26), input, X), " &
"112 (BC_4, D(27), input, X), " &
"113 (BC_4, D(28), input, X), " &

6-20 M68040 USER’S MANUAL MOTOROLA

num cell port function safe ccell dsval rslt

"114 (BC_4, D(29), input, X), " &
"115 (BC_4, D(30), input, X), " &
"116 (BC_4, D(31), input, X), " &
"117 (BC_2, A(9), output3, X, 150, 0, Z), " & —150 = io.ab
"118 (BC_4, A(9), input, X), " &
"119 (BC_2, A(8), output3, X, 150, 0, Z), " &
"120 (BC_4, A(8), input, X), " &
"121 (BC_2, A(7), output3, X, 150, 0, Z), " &
"122 (BC_4, A(7), input, X), " &
"123 (BC_2, A(6), output3, X, 150, 0, Z), " &
"124 (BC_4, A(6), input, X), " &
"125 (BC_2, A(5), output3, X, 150, 0, Z), " &
"126 (BC_4, A(5), input, X), " &
"127 (BC_2, A(4), output3, X, 150, 0, Z), " &
"128 (BC_4, A(4), input, X), " &
"129 (BC_2, A(3), output3, X, 150, 0, Z), " &
"130 (BC_4, A(3), input, X), " &
"131 (BC_2, A(2), output3, X, 150, 0, Z), " &
"132 (BC_4, A(2), input, X), " &
"133 (BC_2, A(1), output3, X, 150, 0, Z), " &
"134 (BC_4, A(1), input, X), " &
"135 (BC_2, A(0), output3, X, 150, 0, Z), " &
"136 (BC_4, A(0), input, X), " &
"137 (BC_2, TM(2), output3, X, 156, 0, Z), " & —156 = io.0
"138 (BC_2, TM(1), output3, X, 156, 0, Z), " &
"139 (BC_2, TM(0), output3, X, 156, 0, Z), " &
"140 (BC_2, TLN(1), output3, X, 156, 0, Z), " &
"141 (BC_2, TLN(0), output3, X, 156, 0, Z), " &
"142 (BC_2, SIZ(0), output3, X, 156, 0, Z), " &
"143 (BC_4, SIZ(0), input, X), " &
"144 (BC_2, R_W, output3, X, 156, 0, Z), " &
"145 (BC_4, R_W, input, X), " &
"146 (BC_2, LOCKE, output3, X, 156, 0, Z), " &
"147 (BC_2, SIZ(1), output3, X, 156, 0, Z), " &
"148 (BC_4, SIZ(1), input, X), " &
"149 (BC_2, LOCK, output3, X, 156, 0, Z), " &
"150 (BC_2, *, controlr, 0), " & — io.ab
"151 (BC_2, *, controlr, 0), " & — io.db
"152 (BC_2, MI, output2, X), " &
"153 (BC_2, BR, output2, X), " &
"154 (BC_2, *, controlr, 0), " & — io.2
"155 (BC_2, *, controlr, 0), " & — io.1
"156 (BC_2, *, controlr, 0), " & — io.0
"157 (BC_2, TS, output3, X, 156, 0, Z), " & — 156 = io.0
"158 (BC_4, TS, input, X), " &
"159 (BC_2, BB, output3, X, 155, 0, Z), " & — 155 = io.1
"160 (BC_4, BB, input, X), " &
"161 (BC_2, TIP, output3, X, 155, 0, Z), " & — 155 = io.1
"162 (BC_2, PST(3), output2, X), " &
"163 (BC_2, PST(2), output2, X), " &
"164 (BC_2, PST(1), output2, X), " &
"165 (BC_2, PST(0), output2, X), " &
"166 (BC_2, TA, output3, X, 154, 0, Z), " & — 154 = io.2
"167 (BC_4, TA, input, X), " &
"168 (BC_4, TEA, input, X), " &
"169 (BC_4, BG, input, X), " &
"170 (BC_4, SC(1), input, X), " &

MOTOROLA M68040 USER’S MANUAL 6-21

num cell port function safe ccell dsval rslt

"171 (BC_4, SC(0), input, X), " &
"172 (BC_4, TBI, input, X), " &
"173 (BC_4, AVEC, input, X), " &
"174 (BC_4, TCI, input, X), " &
"175 (BC_4, DLE, input, X), " &
"176 (BC_4, PCLK, input, X), " &
"177 (BC_4, BCLK, input, X), " &
"178 (BC_4, IPL(0), input, X), " &
"179 (BC_4, IPL(1), input, X), " &
"180 (BC_4, IPL(2), input, X), " &
"181 (BC_4, RSTI, input, X), " &
"182 (BC_4, CDIS, input, X), " &
"183 (BC_4, MDIS, input, X) " ;

attribute DESIGN_WARNING of MC68040: entity is
"A non-standard clocking protocol on BCLK and PCLK must be " &
"observed when entering Boundary Scan Test Mode. " ;

end MC68040 ;

6.7 MC68040, MC68LC040, MC68EC040 JTAG ELECTRICAL
CHARACTERISTICS

The following paragraphs provide information on JTAG electrical and timing specifications.
This section is subject to change. For the most recent specifications, contact a Motorola
sales office or complete the registration card at the beginning of this manual.

JTAG DC Electrical Specifications

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 VCC V

Input Low Voltage VIL GND 0.8 V

Undershoot — — 0.8 V

TCK Input Leakage Current @ 0.5–2.4 V Iin 20 20 µA

TDO Hi-Z (Off-State) Leakage Current @ 0.5–2.4 V ITST 20 20 µA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI, TRST

IL –1.1 –0.18 mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI, TRST

IH –0.94 –0.16 mA

TDO Output High Voltage VOH 2.4 — V

TDO Output Low Voltage VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz Cin — 25 pF

*Capacitance is periodically sampled rather than 100% tested.

6-22 M68040 USER’S MANUAL MOTOROLA

JTAG Timing Specifications (All Operating Frequencies)

Num Characteristic Min Max Unit

TCK Frequency of Operation 0 10 MHz

1 TCK Cycle Time 100 — ns

2 TCK Clock Pulse Width Measured at 1.5 V 40 — ns

3 TCK Rise and Fall Times 0 10 ns

4 TRST Setup Time to TCK Falling Edge 40 — ns

5 TRST Assert Time 100 — ns

6 Boundary Scan Input Data Setup Time 50 — ns

7 Boundary Scan Input Data Hold Time 50 — ns

8 TCK to Output Data Valid 0 50 ns

9 TCK to Output High Impedance 0 50 ns

10 TMS, TDI Data Setup Time 20 — ns

11 TMS, TDI Data Hold Time 5 — ns

12 TCK to TDO Data Valid 0 20 ns

13 TCK to TDO High Impedance 0 20 ns

VIL

VIH

3 3

VM VM

2 2

1

Figure 6-8. Clock Input Timing Diagram

VIH

4

TRST

5

TCK

Figure 6-9. TRST Timing Diagram

MOTOROLA M68040 USER’S MANUAL 6-23

TCK

DATA INPUTS

DATA OUTPUTS

DATA OUTPUTS

DATA OUTPUTS

8

9

8

6

VIHVIL

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

7

Figure 6-10. Boundary Scan Timing Diagram

TCLK

TDI, TMS

TDO

TDO

TDO

12

13

12

10

VIHVIL

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

11

Figure 6-11. Test Access Port Timing Diagram

MOTOROLA M68040 USER’S MANUAL 7-1

SECTION 7
BUS OPERATION

The M68040 bus interface supports synchronous data transfers between the processor
and other devices in the system. This section provides a functional description of the bus,
the signals that control the bus, and the bus cycles provided for data transfer operations.
Operation of the bus is defined for transfers initiated by the processor as a bus master and
for transfers initiated by an alternate bus master, which the processor snoops as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the reset
operation are also included. For timing specifications, refer to Section 11 MC68040
Electrical and Thermal Characteristics.

NOTE

For the MC68040V, MC68LC040, and MC68EC040 ignore all
references to floating-point. For the MC68EC040 and
MC68EC040V ignore all references to the memory
management unit (MMU). Special modes of operation do not
apply to these devices. Refer to Appendix A MC68LC040 and
Appendix B MC68EC040 for details.

7.1 BUS CHARACTERISTICS

The M68040 uses the address bus (A31–A0) to specify the address for a data transfer
and the data bus (D31–D0) to transfer the data. Control signals indicate the beginning and
type of a bus cycle as well as the address space and size of the transfer. The selected
device then controls the length of the cycle by terminating it using the control signals.

The M68040 uses two clocks to generate timing: a processor clock (PCLK) and a bus
clock (BCLK). The PCLK signal is twice the frequency of the BCLK signal and is internally
phase-locked to BCLK. PCLK is also distributed throughout the device to generate
additional timing for additional edges for internal logic blocks and has no bearing on bus
timing. The use of dual clock inputs allows the bus interface to operate at half the speed of
the internal logic of the processor, requiring less stringent memory interface requirements.
Since the rising edge of BCLK is used as the reference point for the phase-locked loop
(PLL), all timing specifications are referenced to this edge.

Figure 7-1 illustrates the general relationship between the two clock signals and most
input and output signals. The rising edge of the internally phase-locked PCLK is aligned
with the rising edge of BCLK, and the two PCLK cycles corresponding to each BCLK cycle
are divided into four states, T1–T4. Most outputs change during state T4, whether
transitioning between a driven and high-impedance state or switching between assert and

7-2 M68040 USER’S MANUAL MOTOROLA

negate logic levels. The exceptions to this rule are the TIP, TA, and BB signals that
transition between logic levels during T4 but transition from a driven state to a high-
impedance state during T1. The input setup time (tsu), input hold time (thi), output hold
time (tho), and delay time (td) illustrated in Figure 7-1 are described in the AC electrical
timing specifications in Section 11 MC68040 Electrical and Thermal Characteristics.

OUTPUTS

INPUTS

BCLK

T1 T2 T3 T4 T1
INTERNALLY

PHASE-LOCKED
PCLK

tho'

t d

t d'
tho

tsu
thi

 = Required input setup time relative to BCLK rising edge. tsu
 = Required input hold time relative to BCLK rising edge. thi

 = Output hold time relative to BCLK rising edge. tho
tho' = Output hold time relative to BCLK rising edge; = –1/2 PCLK.tho' th

 = Propagation delay of signal relative to BLK rising edge. td
 = Propagation delay of signal relative to PCLK falling edge. td' ; = –1/2 PCLKt d' td

 except for TIP, TA, BB when used as outputs.

NOTES:
1.
2.

3.
4.
5.
6.

Figure 7-1. Signal Relationships to Clocks

Inputs to the M68040 (other than the IPL2–IPL0 and RSTI signals) are synchronously
sampled and must be stable during the sample window defined by tsu, thi, and tho (see
Figure 7-1) to guarantee proper operation. The asynchronous IPL≈ and RSTI signals are
also sampled on the rising edge of BCLK, but are internally synchronized to resolve the
input to a valid level before using it. Since the timing specifications for the M68040 are
referenced to the rising edge of BCLK, they are valid only for the specified operating
frequency and must be scaled for lower operating frequencies.

MOTOROLA M68040 USER’S MANUAL 7-3

7.2 DATA TRANSFER MECHANISM

Figure 7-2 illustrates how the bus designates operands for transfers on a byte boundary
system. The integer unit handles floating-point operands as a sequence of related long-
word operands. These designations are used in the figures and descriptions that follow.

31 0

LONG-WORD OPERAND

WORD OPERAND

BYTE OPERAND

24 23 16 15 8 7

MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE

MOST SIGNIFICANT BYTE LEAST SIGNIFICANT BYTE

BYTE 3 BYTE 2 BYTE 1 BYTE 0

Figure 7-2. Internal Operand Representation

Figure 7-3 illustrates general multiplexing between an internal register and the external
bus. The internal register connects to the external data bus through the internal data bus
and multiplexer. The data multiplexer establishes the necessary connections for different
combinations of address and data sizes.

Unlike the MC68020 and MC68030 processors, the M68040 does not support dynamic
bus sizing and expects the referenced device to accept the requested access width. The
MC68150 dynamic bus sizer is designed to allow the 32-bit M68040, MC68EC040,
MC68LC040 bus to communicate bidirectionally with 32-, 16-, or 8-bit peripherals and
memories. It dynamically recognizes the size of the selected peripheral or memory device
and then reads or writes the appropriate data from that location. Refer to MC68150/D,
MC68150 Dynamic Bus Sizer, for information on this device.

Blocks of memory that must be contiguous, such as for code storage or program stacks,
must be 32 bits wide. Byte- and word-sized I/O ports that return an interrupt vector during
interrupt acknowledge cycles must be mapped into the low-order 8 or 16 bits, respectively,
of the data bus.

The multiplexer takes the four bytes of the 32-bit bus transfer and routes them to their
required positions. For example, byte 0 would normally be routed to D31–D24, but it can
also be routed to any other byte position supporting a misaligned data transfer. The same
is true for any of the other operand bytes. The transfer size (SIZ0 and SIZ1) and byte
offset (A1 and A0) signals determine the positioning of the bytes (see Table 7-1). The size
indicated on the SIZx signals corresponds to the size of the operand transfer for the entire
bus cycle. During an operand transfer, A31–A2 indicate the long-word base address for
the first byte of the operand to be accessed; A1 and A0 indicate the byte offset from the
base. For a burst-inhibited line transfer, A1 and A0 for each of the four accesses (the
burst-inhibited line transfer and three long-word transfers) are copied from the lowest two
bits of the access address used to initiate the line transfer.

7-4 M68040 USER’S MANUAL MOTOROLA

REGISTER

ADDRESS
$xxxxxxx0

EXTERNAL
DATA BUS

31 024 23 16 15 8 7

BYTE 3 BYTE 2 BYTE 1 BYTE 0

ROUTINGMULTIPLEXER

31 024 23 16 15 8 7

EXTERNAL BUS

INTERNAL TO
THE MC68040

BYTE 3 BYTE 2 BYTE 1 BYTE 0

D31–D24 D23–D16 D15–D8 D7–D0

Figure 7-3. Data Multiplexing

Table 7-1 lists the combinations of the SIZx, A1, and A0 signals, collectively called byte
enable signals, that are used for each of the four sections of the data bus. In the table,
BYTEn indicates the data bus section that is active, the portion of the requested operand
that is read or written during that bus transfer. For line transfers, all bytes are valid as
listed and can correspond to portions of the requested operand or to data required to fill
the remainder of the cache line. The bytes labeled with a dash are not required; they are
ignored on read transfers and driven with undefined data on write transfers. Not selecting
these bytes prevents incorrect accesses in sensitive areas such as I/O devices. Figure 7-4
illustrates a logic diagram for one method for generating byte enable signals from the
SIZx, A1, and A0 and the associated PAL equation. These byte enable signals can be
combined with the address decode logic.

Table 7-1. Data Bus Requirements for Read and Write Cycles

Transfer Signal Encodings Active Data Bus Sections

Size SIZ1 SIZ0 A1 A0 D31–D24 D23–D16 D15–D8 D7–D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

BYTEn
—
—
—

—
BYTEn

—
—

—
—

BYTEn
—

—
—
—

BYTEn

Word 1
1

0
0

0
1

0
0

BYTEn
—

BYTEn
—

—
BYTEn

—
BYTEn

Long Word 0 0 X X BYTEn BYTE n BYTEn BYTEn

Line 1 1 X X BYTEn BYTEn BYTEn BYTEn

MOTOROLA M68040 USER’S MANUAL 7-5

A0
A1

SIZ0
SIZ1

UPPER UPPER DATA SELECT
D31–D24

UPPER MIDDLE DATA SELECT
D23–D16

LOWER MIDDLE DATA SELECT
D15–D8

LOWER LOWER DATA SELECT
D7–D0

PAL16L8
U1
MC68040 Byte Data Select Generation.
Motorola Worldwide Marketing Training Organization
A0 A1 SIZ0 SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD
NC NC NC NC VCC

/UUD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0

; directly addressed, any size
; enable every byte for long word size
; enable every byte for line size
; directly addressed, any size
; word aligned, size is word or line
; enable every byte for long word size
; enable every byte for line size
; directly addressed, any size
; enable every byte for long word size
; enable every byte for line size
; directly addressed, any size
; word aligned, word or line size
; enable every byte for long word size
; enable every byte for line size

/UMD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0
/LMD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0
/LLD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0

Figure 7-4. Byte Enable Signal Generation and PAL Equation

A brief summary of the bus signal encodings for each access type is listed in Table 7-2.
Additional information on the encodings for the M68040 signals can be found in Section 5
Signal Description.

7-6 M68040 USER’S MANUAL MOTOROLA

Table 7-2. Summary of Access Types versus Bus Signal Encodings

Bus
Signal

Data Cache
Push

Access

Normal
Data/Code

Access

Table
Search
Access

MOVE16
Access

Alternate
Access

Interrupt
Acknowledge

Breakpoint
Acknowledge

A31–A0 Access
Address

Access
Address

Entry
Address

Access
Address

Access
Address

$FFFFFFFF $00000000

UPA1, UPA0 $0 MMU
Source1

$0 MMU
Source1

$0 $0 $0

SIZ1, SIZ0 L/Line B/W/L/Line Long Word Line B/W/L Byte Byte

TT1, TT0 $0 $0 $0 $1 $2 $3 $3

TM4–TM2 $0 $1,2,5, or 6 $3 or 4 $1 or 5 Function
Code

Int. Level $1–7 $0

TLN1, TLN0 Cache Set
Entry

Cache Set
Entry2

Undefined Undefined Undefined Undefined Undefined

R/W Write Read/Write Read/Write Read/Write Read/Write Read Read

LOCK
LOCKE

Negated Asserted/
Negated3

Asserted/
Negated3

Negated Negated Negated Negated

CIOUT Negated MMU
Source1

Negated MMU
Source1

Asserted Negated Negated

NOTES
1. The UPA1, UPA0, and CIOUT signals are determined by the U1, U0 data and CM bit fields, respectively,

corresponding to the access address.
2. The TLNx signals are defined only for normal push accesses and normal data line read accesses.
3. The LOCK signal is asserted during TAS, CAS, and CAS2 operand accesses and for some table search update

sequences. LOCKE is asserted for the last transfer of each locked sequence of transfers.
4. Refer to Section 5 Signal Description for definitions of the TMx signal encodings for normal, MOVE16,

and alternate accesses.

7.3 MISALIGNED OPERANDS

All M68040 data formats can be located in memory on any byte boundary. A byte operand
is properly aligned at any address; a word operand is misaligned at an odd address; and a
long word is misaligned at an address that is not evenly divisible by 4. However, since
operands can reside at any byte boundary, they can be misaligned. Although the M68040
does not enforce any alignment restrictions for data operands (including PC relative data
addressing), some performance degradation occurs when additional bus cycles are
required for long-word or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction words and
extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception. Refer to Section 8 Exception
Processing for details on address error exceptions.

The M68040 data memory unit converts misaligned operand accesses that are
noncachable to a sequence of aligned accesses. These aligned accesses are then sent to
the bus controller for completion, always resulting in aligned bus transfers. Misaligned
operand accesses that miss in the data cache are cachable and are not aligned before
line filling. Refer to Section 4 Instruction and Data Caches for details on line fill and the
data cache.

MOTOROLA M68040 USER’S MANUAL 7-7

Figure 7-5 illustrates the transfer of a long-word operand from an odd address requiring
more than one bus cycle. For the first transfer or bus cycle, the SIZx signals specify a byte
transfer, and the byte offset is $1. The slave device supplies the byte and acknowledges
the data transfer. When the processor starts the second cycle, the SIZx signals specify a
word transfer with a byte offset of $2. The next two bytes are transferred during this cycle.
The processor then initiates the third cycle, with the SIZEx signals indicating a byte
transfer. The byte offset is now $0; the port supplies the final byte and the operation is
complete. This example is similar to the one illustrated in Figure 7-6 except that the
operand is word sized and the transfer requires only two bus cycles. Figure 7-7 illustrates
a functional timing diagram for a misaligned long-word read transfer.

DATA BUS
31 0

— BYTE 3 — —

— — BYTE 2 BYTE 1

BYTE 0 — — X

 MEMORY
31 0

XXX BYTE 3 BYTE 2 BYTE 1

BYTE 0 XXX XXX XXX

TRANSFER 1

TRANSFER 2

TRANSFER 3

24 23 16 15 8 7

24 23 16 15 8 7

Figure 7-5. Example of a Misaligned Long-Word Transfer

DATA BUS
31 0

— — — BYTE 1

BYTE 0 — — BYTE 1

 MEMORY
31 0

XXX XXX XXX BYTE 1

BYTE 0 XXX XXX XXX

TRANSFER 1

TRANSFER 2

24 23 16 15 8 7

24 23 16 15 8 7

Figure 7-6. Example of a Misaligned Word Transfer

7-8 M68040 USER’S MANUAL MOTOROLA

A31–A2

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D24

UPA1, UPA0

CIOUT

TS

TIP

TA

A1

A0

SIZ0

WORD

D23–D16

D15–D8

D7–D0

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE

BYTE
READ

WORD
READ

BYTE
READ

R/W

C1 C2 C1 C2 C1 C2

Figure 7-7. Misaligned Long-Word Read Transfer Timing

MOTOROLA M68040 USER’S MANUAL 7-9

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and
write cycles. The table confirms that alignment significantly affects bus cycle throughput
for noncachable accesses. For example, in Figure 7-5 the misaligned long-word operand
took three bus cycles because the byte offset = $1. If the byte offset = $0, then it would
have taken one bus cycle. The M68040 system designer and programmer should account
for these effects, particularly in time-critical applications.

Table 7-3. Memory Alignment Influence on
Noncachable and Write-Through Bus Cycles

Number of Bus Cycles

Transfer Size $0* $1* $2* $3*

Instruction 1 N/A N/A N/A

Byte Operand 1 1 1 1

Word Operand 1 2 1 2

Long-Word Operand 1 3 2 3

*Where the byte offset (A1 and A0) equals this encoding.

The processor always prefetches instructions by reading a long word from a half-line
address (A2–A0 = $0), regardless of alignment. When the required instruction begins at
the second long word, the processor attempts to fetch the entire half-line (two long words)
although the second long word contains the required instruction.

7.4 PROCESSOR DATA TRANSFERS

The transfer of data between the processor and other devices involves the address bus,
data bus, and control signals. The address and data buses are normally parallel,
nonmultiplexed buses, supporting byte, word, long-word, and line (16-byte) bus cycles.
Line transfers are normally performed using an efficient burst transfer, which provides an
initial address and time-multiplexes the data bus to transfer four long words of information
to or from the slave device. Slave devices that do not support bursting can burst-inhibit the
first long word of a line transfer, forcing the bus master to complete the access using three
additional long-word bus cycles. All bus input and output signals are synchronous to the
rising edge of the BCLK signal. The M68040 moves data on the bus by issuing control
signals and using a handshake protocol to ensure correct data movement. The following
paragraphs describe the bus cycles for byte, word, long-word, and line read, write, and
read-modify-write transfers.

7-10 M68040 USER’S MANUAL MOTOROLA

7.4.1 Byte, Word, and Long-Word Read Transfers

During a read transfer, the processor receives data from a memory or peripheral device.
Since the data read for a byte, word, or long-word access is not placed in either of the
internal caches by definition, the processor ignores the level on the transfer cache inhibit
(TCI) signal when latching the data. The bus controller performs byte, word, and long-word
read transfers for the following cases:

• Accesses to a disabled cache.

• Accesses to a memory page that is specified noncachable.

• Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

• Accesses that do not allocate in the data cache on a read miss (table searches,
exception vector fetches, and exception stack deallocation for an RTE instruction).

• The first transfer of a line read is terminated with transfer burst inhibit (TBI), forcing
completion of the line access using three additional long-word read transfers.

Figure 7-8 is a flowchart for byte, word, and long-word read transfers. Bus operations are
similar for each case and vary only with the size indicated and the portion of the data bus
used for the transfer. Figure 7-9 is a functional timing diagram for byte, word, and long-
word read transfers.

ADDRESS DEVICE

1) LATCH DATA

ACQUIRE DATA

START NEXT CYCLE

PROCESSOR EXTERNAL DEVICE

PRESENT DATA

TERMINATE CYCLE

1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE BYTES OF
 D31–D0 BASED ON SIZEx, A0, AND A1
3) ASSERT TA

1) REMOVE DATA FROM D31–D0
2) NEGATE TA

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPA0
4) DRIVE SIZE ON SIZ1, SIZ0 (BYTE, WORD,
 OR LONG WORD)
5) DRIVE TRANSFER TYPE ON TT1, TT0
6) DRIVE TRANSFER MODIFIER ON TM2–TM0
 7) CIOUT BECOMES VALID
8) ASSERT TS FOR ONE CLOCK
9) ASSERT TIP

Figure 7-8. Byte, Word, and Long-Word Read Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-11

C1 C2

A31–A2

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D24

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

A1

A0

SIZ0

LONG

D23–D16

D15–D8

D7–D0

BYTE READ WORD READ
WITH WAIT

LONG-WORD
READ

C1 CW C1 C2C2

WORD

Figure 7-9. Byte, Word, and Long-WordRead Transfer Timing

7-12 M68040 USER’S MANUAL MOTOROLA

Clock 1 (C1)
The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the user-programmable attribute
signals (UPAx) are driven with the values from the matching user bits (U1 and U0). The
transfer type (TTx) and transfer modifier (TMx) signals identify the specific access type.
The read/write (R/W) signal is driven high for a read cycle. Cache inhibit out (CIOUT) is
asserted since the access is identified as noncachable. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for information on the
M68040 and MC68LC040 memory units and Appendix B MC68EC040 for information
on the MC68EC040 memory unit.

The processor asserts transfer start (TS) during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the transfer in progress (TIP)
signal is also asserted at this time to indicate that a bus cycle is active.

Clock 2 (C2)
During the first half of the clock after C1, the processor negates TS. The selected
peripheral device uses R/W, SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of the R/W signal, these signals also select any or all of the
operand bytes (D31–D24, D23–D16, D15–D8, and D7–D0). If the first clock after C1 is
not a wait state (CW), then the selected peripheral device asserts the transfer
acknowledge (TA) signal.

At the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus; the bus cycle terminates, and the data is
passed to the processor’s appropriate memory unit if TA is asserted. If T A is not
recognized asserted at the end of the clock cycle, the processor ignores the data and
inserts a wait state instead of terminating the transfer. The processor continues to
sample TA on successive rising edges of BCLK until TA is recognized asserted. The
data is then passed to the processor’s appropriate memory unit.

When the processor recognizes TA at the end of a clock and terminates the bus cycle,
TIP remains asserted if the processor is ready to begin another bus cycle. Otherwise,
the processor negates TIP during the first half of the next clock.

7.4.2 Line Read Transfer

The processor uses line read transfers to access a 16-byte operand for a MOVE16
instruction and to support cache line filling. A line read accesses a block of four long
words, aligned to a 16-byte memory boundary, by supplying a starting address that points
to one of the long words and requiring the memory device to sequentially drive each long
word on the data bus. The selected device must internally increment A3 and A2 of the
supplied address for each transfer, causing the address to wrap around at the end of the
block. The address and transfer attributes supplied by the processor remain stable during
the transfers, and the selected device terminates each transfer by driving the long word on

MOTOROLA M68040 USER’S MANUAL 7-13

the data bus and asserting TA. A line transfer performed in this manner with a single
address is referred to as a line burst transfer.

The M68040 also supports burst-inhibited line transfers for memory devices that are
unable to support bursting. For this type of bus cycle, the selected device supplies the first
long word pointed to by the processor address and asserts transfer burst inhibit (TBI) with
TA for the first transfer of the line access. The processor responds by terminating the line
burst transfer and accessing the remainder of the line, using three long-word read bus
cycles. Although the selected device can then treat the line transfer as four, independent,
long-word bus cycles, the bus controller still handles the four transfers as a single line
transfer and does not allow other unrelated processor accesses or bus arbitration to
intervene between the transfers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does
not affect completion of the line transfer, but the bus controller latches and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst
transfer and during the three long-word bus cycles for a burst-inhibited line transfer.

The address placed on the address bus by the processor for line transfers does not
necessarily point to the most significant byte of each long word because for a line read, A1
and A0 are copied from the original operand address supplied to the memory unit by the
integer unit. These two bits are also unchanged for the three long-word bus cycles for a
burst-inhibited line transfer. The selected device should ignore A1 and A0 for long-word
and line read transfers.

The address of an instruction fetch will always be aligned to a half-line boundary
($XXXXXXX0 or $XXXXXXX8); therefore, compilers should attempt to locate branch
targets on half-line boundaries to minimize branch stalls. For example, if the target of a
branch is a two-word instruction located at $1000000C, the following burst sequence will
occur upon a cache miss: $10000008, $1000000C, $10000000, then $10000004. The
internal pipeline of the M68040 stalls until the second access of the burst (the address of
the instruction to be executed) has completed. Figures 7-10 and 7-11 illustrate a flowchart
and functional timing diagram for a line read bus transfer.

7-14 M68040 USER’S MANUAL MOTOROLA

UNTIL FOUR LONG WORDS
TRANSFERRED

 1) NEGATE TIP (IF REQUIRED)

WHEN FOUR LONG WORDS
TRANSFERRED

ADDRESS DEVICE

END OF BURST

START NEXT CYCLE

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPA0
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)
5) DRIVE TRANSFER TYPE ON TT1, TT0
6) DRIVE TRANSFER MODIFIER ON TM2–TM0
7) CIOUT BECOMES VALID
8) ASSERT TS FOR ONE CLOCK
9) ASSERT TIP

PROCESSOR EXTERNAL DEVICE

PRESENT DATA

TERMINATE CYCLE

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT TA

1) REMOVE DATA FROM D31–D0
2) NEGATE TA (IF NECESSARY)
3) INCREMENT ADDRESS BITS A3, A2 (IF NECESSARY)

1) LATCH DATA
2) SAMPLE TBI AND TCI (FOR FIRST TRANSFER)

ACQUIRE DATA

Figure 7-10. Line Read Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-15

A31–A4

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

A3

A2–A0

NOTE: The selected device increments the value of A3 and A2.

10 11 0001

C1 C2 C3 C4 C5

TCI

A3, A2 =

Figure 7-11. Line Read Transfer Timing

Clock 1 (C1)
The line read cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, the UPAx signals are
driven with the values from the matching U1 and U0 bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven high for a read cycle, and the
size signals (SIZx) indicate line size. CIOUT is asserted for a MOVE16 operand read if
the access is identified as noncachable. Refer to Section 3 Memory Management Unit

7-16 M68040 USER’S MANUAL MOTOROLA

(Except MC68EC040 and MC68EC040V) for information on the M68040 and
MC68LC040 memory units and Appendix B MC68EC040 for information on the
MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, TIP is also asserted at this time to indicate
that a bus cycle is active.

Clock 2 (C2)
During the first half of the first clock after C1, the processor negates TS. The selected
device uses R/W , SIZ1, and SIZ0 to place the data on the data bus. (The first transfer
must supply the long word at the corresponding long-word boundary.) Concurrently, the
selected device asserts TA and either negates or asserts TBI to indicate it can or cannot
support a burst transfer. At the end of the first clock cycle after C1, the processor
samples the level of TA, TBI, and TCI and latches the current value on the data bus. If
TA is asserted, the transfer terminates and the data is passed to the appropriate
memory unit. If TA is not recognized asserted, the processor ignores the data and
inserts wait states instead of terminating the transfer. The processor continues to
sample TA, TBI, and TCI on successive rising edges of BCLK until TA is recognized
asserted. The latched data and the level on TCI are then passed to the appropriate
memory unit.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI

was asserted, the line transfer is burst inhibited, and the processor reads the remaining
three long words using long-word read bus cycles. The processor increments A3 and
A2 for each read, and the new address is placed on the address bus for each bus cycle.
Refer to 7.4.1 Byte, Word, and Long-Word Read Transfers for information on long-
word reads. If no wait states are generated, a burst-inhibited line read completes in
eight clocks instead of the five required for a burst read.

Clock 3 (C3)
The processor holds the address and transfer attribute signals constant during C3. The
selected device must increment A3 and A2 to reference the next long word to transfer,
place the data on the data bus, and assert TA. At the end of C3, the processor samples
the level of TA and latches the current value on the data bus. If TA is asserted, the
transfer terminates, and the second long word of data is passed to the appropriate
memory unit. If TA is not recognized asserted at the end of C3, the processor ignores
the latched data and inserts wait states instead of terminating the transfer. The
processor continues to sample TA on successive rising edges of BCLK until it is
recognized. The latched data is then passed to the appropriate memory unit.

Clock 4 (C4)
This clock is identical to C3 except that once TA is recognized asserted, the latched
value corresponds to the third long word of data for the burst.

MOTOROLA M68040 USER’S MANUAL 7-17

Clock 5 (C5)
This clock is identical to C3 except that once TA is recognized, the latched value
corresponds to the third long word of data for the burst. After the processor recognizes
the last TA assertion and terminates the line read bus cycle, TIP remains asserted if the
processor is ready to begin another bus cycle. Otherwise, the processor negates TIP

during the first half of the next clock.

Figures 7-12 and 7-13 illustrate a flowchart and functional timing diagram for a burst-
inhibited line read bus cycle.

7-18 M68040 USER’S MANUAL MOTOROLA

PRESENT DATA

1) LATCH DATA
2) SAMPLE TBI AND TCI
3) RECOGNIZE TBI ASSERTED

1) REMOVE DATA FROM D31–D0
2) NEGATE TA

TERMINATE CYCLE

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPA0
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)
5) DRIVE TRANSFER TYPE ON TT1, TT0
6) DRIVE TRANSFER MODIFIER ON TM2–TM0
7) CIOUT BECOMES VALID
8) ASSERT TS FOR ONE CLOCK
9) ASSERT TIP

ADDRESS DEVICE

ACQUIRE DATA

START NEXT CYCLE

PROCESSOR EXTERNAL DEVICE

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT TA AND TBI

 1) NEGATE TIP (IF REQUIRED)

END OF LINE TRANSFER

1) INCREMENT ADDRESS BITS A3, A2 AND DRIVE
 NEW ADDRESS ON A31–A0
2) DRIVE SIZE ON SIZ1, SIZ0 (LONG WORD)
3) ASSERT TRANSFER START (TS) FOR ONE CLOCK

ADDRESS DEVICE

PRESENT DATA

1) REMOVE DATA FROM D31–D0
2) NEGATE TA

TERMINATE CYCLE

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT TA

1) LATCH DATA

ACQUIRE DATA

WHEN THREE LONG WORDS
TRANSFERRED

UNTIL THREE LONG WORDS
TRANSFERRED

Figure 7-12. Burst-Inhibited Line Read Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-19

A31–A4

BCLK

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

A3

A2

A1, A0

SIZ1, SIZ0

TLN1, TLN0

LINE LONG LONG LONG

TBI

TCI

INHIBITED
LINE READ

LONG-WORD
READ

LONG-WORD
READ

LONG-WORD
READ

C1 C2 C3 C4 C6 C7C5 C8

Figure 7-13. Burst-Inhibited Line Read Transfer Timing

7-20 M68040 USER’S MANUAL MOTOROLA

7.4.3 Byte, Word, and Long-Word Write Transfers

During a write transfer, the processor transfers data to a memory or peripheral device.
The level on the TCI signal is ignored by the processor during all write cycles. The bus
controller performs byte, word, and long-word write transfers for the following cases:

• Accesses to a disabled cache.

• Accesses to a memory page that is specified noncachable.

• Accesses that are implicitly noncachable (read-modify-write accesses and accesses
to an alternate logical address space via the MOVES instruction).

• Writes to write-through pages.

• Accesses that do not allocate in the data cache on a write miss (table updates and
exception stacking).

• The first transfer of a line write is terminated with TBI, forcing completion of the line
access using three additional long-word write transfers.

• Cache line pushes for lines containing a single dirty long word.

Figures 7-14 and 7-15 illustrate a flowchart and functional timing diagram for byte, word,
and long-word write bus transfers.

ADDRESS DEVICE

1) REMOVE DATA FROM D31–D0
2) NEGATE TIP (IF REQUIRED)

TERMINATE TRANSFER

START NEXT CYCLE

PROCESSOR EXTERNAL DEVICE

ACCEPT DATA

TERMINATE CYCLE

 1) NEGATE TA

1) SET R/W TO WRITE
2) DRIVE ADDRESS ON A31–A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPA0
4) DRIVE SIZE ON SIZ1, SIZ0 (BYTE, WORD, OR
 LONG WORD)
5) DRIVE TRANSFER TYPE ON TT1, TT0

 6) DRIVE TRANSFER MODIFIER ON TM2–TM0
 7) CIOUT BECOMES VALID
 8) ASSERT TS FOR ONE CLOCK
 9) ASSERT TIP
10) DRIVE DATA ON APPROPRIATE BYTES OF
 D31–D0 BASED ON SIZEx, A1, AND A0

1) DECODE ADDRESS
2) LATCH DATA ON APPROPRIATE BYTES OF
 D31–D0 BASED ON SIZEx, A1, AND A0
3) ASSERT TRANSFER ACKNOWLEDGE (TA)

Figure 7-14. Byte, Word, and Long-Word Write Transfer Flowchart

MOTOROLA M68040 USER’S MANUAL 7-21

A31–A0

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

LONG

LONG-WORD
WRITE

C1 C2

Figure 7-15. Long-Word Write Transfer Timing

Clock 1 (C1)
The write cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. For user and supervisor mode accesses,
which the corresponding memory unit translates, the UPAx signals are driven with the
values from the U1 and U0 bits for the area. The TTx and TMx signals identify the
specific access type. The R/W signal is driven low for a write cycle. CIOUT is asserted if
the access is identified as noncachable or if the access references an alternate address
space. Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MC68EC040V) for information on the M68040 and MC68LC040 memory units and
Appendix B MC68EC040 for information on the MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

7-22 M68040 USER’S MANUAL MOTOROLA

Clock 2 (C2)
During the first half of the clock after C1, the processor negates TS and drives the
appropriate bytes of the data bus with the data to be written. All other bytes are driven
with undefined values. The selected device uses R/W , SIZ1, SIZ0, A1, A0, and CIOUT

to latch only the required information on the data bus. With the exception of R/W and
CIOUT, these signals also select any or all of the bytes (D31–D24, D23–D16, D15–D8,
and D7–D0). If the first clock after C1 is not a wait state, then the selected peripheral
device asserts the TA signal.

At the end of the first clock cycle after C1, the processor samples the level of TA,
terminating the bus cycle if TA is asserted. If TA is not recognized asserted at the end of
the clock cycle, the processor ignores the data and inserts a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized asserted. The data bus then three-states and the
bus cycle ends.

When the processor recognizes TA at the clock edge and terminates the bus cycle, TIP

remains asserted if the processor is ready to begin another bus cycle. Otherwise, the
processor negates TIP during the first half of the next clock. The processor also three-
states the data bus during the first half of the next clock following termination of the
write transfer.

7.4.4 Line Write Transfers

The processor uses line write bus cycles to access a 16-byte operand for a MOVE16
instruction and to support cache line pushes. Both burst and burst-inhibited transfers are
supported. Figures 7-16 and 7-17 illustrate a flowchart and functional timing diagram for a
line write bus cycle.

MOTOROLA M68040 USER’S MANUAL 7-23

1) SET R/W TO WRITE
2) DRIVE ADDRESS ON A31–A0
3) DRIVE USER PAGE ATTRIBUTES ON UPA1, UPA0
4) DRIVE SIZE ON SIZ1, SIZ0 (LINE)
5) DRIVE TRANSFER TYPE ON TT1, TT0
6) DRIVE TRANSFER MODIFIER ON TM2–TM0
7) CIOUT BECOMES VALID

ACCEPT DATA

1) DRIVE DATA ON D31–D0
2) SAMPLE TA
3) SAMPLE TBI AND TCI (FOR FIRST TRANSFER)

1) NEGATE TA (IF NECESSARY)
2) INCREMENT ADDRESS BITS A3, A2 (IF
 NECESSARY)

TERMINATE CYCLE

ADDRESS DEVICE

SUPPLY DATA

START NEXT CYCLE

PROCESSOR EXTERNAL DEVICE

1) DECODE ADDRESS (FIRST TRANSFER ONLY)
2) LATCH DATA ON D31–D0
3) ASSERT TA

UNTIL FOUR LONG
WORDS TRANSFERRED

1) REMOVE DATA FROM D31–D0
2) NEGATE TIP (IF REQUIRED)

END OF BURST

UNTIL FOUR LONG
WORDS TRANSFERRED

WHEN FOUR LONG
WORDS TRANSFERRED

8) ASSERT TS FOR ONE CLOCK
9) ASSERT TIP

Figure 7-16. Line Write Transfer Flowchart

7-24 M68040 USER’S MANUAL MOTOROLA

A31–A4

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

A3

A2–A0

NOTE: The selected device increments the value of A3 and A2.

10 11 0001

C1 C2 C3 C4 C5

A3, A2 =

Figure 7-17. Line Write Transfer Timing

Clock 1 (C1)
The line write cycle starts in C1. During the first half of C1, the processor places valid
values on the address bus and transfer attributes. For user and supervisor mode
accesses that are translated by the corresponding memory unit, UPAx signals are
driven with the values from the matching U1 and U0 bits. The TTx and TMx signals
identify the specific access type. The R/W signal is driven low for a write cycle, and
SIZ1 and SIZ0 indicate line size. CIOUT is asserted for a MOVE16 operand read if the
access is identified as noncachable. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MC68EC040V) for information on the M68040 and

MOTOROLA M68040 USER’S MANUAL 7-25

MC68LC040 memory units and Appendix B MC68EC040 for information on the
MC68EC040 memory unit.

The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not
already asserted from a previous bus cycle, the TIP signal is also asserted at this time
to indicate that a bus cycle is active.

Clock 2 (C2)
During the first half of the first clock after C1, the processor negates TS and drives the
data bus with the data to be written. The selected device uses R/W, SIZ1, and SIZ0 to
latch the data on the data bus. Concurrently, the selected device asserts TA and either
negates or asserts TBI to indicate it can or cannot support a burst transfer. At the end of
the first clock after C1, the processor samples the level of TA and TBI. If TA is asserted,
the transfer terminates. If TA is not recognized asserted, the processor inserts wait
states instead of terminating the transfer. The processor continues to sample TA and
TBI on successive rising edges of BCLK until TA is recognized asserted.

If TBI was negated with TA, the processor continues the cycle with C3. Otherwise, if TBI

was asserted, the line transfer is burst inhibited, and the processor writes the remaining
three long words using long-word write bus cycles. Only in this case does the processor
increment A3 and A2 for each write, and the new address is placed on the address bus
for each bus cycle. Refer to 7.4.3 Byte, Word, and Long-Word Write Transfers for
information on long-word writes. If no waits states are generated, a burst-inhibited line
write completes in eight clocks instead of the five required for a burst write.

Clock 3 (C3)
The processor drives the second long word of data on the data bus and holds the
address and transfer attribute signals constant during C3. The selected device
increments A3 and A2 to reference the next long word, latches this data from the data
bus, and asserts TA. At the end of C3, the processor samples the level of TA; if TA is
asserted, the transfer terminates. If TA is not recognized asserted at the end of C3, the
processor inserts wait states instead of terminating the transfer. The processor
continues to sample TA on successive rising edges of BCLK until TA is recognized
asserted.

Clock 4 (C4)
This clock is identical to C3 except that the value driven on the data bus corresponds to
the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that the value driven on the data bus corresponds to
the fourth long word of data for the burst. After the processor recognizes the last TA

assertion and terminates the line write bus cycle, TIP remains asserted if the processor
is ready to begin another bus cycle. Otherwise, the processor negates TIP during the
first half of the next clock. The processor also three-states the data bus during the first
half of the next clock following termination of the write cycle.

7-26 M68040 USER’S MANUAL MOTOROLA

7.4.5 Read-Modify-Write Transfers (Locked Transfers)

The read-modify-write transfer performs a read, conditionally modifies the data in the
processor, and writes the data out to memory. In the M68040, this operation can be
indivisible, providing semaphore capabilities for multiprocessor systems. During the entire
read-modify-write sequence, the M68040 asserts the LOCK signal to indicate that an
indivisible operation is occurring and asserts the LOCKE signal for the last transfer to
indicate completion of the locked sequence. The external arbiter can use the LOCK and
LOCKE signals to prevent arbitration of the bus during locked processor sequences.
External bus arbitrations can use LOCKE to support bus arbitration between consecutive
read-modify-write cycles. A read-modify-write operation is treated as noncachable. If the
access hits in the data cache, it invalidates a matching valid entry and pushes a matching
dirty entry. The read-modify-write transfer begins after the line push (if required) is
complete; however, LOCK may assert during the line push bus cycle.

The TAS, CAS, and CAS2 instructions are the only M68040 instructions that utilize read-
modify-write transfers. Some page descriptor updates during translation table searches
also use read-modify-write transfers. Refer to Section 3 Memory Management Unit
(Except MC68EC040 and MC68EC040V) for information about table searches.

The read-modify-write transfer for the CAS and CAS2 instructions in the M68040 differs
from those used by previous members of the M68000 family. If an operand does not
match one of these instructions, the M68040 still executes a single write transfer to
terminate the locked sequence with LOCKE asserted. For the CAS instruction, the value
read from memory is written back; for the CAS2 instruction, the second operand read is
written back. Figure 7-18 illustrates a functional timing diagram for a TAS instruction read-
modify-write bus transfer.

Clock 1 (C1)
The read cycle starts in C1. During the first half of C1, the processor places valid values
on the address bus and transfer attributes. LOCK is asserted to identify a locked read-
modify-write bus cycle. For user and supervisor mode accesses, which the
corresponding memory unit translates, the UPAx signals are driven with the values from
the matching U1 and U0 bits. The TTx and TMx signals identify the specific access
type. R/W is driven high for a read cycle. CIOUT is asserted if the access is identified as
noncachable. The processor asserts TS during C1 to indicate the beginning of a bus
cycle. If not already asserted from a previous bus cycle, the TIP signal is also asserted
at this time to indicate that a bus cycle is active. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for information on the
M68040 and MC68LC040 memory units and Appendix B MC68EC040 for information
on the MC68EC040 memory unit.

MOTOROLA M68040 USER’S MANUAL 7-27

C1 C2

A31–A0

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D24

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

SIZ0

D23–D16

D15–D8

D7–D0

CI C3 C4

LOCKE

LOCK

LOCKED TRANSFER

Undefined

Figure 7-18. Locked Transfer for TAS Instruction Timing

7-28 M68040 USER’S MANUAL MOTOROLA

Clock 2 (C2)
During the first half of the first clock cycle after C1, the processor negates TS. The
selected device uses R/W , SIZ1, SIZ0, A1, and A0 to place its information on the data
bus. With the exception of R/W , these signals also select any or all of the bytes (D24–
D31, D16–D23, D15–D8, and D7–D0). Concurrently, the selected device asserts TA. At
the end of the first clock cycle after C1, the processor samples the level of TA and
latches the current value on the data bus. If TA is asserted, the read transfer terminates,
and the latched data is passed to the appropriate memory unit. If TA is not recognized
asserted, the processor ignores the data and appends a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized as asserted. The latched data is then passed to
the appropriate memory unit. If more than one read cycle is required to read in the
operand(s), C1 and C2 are repeated accordingly.

When the processor recognizes TA at the end of the last read transfer for the locked
bus cycle, it negates TIP during the first half of the next clock.

Clock Idle (CI)
The processor does not assert any new control signals during the idle clock states, but it
may begin the modify portion of the cycle at this time. The R/W signal remains in the
read mode until C3 to prevent bus conflicts with the preceding read portion of the cycle;
the data bus is not driven until C4.

Clock 3 (C3)
During the first half of C3, the processor places valid values on the address bus and
transfer attributes and drives R/W low for a write cycle. The processor asserts TS to
indicate the beginning of a bus cycle. The TIP signal is also asserted at this time to
indicate that a bus cycle is active.

LOCKE is asserted during C3 for the last write transfer of the locked sequence. If
multiple write transfers are required for misaligned operands or multiple operands,
LOCKE is asserted only for the final write transfer. The external arbiter can use this
indication to distinguish between two back-to-back locked bus cycles and allow
arbitration between them.

Clock 4 (C4)
During the first half of C4, the processor negates TS and drives the appropriate bytes of
the data bus with the data to be written. All other bytes are driven with undefined values.
The selected device uses R/W , SIZ1, SIZ0, A1, and A0 to latch the information on the
data bus. Any or all of the bytes (D31–D24, D23–D16, D15–D8, and D7–D0) are
selected by SIZ1, SIZ0, A1, and A0. Concurrently, the selected device asserts TA. At
the end of C4, the processor samples the level of TA; if TA is asserted, the bus cycle
terminates. If TA is not recognized asserted at the end of C4, the processor appends a
wait state instead of terminating the transfer. The processor continues to sample the TA

signal on successive rising edges of BCLK until it is recognized asserted.

MOTOROLA M68040 USER’S MANUAL 7-29

When the processor recognizes TA at the end of a clock, the bus cycle is terminated,
but TIP remains asserted if the processor is ready to begin another bus cycle.
Otherwise, the processor negates TIP during the first half of the next clock. The
processor also three-states the data bus during the first half of the next clock following
termination of the write cycle. When the last write transfer is terminated, LOCKE is
negated. The processor also negates LOCK if the next bus cycle is not a read-modify-
write.

7.5 ACKNOWLEDGE BUS CYCLES

Bus transfers with transfer type signals TT1 and TT0 = $3 are classified as acknowledge
bus cycles. The following paragraphs describe interrupt acknowledge and breakpoint
acknowledge bus cycles that use this encoding.

7.5.1 Interrupt Acknowledge Bus Cycles

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception. The interrupt exception transfers control to a routine that responds
appropriately. The peripheral device uses the active-low interrupt priority level signals
(IPL2–IPL0) to signal an interrupt condition to the processor and to specify the priority level
for the condition. Refer to Section 8 Exception Processing for a discussion on the IPL≈

levels and IPEND.

The status register (SR) of the M68040 contains an interrupt priority mask (I2–I0 bits). The
value in the interrupt mask is the highest priority level that the processor ignores. When an
interrupt request has a priority higher than the value in the mask, the processor makes the
request a pending interrupt. IPL2–IPL0 must maintain the interrupt request level until the
M68040 acknowledges the interrupt to guarantee that the interrupt is recognized. The
M68040 continuously samples IPL2–IPL0 on consecutive rising edges of BCLK to
synchronize and debounce these signals. An interrupt request that is held constant for two
consecutive clock periods is considered a valid input. Although the protocol requires that
the request remain until the processor runs an interrupt acknowledge cycle for that
interrupt value, an interrupt request that is held for as short a period as two clock cycles
can be recognized. Figure 7-19 is a flowchart of the procedure for making an interrupt
pending.

7-30 M68040 USER’S MANUAL MOTOROLA

RESET

SAMPLE AND SYNCHRONIZE
IPL2–IPL0

ASSERT IPENDOTHERWISE

INTERRUPT LEVEL I2–I0,
OR TRANSITION ON LEVEL 7

>

Figure 7-19. Interrupt Pending Procedure

The M68040 asserts IPEND when an interrupt request is pending. Figure 7-20 illustrates
the assertion of IPEND relative to the assertion of an interrupt level on the IPL≈ signals.
IPEND signals external devices that an interrupt exception will be taken at an upcoming
instruction boundary (following any higher priority exception). The IPEND signal negates
after the processor recognizes the internal interrupt acknowledge and can precede the
external interrupt acknowledge bus cycle.

BCLK

IPL2–IPL0

IPEND

COMPARE REQUEST WITH MASK IN SR

ASSERT IPENDIPLs RECOGNIZED

IPLs SYNCHRONIZED

Figure 7-20. Assertion of IPEND

MOTOROLA M68040 USER’S MANUAL 7-31

The M68040 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
M68040 executes at least one instruction in an interrupt exception handler before
recognizing another interrupt request. The following paragraphs describe the various kinds
of interrupt acknowledge bus cycles that can be executed as part of interrupt exception
processing. Table 7-4 provides a summary of the possible interrupt acknowledge
terminations and the exception processing results.

Table 7-4. Interrupt Acknowledge Termination Summary

TA TEA AVEC Termination Condition

High High Don’t Care Insert Waits

High Low Don’t Care Take Spurious Interrupt Exception

Low High High Latch Vector Number on D7–D0 and Take Interrupt
Exception

Low High Low Take Autovectored Interrupt Exception

Low Low Don’t Care Retry Interrupt Acknowledge Cycle

7.5.1.1 INTERRUPT ACKNOWLEDGE BUS CYCLE (TERMINATED NORMALLY).
When the M68040 processes an interrupt exception, it performs an interrupt acknowledge
bus cycle to obtain the vector number that contains the starting location of the interrupt
exception handler. Some interrupting devices have programmable vector registers that
contain the interrupt vectors for the exception handlers they use. Other interrupting
conditions or devices cannot supply a vector number and use the autovector bus cycle
described in 7.5.1.2 Autovector Interrupt Acknowledge Bus Cycle.

7-32 M68040 USER’S MANUAL MOTOROLA

The interrupt acknowledge bus cycle is a read transfer. It differs from a normal read cycle
in the following respects:

1. TT1 and TT0 = $3 to indicate an acknowledged bus cycle.

2. Address signals A31–A0 are set to all ones ($FFFFFFFF).

3. TM2–TM0 are set to the interrupt request level (the inverted values of IPL2–IPL0).

The responding device places the vector number on the data bus during the interrupt
acknowledge bus cycle, and the cycle is terminated normally with TA. Figures 7-21 and
7-22 illustrate a flowchart and functional timing diagram for an interrupt acknowledge cycle
terminated with TA.

ACKNOWLEDGE INTERRUPT

 1) LATCH VECTOR NUMBER

ACQUIRE DATA

START NEXT CYCLE

3) DRIVE A31–A0 TO $FFFFFFFF
4) DRIVE UPA1, UPA0 TO $0
5) SET SIZE TO BYTE
6) SET TRANSFER TYPE ON TT1, TT0 TO $3
7) PLACE INTERRUPT LEVEL ON TM2–TM0

PROCESSOR EXTERNAL DEVICE

PROVIDE VECTOR INFORMATION

TERMINATE CYCLE

1) PLACE VECTOR NUMBER ON BYTE D7–D0
2) ASSERT TRANSFER ACKNOWLEDGE (TA)

1) REMOVE DATA FROM D7–D0
2) NEGATE TA

REQUEST INTERRUPT

 8) NEGATE CIOUT
 9) ASSERT TS FOR ONE CLOCK
10) ASSERT TIP

1) IPEND RECOGNIZED, WAIT FOR
 INSTRUCTION BOUNDARY
2) SET R/W TO READ

Figure 7-21. Interrupt Acknowledge Bus Cycle Flowchart

MOTOROLA M68040 USER’S MANUAL 7-33

C1 C2

A31–A0

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D8

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

SIZ0

D7–D0

INTERRUPT
ACKNOWLEDGE

INTERRUPT LEVEL

AVEC

C1 C2

WRITE STACK

VECTOR #

Figure 7-22. Interrupt Acknowledge Bus Cycle Timing

7.5.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE BUS CYCLE. When the
interrupting device cannot supply a vector number, it requests an automatically generated
vector (autovector). Instead of placing a vector number on the data bus and asserting TA,
the device asserts the autovector (AVEC) signal with TA to terminate the cycle. AVEC is
only sampled with TA asserted. AVEC can be grounded if all interrupt requests are
autovectored.

The vector number supplied in an autovector operation is derived from the interrupt priority
level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt
acknowledge bus cycle, the M68040 ignores the state of the data bus and internally

7-34 M68040 USER’S MANUAL MOTOROLA

generates the vector number, which is the sum of the interrupt priority level plus 24 ($18).
There are seven distinct autovectors that can be used, corresponding to the seven levels
of interrupts available with IPL2–IPL0 signals. Figure 7-23 illustrates a functional timing
diagram for an autovector operation.

C1 C2

A31–A0

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

SIZ0

INTERRUPT
ACKNOWLEDGE
AUTOVECTORED

INTERRUPT LEVEL

AVEC

C1 C2

WRITE STACK

Figure 7-23. Autovector Interrupt Acknowledge Bus Cycle Timing

7.5.1.3 SPURIOUS INTERRUPT ACKNOWLEDGE BUS CYCLE. When a device does
not respond to an interrupt acknowledge bus cycle with TA, or AVEC and TA, the external
logic typically returns the transfer error acknowledge signal (TEA). In this case, the
M68040 automatically generates the spurious interrupt vector number 24 ($18) instead of
the interrupt vector number. If TA and TEA are both asserted, the processor retries the
cycle.

MOTOROLA M68040 USER’S MANUAL 7-35

7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle

The execution of a breakpoint instruction (BKPT) generates the breakpoint interrupt
acknowledge bus cycle. An acknowledged access is indicated with TT1 and TT0 = $3,
address A31–A0 = $00000000, and TM2–TM0 = $0. When the external device terminates
the cycle with either TA or TEA, the processor takes an illegal instruction exception.
Figures 7-24 and 7-25 illustrate a flowchart and functional timing diagram for a breakpoint
interrupt acknowledge transfer.

BREAKPOINT ACKNOWLEDGE

 INITIATE ILLEGAL
INSTRUCTION EXCEPTION PROCESSING

1) SET R/W TO READ
2) DRIVE A31–A0 TO $00000000
3) DRIVE UPA1, UPA0 TO $0
4) SET SIZE TO BYTE
5) SET TRANSFER TYPE ON TT1, TT0 TO $3
6) SET TRANSFER MODIFIER TM2–TM0 TO $0

PROCESSOR EXTERNAL DEVICE

TERMINATE CYCLE

 ASSERT TA OR TEA

 1) NEGATE TA OR TEA

 8) NEGATE CIOUT
 9) ASSERT TS FOR ONE CLOCK
10) ASSERT TIP

Figure 7-24. Breakpoint Interrupt Acknowledge Bus Cycle Flowchart

7-36 M68040 USER’S MANUAL MOTOROLA

C1 C2

A31–A0

BCLK

BYTE

SIZ1

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

SIZ0

BREAKPOINT
ACKNOWLEDGE

C1 C2

WRITE STACK

Figure 7-25. Breakpoint Interrupt Acknowledge Bus Cycle Timing

7.6 BUS EXCEPTION CONTROL CYCLES

The M68040 bus architecture requires assertion of TA from an external device to signal
that a bus cycle is complete. TA is not asserted in the following cases:

• The external device does not respond.

• No interrupt vector is provided.

• Various other application-dependent errors occur.

External circuitry can provide TEA when no device responds by asserting TA within an
appropriate period of time after the processor begins the bus cycle. This allows the cycle
to terminate and the processor to enter exception processing for the error condition. TEA

can also be asserted in combination with TA to cause a retry of a bus cycle in error.

MOTOROLA M68040 USER’S MANUAL 7-37

To properly control termination of a bus cycle for a bus error or retry condition, TA and
TEA must be asserted and negated for the same rising edge of BCLK. Table 7-5 lists the
control signal combinations and the resulting bus cycle terminations. Bus error and retry
terminations during burst cycles operate as described in 7.4.2 Line Read Transfers and
7.4.4 Line Write Transfers.

Table 7-5. TA and TEA Assertion Results

Case No. TA TEA Result

1 High Low Bus Error—Terminate and Take Bus Error Exception,
Possibly Deferred

2 Low Low Retry Operation—Terminate and Retry

3 Low High Normal Cycle Terminate and Continue

4 High High Insert Wait States

7.6.1 Bus Errors

The system hardware can use the TEA signal to abort the current bus cycle when a fault
is detected. A bus error is recognized during a bus cycle when TA is negated and TEA is
asserted. When the processor recognizes a bus error condition for an access, the access
is terminated immediately. A line access that has TEA asserted for one of the four long-
word transfers aborts without completing the remaining transfers, regardless of whether
the line transfer uses a burst or burst-inhibited access.

When TEA is asserted to terminate a bus cycle, the M68040 can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception. The instruction prefetch mechanism requests instruction words from the
instruction memory unit before it is ready to execute them. If a bus error occurs on an
instruction fetch, the processor does not take the exception until it attempts to use the
instruction. Should an intervening instruction cause a branch or should a task switch
occur, the access error exception for the unused access does not occur. Similarly, if a bus
error is detected on the second, third, or fourth long-word transfer for a line read access,
an access error exception is taken only if the execution unit is specifically requesting that
long word. Otherwise, the line is not placed in the cache, and the processor repeats the
line access when another access references the line. If a misaligned operand spans two
long words in a line, a bus error on either the first or second transfer for the line causes
exception processing to begin immediately. A bus error termination for any write accesses
or for read accesses that reference data specifically requested by the execution unit
causes the processor to begin exception processing immediately. Refer to Section 8
Exception Processing for details of access error exception processing.

When a bus error terminates an access, the contents of the corresponding cache can be
affected in different ways, depending on the type of access. For a cache line read to
replace a valid instruction or data cache line, the cache line being filled is invalidated
before the bus cycle begins and remains invalid if the replacement line access is
terminated with a bus error. If a dirty data cache line is being replaced and a bus error
occurs during the replacement line read, the dirty line is restored from an internal push

7-38 M68040 USER’S MANUAL MOTOROLA

buffer into the cache to eliminate an unnecessary push access. If a bus error occurs
during a data cache push, the corresponding cache line remains valid (with the new line
data) if the line push follows a replacement line read, or is invalidated if a CPUSH
instruction explicitly forces the push. Write accesses to memory pages specified as write-
through by the data memory unit update the corresponding cache line before accessing
memory. If a bus error occurs during a memory access, the cache line remains valid with
the new data. Figure 7-26 illustrates a functional timing diagram of a bus error on a word
write access causing an access error exception. Figure 7-27 illustrates a functional timing
diagram of a bus error on a line read access that does not cause an access error
exception.

A physical bus error during an FSAVE instruction results in corruption of the floating-point
state frame. This is not a serious limitation since, prior to writing the stack frame, the
M68040 ensures that the pages required for the floating-point state frame are resident.
Therefore, only a physical bus error can cause an access error during the stacking of the
state frame. In a normal application, writes caused by the processor should not result in a
physical bus error since the logical address space has already been translated and
allocated. Since there should be no parity errors caused by processor write accesses, only
spurious assertions of the TEA pin can cause physical bus errors. Furthermore, because
FSAVE instructions usually place the state frame on the system stack, the occurrence of a
physical bus error when using the system stack indicates a serious hardware error.

MOTOROLA M68040 USER’S MANUAL 7-39

C1 C2

A31–A0

BCLK

WORD

SIZ1

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

SIZ0

WRITE CYCLE

C1 C2

WRITE STACK

TEA

Figure 7-26. Word Write Access Terminated with TEA Timing

7-40 M68040 USER’S MANUAL MOTOROLA

A31–A4

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

A3

A2–A0

NOTE: The selected device increments the value on A3 and A2.

10 1101

C1 C2 C3 C4

TBI

TEA

TEA ENDS BURST –
NO EXCEPTION
TAKEN

A3, A2 =

Figure 7-27. Line Read Access Terminated with TEA Timing

MOTOROLA M68040 USER’S MANUAL 7-41

7.6.2 Retry Operation

When an external device asserts both the TA and TEA signals during a bus cycle, the
processor enters the retry sequence. The processor terminates the bus cycle and
immediately retries the cycle using the same access information (address and transfer
attributes). However, if the bus cycle was a cache push operation, the bus is arbitrated
away from the M68040 before the retry operation, and a snoop during the arbitration
invalidates the cache push, then the processor does not use the same access information.
Figure 7-28 illustrates a functional timing diagram for a retry of a read bus transfer.

C1 C2

A31–A0

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

READ CYCLE
RETRY SIGNALED

RETRY
CYCLE

C1 C2

TEA

CW

LONG WORD

Figure 7-28. Retry Read Transfer Timing

The processor retries any read or write cycles of a read-modify-write transfer separately;
LOCK remains asserted during the entire retry sequence. If the last bus cycle of a locked
access is retried, LOCKE remains asserted through the retry of the write cycle.

7-42 M68040 USER’S MANUAL MOTOROLA

On the initial cycle of a line transfer, a retry causes the processor to retry the bus cycle as
illustrated in Figure 7-29. However, the processor recognizes a retry signaled during the
second, third, or fourth cycle of a line as a bus error and causes the processor to abort the
line transfer. A burst-inhibited line transfer can only be retried on the initial transfer. A
burst-inhibited line transfer aborts if a retry is signaled for any of the three long-word
transfers used to complete the line transfer. Negating the bus grant (BG) signal on the
M68040 while asserting both TA and TEA provides a relinquish and retry operation for any
bus cycle that can be retried (see Figure 7-31).

C1 C2

A31–A0

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

LINE

RETRY
SIGNALED

RETRY CYCLE

C1 C2

TEA

TBI

C3 C4 C5

Figure 7-29. Retry Operation on Line Write

MOTOROLA M68040 USER’S MANUAL 7-43

7.6.3 Double Bus Fault

A double bus fault occurs when an access or address error occurs during the exception
processing sequence—e.g., the processor attempts to stack several words containing
information about the state of the machine while processing an access error exception. If
a bus error occurs during the stacking operation, the second error is considered a double
bus fault.

The M68040 indicates a double bus fault condition by continuously driving PST3–PST0
with an encoded value of $5 until the processor is reset. Only an external reset operation
can restart a halted processor. While the processor is halted, negating BR and forcing all
outputs to a high-impedance state releases the external bus.

A second access or address error that occurs during execution of an exception handler or
later, does not cause a double bus fault. A bus cycle that is retried does not constitute a
bus error or contribute to a double bus fault. The processor continues to retry the same
bus cycle as long as external hardware requests it.

7.7 BUS SYNCHRONIZATION

The M68040 integer unit generates access requests to the instruction and data memory
units to support integer and floating-point operations. Both the <ea> fetch and write-back
stages of the integer unit pipeline perform accesses to the data memory unit, with effective
address fetches assigned a higher priority. This priority allows data read and write
accesses to occur out of order, with a memory write access potentially delayed for many
clocks while allowing read accesses generated by later instructions to complete. The
processor detects a read access that references earlier data waiting to be written (address
collisions) and allows the corresponding write access to complete. A given sequence of
read accesses or write accesses is completed in order, and reordering only occurs with
writes relative to reads. Figure 2-1 in Section 2 Integer Unit illustrates the integer pipeline
stages.

Besides address collisions, the instruction restart model used for exception processing in
the M68040 causes another potential problem. After the operand fetch for an instruction,
an exception that causes the instruction to be aborted can occur, resulting in another
access for the operand after the instruction restarts. For example, an exception could
occur after a read access of an I/O device’s status register. The exception causes the
instruction to be aborted and the register to be read again. If the first read accesses clears
the status bits, the status information is lost, and the instruction obtains incorrect data.

Designating the memory page containing the address of the device as serialized
noncachable prevents multiple out-of-order accesses to devices sensitive to such
accesses. When the data memory unit detects an attempt to read an operand from a page
designated as serialized noncachable, it allows all pending write accesses to complete
before beginning the external read access. The definition of a page as noncachable
versus serialized noncachable only affects read accesses. When a write operation
reaches the integer unit’s write-back stage, all previous instructions have completed.
When a read access to a serialized noncachable page begins, only a bus error exception

7-44 M68040 USER’S MANUAL MOTOROLA

on the operand read itself can cause the instruction to be aborted, preventing multiple
reads. It is important to note that when memory accesses are serialized noncachable,
FMOVE will cause two identical writes to the same location to occur if the next instruction
prefetch receives a bus error.

Since write cycles can be deferred indefinitely, many subsequent instructions can be
executed, resulting in seemingly nonsequential instruction execution. When this action is
not desired and the system depends on sequential execution following bus activity, the
NOP instruction can be used. The NOP instruction forces instruction and bus
synchronization because it freezes instruction execution until all pending bus cycles have
completed.

A write operation of control information to an external register in which the external
hardware attempts to control program execution based on the data that is written with the
conditional assertion of TEA is one situation where the NOP instruction can be used to
prevent multiple executions. If the data cache is enabled and the write cycle results in a hit
in the data cache, the cache is updated. That data, in turn, may be used in a subsequent
instruction before the external write cycle completes. Since the M68040 cannot process
the bus error until the end of the bus cycle, the external hardware cannot successfully
interrupt program execution. To prevent a subsequent instruction from executing until the
external cycle completes, the NOP instruction can be inserted after the instruction causing
the write. In this case, access error exception processing proceeds immediately after the
write before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

Note that the NOP instruction can also be used to force access serialization by placing
NOP before the instruction that reads an I/O device. This practice eliminates the need to
specify the entire page as serialized noncachable but does not prevent the instruction
from being aborted by an exception condition.

7.8 BUS ARBITRATION AND EXAMPLES

The bus design of the M68040 provides for one bus master at a time, either the M68040
or an external device. More than one device having the capability to control the bus can
be attached to the bus. An external arbiter prioritizes requests and determines which
device is granted access to the bus. Bus arbitration is the protocol by which the processor
or an external device becomes the bus master. When the M68040 is the bus master, it
uses the bus to read instructions and data not contained in its internal caches from
memory and to write data to memory. When an alternate bus master owns the bus, the
M68040 is able to monitor the alternate bus master’s transfer and intervene when
necessary to maintain cache coherency. This capability is discussed in more detail in 7.9
Bus Snooping Operation.

Unlike earlier members of the M68000 family, the M68040 implements an arbitration
method in which an external arbiter controls bus arbitration and the processor acts as a
slave device requesting ownership of the bus from the arbiter. Since the user defines the
functionality of the external arbiter, it can be configured to support any desired priority
scheme. For systems in which the processor is the only possible bus master, the bus can

MOTOROLA M68040 USER’S MANUAL 7-45

be continuously granted to the processor, and no arbiter is needed. Systems that include
several devices that can become bus masters require an arbiter to assign priorities to
these devices so that, when two or more devices simultaneously attempt to become the
bus master, the one having the highest priority becomes the bus master first.

7.8.1 Bus Arbitration

The M68040 bus controller generates bus requests to the external arbiter in response to
internal requests from the instruction and data memory units. The M68040 performs bus
arbitration using the bus request (BR), bus grant (BG), and bus busy (BB) signals. The
arbitration protocol, which allows arbitration to overlap with bus activity, requires a single
idle clock to prevent bus contention when transferring bus ownership between bus
masters. The bus arbitration unit in the M68040 operates synchronously and transitions
between states on the rising edge of BLCK.

The M68040 requests the bus from the external bus arbiter by asserting BR whenever an
internal bus request is pending. The processor continues to assert BR for as long as it
requires the bus. The processor negates BR at any time without regard to the status of BG

and BB. If the bus is granted to the processor when an internal bus request is generated,
BR is asserted simultaneously with transfer start (TS), allowing the access to begin
immediately. The processor always drives BR, and BR cannot be wire-ORed with other
devices.

The external arbiter asserts BG to indicate to the processor that it has been granted the
bus. If BG is negated while a bus cycle is in progress, the processor relinquishes the bus
at the completion of the bus cycle. To guarantee that the bus is relinquished, BG must be
negated prior to the rising edge of the BCLK in which the last TA or TEA is asserted. Note
that the bus controller considers the four bus transfers for a burst-inhibited line transfer to
be a single bus cycle and does not relinquish the bus until completion of the fourth
transfer. The read and write portions of a locked read-modify-write sequence are divisible
in the M68040, allowing the bus to be arbitrated away during the locked sequence. For
system applications that do not allow locked sequences to be broken, the arbiter can use
LOCK to detect locked accesses and prevent the negation of BG to the processor during
these sequences. The processor also provides the LOCKE signal to indicate the last write
cycle of a locked sequence, allowing arbitration between back-to-back locked sequences.
See 7.4.5 Read-Modify-Write Transfers (Locked Transfers) for a detailed description of
read-modify-write transfers.

When the bus has been granted to the processor in response to the assertion of BR, one
of two situations can occur. In the first situation, the processor monitors BB to determine
when the bus cycle of the alternate bus master is complete. After the alternate bus master
negates BB , the processor asserts BB to indicate explicit bus ownership and begins the
bus cycle by asserting TS. The processor continues to assert BB until the external arbiter
negates BG, after which BB is first negated at the completion of the bus cycle, then forced
to a high-impedance state. As long as BG is asserted, BB remains asserted to indicate the
bus is owned, and the processor continuously drives the bus signals. The processor
negates BR when there are no pending accesses to allow the external arbiter to grant the
bus to the alternate bus master if necessary.

7-46 M68040 USER’S MANUAL MOTOROLA

In the second situation, the processor samples BB until the external bus arbiter negates
BB. The processor drives its output pins with undetermined values and three-states BB,
but does not perform a bus cycle. This procedure, called implicit ownership of the bus,
occurs when the processor is granted the bus but there are no pending bus cycles. If an
internal access request is generated, the processor assumes explicit ownership of the bus
and immediately begins an access, simultaneously asserting BB, BR, TIP, and TS. If the
external arbiter keeps BG asserted after completion of the bus cycle, the processor keeps
BB asserted and drives the bus with undefined values, causing the processor to park. In
this case, because BB remains asserted until the external arbiter negates BG, the
processor must assert BR, TIP, and TS simultaneously to enter an active bus cycle. When
it completes the active bus cycle and the external arbiter has not negated BG, the
processor goes back into park, negating BR, TIP, and TS. As long as BG is asserted, the
processor oscillates between park and active bus cycles.

The M68040 can be in any one of five bus arbitration states during bus operation: idle,
snoop, implicit ownership, park, and active bus cycle. There are two characteristics that
determine these five states: whether the three-state logic determines if the M68040 drives
the bus and how the M68040 drives BB. If neither the processor nor the external bus
arbiter asserts BB, then an external pullup resistor drives BB high to negate it. Note that
the relationship between the internal BR and the external BR is best described as a
synchronous delay off BCLK.

The idle state occurs when the M68040 does not have ownership of the bus and is not in
the process of snooping an access. In the idle state, BB is negated and the M68040 does
not drive the bus. The snoop state is similar to the idle state in that the M68040 does not
have ownership of the bus. The snoop state differs from the idle state in that the M68040
is ready to service snooped transfers. Otherwise, the status of BB and the bus is identical.

The implicit ownership state indicates that the M68040 owns the bus. The M68040
explicitly owns the bus when it runs a bus cycle immediately after being granted the bus. If
the processor has completed at least one bus cycle and no internal transfers are pending,
the processor drives the bus with undefined values, entering the park state. In either case,
BG remains asserted. The simultaneous assertion of BR, TIP, and TS allows the processor
to leave the park state and enter the active bus cycle state.

Figure 7-30 is a bus arbitration state diagram illustrating the relationship of these five
states with an example of an external bus arbiter circuit. Table 7-6 lists the five states and
the conditions that indicate them.

MOTOROLA M68040 USER’S MANUAL 7-47

OWN/PARK,

IMPLICIT
OWNERSHIP,

BG
I Λ

 *T
SI

*B
G

I Λ
 *T

SI
 Λ

 *B
BI

*E
N

D
C

YC
LE

 Λ
 *B

BI

*E
N

D
C

YC
LE

 Λ
 B

BI
 Λ

 B
G

BG* Λ IBR

SNOOP,
BBO DRIVEN BY

MC68040,
*THREE-STATED

*BG Λ IBR

ENDCYCLE

*ENDCYCLE Λ BBI Λ *BG Λ IBR *ENDCYCLE Λ BBI Λ *BG Λ *IBR

BG Λ ENDCYCLE
Λ *TIP

*BG

BBI Λ *BG Λ IBR Λ TSI

BG

BG Λ TIP

BBI Λ *BG Λ *IBR Λ TSI

BG Λ *ENDCYCLE Λ TIP*

BG Λ TSI*BG Λ TSI Λ *BBI

IDLE,
*BG Λ *TSI Λ BBI PROTOCOL

VIOLATION

IBR
BBI
TSI
ENDCYCLE

= Internal bus request signal (see schematic below).
= Bus busy driven by alternate bus master.
= Transfer start as an input, sampled by the MC68040.
= Whatever terminates a bus transaction
 whether it is normal, bus error, or retried. Note
 that false burst cycles are treated as a line
 transaction. False locked transactions
 are treated the same as any other bus cycle.

*BBO DRIVEN BY
MC68040,

THREE-STATED

BBO DRIVEN BY
MC68040,

THREE-STATED

BBO DRIVEN BY
MC68040,

*THREE-STATED

D

BBBBI

Q
BR

BBO

IBR

BCLK
= The 040 may or may not transition if an active bus
 cycle is terminated with a bus error, and BG is
 asserted.

* = Indicates the signal is asserted for that device.

Figure 7-30. M68040 Internal Interpretation State Diagram and
External Bus Arbiter Circuit

7-48 M68040 USER’S MANUAL MOTOROLA

Table 7-6. M68040 Bus Arbitration States

BB BG State Conditions

Negated Negated Idle M68040 three-states BB; arbiter negates
BG; bus is not driven.

Negated Asserted Implicit Ownership M68040 three-states BB; arbiter asserts
BG; bus is driven with undefined values.

Asserted Negated Active Bus Cycle
M68040 asserts BB; arbiter asserts BG;
bus is driven with defined values;
TIP is asserted.

Asserted Asserted Park
M68040 asserts BB; arbiter asserts BG;
bus is driven with undefined values; TIP is
asserted.

Asserted Asserted Alternate Bus Master Ownership
and Snooped

M68040 three-states BB; arbiter asserts
BG; M68040 does not drive the bus.

The M68040 can be in the active bus cycle, park, or implicit ownership states when BG is
negated. Depending on the state the processor is in when BG is negated, uncertain
conditions can occur. The only guaranteed time that the processor relinquishes the bus is
when BG is negated prior to the rising edge of BCLK in which the last TA or TEA is
asserted and the processor is in the active bus cycle state. However, if the processor is in
either the active bus cycle, park, or implicit ownership states and BG is negated at the
same time or after the last TA or TEA is asserted, then from the standpoint of the external
bus arbiter, the next action that the processor takes is undetermined because the
processor can internally decide to perform another active bus cycle (indeterminate
condition).

External bus arbiters must consider this indeterminate condition when negating BG and
must be designed to examine the state of BB immediately after negating BG to determine
whether or not the processor will run another bus cycle. A somewhat dangerous situation
exists when the processor begins a locked transfer after the bus has been granted to the
alternate bus master, causing the alternate bus master to perform a bus transfer during a
locked sequence. To correct this situation, the external bus arbiter must be able to
recognize the possible indeterminate condition and reassert BG to the processor when the
processor begins a locked sequence. The indeterminate condition is most significant when
dealing with systems that cannot allow locked transfers to be broken. Figure 7-31
illustrates an example of an error condition that is a consequence of the interaction
between the indeterminate condition and a locked transfer. External bus arbiters must be
designed so that all bus grants to all bus masters be nagated for at least one rising edge
of BCLK between bus tenures; preventing bus conflicts resulting from the above
conditions.

MOTOROLA M68040 USER’S MANUAL 7-49

040_BG

AM_BG

040_BB

POSSIBLE
INDETERMINATE

CONDITION

AM_BB

THE 040
ACTIVELY
OWNS THE
BUS HERE

040_LOCK

LOCK IS
VIOLATED

040_TS

040_TA

AM_TS

*AM indicates the alternate bus master.

*

*

*

Figure 7-31. Lock Violation Example

In addition to the indeterminate condition, the external arbiter’s design needs to include
the function of BR. For example, in certain cases associated with conditional branches,
the M68040 can assert BR to request the bus from an alternate bus master, then negate
BR without using the bus, regardless of whether or not the external arbiter eventually
asserts BG. This situation happens when the M68040 attempts to prefetch an instruction
for a conditional branch. To achieve maximum performance, the processor prefetches the
instructions of both paths for a conditional branch. If the conditional branch results in a
branch-not-taken, the previously issued branch-taken prefetch is then terminated since the
prefetch is no longer needed. In an attempt to save time, the M68040 negates BR. If BG

takes too long to assert, the M68040 enters a disregard request condition.

The BR signal can be reasserted immediately for a different pending bus request, or it can
stay negated indefinitely. If an external bus arbiter is designed to wait for the M68040 to
assert BB before proceeding, then the system experiences an extended period of time in
which bus arbitration is locked. Motorola recommends that an external bus arbiter not
assume that there is a direct relationship between BR and BB or BR and BG signals.

Figure 7-32 illustrates an example of the processor requesting the bus from the external
bus arbiter. During C1, the M68040 asserts BR to request the bus from the arbiter, which
negates the alternate bus master’s BG signal and grants the bus to the processor by
asserting BG during C3. During C3, the alternate bus master completes its current access
and relinquishes the bus by three-stating all bus signals. Typically, the BB and TIP signals

7-50 M68040 USER’S MANUAL MOTOROLA

require a pullup resistor to maintain a logic-one level between bus master tenures. The
alternate bus master should negate these signals before three-stating to minimize rise
time of the signals and ensure that the processor recognizes the correct level on the next
BCLK rising edge. At the end of C3, the processor recognizes the bus grant and bus idle
conditions (BG asserted and BB negated) and assumes ownership of the bus by asserting
BB and immediately beginning a bus cycle during C4. During C6, the processor begins the
second bus cycle for the misaligned operand and negates BR since no other accesses are
pending. During C7, the external bus arbiter grants the bus back to the alternate bus
master that is waiting for the processor to relinquish the bus. The processor negates BB

and TIP before three-stating these and all other bus signals during C8. Finally, the
alternate bus master recognizes the bus grant and idle conditions at the end of C8 and is
able to resume bus activity during C9.

A31–A0

BCLK

D31–D0

TRANSFER
ATTRIBUTES

TS

TIP

TA

ALTERNATE
MASTER

PROCESSOR

BR

BG

BB

AM_BR

AM_BG

ALTERNATE
MASTER

C1 C2 C3 C4 C5 C8 C9C6 C7

*

*

*AM indicates the alternate bus master.

Figure 7-32. Processor Bus Request Timing

MOTOROLA M68040 USER’S MANUAL 7-51

Figure 7-33 illustrates a functional timing diagram for an arbitration of a relinquish and
retry operation. Figure 7-34 is a functional timing diagram for implicit ownership of the bus.
In Figure 7-33, the processor read access that begins in C1 is terminated at the end of C2
with a retry request and BG negated, forcing the processor to relinquish the bus and allow
the alternate master to access the bus. Note that the processor reasserts BR during C3
since the original access is pending again. After alternate bus master ownership, the bus
is granted to the processor to allow it to retry the access beginning in C7.

A31–A0

BCLK

D31–D0

TRANSFER
ATTRIBUTES

TS

TIP

TA

ALTERNATE
MASTER

PROCESSOR

BR

BG

BB

AM_BR

AM_BG

C1 C2 C3 C4 C5 C8C6 C7

TEA

R/W

PROCESSOR

*

*

*AM indicates the alternate bus master.

Figure 7-33. Arbitration During Relinquish and Retry Timing

7-52 M68040 USER’S MANUAL MOTOROLA

A31–A0

BCLK

D31–D0

TRANSFER
ATTRIBUTES

TS

TIP

TA

ALTERNATE
MASTER PROCESSOR

BUS
IMPLICITLY

OWNED

BUS OWNED
AND ACTIVE

BUS OWNED
AND IDLE

BR

BG

BB

AM_BR

AM_BG

C1 C2 C3 C4 C5 C8 C9C6 C7

*

*

*AM indicates the alternate bus master.

Undefined

Figure 7-34. Implicit Bus Ownership Arbitration Timing

7.8.2 Bus Arbitration Examples

The following paragraphs illustrate the behavior of the M68040 bus arbitration scheme
and provide examples of how an external bus arbiter can be designed to keep the integrity
of locked bus operations. The examples include the previously mentioned indeterminate
and disregard request conditions.

7.8.2.1 DUAL M68040 FAIRNESS ARBITRATION. The following state diagram illustrates
a fairness algorithm using two MC68040s and assigning the least priority to the processor
that owns the bus. If both processors keep their respective BR signals asserted, bus
ownership alternates between the two processors so that each processor can run at least
one bus cycle during its tenure. Each processor is allowed to own the bus without
relinquishing it to maintain the integrity of locked transfers. This example also illustrates

MOTOROLA M68040 USER’S MANUAL 7-53

how the LOCKE signal can be used to end a locked sequence and to yield the bus one
bus cycle earlier than is normally possible. Figure 7-35 illustrates the state diagram of a
hypothetical external arbiter design.

BB Λ LOCK Λ LOCKE*

STATE A

STATE B

STATE C

STATE D

BR1* V BR1 Λ
LOCK Λ LOCKE*

BB Λ LOCK* V BB Λ
LOCK Λ LOCKE

BG1*, BG2 BG1, BG2*

BR2 Λ LOCK Λ LOCKE
V BR2 Λ LOCK*

BR2* V
BR2 Λ LOCK Λ LOCKE

BB*

BG1*, BG2 BG1, BG2*

BB Λ LOCK* V BB Λ
LOCK Λ LOCKE

BB*

BR1 Λ LOCK Λ LOCKE
V BR1 Λ LOCK*

 Because this example uses two MC68040s, 1 and 2 refer to the processor and its signals.
*Indicates the signal is asserted for that device.

NOTES:

1.
2.

BB Λ LOCK Λ LOCKE*

Figure 7-35. Dual M68040 Fairness Arbitration State Diagram

Assuming that processor 1 currently owns the bus, the external arbiter is in state A. If
processor 2 asserts BR2, then processor 1 behaves in one of three ways:

1. If processor 1 is currently in the middle of a nonlocked bus access, then the external
arbiter proceeds to state B, in which BG1 is negated and BG2 is asserted. The
external arbiter then proceeds to state C only when BB is negated, signifying the end
of the bus cycle.

2. If processor 1 is currently in the middle of a locked bus access, then the external
arbiter stays in state A until LOCKE is asserted. Once LOCKE is asserted, the
external arbiter enters state B, in which BG1 is negated and BG2 is asserted. The
external arbiter proceeds to state C once BB is negated, signifying the end of the
bus cycle.

3. If processor 1 is in one of the three boundary conditions, then the external arbiter
proceeds to state B. During state B, the external arbiter checks for the possibility of a
newly initiated locked bus access. If it detects a locked bus cycle, it returns the bus
to processor 1 by entering state A. Note that even though processor 1 recognizes
BG1 is asserted, it does not take the bus because processor 1 asserts BB whenever
the boundary condition results in processor 1 performing another bus cycle. The
external arbiter stays in state A until LOCKE is asserted, then proceeds to state B to

7-54 M68040 USER’S MANUAL MOTOROLA

give the bus to processor 2. The arbiter remains in state B until BB is negated,
signifying the end of the bus cycle.

Once state C is reached, depending on whether or not processor 2 asserts BR2 and then
negates BR2 because of a disregard request condition, processor 1 may or may not
actively begin a bus cycle. If no other bus requests are pending by the time state C is
reached, processor 2 is in the implicit ownership state. If processor 1 asserts BR1, then it
is possible for state C to persist for only one clock. In this case, processor 2 does not have
a chance to run any active bus cycles.

A null bus cycle tenure is better than having the external bus arbiter wait for processor 2 to
perform at least one bus cycle before returning bus ownership to processor 1, even
though this appears to be a waste of bus arbitration overhead. Note that once processor 2
enters the disregard request condition, processor 2 reasserts BR anywhere from one clock
to an undetermined number of clocks before running another bus cycle. Waiting for
processor 2 to run a bus cycle can result in a temporary bus arbitration lockup.

This bus arbitration scheme is restricted if the system supports the relinquish and retry
operation that can occur for the last write cycle of a locked transfer. In this case, LOCKE

cannot be used. Assuming that LOCKE is always negated excludes the need for LOCKE in
an arbitration similar to this example. The reason for this restriction is that the external bus
arbiter gives up the bus to the other processor once LOCKE is asserted. If a relinquish and
retry operation were to occur, then the next bus cycle would be from the other processor
violating the integrity of the locked transfer.

7.8.2.2 DUAL M68040 PRIORITIZED ARBITRATION. This example is very similar to the
dual M68040 fairness arbitration example, except that one processor is assigned higher
priority over the other. Processor 2 can own the bus only if there are no processor 1
pending requests. It is important to note that when the processor asserts the LOCK signal,
it also asserts BR1. This implementation replaces LOCK with BR because BR is more
demanding than using LOCK. Only when processor 2 is in the middle of a locked
operation does it have higher priority than processor 1. Similar to the M68040 fairness
arbitration example, the restriction on using LOCKE applies to this example. Figure 7-36
illustrates the state diagram for dual M68040 prioritized arbitration.

MOTOROLA M68040 USER’S MANUAL 7-55

BB Λ LOCK Λ LOCKE*

BR1 Λ BR2*

BB Λ BR2

STATE A

STATE B

STATE C

STATE D

BB Λ BR2*

BR2 V BR1*Λ
BR2*

BB Λ LOCK* V BB &
LOCK Λ LOCKE

BG1*, BG2 BG1, BG2*

BR2 Λ LOCK Λ LOCKE
V BR2 Λ LOCK*

BR2* V
BR2 Λ LOCK Λ LOCKE* BG1*, BG2 BG1, BG2*

 Because this example uses two MC68040s, 1 or 2 refers to the processor and its signals.
*Indicates the signal is asserted for that device.

NOTES:

1.
2.

BB* BB*

Figure 7-36. Dual M68040 Prioritized Arbitration State Diagram

7.8.2.3 M68040 SYNCHRONOUS DMA ARBITRATION. Figure 7-37 illustrates a system
with an M68040 and a synchronous direct memory access (DMA) that contains an
M68040 interface. Figure 7-37(a) illustrates that the DMA owning the bus only when the
M68040 has no pending requests, and Figure 7-37(b) illustrates the DMA having higher
priority than the M68040 causing the M68040 to yield the bus to the DMA at any time
except when the M68040 is performing a locked bus operation. In either case, the M68040
is the default bus master; if there are no pending requests from either device, the external
arbiter gives the bus to the M68040. Similar to the M68040 fairness arbitration example,
the restriction on using LOCKE applies to this example.

7-56 M68040 USER’S MANUAL MOTOROLA

040_BR

STATE A

STATE B

STATE C

STATE D

BB

BB Λ 040_BR*

AM_BG, 040_BG*

040_BR V AM_BR*

(a) MC68040 High Priorty, Default Bus Master

AM_BG, 040_BG* AM_BG*, 040_BG

AM_BG*, 040_BG

040_BR

AM_BR, 040_BG*

BB Λ 040_BR

040_BR*

STATE A

STATE B

STATE C

STATE D

BB Λ AM_BR*

BB Λ LOCK* V BB
Λ LOCK Λ LOCKE

AM_BG, 040_BG*

AM_BR* V AM_BR Λ
LOCK Λ LOCKE*

(b) MC68040 Low-Priorty, Default Bus Master

AM_BG, 040_BG* AM_BG*, 040_BG

AM_BG*, 040_BG

040_BR

BB Λ LOCK Λ LOCKE*

BB Λ AM_BR

AM_BR Λ LOCK Λ LOCKE V
AM_BR Λ LOCK*

* Indicates the signal is asserted for that device.

BB* BB*

BB* BB*

Figure 7-37. M68040 Synchronous DMA Arbitration

MOTOROLA M68040 USER’S MANUAL 7-57

7.8.2.4 M68040 ASYNCHRONOUS DMA ARBITRATION. Figure 7-38 illustrates a
sample synchronizer circuit. Figure 7-39 illustrates how an M68040 can be implemented
to simulate an MC68030. The synchronizer circuit has an output indicating whether or not
a signal has been asserted for at least two consecutive rising edges of BCLK. If the
synchronizer circuit indicates that the input has not been stable for at least two clocks,
then the processor and alternate bus master stay in the current state. Figure 7-37(a)
duplicates the MC68030 implementation of the bus arbitration circuitry in which the
M68040 is allowed to yield the bus only after the indeterminate condition has been
eliminated. Figure 7-37(b) is similar to the MC68030 implementation except that the DMA
device has lower priority and can only perform transfers when the M68040 is in the idle
state. In either case, the M68040 is the default bus master; therefore, if there are no
pending requests from either device, the external bus arbiter gives the bus to the M68040.

ABR

CLK

RV

R

ABGACK

CLK

AV

A

Figure 7-38. Sample Synchronizer Circuit

7-58 M68040 USER’S MANUAL MOTOROLA

AM_BG*,
040_BG

040_BG*,
AM_BG*

R Λ RV Λ A* Λ
AV V AV* V RV*

R* V RV* V
R Λ RV Λ LOCK Λ

LOCKE*

R Λ RV Λ LOCK Λ
LOCKE V R Λ RV Λ

LOCK*

LOCK Λ LOCKE*

LOCKE
V LOCK*

R* Λ RV Λ A* Λ
AV V A Λ AV

S1

S2
S3

S4

S5

S6

R* Λ RV Λ A Λ AV
V RV* V RA*

R* Λ RV Λ A* Λ AV

R Λ RV

RV* V RA* V
R Λ RV Λ A Λ AV

R Λ RV Λ A* Λ AV
R* Λ RV

(a) MC68040 Low-Priorty, Default Bus Master

040_BG*,
AM_BG

040_BG*,
AM_BG

040_BG*,
AM_BG*

040_BG*,
AM_BG*

040_BG*,
AM_BG

040_BG*,
AM_BG

AM_BG*,
040_BG

040_BG*,
AM_BG*

R* Λ RV Λ A* Λ AV
V R Λ RV Λ 040_BR

R* V RV* V 040_BR

R Λ RV Λ 040_BR

040_BR
R* Λ RV Λ A* Λ AV

V A Λ AV

S1

S2
S3

S4

S5

S6

R Λ RV Λ 040_BR

R Λ RV Λ A* Λ AV
R* Λ RV

1. It is assumed that the asynchronous device takes the bus only after TIP or the MC68040's BB is negated.

040_BG*,
AM_BG

040_BG*,
AM_BG

040_BG*,
AM_BG*

040_BG*,
AM_BG*

040_BG*,
AM_BG

040_BG*,
AM_BG

040_BR

R* Λ RV Λ A* Λ AV
V AV* V RV*

(b) MC68040 High-Priorty, Default Bus Master

RV* V RA* V
R Λ RV Λ A Λ AV

R* Λ RV Λ A Λ AV
V RV* V RA*

NOTES:

2. *Indicates the signal is asserted for that device.

Figure 7-39. M68040 Asynchronous DMA Arbitration

MOTOROLA M68040 USER’S MANUAL 7-59

7.9 BUS SNOOPING OPERATION

When required, the M68040 can monitor alternate bus master transfers and intervene in
the access to maintain cache coherency. The encoding of the SCx signals generated by
the alternate bus master for each bus cycle controls the process of bus monitoring and
intervention called snooping. Only byte, word, long-word, and line bus transfers can be
snooped. Refer to Section 4 Instruction and Data Caches for SCx encodings.

When the M68040 recognizes that an alternate bus master has asserted T S, the
processor latches the level on the byte offset, SIZx, TMx, and R/W signals during the
rising edge of BCLK for which TS is first asserted. The processor then evaluates the SCx
and TTx signals to determine the type of access (TTx = $0 or $1), if it is snoopable, and, if
so, how it should be snooped. If snooping is enabled for the access, the processor inhibits
memory from responding by continuing to assert the memory inhibit signal (MI) while
checking the internal caches for matching lines. During the snooped bus cycle, the
M68040 ignores all TA assertions while MI is asserted. Unless the data cache contains a
dirty line corresponding to the access and the requested snoop operation indicates sink
data for a write or source data for a read, MI is negated, and memory is allowed to
respond and complete the access. Otherwise, the processor continues to intervene in the
access by keeping MI asserted and responding to the alternate bus master as a slave
device. The processor monitors the levels of TA, TEA, and TBI to detect normal, bus error,
retry, and burst-inhibited terminations. Note that for alternate bus master burst-inhibited
line transfers, the M68040 snoops each of the four resulting long-word transfers. If
snooping is disabled, MI is negated, and the M68040 counts the appropriate number of TA

or TEA assertions before proceeding. For example, if the SIZx signals are pulled high, the
M68040 requires four TA assertions, one TEA assertion, or one retry termination before
proceeding.

As a bus master, the M68040 can be configured to request snooping operations on a
page-by-page basis. The UPAx signals are connected to the SCx inputs of the snooping
processors. Appropriately programming the user attribute bits in the corresponding page
descriptor selects the required snooping operation for a page. Refer to Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V) for details on configuring
the caching mode and user attribute bits for each memory page for the M68040 and
MC68LC040, and refer to Appendix B MC68EC040 for the MC68EC040.

In a system with multiple bus masters, the memory unit must wait for each snooping bus
master to negate MI before responding to an access. A termination signal asserted before
the negation of MI leads to undefined operation and must be avoided at all costs. Also, if
the system contains multiple caching masters, then each master must access shared data
using write-through pages that allow writes to the data to be snooped by other masters.
The copyback caching mode is typically used for data local to a processor because in a
multimaster caching system only one master at a time can access a given page of
copyback data. The copyback caching mode also prevents multiple snooping processors
from intervening in a specific access.

7-60 M68040 USER’S MANUAL MOTOROLA

7.9.1 Snoop-Inhibited Cycle

For alternate bus master accesses in which the SCx signal encodings indicate that
snooping is inhibited (SCx = $0), the M68040 immediately negates MI and allows memory
to respond to the access. Snoop-inhibited alternate bus master accesses do not affect
performance of the processor since no cache lookups are required. Figure 7-40 illustrates
an example of a snoop-inhibited operation in which an alternate bus master is granted the
bus for an access. No matter what the values are on the SCx and TTx signals, MI is
asserted between bus cycles. Because MI is asserted while a cache lookup is performed,
snooping inherently degrades system performance.

MI is asserted from the last TA of the current bus cycle if the M68040 owns the bus and
loses it (see Figure 7-40). If an alternate bus master has the bus and loses it, there are
two different resulting cases. Usually, an idle clock occurs between the alternate bus
master’s cycle and the MC68040’s cycle. If so, MI is asserted during the idle clock and
negated from the same edge that the M68040 asserts the TS signal (see Figure 7-40). If
there is no idle clock, MI is not asserted. MI is asserted during and after reset until the first
bus cycle of the M68040. Even though snoop is inhibited, all TA or TEA assertions while
MI is asserted are ignored. If a line snoop is started, the M68040 still requires four TA

assertions.

MOTOROLA M68040 USER’S MANUAL 7-61

A31–A0

BCLK

D31–D0

TS

TA

ALTERNATE
MASTERPROCESSOR

BR

BG

BB

AM_BR

AM_BG

PROCESSOR

SC1, SC0

SIZ1, SIZ0

TT1, TT0

R/W

MI

C1 C2 C3 C1 C2 C3

Undefined

*

*

*AM indicates the alternate bus master.

Figure 7-40. Snoop-Inhibited Bus Cycle

7.9.2 Snoop-Enabled Cycle (No Intervention Required)

For alternate bus master accesses in which SCx = $1 or $2, indicating that snooping is
enabled, the M68040 continues to assert MI while checking for a matching cache line. If
intervention in the alternate bus master access is not required, MI is then negated, and
memory is allowed to respond and complete the access. Figure 7-41 illustrates an
example of snooping in which memory is allowed to respond. Best-case timing is

7-62 M68040 USER’S MANUAL MOTOROLA

illustrated, which results in a memory access having the equivalent of two wait states.
Variations in the timing required by snooping logic to access the caches can delay the
negation of MI by up to two additional clocks. External logic must ensure that the
termination signals negate at all rising BCLK edges in which MI is asserted. Otherwise, if
one of the termination signals is asserted, either the M68040 ignores all termination
signals, reading them as negated, or the M68040 exhibits improper operation.

A31–A0

BCLK

D31–D0

TS

TA

ALTERNATE
MASTER

BR

BG

BB

AM_BR

AM_BG

PROCESSOR

SC1–SC0

SIZ1, SIZ0

TT1, TT0

R/W

MI

C1 C2 C3 C4 C5 C6

Undefined

*

*AM indicates the alternate bus master.

*

Figure 7-41. Snoop Access with Memory Response

MOTOROLA M68040 USER’S MANUAL 7-63

7.9.3 Snoop Read Cycle (Intervention Required)

If snooping is enabled for a read access and the corresponding data cache line contains
dirty data, the M68040 inhibits memory and responds to the access as a slave device to
supply the requested read data. Intervention in a byte, word, or long-word access is
independent of which long-word entry in the cache line is dirty. Figure 7-42 illustrates an
alternate bus master line read that hits a dirty line in the M68040 data cache. The
processor asserts TA to acknowledge the transfer of data to the alternate bus master, and
the data bus is driven with the four long words of data for the line. The timing illustrated is
for a best-case response time. Variations in the timing required by snooping logic to
access the caches can delay the assertion of TA by up to two additional clocks.

7.9.4 Snoop Write Cycle (Intervention Required)

If snooping with sink data is enabled for a byte, word, or long-word write access and the
corresponding data cache line contains dirty data, the M68040 inhibits memory and
responds to the access as a slave device to read the data from the bus and update the
data cache line. The dirty bit is set for the long word changed in the cache line. Figure
7-43 illustrates a long-word write by an alternate bus master that hits a dirty line in the
M68040 data cache. The processor asserts TA to acknowledge the transfer of data from
the alternate master, and the processor reads the value on the data bus. The timing
illustrated is for a best-case response time. Variations in the timing required by snooping
logic to access the caches can delay the assertion of TA by up to two additional clocks.

7-64 M68040 USER’S MANUAL MOTOROLA

A31–A0

BCLK

D31–D0

TS

TA

ALTERNATE MASTER
LINE READ

BR

BG

BB

AM_BR

AM_BG

PROCESSOR

SC1, SC0

SIZ1, SIZ0

TT1, TT0

R/W

MI

C1 C2 C3 C4 C5 C6 C7 C8 C9

TA AND DATA DRIVEN BY PROCESSOR

MEMORY INHIBITED FROM RESPONDING

*

*

*AM indicates the alternate bus master.

Figure 7-42. Snooped Line Read, Memory Inhibited

MOTOROLA M68040 USER’S MANUAL 7-65

A31–A0

BCLK

D31–D0

TS

TA

ALTERNATE MASTER
LONG-WORD WRITE

BR

BG

BB

PROCESSOR

SC1, SC0

SIZ1, SIZ0

TT1, TT0

R/W

MI

C1 C2 C3 C4 C5 C6

TA DRIVEN BY PROCESSOR

MEMORY INHIBITED FROM RESPONDING

DATA WRITTEN BY ALTERNATE BUS MASTER

AM_BR

AM_BG

*

*

*AM indicates the alternate bus master.

Figure 7-43. Snooped Long-Word Write, Memory Inhibited

7.10 RESET OPERATION

An external device asserts the reset input signal (RSTI) to reset the processor. When
power is applied to the system, external circuitry should assert RSTI for a minimum of 10
BCLK cycles after VCC is within tolerance. Figure 7-44 is a functional timing diagram of
the power-on reset operation, illustrating the relationships among VCC, RSTI, mode
selects, and bus signals. The BCLK and PCLK clock signals are required to be stable by
the time VCC reaches the minimum operating specification. The VIH levels of the clocks

7-66 M68040 USER’S MANUAL MOTOROLA

should not exceed VCC while it is ramping up. RSTI is internally synchronized for two
BCLKS before being used and must meet the specified setup and hold times to BCLK
(specifications #51 and #52 in Section 11 MC68040 Electrical and Thermal
Characteristics) only if recognition by a specific BCLK rising edge is required. MI is
asserted while the M68040 is in reset.

BCLK

BUS
SIGNALS

+5 V

0 V

RSTI

TS

BR

CDIS, MDIS,
IPL2–IPL0

BG

BB

TIP

VCC

Undefined

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

Figure 7-44. Initial Power-On Reset Timing

Once RSTI negates, the processor is internally held in reset for another 128 clock cycles.
During the reset period, all signals that can be, are three-stated, and the rest are driven to
their inactive state. Once the internal reset signal negates, all bus signals continue to
remain in a high-impedance state until the processor is granted the bus. Afterwards, the
first bus cycle for reset exception processing begins. In Figure 7-44 the processor
assumes implicit bus ownership before the first bus cycle begins. The levels on CDIS,
MDIS, and IPL2–IPL0 are used to selectively enable the special modes of operation when
RSTI is negated. These signals should be driven to their normal levels before the end of
the 128-clock internal reset period.

MOTOROLA M68040 USER’S MANUAL 7-67

For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. Figure 7-45 illustrates timings associated with a reset when the
processor is executing bus cycles. Note that BB and TIP (and TA if driven during a
snooped access) are negated before transitioning to a three-state level.

BCLK

BUS
SIGNALS

RSTI

TS

BR

CDIS, MDIS,
IPL2–IPL0

BG

BB

TIP

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

Figure 7-45. Normal Reset Timing

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA

had been asserted. In addition, the processor initializes registers appropriately for a reset
exception. Section 8 Exception Processing describes exception processing. When a
RESET instruction is executed, the processor drives the reset out (RSTO) signal for 512
BCLK cycles. In this case, the processor resets the external devices of the system, and
the internal registers of the processor are unaffected. The external devices connected to
the RSTO signal are reset at the completion of the RESET instruction. An RSTI signal that
is asserted to the processor during execution of a RESET instruction immediately resets
the processor and causes the RSTO signal to negate. RSTO can be logically ANDed with
the external signal driving RSTI to derive a system reset signal that is asserted for both an
external processor reset and execution of a RESET instruction.

7-68 M68040 USER’S MANUAL MOTOROLA

7.11 SPECIAL MODES OF OPERATION

The MC68LC040 and MC68EC040 do not support the following three modes of operation,
which for the M68040 are selectively enabled during processor reset and remain in effect
until the next processor reset. Refer to Appendix A MC68LC040 and Appendix B
MC68EC040 for differences in the special modes of operation for the MC68LC040 and
MC68EC040.

7.11.1 Output Buffer Impedance Selection

All output drivers in the M68040 can be configured to operate in either a large buffer mode
(low-impedance driver) or small buffer mode (high-impedance driver). Large buffers have
a nominal output impedance of 6 Ω for both high and low drive, resulting in minimum
output delays. Signal traces driven by large buffers usually require transmission line
effects to be considered in their design, including the use of signal termination. Small
buffers have a nominal impedance of 25 Ω for high and low drive, resulting in longer
output delays and less critical board-design requirements. Refer to Section 11 MC68040
Electrical and Thermal Characteristics for further information on electrical
specifications, buffer characteristics, and transmission line design examples. The output
drivers are configured in three groups. Each group of signals is configured depending on
the corresponding IPL≈ signal level during processor reset (see Table 5-5).

7.11.2 Multiplexed Bus Mode

The multiplexed bus mode changes the timing of the three-state control logic for the
address and data buses to support generation of a multiplexed address/data bus. When
the M68040 is operating in this mode, the address and data bus signals can be hardwired
together to form a single 32-bit bus, with address and data information time-multiplexed on
the bus. This configuration minimizes the number of pins required to interface to
peripheral devices without requiring additional discrete multiplexing logic. This mode is
enabled during a processor reset by a logic zero on the CDIS signal.

Figure 7-46 illustrates a line write with multiplexed bus mode enabled. The address bus
drivers are enabled during C1 and disabled during C2. Later in C2, the data bus drivers
are enabled to drive the data bus with the data to be written. The address bus is only
driven for the BCLK rising edge at the start of each bus cycle.

MOTOROLA M68040 USER’S MANUAL 7-69

BCLK

SIZ1, SIZ0

TT1, TT0

TM2–TM0

D31–D0

UPA1, UPA0

CIOUT

TS

TIP

TA

R/W

C1 C2 C3 C4 C5

A31–A0

TLN1, TLN0

NOTE: The selected device increments the value of A3 and A2.

10 11 0001A1, A0 =

Figure 7-46. Multiplexed Address and Data Bus (Line Write)

7.11.3 Data Latch Enable Mode

The data latch enable (DLE) mode allows read data to be latched by the assertion of the
DLE signal instead of by the BCLK rising edge at the end of each transfer. In some
applications, this mode can reduce the number of clocks required to perform line burst
reads. A logic zero on the MDIS enables this mode during a processor reset.

Figure 7-47 illustrates a conceptual block diagram of the logic used to latch the read data
bus in DLE mode. The DLE signal controls transparent latch A, which allows data to be
latched before the rising edge of BCLK. Latch A operates transparently when DLE is
negated and latches the level on the data bus when DLE is asserted. Note that the DLE
signal only controls latching of the read data and does not affect termination of the bus

7-70 M68040 USER’S MANUAL MOTOROLA

transfer. Edge-triggered latch B is clocked by the rising edge of BCLK and latches the
data from latch A for use by internal logic.

D Q D Q

G

TRANSPARENT
LATCH - A

EDGE-TRIGGERED
LATCH - B

DLE BCLK

TA, TEA, TBI
TERMINATION
CONTROL

LATCHED
READ DATA

WRITE DATA

EXTERNAL
DATA BUS

Figure 7-47. DLE Mode Block Diagram

Figure 7-48 illustrates the data read timing for both normal operation and DLE mode.
During normal operation (i.e., DLE mode disabled), latch A is always transparent, and by
the rising edge of BCLK, read data is latched. Data must meet setup and hold time
specifications #15 and #16 in this case. When the DLE mode is enabled, the data can be
latched by the rising edge of BCLK or the falling edge of DLE, depending on the timing for
DLE.

MOTOROLA M68040 USER’S MANUAL 7-71

36

BCLK

D0–D31 IN
(READ)

DLE

TA

DLE MODE DATA BUS TIMING

BCLK

D0–D31 IN
(READ)

TA

15

16

NORMAL DATA BUS TIMING

CASE 1 CASE 2

32
33

3431

3637

35

Figure 7-48. DLE versus Normal Data Read Timing

Case 1
If DLE is negated and meets setup time specification #35 to the rising edge of BCLK
when the bus read is terminated, latch A is transparent, and the read data must meet
setup and hold time specifications #36 and #37 to the rising edge of BCLK. Read timing
is similar to normal timing for this case.

Case 2
If DLE is asserted, the data bus levels are latched and held internally. D31–D0 must
meet setup and hold time specifications #32 and #33 to the falling edge of DLE, and can
transition to a new level once DLE is asserted. D31–D0 must still meet setup time
specification #36 to BCLK, but not hold time specification #37, since the data is
internally held valid as long as DLE remains asserted low.

MOTOROLA M68040 USER’S MANUAL 8-1

SECTION 8
EXCEPTION PROCESSING

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include execution of the routine itself. This section describes the
processing for each type of integer unit exception, exception priorities, the return from an
exception, and bus fault recovery. This section also describes the formats of the exception
stack frames. For details on floating-point exceptions refer to Section 9 Floating-Point
Unit (MC68040 Only).

NOTE

For the MC68040V, MC68LC040, MC68EC040, and
MC68EC040V ignore all references to floating-point, including
any instructions that begin with an “F”. Also, for the
MC68EC040 and MC68EC040V ignore all references to the
memory management unit (MMU) and the instructions
PFLUSH and PTEST. The functionality of the MC68040
transparent translation register has been changed in the
MC68EC040 and MC68EC040V to the access control registers
(ACR). Refer to Appendix A MC68LC040 and Appendix B
MC68EC040 for details.

8.1 EXCEPTION PROCESSING OVERVIEW

Exception processing is the transition from the normal processing of a program to the
processing required for any special internal or external condition that preempts normal
processing. External conditions that cause exceptions are interrupts from external
devices, bus errors, and resets. Internal conditions that cause exceptions are instructions,
address errors, and tracing. For example, the TRAP, TRAPcc, FTRAPcc, CHK, RTE, DIV,
and FDIV instructions can generate exceptions as part of their normal execution. In
addition, illegal instructions, unimplemented floating-point instructions and data types, and
privilege violations cause exceptions. Exception processing uses an exception vector
table and an exception stack frame. The following paragraphs describe the vector table
and a generalized exception stack frame.

The M68040 uses a restart exception processing model to minimize interrupt and
instruction latency and to reduce the size of the stack frame (compared to the frame
required for a continuation model). Exceptions are recognized at each instruction
boundary in the execute stage of the integer pipeline and force later instructions that have
not yet reached the execute stage to be aborted. Instructions that cannot be interrupted,

8-2 M68040 USER’S MANUAL MOTOROLA

such as those that generate locked bus transfers or access serialized pages, are allowed
to complete before exception processing begins.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not
guaranteed to occur in the order in which they are described in this section. Figure 8-1
illustrates a general flowchart for the steps taken by the processor during exception
processing.

During the first step, the processor makes an internal copy of the status register (SR).
Then the processor changes to the supervisor mode by setting the S-bit and inhibits
tracing of the exception handler by clearing the trace enable (T1 and T0) bits in the SR.
For the reset and interrupt exceptions, the processor also updates the interrupt priority
mask in the SR.

During the second step, the processor determines the vector number for the exception.
For interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the
vector number. For all other exceptions, internal logic provides the vector number. This
vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, vector numbers are given in decimal notation.

MOTOROLA M68040 USER’S MANUAL 8-3

EXIT

FETCH VECTOR
NUMBER

(DOUBLE BUS FAULT)

EXECUTE EXCEPTION
HANDLER

EXIT

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

SAVE CONTENTS
TO STACK FRAME

(SEE NOTE)

PREFETCH 4
LONG WORDS

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE
BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

HALTED STATE
(PST3–PST0 = $5)

OTHERWISE

SAVE INTERNAL
COPY OF SR

S 1
T1, T0 0

(SEE NOTE)

NOTE: These blocks vary for reset and interrupt exceptions.

➧
➧

Figure 8-1. General Exception Processing Flowchart

8-4 M68040 USER’S MANUAL MOTOROLA

The third step is to save the current processor contents for all exceptions other than reset.
The processor creates one of five exception stack frame formats on the active supervisor
stack and fills it with information appropriate for the type of exception. Other information
can also be stacked, depending on which exception is being processed and the state of
the processor prior to the exception. If the exception is an interrupt and the M-bit of the
SR is set, the processor clears the M-bit and builds a second stack frame on the interrupt
stack. Figure 8-2 illustrates the general form of the exception stack frame.

STATUS REGISTER

PROGRAM COUNTER

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2 OR 26 WORDS, IF NEEDED)

15 12 0

SP

Figure 8-2. General Form of Exception Stack Frame

The last step initiates execution of the exception handler. The processor multiplies the
vector number by four to determine the exception vector offset. It adds the offset to the
value stored in the vector base register (VBR) to obtain the memory address of the
exception vector. Next, the processor loads the program counter (PC) (and the interrupt
stack pointer (ISP) for the reset exception) from the exception vector table entry. After
prefetching the first four long words to fill the instruction pipe, the processor resumes
normal processing at the address in the PC. When the processor executes an RTE
instruction, it examines the stack frame on top of the active supervisor stack to determine
if it is a valid frame and what type of context restoration it requires.

All exception vectors are located in the supervisor address space and are accessed using
data references. Only the initial reset vector is fixed in the processor’s memory map; once
initialization is complete, there are no fixed assignments. Since the VBR provides the base
address of the exception vector table, the exception vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that an operating system
executes.

The M68040 supports a 1024-byte vector table containing 256 exception vectors (see
Table 8-1). Motorola defines the first 64 vectors and reserves the other 192 vectors for
user-defined interrupt vectors. External devices can use vectors reserved for internal
purposes at the discretion of the system designer. External devices can also supply vector
numbers for some exceptions. External devices that cannot supply vector numbers use
the autovector capability, which allows the M68040 to automatically generate a vector
number.

MOTOROLA M68040 USER’S MANUAL 8-5

Table 8-1. Exception Vector Assignments

Vector
Number(s)

Vector Offset
(Hex) Assignment

0
1
2
3

000
004
008
00C

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Access Fault
Address Error

4
5
6
7

010
014
018
01C

Illegal Instruction
Integer Divide by Zero
CHK, CHK2 Instruction
FTRAPcc, TRAPcc, TRAPV Instructions

8
9
10
11

020
024
028
02C

Privilege Violation
Trace
Line 1010 Emulator (Unimplemented A-Line Opcode)
Line 1111 Emulator (Unimplemented F-Line Opcode)

12
13
14
15

030
034
038
03C

(Unassigned, Reserved)
Defined for MC68020 and MC68030, not used by M68040
Format Error
Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)

24
25
26
27

060
064
068
06C

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0–15 Instruction Vectors

48–55 0C0–0DC Floating-Point Exception Vectors (see Note)

56
57
58

0E0
0E4
0E8

Defined for MC68030 and MC68851, not used by M68040
Defined for MC68851, not used by M68040
Defined for MC68851, not used by M68040

59–63 0EC–0FC (Unassigned, Reserved)

64–255 100–3FC User Defined Vectors (192)

NOTE: Refer to Section 9 Floating-Point Unit (MC68040 Only).

8.2 INTEGER UNIT EXCEPTIONS

The following paragraphs describe the external interrupt exceptions and the different types
of exceptions generated internally by the M68040 integer unit. The following exceptions
are discussed:

• Access Fault

• Address Error

• Instruction Trap

• Illegal and Unimplemented Instructions

• Privilege Violation

8-6 M68040 USER’S MANUAL MOTOROLA

• Trace

• Format Error

• Breakpoint Instruction

• Interrupt

• Reset

8.2.1 Access Fault Exception

An access fault exception occurs when a data or instruction prefetch access faults due to
either an external bus error or an internal access fault. Both types of access faults are
treated identically and the access fault exception handler or a status bit in the access fault
stack frame distinguishes them. An access fault exception may or may not be taken
immediately, depending on whether the faulted access specifically references data
required by the execution unit or whether there are any other exceptions that can occur,
allowing the execution pipeline to idle.

An external access fault (bus error) occurs when external logic aborts a bus cycle and
asserts the TEA input signal. A bus error on a data write access always results in an
access fault exception, causing the processor to begin exception processing immediately.
A bus error on a data read also causes exception processing to begin immediately if the
access is a byte, word, or long-word access or if the bus error occurs on the first transfer
of a line read. Bus errors on the second, third, or fourth transfers for a data line read
cause the transfer to be aborted, but result in a bus error only if the execution unit is
specifically requesting the long word being transferred. For example, if a misaligned
operand spans the first two long words in the line being read, a bus error on the second
transfer causes an exception, but a bus error on the third or last transfer does not, unless
the execution unit has generated another operand access that references data in these
transfers.

Bus errors that occur during instruction prefetches are deferred until the processor
attempts to use the information. For instance, if a bus error occurs while prefetching other
instructions after a change-of-flow instruction (BRA, JMP, JSR, TRAP#n, etc.), BRA, JMP,
JSR, TRAP#n execution of the new instruction flow clears the exception condition. This
also applies to the not-taken branch for a conditional branch instruction, even though both
sides of the branch are decoded.

Processor accesses for either data or instructions can result in internal access faults.
Internal access faults must be corrected to complete execution of the current context. Four
types of internal access faults can occur:

1. Push transfer faults occur when the execution unit is idle, the integer unit pipeline is
frozen, the instruction and data cache requests are cancelled (however, writes are
not lost), and pending writes are stacked.

2. Data access faults occur when the bus controller and the execution unit are idle. A
data access fault freezes the pipeline and cancels any pending instruction cache
accesses. Pending writes are stacked because the data cache is deadlocked until
stacking transfers are initiated.

MOTOROLA M68040 USER’S MANUAL 8-7

3. Instruction access faults occur when the PC section is deadlocked because of the
faulted data or another prefetch is required, the copyback stage is empty, and the
data cache and bus controller are idle. Since instruction access faults are reset, they
can be ignored.

4. An internal access fault also occurs when the data or instruction MMU detects that a
successful address translation is not possible because the page is write protected,
supervisor only, or nonresident. Furthermore, when an address translation cache
(ATC) miss occurs, the processor searches the translation tables in memory for the
mapping, and then retries the access. If a valid translation for the logical address is
not available due to a problem encountered during the table search, an internal
access fault occurs when the aborted access is retried. The problem encountered
could be either an invalid descriptor or the assertion of the TEA signal during a bus
cycle used to access the translation tables. A miss in the ATC causes the processor
to automatically initiate a table search but does not cause an internal access fault
unless one of the three previous conditions is encountered. However, this is not true
if the memory management unit (MMU) is disabled.

When an exception is detected, all parts of the execution unit either remain or are forced
to idle, at which time the highest priority exception is taken. Restarting the instruction or a
user-defined supervisor cleanup exception handler routine regenerates lower priority
exceptions on the return from exception handling. Internal access faults and bus errors
are reported after all other pending integer instructions complete execution. If an
exception is generated during completion of the earlier instructions, the pending
instruction fault is cleared, and the new exception is serviced first. The processor restarts
the pending prefetch after completing exception handling for the earlier instructions and
takes a bus error exception if the access faults again. For data access faults, the
processor aborts current instruction execution. If a data access fault is detected, the
processor waits for the current instruction prefetch bus cycle to complete, then begins
exception processing immediately.

As illustrated in Figure 8-1, the processor begins exception processing for an access fault
by making an internal copy of the current SR. The processor then enters the supervisor
mode and clears T1 and T0. The processor generates exception vector number 2 for the
access fault vector. It saves the vector offset, PC, and internal copy of the SR on the
stack. The saved PC value is the logical address of the instruction executing at the time
the fault was detected. This instruction is not necessarily the one that initiated the bus
cycle since the processor overlaps execution of instructions. It also saves information to
allow continuation after a fault during a MOVEM instruction and to support other pending
exceptions. The faulted address and pending write-back information is saved. The
information saved on the stack is sufficient to identify the cause of the bus error, complete
pending write-backs, and recover from the error. The exception handler must complete the
pending write-backs. Up to three write-backs can be pending for push errors and data
access errors.

If a bus error occurs during the exception processing for an access fault, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs, and the processor enters the
halted state as indicated by the PST3–PST0 encoding $5. In this case, the processor

8-8 M68040 USER’S MANUAL MOTOROLA

does not attempt to alter the current state of memory. Only an external reset can restart a
processor halted by a double bus fault.

The supervisor stack has special requirements to ensure that exceptions can be stacked.
The stack must be resident with correct protection in the direction of growth to ensure that
exception stacking never has a bus error or internal access fault. Memory pages allocated
to the stack that are higher in memory than the current stack pointer can be nonresident
since an RTE or FRESTORE instruction can check for residency and trap before restoring
the state.

A special case exists for systems that allow arbitration of the processor bus during locked
transfer sequences. If the arbiter can signal a bus error of a locked translation table
update due to an improperly broken lock, any pages touched by exception stack
operations must have the U-bit set in the corresponding page descriptor to prevent the
occurrence of the locked access during translation table searches.

8.2.2 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This includes the case of a conditional branch instruction with an
odd branch offset that is not taken. A prefetch bus cycle is not executed, and the
processor begins exception processing after the currently executing instructions have
completed. If the completion of these instructions generates another exception, the
address error exception is deferred, and the new exception is serviced. After exception
processing for the address error exception commences, the sequence is the same as an
access fault exception, except that the vector number is 3 and the vector offset in the
stack frame refers to the address error vector. The stack frame is generated containing
the address of the instruction that caused the address error and the address itself (A0 is
cleared). If an address error occurs during the exception processing for a bus error,
address error, or reset, a double bus fault occurs.

8.2.3 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP#n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, FTRAPcc, TRAPV, CHK, and CHK2 instructions force exceptions if the user
program detects an error, which can be an arithmetic overflow or a subscript value that is
out of bounds. The DIVS and DIVU instructions force exceptions if a division operation is
attempted with a divisor of zero.

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies
the SR, enters the supervisor mode, and clears T1 and T0. The processor generates a
vector number according to the instruction being executed. Vector 5 is for DIVx, vector 6 is
for CHK and CHK2, and vector 7 is for FTRAPcc, TRAPcc, and TRAPV instructions. For
the TRAP#n instruction, the vector number is 32 plus n. The stack frame saves the trap
vector offset, the PC, and the internal copy of the SR on the supervisor stack. The saved
value of the PC is the logical address of the instruction following the instruction that
caused the trap. For all instruction traps other than TRAP#n, a pointer to the instruction

MOTOROLA M68040 USER’S MANUAL 8-9

that caused the trap is also saved. Instruction execution resumes at the address in the
exception vector after the required instruction is prefetched.

8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions

An illegal instruction exception corresponds to vector number 4, and occurs when the
processor attempts to execute an illegal instruction. An illegal instruction is an instruction
that contains any bit pattern that does not correspond to the bit pattern of a valid M68040
instruction. An illegal instruction exception is also taken after a breakpoint acknowledge
bus cycle is terminated, either by the assertion of the transfer acknowledge (TA) or the
transfer error acknowledge (TEA) signal. An illegal instruction exception can also be a
MOVEC instruction with an undefined register specification field in the first extension
word.

Instruction word patterns with bits 15–12 equal to $A do not correspond to legal
instructions for the M68040 and are treated as unimplemented instructions. $A word
patterns are referred to as an unimplemented instruction with A-line opcodes. When the
processor attempts to execute an unimplemented instruction with an A-line opcode, an
exception is generated with vector number 10, permitting efficient emulation of
unimplemented instructions. For instruction word patterns with bits 15–12 equal to $F refer
to Section 9 Floating-Point Unit (MC68040 Only).

Exception processing for illegal and unimplemented instructions is similar to that for
instruction traps. When the processor has identified an illegal or unimplemented
instruction, it initiates exception processing instead of attempting to execute the
instruction. The processor copies the SR, enters the supervisor mode, and clears T1 and
T0, disabling further tracing. The processor generates the vector number, either 4 or 10,
according to the exception type. The illegal or unimplemented instruction vector offset,
current PC, and copy of the SR are saved on the supervisor stack, with the saved value of
the PC being the address of the illegal or unimplemented instruction. Instruction execution
resumes at the address contained in the exception vector. It is the responsibility of the
exception handling routine to adjust the stacked PC if the instruction is emulated in
software or is to be skipped on return from the exception handler.

8.2.5 Privilege Violation Exception

To provide system security, some instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR FSAVE MOVEC PTEST

CINV MOVE from SR MOVES RESET

CPUSH MOVE to SR ORI to SR RTE

EORI to SR MOVE USP PFLUSH STOP

FRESTORE

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before

8-10 M68040 USER’S MANUAL MOTOROLA

executing the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters
the supervisor mode, and clears the trace bits. The processor generates vector number 8,
saves the privilege violation vector offset, the current PC value, and the internal copy of
the SR on the supervisor stack. The saved value of the PC is the logical address of the
first word of the instruction that caused the privilege violation. Instruction execution
resumes after the required prefetches from the address in the privilege violation exception
vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an instruction-by-instruction
tracing capability. The M68040 can be programmed to trace all instructions or only
instructions that change program flow. In the trace mode, an instruction generates a trace
exception after the instruction completes execution, allowing a debugging program to
monitor execution of a program.

In general terms, a trace exception is an extension to the function of any traced
instruction. The execution of a traced instruction is not complete until trace exception
processing is complete. If an instruction does not complete due to an access fault or
address error exception, trace exception processing is deferred until after execution of the
suspended instruction is resumed. If an interrupt is pending at the completion of an
instruction, trace exception processing occurs before interrupt exception processing starts.
If an instruction forces an exception as part of its normal execution, the forced exception
processing occurs before the trace exception is processed.

The T1 and T0 bits in the supervisor portion of the SR control tracing. The state of these
bits when an instruction begins execution determines whether the instruction generates a
trace exception after the instruction completes. T1 and T0 bit = $1 causes an instruction
that forces a change of flow to take a trace exception. The following instructions cause a
trace exception to be taken when trace on change of flow is enabled.

ANDI to SR CAS2 FBcc (Taken) JMP MOVES RTD

Bcc (Taken) CINV FDBcc (Always) JSR NOP RTE

BRA CPUSH FMOVEM MOVE to SR ORI to SR RTR

BSR DBcc (Taken) FRESTORE MOVE USP PFLUSH RTS

CAS EORI to SR FSAVE MOVEC PTEST STOP

Instructions that increment the PC normally do not take the trace exception. This mode
also includes SR manipulations because the processor must prefetch instruction words
again to fill the pipeline any time an instruction that modifies the SR is executed. Table 8-2
lists the different trace modes.

MOTOROLA M68040 USER’S MANUAL 8-11

Table 8-2. Tracing Control

T1 T0 Tracing Function

0 0 No Tracing

0 1 Trace on Change of Flow

1 0 Trace on Instruction Execution (Any Instruction)

1 1 Undefined, Reserved

When the processor is in the trace mode and attempts to execute an illegal or
unimplemented instruction, that instruction does not cause a trace exception since the
instruction is not executed. This is of particular importance to an instruction emulation
routine that performs the instruction function, adjusts the stacked PC to skip the
unimplemented instruction, and returns. Before returning, the trace bits of the SR on the
stack should be checked. If tracing is enabled, the trace exception processing should also
be emulated for the trace exception handler to account for the emulated instruction.

Trace exception processing starts at the end of normal processing for the traced
instruction and before the start of the next instruction. As illustrated in Figure 8-1, the
processor makes an internal copy of the SR, and enters the supervisor mode. It also
clears the T1 and T0 bits of the SR, disabling further tracing. The processor supplies
vector number 9 for the trace exception and saves the trace exception vector offset, PC
value, and the internal copy of the SR on the supervisor stack. The saved value of the PC
is the logical address of the next instruction to be executed. Instruction execution resumes
after the required prefetches from the address in the trace exception vector.

When the STOP instruction is traced, the processor never enters the stopped condition. A
STOP instruction that begins execution with the trace bits equal to $3 forces a trace
exception after it loads the SR. Upon return from the trace exception handler, execution
continues with the instruction following the STOP instruction, and the processor never
enters the stopped condition.

8.2.7 Format Error Exception

Just as the processor checks for valid prefetched instructions, it also performs some
checks of data values for control operations. The RTE instruction checks the validity of the
stack format code. For floating-point unit (FPU) state frames, the FRESTORE instruction
compares the internal version number of the processor to that contained in the state frame
(refer to Section 9 Floating-Point Unit (MC68040 Only)). This check ensures that the
processor can correctly interpret internal FPU state information from the state frame. If
any of these checks determine that the format of the data is improper, the instruction
generates a format error exception. This exception saves a stack frame, generates
exception vector number 14, and continues execution at the address in the format
exception vector. The stacked PC value is the logical address of the instruction that
detected the format error.

8-12 M68040 USER’S MANUAL MOTOROLA

8.2.8 Breakpoint Instruction Exception

To use the M68040 in a hardware emulator, the processor must provide a means of
inserting breakpoints in the emulator code and performing appropriate operations at each
breakpoint. Inserting an illegal instruction at the breakpoint and detecting the illegal
instruction exception from its vector location can achieve this. However, since the VBR
allows arbitrary relocation of exception vectors, the exception address cannot reliably
identify a breakpoint. Consequently, the processor provides a breakpoint capability with a
set of breakpoint exceptions, $4848–$484F.

When the M68040 executes a breakpoint instruction, it performs a breakpoint
acknowledge cycle (read cycle) with an acknowledge transfer type and transfer modifier
value of $0. Refer to Section 7 Bus Operation for a description of the breakpoint
acknowledge cycle. After external hardware terminates the bus cycle with either TA or
TEA, the processor performs illegal instruction exception processing.

8.2.9 Interrupt Exception

When a peripheral device requires the services of the M68040 or is ready to send
information that the processor requires, it can signal the processor to take an interrupt
exception using the active-low IPL2–IPL0 signals. The three signals encode a value of 0–7
(IPL0 is the least significant bit). High levels on all three signals correspond to no interrupt
requested (level 0). Values 1–7 specify one of seven levels of interrupts, with level 7
having the highest priority. Table 8-3 lists the interrupt levels, the states of IPL2–IPL0 that
define each level, and the SR interrupt mask value that allows an interrupt at each level.

Table 8-3. Interrupt Levels and Mask Values

Requested Control Line Status Interrupt Mask Level
Interrupt Level

IPL2 IPL1 IPL0

Required for Recognition

0 High High High No Interrupt Requested

1 High High Low 0

2 High Low High 0–1

3 High Low Low 0–2

4 Low High High 0–3

5 Low High Low 0–4

6 Low Low High 0–5

7 Low Low Low 0–7

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10–8), the processor makes the request a pending interrupt. Priority level
7, the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by
the interrupt priority mask, and they are transition sensitive. The processor recognizes an
interrupt request each time the external interrupt request level changes from some lower
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the M68040 processes a

MOTOROLA M68040 USER’S MANUAL 8-13

level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering
the handler routine so that subsequent level 6 interrupts and lower level interrupts are
masked. Provided no instruction that lowers the mask value is executed, the external
request can be lowered to level 3 and then raised back to level 6 and a second level 6
interrupt is not processed. However, if the M68040 is handling a level 7 interrupt (SR
mask set to level 7) and the external request is lowered to level 3 and than raised back to
level 7, a second level 7 interrupt is processed. The second level 7 interrupt is processed
because the level 7 interrupt is transition sensitive. A level comparison also generates a
level 7 interrupt if the request level and mask level are at 7 and the priority mask is then
set to a lower level (with the MOVE to SR or RTE instruction, for example). The level 6
interrupt request and mask level example in Figure 8-3 is the same as for all interrupt
levels except 7.

8-14 M68040 USER’S MANUAL MOTOROLA

EXTERNAL
IPL2–IPL0

INTERRUPT PRIORITY
MASK (I2–I0) ACTION

LE
VE

L
6

EX
AM

PL
E

(INITIAL CONDITIONS)100 ($3) 101 ($5)

(LEVEL COMPARISON)IF	 001 ($6)	 THEN	 110 ($6)	 AND	 LEVEL 6 INTERRUPT

IF	 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(TRANSITION)

(INITIAL CONDITIONS)100 ($3) 101 ($5)

IF	 000 ($7)	 THEN	 111 ($7)	 AND	 LEVEL 7 INTERRUPT

IF	 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN NO ACTION

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

LE
VE

L
7

EX
AM

PL
E

Figure 8-3. Interrupt Recognition Examples

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1–6 from
being recognized. In addition, neither masks a transition to an interrupt request level of 7.
The only difference between mask values of 6 and 7 occurs when the interrupt request
level is 7 and the mask value is 7. If the mask value is lowered to 6, a second level 7
interrupt is recognized.

External circuitry can chain or otherwise merge signals from devices at each level,
allowing an unlimited number of devices to interrupt the processor. When several devices
are connected to the same interrupt level, each device should hold its interrupt priority
level constant until its corresponding interrupt acknowledge bus cycle ensures that all
requests are processed. Refer to Section 7 Bus Operation for details on the interrupt
acknowledge cycle.

MOTOROLA M68040 USER’S MANUAL 8-15

Figure 8-4 illustrates a flowchart for interrupt exception processing. When processing an
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of
the interrupt being serviced. The processor attempts to obtain a vector number from the
interrupting device using an interrupt acknowledge bus cycle with the interrupt level
number output on the transfer modifier signals. For a device that cannot supply an
interrupt vector, the autovector signal (AVEC) must be asserted. In this case, the M68040
uses an internally generated autovector, which is one of vector numbers 25–31, that
corresponds to the interrupt level number (see Table 8-1). If external logic indicates a bus
error during the interrupt acknowledge cycle, the interrupt is considered spurious, and the
processor generates the spurious interrupt vector number, 24.

Once the vector number is obtained, the processor saves the exception vector offset, PC
value, and the internal copy of the SR on the active supervisor stack. The saved value of
the PC is the logical address of the instruction that would have been executed had the
interrupt not occurred.

If the M-bit of the SR is set, the processor clears the M-bit and creates a throwaway
exception stack frame on top of the interrupt stack as part of interrupt exception
processing. This second frame contains the same PC value and vector offset as the frame
created on top of the master stack, but has a format number of $1. The copy of the SR
saved on the throwaway frame has the S-bit set, the M-bit clear, and the interrupt mask
level set to the new interrupt level. It may or may not be set in the copy saved on the
master stack. The resulting SR (after exception processing) has the S-bit set and the M-bit
cleared. The processor loads the address in the exception vector into the PC, and normal
instruction execution resumes after the required prefetches for the interrupt handler
routine.

Most M68000 family peripherals use programmable interrupt vector numbers as part of
the interrupt acknowledge operation for the system. If this vector number is not initialized
after reset and the peripheral must acknowledge an interrupt request, the peripheral
usually returns the vector number for the uninitialized interrupt vector, 15.

8-16 M68040 USER’S MANUAL MOTOROLA

EXIT

FETCH VECTOR
FROM INTERRUPTING

DEVICE

PREFETCH FOUR
LONG WORDS

VECTOR ➧ PC

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

HALTED STATE
(PST3–PST0 = $5)

ENTRY

EXIT

SAVE INTERNAL
COPY OF SR

 S
T1, T0

I2–I0

 1
00
LEVEL OF
INTERUPT

=
=
=

AUTOVECTOR 25–31

SPURIOUS INTERRUPT
VECTOR #24

BUS ERROR

IF NO VECTOR #

OTHERWISE

IF M = 0
THEN VECTOR OFFSET,
PC, AND SR ➧ ACTIVE
STACK FRAME

M ➧ 0; VECTOR
OFFSET, PC, AND SR
➧ THROWAWAY
STACK FRAME ON ISP

(DOUBLE BUS FAULT)

Figure 8-4. Interrupt Exception Processing Flowchart

MOTOROLA M68040 USER’S MANUAL 8-17

8.2.10 Reset Exception

Asserting the reset in (RSTI) input signal causes a reset exception. The reset exception
has the highest priority of any exception; it provides for system initialization and recovery
from catastrophic failure. Reset also aborts any processing in progress when RSTI is
recognized; processing cannot be recovered. Figure 8-5 is a flowchart of the reset
exception processing.

The reset exception places the processor in the interrupt mode of the supervisor privilege
mode by setting the S-bit and clearing the M-bit and disables tracing by clearing the T1
and T0 bits in the SR. This exception also sets the processor’s interrupt priority mask in
the SR to the highest level, level 7. Next the VBR is initialized to zero ($00000000), and
the enable bits in the cache control register (CACR) for the on-chip caches are cleared.
The reset exception also clears the enable bit but does not affect page size in the
translation control registers. It clears the enable bit in each of the four transparent
translation registers. An interrupt acknowledge bus cycle is begun to generate a vector
number. This vector number references the reset exception vector (two long words, vector
numbers 0 and 1) at offset zero in the supervisor address space. The first long word is
loaded into the interrupt stack pointer, and the second long word is loaded into the PC.
Reset exception processing concludes with the prefetch of the first four long words
beginning at the memory location pointed to by the PC.

8-18 M68040 USER’S MANUAL MOTOROLA

EXIT

FETCH VECTOR #0

FETCH VECTOR #1

PREFETCH 4
LONG WORDS

(DOUBLE BUS FAULT)

SPVECTOR #0 ➧

VECTOR #1

 S
M

T1, T0
I2:I0
VBR

CACR
DTTn[E-bit]
ITTn[E-bit]

1
0
0
$7
$0
$0
0
0=

=
=
=
=
=
=
=

EXIT

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE
BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

HALTED STATE
(PST3–PST0 = $5)

OTHERWISE

PC➧

Figure 8-5. Reset Exception Processing Flowchart

After the initial instruction is prefetched, program execution begins at the address in the
PC. The reset exception does not flush the ATCs or invalidate entries in the instruction or
data caches; it does not save the value of either the PC or the SR. If an access fault or
address error occurs during the exception processing sequence for a reset, a double bus
fault is generated. The processor halts, and the processor status (PST3–PST0) signals
indicate $5. Execution of the reset instruction does not cause a reset exception, or affect

MOTOROLA M68040 USER’S MANUAL 8-19

any internal registers, but it does cause the M68040 to assert the reset out (RSTO) signal,
resetting all external devices.

8.3 EXCEPTION PRIORITIES

When several exceptions occur simultaneously, they are processed according to a fixed
priority. Table 8-4 lists the exceptions, grouped by characteristics. Each group has a
priority, from 0–7, with 0 as the highest priority.

Table 8-4. Exception Priority Groups

Group/
Priority

Exception and Relative Priority Characteristics

0 Reset Aborts all processing (instruction or exception) and does not
save old context.

1 Data Access Error
(ATC Fault or Bus Error)

Aborts current instructions; can have pending trace, floating-
point post-instruction, or unimplemented floating-point
instruction exceptions.

2 Floating-Point Pre-Instruction* Exception processing begins before current floating-point
instruction is executed. Instruction is restarted on return from
exception.

3 BKPT #n, CHK, CHK2, Divide by Zero,
FTRAPcc, RTE, TRAP#n, TRAPV

Illegal Instruction, Unimplemented A- and
F-Line, Privilege Violation

Unimplemented Floating-Point Instruction*

Exception processing is part of instruction execution.

Exception processing begins before instruction is executed.

Exception processing begins after memory operands are
fetched and before instruction is executed.

4 Floating-Point Post-Instruction* Only reported for FMOVE to memory. Exception processing
begins when FMOVE instruction and previous exception
processing have completed.

5 Address Error Reported after all previous instructions and associated
exceptions have completed.

6 Trace Exception processing begins when current instruction or
previous exception processing has completed.

7 Instruction Access Error
(ATC Fault or Bus Error)

Reported after all previous instructions and associated
exceptions have completed.

8 Interrupt Exception processing begins when current instruction or
previous exception processing has completed.

* Refer to Section 9 Floating-Point Unit (MC68040 Only) for details concerning floating-point instructions.

The method used to process exceptions in the M68040 is significantly different from that
used in earlier members of the M68000 processor family due to the restart exception
model. In general, when multiple exceptions are pending, the exception with the highest
priority is processed first, and the remaining exceptions are regenerated when the current
instruction restarts. Note that the reset operation clears all other exceptions except in the
following circumstances:

• As soon as the M68040 has completed exception processing for a condition when an
interrupt exception is pending, it begins exception processing for the interrupt

8-20 M68040 USER’S MANUAL MOTOROLA

exception instead of executing the exception handler for the original exception
condition. For example, if simultaneous interrupt and trap exceptions are pending, the
exception processing for the trap exception occurs first, followed immediately by
exception processing for the interrupt. When the processor resumes normal
instruction execution, it is in the interrupt handler, which returns to the trap exception
handler.

• Exception processing for access error exceptions creates a format $7 stack frame
that contains status information that can indicate a pending trace, floating-point post-
instruction, or unimplemented floating-point instruction exception. The RTE instruction
used to return from the access error exception handler checks the status bits for one
of these pending exceptions. If one is indicated, the RTE changes the access error
stack frame to match the pending exception and fetches the vector for the exception.
Instruction execution then resumes in the new exception handler.

• If an access error, trace, and one of the two (mutually exclusive) floating-point
exceptions occur simultaneously, the pending floating-point exception is indicated in
the access error stack and the trace exception flag is undefined. The exception
handler for the floating-point exception must check the trace bits on the stack and call
the trace handler directly (after adjusting the stack frame to match the format for the
trace exception).

• If a trace exception is pending at the same time an exception priority level 3 or
floating-point post-instruction exception is pending, the trace exception is not
reported, and the exception handler for the other exception condition must check for
the trace condition.

8.4 RETURN FROM EXCEPTIONS

After the processor has completed executing the exception handlers for all pending
exceptions, the processor resumes normal instruction execution at the address in the
processor’s vector table for the last exception processed. Once the exception handler has
completed execution, if possible the processor must return the system context as it was
prior to the exception using the RTE instruction. (If the internal data of the exception stack
frames are manipulated, M68040 may enter into an undefined state; this applies
specifically to the SSW on the access error stack frame.)

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. If during restoration, a stack frame has an odd address PC and an
SR that indicates user trace mode enabled, then an address error is taken. The SR
stacked for the address error has the SR S-bit set. For previous members of the M68000
family the S-bit is clear. When the M68040 writes or reads a stack frame, it uses long-
word operand transfers wherever possible. Using a long-word-aligned stack pointer
greatly enhances exception processing performance. The processor does not necessarily
read or write the stack frame data in sequential order. The system software should not
depend on a particular exception generating a particular stack frame. For compatibility
with future devices, the software should be able to handle any format of stack frame for
any type of exception. The following paragraphs discuss in detail each stack frame format.

MOTOROLA M68040 USER’S MANUAL 8-21

8.4.1 Four-Word Stack Frame (Format $0)

If a four-word stack frame is on the active stack and an RTE instruction is encountered,
the processor updates the SR and PC with the data read from the stack, increments the
stack pointer by eight, and resumes normal instruction execution.

Stack Frames Exception Types Stacked PC Points To

STATUS REGISTER

PROGRAM COUNTER

0 0 0 0 VECTOR OFFSET

015
SP

+$02

+$06

FOUR-WORD STACK FRAME–FORMAT $0

• Interrupt
• Format Error

• TRAP #N
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• Privilege Violation

• Floating-Point Pre-
Instruction

• Next Instruction
• RTE or RESTORE

Instruction
• Next Instruction
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• First Word of Instruction

Causing Privilege Violation
• Floating-Point Pre-

Instruction Exception

8.4.2 Four-Word Throwaway Stack Frame (Format $1)

If a four-word throwaway stack frame is on the active stack and an RTE instruction is
encountered, the processor increments the active stack pointer by eight, updates the SR
with the value read from the stack, and then begins RTE processing again, as illustrated in
Figure 8-6. The processor reads a new format word from the stack frame on top of the
active stack (which may or may not be the same stack used for the previous operation)
and performs the proper operations corresponding to that format. In most cases, the
throwaway frame is on the interrupt stack, and when the SR value is read from the stack,
the S-bit and M-bit are set. In that case, there is a normal four-word frame on the master
stack. However, the second frame can be any format (even another throwaway frame)
and can reside on any of the three system stacks.

Stack Frames Exception Types Stacked PC Points To

STATUS REGISTER

PROGRAM COUNTER

0 0 0 1 VECTOR OFFSET

015
SP

+$02

+$06

THROWAWAY FOUR-WORD STACK FRAME–FORMAT $1

• Created on interrupt stack
during interrupt exception
processing when transition
from master state to
interrupt state occurs.

• Next Instruction: same as
on master stack.

8-22 M68040 USER’S MANUAL MOTOROLA

EXIT

OTHER FORMATS

FORMAT CODE = $1
(THROWAWAY

FRAME)

SR TEMP
SP SP + 6

PC (SP) +
 SP SP + 6
SR TEMP

TEMP (SP)+
READ FORMAT WORD

➧

➧
➧

➧
➧
➧

ENTRY

INVALID FORMAT
WORD

OTHERWISE

OTHERWISE

FORMAT CODE = $0
(4-WORD FRAME)OTHERWISE

TAKE FORMAT
ERROR EXCEPTION

Figure 8-6. Flowchart of RTE Instruction for Throwaway Four-Word Frame

8.4.3 Six-Word Stack Frame (Format $2)

If a six-word throwaway stack frame is on the active stack and an RTE instruction is
encountered, the processor restores the SR and PC values from the stack, increments the
active supervisor stack pointer by $C, and resumes normal instruction execution.

Stack Frames Exception Types Stacked PC Points To

STATUS REGISTER

PROGRAM COUNTER

0 0 1 0 VECTOR OFFSET

015
SP

+$02

+$06

SIX-WORD STACK FRAME–FORMAT $2

ADDRESS
+$08

• CHK, CHK2, TRAPcc,
FTRAPcc, TRAPV, Trace,
or Zero Divide

• Unimplemented Floating-
Point Instruction

• Address Error

• Next Instruction: address is
the address of the
instruction that caused the
exception.

• Next Instruction: address is
the calculated <ea> for the
floating-point instruction.

• Instruction that caused the
address error, address is
the reference address – 1.

MOTOROLA M68040 USER’S MANUAL 8-23

8.4.4 Floating-Point Post-Instruction Stack Frame (Format $3)

The processor restores the SR and PC values from the stack and increments the active
supervisor stack pointer by $C. If another floating-point post-instruction exception is
pending, exception processing begins immediately for the new exception; otherwise, the
processor resumes normal instruction execution.

Stack Frames Exception Types Stacked PC Points To

STATUS REGISTER

PROGRAM COUNTER

0 0 1 1 VECTOR OFFSET

015
SP

+$02

+$06

FLOATING-POINT POST-INSTRUCTION
STACK FRAME–FORMAT $3

EFFECTIVE ADDRESS
+$08

• Floating-Point Post-
Instruction

• Next Instruction: <ea> is the
calculated effective address
for the floating-point
instruction.

8.4.5 Eight-Word Stack Frame (Format $4)

The MC68040V, MC68LC040, MC68EC040, and MC68EC040V use this stack frame for
unimplemented floating-point instructions. The MC68040 does not generate or recognize
this format stack frame. Refer to Appendix A MC68LC040 and Appendix B MC68EC040
for further details about this stack frame.

8-24 M68040 USER’S MANUAL MOTOROLA

8.4.6 Access Error Stack Frame (Format $7)

A 30-word access error stack frame is created for data and instruction access faults other
than instruction address errors. In addition to information about the current processor
status and the faulted access, the stack frame also contains pending write-backs that the
access error exception handler must complete. The following paragraphs describe in
detail the format for this frame and how the processor uses it when returning from
exception processing.

Stack Frames Exception Types Stacked PC Points To

SPECIAL STATUS WORD (SSW)

$00 WRITE-BACK 1 STATUS (WB1S)

015
SP

+$02

+$12

ACCESS ERROR STACK FRAME
(30 WORDS)–FORMAT $7

FAULT ADDRESS (FA)
+$14

WRITE-BACK 3 ADDRESS (WB3A)

WRITE-BACK 3 DATA (WB3D)

WRITE-BACK 1 DATA/PUSH DATA LW0 (WB1D/PD0)

PUSH DATA LW 1 (PD1)

WRITE-BACK 2 ADDRESS (WB2A)

WRITE-BACK 2 DATA (WB2D)

WRITE-BACK 1 ADDRESS (WB1A)

PUSH DATA LW 2 (PD2)

PUSH DATA LW 3 (PD3)

+$18

+$1C

+$20

+$24

+$28

+$2C

+$30

+$34

+$38

STATUS REGISTER

PROGRAM COUNTER

0 1 1 1 VECTOR OFFSET

EFFECTIVE ADDRESS (EA)

$00 WRITE-BACK 2 STATUS (WB2S)
$00 WRITE-BACK 3 STATUS (WB3S)

+$10

+$0C
+$0E

+$08
+$0A

+$06

• Data or Instruction Access
Fault (ATC Fault or Bus
Error)

• Next Instruction

8.4.6.1 EFFECTIVE ADDRESS. The effective address contains address information when
one of the continuation flags CM, CT, CU, or CP in the SSW is set.

8.4.6.2 SPECIAL STATUS WORD (SSW). The SSW information indicates whether an
access to the instruction stream or the data stream (or both) caused the fault and contains
status information for the faulted access. Figure 8-7 illustrates the SSW format.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CP CU CT CM MA ATC LK RW X SIZE TT TM

Figure 8-7. Special Status Word Format

MOTOROLA M68040 USER’S MANUAL 8-25

CP—Continuation of Floating-Point Post-Instruction Exception Pending
CP is set for an access error with a floating-point post-instruction exception pending. All
pending accesses are allowed to complete after a trace condition is recognized. If any
of these accesses fault, the resulting stack frame has the CT bit set, and the effective
address field contains the address of the instruction being traced. The RTE fetches the
appropriate floating-point post-instruction exception vector.

When a post-instruction exception occurs during tracing, the post-instruction exception
takes precedence. CP is set, and CT = 0 and can be traced. The kernel must check for
a trace condition using the stacked SR. The effective address field contains the
calculated effective address determined by the effective address field of the floating-
point instruction that caused the post-instruction exception.

CU—Continuation of Unimplemented Floating-Point Instruction Exception Pending
CU is set for an access error with a pending exception for an unimplemented floating-
point instruction. Operation is the same as for the CP flag except the RTE fetches the
F-line exception vector. The effective address field contains the calculated effective
address determined by the effective address field of the unimplemented instruction.

When an unimplemented floating-point instruction is traced, the unimplemented
exception takes precedence, CU is set, and CT = 0. The kernel must check for a trace
condition using the stacked SR. If this condition is true, create the required stack frame
and jump directly to the trace handler.

CT—Continuation of Trace Exception Pending
CT is set for an access error with a pending trace exception. Operation is the same as
for the CP flag. When RTE is executed with CT set, the M68040 will move the words on
the stack an offset of $00–$0B from the current SP to offset $30–$3B, adjusting the
stack pointer by +$30. The M68040 changes the stack frame format to $2 before
fetching the trace exception vector and jumping directly to trace exception handling.
This stack adjustment creates the stack frame that normally would have been created
for the trace exception had the pending access not encountered a bus error.

CM—Continuation of MOVEM Instruction Execution Pending
CM is set if a data access encounters a bus error for a MOVEM. Since the MOVEM
operation can write over the memory location or registers used to calculate the effective
address, the M68040 internally saves the effective address after calculation. When
MOVEM encounters a bus error, a stack frame is created with CM set, and the effective
address field contains the calculated effective address for the instruction. When RTE is
executed, MOVEM restarts using the effective address on the stack (instead of
repeating the effective address calculate operation) if the address mode is PC relative
(mode = 111, register = 010 or 011) or indirect with index (mode = 110).

MA—Misaligned Access
MA is set if an ATC fault occurs for second-page access that spans two pages in
memory.

8-26 M68040 USER’S MANUAL MOTOROLA

ATC—ATC Fault
This bit is set for an ATC fault due to a nonresident entry (bus error during table search
or invalid descriptor encountered) or privilege violation (write protected or supervisor
only). It is cleared for a bus-errored instruction, data, or cache line-push access.

LK—Locked Transfer (Read-Modify-Write)
This bit is set if a fault occurred on a locked transfer; it is cleared otherwise.

RW—Read/Write
This bit is set if a fault occurred on a read transfer; it is cleared otherwise.

X—Undefined

SIZE—Transfer Size
The SIZE field corresponds to the original access size. If a data cache line read results
from a read miss and the line read encounters a bus error, the SIZE field in the resulting
stack frame indicates the size of the original read generated by the execution unit.

TT—Transfer Type
This field defines the TT1–TT0 signal encodings for the faulted transfer.

TM—Transfer Modifier
This field defines the TM2–TM0 signal encodings for the faulted transfer.

8.4.6.3 WRITE-BACK STATUS. These fields contain status information for the three
possible write-backs that could be pending after the faulted access (see Figure 8-8). For a
data cache line-push fault or a MOVE16 write fault, WB1S is zero (invalid).

7 6 5 4 3 2 1 0

V SIZE TT TM

TM—Transfer Modifier
TT—Transfer Type
SIZE—Transfer Size
V—Valid Write (write-back pending if set)

Figure 8-8. Write-Back Status Format

8.4.6.4 FAULT ADDRESS. The fault address (FA) is the initial address for the access that
faulted. The FA is a physical address only for cache pushes and a logical address for all
other cases. For a misaligned access that faults, the FA field contains the address of the
first byte of the transfer, regardless of which of the two or three bus transfers for the
misaligned access was faulted. For a push fault, the WB1A and FA addresses are the
same.

8.4.6.5 WRITE-BACK ADDRESS AND WRITE-BACK DATA. Write-back addresses
(WB3A, WB2A, and WB1A) are memory pointers that indicate where to place the write-

MOTOROLA M68040 USER’S MANUAL 8-27

back data (WB3D, WB2D, and WB1D). WB3A and WB3D correspond to the temporary
holding register in the integer unit (WB3). WB2A and WB2D correspond to the temporary
holding register in the data memory unit (WB2) prior to address translation. WB1A and
WB1D correspond to the temporary holding register in the bus controller (WB1), which
determines the external address and data bus bit patterns. Refer to Section 2 Integer
Unit for details on the operation of the integer unit pipeline.

The write-back data in WB3D and WB2D is register aligned with byte and word data
contained in the least significant byte and word, respectively, of the field. Write-back data
in WB1D is memory aligned and resides in the byte positions corresponding to the data
bus lanes used in writing each byte to memory. Table 8-5 lists the data alignment for each
combination of data format and A1 and A0.

Table 8-5. Write-Back Data Alignment

Address Data Alignment

Data Format A1 A0 WB1D WB2D, WB3D

Byte 0
0
1
1

0
1
0
1

31–24
23–16
15–8
7–0

7–0
7–0
7–0
7–0

Word 0
0
1
1

0
1
0
1

31–16
23–8
15–0

7–0, 31–24

15–0
15–0
15–0
15–0

Long Word 0
0
1
1

0
1
0
1

31–0
23–0, 31–24
15–0, 31–16
7–0, 31–8

31–0
31–0
31–0
31–0

NOTE: For a line transfer fault, the four long words of data in PD3–
PD0 are already aligned with memory. Bits 31–0 of each field
correspond to bits 31–0 of the memory location to be written to,
regardless of the value of the address bits A1 and A0 for the
write-back address.

8.4.6.6 PUSH DATA. The push data field contains an image of the cache line that needs
to be pushed to memory.

8.4.6.7 ACCESS ERROR STACK FRAME RETURN FROM EXCEPTION. For the access
error stack frame (format $7), the processor restores the SR and PC values from the stack
and checks the four continuation status bits in the SSW on the stack. If these bits are not
set, the processor increments the active supervisor stack pointer by 30 words and
resumes normal instruction execution. If the MOVEM continuation bit is set, the processor
restores the calculated effective address from the stack frame, increments the active
supervisor stack pointer by 30 words, and restarts the MOVEM instruction at a point after
the effective address calculation. All operand accesses for the MOVEM that occurred
before the faulted access are repeated. If a continuation bit is set for a pending trace,
unimplemented floating-point instruction, or floating-point post-instruction exception, the
processor restores the calculated effective address from the stack frame, increments the
active supervisor stack pointer by 30 words, and immediately begins exception processing

8-28 M68040 USER’S MANUAL MOTOROLA

for the pending exception. The processor sets only one of the continuation bits when the
access error stack frame is created. If the access error exception handler sets multiple
bits, operation of the RTE instruction is undefined.

If the frame format field in the stack frame contains an illegal format code, a format
exception occurs. If a format error or access fault exception occurs during the frame
validation sequence of the RTE instruction, the processor creates a normal four-word or
an access error stack frame below the frame that it was attempting to use. The illegal
stack frame remains intact, so that the exception handler can examine or repair the illegal
frame. In a multiprocessor system, the illegal frame can be left so that, when appropriate,
another processor of a different type can use it.

The bus error exception handler can identify bus error exceptions due to instruction faults
by examining the TM field in the SSW of the access error stack frame. For user and
supervisor instruction faults, the TM field contains $2 and $6, respectively (see Figure
8-7). Since the processor allows all pending accesses to complete before reporting an
instruction fault, the stack frame for an instruction fault will not contain any pending write-
backs. The ATC bit of the SSW is used to distinguish between ATC faults and physical
bus errors, and the FA field contains the logical address of the instruction prefetch. For
ATC faults, the exception handler can execute a PTEST instruction (using the FA and TM
fields from the SSW) to determine the specific cause of the address translation failure.
After the handler corrects the cause of the fault, it executes an RTE instruction to restart
execution of the instruction that contained the faulted prefetch.

For an address error fault, the processor saves a format $2 exception stack frame on the
stack. This stack frame contains the PC pointing to the instruction that caused the address
error as well as the actual address referenced by the instruction. Note that bit 0 of the
referenced address is cleared on the stack frame. Address error faults must be repaired in
software.

For a fault due to a data ATC fault or bus error, pending write-backs are also saved on the
access error stack frame and must be completed by the exception handler. For the faulted
access, the fault address in the FA field combined with the transfer attribute information
from the SSW can be used to identify the cause of the fault. In identifying the fault, the
system programmer should be aware that the data memory unit considers the read portion
of read-modify-write transfers (for TAS, CAS, CAS2, and some translation table updates)
a write. This prevents both read and write accesses from occurring unless all pages
touched by the instruction or table update are write enabled.

All accesses other than instruction prefetches go through the data memory unit, and the
M68040 treats the instruction and data address spaces as a single merged address space
(the exception is the presence of separate transparent translation registers). The function
codes for accesses such as PC relative operand addressing and MOVES transfers to
function codes $2 and $6 (user and supervisor instruction spaces in the MC68000) are
converted to data references to go through the data memory unit, and appear in the TM
field of the access error stack frame as data references.

MOTOROLA M68040 USER’S MANUAL 8-29

After the fault is corrected, any pending write-backs on the stack frame must be
completed. The write-back status fields should be checked for possible write-backs, which
the exception handler should complete in the following order: write-back 1, write-back 2,
and write-back 3. For a push fault, the push must be completed first, followed by two
potential write-backs. Completion of write-back 1 should not generate another access
error since this write-back corresponds to the faulted access that has been corrected by
the handler. However, write-backs 2 and 3 can cause another bus error exception when
the handler attempts to write to memory and should be checked before attempting the
write to prevent nesting of exceptions if required by the operating system. The following
general bus fault examples indicate the resulting contents of the access error stack frame
fields:

1. All Read Access Errors (SSW–RW = $1, TT = $0, TM = $1 or $5)—The FA field
contains the logical address of the fault. The WB1S and WB2S fields are zero, and
only WB3S can indicate an additional write-back.

2. Cache Push Physical Bus Error (SSW–RW = $0, TT = $0, TM = $0)—The assertion
of TEA causes this error when a cache push bus cycle is in progress. The FA field
contains the physical address of the fault, and the WB1S field is ignored. All four
long words of the data for a push are contained in LW3–LW0 regardless of the size
of the transfer. The size of the transfer is indicated in the SIZE field of the SSW and
can be either a line or long word. If a line is indicated, all four long words need to be
pushed out. If a long word is indicated, all four long words can be written out, or bits
3 and 2 of the FA field can be evaluated to indicate which long words need to be
written out to memory ($3, $2, $1, and $0 indicate LW3, LW2, LW1, and LW0,
respectively). The WB2S and WB3S fields indicate up to two additional write-backs.
If WB2S is valid and if it indicates a MOVE16 instruction, no data should be written
out for that write-back slot.

3. Normal Write Physical Bus Error (SSW–RW = $0, TT = $0, TM = $1 or $5)—The
assertion of TEA causes this error when a normal write bus cycle is in progress. The
FA field contains the logical address of the fault, and the WB1S field indicates that it
is valid. The FA and WB1A are equivalent. The WB2S and WB3S fields indicate up
to two additional write-backs.

4. MOVE16 Write Physical Bus Error (SSW–RW = $0, TT = $1)—The assertion of TEA
causes this error during the write portion of a MOVE16 instruction. The FA field
contains the logical address of the fault, and the WB1S field indicates that it is valid.
All four long words are contained in LW3–LW0 and must be written out before using
FA. Software must ensure that address bits 1 and 0 are both clear if regular move
instruction are to be used to write out to the destination.

5. Page Fault (SSW–RW = $0, WB1S–V = $0)—The FA field contains the physical
address of the faulted instruction, WB1S = 0, and WB2S indicates that it is valid.
Only WB3S can indicate an additional write-back. If WB2S indicates a MOVE16
instruction and if the MOVE16 instruction is used to read from a peripheral that
cannot tolerate double reads, then software must write the data contained in PD3–
PD0 out to memory and increment the stacked PC to take it beyond the MOVE16
instruction that caused the page fault. Otherwise, if the MOVE16 instruction is
allowed to be restarted, another read from the peripheral would occur. If double
reads can be tolerated, simply do no write-backs and allow instruction to restart. This
is the only case in which the action to be taken depends on whether or not a double
read can be tolerated.

8-30 M68040 USER’S MANUAL MOTOROLA

Table 8-6 lists the possible combinations of write-backs and the proper way to handle
them. The SSW_RW column indicates a read or write cycle; the SSW_PUSH column
indicates whether the fault is for a push (TT = 00 and TM = 000). The WB1S, WB2S, and
WB3S columns list the respective field’s V-bit and indicate a MOVE16 transfer type (TT =
01). The easy cleanup data written column lists the stack’s field to be written out to
memory if the user is not concerned with retouching peripherals. The hard cleanup action
column lists the action to be taken if the peripherals cannot be retouched by MOVE16 (if
different from easy cleanup). Note that if a push access error is reported and the size is
long word, all four long words, PD0–PD3, are still valid for the line. The exception handler
can either write PD0–PD3 using the fault address with bits 3–0 cleared or write the PD
corresponding to bits 3–2 of the address (e.g., address $0000000C corresponds to PD3).
Note that a MOVE16 is never reported in the WB3S. The SIZE field of WB3S is never a
line.

After the bus error exception handler completes all pending operations and executes an
RTE to return, the RTE reads only the stack information from offset $0–$D in the access
error stack frame. For a pending trace exception, unimplemented floating-point instruction
exception, or floating-point post-instruction exception, the RTE adjusts the stack to match
the pending exception and immediately begins exception processing, without requiring the
exception to reoccur.

MOTOROLA M68040 USER’S MANUAL 8-31

Table 8-6. Access Error Stack Frame Combinations

WB1S WB2S WB3S Easy Cleanup Hard Cleanup
Main Case SSW_RW SSW_PUSH 1V 1M16 2V 2M16 3V Data Written Action

All Read
Access Errors

1a

1a
No
No

0
0

X
X

0
0

X
X

0
1

None
WB3D (Note b)

All other read cases are not possible.

Cache Push
Physical Bus
Errorc

0
0
0
0
0

Yes
Yes
Yes
Yes
Yes

0
0
0
0
0

X
X
X
X
X

0
0
1
1
1

X
X
0
0
1

0
1
0
1
0

PD3–0
PD3–0, WB3D
PD3–0, WB2D
PD3–0, WB2D, WB3D
PD3–0, ~WB2Dd

(Note b)

Normal Write
Physical bus
Error

0
0
0
0
0

No
No
No
No
No

1
1
1
1
1

0
0
0
0
0

0
0
1
1
1

X
X
0
0
1

0
1
0
1
0

WB1D
WB1D, WB3D
WB1D, WB2D
WB1D, WB2D, WB3D
WB1D, ~WB2Dd

(Note b)

MOVE16
Write Physical
Bus Error

0
0
0
0
0

No
No
No
No
No

1
1
1
1
1

1
1
1
1
1

0
0
1
1
1

X
X
0
0
1

1
0
0
1
0

PD3–0, WB3D
PD3–0
PD3–0, WB2D
PD3–0, WB2D, WB3D
PD3–0, ~WB2Dd

(Note b)

Write Page
Fault

0
0
0

No
No
No

0
0
0

X
X
X

1
1
1

0
0
1

0
1
0

WB2D
WB2D, WB3D
~WB2Dd

Write PD3–0
and skipe.

Impossible
Write Cases

0
0

Yes
Don't Care

1
X

X
X

X
X

X
1

X
1

(Note f)
(Note g)

—

NOTES:
a. The data memory unit stage is tied up until the bus controller passes the read back through the data memory

unit and to the execution stage in the integer unit. Therefore, no pending write is possible in WB1 or WB2.
WB3 could hold a pending write that was deferred due to operand read or was generated after the read.

b. If any kind of access error is reported and if a MOVE16 write is pending in the WB2 stage, then that MOVE16
read must hit in the cache so the MOVE16 can be safely restarted since it has not caused bus cycles that could
retouch peripherals.

c. A cache push physical bus error is normally considered a fatal error. For these cases, the FA field is a physical
address, not a logical address as in the other cases.

d. Indicates that the data should not be written even though the V-bit for it is set (WB2 corresponds to a MOVE16
write).

e. The exception handler must alter the stacked PC to point past the MOVE16 and predecrement and
postincrement address registers.

f. 1V must be 0 for push exceptions.
g. The execution stage does not post a write until the MOVE16 is in the integer unit.

MOTOROLA M68040 USER’S MANUAL 9-1

SECTION 9
FLOATING-POINT UNIT (MC68040 ONLY)

NOTE

This section does not apply to the MC68040V, MC68LC040,
MC68EC040, or MC68EC040V. Refer to Appendix A
MC68LC040 and Appendix B MC68EC040 for details.

Floating-point math refers to numeric calculations with a variable decimal point location. It
is distinguished from integer math, which deals only with whole numbers and fixed
decimal point locations. Historically, general-purpose microprocessors have had to
depend on add-on coprocessors and accelerators such as the MC68881/MC68882 for fast
floating-point capabilities. The MC68040 features a built-in floating-point unit (FPU).
Consolidating this important function on chip speeds up the overall processing and
eliminates some interfacing overhead required for external accelerators. The MC68040
FPU operates in parallel with the integer unit (IU). The FPU does the numeric calculation
while the IU moves on to other tasks. Like the IU, the FPU has its own three-stage
pipeline overlapping operations such as integer to floating-point conversion, instruction
execution, and write-back. When used with the M68040FPSP, the MC68040 FPU is fully
compliant with IEEE floating-point standards.

9.1 FLOATING-POINT UNIT PIPELINE

Integer data from memory (memory to register) requires a pass through the FPU pipeline,
converting the data to the extended-precision format for the FPU to use. The result of this
conversion is presented to the conversion stage of the FPU pipeline where the desired
operation begins, starting a second pass through the pipeline. The IU is then released to
execute other instructions once the data has been transferred to the FPU.

Floating-point data to memory (register to memory) requires a complete pass through the
FPU pipeline, converting the data from the extended-precision format to an integer data
format. Register-to-memory instructions are normally handled entirely by the conversion
stage of the pipeline where the data move to memory operation completes. The IU is not
released until it has received the converted data (during the last conversion unit cycle).

Like the IU, the FPU has been optimized for the most frequently used instructions and
data types to provide the highest possible performance. To boost performance further, the
FMOVE instruction concurrently executes with arithmetic calculations and executes
completely transparent to the user. Instructions can execute nonsequentially as long as
there are no register dependencies. Refer to Section 10 Instruction Timings for details
on floating-point timings.

9-2 M68040 USER’S MANUAL MOTOROLA

The MC68040 FPU is compatible with the MC68881/MC68882. The MC68040 performs
basic math functions such as floating-point addition and multiplication directly on
dedicated circuitry and performs transcendental functions such as sine and cosine
calculations by means of software routines. Motorola offers the M68040FPSP, a software
package providing these routines. The software functions are compatible with the
MC68881/MC68882, refer to Appendix E Floating-Point Emulation (M68040FPSP).

9.2 FLOATING-POINT USER PROGRAMMING MODEL

Figure 9-1 illustrates the floating-point portion of the user programming model. The
following paragraphs describe the FPU portion of the user programming model for the
MC68040. The model, which is identical to the programming model for the
MC68881/MC68882 floating-point coprocessors, consists of the following registers:

• Eight 80-Bit Floating-Point Data Registers (FP7–FP0)

• 16-Bit Floating-Point Control Register (FPCR)

• 32-Bit Floating-Point Status Register (FPSR)

• 32-Bit Floating-Point Instruction Address Register (FPIAR)

79 63 0

FP0

FP1

FP3

FP4

FP5

FP6

FP7

FP2

FLOATING-POINT
DATA REGISTERS

FPCR
FLOATING-POINT
CONTROL
REGISTER

FPSR
FLOATING-POINT
STATUS
REGISTER

FPIAR

FLOATING-POINT
INSTRUCTION
ADDRESS
REGISTER

071531
MODE

CONTROL
EXCEPTION

ENABLE0

EXCEPTION
STATUS

CONDITION
CODE

QUOTIENT ACCRUED
EXCEPTION

071531 23

031

Figure 9-1. Floating-Point User Programming Model

9.2.1 Floating-Point Data Registers (FP7–FP0)

The floating-point data registers are analogous to the integer data registers of the M68000
family. The floating-point data registers always contain extended-precision numbers. All
external operands, regardless of the data format, are converted to extended-precision
values before being used in any calculation or stored in a floating-point data register. A

MOTOROLA M68040 USER’S MANUAL 9-3

reset or a restore operation of the null state sets FP7–FP0 to positive, nonsignaling not-a-
numbers (NANs).

9.2.2 Floating-Point Control Register (FPCR)

The FPCR (see Figure 9-2) contains an exception enable (ENABLE) byte that enables or
disables traps for each class of floating-point exceptions and a mode control (MODE) byte
that sets the user-selectable modes. The user can read or write to the FPCR. Motorola
reserves bits 31–16 for future definition; these bits are always read as zero and are
ignored during write operations. The reset function or a restore operation of the null state
clears the FPCR. When cleared, this register provides the IEEE 754 standard defaults.

9.2.2.1 EXCEPTION ENABLE BYTE. Each bit of the ENABLE byte (see Figure 9-2)
corresponds to a floating-point exception class. The user can separately enable traps for
each class of floating-point exceptions.

9.2.2.2 MODE CONTROL BYTE. The MODE byte (see Figure 9-2) controls the user-
selectable rounding modes and precisions. Zeros in this byte select the IEEE 754
standard defaults. The rounding mode (RND) specifies how inexact results are rounded,
and the rounding precision (PREC) selects the boundary for rounding the mantissa.

The processor supports four rounding modes specified by the IEEE 754 standard. These
modes are: round to nearest (RN), round toward zero (RZ), round toward plus infinity
(RP), and round toward minus infinity (RM). The RP and RM modes are directed rounding
modes that are useful in interval arithmetic. Rounding is accomplished through the
intermediate result. Single-precision results are rounded to a 24-bit boundary; double-
precision results are rounded to a 53-bit boundary; and extended-precision results are
rounded to a 64-bit boundary. Table 9-1 lists the encodings for the FPCR.

Table 9-1. Floating-Point Control Register Encodings

Rounding Mode
(RND Field)

Encoding Rounding Precision
(PREC Field)

To Nearest (RN) 0 0 Extend (X)

Toward Zero (RZ) 0 1 Single (S)

Toward Minus Infinity (RM) 1 0 Double (D)

Toward Plus Infinity (RP) 1 1 Undefined

9-4 M68040 USER’S MANUAL MOTOROLA

15 14

EXCEPTION ENABLE

12 11 10 9 8

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE BY ZERO
UNDERFLOW
OVERFLOW
OPERAND ERROR
SIGNALING NOT-A-NUMBER
BRANCH/SET ON UNORDERED

7 6 5 4 3 2 1 0

SNAN OPERR OVFL UNFL DZ INEX2 INEX1BSUN PREC RND 0

ROUNDING PRECISION
ROUNDING MODE

MODE CONTROL

13

Figure 9-2. Floating-Point Control Register

9.2.3 Floating-Point Status Register (FPSR)

The FPSR (see Figure 9-1) contains a floating-point condition code (FPCC) byte, a
quotient byte, a floating-point exception status byte (EXC), and a floating-point accrued
exception byte (AEXC). The user can read or write to all bits in the FPSR. Execution of
most floating-point instructions modifies this register. The reset function or a restore
operation of the null state clears the FPSR. Floating-point conditional operations are not
guaranteed if the FPSR is written directly, because the FPSR is only valid as a result of a
floating-point instruction.

9.2.3.1 FLOATING-POINT CONDITION CODE BYTE. The FPCC byte (see Figure 9-3)
contains four condition code bits that are set at the end of all arithmetic instructions
involving the floating-point data registers. These bits are sign of mantissa (N), zero (Z),
infinity (I), and NAN. The FMOVE FPm,< ea>, FMOVEM FPm, and FMOVE FPCR
instructions do not affect the FPCC.

N Z I NAN

31 30 29 28 27 26 25 24

NOT-A-NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

0

Figure 9-3. FPSR Condition Code Byte

To aid programmers of floating-point subroutine libraries, the MC68040 implements the
four FPCC bits in hardware instead of only implementing the four IEEE conditions. An
instruction derives the IEEE conditions when needed. For example, the programmers of a
complex arithmetic multiply subroutine usually prefer to handle special data types such as

MOTOROLA M68040 USER’S MANUAL 9-5

zeros, infinities, or NANs separately from normal data types. The floating-point condition
codes allow users to efficiently detect and handle these special values.

9.2.3.2 QUOTIENT BYTE. The quotient byte (see Figure 9-4) provides compatibility with
the MC68881/MC68882 FPU. This byte contains the seven least significant bits of the
unsigned quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other
functions. For example, seven bits are more than enough to determine the quadrant of a
circle in which an operand resides. The quotient field (bits 22–16) remains set until the
user clears it.

23 22 21 20 19 18 17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

S QUOTIENT

SIGN OF QUOTIENT

Figure 9-4. FPSR Quotient Byte

9.2.3.3 EXCEPTION STATUS BYTE. The EXC byte (see Figure 9-5) contains a bit for
each floating-point exception that can occur during the most recent arithmetic instruction
or move operation. The start of most operations clears this byte; however, operations that
cannot generate floating-point exceptions do not clear this byte. An exception handler can
use this byte to determine which floating-point exception(s) caused a trap.

BRANCH/SET ON
UNORDERED

SNAN OPERR OVFL UNFL DZ INEX2 INEX1

15 14 13 12 11 10 9 8

INEXACT DECIMAL
INPUT

INEXACT OPERATION

DIVIDE BY ZERO

UNDERFLOWOVERFLOW

OPERAND ERROR

SIGNALING NOT-A-NUMBER

BSUN

Figure 9-5. FPSR Exception Status Byte

9.2.3.4 ACCRUED EXCEPTION (AEXC) BYTE. The AEXC byte contains five exception
bits (see Figure 9-6) that the IEEE 754 standard requires for exception disabled
operations. These exceptions are logical combinations of the bits in the EXC byte. The
AEXC byte contains the history of all floating-point exceptions that have occurred since
the user last cleared the AEXC byte. In normal operations, only the user clears this byte
by writing to the FPSR; however, a reset or a restore operation of the null state can also
clear the AEXC byte.

9-6 M68040 USER’S MANUAL MOTOROLA

Many users elect to disable traps for all or part of the floating-point exception classes. The
AEXC byte makes it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (FMOVEM and FMOVE excluded), the bits in the EXC byte
are logically combined to form an AEXC value that is logically ORed into the existing
AEXC byte. This operation creates sticky floating-point exception bits in the AEXC byte
that the user needs to poll only once (i.e., at the end of a series of floating-point
operations). A sticky bit is one that remains set until the user clears it.

IOP OVFL UNFL DZ INEX

7 6 5 4 3 2 1 0

INEXACT

INVALID OPERATION

DIVIDE BY ZERO

UNDERFLOW

OVERFLOW

Figure 9-6. FPSR Accrued Exception Byte

Setting or clearing the AEXC bits neither causes nor prevents an exception. The following
equations show the comparative relationship between the EXC byte and AEXC byte.
Comparing the current value in the AEXC bit with a combination of bits in the EXC byte
derives a new value in the corresponding AEXC bit. These equations apply to setting the
AEXC bits at the end of each operation affecting the AEXC byte:

New
AEXC Bit

= Old AEXC
Bit

V EXC Bits

IOP = IOP V (SNAN V OPERR)

OVFL = OVFL V (OVFL)

UNFL = UNFL V (UNFL Λ INEX2)

DZ = DZ V (DZ)

INEX = INEX V (INEX1 V INEX2 V OVFL)

9.2.4 Floating-Point Instruction Address Register (FPIAR)

For the subset of the floating-point instructions that generate exception traps, the FPU
loads the 32-bit FPIAR with the logical address of the instruction before executing the
instruction. Because the IU can execute instructions while the FPU executes floating-point
instructions and, the FPU can concurrently execute two floating-point instructions the PC
value stacked by the MC68040 in response to a floating-point exception handler cannot
point to the offending instruction. Therefore, a floating-point exception handler uses the
address in the FPIAR to locate a floating-point instruction that has caused an exception.
Since the FMOVE to/from the FPCR, FPSR, or FPIAR and FMOVEM instructions cannot
generate floating-point exceptions, these instructions do not modify the FPIAR. However,

MOTOROLA M68040 USER’S MANUAL 9-7

they can be used to read the FPIAR in an exception handler without changing the
previous value. A reset or a restore operation of the null state clears the FPIAR.

9.3 FLOATING-POINT DATA FORMATS AND DATA TYPES

The M68000 floating-point model (MC68881, MC68882, MC68040) supports the following
data formats: single precision, double precision, extended precision, and packed decimal.
The M68000 floating-point model supports the following data types: normalized, zeros,
infinities, denormalized numbers, and NANs. The MC68040 supports part of the M68000
floating-point model in hardware. Table 9-2 lists the data formats and data types
supported by the MC68040. Tables 9-3 through 9-6 summarize the floating-point data
formats and data types details. For further information on the data formats and data types,
refer to the M68000UM/AD, M68000 Family Programmer’s Reference Manual.

Table 9-2. MC68040 FPU Data Formats and Data Types

Data Formats

Number
Types

Single-
Precision

Real

Double-
Precision

Real

Extended-
Precision

Real

Packed-
Decimal

Real
Byte

Integer
Word

Integer

Long-
Word

Integer

Normalized * * * † * * *

Zero * * * † * * *

Infinity * * * †

NAN * * * †

Denormalized † † † †

Unnormalized † †

*Data Format/Type Supported by On-Chip MC68040 FPU Hardware
†Data Format/Type Supported by Software (MC68040FPSP)

9-8 M68040 USER’S MANUAL MOTOROLA

Table 9-3. Single-Precision Real Format Summary

Data Format

s e f
31 30 23 22 0

Field Size In Bits

Sign (s) 1

Biased Exponent (e) 8

Fraction (f) 23

Total 32

Interpretation of Sign

Positive Fraction s = 0

Negative Fraction s = 1

Normalized Numbers

Bias of Biased Exponent +127 ($7F)

Range of Biased Exponent 0 < e < 255 ($FF)

Range of Fraction Zero or Nonzero

Fraction 1.f

Relation to Representation of Real Numbers (–1)s × 2e–127 × 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($00)

Bias of Biased Exponent +126 ($7E)

Range of Fraction Nonzero

Fraction 0.f

Relation to Representation of Real Numbers (–1)s × 2–126 × 0.f

Signed Zeros

Biased Exponent Format Minimum 0 ($00)

Fraction 0.f = 0.0

Signed Infinities

Biased Exponent Format Maximum 255 ($FF)

Fraction 0.f = 0.0

NANs

Sign Don’t Care

Biased Exponent Format Maximum 255 ($FF)

Fraction Nonzero

Representation of Fraction
Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Fraction When Created by FPCP

1xxxx…xxxx
0xxxx…xxxx
xxxxx…xxxx
11111…1111

Approximate Ranges

Maximum Positive Normalized 3.4 × 1038

Minimum Positive Normalized 1.2 × 10–38

Minimum Positive Denormalized 1.4 × 10–45

MOTOROLA M68040 USER’S MANUAL 9-9

Table 9-4. Double-Precision Real Format Summary

Data Format

s e f
63 62 52 51 0

Field Size (in Bits)

Sign (s) 1

Biased Exponent (e) 11

Fraction (f) 52

Total 64

Interpretation of Sign

Positive Fraction s = 0

Negative Fraction s = 1

Normalized Numbers

Bias of Biased Exponent +1023 ($3FF)

Range of Biased Exponent 0 < e < 2047 ($7FF)

Range of Fraction Zero or Nonzero

Fraction 1.f

Relation to Representation of Real Numbers (–1)s × 2e–1023 × 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($000)

Bias of Biased Exponent +1022 ($3FE)

Range of Fraction Nonzero

Fraction 0.f

Relation to Representation of Real Numbers (–1)s × 2–1022 × 0.f

Signed Zeros

Biased Exponent Format Minimum 0 ($00)

Fraction (Mantissa/Significand) 0.f = 0.0

Signed Infinities

Biased Exponent Format Maximum 2047 ($7FF)

Fraction 0.f = 0.0

NANs

Sign 0 or 1

Biased Exponent Format Maximum 255 ($7FF)

Fraction Nonzero

Representation of Fraction
Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Fraction When Created by FPCP

1xxxx…xxxx
0xxxx…xxxx
xxxxx…xxxx
11111…1111

Approximate Ranges

Maximum Positive Normalized 1.8 x 10308

Minimum Positive Normalized 2.2 x 10–308

Minimum Positive Denormalized 4.9 x 10–324

9-10 M68040 USER’S MANUAL MOTOROLA

Table 9-5. Extended-Precision Real Format Summary

Data Format

s e f
95 94 80 79 64

u
62 0

j
63

Field Size (in Bits)

Sign (s) 1

Biased Exponent (e) 15

Zero, Reserved (u) 16

Explicit Integer Bit (j) 1

Mantissa (f) 63

Total 96

Interpretation of Unused Bits

Input Don’t Care

Output All Zeros

Interpretation of Sign

Positive Mantissa s = 0

Negative Mantissa s = 1

Normalized Numbers

Bias of Biased Exponent +16383 ($3FFF)

Range of Biased Exponent 0 < = e < 32767 ($7FFF)

Explicit Integer Bit 1

Range of Mantissa Zero or Nonzero

Mantissa (Explicit Integer Bit and Fraction) 1.f

Relation to Representation of Real Numbers (–1)s × 2e–16383 × 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($0000)

Bias of Biased Exponent +16383 ($3FFF)

Explicit Integer Bit 0

Range of Mantissa Nonzero

Mantissa (Explicit Integer Bit and Fraction) 0.f

Relation to Representation of Real Numbers (–1)s × 2–16383 × 0.f

Signed Zeros

Biased Exponent Format Minimum 0 ($0000)

Mantissa (Explicit Integer Bit and Fraction) 0.0

Signed Infinities

Biased Exponent Format Maximum 32767 ($7FFF)

Explicit Integer Bit Don’t Care

Mantissa (Explicit Integer Bit and Fraction) x.000…0000

MOTOROLA M68040 USER’S MANUAL 9-11

Table 9-5. Extended-Precision Real
Format Summary (Continued)

NANs

Sign Don’t Care

Explicit Integer Bit Don’t Care

Biased Exponent Format Maximum 32767 ($7FFF)

Mantissa Nonzero

Representation of Mantissa
Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Mantissa When Created by FPCP

x.1xxxx…xxxx
x.0xxxx…xxxx
x.xxxxx…xxxx
1.11111…1111

Approximate Ranges

Maximum Positive Normalized 1.2 × 104932

Minimum Positive Normalized 1.7 × 10–4932

Minimum Positive Denormalized 3.7 × 10–4951

Table 9-6. Packed Decimal Real Format Summary

Data Type SM SE Y Y 3-Digit
Exponent

1-Digit
Integer

16-Digit Fraction

±Infinity 0/1 1 1 1 $FFF $XXXX $00…00

±NAN 0/1 1 1 1 $FFF $XXXX Nonzero

±SNAN 0/1 1 1 1 $FFF $XXXX Nonzero

+Zero 0 0/1 X X $000–$999 $XXX0 $00…00

–Zero 1 0/1 X X $000–$999 $XXX0 $00…00

+In-Range 0 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

–In-Range 1 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

9.4 COMPUTATIONAL ACCURACY

Whenever an attempt is made to represent a real number in a binary format of finite
precision, there is a possibility that the number can not be represented exactly. This is
commonly referred to as a round-off error. Furthermore, when two inexact numbers are
used in a calculation, the error present in each number is reflected, and possibly
aggravated, in the result. All FPU calculations use an intermediate result. When the
MC68040 performs an operation, the calculation is carried out using extended-precision
inputs, and the intermediate result is calculated as if to produce infinite precision. After the
calculation is complete, the intermediate result is rounded to the selected precision and
stored in the destination.

The FPCR encodings provide emulation for devices that only support single and double
precision. The execution speed of all instructions is the same whether using single- or
double-precision rounding. When using these two forced rounding precisions, the

9-12 M68040 USER’S MANUAL MOTOROLA

MC68040 produces the same results as any other device that conforms to the IEEE 754
standard but does not support extended precision. The results are the same when
performing the same operation in extended precision and storing the results in single- or
double-precision format.

The FPU performs all floating-point internal operations in extended precision. It supports
mixed-mode arithmetic by converting single- and double-precision operands to extended-
precision values before performing the specified operation. The FPU converts all memory
data formats to extended-precision before using it in a floating-point operation or loading it
in a floating-point data register. The FPU also converts extended-precision data formats in
a floating-point data register to any data format and either stores it in a memory
destination or in an integer data register.

If the external operand is a denormalized number, the number is normalized before an
operation is performed. However, an external denormalized number moved into a floating-
point data register is stored as a denormalized number.

If an external operand is an unnormalized number, the number is normalized before it is
used in an arithmetic operation. If the external operand is an unnormalized zero (i.e., with
a mantissa of all zeros), the number is converted to a normalized zero before the specified
operation is performed. The regular use of unnormalized inputs not only defeats the
purpose of the IEEE 754 standard, but also can produce gross inaccuracies in the results.

9.4.1 Intermediate Result

Figure 9-7 illustrates the intermediate result format. The intermediate result’s exponent for
some dyadic operations (i.e., multiply and divide) can easily overflow or underflow the 15-
bit exponent of the destination floating-point register. To simplify the overflow and
underflow detection, intermediate results in the FPU maintain a 16-bit, twos-complement
integer exponent. Detection of an overflow or underflow intermediate result always
converts the 16-bit exponent into a 15-bit biased exponent before being stored in a
floating-point data register. The FPU internally maintains the 67-bit mantissa for rounding
purposes. The mantissa is always rounded to 64 bits (or less, depending on the selected
rounding precision) before it is stored in a floating-point data register.

16-BIT EXPONENT 63-BIT FRACTION

LSB OF FRACTION
GUARD BIT
ROUND BIT
STICKY BIT

INTEGER BIT
OVERFLOW BIT

Figure 9-7. Intermediate Result Format

If the destination is a floating-point data register, the result is in the extended-precision
format and is rounded to the precision specified by the FPSR PREC bits before being
stored. All mantissa bits beyond the selected precision are zero. If the single- or double-

MOTOROLA M68040 USER’S MANUAL 9-13

precision mode is selected, the exponent value is in the correct range even if it is stored in
extended-precision format. If the destination is a memory location, the FPSR PREC bits
are ignored. In this case, a number in the extended-precision format is taken from the
source floating-point data register, rounded to the destination format precision, and then
written to memory.

Depending on the selected rounding mode or destination data format in effect, the location
of the least significant bit of the mantissa and the locations of the guard, round, and sticky
bits in the 67-bit intermediate result mantissa varies. The guard and round bits are always
calculated exactly. The sticky bit is used to create the illusion of an infinitely wide
intermediate result. As the arrow illustrates in Figure 9-7, the sticky bit is the logical OR of
all the bits in the infinitely precise result to the right of the round bit. During the calculation
stage of an arithmetic operation, any non-zero bits generated that are to the right of the
round bit set the sticky bit to one. Because of the sticky bit, the rounded intermediate
result for all required IEEE arithmetic operations in the RN mode is in error by no more
than one-half unit in the last place.

9.4.2 Rounding The Result

Range control is the process of rounding the mantissa of the intermediate result to the
specified precision and checking the 16-bit intermediate exponent to ensure that it is
within the representable range of the selected rounding-precision format. Range control
ensures correct emulation of a device that only supports single- or double-precision
arithmetic. If the intermediate result’s exponent exceeds the range of the selected
precision, the exponent value appropriate for an underflow or overflow is stored as the
result in the 16-bit extended-precision format exponent. For example, if the data format
and rounding mode is single-precision RM and the result of an arithmetic operation
overflows the magnitude of the single-precision format, the largest normalized single-
precision value is stored as an extended-precision number in the destination floating-point
data register (i.e., an unbiased 15-bit exponent of $00FF and a mantissa of
$FFFFFF0000000000). If an infinity is the appropriate result for an underflow or overflow,
the infinity value for the destination data format is stored as the result (i.e., an exponent
with the maximum value and a mantissa of zero).

Figure 9-8 illustrates the algorithm that is used to round an intermediate result to the
selected rounding precision and destination data format. If the destination is a floating-
point data register, either the selected rounding precision specified by the FPCR PREC
bits or by the instruction itself determines the rounding boundary. For example, FSADD
and FDADD specify single- and double-precision rounding regardless of the precision
specified in the FPCR PREC bits. If the destination is external memory or an integer data
register, the destination data format determines the rounding boundary. If the rounded
result of an operation is not exact, then the INEX2 bit is set in the FPSR EXC byte.

9-14 M68040 USER’S MANUAL MOTOROLA

ENTRY

INEX2 ➧ 1

GUARD ➧ 0
ROUND ➧ 0
STICKY ➧ 0

EXIT EXIT

GUARD, ROUND,
AND STICKY ARE

CHOPPED

SHIFT MANTISSA
RIGHT 1 BIT,

ADD 1 TO EXPONENT

ADD 1 TO
LSB

SELECT ROUNDING MODE

GUARD AND LSB = 1,
ROUND AND STICKY = 0

OR
GUARD = 1

ROUND OR STICKY = 1

INTERMEDIATE
RESULT

OVERFLOW = 1

GUARD, ROUND,
AND STICKY BITS = 0

EXACT RESULT

RPRMRN RZ

ADD 1 TO
LSB

INTERMEDIATE
RESULT

POS NEG POS NEG

Figure 9-8. Rounding Algorithm Flowchart

The three additional bits beyond the extended-precision format, the difference between
the intermediate result’s 67-bit mantissa and the stored result’s 64-bit mantissa, allow the
FPU to perform all calculations as though it were performing calculations using a float
engine with infinite bit precision. The result is always correct for the specified destination’s
data format before performing rounding (unless an overflow or underflow error occurs).
The specified rounding operation then produces a number that is as close as possible to
the infinitely precise intermediate value and still representable in the selected precision.

MOTOROLA M68040 USER’S MANUAL 9-15

The following tie-case example illustrates how the 67-bit mantissa allows the FPU to meet
the error bound of the IEEE specification:

Result Integer 63-Bit Fraction Guard Round Sticky

Intermediate x xxx…x00 1 0 0

Rounded-to-Nearest x xxx…x00 0 0 0

The least significant bit of the rounded result does not increment even though the guard
bit is set in the intermediate result. The IEEE 754 standard specifies that tie cases should
be handled in this manner. If the destination data format is extended and there is a
difference between the infinitely precise intermediate result and the round-to-nearest
result, the relative difference is 2–64 (the value of the guard bit). This error is equal to one-
half of the least significant bit’s value and is the worst case error that can be introduced
when using the RN mode. Thus, the term one-half unit in the last place correctly identifies
the error bound for this operation. This error specification is the relative error present in
the result; the absolute error bound is equal to 2exponent x 2–64. The following example
illustrates the error bound for the other rounding modes:

Result Integer 63-Bit Fraction Guard Round Sticky

Intermediate x xxx…x00 1 1 1

Rounded-to-Nearest x xxx…x00 0 0 0

The difference between the infinitely precise result and the rounded result is 2–64 + 2–65 +
2–66, which is slightly less than 2–63 (the value of the least significant bit). Thus, the error
bound for this operation is not more than one unit in the last place. For all arithmetic
operations, the FPU meets these error bounds, providing accurate and repeatable results.

9.5 POSTPROCESSING OPERATION

Most operations end with a postprocessing step. The FPU provides two steps in
postprocessing. First, the condition code bits in the FPSR are set or cleared at the end of
each arithmetic operation or move operation to a single floating-point data register. The
condition code bits are consistently set based on the result of the operation. Second, the
FPU supports 32 conditional tests that allow floating-point conditional instructions to test
floating-point conditions in exactly the same way as the integer conditional instructions
test the integer condition codes. The combination of consistently set condition code bits
and the simple programming of conditional instructions gives the MC68040 a very flexible,
high-performance method of altering program flow based on floating-point results. While
reading the summary for each instruction, it should be assumed that an instruction
performs postprocessing unless the summary specifically states that the instruction does
not do so. The following paragraphs describe postprocessing in detail.

9-16 M68040 USER’S MANUAL MOTOROLA

9.5.1 Underflow, Round, Overflow

During the calculation of an arithmetic result, the FPU arithmetic logic unit (ALU) has more
precision and range than the 80-bit extended-precision format. However, the final result of
these operations is an extended-precision floating-point value. In some cases, an
intermediate result becomes either smaller or larger than can be represented in extended
precision. Also, the operation can generate a larger exponent or more bits of precision
than can be represented in the chosen rounding precision. For these reasons, every
arithmetic instruction ends by rounding the result and checking for overflow and underflow.

At the completion of an arithmetic operation, the intermediate result is checked to see if it
is too small to be represented as a normalized number in the selected precision. If so, the
UNFL-bit is set in the FPSR EXC byte. The MC68040 then takes a nonmaskable
underflow exception and executes the M68040FPSP underflow exception handler,
denormalizing the result. Denormalizing a number causes a loss of accuracy, but a zero is
not returned unless absolutely necessary. If a number has grossly underflowed, the
M68040FPSP returns a zero or the smallest denormalized number with the correct sign,
depending on the rounding mode in effect.

If no underflow occurs, the intermediate result is rounded according to the user-selected
rounding precision and rounding mode. After rounding, the INEX2-bit of the FPSR EXC
byte is set accordingly. Finally, the magnitude of the result is checked to see if it is too
large to be represented in the current rounding precision. If so, the OVFL-bit of the FPSR
EXC byte is set. The M68040FPSP returns a correctly signed infinity or a correctly signed
largest normalized number, depending on the rounding mode in effect.

9.5.2 Conditional Testing

Unlike the integer arithmetic condition codes, an instruction either always sets the floating-
point condition codes in the same way or it does not change them at all. Therefore, the
instruction descriptions do not include floating-point condition code settings. The following
paragraphs describe how floating-point condition codes are set for all instructions that
modify condition codes. Refer to 9.2.3.1 Floating-Point Condition Code Byte for a
description of the FPCC byte.

The condition code bits differ slightly from the integer condition codes. Unlike the
operation-type-dependent integer condition codes, examining the result at the end of the
operation sets or clears the floating-point condition codes accordingly. The M68000 family
integer condition codes bits N and Z have this characteristic, but the V and C bits are set
differently for different instructions. The data type of the operation’s result determines how
the four condition code bits are set. Table 9-7 lists the condition code bit setting for each
data type. The MC68040 generates only eight of the 16 possible combinations. Loading
the FPCC with one of the other combinations and executing a conditional instruction can
produce an unexpected branch condition.

MOTOROLA M68040 USER’S MANUAL 9-17

Table 9-7. Floating-Point Condition Code Encodings

Data Type N Z I NAN

+ Normalized or Denormalized 0 0 0 0

– Normalized or Denormalized 1 0 0 0

+ 0 0 1 0 0

– 0 1 1 0 0

+ Infinity 0 0 1 0

– Infinity 1 0 1 0

+ NAN 0 0 0 1

– NAN 1 0 0 1

The inclusion of the NAN data type in the IEEE floating-point number system requires
each conditional test to include the NAN condition code bit in its Boolean equation.
Because a comparison of a NAN with any other data type is unordered (i.e., it is
impossible to determine if a NAN is bigger or smaller than an in-range number), the
compare instruction sets the NAN condition code bit when an unordered compare is
attempted. All arithmetic instructions also set the FPCC NAN bit if the result of an
operation is a NAN. The conditional instructions interpret the NAN condition code bit equal
to one as the unordered condition.

The IEEE 754 standard defines four conditions: equal to (EQ), greater than (GT), less
than (LT), and unordered (UN). In addition, the standard only requires the generation of
the condition codes as a result of a floating-point compare operation. The FPU tests for
these conditions and 28 others at the end of any operation affecting the condition codes.
For purposes of the floating-point conditional branch, set byte on condition, decrement
and branch on condition, and trap on condition instructions, the MC68040 logically
combines the four FPCC bits to form 32 conditional tests. The 32 conditional tests are
separated into two groups—16 that cause an exception if an unordered condition is
present when the conditional test is attempted, IEEE nonaware tests, and 16 that do not
cause an exception, IEEE aware tests. The set of IEEE nonaware tests is best used:

• when porting a program from a system that does not support the IEEE 754 standard
to a conforming system or

• when generating high-level language code that does not support IEEE floating-point
concepts (i.e., the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point
compare operation is a NAN. The inclusion of the unordered condition in floating-point
branches destroys the familiar trichotomy relationship (greater than, equal, less than) that
exists for integers. For example, the opposite of floating-point branch greater than (FBGT)
is not floating-point branch less than or equal (FBLE). Rather, the opposite condition is
floating-point branch not greater than (FBNGT). If the result of the previous instruction was
unordered, FBNGT is true; whereas, both FBGT and FBLE would be false since
unordered fails both of these tests (and sets BSUN). Compiler programmers should be

9-18 M68040 USER’S MANUAL MOTOROLA

particularly careful of the lack of trichotomy in the floating-point branches since it is
common for compilers to invert the sense of conditions.

When using the IEEE nonaware tests, the user receives a BSUN exception whenever a
branch is attempted and the NAN condition code bit is set, unless the branch is an FBEQ
or an FBNE. If the BSUN exception is enabled in the FPCR, the exception causes another
exception. Therefore, the IEEE nonaware program is interrupted if an unexpected
condition occurs. Compilers and programmers who are knowledgeable of the IEEE 754
standard should use the IEEE aware tests in programs that contain ordered and
unordered conditions. Since the ordered or unordered attribute is explicitly included in the
conditional test, the BSUN bit is not set in the FPSR EXC byte when the unordered
condition occurs. Table 9-8 summarizes the conditional mnemonics, definitions,
equations, predicates, and whether the BSUN bit is set in the FPSR EXC byte for the 32
floating-point conditional tests. The equation column lists the combination of FPCC bits for
each test in the form of an equation.

MOTOROLA M68040 USER’S MANUAL 9-19

Table 9-8. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate BSUN Bit Set

IEEE Nonaware Tests

EQ Equal Z 000001 No

NE Not Equal Z 001110 No

GT Greater Than NAN V Z V N 010010 Yes

NGT Not Greater Than NAN V Z V N 011101 Yes

GE Greater Than or Equal Z V (NAN V N) 010011 Yes

NGE Not Greater Than or Equal NAN V (N Λ Z) 011100 Yes

LT Less Than N Λ (NAN V Z) 010100 Yes

NLT Not Less Than NAN V (Z V N) 011011 Yes

LE Less Than or Equal Z V (N Λ NAN) 010101 Yes

NLE Not Less Than or Equal NAN V (N V Z) 011010 Yes

GL Greater or Less Than NAN V Z 010110 Yes

NGL Not Greater or Less Than NAN V Z 011001 Yes

GLE Greater, Less, or Equal NAN 010111 Yes

NGLE Not Greater, Less, or Equal NAN 011000 Yes

IEEE Aware Tests

EQ Equal Z 000001 No

NE Not Equal Z 001110 No

OGT Ordered Greater Than NAN V Z V N 000010 No

ULE Unordered or Less or Equal NAN V Z V N 001101 No

OGE Ordered Greater Than or Equal Z V (NAN V N) 000011 No

ULT Unordered or Less Than NAN V (N Λ Z) 001100 No

OLT Ordered Less Than N Λ (NAN V Z) 000100 No

UGE Unordered or Greater or Equal NAN V Z V N 001011 No

OLE Ordered Less Than or Equal Z V (N Λ NAN) 000101 No

UGT Unordered or Greater Than NAN V (N V Z) 001010 No

OGL Ordered Greater or Less Than NAN V Z 000110 No

UEQ Unordered or Equal NAN V Z 001001 No

OR Ordered NAN 000111 No

UN Unordered NAN 001000 No

Miscellaneous Tests

F False False 000000 No

T True True 001111 No

SF Signaling False False 010000 Yes

ST Signaling True True 011111 Yes

SEQ Signaling Equal Z 010001 Yes

SNE Signaling Not Equal Z 011110 Yes

NOTE: All condition codes with an overbar indicate cleared bits; all other bits are set.

9-20 M68040 USER’S MANUAL MOTOROLA

9.6 FLOATING-POINT EXCEPTIONS

There are two classes of floating-point-related exceptions: nonarithmetic floating-point
exceptions and arithmetic floating-point exceptions. The latter relates to the handling of
arithmetic exceptions caused by floating-point activity, and the former includes
unimplemented floating-point instructions and unsupported data types not related to the
handling of arithmetic exceptions. Format error and FTRAPcc exceptions may seem to be
floating-point related, but are considered IU exceptions (see Section 8 Exception
Processing). The following sections detail floating-point exceptions and how the
MC68040 and M68040FPSP handle them. Table 9-9 lists the vector numbers related to
floating-point exceptions.

Table 9-9. Floating-Point Exception Vectors

Vector
Number

Vector Offset
(Hex)

Assignment

11

48
49
50
51

02C

0C0
0C4
0C8
0CC

Floating-Point Unimplemented Instruction
(also used for F-line instruction)

Floating-Point Branch or Set on Unordered Condition
Floating-Point Inexact Result
Floating-Point Divide by Zero
Floating-Point Underflow

52
53
54
55

0D0
0D4
0D8
0DC

Floating-Point Operand Error
Floating-Point Overflow
Floating-Point SNAN
Floating-Point Unimplemented Data Type

The following paragraphs detail nonarithmetic floating-point exceptions.

9.6.1 Unimplemented Floating-Point Instructions

F-line instructions are instruction word patterns with bits 15–12 that have an $F encoding,
causing F-line exceptions. These instructions are termed unimplemented floating-point
instructions and cause an unimplemented floating-point exception. The MC68040
recognizes some F-line instructions, such as the FMUL and CPUSH, which do not cause
F-line exceptions. There are some F-line instructions that the MC68040 recognizes as
valid MC68881/MC68882 floating-point instruction patterns, but as floating-point
instructions that the processor cannot complete in hardware. Table 9-10 lists the floating-
point instructions that are unimplemented and therefore cause an unimplemented
instruction exception.

If the processor encounters an F-line instruction and the instruction patterns do not match
either of the above two cases, the processor takes an F-line illegal exception. F-line illegal
exceptions are discussed further in Section 8 Exception Processing. The processor
generates an exception with vector number 11 and pushes a four-word stack frame format
$0 on the system stack. An illegal instruction exception is also reported when a breakpoint
acknowledge bus cycle is run and terminated with either a transfer acknowledge (TA) or
transfer error acknowledge (TEA) signal. Since the unimplemented floating-point

MOTOROLA M68040 USER’S MANUAL 9-21

exception and the F-line illegal instruction share the same vector, the exception handler
uses the stack frame format ($0 or $2) to distinguish between the two.

Table 9-10. Unimplemented Instructions

Monadic Operations

FACOS FINTRZ

FASIN FLOG10

FATAN FLOGN

FATANH FLOGNP1

FCOS FMOVECR

FCOSH FSIN

FETOX FSINCOS

FETOXM1 FSINH

FGETEXP FTAN

FGETMAN FTANH

FINT FTENTOX

FTWOTOX —

Dyadic Operations

FMOD FREM

FSCALE —

When an unimplemented floating-point instruction is encountered, the processor waits for
all previous floating-point instructions to complete execution. Pending exceptions are
taken and handled prior to the execution of the unimplemented instruction.

Next, the instruction is partially decoded to allow fetching of the memory source operand,
if required. When the operand fetch begins, all other read accesses for previous
instructions are complete, and only the execution and write-back of results for previous
integer instructions remains to be completed. If an access error (bus error) occurs in
fetching the operand or in completing any other access before beginning the operand
fetch, the unimplemented instruction is restarted after the processor returns from
exception handling for the error. Refer to Section 8 Exception Processing for more
information on access errors.

The fetched source operand is passed to the FPU, which converts the operand to
extended precision and saves the intermediate result. If the operand is an unsupported
data type (denormalized, unnormalized, or packed decimal real), the unimplemented
floating-point exception takes precedence, and the floating-point instruction emulation
routine must detect the unsupported data type.

The processor begins exception processing for the unimplemented floating-point
instruction by making an internal copy of the current SR. The processor then enters the
supervisor mode and clears the trace bits (T1, T0). The processor creates a format $2
stack frame and saves the vector offset, PC, internal copy of the SR, and calculated

9-22 M68040 USER’S MANUAL MOTOROLA

effective address in the stack frame. The saved PC value is the logical address of the
instruction that follows the unimplemented floating-point instruction. The processor
generates exception vector number 11 for the unimplemented F-line instruction exception
vector, fetches the address of the F-line exception handler from the processor’s exception
vector table, pushes the format $2 stack frame on the system stack, and begins execution
of the exception handler after prefetching instructions to fill the pipeline. The exception
handler emulates the unimplemented floating-point instruction in software, maintaining
user-object-code compatibility. Refer to Section 8 Exception Processing for details
about exception vectors and format $2 stack frames.

The F-line exception handler checks for the format $2 stack frame to distinguish an
unimplemented floating-point instruction from other F-line unimplemented instructions.
When the exception handler for unimplemented floating-point instructions executes an
FSAVE, a 26-word unimplemented instruction state frame is created (see Figure 9-10). At
this point, an FSAVE instruction yields the information as listed in Table 9-16. Note that
unless the instruction specifies a packed decimal real source, the state frame contains
both operands (if required). For packed decimal real data format, the second operand is in
the designated format of the destination floating-point data register.

The exception handler uses the information provided in the state frame to determine the
instruction that it needs to emulate and the input operands to that instruction. Once the
instruction has been emulated and the result is reached, the exception handler moves the
result into the appropriate destination floating-point data register, discards the
unimplemented instruction state frame, and returns to normal instruction flow using the
RTE instruction. The limitation to this approach is that no floating-point arithmetic
exceptions can be reported at the end of the emulated instruction.

The M68040FPSP not only emulates the instruction, but in addition, it ensures that if any
floating-point arithmetic exceptional conditions arise from the emulation of the
unimplemented instruction and if the corresponding floating-point arithmetic exception is
enabled, the M68040FPSP manipulates the stack and restores the stack back into the
FPU in the desired exceptional state. This effectively imitates the action of the MC68040
implemented instructions since the exception is not reported until the next floating-point
instruction is encountered. This manipulation of the stack is rather complicated and is
beyond the scope of this manual. Motorola recommends that the user utilize the
M68040FPSP if a full exception-reporting model is required. Motorola does not provide
any printed documentation other than what is embedded in the source code of the
M68040FPSP.

9.6.2 Unsupported Floating-Point Data Types

An unsupported data type exception occurs when either operand to an implemented
floating-point instruction is denormalized (for single-, double-, and extended-precision
operands), unnormalized (for extended-precision operands), or either the source or
destination data format is packed decimal real. These data types are unimplemented in
the MC68040 and must be emulated in software.

MOTOROLA M68040 USER’S MANUAL 9-23

NOTE

In this manual, all references to the unsupported floating-point
data types also refer to the unimplemented data types in the
M68040FPSP.

When the processor encounters an unsupported data type, the procedure taken is
identical to that used when an unimplemented instruction is taken. Unsupported data
types with operands that have opclass 010 or 000 (register-to-register or memory-to-
register) instructions cause a pre-instruction exception. When an unsupported data type is
detected for opclass 011 (register-to-memory) instructions, a post-instruction exception is
generated immediately. A format $0 (for the pre-instruction exception) or format $3 (for the
post-instruction exception) stack frame is saved, and vector number 55 is fetched. A
denormalized value generated as the result of a floating-point operation generates a
nonmaskable underflow exception instead of an unsupported data type exception.

Table 9-16 lists the floating-point state frame fields for unsupported data type exceptions
resulting from the execution of opclass 010 or 000 (register-to-register or memory-to-
register) instructions, and opclass 011 (register-to-memory) instructions defined for the
use by the supervisor exception handler.

A denormalized or unnormalized extended-precision source or destination operand is
copied directly without modification to ETEMP or FPTEMP fields in the floating-point state
frame. If a packed decimal real source operand is specified, the upper 32 bits of the
operand are copied to the FPTEMP field, and the lower 64 bits are copied to ETEMP. The
destination operand in this case remains in the destination floating-point register, and can
be either denormalized or unnormalized. Figure 9-9 illustrates denormalized single- (a)
and double-precision (b) operands stored in ETEMP field.

The exception handler uses the floating-point state frame information to determine which
operand (or operands) is the unsupported data type and which instruction attempted to
use the offending operand. The exception handler must provide the routines needed to
complete the instruction and to store that instruction to the proper destination, whether it
be in a floating-point data register, integer data register, or external memory. Once the
destination is written, the floating-point state frame is discarded, and normal execution is
resumed by using the RTE instruction. This approach does not report floating-point
arithmetic exceptions that may have been generated. Motorola recommends that the user
utilize the M68040FPSP if a full exception-reporting model is required. Motorola does not
provide any printed documentation other than what is embedded in the source code of the
M68040FPSP.

9-24 M68040 USER’S MANUAL MOTOROLA

DENORMALIZED SINGLE PRECISION

31 30 23 22 0

0394062636479809495

$0S

$0 $0 $00FORMAT IN STATE FRAME

MANTISSAEXPS

FRACTION

DENORMALIZED DOUBLE PRECISION

63 62 52 51 0

0101162636479809495

$0S

$0 $0 $00FORMAT IN STATE FRAME

MANTISSAEXPS

MANTISSA

(a) Single Precision

(b) Double Precision

Figure 9-9. Format of Denormalized Operand in State Frame

9.7 FLOATING-POINT ARITHMETIC EXCEPTIONS

The following eight user floating-point arithmetic exceptions are listed in order of priority.
The MC68040 generates the first seven exceptions in hardware and the eighth only in
software.

• Branch/Set on Unordered (BSUN)

• Signaling Not-A-Number (SNAN)

• Operand Error (OPERR)

• Overflow (OVFL)

• Underflow (UNFL)

• Divide by Zero (DZ)

• Inexact 2 (INEX2)

• Inexact 1 (INEX1)

INEX1 exception is the condition that exists when a packed decimal operand cannot be
converted exactly to the extended-precision format in the current rounding mode. Since

MOTOROLA M68040 USER’S MANUAL 9-25

the MC68040 does not directly support packed decimal real operands, the processor
never sets INEX1 bit in the FPSR EXC byte, but provides it as a latch so that emulation
software can report the exception.

A floating-point arithmetic exception is taken in one of two situations. The first situation
occurs when the user program enables an arithmetic exception by setting a bit in the
FPCR ENABLE byte and the corresponding bit in the FPSR EXC byte matches the bit in
the FPCR ENABLE byte as a result of program execution; this is referred to as maskable
exception conditions. A user write operation to the FPSR, which sets a bit in the EXC byte,
does not cause an exception to be taken, regardless of the value in the ENABLE byte.
When a user writes to the ENABLE byte that enables a class of floating-point exceptions,
a previously generated floating-point exception does not cause an exception to be taken,
regardless of the value in the FPSR EXC byte. The user can clear a bit in the FPCR
ENABLE byte, disabling each corresponding exception.

The second situation occurs when the processor encounters a nonmaskable SNAN,
OPERR, OVFL, and UNFL condition; this is referred to as nonmaskable exception
conditions. This allows a supervisor exception handler to correct a defaulting result
generated by the MC68040 that is different from the result generated by an
MC68881/MC68882 executing the same code. After correcting the result, the supervisor
exception handler calls a user-defined exception handler if the exception has been
enabled in the FPCR ENABLE byte or returns to the main program flow if the exception is
disabled.

A single instruction execution can generate dual and triple exceptions. When multiple
exceptions occur with exceptions enabled for more than one exception class, the highest
priority exception is reported; the lower priority exceptions are never reported or taken.
The previous list of arithmetic floating-point exceptions is in order of priority. The bits of
the ENABLE byte are organized in decreasing priority, with bit 15 being the highest and bit
8 the lowest. The exception handler must check for multiple exceptions. The address of
the exception handler is derived from the vector number corresponding to the exception.
The following is a list of multiple instruction exceptions that can occur:

• SNAN and INEX1

• OPERR and INEX2

• OPERR and INEX1

• OVFL and INEX2 and/or INEX1

• UNFL and INEX2 and/or INEX1

9.7.1 Branch/Set On Unordered (BSUN)

The BSUN exception is the result of performing an IEEE nonaware conditional test
associated with the FBcc, FDBcc, FTRAPcc, and FScc instructions when an unordered
condition is present. Refer to 9.5.2 Conditional Testing for information on conditional
tests.

9-26 M68040 USER’S MANUAL MOTOROLA

If a floating-point exception is pending from a previous floating-point instruction, a pre-
instruction exception is taken. After the appropriate exception handler is executed, the
conditional instruction is restarted. When the FPU pipeline is idle (all previous floating-
point instructions have completed) and no exceptions are pending, the processor
evaluates the conditional predicate and checks for a BSUN exception before executing the
conditional instruction.

9.7.1.1 MASKABLE EXCEPTION CONDITIONS. A BSUN exception occurs if the
conditional predicate is one of the IEEE nonaware branches and the FPCC NAN bit is set.
When the processor detects this condition, it sets the BSUN bit in the FPSR EXC byte.

a. If the user BSUN exception handler is disabled, the floating-point condition is
evaluated as if it were the equivalent IEEE aware conditional predicate. No
exceptions are taken.

b. If the user BSUN exception handler is enabled, the processor takes a floating-point
pre-instruction exception. A $0 stack frame is saved, and vector number 48 is
generated to access the BSUN exception vector. The BSUN entry in the processor’s
vector table points to the M68040FPSP BSUN exception handler.

For MC68881/MC68882 compatibility, the M68040FPSP updates the FPIAR by copying
the PC value in the pre-instruction stack frame to the FPIAR. The M68040FPSP BSUN
exception handler restores the FPU to its exceptional state, cleans up the stack to the
state prior to the M68040FPSP BSUN exception handler’s execution, and continues
instruction execution at the user BSUN exception handler. No parameters are passed to
the user BSUN exception handler since the M68040FPSP BSUN exception handler
provides the illusion that it never existed.

The user BSUN exception handler must execute an FSAVE as its first floating-point
instruction. FSAVE allows other floating-point instructions to execute without reporting the
BSUN exception again, although none of the state frame values are useful in the
execution of the user BSUN exception handler. The BSUN exception is unique in that the
exception is taken before the conditional predicate is evaluated. If the user BSUN
exception handler does not set the PC to the instruction following the one that caused
BSUN exception when returning, the exception is executed again. Therefore, it is the
responsibility of the user BSUN exception handler to prevent the conditional instruction
from taking the BSUN exception again. There are four ways to prevent taking the
exception again:

1. Incrementing the stored PC in the stack bypasses the conditional instruction. This
technique applies to situations where a fall-through is desired. Note that accurate
calculation of the PC increment requires detailed knowledge of the size of the
conditional instruction being bypassed.

2. Clearing the NAN bit prevents the exception from being taken again. However, this
alone cannot deterministically control the result’s indication (true or false) that would
be returned when the conditional instruction reexecutes.

3. Disabling the BSUN bit also prevents the exception from being taken again. Like the
second method, this method cannot control the result indication (true or false) that
would be returned when the conditional instruction reexecutes.

MOTOROLA M68040 USER’S MANUAL 9-27

4. Examining the conditional predicate and setting the FPCC NAN bit accordingly
prevents the exception from being taken again. This technique gives the most
control since it is possible to pre-determine the direction of program flow. Bit 7 of the
F-line operation word indicates where the conditional predicate is located. If bit 7 is
set, the conditional predicate is the lower six bits of the F-line operation word.
Otherwise, the conditional predicate is the lower six bits of the instruction word,
which immediately follows the F-line operation word. Using the conditional predicate
and the table for IEEE nonaware test in 9.5.2 Conditional Testing, the condition
codes can be set to return a known result indication when the conditional instruction
is reexecuted.

Prior to exiting the user BSUN exception handler, the exception handler discards the
floating-point state frame.

9.7.1.2 NONMASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.2 Signaling Not-a-Number (SNAN)

An SNAN is used as an escape mechanism for a user-defined, non-IEEE data type. The
processor never creates an SNAN as a result of an operation; a NAN created by an
operand error exception is always a nonsignaling NAN. When an operand is an SNAN
involved in an arithmetic instruction, the SNAN bit is set in the FPSR EXC byte. Since the
FMOVEM, FMOVE FPCR, and FSAVE instructions do not modify the status bits, they
cannot generate exceptions. Therefore, these instructions are useful for manipulating
SNANs.

9.7.2.1 MASKABLE EXCEPTION CONDITIONS. When an SNAN is encountered, if the
destination is a floating-point data register or is in memory (or an integer data register) and
the format is single, double, or extended precision, the SNAN is maskable and may or
may not take an exception.

a. If the user SNAN exception is disabled, the processor clears the SNAN bit in the
NAN data format and the resulting nonsignaling NAN is transferred to the
destination. No bits other than the SNAN bit of the NAN data format are modified,
although the input NAN is truncated if necessary. Instruction execution continues
without taking any exceptions.

b. If the user SNAN exception handler is enabled, the processor posts an exception
and another floating-point instruction is eventually encountered; a pre-instruction
exception is reported at that time. The SNAN entry in the processor’s vector table
points to the M68040FPSP SNAN exception handler. Once the M68040FPSP SNAN
exception handler recognizes the operand error as a maskable condition, it does not
modify the destination or pass control to the user SNAN exception handler.

9.7.2.2 NONMASKABLE EXCEPTION CONDITIONS. When an SNAN is encountered, if
the destination is either in memory or an integer data register and the format is byte, word,
or long word, a nonmaskable post-instruction exception occurs and is taken immediately.
The SNAN entry in the processor’s vector table points to the M68040FPSP SNAN
exception handler.

9-28 M68040 USER’S MANUAL MOTOROLA

The M68040FPSP SNAN exception handler checks to see if the instruction is an FMOVE
to byte, word, or long word. If one of these conditions is met, the M68040FPSP SNAN
exception handler stores the most significant 8, 16, or 32 bits, respectively, of the SNAN
mantissa, with the SNAN bit set, to the destination. Next, it determines whether or not the
user SNAN exception is enabled.

a. If the user SNAN exception is disabled, the M68040FPSP SNAN exception handler
checks for an INEX1 or INEX2 exception condition and determines whether or not it
needs to go to the user INEX exception handler. If not, the M68040FPSP returns to
normal instruction execution. Otherwise, the M68040FPSP SNAN exception handler
restores the FPU to its exceptional state, cleans up the stack to the conditions prior
to execution, and continues instruction execution at the user INEX exception
handler. No parameters are passed to the user INEX exception handler since the
M68040FPSP SNAN exception handler provides the illusion that it never existed.

b. If the user SNAN exception handler is enabled, the M68040FPSP SNAN exception
handler checks to see if the destination is a floating-point data register or in memory
(or an integer data register) with single-, double-, or extended-precision format. If so,
the M68040FPSP SNAN exception handler determines which input operand is the
SNAN, sets the SNAN bit in the NAN data format, and transfers the resulting
nonsignaling NAN to the destination. Once the destination has been written, the
M68040FPSP SNAN exception handler restores the FPU to its exceptional state,
cleans up the stack to the conditions prior to its execution, and continues instruction
execution at the user SNAN exception handler. No parameters are passed to the
user SNAN exception handler since the M68040FPSP SNAN exception handler
provides the illusion that it never existed.

The user SNAN exception handler must execute an FSAVE as the first floating-point
instruction. Table 9-16 lists the floating-point state frame fields for SNAN pre-instruction
exceptions resulting from the execution of opclass 010 or 000 (register-to-register or
memory-to-register) instructions, and for SNAN post-instruction exceptions resulting from
the execution of opclass 011 (register-to-memory) instructions defined for the use by the
supervisor exception handler. A source or destination SNAN is stored in ETEMP or
FPTEMP, respectively, with its SNAN bit set.

The user SNAN exception handler can overwrite the result to the specified destination.
The exception handler must be aware that it is possible for an INEX1 exceptional
condition to co-exist with an SNAN exception. Since the SNAN exception has higher
priority, the INEX1 exception is hidden, and it becomes the responsibility of the SNAN
exception handler to detect and correct this if desired. To return to normal execution, the
state frame is discarded prior to execution of the RTE of the user-defined exception
handler.

9.7.3 Operand Error

The operand error exception encompasses problems arising in a variety of operations,
including those errors not frequent or important enough to merit a specific exceptional
condition. Basically, an operand error occurs when an operation has no mathematical
interpretation for the given operands. Table 9-11 lists the possible operand errors, both
native and not native to the MC68040, which the M68040FPSP unimplemented instruction

MOTOROLA M68040 USER’S MANUAL 9-29

exception handler can report. When an operand error occurs, the OPERR bit is set in the
FPSR EXC byte.

Table 9-11. Possible Operand Errors Exceptions

Instruction Condition Causing Operand Error

Native to MC68040

FADD (+inf) + (–inf) or (–inf) + (+inf)

FDIV 0 ÷ 0 or inf ÷ inf

FMOVE to B,W,or L Integer overflow where the source is nonsignaling NAN or +infinity.

FMUL One operand is 0 and other is +inf.

FSQRT Source < 0 or ±inf.

FSUB (+inf) – (+inf) or (–inf) – (–inf)

Nonnative to MC68040

FACOS Source is ±inf, > +1, or < –1

FASIN Source is ±inf, > +1, or < –1

FATANH Source is > +1 or < –1

FCOS Source is ±inf

FGETEXP Source is ±inf

FGETMAN Source is ±inf

FLOG10 Source is < 0

FLOG2 Source is < 0

FLOGN Source is < 0

FLOGNP1 Source is ≤ 1

FMOD Floating-point data register is ±inf or source is 0, other operand is not a NAN

FMOVE to P Source exponent > 999 (decimal) or k-Factor > 17

FREM Floating-point data register is ±inf or source is 0, other operand is not a NAN

FSCALE Source is ±inf

FSGLDIV 0 ÷ 0 or inf ÷ inf

FSGLMUL One operand is 0, other operand is inf

FSIN Source is ±inf

FSINCOS Source is ±inf

FTAN Source is ±inf

9.7.3.1 MASKABLE EXCEPTION CONDITIONS. All conditions apply as listed in Table
9-11, with the exception of the FMOVE to byte, word, or long-word case.

a. If the user OPERR exception handler is disabled, an extended-precision
nonsignaling NAN with all mantissa bits set is stored in the destination floating-point
data register. No exceptions are reported, and instruction execution proceeds
normally.

9-30 M68040 USER’S MANUAL MOTOROLA

b. If the user OPERR exception handler is enabled and the destination floating-point
data register is not modified, an OPERR exception is posted. The next floating-point
instruction that is encountered takes a pre-instruction exception. The OPERR entry
in the processor’s vector table points to the M68040FPSP OPERR exception
handler. Once the M68040FPSP OPERR exception handler recognizes the operand
error as a maskable condition, it does not modify the destination or pass control to
the user OPERR exception handler.

9.7.3.2 NONMASKABLE EXCEPTION CONDITIONS. If an FMOVE to byte, word, or long
word has a source operand that is too large to be represented in the specified destination
integer format (integer overflow, NAN, infinity) or if the source operand is equal to the
largest negative integer representable in the specified destination integer format
(erroneous MC68040 condition), the processor immediately takes a post-instruction
exception. Instruction execution continues at the M68040FPSP OPERR exception
handler.

If the M68040FPSP determines a nonmaskable erroneous MC68040 condition caused the
exception, it stores the largest negative integer representable in the given destination
integer format (–27 for byte, –215 for word, and –231 for long word). The M68040FPSP
OPERR exception handler then returns the processor to normal processing. If an integer
overflow or an FMOVE to byte, word, or long word with a source of infinity causes the
exception, then the destination is written with the largest positive or negative integer that
can be represented in the given format. If an FMOVE to byte of word or long word with a
source of NAN causes the exception, then the most significant 8, 16, or 32 bits,
respectively, are written to the destination. Next, the M68040FPSP OPERR exception
handler checks to see if the user OPERR exception handler is enabled.

a. If the user OPERR exception handler is disabled, an exception-causing INEX1 or
INEX2 condition exists, and the user INEX exception handler is enabled. The
M68040FPSP OPERR exception handler restores the FPU to its exceptional state,
cleans up the stack to the conditions prior to execution, and continues instruction
execution at the user INEX exception handler. No parameters are passed to the user
INEX exception handler since the M68040FPSP OPERR exception handler provides
the illusion that it never existed. Otherwise, the M68040FPSP OPERR exception
handler returns the processor to normal processing.

b. If the user OPERR exception handler is enabled and the destination is a floating-
point data register, then the M68040FPSP exception handler does not modify the
register. The M68040FPSP OPERR exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior to execution, and
continues instruction execution at the user OPERR exception handler. No
parameters are passed to the user OPERR exception handler since the
M68040FPSP OPERR exception handler provides the illusion that it never existed.

The user OPERR exception handler must execute an FSAVE as its first floating-point
instruction. Table 9-16 lists the floating-point state frame fields for OPERR exceptions
resulting from the execution of opclass 010 or 000 (register-to-register or memory-to-
register) instructions and opclass 011 (register-to-memory) instructions defined for the use
by the supervisor exception handler.

MOTOROLA M68040 USER’S MANUAL 9-31

The CMDREG1B field of the floating-point state frame can be used to determine the
instruction that caused of the OPERR exception. Note that CMDREG1B could be any of
the instructions listed in Table 9-11. If the destination is a floating-point data register, this
exception handler needs to supply the contents. If the destination is memory, the effective
address is supplied in the format $3 stack frame. If the destination is an integer data
register, the FPIAR points to the F-line instruction word that contains the integer data
register number. To exit the user OPERR exception handler, the saved floating-point
frame need not be restored and can be discarded prior to execution of the RTE
instruction.

9.7.4 Overflow

An overflow exception is detected for arithmetic operations in which the destination is a
floating-point data register or memory when the intermediate result’s exponent is greater
than or equal to the maximum exponent value of the selected rounding precision.
Overflow can only occur when the destination is in the single-, double-, or extended-
precision format; all other data format overflows are handled as operand errors. At the end
of any operation that could potentially overflow, the intermediate result is checked for
underflow, rounded, and then checked for overflow before it is stored to the destination. If
overflow occurs, the OVFL bit is set in the FPSR EXC byte.

Even if the intermediate result is small enough to be represented as an extended-
precision number, an overflow can occur. The intermediate result is rounded to the
selected precision, and the rounded result is stored in the extended-precision format. If the
magnitude of the intermediate result exceeds the range of the selected rounding precision
format, an overflow occurs.

9.7.4.1 MASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.4.2 NONMASKABLE EXCEPTION CONDITIONS. When the OVFL bit is set in the
FPSR EXC byte as a result of a floating-point instruction, the processor always takes a
nonmaskable overflow exception. If the destination is a floating-point data register, then
the register is not affected, and either a pre-instruction or a post-instruction exception is
reported. If the destination is a memory or integer data register, an undefined result is
stored, and a post-instruction exception is taken immediately. Execution begins at the
M68040FPSP OVFL exception handler.

The values defined in Table 9-12 are stored in the destination based on the rounding
mode defined in the FPCR MODE byte. The M68040FPSP OVFL exception handler
rounds the result according to the rounding precision defined in the FPCR MODE byte if
the destination is a floating-point data register. If the destination is in memory or an integer
data register, then the rounding precision in the FPCR MODE byte is ignored, and the
given destination format defines the rounding precision. If the instruction has a forced
rounding precision (e.g., FSADD, FDMUL), the instruction defines the rounding precision.
The M68040FPSP OVFL exception handler then checks to see if the user OVFL
exception handler is enabled.

9-32 M68040 USER’S MANUAL MOTOROLA

Table 9-12. Overflow Rounding Mode Values

Rounding
Mode

Result

RN Infinity, with the sign of the intermediate result.

RZ Largest magnitude number, with the sign of the intermediate result.

RM For positive overflow, largest positive number; for negative overflow, infinity.

RP For positive overflow, infinity; for negative overflow, largest negative number.

a. If the user OVFL exception handler is disabled, the M68040FPSP OVFL exception
handler checks for an INEX1 or INEX2 exception condition with the user INEX
exception handler enabled. If not, the processor returns to normal instruction flow.
Otherwise, the M68040FPSP OVFL exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior its execution, and
continues instruction execution at the user INEX exception handler. No parameters
are passed to the user INEX exception handler since the M68040FPSP OVFL
exception handler provides the illusion that it never existed. Otherwise, the
M68040FPSP OVFL exception handler returns the processor to normal processing.

b. If the user OVFL exception handler is enabled, the M68040FPSP OVFL restores the
FPU to its exceptional state, cleans up the stack to the conditions prior to execution,
and continues instruction execution at the user OVFL exception handler. No
parameters are passed to the user OVFL exception handler since the M68040FPSP
OVFL exception handler provides the illusion that it never existed.

The user OVFL exception handler must execute an FSAVE as its first floating-point
instruction. The destination contains the rounding mode values listed in Table 9-12, and
the user OVFL exception handler can choose to modify these values. The E3 and E1 bits
of the floating-point state frame are examined to determine which fields on the floating-
point state frame are valid. E3 always takes precedence and must be serviced first. Table
9-16 lists the floating-point state frame fields for OVFL exceptions with E3 set or with E3
clear and E1 set. Note that it is possible for an FADD, FSUB, FMUL, and FDIV to report a
post-instruction exception, although these instructions normally generate a pre-instruction
exception. The following example illustrates the reason why a post-instruction exception is
generated.

FADD FP2,FP0 ; this instruction generates an overflow exception
FMOVE FP0, <ea> ; this instruction is executing when overflow occurs

In this example, assume that the FMOVE instruction starts once the FADD instruction
generates an overflow. Given the register dependency on FP0, the destination of the
FADD instruction, FP0 needs to be resolved prior to FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set, (post-instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word

MOTOROLA M68040 USER’S MANUAL 9-33

of the offending instruction, and the F-line word contains the integer data register number.
If the M68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an overflow is reported.

In addition to normal overflow, the exponential instructions can generate results that
catastrophically overflow the 16-bit exponent used for intermediate results. For these
instructions (FETOX, FTENTOX, FTWOTOX, FSINH, and FCOSH), the intermediate
result found in either FPTEMP or WBTEMP fields of the floating-point state frame are
invalid. If an INEX2 or INEX1 exceptional condition exists and the user INEX exception
handler is enabled, it is the responsibility of the user OVFL exception handler to look for
this situation.

The user OVFL exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame through the FRESTORE instruction. If the E3 bit is clear and the E1 bit
is set, the floating-point state frame is discarded. The RTE instruction must be executed to
return to normal instruction flow.

9.7.5 Underflow

An underflow exception occurs when the intermediate result of an arithmetic operation is
too small to be represented as a normalized number in a floating-point data register or
memory using the selected rounding precision. An arithmetic operation is too small when
the intermediate result exponent is less than or equal to the minimum exponent value of
the selected rounding precision. Underflow is not detected for intermediate result
exponents that are equal to the extended-precision minimum exponent since the explicit
integer part bit permits representation of normalized numbers with a minimum extended-
precision exponent. Underflow can only occur when the destination format is single,
double, or extended precision. When the destination format is byte, word, or long word,
the conversion underflows to zero without causing either an underflow or an operand
error. At the end of any operation that could potentially underflow, the intermediate result
is checked for underflow, rounded, and checked for overflow before it is stored at the
destination. If an underflow occurs, the UNFL bit is set in the FPSR EXC byte.

Even if the intermediate result is large enough to be represented as an extended-precision
number, an underflow can occur. The intermediate result is rounded to the selected
precision, and the rounded result is stored in extended-precision format. If the magnitude
of the intermediate result is too small to be represented in the selected rounding precision,
an underflow occurs.

The IEEE 754 standard defines two causes of an underflow: 1) when the absolute value of
the number is less than the minimum number that can be represented by a normalized
number in a specific data format; 2) when loss of accuracy occurs while attempting to
calculate such a number (a loss of accuracy also causes an inexact exception). The IEEE
754 standard specifies that if the underflow exception is disabled, an underflow should
only be signaled when both of these cases are satisfied (i.e., the result is too small to be
represented with a given format and there is a loss of accuracy during calculation of the

9-34 M68040 USER’S MANUAL MOTOROLA

final result). If the exception is enabled, the underflow should be signaled any time a very
small result is produced, regardless of whether accuracy is lost in calculating it.

The processor UNFL bit in the FPSR AEXC byte implements the IEEE exception disabled
definition since it is only set when a very small number is generated and accuracy has
been lost when calculating that number. The UNFL bit in the FPCR EXC byte implements
the IEEE exception enabled definition since it is set any time a tiny number is generated.

9.7.5.1 MASKABLE EXCEPTION CONDITIONS. There are no conditions.

9.7.5.2 NONMASKABLE EXCEPTION CONDITIONS. When the UNFL bit of the FPSR is
set, the processor always takes an exception regardless of whether or not the user UNFL
exception handler is enabled. If the destination is a floating-point data register, the register
is not affected, and either a pre-instruction or a post-instruction exception is reported. If
the destination is a memory or integer data register, then an undefined result is stored,
and a post-instruction exception is taken immediately. Exception processing begins with
the M68040FPSP UNFL exception handler.

The M68040FPSP UNFL exception handler stores the result in the destination as either a
denormalized number or zero. Shifting the mantissa of the intermediate result to the right
while incrementing the exponent until it is equal to the denormalized exponent value for
the destination format accomplishes denormalization. The denormalized intermediate
result is rounded to the selected rounding precision if the destination is a floating-point
data register or rounded to the destination format in the case of an FMOVE OUT
instruction. For the instructions with forced rounding precision (e.g., FSADD and FDMUL),
the destination is rounded using the precision defined by the instruction.

If in the process of denormalizing the intermediate result, all of the most significant bits are
shifted off to the right, the selected rounding mode determines the value to be stored at
the destination, Table 9-13 lists these values. Once the result is stored in the destination,
the M68040FPSP UNFL exception handler checks to see if the user UNFL exception
handler is enabled.

Table 9-13. Underflow Rounding Mode Values

Rounding
Mode

Result

RN Zero, with the sign of the intermediate result.

RZ Zero, with the sign of the intermediate result.

RM For positive overflow, + zero; for negative underflow, smallest denormalized
negative number.

RP For positive overflow, smallest denormalized positive number; for negative
underflow, –zero.

MOTOROLA M68040 USER’S MANUAL 9-35

a. If the user UNFL exception handler is disabled, the M68040FPSP UNFL exception
handler checks for an INEX1 or INEX2 exception condition with the user INEX
exception handler enabled. If not, the processor returns to normal instruction flow.
Otherwise, the M68040FPSP UNFL exception handler restores the FPU to its
exceptional state, cleans up the stack to the conditions prior to execution, and
continues instruction execution at the user INEX exception handler. No parameters
are passed to the user INEX exception handler since the M68040FPSP UNFL
exception handler provides the illusion that it never existed. Otherwise, the
M68040FPSP UNFL exception handler returns the processor to normal processing.

b. If the user UNFL exception handler is enabled, the M68040FPSP UNFL exception
handler restores the FPU to its exceptional state, cleans up the stack to the
conditions prior to execution, and continues instruction execution at the user UNFL
exception handler. Once the M68040FPSP UNFL exception handler recognizes the
operand error as a maskable condition, it does not modify the destination or pass
control to the user UNFL exception handler.

The user UNFL exception handler must execute an FSAVE as its first floating-point
instruction. At this point, the destination contains the rounding mode values listed in Table
9-13, and the user UNFL exception handler can choose to modify these values. The E3
and E1 bits of the floating-point state frame need to be examined to determine which fields
on the floating-point state frame are valid. E3 always takes precedence and must always
be serviced first. Table 9-16 lists the floating-point state frame fields for OVFL exceptions
with E3 set or with E3 clear and E1 set. It is possible for an FADD, FSUB, FMUL, and
FDIV to report a post-instruction exception, although these instructions normally generate
a pre-instruction exception. The following example illustrates why a post-instruction
exception is generated.

FADD FP2,FP0 ; this instruction generates an underflow exception
FMOVE FP0, <ea> ; this instruction is executing when underflow occurs

In this example, assume that the FMOVE instruction starts once the FADD instruction
generates an underflow. Given the register dependency on FP0, the destination of the
FADD instruction, FP0 needs to be resolved prior to the FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set (post-instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word
of the offending instruction, and the F-line word contains the integer data register number.
If the M68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an underflow is reported. If an INEX2 or INEX1 exceptional
condition exists and the user INEX exception handler is enabled, it is the responsibility of
the user UNFL exception handler to look for this situation.

The user UNFL exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame through the FRESTORE instruction. If the E3 bit is clear and the E1 bit

9-36 M68040 USER’S MANUAL MOTOROLA

is set, the floating-point frame is discarded. The RTE instruction must be executed to
return to normal instruction flow.

9.7.6 Divide by Zero

This exception happens when a zero divisor occurs for a divide instruction or when a
transcendental function is asymptotic with infinity as the asymptote. Table 9-14 lists the
instructions that can cause the divide by zero exception. Note that only the FDIV and
FSGLDIV instructions are native to the MC68040. The other conditions occur only if the
M68040FPSP is used. When a divide by zero is detected, the DZ bit is set in the FPSR
EXC byte. The divide by zero exception only has maskable exceptional conditions;
therefore, no M68040FPSP intervention is needed. An exception is taken only if the DZ bit
is set in FPSR EXC byte and the corresponding bit in the FPCR ENABLE byte is set.

a. If the user divide by zero exception handler is enabled, an infinity with the sign set to
the exclusive OR of the signs of the input operands is stored in the destination
floating-point data register. No exception is taken.

b. If the user divide by zero exception handler is disabled, the destination floating-point
data register is not modified, and the exception is reported as a pre-instruction
exception when the next floating-point instruction is attempted. The divide by zero
entry in the processor’s vector table points to the user divide by zero exception
handler.

Table 9-14. Possible Divide by Zero Exceptions

Instruction Operand Value

FDIV Source operand = 0 and floating-point data register is not a NAN

FLOG10 Source operand = 0

FLOG2 Source operand = 0

FLOGN Source operand = 0

FTAN Source operand is an odd multiple of ±π ÷ 2

FSGLDIV Source operand = 0 and floating-point data register is not a NAN

An FSAVE must be the first instruction of the user divide by zero exception handler. The
user divide by zero exception handler must generate a result to store in the destination. To
assist the exception handler in this function, the processor supplies the information listed
in Table 9-16, which lists the floating-point state frame fields for divide by zero exceptions
that are defined for supervisor exception handler use. To exit the user divide by zero
exception handler, the saved floating-point frame is discarded, and an RTE returns the
processor to normal processing.

9.7.7 Inexact Result

The processor provides two inexact bits in the FPSR EXC byte to help distinguish
between inexact results generated by emulated decimal input (INEX1 exceptions) and
other inexact results (INEX2 exceptions). These two bits are useful in instructions where
both types of inexact results can occur (e.g., FDIV.P #7E-1,FP3). In this case, the packed
decimal to extended-precision conversion of the immediate source operand causes an

MOTOROLA M68040 USER’S MANUAL 9-37

inexact error to occur that is signaled as INEX1 exception. Furthermore, the subsequent
divide could also produce an inexact result and cause INEX2 to be set in the FPCR EXC
byte. Note that only one inexact exception vector number is generated by the processor. If
either of the two inexact exceptions is enabled, the processor fetches the inexact
exception vector, and the user INEX exception handler is initiated. INEX refers to both
exceptions in the following paragraphs.

The INEX2 exception is the condition that exists when any operation, except the input of a
packed decimal number, creates a floating-point intermediate result whose infinitely
precise mantissa has too many significant bits to be represented exactly in the selected
rounding precision or in the destination data format. If this condition occurs, the INEX2 bit
is set in the FPSR EXC byte, and the infinitely precise result is rounded. Table 9-15 lists
these rounding mode values.

Table 9-15. Divide by Zero Rounding Mode Values

Rounding
Mode

Result

RN The representable value nearest to the infinitely precise intermediate value is
the result. If the two nearest representable values are equally near (a tie), then
the one with the least significant bit equal to zero (even) is the result. This is
sometimes referred to as “round nearest, even.”

RZ The result is the value closest to and no greater in magnitude than the infinitely
precise intermediate result. This is sometimes referred to as the “chip mode,”
since the effect is to clear the bits to the right of the rounding point.

RM The result is the value closest to and no greater than the infinitely precise
intermediate result (possibly minus infinity).

RP The result is the value closest to and no less than the infinitely precise
intermediate result (possibly plus infinity).

The INEX1 and INEX2 exceptions are always maskable. Therefore, any INEX exception
goes directly to the user INEX exception handler. The M68040FPSP does not provide any
special handling for the INEX exception. When an INEX2 or INEX1 bit in the FPSR EXC
byte is set, the processor stores the rounded result (listed in Table 9-15), to the
destination. The FPCR MODE byte determines the rounding mode, and the PREC byte
determines the rounding precision if the destination is a floating-point data register.
Otherwise, if the destination is memory or an integer data register, the destination format
determines the rounding precision. If one of the instructions has a forced precision, the
instruction determines the rounding precision. If the INEX2 or INEX1 condition exists and
if the corresponding INEX bit in the FPCR ENABLE byte is set, then the user INEX
exception handler is taken.

a. If the user INEX exception handler is disabled, result is rounded and normal
processing continues.

b. If the user INEX exception handler is enabled, the exception is taken. The INEX
entry in the processor’s vector table points to the user INEX exception handler.

The user INEX exception handler must execute an FSAVE as its first floating-point
instruction. At this point, the destination contains the rounding mode values as listed in

9-38 M68040 USER’S MANUAL MOTOROLA

Table 9-15, and the user INEX exception handler can choose to modify these values. The
E3 and E1 of the floating-point state frame bits need to be examined to determine which
fields in the floating-point state frame are valid. E3 always takes precedence and must
always be serviced first. Table 9-16 lists the floating-point state frame fields for INEX
exceptions with E3 set or with E3 clear and E1 set. It is possible for an FADD, FSUB,
FMUL, and FDIV to report a post-instruction exception, although these instructions
normally generate a pre-instruction exception. The following example shows why a post-
instruction exception is generated.

FADD FP2,FP0 ; this instruction generates an inexact exception
FMOVE FP0, <ea> ; this instruction is executing when inexact occurs

For this example, assume that the FMOVE instruction starts once the FADD instruction
generates an underflow. Given the register dependency on FP0, the destination of the
FADD instruction, FP0 needs to be resolved prior to the FMOVE instruction execution. For
this example, there is no choice but to have the FADD instruction report a post-instruction
exception immediately. Note that for this case, even though the T-bit of the floating-point
state frame is set (post instruction exception), it does not imply an FMOVE OUT
instruction. Therefore, the effective address field in the format $3 stack frame is invalid.

The FMOVE OUT instruction generates a post-instruction exception. For this case, the
effective address field in the format $3 stack frame points to the destination memory
location. If the destination is an integer data register, the FPIAR points to the F-line word
of the offending instruction, and the F-line word contains the integer data register number.
If the MC68040FPSP unimplemented instruction exception handler is used, there can be
some other cases in which an inexact exception is reported.

The user INEX exception handler examines the E3 bit of the floating-point state frame to
exit from this exception handler. If the E3 bit is set, it must be cleared prior to restoring the
floating-point frame via the FRESTORE instruction. If the E3 bit is clear and the E1 bit is
set, the floating-point frame is discarded. The RTE instruction must be executed to return
to normal instruction flow.

NOTE

The IEEE 754 standard specifies that inexactness should be
signaled on overflow as well as for rounding. The processor
implements this via the INEX bit in the FPSR AEXC byte.
However, the standard also indicates that the inexact
exception should be taken if an overflow occurs with the OVFL
bit disabled and the INEX bit enabled in the FPSR AEXC byte.
Therefore, the processor takes the inexact exception if this
combination of conditions occurs, even though the INEX1 or
INEX2 bit may not be set in the FPSR EXC byte. In this case,
the INEX bit is set in the FPSR AEXC byte, and the OVFL bit is
set in both the FPSR EXC and AEXC bytes.

MOTOROLA M68040 USER’S MANUAL 9-39

9.8 FLOATING-POINT STATE FRAMES

All floating-point arithmetic exception handlers must have FSAVE as the first floating-point
instruction; any other floating-point instruction causes another exception to be reported.
Once the FSAVE instruction has executed, the exception handler should use only the
FMOVEM instruction to read or write to the floating-point data registers since FMOVEM
cannot generate further exceptions or change the FPCR.

The FPU executes an FSAVE instruction to save the current floating-point internal state
for context switches and floating-point exception handling. When an FSAVE is executed,
the processor waits until the FPU either completes execution of all current instructions or
is unable to perform further processing due to a pending exception that must be serviced.
Any exceptions generated during this time are not reported and are saved in the resulting
busy state frame.

Four state frames can be generated as a result of an FSAVE instruction: busy, null, idle,
and unimplemented floating-point instruction. When an unimplemented floating-point
exception occurs, the FSAVE generates a 26-word unimplemented instruction state frame.
When an unsupported data type exception occurs, the FSAVE generates a 50-word busy
state frame. All floating-point arithmetic exceptions causes the FSAVE to generate either
the 26-word unimplemented instruction state frame or the 50-word busy state frame. For a
hardware reset or an FRESTORE of a null state frame, the FSAVE instruction generates a
null state frame. This null state frame is generated until the first nonconditional floating-
point instruction is executed (conditionals include FNOP, FBcc, FDBcc, FScc, and
FTRAPcc). Floating-point conditional instructions do not set an internal flag, which
changes the state frame from null to idle. If these instructions are the only ones executed
after a reset or an FRESTORE of a null state frame, then when FSAVE is executed, it
stacks a null state frame instead of an idle state frame. Note that this function is different
from that of the MC68881 and MC68882, and software must be aware of this difference if
compatibility with the MC68881 and MC68882 is desired. Once a nonconditional floating-
point instruction is executed, an FSAVE generates an idle state frame. The idle state
frame is generated whenever the FPU has no exceptions pending. An idle state frame is
saved if no exceptions are pending and at least one instruction has been executed since
the last hardware reset or FRESTORE of a null state frame. A 26-word unimplemented
floating-point instruction state frame is saved if the last instruction was an unimplemented
floating-point instruction. Figure 9-10 illustrates each of these state frames, followed by
definitions for each of the fields listed in alphabetical order.

NOTE

The notation [XX–XX] indicates the length of the field but does
not indicate the field’s actual location. [XX, XX–XX] indicates
that one bit of the field is located separately or termed
differently from the other bits. This notation is for convenience
of explanation only. For example, WBTM [65–34] indicates that
WBTM is 32 bits long and gives a reference to each bit in
WBTM without giving its actual location in the state frame. For
the actual locations refer to Figure 9-10.

9-40
M

68040 U
S

E
R

’S
 M

A
N

U
A

L
M

O
T

O
R

O
LA

VERSION = $41 $60

STAG

CMDREG1B

DTAG

FPTE

FPTM [63–32]

E1 E3 T

SBIT

WBTM [65–34]

WBTS WBTE [14–00]

CMDREG3B

WBTM [33–02]

FPIARCU

FPTM [31–00]

ETEETS

ETM [63–32]

ETM [31–00]

$00

$04

$08

$18

$20

$24

$28

$1C

$2C

$30

$34

$38

$3C

$40

$44

$48

$4C

$50

$54

$58

$5C

$60

$0C

$10

$14

15 031 24 23 16

(a) Busy FPU State Frame

FPTS

CU_SAVEPC

Reserved

E[15]

M66 M1 M0

WBT

WBT WBT WBT

Figure 9-10. MC68040 Floating-Point State Frames (Sheet 1 of 2)

M
O

T
O

R
O

LA
M

68040 U
S

E
R

’S
 M

A
N

U
A

L
9-41

(d) Unimplemented Instruction FPU State Frame

$00$00

1531 24 23 16

(c) Idle FPU State Frame

(b) Null FPU State Frame

$00$00

1531 24 23 16

(UNDEFINED)

VERSION NUMBER

Figure 9-10. MC68040 Floating-Point State Frames (Sheet 2 of 2)

Reserved

= $41

0

0

VERSION = $41 $30

STAG

CMDREG1B

DTAG

FPTE

FPTM [63–32]

E1 E3 T

SBIT

CMDREG3B

FPTM [31–00]

ETEETS

ETM [63–32]

ETM [31–00]

FPTS

E[15]

M[66] M1 M0

WBT

WBT WBT WBT

$04

$08

$18

$20

$24

$28

$1C

$2C

$30

$0C

$10

$14

$00

15 031 24 23 16

9-42 M68040 USER’S MANUAL MOTOROLA

CMDREG1B—This field contains the command word of the exceptional floating-point
instruction for an E1 exception, which is an exception detected by the conversion unit
(CU) in the floating-point pipeline (see Figure 9-1). For FSQRT, CMDREG1B [6–0] are
mapped from $4 for the instruction to $5 in CMDREG1B. All other instructions map
directly.

CMDREG3B—This field contains the encoded instruction command word for an E3
exception, which is an exception detected by the write-back unit (WB) in the floating-point
pipeline (see Figure 9-1). Figure 9-11 details the bit mapping between CMDREG1B and
CMDREG3B. For FSQRT, bits CMDREG1B [6–0] are changed from $4 for the instruction
to $5 for CMDREG1B, and therefore map to $21 for CMDREG3B.

CMDREG1B

CMDREG3B

OPCLASS SRC
(Rx)

DST
(Ry)

CMD

15 13 12 10 9 7 6 0

DST
(Ry)

CMD

10 9 7 6 0

0

Figure 9-11. Mapping of Command Bits for CMDREG3B Field

CU_SAVEPC—This field contains the PC for the FPU pipeline’s conversion unit.

E1—If set, this bit indicates that an exception has been detected by the conversion unit
pipeline stage. All exception types are possible. The exception handler first checks for an
E3 exception and processes it before checking and processing an E1 exception. The E1
exception is processed if the E1 bit is set. For the unimplemented instruction state frame,
the source operand’s unsupported data type is packed if the E1 bit is set.

E3—If set, this bit indicates that an exception has been detected by the WB pipeline
stage. Only OVFL, UNFL, and INEX2 exceptions on opclass 010 or 000 (register to
register and memory to register) for FADD, FSUB, FMUL, FDIV, FSQRT can occur. The
exception handler must check for and process an E3 exception first.

ETS, ETE, ETM—Collectively, these fields are referred to as the ETEMP register and
normally contain the source operand converted to extended precision. If the instruction
specifies a packed decimal real source, bits 63–0 of the operand reside in ETM [63–00],
and the ETS and ETE fields are undefined.

FPIARCU—This field contains the instruction address register for the FPU pipeline’s
conversion unit.

MOTOROLA M68040 USER’S MANUAL 9-43

FPTS, FPTE, FPTM—Collectively, these fields are referred to as the FPTEMP register
and normally contain the destination operand for dyadic operations converted to extended
precision. If the instruction specifies a packed decimal real source, bits 95–64 of the
operand reside in FPTM [31–00], and the FPTS, FPTE, and FPTM [63–32] fields are
undefined.

OPCLASS—This field refers to bits 15–13 of CMDREG1B. Note that CMDREG1B is
identical to the second word of a floating-point arithmetic instruction opcode.

STAG, DTAG—These 3-bit fields specify the data type of the source and destination
operands, respectively. STAG is undefined for a packed decimal real source operand. The
encodings for STAG and DTAG are as follows:

000 = Normalized
001 = Zero
010 = Infinity
011 = NAN
100 = Extended-Precision Denormalized or Unnormalized Input
101 = Single- or Double-Precision Denormalized Input

T—If set, this bit indicates that a post-instruction exception has occurred. Since only an
opclass 3 instruction can indicate a post-instruction exception, this bit indicates that the
exception is caused by an FMOVE OUT instruction.

WBTS, WBTE [15,14–00], WBTM [66,65–02,01,00], SBIT—These fields contain the
exception operand in internal data format for E3 exceptions. Collectively, these fields are
called the WBTEMP and are an image of the intermediate result. WBTM66 is the overflow
bit; WBTM1, WBTM0, and SBIT are the guard, round, and sticky bits, respectively.

9-44 M68040 USER’S MANUAL MOTOROLA

Table 9-16. State Frame Field Information

FSAVE State
Frame Field

Contents

Unimplemented Instruction Exceptions (For Opclass 000 and 010)

CMDREG1B Exception Instruction Command Word

ETEMP Source operand is converted to extended precision. If format is packed, ETM
[63–0] contains bits 63–0 of the packed decimal operand.

STAG Source operand tag (undefined if format is packed).

FPTEMP Destination operand, if any, is converted to extended precision. If format is
packed, FPTM [31–0] contains bits 95–64 of the packed decimal operand.

DTAG Destination operand tag, if any.

E1 Always 1

T Always 0

Unsupported Data Type (For Opclass 000 and 010)

CMDREG1B Exception Instruction Command Word

ETEMP Source operand is converted to extended precision. If format is packed, ETM
[63–0] contains bits 63–0 of the packed decimal operand.

STAG Source operand tag (undefined if format is packed).

FPTEMP Destination operand, if any, is converted to extended precision. If format is
packed, FPTM [31–0] contains bits 95–64 of the packed decimal operand.

DTAG Destination operand tag, if any.

E1 Always 1

T Always 0

Unsupported Data Type (For Opclass 011)

CMDREG1B FMOVE Command Word

ETEMP Unrounded Source Operand from Floating-Point Data Register

STAG Source Operand Tag

E1 Always 1

T Always 1

SNAN (For Opclass 000 and 010)

CMDREG1B Exception Instruction Command Word

ETEMP Source operand is converted to extended precision.

STAG Source Operand Tag

FPTEMP Destination operand, if any, is converted to extended precision.

DTAG Destination operand tag, if any.

E1 Always 1

T Always 0

MOTOROLA M68040 USER’S MANUAL 9-45

Table 9-16. State Frame Field Information (Continued)

FSAVE State
Frame Field

Contents

SNAN (For Opclass 011)

CMDREG1B FMOVE Instruction Command Word

ETEMP Unrounded Source Operand from Floating-Point Register, with SNAN bit set.

STAG Source Operand Tag, indicated NAN.

E1 Always 1

T Always 1

OPERR (For Opclass 000 and 010)

CMDREG1B Exception Instruction Command Word

ETEMP Source operand is converted to extended precision.

STAG Source Operand Tag

FPTEMP Destination operand, if any, is converted to extended precision.

DTAG Destination operand tag, if any.

E1 Always 1

T Always 0

OPERR (For Opclass 011)

CMDREG1B FMOVE Instruction Command Word

ETEMP Unrounded Source Operand from Floating-Point Register

STAG Source Operand Tag

WBTEMP Contains the rounded integer used to check for erroneous integer overflow.

E1 Always 1

T Always 1

OVFL (FMOVE to Register, FABS, and FNEG)

CMDREG1B Exception Instruction Command Word

FPTEMP Intermediate result with mantissa rounded to correct precision.

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 0

OVFL (FADD, FSUB, FMUL, FDIV, and FSQRT)

CMDREG3B Encoded Exception Instruction Command Word

WBTEMP WBTS, WBTE, and WBTM equal the intermediate result with mantissa rounded
to the correct precision.

WBTE15 Bit 15 of the intermediate result's 16-bit exponent = 0 for overflow.

E3 Always 1

T Either 1 or 0

9-46 M68040 USER’S MANUAL MOTOROLA

Table 9-16. State Frame Field Information (Continued)

FSAVE State
Frame Field

Contents

OVFL (FMOVE to Memory)

CMDREG1B FMOVE instruction command word

FPTEMP Intermediate result with mantissa rounded to correct precision.

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 1

UNFL (FMOVE to Register, FABS, and FNEG)

CMDREG1B Exception Instruction Command Word

FPTEMP Unrounded, Extended-Precision Intermediate Result

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 0

UNFL (FADD, FSUB, FMUL, FDIV, and FSQRT)

CMDREG3B Encoded Exception Instruction Command Word

WBTEMP WBTS, WBTE, and WBTM = intermediate result sign, biased 15-bit
exponent, and 64-bit mantissa prior to rounding.

WBTE15 Bit 15 of the intermediate result's 16-bit exponent = 1 for underflow.

WBTM1, WBTM0,
SBIT

Guard, round, and sticky of intermediate result’s 67-bit mantissa.

E3 Always 1

T Either 1 or 0

UNFL (FMOVE to Memory)

CMDREG1B FMOVE Instruction Command Word

FPTEMP Intermediate result with mantissa prior to rounding.

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 1

DZ

CMDREG1B M68040FPSP divide by zero can generate.

ETEMP Source operand is converted to extended precision.

STAG Source Operand Tag

FPTEMP Destination operand is converted to extended precision.

E1 Always 1

T Always 0

MOTOROLA M68040 USER’S MANUAL 9-47

Table 9-16. State Frame Field Information (Concluded)

FSAVE State
Frame Field

Contents

INEX (FMOVE to Register, FABS, and FNEG)

CMDREG1B Exception Instruction Command Word

FPTEMP Unrounded, Extended-Precision Intermediate Result

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 0

INEX (FADD, FSUB, FMUL, FDIV, and FSQRT)

CMDREG3B Encoded Exception Instruction Command Word

WBTEMP WBTS, WBTE, and WBTM = intermediate result sign, biased 15-bit
exponent, and 64-bit mantissa prior to rounding.

WBTE15 Either 1 or 0, generally useless for INEX exceptions.

WBTM1, WBTM0,
SBIT

Guard, round, and sticky of intermediate result’s 67-bit mantissa.

E3 Always 1

T Either 1 or 0

INEX (FMOVE to Memory)

CMDREG1B FMOVE Instruction Command Word

FPTEMP Intermediate result with mantissa prior to rounding.

STAG Source Operand Tag = Normalized

E1 Always 1

T Always 1

NOTE: If the M68040FPSP unimplemented exception handler is used, the above state frame
information applies. The CMDREG1B or CMDREG3B fields of the state frame are modified as
appropriate to encode the unimplemented instruction opcode. It is the user exception handler’s
responsibility to use the E3 and E1 field encodings to recognize which state frame information
applies. When E3 = 1 and E1 = 1, E3 takes priority and the state frame information for E3 = 1
must be used.

MOTOROLA M68040 USER’S MANUAL 10-1

SECTION 10
INSTRUCTION TIMINGS

This section summarizes instruction timings for the M68040. The timings are divided into
two groups: integer unit and floating-point unit instruction timings. Each group is further
subdivided to separate more complex instruction timings. Each of these subdivided groups
is in alphabetical order with no reference to mode. Table 10-1 alphabetically lists
instruction timings and their location in this section.

Table 10.1. Instruction Timing Index

Instruction Page Instruction Page Instruction Page

ABCD 10-11 BRA 10-11 EOR 10-13

ADD 10-13 BSET 10-15 EORI 10-13

ADDA 10-13 BSR <offset> 10-11 EORI #<xxx>,CCR 10-11

ADDI 10-13 BTST 10-17 EORI #<xxx>,SR 10-11

ADDQ 10-14 CAS 10-17 EXG 10-11

ADDX 10-11 CAS2 10-11 EXT 10-11

AND 10-13 CHK <ea>, Dn 10-17 EXTB 10-11

ANDI 10-13 CHK2 <ea>, Rn 10-18 FABS 10-30,36

ANDI #<xxx>,CCR 10-11 CLR 10-18 FADD 10-30,35

ANDI #<xxx>,SR 10-11 CINV 10-8 FBcc 10-29

ASL 10-14 CMP 10-18 FCMP 10-30,37

ASR 10-14 CMP2 10-19 FDBcc 10-29

Bcc 10-11 CMPA.L 10-19 FDIV 10-30,35

BCHG 10-15 CMPI 10-19 FMOVE 10-30,36

BCLR 10-15 CMPM 10-11 FMOVE FPn,<ea> 10-31

BFCHG 10-15 CPUSH 10-8 FMOVE/FMOVEM
to/from CR

10-32

BFCLR 10-15 DBcc 10-11 FMOVEM 10-37

BFEXTS 10-15 DIVS.L 10-20 FMOVEM <ea>,<list> 10-32

BFEXTU 10-15 DIVS.W 10-20 FMOVEM <list>,<ea> 10-32

BFFFO 10-16 DIVSL.L 10-20 FMUL 10-30,35

BFINS 10-16 DIVU.L 10-20 FNEG 10-30,36

BFSET 10-15 DIVU.W 10-20 FNOP 10-29

BFTST 10-16 DIVUL.L 10-20 FRESTORE <ea> 10-34

10-2 M68040 USER’S MANUAL MOTOROLA

Table 10.1. Instruction Timing Index (Continued)

Instruction Page Instruction Page Instruction Page

FSAVE <ea> 10-33 MOVEP 10-11 ROL 10-26

FScc 10-32 MOVEQ 10-11 ROR 10-26

FSQRT 10-30,36 MOVES <ea>,An 10-24 ROXL 10-27

FSUB 10-30,35 MOVES <ea>,Dn 10-24 ROXR 10-27

FTRAPcc 10-29 MOVES Rn,<ea> 10-24 RTD 10-11

FTST <ea>, FPn 10-30 MULS.W/L 10-25 RTE 10-11

ILLEGAL 10-11 MULU.W/L 10-25 RTR 10-11

JMP 10-20 NBCD 10-25 RTS 10-11

JSR 10-21 NEG 10-26 SBCD 10-11

LEA 10-21 NEGX 10-26 Scc 10-27

LINK 10-11 NOP 10-11 SUB 10-13

LSL 10-14 NOT 10-26 SUBA 10-27

LSR 10-14 OR 10-13 SUBI 10-13

MOVE 10-9,10 ORI 10-13 SUBQ 10-14

MOVE from CCR 10-21 ORI #<xxx>,CCR 10-11 SUBX 10-11

MOVE from SR 10-22 ORI #<xxx>,SR 10-11 SWAP 10-11

MOVE to CCR 10-22 PACK 10-11 TAS 10-28

MOVE to SR 10-22 PEA 10-26 TRAP# 10-11

MOVE USP 10-11 PFLUSH 10-11 TRAPcc 10-11

MOVE16 10-11 PFLUSHA 10-11 TRAPV 10-11

MOVEA.L 10-23 PFLUSHAN 10-11 TST 10-13

MOVEC 10-11 PFLUSHN (An) 10-11 UNLK 10-11

MOVEM <list>,<ea> 10-23 PTESTR, PTESTW 10-11 UNPK 10-11

MOVEM.L <ea>,<list> 10-23 RESET 10-11

MOTOROLA M68040 USER’S MANUAL 10-3

10.1 OVERVIEW

Refer to Section 2 Integer Unit for information on the integer unit pipeline. The <ea>
fetch timing is not listed in the following tables because most instructions require one clock
in the <ea> fetch stage for each memory access to obtain an operand. An instruction
requires one clock to pass through the <ea> fetch stage even if no operand is fetched.
Table 10-2 summarizes the number of memory fetches required to access an operand
using each addressing mode for long-word aligned accesses. The user must perform his
own calculations for <ea> fetch timing for misaligned accesses.

Table 10-2. Number of Memory Accesses

Addressing Mode

Evaluate <ea>
And Fetch
Operand

Evaluate <ea>
And Send To

Execution Stage

Dn 0 0

An 0 0

(An) 1 0

(An)+ 1 0

–(An) 1 0

(d16,An) 1 0

(d16,PC) 1 0

(xxx).W, (xxx).L 1 0

#<xxx> 0 0

(d8,An,Xn) 1 0

(d8,PC,Xn) 1 0

(BR,Xn) 1 0

(bd,BR,Xn) 1 0

([bd,BR,Xn]) 2 1

([bd,BR,Xn],od) 2 1

([bd,BR],Xn) 2 1

([bd,BR],Xn,od) 2 1

In the instruction timing tables, the <ea> calculate column lists the number of clocks
required for the instruction to execute in the <ea> calculate stage of the integer unit
pipeline. Dual effective address instructions such as ABCD –(Ay),–(Ax) require two
calculations in the <ea> calculate stage and two memory fetches. Due to pipelining, the
fetch of the first operand occurs in the same clock as the <ea> calculation for the second
operand.

The execute column lists the number of clocks required for the instruction to execute in
the execute stage of the integer unit pipeline. This number is presented as a lead time and
a base time. The lead time is the number of clocks the instruction can stall when entering
the execution stage without delaying the instruction execution. If the previous instruction is
still executing in the execution stage when the current instruction is ready to move from
the <ea> fetch stage, the current instruction stalls until the previous one completes. For

10-4 M68040 USER’S MANUAL MOTOROLA

example, if an execution time is listed as 2L + 1, the lead time is two clocks and the base
time is one for a total execution time of three. The instruction can stall for two clocks
without delaying the instruction execution time.

The <ea> calculate and execute stages operate in an interlocked manner for all
instructions using the brief and full extension word formats. If an instruction using one of
these formats is stalled for more than NL clocks waiting to begin execution in the execute
stage, a similar increase in the <ea> calculate time will result. For example, if the
execution time listed is 2L + 1 and the instruction stalls for three clocks, then the <ea>
calculate time increases by one clock (3 – 1 = 2L). Write-back times are not listed because
they are system dependent and do not affect either <ea> calculate or execute stages of
the pipeline.

Not all addressing modes listed in the following tables for an instruction are valid for all
variations of the instruction. For example, the table for the integer ADD instruction lists
times for both ADD <ea>,Dn and ADD Dn,<ea>. All addressing modes listed are valid for
ADD <ea>,Dn. For ADD Dn,<ea> the following invalid modes should be ignored: An,
(d16,PC), #<xxx>, (d8,PC,Xn), and modes with BR = PC. Refer to the M68000PM/AD,
M68000 Family Programmer's Reference Manual for a complete summary of valid
instruction and addressing mode combinations. The instruction timings are based on the
following suppositions unless otherwise noted:

1. All timings are related to BCLK cycles and are for BR = An or suppressed. For BR =
PC, 1 and 1L clocks to the <ea> calculate and execution times unless otherwise
noted. For memory indirect postindexed with suppressed index — ([bd,BR],Xn) or
([bd,BR],Xn,od) with Xn suppressed — times are the same as for memory indirect
preindexed with suppressed index — ([bd,BR,Xn]) or ([bd,BR,Xn],od) with Xn
suppressed.

2. All memory accesses hit in the caches; no table searches occur as a result of ATC
misses except for the operand accesses for the CAS, CAS2, and TAS instructions.
These accesses are implicitly noncachable and force external bus accesses. It is
assumed that external memory has a zero-wait state in this case and that the bus is
granted to the M68040.

The result increases access time equal to the number of clocks for the memory
access (first bus cycle if the operand access results in a line memory access) if
aligned accesses miss in the data cache. As an approximation, this time should be
added to the execution time for each operand fetch generated by the instruction.

3. All accesses are aligned to a byte boundary that is a multiple of the operand size.
For instance, the timing for all long-word accesses assumes that the operands are
on long-word boundaries.

4. The integer execution times for floating-point instructions assume that the floating-
point unit (FPU) is idle.

MOTOROLA M68040 USER’S MANUAL 10-5

10.2 INSTRUCTION TIMING EXAMPLES

The following examples utilize the instruction timing information given in this section.
Figure 10-1 illustrates the integer unit pipeline flow for the simple code sequence listed.
The three instructions in the code sequence require only a single clock in each pipeline
stage. The TRAPF instructions are also single-clock instructions that function as
nonsynchronizing NOPs.

LABEL

P1
A
B
C

N1
N2

INSTRUCTION

TRAPF
MOVE.L
ADDQ.L
MOVE.L
TRAPF
TRAPF

<ea>
CALCULATE

1
1
1
1
1
1

EXECUTE

$1000,D0
#1,D0
D0,$1000

1
1
1
1
1
1

C1 C2 C3 C4 C5 C6 C7

P1 A B C N1 N2

P1 A B C N1 N2

P1 A B C N1

<ea> CALCULATE

<ea> FETCH

EXECUTE

WRITE-BACK C

Figure 10-1. Simple Instruction Timing Example

C1 The previous instruction (P1) finishes in the <ea> calculate.

C2 MOVE.L (A) starts in the <ea> calculate and requests an immediate extension
word for its effective address.

C3 MOVE.L (A) starts in the <ea> fetch, which fetches the operand at $1000. ADDQ.L
(B) starts in the <ea> calculate stage with the operand encoded in the instruction.

C4 MOVE.L (A) executes in the execute stage, storing the fetched operand in register
D0. ADDQ.L (B) starts in the <ea> fetch with no operation performed. MOVE.L (C)
starts in the <ea> calculate requesting an immediate extension word for its effective
address.

C5 ADDQ.L (B) executes in the execution stage, incrementing D0 by 1. MOVE.L (C)
passes through the <ea> fetch with no operation performed. The next instruction
starts in the <ea> calculate stage.

C6 MOVE.L (C) executes in the execution stage generating a write of D0 to the
effective address.

C7 The write to memory by MOVE.L (C) occurs to the data memory unit if it is not
busy. If the second TRAPF instruction (N2) in the <ea> fetch stage requires an
operand fetch, the write-back for MOVE.L (C) stalls in the write-back stage since it
is a lower priority.

10-6 M68040 USER’S MANUAL MOTOROLA

The separation of calculation and execution in the <ea> calculate and execute stages
allows instruction reordering during compile time to take advantage of potential instruction
overlap. Figure 10-2 illustrates this overlap for an instruction requiring multiple clocks in
the execute stage and with an instruction with a long lead time. The execution time for
LEA (3L + 1) indicates that the instruction can be stalled three clocks without affecting
execution.

When the LEA (A) instruction precedes the ABCD (B) instruction, the execution stalls
during C4–C6 (equivalent to the LEA lead time) while the instruction completes in the
<ea> calculate and <ea> fetch stages. The resulting execution time for the LEA (A) and
ABCD (B) sequence is eight clocks.

However, if the LEA (C) instruction follows the ABCD (B) instruction, the LEA stalls in the
<ea> fetch instead, during C9–C11. The LEA then executes in a single clock in the
execution stage. The resulting execution time for the LEA (C) and ABCD (B) sequence is
five clocks.

LABEL
 P1

A
B
C

N1
N2

INSTRUCTION
TRAPF
LEA
ABCD
LEA
TRAPF
TRAPF

<ea>
CALCULATE

1
4
1
4
1
1

EXECUTE

$24(PC),A1
D0,D1
$24(PC),A1

1
3L + 1

3
3L + 1

1
1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

P1 A A A A B C C C C N1 N2<ea> CALCULATE

<ea> FETCH

EXECUTE

WRITE-BACK

P1 A A A A B C CL1 CL2 CL3 N1 N2

P1 AL AL AL A B B B C* C N1

NOTE: *Possible stalls in this stage.

Figure 10-2. Instruction Overlap with Multiple Clocks

MOTOROLA M68040 USER’S MANUAL 10-7

Instructions using the brief and full extension word format addressing modes cause the
<ea> calculate and execute stages to operate in an interlocked manner. When these
instructions wait to begin execution in the execution stage, there is a similar increase in
the <ea> calculate time. Figure 10-3 illustrates this effect for an ADD instruction using a
brief format extension word. The ADD instruction stalls for two clocks waiting to enter the
execution stage. Since this time exceeds by one clock the ADD lead time, the ADD
instruction remains in the <ea> calculate stage for one additional clock. If the ADD
instruction was in the execution stage for two clocks, the ABCD instruction would not have
stalled in the <ea> calculate stage.

LABEL
 P1

A
B

N1
N2

INSTRUCTION
TRAPF
ABCD
ADD.L
TRAPF
TRAPF

<ea>
CALCULATE

1
3
5
1
1

EXECUTE

D0,D1
4(A0,D3),D2

1
3

1L + 4
1
1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

P1 A B B B B* B B N1 N2<ea> CALCULATE

<ea> FETCH

EXECUTE

WRITE-BACK

P1 A

P1 A

B B B B B B N1 N2

A A B B B B N1 N2

NOTE: *Possible stalls in this stage.

Figure 10-3. Interlocked Stages

10-8 M68040 USER’S MANUAL MOTOROLA

10.3 CINV AND CPUSH INSTRUCTION TIMING

The following details the execution time for the CINV and CPUSH instructions used to
perform maintenance of the instruction and data caches. These two instructions sample
interrupt request (IPL≈) signals on every clock instead of at instruction boundaries. While
performing the actual cache invalidate operation, the execution unit stalls to allow previous
write-backs and any pending instruction prefetches to complete. The total time required to
execute a cache invalidate instruction is dependent on the previous instruction stream.
Execution time for this instruction is independent of the selected cache combination. The
CINV instructions interlock operation of the <ea> calculate and execution stages to
prevent a previous instruction from accessing the caches until the invalidate operation is
complete. Idle refers to the number of clocks required for all pending writes and instruction
prefetches to complete. Table 10-3 list the CINV timings.

Table 10-3. CINV Timing

Instruction Execution Time

CINVL 9 + Idle

CINVP 266 + Idle

CINVA 9 + Idle

Execution time for the CPUSH instruction is dependent on several factors, such as the
number of dirty cache lines and the size of the resulting push (either long-word or line); the
overlapping operations within the data cache and the bus controller; the distribution of
dirty cache lines; and the number of wait states in the push access on the bus. The
interaction of these factors determines the total time required to execute a CPUSH
instruction.

Since the distribution of dirty data within the cache is entirely dependent on the nature of
the user’s code, it is impossible to provide an equation for execution time that works for all
code sequences. Table 10-4 provides baseline information indicating best and worst case
execution times for the three CPUSH instruction variants. Best case corresponds to a
cache containing no dirty entries, while the worst case corresponds to all lines dirty and
requiring line pushes. In Table 10-4, line refers to the number of clocks required in the
user’s system for a line transfer. Idle refers to the number of clocks required for all
pending writes and instruction prefetches to complete.

Table 10-4. CPUSH Best and Worst Case Timing

Execution Time

Instruction Best Case Worst Case

CPUSHL 6 6 + Line + Idle

CPUSHP
CPUSHA

267 11 + 256 × Line + Idle

MOTOROLA M68040 USER’S MANUAL 10-9

10.4 MOVE INSTRUCTION TIMING

DESTINATION

Dn (An) (An)+

SOURCE
<ea>

Calculate
Execute <ea>

Calculate
Execute <ea>

Calculate
Execute

Dn 1 1 1 1 1 1

(An) 1 1 1 1 2 1L + 1

(An)+ 1 1 2 1L + 1 2 1L + 1

–(An) 1 1 2 1L + 1 2 1L + 1

(d16,An) 1 1 2 1L + 1 2 1L + 1

(d16,PC) 3 2L + 1 3 2L + 1 3 2L + 1

(xxx).W, (xxx).L 1 1 1 1 2 1L + 1

#<xxx> 1 1 1 1 2 1L + 1

(d8,An,Xn) 3 3 4 4 5 5

(d8,PC,Xn) 5 1L + 4 5 1L + 4 6 1L + 5

(b16,BR,Xn) 7 1L + 6 7 1L + 6 8 1L + 7

([bd,BR,Xn]) 10 1L + 9 10 1L + 9 11 1L + 10

([bd,BR,Xn],od) 11 1L + 10 11 1L + 10 12 1L + 11

([bd,BR],Xn) 11 3L + 8 11 3L + 8 12 3L + 9

([bd,BR],Xn,od) 12 3L + 9 12 3L + 9 13 3L + 10

–(An) (d16,An) (xxx).W, (xxx).L

Dn 1 1 1 1 1 1

(An) 2 1L + 1 2 1L + 1 1 1

(An)+ 2 1L + 1 2 1L + 1 2 1L + 1

–(An) 2 1L + 1 2 1L + 1 2 1L + 1

(d16,An) 2 1L + 1 2 1L + 1 2 1L + 1

(d16,PC) 3 2L + 1 4 3L + 1 4 3L + 1

(xxx).W, (xxx).L 2 1L + 1 2 1L + 1 2 1L + 1

#<xxx> 2 1L + 1 2 1L + 1 2 1L + 1

(d8,An,Xn) 5 5 5 5 5 5

(d8,PC,Xn) 6 1L + 5 6 1L + 5 6 1L + 5

(b16,BR,Xn) 8 1L + 7 8 1L + 7 8 1L + 7

([bd,BR,Xn]) 11 1L + 10 11 1L + 10 11 1L + 10

([bd,BR,Xn],od) 12 1L + 11 12 1L + 11 12 1L + 11

([bd,BR],Xn) 12 3L + 9 12 3L + 9 12 3L + 9

([bd,BR],Xn,od) 13 3L + 10 13 3L + 10 13 3L + 10

10-10 M68040 USER’S MANUAL MOTOROLA

10.4 MOVE INSTRUCTION TIMING (Continued)

DESTINATION

(d8,An,Xn) (b16,An,Xn) ([bd,An,Xn])

SOURCE
<ea>

Calculate
Execute <ea>

Calculate
Execute <ea>

Calculate
Execute

Dn 3 3 7 1L + 6 10 1L + 9

(An) 4 4 7 1L + 6 10 1L + 9

(An)+ 4 4 7 1L + 6 10 1L + 9

–(An) 4 4 7 1L + 6 10 1L + 9

(d16,An) 4 4 7 1L+ 6 10 1L + 9

(d16,PC) 8 4L + 4 10 4L + 6 13 4L + 9

(xxx).W, (xxx).L 4 4 7 1L + 6 10 1L + 9

#<xxx> 3 3 7 1L + 6 10 1L + 9

(d8,An,Xn) 8 8 10 10 13 13

(d8,PC,Xn) 9 1L + 8 11 1L + 10 14 1L + 13

(b16,BR,Xn) 11 1L + 10 13 1L + 12 16 1L + 15

([bd,BR,Xn]) 14 1L + 13 16 1L + 15 19 1L + 18

([bd,BR,Xn],od) 15 1L + 14 17 1L + 16 20 1L + 19

([bd,BR],Xn) 15 3L + 12 17 3L + 14 20 3L + 17

([bd,BR],Xn,od) 16 3L + 13 18 3L + 15 21 3L + 18

([bd,An,Xn],od) ([bd,An],Xn) ([bd,An],Xn,od)

Dn 11 1L + 10 11 3L + 8 12 3L + 9

(An) 11 1L + 10 11 3L + 8 12 3L + 9

(An)+ 11 1L + 10 11 3L + 8 12 3L + 9

–(An) 11 1L + 10 11 3L + 8 12 3L + 9

(d16,An) 11 1L + 10 11 3L + 8 12 3L + 9

(d16,PC) 14 4L + 10 14 6L + 8 15 6L + 9

(xxx).W, (xxx).L 11 1L + 10 11 3L + 8 12 3L + 9

#<xxx> 11 1L + 10 11 3L + 8 12 3L + 9

(d8,An,Xn) 14 14 14 14 15 15

(d8,PC,Xn) 15 1L + 14 15 1L + 14 16 1L + 15

(b16,BR,Xn) 17 1L + 16 17 1L + 16 18 1L + 17

([bd,BR,Xn]) 20 1L + 19 20 1L + 19 21 1L + 20

([bd,BR,Xn],od) 21 1L + 20 21 1L + 20 22 1L + 21

([bd,BR],Xn) 21 3L + 18 21 3L + 18 22 3L + 19

([bd,BR],Xn,od) 22 3L + 19 22 3L + 19 23 3L + 20

MOTOROLA M68040 USER’S MANUAL 10-11

10.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS

Instruction Condition <ea> Calculate Execute

ABCD Dy,Dx
–(Ay),–(Ax)

1
3

3
1L + 3

ADDX Dy,Dx
–(Ay),–(Ax)

1
3

1
1L + 2

ANDI #<xxx>,CCR — 1 4

ANDI #<xxx>,SRa — 9 1L + 8

Bcc Branch Taken
Branch Not Taken

2
3

2
3

BRA Branch Taken
Branch Not Taken

2
3

2
3

BSR <offset> — 2 1L + 1

CAS2b True
False

56
51

6L + 49
6L + 44

CMPM — 3 1L + 2

DBccc False, Count > –1
False, Count = –1
True

3
4
4

3
4
4

EORI #<xxx>,CCR — 1 4

EORI #<xxx>,SRa — 9 1L + 8

EXG Dy,Dx
Ay,Ax
Dy,Ax

1
2
1

1
1L + 1

1

EXT Word
Long Word

1
1

2
1

EXTB Long Word 1 1

ILLEGALa A-Line Unimplemented
F-Line Unimplemented

16
16

16
16

LINK — 3 2L + 1

MOVE USP USP,An
An,USPa

3
7

2L + 1
1L + 6

MOVE16c,d (Ax)+,(Ay)+
xxx.L,(An)
xxx.L,(An)+
(An),xxx.L
(An)+,xxx.L

6
4
5
4
4

1L+ 7
7
8
7
7

MOVECb Rn,Rc
Rc,Rn

7
11

1L + 6
1L + 10

MOVEPc MOVEP.W Dn,d16(An)
MOVEP.L Dn,d16(An)
MOVEP.W d16(An),Dn
MOVEP.L d16(An),Dn

11
13
4
8

2L + 9
2L + 11
2L + 5
2L + 8

MOVEQ — 1 1

NOPa — 8 1L + 7

10-12 M68040 USER’S MANUAL MOTOROLA

10.5 MISCELLANEOUS INTEGER UNIT INSTRUCTION TIMINGS
(Continued)

Instruction Condition <ea> Calculate Execute

ORI #<xxx>,CCR — 1 4

ORI #<xxx>,SRa — 9 1L + 8

PACK Dx,Dy,#<xxx>
–(Ay),–(Ax),#<xxx>

1
3

3
2L + 3

PFLUSHb — 11 1L + 10

PFLUSHAb — 11 1L + 10

PFLUSHANb — 27 1L + 26

PFLUSHN (An)b — 11 1L + 10

PTESTR, PTESTWe — 25 11L + 14

RESETa — 521 521

RTDc — 6 1L + 5

RTEa Stack Format $0
Stack Format $1
Stack Format $2
Stack Format $3
Stack Format $4
Stack Format $7

2
4
2
3
2
4

13
23
14
20
15
23

RTRc — 7 1L + 6

RTSc — 5 5

SBCD Dy,Dx
–(Ay),–(Ax)

1
3

3
1L + 3

SUBX Dy,Dx
–(Ay),–(Ax)

1
3

1
1L + 2

SWAP — 1 2

TRAP#a — 16 16

TRAPccf Taken
Not Taken

19
5

19
5

TRAPVf Taken
Not Taken

19
5

19
5

UNLK — 2 1L + 1

UNPK Dx,Dy,#
–(Ay),–(Ax),#

1
3

4
2L + 4

NOTES:
a. Times listed are minimum. This instruction interlocks the <ea> calculate and execute

stages and synchronizes some portions of the processor before execution.
b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages

and synchronizes some portions of the processor before execution.
c. This instruction interlocks the <ea> calculate and execute stages.
d. Successive in-line MOVE16 instructions each add eight clocks to the <ea> calculate and

execute times.
e. Typical measurement for three-level table search with no descriptor writes, no entries

cached, and four-clock memory access times.
f. This instruction interlocks the <ea> calculate and execute stages. For the exception taken,

this instruction also synchronizes some portions of the processor before execution; times
listed are minimum in this case.

MOTOROLA M68040 USER’S MANUAL 10-13

10.6 INTEGER UNIT INSTRUCTION TIMINGS

ADD, AND, EOR, OR,
SUB, TST

ADDA ADDI, ANDI, EORI,
ORI, SUBI

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1 1 2 1 1

An 1 1 1 1 — —

(An) 1 1 1 2 1 1

(An)+ 1 1 2 1L + 2 2 1L + 1

–(An) 1 1 2 1L + 2 2 1L + 1

(d16,An) 1 1 2 1L + 2 2 1L + 1

(d16,PC) 3 2L + 1 3 2L + 2 — —

(xxx).W, (xxx).L 1 1 1 2 2 1L + 1

#<xxx> 1 1 1 1 — —

(d8,An,Xn) 3 3 4 5 3 3

(d8,PC,Xn) 5 1L + 4 5 1L + 5 — —

(BR,Xn) 6 1L + 5 6 1L + 6 7 1L + 6

(bd,BR,Xn) 7 1L + 6 7 1L + 7 8 1L + 7

([bd,BR,Xn]) 10 1L + 9 10 1L + 10 10 1L + 10

([bd,BR,Xn],od) 11 1L + 11 11 1L + 12 11 1L + 11

([bd,BR],Xn) 11 3L + 8 11 3L + 9 11 3L + 9

([bd,BR],Xn,od) 12 3L + 10 12 3L + 11 12 3L + 10

10-14 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

ADDQ, SUBQ ASL ASR, LSL, LSR

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1 1 3/4* 1 2/3*

An 1 1 — — — —

(An) 1 1 1 3 1 2

(An)+ 2 1L + 1 1 3 1 2

–(An) 2 1L + 1 1 3 1 2

(d16,An) 2 1L + 1 1 3 1 2

(d16,PC) — — — — — —

(xxx).W, (xxx).L 1 1 1 3 1 2

#<xxx> — — — — — —

(d8,An,Xn) 3 3 3 5 3 4

(d8,PC,Xn) — — — — — —

(BR,Xn) 7 1L + 6 7 1L + 8 7 1L + 7

(bd,BR,Xn) 8 1L + 7 8 1L + 9 8 1L + 8

([bd,BR,Xn]) 10 1L + 9 10 1L + 11 10 1L + 10

([bd,BR,Xn],od) 11 1L + 11 11 1L + 12 11 1L + 11

([bd,BR],Xn) 11 3L + 8 11 3L + 10 11 3L + 9

([bd,BR],Xn,od) 12 3L + 10 12 3L + 11 12 3L + 10

*Immediate count specified for shift count/shift count specified in register, respectively.

MOTOROLA M68040 USER’S MANUAL 10-15

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BCHG, BCLR, BSETa BFCHG, BFCLR, BFSETb,c BFEXTS, BFEXTUb,d

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 3/4 3/4e 6/7e 1/2e 4/5e

An — — — — — —

(An) 1 3/4 9 2L + 8 9 2L + 7

(An)+ 1 3/4 — — — —

–(An) 1 3/4 — — — —

(d16,An) 2/1 1L + 3/4 9 2L + 8 9 2L + 7

(d16,PC) — — — — 10 3L + 7

(xxx).W, (xxx).L 2/1 1L + 3/4 9 2L + 8 9 2L + 7

#<xxx> — — — — — —

(d8,An,Xn) 3 5/6 10 11 10 10

(d8,PC,Xn) — — — — 11 1L + 10

(BR,Xn) 7 1L + 8/1L + 9 13 1L + 13 13 1L + 12

(bd,BR,Xn) 8 1L + 9/1L + 10 14 1L + 14 14 1L + 13

([bd,BR,Xn]) 10 1L + 11/1L + 12 16 1L + 16 16 1L + 15

([bd,BR,Xn],od) 11 1L + 12/1L + 13 17 1L + 17 17 1L + 16

([bd,BR],Xn) 11 3L + 10/3L + 11 17 3L + 15 17 3L + 14

([bd,BR],Xn,od) 12 3L + 11/3L + 12 18 3L + 16 18 3L + 15

NOTES:
a. Bit instruction <ea> calculate and execute times T1/T2 apply to #<xxx>/Dn bit numbers.
b. This instruction interlocks the <ea> calculate and execute stages.
c. If the bit field spans a long-word boundary, add ten and nine clocks to the <ea> calculate and execute times,

respectively. Two memory addresses are accessed in this case.
d. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are

accessed in this case.
e. Immediate count specified for both width and offset and width and/or offset specified in register, respectively.

10-16 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BFFFOa,b BFINSa,c BFTSTa

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 3/4d 6/7d 2/3d 5/6d 1/2d 3/4d

An — — — — — —

(An) 9 2L + 9 9 2L + 7 9 2L + 7

(An)+ — — — — — —

–(An) — — — — — —

(d16,An) 9 2L + 9 9 2L + 7 9 2L + 7

(d16,PC) 10 3L + 9 — — 10 3L + 7

(xxx).W, (xxx).L 9 2L + 9 9 2L + 7 9 2L + 7

#<xxx> — — — — — —

(d8,An,Xn) 10 12 10 10 10 10

(d8,PC,Xn) 11 1L + 12 — — 11 1L + 10

(BR,Xn) 13 1L + 14 13 1L + 12 13 1L + 12

(bd,BR,Xn) 14 1L + 15 14 1L + 13 14 1L + 13

([bd,BR,Xn]) 16 1L + 17 16 1L + 15 16 1L + 15

([bd,BR,Xn],od) 17 1L + 18 17 1L + 16 17 1L + 16

([bd,BR],Xn) 17 3L + 16 17 3L + 14 17 3L + 14

([bd,BR],Xn,od) 18 3L + 17 18 3L + 15 18 3L + 15

NOTES:
a. This instruction interlocks the <ea> calculate and execute stages.
b. If the bit field spans a long-word boundary, add two clocks to the execute time. Two memory addresses are

accessed in this case.
c. If the bit field spans a long-word boundary, add seven clocks to both the <ea> calculate and execute times.

Two memory addresses are accessed in this case.
d. If the bit field spans a long-word boundary, add ten and nine clocks to both the <ea> calculate and execute

times, respectively. Two memory addresses are accessed in this case.

MOTOROLA M68040 USER’S MANUAL 10-17

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

BTST CASb CHKc,d (<ea>, Dn)

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1/2a — — 8 1L + 7

An — — — — — —

(An) 1 1/2 36 6L + 31 9 2L + 7

(An)+ 1 1/2 37 5L + 31 9 2L + 7

–(An) 1 1/2 37 5L + 31 9 2L + 7

(d16,An) 2/1 1L + 1/2 37 5L + 31 9 2L + 7

(d16,PC) 3 2L + 1/2L + 2 — — 10 3L + 7

(xxx).W, (xxx).L 2/1 1L + 1/2 36 5L + 31 9 2L + 7

#<xxx> — — — — 8 1L + 7

(d8,An,Xn) 3 3/4 36 36 10 10

(d8,PC,Xn) 5 1L + 4/1L + 5 — — 11 1L + 10

(BR,Xn) 7/6 1L + 6/1L + 7 36 1L + 35 12 1L + 11

(bd,BR,Xn) 8/7 1L + 7/1L + 8 37 1L + 36 13 1L + 12

([bd,BR,Xn]) 10/9 1L + 9/1L + 10 42 40 16 1L + 15

([bd,BR,Xn],od) 11/10 1L + 10/1L + 11 42 1L + 41 17 1L + 16

([bd,BR],Xn) 11/10 3L + 8/3L + 9 42 3L + 38 17 3L + 14

([bd,BR],Xn,od) 12/11 3L + 9/3L + 10 42 3L + 39 18 3L + 15

NOTES:
a. Bit instruction <ea> calculate and execute times T1/T2 apply to #<xxx>/Dn bit numbers.
b. Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes

some portions of the processor before execution.
c. This instruction interlocks the <ea> calculate and execute stages.
d. Times listed are for Dn within bounds. This instruction interlocks the <ea> calculate and execute stages.

10-18 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

CHK2* (<ea>, Rn) CLR CMP

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn — — 1 1 1 1

An — — — — 1 1

(An) 11 2L + 9 1 1 1 1

(An)+ — — 1 1 1 1

–(An) — — 1 1 1 1

(d16,An) 11 2L + 9 1 1 1 1

(d16,PC) 12 3L + 9 — — 3 2L + 1

(xxx).W, (xxx).L 11 2L + 9 1 1 1 1

#<xxx> — — — — 1 1

(d8,An,Xn) 13 1L + 12 3 3 3 3

(d8,PC,Xn) 14 2L + 12 — — 5 1L + 4

(BR,Xn) 15 2L + 13 6 1L + 5 6 1L + 5

(bd,BR,Xn) 16 2L + 14 7 1L + 6 7 1L + 6

([bd,BR,Xn]) 19 2L + 17 9 1L + 8 9 1L + 8

([bd,BR,Xn],od) 20 2L + 18 10 1L + 9 10 1L + 9

([bd,BR],Xn) 20 4L + 16 10 3L + 7 10 3L + 7

([bd,BR],Xn,od) 21 4L + 17 11 3L + 8 11 3L + 8

*This instruction interlocks the <ea> calculate and execute stages. Timing for Dn within bounds, UB > LB. For UB <
LB, add three clocks to <ea> calculate and execute times. For Rn = An, add one clock to <ea> calculate and execute
times.

MOTOROLA M68040 USER’S MANUAL 10-19

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

CMPA.L CMPI CMP2*

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1 1 1 — —

An 1 1 — — — —

(An) 1 1 1 1 13 2L + 11

(An)+ 2 1L + 1 2 1L + 1 0 0

–(An) 2 1L + 1 2 1L + 1 0 0

(d16,An) 2 1L + 1 2 1L + 1 13 2L + 11

(d16,PC) 3 2L + 1 3 2L + 1 14 3L + 11

(xxx).W, (xxx).L 1 1 2 1L + 1 13 2L + 11

#<xxx> 1 1 — — — —

(d8,An,Xn) 3 3 3 3 15 1L + 14

(d8,PC,Xn) 5 1L + 4 5 2L + 4 16 2L + 14

(BR,Xn) 6 1L + 5 6 2L + 5 17 2L + 15

(bd,BR,Xn) 7 1L + 6 7 2L + 6 18 2L + 16

([bd,BR,Xn]) 9 1L + 8 9 2L + 8 21 2L + 19

([bd,BR,Xn],od) 10 1L + 9 10 2L + 9 22 2L + 20

([bd,BR],Xn) 10 3L + 7 10 4L + 7 22 4L + 18

([bd,BR],Xn,od) 11 3L + 8 11 4L + 8 23 4L + 19

*Times listed are typical.

10-20 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

DIVS.W, DIVU.W* DIVS.L, DIVU.L,
DIVSL.L, DIVUL.L* JMP

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 8 27 9 44 — —

An — — — — — —

(An) 8 27 9 44 3 2L + 1

(An)+ 8 27 9 44 — —

–(An) 8 27 9 44 — —

(d16,An) 8 27 11 2L + 44 4 3L + 1

(d16,PC) 11 3L + 27 12 3L + 44 6 5L + 1

(xxx).W, (xxx).L 8 27 11 2L + 44 3 2L + 1

#<xxx> 8 27 10 1L + 44 — —

(d8,An,Xn) 11 30 12 47 6 6

(d8,PC,Xn) 12 1L + 30 13 1L + 47 7 1L + 6

(BR,Xn) 13 1L + 31 14 1L + 48 8 1L + 7

(bd,BR,Xn) 14 1L + 32 15 1L + 49 9 1L + 8

([bd,BR,Xn]) 17 1L + 35 18 1L + 52 12 1L + 11

([bd,BR,Xn],od) 18 1L + 36 19 1L + 53 12 1L + 11

([bd,BR],Xn) 18 3L + 34 19 3L + 51 13 3L + 10

([bd,BR],Xn,od) 19 3L + 35 20 3L + 52 14 3L + 11

*This instruction interlocks the <ea> calculate and execute stages. Execution time for a DIV/0 exception taken and
exception processing is approximately 16 + <ea> calculate clocks. For example, DIV.W #0,Dn takes approximately
24 clocks in both the <ea> calculate and execute times to execute the divide instruction, perform exception stacking,
fetch the exception vector, and prefetch the next instruction.

MOTOROLA M68040 USER’S MANUAL 10-21

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

JSR LEA MOVE from CCR

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn — — — — 1 2

An — — — — — —

(An) 3 2L + 1 1 1 1 2

(An)+ — — — — 1 2

–(An) — — — — 1 2

(d16,An) 4 3L + 1 2 1L + 1 1 2

(d16,PC) 6 5L + 1 4 3L + 1 — —

(xxx).W, (xxx).L 3 2L + 1 1 1 1 2

#<xxx> — — — — — —

(d8,An,Xn) 6 6 4 4 3 4

(d8,PC,Xn) 7 1L + 6 5 1L + 4 — —

(BR,Xn) 8 1L + 7 6 1L + 5 6 1L + 6

(bd,BR,Xn) 9 1L + 8 7 1L + 6 7 1L + 7

([bd,BR,Xn]) 12 1L + 11 9 1L + 8 10 1L + 10

([bd,BR,Xn],od) 13 1L + 12 10 1L + 9 11 1L + 11

([bd,BR],Xn) 13 3L + 10 10 3L + 7 11 3L + 9

([bd,BR],Xn,od) 14 3L + 11 11 3L + 8 12 3L + 10

10-22 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVE to CCR MOVE from SRa MOVE to SRb

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 2 2 1L + 2 9 1L + 8

An — — — — — —

(An) 1 2 2 1L + 2 10 2L + 8

(An)+ 1 2 2 1L + 2 10 2L + 8

–(An) 1 2 2 1L + 2 10 2L + 8

(d16,An) 1 2 2 1L + 2 10 2L + 8

(d16,PC) 3 2L + 2 — — 11 3L + 8

(xxx).W, (xxx).L 1 2 2 1L + 2 10 2L + 8

#<xxx> 1 2 — — 9 1L + 8

(d8,An,Xn) 3 4 4 5 11 11

(d8,PC,Xn) 4 1L + 4 — — 12 1L + 11

(BR,Xn) 6 1L + 6 6 1L + 6 — —

(bd,BR,Xn) 7 1L + 7 7 1L + 7 14 1L + 13

([bd,BR,Xn]) 10 1L + 10 10 1L + 10 17 1L + 16

([bd,BR,Xn],od) 11 1L + 11 11 1L + 11 18 1L + 17

([bd,BR],Xn) 11 3L + 9 11 3L + 9 18 3L + 15

([bd,BR],Xn,od) 12 3L + 10 12 3L + 10 19 3L + 16

NOTES:
a. This instruction interlocks the <ea> calculate and execute stages.
b. Times listed are minimum. This instruction interlocks the <ea> calculate and execute

stages and synchronizes some portions of the processor before execution.

MOTOROLA M68040 USER’S MANUAL 10-23

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVEA.La MOVEM <list>,<ea>b,c MOVEM.L <ea>,<list>b,c

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1 — — — —

An 1 1 — — — —

(An) 1 1 2 + D' + A' 1L + 1 + D' + A' 3 + D' + A 1L + 2 + D' + A'

(An)+ 1 1 — — 3 + D' + A 1L + 2 + D' + A'

–(An) 1 1 2 + D' + A' 1L + 1 + D' + A' — —

(d16,An) 1 1 2 + D' + A' 1L + 1 + D' + A' 3 + D' + A 1L + 2 + D' + A'

(d16,PC) 3 2L + 1 — — 4 + D' + A 2L + 2 + D' + A'

(xxx).W, (xxx).L 1 1 2 + D' + A' 1L + 1 + D' + A' 3 + D' + A 1L + 2 + D' + A'

#<xxx> 1 1 — — — —

(d8,An,Xn) 4 4 9 + D' + A' 2L + 7 + D' + A' 10 + D' + A 2L + 8 + D' + A'

(d8,PC,Xn) 5 1L + 4 — — 11 + D' + A 3L + 8 + D' + A'

(BR,Xn) 6 1L + 5 11 + D' + A' 3L + 8 + D' + A' 12 + D' + A 3L + 9 + D' + A'

(bd,BR,Xn) 7 1L + 6 12 + D' + A' 3L + 9 + D' + A' 13 + D' + A 3L + 10 + D' + A'

([bd,BR,Xn]) 10 1L + 9 15 + D' + A' 3L + 12 + D' + A' 16 + D' + A 3L + 13 + D' + A'

([bd,BR,Xn],od) 11 1L + 10 16 + D' + A' 3L + 13 + D' + A' 17 + D' + A 3L + 14 + D' + A'

([bd,BR],Xn) 11 3L + 8 16 + D' + A' 5L + 11 + D' + A' 17 + D' + A 5L + 12 + D' + A'

([bd,BR],Xn,od) 12 3L + 9 17 + D' + A' 5L + 12 + D' + A' 18 + D' + A 5L + 13 + D' + A'
NOTES:

a. Except for Dn and #<xxx> cases, add one clock to execute times for MOEA.W.
b. This instruction interlocks the <ea> calculate and execute stages.
c. D' and A' indicate the number of data and address registers, respectively (if no data registers specified the

number one). For MOVEM.W <ea>,<list>, add N – 2 and N clocks to <ea> calculate and execute times,
respectively, for N address registers specified.

10-24 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MOVES <ea>,An* MOVES <ea>,Dn* MOVES Rn,<ea>*

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn — — — — — —

An — — — — — —

(An) 28 4L + 24 20 4L + 19 13 4L + 9

(An)+ 28 4L + 24 20 4L + 19 13 4L + 9

–(An) 17 2L + 15 11 12 11 2L + 9

(d16,An) 29 4L + 24 21 4L + 19 14 4L + 9

(d16,PC) — — — — — —

(xxx).W, (xxx).L 17 2L + 15 11 4L + 10 11 2L + 9

#<xxx> — — — — — —

(d8,An,Xn) 29 1L + 27 21 1L + 22 14 1L + 12

(d8,PC,Xn) — — — — — —

(BR,Xn) 21 2L + 19 15 2L + 14 15 2L + 13

(bd,BR,Xn) 22 2L + 20 16 2L + 15 16 2L + 14

([bd,BR,Xn]) 35 2L + 32 26 2L + 27 21 2L + 17

([bd,BR,Xn],od) 31 2L + 29 23 2L + 24 20 2L + 18

([bd,BR],Xn) 36 4L + 31 27 4L + 26 21 4L + 16

([bd,BR],Xn,od) 32 4L + 28 24 4L + 23 21 4L + 17

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some
portions of the processor before execution.

MOTOROLA M68040 USER’S MANUAL 10-25

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

MULS.W/L* MULU.W/L* NBCD

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 16/20 1 14/20 1 3

An — — — — — —

(An) 1 16/20 1 14/20 1 2

(An)+ 1 16/20 1 14/20 1 2

–(An) 1 16/20 1 14/20 1 2

(d16,An) 1/2 16/20 1/2 14/20 1 2

(d16,PC) 3 2L + 16/2L + 20 3 14/20 — —

(xxx).W, (xxx).L 1/2 16/20 1/2 14/20 1 2

#<xxx> 1 16/20 1 14/20 — —

(d8,An,Xn) 3 18/22 3 16/22 3 4

(d8,PC,Xn) 5 1L + 19/1L + 23 5 1L + 17/1L + 23 — —

(BR,Xn) 6 1L + 20/1L + 24 6 1L + 18/1L + 24 6 1L + 6

(bd,BR,Xn) 7 1L + 21/1L + 25 7 1L + 19/1L + 25 7 1L + 7

([bd,BR,Xn]) 9 1L + 23/1L + 27 9 1L + 21/1L + 27 9 1L + 9

([bd,BR,Xn],od) 10 1L + 24/1L + 28 10 1L + 22/1L + 28 10 1L + 10

([bd,BR],Xn) 10 3L + 22/3L + 26 10 3L + 20/3L + 26 10 3L + 8

([bd,BR],Xn,od) 11 3L + 23/3L + 27 11 3L + 21/3L + 27 11 3L + 9

*Multiply <ea> calculate and execute times; T1/T2 apply to word/long-word operand size.

10-26 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

NEG, NEGX, NOT PEA ROL, ROR

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 1 — — 1 3/4*

An — — — — — —

(An) 1 1 2 1L + 1 1 3

(An)+ 1 1 — — 1 3

–(An) 1 1 — — 1 3

(d16,An) 1 1 2 1L + 1 1 3

(d16,PC) — — 4 3L + 1 — —

(xxx).W, (xxx).L 1 1 2 1L + 1 1 3

#<xxx> — — — — — —

(d8,An,Xn) 3 3 4 1L + 3 3 5

(d8,PC,Xn) — — 6 2L + 4 — —

(BR,Xn) 6 1L + 5 7 2L + 5 6 1L + 7

(bd,BR,Xn) 7 1L + 6 8 2L + 6 7 1L + 8

([bd,BR,Xn]) 9 1L + 8 10 2L + 8 9 1L + 10

([bd,BR,Xn],od) 10 1L + 9 11 2L + 9 10 1L + 11

([bd,BR],Xn) 10 3L + 7 11 4L + 7 10 3L + 9

([bd,BR],Xn,od) 11 3L + 8 12 4L + 8 11 3L + 10

*Immediate count specified for shift count/shift count specified in register, respectively.

MOTOROLA M68040 USER’S MANUAL 10-27

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Continued)

ROXL, ROXR Scc SUBA

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 5/6* 1 2 1 1

An — — — — 1 2

(An) 1 2 1 2 1 2

(An)+ 1 2 1 2 2 1L + 2

–(An) 1 2 1 2 2 1L + 2

(d16,An) 1 2 1 2 2 1L + 2

(d16,PC) — — — — 3 2L + 2

(xxx).W, (xxx).L 1 2 1 2 1 2

#<xxx> — — — — 1 2

(d8,An,Xn) 3 4 4 5 4 5

(d8,PC,Xn) — — — — 5 1L + 5

(BR,Xn) 6 1L + 6 6 1L + 6 6 1L + 6

(bd,BR,Xn) 7 1L + 7 7 1L + 7 7 1L + 7

([bd,BR,Xn]) 9 1L + 9 10 1L + 10 9 1L + 9

([bd,BR,Xn],od) 10 1L + 10 11 1L + 11 10 1L + 10

([bd,BR],Xn) 10 3L + 8 11 3L + 9 10 3L + 8

([bd,BR],Xn,od) 11 3L + 9 12 3L + 10 11 3L + 9

*Immediate count specified for shift count/shift count specified in register, respectively.

10-28 M68040 USER’S MANUAL MOTOROLA

10.6 INTEGER UNIT INSTRUCTION TIMINGS (Concluded)

TAS*

Addressing
Mode

<ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 1 2

An — —

(An) 26 2L + 24

(An)+ 26 2L + 24

–(An) 26 2L + 24

(d16,An) 26 2L + 24

(d16,PC) — —

(xxx).W, (xxx).L 26 2L + 24

#<xxx> — —

(d8,An,Xn) 27 27

(d8,PC,Xn) — —

(BR,Xn) 30 1L + 28

(bd,BR,Xn) 31 1L + 29

([bd,BR,Xn]) 33 33

([bd,BR,Xn],od) 35 34

([bd,BR],Xn) 34 3L + 31

([bd,BR],Xn,od) 36 3L + 32

*Times listed are typical. This instruction interlocks the <ea> calculate and execute stages and synchronizes some
portions of the processor before execution.

MOTOROLA M68040 USER’S MANUAL 10-29

10.7 FLOATING-POINT UNIT INSTRUCTION TIMINGS

For floating-point instructions in the MC68040, the integer pipeline passes the decoded
instruction to the floating-point unit for execution, then supports the floating-point unit by
calculating effective addresses and transferring operands to and from this unit. For these
instructions, the execution times listed in the integer unit timing section show the overhead
required by the integer unit to support the floating-point unit, assuming the floating-point
unit is not busy with the previous floating-point instructions.

Times in parentheses are the total time that that stage uses to execute an instruction even
though the stage can pass data to the next stage early. The order of operands is generally
not significant for timing purposes. Different rounding modes (i.e., round to zero, etc.)
never incur a time penalty. Instructions with an S or D (e.g., FSADD) have the same effect
as setting the rounding precision to S or D. All FMOVEM instructions wait for the pipe to
idle before starting. Refer to Section 9 Floating-Point Unit (MC68040 Only) for details
on the operation of the floating-point unit pipeline.

10.7.1 Miscellaneous Integer Unit Support Timings

Instruction Condition <ea> Calculate Execute

FBcc Taken
Not Taken

7
6

7
6

FDBcc cc True
cc False

9
11

1L + 7
1L + 9

FNOP FPU Idle 6 6

FTRAPcc Not Taken 6 1L + 5

10-30 M68040 USER’S MANUAL MOTOROLA

10.7.2 Integer Unit Support Timings

FABS, FADD, FCMP, FDIV, FMOVE, FMUL, FNEG, FSQRT, FSUB, FTST <ea>,FPn*

Addressing Byte and Word Long Word Single Precision

Mode <ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

FPn — — — — — —

Dn 2 1L + 2 2 1L + 2 2 1L + 2

(An) 2 2 2 2 2 2

(An)+ 2 2 2 2 2 2

–(An) 2 2 2 2 2 2

(d16,An) 2 2 2 2 2 2

(d16,PC) 4 2L + 2 4 2L + 2 4 2L + 2

(xxx).W, (xxx).L 3 1L + 2 3 1L + 2 3 1L + 2

#<xxx> 5 3L + 2 3 1L + 2 3 1L + 2

(d8,An,Xn) 5 5 5 5 5 5

(d8,PC,Xn) 6 1L + 5 6 1L + 5 6 1L + 5

(An,Xn) 7 1L + 6 7 1L + 6 7 1L + 6

(bd,An,Xn) 8 1L + 7 8 1L + 7 8 1L + 7

([bd,An,Xn]) 11 1L + 10 11 1L + 10 11 1L + 10

([bd,An,Xn],od) 12 1L + 11 12 1L + 11 12 1L + 11

([bd,An],Xn) 12 3L + 9 12 3L + 9 12 3L + 9

([bd,An],Xn,od) 13 3L + 10 13 3L + 10 13 3L + 10

Double Precision Extended Precision

FPn — — 2 1L + 2

Dn — — — —

(An) 2 2 3 3

(An)+ 2 2 3 3

–(An) 2 2 3 3

(d16,An) 2 2 3 3

(d16,PC) 4 1L + 3 5 1L + 4

(xxx).W, (xxx).L 3 1L + 2 4 1L + 3

#<xxx> 4 2L + 2 5 2L + 3

(d8,An,Xn) 5 5 6 6

(d8,PC,Xn) 6 6 7 7

(An,Xn) 7 1L + 6 8 1L + 7

(bd,An,Xn) 8 1L + 7 9 1L + 8

([bd,An,Xn]) 11 1L + 10 12 1L + 11

([bd,An,Xn],od) 12 1L + 11 13 1L + 12

([bd,An],Xn) 12 3L + 9 13 3L + 10

([bd,An],Xn,od) 13 3L + 10 14 3L + 11

*For BR = PC, add one clock to both <ea> calculate and execute times. Timings are for an idle FPU.

MOTOROLA M68040 USER’S MANUAL 10-31

10.7.2 Integer Unit Support Timings (Continued)

FMOVE FPn,<ea>*

Addressing Byte, Word, and Long Word Single and Double Precision Extended Precision

Mode <ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 9 9L + 3 2 1L + 3 — —

An — — — — — —

(An) 8 9L + 2 2 1L + 2 4 1L + 3

(An)+ 8 9L + 2 2 1L + 2 4 1L + 3

–(An) 8 9L + 2 2 1L + 2 4 1L + 3

(xxx).W, (xxx).L 8 9L + 2 3 1L + 2 4 1L + 3

#<xxx> — — — — — —

(d16,An) 8 9L + 2 2 1L + 2 4 1L + 3

(d16,PC) — — — — — —

(d8,An,Xn) 8 6L + 5 5 5 6 6

(d8,PC,Xn) — — — — — —

(An,Xn) 7 4L + 6 7 1L + 6 8 1L + 7

(bd,An,Xn) 8 4L + 7 8 1L + 7 9 1L + 8

([bd,An,Xn]) 11 1L + 10 11 1L + 10 12 1L + 11

([bd,An,Xn],od) 12 1L + 11 12 1L + 11 13 1L + 12

([bd,An],Xn) 12 3L + 9 12 3L + 9 13 3L + 10

([bd,An],Xn,od) 13 3L + 10 13 3L + 10 14 3L + 11

*Timings are for an idle floating-point unit.

10-32 M68040 USER’S MANUAL MOTOROLA

10.7.2 Integer Unit Support Timings (Continued)

Addressing
FMOVE/FMOVEM to/from

1 Control Registera
FMOVEM <list>,<ea>
and <ea>,<list>a,b FScca

Mode <ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

Dn 2 1L + 2 — — 5 6

An 2 1L + 2 — — — —

(An) 4 2L + 3 17 2L + 15 4 5

(An)+ 4 2L + 3 17 2L + 15 6 2L + 5

–(An) 5 3L + 3 16 1L + 15 6 2L + 5

(xxx).W, (xxx).L 4 2L + 3 19 3L + 15 4 5

#<xxx> 4 2L + 3 19 1L + 17 — —

(d16,An) 4 2L + 3 17 2L + 15 4 5

(d16,PC) 5 4L + 3 — — — —

(d8,An,Xn) 5 6 19 18 7 8

(d8,PC,Xn) 6 1L + 6 20 1L + 18 — —

(An,Xn) 7 1L + 7 20 1L + 19 9 1L + 9

(bd,An,Xn) 8 1L + 8 21 1L + 20 10 1L + 10

([bd,An,Xn]) 11 1L + 11 25 1L + 23 13 1L + 13

([bd,An,Xn],od) 12 1L + 13 25 1L + 24 14 1L + 14

([bd,An],Xn) 12 3L + 10 26 3L + 22 14 3L + 12

([bd,An],Xn,od) 13 3L + 12 26 3L + 23 15 3L + 13
NOTES:

a. Timings are for an idle floating-point unit. Same as FMOVE <ea>,FPCR.
b. Add three clocks to both <ea> calculate and execute times for each additional floating-point register. Add one

clock to both <ea> calculate and execute times for dynamic register list.

MOTOROLA M68040 USER’S MANUAL 10-33

10.7.2 Integer Unit Support Timings (Continued)

FSAVE <ea>*

Addressing Idle or Null Short Long

Mode <ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

FPn — — — — — —

Dn — — — — — —

An — — — — — —

(An) 12 1L + 11 33 1L + 32 50 1L + 49

(An)+ — — — — — —

–(An) 11 11 32 32 49 49

(xxx).W, (xxx).L 13 1L + 11 34 1L + 32 51 1L + 49

#<xxx> — — — — — —

(d16,An) 12 1L + 11 33 1L + 32 50 1L + 49

(d16,PC) — — — — — —

(d8,An,Xn) 13 13 34 34 51 51

(d8,PC,Xn) — — — — — —

(An,Xn) 16 1L + 14 37 1L + 35 54 1L + 52

(bd,An,Xn) 17 1L + 15 38 1L + 36 55 1L + 53

([bd,An,Xn]) 19 1L + 18 40 1L + 39 57 1L + 56

([bd,An,Xn],od) 21 1L + 19 42 1L + 40 59 1L + 57

([bd,An],Xn) 20 3L + 17 41 3L + 38 58 3L + 55

([bd,An],Xn,od) 22 3L + 18 46 3L + 42 65 3L + 61

*Timings are for an idle floating-point unit.

10-34 M68040 USER’S MANUAL MOTOROLA

10.7.2 Integer Unit Support Timings (Concluded)

FRESTORE <ea>*

Addressing Idle or Null Short Long

Mode <ea>
Calculate

Execute <ea>
Calculate

Execute <ea>
Calculate

Execute

FPn — — — — — —

Dn — — — — — —

An — — — — — —

(An) 13 1L + 12 26 1L + 25 40 1L + 39

(An)+ 13 1L + 12 26 1L + 25 40 1L + 39

–(An) — — — — — —

(d16,An) 13 1L + 12 26 1L + 25 40 1L + 39

(d16,PC) — — — — — —

(xxx).W, (xxx).L 14 1L + 12 27 1L + 25 41 1L + 39

#<xxx> — — — — — —

(d8,An,Xn) 14 14 27 27 41 41

(d8,PC,Xn) — — — — — —

(An,Xn) 16 1L + 14 29 1L + 27 43 1L + 41

(bd,An,Xn) 17 1L + 15 30 1L + 28 44 1L + 42

([bd,An,Xn]) 20 1L + 19 33 1L + 32 47 1L + 46

([bd,An,Xn],od) 21 1L + 19 34 1L + 32 48 1L + 46

([bd,An],Xn) 21 3L + 18 34 3L + 31 48 3L + 45

([bd,An],Xn,od) 22 3L + 19 35 3L + 31 49 3L + 45

*Timings are for an idle floating-point unit.

MOTOROLA M68040 USER’S MANUAL 10-35

10.7.3 Timings in the Floating-Point Unit

Times in parentheses are the total time that the stage uses to execute an instruction even
though the stage can pass data to the next stage earlier. So that 2(3) in the conversion
stage means that the instruction takes two cycles to execute, but this stage is actually
busy for three cycles.

Instruction Opclass Size Precision Operands Conversion Execution Normalization

FADD,FSUB 0 — Any Norm,Norm 2(3) 3 2(3)

0 — Any Norm,Zero 2(3) 3 2(3)

0 — Any Zero,Zero 4 0 0

0 — Any — ,Inf 4 0 0

0 — Any — ,NAN 4 0 0

0 S,D Any Norm,Norm 2(3) 3 2(3)

2 S,D Any Norm,Zero 2(3) 3 2(3)

2 S,D Any Zero,Zero 4 0 0

2 S,D Any — ,Inf 4 0 0

2 S,D Any — ,NAN 4 0 0

2 X Any Norm,Norm 3(4) 3 2(3)

2 X Any Norm,Zero 3(4) 3 2(3)

2 X Any Zero,Zero 5 0 0

2 X Any — ,Inf 5 0 0

2 X Any — ,NAN 5 0 0

FMUL 0 — Any Norm,Norm 2(3) 5 2(3)

0 — Any — ,Zero 4 0 0

0 — Any — ,Inf 4 0 0

0 — Any — ,NAN 4 0 0

2 S,D Any Norm,Norm 2(3) 5 2(3)

2 S,D Any — ,Zero 4 0 0

2 S,D Any — ,Inf 4 0 0

2 S,D Any — ,NAN 4 0 0

2 X Any Norm,Norm 3(4) 5 2(3)

2 X Any — ,Zero 5 0 0

2 X Any — ,Inf 5 0 0

2 X Any — ,NAN 5 0 0

FDIV 0 Any Norm,Norm 2(3) 37.5 2(3)

0 — Any — ,Zero 4 0 0

0 — Any — ,Inf 4 0 0

0 — Any — ,NAN 4 0 0

2 S,D Any Norm,Norm 2(3) 37.5 2(3)

2 S,D Any — ,Zero 4 0 0

2 S,D Any — ,Inf 4 0 0

10-36 M68040 USER’S MANUAL MOTOROLA

10.7.3 Timings in the Floating-Point Unit (Continued)

Instruction Opclass Size Precision Operands Conversion Execution Normalization

FDIV 2 S,D Any — ,NAN 4 0 0

2 X Any Norm,Norm 3(4) 37.5 2(3)

2 X Any — ,Zero 5 0 0

2 — Any — ,Inf 5 0 0

2 X Any — ,NAN 5 0 0

FSQRT 0 — Any Norm 2(3) 103 2(3)

0 — Any (Zero|Inf|NAN) 4 0 0

2 S,D Any Norm 2(3) 103 2(3)

2 S,D Any (Zero|Inf|NAN) 4 0 0

2 X Any Norm 3(4) 103 2(3)

2 X Any (Zero|Inf|NAN) 5 0 0

FMOVE, 0 — X (Norm|Zero|Inf) 2 0 0

FABS, 0 — X NAN 3 0 0

FNEG 0 — S,D Norm 5 0 0

0 — S,D (Zero|Inf) 3 0 0

0 — S,D NAN 4 0 0

2 S Any (Norm|Zero|Inf) 3 0 0

2 S Any NAN 4 0 0

2 D D,X (Norm|Zero|Inf) 3 0 0

2 D D,X NAN 4 0 0

2 D S Norm 5 0 0

2 D S (Zero|Inf) 4 0 0

2 D S NAN 5 0 0

2 X X (Norm|Zero|Inf) 4 0 0

2 X X NAN 5 0 0

2 X S,D Norm 6 0 0

2 X S,D (Zero|Inf) 5 0 0

2 X S,D NAN 6 0 0

2 B,W Any (+Norm|Zero) 1.5(11) 4.5 2

2 L D,X (+Norm|Zero) 1.5(11) 4.5 2

2 L S (+Norm|Zero) 1.5(12.5) 4.5 2

2 B,W Any —Norm 1.5(11.5) 5 2

2 L D,X —Norm 1.5(11.5) 5 2

2 L S —Norm 1.5(13) 5 2

FMOVE 3 S,D Any Any 3 0 0

3 X Any Any 4 0 0

3 B,W,L Any +(Norm|Zero) 3(9) 1.5 3.5

3 B,W,L Any –(Norm|Zero) 3(10) 1.5 4.5

MOTOROLA M68040 USER’S MANUAL 10-37

10.7.3 Timings in the Floating-Point Unit (Concluded)

Instruction Opclass Size Precision Operands Conversion Execution Normalization

FMOVEM 4 — — — 2 + (2 per reg) 0 0

5 — — — 2 + (2 per reg) 0 0

6 — — — 2 + (3 per reg) 0 0

7 — — — 2 + (3 per reg) 0 0

FCMP 0 — Any Norm,Norm 2(3) 3 1

0 — Any Norm,Zero 2(3) 3 1

0 — Any Zero,Zero 4 0 0

0 — Any — ,Inf 4 0 0

0 — Any — ,NAN 4 0 0

2 S,D Any Norm,Norm 2(3) 3 1

2 S,D Any Norm,Zero 2(3) 3 1

2 S,D Any Zero,Zero 4 0 0

2 S,D Any — ,Inf 4 0 0

2 S,D Any — ,NAN 4 0 0

2 X Any Norm,Norm 3(4) 3 1

2 X Any Norm,Zero 3(4) 3 1

2 X Any Zero,Zero 5 0 0

2 X Any — ,Inf 5 0 0

2 X Any — ,NAN 5 0 0

MOTOROLA M68040 USER’S MANUAL 11-1

This device contains protective
circuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid
application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliablity of
operation is enhanced if unused
inputs are tied to an appropriate
logic voltage level (e.g., either GND
or VCC).

SECTION 11
MC68040 ELECTRICAL AND
THERMAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68040. This section is subject to change. For the most recent
specifications, contact a Motorola sales office or complete the registration card at the end
of this manual.

11.1 MAXIMUM RATINGS

Characteristic Symbol Value Unit

Supply Voltage VCC –0.3 to +7.0 V

Input Voltage Vin –0.5 to +7.0 V

Maximum Operating Junction Temperature TJ 110 °C

Minimum Operating Ambient Temperature TA 0 °C

Storage Temperature Range Tstg –55 to 150 °C

11.2 THERMAL CHARACTERISTICS

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case—
PGA Package

 θJC 3 °C/W

11-2 M68040 USER’S MANUAL MOTOROLA

11.3 DC ELECTRICAL SPECIFICATIONS (VCC = 5.0 VDC ±5 %)

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 VCC V

Input Low Voltage VIL GND 0.8 V

Undershoot — — 0.8 V

Input Leakage Current @ 0.5/2.4 V
AVEC , BCLK, BG, CDIS , MDIS, IPL≈, PCLK, RSTI, SCx,
TBI, TLNx , TCI , TCK, TEA

Iin 20 20 µA

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V
An, BB, CIOUT , Dn, LOCK , LOCKE, R/ W , SIZx, TA, TDO,
TIP, TMx, TLNx, TS, TTx, UPAx

ITSI 20 20 µA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI, TRST

IIL –1.1 –0.18 mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI, TRST

IIH –0.94 –0.16 mA

Output High Voltage, IOH = 5 mA (Small Buffer Mode) VOH 2.4 — V

Output Low Voltage, IOL = 5 mA (Small Buffer Mode) VOL — 0.5 V

Output High Voltage, IOH = 55 mA (Large Buffer Mode) VOH 2.4 — V

Output Low Voltage, IOL = 55 mA (Large Buffer Mode) VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz Cin — 25 pF

*Capacitance is periodically sampled rather than 100% tested.

11.4 POWER DISSIPATION

Buffer Mode 25 MHz 33 MHz 40 MHz

Worst Case (VCC = 5.25 V , TA = 0°C)

Small Unterminated, IOL = IOH = 5 mA 4.9 W 6.2 W 7.2 W

Large Unterminated, IOL = IOH = 5 mA 5.1 W 6.6 W 7.7 W

Large Terminated, 50 Ω, 2.5 V, IOL = IOH = 55 mA 6.5 W 8.0 W 9.1 W

Typical Values (VCC = 5 V, TJ = 90°C)*

Small 3.0 W 4.1 W 4.5 W

Large Unterminated 3.3 W 4.4 W 4.8 W

Large Terminated, 50 Ω, 2.5 V 4.7 W 5.8 W 6.2 W

*This information is for system reliability purposes.

MOTOROLA M68040 USER’S MANUAL 11-3

11.5 CLOCK AC TIMING SPECIFICATIONS (see Figure 11-1)

25 MHz 33 MHz 40 MHz

Num Characteristic Min Max Min Max Min Max Unit

Frequency of Operation 20 25 20 33 20 40 MHz

1 PCLK Cycle Time 20 25 15 25 12.5 25 ns

2 PCLK Rise Time — 1.7 — 1.7 — 1.5 ns

3 PCLK Fall Time — 1.6 — 1.6 — 1.5 ns

4 PCLK Duty Cycle Measured at 1.5 V 47.50 52.50 46.67 53.33 46.00 54.00 %

4a* PCLK Pulse Width High Measured at 1.5 V 9.50 10.50 7 8 5.75 6.75 ns

4b* PCLK Pulse Width Low Measured at 1.5 V 9.50 10.50 7 8 5.75 6.75 ns

5 BCLK Cycle Time 40 60 30 60 25 50 ns

6,7 BCLK Rise and Fall Time — 4 — 3 — 3 ns

8 BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 %

8a* BCLK Pulse Width High Measured at 1.5 V 16 24 12 18 10 15 ns

8b* BCLK Pulse Width Low Measured at 1.5 V 16 24 12 18 10 15 ns

9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 ppm

10 PCLK to BCLK Skew — 9 — n/a — n/a ns

*Specification value at maximum frequency of operation.

2 3
1

5

6 71010

PCLK

BCLK

8B8A

4A 4B

VM
V

V

IH

IL

VIH

VIL
VM

Figure 11-1. Clock Input Timing Diagram

11-4 M68040 USER’S MANUAL MOTOROLA

11.6 OUTPUT AC TIMING SPECIFICATIONS (See Figures 11-3 to 11-7)

25 MHz 33 MHz 40 Mhz

Large1 Small2 Large1 Small2 Large1 Small2

Num Characteristic Min Max Min Max Min Max Min Max Min Max Min Max Unit

113 BCLK to Address CIOUT, LOCK ,
LOCKE, R/W , SIZx, TLN, TMx, TTx,
UPAx Valid

9 21 9 30 6.50 18 6.50 25 5.25 16 5.25 24 ns

12 BCLK to Output Invalid
(Output Hold)

9 — 9 — 6.50 — 6.50 — 5.25 — 5.25 — ns

13 BCLK to TS Valid 9 21 9 30 6.50 18 6.50 25 5.25 16 5.25 24 ns

14 BCLK to TIP Valid 9 21 9 30 6.50 18 6.50 25 5.25 17 5.25 24 ns

184 BCLK to Data Out Valid 9 23 9 32 6.50 20 6.50 27 5.25 18 5.25 26 ns

194 BCLK to Data Out Invalid (Output
Hold)

9 — 9 — 6.50 — 6.50 — 5.25 — 5.25 — ns

203,4 BCLK to Output Low Impedance 9 — 9 — 6.50 — 6.50 — 5.25 — 5.25 — ns

215 BCLK to Data-Out High Impedance 9 20 9 20 6.50 17 6.50 17 5.25 16 5.25 16 ns

263 BCLK to Multiplexed
Address Valid

19 31 19 40 14 26 14 33 13 25 13 32 ns

273,5 BCLK to Multiplexed
Address Driven

19 — 19 — 14 — 14 — 13 — 13 — ns

283,4,5 BCLK to Multiplexed Address
High Impedance

9 18 9 18 6.50 15 6.50 15 5.25 14 5.25 14 ns

294,5 BCLK to Multiplexed
Data Driven

19 — 19 — 14 20 14 20 13 19 13 19 ns

304 BCLK to Multiplexed Data Valid 19 33 19 42 14 28 14 35 13 27 13 34 ns

383 BCLK to Address, CIOUT , LOCK,
LOCKE, R/W , SIZx, TS, TLNx, TMx,
TTx, UPAx High Impedance

9 18 9 18 6.50 15 6.50 15 5.25 14 5.25 14 ns

39 BCLK to BB, TA, TIP

High Impedance
19 28 19 28 14 23 14 23 11.5 22 11.5 22 ns

40 BCLK to BR , BB Valid 9 21 9 30 6.50 18 6.50 25 5.25 16 5.25 24 ns

43 BCLK to MI Valid 9 21 9 30 6.50 18 6.50 25 5.25 17 5.25 24 ns

48 BCLK to TA Valid 9 21 9 30 6.50 18 6.50 25 5.25 17 5.25 24 ns

50 BCLK to IPEND, PSTx, RSTO Valid 9 21 9 30 6.50 18 6.50 25 5.25 17 5.25 24 ns

NOTES:
1. Output timing is specified for a valid signal measured at the pin. Large buffer timing is specified driving a 50 Ω

transmission line with a length characterized by a 2.5-ns one-way propagation delay, terminated through 50 Ω to
2.5 V. Large buffer output impedance is 4–12 Ω, resulting in incident wave switching for this environment. All
large buffer outputs must be terminated to guarantee operation.

2. Small buffer timing is specified driving an unterminated 30 Ω transmission line with a length characterized by a
2.5 ns one-way propagation delay. Small buffer output impedance is typically 30 Ω; the small buffer specifications
include approximately 5 ns for the signal to propagate the length of the transmission line and back.

3. Timing specifications 11, 20, and 38 for address bus output timing apply when normal bus operation is selected.
Specifications 26, 27, and 28 should be used when the multiplexed bus mode of operation is enabled.

4. Timing specifications 18 and 19 for data bus output timing apply when normal bus operation is selected.
Specifications 28 and 29 should be used when the multiplexed bus mode of operation is enabled.

5. Timing specifications 21, 27, 28, and 29 are measured from BCLK edges. By design, the MC68040 cannot drive
address and data simultaneously during multiplexed operations.

MOTOROLA M68040 USER’S MANUAL 11-5

11.7 INPUT AC TIMING SPECIFICATIONS (see Figures 11-3 to 11-7)

25 MHz 33 MHz 40 MHz

Num Characteristic Min Max Min Max Min. Max. Unit

15 Data-In Valid to BCLK (Setup) 5 — 4 — 3 — ns

16 BCLK to Data-In Invalid (Hold) 4 — 4 — 3 — ns

17 BCLK to Data-In High Impedance
(Read Followed by Write)

— 49 — 36.5 — 30.25 ns

22a TA Valid to BCLK (Setup) 10 — 10 — 8 — ns

22b TEA Valid to BCLK (Setup) 10 — 10 — 9 — ns

22c TCI Valid to BCLK (Setup) 10 — 10 — 9 — ns

22d TBI Valid to BCLK (Setup) 11 — 10 — 9 — ns

23 BCLK to TA, TEA, TCI , TBI Invalid (Hold) 2 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 5 — 5 — 5 — ns

25 BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns

31 DLE Width High 8 — 8 — 8 — ns

32 Data-In Valid to DLE (Setup) 2 — 2 — 2 — ns

33 DLE to Data-In Invalid (Hold) 8 — 8 — 8 — ns

34 BCLK to DLE Hold 3 — 3 — 3 — ns

35 DLE High to BCLK 16 — 12 — 12 — ns

36 Data-In Valid to BCLK (DLE Mode Setup) 5 — 5 — 5 — ns

37 BCLK to Data-In Invalid (DLE Mode Hold) 4 — 4 — 4 — ns

41a BB Valid to BCLK (Setup) 7 — 7 — 7 — ns

41b BG Valid to BCLK (Setup) 8 — 7 — 7 — ns

41c CDIS , MDIS Valid to BCLK (Setup) 10 — 8 — 8 — ns

41d IPL≈ Valid to BCLK (Setup) 4 — 3 — 3 — ns

42 BCLK to BB, BG, CDIS , IPL≈, MDIS Invalid (Hold) 2 — 2 — 2 — ns

44a Address Valid to BCLK (Setup) 8 — 7 — 7 — ns

44b SIZx Valid to BCLK (Setup) 12 — 8 — 8 — ns

44c TTx Valid to BCLK (Setup) 6 — 8.5 — 8.5 — ns

44d R/W Valid to BCLK (Setup) 6 — 5 — 5 — ns

44e SCx Valid to BCLK (Setup) 10 — 11 — 8 — ns

45 BCLK to Address,SIZx, TTx, R/W, SCx Invalid (Hold) 2 — 2 — 2 — ns

46 TS Valid to BCLK (Setup) 5 — 9 — 7 — ns

47 BCLK to TS Invalid (Hold) 2 — 2 — 2 — ns

49 BCLK to BB High Impedance
(MC68040 Assumes Bus Mastership)

— 9 — 9 — 9 ns

51 RSTI Valid to BCLK 5 — 4 — 4 — ns

52 BCLK to RSTI Invalid 2 — 2 — 2 — ns

53 Mode Select Setup to RSTI Negated 20 — 20 — 20 — ns

54 RSTI Negated to Mode Selects Invalid 2 — 2 — 2 — ns

11-6 M68040 USER’S MANUAL MOTOROLA

B

ADRIVE TO
0.5 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0
V
0.8 V

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE TO
0.5 V

DRIVE TO
2.4 V

2.0 V

2.0 V

0.8 V

E

F

BCLK

OUTPUTS(1)

INPUTS(2)

RSTI (3)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
3. This timing is applicable to all parameters specified relative to the negation of the RSTI signal.

LEGEND:

A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.
E. Mode select setup time to RSTI negated.
F. Mode select hold time from RSTI negated.

DRIVE
TO 2.4 V

1.5 V 1.5 V

IPLx, CDIS,
MDIS

Figure 11-2. Drive Levels and Test Points for AC Specifications

MOTOROLA M68040 USER’S MANUAL 11-7

22
23

11

BCLK

A31–A0

TRANSFER
ATTRIBUTES

D31–D0 IN
(READ)

12

15
16

D31–D0 OUT
(WRITE)

19
21

13 12

14

18

20

TA

TEA

TCI

TBI

TIP

TS

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, LOCK,
 LOCKE, CIOUT

AVEC

24
25

12

Figure 11-3. Read/Write Timing

11-8 M68040 USER’S MANUAL MOTOROLA

BCLK

A31–A0

TRANSFER
ATTRIBUTES

38

20

11

TS

TIP

BB OUT
12

39

BG

BR

41 42

12

21

D31–D0 OUT
(WRITE)

20

40

13

14

MI

43
12

12
39

40

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, CIOUT

LOCK, LOCKE

Figure 11-4. Bus Arbitration Timing

MOTOROLA M68040 USER’S MANUAL 11-9

D31–D0 IN
(ALT. MASTER

WRITE)

D31–D0 OUT
(ALT. MASTER

READ)

44

BCLK

A31–A0 IN

15 16

46
47

12

41
48

12
20 39

42
49

43

19
21

18

TS IN

MI

TA OUT

BB IN

SIZx, TTx,
R/W IN

45

SC1, SC0

Figure 11-5. Snoop Hit Timing

11-10 M68040 USER’S MANUAL MOTOROLA

TBI

TS IN

MI

SIZx, TTx,
R/W IN

44

BCLK

A31–A0 IN

TEA

46
47

SC1,SC0 SNOOP

43

TA

45

22
23

BB IN
41

42

43

12

Figure 11-6. Snoop Miss Timing

MOTOROLA M68040 USER’S MANUAL 11-11

50

BCLK

12

42

41

IPEND

RSTO

CDIS

MDIS

IPL2–IPL0

42

PST3–PST0

12

54

RSTI

CDIS, MDIS,

51 52

IPL2–IPL0

53

41

Figure 11-7. Other Signal Timing

11-12 M68040 USER’S MANUAL MOTOROLA

11.8 MC68040 THERMAL DEVICE CHARACTERISTICS

The need to efficiently cool microprocessors is becoming more important as they become
more complex and require more power. In the past, the M68000 family has been able to
provide a 0–70°C ambient temperature part for speeds less than 40 MHz. However, the
MC68040, MC68LC040, and MC68EC040 with a 50 MHz processor clock has a maximum
power dissipation for a particular operating mode, a maximum junction temperature, and a
thermal resistance from the die junction to the case. This section provides a more
accurate method of evaluating the environment, taking into consideration both the airflow
and ambient temperature. This section also gives the user information to design a cooling
method that meets both thermal performance requirements and constraints of the board
environment. This section discusses the device characteristics and several methods for
thermal management as well as an example of one method for cooling the MC68040,
MC68LC040, and MC68EC040. The MC68040, MC68LC040, and MC68EC040 contain
inherent characteristics that should be considered when evaluating a method for cooling
the device. The following paragraphs discuss these die/package and power
considerations for each of these parts.

NOTE

All references to the MC68040 also include the MC68LC040
and MC68EC040. Note that the MC68LC040 and MC68EC040
only implement the small buffer mode.

11.8.1 MC68040 Die and Package
The MC68040 is in a cavity-down alumina-ceramic 179-pin PGA that has a worst case
thermal resistance from junction to case of 3°C/W. The package differs from previous
M68000 family PGA packages that are cavity-up. The cavity-down design allows the die to
be attached to the top surface of the package, increasing the part’s ability to dissipate heat
through the package surface or an attached heat sink. The system designer needs to
determine the specific dimensions and design of the particular heat sink, considering both
thermal performance and size requirements.

11.8.2 MC68040 Power Considerations
The MC68040 has a maximum power rating, which varies depending on the combination
of output buffer mode and operating frequency. Note that this section assumes large
buffers terminated to 2.5 V. The large buffer output mode dissipates more power than the
small, and higher frequencies of operation dissipate more power than the lower
frequencies.

The MC68040 allows a combination of either large or small buffers on the outputs of the
miscellaneous control signals, data bus, and address bus/transfer attribute pins. The large
buffers offer quicker output times, allowing for an easier logic design. However, they do so
by driving about 10 times as much current as the small buffers. The designer should
consider whether the quicker timings present enough advantage to justify the additional
consideration to the individual signal terminations, the die power consumption, and the
required cooling for the device. Since the MC68040 can be powered up in one of many
output buffer modes upon reset, the actual maximum power consumption for an MC68040

MOTOROLA M68040 USER’S MANUAL 11-13

rated at a particular maximum operating frequency is dependent upon the power-up
mode. Therefore, the MC68040 is rated at a maximum power dissipation for either the
large or small buffers at a particular frequency. This allows for control of some of the
thermal management upon reset. The following equation provides a rough method to
calculate the maximum power consumption for a chosen output buffer mode:

PD = PDSB + (PDLB – PDSB) × (PINSLB ÷ PINSCLB)

where:
PD = Maximum Power Dissipation for Output Buffer Mode Selected

PDSB = Maximum Power Dissipation for Small Buffer Mode (All Outputs)
PDLB = Maximum Power Dissipation for Large Buffer Mode (All Outputs)

PINSLB = Number of Pins Large Buffer Mode
PINSCLB = Number of Pins Capable of the Large Buffer Mode

Table 11-1 lists the simplified relationship on the maximum power dissipation for eight
possible configurations of output buffer modes.

Table 11-1. Maximum Power Dissipation for
 Output Buffer Mode Configurations

Output Configuration

Data Bus
Address Bus and

Transfer Attributes Control Signals Maximum Power Dissipation

Small* Small Small PDSB

Small Small Large PDSB + (PDLB – PDSB) × 13%

Small Large Small PDSB + (PDLB – PDSB) × 52%

Small Large Large PDSB + (PDLB – PDSB) × 65%

Large Small Small PDSB + (PDLB – PDSB) × 35%

Large Small Large PDSB + (PDLB – PDSB) × 48%

Large Large Small PDSB + (PDLB – PDSB) × 87%

Large Large Large PDSB + (PDLB – PDSB) × 100%

*The MC68LC040 and MC68EC040 only utilize this row of information.

To calculate the specific power dissipation of a design, the termination method of each
signal must be considered. For example, a signal output that is not connected would not
dissipate any additional power if it were configured in the large rather than the small buffer
mode. Since the maximum operating junction temperature is specified as 110°C, the
maximum case temperature (TC) in °C can be obtained from the following equation:

TC = TJ – PD × θJC

where:
TC = Maximum Case Temperature
TJ = Maximum Junction Temperature
PD = Maximum Power Dissipation of the Device
θJC = Thermal Resistance between the Junction of the Die and the Case

11-14 M68040 USER’S MANUAL MOTOROLA

In general, the ambient temperature (TA) in °C is a function of the following equation:

TA = TJ – PD × θJC – PD × θCA

The thermal resistance from case to outside ambient (θCA) is the only user-dependent
parameter once a buffer output configuration has been determined. Reducing the case to
ambient thermal resistance increases the maximum operating ambient temperature.
Therefore, by utilizing methods such as heat sinks and ambient air cooling to minimize
θCA, a higher ambient operating temperature and/or a lower junction temperature can be
achieved. However, an easier approach to thermal evaluation uses the following
equations:

TA = TJ – PD × θJA or TJ = TA + PD × θJA

where:
θJA = Thermal Resistance from the Junction to the Ambient (θJC + θCA)

The total thermal resistance for a package (θJA) is a combination of its two components,
θJC and θCA. These components represent the barrier to heat flow from the semiconductor
junction to the package case surface (θJC) and θCA. Although θJC is package related and
the user cannot influence it, θCA is user dependent. Good thermal management by the
user, such as heat sink and airflow, can significantly reduce θCA achieving either a lower
semiconductor junction temperature or a higher ambient operating temperature.

11.9 MC68040 THERMAL MANAGEMENT TECHNIQUES

To attain a reasonable maximum ambient operating temperature, the user must reduce
the barrier to heat flow from θJA. The only way to accomplish this is to significantly reduce
θCA by applying thermal management techniques such as heat sinks and forced air
cooling. The following paragraphs discuss thermal study results for the MC68040 that did
not use thermal management techniques, airflow cooling, heat sink, and heat sink
combined with airflow cooling.

The MC68040 power dissipation values given in this section represent the sum of the
power dissipated by the internal circuitry and the output buffers of the MC68040. The
termination network chosen by the system designer strongly influences this last
component of power. Values listed in this section for large buffer terminated entries reflect
a termination network as illustrated in Figure 11-8 and are consistent with specifications
for the MC68040. For additional termination schemes, refer to AN1051, Transmission Line
Effects in PCB Applications, or AN1061, Reflecting on Transmission Line Effects.

MOTOROLA M68040 USER’S MANUAL 11-15

2.5 V

R = 5050 Ω T.L.

MC68040 OUTPUT
BUFFER

TYPICAL Z = 4–12 Ω (LARGE)0
 TYPICAL Z = 25 Ω (SMALL)0

Ω

Figure 11-8. MC68040 Termination Network

If a designer uses alternative standard termination methods, such as RC termination
network (see Figure 11-9), Thévenin termination network (not illustrated), or no
termination method at all, which is not recommended, then the power dissipation of the
MC68040 will be significantly less than the large buffer terminated values. For termination
networks other than that illustrated in Figure 11-31, the designer must calculate the
component of power dissipated in the output buffer and add this value to the small buffer
unterminated value.

C = 300 pF

R = 5050 Ω T.L.

MC68040 OUTPUT
BUFFER Ω

TYPICAL Z = 4–12 Ω (LARGE)0
 TYPICAL Z = 25 Ω (SMALL)0

Figure 11-9. Typical Configuration for RC Termination Network

The following paragraphs describe how the large buffer terminated values were
calculated. The MC68040 termination network causes current flow through the output
buffer of the MC68040, regardless of whether the MC68040 is driving a logic one or a
logic zero. The following equation gives the large buffer termination network power
dissipation for a given pin:

I = (V ÷ (R + Zo)) + 5 mA

P = I2Reff

Reff is the effective average output resistance, including typical pullup resistance, typical
pulldown resistance, and a duty cycle average of how often the pin is high, low, or three-
stated. Typical values for Zo are 6 Ω for large buffer low output, 12 Ω for large buffer high
output, and 25 Ω for small buffer output. Using these values and duty cycle assumptions
based on sequential burst write cycles, Reff calculates to 7.7 Ω for the MC68040 large
buffer mode and 25 Ω for the small buffer mode.

Maximum termination current in the large buffer mode occurs for output:

Low: Itl = (2.5 V ÷ (50 + 6 Ω)) + 5 mA = 49.6 mA

High: Ith = (2.75 V ÷ (50 + 12 Ω)) + 5 mA = 50.8 mA

11-16 M68040 USER’S MANUAL MOTOROLA

Maximum power dissipation in the large buffer mode occurs for output:

Low: Pllb = I2R = (49.6 mA)2 x 6 Ω = 14.8 mW

High: Phlb = I2R = (50.8 mA)2 x 12 Ω = 30.1 mW

Similar calculations for unterminated small buffers yield:

I = 5 mA (by spec)
and

P = I2R = (5 mA)2 x 25 Ω
so

Phsb = 0.625 mW
Plsb = 0.625 mW

Assuming that the duty cycle of output j is driving a valid logic value instead of being
three-stated as given by DCj, then the following equation approximates total average
power dissipation in the output buffers:

Number of
Outputs Used

ITotal = ∑
j = 1

 (I j × DCj)2 × Reffj

I j and Zoj are calculated for every pin as illustrated above. In practice the above
summation is carried out by groups of pins instead of individual pins.

Motorola has calculated the values for DCj for typical situations. On an average clock
there will be 37.8 pins high, 41.5 pins low, and 11.7 pins three-stated. The following
examples demonstrate how to calculate the power dissipation that is added to small buffer
power dissipation numbers, assuming a termination as illustrated in Figure 11-18.

a. For the numbers listed in this section in a large buffer design with no caching.

P = (Number of Pins High) × (Phlb) + (Number of Pins Low) × (Pllb)

= 37.8 Pins × 30.1 mW per Pin + 41.5 Pins × 14.8 mW per Pin

= 1.75 W

b. For a single bus master system in a large buffer design with no caching or snooping
and only standard features (i.e., TLN, UPA, BR, BB, LOCK, LOCKE, CIOUT, TIP, MI,
TDO, IPEND, PST not used):

P = (Number of Pins High) × (Phlb) + (Number of Pins Low) × (Pllb)

= 29.8 Pins × 30.1 mW per Pin + 34.5 Pins × 14.8 mW per Pin

= 1.41 W

c. For the example b system with copyback caching, assuming 85% cache hit rate:

P = (29.8 Pins × 30.1 mW per Pin + 34.5 Pins × 14.8 mW per Pin) × (1 – 0.85)

= 0.21 W

MOTOROLA M68040 USER’S MANUAL 11-17

d. For the example c system running the data bus in small buffer mode with other
outputs in large buffer mode terminated:

P = (Number of Pins Large Buffer High) × (Phlb) + (Number of Pins Large Buffer
Low) × (Pllb) + (Number of Pins Small Buffer High) × (Phsb) + (Number of Pins
Small Buffer Low) × (Plsb)

= 19.1 Pins × 30.1 mW per Pin + 23.8 Pins × 14.8 mW per Pin + 10.7 Pins × 0.625
mW per Pin + 10.7 Pins × 0.625 mW per Pin

= 0.94 W × (1 – 0.85)

= 0.14 W

11.9.1 Still Air

In this study, a small sample of MC68040 packages was tested in free-air cooling with no
heat sink. Measurements showed that the average θJA was 22.8°C/W with a standard
deviation of 0.44°C/W. The test was performed with approximately 6 W of power being
dissipated from within the package. The test determined that θJA decreases slightly for the
increasing power dissipation range possible. Therefore, since the variance in θJA within
the possible power dissipation range is negligible, it can be assumed for calculation
purposes that θJA is valid at all power levels. Using the previous equations, Table 11-2
lists the results of a maximum power dissipation at maximum θJC with no heat sink or
airflow (see Table 11-1 to calculate other power dissipation values). The ambient
temperature results illustrate the need to implement some type of thermal management to
obtain a reasonable maximum ambient temperature.

Table 11-2. Thermal Parameters with No Heat Sink or Airflow

Defined Parameters Measured Calculated

MHz PD TJ θJC θJA θCA
 (θJA – θJC)

TC
(TJ – PD × θJC)

TA
(TJ – PD × θJA)

MC68040

25 6.3 110 °C 3 22.8 19.8 91.1 –33.64

25 6.6 110 °C 3 22.8 19.8 90.2 –40.48

25 8.6 110 °C 3 22.8 19.8 84.2 –86.08

33 7.7 110 °C 3 22.8 19.8 86.9 –65.56

33 8.0 110 °C 3 22.8 19.8 86.0 –72.40

33 10.0 110 °C 3 22.8 19.8 80.0 –118.00

MC68LC040 and MC68EC040

20 4 110 °C 3 22.8 19.8 98 18.8

25 5 110 °C 3 22.8 19.8 95 –4

33 6.3 110 °C 3 22.8 19.8 91.1 –33.64

11-18 M68040 USER’S MANUAL MOTOROLA

11.9.2 Forced Air

In this study, a small sample of MC68040 packages was tested in forced-air cooling in a
wind tunnel with no heat sink. The test was performed with approximately 6 W of power
being dissipated from within the package. As previously mentioned, since the variance in
θJA within the possible power range is negligible, it can be assumed for calculation
purposes that θJA is constant at all power levels. Using the previous equations, Table 11-3
lists the results of the maximum power dissipation at maximum θJC with airflow and no
heat sink for the MC68040, and Table 11-4 lists the results for the MC68LC040 and
MC68EC040. Refer to Table 11-1 for calculating other power dissipation values.

Table 11-3. Thermal Parameters with Forced Airflow
and No Heat Sink for the MC68040

Thermal Mgmt.
Technique

Defined Parameters Measured Calculated

MHz Airflow Velocity PD TJ θJC θJA θCA TC TA

25
25
25
33
33
33

100 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W

10.0 W

110 °C 3 °C/W 12.7 °C/W 9.7 °C/W

91.1 °C
90.2 °C
84.9 °C
86.9 °C
86.0 °C
80.0 °C

29.90 °C
26.18 °C
00.76 °C
12.21 °C
08.40 °C
00.00°C

25
25
25
33
33
33

250 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W

10.0 W

110 °C 3 °C/W 11.0 °C/W 8.0 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

40.70 °C
37.40 °C
15.40 °C
25.30 °C
22.00 °C
00.00 °C

25
25
25
33
33
33

500 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W

10.0 W

110 °C 3 °C/W 9.9 °C/W 6.9 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

47.63 °C
44.66 °C
24.86 °C
33.77 °C
30.80 °C
11.00 °C

25
25
25
33
33
33

750 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W

10.0 W

110 °C 3 °C/W 9.5 °C/W 6.5 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

50.15 °C
47.30 °C
28.30 °C
36.85 °C
34.00 °C
15.00 °C

25
25
25
33
33
33

1000 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W

10.0 W

110 °C 3 °C/W 9.3 °C/W 6.3 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
80.0 °C
81.8 °C

51.41 °C
48.62 °C
30.02 °C
38.39 °C
17.00 °C
22.58 °C

MOTOROLA M68040 USER’S MANUAL 11-19

Table 11-4. Thermal Parameters with Forced Airflow and No Heat Sink
for the MC68LC040 and MC68EC040

Thermal Mgmt.
Technique

Defined Parameters Measured Calculated

MHz Airflow Velocity PD TJ θJC θJA θCA TC TA

20
25
33

100 LFM
4 W
5 W

6.3W
110 °C 3 °C/W 12.7 °C/W 9.7 °C/W

98 °C
95 °C

91.1 °C

59.2 °C
46.5 °C
29.9 °C

20
25
33

250 LFM
4 W
5 W

6.3W
110 °C 3 °C/W 11 °C/W 8 °C/W

98 °C
95 °C

91.1 °C

66 °C
55 °C

40.70 °C

20
25
33

500 LFM
4 W
5 W

6.3W
110 °C 3 °C/W 9.9 °C/W 6.9 °C/W

98 °C
95 °C

91.1 °C

70.4 °C
60.5 °C
47.63 °C

20
25
33

750 LFM
4 W
5 W

6.3W
110 °C 3 °C/W 9.5 °C/W 6.5 °C/W

98 °C
95 °C

91.1 °C

72 °C
62.5 °C
50.15 °C

20
25
33

1000 LFM
4 W
5 W

6.3W
110 °C 3 °C/W 9.3 °C/W 6.3 °C/W

98 °C
95 °C

91.1 °C

72.8 °C
63.5 °C
51.41 °C

Reviewing the maximum ambient operating temperatures illustrates that using an all small
buffer configuration of the MC68040 with a relatively small amount of airflow (100 LFM)
achieves a 0–70 °C ambient operating temperature. However, depending on the output
buffer configuration and available forced-air cooling, additional thermal management
techniques may be required.

11.9.3 With Heat Sink

The designer must consider many factors in choosing a heat sink: heat-sink size and
composition, method of attachment, and choice of a dry or wet (i.e., thermal grease)
connection. The following paragraphs discuss the relationship of these decisions to the
thermal performance of the design noticed during experimentation.

The heat-sink size is one of the most significant parameters to consider in the selection of
a heat sink. Obviously a larger heat sink provides better cooling. Under forced-air
conditions as low as 100 LFM, the difference between the θCA is very small (0.4 °C/W or
less). This difference continues to decrease as the forced airflow increases.

The area of this example heat-sink base perimeter is 1.8" × 1.8", with a height of 0.65".
The heat-sink used a pin-fin (i.e., bed-of-nails) design composed of aluminum alloy. Figure
11-32 illustrates the heat sink, which can be obtained through Thermalloy, Inc.

11-20 M68040 USER’S MANUAL MOTOROLA

HEAT SINK

PIN GRID
ARRAY

µ MC68040RC25

NOTE: Do not cover up microprocessor markings with an adhesive mounted heat sink.

Figure 11-10. Heat Sink with Adhesive

All pin-fin heat sinks tested were made from extrusion aluminum products. The planar face
of the heat-sink matting to the package should have a good degree of planarity; if it has
any curvature, the curvature should be convex at the central region of the heat-sink
surface to provide intimate physical contact to the PGA surface. This heat sinks meet this
criteria. Nonplanar, concave curvature in the central regions of the heat sink results in
poor thermal contact to the package.

Although there are several ways to attach a heat sink to the package, it is easiest to use a
demountable heat-sink attachment called “E-Z attach for PGA packages” (see Figure 11-
33). A steel spring clamps the heat sink and the package to a plastic frame. Besides the
height of the heat sink and plastic frame, no additional height is added to the package.
The interface between the ceramic package and the aluminum heat sink was evaluated
for both dry and wet interfaces in still air. The thermal grease reduced the θCA quite
significantly (about 2.5 °C/W) in still air. An attachment with thermal grease provided
about the same thermal performance as if a thermal epoxy had been used.

MOTOROLA M68040 USER’S MANUAL 11-21

HEAT SINK

PIN GRID
ARRAY

SPRING

FRAME

µ MC68040RC25

Figure 11-11. Heat Sink with Attachment

In the specification provided by Thermalloy, Inc., a chart illustrates the heat-sink
temperature rise above ambient versus heat dissipated. This chart applies if no airflow is
used with the heat-sink. Table 11-5 lists the calculations based on this chart.

Table 11-5. Thermal Parameters with Heat Sink and No Airflow

Thermal Mgmt.
Technique

Defined Parameters Heat-Sink
Spec.

Calculated

MHz Airflow Velocity PD TJ θJC TC–TA TC TA

MC68040

25 0 6.3 W 110 °C 3 °C/W 64.4 °C 91.1 °C 26.7 °C

25 0 6.6 W 110 °C 3 °C/W 66.8 °C 90.2 °C 23.4 °C

25 0 8.6 W 110 °C 3 °C/W 82.8 °C 84.2 °C 1.4 °C

33 0 7.7 W 110 °C 3 °C/W 75.6 °C 86.9 °C 11.3 °C

33 0 8.0 W 110 °C 3 °C/W 78.0 °C 86.0 °C 8.0 °C

33 0 10.0 W 110 °C 3 °C/W 94.0 °C 80.0 °C –14.0 °C

MC68LC040 and MC68EC040

20 0 4.0 W 110 °C 3 °C/W 45.0 °C 98.0 °C 53.0 °C

25 0 5.0 W 110 °C 3 °C/W 54.0 °C 95.0 °C 41.0 °C

33 0 6.3 W 110 °C 3 °C/W 64.4 °C 91.1 °C 26.7 °C

11-22 M68040 USER’S MANUAL MOTOROLA

11.9.4 With Heat Sink and Forced Air

In the specification provided by Thermalloy, Inc., a chart illustrates the air velocity versus
thermal resistance. This chart applies if airflow is used with the heat sink. Table 11-6 lists
the calculations based on this chart.

Table 11-6. Thermal Parameters with Heat Sink and Airflow

Thermal Mgmt.
Technique

Defined Parameters Heat-Sink
Spec.

Calculated

MHz Airflow Velocity PD TJ θJC MAX. θCA θJA TC TA

MC68040

25
25
25
33
33
33

200 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W
10.0W

110 °C 3 °C/W 4.25 °C/W 7.25 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

64.3 °C
62.2 °C
47.7 °C
54.2 °C
52.0 °C
37.5 °C

25
25
25
33
33
33

400 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W
10.0W

110 °C 3 °C/W 2.30 °C/W 5.25 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

76.9 °C
75.4 °C
64.9 °C
69.6 °C
68.0 °C
57.5 °C

25
25
25
33
33
33

600 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W
10.0W

110 °C 3 °C/W 1.50 °C/W 4.50 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

81.7 °C
80.3 °C
71.3 °C
75.4 °C
74.0 °C
65.0 °C

25
25
25
33
33
33

800 LFM

6.3 W
6.6 W
8.6 W
7.7 W
8.0 W
10.0W

110 °C 3 °C/W 1.25 °C/W 4.25 °C/W

91.1 °C
90.2 °C
84.2 °C
86.9 °C
86.0 °C
80.0 °C

83.2 °C
82.0 °C
73.5 °C
77.3 °C
76.0 °C
67.5 °C

MC68LC040 and MC68EC040

20
25
33

200 LFM
4.0 W
5.0 W
6.3 W

110 °C 3 °C/W 4.25 °C/W 7.25 °C/W
98.0 °C
95.0 °C
91.1 °C

81.0 °C
73.8 °C
64.3 °C

20
25
33

400 LFM
4.0 W
5.0 W
6.3 W

110 °C 3 °C/W 2.30 °C/W 5.25 °C/W
98.0 °C
95.0 °C
91.1 °C

89.0 °C
83.8 °C
76.9 °C

20
25
33

600 LFM
4.0 W
5.0 W
6.3 W

110 °C 3 °C/W 1.50 °C/W 4.50 °C/W
98.0 °C
95.0 °C
91.1 °C

92.0°C
87.5 °C
81.7 °C

20
25
33

800 LFM
4.0 W
5.0 W
6.3 W

110 °C 3 °C/W 1.25 °C/W 4.25 °C/W
98.0 °C
95.0 °C
91.1 °C

93.0°C
88.8 °C
83.2 °C

MOTOROLA M68040 USER’S MANUAL 12-1

SECTION 12
ORDERING INFORMATION AND
MECHANICAL DATA

This section contains the ordering information, pin assignments, and package dimensions
of the MC68040, MC68040V, MC68LC040, MC68EC040, and MC68EC040V. The pin
assignments depicted in this section for the MC68LC040 also serve as the pin
assignments for the MC68040V with a few differences as indicated.

12.1 ORDERING INFORMATION

The following table provides ordering information pertaining to the MC68040, MC68040V,
MC68LC040, MC68EC040, and MC68EC040V package types, frequencies, temperatures,
and Motorola order numbers.

Package Type Frequency Maximum Junction
Temperature

Minimum Ambient
Temperature

Order Number

Pin Grid Array
 RC Suffix

20 MHz 110 °C 0 °C MC68LC040RC20B
MC68EC040RC20B

Pin Grid Array
 RC Suffix 25 MHz 110 °C 0 °C

MC68040RC25
MC68LC040RC25B
MC68EC040RC25B
MC68040RC25V

Pin Grid Array
 RC Suffix 33 MHz 110 °C 0 °C

MC68040RC33
MC68LC040RC33B
MC68EC040RC33B
MC68040RC33V

184 Pin QFP
 FE Suffix

20 MHz 110 °C 0 °C MC68LC040FE20B
MC68EC040FE20B

184 Pin QFP
 FE Suffix 25 MHz 110 °C 0 °C

MC68LC040FE25B
MC68EC040FE25B
MC68040FE25V

184 Pin QFP
 FE Suffix 33 MHz 110 °C 0 °C

MC68LC040FE33B
MC68EC040FE33B
MC68040FE33V

12.2 PIN ASSIGNMENTS

The following are the pin assignments for the MC68040, MC68040V, MC68LC040,
MC68EC040, and MC68EC040V package types.

12-2 M68040 USER’S MANUAL MOTOROLA

12.2.1 MC68040 Pin Grid Array

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 184

A29

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T
TDO GND DLE SC0 PST0 PST3

GND TDI TCK TMS GND SC1 PST1 GND GND

SIZ0

GND GND BCLK PCLK GND GND GND PST2

TM0

A27 D0 D2 GND GND GND GND GND D23

GND D1 GND GND D8 GND GND D16 D18 GND GND

A31 D3 D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19

D25 D28

D22 GND D26

D20 D21 D24

A9 GND A7

D29 D30 A8

D27 GND D31

A2 A3

GND A4

A6 A5

GND

GND A0

GND A1

GND TLN0

SIZ1

TM2

TLN1

 TM1

GND

UPA1 GND UPA0

A10 TT1 TT0

A12 GND A11

A13

A14 GND GND

A15 A16 GND

A17 A19

A18 GND

A20 A23

A21 GND A25

A22 A26 A28

A24 GND A30

MC68040 PINOUT
(BOTTOM VIEW)

18 X 18 CAVITY DOWN PGA

CDIS IPL2 IPL1 IPL0

 RSTI

 RSTO CIOUT

TRST AVEC BG TA BB BR

LOCK

 LOCKE

 R/W

MI

TS

 TBI TEA

TIP

IPEND

TCI

VCCVCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCCVCCVCCVCC

VCC

MDIS GND

Pin Group GND VCC
PLL S9, R6, R10 R8, S8

Internal Logic C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S6, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

MOTOROLA M68040 USER’S MANUAL 12-3

12.2.2 MC68LC040 Pin Grid Array

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 184

A29

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T
TDO GND JS0 SC0 PST0 PST3

GND TDI TCK TMS GND SC1 PST1 GND GND

SIZ0

GND GND BCLK PCLK GND GND GND PST2

TM0

A27 D0 D2 GND GND GND GND GND D23

GND D1 GND GND D8 GND GND D16 D18 GND GND

A31 D3 D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19

D25 D28

D22 GND D26

D20 D21 D24

A9 GND A7

D29 D30 A8

D27 GND D31

A2 A3

GND A4

A6 A5

GND

GND A0

GND A1

GND TLN0

SIZ1

TM2

TLN1

 TM1

GND

UPA1 GND UPA0

A10 TT1 TT0

A12 GND A11

A13

A14 GND GND

A15 A16 GND

A17 A19

A18 GND

A20 A23

A21 GND A25

A22 A26 A28

A24 GND A30

MC68LC040 PINOUT
(BOTTOM VIEW)

18 X 18 CAVITY DOWN PGA

CDIS IPL2 IPL1 IPL0

 RSTI

 RSTO CIOUT

TRST AVEC BG TA BB BR

LOCK

 LOCKE

 R/W

MI

TS

 TBI TEA

TIP

IPEND

TCI

VCCVCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCCVCCVCCVCC

VCC

MDIS GND

Pin Group GND VCC
PLL S9, R6, R10 R8, S8

Internal Logic C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S6, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

12-4 M68040 USER’S MANUAL MOTOROLA

12.2.3 MC68EC040 Pin Grid Array

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 184

A29

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T
TDO GND JS0 SC0 PST0 PST3

GND TDI TCK TMS GND SC1 PST1 GND GND

SIZ0

GND GND BCLK PCLK GND GND GND PST2

TM0

A27 D0 D2 GND GND GND GND GND D23

GND D1 GND GND D8 GND GND D16 D18 GND GND

A31 D3 D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19

D25 D28

D22 GND D26

D20 D21 D24

A9 GND A7

D29 D30 A8

D27 GND D31

A2 A3

GND A4

A6 A5

GND

GND A0

GND A1

GND TLN0

SIZ1

TM2

TLN1

 TM1

GND

UPA1 GND UPA0

A10 TT1 TT0

A12 GND A11

A13

A14 GND GND

A15 A16 GND

A17 A19

A18 GND

A20 A23

A21 GND A25

A22 A26 A28

A24 GND A30

CDIS IPL2 IPL1 IPL0

 RSTI

 RSTO CIOUT

TRST AVEC BG TA BB BR

LOCK

 LOCKE

 R/W

MI

TS

 TBI TEA

TIP

IPEND

TCI

VCCVCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCCVCCVCCVCC

VCC

JS1 GND

MC68EC040 PINOUT
(BOTTOM VIEW)

18 X 18 CAVITY DOWN PGA

Pin Group GND VCC
PLL S9, R6, R10 R8, S8

Internal Logic C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S6, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

MOTOROLA M68040 USER’S MANUAL 12-5

12.2.4 MC68040V and MC68EC040V Pin Grid Array

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 184

A29

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T
TDO GND NC SC0 PST0 PST3

GND TDI TCK TMS GND SC1 PST1 GND GND

SIZ0

GND GND BCLK JS2** GND GND GND PST2

TM0

A27 D0 D2 GND GND GND GND GND D23

GND D1 GND** GND D8 GND GND D16 D18 GND GND

A31 D3 D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19

D25 D28

D22 GND D26

D20 D21 D24

A9 GND A7

D29 D30 A8

D27 GND D31

A2 A3

GND A4

A6 A5

GND

GND A0

GND A1

GND TLN0

SIZ1

TM2

TLN1

 TM1

GND

UPA1 GND UPA0

A10 TT1 TT0

A12 GND A11

A13

A14 GND GND

A15 A16 LOC

A17 A19

A18 GND

A20 A23

A21 GND A25

A22 A26 A28

A24 GND LFO

MC68040V and MC68EC040V PINOUT
(BOTTOM VIEW)

18 X 18 CAVITY DOWN PGA

CDIS IPL2 IPL1 IPL0

 RSTI

 RSTO CIOUT

N/C AVEC BG TA BB BR

LOCK

 LOCKE

 R/W

MI

TS

 TBI TEA

TIP

IPEND

TCI

VCCVCC

VCC

VCC

VCC

VCC

SCD

GND

A30

VCC

VCC

VCC

VCC VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCCVCCVCCVCC

VCC

MDIS* GND**

NOTES:
 * On MC68EC040V this pin is called JS1.
 ** All these pins are in the JTAG scan chain. On an MC68040 design JS2 = GND; on an MC68060 design JS2 = CLK.

Pin Group GND VCC
PLL S9, R6, R10 R8, S8

Internal Logic C6, C7, C9, C11, C13, K3, K16, L3, M16, R4,
R11, R13, S10, T4

C5, C8, C10, C12, C14, H3, H16, J3, J16, L16,
M3, R5, R12

Output Drivers B2, B4, B6, B8, B10, B13, B15, B17, D2, D17,
F2, F17, H2, H17, L2, L17, N2, N17, Q2, Q17,
S2, S15, S17

B5, B9, B14, C2, C17, G2, G17, M2, M17, R2,
R17, S16

12-6 M68040 USER’S MANUAL MOTOROLA

12.2.5 MC68LC040 Quad Flat Pack

139
138

MC68LC040
(TOP VIEW)

92
93

184
1

161

149

23 24

162

46
47

115116

A31
A30

A29

GND
A27
A26

A25
A24

VCC

GND
A23
A22

A21

GND
A17
A16

A15
A14

A13
A12

A20

A19
A18

GND
A11
A10

VCC
GND

TT1
TT0

CIOUT

UPA1
UPA0

IPEND
GND

R
ST

O
TD

0
TD

I
TC

K
G

N
D

TR
ST

TM
S

M
D

IS
C

D
IS

R
ST

I

BB

BR
MI
GND

SIZ1
GND

LOCKE
R/W
GND

TLN0

TLN1
TM0
GND
TM1
TM2
GND

A0
A1

VCC

A3

A4
A5
GND
A6
A7

A8
A9
GND
GND
D31
D30

D29
D28
GND
D27

G
N

D
D

25
D

24G
N

D
D

23

D
22

D
21

D
20G
N

D
D

19
D

18 V C
C

D
17

D
16G
N

D
D

15
D

14

D
13

D
12G
N

D
D

11
D

10

TS

A2

G
N

D

D
9

D
8 V C

C

D
7

D
6

D
5G
N

D
D

4G
N

D
D

3
D

2

D
1 V C

C
G

N
D

D
0

150

173
172

11 12 34 35

69
70

127128

VCC

105 104

82
81

59
58

G
N

D
V

C
C

IP
L2

IP
L1

IP
L0

G
N

D
G

N
D

BC
LK

G
N

D

G
N

D
PC

LK
G

N
D

G
N

D
JS

0
G

N
D

G
N

D
TC

I
AV

EC TB
I

G
N

D
SC

0
SC

1
BG TE

A TA
PS

T0
G

N
D

PS
T1

PS
T2

 PS
T3 TI
P

G
N

D

V
C

C

V
C

C

V
C

C

V
C

C

GND

VCC

VCC

VCC

V C
C

G
N

D

V C
C

V C
C

G
N

D

V C
C

A28

VCC

GND

VCC

VCC

GND

GND

VCC

GND
GND

V C
C

D
26

 VCC

SIZ0

VCC

LOCK

VCC

Pin Group GND VCC
PLL 17, 22, 24 19, 21

Internal Logic 5, 8, 10, 27, 28, 33, 55, 68, 95, 108, 121, 162,
130, 135, 174

9, 32, 56, 69, 81, 94, 100, 109, 122, 136, 149,
161, 175

Output Drivers 16, 20, 25, 40, 46, 52, 59, 65, 72, 78, 84, 85, 91,
98, 105, 112, 118, 125, 132, 139, 140, 146, 152,
158, 165, 171, 178, 184

43, 49, 62, 75, 88, 102, 115, 128, 143, 155, 168,
181

MOTOROLA M68040 USER’S MANUAL 12-7

12.2.6 MC68EC040 Quad Flat Pack

139
138

MC68EC040
(TOP VIEW)

92
93

184
1

161

149

23 24

162

46
47

115116

A31
A30

A29

GND
A27
A26

A25
A24

VCC

GND
A23
A22

A21

GND
A17
A16

A15
A14

A13
A12

A20

A19
A18

GND
A11
A10

VCC
GND

TT1
TT0

CIOUT

UPA1
UPA0

IPEND
GND

R
ST

O
TD

0
TD

I
TC

K
G

N
D

TR
ST

TM
S

JS
1

C
D

IS
R

ST
I

BB

BR
MI
GND

SIZ1
GND

LOCKE
R/W
GND

TLN0

TLN1
TM0
GND
TM1
TM2
GND

A0
A1

VCC

A3

A4
A5
GND
A6
A7

A8
A9
GND
GND
D31
D30

D29
D28
GND
D27

G
N

D
D

25
D

24G
N

D
D

23

D
22

D
21

D
20G
N

D
D

19
D

18 V C
C

D
17

D
16G
N

D
D

15
D

14

D
13

D
12G
N

D
D

11
D

10

TS

A2

G
N

D

D
9

D
8 V C

C

D
7

D
6

D
5G
N

D
D

4G
N

D
D

3
D

2

D
1 V C

C
G

N
D

D
0

150

173
172

11 12 34 35

69
70

127128

VCC

105 104

82
81

59
58

G
N

D
V

C
C

IP
L2

IP
L1

IP
L0

G
N

D
G

N
D

BC
LK

G
N

D

G
N

D
PC

LK
G

N
D

G
N

D
JS

0
G

N
D

G
N

D
TC

I
AV

EC TB
I

G
N

D
SC

0
SC

1
BG TE

A TA
PS

T0
G

N
D

PS
T1

PS
T2

 PS
T3 TI
P

G
N

D

V
C

C

V
C

C

V
C

C

V
C

C

GND

VCC

VCC

VCC

V C
C

G
N

D

V C
C

V C
C

G
N

D

V C
C

A28

VCC

GND

VCC

VCC

GND

GND

VCC

GND
GND

V C
C

D
26

 VCC

SIZ0

VCC

LOCK

VCC

MC68EC040 184 Pin QFP Pin Assignment

Pin Group GND VCC
PLL 17, 22, 24 19, 21

Internal Logic 5, 8, 10, 27, 28, 33, 55, 68, 95, 108, 121, 162,
130, 135, 174

9, 32, 56, 69, 81, 94, 100, 109, 122, 136, 149,
161, 175

Output Drivers 16, 20, 25, 40, 46, 52, 59, 65, 72, 78, 84, 85, 91,
98, 105, 112, 118, 125, 132, 139, 140, 146, 152,
158, 165, 171, 178, 184

43, 49, 62, 75, 88, 102, 115, 128, 143, 155, 168,
181

12-8 M68040 USER’S MANUAL MOTOROLA

12.2.7 MC68040V and MC68EC040V Quad Flat Pack

139
138

MC68040V and MC68EC040V
(TOP VIEW)

92
93

184
1

161

149

23 24

162

46
47

115116

A31
A30

A29

GND
A27
A26

A25
A24

VCC

GND
A23
A22

A21

GND
A17
A16

A15
A14

A13
A12

A20

A19
A18

GND
A11
A10

VCC
GND

TT1
TT0

CIOUT

UPA1
UPA0

IPEND
GND

R
ST

O
TD

0
TD

I
TC

K
G

N
D

LO
C

TM
S

M
D

IS
*

C
D

IS
R

ST
I

BB

BR
MI
GND

SIZ1
GND

LOCKE
R/W
GND

TLN0

TLN1
TM0
GND
TM1
TM2
GND

A0
A1

VCC

A3

A4
A5
GND
A6
A7

A8
A9
VCC
GND
D31
D30

D29
D28
GND
D27

G
N

D
D

25
D

24G
N

D
D

23

D
22

D
21

D
20G
N

D
D

19
D

18 V C
C

D
17

D
16G
N

D
D

15
D

14

D
13

D
12G
N

D
D

11
D

10

TS

A2

G
N

D

D
9

D
8 V C

C

D
7

D
6

D
5G
N

D
D

4G
N

D
**

D
3

D
2

D
1 V C

C
G

N
D

D
0

150

173
172

11 12 34 35

69
70

127128

VCC

105 104

82
81

59
58

G
N

D
V

C
C

IP
L2

IP
L1

IP
L0

VC
C

G
N

D
BC

LK

LF
O

G
N

D
JS

2*
*

G
N

D
SC

D
N

C
G

N
D

G
N

D
** TC

I
AV

EC TB
I

G
N

D
SC

0
SC

1
BG TE

A TA
PS

T0
G

N
D

PS
T1

PS
T2

 PS
T3 TI
P

G
N

D

V
C

C

V
C

C

V
C

C

V
C

C

GND

VCC

VCC

VCC

V C
C

G
N

D

V C
C

V C
C

G
N

D

V C
C

A28

VCC

GND

VCC

VCC

GND

GND

VCC

VCC
GND

V C
C

D
26

 VCC

SIZ0

VCC

LOCK

VCC

NOTES:
 * On MC68EC040V this pin is called JS1.
 ** All these pins are in the JTAG scan chain. On an MC68040 design JS2 = GND; on an MC68060 design JS2 = CLK.

MOTOROLA M68040 USER’S MANUAL 12-9

12.3 MECHANICAL DATA

Figure 12-1 illustrates the MC68040, MC68LC040, and MC68EC040 PGA package
dimensions. Figure 12-2 illustrates the MC68040, MC68LC040, and MC68EC040 QFP
package dimensions. Due to space limitation, Figure 12-2 is represented by a general
(smaller) package outline drawing rather than showing all 184 leads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

B

C

D

E
F

G
H

J

K

L

M

N

P

Q

R

S

T

DIM
MILLIMETERS INCHES

MIN MAXMIN MAX

1.840 1.880
1.840 1.880
0.110 0.140
0.016 0.020

0.100 BSC

A
B
C
D
G
K

46.74 47.75

2.79 3.05
0.41 0.51

2.54 BSC

46.74 47.75

K

DC

B

A G

G

PIN A1 INDICATOR

– T –– A –

–
B

–

179 PLACES

0.150 0.1703.81 4.32

.030 (.76) M T B M C M

.010 (.25) M T

Figure 12-1. PGA Package Dimensions

12-10 M68040 USER’S MANUAL MOTOROLA

Figure 12-2. QFP Package Dimensions

MOTOROLA M68040 USER’S MANUAL A-1

APPENDIX A
MC68LC040

NOTE

All references to MC68LC040 also apply to the MC68040V.
Refer to Appendix C MC68040V and MC68EC040V for more
information on the MC68040V.

The MC68LC040 is Motorola’s integer-only version of the MC68040 third-generation,
M68000-compatible, high-performance, 32-bit microprocessor. The MC68LC040 is a
virtual memory microprocessor with a highly integrated architecture that provides very
high performance in a monolithic HCMOS device. On a single chip, the MC68LC040
integrates an MC68040-compatible integer unit and fully independent instruction and data
demand-paged memory management units (MMUs), including independent 4-Kbyte
instruction and data caches. A high degree of instruction execution parallelism is achieved
through the use of a six-stage instruction pipeline, multiple internal buses, and a full
internal Harvard architecture, including separate physical caches for both instruction and
data accesses. The MC68LC040 also directly supports cache coherency in multimaster
applications with dedicated on-chip bus snooping logic.

The MC68LC040 achieves its high performance through the use of the MC68040 integer
unit. The six-stage pipeline operates on up to six instructions concurrent with MMU,
cache, and bus controller operations. Multiple internal buses, separate data and
instruction caches, and a sophisticated bus controller allow internal units to operate
concurrently and decouple the MC68LC040 from the external bus. The internal caches
and the decoupling of the external bus allow for an external memory subsystem to be built
from slower and less expensive memories with minimal impact to the overall system
performance. The potential for a low-cost system design with the price/performance of the
MC68LC040 makes it a good choice for embedded microprocessor applications as well as
central processor applications.

The MC68LC040 is user-object-code compatible with previous members of the M68000
family and is specifically optimized to reduce the execution time of compiler-generated
code. The high level of performance is ideal for integer-intensive applications. The
MC68LC040 is implemented in Motorola’s latest HCMOS technology, providing an ideal
balance between speed, power, and physical device size. Independent data and
instruction MMUs control the main caches and the address translation caches (ATCs).
The ATCs speed up logical-to-physical address translations by storing recently used
translations. The bus snooper circuit ensures cache coherency in multimaster and
multiprocessing applications. The MC68LC040 is pin compatible with the MC68040 and
the MC68EC040. Figure A-1 illustrates a simplified block diagram of the MC68LC040.

A-2 M68040 USER’S MANUAL MOTOROLA

INSTRUCTION
CACHE

DATA
CACHE

DATA MEMORY MANAGEMENT UNIT

INSTRUCTION MEMORY MANAGEMENT UNIT

INSTRUCTION
ATC

DATA
ATC

INSTRUCTION
FETCH

DECODE

EFFECTIVE
ADDRESS

CALCULATE

EXECUTE

EFFECTIVE
ADDRESS

FETCH

INSTRUCTION
CACHE/ACCESS/SNOOP

CONTROLLER

BUS
CONTROL
SIGNALS

DATA
BUS

ADDRESS
BUS

DATA
CACHE/ACCESS/SNOOP

CONTROLLER

OPERAND DATA BUS

INSTRUCTION DATA BUS

B
U
S

C
O
N
T
R
O
L
L
E
R

INSTRUCTION
ADDRESS

DATA
ADDRESS

WRITE-BACK

INTEGER
UNIT

Figure A-1. MC68LC040 Block Diagram

The main features of the MC68LC040 include:

• 22 MIPS Integer Performance at 25 MHz

• Independent Instruction and Data MMUs

• 4-Kbyte Physical Instruction Cache and 4-Kbyte Physical Data Cache Accessible
Simultaneously

• 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Interface

• User-Object-Code Compatible with All M68000 Microprocessors

• Multimaster/Multiprocessor Support Via Bus Snooping

• Concurrent Integer Unit, MMU, Bus Controller, and Bus Snooper Operation
Maximizes Throughput

• 4-Gbyte Direct Addressing Range

• Software Support Including Optimizing C Compiler and UNIX® System V Port

®UNIX is a registered trademark of AT&T Bell Laboratories.

MOTOROLA M68040 USER’S MANUAL A-3

With the exception of the floating-point unit (FPU) and its registers, the MC68LC040
programming model, data formats and types, instruction set (except all instructions
beginning with an “F”), caches, and MMUs are the same as those described in Section 1
Introduction for the MC68040. Figures A-2 and A-3 illustrate the programming model and
functional signal groups for the MC68LC040.

31 0

A7'/ISP
A7"/MSP
SR
VBR
SFC
DFC
CACR
URP
SRP
TC
DTT0
DTT1
ITT0
ITT1
MMUSR

(CCR)

INTERRUPT STACK POINTER
MASTER STACK POINTER
STATUS REGISTER
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER
USER ROOT POINTER REGISTER
SUPERVISOR ROOT POINTER REGISTER
TRANSLATION CONTROL REGISTER
DATA TRANSPARENT TRANSLATION REGISTER 0
DATA TRANSPARENT TRANSLATION REGISTER 1
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
MMU STATUS REGISTER

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0

D7
D6
D5
D4
D3
D2
D1
D0

31 0

DATA
REGISTERS

ADDRESS
REGISTERS

 PROGRAM COUNTER
CONDITION CODE REGISTER

USER STACK POINTER

Figure A-2. MC68LC040 Programming Model

A-4 M68040 USER’S MANUAL MOTOROLA

MDIS

MC68LC040

VCC

GND

BUS ARBITRATIONBG
BR

BB

BUS SNOOP CONTROL
AND RESPONSE

M I

INTERRUPT
CONTROL

IPL0

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

PCLK
BCLK

TEST

TRST

TMS
TCK

TDI

POWER SUPPLY

TDO

SC0
SC1

IPL1
IPL2

STATUS AND
CLOCKS

PST0
PST1
PST2

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS
BUS

TS

TIP

TCI
SLAVE

TRANSFER
CONTROL

TEA

TBI

R/W

LOCKE
CIOUT

TT0
TT1
TM0
TM1
TM2

TLN0
TLN1
UPA0
UPA1

SIZ0
SIZ1

LOCK

TA

PST3

JS0

Figure A-3. MC68LC040 Functional Signal Groups

MOTOROLA M68040 USER’S MANUAL A-5

A.1 MC68LC040 DIFFERENCES

The following differences exist between the MC68LC040 and MC68040:

• The MC68LC040 does not implement the small output buffer impedance selection
mode.

• The DLE pin name has been changed to JS0.

• The MC68LC040 does not implement the data latch (DLE) or multiplexed bus modes
of operation. All timing and drive capabilities of the MC68LC040 are equivalent to
those of the MC68040 in small output buffer impedance mode.

• The MC68LC040 does not contain an FPU, which causes unimplemented floating-
point exceptions to occur using a new eight-word stack frame format.

A.2 INTERRUPT PRIORITY LEVEL (IPL2–IPL0)

The IPL2–IPL0 pins do not have any affect on the selection of output buffer impedance.

A.3 JTAG SCAN (JS0)

The MC68040 DLE pin name has been changed to JS0. During normal operation, the JS0
pin cannot float, it must be tied to GND or Vcc directly or through a resistor. During board
testing, this pin retains the functionality of the JTAG scan of the MC68040 for compatibility
purposes. Refer to Section 6 IEEE 1149.1 Test Access Port (JTAG) for details
concerning IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

A.4 DATA LATCH AND MULTIPLEXED BUS MODES

The MC68LC040 does not implement the data latch or multiplexed modes of operation.
The CDIS pin is ignored at the rising edge of reset. All timing and drive capabilities of the
MC68LC040 are equivalent to those of the MC68040 in small output buffer impedance
mode.

A.5 FLOATING-POINT UNIT (FPU)

The FPU is not implemented on the MC68LC040. All floating-point instructions cause an
unimplemented floating-point exception to be taken with a new eight-word stack frame
(format $4). The stack frame contains the status register (SR), program counter (PC),
vector offset, effective address of the operand (where applicable), and PC value of the
unimplemented floating-point instruction.

A-6 M68040 USER’S MANUAL MOTOROLA

A.5.1 Unimplemented Floating-Point Instructions and Exceptions

All legal MC68040 and MC68881/MC68882 floating-point instructions are defined as
unimplemented floating-point instructions on the MC68LC040. These instructions
generate a format $4 stack frame during exception processing before taking an F-line
exception. These instructions trap as an F-line exception, and the F-line exception handler
can emulate them in software to maintain user-object-code compatibility.

The MC68LC040 assists the emulation process by distinguishing unimplemented floating-
point instructions from other unimplemented F-line instructions. To aid emulation, the
effective address is calculated and saved in the format $4 stack frame. This simplifies and
speeds up the emulation process by eliminating the need for the emulation routine to
determine the effective address and by providing information required to emulate the
instruction on the exception stack frame in the supervisor address space. However, the
floating-point instruction can reside in user space; therefore, the floating-point
unimplemented exception handler may need to access user instruction space. The
following processing steps occur for an unimplemented floating-point instruction:

1. When an unimplemented floating-point instruction is encountered, the instruction is
partially decoded, and the effective address is calculated, if required.

2. The processor waits for all previous integer instructions, write-backs, and associated
exception processing to complete before beginning exception processing for the
unimplemented floating-point instruction. Any access error that occurs in completing
the write-backs causes an access error exception, and the resulting stack frame
indicates a pending unimplemented floating-point instruction exception. The access
error exception handler then completes the write-backs in software, and exception
processing for the unimplemented floating-point instruction exception begins
immediately after return from the access error handler.

3. The processor begins exception processing for the unimplemented floating-point
instruction by making an internal copy of the current SR. The processor then enters
the supervisor mode and clears the trace bits (T1 and T0). It creates a format $4
stack frame and saves the internal copy of the SR, PC, vector offset, calculated
effective address, and PC value of the faulted instruction in the stack frame.

The effective address field of the format $4 stack frame contains the calculated
effective address of the operand for the faulted floating-point instruction using the
addressing mode in which the effective address is calculated. For immediate and
register direct addressing modes, this field is $0. The saved PC value is the logical
address of the instruction that follows the unimplemented floating-point instruction.
This value will be restored during RTE execution. The vector offset format number
($4) is used for this eight-word stack frame. Note that an MC68040 cannot correctly
handle a stack format $4. The PC of the faulted instruction contains a long-word PC
of the floating-point instruction that caused the trap to occur. The information is
provided so that the instruction is available for software emulation of floating-point
instructions. The processor generates exception vector number 11 for the
unimplemented F-line instruction exception vector, fetches the address of the F-line
exception handler from the exception vector table, and begins execution of the
handler after prefetching instructions to fill the pipeline. Refer to Section 8
Exception Processing for details about exception processing.

MOTOROLA M68040 USER’S MANUAL A-7

A.5.2 MC68LC040 Stack Frames

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. The MC68LC040 provides five different stack frames for exception
processing and allows for an MC68040-specific stack frame. The set of frames includes
four- and six-word stack frames, a four-word throwaway stack frame, an access error
stack frame, and a new eight-word unimplemented floating-point stack frame. The stack
frame that the MC68040 can generate and the MC68LC040 can process is the floating-
point post-instruction stack frame. Refer to Section 8 Exception Processing for details
about exception stack frames.

Eight-Word Stack Frame (Format $4)

Stack Frames Exception Types Stacked PC Points To

SP STATUS REGISTER
PROGRAM COUNTER

VECTOR OFFSET0100
+$02

+$06

+$08

+$0C

15 0

EFFECTIVE ADDRESS

PC OF FAULTED
INSTRUCTION

• The MC68040 cannot
generate or read this stack.

• Effective address field is
the address of the faulted
instruction operand.

When the MC68LC040 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer greatly enhances exception
processing performance. The processor does not necessarily read or write the stack
frame data in sequential order. The system software should not depend on a particular
exception generating a particular stack frame. For compatibility with future devices, the
software should be able to handle any format of stack frame for any type of exception. The
MC68LC040 does not generate the floating-point post-instruction stack frame. The
MC68040 cannot accept the eight-word unimplemented stack frame. The MC68LC040
can handle all MC68040 stack frame formats.

A.6 MC68LC040 ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68LC040. This section is subject to change. For the most recent
specifications, contact a Motorola sales office or complete the registration card at the end
of this manual.

A-8 M68040 USER’S MANUAL MOTOROLA

This device contains protective
circuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid
application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliablity of
operation is enhanced if unused
inputs are tied to an appropriate
logic voltage level (e.g., either GND
or VCC).

A.6.1 Maximum Ratings

Characteristic Symbol Value Unit

Supply Voltage VCC –0.3 to +7.0 V

Input Voltage Vin –0.5 to +7.0 V

Maximum Operating Junction Temperature TJ 110 °C

Minimum Operating Ambient Temperature TA 0 °C

Storage Temperature Range Tstg –55 to 150 °C

A.6.2 Thermal Characteristics

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case—
PGA Package

 θJC 3 °C/W

A.6.3 DC Electrical Specifications (VCC = 5.0 Vdc ±5 %)

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 VCC V

Input Low Voltage VIL GND 0.8 V

Undershoot — — 0.8 V

Input Leakage Current @ 0.5–2.4 V
AVEC , BCLK, BG, CDIS , MDIS, IPL≈, PCLK, RSTI, SCx,
TBI, TLNx , TCI , TCK, TEA

Iin 20 20 µA

Hi-Z (Off-State) Leakage Current @ 0.5–2.4 V
An, BB, CIOUT , Dn, LOCK , LOCKE, R/ W, SIZx, TA, TDO,
TIP, TMx, TLNx, TS, TTx, UPAx

ITSI 20 20 µA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI, TRST

IIL –1.1 –0.18 mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI, TRST

IIH –0.94 –0.16 mA

Output High Voltage, IOH = 5 mA VOH 2.4 — V

Output Low Voltage, IOL = 5 mA VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz Cin — 25 pF

*Capacitance is periodically sampled rather than 100% tested.

MOTOROLA M68040 USER’S MANUAL A-9

A.6.4 Power Dissipation

Frequency Watts

Maximum Values (VCC = 5.25 V, TA = 0°C)

20 MHz 3.2

25 MHz 3.9

33 MHz 4.9

Typical Values (VCC = 5 V, TA = 25°C)*

20 MHz 2.0

25 MHz 2.4

33 MHz 3.0

*This information is for system reliability purposes.

A.6.5 Clock AC Timing Specifications (see Figure A-4)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

Frequency of Operation 16.67 20 16.67 25 16.67 33 MHz

1 PCLK Cycle Time 25 30 20 30 15 30 ns

2 PCLK Rise Time — 1.7 — 1.7 — 1.7 ns

3 PCLK Fall Time — 1.6 — 1.6 — 1.6 ns

4 PCLK Duty Cycle Measured at 1.5 V 48 52 47.5 52.5 46.67 53.33 %

4a* PCLK Pulse Width High Measured at 1.5 V 12 13 9.5 10.5 7 8 ns

4b* PCLK Pulse Width Low Measured at 1.5 V 12 13 9.5 10.5 7 8 ns

5 BCLK Cycle Time 50 60 40 60 30 60 ns

6,7 BCLK Rise and Fall Time — 4 — 4 — 3 ns

8 BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 %

8a* BCLK Pulse Width High Measured at 1.5 V 20 30 16 24 12 18 ns

8b* BCLK Pulse Width Low Measured at 1.5 V 20 30 16 24 12 18 ns

9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 ppm

10 PCLK to BCLK Skew — 9 — 9 — n/a ns

*Specification value at maximum frequency of operation.

A-10 M68040 USER’S MANUAL MOTOROLA

2 3
1

5

6 71010

PCLK

BCLK

8B8A

4A 4B

VM
V

V

IH

IL

VIH

VIL
VM

Figure A-4. Clock Input Timing Diagram

MOTOROLA M68040 USER’S MANUAL A-11

A.6.6 Output AC Timing Specifications (see Figures A-5* to A-9)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

11 BCLK to Address, CIOUT , LOCK, LOCKE ,
PSTx, R/W, SIZx, TLNx ,TMx, TTx, UPAx
Valid

11.5 35 9 30 6.5 25 ns

12 BCLK to Output Invalid (Output Hold) 11.5 — 9 — 6.5 — ns

13 BCLK to TS Valid 11.5 35 9 30 6.5 25 ns

14 BCLK to TIP Valid 11.5 35 9 30 6.5 25 ns

18 BCLK to Data-Out Valid 11.5 37 9 32 6.5 27 ns

19 BCLK to Data-Out Invalid (Output Hold) 11.5 — 9 — 6.5 — ns

20 BCLK to Output Low Impedance 11.5 — 9 — 6.5 — ns

21 BCLK to Data-Out High Impedance 11.5 25 9 20 6.5 17 ns

38 BCLK to Address, CIOUT , LOCK, LOCKE ,
R/W, SIZx, TS, TLNx, TMx, TTx, UPAx High
Impedance

11.5 23 9 18 6.5 15 ns

39 BCLK to BB, TA, TIP High Impedance 23 33 19 28 14 25 ns

40 BCLK to BR , BB Valid 11.5 35 9 30 6.5 23 ns

43 BCLK to MI Valid 11.5 35 9 30 6.5 25 ns

48 BCLK to TA Valid 11.5 35 9 30 6.5 25 ns

50 BCLK to IPEND, PSTx, RSTO Valid 11.5 35 9 30 6.5 25 ns

* Output timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated 30-Ω
transmission line with a length characterized by a 2.5-ns one-way propagation delay. Buffer output impedance is
typically 30 Ω; the buffer specifications include approximately 5 ns for the signal to propagate the length of the
transmission line and back.

A-12 M68040 USER’S MANUAL MOTOROLA

A.6.7 Input AC Timing Specifications (See Figures A-5 to A-9)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

15 Data-In Valid to BCLK (Setup) 6 — 5 — 4 — ns

16 BCLK to Data-In Invalid (Hold) 5 — 4 — 4 — ns

17 BCLK to Data-In High Impedance
(Read Followed by Write)

— 61 — 49 — 36.5 ns

22a TA Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22b TEA Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22c TCI Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22d TBI Valid to BCLK (Setup) 14 — 11 — 10 — ns

23 BCLK to TA, TEA, TCI , TBI Invalid (Hold) 2.5 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 6 — 5 — 5 — ns

25 BCLK to AVEC Invalid (Hold) 2.5 — 2 — 2 — ns

41a BB Valid to BCLK (Setup) 8 — 7 — 7 — ns

41b BG Valid to BCLK (Setup) 10 — 8 — 7 — ns

41c CDIS , MDIS Valid to BCLK (Setup) 12.5 — 10 — 8 — ns

41d IPL≈ Valid to BCLK (Setup) 5 — 4 — 3 — ns

42 BCLK to BB, BG, CDIS , MDIS, IPL≈ Invalid
(Hold)

2.5 — 2 — 2 — ns

44a Address Valid to BCLK (Setup) 10 — 8 — 7 — ns

44b SIZx Valid to BCLK (Setup) 15 — 12 — 8 — ns

44c TTx Valid to BCLK (Setup) 7.5 — 6 — 8.5 — ns

44d R/W Valid to BCLK (Setup) 7.7 — 6 — 5 — ns

44e SCx Valid to BCLK (Setup) 12.5 — 10 — 11 — ns

45 BCLK to Address SIZx, TTx, R/W, SCx
Invalid (Hold)

2.5 — 2 — 2 — ns

46 TS Valid to BCLK (Setup) 6 — 5 — 9 — ns

47 BCLK to TS Invalid (Hold) 2.5 — 2 — 2 — ns

49 BCLK to BB High Impedance
(MC68LC040 Assumes Bus Mastership)

— 11 — 9 — 9 ns

51 RSTI Valid to BCLK 6 — 5 — 4 — ns

52 BCLK to RSTI Invalid 2.5 — 2 — 2 — ns

MOTOROLA M68040 USER’S MANUAL A-13

22
23

11

BCLK

A31–A0

TRANSFER
ATTRIBUTES

D31–D0 IN
(READ)

12

15
16

D31–D0 OUT
(WRITE)

19
21

13 12

14

18

20

TA

TEA

TCI

TBI

TIP

TS

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, LOCK,
 LOCKE, CIOUT

AVEC

24
25

12

Figure A-5. Read/Write Timing

A-14 M68040 USER’S MANUAL MOTOROLA

BCLK

A31–A0

TRANSFER
ATTRIBUTES

38

20

11

TS

TIP

BB OUT
12

39

BG

BR

41 42

12

21

D31–D0 OUT
(WRITE)

20

40

13

14

MI

43
12

12
39

40

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, CIOUT

LOCK, LOCKE

Figure A-6. Bus Arbitration Timing

MOTOROLA M68040 USER’S MANUAL A-15

D31–D0 IN
(ALT. MASTER

WRITE)

D31–D0 OUT
(ALT. MASTER

READ)

44

BCLK

A31–A0 IN

15 16

46
47

12

41
48

12
20 39

42
49

43

19
21

18

TS IN

MI

TA OUT

BB IN

SIZx, TTx,
R/W IN

45

SC1, SC0

Figure A-7. Snoop Hit Timing

A-16 M68040 USER’S MANUAL MOTOROLA

TBI

TS IN

MI

SIZx, TTx,
R/W IN

44

BCLK

A31–A0 IN

TEA

47

SC1, SC0 SNOOP

43

TA

45

22
23

BB IN
41

42

43

12

46

Figure A-8. Snoop Miss Timing

MOTOROLA M68040 USER’S MANUAL A-17

50

BCLK

12

42

41

IPEND

RSTO

CDIS

MDIS

IPL2–IPL0

42

PST3–PST0

12

RSTI

51 52

41

Figure A-9. Other Signal Timing

MOTOROLA M68040 USER’S MANUAL B-1

APPENDIX B
MC68EC040

NOTE

All references to MC68EC040 also apply to the MC68EC040V.
Refer to Appendix C MC68040V and MC68EC040V for more
information on the MC68EC040V.

The MC68EC040 is Motorola's third generation of M68000-compatible, high-performance,
32-bit microprocessors. The MC68EC040 is an embedded controller employing a highly
integrated architecture to provide very high performance in a monolithic HCMOS device.
The MC68EC040 integrates an MC68040-compatible integer unit, an access control unit
(ACU), and independent 4-Kbyte instruction and data caches. A six-stage instruction
pipeline, multiple internal buses, and a full internal Harvard architecture, including
separate caches for both instruction and data accesses, provides a high degree of
instruction execution parallelism. The inclusion of on-chip bus snooping logic, which
directly supports cache coherency in multimaster applications, enhances cache
functionality.

The MC68EC040 is user-object-code compatible with previous members of the M68000
family and is specifically optimized to reduce the execution time of compiler-generated
code. The MC68EC040 is pin compatible with the MC68040 and MC68LC040. The
MC68EC040 is implemented in Motorola’s latest HCMOS technology, providing an ideal
balance between speed, power, and physical device size. Figure B-1 provides a simplified
block diagram of the MC68EC040.

The main features of the MC68EC040 include:

• MC68040-Compatible Integer Execution Unit

• 4-Kbyte Instruction Cache and 4-Kbyte Data Cache Accessible Simultaneously

• 32-Bit, Nonmultiplexed External Address and Data Buses with Synchronous Bursting
Interface

• User-Object-Code Compatible with All M68000 Microprocessors

• Concurrent Integer Unit, ACU, and Bus Controller Operation Maximizes Throughput

• Low-Latency Bus Accesses for Reduced Cache-Miss Penalty

• Multimaster/Multiprocessor Support via Bus Snooping

• 4-Gbyte Direct Addressing Range

B-2 M68040 USER’S MANUAL MOTOROLA

INSTRUCTION
FETCH

DECODE

EFFECTIVE
ADDRESS

CALCULATE

EXECUTE

EFFECTIVE
ADDRESS

FETCH

INSTRUCTION
CACHE/ACCESS/SNOOP

CONTROLLER

BUS
CONTROL
SIGNALS

DATA
BUS

ADDRESS
BUS

DATA
CACHE/ACCESS/SNOOP

CONTROLLER

OPERAND DATA BUS

INSTRUCTION DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

DATA ACCESS CONTROL UNIT

INSTRUCTION ACCESS CONTROL UNIT B
U
S

C
O
N
T
R
O
L
L
E
R

INSTRUCTION
ADDRESS

DATA
ADDRESS

WRITE-BACK

INTEGER
UNIT

Figure B-1. MC68EC040 Block Diagram

With the exception of the memory management unit (MMU), the floating-point unit (FPU),
and their respective registers, the MC68EC040 programming model, data formats and
types, instruction set (except all instructions beginning with an “F”, PTEST, and PFLUSH),
and caches are the same as described in Section 1 Introduction for the MC68040.
Figures B-2 and B-3 illustrate the programming model and functional signal groups for the
MC68EC040.

MOTOROLA M68040 USER’S MANUAL B-3

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0

D7
D6
D5
D4
D3
D2
D1
D0

31 0

DATA
REGISTERS

ADDRESS
REGISTERS

31 0

A7'/ISP
A7"/MSP
SR
VBR
SFC
DFC
CACR
DACR0
DACR1
IACR0
IACR1

(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

INTERRUPT STACK POINTER
MASTER STACK POINTER
STATUS REGISTER
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER
DATA ACCESS CONTROL REGISTER 0
DATA ACCESS CONTROL REGISTER 1
INSTRUCTION ACCESS CONTROL REGISTER 0
INSTRUCTION ACCESS CONTROL REGISTER 1

USER STACK POINTER

Figure B-2. MC68EC040 Programming Model

B-4 M68040 USER’S MANUAL MOTOROLA

MC68EC040

VCC

GND

BUS ARBITRATIONBG
BR

BB

BUS SNOOP CONTROL
AND RESPONSE

M I

INTERRUPT
CONTROL

IPL0

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

PCLK
BCLK

TESTTRST

TMS
TCK

TDI

POWER SUPPLY

TDO

SC0
SC1

IPL1
IPL2

STATUS AND
CLOCKS

PST0
PST1
PST2

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS
BUS

TS

TIP

TCI
SLAVE

TRANSFER
CONTROL

TEA

TBI

R/W

LOCKE
CIOUT

TT0
TT1
TM0
TM1
TM2

TLN0
TLN1
UPA0
UPA1

SIZ0
SIZ1

LOCK

TA

PST3

JS0
JS1

Figure B-3. MC68EC040 Functional Signal Groups

B.1 MC68EC040 DIFFERENCES

The following differences exist between the MC68EC040 and MC68040:

• Two independent access control units (ACUs) replace the MC68040 MMUs. The
ACU has four corresponding registers (access control registers) that the MC68040
implements as data transparent translation registers. The page size is fixed at
4 Kbytes.

• PTEST and PFLUSH instructions cause an indeterminate result (i.e., an
undetermined number of bus cycles); the user should not execute them on the
MC68EC040.

• The MC68EC040 does not contain an FPU, which causes unimplemented floating-
point exceptions to occur using a new stack frame format.

MOTOROLA M68040 USER’S MANUAL B-5

• The DLE and MDIS pin names have been changed to JS0 and JS1, respectively.

• The MC68EC040 does not implement the DLE mode, multiplexed, or output buffer
impedance selection modes of operation. The MC68EC040 implements only the
small output buffer mode of operation. All timing and drive capabilities of the
MC68EC040 are equivalent to those of the MC68040 in the small buffer mode of
operation.

B.2 JTAG SCAN (JS1–JS0)

The MC68040 MDIS and DLE pin names have been changed to JS1 and JS0
respectively. During normal operation, the JS1 and JS0 pin cannot float, they must be tied
to GND or Vcc directly or through a resistor. During board testing, these pins retain the
functionality of the JTAG scan of the MC68040 for compatibility purposes. Refer to
Section 6 IEEE 1149.1 Test Access Port (JTAG) for details concerning IEEE 1149.1
Standard Test Access Port and Boundary Scan Architecture.

B.3 ACCESS CONTROL UNITS

The information in this section replaces the information in Section 3 Memory
Management Unit (Except MC68EC040 and MC68EC040V). When reading Section 4
Instruction and Data Caches, disregard any references to the MMU; remember the
functionality of the access control registers has replaced that of transparent translation
registers. The MC68EC040 contains two independent ACUs, one for instructions and one
for data. Each ACU allows memory selections to be made requiring attributes particular to
peripherals, shared memory, or other special memory requirements. The following
paragraphs describe the ACUs and the access control registers contained in them.

B.3.1 Access Control Registers

Each ACU has two independent access control registers (ACRs). The instruction ACU
contains the instruction access control registers (IACR0 and IACR1). The data ACU
contains the data access control registers (DACR0 and DACR1). Both ACRs provide and
control status information for access control of memory in the MC68EC040. Only
programs that execute in the supervisor mode using the MOVEC instruction can directly
access the ACRs.

The 32-bit ACRs each define blocks of address space for access control. These blocks of
address space can overlap or be separate, and are a minimum of 16 Mbytes. Three
blocks are used with two user-defined attributes, cachability control and optional write
protection. The ACRs specify a block of address space as serialized noncachable for
peripheral selections and as write-through for shared blocks of address space in multi-
processing applications. The ACRs can be configured to support many embedded control
applications while maintaining cache integrity. Refer to Section 4 Instruction and Data
Caches for details concerning cachability. Figure B-4 illustrates the ACR format.

B-6 M68040 USER’S MANUAL MOTOROLA

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK E S 0 0 0 U1 U0 0 CM 0 0 W 0 0

Figure B-4. MC68EC040 Access Control Register Format

ADDRESS BASE
This 8-bit field is compared with physical address bits A31–A24. Addresses that match
in this comparison (and are otherwise eligible) are accessible.

ADDRESS MASK
This 8-bit field contains a mask for the ADDRESS BASE field. Setting a bit in the
ADDRESS MASK field causes the processor to ignore the corresponding bit in the
ADDRESS BASE field. Setting some of the ADDRESS MASK bits to ones obtains
blocks of memory larger than 16 Mbytes. The low-order bits of this field are normally set
to define contiguous blocks larger than 16 Mbytes, although contiguous blocks are not
required.

E—Enable
This bit enables and disables transparent translation of the block defined by this
register. Refer to Section 3 Memory Management Unit (Except MC68EC040 and
MC68EC040V) for details on transparent translation.

0 = Access control disabled.
1 = Access control enabled.

S—Supervisor/User Mode
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 = 0 (user mode access).
01 = Match only if FC2 = 1 (supervisor mode access).

10, 11 = Ignore FC2 when matching.

U1, U0—User Page Attributes
These two bits drive on the user page attribute signals (UPA1 and UPA0). If an external
bus transfer results from the access, U0 and U1 are echoed to the UPA0 and UPA1
signals, respectively. The user can program these bits to support extended addressing,
bus snooping, or other applications. The MC68EC040 does not interpret these bits.

CM—Cache Mode
This field selects the cache mode and access serialization for a page as follows:

00 = Cachable, Write-through
01 = Cachable, Copyback
10 = Noncachable, Serialized
11 = Noncachable

Detailed information on caching modes is available in Section 4 Instruction and Data
Caches, and information on serialization is available in Section 7 Bus Operation.

MOTOROLA M68040 USER’S MANUAL B-7

W—Write Protect
This bit indicates if the transparent block is write protected. If set, write and read-modify-
write accesses are aborted as if the R-bit in a table descriptor were clear. Refer to 3.2.2
Descriptors for a description of table descriptors.

0 = Read and write accesses permitted.
1 = Write accesses not permitted.

B.3.2 Address Comparison

The following description of address comparison assumes that the ACRs are enabled.
Clearing the E-bit in each ACR independently disables access control, causing the
processor to ignore it.

When an ACU receives a physical address, the privilege mode and the eight high-order
bits of the address are compared to the block of addresses defined by the two ACRs for
the corresponding ACU. Each block of address space for an ACR contains an S-field, a
BASE ADDRESS field, and an ADDRESS MASK field. The S-field allows for matching
either user or supervisor accesses (or both). Setting a bit in the ADDRESS MASK field
causes the corresponding bit of the ADDRESS BASE to be ignored in the address
comparison and privilege mode. Setting successively higher order bits in the ADDRESS
MASK field increases the size of the block of address space.

The address for the current bus cycle and an ACR address match when the privilege
mode and address bits for each (not including the masked bits) are equal. Each ACR
specifies write protection for the block of address space. Enabling write protection for a
block of address space causes the abortion of write or read-modify-write accesses to the
block, and an access error exception occurs.

By appropriately configuring an ACR, flexible mappings can be specified. For example, to
control access to the user address space, the S-field equals $0, and the ADDRESS MASK
field equals $FF in all four ACRs. To control access to the supervisor address space
($00000000–$0FFFFFFF) with write protection, the BASE ADDRESS field = $0X, the
ADDRESS MASK field equals $0F, the W-bit is set to one, and the S-field = $1. The
inclusion of independent ACRs in both the instruction ACU (IACU) and data ACU (DACU
provides an exception to the merged instruction and data address space, allowing
different access control for instruction and operand accesses. Also, since the instruction
memory unit is only used for instruction prefetches, different instruction and data ACRs
can cause PC relative operand fetches to be translated differently from instruction
prefetches.

Matching either of the ACRs in a corresponding ACU during an access to a memory unit
completes the access with the ACU. If both registers match, the access uses the xACR0
status bits. Addresses are passed through without translation if there is no match in the
ACRs and no table search occurs. The MC68EC040 does not perform table searches.

B-8 M68040 USER’S MANUAL MOTOROLA

B.3.3 Effect of RSTI on the ACU

When the assertion of the reset input (RSTI) signal resets the MC68EC040, the E-bits of
the ACRs are cleared, disabling address access control.

B.4 SPECIAL MODES OF OPERATION

This part of the M68040 User's Manual does not apply to the MC68EC040. The
MC68EC040 does not sample the IPL2–IPL0, CDIS, JS0 (DLE on the MC68040), or JS1
(MDIS on the MC68040) pins on the rising edge of RSTI.

An external device asserts RSTI to reset the processor. When power is applied to the
system, external circuitry should assert RSTI for a minimum of 10 BCLK cycles after VCC
is within tolerance. Figure B-5 is a functional timing diagram of the power-on reset
operation, illustrating the relationships between VCC, RSTI, and bus signals. The BCLK
and PCLK clock signals are required to be stable by the time VCC reaches the minimum
operating specification. RSTI is internally synchronized for two BCLKS before being used,
and must meet the specified setup and hold times to BCLK (specifications #51 and #52 in
B.7 MC68EC040 Electrical Characteristics) only if recognition by a specific BCLK rising
edge is required.

BCLK

+5V

0V

RSTI

TS

BR

BG

BB

TIP

VCC

Undefined

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

Figure B-5. MC68EC040 Initial Power-On Reset Timing

MOTOROLA M68040 USER’S MANUAL B-9

Once RSTI is negated, the processor is internally held in reset for another 128 clock
cycles. During the reset period, all three-statable signals are three-stated, and the rest are
driven to their inactive state. Once the internal reset signal negates, all bus signals remain
in a high-impedance state until the processor is granted the bus. After this, the first bus
cycle for reset exception processing begins. In Figure B-6, the processor assumes implicit
ownership of the bus before the first bus cycle begins. The levels on the CDIS, JS1 (MDIS

on the MC68040), and IPL2–IPL0 signals are not sampled when RSTI is negated.

For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. Figure B-6 illustrates timing associated with a reset when the processor
is executing bus cycles. Note that BB and TIP (and TA driven during a snooped access)
are asserted before transitioning to a three-state level. Processor reset causes any bus
cycle in progress to terminate as if TA or TEA had been asserted. Also, the processor
initializes registers appropriately for a reset exception.

BCLK

BUS
SIGNALS

RSTI

TS

BR

BG

BB

TIP

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

Figure B-6. MC68EC040 Normal Reset Timing

When a RESET instruction is executed, the processor drives the reset out (RSTO) signal
for 512 BCLK cycles. In this case, the processor resets the external devices of the system,
and the internal registers of the processor are unaffected. The external devices connected
to RSTO are reset at the completion of the RESET instruction. An RSTI signal that is
asserted to the processor during execution of a RESET instruction immediately resets the
processor and causes RSTO to negate. RTSO can be logically ANDed with the external
signal driving RTSI to derive a system reset signal that is asserted for both an external
processor reset and execution of a RESET instruction.

B-10 M68040 USER’S MANUAL MOTOROLA

B.5 EXCEPTION PROCESSING

The MC68EC040 provides five different stack frames for exception processing and allows
for a MC68040-specific stack frame. Refer to Section 8 Exception Processing for details
on exception processing.

B.5.1 Unimplemented Floating-Point Instructions and Exceptions

All legal MC68040 and MC68881/MC68882 floating-point instructions are defined as
unimplemented floating-point instructions on the MC68EC040. These instructions
generate an eight-word stack frame (format $4) during exception processing before taking
an F-line exception. These instructions trap as an F-line exception and can be emulated in
software by the F-line exception handler to maintain user-object-code compatibility.

The MC68EC040 assists the emulation process by distinguishing unimplemented floating-
point instructions from other unimplemented F-line instructions. To aid emulation, the
effective address is calculated and saved in the format $4 stack frame. This simplifies and
speeds up the emulation process by eliminating the need for the emulation routine to
determine the effective address and by providing information required to emulate the
instruction on the exception stack frame in the supervisor address space. However, the
floating-point instruction can reside in user space; therefore, the floating-point
unimplemented exception handler may need to access user instruction space. The
following processing steps occur for an unimplemented floating-point instruction:

1. When an unimplemented floating-point instructionis encountered, the instruction is
partially decoded, and the effective address is calculated, if required.

2. The processor waits for all previous integer instructions, write-backs, and associated
exception processing to complete before beginning exception processing for the
unimplemented floating-point instruction. Any access error that occurs in completing
the write-backs causes an access error exception, and the resulting stack frame
indicates a pending unimplemented floating-point instruction exception. The access
error exception handler then completes the write-backs in software, and exception
processing for the unimplemented floating-point instruction exception begins
immediately after return from the access error handler.

3. The processor begins exception processing for the unimplemented floating-point
instruction by making an internal copy of the current SR. The processor then enters
the supervisor mode and clears the trace bits (T1 and T0). It creates a format $4
stack frame and saves the internal copy of the SR, PC, vector offset, calculated
effective address, and PC value of the faulted instruction in the stack frame.

The effective address field of the format $4 stack frame contains the calculated
effective address of the operand for the faulted floating-point instruction using the
addressing mode in which the effective address is calculated. For immediate and
register direct addressing modes, this field is $0. The saved PC value is the logical
address of the instruction that follows the unimplemented floating-point instruction.
This value will be restored during RTE execution. The vector offset format number
($4) is used for this eight-word stack frame. Note that an MC68040 cannot correctly
handle a stack format $4. The PC of the faulted instruction contains a long-word PC
of the floating-point instruction that caused the trap to occur. The information is
provided so that the instruction is available for software emulation of floating-point

MOTOROLA M68040 USER’S MANUAL B-11

instructions. The processor generates exception vector number 11 for the
unimplemented F-line instruction exception vector, fetches the address of the F-line
exception handler from the exception vector table, and begins execution of the
handler after prefetching instructions to fill the pipeline. Refer to Section 8
Exception Processing for details about exception processing.

B.5.2 MC68EC040 Stack Frames

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. The set of stack frames included for exception processing are four-
and six-word stack frames, a four-word throwaway stack frame, an access error stack
frame, and a new eight-word unimplemented floating-point stack frame. The stack frame
that the MC68040 can generate and the MC68EC040 can process is the floating-point
post-instruction stack frame. Refer to Section 8 Exception Processing for details about
exception stack frames.

Eight-Word Stack Frame (Format $4)

Stack Frames Exception Types Stacked PC Points To

SP STATUS REGISTER
PROGRAM COUNTER

VECTOR OFFSET0100
+$02

+$06

+$08

+$0C

15 0

EFFECTIVE ADDRESS

PC OF FAULTED
INSTRUCTION

• The MC68040 cannot
generate or read this stack.

• Effective address field is
the address of the faulted
instruction operand.

When the MC68EC040 writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned stack pointer greatly enhances exception
processing performance. The processor does not necessarily read or write the stack
frame data in sequential order. The system software should not depend on a particular
exception generating a particular stack frame. For compatibility with future devices, the
software should be able to handle any type of stack frame for any type of exception. The
MC68EC040 does not generate the floating-point post-instruction stack frame. The
MC68040 cannot accept the eight-word unimplemented stack frame. The MC68EC040
can handle all MC68040 stack frame formats.

B-12 M68040 USER’S MANUAL MOTOROLA

This device contains protective
circuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid
application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliablity of
operation is enhanced if unused
inputs are tied to an appropriate
logic voltage level (e.g., either GND
or VCC).

B.6 SOFTWARE CONSIDERATIONS

The following MC68EC040 instructions are different from the MC68040: PTEST, PFLUSH,
CPUSH, CINV, MOVEC, and all floating-point instructions.

The PTEST and PFLUSH instructions should not be executed. Execution of the PTEST
instruction causes random bus cycles to occur. Execution of the PFLUSH instruction
produces indeterminate results. Neither instruction causes the MC68EC040 to generate
an exception.

The CPUSH and CINV instructions require special consideration. A page is defined as a
4-Kbyte block of external memory. The CPUSH and CINV page instruction opcodes can
be used to push or invalidate 4-Kbyte blocks of memory. The MC68EC040 does not
support 8-Kbyte pages.

The MOVEC to URP and SRP instructions are not valid and will produce indeterminate
results. Each ACU has a status register and translation control register that replace the
MMU status register and translation control register of the MC68040. The MMU status
register opcode of the MOVEC instruction can modify the ACU status register. The
MC68EC040 ACU status register does not provide additional functionality to the ACU and
is only provided for compatibility with the ACU MC68EC030 status register. The ACU
status register may not be implemented in future M68EC0X0 products.

B.7 MC68EC040 ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68EC040 only. Refer to Appendix C MC68040V and
MC68EC040V for more information on electrical characteristics for the MC68EC040V.
This section is subject to change. For the most recent specifications, contact a Motorola
sales office or complete the registration card at the end of this manual.

B.7.1 Maximum Ratings

Characteristic Symbol Value Unit

Supply Voltage VCC –0.3 to +7.0 V

Input Voltage Vin –0.8 to +7.0 V

Maximum Operating Junction Temperature TJ 110 °C

Minimum Operating Ambient Temperature TA 0 °C

Storage Temperature Range Tstg –55 to 150 °C

B.7.2 Thermal Characteristics

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case—
PGA Package

 θJC 3 °C/W

MOTOROLA M68040 USER’S MANUAL B-13

B.7.3 DC Electrical Specifications (VCC = 5.0 Vdc ±5 %)

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 VCC V

Input Low Voltage VIL GND 0.8 V

Undershoot — — 0.8 V

Input Leakage Current @ 0.5–2.4 V
AVEC , BCLK, BG, CDIS , IPL≈, PCLK, RSTI, SCx, TBI ,
TLNx, TCI , TCK, TEA

Iin 20 20 mA

Hi-Z (Off-State) Leakage Current @ 0.5–2.4 V
An, BB, CIOUT , Dn, LOCK , LOCKE, R/W , SIZx, TA, TDO, TIP ,
TMx, TLNx, TS, TTx, UPAx

ITSI 20 20 mA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI, TRST

IIL –1.1 –0.18 mA

Signal High Input Current, VIH = 2.0 V
 TMS, TDI, TRST

IIH –0.94 –0.16 mA

Output High Voltage, IOH = 5 mA VOH 2.4 — V

Output Low Voltage, IOL = 5 mA VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz Cin — 25 pF

*Capacitance is periodically sampled rather than 100% tested.

B.7.4 Power Dissipation

Frequency Watts

Maximum Values (VCC = 5.25 V, TA = 0°C)

20 MHz 3.2

25 MHz 3.9

33 MHz 4.9

Typical Values (VCC = 5 V, TA = 25°C)*

20 MHz 2.0

25 MHz 2.4

33 MHz 3.0

*This information is for system reliability purposes.

B-14 M68040 USER’S MANUAL MOTOROLA

B.7.5 Clock AC Timing Specifications (see Figure B-7)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

Frequency of Operation 16.67 20 16.67 25 16.67 33.3 MHz

1 PCLK Cycle Time 25 30 20 30 15 30 ns

2 PCLK Rise Time — 1.7 — 1.7 — 1.7 ns

3 PCLK Fall Time — 1.6 — 1.6 — 1.6 ns

4 PCLK Duty Cycle Measured at 1.5 V 48 52 47.5 52.5 46.67 53.33 %

4a* PCLK Pulse Width High Measured at 1.5 V 12 13 9.5 10.5 7 8 ns

4b* PCLK Pulse Width Low Measured at 1.5 V 12 13 9.5 10.5 7 8 ns

5 BCLK Cycle Time 50 60 40 60 30 60 ns

6,7 BCLK Rise and Fall Time — 4 — 4 — 3 ns

8 BCLK Duty Cycle Measured at 1.5 V 40 60 40 60 40 60 %

8a* BCLK Pulse Width High Measured at 1.5 V 20 30 16 24 12 18 ns

8b* BCLK Pulse Width Low Measured at 1.5 V 20 30 16 24 12 18 ns

9 PCLK, BCLK Frequency Stability — 1000 — 1000 — 1000 ppm

10 PCLK to BCLK Skew — 9 — 9 — n/a ns

*Specification value at maximum frequency of operation.

2 3
1

5

6 71010

PCLK

BCLK

8B8A

4A 4B

VM
V

V

IH

IL

VIH

VIL
VM

Figure B-7. Clock Input Timing Diagram

MOTOROLA M68040 USER’S MANUAL B-15

B.7.6 Output AC Timing Specifications (see Figures B-8* to B-12)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

11 BCLK to Address CIOUT, LOCK , LOCKE,
R/W, SIZx, TLNx ,TMx, TTx, UPAx Valid

11.5 35 9 30 6.5 25 ns

12 BCLK to Output Invalid (Output Hold) 11.5 — 9 — 6.5 — ns

13 BCLK to TS Valid 11.5 35 9 30 6.5 25 ns

14 BCLK to TIP Valid 11.5 35 9 30 6.5 25 ns

18 BCLK to Data-Out Valid 11.5 37 9 32 6.5 27 ns

19 BCLK to Data-Out Invalid (Output Hold) 11.5 — 9 — 6.5 — ns

20 BCLK to Output Low Impedance 11.5 — 9 — 6.5 — ns

21 BCLK to Data-Out High Impedance 11.5 25 9 20 6.5 17 ns

38
BCLK to Address, CIOUT , LOCK, LOCKE ,

R/W, SIZx, TS, TLNx, TMx, TTx, UPAx High
Impedance

11.5 23 9 18 6.5 15 ns

39 BCLK to BB, TA, TIP High Impedance 23 33 19 28 14 25 ns

40 BCLK to BR , BB Valid 11.5 35 9 30 6.5 23 ns

43 BCLK to MI Valid 11.5 35 9 30 6.5 25 ns

48 BCLK to TA Valid 11.5 35 9 30 6.5 25 ns

50 BCLK to IPEND, PSTx, RSTO Valid 11.5 35 9 30 6.5 25 ns

* Output timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated 30-Ω
transmission line with a length characterized by a 2.5-ns one-way propagation delay. Buffer output impedance is
typically 30 Ω; the buffer specifications include approximately 5 ns for the signal to propagate the length of the
transmission line and back.

B-16 M68040 USER’S MANUAL MOTOROLA

B.7.7 Input AC Timing Specifications (see Figures B-8 to B-12)

20 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

15 Data-In Valid to BCLK (Setup) 6 — 5 — 4 — ns

16 BCLK to Data-In Invalid (Hold) 5 — 4 — 4 — ns

17 BCLK to Data-In High Impedance
(Read Followed by Write)

— 61 — 49 — 36.5 ns

22a TA Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22b TEA Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22c TCI Valid to BCLK (Setup) 12.5 — 10 — 10 — ns

22d TBI Valid to BCLK (Setup) 14 — 11 — 10 — ns

23 BCLK to TA, TEA, TCI , TBI Invalid (Hold) 2.5 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 6 — 5 — 5 — ns

25 BCLK to AVEC Invalid (Hold) 2.5 — 2 — 2 — ns

41a BB Valid to BCLK (Setup) 8 — 7 — 7 — ns

41b BG Valid to BCLK (Setup) 10 — 8 — 7 — ns

41c CDIS Valid to BCLK (Setup) 12.5 — 10 — 8 — ns

41d IPL≈ Valid to BCLK (Setup) 5 — 4 — 3 — ns

42 BCLK to BB, BG, CDIS , IPL≈ Invalid
(Hold)

2.5 — 2 — 2 — ns

44a Address Valid to BCLK (Setup) 10 — 8 — 7 — ns

44b SIZx Valid to BCLK (Setup) 15 — 12 — 8 — ns

44c TTx Valid to BCLK (Setup) 7.5 — 6 — 8.5 — ns

44d R/W Valid to BCLK (Setup) 7.7 — 6 — 5 — ns

44e SCx Valid to BCLK (Setup) 12.5 — 10 — 11 — ns

45 BCLK to Address SIZx, TTx, R/W, SCx
Invalid (Hold)

2.5 — 2 — 2 — ns

46 TS Valid to BCLK (Setup) 6 — 5 — 9 — ns

47 BCLK to TS Invalid (Hold) 2.5 — 2 — 2 — ns

49 BCLK to BB High Impedance
(MC68EC040 Assumes Bus Mastership)

— 11 — 9 — 9 ns

51 RSTI Valid to BCLK 6 — 5 — 4 — ns

52 BCLK to RSTI Invalid 2.5 — 2 — 2 — ns

MOTOROLA M68040 USER’S MANUAL B-17

22
23

11

BCLK

A31–A0

TRANSFER
ATTRIBUTES

D31–D0 IN
(READ)

12

15
16

D31–D0 OUT
(WRITE)

19
21

13 12

14

18

20

TA

TEA

TCI

TBI

TIP

TS

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, LOCK,
 LOCKE, CIOUT

AVEC

24
25

12

Figure B-8. Read/Write Timing

B-18 M68040 USER’S MANUAL MOTOROLA

BCLK

A31–A0

TRANSFER
ATTRIBUTES

38

20

11

TS

TIP

BB OUT
12

39

BG

BR

41 42

12

21

D31–D0 OUT
(WRITE)

20

40

13

14

MI

43
12

12
39

40

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, CIOUT

LOCK, LOCKE

Figure B-9. Bus Arbitration Timing

MOTOROLA M68040 USER’S MANUAL B-19

D31–D0 IN
(ALT. MASTER

WRITE)

D31–D0 OUT
(ALT. MASTER

READ)

44

BCLK

A31–A0 IN

15 16

46
47

12

41
48

12
20 39

42
49

43

19
21

18

TS IN

MI

TA OUT

BB IN

SIZx, TTx,
R/W IN

45

SC1, SC0

Figure B-10. Snoop Hit Timing

B-20 M68040 USER’S MANUAL MOTOROLA

TBI

TS IN

MI

SIZx, TTx,
R/W IN

44

BCLK

A31–A0 IN

TEA

47

SC1, SC0 SNOOP

43

TA

45

22
23

BB IN
41

42

43

12

46

Figure B-11. Snoop Miss Timing

MOTOROLA M68040 USER’S MANUAL B-21

50

BCLK

12

42

IPEND

RSTO

CDIS

IPL2–IPL0

42

PST3–PST0

12

RSTI

51 52

41

Figure B-12. Other Signal Timing

MOTOROLA M68040 USER’S MANUAL C-1

APPENDIX C
MC68040V AND MC68EC040V

The MC68040V and MC68EC040V are Motorola’s 3.3 volt, static versions of the
MC68040 third-generation, M68000-compatible, high-performance, 32-bit microprocessor.
They require a 3.3V power supply providing over 50 percent reduction in power
consumption compared to a 5.0V device. The maximum power used at 3.3 volts is 1.5
watts at an operating frequency of 33 MHz. They also have a low-power stop mode. Once
in this state, both devices remain quiescent, consuming less than 330 µW of power. The
low-power usage of these microprocessors makes them an ideal choice for portable
computing and power constrained applications.

The MC68040V programming model, data formats and types, instruction set, caches, and
MMUs are the same as those described for the MC68LC040 in Appendix A MC68LC040.
The MC68EC040V programming model, data formats and types, and instruction set are
the same as those described for the MC68EC040 in Appendix B MC68EC040. However,
both devices contain additional features:

• For the MC68040V, all differences that exist between the MC68LC040 and the
MC68040, as described in Appendix A MC68LC040, also apply to the MC68040V.
For the MC68EC040V, all differences that exist between the MC68EC040 and the
MC68040, as described in Appendix B MC68EC040, also apply to the
MC68EC040V.

• Both devices operate to 0 Hz and can accept 3.3V or 5V input.

• Both devices have a new processor status state, low-power stop mode, indicated
when PST(3–0) = $6.

• There is no PCLK or TRST pin on either device.

• Both devices provide three new pins, system clock disable (SCD), low frequency
operation (LFO), and loss of clock (LOC).

C.1 ADDITIONAL SIGNALS

Table C-1 lists the additional signals and Figure C-1 illustrates the functional signal groups
of the MC68040V and MC68EC040V.

C-2 M68040 USER’S MANUAL MOTOROLA

Table C-1. Additional MC68040V and MC68EC040V Signals

Signal Name Mnemonic Function

Low Frequency
Operation

LFO Used to enter the low frequency mode of operation.

Loss of Clock LOC Indicates loss of BCLK input, a reset is required

System Clock Disable SCD Indicates normal operation is suspended and low-power stop mode is active,
system logic may remove or change the frequency of the BCLK input.

C.1.1 Low Frequency Operation (LFO)

When asserted, this input signal allows the frequency of BCLK to be changed
instantaneously (0 to 16 MHz) providing minimum pulse width constraints are met (see
C.7 MC68040V and MC68EC040V Electrical Characteristics. LFO is only recognized
during low-power stop mode and reset.

C.1.2 Loss of Clock (LOC)

Whenever the internal clock circuitry detects either a phase lock error or a loss of BCLK,
this output signal is driven high (only during normal mode of clocking operation). LOC is
also three-stated during reset, low-power stop, or low frequency operation. There should
be a pull-down resistor on the system board to ground.

C.1.3 System Clock Disable (SCD)

When asserted this output signal indicates, when asserted, that the BCLK input can be
disabled or changed in frequency. SCD is asserted upon termination of the LPSTOP
broadcast cycle. BCLK must be stable when SCD is negated, in accordance with the
specifications in C.7 MC68040V and MC68EC040V Electrical Characteristics.

MOTOROLA M68040 USER’S MANUAL C-3

MC68040V
MC68EC040V

VCC

GND

BUS ARBITRATIONBG
BR

BB

BUS SNOOP CONTROL
AND RESPONSE

M I

INTERRUPT
CONTROL

IPL0

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

BCLK

TEST

TMS
TCK

TDI

POWER SUPPLY

TDO

SC0
SC1

IPL1
IPL2

STATUS AND
CLOCKS

PST0
PST1
PST2

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS
BUS

TS

TIP

TCI

SLAVE
TRANSFER
CONTROL

TEA

TBI

R/W

LOCKE
CIOUT

TT0
TT1
TM0
TM1
TM2

TLN0
TLN1
UPA0
UPA1

SIZ0
SIZ1

LOCK

TA

MDIS*

PST3

JS0

JS2

LFO
LOC
SCD

NOTE: *This signal is JS1 on the MC68EC040V.

Figure C-1. MC68040V and MC68EC040V Functional Signal Groups

C.2 LOW-POWER STOP MODE

The low-power stop mode is a reduced power mode of operation, that causes the
MC68040V and MC68EC040V to remain quiescent until either a reset or non-masked
interrupt occurs. This mode of operation has four phases of operation and is triggered by
the low-power stop (LPSTOP) instruction:

1. Perform a LPSTOP broadcast cycle.

2. End integer unit (IU) instruction pipeline sequencing, which is similar to the STOP
instruction sequence (IMM data ˘ SR), at termination of the LPSTOP broadcast
cycle.

C-4 M68040 USER’S MANUAL MOTOROLA

3. Orderly shutdown of the clock circuitry, culminating in the low-power stop mode.

4. Return to normal operation after the receipt of a non-masked interrupt or reset when
the clocks are restarted in an orderly manner.

Once the LPSTOP instruction has reached the execute stage of the IU pipeline and when
all CPU and bus activity has completed, the IU generates an LPSTOP broadcast cycle.
Table C-2 lists how the LPSTOP broadcast cycle drives the bus.

Table C-2. Bus Encodings During
LPSTOP Broadcast Cycle

Signals Encoding Signals Encoding

A31–A0 $FFFFFFFE R/W 0

TT1, TT0 $3 D31–D16 $XXXX

TM2–TM0 $0 D15–D0 #<data>

SIZ1, SIZ0 $2

Either TA or TEA terminates the LPSTOP broadcast cycle. By withholding the assertion of
TA or TEA, external logic can extend the cycle, controlling the beginning of the low-power
stop mode. During this extension, the processor is ready for bus arbitration.

Upon termination of the LPSTOP broadcast cycle, the status register (SR) is updated with
the data portion of the immediate operand (updating the interrupt priority mask level). The
IU updates the processor status lines PST3–PST0 with the new status code of $6 and
halts. Then, SCD is asserted signaling the beginning of the low-power stop mode. All
instructions in the integer unit pipeline that followed LPSTOP remain in the pipeline during
the low-power stop mode.

The processor stays in the low-power stop mode until a non-masked interrupt or reset
exception occurs. A non-masked interrupt exception is defined as a higher priority than the
value in the interrupt priority mask bits of the SR, while holding the interrupt priority level
(IPL≈) lines until IPEND is asserted. IPL≈ are used in the low-power stop mode to restart
the clocks and return the processor to normal operation. If an interrupt request has a
priority higher than the value in the interrupt priority mask bits of the SR, the clock control
logic negates SCD and restarts the PLL. If the pending interrupt has a lower priority than
the interrupt priority mask bits, the clock logic doesn't restart the PLL and the processor
will not resume normal operation. The MC68040V and MC68EC040V will enter low-power
mode regardless of any interrupts that are pending once the LPSTOP instruction starts.

Once the clock control logic negates SCD and the PLL is restarted, a valid BCLK must be
provided to the processor. When the clocks are phase locked, an interrupt, a bus error, or
a reset exception begins. The interrupt exception forces all instructions in the pipeline to
be aborted that have not reached the execute stage; while the reset exception aborts any
processing in progress (pre-fetched instructions prior to entering low-power stop mode)
and cannot be recovered.

MOTOROLA M68040 USER’S MANUAL C-5

C.2.1 Bus Arbitration and Snooping

Bus arbitration and snooping are not allowed during low-power stop mode. If an alternate
bus master requires ownership, arbitration must occur before the processor is allowed to
enter low-power stop mode. This is achieved by externally decoding the LPSTOP
broadcast cycle and negating the BG signal before the termination of the cycle, allowing
bus arbitration to complete at the end of the cycle.

If the MC68040V or the MC68EC040V is the bus master during low-power stop mode,
lowest power consumption cannot be achieved due to the DC loads on the processor
output pins. To achieve maximum power savings, arbitrate bus mastership away from the
processor during the LPSTOP broadcast cycle.

In a single bus master system the caches do not need to be shut down prior to the
execution of LPSTOP. In a multi-master system, the programmer is responsible for
providing a shut down sequence for the caches.

C.2.2 Low Frequency Operation

In addition to the low-power mode of operation the MC68040V and MC68EC040V provide
a low frequency mode of operation. This mode of operation can be entered one of in two
ways: directly from reset by asserting LFO prior to negating RSTI; or by asserting LFO

prior to generating the interrupt or reset when exiting the low-power stop mode. In the
former case, the BCLK input can be changed as long as the frequency is 0–16 MHz and
the minimum pulse width constraints are met. Normal operation can be resumed through
the low-power stop mode and deasserting LFO.

C.2.3 Changing BCLK Frequency

The frequency of the BCLK input can be changed only during the low-power stop or low
frequency modes of operation. Once in the low-power stop mode and SCD is asserted,
BCLK can be disabled or its frequency can be changed. Reducing the frequency or
removing the BCLK input is not required for proper operation, but is an additional power
saving measure. BCLK can be removed during the low-power stop mode as an additional
system power saving measure. However, it is not necessary for normal operation and has
no effect on the MC68040V's or MC68EC040V's power consumption.

C-6 M68040 USER’S MANUAL MOTOROLA

C.2.4 LPSTOP Instruction Summary

Operation: If Supervisor State
Immediate Data ˘ SR
SR ˘ Broadcast Cycle
STOP

Else TRAP

Assembler Syntax: LPSTOP #<data>

Attributes: Privileged Word Sized

Condition Codes: Set according to the immediate operand.

Description: See C.2 Low Power Stop Mode.

Instruction Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

Instruction Fields: Immediate field—Specifies the data to be loaded into the status
register.

MOTOROLA M68040 USER’S MANUAL C-7

C.3 CLOCKING DURING NORMAL OPERATION

During normal operation of the processor, the BCLK should be driven with a 50% (±5%)
duty cycle (refer to C.7 MC68040V and MC68EC040V Electrical Characteristics for
details). The frequency of BCLK can not be changed during normal operation. Altering the
BCLK frequency during normal operation (the LFO signal is negated) will result in
unspecified operation. In the event that the BCLK input is lost, a processor reset is
required. Once the loss of BCLK is detected during normal operation, the processor
asserts LOC, indicating a loss of clock. External logic can then reset the processor to
resume normal operation.

C.4 RESET OPERATION

An external device asserts the RSTI to reset the processor. When power is applied to the
system, external circuitry should assert RSTI for a minimum of 10 BCLK cycles after VCC
is within tolerance. Figure C-2 is a functional timing diagram of the power-on reset
operation, illustrating the relationships among VCC, RSTI, and bus signals. The BCLK
signal is required to be stable by the time RSTI is negated. The VIH levels of any pin must
not exceed VCC + 2.5V. RSTI is internally synchronized for two BCLKs before being used
and must meet the specified setup and hold times to BCLK (specifications #51 and #52 in
C.7 MC68040V and MC68EC040V Electrical Characteristics) only if recognition by a
specific BCLK rising edge is required. MI is asserted while the MC68040V is in reset.

C-8 M68040 USER’S MANUAL MOTOROLA

BCLK

BUS
SIGNALS

+5 V

0 V

RSTI

TS

BR

CDIS, MDIS*,
IPL2–IPL0

BG

BB

TIP

VCC

Undefined

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

NOTE: * Not on MC68EC040V.

Figure C-2. MC68040V and MC68EC040V Initial Power-On Reset Timing

Once RSTI negates, the processor is internally held in reset for another 124 clocks
maximum. During the reset period, all signals that can be, are three-stated, and the rest
are driven to their inactive state. Once the internal reset signal negates, all bus signals
continue to remain in a high-impedance state until the processor is granted the bus.
Afterwards, the first bus cycle for reset exception processing begins. Figure C-2 illustrates
that the processor assumes implicit bus ownership before the first bus cycle begins.

For processor resets after the initial power-on reset, RSTI should be asserted for at least
10 clock periods. The Figure C-3 illustrates timings associated with a reset when the
processor is executing bus cycles. Note that BB and TIP (and TA if driven during a
snooped access) are negated before transitioning to a three-state level.

MOTOROLA M68040 USER’S MANUAL C-9

BCLK

BUS
SIGNALS

RSTI

TS

BR

CDIS, MDIS*,
IPL2–IPL0

BG

BB

TIP

t 10
CLOCKS

2
CLOCKS

128
CLOCKS

>

MI

NOTE: * Not on MC68EC040V.

Figure C-3. MC68040V and MC68EC040V Normal Reset Timing

Resetting the processor causes any bus cycle in progress to terminate as if TA or TEA

had been asserted. In addition, the processor initializes registers appropriately for a reset
exception. When a RESET instruction is executed, the processor drives the reset out
(RSTO) signal for 512 BCLK cycles. In this case, the processor resets the external devices
of the system, and the internal registers of the processor are unaffected. The external
devices connected to the RSTO signal are reset at the completion of the RESET
instruction. An RSTI signal that is asserted to the processor during execution of a RESET
instruction immediately resets the processor and causes the RSTO signal to negate.
RSTO can be logically ANDed with the external signal driving RSTI to derive a system
reset signal that is asserted for both an external processor reset and execution of a
RESET instruction. It is necessary that the MC68040V and MC68EC040V be powered up
before other 5V devices; because the two power supplies must be within 2.5V of each
other.

C.5 POWER CYCLING

In cases were power is cycled off, then on with a duration of one second, RESET must be
asserted prior to removing power. This allows for an orderly shutdown within the
MC68040V and enables circuitry for the subsequent power-up.

C-10 M68040 USER’S MANUAL MOTOROLA

C.6 MC68040V AND MC68EC040V JTAG (PRELIMINARY)

The MC68040V and MC68EC040V include dedicated user-accessible test logic that is
fully compatible with the IEEE standard 1149.1A Standard Test Access Port and
Boundary Scan Architecture. Problems associated with testing high-density circuit boards
have led to the standard’s development under the sponsorship of the IEEE Test
Technology Committee and the Joint Test Action Group (JTAG).

The following paragraphs are to be used in conjunction with the supporting IEEE
document and includes those chip-specific items that the IEEE standard requires to be
defined and additional information specific to the MC68040V and MC68EC040V
implementations. For example, the IEEE standard 1149.1A test access port (TAP)
controller states are referenced in this section but are not described. For these details and
application information regarding the standard, refer to the IEEE standard 1149.1A
document.

The MC68040V and MC68EC040V implementations support circuit board test strategies
based on the standard. The test logic utilizes static logic design and is system logic
independent of the device. The MC68040V and MC68EC040V implementations provide
capabilities to:

a. Perform boundary scan operations to test circuit board electrical continuity,

b. Bypass the MC68040V and MC68EC040V by reducing the shift register path to a
single cell,

c. Sample the MC68040V and MC68EC040V system pins during operation and
transparently shift out the result,

d. Disable the output drive to output-only pins during circuit board testing.

NOTE

The IEEE standard 1149.1A test logic cannot be considered
completely benign to those planning not to use this capability.
Certain precautions must be observed to ensure that this logic
does not interfere with system operation. Refer to C.6.4
Disabling The IEEE Standard 1149.1A Operation.

Figure C-4 illustrates a block diagram of the MC68040V and MC68EC040V
implementations of IEEE standard 1149.1A. The test logic includes a 16-state dedicated
TAP controller. These 16 controller states are defined in detail in the IEEE standard
1149.1A, but only 8 are included in this section.

Test-Logic-Reset Run-Test/Idle
Capture-IR Capture-DR
Update-IR Update-DR
Shift-IR Shift-DR

Four dedicated signal pins provides access to the TAP controller:

TCK—A test clock input that synchronizes the test logic.

TMS—A test mode select input with an internal pullup resistor sampled on the rising
 edge of TCK to sequence the TAP controller.

MOTOROLA M68040 USER’S MANUAL C-11

TDI—A test data input with an internal pullup resistor sampled on the rising edge of
 TCK.

TDO—A three-state test data output actively driven only in the shift-IR and shift-DR
 controller states that changes on the falling edge of TCK.

The test logic also includes an instruction shift register and two test data registers, a
boundary scan register and a bypass register. The boundary scan register links all device
signal pins into a chain that can be controlled by the 3-bit instruction shift register.

TDI

TDO

TMS

TCK

3-BIT INSTRUCTION SHIFT REGISTER

LATCHED DECODER

188-BIT BOUNDARY SCAN REGISTER

TEST DATA REGISTERS

BYPASS

M
U

X

TA
P

C
O

N
TR

O
LL

ER

M
U

X

187 0

02

Figure C-4. MC68040V and MC68EC040V Test Logic Block Diagram

C.6.1 Instruction Shift Register

The MC68040V and MC68EC040V IEEE standard 1149.1A implementations include a 3-
bit instruction shift register without parity. The register shifts one of six instructions, which
can either select the test to be performed or access a test data register, or both. Data is
transferred from the instruction shift register to latched decoded outputs during the
update-IR state. The instruction shift register is reset to all ones in the TAP controller test-
logic-reset state, which is equivalent to selecting the BYPASS instruction. During the
capture-IR state, the binary value 001 is loaded into the parallel inputs of the instruction
shift register.

The MC68040V and MC68EC040V IEEE standard 1149.1A implementations include three
mandatory standard public instructions (BYPASS, SAMPLE/PRELOAD, and EXTEST),
two optional public standard instructions, and one manufacturer's private instruction. The
five public instructions provide the capability to disable all device output drivers, operate
the device in a BYPASS configuration, and conduct boundary scan test operations. Table
C-3 lists the three bits used in the instruction shift register to decode the instructions and

C-12 M68040 USER’S MANUAL MOTOROLA

their related encodings. Note that the least significant bit of the instruction (bit 0) is the first
bit to be shifted into the instruction shift register.

Table C-3. IEEE Standard 1149.1A Instructions

Bit 2 Bit 1 Bit 0 Instruction Selected Test Data Register Accessed

0 0 0 EXTEST Boundary Scan

0 0 1 HIGHZ Bypass

0 1 0 SAMPLE/PRELOAD Boundary Scan

1 0 0 CLAMP Bypass

1 1 0 PRIVATE —

1 1 1 BYPASS Bypass

C.6.1.1 EXTEST. The external test instruction (EXTEST) selects the boundary scan
register. This instruction also activates one internal function that is intended to protect the
device from potential damage while performing boundary scan operations. EXTEST
asserts internal reset for the MC68040V and MC68EC040V system logic to force a
predictable benign internal state.

C.6.1.2 HIGHZ. The HIGHZ instruction is an optional instruction provided as a Motorola
public instruction to anticipate the need to backdrive output pins during circuit board
testing. The HIGHZ instruction asserts internal system reset, selects the bypass register,
and forces all output and bidirectional pins to the high-impedance state.

Holding TMS high and clocking TCK for at least five rising edges causes the TAP
controller to enter the test-logic-reset state. Using only the TMS and TCK pins and the
capture-IR and update-IR states invokes the HIGHZ instruction. This scheme works
because the value captured by the instruction shift register during the capture-IR state is
identical to the HIGHZ opcode.

C.6.1.3 SAMPLE/PRELOAD. The SAMPLE/PRELOAD instruction provides two separate
functions. First, it provides a means to obtain a sample system data and control signal.
Sampling occurs on the rising edge of TCK in the capture-DR state. The user can observe
the data by shifting it through the boundary scan register to output TDO using the shift-DR
state. Both the data capture and the shift operations are transparent to system operation.
The user must provide some form of external synchronization to achieve meaningful
results since there is no internal synchronization between TCK and BCLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary
scan register output cells before selecting EXTEST or CLAMP, which is accomplished by
ignoring data being shifted out of TDO while shifting in initialization data. The update-DR
state can then be used to initialize the boundary scan register and ensure that known data
and output state will occur on the outputs after entering the EXTEST or CLAMP
instruction.

C.6.1.4 CLAMP. The CLAMP instruction allows the state of the signals driven from the
MC68040V and MC68EC040V pins to be determined from the boundary scan register,

MOTOROLA M68040 USER’S MANUAL C-13

while the bypass register is selected as the serial path between TDI and TDO. The signals
driven from the MC68040V and MC68EC040V pins do not change while the CLAMP
instruction is selected.

C.6.1.5 BYPASS. The BYPASS instruction selects the single-bit bypass register, creating
a single-bit shift-register path from TDI to the bypass register to TDO. The instruction
enhances test efficiency when a component other than the MC68040V and MC68EC040V
becomes the device under test. When the bypass register is initially selected, the
instruction shift register stage is set to a logic zero on the rising edge of TCK following
entry into the capture-DR state. Therefore, the first bit to be shifted out after selecting the
bypass register is always a logic zero. Figure C-5 illustrates the bypass register.

1
MUX

1

G1

1D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

Figure C-5. Bypass Register

C.6.2 Boundary Scan Register

The 188-bit boundary scan register uses the TAP controller to scan user-defined values
into the output buffers, capture values presented to input pins, and control the direction of
bidirectional pins. The instruction shift register cell nearest TDO (i.e., first to be shifted out)
is defined as bit zero. The last bit to be shifted out is bit 187. This register includes cells
for all device signal pins and clock pins along with associated control signals.

The MC68040V and MC68EC040V boundary scan register consists of three cell structure
types, O.Latch, I.Pin, and IO.Ctl, that are associated with a boundary scan register bit. All
boundary scan output cells capture the logic level of the device output latch during the
capture-DR state. Figures C-6 through C-9 illustrate these three cell types. Figure 6-6
illustrates the general arrangement of these cells.

C-14 M68040 USER’S MANUAL MOTOROLA

DATA FROM
SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER

1 = EXTEST AND CLAMP
0 = OTHERWISE

1
MUX

1

G1

1D

C1

UPDATE BSR

1D

C11
MUX

1

G1

Figure C-6. Output Latch Cell (O.Latch)

FROM
LAST
CELL

TO
SYSTEM

LOGIC

SHIFT DRCLOCK DR

TO NEXT CELL

1D

C1
1

MUX
1

G1

INPUT
 PIN

Figure C-7. Input Pin Cell (I.Pin)

MOTOROLA M68040 USER’S MANUAL C-15

OUTPUT CONTROL
FROM SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER
(1 = DRIVE)

1 = EXTEST AND CLAMP
0 = OTHERWISE

1D

C1

1
MUX

1

G1

1
MUX

1

G1

UPDATE BSR

1D

C1

R

RESET

Figure C-8. Output Control Cells (IO.Ctl)

FROM
LAST CELL

OUTPUT
DATA

INPUT
DATA

OUTPUT
ENABLE

TO NEXT CELL

TO NEXT
PIN PAIR

I/O.CTL

O.LATCH

I.PIN

EN BIDIRECTIONAL
PIN

Figure C-9. General Arrangement of Bidirectional Pins

C-16 M68040 USER’S MANUAL MOTOROLA

All MC68040V and MC68EC040V bidirectional pins include two boundary scan data cells,
an input, and an output. One of five associated boundary scan control cells controls each
bidirectional pin. If these cells contain a logic one, the associated bidirectional or three-
state pin will be configured as an output and enabled. The cell captures the current value
during the capture-DR state. All five control cells are reset (i.e., logic zero) in the test-
logic-reset state. The five bidirectional/three-state control cells, their boundary scan
register bit positions, and the 188 boundary scan bit definitions are not currently available.

C.6.3 Restrictions

Control over the output enable signals using the boundary scan register and the EXTEST
and HIGHZ instructions requires a compatible circuit-board test environment to avoid
destructive configurations. The user is responsible for avoiding situations in which the
MC68040V and MC68EC040V output drivers are enabled into actively driven networks.

The MC68040V and MC68EC040V include on-chip circuitry to detect the initial application
of power to the device. Power-on reset (POR, which is an internal signal), the output of
this circuitry, is used to reset both the system and the IEEE 1149.1A logic. The purpose of
applying POR to the IEEE 1149.1A circuitry is to avoid the possibility of bus contention
during power-on. The time required to complete device power-on is power supply
dependent. However, the TAP controller remains in the test-logic-reset state while POR is
asserted. The TAP controller does not respond to user commands until POR is negated.

The following restrictions apply:
1. Leaving the TAP controller test-logic-reset state negates the ability to achieve the

lowest power consumption during the LPSTOP instruction, but does not otherwise
affect device functionality.

2. The TCK input is not blocked in LPSTOP mode. To consume minimal power, the
TCK input should be externally connected to VCC or ground.

3. The TMS and TDI pins include on-chip pull-up resistors. In LPSTOP mode, these
two pins should remain either connected to VCC or ground to achieve minimal
power consumption.

4. The external system must assert RSTI within eight bus clocks of exiting from the
EXTEST JTAG instruction or else on the tenth bus clock, the MC68040V and
MC68EC040V will begin normal reset processing.

C.6.4 Disabling The IEEE Standard 1149.1A Operation

There are two considerations for non-IEEE standard 1149.1A operation. First, TCK does
not include an internal pullup resistor and should not be left unconnected to preclude mid-
level inputs. The second consideration is to ensure that the IEEE standard 1149.1A test
logic remains transparent to the system logic by providing the ability to force the test-logic-
reset state. Figure C-10 illustrates a circuit to disable the IEEE standard 1149.1A test logic
for the MC68040V and MC68EC040V.

MOTOROLA M68040 USER’S MANUAL C-17

TDI

TMS

TCLK

TDO NO CONNECTION

+5V

1K

Figure C-10. Circuit Disabling IEEE Standard 1149.1A

C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics

The following paragraphs provide information on JTAG electrical and timing specifications
This section is subject to change. For the most recent specifications, contact a Motorola
sales office or complete the registration card at the beginning of this manual.

JTAG DC Electrical Specifications—PRELIMINARY

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 5.5 V

Input Low Voltage VIL GND 0.8 V

Overshoot — — TBD V

TCK Input Leakage Current @ 0.5–2.4 V Iin TBD TBD µA

TDO Hi-Z (Off-State) Leakage Current @ 0.5–2.4 V ITST TBD TBD µA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI

IL TBD TBD mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI

IH TBD TBD mA

TDO Output High Voltage IOH = 5ma VOH 2.4 — V

TDO Output Low Voltage IOL = 5ma VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz Cin — TBD pF

*Capacitance is periodically sampled rather than 100% tested.

C-18 M68040 USER’S MANUAL MOTOROLA

B

ADRIVE TO
0.5 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0
V
0.8 V

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE TO
0.5 V

DRIVE TO
2.4 V

BCLK

OUTPUTS(1)

INPUTS(2)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock.

LEGEND:

A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.

DRIVE
TO 2.4 V

1.5 V 1.5 V

Figure C-11. Drive Levels and Test Points for AC Specifications

MOTOROLA M68040 USER’S MANUAL C-19

This device contains protective
circuitry against damage due to high
static voltages or electrical fields;
however, it is advised that normal
precautions be taken to avoid
application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliability of
operation is enhanced if unused
inputs are tied to an appropriate
logic voltage level (e.g., either GND
or VCC).

C.7 MC68040V AND MC68EC040V ELECTRICAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal
characteristics for the MC68040V and MC68EC040V. This section is subject to change.
For the most recent specifications, contact a Motorola sales office.

C.7.1 Maximum Ratings

Characteristic Symbol Value Unit

Supply Voltage VCC –0.3 to +3.6 V

Input Voltage Vin –0.5 to +5.5 V

Maximum Operating Junction Temperature TJ TBD °C

Minimum Operating Ambient Temperature TA 0 °C

Storage Temperature Range Tstg –55 to 150 °C

C.7.2 Thermal Characteristics

Characteristic Symbol Value Rating

Thermal Resistance, Junction to Case—
PGA Package

 θJC 3 °C/W

Thermal Resistance, Junction to Case—
Surface Mount Package

 θJC TBD °C/W

C-20 M68040 USER’S MANUAL MOTOROLA

C.7.3 DC Electrical Specifications (VCC = 3.3 Vdc ±10 %)

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 5.5 V

Input Low Voltage VIL GND 0.8 V

Overshoot — — TBD V

Input Leakage Current @ 0.5/2.4 V During Normal Operation Only
AVEC , BCLK, BG, CDIS , MDIS1, IPL≈, RSTI , SCx,
TBI, TLNx, TCI , TCK, TEA

Iin TBD TBD µA

Hi-Z (Off-State) Leakage Current @ 0.5/2.4 V During Normal Operation
An, BB, CIOUT , Dn, LOCK , LOCKE, R /W, SIZx, TA, TDO,
TIP, TMx, TLNx, TS, TTx, UPAx

ITSI TBD TBD µA

Signal Low Input Current, VIL = 0.8 V
TMS, TDI

IIL TBD TBD mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI

IIH TBD TBD mA

Output High Voltage IOH = 5ma VOH 2.4 — V

Output Low Voltage IOL = 5ma VOL — 0.5 V

Capacitance2, Vin = 0 V, f = 1 MHz Cin — TBD pF

NOTES:
1. There is no MDIS on the MC68EC040V.
2. Capacitance is periodically sampled rather than 100% tested.

C.7.4 Power Dissipation

25 MHz 33 MHz

Worst Case (VCC = 3.6 V , TA = 0°C)

MC68040V TBD 2 W

MC68EC040V TBD 2 W

LPSTOP Mode - No output loads, not driving bus

MC68040V TBD TBD

MC68EC040V TBD TBD

Typical Values (VCC = 3.3 V, TJ = TBD°C)* - Normal Operation

MC68040V TBD 1.5 W

MC68EC040V TBD 1.5 W

*This information is for system reliability purposes.

MOTOROLA M68040 USER’S MANUAL C-21

C.7.5 Clock AC Timing Specifications (See Figure C-12)

PRELIMINARY

0 - 16.67 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

Frequency of Operation 0 16.67 16.67 25 16.67 33 MHz

5 BCLK Cycle Time 60 — 40 60 30 60 ns

6,71 BCLK Rise and Fall Time — 2 — 2 — 2 ns

8 BCLK Duty Cycle Measured at 1.5 V 45 55 45 55 45 55 %

8a2 BCLK Pulse Width High Measured at 1.5 V 28.5 — 18 22 13.63 16.66 ns

8b2 BCLK Pulse Width Low Measured at 1.5 V 28.5 — 18 22 13.63 16.66 ns

9 BCLK edge to edge jitter — — — 20 — 20 ps

NOTES:
1. Rising and falling edges of BCLK must be monotonic.
2. Specification value at maximum frequency of operation. BCLK must not exceed 16.67 MHz for low

 frequency operation

VM

5

6 7

VIH

VIL
BCLK

8B8A

Figure C-12. Clock Input Timing Diagram

C-22 M68040 USER’S MANUAL MOTOROLA

C.7.6 Output AC Timing Specifications (see Figures C-13* to C-21)

PRELIMIINARY

0–16.67 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

11
BCLK to Address, CIOUT , LOCK, LOCKE ,
PSTx, R /W, SIZx, TLNx, TMx, TTx, UPAx
Valid

9 30 9 30 6.5 25 ns

12 BCLK to Output Invalid (Output Hold) 9 — 9 — 6.5 — ns

13 BCLK to TS Valid 9 30 9 30 6.5 25 ns

14 BCLK to TIP Valid 9 30 9 30 6.5 25 ns

18 BCLK to Data-Out Valid 9 32 9 32 6.5 27 ns

19 BCLK to Data-Out Invalid (Output Hold) 9 — 9 — 6.5 — ns

20 BCLK to Output Low Impedance 9 — 9 — 6.5 — ns

21 BCLK to Data-Out High Impedance 9 20 9 20 6.5 17 ns

38
BCLK to Address, CIOUT , LOCK, LOCKE ,
R/W , SIZx, TS, TLNx, TMx, TTx, UPAx High
Impedance

 9 18 9 18 6.5 15 ns

39 BCLK to BB, TA, TIP High Impedance 19 28 19 28 14 25 ns

40 BCLK to BR , BB Valid 9 30 9 30 6.5 23 ns

43 BCLK to MI Valid 9 30 9 30 6.5 25 ns

48 BCLK to TA Valid 9 30 9 30 6.5 25 ns

50 BCLK to IPEND, PSTx, RSTO Valid 9 30 9 30 6.5 25 ns

W RSTI active to SCD inactive. 8 100 8 100 8 100 ns

A IPL≈ to SCD invalid 8 100 8 100 8 100 ns

NOTE:
* Output timing is specified for a valid signal measured at the pin. Timing is specified driving an unterminated
30-Ω transmission line with a length characterized by a 2.5-ns one-way propagation delay. Buffer output
impedance is typically 30 Ω; the buffer specifications include approximately 5 ns for the signal to propagate
the length of the transmission line and back.

MOTOROLA M68040 USER’S MANUAL C-23

C.7.7 Input AC Timing Specifications (See Figures C-13 to C-21)

PRELIMINARY

0–16.67 MHz 25 MHz 33 MHz

Num Characteristic Min Max Min Max Min Max Unit

15 Data-In Valid to BCLK (Setup) 5 — 5 — 4 — ns

16 BCLK to Data-In Invalid (Hold) 4 — 4 — 4 — ns

17 BCLK to Data-In High Impedance (Read
Followed by Write)

— 49 — 49 — 36.5 ns

22a TA Valid to BCLK (Setup) 10 — 10 — 10 — ns

22b TEA Valid to BCLK (Setup) 10 — 10 — 10 — ns

22c TCI Valid to BCLK (Setup) 10 — 10 — 10 — ns

22d TBI Valid to BCLK (Setup) 11 — 11 — 10 — ns

23 BCLK to TA, TEA, TCI , TBI Invalid (Hold) 2 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 5 — 5 — 5 — ns

25 BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns

41a BB Valid to BCLK (Setup) 7 — 7 — 7 — ns

41b BG Valid to BCLK (Setup) 8 — 8 — 7 — ns

41c CDIS , MDIS* Valid to BCLK (Setup) 10 — 10 — 8 — ns

41d IPL≈ Valid to BCLK (Setup) 4 — 4 — 3 — ns

42 BCLK to BB, BG, CDIS , MDIS* , IPL≈ Invalid
(Hold)

 2 — 2 — 2 — ns

44a Address Valid to BCLK (Setup) 8 — 8 — 7 — ns

44b SIZx Valid to BCLK (Setup) 12 — 12 — 8 — ns

44c TTx Valid to BCLK (Setup) 6 — 6 — 8.5 — ns

44d R/W Valid to BCLK (Setup) 6 — 6 — 5 — ns

44e SCx Valid to BCLK (Setup) 10 — 10 — 11 — ns

45 BCLK to Address SIZx, TTx, R/W , SCx
Invalid (Hold)

 2 — 2 — 2 — ns

46 TS Valid to BCLK (Setup) 5 — 5 — 9 — ns

47 BCLK to TS Invalid (Hold) 2 — 2 — 2 — ns

49 BCLK to BB High Impedance
(Processor Assumes Bus Mastership)

— 9 — 9 — 9 ns

51 RSTI Valid to BCLK 5 — 5 — 4 — ns

52 BCLK to RSTI Invalid 2 — 2 — 2 — ns

B LFO change to valid IPL≈ , RSTI (setup) 5 — 5 — 5 ns

D IPEND valid to IPL≈ invalid (Hold) 0 — 0 — 0 — ns

V RSTI pulse width, leaving LPSTOP mode 10 — 10 — 10 — ns

Z IPL≈, RSTI valid to LFO change (Hold) 500 — 500 — 500 — ns

NOTE: *Not on the MC68EC040V.

C-24 M68040 USER’S MANUAL MOTOROLA

22
23

11

BCLK

A31–A0

TRANSFER
ATTRIBUTES

D31–D0 IN
(READ)

12

15
16

D31–D0 OUT
(WRITE)

19
21

13 12

14

18

20

TA

TEA

TCI

TBI

TIP

TS

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, LOCK,
 LOCKE, CIOUT

AVEC

24
25

12

Figure C-13. Read/Write Timing

MOTOROLA M68040 USER’S MANUAL C-25

BCLK

A31–A0

TRANSFER
ATTRIBUTES

38

20

11

TS

TIP

BB OUT
12

39

BG

BR

41 42

12

21

D31–D0 OUT
(WRITE)

20

40

13

14

MI

43
12

12
39

40

NOTE: Transfer Attribute Signals = UPAx, SIZx, TTx, TMx, TLNx, R/W, CIOUT

LOCK, LOCKE

Figure C-14. Bus Arbitration Timing

C-26 M68040 USER’S MANUAL MOTOROLA

D31–D0 IN
(ALT. MASTER

WRITE)

D31–D0 OUT
(ALT. MASTER

READ)

44

BCLK

A31–A0 IN

15 16

46
47

12

41
48

12
20 39

42
49

43

19
21

18

TS IN

MI

TA OUT

BB IN

SIZx, TTx,
R/W IN

45

SC1, SC0

Figure C-15. Snoop Hit Timing

MOTOROLA M68040 USER’S MANUAL C-27

TBI

TS IN

MI

SIZx, TTx,
R/W IN

44

BCLK

A31–A0 IN

TEA

47

SC1, SC0 SNOOP

43

TA

45

22
23

BB IN
41

42

43

12

46

Figure C-16. Snoop Miss Timing

C-28 M68040 USER’S MANUAL MOTOROLA

50

BCLK

12

42

41

IPEND

RSTO

CDIS

MDIS*

IPL2–IPL0

42

PST3–PST0

12

RSTI

51 52

41

NOTE: *Not on MC68EC040V.

Figure C-17. Other Signal Timing

MOTOROLA M68040 USER’S MANUAL C-29

BCLK

A31–A0 $FFFFFFFE

TT1–TT0 $3

TM2–TM0 $0

SIZ1–SIZ0 $2

R/W

BG

D15–D0 DATA

PST3–PST0 $6

TA

BB IN

LOCK, LOCKE

BR

SCD

11 12

38

42

18 19

12

23

22

12

12

BB OUT

12

39

Figure C-18. Going into LPSTOP with Arbitration

C-30 M68040 USER’S MANUAL MOTOROLA

BCLK

$FFFFFFFE

$3

$0

$2

R/W

D15–D0 DATA

PST3–PST0 $6

TA

BG

SCD

1211

BB OUT

A31–A0

TT1–TT0

TM2–TM0

SIZ1–SIZ0

18
19

22

23

12

12

BR

Figure C-19. LPSTOP no Arbitration, CPU is Master

MOTOROLA M68040 USER’S MANUAL C-31

BCLK

IPEND

LFO

SCD

IPL2–IPL0 VALID INTERRUPT

124 CLOCKS NORMAL OPERATION

D

A

B

Z

Figure C-20. Exiting LPSTOP with Interrupt

BCLK

LFO

SCD

124 CLOCKS
NORMAL

OPERATION

B

V

W

RSTI

Z

Figure C-21. Exiting of LPSTOP with RESET

MOTOROLA M68040 USER’S MANUAL D-1

APPENDIX D
M68000 FAMILY SUMMARY

This appendix summarizes the characteristics of the microprocessors in the M68000
family. The M68000PM/AD, M68000 Family Programmer's Reference Manual, includes
more detailed information on the M68000 Family differences.

Attribute MC68000 MC68008 MC68010 MC68020 MC68030 MC68040

Data Bus Size (Bits) 16 8 16 8, 16, 32 8, 16, 32 32

Address Bus Size (Bits) 24 20 24 32 32 32

Instruction Cache (In Bytes) — — 3* (Words) 256 256 4096

Data Cache (In Bytes) — — — — 256 4096

*The MC68010 supports a three-word cache for the loop mode.

Coprocessor Interface

MC68000, MC68008, MC68010 Emulated in Software

MC68020, MC68030 In Microcode

MC68040 Emulated in Software (On-Chip Floating-Point Unit)

Word/Long-Word Data Alignment

MC68000, MC68008, MC68010 Word/Long-Word Data, Instructions, and Stack
Must Be Word Aligned

MC68020, MC68030, MC68040 Only Instructions Must Be Word Aligned
(Data Alignment Improves Performance)

Control Registers

MC68000, MC68008 None

MC68010 SFC, DFC, VBR

MC68020 SFC, DFC, VBR, CACR, CAAR

MC68030 SFC, DFC, VBR, CACR, CAAR, CRP, SRP, TC, TT0,
TT1, MMUSR

MC68040 SFC, DFC, VBR, CACR, URP, SRP, TC, DTT0, DTT1,
ITT0, ITT1, MMUSR

D-2 M68040 USER’S MANUAL MOTOROLA

Stack Pointer

MC68000, MC68008, MC68010 USP, SSP

MC68020, MC68030, MC68040 USP, SSP (MSP, ISP)

Status Register Bits

MC68000, MC68008, MC68010 T, S, I0/I1/I2, X/N/Z/V/C

MC68020, MC68030, MC68040 T0, T1, S, M, I0/I1/I2, X/N/Z/V/C

Function Code/Address Space

MC68000, MC68008 FC2–FC0 = 7 Is Interrupt Acknowledge Only

MC68010, MC68020, MC68030, MC68040 FC2–FC0 = 7 Is CPU Space

MC68040 User, Supervisor, and Acknowledge

Indivisible Bus Cycles

MC68000, MC68008, MC68010 Use AS Signal

MC68020, MC68030 Use RMC Signal

MC68040 Use LOCK and LOCKE Signal

Stack Frames

MC68000, MC68008 Supports Original Set

MC68010 Supports Formats $0, $8

MC68020, MC68030 Supports Formats $0, $1, $2, $9, $A, $B

MC68040 Supports Formats $0, $1, $2, $3, $7

MC68EC040, MC68LC040 Supports Formats $0, $1, $2, $3, $4, $7

Addressing Modes

MC68020, MC68030, and MC68040 Extensions Memory indirect addressing modes, scaled index, and
larger displacements. Refer to specific data sheets
for details.

MOTOROLA M68040 USER’S MANUAL D-3

MC68020, MC68030, and MC68040 Instruction Set Extensions

Applies To

Instruction Notes MC68020 MC68030 MC68040

Bcc Supports 32-Bit Displacements � � �

BFxxxx Bit Field Instructions (BCHG, BFCLR, BFEXTS,
BFEXTU, BFFFO, BFINS, BFSET, BFTST)

� � �

BKPT New Instruction Functionally � �

BRA Supports 32-Bit Displacement � � �

BSR Supports 32-Bit Displacement � � �

CALLM New Instruction �

CAS, CAS2 New Instructions � � �

CHK Supports 32-Bit Operands � � �

CHK2 New Instruction � � �

CINV Cache Maintenance Instruction �

CMPI Supports Program Counter Relative Addressing Modes � � �

CMP2 New Instruction � � �

CPUSH Cache Maintenance Instruction �

cp Coprocessor Instructions � �

DIVS/DIVU Supports 32-Bit and 64-Bit Operands � � �

EXTB Supports 8-Bit Extend to 32-Bits � � �

FABS New Instruction �

FADD New Instruction �

FBcc New Instruction �

FCMP New Instruction �

FDBcc New Instruction �

FDIV New Instruction �

FMOVE New Instruction �

FMOVEM New Instruction �

FMUL New Instruction �

FNEG New Instruction �

FNOP New Instruction �

FRESTORE New Instruction �

FSGLDIV New Instruction �

FSGLMUL New Instruction �

FSAVE New Instruction �

FScc New Instruction �

FSQRT New Instruction �

FSUB New Instruction �

FTRAPcc New Instruction �

FTST New Instruction �

LINK Supports 32-Bit Displacement � � �

D-4 M68040 USER’S MANUAL MOTOROLA

MC68020, MC68030, and MC68040 Instruction Set Extensions (Continued)

Applies To

Instruction Notes MC68020 MC68030 MC68040

MOVE16 New Instruction �

MOVEC Supports New Control Registers � � �

MULS, MULU Supports 32-Bit Operands � � �

PACK New Instruction � � �

PFLUSH MMU Instruction � �

PLOAD MMU Instruction �

PMOVE MMU Instruction �

PTEST MMU Instruction � �

RTM New Instruction �

TST Supports Program Counter Relative Addressing Modes � � �

TRAPcc New Instruction � � �

UNPK New Instruction � � �

MOTOROLA M68040 USER’S MANUAL E-1

APPENDIX E
FLOATING-POINT EMULATION (M68040FPSP)

The MC68040 is user-object-code compatible with the MC68030 and MC68881/MC68882.
The MC68040 floating-point unit is optimized to directly execute the most commonly used
subset of the extensive MC68881/MC68882 instruction set through hardware. Special
traps and stack frames for the unimplemented instructions and data types provide support
for the remaining instructions. These functions coupled with Motorola’s floating-point
software package (M68040FPSP) ensure complete user-object-code compatibility.

There are two versions of the M68040FPSP, one for applications compiled for the
MC68881/MC68882 (kernel version) and the other for applications compiled for the
MC68040 (library version). System integrators can install the kernel version as part of an
MC68040-based operating system. The kernel version is used to execute preexisting user
object code written for the MC68881/MC68882 as part of the operating system. User
applications need not be recompiled or modified in any way once the kernel version is
installed.

The MC68040 compiler writer and system integrator use the library version which provides
less overhead than the kernel version. Overhead is reduced because the appropriate
floating-point exception routine is called directly rather than taking an unimplemented
instruction trap. The library is M68000 application binary interface (ABI) and IEEE
exception-reporting compliant; it is not UNIX® exception-reporting compliant.

The M68040FPSP provides the following features:

• Arithmetic and Transcendental Instructions

• IEEE-Compliant Exception Handlers

• MC68040 Unimplemented Data Type and Data Format Handlers

• Can Reside in a 64-Kbyte ROM

• Code Is Reentrant

The M68040FPSP satisfies the IEEE Standard 754 for Binary Floating-Point Arithmetic.
The average 25-MHz performance of the transcendental function subroutines is equivalent
to that of the 33-MHz MC68881/MC68882. The error bound is equivalent to that of the
MC68881/MC68882.

®UNIX is a registered trademark of AT&T Bell Laboratories.

E-2 M68040 USER’S MANUAL MOTOROLA

System designers integrate the M68040FPSP into the system so that the user object code
runs unchanged and remains totally transparent to the end user. The M68040FPSP can
be installed into any operating system. It provides kernel routines to support
unimplemented instructions and unsupported data types. Unimplemented instructions for
end-user applications compiled for the MC68881/MC68882 are contained in a library for
improved performance. For all MC68040 floating-point instructions, the coprocessor ID
field must be 001. Table E-1 lists the floating-point functions implemented as instructions
by the MC68040.

Table E-1. MC68040 Floating-Point Instructions

Floating-Point Instructions

Name Description Name Description

FMOVE Move to FPx or CR FDMOVE Double-Precision Move

FSMOVE Single-Precision Move FABS Absolute Value

FCMP Compare FDABS Double-Precision Absolute Value

FSABS Single-Precision Absolute Value FNEG Negate

FTST Test FDNEG Double-Precision Negate

FSNEG Single-Precision Negate FSUB Subtract

FADD Add FMUL Multiply

FDIV Divide FScc Set According to Condition

FBcc Branch Conditionally FTRAPcc Trap Conditionally

FDBcc Test Condition, Decrement, and Branch FSSUB Single-Precision Subtract

FSADD Single-Precision Add FSDIV Single-Precision Divide

FSMUL Single-Precision Multiply FDSUB Double-Precision Subtract

FDADD Double-Precision Add FDDIV Double-Precision Divide

FDMUL Double-Precision Multiply FSSQRT Single-Precision Square Root

FSQRT Square Root FNOP No Operation

FSAVE Save Internal State FSGLMUL Single-Precision Multiply

FMOVEM Move Multiple Registers FRESTORE Restore Internal State

MOTOROLA M68040 USER’S MANUAL E-3

Table E-2 list the arithmetic and transcendental instructions that the M68040FPSP
implements for the MC68040. New instructions have been added to the
MC68881/MC68882 base instructions.

Table E-2. M68040FPSP Floating-Point Instructions

Arithmetic Instructions

Name Description Name Description

FADD* Add FSUB* Subtract

FSADD*† Single-Precision Add FSSUB*† Single-Precision Subtract

FDADD*† Double-Precision Add FDSUB*† Double-Precision Subtract

FMUL* Multiply FDIV* Divide

FSMUL*† Single-Precision Multiply FSDIV*† Single-Precision Divide

FDMUL*† Double-Precision Multiply FDDIV*† Double-Precision Divide

FINT Integer Part FINTRZ Integer Part (Truncated)

FABS* Absolute Value FNEG* Negate

FGETEXP Get Exponent FGETMAN Get Mantissa

FTST* Test Operand FCMP* Compare

FREM IEEE Remainder FSCALE Scale Exponent

FMOVE* Move FP Data Register FSMOVE* Single-Precision Move

FDMOVE* Double-Precision Move FSQRT* Square Root

FSSQRT* Single-Precision Square Root FDSQRT* Double-Precision Square Root

FMOD Modulo Remainder FSMOD Single-Precision Modulo Remainder

FDMOD Double-Precision Modulo Remainder

Transcendental Instructions

Name Description Name Description

FCOS Cosine FSIN Sine

FACOS Arc Cosine FASI N Arc Sine

FCOSH Hyperbolic Cosine FSINH Hyperbolic Sine

FSINCOS Simultaneous Sine & Cosine FATAN Arc Tangent

FTAN Tangent FATANH Hyperbolic Arc Tan

FTANH Hyperbolic Tangent FLOG10 Log Base 10

FLOG2 Log Base 2 FLOGNP1 Log Base e of (x + 1)

FLOGN Log Base e FETOXM1 (e to the x Power) –1

FETOX e to the x Power FTWOTOX 2 to the x Power

FTENTOX 10 to the x Power

*The MC68040 provides these functions for all data formats except single, double, and extended denormalized data
types and extended unnormalized data types. The M68040FPSP provides the functions for the special data types.

†Additional functions not provided by the MC68881/MC68882.

E-4 M68040 USER’S MANUAL MOTOROLA

Table E-3 lists all the data formats and types supported by the MC68040 FPU. Also
included are the data formats and types that the MC68040 FPU does not support but that
are supported by the M68040FPSP.

Table E-3. Support for Data Types and Data Formats

Data Formats

Data Types SGL DBL EXT Decimal Byte Word Long
Word

Normalized † † † * † † †

Zero † † † * † † †

Infinity † † † *

NAN † † † *

Denormalized ‡ ‡ * *

Unnormalized * *

* Supported by M68040FPSP
†Supported by the MC68040 FPU
‡Supported by M68040FPSP after being converted to extended precision by the MC68040 FPU

The M68040FPSP provides system designers with a simple path to port existing
MC68881/MC68882 exceptions handlers to the MC68040. It also provides an entry point
for the IEEE-defined exception conditions listed in Table E-4.

Table E-4. Exception Conditions

Mnemonic Description

BSUN Branch/Set on Unordered

SNAN Signaling Not-a-Number

OPERR Operand Error

OVFL Overflow

UNFL Underflow

DZ Divide by Zero

INEX1/INEX2 Inexact Result 1/2

The M68040FPSP is written in M68000 family assembly code and comes with an
installation guide. Tape contains both Motorola syntax and UNIX “as” syntax. Tape
cartridge (M68040FPSPT) media is available in CPIO and TAR formats. Also available is
9-track (M68040FPSPP) media in high or low density as well as CPIO and TAR formats. A
license is required to obtain rights to use and distribute the M68040FPSP. License terms
include the right to use and modify source code and redistribute resulting object code.

MOTOROLA M68040 USER’S MANUAL INDEX-1

INDEX

–A–

Access Control Unit, 1-2, B-4, B-5
Access Control Unit Register, B-5;

Field Definitions, B-6–B-7
Access Error, 1-5, 3-22, 3-23, 3-24, 5-14, 7-37,

7-43, 8-20, 9-21, A-6, A-7, B-11
Access Fault, 3-9, 8-6, 8-7
Access Serialization, 7-44
Acknowledge Bus Cycle

Breakpoint Operation, 7-29, 7-35, 9-20
Interrupt Operation, 5-12, 7-31,

7-29–7-35, 8-2
Address Bus, 7-1
Address Collisions, 7-43
Address Error, 7-6, 7-43, 8-8
Address Registers, 1-8, 2-4
Addressing Modes, 1-10, 2-5, 10-3, 10-4

Brief Extension Word Format, 10-7
Full Extension Word Format, 10-7
Index Scaling, 1-9, 1-10
Index Sizing, 1-9, 1-10
Memory Indirect, 2-2
Postincrement, 1-9
Predecrement, 1-9
Program Counter Indirect, 1-9, 1-10
Program Counter Relative, 7-6
Register Indirect, 1-9, 1-10

Address Translation, 3-1
Address Translation Cache, 1-4, 3-2, 3-3, 3-4,

3-7, 3-26, 5-8, 5-14, 8-7, 8-18
Address Translation Cache Entry, 3-15, 3-30, 4-2

Field Definitions, 3-27, 3-28
Airflow, 11-29, 11-31
Alternate Bus Master, 4-1, 4-8, 4-9, 5-4, 5-5, 5-8,

5-9
Arithmetic Floating-Point Exceptions,

see Floating-Point Exceptions
Automatic Test Pattern Generation (ATPG), 6-5
Autovector, 7-33, 7-34

–B–

Boundary Scan Control, 6-6, 6-9
Breakpoint Operations, 8-12

Bus Cycle, 7-29, 7-35, 9-20
BSDL Description, 6-15

Buffer Selection, 7-69
Burst Mode Operations, 4-3, 4-11, 5-9
Burst Bus Cycles, see Bus Cycles
Burst-Inhibited Bus Cycles, see Bus Cycles
Bus Arbitration, 7-44–7-58

Disregard Request Condition, 7-50
Indeterminate Condition, 7-49, 7-58

Bus Arbitration States, 7-46–7-49
Explicit Bus Ownership, 7-45
Implicit Bus Ownership, 7-67
with Direct Memory Access, 7-56

Bus Controller, 1-5, 7-6, 7-10, 7-13, 7-20, 7-45,
8-7, 10-8

Bus Cycles,
Burst, 5-9, 7-9, 7-10, 7-12, 7-13, 7-22, 7-37,

7-38, 7-42, 7-70
Burst-Inhibited, 7-13, 7-22, 7-42, 7-45, 7-60
Line, 7-4, 7-9
Line Write, 7-22
Locked, 5-7, 7-49, 7-53, 7-55, 8-8
Push, 4-13
Read, 7-4, 7-10, 7-12, 7-32
Read-Modify-Write, 3-21, 7-26, 7-41, 7-45, see

also Bus Cycles, Locked
Write, 7-4, 7-20

Bus Error, 3-22, 3-30, 4-12, 7-37, 7-42,7-43,
9-21

Bus Operations
Access Serialization, 7-44
Synchronization, 7-44
Conditional Branch, 7-50
Data Cache, 7-44
Double Bus Fault, 8-8, 8-18
Exceptions, 8-8
Interrupt Pending Procedure, 7-30
Locked Transfer, 8-8
Misaligned Access, 4-3, 4-11, 10-3
Misaligned Operand, 7-6, 7-37
Relinquish and Retry, 4-12, 7-41, 7-42, 7-55
Reset, 7-66

Bus Synchronization, 7-44
BYPASS, 6-3
Byte Enable Signals, 7-4

PAL Equation, 7-4
Byte Offset, 7-3

INDEX-2 M68040 USER’S MANUAL MOTOROLA

–C–

Cache, 1-4, 2-8
Burst Mode Operations, 4-11
Data, 2-3, 2-8, 3-1, 3-12, 7-44, 8-7, 8-18
Exceptions, 8-7, 8-18
Instruction Prefetches, 4-13
Instruction, 3-1, 8-7, 8-18
Misaligned Accesses, 4-11
Page Descriptors, 4-5
Replacement Algorithm, 4-4
Retry Operation, 4-12
Shared Data, 4-9, 4-10

Cache Coherency, 4-10
Cache Controller, 3-2, 3-28, 4-4, 4-8, 4-12
Cache Inhibited, see Caching Modes
Cache Line, 4-3

D-Bit, 4-6
Dirty, 4-3
Format, 4-2
Invalid, 4-3; Timing, 10-8
V-Bit, 4-3
Valid, 4-3

Caching Modes, 4-6
Cache Inhibited, 4-7
Copyback, 4-6, 7-60
Default, 4-6
Nonserialized, 4-6
Serialized, 4-6
Write-Through, 4-6

Caching Operation, 4-3
Calculate Stage, see Integer Unit Pipeline
CM Field, 4-6, 5-8, see also Descriptors
Conditional Branch, 7-50
Conditional Tests, 9-15, 9-17

Floating-Point IEEE Tests, 9-17, 9-18, 9-25
Unordered Conditions, 9-17, 9-18

Control Signals, 7-1, 7-9
Copyback, see Caching Modes

–D–

Data Bus, 7-1, 7-3
Data Format, 1-9, 9-7

Extended Precision, 9-12, 9-21, 9-23, 9-24
Floating-Point Conversion of, 9-12
Packed Decimal Real, 9-22

Data Latch Enable (DLE) Mode, 1-2, 5-5, 5-14,
7-70, A-5

Data Registers, 2-4
Data Types, 9-7

Denormalized Numbers, 1-9, 9-12, 9-22,
9-23, 9-16

Infinities, 1-9
NANs, 1-9, 9-17
Normalized Numbers, 1-9, 9-16, 9-33
Unnormalized Numbers, 9-12, 9-22, 9-23
Zeros, 1-9

Decode Stage, see Integer Unit Pipeline
Demand Memory, 3-1
Denormalized Numbers, see Data Types
Descriptors, 3-8, 3-12

CM Field, 4-6, 5-8
Field Definitions, 3-13
Indirect, 3-9, 3-14; PDT Field, 3-17
Invalid, 3-9, 3-14
M-Bit, 3-21
Page, 3-12, 3-13, 3-17, 3-23, 3-24, 4-5
Resident, 3-14
S-Bits, 3-23
Table, 3-12, 3-13, 3-24; UDT Field, 3-19
U-Bit, 3-21
W-Bits, 3-24

Direct Memory Access (DMA), 7-56
Dirty Data, 4-1, 5-8
Disabling JTAG, 6-13
Disregard Request Condition, 7-55
Double Bus Fault, 7-43, 8-8, 8-18
DRVCTL.T, 6-3, 6-12
Dynamic Bus Sizing, 7-3

–E–

Effective Address (<ea>), 2-3
Execute Stage, see Integer Unit Pipeline
Exception Handler, 8-4
Exception Processing, 1-6, 2-5, 7-36, 7-37, 7-43,

A-6
Exception Vector, 2-7

Table, 8-1, 8-4
Exceptions

Access Error, 1-5, 3-23, 3-24, 5-14, 7-37,
7-43, 9-21, A-6

Access Fault, 3-9, 8-6, 8-7
Address Error, 7-6, 7-43, 8-8

MOTOROLA M68040 USER’S MANUAL INDEX-3

Bus Error, 3-22, 3-30, 4-12, 7-37, 7-42, 7-43,
9-21

Double Bus Fault, 7-43, 8-8, 8-18
F-Line, A-6, B-10
Format Error, 8-12, 8-28, 9-20
FTRAPcc, 9-20
Illegal Instruction, 8-9
Interrupt, 5-14, 7-29, 7-31, 8-12, 8-20
Memory Management Unit, 8-7
Priority, 8-19
Privilege Violation, 8-10
Reset, 5-11, 7-67, 7-68, 8-17
Trace, 8-10
Trap, 8-8, 8-20
Unimplemented Floating-Point Instruction, 1-2,

9-20
Unimplemented Instruction, 8-9

Explicit Bus Ownership, see Bus Arbitration
States

Extended Precision, see Data Format
External Bus Arbiter, 5-7, 5-10, 7-45, 7-46, 7-50,

7-53, 7-55, 7-58
EXTEST, 6-3, 6-12

–F–

F-line, A-6, B-10
Fetch Stage, see Integer Unit Pipeline
Floating-Point Exceptions, 1-8, 9-3

Arithmetic, 9-24
Branch/Set on Unordered (BSUN), 9-18,

9-25–9-27
Divide by Zero, 9-36
Floating-Point, 9-5
Inexact Result (INEX1 And INEX2), 9-24,

9-36–9-38, 9-42
Multiple Exceptions, 9-25
Operand Error (OPERR), 9-28–9-31
Overflow Exception (OVFL), 9-16, 9-31–9-33,

9-42
Round-Off Error, 9-11
SNAN Exception, 9-27, 9-28
Underflow (UNFL), 9-16, 9-33–9-36, 9-42

Floating-Point Pipeline, 9-1, 9-26
Floating-Point Registers

Floating-Point Status Register (FPSR), 1-8,
9-4, 9-15
AEXC Byte, 9-5; Setting the AEXC, 9-6

EXC Byte, 9-5, 9-13, 9-34, 9-37
Floating-Point Registers

FPCC Byte, 9-4
Quotient Byte, 9-5

Floating-Point Control Register (FPCR), 1-8,
9-3, 9-11, 9-18
ENABLE Byte, 9-3, 9-25; Encodings, 9-3
MODE Byte, 9-3, 9-31, 9-37

Floating-Point Data Register, 9-2, 9-15
Floating-Point Registers

Floating-Point Instruction Address Register
(FPIAR), 1-8, 9-6, 9-32, 9-35, 9-38

Floating-Point State Frames, 7-38, 9-39;
Field Definitions, 9-42, 9-43

Floating-Point Unit (FPU), 1-2, 1-4
Exception Handler, 9-5
Floating-Point State Frame, 7-38
Format $4 Stack Frame, A-5
Integer Pipeline, 10-29
Programming Model, 9-2

Floating-Point User Exception Handler
BSUN, 9-26
Divide by Zero, 9-36
INEX, 9-28, 9-30, 9-32, 9-33, 9-35, 9-37, 9-38
OPERR, 9-29, 9-30
OVFL, 9-32, 9-33
SNAN, 9-28
UNFL, 9-35

Floating-Point Vector Numbers, 9-20
Forced Rounding Precision, 9-13, 9-31, 9-34
Format Error, 8-12, 8-28, 9-20

–H–

Heat Sink, 11-29, 11-31
HIGHZ, 6-3, 6-12

–I–

IEEE Aware Tests, see Conditional Tests
IEEE Standard 1149.1, see JTAG
Implicit Bus Ownership, see Bus Arbitration

States
Indeterminate Condition, see Bus Arbitration
Indirect Descriptor, see Descriptors
Instruction Execution, 2-5
Instruction Timing, 10-1–10-36
Instruction Prefetches, 4-13

INDEX-4 M68040 USER’S MANUAL MOTOROLA

Instructions
Forced Rounding Precision, 9-13, 9-31, 9-34
Privilege Violation Generating, 8-10
Trace Exception Generating, 8-10

Integer Unit, 1-4, 2-1, 7-3
Supervisor Programming Model, 1-7, 2-5, 2-6
User Programming Model, 1-6, 2-4

Integer Unit Pipeline, 1-3, 2-1–2-3, 10-5
<ea> Calculate Stage, 1-3, 2-1, 2-2, 10-3,

10-4, 10-6
<ea> Fetch Stage, 1-3, 2-1, 2-2, 2-3, 7-4, 10-3
Decode Stage, 2-1, 2-2
Execute Stage, 2-2, 5-12, 8-1, 8-7, 10-3, 10-4,

10-6
Write-Back Stage, 7-43, 10-4, see also Write-

Backs
Integer Unit Registers

Address Registers, 1-8, 2-4
Cache Control Register (CACR), 1-8, 2-8, 4-5,

8-17
Condition Code Register (CCR), 1-8, 2-5;

X-Bit, 2-5
Data Registers, 2-4
Function Code Registers, 1-8, 2-7
Index Registers, 1-8
Interrupt Stack Pointer (ISP), 8-4
Program Counter (PC), 1-8, 2-5, 8-4
Stack Pointer (SP), 1-8, 2-5; Supervisor, 2-6
Status Register (SR), 2-7, 8-2

S-Bit, 1-5
M-Bit, 2-6, 2-7, 8-4
I-Bits, 7-29, 8-13

Vector Base Register (VBR), 1-8, 2-7, 8-4,
8-17

Intermediate Result, 9-11, 9-13, 9-15, 9-16, 9-21,
9-31, 9-33, 9-37; Format, 9-12

Interrupt Exceptions, 5-14, 7-29, 7-31, 8-12, 8-20
Interrupts, 1-5

Acknowledged Bus Cycle, 5-12, 7-29–7-35,
7-31, 8-2

Pending Procedure, 7-30
Priority Level, 5-11
Priority Mask, 7-29, 8-2
Request, 8-13
Vector Numbers, 8-15

–J–

JTAG (IEEE Standard 1149.1), 5-15, 6-1
Boundary Scan Control, 6-6, 6-9
BSDL Description, 6-15
Disabling, 6-13
Electrical And Timing Specifications, 11-1
Instructions, see JTAG Instructions

JTAG Instructions
BYPASS, 6-3
DRVCTL.T, 6-3, 6-12
EXTEST, 6-3, 6-12
HI-Z, 6-3, 6-12
PRIVATE, 6-3
SAMPLE/PRELOAD, 6-3
SHUTDOWN, 6-3, 6-12

JTAG Output Drivers, 6-4, 6-5
JTAG Registers

Boundary Scan Data Register, 6-2, 6-4, 6-5,
6-13

Instruction Shift Register, 6-2–6-6
Test Data Register, 6-3, 6-2

JTAG Scan, A-5, B-5
Output Drivers, 6-4, 6-5
Registers, see JTAG Registers
System Clock Restriction, 6-3
TAP Controller, 6-1, 6-2, 6-6, 6-13

Junction Temperature, 11-29, 11-30

–L–

Line Filling, 7-6, 7-12, 7-13
Line Bus Cycles, see Bus Cycles
Locked Bus Cycles, see Bus Cycles
Logical Address, 2-3, 2-7, 3-29, 4-3, 3-2, 3-4

Format, 3-8
Space, 1-8; Defined 3-29

–M–

M68040FPSP Exception Handler, 9-23
BSUN, 9-26
OPERR, 9-30
OVFL, 9-31, 9-32
SNAN, 9-27, 9-28
Unimplemented Instruction, 9-35, 9-38

MOTOROLA M68040 USER’S MANUAL INDEX-5

MC68EC040
4-Kbyte Page Size, B-4
Access Control Registers, see Access Control

Unit
Address Space, B-5
DLE Mode, 1-2
Electrical Characteristics, 11-19
Exception Processing, B-10
Multiplexed Bus Mode, 1-2
Output Buffer Mode, 1-2
Special Modes of Operation, 1-2, B-5
Unimplemented Floating-Point Instruction

Exceptions, 1-2, B-10
MC68LC040

DLE Mode, 1-2, A-5
Electrical Characteristics, 11-15
Exception Processing, A-6
F-Line Exception, A-6
Main Features, A-2
Multiplex Bus Mode, 1-2, A-5
Output Buffers, A-5
Special Modes of Operation, 1-2
Unimplemented Floating-Point Instruction

Exceptions, 1-2, A-5
Memory Controller, 7-13
Memory Management Unit (MMU), 1-4

Cache Controller, 3-2
Disable Dynamically, 5-14
Memory Controller, 7-13
Translation Tables, 3-2

Memory Management Unit Registers, 3-33
Initializing, 3-32
MMU Status Register (MMUSR), 1-8, 3-3, 3-15

Field Definitions, 3-6, 3-7
Status Bits, 3-34

Supervisor Root Pointer (SRP), 1-8, 3-3
Translation Control Register (TCR), 1-8, 3-4;

Field Definitions, 3-4; E-Bit 3-33;
P-Bit, 3-32, 8-17

Transparent Translation Registers (TTR), 1-4,
1-7, 3-2, 3-3, 3-29, 3-30, 4-6, 5-7, 8-17;
Field Definitions, 3-5

User Root Pointer (URP), 1-8, 3-3
Misaligned Access, 4-3, 4-11, 10-3
Misaligned Operand, 7-6, 7-37
Multiplexed Bus Mode, 1-2, 5-4, 5-5, 7-69, A-5
Multiplexer, 7-3

–N–

NAN, see Data Types
Normalized, see Data Types

–O–

Operand Size, 1-9
Output Buffer Mode, 1-2, 7-69, 11-29

–P–

Packed Decimal Real, 9-22
Page Descriptor, see Descriptors
Page Index Field (PGI), 3-8
Page Size, 3-4, 3-12, 8-17

4 Kbytes, 3-9, 3-29, B-4
8 Kbytes, 3-6, 3-9, 3-29

Paged Memory, 3-1, 3-21
Page Offset Field, 3-8
Page State Information, 4-10
PDT Field 3-17, see also Descriptors
Physical Address, 3-2, 3-8, 3-9, 3-29, 4-3

Translation of, see Address Translation
Pointer Index Field (PI), 3-8
Power Dissipation, 11-29
PRIVATE, 6-3
Privilege Modes, 1-5

User, 1-6, 2-7
Supervisor, 1-6, 2-7, 3-3, 4-5

Processing States, 1-5–1-6
Push Bus Cycles, see Bus Cycles

–R–

Range Control, 9-13
Read-Modify-Write Bus Cycles, see Bus Cycles
Registers

Floating-Point Unit, see Floating-Point Unit
Registers

Integer Unit, see Integer Unit Registers
JTAG, see JTAG Registers
Memory Management Unit, see Memory

Management Unit Registers
Replacement Algorithm, 4-4
Reset Operation, 2-8, 3-4, 3-32, 4-3, 4-5, 5-9,

5-11, 7-66, 9-3, 9-4, 9-6, 9-39, 11-29, 11-30
Retry Operation, 4-12, 7-41, 7-42, 7-55
Root Index Field (RI), 3-8

INDEX-6 M68040 USER’S MANUAL MOTOROLA

Rounding Algorithm, 9-14
Rounding Mode, 9-3, 9-13, 9-16, 9-24, 9-37

Overflow And Underflow, 9-16, 9-30
Rounding Precision, 9-3, 9-13, 9-33, 9-37, 9-16

Forced, 9-31, 9-34

–S–

SAMPLE/PRELOAD, 6-3
Self-Modifying Code, 4-10
Shadow Registers, 2-1
SHUTDOWN, 6-3, 6-12
Signals

A31–A0, 7-1
AVEC, 7-33, 7-34
BB, 7-45–7-58
BCLK, 6-12, 7-1
BG, 7-45–7-58
BR, 7-45–7-58
CDIS, 4-5, 5-4, 5-5, 7-67, 7-69
CIOUT, 4-7
D31–D0, 7-1
DLE, 1-1, 1-2, 5-5, A-5, B-5
IPEND, 5-12, 7-29
IPL≈, 7-2, 7-29, 7-34, 7-67, 5-11, 6-5, 8-12,

10-8, A-5, B-8
JS0, 1-1, 1-2, A-5, B-5, B-8
JS1, 1-2, B-5, B-8
LOCK, 3-21, 4-13, 7-26, 7-45–7-58
LOCKE, 7-26, 7-45–7-58, 7-54
MDIS, 1-2, 3-1, 3-5, 3-32, 5-5, 7-67, B-5, B-8
MI, 7-60
PCLK, 6-12, 7-1
PSTx, 8-18
Relationship to System CLOCKs, 7-2
RSTI, 3-32, 6-5, 6-6, 6-13, 7-2, 7-66, 7-67,

8-17, B-8
RSTO, 8-18
SCx, 4-3, 7-60; Encodings 4-9
SIZx, 4-13, 7-3, 7-7; Encodings 4-11
TA, 4-11, 4-12, 4-13, 8-9, 8-12, 7-60, 8-9,

8-12, 9-20
TBI, 4-3, 4-11, 4-12, 4-13, 7-10, 7-20, 7-60
TCI, 4-11, 4-12
TCK, 6-2, 6-4, 6-6, 6-12
TDI, 6-2
TDO, 6-2, 6-4, 6-6

TEA, 4-12, 4-13, 7-60, 8-6, 8-7, 8-9,
8-12, 9-20

TLNx Encodings, 4-11
TMS, 6-2, 6-4
TMx, 4-13, 5-6
TRST, 6-2, 6-4, 6-13
TS, 7-60
UPAx, 3-5, 3-15, 3-28,7-60, B-6

Signal Descriptions, 5-2–5-3
Sink Data, 4-1, 4-9, 5-8
Small Output Buffer, A-5
Snoop Controller, 1-4, 5-7
Snooping, 4-1, 5-9

Cache Coherency, 4-10
Logic, 1-1, 1-5
Operation, 5-9

Snoop-Inhibited Operation, 7-61
Snooped External Read, 4-8
Source Data, 4-1, 4-8, 4-10, 5-8
Stack Frames

Access Error, 3-22, 8-20, A-7, B-11;
Fields Defined 8-24–8-27

Floating-Point Post-Instruction, A-7, B-11
Format $0, 8-21
Format $1, 8-21
Format $2, 8-22, 9-21, 9-22
Format $3, 8-23, 9-31, 9-32, 9-35, 9-38
Format $4, 8-23, A-5, B-11
Format $7, 8-24
MC68LC040, A-5
MC68EC040, B-11
SSW Field Format Defined, 8-24–8-26

State Data, 4-1, 5-9
State Frames, see Floating-Point State Frames
Sticky Bit, 9-6
Supervisor Address Space, 3-23, 8-4
Supervisor Mode, see Privilege Modes
Synchronization, 7-44
Synchronizer Circuit, 7-58

–T–

Table Descriptor, see Descriptors
Table Search, 3-9, 3-12, 3-24, 3-28
TAP Controller, 6-1, 6-2, 6-6, 6-13
TAP Controller States, 6-3–6-4
Tag Entry, see Address Translation Cache Entry
Thermal Management, 11-29, 11-30, 11-31

MOTOROLA M68040 USER’S MANUAL INDEX-7

Thermal Resistance, 11-29
Trace Exceptions, 8-10
Trace Mode, 2-7
Translation Table, 1-4, 3-2, 3-3, 3-6, 3-7, 3-12,

3-16, 3-32
Dynamically Allocated, 3-21
Page Frame Address, 3-9
Page-Level Tables, 3-7, 3-8
Pointer-Level Tables, 3-7
Protection Mechanisms, 3-23
Root-Level Tables, 3-7
Supervisor Root Pointer, 3-23

Transparent Translation, 3-5
Transparent Translation Registers,

see Memory Management Unit Registers
Trap Exceptions, 8-8, 8-20

–U–

UDT field 3-19, see also Descriptors
Unimplemented Data Type, 9-22, 9-23, D-2

Exception, 9-20, 9-39
Unimplemented Floating-Point Instruction,

9-21, A-6, D-2
Exception, 1-2, 9-20, 9-39

Unimplemented Instruction Exceptions,
see Exceptions

Unnormalized, see Data Types
Unordered Condition, 9-25
User Address Space, 3-23
Unsupported Data Types,

see Unimplemented Data Type
User-Programmable Attribute Bits, 5-7

–V–

Vector
Number, 7-31, 7-33, 7-34, 8-2
Offset, 8-15
Table, see Exception Vector Table

–W–

Word, see Data Format
Write Buffer, see Buffers
Write Bus Cycles, see Bus Cycles
Write-Back Stage, see Integer Unit Pipeline
Write-Backs, 2-1, 2-3

Block Diagram, 2-3
External Write, 2-3

Write-Through, see Caching Modes

Order this document by
 M68060/D

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Product Brief

Superscalar 32-Bit Microprocessors

MC68060
MC68LC060
MC68EC060

MOTOROLA, 1994

Microprocessor and Memory
Technologies Group

SEMICONDUCTOR PRODUCT INFORMATION

The superscalar M68060 represents a new line of Motorola microprocessor products. The first generation of the
M68060 product line consists of the MC68060, MC68LC060, and MC68EC060. All three microprocessors offer
superscalar integer performance of over 100 MIPS at 66 MHz. The MC68060 comes fully equipped with both a
floating-point unit (FPU) and a memory management unit (MMU) for high-performance embedded control and
desktop applications. For cost-sensitive embedded control and desktop applications where an MMU is required,
but the additional cost of a FPU is not justified, the MC68LC060 offers high performance at a low cost.
Specifically designed for low-cost embedded control applications, the MC68EC060 eliminates both the FPU and
MMU, permitting designers to leverage MC68060 performance while avoiding the cost of unnecessary features.
Throughout this product brief, all references to the MC68060 also refer to the MC68LC060 and the
MC68EC060, unless otherwise noted. Figure 1 illustrates a block diagram of the MC68060.

Figure 1. MC68060 Block Diagram

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

2 MC68060 PRODUCT INFORMATION MOTOROLA

Leveraging many of the same performance enhancements used by RISC designs as well as providing
innovative architectural techniques, the MC68060 harnesses new levels of performance for the M68000 family.
Incorporating 2.5 million transistors on a single piece of silicon, the MC68060 employs a deep pipeline, dual
issue superscalar execution, a branch cache, a high-performance floating-point unit (MC68060 only), eight
Kbytes each of on-chip instruction and data caches, and dual on-chip demand paging MMUs (MC68060 and
MC68LC060 only). The MC68060 allows simultaneous execution of two integer instructions (or an integer and
a floating-point instruction) and one branch instruction during each clock.

The MC68060 features a full internal Harvard architecture. The instruction and data caches are designed to
support concurrent instruction fetch, operand read, and operand write references on every clock. Separate 8-
Kbyte instruction and 8-Kbyte data caches can be frozen to prevent allocation over time-critical code or data.
The independent nature of the caches allows instruction stream fetches, data-stream fetches, and external
accesses to occur simultaneously with instruction execution. The operand data cache is four-way banked to
permit simultaneous read and write access each clock.

A very high bandwidth internal memory system coupled with the compact nature of the M68000 family code
allows the MC68060 to achieve extremely high levels of performance, even when operating from low-cost
memory such as a 32-bit wide dynamic random access memory system.

Instructions are fetched from the internal cache or external memory by a four-stage instruction fetch pipeline.
The MC68060 variable-length instruction system is internally decoded into a fixed-length representation and
channeled into an instruction buffer. The instruction buffer acts as a FIFO which provides a decoupling
mechanism between the instruction fetch unit and the operand execution units. Fixed format instructions are
dispatched to dual four-stage pipelined RISC operand execution engines where they are then executed.

The branch cache also plays a major role in achieving the high performance levels of the MC68060. It has
been implemented such that most branches are executed in zero cycles. Using a technique known as branch
folding, the branch cache allows the instruction fetch pipeline to detect and change the instruction prefetch
stream before the change of flow affects the instruction execution engines, minimizing the need for pipeline
refill.

In addition to substantial cost and performance benefits, the MC68060 also offers advantages in power
consumption and power management. The MC68060 automatically minimizes power dissipation by using a
fully-static design, dynamic power management, and low-voltage operation. It automatically powers-down
internal functional blocks that are not needed on a clock-by-clock basis. Explicitly, the MC68060 power
consumption can be controlled from the operating system. Although the MC68060 operates at a lower
operating voltage, it directly interfaces to both 3-V and 5-V peripherals and logic.

Complete code compatibility with the M68000 family allows the designer to draw on existing code and past
experience to bring products to market quickly. There is also a broad base of established development tools,
including real-time kernels, operating systems, languages, and applications, to assist in product design. The
functionality provided by the MC68060 makes it the ideal choice for a range of high-performance embedded
applications and computing applications. With M68000 family code compatibility, the MC68060 provides a
range of upgrade opportunities to virtually any existing MC68040 application.

MOTOROLA MC68060 PRODUCT INFORMATION 3

The following is a list of primary featuresof the MC68060:

• Fully User-Code Compatible with MC68040

• Superscalar Implementation of M68000 Architecture

— Dual Integer Instruction Execution Improves Performance

• Branch Cache Reduces Branches to Zero Cycles

• Executes Three Instructions per Clock

• Dual 8-Kbyte On-Chip Caches

— Separate Data and Instruction Caches
— Simultaneous Access
— Data Cache is Four-Way Banked to Allow Read and Write Access on Each Clock

• Bus Snooping

• Independent Instruction and Data Paged MMUs (MC68060 and MC68LC060 Only)

• Full 32-Bit Nonmultiplexed Address and Data Bus

— Optimized to Achieve Very High Performance Using 32-Bit Memory System
— Can Operate Bus at 1/2-or 1/4-Speed of Internal Clock
— 32-Bit Bus Maximizes Data Throughput
— Nonmultiplexed Bus Simplifies Design
— Four-Deep Store Buffer and One-Deep Push Buffer to Maximize Write Bandwidth
— MC68040-Compatible Bus Provides Simple Hardware Migration Path

• Power Management

— Automatic Power-Down of Unused Blocks of Logic on a Clock-by-Clock Basis
— Low-Voltage Operation at 3.3 V, with 3.3-V and 5-V I/O Capability
— LPSTOP Mode Provides an Idle State for Lowest Standby Current
— Static CMOS Technology Reduces Power in Normal Operation

• IEEE-Compatible On-Chip FPU (MC68060 Only)

• Available in 40-MHz (MC68EC060 only), 50-MHz, and 66-MHz Speeds

• Packaging

— Ceramic Pin Grid Array (PGA)
— Ceramic Quad Flat Pack (CQFP)

4 MC68060 PRODUCT INFORMATION MOTOROLA

MC68060 SIGNALS

Figure 2 shows the MC68060 functional signal groups.

Figure 2. Functional Signal Groups

TEA

MC68060

VCC

GND

BUS ARBITRATION
CONTROL

BGR
BG

BB

BUS SNOOP CONTROL
SNOOP

INTERRUPT
CONTROL

IPL2

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

CLKEN
CLK

TEST

THERM0

TMS
TCK

TDI

THERMAL RESISTOR
CONNECTIONS

THERM1

IPL1
IPL0

STATUS AND
CLOCKS

PST3
PST2
PST1

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS BUS
AND CONTROL

TS

TIP

SLAVE
TRANSFER
CONTROL

R/W

LOCKE
CIOUT

TT1
TT0
TM2
TM1
TM0

TLN1
TLN0
UPA1
UPA0

SIZ1
SIZ0

LOCK

TA

MDIS

PST0

BS0
BS1
BS2
BS3

SAS

TCI

TRA

PST4

BTT

BR
CLA

TRST
TDO

POWER SUPPLY
TBI

JTAG

MOTOROLA MC68060 PRODUCT INFORMATION 5

EXECUTION UNIT

The MC68060 execution unit carries out logical and arithmetic operations. The execution unit contains an
instruction fetch unit, an integer unit, a branch cacheand a floating-point unit. The superscalar design of the
MC68060 provides dual execution pipelines in the instruction integer unit, providing simultaneous instruction
execution.

The superscalar operation of the execution unit can be disabled in software, turning off the second execution
pipeline for debugging. Disabling the superscalar operation also lowers power consumption.

INSTRUCTION FETCH UNIT

The instruction fetch unit contains an instruction fetch pipeline and the logic that interfaces to the branch cache.
The instruction fetch pipeline consists of four stages, providing the ability to prefetch instructions in advance
of their actual use in the instruction execution controller. The continuous fetching of instructions keeps the in-
struction execution unit busy for the greatest possible performance. Every instruction passes through each of
the four stages before entering the integer unit. The four stages in the instruction fetch pipeline are:

1) Instruction Address Calculation—The virtual address of the instruction is determined.

2) Instruction Fetch—The instruction is fetched from memory.

3) Early Decode—The instruction is pre-decoded into a fixed length format for pipeline control information.

4) Instruction Buffer—The instruction and its pipeline control information are buffered until the
integer execution pipeline is ready to process the instruction.

BRANCH CACHE

The branch cache plays a major role in achieving the performance levels of the MC68060. The concept of the
branch cache is to provide a mechanism that allows the instruction fetch pipeline to detect and change the
instruction stream before the change of flow affects the integer unit.

The branch cache is examined for a valid branch entry after each instruction fetch address is generated in the
instruction fetch pipeline. If a hit does not occur in the branch cache, the instruction fetch pipeline continues to
fetch instructions sequentially. If a hit occurs in the branch cache, indicating a branch taken instruction, the
current instruction stream is discarded and a new instruction stream is fetched starting at the location indicated
by the branch cache.

INTEGER UNIT

The integer unit contains dual integer execution pipelines, interface logic to the FPU (MC68060 only), and
control logic for data written to the data cache and MMU. The superscalar design of the dual integer execution
pipelines provides for simultaneous instruction execution, which allows processing more than one instruction
during each machine clock cycle. The net effect of this is a software-invisible pipeline capable of sustained
execution rates of less than one machine clock cycle per instruction for the M68000 instruction set.

6 MC68060 PRODUCT INFORMATION MOTOROLA

The integer unit control logic pulls an instruction pair from the instruction buffer every machine clock cycle,
stopping only if the instruction information is not available or if an integer execution pipeline hold condition ex-
ists. The six stages in the dual integer execution pipelines are:

1) Instruction Decode—The instruction is fully decoded.

2) Effective Address Calculation—If the instruction calls for data from memory, the location of the data is
calculated.

3) Effective Address Fetch—Data is fetched from the memory location.

4) Integer Execution—The data is manipulated during execution.

5) Data Available—The result is available.

6) Write-Back—The resulting data is written back to on-chip caches or external memory.

The MC68060 is optimized for most integer instructions to execute in one machine clock cycle. If during the
instruction decode stage the instruction is determined to be a floating-point instruction, it will be passed to the
FPU after the effective address fetch stage. If data is to be written to either the on-chip caches or external
memory after instruction execution, the write-back stage holds the data until memory is ready to receive it.
Temporarily holding data in the write-back stage adds to the overall performance of the MC68060 by not
slowing down pipeline operations.

The MC68060 implements practically all of the MC68040 instructions and addressing modes in hardware for
the highest performance. However, to optimize silicon usage, a very few infrequently used integer instructions
are not fully implemented in hardware. These instructions are emulated in software using the M68060SP which
is available free from Motorola. This software package assures full binary compatibility. Since these
instructions appear very infrequently in the instruction stream, software emulation of the instructions provides
no noticeable loss in performance.

FLOATING-POINT UNIT
(MC68060 ONLY)

Floating-point math is distinguished from integer math, which deals only with whole numbers and fixed decimal
point locations. The IEEE-compatible MC68060 FPU computes numeric calculations with a variable decimal
point location. The MC68060 features a built-in FPU that is MC68040 and MC68881/882 compatible.
Consolidating this important function on-chip speeds up overall processing and eliminates the interfacing
overhead associated with external accelerators. The MC68060 FPU operates in parallel with the integer unit.
The FPU performs numeric calculations while the integer unit continues integer processing.

The FPU has been optimized for the most frequently used instructions and data types to provide the highest
possible performance. The FPU can also be disabled in software to reduce system power consumption.

The MC68060 implements the most frequently used M68000 family floating-point instructions, data types, and
data formats in hardware for the highest performance. The remaining instructions are emulated in software
with the M68060SP to provide complete IEEE compatibility. The M68060SP provides the following features:

• Arithmetic and Transcendental Instructions

• IEEE-Compliant Exception Handlers

• Unimplemented Data Type and Data Format Handlers

MOTOROLA MC68060 PRODUCT INFORMATION 7

MEMORY MANAGEMENT UNITS

(MC68060 AND MC68LC060 ONLY)

The MC68060 contains independent instruction and data MMUs. Each MMU contains a cache memory called
the address translation cache (ATC). The full addressing range of the MC68060 is four Gbytes (4,294,967,296
bytes). Even though most MC68060 systems implement a much smaller physical memory, by using virtual
memory techniques, the system can appear to have a full four Gbytes of physical memory available to each
user program. Each MMU fully supports demand-paged virtual-memory operating systems with either 4- or 8-
Kbyte page sizes. Each MMU protects supervisor areas from accesses by user programs and provides write
protection on a page-by-page basis. For maximum efficiency, each MMU operates in parallel with other
processor activities. The MMUs can be disabled for emulator and debugging support.

The 64-entry, four-way, set-associative ATCs store recently used logical-to-physical address translation
information as page descriptors for instruction and data accesses. Each MMU initiates address translation by
searching for a descriptor containing the address translation information in the ATC. If the descriptor does not
reside in the ATC, the MMU performs external bus cycles through the bus controller to search the translation
tables in physical memory. After being located, the page descriptor is loaded into the ATC, and the address is
correctly translated for the access.

INSTRUCTION AND DATA CACHES

Studies have shown that typical programs spend much of their execution time in a few main routines or tight
loops. Earlier members of the M68000 family took advantage of this locality-of-reference phenomenon to
varying degrees. The MC68060 takes further advantage of cache technology with its two, independent, on-
chip physical caches, one for instructions and one for data. The caches reduce the processor's external bus
activity and increase CPU throughput by lowering the effective memory access time. For a typical system
design, the large caches of the MC68060 yield a very high hit rate, providing a substantial increase in system
performance.

The autonomous nature of the caches allows instruction-stream fetches, data-stream fetches, and external
accesses to occur simultaneously with instruction execution. For example, if the MC68060 requires both an
instruction access and an external peripheral access and if the instruction is resident in the on-chip cache, the
peripheral access proceeds unimpeded rather than being queued behind the instruction fetch. If a data
operand is also required and it is resident in the data cache, it can be accessed without hindering either the
instruction access or the external peripheral access. The parallelism inherent in the MC68060 also allows
multiple instructions that do not require any external accesses to execute concurrently while the processor is
performing an external access for a previous instruction.

Each MC68060 cache is eight Kbytes and is accessed by physical addresses. The data cache can be
configured as write-through or deferred copyback on a page basis. This choice allows for optimizing the
system design for high performance when deferred copyback is used.

Cachability of data in each memory page is controlled by two bits in the page descriptor. Cachable pages can
be either write-through or copyback, with no write-allocate for misses to write-through pages.

The MC68060 implements a four-entry write buffer that maximizes system performance by decoupling the
integer pipeline from the external system bus. When needed, the write buffer allows the pipeline to generate
writes every clock cycle, even if the system bus runs at a slower speed than the processor.

8 MC68060 PRODUCT INFORMATION MOTOROLA

CACHE ORGANIZATION

The instruction and data caches are each organized as four-way set associative, with 16-byte lines. Each line
of data has associated with it an address tag and state information that shows the line’s validity. In the data
cache, the state information indicates whether the line is invalid, valid, or dirty.

CACHE COHERENCY

The MC68060 has the ability to watch, or snoop, the external bus during accesses by other bus masters,
maintaining coherency between the MC68060 caches and external memory systems. External bus cycles can
be flagged on the bus as snoopable or nonsnoopable. When an external cycle is marked as snoopable, the
bus snooper checks the caches and invalidates the matching data. Although the execution unit and the bus
snooper circuit have access to the on-chip caches, the snooper has priority over the execution unit.

BUS CONTROLLER

The bus is implemented as a nonmultiplexed, fully synchronous protocol that is clocked off the rising edge of
the input clock. It is compatible with an MC68040 bus. The bus controller operates concurrently with all other
functional units of the MC68060 to maximize system throughput. The timing of the bus is fully configurable to
match external memory requirements.

The CLKEN input is used on the MC68060 to enable to the clock edges on which the bus controller will
respond. By toggling the CLKEN pin, it is possible to operate the MC68060 on an external bus at 1/2 or 1/4
the speed of the processor clock.

Although the MC68060 bus is compatible with the MC68040, additional signals and protocols have been
added to simplify designs requiring very high bus speeds.

IEEE 1149.1 TEST

To aid in system diagnostics, the MC68060 includes dedicated user-accessible test logic that is fully compliant
with the IEEE 1149.1 standard for boundary scan testability, often referred to as Joint Test Action Group
(JTAG).

MOTOROLA MC68060 PRODUCT INFORMATION 9

POWER MANAGEMENT

The MC68060 is very power efficient due to the static logic and power management designed into the basic
architecture. Each stage of the integer unit pipelines and the FPU pipeline draws power only when an
instruction is executing, and the cache arrays draw power only when an access is made. The FPU, secondary
integer execution pipeline, branch cache, and instruction and data caches can be disabled to reduce overall
power usage. The 3.3-V power supply reduces current consumption by 40–60% over that of microprocessors
using a 5-V power supply.

The MC68060 has additional methods for dynamically controlling power consumption during operation.
Running a special LPSTOP instruction shuts down the active circuits in the processor, halting instruction
execution. Power consumption in this standby mode is greatly reduced. Processing can be resumed by
resetting the processor or by generating an interrupt. The frequency of operation can be lowered to reduce
current consumption while the device is in LPSTOP mode.

PHYSICAL

The MC68060 is available

in ceramic PGA and CQFP packaging configurations. All parts operate from a
3.3 V 5% power supply but directly interface to 3.3 V or 5 V peripherals and logic. The following table identifies
the operating frequencies available for the various M68060 microprocessors.

The documents listed in the following table contain detailed information on the MC68060. These documents
may be obtained from the Literature Distribution Centers at the addresses listed on the back page.

Processor 40 MHz 50 MHz 66 MHz

MC68060 X X

MC68LC060 X X

MC68EC060 X X X

Document Title Order Number Contents

M68060 User's Manual

M68060UM/AD Detailed information for design

M68000 Family Programmer's Reference Manual

M68000PM/AD M68000 Family Instruction Set

The 68K Source

BR729/D Independent vendor listing supporting
software and development tools

3.3 Volt Logic and Interface Circuits

BR1407/D Low voltage interface components

µ

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

SEMICONDUCTOR PRODUCT INFORMATION

© MOTOROLA, 1994

µ

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

M68060 User’s Manual

Including the
MC68060,

MC68LC060,
and

MC68EC060

MOTOROLA

M68060 USER’S MANUAL

iii

68K FAX-IT

Documentation Comments

FAX 512-891-8593—Documentation Comments Only

The Motorola High-End Technical Publications Department provides a fax number for you
to submit any questions or comments about this document or how to order other documents.
We welcome your suggestions for improving our documentation. Please do not fax technical
questions.

Please provide the part number and revision number (located in upper right-hand corner of
the cover) and the title of the document. When referring to items in the manual, please ref-
erence by the page number, paragraph number, figure number, table number, and line num-
ber if needed.

When sending a fax, please provide your name, company, fax number, and phone number
including area code.

Applications and Technical Information

For questions or comments pertaining to technical information, questions, and applications,
please contact one of the following sales offices nearest you.

iv

M68060 USER’S MANUAL

MOTOROLA

—

Sales Offices —

Field Applications Engineering Available Through All Sales Offices

UNITED STATES

ALABAMA

, Huntsville (205) 464-6800

ARIZONA

, Tempe (602) 897-5056

CALIFORNIA

, Agoura Hills (818) 706-1929

CALIFORNIA

, Los Angeles (310) 417-8848

CALIFORNIA

, Irvine (714) 753-7360

CALIFORNIA

, Rosevllle (916) 922-7152

CALIFORNIA

, San Diego (619) 541-2163

CALIFORNIA

, Sunnyvale (408) 749-0510

COLORADO

, Colorado Springs (719) 599-7497

COLORADO

, Denver (303) 337-3434

CONNECTICUT

, Wallingford (203) 949-4100

FLORIDA

, Maitland (407) 628-2636

FLORIDA

, Pompano Beach/
 Fort Lauderdale (305) 486-9776

FLORIDA

, Clearwater (813) 538-7750

GEORGlA

, Atlanta (404) 729-7100

IDAHO

, Boise (208) 323-9413

ILLINOIS

, Chicago/Hoffman Estates (708) 490-9500

INDlANA

, Fort Wayne (219) 436-5818

INDIANA

, Indianapolis (317) 571-0400

INDIANA

, Kokomo (317) 457-6634

IOWA

, Cedar Rapids (319) 373-1328

KANSAS

, Kansas City/Mission (913) 451-8555

MARYLAND

, Columbia (410) 381-1570

MASSACHUSETTS

, Marborough (508) 481-8100

MASSACHUSETTS

, Woburn (617) 932-9700

MICHIGAN

, Detroit (313) 347-6800

MINNESOTA

, Minnetonka (612) 932-1500

MISSOURI

, St. Louis (314) 275-7380

NEW JERSEY

, Fairfield (201) 808-2400

NEW YORK

, Fairport (716) 425-4000

NEW YORK

, Hauppauge (516) 361-7000

NEW YORK

, Poughkeepsie/Fishkill (914) 473-8102

NORTH CAROLINA

, Raleigh (919) 870-4355

OHIO

, Cleveland (216) 349-3100

OHIO

, Columbus/Worthington (614) 431-8492

OHIO

, Dayton (513) 495-6800

OKLAHOMA

, Tulsa (800) 544-9496

OREGON

, Portland (503) 641-3681

PENNSYLVANIA

, Colmar (215) 997-1020
 Philadelphia/Horsham (215) 957-4100

TENNESSEE

, Knoxville (615) 690-5593

TEXAS

, Austin (512) 873-2000

TEXAS

, Houston (800) 343-2692

TEXAS

, Plano (214) 516-5100

VIRGINIA

, Richmond (804) 285-2100

WASHINGTON

, Bellevue (206) 454-4160
 Seattle Access (206) 622-9960

WISCONSIN

, Milwaukee/Brookfield (414) 792-0122

CANADA
BRITISH COLUMBIA

, Vancouver (604) 293-7605

ONTARIO

, Toronto (416) 497-8181

ONTARIO

, Ottawa (613) 226-3491

QUEBEC

, Montreal (514) 731-6881

INTERNATIONAL
AUSTRALIA

, Melbourne (61-3)887-0711

AUSTRALIA

, Sydney (61(2)906-3855

BRAZIL

, Sao Paulo 55(11)815-4200

CHINA

, Beijing 86 505-2180

FINLAND

, Helsinki 358-0-35161191
 Car Phone 358(49)211501

FRANCE

, Paris/Vanves 33(1)40 955 900

GERMANY

, Langenhagen/ Hanover 49(511)789911

GERMANY

, Munich 49 89 92103-0

GERMANY

, Nuremberg 49 911 64-3044

GERMANY

, Sindelfingen 49 7031 69 910

GERMANY

, Wiesbaden 49 611 761921

HONG KONG

, Kwai Fong 852-4808333
 Tai Po 852-6668333

INDIA

, Bangalore (91-812)627094

ISRAEL

, Tel Aviv 972(3)753-8222

ITALY

, Milan 39(2)82201

JAPAN

, Aizu 81(241)272231

JAPAN

, Atsugi 81(0462)23-0761

JAPAN

, Kumagaya 81(0485)26-2600

JAPAN

, Kyushu 81(092)771-4212

JAPAN

, Mito 81(0292)26-2340

JAPAN

, Nagoya 81(052)232-1621

JAPAN

, Osaka 81(06)305-1801

JAPAN,

Sendai 81(22)268-4333

JAPAN,

Tachikawa 81(0425)23-6700

JAPAN,

Tokyo 81(03)3440-3311

JAPAN

, Yokohama 81(045)472-2751

KOREA

, Pusan 82(51)4635-035

KOREA

, Seoul 82(2)554-5188

MALAYSIA

, Penang 60(4)374514

MEXICO

, Mexico City 52(5)282-2864

MEXICO

, Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160

NETHERLANDS

, Best (31)49988 612 11

PUERTO RICO

, San Juan (809)793-2170

SINGAPORE

(65)2945438

SPAIN

, Madrid 34(1)457-8204
 or 34(1)457-8254

SWEDEN

, Solna 46(8)734-8800

SWITZERLAND

, Geneva 41(22)7991111

SWITZERLAND

, Zurich 41(1)730 4074

TAlWAN

, Taipei 886(2)717-7089

THAILAND

, Bangkok (66-2)254-4910

UNITED KINGDOM

, Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES
COLORADO

, Grand Junction
 Cheryl Lee Whltely (303) 243-9658

KANSAS

, Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190

NEVADA

, Reno
 Galena Technology Group (702) 746 0642

NEW MEXICO

, Albuquerque
 S&S Technologies, lnc. (505) 298-7177

UTAH

, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099

WASHINGTON

, Spokane
 Doug Kenley (509) 924-2322

ARGENTINA

, Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS

Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631

MOTOROLA

M68060 USER’S MANUAL

v

PREFACE

The complete documentation package for the MC68060, MC68LC060, and MC68EC060
(collectively called M68060) consists of the M68060UM/AD, M68060 User’s Manual, and
the M68000PM/AD, M68000 Family Programmer’s Reference Manual. The M68060 User’s
Manual describes the capabilities, operation, and programming of the M68060 superscalar
32-bit microprocessors. The M68000 Family Programmer’s Reference Manual contains the
complete instruction set for the M68000 family.

The introduction of this manual includes general information concerning the MC68060 and
summarizes the differences among the M68060 family devices. Additionally, appendices
provide detailed information on how these M68060 derivatives operate differently from the
MC68060.

When reading this manual, disregard information concerning the floating-point unit in refer-
ence to the MC68LC060, and disregard information concerning the floating-point unit and
memory management unit in reference to the MC68EC060.

The organization of this manual is as follows:

Section 1 Introduction

Section 2 Signal Description

Section 3 Integer Unit

Section 4 Memory Management Unit

Section 5 Caches

Section 6 Floating-Point Unit

Section 7 Bus Operation

Section 8 Exception Processing

Section 9 IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

Section 10 Instruction Timings

Section 11 Applications

Section 12 Electrical and Thermal Characteristics

Section 13 Ordering Information and Mechanical Data

Appendix A MC68LC060

Appendix B MC68EC060

Appendix C MC68060 Software Package

Appendix D M68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

vii

MC68060 ACRONYM LIST

AGU—address generation unit

ALU—arithmetic logic unit

ATC—address translation cache

BUSCR—bus control register

CACR—cache control register

CCR—condition code register

CM—cache mode

CPU—central processing unit

DFC—destination function code

DTTx—data transparent translation register

DRAM—dynamic random access memory

FPIAR—floating-point instruction address register

FPCR—floating-point control register

FPSP—floating-point software package

FPSR—floating-point status register

FPU—floating-point unit

FP7–FP0—floating-point data registers 7–0

FSLW—fault status long word

IEE—integer execute unit

IFP—instruction fetch pipeline

IFU—instruction fetch unit

IPU—instruction pipe unit

ISP—interrupt stack pointer

ITTR—instruction transparent translation register

IU—integer unit

JTAG—Joint Test Action Group

MMU—memory management unit

viii

M68060 USER’S MANUAL

MOTOROLA

MC68060 Acronym List

MMUSR—memory management unit status register

M68060SP—M68060 software package

NANs—not-a-numbers

NOP—no operation

OEP—operand execution pipeline

OPU—operand pipe unit

PC—program counter

PCR—processor configuration register

PGI—page index field

PI—pointer index field

PLL—phase-locked loop

pOEP—primary operand execution pipeline

RI—root index field

SFC—source function code

SNAN—signaling not-a-number

sOEP—secondary operand execution pipeline

SP—stack pointer

SR—status register

SRP—supervisor root pointer register

SSP—supervisor stack pointer

TAP—test access port

TCR—translation control register

TTL—transistor-transistor logic

TTR—transparent translation register

UPA—user page attribute

URP—user root pointer register

USP—user stack pointer

VBR—vector base register

VLSI—very large-scale integration

MOTOROLA

M68060 USER’S MANUAL

ix

TABLE OF CONTENTS

Section 1
Introduction

1.1 Differences Among M68060 Family Members.. 1-3
1.1.1 MC68LC060.. 1-3
1.1.2 MC68EC060 ... 1-3
1.1.2.1 Address Translation Differences .. 1-3
1.1.2.2 Instruction Differences.. 1-3
1.2 Features.. 1-4
1.3 Architecture... 1-4
1.4 Processor Overview.. 1-5
1.4.1 Functional Blocks.. 1-5
1.4.2 Integer Unit ... 1-7
1.4.2.1 Instruction Fetch Unit.. 1-7
1.4.2.2 Integer Unit ... 1-8
1.4.2.3 Floating-Point Unit .. 1-8
1.4.2.4 Memory Units ... 1-9
1.4.2.5 Address Translation Caches .. 1-9
1.4.2.6 Instruction and Data Caches .. 1-9
1.4.2.6.1 Cache Organization.. 1-10
1.4.2.6.2 Cache Coherency... 1-10
1.4.3 Bus Controller ... 1-10
1.5 Processing States ... 1-10
1.6 Programming Model.. 1-11
1.7 Data Format Summary.. 1-14
1.8 Addressing Capabilities Summary .. 1-14
1.9 Instruction Set Overview ... 1-15
1.10 Notational Conventions... 1-21

Section 2
Signal Description

2.1 Address and Control Signals .. 2-3
2.1.1 Address Bus (A31–A0) ... 2-3
2.1.2 Cycle Long-Word Address (CLA) ... 2-4
2.2 Data Bus (D31–D0)... 2-4
2.3 Transfer Attribute Signals ... 2-4
2.3.1 Transfer Cycle Type (TT1, TT0) ... 2-4
2.3.2 Transfer Cycle Modifier (TM2–TM0)... 2-4
2.3.3 Transfer Line Number (TLN1, TLN0).. 2-5
2.3.4 User-Programmable Page Attributes (UPA1, UPA0).................................. 2-5
2.3.5 Read/Write (R/W) ... 2-6

Table of Contents

x

M68060 USER’S MANUAL

MOTOROLA

2.3.6 Transfer Size (SIZ1, SIZ0).. 2-6
2.3.7 Bus Lock (LOCK).. 2-6
2.3.8 Bus Lock End (LOCKE).. 2-6
2.3.9 Cache Inhibit Out (CIOUT) ... 2-7
2.3.10 Byte Select Lines (BS3–BS0)... 2-7
2.4 Master Transfer Control Signals ... 2-7
2.4.1 Transfer Start (TS).. 2-8
2.4.2 Transfer in Progress (TIP) .. 2-8
2.4.3 Starting Termination Acknowledge Signal Sampling (SAS) 2-8
2.5 Slave Transfer Control Signals ... 2-8
2.5.1 Transfer Acknowledge (TA).. 2-8
2.5.2 Transfer Retry Acknowledge (TRA).. 2-8
2.5.3 Transfer Error Acknowledge (TEA) .. 2-9
2.5.4 Transfer Burst Inhibit (TBI) ... 2-9
2.5.5 Transfer Cache Inhibit (TCI) ... 2-9
2.6 Snoop Control (SNOOP) .. 2-9
2.7 Arbitration Signals... 2-10
2.7.1 Bus Request (BR)... 2-10
2.7.2 Bus Grant (BG)... 2-10
2.7.3 Bus Grant Relinquish Control (BGR).. 2-10
2.7.4 Bus Tenure Termination (BTT)... 2-10
2.7.5 Bus Busy (BB) .. 2-11
2.8 Processor Control Signals .. 2-11
2.8.1 Cache Disable (CDIS) .. 2-11
2.8.2 MMU Disable (MDIS).. 2-12
2.8.3 Reset In (RSTI)... 2-12
2.8.4 Reset Out (RSTO) .. 2-12
2.9 Interrupt Control Signals ... 2-12
2.9.1 Interrupt Priority Level (IPL2–IPL0) .. 2-12
2.9.2 Interrupt Pending Status (IPEND) .. 2-12
2.9.3 Autovector (AVEC) ... 2-13
2.10 Status and Clock Signals.. 2-13
2.10.1 Processor Status (PST4–PST0)... 2-13
2.10.2 MC68060 Processor Clock (CLK) .. 2-14
2.10.3 Clock Enable (CLKEN) ... 2-14
2.11 Test Signals .. 2-15
2.11.1 JTAG Enable (JTAG).. 2-15
2.11.2 Test Clock (TCK) .. 2-15
2.11.3 Test Mode Select (TMS)... 2-15
2.11.4 Test Data In (TDI)... 2-16
2.11.5 Test Data Out (TDO) .. 2-16
2.11.6 Test Reset (TRST) ... 2-16
2.12 Thermal Sensing Pins (THERM1, THERM0).. 2-16
2.13 Power Supply Connections... 2-16
2.14 Signal Summary ... 2-16

Table of Contents

MOTOROLA

M68060 USER’S MANUAL

xi

Section 3
Integer Unit

3.1 Integer Unit Execution Pipelines ... 3-1
3.2 Integer Unit Register Description .. 3-2
3.2.1 Integer Unit User Programming Model ... 3-2
3.2.1.1 Data Registers (D7–D0) ... 3-2
3.2.1.2 Address Registers (A6–A0) .. 3-2
3.2.1.3 User Stack Pointer (A7) .. 3-2
3.2.1.4 Program Counter .. 3-3
3.2.1.5 Condition Code Register .. 3-3
3.2.2 Integer Unit Supervisor Programming Model.. 3-3
3.2.2.1 Supervisor Stack Pointer .. 3-4
3.2.2.2 Status Register ... 3-4
3.2.2.3 Vector Base Register.. 3-4
3.2.2.4 Alternate Function Code Registers... 3-5
3.2.2.5 Processor Configuration Register... 3-5

Section 4
Memory Management Unit

4.1 Memory Management Programming Model.. 4-3
4.1.1 User and Supervisor Root Pointer Registers.. 4-3
4.1.2 Translation Control Register ... 4-4
4.1.3 Transparent Translation Registers ... 4-6
4.2 Logical Address Translation.. 4-7
4.2.1 Translation Tables .. 4-7
4.2.2 Descriptors.. 4-12
4.2.2.1 Table Descriptors.. 4-12
4.2.2.2 Page Descriptors .. 4-12
4.2.2.3 Descriptor Field Definitions... 4-13
4.2.3 Translation Table Example ... 4-15
4.2.4 Variations in Translation Table Structure.. 4-16
4.2.4.1 Indirect Action... 4-16
4.2.4.2 Table Sharing Between Tasks.. 4-17
4.2.4.3 Table Paging .. 4-17
4.2.4.4 Dynamically Allocated Tables... 4-17
4.2.5 Table Search Accesses .. 4-19
4.2.6 Address Translation Protection... 4-20
4.2.6.1 Supervisor and User Translation Tables .. 4-21
4.2.6.2 Supervisor Only .. 4-22
4.2.6.3 Write Protect ... 4-22
4.3 Address Translation Caches... 4-24
4.4 Transparent Translation.. 4-27
4.5 Address Translation Summary.. 4-28
4.6 RSTI and MDIS Effect on the MMU .. 4-28
4.6.1 Effect of RSTI on the MMUs ... 4-28

Table of Contents

xii

M68060 USER’S MANUAL

MOTOROLA

4.6.2 Effect of MDIS on Address Translation .. 4-30
4.7 MMU Instructions.. 4-30
4.7.1 MOVEC .. 4-30
4.7.2 PFLUSH ... 4-30
4.7.3 PLPA .. 4-30

Section 5
Caches

5.1 Cache Operation... 5-1
5.2 Cache Control Register .. 5-5
5.3 Cache Management ... 5-6
5.4 Caching Modes... 5-7
5.4.1 Cachable Accesses .. 5-7
5.4.1.1 Writethrough Mode... 5-7
5.4.1.2 Copyback Mode ... 5-8
5.4.2 Cache-Inhibited Accesses .. 5-8
5.4.3 Special Accesses ... 5-9
5.5 Cache Protocol ... 5-9
5.5.1 Read Miss... 5-9
5.5.2 Write Miss... 5-9
5.5.3 Read Hit.. 5-9
5.5.4 Write Hit .. 5-10
5.6 Cache Coherency ... 5-10
5.7 Memory Accesses for Cache Maintenance .. 5-11
5.7.1 Cache Filling... 5-11
5.7.2 Cache Pushes .. 5-13
5.8 Push Buffer ... 5-13
5.9 Store Buffer... 5-13
5.10 Push Buffer and Store Buffer Bus Operation.. 5-14
5.11 Branch Cache ... 5-14
5.12 Cache Operation Summary .. 5-15
5.12.1 Instruction Cache.. 5-15
5.12.2 Data Cache... 5-16

Section 6
Floating-Point Unit

6.1 Floating-Point User Programming Model.. 6-2
6.1.1 Floating-Point Data Registers (FP7–FP0) .. 6-3
6.1.2 Floating-Point Control Register (FPCR) ... 6-3
6.1.2.1 Exception Enable Byte ... 6-3
6.1.2.2 Mode Control Byte.. 6-3
6.1.3 Floating-Point Status Register (FPSR)... 6-4
6.1.3.1 Floating-Point Condition Code Byte ... 6-5
6.1.3.2 Quotient Byte.. 6-5
6.1.3.3 Exception Status Byte .. 6-5

Table of Contents

MOTOROLA

M68060 USER’S MANUAL

xiii

6.1.3.4 Accrued Exception Byte ... 6-6
6.1.4 Floating-Point Instruction Address Register (FPIAR) 6-7
6.2 Floating-Point Data Formats and Data Types... 6-7
6.3 Computational Accuracy ... 6-11
6.3.1 Intermediate Result... 6-12
6.3.2 Rounding the Result ... 6-13
6.4 Postprocessing Operation... 6-15
6.4.1 Underflow, Round, and Overflow.. 6-15
6.4.2 Conditional Testing ... 6-16
6.5 Floating-Point Exceptions ... 6-19
6.5.1 Unimplemented Floating-Point Instructions .. 6-19
6.5.2 Unsupported Floating-Point Data Types... 6-21
6.5.3 Unimplemented Effective Address Exception... 6-22
6.6 Floating-Point Arithmetic Exceptions .. 6-22
6.6.1 Branch/Set on Unordered (BSUN).. 6-24
6.6.1.1 Trap Disabled Results (FPCR BSUN Bit Cleared) 6-24
6.6.1.2 Trap Enabled Results (FPCR BSUN Bit Set) ... 6-24
6.6.2 Signaling Not-a-Number (SNAN).. 6-25
6.6.2.1 Trap Disabled Results (FPCR SNAN Bit Cleared) 6-25
6.6.2.2 Trap Enabled Results (FPCR SNAN Bit Set) ... 6-26
6.6.3 Operand Error... 6-26
6.6.3.1 Trap Disabled Results (FPCR OPERR Bit Cleared)............................... 6-27
6.6.3.2 Trap Enabled Results (FPCR OPERR Bit Set)....................................... 6-27
6.6.4 Overflow.. 6-28
6.6.4.1 Trap Disabled Results (FPCR OVFL Bit Cleared) 6-29
6.6.4.2 Trap Enabled Results (FPCR OVFL Bit Set) .. 6-29
6.6.5 Underflow.. 6-30
6.6.5.1 Trap Disabled Results (FPCR UNFL Bit Cleared) 6-31
6.6.5.2 Trap Enabled Results (FPCR UNFL Bit Set) .. 6-31
6.6.6 Divide-by-Zero .. 6-32
6.6.6.1 Trap Disabled Results (FPCR DZ Bit Cleared)....................................... 6-33
6.6.6.2 Trap Enabled Results (FPCR DZ Bit Set)... 6-33
6.6.7 Inexact Result ... 6-33
6.6.7.1 Trap Disabled Results (FPCR INEX1 Bit and INEX2 Bit Cleared........... 6-34
6.6.7.2 Trap Enabled Results (Either FPCR INEX1 Bit or INEX2 Bit Set).......... 6-34
6.7 Floating-Point State Frames ... 6-35

Section 7
Bus Operation

7.1 Bus Characteristics ... 7-1
7.2 Full-, Half-, and Quarter-Speed Bus Operation and BCLK 7-3
7.3 Acknowledge Termination Ignore State Capability 7-4
7.4 Bus Control Register... 7-4
7.5 Data Transfer Mechanism... 7-5
7.6 Misaligned Operands .. 7-9

Table of Contents

xiv

M68060 USER’S MANUAL

MOTOROLA

7.7 Processor Data Transfers... 7-12
7.7.1 Byte, Word, and Long-Word Read Transfer Cycles 7-12
7.7.2 Line Read Transfer... 7-15
7.7.3 Byte, Word, and Long-Word Write Cycles.. 7-20
7.7.4 Line Write Cycles... 7-25
7.7.5 Locked Read-Modify-Write Cycles .. 7-28
7.7.6 Emulating CAS2 and CAS Misaligned.. 7-31
7.7.7 Using CLA to Increment A3 and A2.. 7-32
7.8 Acknowledge Cycles... 7-32
7.8.1 Interrupt Acknowledge Cycles ... 7-32
7.8.1.1 Interrupt Acknowledge Cycle (Terminated Normally) 7-35
7.8.1.2 Autovector Interrupt Acknowledge Cycle ... 7-35
7.8.1.3 Spurious Interrupt Acknowledge Cycle .. 7-35
7.8.2 Breakpoint Acknowledge Cycle .. 7-36
7.8.2.1 LPSTOP Broadcast Cycle .. 7-38
7.9 Bus Exception Control Cycles .. 7-46
7.9.1 Bus Errors... 7-46
7.9.2 Retry Operation .. 7-48
7.9.3 Double Bus Fault .. 7-51
7.10 Bus Synchronization ... 7-52
7.11 Bus Arbitration .. 7-52
7.11.1 MC68040-Arbitration Protocol (BB Protocol) .. 7-53
7.11.2 MC68060-Arbitration Protocol (BTT Protocol) .. 7-58
7.11.3 External Arbiter Considerations.. 7-65
7.12 Bus Snooping Operation.. 7-68
7.13 Reset Operation... 7-71
7.14 Special Modes of Operation ... 7-74
7.14.1 Acknowledge Termination Ignore State Capability................................... 7-74
7.14.2 Acknowledge Termination Protocol .. 7-76
7.14.3 Extra Data Write Hold Time Mode.. 7-76

Section 8
Exception Processing

8.1 Exception Processing Overview ... 8-1
8.2 Integer Unit Exceptions... 8-4
8.2.1 Access Error Exception .. 8-5
8.2.2 Address Error Exception... 8-7
8.2.3 Instruction Trap Exception.. 8-7
8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions 8-8
8.2.5 Privilege Violation Exception .. 8-10
8.2.6 Trace Exception.. 8-10
8.2.7 Format Error Exception .. 8-11
8.2.8 Breakpoint Instruction Exception .. 8-11
8.2.9 Interrupt Exception ... 8-12
8.2.10 Reset Exception ... 8-14

Table of Contents

MOTOROLA

M68060 USER’S MANUAL

xv

8.3 Exception Priorities ... 8-17
8.4 Return from Exceptions .. 8-19
8.4.1 Four-Word Stack Frame (Format $0) ... 8-19
8.4.2 Six-Word Stack Frame (Format $2).. 8-20
8.4.3 Floating-Point Post-Instruction Stack Frame (Format $3) 8-20
8.4.4 Eight-Word Stack Frame (Format $4)... 8-21
8.4.4.1 Program Counter (PC).. 8-21
8.4.4.2 Fault Address ... 8-22
8.4.4.3 Fault Status Long Word (FSLW)... 8-22
8.4.5 Recovering from an Access Error... 8-25
8.4.6 Bus Errors and Pending Memory Writes ... 8-27
8.4.7 Branch Prediction Error .. 8-29

Section 9
IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9.1 IEEE 1149.1 Test Access Port (Normal JTAG) Mode 9-1
9.1.1 Overview... 9-2
9.1.2 JTAG Instruction Shift Register .. 9-3
9.1.2.1 EXTEST.. 9-4
9.1.2.2 LPSAMPLE... 9-5
9.1.2.3 Private Instructions ... 9-5
9.1.2.4 SAMPLE/PRELOAD... 9-5
9.1.2.5 IDCODE.. 9-5
9.1.2.6 CLAMP ... 9-6
9.1.2.7 HIGHZ... 9-6
9.1.2.8 BYPASS ... 9-6
9.1.3 JTAG Test Data Registers.. 9-7
9.1.3.1 Idcode Register .. 9-7
9.1.3.2 Boundary Scan Register... 9-7
9.1.3.3 Bypass Register ... 9-15
9.1.4 Restrictions ... 9-15
9.1.5 Disabling the IEEE 1149.1 Standard Operation 9-15
9.1.6 Motorola MC68060 BSDL Description.. 9-17
9.2 Debug Pipe Control Mode... 9-24
9.2.1 Debug Command Interface... 9-25
9.2.2 Debug Pipe Control Mode Commands ... 9-27
9.2.3 Emulator Mode ... 9-31
9.3 Switching between JTAG and Debug Pipe ControlModes of Operation..... 9-33

Section 10
Instruction Execution Timing

10.1 Superscalar Operand Execution Pipelines ... 10-1
10.1.1 Dispatch Test 1: sOEP Opword and Required

Extension Words Are Valid ... 10-2
10.1.2 Dispatch Test 2: Instruction Classification .. 10-2

Table of Contents

xvi

M68060 USER’S MANUAL

MOTOROLA

10.1.3 Dispatch Test 3: Allowable Effective Addressing Mode in the sOEP 10-8
10.1.4 Dispatch Test 4: Allowable Operand Data Memory Reference 10-8
10.1.5 Dispatch Test 5: No Register Conflicts on sOEP.AGU Resources 10-8
10.1.6 Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources 10-9
10.2 Timing Assumptions ... 10-10
10.3 Cache and ATC Performance Degradation Times 10-12
10.3.1 Instruction ATC Miss .. 10-12
10.3.2 Data ATC Miss ... 10-13
10.3.3 Instruction Cache Miss ... 10-13
10.3.4 Data Cache Miss .. 10-13
10.4 Effective Address Calculation Times .. 10-14
10.5 Move Instruction Execution Times.. 10-14
10.6 Standard Instruction Execution Times .. 10-16
10.7 Immediate Instruction Execution Times.. 10-17
10.8 Single-Operand Instruction Execution Times ... 10-18
10.9 Shift/Rotate Execution Times ... 10-19
10.10 Bit Manipulation and Bit Field Execution Times.. 10-19
10.11 Branch Instruction Execution Times ... 10-21
10.12 LEA, PEA, and MOVEM Execution Times.. 10-22
10.13 Multiprecision Instruction Execution Times... 10-22
10.14 Status Register, MOVES, and Miscellaneous

Instruction Execution Times.. 10-22
10.15 FPU Instruction Execution Times ... 10-24
10.16 Exception Processing Times .. 10-26

Section 11
Applications Information

11.1 Guidelines for Porting Software to the MC68060 11-1
11.1.1 User Code .. 11-1
11.1.2 Supervisor Code... 11-1
11.1.2.1 Initialization Code (Reset Exception Handler) .. 11-2
11.1.2.1.1 Processor Configuration Register (PCR) (MOVEC of PCR). 11-2
11.1.2.1.2 Default Transparent Translation Register (MOVEC of TCR) 11-2
11.1.2.1.3 MC68060 Software Package (M68060SP). ... 11-2
11.1.2.1.4 Cache Control Register (CACR) (MOVEC of CACR).......................... 11-3
11.1.2.1.5 Resource Checking (Access Error Handler) .. 11-3
11.1.2.2 Virtual Memory Software .. 11-3
11.1.2.2.1 Translation Control Register (MOVEC of TCR).................................... 11-3
11.1.2.2.2 Descriptors in Cacheable Copyback Pages Prohibited........................ 11-4
11.1.2.2.3 Page and Descriptor Faults (Access Error Handler). 11-4
11.1.2.2.4 PTEST, MOVEC of MMUSR, and PLPA.. 11-4
11.1.2.3 Context Switch Interrupt Handlers.. 11-5
11.1.2.4 Trace Handlers... 11-5
11.1.2.5 I/O Device Driver Software... 11-5
11.1.3 Precise Vs. Imprecise Exception Mode .. 11-6

Table of Contents

MOTOROLA

M68060 USER’S MANUAL

xvii

11.1.4 Other Considerations.. 11-6
11.2 Using an MC68060 in an Existing MC68040 System 11-6
11.2.1 Power Considerations... 11-6
11.2.1.1 DC to DC Voltage Conversion.. 11-6
11.2.1.1.1 Linear Voltage Regulator Solution.. 11-7
11.2.1.1.2 Switching Regulator Solution.. 11-7
11.2.1.2 Input Signals During Power-Up Requirement....................................... 11-11
11.2.2 Output Hold Time Differences .. 11-11
11.2.3 Bus Arbitration .. 11-13
11.2.4 Snooping... 11-13
11.2.5 Special Modes .. 11-13
11.2.6 Clocking .. 11-14
11.2.7 PSTx Encoding ... 11-14
11.2.8 Miscellaneous Pullup Resistors .. 11-15
11.3 Example DRAM Access.. 11-15
11.4 Thermal Management.. 11-17
11.5 Support Devices... 11-20

Section 12
Electrical and Thermal Characteristics

12.1 Maximum Ratings ... 12-1
12.2 Thermal Characteristics .. 12-1
12.3 Power Dissipation ... 12-1
12.4 DC Electrical Specifications (Vcc = 3.3 Vdc

±

 5%) 12-2
12.5 Clock Input Specifications (Vcc = 3.3 Vdc

±

 5%).. 12-3
12.6 Output AC Timing Specifications (Vcc = 3.3 Vdc

±

 5%) 12-4
12.7 Input AC Timing Specifications (Vcc = 3.3 Vdc

±

 5%) 12-6

Section 13
Ordering Information and Mechanical Data

13.1 Ordering Information ... 13-1
13.2 Pin Assignments ... 13-1
13.2.1 MC68060, MC68LC060, and MC68EC060 Pin Grid Array (RC Suffix) 13-2
13.2.2 MC68060, MC68LC060, and MC68EC060 Quad Flat Pack (FE Suffix)... 13-3
13.3 Mechanical Data ... 13-4

Appendix A
MC68LC060

Appendix B
MC68EC060

B.1 Address Translation Differences...B-1
B.2 Instruction Differences ..B-1

Table of Contents

xviii

M68060 USER’S MANUAL

MOTOROLA

Appendix C
MC68060 Software Package

C.1 Module Format..C-2
C.2 Unimplemented Integer Instructions ...C-4
C.2.1 Integer Emulation Results ..C-5
C.2.2 Module 1: Unimplemented Integer Instruction Exception

(MC68060ISP)..C-5
C.2.2.1 Unimplemented Integer Instruction Exception Module Entry PointsC-6
C.2.2.2 Unimplemented Integer Instruction Exception Module Call-Outs.............C-6
C.2.2.3 CAS Misaligned Address and CAS2

Emulation-Related Call-Outs and Entry Points ..C-6
C.2.3 Module 2: Unimplemented Integer Instruction Library (MC68060ILSP)C-9
C.3 Floating-Point Emulation Package (MC68060FPSP)C-11
C.3.1 Floating-Point Emulation Results ...C-13
C.3.2 Module 3: Full Floating-Point Kernel ..C-14
C.3.2.1 Full Floating-Point Kernel Module Entry PointsC-14
C.3.2.2 Full Floating-Point Kernel Module Call-Outs ..C-14
C.3.2.2.1 The F-Line Exception Call-Outs ...C-14
C.3.2.2.2 System-Supplied Floating-Point Arithmetic

Exception Handler Call-Outs ..C-15
C.3.2.2.3 Exception-Related Call-Outs ...C-15
C.3.2.2.4 Exit Point Call-Outs ..C-15
C.3.2.3 Bypassing Module-Supplied Floating-Point Arithmetic HandlersC-15
C.3.2.3.1 Overflow/Underflow..C-16
C.3.2.3.2 Signalling Not-A-Number, Operand Error...C-17
C.3.2.3.3 Inexact Exception ...C-18
C.3.2.3.4 Divide-by-Zero Exception ...C-19
C.3.2.3.5 Branch/Set on Unordered Exception..C-19
C.3.2.4 Exceptions During Emulation ...C-20
C.3.2.4.1 Trap-Disabled Operation ..C-20
C.3.2.4.2 Trap-Enabled Operation...C-21
C.3.3 Module 4: Partial Floating-Point Kernel ..C-21
C.3.4 Module 5: Floating-Point Library (M68060FPLSP)...................................C-22
C.4 Operating System Dependencies ...C-23
C.4.1 Instruction and Data Fetches..C-23
C.4.2 Instructions Not Recommended ...C-26
C.5 Installation Notes ..C-27
C.5.1 Installing the Library Modules...C-27
C.5.2 Installing the Kernel Modules ...C-27
C.5.3 Release Notes and Module Offset AssignmentsC-28
C.5.4 AESOP Electronic Bulletin Board ...C-29

Appendix D
MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

xix

LIST OF ILLUSTRATIONS

1-1 MC68060 Block Diagram ... 1-6
1-2 Programming Model ... 1-12
2-1 Functional Signal Groups ... 2-3
3-1 MC68060 Integer Unit Pipeline .. 3-1
3-2 Integer Unit User Programming Model... 3-2
3-3 Integer Unit Supervisor Programming Model ... 3-3
3-4 Status Register... 3-4
3-5 Processor Configuration Register .. 3-5
4-1 Memory Management Unit ... 4-2
4-2 Memory Management Programming Model ... 4-3
4-3 URP and SRP Register Formats.. 4-3
4-4 Translation Control Register Format .. 4-4
4-5 Transparent Translation Register Format .. 4-6
4-6 Translation Table Structure .. 4-8
4-7 Logical Address Format ... 4-8
4-8 Detailed Flowchart of Table Search Operation .. 4-10
4-9 Detailed Flowchart of Descriptor Fetch Operation ... 4-11
4-10 Table Descriptor Formats... 4-12
4-11 Page Descriptor Formats ... 4-12
4-12 Example Translation Table... 4-15
4-13 Translation Table Using Indirect Descriptors ... 4-16
4-14 Translation Table Using Shared Tables ... 4-18
4-15 Translation Table with Nonresident Tables .. 4-19
4-16 Translation Table Structure for Two Tasks .. 4-21
4-17 Logical Address Map with Shared Supervisor and User Address Spaces....... 4-22
4-18 Translation Table Using S-Bit and W-Bit To Set Protection 4-23
4-19 ATC Organization... 4-24
4-20 ATC Entry and Tag Fields .. 4-25
4-21 Address Translation Flowchart... 4-29
5-1 MC68060 Instruction and Data Caches ... 5-2
5-2 Instruction Cache Line Format ... 5-2
5-3 Data Cache Line Format .. 5-2
5-4 Caching Operation ... 5-3
5-5 Cache Control Register .. 5-5
5-6 Instruction Cache Line State Diagram.. 5-16
5-7 Data Cache Line State Diagrams... 5-18
6-1 Floating-Point Unit Block Diagram ... 6-2
6-2 Floating-Point User Programming Model ... 6-3
6-3 Floating-Point Control Register Format.. 6-4

List of Illustrations

xx

M68060 USER’S MANUAL

MOTOROLA

6-4 Floating-Point Condition Code (FPSR) .. 6-5
6-5 Floating-Point Quotient Byte (FPSR) ... 6-5
6-6 Floating-Point Exception Status Byte (FPSR).. 6-6
6-7 Floating-Point Accrued Exception Byte (FPSR)... 6-6
6-8 Intermediate Result Format.. 6-12
6-9 Rounding Algorithm Flowchart ... 6-14
6-10 Floating-Point State Frame .. 6-35
6-11 Status Word Contents .. 6-36
7-1 Signal Relationships to Clocks... 7-2
7-2 Full-Speed Clock.. 7-2
7-3 Half-Speed Clock ... 7-2
7-4 Quarter-Speed Clock ... 7-3
7-5 Bus Control Register Format.. 7-4
7-6 Internal Operand Representation... 7-5
7-7 Data Multiplexing.. 7-6
7-8 Byte Select Signal Generation and PAL Equation ... 7-8
7-9 Example of a Misaligned Long-Word Transfer... 7-10
7-10 Example of Misaligned Word Transfer ... 7-10
7-11 Misaligned Long-Word Read Bus Cycle Timing... 7-11
7-12 Byte, Word, and Long-Word Read Cycle Flowchart .. 7-13
7-13 Byte, Word, and Long-Word Read Bus Cycle Timing 7-14
7-14 Line Read Cycle Flowchart .. 7-17
7-15 Line Read Transfer Timing... 7-18
7-16 Burst-Inhibited Line Read Cycle Flowchart .. 7-20
7-17 Burst-Inhibited Line Read Bus Cycle Timing.. 7-21
7-18 Byte, Word, and Long-Word Write Transfer Flowchart 7-22
7-19 Long-Word Write Bus Cycle Timing ... 7-23
7-20 Line Write Cycle Flowchart .. 7-26
7-21 Line Write Burst-Inhibited Cycle Flowchart .. 7-27
7-22 Line Write Bus Cycle Timing .. 7-28
7-23 Locked Bus Cycle for TAS Instruction Timing.. 7-30
7-24 Using CLA in a High-Speed DRAM Design ... 7-33
7-25 Interrupt Pending Procedure .. 7-33
7-26 Assertion of IPEND .. 7-34
7-27 Interrupt Acknowledge Cycle Flowchart... 7-36
7-28 Interrupt Acknowledge Bus Cycle Timing .. 7-37
7-29 Autovector Interrupt Acknowledge Bus Cycle Timing 7-38
7-30 Breakpoint Interrupt Acknowledge Cycle Flowchart... 7-39
7-31 Breakpoint Interrupt Acknowledge Bus Cycle Timing 7-40
7-32 LPSTOP Broadcast Cycle Flowchart ... 7-41
7-33 LPSTOP Broadcast Bus Cycle Timing, BG Negated 7-42
7-34 LPSTOP Broadcast Bus Cycle Timing, BG Asserted 7-43
7-35 Exiting LPSTOP Mode Flowchart... 7-44
7-36 Exiting LPSTOP Mode Timing Diagram... 7-45
7-37 Word Write Access Bus Cycle Terminated with TEA Timing 7-48

List of Illustrations

MOTOROLA

M68060 USER’S MANUAL

xxi

7-38 Line Read Access Bus Cycle Terminated with TEA Timing............................. 7-49
7-39 Retry Read Bus Cycle Timing .. 7-50
7-40 Line Write Retry Bus Cycle Timing... 7-51
7-41 MC68040-Arbitration Protocol State Diagram .. 7-57
7-42 MC68060-Arbitration Protocol State Diagram .. 7-64
7-43 Processor Bus Request Timing.. 7-67
7-44 Arbitration During Relinquish and Retry Timing ... 7-68
7-45 Implicit Bus Ownership Arbitration Timing.. 7-69
7-46 Effect of BGR on Locked Sequences... 7-70
7-47 Snooped Bus Cycle.. 7-71
7-48 Initial Power-On Reset Timing.. 7-72
7-49 Normal Reset Timing.. 7-73
7-50 Data Bus Usage During Reset ... 7-74
7-51 Acknowledge Termination Ignore State Example .. 7-75
7-52 Extra Data Write Hold Example.. 7-77
8-1 General Exception Processing Flowchart .. 8-2
8-2 General Form of Exception Stack Frame ... 8-3
8-3 Interrupt Recognition Examples ... 8-13
8-4 Interrupt Exception Processing Flowchart.. 8-15
8-5 Reset Exception Processing Flowchart.. 8-16
8-6 Fault Status Long-Word Format ... 8-22
9-1 JTAG Test Logic Block Diagram .. 9-3
9-2 JTAG Idcode Register Format.. 9-7
9-3 Output Pin Cell (O.Pin)... 9-8
9-4 Observe-Only Input Pin Cell (I.Obs)... 9-8
9-5 Input Pin Cell (I.Pin) ... 9-9
9-6 Output Control Cell (IO.Ctl) .. 9-9
9-7 General Arrangement of Bidirectional Pin Cells ... 9-10
9-8 JTAG Bypass Register ... 9-15
9-9 Circuit Disabling IEEE Standard 1149.1... 9-16
9-10 Debug Command Interface Schematic .. 9-25
9-11 Interface Timing.. 9-26
9-12 Transition from JTAG to Debug Mode Timing Diagram 9-34
9-13 Transition from Debug to JTAG Mode Timing Diagram 9-35
11-1 Linear Voltage Regulator Solution.. 11-7
11-2 LTC1147 Voltage Regulator Solution... 11-8
11-3 LTC1148 Voltage Regulator Solution... 11-9
11-4 MAX767 Voltage Regulator Solution.. 11-10
11-5 MC68040 Address Hold Time .. 11-11
11-6 MC68060 Address Hold Time .. 11-12
11-7 MC68060 Address Hold Time Fix .. 11-12
11-8 Simple CLK Generation.. 11-14
11-9 Generic CLK Generation .. 11-14
11-10 MC68040 BCLK to CLKEN Relationship.. 11-15
11-11 DRAM Timing Analysis... 11-15

List of Illustrations

xxii

M68060 USER’S MANUAL

MOTOROLA

12-12 Clock Input Timing Diagram... 12-3
12-13 Drive Levels and Test Points for AC Specifications ... 12-7
12-14 Reset Configuration Timing.. 12-8
12-15 Read/Write Timing ... 12-9
12-16 Bus Arbitration Timing.. 12-10
12-17 Bus Arbitration Timing (Continued) .. 12-11
12-18 CLA Timing .. 12-12
12-19 Snoop Timing ... 12-13
12-20 Other Signals Timing.. 12-14
13-1 PGA Package Dimensions (RC Suffix) .. 13-4
13-2 QFP Package Dimensions (FE Suffix) ... 13-5
C-1 Call-Out Dispatch Table Example ..C-2
C-2 Example Pseudo-Assembly File ..C-3
C-3 Module Call-In, Call-Out Example..C-4
C-4 CAS and CAS2 Call-Outs and Entry Points ...C-9
C-5 C-Code Representation of Integer Library Routines ..C-10
C-6 MUL Instruction Call Example..C-11
C-7 CMP2 Instruction Call Example ...C-11
C-8 SNAN/OPERR Exception Handler Pseudo-Code ..C-18
C-9 Disabled vs. Enabled Exception Actions..C-20
C-10 _mem_read Pseudo-Code ...C-23
C-11 Register Usage of {i,d}mem_{read,write}_{b,w,l} ...C-25
C-12 Vector Table and M68060SP Relationship ..C-28

MOTOROLA

M68060 USER’S MANUAL

xxiii

LIST OF TABLES

1-1 Data Formats.. 1-14
1-2 Effective Addressing Modes... 1-15
1-3 Instruction Set Summary .. 1-16
1-4 Notational Conventions .. 1-21
2-1 Signal Index.. 2-1
2-2 Transfer-Type Encoding... 2-4
2-3 Normal and MOVE16 Access TMx Encoding... 2-5
2-4 Alternate Access TMx Encoding .. 2-5
2-5 SIZx Encoding .. 2-6
2-6 Data Bus Byte Select Signals... 2-7
2-7 PSTx Encoding... 2-14
2-8 Signal Summary ... 2-17
4-1 Updating U-Bit and M-Bit for Page Descriptors.. 4-20
4-2 SFC and DFC Values... 4-20
5-1 TLNx Encoding... 5-11
5-2 Instruction Cache Line State Transitions.. 5-15
5-3 Data Cache Line State Transitions... 5-18
6-1 RND Encoding.. 6-4
6-2 PREC Encoding ... 6-4
6-3 MC68060 FPU Data Formats and Data Types .. 6-7
6-4 Single-Precision Real Format Summary .. 6-8
6-5 Double-Precision Real Format Summary... 6-9
6-6 Extended-Precision Real Format Summary ... 6-10
6-7 Packed Decimal Real Format Summary .. 6-11
6-8 Floating-Point Condition Code Encoding ... 6-16
6-9 Floating-Point Conditional Tests .. 6-18
6-10 Floating-Point Exception Vectors ... 6-19
6-11 Unimplemented Instructions... 6-20
6-12 Possible Operand Errors Exceptions ... 6-27
6-13 Overflow Rounding Mode Values... 6-29
6-14 Underflow Rounding Mode Values... 6-31
6-15 Possible Divide-by-Zero Exceptions... 6-33
6-16 Rounding Mode Values .. 6-34
7-1 Data Bus Requirements for Read and Write Cycles .. 7-7
7-2 Summary of Access Types vs. Bus Signal Encoding... 7-9
7-3 Memory Alignment Influence on Noncachable and

Writethrough Bus Cycles.. 7-12
7-4 Interrupt Acknowledge Termination Summary ... 7-34
7-5 Termination Result Summary... 7-46
7-6 MC68040-Arbitration Protocol Transition Conditions 7-55

List of Tables

xxiv

M68060 USER’S MANUAL

MOTOROLA

7-7 MC68040-Arbitration Protocol State Description ... 7-56
7-8 MC68060-Arbitration Protocol State Transition Conditions.............................. 7-62
7-9 MC68060-Arbitration Protocol State Description ... 7-63
7-10 Special Mode vs. IPLx Signals... 7-74
8-1 Exception Vector Assignments .. 8-4
8-2 Interrupt Levels and Mask Values.. 8-12
8-3 Exception Priority Groups .. 8-17
9-1 JTAG States... 9-2
9-2 JTAG Instructions... 9-4
9-3 Boundary Scan Bit Definitions.. 9-10
9-4 Debug Command Interface Pins .. 9-25
9-5 Command Summary .. 9-28
10-1 Superscalar OEP Dispatch Test Algorithm .. 10-4
10-2 MC68060 Superscalar Classification of M680x0 Integer Instructions.............. 10-4
10-3 Superscalar Classification of M680x0 Privileged Instructions.......................... 10-7
10-4 Superscalar Classification of M680x0 Floating-Point Instructions 10-7
10-5 Effective Address Calculation Times.. 10-14
10-6 Move Byte and Word Execution Times .. 10-15
10-7 Move Long Execution Times.. 10-15
10-8 MOVE16 Execution Times ... 10-15
10-9 Standard Instruction Execution Time ... 10-16
10-10 Immediate Instruction Execution Times ... 10-17
10-11 Single-Operand Instruction Execution Times... 10-18
10-12 Clear (CLR) Execution Times .. 10-18
10-13 Shift/Rotate Execution Times... 10-19
10-14 Bit Manipulation (Dynamic Bit Count) Execution Times................................. 10-19
10-15 Bit Manipulation (Static Bit Count) Execution Times...................................... 10-20
10-16 Bit Field Execution Times... 10-20
10-17 Branch Execution Times .. 10-21
10-18 JMP, JSR Execution Times.. 10-21
10-19 Return Instruction Execution Times ... 10-21
10-20 LEA, PEA, and MOVEM Instruction Execution Times 10-22
10-21 Multiprecision Instruction Execution Times .. 10-22
10-22 Status Register (SR) Instruction Execution Times ... 10-23
10-23 MOVES Execution Times... 10-23
10-24 Miscellaneous Instruction Execution Times ... 10-23
10-25 Floating-Point Instruction Execution Times.. 10-24
10-26 Exception Processing Times.. 10-26
11-1 With Heat Sink, No Air Flow... 11-18
11-2 With Heat Sink, with Air Flow ... 11-18
11-3 No Heat Sink .. 11-19
11-4 Support Devices and Products... 11-20
C-1 Call-Out Dispatch Table and Module Size ...C-4
C-2 FPU Comparison..C-12
C-3 Unimplemented Instructions...C-13

List of Tables

MOTOROLA

M68060 USER’S MANUAL

xxv

C-4 Unimplemented Data Formats and Data Types .. C-13
C-5 UNIX Operating System Calls ... C-23
C-6 Instructions Not Handled by the M68060SP ... C-26
C-7 Files Provided in an M68060SP Release.. C-27
D-1 M68000 Family Instruction Set and Processor Cross-Reference D-1
D-2 M68000 Family Instruction Set.. D-6
D-3 Exception Vector Assignments for the M68000 Family................................... D-10

List of Tables

xxvi

M68060 USER’S MANUAL

MOTOROLA

MOTOROLA

M68060 USER’S MANUAL

1-1

SECTION 1
INTRODUCTION

The superscalar MC68060 represents a new line of Motorola microprocessor products. The
first generation of the M68060 product line consists of the MC68060, MC68LC060, and
MC68EC060. All three microprocessors offer superscalar integer performance of over 100
MIPS at 66 MHz. The MC68060 comes fully equipped with both a floating-point unit (FPU)
and a memory management unit (MMU) for high-performance embedded control and desk-
top applications. For cost-sensitive embedded control and desktop applications where an
MMU is required, but the additional cost of a FPU is not justified, the MC68LC060 offers
high-performance at a low cost. Specifically designed for low-cost embedded control appli-
cations, the MC68EC060 eliminates both the FPU and MMU, permitting designers to lever-
age MC68060 performance while avoiding the cost of unnecessary features. Throughout
this product brief, all references to the MC68060 also refer to the MC68LC060 and the
MC68EC060, unless otherwise noted.

Leveraging many of the same performance enhancements used by RISC designs as well
as providing innovative architectural techniques, the MC68060 harnesses new levels of per-
formance for the M68000 family. Incorporating 2.5 million transistors on a single piece of sil-
icon, the MC68060 employs a deep pipeline, dual issue superscalar execution, a branch
cache, a high-performance floating-point unit (MC68060 only), eight Kbytes each of on-chip
instruction and data caches, and dual on-chip demand paging MMUs (MC68060 and
MC68LC060 only). The MC68060 allows simultaneous execution of two integer instructions
(or an integer and a float instruction) and one branch instruction during each clock.

The MC68060 features a full internal Harvard architecture. The instruction and data caches
are designed to support concurrent instruction fetch, operand read and operand write refer-
ences on every clock. Separate 8-Kbyte instruction and 8-Kbyte data caches can be frozen
to prevent allocation over time-critical code or data. The independent nature of the caches
allows instruction stream fetches, data-stream fetches, and external accesses to occur
simultaneously with instruction execution. The operand data cache is four-way banked to
permit simultaneous read and write access each clock.

A very high bandwidth internal memory system coupled with the compact nature of the
M68000 family code allows the MC68060 to achieve extremely high levels of performance,
even when operating from low-cost memory such as a 32-bit wide dynamic random access
memory system.

Instructions are fetched from the internal cache or external memory by a four-stage instruc-
tion fetch pipeline. The MC68060 variable-length instruction system is internally decoded
into a fixed-length representation and channeled into an instruction buffer. The instruction
buffer acts as a FIFO which provides a decoupling mechanism between the instruction fetch

Introduction

1-2

M68060 USER’S MANUAL

MOTOROLA

unit and the operand execution units. Fixed format instructions are dispatched to dual four-
stage pipelined RISC operand execution engines where they are then executed.

The branch cache also plays a major role in achieving the high performance levels of the
MC68060. It has been implemented such that most branches are executed in zero cycles.
Using a technique known as branch folding, the branch cache allows the instruction fetch
pipeline to detect and change the instruction prefetch stream before the change of flow
affects the instruction execution engines, minimizing the need for pipeline refill.

In addition to substantial cost and performance benefits, the MC68060 also offers advan-
tages in power consumption and power management. The MC68060 automatically mini-
mizes power dissipation by using a fully-static design, dynamic power management, and
low-voltage operation. It automatically powers-down internal functional blocks that are not
needed on a clock-by-clock basis. Explicitly the MC68060 power consumption can be con-
trolled from the operating system. Although the MC68060 operates at a lower operating volt-
age, it directly interfaces to both 3-V and 5-V peripherals and logic.

Complete code compatibility with the M68000 family allows the designer to draw on existing
code and past experience to bring products to market quickly. There is also a broad base of
established development tools, including real-time kernels, operating systems, languages,
and applications, to assist in product design. The functionality provided by the MC68060
makes it the ideal choice for a range of high-performance embedded applications and com-
puting applications. With M68000 family code compatibility, the MC68060 provides a range
of upgrade opportunities to virtually any existing MC68040 application.

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-3

1.1 DIFFERENCES AMONG M68060 FAMILY MEMBERS

Because the functionality of individual M68060 family members are similar, this manual is
organized so that the reader will take the following differences into account while reading
the rest of this manual. Unless otherwise noted, all references to MC68060, with the excep-
tion of the differences outlined below, will apply to the MC68060, MC68LC060, and
MC68EC060. The following paragraphs describe how the MC68LC060 and the
MC68EC060 differ from the MC68060.

1.1.1 MC68LC060

The MC68LC060 is a derivative of the MC68060. The MC68LC060 has the same execution
unit and MMU as the MC68060, but has no FPU. The MC68LC060 is 100% pin compatible
with the MC68060. Disregard all information concerning the FPU when reading this manual.
The following difference exists between the MC68LC060 and the MC68060:

• The MC68LC060 does not contain an FPU. When floating-point instructions are
encountered, a floating-point disabled exception is taken.

1.1.2 MC68EC060

The MC68EC060 is a derivative of the MC68060. The MC68EC060 has the same execution
unit as the MC68060, but has no FPU or paged MMU, which embedded control applications
generally do not require. Disregard information concerning the FPU and MMU when reading
this manual. The MC68EC060 is pin compatible with the MC68060. The following differ-
ences exist between the MC68EC060 and the MC68060:

• The MC68EC060 does not contain an FPU. When floating-point instructions are
encountered, a floating-point disabled exception is taken.

• The MDIS pin name has been changed to the JS0 pin and is included for boundary scan
purposes only.

1.1.2.1 ADDRESS TRANSLATION DIFFERENCES.

Although the MC68EC060 has no
paged MMU, the four transparent translation registers (ITT0, ITT1, DTT0, and DTT1) and
the default transparent translation (defined by certain bits in the translation control register
(TCR)) operate normally and can still be used to assign cache modes and supervisor and
write protection for given address ranges. All addresses can be mapped by the four trans-
parent translation registers (TTRs) and the default transparent translation.

1.1.2.2 INSTRUCTION DIFFERENCES.

The PFLUSH and PLPA instructions, the supervi-
sor root pointer (SRP) and user root pointer (URP) registers, and the E- and P-bits of the
TCR are not supported by the MC68EC060 and must not be used. Use of these instructions
and registers in the MC68EC060 exhibits poor programming practice since no useful results
can be achieved. Any functional anomalies that may result from their use will require system
software modification (to remove offending instructions) to achieve proper operation.

The PLPA instruction operates normally except that when an address misses in the four
TTRs, instead of performing a table search operation, the access cache mode and write pro-
tection properties are defined by the default transparent translation bits in the TCR. The
address register contents are never changed since all addresses are always transparently

Introduction

1-4

M68060 USER’S MANUAL

MOTOROLA

translated. The PLPA instruction can only generate an access error exception only on super-
visor or write protection violation cases. The PFLUSH instruction operates as a virtual NOP
instruction.

When the MOVEC instruction is used to access the SRP and URP registers and the E- and
P-bits in the TCR, no exceptions are reported. However, those bits are undefined for the
MC68EC060 and must not be used.

1.2 FEATURES

The main features of the MC68060 are as follows:

• 1.6–1.7 Times the MC68040 Performance at the Same Clock Rate with Existing Com-
pliers. 3.2–3.4 Times the Performance of a 25 MHZ MC68040.

• Harvard Architecture with Independent, Decoupled Fetch and Execution Pipelines.

• Branch Prediction Logic with a 256-Entry, 4-Way Set-Associative, Virtual-Mapped
Branch Cache for Improved Branch Instruction Performance.

• A Superscalar Pipeline and Dual Integer Execution Units Achieving Simultaneous, but
not Out-of-Order Instruction Execution.

• An IEEE Standard, MC68040- and MC68881-/MC68882-Compatible FPU.

• An MC68040-Compatible Paged Memory Management Unit with Dual 64-Entry
Address Translation Caches

• Dual 8-Kbyte Caches (Instruction Cache and Data Cache)

• A Flexible, High-Bandwidth Synchronous Bus Interface

• User Object-Code Compatible with All Earlier M68000 Microprocessors

1.3 ARCHITECTURE

The instruction fetch unit (IFU) is a four-stage pipeline for prefetching instructions. The dual
operand execution pipelines (OEPs) (named primary” (pOEP) and secondary (sOEP)) are
four-stage pipelines for decoding the instructions, fetching the required operand(s), and then
performing the actual execution of the instructions. Since the IFU and OEP are decoupled
by a first-in-first-out (FIFO) instruction buffer, the IFU is able to prefetch instructions in
advance of their actual use by the OEPs.

The MC68060 is designed to maximize the OEP’s efficiency through the use of a supersca-
lar pipeline architecture. This architectural advance improves processor performance dra-
matically by exploiting instruction-level parallelism. The term superscalar denotes the ability
to detect, dispatch, execute, and return results from more than one instruction during each
machine cycle from an otherwise conventional instruction stream.

As a result, multiple instructions may be executed in a single machine cycle. Since the dual
OEPs perform in a lock-step mode of operation, the multiple instruction execution is per-
formed simultaneously, but not out-of-order. The net effect is a software-invisible pipeline
architecture capable of sustained execution rates of < 1 machine cycle per instruction of the
M68000 instruction set.

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-5

Architectural highlights of the MC68060 include:

• Four-Stage Instruction Fetch Unit (IFU)
— 64-Entry Instruction Address Translation Cache (ATC), Organized as 4-Way Set-

Associative, for Fast Virtual-to-Physical Address Translations
— 8- Kbyte, 4-Way Set-Associative, Physically-Mapped Instruction Cache
—256-Entry, 4-Way Set-Associative, Virtually-Mapped Branch Cache, Which Predicts

the Direction of Branches Based on Their Past Execution History
—96-Byte FIFO Instruction Buffer to Allow Decoupling of the IFP and OEPs

• Four-Stage Execution Pipelines Featuring Primary Pipeline (pOEP), Secondary Pipe-
line (sOEP), and Register File (RGF) Containing Program-Visible General Registers
— 64-Entry Operand Data ATC, Organized as 4-Way Set-Associative, for Fast Virtual-

to-Physical Address Translations
— 8- Kbyte, 4-Way Set-Associative, Physically-Mapped Operand Data Cache
— The Operand Data Cache Is Organized in a Banked Structure to Allow Simultaneous

Read/Write Accesses
— Integer Execute Engines Optimized to Perform Most Instruction Executions in a

Single Machine Cycle
—Floating-Point Execute Engine, with Floating-Point Register File, Optimized for Per-

formance with Extended-Precision-Wide Internal Datapaths.
—Four-Entry Store Buffer and One-Entry Push Buffer That Provide the Performance

Feature of Decoupling the Processor Pipeline from External Memory for Certain
Cache Modes of Operation.

This pipeline architecture supports extremely high data transfer rates within the MC68060
processor. The on-chip instruction and operand data caches provide 600 MBytes/sec @ 50
MHz to the pipelines, while the integer execute engines can support sustained transfer rates
of 1.2 GBytes/sec.

1.4 PROCESSOR OVERVIEW

The following paragraphs provide a general description of the MC68060.

1.4.1 Functional Blocks

Figure 1-1 illustrates a simplified block diagram of the MC68060.

Introduction

1-6

M68060 USER’S MANUAL

MOTOROLA

The architecture of the MC68060 processor is implemented in the following major blocks:

• Execution Unit
—Instruction Fetch Unit
—Integer Unit
—FPU

• Memory Units
—Instruction Memory Unit

• Instruction ATC
• Instruction Cache
• Instruction Cache Controller

—Data Memory Unit
• Data ATC
• Data Cache
• Data Cache Controller

• Bus Controller

These major units execute concurrently to maximize sustained performance. Note that the
caches reside on separate buses allowing concurrent instruction fetch, data read, and data
write operations (internal Harvard architecture).

Figure 1-1. MC68060 Block Diagram

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-7

The integer unit implements a subset of the MC68040 instruction set. The FPU implements
a subset of the MC68881/2 coprocessor instruction set. The instruction and data memory
units

manage the ATCs and the instruction and data caches. The ATCs provide on-chip stor-
age for the paged MMU’s most recently used address translations. The data and instruction
caches include the logic necessary to read, write, update, invalidate, and flush the caches.
The bus controller manages the interface between the MMUs and the external bus. Snoop
invalidation is supported to maintain cache consistency by monitoring the external bus when
the processor is not the current master.

1.4.2 Integer Unit

The MC68060’s integer unit carries out logical and arithmetic operations. The integer unit
contains an instruction fetch controller, an instruction execution controller, and a branch tar-
get cache. The superscalar design of the MC68060 provides dual execution pipelines in the
instruction execution controller, providing simultaneous execution.

The superscalar operation of the integer unit can be disabled in software, turning off the sec-
ond execution pipeline for debugging. Disabling the superscalar operation also lowers per-
formance and power consumption.

1.4.2.1 INSTRUCTION FETCH UNIT.

The instruction fetch unit contains an instruction
fetch pipeline and the logic that interfaces to the branch cache. The instruction fetch pipeline
consists of four stages, providing the ability to prefetch instructions in advance of their actual
use in the instruction execution controller. The continuous fetching of instructions keeps the
instruction execution controller busy for the greatest possible performance. Every instruction
passes through each of the four stages before entering the instruction execution controller.
The four stages in the instruction fetch pipeline are:

1. Instruction Address Calculation (IAG)—The virtual address of the instruction is deter-
mined.

2. Instruction Fetch (IC)—The instruction is fetched from memory.

3. Early Decode (IED)—The instruction is pre-decoded for pipeline control information.

4. Instruction Buffer (IB)—The instruction and its pipeline control information are buffered
until the integer execution pipeline is ready to process the instruction.

The branch cache plays a major role in achieving the performance levels of the MC68060.
The concept of the branch cache is to provide a mechanism that allows the instruction fetch
pipeline to detect and change the instruction stream before the change of flow affects the
instruction execution controller.

The branch cache is examined for a valid branch entry after each instruction fetch address
is generated in the instruction fetch pipeline. If a hit does not occur in the branch target
cache, the instruction fetch pipeline continues to fetch instructions sequentially. If a hit
occurs in the branch cache, indicating a branch taken instruction, the current instruction
stream is discarded and a new instruction stream is fetched starting at the location indicated
by the branch cache.

Introduction

1-8

M68060 USER’S MANUAL

MOTOROLA

1.4.2.2 INTEGER UNIT.

The integer unit contains dual integer execution pipelines, inter-
face logic to the FPU, and control logic for data written to the data cache and MMU. The
superscalar design of the dual integer execution pipelines provide for simultaneous instruc-
tion execution, which allows for processing more than one instruction during each machine
clock cycle. The net effect of this is a software invisible pipeline capable of sustained exe-
cution rates of less than one machine clock cycle per instruction for the M68000 instruction
set.

The integer unit’s control logic pulls an instruction pair from the instruction buffer every
machine clock cycle, stopping only if the instruction information is not available or if an inte-
ger execution pipeline hold condition exists. The six stages in the dual integer execution
pipelines are:

1. Decode (DS)—The instruction is fully decoded.

2. Effective Address Calculation (AG)—If the instruction calls for data from memory, the
location of the data is calculated.

3. Effective Address Fetch (OC)—Data is fetched from the memory location.

4. Integer Execution (EX)—The data is manipulated during execution.

5. Data Available (DA)—The result is available.

6. Write-Back (WB)—The resulting data is written back to on-chip caches or external
memory.

The MC68060 is optimized for most integer instructions to execute in one machine clock
cycle. If during the instruction decode stage, the instruction is determined to be a floating-
point instruction, it will be passed to the FPU after the effective address calculate stage. If
data is to be written to either the on-chip caches or external memory after instruction execu-
tion, the write-back stage holds the data until memory is ready to receive it.

1.4.2.3 FLOATING-POINT UNIT.

Floating-point math is distinguished from integer math,
which deals only with whole numbers and fixed decimal point locations. The IEEE-compat-
ible MC68060's FPU computes numeric calculations with a variable decimal point location.
Consolidating the FPU on-chip speeds up overall processing and eliminates the interfacing
overhead associated with external accelerators. The MC68060's FPU operates in parallel
with the integer unit. The FPU performs numeric calculations while the integer unit continues
integer processing.

The FPU has been optimized for the most frequently used instructions and data types to pro-
vide the highest possible performance. The FPU can also be disabled in software to reduce
system power consumption.

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-9

The MC68060 is compatible with the

ANSI/IEEE Standard 754 for Binary Floating-Point
Arithmetic

. The MC68060’s FPU has been optimized to execute the most commonly used
subset of the MC68881/MC68882 instruction sets. Software emulates floating-point instruc-
tions not directly supported in hardware. Refer to

Appendix C MC68060 Software Pack-
age

 for details on software emulation. The MC68060FPSP provides the following features:

• Arithmetic and Transcendental Instructions

• IEEE-Compliant Exception Handlers

• Unimplemented Data Type and Data Format Handlers

1.4.2.4 MEMORY UNITS.

The MC68060 contains independent instruction and data mem-
ory units. Each memory unit consists of an 8-Kbyte cache, a cache controller, and an ATC.
The full addressing range of the MC68060 is 4 Gbytes. Even though most MC68060 sys-
tems implement a much smaller physical memory, by using virtual memory techniques, the
system can appear to have a full 4 Gbytes of memory available to each user program. Each
MMU fully supports demand-paged virtual-memory operating systems with either 4- or 8-
Kbyte page sizes. Each MMU protects supervisor areas from accesses by user programs
and provides write protection on a page-by-page basis. For maximum efficiency, each MMU
operates in parallel with other processor activities. The MMUs can be disabled for emulator
and debugging support.

1.4.2.5 ADDRESS TRANSLATION CACHES.

The 64-entry, four-way, set-associative
ATCs store recently used logical-to-physical address translation information as page
descriptors for instruction and data accesses. Each MMU initiates address translation by
searching for a descriptor containing the address translation information in the ATC. If the
descriptor does not reside in the ATC, the MMU performs external bus cycles through the
bus controller to search the translation tables in physical memory. After being located, the
page descriptor is loaded into the ATC, and the address is correctly translated for the
access.

1.4.2.6 INSTRUCTION AND DATA CACHES.

Studies have shown that typical programs
spend much of their execution time in a few main routines or tight loops. Earlier members of
the M68000 family took advantage of this locality-of-reference phenomenon to varying
degrees. The MC68060 takes further advantage of cache technology with its two, indepen-
dent, on-chip physical caches, one for instructions and one for data. The caches reduce the
processor's external bus activity and increase CPU throughput by lowering the effective
memory access time. For a typical system design, the large caches of the MC68060 yield a
very high hit rate, providing a substantial increase in system performance.

The autonomous nature of the caches allows instruction-stream fetches, data-stream
fetches, and external accesses to occur simultaneously with instruction execution. For
example, if the MC68060 requires both an instruction access and an external peripheral
access and if the instruction is resident in the on-chip cache, the peripheral access proceeds
unimpeded rather than being queued behind the instruction fetch. If a data operand is also
required and it is resident in the data cache, it can be accessed without hindering either the
instruction access or the external peripheral access. The parallelism inherent in the
MC68060 also allows multiple instructions that do not require any external accesses to exe-

Introduction

1-10

M68060 USER’S MANUAL

MOTOROLA

cute concurrently while the processor is performing an external access for a previous
instruction.

Each MC68060 cache is 8 Kbytes, accessed by physical addresses. The data cache can be
configured as write-through or deferred copyback on a page basis. This choice allows for
optimizing the system design for high performance if deferred copyback is used.

Cachability of data in each memory page is controlled by two bits in the page descriptor.
Cachable pages can be either write-through or copyback, with no write-allocate for misses
to write-through pages.

The MC68060 implements a four-entry store buffer that maximizes system performance by
decoupling the integer pipeline from the external system bus. When needed, the store buffer
allows the pipeline to generate writes every clock cycle until full, even if the system bus runs
at a slower speed than the processor.

1.4.2.6.1 Cache Organization.

The instruction and data caches are each organized as
four-way set associative, with 16-byte lines. Each line of data has associated with it an
address tag and state information that shows the line’s validity. In the data cache, the state
information indicates whether the line is invalid, valid, or dirty.

1.4.2.6.2 Cache Coherency.

The MC68060 has the ability to watch or snoop the external
bus during accesses by other bus masters, maintaining coherency between the MC68060's
caches and external memory systems. External bus cycles can be flagged on the bus as
snoopable or nonsnoopable. When an external cycle is marked as snoopable, the bus
snooper checks the caches and invalidates the matching data. Although the integer execu-
tion units and the bus snooper circuit have access to the on-chip caches, the snooper has
priority over the execution units.

1.4.3 Bus Controller

The bus is implemented as a nonmultiplexed, fully synchronous protocol that is clocked off
the rising edge of the input clock. The bus controller operates concurrently with all other
functional units of the MC68060 to maximize system throughput. The timing of the bus is
fully configurable to match external memory requirements.

1.5 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing, or
halted. It is in the normal processing state when executing instructions, fetching instructions
and operands, and storing instruction results.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe caused after an exception. The processor enters
exception processing when an exceptional internal condition arises such as tracing an
instruction, an instruction results in a trap, or executing specific instructions. External condi-
tions, such as interrupts and access errors, also cause exceptions. Exception processing
ends when the first instruction of the exception handler begins to execute.

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-11

The processor halts when it receives an access error or generates an address error while in
the exception processing state. For example, if during exception processing of one access
error another access error occurs, the MC68060 is unable to complete the transition to nor-
mal processing and cannot save the internal state of the machine. The processor assumes
that the system is not operational and halts. Only an external reset can restart a halted pro-
cessor. Note that when the processor executes a STOP or LPSTOP instruction, it is in a spe-
cial type of normal processing state, one without bus cycles. The processor stops, but it
does not halt and can be restored by an interrupt or reset.

1.6 PROGRAMMING MODEL

The MC68060 programming model is separated into two privilege modes: supervisor and
user. The integer unit identifies a logical address by accessing either the supervisor or user
address space, maintaining the differentiation between supervisor and user modes. The
MMUs use the indicated privilege mode to control and translate memory accesses, protect-
ing supervisor code, data, and resources from user program accesses. Refer to

1.1.2.1
Address Translation Differences

 for details concerning the MC68EC060 address transla-
tion.

Programs access registers based on the indicated mode. User programs can only access
registers specific to the user mode; whereas, system software executing in the supervisor
mode can access all registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information, and the operating
system performs management and service tasks for the user programs by coordinating their
activities. This difference allows the supervisor mode to protect system resources from
uncontrolled accesses.

Most instructions execute in either mode, but some instructions that have important system
effects are privileged and can only execute in the supervisor mode. For instance, user pro-
grams cannot execute the STOP or RESET instructions. To prevent a user program from
entering the supervisor mode, except in a controlled manner, instructions that can alter the
S-bit in the status register (SR) are privileged. The TRAP instructions provide controlled
access to operating system services for user programs.

If the S-bit in the SR is set, the processor executes instructions in the supervisor mode.
Because the processor performs all exception processing in the supervisor mode, all bus
cycles generated during exception processing are supervisor references, and all stack
accesses use the active supervisor stack pointer. If the S-bit of the SR is clear, the processor
executes instructions in the user mode. The bus cycles for an instruction executed in the
user mode are user references. The values on the transfer modifier pins indicate either
supervisor or user accesses.

The processor utilizes the user mode and the user programming model when it is in normal
processing. During exception processing, the processor changes from user to supervisor
mode. Exception processing saves the current value of the SR on the active supervisor
stack and then sets the S-bit, forcing the processor into the supervisor mode. To return to
the user mode, a system routine must execute one of the following instructions: MOVE to
SR, ANDI to SR, EORI to SR, ORI to SR, or RTE, which execute in the supervisor mode,

Introduction

1-12

M68060 USER’S MANUAL

MOTOROLA

modifying the S-bit of the SR. After these instructions execute, the instruction pipeline is
flushed and is refilled from the appropriate address space.

The MC68060 integrates the functions of the integer unit, FPU, and MMU. The registers
depicted in the programming model (see Figure 1-2) provide operand storage and control
for these three units. The registers are partitioned into two levels of privilege modes: user
and supervisor. The user programming model is the same as the user programming model
of the MC68040, which consists of 16 general-purpose 32-bit registers, two control regis-
ters, eight 80-bit floating-point data registers, a floating-point control register, a floating-point
status register, and a floating-point instruction address register.

Only system programmers can use the supervisor programming model to implement oper-
ating system functions, I/O control, and memory management subsystems. This supervisor/

Figure 1-2. Programming Model

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0

D7
D6
D5
D4
D3
D2
D1
D0

31 0

DATA
REGISTERS

ADDRESS
REGISTERS

31 0

79 0

FP0
FP1
FP2
FP3
FP4
FP5
FP6
FP7

FPCR
FPSR
FPIAR

FLOATING-POINT
DATA

REGISTERS

FP CONTROL REGISTER
FP STATUS REGISTER

FP INSTRUCTION ADDRESS REGISTER

31 0

PCR
A7/SSP
SR
VBR
SFC
DFC
CACR
URP
SRP
TC
DTT0
DTT1
ITT0
ITT1
BUSCR

(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

PROCESSOR CONFIGURATION REGISTER
SUPERVISOR STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN THE USER PROGRAMMING MODEL)
VECTOR BASE REGISTER
SOURCE FUNCTION CODE
DESTINATION FUNCTION CODE
CACHE CONTROL REGISTER

 USER ROOT POINTER REGISTER
SUPERVISOR ROOT POINTER REGISTER
TRANSLATION CONTROL REGISTER
DATA TRANSPARENT TRANSLATION REGISTER 0
DATA TRANSPARENT TRANSLATION REGISTER 1
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 0
INSTRUCTION TRANSPARENT TRANSLATION REGISTER 1
BUS CONTROL REGISTER

USER STACK POINTER

15
0

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-13

user distinction in the M68000 family architecture allows for the writing of application soft-
ware that executes in the user mode and migrates to the MC68060 from any M68000 family
platform without modification. The supervisor programming model contains the control fea-
tures that system designers need to modify system software when porting to a new design.
For example, only the supervisor software can read or write to the TTRs of the MC68060.
The existence of the TTRs does not affect the programming resources of user application
programs.

The user programming model includes eight data registers, seven address registers, and a
stack pointer register. The address registers and stack pointer can be used as base address
registers or software stack pointers, and any of the 16 registers can be used as index reg-
isters. Two control registers are available in the user mode—the program counter (PC),
which usually contains the address of the instruction that the MC68060 is executing, and the
lower byte of the SR, which is accessible as the condition code register (CCR). The CCR
contains the condition codes that reflect the results of a previous operation and can be used
for conditional instruction execution in a program.

The supervisor programming model includes the upper byte of the SR, which contains oper-
ation control information. The vector base register (VBR) contains the base address of the
exception vector table, which is used in exception processing. The source function code
(SFC) and destination function code (DFC) registers contain 3-bit function codes. These
function codes can be considered extensions to the 32-bit logical address. The processor
automatically generates function codes to select address spaces for data and program
accesses in the user and supervisor modes. Some instructions use the alternate function
code registers to specify the function codes for various operations.

The processor configuration register (PCR) contains bits which control the internal pipelines
of the MC68060 design.

The bus control register (BUSCR) is used to control software emulation of locked bus trans-
actions.

The cache control register (CACR) controls enabling of the on-chip instruction and data
caches of the MC68060. The supervisor root pointer (SRP) and user root pointer (URP) reg-
isters point to the root of the address translation table tree to be used for supervisor and user
mode accesses.

The translation control register (TCR) enables logical-to-physical address translation and
selects either 4- or 8-Kbyte page sizes. There are four TTRs, two for instruction accesses
and two for data accesses. These registers allow portions of the logical address space to be
transparently mapped and accessed without the use of resident descriptors in an ATC.

The user programming model can also access the entire floating-point programming model.
The eight 80-bit floating-point data registers are analogous to the integer data registers. A
32-bit floating-point control register (FPCR) contains an exception enable byte that enables
and disables traps for each class of floating-point exceptions and a mode byte that sets the
user-selectable rounding and precision modes. A floating-point status register (FPSR) con-
tains a condition code byte, quotient byte, exception status byte, and accrued exception

Introduction

1-14

M68060 USER’S MANUAL

MOTOROLA

byte. A floating-point exception handler can use the address in the 32-bit floating-point
instruction address register (FPIAR) to locate the floating-point instruction that has caused
an exception. Instructions that do not modify the FPIAR can be used to read the FPIAR in
the exception handler without changing the previous value.

1.7

DATA FORMAT SUMMARY

The MC68060 supports the basic data formats of the M68000 family. Some data formats
apply only to the integer unit, some only to the FPU, and some to both. In addition, the
instruction set supports operations on other data formats such as memory addresses.

The operand data formats supported by the integer unit are the standard twos-complement
data formats defined in the M68000 family architecture plus a new data format (16-byte
block) for the MOVE16 instruction. Registers, memory, or instructions themselves can con-
tain integer unit operands. The operand size for each instruction is either explicitly encoded
in the instruction or implicitly defined by the instruction operation.

Whenever an integer is used in a floating-point operation, the FPU automatically converts it
to an extended-precision floating-point number before using the integer. The FPU imple-
ments single-, double-, and extended-precision floating-point data formats as defined by the
IEEE 754 standard. The FPU does not directly support packed decimal real format. How-
ever, software emulation supports this format via the unimplemented data format vector.
Additionally, each data format has a special encoding that represents one of five data types:
normalized numbers, denormalized numbers, zeros, infinities, and not-a-numbers (NANs).
Table 1-1 lists the data formats for both the integer unit and the FPU. Refer to M68000PM/
AD,

M68000 Family Programmer’s Reference Manual,

 for details on data format organiza-
tion in registers and memory.

1.8 ADDRESSING CAPABILITIES SUMMARY

The MC68060 supports the basic addressing modes of the M68000 family. The register indi-
rect addressing modes support postincrement, predecrement, offset, and indexing, which
are particularly useful for handling data structures common to sophisticated applications and
high-level languages. The program counter indirect mode also has indexing and offset capa-
bilities. This addressing mode is typically required to support position-independent software.
Besides these addressing modes, the MC68060 provides index sizing and scaling features.

Table 1-1. Data Formats

Operand Data Format Size Supported In Notes

Bit 1 Bit Integer Unit —
Bit Field 1–32 Bits Integer Unit Field of Consecutive Bits
Binary-Coded Decimal (BCD) 8 Bits Integer Unit Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte
Byte Integer 8 Bits Integer Unit, FPU —
Word Integer 16 Bits Integer Unit, FPU —
Long-Word Integer 32 Bits Integer Unit, FPU —
16-Byte 128 Bits Integer Unit Memory Only, Aligned to 16-Byte Boundary
Single-Precision Real 32 Bits FPU 1-Bit Sign, 8-Bit Exponent, 23-Bit Fraction
Double-Precision Real 64 Bits FPU 1-Bit Sign, 11-Bit Exponent, 52-Bit Fraction
Extended-Precision Real 96 Bits FPU 1-Bit Sign, 15-Bit Exponent, 64-Bit Mantissa

Introduction

MOTOROLA

M68060 USER’S MANUAL

1-15

An instruction’s addressing mode can specify the value of an operand, a register containing
the operand, or how to derive the effective address of an operand in memory. Each address-
ing mode has an assembler syntax. Some instructions imply the addressing mode for an
operand. These instructions include the appropriate fields for operands that use only one
addressing mode. Table 1-2 lists a summary of the effective addressing modes for the
MC68060. Refer to M68000PM/AD,

M68000 Family Programmer’s Reference Manual,

 for
details on instruction format and addressing modes.

1.9 INSTRUCTION SET OVERVIEW

The instruction set is tailored to support high-level languages and is optimized for those
instructions most commonly executed. The floating-point instructions for the MC68060 are
a commonly used subset of the MC68881/MC68882 instruction set with new arithmetic
instructions to explicitly select single- or double-precision rounding. The remaining unimple-
mented instructions are less frequently used and are efficiently emulated in the
MC68060FPSP, maintaining compatibility with the MC68881/MC68882 floating-point copro-
cessors. The MC68060 instruction set includes MOVE16 which allows high-speed transfers
of 16-byte blocks between external devices such as memory to memory or coprocessor to
memory. Table 1-3 provides an alphabetized listing of the MC68060 instruction set’s
opcode, operation, and syntax. Refer to Table 1-4 for notations used in Table 1-3. The left
operand in the syntax is always the source operand, and the right operand is the destination
operand. Refer to M68000PM/AD,

M68000 Family Programmer’s Reference Manual,

 for
details on instructions used by the MC68060.

Table 1-2. Effective Addressing Modes

Addressing Modes Syntax

Register Direct
Data
Address

Dn
An

Register Indirect
Address
Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16,An)

Address Register Indirect with Index
8-Bit Displacement
Base Displacement

(d8,An,Xn)
(bd,An,Xn)

Memory Indirect
Postindexed
Preindexed

([bd,An],Xn,od)
([bd,An,Xn],od)

Program Counter Indirect
with Displacement (d16,PC)

Program Counter Indirect with Index
8-Bit Displacement
Base Displacement

(d8,PC,Xn)
(bd,PC,Xn)

Program Counter Memory Indirect
Postindexed
Preindexed

([bd,PC],Xn,od)
([bd,PC,Xn],od)

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

Immediate #<xxx>

Introduction

1-16

M68060 USER’S MANUAL

MOTOROLA

Table 1-3. Instruction Set Summary

Opcode Operation Syntax

ABCD BCD Source + BCD Destination + X

˘

 Destination ABCD Dy,Dx
ABCD –(Ay),–(Ax)

ADD Source + Destination

˘

 Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination

˘

 Destination ADDA <ea>,An
ADDI Immediate Data + Destination

˘

 Destination ADDI #<data>,<ea>
ADDQ Immediate Data + Destination

˘

 Destination ADDQ #<data>,<ea>

ADDX Source + Destination + X

˘

 Destination ADDX Dy,Dx
ADDX –(Ay),–(Ax)

AND Source

Λ

 Destination

˘

 Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data

Λ

 Destination

˘

 Destination ANDI #<data>,<ea>

ANDI to CCR Source

Λ

 CCR

˘

CCR ANDI #<data>,CCR

ANDI to SR
If supervisor state

then Source

Λ

 SR

˘

 SR
else TRAP

ANDI #<data>,SR

ASL, ASR Destination Shifted by count

˘

 Destination
ASd Dx,Dy

1

ASd #<data>,Dy
ASd <ea>

Bcc If condition true
then PC + dn

˘

 PC Bcc <label>

BCHG ~(bit number of Destination)

˘

 Z;
~(bit number of Destination)

˘

 (bit number) of Destination
BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR ~(bit number of Destination)

˘

 Z;
0

˘

 bit number of Destination
BCLR Dn,<ea>
BCLR #<data>,<ea>

BFCHG ~(bit field of Destination)

˘

 bit field of Destination BFCHG <ea>{offset:width}
BFCLR 0 ˘ bit field of Destination BFCLR <ea>{offset:width}

BFEXTS bit field of Source ̆ Dn BFEXTS <ea>{offset:width},Dn
BFEXTU bit offset of Source ̆ Dn BFEXTU <ea>{offset:width},Dn
BFFFO bit offset of Source Bit Scan ̆ Dn BFFFO <ea>{offset:width},Dn
BFINS Dn ˘ bit field of Destination BFINS Dn,<ea>{offset:width}
BFSET 1s ˘ bit field of Destination BFSET <ea>{offset:width}
BFTST bit field of Destination BFTST <ea>{offset:width}

BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction BKPT #<data>

BRA PC + dn ˘ PC BRA <label>

BSET ~(bit number of Destination) ̆ Z;
1 ˘ bit number of Destination

BSET Dn,<ea>
BSET #<data>,<ea>

BSR SP – 4 ˘ SP; PC ˘ (SP); PC + dn ˘ PC BSR <label>

BTST –(bit number of Destination) ̆ Z; BTST Dn,<ea>
BTST #<data>,<ea>

CAS8
CAS Destination – Compare Operand ̆ cc;
if Z, Update Operand ˘ Destination
else Destination ˘ Compare Operand

CAS Dc,Du,<ea>

CAS22

CAS2 Destination 1 – Compare 1 ̆ cc;
if Z, Destination 2 – Compare ̆ cc;
if Z, Update 1 ˘ Destination 1;

Update 2 ˘ Destination 2
else Destination 1 ˘ Compare 1;

Destination 2 ˘ Compare 2

CAS2 Dc1–Dc2,Du1–Du2,(Rn1)–
(Rn2)

CHK If Dn < 0 or Dn > Source
then TRAP CHK <ea>,Dn

CHK22 If Rn < LB or If Rn > UB
then TRAP CHK2 <ea>,Rn

CINV
If supervisor state

then invalidate selected cache lines
else TRAP

CINVL <caches>, (An)
CINVP <caches>, (An)
CINVA <caches>

Introduction

MOTOROLA M68060 USER’S MANUAL 1-17

CLR 0 ˘ Destination CLR <ea>
CMP Destination – Source ̆ cc CMP <ea>,Dn

CMPA Destination – Source CMPA <ea>,An
CMPI Destination – Immediate Data CMPI #<data>,<ea>
CMPM Destination – Source ̆ cc CMPM (Ay)+,(Ax)+

CMP22 Compare Rn < LB or Rn > UB
and Set Condition Codes CMP2 <ea>,Rn

CPUSH
If supervisor state

then if data cache push selected dirty data
cache lines; invalidate selected cache lines

else TRAP

CPUSHL <caches>, (An)
CPUSHP <caches>, (An)
CPUSHA <caches>

DBcc
If condition false

then (Dn–1 ˘ Dn;
If Dn ≠ –1

then PC + dn ˘ PC)
DBcc Dn,<label>

DIVS, DIVSL Destination ÷ Source ˘ Destination

DIVS.W <ea>,Dn32 ÷ 16 ˘ 16r:16q
DIVS.L <ea>,Dq32 ÷ 32 ˘ 32q
DIVS.L <ea>,Dr:Dq64 ÷ 32 ˘ 32r:32q2

DIVSL.L <ea>,Dr:Dq 32 ÷ 32 ̆ 32r:32q

DIVU, DIVUL Destination ÷ Source ˘ Destination

DIVU.W <ea>,Dn32 ÷ 16 ˘ 16r:16q
DIVU.L <ea>,Dq32 ÷ 32 ˘ 32q
DIVU.L <ea>,Dr:Dq64 ÷ 32 ̆ 32r:32q2

DIVUL.L <ea>,Dr:Dq32 ÷ 32 ̆ 32r:32q
EOR Source ⊕ Destination ˘ Destination EOR Dn,<ea>
EORI Immediate Data ⊕ Destination ˘ Destination EORI #<data>,<ea>

EORI to CCR Source ⊕ CCR ˘ CCR EORI #<data>,CCR

EORI to SR
If supervisor state

then Source ⊕ SR ˘ SR
else TRAP

EORI #<data>,SR

EXG Rx ¯ ˘ Ry
EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT
EXTB Destination Sign – Extended ̆ Destination

EXT.W Dnextend byte to word
EXT.L L Dnextend word to long word
EXTB.L Dn extend byte to long word

FABS Absolute Value of Source ̆ FPn

FABS.<fmt> <ea>,FPn
FABS.X FPm,FPn
FABS.X FPn
FrABS.<fmt> <ea>,FPn3
FrABS.X FPm,FPn3
FrABS.X FPn3

FADD Source + FPn ˘ FPn

FADD.<fmt> <ea>,FPn
FADD.X FPm,FPn
FrADD.<fmt> <ea>,FPn3
FrADD.X FPm,FPn3

FBcc
If condition true

then PC + dn ˘ PC FBcc.SIZE <label>

FCMP FPn – Source FCMP.<fmt> <ea>,FPn
FCMP.X FPm,FPn

FDBcc2

If condition true
then no operation

else Dn – 1 ˘ Dn
if Dn ≠ –1

then PC + dn ˘ PC
else execute next instruction

FDBcc Dn,<label>

FDIV FPn ÷ Source ˘ FPn

FDIV.<fmt> <ea>,FPn
FDIV.X FPm,FPn
FrDIV.<fmt> <ea>,FPn3

FrDIV.X FPm,FPn3

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Introduction

1-18 M68060 USER’S MANUAL MOTOROLA

FINT Floating-Point Integer Part
FINT.<fmt><ea>,FPn
FINT.X FPm,FPn
FINT.X FPn

FINTRZ Floating-Point Integer Part, Round-to-Zero
FINTRZ.<fmt><ea>,FPn
FINTRZ.X FPm,FPn
FINTRZ.X FPn

FMOVE Source ˘ Destination

FMOVE.<fmt> <ea>,FPn
FMOVE.<fmt> FPm,<ea>
FMOVE.P FPm,<ea>{Dn}
FMOVE.P FPm,<ea>{#k}
FrMOVE.<fmt> <ea>,FPn3

FMOVE Source ˘ Destination FMOVE.L <ea>,FPcr
FMOVE.L FPcr,<ea>

FMOVEM9 Register List ˘ Destination
Source ˘ Register List

FMOVEM.X <list>,<ea>4

FMOVEM.X Dn,<ea>
FMOVEM.X <ea>,<list>4

FMOVEM.X <ea>,Dn

FMOVEM9 Register List ˘ Destination
Source ˘ Register List

FMOVEM.L <list>,<ea>5

FMOVEM.L <ea>,<list>5

FMUL Source × FPn ˘ FPn

FMUL.<fmt> <ea>,FPn
FMUL.X FPm,FPn
FrMUL<fmt> <ea>,FPn3

FrMUL.X FPm,FPn3

FNEG –(Source) ˘ FPn

FNEG.<fmt> <ea>,FPn
FNEG.X FPm,FPn
FNEG.X FPn
FrNEG.<fmt> <ea>,FPn3

FrNEG.X FPm,FPn3

FrNEG.X FPn3

FNOP None FNOP

FRESTORE
If in supervisor state

then FPU State Frame ̆ Internal State
else TRAP

FRESTORE <ea>

FSAVE
If in supervisor state

then FPU Internal State ̆ State Frame
else TRAP

FSAVE <ea>

FScc2
If condition true

then 1s ˘ Destination
else 0s ˘ Destination

FScc.SIZE <ea>

FSGLDIV FPn ÷ Source ˘ FPn FSGLDIV.<fmt> <ea>,FPn
FSGLDIV.X FPm,FPn

FSGLMUL Source × FPn ˘ FPn FSGMUL.<fmt> <ea>,FPn
FSGLMUL.X FPm, FPn

FSQRT Square Root of Source ̆ FPn

FSQRT.<fmt> <ea>,FPn
FSQRT.X FPm,FPn
FSQRT.X FPn
FrSQRT.<fmt> <ea>,FPn3
FrSQRT FPm,FPn3
FrSQRT FPn3

FSUB FPn – Source ˘ FPn

FSUB.<fmt> <ea>,FPn
FSUB.X FPm,FPn
FrSUB.<fmt> <ea>,FPn3
FrSUB.X FPm,FPn3

FTRAPcc2 If condition true
then TRAP

FTRAPcc
FTRAPcc.W #<data>
FTRAPcc.L #<data>

FTST Condition Codes for Operand ̆ FPCC FTST.<fmt> <ea>
FTST.X FPm

ILLEGAL
SSP – 2 ˘ SSP; Vector Offset ˘ (SSP);
SSP – 4 ˘ SSP; PC ˘ (SSP);
SSp – 2 ˘ SSP; SR ˘ (SSP);
Illegal Instruction Vector Address ̆ PC

ILLEGAL

JMP Destination Address ̆ PC JMP <ea>

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Introduction

MOTOROLA M68060 USER’S MANUAL 1-19

JSR SP – 4 ˘ SP; PC ˘ (SP)
Destination Address ˘ PC JSR <ea>

LEA <ea> ˘ An LEA <ea>,An

LINK SP – 4 ˘ SP; An ˘ (SP)
SP ˘ An, SP+d ˘ SP LINK An,dn

LPSTOP

If supervisor state
immediate data ˘ SR
SR ˘ broadcast cycle
STOP

else TRAP

LPSTOP #<data>

LSL, LSR Destination Shifted by count ̆ Destination
LSd Dx,Dy1
LSd #<data>,Dy1
LSd <ea>1

MOVE Source ˘ Destination MOVE <ea>,<ea>
MOVEA Source ˘ Destination MOVEA <ea>,An
MOVE

from CCR CCR ˘ Destination MOVE CCR,<ea>

MOVE to
CCR Source ˘ CCR MOVE <ea>,CCR

MOVE from
SR

If supervisor state
then SR ˘ Destination

else TRAP
MOVE SR,<ea>

MOVE to SR
If supervisor state

then Source ˘ SR
else TRAP

MOVE <ea>,SR

MOVE USP
If supervisor state

then USP ˘ An or An ˘ USP
else TRAP

MOVE USP,An
MOVE An,USP

MOVE16 Source block ˘ Destination block
MOVE16 (Ax)+, (Ay)+6
MOVE16 (xxx).L, (An)
MOVE16 (An), (xxx).L
MOVE16 (An)+, (xxx).L

MOVEC
If supervisor state

then Rc ˘ Rn or Rn ˘ Rc
else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

MOVEM Registers ˘ Destination
Source ˘ Registers

MOVEM <list>,<ea>4
MOVEM <ea>,<list>4

MOVEP2 Source ˘ Destination
MOVEP Dx,(dn,Ay)
MOVEP (dn,Ay),Dx

MOVEQ Immediate Data ̆ Destination MOVEQ #<data>,Dn

MOVES
If supervisor state

then Rn ˘ Destination [DFC] or
Source [SFC] ˘ Rn

else TRAP

MOVES Rn,<ea>
MOVES <ea>,Rn

MULS Source × Destination ˘ Destination
MULS.W <ea>,Dn 16 × 16 ˘ 32
MULS.L <ea>,Dl 32 × 32 ˘ 32
MULS.L <ea>,Dh–Dl 32 × 32 ˘ 642

MULU Source × Destination ˘ Destination
MULU.W <ea>,Dn 16 × 16 ˘ 32
MULU.L <ea>,Dl 32 × 32 ˘ 32
MULU.L <ea>,Dh–Dl 32 × 32 ˘ 642

NBCD 0 – (Destination10) – X ˘ Destination NBCD <ea>

NEG 0 – (Destination) ˘ Destination NEG <ea>
NEGX 0 – (Destination) – X ̆ Destination NEGX <ea>
NOP None NOP
NOT ~ Destination ˘ Destination NOT <ea>

OR Source V Destination ̆ Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination ̆ Destination ORI #<data>,<ea>
ORI to CCR Source V CCR ̆ CCR ORI #<data>,CCR

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Introduction

1-20 M68060 USER’S MANUAL MOTOROLA

ORI to SR
If supervisor state

then Source V SR ˘ SR
else TRAP

ORI #<data>,SR

PACK Source (Unpacked BCD) + adjustment ̆
Destination (Packed BCD)

PACK –(Ax),–(Ay),#(adjustment)
PACK Dx,Dy,#(adjustment)

PEA SP – 4 ˘ SP; <ea> ˘ (SP) PEA <ea>

PFLUSH7
If supervisor state

then invalidate instruction and data ATC entries
for destination address

else TRAP

PFLUSH (An)
PFLUSHN (An)
PFLUSHA
PFLUSHAN

PLPA

If supervisor state
then logical address translate to physical
address ˘ An

else TRAP

PLPAR (An)
PLPAW (An)

RESET
If supervisor state

then Assert RSTO Line
else TRAP

RESET

ROL, ROR Destination Rotated by count ̆ Destination ROd Rx,Dy1

ROXL, ROXR Destination Rotated with X by count ̆ Destination
ROXd Dx,Dy1

ROXd #<data>,Dy1

ROXd <ea>1

RTD (SP) ˘ PC; SP + 4 + dn ˘ SP RTD #(dn)

RTE

If supervisor state
then (SP) ˘ SR; SP + 2 ˘ SP; (SP) ˘ PC;
SP + 4 ˘ SP; restore state and deallocate
stack according to (SP)

else TRAP

RTE

RTR (SP) ˘ CCR; SP + 2 ˘ SP;
(SP) ˘ PC; SP + 4 ˘ SP RTR

RTS (SP) ˘ PC; SP + 4 ˘ SP RTS

SBCD Destination10 – Source10 – X ˘ Destination SBCD Dx,Dy
SBCD –(Ax),–(Ay)

Scc
If condition true

then 1s ˘ Destination
else 0s ˘ Destination

Scc <ea>

STOP
If supervisor state

then Immediate Data ˘ SR; STOP
else TRAP

STOP #<data>

SUB Destination – Source ̆ Destination SUB <ea>,Dn
SUB Dn,<ea>

SUBA Destination – Source ̆ Destination SUBA <ea>,An
SUBI Destination – Immediate Data ̆ Destination SUBI #<data>,<ea>
SUBQ Destination – Immediate Data ̆ Destination SUBQ #<data>,<ea>

SUBX Destination – Source – X ̆ Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register 31–16 ¯ ̆ Register 15–0 SWAP Dn

TAS Destination Tested ˘ Condition Codes;
1 ˘ bit 7 of Destination TAS <ea>

TRAP
SSP – 2 ˘ SSP; Format ÷ Offset ˘ (SSP);
SSP – 4 ˘ SSP; PC ˘ (SSP); SSP – 2 ˘ SSP;
SR ˘ (SSP); Vector Address ̆ PC

TRAP #<vector>

TRAPcc If cc
then TRAP

TRAPcc
TRAPcc.W #<data>
TRAPcc.L #<data>

TRAPV If V
then TRAP TRAPV

TST Destination Tested ̆ Condition Codes TST <ea>
UNLK An ˘ SP; (SP) ˘ An; SP + 4 ˘ SP UNLK An

UNPK Source (Packed BCD) + adjustment ̆ Destination (Unpacked
BCD)

UNPACK –(Ax),–(Ay),#(adjustment)
UNPACK Dx,Dy,#(adjustment)

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Introduction

MOTOROLA M68060 USER’S MANUAL 1-21

1.10 NOTATIONAL CONVENTIONS
Table 1-4 lists the notation conventions used throughout this manual.

NOTES:
1.Where d is direction, left or right.
2.Emulation support only, not supported in hardware.
3.Where r is rounding precision, single or double precision.
4.List refers to register.
5.List refers to control registers only.
6.MOVE16 (ax)+,(ay)+ is functionally the same as MOVE16 (ax),(ay)+ when ax = ay. The address register is
only incremented once, and the line is copied over itself rather than to the next line.
7.Not available for the MC68EC060.
8.Emulation support for misaligned operands.
9.Emulation support for FMCVEM with dynamic register list.

Table 1-4. Notational Conventions
Single- And Double-Operand Operations

+ Arithmetic addition or postincrement indicator.
– Arithmetic subtraction or predecrement indicator.
× Arithmetic multiplication.
÷ Arithmetic division or conjunction symbol.
~ Invert; operand is logically complemented.
• Logical AND
+ Logical OR
⊕ Logical exclusive OR

˘ Source operand is moved to destination operand.

¯ ˘ Two operands are exchanged.
<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.
sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format ÷ Offset Word ˘ (SSP); SSP – 2 ˘ SSP; PC ˘ (SSP); SSP – 4 ˘ SSP; SR ˘
(SSP); SSP – 2 ˘ SSP; (Vector) ˘ PC

STOP Enter the stopped state, waiting for interrupts.
<operand>10 The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>

else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false and
the optional “else” clause is present, the operations after “else” are performed. If the condition is
false and else is omitted, the instruction performs no operation. Refer to the Bcc instruction de-
scription as an example.

Register Specification
An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.
BR Base Register—An, PC, or suppressed.
Dc Data register D7–D0, used during compare.

Dh, Dl Data registers high- or low-order 32 bits of product.
Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.
Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.
MRn Any Memory Register n.

Table 1-3. Instruction Set Summary (Continued)
Opcode Operation Syntax

Introduction

1-22 M68060 USER’S MANUAL MOTOROLA

Rn Any Address or Data Register
Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.
Data Format and Type

+ inf Positive Infinity

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), Single (S), Double (D), Extended (X), or
Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.
D Double-precision real data format (64 bits).

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in the
packed decimal format.

P Packed BCD real data format (96 bits, 12 bytes).
S Single-precision real data format (32 bits).
X Extended-precision real data format (96 bits, 16 bits unused).

– inf Negative Infinity
Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).
() Identifies an indirect address in a register.
[] Identifies an indirect address in memory.
bd Base Displacement
dn Displacement Value, n Bits Wide (example: d16 is a 16-bit displacement).

LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.
Register Codes

* General Case.
C Carry Bit in CCR
cc Condition Codes from CCR
FC Function Code
N Negative Bit in CCR
U Undefined, Reserved for Motorola Use.
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR
— Not Affected or Applicable.

Miscellaneous
<ea> Effective Address

<label> Assemble Program Label
<list> List of registers, for example D3–D0.

LB Lower Bound
m Bit m of an Operand

m–n Bits m through n of Operand
UB Upper Bound

Table 1-4. Notational Conventions (Continued)

MOTOROLA

M68060 USER’S MANUAL

2-1

SECTION 2
SIGNAL DESCRIPTION

This section contains brief descriptions of the MC68060 signals in their functional groups
(see Figure 2-1). Each signal’s function is briefly explained, referencing other sections con-
taining detailed information about the signal and related operations. Table 2-1 lists the
MC68060 signal names, mnemonics, and functional descriptions of the signals. Timing
specifications for these signals can be found in

Section 12 Electrical and Thermal Char-
acteristics

.

NOTE

Assertion

 and

negation

 are used to specify forcing a signal to a
particular state.

Assertion

 and

assert

 refer to a signal that is ac-
tive or true.

Negation

 and

negate

 refer to a signal that is inactive
or false. These terms are used independently of the voltage level
(high or low) that they represent.

Table 2-1. Signal Index

Signal Name Mnemonic Function

Address Bus A31–A0 32-bit address bus used to address any of 4-Gbytes.
Cycle Long-Word Ad-
dress CLA Controls the operation of A3 and A2 during bus cycles.

Data Bus D31–D0 32-bit data bus used to transfer up to 32 bits of data per bus transfer.

Transfer Type TT1,TT0 Indicates the general transfer type: normal, MOVE16, alternate logical function
code, and acknowledge.

Transfer Modifier TM2–TM0 Indicates supplemental information about the access.

Transfer Line Number TLN1,TLN0 Indicates which cache line in a set is being pushed or loaded by the current line
transfer cycle.

User-Programmable
Attributes UPA1,UPA0 User-defined signals, controlled by the corresponding user attribute bits from the

address translation entry.
Read/Write R/W Identifies the transfer as a read or write.

Transfer Size SIZ1,SIZ0
Indicates the data transfer size. These signals, together with A0 and A1,
define the active sections of the data bus. Alternately, BS3–BS0 can be used for
this function.

Bus Lock LOCK Indicates a bus cycle is part of a read-modify-write operation and that the
sequence of bus cycles should not be interrupted.

Bus Lock End LOCKE Indicates the current bus cycle is the last in a locked sequence of bus cycles.
Cache Inhibit Out CIOUT Indicates the processor will not cache the current bus transfer information.

Byte Select BS3–BS0 Indicate which bytes within a long word are selected and which data bus bytes
are valid.

Transfer Start TS Indicates the beginning of a bus cycle.
Transfer in Progress TIP Asserted for the duration of a bus cycle.
Starting Termination Ac-
knowledge Signal Sam-
pling

SAS Indicates the MC68060 will begin sampling the termination acknowledge signals.

Transfer Acknowledge TA Asserted to acknowledge a bus transfer.

Signal Description

2-2

M68060 USER’S MANUAL

MOTOROLA

Transfer Retry Acknowl-
edge TRA Indicates the need to rerun the bus cycle.

Transfer Error Acknowl-
edge TEA Indicates an error condition exists for a bus transfer.

Transfer Cycle Burst In-
hibit TBI Indicates the slave cannot handle a line burst access.

Transfer Cache Inhibit TCI Indicates the current bus transfer should not be cached.
Snoop Control SNOOP Indicates the MC68060 should snoop bus activity while it is not the bus master.
Bus Request BR Asserted by the processor to request bus mastership.
Bus Grant BG Asserted by an arbiter to grant bus mastership privileges to the processor.
Bus Grant Relinquish
Control BGR Qualifies BG by indicating the degree of necessity for relinquishing bus owner-

ship when BG is negated.

Bus Tenure Termination BTT Indicates the MC68060 has relinquished the bus in response to the external ar-
biter’s negation of BG.

Bus Busy BB Asserted by the current bus master to indicate it has assumed ownership of the
bus.

Cache Disable CDIS Dynamically disables the internal caches to assist emulator support.
MMU Disable MDIS Disables the translation mechanism of the MMUs.
Reset In RSTI Processor reset.
Reset Out RSTO Asserted during execution of a RESET instruction to reset external devices.
Interrupt Priority Level IPL2–IPL0 Provides an encoded interrupt level to the processor.
Interrupt Pending IPEND Indicates an interrupt is pending.

Autovector AVEC Used during an interrupt acknowledge transfer to request internal generation of
the vector number.

Processor Status PST4–PST0 Indicates internal processor status.
Processor Clock CLK Clock input used for all internal logic timing.

Clock Enable CLKEN Defines the speed of the system bus clock to be full, 1/2, or 1/4 the speed of the
processor clock.

JTAG Enable JTAG Selects between IEEE 1149.1 compliance operation and emulation mode oper-
ation.

Test Clock TCK Clock signal for the IEEE P1149.1 test access port (TAP).
Test Mode Select TMS Selects the principal operations of the test-support circuitry.
Test Data Input TDI Serial data input for the TAP.
Test Data Output TDO Serial data output for the TAP.
Test Reset TRST Provides an asynchronous reset of the TAP controller.
Thermal Resistor Con-
nections

THERM1,
THERM0 Provides thermal sensing information.

Power Supply VCC Power supply.

Ground GND Ground connection.

Table 2-1. Signal Index (Continued)

Signal Name Mnemonic Function

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-3

2.1 ADDRESS AND CONTROL SIGNALS

The following paragraphs describe the MC68060 address and control signals.

2.1.1 Address Bus (A31–A0)

These three-state bidirectional signals provide the address of the first item of a bus transfer
(except for interrupt acknowledge transfers) when the MC68060 is the bus master. When an
alternate bus master is controlling the bus and asserts the SNOOP signal, the address sig-

Figure 2-1. Functional Signal Groups

TEA

MC68060

VCC

GND

BUS ARBITRATION
CONTROL

BGR
BG

BB

BUS SNOOP CONTROL
SNOOP

INTERRUPT
CONTROL

IPL2

AVEC

IPEND

PROCESSOR
CONTROL

CDIS

RSTI
RSTO

CLKEN
CLK

TEST

THERM0

TMS
TCK

TDI

THERMAL RESISTOR
CONNECTIONS

THERM1

IPL1
IPL0

STATUS AND
CLOCKS

PST3
PST2
PST1

DATA BUS D31–D0

TRANSFER
ATTRIBUTES

MASTER
TRANSFER
CONTROL

A31–A0ADDRESS BUS
AND CONTROL

TS

TIP

SLAVE
TRANSFER
CONTROL

R/W

LOCKE
CIOUT

TT1
TT0
TM2
TM1
TM0

TLN1
TLN0
UPA1
UPA0

SIZ1
SIZ0

LOCK

TA

MDIS

PST0

BS0
BS1
BS2
BS3

SAS

TCI

TRA

PST4

BTT

BR
CLA

TRST
TDO

POWER SUPPLY
TBI

JTAG

Signal Description

2-4

M68060 USER’S MANUAL

MOTOROLA

nals are examined to determine whether the processor should invalidate matching cache
entries to maintain cache coherency.

2.1.2 Cycle Long-Word Address (CLA)

This active-low input signal controls the operation of A3 and A2 during bus cycles. Following
each clock-enabled clock edge in which CLA is asserted, the long-word address for each of
the four transfers encoded on A3 and A2 will increment in a circular wraparound fashion. If
CLA is negated during a clock-enabled clock edge, the values on A3 and A2 will not change.
It is not necessary to synchronize CLA with TA.

2.2 DATA BUS (D31–D0)

These three-state bidirectional signals provide the general-purpose data path between the
MC68060 and all other devices. The data bus can transfer 8, 16, or 32 bits of data per bus
transfer. During a burst bus cycle, the 128 bits of line information are transferred using four
32-bit transfers.

2.3 TRANSFER ATTRIBUTE SIGNALS

The following paragraphs describe the transfer attribute signals, which provide additional
information about the bus transfer cycle. Refer to

Section 7 Bus Operation

 for detailed
information about the relationship of the transfer attribute signals to bus operation.

2.3.1 Transfer Cycle Type (TT1, TT0)

The processor drives these three-state signals to indicate the type of access for the current
bus cycle. During bus cycle transfers by an alternate bus master when the processor is
allowed to snoop bus transactions, TT1 is sampled. Only normal and MOVE16 accesses
can be snooped. Table 2-2 lists the definition of the TTx encoding. The acknowledge access
(TT1 = 1 and TT0 = 1) is used for interrupt acknowledge, breakpoint acknowledge, and low-
power stop broadcast bus cycles.

2.3.2 Transfer Cycle Modifier (TM2–TM0)

These three-state outputs provide supplemental information for each transfer cycle type.
Table 2-3 lists the encoding for normal (TTx = 00) and MOVE16 (TTx = 01) transfers, and
Table 2-4 lists the encoding for alternate access transfers (TTx = 10). For interrupt acknowl-
edge transfers, the TMx signals carry the interrupt level being acknowledged. For breakpoint

Table 2-2. Transfer-Type Encoding

TT1 TT0 Transfer Type

0 0 Normal Access
0 1 MOVE16 Access

1 0 Alternate Logical Function Code Access, De-
bug Access

1 1 Acknowledge Access, Low-Power Stop
Broadcast

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-5

acknowledge transfers and low-power stop broadcast cycles, the TMx signals are negated.
When the MC68060 is not the bus master, the TMx signals are in a high-impedance state.

Signal Description

2-6

M68060 USER’S MANUAL

MOTOROLA

2.3.3 Transfer Line Number (TLN1, TLN0)

These three-state outputs indicate which line in the set of four data or instruction cache lines
is being accessed for normal push and line data read accesses. TLNx signals are undefined
for all other accesses and are placed in a high-impedance state when the processor is not
the bus master.

The TLNx signals can be used in high-performance systems to build an external snoop filter
with a duplicate set of cache tags. The TLNx signals and address bus provide a direct indi-
cation of the state of the data caches and can be used to help maintain the duplicate tag
store. The TLNx signals do not indicate the correct TLN number when an instruction cache
burst fill occurs.

2.3.4 User-Programmable Page Attributes (UPA1, UPA0)

The UPAx signals are three-state outputs. These signals are only valid for normal code,
data, and MOVE16 accesses. For all other accesses (including table search and cache line
push accesses), the UPAx signals are low. When the MC68060 is not the bus master, these
signals are placed in a high-impedance state.

During normal and MOVE16 accesses, if a transparent translation register (TTR) is enabled
and the address and attributes match the TTR values, the UPAx signals are defined by the
logical values of the U1 and U0 bits the TTR. If the MMU is enabled via the translation control
register (TCR) and the address and attributes result in an address translation cache (ATC)
hit, the UPAx signals are defined by the logical values of the U1 and U0 bits in the ATC entry.
If a given logical address is not mapped by the TTRs and if address translation is disabled,

Table 2-3. Normal and MOVE16 Access TMx Encoding

TM2 TM1 TM0 Transfer Modifier

0 0 0 Data Cache Push Access
0 0 1 User Data Access*
0 1 0 User Code Access
0 1 1 MMU Table Search Data Access
1 0 0 MMU Table Search Code Access
1 0 1 Supervisor Data Access*
1 1 0 Supervisor Code Access
1 1 1 Reserved

*MOVE16 accesses use only these encodings.

Table 2-4. Alternate Access TMx Encoding

TM2 TM1 TM0 Transfer Modifier

0 0 0 Logical Function Code 0
0 0 1 Debug Access
0 1 0 Reserved
0 1 1 Logical Function Code 3
1 0 0 Logical Function Code 4
1 0 1 Debug Pipe Control Mode Access
1 1 0 Debug Pipe Control Mode Access
1 1 1 Logical Function Code 7

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-7

then the MC68060 invokes default transparent translation. The cache mode, user page
attributes, and other TTR fields for the default translation are defined by the contents of the
TCR. For more information about the UPAx signals, refer to

Section 4 Memory Manage-
ment Unit

.

2.3.5 Read/Write (R/W)

This three-state output signal defines the data transfer direction for the current bus cycle. A
high (logic one) level indicates a read cycle, and a low (logic zero) level indicates a write
cycle. This signal is placed in a high-impedance state when the MC68060 is not the bus
master.

2.3.6 Transfer Size (SIZ1, SIZ0)

These three-state output signals indicate the data size for the bus cycle. These signals are
placed in a high-impedance state when the MC68060 is not the bus master. Table 2-5
shows the definitions of the SIZx encoding.

2.3.7 Bus Lock (LOCK)

This three-state output indicates that the current bus cycle is part of a sequence of locked
bus cycles. An external arbiter can use LOCK with its control of an alternate bus master’s
BG to prevent an alternate bus master from gaining control of the bus and accessing the
same operand between processor accesses for the locked sequence of transfers. Although
LOCK indicates that the processor requests that the bus be locked, the processor will relin-
quish the bus if the external arbiter negates BG and asserts BGR.

When the MC68060 is not the bus master, the LOCK signal is set to a high-impedance state.
If the MC68060 relinquishes the bus while LOCK is asserted, LOCK will be negated for one
full clock-enabled clock cycle and then three-stated one clock-enabled clock cycle after the
address bus is idled. If LOCK was already negated in the clock cycle in which the MC68060
relinquishes the bus, it will be three-stated in the same clock cycle the address bus is idled.

Refer to

Section 7 Bus Operation

 for information on locked transfers.

2.3.8 Bus Lock End (LOCKE)

This three-state output indicates that the current bus cycle is the last in a sequence of locked
bus cycles (except in the case in which a retry termination is indicated on the last write of a
read-modify-write sequence).

When the MC68060 is not the bus master, the LOCKE signal is set to a high-impedance
state. If the MC68060 relinquishes the bus while LOCKE is asserted, LOCKE will be negated

Table 2-5. SIZx Encoding

SIZ1 SIZ0 Transfer Size

0 0 Long Word (4 Bytes)
0 1 Byte
1 0 Word (2 Bytes)
1 1 Line (16 Bytes)

Signal Description

2-8

M68060 USER’S MANUAL

MOTOROLA

for one full BCLK cycle and then three-stated one BCLK cycle after the address bus is idled.
If LOCKE was already negated in the BCLK cycle in which the MC68060 relinquishes the
bus, it will be three-stated in the same BCLK cycle the address bus is idled.

LOCKE is provided to help make the MC68060 bus compatible with the MC68040-style bus
protocol; however, for new designs, external bus arbitration logic can be simplified with the
use of BGR instead of LOCKE.

Do not use LOCKE. The LOCKE protocol breaks the integrity of the locked read-modify-
write sequence if it is possible to retry the last write of a read-modify-write operation. The
reason is that when LOCKE is asserted, a bus arbiter can grant the bus to an alternate mas-
ter when the current bus cycle is finished (before the retry is attempted). The bus is arbi-
trated away, the last write’s retry is deferred until the bus is returned to the processor. In the
meantime, the alternate master can access the same location where the write should have
taken place. Hence, the integrity of the locked read-modify-write sequence is compromised
in this situation.

2.3.9 Cache Inhibit Out (CIOUT)

When asserted, this three-state output indicates that the MC68060 will not cache the current
bus information in its internal caches. Refer to

Section 4 Memory Management Unit

for
more information on CIOUT function. When the MC68060 is not the bus master, the CIOUT
signal is placed in a high-impedance state.

2.3.10 Byte Select Lines (BS3–BS0)

These three-state outputs indicate which bytes within a long-word transfer are being
selected and which bytes of the data bus will be used for the transfer. BS0 refers to D31–
D24, BS1 refers to D23–D16, BS2 refers to D15–D8, and BS3 refers to D7–D0. These sig-
nals are generated to provide byte data select signals which are decoded from the SIZx, A1,
and A0 signals as shown in Table 2-6. These signals are placed in a high-impedance state
when the MC68060 is not the bus master.

2.4 MASTER TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus cycles when the MC68060 is the bus
master. Refer to

Section 7 Bus Operation

 for detailed information about the relationship
of the bus cycle control signals to bus operation.

Table 2-6. Data Bus Byte Select Signals

Transfer Size SIZ1 SIZ0 A1 A0
BS0 BS1 BS2 BS3

D31–D24 D23–D16 D15–D8 D7–D0

Byte 0 1 0 0 0 1 1 1
Byte 0 1 0 1 1 0 1 1
Byte 0 1 1 0 1 1 0 1
Byte 0 1 1 1 1 1 1 0
Word 1 0 0 0 0 0 1 1
Word 1 0 1 0 1 1 0 0

Long Word 0 0 x x 0 0 0 0
Line 1 1 x x 0 0 0 0

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-9

2.4.1 Transfer Start (TS)

The processor asserts this three-state bidirectional signal for one clock-enabled clock period
to indicate the start of each bus cycle. During alternate bus master accesses, the processor
monitors TS and SNOOP to detect the start of each bus cycle which is to be snooped. TS
is placed in a high-impedance state when the MC68060 is not the bus master. To properly
maintain internal state information, all masters on the bus must have their TS signals tied
together.

2.4.2 Transfer in Progress (TIP)

This three-state output is asserted to indicate that a bus cycle is in progress and is negated
during idle bus cycles if the bus is still granted to the processor. TIP remains asserted during
the time between back-to-back bus cycles.

If the MC68060 relinquishes the bus while TIP is asserted, TIP will be negated for one clock
period after completion of the final transfer and then goes to a high-impedance state one
clock period after the address is idled. Note that this one clock period in which TIP is driven
negated refers to an MC68060 processor clock period, not a full clock-enabled clock period.
If TIP was already negated in the clock period in which the MC68060 relinquishes the bus,
it will be placed in a high-impedance state in the same clock period that the address bus
becomes idle.

2.4.3 Starting Termination Acknowledge Signal Sampling (SAS)

This three-state output is asserted for one clock-enabled clock period to indicate that the
MC68060 will begin sampling TA, TEA, TRA, TBI, TCI, AVEC, and spurious interrupt indi-
cation on the next rising edge of the clock-enabled clock. SAS is negated at all other times
while the MC68060 is the bus master. When the MC68060 relinquishes the bus, SAS is
driven negated for one clock-enabled clock period and then three-stated one clock-enabled
clock period after the address bus is idled. When the MC68060 newly gains bus ownership
and immediately starts a bus cycle with the assertion of TS, SAS remains three-stated until
the clock-enabled clock period after TS is asserted.

2.5 SLAVE TRANSFER CONTROL SIGNALS

The following signals provide control functions for bus transfers when the MC68060 is not
the bus master. Refer to

Section 7 Bus Operation

for detailed information about the rela-
tionship of the bus cycle control signals to bus operation.

2.5.1 Transfer Acknowledge (TA)

This input indicates the completion of a requested data transfer operation. During transfers
by the MC68060, TA is an input signal from the referenced slave device indicating comple-
tion of the transfer. For the MC68060 to accept the transfer as successful with a transfer
acknowledge, TRA and TEA must be negated when TA is asserted.

2.5.2 Transfer Retry Acknowledge (TRA)

For native-MC68060-style (non-MC68040-style) acknowledge termination, this input signal
may be asserted by the current slave on the first transfer of a bus cycle to indicate the need

Signal Description

2-10

M68060 USER’S MANUAL

MOTOROLA

to rerun the current bus cycle. The assertion of TRA on any transfer other than the first trans-
fer is ignored. The assertion of TRA has precedence over TA, but does not have precedence
over TEA.

If the MC68060 processor is to be used with MC68040-style acknowledge termination, then
TRA must be held negated. In this case, TEA does not have precedence over TA and the
slave must assert both TEA and TA on the first transfer of a bus cycle to cause a retry of the
current bus cycle. The assertion of TEA and TA on any transfer other than the first will be
interpreted by the MC68060 as if only TEA had been asserted, which immediately termi-
nates the bus cycle with a bus error indication.

2.5.3 Transfer Error Acknowledge (TEA)

The current slave asserts this input signal to indicate an error condition for the current trans-
fer to immediately terminate the bus cycle. The assertion of TEA has precedence over TRA
and TA for native-MC68060-style acknowledgment termination.

For MC68040-style acknowledge termination, TEA must be asserted with TA negated to
cause the current bus cycle to immediately terminate with a bus error indication. For
MC68040-style acknowledge termination, TRA must be held negated.

2.5.4 Transfer Burst Inhibit (TBI)

This input signal indicates to the processor that the device cannot support burst mode
accesses and that the requested line transfer cycle should be divided into individual long-
word bus cycles. Asserting TBI with TA terminates the first data transfer of a line access,
causing the processor to terminate the burst bus cycle and access the remaining data for
the line as three successive long-word transfer cycles.

2.5.5 Transfer Cache Inhibit (TCI)

This input signal inhibits line read data from being loaded into the MC68060 instruction or
data caches. TCI is ignored during all writes and after the first data transfer for both burst
line reads and burst-inhibited line reads. TCI is also ignored during all alternate bus master
transfers.

2.6 SNOOP CONTROL (SNOOP)

This input signal controls the operation of the MC68060 internal snoop logic. The MC68060
examines SNOOP when TS is asserted by an alternate master controlling the bus. If snoop-
ing is disabled (i.e., SNOOP negated) during the clock when TS is asserted, the MC68060
will not snoop the bus transaction. If snooping is enabled (i.e., SNOOP asserted) during the
clock when TS is asserted, the MC68060 will snoop the access and invalidate matching
cache lines for either read or write bus cycles without any external indication that a cache
entry has been invalidated upon cache snoop hits.

Section 5 Caches

 provides information about the relationship of SNOOP to the caches,
and

Section 7 Bus Operation

 discusses the relationship of SNOOP to bus operation.

Signal Description

MOTOROLA

M68060 USER’S MANUAL

2-11

2.7 ARBITRATION SIGNALS

The following control signals support bus mastership control by an external arbiter over the
MC68060. Refer to

Section 7 Bus Operation

for detailed information about the relationship
of the arbitration signals to bus operation.

2.7.1 Bus Request (BR)

This output signal indicates to an external arbiter that the processor needs to become bus
master for one or more bus cycles. BR is negated when the MC68060 begins an access to
the external bus with no other internal accesses pending, and BR remains negated until
another internal request occurs. The assertion and negation of BR are independent of bus
activity and there are some situations in which the MC68060 asserts BR and then negates
it without having run a bus cycle; this is a disregard request condition. Refer to

Section 7
Bus Operation

 for details about this state.

2.7.2 Bus Grant (BG)

This input signal from an external arbiter indicates that the bus is available to the MC68060
as soon as the current bus cycle completes. The MC68060 assumes bus ownership when
BG is asserted and BB is negated, when BG is asserted and a TS-BTT pair (TS asserted,
followed by BTT asserted) has occurred in the past without another assertion of TS, or when
BG and BTT are asserted and TS is negated. The MC68060 indicates its ownership of the
bus by asserting BB. When the external arbiter negates BG, the MC68060 relinquishes the
bus as soon as the current bus cycle is complete unless a locked sequence of bus cycles is
in progress with BGR negated. In this case, the MC68060 will complete the entire sequence
of locked bus cycles and then indicate that it is relinquishing the bus by asserting BTT and
negating BB.

2.7.3 Bus Grant Relinquish Control (BGR)

This input signal is a qualifier for BG and indicates to the MC68060 the degree of necessity
for relinquishing bus ownership when BG is negated by an external arbiter. BGR controls
MC68060 behavior when BG is negated during sequences of locked bus cycles (LOCK
asserted). When the external arbiter negates BG during a series of locked bus cycles, the
assertion of BGR will cause the MC68060 to relinquish the bus on the last transfer of the
current bus cycle, even though the MC68060 had intended the series to be locked. If BGR
remains negated when BG is negated during locked transfers, then the MC68060 will not
relinquish the bus until the series of locked bus cycles is complete.

2.7.4 Bus Tenure Termination (BTT)

This three-state bidirectional signal is asserted for one clock-enabled clock period and
negated for one clock-enabled clock period to indicate that the MC68060 has relinquished
its bus tenure following the negation of BG by an external arbiter. At all other times, BTT is
in a high-impedance state. When an alternate master is controlling the bus, the MC68060
samples BTT as an input to maintain internal state information and to monitor when the
MC68060 may become the bus master. To properly maintain this internal state information,
all masters on the bus must have their TS signals tied together and their BTT signals tied
together so the MC68060 can keep track of TS-BTT pairs.

Signal Description

2-12

M68060 USER’S MANUAL

MOTOROLA

The MC68060 provides the BB signal and protocol to provide compatibility with MC68040-
style buses. Either the BTT signal and protocol or the BB signal and protocol (but not both)
should be used. The unused signal, either BTT or BB, must be pulled up with a pullup resis-
tor and tied to V

CC

. Use of the BTT signal and protocol yields higher performance at full bus
speed and high operating frequencies. The use of BB and its associated protocol is not rec-
ommended at full bus speeds. The BTT protocol is discussed in detail in

Section 7 Bus Op-
eration

.

2.7.5 Bus Busy (BB)

This three-state bidirectional signal indicates that the bus is currently owned. BB is moni-
tored as a processor input to determine when an alternate bus master has released control
of the bus. The MC68060 samples bus availability on each clock-enabled clock edge. BG
must be asserted and both TS and BB must be negated (indicating the bus is free) before
the MC68060 asserts BB (with the first assertion of TS) as an output to assume ownership
of the bus. The processor keeps BB asserted until the external arbiter negates BG and the
processor completes the bus cycle in progress. When releasing the bus, the processor
negates BB for one clock period, then places it in a high-impedance state and begins to
sample it as an input. Note that the one clock period in which BB is negated is one MC68060
processor clock period, not a full clock-enabled clock period.

The MC68060 provides the BB signal and protocol to support compatibility with MC68040-
style buses. Either the BTT signal and protocol or the BB signal and protocol (but not both)
should be used. The unused signal, either BTT or BB, must be pulled up through a pullup
resistor and tied to VCC. Use of the BTT signal and protocol yields higher performance at full
bus speed and high operating frequencies. The use of BB and its associated protocol is not
recommended at full bus speeds. The BTT protocol is discussed in detail in Section 7 Bus
Operation.

2.8 PROCESSOR CONTROL SIGNALS
The following signals control the caches and MMUs and support processor and external
device initialization.

2.8.1 Cache Disable (CDIS)
When asserted, this input signal dynamically disables the on-chip caches on the next inter-
nal cache access boundary. The caches are enabled on the next boundary after CDIS is
negated.

CDIS does not flush the data and instruction caches. Cache entries remain unaltered and
become available after CDIS is negated, unless one of the cache invalidate instructions
(CINVA, CINVP, CINVL) are executed. The execution of one of the cache invalidate instruc-
tions may invalidate entries even if the caches have been disabled with this signal. The
assertion of CDIS does not affect snooping.

Refer to Section 5 Caches for information about the caches.

Signal Description

MOTOROLA M68060 USER’S MANUAL 2-13

2.8.2 MMU Disable (MDIS)
When asserted, this input signal dynamically disables the MC68060 internal operand data
and instruction MMUs on the next internal access boundary. While MDIS is asserted, all
accesses bypass the MMU ATCs, and thus translate transparently. The execution of one of
the MMU flush instructions (PFLUSHA, PFLUSHAN, PFLUSH, PFLUSHN) may cause the
deletion of the MMU entries, even if the MMU has been disabled by this signal. The MMUs
are enabled on the next boundary after MDIS is negated. Refer to Section 4 Memory Man-
agement Unit for a description of address translation.

2.8.3 Reset In (RSTI)
The assertion of this input signal causes the MC68060 to enter reset exception processing.
The RSTI signal is an asynchronous input that is internally synchronized to the next rising
clock-enabled clock (CLK) edge. All three-state signals will eventually be set to the high-
impedance state when RSTI is recognized. The assertion of RSTI does not affect the test
pins. Refer to Section 7 Bus Operation for a description of reset operation and to Section
8 Exception Processing for information about the reset exception.

2.8.4 Reset Out (RSTO)
The MC68060 asserts this output during execution of the RESET instruction to initialize
external devices. All bus cycles by the MC68060 are suspended prior to the assertion of
RSTO, but bus arbitration and snooping still function. Refer to Section 7 Bus Operation for
a description of reset out bus operation.

2.9 INTERRUPT CONTROL SIGNALS
The following signals control the interrupt functions.

2.9.1 Interrupt Priority Level (IPL2–IPL0)
These input signals provide an indication of an interrupt condition with the interrupt level
from a peripheral or external prioritizing circuitry encoded. IPL2 is the most significant bit of
the level number. For example, since the IPLx signals are active low, IPL2–IPL0 = 101 cor-
responds to an interrupt request at interrupt priority level 2. IPL2–IPL0 = 000 (level 7) is the
highest priority interrupt and cannot be internally masked. IPL2–IPL0 = 111 (level 0) indi-
cates no interrupt is requested. The IPLx signals are asynchronous inputs that are internally
synchronized to rising clock (CLK) edges.

During a processor reset, the levels on the IPLx lines are registered and used to configure
the various operating modes for the MC68060 bus. Refer to Section 7 Bus Operation for
more information on bus operating modes and Section 8 Exception Processing for infor-
mation on interrupts.

2.9.2 Interrupt Pending Status (IPEND)
This output signal indicates that an interrupt request has been recognized internally by the
processor and exceeds the current interrupt priority mask in the status register (SR). Exter-
nal devices (other bus masters) can use IPEND to predict processor operation on the next
instruction boundaries. IPEND is not intended for use as an interrupt acknowledge to exter-

Signal Description

2-14 M68060 USER’S MANUAL MOTOROLA

nal peripheral devices. Refer to Section 7 Bus Operation for bus information related to
interrupts and to Section 8 Exception Processing for interrupt information.

2.9.3 Autovector (AVEC)
This input signal is asserted with TA during an interrupt acknowledge bus cycle to request
internal generation of the vector number. Refer to Section 7 Bus Operation for more infor-
mation about automatic vectors.

2.10 STATUS AND CLOCK SIGNALS
The following paragraphs describe the signals that provide timing and the internal processor
status.

2.10.1 Processor Status (PST4–PST0)
These outputs indicate the internal execution unit status. The timing is synchronous with the
MC68060 processor clock (CLK), and the status may have nothing to do with the current
bus transfer. Table 2-7 lists the definition of the PSTx encodings.

The encodings $16, $17, and $1C indicate the present status and do not reflect a specific
stage of the pipe. These encodings persist as long as the processor stays in the indicated
state. The default encoding $00 is indicated if none of the above conditions apply. Most
other encodings indicate that the instruction is in its last instruction execution stage. These
encodings exist for only one CLK period per instruction and are mutually exclusive.

In general, the PSTx bits indicate the following information:

PST4 = Supervisor Mode
PST3 = Branch Instruction
PST2 = Taken Branch Instruction
PST1, PST0 = Number of Instructions Completed that Cycle

Signal Description

MOTOROLA M68060 USER’S MANUAL 2-15

2.10.2 MC68060 Processor Clock (CLK)
CLK is the synchronous clock of the MC68060. This signal is used internally to clock or
sequence the internal logic of the MC68060 processor and is qualified with CLKEN to clock
all external bus signals.

Since the MC68060 is designed for static operation, CLK can be gated off to lower power
dissipation (e.g., during low-power stopped states). Refer to Section 7 Bus Operation for
more information on low-power stopped states.

2.10.3 Clock Enable (CLKEN)
This input signal is a qualifier for the MC68060 processor clock (CLK) and is provided to sup-
port lower bus frequency MC68060 designs. The internal MC68060 bus interface controller
will sample, assert, negate, or three-state signals (except for BB and TIP which can three-

Table 2-7. PSTx Encoding
Hex PST4 PST3 PST2 PST1 PST0 Internal Processor Status
$00 0 0 0 0 0 Continue Execution in User Mode
$01 0 0 0 0 1 Complete 1 Instruction in User Mode
$02 0 0 0 1 0 Complete 2 Instructions in User Mode
$03 0 0 0 1 1 —
$04 0 0 1 0 0 —
$05 0 0 1 0 1 —
$06 0 0 1 1 0 —
$07 0 0 1 1 1 —
$08 0 1 0 0 0 Emulator Mode Entry Exception Processing
$09 0 1 0 0 1 Complete Not Taken Branch in User Mode
$0A 0 1 0 1 0 Complete Not Taken Branch Plus 1 Instruction in User Mode
$0B 0 1 0 1 1 IED Cycle of Branch to Vector, Emulator Entry Exception
$0C 0 1 1 0 0 —
$0D 0 1 1 0 1 Complete Taken Branch in User Mode
$0E 0 1 1 1 0 Complete Taken Branch Plus 1 Instruction in User Mode
$0F 0 1 1 1 1 Complete Taken Branch Plus 2 Instructions in User Mode
$10 1 0 0 0 0 Continue Execution in Supervisor Mode
$11 1 0 0 0 1 Complete 1 Instruction in Supervisor Mode
$12 1 0 0 1 0 Complete 2 Instructions in Supervisor Mode
$13 1 0 0 1 1 —
$14 1 0 1 0 0 —
$15 1 0 1 0 1 Complete RTE Instruction in Supervisor Mode
$16 1 0 1 1 0 Low-Power Stopped State; Waiting for an Interrupt or Reset
$17 1 0 1 1 1 MC68060 Is Stopped Waiting for an Interrupt
$18 1 1 0 0 0 MC68060 Is Processing an Exception
$19 1 1 0 0 1 Complete Not Taken Branch in Supervisor Mode
$1A 1 1 0 1 0 Complete Not Taken Branch Plus 1 Instruction in Supervisor Mode
$1B 1 1 0 1 1 IED Cycle of Branch to Vector, Exception Processing
$1C 1 1 1 0 0 MC68060 Is Halted
$1D 1 1 1 0 1 Complete Taken Branch in Supervisor Mode
$1E 1 1 1 1 0 Complete Taken Branch Plus 1 Instruction in Supervisor Mode
$1F 1 1 1 1 1 Complete Taken Branch Plus 2 Instructions in Supervisor Mode

Signal Description

2-16 M68060 USER’S MANUAL MOTOROLA

state on the rising edge of CLK regardless of the state of the CLKEN) only on those rising
edges of CLK which are spanned by the assertion of CLKEN.

CLKEN may be used to allow the external bus to run at 1/2 or 1/4 the speed of the MC68060
processor clock which controls all internal operations. The MC68060 bus interface controller
will not detect those rising edges of CLK which are spanned with the negation of CLKEN.
To operate the external bus at 1/2 or 1/4 the speed of CLK, CLKEN must be asserted and
stable during the rising edges of CLK which coincide with the system clock running at 1/2 or
1/4 the frequency of the MC68060 processor clock. CLKEN must be negated and stable dur-
ing all other rising CLK edges.

For full speed operation of the MC68060 processor, CLKEN must be continuously asserted.

Refer to Section 7 Bus Operation for more information on the MC68060 bus interface and
controller. Refer to Section 12 Electrical and Thermal Characteristics for the timing spec-
ifications of CLK and CLKEN.

2.11 TEST SIGNALS
The MC68060 includes dedicated user-accessible test logic that is fully compatible with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems asso-
ciated with testing high-density circuit boards have led to the development of this standard
under the IEEE Test Technology Committee and Joint Test Action Group (JTAG) sponsor-
ship. The MC68060 implementation supports circuit board test strategies based on this
standard. However, the JTAG interface is not intended to provide an in-circuit test to verify
MC68060 operations; therefore, it is impossible to test MC68060 operations using this inter-
face. Section 9 IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes describes the
MC68060 implementation of IEEE 1149.1 and is intended to be used with the supporting
IEEE document.

2.11.1 JTAG Enable (JTAG)
This input signal is used to select between 1149.1 operation and debug emulation mode.
The 1149.1 test access port (TAP) pins are remapped to emulation mode functions when
this pin is negated. For normal 1149.1 operation, JTAG should be grounded.

2.11.2 Test Clock (TCK)
This input signal is used as a dedicated clock for the test logic. Since clocking of the test
logic is independent of the normal operation of the MC68060, several other components on
a board can share a common test clock with the processor even though each component
may operate from a different system clock. The design of the test logic allows the test clock
to run at low frequencies, or to be gated off entirely as required for test purposes. TCK
should be grounded if it is not used and emulation mode is not to be used.

2.11.3 Test Mode Select (TMS)
This input signal is decoded by the TAP controller and distinguishes the principal operations
of the test support circuitry. TMS should be tied to VCC if it is not used and emulation mode
is not to be used.

Signal Description

MOTOROLA M68060 USER’S MANUAL 2-17

2.11.4 Test Data In (TDI)
This input signal provides a serial data input to the TAP. TDI should be tied to VCC if it is not
used and emulation mode is not to be used.

2.11.5 Test Data Out (TDO)
This three-state output signal provides a serial data output from the TAP. The TDO output
can be placed in a high-impedance mode to allow parallel connection to board-level test
data paths.

2.11.6 Test Reset (TRST)
This input signal provides an asynchronous reset of the TAP controller. TRST should be
grounded if 1149.1 operation is not to be used.

2.12 THERMAL SENSING PINS (THERM1, THERM0)
THERM1 and THERM0 are connected to an internal thermal resistor and provide informa-
tion about the average temperature of the die. The resistance across these two pins is pro-
portional to the average temperature of the die. The temperature coefficient of the resistor
is approximately 1.2 Ω/°C with a nominal resistance of 400Ω at 25°C.

2.13 POWER SUPPLY CONNECTIONS
The MC68060 requires connection to a VCC power supply, positive with respect to ground.
The VCC and ground connections are grouped to supply adequate current to the various
sections of the processor. Section 13 Ordering Information and Mechanical Data
describes the groupings of the VCC and ground connections.

2.14 SIGNAL SUMMARY
Table 2-8 provides a summary of the electrical characteristics of the MC68060 signals.

Signal Description

2-18 M68060 USER’S MANUAL MOTOROLA

Table 2-8. Signal Summary

Signal Name Mnemonic
Input/
Output

Active
State

Three-State
Reset
State

Address Bus A31–A0 Input/Output High Yes Three-Stated
Cycle Long-Word Address CLA Input Low — —
Data Bus D31–D0 Input/Output High Yes Three-Stated
Transfer Type 1 TT1 Input/Output High Yes Three-Stated
Transfer Type 0 TT0 Output High Yes Three-Stated
Transfer Modifier TM2–TM0 Output High Yes Three-Stated
Transfer Line Number TLN1,TLN0 Output High Yes Three-Stated
User-Programmable Attributes UPA1,UPA0 Output High Yes Three-Stated
Read/Write R/W Output High/Low Yes Three-Stated
Transfer Size SIZ1,SIZ0 Output High Yes Three-Stated
Bus Lock LOCK Output Low Yes Three-Stated
Bus Lock End LOCKE Output Low Yes Three-Stated
Cache Inhibit Out CIOUT Output Low Yes Three-Stated
Byte Select BS3–BS0 Output Low Yes Three-Stated
Transfer Start TS Input/Output Low Yes Three-Stated
Transfer in Progress TIP Output Low Yes Three-Stated
Starting Termination Acknowledge Signal Sampling SAS Output Low Yes Three-Stated
Transfer Acknowledge TA Input Low — —
Transfer Retry Acknowledge TRA Input Low — —
Transfer Error Acknowledge TEA Input Low — —
Transfer Burst Inhibit TBI Input Low — —
Transfer Cache Inhibit TCI Input Low — —
Snoop Control SNOOP Input Low — —
Bus Request BR Output Low No Negated
Bus Grant BG Input Low — —
Bus Grant Relinquish Control BGR Input Low — —
Bus Busy BB Input/Output Low Yes Three-Stated
Bus Tenure Termination BTT Input/Output Low Yes Three-Stated
Cache Disable CDIS Input Low — —
MMU Disable MDIS Input Low — —
Reset In RSTI Input Low — —
Reset Out RSTO Output Low No Negated
Interrupt Priority Level IPL2–IPL0 Input Low — —
Interrupt Pending IPEND Output Low No Negated
Autovector AVEC Input Low — —
Processor Status PST4–PST0 Output High No 10000
Processor Clock CLK Input — — —
Clock Enable CLKEN Input Low — —
JTAG Enable JTAG Input Low — —
Test Clock TCK Input — — —
Test Mode Select TMS Input High — —
Test Data Input TDI Input High — —
Test Data Output TDO Output High Yes Three-Stated
Test Reset TRST Input Low — —

Thermal Resistor Connections THERM1,
THERM0 — — — —

Power Supply VCC Input — — —

Ground GND Input — — —

MOTOROLA

M68060 USER’S MANUAL

3-1

SECTION 3
INTEGER UNIT

This section describes the organization of the MC68060 integer unit and presents a brief
description of the associated registers. Refer to

Section 4 Memory Management Unit

for
details concerning the paged memory management unit (MMU) programming model and to

Section 6 Floating-Point Unit

 for details concerning the floating-point unit (FPU) program-
ming model.

3.1 INTEGER UNIT EXECUTION PIPELINES

The MC68060 integer unit execution pipelines are four-stage pipelines which perform final
instruction decode, effective address calculation, and execution or integer operations. The
operand execution pipelines (OEPs) are referred to individually as the primary OEP (pOEP)
and the secondary OEP (sOEP). Figure 3-1 shows the integer unit of the MC68060.

Figure 3-1. MC68060 Integer Unit Pipeline

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

Integer Unit

3-2

M68060 USER’S MANUAL

MOTOROLA

The operation of the instruction fetch unit (IFU) and the OEPs are decoupled by a 96-byte
FIFO instruction buffer. The IFU prefetches instructions every processor clock cycle, stop-
ping only if the instruction buffer is full or encountering a wait condition due to instruction
fetch address translation or cache miss. The OEPs attempt to read instructions from the
instruction buffer and execute them every clock cycle, stopping only if full instruction infor-
mation is not present in the buffer or due to operand pipeline wait conditions.

3.2 INTEGER UNIT REGISTER DESCRIPTION

The following paragraphs describe the integer unit registers in the user and supervisor pro-
gramming models. Refer to

Section 4 Memory Management Unit

 for details on the MMU
programming model and

Section 6 Floating-Point Unit

 for details on the FPU program-
ming model.

3.2.1 Integer Unit User Programming Model

Figure 3-2 illustrates the integer unit portion of the user programming model. The model is
the same as for previous M68000 family microprocessors, consisting of the following regis-
ters:

• 16 General-Purpose 32-Bit Registers (D7–D0, A7–A0)

• 32-Bit Program Counter (PC)

• 8-Bit Condition Code Register (CCR)

3.2.1.1 DATA REGISTERS (D7–D0).

Registers D7–D0 are used as data registers for bit
and bit field (1- to 32-bit), byte (8-bit), word (16-bit), long-word (32-bit), and quad-word (64-
bit) operations. These registers may also be used as index registers.

3.2.1.2 ADDRESS REGISTERS (A6–A0).

These registers can be used as software stack
pointers, index registers, or base address registers. The address registers may be used for
word and long-word operations.

3.2.1.3 USER STACK POINTER (A7).

A7 is used as a hardware stack pointer during
implicit or explicit stacking for subroutine calls and exception handling. The register desig-
nation A7 refers to the user stack pointer (USP) in the user programming model and to the

Figure 3-2. Integer Unit User Programming Model

A0
A1
A2
A3
A4
A5
A6

A7
(USP)

PC

ADDRESS
REGISTERS

USER
STACK
POINTER
PROGRAM
COUNTER

CCR
CONDITION
CODE
REGISTER

01531

0715

031

01531

Integer Unit

MOTOROLA

M68060 USER’S MANUAL

3-3

supervisor stack pointer (SSP) in the supervisor programming model. When the S-bit in the
status register (SR) is clear, the USP is the active stack pointer.

A subroutine call saves the program counter (PC) on the active system stack, and the return
restores the PC from the active system stack. Both the PC and the SR are saved on the
supervisor stack during the processing of exceptions and interrupts. Thus, the execution of
supervisor level code is independent of user code and the condition of the user stack. Con-
versely, user programs use the USP independently of supervisor stack requirements.

3.2.1.4 PROGRAM COUNTER.

The PC contains the address of the currently executing
instruction. During instruction execution and exception processing, the processor automat-
ically increments the contents of the PC or places a new value in the PC, as appropriate.
For some addressing modes, the PC can be used as a pointer for PC-relative addressing.

3.2.1.5 CONDITION CODE REGISTER.

The CCR is the least significant byte of the proces-
sor SR. Bits 3–0 represent a condition of a result generated by a processor operation. Bit 4,
the extend bit (X-bit), is an operand for multiprecision computations. The carry bit (C-bit) and
the X-bit are separate in the M68000 family to simplify programming techniques that use
them.

3.2.2 Integer Unit Supervisor Programming Model

Only system programmers use the supervisor programming model (see Figure 3-3) to imple-
ment sensitive operating system functions, I/O control, and MMU subsystems. All accesses
that affect the control features of the MC68060 are in the supervisor programming model.
Thus, all application software is written to run in the user mode and migrates to the
MC68060 from any M68000 platform without modification.

Figure 3-3. Integer Unit Supervisor Programming Model

31 0

15 7 0

31 15
A7 (SSP)

031 2

SR

VBR

SFC

DFC

(CCR)

ALTERNATE SOURCE AND DESTINATION
FUNCTION CODE REGISTERS

SUPERVISOR STACK POINTER

STATUS REGISTER

VECTOR BASE REGISTER

0

31 0
PCR PROCESSOR CONFIGURATION REGISTER

Integer Unit

3-4

M68060 USER’S MANUAL

MOTOROLA

The supervisor programming model consists of the registers available to the user as well as
the following control registers:

• 32-Bit Supervisor Stack Pointer (SSP, A7)

• 16-Bit Status Register (SR)

• 32-Bit Vector Base Register (VBR)

• Two 32-Bit Alternate Function Code Registers: Source Function Code (SFC) and Des-
tination Function Code (DFC)

• 32-Bit Processor Configuration Register (PCR)

The following paragraphs describe the supervisor programming model registers. Additional
information on the SSP, SR, and VBR registers can be found in

Section 8 Exception Pro-
cessing.

3.2.2.1 SUPERVISOR STACK POINTER.

When the MC68060 is operating at the supervi-
sor level, instructions that use the system stack implicitly, or access address register A7
explicitly, use the SSP. The SSP is a general-purpose register and can be used as a soft-
ware stack pointer, index register, or base address register. The SSP can be used for word
and long-word operations. The initial value of the SSP is loaded from the reset exception
vector, address offset 0.

3.2.2.2 STATUS REGISTER.

The SR (see Figure 3-4) stores the processor status and
includes the CCR, the interrupt priority mask, and other control bits. In the supervisor mode,
software can access the entire SR. The control bits indicate the following states for the pro-
cessor: trace mode (T-bit), supervisor or user mode (S-bit), and master or interrupt state (M).

3.2.2.3 VECTOR BASE REGISTER.

The VBR contains the base address of the exception
vector table in memory. The displacement of an exception vector is added to the value in
this register to access the vector table. Refer to

Section 8 Exception Processing

 for infor-
mation on exception vectors.

Figure 3-4. Status Register

T 0 S M 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE ENABLE
INTERRUPT

PRIORITY MASK

SUPERVISOR/USER STATE

MASTER/INTERRUPT STATE EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

Integer Unit

MOTOROLA

M68060 USER’S MANUAL

3-5

3.2.2.4 ALTERNATE FUNCTION CODE REGISTERS.

The alternate function code regis-
ters contain 3-bit function codes. Function codes can be considered extensions of the 32-bit
logical address that optionally provides as many as eight 4-Gbyte address spaces. The pro-
cessor automatically generates function codes to select address spaces for data and pro-
grams at the user and supervisor modes. Certain instructions use the SFC and DFC
registers to specify the function codes for operations.

3.2.2.5 PROCESSOR CONFIGURATION REGISTER.

The PCR is an 32-bit register which
controls the operations of the MC68060 internal pipelines and contains a software readable
revision number. The PCR is shown in Figure 3-5.

Bits 31–16—Identification
These bits are configured with the value which identifies this device as an MC68060.
These bits are ignored when writing to the PCR.
See

Appendix A MC68LC060

 and

Appendix B MC68EC060

 for MC68LC060 and
MC68EC060, respectively, identification field values.

Bits 15–8—Revision Number
Bits 15–8 contain the 8-bit device revision number. The first revision is 00000000. These
bits are ignored when writing to the PCR.

EDEBUG—Enable Debug Features
When this bit is set, the MC68060 outputs internal control information on the address bus
(A31–A0) and data bus (D31–D0) during idle bus cycles. This capability is implemented
to support debug of designs that include the MC68060. When this bit is cleared, operation
proceeds in a normal manner and no internal information is output on idle bus cycles. This
bit is cleared at reset.

Bits 6–2—Reserved by Motorola for future use and must always be zero.

DFP—Disable Floating-Point Unit
When this bit is set, the on-chip FPU is disabled and any attempt to execute a floating-
point instruction generates a line F emulator exception. When this bit is cleared, the FPU
executes all floating-point instructions. This bit is cleared at reset. Note that before this bit
is set via the MOVEC instruction, an FNOP must be executed to ensure that all floating-
point exceptions are caught and handled. This would prevent unexpected floating-point
related exceptions to be reported when the FPU is re-enabled at a later time.

ESS—Enable Superscalar Dispatch
When this bit is set, the ability of the MC68060 to execute multiple instructions per
machine cycle is enabled. When this bit is cleared, the ability to execute multiple instruc-
tions per cycle is disabled and the MC68060 operates at a slower rate with lower perfor-
mance. This bit is cleared at reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 2 1 0

0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 Revision Number EDEBUG Reserved DFP ESS

Figure 3-5. Processor Configuration Register

MOTOROLA

M68060 USER’S MANUAL

4-1

SECTION 4
MEMORY MANAGEMENT UNIT

NOTE

This section does not apply to the MC68EC060. Refer to

Appendix B MC68EC060

for details.

The MC68060 supports a demand-paged virtual memory environment. Demand means that
programs request permission to use memory area by accessing logical addresses, and
paged means that memory is divided into blocks of equal size, called page frames. Each
page frame is divided

into pages of the same size. The operating system assigns pages to
page frames as they are required to meet the needs of the program.

The MC68060 memory management includes the following features:

• Independent Instruction and Data Memory Management Units (MMUs)

• 32-Bit Logical Address Translation to 32-Bit Physical Address

• User-Defined 2-Bit Physical Address Extension

• Addresses Translated in Parallel with Indexing into Data or Instruction Cache

• 64-Entry Four-Way Set-Associative Address Translation Cache (ATC) for Each MMU
(128 Total Entries)

• Global Bit Allowing Flushes of All Nonglobal Entries from ATCs

• Selectable 4- or 8-Kbyte Page Size

• Separate Supervisor and User Translation Tables

• Two Independent Blocks for Each MMU Can Be Defined as Transparent (Untranslated)

• Three-Level Translation Tables with Optional Indirection

• Supervisor and Write Protections

• History Bits Automatically Maintained in Descriptors

• External Translation Disable Input Signal (MDIS) for Emulator Support

• Caching Mode Selected on Page Basis

• Default Transparent Translation

• Default Cache Mode and User Attributes

The MMUs completely overlap address translation time with other processing activities
when the translation is resident in the corresponding ATC. ATC accesses operate in parallel
with indexing into the on-chip instruction and data caches. The MMU MDIS signal dynami-
cally disables address translation for emulation and diagnostic support.

Memory Management Unit

4-2

M68060 USER’S MANUAL

MOTOROLA

Figure 4-1 illustrates the MMUs contained in the two memory units, one for instructions (sup-
porting instruction prefetches) and one for data (supporting all other accesses). Each MMU
contains a 64-entry ATC, two transparent translation registers (TTRs), and control logic. The
ATCs hold recently used logical to physical address translations, cache mode and protec-
tion information, and whether or not the page has been written. The TTRs are used for defin-
ing the cache modes, enabling protection modes and defining user page attributes for large
regions of untranslated address space. Each MMU also allows enabling a default cache
mode, protection, and user page attributes for address regions not covered by the ATC or
TTRs.

One of the principal functions of the MMU is to provide logical to physical address translation
using translation tables stored in memory. As an MMU receives a request from the corre-
sponding pipe unit, its ATC is searched for the translation, using the upper logical address
bits as a tag. If the translation is resident (or one of the TTRs hit causing transparent trans-
lation), the MMU provides the physical address for the corresponding cache lookup. If the
translation is not in the ATC (and the TTRs miss), then a table search is done using trans-
lation tables stored in memory. When the translation is obtained, it is used for the cache
lookup, and is placed in the ATC for future use. The table search is performed automatically
by the MC68060 using on-chip logic.

Figure 4-1. Memory Management Unit

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

FP
EXECUTE

pOEP sOEP

OC OC OC

EXEX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-3

4.1 MEMORY MANAGEMENT PROGRAMMING MODEL

The memory management programming model is part of the supervisor programming model
for the MC68060. The seven registers that control and provide status information for
address translation in the MC68060 are: the user root pointer register (URP), the supervisor
root pointer register (SRP), the translation control register (TCR), and four independent
transparent translation registers (ITTR0, ITTR1, DTTR0, and DTTR1). Only programs that
execute in the supervisor mode can directly access these registers. Figure 4-2 illustrates the
memory management programming model.

4.1.1 User and Supervisor Root Pointer Registers

The SRP and URP registers each contain the physical address of the translation table’s root,
which the MMU uses for supervisor and user accesses, respectively. The URP points to the
translation table for the current user task. When a new task begins execution, the operating
system typically writes a new root pointer to the URP. A new translation table address
implies that the contents of the ATCs may no longer be valid. Writing a root pointer register
does not affect the contents of the ATCs. A PFLUSH instruction should be executed to flush
the ATCs before loading a new root pointer value, if necessary. Figure 4-3 illustrates the for-
mat of the 32-bit URP and SRP registers. Bits 8–0 of an address loaded into the URP or the
SRP must be zero. Transfers of data to and from these 32-bit registers are long-word trans-
fers.

Figure 4-2. Memory Management Programming Model

31 9 8 0

USER ROOT POINTER 0 0 0 0 0 0 0 0 0

SUPERVISOR ROOT POINTER 0 0 0 0 0 0 0 0 0

Figure 4-3. URP and SRP Register Formats

31 0

31 0

0

31 0

31 0

31 0

31 0

URP

SRP

TCR

DTTR0

ITTR0

DTTR1

ITTR1

DATA TRANSPARENT TRANSLATION REGISTER 0

USER ROOT POINTER REGISTER

SUPERVISOR ROOT POINTER REGISTER

TRANSLATION CONTROL REGISTER

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 0

INSTRUCTION TRANSPARENT TRANSLATION
REGISTER 1

DATA TRANSPARENT TRANSLATION REGISTER 1

31

Memory Management Unit

4-4

M68060 USER’S MANUAL

MOTOROLA

4.1.2 Translation Control Register

The 32-bit TCR contains control bits which select translation properties. The operating sys-
tem must flush the ATCs before enabling address translation since the TCR accesses and
reset do not flush the ATCs. All unimplemented bits of this register are read as zeros and
must always be written as zeros. The MC68060 always uses long-word transfers to access
this 32-bit register. All bits are cleared by reset. Figure 4-4 illustrates the TCR.

Bits 31–16—Reserved by Motorola. Always read as zero.

E—Enable
This bit enables and disables paged address translation.

0 = Disable
1 = Enable

A reset operation clears this bit. When translation is disabled, logical addresses are used
as physical addresses. The MMU instruction, PFLUSH, can be executed successfully
despite the state of the E-bit. If translation is disabled and an access does not match a
transparent translation register (TTR), the default attributes for the access on the TTR is
defined by the DCO, DUO, DCI, DWO, DUI (default TTR) bits in TCR.

P—Page Size
This bit selects the memory page size.

0 = 4 Kbytes
1 = 8 Kbytes

NAD—No Allocate Mode (Data ATC)
This bit freezes the data ATC in the current state, by enforcing a no-allocate policy for all
accesses. Accesses can still hit, misses will cause a table search. A write access which
finds a corresponding valid read will update the M-bit and the entry remains valid.

0 = Disabled
1 = Enable

NAI—No Allocate Mode (Instruction ATC)
This bit freezes the instruction ATC in the current state, by enforcing a no-allocate policy
for all accesses. Accesses can still hit, misses will cause a table search.

0 = Disabled
1 = Enable

FOTC—1/2-Cache Mode (Data ATC)
0 = The data ATC operates with 64 entries.
1 = The data ATC operates with 32 entries.

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E P NAD NAI FOTC FITC DCO DUO DWO DCI DUI 0

Figure 4-4. Translation Control Register Format

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-5

FITC—1/2-Cache Mode (Instruction ATC)
0 = The instruction ATC operates with 64 entries.
1 = The instruction ATC operates with 32 entries.

DCO—Default Cache Mode (Data Cache)
00 = Writethrough, cachable
01 = Copyback, cachable
10 = Cache-inhibited, precise exception model
11 = Cache-inhibited, imprecise exception model

DUO—Default UPA bits (Data Cache)
These bits are two user-defined bits for operand accesses (see

4.2.2.3 Descriptor Field
Definitions

).

DWO—Default Write Protect (Data Cache)
0 = Reads and writes are allowed.
1 = Reads are allowed, writes cause a protection exception.

DCI—Default Cache Mode (Instruction Cache)
00 = Writethrough, cachable
01 = Copyback, cachable
10 = Cache-inhibited, precise exception model
11 = Cache-inhibited, imprecise exception model

DUI—Default UPA Bits (Instruction Cache)
These bits are two user-defined bits for instruction prefetch bus cycles (see

4.2.2.3
Descriptor Field Definitions

)

Bit 0—Reserved by Motorola. Always read as zero.

Memory Management Unit

4-6

M68060 USER’S MANUAL

MOTOROLA

4.1.3 Transparent Translation Registers

The data transparent translation registers (DTTR0 and DTTR1) and instruction transparent
translation registers (ITTR0 and ITTR1) are 32-bit registers that define blocks of logical
address space that are untranslated by the MMU (the logical address is the physical
address). The TTRs operate independently of the E-bit in the TCR and the state of the MDIS
signal. Data transfers to and from these registers are long-word transfers. The TTR fields
are defined following Figure 4-5, which illustrates TTR format. Bits 12–10, 7, 4, 3, 1, and 0
always read as zero.

Bits 31–24—Logical Address Base
This 8-bit field is compared with address bits A31–A24. Addresses that match in this com-
parison (and are otherwise eligible) are transparently translated.

Bits 23–16—Logical Address Mask
Since this 8-bit field contains a mask for the Logical Address Mask field, setting a bit in
this field causes the corresponding bit in the Logical Address Base field to be ignored.
Blocks of memory larger than 16 Mbytes can be transparently translated by setting some
of the logical address mask bits to ones. The low-order bits of this field can be set to define
contiguous blocks larger than 16 Mbytes. The mask can be used to define multiple non-
contiguous blocks of addresses.

E—Enable
This bit enables or disables transparent translation of the block defined by this register:

0 = Transparent translation disabled
1 = Transparent translation enabled

S—Supervisor Mode
This field specifies the way FC2 is used in matching an address:

00 = Match only if FC2 = 0 (user mode access)
01 = Match only if FC2 = 1 (supervisor mode access)
1

X =

 Ignore FC2 when matching

U0, U1—User Page Attributes
The user defines these bits, and the MC68060 does not interpret them. U0 and U1 are
echoed to the UPA0 and UPA1 signals, respectively, if an external bus transfer results

31 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOGICAL ADDRESS BASE LOGICAL ADDRESS MASK E S-FIELD 0 0 0 U1 U0 0 CM 0 0 W 0 0

Figure 4-5. Transparent Translation Register Format

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-7

from an access. These bits can be programmed by the user to support external address-
ing, bus snooping, or other applications.

CM—Cache Mode
This field selects the cache mode and access precision as follows:

00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Cache-Inhibited, Precise Exception Model
11 = Cache-Inhibited, Imprecise Exception Model

Section 5 Caches

provides detailed information on caching modes.

W—Write Protect
This bit indicates the write privilege of the TTR block.

0 = Read and write accesses permitted
1 = Write accesses not permitted

Bits 4,3,1,0—Reserved by Motorola.

4.2 LOGICAL ADDRESS TRANSLATION

The primary function of the MMUs is to translate logical addresses to physical addresses.
The MMUs perform translations according to control information in translation tables. The
operating system creates these translation tables and stores them in memory. The proces-
sor then searches through a translation table as needed and stores the resulting translation
in an ATC.

4.2.1 Translation Tables

Both instruction and data access use the same translation tree. Separate translations trees
are available for user and supervisor accesses.

Figure 4-6 illustrates the three-level tree structure of a general translation table supported
by the MC68060. The root- and pointer-level tables contain the base addresses of the tables
at the next level. The page-level tables contain either the physical address for the translation
or a pointer to the memory location containing the physical address. Only a portion of the
translation table for the entire logical address space is required to be resident in memory at
any time—specifically, only the portion of the table that translates the logical addresses of
the currently executing process. Portions of translation tables can be dynamically allocated
as the process requires additional memory.

The current privilege mode determines the use of the URP or SRP for translation of the
access. The root pointer contains the base address of the translation table’s root-level table.
The translation table consists of several linked tables of descriptors. The table descriptors
of the root- and pointer-levels can have resident or invalid descriptor types. The page
descriptors of the page-level table have resident, indirect, or invalid descriptor types. The
page descriptors of the page-level table can be resident, indirect, or invalid. A page descrip-
tor defines the physical address of a page frame in memory that corresponds to the logical
address of a page. An indirect descriptor, which contains a pointer to the actual page

Memory Management Unit

4-8

M68060 USER’S MANUAL

MOTOROLA

descriptor, can be used when two or more logical addresses access a single page descrip-
tor.

The table search uses logical addresses to access the translation tables. Figure 4-7 illus-
trates a logical address format, which is segmented into four fields: root index (RI), pointer
index (PI), page index (PGI), and page offset. The first three fields extracted from the logical
address index the base address for each table level. The seven bits of the logical address
RI field are multiplied by 4 or shifted to the left by two bits. This sum is concatenated with
the upper 23 bits of the appropriate root pointer (URP or SRP) to yield the physical address
of a root-level table descriptor. Each of the 128 root-level table descriptors corresponds to
a 32-Mbyte block of memory and points to the base of a pointer-level table.

The seven bits of a logical address PI field are multiplied by 4 (shifted to the left by two bits)
and concatenated with the fetched root-level descriptor’s upper 23 bits to produce the phys-
ical address of the pointer-level table descriptor. Each of the 128 pointer-level table descrip-
tors corresponds to a 256-Kbyte block of memory.

Figure 4-6. Translation Table Structure

Figure 4-7. Logical Address Format

ROOT POINTER

PAGE
TABLES

FIRST
LEVEL

SECOND
LEVEL

THIRD
LEVEL

POINTER
TABLES

ROOT
TABLES

7 BITS

31 25 24 18 17 13 12 11 0

7 BITS
8K PAGE
4K PAGE

13 BITS - 8K PAGE
12 BITS - 4K PAGE

ROOT INDEX FIELD
(RI)

POINTER INDEX FIELD
(PI)

PAGE INDEX FIELD
(PGI)

PAGE OFFSET

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-9

For 8-Kbyte pages, the five bits of the PGI field are multiplied by 4 (shifted to the left by two
bits) and concatenated with the fetched pointer-level descriptor’s upper 25 bits to produce
the physical address of the 8-Kbyte page descriptor. The upper 19 bits of the page descrip-
tor are the page frame’s physical address. There are 32 8-Kbyte page descriptors in a page-
level table.

Similarly, for 4-Kbyte pages, the six bits of the PGI field are multiplied by 4 (shifted to the left
by two bits) and concatenated with the fetched pointer-level descriptor’s upper 24 bits to pro-
duce the physical address of the 4-Kbyte page descriptor. The upper 20 bits of the page
descriptor are the page frame’s physical address. There are 64 4-Kbyte page descriptors in
a page-level table.

Write-protect status is accumulated from each level’s descriptor and combined with the sta-
tus from the page descriptor to form the ATC entry status. The MC68060 creates the ATC
entry from the page frame address and the associated status bits and uses this address and
attributes to generate a bus access. Refer to

4.3 Address Translation Caches

 for details
on ATC entries.

If the descriptor from a page table is an indirect descriptor, the page descriptor pointed to by
this descriptor is fetched. Invalid descriptors can be used at any level of the tree except the
root. When a table search for a normal translation encounters an invalid descriptor, the pro-
cessor takes an access error exception. The invalid descriptor can be used to identify either
a page or branch of the tree that has been stored on an external device and is not resident
in memory or a portion of the translation table that has not yet been defined. In these two
cases, the exception routine can either restore the page from disk or add to the translation
table. Figure 4-8 and Figure 4-9 illustrate detailed flowcharts of table search and descriptor
fetch operations.

A table search terminates successfully when a page descriptor is encountered. The occur-
rence of an invalid descriptor or a transfer error acknowledge also terminates a table search,
and the MC68060 takes an access error exception immediately on the data access and is
delayed for instruction fetches until the instruction is ready to be executed. The exception
handler should distinguish between anticipated conditions and true error conditions. The
exception handler can correct an invalid descriptor that indicates a nonresident page or one
that identifies a portion of the translation table yet to be allocated. An access error due to a
system malfunction can require the exception handler to write an error message and termi-
nate the task. The fault status long word (FSLW) of the access error stack frame provides
detailed information regarding the cause of the exception. Refer to

Section 8 Exception
Processing

 for more information on exception handling.

The processor does not use the data cache when performing a table search. Therefore,
translation tables must not be placed in copyback space, since the normal accesses which
build the translation tables would be cached and not written to external memory, but the pro-
cessor only uses tables in external memory. This is a functional difference between the
MC68060 and the MC68040.

Table and page descriptors must not be left in a state that is incoherent to the processor.
Violation of this restriction can result in an undefined operation. Page descriptors must not

Memory Management Unit

4-10

M68060 USER’S MANUAL

MOTOROLA

Figure 4-8. Detailed Flowchart of Table Search Operation

ENTRY

SELECT ROOT POINTER
FC2 = 0:URP, 1:SRP

FETCH ROOT
DESCRIPTOR

FETCH POINTER
DESCRIPTOR

FETCH PAGE
DESCRIPTOR

TYPE 'INDIRECT'

FETCH INDIRECT
DESCRIPTOR

EXIT TABLE SEARCH

EXIT TABLE SEARCH

(INITIALIZE ACCRUED
STATUS)

CREATE ATC ENTRY

ATC ENTRY PFA, DF[U1,U0,S,CM,M],WP
ATC TAG FC2, LA, DF[G]

ABBREVIATIONS:

PFA - PAGE FRAME ADDRESS
DF[] - DESCRIPTOR FIELD
WP - ACCUMULATED WRITE-
 PROTECTION STATUS
 ASSIGNMENT OPERATOR

➧WP 0

TYPE 'POINTER'
UPDATE FALSE➧

➧

➧
➧

➧

➧

TYPE 'PAGE'

 'RESIDENT' 'INVALID'

'RESIDENT'

'INVALID' 'RESIDENT'

'RESIDENT'OTHERWISE

'INDIRECT'

PFA = PHYSICAL ADDRESS
FIELD OF DESCRIPTOR

 'INVALID'

(CHECK DESCRIPTOR TYPE)

(CHECK DESCRIPTOR TYPE)

➧

(CHECK DESCRIPTOR TYPE)

(CHECK DESCRIPTOR TYPE)

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-11

Figure 4-9. Detailed Flowchart of Descriptor Fetch Operation

FETCH DESCRIPTOR &
UPDATE HISTORY AND STATUS

FETCH DESCRIPTOR
AT PA = TA + (INDEX*4)

FETCH DESCRIPTOR AT
PA = DESCRIPTOR ADDRESS

WP = WP V W

OR 'INDIRECT'

EXECUTE
WRITE ACCESS

U 1, M 1

EXECUTE
LOCKED

RMW ACCESS
U 1

U = 1 &U = 0 &

SCHEDULE
WRITE ACCESS

U 1
(SEE NOTE)

WP = WP V W

IF SCHEDULED, EXECUTE
WRITE ACCESS (U 1) FOR

PREVIOUS DESCRIPTOR

➧

➧

➧ ➧

WP – ACCUMULATED WRITE-
 PROTECTION STATUS
V – LOGICAL "OR" OPERATOR
 – ASSIGNMENT OPERATOR

DUE TO ACCESS PIPELINING, A POINTER
DESCRIPTOR WRITE ACCESS TO UPDATE
THE U-BIT OCCURS AFTER THE READ OF
THE NEXT LEVEL DESCRIPTOR.

NOTE :

ABBREVIATIONS:

➧

RETURNRETURN

RETURN

RETURN EXIT TABLE SEARCH

EXIT TABLE SEARCH

TYPE = 'PAGE' OR 'POINTER'

OTHERWISE

TYPE = 'PAGE'

'INVALID'

'RESIDENT''RESIDENT'

U = 1U = 0

 'INVALID'

TYPE =
'POINTER'

READ ACCESS

U = 0 (WP = 1 OR M = 1) (WP = 1 OR M = 1)

WP = 0 & M = 0
U = 1

WRITE ACCESS

OTHERWISE

➧
TYPE = 'INDIRECT'

(INDEX = RI, PI, OR PGI)

(SEE NOTE)

NORMAL TERMINATION
OF ALL BUS TRANSFERS

NORMAL TERMINATION
OF ALL BUS TRANSFERS

OR 'INDIRECT'

Memory Management Unit

4-12

M68060 USER’S MANUAL

MOTOROLA

have an encoding of U-bit = 0, M-bit = 1, and PDT field = 01 or 11. This encoding indicates
that the page descriptor is resident, not used, and modified. The processor’s table search
algorithm never leaves a descriptor in this state. This state is possible through direct manip-
ulation by the operating system for this specific instance.

4.2.2 Descriptors

There are three types of descriptors used in the translation tables, root, pointer, and page.
Root table descriptors are used in root-level tables and pointer table descriptors are used in
pointer-level tables. Descriptors in the page-level tables contain either a page descriptor for
the translation or an indirect descriptor that points to a memory location containing the page
descriptor. The P-bit in the TCR selects the page size as either 4 or 8 Kbytes.

4.2.2.1 TABLE DESCRIPTORS.

Figure 4-10 illustrates the formats of the root and pointer
table descriptors.

4.2.2.2 PAGE DESCRIPTORS.

Figure 4-11 illustrates the page descriptors for both
4-Kbyte and 8-Kbyte page sizes. Refer to

Section 5 Caches

 for details concerning caching
page descriptors.

31 9 8 7 6 5 4 3 2 1 0

POINTER TABLE ADDRESS X X X X X U W UDT

ROOT TABLE DESCRIPTOR (ROOT LEVEL)

31 9 8 7 6 5 4 3 2 1 0

PAGE TABLE ADDRESS X X X X X U W UDT

POINTER TABLE DESCRIPTOR (POINTER LEVEL)

Figure 4-10. Table Descriptor Formats

31 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYSICAL ADDRESS UR G U1 U0 S CM M U W PDT

4K PAGE DESCRIPTOR (PAGE LEVEL)

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PHYSICAL ADDRESS UR UR G U1 U0 S CM M U W PDT

8K PAGE DESCRIPTOR (PAGE LEVEL)

31 7 6 5 4 3 2 1 0

DESCRIPTOR ADDRESS PDT

INDIRECT PAGE DESCRIPTOR (PAGE LEVEL)

Figure 4-11. Page Descriptor Formats

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-13

4.2.2.3 DESCRIPTOR FIELD DEFINITIONS.

The field definitions for the table- and page-
level descriptors are listed in alphabetical order:

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Cache-Inhibited, Precise exception model
11 = Cache-Inhibited, Imprecise exception model

Section 5 Caches

provides detailed information on caching modes.

Descriptor Address
This 30-bit field, which contains the physical address of a page descriptor, is only used in
indirect descriptors.

G—Global
When this bit is set, it indicates the entry is global which gives the user the option of group-
ing entries as global or nonglobal for use when PFLUSHing the ATC, and has no other
meaning. PFLUSH instruction variants that specify nonglobal entries do not invalidate glo-
bal entries, even when all other selection criteria are satisfied. If these PFLUSH variants
are not used, then system software can use this bit.

M—Modified
This bit identifies a page which has been written to by the processor. The MC68060 sets
the M-bit in the corresponding page descriptor before a write operation to a page for which
the M-bit is clear, except for write-protect or supervisor violations in which case the M-bit
is not set. The read portion of a locked read-modify-write access is considered a write for
updating purposes. The MC68060 never clears this bit.

PDT—Page Descriptor Type
This field identifies the descriptor as an invalid descriptor, a page descriptor for a resident
page, or an indirect pointer to another page descriptor.

00 = Invalid
This code indicates that the descriptor is invalid. An invalid descriptor can repre-
sent a nonresident page or a logical address range that is out of bounds. All other
bits in the descriptor are ignored. When an invalid descriptor is encountered, an
ATC entry is not created.

01 or 11 = Resident
These codes indicate that the page is resident.

10 = Indirect
This code indicates that the descriptor is an indirect descriptor. Bits 31–2 contain
the physical address of the page descriptor. This encoding is invalid for a page
descriptor pointed to by an indirect descriptor (that is, only one level of indirection
is allowed).

Memory Management Unit

4-14

M68060 USER’S MANUAL

MOTOROLA

Physical Address—
This 20-bit field contains the physical base address of a page in memory. The logical
address supplies the low-order bits of the address required to index into the page. When
the page size is 8-Kbyte, the least significant bit of this field is not used.

S—Supervisor Protected
This bit identifies a page as supervisor only. Only programs operating in the supervisor
mode are allowed to access the portion of the logical address space mapped by this
descriptor when the S-bit is set. If the bit is clear, both supervisor and user accesses are
allowed.

Page Table Address
This field contains the physical base address of a table of page descriptors. The low-order
bits of the address required to index into the page table are supplied by the logical
address.

U—Used
The processor automatically sets this bit when a descriptor is accessed in which the U-bit
is clear. In a page descriptor table, this bit is set to indicate that the page corresponding
to the descriptor has been accessed. In a pointer table, this bit is set to indicate that the
pointer has been accessed by the MC68060 as part of a table search. The U-bit is
updated before the MC68060 allows a page to be accessed. The processor never clears
this bit.

U0, U1—User Page Attributes
These bits are user defined and the processor does not interpret them. U0 and U1 are
echoed to the UPA0 and UPA1 signals, respectively, if an external bus transfer results
from the access. Applications for these bits include extended addressing and snoop pro-
tocol selection.

UDT—Upper Level Descriptor Type
These bits indicate whether the next level table descriptor is resident.

00 or 01 = Invalid
These codes indicate that the table at the next level is not resident or that the log-
ical address is out of bounds. All other bits in the descriptor are ignored. When an
invalid descriptor is encountered, an ATC entry is not created.

10 or 11 = Resident
These codes indicate that the page is resident.

UR—User Reserved
These single bit fields are reserved for use by the user.

W—Write Protected
Setting the W-bit in a table descriptor write protects all pages accessed with that descrip-
tor. When the W-bit is set, a write access or a locked read-modify-write access to the log-
ical address corresponding to this entry causes an access error exception to be taken.

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-15

X—Motorola Reserved
These bit fields are reserved for future use by Motorola.

4.2.3 Translation Table Example

Figure 4-12 illustrates an access example to the logical address $76543210 while in the
supervisor mode with an 8-Kbyte memory page size. The RI field of the logical address, $3B,
is mapped into bits 8–2 of the SRP value to select a 32-bit root table descriptor at a root-
level table. The selected root table descriptor points to the base of a pointer-level table, and
the PI field of the logical address, $15, is mapped into bits 8–2 of this base address to select
a pointer descriptor within the table. This pointer table descriptor points to the base of a
page-level table, and the PGI field of the logical address, $1, is mapped into bits 6–2 of this
base address to select a page descriptor within the table.

Figure 4-12. Example Translation Table

ROOT LEVEL
TABLES

POINTER LEVEL
TABLES

PAGE LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15
SUPERVISOR
MODE

TABLE $00

TABLE $7F TABLE $1F

TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

$00001800 $00003000 FRAME ADDRESS

SRP

$15 $01

Memory Management Unit

4-16

M68060 USER’S MANUAL

MOTOROLA

4.2.4 Variations in Translation Table Structure

Several aspects of the MMU translation table structure are software configurable, allowing
the system designer flexibility to optimize the performance of the MMUs for a particular sys-
tem. The following paragraphs discuss the variations of the translation table structure.

4.2.4.1 INDIRECT ACTION.

The MC68060 provides the ability to replace an entry in a page
table with a pointer to an alternate entry. The indirection capability allows multiple tasks to
share a physical page while maintaining only a single set of history information for the page
(i.e., the modified indication is maintained only in the single descriptor). The indirection
capability also allows the page frame to appear at arbitrarily different addresses in the logical
address spaces of each task.

Using the indirection capability, single entries or entire tables can be shared between multi-
ple tasks. Figure 4-13 illustrates two tasks sharing a page using indirect descriptors.

Figure 4-13. Translation Table Using Indirect Descriptors

ROOT-LEVEL
TABLES

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15

TABLE $00

TABLE $7F TABLE $1F

TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

$00001800 $00003000 $80000010$15 $01

ROOT POINTER

TASK A

TASK B
ROOT POINTER

FRAME ADDRESS

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-17

When the MC68060 has completed a normal table search, it examines the PDT field of the
last entry fetched from the page tables. If the PDT field contains an indirect ($2) encoding,
it indicates that the address contained in the highest order 30 bits of the descriptor is a
pointer to the page descriptor that is to be used to map the logical address. The processor
then fetches the page descriptor from this address and uses the physical address field of
the page descriptor as the physical mapping for the logical address.

The page descriptor located at the address given by the indirect descriptor must not have a
PDT field with an indirect encoding (it must be either a resident descriptor or invalid). Oth-
erwise, the descriptor is treated as invalid, and the MC68060 takes an access error excep-
tion.

4.2.4.2 TABLE SHARING BETWEEN TASKS.

More than one task can share a pointer- or
page-level table by placing a pointer to a shared table in the address translation tables. The
upper (nonshared) tables can contain different write-protected settings, allowing different
tasks to use the memory areas with different write permissions. In Figure 4-14, two tasks
share the memory translated by the table at the pointer table level. Task A cannot write to
the shared area; task B, however, has the W-bit clear in its pointer to the shared table so
that it can read and write the shared area. Also, the shared area appears at different logical
addresses for each task. Figure 4-14 illustrates shared tables in a translation table structure.

4.2.4.3 TABLE PAGING.

The entire translation table for an active task need not be resident
in main memory. In the same way that only the working set of pages must be allocated in
main memory, only the tables that describe the resident set of pages need be available.
Placing the invalid code ($0 or $1) in the UDT field of the table descriptor that points to the
absent table(s) implements this paging of tables. When a task attempts to use an address
that an absent table would translate, the MC68060 is unable to locate a translation and takes
an access error exception when the access is needed (immediately for operand accesses
and when the instruction is needed for instructions).

The operating system determines that the invalid code in the descriptor corresponds to non-
resident tables. This determination can be facilitated by using the unused bits in the descrip-
tor to store status information concerning the invalid encoding. The MC68060 does not
interpret or modify an invalid descriptor’s fields except for the UDT field. This interpretation
allows the operating system to store system-defined information in the remaining bits. Infor-
mation typically stored includes the reason for the invalid encoding (tables paged out, region
unallocated, etc.) and possibly the disk address for nonresident tables. Figure 4-15 illus-
trates an address translation table in which only a single page table (table $15) is resident;
all other page tables are not resident.

4.2.4.4 DYNAMICALLY ALLOCATED TABLES.

Similar to paged tables, a complete trans-
lation table need not exist for an active task. The operating system can dynamically allocate
the translation table based on requests for access to particular areas.

Since it is difficult and less efficient to predict and reserve memory in advance for a task, an
operating system may choose to allocate no memory for a task until a demand is made
requesting access. This access may be to a previously unused area or for data that is no
longer resident in memory. If the access error handler adds to and updates the translation

Memory Management Unit

4-18

M68060 USER’S MANUAL

MOTOROLA

table for each demand, then the process of making such demands builds the translation
table.

For example, consider an operating system that is preparing the system to execute a previ-
ously unexecuted task that has no translation table. Rather than guessing what the memory-
usage requirements of the task are, the operating system creates a translation table for the
task that maps one page corresponding to the initial value of the program counter (PC) for
that task and one page corresponding to the initial stack pointer of the task, leaving the other
branches with invalid descriptors. All other branches of the translation table for this task
remain unallocated until the task requests access to the areas mapped by these branches.
This technique allows the operating system to construct a minimal translation table for each
task, conserving physical memory utilization and minimizing operating system overhead.

Figure 4-14. Translation Table Using Shared Tables

ROOT-LEVEL
TABLES

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =

TABLE $3B TABLE $15

TABLE $00 TABLE $00 TABLE $00

$3B

$EC $54 $04ADDRESS OFFSET =

FRAME ADDRESS*

ROOT POINTER

$15 $01

TASK A

TASK B
ROOT POINTER

W-BIT CLEAR

* PAGE FRAME ADDRESS SHARED BY TASK A AND B; WRITE PROTECTED FROM TASK A.

W-BIT SET

$00003000

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-19

4.2.5 Table Search Accesses

Table search accesses bypass the data cache. No allocation is done and no cache search
is performed. Translation tables must not be placed in copyback space, since the normal
accesses which build the translation tables would be cached and not written to external
memory, but the processor only uses tables in external memory.

During a table search, the U- and M-bits of the table descriptors are examined. For any
access, if the U-bit is not set, the processor sets it using a complete read-modify-write
sequence with the LOCK pin asserted. LOCK is asserted in this case to avoid loss of the
status in certain multiprocessor applications which share translation tables. For a write
access, if the M-bit in the page descriptor is not set, and if the page is not write-protected
(W = 0) and the access is not a supervisor violation (for user accesses, the S-bit of the page
descriptor must be clear), then the M-bit is set using a simple write. The U- and M-bits are

Figure 4-15. Translation Table with Nonresident Tables

$15 $01

TABLE $3B

$3B

SUPERVISOR
TABLE $00 TABLE $00

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = INVALID
UDT = RESIDENT

POINTER-LEVEL
TABLES

PAGE-LEVEL
TABLES

TABLE $7F

TABLE $15

TABLE $00

TABLE $1F

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = INVALID

UDT = RESIDENT

SRP

0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 X X X X X X X X X X X X X

ROOT INDEX POINTER INDEX PAGE INDEX PAGE OFFSET

LOGICAL ADDRESS

$76543210 =

$3B $15 $01TABLE ENTRY # =
$EC $54 $04ADDRESS OFFSET =

FRAME ADDRESS

NONRESIDENT
(PAGED OR

UNALLOCATED)

ROOT-LEVEL
TABLES

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

NONRESIDENT
(PAGED OR

UNALLOCATED)

Memory Management Unit

4-20

M68060 USER’S MANUAL

MOTOROLA

updated before the MC68060 allows a page to be accessed. Table 4-1 lists the page
descriptor update operations for each combination of U-bit, M-bit, write-protected, and read
or write access type.

An alternate address space access is a special case that is immediately used as a physical
address without translation. Because the MC68060 implements a merged instruction and
data space, instruction address spaces (SFC/DFC = $6 or $2) using the MOVES instruction
are converted into data references (SFC/DFC = $5 or $1). The data memory unit handles
these translated accesses as normal data accesses. If the access fails due to an ATC fault
or a physical bus error, the resulting access error stack frame contains the converted func-
tion code in the TM field for the faulted access. If the MOVES instruction is used to write
instruction address space, then to maintain cache coherency, the corresponding addresses
must be invalidated in the instruction cache. The SFC and DFC values and results for nor-
mal (TT = 0) and for MOVES (TT = 10) accesses are listed in Table 4-2.

4.2.6 Address Translation Protection

The MC68060 MMUs provide separate translation tables for supervisor and user address
spaces. The translation tables contain both mapping and protection information. Each table
and page descriptor includes a write-protect (W) bit that can be set to provide write protec-

Table 4-1. Updating U-Bit and M-Bit for Page Descriptors

Previous Status
WP Bit

Access
Type

Page Descriptor
 Update Operation

New Status
U-Bit M-Bit U-Bit M-Bit

0 0

X Read

Locked RMW Access to Set U 1 0
0 1 Locked RMW Access to Set U 1 1
1 0 None 1 0
1 1 None 1 1
0 0

0

Write

Write to Set U and M 1 1
0 1 Write to Set U 1 1
1 0 Write to Set M 1 1
1 1 None 1 1
0 0

1

None 0 0
0 1 None 0 1
1 0 None 1 0
1 1 None 1 1

NOTE: WP indicates the accumulated write-protect status.

Table 4-2. SFC and DFC Values

SFC/DFC Value
Results

TT TM

000 10 000
001 00 001
010 00 001
011 10 011
100 10 100
101 00 101
110 00 101
111 10 111

Memory Management Unit

MOTOROLA

M68060 USER’S MANUAL

4-21

tion at any level. Page descriptors also contain a supervisor-only (S) bit that can limit access
to programs operating at the supervisor privilege level.

The protection mechanisms can be used individually or in any combination to protect:

• Supervisor address space from accesses by user programs.

• User address space from accesses by other user programs.

• Supervisor and user program spaces from write accesses (implicitly supported by
designating all memory pages used for program storage as write protected).

• One or more pages of memory from write accesses.

4.2.6.1 SUPERVISOR AND USER TRANSLATION TABLES. One way of protecting
supervisor and user address spaces from unauthorized accesses is to use separate super-
visor and user translation tables. Separate trees protect supervisor programs and data from
accesses by user programs and user programs and data from access by supervisor pro-
grams. Supervisor programs may access user space through the MOVES instruction. With
a user-space SFC/DFC, the MOVES access will be translated according to the user-mode
translation tables. This translation table can be common to all tasks. Figure 4-16 illustrates
separate translation tables for supervisor accesses and for two user tasks that share the
common supervisor space. Each user task has a translation table with unique mappings for
the logical addresses in its user address space.

Figure 4-16. Translation Table Structure for Two Tasks

FOR TASK 'A'

URP FOR TASK 'A'
USER A LEVEL TABLE

TRANSLATION
TABLE FOR
TASK 'A'

•

•
•

FOR TASK 'B'

URP FOR TASK 'B'
USER A LEVEL TABLE

TRANSLATION
TABLE FOR
TASK 'B'

•

•
•

POINTER

COMMON SRP
SUPERVISOR A LEVEL TABLE

TRANSLATION
TABLE FOR
ALL SUPERVISOR
ACCESSES

•

•
•

Memory Management Unit

4-22 M68060 USER’S MANUAL MOTOROLA

4.2.6.2 SUPERVISOR ONLY. A second mechanism protects supervisor programs and data
without requiring segmenting of the logical address space into supervisor and user address
spaces. Page descriptors contain S-bits to protect areas of memory from access by user
programs. When a table search for a user access encounters an S-bit set in a page descrip-
tor, the table search ends, and an access error exception is taken immediately for data
accesses, or when the instruction is needed for instruction accesses. The S-bit can be used
to protect one or more pages from user program access. Supervisor and user mode
accesses can share descriptors by using indirect descriptors or by sharing tables. The entire
user and supervisor address spaces can be mapped together by loading the same root
pointer address into both the SRP and URP registers.

4.2.6.3 WRITE PROTECT. The MC68060 provides write protection independent of other
protection mechanisms. All table and page descriptors contain W-bits to protect areas of
memory from write accesses of any kind, including supervisor writes. On a read-only
access, if the ATC misses, and a W-bit (write-protect) is set in one or more of the table
descriptors, the table search completes normally and the ATC is loaded with the internal W-
bit set. Subsequent read-only accesses are allowed, but a subsequent write or read-modify-
write access to that address will immediately take the access error exception as a write-pro-
tect violation. The ATC entry and the related translation table entries are unchanged. On a
write or read-modify-write access, if the ATC misses and a W-bit is found set in any table
descriptor, the table search will terminate immediately and the access error exception is
taken. In this case the ATC is not loaded, and the translation table history bits (U and M) for
that descriptor are not updated. The W-bit can be used to protect the entire area of memory
defined by a branch of the translation table or protect only one or more pages from write
accesses. Figure 4-17 illustrates a memory map of the logical address space organized to
use supervisor-only and write-protect bits for protection. Figure 4-18 illustrates an example
translation table for this technique.

SUPERVISOR AND USER SPACE

THIS AREA IS SUPERVISOR ONLY, READ-ONLY

THIS AREA IS SUPERVISOR ONLY, READ/WRITE

THIS AREA IS SUPERVISOR OR USER, READ-ONLY

THIS AREA IS SUPERVISOR OR USER, READ/WRITE

Figure 4-17. Logical Address Map with Shared
Supervisor and User Address Spaces

Memory Management Unit

MOTOROLA M68060 USER’S MANUAL 4-23

Figure 4-18. Translation Table Using S-Bit and W-Bit To Set Protection

PRIVILEGE
MODE

SRP
URP

URP & SRP POINT
TO SAME A LEVEL

TABLE

W =1

W = 1

W = 0

W = 0

S = 1,W = X

THIS PAGE
SUPERVISOR ONLY,

READ ONLY

W = 0 S = 1,W = 0

POINTER-LEVEL
TABLE

PAGE-LEVEL
TABLE

W = 0 S = 0,W = 0

THIS PAGE
SUPERVISOR ONLY,

READ/WRITE

THIS PAGE
SUPERVISOR/USER,

READ ONLY

THIS PAGE
SUPERVISOR/USER,

READ/WRITE

W = X S = 0,W = X

NOTE: X = DON'T CARE

W = X

ROOT-LEVEL
TABLE

Memory Management Unit

4-24 M68060 USER’S MANUAL MOTOROLA

4.3 ADDRESS TRANSLATION CACHES
The ATCs in the MMUs are four-way set-associative caches that each store 64 logical-to-
physical address translations and associated page information similar in form to the corre-
sponding page descriptors in memory. The purpose of the ATC is to provide a fast mecha-
nism for address translation by avoiding the overhead associated with a table search of the
logical-to-physical mapping of recently used logical addresses. Figure 4-19 illustrates the
organization of the ATC.

Each ATC entry consists of a physical address, attribute information from a corresponding
page descriptor, and a tag that contains a logical address and status information. Figure 4-
20, which illustrates the entry and tag fields, is followed by field definitions listed in alphabet-
ical order.

Figure 4-19. ATC Organization

3

PAGE FRAME PAGE OFFSET

MUX

MUX

MUX

2
1

COMPARATOR
0

STATUS

PA(31–13)

PA(11–0)

PA(12)

PAGE SIZE

PAGE SIZE

116

3

1 12

1

17

29

19

9

1

4

17

0121631

HIT 3
HIT 2
HIT 1
HIT 0

HITHIT
DETECT

LINE SELECT

TAG ENTRY

29

F
C

SET 0

SET 1

SET 15

TAG ENTRY

•
•
•

•
•
•

SET
SELECT

2

Memory Management Unit

MOTOROLA M68060 USER’S MANUAL 4-25

CM—Cache Mode
This field selects the cache mode and accesses serialization as follows:

00 = Cachable, Writethrough
01 = Cachable, Copyback
10 = Noncachable, Precise
11 = Noncachable, Imprecise

Section 5 Caches provides detailed information on caching modes.

FC2—Function Code Bit 2 (Supervisor/User)
This bit contains the function code corresponding to the logical address in this entry. FC2
is set for supervisor mode accesses and cleared for user mode accesses.

G—Global
When set, this bit indicates the entry is global. Global entries are not invalidated by the
PFLUSH instruction variants that specify nonglobal entries, even when all other selection
criteria are satisfied.

Logical Address
This 16-bit field contains the most significant logical address bits for this entry. All 16 bits
of this field are used in the comparison of this entry to an incoming logical address when
the page size is 4 Kbytes. For 8-Kbytes pages, the least significant bit of this field is
ignored.

M—Modified
The modified bit is set when a valid write access to the logical address corresponding to
the entry occurs. If the M-bit is clear and a write access to this logical address is
attempted, the MC68060 suspends the access, initiates a table search to set the M-bit in
the page descriptor, and writes over the old ATC entry with the current page descriptor
information. The MMU then allows the original write access to be performed. This proce-
dure ensures that the first write operation to a page sets the M-bit in both the ATC and the
page descriptor in the translation tables, even when a previous read operation to the page
had created an entry for that page in the ATC with the M-bit clear.

Physical Address
The upper bits of the translated physical address are contained in this field.

U1 U0 CM M W PHYSICAL ADDRESS*

ENTRY

V G FC2 LOGICAL ADDRESS*

TAG

*FOR 4-KBYTE PAGE SIZES, THIS FIELD USES ADDRESS BITS 31–12; FOR 8-KBYTE PAGE SIZES, BITS 31–13.

Figure 4-20. ATC Entry and Tag Fields

Memory Management Unit

4-26 M68060 USER’S MANUAL MOTOROLA

U0, U1—User Page Attributes
These user-defined bits are not interpreted by the MC68060. U0 and U1 are echoed to
the UPA0 and UPA1 signals, respectively, if an external bus transfer results from the
access.

V—Valid
When set, this bit indicates that the entry is valid. This bit is set when the MC68060 loads
an entry. A flush operation by a PFLUSH or PFLUSHA instruction that selects this entry
clears the bit.

W—Write Protected
This write-protect bit is set when a W-bit is set in any of the descriptors encountered dur-
ing the table search for this entry. Setting a W-bit in a table descriptor write protects all
pages accessed with that descriptor. When the W-bit is set, a write access or a locked
read-modify-write access to the logical address corresponding to this entry causes an
access error exception to be taken immediately.

For each access to a memory unit, the MMU uses the four bits of the logical address located
just above the page offset (LA16–LA13 for 8K pages, LA15–LA12 for 4K pages) to index
into the ATC. The tags are compared with the remaining upper bits of the logical address
and FC2. If one of the tags matches and is valid, then the multiplexer chooses the corre-
sponding entry to produce the physical address and status information. The ATC outputs
the corresponding physical address to the cache controller, which accesses the data within
the cache and/or requests an external bus cycle. Each ATC entry contains a logical address,
a physical address, and status bits.

When the ATC does not contain the translation for a logical address, a miss occurs. The
MMU aborts the current access and searches the translation tables in memory for the cor-
rect translation. If the table search completes without any errors, the MMU stores the trans-
lation in the ATC and provides the physical address and attributes for the access. Otherwise,
if any bus errors (TEA asserted) or invalid descriptors are encountered, the ATC is not mod-
ified and an access error exception is taken. The MC68040 differs from the MC68060 in that
the MC68040 ATC contains an R-bit. An R-bit is not needed on the MC68060 because the
ATC is not updated when an access error occurs and therefore all ATC entries represent
usable translations.

There are some variations in the logical-to-physical mapping because of the two page sizes.
If the page size is 4 Kbytes, then logical address bit 12 is used to access the ATC's memory,
the tag comparators use bit 16, and physical address bit 12 is an ATC output. If the page
size is 8 Kbytes, then logical address bit 16 is used to access the ATC's memory, and phys-
ical address bit 12 is driven by logical address bit 12. It is advisable that a translation always
be disabled before changing size and that the ATCs are flushed before enabling translation
again.

The MMU is organized such that other operations always completely overlap the translation
time of the ATCs; thus, no performance penalty is associated with ATC searches. The
address translation occurs in parallel with indexing into the on-chip instruction and data
caches.

Memory Management Unit

MOTOROLA M68060 USER’S MANUAL 4-27

The MMU replaces an invalid entry when the ATC stores a new address translation. When
all entries in an ATC set are valid, the ATC selects a valid entry to be replaced, using a
pseudo round robin replacement algorithm. A 2-bit counter, which is incremented for each
ATC access, points to the entry to replace when an access misses in the ATC. ATC hit rates
are application and page-size dependent, but hit rates ranging from 98% to greater than
99% can be expected. These high rates are achieved because the ATCs are relatively large
(64 entries) and utilization efficiency is high with 8-Kbyte and 4-Kbyte page sizes.

4.4 TRANSPARENT TRANSLATION
Four independent TTRs (DTT0 and DTT1 in the data MMU, ITT0 and ITT1 in the instruction
MMU) define four blocks of logical address space to be translated to physical address
space. These logical address spaces must be at least 16 Mbytes and can overlap or be sep-
arate. Each TTR can be disabled and completely ignored. The following description
assumes that the TTRs are enabled.

When an MMU receives an address to be translated, the privilege mode and the eight high-
order bits of the address are compared to the logical address spaces defined by the two
TTRs for the corresponding MMU. The logical address space for each TTR is defined by an
S-field, logical base address field, and logical address mask field. The S-field allows match-
ing either user or supervisor accesses or both accesses. When a bit in the logical address
mask field is set, the corresponding bit of the logical base address is ignored in the address
comparison. Setting successively higher order bits in the address mask increases the size
of the physical address space.

The address for the current bus cycle and a TTR address match when the privilege mode
and logical base address bits are equal. Each TTR can specify write protection for the block.
When write protection is enabled for a block, write or locked read-modify-write accesses to
the block are aborted.

By appropriately configuring a TTR, flexible transparent mappings can be specified (refer to
4.1.3 Transparent Translation Registers for field identification). For instance, to transpar-
ently translate the user address space, the S-field is set to $0, and the logical address mask
is set to $FF in both an instruction and data TTR. To transparently translate supervisor
accesses of addresses $00000000–$0FFFFFFF with write protection, the logical base
address field is set to $0x, the logical address mask is set to $0F, the W-bit is set to one,
and the S-field is set to $1. It is not necessary for the mask field to specify a contiguous block
of memory. The inclusion of independent TTRs in both the instruction and data MMUs pro-
vides an exception to the merged instruction and data address space, allowing different
translations for instruction and operand accesses. Also, since the instruction memory unit is
only used for instruction prefetches, different instruction and data TTRs can cause PC rela-
tive operand fetches to be translated differently from instruction prefetches.

If either of the TTRs matched during an access to a memory unit (either instruction or data),
the access is transparently translated. If both registers match, the TT0 status bits are used
for the access. Transparent translation can also be implemented by the translation tables of
the translation tables if the physical addresses of pages are set equal to their logical
addresses.

Memory Management Unit

4-28 M68060 USER’S MANUAL MOTOROLA

If the paged MMU is disabled (the E-bit in the TCR register is clear) and the TTRs are dis-
abled or do not match, then the status and protection attributes are defined by the default
translation bits (DCO, DUO, DWO, DCI, and DUI) in the TCR.

4.5 ADDRESS TRANSLATION SUMMARY
If the paged MMU is enabled (the E-bit in the TCR is set), the instruction and data MMUs
process translations by first comparing the logical address and privilege mode with the
parameters of the TTRs if they are enabled. If there is a match, the MMU uses the logical
address as a physical address for the access. If there is no match, the MMU compares the
logical address and privilege mode with the tag portions of the entries in the ATC and uses
the corresponding physical address for the access when a match occurs. When neither a
TTR nor a valid ATC entry matches, the MMU initiates a table search operation to obtain the
corresponding physical address from the translation table. When a table search is required,
the processor suspends instruction execution activity and, at the end of a successful table
search, stores the address mapping in the appropriate ATC and retries the access. The
MMU creates a valid ATC entry for the logical address. If the table search encounters an
invalid descriptor, or a write-protect for a write, or is a user access and encounters a super-
visor-only flag, then the access error exception is taken whenever the access is needed
(immediately for operands and deferred for instruction fetches).

If a write or locked read-modify-write access results in an ATC hit but the page is write pro-
tected, the access is aborted, and an access error exception is taken. If the page is not write
protected and the modified bit of the ATC entry is clear, a table search proceeds to set the
modified bit in both the page descriptor in memory and in the ATC; the access is retried. The
ATC provides the address translation for the access if the modified bit of the ATC entry is
set for a write or locked read-modify-write access to an unprotected page and if none of the
TTRs (instruction or data, as appropriate) match.

Figure 4-21 illustrates a general flowchart for address translation. The top branch of the flow-
chart applies to transparent translation. The bottom three branches apply to ATC translation.

4.6 RSTI AND MDIS EFFECT ON THE MMU
The following paragraph describes how the MMU is affected by the RSTI and MDIS pins.

4.6.1 Effect of RSTI on the MMUs
When the MC68060 is reset by the assertion of the reset input signal, the E-bits of the TCR
and TTRs are cleared, disabling address translation. This reset causes logical addresses to
be passed through as physical addresses, allowing an operating system to set up the trans-
lation tables and MMU registers as required. After the translation tables and registers are
initialized, the E-bit of the TCR can be set, enabling paged address translation. While
address translation is disabled, the default TTR is used. The default TTR attribute bits are
cleared upon reset, so that immediately after assertion of RSTI the attributes will specify
write-through cachable mode, no write protection, user page attribute bits cleared, and 1/2-
cache mode disabled.

A reset of the processor does not invalidate any entries in the ATCs page size. A PFLUSH
instruction must be executed to flush all existing valid entries from the ATCs after a reset

Memory Management Unit

MOTOROLA M68060 USER’S MANUAL 4-29

operation and before translation is enabled. PFLUSH can be executed even if the E-bit is
cleared.

Figure 4-21. Address Translation Flowchart

ENTRY

EXIT

OTHERWISE

TAKE ACCESS ERROR
EXCEPTION

ABORT CYCLE

ATC HIT

OTHERWISE

ABORT CYCLE

TABLE SEARCH
OPERATION

TAKE ACCESS ERROR
EXCEPTION

EXIT

OTHERWISE

 PA ATC ENTRY [PA]
UPA ATC ENTRY [U1,U0]
 CM ATC ENTRY [CM]

➧

➧
➧

 PA LOGICAL ADDRESS
UPA TTR1* [U1,U0]
 CM TTR1* [CM]

➧
➧

➧
EXIT

 PA LOGICAL ADDRESS
UPA TTR0* [U1,U0]
 CM TTR0* [CM]

➧
➧
➧

ABORT CYCLE

(TTR1*[W] = 1) AND
(WRITE OR LOCKED

RMW ACCESS)

(TTR0*[W] = 1) AND
(WRITE OR LOCKED

RMW ACCESS)

LOGICAL ADDRESS
MATCHES WITH TTR0*OTHERWISEATC MISS

[(W = 1) AND
(WRITE OR LOCKED RMW CYCLE)

LOGICAL ADDRESS
MATCHES WITH

TTRx*

OTHERWISE

OTHERWISE(M = 0) AND
(WRITE OR LOCKED RMW CYCLE)

* Refers to either instruction or data transparent translation register.

Memory Management Unit

4-30 M68060 USER’S MANUAL MOTOROLA

4.6.2 Effect of MDIS on Address Translation
The assertion of MDIS prevents the MMUs from performing ATC searches and the execu-
tion unit from performing table searches. With address translation disabled, logical
addresses are used as physical addresses. MDIS disables the MMUs on the next internal
access boundary when asserted and enables the MMUs on the next boundary after the sig-
nal is negated. The assertion of this signal does not affect the operation of the transparent
translation registers or execution of the PFLUSH instruction.

4.7 MMU INSTRUCTIONS
The MC68060 instruction set includes three privileged instructions that perform MMU oper-
ations. The following paragraphs briefly describe each of these instructions. For detailed
descriptions of these instructions, refer to M68000PR/AD, M68000 Family Programmer's
Reference Manual.

4.7.1 MOVEC
The MOVEC instruction transfers data between an integer data register and any of the
MC68060 control and status registers. The operating system uses the MOVEC instruction
to control and monitor MMU operation by manipulating and reading the seven MMU regis-
ters.

4.7.2 PFLUSH
The PFLUSH instruction invalidates (flushes) address translation descriptors in the speci-
fied ATC(s). PFLUSHA, a version of the PFLUSH instruction, flushes all entries. The
PFLUSH instruction flushes a user or supervisor entry with a specified logical address. The
PFLUSHAN and PFLUSHN instruction variants qualify entry selection further by flushing
only entries that are nonglobal, indicated by a cleared G-bit in the entry.

4.7.3 PLPA
The PLPA instruction ensures that an ATC is loaded with a valid translation, and returns the
related physical address. If there is a hit in the ATC, and the access has write and supervisor
privilege as specified, the PLPA returns the related physical address. If the PLPA misses in
the ATC, a table search is performed. A successful table search results in the ATC being
loaded with a valid translation; a table search which encounters an invalid descriptor, write-
protection violation, bus error or a supervisor violation will cause the access error exception
to be taken. There are two variants of PLPA, which are PLPAR and PLPAW, which check
the privilege and set the table and ATC history bits as if a read or write access, respectively,
were being performed.

MOTOROLA

M68060 USER’S MANUAL

5-1

SECTION 5
CACHES

The MC68060 contains two independent 8-Kbyte, on-chip caches which can be accessed
simultaneously for instruction and operand data. The caches improve system performance
by providing low latency data to the MC68060 instruction and data pipes. This decouples
processor performance from system memory performance and increases bus availability for
alternate bus masters.

As shown in Figure 5-1, the instruction and data caches are contained in the instruction and
data memory units. The appropriate memory unit independently services instruction
prefetch from the instruction fetch unit (IFU) and data requests from the operand pipe unit
(OPU). The memory units translate the logical address in parallel with indexing into the
cache. If the translated (physical) address matches one of the cache entries, the access hits
in the cache. For a read operation, the memory unit supplies the data to the IPU instruction
buffer or the OPU, and for a write operation, the memory unit updates the cache. If the
access does not match one of the cache entries (misses in the cache) or a write access must
be written through to memory, the appropriate memory unit sends an external bus request
to the bus controller. The bus controller then reads or writes the required data. In the event
that the bus controller receives an external bus request from both memory units, the bus
controller invokes its priority scheme to choose between IPU and OPU requests.

To maintain cache coherency, the MC68060 provides automatic snoop-invalidation when it
is not the bus master. Unlike the MC68040, the MC68060 cannot not source or sink cache
data during alternate bus master accesses.

The MC68060 implements a bus snooper that maintains cache coherency by monitoring an
alternate bus master access to memory and invalidating matching cache lines during the
alternate bus master access. The MC68060 requires that memory pages shared with other
bus masters be cache inhibited or marked cachable writethrough (instead of copyback).
When a processor writes to writethrough pages, external memory is always updated through
an external bus access after updating the cache, keeping memory and cached data consis-
tent.

5.1 CACHE OPERATION

Both four-way set-associative caches have 128 sets of four 16-byte lines. Each set in both
caches has a tag (consisting of the upper 21 bits of the physical address), status information,
and four long words (128 bits) of data. The status information for the instruction cache is a
single valid bit for the line. The status information for the data cache is a valid bit and a dirty

Caches

5-2

M68060 USER’S MANUAL

MOTOROLA

bit for the line. Note that only the data cache supports dirty cache lines. Figure 5-2 illustrates
the instruction cache line format and Figure 5-3 illustrates the data cache line format.

The cache stores an entire line, providing validity on a line-by-line basis. Only burst mode
accesses that successfully read four long words can be cached.

A cache line is always in one of three states: invalid, valid, or dirty. For invalid lines, the V-
bit is clear, causing the cache line to be ignored during lookups. Valid lines have their V-bit
set and D-bit cleared, the line contains valid data consistent with memory. Dirty cache lines

Figure 5-1. MC68060 Instruction and Data Caches

TAG V LW3 LW2 LW1 LW0

WHERE:
TAG—21-BIT PHYSICAL ADDRESS TAG
V—VALID BIT FOR LINE
LWn—LONG WORD n (32-BIT) DATA ENTRY

Figure 5-2. Instruction Cache Line Format

TAG V D LW3 LW2 LW1 LW0

WHERE:
TAG—21-BIT PHYSICAL ADDRESS TAG
V—VALID BIT FOR LINE
D—DIRTY BIT FOR LINE
LWn—LONG WORD n (32-BIT) DATA ENTRY

Figure 5-3. Data Cache Line Format

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

pOEP sOEP

OC OC OC

EX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

FP
EXECUTE

EX

Caches

MOTOROLA

M68060 USER’S MANUAL

5-3

have the V-bit and D-bit set, indicating that the line has valid entries that have not been writ-
ten to memory. A cache line changes states from valid or dirty to invalid if the execution of
the CINV or CPUSH instruction explicitly invalidates the cache line or if a snooped access
hits the cache line. Both caches should be explicitly cleared using the CINVA instruction
after a hardware reset of the processor since reset does not invalidate the cache lines.

Figure 5-4 illustrates the general flow of a caching operation. The caches use the physical
addresses, and to simplify the discussion, the discussion of the translation of logical to phys-
ical addresses is omitted.

 To determine if the physical address is already allocated in the cache, the lower physical
address bits 10–4 are used to index into the cache and select 1 of 128 sets of cache lines.
Physical address bits 31–11 are used as a tag reference or to update the cache line tag

Figure 5-4. Caching Operation

TAG DATA/TAG REFERENCE INDEX

31 10

0COMPARATOR

1

3

2
HIT 3

HIT 2

HIT 1

HIT 0

HIT

TAG STATUS

TAG STATUS

SET 0

SET 1

SET 128

LINE 0

LINE 1

LINE 2

LINE 3

LW0 LW1 LW2 LW3

LW0 LW1 LW2 LW3

MUX

LOGICAL OR

LINE SELECT

DATA OR
INSTRUCTION

PHYSICAL
SET SELECT

PA10–PA4

PHYSICAL ADDRESS

TRANSLATED
PHYSICAL
ADDRESS
PA31–PA11

411 3 0

PA31-PA11

Caches

5-4

M68060 USER’S MANUAL

MOTOROLA

field. The four tags from the selected cache set are compared with the tag reference. If any
one of the four tags matches the tag reference and the tag status is either valid or dirty, then
a cache hit has occurred. A cache hit indicates that the data entries (LW3–LW0) in that
cache line contain valid data (for a read access) or is written with new data (for a write ac-
cess).

To allocate an entry into the cache, the physical address bits 10–4 are used to index into the
cache and select one of the 128 sets of cache lines. The status of each of the four cache
lines is examined. The cache control logic first looks for an invalid cache line to use for the
new entry. If no invalid cache lines are available, then one of the four cache lines must be
deallocated to host the new entry. The cache controller uses a pseudo round-robin replace-
ment algorithm to determine which cache line will be deallocated and replaced.

In the process of deallocation, a cache line that is valid and not dirty is invalidated. A dirty
cache line is placed in a push buffer (to do an external cache line write push) before being
invalidated. Once a cache line is invalidated, it is replaced with the new entry.

When a cache line is selected to host a new cache entry, the new physical address bits 31–
11 are written to the tag, the data bits LW3–LW0 are updated with the new memory data,
and the cache line status is changed to a valid state. Allocating a new entry into the cache
is always associated with a visible cache line read bus cycle externally.

Read cycles that miss in the cache allocate normally as described in the previous para-
graphs. Write cycles that miss in the cache do not allocate on a cachable writethrough page,
but do allocate on a cachable copyback page. The allocation process initiates a line read to
allocate a valid entry in the cache as previously described, and is immediately followed by
a write to the newly allocated cache line changing the cache line status to dirty. No external
write to memory occurs.

Read hits do not change the cache status of the cache line that hit and no deallocation and
replacement occurs. Write hits on cachable writethrough pages perform an external write
bus cycle; write hits on cachable copyback pages do not perform an external bus cycle.

If the instruction cache hits on an instruction fetch access, one long word is driven onto the
internal instruction data bus. If the operand data cache hits on an operand read access, 32-
bits or 64-bits (for double-precision floating-point accesses) are driven onto the internal op-
erand data bus. If the data cache hits on a write access, the data is written to the appropriate
portion of the accessed cache line. If the data access is misaligned, then the operand cache
controller breaks up the access into a sequence of smaller aligned fetches to the data cache.
Any misaligned operand reference generates at least two cache accesses. Since the entry
validity is provided only on a line basis, the entire line must be loaded from system memory
on a cache miss in order for a cache to be able to contain any valid information for that line
address.

Non-cachable addresses (i.e., those designated as cache inhibited by the memory manage-
ment unit (MMU) page descriptor or transparent translation register) bypass the cache to al-
low support for I/O, etc. Valid data cache entries that match during non-cachable address
accesses are pushed and invalidated if dirty and are invalidated if not dirty.

Caches

MOTOROLA

M68060 USER’S MANUAL

5-5

Operands of locked instructions (CAS and TAS) and operand references while the lock bit
in the bus control register is set which miss in the data cache do not allocate for reads or
writes regardless of the caching mode, and therefore will bypass the cache. Locked instruc-
tions that hit in the data cache invalidate a matching valid entry or will push and invalidate a
matching dirty entry. The locked operand access will then bypass the cache.

5.2 CACHE CONTROL REGISTER

The cache control register (CACR) is a 32-bit register which contains control information for
the instruction and data caches. A MOVEC sets all of the bits in the CACR. A hardware reset
clears the CACR, disabling both caches; however, reset does not affect the tags, state infor-
mation, and data within the caches. The CACR is illustrated in Figure 5-5.

EDC—Enable Data Cache
0 = Data cache is disabled.
1 = Data cache is enabled.

NAD—No Allocate Mode (Data Cache)
0 = Read and write misses will allocate in the data cache.
1 = Read and write misses will not allocate in the data cache.

ESB—Enable Store Buffer
0 = All writes to writethrough or cache-inhibited imprecise pages will bypass the store

buffer and generate bus cycles directly.
1 = The four entry first-in-first-out (FIFO) store buffer to the MC68060 is enabled. This

buffer is used to defer pending writes to writethrough or cache-inhibited imprecise
pages to maximize performance.

Locked write accesses and accesses to cache-inhibited precise pages always bypass the
store buffer.

DPI—Disable CPUSH Invalidation
0 = Each cache line is invalidated as it is pushed. Affects only the data cache.
1 = CPUSHed lines remain valid in the cache.

FOC—1/2 Cache Operation Mode Enable (Data Cache)
0 = The data cache operates in normal, full-cache mode.
1 = The data cache operates in 1/2-cache mode.

31 30 29 28 27 26 24 23 22 21 20 16 15 14 13 12 0

EDC NAD ESB DPI FOC 0 0 0 EBC CABC CUBC 0 0 0 0 0 EIC NAI FIC 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 5-5. Cache Control Register

Caches

5-6

M68060 USER’S MANUAL

MOTOROLA

Bits 26–24—Reserved.

EBC—Enable Branch Cache
0 = The branch cache is disabled and branch cache information is not used in the

branch prediction strategy.
1 = The on-chip branch cache is enabled. Branches are cached. A predicted branch

executes more quickly, and often can be folded onto another instruction.

CABC—Clear All Entries in the Branch Cache
This bit is always read as zero.

0 = No operation is done on the branch cache.
1 = The entire content of the MC68060 branch cache is invalidated.

CUBC—Clear All User Entries in the Branch Cache
This bit is always read as zero.

0 = No operation is performed on the branch cache.
1 = All user-mode entries in the MC68060 branch cache are invailidated; supervisor-

mode branch cache entries remain valid.

Bits 20–16—Reserved.

EIC—Enable Instruction Cache
0 = Instruction cache is disabled.
1 = Instruction cache is enabled.

NAI—No Allocate Mode (Instruction Cache)
0 = Accesses that miss in the instruction cache will allocate.
1 = The instruction cache will continue to supply instructions to the processor, but an

access that misses will not allocate.

FIC—1/2 Cache Operation Mode Enable (Instruction Cache)
0 = The instruction cache operates in normal, full-cache mode.
1 = The instruction cache operates in 1/2-cache mode.

Bits 13–0—Reserved.

5.3 CACHE MANAGEMENT

The caches are individually enabled and configured by using the MOVEC instruction to
access the CACR. A hardware reset clears the CACR, disabling both caches and removing
all configuration information; however, reset does not affect the tags, state information, and
data within the caches. The CINV instruction must clear the caches before enabling them.
The MC68060 cannot cache page descriptors.

System hardware can assert the cache disable (CDIS) signal to dynamically disable the both
the instruction and data caches, regardless of the state of the enable bits in the CACR. The
caches are disabled immediately after the current access completes. If CDIS is asserted
during the access for the first half of a misaligned operand spanning two cache lines, the

Caches

MOTOROLA

M68060 USER’S MANUAL

5-7

data cache is disabled for the second half of the operand. Internal accesses always bypass
the instruction and data caches while CDIS is recognized, and the contents of the caches
are unchanged. Disabling the caches with CDIS does not affect snoop operations. CDIS is
intended primarily for use by in-circuit emulators to allow swapping between the tags and
emulator memories.

The privileged CINV and CPUSH instructions support cache management, by selectively
pushing and/or invalidating an individual cache line, a full page, or an entire cache, for either
or both instruction and data caches. CINV allows selective invalidation of cache entries. The
CPUSH instruction will either push and invalidate all matching lines, or push and leave the
line valid, depending on the state of the DPI bit of the CACR register. (Note that only CPUSH
instructions which specify the data cache are affected by the DPI bit. Since the instruction
cache cannot have dirty data, a CPUSH specifying the instruction cache is interpreted as a
CINV instruction.) Because of the size of the caches, pushing pages or an entire cache may
incur a significant time penalty. Therefore, the CPUSH instruction may be interrupted to
avoid large interrupt latencies. The state of the CDIS signal or the cache enable or no-allo-
cate bits in the CACR does not affect the operation of CINV and CPUSH.

5.4 CACHING MODES

Every cache access has an associated caching mode from the MMU that determines how
the cache handles the access. An access can be cachable in either the writethrough or
copyback modes, or it can be cache inhibited in precise or imprecise modes. The CM field
(from the transparent translation register (TTR) or MMU translation table page descriptor)
corresponding to the logical address of the access normally specifies, on a page-by-page
basis, one of these caching modes. When the cache is enabled and memory management
is disabled, the default caching mode is writethrough.

The MMU provides the cache mode user page attributes (UPAx) and write protection for
each access. This information may come from a TTR which matches or from the MMU trans-
lation tables via the ATC. If both the TTR and the ATC match the access, the TTR provides
the information. If the paging MMU is disabled (TCR bit clear) and neither TTR matches,
then the cache mode, UPAx, and write protection will be that which is specified in the default
bits of the TCR. After reset, the defaults are writethrough cache mode, UPAx bits are zero,
and all addresses may be written.

The TTRs and MMUs allow the defaults to be overridden. In addition, some instructions and
integer unit operations perform data accesses that have an implicit caching mode associ-
ated with them. The following paragraphs discuss the different caching accesses and their
related cache modes.

5.4.1 Cachable Accesses

If the CM field of a page descriptor, TTR, or default field of the TCR indicates writethrough
or copyback, then the access is cachable. A read access to a writethrough or copyback page
is read from the cache if matching data is found. Otherwise, the data is read from memory
and used to update the cache. Since instruction cache accesses are always reads, the
selection of writethrough or copyback modes do not affect them. The following paragraphs
describe the writethrough and copyback modes in detail.

Caches

5-8

M68060 USER’S MANUAL

MOTOROLA

5.4.1.1 WRITETHROUGH MODE.

Accesses to pages specified as writethrough are always
written to the external address, although the cycle can be buffered (depending on the state
of the ESB bit in the CACR). Writes in writethrough mode are handled with a no-write-allo-
cate policy—i.e., writes that miss in the data cache are written to memory or the write buffer,
but do not cause the corresponding line in memory to be loaded into the cache. Write
accesses that hit always write through to memory and update matching cache lines. Spec-
ifying writethrough mode for the shared pages maintains cache coherency for shared mem-
ory areas in a multiprocessing environment. The cache supplies data to instruction or data
read accesses that hit in the appropriate cache; misses cause a new cache line to be loaded
into the cache, unless no-allocate mode is selected (NAD or NAI is set) via the CACR.

5.4.1.2 COPYBACK MODE.

Copyback pages are typically used for local data structures or
stacks to minimize external bus usage and reduce write access latency. Write accesses to
pages specified as copyback that hit in the data cache update the cache line and set the
corresponding D-bit without an external bus access. The dirty cached data is only written to
memory if the line is replaced due to a miss, or a writethrough or cache-inhibited access
which hits the dirty line, or a CPUSH which pushes the line. If a write access misses in the
cache, then the needed cache line is read from memory and the cache is updated if the NAD
bit in the CACR is clear. If a write miss occurs when the NAD bit is set, the cache is not
updated. When a miss causes a dirty cache line to be selected for replacement, the current
cache line data is moved to the push buffer. The replacement line is read into the cache, and
the push buffer contents are written to external memory.

5.4.2 Cache-Inhibited Accesses

Address space regions containing targets such as I/O devices and shared data structures
in multiprocessing systems can be designated cache inhibited. If a page descriptor’s CM
field indicates precise or imprecise, then the access is cache inhibited. The caching opera-
tion is identical for both cache-inhibited modes. The difference between these inhibited
cache modes has to do with recovery from an exception (either external bus error, or inter-
rupt).

If the CM field of a matching address indicates either precise or imprecise modes, the cache
controller bypasses the cache and performs an external bus transfer. The data associated
with the access is not cached internally, and the cache inhibited out (CIOUT) signal is
asserted during the bus cycle to indicate to external memory that the access should not be
cached. If the data cache line is already resident in an internal cache and the current cache
mode for that page becomes cache inhibited, either through an operating system change,
or due to a shared physical page, then the caches provide additional support for cache
coherency, by pushing the line if dirty or invalidating the line if it is valid.

If the CM field indicates precise mode, then the sequence of read and write accesses to the
page is guaranteed to match the sequence of the instruction order. In imprecise mode, the
operand pipeline allows read accesses that hit in the cache to occur before completion of a
pending write from a previous instruction. Writes will not be deferred past operand read
accesses that miss in the cache (i.e. that must be read from the bus). Precise operation
forces operand read accesses for an instruction to occur only once by preventing the instruc-
tion from being interrupted after the operand fetch stage. Otherwise, if not in precise mode

Caches

MOTOROLA

M68060 USER’S MANUAL

5-9

and an exception occurs, the instruction is aborted, and the operand may be accessed again
when the instruction is restarted. These guarantees apply only when the CM field indicates
the precise mode and the accesses are aligned. Regardless of the selected cache mode,
locked accesses are implicitly precise. Locked accesses are performed by the MC68060 for
the operands of the TAS and CAS instructions, and for updating history information in the
translation tables during table search operations.

5.4.3 Special Accesses

Several other processor operations result in accesses that have special caching character-
istics besides those with an implied cache-inhibited access in the precise mode. Exception
stack accesses and exception vector fetches that miss in the cache do not allocate cache
lines in the data cache, preventing replacement of a cache line. Cache hits by these
accesses are handled in the normal manner according to the caching mode specified for the
accessed address.

MC68060-initiated MMU table searches bypass the cache.

Accesses by the MOVE16 instruction also do not allocate cache lines in the data cache for
either read or write misses. Read hits on either valid or dirty cache lines are read from the
cache. Write hits invalidate a matching line and perform an external access. Interacting with
the cache in this manner prevents a large block move or block initialization implemented with
a MOVE16 from being cached, since the data may not be needed immediately.

5.5 CACHE PROTOCOL

The cache protocol for processor and snooped accesses is described in the following para-
graphs. In all cases, an external bus transfer will cause a cache line state to change only if
the bus transfer is marked as snoopable on the bus by asserting the SNOOP signal. The
protocols described in the following paragraphs assume that the data is cachable (i.e.,
writethrough and copyback).

5.5.1 Read Miss

A processor read that misses in the cache causes the cache controller to request a bus
transaction that reads the needed line from memory and supplies the required data to the
integer unit. The line is placed in the cache in the valid state, unless the no-allocate bit (NAD
for the data cache or NAI for the instruction cache) for the corresponding cache in the CACR
is set. Snooped external reads that miss in the cache have no affect on the cache.

5.5.2 Write Miss

The cache controller handles processor writes that miss in the cache differently for
writethrough and copyback pages. Write misses to copyback pages cause a line read from
the external bus to load the cache line (unless the corresponding no-allocate bit, NAD or
NAI, in the CACR is set). The new cache line is then updated with the write data, and the D-
bit for the line is set, leaving the cache line in the dirty state. Write misses to writethrough
pages write directly to memory without loading the corresponding cache line in the cache.
Snooped external writes that miss in the cache have no affect on the cache.

Caches

5-10

M68060 USER’S MANUAL

MOTOROLA

5.5.3 Read Hit

On a read hit, the appropriate cache provides the data to the requesting pipe unit.

In most
cases no bus transaction is performed, and the state of the cache line does not change.
However, when a writethrough read hit to a line containing dirty data occurs, the dirty line is
pushed and the cache line state changes to valid before the data is provided to the request-
ing pipe unit.

A snooped external read hit invaildates the cache line that is hit.

5.5.4 Write Hit

The cache controller handles processor writes that hit in the cache differently for
writethrough and copyback pages. For write hits to a writethrough page, the portions of the
cache line(s) corresponding to the size of the access are updated with the data, and the data
is also written to external memory. The cache line state does not change. A writethrough
access to a line containing dirty data

results in the dirty line being pushed and then witten to
memory. If the access is copyback, the cache controller updates the cache line and sets the
D-bit for the line. An external write is not performed, and the cache line state changes to, or
remains in, the dirty state.

An alternate bus master can assert the SNOOP signal for a write that it initiates, which will
invalidate any corresponding entry in the internal cache.

5.6 CACHE COHERENCY

The MC68060 provides several different mechanisms to assist in maintaining cache coher-
ency in multimaster systems. Both writethrough and copyback memory update techniques
are supported to maintain coherency between the data cache and memory.

Alternate bus master accesses can reference data that the MC68060 may have cached,
causing coherency problems if the accesses are not handled properly. The MC68060
snoops the bus during alternate bus master transfers if SNOOP is asserted. Snoop hits
invalidate the cache line in all cases (read, write, long word, word, byte) for MOVE16 and
normal accesses. Since the processor may be accessing data in its caches even when it
does not have the bus, a snoop has priority over the processor, to maintain cache coher-
ency.

The snooping protocol and caching mechanism supported by the MC68060 requires that
pages shared with any other bus master be marked cachable writethrough or cache inhib-
ited (either precise or imprecise). This procedure allows each processor to cache shared
data for read access while forcing a processor write to shared data to appear as an external
write to memory, which the other processors can snoop. If shared data is stored in copyback
pages, cache coherency is not guaranteed.

Coherency between the instruction cache and the data cache must be maintained in soft-
ware since the instruction cache does not monitor data accesses. Processor writes that
modify code segments (i.e., resulting from self-modifying code or from code executed to
load a new page from disk) access memory through the data memory unit. Because the
instruction cache does not monitor these data accesses, stale data occurs in the instruction

Caches

MOTOROLA

M68060 USER’S MANUAL

5-11

cache if the corresponding data in memory is modified. Invalidating instruction cache lines
before writing to the corresponding memory lines can prevent this coherency problem, but
only if the data cache line is in writethrough or cache-inhibited mode. A cache coherency
problem could arise if the data cache line is configured as copyback.

To fully support self-modifying code in any situation, it is imperative that a CPUSHA instruc-
tion specifying both caches be executed before the execution of the first self-modified
instruction. The CPUSHA instruction has the effect of ensuring that there is no stale data in
memory, the pipeline is flushed, and instruction prefetches are repeated and taken from
external memory.

5.7 MEMORY ACCESSES FOR CACHE MAINTENANCE

The cache controller in each memory unit performs all maintenance activities that supply
data from the cache to the instruction and operand pipeline units. The activities include
requesting accesses to the bus interface unit for reading new cache lines and writing dirty
cache lines to memory. The following paragraphs describe the memory accesses resulting
from cache fill operations (by both caches) and push operations (by the data cache). Refer
to

Section 7 Bus Operation

for detailed information about the bus cycles required.

5.7.1 Cache Filling

When a new cache line is required, the cache controller requests a line read from the bus
controller. The bus controller requests a burst read transfer by indicating a line access with
the size signals (SIZ1, SIZ0) and indicates which line in the set is being loaded with the
transfer line number signals (TLN1, TLN0). TLN1 and TLN0 are undefined for the instruction
cache. These pins indicate the appropriate line numbers for cache transfers. Table 5-1 lists
the definition of the TLNx encoding.

The responding device sequentially supplies four long words of data and can assert the
transfer cache inhibit signal (TCI) if the line is not cachable. If the responding device does
not support the burst mode, it should assert the TBI signal for the first long word of the line
access. The bus controller responds by terminating the line access and completes the
remainder of the line read as three, sequential, long-word reads.

Bus controller line accesses implicitly request burst mode operations from external memory.
To operate in the burst mode, the device or external hardware must be able to increment
the low-order address bits as described in

Section 7 Bus Operation

. The device indicates
its ability to support the burst access by acknowledging the initial long-word transfer with
transfer acknowledge (TA) asserted and TBI negated. This procedure causes the processor
to continue to drive the address and bus control signals and to latch a new data value for
the cache line at the completion of each subsequent cycle (as defined by TA) for a total of

Table 5-1. TLNx Encoding

TLN1 TLN0 Line

0 0 Zero
0 1 One
1 0 Two
1 1 Three

Caches

5-12

M68060 USER’S MANUAL

MOTOROLA

four cycles. The bursting mechanism requires addresses to wrap around so that the entire
four long words in the cache line are filled in a single operation.

When a cache line read is initiated, the first cycle attempts to load the line entry correspond-
ing to the address requested by the IFU. Subsequent transfers are for the remaining entries
in the cache line. In the case of a misaligned access in which the operand spans two line
entries, the first cycle corresponds to the line entry containing the portion of the operand at
the lower address.

Line read data is handled differently by the instruction cache and the data cache. In the
instruction cache, the first long word fetched is immediately available to the IFU. It is also
put in a line read buffer. The data for the rest of the line is also put in this buffer as it is
received. If subsequent IFU requests are sequential and within the address range in the line
read buffer, these requests hit in the instruction read buffer as data becomes available. If
subsequent IFU requests are not sequential, or are outside the address range in the read
buffer, the IFU stalls until the line is completely fetched. In the data cache, the first long word
or first two long words are available to the integer or floating-point units. The amount of data
which is available immediately depends on the size and alignment of the operation that ini-
tiated the cache miss. These long words along with the remainder of the line fetch are also
put in the data line read buffer. All subsequent data cache requests stall until the line is com-
pletely fetched. A misaligned access which spans two cache lines is handled by the data
cache unit as two separate accesses.

The assertion of TCI during the first cycle of a burst read operation inhibits loading of the
buffered line into the cache, but it does not cause the burst transfer (or pseudo-burst transfer
if TBI is asserted with TCI) to be terminated early. If TCI is asserted during the first data
transfer cycle for a read operand, the initial bypass of data for both instruction and data
accesses takes place normally, as described above in the paragraph on line reads. The line
read buffers in both caches are filled normally. The instruction cache unit will allow sequen-
tial access in the address range of the line read buffer until the last long word of the burst is
transferred from the bus controller. No additional data from the line is available from the data
cache unit. When the line fetch is completed, the contents of both line buffers are discarded.
No data is transferred to either cache memory. The assertion of TCI is ignored during the
second, third, or fourth cycle of a burst operation and is ignored for write operations.

A bus error occurring during a burst operation causes the burst operation to abort. If the bus
error occurs during the first cycle of a burst, the data from the bus is ignored. If the access
is a data cycle, exception processing proceeds immediately. If the cycle is for an instruction
prefetch, a bus error exception is not taken immediately, but will be taken if the instruction
flow subsequently causes the instruction to be attempted. Refer to

Section 7 Bus Opera-
tion

 for more information about pipeline operation.

For either cache, when a bus error occurs on the second cycle or later, the burst operation
is aborted and the line buffer is invalidated. The processor may or may not take an excep-
tion, depending on the status of the pending data request. If the bus error cycle contains a
portion of a data operand that the processor is specifically waiting for (e.g., the second half
of a misaligned operand), the processor immediately takes an exception. Otherwise, no
exception occurs, and the cache line fill is repeated the next time data within the line is

Caches

MOTOROLA

M68060 USER’S MANUAL

5-13

required. In the case of an instruction cache line fill, the unneeded data from the aborted
cycle is completely ignored.

The MC68060 supports native retry functionality using the TRA signal, as well as MC68040-
compatible retry functionality using TA and TEA. The MC68040-compatible retry functions
as the 040. For either type, on the initial access of a line read, a retry termination causes a
retry of the bus cycle. A MC68040-compatible retry signaled during the remaining cycles of
the line access (either burst or pseudo-burst) is recognized as a bus error, and the proces-
sor handles it as described in the previous paragraphs. Assertion of the TRA signal (native
retry) during the remaining cycles of the line access is ignored.

5.7.2 Cache Pushes

When the cache controller selects a dirty data cache line for replacement, memory must be
updated with the dirty data before the line is replaced. Cache pushes occur for line replace-
ment, as required for the execution of the CPUSH instruction, and when a writethrough or
cache-inhibited access hits a dirty cache line. To reduce the requested data’s latency in the
new line, the dirty line being replaced is temporarily placed in a push buffer while the new
line is fetched from memory. When a line is allocated to the push buffer, an alternate bus
master can snoop it, but the execution units cannot access it. After the bus transfer for the
new line successfully completes, the dirty cache line is copied back to memory, and the push
buffer is invalidated. If the operation to access the replacement line is abnormally terminated
or the external cache inhibit signal is asserted, the line in the push buffer is restored back
into its original position in the cache and validated.

A cache line is written to memory using a line push transfer if it is dirty. A push transfer is
distinguished from a normal write transfer by an encoding of 000 on the transfer modifier sig-
nals (TM2–TM0) for the push. Refer to

Section 8 Exception Processing

 for information on
the case of a bus error terminating a push transfer.

A dirty cache line hit by a cache-inhibited access is pushed before the external bus access
occurs.

5.8 PUSH BUFFER

The MC68060 processor implements a push buffer to reduce latency for requested new data
on a cache miss by temporarily putting displaced dirty data into the push buffer while the
new data is fetched from memory. While the dirty line resides in the push buffer, it can be
snooped by an external bus master. The push buffer contains 16 bytes of storage (one dis-
placed cache line).

If a data cache miss displaces a dirty line, the miss reference is immediately placed on the
system bus. While waiting for the response, the current contents of the data cache location
are loaded into the push buffer. Once the bus transaction (burst read) completes, the
MC68060 is able to generate the appropriate line write bus transaction to store the contents
of the push buffer into memory.

Caches

5-14

M68060 USER’S MANUAL

MOTOROLA

5.9 STORE BUFFER

The MC68060 processor provides a four-entry store buffer (16 bytes maximum). This store
buffer is a FIFO buffer that can be used for deferring pending writes to imprecise pages to
maximize performance.

For operand writes destined for the store buffer, the operand execution pipeline incurs no
stalls. The store buffer effectively provides a measure of decoupling between the pipeline’s
ability to generate writes (one write per cycle maximum) and the ability of the system bus to
retire those writes (one write per two cycles minimum). When writing to imprecise pages,
only in the event the store buffer becomes full and there is a write operation in the EX cycle
of the operand execution pipeline will a stall be incurred.

If the store buffer is not utilized (store buffer disabled or cache inhibited, precise mode), sys-
tem bus cycles are generated directly for each pipeline write operation. The instruction is
held in the EX cycle of the operand execution pipeline (OEP) until bus transfer termination
is received. This means each write operation is stalled for a minimum of five cycles in the
EX cycle when the store buffer is not utilized.

A store buffer enable bit is contained in the CACR. This bit can be set and cleared via the
MOVEC instruction. Upon reset, this bit is cleared and all writes are precise. When the bit is
set, the cache mode generated by the MMU is used. The store buffer is utilized by the cach-
able/writethrough and the cache-inhibited/imprecise modes.

The store buffer can queue data up to four bytes in width per entry. Each entry matches a
corresponding bus cycle it will generate; therefore, a misaligned long-word write to a
writethrough page will create two entries if the address is to an odd word boundary, three
entries if to an odd byte boundary—one per bus cycle.

A misaligned write access which straddles a precise/imprecise page boundary will use the
store buffer for the imprecise portion of the write.

5.10 PUSH BUFFER AND STORE BUFFER BUS OPERATION

Once either the store buffer or the push buffer has valid data, the MC68060 bus controller
uses the next available bus cycle to generate the appropriate write cycles. In the event that
during the continued instruction execution by the processor pipeline another system bus
cycle is required (e.g., data cache miss to process, address translation cache (ATC)
tablesearch to perform), the pipeline will stall until both push and store buffers are empty
before generating the required system bus transaction.

Certain instructions and exception processing which synchronize the MC68060 processor
pipeline guarantee both push and store buffers are empty before proceeding.

5.11 BRANCH CACHE

The branch cache plays a major role in achieving the performance levels of the MC68060
processor. The branch cache provides a table associating branch program counter values
with the corresponding branch target virtual addresses. The fundamental concept is to pro-

Caches

MOTOROLA

M68060 USER’S MANUAL

5-15

vide a mechanism that allows the instruction fetch pipeline to detect and change instruction
streams before the change-of-flow instructions enter an operand execution pipeline.

The branch cache implementation is made up of a five-state prediction model based on past
execution history, in addition to the current program counter/branch target virtual address
association logic.

For each instruction fetch address generated, the branch cache is examined to see if a valid
branch entry is present. If there is not a branch cache hit, the instruction fetch unit continues
to fetch instructions sequentially. If a branch cache hit occurs indicating a “taken branch”,
the instruction fetch unit discards the current instruction steam and begins fetching at the
location indicated by the branch target address. As long as the branch cache prediction is
correct, which happens a very significant percentage of the time, the change-of-flow of the
instruction stream is “invisible” to the OEP and performance is maximized. If the branch
cache prediction is wrong, the internal pipelines are “cancelled” and the correct instruction
flow is established.

The branch cache must be cleared by the operating system on all context switches (using
the MOVEC to CACR instruction), because it is virtually-mapped.

The branch cache is automatically cleared by the hardware as part of any cache invalidate
(CINV) or any cache push and invalidate (CPUSH) instruction operating on the instruction
cache.

Programs that use the TRAPF instruction extension word as a possible branch target desti-
nation intefere with proper operation of the branch target cache, resulting in an access error
exception. This condition is indicated by the BPE bit in the FSLW of the access error stack.

5.12 CACHE OPERATION SUMMARY

The instruction and data caches function independently when servicing access requests
from the integer unit. The following paragraphs discuss the operational details for the caches
and present state diagrams depicting the cache line state transitions.

5.12.1 Instruction Cache

The integer unit uses the instruction cache to store instruction prefetches as it requests
them. Instruction prefetches are normally requested from sequential memory locations
except when a change of program flow occurs (e.g., a branch taken) or when an instruction
that can modify the status register (SR) is executed, in which case the instruction pipe is
automatically flushed and refilled. The instruction cache supports a line-based protocol that
allows individual cache lines to be in either the invalid or valid states.

For instruction prefetch requests that hit in the cache, the long word containing the instruc-
tion is places onto the internal instruction data bus. When an access misses in the cache,
the cache controller requests the line containing the required data from memory and places
it in the cache. If available, an invalid line is selected and updated with the tag and data from
memory. The line state then changes from invalid to valid by setting the V-bit. If all lines in
the set are already valid, a pseudo round-robin replacement algorithm is used to select one

Caches

5-16

M68060 USER’S MANUAL

MOTOROLA

of the four cache lines replacing the tag and data contents of the line with the new line infor-
mation. Figure 5-6 illustrates the instruction-cache line state transitions resulting from pro-
cessor and snoop controller accesses. Transitions are labeled with a capital letter, indicating
the previous state, followed by a number indicating the specific case listed in Table 5-2.

Caches

MOTOROLA

M68060 USER’S MANUAL

5-17

5.12.2 Data Cache

The integer unit uses the data cache to store operand data as it requires or generates the
data. The data cache supports a line-based protocol allowing individual cache lines to be in
one of three states: invalid, valid, or dirty. To maintain coherency with memory, the data
cache supports both writethrough and copyback modes, specified by the CM field for the
page.

Table 5-2. Instruction Cache Line State Transitions

Cache Operation
Current State

Invalid Cases Valid Cases

IPU Read Miss I1 Read line from memory; supply data to
IPU and update cache; go to valid state. V1

Read line from memory; supply data to
IPU and update cache (replacing old
line); remain in current state.

IPU Read Hit I2 Not Possible. V2 Suppply data to IPU; remain in current
state.

Cache Invalidate or Push
(CINV or CPUSH) I3 No action; remain in current state. V3 No action; go to invalid state.

Alternate Master Snoop Hit
(Read or Write) I4 Not possible. V4 No action; go to invalid state.

Alternate Master Snoop Miss I5 Not possible. V5 No action; remain in current state.
TCI Asserted on Read Miss

(during the First Access) I6 Read line for memory; Supply data to
the IPU; remain in current state. V6 Not Possible.

Figure 5-6. Instruction Cache Line State Diagram

INVALID VALID

I1—IPU READ MISS

I3—CINV/CPUSH
V1—IPU READ MISS
V2—IPU READ HIT
V5—SNOOP MISS

V3—CINV/CPUSH
V4—SNOOP READ/WRITE HIT

I6—TCI ASSERTED

Caches

5-18

M68060 USER’S MANUAL

MOTOROLA

Read misses and write misses to copyback pages cause the cache controller to read a new
cache line from memory into the cache. If available, an invalid line in the selected set is
updated with the tag and data from memory. The line state then changes from invalid to valid
by setting the V-bit for the line. If all lines in the set are already valid or dirty, the pseudo
round-robin replacement algorithm is used to select one of the four lines and replace the tag
and data contents of the line with the new line information. Before replacement, dirty lines
are temporarily buffered and later copied back to memory after the new line has been read
from memory. Snoops always check both the push buffer and the cache. Figure 5-7 illus-
trates the three possible states for a data cache line, with the possible transitions caused by
either the processor or snooped accesses. Transitions are labeled with a capital letter, indi-
cating the previous state, followed by a number indicating the specific case listed in Table
5-3.

Figure 5-7. Data Cache Line State Diagrams

WI1— CPU READ MISS

WI6—CPUSH WV4—CPU WRITE HIT

WV5— CINV

WV7—SNOOP HIT
WV6— CPUSH

WI5—CINV
WI3—CPU WRITE MISS

WV3—CPU WRITE MISS
WV2—CPU READ HIT
WV1—CPU READ MISS

COPYBACK

CI6— CPUSH
CI5— CINV

CV2—CPU READ HIT
CV1—CPU READ MISS

CD3—CPU WRITE MISS
CD2— CPU READ HIT

CD4—CPU WRITE HIT

CV5—CINV

CV7—SNOOP HIT
CV6—CPUSH

CI1—CPU READ MISS

CD1—CPU
CD5—CINV

CD7—SNOOP HIT
CD6—CPUSH

CV3—CPU WRITE MISS
CV4—CPU WRITE HIT

CI3— CPU

COPYBACK CACHING MODE

WRITETHROUGH CACHING MODE

INVALID
COPYBACK

VALID

COPYBACK
DIRTY

WRITE-
THROUGH

INVALID VALID

WRITE-
THROUGH

WRITE MISS
READ MISS

Caches

5-19

M68060 USER’S MANUAL

MOTOROLA

Table 5-3. Data Cache Line State Transitions

Cache
Operation

Current State
Invalid Cases Valid Cases Dirty Cases

OPU Read
Miss (C,W)I1

Read line from memory
and update cache; Sup-
ply data to OPU; Go to
valid state.

(C,W)V1
Read new line from mem-
ory and update cache;
supply data to OPU; Re-
main in current state.

CD1

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Supply data
to OPU; Write push buffer
contents to memory; Go
to valid state.

OPU Read
Hit (C,W)I2 Not possible. (C,W)V2 Supply data to OPU; Re-

main in current state. CD2 Supply data to OPU; Re-
main in current state.

OPU Write
Miss

(Copyback
Mode)

CI3
Read line from memory
and update cache; Write
data to cache; Go to dirty
state.

CV3
Read new line from mem-
ory and update cache;
Write data to cache; Go
to dirty state.

CD3

Push dirty cache line to
push buffer; Read new
line from memory and up-
date cache; Write push
buffer contents to memo-
ry; Remain in current
state.

OPU Write
Miss

(Writethrou
gh Mode)

WI3 Write data to memory;
Remain in current state. WV3 Write data to memory;

Remain in current state.
WD
3

Write data to memory;
Remain in current state.

OPU Write
Hit (Copy-

back Mode)
CI4 Not possible. CV$ Write data to cache; Go

to dirty state. CD4 Write data to cache; Re-
main in current state.

OPU Write
Hit

(Writethrou
gh Mode)

WI4 Not possible. WV4
Write data to memory
and to cache; Remain in
current state.

WD
4

Push dirty cache line to
memory; Write data to
memory and to cache;
Go to valid state.

Cache In-
validate (C,W)I5 No action; Remain in cur-

rent state. (C,W)V5 No action; Go to invalid
state. CD5 No action (dirty data lost);

Go to invalid state.

Cache
Push (C,W)I6 No action; Remain in cur-

rent state. (C,W)V6 No action; Go to invalid
state. CD6

Push dirty cache line to
memory; Go to invalid
state or remain in current
state, depending on the
DPI bit the the CACR.

Alternate
Master

Snoop Hit
(C,W)I7 Not possible. (C,W)V7 No action; Go to invalid

state. CD7 No action (dirty data lost);
Go to invalid state.

MOTOROLA

M68060 USER’S MANUAL

6-1

SECTION 6
FLOATING-POINT UNIT

NOTE

This section does not apply to the MC68LC060 or MC68EC060.
Refer to

Appendix A MC68LC060

 and

Appendix B
MC68EC060

for details.

Floating-point math refers to numeric calculations with a variable decimal point location. It
is distinguished from integer math, which deals only with whole numbers and fixed decimal
point locations. Historically, general-purpose microprocessors have had to depend on add-
on coprocessors and accelerators such as the MC68881/MC68882 for fast floating-point
capabilities. The MC68060 features a built-in floating-point unit (FPU). Consolidating this
important function on chip speeds up the overall processing and eliminates interfacing over-
head required for external accelerators. The MC68060 FPU operates in parallel with the
integer unit. The FPU does the numeric calculation while the integer unit performs other
tasks. When used with Motorola-supplied emulation software, the M68060 software pack-
age (M68060SP), the MC68060 FPU is fully compliant with the

ANSI/IEEE 754–1985 Stan-
dard for Binary Floating-Point Arithmetic

.

The on-chip FPU (shown in Figure 6-1) consists of four functional units: FPADD, FPMUL,
FPDIV, and FPMISC. These functional units exist in parallel with the integer unit. The
decode of floating-point operations is done in the same pipeline stage as integer instruc-
tions, and operands are fetched by the same logic which feeds the integer unit. The floating-
point functional units are located in the primary pipeline of the integer unit. Only one floating-
point functional unit at a time can be active. The FPU allows no concurrency between float-
ing-point instructions to achieve a streamlined floating-point exception model.

The FPADD unit performs floating-point addition and subtraction, compare, absolute value,
negate, floating-point to integer and integer to floating-point conversions, and move-in and
move-out of floating-point data when the precision and destination are not single, double, or
extended precision. Results produced in this unit are rounded to the desired precision and
rounding mode. The FPMUL unit performs floating-point multiply and rounding to desired
precision and rounding mode. The FPDIV unit performs floating-point divide, square root,
and move-in and move-out of floating-point data when the precision and destination are sin-
gle, double, or extended precision. Results produced in the FDIV unit are rounded to the
desired precision and rounding mode. The FPMISC unit handles the remaining functions
within the FPU. This includes logic for FSAVE and FRESTORE, logic for FMOVEM, and
exception logic. The floating-point control register (FPCR) and floating-point status register
(FPSR) reside within this block. All of these functional units access the floating-point register
file, which contains the program-visible register set.

Floating-Point Unit

6-2

M68060 USER’S MANUAL

MOTOROLA

The MC68060 FPU has been optimized for the most frequently used instructions and data
types. The MC68060 fully conforms to the

ANSI/IEEE 754–1985 Standard for Binary Float-
ing-Point Arithmetic

. In addition, the MC68060 processor maintains compatibility with the
Motorola extended-precision architecture and is user object code compatible with the
MC68881/MC68882 floating-point coprocessors and the MC68040 microprocessor FPU.
With the inclusion of the M68060SP, the MC68060 provides MC68881/MC68882-compati-
ble software functions. Details on the M68060SP are provided in

Appendix C MC68060
Software Package

.

6.1 FLOATING-POINT USER PROGRAMMING MODEL

Figure 6-2 illustrates the floating-point portion of the user programming model. The following
paragraphs describe the FPU portion of the user programming model for the MC68060. The
model, which is identical to the programming model for the MC68881/MC68882 floating-
point coprocessors, consists of the following registers:

• Eight 80-Bit Floating-Point Data Registers (FP7–FP0)

• 16-Bit Floating-Point Control Register (FPCR)

• 32-Bit Floating-Point Status Register (FPSR)

• 32-Bit Floating-Point Instruction Address Register (FPIAR)

Figure 6-1. Floating-Point Unit Block Diagram

EXECUTION UNIT

INSTRUCTION
ATC

INSTRUCTION
CACHE

CONTROLLER

DATA
ATC

DATA
CACHE

CONTROLLER

OPERAND DATA BUS

INSTRUCTION
CACHE

DATA
CACHE

FLOATING-
POINT
UNIT

B
U
S

C
O
N
T
R
O
L
L
E
R

ADDRESS

DATA

INTEGER UNIT

DECODE

DATA AVAILABLE

EA
FETCH

INT
EXECUTE

INSTRUCTION FETCH UNIT

BRANCH
CACHE INSTRUCTION

FETCH

EARLY
DECODE

INSTRUCTION
BUFFER

EA
CALCULATE

DECODE

EA
FETCH

INT
EXECUTE

EA
FETCH

WRITE-BACK

CONTROL

IA
CALCULATE

EA
CALCULATE

INSTRUCTION MEMORY UNIT

DATA MEMORY UNIT

pOEP sOEP

OC OC OC

EX EX

AGAG

DS DS

DA

WB

IB

IED

IC

IAG

FP
EXECUTE

EX

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-3

6.1.1 Floating-Point Data Registers (FP7–FP0)

The floating-point data registers are analogous to the integer data registers of the M68000
family. The floating-point data registers always contain extended-precision numbers. All
external operands, regardless of the data format, are converted to extended-precision val-
ues before being used in any calculation or stored in a floating-point data register. A reset
or a restore operation of the null state sets FP7–FP0 to positive, nonsignaling not-a-num-
bers (NANs).

6.1.2 Floating-Point Control Register (FPCR)

The FPCR (see Figure 6-3) contains an exception enable (ENABLE) byte that enables or
disables traps for each class of floating-point exceptions and a mode control (MODE) byte
that sets the user-selectable modes. The user can read or write to the FPCR. Motorola
reserves bits 31–16 for future definition; these bits are always read as zero and are ignored
during write operations. The reset function or a restore operation of the null state clears the
FPCR. When cleared, this register provides the IEEE 754 standard defaults.

6.1.2.1 EXCEPTION ENABLE BYTE.

Each bit of the ENABLE byte (see Figure 6-3) corre-
sponds to a floating-point exception class. The user can separately enable traps for each
class of floating-point exceptions.

6.1.2.2 MODE CONTROL BYTE.

The MODE byte (see Figure 6-3) controls the user-
selectable rounding modes and precisions. Zeros in this byte select the IEEE 754 standard
defaults. The rounding mode field (RND) specifies how inexact results are rounded, and the
rounding precision field (PREC) selects the boundary for rounding the mantissa.

Figure 6-2. Floating-Point User Programming Model

79 63 0

FP0

FP1

FP3

FP4

FP5

FP6

FP7

FP2

FLOATING-POINT
DATA REGISTERS

FPCR
FLOATING-POINT
CONTROL
REGISTER

FPSR
FLOATING-POINT
STATUS
REGISTER

FPIAR

FLOATING-POINT
INSTRUCTION
ADDRESS
REGISTER

071531
MODE

CONTROL
EXCEPTION

ENABLE0

EXCEPTION
STATUS

CONDITION
CODE

QUOTIENT ACCRUED
EXCEPTION

071531 23

031

16 8

81624

64

Floating-Point Unit

6-4

M68060 USER’S MANUAL

MOTOROLA

The processor supports four rounding modes specified by the IEEE 754 standard. These
modes are round to nearest (RN), round toward zero (RZ), round toward plus infinity (RP),
and round toward minus infinity (RM). The RP and RM modes are directed rounding modes
that are useful in interval arithmetic. Rounding is accomplished through the intermediate
result. Single-precision results are rounded to a 24-bit boundary; double-precision results
are rounded to a 53-bit boundary; and extended-precision results are rounded to a 64-bit
boundary. Table 6-1 lists the encoding for the rounding mode. Table 6-2 lists the encoding
for rounding precision.

6.1.3 Floating-Point Status Register (FPSR)

The FPSR (see Figure 6-2) contains a floating-point condition code byte (FPCC), a quotient
byte, a floating-point exception status byte (EXC), and a floating-point accrued exception
byte (AEXC). The user can read or write to all defined bits in the FPSR. Execution of most
floating-point instructions modifies this register. The reset function or a restore operation of
the null state clears the FPSR. Floating-point conditional operations are not guaranteed if
the FPSR is written directly, because the FPSR is only valid as a result of a floating-point
instruction.

Figure 6-3.

Floating-Point Control Register Format

Table 6-1. RND Encoding

Encoding Rounding Mode

0 0 To Nearest (RN)
0 1 Toward Zero (RZ)
1 0 Toward Minus Infinity (RM)
1 1 Toward Plus Infinity (RP)

Table 6-2. PREC Encoding

Encoding Rounding Precision

0 0 Extend (X)
0 1 Single (S)
1 0 Double (D)
1 1 Undefined

15 14

EXCEPTION ENABLE

12 11 10 9 8

INEXACT DECIMAL INPUT
INEXACT OPERATION
DIVIDE-BY-ZERO
UNDERFLOW
OVERFLOW
OPERAND ERROR
SIGNALING NOT-A-NUMBER
BRANCH/SET ON UNORDERED

7 6 5 4 3 2 1 0

SNAN OPERR OVFL UNFL DZ INEX2 INEX1BSUN PREC RND 0

ROUNDING PRECISION
ROUNDING MODE

MODE CONTROL

13

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-5

6.1.3.1 FLOATING-POINT CONDITION CODE BYTE.

The FPCC byte (see Figure 6-4)
contains four condition code bits that are set at the end of all arithmetic instructions involving
the floating-point data registers. These bits are sign of mantissa (N), zero (Z), infinity (I), and
NAN. The FMOVE FPm,

<

ea

>

, FMOVEM FPm, and FMOVE FPCR instructions do not affect
the FPCC.

To aid programmers of floating-point subroutine libraries, the MC68060 implements the four
FPCC bits in hardware instead of only implementing the four IEEE conditions. An instruction
derives the IEEE conditions when needed. For example, the programmers of a complex
arithmetic multiply subroutine usually prefer to handle special data types, such as zeros,
infinities, or NANs, separately from normal data types. The floating-point condition codes
allow users to efficiently detect and handle these special values.

6.1.3.2 QUOTIENT BYTE.

The quotient byte (see Figure 6-5) provides compatibility with
the MC68881/MC68882. This byte is set at the completion of the modulo (FMOD) or IEEE
remainder (FREM) instruction, and contains the seven least significant bits of the unsigned
quotient as well as the sign of the entire quotient.

The quotient bits can be used in argument reduction for transcendentals and other functions.
For example, seven bits are more than enough to determine the quadrant of a circle in which
an operand resides. The quotient field (bits 22–16) remains set until the user clears it.

6.1.3.3 EXCEPTION STATUS BYTE.

The EXC byte (see Figure 6-6) contains a bit for each
floating-point exception that can occur during the most recent arithmetic instruction or move
operation. The start of most operations clears this byte; however, operations that cannot
generate floating-point exceptions (the FMOVEM and FMOVE control register instructions)
do not clear this byte. An exception handler can use this byte to determine which floating-
point exception(s) caused a trap.

Figure 6-4. Floating-Point Condition Code (FPSR)

Figure 6-5. Floating-Point Quotient Byte (FPSR)

N Z I NAN

31 30 29 28 27 26 25 24

NOT-A-NUMBER OR UNORDERED

INFINITY

ZERO

NEGATIVE

0

23 22 21 20 19 18 17 16

SEVEN LEAST SIGNIFICANT
BITS OF QUOTIENT

S QUOTIENT

SIGN OF QUOTIENT

Floating-Point Unit

6-6

M68060 USER’S MANUAL

MOTOROLA

6.1.3.4 ACCRUED EXCEPTION BYTE.

The AEXC byte contains five exception bits (see
Figure 6-7) that the IEEE 754 standard requires for exception-disabled operations. These
exceptions are logical combinations of the bits in the EXC byte. The AEXC byte contains the
history of all floating-point exceptions that have occurred since the user last cleared the
AEXC byte. In normal operations, only the user clears this byte by writing to the FPSR; how-
ever, a reset or a restore operation of the null state can also clear the AEXC byte.

Many users elect to disable traps for all or part of the floating-point exception classes. The
AEXC byte makes it unnecessary to poll the EXC byte after each floating-point instruction.
At the end of most operations (FMOVEM and FMOVE excluded), the bits in the EXC byte
are logically combined to form an AEXC value that is logically ORed into the existing AEXC
byte. This operation creates sticky floating-point exception bits in the AEXC byte that the
user needs to poll only once (i.e., at the end of a series of floating-point operations). A sticky
bit is one that remains set until the user clears it.

Setting or clearing the AEXC bits neither causes nor prevents an exception. The following
equations show the comparative relationship between the EXC byte and AEXC byte. Com-
paring the current value in the AEXC bit with a combination of bits in the EXC byte derives
a new value in the corresponding AEXC bit. These equations apply to setting the AEXC bits
at the end of each operation affecting the AEXC byte:

Figure 6-6. Floating-Point Exception Status Byte (FPSR)

Figure 6-7. Floating-Point Accrued Exception Byte (FPSR)

BRANCH/SET ON
UNORDERED

SNAN OPERR OVFL UNFL DZ INEX2 INEX1

15 14 13 12 11 10 9 8

INEXACT DECIMAL
INPUT

INEXACT OPERATION

DIVIDE-BY-ZERO

UNDERFLOWOVERFLOW

OPERAND ERROR

SIGNALING NOT-A-NUMBER

BSUN

IOP OVFL UNFL DZ INEX

7 6 5 4 3 2 0

INEXACT

INVALID OPERATION

DIVIDE-BY-ZERO

UNDERFLOW

OVERFLOW

RESERVED

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-7

6.1.4 Floating-Point Instruction Address Register (FPIAR)

For the subset of the floating-point instructions that generate exception traps, the FPU loads
the 32-bit FPIAR with the logical address of the instruction before executing the instruction.
Because the integer unit can execute instructions while the FPU executes floating-point
instructions, the program counter (PC) value stacked by the MC68060 in response to a float-
ing-point exception handler may not point to the offending instruction. Therefore, a floating-
point exception handler uses the address in the FPIAR to locate a floating-point instruction
that has caused an exception. Since the FMOVE to/from the FPCR, FPSR, or FPIAR and
FMOVEM instructions cannot generate floating-point exceptions, these instructions do not
modify the FPIAR. However, they can be used to read the FPIAR in an exception handler
without changing the previous value. A reset or a restore operation of the null state clears
the FPIAR.

6.2 FLOATING-POINT DATA FORMATS AND DATA TYPES

The M68000 floating-point model (MC68881, MC68882, MC68040, and MC68060) supports
the following floating-point data formats: single precision, double precision, extended
precision, and packed decimal. The M68000 floating-point model supports the following
data types: normalized, zeros, infinities, unnormalized numbers, denormalized numbers,
and NANs. The MC68060 supports part of the M68000 floating-point model in hardware.
Table 6-3 lists the floating-point data formats and data types supported by the MC68060.
Table 6-4 through Table 6-7 summarize the floating-point data formats and data types
details.

*

Data Format/Type Supported by On-Chip MC68060 FPU Hardware

†

Data Format/Type Supported by Software (M68060SP)

New AEXC Bit = Old AEXC Bit + EXC Bits

IOP = IOP + (BSUN

+

 SNAN

+

 OPERR)
OVFL = OVFL + (OVFL)
UNFL = UNFL + (UNFL • INEX2)

DZ = DZ + (DZ)
INEX = INEX + (INEX1

+

 INEX2

+

 OVFL)

Table 6-3. MC68060 FPU Data Formats and Data Types

Number Types

Data Formats
Single-

Precision
Real

Double-
Precision

Real

Extended-
Precision

Real

Packed-
Decimal

Real

Byte
Integer

Word
Integer

Long-Word
Integer

Normalized * * * † * * *
Zero * * * † * * *
Infinity * * * † — — —
NAN * * * † — — —
Denormalized † † † † — — —
Unnormalized — — † † — — —

Floating-Point Unit

6-8

M68060 USER’S MANUAL

MOTOROLA

Table 6-4. Single-Precision Real Format Summary

Data Format

Field Size In Bits

Sign (s) 1
Biased Exponent (e) 8
Fraction (f) 23
Total 32

Interpretation of Sign

Positive Fraction s = 0
Negative Fraction s = 1

Normalized Numbers

Bias of Biased Exponent +127 ($7F)
Range of Biased Exponent 0 < e < 255 ($FF)
Range of Fraction Zero or Nonzero
Fraction 1.f

Relation to Representation of Real Numbers (–1)s

×

2e–127

×

1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($00)
Bias of Biased Exponent +126 ($7E)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers (–1)s

×

2–126

×

0.f

Signed Zeros

Biased Exponent Format Minimum 0 ($00)
Fraction 0.f = 0.0

Signed Infinities

Biased Exponent Format Maximum 255 ($FF)
Fraction 0.f = 0.0

NANs

Sign Don’t Care
Biased Exponent Format Maximum 255 ($FF)
Fraction Nonzero
Representation of Fraction

Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Fraction When Created by FPU

1xxxx…xxxx
0xxxx…xxxx
xxxxx…xxxx
11111…1111

Approximate Ranges

Maximum Positive Normalized 3.4

×

1038

Minimum Positive Normalized 1.2

×

10–38

Minimum Positive Denormalized 1.4

×

 10–45

s e f
31 30 23 22 0

Floating-Point Unit

MOTOROLA

M68060 USER’S MANUAL

6-9

Table 6-5. Double-Precision Real Format Summary

Data Format

Field Size (in Bits)

Sign (s) 1
Biased Exponent (e) 11
Fraction (f) 52
Total 64

Interpretation of Sign

Positive Fraction s = 0
Negative Fraction s = 1

Normalized Numbers

Bias of Biased Exponent +1023 ($3FF)
Range of Biased Exponent 0 < e < 2047 ($7FF)
Range of Fraction Zero or Nonzero
Fraction 1.f

Relation to Representation of Real Numbers (–1)s

×

2e–1023

×

 1.f

Denormalized Numbers

Biased Exponent Format Minimum 0 ($000)
Bias of Biased Exponent +1022 ($3FE)
Range of Fraction Nonzero
Fraction 0.f

Relation to Representation of Real Numbers (–1)s

×

 2–1022

×

0.f

Signed Zeros

Biased Exponent Format Minimum 0 ($00)
Fraction (Mantissa/Significand) 0.f = 0.0

Signed Infinities

Biased Exponent Format Maximum 2047 ($7FF)
Fraction 0.f = 0.0

NANs

Sign 0 or 1
Biased Exponent Format Maximum 2047 ($7FF)
Fraction Nonzero
Representation of Fraction

Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Fraction When Created by FPU

.1xxxx…xxxx

.0xxxx…xxxx

.xxxxx…xxxx
.11111…1111

Approximate Ranges

Maximum Positive Normalized 1.8 x 10308

Minimum Positive Normalized 2.2 x 10–308

Minimum Positive Denormalized 4.9 x 10–324

s e f
63 62 52 51 0

Floating-Point Unit

6-10

M68060 USER’S MANUAL

MOTOROLA

Table 6-6. Extended-Precision Real Format Summary

Data Format

Field Size (in Bits)

Sign (s)

1

Biased Exponent (e)

15

Zero, Reserved (u)

16

Explicit Integer Bit (j)

1

Mantissa (f)

63

Total

96

Interpretation of Unused Bits

Input

Don’t Care

Output

All Zeros

Interpretation of Sign

Positive Mantissa

s = 0

Negative Mantissa

s = 1

Normalized Numbers

Bias of Biased Exponent

+16383 ($3FFF)

Range of Biased Exponent

0 < = e < 32767 ($7FFF)

Explicit Integer Bit

1

Range of Mantissa

Zero or Nonzero

Mantissa (Explicit Integer Bit and Fraction)

1.f

Relation to Representation of Real Numbers

(–1)s

× 2e–16383 × j.f

Denormalized Numbers
Biased Exponent Format Minimum 0 ($0000)

Bias of Biased Exponent +16383 ($3FFF)

Explicit Integer Bit 0

Range of Mantissa Nonzero

Mantissa (Explicit Integer Bit and Fraction) 0.f

Relation to Representation of Real Numbers (–1)s × 2–16383 × 0.f

Signed Zeros
Biased Exponent Format Minimum 0 ($0000)

Mantissa (Explicit Integer Bit and Fraction) 0.0

Signed Infinities
Biased Exponent Format Maximum 32767 ($7FFF)

Explicit Integer Bit Don’t Care

Mantissa (Explicit Integer Bit and Fraction) x.000…0000

NANs
Sign Don’t Care
Explicit Integer Bit Don’t Care
Biased Exponent Format Maximum 32767 ($7FFF)
Mantissa Nonzero
Representation of Mantissa

Nonsignaling
Signaling
Nonzero Bit Pattern Created by User
Mantissa When Created by FPU

x.1xxxx…xxxx
x.0xxxx…xxxx
x.xxxxx…xxxx

1.11111…1111

s e f
95 94 80 79 64

u
62 0

j
63

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-11

NOTE: EXP3 is generated only during an FMOVE OUT if the source is too large to be represented
with a three-digit exponent. Otherwise, it is a don’t care.

6.3 COMPUTATIONAL ACCURACY
Whenever an attempt is made to represent a real number in a binary format of finite preci-
sion, there is a possibility that the number can not be represented exactly. This is commonly
referred to as a round-off error. Furthermore, when two inexact numbers are used in a cal-
culation, the error present in each number is reflected, and possibly aggravated, in the
result. All FPU calculations use an intermediate result. When the MC68060 performs an
operation, the calculation is carried out using extended-precision inputs, and the intermedi-
ate result is calculated as if to produce infinite precision. After the calculation is complete,
the intermediate result is rounded to the selected precision and stored in the destination.

The FPCR RND and PREC encodings (see Table 6-1 and Table 6-2) provide emulation for
devices that only support single and double precision. By setting the rounding precision to
single, the MC68060 will perform all calculations as if only 24 bits of precision were available
for the result. Setting the rounding precision to double does the same to 53 bits of precision.
The execution speed of all instructions is the same whether using single- or double-precision
rounding. When using these two forced rounding precisions, the MC68060 produces the
same results as any other device that conforms to the IEEE 754 standard, but does not sup-
port extended precision. The results are the same when performing the same operation in
extended precision and storing the results in single- or double-precision format.

Approximate Ranges

Maximum Positive Normalized 1.2 × 104932

Minimum Positive Normalized 1.7 × 10–4932

Minimum Positive Denormalized 1.7 × 10–4951

Table 6-7. Packed Decimal Real Format Summary

Data Type SM SE Y Y
3-Digit

Exponent
1-Digit
Integer

16-Digit Fraction

±Infinity 0/1 1 1 1 $FFF $XXXX $00…00

±NAN 0/1 1 1 1 $FFF $XXXX Nonzero

±SNAN 0/1 1 1 1 $FFF $XXXX Nonzero

+Zero 0 0/1 X X $000–$999 $XXX0 $00…00

–Zero 1 0/1 X X $000–$999 $XXX0 $00…00
+In-Range 0 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

–In-Range 1 0/1 X X $000–$999 $XXX0–$XXX9 $00…01–$99…99

Table 6-6. Extended-Precision Real Format Summary (Continued)

SM SE Y Y EXP2 (EXP3) INTEGERX X X X X X X XEXP1 EXP0

FRAC15 FRAC8

FRAC7 FRAC0

95 64

63 32

31 0

FRAC14 FRAC13 FRAC12 FRAC11 FRAC10 FRAC9

FRAC6 FRAC5 FRAC4 FRAC3 FRAC2 FRAC1

Floating-Point Unit

6-12 M68060 USER’S MANUAL MOTOROLA

The FPU performs all floating-point internal operations in extended precision. It supports
mixed-mode arithmetic by converting single- and double-precision operands to extended-
precision values before performing the specified operation. The FPU converts all memory
data formats to extended precision before using it in a floating-point operation or loading it
in a floating-point data register. The FPU also converts extended-precision data formats in
a floating-point data register to any data format and either stores it in a memory destination
or in an integer data register.

If the external operand is a denormalized number or unnormalized number, the number is
normalized before an operation is performed. However, an external denormalized number
moved into a floating-point data register is stored as a denormalized number.

If an external operand is an unnormalized number, the number is normalized before it is
used in an arithmetic operation. If the external operand is an unnormalized zero (i.e., with a
mantissa of all zeros), the number is converted to a normalized zero before the specified
operation is performed. The regular use of unnormalized inputs not only defeats the purpose
of the IEEE 754 standard, but also can produce gross inaccuracies in the results.

6.3.1 Intermediate Result
Figure 6-8 illustrates the intermediate result format. The intermediate result’s exponent for
some dyadic operations (e.g., multiply and divide) can easily overflow or underflow the 15-
bit exponent of the destination floating-point register. To simplify the overflow and underflow
detection, intermediate results in the FPU maintain a 16-bit, twos-complement integer expo-
nent. Detection of an overflow or underflow intermediate result always converts the 16-bit
exponent into a 15-bit biased exponent before being stored in a floating-point data register.
The FPU internally maintains the 67-bit mantissa for rounding purposes. The mantissa is
always rounded to 64 bits (or less, depending on the selected rounding precision) before it
is stored in a floating-point data register.

If the destination is a floating-point data register, the result is in the extended-precision for-
mat and is rounded to the precision specified by the FPCR PREC bits before being stored.
All mantissa bits beyond the selected precision are zero. If the single- or double-precision
mode is selected, the exponent value is in the correct range even if it is stored in extended-
precision format. If the destination is a memory location, the FPCR PREC bits are ignored.
In this case, a number in the extended-precision format is taken from the source floating-
point data register, rounded to the destination format precision, and then written to memory.

Figure 6-8. Intermediate Result Format

16-BIT EXPONENT 63-BIT FRACTION

LSB OF FRACTION
GUARD BIT
ROUND BIT
STICKY BIT

INTEGER BIT
OVERFLOW BIT

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-13

Depending on the selected rounding mode or destination data format in effect, the location
of the least significant bit of the mantissa and the locations of the guard, round, and sticky
bits in the 67-bit intermediate result mantissa varies. The guard and round bits are always
calculated exactly. The sticky bit is used to create the illusion of an infinitely wide intermedi-
ate result. As the arrow illustrates in Figure 6-8, the sticky bit is the logical OR of all the bits
in the infinitely precise result to the right of the round bit. During the calculation stage of an
arithmetic operation, any nonzero bits generated that are to the right of the round bit set the
sticky bit to one. Because of the sticky bit, the rounded intermediate result for all required
IEEE arithmetic operations in the RN mode is in error by no more than one-half unit in the
last place.

6.3.2 Rounding the Result
Range control is the process of rounding the mantissa of the intermediate result to the spec-
ified precision and checking the 16-bit intermediate exponent to ensure that it is within the
representable range of the selected rounding-precision format. Range control ensures cor-
rect emulation of a device that only supports single- or double-precision arithmetic. If the
intermediate result’s exponent exceeds the range of the selected precision, the exponent
value appropriate for an underflow or overflow is stored as the result in the 16-bit extended-
precision format exponent. For example, if the data format and rounding mode is single-pre-
cision RM and the result of an arithmetic operation overflows the magnitude of the single-
precision format, the largest normalized single-precision value is stored as an extended-pre-
cision number in the destination floating-point data register (i.e., an unbiased 15-bit expo-
nent of $00FF and a mantissa of $FFFFFF0000000000). If an infinity is the appropriate
result for an underflow or overflow, the infinity value for the destination data format is stored
as the result (i.e., an exponent with the maximum value and a mantissa of zero).

Figure 6-9 illustrates the algorithm that is used to round an intermediate result to the
selected rounding precision and destination data format. If the destination is a floating-point
data register, either the selected rounding precision specified by the FPCR PREC bits or by
the instruction itself determines the rounding boundary. For example, FSADD and FDADD
specify single- and double-precision rounding regardless of the precision specified in the
FPCR PREC bits. If the destination is external memory or an integer data register, the des-
tination data format determines the rounding boundary. If the rounded result of an operation
is not exact, then the INEX2 bit is set in the FPSR EXC byte.

The three additional bits beyond the extended-precision format allow the FPU to perform all
calculations as though it were performing calculations using a float engine with infinite bit
precision. The result is always correct for the specified destination’s data format before per-
forming rounding (unless an overflow or underflow error occurs). The specified rounding
operation then produces a number that is as close as possible to the infinitely precise inter-
mediate value and still representable in the selected precision. The following tie-case exam-
ple illustrates how the 67-bit mantissa allows the FPU to meet the error bound of the IEEE
specification:

The least significant bit of the rounded result does not increment even though the guard bit
is set in the intermediate result. The IEEE 754 standard specifies that tie cases should be

Floating-Point Unit

6-14 M68060 USER’S MANUAL MOTOROLA

handled in this manner. If the destination data format is extended and there is a difference
between the infinitely precise intermediate result and the round-to-nearest result, the rela-
tive difference is 2–64 (the value of the guard bit). This error is equal to one-half of the least
significant bit’s value and is the worst case error that can be introduced when using the RN

Figure 6-9. Rounding Algorithm Flowchart

Result Integer 63-Bit Fraction Guard Round Sticky
Intermediate x xxx…x00 1 0 0

Rounded-to-Nearest x xxx…x00 0 0 0

ENTRY

INEX2 ➧ 1

GUARD ➧ 0
ROUND ➧ 0
STICKY ➧ 0

EXIT EXIT

GUARD, ROUND,
AND STICKY ARE

CHOPPED

SHIFT MANTISSA
RIGHT 1 BIT,

ADD 1 TO EXPONENT

ADD 1 TO
LSB

SELECT ROUNDING MODE

GUARD AND LSB = 1,
ROUND AND STICKY = 0

OR
GUARD = 1

ROUND OR STICKY = 1

INTERMEDIATE
RESULT

OVERFLOW = 1

GUARD, ROUND,
AND STICKY BITS = 0

EXACT RESULT

RPRMRN RZ

ADD 1 TO
LSB

INTERMEDIATE
RESULT

POS NEG POS NEG

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-15

mode. Thus, the term one-half unit in the last place correctly identifies the error bound for
this operation. This error specification is the relative error present in the result; the absolute
error bound is equal to 2exponent x 2–64. The following example illustrates the error bound
for the other rounding modes:

The difference between the infinitely precise result and the rounded result is 2–64 + 2–65 +
2–66, which is slightly less than 2–63 (the value of the least significant bit). Thus, the error
bound for this operation is not more than one unit in the last place. For all arithmetic opera-
tions, the FPU meets these error bounds, providing accurate and repeatable results.

6.4 POSTPROCESSING OPERATION
Most operations end with a postprocessing step. The FPU provides two steps in postpro-
cessing. First, the condition code bits in the FPSR are set or cleared at the end of each arith-
metic operation or move operation to a single floating-point data register. The condition code
bits are consistently set based on the result of the operation. Second, the FPU supports 32
conditional tests that allow floating-point conditional instructions to test floating-point condi-
tions in exactly the same way as the integer conditional instructions test the integer condition
codes. The combination of consistently set condition code bits and the simple programming
of conditional instructions gives the MC68060 a very flexible, high-performance method of
altering program flow based on floating-point results. While reading the summary for each
instruction, it should be assumed that an instruction performs postprocessing unless the
summary specifically states that the instruction does not do so. The following paragraphs
describe postprocessing in detail.

6.4.1 Underflow, Round, and Overflow
During the calculation of an arithmetic result, the FPU arithmetic logic unit (ALU) has more
precision and range than the 80-bit extended-precision format. However, the final result of
these operations is an extended-precision floating-point value. In some cases, an interme-
diate result becomes either smaller or larger than can be represented in extended precision.
Also, the operation can generate a larger exponent or more bits of precision than can be rep-
resented in the chosen rounding precision. For these reasons, every arithmetic instruction
ends by rounding the result and checking for overflow and underflow.

At the completion of an arithmetic operation, the intermediate result is checked to see if it is
too small to be represented as a normalized number in the selected precision. If so, the
UNFL bit is set in the FPSR EXC byte. The MC68060 then takes a nonmaskable underflow
exception and executes the M68060SP underflow exception handler, denormalizing the
result. Denormalizing a number causes a loss of accuracy, but a zero is not returned unless
a gross underflow occurs. If a number has grossly underflowed, the MC68060 takes a non-
maskable underflow exception, and the M68060SP returns a zero or the smallest denormal-
ized number with the correct sign, depending on the rounding mode in effect.

Result Integer 63-Bit Fraction Guard Round Sticky
Intermediate x xxx…x00 1 1 1

Rounded-to-Zero x xxx…x00 0 0 0

Floating-Point Unit

6-16 M68060 USER’S MANUAL MOTOROLA

If no underflow occurs, the intermediate result is rounded according to the user-selected
rounding precision and rounding mode. After rounding, the INEX2 bit of the FPSR EXC byte
is set accordingly. Finally, the magnitude of the result is checked to see if it is too large to
be represented in the current rounding precision. If so, the OVFL bit of the FPSR EXC byte
is set, and the MC68060 takes a nonmaskable overflow exception and executes the
M68060SP overflow exception handler. The M68060SP returns a correctly signed infinity or
a correctly signed largest normalized number, depending on the rounding mode in effect.

6.4.2 Conditional Testing
Unlike the integer arithmetic condition codes, an instruction either always sets the floating-
point condition codes in the same way or it does not change them at all. Therefore, the
instruction descriptions do not include floating-point condition code settings. The following
paragraphs describe how floating-point condition codes are set for all instructions that mod-
ify condition codes. Refer to 6.1.3.1 Floating-Point Condition Code Byte for a description
of the FPCC byte.

The data type of the operation’s result determines how the four condition code bits are set.
Table 6-8 lists the condition code bit setting for each data type. The MC68060 generates
only eight of the 16 possible combinations. Loading the FPCC with one of the other combi-
nations and executing a conditional instruction can produce an unexpected branch condi-
tion.

The inclusion of the NAN data type in the IEEE floating-point number system requires each
conditional test to include the NAN condition code bit in its Boolean equation. Because a
comparison of a NAN with any other data type is unordered (i.e., it is impossible to determine
if a NAN is bigger or smaller than an in-range number), the compare instruction sets the
NAN condition code bit when an unordered compare is attempted. All arithmetic instructions
also set the FPCC NAN bit if the result of an operation is a NAN. The conditional instructions
interpret the NAN condition code bit equal to one as the unordered condition.

The IEEE 754 standard defines four conditions: equal to (EQ), greater than (GT), less than
(LT), and unordered (UN). In addition, the standard only requires the generation of the con-
dition codes as a result of a floating-point compare operation. The FPU tests for these con-
ditions and 28 others at the end of any operation affecting the condition codes. For purposes
of the floating-point conditional branch, set byte on condition, decrement and branch on con-
dition, and trap on condition instructions, the MC68060 logically combines the four FPCC
bits to form 32 conditional tests. The 32 conditional tests are separated into two groups—16

Table 6-8. Floating-Point Condition Code Encoding
Data Type N Z I NAN

+ Normalized or Denormalized 0 0 0 0
– Normalized or Denormalized 1 0 0 0
+ 0 0 1 0 0
– 0 1 1 0 0
+ Infinity 0 0 1 0
– Infinity 1 0 1 0
+ NAN 0 0 0 1
– NAN 1 0 0 1

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-17

tests that set the BSUN bit in the FPSR status byte if an unordered condition is present when
the conditional test is attempted (IEEE nonaware tests), and 16 tests that do not cause the
BSUN bit in the FPSR status byte (IEEE aware tests). The set of IEEE nonaware tests is
best used:

• When porting a program from a system that does not support the IEEE 754 standard to
a conforming system, or

• When generating high-level language code that does not support IEEE floating-point
concepts (i.e., the unordered condition).

An unordered condition occurs when one or both of the operands in a floating-point compare
operation is a NAN. The inclusion of the unordered condition in floating-point branches
destroys the familiar trichotomy relationship (greater than, equal, less than) that exists for
integers. For example, the opposite of floating-point branch greater than (FBGT) is not float-
ing-point branch less than or equal (FBLE). Rather, the opposite condition is floating-point
branch not greater than (FBNGT). If the result of the previous instruction was unordered,
FBNGT is true; whereas, both FBGT and FBLE would be false since unordered fails both of
these tests. Compiler programmers should be particularly careful of the lack of trichotomy in
the floating-point branches since it is common for compilers to invert the sense of conditions.

When using the IEEE nonaware tests, the BSUN bit and the NAN bit are set in the FPSR,
unless the branch is an FBEQ or an FBNE. If the BSUN exception is enabled in the FPCR,
an exception is taken. Therefore, the IEEE nonaware program may be interrupted if an
unexpected condition occurs.

Compilers and programmers who are knowledgeable of the IEEE 754 standard should use
the IEEE aware tests in programs that contain ordered and unordered conditions. Since the
ordered or unordered attribute is explicitly included in the conditional test, the BSUN bit is
not set in the FPSR EXC byte when the unordered condition occurs.

Table 6-9 summarizes the conditional mnemonics, definitions, equations, predicates, and
whether the BSUN bit is set in the FPSR EXC byte for the 32 floating-point conditional tests.
The equation column lists the combination of FPCC bits for each test in the form of an equa-
tion.

Floating-Point Unit

6-18 M68060 USER’S MANUAL MOTOROLA

NOTE: All condition codes with an overbar indicate cleared bits; all other bits are set.

Table 6-9. Floating-Point Conditional Tests

Mnemonic Definition Equation Predicate BSUN Bit Set

IEEE Nonaware Tests

EQ Equal Z 000001 No

NE Not Equal Z 001110 No

GT Greater Than NAN + Z + N 010010 Yes

NGT Not Greater Than NAN + Z + N 011101 Yes

GE Greater Than or Equal Z + (NAN + N) 010011 Yes

NGE Not Greater Than or Equal NAN + (N • Z) 011100 Yes

LT Less Than N • (NAN + Z) 010100 Yes

NLT Not Less Than NAN + (Z + N) 011011 Yes

LE Less Than or Equal Z + (N • NAN) 010101 Yes

NLE Not Less Than or Equal NAN + (N + Z) 011010 Yes

GL Greater or Less Than NAN + Z 010110 Yes

NGL Not Greater or Less Than NAN + Z 011001 Yes

GLE Greater, Less, or Equal NAN 010111 Yes

NGLE Not Greater, Less, or Equal NAN 011000 Yes

IEEE Aware Tests

EQ Equal Z 000001 No

NE Not Equal Z 001110 No

OGT Ordered Greater Than NAN + Z + N 000010 No

ULE Unordered or Less or Equal NAN + Z + N 001101 No

OGE Ordered Greater Than or Equal Z + (NAN + N) 000011 No

ULT Unordered or Less Than NAN + (N • Z) 001100 No

OLT Ordered Less Than N • (NAN + Z) 000100 No

UGE Unordered or Greater or Equal NAN + (Z + N) 001011 No

OLE Ordered Less Than or Equal Z + (N • NAN) 000101 No

UGT Unordered or Greater Than NAN + (N + Z) 001010 No

OGL Ordered Greater or Less Than NAN + Z 000110 No

UEQ Unordered or Equal NAN + Z 001001 No

OR Ordered NAN 000111 No

UN Unordered NAN 001000 No

Miscellaneous Tests

F False False 000000 No

T True True 001111 No

SF Signaling False False 010000 Yes

ST Signaling True True 011111 Yes

SEQ Signaling Equal Z 010001 Yes

SNE Signaling Not Equal Z 011110 Yes

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-19

6.5 FLOATING-POINT EXCEPTIONS
There are two classes of floating-point-related exceptions: nonarithmetic floating-point
exceptions and arithmetic floating-point exceptions. The latter relates to the handling of
arithmetic exceptions caused by floating-point activity, and the former includes unimple-
mented floating-point instructions, unsupported data types and unimplemented effective
addresses not related to the handling of arithmetic exceptions. The floating-point format
error exception is considered an integer unit exception (see Section 8 Exception Process-
ing). The following paragraphs detail floating-point exceptions and how the MC68060 and
M68060SP handle them. Table 6-10 lists the vector numbers related to floating-point excep-
tions.

The following paragraphs detail nonarithmetic floating-point exceptions.

6.5.1 Unimplemented Floating-Point Instructions
Table 6-11 lists the floating-point instructions which are unimplemented on the MC68060.
Refer to 8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions for back-
ground material. Motorola provides the M68060SP, a software package that includes float-
ing-point emulation for the MC68060. Refer to Appendix C for software porting information.

Table 6-10. Floating-Point Exception Vectors
Vector

Number
Vector Offset

(Hex)
Frame
Format

Program
Counter

Assignment

11
55
60

02C
0DC
0F4

2
0,2,3

0

next
next
fault

Floating-Point Unimplemented Instruction Exception
Floating-Point Unimplemented Data Type
Unimplemented Effective Address Exception

48
49
50
51
52
53
54

0C0
0C4
0C8
0CC
0D0
0D4
0D8

0
0,3
0

0,3
0,3
0,3
0,3

fault
next
next
next
next
next
next

Floating-Point Branch or Set on Unordered Condition
Floating-Point Inexact Result
Floating-Point Divide-by-Zero
Floating-Point Underflow
Floating-Point Operand Error
Floating-Point Overflow
Floating-Point SNAN

For floating-point pre-instruction exceptions, the PC points to the next floating-point instruction and the stack frame of for-
mat 0 is generated. For post-instruction exceptions, the PC points to the next instruction and the frame of format 3 is gen-
erated.

Floating-Point Unit

6-20 M68060 USER’S MANUAL MOTOROLA

A floating-point unimplemented instruction exception occurs when the processor attempts
to execute an instruction word pattern that begins with $F, the processor recognizes this bit
pattern as an MC68881 instruction, the FPU is enabled via the processor control register
(PCR), but the floating-point instruction is not implemented in the MC68060 FPU. This
exception corresponds to vector number 11 and shares this vector with the floating-point dis-
abled and the unimplemented F-line exceptions. A stack frame of type 2 is generated when
this exception is reported. The stacked PC points to the logical address of the next instruc-
tion after the floating-point instruction. In addition, the effective address of the floating-point
operand in memory (if any) is calculated and stored in the effective address field.

When an unimplemented floating-point instruction is encountered, the processor waits for
all previous floating-point instructions to complete execution. Pending exceptions are taken
and handled prior to the execution of the unimplemented instruction.

The processor begins exception processing for the unimplemented floating-point instruction
by making an internal copy of the current status register (SR). The processor then enters
the supervisor mode and clears the trace bit. The processor creates a format $2 stack frame
and saves the vector offset, PC, internal copy of the SR, and calculated effective address in
the stack frame. The saved PC value is the logical address of the instruction that follows the
unimplemented floating-point instruction. The processor generates exception vector num-
ber 11 for the unimplemented F-line instruction exception vector, fetches the address of the
F-line exception handler from the processor’s exception vector table, pushes the format $2
stack frame on the system stack, and begins execution of the exception handler after
prefetching instructions to fill the pipeline.

Table 6-11. Unimplemented Instructions
Monadic Operations

FACOS FLOGN
FASIN FLOGNP1
FATAN FMOVECR

FATANH FSIN
FCOS FSINCOS

FCOSH FSINH
FETOX FTAN

FETOXM1 FTANH
FGETEXP FTENTOX
FGETMAN FTWOTOX
FLOG10 FLOG2

Dyadic Operations
FMOD FREM

FSCALE —
Miscellaneous

FTRAPcc FDBcc
FScc —

Unimplemented Effective Address

FMOVEM.X (dynamic register list) FMOVEM.L #immediate, list
 of 2 or 3 control registers

F<op>.X #immediate,FPn F<op>.P #immediate,FPn

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-21

The M68060SP emulates the unimplemented floating-point instruction in software, main-
taining user-object-code compatibility. Refer to Section 8 Exception Processingfor details
about exception vectors and format $2 stack frames.

The M68060SP uses the FPIAR to determine the instruction needing emulation and uses
the effective address field to fetch the memory operand, if any. Once the instruction has
been emulated and the result is reached, the M68060SP moves the result into the appropri-
ate destination floating-point data register or memory location and returns to normal instruc-
tion flow using the RTE instruction.

The M68060SP not only emulates the instruction, but in addition, it ensures that if any float-
ing-point arithmetic exceptional conditions arise from the emulation of the unimplemented
instruction and if the corresponding floating-point arithmetic exception is enabled, the
M68060SP restores the floating-point state frame back into the FPU in the desired excep-
tional state. This effectively imitates the action of the MC68060-implemented instructions.

6.5.2 Unsupported Floating-Point Data Types
An unsupported data type exception occurs when either operand to an implemented float-
ing-point instruction is denormalized (for single-, double-, and extended-precision oper-
ands), unnormalized (for extended-precision operands), or either the source or destination
data format is packed decimal real. These data types are unimplemented in the MC68060
and must be emulated in software.

NOTE

In this manual, all references to the unsupported floating-point
data types also refer to the unimplemented data types.

When the processor encounters an unsupported data type, the procedure taken is identical
to that used when an unimplemented instruction is taken. Unsupported data types with oper-
ands for register-to-register or memory-to-register instructions cause a pre-instruction
exception. When an unsupported data type is detected for an FMOVE OUT instruction, a
post-instruction exception is generated immediately. A format $0 (for the pre-instruction
exception caused by unnormalized or denormalized operands), format $3 (for the post-
instruction exception caused by unnormalized or denormalized operands), or format $2
(caused by packed decimal real) stack frame is saved, and vector number 55 is fetched.
Note that a denormalized value generated as the result of a floating-point operation gener-
ates a nonmaskable underflow exception instead of an unsupported data type exception.

Figure 6-10 lists the floating-point state frame fields for unsupported data type exceptions.

The M68060SP uses the FPIAR to determine the instruction that caused the exception. The
effective address field of the stack frame format $2 points to the offending source operand
in memory (if any). The effective address field of the stack frame format $3 points to the des-
tination operand in memory (if any). The M68060SP provides the routines needed to com-
plete the instruction and stores the result to the proper destination, whether it be in a floating-
point data register, integer data register, or external memory. Once the destination is written,

Floating-Point Unit

6-22 M68060 USER’S MANUAL MOTOROLA

the floating-point state frame is discarded, and normal execution is resumed by using the
RTE instruction.

The M68060SP not only emulates the instruction, but in addition, it ensures that if any float-
ing-point arithmetic exceptional conditions arise from the instruction emulation with the
unsupported data type instruction and if the corresponding floating-point arithmetic excep-
tion is enabled, the M68060SP restores the floating-point state frame back into the FPU in
the desired exceptional state. This effectively imitates the action of the MC68060-imple-
mented instructions.

6.5.3 Unimplemented Effective Address Exception
The unimplemented effective address exception corresponds to vector number 60, and
occurs when the processor attempts to execute a floating-point instruction that contains an
extended-precision or packed BCD immediate operand, or when the processor attempts to
execute an FMOVEM.L instruction with an immediate addressing mode to more than one
floating-point control register (FPCR, FPSR, FPIAR), or when the processor attempts an
FMOVEM.X instruction using a dynamic register list. The stack frame of type $0 is generated
when this exception is reported. The stacked PC points to the logical address of the instruc-
tion that caused the exception.

The M68060SP uses the stacked PC to point to the instruction that needs to be emulated.
The M68060SP emulates the instruction, increments the stacked PC and returns to the nor-
mal program flow.

The M68060SP not only emulates the instruction, but in addition, it ensures that if any float-
ing-point arithmetic exceptional conditions arise from the instruction emulation including the
unimplemented effective address and if the corresponding floating-point arithmetic excep-
tion is enabled, the M68060SP restores the floating-point state frame back into the FPU in
the desired exceptional state. This effectively imitates the action of the MC68060 imple-
mented instructions.

6.6 FLOATING-POINT ARITHMETIC EXCEPTIONS
The MC68060, with the aid of the M68060SP, provides the full MC68881 instruction set,
effective address, data type, and exception handling compatibility. From the perspective of
the user-supplied exception handlers, the information provided by the MC68060 or the
MC68060/M68060SP combination are consistent in that no distinction needs to be made by
the user handler between native MC68060 instructions and non-native instructions or data
types. This section discusses the operation of the MC68060, with the aid of the M68060SP,
and how information is perceived and used by the user-supplied exception handler. It is
assumed in this section that the M68060SP is already ported properly to the MC68060 sys-
tem.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-23

The following eight user floating-point arithmetic exceptions are listed in order of priority.

• Branch/Set on Unordered (BSUN)

• Signaling Not-A-Number (SNAN)

• Operand Error (OPERR)

• Overflow (OVFL)

• Underflow (UNFL)

• Divide-by-Zero (DZ)

• Inexact 2 (INEX2)

• Inexact 1 (INEX1)

INEX1 exception is the condition that exists when a packed decimal operand cannot be con-
verted exactly to the extended-precision format in the current rounding mode. Since the
MC68060 does not directly support packed decimal real operands, the processor never sets
INEX1 bit in the FPSR EXC byte, but provides it as a latch so that the M68060SP (emulation
software) can report the exception.

The processor takes a floating-point arithmetic exception in one of two situations. The first
situation occurs when the user program enables an arithmetic exception by setting a bit in
the FPCR ENABLE byte and the corresponding bit in the FPSR EXC byte matches the bit
in the FPCR ENABLE byte as a result of program execution. This is referred to as a
maskable exception condition since it is possible to prevent an exception from occurring. All
exceptions except the OVFL and UNFL are maskable. For the SNAN, OPERR, DZ, and
INEX enabled exception cases, some assistance from the M68060SP is required to provide
MC68881-compatible operation. Therefore, the M68060SP supervisor exception handler is
executed before handing control over to the user-supplied exception handler.

Note that a user write operation to the FPSR, which sets a bit in the EXC byte, does not
cause an exception to be taken, regardless of the value in the ENABLE byte. When a user
writes to the ENABLE byte that enables a class of floating-point exceptions, a previously
generated floating-point exception does not cause an exception to be taken, regardless of
the value in the FPSR EXC byte. The user can clear a bit in the FPCR ENABLE byte, dis-
abling each corresponding exception.

The second situation that will cause the processor to take a floating-point arithmetic excep-
tion occurs when the processor encounters an OVFL or UNFL condition. These exceptional
conditions are non-maskable, requiring the M68060SP to correct a defaulting result gener-
ated by the MC68060 that is different from the result generated by an MC68881/MC68882
executing the same code. After correcting the result, the M68060SP exception handler
hands control over to a user-defined exception handler if the exception has been enabled in
the FPCR ENABLE byte or returns to the main program flow if the exception is disabled.

As outlined in 6.5.1 Unimplemented Floating-Point Instructions to 6.5.3 Unimple-
mented Effective Address Exception, there are certain conditions such that the
M68060SP reports floating-point arithmetic exceptions as part of handling an unimple-
mented floating-point instruction, unimplemented effective address, or unsupported data

Floating-Point Unit

6-24 M68060 USER’S MANUAL MOTOROLA

type exception. The M68060SP passes control over to the user-supplied exception handler,
if needed.

A single instruction execution can generate multiple exceptions. When multiple exceptions
occur with exceptions enabled for more than one exception class, the highest priority excep-
tion is reported; the lower priority exceptions are never reported or taken. The previous list
of arithmetic floating-point exceptions is in order of priority. The bits of the ENABLE byte are
organized in decreasing priority, with bit 15 being the highest and bit 8 the lowest. The ex-
ception handler must check for multiple exceptions. The address of the exception handler is
derived from the vector number corresponding to the exception. The following is a list of mul-
tiple instruction exceptions that can occur:

• SNAN and INEX1

• OPERR and INEX2

• OPERR and INEX1

• OVFL and INEX2 and/or INEX1

• UNFL and INEX2 and/or INEX1

• INEX2 and INEX1

6.6.1 Branch/Set on Unordered (BSUN)
The BSUN exception is the result of performing an IEEE nonaware conditional test associ-
ated with the FBcc, FDBcc, FTRAPcc, and FScc instructions when an unordered condition
is present. Refer to 6.4.2 Conditional Testing for information on conditional tests.

If a floating-point exception is pending from a previous floating-point instruction, a pre-
instruction exception is taken to handle that exception. After the appropriate exception han-
dler is executed, the conditional instruction is restarted. When the previous floating-point
instruction has completed including related exception handling, the conditional predicate is
evaluated and checked for a BSUN exception before executing the conditional instruction.
A BSUN exception is generated in hardware through the FBcc instruction only. All other
BSUN-generating instructions (FDBcc, FTRAPcc, and FScc) are emulated via the
M68060SP. No M68060SP BSUN handler is provided since the processor already provides
MC68881-compatible operation when reporting a BSUN exception.

A BSUN exception occurs if the conditional predicate is one of the IEEE nonaware branches
and the FPCC NAN bit is set. When this condition is detected, the BSUN bit in the FPSR
EXC byte is set.

6.6.1.1 TRAP DISABLED RESULTS (FPCR BSUN BIT CLEARED). The floating-point
condition is evaluated as if it were the equivalent IEEE aware conditional predicate. No
exceptions are taken.

6.6.1.2 TRAP ENABLED RESULTS (FPCR BSUN BIT SET). The processor takes a float-
ing-point pre-instruction exception. A $0 stack frame is saved, and vector number 48 is gen-
erated to access the BSUN exception vector. The BSUN entry in the processor’s vector
table points to the user BSUN exception handler.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-25

The user BSUN exception handler must execute an FSAVE as its first floating-point instruc-
tion. FSAVE allows other floating-point instructions to execute without reporting the BSUN
exception again, although none of the state frame values are useful in the execution of the
user BSUN exception handler. The BSUN exception is unique in that the exception is taken
before the conditional predicate is evaluated. If the user BSUN exception handler does not
set the PC to the instruction following the one that caused BSUN exception when returning,
the exception is executed again. Therefore, it is the responsibility of the user BSUN excep-
tion handler to prevent the conditional instruction from taking the BSUN exception again.
There are four ways to prevent taking the exception again:

1. Incrementing the stored PC in the stack bypasses the conditional instruction. This
technique applies to situations where a fall-through is desired. Note that accurate cal-
culation of the PC increment requires detailed knowledge of the size of the conditional
instruction being bypassed.

2. Clearing the NAN bit prevents the exception from being taken again. However, this
alone cannot deterministically control the result’s indication (true or false) that would
be returned when the conditional instruction re-executes.

3. Disabling the BSUN bit also prevents the exception from being taken again. Like the
second method, this method cannot control the result indication (true or false) that
would be returned when the conditional instruction re-executes.

4. Examining the conditional predicate and setting the FPCC NAN bit accordingly pre-
vents the exception from being taken again. This technique gives the most control
since it is possible to predetermine the direction of program flow. Bit 7 of the F-line op-
eration word indicates where the conditional predicate is located. If bit 7 is set, the con-
ditional predicate is the lower six bits of the F-line operation word. Otherwise, the
conditional predicate is the lower six bits of the instruction word, which immediately fol-
lows the F-line operation word. Using the conditional predicate and the table for IEEE
nonaware test in 6.4.2 Conditional Testing, the condition codes can be set to return
a known result indication when the conditional instruction is re-executed.

Prior to exiting the user BSUN exception handler, the user exception handler discards the
floating-point state frame before executing the RTE to return to normal program flow.

6.6.2 Signaling Not-a-Number (SNAN)
An SNAN is used as an escape mechanism for a user-defined, non-IEEE data type. The pro-
cessor never creates an SNAN as a result of an operation; a NAN created by an operand
error exception is always a nonsignaling NAN. When an operand is an SNAN involved in an
arithmetic instruction, the SNAN bit is set in the FPSR EXC byte. Since the FMOVEM,
FMOVE FPCR, and FSAVE instructions do not modify the status bits, they cannot generate
exceptions. Therefore, these instructions are useful for manipulating SNANs.

6.6.2.1 TRAP DISABLED RESULTS (FPCR SNAN BIT CLEARED). If the destination
data format is S, D, X, or P, then the most significant bit of the fraction is set to one and the
resulting nonsignaling NAN is transferred to the destination. No bits other than the SNAN bit
of the NAN are modified, although the input NAN is truncated if necessary. If the destination
data format is B, W, or L, then the 8, 16, or 32 most significant bits of the SNAN significand,
with the SNAN bit set, are written to the destination.

Floating-Point Unit

6-26 M68060 USER’S MANUAL MOTOROLA

6.6.2.2 TRAP ENABLED RESULTS (FPCR SNAN BIT SET). If the destination is not a
floating-point data register (FMOVE OUT instruction), the destination (memory or integer
data register) is written with the same data as though the trap were disabled (FPCR SNAN
bit clear), and then control is passed to the user SNAN handler as a post-instruction excep-
tion. If desired, the user SNAN handler can overwrite the result.

For floating-point data register destinations, the source (if register-to-register instruction)
and destination floating-point data registers are not modified. Control is passed to the user
SNAN handler as a pre-instruction exception when the next floating-point instruction is
encountered. In this case, the SNAN user handler should supply the result.

The SNAN user handler must execute an FSAVE instruction as the first floating-point
instruction to prevent the FPU from taking more exceptions. The FSAVE frame generates a
floating-point frame that contains the source operand that has been converted to extended
precision. If the destination is a floating-point data register, it contains the original value. The
FPIAR points to the floating-point instruction that caused the exception. In addition, if the
offending instruction is FMOVE OUT, an integer stack frame format $3 is created as a result
of a post-instruction exception, the effective address of the destination memory operand is
provided. The effective address field is undefined if the destination is an integer data regis-
ter.

The user SNAN exception handler may discard the floating-point state frame once the han-
dler has completed. The RTE instruction must be executed to return to normal instruction
flow.

6.6.3 Operand Error
The operand error exception encompasses problems arising in a variety of operations,
including those errors not frequent or important enough to merit a specific exceptional con-
dition. Basically, an operand error occurs when an operation has no mathematical interpre-
tation for the given operands. Table 6-12 lists the possible operand errors, both native and
non-native to the MC68060, which the M68060SP unimplemented instruction exception
handler can report. When an operand error occurs, the OPERR bit is set in the FPSR EXC
byte.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-27

6.6.3.1 TRAP DISABLED RESULTS (FPCR OPERR BIT CLEARED). For an FMOVE
OUT instruction with the format S, D, or X, an OPERR is impossible. For an FMOVE OUT
instruction with the format B, W, or L, an OPERR is possible only on an integer overflow, if
the source is an infinity, or if the source is a NAN. On the integer overflow and infinity source
cases, the largest positive or negative integer that can fit in the specified destination size (B,
W, or L) is stored. On the NAN source case, the 8, 16, or 32 most significant bits of the NAN
significand is stored in the B, W, or L destination.

For FMOVE OUT with the format P (packed decimal), if the k-factor is greater than +17, the
result returned is a packed decimal string that assumes a k-factor equal to +17. For packed
decimal results where the absolute value of the exponent is greater than 999, the decimal
string is returned with the three least significant exponent digits in EXP2, EXP1, and EXP0.
The fourth digit, EXP3, is supplied in the most significant four bits of the third byte in the
string.

For all other OPERR cases, the destination is a floating-point data register. An extended-
precision non-signaling NAN is stored in the destination.

6.6.3.2 TRAP ENABLED RESULTS (FPCR OPERR BIT SET). For the FMOVE OUT
cases, the destination is written as if the trap were disabled, and then control is passed to

Table 6-12. Possible Operand Errors Exceptions
Instruction Condition Causing Operand Error

Native to MC68060
FADD [(+∞) + (–∞)] or [(–∞) + (+∞)]
FDIV (0 ÷ 0) or (∞ ÷ ∞)
FMOVE to B,W,or L Integer overflow, source is nonsignaling NAN or ±∞
FMUL One operand is 0 and other is +∞
FSQRT (Source < 0) or (−∞)
FSUB [(+∞) – (+∞)] or [(–∞) – (–∞)]

Non-Native to MC68060
FACOS Source is ±∞, > +1, or < –1
FASIN Source is ±∞, > +1, or < –1
FATANH Source is ±∞, > +1, or < –1
FCOS Source is ±∞
FGETEXP Source is ±∞
FGETMAN Source is ±∞
FLOG10 Source is < 0 or −∞
FLOG2 Source is < 0 or −∞
FLOGN Source is < 0 or −∞
FLOGNP1 Source is ≤ 1 or −∞
FMOD Floating-point data register is ±∞ or source is 0, other operand is not a NAN
FMOVE to P Source exponent > 999 (decimal) or k-factor > 17
FREM Floating-point data register is ±∞ or source is 0, other operand is not a NAN
FSCALE Source is ±∞, other operand not a NAN
FSGLDIV (0 ÷ 0) or(∞ ÷ ∞)
FSGLMUL One operand is 0, other operand is ∞
FSIN Source is ±∞
FSINCOS Source is ±∞
FTAN Source is ±∞

Floating-Point Unit

6-28 M68060 USER’S MANUAL MOTOROLA

the user OPERR handler, as a post-instruction exception. If desired, the user OPERR han-
dler can overwrite the default result.

If the destination is a floating-point data register, the register is not modified. Control is
passed to the user OPERR handler as a pre-instruction exception when the next floating-
point instruction is encountered. In this case, the user OPERR handler should generate the
appropriate result.

The OPERR user handler must execute an FSAVE instruction as the first floating-point
instruction to prevent the FPU from taking more exceptions. The FSAVE frame generates a
floating-point frame that contains the source operand that has been converted to extended
precision. If the destination is a floating-point data register, the register contains the original,
unmodified value. The FPIAR points to the floating-point instruction that caused the excep-
tion. In addition, if the offending instruction is an FMOVE OUT, an integer stack frame format
$3 is created as a result of a post-instruction exception, the effective address of the desti-
nation memory operand is provided. The effective address field is undefined if the destina-
tion is an integer data register.

The user OPERR exception handler may discard the floating-point state frame once the
handler has completed. The RTE instruction must be executed to return to normal instruc-
tion flow.

6.6.4 Overflow
An overflow exception is detected for arithmetic operations in which the destination is a float-
ing-point data register or memory when the intermediate result’s exponent is greater than or
equal to the maximum exponent value of the selected rounding precision. Overflow can only
occur when the destination is in the S-, D-, or X-precision format; all other data format over-
flows are handled as operand errors. At the end of any operation that could potentially over-
flow, the intermediate result is checked for underflow, rounded, and then checked for
overflow before it is stored to the destination. If overflow occurs, the OVFL bit is set in the
FPSR EXC byte.

Even if the intermediate result is small enough to be represented as an extended-precision
number, an overflow can occur. The intermediate result is rounded to the selected precision,
and the rounded result is stored in the extended-precision format. If the magnitude of the
intermediate result exceeds the range of the selected rounding precision format, an overflow
occurs.

The MC68060 is implemented such that when the OVFL bit is set in the FPSR EXC byte as
a result of a floating-point instruction, the processor always takes a nonmaskable overflow
exception. If the destination is a floating-point data register, then the register is not affected,
and a pre-instruction exception is reported. If the destination is a memory or integer data
register, an undefined result is stored, and a post-instruction exception is taken immediately.
Execution begins at the M68060SP OVFL exception handler to provide MC68881-compat-
ible operation. The M68060SP then determines whether or not control is passed back to nor-
mal instruction flow (the OVFL bit in the FPCR exception enable byte is cleared), to the user
OVFL handler (the OVFL bit in the FPCR exception enable byte is set), or to the user INEX
handler (the OVFL bit in the FPCR exception enable byte is cleared, but the INEX bit in the

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-29

FPCR exception enable byte is set and the corresponding INEX bit in the FPSR EXC byte
is also set).

6.6.4.1 TRAP DISABLED RESULTS (FPCR OVFL BIT CLEARED). The values defined
in Table 6-13 are stored in the destination based on the rounding mode defined in the FPCR
MODE byte. The result is rounded according to the rounding precision defined in the FPCR
MODE byte if the destination is a floating-point data register. If the destination is in memory
or an integer data register, then the rounding precision in the FPCR MODE byte is ignored,
and the given destination format defines the rounding precision. If the instruction has a
forced rounding precision (e.g., FSADD, FDMUL), the instruction defines the rounding pre-
cision.

6.6.4.2 TRAP ENABLED RESULTS (FPCR OVFL BIT SET). The result stored in the des-
tination is the same as the result stored when the trap is disabled before control is passed
to the user OVFL handler. For an FMOVE OUT instruction, the operand is stored in memory
or integer data register, and then control is passed to the user OVFL handler as a post-
instruction exception. If the destination is a floating-point data register, control is passed to
the user OVFL handler as a pre-instruction exception when the next floating-point operation
is encountered.

The user OVFL handler must execute an FSAVE instruction as the first floating-point instruc-
tion to prevent further exceptions from being taken. The address of the instruction that
causes the overflow is available to the user OVFL handler in the FPIAR. By examining the
instruction, the user OVFL handler can determine the arithmetic operation type and destina-
tion location. The exception operand is stored in the floating-point state frame (generated by
the FSAVE). When an overflow occurs, the exception operand is defined differently for var-
ious destination types:

1. FMOVE OUT instruction (memory or integer data register destination)—the value in
the exception operand is the intermediate result mantissa rounded to the destination
precision, with a 15-bit exponent biased as a normal extended-precision number. In
the case of a memory destination, the evaluated effective address of the operand is
available in the integer stack frame format $3. This allows the user OVFL handler to
overwrite the default result, if necessary, without recalculating the effective address.

2. Floating-point data register destination—the value in the exception operand is the in-
termediate result rounded to extended precision, with an exponent bias of $3FFF–
$6000 rather than $3FFF. The additional bias of –$6000 is used so that it is possible
to represent the larger exponent in a 15-bit format.

In addition to normal overflow, the exponential instructions (ex, 10x, 2x, SINH, COSH, and
FSCALE) may generate results that grossly overflow the 16-bit exponent of the internal

Table 6-13. Overflow Rounding Mode Values
Rounding Mode Result

RN Infinity, with the sign of the intermediate result.
RZ Largest magnitude number, with the sign of the intermediate result.
RM For positive overflow, largest positive number; for negative overflow, – infinity.
RP For positive overflow, + infinity; for negative overflow, largest negative number.

Floating-Point Unit

6-30 M68060 USER’S MANUAL MOTOROLA

intermediate result format. When such an overflow occurs (called a catastrophic overflow),
the exception operand exponent value is set to $0000. This value is easily distinguished
from the exception operand exponent values produced by normal overflow processing.

If an INEX2 or INEX1 exceptional condition exists and the INEX exception is enabled, it is
the responsibility of the user OVFL handler to handle the lower priority inexact exception.
The user OVFL exception handler may discard the floating-point state frame once the han-
dler has completed. The RTE instruction must be executed to return to normal instruction
flow.

6.6.5 Underflow
An underflow exception occurs when the intermediate result of an arithmetic operation is too
small to be represented as a normalized number in a floating-point data register or memory
using the selected rounding precision. An arithmetic operation is too small when the inter-
mediate result exponent is less than or equal to the minimum exponent value of the selected
rounding precision. Underflow is not detected for intermediate result exponents that are
equal to the extended-precision minimum exponent since the explicit integer part bit permits
representation of normalized numbers with a minimum extended-precision exponent.
Underflow can only occur when the destination format is single, double, or extended preci-
sion. When the destination format is byte, word, or long word, the conversion underflows to
zero without causing either an underflow or an operand error. At the end of any operation
that could potentially underflow, the intermediate result is checked for underflow, rounded,
and checked for overflow before it is stored at the destination. If an underflow occurs, the
UNFL bit is set in the FPSR EXC byte.

Even if the intermediate result is large enough to be represented as an extended-precision
number, an underflow can occur. The intermediate result is rounded to the selected preci-
sion, and the rounded result is stored in extended-precision format. If the magnitude of the
intermediate result is too small to be represented in the selected rounding precision, an
underflow occurs.

The IEEE 754 standard defines two causes of an underflow: 1) when the absolute value of
the number is less than the minimum number that can be represented by a normalized num-
ber in a specific data format, or 2) when loss of accuracy occurs while attempting to calculate
such a number (a loss of accuracy also causes an inexact exception). The IEEE 754 stan-
dard specifies that if the underflow exception is disabled, an underflow should only be sig-
naled when both of these cases are satisfied (i.e., the result is too small to be represented
with a given format and there is a loss of accuracy during calculation of the final result). If
the exception is enabled, the underflow should be signaled any time a very small result is
produced, regardless of whether accuracy is lost in calculating it.

The processor UNFL bit in the FPSR AEXC byte implements the IEEE exception disabled
definition since it is only set when a very small number is generated and accuracy has been
lost when calculating that number. The UNFL bit in the FPSR EXC byte implements the
IEEE exception enabled definition since it is set any time a tiny number is generated.

The MC68060 is implemented such that when the UNFL bit of the FPCR is set, the proces-
sor always takes an exception regardless of whether or not the user UNFL exception han-

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-31

dler is enabled. If the destination is a floating-point data register, the register is not affected,
and a pre-instruction exception is reported. If the destination is a memory or integer data
register, then an undefined result is stored, and a post-instruction exception is taken imme-
diately. In addition, the processor incorrectly reports an underflow exception if the result of
a floating-point multiply is a normalized number with an exponent of $0000. Exception pro-
cessing begins with the M68060SP UNFL exception handler to provide MC68881-compati-
ble operation. The M68060SP then determines whether or not control is passed back to
normal instruction flow (the OVFL bit in the FPCR exception enable byte is cleared), to the
user OVFL handler (the OVFL bit in the FPCR exception enable byte is set) or the user INEX
handler (the OVFL bit in the FPCR exception enable byte is cleared, but the INEX bit in the
FPCR exception enable byte is set and the corresponding INEX bit in the FPSR EXC byte
is also set).

6.6.5.1 TRAP DISABLED RESULTS (FPCR UNFL BIT CLEARED). The result that is
stored in the destination is either a denormalized number or zero. Denormalization is accom-
plished by shifting the mantissa of the intermediate result to the right while incrementing the
exponent until it is equal to the denormalized exponent value for the destination format. The
denormalized intermediate result is rounded to the selected rounding precision or destina-
tion format.

If, in the process of denormalizing the intermediate result, all of the significant bits are shifted
off to the right, the selected rounding mode determines the value to be stored at the desti-
nation, as shown in Table 6-14.

6.6.5.2 TRAP ENABLED RESULTS (FPCR UNFL BIT SET). The result stored in the des-
tination is the same as the result stored when traps are disabled. For an FMOVE OUT, the
operand is stored in the destination memory or integer data register before control is passed
to the user UNFL handler as a post-instruction exception. Otherwise, if the destination is a
floating-point data register, control is passed to the user UNFL handler as a pre-instruction
exception when the next floating-point instruction is encountered.

Table 6-14. Underflow Rounding Mode Values
Rounding Mode Result

RN Zero, with the sign of the intermediate result.
RZ Zero, with the sign of the intermediate result.

RM For positive overflow, + zero; for negative underflow, smallest denormalized neg-
ative number.

RP For positive overflow, smallest denormalized positive number; for negative under-
flow, –zero.

Floating-Point Unit

6-32 M68060 USER’S MANUAL MOTOROLA

The user UNFL handler must execute an FSAVE instruction as the first floating-point instruc-
tion to prevent further exceptions from reporting. The address of the instruction that causes
the overflow is available to the user UNFL handler in the FPIAR. By examining the instruc-
tion, the user UNFL handler can determine the arithmetic operation type and destination
location. The exception operand is stored in the floating-point state frame (generated by the
FSAVE). When an underflow occurs, the exception operand is defined differently for various
destination types:

1. FMOVE OUT (memory or integer data register destination)—the value in the excep-
tion operand is the intermediate result mantissa rounded to the destination precision,
with a 15-bit exponent biased as a normal extended-precision number. In the case of
a memory destination, the evaluated effective address of the operand is available in
the stack frame format $3. This allows the user UNFL handler to overwrite the default
result, if necessary, without recalculating the effective address.

2. Floating-point data register destination—the value in the exception operand is the in-
termediate result mantissa rounded to extended precision, with an exponent bias of
$3FFF + $6000 rather than $3FFF. The additional bias of +$6000 is used so that it is
possible to represent the smaller exponent in a 15-bit format.

In addition to normal underflow, the exponential instructions (ex, 10x, 2x, SINH, COSH, and
FSCALE) may generate results that grossly underflow the 16-bit exponent of the internal in-
termediate format. When such an underflow occurs (called a catastrophic underflow), the
exception operand exponent value is set to $0000. This value is easily distinguished from
the exception operand exponent values produced by normal underflow processing.

If an INEX2 or INEX1 exceptional condition exists and the user INEX exception is enabled,
it is the responsibility of the user UNFL exception handler to handle this lower priority inexact
exception. The user UNFL exception handler may discard the floating-point state frame
once the handler has completed. The RTE instruction must be executed to return to normal
instruction flow.

6.6.6 Divide-by-Zero
This exception happens when a zero divisor occurs for a divide instruction or when a tran-
scendental function is asymptotic with infinity as the asymptote. Table 6-15 lists the instruc-
tions that can cause the divide-by-zero exception. Note that only the FDIV and FSGLDIV
instructions are native to the MC68060. The other conditions occur only if the M68060SP is
used. When a divide-by-zero is detected, the DZ bit is set in the FPSR EXC byte. The divide-
by-zero exception only has maskable exceptional conditions. An exception is taken only if
the DZ bit is set in FPSR EXC byte and the corresponding bit in the FPCR exception enable
byte is set.

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-33

6.6.6.1 TRAP DISABLED RESULTS (FPCR DZ BIT CLEARED). The destination floating-
point data register is written with a result that is dependent on the instruction that caused the
DZ exception.

1. For the FDIV and FSGLDIV instructions, an infinity with the sign set to the exclusive
OR of the signs of the input operands is stored in the destination.

2. For the FLOGx instructions, a –∞ is stored in the destination.

3. For the FATANH instruction, a +∞ is stored in the destination if the source operand is
a –1, otherwise, a –∞ is stored in the destination if the source operand is +1.

6.6.6.2 TRAP ENABLED RESULTS (FPCR DZ BIT SET). The destination floating-point
data register is not modified. Control is passed to the user DZ handler as a pre-instruction
exception when the next floating-point instruction is encountered. The user DZ handler must
generate a result to store in the destination.

The user DZ handler must execute an FSAVE instruction as the first floating-point instruction
to prevent further exceptions from reporting. The address of the instruction that causes the
overflow is available to the user DZ handler in the FPIAR. By examining the instruction, the
user DZ handler can determine the arithmetic operation type and destination location. The
exception operand is stored in the floating-point state frame (generated by the FSAVE). The
exception operand contains the source operand converted to the extended-precision format.
When the user DZ exception handler has completed, the floating-point frame may be dis-
carded. The RTE instruction must be executed to return to normal instruction flow.

6.6.7 Inexact Result
The processor provides two inexact bits in the FPSR EXC byte to help distinguish between
inexact results generated by emulated decimal input (INEX1 exceptions) and other inexact
results (INEX2 exceptions). These two bits are useful in instructions where both types of
inexact results can occur (e.g., FDIV.P #7E-1,FP3). In this case, the packed decimal to
extended-precision conversion of the immediate source operand causes an inexact error to
occur that is signaled as INEX1 exception. Furthermore, the subsequent divide could also
produce an inexact result and cause INEX2 to be set in the FPCR EXC byte. Note that only
one inexact exception vector number is generated by the processor. If either of the two inex-
act exceptions is enabled, the processor fetches the inexact exception vector, and the user
INEX exception handler is initiated. INEX refers to both exceptions in the following para-
graphs.

Table 6-15. Possible Divide-by-Zero Exceptions
Instruction Operand Value

FDIV Source operand = 0 and floating-point data register is not a NAN, ∞, or zero
FLOG10 Source operand = 0
FLOG2 Source operand = 0
FLOGN Source operand = 0
FTAN Source operand is an odd multiple of ±π ÷ 2

FSGLDIV Source operand = 0 and floating-point data register is not a NAN, ∞, or zero
FATANH Source operand = ±1

FLOGNP1 Source operand = –1

Floating-Point Unit

6-34 M68060 USER’S MANUAL MOTOROLA

The INEX2 exception is the condition that exists when any operation, except the input of a
packed decimal number, creates a floating-point intermediate result whose infinitely precise
mantissa has too many significant bits to be represented exactly in the selected rounding
precision or in the destination data format. If this condition occurs, the INEX2 bit is set in the
FPSR EXC byte, and the infinitely precise result is rounded. Table 6-16 lists these rounding
mode values.

The INEX1 and INEX2 exceptions are always maskable. Therefore, any INEX exception
goes directly to the user INEX exception handler. When an INEX2 or INEX1 bit in the FPSR
EXC byte is set, the rounded result (listed in Table 6-16), is written to the destination. The
FPCR MODE bits determine the rounding mode. The PREC bits in the FPCR determine the
rounding precision if the destination is a floating-point data register; otherwise, if the desti-
nation is memory or an integer data register, the destination format determines the rounding
precision. If one of the instructions has a forced precision, the instruction determines the
rounding precision. If the INEX2 or INEX1 condition exists and if the corresponding INEX bit
in the FPCR exception enable byte is set, then the user INEX exception handler is taken.

6.6.7.1 TRAP DISABLED RESULTS (FPCR INEX1 BIT AND INEX2 BIT CLEARED. The
result is rounded and then written to the destination.

6.6.7.2 TRAP ENABLED RESULTS (EITHER FPCR INEX1 BIT OR INEX2 BIT SET).
The result is rounded and then written to the destination as in the trap disabled case. For an
FMOVE OUT instruction, control is passed to the user INEX handler as a post-instruction
exception. Otherwise, for other floating-point instructions that have floating-point data regis-
ter destinations, control is passed to the user INEX handler as a pre-instruction exception
when the next floating-point instruction is encountered.

The user INEX exception handler must execute an FSAVE as its first floating-point instruc-
tion. At this point, the destination contains the rounding mode values as listed in Table 6-16,
and the user INEX exception handler can choose to modify these values. If the inexact con-
version is the only exception that occurs during the execution of an instruction, the value of
the exception operand is invalid. If multiple exceptions occur during an instruction, the
exception operand value is related to a higher priority exception. The FPIAR points to the
instruction that caused the exception. If the instruction is an FMOVE OUT, the integer stack
frame format $3 contains the effective address of the destination memory operand. If the
destination is an integer data register, the effective address field is undefined.

Table 6-16. Rounding Mode Values
Rounding Mode Result

RN
The representable value nearest to the infinitely precise intermediate value is the
result. If the two nearest representable values are equally near (a tie), then the one
with the least significant bit equal to zero (even) is the result. This is sometimes
referred to as “round to nearest, even.”

RZ
The result is the value closest to and no greater in magnitude than the infinitely
precise intermediate result. This is sometimes referred to as the “chop mode,”
since the effect is to clear the bits to the right of the rounding point.

RM The result is the value closest to and no greater than the infinitely precise interme-
diate result (possibly minus infinity).

RP The result is the value closest to and no less than the infinitely precise intermedi-
ate result (possibly plus infinity).

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-35

When the user INEX exception handler has completed, the floating-point frame may be dis-
carded. The RTE instruction must be executed to return to normal instruction flow.

NOTE

The IEEE 754 standard specifies that inexactness should be sig-
naled on overflow as well as for rounding. The processor imple-
ments this via the INEX bit in the FPSR AEXC byte. However,
the standard also indicates that the inexact exception should be
taken if an overflow occurs with the OVFL bit disabled and the
INEX bit enabled in the FPSR AEXC byte. Therefore, the pro-
cessor takes the inexact exception if this combination of condi-
tions occurs, even though the INEX1 or INEX2 bit may not be set
in the FPSR EXC byte. In this case, the INEX bit is set in the
FPSR AEXC byte, and the OVFL bit is set in both the FPSR EXC
and AEXC bytes.

6.7 FLOATING-POINT STATE FRAMES
All floating-point arithmetic exception handlers must have FSAVE as the first floating-point
instruction; any other floating-point instruction causes another exception to be reported.
Once the FSAVE instruction has executed, the exception handler should use only the
FMOVEM instruction to read or write to the floating-point data registers since FMOVEM can-
not generate further exceptions or change the FPCR.

An FSAVE instruction is executed to save the current floating-point internal state for context
switches and floating-point exception handling. When an FSAVE is executed, the processor
waits until the FPU either completes the instruction or is unable to perform further process-
ing due to a pending exception that must be serviced.

FSAVE operations always write a floating-point state frame containing three long words.
The exception operand, is part of the EXCP frame. This exception operand retains its value
when FRESTOREd as an EXCP frame into the processor and then FSAVEd at a later time.
The FSAVE frame contents are shown in Figure 6-10 and the status word contents are
shown in Figure 6-11.

Bits 15–8 of the first long word of the floating-point frame define the frame format. The legal
formats for the MC68060 are:

$00 Null Frame (NULL)
$60 Idle Frame (IDLE)
$E0 Exception Frame (EXCP)

Figure 6-10. Floating-Point State Frame

EXCP Operand Exponent Status Word

EXCP Operand Lower 32 bits

EXCP Operand Upper 32 bits

31 016 15

Floating-Point Unit

6-36 M68060 USER’S MANUAL MOTOROLA

FSAVE on the MC68060 only generates one size frame (three long words), which creates a
significant performance benefit, and one of these three frame types. An attempt to
FRESTORE a frame format other than $00, $60, or $E0 results in a format error exception.

The format of the first long word of the MC68060 floating-point frame has changed from
that of previous M68000 microprocessors. The MC68060 frame format (bits 15–8) is a
consolidation of the version number and size format information (bits 31–16) on previous
parts. In addition, on the MC68060, this information resides in the lower word of the long
word while the upper word is used for the exception operand exponent in EXCP frames.
Therefore, FRESTORE of a frame on an MC68060 created by FSAVE on a non-MC68060
microprocessor and FRESTORE of a frame on a non-MC68060 microprocessor created by
FSAVE on an MC68060 will not guarantee a format error exception will be detected and
thus must never be attempted.

When an FSAVE is executed, the floating-point frame reflects the state of the FPU at the
time of the FSAVE. Internally, the FPU can be in the NULL, IDLE or EXCP states. Upon
reset, the FPU is in the NULL state. In the NULL state, all floating-point registers contain
nonsignaling NANs and the FPCR, FPSR, and FPIAR contain zeroes. The FPU remains in
this state until the execution of an implemented floating-point instruction (except FSAVE).
At this point, the FPU transitions from a NULL state to an IDLE state. An FRESTORE of
NULL returns the FPU to the NULL state. The EXCP state is entered as a result of either a
floating-point exception or an unsupported data type exception. V2–V0 indicates the
exception types that are associated with the EXCP state.

An FSAVE instruction always clears the internal exception status bit at the completion of
the FSAVE. An FRESTORE of EXCP may be used to place the FPU in the exception state.

The FRESTORE of an EXCP state is used in the M68060SP to provide to the user
exception handler the illusion that the M68060SP handler never existed at all. The user
exception handler is entered with the FPU in the proper exception state. The user

Figure 6-11. Status Word Contents

15

0 0 0 0 0

8

Frame Format
$00—Null Frame

$60—Idle Frame

V2–V0—Exception Vector
000—BSUN

001—INEX2 | INEX1

010—DZ

011—UNFL

100—OPERR

101—OVFL

110—SNAN

111—UNSUP

V2 V1 V0

012

FRAME FORMAT

$E0—Exception Frame

7 3

Floating-Point Unit

MOTOROLA M68060 USER’S MANUAL 6-37

exception handler then executes an FSAVE instruction to clear the internal exception
status bit in the FPU. To return to normal operation, the user exception handler may either
clear the most significant bit of the frame format (changing the frame format from $E0 to
$60, creating an IDLE frame) prior to FRESTOREing the IDLE state frame, or discarding
the floating-point frame before executing the RTE. Given that the state frames are of a
fixed size (three long words), it is quicker to simply discard the state frame.

The exception operand provided in the floating-point frame is dependent on the highest pri-
ority exception that is reported. The exception operand as generated by the processor when
the exception is first reported may be undefined. The M68060SP calculates the proper
exception operand and executes an FRESTORE of the EXCP frame with the proper excep-
tion operand value in the floating-point frame. When the user exception handler is entered,
the required FSAVE inside the user exception handler generates the floating-point frame
and retrieves the exception operand, as calculated by the M68060SP.

The exception operand provided to the user exception handler is defined as follows for the
possible exceptions:

BSUN User Handler—Undefined.

SNAN, OPERR, DZ—Source operand in extended-precision format.

OVFL—Intermediate result in extended-precision format, but with exponent bias of $3FFF–
$6000 instead of $3FFF. If catastrophic overflow, $0.

UNFL—Intermediate result in extended-precision format but with exponent bias of
$3FFF+$6000 instead of $3FFF. If catastrophic underflow, $0.

INEX—Undefined if INEX only. Otherwise if either SNAN, OPERR, UNFL, or OVFL also set
in FPSR, use exception operand defined for either SNAN, OPERR, UNFL, or OVFL.

MOTOROLA

M68060 USER’S MANUAL

7-1

SECTION 7
BUS OPERATION

The MC68060 bus interface supports synchronous data transfers between the processor
and other devices in the system. This section provides a functional description of the bus,
the signals that control the bus, and the bus cycles provided for data transfer operations.
Operation of the bus is defined for transfers initiated by the processor as a bus master and
for transfers initiated by an alternate bus master which the processor snoops as a slave
device. Descriptions of the error and halt conditions, bus arbitration, and the reset operation
are also included. For timing specifications, refer to

Section 12 Electrical and Thermal
Characteristics

.

7.1 BUS CHARACTERISTICS

The MC68060 uses the address bus (A31A0) to specify the address for a data transfer and
the data bus (D31–D0) to transfer the data. Control and attribute signals indicate the begin-
ning and type of a bus cycle as well as the address space and size of the transfer. The
selected device then controls the length of the cycle by terminating it using the control sig-
nals.

The MC68060 CLK is distributed internally to provide logic timing. CLKEN indicates impor-
tant rising CLK edges for the bus interface controller but does not directly affect internal
operation or timing of the MC68060. Its main purpose is to allow for easier system design.
CLKEN makes possible full-, half-, and quarter-speed bus operation by providing a signal to
qualify valid rising CLK edges. In general, on rising CLK edges in which CLKEN is asserted,
inputs are sampled and outputs begin to change. However, there are some inputs that are
sampled and outputs that transition on rising CLK edges when CLKEN is negated.

Inputs to the MC68060 (other than the IPLx and RSTI signals) are synchronously sampled
and must be stable during the sample window defined by t

su

 and t

hi

 (see Figure 7-1) to guar-
antee proper operation. The asynchronous IPLx and RSTI signals are sampled on the rising
edge of CLK, but are internally synchronized to resolve the input to a valid level before being
used. Since the timing specifications for the MC68060 are referenced to the rising edge of
CLK, they are valid only for the specified operating frequency and must be scaled for lower
operating frequencies.

Outputs to the MC68060 begin to transition on rising CLK edges in which CLKEN is
asserted. However, when BB and TIP transition from being asserted to being three-stated,
they are driven negated for one CLK before they are three-stated. Refer to Figure 7-2, Fig-
ure 7-3, and Figure 7-4 for an illustration. Furthermore, the processor status signals (PSTx),
RSTO, and IPEND output signals are updated on rising edges of CLK regardless of the
CLKEN input.

Bus Operation

7-2

M68060 USER’S MANUAL

MOTOROLA

Figure 7-1. Signal Relationships to Clocks

Figure 7-2. Full-Speed Clock

Figure 7-3. Half-Speed Clock

INPUTS

t d

tho

tsu
thi

 = Required input setup time relative to CLK rising edge. tsu
 = Required input hold time relative to CLK rising edge. thi

 = Output hold time relative to CLK rising edge. tho
 = Propagation delay of signal relative to CLK rising edge. td

NOTES:
1.
2.
3.
4.

CLKEN

CLK

OUTPUTS

CLK

CLKEN

BCLK

BB or TIP
THREE-STATING FROM

 ASSERTED STATE

CLKEN

CLK

BCLK

BB or TIP
THREE-STATING FROM

ASSERTED STATE

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-3

7.2 FULL-, HALF-, AND QUARTER-SPEED BUS OPERATION AND BCLK

To simplify the description of full-, half-, and quarter-speed bus operation, the term “bus
clock” or “BCLK” is introduced to describe the effective frequency of bus operation. The bus
clock is analogous to the MC68040 clock input called BCLK. The MC68040 BCLK defines
when input signals are sampled and when output signals begin to transition. Once the rela-
tionship of CLK, CLKEN, and the virtual BCLK is established, it is possible to describe the
MC68060 bus more easily, relative to BCLK.

CLKEN allows the bus to synchronize to BCLK which is running at half or quarter speed of
the processor clock (CLK). On rising CLK edges in which CLKEN is asserted, inputs to the
processor are recognized and outputs of the processor may begin to assert, negate, or
three-state. On rising CLK edges in which CLKEN is negated, no inputs are recognized and
no outputs begin to change (except BB and TIP). Figure 7-1 illustrates the general relation-
ship between CLK, CLKEN, and most input and output signals.

For brevity, the term “full-speed bus” is introduced to refer to systems in which BCLK is run-
ning at the same frequency as CLK. The term “half-speed bus” refers to systems in which
BCLK is running at half the frequency of CLK. For those familiar with the MC68040, the half-
speed bus is analogous to the MC68040 implementation. The term “quarter-speed bus”
refers to systems in which BCLK is running at one quarter the frequency of CLK. The
MC68060 clocking mechanism is designed so that systems designed today can be
upgraded with higher-frequency MC68060s, without forcing the rest of the system to operate
at the same higher processor frequency. This flexibility also allows the MC68060 to be used
in existing MC68040 system designs.

A full-speed bus design is achieved by continuously asserting CLKEN as shown in Figure
7-2. A half speed bus is achieved by asserting CLKEN about every other rising edge of CLK.
Figure 7-3 shows a timing diagram of the relationship between CLK, CLKEN, and BCLK for
half-speed bus operation. A quarter-speed bus is achieved by asserting CLKEN once about
every four rising edges of CLK. Figure 7-4 shows a timing diagram of the relationship
between CLK, CLKEN, and BCLK for quarter-speed bus operation.

Note that once BCLK has been established, inputs and outputs appear to be synchronized
to this virtual BCLK. To simplify the description of MC68060 bus operation, the rising edges

Figure 7-4. Quarter-Speed Clock

CLKEN

CLK

BCLK

BB or TIP
THREE-STATING FROM

ASSERTED STATE

Bus Operation

7-4

M68060 USER’S MANUAL

MOTOROLA

of BCLK represent the rising edges of CLK in which CLKEN is asserted. However, there are
cases in which the BCLK concept does not apply.

The BCLK concept does not apply to the IPLx and RSTI input signals. These inputs are sam-
pled every CLK edge. The processor status (PSTx), RSTO, and IPEND outputs do not follow
the BCLK concept, either, since these outputs can change on any CLK rising edge, regard-
less of CLKEN. The BB and TIP signals generally follow the BCLK concept except when
these signals are already driven asserted by the processor and then three-stated. This
occurs when the bus is arbitrated away from the processor immediately after an active bus
cycle. These outputs are actively negated for one CLK period before three-stating. Figure 7-
2, Figure 7-3, and Figure 7-4 illustrate the behavior of BB and TIP in the case mentioned.
The BB signal is not recommended for use in full-speed bus designs since bus contention
is possible when tied to alternate masters’ BB pins.

Other implementations of CLKEN are not supported.

7.3 ACKNOWLEDGE TERMINATION IGNORE STATE CAPABILITY

The MC68060 provides the capability to ignore termination acknowledgments to assist in
system designs. Independent ignore state counters for read and write, primary (initial) trans-
fer, and secondary (burst) transfer are used during bus cycles to determine which BCLK ris-
ing edges transfer acknowledge termination signals should be ignored or sampled.

This special mode is selected during a reset operation. Please refer to

7.14 Special Modes
of Operation

 for details on how to enable this mode.

7.4 BUS CONTROL REGISTER

The bus control register (BUSCR) is accessed via the MOVEC instruction. Its main purpose
is to provide a way to control the external LOCK and LOCKE signals in software. This fea-
ture is essential in emulating the CAS2 instruction and in providing a means to control bus
arbitration activity during critical code segments. Figure 7-5 shows the BUSCR format.

L—Lock Bit
0 = Negate external LOCK signal.
1 = Assert external LOCK signal.

SL—Shadow Copy, Lock Bit
 0 = LOCK negated sequence at time of exception.
 1 = LOCK asserted at time of exception.

Figure 7-5. Bus Control Register Format

31 30 0

L Reserved for Future UseSL

29 28

LE SLE

27

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-5

LE—Lock End Bit
0 = Negate external LOCKE signal.
1 = Assert external LOCKE signal.

SLE—Shadow Copy, Lock End Bit
 0 = LOCKE asserted at time of exception.
 1 = LOCKE negated at time of exception.

The external LOCK signal is asserted starting with the assertion of TS for the bus cycle of
the next operand read or write after setting the L-bit in the BUSCR. The external LOCKE
signal is asserted starting with the assertion of TS for the bus cycle of the next operand write
after setting the LE bit in the BUSCR. Both the LOCK and LOCKE external signals are
negated the cycle after the final TA assertion associated with the TS that asserted LOCKE.
The final operand write cycle must not be misaligned. A final write to the BUSCR must be
made in order to clear the L and LE bits even though the external signals have already
negated. The L and LE bits are cleared when the processor is reset.

The SL and SLE bits in the BUSCR are provided to retain a copy of the L and LE bits at the
time of an exception. When an exception occurs, the MC68060 copies the L and LE bits to
the SL and SLE bits respectively, negates the external LOCK and LOCKE pins, and clears
the L and LE bits. It is recommended that all interrupts be masked prior to the use of BUSCR.
If the cause of the exception is an access error, a bit in the fault status long word (FSLW) in
the access error frame is used to signify that a locked sequence was being executed at the
time of the fault.

7.5 DATA TRANSFER MECHANISM

Figure 7-6 illustrates how the bus designates operands for transfers on a byte boundary sys-
tem. The integer unit handles floating-point operands as a sequence of related long-word
operands. These designations are used in the figures and descriptions that follow.

Figure 7-7 illustrates general multiplexing between an internal register and the external bus.
The internal register connects to the external data bus through the internal data bus and
multiplexer. The data multiplexer establishes the necessary connections for different com-
binations of address and data sizes.

Unlike the MC68020 and MC68030 processors, the MC68060 does not support dynamic
bus sizing and expects the referenced device to accept the requested access width. The
MC68150 dynamic bus sizer is designed to allow the 32-bit MC68060 bus to communicate

Figure 7-6. Internal Operand Representation

OP0

815162324

LONG-WORD OPERAND

31

OP1 OP2 OP3

OP2 OP3

OP3

07

WORD OPERAND

BYTE OPERAND

Bus Operation

7-6

M68060 USER’S MANUAL

MOTOROLA

bidirectionally with 32-, 16-, or 8-bit peripherals and memories. It dynamically recognizes the
size of the selected peripheral or memory device and then reads or writes the appropriate
data from that location. Refer to MC68150/D,

MC68150 Dynamic Bus Sizer

, for information
on this device.

Blocks of memory that must be contiguous, such as for code storage or program stacks,
must be 32 bits wide. Byte- and word-sized I/O ports that return an interrupt vector during
interrupt acknowledge cycles must be mapped into the low-order 8 or 16 bits, respectively,
of the data bus.

The multiplexer takes the four bytes of a long-word transfer and routes them to their required
positions. For example, OP0 would normally be routed to D31–D24 on an aligned long-word
transfer, but it can also be routed to any other byte position supporting a misaligned data
transfer. The same is true for any of the other operand bytes. The transfer size (SIZ0 and
SIZ1) and byte offset (A1 and A0) signals determine the positioning of the bytes (see Table
7-1) or alternatively, BS3–BS0 may be used instead of SIZx, A1, and A0. The BSx pins
determine which byte sections are active. The size indicated on the SIZx signals corre-
sponds to the size of the operand transfer for the entire bus cycle (except for burst-inhibited
bus cycles). During an operand transfer, A31–A2 indicate the long-word base address for
the first byte of the operand to be accessed; A1 and A0 indicate the byte offset from the
base. For long-word or line bus cycles, external logic must ignore address bits A1 and A0
for proper operation.

Figure 7-7. Data Multiplexing

REGISTER

ADDRESS
$xxxxxxx0

EXTERNAL
DATA BUS

31 024 23 16 15 8 7

OP0 OP1 OP2 OP3

ROUTINGMULTIPLEXER

31 024 23 16 15 8 7

EXTERNAL BUS

INTERNAL TO
THE MC68060

BS0 BS1 BS2 BS3

D31–D24 D23–D16 D15–D8 D7–D0

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-7

Table 7-1 lists the combinations of the SIZx, A1, and A0 signals, collectively called byte
enable signals, that are used for each of the four sections of the data bus. Alternatively, the
BSx signals may be used for byte selection. In Table 7-1, OP0–OP3 indicates the portion of
the requested operand that is read or written during that bus transfer. For line and long-word
transfers, all bytes are valid as listed and can correspond to portions of the requested oper-
and or to data required to fill the remainder of the cache line. The bytes labeled with a dash
are not required; they are ignored on read transfers and driven with undefined data on write
transfers. Not selecting these bytes prevents incorrect accesses in sensitive areas such as
I/O devices. Figure 7-8 illustrates a logic diagram for one method for generating byte select
signals from SIZx, A1, and A0 and the associated PAL equation. The logic shown in Figure
7-8 is equivalent to the internal logic used to generate the external byte select signals (BSx)
provided by the processor. Byte enable signals derived from the SIZx, A1, and A0 signals,
or alternatively, the external BSx signals, can be combined with the address or other
attributes signals to generate the decode logic of a system.

The MC68060 provides BSx so that it is unnecessary to use the SIZx, A1, and A0 signals to
generate byte selects using external logic. This aids in high-speed system design. Figure 7-
7, Figure 7-8, and Table 7-1 show the relationship between SIZx, A1, A0, and BSx.

A brief summary of the bus signal encoding for each access type is listed in Table 7-2. Addi-
tional information on the encoding for the MC68060 signals can be found in

Section 2 Sig-
nal Description

.

Table 7-1. Data Bus Requirements for Read and Write Cycles

Transfer Size
Signal Encoding Active Data Bus Sections and Byte Enables

SIZ1 SIZ0 A1 A0
D31–D24

BS0
D23–D16

BS1
D15–D8

BS2
D7–D0

BS3

Byte
0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

OP3
—
—
—

—
OP3
—
—

—
—

OP3
—

—
—
—

OP3

Word 1
1

0
0

0
1

0
0

OP2
—

OP3
—

—
OP2

—
OP3

Long Word 0 0 X X OP0 OP1 OP2 OP3
Line 1 1 X X OP0 OP1 OP2 OP3

Bus Operation

7-8

M68060 USER’S MANUAL

MOTOROLA

Figure 7-8. Byte Select Signal Generation and PAL Equation

A0
A1

SIZ0
SIZ1

UPPER UPPER DATA SELECT
D31–D24
BS0

UPPER MIDDLE DATA SELECT
D23–D16
BS1

LOWER MIDDLE DATA SELECT
D15–D8
BS2

LOWER LOWER DATA SELECT
D7–D0
BS3

PAL16L8
U1
MC68060 Byte Data Select Generation.
A0 A1 SIZ0 SIZ1 NC NC NC NC NC GND NC UUD UMD LMD LLD
NC NC NC NC VCC

/UUD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0

; directly addressed, any size
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; word aligned, size is word or line
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; enable every byte for long-word size
; enable every byte for line size
; directly addressed, any size
; word aligned, word or line size
; enable every byte for long-word size
; enable every byte for line size

/UMD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0
/LMD = /A0 * /A1
 + /SIZ1 * /SIZ0
 + SIZ1 * SIZ0
/LLD = A0 * /A1
 + /A1 * /SIZ1
 + SIZ1 * SIZ0
 + /SIZ1 * /SIZ0

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-9

7.6 MISALIGNED OPERANDS

All MC68060 data formats can be located in memory on any byte boundary. A byte operand
is properly aligned at any address, a word operand is misaligned at an odd address, and a
long word is misaligned at an address that is not evenly divisible by four. However, since
operands can reside at any byte boundary, they can be misaligned. Although the MC68060
does not enforce any alignment restrictions for data operands (including program counter
(PC) relative data addressing), some performance degradation occurs when additional bus
cycles are required for long-word or word operands that are misaligned. For maximum per-
formance, data items should be aligned on their natural boundaries. All instruction words
and extension words must reside on word boundaries. Attempting to prefetch an instruction
word at an odd address causes an address error exception. Refer to

Section 8 Exception
Processing

 for details on address error exceptions.

The MC68060 data memory unit converts misaligned operand accesses that are noncach-
able to a sequence of aligned accesses. These aligned accesses are then sent to the bus
controller for completion, always resulting in aligned bus transfers. Misaligned operand
accesses that miss in the data cache are cachable and are not aligned before line filling.
Refer to

Section 5 Caches

 for details on line fill and the data cache.

Table 7-2. Summary of Access Types vs. Bus Signal Encoding

Bus
 Signal

Data
Cache
Push

Access

Normal
Data/
Code

Access

Table
Search
Access

 MOVE16
Access

Alternate
Access

Interrupt
Acknowledge

LPSTOP
Broadcast

Cycle

Breakpoint
Acknowledge

A31–A0 Access
Address

Access
Address

Entry
Address

Access
Address

Access
Address $FFFFFFFF $FFFFFFFE $00000000

UPA1,
UPA0 $0

MMU
Source1 $0

MMU
Source1 $0 $0 $0 $0

SIZ1,
SIZ0 L/Line B/W/L/Line Long Word Line B/W/L Byte Word Byte

TT1, TT0 $0 $0 $0 $1 $2 $3 $3 $3

TM2–
TM0 $0 $1,2,5, or 6 $3 or 4 $1 or 5

Function
Code=0,3,

4,7
Debug

Access=
1,5,6

Int. Level $1–7 $0 $0

TLN1,
TLN0

Cache Set
Entry

Cache Set
Entry2 Undefined Undefined Undefined Undefined Undefined Undefined

R/W Write Read/Write Read/Write Read/Write Read/Write Read Write Read

LOCK
LOCKE Negated

Asserted/
Negated3

Asserted/
Negated3 Negated Negated Negated Negated Negated

CIOUT Negated
MMU

Source1 Negated
MMU

Source1 Asserted Negated Negated Negated

NOTES
1) The UPA1, UPA0, and

CIOUT

 signals are determined by the U1, U0, and CM bit fields, respectively,
corresponding to the access address.

2) The TLNx signals are defined only for normal push accesses and normal data line read accesses.
3) The

LOCK

 signal is asserted during TAS and CAS operand accesses and for some table search update
sequences.

LOCKE

 is asserted for the last bus cycle of a locked sequence of bus cycles.

LOCK

 and

LOCKE

may also be asserted after the execution of a MOVEC instruction that sets the L or LE bit, respectively, in the
BUSCR (see

7.4 Bus Control Register

).
4) Refer to

Section 2 Signal Description

 for definitions of the TMx signal encoding for normal, MOVE16, and
alternate accesses.

Bus Operation

7-10

M68060 USER’S MANUAL

MOTOROLA

Figure 7-9 illustrates the transfer of a long-word operand from an odd address requiring
more than one bus cycle. For the first transfer or bus cycle, the SIZx signals specify a byte
transfer, and the byte offset is $1. The slave device supplies the byte and acknowledges the
data transfer. When the processor starts the second cycle, the SIZx signals specify a word
transfer with a byte offset of $2. The next two bytes are transferred during this cycle. The
processor then initiates the third cycle, with the SIZx signals indicating a byte transfer. The
byte offset is now $0; the port supplies the final byte and the operation is complete. This
example is similar to the one illustrated in Figure 7-10 except that the operand is word sized
and the transfer requires only two bus cycles. Figure 7-11 illustrates a functional timing dia-
gram for a misaligned long-word read transfer.

Figure 7-9. Example of a Misaligned Long-Word Transfer

Figure 7-10. Example of Misaligned Word Transfer

DATA BUS
31 0

X OP0 X X

X X OP1 OP2

OP3 X X X

 MEMORY
31 0

XXX OP0 OP1 OP2

OP3 XXX XXX XXX

TRANSFER 1

TRANSFER 2

TRANSFER 3

24 23 16 15 8 7

24 23 16 15 8 7

 REGISTER
31 0

OP0 OP1 OP2 OP3

24 23 16 15 8 7

 MOVE.L D0,$XXXXXXX1

DATA BUS
31 0

— — — OP2

OP3 — — —

 MEMORY
31 0

XXX XXX XXX OP2

OP3 XXX XXX XXX

TRANSFER 1

TRANSFER 2

24 23 16 15 8 7

24 23 16 15 8 7

Register
31 0

— — OP2 OP3

24 23 16 15 8 7

MOVE.W D0,$XXXXXXX3

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-11

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 7-3 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and write
cycles. The table confirms that alignment significantly affects bus cycle throughput for non-
cachable accesses. For example, in Figure 7-9 the misaligned long-word operand took three
bus cycles because the byte offset = $1. If the byte offset = $0, then it would have taken one

Figure 7-11. Misaligned Long-Word Read Bus Cycle Timing

A31–A2

BCLK

SIZ1–SIZ0

D31–D24

TS

TIP

TA

A1–A0

D23–D16

D15–D8

D7–D0

BYTE 0

BYTE 1

BYTE 2

BYTE 3

BYTE
READ

WORD
READ

BYTE
READ

R/W

C1 C2 C1 C2 C1 C2

BYTE WORD BYTE

1 2 0

MISCELLANEOUS
 ATTRIBUTES

BS0

BS1

BS2

BS3

Bus Operation

7-12

M68060 USER’S MANUAL

MOTOROLA

bus cycle. The MC68060 system designer and programmer should account for these
effects, particularly in time-critical applications.

7.7 PROCESSOR DATA TRANSFERS

The transfer of data between the processor and other devices involves the address bus,
data bus, and control and attribute signals. The address and data buses are normally par-
allel, nonmultiplexed buses, supporting byte, word, long-word, and line (16-byte) bus cycles.
Line transfers are normally performed using an efficient burst transfer, which provides an
initial address and time-multiplexes the data bus to transfer four long words of information
to or from the slave device. Slave devices that do not support bursting can burst-inhibit the
first long word of a line transfer, forcing the bus master to complete the access using three
additional long-word bus cycles. All bus input and output signals are synchronized with
respect to the rising edge of the BCLK signal. The MC68060 moves data on the bus by issu-
ing control signals and using a handshake protocol to ensure correct data movement. The
following paragraphs describe the bus cycles for byte, word, long-word, and line read, write,
and read-modify-write transfers.

In general, the bus cycle protocol supported by the MC68060 processor is similar to that
supported by the MC68040 processor. In addition to the basic MC68060 protocol, there are
special modes that can be selected during reset by selectively setting the IPLx and data bus
D15–D0. For the purpose of simplifying the description of the MC68060 bus, this sub-sec-
tion,

7.7 Processor Data Transfers

, describes the behavior of the MC68060 processor
assuming that none of the special modes are selected during reset. For the description of
the MC68060 bus cycle protocol when the special modes are enabled, refer to

7.14 Special
Modes of Operation

.

7.7.1 Byte, Word, and Long-Word Read Transfer Cycles

During a read transfer, the processor receives data from a memory or peripheral device.
Since the data read for a byte, word, or long-word access is not placed in either of the inter-
nal caches by definition, the processor ignores the transfer cache inhibit (TCI) signal when
registering the data. The bus controller performs byte, word, and long-word read transfers
for the following cases:

• Accesses to a disabled cache

• Accesses to a memory page that is specified noncachable

• Accesses that are implicitly noncachable (locked read-modify-write accesses, access-
es to an alternate logical address space via the MOVES instruction, and table searches)

Table 7-3. Memory Alignment Influence on
Noncachable and Writethrough Bus Cycles

Transfer Size
Number of Bus Cycles

$0* $1* $2* $3*

Instruction 1 N/A N/A N/A
Byte Operand 1 1 1 1
Word Operand 1 2 1 2
Long-Word Operand 1 3 2 3
*Where the byte offset (A1 and A0) equals this encoding.

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-13

• Accesses that do not allocate in the data cache on a read miss (exception vector fetch-
es, and exception stack deallocation for an RTE instruction)

• The first transfer of a line read is terminated with transfer burst inhibit (TBI), forcing com-
pletion of the line access using three additional long-word read transfers

Figure 7-12 is a flowchart for byte, word, and long-word read transfers. Bus operations are
similar for each case and vary only with the size indicated and the portion of the data bus
used for the transfer. Figure 7-13 is a functional timing diagram for byte, word, and long-
word read transfers.

Clock 1 (C1)
The read cycle starts in C1. During C1, the processor places valid values on the address
bus and transfer attributes. For user and supervisor mode accesses, which the corre-
sponding memory unit translates, the user-programmable attribute signals (UPAx) are
driven with the values from the matching user bits (U1 and U0). The transfer type (TTx)
and transfer modifier (TMx) signals identify the specific access type. The read/write (R/W)
signal is driven high for a read cycle. Cache inhibit out (CIOUT) is asserted since the ac-
cess is identified as noncachable. Refer to

Section 4 Memory Management Unit

for in-
formation on the MC68060 and MC68LC060 memory units and

Appendix B MC68EC060

for information on the MC68EC060 memory unit.

Figure 7-12. Byte, Word, and Long-Word Read Cycle Flowchart

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE UPA1–UPA0, TM2–TM0, CIOUT,
 TLN1–TLN0, LOCK, LOCKE, BS3–BS0
4) DRIVE SIZ1–SIZ0 TO BYTE, WORD, OR LONG
5) ASSERT TS FOR ONE BCLK
6) ASSERT TIP
7) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED

1) REGISTER DATA
2) NEGATE LOCK, LOCKE IF NECESSARY

1) NEGATE TIP OR START NEXT CYCLE 1) THREE-STATE D31–D0

1) DECODE ADDRESS
2) PLACE DATA ON APPROPRIATE BYTE
 LANES BASED ON SIZ1–SIZ0, A1–A0, OR
 BS3–BS0
3) ASSERT TA AROUND RISING EDGE OF
 BCLK.

PROCESSOR SYSTEM

Bus Operation

7-14

M68060 USER’S MANUAL

MOTOROLA

The processor asserts transfer start (TS) during C1 to indicate the beginning of a bus cy-
cle. If not already asserted from a previous bus cycle, the transfer in progress (TIP) signal
is also asserted at this time to indicate that a bus cycle is active.

Figure 7-13. Byte, Word, and Long-Word Read Bus Cycle Timing

C1 C2

BCLK

BYTE

TS

TIP

TA

R/W

1 2 0

LONG

BYTE READ WORD READ
WITH WAIT

LONG-WORD
READ

C1 CW C1 C2C2

WORD

BS0

BS1

BS2

BS3

ADDRESS AND
 ATTRIBUTES

SAS

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

SIZ1–SIZ0

D31–D24

A1–A0

D23–D16

D15–D8

D7–D0

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-15

Clock 2 (C2)
During C2, the processor negates TS. The selected peripheral device uses R/W, SIZ1,
SIZ0, A1, and A0 or BSx to place its information on the data bus. With the exception of
the R/W signal, these signals also select any or all of the operand bytes (D31–D24, D23–
D16, D15–D8, and D7–D0). If the first clock after C1 is not a wait state (CW), then the
selected peripheral device asserts the transfer acknowledge (TA) signal.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins sam-
pling termination signals such as TA after a user-programmed number of BCLK rising
edges has expired. The SAS signal is provided as a status output to indicate which BCLK
rising edge the processor begins to sample the termination signals. If this mode is dis-
abled, SAS is asserted during C2 to indicate that the processor immediately begins sam-
pling the termination signals. Refer to

7.14.1 Acknowledge Termination Ignore State
Capability

 for details on this special mode.
Assuming that the acknowledge termination ignore state capability is disabled, at the end
of the first clock cycle C2, the processor samples the level of TA and if asserted, registers
the current value on the data bus; the bus cycle terminates, and the data is passed to the
processor’s appropriate memory unit. If TA is not recognized asserted at the end of the
clock cycle, the processor ignores the data and inserts a wait state instead of terminating
the transfer. The processor continues to sample TA on successive rising edges of BCLK
until TA is recognized asserted. Only when TA is recognized asserted is data passed to
the processor’s appropriate memory unit.
When the processor recognizes TA at the end of a clock cycle and terminates the bus cy-
cle, TIP remains asserted if the processor is ready to begin another bus cycle. Otherwise,
the processor negates TIP during the next clock.

7.7.2 Line Read Transfer

The processor uses line read transfers to access a 16-byte operand for a MOVE16 instruc-
tion and to support cache line filling. A line read accesses a block of four long words, aligned
to a 16-byte memory boundary, by supplying a starting address that points to one of the long
words and requires the memory device to sequentially drive each long word on the data bus.
The selected device must internally increment A3 and A2 of the supplied address for each
transfer, causing the address to wrap around at the end of the block if CLA is not used. Oth-
erwise, the external device may request the processor to increment A3 and A2 in a circular
wrap-around fashion via the CLA input. Refer to

7.7.7 Using CLA to Increment A3 and A2

for details on CLA operation. The address and transfer attributes supplied by the processor
remain stable during the transfers, and the selected device terminates each transfer by driv-
ing the long word on the data bus and asserting TA. A line transfer performed in this manner
with a single address is referred to as a line burst transfer.

The MC68060 supports burst-inhibited line transfers for memory devices that are unable to
support bursting. For this type of bus cycle, the selected device supplies the first long word
pointed to by the processor address and asserts transfer burst inhibit (TBI) with TA for the
first transfer of the line access. The processor responds by terminating the line burst transfer
and accessing the remainder of the line, using three long-word read bus cycles. Although
the selected device can then treat the line bus cycle as four, independent, long-word bus

Bus Operation

7-16

M68060 USER’S MANUAL

MOTOROLA

cycles, the bus controller still treats the four transfers as a single line bus cycle and does not
allow other unrelated processor accesses or bus arbitration to intervene between the trans-
fers. TBI is ignored after the first long-word transfer.

Line reads to support cache line filling can be cache inhibited by asserting transfer cache
inhibit (TCI) with TA for the first long-word transfer of the line. The assertion of TCI does not
affect completion of the line transfer, but the bus controller registers and passes it to the
memory controller for use. TCI is ignored after the first long-word transfer of a line burst bus
cycle and during the three long-word bus cycles of a burst-inhibited line transfer.

The address placed on the address bus by the processor for line bus cycle does not neces-
sarily point to the most significant byte of each long word because A1 and A0 are copied
from the original operand address supplied to the memory unit by the integer unit for line
reads. These two bits are also unchanged for the three long-word bus cycles of a burst-
inhibited line transfer. The selected device should ignore A1 and A0 for long-word and line
read transfers.

The address of an instruction fetch will always be aligned to a long-word boundary
($xxxxxxx0, $xxxxxxx4, $xxxxxxx8, or $xxxxxxxC). This is unlike the MC68040 in which the
prefetches occur on half-line boundaries. Therefore, compilers should attempt to locate
branch targets on long-word boundaries to minimize branch stalls. For example, if the target
of a branch is an instruction that starts at $1000000E, the following burst sequence will occur
upon a cache miss: $1000000C, $10000000, $10000004, then $10000008. Figure 7-14 and
Figure 7-15 illustrate a flowchart and functional timing diagram for a line read bus transfer.

Clock 1 (C1)
The line read cycle starts in C1. During C1, the processor places valid values on the ad-
dress bus and transfer attributes. For user and supervisor mode accesses that are trans-
lated by the corresponding memory unit, the UPAx signals are driven with the values from
the matching U1 and U0 bits. The TTx and TMx signals identify the specific access type.
The R/W signal is driven high for a read cycle, and the size signals (SIZx) indicate line
size. CIOUT is asserted for a MOVE16 operand read if the access is identified as non-
cachable. Refer to

Section 4 Memory Management Unit

 for information on the
MC68060 and MC68LC060 memory units and

Appendix B MC68EC060

 for information
on the MC68EC060 memory unit.
The processor asserts TS during C1 to indicate the beginning of a bus cycle. If not already
asserted from a previous bus cycle, TIP is also asserted at this time to indicate that a bus
cycle is active.

Clock 2 (C2)
During C2, the processor negates TS. The selected device uses R/W and SIZx to place
the data on the data bus. (The first transfer must supply the long word at the correspond-
ing long-word boundary.) Concurrently, the selected device asserts TA and either negates
TBI to indicate it can or asserts TBI to indicate it cannot support a burst transfer.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins sam-
pling termination signals such as TA after a user-programmed number of BCLK rising

Bus Operation

MOTOROLA

M68060 USER’S MANUAL

7-17

edges has expired. The signal SAS is provided as a status output to indicate which BCLK
rising edge the processor begins to sample the termination signals. If this mode is dis-

Figure 7-14. Line Read Cycle Flowchart

1) SET R/W TO READ
2) DRIVE ADDRESS ON A31–A0
3) DRIVE UP A1–UPA0, TT1–TT0, TM2–TM0,
 CIOUT, TLN1–TLN0, LOCK, LOCKE, BS3–BS0
4) DRIVE SIZ1–SIZ0 TO LINE
5) ASSERT TS FOR ONE BCLK
6) ASSERT TIP
7) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED

1) REGISTER DATA
2) SAMPLE TBI AND TCI
3) INCREMENT A3–A2 IF CLA ASSERTED

 1) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION
 IGNORE STATE CAPABILITY
 DISABLED. ELSE, ASSERT SAS
 AFTER READ SECONDARY
 IGNORE STATE COUNTER HAS
 EXPIRED. 1) DECODE ADDRESS

2) PLACE DATA ON D31–D0
3) ASSERT TA FOR ONE BCLK
4) ASSERT CLA TO INCREMENT A3–A2

1) DECODE ADDRESS
2) PLACE DATA ON D31–D0
3) ASSERT TA FOR ONE BCLK
4) ASSERT CLA TO INCREMENT A3–A2
5) ASSERT TBI OR TCI AS NEEDED

PROCESSOR SYSTEM

TBI ASSERTED TBI NEGATED

1) REGISTER DATA
2) INCREMENT A3–A2 IF CLA
 ASSERTED

4 LW DONE 4 LW NOT DONE

1) NEGATE LOCK, LOCKE IF
 NECESSARY

1) NEGATE TIP OR START NEXT
 CYCLE

1) THREE-STATE D31–D0

CONTINUE WITH FIG. 7-16

Bus Operation

7-18

M68060 USER’S MANUAL

MOTOROLA

abled, SAS is asserted during C2 to indicate that the processor immediately begins sam-
pling the terminations signals. Refer to

7.14.1 Acknowledge Termination Ignore State
Capability

 for details on this special mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA, TBI, and TCI and registers the current value on the data
bus at the end of C2. If TA is asserted, the transfer terminates and the data is passed to
the appropriate memory unit. If TA is not recognized asserted, the processor ignores the
data and inserts wait states instead of terminating the transfer. The processor continues
to sample TA, TBI, and TCI on successive rising edges of BCLK until TA is recognized

Figure 7-15. Line Read Transfer Timing

BCLK

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

BS3–BS0

C1 C2 C3 C4 C5

TBI

CIOUT

CLA

A3–A2 10 11 0001

SAS

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

SIZ1–SIZ0

D31–D0

A31–A4
A1–A0

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-19

asserted. The registered data and the value of TCI are then passed to the appropriate
memory unit.
If TBI was negated with the assertion of TA, the processor continues the cycle with C3.
Otherwise, if TBI was asserted, the line transfer is burst inhibited, and the processor reads
the remaining three long words using long-word read bus cycles. The processor incre-
ments A3 and A2 for each read, and the new address is placed on the address bus for
each bus cycle. Refer to 7.7.1 Byte, Word, and Long-Word Read Transfer Cycles for
information on long-word reads. If no wait states are generated, a burst-inhibited line read
completes in eight clocks instead of the five required for a burst read.

Clock 3 (C3)
The processor holds the address and transfer attribute signals constant during C3 if CLA
is negated. The selected device must either increment A3 and A2 to reference the next
long word to transfer, place the data on the data bus, and assert TA, or alteratively assert
the CLA input to request the processor to increment A3 and A2. Refer to 7.7.7 Using CLA
to Increment A3 and A2 for details on CLA operation.
As in the description of C2, using acknowledge termination ignore state capability, the pro-
cessor ignores any termination signal, such as TA, until a user-programmable number of
BCLK edges has expired. And, as in the description in C2, SAS indicates the first BCLK
rising edge in which acknowledge termination signals become significant. If this mode is
disabled, SAS stays asserted in C3 to indicate that the processor will sample TA immedi-
ately. Refer to 7.14.1 Acknowledge Termination Ignore State Capability for details on
this mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA and registers the current value on the data bus at the end
of C3. If TA is asserted, the transfer terminates and the second long word of data is
passed to the appropriate memory unit. If TA is not recognized asserted at the end of C3,
the processor ignores the latched data and inserts wait states instead of terminating the
transfer. The processor continues to sample TA on successive rising edges of BCLK until
it is recognized asserted. The registered data is then passed to the appropriate memory
unit.

Clock 4 (C4)
This clock is identical to C3 except that once TA is recognized asserted, the registered
value corresponds to the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once TA is recognized, the registered value cor-
responds to the fourth long word of data for the burst. After the processor recognizes the
last TA assertion and terminates the line read bus cycle, TIP remains asserted if the pro-
cessor is ready to begin another bus cycle. Otherwise, the processor negates TIP during
the next clock.
Figure 7-16 and Figure 7-17 illustrate a flowchart and functional timing diagram for a
burst-inhibited line read bus cycle.

Bus Operation

7-20 M68060 USER’S MANUAL MOTOROLA

7.7.3 Byte, Word, and Long-Word Write Cycles
During a write transfer, the processor transfers data to a memory or peripheral device. The
level on the TCI signal is ignored by the processor during all write cycles. The bus controller
performs byte, word, and long-word write transfers for the following cases:

• Accesses to a disabled cache

• Accesses to a memory page that is specified noncachable

• Accesses that are implicitly noncachable (locked read-modify-write accesses, access-
es to an alternate logical address space via the MOVES instruction, and table searches)

• Writes to writethrough pages

• Accesses that do not allocate in the data cache on a write miss (exception stacking)

• The first transfer of a line write is terminated with TBI, forcing completion of the line ac-
cess using three additional long-word write transfers

• Cache line pushes for lines containing a single dirty long word.

Figure 7-18 and Figure 7-19 illustrate a flowchart and functional timing diagram for byte,
word, and long-word write bus transfers.

Figure 7-16. Burst-Inhibited Line Read Cycle Flowchart

1) INCREMENT A3–A2
2) DRIVE SIZ1–SIZ0 TO LONG
3) ASSERT TS FOR ONE BCLK
4) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED 1) DECODE ADDRESS

2) PLACE DATA ON D31–D0
3) ASSERT TA FOR ONE BCLK
4) NEGATE CLA

1) REGISTER DATA

1) NEGATE LOCK, LOCKE IF NECESSARY

1) NEGATE TIP OR START NEXT CYCLE 1) THREE-STATE D31–D0

CONTINUED FROM FIGURE 7-14

4 LW NOT DONE4 LW DONE

PROCESSOR SYSTEM

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-21

Figure 7-17. Burst-Inhibited Line Read Bus Cycle Timing

LINE LONG LONG LONG

INHIBITED
LINE READ

LONG-WORD
READ

LONG-WORD
READ

LONG-WORD
READ

C1 C2 C3 C4 C6 C7C5 C8

BCLK

SIZ1–SIZ0

D31–D0

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

TBI

CIOUT

CLA

A3–A2

SAS

10 11 0001

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

BS3–BS0

A31–A4
A1–A0

Bus Operation

7-22 M68060 USER’S MANUAL MOTOROLA

Figure 7-18. Byte, Word, and Long-Word Write Transfer Flowchart

1) SET R/W TO WRITE
2) DRIVE ADDRESS ON A31–A0
3) DRIVE UPA1–UPA0, TT1–TT0, TM2–TM0,
 CIOUT, TLN1–TLN0, LOCK, LOCKE, BS3–BS0
4) DRIVE SIZ1–SIZ0 TO BYTE, WORD, OR LONG
5) ASSERT TS FOR ONE BCLK
6) ASSERT TIP
7) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER WRITE PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED
8) DRIVE D31–D0 WITH APPROPRIATE DATA

1) THREE-STATE DATA BUS
2) NEGATE LOCK, LOCKE IF NECESSARY

1) NEGATE TIP OR START NEXT CYCLE

1) DECODE ADDRESS
2) LATCH DATA FROM APPROPRIATE BYTE
 LANES BASED ON SIZ1–SIZ0, A1–A0, OR
 BS3–BS0
3) ASSERT TA FOR ONE BCLK

PROCESSOR SYSTEM

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-23

Figure 7-19. Long-Word Write Bus Cycle Timing

C1 C2

BCLK

BYTESIZ1–SIZ0

TS

TIP

TA

R/W

1 2 0

LONG

BYTE WRITE WORD WRITE
WITH WAIT

LONG-WORD
WRITE

C1 CW C1 C2C2

WORD

BS0

BS1

BS2

BS3

MISCELLANEOUS
 ATTRIBUTES

D31–D0

SAS

PRE
DRIVE

PRE
DRIVE

PRE
DRIVE

A1–A0

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

Bus Operation

7-24 M68060 USER’S MANUAL MOTOROLA

Clock 1 (C1)
The write cycle starts in C1. During C1, the processor places valid values on the address
bus and transfer attributes. The processor asserts TS during C1 to indicate the beginning
of a bus cycle. If not already asserted from a previous bus cycle, the TIP signal is also
asserted at this time to indicate that a bus cycle is active.
The processor pre-conditions the data bus during C1 to improve AC timing. The process
of pre-conditioning involves reinforcing the logic level that is already at the data pin. If the
voltage level is originally zero volts, nothing is done; if the voltage level is 3.3 V, that volt-
age level is reinforced; however, if the voltage level is originally 5 V, the processor drives
that data pin from 5 V down to 3.3 V. Note that no active logic change is done at this time.
The actual logic level change is done in C2. This pre-conditioning affects operation prima-
rily when using the processor in a 5-V system.
For user and supervisor mode accesses, which the corresponding memory unit trans-
lates, the UPAx signals are driven with the values from the U1 and U0 bits for the area.
The TTx and TMx signals identify the specific access type. The R/W signal is driven low
for a write cycle. CIOUT is asserted if the access is identified as noncachable or if the ac-
cess references an alternate address space. Refer to Section 4 Memory Management
Unit for information on the MC68060 and MC68LC060 memory units and Appendix B
MC68EC060 for information on the MC68EC060 memory unit.

Clock 2 (C2)
During C2, the processor negates TS and drives the appropriate bytes of the data bus with
the data to be written. All other bytes are driven with undefined values. The selected de-
vice uses R/W, SIZ1, SIZ0, A1, A0, or BS3–BS0, and CIOUT to register only the required
information from the data bus. With the exception of R/W and CIOUT, these signals also
select any or all of the bytes (D31–D24, D23–D16, D15–D8, and D7–D0). If C2 is not a
wait state (CW), then the selected peripheral device asserts the TA signal.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins the
sampling of termination signals such as TA after a user-programmed number of BCLK ris-
ing edges has expired. The SAS signal is provided as a status output to indicate which
BCLK rising edge the processor begins to sample the termination signals. If this mode is
disabled, SAS is asserted during C2 to indicate that the processor immediately begins
sampling the terminations signals. Refer to 7.14.1 Acknowledge Termination Ignore
State Capability for details on this special mode.
Assuming that the acknowledge termination ignore state capability is disabled, at the end
of the C2, the processor samples the level of TA, terminating the bus cycle if TA is assert-
ed. If TA is not recognized asserted at the end of the clock cycle, the processor ignores
the data and inserts a wait state instead of terminating the transfer. The processor contin-
ues to sample TA on successive rising edges of BCLK until TA is recognized asserted.
The data bus then three-states and the bus cycle ends.
When the processor recognizes TA at the rising BCLK edge and terminates the bus cycle,
TIP remains asserted if the processor is ready to begin another bus cycle. Otherwise, the

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-25

processor negates TIP during the next clock. The processor also three-states the data bus
during the next clock following termination of the write transfer.

7.7.4 Line Write Cycles
The processor uses line write bus cycles to access a 16-byte operand for a MOVE16 instruc-
tion and to support cache line pushes. Both burst and burst-inhibited transfers are sup-
ported. Figure 7-20 and Figure 7-22 illustrate a flowchart and functional timing diagram for
a line write bus cycle.

Clock 1 (C1)
The line write cycle starts in C1. During C1, the processor places valid values on the ad-
dress bus and transfer attributes. The processor asserts TS during C1 to indicate the be-
ginning of a bus cycle. If not already asserted from a previous bus cycle, the TIP signal is
also asserted at this time to indicate that a bus cycle is active.
The processor pre-conditions the data bus during C1 to improve AC timing. The process
of pre-conditioning involves reinforcing the logic level that is already at the data pin. If the
voltage level is originally zero volts, nothing is done; if the voltage level is 3.3 V, that volt-
age level is reinforced; however, if the voltage level is originally 5 V, the processor drives
that data pin from 5 V down to 3.3 V. Note that no active logic change is done at this time.
The actual logic level change is done in C2. This pre-conditioning affects operation prima-
rily when using the processor in a 5-V system.
For user and supervisor mode accesses that are translated by the corresponding memory
unit, UPAx signals are driven with the values from the matching U1 and U0 bits. The TTx
and TMx signals identify the specific access type. The R/W signal is driven low for a write
cycle, and the SIZx signals indicate line size. Refer to Section 4 Memory Management
Unit for information on the MC68060 and MC68LC060 memory units and Appendix B
MC68EC060 for information on the MC68EC060 memory unit.

Clock 2 (C2)
During C2, the processor negates TS and drives the data bus with the data to be written.
The selected device uses R/W, SIZ1, SIZ0, or BSx to register the data on the data bus.
Concurrently, the selected device asserts TA and either negates TBI to indicate it can or
asserts TBI to indicate it cannot support a burst transfer.
The MC68060 implements a special mode called the acknowledge termination ignore
state capability to aid in high-frequency designs. In this mode, the processor begins sam-
pling termination signals such as TA after a user-programmed number of BCLK rising
edges has expired. The SAS signal is provided as a status output to indicate which BCLK
rising edge the processor begins to sample the termination signals. If this mode is dis-
abled, SAS is asserted during C2 to indicate that the processor immediately begins sam-
pling the terminations signals. Refer to 7.14.1 Acknowledge Termination Ignore State
Capability for details on this special mode.
Assuming that the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA and TBI at end of C2. If TA is asserted, the transfer termi-
nates. If TA is not recognized asserted, the processor inserts wait states instead of
terminating the transfer. The processor continues to sample TA and TBI on successive
rising edges of BCLK until TA is recognized asserted. If TBI was negated with the asser-

Bus Operation

7-26 M68060 USER’S MANUAL MOTOROLA

tion of TA, the processor continues the cycle with C3. Otherwise, if TBI was asserted, the
line transfer is burst inhibited and the processor writes the remaining three long words us-
ing long-word write bus cycles. In this case, the processor increments A3 and A2 for each
write, and the new address is placed on the address bus for each bus cycle. Refer to 7.7.3
Byte, Word, and Long-Word Write Cycles for information on long-word writes. If no wait

Figure 7-20. Line Write Cycle Flowchart

1) SET R/W TO WRITE
2) DRIVE ADDRESS ON A31–A0
3) DRIVE UPA1–UPA0, TT1–TT0, TM2–TM0,
 CIOUT, TLN1–TLN0, LOCK, LOCKE, BS3–BS0
4) DRIVE SIZ1–SIZ0 TO LINE
5) ASSERT TS FOR ONE BCLK
6) ASSERT TIP
7) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER WRITE PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED
8) PLACE DATA ON D31–D0

1) SAMPLE TBI AND TCI
2) INCREMENT A3–A2 IF CLA ASSERTED

 1) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION
 IGNORE STATE CAPABILITY
 DISABLED. ELSE, ASSERT SAS
 AFTER WRITE SECONDARY
 IGNORE STATE COUNTER HAS
 EXPIRED. 1) DECODE ADDRESS

2) REGISTER DATA FROM D31–D0
3) ASSERT TA FOR ONE CLOCK
4) ASSERT CLA TO INCREMENT A3–A2

1) DECODE ADDRESS
2) REGISTER DATA FROM D31–D0
3) ASSERT TA FOR ONE BCLK
4) ASSERT CLA TO INCREMENT A3–A2
5) ASSERT TBI OR TCI AS NEEDED

PROCESSOR SYSTEM

TBI ASSERTED TBI NEGATED

1) INCREMENT A3–A2 IF CLA
 ASSERTED
2) PLACE DATA ON D31–D0

4 LW DONE 4 LW NOT DONE

1) NEGATE LOCK, LOCKE IF
 NECESSARY

1) NEGATE TIP OR START NEXT
 CYCLE

CONTINUE WITH FIG. 7-21

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-27

states are generated, a burst-inhibited line write completes in eight clocks instead of the
five required for a burst write.

Clock 3 (C3)
The processor drives the second long word of data on the data bus and holds the address
and transfer attribute signals constant during C3. The selected device either increments
A3 and A2 to reference the next long word, or requests the processor to increment A3 and
A2 via the CLA input.
The selected device then registers this data from the data bus and asserts TA. At the end
of C3, assuming the acknowledge termination ignore state capability is disabled, the pro-
cessor samples the level of TA; if TA is asserted, the transfer terminates.
If TA is not recognized asserted at the end of C3, the processor inserts wait states instead
of terminating the transfer. The processor continues to sample TA on successive rising
edges of BCLK until TA is recognized asserted.

Clock 4 (C4)
This clock is identical to C3 except that the value driven on the data bus corresponds to
the third long word of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that the value driven on the data bus corresponds to
the fourth long word of data for the burst. After the processor recognizes the last TA as-

Figure 7-21. Line Write Burst-Inhibited Cycle Flowchart

1) INCREMENT A3–A2
2) DRIVE SIZ1–SIZ0 TO LONG
3) ASSERT TS FOR ONE BCLK
4) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER WRITE PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED
5) PLACE DATA ON D31–D0

1) DECODE ADDRESS
2) REGISTER DATA FROM D31–D0
3) ASSERT TA FOR ONE BCLK
4) NEGATE CLA

1) THREE-STATE D31–D0
2) NEGATE LOCK, LOCKE IF NECESSARY

1) NEGATE TIP OR START NEXT CYCLE

CONTINUED FROM FIGURE 7-20

4 LW NOT DONE

4 LW DONE

PROCESSOR SYSTEM

Bus Operation

7-28 M68060 USER’S MANUAL MOTOROLA

sertion and terminates the line write bus cycle, TIP remains asserted if the processor is
ready to begin another bus cycle. Otherwise, the processor negates TIP during the next
clock. The processor also three-states the data bus during the next clock following termi-
nation of the write cycle.

7.7.5 Locked Read-Modify-Write Cycles
The locked read-modify-write sequence performs a read, conditionally modifies the data in
the processor, and writes the data out to memory. In the MC68060, this operation can be
indivisible, providing semaphore capabilities for multiprocessor systems. During the entire

Figure 7-22. Line Write Bus Cycle Timing

BCLK

SIZ1–SIZ0

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

BS3–BS0

C1 C2 C3 C4 C5

TBI

CIOUT

CLA

10 11 0001

SAS

PRE
DRIVE

D31–D0

A1–A0

A3–A2

A31–A4

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-29

read-modify-write sequence, the MC68060 asserts the LOCK signal to indicate that an indi-
visible operation is occurring and asserts the LOCKE signal for the last write bus cycle to
indicate completion of the locked sequence. In addition to LOCK and LOCKE, the MC68060
provides the BGR input to allow external arbiters to indicate to the processor whether or not
to break a locked sequence. Refer to 7.11 Bus Arbitration for details on the bus arbitration
protocol.

The external arbiter can use the LOCK, LOCKE, and/or BGR to prevent arbitration of the
bus during locked processor sequences. External bus arbitrations can use LOCKE to sup-
port bus arbitration between consecutive read-modify-write cycles. A read-modify-write
operation is treated as noncachable. If the access hits in the data cache, it invalidates a
matching valid entry and pushes a matching dirty entry. The read-modify-write transfer
begins after the line push (if required) is complete; however, LOCK may assert during the
line push bus cycle.

The TAS, CAS, and MOVEC of BUSCR instructions are the only MC68060 instructions that
utilize read-modify-write transfers. Some page descriptor updates during translation table
searches also use read-modify-write transfers. Refer to Section 4 Memory Management
Unit for information about table searches.

The read-modify-write transfer for the CAS instruction in the MC68060 is similar to that of
the MC68040. If an operand does not match one of these instructions, the MC68060 exe-
cutes a single write transfer to terminate the locked sequence with LOCKE asserted. For the
CAS instruction, the value read from memory is written back. Figure 7-23 illustrates a func-
tional timing diagram for a TAS instruction read-modify-write bus transfer.

Clock 1 (C1)
The read cycle starts in C1. During C1, the processor places valid values on the address
bus and transfer attributes. LOCK is asserted to identify a locked read-modify-write bus
cycle. For user and supervisor mode accesses, which the corresponding memory unit
translates, the UPAx signals are driven with the values from the matching U1 and U0 bits.
The TTx and TMx signals identify the specific access type. R/W is driven high for a read
cycle. CIOUT is asserted if the access is identified as noncachable. The processor asserts
TS during C1 to indicate the beginning of a bus cycle. If not already asserted from a pre-
vious bus cycle, the TIP signal is also asserted at this time to indicate that a bus cycle is
active. Refer to Section 4 Memory Management Unit for information on the MC68060
and MC68LC060 memory units and Appendix B MC68EC060 for information on the
MC68EC060 memory unit.

Clock 2 (C2)
During C2, the processor negates TS. The selected device uses R/W, SIZ1, SIZ0, A1, and
A0 or BSx, to place its information on the data bus. With the exception of R/W, these sig-
nals also select any or all of the data bus bytes (D24–D31, D16–D23, D15–D8, and D7–
D0).
Concurrently, the selected device asserts TA. At the end of the C2, assuming that the ac-
knowledge termination ignore state capability is disabled, the processor samples the level
of TA and registers the current value on the data bus. If TA is asserted, the read transfer
terminates and the registered data is passed to the appropriate memory unit. If TA is not

Bus Operation

7-30 M68060 USER’S MANUAL MOTOROLA

recognized asserted, the processor ignores the data and appends a wait state instead of
terminating the transfer. The processor continues to sample TA on successive rising edg-
es of BCLK until TA is recognized as asserted. The registered data is then passed to the
appropriate memory unit. If more than one read cycle is required to read in the operand(s),
C1 and C2 are repeated accordingly.

Figure 7-23. Locked Bus Cycle for TAS Instruction Timing

C1 C2 CI C3 C4

LOCKE

LOCK

LOCKED TRANSFER

BCLK

SIZ1–SIZ0

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

BS3–BS0

CIOUT

SAS

LONG

PRE
DRIVED31–D0

A1–A0

A31–A2

 NOTE: It is assumed that the acknowledge termination ignore state capability is disabled.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-31

When the processor recognizes TA at the end of the last read transfer for the locked bus
cycle, it negates TIP during the first half of the next clock.

Clock Idle (CI)
The processor does not assert any new control signals during the idle clock states, but it
may begin the modify portion of the sequence at this time. The R/W signal remains in the
read mode until C3 to prevent bus conflicts with the preceding read portion of the cycle
and the data bus is not driven until C4.

Clock 3 (C3)
During C3, the processor places valid values on the address bus and transfer attributes
and drives R/W low for a write cycle. The processor asserts TS to indicate the beginning
of a bus cycle. The TIP signal is also asserted at this time to indicate that a bus cycle is
active. LOCKE is asserted during C3 for the last write bus cycle of the locked sequence.
If multiple write transfers are required for misaligned operands or multiple operands,
LOCKE is asserted only for the final write transfer.
The processor pre-conditions the data bus during C3 to improve AC timing. The process
of pre-conditioning involves reinforcing the logic level that is already at the data pin. If the
voltage level is originally zero volts, nothing is done; if the voltage level is 3.3 V, that volt-
age level is reinforced; however, if the voltage level is originally 5 V, the processor drives
that data pin from 5 V down to 3.3 V. Note that no active logic change is done at this time.
The actual logic level change is done in C4. This pre-conditioning affects operation prima-
rily when using the processor in a 5-V system.

Clock 4 (C4)
During C4, the processor negates TS and drives the appropriate bytes of the data bus with
the data to be written. All other bytes are driven with undefined values. The selected de-
vice uses R/W, SIZ1, SIZ0, A1, and A0 or BSx, to register the information on the data bus.
Any or all of the data bus bytes (D31–D24, D23–D16, D15–D8, and D7–D0) are selected
by SIZ1, SIZ0, A1, and A0 or BSx. Concurrently, the selected device asserts TA. Assum-
ing that the acknowledge termination ignore state capability is disabled, the processor
samples the level of TA; if TA is asserted, the bus cycle terminates. If TA is not recognized
asserted at the end of C4, the processor appends a wait state instead of terminating the
transfer. The processor continues to sample the TA signal on successive rising edges of
BCLK until it is recognized asserted.
When the processor recognizes TA at the rising edge of BCLK, the bus cycle is terminat-
ed, but TIP remains asserted if the processor is ready to begin another bus cycle. Other-
wise, the processor negates TIP during the next clock. The processor also three-states
the data bus during the next clock following termination of the write cycle. When the last
write transfer is terminated, LOCKE is negated. The processor also negates LOCK if the
next bus cycle is not a read-modify-write operation.

7.7.6 Emulating CAS2 and CAS Misaligned
The CAS2 and CAS (with misaligned operands) are not supported in hardware by the
MC68060. If these instructions are encountered, an unimplemented integer exception is
taken. Once the opcode for a CAS2 or CAS is decoded, the MOVEC instruction to the

Bus Operation

7-32 M68060 USER’S MANUAL MOTOROLA

BUSCR is used to control the LOCK and LOCKE outputs. Refer to 7.4 Bus Control Regis-
ter for the format of the BUSCR. Emulation of these instructions is done as part of the
MC68060 software package (M68060SP). Refer to Appendix C MC68060 Software Pack-
age for more information.

7.7.7 Using CLA to Increment A3 and A2
The MC68060 provides the capability to cycle long-word address bits A3, A2 based on the
CLA signal, which should assist in supporting high-speed DRAM systems. CLA may also be
used to support bursting for slaves which do not burst.

The processor begins sampling CLA immediately following the BCLK rising edge that
causes TS to assert. The initial address of the line transfer is that of the first requested or
needed long word and the attributes are those of the line transfer. After each BCLK rising
edge when CLA is asserted, the long-word address (A3, A2) increments in circular wrap-
around fashion. If CLA is negated, A3, A2 does not change, but remains fixed, as on the
MC68040 processor. Since CLA is not an acknowledge termination signal, it is not affected
by the acknowledge termination ignore state capability, if that mode is enabled. Also note
that the A3, A2 increments in a circular wrap around fashion for as many times as CLA is
asserted about a rising BCLK edge.

Figure 7-24 shows how CLA may be used for a high-speed DRAM design. In this figure, the
DRAM design requires a means of cycling A3, A2 before TA is asserted to the processor.
CLA provides a method of avoiding a delay which would otherwise be incurred with the use
of an external medium-scale integration (MSI) counter. W0 to W3 represent A3, A2 incre-
menting. C0 to C3 represent the column address sequencing caused by the change of A3,
A2. The timing diagram represents a 5:3:3:3 design, which is feasible with a full-speed 50-
MHz clock and 65-ns page-mode DRAMs.

7.8 ACKNOWLEDGE CYCLES
Bus transfers with transfer type signals TT1 and TT0 = $3 are classified as acknowledge bus
cycles. The following paragraphs describe interrupt acknowledge, breakpoint acknowledge,
and LPSTOP broadcast bus cycles that use this encoding.

7.8.1 Interrupt Acknowledge Cycles
When a peripheral device requires the services of the MC68060 or is ready to send informa-
tion that the processor requires, it can signal the processor to take an interrupt exception.
The interrupt exception transfers control to a routine that responds appropriately. The
peripheral device uses the interrupt priority level signals (IPLx) to signal an interrupt condi-
tion to the processor and to specify the priority level for the condition. Refer to Section 8
Exception Processing for a discussion on the IPLx levels and IPEND.

The status register (SR) of the MC68060 contains an interrupt priority mask (I2–I0 bits). The
value in the interrupt mask is the highest priority level that the processor ignores. When an
interrupt request has a priority higher than the value in the mask, the processor makes the
request a pending interrupt. IPLx must maintain the interrupt request level until the
MC68060 acknowledges the interrupt to guarantee that the interrupt is recognized. The
MC68060 continuously samples IPLx on consecutive rising edges of CLK to synchronize

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-33

and debounce these signals. An interrupt request that is held constant for two consecutive
CLK periods is considered a valid input. Although the protocol requires that the request
remain until the processor runs an interrupt acknowledge cycle for that interrupt value, an
interrupt request that is held for as short a period as two CLK cycles can be potentially rec-
ognized. Figure 7-25 is a flowchart of the procedure for a pending interrupt condition.

The MC68060 asserts IPEND when an interrupt request is pending. Figure 7-26 illustrates
the assertion of IPEND relative to the assertion of an interrupt level on the IPLx signals.
IPEND signals external devices that an interrupt exception will be taken at an upcoming

Figure 7-24. Using CLA in a High-Speed DRAM Design

Figure 7-25. Interrupt Pending Procedure

TS

TA

RAS

CAS

A3–A2

DRAM ADDRESS

CLA

ROW C0 C1 C2 C3 C0

CLK

DATA
 (WRITE CYCLE)

DATA
(READ CYCLE)

W0 W1 W2 W3 W0

RESET

SAMPLE AND SYNCHRONIZE
IPL2–IPL0

ASSERT IPENDOTHERWISE

INTERRUPT LEVEL I2–I0,
OR TRANSITION ON LEVEL 7

>

Bus Operation

7-34 M68060 USER’S MANUAL MOTOROLA

instruction boundary (following any higher priority exception). The IPEND signal negates
after the interrupt acknowledge bus cycle.

IPEND is intended to provide status information, and must not be used to replace the inter-
rupt acknowledge cycle. As such, normal applications do not rely on IPEND to disable inter-
rupts. Applications that use IPEND as a replacement for the interrupt acknowledge cycle are
neither recommended nor supported.

The MC68060 takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
MC68060 executes at least one instruction in an interrupt exception handler before recog-
nizing another interrupt request. The following paragraphs describe the various kinds of
interrupt acknowledge bus cycles that can be executed as part of interrupt exception pro-
cessing. Table 7-4 provides a summary of the possible interrupt acknowledge terminations
and the exception processing results. Note that TRA must always be negated for proper
operation in the MC68040 acknowledge termination mode.

Figure 7-26. Assertion of IPEND

Table 7-4. Interrupt Acknowledge Termination Summary
Acknowledge
Termination

Mode
TA TEA TRA AVEC Termination Condition

Either High High High Don’t Care Insert Wait States
MC68040 High Low High Don’t Care

Take Spurious Interrupt Exception
Native-MC68060 Don’t Care Low Don’t Care Don’t Care

Either Low High High High Register Vector Number on D7–D0 and Take Inter-
rupt Exception

Either Low High High Low Take Autovectored Interrupt Exception
MC68040 Low Low High Don’t Care

Retry Interrupt Acknowledge Cycle
Native-MC68060 Don’t Care High Low Don’t Care

MC68040 Don’t Care Don’t Care Low Don’t Care Illegal Combination, Unsupported

CLK

IPL2–IPL0

IPEND

COMPARE REQUEST WITH MASK IN SR

ASSERT IPENDIPLx RECOGNIZED

IPLx SYNCHRONIZED

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-35

7.8.1.1 INTERRUPT ACKNOWLEDGE CYCLE (TERMINATED NORMALLY). When the
MC68060 processes an interrupt exception, it performs an interrupt acknowledge bus cycle
to obtain the vector number that contains the starting location of the interrupt exception han-
dler. Some interrupting devices have programmable vector registers that contain the inter-
rupt vectors for the exception handlers they use. Other interrupting conditions or devices
cannot supply a vector number and use the autovector bus cycle described in 7.8.1.2
Autovector Interrupt Acknowledge Cycle.

The interrupt acknowledge bus cycle is a read transfer. It differs from a normal read cycle in
the following respects:

• TT1 and TT0 = $3 to indicate an acknowledged bus cycle

• Address signals A31–A0 are set to all ones ($FFFFFFFF)

• TM2–TM0 are set to the interrupt request level (the inverted values of IPLx).

The responding device places the vector number on the lower byte of the data bus during
the interrupt acknowledge bus cycle, and the cycle is terminated normally with TA. Figure 7-
27 and Figure 7-28 illustrate a flowchart and functional timing diagram for an interrupt
acknowledge cycle terminated with TA.

Note that the acknowledge termination ignore state capability is applicable to the interrupt
acknowledge cycle. If enabled, TA and other acknowledge termination signals are ignored
for a user-programmed number of BCLK cycles.

7.8.1.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting TA, the
device asserts the autovector (AVEC) signal with TA to terminate the cycle. AVEC is only
sampled with TA asserted. AVEC can be grounded if all interrupt requests are autovectored.

The vector number supplied in an autovector operation is derived from the interrupt priority
level of the current interrupt. When the AVEC signal is asserted with TA during an interrupt
acknowledge bus cycle, the MC68060 ignores the state of the data bus and internally gen-
erates the vector number, which is the sum of the interrupt priority level plus 24 ($18). There
are seven distinct autovectors that can be used, corresponding to the seven levels of inter-
rupts available with IPLx signals. Figure 7-29 illustrates a functional timing diagram for an
autovector operation.

Note that the acknowledge termination ignore state capability is applicable to the interrupt
acknowledge cycle. If enabled, AVEC and other acknowledge termination signals are
ignored for a user-programmed number of BCLK cycles.

7.8.1.3 SPURIOUS INTERRUPT ACKNOWLEDGE CYCLE. When a device does not
respond to an interrupt acknowledge bus cycle, spurious with TA, or AVEC and TA, the
external logic typically returns the transfer error acknowledge signal (TEA). In this case, the
MC68060 automatically generates the spurious interrupt vector number 24 ($18) instead of
the interrupt vector number. If operating in the MC68040 acknowledge termination mode,

Bus Operation

7-36 M68060 USER’S MANUAL MOTOROLA

and if TA and TEA are both asserted, the processor retries the cycle. If operating in native-
MC68060 acknowledge termination mode, a retry is indicated by the assertion of TRA.

Note that the acknowledge termination ignore state capability is applicable to the interrupt
acknowledge cycle. If enabled, TA, TEA, TRA, and other acknowledge termination signals
are ignored for a user-programmed number of BCLK cycles.

7.8.2 Breakpoint Acknowledge Cycle
The execution of a BKPT instruction generates the breakpoint acknowledge cycle. An
acknowledged access is a read bus cycle and is indicated with TT1, TT0 = $3, address A31–
A0 = $00000000, and TM2–TM0 = $0. When the external device terminates the cycle with
either TA or TEA, the processor takes an illegal instruction exception. A retry termination
simply retries the breakpoint acknowledge cycle. Figure 7-30 and Figure 7-31 illustrate a
flowchart and functional timing diagram for a breakpoint acknowledge bus cycle.

Figure 7-27. Interrupt Acknowledge Cycle Flowchart

 1) IPEND RECOGNIZED. WAIT FOR INSTRUC-
 TION BOUNDARY OR LOCK NEGATED
 2) SET R/W TO READ
 3) DRIVE ADDRESS ON A31–A0 TO $FFFFFFFF
 4) DRIVE UPA1–UPA0 = 0
 5) DRIVE TT1–TT0 = 3
 6) DRIVE TM2–TM0 = INTERRUPT LEVEL
 7) DRIVE TLN1–TLN0 = 0
 8) ASSERT BS3
 9) NEGATIVE CIOUT, LOCK, LOCKE, BS2–BS0
10) DRIVE SIZ1–SIZ0 TO BYTE
11) ASSERT TS FOR ONE BCLK
12) ASSERT TIP
13) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED

1) ASSERT IPL2–IPL0 SUCH THAT INTERRUPT
 LEVEL GREATER THAN MASK LEVEL IN SR

1) DECODE ADDRESS AND ATTRIBUTES
2) EITHER PLACE VECTOR ON D7–D0 OR
 ASSERT AVEC
3) ASSERT TA, TEA, OR TRA FOR ONE BCLK1) IF NORMAL TERMINATION (TA ONLY) WITH

 AVEC ASSERTED, USE VECTORS 25 TO 31,
 DEPANDING ON INTERRUPT LEVEL
2) IF NORMAL TERMINATION (TA ONLY) WITH
 AVEC NEGATED, USE VECTOR GIVEN IN
 D7–D0
3) IF BUS ERROR TERMINATION, USE VEC-
 TOR 24
4) IF RETRY TERMINATION, RETRY IACK
 CYCLE

1) NEGATE TIP OR START NEXT CYCLE
1) THREE-STATE D31–D0
2) NEGATE AVEC IF NECESSARY

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-37

Note that the acknowledge termination ignore state capability is applicable to the breakpoint
acknowledge cycle. If enabled, TA, TEA, and TRA are ignored for a user-programmed num-
ber of BCLK cycles.

Figure 7-28. Interrupt Acknowledge Bus Cycle Timing

C1 C2

INTERRUPT
ACKNOWLEDGE

AVEC

C1 C2

WRITE STACK

VECTOR #

BCLK

UPA1–UPA0

D7–D0

TM2–TM0

TT1–TT0

TS

TIP

TA

R/W

BS3

CIOUT

SAS

BS2–BS0

BYTE

INTERRUPT LEVEL

MISCELLANEOUS
ATTRIBUTES

SIZ1–SIZ0

D31–D8

A31–A0

Bus Operation

7-38 M68060 USER’S MANUAL MOTOROLA

7.8.2.1 LPSTOP BROADCAST CYCLE. The execution of an LPSTOP instruction gener-
ates the LPSTOP broadcast cycle. This access is a write bus cycle and is indicated with
TT1, TT0 = $3, A31–A0 = $FFFFFFFE, and TM2–TM0 = $0. When an external device ter-
minates the cycle with either TA or TEA, the processor enters the low-power stop mode. A

Figure 7-29. Autovector Interrupt Acknowledge Bus Cycle Timing

C1 C2

INTERRUPT
ACKNOWLEDGE
AUTOVECTORED

AVEC

C1 C2

WRITE STACK

A31–A0

BCLK

SIZ1–SIZ0

UPA1–UPA0

D31–D0

TM2–TM0

TT1–TT0

TS

TIP

TA

R/W

BS3

CIOUT

SAS

BS2–BS0

BYTE

INTERRUPT LEVEL

MISCELLANEOUS
ATTRIBUTES

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-39

retry termination simply retries the LPSTOP broadcast cycle. The lower data bits D15–D0
are driven with the LPSTOP immediate word value and the upper data bits D31–D16 are
driven high. After a number of CLK cycles, PSTx change to $16. The timing of when the
PSTx signals are updated relative to the LPSTOP broadcast cycle is undefined.

Once the LPSTOP broadcast cycle is finished, no bus arbitration activity is performed by the
MC68060. Furthermore, it is imperative that no alternate master bus activity be done from
the time the LPSTOP broadcast cycle is finished to when the LPSTOP encoding is indicated
by PSTx. For systems that require the MC68060 to be three-stated when in the LPSTOP
mode, the bus must be arbitrated away during the LPSTOP broadcast cycle. This is easily
achieved by having the BG input negated at the same time as TA or TEA. For additional
power savings, CLK may be stopped in the low state while in the LPSTOP mode. Systems
must ensure that CLK only be stopped when the PSTx signals indicate $16.

Figure 7-32 illustrates a flowchart of the LPSTOP broadcast cycle. Figure 7-33 and Figure
7-34 illustrate functional timing diagrams for an LPSTOP broadcast cycle as a function of
BG.

Figure 7-30. Breakpoint Interrupt Acknowledge Cycle Flowchart

 1) SET R/W TO READ
 3) DRIVE ADDRESS ON A31–A0 TO $00000000
 4) DRIVE UPA1–UPA0 = 0
 5) DRIVE TT1–TT0 = 3
 6) DRIVE TM2–TM0 = 0
 7) DRIVE TLN1–TLN0 = 0
 8) ASSERT BS0
 9) NEGATIVE CIOUT, LOCK, LOCKE, BS3–BS1
10) DRIVE SIZ1–SIZ0 TO BYTE
11) ASSERT TS FOR ONE BCLK
12) ASSERT TIP
13) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED. ELSE,
 ASSERT SAS AFTER READ PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED

1) DECODE ADDRESS AND ATTRIBUTES
2) ASSERT TA, TEA, OR TRA FOR ONE BCLK

1) IF NORMAL OR BUS ERROR TERMINATION
 TAKE EXCEPTION USING VECTOR 4
 (ILLEGAL INSTRUCTION EXCEPTION
 VECTOR) AFTER COMPLETION OF BUS
 CYCLE
2) IF RETRY TERMINATION, RETRY BREAK-
 POINT ACKNOWLEDGE CYCLE

1) NEGATE TIP OR START NEXT CYCLE
2) INITIATE EXCEPTION PROCESSING

PROCESSOR SYSTEM

Bus Operation

7-40 M68060 USER’S MANUAL MOTOROLA

To exit the LPSTOP mode, the processor CLK must be restarted for at least eight CLK and
two BCLK periods prior to asserting either the RSTI or generating an interrupt. It is impera-
tive before asserting RSTI or generating the interrupt no alternate master activity be done
until the processor begins exception processing for either the reset or interrupt. Additionally,
the following control signals must be pulled-up or negated during this time: BB, TRA, TA,
TEA, CLA, BGR, BG, SNOOP, AVEC, MDIS, CDIS, TCI, and TBI. The processor uses the
PSTx encoding of $18 to indicate exception processing.

Figure 7-31. Breakpoint Interrupt Acknowledge Bus Cycle Timing

C1 C2

BREAKPOINT
ACKNOWLEDGE

C1 C2

WRITE STACK

A31–A0

BCLK

SIZ1–SIZ0

UPA1–UPA0

D31–D0

TM2–TM0

TT1–TT0

TS

TIP

TA

R/W

BS0

CIOUT

SAS

BS3–BS1

BYTE

MISCELLANEOUS
ATTRIBUTES

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-41

In normal applications, the requirement to keep the above-mentioned control signals
negated while exiting the LPSTOP condition should be easy to meet, since most of these
signals should already have pullup resistors and keeping alternate master activity from
occurring would allow the pullup resistors to keep these control signals negated. However,
strict compliance for the BGR and AVEC signals is not necessary because these signals are
significant only during locked sequences (BGR) and interrupt acknowledge cycles (AVEC),
neither of which is pending when exiting the LPSTOP condition.

Figure 7-32. LPSTOP Broadcast Cycle Flowchart

 1) SET R/W TO WRITE
 2) DRIVE ADDRESS ON A31–A0 TO $FFFFFFFF
 3) DRIVE UPA1–UPA0 = 0
 4) DRIVE TT1–TT0 = 3
 5) DRIVE TM2–TM0 = 0
 6) DRIVE TLN1–TLN0 = 0
 7) ASSERT BS3–BS2
 8) NEGATE CIOUT, LOCK, LOCKE, BS1–BS0
 9) DRIVE SIZ1–SIZ0 TO BYTE
10) ASSERT TS FOR ONE BCLK
11) ASSERT TIP
12) DRIVE D15–D0 TO IMMEDIATE VALUE
13) ASSERT SAS IMMEDIATELY IF
 ACKNOWLEDGE TERMINATION IGNORE
 STATE CAPABILITY DISABLED; ELSE,
 ASSERT SAS AFTER WRITE PRIMARY
 IGNORE STATE COUNTER HAS EXPIRED 1) DECODE ADDRESS AND ATTRIBUTES

 2) ASSERT TA, TEA, OR TRA FOR ONE BCLK

1) IF NORMAL OR BUS ERROR TERMINATION
 ENTER LPSTOP MODE AFTER COMPLETION
 OF BUS CYCLE
2) IF RETRY TERMINATION, RETRY LPSTOP
 BROADCAST CYCLE

1) NEGATE TIP
2) THREE-STATE ENTIRE BUS IF BG NEGATED
 AT BUS CYCLE TERMINATION; ELSE, DRIVE
 BUS SIGNALS HIGH

PROCESSOR SYSTEM

1) PERFORM INTERNAL CLEANUP
2) ENTER LPSTOP MODE
3) DRIVE PST4–PST0 = $16

1) CONTINUE ALTERNATE MASTER ACTIVITY
 AS NECESSARY WHEN PST4–PST0 = $16
2) STOP CLK AT LOW STATE IF NEEDED
3) BUS ARBITRATION MUST RECOGNIZE
 THAT PROCESSOR DOES NOT PERFORM
 TS-BTT TRACKING WHILE IN LPSTOP MODE

3) DRIVE BG
4) TEMPORARILY CEASE ALL ALTERNATE
 MASTER ACTIVITY

Bus Operation

7-42 M68060 USER’S MANUAL MOTOROLA

Figure 7-33. LPSTOP Broadcast Bus Cycle Timing, BG Negated

C1 C2

LPSTOP
BROADCAST

CLK MAY BE
STOPPED LOW

BCLK

TS

TIP

TA

BG

BR

BB

BTT

R/W

CIOUT

SAS

MISCELLANEOUS
ATTRIBUTES

$16

NO ALTERNATE MASTER ACTIVITY ALLOWED

PRE
DRIVE

$FFFFFFFE

WORD

A31–A0

SIZ1–SIZ0

D15–D0

PST4–PST0

TM2–TM0

TT1–TT0

BS1–BS0

BS3–BS2

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-43

Figure 7-34. LPSTOP Broadcast Bus Cycle Timing, BG Asserted

C1 C2

BCLK

TS

TIP

TA

BG

BR

BB

BTT

PST4–PST0

R/W

CIOUT

SAS

MISCELLANEOUS
ATTRIBUTES

$FFFFFFFE

$16

WORD

PRE
DRIVE

LPSTOP
BROADCAST

CLK MAY BE
STOPPED LOWNO ALTERNATE MASTER ACTIVITY ALLOWED

A31–A0

SIZ1–SIZ0

D15–D0

TM2–TM0

TT1–TT0

BS1–BS0

BS3–BS2

Bus Operation

7-44 M68060 USER’S MANUAL MOTOROLA

Figure 7-35 illustrates a flowchart for exiting the LPSTOP mode, and Figure 7-36 illustrates
the bus activity when exiting the LPSTOP mode, assuming that an interrupt is used to
awaken the processor and that the bus is initially three-stated.

Note that the acknowledge termination ignore state capability is applicable to the LPSTOP
broadcast cycle. If enabled, TA, TEA, and TRA are ignored for a user-programmed number
of BCLK cycles.

Figure 7-35. Exiting LPSTOP Mode Flowchart

1) PERFORM INTERNAL WAKE-UP
2) BEGIN EXCEPTION PROCESSING
3) DRIVE PST4–PST0 = $18 (EXCEPTION
 PROCESSING)

1) BEGIN TO OSCILLATE CLK FOR AT LEAST
 8 CLKS PLUS 2 BCLKS
2) TEMPORARILY CEASE ALL ALTERNATE
 MASTER ACTIVITY
3) NEGATE BB, TRA, TEA, TA, CLA, BGR, BG,
 SNOOP, AVEC, MDIS, CDIS, TCI, AND TBI.
4) ASSERT RSTI OR ASSERT IPL2–IPL0 TO
 GREATER THAN INTERRUPT MASK LEVEL

INTERRUPT

1) ASSERT BG AFTER PST4–PST0 = $18
2) CONTINUE ALTERNATE MASTER
 ACTIVITY AS NECESSARY

1) RESPOND TO INTERRUPT ACKNOWLEDGE
 BUS CYCLE AS APPROPRIATE
2) PERFORM NORMAL READ/WRITE TO
 MEMORY AS REQUESTED BY PROCESSOR

1) PERFORM INTERRUPT
 ACKNOWLEDGE CYCLE TO
 GET VECTOR NUMBER
2) PLACE STACK FRAME ON
 SYSTEM STACK

1) FETCH INITIAL SYSTEM STACK
 POINTER FROM VECTOR
 TABLE

RESET

1) FETCH PROGRAM COUNTER FROM
 VECTOR TABLE
2) PREFETCH INSTRUCTIONS OF APPRO-
 PRIATE EXCEPTION HANDLER
3) EXECUTE FIRST INSTRUCTION OF APPRO-
 PRIATE EXCEPTION HANDLER

PROCESSOR SYSTEM

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-45

Figure 7-36. Exiting LPSTOP Mode Timing Diagram

EXCEPTION
PROCESSING

CLK READY
FOR MORE

THAN 8 CLKS
AND 2 BCLKS

BCLK

TS

TIP

TA, TEA, TRA,
TCI, TBI, AVEC
SNOOP, BGR,

MDIS, CDIS, CLA

BG

BR

BB

BTT

PST4–PST0

SAS

MISCELLANEOUS
ATTRIBUTES

NO ALTERNATE MASTER ACTIVITY ALLOWED

IPL2–IPL0

$16 $18

A31–A0

D31–D0

Bus Operation

7-46 M68060 USER’S MANUAL MOTOROLA

7.9 BUS EXCEPTION CONTROL CYCLES
The MC68060 bus architecture requires assertion of TA from an external device to signal
that a bus cycle is complete. TA is not asserted in the following cases:

• The external device does not respond.

• No interrupt vector is provided.

• Various other application-dependent errors occur.

External circuitry can provide TEA when no device responds by asserting TA within an
appropriate period of time after the processor begins the bus cycle. This allows the cycle to
terminate and the processor to enter exception processing for the error condition. A retry
may be indicated by asserting TEA in combination with TA in the MC68040 acknowledge
termination mode or by asserting TRA if in the native-MC68060 acknowledge termination
mode.

To properly control termination of a bus cycle for a bus error or retry condition, TA and TEA
must be asserted and negated about the same rising edge of BCLK when using the
MC68040 acknowledge termination mode. Table 7-5 lists the control signal combinations
and the resulting bus cycle terminations. Bus error and retry terminations during burst cycles
operate as described in 7.7.2 Line Read Transfer and 7.7.4 Line Write Cycles

7.9.1 Bus Errors
The system hardware can use the TEA signal to abort the current bus cycle when a fault is
detected. A bus error is recognized during a bus cycle when TA is negated and TEA is
asserted (MC68040 acknowledge termination mode) or during a bus cycle when TEA is
asserted (native-MC68060 acknowledge termination mode). Also, for the MC68040
acknowledge termination mode, a retry termination during the 2nd, 3rd, or 4th long word of
a line transfer is interpreted as a bus error termination. This rule applies also for the second,
third, and fourth long-word transfer on a line transfer that was burst inhibited.

Table 7-5. Termination Result Summary
Acknowledge
Termination

Mode
TA TEA TRA Result

MC68040 High Low High Bus Error—Terminate and Take Bus Error Exception,
Possibly DeferredNative-MC68060 Don’t Care Low Don’t Care

MC68040 1 Low Low High
Retry Operation—Terminate and Retry

Native-MC680602 Don’t Care High Low

Either Low High High Normal Cycle Terminate and Continue
Either High High High Insert Wait States

MC68040 Don’t Care Don’t Care Low Illegal operation, Not Supported
NOTES:

1. A retry termination in MC68040-mode is valid only for the first long word of a line transfer and is considered a
bus error termination otherwise. Note that for burst-inhibited line transfers, the resulting long-word bus cycles
are considered part of the original line transfer and would therefore cause a bus error termination as well.

2. A retry termination in native-MC68060-mode is valid only for the first long word of a line transfer it is ignored
otherwise. Note that for burst-inhibited line transfers, the resulting long-word bus cycles are considered part of
the original line transfer and would therefore ignore the retry termination as well.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-47

When the processor recognizes a bus error condition for an access, the access is termi-
nated immediately. A line access that has TEA asserted for one of the four long-word trans-
fers aborts without completing the remaining transfers, regardless of whether the line
transfer uses a burst or burst-inhibited access.

When a bus cycle is terminated with a bus error, the MC68060 can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception. The instruction prefetch mechanism requests instruction words from the instruc-
tion memory unit before it is ready to execute them. If a bus error occurs on an instruction
fetch, the processor does not take the exception until it attempts to use the instruction.
Should an intervening instruction cause a branch or should a task switch occur, the access
error exception for the unused access does not occur. Similarly, if a bus error is detected on
the second, third, or fourth long-word transfer for a line read access, an access error excep-
tion is taken only if the execution unit is specifically requesting that long word. The line is not
placed in the cache, and the processor repeats the line access when another access refer-
ences the line. If a misaligned operand spans two long words in a line, a bus error on either
the first or second transfer for the line causes exception processing to begin immediately. A
bus error termination for any write access or read access that reference data specifically
requested by the execution unit causes the processor to begin exception processing imme-
diately. Refer to Section 8 Exception Processing for details of access error exception pro-
cessing.

When a bus error terminates an access, the contents of the corresponding cache can be
affected in different ways, depending on the type of access. For a cache line read to replace
a valid instruction or data cache line, the cache line is untouched if the replacement line read
terminates with a bus error. If a dirty data cache line is being replaced, the dirty line is placed
in the push buffer and is eventually written out to memory. This is done whether or not a bus
error occurs during the replacement line read. If any cache push results in a bus error ter-
mination, the cache push data is lost.

Write accesses to memory pages specified as cachable writethrough by the data memory
unit update the corresponding cache line before accessing memory. If a bus error occurs
during a memory access, the cache line remains valid with the new data. For noncachable
precise memory pages, the cache line is not updated if the write cycle terminates with a bus
error. Figure 7-37 illustrates a functional timing diagram of a bus error on a word write
access causing an access error exception. Figure 7-38 illustrates a functional timing dia-
gram of a bus error on a line read access that does not cause an access error exception.

In general, write cycles that result in bus error termination must be avoided. The MC68060
has write and push buffers to decouple the processor from the system. Before the processor
writes into the write and push buffers, access errors that result from address translation
cache (ATC) faults should have been reported via an access error exception and eventually
fixed by the access error handler. Since the instruction that reports the bus error on the write
cycle usually is not the instruction that causes the write, it is not possible to recover that write
cycle via an instruction restart. Although the fault address indicates the logical address of
the write cycle that incurred the bus error, the write data information is not available in the
access error stack. As such, this access error case is nonrecoverable unless the system is

Bus Operation

7-48 M68060 USER’S MANUAL MOTOROLA

implemented with an external device that latches the write data when a bus error terminates
a write cycle.

7.9.2 Retry Operation
When an external device asserts both the TA and TEA signals during a bus cycle in the
MC68040 acknowledge termination mode or if an external device asserts TRA with TEA
negated during a bus cycle in the native-MC68060 acknowledge termination mode, the pro-
cessor enters the retry bus operation sequence. The processor terminates the bus cycle and
immediately retries the bus cycle using the same access information (address and transfer
attributes). However, if the bus cycle was a cache push operation and the bus is arbitrated
away from the MC68060 before the retry operation with a snoop access during the arbitra-
tion which invalidates the cache push, the processor does not initiate a retry operation. Fig-
ure 7-39 illustrates a functional timing diagram for a retry of a read bus transfer.

Figure 7-37. Word Write Access Bus Cycle Terminated with TEA Timing

C1 C2

BCLK

WORD

SIZ1

MISCELLANEOUS
ATTRIBUTES

TS

SAS

TIP

TA

R/W

SIZ0

WRITE CYCLE

C1 C2

WRITE STACK

TEA

A31–A0

D31–D0 PRE
DRIVE

PRE
DRIVE

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-49

The processor retries any read or write bus cycles of a read-modify-write sequence sepa-
rately; LOCK remains asserted during the entire retry sequence. If the last bus cycle of a
locked access is retried, LOCKE remains asserted through the retry of the write bus cycle.

When in the MC68040 acknowledge termination mode, a retry termination on the initial long-
word transfer of a line access causes the processor to retry the bus cycle as illustrated in
Figure 7-40. However, the processor interprets a retry bus operation signaled during the
second, third, or fourth long-word transfer of a line burst bus cycle as a bus error and causes
the processor to abort the line transfer. However, when in the native-MC68060 acknowledge
termination mode, a retry termination signaled during the second, third, or fourth long-word
transfers of a line burst bus cycle are ignored.

Figure 7-38. Line Read Access Bus Cycle Terminated with TEA Timing

BCLK

MISCELLANEOUS
ATTRIBUTES

TS

CLA

TIP

TA

R/W

10 1101

C1 C2 C3 C4

TBI

TEA

TEA ENDS BURST—
NO EXCEPTION
TAKEN

SAS

A31–A4
A1–A0

A3–A2

SIZ1–SIZ0

D31–D0

Bus Operation

7-50 M68060 USER’S MANUAL MOTOROLA

The MC68060 considers the resulting second, third, and fourth long-word bus cycles of a
burst-inhibited line transfer as part of the original line transfer cycle. Therefore, the MC68060
interprets a retry termination during these bus cycles as though they were part of the original
line transfer, and depending on the acknowledge termination mode, a retry termination is
either interpreted as a bus error (MC68040 mode) or ignored (native-MC68060 mode).

Negating the bus grant (BG) signal on the MC68060 while indicating a retry termination pro-
vides a relinquish and retry operation for any bus cycle that can be retried (see Figure 7-44).
If retrying a bus cycle that is part of a locked sequence of bus cycles, a relinquish and retry
of the bus requires BGR be asserted along with BG negated to cause the processor to abort
any following locked bus cycles that are a part of the locked sequence.

Figure 7-39. Retry Read Bus Cycle Timing

C1 C2

R/W

BCLK

MISCELLANEOUS
ATTRIBUTES

SAS

TIP

TA

READ CYCLE
RETRY SIGNALED

RETRY
CYCLE

C1 C2

TS

TEA

CW

TRA

TA

TEA

TRA

MC68040
ACKNOWLEDGE

TERMINATION
MODE

NATIVE-MC68060
ACKNOWLEDGE

TERMINATION
MODE

LONG

A31–A0

SIZ1–SIZ0

D31–D0

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-51

7.9.3 Double Bus Fault
A double bus fault occurs when an access or address error occurs during the exception pro-
cessing sequence, e.g., the processor attempts to stack several words containing informa-
tion about the state of the machine while processing an access error exception. If a bus error
occurs during the stacking operation, the second error is considered a double bus fault and
the processor is halted.

The MC68060 indicates a double bus fault condition by continuously driving PSTx with an
encoded value of $1C until the processor is reset. Only an external reset operation can
restart a halted processor. The halted processor releases the external bus by negating BR
and forcing all outputs to a high-impedance state.

Figure 7-40. Line Write Retry Bus Cycle Timing

C1 C2

BCLK

MISCELLANEOUS
ATTRIBUTES

TS

TIP

TA

R/W

RETRY
SIGNALED

RETRY CYCLE

C2 C3

SAS

TEA

C1

LINE

TRA

TA

TEA

TRA

C4 C5

MC68040
ACKNOWLEDGE

TERMINATION
MODE

NATIVE-MC68060
ACKNOWLEDGE

TERMINATION
MODE

A31–A0

SIZ1–SIZ0

D31–D0

Bus Operation

7-52 M68060 USER’S MANUAL MOTOROLA

A second access or address error that occurs during execution of an exception handler or
later, does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The processor continues to retry the same bus cycle
as long as external hardware requests it.

7.10 BUS SYNCHRONIZATION
The MC68060 integer unit generates access requests to the instruction and data memory
units to support integer and floating-point operations. Both the <ea> fetch and write-back
stages of the integer unit pipeline perform accesses to the data memory unit. All read and
write accesses are performed in strict program order. Compared with the MC68040, the
MC68060 is always “serialized’. This feature makes it possible for automatic bus synchroni-
zation without requiring NOPs between instructions to guarantee serialization of reads and
writes to I/O devices.

The instruction restart model used for exception processing in the MC68060 may require
special care when used with certain peripherals. After the operand fetch for an instruction,
an exception that causes the instruction to be aborted can occur, resulting in another access
for the operand after the instruction restarts. For example, an exception could occur after a
read access of an I/O device’s status register. The exception causes the instruction to be
aborted and the register to be read again. If the first read accesses clears the status bits,
the status information is lost, and the instruction obtains incorrect data.

7.11 BUS ARBITRATION
The bus design of the MC68060 provides for one bus master at a time, either the MC68060
or an external device. More than one device having the capability to control the bus can be
attached to the bus. An external arbiter prioritizes requests and determines which device is
granted access to the bus. Bus arbitration is the protocol by which the processor or an exter-
nal device becomes the bus master. When the MC68060 is the bus master, it uses the bus
to read instructions and transfer data not contained in its internal caches to and from mem-
ory. When an alternate bus master owns the bus, the MC68060 can be made to monitor the
alternate bus master’s transfer and maintain cache coherency. This capability is discussed
in more detail in 7.12 Bus Snooping Operation.

Like the MC68040, the MC68060 implements an arbitration method in which an external
arbiter controls bus arbitration and the processor acts as a slave device requesting owner-
ship of the bus from the arbiter. Since the user defines the functionality of the external arbi-
ter, it can be configured to support any desired priority scheme. For systems in which the
processor is the only possible bus master, the bus can be continuously granted to the pro-
cessor, and no arbiter is needed. Systems that include several devices that can become bus
masters require an arbiter to assign priorities to these devices so, when two or more devices
simultaneously attempt to become the bus master, the one having the highest priority
becomes the bus master first. The MC68060 bus interface controller generates bus
requests to the external arbiter in response to internal requests from the instruction and data
memory units.

The MC68060 supports two bus arbitration protocols. These arbitration protocols are mutu-
ally exclusive and must not be mixed in a system. An MC68040-style arbitration protocol is

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-53

provided for compatibility with existing MC68040-based ASICs and logic. This arbitration
protocol uses the BR, BG, and BB signals. Bus tenure terminated (BTT) must be ignored by
the external arbiter and pulled high using a separate pullup resistor on the MC68060 pin
when using this arbitration protocol.

In addition to the MC68040-arbitration protocol, a high speed MC68060-arbitration protocol
is introduced to provide arbitration activity at higher frequencies. This arbitration protocol
uses the BR, BG, BTT, and BGR signals. BB must be ignored by the external arbiter and
pulled high using a separate pullup resistor on the MC68060 when using this arbitration pro-
tocol.

In either arbitration protocol, the bus arbitration unit in the MC68060 operates synchronously
and transitions between states in which CLK is enabled via CLKEN asserted (on the rising
edge of BCLK). Either arbitration protocol allows arbitration to overlap with bus activity, but
the MC68040-arbitration protocol should not be used at full bus speed. With either arbitra-
tion protocol, each master which can initiate bus cycles must have their TS signals con-
nected together so that the MC68060 can maintain proper internal state. Note also, when
using the MC68040-arbitration protocol, any alternate master which takes over bus owner-
ship and initiates bus cycles with the assertion of TS must also assert BB for the time of its
bus tenure.

7.11.1 MC68040-Arbitration Protocol (BB Protocol)
When using the MC68040-arbitration protocol, BTT must be pulled high through a resistor.
Since BTT is also an output, a separate pullup resistor must be used exclusively for BTT.

The MC68060 requests the bus from the external bus arbiter by asserting BR whenever an
internal bus request is pending. The processor continues to assert BR for as long as it
requires the bus. The processor negates BR at any time without regard to the status of BG
and BB. If the bus is granted to the processor when an internal bus request is generated,
BR is asserted simultaneously with transfer start (TS), allowing the access to begin imme-
diately. The processor always drives BR, and BR cannot be wire-ORed with other devices.

The external arbiter asserts BG to indicate to the processor that it has been granted the bus.
If BG is negated while a bus cycle is in progress, the processor relinquishes the bus at the
completion of the bus cycle, except on locked sequences in which BGR is negated. To guar-
antee that the bus is relinquished, BG must be negated prior to the rising edge of the BCLK
in which the last TA, TEA, or TRA is asserted. Note that the bus controller considers the four
long-word bus transfers of a burst-inhibited line transfer to be a single bus cycle and does
not relinquish the bus until completion of the fourth transfer.

Unlike the MC68040 in which the read and write portions of a locked sequence is divisible,
the MC68060 provides a choice via the BGR input. If BGR is asserted when BG is negated
in the middle of a locked sequence, the MC68060 operates like the MC68040 and relin-
quishes the bus after the current bus cycle is completed. Otherwise, if BGR is negated when
BG is negated, the MC68060 ignores the negated BG, retains bus ownership, and com-
pletes all bus cycles of the locked sequence before giving up the bus. Systems may use the
BGR input to assign severity of the BG negation. For instance, if bus arbitration is used to
allow for DRAM refresh, it is okay to ignore locked sequences and force the MC68060 to

Bus Operation

7-54 M68060 USER’S MANUAL MOTOROLA

relinquish the bus. But, if the alternate master is another MC68060, it may not be advisable
to allow locked sequences to be broken. Figure 7-46 illustrates BGR functionality on locked
sequences.

When the bus has been granted to the processor in response to the assertion of BR, one of
two situations can occur. In the first situation, the processor monitors BB and TS to deter-
mine when the bus cycle of the alternate bus master is complete and to guarantee that
another master has not already started another bus tenure. After the alternate bus master
negates and three-states BB, the processor asserts BB to indicate explicit bus ownership
and begins the bus cycle by asserting TS. The processor continues to assert BB until the
external arbiter negates BG, after which BB is driven negated at the completion of the bus
cycle, then forced to a high-impedance state. As long as BG is asserted, BB remains
asserted to indicate the bus is owned, and the processor continuously drives the address
bus, attributes, and control signals. The processor negates BR when there are no pending
internal requests to allow the external arbiter to grant the bus to an alternate bus master if
necessary.

In the second situation, the processor samples BB until the alternate master negates BB.
Then the processor takes implicit ownership of the bus. Implicit ownership of the bus occurs
when the processor is granted the bus, but there are no pending bus cycles. The MC68060
does not drive the bus and BB if the bus is implicitly owned. This is different from the
MC68040 which drives the address, attributes, and control signals during implicit ownership
of the bus. If an internal access request is generated, the processor assumes explicit own-
ership of the bus and immediately begins an access, simultaneously asserting BB, BR, TIP,
and TS. If the external arbiter keeps BG asserted to the processor, the processor keeps BB
asserted and either executes active bus cycles or drives the address and attributes with
undefined values in-between active bus cycles.

BR can be used by the external arbiter as an indication that the processor needs the bus.
However, there is no guarantee that when the bus is granted to the processor, that a bus
cycle will be performed. At best, BR must be used as status output that the processor needs
the bus, but not as an indication that the processor is in a certain bus arbitration state. Figure
7-41 provides a high-level arbitration diagram that can be used by external arbiters to predict
how the MC68060 operates as a function of external signals, and internal signals. For
instance, note that the relationship between the internal BR and the external BR is best
described as a synchronous delay off BCLK.

Figure 7-41 is a bus arbitration state diagram for the MC68040 bus arbitration protocol.
Table 7-6 lists conditions that cause a change to and from the various states. Table 7-7 lists
a summary of the bus conditions and states.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-55

Table 7-6. MC68040-Arbitration Protocol Transition Conditions

Present
State

Condition RSTI BG

TS
sampled

as an
input
TSI

SNOOP

BB
sampled

as an
input
(BBI)

Internal
Bus

Request
(IBR)

Transfer in
Progress?

End of
Cycle?

Next State

Reset
A1 A — — — — — — — Reset
A2 A A — — — — — — Implicit Own
A3 N N — — — — — — AM Implicit

Explicit
Own

B1 N N — — — — N — End Tenure
B2 N N — — — — A N Explicit Own
B3 N N — — — — A A End Tenure
B4 N A — — — — — — Explicit Own

End
Tenure

C1 N N N — N — — — AM Implicit
C2 N A — — — N — — Implicit Own
C3 N A — — — A — — Explicit Own
C4 N N A — — — — — Violation
C5 N N — — A — — — Violation

AM
Implicit

D1 N — A A — — — — Snoop
D2 N — A N — — — — AM Explicit
D3 N N N — — — — — AM Implicit
D4 N A N — N N — — Implicit Own
D5 N A N — N A — — Explicit Own
D6 N A N — A — — — AM Explicit

AM
Explicit

E1 N — A A — — — — Snoop
E2 N — A N — — — — AM Explicit
E3 N — N — A — — — AM Explicit
E4 N A N — N N — — Implicit Own
E5 N A N — N A — — Explicit Own
E6 N N N — N — — — AM Implicit

Implicit
Own

F1 N N N — — — — — AM Implicit
F2 N A — — — N — — Implicit Own
F3 N A — — — A — — Explicit Own
F4 N N A — — — — — Violation

Snoop G1 — — — — — — — — AM Explicit
Any A — — — — — — — Reset

NOTES:
1) “N” means negated; “A” means asserted.
2) End of Cycle: Whatever terminates a bus transaction whether it is normal, bus error, or retried. Note that ong-word

bus cycles that result from a burst-inhibited line transfer are considered part of that original line transfer.
3) Conditions C4, C5, and F4 indicate that an alternate master has taken ownership without sampling BB as negated.
4) IBR refers to an internal bus request. The output signal BR is a registered version of IBR.
5) BBI refers to BB when sampled as an input.
6) SNOOP denotes the condition in which SNOOP is sampled asserted and TT1 = 0.
7) In this state diagram, BGR is assumed always asserted, hence, bus cycles within a locked sequence are treated no

differently from nonlocked bus cycles, except that the processor takes an extra BCLK period in the end tenure state
to allow for LOCK and LOCKE to negate. If BGR is negated and a locked sequence is in progress, the processor
does not relinquish the bus if BG is negated until the end of the last bus cycle in the locked sequence.

8) The processor does not require a valid acknowledge termination for snooped accesses. The only restriction is that
a snoop cycle be performed at no more than a maximum rate of once every two BCLK cycles. This state diagram
properly emulates this behavior.

Bus Operation

7-56 M68060 USER’S MANUAL MOTOROLA

The MC68060 can be in any one of seven bus arbitration states during bus operation: reset,
AM-implicit own, AM-explicit own, snoop, implicit ownership, explicit ownership, and the end
tenure states.

The reset state is entered whenever RSTI is asserted in any bus arbitration state, except the
explicit ownership state. For that state, the end tenure state is entered prior to entering the
reset state.This is done to ensure other bus masters are capable of taking the bus away from
the processor when it is reset. When RSTI is negated, the processor proceeds to the implicit
ownership state or alternate master implicit ownership state, depending on BG. If an alter-
nate master asserts TS or has asserted TS in the past, the processor waits for BTT to assert
(or alternatively, for BB to go from being asserted to being negated) before taking the bus,
even though BG may be asserted to the processor.

The AM-implicit own state denotes the MC68060 does not have ownership (BG negated) of
the bus and is not in the process of snooping an access, and the alternate has not begun its
tenure by asserting TS (alternate master TS or SNOOP negated). In the AM-implicit own
state, the MC68060 does not drive the bus. The processor enters the AM-explicit own state
when TS is asserted by the alternate master. Once in the AM-explicit own state, the proces-
sor waits for the alternate master to transition and negate BB (or alternatively assert BTT)
before recognizing that a change of tenure has occurred. If BG is negated when BB is
negated (or alternatively BTT asserted), the processor assumes that another master has
taken implicit ownership of the bus. Otherwise, if BG is asserted when BB is negated (or BTT
asserted), the processor assumes implicit ownership of the bus.

If an alternate master loses bus ownership when it is in its implicit ownership state, the pro-
cessor checks TS. If TS is sampled asserted, the processor interprets this as the alternate
master transitioning to its explicit ownership state, and it does not take over bus ownership.
This operation is different from that of the MC68040, in that external arbiters are required to
check for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal

Table 7-7. MC68040-Arbitration Protocol State Description
BBO Bus Status Own State

Not Driven Not Driven No Reset
Not Driven Not Driven No Alternate Master Implicit Own
Not Driven Not Driven No Alternate Master Explicit Own
Not Driven Not Driven Yes Implicit Ownership
Asserted Driven Yes Explicit Ownership
Negated

for One CLK, then
Three-Stated

Stops Being
Driven at End

of State
Yes End Tenure

Not Driven Not Driven No Alternate Master Own
and Snooped

NOTE:
BBO represents the component of BB when driven by the MC68060. BBO is either driven
asserted or three-stated; however, BBO is driven negated for one CLK (as opposed to
BCLK) period before three-stating.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-57

Figure 7-41. MC68040-Arbitration Protocol State Diagram

D

BBBBI

Q
BR

BBO

BBO THREE-STATE

IBR

BCLK

AM
IMPLICIT

AM
EXPLICIT

SNOOP

IMPLICIT
OWN

F3

E4

E5

E6

F2

F1

E3

E2

E1

D5

D4

EXPLICIT
OWN

END
TENURE

RESET

A1

B1

B2

B3

B4

A3

A2

D3
D1

C1

C3

C2

IBR
BR
BBI

BBO
BB

BCLK

= INTERNAL BUS REQUEST SIGNAL
= EXTERNAL BUS REQUEST PIN
= INTERNAL BB SAMPLED AS INPUT
= BB DRIVEN INTERNALLY BY MC68060
= EXTERNAL BB PIN
= VIRTUAL BUS CLOCK DERIVED FROM CLK AND CLKEN

D6

D2G1

Bus Operation

7-58 M68060 USER’S MANUAL MOTOROLA

The snoop state is similar to the AM-explicit own state in that the MC68060 does not have
ownership of the bus. The snoop state differs from the AM-explicit own state in that the
MC68060 is in the process of performing an internal snoop operation because the processor
has detected that TS and SNOOP are asserted and TT1 = 0. The snoop state always returns
to the AM-explicit own state.

The implicit ownership state indicates that the MC68060 owns the bus because BG is
asserted to it. The processor, however, is not ready to begin a bus cycle, and it keeps BB
negated and the bus three-stated until an internal bus request occurs.

The MC68060 explicitly owns the bus when the bus is granted to it (BG asserted) and at
least one bus cycle has initiated. The processor asserts BB during this state to indicate the
processor has explicit ownership of the bus. Until BG is negated, the processor retains
explicit ownership of the bus whether or not active bus cycles are being executed. When the
processor is ready to relinquish the bus, it goes through the end tenure state to indicate to
all alternate masters that it is relinquishing the bus. During the end tenure state, BB goes
from being actively asserted to being actively negated for one CLK cycle and then three-
stated. While in this state, RSTI is asserted and the processor proceeds to the end tenure
state to inform other bus masters it is relinquishing the bus.

7.11.2 MC68060-Arbitration Protocol (BTT Protocol)
The MC68060-arbitration protocol is different from the MC68040-arbitration protocol in that
BTT is used instead of BB. BTT indicates that the MC68060 has completed a bus tenure
and the bus can now be used by another master. When using the MC68060-arbitration pro-
tocol, BB must be pulled high via a separate pullup resistor since the processor drives BB
during bus tenure times. This pullup resistor must be used solely for BB.

Arbitration within the MC68060 bus interface controller is based on current bus ownership
and the concept that a bus cycle is an atomic entity which cannot be split, though it may be
prematurely terminated. If the bus is currently owned by the processor, it can be owned by
another master only after the completion of the final bus cycle when the processor has
asserted BTT.

If the bus is not currently owned by the processor, it asserts its BR signal as soon as it needs
the bus. Bus mastership is assumed as soon as the assertion of BG is received from the bus
arbiter and the one BCLK period assertion of the bused BTT is detected (or alternately, the
transition and negation of BB is detected at a rising BCLK edge), indicating the previous
master has terminated its tenure and relinquished the bus. If the MC68060 still has a need
to use the bus when BG is received, it assumes bus mastership, asserts TS, and starts a
bus cycle. Note the MC68060 negates its BR signal if, due to internal state, it no longer
needs to use the bus at that moment in time. It negates its BR signal at the same time it
asserts the TS signal if the bus is only needed for one bus cycle.

BTT is connected to all masters in a system to give notice of the termination of bus tenure
by the MC68060 processor. BTT is asserted by the MC68060 after it has lost right of own-
ership to the bus by the negation of BG and is ready to end usage of the bus. After the final
termination acknowledgment of the final bus cycle when the MC68060 has lost bus owner-
ship, the processor asserts BTT for a one BCLK period, negates BTT for a one BCLK period,

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-59

and then three-states BTT. If the external bus arbiter has granted the bus to an alternate
master by the assertion of BG to that master, that master, using this protocol, can start a bus
cycle on the rising BCLK edge in which it detects the assertion of BTT. The previous master
can be driving BTT negated at the same time the current master is starting a bus cycle
because the current master will still have its BTT signal three-stated. Since the alternate
master does not drive BTT in this protocol until it has finished its tenure, there is no conflict
with tying all master’s BTT signals together. This is different than the MC68040-arbitration
protocol which used BB to continuously indicate to other bus masters the bus was being
used by the MC68040.

When a processor using the MC68040-arbitration protocol is finished using the bus, BB has
to be driven negated for a short period of time and then three-stated. The use of the BTT
protocol works much better than the BB protocol in a high-speed bus environment because
the kind of drive (asserted, negated, or three-stated) of BTT can be synchronous with the
clock. Arbiters do not need to be changed going from a MC68040 system to a MC68060 sys-
tem, since arbiters do not need to sample the BB signal in a MC68040 system or BTT in a
MC6060 system, but need only use BR, BG, and perhaps LOCK to determine bus owner-
ship rights. Masters need only sample BB or BTT and TS and BG to determine the proper
times to take over ownership of the bus. In cases where the MC68060 has implicit bus own-
ership after it has finished all needed bus cycles, BTT remains three-stated until BG is
negated and the MC68060 is forced off the bus. For this case, in the next BCLK period after
the MC68060 detects the negation of BG, it asserts BTT for one BCLK period, negates BTT
for one BCLK period, and then three-states BTT. In implicit bus ownership cases where the
MC68060 is given the bus but never actually uses it by asserting TS, the MC68060 does not
assert BTT when BG is negated.

In systems that use the BTT protocol, the assertions of TS and BTT must be tracked by mas-
ters, to determine the proper times at which the bus may be taken over. Assertions of BTT
prior to, during, and after the negation of BG may also need to be logged by a master in
cases where the BG is not parked with a master and no master has used the bus for some
time. In such cases the master is required to have kept state information that indicated a pre-
vious master had earlier finished using the bus, implying it is safe to immediately take control
of the bus. The MC68060 processor internally maintains this information.

After external reset, initiated with the negation of RSTI, and with BG asserted, the MC68060
does not wait for the assertion of BTT by another master to take over mastership of the bus
and start bus activity, provided there has been no assertion of TS by another master in the
interim of time between the negation of RSTI and the clock cycle when the MC68060 is
ready to start a bus cycle. If another master starts bus activity (TS asserted) in this interim
of time, even though the MC68060 may have received a bus grant indication (BG asserted),
the MC68060 waits for BTT to be asserted by the other master before it takes over bus mas-
tership.

When BG is negated by the arbiter, the MC68060 relinquishes the bus as soon as the cur-
rent bus cycle is complete unless a locked sequence of bus cycles is in progress with BGR
negated. In this case, the MC68060 completes the sequence of atomic locked bus cycles,
drives LOCK and LOCKE negated for one BCLK period during the clock when the address
and other bus cycle attributes are idled, and in the next BCLK period, three-states LOCK

Bus Operation

7-60 M68060 USER’S MANUAL MOTOROLA

and LOCKE and then relinquishes the bus by asserting BTT. BGR is a qualifier for BG which
indicates to the MC68060 the degree of necessity for relinquishing bus ownership when BG
is negated. BGR primarily affects how the MC68060 behaves during atomic locked
sequences when BG is negated.

The MC68060 arbitration protocol allows bus ownership to be removed from the MC68060
and granted to another bus master with the negation of BG, even if the processor is indicat-
ing a locked sequence is in progress. A LOCK signal is provided by the MC68060 to indicate
the processor intends the current set of bus cycles to be locked together, but this can either
be enforced or overridden by the system bus arbiter’s control of the BGR signal. The asser-
tion of BGR with the negation of BG by an external bus arbiter forces the processor to relin-
quish the bus as soon as the current bus cycle is finished even if the processor is running a
locked sequence of atomic bus cycles. If both BGR and BG are negated when the MC68060
is running a sequence of locked bus cycles, the MC68060 finishes the entire set of atomic
locked bus cycles and then relinquishes the bus at the completion of that unit of atomic
locked bus cycles and no disruption of the atomic sequence occurs. Note the MC68060 may
be running a set of back-to-back atomic locked sequences, the abutment of which an exter-
nal bus arbiter can not detect to determine a safe time to negate BG. With BGR negated the
MC68060 finishes the last bus cycle of the current set of atomic locked bus cycles and then
relinquishes the bus, thus preventing the interruption of that unit of atomic locked sequence
of bus cycles. Figure 7-46 illustrates BGR functionality during locked sequences.

As an alternative to the BGR protocol, the MC68060 retains the LOCKE signal from the
MC68040 bus. The MC68040 uses a LOCKE signal during the last bus cycle of a locked
sequence of bus cycles to allow an external arbiter to detect the boundary between back-to-
back locked sequences on the bus. An external arbiter in a MC68040 system can use the
LOCKE status signal to determine safe times to remove BG without breaking a locked
sequence and allow arbitration to be overlapped with the last transfer in a locked sequence.
However, a retry acknowledge termination during the last bus cycle of a locked sequence
with LOCKE asserted and BG negated requires asynchronous logic in the external bus arbi-
ter to re-assert BG before the bus cycle finishes to prevent the splitting or interruption of the
locked sequence. Use of the BGR protocol prevents this problem by allowing the MC68060
determine the proper time to relinquish bus ownership and simplifies the external bus arbiter
design.

For locked sequences of bus cycles, the MC68060 asserts LOCK with the TS of the first bus
cycle and negates LOCK following the final termination acknowledgment of the last transfer
of the last bus cycle during the execution of the TAS and CAS instructions, on updates of
history information in table searches, and after the execution of MOVEC instructions that set
and later reset the LOCK bit in the BUSCR. Depending on how the arbiter is designed with
respect to LOCK and BGR, this can have the effect of preventing overlapped bus arbitration
during locked sequences. By keeping LOCK asserted throughout the duration of a locked
sequence, the last bus cycle of the sequence can be retried and still maintain the lock status.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-61

The MC68060 processor, like the MC68040, will continue to drive external address and
attribute lines, but unlike the MC68040, it may drive undefined values on the address and
attribute lines during times when the bus is still owned but idle after a previous usage. Also,
unlike the MC68040, in cases of implicit bus ownership, when the MC68060 has been
granted the bus but has not yet run a cycle, the processor does not drive the address and
attributes lines and they remain three-stated until a bus cycle is actually initiated.

Figure 7-42 shows the behavior of the MC68060 given inputs defined in Table 7-8. The
states are defined in Table 7-9. The arbitration state diagram for the MC68060-arbitration
protocol is similar to the MC68040-arbitration protocol with the exception that BB is no
longer used as an input. As with the MC68040-arbitration protocol, the end tenure state is
used to inform other bus masters the processor is relinquishing the bus.

Bus Operation

7-62 M68060 USER’S MANUAL MOTOROLA

Table 7-8. MC68060-Arbitration Protocol State Transition Conditions

Present
State

Condition RSTI BG
TS sampled
as an input

(TSI))
SNOOP

BTT sampled
as an input

(BTTI)

Internal
Bus Request

(IBR)

Transfer
in

Progress?

End of
Cycle?

Next State

Reset
A1 A — — — — — — — Reset
A2 N A — — — — — — Implicit Own
A3 N N — — — — — — AM Implicit

Explicit
Own

B1 N N — — — — N — End Tenure
B2 N N — — — — A N Explicit Own
B3 N N — — — — A A End Tenure
B4 N A — — — — — — Explicit Own

End
Tenure

C1 N N N — — — — — AM Implicit
C2 N A — — — N — — Implicit Own
C3 N A — — — A — — Explicit Own
C4 N N A — — — — — Violation

AM
Implicit

D1 N — A A — — — — Snoop
D2 N — A N — — — — AM Explicit
D3 N N N — — — — — AM Implicit
D4 N A N — — N — — Implicit Own
D5 N A N — — A — — Explicit Own

AM
Explicit

E1 N — A A — — — — Snoop
E2 N — A N — — — — AM Explicit
E3 N — N — N — — — AM Explicit
E4 N A N — A N — — Implicit Own
E5 N A N — A A — — Explicit Own
E6 N N N — A — — — AM Implicit

Implicit
Own

F1 N N N — — — — — AM Implicit
F2 N A — — — N — — Implicit Own
F3 N A — — — A — — Explicit Own
F4 N N A — — — — — Violation

Snoop G1 N — — — — — — — AM Explicit
Any — A — — — — — — — Reset

NOTES:
1) “N” means negated; “A” means asserted.
2) End of cycle: Whatever terminates a bus transaction whether it is normal, bus error, or retried. Note that long-word

bus cycles that result from a burst inhibited line transfer are considered part of that original line transfer.
3) Conditions C4 and F4 indicate that an alternate master has taken bus ownership without waiting for the current master

to assert BTT.
4) IBR refers to an internal bus request. The output signal BR is a registered version of IBR.
5) BTTI refers to BTT when sampled as an input.
6) SNOOP denotes the condition in which SNOOP is sampled asserted, and TT1 = 0.
7) In this state diagram, BGR is assumed always asserted; hence, bus cycles within a locked sequence are treated no

differently from nonlocked bus cycles, except that the processor takes an extra BCLK period in the end tenure state
to allow for LOCK and LOCKE to negate. If BGR is negated and a locked sequence is in progress, the processor does
not relinquish the bus if BG is negated until the end of the last bus cycle in the locked sequence.

8) The processor does not require a valid acknowledge termination for snooped accesses. The only restriction is that a
snoop cycle be performed at no more than a maximum rate of once every two BCLK cycles. This state diagram prop-
erly emulates this behavior.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-63

The MC68060 can be in any one of seven bus arbitration states during bus operation: reset,
AM-implicit own, AM-explicit own, snoop, implicit ownership, explicit ownership, and the end
tenure state.

The reset state is entered whenever RSTI is asserted in any bus arbitration state, except the
explicit ownership state. For that state, the end tenure state is entered prior to entering the
reset state.This is done to ensure other bus masters are capable of taking the bus away from
the processor when it is reset. When RSTI is negated, the processor proceeds to the implicit
ownership state or alternate master implicit ownership state, depending on BG. If an alter-
nate master asserts TS or has asserted TS in the past, the processor waits for BTT to assert
(or alternatively for BB to go from being asserted to being negated) before taking the bus,
even though BG may be asserted to the processor.

The AM-implicit own state denotes the MC68060 does not have ownership (BG negated) of
the bus and is not in the process of snooping an access, and the alternate has not begun its
tenure by asserting TS (alternate master TS or SNOOP negated). In the AM-implicit own
state, the MC68060 does not drive the bus. The processor enters the AM-explicit own state
when TS is asserted by the alternate master. Once in the AM-explicit own state, the proces-
sor waits for the alternate master to assert BTT before recognizing that a change of tenure
has occurred. If BG is negated when BTT is asserted, the processor assumes that another
master has taken implicit ownership of the bus. Otherwise, if BG is asserted when BTT is
asserted, the processor assumes implicit ownership of the bus.

If an alternate master loses bus ownership when it is in implicit ownership state, the proces-
sor checks TS. If TS is sampled asserted, the processor interprets this as the alternate mas-
ter transitioning to its explicit ownership state, and it does not take bus ownership. This
operation is different from that of the MC68040 in that external arbiters are required to check
for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal.

Table 7-9. MC68060-Arbitration Protocol State Description
BTTO Bus Status Own State

Not Driven Not Driven No Reset
Not Driven Not Driven No Alternated Master Implicit Own
Not Driven Not Driven No Alternate Master Explicit Own
Not Driven Not Driven Yes Implicit Ownership
Not Driven Driven Yes Explicit Ownership
Asserted for One
BCLK, Negated for
One BCLK then
Three-Stated

Stops Being
Driven at End
of State

Yes End Tenure

Not Driven Not Driven No Alternate Master Own and Snooped
NOTE: BTTO represents the component of BTT as driven by the MC68060. BTT is normal-
ly three-stated but driven for one BCLK when asserted and one BCLK when negated.

Bus Operation

7-64 M68060 USER’S MANUAL MOTOROLA

Figure 7-42. MC68060-Arbitration Protocol State Diagram

AM
IMPLICIT

AM
EXPLICIT

SNOOP

IMPLICIT
OWN

F3

E4

E5

E6

F2

F1

E3

E2

E1

D5

D4

EXPLICIT
OWN

END
TENURE

RESET

A1

B1

B2

B3

B4

A3

A2

D3
D1

C1

C3

C2

D2G1

D

BTTBTTI

Q
BR

BTTO

BTTO THREE-STATE

IBR

BCLK

IBR
BR

BTTI
BTTO

BTT
BCLK

= INTERNAL BUS REQUEST SIGNAL
= EXTERNAL BUS REQUEST PIN
= INTERNAL BTT SAMPLED AS INPUT
= BTT DRIVEN INTERNALLY BY MC68060
= EXTERNAL BTT PIN
= VIRTUAL BUS CLOCK DERIVED FROM CLK AND CLKEN

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-65

The snoop state is similar to the AM-explicit own state in that the MC68060 does not have
ownership of the bus. The snoop state differs from the AM-explicit own state in that the
MC68060 is in the process of performing an internal snoop operation because the processor
has detected that TS and SNOOP are asserted and TT1 = 0. The snoop state always returns
to the AM-explicit own state. The implicit ownership state indicates that the MC68060 owns
the bus because BG is asserted to it. The processor, however, is not ready to begin a bus
cycle, and keeps BB negated and the bus three-stated until an internal bus request occurs.

The MC68060 explicitly owns the bus when the bus is granted to it (BG asserted) and it has
initiated at least one bus cycle. Until BG is negated, the processor retains explicit ownership
of the bus whether or not active bus cycles are being executed. When the processor is ready
to relinquish the bus, it goes through the end tenure state to indicate to all alternate masters
that it is relinquishing the bus. During the end tenure state, BTT is asserted for one BCLK
and is actively negated for the next BCLK prior to three-stating. While in this state, if RSTI
is asserted, the processor proceeds to the end tenure state to inform other bus masters it is
relinquishing the bus.

All alternate masters that reside in a system and use the MC68060-arbitration protocol must
provide the same functionality as the MC68060 for proper system operation.

7.11.3 External Arbiter Considerations
The bus arbitration state diagrams for the MC68040-arbitration protocol and MC68060-arbi-
tration protocol may be used to approximate the high level behavior of the processor. In
either case, it is assumed that all TS signals in a system are tied together, all BB signals in
a system are tied together and to a pullup resistor (MC68040-arbitration protocol), or all BTT
signals in a system are tied together and to a pullup resistor (MC68060-arbitration protocol).
Furthermore, unused BB or BTT pins must have separate pullup resistors.

If an alternate master loses bus ownership when it is in its implicit ownership state, the pro-
cessor checks TS. If TS is sampled asserted, the processor interprets this as the alternate
master transitioning to its explicit ownership state, and it does not take over bus ownership.
This operation is different from that of the MC68040, in that external arbiters are required to
check for this boundary condition. However, in order for the processor to properly detect this
boundary condition, it is imperative that the TS of all alternate bus masters be tied together
with the processor’s TS signal.

When using the MC68040-arbitration protocol, as with the TS signal, the BB of all alternate
bus masters must be tied together to the processor’s BB signal. Also, when an alternate
master becomes bus master, it must assert BB if it initiates a bus cycle with the TS asserted.

The external arbiter design needs to include the function of BR. For example, in certain
cases associated with conditional branches, the MC68060 can assert BR to request the bus
from an alternate bus master, then negate BR without using the bus, regardless of whether
or not the external arbiter eventually asserts BG. This situation happens when the MC68060
attempts to prefetch an instruction for a conditional branch. To achieve maximum perfor-
mance, the processor may prefetch the instructions of the forward path for a conditional
branch. If the branch prediction is incorrect and if the conditional branch results in a branch-
not-taken, the previously issued branch-taken prefetch is then terminated since the prefetch

Bus Operation

7-66 M68060 USER’S MANUAL MOTOROLA

is no longer needed. In an attempt to save time, the MC68060 negates BR. If BG takes too
long to assert, the MC68060 enters a disregard request condition.

The BR signal can be reasserted immediately for a different pending bus request, or it can
stay negated indefinitely. If an external bus arbiter is designed to wait for the MC68060 to
perform an active bus cycle before proceeding, then the system experiences an extended
period of time in which bus arbitration is dead-locked. It must be understood that BR is a
status signal which may or may not have any relationship to BB, BTT, or BG.

When using the MC68060-arbitration protocol it is possible to determine bus tenure bound-
aries by observing TS and BTT. An active bus tenure begins when a bus master asserts its
TS for the first time. Once the bus tenure has started, the active bus master must end its
tenure by asserting BTT (or a low-to-high transition of BB). If a bus master is granted the
bus, but does not start an active bus tenure by asserting TS, no BTT assertion (or a low-to-
high transition of BB) is needed since no bus tenure was started. When reset is applied to
the entire system, TS to all bus masters must be negated via a pullup resistor. In addition,
the bus arbiter must grant the bus to a single bus master. Once the first bus master recog-
nizes that TS is negated and that it has been granted the bus, it asserts its TS to establish
its bus tenure and to inform other bus masters that its bus tenure has begun (this assumes
that the TS signals of all bus masters in the system are tied together). All other bus masters
will therefore detect an asserted TS (TS is asserted by the first bus master) immediately
after reset. These bus masters must then wait for BTT to assert (or a low-to-high transition
of BB) before beginning their bus tenure when granted the bus.

Figure 7-43 illustrates an example of the processor requesting the bus from the external bus
arbiter. During C1, the MC68060 asserts BR to request the bus from the arbiter, which
negates the alternate bus master’s BG signal and grants the bus to the processor by assert-
ing BG during C2. During C2, the alternate bus master completes its current access and
relinquishes the bus in C3 by three-stating all bus signals and negating BB and/or asserting
BTT. Typically, the BB and BTT signals require a pullup resistor to maintain a logic-one level
between bus master tenures. The alternate bus master should negate these signals before
three-stating to minimize rise time of the signals and ensure that the processor recognizes
the correct level on the next BCLK rising edge. At the end of C3, the processor has already
received bus grant and the alternate master has relinquished the bus. Hence, the processor
assumes ownership of the bus and immediately begins a bus cycle during C4. During C6,
the processor begins the second bus cycle for the misaligned operand and negates BR
since no other accesses are pending. During C7, the external bus arbiter grants the bus
back to the alternate bus master that is waiting for the processor to relinquish the bus. The
processor negates BB, asserts BTT, and three-states bus signals during C8. Finally, the
alternate bus master has the bus grant. The processor has relinquished the bus at the end
of C8 and is able to resume bus activity during C9. Note that BTT is asserted only for one
BCLK period and is negated for one BCLK period during C10. BTT is then three-stated in
C10.

Further note that BB is only negated for one CLK (as opposed to BCLK) period before being
three-stated, and the MC68040-arbitration protocol should not be used for full bus speed
operation.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-67

Figure 7-44 illustrates a functional timing diagram for an arbitration of a relinquish and retry
operation (MC68040 acknowledge termination mode). In Figure 7-44, the processor read
access that begins in C1 is terminated at the end of C2 with a retry request and BG negated,
forcing the processor to relinquish the bus and allow the alternate master to access the bus.
Note that the processor re-asserts BR during C3 since the original access is pending again.
After alternate bus master ownership, the bus is granted to the processor to allow it to retry
the access beginning in C7.

Figure 7-45 is a functional timing diagram for implicit ownership of the bus.

Figure 7-46 illustrates the effect of BGR on bus arbitration activity during locked sequences.
When BGR is asserted while BG is negated, locked sequences can be broken. Otherwise,
the entire locked sequence of bus cycles are completed by the processor before relinquish-
ing the bus.

Figure 7-43. Processor Bus Request Timing

A31–A0

BCLK

BUS
ARBITRATION

STATE

D31–D0

TRANSFER
ATTRIBUTES

TS

TA

ALTERNATE
MASTER

PROCESSOR

BR

BG

BB

AM_BR*

AM_BG*

ALTERNATE
MASTER

C1 C2 C3 C4 C5 C8 C9C6 C7

*AM indicates the alternate bus master.

BTT

C10

AM-EX AM-EX AM-EX EX-OWN EX-OWN END-TEN AM-IMPEX-OWN EX-OWN AM-EX

Bus Operation

7-68 M68060 USER’S MANUAL MOTOROLA

7.12 BUS SNOOPING OPERATION
The MC68060 has the capability of monitoring bus transfers by other bus masters. The pro-
cess of bus monitoring is called snooping and is controlled by the SNOOP signal.

Snooping can occur when the bus is granted to another bus master, and the MC68060 sees
a TS assertion by the alternate master. If SNOOP is asserted, the processor registers the
value of the A31–A0 and TT1 signals on the rising edge of BCLK in which TS is asserted.

Figure 7-44. Arbitration During Relinquish and Retry Timing

BCLK

D31–D0

TS

TA

ALTERNATE
MASTER

PROCESSOR

BR

BG

BB

C1 C2 C3 C4 C5 C8C6 C7

TEA

R/W

PROCESSOR

*AM indicates the alternate bus master.
NOTE: The MC68040 acknowledge termination mode is assumed.

BTT

EX-OWN EX-OWN END-TEN AM-IMP AM-EX EX-OWNAM-EX EX-OWN

A31–A0

BUS
ARBITRATION

STATE

TRANSFER
ATTRIBUTES

AM_BR*

AM_BG*

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-69

In addition, the snoop address on A31–A0 is again registered on the next CLK (not BCLK)
rising edge. For proper operation, the snoop addresses registered on these two separate
occasions must be consistent. Only normal and MOVE16 bus transfers can be snooped.
The MC68060 then examines the address of the transfer and invalidates the line in its
caches in which the address matches. This process is done quietly without external indica-
tion that a cache entry has been invalidated. Note that when snooping is enabled and an
entry matches in the MC68060 caches, the entry is invalidated regardless of the state of the
R/W signal, transfer size, or whether or not the line has clean or dirty data. If SNOOP is
negated, no snooping is done, and no lines in the caches are invalidated.

Figure 7-45. Implicit Bus Ownership Arbitration Timing

BCLK

ALTERNATE
MASTER PROCESSOR

BUS
IMPLICITLY

OWNED

BUS OWNED
AND ACTIVE

BUS OWNED
AND IDLE

C1 C2 C3 C4 C5 C8 C9C6 C7

AM-EX AM-EX AM-EX IM-OWN IM-OWN EX-OWN EX-OWNEX-OWN EX-OWN

A31–A0

BUS
ARBITRATION

STATE

D31–D0

TRANSFER
ATTRIBUTES

TS

TA

BR

BG

BB

AM_BR*

AM_BG*

*AM indicates the alternate bus master.

BTT

Bus Operation

7-70 M68060 USER’S MANUAL MOTOROLA

The MC68060 does not require snooped bus cycles to be terminated with a legal transfer
termination (TA, TEA, or TRA). The only requirement is that TS be asserted no more fre-
quently than once every other BCLK edge. Figure 7-47 shows a snooped bus cycle.

Figure 7-46. Effect of BGR on Locked Sequences

BC
LK TS TI

P

R
/W

LO
C

K

AD
D

R
ES

S
AT

TR
IB

U
TE

S

D
31

–D
0

SA
S TA BR BG BG
R

BT
T BB

AM
_B

G

LO
C

KE

PR
O

C
ES

SO
R

AL
TE

R
N

AT
E

M
AS

TE
R

PR
O

C
ES

SO
R

AL
TE

R
N

AT
E

M
AS

TE
R

PR
E

D
R

IV
E

PR
E

D
R

IV
E

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-71

7.13 RESET OPERATION
An external device asserts the reset input signal (RSTI) to reset the processor. When power
is applied to the system, external circuitry should assert RSTI for a minimum of ten BCLK
cycles after VCC is within tolerance. Figure 7-48 is a functional timing diagram of the power-
on reset operation, illustrating the relationships among VCC, RSTI, mode selects, and bus
signals. CLK is required to be stable by the time VCC reaches the minimum operating spec-
ification. CLK should start oscillating as VCC is ramped up in order to clear out contention
internal to the part caused by the random manner in which internal flip-flops power-up. RSTI
is internally synchronized for two BCLKs before being used and must meet the specified

Figure 7-47. Snooped Bus Cycle

BCLK

ALTERNATE
MASTER

PROCESSOR

TT1

C1 C2 C3 C4 C5 C6

END-TEN AM-IMP SNOOP AM-EXP AM-EXP AM-EXP

A31–A0

BUS
ARBITRATION

STATE

D31–D0

TRANSFER
ATTRIBUTES

TS

TA

BR

BG

BB

AM_BR*

AM_BG*

*AM indicates the alternate bus master.

BTT

SNOOP

Bus Operation

7-72 M68060 USER’S MANUAL MOTOROLA

setup and hold times to BCLK (specifications #51 and #52 in Section 12 Electrical and
Thermal Characteristics) only if recognition by a specific BCLK rising edge is required and
for configuration settings to be registered on the rising BCLK edge shown in Figure 7-48.

TS must be pulled up or negated during reset. Once RSTI negates, the processor is inter-
nally held in reset for another 27 CLK cycles. During the reset period, all signals that can be,
are three-stated, and the remaining signals are driven to their inactive state. Once RSTI
negates, all bus signals continue to remain in a high-impedance state until the processor is
granted the bus. If BG is negated to the processor, the bus is three-stated, and no bus cycle
activity is present until BG is asserted. Afterwards, the first bus cycle for reset exception pro-
cessing begins. In Figure 7-48 the processor assumes implicit bus ownership on reset
before the first bus cycle begins. The levels on IPLx and D15–D0 are used to selectively
enable the special modes of operation when RSTI is negated. These signals are registered
into the processor on the last rising edge of BCLK in which RSTI is sampled low. These sig-
nals should be driven to their normal levels before the end of the 27-CLK internal reset
period.

Figure 7-48. Initial Power-On Reset Timing

BCLK

BUS
SIGNALS

+3.3 V

0 V

RSTI

TS

BR

D15-D0,
IPL2–IPL0

BG

BB

TIP

VCC

t 10
BCLK CYCLES

27
CLK CYCLES

>

BTT

NOTE: For the processor to begin bus cycles after reset, BG must be asserted, TS must be negated or pulled up. If bus arbitration activity
is started by an alternate master (TS asserted), BTT must be asserted (or BB transition from asserted to negated) eventually to indicate
an end to the alternate master's tenure.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-73

For processor resets after the initial power-on reset, RSTI should be asserted for at least ten
BCLK periods. Figure 7-49 illustrates timings associated with a reset when the processor is
executing bus cycles. BB and TIP are negated before transitioning to a three-state level.

Resetting the processor causes any bus cycle in progress to terminate as if TEA had been
asserted. In addition, the processor initializes registers appropriately for a reset exception.
Section 8 Exception Processing describes reset exception processing. When a RESET
bus operation instruction is executed, the processor drives the reset out (RSTO) signal for
512 CLK cycles. In this case, the processor can be used to reset external devices in a sys-
tem, and the internal registers of the processor are unaffected. The external devices con-
nected to the RSTO signal are reset at the completion of the RESET instruction. An RSTI
signal that is asserted to the processor during execution of a RESET instruction immediately
resets the processor and causes the RSTO signal to negate. RSTO can be logically ANDed
with the external signal driving RSTI to derive a system reset signal that is asserted for both
an external processor reset and execution of a RESET instruction.

Figure 7-49. Normal Reset Timing

BCLK

BUS
SIGNALS

RSTI

TS

BR

D15-D0,
IPL2–IPL0

BG

BB

TIP

t 10
BCLK CYCLES

27
CLK CYCLES

>

BTT

NOTE: For the processor to reset begin bus cycles after reset, BG must be asserted, TS must be negated or pulled up. BTT must be asserted (or BTT transition
from asserted to negated) eventually to indicate an end to the alternate master's tenure.

Bus Operation

7-74 M68060 USER’S MANUAL MOTOROLA

7.14 SPECIAL MODES OF OPERATION
The MC68060 supports the following three operation modes, which are selectively enabled
during processor reset and remain in effect until the next processor reset. Refer to 7.13
Reset Operation for reset timing information. Table 7-10 summarizes the three special
modes and associates them with the appropriate IPLx signal.

7.14.1 Acknowledge Termination Ignore State Capability
The MC68060 provides acknowledge termination ignore state capability to make high-fre-
quency system design easier. This feature defines BCLK edges during which the acknowl-
edge termination signals (TA, TEA, and TRA) are ignored. This feature is enabled if IPL0 is
asserted during reset.

During reset, 16 bits of information (from D15–D0) are registered into the MC68060. These
16 bits define four values of four bits each. Two of the four values are used for read bus
cycles; the other two values are used for write bus cycles. For the read bus cycle, the first
value is the primary ignore state count value. The primary ignore state count value is used
during the first long-word transfer of a line transfer cycle, or the only data transfer for byte,
word, or long-word bus cycles. The second value is the secondary ignore state count value.
The secondary ignore state count value is used during the next three long words for line
transfer cycles, after the first long word has been transferred. Similarly, the two values of the
write bus cycle are defined as a primary ignore state count value and a secondary ignore
state count value, respectively. Figure 7-50 shows the assignment of the four data nibbles
at reset.

At the beginning of a bus cycle, the appropriate primary ignore state count value is loaded
into an internal counter. The counter decrements every BCLK rising edge. As long as the
counter has a non-zero count value, the MC68060 ignores the acknowledge termination sig-
nals. Once the counter reaches zero, the MC68060 asserts SAS for one BCLK period and
begins to sample the acknowledge termination signals and acts accordingly. For byte, word,
or long-word transfers, the bus cycle ends when a valid termination is detected. For line
transfer cycles after the first long-word transfer, the secondary ignore state count value is

Table 7-10. Special Mode vs. IPLx Signals

Signal
Value During
Reset Time

Action

IPL2
Asserted Extra Data Write Hold Mode Enabled
Negated Extra Data Write Hold Mode Disabled

IPL1
Asserted Native-MC68060 Acknowledge Termination Protocol
Negated MC68040 Acknowledge Termination Protocol

IPL0
Asserted Acknowledge Termination Ignore State Capability Enabled
Negated Acknowledge Termination Ignore State Capability Disabled

Figure 7-50. Data Bus Usage During Reset

15 12 11 38 7 4 0
READ PRIMARY

IGNORE STATE COUNT
READ SECONDARY

IGNORE STATE COUNT
WRITE PRIMARY

IGNORE STATE COUNT
WRITE SECONDARY

IGNORE STATE COUNT

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-75

loaded into the internal counter and the counter decrements every rising BCLK edge. As
long as the counter has a non-zero count value, the MC68060 ignores the acknowledge ter-
mination signals. Once the counter reaches zero, the MC68060 asserts SAS for one BCLK
period and begins to sample the acknowledge termination signals and acts accordingly. This
process repeats for the rest of the line transfer cycle.

To aid in system debug for system designs that continuously assert TA, a status signal,
SAS, is provided to indicate which rising BCLK edge the MC68060 begins to sample
acknowledge termination signals. SAS is negated on the next rising BCLK edge if the bus
cycle ends or if the next ignore state count value is non-zero. Aside from being a status sig-
nal, SAS may be used in conjunction with some decode address bits to generate the CLA
signal or TA signal shown in Figure 7-24.

Figure 7-51 shows an example of how the MC68060 behaves when the acknowledge termi-
nation ignore state mode is enabled. In this example, the read primary ignore state count
value and the read secondary ignore state count value are initialized to a value of one during
reset. On the first long-word access, TA is asserted immediately, but data is not registered
until the rising edge of C4. On the next long-word access, the secondary count value takes
effect. In a similar manner, TA is ignored until the rising edge of C6. On the last long-word
access of the line, the secondary ignore state count expires before TA is asserted. There-
fore, more wait states are added until TA is asserted and recognized on the rising edge of
C12.

Figure 7-51. Acknowledge Termination Ignore State Example

BCLK

ADDRESS AND
ATTRIBUTES

D31–D0

TS

SAS

R/W

C1 C2 C3 C4 C6 C7C5 C8

TA

C10 C11C9 C12

READ PRIMARY IGNORE STATE COUNT = 1
READ SECONDARY IGNORE STATE COUNT = 1

IGNORED IGNORED IGNORED IGNORED

Bus Operation

7-76 M68060 USER’S MANUAL MOTOROLA

The ignore state settings can be used to make the system design of the acknowledge ter-
mination logic simpler than in existing MC68040 systems that required these signals to be
valid (either asserted or negated) about every rising BCLK edge. Thus, using the acknowl-
edge termination ignore state capability allows the use of slower ASICs and PALs to be used
for generating the acknowledge termination signals without the requirement that these sig-
nals be at a valid logic level about every rising BCLK edge.

7.14.2 Acknowledge Termination Protocol
The MC68060 provides system designers a choice of using either the MC68040 acknowl-
edge termination protocol or the native-MC68060 acknowledge termination protocol. The
native-MC68060 acknowledge termination protocol is chosen if IPL1 is asserted during
reset.

The MC68040 acknowledge termination protocol is provided for MC68040 compatibility. In
this protocol, a retry is indicated by having both TA and TEA asserted simultaneously. In this
mode, the TRA signal must be pulled up at all times. Refer to Table 7-4 and Table 7-5 for
details on acknowledge termination signal encoding.

The native-MC68060 acknowledge termination protocol is provided to aid in high-frequency
designs. The signal TRA is used to indicate a retry operation, as opposed to using a combi-
nation of TA and TEA to indicate a retry. Refer to Table 7-4 and Table 7-5 for details on the
native-MC68060 acknowledge termination signal encoding.

7.14.3 Extra Data Write Hold Time Mode
In this mode, the MC68060 holds the contents of the data bus valid during a write bus cycle
for an extra BCLK period after a valid TA is sampled. This mode is enabled if IPL2 is
asserted during reset. When this mode is enabled, a zero wait state burst bus cycle is not
possible and systems must be designed to insert wait states on burst accesses. Figure 7-
52 shows an example of a line transfer cycle with this mode enabled. Read cycles are unaf-
fected by this mode.

Bus Operation

MOTOROLA M68060 USER’S MANUAL 7-77

Figure 7-52. Extra Data Write Hold Example

BCLK

ADDRESS AND
ATTRIBUTES

D31–D0

TS

TA

R/W

C1 C2 C3 C4 C6 C7C5 C8 C10 C11C9 C12

PRE
DRIVE

MOTOROLA

M68060 USER’S MANUAL

8-1

SECTION 8
EXCEPTION PROCESSING

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. Exception processing does not
include execution of the routine itself. This section describes the processing for each type
of integer unit exception, exception priorities, the return from an exception, and bus fault
recovery. This section also describes the formats of the exception stack frames. For details
on floating-point exceptions refer to

Section 6 Floating-Point Unit

.

8.1 EXCEPTION PROCESSING OVERVIEW

Exception processing is the transition from the normal processing of a program to the pro-
cessing required for any special internal or external condition that preempts normal process-
ing. External conditions that cause exceptions are interrupts from external devices, bus
errors, and resets. Internal conditions that cause exceptions are instructions, address
errors, and tracing. For example, the TRAP, TRAPcc, CHK, RTE, DIV, and FDIV instructions
can generate exceptions as part of their normal execution. In addition, illegal instructions,
unimplemented integer instructions, unimplemented effective addresses, unimplemented
floating-point instructions and data types, and privilege violations cause exceptions. Excep-
tion processing uses an exception vector table and an exception stack frame. The following
paragraphs describe the vector table and a generalized exception stack frame.

The MC68060 uses a restart exception processing model. Exceptions are recognized at the
execution stage of the operand execution pipeline (OEP) and force later instructions that
have not yet reached that stage to be aborted.

Instructions that cannot be interrupted, such as those that generate locked bus transfers or
access noncachable precise pages, are allowed to complete before exception processing
begins, unless an access error prevents this instruction from completing.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not guaranteed
to occur in the order in which they are described in this section. Figure 8-1 illustrates a gen-
eral flowchart for the steps taken by the processor during exception processing.

During the first step, the processor makes an internal copy of the status register (SR). Then
the processor changes to the supervisor mode by setting the S-bit and inhibits tracing of the
exception handler by clearing the T-bit in the SR. For the reset and interrupt exceptions, the
processor also updates the interrupt priority mask in the SR.

During the second step, the processor determines the vector number for the exception. For
interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the vector

Exception Processing

8-2

M68060 USER’S MANUAL

MOTOROLA

number. For all other exceptions, internal logic provides the vector number. This vector num-
ber is used in the last step to calculate the address of the exception vector. Throughout this
section, vector numbers are given in decimal notation.

Figure 8-1. General Exception Processing Flowchart

EXIT

DETERMINE VECTOR
NUMBER

(DOUBLE BUS FAULT)

CALCULATE
ADDRESS OF FIRST

INSTRUCTION OF
EXCEPTION HANDLER

EXIT

(DOUBLE BUS FAULT)

ENTRY

SAVE CONTENTS
TO STACK FRAME

(SEE NOTE)

FETCH FIRST
INSTRUCTION OF

EXCEPTION HANDLER

OTHERWISE
BEGIN EXECUTION

OF EXCEPTION
HANDLER

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

IF PROCESSING AN
ACCESS ERROR EXCEPTION

BUS ERROR OR
ADDRESS ERROR

IF NOT PROCESSING AN
ACCESS ERROR EXCEPTION

S 1
T 0

VECTOR = 2

HALTED STATE
PST4–PST0 = $1C

OTHERWISE

SAVE INTERNAL
COPY OF SR

S 1
T 0

(SEE NOTE)

NOTE: THESE BLOCKS VARY FOR RESET AND INTERRUPT EXCEPTIONS.

➧
➧

➧
➧

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-3

The third step is to save the current processor contents for all exceptions other than reset.
The processor creates one of four exception stack frame formats on the supervisor stack
and fills it with information appropriate for the type of exception. Other information can also
be stacked, depending on which exception is being processed and the state of the processor
prior to the exception. Figure 8-2 illustrates the general form of the exception stack frame.

The last step involves the determination of the address of the first instruction of the excep-
tion handler and then passing control to the handler. The processor multiplies the vector
number by four to determine the exception vector offset. It adds the offset to the value stored
in the vector base register (VBR) to obtain the memory address of the exception vector.
Next, the processor loads the program counter (PC) (and the supervisor stack pointer (SSP)
for the reset exception) from the exception vector table entry with the address of the first
instruction of the exception handler. The processor then fetches this instruction and initiates
exception handling. At the conclusion of exception handling, the processor resumes normal
processing at the address in the PC.

The MC68060 is unique from earlier members of the family in that if an interrupt is pending
during exception processing, the exception processing for that interrupt is deferred until the
first instruction of the exception handler of the current exception is executed. This allows any
exception handler to mask interrupts by ensuring that the first instruction of the exception
handler is an SR write that raises the interrupt level.

Normally, the end of an exception handler contains an RTE instruction. When the processor
executes the RTE instruction, it examines the stack frame on top of the supervisor stack to
determine if it is a valid frame. If the processor determines that it is a valid frame, the SR and
PC fields are loaded from the exception frame and control is passed to the specified instruc-
tion address.

All exception vectors are located in the supervisor address space and are accessed using
data references. Only the initial reset vector is fixed in the processor’s memory map; once
initialization is complete, there are no fixed assignments. Since the VBR provides the base
address of the exception vector table, the exception vector table can be located anywhere
in memory; it can even be dynamically relocated for each task that an operating system exe-
cutes.

Figure 8-2. General Form of Exception Stack Frame

STATUS REGISTER

PROGRAM COUNTER

FORMAT VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2 OR 4 WORDS, IF NEEDED)

15 12 11 0

SP

Exception Processing

8-4

M68060 USER’S MANUAL

MOTOROLA

The MC68060 supports a 1024-byte vector table containing 256 exception vectors (see
Table 8-1). Motorola defines the first 64 vectors and reserves the other 192 vectors for user-
defined interrupt vectors. External devices can use vectors reserved for internal purposes
at the discretion of the system designer. External devices can also supply vector numbers
for some exceptions. External devices that cannot supply vector numbers use the autovec-
tor capability, which allows the MC68060 to automatically generate a vector number.

8.2 INTEGER UNIT EXCEPTIONS

The following paragraphs describe the external interrupt exceptions and the different types
of exceptions generated internally by the MC68060 integer unit. The following exceptions
are discussed:

• Access Error
• Address Error

*

For the Access Fault exception, refer to

8.4.4.1 Program Counter (PC)

.
“fault” refers to the PC of the instruction that caused the exception.
“next” refers to the PC of the next instruction that follows the instruction that caused the fault.

†

Refer to

Section 6 Floating-Point Unit

.

Table 8-1. Exception Vector Assignments

Vector
Number(s)

Vector
Offset (Hex)

Stack Frame
Format

Stacked
Program
Counter

*

Assignment

0
1
2
3

000
004
008
00C

—
—
4
2

—
—
—

fault

Reset Initial SSP
Reset Initial PC
Access Fault
Address Error

4
5
6
7

010
014
018
01C

0
2
2
2

fault
next
next
next

Illegal Instruction
Integer Divide-by-Zero
CHK, CHK2 Instructions
TRAPcc, TRAPV Instructions

8
9
10
11
11
11

020
024
028
02C
02C
02C

0
2
0
0
2
4

fault
next
fault
fault
next
next

Privilege Violation
Trace
Line 1010 Emulator (Unimplemented A-Line Opcode)
Line 1111 Emulator (Unimplemented F-Line Opcode)
Floating-Point Unimplemented Instruction
Floating-Point Disabled

12
13
14
15

030
034
038
03C

0
0
0

next
—

fault
next

Emulator Interrupt
Defined for MC68020 and MC68030, not used by MC68060
Format Error
Uninitialized Interrupt

16–23 040–05C — — (Unassigned, Reserved)
24
25
26
27

060
064
068
06C

0
0
0
0

next
next
next
next

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

0
0
0
0

next
next
next
next

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080–0BC 0 next TRAP #0–15 Instruction Vectors

48–55 0C0–0DC — — Floating-Point Exceptions

†

56
57
58
59

0E0
0E4
0E8
0EC

—
—
—
—

—
—
—
—

Defined for MC68030 and MC68851, not used by MC68060
Defined for MC68851, not used by MC68060
Defined for MC68851, not used by MC68060
(Unassigned, Reserved)

60
61

0F0
0F4

0
0

fault
fault

Unimplemented Effective Address
Unimplemented Integer Instruction

62–63 0F8–0FC — — (Unassigned, Reserved)
64–255 100–3FC 0 next User Defined Vectors (192)

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-5

• Instruction Trap

• Illegal and Unimplemented Instruction Exceptions

• Privilege Violation

• Trace

• Format Error

• Breakpoint Instruction

• Interrupt

• Reset

8.2.1 Access Error Exception

An access error exception occurs when a bus cycle is terminated with TEA (TA must be
negated if in MC68040 acknowledge termination mode) asserted externally or an internal
access error.

An external access error (bus error) occurs when external logic aborts a bus cycle and
asserts the TEA input signal (TA must be negated if in MC68040 acknowledge termination
mode).

 A bus error on an operand write access always results in an access error exception, causing
the processor to begin exception processing. However, the time of reporting this bus error
is a function of the instruction type and/or memory mapping of the destination pages. For
writes that are precise (this includes certain atomic instructions like TAS and CAS and ref-
erences to pages marked noncachable precise), the occurrence of a bus error causes the
pipeline to be aborted immediately and initiates exception processing. For writes that are
imprecise (stored in push or store buffers or reference to pages marked noncachable impre-
cise), the actual bus cycle is decoupled from the instruction which generated the access. For
these types of bus errors, the exception is taken, but the state of the processor may be
advanced from the actual instruction which generated the write.

For operand read accesses generating non-line-sized references, a bus error causes the
pipeline to be immediately aborted and initiates exception processing. This is also true if a
bus error occurs on the first transfer of a line-sized transfer. For a bus error that occurs on
the second, third, or fourth transfers of a line access, the line is not allocated in the cache
and no exception is reported. If a subsequent instruction references another operand within
the given line, another system bus cycle is generated and the bus error reported at that time
(i.e., as the subsequent reference receives a bus error on its initial transfer) and the excep-
tion is then taken.

Bus errors that are signaled during instruction prefetches are deferred until the processor
attempts to execute that instruction. At that time, the bus error is signaled and exception pro-
cessing is initiated. If a bus error is encountered during an instruction prefetch cycle, but the
corresponding instruction is never executed due to a change-of-flow in the instruction
stream, the bus error is discarded.

Exception Processing

8-6

M68060 USER’S MANUAL

MOTOROLA

When the MC68060 detects any exception, the pipelines are aborted and exception pro-
cessing is initiated. After performing the SR copy and forcing the processor into the super-
visor mode, the processor then performs a pipeline synchronization to all the push and store
buffers to empty before proceeding with the exception. If a buffer bus error is signaled at this
time, the pipeline discards the original fault and instead reports the access error caused by
the first buffer write bus error (subsequent write buffer bus errors are ignored). Once the
push and store buffers are empty, the exception processing continues.

Processor accesses for either data or instructions can result in internal access errors. Inter-
nal access errors must be corrected to complete execution of the current instruction. An
internal access error occurs when the data or instruction memory management unit (MMU)
detects that a successful address translation is not possible because the page is write pro-
tected, supervisor only, or nonresident. When the instruction or data MMU detects that a
successful address translation is not possible, the instruction that initiated the unsuccessful
address translation is marked with an MMU fault and is continued down the pipeline. This
fault detection is independent of whether or not a table search was required. Some MMU
faults such as the supervisor-protect and write-protect faults can occur on address transla-
tion cache (ATC) hits or table searches. All other MMU faults can only occur on ATC misses
on the subsequent table searches. If this instruction that is marked with an MMU fault
reaches the EX stage of the OEP, an access error exception is reported.

As illustrated in Figure 8-1, the processor begins exception processing for an access error
by making an internal copy of the current SR. The processor then enters the supervisor
mode and clears the T-bit. The processor generates exception vector number 2 for the
access error vector. It saves the vector offset, PC, and internal copy of the SR on the stack.
In addition, the faulting logical address and the fault status long word (FSLW) is saved on
the stack.

A stack frame format of type 4 is generated when access error exception is reported. The
stacked PC is the logical address of the instruction executing at the time the fault was
detected. Note that this instruction is the instruction that initiated the bus cycle for all access
error cases, except for bus errors on write buffer (push or store) bus cycles. The logical
address that caused the fault is saved in the address field on the stack frame. Note that if
the fault occurred on the second or later of a misaligned access, the logical address may
need to be adjusted to point to the logical address that caused the access error. A fault sta-
tus long word is also provided in the stack to further qualify the conditions that caused the
fault.

If a bus error occurs during the exception processing for an access error, address error, or
reset, a double bus fault occurs, and the processor enters the halted state as indicated by
the PST4–PST0 encoding $1C. In this case, the processor does not attempt to alter the cur-
rent state of memory. Only an external reset can restart a processor halted by a double bus
fault.

The supervisor stack has special requirements to ensure that exceptions can be stacked.
The stack must be resident with correct protection in the direction of growth to ensure that
exception stacking never has a bus error or internal access error. Memory pages allocated
to the stack that are higher in memory than the current stack pointer can be nonresident

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-7

since an RTE or FRESTORE instruction can check for residency and trap before restoring
the state.

A special case exists for systems that allow arbitration of the processor bus during locked
transfer sequences. If the arbiter can signal a bus error of a locked translation table update
due to an improperly broken lock, any pages touched by exception stack operations must
have the U-bit set in the corresponding page descriptor to prevent the occurrence of the
locked access during translation table searches.

8.2.2 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. An odd address is defined as an address in which the least significant
bit is set. Some of the ways an address error exception is taken is as follows: RTS, RTD,
RTR, or RTE in which the PC value in the stack is odd; a branch (conditional or uncondi-
tional), jump, or subroutine call in which the branch target address is odd; and an odd vector
table entry (e.g., an odd reset vector).

A stack frame of type 2 is generated when this exception is reported.The stacked PC con-
tains the address of the instruction that caused the address error. The address field in the
stack contains the branch target address with A0 cleared.

If an address error occurs during the exception processing for a bus error, address error, or
reset, a double bus fault occurs. The processor enters the halted state as indicated by the
PST4–PST0 encoding $1C. In this case, the processor does not attempt to alter the current
state of memory. Only an external reset can restart a processor halted by a double bus fault.

8.2.3 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP #n instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, and CHK instructions force exceptions if the user program detects an
error, which can be an arithmetic overflow or a subscript value that is out of bounds. The
DIVS and DIVU instructions force exceptions if a division operation is attempted with a divi-
sor of zero.

As illustrated in Figure 8-1, when a trap exception occurs, the processor internally copies
the SR, enters the supervisor mode, and clears the T-bit. The processor generates a vector
number according to the instruction being executed. Vector 5 is for DIVx, vector 6 is for CHK,
and vector 7 is for TRAPcc and TRAPV instructions. For the TRAP #n instruction, the vector
number is 32 plus n. The stack frame saves the trap vector offset, the PC, and the internal
copy of the SR on the supervisor stack.

A stack frame of type 0 is generated when a TRAP #n exception is taken. The saved value
of the PC is the logical address of the instruction following the instruction that caused the
trap. Instruction execution resumes at the address in the exception vector after the required
instruction is prefetched.

Exception Processing

8-8

M68060 USER’S MANUAL

MOTOROLA

For all instruction traps other than TRAP #n, a stack frame of type 2 is generated. The
stacked PC contains the logical address of the next instruction to be executed. In addition
to the stacked PC, a pointer to the instruction that caused the trap is saved in the address
field of the stack frame. Instruction execution resumes at the address in the exception vector
after the required instruction is prefetched.

8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions

There are eight unimplemented instruction exceptions: unimplemented integer, unimple-
mented effective address, unimplemented A-line, unimplemented F-line, floating-point dis-
abled, floating-point unimplemented instruction, floating-point unsupported data type, and
illegal instruction.

The unimplemented integer exception corresponds to vector number 61 and occurs when
the processor attempts to execute an instruction that contains a quad word operand (MULx
producing a 64-bit product and DIVx using a 64-bit dividend), CAS2, CHK2, CMP2, CAS
with a misaligned operand, and the MOVEP instruction. A stack frame of type 0 is generated
when this exception is reported. The stacked PC points to the logical address of the unim-
plemented integer instruction that caused the exception.

The unimplemented effective address exception corresponds to vector number 60, and
occurs when the processor attempts to execute any floating-point instruction that contains
an extended precision immediate source operand (F<op>, #imm,FPx), when the processor
attempts to execute an FMOVEM.L #imm,<control register list> instruction of more than one
floating-point control register (FPCR, FPSR, FPIAR), when the processor attempts an
FMOVEM.X instruction using a dynamic register list (FMOVEM.X Dn,<ea> or FMOVEM.X,
<ea>,Dn). The stack frame of type 0 is generated when this exception is reported. The
stacked PC points to the logical address of the instruction that caused the exception. The
FPIAR is unaffected. Refer to

Section 6 Floating-Point Unit

 for details.

An unimplemented A-line exception corresponds to vector number 10 and occurs when an
instruction word pattern begins (bits 15–12) with $A. The A-line opcodes are user-reserved,
and Motorola will not use any A-line instructions to extend the instruction set of any of Motor-
ola’s processors. A stack frame of format 0 is generated when this exception is reported.
The stacked PC points to the logical address of the A-line instruction word.

A floating-point unsupported data type exception occurs when the processor attempts to
execute a bit pattern that it recognizes as an MC68881 instruction, the floating-point unit
(FPU) is enabled via the processor configuration register (PCR), the floating-point instruc-
tion is implemented, but the floating-point data type is not implemented in the MC68060
FPU. This exception corresponds to vector number 55. A stack frame of type 0, 2, or 3 is
generated when this exception is reported. The stacked PC points to the logical address of
next instruction after the floating-point instruction. Refer to

Section 6 Floating-Point Unit

for details.

A floating-point unimplemented instruction exception occurs when the processor attempts
to execute an instruction word pattern that begins with $F, the processor recognizes this bit
pattern as an MC68881 instruction, the FPU is enabled via the PCR, but the floating-point
instruction is not implemented in the MC68060 FPU. This exception corresponds to vector

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-9

number 11 and shares this vector with the floating-point disabled and the unimplemented F-
line exceptions. A stack frame of type 2 is generated when this exception is reported. The
stacked PC points to the logical address of the next instruction after the floating-point
instruction. Refer to

Section 6 Floating-Point Unit

 for details.

A floating-point disabled exception occurs when the processor attempts to execute an
instruction word pattern that begins with $F, the processor recognizes this bit pattern as an
MC68881 instruction, but the FPU is disabled via the PCR, or if the processor is an
MC68LC060 or an MC68EC060. This exception corresponds to vector number 11 and
shares this vector with the floating-point unimplemented and the F-line Unimplemented
exceptions. A type 4 stack frame is generated when this exception is reported. The stacked
PC points to the logical address of the next instruction. The PC of the faulted instruction field
(SP+12) points to the floating-point instruction that needs to be emulated.

The effective address field (SP+8) contains the effective address of the source or destina-
tion of the memory operand for the floating-point instruction. This field is valid only if the
floating-point instruction references a memory operand. If the operand is in a register (either
floating-point or data register), the effective address field contains $0. For the (An)+ and
–(An) addressing modes, the address register is not modified by the processor, and it is the
responsibility of the third party emulation software to modify the An value before returning
to the user program. For the –(An) addressing mode, the value of the effective address field
contains the address of the first memory operand except if the operand size is extended pre-
cision. For the extended precision case, the effective address field contains An–4 instead of
An–12. This is a key difference between the MC68LC/EC060 and the MC68LC/EC040 stack
frame, and third-party software emulators written for the MC68LC/EC040 must account for
this difference.

An unimplemented F-line exception occurs when an instruction word pattern begins (bits
15–12) with $F, the MC68060 does not recognize it as a valid F-line instruction (e.g.,
PTEST), and the processor does not recognize it as a floating-point MC68881 instruction.
This exception corresponds to vector number 11 and shares this vector with the floating-
point unimplemented instruction and the floating-point disabled exceptions. A stack frame
of type 0 is generated by this exception. The stacked PC points to the logical address of the
F-line word.

If the processor encounters any other instruction word bit patterns that are not implemented
by the MC68060, and is not covered by one of the other six unimplemented instruction
exceptions, the illegal instruction exception is taken. The illegal instruction exception corre-
sponds to vector number 4. An illegal instruction exception is also taken after a breakpoint
acknowledge bus cycle is terminated, either by the assertion of the transfer acknowledge
(TA) or the transfer error acknowledge (TEA) signal. An illegal instruction exception can also
be a MOVEC instruction with an undefined register specification field in the first extension
word. The M68000 instruction set defines the opcode $4AFC as an ILLEGAL instruction.
This exception is also taken when that opcode is executed. A stack frame of type 0 is gen-
erated when this exception is taken. The stacked PC points to the logical address of the ille-
gal instruction that caused the exception.

Exception Processing

8-10

M68060 USER’S MANUAL

MOTOROLA

Exception processing for illegal and unimplemented instructions is similar to that for instruc-
tion traps. When the processor has identified an illegal or unimplemented instruction, it ini-
tiates exception processing instead of attempting to execute the instruction. The processor
copies the SR, enters the supervisor mode, and clears T-bit, disabling further tracing. The
processor generates the vector number according to the exception type. The illegal or unim-
plemented instruction vector offset, current PC, and copy of the SR are saved on the super-
visor stack. Instruction execution resumes at the address contained in the exception vector.

8.2.5 Privilege Violation Exception

To provide system security, certain instructions are privileged. An attempt to execute one of
the following privileged instructions while in the user mode causes a privilege violation
exception:

ANDI to SR FSAVE MOVEC PLPA

CINV MOVE from SR MOVES RESET

CPUSH MOVE to SR ORI to SR RTE

EORI to SR MOVE USP PFLUSH STOP

FRESTORE LPSTOP

Exception processing for privilege violations is similar to that for illegal instructions. When
the processor identifies a privilege violation, it begins exception processing before executing
the instruction. As illustrated in Figure 8-1, the processor copies the SR, enters the supervi-
sor mode, and clears the T-bit. The processor generates vector number 8, saves the privi-
lege violation vector offset, the current PC value, and the internal copy of the SR on the
supervisor stack. The saved value of the PC is the logical address of the first word of the
instruction that caused the privilege violation. Instruction execution resumes after the initial
instruction is fetched from the address in the privilege violation exception vector.

8.2.6 Trace Exception

To aid in program development, the M68000 family includes an instruction-by-instruction
tracing capability. In the trace mode, an instruction generates a trace exception after the
instruction completes execution, allowing a debugging program to monitor execution of a
program.

In general terms, a trace exception is an extension to the function of any traced instruction.
The execution of a traced instruction is not complete until trace exception processing is com-
plete. If an instruction does not complete due to an access error or address error exception,
trace exception processing is deferred until after execution of the suspended instruction is
resumed. If an interrupt is pending at the completion of an instruction, trace exception pro-
cessing occurs before interrupt exception processing starts. If an instruction forces an
exception as part of its normal execution, the forced exception processing occurs before the
trace exception is processed.

The T-bit in the supervisor portion of the SR controls tracing. The state of the T-bit when an
instruction begins execution determines whether the instruction generates a trace exception
after the instruction completes.

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-11

Note that if the processor is executing in trace mode when a group 2 or 3 exception is sig-
naled, a trace exception will not be generated. This means that for the second example, as
the TRAP exception handler completes its execution and performs its RTE, the next instruc-
tion of the program sequence will be executed before the next trace exception is performed
(the MC68060 will not trace immediately after the TRAP). If tracing is required immediately
following a group 2 or 3 exception, the SR contained in the exception stack frame should be
checked before returning to the next instruction. If the stacked SR indicates that the proces-
sor was executing in trace mode, the trace handler should be executed to account for the
instruction that initiated the exception. Refer to

8.2 Integer Unit Exceptions

 for a list of
group 2 or 3 exceptions.

Trace exception processing starts at the end of normal processing for the traced instruction
and before the start of the next instruction. As illustrated in Figure 8-1, the processor makes
an internal copy of the SR and enters the supervisor mode. It also clears the T-bit of the SR,
disabling further tracing. The processor supplies vector number 9 for the trace exception and
saves the trace exception vector offset, PC value, and the internal copy of the SR on the
supervisor stack. A stack frame of type 2 is generated when this exception is taken. The
stacked value of the PC is the logical address of the next instruction to be executed. In addi-
tion, the address field of the stack contains the logical address of the instruction that caused
the trace exception. Instruction execution resumes after the initial instruction is fetched from
the address in the privilege violation exception vector.

When the STOP or LPSTOP instruction is traced, the processor never enters the stopped
condition. A STOP or LPSTOP instruction that begins execution with the T-bit set forces a
trace exception after it loads the SR. Upon return from the trace exception handler, execu-
tion continues with the instruction following the STOP or LPSTOP instruction, and the pro-
cessor never enters the stopped condition.

8.2.7 Format Error Exception

Just as the processor verifies that the bit pattern contained in the operation word represents
a valid instruction, it also performs certain checks of data values for control operations. The
RTE and FRESTORE instruction check the validity of the stack format code. The RTE
instruction checks if the format field indicates a type supported by the processor (formats 0,
2, 3 or 4). Likewise, for FPU state frames, the FRESTORE instruction checks if the upper 8
bits of the status field contained in the floating-point state frame is valid ($00, $60, or $E0).

If any of these checks determine that the format of the data is improper, the instruction gen-
erates a format error exception. This exception saves a stack frame of type 0, generates
exception vector number 14, and continues execution at the address in the format exception
vector. The stacked PC value is the logical address of the instruction that detected the for-
mat error.

8.2.8 Breakpoint Instruction Exception

To provide increased debug capabilities in conjunction with a hardware emulator, the
MC68060 provides a series of breakpoint instructions ($4848–$484F) which generate a
special external bus cycle when executed.

Exception Processing

8-12

M68060 USER’S MANUAL

MOTOROLA

When the MC68060 executes one of the breakpoint instructions, it performs a breakpoint
acknowledge cycle (read cycle) with an acknowledge transfer type (TT=$3) and transfer
modifier value of $0. Refer to

Section 7 Bus Operation

 for a description of the breakpoint
acknowledge cycle. After external hardware terminates the bus cycle with either TA or TEA,
the processor performs illegal instruction exception processing. Refer to

8.2.4 Illegal
Instruction and Unimplemented Instruction Exceptions

 for details on illegal instruction
exception processing.

8.2.9 Interrupt Exception

When a peripheral device requires the services of the MC68060 or is ready to send informa-
tion that the processor requires, it can signal the processor to take an interrupt exception
using the IPLx signals. The three signals encode a value of 0–7 (IPL0 is the least significant
bit). High levels on all three signals correspond to no interrupt requested (level 0). Values
1–7 specify one of seven levels of interrupts, with level 7 having the highest priority. Table
8-2 lists the interrupt levels, the states of IPLx that define each level, and the SR interrupt
mask value that allows an interrupt at each level.

When an interrupt request has a priority higher than the value in the interrupt priority mask
of the SR (bits 10–8), the processor makes the request a pending interrupt. Priority level 7,
the nonmaskable interrupt, is a special case. Level 7 interrupts cannot be masked by the
interrupt priority mask, and they are transition sensitive. The processor recognizes an
interrupt request each time the external interrupt request level changes from some lower
level to level 7, regardless of the value in the mask. Figure 8-3 shows two examples of
interrupt recognitions, one for level 6 and one for level 7. When the MC68060 processes a
level 6 interrupt, the SR mask is automatically updated with a value of 6 before entering the
handler routine so that subsequent level 6 interrupts and lower level interrupts are masked.
Provided no instruction that lowers the mask value is executed, the external request can be
lowered to level 3 and then raised back to level 6 and a second level 6 interrupt is not
processed. However, if the MC68060 is handling a level 7 interrupt (SR mask set to level 7)
and the external request is lowered to level 3 and than raised back to level 7, a second level
7 interrupt is processed. The second level 7 interrupt is processed because the level 7
interrupt is transition sensitive. A level comparison also generates a level 7 interrupt if the
request level and mask level are at 7 and the priority mask is then set to a lower level (as

Table 8-2. Interrupt Levels and Mask Values

Requested
Interrupt Level

Control Line Status Interrupt Mask Level Required
for RecognitionIPL2 IPL1 IPL0

0 Negated Negated Negated No Interrupt Requested
1 Negated Negated Asserted 0
2 Negated Asserted Negated 0–1
3 Negated Asserted Asserted 0–2
4 Asserted Negated Negated 0–3
5 Asserted Negated Asserted 0–4
6 Asserted Asserted Negated 0–5
7 Asserted Asserted Asserted 0–7

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-13

with the MOVE to SR or RTE instruction). The level 6 interrupt request and mask level
example in Figure 8-3 is the same as for all interrupt levels except 7.

Note that a mask value of 6 and a mask value of 7 both inhibit request levels of 1–6 from
being recognized. In addition, neither masks an interrupt request level of 7. The only differ-
ence between mask values of 6 and 7 occurs when the interrupt request level is 7 and the
mask value is 7. If the mask value is lowered to 6, a second level 7 interrupt is recognized.

External circuitry can chain or otherwise merge signals from devices at each level, allowing
an unlimited number of devices to interrupt the processor. When several devices are con-
nected to the same interrupt level, each device should hold its interrupt priority level constant
until its corresponding interrupt acknowledge bus cycle ensures that all requests are pro-
cessed. Refer to

Section 7 Bus Operation

 for details on the interrupt acknowledge cycle.

Figure 8-4 illustrates a flowchart for interrupt exception processing. When processing an
interrupt exception, the processor first makes an internal copy of the SR, sets the mode to
supervisor, suppresses tracing, and sets the processor interrupt mask level to the level of
the interrupt being serviced. The processor attempts to obtain a vector number from the

Figure 8-3. Interrupt Recognition Examples

EXTERNAL
IPL2–IPL0

INTERRUPT PRIORITY
MASK (I2–I0) ACTION

LE
VE

L
6

EX
AM

PL
E

(INITIAL CONDITIONS)100 ($3) 101 ($5)

(LEVEL COMPARISON)IF 001 ($6) AND 101 ($5) THEN LEVEL 6 INTERRUPT

IF 100 ($3) AND STILL 110 ($6) THEN NO ACTION

IF 001 ($6) AND STILL 110 ($6) THEN NO ACTION

IF STILL 001 ($6) AND RTE SO THAT 101 ($5) THEN LEVEL 6 INTERRUPT (LEVEL COMPARISON)

(TRANSITION)

(INITIAL CONDITIONS)100 ($3) 101 ($5)

IF 000 ($7) AND 101 ($5) THEN LEVEL 7 INTERRUPT

IF 000 ($7) AND 111 ($7) THEN NO ACTION

IF 100 ($3) AND STILL 111 ($7) THEN NO ACTION

IF 000 ($7) AND STILL 111 ($7) THEN LEVEL 7 INTERRUPT (TRANSITION)

LE
VE

L
7

EX
AM

PL
E

IF STILL 000 ($7) AND RTE SO THAT 101 ($5) THEN LEVEL 7 INTERRUPT (LEVEL COMPARISON)

Exception Processing

8-14

M68060 USER’S MANUAL

MOTOROLA

interrupting device using an interrupt acknowledge bus cycle with the interrupt level number
output on the transfer modifier signals. For a device that cannot supply an interrupt vector,
the autovector signal (AVEC) must be asserted. In this case, the MC68060 uses an inter-
nally generated autovector, which is one of vector numbers 25–31, that corresponds to the
interrupt level number (see Table 8-1). If external logic indicates a bus error during the inter-
rupt acknowledge cycle, the interrupt is considered spurious, and the processor generates
the spurious interrupt vector number, 24.

Once the vector number is obtained, the processor creates a stack frame of type 0. In this
stack frame, the processor saves the exception vector offset, PC value, and the internal
copy of the SR on the supervisor stack. The saved value of the PC is the logical address of
the next instruction had the interrupt not occurred.

Unlike previous processors of the M68000 family, the MC68060 defers interrupt sampling
from the beginning of exception processing of any exception, up to and until the first instruc-
tion of the exception handler. This allows the first instruction of any exception handler to
raise the interrupt mask level and therefore execute the exception handler without interrupts
(except level 7 interrupts).

Most M68000 family peripherals use programmable interrupt vector numbers as part of the
interrupt acknowledge operation for the system. If this vector number is not initialized after
reset and the peripheral must acknowledge an interrupt request, the peripheral usually
returns the vector number for the uninitialized interrupt vector, 15.

8.2.10 Reset Exception

Asserting the reset in (RSTI) input signal causes a reset exception. The reset exception has
the highest priority of any exception; it provides for system initialization and recovery from
catastrophic failure. Reset also aborts any processing in progress when RSTI is recognized;
processing cannot be recovered. Figure 8-5 is a flowchart of the reset exception processing.

The reset exception places the processor the supervisor mode by setting the S-bit and dis-
ables tracing by clearing the T-bit in the SR. This exception also sets the processor’s inter-
rupt priority mask in the SR to the highest level, level 7. Next the VBR is initialized to zero
($00000000), and all bits in the cache control register (CACR) for the on-chip caches are
cleared. The reset exception also clears the translation control register (TCR). It clears the
enable bit in each of the four transparent translation registers (TTRs). It also clears the bus
control register (BUSCR), and the PCR. The reset also affects the FPU. A quiet not-a-num-
ber (NAN) is loaded into each of the seven floating-point registers, and the floating-point
control register (FPCR), floating-point status register (FPSR), and floating-point instruction
address register (FPIAR) are cleared. If the processor is granted the bus, and the processor
does not detect TS asserted (possibly by an alternate master), the processor then performs
two long-word read bus cycles. The first long word, at address 0, is loaded into the SP, and
the second long word, at address 4, is loaded into the PC. Reset exception processing con-
cludes with the transfer of control to the memory location defined by the PC.

After the initial instruction is fetched, program execution begins at the address in the PC.
The reset exception does not flush the ATCs or invalidate entries in the instruction or data
caches; it does not save the value of either the PC or the SR. If an access error or address

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-15

error occurs during the exception processing sequence for a reset, a double bus fault is gen-
erated. The processor halts and signals the double bus fault status on the processor status
outputs ([PST4–PST0] = $1C). Execution of the reset instruction does not cause a reset
exception, nor does it affect any internal registers except the PC. The execution of this

Figure 8-4. Interrupt Exception Processing Flowchart

EXIT

FETCH VECTOR
FROM INTERRUPTING

DEVICE

FETCH FIRST
 INSTRUCTION
OF HANDLER

CALCULATE ADDRESS
OF FIRST INSTRUCTION

OF HANDLER

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

PROCESS
ACCESS ERROR

ENTRY

EXIT

SAVE INTERNAL
COPY OF SR

 S
T

I2–I0

 1
0
LEVEL OF
INTERRUPT

=
=
=

AUTOVECTOR #25–#31

SPURIOUS INTERRUPT
VECTOR #24

BUS ERROR

IF NO VECTOR #

VECTOR OFFSET,
PC, AND SR ➧
STACK FRAME

Exception Processing

8-16

M68060 USER’S MANUAL

MOTOROLA

instruction causes the MC68060 to assert the RSTO signal, allowing other devices within
the system to be reset.

Figure 8-5. Reset Exception Processing Flowchart

EXIT

FETCH VECTOR #0

FETCH VECTOR #1

FETCH FIRST
INSTRUCTION

(DOUBLE BUS FAULT)

SPVECTOR #0 ➧

VECTOR #1

 S-BIT OF SR
T-BIT OF SR

I2–I0 BITS OF SR
VBR

CACR
DTTn[E-BIT]
ITTn[E-BIT]

TCR
BUSCR

PCR
FP DATA REGS.

FP CONTROL REGS.

 =
=
=
=
=
=
=
=
=
=
=
=

1
0
$7
$0
$0
0
0
$0
$0
$0
NAN
$0

EXIT

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE
BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

HALTED STATE
(PST4–PST0 = $1C)

OTHERWISE

PC➧

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-17

8.3 EXCEPTION PRIORITIES

Exceptions can be divided into the five basic groups identified in Table 8-3. These groups
are defined by specific characteristics and the order in which they are handled. Table 8-3
represents the priority used for simultaneous faults, as viewed by the MC68060 hardware.
In Table 8-3, 0.0 represents the highest priority, while 4.1 is the lowest. Note that there are
shared priorities for exceptions within Group 3, since these types are mutually exclusive.

Within an MC68060 system, more than one exception can occur at the same time. The reset
exception is unique; central processing unit (CPU) reset overrides and clears all other
exceptions which may have occurred at the same time. All other exceptions are handled
according to the priority relationship defined in Table 8-3.

The method used to process exceptions in the MC68060 is similar to that found on the
MC68040 due to the restart exception model. In general, when multiple exceptions are
pending, the exception with the highest priority is processed first, and the remaining excep-
tions are regenerated when the original faulting instruction is restarted.

To clarify the exception priority within group 1, it is important to note that instruction fetch
pipeline (IFP) access errors are not recognized until the faulted portion of the instruction is
actually used (or attempted to be used). As an example, consider a “move.l (An), xxx.l”
instruction. If the source operand defined at the address contained in An is faulted, the oper-
and access error will occur. If the extension words defining the destination address are also
faulted, the IFP access error would be processed after the source operand fault. Thus, in

*

Refer to

Section 6 Floating-Point Unit (MC68060 Only)

 for details concerning floating-point instructions. For
the case of an emulated FTRAPcc instruction and a floating-point BSUN exception, the BSUN is considered
higher priority.

Table 8-3. Exception Priority Groups

Group.Priority Exception and Relative Priority Characteristics

0.0 Reset The processor aborts all processing (instruction
or exception) and does not save old context.

1.0
1.1
1.2

Address Error
Instruction Access Error
Data Access Error

The processor suspends processing and saves
the processor context.

2.0
2.1
2.2
2.3
2.4
2.5

A-Line Unimplemented
F-Line Unimplemented
Illegal Instruction
Privilege Violation
Unimplemented EA
Unimplemented Integer

Exception processing begins before the
instruction is executed.

2.6 Floating-Point Unimplemented Instruction,
Floating-Point Unsupported Data Type

Exception processing begins after the initial
memory operand address is calculated, but
before instruction is executed.

3.0

3.1
3.2
3.3
3.4
3.5
3.6

Floating-Point BSUN

*

, CHK, CHK2, Divide-by-
Zero, TRAPV, TRAPcc, TRAP #n, RTE Format
Error
Floating-Point SNAN*
Floating-Point OPERR*
Floating-Point OVFL*
Floating-Point UNFL*
Floating-Point DZ*
Floating-Point INEX*

Exception processing is part of instruction
execution and begins after instruction
execution.

4.0
4.1

Trace
Interrupt

Exception processing begins when the current
instruction is completed.

Exception Processing

8-18

M68060 USER’S MANUAL

MOTOROLA

this example, the instruction has two faults (instruction access error and operand access
error), but the faults are not simultaneous and appear as an operand access error on the
source address and an instruction access error on the destination address to the processor.
Another item to note is that for instructions with indirect addresses, the processing of the
indirection is always completed prior to the instruction entering normal OEP sequence con-
trol.

To illustrate the handling of multiple exceptions, consider first a pending interrupt being
posted while a program is executing in trace mode (i.e., bit 15 of the SR is set).

Since the processor always samples for pending interrupts and traces at the conclusion of
instruction execution, both the trace and the interrupt appear simultaneous to the processor.
Since the trace has higher priority than the interrupt (4.0 versus 4.1), trace exception pro-
cessing begins. After the first instruction of the trace exception handler has been executed,
the processor again samples for pending interrupts. Providing the previous interrupt is still
pending, the processor now begins interrupt exception processing. As the interrupt handler
completes execution, control returns to the trace handler. As the trace handler completes,
control returns to the original program.

As a second example of the handling of multiple exceptions, consider the prior scenario (a
pending interrupt being posted while a program is executing in trace mode) at the same time
a TRAP instruction enters the OEP.

As described before, since the processor always samples for pending interrupts and traces
at the conclusion of instruction execution, both the trace and the interrupt appear simulta-
neous to the processor. Since the trace has higher priority than the interrupt, trace exception
processing begins. After the first instruction of the trace exception handler has been exe-
cuted, the processor again samples for pending interrupts. Providing the previous interrupt
is still pending, the processor begins interrupt exception processing. As the interrupt handler
completes execution, control returns to the trace handler. As the trace handler completes,
control returns to the original program, where the TRAP instruction is executed, causing that
exception to occur.

Note that if the processor is executing in trace mode when a group 2 or 3 exception is sig-
naled, a trace exception will not be generated. This means that for the second example, as
the TRAP exception handler completes its execution and performs its RTE, the next instruc-
tion of the program sequence will be executed before the next trace exception is performed
(the MC68060 will not trace immediately after the TRAP). If tracing is required immediately
following a group 2 or 3 exception, the SR contained in the exception stack frame should be
checked before returning to the next instruction. If the stacked SR indicates that the proces-
sor was executing in trace mode, the trace handler should be executed to account for the
instruction that initiated the exception.

Considering the previous example, the TRAP handler should check the stacked SR, and
since the processor was executing in trace mode, pass control to the trace handler. If this
check is not made, the next trace exception will not occur until the instruction after the TRAP
has completed execution.

Exception Processing

MOTOROLA

M68060 USER’S MANUAL

8-19

8.4 RETURN FROM EXCEPTIONS

Once the processor has completed processing of all exceptions, it must restore the machine
context at the time of the initial exception before returning control to the original process.

Since the MC68060 is a complete restart machine, when the processor executes an RTE
instruction, only three fields are referenced. The stack format is accessed (SP+6) and the
frame type is first verified. If the format indicates an invalid type, a format error exception is
signaled. Otherwise, the processor accesses the SR (SP) and PC (SP+2) fields from the top
of the supervisor stack. If the PC value defines an odd address (least significant address bit
is set), then an address error exception is signaled. Note that for the format error or the
address error, the new stack frame will contain the SR value at the time the RTE’s execution
began, i.e., the SR has not been corrupted by the execution of the RTE. For either fault, the
PC is the logical address of the RTE instruction.

Given a valid stack format and a nonfaulting PC, the SR and PC are loaded with the stack
operands, the SSP adjusted by the appropriate value determined by the format field, and
control passed to the location defined by the new PC.

When the processor writes or reads a stack frame, it uses long-word operand transfers
wherever possible. Using a long-word-aligned SP enhances exception processing perfor-
mance. The processor does not necessarily read or write the stack frame data in sequential
order. The following paragraphs discuss in detail each stack frame format.

Note that unlike any of the previous M68000 processors, the MC68060 RTE instruction
treats the access error frame no differently from other frames.

8.4.1 Four-Word Stack Frame (Format $0)

If a four-word stack frame is on the stack and an RTE instruction is encountered, the pro-
cessor updates the SR and PC with the data read from the stack, increments the stack
pointer by eight, and resumes normal instruction execution

Stack Frames Exception Types Stacked PC Points To

• Interrupt
• Format Error

• TRAP #N
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• Privilege Violation

• Floating-Point Pre-Instruction
• Unimplemented Integer

• Unimplemented Effective Ad-
dress

• Next Instruction
• RTE or FRESTORE Instruc-

tion
• Next Instruction
• Illegal Instruction
• A-Line Instruction
• F-Line Instruction
• First Word of Instruction

 Causing Privilege Violation
• Floating-Point Instruction

• Unimplemented Integer In-
struction

• Instruction That Used the Un-
implemented Effective Ad-
dress

STATUS REGISTER

PROGRAM COUNTER

0 0 0 0 VECTOR OFFSET

015
SP

+$02

+$06

FOUR-WORD STACK FRAME–FORMAT $0

Exception Processing

8-20

M68060 USER’S MANUAL

MOTOROLA

8.4.2 Six-Word Stack Frame (Format $2)

If a six-word stack frame is on the stack and an RTE instruction is encountered, the proces-
sor restores the SR and PC values from the stack, increments the SSP by $C, and resumes
normal instruction execution.

8.4.3 Floating-Point Post-Instruction Stack Frame (Format $3)

In this case, the processor restores the SR and PC values from the stack and increments
the supervisor stack pointer by $C. If another floating-point post-instruction exception is
pending, exception processing begins immediately for the new exception; otherwise, the
processor resumes normal instruction execution.

Stack Frames Exception Types
Stacked PC Points To;

Address Field Has

• CHK, CHK2 (Emulated),
TRAPcc, FTRAPcc(Emulat-
ed), TRAPV, Trace, or Zero Di-
vide

• Unimplemented Floating-
Point Instruction

• Address Error

• Next Instruction; Address field
has the address of the instruc-
tion that caused the excep-
tion.

• Next Instruction; Address field
has the calculated <ea> for
the floating-point instruction.

• Instruction that caused the ad-
dress error; Address field has
the branch target address with
A0=0.

Stack Frames Exception Types
Stacked PC Points To;
Effective Address Field

• Floating-Point Post-Instruction • Next Instruction; Effective
Address field is the calculated
effective address for the float-
ing-point instruction.

STATUS REGISTER

PROGRAM COUNTER

0 0 1 0 VECTOR OFFSET

015
SP

+$02

+$06

SIX-WORD STACK FRAME–FORMAT $2

ADDRESS
+$08

STATUS REGISTER

PROGRAM COUNTER

0 0 1 1 VECTOR OFFSET

015
SP

+$02

+$06

FLOATING-POINT POST-INSTRUCTION
STACK FRAME–FORMAT $3

EFFECTIVE ADDRESS
+$08

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-21

8.4.4 Eight-Word Stack Frame (Format $4)
An eight-word stack frame is created for data and instruction access errors. It is also used
for the floating-point disabled exception. Refer to 8.2.4 Illegal Instruction and Unimple-
mented Instruction Exceptions for details on the use of this frame for the floating-point dis-
abled exception. The following paragraphs describe in detail the format for this frame as
used by for the access error and how the processor uses it when returning from exception
processing.

8.4.4.1 Program Counter (PC). On read access faults, the PC points to the instruction that
caused the access error. This instruction is restarted when an RTE is executed, hence, the
read cycle is re-executed. On read access errors on the second or later of misaligned reads,
the read cycles that are successful prior to the access error are re-executed since the pro-
cessor uses a restart model for recovery from exceptions.

Programs that rely on a read bus error to test for the existence of I/O or peripheral devices
must increment the value of the PC prior to the execution of the RTE instruction. Increment-
ing the PC involves the calculation of the instruction length, which is dependent on the
addressing mode used. To avoid having to calculate the instruction length, it is possible to
use a NOP-TEST_WRITE-NOP instead of a TEST_READ of the I/O or peripheral device.
The initial NOP causes all prior write cycles to complete. The TEST_WRITE causes the
access error, and if the write cycle is to imprecise operand space, the stacked PC of the
access error stack contains the address of the second NOP. When the RTE is executed,
instruction execution resumes at the second NOP. The limitation of this method is that it
works only if the I/O device is mapped to imprecise operand space. If the write is to a precise
operand space, the processor does not increment the PC, and the stacked PC contains the
instruction address of the TEST_WRITE.

On write access errors, the PC points to the instruction that causes the access error except
for bus error (TEA) on writes that involve the push and store buffers. Refer to 8.4.4.3 Fault
Status Long Word (FSLW) for specific information on these write cases. For these write
cases, the PC does not point to the instruction that caused the access error. Hence the write
cycle that incurred the bus error is lost. In general, bus errors on writes must be avoided.
The processor provides little support for recovery on bus errored write cycles to imprecise
operand spaces. For precise spaces, both the faulting PC and logical operand address are
directly provided in the exception frame.

Stack Frames Exception Types Stacked PC Points To
• Data or Instruction Access

Fault (ATC Fault or Bus Er-
ror)

• Floating-Point Disabled Ex-
ception

• See 8.4.4.1 Program
Counter (PC), 8.4.4.2 Fault
Address, and 8.4.4.3 Fault
Status Long Word (FSLW)
for additional information.

• Next instruction; Effective
Address Field has calculated
<ea> of memory operand (if
any); PC of Faulted Instruc-
tion points to the F-line in-
struction word of the floating-
point instruction.

FAULT STATUS LONGWORD (FSLW) or
PC OF FAULTED INSTRUCTION*

015
SP

+$02

EIGHT-WORD STACK FRAME–FORMAT $4

STATUS REGISTER

PROGRAM COUNTER

0 1 0 0 VECTOR OFFSET
FAULT ADDRESS or

EFFECTIVE ADDRESS*
+$0C

+$08
+$06

* Defined for the Floating-Point Disabled Exception

Exception Processing

8-22 M68060 USER’S MANUAL MOTOROLA

I/O devices or peripherals that use multiple pages (paged MMU) to define the cache mode
and that cannot tolerate duplicate reads must not allow code that causes misaligned reads
that cross page boundaries. In this case, either use the TTRs or the default TTR to define
the I/O or peripheral cache mode. I/O devices or peripherals must not be accessed using
instructions which perform both read and write cycles (e.g., a memory-to-memory move)
unless the devices accessed are capable of handling rerun cycles caused by a processor
with a restart recovery model.

8.4.4.2 Fault Address. The fault address field contains the logical address of the access
that incurred the access error. The SIZE, TT, TM, R- and W-bits of the FSLW qualify the fault
address. For MMU-related exceptions (e.g., missing page faults, write protect, supervisor
protect), the fault address is the logical address calculated by the integer unit. For mis-
aligned operand access faults, the fault address points to the initial logical address calcu-
lated by the integer unit regardless of which bus cycle actually faulted. For instruction
extension word faults, this field points to the logical address of the instruction opword and
not the extension word.

8.4.4.3 Fault Status Long Word (FSLW) . The FSLW information indicates whether an
access to the instruction stream or the data stream (or both) caused the fault and contains
status information for the faulted access. Figure 8-6 illustrates the FSLW format.

Bits 31–28, 26, and 1—Reserved by Motorola.

IO, MA—Instruction or Operand, Misaligned Access
IO,MA
0, 0 = Fault occurred on the first access of a misaligned transfer, or to the

only access of an aligned transfer.
0, 1 = Fault occurred on the second or later access of a misaligned

transfer.
1, 0 = Fault occurred on an instruction opword fetch.
1, 1 = Fault occurred on a fetch of an extension word.

LK—Locked Transfer
0 =Fault did not occur on a locked transfer.
1 =Fault occurred on a locked transfer initiated by the processor (e.g., TAS, CAS, table

searches. Also set on locked transfers within the boundaries defined by the
MOVEC of BUSCR (LOCK bit) instruction.

Figure 8-6. Fault Status Long-Word Format

15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

PBE SBE PTA PTB IL PF SPIO

13

31 28 27 26 25 24 23 22 21 20 19 18 16

RESERVED MA RESERVED LK RW SIZE TMTT

WP TWE RE WE TTR BPE SEERESERVED

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-23

RW—Read and Write
00 = Undefined, reserved
01 = Write
10 = Read
11 = Read-Modify-Write

A read-modify-write indicates that the referenced address is capable of being read and
written. For example, for an ADD D0,<ea> instruction, the memory operand is read, mod-
ified, and then written by this instruction. A read-modify-write does not imply a “locked”
sequence.

SIZE—Transfer Size
00 = Byte
01 = Word
10 = Long
11 = Double Precision or MOVE16

The SIZE field corresponds to the original access size. If a data cache line read results
from a read miss and the line read encounters a bus error, the SIZE field in the resulting
stack frame indicates the size of the original read generated by the execution unit.

TT—Transfer Type
This field defines the TT1–TT0 signal encoding for the faulted access.

TM—Transfer Modifier
This field defines the TM2–TM0 signal encoding for the faulted access.

PBE—Push Buffer Bus Error
0 = Fault not caused by a bus error (TEA asserted) during a push buffer write.
1 = Fault caused by a bus error (TEA asserted) during a push buffer write.

SBE—Store Buffer Bus Error
0 =Fault not caused by a bus error (TEA asserted) during a store buffer write.
1 =Fault caused by a bus error (TEA asserted) during a store buffer write.

PTA—Pointer A Fault
0 =Fault not due to an invalid root level descriptor.
1 =Fault due to an invalid root level descriptor.

PTB—Pointer B Fault
0 =Fault not due to an invalid pointer level descriptor.
1 =Fault due to an invalid pointer level descriptor.

IL—Indirect Level Fault
0 =Fault not due to encountering a second indirect page descriptor.
1 =Fault due to encountering a second indirect page descriptor.

Exception Processing

8-24 M68060 USER’S MANUAL MOTOROLA

PF—Page Fault
0 =Fault not due to an invalid page descriptor.
1 =Fault due to an invalid page descriptor.

SP—Supervisor Protect
0 =Fault not due to user process accessing a page that is supervisor protected.
1 =Fault due to user process accessing a page that is supervisor protected.

WP—Write Protect
0 =Fault not due to a write access on a write-protected page.
1 =Fault due to a write access on a write-protected page.

TWE—Bus Error (TEA asserted) on Table Search
0 =Fault is not caused by a bus error during any MMU table search read or write.
1 =Fault is caused by a bus error during any MMU table search read or write.

RE—Bus Error (TEA asserted) on Read
0 =Fault is not caused by a bus error on a read cycle.
1 =Fault is caused by a bus error on a read cycle.

WE—Bus Error (TEA asserted) on Write
0 =Fault is not caused by a bus error on a write cycle.
1 =Fault is caused by a bus error on a write cycle.

TTR—TTR Hit
0 =Fault is detected on an access that is mapped by the a paged MMU translation or a

default TTR translation.
1 =Fault is detected on an access that is mapped by one of the four TTRs.

BPE—Branch Prediction Error
0 =Fault is not caused by a branch prediction error.
1 =Fault is caused by a branch prediction error.

Refer to 8.4.7 Branch Prediction Error for details on this error type.

SEE—Software Emulation Error
0 =Fault is not caused by a software emulation error.
1 =Fault is caused by a software emulation error.

The processor does not set the SEE bit. This bit is used by the M68060SP to indicate a
software emulation error case. Refer to Appendix C MC68060 Software Package for
details on how this bit is set.

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-25

8.4.5 Recovering from an Access Error
The access error exception handler can identify the cause of the fault by examining the
FSLW. Unlike earlier processors, the MC68060 provides all the information needed to iden-
tify the fault by examining the FSLW. Note that this section does not discuss the use of the
SEE (software emulation error) bit nor does it provide the procedure needed to support the
M68060SP misaligned CAS and CAS2 emulation code. Refer to Appendix C MC68060
Software Package for details of how access error recovery is affected by the M68060SP.

The first step to recovering from an access error is for the exception handler to determine
whether or not a branch prediction error has occurred. See 8.4.7 Branch Prediction Error
for details on how a branch prediction error occurs. If the BPE bit in the FSLW is set, flush
the branch cache and continue with normal access error handling. If no other faults are indi-
cated, then execute an RTE and continue normal operations.

The second step for the handler is to determine whether or not the access error is recover-
able. In general, bus errors (TEA Asserted) on write cycles must be avoided. Refer to 8.4.6
Bus Errors and Pending Memory Writes for further details of bus errors and pending
memory writes. In summary, check for any of the following nonrecoverable write cases:

• PBE = 1 (push buffer bus error)

• SBE = 1 (store buffer bus error)

• RW = 11, IO = 0, MA=1 (bus error on misaligned read-modify-write)

• RW = 01, for a MOVE <ea>, <ea> in which the destination operand writes over the
source operand.

For these nonrecoverable write cases, the write reference has been lost and it is up to the
system software designer to determine the next course of action. Probably the most prudent
course of action is to discontinue the user program and enter a known supervisor state.

The third step is to handle the transparent translation access error cases. This is indicated
by TTR=1. All of these cases are recoverable as long as step two from above has been tak-
en out. At this point, the access error may be caused by the following errors, which are mu-
tually exclusive.

• SP = 1 (supervisor protection violation detected by one of the four TTRs)

• WP = 1 (write protection violation detected by one of the four TTRs)

• RE = 1 (bus error on read)

• WE = 1 (bus error on write)

For the SP = 1 or WP = 1 cases, it is possible to modify the transparent translation descriptor
to allow the access to occur once the instruction is restarted.

For the RE = 1 or WE = 1 cases, unless the cause of the bus error is removed, when the
instruction is restarted, the access error handler is re-entered, possibly resulting in an infinite
loop.

Exception Processing

8-26 M68060 USER’S MANUAL MOTOROLA

The fourth step is to handle the paged memory management invalid descriptor cases. This
step is unnecessary if using an MC68EC060 or if the paged MMU is disabled. An invalid de-
scriptor is indicated by TTR = 0, and any one of the following bits are set: PTA, PTB, IL, PF,
and TWE. These bits indicate the cause of the access error and are mutually exclusive:

• TWE = 1 (bus error detected during MMU table search reads or writes)

• PTA = 1 (invalid root level descriptor)

• PTB = 1 (invalid pointer-level descriptor)

• IL = 1 (a second indirect level descriptor is encountered)

• PF = 1 (invalid page descriptor)

Of the above cases, the TWE bit case must be handled with special care. Since no informa-
tion is given as to when the bus error is encountered, it is possible to encounter the bus error
again in the process of locating the fault.

The paged memory management architecture allows for only one level of indirection. A page
descriptor of type indirect must point to a page descriptor of type resident. If that second
page descriptor is of type invalid, an exception is taken such that PF = 1. If that second page
descriptor is of type indirect, a second level of indirection is attempted, and an exception is
taken such that IL = 1. If IL = 1, the handler must supply a page descriptor of type resident.

The PTA, PTB, PF cases require that the exception handler allocate physical memory for
the appropriate page and update the appropriate descriptor. When the instruction is
restarted, the table search either encounters the next table search fault or executes suc-
cessfully.

It is important to note that the MC68060 performs table searches in hardware and does not
use the fetch table and page descriptors from the cache. The descriptor tables must be
placed in noncachable memory so that when the exception handler touches these descrip-
tors, that the physical image in memory is updated properly.

Also note that since table searches that result in invalid descriptors (TWE, PTA, PTB, IL, PF)
do not update the ATC, the ATC need not be flushed by the exception handler.

The fifth step is to handle the paged memory management protection violation and bus error
cases. This step is unnecessary if using an MC68EC060 or if the paged MMU is disabled.
At this point, the table search has resulted in a valid page descriptor, and that the ATC has
been updated. As long as fourth step above is handled, following causes are possible and
are mutually exclusive:

• SP = 1 (supervisor protection violation detected by paged MMU)

• WP = 1 (write protection violation detected by paged MMU)

• RE = 1 (bus error on read)

• WE = 1 (bus error on write)

For the protection violation cases (SP and WP), if the access is to be allowed, the page
descriptor must be updated, and the corresponding ATC entry must be flushed. When the

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-27

instruction is restarted, another table search is performed, and the instruction is executed
successfully. If the access is not allowed, it is up to the system software designer to deter-
mine appropriate action.

For the physical bus error cases, as long as it is not one of the non-recoverable write cases,
the exception handler must fix the page descriptor to point to a different physical memory,
so that when the restart of the instruction occurs, that bus error does not recur.

It is important to note that the MC68060 performs table searches in hardware, and does not
use the fetch table and page descriptors from the cache. The descriptor tables must be
placed in non-cachable memory so that when the exception handler touches these descrip-
tors, that the physical image in memory is updated properly.

The sixth step is to handle the default TTR cases. The default TTR is indicated if none of
these bits are set: TTR, PTA, PTB, IL and PF. At this point, only the following cases are pos-
sible:

• WP = 1 (write protection violation detected by default TTR)

• RE = 1 (bus error on read)

• WE = 1 (bus error on write)

These cases may be handled similarly to step three. If the exception handler has gotten to
this point, but none of the WP, RE and WE bits are set, and if the BPE bit is set and has
been handled by the first step, then execute an RTE.

8.4.6 Bus Errors and Pending Memory Writes
The MC68060 processor contains two different write buffers for pending memory write oper-
ations: the store buffer and the push buffer. The store buffer is used to optimize performance
by deferring bus write operations in write through and imprecise cache modes, and the push
buffer holds displaced copyback mode cache lines and line write data for the MOVE16
instruction.

The push buffer holds a displaced cache line destined for memory until the cache-miss bus
read access that caused the push completes. Imprecise cache modes (cachable write-
through and copyback, and cache inhibited, imprecise) use the write buffers of the MC68060
to optimize system performance. Cache inhibited precise mode provides a precise excep-
tion model for MC68060 operation, not utilizing the write buffers (store or push).

When the MC68060 detects an exception condition, all instruction execution is aborted and
the exception processing state is entered. Upon entering this state, the pipeline stalls until
both the store and push buffers are empty before beginning exception processing. If a TEA
signal termination occurs during a memory write cycle while emptying the store buffer, ‘a bus
error TEA on store buffer’ is recorded and the buffer sequences through all the remaining,
pending writes. However, if a TEA signal termination occurs during a memory write cycle
while emptying the push buffer, ‘a bus error TEA on push buffer’ is recorded and the memory
write operation is aborted immediately.

Exception Processing

8-28 M68060 USER’S MANUAL MOTOROLA

Once the write buffers (push and store) are all empty, the pipeline re-evaluates the pending
exception types. If no TEA fault occurred during the emptying of the buffers, the processor
continues with the original exception. If a TEA fault did occur as the buffers were emptied,
the original exception is discarded and an operand data access error exception is taken. The
exception stack for the access error includes indicator bits in the FSLW signalling the occur-
rence of the push buffer TEA or store buffer TEA. Note that both errors may be present
within a single access error exception. The exception stack frame will record the PC value
at the time the exception was detected, but this value has no relationship to the instruction
that caused the push or store buffer entries to originally be made. The stacked virtual
address is meaningless for these two fault types.

There are other non-recoverable write cases which are unrelated to the push and store
buffer cases. The execution of a misaligned read-modify-write instruction which partially
completes the writes before faulting is inherently non-recoverable on a restart machine.
Consider the ADD D0, <mem> instruction. In this instruction, the processor fetches the
memory operand, adds the contents of D0 internally, and writes the result out to memory. If
the memory operand is misaligned and a bus error occurs on the second or later access,
the first part of the memory operand would have been overwritten. If the instruction enters
the access error exception handler, it cannot be restarted because original memory value
has been corrupted. This read-modify-write instruction and others like it can be detected in
the access error handler because the access error frame has separate read and write bits
(RW field). If both bits are set, the instruction is a read-modify-write instruction similar to the
ADD instruction case as discussed.

Another non-recoverable write case is similar to the ADD case above, but is more difficult to
detect. A MOVE <mem>, <mem> instruction in which the source operand and destination
operand overlap may have the same problems as discussed in the ADD instruction if the
destination operand is part of the source operand and a misaligned write occurs, which
result in an access error on the second or later misaligned case. The MOVE <mem>,
<mem> instruction is not normally considered a read-modify-write type of instruction, and is
not detected simply by looking at the RW bits in the FSLW.

An MC68060 system design could implement address/data capture logic to provide addi-
tional information for these bus error scenarios.

Exception Processing

MOTOROLA M68060 USER’S MANUAL 8-29

8.4.7 Branch Prediction Error
A branch prediction error occurs when a taken branch instruction is executed creating a
branch cache entry and then this same code is re-executed with the former branch instruc-
tion now appearing as an extension word for another opcode.In this type of sequence where
the interpretation of the code stream is dynamically changed, a branch prediction error may
occur.

In the past, Motorola had suggested using a TRAPF (word or long) instruction to remove a
branch in the following construct:

bra label2
label1: <op1>
label2: <op2>

where a TRAPF (word or long) can be substituted for the branch instruction and the subse-
quent instruction, <op1> instruction effectively appears as the extension word of the TRAPF.

The BPE bit of the FSLW can be asserted if the <op1> instruction is a taken branch instruc-
tion, but the likelihood of this usage is expected to be very low. The replacement of branch
instructions using this TRAPF construct is still recommended for cases where <op1> is not
a branch instruction. It is the responsibility of the access error handler to test the BPE bit,
and if asserted, clear the branch cache. Refer to 8.4.5 Recovering from an Access Error
for details on how to recover from this error.

MOTOROLA

M68060 USER’S MANUAL

9-1

SECTION 9
IEEE 1149.1 TEST (JTAG) AND
DEBUG PIPE CONTROL MODES

This section describes the IEEE 1149.1 test access port (normal Joint Test Action Group
(JTAG)) mode and the debug pipe control mode, which are available on the MC68060.

9.1 IEEE 1149.1 TEST ACCESS PORT (NORMAL JTAG) MODE

The MC68060 includes dedicated user-accessible test logic that is fully compliant with the
IEEE standard 1149.1-1993

Standard Test Access Port and Boundary Scan Architecture

except in the case where the JTAG architecture and the LPSTOP function interact. This
case is not formally addressed by the standard, but the MC68060 solution is transparent to
the functionality defined by the standard, has the effect of meeting full compatibility to IEEE
1149.1, and has been approved by the IEEE 1149.1 Working Group Committee.

The following description is to be used in conjunction with the supporting IEEE document
listed previously. This section includes the description of those chip-specific items that the
IEEE standard defines as required as well as those items that are specific to the MC68060
implementation.

The MC68060 JTAG test architecture implementation supports circuit board test strategies
that are based on the IEEE standard. This architecture provides access to all of the data and
control pins of the chip from the board-edge connector through the standard four pin test
access port (TAP) plus the additional optional active low TRST reset pin (see

Section 2 Sig-
nal Description

 for a description of TRST). The test logic itself uses a static design and is
entirely independent of the system logic, except where the JTAG mode is subordinate to
another complimentary test mode

(see

9.2 Debug Pipe Control Mode

). When placed in the
subordinate mode, the JTAG test logic is placed in reset and the TAP pins are used for alter-
nate purposes in accordance with the rules and restrictions set forth for the use of a JTAG
compliance enable pin.

The MC68060 JTAG implementation provides the capabilities to:

1. Perform boundary scan operations to test circuit board electrical continuity,

2. Bypass the MC68060 by reducing the shift register path to a single cell,

3. Sample the MC68060 system pins during operation and transparently shift out the
result,

4. Set the MC68060 output drive pins to fixed logic values while reducing the shift register
path to a single cell, and

5. Protect the MC68060 system output and input pins from backdriving and random

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-2

M68060 USER’S MANUAL

MOTOROLA

toggling (such as during in-circuit testing) by placing all system signal pins to a high
impedance state.

NOTE

The IEEE standard 1149.1 test logic cannot be considered com-
pletely benign to those planning not to use this capability. Cer-
tain precautions must be observed to ensure that this logic does
not interfere with system operation and allows full use of the
LPSTOP function. Refer to

9.1.5 Disabling the IEEE 1149.1
Standard Operation

9.1.1 Overview

Figure 9-1 illustrates the block diagram of the MC68060 implementation of the 1149.1 stan-
dard.The test logic includes several test data registers, an instruction register, instruction
register control decode, and a 16-state dedicated TAP controller. The sixteen controller
states are defined in detail in the in the IEEE 1149.1 standard, but eight are listed in Table
9-1 and included for illustration purposes:

The TAP consists of five dedicated signal pins which are controlled by a sixth dedicated
compliance enable pin.

1. JTAG—An active low JTAG enable pin that maps the TAP signals to either the 1149.1
logic or the emulation mode logic and meets the requirements set forth for a compli-
ance enable pin. The TAP pins are described in the case of JTAG asserted.

2. TCK—A test clock input that synchronizes test logic operations.

3. TMS—A test mode select input with an internal pullup resistor that is sampled on the
rising edge of TCK to sequence the TAP controller.

4. TDI—A serial test data input with an internal pullup resistor that is sampled on the ris-
ing edge of TCK.

5. TDO—A three-state test data output that is actively driven only in the shift-IR and shift-
DR controller states and only updates on the falling edge of TCK.

6. TRST—An active low asynchronous reset with an internal pullup resistor that forces
the TAP controller into the test-logic-reset state.

Table 9-1. JTAG States

State Name State Summary

Test-Logic-Reset Places test logic in default defined reset state

Run-Test-Idle Allows test control logic to remain idle while test operations
occur

Capture-IR Loads default IDCODE instruction into the instruction register

Shift-IR Allows serial data to move from TDI to TDO through the instruc-
tion register

Update-IR Applies and activates instruction contained in the instruction
shift register

Capture-DR Loads parallel sampled data into the selected test data register

Shift-DR Allows serial data to move from TDI to TDO through the selected
test data register

Update-DR Applies test data contained in the selected test data register

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-3

9.1.2 JTAG Instruction Shift Register

The MC68060 IEEE 1149.1 implementation uses a 4-bit instruction shift register without par-
ity. The shift register transfers its value to a parallel hold register and applies one of sixteen
possible instructions, seven of which are defined as public customer-usable instructions, on
the falling edge of TCK when the TAP state machine is in the update-IR state (the other nine
instructions are private instructions to support manufacturing test and can cause destructive
behavior if used without proper understanding). The instructions may be loaded into the shift
portion of the register by placing the serial data on the TDI signal prior to each rising edge
of TCK. The most significant bit of the instruction shift register is the bit closest to the TDI
signal and the least significant bit is the bit closest to the TDO pin.

The public customer-usable instructions that are supported are listed with their encodings in
Table 9-2.

Figure 9-1. JTAG Test Logic Block Diagram

213 0

214-BIT BOUNDARY SCAN REGISTER

1-BIT BYPASS

0

32-BIT IDCODE REGISTER

31 0

4-BIT INSTRUCTION SHIFT REGISTER

INSTRUCTION APPLY & DECODE REGISTER

03

TDI

M

U

X

TDO

TAP CONTROLLER

TRST

TCK

TMS

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-4

M68060 USER’S MANUAL

MOTOROLA

*LPSAMPLE is not supported on version 0000. See Figure 9-2 in

9.1.3.1 Idcode Register

.

The EXTEST, SAMPLE/PRELOAD, and BYPASS instructions are required by IEEE 1149.1.
IDCODE is an optional public instruction supported by the MC68060. CLAMP and HIGHZ
are optional public instructions that are supported by the MC68060 and are described the
1149.1-1993 standard. LPSAMPLE is a Motorola-defined public instruction.

All encodings other than these are private instructions for Motorola internal use only.
Improper or unauthorized use of these instructions could result in potential internal damage
to the device and can cause external signal contention since these tests operate internal
registers, data path, and memory array logic and can drive random signal values on both
the input and output pins.

9.1.2.1 EXTEST.

The external test instruction (EXTEST) selects the 214-bit boundary scan
register. The EXTEST instruction forces all output pins and bidirectional pins configured as
outputs to the fixed values that are preloaded (with the PRELOAD instruction) and held in
the boundary scan update registers. The EXTEST instruction can also be used to configure
the direction of bidirectional pins and establish high-impedance states on some pins. The
EXTEST instruction becomes active on the falling edge of TCK in the update-IR state when
the data held in the instruction shift register is equivalent to $0.

It is recommended that the boundary scan register bit equivalent to the RSTI pin be pre-
loaded with the assert value for system reset prior to application of the EXTEST instruction.
This will ensure that EXTEST asserts the internal reset for the MC68060 system logic to
force a predictable benign internal state while forcing all system output pins to fixed values.
However, if it is desired to hold the processor in the LPSTOP state when applying the
EXTEST instruction, do not preload the boundary scan register bit equivalent to the RSTI
pin with an assert value because this action forces the processor out of the LPSTOP state.

Table 9-2. JTAG Instructions

Instruction Acro Class IR3–IR0 Instruction Summary

EXTEST EXT Required 0000 Select boundary scan register to apply fixed values to outputs

LPSAMPLE LPS Public 0001 Selects the boundary scan register for data operations while
input pins are isolated *

MFG-TEST9 — Private 0010 For Motorola Internal Manufacturing Test use only
MFG-TEST1 — Private 0011 For Motorola Internal Manufacturing Test use only

SAMPLE SMP Required 0100 Selects boundary scan register for shift, sample and preload
IDCODE IDC Optional 0101 Defaults to select the ID code register
CLAMP CMP Optional 0110 Selects bypass while fixing output values
HIGHZ HIZ Optional 0111 Selects bypass while three-stating all chip outputs

MFG-TEST2 — Private 1000 For Motorola Internal Manufacturing Test use only
MFG-TEST3 — Private 1001 For Motorola Internal Manufacturing Test use only
MFG-TEST4 — Private 1010 For Motorola Internal Manufacturing Test use only
MFG-TEST5 — Private 1011 For Motorola Internal Manufacturing Test use only
MFG-TEST6 — Private 1100 For Motorola Internal Manufacturing Test use only
MFG-TEST7 — Private 1101 For Motorola Internal Manufacturing Test use only
MFG-TEST8 — Private 1110 For Motorola Internal Manufacturing Test use only

BYPASS BYP Required 1111 Selects the bypass register for data operations

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-5

9.1.2.2 LPSAMPLE.

The LPSAMPLE instruction provides identical functionality to the
SAMPLE/PRELOAD instruction described in 9.1.2.4 SAMPLE/PRELOAD with one excep-
tion: instead of sampling the system data and control signals present at the MC68060 input
pins, the LPSAMPLE instruction forces the LPSTOP isolation transistors into isolation state
so that it can be verified that they are present and interrupting the path from the signal pin
to the internal logic.The LPSAMPLE instruction becomes active on the falling edge of TCK
in the update-IR state when the data held in the instruction shift register is equivalent to a $1.

9.1.2.3 Private Instructions.

The set of private instructions labeled MFG-TEST1 through
MFG-TEST9 are reserved by Motorola for internal manufacturing use. These instructions
can change (remap) the pin I/O and pin functions as defined for system operation (some
input pins may become output pins and some output pins may become input pins). Use of
these instructions without proper understanding can result in potentially destructive opera-
tion of the MC68060. These instructions become active on the falling edge of TCK in the
update-IR state when the data held in the instructions shift register is equivalent to values
$2, $3, $8, $9, $A, $B, $C, $D, and $E.

9.1.2.4 SAMPLE/PRELOAD.

The SAMPLE/PRELOAD instruction provides two separate
functions. First, it provides a means to obtain a sample of the system data and control sig-
nals present at the MC68060 input pins and just prior to the boundary scan cell at the output
pins. This sampling occurs on the rising edge of TCK in the capture-DR state when an
instruction encoding of $4 is resident in the instruction register. The user can observe this
sampled data by shifting it through the boundary scan register to the output TDO by using
the shift-DR state. Both the data capture and the shift operation are transparent to system
operation. The user is responsible for providing some form of external synchronization to
achieve meaningful results since there is no internal synchronization between TCK and the
system clock, CLK.

The second function of the SAMPLE/PRELOAD instruction is to initialize the boundary scan
register update cells before selecting EXTEST or CLAMP. This is accomplished by ignoring
the data being shifted out of the TDO pin while shifting in initialization data. The update-DR
state in conjunction with the falling edge of TCK can then be used to transfer this data to the
update cells. This data will be applied to the external output pins when one of the instructions
listed previously is applied.

9.1.2.5 IDCODE.

The IDCODE instruction selects the 32-bit idcode register for connection
as a shift path between the TDI pin and the TDO pin. This instruction allows the user to inter-
rogate the MC68060 to determine its JTAG version number and other part identification
data. The idcode register has been implemented in accordance with IEEE 1149.1 so that
the least significant bit of the shift register stage is set to logic one on the rising edge of TCK
following entry into the capture-DR state. Therefore, the first bit to be shifted out after select-
ing the idcode register is always a logic one (this is to differentiate a part that supports an
idcode register from a part that supports only the bypass register). The remaining 31-bits are
also set to fixed values (see

9.1.3.1 Idcode Register

) on the rising edge of TCK following
entry into the capture-DR state.

The IDCODE instruction is the default value placed in the instruction register when a JTAG
reset is accomplished by, either asserting TRST, or holding TMS high while clocking TCK

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-6

M68060 USER’S MANUAL

MOTOROLA

through at least five rising edges and the falling edge after the fifth rising edge. A JTAG reset
will cause the TAP state machine to enter the test-logic-reset state (normal operation of the
TAP state machine into the test-logic-reset state will also result in placing the default value
of $5 into the instruction register). The shift register portion of the instruction register is
loaded with the default value of $5 when in the Capture-IR state and a rising edge of TCK
occurs.

9.1.2.6 CLAMP.

The CLAMP instruction selects the bypass register while simultaneously
forcing all output pins and bidirectional pins configured as outputs, to the fixed values that
are preloaded and held in the boundary scan update registers. This instruction enhances
test efficiency by reducing the overall shift path to a single bit (the bypass register) while con-
ducting an EXTEST type of instruction through the boundary scan register. The CLAMP
instruction becomes active on the falling edge of TCK in the update-IR state when the data
held in the instruction shift register is equivalent to $6.

It is recommended that the boundary scan register bit equivalent to the RSTI pin be pre-
loaded with the assert value for system reset prior to application of the CLAMP instruction.
This will ensure that CLAMP asserts the internal reset for the MC68060 system logic to force
a predictable benign internal state while isolating all pins from signals generated external to
the part. However, if it is desired to hold the processor in the LPSTOP state when applying
the CLAMP instruction, do not preload the boundary scan register bit equivalent to the RSTI
pin with an assert value because this action forces the processor out of the LPSTOP state.

9.1.2.7 HIGHZ.

The HIGHZ instruction is an IEEE 1149.1 option that is provided as a Motor-
ola public instruction designed to anticipate the need to backdrive the output pins and pro-
tect the input pins from random toggling during circuit board testing. The HIGHZ instruction
selects the bypass register, forces all output and bidirectional pins to the high-impedance
state, and isolates all input signal pins except for CLK, IPL, and RSTI. The HIGHZ instruction
becomes active on the falling edge of TCK in the update-IR state when the data held in the
instruction shift register is equivalent to $7.

It is recommended that the boundary scan register bit equivalent to the RSTI pin be pre-
loaded with the assert value for system reset prior to application of the HIGHZ instruction.
This will ensure that HIGHZ asserts the internal reset for the MC68060 system logic to force
a predictable benign internal state while isolating all pins from signals generated external to
the part.

9.1.2.8 BYPASS.

The BYPASS instruction selects the single-bit bypass register, creating a
single bit shift register path from the TDI pin to the bypass register to the TDO pin. This
instruction enhances test efficiency by reducing the overall shift path when a device other
than the MC68060 becomes the device under test on a board design with multiple chips on
the overall IEEE-1149.1-defined boundary scan chain. The bypass register has been imple-
mented in accordance with IEEE 1149.1 so that the shift register stage is set to logic zero
on the rising edge of TCK following entry into the capture-DR state. Therefore, the first bit
to be shifted out after selecting the bypass register is always a logic zero (this is to differen-
tiate a part that supports an idcode register from a part that supports only the bypass regis-
ter).

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-7

The BYPASS instruction becomes active on the falling edge of TCK in the update-IR state
when the data held in the instruction shift register is equivalent to $F.

9.1.3 JTAG Test Data Registers

The following paragraphs describe the JTAG test data registers.

9.1.3.1 Idcode Register.

An IEEE-1149.1-compliant JTAG identification register has been
included on the MC68060. The MC68060 JTAG instruction encoded as $5 provides for read-
ing the JTAG idcode register. The format of this register is defined in Figure 9-2.

VERSION NO.—Version Number
Indicates the JTAG revision of the MC68060.

Bits 27–22
Indicate the high performance design center.

Bits 21–12
Indicate the device is a Motorola MC68060.

Bits 11–1
Indicate the reduced JEDEC ID for Motorola. (JEDEC refers to the Joint Electron Device
Engineering Council. Refer to JEDEC publication 106-A and chapter 11 of the IEEE
1149.1-1993 document for further information on this field.)

Bit 0
Differentiates this register as JTAG idcode (as opposed to the bypass register) according
to IEEE 1149.1.

9.1.3.2 Boundary Scan Register.

An IEEE-1149.1-compliant boundary scan register has
been included on the MC68060. This 214-bit boundary scan register can be connected
between TDI and TDO when the EXTEST, LPSAMPLE, or SAMPLE/PRELOAD instructions
are selected. This register is used for capturing signal pin data on the input pins, forcing fixed
values on the output signal pins, and selecting the direction and drive characteristics (a logic
value or high impedance) of the bidirectional and three-state signal pins. Figure 9-3 through
Figure 9-7 depict the various cell types.

The key to using the boundary scan register is knowing the boundary scan bit order and the
pins that are associated with them. Below in Table 9-3 is the bit order starting from the TDI
input and going toward the TDO output.

31 28 27 22 21 12 11 1 0

VERSION NO. 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Figure 9-2. JTAG Idcode Register Format

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-8

M68060 USER’S MANUAL

MOTOROLA

Figure 9-3. Output Pin Cell (O.Pin)

Figure 9-4. Observe-Only Input Pin Cell (I.Obs)

OUTPUT DATA
FROM SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER

1 = EXTEST
0 = OTHERWISE

1D

C1

1
MUX

1

G1

1
MUX

1

G1

UPDATE DR

1D

C1

FROM
LAST
CELL

TO
SYSTEM

LOGIC

SHIFT DRCLOCK DR

TO NEXT CELL

1D

C1
1

MUX
1

G1

INPUT
 PIN

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-9

Figure 9-5. Input Pin Cell (I.Pin)

Figure 9-6. Output Control Cell (IO.Ctl)

FROM
INPUT PIN

CLOCK DR

SHIFT DR

1

1

G1 1

1

G1

MODE

TO
SYSTEM
LOGIC

TO
NEXT
CELL

FROM
LAST
CELL

1D

C1

1D

C1

UPDATE DR

OUTPUT CONTROL
FROM SYSTEM LOGIC

FROM
LAST
CELL

CLOCK DR

SHIFT DR TO NEXT CELL

TO OUTPUT
BUFFER
(1 = DRIVE)

1 = EXTEST
0 = OTHERWISE

1D

C1

1
MUX

1

G1

1
MUX

1

G1

UPDATE DR

1D

C1

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-10

M68060 USER’S MANUAL

MOTOROLA

Figure 9-7. General Arrangement of Bidirectional Pin Cells

Table 9-3. Boundary Scan Bit Definitions

Bit Cell Type Pin/Cell Name Pin Type

0 O.Pin A31 I/O
1 I.Pin A31 I/O
2 O.Pin A30 I/O
3 I.Pin A30 I/O
4 IO.Ctl A31–A28 ena —
5 O.Pin A29 I/O
6 I.Pin A29 I/O
7 O.Pin A28 I/O
8 I.Pin A28 I/O
9 O.Pin A27 I/O
10 I.Pin A27 I/O
11 O.Pin A26 I/O
12 I.Pin A26 I/O
13 IO.Ctl A27–A24 ena —
14 O.Pin A25 I/O
15 I.Pin A25 I/O
16 O.Pin A24 I/O
17 I.Pin A24 I/O
18 O.Pin A23 I/O
19 I.Pin A23 I/O
20 O.Pin A22 I/O
21 I.Pin A22 I/O
22 IO.Ctl A23–A20 ena —
23 O.Pin A21 I/O
24 I.Pin A21 I/O
25 O.Pin A20 I/O
26 I.Pin A20 I/O
27 O.Pin A19 I/O
28 I.Pin A19 I/O
29 O.Pin A18 I/O
30 I.Pin A18 I/O
31 IO.Ctl A19–A16 ena —

FROM
LAST CELL

OUTPUT
DATA

INPUT
DATA

OUTPUT
ENABLE

TO NEXT CELL

TO NEXT
PIN PAIR

I/O.CTL

O.PIN

I.PIN

EN I/O
 PIN

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-11

32 O.Pin A17 I/O
33 I.Pin A17 I/O
34 O.Pin A16 I/O
35 I.Pin A16 I/O
36 O.Pin A15 I/O
37 I.Pin A15 I/O
38 O.Pin A14 I/O
39 I.Pin A14 I/O
40 IO.Ctl A15–A12 ena —
41 O.Pin A13 I/O
42 I.Pin A13 I/O
43 O.Pin A12 I/O
44 I.Pin A12 I/O
45 O.Pin A11 I/O
46 I.Pin A11 I/O
47 O.Pin A10 I/O
48 I.Pin A10 I/O
49 IO.Ctl A11–A10,TT1–TT0 ena —
50 O.Pin TT1 I/O
51 I.Pin TT1 I/O
52 O.Pin TT0 Output
53 I.Obs MTM1 I
54 O.Pin UPA1 Output
55 O.Pin UPA0 Output
56 IO.Ctl UPA1–UPA0,XCIOUTena —
57 O.Pin XCIOUT Output
58 O.Pin XIPEND Output
59 O.Pin XRSTO Output
60 IO.Ctl XIPEND, XRSTO ena —
61 O.Pin XBS0 Output
62 O.Pin XBS1 Output
63 IO.Ctl XBS3–XBS0 ena —
64 O.Pin XBS2 Output
65 O.Pin XBS3 Output
66 I.Pin XMDIS Input
67 I.Pin XCDIS Input
68 I.Pin XRSTI Input
69 I.Pin XIPL2 Input
70 I.Pin XIPL1 Input
71 I.Pin XIPL0 Input
72 I.Pin XCLKEN Input
73 I.Obs CLK Input
74 I.Obs MTM2 Input
75 I.Pin XTCI Input
76 I.Pin XAVEC Input
77 I.Pin XTBI Input
78 I.Pin XBGR Input
79 I.Pin XBG Input
80 I.Pin XTRA Input

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-12

M68060 USER’S MANUAL

MOTOROLA

81 I.Pin XTEA Input
82 I.Pin XTA Input
83 O.Pin PST0 Output
84 O.Pin PST1 Output
85 O.Pin PST2 Output
86 IO.Ctl PST4–PST0, XBR ena —
87 O.Pin PST3 Output
88 O.Pin PST4 Output
89 O.Pin XSAS Output
90 IO.Ctl XSAS ena —
91 O.Pin XBTT I/O
92 IO.Ctl XBTT ena —
93 I.Pin XBTT I/O
94 O.Pin XTS I/O
95 I.Pin XTS ena —
96 I.Pin XTS I/O
97 O.Pin XTIP Output
98 IO.Ctl XTIP ena —
99 I.Pin XSNOOP Input
100 O.Pin XBB I/O
101 IO.Ctl XBB ena —
102 I.Pin XBB I/O
103 O.Pin XBR Output
104 IO.Ctl XLOCK, XLOCKE ena —
105 O.Pin XLOCK Output
106 O.Pin XLOCKE Output
107 O.Pin TLN0 Output
108 O.Pin SIZ0 Output
109 IO.Ctl TLN0,SIZ1–SIZ0,XR_W ena —
110 O.Pin SIZ1 Output
111 O.Pin XR_W Output
112 O.Pin TLN1 Output
113 O.Pin TM0 Output
114 IO.Ctl TLN1,TM2–TM0 ena —
115 O.Pin TM1 Output
116 O.Pin TM2 Output
117 O.Pin A0 I/O
118 I.Pin A0 I/O
119 O.Pin A1 I/O
120 I.Pin A1 I/O
121 IO.Ctl A1–A0 ena —
122 I.Pin XCLA —
123 O.Pin A2 I/O
124 I.Pin A2 I/O
125 O.Pin A3 I/O
126 I.Pin A3 I/O
127 IO.Ctl A3–A2 ena —
128 O.Pin A4 I/O
129 I.Pin A4 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-13

130 O.Pin A5 I/O
131 I.Pin A5 I/O
132 IO.Ctl A5–A4 ena —
133 O.Pin A6 I/O
134 I.Pin A6 I/O
135 O.Pin A7 I/O
136 I.Pin A7 I/O
137 IO.Ctl A9–A6 ena —
138 O.Pin A8 I/O
139 I.Pin A8 I/O
140 O.Pin A9 I/O
141 I.Pin A9 I/O
142 O.Pin D31 I/O
143 I.Pin D31 I/O
144 O.Pin D30 I/O
145 I.Pin D30 I/O
146 IO.Ctl D31–D28 ena —
147 O.Pin D29 I/O
148 I.Pin D29 I/O
149 O.Pin D28 I/O
150 I.Pin D28 I/O
151 O.Pin D27 I/O
152 I.Pin D27 I/O
153 O.Pin D26 I/O
154 I.Pin D26 I/O
155 IO.Ctl D27–D24 ena —
156 O.Pin D25 I/O
157 I.Pin D25 I/O
158 O.Pin D24 I/O
159 I.Pin D24 I/O
160 O.Pin D23 I/O
161 I.Pin D23 I/O
162 O.Pin D22 I/O
163 I.Pin D22 I/O
164 IO.Ctl D23–D20 ena —
165 O.Pin D21 I/O
166 I.Pin D21 I/O
167 O.Pin D20 I/O
168 I.Pin D20 I/O
169 O.Pin D19 I/O
170 I.Pin D19 I/O
171 O.Pin D18 I/O
172 I.Pin D18 I/O
173 IO.Ctl D19–D16 ena —
174 O.Pin D17 I/O
175 I.Pin D17 I/O
176 O.Pin D16 I/O
177 I.Pin D16 I/O
178 O.Pin D15 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-14

M68060 USER’S MANUAL

MOTOROLA

179 I.Pin D15 I/O
180 O.Pin D14 I/O
181 I.Pin D14 I/O
182 IO.Ctl D15–D12 ena —
183 O.Pin D13 I/O
184 I.Pin D13 I/O
185 O.Pin D12 I/O
186 I.Pin D12 I/O
187 O.Pin D11 I/O
188 I.Pin D11 I/O
189 O.Pin D10 I/O
190 I.Pin D10 I/O
191 IO.Ctl D11–D8 ena —
192 O.Pin D9 I/O
193 I.Pin D9 I/O
194 O.Pin D8 I/O
195 I.Pin D8 I/O
196 O.Pin D7 I/O
197 I.Pin D7 I/O
198 O.Pin D6 I/O
199 I.Pin D6 I/O
200 IO.Ctl D7–D4 ena —
201 O.Pin D5 I/O
202 I.Pin D5 I/O
203 O.Pin D4 I/O
204 I.Pin D4 I/O
205 O.Pin D3 I/O
206 I.Pin D3 I/O
207 O.Pin D2 I/O
208 I.Pin D2 I/O
209 IO.Ctl D3–D0 ena —
210 O.Pin D1 I/O
211 I.Pin D1 I/O
212 O.Pin D0 I/O
213 I.Pin D0 I/O

Table 9-3. Boundary Scan Bit Definitions (Continued)

Bit Cell Type Pin/Cell Name Pin Type

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-15

9.1.3.3 BYPASS REGISTER.

An IEEE-1149.1-compliant bypass register has been
included on the MC68060. This register is a single bit in depth when connected between TDI
and TDO. The register element is in the shift path which operates during rising edges of TCK
while the TAP state machine is in the shift-DR state or captures a default state of logic 0
during the rising edge of TCK while the TAP state machine is in the capture-DR state.

9.1.4 Restrictions

The test logic is implemented using static logic design, and TCK can be stopped in either a
high or low state without loss of data. The system logic, however, operates on a different
system clock which is not synchronized to TCK internally. Any mixed operation requiring the
use of 1149.1 test logic in conjunction with system functional logic that uses both clocks,
must have coordination and synchronization of these clocks done externally to the
MC68060.

The MC68060 also includes an internal instruction known as LPSTOP which can place the
output pins in a high-impedance state, isolate the input pins from their internal signals, and
stop the internal clock. Special care must be taken to ensure that the JTAG logic does not
consume excess power during this mode if it is to be left inactive (see

9.1.5 Disabling the
IEEE 1149.1 Standard Operation

).

9.1.5 Disabling the IEEE 1149.1 Standard Operation

There are two methods by which the device can be used without the IEEE 1149.1 test logic
being active: 1) non-use of the JTAG test logic by either non-termination (disconnection) or
intentional fixing of TAP logic values, and 2) intentional disabling of the JTAG test logic by
assertion of the JTAG signal.

There are several considerations that must be addressed if the IEEE 1149.1 logic is not
going to be used once the MC68060 is assembled onto a board. The prime consideration is
to ensure that the IEEE 1149.1 test logic remains transparent and benign to the system logic
during functional operation. This requires the minimum of either connecting the TRST pin to
logic 0, or connecting the TCK clock pin to a clock source that will supply five rising edges
and the falling edge after the fifth rising edge, to ensure that the part enters the test-logic-
reset state. The recommended solution is to connect TRST to logic 0 since logic was
included to ensure that unterminated or fixed-value terminated pins consume the least
power during the LPSTOP functional state. Another consideration is that the TCK pin does
not have a pullup as is required on the TMS, TDI, and TRST pins; therefore, it should not be
left unterminated to preclude mid-level input values.

Figure 9-8. JTAG Bypass Register

1
MUX

1

G1

1D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-16

M68060 USER’S MANUAL

MOTOROLA

A second method of using the MC68060 without the IEEE 1149.1 logic being active is to
select the alternate complementary test debug emulation mode by placing a logic 1 on the
defined compliance enable pin, JTAG. When the JTAG is asserted, then the IEEE 1149.1
test controller is placed in the test-logic-reset state by applying a logic 0 on the internal TRST
signal to the controller, and the TAP pins are remapped to their equivalent debug emulation
mode pins.

NOTE

The MC68060 supports the low-power stop mode which can iso-
late the input and output signal pins from their internal connec-
tions and allows the internal system clock to be stopped. In
accordance with IEEE1149.1, the JTAG logic can become the
chip master during this functional mode and can conduct test
operations. During this type of testing, the MC68060 will con-
sume power at a level higher than that specified for functional
LPSTOP mode. If the JTAG mode is left active, but is not being
actively used to conduct test operations, the MC68060 will con-
sume power at a level below the rated LPSTOP maximum but
not at the lowest possible level. In order to consume the least
possible power, the JTAG logic must be specifically disabled by
placing a logic 0 on the TRST pin and a logic 1 on the TMS pin,
as shown in Figure 9-9.

Figure 9-9. Circuit Disabling IEEE Standard 1149.1

TDI

TMS

TRST

TCK

TD0 NO CONNECTION

Vcc

1K

JTAG

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-17

9.1.6 Motorola MC68060 BSDL Description

-- Version 1.0 02-18-94
-- Revision List: None
-- Package Type: 18 x 18 PGA
entity MC68060 is
generic(PHYSICAL_PIN_MAP:string := "PGA_18x18");

 port (
 TDI: in bit;
 TDO: out bit;
 TMS: in bit;
 TCK: in bit;
 TRST: in bit;
 D: inout bit_vector(0 to 31);
 A: inout bit_vector(0 to 31);
 CLA: in bit;
 TM: out bit_vector(0 to 2);
 TLN: out bit_vector(0 to 1);
 R_W: out bit;
 SIZ: out bit_vector(0 to 1);
 LOCKE: out bit;
 LOCK: out bit;
 BR: out bit;
 BB: inout bit;
 SNOOP: in bit;
 TIP: out bit;
 TS: inout bit;
 BTT: inout bit;
 SAS: out bit;
 PST: out bit_vector(0 to 4);
 TA: in bit;
 TEA: in bit;
 TRA: in bit;
 BG: in bit;
 BGR: in bit;
 TBI: in bit;
 AVEC: in bit;
 TCI: in bit;
 CLK: in bit;
 CLKEN: in bit;
 IPL: in bit_vector(0 to 2);
 RSTI: in bit;
 CDIS: in bit;
 MDIS: in bit;
 BS: out bit_vector(0 to 3);
 RSTO: out bit;
 IPEND: out bit;
 CIOUT: out bit;
 UPA: out bit_vector(0 to 1);
 TT1: inout bit;
 TT0: out bit;
 JTAGENB: in bit_vector(0 to 2);
 THERM1: linkage bit;
 THERM0: linkage bit;
 EVDD: linkage bit_vector(1 to 25);

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-18

M68060 USER’S MANUAL

MOTOROLA

 EVSS: linkage bit_vector(1 to 25);
 IVDD: linkage bit_vector(1 to 16);
 IVSS: linkage bit_vector(1 to 16)
);

 use STD_1149_1_1994.all;
 attribute COMPONENT_CONFORMANCE of MC68060: entity is "STD_1149_1_1993" ;

 attribute PIN_MAP of MC68060 : entity is PHYSICAL_PIN_MAP;

-- PGA_18x18 Pin Map
--
-- No-connects: D4, D5, D6, D7, D9, D11, D13, D14, K4, M4, N4, Q16, R7,
-- R10, S12, T9, T12
--
 constant PGA_18x18 : PIN_MAP_STRING :=
 "TDI: S3, " &
 "TDO: T2, " &
 "TMS: S5, " &
 "TCK: S4, " &
 "TRST: T3, " &
-- 0 1 2 3 4 5 6 7 8 9 10 11
 "D: (C3, B3, C4, A2, A3, A4, A5, A6, B7, A7, A8, A9, " &
-- 12 13 14 15 16 17 18 19 20 21 22 23
 " A10, A11, A12, A13, B11, A14, B12, A15, A16, A17, B16, C15, " &
-- 24 25 26 27 28 29 30 31
 " A18, C16, B18, D16, C18, E16, E17, D18), " &
-- 0 1 2 3 4 5 6 7 8 9 10 11
 "A: (L18, K18, J17, J18, H18, G18, G16, F18, E18, F16, P1, N3, " &
-- 12 13 14 15 16 17 18 19 20 21 22 23
 " N1, M1, L1, K1, K2, J1, H1, J2, G1, F1, E1, G3, " &
-- 24 25 26 27 28 29 30 31
 " D1, F3, E2, C1, E3, B1, D3, A1), " &
 "CLA: K15, " &
 "TM: (N18, M18, K17), " &
 "TLN: (Q18, P18), " &
 "R_W: N16, " &
 "SIZ: (P17, P16), " &
 "LOCKE: R18, " &
 "LOCK: S18, " &
 "BR: T18, " &
 "BB: T17, " &
 "SNOOP: P15, " &
 "TIP: R15, " &
 "TS: R16, " &
 "BTT: Q15, " &
 "SAS: Q14, " &
 "PST: (T15, S14, R14, T16, Q13), " &
 "TA: T14, " &
 "TEA: S13, " &
 "TRA: Q12, " &
 "BG: T13, " &
 "BGR: Q11, " &
 "TBI: S11, " &
 "AVEC: T11, " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-19

 "TCI: T10, " &
 "JTAGENB: (T4, F15, S10), " &
 "CLK: R9, " &
 "CLKEN: Q8, " &
 "IPL: (T8, T7, T6), " &
 "RSTI: S7, " &
 "CDIS: T5, " &
 "MDIS: S6, " &
 "BS: (Q4, Q5, Q6, Q7), " &
 "RSTO: R3, " &
 "IPEND: S1, " &
 "CIOUT: R1, " &
 "UPA: (Q3, Q1), " &
 "TT1: P2, " &
 "TT0: P3, " &
 "THERM1: M15, " &
 "THERM0: L15, " &

 "EVDD: (B5, B9, B14, C2, C17, D8, D10, D12, D15, E4, G2, " &
 " G4, G15, G17, J4, J15, L4, M2, M17, N15, P4, Q10, " &
 " R2, R17, S16), " &
 "EVSS: (B2, B4, B6, B8, B10, B13, B15, B17, D2, D17, F2, " &
 " F4, F17, H2, H17, L2, L17, N2, N17, Q2, Q9, Q17, " &
 " S2, S15, S17), " &
 "IVDD: (C5, C8, C10, C12, C14, E15, H3, H16, J3, J16, L16, " &
 " M3, R5, R8, R12, S8), " &
 "IVSS: (C6, C7, C9, C11, C13, H4, H15, K3, K16, L3, M16, " &
 " R4, R6, R11, R13, S9) ";

-- Other Pin Maps here

 attribute TAP_SCAN_IN of TDI:signal is true;
 attribute TAP_SCAN_OUT of TDO:signal is true;
 attribute TAP_SCAN_MODE of TMS:signal is true;
 attribute TAP_SCAN_CLOCK of TCK:signal is (33.0e6, BOTH);
 attribute TAP_SCAN_RESET of TRST:signal is true;

 attribute COMPLIANCE_ENABLE of JTAGENB(0): signal is true;
 attribute COMPLIANCE_ENABLE of JTAGENB(1): signal is true;
 attribute COMPLIANCE_ENABLE of JTAGENB(2): signal is true;

 attribute COMPLIANCE_PATTERNS of MC68060: entity is
 "(JTAGENB(0), JTAGENB(1), JTAGENB(2)) (000)";

 attribute INSTRUCTION_LENGTH of MC68060:entity is 4;

 attribute INSTRUCTION_OPCODE of MC68060:entity is
 "EXTEST (0000)," &
 "LPSAMPLE (0001)," &
 "SAMPLE (0100)," &
 "IDCODE (0101)," &
 "CLAMP (0110)," &
 "HIGHZ (0111)," &
 "PRIVATE (0010, 0011, 1000,1001,1010,1011,1100,1101,1110)," &
 "BYPASS (1111)";

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-20

M68060 USER’S MANUAL

MOTOROLA

 attribute INSTRUCTION_CAPTURE of MC68060: entity is "0101";
 attribute INSTRUCTION_PRIVATE of MC68060:entity is "PRIVATE";
 attribute REGISTER_ACCESS of MC68060:entity is
 "BOUNDARY (LPSAMPLE)";

 attribute IDCODE_REGISTER of MC68060: entity is
 "0001" & -- version
 "000001" & -- design center
 "0000110000" & -- sequence number
 "00000001110" & -- Motorola
 "1"; -- required by 1149.1

 attribute BOUNDARY_CELLS of MC68060:entity is
 "BC_1, BC_2, BC_4";

 attribute BOUNDARY_LENGTH of MC68060:entity is 214;

 attribute BOUNDARY_REGISTER of MC68060:entity is
 --num cell port function safe ccell dsval rslt
 "0 (BC_1, D(0), input, X), " &
 "1 (BC_2, D(0), output3, X, 4, 0, Z), " &
 "2 (BC_1, D(1), input, X), " &
 "3 (BC_2, D(1), output3, X, 4, 0, Z), " &
 "4 (BC_2, *, control, 0), " & -- d[3:0]
 "5 (BC_1, D(2), input, X), " &
 "6 (BC_2, D(2), output3, X, 4, 0, Z), " &
 "7 (BC_1, D(3), input, X), " &
 "8 (BC_2, D(3), output3, X, 4, 0, Z), " &
 "9 (BC_1, D(4), input, X), " &
 "10 (BC_2, D(4), output3, X, 13, 0, Z), " &
 "11 (BC_1, D(5), input, X), " &
 "12 (BC_2, D(5), output3, X, 13, 0, Z), " &
 "13 (BC_2, *, control, 0), " & -- d[7:4]
 "14 (BC_1, D(6), input, X), " &
 "15 (BC_2, D(6), output3, X, 13, 0, Z), " &
 "16 (BC_1, D(7), input, X), " &
 "17 (BC_2, D(7), output3, X, 13, 0, Z), " &
 "18 (BC_1, D(8), input, X), " &
 "19 (BC_2, D(8), output3, X, 22, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "20 (BC_1, D(9), input, X), " &
 "21 (BC_2, D(9), output3, X, 22, 0, Z), " &
 "22 (BC_2, *, control, 0), " & -- d[11:8]
 "23 (BC_1, D(10), input, X), " &
 "24 (BC_2, D(10), output3, X, 22, 0, Z), " &
 "25 (BC_1, D(11), input, X), " &
 "26 (BC_2, D(11), output3, X, 22, 0, Z), " &
 "27 (BC_1, D(12), input, X), " &
 "28 (BC_2, D(12), output3, X, 31, 0, Z), " &
 "29 (BC_1, D(13), input, X), " &
 "30 (BC_2, D(13), output3, X, 31, 0, Z), " &
 "31 (BC_2, *, control, 0), " & -- d[15:12]
 "32 (BC_1, D(14), input, X), " &
 "33 (BC_2, D(14), output3, X, 31, 0, Z), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA

M68060 USER’S MANUAL

9-21

 "34 (BC_1, D(15), input, X), " &
 "35 (BC_2, D(15), output3, X, 31, 0, Z), " &
 "36 (BC_1, D(16), input, X), " &
 "37 (BC_2, D(16), output3, X, 40, 0, Z), " &
 "38 (BC_1, D(17), input, X), " &
 "39 (BC_2, D(17), output3, X, 40, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "40 (BC_2, *, control, 0), " & -- d[19:16]
 "41 (BC_1, D(18), input, X), " &
 "42 (BC_2, D(18), output3, X, 40, 0, Z), " &
 "43 (BC_1, D(19), input, X), " &
 "44 (BC_2, D(19), output3, X, 40, 0, Z), " &
 "45 (BC_1, D(20), input, X), " &
 "46 (BC_2, D(20), output3, X, 49, 0, Z), " &
 "47 (BC_1, D(21), input, X), " &
 "48 (BC_2, D(21), output3, X, 49, 0, Z), " &
 "49 (BC_2, *, control, 0), " & -- d[23:20]
 "50 (BC_1, D(22), input, X), " &
 "51 (BC_2, D(22), output3, X, 49, 0, Z), " &
 "52 (BC_1, D(23), input, X), " &
 "53 (BC_2, D(23), output3, X, 49, 0, Z), " &
 "54 (BC_1, D(24), input, X), " &
 "55 (BC_2, D(24), output3, X, 58, 0, Z), " &
 "56 (BC_1, D(25), input, X), " &
 "57 (BC_2, D(25), output3, X, 58, 0, Z), " &
 "58 (BC_2, *, control, 0), " & -- d[27:24]
 "59 (BC_1, D(26), input, X), " &
 --num cell port function safe ccell dsval rslt
 "60 (BC_2, D(26), output3, X, 58, 0, Z), " &
 "61 (BC_1, D(27), input, X), " &
 "62 (BC_2, D(27), output3, X, 58, 0, Z), " &
 "63 (BC_1, D(28), input, X), " &
 "64 (BC_2, D(28), output3, X, 67, 0, Z), " &
 "65 (BC_1, D(29), input, X), " &
 "66 (BC_2, D(29), output3, X, 67, 0, Z), " &
 "67 (BC_2, *, control, 0), " & -- d[31:28]
 "68 (BC_1, D(30), input, X), " &
 "69 (BC_2, D(30), output3, X, 67, 0, Z), " &
 "70 (BC_1, D(31), input, X), " &
 "71 (BC_2, D(31), output3, X, 67, 0, Z), " &
 "72 (BC_1, A(9), input, X), " &
 "73 (BC_2, A(9), output3, X, 76, 0, Z), " &
 "74 (BC_1, A(8), input, X), " &
 "75 (BC_2, A(8), output3, X, 76, 0, Z), " &
 "76 (BC_2, *, control, 0), " & -- a[9:6]
 "77 (BC_1, A(7), input, X), " &
 "78 (BC_2, A(7), output3, X, 76, 0, Z), " &
 "79 (BC_1, A(6), input, X), " &
 --num cell port function safe ccell dsval rslt
 "80 (BC_2, A(6), output3, X, 76, 0, Z), " &
 "81 (BC_2, *, control, 0), " & -- a[5:4]
 "82 (BC_1, A(5), input, X), " &
 "83 (BC_2, A(5), output3, X, 81, 0, Z), " &
 "84 (BC_1, A(4), input, X), " &
 "85 (BC_2, A(4), output3, X, 81, 0, Z), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-22

M68060 USER’S MANUAL

MOTOROLA

 "86 (BC_2, *, control, 0), " & -- a[3:2]
 "87 (BC_1, A(3), input, X), " &
 "88 (BC_2, A(3), output3, X, 86, 0, Z), " &
 "89 (BC_1, A(2), input, X), " &
 "90 (BC_2, A(2), output3, X, 86, 0, Z), " &
 "91 (BC_1, CLA, input, X), " &
 "92 (BC_2, *, control, 0), " & -- a[1:0]
 "93 (BC_1, A(1), input, X), " &
 "94 (BC_2, A(1), output3, X, 92, 0, Z), " &
 "95 (BC_1, A(0), input, X), " &
 "96 (BC_2, A(0), output3, X, 92, 0, Z), " &
 "97 (BC_2, TM(2), output3, X, 99, 0, Z), " &
 "98 (BC_2, TM(1), output3, X, 99, 0, Z), " &
 "99 (BC_2, *, control, 0), " & -- tln(1),tm[2:0]
 --num cell port function safe ccell dsval rslt
 "100 (BC_2, TM(0), output3, X, 99, 0, Z), " &
 "101 (BC_2, TLN(1), output3, X, 99, 0, Z), " &
 "102 (BC_2, R_W, output3, X, 104, 0, Z), " &
 "103 (BC_2, SIZ(1), output3, X, 104, 0, Z), " &
 "104 (BC_2, *, control, 0), " & -- tln(0),siz[1:0]
 "105 (BC_2, SIZ(0), output3, X, 104, 0, Z), " &
 "106 (BC_2, TLN(0), output3, X, 104, 0, Z), " &
 "107 (BC_2, LOCKE, output3, X, 109, 0, Z), " &
 "108 (BC_2, LOCK, output3, X, 109, 0, Z), " &
 "109 (BC_2, *, control, 0), " & -- lock,locke
 "110 (BC_2, BR, output3, X, 127, 0, Z), " &
 "111 (BC_1, BB, input, X), " &
 "112 (BC_2, *, control, 0), " & -- bb
 "113 (BC_2, BB, output3, X, 112, 0, Z), " &
 "114 (BC_1, SNOOP, input, X), " &
 "115 (BC_2, *, control, 0), " & -- tip
 "116 (BC_2, TIP, output3, X, 115, 0, Z), " &
 "117 (BC_1, TS, input, X), " &
 "118 (BC_2, *, control, 0), " & -- ts
 "119 (BC_2, TS, output3, X, 118, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "120 (BC_1, BTT, input, X), " &
 "121 (BC_2, *, control, 0), " & -- btt
 "122 (BC_2, BTT, output3, X, 121, 0, Z), " &
 "123 (BC_2, *, control, 0), " & -- sas
 "124 (BC_2, SAS, output3, X, 123, 0, Z), " &
 "125 (BC_2, PST(4), output3, X, 127, 0, Z), " &
 "126 (BC_2, PST(3), output3, X, 127, 0, Z), " &
 "127 (BC_2, *, control, 0), " & -- pst[4:0],br
 "128 (BC_2, PST(2), output3, X, 127, 0, Z), " &
 "129 (BC_2, PST(1), output3, X, 127, 0, Z), " &
 "130 (BC_2, PST(0), output3, X, 127, 0, Z), " &
 "131 (BC_1, TA, input, X), " &
 "132 (BC_1, TEA, input, X), " &
 "133 (BC_1, TRA, input, X), " &
 "134 (BC_1, BG, input, X), " &
 "135 (BC_1, BGR, input, X), " &
 "136 (BC_1, TBI, input, X), " &
 "137 (BC_1, AVEC, input, X), " &
 "138 (BC_1, TCI, input, X), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-23

 "139 (BC_2, *, internal, X), " &
 --num cell port function safe ccell dsval rslt
 "140 (BC_4, CLK, input, X), " &
 "141 (BC_1, CLKEN, input, X), " &
 "142 (BC_1, IPL(0), input, X), " &
 "143 (BC_1, IPL(1), input, X), " &
 "144 (BC_1, IPL(2), input, X), " &
 "145 (BC_1, RSTI, input, X), " &
 "146 (BC_1, CDIS, input, X), " &
 "147 (BC_1, MDIS, input, X), " &
 "148 (BC_2, BS(3), output3, X, 150, 0, Z), " &
 "149 (BC_2, BS(2), output3, X, 150, 0, Z), " &
 "150 (BC_2, *, control, 0), " & -- bs[3:0]
 "151 (BC_2, BS(1), output3, X, 150, 0, Z), " &
 "152 (BC_2, BS(0), output3, X, 150, 0, Z), " &
 "153 (BC_2, *, control, 0), " & -- ipend,rsto
 "154 (BC_2, RSTO, output3, X, 153, 0, Z), " &
 "155 (BC_2, IPEND, output3, X, 153, 0, Z), " &
 "156 (BC_2, CIOUT, output3, X, 157, 0, Z), " &
 "157 (BC_2, *, control, 0), " & -- upa[1:0],ciout
 "158 (BC_2, UPA(0), output3, X, 157, 0, Z), " &
 "159 (BC_2, UPA(1), output3, X, 157, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "160 (BC_2, *, internal, X), " &
 "161 (BC_2, TT0, output3, X, 164, 0, Z), " &
 "162 (BC_1, TT1, input, X), " &
 "163 (BC_2, TT1, output3, X, 164, 0, Z), " &
 "164 (BC_2, *, control, 0), " & -- a[11:10],TT[1:0]
 "165 (BC_1, A(10), input, X), " &
 "166 (BC_2, A(10), output3, X, 164, 0, Z), " &
 "167 (BC_1, A(11), input, X), " &
 "168 (BC_2, A(11), output3, X, 164, 0, Z), " &
 "169 (BC_1, A(12), input, X), " &
 "170 (BC_2, A(12), output3, X, 173, 0, Z), " &
 "171 (BC_1, A(13), input, X), " &
 "172 (BC_2, A(13), output3, X, 173, 0, Z), " &
 "173 (BC_2, *, control, 0), " & -- a[15:12]
 "174 (BC_1, A(14), input, X), " &
 "175 (BC_2, A(14), output3, X, 173, 0, Z), " &
 "176 (BC_1, A(15), input, X), " &
 "177 (BC_2, A(15), output3, X, 173, 0, Z), " &
 "178 (BC_1, A(16), input, X), " &
 "179 (BC_2, A(16), output3, X, 182, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "180 (BC_1, A(17), input, X), " &
 "181 (BC_2, A(17), output3, X, 182, 0, Z), " &
 "182 (BC_2, *, control, 0), " & -- a[19:16]
 "183 (BC_1, A(18), input, X), " &
 "184 (BC_2, A(18), output3, X, 182, 0, Z), " &
 "185 (BC_1, A(19), input, X), " &
 "186 (BC_2, A(19), output3, X, 182, 0, Z), " &
 "187 (BC_1, A(20), input, X), " &
 "188 (BC_2, A(20), output3, X, 191, 0, Z), " &
 "189 (BC_1, A(21), input, X), " &
 "190 (BC_2, A(21), output3, X, 191, 0, Z), " &

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-24 M68060 USER’S MANUAL MOTOROLA

 "191 (BC_2, *, control, 0), " &
 "192 (BC_1, A(22), input, X), " & -- a[23:20]
 "193 (BC_2, A(22), output3, X, 191, 0, Z), " &
 "194 (BC_1, A(23), input, X), " &
 "195 (BC_2, A(23), output3, X, 191, 0, Z), " &
 "196 (BC_1, A(24), input, X), " &
 "197 (BC_2, A(24), output3, X, 200, 0, Z), " &
 "198 (BC_1, A(25), input, X), " &
 "199 (BC_2, A(25), output3, X, 200, 0, Z), " &
 --num cell port function safe ccell dsval rslt
 "200 (BC_2, *, control, 0), " & -- a[27:24]
 "201 (BC_1, A(26), input, X), " &
 "202 (BC_2, A(26), output3, X, 200, 0, Z), " &
 "203 (BC_1, A(27), input, X), " &
 "204 (BC_2, A(27), output3, X, 200, 0, Z), " &
 "205 (BC_1, A(28), input, X), " &
 "206 (BC_2, A(28), output3, X, 209, 0, Z), " &
 "207 (BC_1, A(29), input, X), " &
 "208 (BC_2, A(29), output3, X, 209, 0, Z), " &
 "209 (BC_2, *, control, 0), " & -- a[31:28]
 "210 (BC_1, A(30), input, X), " &
 "211 (BC_2, A(30), output3, X, 209, 0, Z), " &
 "212 (BC_1, A(31), input, X), " &
 "213 (BC_2, A(31), output3, X, 209, 0, Z) ";
 end MC68060;

9.2 DEBUG PIPE CONTROL MODE
A debug pipe control mode is implemented on the MC68060 to allow special chip functions
to be accomplished. These functions are useful during system level hardware development
and operating system debug. Access to the debug pipe control mode is achieved by negat-
ing the JTAG signal. When in the debug pipe control mode, the regular JTAG interface is
used by the debug pipe control mode, and is therefore not available.

The debug pipe control mode uses the resulting serial interface to load commands that allow
various operations on the processor to occur. Some of the operations are: halt the central
processing unit (CPU), restart the CPU, insert select commands into the primary pipeline,
disable select processor configurations, force all outputs to high-impedance state, release
all outputs from high-impedance state, and generate an emulator interrupt.

The advantage of using the debug pipe control mode is that the processor is allowed to oper-
ate normally and at its normal frequency. The only difference is that the processor no longer
has the regular JTAG interface. This should not be a problem since the regular JTAG inter-
face is not used during normal processor operations.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-25

9.2.1 Debug Command Interface
Figure 9-10 illustrates the debug command interface and Table 9-4 outlines the pins needed
by the debug command interface. The debug command interface consists of a five-bit shift
register and a five-bit parallel register, with each register operating independently. To acti-
vate the debug command interface, JTAG must be driven negated. This allows the debug
command interface to take over the regular JTAG interface and remap JTAG pin functions.
The resulting interface is fully synchronous to the CLK input.

The commands enter the debug command interface through the PTDI serial input signal into
the five-bit shift register. The shift register is controlled by the PSHIFT input. The PSHIFT
signal determines which rising CLK edge contains valid data on the PTDI input. When
asserted the PSHIFT input causes data from the PTDI input to be latched and causes inter-
nal data bits already in the shift register to be passed on to the next shift register bit. Serial
data eventually shifts out through the PTDO output. PTDO can be used as a status output
and can be used to verify that the shift register is operating properly. Do not assert both PAP-
PLY and PSHIFT on the same CLK edge as this is interpreted as a “no operation”.

Figure 9-10. Debug Command Interface Schematic

Table 9-4. Debug Command Interface Pins
Pin Name Alias Description

TCK PSHIFT Serial Shift Enable
TMS PAPPLY Command Apply Enable
TDI PTDI Serial Command Data In

TRST PDISABLE Debug Command Disable
TDO PTDO Serial Command Data Out
JTAG JTAG JTAG or Debug Select
CLK CLK Clock

MC68060 CHIP BOUNDARY

CLK

CONTROLLER

TO ALL
FLIP-FLOPS

TCK (PSHIFT)

TDI (PTDI)

JTAG

D31–D0

A31–A0

 TMS (PAPPLY)

5-BIT
COMMAND

WORD

S
E
R
I
A
L

P
A
R
A
L
L
E
L

OEP
CONTROL LOGICCOMMAND

VALIDTRST (PDISABLE)

 TDO (PTDO)

BIT 4

BIT 0

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-26 M68060 USER’S MANUAL MOTOROLA

Operating independently of the 5-bit shift register, the 6-bit parallel register is the command
register used by the operand execution pipeline (OEP) control logic to control processor
operations. The sixth bit of the parallel register is connected to the PDISABLE input and
bypasses the 5-bit shift register. PDISABLE should normally be driven negated at all times
to indicate that the command register is active. The other five bits of the parallel register are
each connected to a corresponding bit in the shift register. The PAPPLY input controls the
parallel register. When PAPPLY is asserted, the PDISABLE and shift register data are
latched into the parallel register, and the command is then transmitted to the OEP control
logic. Do not assert both PAPPLY and PSHIFT on the same rising CLK edge as this is inter-
preted as a “no operation”. Do not assert PAPPLY more frequently than once every other
rising CLK edge. Although most commands are five bits in length, it is not necessary to shift
in all five bits for the “generate an emulator interrupt” command. For that command, only
three bits need to be shifted in. Figure 9-11 shows a sample interface timing diagram.

Figure 9-11. Interface Timing

CLK

PTDI

PSHIFT

PAPPLY

PDISABLE

0 1 2 3 4

JTAG

SERIAL REGISTER 4 0 1 2 3 4

0 1 2 3

4

0 1 2

3

0 1

2

0

1

SERIAL REGISTER 3

SERIAL REGISTER 2

SERIAL REGISTER 1

SERIAL REGISTER 0 0

COMMAND VALID

PARALLEL REGISTER

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-27

9.2.2 Debug Pipe Control Mode Commands
The following capabilities are provided by the debug pipe control mode:

• Halt and restart processor execution

• Forcing the processor into an emulator mode

• From a halted processor state, the following additional capabilities are provided:
—Setting and resetting a non-pipelined execution mode in the processor
—Override disable processor configuration features (instruction cache, data cache,

address translation caches (ATCs), write buffer, branch cache, floating-point unit
(FPU), superscalar dispatch)

—Forcing insertion of cache and ATC control operations into the processor pipeline for
execution (CINV all for instruction cache and data cache, CPUSH all for instruction
cache and data cache, and PFLUSH all for ATCs)

—Forcing all processor outputs into and out of a high-impedance state and disable all
inputs

—Setting and resetting modes that convert trace exceptions and breakpoint instruc-
tions into emulator mode entry

Table 9-5 provides a brief summary of the command functions that are made available
through the debug pipe control mode. Most of the commands can only be issued only when
the processor is halted.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-28 M68060 USER’S MANUAL MOTOROLA

Table 9-5. Command Summary
Command Command Operation

$00 No operation

$01

Restart the processor
This command restarts the processor after it had been halted by the execution of a HALT instruction
(opcode = $4AC8), or receipt of the $02 (Halt the processor) command.This command must be issued
only when the processor is halted.

$02

Halt the processor
This command forces the processor to gracefully halt. The processor samples for halts once per instruc-
tion and if this command is present, the processor halts execution. The halted state is reflected in the
PST encoding (PST = 11100).

$03

Enable the PULSE instruction to toggle non-pipelined mode
This command enables the PULSE instruction (opcode = $4acc) to toggle the processor between the
non-pipelined mode (allowing single-pipe dispatches) and normal pipeline mode. The PULSE instruction
must be followed by a NOP to ensure proper operation. Refer to command $07 for details of non-pipe-
lined mode, single-pipe dispatch operation. The $04 command negates the effect of this command. This
command must be issued only when the processor is halted.

$04

Reset all non-pipelined modes
This command forces the processor to normal pipeline operation and negates the effect of the $03, $06,
and $07 commands. The $04 command negates the effect of this command. This command must be is-
sued only when the processor is halted.

$05 Reserved

$06

Enable non-pipelined mode (allowing superscalar dispatches)
This command forces the processor into a non-pipelined mode of operation, while allowing superscalar
dispatches (if PCR0 = 1). After an instruction pair is dispatched into the primary and secondary OEPs,
execution of the subsequent instructions is delayed until the original instruction(s) complete execution
and the pipeline is synchronized. The synchronization requires the processor to be in a quiescent state
with all pending memory cycles complete. This implies all write buffers (push and store) are empty. The
$04 command negates the effect of this command. This command must be issued only when the pro-
cessor is halted.

$07

Enable non-pipelined mode (allowing single-pipe dispatches)
This command forces the processor into a non-pipelined mode of operation, while allowing instruction
dispatches into the primary OEP only. After an instruction has been dispatched into the primary OEP,
execution of the subsequent instructions is delayed until the original instruction complete execution and
the pipeline is synchronized. The synchronization requires the processor to be in a quiescent state with
all pending memory cycles complete. This implies all write buffers (push and store) are empty. The $04
command negates the effect of this command. This command must be issued only when the processor
is halted.

$08
Perform CINVA IC operation
This command causes a CINVAIC instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

$09
Perform CINVA DC operation
This command causes a CINVA DC instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

$0A
Perform CPUSHA IC,DC operation
This command causes a CPUSHA IC,DC instruction to be inserted into the primary OEP. This command
must be issued only when the processor is halted.

$0B
Perform CPUSHA DC operation
This command causes a CPUSHA DC instruction to be inserted into the primary OEP. This command
must be issued only when the processor is halted.

$0C
Perform PFLUSHA operation
This command causes a PFLUSHA instruction to be inserted into the primary OEP. This command must
be received while the processor is halted.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-29

$0D

Force all the processor outputs to high-impedance state
This command causes the processor to three-state all output pins and ignore all input pins. This com-
mand does not apply to the debug command interface pins. This forces the processor into a state where
an emulator can generate system bus cycles by driving the appropriate pins. This command must be is-
sued only when the processor is halted.

$0E
Release all the processor outputs from high-impedance state
This command causes the processor to re-enable all output pins and begin sampling all the input pins.
This command must be issued only when the processor is halted.

$0F
Negate the effects of the Disable commands
This command causes the processor to disable the effects of the commands from $10 to $17.

$10
Disable instruction cache
This command forces the processor to run with the instruction cache disabled. The $0F command ne-
gates the effect of this command. This command must be issued only when the processor is halted.

$11
Disable data cache
This command forces the processor to run with the data cache disabled. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$12
Disable instruction ATC
This command forces the processor to run with the instruction ATC disabled. The $0F command negates
the effect of this command. This command must be issued only when the processor is halted.

$13
Disable data ATC
This command forces the processor to run with the data ATC disabled. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$14

Disable write buffer
This command forces the processor to run with the store buffers disabled. This command operation is
equivalent to that provided by the cache control register (CACR) bit 29. The $0F command negates the
effect of this command. This command must be issued only when the processor is halted.

$15
Disable branch cache
This command forces the processor to run with the branch cache disabled. The $0F command negates
the effect of this command. This command must be issued only when the processor is halted.

$16
Disable FPU
This command forces the FPU-disabled operation. The $0F command negates the effect of this com-
mand. This command must be issued only when the processor is halted.

$17
Disable secondary OEP
This command disables superscalar operation. The $0F command negates the effect of this command.
This command must be issued only when the processor is halted.

$18
trace -> normal trace; bkpt -> normal breakpoint
Both the trace and breakpoint exceptions operate normally. This command must be issued only when
the processor is halted.

$19

trace -> normal trace; bkpt -> bkpt with emulator mode entry
The trace exception operates normally. A breakpoint exception operates using vector offset $30, in ad-
dition, the processor enters the emulator mode. This command must be issued only when the processor
is halted.

$1A
trace -> normal trace with emulator mode entry; bkpt -> normal breakpoint
The breakpoint exception operates normally. A trace exception operates normally; in addition, the pro-
cessor enters the emulator mode. This command must be issued only when the processor is halted.

$1B

trace -> normal trace with emulator mode entry; bkpt -> bkpt with emulator mode entry
The trace exception operates normally. The breakpoint exception operates using vector offset $30. In
addition, when either of these exceptions are taken, the processor enters the emulator mode. This com-
mand must be issued only when the processor is halted.

$1C–$1F
Generate an emulator interrupt
Take an emulator interrupt exception.

Table 9-5. Command Summary (Continued)
Command Command Operation

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-30 M68060 USER’S MANUAL MOTOROLA

There are two ways to halt the processor. The first method uses the debug pipe control
mode command “halt the processor”. This command causes the processor to gracefully halt
instruction execution. When this command is received, the processor posts a pending halt
condition an then waits for an interruptible point to be reached. Once the interruptible point
is encountered, the processor halts instruction execution and signals the status with the
PSTx signals.

The second method uses the HALT instruction. The HALT instruction is a 16-bit privileged
instruction ($4AC8 encoding) and is new with the MC68060 instruction set. When the pro-
cessor executes this instruction, the pipeline is synchronized and then the processor enters
the halted state. Once halted, the processor drives a unique PSTx output encoding.

The halt state is different than the stopped state since no interrupts are processed while in
this mode. To enable the processor to exit the halted state and resume normal instruction
execution, the “restart the processor” command is issued through the debug pipe control
mode. When this command is received, the processor continues normal instruction execu-
tion by forcing an instruction fetch to the next sequential instruction address contained in the
program counter (PC). Using this approach, any commands that may have been executed
while halted (like patching memory and clearing the instruction cache) will be correctly han-
dled by the processor when restarting. For instance, if the HALT instruction was used to
place the processor into the halted state, instruction execution resumes at the instruction fol-
lowing the HALT instruction.

The commands $06 and $07 can be used to force nonpipelined operation. When operating
in nonpipelined execution mode, the processor’s OEP performs a single dispatch (of an
instruction or instruction pair) and immediately enters a pipeline hold state that prevents sub-
sequent dispatches. After the instruction/instruction pair has completed execution of all OEP
pipeline stages, the hold state is reset to release another single dispatch. To allow toggling
between normal operation and the nonpipelined, single-pipe operation, a new MC68060
instruction, the PULSE instruction, can be used by issuing command $03.

The PULSE instruction is a 16-bit user mode instruction that uses the $4ACC opcode. The
PULSE instruction has been added to the instruction set primarily to provide a unique encod-
ing of the PSTx outputs for external triggering purposes. Additionally, with command $03, it
is used to allow the capability to toggle in and out of nonpipelined operation mode. When
the PULSE instruction is executed in user mode, the PSTx encoding $04 will exist for one
CLK period. When the PULSE instruction is executed in supervisor mode, the PSTx encod-
ing of $14 will exist for one CLK period.

When using the PULSE instruction to toggle in and out of nonpipelined mode, A NOP
instruction must follow the PULSE instruction to ensure proper operation. All nonpipelined
modes of operation are disabled through the “reset all nonpipelined modes” command $04.

Commands $08 to $0C are used to insert instructions into the primary OEP. These instruc-
tions are executed immediately. Accordingly, any number of commands can be shifted into
the processor while halted. The execution time of the instruction is equal to the normal exe-
cution time of the instruction plus three CLK periods, where the first cycle corresponds to
the cycle when “command valid” is asserted. It is the responsibility of the external logic

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-31

inserting the commands to guarantee that there is sufficient time between commands to
allow for proper operation.

Commands $0D three-states all outputs and causes all inputs to be ignored. Command $0E
allows outputs to be driven and inputs to be sampled.

Commands $10–$17 force specific processor features to be disabled. Command $0F
negates the effects of all the commands between $10 and $17. These commands override
the configuration as defined by the CACR, PCR, or TCR. Note that these instructions affect-
ing processor configuration do not affect the operation of the MOVEC instructions which
affect the CACR, PCR, or TCR. The MOVEC instruction to these registers operates nor-
mally, but the enabling of a specific feature is overridden if the corresponding debug function
has been executed. Any MOVEC reading contents of the CACR, PCR, or TCR will return
the value contained in the register and is independent of any debug commands which may
have been executed.

Commands $18–$1B configure whether or not the trace and breakpoint exceptions force a
processor entry into emulator mode.

Commands $1C–$1F generate an emulator interrupt exception.

9.2.3 Emulator Mode
The MC68060 implements a mode of operation that provides an outside control function
(i.e., emulator) controllability and visibility mechanisms to direct MC68060 processor oper-
ations.

When the processor is in the emulator mode, the branch cache is not used. Instructions exe-
cuted when the MC68060 is in emulator mode generate address space and bus transfer
cycle attributes as an alternate logical function code space access with no address transla-
tion:

• No address translation

• No cache access

• TT1, TT0 = 2 {Alternate Logical Function Code Access}

• TM2–TT0 = 5 (operand references) or 6 (instruction references) {Logical Function Code
5 or 6}.

Entry into emulator mode can be accomplished via one of four methods:

1. A “generate emulator interrupt” command can be initiated through the debug pipe con-
trol mode. If this command is received by the MC68060, the processor waits for an
interruptible point in the instruction stream, and then generates an emulator interrupt
exception. A four-word exception stack frame (in alternate address space) is created,
with the PC value equal to the next PC and the exception type/vector offset equal to
$30. The vector pointed to by VBR + $30 defines the exception handler entry point,
within the alternate address space (TT = 2, TM = 6).

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-32 M68060 USER’S MANUAL MOTOROLA

2. After RSTI is negated, the processor counts 16 CLKs before actually beginning the
reset exception processing. The “generate emulator interrupt” command must be
received through the debug pipe control mode within that 16-CLK window. The reset
exception is processed normally, but the fetch of the initial stack pointer and initial PC
is mapped to the alternate address space. Instruction execution begins in emulator
mode. The reset exception vector pointed to by VBR + $04 defines the entry point
within the alternate address space.

3. If a breakpoint entry into emulator mode is enabled via the debug pipe control mode,
the execution of a BKPT instruction generates an entry into emulator mode. For this
case, the processor creates a four-word stack frame (in alternate address space) with
the PC equal to the PC of the BKPT instruction and the vector offset equal to $30. VBR
+ $30 defines the entry point within the alternate address space.

4. If a trace entry into emulator mode is enabled via the debug pipe control mode, all
trace exceptions cause an entry into the emulator mode. For this case, the processor
creates the normal six-word trace exception stack frame (in alternate address space),
with PC equal to the next PC, address equal to the last PC, and vector offset equal to
$24. The trace exception vector pointed to by VBR + $24 defines the entry point within
the alternate address space.

Exit from emulator mode is performed via the execution of an RTE instruction. Note that an
RTE executed from emulator mode assumes that the stack is in the alternate address
space. Other properties of the processor while executing in the emulator mode are as fol-
lows:

• MOVES instructions operate normally, using standard address translation/cache ac-
cess for these instructions. The MDIS and CDIS input pins can be used to disable ad-
dress translation and/or cache access on these instructions.

• TAS, CAS, and MOVE16 instructions must not be executed in emulator mode—results
of these instructions executed in emulator mode are unpredictable (undefined).

• All interrupts are ignored while the MC68060 is in emulator mode.

If memory does not respond to the alternate function code space, it is the responsibility of
the emulator to capture and save the stack frame information for its own use. The emulator
is also responsible for supplying the saved stack frame information in response to the reads
initiated by an RTE instruction (word read for SR, long-word read for PC, word read for for-
mat/vector). A unique PSTx encoding of $08 is used to identify emulator mode exception
processing.

The emulator interrupt exception is treated like other interrupts by the MC68060 processor
and is sampled for at the completion of execution of an instruction. Once an interruptible
point is encountered and the exception initiated, the processor pushes a normal exception
stack frame (storing SR, PC, and format/vector and decrementing the supervisor stack
pointer) by performing two long word writes. This is performed with emulator mode address-
ing—alternate function code space.

The emulator interrupt exception priority falls below trace and above regular interrupts in the
MC68060 exception priority list. Its exception vector number is 12 (vector offset = $30), its
stack frame is four-word (format =0), and it stores the PC of the next instruction (like other

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-33

interrupts). The 32-bit instruction address of the first instruction of the emulator interrupt
exception handler is derived as with other exceptions—the memory contents of address
VBR + exception offset ($30).

The emulator mode entry from the breakpoint exception shares the same vector table entry
(VBR + $30) as the emulator interrupt exception. However, the emulator mode entry from
the breakpoint exception requires that the exception handler increment the stacked PC by
two to point to the instruction following the breakpoint instruction. On the other hand, the
emulator interrupt stack’s PC already points to the next instruction.

9.3 SWITCHING BETWEEN JTAG AND DEBUG PIPE CONTROL
MODES OF OPERATION

Since JTAG and the debug pipe control modes share the same set of pins, only one mode
can be used at a time. Normally, the JTAG mode is used only during product testing, and
the debug pipe control mode is used by the end user in conjunction with an in-circuit emu-
lator. For this use, the board manufacturer normally designs in whatever JTAG functionality
is required without regard to whether the board will eventually be used in the debug pipe
control mode or not. The responsibility of allowing the processor to operate under the debug
pipe control mode lies with the emulator vendor. The emulator vendor needs to ensure that
the socket built to carry the processor has the target system’s JTAG pins isolated from the
processor to allow full control of these pins. Hence, under normal circumstances, dynamic
switching between JTAG and debug pipe control modes is unnecessary.

However, for systems that need to switch between these modes can do so by following
some guidelines. These guidelines are illustrated in Figure 9-12 and Figure 9-13. These fig-
ures illustrate how to transition between the JTAG mode and the debug pipe control mode.

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

9-34 M68060 USER’S MANUAL MOTOROLA

Figure 9-12. Transition from JTAG to Debug Mode Timing Diagram

1

2 3 4 5 6 7 8 9 10 11 12 13 14

APPLYSHIFTSHIFTTLRTLRTLRSeIR DISABLED

CLK

TCK

JTAG

TRST

TMS

TDI

STATE

2 3 4

CLK

PSHIFT

JTAG

PDISABLE

PAPPLY

PTDI

ACTION

DEBUG MODEJTAG MODE

NOTES:
1. Clock is shown at 2x TCK here for illustration. Any relationship may exist but 3 full rising edges of CLK should occur after JTAG
 goes high and before PSHIFT or PDISABLE change.
2. When JTAG goes high, the MC68060 goes from "functional with JTAG" to "functional with DEBUG". When going to DEBUG
 modes the JTAG package pins remap to:

 TRST → PDISABLE
 TDI → PTDI
 TMS → PAPPLY
 TCK → PSHIFT

3. Hold TRST = H across boundary to prevent PAPPLY.
4. Hold TMS = H across boundary to keep JTAG in TLR.
5. After the boundary, PAPPLY must be negated before PDISABLE negates.

ALL "P" signals internally negated when JTAG = low.

JTAG MUST BE IN TLR

IEEE 1149.1 Test (JTAG) and Debug Pipe Control Modes

MOTOROLA M68060 USER’S MANUAL 9-35

Figure 9-13. Transition from Debug to JTAG Mode Timing Diagram

2 3 4 5 6 7 8 9 10 11 12 13 14 15

TLR TLRTLR

CLK

TCK

JTAG

TRST

TMS

TDI

STATE

CLK

PSHIFT

JTAG

PDISABLE

PAPPLY

PTDI

ACTION

DEBUG MODE JTAG MODE

TRANSITION FROM DEBUG TO JTAG MODE

1

RTINO ACTIONAPPLYSHIFT SeDR

NOTES:
1. Clock is shown at 2x TCK here for illustration.
2. Hold PSHIFT = L and PAPPLY = L across boundary to prevent debug command.
3. Hold TRST = L across boundary to asynchronously set to TLR state.
4. Establish TDI = H and TMS = H before starting TCK.
5. Negate TRST after starting TCK.

MOTOROLA

M68060 USER’S MANUAL

10-1

SECTION 10
INSTRUCTION EXECUTION TIMING

This section details the MC68060 instruction execution times in terms of processor clock
cycles and the superscalar architecture. The number of operand cycles for each instruction
is also included, enclosed in parentheses following the number of clock cycles. Timing
entries are presented as:

C(r/w)

where:

C = The number of processor clock cycles, including all applicable operand fetches and
stores, plus all internal CPU cycles required to complete the instruction execution.

r/w = The number of operand reads (r) and writes (w). A read-modify-write cycle is
denoted as (1/1).

10.1 SUPERSCALAR OPERAND EXECUTION PIPELINES

The superscalar architecture of the MC68060 processor consists of three structures within
the operand execution pipeline (OEP). The components include a primary OEP (pOEP), a
secondary OEP (sOEP) plus a monolithic register file containing the general-purpose regis-
ters, Dn and An. As instructions are gated out of the instruction fetch pipeline’s instruction
buffer, consecutive operation words (if available) are loaded into the pOEP and sOEP. A
superscalar instruction dispatch algorithm must then determine if the instruction-pair may
continue its OEP execution simultaneously.

Each OEP consists of two compute engines: an adder structure for calculating operand vir-
tual addresses (the address generation unit (AGU)) and an integer execute engine for per-
forming instruction operations (the integer execute engine (IEE)).

Instruction Execution Timing

10-2

M68060 USER’S MANUAL

MOTOROLA

Each compute engine has resources associated with its respective function. A generalized
model of the resources required for instruction execution can be stated as:

Instruction Resources = f(Base, Index, A, B, Address_result, Execute_result)

where:

Base = Base address register for the AGU
Index = Index register for the AGU

A = Source operand required by the “A” side of the arithmetic/logic unit
within the integer execute engine

B = Source operand required by the “B” side of the arithmetic/logic unit
within the integer execute engine

Address_result = Result operand produced by the address generation unit
Execute_result = Result operand produced by the integer execute engine

In the MC68060 design, the dispatch algorithm is implemented by assigning a 5-bit “name”
to each resource. The name is then used to identify the exact resource required for each
instruction’s execution. The resource name may identify one of the sixteen general-purpose
machine registers (Rn) or a non-register resource (e.g., memory operand, immediate oper-
and, etc.).

The dispatch algorithm operates within the first stage of the operand execution pipeline. The
results of the resource examination must be completed within this first stage to transition the
appropriate instruction(s) into the subsequent stages of the OEPs. In particular, the dispatch
algorithm determines if resource conflicts exist between the pOEP and sOEP.

By definition of the MC68060 architecture, there are no conflicts possible on non-register
resources. This means the dispatch algorithm must detect any register resource conflicts
between the pOEP and sOEP. The sOEP resource requirements are validated through a
series of six tests. If all the tests are successful, the sOEP instruction is dispatched simulta-
neously with the pOEP instruction into the second stage of the pipeline. If any test fails, the
dispatching of the sOEP instruction is inhibited.

10.1.1 Dispatch Test 1: sOEP Opword and Required
Extension Words Are Valid

Whenever instructions are loaded into the OEP, the instruction buffer attempts to load a 16-
bit operation word and 32-bits of extension words into both the pOEP and sOEP. This test
validates that the operation word and any extension words required by the sOEP instruction
are present. If the required opword and extensions are valid, the subsequent tests may be
performed. In the event that any of the required instruction words are not valid, the instruc-
tion in the pOEP is dispatched immediately rather than delay execution waiting for instruc-
tion words for the sOEP.

10.1.2 Dispatch Test 2: Instruction Classification

The instruction set of the M68000 family can be broadly separated into two groups: standard
and non-standard instructions. Standard instructions represent the majority of the instruction
set and the basic control structure for the OEP supports these operations without any
instruction-specific control states. Conversely, the non-standard instructions represent more
complex operations and require additional hardware to control their execution within the

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-3

OEP. In many cases, a non-standard instruction requires multiple cycles to execute and the
operation is decomposed into a series of “standard” cycles.

The MC68060 definition of a standard instruction is:

• The instruction requires a maximum of one set of extension words.

• The instruction makes a maximum of one memory access.

• The resources required by the instruction are completely specified by the operation
word.

The standard instruction group is subdivided into two classes:

pOEP | sOEP This class identifies those standard instructions which may be executed
 in either the primary or secondary OEP. This group represents all
 standard single-cycle instructions.

pOEP-only This class of standard instructions may be executed in the primary OEP
 only. This class includes all multi-cycle standard instructions.

The non-standard instruction group is subdivided into three classes:

pOEP-until-last Many of the non-standard instructions represent a combination of
 multiple “standard” operations. As an example, consider the
 memory-to-memory MOVE instruction. This instruction is decomposed
 into two standard operations: first, a standard read cycle followed by a
 standard write cycle. This class allows a standard single-cycle
instruction to be dispatched from the sOEP during the last cycle of its
 pOEP execution.

pOEP-only This class of non-standard instructions may only be executed in the
 primary OEP.

pOEP-but- This class of non-standard instructions requires that the
allows-sOEP operation be performed in the primary OEP, but allows standard

 instructions of the pOEP | sOEP class to be dispatched to the
 secondary OEP.

Given these instruction classifications, consider Table 10-1 which defines Test 2 of the
superscalar dispatch algorithm of the OEP:

Instruction Execution Timing

10-4

M68060 USER’S MANUAL

MOTOROLA

Table 10-2, Table 10-3, and Table 10-4 define the classification for the entire instruction set.
The notation “–(Ax)+” indicates <ea> = {(Ax), (Ax)+, –(Ax)}.

Table 10-1. Superscalar OEP Dispatch Test Algorithm

Contents of pOEP Contents of sOEP Dispatch Algorithm

pOEP | sOEP pOEP | sOEP Test 2 is successful
pOEP | sOEP pOEP-only Test 2 fails
pOEP | sOEP pOEP-until-last Test 2 fails
pOEP | sOEP pOEP-but-allows-sOEP Test 2 fails

— — —

pOEP-only pOEP | sOEP Test 2 fails
pOEP-only pOEP-only Test 2 fails
pOEP-only pOEP-until-last Test 2 fails
pOEP-only pOEP-but-allows-sOEP Test 2 fails

— — —

pOEP-until-last pOEP | sOEP Test 2 is successful
pOEP-until-last pOEP-only Test 2 fails
pOEP-until-last pOEP-until-last Test 2 fails
pOEP-until-last pOEP-but-allows-sOEP Test 2 fails

— — —

pOEP-but allows-sOEP pOEP | sOEP Test 2 is successful
pOEP-but allows-sOEP pOEP-only Test 2 fails
pOEP-but allows-sOEP pOEP-until-last Test 2 fails
pOEP-but allows-sOEP pOEP-but-allows-sOEP Test 2 fails

Table 10-2. MC68060 Superscalar Classification
of M680x0 Integer Instructions

Mnemonic Instruction Superscalar Classification

ABCD Add Decimal with Extend pOEP-only
ADD Add pOEP | sOEP
ADDA Add Address pOEP | sOEP
ADDI,Dx Add Immediate pOEP | sOEP
ADDI,–(Ax)+ “ pOEP | sOEP
Remaining ADDI “ pOEP-until-last
ADDQ Add Quick pOEP | sOEP
ADDX Add Extended pOEP-only
AND AND Logical pOEP | sOEP
ANDI,Dx AND Immediate pOEP | sOEP
ANDI,–(Ax)+ “ pOEP | sOEP
Remaining ANDI “ pOEP-until-last
ANDI to CCR AND Immediate to Condition Codes pOEP-only
ASL Arithmetic Shift Left pOEP | sOEP
ASR Arithmetic Shift Right pOEP | sOEP

Bcc Branch Conditionally pOEP-only

1

BCHG Dy, Test a Bit and Change pOEP-only
BCHG #<imm>, “ pOEP-until-last
BCLR Dy, Test a Bit and Clear pOEP-only
BCLR #<imm>, “ pOEP-until-last
BFCHG Test Bit Field and Change pOEP-only
BFCLR Test Bit Field and Clear pOEP-only

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-5

BFEXTS Extract Bit Field Signed pOEP-only
BFEXTU Extract Bit Field Unsigned pOEP-only
BFFFO Find First One in Bit Field pOEP-only
BFINS Insert Bit Field pOEP-only
BFSET Set Bit Field pOEP-only
BFTST Test Bit Field pOEP-only
BKPT Breakpoint pOEP-only
BRA Branch Always pOEP-only
BSET Dy, Test a Bit and Set pOEP-only
BSET #<imm>, “ pOEP-until-last
BSR Branch to Subroutine pOEP-only
BTST Dy, Test a Bit pOEP-only
BTST #<imm>, “ pOEP-until-last
CAS Compare and Swap with Operand pOEP-only
CHK Check Register Against Bounds pOEP-only
CLR Clear an Operand pOEP | sOEP
CMP Compare pOEP | sOEP
CMPA Compare Address pOEP | sOEP
CMPI,Dx Compare Immediate pOEP | sOEP
CMPI,–(Ax)+ “ pOEP | sOEP
Remaining CMPI “ pOEP-until-last
CMPM Compare Memory pOEP-until-last
DBcc Test Condition, Decrement and Branch pOEP-only
DIVS.L Signed Divide Long pOEP-only
DIVS.W Signed Divide Word pOEP-only
DIVU.L Unsigned Long Divide pOEP-only
DIVU.W Unsigned Divide Word pOEP-only
EOR Exclusive OR Logical pOEP | sOEP
EORI,Dx Exclusive OR Immediate pOEP | sOEP
EORI,–(Ax)+ “ pOEP | sOEP
Remaining EORI “ pOEP-until-last
EORI to CCR Exclusive OR Immediate to Condition Codes pOEP-only
EXG Exchange Registers pOEP-only
EXT Sign Extend pOEP | sOEP
EXTB.L Sign Extend Byte to Long pOEP | sOEP
ILLEGAL Take Illegal Instruction Trap pOEP | sOEP
JMP Jump pOEP-only
JSR Jump to Subroutine pOEP-only
LEA Load Effective Address pOEP | sOEP
LINK Link and Allocate pOEP-until-last
LSL Logical Shift Left pOEP | sOEP
LSR Logical Shift Right pOEP | sOEP
MOVE,Rx Move Data from Source to Destination pOEP | sOEP
MOVE Ry, “ pOEP | sOEP
MOVE <mem>y,<mem>x “ pOEP-until-last
MOVE #<imm>,<mem>x “ pOEP-until-last
MOVEA Move Address pOEP | sOEP
MOVE from CCR Move from Condition Codes pOEP-only

Table 10-2. MC68060 Superscalar Classification
of M680x0 Integer Instructions (Continued)

Mnemonic Instruction Superscalar Classification

Instruction Execution Timing

10-6

M68060 USER’S MANUAL

MOTOROLA

1

A Bcc instruction is pOEP-but-allows-sOEP if it is not predicted from the branch cache and the direction of the
branch is forward or if the Bcc is predicted as a “not-taken” branch.

MOVE to CCR Move to Condition Codes pOEP | sOEP
MOVE16 Move 16 Byte Block pOEP-only
MOVEM Move Multiple Registers pOEP-only
MOVEQ Move Quick pOEP | sOEP
MULS.L Signed Multiply Long pOEP-only
MULS.W Signed Multiply Word pOEP-only
MULU.L Unsigned Multiply Long pOEP-only
MULU.W Unsigned Multiply Word pOEP-only
NBCD Negate Decimal with Extend pOEP-only
NEG Negate pOEP | sOEP
NEGX Negate with Extend pOEP-only
NOP No Operation pOEP-only
NOT Logical Complement pOEP | sOEP
OR Inclusive OR Logical pOEP | sOEP
ORI,Dx Inclusive OR Immediate pOEP | sOEP
ORI,–(Ax)+ “ pOEP | sOEP
Remaining ORI “ pOEP-until-last
ORI to CCR Inclusive OR Immediate to Condition Codes pOEP-only
PACK Pack BCD Digit pOEP-only
PEA Push Effective Address pOEP-only
ROL Rotate without Extend Left pOEP | sOEP
ROR Rotate without Extend Right pOEP | sOEP
ROXL Rotate with Extend Left pOEP-only
ROXR Rotate with Extend Right pOEP-only
RTD Return and Deallocate Parameters pOEP-only
RTR Return and Restore Condition Codes pOEP-only
RTS Return from Subroutine pOEP-only
SBCD Subtract Decimal with Extend pOEP-only
Scc Set According to Condition pOEP-but-allows-sOEP
SUB Subtract pOEP | sOEP
SUBA Subtract Address pOEP | sOEP
SUBI,Dx Subtract Immediate pOEP | sOEP
SUBI,–(Ax)+ “ pOEP | sOEP
Remaining SUBI “ pOEP-until-last
SUBQ Subtract Quick pOEP | sOEP
SUBX Subtract with Extend pOEP-only
SWAP Swap Register Halves pOEP-only
TAS Test and Set an Operand pOEP-only
TRAP Trap pOEP | sOEP
TRAPF Trap on False pOEP | sOEP
remaining TRAPcc Trap on Condition pOEP-only
TRAPV Trap on Overflow pOEP-only
TST Test an Operand pOEP | sOEP
UNLK Unlink pOEP-only
UNPK Unpack BCD Digit pOEP-only

Table 10-2. MC68060 Superscalar Classification
of M680x0 Integer Instructions (Continued)

Mnemonic Instruction Superscalar Classification

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-7

The MC68060 superscalar architecture allows pairs of single-cycle standard operations to
be simultaneously dispatched in the operand execution pipelines. Additionally, the design
also permits a single-cycle standard instruction plus a conditional branch (Bcc) predicted
by the branch cache to be dispatched in the OEP. Bcc instructions predicted as not taken
allow another instruction to be executed in the sOEP. This also is true for forward Bcc
instructions that are not predicted.

1

These floating-point instructions are pOEP-but-allows-sOEP except for the following:
F<op>Dm,FPn
F<op>&imm,FPn
F<op>.x<mem>,FPn

which are classified as pOEP-only

Table 10-3. Superscalar Classification of M680x0 Privileged Instructions

Mnemonic Instruction Superscalar Classification

ANDI to SR AND Immediate to Status Register pOEP-only
CINV Invalidate Cache Lines pOEP-only
CPUSH Push and Invalidate Cache Lines pOEP-only
EORI to SR Exclusive OR Immediate to Status Register pOEP-only
MOVE from SR Move from Status Register pOEP-only
MOVE to SR Move to Status Register pOEP-only
MOVE USP Move User Stack Pointer pOEP-only
MOVEC Move Control Register pOEP-only
MOVES Move Address Space pOEP-only
ORI to SR Inclusive OR Immediate to Status Register pOEP-only
PFLUSH Flush ATC Entries pOEP-only
PLPA Load Physical Address pOEP-only
RESET Reset External Devices pOEP-only
RTE Return from Exception pOEP-only
STOP Load Status Register and Stop pOEP-only

Table 10-4. Superscalar Classification of M680x0 Floating-Point Instructions

Mnemonic Instruction Superscalar Classification

FABS, FDABS, FSABS Absolute Value pOEP-but-allows-sOEP

1

FADD, FDADD, FSADD Add pOEP-but-allows-sOEP

1

FBcc Branch Conditionally pOEP-only

FCMP Compare pOEP-but-allows-sOEP

1

FDIV, FDDIV, FSDIV,
FSGLDIV Divide pOEP-but-allows-sOEP

1

FINT, FINTRZ Integer Part, Round-to-Zero pOEP-but-allows-sOEP

1

FMOVE, FDMOVE, FSMOVE Move Floating-Point Data Register pOEP-but-allows-sOEP

1

FMOVE Move System Control Register pOEP-only
FMOVEM Move Multiple Data Registers pOEP-only
FMUL, FDMUL, FSMUL,
FSGLMUL Multiply pOEP-but-allows-sOEP

1

FNEG, FDNEG, FSNEG Negate pOEP-but-allows-sOEP

1

FNOP No Operation pOEP-only

FSQRT Square Root pOEP-but-allows-sOEP

1

FSUB, FDSUB, FSSUB Subtract pOEP-but-allows-sOEP

1

FTST Test Operand pOEP-but-allows-sOEP

1

Instruction Execution Timing

10-8

M68060 USER’S MANUAL

MOTOROLA

Additionally, the use of instruction folding techniques allow one or two instructions to be
simultaneously executed with a predicted taken Bcc (also for BRA and JMP instructions).

The floating-point pre-exception model of the MC68060 supports execution overlap
between multi-cycle floating-point instructions and the integer execute engines. Once a
multi-cycle floating-point instruction has started its execution, the primary and secondary
OEPs may continue to dispatch and complete integer instructions in parallel with the
floating-point instructions. The OEPs will stall only if another floating-point instruction is
encountered before the first floating-point instruction has completed its execution. The
floating-point instructions that permit this execution overlap are classified as pOEP-but-
allows-sOEP in Table 10-4.

10.1.3 Dispatch Test 3: Allowable Effective Addressing Mode in the sOEP

To minimize the hardware structures required for the address generation unit within the sec-
ondary OEP, certain addressing modes are not allowed. The addressing modes not sup-
ported by the sOEP include: the address register indirect with index plus base displacement
{(bd, An, Xi

∗

SF)} and all PC-relative modes {(d16, PC), (d8, PC, Xi

∗

SF), (bd, PC, Xi

∗

SF)}.

10.1.4 Dispatch Test 4: Allowable Operand Data Memory Reference

The MC68060 processor design features a shared operand data cache pipeline capable of
supporting a single operand reference per machine cycle. This test validates that only a sin-
gle operand data memory reference is present between the instruction-pair in the pOEP and
sOEP.

10.1.5 Dispatch Test 5: No Register Conflicts on sOEP.AGU Resources

This test validates that the register resources of the sOEP.AGU (Base, Index) do not conflict
with the results being generated by the instruction in the pOEP. The most significant bit of
the resource name is asserted to indicate a register resource. Thus, this test can be stated
as:

test5 = 1 /* set test5 as okay
if (sOEP.Base > 15)/* indicates a valid register
/* if the sOEP.Base equals the pOEP’s Address_ or Execute_result, a conflict exists

if ((sOEP.Base = pOEP.Address_result) || (sOEP.Base = pOEP.Execute_result))
test5 = 0/* test5 has register conflict; test fails

if (sOEP.Index > 15)/* indicates a valid register

/* if the sOEP.Index equals the pOEP’s Address_ or Execute_result, a conflict exists
if ((sOEP.Index = pOEP.Address_result) || (sOEP.Index = pOEP.Execute_result))

test5 = 0/* test5 has register conflict; test fails

As examples of failing sequences, consider the following instruction pairs:

add.l #<data>,a0Execute_result = a0
mov.l (a0),d0Base = a0

add.l d1,d0 Execute_result = d0
lea (a1,d0.l),a0Index = d0

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-9

If the first instruction of each pair is contained in the pOEP and the second in the sOEP, test
5 fails for both pairs. For the first example, the base resource required by the sOEP conflicts
with the execute result generated by the pOEP instruction. In the second example, the index
resource required by the sOEP conflicts with the execute result from the pOEP instruction.

10.1.6 Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources

This test validates that the register resources of the sOEP.IEE (A, B) do not conflict with the
execute result being generated by the instruction in the pOEP. Recall the most significant
bit of the resource name is asserted to indicate a register resource. Thus, this test can be
stated as:

test6 = 1 /* set test6 as okay
if (sOEP.A > 15) /* indicates a valid register
/* if the sOEP.A equals the pOEP’s Execute_result, a conflict exists

if ((sOEP.A = pOEP.Execute_result))
test6 = 0/* test6 has register conflict

if (sOEP.B > 15) /* indicates a valid register
/* if the sOEP.B equals the pOEP’s Execute_result, a conflict exists

if ((sOEP.B = pOEP.Execute_result))
test6 = 0/* test6 has register conflict

There are two very important exceptions to this rule involving the MOVE instruction:

1. If the primary OEP instruction is a simple “move long to register” (MOVE.L,Rx) and
the destination register Rx is required as either the sOEP.A or sOEP.B input, the
MC68060 bypasses the data as required and the test succeeds.

2. In the following sequence of instructions:

<op>.l,Dx
mov.l Dx,<mem>

the result of the pOEP instruction is needed as an input to the sOEP.IEE and the sOEP
instruction is a move instruction. The destination operand for the memory write is sourced
directly from the pOEP execute result and the test succeeds.

Consider the following examples:

asl.l &k,d0 Execute_result = d0
add.l d0,d1 A = d0
add.l <ea>,d1 Execute_result = d1
sub.l d0,d1 B = d1
mov.l <ea>,d0 Execute_result = d0
add.l d0,d1 A = d0

For all the examples, let the first instruction be loaded into the primary OEP and the second
loaded into the secondary OEP.

In the first and second examples, the result of the pOEP instruction is required as an input
to the sOEP.IEE. Since the pOEP instruction is not a simple MOVE operation, the test fails
in each case.

In the third example, the result of the pOEP operation is needed as an input to the
sOEP.IEE, but since the pOEP is executing the register-load MOVE instruction, the desti-

Instruction Execution Timing

10-10

M68060 USER’S MANUAL

MOTOROLA

nation operand can be routed to the sOEP before the actual “execution” of the pOEP instruc-
tion. The test succeeds in this example.

10.2 TIMING ASSUMPTIONS

For the timing data presented, the following assumptions are made:

1. The data presents the execution times for individual instructions and makes no as-
sumptions concerning the ability of the MC68060 to dispatch multiple instructions in a
given machine cycle. For sequences where instruction-pairs are dispatched, the exe-
cution time of the two instructions is defined by the execution time of the instruction in
the pOEP.

2. The OEP is loaded with the opword and all required extension words at the beginning
of each instruction execution. This implies that the OEP spends no time waiting for the
instruction fetch pipeline (IFP) to supply opwords and/or extensions.

3. The OEP does not experience any sequence-related pipeline stalls. The most com-
mon example of this type of stall is a “change/use” register stall. This type of stall re-
sults from a register being modified by an instruction and a subsequent instruction
generating an address using the previously modified register. The second instruction
must stall in the OEP until the register is actually updated by the previous instruction.
For example:

muls.l #<data>,d0
mov.l (a0,d0.l*4),d1

In this sequence, the second instruction is held for 2 clock cycles stalling for the first
instruction to complete the update of the d0 register. If consecutive instructions load
a register and then use that register as the base for an address calculation (An), a 2-
clock-cycle wait may be incurred. This represents the maximum change/use penalty
for a base register. The maximum change/use penalty for an index register (Xi) is 3
clock cycles (for Xi.l*2, Xi.l*8, and Xi.w). The change/use penalty for an index register
if Xi.l*1 or Xi.l*4 is 2 clock cycles.

Certain instructions have been optimized to ensure no change/use stall occurs on
subsequent instructions. The destination register of the following instructions is avail-
able for subsequent instructions:

lea
mov.l&imm,Rn
movq
clr.lDn,
any op(An)+
any op–(An)

as a base register for address calculation with no stall, or as an index register for
address calculation with no stall, if Xi.l*{1,4}. If the index register used is Xi.l*2, Xi.l*8,
or Xi.w, then the previously described 3 cycle stall occurs.

The MC68060 provides another change/use optimization for a commonly encountered
construct—when an address register is loaded from memory and then used in an oper-
and address calculation, the OEP experiences a one cycle stall.

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-11

mov.l<mem>,An
<op> <ea using An>

4. The OEP is able to complete all memory accesses without any stall conditions due to
ATC or cache misses and/or operand data cache bank busy. This means all operand
data memory references produce address translation cache hits, are mapped to cach-
able pages, and produce hits in the operand data cache. Additionally, branch instruc-
tions are assumed to produce an instruction cache hit for the target address instruction
fetch.

The occurrence of any cache miss will add a specific number of cycles to the base exe-
cution time of an instruction (see

10.3 Cache and atc Performance Degradation
Times

 and

10.4 Effective Address Calculation Times

).

For instructions which generate external bus cycles as part of their execution (e.g.,
MOVE16, CPUSH), a 2-1-1-1 memory system is assumed.

5. All data accesses are assumed to be aligned on the same byte boundary as the oper-
and size:

•16-bit operands aligned on 0-modulo-2 addresses
•32-bit operands aligned on 0-modulo-4 addresses
•64-bit operands aligned on 0-modulo-8 addresses
•96-bit operands aligned on 0-modulo-4 addresses

If the operand alignment fails these suggested guidelines, the reference is termed a
misaligned access. The processor is required to make multiple accesses to obtain any
misaligned operand. For copyback or writethrough pages, one processor clock cycle
must be added to the instruction execution time for a misaligned read reference. Two
clock cycles must be added for a misaligned write or read-modify-write.

6. Certain instructions perform a pipeline synchronization prior to their actual execution.
For these opcodes, the instruction enters the pOEP and then waits until the following
conditions are met:

•The instruction cache is in a quiescent state with all outstanding cache misses
completed.

•The data cache is in a quiescent state with all outstanding cache misses com-
pleted.

•The push and write buffers are empty.
•The execution of all previous instructions has completed.

Once all these conditions are satisfied, the instruction begins its actual execution.

For the instruction timings listed in the timing data, the following assumptions are made
for these pipeline synchronization instructions:

•The instruction cache is not processing any cache misses.
•The data cache is not processing any cache misses.
•The push and write buffers are empty.
•The OEP has dispatched an instruction or instruction-pair on the previous cycle.

Instruction Execution Timing

10-12

M68060 USER’S MANUAL

MOTOROLA

The following instructions perform this pipeline synchronization:

andi_to_sr
bkpt
cas
cinv
cpush
eori_to_sr
halt
lpstop
move_to_sr
movec
nop
ori_to_sr
pflush
plpa
reset
rte
stop
tas

7. Certain instructions have a variable execution time based on input operands, cache
state, etc. For these instructions, the execution time listed represents the maximum
value. These times are listed as: <= k(r/w) where k is the maximum time.

10.3 CACHE AND ATC PERFORMANCE DEGRADATION TIMES

This section defines degradation times to MC68060 processor performance for cache and
ATC miss conditions (as detailed in

10.2 Timing Assumptions

, the performance numbers
in

10.1.5 Dispatch Test 5: No Register Conflicts on sOEP.AGU Resources

 and

10.1.6
Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources

assume internal cache
hits for all memory accesses). If a cache miss is encountered, the appropriate delay times
defined in this section are to be used with the instruction times defined in

10.1.5 Dispatch
Test 5: No Register Conflicts on sOEP.AGU Resources

 and

10.1.6 Dispatch Test 6: No
Register Conflicts on sOEP.IEE Resources

 to determine MC68060 execution time.

10.3.1 Instruction ATC Miss

Assumptions:

• A single, “C-index” level, normal table search (the only U-bit update possible is for the
page descriptor itself).

• Given a memory response time of “w-x-y-z” to the bus interface of the MC68060.

Instruction ATC Miss = 10+3*w(3/0), if U-bit of descriptor is already set.

Instruction ATC Miss = 18+5*w(4/1), if U-bit of descriptor must be set by the MC68060.

Instruction Execution Timing

MOTOROLA

M68060 USER’S MANUAL

10-13

10.3.2 Data ATC Miss

Assumptions:

• A single, “C-index” level, normal table search (the only U-bit or M-bit update possible is
for the page descriptor itself).

• Given a memory response time of “w-x-y-z” to the bus interface of the MC68060.

Data ATC Miss = 8+3*w(3/0), if U-bit and M-bit of descriptor are in the proper state.

Data ATC Miss = 14+4*w(3/1), if M-bit only, or U-bit and M-bit of descriptor must be set by
the MC68060.

Data ATC Miss = 16+5*w(4/1), if U-bit only of descriptor must be set by the MC68060.

10.3.3 Instruction Cache Miss

Assumptions:

• The following degradation time assumes the MC68060 instruction buffer is empty and
the instruction cache miss memory access time is fully exposed. This is an estimated
degradation using a conservative assumption.

Note that the MC68060 instruction fetch pipeline prefetches continually, loading instruc-
tions into the instruction buffer, which decouples the instruction fetch pipeline from the
operand execution pipeline. As a result, instruction cache miss memory access times
for most operations will be partially or completely hidden by the instruction buffer, con-
tributing minimal degradation to actual execution time.

• The following degradation estimate assumes an instruction fetch flow of sequential op-
erations, the cache miss line is entered sequentially and contains no branches/jumps.

• Given a memory response time of “w-x-y-z” to the bus interface of the MC68060.

Instruction Cache Miss (Line Fill) = w+x+y+z

10.3.4 Data Cache Miss

Assumptions:

• Given a memory response time of “w-x-y-z” to the bus interface of the MC68060.

If copyback mode:

Data Cache Miss (Line Fill) = 2+w {+, if during x+y+z a memory data operand reference is
made by a subsequent instruction, an operand execution pipeline stall will take place until
the entire line is written into the data cache during x+y+z}

If noncachable mode (operand read):

Data Cache Miss = 2+w

If noncacheable mode (operand write) and precise mode or write buffer disabled:

Data Cache Miss = 3+w

Instruction Execution Timing

10-14

M68060 USER’S MANUAL

MOTOROLA

10.4 EFFECTIVE ADDRESS CALCULATION TIMES

Table 10-5 shows the number of clock cycles required to compute an instruction’s effective
address. The MC68060 address generation hardware supports the calculation of most
effective addresses within the structure of the operand execution pipeline with no additional
cycles required. The number of operand read and write cycles is shown in parentheses (r/w).

The following rules apply to any effective address calculation:

• The size of the index register (Xi) and the scale factor (SF) do not affect the calculation
time for the indexed addressing modes.

• The size of the absolute address (short, long) does not affect its calculation time. In sub-
sequent tables, the nomenclature “(xxx).WL” is used to denote either the absolute short
{(xxx).W} or absolute long {(xxx).L} addressing modes.

In general, the use of a memory indirect effective address adds three cycles to the instruc-
tion execution times (one cycle to process full format effective address and two cycles to
fetch the memory indirect pointer). For instructions which calculate both a source and des-
tination address (e.g., memory-to-memory moves), two effective address calculations are
performed, one for the source and another for the destination.

10.5 MOVE INSTRUCTION EXECUTION TIMES

Table 10-6 and Table 10-7 show the number of clock cycles for execution of the MOVE
instruction. The number of operand read and write cycles is shown in parentheses (r/
w).Note, if memory indirect addressing is used for a MOVE instruction, add 2(1/0) cycles for

Table 10-5. Effective Address Calculation Times

Addressing Mode
Calculation

Time

Dn Data Register Direct 0(0/0)
An Address Register Direct 0(0/0)

(An) Address Register Indirect 0(0/0)
(An)+ Address Register Indirect with Postincrement 0(0/0)
–(An) Address Register Indirect with Predecrement 0(0/0)

(d16,An) Address Register Indirect with Displacement 0(0/0)
(d8,An,Xi

∗

SF) Address Register Indirect with Index and Byte Displacement 0(0/0)
(bd,An,Xi

∗

SF) Address Register Indirect with Index and Base (16-, 32-bit) Displacement 1(0/0)
([bd,An,Xn],od

) Memory Indirect Preindexed Mode 3(1/0)

([bd,An],Xn,od
) Memory Indirect Postindexed Mode 3(1/0)

(xxx).W Absolute Short 0(0/0)
(xxx).L Absolute Long 0(0/0)

(d16,PC) Program Counter with Displacement 0(0/0)
(d8,PC,Xi

∗

SF) Program Counter with Index and Byte Displacement 0(0/0)
(bd,PC,Xi∗ SF) Program Counter with Index and Base (16-, 32-bit) Displacement 1(0/0)

#<data> Immediate 0(0/0)
([bd,PC,Xn],o

d) Program Counter Memory Indirect Preindexed Mode 3(1/0)

([bd,PC],Xn,o
d) Program Counter Memory Indirect Postindexed Mode 3(1/0)

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-15

each memory indirect address to the numbers in Table 10-6 and Table 10-7.The execution
times for the MOVE16 instruction are shown in Table 10-8.

1 These execution times assume cache misses for both read and write MOVE16
accesses. Execution times are 11(1/1) if the read access hits in the operand data
cache. Note, for this instruction the operand read/write refers to a line-sized transfer.

Table 10-6. Move Byte and Word Execution Times

Source
Destination

Dn An (An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF) (xxx).WL
Dn 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
An 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(An)+ 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
–(An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d8,An,Xi∗ SF) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(bd,An,Xi∗ SF) 2(1/0) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(xxx).W 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(xxx).L 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,PC) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d8,PC,Xi∗ SF) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(bd,PC,Xi∗ SF) 2(1/0) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

#<data> 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 2(0/1) 3(0/1) 2(0/1)

Table 10-7. Move Long Execution Times

Source
Destination

Dn An (An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF) (xxx).WL
Dn 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
An 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(An)+ 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
–(An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,An) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d8,An,Xi∗ SF) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(bd,An,Xi∗ SF) 2(1/0) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(xxx).W 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(xxx).L 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,PC) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(d8,PC,Xi∗ SF) 1(1/0) 1(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(bd,PC,Xi∗ SF) 2(1/0) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

#<data> 1(0/0) 1(0/0) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 2(0/1) 3(0/1) 2(0/1)

Table 10-8. MOVE16 Execution Times

Source
Destination

(Ax) (Ax)+ (xxx).L

(Ay) — — 18(1/1)1

(Ay)+ — 18(1/1)1 18(1/1)1

(xxx).L 18(1/1)1 18(1/1)1 —

Instruction Execution Timing

10-16 M68060 USER’S MANUAL MOTOROLA

10.6 STANDARD INSTRUCTION EXECUTION TIMES
Table 10-9 shows the number of clock cycles required for execution of the standard instruc-
tions, including completion of the operation and storing of the result. The number of operand
read and write cycles is shown in parentheses (r/w). In this table, <ea> denotes any effective
address and <M> denotes a memory operand. For all instructions in Table 10-9, the clock
cycles and r/w cycles for the effective address calculation (Table 10-5) must be added to the
values listed.

1 For entries in this column, add one cycle if the <ea> is (Ay)+, –(Ay) and Ay = An
2 Word divides have conditional exit points.
3 Add one cycle to the effective address calculation time for all addressing modes except Rn, (An), (An)+, –(An),
(d16,An), and (d16,PC)

Table 10-9. Standard Instruction Execution Time
Instruction Size op <ea>,An1 op <ea>,Dn op Dn,<M>

ADD Byte, Word 1(1/0) 1(1/0) 1(1/1)
“ Long 1(1/0) 1(1/0) 1(1/1)

AND Byte, Word —— 1(1/0) 1(1/1)
“ Long — 1(1/0) 1(1/1)

CMP Byte, Word 1(1/0) 1(1/0) —
“ Long 1(1/0) 1(1/0) —

DIVS Word — <=22(1/0)2 —

“ Long3 — 38(1/0) —

DIVU Word — <=22(1/0)2 —

“ Long3 — 38(1/0) —

EOR Byte, Word — 1(1/0) 1(1/1)
“ Long — 1(1/0) 1(1/1)

MULS Word — 2(1/0) —

'” Long3 — 2(1/0) —

MULU Word — 2(1/0) —

“ Long3 — 2(1/0) —

OR Byte, Word — 1(1/0) 1(1/1)
“ Long — 1(1/0) 1(1/1)

SUB Byte, Word 1(1/0) 1(1/0) 1(1/1)
“ Long 1(1/0) 1(1/0) 1(1/1)

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-17

10.7 IMMEDIATE INSTRUCTION EXECUTION TIMES
Table 10-10 shows the number of clock cycles required for execution of the immediate
instructions, including completion of the operation and storing of the result. The number of
operand read and write cycles is shown in parentheses (r/w).

1 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

Table 10-10. Immediate Instruction Execution Times

Instruction Size
Destination

Dn An (An)
(An)

+
–(An) (d16,An) (d8,An,Xi*SF) (bd,An,Xi*SF)1 (xxx).WL

ADDI Byte, Word 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

“ Long 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

ADDQ Byte, Word 1(0/
0)

1(0/
0)

1(1/
1)

1(1/
1)

1(1/
1) 1(1/1) 1(1/1) 2(1/1) 1(1/1)

“ Long 1(0/
0)

1(0/
0)

1(1/
1)

1(1/
1)

1(1/
1) 1(1/1) 1(1/1) 2(1/1) 1(1/1)

ANDI Byte, Word 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

“ Long 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

CMPI Byte, Word 1(0/
0) — 1(1/

0)
1(1/
0)

1(1/
0) 2(1/0) 2(1/0) 3(1/0) 2(1/0)

“ Long 1(0/
0) — 1(1/

0)
1(1/
0)

1(1/
0) 2(1/0) 2(1/0) 3(1/0) 2(1/0)

EORI Byte, Word 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

“ Long 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

MOVEQ Long 1(0/
0) — — — — — — — —

ORI Byte, Word 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

“ Long 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

SUBI Byte, Word 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

“ Long 1(0/
0) — 1(1/

1)
1(1/
1)

1(1/
1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

SUBQ Byte, Word 1(0/
0)

1(0/
0)

1(1/
1)

1(1/
1)

1(1/
1) 1(1/1) 1(1/1) 2(1/1) 1(1/1)

“ Long 1(0/
0)

1(0/
0)

1(1/
1)

1(1/
1)

1(1/
1) 1(1/1) 1(1/1) 2(1/1) 1(1/1)

Instruction Execution Timing

10-18 M68060 USER’S MANUAL MOTOROLA

10.8 SINGLE-OPERAND INSTRUCTION EXECUTION TIMES
Table 10-11 shows the number of clock cycles required for execution of the single-operand
instructions. The number of operand reads and write cycles is shown in parentheses (r/w).
Where indicated, the number of clock cycles and r/w cycles must be added to those required
for effective address calculation.

Execution times for the CLR instruction are given in Table 10-12. The number of operand
reads and writes is shown in parentheses (r/w).

1 Add (1 + effective address calculation time) cycles for all addressing modes
except Rn, (An), (An)+, –(An), and (d16,An).

2 Add the effective address calculation time to these instructions.

1 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

Table 10-11. Single-Operand Instruction Execution Times
Instruction Size Register Memory

CAS Byte, Word1 — 19(1/1)

“ Long1 — 19(1/1)

NBCD Byte 1(0/0) 1(1/1)2

NEG Byte, Word 1(0/0) 1(1/1)2

“ Long 1(0/0) 1(1/1)2

NEGX Byte, Word 1(0/0) 1(1/1)2

“ Long 1(0/0) 1(1/1)2

NOT Byte, Word 1(0/0) 1(1/1)2

“ Long 1(0/0) 1(1/1)2

Scc Byte -> False 1(0/0) 1(1/1)2

“ Byte -> True 1(0/0) 1(1/1)2

TAS Byte 1(0/0) 17(1/1)2

TST Byte, Word 1(0/0) 1(1/0)2

“ Long 1(0/0) 1(1/0)2

Table 10-12. Clear (CLR) Execution Times

Size Dn
A
n

(An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF)1 (xxx).WL

Byte, Word 1(0/0) — 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Long 1(0/0) — 1(0/1) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-19

10.9 SHIFT/ROTATE EXECUTION TIMES
Table 10-13 indicates the number of clock cycles required for execution of the shift and
rotate instructions. The number of operand read and write cycles is shown in parentheses
(r/w). Where indicated, the number of clock cycles and r/w cycles must be added to those
required for effective address calculation.

10.10 BIT MANIPULATION AND BIT FIELD EXECUTION TIMES
Table 10-14 and Table 10-15 indicate the number of clock cycles required for execution of
the bit manipulation instructions. The execution times for the bit field instructions is shown
in Table 10-16. The number of operand read and write cycles is shown in parentheses (r/w).
Where indicated, the number of clock cycles and r/w cycles must be added to those required
for effective address calculation.

1 For entries in this column, add the effective address calculation time. These operations
are word-size only.

1 For entries in this column, add the effective address calculation
time.

Table 10-13. Shift/Rotate Execution Times
Instruction Size Register Memory1

ASL, ASR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

LSL, LSR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

ROL, ROR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

ROXL, ROXR Byte, Word 1(0/0) 1(1/1)
“ Long 1(0/0) —

Table 10-14. Bit Manipulation (Dynamic Bit Count)
Execution Times

Instruction Size Register Memory1

BCHG Byte — 1(1/1)
“ Long 1(0/0) —

BCLR Byte — 1(1/1)
“ Long 1(0/0) —

BSET Byte — 1(1/1)
“ Long 1(0/0) —

BTST Byte — 1(1/0)
“ Long 1(0/0) —

Instruction Execution Timing

10-20 M68060 USER’S MANUAL MOTOROLA

1 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

1 The type of offset and width (static, dynamic) does not affect the execution time.
2 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

Table 10-15. Bit Manipulation (Static Bit Count) Execution Times

Instruction Size
Destination

Dn
A
n

(An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF)1 (xxx).WL

BCHG Byte — — 1(1/1) 1(1/1) 1(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
“ Long 1(0/0) — — — — — — — —

BCLR Byte — — 1(1/1) 1(1/1) 1(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
“ 1(0/0) — — — — — — — —

BSET Byte — — 1(1/1) 1(1/1) 1(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
“ Long 1(0/0) — — — — — — — —

BTST Byte — — 1(1/0) 1(1/0) 1(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0)
“ Long 1(0/0) — — — — — — — —

Table 10-16. Bit Field Execution Times1

Instruction
Destination

Dn An (An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF)2 (xxx).WL
BFCHG (< 5 Bytes) 8(0/0) — 8(2/1) — — 8(2/1) 9(2/1) 10(2/1) 9(2/1)
BFCHG(= 5 Bytes) 12(0/0) — 12(4/2) — — 12(4/2) 13(4/2) 14(4/2) 13(4/2)
BFCLR (< 5 Bytes) 8(0/0) — 8(2/1) — — 8(2/1) 9(2/1) 10(2/1) 9(2/1)
BFCLR(= 5 Bytes) 12(0/0) — 12(4/2) — — 12(4/2) 13(4/2) 14(4/2) 13(4/2)
BFEXTS(< 5 Bytes) 6(0/0) — 6(1/0) — — 6(1/0) 7(1/0) 8(1/0) 7(1/0)
BFEXTS(= 5 Bytes) 8(0/0) — 8(2/0) — — 8(2/0) 9(2/0) 10(2/0) 9(2/0)
BFEXTU(< 5 Bytes) 6(0/0) — 6(1/0) — — 6(1/0) 7(1/0) 8(1/0) 7(1/0)
BFEXTU(= 5 Bytes) 8(0/0) — 8(2/0) — — 8(2/0) 9(2/0) 10(2/0) 9(2/0)
BFFFO(< 5 Bytes) 9(0/0) — 9(1/0) — — 9(1/0) 10(1/0) 11(1/0) 10(1/0)
BFFFO(= 5 Bytes) 11(0/0) — 11(2/0) — — 11(2/0) 12(2/0) 13(2/0) 12(2/0)
BFINS (< 5 Bytes) 6(0/0) — 6(1/1) — — 6(1/1) 7(1/1) 8(1/1) 7(1/1)
BFINS(= 5 Bytes) 6(0/0) — 6(2/2) — — 6(2/2) 7(2/2) 8(2/2) 7(2/2)
BFSET(< 5 Bytes) 8(0/0) — 8(2/1) — — 8(2/1) 9(2/1) 10(2/1) 9(2/1)
BFSET(= 5 Bytes) 12(0/0) — 12(4/2) — — 12(4/2) 13(4/2) 14(4/2) 13(4/2)
BFTST (< 5 Bytes) 6(0/0) — 6(1/0) — — 6(1/0) 7(1/0) 8(1/0) 7(1/0)
BFTST(= 5 Bytes) 8(0/0) — 8(2/0) — — 8(2/0) 9(2/0) 10(2/0) 9(2/0)

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-21

10.11 BRANCH INSTRUCTION EXECUTION TIMES
Table 10-17, Table 10-18, and Table 10-19 indicate the number of clock cycles required for
execution of the branch, jump, and return instructions. The number of operand read and
write cycles is shown in parentheses (r/w). Where indicated, the number of clock cycles and
r/w cycles must be added to those required for effective address calculation.

1 Add the effective address calculation time for each entry.

Table 10-17. Branch Execution Times

Instruction

Not
Predicted,
Forward,

Taken

Not
Predicted,
Forward,

Not Taken

Not
Predicted,
Backward,

Taken

Not
Predicted,
Backward,
Not Taken

Predicted
Correctly as

Taken

Predicted
Correctly as
Not Taken

Predicted
Incorrectly

Bcc 7(0/0) 1(0/0) 3(0/0) 7(0/0) 0(0/0) 1(0/0) 7(0/0)
BRA 3(0/0) — 3(0/0) — 0(0/0) — —
BSR 3(0/1) — 3(0/1) — 1(0/1) — —
DBcc 3(0/0) 8(0/0) 3(0/0) 8(0/0) 2(0/0) 2(0/0) 8(0/0)
DBRA 3(0/0) 7(0/0) 3(0/0) 7(0/0) 1(0/0) 1(0/0) 7(0/0)
FBcc 8(0/0) 2(0/0) 8(0/0) 2(0/0) 2(0/0) 2(0/0) 8(0/0)

Table 10-18. JMP, JSR Execution Times1

Instruction

Not
Predicted,
Forward,

Taken

Not
Predicted,
Forward,

Not Taken

Not
Predicted,
Backward,

Taken

Not
Predicted,
Backward,
Not Taken

Predicted
Correctly as

Taken

Predicted
Correctly as
Not Taken

Predicted
Incorrectly

JMP (d16,PC) 3(0/0) — 3(0/0) —— 0(0/0) — —
JMP xxx.WL 3(0/0) — 3(0/0) — 0(0/0) — —

Remaining JMP 5(0/0) — 5(0/0) — 5(0/0) — —
JSR (d16,PC) 3(0/1) — 3(0/1) — 1(0/1) — —
JSR xxx.WL 3(0/1) — 3(0/1) — 1(0/1) — —

Remaining JSR 5(0/1) — 5(0/1) — 5(0/1) — —

Table 10-19. Return Instruction Execution Times
Instruction Execution Time

RTD 7(1/0)
RTE 17(3/0)
RTR 8(2/0)
RTS 7(1/0)

Instruction Execution Timing

10-22 M68060 USER’S MANUAL MOTOROLA

10.12 LEA, PEA, AND MOVEM EXECUTION TIMES
Table 10-20 indicates the number of clock cycles required for execution of the LEA, PEA,
and MOVEM instructions. The number of operand read and write cycles is shown in paren-
theses (r/w).

10.13 MULTIPRECISION INSTRUCTION EXECUTION TIMES
Table 10-21 indicates the number of clock cycles for execution of the multiprecision instruc-
tions. The number of clock cycles includes the time to fetch both operands, perform the
operations, and store the results. The number of read and write cycles is shown in paren-
theses (r/w).

10.14 STATUS REGISTER, MOVES, AND MISCELLANEOUS
INSTRUCTION EXECUTION TIMES

Table 10-22, Table 10-23, and Table 10-24 indicate the number of clock cycles required for
execution of the status register, MOVES, and miscellaneous instructions. The number of
operand read and write cycles is shown in parentheses (r/w). Where indicated, the number
of clock cycles and r/w cycles must be added to those required for effective address calcu-
lation.

1 Add 2(1/0) cycles to the (bd,{An,PC},Xi*SF) time for a memory indirect address.
2 “n” is the number of registers being moved.

1 Where <ea>y,<ea>x is (Ay)+,(Ax)+ for CMPM and –(Ay),–(Ax) for all
other instructions.

Table 10-20. LEA, PEA, and MOVEM Instruction Execution Times

Instruction (An)
(An)

+
–

(An)
(d16,An)

(d8,An,
Xi∗ SF)

(bd,An,
Xi∗ SF)1

(xxx).WL (d16,PC)
(d8,PC,
Xi∗ SF)

(bd,PC,
Xi∗ SF)1

LEA 1(0/0) - - 1(0/0) 1(0/0) 2(0/0) 1(0/0) 1(0/0) 1(0/0) 2(0/0)
PEA 1(0/1) - - 2(0/1) 2(0/1) 3(0/1) 1(0/1) 1(0/1) 2(0/1) 2(0/1)

MOVEM Mem->Reg n2(n/
0)

n(n/
0) - n(n/0) 1+n(n/0) 2+n(n/0) 1+n(n/0) n(n/0) 1+n(n/0) 2+n(n/0)

MOVEM Reg->Mem n(0/n) — n(0/
n) n(0/n) 1+n(0/n) 2+n(0/n) 1+n(0/n) — — —

Table 10-21. Multiprecision Instruction Execution Times

Instruction Size op Dy,Dx
op

<ea>y,<ea>x1

ADDX Byte, Word 1(0/0) 2(2/1)
“ Long 1(0/0) 2(2/1)

CMPM Byte, Word — 2(2/0)
“ Long — 2(2/0)

SUBX Byte, Word 1(0/0) 2(2/1)
“ Long 1(0/0) 2(2/1)

ABCD Byte 1(0/0) 2(2/1)
SBCD Byte 1(0/0) 2(2/1)

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-23

1 For these instructions, add the effective address calculation time.

1 Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.

Table 10-22. Status Register (SR) Instruction Execution Times
Instruction Execution Time
ANDI to SR 12(0/0)
EORI to SR 12(0/0)

MOVE from SR 1(0/1)1

MOVE to SR 12(1/0)1

ORI to SR 5(0/0)

Table 10-23. MOVES Execution Times

MOVES Function
Destination

Size (An) (An)+ –(An) (d16,An) (d8,An,Xi∗ SF) (bd,An,Xi∗ SF)1 (xxx).WL
Source<SFC> -> Rn Byte, Word 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0)

“ Long 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0)
Rn -> Dest <DFC> Byte, Word 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 3(0/1) 2(0/1)

“ Long 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 3(0/1) 2(0/1)

Table 10-24. Miscellaneous Instruction Execution Times
Instruction Size Register Memory Reg -> Dest Source -> Reg

ANDI to CCR Byte 1(0/0) — — —

CHK Word 2(0/0) 2(1/0) 1 — —

“ Long 2(0/0) 2(1/0) 1 — —

CINVA — — <=17(0/0) — —
CINVL — — <=18(0/0) — —
CINVP — — <=274(0/0) — —

CPUSHA — — <=5394(0/512)2 — —

CPUSHL — — <=26(0/1)2 — —

CPUSHP — — <=2838(0/256)2 — —

EORI to CCR Byte 1(0/0) — — —
EXG Long 1(0/0) — — —
EXT Word 1(0/0) — — —
“ Long 1(0/0) — — —
EXTB Long 1(0/0) — — —
LINK Word 2(0/1) — — —
“ Long 2(0/1) — — —
LPSTOP Word 15(0/1) — — —

MOVE from CCR Word 1(0/0) 1(0/1)1 — —

MOVE to CCR Word 1(0/0) 1(1/0)1 — —

MOVE from USP Long 1(0/0) — — —
MOVE to USP Long 2(0/0) — — —
MOVEC (SFC,DFC,
USP,VBR,PCR) Long — — 12(0/0) 11(0/0)

MOVEC (CACR,TC,
TTR,BUSCR,URP,SRP) Long — — 15(0/0) 14(0/0)

NOP — 9(0/0) — — —
ORI to CCR Byte 1(0/0) — — —
PACK — 2(0/0) 2(1/1) — —

Instruction Execution Timing

10-24 M68060 USER’S MANUAL MOTOROLA

10.15 FPU INSTRUCTION EXECUTION TIMES
Table 10-25 shows the number of clock cycles required for execution of the floating-point
instructions, including completion of the operation and storing of the result. The number of
operand read and write cycles is shown in parentheses (r/w).

1 For these entries, add the effective address calculation time.
2 For the CPUSH instruction, the operand write figure refers to line-sized transfers.

PLPA (ATC hit) — 15(0/0) — — —
PLPA (ATC miss) — 28(0/0) — — —
PFLUSH — 18(0/0) — — —
PFLUSHN — 18(0/0) — — —
PFLUSHAN — 33(0/0) — — —
PFLUSHA — 33(0/0) — — —
RESET — 520(0/0) — — —
STOP Word 8(0/0) — — —
SWAP Word 1(0/0) — — —
TRAPF — 1(0/0) — — —
TRAPcc — 1(0/0) — — —
TRAPV — 1(0/0) — — —
UNLK — 1(1/0) — — —
UNPK — 2(0/0) 2(1/1) — —

Table 10-25. Floating-Point Instruction Execution Times

Instruction
Effective Address, <ea>

FPn Dn (An) (An)+ –(An)
(d16,An)
(d16,PC)

(d8,An,Xi∗ SF)
(d8,PC,Xi∗ SF)

(bd,An,XI∗ SF)
(bd,PC,XI∗ SF)

(xxx).WL #<imm>

FABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FDABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FSABS 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FDADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FSADD 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FCMP 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FDDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FSDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FDMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FSMOVE
,FPx 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

FMOVE
FPy, — 3(0/0) 1(0/1) 1(0/1) 1(0/1) 1(1/0) 2(0/1) 3(0/1) 2(0/1) —

FMOVE
,FPCR — 8(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 8(1/0) 7(1/0) 7(0/0)

FMOVE
FPCR, — 4(0/0) 2(0/1) 2(0/1) 2(0/1) 2(1/0) 3(0/1) 4(0/1) 3(0/1) —

FINT 3(0/0) 4(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 5(1/0) 3(1/0) 3(0/0)
FINTRZ 3(0/0) 4(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 5(1/0) 3(1/0) 3(0/0)

Table 10-24. Miscellaneous Instruction Execution Times (Continued)
Instruction Size Register Memory Reg -> Dest Source -> Reg

Instruction Execution Timing

MOTOROLA M68060 USER’S MANUAL 10-25

NOTES:
“n” is the number of registers being moved.
For all FPU operations, if the external operand format is byte, word, or long, add three cycles to the execution time.
*For all FPU operations except FMOVEM, if the external operand format is extended precision, add two cycles to the
execution time.
Add 2(1/0) cycles to the (bd,An,Xi*SF) time for a memory indirect address.
Add 1(0/0) cycle if the <ea> specifies a double precision immediate operand.

FSGLDIV 37(0/0) 39(0/0) 37(1/0) 37(1/0) 37(1/0) 37(1/0) 38(1/0) 39(1/0) 38(1/0) 38(0/0)
FSGLMUL 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)

FMOVEM
,FPx * — — 1+3n

(3n/0)
1+3n
(3n/0) — 1+3n(3n/0) 2+3n(3n/0) 3+3n(3n/0) 2+3n(3n/

0) —

FMOVEM
FPy, * — — 1+3n

(0/3n) — 1+3n
(0/3n) 1+3n(0/3n) 2+3n(0/3n) 3+3n(0/3n) 2+3n(0/

3n) —

FMUL 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FDMUL 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FSMUL 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 4(0/0)
FNEG 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FDNEG 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FSNEG 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 2(0/0)
FSUB 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 3(0/0)
FDSUB 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 3(0/0)
FSSUB 3(0/0) 5(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 5(1/0) 4(1/0) 3(0/0)
FTST 1(0/0) 3(0/0) 1(1/0) 1(1/0) 1(1/0) 1(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)
FSQRT 68(0/0) 70(0/0) 68(1/0) 68(1/0) 68(1/0) 68(1/0) 69(1/0) 70(1/0) 69(1/0) 69(0/0)
FSSQRT 68(0/0) 70(0/0) 68(1/0) 68(1/0) 68(1/0) 68(1/0) 69(1/0) 70(1/0) 69(1/0) 69(0/0)
FDSQRT 68(0/0) 70(0/0) 68(1/0) 68(1/0) 68(1/0) 68(1/0) 69(1/0) 70(1/0) 69(1/0) 69(0/0)
FSAVE — — 3(0/3) — — — — — — —
FRE-
STORE — — 6(3/0) — — — — — — —

FMOVEM
,FPxR — — 7(n/0) — — — — — — —

FMOVEM
FPxR, — — 5(0/n) — — — — — — —

Table 10-25. Floating-Point Instruction Execution Times (Continued)

Instruction
Effective Address, <ea>

FPn Dn (An) (An)+ –(An)
(d16,An)
(d16,PC)

(d8,An,Xi∗ SF)
(d8,PC,Xi∗ SF)

(bd,An,XI∗ SF)
(bd,PC,XI∗ SF)

(xxx).WL #<imm>

Instruction Execution Timing

10-26 M68060 USER’S MANUAL MOTOROLA

10.16 EXCEPTION PROCESSING TIMES
Table 10-26 indicates the number of clock cycles required for exception processing. The
number of clock cycles includes the time spent in the OEP by the instruction causing the
exception, the stacking of the exception frame, the vector fetch, and the fetch of the first
instruction of the exception handler routine. The number of operand read and write cycles
is shown in parentheses (r/w).

1 Indicates the time from when RSTI is negated until the first
instruction enters the OEP.

2 For these entries, add the effective address calculation time.
3 Assumes either autovector or external vector supplied with zero

wait states.
4 For these entries, add the instruction execution time minus 1 if a

post-exception fault occurs.

Table 10-26. Exception Processing Times
Exception Execution Time

CPU Reset 45(2/0)1

Bus Error 19(1/4)
Address Error 19(1/3)
Illegal Instruction 19(1/2)

Integer Divide By Zero 20(1/3)2

CHK Instruction 20(1/3)2

TRAPV, TRAPcc Instructions 19(1/3)
Privilege Violation 19(1/2)
Trace 19(1/3)
Line A Emulator 19(1/2)
Line F Emulator 19(1/2)
Unimplemented EA 19(1/2)
Unimplemented Integer 19(1/2)
Format Error 23(1/2)
Nonsupported FP 19(1/3)

Interrupt3 23(1/2)

TRAP Instructions 19(1/2)
FP Branch on Unordered Condition 21(1/3)

FP Inexact Result 19(1/3)4

FP Divide By Zero 19(1/3)4

FP Underflow 19(1/3)4

FP Operand Error 19(1/3)4

FP Overflow 19(1/3)4

FP Signaling NAN 19(1/3) 4

FP Unimplemented Data Type 19(1/3)

MOTOROLA

M68060 USER’S MANUAL

11-1

SECTION 11
APPLICATIONS INFORMATION

This section describes various applications topics relating to the MC68060.

11.1 GUIDELINES FOR PORTING SOFTWARE TO THE MC68060

The following paragraphs describe the issues involved in using the MC68060 in an existing
MC68040 system from a software perspective. Although this section focuses on the
MC68060, many of these items apply also to the MC68EC060 and MC68LC060.

11.1.1 User Code

The MC68060 is 100% user-mode compatible with the MC68040 when utilized with the
MC68060 software package (M68060SP) provided by Motorola. The M68060SP is available
free of charge.

Appendix C MC68060 Software Package

 discusses the procedure for port-
ing the M68060SP.

All user-mode instructions are handled in the M68060SP, except the “TRAPF #immediate”
instruction, in which the immediate value is a valid branch opcode. Use of this construct
results in a branch prediction error and an access error exception is taken. This exception
is indicated by the BPE bit in the fault status long word (FSLW). Although this error is recov-
erable in the access error handler by flushing the branch cache, performance is compro-
mised.

In addition, the CAS (misaligned operands) and CAS2 emulation may need special handling
in the access error handler. Furthermore, CAS and CAS2 emulation must not be interrupted
by level 7 interrupts to prevent data corruption. Refer to

Appendix C MC68060 Software
Package

 for additional information.

11.1.2 Supervisor Code

Unlike the MC68040, the MC68060 implements a single supervisor stack. System software
that requires the use of two supervisor stacks can still do so, but with some software over-
head.

The MC68060 aids in distinguishing between an interrupt exception and a non-interrupt
exception by implementing the M-bit in the status register (SR). The MC68060 does not
internally use the M-bit, but it is provided for system software. The MC68060 clears the M-
bit of the SR when an interrupt exception is taken. Otherwise, it is up to the system software
to set the M-bit and to examine it as needed. Also note, when the MC68060 takes an excep-
tion, a minimum of one instruction is always processed before a pending interrupt is taken.

Applications Information

11-2

M68060 USER’S MANUAL

MOTOROLA

System software can take advantage of the conditions described above to emulate an
MC68040-like interrupt handler implementation. The SR stored in the interrupt exception
stack frame will contain the previous value of the M-bit. Since the first instruction of the inter-
rupt handler is always executed prior to evaluating interrupts, a MOVE 0x2700,SR instruc-
tion can be used to disable interrupts immediately and permit the interrupt handler to move
the interrupt exception stack frame from the supervisor-stack-pointer (SSP)-addressed area
to an interrupt-stack-pointer (ISP)-addressed area.

11.1.2.1 INITIALIZATION CODE (RESET EXCEPTION HANDLER).

When the processor
emerges from reset, it enters the reset exception handler. Items that may be encountered in
the reset exception handler are discussed in the following paragraphs.

11.1.2.1.1 Processor Configuration Register (PCR) (MOVEC of PCR).

Immediately
after reset, the MC68060 has the superscalar dispatch disabled and the floating-point unit
(FPU) enabled. The PCR may be used to set up the proper environment. The PCR is
accessed via the MOVEC instruction. Since this is a new MOVEC register on the MC68060,
existing MC68040 code does not reference the PCR.

To properly emulate the MC68EC040 or an MC68LC040 using an MC68060, the DFP bit in
the PCR must be set to disable the FPU. Disabling the FPU causes the MC68060 to create
an MC68LC040- or MC68EC040-compatible stack frame when a floating-point instruction is
encountered. With some modification, floating-point emulation software written for the
MC68LC040 and MC68EC040 that use the stack of type 4 may then be used. However,
keep in mind that there are differences in the floating-point instruction set. Also note that the
stacked effective address field is different when dealing with extended precision operands
using the post-increment or pre-decrement addressing modes.

The ESS bit in the PCR must be set to enable superscalar dispatch. Doing so will greatly
increase system performance.

The PCR also provides the EDEBUG bit to enable the new MC68060 debug feature. This
bit is not directly related to porting existing MC68040 software and should be disabled during
normal operation.The EDEBUG bit is for use in debugging hardware and software problems
with the aid of a logic analyzer. For more information, refer to

Section 9 IEEE 1149.1 Test
(JTAG) and Debug Pipe Control Modes

.

11.1.2.1.2 Default Transparent Translation Register (MOVEC of TCR).

The MC68060
provides a method of defining the cache mode, UPAx, and write protection if the logical
address accessed is not mapped by paged memory management and TTRs. For this case,
a transparent translation is done, and the cache mode, UPAx, write protection from the
translation control register (TCR) (accessed via the MOVEC instruction) is used.

The MC68060 default translation after reset is similar to that of the MC68040 (e.g., cache
mode=cacheable write-through, UPA=00, write protection off). Since existing MC68040
code probably writes zeroes to the new TCR bits, no additional work is expected for placing
the MC68060 default translation to be MC68040-like.

11.1.2.1.3 MC68060 Software Package (M68060SP).

The M68060SP replaces the instal-
lation of the MC68040 floating-point software package (M68040FPSP). Software that was

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-3

used to install the M68040FPSP must be removed and then replaced with software that
installs the M68060SP. Be aware that the M68060SP and the M68040FPSP share many
vector table entries and that the M68040FPSP does not work properly with the MC68060.

The M68060SP must be installed before any of the new unimplemented instructions and
unimplemented effective addresses are encountered.

11.1.2.1.4 Cache Control Register (CACR) (MOVEC of CACR).

As with the MC68040,
the MC68060 requires that the instruction and data caches be invalidated prior to their use.
In addition to this, the MC68060 requires that the branch cache be invalidated prior to its
use. The branch cache is cleared via the MOVEC to CACR instruction.

Care must be taken whenever the CACR is referenced in existing MC68040 code. Since the
MC68040 does not implement the new CACR bits, and existing MC68040 code may refer-
ence the CACR, the new CACR bits are likely to be cleared by MC68040-code CACR writes.
If this occurs, the branch cache is retained and the four-deep store buffer is disabled.
Although this would not adversely affect proper operation, it significantly degrades
MC68060 performance.

11.1.2.1.5 Resource Checking (Access Error Handler).

Many systems use the access
error handler at some time after reset to check for the existence of I/O devices or memory.
Existing MC68040 systems already have to deal with the restart nature of the MC68040.
However, the stack frame generated by the MC68040 is significantly different from that of
the MC68060. Resource checking software that relies on the stack size information must be
modified appropriately.

When upgrading to the MC68060 from an existing MC68030 or MC68020 system, porting
resource checking software may be problematic because the continuation architecture
(MC68030 and MC68020) allows an operand read bus error to be ignored and not re-run
the offending instruction, but a restart machine such as the MC68060 has no provisions for
doing so. A possible work-around for this is to either increment the stacked program counter
(PC) prior to the RTE, or to use a NOP-RESOURCE_WRITE-NOP in place of the
RESOURCE_READ, in imprecise exception mode, to poke at the possible resource area.

11.1.2.2 VIRTUAL MEMORY SOFTWARE.

The MC68060 fully supports virtual memory.
There are some slight changes that need to be made to support the MC68060 virtual mem-
ory. The following paragraphs outline issues that need to be addressed in relation to virtual
memory support.

11.1.2.2.1 Translation Control Register (MOVEC of TCR) .

The TCR is accessed via the
MOVEC instruction, as with the MC68040. However, the TCR has newly defined bits. Since
these new bits need to be cleared in normal operating mode anyway, no additional work is
needed.

When the MC68040 emerges from reset, the default translation is cacheable write-through,
UPAx=0, and no write protect. The MC68060 provides a means for modifying these default
translation parameters. There are new bits in the MC68060 TCR to define the default trans-
lation.

Applications Information

11-4

M68060 USER’S MANUAL

MOTOROLA

Existing MC68040 TCR writes probably write these new bits as zeroes, which would mean
that the MC68060’s default translation is identical to that of the MC68040. If these bits in the
TCR are non-zero, it is possible that somewhere in the existing MC68040 code, a TCR
access would overwrite the desired bits to zero, hence returning the MC68040 default trans-
lation to be MC68040-like. If this is not desired, accesses to the TCR must be changed to
set the appropriate bits.

11.1.2.2.2 Descriptors in Cacheable Copyback Pages Prohibited.

The MC68040
allows the use of cacheable copyback pages to store page descriptors. The reason is that
when a table search is initiated, the MC68040 examines the data cache for valid descriptors.
Although the MC68040 does not allocate table descriptors into the cache on a miss, the sys-
tem software that is used to set up the descriptors may allocate descriptors into the data
cache.

Since the MC68060 totally ignores the data cache when performing a table search, a
descriptor that resides in a cache entry that is marked valid and dirty would cause incorrect
data to be used. The system software must be modified to make the pages that contain page
and table descriptors to be noncachable or cacheable writethrough to ensure coherency to
avoid this situation.

11.1.2.2.3 Page and Descriptor Faults (Access Error Handler).

The access error han-
dler is entered when a table search results in an invalid table descriptor, invalid page
descriptor, supervisor protection violation, write protection violation, or a bus error. In an
MC68040 access error handler, table-search-related causes require the use of the PTEST
instruction to determine the cause of the fault.

Given the many differences in the access error handling of the MC68060 and MC68040, it
is recommended that the entire handler be replaced. Refer to

Section 8 Exception Pro-
cessing

 for information on recovering from an access error.

Note that on unsuccessful table searches, the processor does not allocate an invalid
address translation cache (ATC) entry; therefore, a PFLUSH is not necessary to remove the
invalid ATC entry.

When an MC68040 reports a write page fault, the stack frame contains the stacked PC of
an instruction subsequent to the one that caused the write fault. On the MC68060, the
stacked PC of the stack frame points to the instruction that caused the write page fault. This
is a consequence of not having write-back slots on the stack frame.

11.1.2.2.4 PTEST, MOVEC of MMUSR, and PLPA.

The PTEST instruction is unimple-
mented and an illegal instruction exception is encountered when this instruction is
attempted. Existing MC68040 software must remove all references to the PTEST instruc-
tion. It is likely that this instruction resides in the access error handler when recovering from
a page or descriptor fault. The PTEST instruction is not emulated in the M68060SP and
must therefore be avoided.

The memory management unit status register (MMUSR) of the MC68040 is not imple-
mented in the MC68060. If a MOVEC instruction is attempted to access this register, an ille-

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-5

gal instruction exception is taken. This instruction must be removed from existing MC68040
software since it is not emulated in the M68060SP.

The MC68060 compensates for the lack of these instructions by providing extensive infor-
mation in the FSLW in the access error stack frame. In addition, a new instruction, PLPA, is
added to translate a logical to physical address by initiating a table search. This instruction
may be used to provide most of the function of the PTEST instruction. As with the PTEST
instruction, PLPA loads the valid page descriptor into the ATC when the table search it ini-
tiates executes successfully.

If it is absolutely necessary to emulate the PTEST and the MOVEC of the MMUSR, Motorola
provides assembly source code for these instructions in the bulletin board (see

C.5.4
AESOP Electronic Bulletin Board

for bulletin board details). The source code is provided
as-is and is only a rough approximation of these instructions and may need customizing. No
documentation is provided other than what is available in the source code.

11.1.2.3 CONTEXT SWITCH INTERRUPT HANDLERS.

Context switch interrupt handlers
that use the same virtual address to map into multiple physical address locations must flush
the branch cache via the MOVEC to CACR instruction. The reason for this is that the branch
cache is a logical cache and not a physical cache. For systems that transparently translate
logical addresses to physical addresses, the branch cache need not be flushed.

In multiprocessor systems, care must be taken so that saved contexts generated by an
MC68040-based node not be restored into an MC68060-based node, or vice-versa. The
floating-point frames are different between an MC68040 and MC68060; incorrect swapping
of contexts may cause format errors to be incurred.

If the context switch interrupt handler uses a nonmaskable interrupt (level 7), CAS (mis-
aligned operands) or CAS2 instruction emulation may result in data corruption. There is no
good workaround except by either avoid using the level 7 interrupt for context switching, or
by using external hardware to block the interrupt lines from reporting an interrupt whenever
LOCK is asserted.

11.1.2.4 TRACE HANDLERS.

The MC68060 does not implement “trace on change of flow”.
Debug software that rely on this feature must take this into consideration. When a change
of flow trace encoding is encountered, the processor does not trace.

11.1.2.5 I/O DEVICE DRIVER SOFTWARE.

The MC68060, like the MC68040, has a
restart model, and device drivers that have been written for the MC68040 probably do not
need any modification in device driver software when porting to the MC68060; however
there are a few issues to consider.

The cache mode (CM) encoding on the TTRs and the page descriptors is different between
the MC68060 and MC68040. The MC68060 executes reads and writes in strict program
order, and therefore, whenever the CM bits indicate either a noncachable precise or non-
cachable imprecise, the accesses are serialized. Areas that are marked cache-inhibited
serialized for I/O devices should not be affected adversely by the cache mode change. Oth-
erwise, the TTR format and the page descriptor formats have not changed for the MC68060.

Applications Information

11-6

M68060 USER’S MANUAL

MOTOROLA

I/O devices that normally incur bus errors need to be aware that the MC68060 has an impre-
cise exception mode that may need to be addressed.

11.1.3 Precise Vs. Imprecise Exception Mode

Systems that do not rely on the bus error (TEA asserted) in normal operation are not
affected much by the differences between the precise and imprecise exception mode.

The MC68060 provides the precise and imprecise exception modes to allow system soft-
ware to assign the severity of bus errors (TEA asserted) on write cycles. In general, bus
errors on writes are recoverable in the precise exception mode, but not in the imprecise
exception mode. The MC68040 provides a precise exception mode, but at the expense of
performance and a large access error stack frame.

For systems that require precise bus error write cycles in a normal operating environment,
it is possible to disable the store buffer via the MOVEC of CACR instruction. This impacts
performance significantly, and must be carefully considered before doing so. Also, note that
even with the store buffers disabled, a bus error caused by a push buffer write is still nonre-
coverable.

11.1.4 Other Considerations

The following is a list of other concerns that are unlikely to affect system software, but are
included for completeness.

1. Some of the exception priorities for multiple exceptions on the MC68060 are different
than the MC68040 (see

Section 8 Exception Processing

 for priority groupings). This
shouldn’t affect the way interrupts are handled, an interrupt is the lowest priority excep-
tion on both microprocessors.

2. Unlike the MC68040, the MC68060 provides only one snoop control signal, the snoop
invalidate signal (SNOOP). System software may need to CPUSH the cache before
DMA activity is initiated. Alternatively, the cache mode may be changed to write-
through cacheable for all shared memory areas.

11.2 USING AN MC68060 IN AN EXISTING MC68040 SYSTEM

This document outlines the issues involved in using an MC68060 in an existing MC68040
socket. It is assumed that for these applications, the MC68060 is made to operate in the half-
speed bus mode.

11.2.1 Power Considerations

The MC68060 operates at a supply voltage of 3.3 V, not 5 V. The MC68060 interfaces glue-
lessly to transistor-transistor logic (TTL) levels.The following paragraphs discuss the two
main issues of the lower, 3.3-V supply voltage.

11.2.1.1 DC TO DC VOLTAGE CONVERSION.

The first issue involves the DC-to-DC volt-
age conversion for the MC68060 V

dd

 pins. The following paragraphs discuss two solutions
to this problem.

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-7

11.2.1.1.1 Linear Voltage Regulator Solution.

This solution uses a linear voltage regula-
tor to supply 2 A at 3.3 V. This solution is inexpensive; however, conversion efficiency of only
up to 65% can be achieved. Figure 11-1 shows a solution using power BJTs. This solution
would be used primarily for applications that are cost sensitive, but not power sensitive. The
suggested linear solution meets the 3.3 V

±

 5% MC68060 specifications.

11.2.1.1.2 Switching Regulator Solution.

This solution uses switching regulators. Linear
Technologies offers two parts, the LTC1147 and LTC1148 and MAXIM offers the MAX767.
The main difference among these parts is a trade-off between price, part count, and conver-
sion efficiency.

The LTC1147 solution is less expensive and has one fewer MOSFET than the LTC1148
solution. The LTC1148 is less than $5 in 1000 piece quantities, and the LTC1147 is less
than $4 in 1000 piece quantities. In either of these solutions there are around 15 discrete

Figure 11-1. Linear Voltage Regulator Solution

D1

R1

C1

C2

CL
3.3 V
2 A5 V

D2 D3 D4

C3

R2

R3

R4

T1

T2

R5

T1 = TIP32
T2 = 2N2222A
D1 = TL431CLP

D2,D3,D4 = IN4001
R1 = 220 Ω

R2,R3,R4 = 1K Ω
R5 = 2.2K Ω
C1 = 47 µF
C2 = 0.01 µF
C3 = 0.033 µF
CL = 47 µF

Applications Information

11-8

M68060 USER’S MANUAL

MOTOROLA

devices that are needed externally in addition to the Linear Technologies devices. The con-
version efficiency is 89% and 93% for the LTC1147 and LTC1148, respectively. Figure 11-
2 and Figure 11-3 show the solutions provided by using the switching regulators. The
MAX767 provides over 90% conversion efficiency at less than $4 in 1000 piece quantities.
The MAX767 solution also requires discreet components off-chip. The MAX767 uses a
smaller inductor than the LTC1148 solution. Figure 11-4 shows a MAXIM voltage regulator
solutions. All the suggested solutions meets 3.3 V

±

 5% MC68060 specifications.

Figure 11-2. LTC1147 Voltage Regulator Solution

P-DRIVE

SENSE +

SENSE –

GND

VIN

SHUTDOWN

CT

ITH LTC1147-3.3

T1

D1

R1C1

C4

CTCC

RC

C2 C3

CL

L1

3.3 V
2 A

5 V

D2

D3

D4

T1 = Si9430DY
L1 = 50 µH Coiltronics CTX50-2-MP
D1 = MBRD330

D2,D3,D4 = IN4001
R1 = 0.05 Ω IRC LR2512-01-R050-G
RC = 1K Ω
C1 = 1000 pF
C2 = 100 µF, 20V
C3 = 1 µF
C4 = 100 nF
CC = 3300 pF
CT = 470 pF
CL = 220 µF, 10V x2

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-9

Figure 11-3. LTC1148 Voltage Regulator Solution

P-DRIVE

N-DRIVE

SENSE +

SENSE –

SGND PGND

VIN

SHUTDOWN

CT

ITH LTC1148-3.3

T1

T2
D1

R1C1

C4

CTCC

RC

C2 C3

CL

L1

3.3 V
2 A

5 V

D2

D3

D4

T1 = Si9430DY
T2 = Si9410DY
L1 = 50 µH Coiltronics CTX50-2-MP
D1 = MBRS140T3

D2,D3,D4 = IN4001
R1 = 0.05 Ω IRC LR2512-01-R050-G
RC = 1K Ω
C1 = 1000 pF
C2 = 100 µF, 20V
C3 = 1 µF
C4 = 100 nF
CC = 3300 pF
CT = 470 pF
CL = 220µF 10V X 2 AVX

Applications Information

11-10

M68060 USER’S MANUAL

MOTOROLA

Figure 11-4. MAX767 Voltage Regulator Solution

DH

DL

CS

FB

PGND

ON

REF

SS MAX767

N1

N2

D1

R1

C6

C1

C4

C2

L1

3.3 V
3A

D5

D3

D4

SYNC

C5

5 V

R2

GND

LX

C3

D2

BSTVcc

R1 = .02 ΩIRC LR2010-01-R020
R2 = 10 Ω

N1,N2 = Motorola MMDF3N03HD
D1 = Central Semi. CMPSM-3
D2 = Motorola MBRS120T3
C1 = 2 x 47µF, 20V AVX TPSD476K020R
C2 = 2 x 150µF Sprague

595D157X0010D7T
C3 = 0.1µF
C4 = 4.7µF

D3,D4,D5 = IN4001
L1 = 5.0 µH Sumida CDR125

DRG# 4722-JPS-001

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-11

11.2.1.2 INPUT SIGNALS DURING POWER-UP REQUIREMENT.

The second issue
involves the requirement that during power-up, input signals to the MC68060 not exceed V

dd

by more than 4 V. This is achieved by ensuring that the 5-V supply not exceed the 3.3-V
supply by more than 4 V. In any of the previously discussed DC-to-DC conversion solutions,
it is possible to add three diodes in series from the 5-V supply to the 3.3-V plane. During
power-up, the diodes forward bias and thus provide a current path between the 5-V source
and the 3.3-V plane. This solution provides no more than (0.7 * 3) = 2.1 V drop between the
5-V input and the 3.3-V plane. When the voltage regulator stabilizes, the difference of (5 –
3.3) = 1.7 V is insufficient to forward bias the three diodes, hence not dissipating any energy.
Both Motorola and Linear Technologies have indicated that the three diode shunt does not
adversely affect operation.

Figure 11-1, Figure 11-2, and Figure 11-3 include the shunt diodes as proposed to keep the
5-V supply from drifting more than 2.5 V from the 3.3-V plane.

11.2.2 Output Hold Time Differences

On the MC68040, outputs are driven off the falling edge of PCLK. Since the MC68060 drives
everything off the rising edge of CLK, a hold time differential exists and is discussed in the
following paragraphs.

The data write hold time specification may be met by using the extra data hold time mode
to extend the hold time by a full CLK cycle in which CLKEN is asserted. However, using this
mode requires that the IPLx signals be modified to invoke configuration of this mode at reset.

Decreasing the address hold time affects primarily systems containing slow peripherals. An
example of this problem can be shown on a system that does a read of the MC68681 duart
peripheral. If the system design is implemented such that on a read of the MC68681, the
address hold time relative to chip select specification is violated, it is possible to internally
confuse the MC68681 and cause it to enter its test mode. The MC68681 is one of many
devices that require addresses to be stable as long as its chip select is asserted. Figure 11-
5 and Figure 11-6 show the differences between the hold time for the MC68060 the
MC68040.

Figure 11-5. MC68040 Address Hold Time

PCLK

BCLK

TA

TS

A31–A0

CSx

Applications Information

11-12

M68060 USER’S MANUAL

MOTOROLA

A possible solution addressing both the address and write data hold time issue for slow
peripherals is to force at least one dead state between TA negation and TS assertion of the
next bus cycle. This can be achieved by arbitrating the bus away from the processor on any
long-word, word, or byte access. This forces the processor to release the bus, not begin a
new bus cycle, three-state the address bus, and three-state the data bus on write cycles.
Since the address and data buses (on writes) are three-stated and not directly driven by the
MC68060, output hold time in this solution relies on the capacitive loading of the bus to
achieve the extended hold time.

Once the dead state has been added, the bus is returned to the processor and normal oper-
ation continues. This suggested solution does not affect line (burst) accesses, which are typ-
ically cacheable and contain no I/O devices. For this reason, performance is not
compromised. In this implementation, the only signal that may be affected is BG. In this solu-
tion, BG is intercepted and combined with the dead-state inserting logic. This combined sig-
nal is then fed into the MC68060’s BG. Figure 11-7 shows the effect of BG.

Figure 11-6. MC68060 Address Hold Time

Figure 11-7. MC68060 Address Hold Time Fix

CLK

CLKEN

TA

TS

A31–A0

CS

1/2-SPEED BUS CLOCK

CLK

CLKEN

TA

TS

A[31:0]

CSX

BG

1/2-SPEED BUS CLOCK

Applications Information

MOTOROLA

M68060 USER’S MANUAL

11-13

11.2.3 Bus Arbitration

The MC68060 does not drive the bus in implicit bus ownership cases where it has not yet
requested the bus. Although this feature is not known to be necessary for MC68040-based
designs, this is a difference. This MC68060 action does not pose any known problems to
existing MC68040 designs.

The BGR signal may be pulled low or grounded to cause the MC68060 to relinquish the bus
on locked sequences to behave like the MC68040. To use the BB protocol, BTT should be
pulled up through a resistor (approximate value of 5 K

Ω

) to V

dd

. Since the MC68060 drives
BTT low at times, no other signals should be connected to this pullup resistor.

See 11.2.2 Output Hold Time Differences, as bus arbitration may be an issue for output
hold time requirements.

11.2.4 Snooping
The MC68060 does not support snoop intervention during bus cycles as the MC68040 does.
The MC68060 implements only the snoop invalidate protocol. The MC68060 only has one
SNOOP signal instead of the two-bit encoding of the SCx signals on the MC68040. Also, the
MC68060 does not implement the MI pin; the MI signal must be pulled up if it is used by the
system.

If an MC68040 system only utilizes invalidate line snoop functionality, the SCx signal control
could be mapped to assert SNOOP to the MC68060. Other MC68040 snoop implementa-
tions must also implement software changes to flush cache or address map to write-through
mode shared system memory areas.

11.2.5 Special Modes
TheMC68040 and MC68060 IPLx signals have different functionality when coming out of
reset. On the MC68040, the IPLx signals select the buffer size. The MC68060 has only one
buffer size, and therefore the MC68060 encodes different functionality when it samples the
IPLx signals when coming out of reset.

The MC68060 has new special modes that are selectable via the IPLx signals during reset.
These MC68060 special modes are: acknowledge termination ignore state capability,
acknowledge termination mode, and extra write hold mode. To prevent these modes from
being enabled, the IPLx signals must be negated (pulled high) during reset.

The MC68060 does not implement the DLE functionality of the MC68040. Applications that
use the DLE mode are not upgradable without using external logic.The MC68060 does not
implement the muxed bus functionality of the MC68040. Applications that use muxed bus
mode are not upgradable without using external logic.

Applications Information

11-14 M68060 USER’S MANUAL MOTOROLA

11.2.6 Clocking
For systems which have PCLK-to-BCLK skew controlled by a phase-locked-loop (PLL)
clock generator such as the 88915 or 88916, it is possible to connect the PCLK of the
MC68040 to the MC68060 CLK input as shown in Figure 11-8. Otherwise, the MC68060
CLK must be generated by an 88915 PLL as shown in Figure 11-9.

Appropriate generation of the CLKEN signal to enable 1/2-speed operation is easily
achieved by delaying the MC68040 BCLK by 5 ns before feeding it into the CLKEN input of
the MC68060.

Be aware that a clock skew exists between CLK and BCLK. The MC88915 can only control
the skew to within 1 ns. Figure 11-10 shows the relationship between BCLK and CLKEN.

11.2.7 PSTx Encoding
PSTx signal encoding is different between the MC68060 and MC68040. This should not
affect normal applications because PSTx signals are not used for bus control logic.

Figure 11-8. Simple CLK Generation

Figure 11-9. Generic CLK Generation

BCLK
CLKEN

CLK

MC68060

MC68040
EXISTING

SYSTEM

VIRTUAL MC68040

5 NS

PCLK

BCLK

CLKENQ0

2XQ

SYNC0

CLK

MC68060
MC68040
EXISTING

SYSTEM

FEEDBACK

VIRTUAL MC68040

5 ns

Applications Information

MOTOROLA M68060 USER’S MANUAL 11-15

11.2.8 Miscellaneous Pullup Resistors
Pullup CLA to prevent the A3 and A2 address lines from cycling on burst accesses. Pullup
TRA when MC68040 acknowledge termination mode is being used.

11.3 EXAMPLE DRAM ACCESS
When interfacing the MC68060 with dynamic random access memory (DRAM), it is neces-
sary to determine how many clocks per bus cycle will be needed for a line burst transfer.
The number of clocks per bus cycle is dependent upon the processor clock frequency and
the DRAM access times. In this example, the DRAM RAS access time, CAS access time,
RAS precharge time, and CAS precharge time are used to determine the number of clocks
per bus cycle of a DRAM access. Figure 11-11 shows two successive line burst transfers.
The CLA signal is used to cycle A3 and A2 a clock before the DRAM subsystem asserts TA.

Figure 11-10. MC68040 BCLK to CLKEN Relationship

Figure 11-11. DRAM Timing Analysis

CLK

CLKEN

BCLK

CLK

TS

TA

CLA

A3–A2

DATA
(WRITE CYCLE)

DATA
 (READ CYCLE)

RAS

CAS

DRAM ADDRESS

W0 W1 W2 W3 W3W2W1W0

ROW C0 C1 C2 C3 C3C2C1C0ROW

Applications Information

11-16 M68060 USER’S MANUAL MOTOROLA

The RAS access time determines the number of wait states needed for the first memory
access. The RAS access time is the time it takes between RAS being asserted and valid
data coming out of the DRAM. The total available time for the first access is the time
between the TS assertion and the first TA assertion. This time is equal to the clock period
multiplied by the number of primary wait states. In addition to the RAS access time, the
MC68060 input setup time and the TS to RAS propagation delay must also occur between
the TS and TA signals. The following equation represents the number of wait states required
for the primary memory access:

Wait States = (RAS propagation delay + RAS access time + Input Setup Time) / clock period

The following example assumes a RAS access time of 65 ns, an input setup time of 7 ns,
and a RAS propagation delay of 5 ns. The processor is running at 50 MHz, so the clock
period is 20 ns. The number of wait states required is (5ns + 65ns + 7ns) / 20 ns = 3.85 wait
states. Therefore 4 wait states are required.

The CAS access time and the CAS precharge time determines the number of secondary
wait states required. The CAS precharge time is the time that the CAS signal must remain
negated between assertions. The total time available for the secondary access is the time
between the first and second TA signals. This time is equal to the clock period multiplied by
the number of secondary wait states. Since CAS must toggle during this time, two CAS prop-
agation delays, the CAS precharge time, the CAS access time, and the MC68060 input
setup time must occur during this time. Typically, the CAS precharge time is less than a
clock period. Therefore an entire clock period is used to toggle CAS. This leaves one CAS
propagation delay time, a CAS access time, and the input setup time. This time must be less
than the number of wait states less one multiplied by the clock period. The following equa-
tion represents the number of wait states required for the secondary memory accesses:

Wait States = [(CAS propagation delay + CAS access time + input setup time) / clock period] + 1

The following example assumes a CAS access time of 20 ns, input setup time of 7 ns, and
a CAS propagation delay of 5 ns. The clock period is 20 ns. The number of wait states
required is [(5ns + 20ns + 7ns) / 20ns] + 1 = 2.6. Therefore three wait states are required.
This first line burst transfer is a 5:3:3:3 transfer. For the primary transfer, an extra clock is
added for the TS signal assertion.

In this example, a second line burst transfer occurs immediately following the first transfer.
If the same DRAM chips are being accessed, RAS precharge time must be considered. RAS
precharge time is the time that the RAS signal must remain high between assertions. In the
example, RAS precharge time is 65 ns. Two additional wait states need to be added after
the second TS to assure that the RAS precharge time is satisfied. Therefore, the second line
burst transfer is a 7:3:3:3 transfer.

Applications Information

MOTOROLA M68060 USER’S MANUAL 11-17

11.4 THERMAL MANAGEMENT
The maximum case temperature (Tc) in °C can be obtained from the following equation:

Tc = Tj – Pd × θjc
where:

Tc = Maximum Case Temperature
Tj = Maximum Junction Temperature
Pd = Maximum Power Dissipation of the Device
θjc = Thermal Resistance between the Junction of the Die and the Case

In general, the ambient temperature (Ta) in °C is a function of the following equation:

Ta = Tj – Pd × θjc – Pd × θca

The thermal resistance from case to outside ambient (θca) is the only user-dependent
parameter once a buffer output configuration has been determined. Reducing the case to
ambient thermal resistance increases the maximum operating ambient temperature. There-
fore, by utilizing methods such as heat sinks and ambient air cooling to minimize θca, a
higher ambient operating temperature and/or a lower junction temperature can be achieved.
However, an easier approach to thermal evaluation uses the following equations:

Ta = Tj – Pd × θja or
Tj = Ta + Pd × θja

where:
θja = Thermal Resistance from the Junction to the Ambient (θjc + θca)

The total thermal resistance for a package (θja) is a combination of its two components, θjc
and θca. These components represent the barrier to heat flow from the semiconductor junc-
tion to the package case surface (θjc) and θca. Although θjc is package related and the user
cannot influence it, θca is user dependent. Good thermal management by the user, such as
heat sink and airflow, can significantly reduce θca achieving either a lower semiconductor
junction temperature or a higher ambient operating temperature. The following tables can
be used to aid in deciding how much of air flow and heat sink for proper thermal manage-
ment.

Data for the “no heat sink” cases are derived from MC68040 PGA package characteristics.
The MC68060 PGA package has similar thermal characteristics as the MC68060 PGA
Package. The heat sink used for the “with heat sink” cases are based on the Thermalloy
2333B heat sink. Since exact power dissipation figures for the MC68060 are unavailable at
the time of printing, linear interpolation of these tables can be used to provide rough esti-
mates. Table 11-1, Table 11-2, and Table 11-3 list the thermal data.

Applications Information

11-18 M68060 USER’S MANUAL MOTOROLA

Table 11-1. With Heat Sink, No Air Flow
Air Flow
Velocity

PD TJ θJC MAX TA – TC TC TA

0 LFM 2.8 W 110 °C 2.5 °C/W 35 °C 103 °C 68 °C
0 LFM 3.1 W 110 °C 2.5 °C/W 38 °C 102 °C 64 °C
0 LFM 3.5 W 110 °C 2.5 °C/W 40 °C 101 °C 61 °C
0 LFM 3.8 W 110 °C 2.5 °C/W 43 °C 100 °C 57 °C
0 LFM 4.2 W 110 °C 2.5 °C/W 45 °C 100 °C 54 °C
0 LFM 4.5 W 110 °C 2.5 °C/W 48 °C 99 °C 51 °C
0 LFM 4.9 W 110 °C 2.5 °C/W 50 °C 98 °C 48 °C
0 LFM 5.2 W 110 °C 2.5 °C/W 53 °C 97 °C 44 °C

Table 11-2. With Heat Sink, with Air Flow
Air Flow
Velocity

PD TJ θJC MAX θCA θJA TC TA

200 LFM 2.8 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 103 °C 91 °C
200 LFM 3.1 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 102 °C 89 °C
200 LFM 3.5 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 101 °C 87 °C
200 LFM 3.8 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 100 °C 84 °C
200 LFM 4.2 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 100 °C 82 °C
200 LFM 4.5 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 99 °C 80 °C
200 LFM 4.9 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 98 °C 77 °C
200 LFM 5.2 W 110 °C 2.5 °C/W 4.25 °C/W 6.75 °C/W 97 °C 75 °C
400 LFM 2.8 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 103 °C 97 °C
400 LFM 3.1 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 102 °C 95 °C
400 LFM 3.5 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 101 °C 94 °C
400 LFM 3.8 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 100 °C 92 °C
400 LFM 4.2 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 100 °C 90 °C
400 LFM 4.5 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 99 °C 89 °C
400 LFM 4.9 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 98 °C 87 °C
400 LFM 5.2 W 110 °C 2.5 °C/W 2.25 °C/W 4.75 °C/W 97 °C 85 °C
600 LFM 2.8 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 103 °C 99 °C
600 LFM 3.1 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 102 °C 98 °C
600 LFM 3.5 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 101 °C 96 °C
600 LFM 3.8 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 100 °C 95 °C
600 LFM 4.2 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 100 °C 93 °C
600 LFM 4.5 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 99 °C 92 °C
600 LFM 4.9 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 98 °C 91 °C
600 LFM 5.2 W 110 °C 2.5 °C/W 1.50 °C/W 4.00 °C/W 97 °C 89 °C

Applications Information

MOTOROLA M68060 USER’S MANUAL 11-19

Table 11-3. No Heat Sink
Air Flow
Velocity

PD TJ θJC MAX θCA θJA TC TA

0 LFM 2.8 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 103 °C 48 °C
0 LFM 3.1 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 102 °C 40 °C
0 LFM 3.5 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 101 °C 32 °C
0 LFM 3.8 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 100 °C 24 °C
0 LFM 4.2 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 100 °C 16 °C
0 LFM 4.5 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 99 °C 9 °C
0 LFM 4.9 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 98 °C 1 °C
0 LFM 5.2 W 110 °C 2.5 °C/W 20 °C/W 23 °C/W 97 °C -7 °C

200 LFM 2.8 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 103 °C 68 °C
200 LFM 3.1 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 102 °C 63 °C
200 LFM 3.5 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 101 °C 58 °C
200 LFM 3.8 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 100 °C 53 °C
200 LFM 4.2 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 100 °C 48 °C
200 LFM 4.5 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 99 °C 42 °C
200 LFM 4.9 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 98 °C 37 °C
200 LFM 5.2 W 110 °C 2.5 °C/W 13 °C/W 16 °C/W 97 °C 32 °C
400 LFM 2.8 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 103 °C 77 °C
400 LFM 3.1 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 102 °C 73 °C
400 LFM 3.5 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 101 °C 68 °C
400 LFM 3.8 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 100 °C 64 °C
400 LFM 4.2 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 100 °C 60 °C
400 LFM 4.5 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 99 °C 56 °C
400 LFM 4.9 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 98 °C 52 °C
400 LFM 5.2 W 110 °C 2.5 °C/W 10 °C/W 13 °C/W 97 °C 48 °C
600 LFM 2.8 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 103 °C 81 °C
600 LFM 3.1 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 102 °C 77 °C
600 LFM 3.5 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 101 °C 74 °C
600 LFM 3.8 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 100 °C 70 °C
600 LFM 4.2 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 100 °C 66 °C
600 LFM 4.5 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 99 °C 63 °C
600 LFM 4.9 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 98 °C 59 °C
600 LFM 5.2 W 110 °C 2.5 °C/W 8 °C/W 11 °C/W 97 °C 55 °C

Applications Information

11-20 M68060 USER’S MANUAL MOTOROLA

11.5 SUPPORT DEVICES
Table 11-4 outlines miscellaneous devices available that can be used with the MC68060.

Table 11-4. Support Devices and Products
Device Description Literature

MC88926 3.3 Volt Clock Driver with PLL BR1333/D
MC88915/916 Clock Drivers with PLL BR1333/D
MCM62940 SRAM with Burst Capability DL113
MC68150 Dynamic Bus Sizing for the MC68040 MC68150/D

MC68360 Peripherals, DRAM controller when used in the com-
panion mode MC68360/D

Diodes/Transistors Linear Devices DL128
SRAMS Static Memory DL113
DRAMS Dynamic Memory DL113

NM27P6841 EPROM with Burst Capability Contact National Semiconductor
MAX767 Switching Voltage Regulator Contact Maxim Integrated Products

LTC1147/1148 Switching Voltage Regulator Contact Linear Technologies
Bus Adapter MC68060 to MC68040 PGA to PGA Bus Adapter Contact Interconnect Systems Inc.

MOTOROLA

M68060 USER’S MANUAL

12-1

SECTION 12
ELECTRICAL AND THERMAL CHARACTERISTICS

The following paragraphs provide information on the maximum rating and thermal charac-
teristics for the MC68060. This section is subject to change. For the most recent specifica-
tions, contact the AESOP electronic bulletin board at (800)843-3451 or (512)891-3650 (refer
to

C.5.4 AESOP Electronic Bulletin Board

 for connection information).

12.1 MAXIMUM RATINGS

12.2 THERMAL CHARACTERISTICS

12.3 POWER DISSIPATION

Characteristic Symbol Value Unit

Supply Voltage V

CC

–0.3 to 4.0 V

Input Voltage V

in

–0.5 to V

CC

+4 V

Maximum Operating Junction Temperature T

J

110

°

C

Minimum Operating Ambient Temperature T

A

0

°

C

Storage Temperature Range T

stg

–55 to 150

°

C

Description Symbol Value Unit

Thermal Resistance, Junction to Case—PGA

θ

JC

 2.5

°

C/W

Thermal Resistance, Junction to Case—CQFP

θ

JC

2.0

°

C/W

Conditions
MC68EC060 MC68LC060 MC68060

Unit
40 MHz 50 MHz 66 MHz 50 MHz 66 MHz 50 MHz 66 MHz

V

cc

= 3.465 V, TA = 0

°

C
Normal Mode

3.1 3.5 4.5 3.5 4.5 3.9 4.9 W

V

cc

= 3.465 V, TA = 0

°

C
LPSTOP Mode, CLK Running

300 300 300 300 300 300 300 mW

V

cc

= 3.465 V, TA = 0

°

C
LPSTOP Mode, CLK Stopped Low

30 30 30 30 30 30 30 mW

NOTES:
1. Power dissipation values are preliminary and will likely be replaced with lower values upon further testing.
2. Power dissipation assumes no DC load.
3. Power dissipation figures are not applicable to the debug pipe control mode.

This device contains protective circuitry
against damage due to high static voltages
or electrical fields; however, it is advised
that normal precautions be taken to avoid
application of any voltages higher that
maximum-rated voltages to this high-
impedance circuit. Reliability of operation
is enhanced if unused inputs are tied to an
appropriate logic voltage level (e.g., either
GND or V

CC

).

Electrical and Thermal Characteristics

12-2

M68060 USER’S MANUAL

MOTOROLA

12.4 DC ELECTRICAL SPECIFICATIONS (V

CC

 = 3.3 V

DC

±

 5%)

*Capacitance is periodically sampled and not 100% tested.

Characteristic Symbol Min Max Unit

Input High Voltage VIH 2 5.5 V

Input Low Voltage VIL GND 0.8 V

Undershoot — — 0.8 V
Overshoot — — 0.8 V
Input Leakage Current

AVEC, CLK, TT1, BG, CDIS, MDIS, IPLx, RSTI, SNOOP, CLKEN,
TBI, TCI, TCK, TEA, TA, TRA, BGR, CLA, JTAG

IIL, IIH –50 20

µ

A

Hi-Z (Off-State) Leakage Current
An, BB, CIOUT, Dn, LOCK, LOCKE, TDO,
TIP, SAS, BTT, BSx, TMx, TLNx, TS, TTx, UPAx

ITSI –50 20

µ

A

Signal Low Input Current, VIL = 0.8 V
TMS, TDI, TRST

IIL –1.1 –0.18 mA

Signal High Input Current, VIH = 2.0 V
TMS, TDI, TRST

IIH –0.94 –0.16 mA

Output High Voltage, IOH = 16 mA VOH 2.4 — V

Output Low Voltage, IOL = 16 mA VOL — 0.5 V

Capacitance*, Vin = 0 V, f = 1 MHz, CLK Only Cin — 20 pF

Capacitance*, Vin = 0 V, f = 1 MHz, All Inputs Except CLK Cin — 20 pF

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-3

12.5 CLOCK INPUT SPECIFICATIONS (V

CC

 = 3.3 V

DC

±

 5%)

NOTES:
1.40 MHz available only for the MC68EC060.
2.Specification value at maximum frequency of operation.
3.CLK may be stopped LOW to conserve power.
4.Minimum frequency is periodically sampled and not 100% tested.

Num Characteristic 40 MHz

1

50 MHz 66 MHz
Unit

Min Max Min Max Min Max

Frequency of Operation 0

4

40 0

4

50 0

4

66.67 MHz

1 CLK Cycle Time 25 — 20 — 15 — ns
2 CLK Rise Time — 2 — 2 — 2 ns
3 CLK Fall Time — 2 — 2 — 2 ns
4 CLK Duty Cycle Measured at 1.5 V 45 55 45 55 45 55 %

4a

2

CLK Pulse Width High Measured at 1.5 V 11.25 13.75 9 11 6.75 8.25 ns

4b

2

CLK Pulse Width Low Measured at 1.5 V 11.25 13.75 9 11 6.75 8.25 ns

55 CLKEN Input Setup 8 — 7 — 5 — ns
56 CLKEN Input Hold 2 — 2 — 2 — ns

Figure 12-1. Clock Input Timing Diagram

CLK

CLKEN

BCLK

56

55

56

55

4a 4b

1

V

M

V

L

V

H

2 3

Electrical and Thermal Characteristics

12-4

M68060 USER’S MANUAL

MOTOROLA

12.6 OUTPUT AC TIMING SPECIFICATIONS (V

CC

 = 3.3 V

DC

±

 5%)

NOTES:
1. 40 MHz available only for the MC68EC060.
2. Output timing is measured at the pin. The specifications assume a capacitive load of 50 pF. However, a maximum

load of 130 pF may be used at each pin. Characterization data shows that at 130 pF loads, output propagation delays
are as follows: 40 MHz, Pad at V

CC

, multiply by prop delay by 1.4; 40 MHz, Pad at 5.5, multiply prop delay by 1.6; 50
MHz, Pad at V

CC

, multiply prop delay by 1.4; 50 MHz, Pad at 5.5, multiply prop delay by 1.6; 66 MHz, Pad at V

CC

,
multiply prop delay by 1.3; 66 MHz, pad at 5.5, multiply prop delay by 1.4. Exceeding the 130-pF limit on any pin
might affect long-term reliability and Motorola does not guarantee proper operation.

3. When interfacing the processor to a system designed for 5-volt operation, the “Pad Starts at 5.5” column must be used
when it is possible that the pin is at 5.5 volts when the processor begins to drive. Once a pin is driven by the processor
and is not three-stated, the “Pad Starts at Vcc” column may be used. If the processor is in a system designed for 3.3-
volt operation, use the “Pad Starts at Vcc” column always. This note not applicable to specs 11,11a, 40, and 40a.
Refer to note 5 for these specs.

4. BCLK is not a pin signal name. It is a virtual bus clock derived from the combination of CLK and CLKEN. A BCLK
rising edge coincides with a CLK in which CLKEN is asserted. A BCLK falling edge is insignificant. When a reference
to BCLK is used to describe output timing, it means that the specific output transitions only on rising CLK edges in
which CLKEN is asserted. A timing reference to CLK means that the output may transition off the rising CLK edge,
including those rising edges in which CLKEN is negated.

5. When the processor drives these signals from a three-stated condition, use spec 11a or 40a. Use the “Pad Starts at

Num Characteristic

40 MHz

1

50 MHz 66 MHz

Unit
Pad

Starts

at 5.5 V

3

Pad
Starts

at V

CC

3

Pad
Starts

at 5.5 V

3

Pad
Starts

at V

CC
3

Pad
Starts

at 5.5 V

3

Pad
Starts

at V

CC

3

Min Max Min Max Min Max Min Max Min Max Min Max

11

5

BCLK to Address CIOUT, LOCK,
LOCKE, R/W, SIZx, TLN, TMx,
TTx, UPAx, BSx Valid (signal pre-
driven)

— — 3 17 — — 3 12.6 — — 3 9.9 ns

11a

5

BCLK to Address CIOUT, LOCK,
LOCKE, R/W, SIZx, TLN, TMx,
TTx, UPAx, BSx Valid (Signal from
three-state)

3 19 3 18 3 15.4 3 13.5 3 11.8 3 10.4 ns

12 BCLK or CLK to Output Invalid
(Output Hold) 3 – 3 – 3 – 3 – 3 – 3 – ns

13 BCLK to TS Valid 3 19 3 18 3 14.4 3 12.3 3 10.9 3 9.5 ns
14 BCLK to TIP Valid 3 19 3 18 3 15.4 3 13.5 3 11.8 3 10.4 ns
18 BCLK to Data Out Valid 3 19 3 18 3 13.5 3 13.5 3 10.4 3 10.4 ns

19 BCLK to Data Out Invalid (Output
Hold) 3 – 3 – 3 – 3 – 3 – 3 – ns

21 BCLK to Data-Out High Impedance — 15 — 15 — 12 — 12 — 10 — 10 ns

38
BCLK to Address, CIOUT, LOCK,
LOCKE, R/W, SIZx, TS, TLNx,
TMx, TTx, UPAx, BSx High Imped-
ance

— 15 — 15 — 12 — 12 — 10 — 10 ns

39 CLK to BB, TIP
High Impedance — 15 — 15 — 12 — 12 — 10 — 10 ns

40

5

BCLK to BR, BB Valid (Signal Pre-
driven) — — 3 17 — — 3 12.6 — — 3 9.9 ns

40a

5

BCLK to BB Valid (signal from
three-state) 3 19 3 18 3 15.4 3 13.5 3 11.8 3 10.4 ns

50

6

CLK to IPEND, PSTx, RSTO Valid — — 3 18 — — 3 13.5 — — 3 10.4 ns

57 BCLK to SAS Valid 3 19 3 18 3 15.4 3 13.5 3 11.8 3 10.4 ns
58 BCLK to SAS Invalid (Output Hold) 3 – 3 – 3 – 3 – 3 – 3 – ns
59 BCLK to SAS High Impedance — 15 — 15 — 12 — 12 — 10 — 10 ns
60 BCLK to TS Invalid (Output Hold) 3 – 3 – 3 – 3 – 3 – 3 – ns
61 BCLK to BTT Valid 3 19 3 18 3 15.4 3 13.5 3 11.8 3 10.4 ns
62 BCLK to BTT Invalid (Output Hold) 3 – 3 – 3 – 3 – 3 – 3 – ns
63 BCLK to BTT High Impedance — 15 — 15 — 12 — 12 — 10 — 10 ns

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-5

V

CC

” column or “Pad Starts at 5.5” column as applicable. Once these signals are driven, subsequent transitions are
defined by spec 11 or 40. The “Pad Starts at 5.5” column is deleted from specs 11 and 40 since the processor drives
up to the V

CC

 level only. BR is never three-stated by the processor, and therefore, spec 40a does not apply for BR.
6.)“Pad Starts at 5.5" does not apply since these signals are always driven.

Electrical and Thermal Characteristics

12-6

M68060 USER’S MANUAL

MOTOROLA

12.7 INPUT AC TIMING SPECIFICATIONS (V

CC

 = 3.3 V

DC

±

 5%)

NOTES:
1. BCLK is not a pin signal name. It is a virtual bus clock derived from the combination of CLK and CLKEN. A BCLK

rising edge coincides with a CLK in which CLKEN is asserted. A BCLK falling edge is insignificant. When a reference
to BCLK is used to describe input timing, it means that the specific input is recognized only on rising CLK edges in
which CLKEN is asserted. A timing reference to CLK means that the input is recognized at any rising CLK edge, in-
cluding those edges in which CLKEN is negated.

2. 40 MHz available only for the MC68EC060.

Num Characteristic
40 MHz

2

50 MHz 66 MHz
Unit

Min Max Min Max Min. Max.

15 Data-In Valid to BCLK (Setup) 3 — 2 — 1 — ns
16 BCLK to Data-In Invalid (Hold) 2 — 2 — 2 — ns

17 BCLK to Data-In High Impedance
(Read Followed by Write) — 7 — 7 — 7 ns

22a TA, Valid to BCLK (Setup) 12 — 10 — 7 — ns
22b TEA Valid to BCLK (Setup) 12 — 10 — 7 — ns
22c TCI Valid to BCLK (Setup) 12 — 10 — 7 — ns
22d TBI Valid to BCLK (Setup) 12 — 10 — 7 — ns
22e TRA Valid to BCLK (Setup) 12 — 10 — 7 — ns

23 BCLK to TA, TEA, TCI, TBI, TRA Invalid
(Hold) 2 — 2 — 2 — ns

24 AVEC Valid to BCLK (Setup) 12 — 10 — 7 — ns
25 BCLK to AVEC Invalid (Hold) 2 — 2 — 2 — ns
41a BB Valid to BCLK (Setup) 12 — 10 — 7 — ns
41b BG Valid to BCLK (Setup) 12 — 10 — 7 — ns
41c CDIS, MDIS Valid to BCLK (Setup) 12 — 10 — 7 — ns
41d IPL

≈

 Valid to CLK (Setup) 3 — 2 — 1 — ns
41e BTT Valid to BCLK (Setup) 12 — 10 — 7 — ns
41f BGR Valid to BCLK (Setup) 12 — 10 — 7 — ns
42a BCLK to BB Invalid (Hold) 2 — 2 — 2 — ns
42b BCLK to BG Invalid (Hold) 2 — 2 — 2 — ns
42c BCLK to CDIS, MDIS Invalid (Hold) 2 — 2 — 2 — ns
42d CLK to IPLx Invalid (Hold) 2 — 2 — 2 — ns
42e BCLK to BTT Invalid (Hold) 2 — 2 — 2 — ns
42f BCLK to BGR Invalid (Hold) 2 — 2 — 2 — ns
44a Address Valid to BCLK (Setup) 3 — 2 — 1 — ns
44c TT1 Valid to BCLK (Setup) 12 — 10 — 7 — ns
44e SNOOP Valid to BCLK (Setup) 12 — 10 — 7 — ns
45a BCLK to Address Invalid (Hold) 2 — 2 — 2 — ns
45c BCLK to TT1 Invalid (Hold) 2 — 2 — 2 — ns
45e BCLK to SNOOP Invalid (Hold) 2 — 2 — 2 — ns
46 TS Valid to BCLK (Setup) 12 — 10 — 7 — ns
47 BCLK to TS Invalid (Hold) 2 — 2 — 2 — ns

49 BCLK to BB in High Impedance
(MC68060 Assumes Bus Mastership) — 3 — 3 — 3 ns

51 RSTI Valid to BCLK 3 — 2 — 1 — ns
52 BCLK to RSTI Invalid (hold) 2 — 2 — 2 — ns
53 Mode Select Setup to BCLK (RSTI Asserted) 12 — 10 — 7 — ns

54 BCLK to Mode Selects Invalid (RSTI Assert-
ed) 2 — 2 — 2 — ns

64 CLA Valid to BCLK (Setup) 12 — 10 — 7 — ns
65 BCLK to CLA Invalid (Hold) 2 — 2 — 2 — ns

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-7

Figure 12-2. Drive Levels and Test Points for AC Specifications

B

ADRIVE TO
0.5 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0
V
0.8 V

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE TO
0.5 V

DRIVE TO
2.4 V

CLK

OUTPUTS(1)

INPUTS(2)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This input timing is applicable to all parameters specified relative to the rising edge of the clock.

LEGEND:

A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.

DRIVE
TO 2.4 V

1.5 V 1.5 V

Electrical and Thermal Characteristics

12-8

M68060 USER’S MANUAL

MOTOROLA

Figure 12-3. Reset Configuration Timing

D15–D0 in

RSTI

CLK

CLKEN

IPL2–IPL0

53

51

BCLK

54

MODE SELECTS REGISTERED
 ON PREVIOUS BCLK EDGE

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-9

Figure 12-4. Read/Write Timing

CLK

CLKEN

BCLK

ADDRESS &
ATTRIBUTES

D31–D0 in
(READ)

D31–D0 out
(WRITE)

TS

TIP

SAS

TA, TRA, TEA,
TBI, TCI

AVEC

60

13

14

15

18 21

23

25

16

19

24

22

58

57

12

12

11

PRECONDITIONED DATA OR WRITE DATA FROM PREVIOUS

17

 BUS CYCLE USING EXTRA DATA WRITE HOLD MODE

NOTE: Address and attributes refer to the following signals:
A31–A0, SIZ1, SIZ0, R/W, TT1, TT0, TM2–TM0, TLN1, TLN0, UPA1, UPA0, CIOUT, BS3–BS0

Electrical and Thermal Characteristics

12-10

M68060 USER’S MANUAL

MOTOROLA

Figure 12-5. Bus Arbitration Timing

CLK

CLKEN

BCLK

ADDRESS &

ATTRIBUTES

TS

TIP

BG

D31–D0 (OUT)

(WRITE)

BB (OUT)

12

12

11a38

1360

38

1412

19

21

60

12 39

40a12

39

42b

41b41b

42b

11a

12

LOCK, LOCKE

NOTES:

which adds one extra clock period between the bus mastership hand-over that would not
occur for a bus mastership hand-over after a non-locked bus cycle.

1. For illustrative purposes, a bus mastership hand-over is shown after a locked bus cycle sequence

2. Address and attributes refer to the following signals:
A31–A0, SIZ1, SIZ0, R/W, TT1, TT0, TM2–TM0, TLN1, TLN0, UPA1, UPA0, CIOUT, BS3–BS0

(SEE NOTE 1)

12

38

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-11

Figure 12-6. Bus Arbitration Timing (Continued)

CLK

ADDRESS &
ATTRIBUTES

TS

SAS

BG

D31–D0 (OUT)
(WRITE)

CLKEN

BCLK

LOCK, LOCKE

BR

BGR

BTT (OUT)

41f

42f

12

11a38

1360

38

19

21

60

58

59

57

58

12

38

11a

12

12

40

42b

41b41b

42b

61

62

6362

NOTES:

which adds one extra clock period between the bus mastership hand-over that would not
occur for a bus mastership hand-over after a non-locked bus cycle.

1. For illustrative purposes, a bus mastership hand-over is shown after a locked bus cycle sequence

2. Address and attributes refer to the following signals:
A31–A0, SIZ1, SIZ0, R/W, TT1, TT0, TM2–TM0, TLN1, TLN0, UPA1, UPA0, CIOUT, BS3–BS0

(SEE NOTE 1)

Electrical and Thermal Characteristics

12-12

M68060 USER’S MANUAL

MOTOROLA

Figure 12-7. CLA Timing

CLK

CLKEN

BCLK

ADDRESS &
ATTRIBUTES

TS

TIP

CLA

A3–A2

60

13

14

65

11

11

64

65

64

11

12

NOTE: Address and attributes refer to the following signals: A31–A0, SIZ1, SIZ0, R/W, TT1, TT0, TM2–TM0, TLN1, TLN0, UPA1, UPA0

Electrical and Thermal Characteristics

MOTOROLA

M68060 USER’S MANUAL

12-13

Figure 12-8. Snoop Timing

CLK

CLKEN

BCLK

A31–A0

TT1 (IN)

TS (IN)

SNOOP

44c

45c

47

46

44a

44e

45e

45a

Electrical and Thermal Characteristics

12-14

M68060 USER’S MANUAL

MOTOROLA

Figure 12-9. Other Signals Timing

CLK

BCLK

RSTI

52

CLK

41d

50

42d

12

IPEND

12

50

RSTO

12

50

PST4–PST0

51

CDIS, MDIS

IPL2–IPL0

CLKEN

41c

42c

41a

42a

41e

42e

49

BTT (IN)

BB (IN)

Ordering Information and Mechanical Data

13-1 M68060 USER’S MANUAL MOTOROLA

SECTION 13
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the ordering information, pin assignments, and package dimensions
of the MC68060, MC68LC060, and MC68EC060.

13.1 ORDERING INFORMATION

The following table provides ordering information pertaining to the MC68060, MC68LC060,
and MC68EC060 package types, frequencies, temperatures, and Motorola order numbers.

13.2 PIN ASSIGNMENTS

The following are the pin assignments for the MC68060, MC68LC060, and MC68EC060
package types.

Package Type Frequency
Maximum Junction

Temperature
Minimum Ambient

Temperature
Order Number

PGA—RC Suffix 50 MHz 110

°

C 0

°

C MC68060RC50
PGA—RC Suffix 66 MHz 110

°

C 0

°

C MC68060RC66
PGA—RC Suffix 50 MHz 110

°

C 0

°

C MC68LC060RC50
PGA—RC Suffix 66 MHz 110

°

C 0

°

C MC68LC060RC66
PGA—RC Suffix 75 MHz 110

°

C 0

°

C MC68LC060RC75
PGA—RC Suffix 50 MHz 110

°

C 0

°

C MC68EC060RC50
PGA—RC Suffix 66 MHz 110

°

C 0

°

C MC68EC060RC66
PGA—RC Suffix 75 MHz 110

°

C 0

°

C MC68EC060RC75

Ordering Information and Mechanical Data

13-2 M68060 USER’S MANUAL MOTOROLA

13.2.1 MC68060, MC68LC060, and MC68EC060 Pin Grid Array (RC Suffix)

Pin Groups GND (VSS) VCC (VDD)

Internal Logic
C6, C7, C9, C11, C13, F15, H4, H15,K3,
K16, L3, M16, R4, R6, R11, R13, S9, S10

C5, C8, C10, C12, C14, E15, H3, H16, J3,
J16, L16, M3, R5, R8, R12, S8

Output Drivers
B2, B4, B6, B8, B10, B13, B15, B17, D2,
D17, F2, F4, F17, H2, H17, L2, L17, N2, N17,
Q2, Q9, Q17, S2, S15, S17

B5, B9, B14, C2, C17, D8, D10, D12, D15,
E4, G2, G4, G15, G17, J4, J15, L4, M2, M17,
N15, P4, Q10, R2, R17, S16

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 17 184

A29

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T
TDO JTAG PST0 PST3

EVSS TDI TCK TMS IVSS PST1 EVSS

SIZ0

IVSS IVSS CLK IVSS IVSS PST2

TM0

A27 D0 D2 IVSS IVSS IVSS IVSS IVSS D23

EVSS D1 EVSS EVSS D8 EVSS EVSS D16 D18 EVSS EVSS

A31 D3 D4 D5 D6 D7 D9 D10 D11 D12 D13 D14 D15 D17 D19

D25 D28

D22 EVSS D26

D20 D21 D24

A9 EVSS A7

D29 D30 A8

D27 EVSS D31

A2 A3

EVSS A4

A6 A5

IVSS

EVSS A0

IVSS A1

EVSS TLN0

SIZ1

TM2

TLN1

 TM1

EVSS

UPA1 EVSS UPA0

A10 TT1 TT0

A12 EVSS A11

A13

A14 EVSS IVSS

A15 A16 IVSS

A17 A19

A18 EVSS

A20 A23

A21 EVSS A25

A22 A26 A28

A24 EVSS A30

CDIS IPL2 IPL1 IPL0

 RSTI

 RSTO CIOUT

TRST AVEC BG TA BB BR

LOCK

 LOCKE

 R/W

TS

 TBI TEA

TIP

IPEND

TCI

IVDDEVDD

EVDD

EVDD

IVDD

IVDD

IVDD

IVDD

EVDD

IVDD IVDD

IVDD

EVDD EVDD

EVDD

EVDD

IVDD

IVDD

IVDD

EVDD

EVDD

EVDD

IVDDIVDDIVDDIVDD

EVDD

MDIS IVSS EVSS

BS0 BS2 BS3 EVSS EVDD BGR PST4 SAS BTTBS1 CLKEN TRA

EVDD EVDDEVDD EVDD

 EVDD

EVDD

EVSS

EVDD

EVDD

EVDD

IVSS

IVSS

IVDD

EVDD

THERM1

CLA

SNOOP

 EVDD

THERM0

EVDD

IVSS

223 PIN LOCATIONS—206 USED
18 x 18 CAVITY DOWN PGA

122 SIGNAL PINS
50 EVDD/EVSS
34 IVDD/IVSS

17 NO CONNECT

Ordering Information and Mechanical Data

MOTOROLA M68060 USER’S MANUAL 13-3

13.2.2 MC68060, MC68LC060, and MC68EC060

PIN GROUPS GND (VSS) VCC (VDD)

Internal Logic
2, 17, 24, 26, 27, 31, 46, 53, 64, 79, 90, 106,
113, 128, 142, 155, 169, 183, 197, 199

1, 18, 32, 53, 63, 78, 89, 105, 114, 127, 141,
156, 170, 184, 198

Output Drivers
4, 10, 42, 49, 58, 67, 73, 84, 87, 95, 100, 109,
117, 122, 131, 136, 145, 150, 161, 166, 175,
180, 189, 194, 204

6, 12, 40, 50, 60, 69, 75, 82, 92, 97, 102, 111,
119, 124, 133, 138, 147, 152, 159, 164, 173,
178, 187, 192, 202

(TOP VIEW)
208 PIN CQFP

122 SIGNAL PINS
50 EVDD/EVSS
36 IVDD/IVSS

1

53

156

D20

D21

A1
5

A1
4

EVSS

CLKEN

TRA

TA
PST0

EVSS

BG

TEA

EV
D

D

A1
7

EVDD

131

D19

D18
EVDD

D12

D17
D16
IVDD
IVSS
D15
D14
EVSS
D13
EVDD

D11
EVSS

EVDD
D9
D8
IVDD
IVSS
D7
D6
EVSS
D5
EVDD
D4
D3
EVSS

EVDD
D1
D0
IVSS
IVDD

D2

D10

EVDD
PST1

BGR
IVDD
IVSS

TBI
AVEC

TCI
IVSS
IVSS
CLK

IVSS

IPL0
IPL1

RSTI
IVDD
IVSS
CDIS
MDIS

BS3
BS2

EVDD
BS1

EVSS
BS0

JTAG
TMS

EVDD
TD0

EVSS
RST0
IVSS
IVDD

TC
K

TR
ST

TD
I

IP
EN

D
EV

SS
C

IO
U

T

IV
SS

TT
0

IV
D

D
IV

SS
A1

6

A2
3

IV
D

D
IV

SS

U
PA

0
U

PA
1

IV
SS

TT
1

EV
SS

A1
0

EV
D

D

EV
SS

A1
3

EV
D

D

EV
SS

A1
8

A1
9

A2
0

A2
2

EV
D

D

EV
SS

A2
1

A1
2

A1
1

IPL2

IV
D

D

SAS

�EVSS
EVDD

IVSS

BTT

�TIP
TS

IVDD
PST4
PST3
EVSS
PST2

D26

IVSS

D25

IVDD

D27

105

EVSS

EVDD
D24
IVSS
IVDD
D23
D22

EV
D

D

A2
4

A2
5

EV
SS

A2
6

EV
D

D
A2

7

A3
1

EV
SS

A2
9

EV
D

D
A3

0

A2
8

TM
1

EV
D

D

C
LAA0

IV
SS

IV
D

D
SN

O
O

P BB
TH

ER
M

1
EV

SS

IV
SS

TL
N

0

TM
2

IV
D

D
IV

SS

IV
SS A5

EV
D

D

EV
D

D
LO

C
K

LO
C

KE

SI
Z0

EV
SS

SI
Z1

EV
D

D

TL
N

1
EV

SS TM
0 A1

EV
D

D

EV
SS A2

IV
D

DA4A3
EV

SSR
/W

TH
ER

M
0

IV
D

DBR A6 A7
EV

SS A8
EV

D
D A9 D

28

EV
SS D
30

EV
D

D
D

29D
31

26

52
78 104

183208 157

QFP P
ACKAGE N

OT A
VAIL

ABLE

UPDATED 3/
25

/98

Ordering Information and Mechanical Data

13-4 M68060 USER’S MANUAL MOTOROLA

13.3 MECHANICAL DATA

Figure 13-1 illustrates the MC68060, MC68LC060 and MC68EC060 PGA package dimen-
sions. Figure 13-2 illustrates the MC68060, MC68LC060, and MC68EC060 CQFP package
dimensions. Due to space limitation, Figure 13-2 is represented by a general (smaller) pack-
age outline rather than showing all 208 leads.

Figure 13-1. PGA Package Dimensions (RC Suffix)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A

B

C

D

E
F

G
H

J

K

L

M

N

P

Q

R

S

T

DIM
MILLIMETERS INCHES

MIN MAXMIN MAX

1.840 1.880
1.840 1.880
0.110 0.140
0.016 0.020

0.100 BSC

A
B
C
D
G
K

46.74 47.75

2.79 3.05
0.41 0.51

2.54 BSC

46.74 47.75

K

DC

B
A G

G

PIN A1 INDICATOR

– T –– A –

–
B

–

206 PLACES

0.150 0.1703.81 4.32

.020 (.51) M T A M B M

.008 (.20) M T

NOTES:
1. DIMENSIONS AND TOLERANCING PER
 ANSI Y14.5M 1982.
2. CONTROLLING DIMENSION: INCH

MC68060 PGA
CASE NUMBER: 993A-01

Ordering Information and Mechanical Data

13-5 M68060 USER’S MANUAL MOTOROLA

Figure 13-2. QFP Package Dimensions (FE Suffix)

A B

0.20 (0.008) A – B D
D

DIM

A

MILLIMETERS INCHES
MIN MAX MIN MAX
26.86 27.75 1.057 .1.093

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER. INCHES ARE IN "()".
 3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS
 COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE
 PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 4. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT DATUM PLANE -H-.
 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-.
 6. DIMENSIONS A AND B DEFINE MAXIMUM CERAMIC BODY DIMENSIONS
 INCLUDING GLASS PROTRUSION AND MISMATCH OF CERAMIC BODY
 TOP AND BOTTOM.

C
SEATING

PLANE

H

∩ 0.1 (0.004)

DATUM
PLANE

DETAIL "B"

DETAIL "B"

BASE METAL

0.13 (0.005) C A – B DM S

DETAIL "A"

DETAIL "A"

P

A, B, D

B 26.86
C 4.15 0.163
D 0.18 0.27 0.007 0.011
E 3.00 3.70 0.118 0.146
F
G 0.020 BSC.0.50 BSC
W 0.25 — 0.010 —
J 0.13 0.18 0.005 0.007
K
U 15.30 BSC 0.602 BSC
P 0.25 BSC 0.010 BSC

1° 7° 1° 7°
R
S

— —

C

U

V

A

Y

S

B

1 52

105
157

W

E

ZJ

F

D

DETAIL "C"

K

HDATUM
PLANE

Θ1

R
R

AB Θ2

S

M S SH

0.17 0.23 0.007 0.009

0.45 0.55 0.018 0.022

0.15 REF 0.006 REF
30.60 BSC 1.205 BSC

U
V
AB
AA

0.95 REF 0.037 REF

208

104

53

156

DETAIL "C"

27.75 1.057 .1.093

Y
1.80 REF

15.30 BSC
0.071 REF
0.602 BSC

Z

15.30 BSC
30.60 BSC 1.205 BSC

0.602 BSC

0.12 0.13 0.005 0.005
1° 7° 1° 7°θ1

θ2

MC68060 CQFP
CASE NUMBER: 994-01 0.20 (0.008) A – B DS SH∩

4 x 52 TIPS

AA

G

QFP P
ACKAGE N

OT A
VAIL

ABLE

UPDATED 3/
25

/98

MOTOROLA

M68060 USER’S MANUAL

A-1

APPENDIX A
MC68LC060

The MC68LC060 is a derivative of the MC68060. The MC68LC060 has the same execution
unit and MMU as the MC68060, but has no FPU. The MC68LC060 is 100% pin compatible
with the MC68060. Disregard all information concerning the FPU when reading this manual.
The following difference exists between the MC68LC060 and the MC68060:

• The MC68LC060 does not contain an FPU. When floating-point instructions are en-
countered, a floating-point disabled exception is taken.

• Bits 31–16 of the processor configuration register contain 0000010000110001, identi-
fying the device as an MC68LC/EC060.

MOTOROLA

M68060 USER’S MANUAL

B-1

APPENDIX B
MC68EC060

The MC68EC060 is a derivative of the MC68060. The MC68EC060 has the same execution
unit as the MC68060, but has no FPU or paged MMU, which embedded control applications
generally do not require. Disregard information concerning the FPU and MMU when reading
this manual. The MC68EC060 is pin compatible with the MC68060. The following differenc-
es exist between the MC68EC060 and the MC68060:

• The MC68EC060 does not contain an FPU. When floating-point instructions are en-
countered, a floating-point disabled exception is taken.

• Bits 31–16 of the processor configuration register contain 0000010000110001, identi-
fying the device as an MC68LC/EC060.

• The MDIS pin name has been changed to the JS0 pin and is included for boundary scan
purposes only.

B.1 ADDRESS TRANSLATION DIFFERENCES

Although the MC68EC060 has no paged MMU, the four TTRs (ITT0, ITT1, DTT0, and DTT1)
and the default transparent translation (defined by certain bits in the TCR) operate normally
and can still be used to assign cache modes and supervisor and write protection for given
address ranges. All addresses can be mapped by the four TTRs and the default transparent
translation.

B.2 INSTRUCTION DIFFERENCES

The PFLUSH and PLPA instructions, the SRP and URP registers, and the E- and P-bits of
the TCR are not supported by the MC68EC060 and must not be used. Use of these instruc-
tions and registers in the MC68EC060 exhibits poor programming practice since no useful
results can be achieved. Any functional anomalies that may result from their use will require
system software modification (to remove offending instructions) to achieve proper operation.

The PLPA instruction operates normally except that when an address misses in the four
TTRs, instead of performing a table search operation, the access cache mode and write pro-
tection properties are defined by the default transparent translation bits in the TCR. The
address register contents are never changed since all addresses are always transparently
translated. The PLPA instruction can only generate an access error exception only on super-
visor or write protection violation cases. The PFLUSH instruction operates as a virtual NOP
instruction.

When the MOVEC instruction is used to access the SRP and URP registers and the E- and
P-bits in the TCR, no exceptions are reported. However, those bits are undefined for the
MC68EC060 and must not be used.

MOTOROLA

M68060 USER’S MANUAL

C-1

APPENDIX C
MC68060 SOFTWARE PACKAGE

The purpose of the M68060 software package (M68060SP) is to supply, for a target operat-
ing system, system exception handlers and user library software that provide:

• Software emulation for integer instructions not implemented in MC68060 hardware via
the new unimplemented integer instruction exception.

• System V ABI-compliant library subroutines to help avoid using unimplemented integer
instructions.

• IEEE floating-point support for the on-chip floating-point unit (FPU) as well as software
emulation of floating-point instructions, data types, and addressing modes not imple-
mented in MC68060 hardware.

• System V ABI-compliant library subroutines to help avoid using unimplemented float-
ing-point instructions.

The design goals in implementing the M68060SP are as follows:

• Position-independent code

• Re-entrant code

• Object code size of less than 64 Kbytes for the complete kernel release

• No assembly-code-to-assembly-code conversion software required

• Minimum assembly code compilation required for system integration

• One-time port; future upgrades done by software patch instead of recompilation

• Easily downloadable from a bulletin board

The M68060SP is divided into five separate modules. This partitioning provides system in-
tegrators flexibility in choosing portions of the M68060SP that are applicable to their system.
For instance, a system using the MC68EC060 or MC68LC060 has no use for the floating-
point related modules. The following modules are provided:

1. Unimplemented integer instruction exception handler

2. Unimplemented integer instruction library

3. Full floating-point kernel exception handlers

4. Partial floating-point kernel exception handlers

5. Floating-point library

MC68060 Software Package

C-2

M68060 USER’S MANUAL

MOTOROLA

Each module has pre-defined addresses used by the target operating system as entry points
into the M68060SP routines. These pre-defined addresses will remain unchanged to ensure
that future releases of the M68060SP do not require recompilation.

The three kernel modules require some system-dependent subroutines to be supplied by
the target system. These modules also contain a call-out dispatch table. Each entry in the
call-out dispatch table represents an external function needed by that module. The call-out
dispatch table must be filled by the system integrator with the relative address (relative to
the top of the module) of the desired external function. This module-relative addressing
ensures full position independence.

C.1 MODULE FORMAT

Each module consists of the following parts:

1. Call-out Dispatch Table

2. Entry-point Dispatch Section

3. Code section

The call-out dispatch table is used by the module to reference external functions. The unim-
plemented integer and floating-point library modules do not require call-out dispatch tables.
For the other three modules, the call-out dispatch table contains a maximum of 32 call-out
entries. Each entry is 4 bytes long; hence, the call-out dispatch table size is 128 bytes. This
table must be supplied by the system integrator. Each entry must contain the relative
addresses of external functions, relative to the top of the call-out table.

For example, if the call-out dispatch table defines the first location to be the _mem_read
entry and the third entry defines the _mem_write entry, the table appears as shown in Figure
C-1.

The MC68060SP release has an example call-out dispatch table for each module. Since the
call-out dispatch table is system dependent, it is placed in a file separate from the next two
sections of the module. Care must be taken when porting the MC68060SP to ensure that
each module is kept intact.

xref _mem_read, _mem_write
xdef _top

_top:
 dc.l _mem_read - _top
 dc.l _mem_write - _top
 •

•
•
dc.l $00000000

* End of Call-out Dispatch Table. The module (pseudo-assembly module) must
* immediately follow:

Figure C-1. Call-Out Dispatch Table Example

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-3

The next two sections of the module do not require system customizing. To provide these
sections in a “black box”, they are packaged in “pseudo-assembly” files. The main advan-
tage of this method of packaging is that changing the syntax of this pseudo-assembly file
can be done by any word processor with global search and replace capability. Also, when it
is time to update the MC68060SP, only these pseudo-assembly files need to be replaced,
the system customized code does not need modification.

Figure C-2 shows an example pseudo-assembly file.

The Entry-point Dispatch Section must immediately follow the call-out dispatch table (kernel
modules only). The function entry points are implemented as address offsets from the top
of the module. Each function entry point is eight bytes in width. Each entry point contains an
unconditional branch to another location within the code section. This feature ensures that
future releases of the module would not necessitate a recompile of the system-customized
software envelope.

For example, consider the case of the M68060SP floating-point kernel module. This module
has a 128-byte call-out dispatch table. Assuming that a symbol _060FPSP_TOP points to
the top of the module, and a jump to the third function of the module is needed, the system
call is as such:

bra _060FPSP_TOP+128+(2*8)

To gain additional performance, it is possible to avoid the double-branch penalty through the
Entry-point Dispatch Section by determining the branch target of each entry point into the
associated code section function addresses. However, this may make it more difficult to
upgrade to future releases without recompiling software envelopes that call into the
M68060SP.

The code section contains the actual M68060SP software. If the code section requires a call
to an external function, it calculates the address of the external function given the informa-
tion contained in the appropriate call-out entry. The code section is normally entered via a
branch instruction from the entry-point dispatch section.

Figure C-3 provides a visual example of the module interface. The symbol names outside
the boxes represent global symbol names defined by the system integrator. Internal sym-
bols used by the M68060SP source code are represented as labels inside the boxes. Note
that the call-out code example contains approximate code and is shown to emphasize that
module-relative address needs to be filled into the call-out dispatch table.

dc.l $60ff0000,$20920000,$60ff0000,$1f5c0000
dc.l $60ff0000,$0d040000,$60ff0000,$0eb80000
dc.l $60ff0000,$24300000,$60ff0000,$22ca0000
•
•
•
dc.l $00000000,$00000000,$00000000,$00000000

Figure C-2. Example Pseudo-Assembly File

MC68060 Software Package

C-4

M68060 USER’S MANUAL

MOTOROLA

Table C-1 shows the code size of each module.

C.2 UNIMPLEMENTED INTEGER INSTRUCTIONS

The MC68060 left some low-use integer instructions unimplemented to streamline internal
operations. This results in overall system performance improvement at the expense of soft-
ware emulation of the unimplemented integer instructions. The M68060SP provides user
object-code compatibility by providing the code needed to emulate these instructions via the
unimplemented integer instruction exception. The M68060SP also provides a software

Figure C-3. Module Call-In, Call-Out Example

Table C-1. Call-Out Dispatch Table and Module Size

Module Name
Call-Out Dispatch

Table Size
Entry-Point + Code

Section Size
Total Module

Size

Unimplemented Integer 128 bytes 8K-128 bytes 8K bytes
Unimplemented Integer Instruction Library 0 bytes 4K bytes 4K bytes
Full Floating-Point Kernel 128 bytes 56K-128 bytes 56K bytes
Floating-Point Library 0 bytes 34K bytes 34K bytes
Partial Floating-Point Kernel 128 bytes 35K-128 bytes 35K bytes

CALL-OUT DISPATCH TABLE

MODULE

L1: _call_out - _top

L2: _done - _top

CALL-OUT DISPATCH
TABLE MUST IMMEDIATELY
PRECEDE THE THE ENTRY-

POINT SECTION

ENTRY-POINT DISPATCH SECTION

bra f1

CODE SECTION

f1: Actual func code

*Do a call-out
lea _top,A0
add.1 L1,A0
jsr (a0)
next instruction

lea _top,A0
add.1 L2,A0
jmp (a0)

_call_out: call_out code here

rts

OPERATING SYSTEM-SUPPLIED CODE

CALLING ROUTINE

bra _top+func_offset
next instruction

_top+func_offset

MODULE FUNCTIONS
ARE FIXED OFFSETS

FROM THE LABEL _top

_top

_done:

THE ENTRY-POINT AND CODE
SECTIONS ARE INTHE

PSEUDO-ASSEMBLY FILE

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-5

library that can be used to avoid these unimplemented instructions for new programs that
can be recompiled.

The unimplemented integer instructions include 64-bit divide and multiply, move peripheral
data, CMP2, CHK2, and CAS2. In addition, CAS used with a misaligned effective address
is also unimplemented. Refer to the

M68000 Family Programmer’s Reference Manual

(M68000PM/AD) for details on the operation of these instructions. The unimplemented
integer instructions are:

DIVU.L <ea>,Dr:Dq 64/32

⇒

 32r,32q
DIVS.L <ea>,Dr:Dq 64/32

⇒

 32r,32q
MULU.L <ea>,Dr:Dq 32*32

⇒

 64
MULS.L <ea>,Dr:Dq 32*32

⇒

 64
MOVEP Dx,(d16,Ay) size = W or L
MOVEP (d16,Ay),Dx size = W or L
CHK2 <ea>,Rn size = B, W, or L
CMP2 <ea>,Rn size = B, W, or L
CAS2 Dc1:Dc2,Du1:Du2,(Rn1):(Rn2) size = W or L
CAS Dc,Du,<ea> size = W or L, misaligned <ea>

C.2.1 Integer Emulation Results

Numerical and condition code results produced by the MC68060ISP (see

C.2.2 Module 1:
Unimplemented Integer Instruction Exception (MC68060ISP)

) are equivalent to those in
previous M68000 family processors. In addition, as with the MC68060 hardware, if any con-
dition code bits are stated as undefined for the exceptional instruction, then they remain
unchanged from the previous instruction.

C.2.2 Module 1: Unimplemented Integer Instruction Exception
(MC68060ISP)

When the MC68060 encounters an unimplemented integer instruction, the MC68060 ini-
tiates exception processing at vector number 61. A type $0, four-word stack frame is cre-
ated. The stack frame’s stacked program counter (PC) points to the unimplemented integer
instruction.

The M68060SP determines the instruction that caused the exception and emulates the
instruction using implemented integer instructions. This emulation includes the proper con-
dition code effects as produced by the instruction if it had been implemented in hardware.
No floating-point instructions are used within this module (to ensure that this module can be
used for the MC68LC060 and MC68EC060).

When emulating the unimplemented integer instructions, there are conditions that require
the M68060SP to emulate an exception. The M68060SP emulates an exception by cleaning
up the stack to the conditions prior to executing the exception handler, converting the origi-
nal stack frame to the appropriate stack frame, and then branching to those system-supplied
exception handlers.

MC68060 Software Package

C-6

M68060 USER’S MANUAL

MOTOROLA

C.2.2.1 UNIMPLEMENTED INTEGER INSTRUCTION EXCEPTION MODULE ENTRY
POINTS.

The _isp_unimp function is implemented such that the unimplemented integer
instruction exception vector table entry typically points directly to _isp_unimp. If the system
software chooses to perform operations prior to entering the _isp_unimp function, it may do
so as long as the system stack points to the exception stack frame at the time of entry.

C.2.2.2 UNIMPLEMENTED INTEGER INSTRUCTION EXCEPTION MODULE CALL-
OUTS.

The call-outs _real_trace, _real_chk, _real_divbyzero, and _real_access are defined
to provide the system integrator a choice of either having the module point directly to the
actual trace, chk, divide-by-zero, and access error handler, or to an alternate routine that
would fetch the address of the exception handler from the vector table prior to jumping to
the actual handlers. The direct implementation is ideal for systems that do not anticipate any
changes to the vector table and performance is more critical. The indirect approach of con-
sulting the vector table is more accurate in that if the instruction were implemented, the
actual handler’s address is fetched from the appropriate vector table entry before branching
there.

Other call-outs which are common to the floating-point kernel module are discussed in

C.4
Operating System Dependencies

. These call-outs include the discussion of the
_real_access and other operating-system-dependent functions.

The _isp_done call-out is provided as a means for the system to do any clean-up, if any is
necessary, before executing the RTE instruction to return to normal instruction execution.
The unimplemented integer instruction exception handler will either branch to this call-out or
create an appropriate exception frame and branch to the call-outs _real_trace, _real_chk,
_real_divbyzero, or _real_access routines as outlined previously.

C.2.2.3 CAS MISALIGNED ADDRESS AND CAS2 EMULATION-RELATED CALL-OUTS
AND ENTRY POINTS.

The CAS instruction with misaligned address and CAS2 emulation
is the most system dependent of all MC68060ISP code. The emulation code may require
interaction with a system’s interrupt, paging and access error recovery mechanisms. The
emulation algorithm uses the MOVEC of the BUSCR register to assert the LOCK and
LOCKE signals during emulation. The following is a description of the main steps in the em-
ulation process:

1. Decode instruction and fetch all data from registers as necessary. In addition, if any of
the operand pages are non-resident, then they must be paged in and not be allowed
to be paged out or marked invalid for any reason until the emulation process ends. For
each operand address, the MC68060ISP calls _real_lock_page() which must be pro-
vided by the host operating system to “lock” the pages. This routine should also check
to see if the address passed is valid and writable. If not, then an error result should be
returned to the MC68060ISP.

2. The MC68060ISP then calls the “core” emulation code for either “cas” or “cas2”. The
MC68060ISP references the “core” routines by calling either the _real_cas() or
_real_cas2() call-outs. If the emulation code provided is sufficient for a given system,
then the system integrator can make these call-outs immediately re-enter the package
by calling either _isp_cas() or _isp_cas2() entry points.These entry points will perform
the required emulation. If the “core” routines provided need to be replaced by a more

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-7

system-specific solution, then the new user-generated emulation code should supply
the routines via the _real_cas()/_real_cas2() call-outs, and should then re-enter the
MC68060ISP through the entry point _isp_cas_finish() or _isp_cas2_finish() when
complete.

3. After emulation is completed, the pages which may have been “locked” from being
paged out earlier must now be “unlocked”. To accomplish this, the MC68060ISP exe-
cutes a _real_unlock_page() call-out for each operand.

For most systems, the entry-points _isp_cas() and _isp_cas2() routines should provide suf-
ficient emulation results. However, it is up to the system integrator to judge whether or not
these routines are sufficient, or that a more system-specific solution is needed. The following
is a description of some aspects of the _isp_cas() and _isp_cas2() emulation code.

1. Interrupt levels 0-6 are immediately masked. If the appropriate pages have been
paged in and have been checked for write permission in _real_lock_page(), then only
physical bus errors can occur within this code sequence. The routine restores the pre-
vious interrupt mask level upon completion of the algorithm. (Note: if a system, by de-
sign, allows level 7 interrupts to occur while emulating the CAS or CAS2 instructions,
then the operand data corruption may occur. External hardware may be added to the
system to physically mask all interrupts whenever LOCK is asserted.)

2. The operand ATC is loaded for each operand using the PLPAW instruction. In addi-
tion, any fresh cache entries corresponding to the operands are pushed from the
cache using CPUSHL instruction. Note: the MC68040 processor initiated the pushes,
if necessary, within the locked bus region. MC68060 hardware, however, pushes the
cache lines, if necessary, outside of the locked bus region for TAS and aligned CAS
instructions. The MC68060ISP emulates the MC68060 processor approach.

3. The main algorithm steps are pre-fetched into the instruction cache if the cache is en-
abled. The algorithm attempts to allow only operand data bus accesses during the
locked bus instruction sequence. This strategy reduces the number of cycles that the
LOCK signal will be asserted.

4. Before performing the read(s)/write(s), the bus LOCK signal is asserted by the emula-
tion code by using the MOVEC of the BUSCR register. All reads and writes when
LOCK is asserted will be precise. LOCK will not actually appear on the bus until the
first bus read cycle.

5. The LOCKE signal will be asserted for the final operand write of the emulation se-
quence.

6. The actual read(s)/write(s) are performed using the MOVES instruction for both user
and supervisor accesses. The system DFC is set to the appropriate mode before ex-
ecuting MOVES and PLPAW instructions.

MC68060 Software Package

C-8

M68060 USER’S MANUAL

MOTOROLA

Assuming that the system integrator elects to use the _isp_cas() and _isp_cas2() entry
points for instruction emulation, three routines are made available to the access error excep-
tion handler to provide more options when a bus error (TEA) is encountered when in these
critical routines:

1. _isp_cas_inrange(): Accepts an instruction address as an input argument and returns
a failing or passing value corresponding to whether the address is within the
_isp_cas() or _isp_cas2() code region. This function can be used within a system’s ac-
cess error handler to determine if a PLPA or MOVES instruction has incurred a bus
error (TEA asserted) within the _isp_cas() or _isp_cas2() code region.

2. _isp_cas_restart(): If an access error handler encounters a recoverable physical bus
error (TEA asserted) and the _isp_cas_inrange() routine returns an “in-range” value,
then the operand read/write sequence will be restarted through this entry point. Note
that by design of the MC68060, any exception occurring while LOCK is asserted au-
tomatically negates it.

3. _isp_cas_terminate(): If an access error handler encounters a non-recoverable phys-
ical bus error (TEA asserted) and the _isp_cas_inrange() routine returns an “in-range”
value, it can re-enter the package through this entry point. The package creates a new
access error frame.

As long as the _real_lock_page() routine operates properly, only physical bus errors caused
by the PLPA or MOVES instructions can occur within the critical code sequence. It is the
access error handler’s responsibility to determine whether or not it is appropriate to restart
the locked sequence or to terminate the CAS or CAS2 emulation. More than likely, at the
time of the bus error, all maskable interrupts have been masked. It is the responsibility of
the access error handler to re-enable the interrupts if desired.

For the recoverable bus error cases, the stacked PC of the access error frame can be
replaced with the _isp_cas_restart() address once the cause of the bus error has been
removed. Code execution continues at the _isp_cas_restart() entry point, when the RTE of
the access error handler is executed.

For the non-recoverable bus error case, the stacked PC must be replaced with the
_isp_cas_terminate() address to ensure that the original CAS or CAS2 emulation stack
frame is removed from the system stack, and system is placed in the same state just before
the CAS or CAS2 emulation was attempted. Also, the Fault Address FSLW must be copied
to the appropriate registers prior to executing the RTE of the access error handler. After the
RTE instruction is executed, code execution resumes at the _isp_cas_terminate() entry
point. When the access error handler is re-entered, the stacked PC contains the address of
the CAS or CAS2 instruction, the Fault Address contains the passed Fault Address from the
previous access error handling, and the FSLW contains the passed FSLW from the previous
access error handling. Figure C-4 outlines the call-outs and entry-points associated with the
CAS and CAS2 emulation.

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-9

C.2.3 Module 2: Unimplemented Integer Instruction Library
(MC68060ILSP)

The M68060SP provides a library version of the following unimplemented integer instruc-
tions: 64-bit divide, 64-bit multiply, and CMP2. This version can be compiled with user appli-
cations desiring the functionality of these instructions. Using the library method, an
application does not have to incur the overhead of the unimplemented integer instruction
exception.

The routines are System V ABI compliant. Currently, the arguments are expected on the
stack by the M68060SP library routines. For _divu64, _divs64, _mulu64, and _muls64, the
results are not returned in a pair of data registers as with the actual instructions, but rather
in a two-long-word memory array pointed to by a pointer argument provided by the caller.

* _real_cas(), _real_cas2(): MC68060ISP Call-out to provide choice
* of using supplied _isp_cas() and _isp_cas2() routines or to
* write an alternate routine more fitted for the system.

* _isp_cas(), _isp_cas2(): CAS and CAS2 core routine entry point that
* can be called from _real_cas() and _real_cas2() if the system wishes
* to use the CAS and CAS2 emulation code provided with the package.
* The flow is:
* (exception) -> _isp_unimp -> _real_cas{2) -> _isp_cas{2}

* _isp_cas_inrange(): Subroutine entry point provided by the 68060ISP
* for use by the access error handler that reports if a given
* address resides within the _isp_cas() or _isp_cas2() routines.
* Inputs:
* a0 = instruction address in question
* Outputs:
* d0 = 0 -> success; non-zero -> failure

* _isp_cas_terminate(): Entry point provided by the MC68060ISP for
* use by an access error handler to create an access error frame for
* a process and to exit the CAS or CAS2 emulation gracefully.
* Inputs:
* a0 = faulting address
* d0 = Fault Status Longword

* _isp_cas_restart(): Entry point provided by the 68060ISP for use
* by an access error handler to re-start _isp_cas() and _isp_cas2()
* if a recoverable bus error occurs within the _isp_cas() and _isp_cas2()
* routines.

* _isp_cas_finish(), _isp_cas2_finish(): Entry point provided by the
* MC68060ISP for use by system-specific implementations of cas. Enter
* here to exit gracefully through the package.
* The flow is:
* (exception) ->_isp_unimp -> _real_cas{2} -> (new code)
* -> _isp_cas{2}_finish
* This requires close examination of the _isp_cas() and _isp_cas2() source
* code.

Figure C-4. CAS and CAS2 Call-Outs and Entry Points

MC68060 Software Package

C-10

M68060 USER’S MANUAL

MOTOROLA

The condition code register upon return from all of the library routines is correct. Figure C-5
provides a C-code representation of the integer library routines in the M68060SP.

For example, to use a 64-bit divide instruction, do a “bsr” or “jsr” to the entry-point defined
by the MC68060ILSP entry table. A compiler-generated code sequence for unsigned multi-
ply could resemble Figure C-6.

The library routines also return the correct condition code register value. If this is important,
then the caller of the library routine must make sure that the value is not lost while popping
other items off of the stack. An example of using the CMP2 instruction is given in Figure C-7.

The unimplemented integer instruction library module contains no operating system depen-
dencies and does not require a call-out dispatch table. If the instruction being emulated is a

/* 64-bit (32x32 -> 64) unsigned multiply routine */
void _mulu64(multiplier,multiplicand,result)

unsigned int multiplier;
unsigned int multiplicand;
unsigned int *result; /* array for result */

/* 64-bit (32x32 -> 64) signed multiply routine */
void _muls64(multiplier,multiplicand,result)

int multiplier;
int multiplicand;
int *result; /* array for result */

/* 64-bit (32/32 -> 32r:32q) unsigned divide routine */
void _divu64(divisor,dividend_hi,dividend_lo,result)

unsigned int divisor;
unsigned int dividend_hi, dividend_lo;
unsigned int *result; /* array for result */

/* 64-bit (32/32 -> 32r:32q) signed divide routine */
void _divs64(divisor,dividend_hi,dividend_lo,result)

int divisor;
int dividend_hi,dividend_lo;
int *result; /* array for result */

/* CMP2 using an “A”ddress or “D”ata register. size = byte. */
void _cmp2_{D,A}b(rn,bounds)

int rn;
char *bounds; /* pointer to byte bounds array */

/* CMP2 using an “A”ddress or “D”ata register. size = word. */
void _cmp2_{D,A}w(rn,bounds)

int rn;
short *bounds; /* pointer to word bounds array */

/* CMP2 using an “A”ddress or “D”ata register. size = longword. */
void _cmp2_{D,A}l(rn,bounds)

int rn;
int *bounds; /* pointer to longword bounds array */

Figure C-5. C-Code Representation of Integer Library Routines

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-11

divide and the source operand is a zero, then the library routine (as it is last instruction) exe-
cutes an implemented divide using a zero source operand so that an integer divide-by-zero
exception will be taken. Although the exception stack frame will not point to the correct
instruction, the user can at least be able to record that such an event occurred.

C.3 FLOATING-POINT EMULATION PACKAGE (MC68060FPSP)

The MC68060 does not implement some floating-point instructions, addressing modes, and
data types on-chip in order to streamline internal operations. This results in an overall sys-
tem performance improvement at the expense of software emulation of these unimple-
mented instructions, addressing modes, and data types. The M68060SP provides three
separate modules that are related to floating-point operations. The first floating-point module
is the full floating-point kernel module. This module is used for applications that require emu-
lation of the full MC68881 floating-point instruction set, data-types, and IEEE-754 exception
handling. The second floating-point module is the floating-point library. This library is pro-
vided as a separate module for applications that need to avoid the latency incurred by the
F-line exception processing for unimplemented floating-point instructions. However, this
method requires recompiling of existing software to implement subroutine calls. The third
floating-point module, the partial floating-point kernel module, is optional and is used prima-
rily in systems that also integrate the floating-point library. The partial floating-point kernel
module is similar in function to the full floating-point kernel except that it does not contain
the unimplemented floating-point instruction exception handler. This module is provided for
the purpose of saving memory space. Otherwise, the full floating-point kernel module must
be used instead.

* mulu.l <ea>,Dh:Dl
* mulu.l _multiplier,d1:d0

subq.l #$8,sp ; make room for result on stack
pea (sp) ; pass: result addr on stack
move.l d0,-(sp) ; pass: multiplicand on stack
move.l _multiplier,-(sp) ; pass: multiplier on stack
bsr.l _060LISP_TOP+$18 ; branch to multiply routine
add.l #$c,sp ; clear arguments from stack
move.l (sp)+,d1 ; load result[63:32]
move.l (sp)+,d0 ; load result[31:0]

Figure C-6. MUL Instruction Call Example

* cmp2.l <ea>,Rn
* cmp2.l _bounds,d0

pea _bounds ; pass ptr to bounds
move.l d0,-(sp) ; pass Rn
bsr.l _060LSP_TOP_+$48 ; branch to “cmp2” routine
add.l #$8,sp ; clear arguments from stack

Figure C-7. CMP2 Instruction Call Example

MC68060 Software Package

C-12

M68060 USER’S MANUAL

MOTOROLA

The floating-point emulation package provides the following services:

1. Floating-point unimplemented instruction exception handler

2. Floating-point unimplemented data-type exception handler

3. Floating-point unimplemented effective address handler

4. Floating-point arithmetic exception handlers

5. Floating-point library

Table C-2 lists a brief comparison among the M68000 family floating-point processors.

The unimplemented floating-point instructions, effective addresses, and data types that are
handled by the M68060SP are outlined in Table C-3 and Table C-4.

Table C-2. FPU Comparison

Is the default result stored in the destination register for exception-enabled register-to-
register or memory-to-register operations?

FPU INEX DIVZ OPERR SNAN

MC68881/882 Yes No No No

MC68040 Yes No No No

MC68060 Yes* No No No

Is the default result stored for exception-enabled FMOVE OUT?

FPU INEX DIVZ OPERR SNAN

MC68881/882 Yes — Yes Yes

MC68040 Yes — Yes+* Yes+*

MC68060 Yes+* — Yes+* Yes+*

+ Undefined result written by processor
* Floating-point software package assistance needed to store the default result

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-13

C.3.1 Floating-Point Emulation Results

All numerical results and condition code settings produced by the M68060FPSP and visible
to the user are identical to those produced by the MC68881/882 and MC68040 with the fol-
lowing exception: the M68060FPSP transcendental calculation results are not the same as
for the MC68881/882, because the algorithms used in the MC68881/882 (CORDIC) cannot
be effectively implemented in software. However, the error bound of the M68060FPSP tran-
scendental routines (same as for the MC68040 routines) are equivalent or superior.

For floating-point arithmetic instructions, the error bound is one-half unit in the last place of
the destination format in the round-to-nearest mode, and one unit in the last place in the

Table C-3. Unimplemented Instructions

General Monadic Operations

FACOS FLOGN
FASIN FLOGNP1
FATAN FMOVECR

FATANH FSIN
FCOS FSINCOS

FCOSH FSINH
FETOX FTAN

FETOXM1 FTANH
FGETEXP FTENTOX
FGETMAN FTWOTOX
FLOG10 FLOG2

General Dyadic Operations

FMOD FREM
FSCALE —

Conditionals

FTRAPcc FDBcc
FScc –

Unimplemented Effective Address

FMOVEM.X (dynamic register list) FMOVEM.L #immediate of
2 or 3 control regs

F<op>.X #immediate,FPn F<op>.P #immediate,FPn

Table C-4. Unimplemented Data Formats and Data Types

Data Formats/Data Types SGL DBL EXT DEC Byte Word Long

Normalized S S S U S S S

Zero S S S U S S S

Infinity S S S U — — —

NAN S S S U — — —

Denormalized U U U U — — —

Unnormalized — — U U — — —

Where:
S = Implemented Data Format, handled by the MC68060
U = Unimplemented Data Format, handled by the M68060SP

MC68060 Software Package

C-14

M68060 USER’S MANUAL

MOTOROLA

other rounding modes. Transcendental instructions have an error bound of less than 0.6 unit
in the last place of double precision. The error bound for decimal conversions is 0.97 unit in
the destination precision for the round-to-nearest mode and 1.47 units in the last digit of the
destination precision for the other rounding modes.

C.3.2 Module 3: Full Floating-Point Kernel

The full floating-point kernel includes the following exception handlers:

1. Floating-point unimplemented instruction handler

2. Floating-point unimplemented data type handler

3. Unimplemented effective address handler

4. Floating-point arithmetic exception handlers

When the full floating-point kernel is integrated into the system, the entire MC68881 floating-
point coprocessor instruction set object-code compatibility is attained, and IEEE-754 trap
reporting compliance is achieved. This module stands on its own and is ideal for systems
whose applications were written with the full MC68881 instruction set in mind.

C.3.2.1 FULL FLOATING-POINT KERNEL MODULE ENTRY POINTS.

 The _fpsp_fline,
_fpsp_unsupp and _fpsp_effadd are entry points supplied for the floating-point unimple-
mented instruction, floating-point unimplemented data type and unimplemented effective
address handlers respectively. The _fpsp_snan, _fpsp_operr, _fpsp_ovfl, _fpsp_unfl,
_fpsp_dz, _fpsp_inex entry points are supplied as the floating-point arithmetic exception
handlers. These entry points are implemented such that the appropriate vector table entries
typically point directly to these functions. If the system chooses to perform certain system
functions prior to entering these entry points, the system can do so with the condition that
the system stack pointer must point to the exception stack frame at the time of the function
entry. Figure C-12 illustrates the relationship of the module to the vector table and system
software envelope.

C.3.2.2 FULL FLOATING-POINT KERNEL MODULE CALL-OUTS.

The full floating-point
kernel requires the following call-outs: _real_fline, _real_fpu_disabled, _real_trace,
_real_trap, _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz,
_real_inex, _fpsp_done. In addition,

C.4 Operating System Dependencies

 discusses the
_real_access call-out and other call-outs that are common to the unimplemented integer
instruction exception module.

C.3.2.2.1 The F-Line Exception Call-Outs.

When the _fpsp_fline function is entered, it
checks the stack frame format and determines whether this is an unimplemented floating-
point instruction, FPU disabled or F-line illegal exception. If it is determined that the FPU is
disabled, the call-out _real_fpu_disabled is taken. It is up to the system software to either
emulate the instruction using integer instructions or simply turn on the FPU before returning
to restart the instruction. If the instruction is not recognized as an MC68881 instruction, the
call-out _real_fline is taken. The system software is responsible for taking the appropriate
action. If neither the FPU disabled or F-line illegal exception cases is true, then the
M68060SP emulates the instruction.

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-15

C.3.2.2.2 System-Supplied Floating-Point Arithmetic Exception Handler Call-Outs.

The call-outs _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz,
_real_inex are needed only if the system turns on the floating-point exceptions via the float-
ing-point control register (FPCR) exception enable byte. These call-outs point to the arith-
metic handlers that must be supplied for IEEE trap enabled operation. Documentation for
these handlers are fully explained in

Section 6 Floating-Point Unit

. Additional information
on how these call-outs are reached is found in

C.3.2.3 Bypassing Module-Supplied Float-
ing-Point Arithmetic Handlers

 and

C.3.2.4 Exceptions During Emulation

.

C.3.2.2.3 Exception-Related Call-Outs.

When in the process of emulating any of the float-
ing-point exception handlers, there are conditions that require the M68060SP to emulate an
access error, trace, or trap exception. The M68060SP does so by cleaning up the stack to
the conditions prior to executing the exception handler, converting the original stack frame
to the appropriate stack frame and then branching to those system-supplied exception han-
dlers.

The call-outs _real_access, _real_trace, and _real_trap are defined to provide the system
integrator a choice of either having the module point directly to the actual access error, trace
and trap exception handlers or to an alternate routine that would calculate the exception
handler address from the vector table prior to jumping to actual handlers. The direct imple-
mentation is ideal for systems that do not anticipate any changes to the vector table, and for
which performance is more critical. The indirect approach of consulting the vector table is
more accurate in that if the instruction were implemented, the actual handler’s address is
fetched from the appropriate vector table entry before branching there.

C.3.2.2.4 Exit Point Call-Outs.

The _fpsp_done call-out is provided as a means for the
system to do any clean-up, if necessary, before executing the RTE instruction to return to
normal instruction execution. All the supplied floating-point handlers will either branch to this
call-out or exit through the call-outs _real_fline, _real_fpu_disabled, _real_trace, _real_trap,
_real_access, _real_bsun, _real_snan, _real_operr, _real_ovfl, _real_unfl, _real_dz, and
_real_inex exit points.

C.3.2.3 BYPASSING MODULE-SUPPLIED FLOATING-POINT ARITHMETIC
HANDLERS.

A system that does not require full IEEE trap enabled exception compliance
or does not require the services of the exceptional operand, may choose to bypass the
fpsp{ovfl,unfl,snan,operr,dz,inex} entry points. To better assess whether or not to write a
customized floating-point arithmetic handler, it is important to know what the processor
hardware does and what the M68060SP handlers do individually.

The term “opclass” is used in the following paragraphs. An opclass zero instruction refers to
a floating-point general instruction whose source operand(s) and destination operand are all
floating-point data registers (no operands in memory). An opclass two instruction refers to a
floating-point general instruction in which one source operand is in memory or an integer
data register, but the destination is a floating-point data register. An opclass three instruction
refers to an FMOVE instruction that has a memory or integer data register destination.

MC68060 Software Package

C-16

M68060 USER’S MANUAL

MOTOROLA

C.3.2.3.1 Overflow/Underflow.

Floating-point overflow and underflow are nonmaskable
exceptions on the MC68060 (as they were on the MC68040). When either occur, the corre-
sponding exception is taken regardless, whether the user overflow or underflow enable bit
is set in the FPCR or not. The purpose of these nonmaskable exceptions is to allow software
to generate the default underflow and overflow results as produced by the MC68881/882.

The M68060FPSP acts differently according to the four following cases:

1. Overflow/Underflow disabled, overflow occurred, and inexact is enabled—the
M68060FPSP exception handler, _fpsp_ovfl, calculates the default result and stores
this value at the destination. Second, the exceptional operand value is calculated and
restored, with exceptional status, into the FPU with an FRESTORE instruction. The
overflow stack frame is then converted into an inexact stack frame. Finally, a branch
is taken to the operating system-supplied call-out (_real_inex) for the user enabled in-
exact exception handler.

2. Overflow/Underflow disabled, underflow occurred, inexact is enabled, and the result is
inexact—the M68060FPSP exception handler, _fpsp_unfl, calculates the default re-
sult and stores this value at the destination. Second, the exceptional operand value is
calculated and restored, with exceptional status, into the FPU with an FRESTORE in-
struction. The overflow stack frame is then converted into an inexact stack frame. Fi-
nally, a branch is taken to the operating system-supplied call-out (_real_inex) for the
user-enabled inexact exception handler.

3. Overflow, underflow, and inexact disabled—the M68060FPSP exception handler,
_fpsp_ovfl or _fpsp_unfl, calculates the default result rounded to the proper mode and
precision, and stores this result at the destination. The handler then returns the pro-
cessor to normal processing.

4. Overflow or underflow enabled—the M68060FPSP exception handler, _fpsp_ovfl or
_fpsp_unfl, calculates the default result and stores this value at the destination. Sec-
ond, the exceptional operand value is calculated and restored, with exceptional status,
into the FPU with an FRESTORE instruction. Next, a branch is taken to the operating
system-supplied call-out (_real_{ovfl,unfl}) for the user enabled overflow or underflow
exception handler. At this point, the overflow/underflow exception frame is on the
stack. The exceptional operand can be located in the FSAVE frame. The destination
operand is not available. The source operand may not be available. The following
short list details the information available to _real_{ovfl,unfl} when the M68060FPSP
passes control there:

• Memory or data register destination
—exception stack frame: the six-word post-instruction stack frame contains the

PC of the next instruction and the effective address of the destination operand.
—in the FSAVE frame: the exceptional operand which is the intermediate result

rounded to the destination precision, with the 15-bit exponent biased as a nor-
mal extended-precision number. The user ovfl/unfl handler must execute an
“FSAVE” to retrieve this value.

—at the destination location: default result (same as with exceptions disabled).
—FPIAR: address of the instruction that underflowed/overflowed.

MC68060 Software Package

MOTOROLA

M68060 USER’S MANUAL

C-17

• Floating-point data register destination:

—exception stack frame: the four-word pre-instruction stack frame contains the
PC of the next instruction.

—in the FSAVE frame: the exceptional operand which is the intermediate result
mantissa rounded to extended precision, with an exponent bias of
$3FFF+$6000 for underflow and $3FFF-$6000 for overflow rather than $3FFF.
In cases of catastrophic overflow/underflow, the exceptional operand exponent
is set to $0000. The user ovfl/unfl handler must execute an FSAVE to retrieve
this value.

—at the destination location: the default underflow/overflow result.
—FPIAR: address of the instruction that underflowed/overflowed.
—FPSR: the bits are set according to the default result.

Note

Unlike the MC68040, the MC68060 FPU hardware does not pro-
vide the exceptional operand on overflow or underflow for use by
an exception handler. Therefore, the M68060FPSP overflow
and underflow handlers must emulate the entire faulted instruc-
tion in order to calculate the exceptional operand for the user en-
abled overflow or underflow handler.

Finally, if the result of the floating-point multiplication unit is a normalized extended-precision
number with a zero exponent, then the processor will incorrectly take an underflow excep-
tion. The M68060SP detects and corrects this case.

C.3.2.3.2 Signalling Not-A-Number, Operand Error.

On the MC68060, the signalling not-
a-number (SNAN) and operand error (OPERR) exceptions cause pre-instruction exceptions
for opclass zero and two instructions and post-instruction exceptions for opclass three
instructions. The processor takes exception vector number fifty-four for the SNAN exception
and vector number fifty-two for the OPERR exception. The FSAVE frames for the exceptions
are valid and contain the source operands converted to extended precision.

SNAN and OPERR were non-maskable exceptions on the MC68040 for opclass three
instructions with byte, word, or long-word destination formats. The exceptions were non-
maskable so that the MC68040FPSP software could provide the default SNAN or OPERR
results when the exceptions were disabled. With the MC68060, as with the MC68881/882,
SNAN and OPERR are entirely maskable since the default trap disabled results are pro-
vided by floating-point hardware.

MC68060 Software Package

C-18

M68060 USER’S MANUAL

MOTOROLA

M68060FPSP SNAN and OPERR exception handlers, _fpsp_snan and _fpsp_operr, will be
provided for SNAN and OPERR enabled exceptions for the following reasons:

• For opclass two pre-instruction exceptions using a single or double source format with
an infinity, denorm, NAN, or zero source operand, the processor does not create the
correct extended-precision value for the FSAVE frame. The MC68060FPSP handlers
convert the value in the FSAVE frame to extended-precision format before passing con-
trol to the user enabled SNAN or OPERR exception handlers (_real_{snan,operr}). No
parameters are passed to the user enabled SNAN or OPERR exception handlers from
the M68060FPSP package since the package provides the illusion that it never existed.

• For opclass three post-instruction exceptions, the processor does not store the default
result to the destination memory or integer data register before taking the enabled ex-
ception. The MC68881/882 stored the default result in this scenario. Therefore, to main-
tain compatibility, the M68060FPSP SNAN and OPERR exception handlers calculate
and store the default result before passing control to the user enabled SNAN and OP-
ERR exception handlers (_real_{snan,operr}). No parameters are passed to the user
SNAN or OPERR exception handlers since the M68060FPSP provides the illusion that
it never existed.

A simple pseudo-code diagram for the SNAN and OPERR handlers is provided in the code
sequence shown in Figure C-8.

C.3.2.3.3 Inexact Exception. Opclass zero and two exception instructions taking the inex-
act exception cause pre-instruction exceptions, and opclass three instructions cause post-
instruction inexact exceptions. The processor takes exception vector number forty-nine for
the inexact exception. The FSAVE frame for the exception is valid and contains the source
operand converted to extended precision.

The inexact exception is a maskable exception on the MC68060 for the trap-disabled case.
The floating-point hardware produces the correct result when the inexact exception enable

fpsp{snan,operr}() {
if ((opclass == 0) || (opclass == 2)) {

/*
 * if src operand is a sgl or dbl
 * zero,NAN,denorm, or infinity,
 * fix operand in FSAVE frame.
 */
fix_FSAVE_op();

bra.l _real_{snan,operr}();
}
else {/* opclass 3 */

/*
 * save default result to memory
 * or integer register file.
 */
save_default_result();

bra.l _real_{snan,operr}();

Figure C-8. SNAN/OPERR Exception Handler Pseudo-Code

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-19

bit is clear in the FPCR. Therefore, no software assistance is required in this case to main-
tain MC68881/882 compatibility. An M68060FPSP handler, _fpsp_inex, is provided for en-
abled inexact exceptions for the following reasons:

• For opclass two pre-instruction exceptions, the processor does not store the default re-
sult to the destination floating-point register before taking the enabled inexact excep-
tion. The MC68881/882 stored the default result in this scenario. Therefore, to maintain
compatibility, the M68060FPSP inexact exception handler calculates and stores the de-
fault result before passing control to the user enabled inexact exception handler
(_real_inex). No parameters are passed to the user enabled inexact exception handler
since the M68060FPSP handler provides the illusion that it never existed.

• In addition, for opclass two pre-instruction exceptions using a single or double source
format with an infinity, denorm, or zero source operand, the processor does not create
the correct extended-precision value for the FSAVE frame. The correct extended-pre-
cision value is also not created when the source format is a longword integer. The
M68060FPSP inexact handler converts the value in the FSAVE frame to extended-pre-
cision format for these cases before passing control to the user enabled inexact excep-
tion handler (_real_inex).

• For opclass three post-instruction exceptions, the processor does not store the default
result to the destination memory or integer data register before taking the enabled in-
exact exception. The MC68881/882 stored the default result in this scenario. Therefore,
to maintain compatibility, the M68060FPSP inexact exception handler calculates and
stores the default result before passing control to the user enabled inexact exception
handler (_real_inex). No parameters are passed to the user enabled inexact exception
handler since the M68060FPSP handler provides the illusion that it never existed.

C.3.2.3.4 Divide-by-Zero Exception. Only opclass zero and two instructions can take the
divide-by-zero floating-point (DZ) exception. The processor takes exception vector number
fifty with a type zero stack frame for this case. The FSAVE frame for the DZ exception is
valid and contains the source operand converted to extended precision.

The divide-by-zero exception is a maskable exception on the MC68060 for the trap disabled
case. The FPU produces the correct result when the DZ bit in the FPCR is clear. No
M68060FPSP assistance is required to maintain MC68881/882 compatibility for DZ dis-
abled. A handler, _fpsp_dz, is provided for enabled DZ exceptions. This M68060FPSP han-
dler converts the FSAVE source operand to extended precision if the source operand is a
zero in single or double format. The handler then passes control to the user enabled divide-
by-zero exception handler (_real_dz). No parameters are passed to the user DZ exception
handler from the M68060FPSP package since the package provides the illusion that it never
existed.

C.3.2.3.5 Branch/Set on Unordered Exception. The MC68060 processor provides the
correct results and actions for both the branch/set on unordered (BSUN) exception enabled
and disabled cases. Therefore, no M68060FPSP assistance is required for MC68881/882
compatibility.

MC68060 Software Package

C-20 M68060 USER’S MANUAL MOTOROLA

C.3.2.4 EXCEPTIONS DURING EMULATION. Unimplemented data type, unimplemented
effective address, and unimplemented floating-point instruction exception software emula-
tion by the M68060FPSP may determine that the instruction being emulated should take a
BSUN, SNAN, OPERR, OVFL, UNFL, DZ, or INEX exception. These exceptions may either
be enabled or disabled (see examples in Figure C-9).

C.3.2.4.1 Trap-Disabled Operation. If a newly found exception is disabled by the user,
then the default result for that exception is returned as the result of emulation by the
M68060FPSP. The handler then returns the processor to normal processing.

Figure C-9. Disabled vs. Enabled Exception Actions

fsin.x fp0
<non-fp>
<non-fp>

<non-fp>
<fp instruction>

TAKES FLOATING-POINT UNIMPLEMENTED
EXCEPTION IMMEDIATELY

(a)
(b)

(1) "fsin" software emulation determines that the sine operation should cause an underflow.
(2) If UNFL is:
 • DISABLED: the default result is calculated and returned at point "a"; the "exception present"
 bit in the FPU is clear.
 • ENABLED: an fsave frame with the underflow exception set is restored into the FPU at point "a"
 with the "exception present" bit set.
 The actual underflow will occur as a pre-instruction exception at point "b".

 (a)

(a)

fdiv.x fp0, fp1
<non-fp>
<non-fp>

<non-fp>
<fp instruction>

TAKES FLOATING-POINT UNIMPLEMENTED
DATA TYPE EXCEPTION HERE

(1) fp0 contains a denormalized number and fp1 contains an SNAN; the exceptionis taken as a pre-
 instruction exception at point "a".
(2) "fdiv" software emulation determines that the divide should cause a signalling non exception.
(2) If SNAN is:
 • DISABLED: The default result is calculated and returned at point "a"; the exception present"
 bit in the FPU is clear.
 • ENABLED: an fsave frame with the SNAN exception set is restored into the FPU at point "a" with
 the "exception present" bit set. The actual SNAN exception will then occur immediately as a pre-
 instruction exception when the unimplemented floating point data type handler

(b)

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-21

For example, the FSIN operation in Figure C-9(a) will take an unimplemented floating-point
instruction exception. If FSIN emulation discovers that the result should cause an underflow,
and underflow is disabled, then the fp0 register is assigned the default underflow result value
before program execution continues to the next integer or floating-point instruction.

Note

A “true” pre-instruction exception solution would have inserted
an FSAVE frame of type underflow into the FPU so that the un-
derflow processing would be delayed until the next floating-point
instruction triggered a pre-instruction underflow exception. The
approach taken by the M68060FPSP in this case avoids the
overhead of the second exception.

C.3.2.4.2 Trap-Enabled Operation. If an exception is enabled and the instruction is of
opclass zero or two, then an FSAVE frame of that exception type is restored into the FPU
by the M68060FPSP. Second, the stack frame is cleaned up to the point just before the orig-
inal exception handler was entered. Next, the original exception stack frame is converted to
a stack frame for the new exception type. Finally, the handler returns the processor to nor-
mal processing. The new exception is then taken as a pre-instruction exception upon
encountering the next floating-point instruction.

From the previous FSIN example of Figure C-9(a), if the emulation encountered an under-
flow condition and underflow was enabled, an FSAVE frame with the underflow exception
bit set would be inserted into the FPU. An underflow pre-instruction exception would then be
taken upon encountering the next floating-point instruction.

This restoring procedure is used for enabled exceptions so that an exception will not enter
through an unimplemented data type, unimplemented effective address, or unimplemented
floating-point instruction exception and then exit through an SNAN, OPERR, OVFL, UNFL,
DZ, or INEX exception handler for an opclass zero or two instruction. Some operating sys-
tems may be confused by this type of flow change.

Opclass three instruction emulation that encounters an enabled exception is physically
unable to insert the appropriate exception frame into the FPU and return to normal process-
ing to await the next floating-point instruction. So, the M68060FPSP converts the existing
exception stack frame to a frame of the enabled exception’s type and inserts the exceptional
state into the FPU with an FRESTORE. Then, the M68060FPSP package branches to the
appropriate host operating system-supplied interface (_real_{SNAN, OPERR, OVFL, UNFL,
INEX}) for the enabled exception. This approach was also used with the MC68040FPSP.

C.3.3 Module 4: Partial Floating-Point Kernel
This module is identical to the full floating-point kernel in every aspect with the exception that
the floating-point unimplemented exception handler code is not included. This module is typ-
ically used with the floating-point library in a system that does not encounter MC68881
instructions that are unimplemented in the MC68060.

MC68060 Software Package

C-22 M68060 USER’S MANUAL MOTOROLA

C.3.4 Module 5: Floating-Point Library (M68060FPLSP)
The M68060SP provides a library version of the unimplemented general monadic and
dyadic floating-point instructions shown in Table C-3. These routines are System V ABI
compliant as well as IEEE exception-reporting compliant. They are not, however, UNIX
exception-reporting compliant. This library implementation can be compiled with user appli-
cations desiring the functionality of these instructions without having to incur the overhead
of the floating-point unimplemented instruction” exception. The floating-point library contains
floating-point instructions that are implemented by the MC68060. The floating-point library
requires the partial floating-point kernel or full floating-point kernel to be ported to the system
for proper operation.

In addition, the FABS, FADD, FDIV, FINT, FINTRZ, FMUL, FNEG, FSQRT, and FSUB
functions are provided for the convenience of older compilers that make subroutine calls for
all floating-point instructions. The code does not emulate these instructions in integer, but
rather simply executes them.

All input variables must be pushed onto the stack prior to calling the supplied library rou-
tine. For each function, three entry points are provided, each accepting one of the three
possible input operand data types: single, double, and extended precision. For dyadic
operations both input operands are defined to have the same operand data type. For
instance, for a monadic instruction such as the FSIN instruction, the functions are:
_fsins(single-precision input operand), _fsind(double-precision input operand),
_fsinx(extended-precision input operand). For dyadic operations such as the FDIV instruc-
tion, the entry points provided are: _fdivs(both single-precision input operands), _fdivd(both
double-precision input operands, _fdivx(both extended-precision input operands).

To properly call a monadic subroutine, the calling routine must push the input operand onto
the stack first. For instance:

* This example replaces the “fsin.x fp1,fp0” instruction
* Note that _fsinx is actually implemented as an offset from the
* top of the Floating-point Library Module.
fmove.x fp1,-(sp) ; push operand to stack
bsr _fsinx ; result returned in fp0
add.w #12,sp ; clean up stack

To properly call a dyadic subroutine, the calling routine must push the second operand
onto the stack before pushing the first operand onto the stack. For instance:

* This example replaces the “fdiv.x fp1,fp0” instruction
* Note that _fdivx is actually implemented as an offset from the
* top of the Floating-point Library Module.
fmove.x fp1,-(sp) ; push 2nd operand to stack
fmove.x fp0,-(sp) ; push 1st operand to stack
bsr _fdivx ; result returned in fp0
add.w #24,sp ; clean up stack

All routines return the operation result in the register fp0. It is the responsibility of the calling
routine to remove the input operands from the stack after the routine has been executed.
The result’s rounding precision and mode, as well as exception reporting, is dictated by the
value of the FPCR upon subroutine entry. The floating-point status register (FPSR) is set

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-23

appropriately upon subroutine return. The floating-point address register (FPIAR) is unde-
fined.

This module contains no operating system dependencies. There is no call-out dispatch
table. To report an exception, the emulation routine uses the FPCR exception enable byte
to determine whether or not to report an exception. If the exception is enabled, the exception
is forced using implemented floating-point instructions.

For instance, if the instruction being emulated should cause a floating-point OPERR excep-
tion, then the library routine, as its last instruction, executes an FMUL of a zero and infinity
to force an OPERR exception. Although the exception stack frame will not point to the cor-
rect instruction, the user can record that such an event occurred.

C.4 OPERATING SYSTEM DEPENDENCIES
When porting the unimplemented integer, full or partial floating-point kernel modules, some
routines need to be written outside and are not provided by the M68060SP.

C.4.1 Instruction and Data Fetches
In traditional UNIX systems, portability is promoted by the abstracting of reads/writes from
and to user space into calls to the routines _copyin and _copyout see Table C-5. The
MC68040FPSP provided one higher level of abstraction with the routines _mem_read and
_mem_write. These routines were a superset of the UNIX routines in that they handled both
user and supervisor accesses Figure C-10.

This approach provided a high degree of portability for the MC68040FPSP. The installer
simply had to replace the references to _copy{in,out} in _mem_{read,write} with the host
operating system’s (UNIX or non-UNIX) corresponding calls. In addition, any pre-processing
necessary before a potential read/write fault (user or supervisor) was confined to these rou-
tines. As a result, several operating system types could be supported with only minor mod-
ifications.

Table C-5. UNIX Operating System Calls

Function Call Parameters

copyin (user_addr, super_addr, nbytes)

copyout (super_addr, user_addr, nbytes)

void mem_read(src_addr, dst_addr, nbytes) {
if (SR[supervisor_bit]) {
/* supervisor mode */
while (nbytes--) {
mem[dst_addr+nbytes] = mem[src_addr+nbytes];
}
}
else /* user mode */
_copyin(src_addr, dst_addr, nbytes);

Figure C-10. _mem_read Pseudo-Code

MC68060 Software Package

C-24 M68060 USER’S MANUAL MOTOROLA

Since the MC68040FPSP obtained most of its necessary information from the complex
stack frames, very few calls to _mem_{read,write} were required. For the M68060SP, less
information is provided by the processor. Therefore, several accesses to/from user code
and data space may be necessary for emulation. Providing the MC68040FPSP level of sub-
routine abstraction in the M68060SP will slightly degrade performance.

In order to compensate for this loss, the M68060SP adds to the list of operating system-sup-
plied call-outs that read/write user/supervisor data/instruction memory. The current routines
are _imem_read_{word,long} and _dmem_{read,write}_{byte,word,long}. These pro-
vide a finer granularity than the traditional _mem_{read,write} which is also provided. Figure
C-11 outlines the register usage of these routines.

Unlike the MC68040, which stored all necessary operands and decoding information on the
stack, the MC68060 processor does not always “touch” the entire instruction and operand
before entering an exception handler. Therefore, unlike with the MC68040FPSP, the
M68060SP memory read and write routines may encounter bad addresses. For example,
the instruction FSIN.x ADDR,fp0 will enter the M68060SP. When the M68060SP package
executes a _dmem_read to fetch the extended-precision operand, the routine may return a
failing value if ADDR points to inappropriate memory.

If _mem_{read,write} returns a non-zero status value to the M68060SP, the M68060SP cre-
ates an access error exception stack frame out of the existing exception stack frame and
branches to the user-supplied call-out _real_access. The _real_access call-out must con-
tain the actual access error handler, a short program that examines the vector table to find
the actual access error handler address and branch to it, or an entirely separate access error
handler for this specific case.

The PC on the access error stack frame points to the instruction the caused the original
exception. The stacked address will point to the address passed to _mem_{read,write}
before it returned a failing value. The stacked fault status long word (FSLW) will have the
SEE bit set. The other FSLW bits may or may not be defined, depending on the M68060SP
release. The initial release of the M68060SP does not define the other FSLW bits. However,
future releases may define these bits. The handler supplied by the operating system for
_real_access (most likely the system’s access error handler) should check for this bit and
take appropriate action if set. An example action could be that the process executing the
instruction that originally entered the M68060SP is terminated.

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-25

* _dmem_write():
* Writes to data memory while in supervisor mode.
* INPUTS:
* a0 - supervisor source address
* a1 - user destination address
* d0 - number of bytes to write
* $4(a6),bit5 - 1 = supervisor mode, 0 = user mode
* OUTPUTS:
* d1 - 0 = success, !0 = failure

* _imem_read(), _dmem_read():
* Reads from data/instruction memory while in supervisor mode.
* INPUTS:
* a0 - user source address
* a1 - supervisor destination address
* d0 - number of bytes to read
* $4(a6),bit5 - 1 = supervisor mode, 0 = user mode
* OUTPUTS:
* d1 - 0 = success, !0 = failure

* _dmem_read_byte(), _dmem_read_word(), _dmem_read_long():
* Read a data byte/word/long from user memory.
* INPUTS:
* a0 - user source address
* $4(a6),bit5 - 1 = supervisor mode, 0 = user mode
* OUTPUTS:
* d0 - data byte/word/long in d0
* d1 - 0 = success, !0 = failure

* _dmem_write_byte(), dmem_write_word(), dmem_write_long():
* Write a data byte/word/long to user memory.
* INPUTS:
* a0 - user destination address
* d0 - data byte/word/long in d0
* $4(a6),bit5 - 1 = supervisor mode, 0 = user mode
* OUTPUTS:
* d1 - 0 = success, !0 = failure

* _imem_read_word(), _imem_read_long():
* Read an instruction word/long from user memory.
* INPUTS:
* a0 - user source address
* $4(a6),bit5 - 1 = supervisor mode, 0 = user mode
* OUTPUTS:
* d0 - instruction word/long in d0
* d1 - 0 = success, !0 = failure

Figure C-11. Register Usage of {i,d}mem_{read,write}_{b,w,l}

MC68060 Software Package

C-26 M68060 USER’S MANUAL MOTOROLA

C.4.2 Instructions Not Recommended
Emulated instructions that use the pre-decrement and post-increment addressing mode on
the system stack must not contradict the basic definition of a stack. An operation that uses
input operands below the stack (using the pre-decrement addressing mode) exhibits poor
programming structure since the instruction is using a value before it has been defined. In
addition, instructions that place a result on the stack using the post-increment addressing
mode exhibit poor programming structure since an unexpected exception such as an inter-
rupt or an unimplemented instruction exception would corrupt the result. The M68060SP
does not handle these instruction cases properly, and unpredictable behavior will be exhib-
ited when executing code of this type.

The M68060SP does not recover gracefully from these instruction cases because a perfor-
mance penalty would be incurred to handle them properly. To avoid imposing this perfor-
mance penalty on well-behaved systems, the task of avoiding these cases has been left
outside the M68060SP. If the system absolutely requires that these cases be handled grace-
fully, the system software envelope can pre-filter these cases prior to entering the
M68060SP. Table C-6 outlines these instructions.

Table C-6. Instructions Not Handled by the M68060SP

Instruction Exception
Address

Mode

div{u,s}.l (64-bit) Integer Unimplemented –(ssp), dr:dq

mul{u,s}.l (64-bit) Integer Unimplemented –(ssp), dr:dq

cas.{w,l} (mis) Integer Unimplemented dc:du,–(ssp)

cas.{w,l} (mis) Integer Unimplemented dc:du,(ssp)+

f<op>.p (all) Floating-Point Unimplemented Data Type –(ssp), fpn

f<op>.p Floating-Point Unimplemented Data Type fpn, (ssp)+

f<op>.{b,w,l,s,d,x} Floating-Point Unimplemented Instruction –(ssp), fpn

fs<cc>.b Floating-Point Unimplemented Instruction –(ssp)

fmovem.x Floating-Point Unimplemented Instruction –(ssp), dn

fmovem.x Floating-Point Unimplemented Instruction dn, (ssp)+

f<op>.x Underflow,SNAN fpn, (ssp)+

f<op>.{b,w,l} Enabled OPERR fpn, (ssp)+

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-27

C.5 INSTALLATION NOTES
This section provides a guide on how to install the M68060SP. The files provided in an
M68060SP release are shown on Table C-7.

C.5.1 Installing the Library Modules
The integer and floating-point library modules (files ilsp.sa and fplsp.sa) require a very sim-
ple installation procedure. A symbolic label needs to be added to the module top so that call-
ing routines can use this to reference the other entry-points supplied by these modules as
an offset from the top of the module. It is the responsibility of the calling routine to enter the
package through the proper offset relative to the top of the module.

C.5.2 Installing the Kernel Modules
The unimplemented integer instruction exception handler and full and/or partial floating-
point kernel modules (files fpsp.sa, isp.sa, pfpsp.sa) may require additional steps. To aid in
installation, three assembly language files are made available in the M68060SP release.
These files contain the sample call-out routines and call-out dispatch tables for the unimple-
mented integer instruction exception handler module (iskeleton.s file), full or partial floating-
point kernel modules (fskeleton.s file), and call-outs common to both (os.s file). When mod-

Table C-7. Files Provided in an M68060SP Release

File Description

fpsp.sa Full floating-point kernel module

pfpsp.sa Partial floating-point kernel module

isp.sa Integer unimplemented exception handler module

fplsp.sa Floating-point library module

ilsp.sa Integer library module

fskeleton.s Sample call-outs needed by fpsp.sa and pfpsp.sa

iskeleton.s Sample call-outs needed by isp.sa

os.s Sample call-outs needed by fpsp.sa, pfpsp.sa and
isp.sa

fpsp.doc Release documentation for fpsp.sa and pfpsp.sa

isp.doc Release documentation for isp.sa

fplsp.doc Release documentation for fplsp.sa

ilsp.doc Release documentation for ilsp.sa

fpsp.s Source code of fpsp.sa

pfpsp.s Source code of pfpsp.sa

isp.s Source code of isp.sa

fplsp.s Source code of fplsp.sa

ilsp.s Source code of ilsp.sa

MC68060 Software Package

C-28 M68060 USER’S MANUAL MOTOROLA

ifying the call-out dispatch table, keep in mind that these need to be supplied and filled-in
with module-relative, and not absolute addresses.

The next step is to prepare the exception vector table. The appropriate vector table entries
must be filled with the addresses of the appropriate entry points. Since the modified pseudo-
assembly module contains symbols that indicate the top of the module, the appropriate vec-
tor table entries must contain the symbol of the appropriate module top plus the pre-defined
offset. Another alternative is to use the module code size information given in Table C-1 to
concatenate the modules and use a single symbolic label to describe the combined module.
Figure C-12 illustrates the relationship of the vector table to the M68060SP.

The last step is to link everything. Be aware that the files must be linked such that the parts
of the module that are in different files are kept together. Be aware that the included files
are for a very simple installation procedure and may not be appropriate for all systems. For
instance, the supplied _real_trace routine would be inappropriate for a system in which the
trace vector table entry is dynamically changed. For that system, the _real_trace routine
must include vector table query before jumping to the actual trace routine.

C.5.3 Release Notes and Module Offset Assignments
To obtain the most up-to-date offset assignments for the call-out dispatch table and the mod-
ule Entry-point Dispatch Section assignments, four document files are provided with the
M68060SP release. The files isp.doc, ilsp.doc, fpsp.doc, and fplsp.doc define the offsets for
the unimplemented integer instruction exception handler, unimplemented integer subrou-
tine, full (or partial) floating-point kernel and floating-point library modules respectively. The
current module sizes are shown in Table C-1. If a module increases in code size or if addi-
tional entry points are made available in future releases, they will be documented in these
four files.

Figure C-12. Vector Table and M68060SP Relationship

OR

VECTOR ENTRY VECTOR ENTRY

VECTOR TABLEVECTOR TABLE
x_060SP:

jmp os_done

os_code:

<os start>

<os finish>

jmp x_060SP

OS_done:

rte

(B) INDIRECT ENTRY(A) STRAIGHT ENTRY

NOTE: X_060SP represents a generic M68060SP handler entry point and is not intended to imply a single shared handler entry
point for all MC68060 exception handlers.

MC68060 Software Package

MOTOROLA M68060 USER’S MANUAL C-29

C.5.4 AESOP Electronic Bulletin Board
Motorola’s AESOP electronic bulletin board contains the most current release of the
M68060SP, as well as older releases of the M68060SP. The source code used to create the
five pseudo-assembly files is provided for documentation purposes only and should not be
used for generating a customized software package. Doing so would create versions of the
package that is untested and unsupported by Motorola. Motorola will not create an assem-
bly-to-assembly conversion software to provide a different assembler syntax than is already
available. AESOP requires VT100 terminal emulation, 9600 Baud, 8 bits, no parity, and 1
stop bit. The modem supports V.32bis and V.42bis and MNP5 protocols. The kermit protocol
is needed to download from AESOP. AESOP can be reached at (800)843-3451 or (512)891-
3650.

MOTOROLA

M68060 USER’S MANUAL

D-1

APPENDIX D
MC68060 INSTRUCTIONS

This appendix provides a quick reference to instructions of the MC68060 that differ in
description to the instruction description found in the

M68000 Family Programmer’s Refer-
ence Manual

(M68000PM/AD).

To provide a quick summary of which instructions require software assistance from the
M68060 software package (M68060SP), and to indicate differences of the MC68060 relative
to earlier members of the M68000 family, Table D-1 is provided. Table A-2 lists the M68000
family instructions by mnemonics followed by the descriptive name. Table D-3 provides all
assigned vector table entries up to, and including the MC68060. This may be useful for writ-
ing handlers that apply to multiple members of the M68000 family of processors.

Since some of the MC68060 instructions require software-assist from the MC68060SP, it is
assumed that the MC68060SP has already been installed properly in the system. Given this
assumption, most of the description found in the

M68000 FamilyProgrammer’s Reference
Manual

 applies to the MC68060. In general, instruction descriptions that apply to the
M68000 family, MC68040 or M68040FPSP apply also to the MC68060 or MC68060SP,
unless otherwise provided in this appendix.

Table D-1. M68000 Family Instruction Set and Processor Cross-Reference

Mnemonic
MC68000/
MC68008

MC68010 MC68020 MC68030 MC68040 MC68060
MC68881/
MC68882

MC68851 CPU32

ABCD X X X X X X X
ADD X X X X X X X
ADDA X X X X X X X
ADDI X X X X X X X
ADDQ X X X X X X X
ADDX X X X X X X X
AND X X X X X X X
ANDI X X X X X X X
ANDI to CCR X X X X X X X

ANDI to SR

1

X X X X X X X

ASL, ASR X X X X X X X
Bcc X X X X X X X
BCHG X X X X X X X
BCLR X X X X X X X
BFCHG X X X X
BFCLR X X X X
BFEXTS X X X X
BFEXTU X X X X
BFFFO X X X X

MC68060 Instructions

D-2

M68060 USER’S MANUAL

MOTOROLA

BFINS X X X X
BFSET X X X X
BFTST X X X X
BGND X
BKPT X X X X X X
BRA X X X X X X X
BSET X X X X X X X
BSR X X X X X X X
BTST X X X X X X X
CALLM X
CAS, CAS2 X X X X,3
CHK X X X X X X X
CHK2 X X X 3 X

CINV

1

X X

CLR X X X X X X X
CMP X X X X X X X
CMPA X X X X X X X
CMPI X X X X X X X
CMPM X X X X X X X
CMP2 X X X 3 X
cpBcc X X
cpDBcc X X
cpGEN X X

cpRESTORE

1

X X

cpSAVE

1

X X

cpScc X X
cpTRAPcc X X

CPUSH

1

X X

DBcc X X X X X X X
DIVS X X X X X X,3 X
DIVSL X X X X X
DIVU X X X X X X,3 X
DIVUL X X X X X
EOR X X X X X X X
EORI X X X X X X X
EORI to CCR X X X X X X X

EORI to SR

1

X X X X X X X

EXG X X X X X X X
EXT X X X X X X X
EXTB X X X X X
FABS X,2 X,2 X
FSABS,
FDABS X,2 X,2

FACOS 2,3 2,3 X
FADD X,2 X,2 X
FSADD,
FDADD X,2 X,2

FASIN 2,3 2,3 X

Table D-1. M68000 Family Instruction Set and Processor Cross-Reference (Continued)

Mnemonic
MC68000/
MC68008

MC68010 MC68020 MC68030 MC68040 MC68060
MC68881/
MC68882

MC68851 CPU32

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-3

FATAN 2,3 2,3 X
FATANH 2,3 2,3 X
FBcc X,2 X,2 X
FCMP X,2 X,2 X
FCOS 2,3 2,3 X
FCOSH 2,3 2,3 X
FDBcc X,2 2,3 X
FDIV X,2 X,2 X
FSDIV, FDDIV X,2 X,2
FETOX 2,3 2,3 X
FETOXM1 2,3 2,3 X
FGETEXP 2,3 2,3 X
FGETMAN 2,3 2,3 X
FINT 2,3 X,2 X
FINTRZ 2,3 X,2 X
FLOG10 2,3 2,3 X
FLOG2 2,3 2,3 X
FLOGN 2,3 2,3 X
FLOGNP1 2,3 2,3
FMOD 2,3 2,3 X
FMOVE X,2 X,2 X
FSMOVE,
FDMOVE X,2 X,2

FMOVECR 2,3 2,3 X
FMOVEM X,2 X,2,3 X
FMUL X,2 X,2 X
FSMUL,
FDMUL X,2 X,2

FNEG X,2 X,2 X
FSNEG,
FDNEG X,2 X,2

FNOP X,2 X,2 X
FREM 2,3 2,3 X

FRESTORE

1

X,2 X,2 X

FSAVE* X,2 X,2 X
FSCALE 2,3 2,3 X
FScc X,2 2,3 X
FSGLDIV 2,3 2,3 X
FSGLMUL 2,3 2,3 X
FSIN 2,3 2,3 X
FSINCOS 2,3 2,3 X
FSINH 2,3 2,3 X
FSQRT X,2 X,2 X
FSSQRT,
FDSQRT X,2 X,2

FSUB X,2 X,2 X
FSSUB,
FDSUB X,2 X,2

FTAN 2,3 2,3 X
FTANH 2,3 2,3 X

Table D-1. M68000 Family Instruction Set and Processor Cross-Reference (Continued)

Mnemonic
MC68000/
MC68008

MC68010 MC68020 MC68030 MC68040 MC68060
MC68881/
MC68882

MC68851 CPU32

MC68060 Instructions

D-4

M68060 USER’S MANUAL

MOTOROLA

FTENTOX 2,3 2,3 X
FTRAPcc X,2 2,3 X
FTST X,2 X,2 X
FTWOTOX 2,3 2,3 X
ILLEGAL X X X X X X X
JMP X X X X X X X
JSR X X X X X X X
LEA X X X X X X X
LINK X X X X X X X
LPSTOP X
LSL,LSR X X X X X X X
MOVE X X X X X X X
MOVEA X X X X X X X
MOVE from
CCR X X X X X X

MOVE to CCR X X X X X X X
MOVE
from SR

1

4 X X X X X X

MOVE
to SR

1

X X X X X X X

MOVE USP

1

X X X X X X X

MOVE16 X X

MOVEC

1

X X X X X X

MOVEM X X X X X X X
MOVEP X X X X X X
MOVEQ X X X X X X X

MOVES

1

X X X X X X

MULS X X X X X X,3 X
MULU X X X X X X,3 X
NBCD X X X X X X X
NEG X X X X X X X
NEGX X X X X X X X
NOP X X X X X X X
NOT X X X X X X X
OR X X X X X X X
ORI X X X X X X X
ORI to CCR X X X X X X X

ORI to SR

1

X X X X X X X

PACK X X X X

PBcc

1

X

PDBcc

1

X

PEA X X X X X X X

PFLUSH

1

X,5 X X X

PFLUSHA

1

X,5 X

PFLUSHR

1

X

PFLUSHS

1

X

PLPA X

Table D-1. M68000 Family Instruction Set and Processor Cross-Reference (Continued)

Mnemonic
MC68000/
MC68008

MC68010 MC68020 MC68030 MC68040 MC68060
MC68881/
MC68882

MC68851 CPU32

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-5

PLOAD

1

X,5 X

PMOVE

1

X X

PRESTORE

1

X

PSAVE

1

X

PScc

1

X

PTEST

1

X X X

PTRAPcc

1

X

PVALID X

RESET

1

X X X X X X X

ROL,ROR X X X X X X X
ROXL,
ROXR X X X X X X X

RTD X X X X X X

RTE

1

X X X X X X X

RTM X
RTR X X X X X X X
RTS X X X X X X X
SBCD X X X X X X X
Scc X X X X X X X

STOP

1

X X X X X X X

SUB X X X X X X X
SUBA X X X X X X X
SUBI X X X X X X X
SUBQ X X X X X X X
SUBX X X X X X X X
SWAP X X X X X X X
TAS X X X X X X X
TBLS,
TBLSN X

TBLU,
TBLUN X

TRAP X X X X X X X
TRAPcc X X X X X
TRAPV X X X X X X X
TST X X X X X X X
UNLK X X X X X X X
UNPK X X X X
NOTES:
1. Privileged (Supervisor) Instruction
2. Not applicable to the MC68EC040, MC68LC040, MC68EC060, and MC68LC060.
3. These are software-supported instructions on the MC68040 and MC68060.
4. This instruction is not privileged for the MC68000 and MC68008.
5. Not applicable to MC68EC030.
6. All MC68060 and MC68040 Floating-point instructions require software assistance for unimplemented data types

(MC68040 and MC68060) and unimplemented effective addresses (MC68060 only).

Table D-1. M68000 Family Instruction Set and Processor Cross-Reference (Continued)

Mnemonic
MC68000/
MC68008

MC68010 MC68020 MC68030 MC68040 MC68060
MC68881/
MC68882

MC68851 CPU32

MC68060 Instructions

D-6

M68060 USER’S MANUAL

MOTOROLA

Table D-2. M68000 Family Instruction Set

Mnemonic Description

ABCD
ADD
ADDA
ADDI
ADDQ
ADDX
AND
ANDI
ANDI to CCR
ANDI to SR
ASL, ASR

Add Decimal with Extend
Add
Address
Add Immediate
Add Quick
Add with Extend
Logical AND
Logical AND Immediate
AND Immediate to Condition Code Register
AND Immediate to Status Register
Arithmetic Shift Left and Right

Bcc
BCHG
BCLR
BFCHG
BFCLR
BFEXTS
BFEXTU
BFFFO
BFINS
BFSET
BFTST
BGND
BKPT
BRA
BSET
BSR
BTST

Branch Conditionally
Test Bit and Change
Test Bit and Clear
Test Bit Field and Change
Test Bit Field and Clear
Signed Bit Field Extract
Unsigned Bit Field Extract
Bit Field Find First One
Bit Field Insert
Test Bit Field and Set
Test Bit Field
Enter Background Mode
Breakpoint
Branch
Test Bit and Set
Branch to Subroutine
Test Bit

CALLM
CAS
CAS2
CHK
CHK2
CINV
CLR
CMP
CMPA
CMPI
CMPM
CMP2
cpBcc
cpDBcc
cpGEN
cpRESTORE
cpSAVE
cpScc
cpTRAPcc

CALL Module
Compare and Swap Operands
Compare and Swap Dual Operands
Check Register Against Bound
Check Register Against Upper and Lower Bounds
Invalidate Cache Entries
Clear
Compare
Compare Address
Compare Immediate
Compare Memory to Memory
Compare Register Against Upper and Lower Bounds
Branch on Coprocessor Condition
Test Coprocessor Condition Decrement and Branch
Coprocessor General Function
Coprocessor Restore Function
Coprocessor Save Function
Set on Coprocessor Condition
Trap on Coprocessor Condition

DBcc
DIVS, DIVSL
DIVU, DIVUL

Test Condition, Decrement and Branch
Signed Divide
Unsigned Divide

EOR
EORI
EORI to CCR
EORI to SR
EXG
EXT, EXTB

Logical Exclusive-OR
Logical Exclusive-OR Immediate
Exclusive-OR Immediate to Condition Code Register
Exclusive-OR Immediate to Status Register
Exchange Registers
Sign Extend

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-7

FABS
FSFABS, FDFABS
FACOS
FADD
FSADD, FDADD
FASIN
FATAN
FATANH
FBcc
FCMP
FCOS
FCOSH
FDBcc
FDIV
FSDIV, FDDIV
FETOX
FETOXM1
FGETEXP
FGETMAN
FINT
FINTRZ
FLOG10
FLOG2
FLOGN
FLOGNP1
FMOD
FMOVE
FSMOVE,FDMOVE
FMOVECR
FMOVEM
FMUL
FSMUL,FDMUL
FNEG
FSNEG,FDNEG
FNOP
FREM
FRESTORE
FSAVE
FSCALE
FScc
FSGLDIV
FSGLMUL
FSIN
FSINCOS
FSINH
FSQRT
FSSQRT,FDSQRT
FSUB
FSSUB,FDSUB
FTAN
FTANH
FTENTOX
FTRAPcc
FTST
FTWOTOX

Floating-Point Absolute Value
Floating-Point Absolute Value (Single/Double Precision)
Floating-Point Arc Cosine
Floating-Point Add
Floating-Point Add (Single/Double Precision)
Floating-Point Arc Sine
Floating-Point Arc Tangent
Floating-Point Hyperbolic Arc Tangent
Floating-Point Branch
Floating-Point Compare
Floating-Point Cosine
Floating-Point Hyperbolic Cosine
Floating-Point Decrement and Branch
Floating-Point Divide
Floating-Point Divide (Single/Double Precision)
Floating-Point e

x

Floating-Point e

x

–1
Floating-Point Get Exponent
Floating-Point Get Mantissa
Floating-Point Integer Part
Floating-Point Integer Part, Round-to-Zero
Floating-Point Log10
Floating-Point Log2
Floating-Point Loge
Floating-Point Loge

(x+1)

Floating-Point Modulo Remainder
Move Floating-Point Register
Move Floating-Point Register (Single/Double Precision)
Move Constant ROM
Move Multiple Floating-Point Registers
Floating-Point Multiply
Floating-Point Multiply (Single/Double Precision)
Floating-Point Negate
Floating-Point Negate (Single/Double Precision)
Floating-Point No Operation
IEEE Remainder
Restore Floating-Point Internal State
Save Floating-Point Internal State
Floating-Point Scale Exponent
Floating-Point Set According to Condition
Single-Precision Divide
Single-Precision Multiply
Sine
Simultaneous Sine and Cosine
Hyperbolic Sine
Floating-Point Square Root
Floating-Point Square Root (Single/Double Precision)
Floating-Point Subtract
Floating-Point Subtract (Single/Double Precision)
Tangent
Hyperbolic Tangent
Floating-Point 10

x

Floating-Point Trap on Condition
Floating-Point Test
Floating-Point 2

x

ILLEGAL Take Illegal Instruction Trap

Table D-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

MC68060 Instructions

D-8

M68060 USER’S MANUAL

MOTOROLA

JMP
JSR

Jump
Jump to Subroutine

LEA
LINK
LPSTOP
LSL, LSR

Load Effective Address
Link and Allocate
Low-Power Stop
Logical Shift Left and Right

MOVE
MOVEA
MOVE from CCR
MOVE from SR
MOVE to CCR
MOVE to SR
MOVE USP
MOVE16
MOVEC
MOVEM
MOVEP
MOVEQ
MOVES
MULS
MULU

Move
Move Address
Move from Condition Code Register
Move from Status Register
Move to Condition Code Register
Move to Status Register
Move User Stack Pointer
16-Byte Block Move
Move Control Register
Move Multiple Registers
Move Peripheral
Move Quick
Move Alternate Address Space
Signed Multiply
Unsigned Multiply

NBCD
NEG
NEGX
NOP
NOT

Negate Decimal with Extend
Negate
Negate with Extend
No Operation
Logical Complement

OR
ORI
ORI to CCR
ORI to SR

Logical Inclusive-OR
Logical Inclusive-OR Immediate
Inclusive-OR Immediate to Condition Code Register
Inclusive-OR Immediate to Status Register

PACK
PBcc
PDBcc
PEA
PFLUSH
PFLUSHA
PFLUSHR
PFLUSHS
PLOAD
PLPA
PMOVE
PRESTORE
PSAVE
PScc
PTEST
PTRAPcc
PVALID

Pack BCD
Branch on PMMU Condition
Test, Decrement, and Branch on PMMU Condition
Push Effective Address
Flush Entry(ies) in the ATCs
Flush Entry(ies) in the ATCs
Flush Entry(ies) in the ATCs and RPT Entries
Flush Entry(ies) in the ATCs
Load an Entry into the ATC
Load Physical Address
Move PMMU Register
PMMU Restore Function
PMMU Save Function
Set on PMMU Condition
Test a Logical Address
Trap on PMMU Condition
Validate a Pointer

RESET
ROL, ROR
ROXL, ROXR
RTD
RTE
RTM
RTR
RTS

Reset External Devices
Rotate Left and Right
Rotate with Extend Left and Right
Return and Deallocate
Return from Exception
Return from Module
Return and Restore
Return from Subroutine

Table D-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-9

SBCD
Scc
STOP
SUB
SUBA
SUBI
SUBQ
SUBX
SWAP

Subtract Decimal with Extend
Set Conditionally
Stop
Subtract
Subtract Address
Subtract Immediate
Subtract Quick
Subtract with Extend
Swap Register Words

TAS
TBLS, TBLSN
TBLU, TBLUN
TRAP
TRAPcc
TRAPV
TST

Test Operand and Set
Signed Table Lookup with Interpolate
Unsigned Table Lookup with Interpolate
Trap
Trap Conditionally
Trap on Overflow
Test Operand

UNLK
UNPK

Unlink
Unpack BCD

Table D-2. M68000 Family Instruction Set (Continued)

Mnemonic Description

MC68060 Instructions

D-10

M68060 USER’S MANUAL

MOTOROLA

Table D-3. Exception Vector Assignments for the M68000 Family

Vector
Number(s)

Vector
Offset (Hex)

Assignment

0 000 Reset Initial Interrupt Stack Pointer
1 004 Reset Initial Program Counter
2 008 Access Fault
3 00C Address Error
4 010 Illegal Instruction
5 014 Integer Divide-by-Zero
6 018 CHK, CHK2 Instruction
7 01C FTRAPcc, TRAPcc, TRAPV Instructions
8 020 Privilege Violation
9 024 Trace
10 028 Line 1010 Emulator (Unimplemented A-Line Opcode)
11 02C Line 1111 Emulator (Unimplemented F-Line Opcode)
12 030 (Reserved)
13 034 Coprocessor Protocol Violation (Defined for MC68020 and MC68030)
14 038 Format Error
15 03C Uninitialized Interrupt

16–23 040–05C (Unassigned, Reserved)
24 060 Spurious Interrupt
25 064 Level 1 Interrupt Autovector
26 068 Level 2 Interrupt Autovector
27 06C Level 3 Interrupt Autovector
28 070 Level 4 Interrupt Autovector
29 074 Level 5 Interrupt Autovector
30 078 Level 6 Interrupt Autovector
31 07C Level 7 Interrupt Autovector

32–47 080–0BC TRAP #0–15 Instruction Vectors

48 0C0 Floating-Point Branch or Set on Unordered Condition
(Defined for MC68881, MC68882, MC68040, and MC68060)

49 0C4 Floating-Point Inexact Result
(Defined for MC68881, MC68882, MC68040, and MC68060)

50 0C8 Floating-Point Divide-by-Zero
(Defined for MC68881, MC68882, MC68040, and MC68060)

51 0CC Floating-Point Underflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

52 0D0 Floating-Point Operand Error
(Defined for MC68881, MC68882, MC68040, and MC68060)

53 0D4 Floating-Point Overflow
(Defined for MC68881, MC68882, MC68040, and MC68060)

54 0D8 Floating-Point Signaling NAN
(Defined for MC68881, MC68882, MC68040, and MC68060)

55 0DC Floating-Point Unimplemented Data Type
(Defined for MC68040 and MC68060)

56 0E0 MMU Configuration Error (Defined for MC68030 and MC68851)
57 0E4 MMU Illegal Operation Error (Defined for MC68851)
58 0E8 MMU Access Level Violation Error (Defined for MC68851)
59 0EC (Unassigned, Reserved)
60 0F0 Unimplemented Effective Address (Defined for MC68060)
61 0F4 Unimplemented Integer Instruction (Defined for MC68060)

62–63 0F8–0FC (Unassigned, Reserved)
64–255 100–3FC User Defined Vectors (192)

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-11

CPUSH

Push and Possibly Invalidate Cache Line

CPUSH

(MC68060, MC68LC060, MC68EC060)

Operation:

If Supervisor State, Then
If Data Cache, Then

 Push Selected Dirty Data Cache Lines
If DPI bit of CACR = 0, Then

Invalidate Selected Cache Lines
Endif

Endif
If Instruction Cache, Then

Invalidate Selected Cache lines
Endif

Endif
Else TRAP

Assembler
Syntax:

CPUSHL<caches>,(An)
CPUSHP<caches>,(An)
CPUSHA<caches>

Where <caches> specifies the instruction cache, data
cache, both caches, or neither cache.

Attributes:

Unsized

Description:

Pushes and possibly invalidates selected cache lines. The data cache,
instruction cache, both caches, or neither cache can be specified. When the data
cache is specified, the selected data cache lines are first pushed to memory (if they
contain dirty data) and then invalidated if the DPI bit of the CACR is cleared. Otherwise,
the selected data cache lines remain valid. Selected instruction cache lines are invali-
dated. The CACR is accessed via the MOVEC instruction.

Specific cache lines can be selected in three ways:

1. CPUSHL pushes and possibly invalidates the cache line (if any) matching the
physical address in the specified address register.

2. CPUSHP pushes and possibly invalidates the cache lines (if any) matching the
physical memory page in the specified address register. For example, if 4K-byte
page sizes are selected and An contains $12345000, all cache lines matching
page $12345000 are selected.

3. CPUSHA pushes and possibly invalidates all cache entries.

MC68060 Instructions

D-12

M68060 USER’S MANUAL

MOTOROLA

CPUSH

Push and Possibly Invalidate Cache Line

CPUSH

(MC68060, MC68LC060, MC68EC060)

Condition Codes:

Not affected.

Instruction Format:

Instruction Fields:

Cache field—Specifies the Cache.
00—No Operation
01—Data Cache
10—Instruction Cache
11—Data and Instruction Caches

Scope field—Specifies the Scope of the Operation.
00—Illegal (causes illegal instruction trap)
01—Line
10—Page
11—All

Register field—Specifies the address register for line and page operations. For line
operations, the low-order bits 3–0 of the address are don’t care. Bits 11–0 or 12–0 of
the address are don’t care for 4K-byte or 8K-byte page operations, respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 0 CACHE 1 SCOPE REGISTER

MC68060 Instructions

MOTOROLA

M68060 USER’S MANUAL

D-13

FRESTORE

Restore Internal

FRESTORE

Floating-Point State

(MC68060 only)

Operation:

If in Supervisor State
Then FPU State Frame

➧

Internal State
Else TRAP

Assembler
Syntax:

FRESTORE<ea>

Attributes:

Unsized

Description:

Aborts the execution of any floating-point operation in progress and loads
a new floating-point unit internal state from the state frame located at the effective
address. The state frame always contains three long words. The third byte from of the
state frame specifies the frame format. The fourth byte of the state frame contains the
exception vector. If the frame format is invalid, the FRESTORE aborts, and a format
exception is generated. If the frame format is valid, the state frame is loaded, starting
at the specified location and proceeding through higher addresses.

The FRESTORE instruction does not normally affect the programmer’s model registers
of the floating-point coprocessor, except for the NULL state frame. The FRESTORE
instruction is used with the FMOVEM instruction to perform a full context restoration of
the floating-point unit, including the floating-point data registers and system control reg-
isters. To accomplish a complete restoration, the FMOVEM instructions are first exe-
cuted to load the programmer’s model, followed by the FRESTORE instruction to load
the internal state.

MC68060 Instructions

D-14

M68060 USER’S MANUAL

MOTOROLA

FRESTORE

Restore Internal

FRESTORE

Floating-Point State

(MC68060 only)

The current implementation of the MC68060 supports the following four state frames:

NULL: This state frame has a frame format of $00. An FRESTORE operation with
this state frame is equivalent to a hardware reset of the floating-point unit.
The programmer’s model is set to the reset state, with nonsignaling NANs
in the floating-point data registers and zeros in the floating-point control reg-
ister, floating-point status register, and floating-point instruction address
register. (Thus, it is unnecessary to load the programmer’s model before
this operation.)

IDLE: This state frame has a frame format of $60. An FRESTORE operation with
this state frame causes the floating-point unit to be restored to the idle state,
waiting for the initiation of the next instruction, with no exceptions pending.
The programmer’s model is not affected by loading this type of state frame.

EXCP: This state frame has a frame format of $E0. An FRESTORE operation with
this state frame causes the floating-point unit to be restored to an excep-
tional state. The exception vector field defines the type of exception that is
pending. When in this state, initiation of any floating-point instruction with
the exception of FSAVE or another FRESTORE causes the pending excep-
tion to be taken.The floating-point unit remains in this state until an FSAVE
instruction is executed, then, it enters the idle state. The programmer’s
model is not affected by loading this type of state frame.

Floating-Point Status Register:

 Cleared if the state size is NULL; otherwise, not affected.

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-15

FRESTORE Restore Internal FRESTORE
Floating-Point State

(MC68060 only)

Instruction Format:

Instruction Field:

Effective Address field—Determines the addressing mode for the state frame. Only
postincrement or control addressing modes can be used as listed in the following table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 1 EFFECTIVE ADDRESS
MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + 011 reg. number:An

–(An) — —

(d16,An) 101 reg. number:An (d16,PC) 111 010

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) 111 011

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) 111 011

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) 111 011

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) 111 011

MC68060 Instructions

D-16 M68060 USER’S MANUAL MOTOROLA

FSAVE Save Internal Floating-Point State FSAVE
(MC68060 only)

Operation: If in Supervisor State
Then FPU Internal State ➧ State Frame

Else TRAP

Assembler
Syntax: FSAVE<ea>

Attributes: Unsized

Description: FSAVE allows the completion of any floating-point operation in progress. It
saves the internal state of the floating-point unit in a state frame located at the effective
address. After the save operation, the floating-point unit is in the idle state, waiting for
the execution of the next instruction. The first long word written to the state frame con-
tains the frame format on the third byte. The state frame always contains three long
words.

Any floating-point operation in progress when an FSAVE instruction is encountered
can be completed before the FSAVE executes, saving an IDLE state frame. An IDLE
state frame is created by the FSAVE if no exceptions occurred; otherwise, an EXCP
state frame is created.

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-17

FSAVE Save Internal Floating-Point State FSAVE
(MC68060 only)

The following state frames apply to the MC68060.

NULL: An FSAVE instruction that generates this state frame indicates that the
floating-point unit state has not been modified since the last hardware reset
or FRESTORE instruction with a NULL state frame. This indicates that the
programmer’s model is in the reset state, with nonsignaling NANs in the
floating-point data registers and zeros in the floating-point control register,
floating-point status register, and floating-point instruction address register.
(Thus, it is not necessary to save the programmer’s model.)

IDLE: An FSAVE instruction that generates this state frame indicates that the
floating-point unit finished in an idle condition and is without any pending
exceptions waiting for the initiation of the next instruction.

EXCP: An FSAVE instruction that generates this size state frame indicates that the
floating-point unit encountered an exception while attempting to complete
the execution of the previous floating-point instructions, or that an FRE-
STORE of an EXCP frame occurred previously.

The FSAVE does not save the programmer’s model registers of the floating-point unit;
it saves only the user invisible portion of the machine. The FSAVE instruction may be
used with the FMOVEM instruction to perform a full context save of the floating-point
unit that includes the floating-point data registers and system control registers. To
accomplish a complete context save, first execute an FSAVE instruction to suspend
the current operation and save the internal state, then execute the appropriate
FMOVEM instructions to store the programmer’s model.

MC68060 Instructions

D-18 M68060 USER’S MANUAL MOTOROLA

FSAVE Save Internal Floating-Point State FSAVE
(MC68060 only)

Floating-Point Status Register: Not affected.

Instruction Format:

Instruction Field:

Effective Address field—Determines the addressing mode for the state frame. Only pre-
decrement or control alterable addressing modes can be used as listed in the following
table:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 1 1 0 0
EFFECTIVE ADDRESS

MODEREGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dn — — (xxx).W 111 000

An — — (xxx).L 111 001

(An) 010 reg. number:An #<data> — —

(An) + — —

–(An) 100 reg. number:An

(d16,An) 101 reg. number:An (d16,PC) — —

(d8,An,Xn) 110 reg. number:An (d8,PC,Xn) — —

(bd,An,Xn) 110 reg. number:An (bd,PC,Xn) — —

([bd,An,Xn],od) 110 reg. number:An ([bd,PC,Xn],od) — —

([bd,An],Xn,od) 110 reg. number:An ([bd,PC],Xn,od) — —

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-19

LPSTOP Low-Power Stop LPSTOP
(MC68060, MC68LC060, MC68EC060)

Operation: If Supervisor State
Generate an LPSTOP Broadcast Cycle
Immediate Data ➧ SR
“10110” ➧ PST[4:0]
STOP

Else TRAP

Assembler
Syntax: LPSTOP #<data>

Attributes: Size = (Word) Privileged

Description: Moves the immediate operand into the status register (SR). The program
counter (PC) is advanced to the next instruction and the processor stops fetching and
executing instructions.

An interrupt or reset exception causes the processor to resume instruction execution
from an LPSTOP state. If an interrupt request is asserted with a higher priority than the
current priority level set by the new SR value, an interrupt exception occurs: otherwise
the interrupt request is ignored. An external reset always initiates reset exception pro-
cessing.

A trace exception occurs if the trace bit in the SR is enabled when the LPSTOP instruc-
tion begins execution.

A privilege violation is caused by attempting to clear the S-bit of the SR on LPSTOP.

The MC68060 executes the LPSTOP instruction as follows:
1. It synchronizes the pipelines.

2. An LPSTOP broadcast cycle is generated (write cycle):

TT1–TT0 = 3

TM2–TM0 = 0

SIZ1–SIZ0 = 2

31–A0 = $FFFFFFFE

D15–D0 = immediate data

MC68060 Instructions

D-20 M68060 USER’S MANUAL MOTOROLA

LPSTOP Low-Power Stop LPSTOP
(MC68060, MC68LC060, MC68EC060)

3. At the time of the bus cycle termination, (TA or TEA) the state of bus grant
determines how the processor will leave the system bus while in the low-power
stopped state. If the processor is granted the bus, it will drive the transfer
attributes, address bus, data bus, and most control signals high while in the
low-power stopped state. If the bus grant is removed from the processor, it will
threestate all threestateable signals of the system bus at the conclusion of the
bus write broadcast cycle.

4. After the broadcast cycle is complete the processor will load the immediate
operand into the SR and drive the PST lines signalling the low-power stopped
state has been entered.

5. Once the low-power stopped state has been entered, the internal processor
clock is disabled (except to a small number of flip flops to support interrupt and
reset recognition) and all input signals except the RSTI and IPLx, may float.
The processor clock (CLK) input may be stopped during the low-power
stopped state for additional power saving. If this is done, CLK must be stopped
in the low state.

6. During entry into the low-power stopped state, the system bus must be quies-
cent from the cycle after the broadcast cycle termination until the PST signals
indicate the low-power stopped state. During exit from the low-power stopped
state, the system bus must be quiescent and control signal inputs to the pro-
cessor negated, beginning with the cycle RSTI, or IPLx is asserted until the
PST signals indicate that the processor is in an exception processing state.

Condition Codes:
Set according to the immediate operand.

Instruction Format:

Instruction Fields:

Immediate field—Specifies the data to be loaded into the status register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

IMMEDIATE DATA

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-21

MOVEC Move Control Register MOVEC
(MC68060, MC68LC060 and MC68EC060)

Operation: If Supervisor State
Then Rc ➧ Rn or Rn ➧ Rc

Else TRAP

Assembler MOVEC Rc,Rn
Syntax: MOVEC Rn,Rc

Attributes: Size = (Long)

Description: Moves the contents of the specified control register (Rc) to the specified
general register (Rn) or copies the contents of the specified general register to the
specified control register. This is always a 32-bit transfer, even though the control reg-
ister may be implemented with fewer bits. Unimplemented bits are read as zeros.

Condition Codes: Not affected.

Instruction Format:

Instruction Fields:

dr field—Specifies the direction of the transfer.
0—Control register to general register.
1—General register to control register.

A/D field—Specifies the type of general register.
0—Data Register
1—Address Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 1 0 1 dr

A/D REGISTER CONTROL REGISTER

MC68060 Instructions

D-22 M68060 USER’S MANUAL MOTOROLA

MOVEC Move Control Register MOVEC
(MC68060, MC68LC060 and MC68EC060)

Register field—Specifies the register number.

Control Register field—Specifies the control register.

NOTES:

1. Any other code causes an illegal instruction exception.
2. The E and P bits are undefined for the MC68EC060.
3. These registers are undefined for the MC68EC060.

Hex1 Control Register

000 Source Function Code (SFC)

001 Destination Function Code (DFC)

002 Cache Control Register (CACR)

0032 MMU Translation Control Register (TC)

004 Instruction Transparent Translation Register 0 (ITT0)

005 Instruction Transparent Translation Register 1 (ITT1)

006 Data Transparent Translation Register 0 (DTT0)

007 Data Transparent Translation Register 1 (DTT1)

008 Bus Control Register (BUSCR)

800 User Stack Pointer (USP)

801 Vector Base Register (VBR)

8063 User Root Pointer (URP)

8073 Supervisor Root Pointer (SRP)

808 Processor Configuration Register (PCR)

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-23

PLPA Load Physical Address PLPA
(MC68060, MC68LC060)

Operation: If Supervisor State
Then Logical Address {DFC,An} translated to Physical
Address ➧ An

Else TRAP

Assembler
Syntax: PLPAR (An)

PLPAW (An)

Attributes: Unsized

Description: Translates the logical address defined by the contents of the destination
function code register (DFC2–DFC0) and the address register (An31–An0), using full
paged MMU functionality including TTRs, and generates a 32-bit physical address,
which is loaded into An. All access error checks are performed during the translation,
including in the checks the read/write instruction type, and an access error exception
will be taken for faulting conditions.

PLPA is a privileged instruction; attempted execution in user mode will result in a priv-
ilege violation exception.

As with normal address translation activity:

If Data TTR hit

Then Use TTR translation and An stays the same

Else if E bit of TC Register = 0 or MDIS pin asserted

Then Use Default TTR translation and An stays the same

Else if E bit of TC Register =1 and MDIS pin negated and Data ATC hit

Then use ATC translation and An = Physical Address

Else if E bit of TC Register =1 and MDIS pin negated and Data ATC miss

Then Tablewalk

If Valid Page Descriptor Encountered

Then update Data ATC and An = Physical Address

Else Take Access Error Exception

EndIF

Condition Codes:
Not affected.

MC68060 Instructions

D-24 M68060 USER’S MANUAL MOTOROLA

PLPA Test a Logical Address PLPA
(MC68060, MC68LC060)

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 1 R/W 0 0 1 ADDRESS REGISTER

MC68060 Instructions

MOTOROLA M68060 USER’S MANUAL D-25

PLPA Load Physical Address PLPA
(MC68EC060 Only)

Operation: If Supervisor State
Then No Operation

Else TRAP

Assembler
Syntax: PLPAR (An)

PLPAW (An)

Attributes: Unsized

Description: This instruction must not be executed on an MC68EC060.

Instruction Format:

Instruction Fields:

R/W field—Specifies simulating a read or write bus transfer.
0—Write
1—Read

Register field—Specifies the address register containing the effective address for the
instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 1 R/W 0 0 1 ADDRESS REGISTER

MC68060 Instructions

D-26 M68060 USER’S MANUAL MOTOROLA

PFLUSH Flush ATC Entries PFLUSH
(MC68EC060 Only)

Operation: If Supervisor State
Then No Operation

Else TRAP

Assembler
Syntax: PFLUSH (An)

PFLUSHN (An)

Attributes: Unsized

Description: This instruction must not be executed on an MC68EC060.

Instruction Format:

Instruction Fields:

Opmode field—Specifies the flush destination. These bits are defined for the MC68060
and MC68LC060, not for the MC68EC060.

Register field—Specifies the address register containing the effective address for the
instruction entry.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 1 0 1 0 0 0 OPMODE ADDRESS REGISTER

 MOTOROLA, 1998 All Rights Reserved. ColdFire is a registered trademark of Motorola, Inc. All other trademarks are the property of their
respective owners.

µ

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

ColdFire 2/2M

Integrated Microprocessor

User’s Manual

®

MOTOROLA

ColdFire2/2M User’s Manual

iii

DOCUMENTATION FEEDBACK

FAX 512-895-8593—Documentation Comments Only (no technical questions please)
http: / / www.mot.com/hpesd/docs_survey.html—Documentation Feedback Only

The Technical Communications Department welcomes your suggestions for improving our
documentation and encourages you to complete the documentation feedback form at the
World Wide Web address listed above. Your help helps us measure how well we are serving
your information requirements.

The Technical Communications Department also provides a fax number for you to submit
any questions or comments about this document or how to order other documents. Please
provide the part number and revision number (located in upper right-hand corner of the
cover) and the title of the document. When referring to items in the manual, please reference
by the page number, paragraph number, figure number, table number, and line number if
needed.

Please do not fax technical questions to this number.

When sending a fax, please provide your name, company, fax number, and phone number
including area code.

For Internet Access:

Web Only: http: // www.mot.com/aesop

For Hotline Questions:

FAX (US or Canada): 1-800-248-8567

iv

ColdFire2/2M User’s Manual

MOTOROLA

Applications and Technical Information

For questions or comments pertaining to technical information, questions, and applications,
please contact one of the following sales offices nearest you.

— Sales Offices —

Field Applications Engineering Available Through All Sales Offices

UNITED STATES

ALABAMA

, Huntsville (205) 464-6800

ARIZONA

, Tempe (602) 897-5056

CALIFORNIA

, Agoura Hills (818) 706-1929

CALIFORNIA

, Los Angeles (310) 417-8848

CALIFORNIA

, Irvine (714) 753-7360

CALIFORNIA

, Rosevllle (916) 922-7152

CALIFORNIA

, San Diego (619) 541-2163

CALIFORNIA

, Sunnyvale (408) 749-0510

COLORADO

, Colorado Springs (719) 599-7497

COLORADO

, Denver (303) 337-3434

CONNECTICUT

, Wallingford (203) 949-4100

FLORIDA

, Maitland (407) 628-2636

FLORIDA

, Pompano Beach/
 Fort Lauderdale (305) 486-9776

FLORIDA

, Clearwater (813) 538-7750

GEORGlA

, Atlanta (404) 729-7100

IDAHO

, Boise (208) 323-9413

ILLINOIS

, Chicago/Hoffman Estates (708) 490-9500

INDlANA

, Fort Wayne (219) 436-5818

INDIANA

, Indianapolis (317) 571-0400

INDIANA

, Kokomo (317) 457-6634

IOWA

, Cedar Rapids (319) 373-1328

KANSAS

, Kansas City/Mission (913) 451-8555

MARYLAND

, Columbia (410) 381-1570

MASSACHUSETTS

, Marborough (508) 481-8100

MASSACHUSETTS

, Woburn (617) 932-9700

MICHIGAN

, Detroit (313) 347-6800

MINNESOTA

, Minnetonka (612) 932-1500

MISSOURI

, St. Louis (314) 275-7380

NEW JERSEY

, Fairfield (201) 808-2400

NEW YORK

, Fairport (716) 425-4000

NEW YORK

, Hauppauge (516) 361-7000

NEW YORK

, Poughkeepsie/Fishkill (914) 473-8102

NORTH CAROLINA

, Raleigh (919) 870-4355

OHIO

, Cleveland (216) 349-3100

OHIO

, Columbus/Worthington (614) 431-8492

OHIO

, Dayton (513) 495-6800

OKLAHOMA

, Tulsa (800) 544-9496

OREGON

, Portland (503) 641-3681

PENNSYLVANIA

, Colmar (215) 997-1020
 Philadelphia/Horsham (215) 957-4100

TENNESSEE

, Knoxville (615) 584-4841

TEXAS

, Austin (512) 873-2000

TEXAS

, Houston (800) 343-2692

TEXAS

, Plano (214) 516-5100

VIRGINIA

, Richmond (804) 285-2100

WASHINGTON

, Bellevue (206) 454-4160
 Seattle Access (206) 622-9960

WISCONSIN

, Milwaukee/Brookfield (414) 792-0122

CANADA
BRITISH COLUMBIA

, Vancouver (604) 293-7605

ONTARIO

, Toronto (416) 497-8181

ONTARIO

, Ottawa (613) 226-3491

QUEBEC

, Montreal (514) 731-6881

INTERNATIONAL
AUSTRALIA

, Melbourne (61-3)887-0711

AUSTRALIA

, Sydney (61(2)906-3855

BRAZIL

, Sao Paulo 55(11)815-4200

CHINA

, Beijing 86 505-2180

FINLAND

, Helsinki 358-0-35161191
 Car Phone 358(49)211501

FRANCE

, Paris/Vanves 33(1)40 955 900

GERMANY

, Langenhagen/ Hanover 49(511)789911

GERMANY

, Munich 49 89 92103-0

GERMANY

, Nuremberg 49 911 64-3044

GERMANY

, Sindelfingen 49 7031 69 910

GERMANY

, Wiesbaden 49 611 761921

HONG KONG

, Kwai Fong 852-4808333
 Tai Po 852-6668333

INDIA

, Bangalore (91-812)627094

ISRAEL

, Tel Aviv 972(3)753-8222

ITALY

, Milan 39(2)82201

JAPAN

, Aizu 81(241)272231

JAPAN

, Atsugi 81(0462)23-0761

JAPAN

, Kumagaya 81(0485)26-2600

JAPAN

, Kyushu 81(092)771-4212

JAPAN

, Mito 81(0292)26-2340

JAPAN

, Nagoya 81(052)232-1621

JAPAN

, Osaka 81(06)305-1801

JAPAN,

Sendai 81(22)268-4333

JAPAN,

Tachikawa 81(0425)23-6700

JAPAN,

Tokyo 81(03)3440-3311

JAPAN

, Yokohama 81(045)472-2751

KOREA

, Pusan 82(51)4635-035

KOREA

, Seoul 82(2)554-5188

MALAYSIA

, Penang 60(4)374514

MEXICO

, Mexico City 52(5)282-2864

MEXICO

, Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160

NETHERLANDS

, Best (31)49988 612 11

PUERTO RICO

, San Juan (809)793-2170

SINGAPORE

(65)2945438

SPAIN

, Madrid 34(1)457-8204
 or 34(1)457-8254

SWEDEN

, Solna 46(8)734-8800

SWITZERLAND

, Geneva 41(22)7991111

SWITZERLAND

, Zurich 41(1)730 4074

TAlWAN

, Taipei 886(2)717-7089

THAILAND

, Bangkok (66-2)254-4910

UNITED KINGDOM

, Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES
COLORADO

, Grand Junction
 Cheryl Lee Whltely (303) 243-9658

KANSAS

, Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190

NEVADA

, Reno
 Galena Technology Group (702) 746 0642

NEW MEXICO

, Albuquerque
 S&S Technologies, lnc. (505) 298-7177

UTAH

, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099

WASHINGTON

, Spokane
 Doug Kenley (509) 924-2322

ARGENTINA

, Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS

Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631

MOTOROLA

ColdFire2/2M User’s Manual

v

PREFACE

The

ColdFire2/2M Integrated Microprocessor User’s Manual

describes the programming,
capabilities, and operation of the ColdFire2/2M device. Refer to the

MCF5200 ColdFire
Family Programmer’s Reference Manual Rev. 1.0

for information on the ColdFire Family of
microprocessors.

Throughout this document, the ColdFire2/2M integrated microprocessor is referred to as
“the ColdFire2/2M.”

CONTENTS

This user manual is organized as follows:

Section 1: Overview
Section 2: Signal Summary
Section 3: Master Bus Operations
Section 4: Exception Processing
Section 5: Integrated Memories
Section 6: Multiply-Accumulate Unit
Section 7: Debug Support
Section 8: Test Operation
Section 9: Instruction Execution Timing
Section 10: Electrical Characteristics
Appendix A: Register Summary
Appendix B: New MAC Instructions
Index

MOTOROLA

ColdFire2/2M User’s Manual

vii

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1
Overview

1.1 FlexCore Integrated Processors ..1-2
1.1.1 FlexCore Advantages ...1-4
1.1.2 FlexCore Module Types ...1-4
1.2 Development Cycle..1-5
1.3 System Architecture...1-8
1.3.1 Internal Bus Structure...1-8
1.3.1.1 Master Bus...1-8
1.3.1.2 Slave Bus...1-9
1.3.1.3 External Bus ..1-9
1.3.1.4 Test Bus...1-9
1.3.2 System Functional Blocks ..1-9
1.3.2.1 Alternate Master ..1-9
1.3.2.2 ColdFire2/2M ...1-9
1.3.2.3 I-Cache Data Array ..1-10
1.3.2.4 I-Cache Tag Array ...1-10
1.3.2.5 Master Bus Arbiter (MARB) ...1-10
1.3.2.6 ROM Array...1-11
1.3.2.7 Slave Modules ...1-11
1.3.2.8 SRAM Array...1-11
1.3.2.9 System Bus Controller (SBC) ..1-11
1.4 Programming Model ..1-11
1.4.1 Integer Unit User Programming Model ...1-11
1.4.1.1 Data Registers (D0 – D7) ..1-12
1.4.1.2 Address Registers (A0 – A6) ...1-12
1.4.1.3 Stack Pointer (A7,SP)..1-12
1.4.1.4 Program Counter (PC)...1-12
1.4.1.5 Condition Code Register (CCR) ..1-12
1.4.2 MAC Unit User Programming Model ..1-13
1.4.2.1 Accumulator (ACC)..1-14
1.4.2.2 Mask Register (MASK) ..1-14
1.4.2.3 MAC Status Register (MACSR)...1-14
1.4.3 Supervisor Programming Model ...1-14

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

viii

ColdFire2/2M User’s Manual

MOTOROLA

1.4.3.1 Status Register (SR).. 1-14
1.4.3.2 Cache Control Register (CACR).. 1-15
1.4.3.3 Access Control Registers (ACR0, ACR1).. 1-15
1.4.3.4 Vector Base Register (VBR).. 1-15
1.4.3.5 ROM Base Address Register (ROMBAR0) 1-15
1.4.3.6 SRAM Base Address Register (RAMBAR0).................................... 1-15
1.5 Integer Data Formats... 1-16
1.6 Organization of Data in Registers.. 1-16
1.6.1 Organization of Integer Data Formats in Registers 1-16
1.6.2 Organization of Integer Data Formats in Memory 1-17
1.7 Addressing Mode Summary .. 1-18
1.8 Instruction Set Summary ... 1-19

Section 2
Signal Summary

2.1 Introduction.. 2-1
2.2 Master Bus Signals.. 2-3
2.2.1 68K Interrupt Acknowledge Mode Enable (IACK_68K).......................... 2-3
2.2.2 Master Address Bus (MADDR[31:0]) ... 2-3
2.2.3 Master Arbiter Control (MARBC[1:0])... 2-3
2.2.4 Master Freeze (MFRZB) .. 2-4
2.2.5 Master Kill (MKILLB) .. 2-4
2.2.6 Master Read Data Bus (MRDATA[31:0]) ... 2-4
2.2.7 Master Read Data Input Enable (MIE) ... 2-4
2.2.8 Master Read/Write (MRWB)... 2-4
2.2.9 Master Reset (MRSTB) .. 2-4
2.2.10 Master Size (MSIZ[1:0]) ... 2-4
2.2.11 Master Transfer Acknowledge (MTAB) .. 2-5
2.2.12 Master Transfer Error Acknowledge (MTEAB)....................................... 2-5
2.2.13 Master Transfer Modifier (MTM[2:0]).. 2-5
2.2.14 Master Transfer Start (MTSB) .. 2-6
2.2.15 Master Transfer Type (MTT[1:0]) ... 2-6
2.2.16 Master Write Data Bus (MWDATA[31:0])... 2-6
2.2.17 Master Write Data Output Enable (MWDATAOE).................................. 2-6
2.3 General Control Signals .. 2-6
2.3.1 Clock (CLK) .. 2-6
2.3.2 Interrupt Priority Level (IPLB[2:0]) .. 2-6
2.4 Integrated Memory Signals.. 2-7
2.4.1 Instruction Cache Signals... 2-7

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA

ColdFire2/2M User’s Manual

ix

2.4.1.1 Instruction Cache Address Bus (ICH_ADDR[14:2])...........................2-7
2.4.1.2 Instruction Cache Data Chip-Select (ICHD_CSB)2-7
2.4.1.3 Instruction Cache Data Input Bus (ICHD_DI[31:0])2-7
2.4.1.4 Instruction Cache Data Output Bus (ICHD_DO[31:0]).......................2-7
2.4.1.5 Instruction Cache Data Strobe (ICHD_ST)..2-7
2.4.1.6 Instruction Cache Data Read/Write (ICHD_RWB).............................2-7
2.4.1.7 Instruction Cache Size (ICH_SZ[2:0])..2-8
2.4.1.8 Instruction Cache Tag Chip-Select (ICHT_CSB)...............................2-8
2.4.1.9 Instruction Cache Tag Input Bus (ICHT_DI[31:8])2-8
2.4.1.10 Instruction Cache Tag Output Bus (ICHT_DO[31:8])2-8
2.4.1.11 Instruction Cache Tag Strobe (ICHT_ST)..2-9
2.4.1.12 Instruction Cache Tag Read/Write (ICHT_RWB)2-9
2.4.2 Integrated ROM Signals ...2-9
2.4.2.1 ROM Address Bus (ROM_ADDR[14:2]) ..2-9
2.4.2.2 ROM Data Output Bus (ROM_DO[31:0])...2-9
2.4.2.3 ROM Enable (ROM_ENB[1:0]) ..2-9
2.4.2.4 ROM Size (ROM_SZ[2:0]) ...2-9
2.4.2.5 ROM Valid (ROM_VLD)...2-10
2.4.3 Integrated SRAM Signals ...2-10
2.4.3.1 SRAM Address Bus (SRAM_ADDR[14:2])2-10
2.4.3.2 SRAM Chip-Select (SRAM_CSB)..2-10
2.4.3.3 SRAM Data Input Bus (SRAM_DI[31:0]) ...2-11
2.4.3.4 SRAM Data Output Bus (SRAM_DO[31:0]).....................................2-11
2.4.3.5 SRAM Size (SRAM_SZ[2:0]) ...2-11
2.4.3.6 SRAM Strobe (SRAM_ST[3:0]) ...2-11
2.4.3.7 SRAM Read/Write (SRAM_RWB[3:0]) ..2-11
2.5 Debug Signals ...2-11
2.5.1 Break Point (BKPTB)..2-11
2.5.2 Debug Data (DDATA[3:0])..2-12
2.5.3 Development Serial Clock (DSCLK)...2-12
2.5.4 Development Serial Input (DSI)..2-12
2.5.5 Development Serial Output (DSO) ...2-12
2.5.6 Processor Status (PST[3:0])...2-12
2.6 Test Signals ...2-12
2.6.1 Integrated Memory Test Signals...2-12

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

x

ColdFire2/2M User’s Manual

MOTOROLA

2.6.1.1 Test Address Bus (TEST_ADDR[14:2]) .. 2-13
2.6.1.2 Test Control (TEST_CTRL) ... 2-13
2.6.1.3 Test IDATA Read (TEST_IDATA_RD) .. 2-13
2.6.1.4 Test IDATA Write (TEST_IDATA_WRT) ... 2-13
2.6.1.5 Test Instruction Cache Read Hit (TEST_RHIT)............................... 2-13
2.6.1.6 Test Invalidate Inhibit (TEST_IVLD_INH).. 2-13
2.6.1.7 Test ITAG Write (TEST_ITAG_WRT).. 2-13
2.6.1.8 Test KTA Mode Enable (TEST_KTA).. 2-13
2.6.1.9 Test Mode Enable (TEST_MODE) .. 2-13
2.6.1.10 Test SRAM Read (TEST_SRAM_RD) .. 2-13
2.6.1.11 Test SRAM Write (TEST_SRAM_WRT).. 2-13
2.6.1.12 Test Read (TEST_RD) .. 2-13
2.6.1.13 Test ROM Read (TEST_ROM_RD) .. 2-13
2.6.1.14 Test Write Inhibit (TEST_WR_INH)... 2-13
2.6.2 Scan Signal Description ... 2-13
2.6.2.1 Scan Enable (SCAN_ENABLE)... 2-14
2.6.2.2 Scan Exercise Array (SCAN_XARRAY).. 2-14
2.6.2.3 Scan Input (SCAN_IN[15:0]) ... 2-14
2.6.2.4 Scan Mode (SCAN_MODE) .. 2-14
2.6.2.5 Scan Output (SCAN_OUT[15:0])... 2-14
2.6.2.6 Scan Test Ring Clock (TR_CLK)... 2-14
2.6.2.7 Scan Test Ring Core Mode Enable (TR_CORE_EN) 2-14
2.6.2.8 Scan Test Ring Data Input 0 (TR_DI0).. 2-14
2.6.2.9 Scan Test Ring Data Input 1 (TR_DI1).. 2-14
2.6.2.10 Scan Test Ring Data Output 0 (TR_DO0) 2-14
2.6.2.11 Scan Test Ring Data Output 1 (TR_DO1) 2-14
2.6.2.12 Scan Test Ring Enable (TR_EN)... 2-14
2.6.2.13 Scan Test Ring Mode (TR_MODE) ... 2-14

Section 3
Master Bus Operation

3.1 Signal Description.. 3-1
3.1.1 68K Interrupt Acknowledge Mode Enable (IACK_68K).......................... 3-1
3.1.2 Master Address Bus (MADDR[31:0]) ... 3-1
3.1.3 Master Arbiter Control (MARBC[1:0])... 3-1
3.1.4 Master Freeze (MFRZB) .. 3-2
3.1.5 Master Kill (MKILLB) .. 3-2
3.1.6 Master Read Data Bus (MRDATA[31:0]) ... 3-2
3.1.7 Master Read Data Input Enable (MIE) ... 3-2
3.1.8 Master Read/Write (MRWB)... 3-2
3.1.9 Master Reset (MRSTB) .. 3-2

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA

ColdFire2/2M User’s Manual

xi

3.1.10 Master Size (MSIZ[1:0])..3-2
3.1.11 Master Transfer Acknowledge (MTAB) ..3-2
3.1.12 Master Transfer Error Acknowledge (MTEAB)3-3
3.1.13 Master Transfer Modifier (MTM[2:0])..3-3
3.1.14 Master Transfer Start (MTSB) ..3-3
3.1.15 Master Transfer Type (MTT[1:0]) ...3-3
3.1.16 Master Write Data Bus (MWDATA[31:0]) ...3-4
3.1.17 Master Write Data Output Enable (MWDATAOE)3-4
3.2 Data Transfer Mechanism ...3-4
3.2.1 Transfer Type Control Signals..3-4
3.2.1.1 ColdFire2/2M Access...3-4
3.2.1.2 Alternate Master Access..3-5
3.2.1.3 Emulator Mode Access..3-5
3.2.1.4 Interrupt Acknowledge Access ..3-5
3.2.1.5 CPU Space Access ...3-5
3.2.2 Data Bus Requirements ...3-5
3.3 Data Transfers ...3-6
3.3.1 Byte, Word, and Longword Read Transfers ...3-6
3.3.2 Byte, Word, and Longword Write Transfers ...3-9
3.3.3 Line Read Transfer...3-11
3.3.4 Line Write Transfers ...3-14
3.4 Misaligned Operands...3-18
3.5 Invalid Master Bus Cycles ...3-20
3.6 Pipeline Stalls ..3-20
3.7 Interrupt Acknowledge Bus Cycles ..3-21
3.7.1 Interrupt Acknowledge Bus Cycle (Terminated normally)3-22
3.7.2 Spurious Interrupt Acknowledge Bus Cycle ...3-27
3.8 Master Bus Exception Control Cycles ...3-27
3.8.1 Bus Errors...3-28
3.8.2 Fault-on-Fault Halt..3-29
3.9 Reset Operation...3-29
3.10 Master Bus Arbitration ...3-30
3.10.1 Master Bus Arbitration Algorithm..3-30
3.10.1.1 Park on ColdFire2/2M..3-30
3.10.1.2 Park on Alternate Master ...3-30
3.10.1.3 Park on Current Master ...3-31
3.10.2 Bus Arbitration Programming Model...3-31

Section 4
Exception Processing

4.1 Exception Processing Overview ..4-1

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

xii

ColdFire2/2M User’s Manual

MOTOROLA

4.1.1 Exception Stack Frame Definition .. 4-3
4.1.1.1 Self-Aligning Stack .. 4-4
4.1.2 Exception Vectors .. 4-5
4.1.3 Multiple Exceptions .. 4-6
4.1.4 Fault-on-Fault Halt.. 4-6
4.2 Exceptions... 4-7
4.2.1 Reset Exception ... 4-7
4.2.2 Access Error Exception .. 4-7
4.2.3 Address Error Exception .. 4-8
4.2.4 Illegal Instruction Exception.. 4-9
4.2.5 Privilege Violation Exception .. 4-9
4.2.6 Trace Exception ... 4-9
4.2.7 Unimplemented Opcode Exception.. 4-9
4.2.8 Debug Interrupt .. 4-10
4.2.9 Format Error Exceptions .. 4-10
4.2.10 TRAP Instruction Exceptions.. 4-10
4.2.11 Interrupt Exception ... 4-10
4.2.11.1 Level Seven Interrupts... 4-11
4.2.11.2 Spurious, Autovectored, and Uninitialized Interrupts....................... 4-12

Section 5
Integrated Memories

5.1 Instruction Cache... 5-1
5.1.1 Instruction Cache Signal Description ... 5-1
5.1.1.1 Instruction Cache Address Bus (ICH_ADDR[14:2]) 5-2
5.1.1.2 Instruction Cache Data Chip-Select (ICHD_CSB)............................. 5-2
5.1.1.3 Instruction Cache Data Input Bus (ICHD_DI[31:0]) 5-2
5.1.1.4 Instruction Cache Data Output Bus (ICHD_DO[31:0]) 5-2
5.1.1.5 Instruction Cache Data Strobe (ICHD_ST).. 5-2
5.1.1.6 Instruction Cache Data Read/Write (ICHD_RWB) 5-3
5.1.1.7 Instruction Cache Size (ICH_SZ[2:0]) ... 5-3
5.1.1.8 Instruction Cache Tag Chip-Select (ICHT_CSB)............................... 5-3
5.1.1.9 Instruction Cache Tag Input Bus (ICHT_DI[31:8])............................. 5-3
5.1.1.10 Instruction Cache Tag Output Bus (ICHT_DO[31:8]) 5-3
5.1.1.11 Instruction Cache Tag Strobe (ICHT_ST) ... 5-4
5.1.1.12 Instruction Cache Tag Read/Write (ICHT_RWB) 5-4
5.1.2 Instruction Cache Physical Organization.. 5-4
5.1.3 Interaction With Other Modules.. 5-4
5.1.4 Cache Miss Fetch Algorithm/Line Fills ... 5-4
5.1.5 Cacheability.. 5-5
5.1.6 Invalidating Cache Entries.. 5-5

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA

ColdFire2/2M User’s Manual

xiii

5.1.7 Cache Coherency...5-6
5.1.8 Reset ..5-6
5.1.9 Instruction Cache Programming Model ..5-6
5.2 Access Control Registers ..5-8
5.2.1 ACR Programming Model...5-8
5.3 ROM Module..5-10
5.3.1 ROM Signal Description ...5-10
5.3.1.1 ROM Address Bus (ROM_ADDR[14:2]) ..5-11
5.3.1.2 ROM Data Output Bus (ROM_DO[31:0])...5-11
5.3.1.3 ROM Enable (ROM_ENB[1:0]) ..5-11
5.3.1.4 ROM Size (ROM_SZ[2:0]) ...5-12
5.3.1.5 ROM Valid (ROM_VLD)...5-12
5.3.2 ROM Programming Model..5-12
5.4 SRAM Module..5-14
5.4.1 SRAM Signal Description ...5-14
5.4.1.1 SRAM Address Bus (SRAM_ADDR[14:2])5-15
5.4.1.2 SRAM Chip-Select (SRAM_CSB)..5-16
5.4.1.3 SRAM Data Input Bus (SRAM_DI[31:0]) ...5-16
5.4.1.4 SRAM Data Output Bus (SRAM_DO[31:0]).....................................5-16
5.4.1.5 SRAM Size (SRAM_SZ[2:0]) ...5-16
5.4.1.6 SRAM Strobe (SRAM_ST[3:0]) ...5-16
5.4.1.7 SRAM Read/Write (SRAM_RWB[3:0]) ..5-16
5.4.2 SRAM Programming Model..5-16

Section 6
Multiply-Accumulate Unit

6.1 Introduction..6-1
6.2 MAC Programming Model ...6-2
6.2.1 Accumulator (ACC)...6-2
6.2.2 MAC Status Register (MACSR)..6-2
6.2.3 Mask Register (MASK) ...6-3
6.3 Shifting Operations ..6-4
6.4 Overflow Mode...6-4
6.5 MAC Instruction Set Summary ..6-5

Section 7
Debug Support

7.1 Signal Description..7-1
7.1.1 Break Point (BKPTB)..7-1
7.1.2 Debug Data (DDATA[3:0])..7-2

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

xiv

ColdFire2/2M User’s Manual

MOTOROLA

7.1.3 Development Serial Clock (DSCLK)... 7-2
7.1.4 Development Serial Input (DSI).. 7-2
7.1.5 Development Serial Output (DSO) ... 7-2
7.1.6 Processor Status (PST[3:0])... 7-2
7.2 Real-Time Trace.. 7-2
7.2.1 Processor Status Signal Encoding ... 7-3
7.2.1.1 Continue Execution (PST = $0) ... 7-3
7.2.1.2 Begin Execution of an Instruction (PST = $1).................................... 7-3
7.2.1.3 Entry into User Mode (PST = $3) .. 7-3
7.2.1.4 Begin Execution of PULSE or WDDATA instructions (PST = $4) 7-3
7.2.1.5 Begin Execution of Taken Branch (PST = $5)................................... 7-4
7.2.1.6 Begin Execution of RTE Instruction (PST = $7) 7-5
7.2.1.7 Begin Data Transfer (PST = $8 - $A) .. 7-5
7.2.1.8 Exception Processing (PST = $C) ... 7-5
7.2.1.9 Emulator-Mode Exception Processing (PST = $D) 7-5
7.2.1.10 Processor Stopped (PST = $E) ... 7-5
7.2.1.11 Processor Halted (PST = $F) .. 7-5
7.3 Background Debug Mode (BDM) .. 7-5
7.3.1 CPU Halt .. 7-6
7.3.2 BDM Serial Interface .. 7-7
7.3.2.1 Receive Packet Format ... 7-8
7.3.2.2 Transmit Packet Format .. 7-9
7.3.3 BDM Command Set ... 7-9
7.3.3.1 BDM Command Set Summary .. 7-9
7.3.3.2 ColdFire BDM Commands... 7-10
7.3.3.3 Command Sequence Diagram .. 7-11
7.3.3.4 Command Set Descriptions... 7-12
7.3.3.4.1 Read A/D Register (RAREG/RDREG) 7-13
7.3.3.4.2 Write A/D Register (WAREG/WDREG)...................................... 7-13
7.3.3.4.3 Read Memory Location (READ)... 7-14
7.3.3.4.4 Write Memory Location (WRITE) ... 7-16
7.3.3.4.5 Dump Memory Block (DUMP).. 7-17
7.3.3.4.6 Fill Memory Block (FILL) .. 7-19
7.3.3.4.7 Resume Execution (GO) .. 7-21
7.3.3.4.8 No Operation (NOP)... 7-21
7.3.3.4.9 Read Control Register (RCREG) ... 7-22
7.3.3.4.10 Write Control Register (WCREG)... 7-23
7.3.3.4.11 Read Debug Module Register (RDMREG) 7-24
7.3.3.4.12 Write Debug Module Register (WDMREG)................................ 7-25
7.3.3.4.13 Unassigned Opcodes... 7-25
7.4 Real-Time Debug Support... 7-26
7.4.1 Theory of Operation ... 7-26

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA

ColdFire2/2M User’s Manual

xv

7.4.1.1 Emulator Mode ..7-27
7.4.1.2 Reuse of Debug Module Hardware ...7-28
7.4.2 Programming Model ...7-28
7.4.2.1 Address Breakpoint Registers (ABLR, ABHR)7-29
7.4.2.2 Address Attribute Register (AATR)..7-30
7.4.2.3 Program Counter Breakpoint Register (PBR, PBMR)7-32
7.4.2.4 Data Breakpoint Register (DBR, DBMR) ...7-33
7.4.2.5 Trigger Definition Register (TDR) ..7-34
7.4.2.6 Configuration/Status Register (CSR)...7-36
7.4.3 Concurrent BDM and Processor Operation..7-39
7.4.4 Motorola Recommended BDM Pinout ..7-39
7.4.5 Differences Between the ColdFire2/2M BDM and CPU32 BDM7-40

Section 8
Test Operation

8.1 Integrated Memory Testing..8-1
8.1.1 Test Bus Signal Description ...8-1
8.1.1.1 Test Address Bus (TEST_ADDR[14:2])...8-1
8.1.1.2 Test Control (TEST_CTRL) ...8-1
8.1.1.3 Test IDATA Read (TEST_IDATA_RD) ..8-1
8.1.1.4 Test IDATA Write (TEST_IDATA_WRT) ...8-2
8.1.1.5 Test Instruction Cache Read Hit (TEST_RHIT).................................8-2
8.1.1.6 Test Invalidate Inhibit (TEST_IVLD_INH) ..8-2
8.1.1.7 Test ITAG Write (TEST_ITAG_WRT)..8-2
8.1.1.8 Test KTA Mode Enable (TEST_KTA) ..8-2
8.1.1.9 Test Mode Enable (TEST_MODE) ..8-2
8.1.1.10 Test SRAM Read (TEST_SRAM_RD)...8-2
8.1.1.11 Test SRAM Write (TEST_SRAM_WRT)..8-2
8.1.1.12 Test Read (TEST_RD) ..8-2
8.1.1.13 Test ROM Read (TEST_ROM_RD)...8-2
8.1.1.14 Test Write Inhibit (TEST_WR_INH) ...8-2
8.1.2 Theory of Operation..8-2
8.1.3 Test Mode...8-3
8.1.4 Instruction Cache Tag RAM Testing...8-3
8.1.4.1 Instruction Cache Tag RAM Write Function8-3
8.1.4.2 Instruction Cache Tag RAM Read Function8-5
8.1.5 Instruction Cache Data RAM Testing ...8-6
8.1.5.1 Instruction Cache Data RAM Write Function8-6
8.1.5.2 Instruction Cache Data RAM Read Function.....................................8-8
8.1.6 Instruction Cache KTA Mode Testing...8-9
8.1.7 ROM Testing ..8-11

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

xvi

ColdFire2/2M User’s Manual

MOTOROLA

8.1.7.1 ROM Read Function.. 8-11
8.1.8 SRAM Testing .. 8-13
8.1.8.1 SRAM Write Function .. 8-13
8.1.8.2 SRAM Read Function.. 8-15
8.2 Scan Testing.. 8-16
8.2.1 Scan Signal Description ... 8-16
8.2.1.1 Scan Enable (SCAN_ENABLE)... 8-16
8.2.1.2 Scan Exercise Array (SCAN_XARRAY).. 8-16
8.2.1.3 Scan Input (SCAN_IN[15:0]) ... 8-16
8.2.1.4 Scan Mode (SCAN_MODE) .. 8-17
8.2.1.5 Scan Output (SCAN_OUT[15:0])... 8-17
8.2.1.6 Scan Test Ring Clock (TR_CLK)... 8-17
8.2.1.7 Scan Test Ring Core Mode Enable (TR_CORE_EN) 8-17
8.2.1.8 Scan Test Ring Data Input 0 (TR_DI0).. 8-17
8.2.1.9 Scan Test Ring Data Input 1 (TR_DI1).. 8-17
8.2.1.10 Scan Test Ring Data Output 0 (TR_DO0) 8-17
8.2.1.11 Scan Test Ring Data Output 1 (TR_DO1) 8-17
8.2.1.12 Scan Test Ring Enable (TR_EN)... 8-17
8.2.1.13 Scan Test Ring Mode (TR_MODE) ... 8-17
8.2.2 Test Ring .. 8-17
8.3 Burn-In Testing.. 8-18
8.4 Data Retention Testing.. 8-18

Section 9
Instruction Execution Timing

9.1 Timing Assumptions .. 9-1
9.2 MOVE Instruction Execution Times... 9-2
9.3 Standard One-Operand Instruction Execution Times.................................. 9-4
9.4 Standard Two-Operand Instruction Execution Times.................................. 9-5
9.5 Miscellaneous Instruction Execution Times... 9-7
9.6 MAC Instruction Execution Timing .. 9-8
9.7 Branch Instruction Execution Times.. 9-8

Section 10
Electrical Chacteristics

10.1 Definitions of Specifications... 10-1
10.1.1 Current ... 10-1
10.1.2 Voltage ... 10-1
10.1.3 Capacitance ... 10-2
10.1.4 AC Switching Parameters and Waveforms .. 10-2

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA

ColdFire2/2M User’s Manual

xvii

10.2 ColdFire2 Data Sheet ..10-6

Appendix A
Register Summary

A.1 Register Access Methods... A-1
A.2 Register Formats .. A-2

Appendix B
New MAC Instructions

B.1 Enhanced Integer Multiply Instructions... B-1
B.2 New MAC Instructions .. B-1
B.3 New Register Instructions... B-12
B.4 Operation Code Map .. B-22

MOTOROLA

 ColdFire2/2M User’s Manual

xix

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number

1-1 FlexCore Integrated Processor Typical Die Layout...1-3
1-2 Design System Overview..1-7
1-3 ColdFire2/2M System Diagram...1-8
1-4 ColdFire2/2M Block Diagram ..1-10
1-5 Integer Unit User Programming Model..1-12
1-6 Condition Code Register (CCR)..1-13
1-7 MAC Unit User Programming Model...1-13
1-8 Supervisor Programming Model..1-14
1-9 Status Register (SR) ...1-15
1-10 Organization of Integer Data Formats in Data Registers1-16
1-11 Organization of Integer Data Formats in Address Registers...........................1-17
1-12 Memory Operand Addressing ...1-18
2-1 ColdFire2/2M Detailed Block Diagram..2-1
3-1 Byte, Word, and Longword Read Transfer Flowchart3-7
3-2 Normal Transfer (without Wait States) ..3-8
3-3 Byte, Word, and Longword Write Transfer Flowchart3-9
3-4 Normal Write Transfer (with wait states) ...3-10
3-5 Line Read Transfer Flowchart...3-12
3-6 Line Read Transfer (without wait states)...3-13
3-7 Line Write Transfer Flowchart ...3-15
3-8 Line Write Transfer (without wait states)...3-16
3-9 Line Write Transfer (with wait states)..3-17
3-10 Example of a Misaligned

Longword

Transfer ..3-18
3-11 Example of a Misaligned Word Transfer ...3-18
3-12 Misaligned Word Read Transfer ...3-19
3-13 Example Master Bus Wait State ...3-21
3-14 Interrupt Acknowledge Bus Cycle Flowchart...3-23
3-15 ColdFire Mode Interrupt Acknowledge Bus Cycle...3-24
3-16 68K Mode Interrupt Acknowledge Bus Cycle..3-26
3-17 Bus Exception Cycle ...3-29
3-18 Initial Power-On Reset ..3-30
4-1 Exception Processing Flowchart ...4-2
4-2 Exception Stack Frame Form..4-3
5-1 Example 8 Kbyte Instruction Cache Interface Diagram5-2
5-2 Cache Control Register (CACR) ...5-6
5-3 Access Control Register (ACR0, ACR1) ...5-9
5-4 Example 8 Kbyte ROM Interface Diagram..5-11
5-5 ROM Base Address Register (ROMBAR0)...5-12

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

xx

ColdFire2/2M User’s Manual

MOTOROLA

5-6 Example 8 Kbyte SRAM Interface Diagram.. 5-15
5-7 SRAM Base Address Register (RAMBAR0) ... 5-17
6-1 MAC Flow Diagram... 6-2
6-2 MAC Status Register (MACSR).. 6-3
6-3 MAC Mask Register (MASK) .. 6-4
7-1 Processor/Debug Module Interface .. 7-1
7-2 Example PST Diagram ... 7-4
7-3 BDM Serial Transfer ... 7-8
7-4 BDM Signal Sampling... 7-8
7-5 Receive BDM Packet .. 7-8
7-6 Transmit BDM Packet ... 7-9
7-7 Command Sequence Diagram.. 7-12
7-8 Debug Programming Model .. 7-29
7-9 Address Breakpoint Low Register (ABLR).. 7-29
7-10 Address Breakpoint High Register (ABHR) .. 7-30
7-11 Address Attribute Register (AATR)... 7-30
7-12 Program Counter Breakpoint Register (PBR) ... 7-32
7-13 Program Counter Breakpoint Mask Register (PBMR) 7-33
7-14 Data Breakpoint Register (DBR)... 7-33
7-15 Data Breakpoint Mask Register (DBMR) .. 7-33
7-16 Trigger Definition Register (TDR) ... 7-34
7-17 Configuration/Status Register (CSR).. 7-37
7-18 Recommended BDM Connector ... 7-40
8-1 Test Instruction Cache Tag Write Cycles.. 8-4
8-2 Test Instruction Cache Tag Read Cycles ... 8-5
8-3 Test Instruction Cache Data Write Cycles .. 8-7
8-4 Test Instruction Cache Data Read Cycles .. 8-8
8-5 KTA Mode Cycles ... 8-10
8-6 Test ROM Read Cycles .. 8-12
8-7 Test SRAM Write Cycles .. 8-14
8-8 Test SRAM Read Cycles .. 8-15
10-1 t

PLH

 and t

PHL

 Measurements.. 10-2
10-2 t

r

 and t

f

 Measurements ... 10-2
10-3 Internal Cell Three-State Measurements and Example Circuits 10-3
10-4 t

rec

 Recovery Time.. 10-4
10-5 t

su

 and t

h

 Measurements Between Data and a Control Signal 10-4
10-6 t

su

 and t

h

 Measurements Between Data and Clock Signals 10-4
10-7 Switching Waveforms Showing t

w(L)

 and t

w(H)

 Measurements 10-5
A-1 Address Attribute Register (AATR)...A-2
A-2 Address Breakpoint High Register (ABHR) ..A-2
A-3 Address Breakpoint Low Register (ABLR)..A-2
A-4 Access Control Register (ACR0, ACR1)...A-3

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

MOTOROLA

 ColdFire2/2M User’s Manual

xxi

A-5 Cache Control Register (CACR) .. A-3
A-6 Condition Code Register (CCR)... A-3
A-7 Configuration/Status Register (CSR) ... A-4
1-8 Data Breakpoint Mask Register (DBMR) ... A-4
1-9 Data Breakpoint Register (DBR) .. A-4
1-10 MAC Status Register (MACSR) ... A-4
1-11 MAC Mask Register (MASK).. A-5
1-12 Program Counter Breakpoint Mask Register (PBMR)...................................... A-5
1-13 Program Counter Breakpoint Register (PBR) .. A-5
A-14 SRAM Base Address Register (RAMBAR0) .. A-5
A-15 ROM Base Address Register (ROMBAR0).. A-6
A-16 Status Register (SR) .. A-6
A-17 Trigger Definition Register (TDR)... A-6

MOTOROLA

ColdFire2/2M User’s Manual

xxiii

LIST OF TABLES

Table Page
Number Title Number

1-1 MOVEC Register Map...1-14
1-2 Integer Data Formats ..1-16
1-3 Effective Addressing Modes and Categories ..1-19
1-4 Notational Conventions...1-19
1-5 Instruction Set Summary...1-21
2-1 Signal Summary..2-2
2-2 Master Arbiter Control Encoding...2-4
2-3 Master Bus Transfer Size Encoding..2-5
2-4 Master Bus Transfer Modifier Encoding..2-5
2-5 Master Bus Transfer Type Encoding...2-6
2-6 Interrupt Levels and Mask Values...2-7
2-7 Cache Configuration Encoding ...2-8
2-8 Valid Tag RAM Data Signals...2-8
2-9 Valid ROM Address Bits..2-9
2-10 ROM Configuration Encoding ...2-10
2-11 Valid SRAM Address Bits..2-10
2-12 SRAM Configuration Encoding ...2-11
2-13 Processor Status Encoding...2-12
3-1 Master Arbiter Control Encoding...3-1
3-2 Master Bus Transfer Size Encoding..3-2
3-3 Master Bus Transfer Modifier Encoding..3-3
3-4 Master Bus Transfer Type Encoding...3-4
3-5 MRDATA Requirements for Read Transfers...3-5
3-6 MWDATA Bus Requirements for Write Transfers...3-6
3-7 Allowable Line Access Patterns..3-11
3-8 Memory Alignment Cycles ..3-19
3-9 MTAB and MTEAB Assertion Results...3-27
4-1 Stack Pointer Alignment..4-5
4-2 Exception Vector Assignments ...4-5
4-3 Exception Priority Groups ...4-6
4-4 Interrupt Levels and Mask Values...4-11
5-1 Cache Configuration Encoding ...5-3
5-2 Valid Tag RAM Data Signals...5-3
5-3 Initial Fetch Offset and CLNF Bits...5-5
5-4 Cache Line Fill Encoding ..5-8
5-5 Valid ROM Address Bits..5-11
5-6 ROM Configuration Encoding ...5-12
5-7 Valid ROM Base Address Bits ..5-13

LIST OF TABLES (Continued)

Figure Page
Number Title Number

xxiv

ColdFire2/2M User’s Manual

MOTOROLA

5-8 Valid SRAM Address Bits ... 5-15
5-9 SRAM Configuration Encoding ... 5-16
5-10 Valid SRAM Base Address Bits .. 5-17
6-1 Mask Addressing Mode .. 6-4
6-2 Accumulator Result in Saturation Mode.. 6-5
6-3 MAC Instruction Set Summary.. 6-6
7-1 Processor Status Encoding .. 7-2
7-2 CPU-Generated Message Encoding .. 7-9
7-3 BDM Command Summary.. 7-10
7-4 BDM Size Field Encoding ... 7-11
7-5 Control Register Map.. 7-22
7-6 Definition of DRc Encoding - Read ... 7-24
7-7 Definition of DRc Encoding - Write ... 7-25
7-8 DDATA, CSR[31:28] Breakpoint Response.. 7-26
7-9 Shared BDM/Breakpoint Hardware... 7-28
7-10 Misaligned Data Operand References.. 7-34
7-11 BDM Connector Correlation.. 7-40
9-1 Misaligned Operand References .. 9-2
9-2 Move Byte and Word Execution Times... 9-3
9-3 Move Long Execution Times .. 9-3
9-4 One Operand Instruction Execution Times... 9-4
9-5 Two Operand Instruction Execution Times... 9-5
9-6 Miscellaneous Instruction Execution Times.. 9-7
9-7 MAC Instruction Execution Times... 9-8
9-8 General Branch Instruction Execution Times.. 9-8
9-9 BRA,

BCC

Instruction Execution Times.. 9-8
A-1 Register Summary ..A-1

PRELI
M

IN
ARY

MOTOROLA

 ColdFire2/2M User’s Manual

xxv

LIST OF ACRONYMS

Acronym Definition

BCD .. binary coded decimal
BDM.. background debug mode
CAD .. computer-aided design
CPU .. central processing unit
DSP .. digital signal processing
ET ... execution time
IACK ... interrupt acknowledge
IFP .. instruction fetch pipeline
LRU... least recently used
LSB ... least significant

bit

LSW .. least significant word
MAC..multiply-accumulate
MARB ...master bus arbiter
MSB ..most significant bit
MSW ...most significant word
OEP .. operand execution pipeline
RISC ... reduced instruction set computer
ROM ... read-only memory
SBC .. system bus controller
SRAM ... static random access memory
TA ... transfer acknowledge
TS ... transfer start

MOTOROLA

 ColdFire2/2M User’s Manual

1-1

SECTION 1
OVERVIEW

This is a summary of the use and operation of the FlexCore ColdFire® microprocessor core
(referred to as the ColdFire2) and FlexCore ColdFire microprocessor core with the Multiply-
Accumulate unit (MAC), referred to as the ColdFire2M. It also contains a detailed set of
timing and electrical specifications. All references to ColdFire2/2M will apply to both the
ColdFire2 and the ColdFire2M devices. Refer to the

ColdFire Programmer’s Reference
Manual Rev 1.0

 (MCF5200PRM/AD) for detailed information on the operation of the
instruction set and addressing modes.

The ColdFire2/2M is part of the FlexCore Program, a semicustom, standard-cell based
design program. Based on the concept of variable-length Reduced Instruction Set Computer
(RISC) technology, ColdFire combines the architectural simplicity of conventional 32-bit
RISC with a memory-saving, variable-length instruction set. In the FlexCore program, high-
volume manufacturers can create their own integrated microprocessor containing a core
processor (such as the ColdFire2/2M) and their own proprietary technology. A FlexCore
integrated processor allows significant reductions in component count, power consumption,
board space, and cost—resulting in higher system reliability and performance.

The main features of the ColdFire2/2M processor include:

• 32-bit address bus which can directly address up to 4 Gbytes

• 32-bit data bus

• Variable-length RISC

• Optimized instruction set for high-level language constructs

• Sixteen general-purpose 32-bit data- and address- registers

• Multiply Accumulate (MAC) unit for DSP applications (ColdFire2M only)

• Supervisor/user modes for system protection

• Vector-base register to relocate exception-vector table

• Special core interfacing signals for integrated memories

• Full debug support

The ColdFire2/2M has 32-bit address and data busses. The 32-bit address bus allows direct
addressing of up to 4 Gbytes. A misalignment unit provides support for misaligned data
accesses, and an optional bus arbitration unit provides support for additional bus masters.
The ColdFire2/2M also supports an integrated instruction cache, SRAM, and ROM
(maximum of 32 Kbyte each.)

Overview

1-2

 ColdFire2/2M User’s Manual

MOTOROLA

The ColdFire2/2M supports a subset of the 68000 instruction set, and the ColdFire2M has
the added functionality of a Multiply Accumulate (MAC) unit for DSP applications. The
removed instructions include binary coded decimal, bit field, logical rotate, decrement and
branch, integer division, and integer multiply with a 64-bit result. In addition, only the twelve
addressing modes supported by the 68000 are supported. User-mode code developed for
the ColdFire2 processor will run unchanged on 68020, 68030, 68040, and 68060
processors. The new MAC instructions on the ColdFire2M processor will not run on other
processors.

A complete debug module is integrated into the ColdFire2/2M. This unit provides real-time
trace, background debug mode, and real-time debug support. This includes a parallel
processor status port, a subset of the background debug mode (BDM) functionality found on
Motorola’s 683xx family of parts, and real-time breakpoint capability. This built-in debug
support results in a standard debug interface to established tools for all ColdFire

-

based
processors.

1.1 FLEXCORE INTEGRATED PROCESSORS

The FlexCore design methodology allows designers of high-volume digital systems and
third-party technology providers to place their proprietary circuitry on-chip with a Motorola
microprocessor core. By using FlexCore, a designer can reduce the total system cost,
component count, and power consumption while providing higher performance and greater
reliability. Custom logic, memory, and peripheral modules can be added to a core processor
to produce the most cost-effective solution for a designer's system. Core processors provide
special power-management features such as 5 V, 3.3 V, and static operation. The 68000
family of processors have a proven architecture with a broad base of application and system
software support, including real-time kernels, operating systems, and compilers, in addition
to a wide range of tools to support software development. In the future, additional processing
architectures will be included in the FlexCore program, including PowerPC

 and Digital
Signal Processing (DSP). Figure 1-1 shows a typical die layout of a FlexCore integrated
processor.

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-3

Complete product lines can be created using FlexCore by implementing one base design
using a variety of core processors. Designers already familiar with 680x0 Family design can
easily migrate to FlexCore processors as the core processors use similar interfaces.
Additionally, many peripheral modules and memory elements are available for integration.
Motorola has developed a complete design system for the customer that includes both a
broad cell-based library and effective Computer-Aided Design (CAD) tools. By building on
Motorola's proven 680x0 microprocessor architecture and superior manufacturing
capabilities, FlexCore offers designers the best path to higher system integration.

FlexCore custom processors are ideal for:

• High-volume users of 8-, 16-, and 32-bit integrated solutions requiring higher system
performance whose needs are not met by standard 68300 Family devices.

• Designers of high-volume applications who need to reduce cost, space, and/or power
consumption.

• Third-party technology providers who want to deliver their proprietary application-
specific technology to a worldwide marketplace.

To develop a solution that best suits system requirements in the shortest time frame,
integrated processor design is performed by the designer using a methodology created,
tested, and documented by Motorola. The resulting netlist is then laid out by Motorola,
verified, and fabricated in silicon. This enables FlexCore integrated processors to be
produced quickly and cost-effectively, with the resulting device integrating many of the
discrete functions needed in the final system.

To implement the application-specific logic, the designer uses Motorola's standard-cell
library. This library offers an extensive range of design elements, memory configurations,
and an expanding array of peripheral modules. Each cell in the library has been designed

Figure 1-1. FlexCore Integrated Processor Typical Die Layout

CUSTOMER-DESIGNED
LOGIC

SPECIAL-FUNCTION
OR MEMORY BLOCK

SPECIAL FUNCTION
OR MEMORY BLOCK

FLEXCORE FAMILY
PROCESSOR CORE

Overview

1-4

 ColdFire2/2M User’s Manual

MOTOROLA

for optimum size, power, and performance. The added flexibility of high-speed, high-density
cells allows the designer to achieve the most cost-effective solution while satisfying critical
timing requirements. The standard cell library has been thoroughly characterized and
maintained to ensure a smooth transition from a simulated design to working silicon. If both
Motorola and the customer have the desire, a custom part may also become a standard
product. Standard products are sold on the open market, allowing costs to be spread over
additional units, resulting in lower component prices for high-volume users.

Third-party technology providers can use the same methodology to combine their
application-specific systems expertise with a core processor. The resulting device is
manufactured by Motorola and can be delivered to the marketplace through either the
technologist’s or Motorola’s marketing and sales channels.

Refer to the

Design System User’s Guide for Semicustom & FlexCore

 for more information
on the FlexCore design methodology.

1.1.1 FlexCore Advantages

Developers face challenges in reducing product cost. By incorporating user-designed logic
and Motorola-supplied functions into a single FlexCore processor, a system designer can
realize significant savings in cost, power consumption, board space, and pin count. The
equivalent functionality can easily require 20 separate components. Each component might
have 16–64 pins, totaling over 350 connections. Each connection is a candidate for a bad
solder joint or misrouted trace. Each component is another part to qualify, purchase,
inventory, and maintain. Each component requires a share of the printed circuit board. Each
component draws power—often to drive large buffers and circuit board traces to get signals
to another chip. Each component must be individually placed and attached to a printed
circuit board. The signals between the core processor unit and a peripheral might not be
compatible nor run from the same clock, requiring time delays or other special design
considerations.

In a FlexCore integrated processor, the major functions and glue logic are all properly
connected internally, timed with the same clock, and fully tested. Only essential signals are
brought out to pins. The processor is then assembled and tested in a surface-mount
package for the smallest possible footprint.

1.1.2 FlexCore Module Types

The three types of FlexCore modules are:

• Hard Module

— Not alterable
— Laid out
— Has a technology file containing timing data
— Has a defined test scheme

• Soft Module

— Netlist
— Not alterable other than by clock tree insertion

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-5

— Not laid out
— Has a defined test scheme
— Simulation test fixture is provided

• Parameterizable Module

— Alterable via insertion of predefined parameters
— Behavioral model
— Definition of parameters defines test scheme
— Customer selects parameter values and Motorola synthesizes the design

The ColdFire2/2M is available as a hard module only.

1.2 DEVELOPMENT CYCLE

There are several steps that must be followed in order to create a FlexCore integrated mi-
croprocessor with a ColdFire2/2M. Figure 1-2 illustrates the standard cell design flow. These
steps include:

• Schematic capture on workstation—Use the engineering workstation to implement the
required system functions with a ColdFire2/2M, memory blocks, peripherals, and cells
from the Motorola standard cell library.

• Verilog modules—Optionally use Verilog to implement complex user modules or
system interconnect of standard cells.

• Generate test patterns—Generate the stimulus and test patterns for the design to be
used during functional simulation.

• Module compilation—Use Motorola software to generate compiled modules (SRAM,
ROM, etc.)

• Functional simulation—Ensure that the logic of the system is functionally sound by
simulating the design. (No timing information is yet associated with the simulations, and
all propagation delays are preset to a unit delay.)

• Logic synthesis—The behavioral and structural level description of the design is
mapped to a more efficient structural description using Synopsys. This final description
is a netlist of standard cell components.

• Electrical rule check—Motorola software verifies the electrical integrity of the design.
This includes checking connectivity, fan-out, edge rates, and other electrical rules.

• Calculate node delays— Motorola software calculates the estimated propagation
delays of each node in the circuit. The design software estimates delays based on the
fanout, input rise/fall times, drive characteristics, and estimated interconnect
capacitances of the netlist.

• Path delay analysis—With path delay information, the delays between the clocked
elements of the circuit can be determined, and the critical paths that limit the clock rate
can be identified. Checking for setup, hold, and pulse-width violations can also be
accomplished.

• Perform real-time simulation—The real-time simulation is run to verify full functionality
using the estimated propagation delays calculated by the design tools.

• Package and pinout definition—Develop the package and pin definition file.

Overview

1-6

 ColdFire2/2M User’s Manual

MOTOROLA

• Extract test vectors—The simulator records the input/output patterns generated during
the real-time simulation. The test vectors that Motorola will use to test the prototypes
are derived from these patterns.

• Post testkit verification—Simulate the design using the extracted test vectors to ensure
proper operation.

• Perform fault grading—Determine the fault coverage of the extracted test vectors.

• Timing constraints—Chip-level timing constraints are created to be used during
floorplanning, clock tree synthesis, placement, and routing.

• Floor planning/Clock tree synthesis—Floor planning and clock tree synthesis are
performed by Motorola using the design timing constraints provided by the designer.

• Automatic place & route—The circuit’s physical layout is created by Motorola from the
netlist using automatic place and route software.

• Post-layout delay calculation—After the cells are placed and routed, the interconnect
resistances and capacitances are extracted by Motorola. Extracted elements replace
those estimated earlier during the pre-layout calculation of the node delays.

• Re-simulate—The circuit is re-simulated with Verilog to ensure no problems have
arisen due to a change in load conditions.

• In-place optimization—If the new delay information causes the simulation to fail,
Synopsys is used to further optimize the layout. Placement and routing is then
repeated. This cycle continues until the final layout, with post-layout delay, satisfies the
design goals.

• Post testkit simulation—Simulate the design using the extracted test vectors to ensure
proper operation.

• Re-extract test vectors—Extract the test vectors again in order to account for timing
changes due to more accurate delay analysis after layout and routing.

• Power simulation—A power simulation is performed to determine if the design meets
the necessary design goals. Power simulation should also be run early in the design
cycle to ensure design goals are met.

• Netlist comparison—The netlist after place and route is compared by Motorola to the
original netlist to check for connectivity errors.

• Pattern, mask, and wafer generation—Motorola generates the patterns, masks, and
wafers.

• Assembly/test—Parts are assembled by Motorola and tested using the test vectors.

• Ship tested prototypes—Tested prototypes are shipped from Motorola to the customer.

• Final test program—The final test is performed by Motorola.

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-7

Figure 1-2. Design System Overview

AUTOMATIC PLACE & ROUTE

POST-LAYOUT DELAY
CALCULATION

NETLIST COMPARISON

PATTERN, MASK AND
WAFER GENERATION

ASSEMBLY / TEST

SHIP TESTED PROTOTYPES
MOTOROLA CUSTOMER

LOGIC SYNTHESIS

GENERATE TEST PATTERNS

CALCULATE NODE DELAYS

ELECTRICAL RULE CHECK

PERFORM FAULT GRADING

PERFORM REAL-TIME
SIMULATION

PATH DELAY ANALYSIS

EXTRACT TEST VECTORS

RE-SIMULATE

FINAL TEST PROGRAM

SCHEMATIC CAPTURE
ON WORKSTATION

FUNCTIONAL SIMULATION

POST TESTKIT VERIFICATION

PACKAGE AND PINOUT
DEFINITION

EXTRACT TEST VECTORS

POST TESTKIT SIMULATION

VERILOG MODULES

POWER SIMULATION

FLOOR PLANNING /
CLOCK TREE SYNTHESIS

TIMING CONSTRAINTS

STEPS TO BE DONE
IN PARALLEL

MODULE COMPILATION

IN-PLACE OPTIMIZATION

OPTIONAL STEPS TO
BE DONE IN PARALLEL

Overview

1-8

 ColdFire2/2M User’s Manual

MOTOROLA

1.3 SYSTEM ARCHITECTURE

Most FlexCore custom processors will be designed according to a standard system
architecture. A block diagram of this architecture is shown in Figure 1-3. This architecture
contains the standardized busses and modules discussed below.

For more information on ColdFire system configurations refer to the

 MCF5204 User’s
Manual

 (MCF5204UM/AD) and the

MCF5206 User’s Manual

 (MCF5206UM/AD.)

1.3.1 Internal Bus Structure

1.3.1.1 MASTER BUS.

The master bus is the primary data interface for the ColdFire2/2M.
It is a basic two-cycle unidirectional bus. Devices on the master bus are capable of initiating
bus transactions. This bus includes a 32-bit address bus, 32-bit read data bus, 32-bit write
data bus, and various control signals. None of the signals can be tri-stated. As a result, an
optional master bus arbiter is required if multiple masters are present in the system. Refer
to

Section 3 Master Bus Operation

 for more information.

Figure 1-3. ColdFire2/2M System Diagram

I-CACHE
DATA

ARRAY

I-CACHE
TAG

ARRAY

SRAM
ARRAY

ROM
ARRAY

SYSTEM
BUS

CONTROLLER

COLDFIRE2/2M

SLAVE
MODULE

SLAVE
MODULE

SLAVE
MODULE

ALTERNATE
MASTER

MASTER
BUS

ARBITER
(OPTIONAL)

(OPTIONAL)

MASTER

BUS

MASTER

BUS

MASTER

BUS

SLAVE
BUS

EXTERNAL
BUS

TEST
BUS

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-9

1.3.1.2 SLAVE BUS.

The slave bus is a simplified bus that provides the interface between
the internal master bus and the on-chip peripheral modules. The system bus controller
(SBC) transfers information between the master bus and the slave bus and is the slave bus
master. Only the SBC can initiate slave bus transactions. The slave bus includes device
select lines, interrupt lines, output enables, write enables, interrupt vector enables, and
other control signals to interface to slave modules. All signals are unidirectional and can not
be tri-stated.

1.3.1.3 EXTERNAL BUS.

The external bus provides the interface between the internal
master bus and external resources. This bus has no predefined requirements. It can be
asynchronous or synchronous. The address and data bus widths may be different than the
internal master bus. The SBC provides the necessary translation between the master and
external busses.

1.3.1.4 TEST BUS.

The test bus provides an interface for performing extensive tests of the
integrated memories. Signals are provided to control reading and writing of the integrated
SRAMs, SROMs, instruction cache tag RAM, and the instruction cache data RAM.

1.3.2 System Functional Blocks

1.3.2.1 ALTERNATE MASTER.

Any device that is required to initiate bus transactions is
required to be on the master bus. All master bus devices except the ColdFire2/2M that
initiate bus transactions are considered to be alternate masters. Use of alternate masters
requires a master bus arbiter module. Examples of alternate masters include DMA
controllers and coprocessors.

1.3.2.2 COLDFIRE2/2M.

The ColdFire2/2M is the primary CPU for any ColdFire custom
processor. It has dedicated busses for instruction cache and integrated memories. The
master bus is the data interface bus used for all data movement to and from the CPU and
is usually connected to the system bus controller. Clock and debug signals are connected
directly to I/O pins. See

Section 2 Signal Summary

for more information on all of the
ColdFire2/2M interface signals. A block diagram of the CPU is shown in Figure 1-4.

Overview

1-10

 ColdFire2/2M User’s Manual

MOTOROLA

1.3.2.3 I-CACHE DATA ARRAY.

The optional instruction cache data array is a compiled
RAM used to hold cache data. It is connected directly to the ColdFire2/2M via a dedicated
bus. Refer to

Section 5.1 Instruction Cache

 for more information on the cache
configuration and interface signals.

1.3.2.4 I-CACHE TAG ARRAY.

The optional instruction cache tag array is a compiled
RAM used to hold tag information for the cache. It is connected directly to the ColdFire2/2M
via a dedicated bus. Refer to

Section 5.1 Instruction Cache

 for more information on the
cache configuration and the interface signals.

1.3.2.5 MASTER BUS ARBITER (MARB).

The optional master bus arbiter is required to
support multiple masters on the master bus. It performs bus control and multiplexing for the
unidirectional signals

on

 the master bus. Refer to

Section 3.10 Master Bus Arbitration

 for
more information.

Figure 1-4. ColdFire2/2M Block Diagram

COLDFIRE
CORE

D
EB

U
G

 M
O

D
U

LE

MULTIPLY
ACCUMULATE

UNIT

M
IS

AL
IG

N
M

EN
T

U
N

IT

M
AS

TE
R

BU
S

C
O

N
TR

O
LL

ER

INSTRUCTION
CACHE

CONTROLLER

ROM
CONTROLLER

SRAM
CONTROLLER

SRAM ROM INSTRUCTION CACHE
INTERFACEINTERFACEINTERFACE

M
AS

TE
R

BU
S

D
EB

U
G

IN
TE

R
FA

C
E INTERNAL

BUS

TE
ST

 B
U

S
IN

TE
R

FA
C

E

(COLDFIRE2M ONLY)

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-11

1.3.2.6 ROM ARRAY.

The optional ROM array is a compiled ROM used to hold boot code,
critical code, and monitor code. It is connected directly to the ColdFire2/2M via a dedicated
bus. Refer to

Section 5.3 ROM Module

 for more information on the ROM configuration and
the interface signals.

1.3.2.7 SLAVE MODULES.

The slave modules are on-chip peripherals. They
communicate with the ColdFire2/2M via the slave bus and SBC. Slave modules are always
bus slaves and cannot initiate bus transactions except via interrupts. Examples of slave
modules include serial ports, parallel ports, and timers.

1.3.2.8 SRAM ARRAY.

The optional SRAM array is a compiled RAM used to hold critical
variables and the stack. It is connected directly to the ColdFire2/2M processor via a
dedicated bus. Refer to

Section 5.4 SRAM Module

 for more information on the SRAM
configuration and the interface signals.

1.3.2.9 SYSTEM BUS CONTROLLER (SBC).

The system bus controller is responsible for
providing overall control of the slave and external busses. The system bus controller is the
single slave-bus master and interrupt controller, a possible external bus master, bus arbiter
and interrupt controller, and a master-bus slave and interrupt controller. The SBC provides
programmable registers to configure the memory map and interrupt control. The SBC
provides master bus cycle termination for accesses to slave modules on the slave bus. It
also generates interrupts on the master bus when requested by slaves on the slave bus, and
it responds to interrupt acknowledge cycles on the master bus.

1.4 PROGRAMMING MODEL

The ColdFire2/2M programming model consists of three register groups: integer unit user,
MAC unit user, and supervisor. Programs executing in the user mode use only the registers
in the integer and MAC groups. System software executing in the supervisor mode can
access all registers and use the control registers in the supervisor group to perform
supervisor functions. The following paragraphs provide a brief description of the registers in
the user and supervisor models. Refer to

Appendix A Register Summary

.

1.4.1 Integer Unit User Programming Model

Figure 1-5 illustrates the integer portion of the user programming model. It consists of the
following registers:

• 16 general-purpose 32-bit registers (D0 – D7, A0 – A7)

• 32-bit Program Counter (PC)

• 8-bit Condition Code Register (CCR)

Overview

1-12

 ColdFire2/2M User’s Manual

MOTOROLA

1.4.1.1 DATA REGISTERS (D0 – D7) .

Registers D0–D7 are used as data registers for bit
(1 bit), byte (8 bits), word (16 bits), and long word (32 bits) operations and may also be used
as index registers.

1.4.1.2 ADDRESS REGISTERS (A0 – A6) .

These registers can be used as software
stack pointers, index registers, or base address registers and may be used for word and long
word operations.

1.4.1.3 STACK POINTER (A7,SP) .

ColdFire2/2M supports a single hardware stack
pointer (A7) used during stacking for subroutine calls, returns, and exception handling. The
initial value of A7 is loaded from the reset exception vector, address $0. The same register
is used for user mode and supervisor mode, and may be used for word and long word
operations.

A subroutine call saves the PC on the stack, and the return restores the PC from the stack.
Both the PC and the Status Register (SR) are saved on the stack during the processing of
exceptions and interrupts. The return from exception instruction restores the SR and PC
values from the stack.

1.4.1.4 PROGRAM COUNTER (PC).

The PC contains the address of the currently
executing instruction. During instruction execution and exception processing, the processor
automatically increments the contents of the PC or places a new value in the PC, as
appropriate. For some addressing modes, the PC can be used as a pointer for PC-relative
operand addressing.

1.4.1.5 CONDITION CODE REGISTER (CCR).

The CCR is the least significant byte of the
processor Status Register (SR), as shown in Figure 1-6. Bits 4–0 represent indicator flags

31 16 15 8 7 0

Data Register 0 (D0)
Data Register 1 (D1)
Data Register 2 (D2)
Data Register 3 (D3)
Data Register 4 (D4)
Data Register 5 (D5)
Data Register 6 (D6)
Data Register 7 (D7)

Address Register 0 (A0)
Address Register 1 (A1)
Address Register 2 (A2)
Address Register 3 (A3)
Address Register 4 (A4)
Address Register 5 (A5)
Address Register 6 (A6)
Stack Pointer (SP,A7)
Program Counter (PC)

Condition Code Register (CCR)

Figure 1-5. Integer Unit User Programming Model

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-13

based on results generated by processor operations. Bit 4, the extend bit (X bit), is also used
as an input operand during multiprecision arithmetic computations.

Field Definitions:

X[4]—Extend Condition Code
Assigned the value of the carry bit for arithmetic operations; otherwise not affected or set to
a specified result.

N[3]—Negative Condition Code
Set if the most significant bit of the result is set; otherwise cleared.

Z[2]—Zero Condition Code
Set if the result equals zero; otherwise cleared.

V[1]—Overflow Condition Code
Set if an arithmetic overflow occurs implying that the result cannot be represented in the
operand size; otherwise cleared.

C[0]—Carry Condition Code
Set if a carryout of the most significant bit of the operand occurs for an addition, or if a borrow
occurs in a subtraction; otherwise cleared.

1.4.2 MAC Unit User Programming Model

Figure 1-7 illustrates the MAC portion of the user programming model available on the
ColdFire2M only. It consists of the following registers:

• 32-bit accumulator (ACC)

• 16-bit mask register (MASK)

• 8-bit MAC status register (MACSR)

BITS 7 6 5 4 3 2 1 0

FIELD

- - - X N Z V C

RESET

- - - - - - - -

R/W

R R R R/W R/W R/W R/W R/W

Figure 1-6. Condition Code Register (CCR)

31 16 15 8 7 0

Accumulator (ACC)
Mask Register (MASK)

MAC Status Register (MACSR)

Figure 1-7. MAC Unit User Programming Model

Overview

1-14

 ColdFire2/2M User’s Manual

MOTOROLA

See

Section 6.2 MAC Programming Model

 for more details.

1.4.2.1 ACCUMULATOR (ACC).

This is a 32-bit special purpose register used to
accumulate the results of MAC operations.

1.4.2.2 MASK REGISTER (MASK).

This is a 16-bit special purpose register used to hold
the address mask for MAC load operations.

1.4.2.3 MAC STATUS REGISTER (MACSR).

This is an 8-bit special purpose register
used to hold the status of MAC operations.

1.4.3 Supervisor Programming Model

System programers use the supervisor programming model to implement sensitive
operating system functions. The following paragraphs briefly describe the registers in the
supervisor programming model. All accesses that affect the control features of the
ColdFire2/2M are in the supervisor programming model, which consist of the registers
available to users as well as the registers listed in Figure 1-8.

Most of the control registers are accessed via the MOVEC instruction using the control
register definitions shown in Table 1-1. These are a subset of the registers defined in the

ColdFire Programmer’s Reference Manual Rev. 1.0

(MCF5200PRM/AD).

Refer to

Appendix A Register Summary

 for a description of the access methods for all of
the register in the ColdFire2/2M.

1.4.3.1 STATUS REGISTER (SR).

Figure 1-9 illustrates the SR, which stores the
processor status and contains the condition codes that reflect the results of a previous
operation. The low-order byte of the SR is the condition code register (CCR.)

31 16 15 0
Cache Control Register (CACR)

Access Control Register 0 (ACR0)
Access Control Register 1 (ACR1)

Vector Base Register (VBR)
ROM Base Address Register (ROMBAR0)
SRAM Base Address Register (RAMBAR0)

Status Register (SR)

Figure 1-8. Supervisor Programming Model

Table 1-1. MOVEC Register Map

RC[11:0] REGISTER DEFINITION

$002 Cache Control Register (CACR)
$004 Access Control Register 0 (ACR0)
$005 Access Control Register 1 (ACR1)
$801 Vector Base Register (VBR)
$C00 ROM Base Address Register (ROMBAR0)
$C04 RAM Base Address Register 0 (RAMBAR0)

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-15

Field Definitions:

T[15]—Trace Enable
When set, the processor will perform a trace exception after every instruction; otherwise no
trace exception is performed.

S[13]—Supervisor / User State
Denotes the processor privilege mode: supervisor mode (S set) or user mode (S cleared).

M[12]—Master / Interrupt State
This bit is cleared by an interrupt exception, and can be set by software during execution of
the RTE or move to SR instructions.

I[10:8]—Interrupt Priority Mask
Defines the current interrupt priority. Interrupt requests are inhibited for all priority levels less
than or equal to the current priority, except the level seven request, which cannot be
masked.

1.4.3.2 CACHE CONTROL REGISTER (CACR).

The CACR controls the cache operation.
This includes cache enable, cache freeze, cache invalidate, cache mode, and default write
protect. See

Section 5.1.11 Cache Control Register (CACR)

 for more information.

1.4.3.3 ACCESS CONTROL REGISTERS (ACR0, ACR1).

The ACRs allow definition of
access attributes for two definable memory regions. These attributes include burst control,
instruction caching, and write protection. These attributes override the defaults in the CACR.
See

Section 5.2.1 ACR Programming Model

 for more information.

1.4.3.4 VECTOR BASE REGISTER (VBR).

The VBR contains the base address of the
exception vector table in memory. The displacement of an exception vector is added to the
value in this register to access the vector table. Only the upper 12 bits of the VBR are used
and the lower 20 bits are filled with zeros. This forces the exception vector table to be aligned
on a 1 MByte boundary. This register is reset to zero.

1.4.3.5 ROM BASE ADDRESS REGISTER (ROMBAR0).

The ROMBAR0 register
configures the internal ROM module. This includes the base address, code space masks,
and enable. See

Section 5.3.2 ROM Programming Model

 for more information.

1.4.3.6 SRAM BASE ADDRESS REGISTER (RAMBAR0).

The RAMBAR0 register
configures the internal SRAM module. This includes the base address, write protect, code

BITS 15 14 13 12 11 10 8 7 5 4 3 2 1 0

FIELD

T - S M - I - X N Z V C

RESET

0 0 1 1 0 7 0 0 0 0 0 0

R/W

R/W R R/W R/W R R/W R R/W R/W R/W R/W R/W

Figure 1-9. Status Register (SR)

Overview

1-16

 ColdFire2/2M User’s Manual

MOTOROLA

space masks, and enable. See

Section 5.4.3 RAM Programming Model

 for more
information.

1.5 INTEGER DATA FORMATS

Table 1-2 lists the operand data formats that are supported by the integer unit. Integer unit
operands can reside in registers, memory, or instructions. The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the instruction
operation.

1.6 ORGANIZATION OF DATA IN REGISTERS

The following paragraphs describe data organization within the data, address, and control
registers.

1.6.1 Organization of Integer Data Formats in Registers

Figure 1-10 shows the integer format for data registers. Each integer data register is 32 bits
wide. Byte and word operands occupy the lower 8- and 16-bit portions of integer data
registers, respectively. Long-word operands occupy the entire 32 bits of integer data
registers. A data register that is either a source or destination operand only uses or changes
the appropriate lower 8 or 16 bits in byte or word operations, respectively. The remaining
high-order portion does not change. The least significant bit (LSB) of all integer sizes is zero,
the most significant bit (MSB) of a longword integer is 31, the MSB of a word integer is 15,
and the MSB of a byte integer is 7.

Because address registers and stack pointers are 32-bits wide, address registers cannot be
used for byte-size operands. When an address register is a source operand, either the low-

Table 1-2. Integer Data Formats

OPERAND DATA FORMAT SIZE

Bit 1 Bit
Byte Integer 8 Bits
Word Integer 16 Bits

Long-Word Integer 32 Bits

Figure 1-10. Organization of Integer Data Formats in Data Registers

LSBMSB

1 031 30
BIT (0 MODULO (OFFSET)
< 31,OFFSET OF 0 = MSB)

<_

0731

BYTE

031

16-BIT WORD

031

LONG WORD

15

LOW-ORDER WORD

LONG WORD LSB

LSB

MSB

MSB

LSBMSBNOT USED

NOT USED

Overview

MOTOROLA

 ColdFire2/2M User’s Manual

1-17

order word or the entire longword operand is used, depending on the operation size. When
an address register is the destination operand, the entire register becomes affected, despite
the operation size. If the source operand is a word size, it is sign-extended to 32 bits and
then used in the operation to an address register destination. Address registers are primarily
for addresses and address computation support. The instruction set (See

Section 1.8
Instruction Set Summary

) explains how to add, compare, and move the contents of
address registers. Figure 1-11 illustrates the integer format for address registers.

Control registers vary in size according to function. Some control registers have undefined
bits reserved for future definition by Motorola. Those particular bits read as zeros and must
be written as zeros for future compatibility.

All operations to the SR and CCR are word-size operations. For all CCR operations, the
upper byte is read as all zeros and is ignored when written, despite privilege mode.

1.6.2 Organization of Integer Data Formats in Memory

The ColdFire2/2M uses a big-endian addressing scheme. The byte-addressable
organization of memory allows lower addresses to correspond to higher order bytes. The
address N of a long-word data item corresponds to the address of the high order word. The
lower order word is located at address N + 2. The address N of a word data item
corresponds to the address of the high order byte. The lower order byte is located at address
N + 1. This organization is shown in Figure 1-12.

31 16 15 0

SIGN-EXTENDED 16-BIT ADDRESS OPERAND

31 0

FULL 32-BIT ADDRESS OPERAND

Figure 1-11. Organization of Integer Data Formats in Address Registers

Overview

1-18

 ColdFire2/2M User’s Manual

MOTOROLA

1.7 ADDRESSING MODE SUMMARY

The addressing modes are grouped into categories according to the mode of use. Data
addressing modes refer to data operands. Memory addressing modes refer to memory
operands. Alterable addressing modes refer to alterable (writable) operands. Control
addressing modes refer to memory operands without an associated size.

These categories sometimes combine to form new categories that are more restrictive. Two
combined classifications are alterable memory (both alterable and memory) and data
alterable (both alterable and data). Table 1-3 lists a summary of effective addressing modes
and their categories. Only the twelve addressing modes supported by the 68000 are
available on the ColdFire2/2M.

Figure 1-12. Memory Operand Addressing

31 23 15 7 0

BYTE $00000000

WORD $00000000

LONG WORD $00000000

BYTE $00000001 BYTE $00000002 BYTE $00000003

WORD $00000002

BYTE $00000004

WORD $00000004

LONG WORD $00000004

BYTE $00000005 BYTE $00000006 BYTE $00000007

WORD $00000006

BYTE $FFFFFFFC

WORD $FFFFFFFC

LONG WORD $FFFFFFFC

BYTE $FFFFFFFD BYTE $FFFFFFFE BYTE $FFFFFFFF

WORD $FFFFFFFE

Overview

MOTOROLA ColdFire2/2M User’s Manual 1-19

1.8 INSTRUCTION SET SUMMARY
Table 1-4 lists the notational conventions used throughout this manual unless otherwise
specified. Table 1-5 lists the ColdFire2/2M instruction set by opcode. This instruction set is
a reduced version of the 68000 instruction set. The removed instructions include BCD, bit
field, logical rotate, decrement and branch, integer division, and integer multiply with a 64-
bit result. Nine new MAC instructions have been added.

Table 1-3. Effective Addressing Modes and Categories

ADDRESSING MODES SYNTAX
MODE
FIELD

REG.
FIELD

CATEGORY

DATA MEMORY CONTROL ALTERABLE

Register Direct
Data

Address
Dn
An

000
001

reg. no.
reg. no.

X
—

—
—

—
—

X
X

Register Indirect
Address

Address with Postincrement
Address with Predecrement
Address with Displacement

(An)
(An)+
–(An)

(d16, An)

010
011
100
101

reg. no.
reg. no.
reg. no.
reg. no.

X
X
X
X

X
X
X
X

X
—
—
X

X
X
X
X

Address Register Indirect with Index
8-Bit Displacement (d8, An, Xn) 110 reg. no. X X X X

Program Counter Indirect
with Displacement (d16, PC) 111 010 X X X —

Program Counter Indirect with Index
8-Bit Displacement (d8, PC, Xn) 111 011 X X X —

Absolute Data Addressing
Short
Long

(xxx).W
(xxx).L

111
111

000
001

X
X

X
X

X
X

—
—

Immediate #<xxx> 111 100 X X — —

Table 1-4. Notational Conventions

OPCODE WILDCARDS

cc Logical Condition (example: NE for not equal)

REGISTER OPERANDS

An Any Address Register n (example: A3 is address register 3)
Ay,Ax Source and destination address registers, respectively

Dn Any Data Register n (example: D5 is data register 5)
Dy,Dx Source and destination data registers, respectively

Rn Any Address or Data Register
Ry,Rx Any source and destination registers, respectively

Rw Any second source register
Rc Any Control Register (example VBR is the vector base register)

REGISTER/PORT NAMES

ACC MAC Accumulator
DDATA Debug Data Port

CCR Condition Code Register (lower byte of status register)
MACSR MAC Status Register
MASK Mask Register

PC Program Counter
PST Processor Status Port
SR Status Register

Overview

1-20 ColdFire2/2M User’s Manual MOTOROLA

MISCELLANEOUS OPERANDS

 #<data> Immediate data following the instruction word(s).
<ea> Effective Address

<label> Assemble Program Label
<list> List of registers (example: D3–D0)

<shift> Shift operation: Shift left (<<), Shift Right (>>)
<size> Operand data size: Byte (B), Word (W), Longword (L)

OPERATIONS

+ Arithmetic addition or postincrement indicator
– Arithmetic subtraction or predecrement indicator
¥ Arithmetic multiplication
~ Invert; operand is logically complemented
L Logical AND
V Logical OR

⊕ Logical exclusive OR
<< Shift left (example: D0 << 3 is shift D0 left 3 bits)
>> Shift right (example: D0 >> 3 is shift D0 right 3 bits)

→ Source operand is moved to destination operand
←→ Two operands are exchanged

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion
If <condition>

then <operations>
else <operations>

Test the condition. If true, the operations after ‘then’ are performed. If the condition is false and the optional ‘else’ clause
is present, the operations after ‘else’ are performed. If the condition is false and else is omitted, the instruction performs no

operation. Refer to the Bcc instruction description as an example.

& and
 | or

SUBFIELDS AND QUALIFIERS

{} Optional Operation
() Identifies an indirect address
dn Displacement Value, n-Bits Wide (example: d16 is a 16-bit displacement)

Address Calculated Effective Address (pointer)
Bit Bit Selection (example: Bit 3 of D0)

LSB Least Significant Bit (example: MSB of D0)
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

CONDITION CODE REGISTER BIT NAMES

C Carry Bit in CCR
N Negative Bit in CCR
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR

Table 1-4. Notational Conventions (Continued)

Overview

MOTOROLA ColdFire2/2M User’s Manual 1-21

Table 1-5. Instruction Set Summary

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

ADD Dy,<ea>,x
<ea>y,Dx

32
32

Source + Destination → Destination

ADDA <ea>y,Ax 32 Source + Destination → Destination
ADDI #<data>,Dx 32 Immediate Data + Destination → Destination
ADDQ #<data>,<ea>x 32 Immediate Data + Destination → Destination
ADDX Dy,Dx 32 Source + Destination + X → Destination
AND Dy,<ea>x

<ea>y,Dx
32
32

Source L Destination → Destination

ANDI #<data>,Dx 32 Immediate Data L Destination → Destination
ASL Dx,Dy

#<data>,Dn
32
32

X/C ← (Dy << Dx) ← 0
X/C ← (Dy << #<data>) ← 0

ASR Dx,Dy
<data>,Dx

32
32

MSB → (Dy >> Dx) → X/C
MSB → (Dy >> #<data>) → X/C

Bcc <label> 8,16 If Condition True, Then PC + dn → PC

BCHG Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z, Bit of Destination

BCLR Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z, 0 → Bit of Destination

BRA <label> 8,16 PC + dn → PC

BSET Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z, 1→ Bit of Destination

BSR <label> 8,16 SP – 4 → SP; PC → (SP); PC + dn → PC

BTST Dy,<ea>x
#<data>,<ea>x

8,32
8,32

~(<Bit Number> of Destination) → Z

CLR <ea>x 8,16,32 0 → Destination
CMPI #<data>,Dx 8,16,32 Destination – Immediate Data
CMP <ea>y,Dx 32 Destination - Source

CMPA <ea>y,Ax 32 Destination - Source
CPUSH (An) 32 Push and Invalidate Cache Line

EOR Dy,<ea>x 32 Source ⊕ Destination → Destination
EORI #<data>,Dx 32 Immediate Data ⊕ Destination → Destination
EXT Dx

Dx
8 → 16

16 → 32
Sign-Extended Destination → Destination

EXTB Dx 8 → 32 Sign-Extended Destination → Destination
HALT none none Enter Halted State
JMP <ea>y none <ea>y → PC
JSR <ea>y none SP – 4 → SP; Next PC → (SP); <ea>y → PC
LEA <ea>y,Ax 32 Address of <ea> → An
LINK Ax,#<data> 32 SP – 4 → SP; Ax → (SP); SP → Ax; SP + d16 → SP
LSL Dx,Dy

#<data>,Dx
32
32

X/C ← (Dy << Dx) ← 0
X/C ← (Dx << #<data>) ← 0

LSR Dx,Dy
#<data>,Dx

32
32

0 → (Dy >> Dx) → X/C
0 → (Dx >> #<data>) → X/C

MAC† Rw,Rx ,<shift> 16 × 16 + 32 → 32
32 × 32 + 32 → 32

ACC + (Rw × Rx){ << 1 | >> 1} → ACC

MACL† Rw,Rx,<shift>,<ea>,Ry 16 × 16 + 32 → 32
32 × 32 + 32 → 32

ACC + (Rw × Rx){ << 1 | >> 1} → ACC; (<ea>{& MASK}) → Ry

MOVE <ea>y,<ea>x 8,16,32 Source → Destination
MOVE from ACC† ACC,Rx 32 ACC → Rn
MOVE from CCR Dx 16 CCR → Destination

NOTE: †Available on the ColdFire2M only.

Overview

1-22 ColdFire2/2M User’s Manual MOTOROLA

MOVE from MACSR† MACSR,Rx
MACSR,CCR

32
8

MACSR → Rx
MACSR → CCR

MOVE from MASK† MASK,Rx 32 MASK → Rx
MOVE from SR Dx 16 SR → Destination
MOVE to ACC† Rx,ACC

#<data>,ACC
32
32

Rx → ACC
#<data> → ACC

MOVE to CCR Dy,CCR,
#<data>,CCR

16 Source → CCR
#<data> → CCR

MOVE to MACSR† Rn,MACSR
#<data>,MACSR

32 Rn → MACSR
#<data> → MACSR

MOVE to MASK† Rn,MASK
#<data>,MASK

32
32

Rn → MASK
#<data> → MASK

MOVE to SR Dy,SR
#<data>,SR

16 Source → SR
#<data> → SR

MOVEA <ea>y,Ax 16,32 → 32 Source → Destination
MOVEC Rn,Rc 32 Rn → Rc
MOVEM list,<ea>x

<ea>y,list
32
32

Listed Registers → Destination
Source→ Listed Registers

MOVEQ #<data>,Dx 8 → 32 Sign-extended Immediate Data → Destination
MSAC† Rw,Rx,<shift> 32 - 16 × 16 → 32

32 - 32 × 32 → 32
ACC - (Rw × Rx){ << 1 | >> 1} SF → ACC

MSACL† Rw,Rx,<shift>,<ea>,Ry 32 - 16 × 16 → 32
32 - 32 × 32 → 32

ACC - (Rw × Rx){ << 1 | >> 1} SF → ACC; (<ea>{& MASK}) → Ry

MULS <ea>y,Dx
<ea>y, DI

16 x 16 → 32
32 x 32 → 32

Source × Destination → Destination
(Signed or unsigned)

MULU <ea>y,Dx
<ea>y, DI

16 x 16 → 32
32 x 32 → 32

Source x Destination → Destination
(Signed or unsigned)

NEG <ea>x 32 0 – Destination → Destination
NEGX <ea>x 32 0 – Destination – X → Destination
NOP none none PC + 2 → PC; Pipeline synchronized
NOT <ea>x 32 ~ Destination → Destination
OR Dy,<ea>x

<ea>y,Dx
32 Source V Destination → Destination

ORI #<data>,Dx 32 Immediate Data V Destination → Destination
PEA <ea>y 32 SP – 4 → SP; <ea>y → (SP)

PULSE none none Generate unique PST value
RTE none none (SP+2) → SR; (SP+4) → PC; SP+ 8 → PC
RTS none none (SP) → PC; SP + 4 → SP
Scc Dx 8 If condition true, then 1's → Destination;

Else 0's → Destination
STOP #<data> 16 Immediate data → SR; Enter Stopped State
SUB Dy,<ea>x

<ea>y,Dx
32
32

Destination - Source→ Destination

SUBA <ea>,Ax 32 Destination - Source→ Destination
SUBI #<data>,Dx 32 Destination – Immediate data → Destination
SUBQ #<data>,<ea>x 32 Destination – Immediate data → Destination
SUBX Dy,Dx 32 Destination – Source – X → Destination
SWAP Dx 16 MSW of Dx ←→ LSW of Dx
TRAP none none SP – 4 → SP; PC → (SP);

SP – 2 → SP; SR → (SP);
SP – 2 → SP; Format → (SP);

Vector Address → PC

Table 1-5. Instruction Set Summary (Continued)

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

NOTE: †Available on the ColdFire2M only.

Overview

MOTOROLA ColdFire2/2M User’s Manual 1-23

TRAPF none
#<data>

none
16
32

PC + 2→ PC;
PC + 4 → PC;
PC + 6→ PC

TST <ea>y 8,16,32 Set Integer Condition Codes
UNLK Ax 32 Ax → SP; (SP) → Ax; SP + 4 → SP

WDDATA <ea>y 8,16,32 (<ea>y) → DDATA port
WDEBUG <ea>y 64 <ea>y → DEBUG; <ea>y + 4 → DEBUG

Table 1-5. Instruction Set Summary (Continued)

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

NOTE: †Available on the ColdFire2M only.

MOTOROLA

 ColdFire2/2M User’s Manual

2-1

SECTION 2
SIGNAL SUMMARY

2.1 INTRODUCTION

This section describes the ColdFire2/2M input and output signals. Figure 2-1 shows the
ColdFire2/2M along with the signal interface. The signals are listed alphabetically in Table
2-1. All ColdFire2/2M signals are unidirectional and synchronous.

Figure 2-1. ColdFire2/2M Detailed Block Diagram

MADDR[31:0]

MRDATA[31:0]

MWDATA[31:0]

MSIZ[1:0]

MTT[1:0]

MTM[2:0]

MIE

MRWB

MTSB

MTAB
MTEAB
MRSTB

IC
H

_S
Z

R
O

M
_S

Z
S

R
A

M
_S

Z

IC
H

_A
D

D
R

[1
4:

2

IC
H

D
_C

S
B

IC
H

D
_D

I[3
1:

0]
IC

H
D

_D
O

[3
1:

0]

IC
H

D
_S

T
IC

H
D

_R
W

B

IC
H

T
_C

S
B

IC
H

T
_D

I[3
1:

8]
IC

H
T

_D
O

[3
1:

8]

IC
H

T
_S

T
IC

H
T

_R
W

B

BKPTB

DDATA[3:0]

DSCLK
DSI

DSO

PST[3:0]

R
O

M
_A

D
D

R

R
O

M
_D

O
R

O
M

_E
N

B

R
O

M
_V

LD

S
R

A
M

_A
D

D
R

S
R

A
M

_C
S

B

S
R

A
M

_D
I

S
R

A
M

_D
O

S
R

A
M

_S
T

S
R

A
M

_R
W

B

C
LK

IP
LB

[2
:0

]

TEST_ADDR[14:2]

TEST_IDATA_RD

TEST_IVLD_INH

TEST_KTA
TEST_MODE
TEST_SRAM_RD

TEST_RD

TEST_CTRL

B
U

S
 C

O
N

T
R

O
LL

E
R

M
IS

C I-CACHE

UNIT

SRAM

UNIT

ROM

UNIT

DEBUG

CPU

CORE

MAC UNIT

UNIT

S
C

A
N

_X
A

R
R

A
Y

TEST_ITAG_WRT

TEST_IDATA_WRT

TEST_SRAM_WRT

TEST_ROM_RD
TEST_WR_INH

MFRZB
MKILLB

MARBC[1:0]

MWDATAOE

TEST_RHIT

S
C

A
N

_E
N

A
B

LE
S

C
A

N
_M

O
D

E

M
E

M
C

O
N

F
IG

IA
C

K
_6

8K

(COLDFIRE2M)

S
I[1

5:
0]

S
O

[1
5:

0]

T
R

_M
O

D
E

T
R

_S
E

T
R

_S
D

I[1
:0

]
C

O
R

E
_T

E
S

T
T

R
C

LK

TEST

PORT

T
R

_S
D

0[
1:

0]

Signal Summary

2-2

 ColdFire2/2M User’s Manual

MOTOROLA

Table 2-1. Signal Summary

SIGNAL MNEMONIC INPUT/OUTPUT ACTIVE STATE

68K Interrupt Acknowledge Mode IACK_68K Input High
Break Point BKPTB Input Low
Clock CLK Input High
Debug Data DDATA[3:0] Output High
Development Serial Clock DSCLK Input High
Development Serial Data Input DSI Input High
Development Serial Data Output DSO Output High
Instruction Cache Address Bus ICH_ADDR[14:2] Output High
Instruction Cache Data Chip-Select ICHD_CSB Output Low
Instruction Cache Data Input Bus ICHD_DI[31:0] Output High
Instruction Cache Data Output Bus ICHD_DO[31:0] Input High
Instruction Cache Data Strobe ICHD_ST Output High
Instruction Cache Data Write Enable ICHD_RWB Output Low
Instruction Cache Size ICH_SZ[2:0] Input High
Instruction Cache Tag Chip-Select ICHT_CSB Output Low
Instruction Cache Tag Input Bus ICHT_DI[31:8] Output High
Instruction Cache Tag Output Bus ICHT_DO[31:8] Input High
Instruction Cache Tag Strobe ICHT_ST Output High
Instruction Cache Tag Write Enable ICHT_RWB Output Low
Interrupt Priority Level IPLB[2:0] Input Low
Master Address Bus MADDR[31:0] Output High
Master Arbiter Control MARBC[1:0] Output High
Master Freeze MFRZB Output Low
Master Kill MKILLB Output Low
Master Read Data Bus MRDATA[31:0] Input High
Master Read Data Input Enable MIE Input High
Master Read/Write MRWB Output Low
Master Reset MRSTB Input Low
Master Size MSIZ[1:0] Output High
Master Transfer Acknowledge MTAB Input Low
Master Transfer Error Acknowledge MTEAB Input Low
Master Transfer Modifier MTM[2:0] Output High
Master Transfer Start MTSB Output Low
Master Transfer Type MTT[1:0] Output High
Master Write Data Bus MWDATA[31:0] Output High
Master Write Data Output Enable MWDATAOE Output High
Processor Status PST[3:0] Output High
ROM Address Bus ROM_ADDR[14:2] Output High
ROM Data Output Bus ROM_DO[31:0] Input High
ROM Enable ROM_ENB[1:0] Output Low
ROM Size ROM_SZ[2:0] Input High
ROM Valid ROM_VLD Input High
Scan Enable SCAN_ENABLE Input High
Scan Exercise Array SCAN_XARRAY Input High
Scan Input SI[15:0] Input High
Scan Mode SCAN_MODE Input High
Scan Output SO[15:0] Input High
Scan Test Ring Clock TR_CLK Input High

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-3

2.2 MASTER BUS SIGNALS

2.2.1 68K Interrupt Acknowledge Mode Enable (IACK_68K)

This active-high input signal enables the 68K interrupt acknowledge mode. In this mode, the
Master Address Bus, MADDR[31:0], MTT[1:0], and MTM[2:0] signals mimic the 68K
address bus and function codes during interrupt acknowledge and CPU space bus cycles.
This is a static input. Refer to

Section 3.7.1 Interrupt Acknowledge Bus Cycle

 for more
information.

2.2.2 Master Address Bus (MADDR[31:0])

During a normal bus cycle, this 32-bit output bus provides the address of the first item of a
bus transfer. It is capable of addressing 4 Gbytes of address space.

2.2.3 Master Arbiter Control (MARBC[1:0])

These output signals can be used to specify the mode of operation for an optional arbitration
module. They reflect the bit positions [17:16] in the CACR. If an optional arbitration module
is not used, these signals can be used as general purpose output signals. The CACR is
accessible in supervisor mode as control register $002 using the MOVEC instruction.

Scan Test Ring Core Mode Enable CORE_TEST Input High
Scan Test Ring Data Input TR_SDI[1:0] Input High
Scan Test Ring Data Output TR_SDO[1:0] Output High
Scan Test Ring Enable TR_SE Input High
Scan Test Ring Mode TR_MODE Input High
SRAM Address Bus SRAM_ADDR[14:2] Output High
SRAM Chip-Select SRAM_CSB Output Low
SRAM Data Input Bus SRAM_DI[31:0] Output High
SRAM Data Output Bus SRAM_DO[31:0] Input High
SRAM Size SRAM_SZ[2::0] Input High
SRAM Strobe SRAM_ST[3::0] Output High
SRAM Read/Write SRAM_RWB[3:0] Output Low
Test Address Bus TEST_ADDR[14:2] Input High
Test Control TEST_CTRL Input High
Test Invalidate Inhibit TEST_IVLD_INH Input High
Test ITAG Write TEST_ITAG_WRT Input High
Test Instruction Cache Read Hit TEST_RHIT Output High
Test IDATA Read TEST_IDATA_RD Input High
Test IDATA Write TEST_IDATA_WRT Input High
Test KTA Mode Enable TEST_KTA Input High
Test Mode Enable TEST_MODE Input High
Test SRAM Read TEST_SRAM_RD Input High
Test SRAM Write TEST_SRAM_WRT Input High
Test Read TEST_RD Input High
Test ROM Read TEST_ROM_RD Input High
Test Write Inhibit TEST_WR_INH Input High

Table 2-1. Signal Summary (Continued)

SIGNAL MNEMONIC INPUT/OUTPUT ACTIVE STATE

Signal Summary

2-4

 ColdFire2/2M User’s Manual

MOTOROLA

2.2.4 Master Freeze (MFRZB)

This active-low output signal indicates that the core has been halted. MFRZB is not part of
the M-Bus protocol. It is simply a signal that can be used to alert timers or other peripheral
modules that the core has been halted.

2.2.5 Master Kill (MKILLB)

This active-low output signal qualifies MTSB (i.e. it can assert in other cycles but is only
significant in a cycle where MSTB is asserted). When MKILLB is asserted simultaneously
with MTSB assertion, this indicates a hit in a K-Bus memory and that the external cycle must
be inhibited. This means the current master bus transaction is no longer required and should
be ignored (MTAB should not be asserted). MKILLB is asserted late in the MTSB cycle. Note
that if there is no K-Bus resident memory (ICACHE, SRAM, or ROM), MKILLB never
asserts. See Table 2-2 for MTSB/MKILLB interaction in table format.

2.2.6 Master Read Data Bus (MRDATA[31:0])

These input signals provide the read data path between the system and the ColdFire2/2M.
The read data bus is 32-bits wide and can transfer 8, 16 or 32 bits of data per bus transfer.
During a line transfer, the data bus is time-multiplexed across multiple clock cycles to
transfer 128 bits.

2.2.7 Master Read Data Input Enable (MIE)

This active-high input signal enables the capturing of MRDATA[31:0]. Power consumption
can be reduced by minimizing signal switching in the ColdFire2/2M by negating MIE when
MRDATA[31:0] is invalid. MIE must be asserted during all functional operation with one
master and during K-Bus memory testing.

2.2.8 Master Read/Write (MRWB)

This output signal indicates the direction of the data transfer for the current bus cycle. A high
level indicates a read cycle and a low level indicates a write cycle.

2.2.9 Master Reset (MRSTB)

This active-low input signal instructs all master bus modules, including the ColdFire2/2M, to
enter reset mode. The ColdFire2/2M will then initiate a reset exception.

2.2.10 Master Size (MSIZ[1:0])

These output signals indicate the data size for the bus transfer. Refer to Table 2-3 for the
bus size encoding.

Table 2-2. M-Bus Protocol with respect to MTSB and MKILLB

MTSB MKILLB M-BUS PROTOCOL

0 1 Initiate M-Bus transfer
0 0 Nop
1 X Nop

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-5

2.2.11 Master Transfer Acknowledge (MTAB)

This active-low input signal is asserted by master bus slaves to indicate the successful
completion of a requested bus transfer.

2.2.12 Master Transfer Error Acknowledge (MTEAB)

This active-low input signal is asserted by master bus slaves to indicate an error condition
for the current bus transfer. If MTAB and MTEAB are both asserted, the cycle is terminated
with an error because MTEAB always has precedence over MTAB.

2.2.13 Master Transfer Modifier (MTM[2:0])

These output signals provide supplemental information for each transfer type. The exact
meaning depends on the MTT[1:0], and IACK_68K signals as shown in Table 2-4.

Table 2-3. Master Bus Transfer Size Encoding

MSIZ[1:0] TRANSFER SIZE

00 Longword (4 bytes)
01 Byte (1 byte)
10 Word (2 bytes)
11 Line (16 bytes)

Table 2-4. Master Bus Transfer Modifier Encoding

MTM[2:0] MTT[1:0] COLDFIRE IACK MODE

1

68K IACK MODE

2

000 0x Reserved Reserved
001 0x User Data Access User Data Access
010 0x User Code Access User Code Access

011 - 100 0x Reserved Reserved
101 0x Supervisor Data Access Supervisor Data Access
110 0x Supervisor Code Access Supervisor Code Access
111 0x Reserved Interrupt Acknowledge/CPU Space Access

000 - 100 10 Reserved Reserved
101 10 Emulator Mode Data Access Emulator Mode Data Access
110 10 Emulator Mode Code Access Emulator Mode Code Access
111 10 Reserved Reserved
000 11 CPU Space Access Reserved
001 11 Interrupt Acknowledge Level 1 Reserved
010 11 Interrupt Acknowledge Level 2 Reserved
011 11 Interrupt Acknowledge Level 3 Reserved
100 11 Interrupt Acknowledge Level 4 Reserved
101 11 Interrupt Acknowledge Level 5 Reserved
110 11 Interrupt Acknowledge Level 6 Reserved
111 11 Interrupt Acknowledge Level 7 Reserved

NOTES: 1. 68K interrupt acknowledge mode signal negated (IACK_68K = 0)

2. 68K interrupt acknowledge mode signal asserted (IACK_68K = 1)

Signal Summary

2-6

 ColdFire2/2M User’s Manual

MOTOROLA

2.2.14 Master Transfer Start (MTSB)

This active-low output signal indicates the start of each bus transfer.

2.2.15 Master Transfer Type (MTT[1:0])

These output signals indicate the type of access of the current bus cycle. The exact meaning
depends on the IACK_68K signal as shown in Table 2-5.

2.2.16 Master Write Data Bus (MWDATA[31:0])

These output signals provide the write data path between the ColdFire2/2M and the system.
The write data bus is 32-bits wide and can transfer 8, 16 or 32 bits of data per bus transfer.
During a line transfer, the data bus is time-multiplexed across multiple clock cycles to carry
128 bits.

2.2.17 Master Write Data Output Enable (MWDATAOE)

This active-high output signal indicates that the ColdFire2/2M is driving the master write data
bus. This is used to control optional bidirectional data bus three-state drivers.

2.3 GENERAL CONTROL SIGNALS

2.3.1 Clock (CLK)

This input signal is the synchronous clock for the ColdFire2/2M. CLK is used to clock or
sequence the ColdFire2/2M internal logic.

2.3.2 Interrupt Priority Level (IPLB[2:0])

These active-low input signals indicate the encoded priority level of the requested interrupt.
Level seven, which cannot be masked, has the highest priority. Level zero indicates no
interrupt has been requested. These signals must maintain the interrupt request until the
ColdFire2/2M acknowledges the interrupt to guarantee that the interrupt is recognized.
Table 2-6 lists the interrupt levels, the IPLB[2:0] states, and the mask value that allows an
interrupt at each level.

Table 2-5. Master Bus Transfer Type Encoding

MTT[1:0] COLDFIRE IACK MODE

1

68K IACK MODE

2

00 ColdFire2/2M Access Acknowledge/CPU Space/ColdFire2/2M Access
01 Alternate Master Access Alternate Master Access
10 Emulator Mode Access Emulator Mode Access
11 Acknowledge/CPU Space Access Reserved

NOTES: 1. 68K interrupt acknowledge mode signal negated (IACK_68K = 0)

2. 68K interrupt acknowledge mode signal asserted (IACK_68K = 1)

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-7

2.4 INTEGRATED MEMORY SIGNALS

These signals interface the ColdFire2/2M to an integrated instruction cache, ROMs and
SRAMs.

2.4.1 Instruction Cache Signals

The signals interface the ColdFire2/2M to an optional integrated instruction cache.

2.4.1.1 INSTRUCTION CACHE ADDRESS BUS (ICH_ADDR[14:2]).

These registered
output signals provide the address of the current bus cycle (i.e. fetch cycle) to the integrated
cache RAMs. ICH_ADDR is only updated on fetch cycles (i.e. ICH_ADDR does not get
updated on SRAM or ROM hits). This bus should be connected to the address bus (A) of
the two compiled cache RAMs.

2.4.1.2 INSTRUCTION CACHE DATA CHIP-SELECT (ICHD_CSB).

This active-low,
output signal indicates the cache data RAM is currently selected to perform a data transfer
with the ColdFire2/2M. This bus should be connected to the chip-select (CSB) signal of the
compiled cache data RAM.

2.4.1.3 INSTRUCTION CACHE DATA INPUT BUS (ICHD_DI[31:0]).

These output
signals provide the write data path between the ColdFire2/2M and the cache data RAM. The
data bus is 32-bits wide and should be connected to the data inputs (DBI) of the compiled
cache data RAM.

2.4.1.4 INSTRUCTION CACHE DATA OUTPUT BUS (ICHD_DO[31:0]).

These input
signals provide the read data path between the cache data RAM and the ColdFire2/2M. The
data bus is 32-bits wide and should be connected to the data outputs (DBO) of the compiled
cache data RAM.

2.4.1.5 INSTRUCTION CACHE DATA STROBE (ICHD_ST).

This output signal initiates a
read or write cycle to the cache data RAM on a low-to-high transition. This signal should be
connected to the strobe input (ST) signal of the compiled cache data RAM.

2.4.1.6 INSTRUCTION CACHE DATA READ/WRITE (ICHD_RWB).

This output signal
indicates the direction of the data transfer to the cache data RAM. A high level indicates a

Table 2-6. Interrupt Levels and Mask Values

REQUESTED
INTERRUPT LEVEL

CONTROL LINE STATUS INTERRUPT MASK LEVEL
REQUIRED FOR RECOGNITIONIPLB[2] IPLB[1] IPLB[0]

0 High High High No Request
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

Signal Summary

2-8

 ColdFire2/2M User’s Manual

MOTOROLA

read cycle and a low level indicates a write cycle. It should be connected to the read/write
(RWB) signal of the compiled cache data RAM.

2.4.1.7 INSTRUCTION CACHE SIZE (ICH_SZ[2:0]).

These static inputs specify the size
of the compiled cache RAMs connected to the ColdFire2/2M processor. Table 2-7 lists the
possible cache configurations. ICH_SZ[2:0] does not affect the CACR in any way; thus a
MOVEC instruction will write the CACR regardless of the ICH_SZ specification (which is
contrary to the SRAM_SZ and ROM_SZ effect during RAMBAR and ROMBAR loading).

2.4.1.8 INSTRUCTION CACHE TAG CHIP-SELECT (ICHT_CSB).

This active-low output
signal indicates the cache tag RAM is currently selected to perform a data transfer with the
ColdFire2/2M. This signal should be connected to the chip-select (CSB) signal of the
compiled cache tag RAM.

2.4.1.9 INSTRUCTION CACHE TAG INPUT BUS (ICHT_DI[31:8]).

These output signals
provide the write data path between the ColdFire2/2M and the cache tag RAM. The data bus
is 24-bits wide. Bit eight is always the valid bit and is always used as seen in the cache
configuration shown in Table 2-8. This bus should be connected to the data inputs (DBI) of
the compiled cache tag RAM. Functionally, ICH_ADDR[31:9] is what gets written onto
ICHT_DI[31:9] and ICHT_DI[8] is written with the valid state of the entry.

Table 2-7. Cache Configuration Encoding

CACHE SIZE
(BYTES)

ICH_SZ[2:0]
TAG RAM (BITS) DATA RAM (BITS)

ADDRESS DATA ADDRESS DATA

None 000 - - - -
512 001 5 24 7 32
1 K 010 6 23 8 32
2 K 011 7 22 9 32
4 K 100 8 21 10 32
8 K 101 9 20 11 32

16K† 110 10 19 12 32
32K† 111 11 18 13 32

NOTE: †16K and 32K RAMS may require a reduced operating frequency in HPF65
ColdFire2 Hard Macro.

Table 2-8. Valid Tag RAM Data Signals

CACHE SIZE
(BYTES)

VALID DATA BITS

512 ICHT_Dx[31:8]
1 K ICHT_Dx[31:10,8]
2 K ICHT_Dx[31:11,8]
4 K ICHT_Dx[31:12,8]
8 K ICHT_Dx[31:13,8]
16K ICHT_Dx[31:14,8]
32K ICHT_Dx[31:15,8]

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-9

2.4.1.10 INSTRUCTION CACHE TAG OUTPUT BUS (ICHT_DO[31:8]).

These input
signals provide the read data path between the cache tag RAM and the ColdFire2/2M. The
data bus is 24-bits wide. Bit eight is always the valid bit and is always used regardless of the
cache configuration as shown in Table 2-8. This bus should be connected to the data
outputs (DBO) of the compiled cache tag RAM. Unused signals must be tied low.

2.4.1.11 INSTRUCTION CACHE TAG STROBE (ICHT_ST).

This output signal initiates a
read or write cycle to the cache tag RAM on a low-to-high transition. This signal should be
connected to the strobe input (ST) signal of the compiled cache tag RAM.

2.4.1.12 INSTRUCTION CACHE TAG READ/WRITE (ICHT_RWB).

This output signal
indicates the direction of the data transfer to the cache tag RAM. A high level indicates a
read cycle and a low level indicates a write cycle. It should be connected to the read/write
(RWB) signal of the compiled cache tag RAM.

2.4.2 Integrated ROM Signals

These signals interface the ColdFire2/2M to the optional integrated ROMs.

2.4.2.1 ROM ADDRESS BUS (ROM_ADDR[14:2]).

These output signals provide the
address of the current bus cycle to the integrated ROMs. This bus should be connected to
the address bus (A) of the compiled ROMs. The number of valid address signals depends
on the total ROM size as shown in Table 2-9.

2.4.2.2 ROM DATA OUTPUT BUS (ROM_DO[31:0]).

These input signals provide the
read data path from the integrated ROMs to the ColdFire2/2M. The data bus is 32-bits wide
and can transfer 8, 16, or 32 bits of data per bus transfer. During a line transfer, the data
lines are time-multiplexed across multiple cycles to carry 128 bits. This bus should be
connected to the data outputs (DO) of the compiled ROMs.

2.4.2.3 ROM ENABLE (ROM_ENB[1:0]).

These active-low, output signals indicate the
ROMs are currently selected to drive the ROM_DO[31:0] bus. These signals should be
connected individually to the enable signal (ROMENB) signal of the compiled ROMs. Both
are asserted for 32-bit accesses. ROM_ENB[0] connects to the MSW while ROM_ENB[1]
connects to the LSW.

Table 2-9. Valid ROM Address Bits

TOTAL ROM SIZE VALID ROM_ADDR BITS

0 None
512 ROM_ADDR[8:2]
1 K ROM_ADDR[9:2]
2 K ROM_ADDR[10:2]
4 K ROM_ADDR[11:2]
8 K ROM_ADDR[12:2]
16K ROM_ADDR[13:2]
32K ROM_ADDR[14:2]

Signal Summary

2-10

 ColdFire2/2M User’s Manual

MOTOROLA

2.4.2.4 ROM SIZE (ROM_SZ[2:0]).

These static inputs specify the size of the compiled
ROMs connected to the ColdFire2/2M. These pins need to stay valid during all operation.
Table 2-10 lists the possible ROM configurations. If the ROM_SZ pins are zero, the ROM
cannot be enabled via a CPU space write to ROMBAR. Therefore if the ROM is enabled
while the ROM_SZ pins are at zero, the processor behaves as if no ROM module existed.

2.4.2.5 ROM VALID (ROM_VLD).

This active-high input signal determines if the ROM
module should be active immediately after a hard reset. Thus, if asserted, the first fetches
($0, $4) go to ROM instead of external memory. ROM_VLD controls the reset value of the
ROM base address register (i.e. the ROM must be based at $0000 if ROM_VLD is
asserted).

2.4.3 Integrated SRAM Signals

These signals interface the ColdFire2/2M to the optional integrated SRAMs.

2.4.3.1 SRAM ADDRESS BUS (SRAM_ADDR[14:2]).

These registered output signals provide the address of the current bus cycle to the
integrated SRAMs. This bus should be connected to the address bus (A) of the four
compiled SRAMs. The number of valid address signals depends on the total SRAM size as
shown in Table 2-11.

Table 2-10. ROM Configuration Encoding

TOTAL ROM SIZE
(BYTES)

ROM_SZ[2:0]
ADDRESS

(BITS)
DATA

1

(BITS)

None 000 - -
512 001 7 2 @ 16
1 K 010 8 2 @ 16
2 K 011 9 2 @ 16
4 K 100 10 2 @ 16
8 K 101 11 2 @ 16

16K

2

110 12 2 @ 16

32K

2

111 13 2 @ 16

NOTES: 1. 2 ROMs, each 16-bits wide

2. 16K and 32K ROMs may require a reduced operating frequency.

Table 2-11. Valid SRAM Address Bits

TOTAL SRAM SIZE VALID SRAM_ADDR BITS

0 None
512 SRAM_ADDR[8:2]
1 K SRAM_ADDR[9:2]
2 K SRAM_ADDR[10:2]
4 K SRAM_ADDR[11:2]
8 K SRAM_ADDR[12:2]
16K SRAM_ADDR[13:2]
32K SRAM_ADDR[14:2]

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-11

2.4.3.2 SRAM CHIP-SELECT (SRAM_CSB).

This active-low output signal indicates the
SRAMs are currently selected to perform a data transfer with the ColdFire2/2M. This signal
should be connected to the chip-select (CSB) signal of the four compiled SRAMs.

2.4.3.3 SRAM DATA INPUT BUS (SRAM_DI[31:0]).

These output signals provide the
write data path between the ColdFire2/2M and the integrated SRAM. The data bus is 32-bits
wide and can transfer 8, 16, or 32 bits of data per bus transfer. During a line transfer, the
data lines are time-multiplexed across multiple cycles to carry 128 bits. This bus should be
connected to the data inputs (DBI) of the four compiled SRAMs. If only one byte is being
written, the byte will be replicated on all 4 lines likewise a word will be replicated in both word
positions.

2.4.3.4 SRAM DATA OUTPUT BUS (SRAM_DO[31:0]).

These input signals provide the
read data path between the integrated RAM and the ColdFire2/2M. The data bus is 32-bits
wide and can transfer 8, 16 or 32 bits of data per bus transfer. During a line transfer, the data
lines are time-multiplexed across multiple cycles to carry 128 bits. This bus should be
connected to the data outputs (DBO) of the four compiled SRAMs.

2.4.3.5 SRAM SIZE (SRAM_SZ[2:0]).

These static inputs specify the size of the compiled
SRAMs connected to the ColdFire2/2M. These pins need to stay valid during all operation.
If the SRAM_SZ pins are zero, the SRAM cannot be enabled via a CPU space write to
RAMBAR. Therefore if the RAM is enabled while the SRAM_SZ pins are at zero, the
processor behaves as if no SRAM module existed.

Table 2-12 lists the possible SRAM configurations.

2.4.3.6 SRAM STROBE (SRAM_ST[3:0]).

These output signals initiate a read or write
cycle to the integrated SRAMs on a low-to-high transition. These signals should be
connected individually to the strobe input (ST) signals of the four compiled SRAMs. The
ST[0] signal connects to the high-order byte and ST[3] connects to the low-order byte.

Table 2-12. SRAM Configuration Encoding

TOTAL SRAM SIZE
(BYTES)

RAM_SZ[2:0]
ADDRESS

(BITS)
DATA

1

(BITS)

None 000 - -
512 001 7 4@8
1 K 010 8 4@8
2 K 011 9 4@8
4 K 100 10 4@8
8 K 101 11 4@8

16K

2

110 12 4@8

32K

2

111 13 4@8

NOTES: 1. 4 RAMs, each 8-bits wide

2. 16K and 32K RAMs may require a reduced operating
frequency.

Signal Summary

2-12

 ColdFire2/2M User’s Manual

MOTOROLA

2.4.3.7 SRAM READ/WRITE (SRAM_RWB[3:0]).

These output signals indicate the
direction of the data transfer to the to the integrated SRAMs. A high level indicates a read
cycle and a low level indicates a write cycle. They should be connected individually to the
read/write (RWB) signal of the four compiled SRAMs. Like SRAM_ST[3:0], the
SRAM_RWB[3] signal connects to the high-order byte and SRAM_ST[0] connects to the
low-order byte.

2.5 DEBUG SIGNALS

2.5.1 Break Point (BKPTB)

This active-low, unidirectional input signal is used to request a manual break point. It will
cause the processor to enter a halted state after the completion of the current instruction.
This status will be reflected on the processor status (PST) outputs.

2.5.2 Debug Data (DDATA[3:0])

These output signals display the captured processor status and break point status.

2.5.3 Development Serial Clock (DSCLK)

This input signal is used as the development serial clock for the serial interface to the Debug
Module.The maximum frequency is 1/2 the clock (CLK) frequency.

2.5.4 Development Serial Input (DSI)

This input signal provides the single-bit communication for the Debug Module commands.

2.5.5 Development Serial Output (DSO)

This output signal provides single-bit communication for the Debug Module responses.

2.5.6 Processor Status (PST[3:0])

These output signals report the processor status. Table 2-13 shows the encoding of these
signals. These signals indicate the current status of the processor pipeline and, as a result,
are not related to the current bus transfer.

Signal Summary

MOTOROLA

 ColdFire2/2M User’s Manual

2-13

.

2.6 TEST SIGNALS

2.6.1 SIGNALS REQUIRED TO PERFORM SCAN TEST

This section describes the ColdFire2/2M signals dedicated to the scan testing of the
ColdFire2/2M. All ColdFire2/2M signals are unidirectional and synchronous.

2.6.1.1 SCAN ENABLE (SCAN_ENABLE).

This active-high input signal enables scan
testing of the ColdFire2/2M. It forces all internal flip-flops to be linked together into sixteen
parallel scan chains. This signal must be negated for functional operation.

2.6.1.2 SCAN EXERCISE ARRAY (SCAN_XARRAY).

This active-high input signal is
used to exercise the integrated memory arrays during scan testing. This signal causes
random writes to the internal RAMs by strobing the write strobes while scanning.

2.6.1.3 SCAN INPUT (SI[15:0]).

These input signals are connected to the16 internal
ColdFire2/2M scan chain inputs.

2.6.1.4 SCAN MODE (SCAN_MODE).

This active-high, unidirection input signal gates off
all memory array outputs during scan testing.SCAN_MODE should be held asserted for the
duration of scan testing.

2.6.1.5 SCAN OUTPUT (SO[15:0]).

These output signals are connected to the 16 internal
ColdFire2/2M scan chain outputs.

Table 2-13. Processor Status Encoding

PST[3:0]
DEFINITION

(HEX) (BINARY)

$0 0000 Continue execution
$1 0001 Begin execution of an instruction
$2 0010 Reserved
$3 0011 Entry into user-mode
$4 0100 Begin execution of

PULSE

and

WDDATA

instructions
$5 0101 Begin execution of taken branch
$6 0110 Reserved
$7 0111 Begin execution of

RTE

 instruction
$8 1000 Begin 1-byte transfer on DDATA
$9 1001 Begin 2-byte transfer on DDATA
$A 1010 Begin 3-byte transfer on DDATA
$B 1011 Begin 4-byte transfer on DDATA
$C 1100 Exception processing†
$D 1101 Emulator-mode entry exception processing†
$E 1110 Processor is stopped, waiting for interrupt†
$F 1111 Processor is halted †

NOTE: †These encodings are asserted for multiple cycles.

Signal Summary

2-14

 ColdFire2/2M User’s Manual

MOTOROLA

2.6.1.6 IO TEST RING CLOCK (TRCLK).

This input signal is the synchronous clock used
to transition the test ring during scan testing. TR_CLK is connected to the clock input of all
IO test ring registers.

2.6.1.7 IO TEST RING CORE MODE ENABLE (CORE_TEST).

This active-high input
signal enables the core mode of the test ring during scan testing. The test ring is in scan
core mode if CORE_TEST is asserted and in scan ASIC mode if CORE_TEST is negated.

2.6.1.8 IO TEST RING DATA INPUT (TR_SDI[1:0]).

These input signals are the serial
data inputs for test ring chain one and zero.

2.6.1.9 IO TEST RING DATA OUTPUT (TR_SDO[1:0]).

These output signals are the
serial output data from test ring chain one and zero.

2.6.1.10 IO TEST RING ENABLE (TR_SE).

This active-high input signal enables the test
ring. TR_SE is connected to the scan enable input of all IO test ring scannable registers.

2.6.1.11 IO TEST RING MODE (TR_MODE). This active-high input signal enables the
scan test mode of the test ring. The test ring is in scan test mode if TR_MODE is asserted
and in normal functional mode if negated. TR_MODE should be asserted for the duration of
scan testing, and be held negated for the duration of memory testing and during functional
operation of the device.

2.6.2 Integrated Memory Test Signals
This section describes the ColdFire2/2M signals dedicated to testing the integrated
memories. Other signals are required to be either controlled or brought out (muxed) to
package pins as well (See Section 8 Test Operation).

2.6.2.1 TEST ADDRESS BUS (TEST_ADDR[14:2]). These input signals specify an
address when testing the integrated memories.

2.6.2.2 TEST CONTROL (TEST_CTRL). This active-high input signal indicates the test
address bus (TEST_ADDR[14:2]) will be latched on the next positive clock edge.

2.6.2.3 TEST IDATA READ (TEST_IDATA_RD). This active-high input signal tests the
instruction cache data memory read operation.

2.6.2.4 TEST IDATA WRITE (TEST_IDATA_WRT). This active-high input signal tests the
instruction cache data memory write operation.

2.6.2.5 TEST INSTRUCTION CACHE READ HIT (TEST_RHIT). This active-high output
signal indicates a hit has occurred when accessing the instruction cache during memory
array testing.

2.6.2.6 TEST INVALIDATE INHIBIT (TEST_IVLD_INH). This active-high input signal
inhibits the invalidate operation when testing the instruction cache.

2.6.2.7 TEST ITAG WRITE (TEST_ITAG_WRT). This active-high input signal tests the
instruction cache tag memory write operation.

Signal Summary

2-15 ColdFire2/2M User’s Manual MOTOROLA

2.6.2.8 TEST KTA MODE ENABLE (TEST_KTA). This active-high input signal allows the
instruction cache tag and data arrays to be read in parallel, mimicking the functional
operation. This allows testing of the speed path from the tag and data arrays to the core.

2.6.2.9 TEST MODE ENABLE (TEST_MODE). This active-high input signal enables all of
the integrated memory test signals. TEST_MODE should be asserted for the duration of
memory testing.

2.6.2.10 TEST SRAM READ (TEST_SRAM_RD). This active-high input signal tests the
integrated SRAM memory read operation.

2.6.2.11 TEST SRAM WRITE (TEST_SRAM_WRT). This active-high input signal tests the
integrated SRAM memory write operation.

2.6.2.12 TEST READ (TEST_RD). This active-high input signal tests read operations on all
of the integrated memories.

2.6.2.13 TEST ROM READ (TEST_ROM_RD). This active-high input signal tests the
integrated ROM memory read operation.

2.6.2.14 TEST WRITE INHIBIT (TEST_WR_INH). This active-high input signal disables
the write strobes to the SRAM and instruction cache compiled RAMS. TEST_WR_INH
should be negated for the duration of memory test.

MOTOROLA

 ColdFire2/2M User’s Manual

3-1

SECTION 3
MASTER BUS OPERATION

The master bus provides a basic two cycle bus protocol, similar to that used by previous
generations of M68000 microprocessors. Basic cycles are defined as the transfer start (TS)
cycle and the transfer acknowledge (TA) cycle. The address and control information is
driven onto the bus during the TS cycle, and the data is valid during the subsequent TA
cycle. By delaying the assertion of the transfer acknowledge signal, the bus automatically
inserts wait states to easily accommodate any slave response speed. The following sections
detail the signal descriptions, data transfer mechanism, and bus transfer protocols.

3.1 SIGNAL DESCRIPTION

This section describes the ColdFire2/2M signals associated with the master bus. All
ColdFire2/2M signals are unidirectional and synchronous.

3.1.1 68K Interrupt Acknowledge Mode Enable (IACK_68K)

This active-high input signal enables the 68K interrupt acknowledge mode. In this mode, the
MADDR[31:0], MTT[1:0], and MTM[2:0] signals mimic the 68K address bus and function
codes during interrupt acknowledge and CPU space bus cycles. This is a static input. Refer
to

Section 3.7.1 Interrupt Acknowledge Bus Cycle

 for more information.

3.1.2 Master Address Bus (MADDR[31:0])

During a normal bus cycle, this 32-bit output bus provides the address of the first item of a
bus transfer. It is capable of addressing four Gbytes of address space.

3.1.3 Master Arbiter Control (MARBC[1:0])

These output signals can be used to specify the mode of operation for an optional arbitration
module. They reflect the bit positions [17:16] in the CACR. If an optional arbitration module
is not used, these signals can be used as general purpose output signals.

3.1.4 Master Freeze (MFRZB)

This active-low output signal indicates that the core has been halted. MFRZB is not part of
the M-Bus protocol. It is simply a signal that can be used to alert timers or other peripheral
modules that the core has been halted.

3.1.5 Master Kill (MKILLB)

This active-low output signal qualifies MTSB (i.e. it can assert in other cycles but is only
significant in a cycle where MSTB is asserted). When MKILLB is asserted simultaneously
with MTSB assertion, this indicates a hit in a K-Bus memory and that the external cycle must

Master Bus Operation

3-2

ColdFire2/2M User’s Manual

MOTOROLA

be inhibited. This means the current master bus transaction is no longer required and should
be ignored (MTAB should not be asserted). MKILLB is asserted late in the MTSB cycle. Note
that if there is no K-Bus resident memory (ICACHE, SRAM, or ROM), MKILLB never
asserts. See Table 3-1 for MTSB/MKILLB interaction in table format.

3.1.6 Master Read Data Bus (MRDATA[31:0])

These input signals provide the read data path between the system and the ColdFire2/2M
device. The read data bus is 32-bits wide and can transfer 8, 16 or 32 bits of data per bus
transfer. During a line transfer, the data bus is time-multiplexed across multiple clock cycles
to transfer 128 bits.

3.1.7 Master Read Data Input Enable (MIE)

This active-high input signal enables the capturing of MRDATA[31:0]. Power consumption
can be reduced by minimizing signal switching in the ColdFire2/2M by negating MIE when
MRDATA[31:0] is invalid. MIE must be asserted during all one-master functional operation
and during K-Bus memory testing.

3.1.8 Master Read/Write (MRWB)

This output signal indicates the direction of the data transfer for the current bus cycle. A high
level indicates a read cycle and a low level indicates a write cycle.

3.1.9 Master Reset (MRSTB)

This active-low input signal instructs all master bus modules, including the ColdFire2/2M
device, to enter reset mode. The ColdFire2/2M processor will then initiate a reset exception.

3.1.10 Master Size (MSIZ[1:0])

These output signals indicate the data size for the bus transfer. Refer to Table 3-2 for the
bus size encoding.

Table 3-1. M-Bus Protocol with respect to MTSB and MKILLB

MTSB MKILLB M-BUS PROTOCOL

0 1 Initiate M-Bus transfer
0 0 Nop
1 X Nop

Table 3-2. Master Bus Transfer Size Encoding

MSIZ[1:0] TRANSFER SIZE

00 Longword (4 bytes)
01 Byte (1 byte)
10 Word (2 bytes)
11 Line (16 bytes)

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-3

3.1.11 Master Transfer Acknowledge (MTAB)

This active low input signal is asserted by master bus slaves to indicate the successful
completion of a requested bus transfer.

3.1.12 Master Transfer Error Acknowledge (MTEAB)

This active low input signal is asserted by master bus slaves to indicate an error condition
for the current bus transfer. If MTAB and MTEAB are both asserted, the cycle is terminated
with an error because MTEAB always has precedence over MTAB.

3.1.13 Master Transfer Modifier (MTM[2:0])

These output signals provide supplemental information for each transfer type. The exact
meaning depends on the MTT[1:0], and IACK_68K signals as shown in Table 3-3.

3.1.14 Master Transfer Start (MTSB)

This active low output signal indicates the start of each bus transfer.

3.1.15 Master Transfer Type (MTT[1:0])

These output signals indicate the type of access of the current bus cycle. The exact meaning
depends on the IACK_68K signal as shown in Table 3-4.

Table 3-3. Master Bus Transfer Modifier Encoding

MTM[2:0] MTT[1:0] COLDFIRE IACK MODE

1

68K IACK MODE

2

000 0x Reserved Reserved
001 0x User Data Access User Data Access
010 0x User Code Access User Code Access

011 - 100 0x Reserved Reserved
101 0x Supervisor Data Access Supervisor Data Access
110 0x Supervisor Code Access Supervisor Code Access
111 0x Reserved Interrupt Acknowledge/CPU Space Access

000 - 100 10 Reserved Reserved
101 10 Emulator Mode Data Access Emulator Mode Data Access
110 10 Emulator Mode Code Access Emulator Mode Code Access
111 10 Reserved Reserved
000 11 CPU Space Access Reserved
001 11 Interrupt Acknowledge Level 1 Reserved
010 11 Interrupt Acknowledge Level 2 Reserved
011 11 Interrupt Acknowledge Level 3 Reserved
100 11 Interrupt Acknowledge Level 4 Reserved
101 11 Interrupt Acknowledge Level 5 Reserved
110 11 Interrupt Acknowledge Level 6 Reserved
111 11 Interrupt Acknowledge Level 7 Reserved

NOTES: 1. 68K interrupt acknowledge mode signal negated (IACK_68K = 0)

2. 68K interrupt acknowledge mode signal asserted (IACK_68K = 1)

Master Bus Operation

3-4

ColdFire2/2M User’s Manual

MOTOROLA

3.1.16 Master Write Data Bus (MWDATA[31:0])

These output signals provide the write data path between the ColdFire2/2M and the system.
The write data bus is 32-bits wide and can transfer 8, 16 or 32 bits of data per bus transfer.
During a line transfer, the data bus is time-multiplexed across multiple clock cycles to carry
128 bits.

3.1.17 Master Write Data Output Enable (MWDATAOE)

This active high output signal indicates that the ColdFire2/2M is driving the master write data
bus. This is used to control optional bidirectional data bus three-state drivers.

3.2 DATA TRANSFER MECHANISM

3.2.1 Transfer Type Control Signals

The transfer type control signals indicate the type of bus transaction occurring on the master
bus. This includes the master transfer type (MTT[1:0]) and master transfer modifier
(MTM[2:0]) signals. The MTT[1:0] signals indicates the type of transfer and the MTM[2:0]
signals provide supplemental information. The encodings for MTT[1:0] and MTM[2:0] are
shown in Table 3-3 and Table 3-4. The transfer type attributes for accesses made through
the debug module are determined by the programming of the debug module (see

Section
7.4.2.2 Address Attribute Register (AATR)

).

3.2.1.1 COLDFIRE2/2M ACCESS.

If the ColdFire2/2M requests a master bus transfer, it
drives the MTT[1:0] signals with a ColdFire2/2M access encoding. The MTM[2:0] encoding
will depend on the privilege mode and address space of the transfer:

Privilege Mode—Supervisor/User Mode Access
When the supervisor (S) bit in the status register (SR) is set, the ColdFire2/2M will drive
MTM[2:0] with one of the supervisor mode encodings during a master bus transfer. When
the S bit in the SR is clear, the ColdFire2/2M will drive MTM[2:0] with one of the user mode
access encodings.

Address Space—Code/Data Access
If the ColdFire2/2M accesses the code space, it will drive MTM[2:0] with one of the code
access encodings during a master bus transfer. Code space accesses are opcode fetches
or operand fetches in one of the PC relative addressing modes. If the ColdFire2/2M
accesses the data space, it will drive MTM[2:0] with one of the data access encodings. Data

Table 3-4. Master Bus Transfer Type Encoding

MTT[1:0] COLDFIRE IACK MODE

1

68K IACK MODE

2

00 ColdFire2/2M Access Acknowledge/CPU Space/ColdFire2/2M Access
01 Alternate Master Access Alternate Master Access
10 Emulator Mode Access Emulator Mode Access
11 Acknowledge/CPU Space Access Reserved

NOTES: 1. 68K interrupt acknowledge mode signal negated (IACK_68K = 0)

2. 68K interrupt acknowledge mode signal asserted (IACK_68K = 1)

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-5

space accesses are operand fetches that are not in one of the PC relative addressing
modes.

3.2.1.2 ALTERNATE MASTER ACCESS.

When an alternate master requests a master
bus transfer, the MTT[1:0] signals should be driven with the alternate master access
encoding by the alternate master. The MTM[2:0] encoding is the same as that for the
ColdFire2/2M access.

3.2.1.3 EMULATOR MODE ACCESS.

Accesses made while in emulator mode generate
emulator mode accesses on the master bus. This is controlled by the configuration/status
register (CSR) in the Debug module. Refer to

Section 7.4.1.1 Emulator Mode

.

Emulator mode accesses result in he MTT[1:0] signals being driven with the emulator mode
access encoding. The encoding of the MTM[2:0] signals will be one of the emulator mode
encodings depending on the address space as defined for the ColdFire2/2M access.

3.2.1.4 INTERRUPT ACKNOWLEDGE ACCESS.

Interrupt acknowledge bus cycles are
indicated as an acknowledge/CPU space access on the MTT[1:0] signals (the encoding
depends on the interrupt acknowledge mode). If the ColdFire2/2M is in the ColdFire interrupt
acknowledge mode, the MTM[2:0] signals are driven with the pending interrupt level
number. In the 68K interrupt acknowledge mode, the MTM[2:0] signals will be driven high.
Refer to

Section 3.7 Interrupt Acknowledge Bus Cycles

.

3.2.1.5 CPU SPACE ACCESS.

CPU space accesses are indicated as a acknowledge/
CPU space access on the MTT[1:0] signals. The MTM[2:0] signals are driven with a CPU
space encoding. The specific encoding depends on the interrupt acknowledge mode. Many
debug commands and MOVEC instructions result in CPU space accesses.

3.2.2 Data Bus Requirements

The ColdFire2/2M designates all operands for transfers on a byte-boundary system. A line-
sized operand (16 bytes) is four longwords. For all data transfers, MADDR[31:2] indicates
the longword base address of the first byte of the reference item. MADDR[1:0] indicates the
byte offset from this base address. The MSIZ[1:0] signals along with the low-order two
address signals are used to determine how the data bus is used. Table 3-5 indicates the
MRDATA[31:0] requirements for slave devices when responding to read transfers. A “-”
indicates a “don’t care”, i.e. the value is ignored.

Table 3-5. MRDATA Requirements for Read Transfers

TRANSFER SIZE MSIZ[1:0] MADDR[1:0] MRDATA[31:24] MRDATA[23:16] MRDATA[15:8] MRDATA[7:0]

Byte 01 00 Byte Data - - -
01 01 - Byte Data - -
01 10 - - Byte Data -
01 11 - - - Byte Data

Word 10 00 Word Data -
10 10 - Word Data

Long 00 00 Longword Data
Line 11 00 First Longword Data

Master Bus Operation

3-6

ColdFire2/2M User’s Manual

MOTOROLA

Some of the system bus controllers (SBC) within the ColdFire architecture support
dynamically-sized external data transfers, i.e., the slave indicates the width of the data port
at the time of the transfer. To support this bus sizing feature, there are certain data
replication functions which must be performed by all master devices, including the
ColdFire2/2M, during write cycles. Table 3-6 indicates the MWDATA[31:0] requirements for
master devices when initiating write transfers.

Note that the ColdFire2/2M device, as well as all masters, places the byte operand on all
byte lanes for a byte write cycle, and the word operand on both word lanes for a word write
cycle.

3.3 DATA TRANSFERS

3.3.1 Byte, Word, and Longword Read Transfers

For byte, word, and longword read accesses, the ColdFire2/2M requests data from a slave
device. The bus operations are similar for the different sized accesses, with the MSIZ[1:0]
signals defining the access size. Based on the transfer size, the data is placed on the
appropriate byte lanes of the read data bus (MRDATA[31:0]). This read transfer is defined
in Figure 3-1.

Table 3-6. MWDATA Bus Requirements for Write Transfers

TRANSFER SIZE MSIZ[1:0] MADDR[1:0] MWDATA[31:24] MWDATA[23:16] MWDATA[15:8] MWDATA[7:0]

Byte 01 -- Byte Data Byte Data Byte Data Byte Data
Word 10 -0 Word Data Word Data
Long 00 00 Longword Data
Line 11 00 First Longword Data

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-7

See Figure 3-2 for an example of normal read and write master bus transfers without wait
states.

Figure 3-1. Byte, Word, and Longword Read Transfer Flowchart

1) DRIVE ADDRESS ON MADDR[31:0]

2) SET MRWB TO READ (MRWB = 1)

3) SET MSIZ[1:0] TO BYTE, WORD, OR LONG

4) SET MTT[1:0], MTM[2:0] TO SIGNAL THE
APPROPRIATE ACCESS TYPE

5) ASSERT MTSB FOR ONE CLK CYCLE

1) REGISTER THE MRDATA[31:0] BUS

2) RECOGNIZE THE TRANSFER IS DONE

1) DECODE THE ADDRESS AND SELECT
THE APPROPRIATE SLAVE DEVICE.
INSERT NECESSARY WAIT-STATES.

1) DRIVE THE DATA ON THE APPROPRIATE
BYTE LANES OF THE MRDATA[31:0] BUS,
BASED ON MSIZ[1:0], MADDR1:0].

2) ASSERT MIE FOR ONE CLK CYCLE.

2) ASSERT MTAB FOR ONE CLK CYCLE.

MASTER SLAVE

Master Bus Operation

3-8

ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
The read cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid values
on the master address bus (MADDR[31:0]) and transfer control signals. The MTT[1:0] and
MTM[2:0] signals identify the specific access type. The master read/write (MRWB) signal is
driven high for a read cycle, and the master size signals (MSIZ[1:0]) indicate transfer size.
The ColdFire2/2M asserts the master transfer start (MTSB) signal during C1 to indicate the
beginning of a bus cycle.

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB. The selected device uses the
MRWB and MSIZ signals to place the data on the master read data bus (MRDATA[31:0])
and assert the master input enable (MIE) signal. Concurrently, the selected device asserts
the master transfer acknowledge (MTAB) signal. At the end of C2, the ColdFire2/2M
samples the level of MTAB and latches the current value on MRDATA[31:0]. If MTAB is

Figure 3-2. Normal Transfer (without Wait States)

C1 C2 C1 C2

CLK

A1 A2MADDR

MRWB

MSIZ

MTT

MTM

MTSB

D2MWDATA

MWDATAOE

D1MRDATA

MIE

MTAB

MTEAB

READ WRITE

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-9

asserted, the transfer terminates. If MTAB is not asserted, the ColdFire2/2M processor
ignores the data and inserts wait states instead of terminating the transfer. The ColdFire2/
2M continues to sample MTAB on successive rising edges of CLK until it is asserted. The
selected device negates the MIE and MTAB signals in the first half of the next CLK cycle.

3.3.2 Normal Tranfers with MKILLB

Figure3-3 illustrates normal tranfers (no wait states) with MKILLB asserted and negated:

Figure 3-3. Normal Transfer with MKILLB Timing Diagram (without wait states)

Clock 1 (C1)
The read cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid values
on the master address bus (MADDR[31:0]) and transfer control signals. The MTT[1:0] and
MTM[2:0] signals identify the specific access type. The master read/write (MRWB) signal is

C7C6C5C4C3C2C1

CLK

MADDR

MRWB

MSIZ

MTT

MTM

MTSB

MKILLB

MWDATA

WDATA

MRDATA

MIE

MTAB

External
Read

Internal
Integ.

Memory
Read

External
Write

Internal
Integ.

Memory
Write

Next
Access

MTEAB

Master Bus Operation

3-10

ColdFire2/2M User’s Manual

MOTOROLA

driven high for a read cycle, and the master size signals (MSIZ[1:0]) indicate transfer size.
The ColdFire2/2M asserts the master transfer start (MTSB) signal during C1 to indicate the
beginning of a bus cycle. MKILLB does not assert during this cycle so the access will go
external via M-Bus.

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M processor negates MTSB. The selected device
uses the MRWB and MSIZ signals to place the data on the master read data bus
(MRDATA[31:0]) and assert the master input enable (MIE) signal. Concurrently, the
selected device asserts the master transfer acknowledge (MTAB) signal. At the end of C2,
the ColdFire2/2M processor samples the level of MTAB and latches the current value on
MRDATA[31:0]. If MTAB is asserted, the transfer terminates. If MTAB is not asserted, the
ColdFire2/2M ignores the data and inserts wait states instead of terminating the transfer.
The ColdFire2/2M continues to sample MTAB on successive rising edges of CLK until it is
asserted. The selected device negates the MIE and MTAB signals in the first half of the next
CLK cycle.

Clock 3 (C3)

Another read cycle begins in C3; however this read cycle will be to internal integrated
memory. During the first half of C3, the ColdFire2/2M places valid values on the master
address bus (MADDR[31:0]) and transfer control signals. The MTT[1:0] and MTM[2:0]
signals identify the specific access type. The master read/write (MRWB) signal is driven high
for a read cycle, and the master size signals (MSIZ[1:0]) indicate transfer size. The
ColdFire2/2M asserts the master transfer start (MTSB) signal during C3 to indicate the
beginning of a bus cycle. MKILLB asserts late in the cycle. The combination of the assertion
of both (MTSB and MKILLB signifies that the access will occur internally in integrated
memory and the M-Bus transaction is not needed. The internal access will complete in one
cycle; therefore another access can begin immediately on the following cycle.

Clock 4 (C4)

A write cycle starts in C4. During the first half of C4, the ColdFire2/2M places valid values
on the master address bus (MADDR[31:0]) and transfer control signals. The MTT[1:0] and
MTM[2:0] signals identify the specific access type. The master read/write (MRWB) signal is
driven low for a write cycle, and the master size signals (MSIZ[1:0]) indicate transfer size.
The ColdFire2/2M asserts the master transfer start (MTSB) signal during C4 to indicate the
beginning of a bus cycle. MKILLB does not assert during this cycle so the access will go
external via M-Bus.

Cycle 5 (C5)

During the first half of C5, the ColdFire2/2M negates MTSB. The selected device uses the
MRWB and MSIZ signals to take the data off the master write data bus (MWDATA[31:0].
Concurrently, the selected device asserts the master transfer acknowledge (MTAB signal.
At the end of C5, if MTAB is asserted, the transfer terminates. If MTAB is not asserted, the
ColdFire2/2M inserts wait states instead of terminating the transfer. The ColdFire2/2M

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-11

continues to sample MTAB on successive rising edges of CLK until it is asserted. The
selected device negates the (MTAB signal in the first half of the next CLK cycle.

Cycle 6 (C6)

Another write cycle begins in C6; however this write cycle will be to internal integrated
memory. During the first half of C6, the ColdFire2/2M places valid values on the master
address bus (MADDR[31:0]) and transfer control signals. The MTT[1:0] and MTM[2:0]
signals identify the specific access type. The master read/write (MRWB) signal is driven low
for a write cycle, and the master size signals (MSIZ[1:0]) indicate transfer size. The
ColdFire2/2M asserts the master transfer start (MTSB) signal during C6 to indicate the
beginning of a bus cycle. MKILLB asserts late in the cycle. The combination of the assertion
of both (MTSB and MKILLB signifies that the access will occur internally in integrated
memory and the M-Bus transaction is not needed. The internal access will complete in one
cycle; therefore another access can begin immediately on the following cycle.

Cycle 7 (C7)

Another access can begin in this cycle ((MTSB can assert).

3.3.3 Byte, Word, and Longword Write Transfers

For byte, word, and longword write accesses, the ColdFire2/2M transfers data to a slave
device. The bus operations are similar for the different sized accesses, with the MSIZ[1:0]
signals defining the access size. Based on the transfer size, the data is placed on the
appropriate byte lanes of the write data bus (MWDATA[31:0]). This write transfer is defined
in Figure 3-4.

Master Bus Operation

3-12

ColdFire2/2M User’s Manual

MOTOROLA

See Figure 3-2 for an example of a normal write transfer without wait states. Figure 3-5
shows an example of a normal write master bus transfer with wait states. Note the Cxw
nomenclature is used to define a wait state during the bus cycle—e.g., C2w.

Figure 3-4. Byte, Word, and Longword Write Transfer Flowchart

MASTER

1) DRIVE ADDRESS ON MADDR[31:0]

2) SET MRWB TO WRITE (MRWB = 0)

3) SET MSIZ[1:0] TO BYTE, WORD, OR LONG

4) SET MTT[1:0], MTM2:0] TO SIGNAL THE
APPROPRIATE ACCESS TYPE

5) ASSERT MTSB FOR ONE CLK CYCLE

1) DRIVE DATA ONTO MWDATA[31:0]

2) ASSERT MWDATAOE

1) RECOGNIZE THE TRANSFER IS DONE

2) NEGATE MWDATAOE

1) DECODE THE ADDRESS AND SELECT
THE APPROPRIATE SLAVE DEVICE.
INSERT NECESSARY WAIT-STATES.

1) CAPTURE THE DATA FROM THE
APPROPRIATE BYTE LANES OF THE
MWDATA[31:0] BUS, BASED ON
MSIZ[1:0], MADDR[1:0]

2) ASSERT MTAB FOR ONE CLK CYCLE

SLAVE

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-13

Clock 1 (C1)
The write cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid values
on the master address bus (MADDR[31:0]) and transfer control signals. The master transfer
type (MTT[1:0]) and master transfer modifier (MTM[2:0]) signals identify the specific access
type. The master read/write (MRWB) signal is driven low for a write cycle, and the master
size signals (MSIZ[1:0]) indicate transfer size. The ColdFire2/2M asserts the master transfer
start (MTSB) signal during C1 to indicate the beginning of a bus cycle.

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB, places the data on the master
write data bus (MWDATA[31:0]), and asserts the master write data output enable
(MWDATAOE) signal. Concurrently, the selected device asserts the master transfer
acknowledge (MTAB) signal if it is ready to latch the data. At the end of C2, the selected
device latches the current value on MWDATA[31:0], and the ColdFire2/2M samples the
level of MTAB. If MTAB is asserted, the bus cycle is terminated and the ColdFire2/2M
negates MWDATAOE in the first half on the next CLK cycle. If MTAB is not asserted, the
ColdFire2/2M inserts wait states instead of terminating the transfer. The ColdFire2/2M
continues to sample MTAB on successive rising edges of CLK until it is asserted.

Figure 3-5. Normal Write Transfer (with Wait States)

C1 C2W C2W C2

CLK

A1MADDR

MRWB

MSIZ

MTT

MTM

MTSB

D1MWDATA

MWDATAOE

MTAB

MTEAB

WRITE

Master Bus Operation

3-14

ColdFire2/2M User’s Manual

MOTOROLA

3.3.4 Line Read Transfer

The ColdFire2/2M uses a line read access to fetch a four-longword operand using a burst
transfer. A line read accesses a block of four longwords, aligned to a 16-byte memory
boundary, by supplying a starting address that points to the critical longword in the four-
longword block. The address and attributes driven by the ColdFire2/2M remain stable
throughout the entire transfer. As a result, the slave device must increment MADDR[3:2]
internally to sequence for each transfer with the address wrapping around at the end of the
block. The allowable longword fetch patterns during a line access are shown in Table 3-7.

The responding slave device terminates each longword transfer on the MRDATA[31:0] bus
by asserting the transfer acknowledge control signal, MTAB. All devices on the master bus
must support burst accesses. The assertion of MTEAB aborts the line read access. See

Section 3.8.1 Access Errors

 for more information on MTEAB.

A line read burst is defined in Figure 3-6.

Table 3-7. Allowable Line Access Patterns

MADDR[3:2] LONGWORD ACCESS ORDER

00 0 - 4 - 8 - C
01 4 - 8 - C - 0
10 8 - C - 0 - 4
11 C - 0 - 4 - 8

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-15

See Figure 3-7 for an example of a line read burst master bus transfer without wait states.

Figure 3-6. Line Read Transfer Flowchart

MASTER

1) DRIVE ADDRESS ON MADDR[31:0]

2) SET MRWB TO READ (MRWB = 1)

3) SET MSIZ[1:0] TO LINE

4) SET MTT[1:0] AND MTM[2:0] TO SIGNAL THE
APPROPRIATE ACCESS TYPE

5) ASSERT MTSB FOR ONE CLK CYCLE

1) REGISTER THE MRDATA[31:0] BUS

2) RECOGNIZE THE 1ST TRANSFER IS DONE

1) REGISTER THE MRDATA[31:0] BUS

2) RECOGNIZE THE 2ND TRANSFER IS DONE

1) REGISTER THE MRDATA[31:0] BUS

2) RECOGNIZE THE 3RD TRANSFER IS DONE

1) REGISTER THE MRDATA[31:0] BUS

2) RECOGNIZE THE 4TH TRANSFER IS DONE

1) DECODE THE ADDRESS AND SELECT
THE APPROPRIATE SLAVE DEVICE.
INSERT NECESSARY WAIT-STATES.

1) DRIVE THE DATA ON MRDATA[31:0].

2) ASSERT MIE FOR ONE CLK CYCLE.

3) ASSERT MTAB FOR ONE CLK CYCLE.

1) DRIVE THE DATA ON MRDATA[31:0].

2) ASSERT MIE FOR ONE CLK CYCLE.

3) ASSERT MTAB FOR ONE CLK CYCLE.

1) DRIVE THE DATA ON MRDATA[31:0].

2) ASSERT MIE FOR ONE CLK CYCLE.

3) ASSERT MTAB FOR ONE CLK CYCLE.

1) DRIVE THE DATA ON MRDATA[31:0].

2) ASSERT MIE FOR ONE CLK CYCLE.

3) ASSERT MTAB FOR ONE CLK CYCLE.

SLAVE

Master Bus Operation

3-16

ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
The line read cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid
values on the master address bus (MADDR[31:0]) and transfer control signals. The master
transfer type (MTT[1:0]) and master transfer modifier (MTM[2:0]) signals identify the specific
access type. The master read/write (MRWB) signal is driven high for a read cycle, and the
master size signals (MSIZ[1:0]) indicate transfer size (Line = $3). The ColdFire2/2M asserts
the master transfer start (MTSB) signal during C1 to indicate the beginning of a bus cycle.

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB. The selected device uses the
MRWB and MSIZ signals to place the data on the master read data bus (MRDATA[31:0])
and assert the master input enable (MIE) signal. The first transfer must supply the longword
at the corresponding long-word boundary. Concurrently, the selected device asserts master
transfer acknowledge (MTAB) signal. At the end of C2, the ColdFire2/2M samples the level
of MTAB and latches the current value on MRDATA[31:0]. If MTAB is asserted, the transfer
of the first longword terminates. If MTAB is not asserted, the ColdFire2/2M ignores the data
and inserts wait states instead of terminating the transfer. The ColdFire2/2M continues to
sample MTAB on successive rising edges of CLK until it is asserted.

Figure 3-7. Line Read Transfer (without Wait States)

C1 C2 C3 C4 C5

CLK

A1MADDR

MRWB

$3MSIZ

MTT

MTM

MTSB

D1 D2 D3 D4MRDATA

MIE

MTAB

MTEAB

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-17

Clock 3 (C3)
The ColdFire2/2M holds the address and transfer control signals constant during C3. The
selected device must increment the MADDR[3:2] signals to reference the next longword to
transfer, place the data on MRDATA[31:0], assert MIE, and assert MTAB. At the end of C3,
the ColdFire2/2M samples the level of MTAB and latches the current value on the
MRDATA[31:0] signals. If MTAB is asserted, the transfer terminates. If MTAB is not asserted
at the end of C3, the ColdFire2/2M ignores the latched data and inserts wait states instead
of terminating the transfer. The ColdFire2/2M continues to sample MTAB on successive
rising edges of CLK until it is asserted.

Clock 4 (C4)
This clock is identical to C3 except that once MTAB is recognized as being asserted, the
latched value corresponds to the third longword of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once MTAB is recognized, the latched value
corresponds to the fourth longword of data for the burst. This is the last clock cycle of the
line read transaction. The selected device negates the MIE and MTAB signals in the first half
of the next CLK cycle.

3.3.5 Line Write Transfers

The line write transfer is similar to the line read transfer. This 16-byte burst write transfer is
defined in Figure 3-8.

Master Bus Operation

3-18

ColdFire2/2M User’s Manual

MOTOROLA

The assertion of MTEAB will abort a line write transfer. See

Section 3.8.1 Access Errors

for more information on MTEAB. It is the slave’s responsibility to increment and wrap the
MADDR[3:2] signals internally.

Figure 3-8. Line Write Transfer Flowchart

MASTER

1) DRIVE ADDRESS ON MADDR[31:0]

2) SET MRWB TO WRITE (MRWB = 0)

3) SET MSIZ[1:0] TO LINE

4) SET MTT[1:0] AND MTM[2:0] TO SIGNAL THE
APPROPRIATE ACCESS TYPE

5) ASSERT MTSB FOR ONE CLK CYCLE

1) DRIVE DATA ONTO MWDATA[31:0]

2) ASSERT MWDATAOE

1) RECOGNIZE THE 1ST TRANSFER IS DONE

1) DRIVE DATA ONTO MWDATA[31:0]

1) RECOGNIZE THE 2ND TRANSFER IS DONE

1) DRIVE DATA ONTO MWDATA[31:0]

2) RECOGNIZE THE 3RD TRANSFER IS DONE

1) DRIVE DATA ONTO MWDATA[31:0]

1) RECOGNIZE THE 4TH TRANSFER IS DONE

2) NEGATE MWDATAOE

1) DECODE THE ADDRESS AND SELECT
THE APPROPRIATE SLAVE DEVICE

2) INSERT NECESSARY WAIT-STATES

1) CAPTURE THE DATA FROM
MWDATA[31:0]

2) ASSERT MTAB FOR ONE CLK CYCLE

1) CAPTURE THE DATA FROM
MWDATA[31:0]

2) ASSERT MTAB FOR ONE CLK CYCLE

1) CAPTURE THE DATA FROM
MWDATA[31:0]

2) ASSERT MTAB FOR ONE CLK CYCLE

1) CAPTURE THE DATA FROM
MWDATA[31:0]

2) ASSERT MTAB FOR ONE CLK CYCLE

SLAVE

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-19

See Figure 3-9 for an example of a line write master bus transfer without wait states.

Clock 1 (C1)
The line write cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid
values on the master address bus (MADDR[31:0]) and transfer control signals. The master
transfer type (MTT[1:0]) and master transfer modifier (MTM[2:0]) signals identify the specific
access type. The master read/write (MRWB) signal is driven low for a write cycle, and the
master size signals (MSIZ[1:0]) indicate line size ($3). The ColdFire2/2M asserts the master
transfer start (MTSB) signal during C1 to indicate the beginning of a bus cycle.

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB, places the first longword of data
on the master write data bus (MWDATA[31:0]), and asserts the master write data output
enable (MWDATAOE) signal. Concurrently, the selected device asserts the master transfer
acknowledge (MTAB) signal if it is ready to latch the data. At the end of C2, the ColdFire2/
2M samples the level of MTAB, and the selected device latches MWDATA[31:0]. If MTAB is
asserted, the transfer of the first longword terminates. If MTAB is not asserted, the
ColdFire2/2M inserts wait states instead of terminating the transfer. The ColdFire2/2M
continues to sample MTAB on successive rising edges of CLK until it is recognized asserted.

Figure 3-9. Line Write Transfer (without Wait States)

C1 C2 C3 C4 C5

CLK

A1MADDR

MRWB

$3MSIZ

MTT

MTM

MTSB

D1 D2 D3 D4MWDATA

MWDATAOE

MTAB

MTEAB

Master Bus Operation

3-20

ColdFire2/2M User’s Manual

MOTOROLA

Clock 3 (C3)
The ColdFire2/2M holds the address and transfer control signals constant during C3, but
drives MWDATA[31:0] with the second longword of data. The selected device must
increment MADDR[3:2] to reference the second longword address, and assert MTAB. At the
end of C3, the ColdFire2/2M samples the level of MTAB, and the selected device latches
MWDATA[31:0]. If MTAB is asserted, the transfer terminates. If MTAB is not recognized
asserted at the end of C3, the ColdFire2/2M inserts wait states instead of terminating the
transfer. The ColdFire2/2M continues to sample MTAB on successive rising edges of CLK
until it is recognized.

Clock 4 (C4)
This clock is identical to C3 except that once MTAB is asserted, the value corresponds to
the third longword of data for the burst.

Clock 5 (C5)
This clock is identical to C3 except that once MTAB is asserted, the data value corresponds
to the fourth longword of data for the burst. This is the last clock cycle of the line write
transaction and the ColdFire2/2M negates MWDATAOE in the first half of the next CLK
cycle.

See Figure 3-10 for an example of a line write master bus transfer with wait states. Note the
Cxw nomenclature that is used to define a wait state during the bus cycle, e.g., C2w.

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-21

3.4 MISALIGNED OPERANDS

All ColdFire2/2M data formats can be located in memory on any byte boundary. A byte
operand is properly aligned at any address, a word operand is misaligned at an odd address,
and a longword is misaligned at an address that is not evenly divisible by four. However,
since operands can reside at any byte boundary, they can be misaligned. Although the
ColdFire2/2M does not enforce any alignment restrictions for data operands, including PC
relative data addressing, some performance degradation occurs when additional bus cycles
are required for longword or word operands that are misaligned. For maximum performance,
data items should be aligned on their natural boundaries. All instruction words and extension
words must reside on word boundaries. Attempting to prefetch an instruction word at an odd
address causes an address error exception. See

Section 4.2.3 Address Error Exception

for more information.

The ColdFire2/2M misalignment unit converts misaligned operand accesses that are
noncachable to a sequence of aligned accesses. Figure 3-11 illustrates the transfer of a
longword operand from an odd address requiring more than one bus cycle. In this example,
the MSIZ[1:0] signals specify a byte transfer, and the byte offset is $1. The slave device
supplies the byte and acknowledges the data transfer. When the ColdFire2/2M starts the
second cycle, the MSIZ[1:0] signals specify a word transfer with a byte offset of $2. The next
two bytes are transferred during this cycle. The ColdFire2/2M then initiates the third cycle,

Figure 3-10. Line Write Transfer (with Wait States)

C1 C2W C2 C3W C3 C4W C4 C5W C5

CLK

A1MADDR

MRWB

$3MSIZ

MTT

MTM

MTSB

D1 D2 D3 D4MWDATA

MWDATAOE

MTAB

MTEAB

Master Bus Operation

3-22

ColdFire2/2M User’s Manual

MOTOROLA

with the MSIZ[1:0] signals indicating a byte transfer. The byte offset is now $0; the port
supplies the final byte and the operation is complete. This example is similar to the one
illustrated in Figure 3-12 except that the operand is word sized and the transfer requires only
two bus cycles. Figure 3-13 illustrates a functional timing diagram for a misaligned word read
transfer.

31 24 23 16 15 8 7 0

Transfer 1 - Byte 3 - -
Transfer 2 - - Byte 2 Byte 1
Transfer 3 Byte 0 - - -

Figure 3-11. Example of a Misaligned Longword Transfer

31 24 23 16 15 8 7 0

Transfer 1 - - - Byte1
Transfer 2 Byte 0 - - -

Figure 3-12. Example of a Misaligned Word Transfer

Figure 3-13. Misaligned Word Read Transfer

C1 C2 C1 C2

CLK

A1 A2MADDR

MRWB

$1 $1MSIZ

MTT

MTM

MTSB

D1 D2MRDATA

MIE

MTAB

MTEAB

READ 1 READ 2

Master Bus Operation

MOTOROLA

 ColdFire2/2M User’s Manual

3-23

The combination of operand size and alignment determines the number of bus cycles
required to perform a particular memory access. Table 3-8 lists the number of bus cycles
required for different operand sizes with all possible alignment conditions for read and write
cycles. The table confirms that alignment significantly affects bus cycle throughput for
noncachable accesses. For example, in Figure 3-11 the misaligned longword operand took
three bus cycles because the first byte offset = $1. If the byte offset = $0, then it would have
taken one bus cycle. The ColdFire2/2M system designer and programmer should account
for these effects, particularly in time-critical applications.

3.5 INVALID MASTER BUS CYCLES

The ColdFire2/2M starts a master bus transaction before it determines if the address hits in
the cache or is mapped to the internal memories. As a result, the ColdFire2/2M will assert
the MKILLB signal (late in that MTSB cycle) to indicate the current bus transaction resulted
in a hit in the cache or internal memories. When this signal is asserted, master bus slaves
must stop driving the master bus and must not return a MTAB or MTEAB. The current
master bus cycle must be inhibited.

The general priority scheme is as follows:

if (SRAM “hits”)
SRAM supplies data to the processor

else if (ROM “hits”)
ROM supplies data to the processor

else if (line fill buffer “hits”)
line fill buffer supplies data to the processor

else if (icache “hits”)
icache supplies data to the processor

else
master bus cycle accesses to reference data from non-local memory

Clock 1 (C1)

The read cycle starts in C1. During the first half of C1, the ColdFire2/2M places valid values
on the master address bus (MADDR[31:0]) and transfer control signals. The ColdFire2/2M
asserts the master transfer start (MTSB) signal during C1 to indicate the beginning of a bus
cycle.

Table 3-8. Memory Alignment Cycles

TRANSFER SIZE $0

†

$1

†

$2

†

$3

†

Instruction 1 - - -
Byte Operand 1 1 1 1
Word Operand 1 2 1 2

Longword Operand 1 3 2 3
NOTE: †Where the byte offset (MADDR[1:0]) equals this encoding.

Master Bus Operation

3-24

ColdFire2/2M User’s Manual

MOTOROLA

Clock 2 (C2)

During the first half of C2, the ColdFire2/2M negates MTSB. Because the MKILLB signal
was not asserted during the rising clock edge of C2, the selected device uses the MRWB
and MSIZ signals to place the data on the master read data bus (MRDATA[31:0]) and assert
the master input enable (MIE) signal. Concurrently, the selected device asserts the master
transfer acknowledge (MTAB) signal. At the end of C2, the ColdFire2/2M samples the level
of MTAB and captures the current value on MRDATA[31:0]. If MTAB is asserted, the transfer
terminates. If MTAB is not asserted, the ColdFire2/2M ignores the data and inserts wait
states instead of terminating the transfer. The ColdFire2/2M continues to sample MTAB on
successive rising edges of CLK until it is asserted. The selected device negates the MIE and
MTAB signals in the first half of the next CLK cycle.

Clock 3 (C3)

The read cycle starts in C3. The ColdFire2/2M asserts the MTSB signal, and then the
MKILLB signal. This signifies that the M-Bus cycle must be inhibited; i.e. the access has “hit”
in an internal-bus memory.

Clock 4 (C4)

Nop.

Clock 5 (C5)

The read cycle starts in C5. The ColdFire2/2M asserts the MTSB signal, and then the
MKILLB signal. This signifies that the M-Bus cycle must be inhibited; i.e. the access has “hit”
in an internal K-Bus memory.

Clock 6 (C6)

Another read cycle starts in C6. The C1 description applies here.

Clock 7 (C7)

During the first half of C7, the ColdFire2/2M negates MTSB. Because the MKILLB signal
was not asserted during the rising clock edge of C7, the selected device uses the MRWB
and MSIZ signals to place the data on the master read data bus (MRDATA[31:0]). The rest
of the C2 description applies here.

3.6 PIPELINE STALLS

In an idealized environment for maximum performance, all ColdFire2/2M references are
mapped to integrated memory resources and complete in a single clock cycle. Any memory
reference that generates a master bus access stalls the processor pipeline since the internal
transfer cannot be completed in a single clock cycle. This performance degradation factor
can be expressed as:

Pipeline Stall = Master Bus Clock Cycles - 1

Master Bus Operation

MOTOROLA ColdFire2/2M User’s Manual 3-25

where the stall is measured in clock cycles, and Master Bus Clock Cycles represents the
entire master bus transfer time in clock cycles. In the examples shown in Figure 3-14, the
read cycle with one wait state stalls the ColdFire2/2M for two clock cycles, and the zero wait
state write transfer produces a stall of one clock cycle.

3.7 INTERRUPT ACKNOWLEDGE BUS CYCLES
When a peripheral device requires the services of the ColdFire2/2M or is ready to send
information that the ColdFire2/2M requires, it can signal the ColdFire2/2M to take an
interrupt exception. The interrupt exception transfers control to a routine that responds
appropriately. The peripheral device uses the active-low interrupt priority level signals
(IPLB[2:0]) to signal an interrupt condition to the ColdFire2/2M and to specify the priority
level for the condition. Refer to Section 4 Exception Processing for a discussion on the
IPLB[2:0] levels.

Figure 3-14. Example Master Bus Wait State

C1 C2W C2 C1 C2

CLK

A1 A2MADDR

MRWB

MSIZ

MTT

MTM

MTSB

D2MWDATA

MWDATAOE

D1MRDATA

MIE

MTAB

MTEAB

READ WRITE

Master Bus Operation

3-26 ColdFire2/2M User’s Manual MOTOROLA

The status register of the ColdFire2/2M, described in Section 1.4.3.1 Status Register (SR) ,
contains an interrupt priority mask (IPLB[2:o]). The value in the interrupt mask is the highest
priority level that the ColdFire2/2M ignores. When an interrupt request has a priority higher
than the value in the mask, the ColdFire2/2M makes the request a pending interrupt.
IPLB[2:0] must maintain the interrupt request level until the ColdFire2/2M acknowledges the
interrupt to guarantee that the interrupt is recognized. The ColdFire2/2M continuously
samples IPLB[2:0] on consecutive rising edges of CLK. As a result, the IPLB[2:0] signals are
synchronous and must meet setup and hold times to CLK. If the external IPLB[2:0] signals
are asynchronous, flip-flops should be used to synchronize them before they drive the
IPLB[2:0] signals on the ColdFire2/2M.

The ColdFire2/2M takes an interrupt exception for a pending interrupt within one instruction
boundary after processing any other pending exception with a higher priority. Thus, the
ColdFire2/2M executes at least one instruction in an interrupt exception handler before
recognizing another interrupt request. The following paragraphs describe the two kinds of
interrupt acknowledge bus cycles that can be executed as part of interrupt exception
processing.

3.7.1 Interrupt Acknowledge Bus Cycle (Terminated Normally)
When the ColdFire2/2M processes an interrupt exception, it performs an interrupt
acknowledge bus cycle to obtain the vector number that contains the starting location of the
interrupt exception handler. Most interrupting devices have programmable vector registers
that contain the interrupt vectors for the exception handlers they use. Others may have fixed
vector numbers. The values driven on MADDR[31:0], MTT[1:0], and MTM[2:0] are
dependent on the interrupt acknowledge mode. The interrupt acknowledge mode is
statically determined by the connection of the 68K interrupt acknowledge mode enable
(IACK_68K) signal.

The interrupt acknowledge bus cycle is a read transfer. If the ColdFire2/2M is in the ColdFire
interrupt acknowledge mode (IACK_68K negated), it differs from a normal read cycle in the
following respects:

1. MTT[1:0]= $3 to indicate a acknowledge/CPU space bus cycle.

2. Address signals MADDR[31:5] are set to all ones ($3FFFFFF). The MADDR[4:2]
signals are set to the pending interrupt number, and the MADDR[1:0] signals are
driven low.

3. MTM[2:0] are set to the interrupt request level, the inverted values of IPLB[2:0]. This
will be nonzero for all interrupt acknowledge cycles.

If the ColdFire2/2M is in the 68K interrupt acknowledge mode (IACK_68K asserted), it differs
in the following respects:

1. MTT[1:0] = $0 to indicate a Acknowledge/CPU space bus cycle.

2. Address signals MADDR[31:4] are set to all ones ($7FFFFFF). The MADDR[3:1]
signals are set to the pending interrupt number, and the MADDR[0] signal is driven
high.

Master Bus Operation

MOTOROLA ColdFire2/2M User’s Manual 3-27

3. MTM[2:0] = $7 to indicate an interrupt acknowledge cycle.

The responding device places the vector number on MRDATA[31:24] during the interrupt
acknowledge bus cycle, and the cycle is terminated normally with MTAB. Figure 3-15
illustrates a flowchart diagram for an interrupt acknowledge cycle terminated with MTAB.

See Figure 3-16 for an example of a ColdFire mode (IACK_68K negated) interrupt
acknowledge cycle. The interrupt shown occurs during a normal master bus read cycle with
no lower-order interrupts pending.

Figure 3-15. Interrupt Acknowledge Bus Cycle Flowchart

1) RECOGNIZE PENDING INTERRUPT

2) WAIT FOR INSTRUCTION BOUNDARY

1) DRIVE APPROPRIATE VALUE ON
MADDR[31:0]

2) SET MRWB TO READ ($1)

3) SET MSIZ[1:0] TO BYTE ($1)

4) SET MTT[1:0] TO ACKNOWLEDGE

5) DRIVE VALUE ON MTM[2:0]

6) ASSERT MTSB FOR ONE CLK CYCLE

1) LATCH VECTOR NUMBER

2) RECOGNIZE THE TRANSFER IS DONE

REQUEST INTERRUPT ON IPLB[2:0]

1) DECODE THE ADDRESS AND SELECT
THE INTERRUPTING SLAVE DEVICE.

2) INSERT NECESSARY WAIT-STATES.

3) REMOVE INTERRUPT ON IPLB[2:0]

1) DRIVE THE VECTOR NUMBER ON
MRDATA[31:24]

2) ASSERT MTAB FOR ONE CLK CYCLE.

3) ASSERT MIE FOR ONE CLK CYCLE.

MASTER SLAVE

Master Bus Operation

3-28 ColdFire2/2M User’s Manual MOTOROLA

Clock 1 (C1)
The interrupt acknowledge cycle starts in C1. During the first half of C1, the ColdFire2/2M
drives the master address bus (MADDR[31:5]) high, MADDR[1:0] low, the MTT[1:0] signals
to $3, and the MADDR[4:2] and MTM[2:0] signals to the interrupt level. The master read/
write (MRWB) signal is driven high for a read cycle, and the master size signals (MSIZ[1:0])
indicate transfer size (Byte = $1). The ColdFire2/2M asserts the master transfer start
(MTSB) signal during C1 to indicate the beginning of a bus cycle.

Figure 3-16. ColdFire Mode Interrupt Acknowledge Bus Cycle

C1 C2

CLK

IPLB

STACKMADDR[31:5]

INT LEVEL STACKMADDR[4:2]

STACKMADDR[1:0]

MRWB

$1MSIZ

$0MTT

INT LEVEL $5MTM

MTSB

MWDATA

MWDATAOE

VECMRDATA[31:24]

MRDATA[23:0]

MIE

MTAB

MTEAB

INT ACK STACK

Master Bus Operation

MOTOROLA ColdFire2/2M User’s Manual 3-29

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB. The interrupting device uses
the MRWB and MSIZ signals to place the vector number on the high-order byte of the
master read data bus (MRDATA[31:24]) and assert the master input enable (MIE) signal.
Concurrently, the interrupting device asserts the master transfer acknowledge (MTAB)
signal. At the end of C2, the ColdFire2/2M samples the level of MTAB and latches the
current value on MRDATA[31:24]. If MTAB is asserted, the transfer terminates. If MTAB is
not asserted, the ColdFire2/2M ignores the data and inserts wait states instead of
terminating the transfer. The ColdFire2/2M continues to sample MTAB on successive rising
edges of CLK until it is asserted. The interrupting device negates the MIE and MTAB signals
in the first half of the next CLK cycle.

See Figure 3-17 for an example of a 68K mode (IACK_68K asserted) interrupt acknowledge
cycle. The interrupt is shown occurring during a normal master bus read cycle with no lower-
order interrupts pending.

Master Bus Operation

3-30 ColdFire2/2M User’s Manual MOTOROLA

Clock 1 (C1)
The interrupt acknowledge cycle starts in C1. During the first half of C1, the ColdFire2/2M
drives the master address bus (MADDR[31:4]), MADDR[0], and the MTM[2:0] signals high,
the MTT[1:0] signals low, and MADDR[3:1] to the interrupt level. The master read/write
(MRWB) signal is driven high for a read cycle, and the master size signals (MSIZ[1:0])
indicate transfer size (Byte = $1). The ColdFire2/2M asserts the master transfer start
(MTSB) signal during C1 to indicate the beginning of a bus cycle.

Figure 3-17. 68K Mode Interrupt Acknowledge Bus Cycle

C1 C2

CLK

IPLB

STACKMADDR[31:4]

INT LEVEL STACKMADDR[3:1]

STACKMADDR[0]

MRWB

$1MSIZ

$0MTT

INT LEVEL $5MTM

MTSB

MWDATA

MWDATAOE

VECMRDATA[31:24]

MRDATA[23:0]

MIE

MTAB

MTEAB

INT ACK STACK

Master Bus Operation

3-31 ColdFire2/2M User’s Manual MOTOROLA

Clock 2 (C2)
During the first half of C2, the ColdFire2/2M negates MTSB. The interrupting device uses
the MRWB and MSIZ signals to place the vector number on the high-order byte of the
master read data bus (MRDATA[31:24]) and assert the master input enable (MIE) signal.
Concurrently, the interrupting device asserts the master transfer acknowledge (MTAB)
signal. At the end of C2, the ColdFire2/2M samples the level of MTAB and latches the
current value on MRDATA[31:24]. If MTAB is asserted, the transfer terminates. If MTAB is
not asserted, the ColdFire2/2M ignores the data and inserts wait states instead of
terminating the transfer. The ColdFire2/2M continues to sample MTAB on successive rising
edges of CLK until it is asserted. The interrupting device negates the MIE and MTAB signals
in the first half of the next CLK cycle.

3.7.2 Spurious Interrupt Acknowledge Bus Cycle
When a device does not respond to an interrupt acknowledge bus cycle with MTAB, the
external logic typically returns the transfer error acknowledge signal (MTEAB). In this case,
it is the responsibility of the external logic to return the spurious interrupt vector number 24
($18) on MRDATA[31:24] and assert MIE. The vector number will be latched on the first
rising edge of CLK after MTEAB is asserted. Because the spurious interrupt vector number
is returned on MRDATA[31:24] in the same manor as a normal interrupt acknowledge,
MTAB may be asserted instead of MTEAB.

3.8 MASTER BUS EXCEPTION CONTROL CYCLES
The ColdFire2/2M bus architecture requires assertion of MTAB from an external device to
signal that a bus cycle is complete. MTAB is not asserted in the following cases:

• The external device does not respond to a normal bus cycle.

• No interrupt vector is provided during an interrupt acknowledge cycle.

• Various other application-dependent errors occur.

External circuitry should assert MTEAB when no device asserts MTAB within an appropriate
period of time after the ColdFire2/2M begins the bus cycle. This terminates the cycle and
allows the ColdFire2/2M to enter exception processing for the error condition.

To properly control termination of a bus cycle for a access error, MTAB and/or MTEAB must
be asserted and negated for the same rising edge of CLK. Table 3-9 lists the control signal
combinations and the resulting bus cycle terminations. Note that the access error Exception
taken upon an MTEAB assertion cannot be masked and will occur for both reads and writes
that result in MTEAB being asserted. access error terminations during burst cycles operate
as described in Section 3.3.4 Line Read Transfer and Section 3.3.5 Line Write
Transfers .

Master Bus Operation

3-32 ColdFire2/2M User’s Manual MOTOROLA

3.8.1 Access Errors
The system hardware can use the MTEAB signal to abort the current bus cycle when a fault
is detected as shown in Figure 3-18. An access error is recognized during a bus cycle in
which MTEAB is asserted. When the ColdFire2/2M recognizes an access error condition,
the access is terminated immediately. A line access that has MTEAB asserted for one of the
four longword transfers aborts without completing the remaining transfers.

When MTEAB is asserted to terminate a bus cycle, the ColdFire2/2M can enter access error
exception processing immediately following the bus cycle, or it can defer processing the
exception in the following manner. The instruction prefetch mechanism requests instruction
words from the instruction memory unit before it is ready to execute them. If an access error
occurs on an instruction fetch, the ColdFire2/2M does not take the exception until it attempts
to use the instruction. Should an intervening instruction cause a branch or should a task
switch occur, the access error exception for the unused access does not occur. Similarly, if
an access error is detected on the second, third, or fourth longword transfer for a line read
access, an access error exception is taken only if the execution unit is specifically requesting
that longword. Otherwise, the line is not placed in the cache, and the ColdFire2/2M repeats
the line access when another access references the line. If a misaligned operand spans two
longwords in a line, an access error on either the first or second transfer for the line causes
exception processing to begin immediately. An access error termination for any write
accesses or for read accesses that reference data specifically requested by the execution
unit causes the ColdFire2/2M to begin exception processing immediately. Refer to Section
4Exception Processing for details of access error exception processing.

When an access error terminates an access, the contents of the corresponding cache can
be affected. For a cache line read to replace a valid instruction line, the cache line being filled
is invalidated before the bus cycle begins and remains invalid if the replacement line access
is terminated with an access error.

Note that if an access is made to a space that is masked, it simply becomes mapped to the
next valid space; no access error is generated. See Section 5.5, Interactions Between K-
Bus Memories, for further information. When a write error occurs on a buffered write, an
access error will be generated but will not be reported on the instruction that generated the
write.

Access errors only occur because of the following:
1) MTEAB asserts
2) MMU error; i.e. trying to write in a write protected space

Table 3-9. MTAB and MTEAB Assertion Results

MTAB MTEAB RESULT

Don’t Care Asserted Access Error—Terminate and Take Access Error Exception
This exception cannot be masked

Asserted Negated Normal Cycle Terminate and Continue
Negated Negated Insert Wait States

Master Bus Operation

3-33 ColdFire2/2M User’s Manual MOTOROLA

(RAMBAR, ROMBAR, ACR1, ACR0, and CACR have write protect bits)
3) Accessing CPU space from the debug module while the processor in NOT halted or

stopped

3.8.2 Fault-on-Fault Halt
A fault-on-fault error occurs when an access or address error occurs during the exception
processing sequence - e.g., the ColdFire2/2M attempts to stack several words containing
information about the state of the machine while processing an access error exception. If an
access error occurs during the stacking operation, the second error is considered a fault-on-
fault error. A second access or address error that occurs during execution of an exception
handler or later, does not cause a fault-on-fault condition. The ColdFire2/2M indicates a
fault-on-fault condition by continuously driving the processor status (PST[3:0]) signals with
an encoded value of $F until it is reset. Only an external reset operation can restart a halted
ColdFire2/2M. See Section 7.3.1 CPU Halt for more information.

Figure 3-18. Bus Exception Cycle

C1 C2 C1 C2

CLK

A1 A2MADDR

MRWB

MSIZ

MTT

MTM

MTSB

D2MWDATA

MWDATAOE

D1MRDATA

MIE

MTAB

MTEAB

ERROR STACK

Master Bus Operation

3-34 ColdFire2/2M User’s Manual MOTOROLA

3.9 RESET OPERATION
An external device asserts the MRSTB signal to reset the ColdFire2/2M. When power is
applied to the system, external circuitry should assert MRSTB for a minimum of six clock
cycles after VDD and CLK are within tolerance. The MRSTB signal is not internally
synchronized and must meet the specified setup and hold times to CLK. If the external reset
is asynchronous, two flip-flops should be used to synchronize the signal before it drives
MRSTB.

Figure 3-19 shows the general relationship between VDD, MRSTB, and the bus signals
during the power-on reset operation. Resets during normal operation must follow the same
requirements as those for power-on reset.

3.10 MASTER BUS ARBITRATION
The ColdFire2/2M implementation is fully compatible with other, optional alternate Master’s.
The M-Bus supports arbitration; i.e. where the arbitration is performed in an external module
to the ColdFire2/2M. This arbitration module could function as a multiplexer-based master
switch. The ColdFire2/2M and the alternate masters generate master bus requests via their
individual bus connections, with the arbitration logic selecting between the masters on a
transfer-by-transfer basis.

Figure 3-19. Initial Power-On Reset

C1

VDD

CLK

MRSTB

BUS

MTSB

T >= 6 CYCLES T = 22CYCLES

MOTOROLA

 ColdFire2/2M User’s Manual

4-1

SECTION 4
EXCEPTION PROCESSING

Exception processing is the activity performed by the ColdFire2/2M in preparing to execute
a special routine, called an exception handler, for any condition that causes an exception.
Exception processing does not include execution of the routine itself.

This section describes the processing for each type of integer unit exception, exception
priorities, the return from an exception, and bus fault recovery. Also described are the
formats of the exception stack frames.

4.1 EXCEPTION PROCESSING OVERVIEW

Exception processing is the transition from the normal processing of a program to the
processing required for any special internal or external condition that preempts normal
processing. External conditions that cause exceptions are interrupts from external devices,
access errors, resets, and the assertion of the breakpoint signal. Internal conditions that
cause exceptions are address errors, instruction traps, illegal instructions, privilege
violations, tracing, format errors, and interrupts from the debug module. Exception
processing uses an exception vector table and an exception stack frame.

Exception processing for the ColdFire2/2M is streamlined for performance. Differences from
prior 68000 family processors are:

• A simplified exception vector table

• Reduced relocation capabilities using the vector base register (VBR)

• A fixed-length exception stack frame format

• Elimination of simultaneous multiple exception support

• Use of a single self-aligning system stack

Exception processing is comprised of four major steps and can be defined as the time from
the detection of the fault condition until the fetch of the first instruction of the exception
handler has been initiated. Figure 4-1 illustrates a general flowchart for the steps taken by
the ColdFire2/2M during exception processing.

Exception Processing

4-2

 ColdFire2/2M User’s Manual

MOTOROLA

The processing of an exception on the ColdFire2/2M is composed of the following steps:

1. The ColdFire2/2M makes an internal copy of the status register (SR) and then enters
supervisor mode by setting the S-bit and disabling trace mode by clearing the T-bit in
the SR. The occurrence of an interrupt exception also forces the master/interrupt bit,

Figure 4-1. Exception Processing Flowchart

ENTRY

EXIT EXIT

ENABLE SUPERVISOR

DETERMINE
VECTOR NUMBER

SAVE CONTENTS TO
EXCEPTION FRAME

(SEE NOTE)

SAVE INTERNAL
COPY OF SR

ACCESS ERROR?

CALCULATE ADDRESS
 OF

EXCEPTION HANDLER

FETCH FIRST
INSTRUCTION OF

EXCEPTION HANDLER

ACCESS/ADDRESS
ERROR?

BEGIN EXECUTION
OF

EXCEPTION HANDLER
HALTED
STATE

Y

N

Y

N

(FAULT-ON-FAULT)

(FAULT-ON-FAULT)

NOTE: THIS BLOCK VARIES FOR RESET AND INTERRUPT EXCEPTIO

MODE & DISABLE TRACE

Exception Processing

MOTOROLA

 ColdFire2/2M User’s Manual

4-3

M-bit, in the SR to be cleared and the interrupt priority mask, I[2:0], in the SR to be set
to the level of the current interrupt request

2. The ColdFire2/2M determines the exception vector number. For all faults except
interrupts, the ColdFire2/2M performs this calculation based on the exception type.
For interrupts, the ColdFire2/2M performs an interrupt acknowledge (IACK) bus cycle
to obtain the vector number from a peripheral device. The IACK cycle is mapped to a
special acknowledge address space with the interrupt level encoded in the address.
Refer to Section 3.7 Interrupt Acknowledge Bus Cycles.

3. The ColdFire2/2M saves the current context by creating an exception stack frame on
the system stack. The ColdFire2/2M supports a single stack pointer (SP) in the A7
address register, i.e., there is no notion of separate

supervisor- or user- stack pointers.
As a result, the exception stack frame is created at a 0-modulo-4 address on the top
of the current system stack. Additionally, the ColdFire2/2M uses a simplified fixed-
length exception stack frame for all exceptions. The exception type determines
whether the program counter placed in the exception stack frame defines the location
of the faulting instruction or the address of the next instruction to be executed.

4. The ColdFire2/2M calculates the address of the first instruction of the exception
handler. By definition, the exception vector table is aligned on a 1 MByte boundary.
This instruction address is generated by fetching an exception vector from the table
located at the address defined in the vector base register. The index into the exception
table is calculated as (4 x vector_number). Once the exception vector has been
fetched, the contents of the vector determine the address of the first instruction of the
desired exception handler. After the instruction fetch for the first opcode of the
exception handler has been initiated, exception processing terminates and normal
instruction processing continues in the exception handler.

4.1.1 Exception Stack Frame Definition

A diagram of the exception stack frame is shown in Figure 4-2. The first long word of the
exception stack frame, pointed to by SP, contains the 16-bit format/vector word (F/V) and
the 16-bit status register, and the second long word contains the 32-bit program counter
address.

31 28 27 26 25 18 17 16 15 0

FORMAT FS[3:2] VECTOR[3:2] FS[1:0] STATUS REGISTER
PROGRAM COUNTER[31:0] PC

Figure 4-2. Exception Stack Frame Form

Exception Processing

4-4

 ColdFire2/2M User’s Manual

MOTOROLA

Field Definitions:

FORMAT—Exception Frame Format
This field is always written with a value of $4, $5, $6, or $7 by the ColdFire2/2M indicating a
two long-word frame format. The specific value depends on the value of the stack pointer
(SP) before the exception occurred.

0100 = Original SP[1:0] set to 00
0101 = Original SP[1:0] set to 01
0110 = Original SP[1:0] set to 10
0111 = Original SP[1:0] set to 11

FS—Fault Status
This field is defined for access and address errors only and written as zeros for all other
types of exceptions.

0000 = Not address or access error
0001 = Reserved
001x = Reserved
0100 = Error on instruction fetch
0101 = Reserved
011x = Reserved
1000 = Error on operand write
1001 = Attempted write to write-protected space
101x = Reserved
1100 = Error on operand read
1101 = Reserved
111x = Reserved

VECTOR—Exception Vector Number
This 8-bit vector number defines the exception vector number used to index into the
exception vector table. For internal exceptions, this number is calculated by the ColdFire2/
2M, and for external interrupts, this number is read during the IACK cycle as described in
Section 3.7 Interrupt Acknowledge Bus Cycles. Refer to Table 4-2 for exception vector
assignments.

PC—Program Counter
This field contains the 32-bit program counter at the time of the exception. The instruction
at this address is the faulting instruction or the next instruction depending on the type of
exception.

4.1.1.1 SELF-ALIGNING STACK.

The ColdFire2/2M aligns the stack to a longword
boundary before the exception stack frame is placed on the stack. As a result, the difference
between the SP before the exception and the SP at the start of the exception handler may
be more than two longwords, but the location of the exception stack frame is always at the
top of the stack. As seen in Table 4-1, the format field reflects the SP alignment and is used
when an RTE instruction executes to correctly restore the SP to its original value.

Exception Processing

MOTOROLA

 ColdFire2/2M User’s Manual

4-5

4.1.2 Exception Vectors

The ColdFire2/2M supports a 1024-byte vector table aligned on any 1 MByte address
boundary (see Table 4-2). The table contains 256 exception vectors where the first 64 are
defined by Motorola and the remaining 192 are user-defined.The exception table order does
not have any priority. It is an area in memory reserved for the storage of the first address
used within the different exception handler routines. The reserved areas in the exception
table are for future expansion and can be used as long as the application does not care if
these areas become valid regions in future ColdFire processors.

Table 4-1. Stack Pointer Alignment

ORIGINAL SP [1:0] @
TIME OF EXCEPTION,

FORMAT FIELD
SP @ 1ST INSTRUCTION

OF EXCEPTION HANDLER

00 0100 (Original SP) - 8
01 0101 (Original SP) - 9
10 0110 (Original SP) - 10
11 0111 (Original SP) - 11

Table 4-2. Exception Vector Assignments

VECTOR NUMBER
VECTOR
OFFSET

STACKED
PROGRAM
COUNTER

ASSIGNMENT

HEX DECIMAL HEX

$0 0 $000 - Reset Initial Stack Pointer
$1 1 $004 - Reset Initial Program Counter
$2 2 $008 Fault Access Error
$3 3 $00C Fault Address Error
$4 4 $010 Fault Illegal Instruction

$5-$7 5-7 $014-$01C - Reserved
$8 8 $020 Fault Privilege Violation
$9 9 $024 Next Trace
$A 10 $028 Fault Unimplemented Line-A Opcode
$B 11 $02C Fault Unimplemented Line-F Opcode
$C 12 $030 Next Debug Interrupt
$D 13 $034 - Reserved
$E 14 $038 Fault Format Error
$F 15 $03C Next Optional Uninitialized Interrupt

$10-$17 16-23 $040-$05C - Reserved
$18 24 $060 Next Optional Spurious Interrupt

$19-$1F 25-31 $064-$07C Next Optional Level 1-7 Autovectored Interrupts
$20-$2F 32-47 $080-$0BC Next TRAP # 0-15 Instructions
$30-$3F 48-63 $0C0-$0FC - Reserved
$40-$FF 64-255 $100-$3FC Next User-Defined Interrupts

NOTES: 1. “Fault” refers to the PC of the instruction that caused the exception

2. “Next” refers to the PC of the next instruction that follows the instruction that caused
the fault.

Exception Processing

4-6

 ColdFire2/2M User’s Manual

MOTOROLA

The ColdFire2/2M inhibits sampling for interrupts during exception processing, including the
first instruction of the exception handler. This allows the first instruction of any exception
handler to effectively disable interrupts, if desired, by raising the interrupt mask level
contained in the status register.

Normally, the end of an exception handler contains an RTE instruction. When the ColdFire2/
2M executes the RTE instruction, it examines the exception stack frame on top of the stack
to determine if it is a valid frame. If the ColdFire2/2M determines that it is a valid frame, the
SR and PC fields are loaded from the exception stack frame and control is passed to the
specified instruction address. If the frame is invalid, a format exception is taken.

All exception vectors are located in the supervisor data space. Since the vector base register
(VBR) provides the base address of the exception vector table, the exception vector table
can be located anywhere in memory; it can even be dynamically relocated for each task that
an operating system executes. The VBR is reset to zero. Refer to Section 1.4.3.4 Vector
Base Register (VBR).

4.1.3 Multiple Exceptions

Within a ColdFire2/2M system, more than one exception can occur at the same time. When
this occurs, only the exception with the highest priority will be processed. Exceptions can be
divided into the four basic groups identified in Table 4-3.

These groups are defined by specific characteristics and the priority with which they are
handled. As far as the ColdFire2/2M is concerned, the interrupt exception will never appear
to occur at the same time as another exception. Interrupt exceptions will remain pending
until the other exception is processed. Refer to

Section 4.2.6 Trace Exception

 for an
example of simultaneous exceptions.

Table 4-3. Exception Priority Groups

GROUP
PRIORIT

Y

EXCEPTION AND
RELATIVE PRIORITY

CHARACTERISTICS

0.0 Reset The ColdFire2/2M aborts all processing (instruction or exception) and does not save old
context.

1.0
1.1
1.2

Address Error
Instruction Access

Error
Data Access Error

The ColdFire2/2M suspends processing and saves the context.

2.0
2.1
2.2
2.3

A-Line
Unimplemented

F-Line
Unimplemented
Illegal Instruction
Privilege Violation

Exception processing begins before the instruction is executed.

3.0 TRAP Instruction
Format Error

Exception processing is part of the instruction execution and begins after instruction
execution.

4.0
4.1
4.2

Trace
Debug Interrupt

Interrupt
Exception processing begins when the current instruction is completed.

NOTES: 1. 0.0 is the highest priority.

2. 4.2 is the lowest priority.

Exception Processing

MOTOROLA

 ColdFire2/2M User’s Manual

4-7

4.1.4 Fault-on-Fault Halt

If the ColdFire2/2M encounters any type of fault during the exception processing of another
fault, it immediately halts execution with the catastrophic fault-on-fault condition. The
ColdFire2/2M indicates a fault-on-fault condition by continuously driving the processor
status (PST[3:0]) signals with an encoded value of $F until it is reset. Only an external reset
operation can restart a halted ColdFire2/2M. See

Section 7.3.1 CPU Halt

 for more
information.

4.2 EXCEPTIONS

The following paragraphs describe the external interrupt exceptions and the different types
of exceptions generated internally by the integer unit. The following exceptions are dis-
cussed:

• Reset

• Access Error

• Address Error

• Illegal Instruction

• Privilege Violation

• Trace

• Unimplemented Opcode

• Debug Interrupt

• Format Error

• TRAP Instruction

• External Interrupt

4.2.1 Reset Exception

Asserting the reset input signal to the ColdFire2/2M causes a reset exception, vector
number $0. The reset exception has the highest priority of any exception; it provides for
system initialization. Reset also aborts any processing in progress when the reset input is
recognized, and the aborted processing cannot be recovered.

The reset exception places the ColdFire2/2M in the supervisor mode by setting the S-bit and
disables tracing by clearing the T-bit in the SR. This exception also clears the M-bit and sets
the ColdFire2/2M’s interrupt priority mask in the SR to the highest level (level 7). Next, the
VBR, CACR, ACRs, RAMBAR0, and ROMBAR0 are initialized to their reset value. This will
disable the cache, SRAM, and optionally the ROM (see

Section 5.3.2 ROM Programming
Model

.)

Once the ColdFire2/2M is granted the bus, and it does not detect any other alternate
masters taking the bus, the core then performs two longword read bus cycles. Because the
VBR is reset to zero, the first longword is always loaded into the stack pointer from address
zero, and the second longword is always loaded into the program counter from address four.
After the initial instruction is fetched from memory, program execution begins at the address

Exception Processing

4-8

 ColdFire2/2M User’s Manual

MOTOROLA

in the PC. If an access error or address error occurs before the first instruction begins
execution, the ColdFire2/2M enters the fault-on-fault halted state. Refer to

Section 3.9
Reset Operation

 for more information on initiating a reset exception.

4.2.2 Access Error Exception

An access error exception, vector number $2, occurs when a bus cycle terminates with an
error condition such as the assertion of the master transfer error acknowledge (MTEAB)
signal. Refer to Section 3.8 Master Bus Exception Control Cycles. The exact response to an
access error is dependent on the type of memory reference being performed.

For an instruction fetch, the ColdFire2/2M postpones the reporting of an error until the
faulted reference is needed by an instruction to be executed. Thus, faults which occur during
instruction prefetches which are then followed by a change of instruction flow will not
generate an exception. When the ColdFire2/2M attempts to execute an instruction with a
faulted opword and/or extension words, the access error will be signaled and the instruction
aborted. For this type of exception, the programming model has not been altered by the
instruction generating the access error.

If the access error occurs on an operand read, the ColdFire2/2M immediately aborts the
current instruction’s execution and initiates exception processing. In this situation, any
address register updates due to the auto-addressing modes, {e.g., (An)+,-(An)}, will already
have been performed. Thus, the programming model contains the updated An value. In
addition, if an access error occurs during the execution of a MOVEM instruction loading
registers from memory, any registers already updated before the fault occurs will contain the
operands from memory.

The ColdFire2/2M uses an imprecise reporting mechanism for access errors on write
operations. Since the actual write cycle may be decoupled from the ColdFire2/2M’s
execution of the instruction requesting the write, the signaling of an access error appears to
be decoupled from the instruction which generated the write. Accordingly, the PC contained
in the exception stack frame merely represents the location in the program when the access
error was signaled, not when the offending instruction was executed. All programming
model updates associated with the write instruction are completed. The NOP instruction can
be used for purposes of collecting access errors for writes. This instruction delays its
execution until all previous operations, including all pending write operations to internal
memory resources, are complete. Noncachable writes to the master bus may be buffered
but will be completed before the execution of a NOP instruction. The NOP instruction waits
until the pipeline is cleared out, including buffered writes before executing. Generally,
buffering can provide higher performance, although issues concerning recovery from
physical write-errors may become more difficult to resolve.

4.2.3 Address Error Exception

Any attempted execution transferring control to an odd instruction address (i.e., if bit 0 of the
target address is set) results in an address error exception, vector number $3. For
conditional branch instructions, the exception is generated regardless of the taken/not-taken
resolution of the branch condition.

Exception Processing

MOTOROLA

 ColdFire2/2M User’s Manual

4-9

The ColdFire2/2M has a misalignment unit which will generate a series of aligned bus cycles
to access data requested from a misaligned address. As a result, misaligned operand
fetches will not cause an address error exception.

Any attempted use of a word-sized index register (Xn.w) or an invalid scale factor on an
indexed effective addressing mode generates an address error. The setting of the extension
word valid (EV) bit on an indexed addressing mode instruction will also generate an address
error. Refer to the

ColdFire Programmer’s Reference Manual Rev. 1.0

(MCF5200PRM/AD).

4.2.4 Illegal Instruction Exception

The attempted execution of the $0000 and the $4AFC opwords generates an illegal
instruction exception, vector number $4. The ColdFire2/2M does not provide illegal
instruction detection on the extension words on any instruction, including MOVEC. If any
other non-supported opcode is executed, the resulting operation is undefined and the
ColdFire2/2M’s behavior is unpredictable.

4.2.5 Privilege Violation Exception

The attempted execution of a supervisor mode instruction while in user mode generates a
privilege violation exception, vector number $8. See the

ColdFire Programmer’s Reference
Manual Rev. 1.0

for lists of supervisor- and user- mode instructions.

4.2.6 Trace Exception

To aid in program development, the ColdFire2/2M provides an instruction-by-instruction
tracing capability. While in trace mode, indicated by the setting of the T-bit in the status
register (SR[15] = 1), the completion of an instruction execution triggers a trace exception,
vector number $9. This functionality allows a debugger to monitor program execution.

The single exception to this definition is the STOP instruction. A STOP instruction that
begins execution in trace mode (T-bit in SR set) or enters trace mode because of the STOP
instruction execution (bit 15 of the STOP operand is set) forces a trace exception after it
loads the SR. Upon return from the trace exception handler, execution continues with the
instruction following the STOP instruction, and the ColdFire2/2M never enters the stopped
condition. A STOP instruction will enter the stopped state only if the ColdFire2/2M is not in
trace mode before the STOP instruction is executed and the STOP instruction does not
place the ColdFire2/2M in the trace mode.

Since theColdFire2/2M does not support hardware stacking of multiple exceptions, it is the
responsibility of the operating system to check for trace mode after processing other
exception types. As an example, consider the execution of a TRAP instruction while in trace
mode. The ColdFire2/2M will initiate the TRAP exception and then pass control to the
corresponding exception handler, clearing the trace bit (T-bit) in the SR. If the system
requires that a trace exception be processed, it is the responsibility of the TRAP exception
handler to check for this condition, SR[15] in the exception stack frame, and pass control to
the trace exception handler before returning from the original exception.

Exception Processing

4-10

 ColdFire2/2M User’s Manual

MOTOROLA

A trace exception does not occur immediately after the execution (MOVE to SR, RTE) of the
instruction that puts the ColdFire2/2M in trace mode. The first trace exception occurs after
the subsequent instruction.

4.2.7 Unimplemented Opcode Exception

The attempted execution of line A opcodes not used for MAC instructions and line F
opcodes not used for the debug instructions, including $FFFF, generates their unique
exception types, vector numbers $A and $B respectively. Refer to

Appendix B New MAC
Instructions

 for a list of the MAC opcodes and the

ColdFire Programmer’s Reference
Manual Rev. 1.0

for a list of the debug instruction opcodes.

4.2.8 Debug Interrupt

The debug module is the only internal interrupt source for the ColdFire2/2M. This type of
program interrupt, vector number $C, is discussed in detail in

Section 7.4 Real-Time
Debug Support

. This exception is generated in response to a hardware breakpoint register
trigger. The ColdFire2/2M does not generate an IACK cycle, but rather calculates the vector
number internally.

4.2.9 RTE & Format Error Exceptions

When an RTE instruction is executed, the ColdFire2/2M first examines the 4-bit format field
in the exception stack frame on the stack to validate the frame type. Any attempted
execution of an RTE when the format is not equal to $4, $5, $6, or $7 generates a format
error, vector number $E. The exception stack frame for the format error is created without
disturbing the original exception stack frame. The PC field in the new exception stack frame
will point to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from
68000 applications. On 680x0 family processors, the status register (SR) was located at the
top of the stack. On those processors, bit[30] of the longword addressed by the system stack
pointer (SP) is typically zero. Thus, if an RTE is attempted with a 680x0-type exception stack
frame, the ColdFire2/2M will generate a format exception.

If the format field defines a valid type, the ColdFire2/2M: (1) reloads the SR operand, (2)
fetches the second long word operand (PC), (3) adjusts the stack pointer by adding the
format value to the auto-incremented address after the fetch of the first long word, and then
(4) transfers control to the instruction address defined by the PC (fetched in step 2.)

4.2.10 TRAP Instruction Exceptions

The TRAP

instruction always forces an exception as part of its execution and is useful for
implementing system calls. The instruction adds the immediate operand (vector) of the
instruction to 32 to obtain the vector number. The range of vector values is 0 - 15, which
provides 16 vectors numbered $20 - $2F. Refer to the

ColdFire Programmers Reference
Manual Rev. 1.0

(MCF5200PRM/AD) for more information on the TRAP instruction.

Exception Processing

MOTOROLA

 ColdFire2/2M User’s Manual

4-11

4.2.11 Interrupt Exception

When a peripheral device requires the services of the ColdFire2/2M or is ready to send
information that the ColdFire2/2M requires, it can signal the ColdFire2/2M to take an
interrupt exception. Seven levels of interrupt priorities are provided, numbered 1–7. Devices
can be chained externally within interrupt priority levels, allowing an unlimited number of
peripheral devices to interrupt the ColdFire2/2M. The status register contains a 3-bit mask
indicating the current interrupt priority, and interrupts are inhibited for all priority levels less
than or equal to the current priority (see Section 1.4.3.1 Status Register (SR).)

An interrupt request is made to the ColdFire2/2M by encoding the interrupt request levels
1–7 on the three interrupt request level (IPLB[2:0]) signals; all signals high indicate no
interrupt request. Table 4-4 shows the relationship between the actual requested interrupt
and the state of the IPLB[2:0] signals as well as the interrupt mask levels required for
recognition of the requested level.

Interrupt requests arriving at the ColdFire2/2M do not force immediate exception
processing, but the requests are made pending. Pending interrupts are detected between
instruction executions. If the priority of the pending interrupt is lower than or equal to the
current ColdFire2/2M priority, execution continues with the next instruction, and the
requesting interrupt is postponed until the priority of the pending interrupt becomes greater
than the current ColdFire2/2M priority.

If the priority of the pending interrupt is greater than the current ColdFire2/2M priority, the
exception processing sequence for the requesting interrupt is started. A copy of the status
register is saved internally; the privilege mode is set to supervisor mode; tracing is
suppressed; and the ColdFire2/2M priority level is set to the level of the interrupt being
acknowledged. The ColdFire2/2M fetches the vector number from the interrupting device by
executing an interrupt acknowledge cycle, which displays the level number of the interrupt
being acknowledged on the address bus (see Section 3.7 Interrupt Acknowledge Bus
Cycles). The ColdFire2/2M then proceeds with the usual exception processing, saving the
exception stack frame on the supervisor stack. The saved value of the program counter is
the address of the instruction that would have been executed had the interrupt not been
taken. The appropriate interrupt vector is fetched and loaded into the program counter, and
normal instruction execution commences in the interrupt handling routine.

Table 4-4. Interrupt Levels and Mask Values

REQUESTED
INTERRUPT LEVEL

CONTROL LINE STATUS INTERRUPT MASK LEVEL
REQUIRED FOR RECOGNITIONIPLB[2] IPLB[1] IPLB[0]

0 High High High No Request
1 High High Low 0
2 High Low High 0-1
3 High Low Low 0-2
4 Low High High 0-3
5 Low High Low 0-4
6 Low Low High 0-5
7 Low Low Low 0-7

Exception Processing

4-12

 ColdFire2/2M User’s Manual

MOTOROLA

Interrupt requests should be maintained on the IPLB[2:0] signals until the conclusion of the
interrupt acknowledge (IACK) cycle from the processor to guarantee that the interrupt will
be recognized. The interrupt request can be maintained without being recognized again,
until the interrupt priority level in the SR is lowered below the currently requested level. This
is usually the result of the RTE instruction at the end of the interrupt exception handler.

Once the conclusion of an Interrupt Acknowledge (IACK) cycle occurs, another interrupt
may be asserted on the IPLB lines.The processor will start fetching the interrupt handler
code for the acknowledged interrupt. In the handler, the processor looks at the interrupt
mask level and determines if the second interrupt is masked or allowed.If the second
interrupt is not masked, the processor will start another IACK cycle for the second interrupt.
It will go to the second interrupt handler and sample IPLB inputs, compare mask, and
execute this handler if a higher level interrupt is not pending. Once the second interrupt has
completed the return from exception (RTE) in the handler, the processor will return to the
first interrupt handler, where the IPLB lines are sampled and compared to the interrupt
mask. If no interrupts have higher priority, it will execute this handler and return (RTE) to the
place in the code where the first interrupt was allowed to be taken.

Thus, interrupts can be nested, and higher interrupts given priority by the interrupt mask
register once they are executing code within the handlers.

4.2.11.1 LEVEL 7 INTERRUPTS.

Level 7 interrupts are handled differently than interrupt
levels one through six. A level 7 interrupt is a nonmaskable interrupt; therefore, a 7 in the
interrupt mask does not disable a level 7 interrupt.

Level 7 interrupts are edge-triggered by a transition from a lower priority request to the level
7 request, as opposed to interrupt levels one through six, which are level sensitive.
Therefore, if the interrupt priority level (IPLB[2:0]) signals remain at level 7, the ColdFire2/
2M will only recognize one level 7 interrupt since only one transition from a lower level
request to a level 7 request occurred. For the ColdFire2/2M to recognize a level 7 interrupt
followed by another level 7 interrupt, one of the two following sequences must occur:

1. The interrupt request level on the IPLB[2:0] signals changes from a lower request level
to level 7 and remains at level 7 until the interrupt acknowledge bus cycle begins.
Later, the interrupt request level returns to a lower interrupt request level and then
back to level 7, causing a second transition on the IPLB[2:0] signals.

2. The interrupt request level on the IPLB[2:0] signals changes from a lower request level
to level 7 and remains at level 7. If the interrupt handling routine for the level 7 interrupt
lowers the interrupt mask level, a second level 7 interrupt will be recognized even
though no transition has occurred on the interrupt control pins. After the level 7
interrupt handling routine completes, the ColdFire2/2M will compare the interrupt
mask level to the interrupt request level on the IPLB[2:0] signals. Since the interrupt
mask level will be lower than the requested level, the interrupt mask will be set back
to level 7. The level 7 request on the IPLB[2:0] signals must be held until the second
interrupt acknowledge bus cycle has begun to ensure that the interrupt is recognized.

4.2.11.2 SPURIOUS, AUTOVECTORED, AND UNINITIALIZED INTERRUPTS.

If When
the external logic indicates an access error during the interrupt acknowledge cycle, the

Exception Processing

4-13

 ColdFire2/2M User’s Manual

MOTOROLA

interrupt is considered spurious (refer to Section 3.7.2 Spurious Interrupt Acknowledge Bus
Cycle.) It is the responsibility of the external logic to return the spurious interrupt vector
number, $18. External hardware may also be designed to generate autovector interrupts,
$64 - $7C, for each interrupt level. Many M68000 family peripherals use programmable
interrupt vector numbers as part of the interrupt-acknowledge operation for the system. If
this vector number is not initialized after reset and the peripheral must acknowledge an
interrupt request, the peripheral usually returns the vector number for the uninitialized
interrupt vector, $F.

MOTOROLA

 ColdFire2/2M User’s Manual

5-1

SECTION 5
INTEGRATED MEMORIES

The ColdFire2/2M has dedicated buses to support three integrated memories: instruction
cache, RAM, and ROM.

5.1 INSTRUCTION CACHE

The ColdFire2/2M has a dedicated bus to support an integrated instruction cache with the
following features:

• 0 - 32 Kbyte direct-mapped instruction cache

• Instruction cache byte size programmed with ICH_SZ[2:0] static signals

• Single-cycle access on cache hits

• Physically located on processor’s high-speed local bus

• Non-blocking design to maximize performance

• Configurable cache-miss fetch algorithm

The cache module services instruction-fetch requests from the ColdFire2/2M by either
returning matching 32-bit cache entries in a single clock, or by initiating memory requests to
service accesses that miss in the cache. The instruction cache size is specified via the
ICH_SZ[2:0] pins which are static signals that need to stay valid for all operation. Only the
ColdFire2/2M can access the cache. A fetch is defined as a read from user or supervisor
code space only.

5.1.1 Instruction Cache Hardware Organization

The instruction cache is an optional direct-mapped single-cycle memory, organized as 32
(512 byte) to 2K (32 Kbyte) lines, each containing 4 longwords or 16 bytes. The data array
is organized in longwords, 4 bytes per entry. The tag array is organized in lines, one entry
per four longwords or line. The cache size is determined by the encoding of the ICH_SZ[2:0]
inputs as shown in Table 5-1. Thus the memory storage consists of a N-entry tag array
(where N corresponds to the number of lines in the data array) containing addresses and a
valid bit, and the data array containing M bytes of instruction data (where M= 512,1K, 2K,
4K, 8K, 16K, or 32K), organized as M/4 x 32 bits.

The two memory arrays are accessed in parallel: bits [X:4] of the instruction fetch address
providing the index into the tag array, and bits [X:2] addressing the data array (where X
ranges from 8 to 14 for 512-byte to 8K-byte I-cache size, see Table 5-1).The tag array
outputs the address mapped to the given cache location along with the valid bit for the line.
This address field is compared to bits [31:Y] of the instruction fetch address (where Y = X +

Integrated Memories

5-2

 ColdFire2/2M User’s Manual

MOTOROLA

1 for a given cache size) from the local bus to determine if a cache hit in the memory array
has occurred. If the desired address is mapped into the cache memory, the output of the
data array is driven onto the processor’s local data bus completing the access in a single
cycle.

The tag array maintains a single valid bit per line entry. Accordingly, only entire 16-byte lines
are loaded into the instruction cache.

The instruction cache also contains a 16-byte fill buffer which provides temporary storage
for the last line fetched in response to a cache miss. With each instruction fetch, the contents
of the line fill buffer are examined. Thus, each instruction fetch address examines both the
tag memory array and the line fill buffer to see if the desired address is mapped into either
hardware resource, with the line fill buffer having priority over the instruction cache. A “cache
hit” in either the memory array or the line fill buffer is serviced in a single cycle. Since the
line fill buffer maintains valid bits on a longword basis, hits in the buffer can be serviced
immediately without waiting for the entire line to be fetched.

If the referenced address is not contained in the memory array nor the line fill buffer, the
instruction cache initiates the required external fetch operation. In most situations, this is a
16-byte line-sized burst reference. An external bus cycle is always started simultaneously
with the fetch cycle to the instruction cache. If a “hit” occurs in the instruction cache, the
MKILLB signal is asserted late in the cycle to “kill” the external bus cycle. Thus an asserted
MTSB and MKILLB direct the external bus controller to ignore the MTSB. If no “hit” occurred
in the instruction cache (or other K-Bus memory), the M-Bus cycle uses the normal number
of clock cycles beginning with the MTSB issued for the instruction fetch. See

Section 5.5,
Interactions Between K-Bus Memories

 for more details.

The hardware implementation is a non-blocking design, meaning the processor’s local bus
is released after the initial access of a miss. Thus, the cache, RAM, or ROM module can
service subsequent requests while the remainder of the line is being fetched and loaded into
the fill buffer.

5.1.2 Instruction Cache Operation

The instruction cache is physically connected to the processor’s local bus allowing it to
service all instruction fetches from the ColdFire CPU and certain memory fetches initiated
by the debug module. Typically, the debug modules’s memory references appear as
supervisor data accesses, but the unit may be programmed to generate user mode
accesses and/or instruction fetches. Any instruction fetch access is processed by the
instruction cache in the normal manner.

5.1.3 Instruction Cache Signal Description

The following signals interface the ColdFire2/2M to an integrated instruction cache. The
cache is comprised of two compiled RAMs: tag and data. Figure 5-1 illustrates an 8 Kbyte
configuration. All ColdFire2/2M signals are unidirectional and synchronous. Instruction
cache outputs are registered and the Instruction cache data is latched into the ColdFire2/2M
on the falling edge of the clock.

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-3

5.1.3.1 INSTRUCTION CACHE ADDRESS BUS (ICH_ADDR[14:2]).

These registered
output signals provide the address of the current bus cycle (i.e. fetch cycle) to the integrated
cache RAMs. ICH_ADDR is only updated on fetch cycles (i.e. ICH_ADDR does not get
updated on RAM or ROM hits). This bus should be connected to the address bus (A) of the
two compiled cache RAMs. ICH_ADDR[N:M] is being provided via MADDR[N:M].

5.1.3.2 INSTRUCTION CACHE DATA CHIP-SELECT (ICHD_CSB).

This active-low,
output signal indicates the cache data RAM is currently selected to perform a data transfer
with the ColdFire2/2M. This bus should be connected to the chip-select (CSB) signal of the
compiled cache data RAM.

5.1.3.3 INSTRUCTION CACHE DATA INPUT BUS (ICHD_DI[31:0]).

These output
signals provide the write data path between the ColdFire2/2M and the cache data RAM. The
data bus is 32-bits wide and should be connected to the data inputs (DBI) of the compiled
cache data RAM.

5.1.3.4 INSTRUCTION CACHE DATA OUTPUT BUS (ICHD_DO[31:0]).

These input
signals provide the read data path between the cache data RAM and the ColdFire2/2M. The
data bus is 32-bits wide and should be connected to the data outputs (DBO) of the compiled
cache data RAM.

Figure 5-1. Example of 8 Kbyte Instruction Cache Interface Diagram

ICHD_CSB

ICHD_DI[31:0]

ICHD_DO[31:0]

ICHD_ST

ICHD_RWB

ICH_ADDR[14:2]

ICHT_CSB

ICHT_DI[31:8]

ICHT_DO[31:8]

ICHT_ST

ICHT_RWB

CSB

DBI[19:0]

DBO[19:0]

ST

RWB

A[8:0]

CSB

DBI[31:0]

DBO[31:0]

ST

RWB

A[10:0]

TAG RAMCPU CORE

DATA RAM

SIZEICH_SZ[2:0]

[31:13,8]

[31:13,8]

[12:2]

[31:0]

[31:0]

[2:0]

[12:4]

[12:2]

GND
[12:9]

Integrated Memories

5-4

 ColdFire2/2M User’s Manual

MOTOROLA

5.1.3.5 INSTRUCTION CACHE DATA STROBE (ICHD_ST).

This output signal initiates a
read or write cycle to the cache data RAM on a low-to-high transition. This signal should be
connected to the strobe input (ST) signal of the compiled cache data RAM.

5.1.3.6 INSTRUCTION CACHE DATA READ/WRITE (ICHD_RWB).

This output signal
indicates the direction of the data transfer to the cache data RAM. A high level indicates a
read cycle and a low level indicates a write cycle. It should be connected to the read/write
(RWB) signal of the compiled cache data RAM.

5.1.3.7 INSTRUCTION CACHE SIZE (ICH_SZ[2:0]).

These static inputs specify the size
of the compiled cache RAMs connected to the ColdFire2/2M. Table 5-1 lists the possible
cache configurations. ICH_SZ[2:0] does not affect the CACR in any way; thus a MOVEC
instruction will write the CACR regardless of the ICH_SZ specification (which is contrary to
the RAM_SZ and ROM_SZ effect during RAMBAR and ROMBAR loading).

5.1.3.8 INSTRUCTION CACHE TAG CHIP-SELECT (ICHT_CSB).

This

active-low output
signal indicates the cache tag RAM is currently selected to perform a data transfer with the
ColdFire2/2M. This signal should be connected to the chip-select (CSB) signal of the
compiled cache tag RAM.

5.1.3.9 INSTRUCTION CACHE TAG INPUT BUS (ICHT_DI[31:8]).

These output signals
provide the write data path between the ColdFire2/2M and the cache tag RAM. The data bus
depends upon the size of the CACHE; see Table 5-1. Bit eight is always the valid bit and is
always used as seen in the cache configuration shown in Table 5-2. This bus should be
connected to the data inputs (DBI) of the compiled cache tag RAM. Functionally,
MADDR[31:9] is written onto ICHT_DI[31:9] and ICHT_DI[8] is written with the valid state of
the entry.

Table 5-1. Cache Configuration Encoding

ICACHE SZ
(BYTES)

ICH_SZ[2:0] TAG ARRAY
SIZE

TAG ARRAY
ADDRESS

DATA ARRAY
SIZE

DATA ARRAY
ADDRESS

None 000 - - - -
512 001 32x24 ICH_ADDR[8:4] 128x32 ICH_ADDR[8:2]
1 K 010 64x23 ICH_ADDR[9:4] 256x32 ICH_ADDR[9:2]
2 K 011 128x22 ICH_ADDR[10:4] 512x32 ICH_ADDR[10:2]
4 K 100 256x21 ICH_ADDR[11:4] 1Kx32 ICH_ADDR[11:2]
8 K 101 512x20 ICH_ADDR[12:4] 2Kx32 ICH_ADDR[12:2]

16K† 110 1Kx19 ICH_ADDR[13:4] 4Kx32 ICH_ADDR[13:2]
32K† 111 2Kx18 ICH_ADDR[14:4] 8Kx32 ICH_ADDR[14:2]

NOTE: †HPF65 ColdFire2 Hard Macro may require a reduced operating frequency for 16K and 32K sized
ICACHE.

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-5

5.1.3.10 INSTRUCTION CACHE TAG OUTPUT BUS (ICHT_DO[31:8]).

These input
signals provide the read data path between the cache tag RAM and the ColdFire2/2M. The
data bus size depends upon the size of the CACHE; see Table 5-1. Bit eight is always the
valid bit and is always used regardless of the cache configuration as shown in Table 5-2.
This bus should be connected to the data outputs (DBO) of the compiled cache tag RAM.
Unused signals must be tied low.

5.1.3.11 INSTRUCTION CACHE TAG STROBE (ICHT_ST).

This output signal initiates a
read or write cycle to the cache tag RAM on a low-to-high transition. This signal should be
connected to the strobe input (ST) signal of the compiled cache tag RAM.

5.1.3.12 INSTRUCTION CACHE TAG READ/WRITE (ICHT_RWB).

This output signal
indicates the direction of the data transfer to the cache tag RAM. A high level indicates a
read cycle and a low level indicates a write cycle. It should be connected to the read/write
(RWB) signal of the compiled cache tag RAM.

5.1.4 Interaction With Other Modules

Since the instruction cache, high-speed ROM and RAM modules are connected to the
processor’s local data bus, certain user-defined configurations may result in simultaneous
instruction fetch processing. If the referenced address is mapped into the ROM or RAM
module, that module will service the request in a single cycle. In this case, data accessed
from the instruction cache is simply discarded, and no external memory references are
generated. The RAM module has higher priority over the ROM module. If the address is not
mapped into the RAM or ROM space, then the request is handled by the instruction cache
in the normal fashion.

5.1.5 Memory Reference Attributes

For every memory reference generated by the processor or the debug module, a set of
“effective attributes” is determined based on the address and the Access Control Registers
(ACR0, ACR1). This set of attributes includes the cacheable/non-cacheable definition, the
precise/imprecise handling of operand writes and the write-protect capability.

In particular, each address is compared to the values programmed in the Access Control
Registers. If the address matches one of the ACR values, the access attributes from that

Table 5-2. Valid Tag RAM Data Signals

CACHE SIZE
(BYTES)

VALID DATA BITS
CPU DATA PLACED ON

VALID DATA BITS

512 ICHT_Dx[31:8] {MADDR[31:9], VALID}
1 K ICHT_Dx[31:10,8] MADDR[31:10], VALID}
2 K ICHT_Dx[31:11,8] MADDR[31:11], VALID}
4 K ICHT_Dx[31:12,8] MADDR[31:12], VALID}
8 K ICHT_Dx[31:13,8] MADDR[31:13], VALID}
16K ICHT_Dx[31:14,8] MADDR[31:14], VALID}
32K ICHT_Dx[31:15,8] MADDR[31:15], VALID}

Integrated Memories

5-6

 ColdFire2/2M User’s Manual

MOTOROLA

ACR are applied to the reference. If the address does not match either ACR, then the default
value defined in the Cache Control Register (CACR) is used. The specific algorithm is:

if (address = ACR0_address including mask)
Effective Attributes = ACR0 attributes

else if (address = ACR1_address including mask)
Effective Attributes = ACR1 attributes
else Effective Attributes = CACR default attributes

5.1.6 Cache Coherency and Invalidation

The instruction cache does not monitor processor data references for accesses to cached
instructions. Therefore it is necessary for software to maintain cache coherence by
invalidating the appropriate cache entries after modifying code segments.

The cache invalidation can be performed in two ways:

1. The assertion of bit 24 in the Cache Control Register, via a CPU space write, forces the
entire instruction cache to be marked as invalid. The invalidation operation requires N (N =
of lines) cycles since the cache sequences through the entire tag array clearing a single
location (the valid location) each cycle. Any subsequent instruction fetch accesses are
postponed until the invalidation sequence is complete; i.e. the processor can continue
running as long as it does not try and fetch from the instruction cache. If the instruction cache
is accessed, processing halts and waits for the invalidation to complete. The CACR can be
loaded to not turn on the instruction cache to let processing continue unblocked.

2. The privileged CPUSHL instruction can be used to invalidate a single cache line. When
this instruction is executed, the cache entry defined by bits [X:4] of the source address
register in invalidated, provided bit 28 of the CACR is cleared.

These invalidation operations may be initiated from the processor or the debug module.

5.1.7 Reset

A hardware reset clears the CACR disabling the instruction cache. The contents of the tag
array are not affected by the reset. Accordingly, the system start-up code must explicitly
perform a cache invalidation by setting CACR[24] before the cache may be enabled.

5.1.8 Line Fill Buffer and Cache Miss Fetch Algorithm

As discussed in Section 5.1.1, the instruction cache hardware includes a 16-byte line fill
buffer for providing temporary storage for the last fetched instruction.

With the cache enabled as defined by CACR[31], a cacheable instruction fetch that misses
in both the tag memory and the line-fill buffer generates an external fetch. The size of the
external fetch is determined by the value contained in the 2-bit CLNF field of the CACR, and
the miss address. Table 5-3 shows the relationship between the CLNF bits, the miss
address and the size of the external fetch:

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-7

Depending on the runtime characteristics of the application and the memory response
speed, overall performance may be increased by programming the CLNF bits to values {00,
01}.

For all cases of a line-sized fetch, the critical longword defined by bits [3:2] of the miss
address is accessed first, followed by the remaining three longwords which are accessed by
incrementing the longword address in a modulo-16 fashion as shown below:

if miss address[3:2] = 00
fetch sequence = {$0, $4, $8, $C}

if miss address[3:2] = 01
fetch sequence = {$4, $8, $C, $0}

if miss address[3:2] = 10
fetch sequence = {$8, $C, $0, $4}

if miss address[3:2] = 11
fetch sequence = {$C, $0, $4, $8}

Once an external fetch has been initiated and the data loaded into the line-fill buffer, the
instruction cache maintains a special most-recently-used indicator which tracks the contents
of the fill buffer versus its corresponding cache location. At the time of the miss, the
hardware indicator is set, marking the fill buffer as “most recently used”. If a subsequent
access to the cache location defined by bits [X:4] of the fill buffer address occurs, the data
in the cache memory array is now most-recently-used, so the hardware indicator is cleared.
In all cases, the indicator defines whether the contents of the line-fill buffer or the memory
data array are most-recently-used. At the time of the next cache miss, the contents of the
line-fill buffer are written into the memory array if the entire line is present, and the fill buffer
data is still most-recently-used compared to the memory array. Only a complete line can be
transferred to the icache array (the array only has one valid bit while the line-fill buffer has a
valid bit per longword). This transfer can only occur if the icache is not locked or frozen. This
write takes four cycles with ICH_ADDR[3:2] incrementing each cycle. Generally, when a
fetch misses the cache, the previously fetched instruction line in the line-fill buffer is written
to the cache while the master bus is running a fetch cycle.

The fill buffer can also be utilized as temporary storage for line-sized bursts of non-
cacheable references under control of CACR [10]. With this bit set, a non-cacheable
instruction fetch is processed as defined by Table 5-3. For this condition, the fill buffer is
loaded and subsequent references can “hit” in the buffer, but the data is never loaded into
the memory array.

Table 5-3. Initial Fetch Size Based on Miss Address & CLNF

CLNF[1:0]
MISS ADDRESS [3:2] (LONGWORD ADDRESS BITS)

00 01 10 11

00 Line Line Line Longword
01 Line Line Longword Longword
1X Line Line Line Line

Integrated Memories

5-8

 ColdFire2/2M User’s Manual

MOTOROLA

Line fills begin with the longword containing the requested instruction and wrap around, as
needed, to complete the full 16-byte line request. Noncachable accesses can still result in
line requests to the master bus because they are buffered in the cache line-fill buffer, but
they are not copied into the cache. Requests which result in a longword fetch will not be
written to the cache.

The relationship between CACR bits 31 and 10, and the type of instruction fetch is shown
below.

5.1.9 Instruction Cache Programming Model

The operation of the instruction cache and local bus controller are defined by three
supervisor registers: the Cache Control Register (CACR) and two Access Control Registers
(ACR0, ACR1). All three registers may be written from the processor using the privileged
MOVEC instruction. Additionally, the registers may be accessed from the debug module.
From the debug module, the registers may be read or written. In all cases, undefined bits in
a register are reserved. These bits should be written as zeroes, and return zeroes when read
from the debug module.

5.1.10 Cacheability

Cacheability of instruction accesses is controlled by either the access control registers
ACR0 and ACR1, for accesses matching the address ranges defined by these registers, or
by the default cache mode bits in the CACR for all other accesses. Only instruction fetches
are cached (i.e. code space accesses.)

5.1.11 Cache Control Register (

CACR

)

The operation of the instruction cache is controlled by the Cache Control Register (CACR).
The CACR also provides a set of default memory access attributes used when a reference
address does not map into the space defined by the Access Control Registers.

The CACR is accessed as control register $002 using the privileged MOVEC instruction.
This instruction provides write-only access to this register from the processor. Additionally,

Table 5-4. Instruction Cache Operation as Defined by

CACR

[31, 10]

CACR

[31]

 CACR

[10]
TYPE OF INST

FETCH
DESCRIPTION

0 0 - Instruction Cache is completely disabled;
All fetches are word, longword in size.

0 1 - All fetches are treated as non-cacheable and loaded
into the line-fill buffer as defined by Table 5-3.

1 - Cacheable Fetch size is defined by Table 5-3, and contents of the
line fill buffer can be written into the memory array.

1 0 Non-cacheable All fetches are longword in size, and not loaded into the
line-fill buffer.

1 1 Non-cacheable Fetch size is defined by Table 5-3, and loaded into the
line-fill buffer, but are never written into the memory
array.

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-9

the CACR register may be accessed from the debug module in a similar manner. The entire
register is cleared by a hardware reset.

Field Definitions:

5.1.11.1 CENB: CACR[31]—CACHE ENABLE.

0 = Cache disabled
1 = Cache enabled

The memory array of the instruction cache is enabled only if CENB is asserted. If
ICH_SZ[2:0] is set to zero, this bit is set to zero and the ICACHE module is disabled. Any
attempt to set the CENB bit is disabled when ICH_SZ[2:0] is set to zero.

5.1.11.2 CPSH: CACR[28] - CPUSH DISABLE INVALIDATE.

0 = Enable Invalidation
1 = Disable Invalidation

When the privileged CPUSHL instruction is executed, the cache entry defined by bits [X:4]
of the address is invalidated if CPSH = 0. If CPSH = 1, no operation is performed.

5.1.11.3 CFRZ: CACR

[

27]—CACHE FREEZE.

0 = Normal operation
1 = Freeze valid cache lines

Setting this bit effectively freezes the contents of the cache. Line fetches may still be initiated
and loaded into the line fill buffer, but a valid cache entry is never overwritten. If a given
cache location is invalid, the contents of the line-fill buffer may be written into the memory
array while CFRZ is asserted.

BITS 31 30 29 28 27 26 25 24 23 18 17 16

FIELD

CENB - CPSH CFRZ - CINV - PARK

RESET

0 - 0 0 - 0 - 0

R/W

W - W W - W - W

BITS 15 11 10 9 8 7 6 5 4 2 1 0

FIELD

- CBEN DCM
DBW

E
- DWP - CLNF

RESET

- 0 0 0 - 0 - 0

R/W

- W W W - W - W

 Cache Control Register (CACR)

Integrated Memories

5-10

 ColdFire2/2M User’s Manual

MOTOROLA

5.1.11.4 CINV: CACR[24]—CACHE INVALIDATE.

0 = No operation
1 = Invalidate all cache lines

Setting this bit forces the cache to invalidate each tag array entry. The invalidation process
requires N (N = #lines) machine cycles, with a single cache entry cleared per machine cycle.
The state of this bit is always read as a zero. After a hardware reset, the cache must be
invalidated before it is enabled.

5.1.11.5 PARK: CACR[17:16]—OPTIONAL EXTERNAL ARBITER CONTROL.

This field can be used to drive an external master arbiter control module via the MARBC[1:0]
signals. Otherwise, these bits can use used as general purpose output bits. Refer to

Section
3.10 Master Bus Arbitration

. If an external master arbiter module is not used, the
MARBC[1:0] signals may be used as general purpose control signals.

5.1.11.6 CBEN:CACR

[

10]—CACHE ENABLE NON-CACHEABLE INSTRUCTION
BURSTING.

0 = Disable burst fetches on non-cacheable accesses
1 = Enable burst fetches on non-cacheable accesses

Setting this bit allows the line-fill buffer to be loaded with burst transfers under control of
CLNF[1:0] for non-cacheable accesses. Non-cacheable accesses are never written into the
memory array. CBEN in conjunction with CACR[31], CENB, determines the line buffer and
ICACHE array status. See Table 5-5 for guidance in setting CACR[10].

5.1.11.7 DCM: CACR[9]—DEFAULT INSTRUCTION FETCH CACHE MODE.

0 = Caching enabled
1 = Caching disabled

This bit defines the default cache mode: 0 is cacheable, 1 is non-cacheable. For more
information on the selection of the effective memory attributes, see Section 5.1.5.

5.1.11.8 DBWE:CACR[8]—DEFAULT BUFFERED WRITE ENABLE.

0 = Disable buffered writes
1 = Enable buffered writes

Table 5-5. CACR[31] and CACR[10] CONFIGURATION

CACR[31] CACR[10] ICACHE/LINE FILL BUFFER CONFIGURATION

0 0 ICACHE disabled, LINE FILL BUFFER disabled
0 1 ICACHE disabled, LINE FILL BUFFER enabled
1 0 ICACHE enabled, LINE FILL BUFFER enabled on

cachable accesses
1 1 ICACHE enabled, LINE FILL BUFFER enabled, but

get the line-fill buffer even on non-cacheable accesses

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-11

This bit defines the default value for enabling buffered writes. If DBWE = 0, the termination
of an operand write cycle on the processor’s local bus is delayed until the external bus cycle
is completed. If DBWE = 1, the write cycle on the local bus in terminated immediately, and
the operation buffered in the bus controller. In this mode, operand write cycles are effectively
decoupled between the processor’s local bus and the external bus.

Generally, the enabling of buffered writes provides higher system performance, but recovery
from access errors may be more difficult. For the ColdFire CPU, the reporting of access
errors on operand writes is always imprecise, and enabling buffered writes simply decouples
the write instruction from the signaling of the fault even more.

5.1.11.9 DWP: CACR[5]—DEFAULT WRITE PROTECTION.

0 = Read and write access permitted
1 = Only read access permitted

The DWP bit defines the default write-protection attribute. If the effective memory attributes
for a given access select the DWP bit, then any attempted write with this bit set is terminated
with an access error.

5.1.11.10 CLNF:CACR[1:0]—CACHE LINE FILL.

This two-bit field determines the size of the instruction fetch memory transfer based on
various CACR bits. See Section 5.1.8 for additional information.

The encoding is shown in Table 5-6.

5.2 ACCESS CONTROL REGISTERS

 (ACR0, ACR1)

The two access Control Registers (ACR0, ACR1) provide a definition of memory reference
attributes for two memory regions (one per ACR). This set of effective attributes is defined
for every memory reference using the ACRs or the set of default attributes contained in the
CACR. The ACRs are examined for every memory reference that is NOT mapped to the
RAM or ROM module.

The ACRs are accessed as control registers $004 and $005 using the privileged MOVEC
instruction (ACR0 = $004, ACR1 = $005). This instruction provides write-only access to
these registers from the processor. Additionally, the ACRs may be accessed from the debug
module in a similar manner. Each ACR is disabled by a hardware reset.

Table 5-6. External Fetch Size Based on Miss Address & CLNF

CLNF[1:0]
MISS ADDRESS[3:2]

00 01 10 11

00 Line Line Line Longword
01 Line Line Longword Longword
1X Line Line Line Line

Integrated Memories

5-12

 ColdFire2/2M User’s Manual

MOTOROLA

5.2.1 ACR Programming Model

The ACRs are accessible in supervisor mode using the MOVEC instruction to access control
register $004 for ACR0 and $005 for ACR1. All undefined bits are reserved and should
always be written as zero. A hardware reset clears all bits in the ACRs.

Field Definitions:

5.2.1.1 AB: ACR[31:24]—ADDRESS BASE [31:24].

This 8-bit field is compared to address bits [31:24] from the processor’s local bus, under
control of the ACR address mask. If the address matches, the attributes for the memory
reference are sourced from the given ACR.

5.2.1.2 AM: ACR [23:16]—ADDRESS MASK [23:16].

This 8-bit field masks comparison of the access address with the ACR address base bits.
Setting an AM bit ignores the comparison of the corresponding address base bits.

5.2.1.3 EN: ACR [15]—ENABLE .

0 = ACR disabled
1 = ACR enabled

The EN bit defines the ACR enable. This bit is cleared by hardware reset, disabling the ACR.

5.2.1.4 SM: ACR [14:13]—SUPERVISOR MODE .

00 = Match if user mode
01 = Match if supervisor mode
1x = Match always; ignore user/supervisor mode

This two-bit field allows the given ACR to be applied to references based on operating
privilege mode of the ColdFire processor. The field allows use of the ACR for user-
references only, supervisor-references only, or all accesses.

BITS 31 24 23 16

FIELD

AB AM

RESET

0 0

R/W

W W

BITS 15 14 13 12 8 7 6 5 4 3 2 1 0

FIELD

EN SM - ENIB CM BUFW - WP -

RESET

0 0 - 0 0 0 - 0 -

R/W

W W - W W W - W -

 Access Control Register (ACR0, ACR1)

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-13

5.2.1.5 CM: ACR [6]—CACHE MODE.

0 = Caching enabled
1 = Caching disabled

This bit defines the cache mode: 0 is cacheable, 1 is non-cacheable.

5.2.1.6 BWE: ACR [5]—BUFFERED WRITES.

0 = Disable buffered writes
1 = Enable buffered writes

This bit defines the value for enabling buffered writes. If BWE = 0, the termination of an
operand write cycle on the processor’s local bus is delayed until the external bus cycle is
completed. If BWE = 1, the write cycle on the local bus is terminated immediately, and the
operation buffered in the bus controller. In this mode, operand write cycles are effectively
decoupled between the processor’s local bus and the external bus.

Generally, the enabling of buffered writes provides higher system performance, but recovery
from access errors may be more difficult. For the ColdFire CPU, the reporting of access
errors on operand writes is always imprecise, and enabling buffered writes simply decouples
the write instruction from the signaling of the fault even more.

5.2.1.7 WP: ACR [2]—WRITE PROTECT.

0 = Read and write accesses permitted
1 = Only read accesses permitted

The WP bit defines the write-protection attribute. If the effective memory attributes for a
given access select the WP bit, then any attempted write with this bit set is terminated with
an access error.

5.3 ROM MODULE

The ColdFire2/2M has a dedicated bus to support an integrated ROM with the following
features:

• 0 - 32 Kbytes ROM, organized by ROM size/4 x 32 bits

• ROM byte-size programmed with ROM_SZ[2:0] static signals

• Single-cycle access

• Physically located on processor’s high-speed bus

• Byte, word, longword addressable

• Memory-mapping defined by user

• Configurable at reset as boot memory

The ROM module provides a general-purpose memory block that the ColdFire2/2M can
access in a single clock, and can store either code or data structures. The ROM can be
programmed to function as a boot memory; this configurable option is available at reset time.

Integrated Memories

5-14

 ColdFire2/2M User’s Manual

MOTOROLA

The ROM size is specified via the ROM_SZ[2:0] pins which are static signals that need to
stay valid for all operation. Only the ColdFire2/2M can access the ROM module.

The ColdFire2/2M issues the instruction fetches in parallel to all K-Bus memories. Fetches
from the ROM module are not cached because they require only one clock cycle to
complete. Two ROMs are used to lower power consumption by only driving the required
portions of the data bus.

5.3.1 ROM Signal Description

These signals interface the ColdFire2/2M to two integrated ROMs. Figure 5-2 illustrates an
8 Kbyte configuration. All ColdFire2/2M signals are unidirectional and synchronous.

5.3.1.1 ROM ADDRESS BUS (ROM_ADDR[14:2]).

These output signals provide the
address of the current bus cycle to the integrated ROMs. This bus should be connected to
the address bus (A) of the compiled ROMs. The number of valid address signals depends
on the total ROM size as shown in Table 5-7.

Figure 5-2. Example 8 Kbyte ROM Interface Diagram

ROM_ADDR[14:2]

ROM_DO[31:0]

ROM_ENB[1:0]

R
O

M
_S

Z
[2

:0
]

A[10:0]

DO[15:0]

ROMENB

CPU Core ROM 0
[12:2]

[31:0]

[2:0]

Size
A[10:0]

DO[15:0]

ROMENB

ROM 1

[0]

[1]

[31:16]

[15:0]ROM_VLD

R
O

M
_V

LD

Integrated Memories

MOTOROLA

 ColdFire2/2M User’s Manual

5-15

5.3.1.2 ROM DATA OUTPUT BUS (ROM_DO[31:0]).

These input signals provide the
read data path from the integrated ROMs to the ColdFire2/2M. The data bus is 32-bits wide
and can transfer 8, 16, or 32 bits of data per bus transfer. During a line transfer, the data
lines are time-multiplexed across multiple cycles to carry 128 bits. This bus should be
connected to the data outputs (DO) of the compiled ROMs.

5.3.1.3 ROM ENABLE (ROM_ENB[1:0]).

These active-low, output signals indicate the
ROMs are currently selected to drive the ROM_DO[31:0] bus. These signals should be
connected individually to the enable signal (ROMENB) signal of the compiled ROMs. Both
are asserted for 32-bit accesses. ROM_ENB[0] connects to the MSW while ROM_ENB[1]
connects to the LSW.

5.3.1.4 ROM SIZE (ROM_SZ[2:0]).

These static inputs specify the size of the compiled
ROMs connected to the ColdFire2/2M. These pins need to stay valid during all operation.
Table 5-8 lists the possible ROM configurations. If the ROM_SZ pins are zero, the ROM
cannot be enabled via a CPU space write to ROMBAR. Therefore, if the ROM is enabled
while the ROM_SZ pins are at zero, the processor behaves as if no ROM module existed.

5.3.1.5 ROM VALID (ROM_VLD).

This active-high input signal determines if the ROM
module should be active immediately after a hard reset. Thus, if asserted, the first fetches
($0, $4) go to ROM instead of external memory. ROM_VLD controls the reset value of the

Table 5-7. Valid ROM Address Bits

TOTAL ROM SIZEVALID ROM_ADDR BITS

0 None
512 ROM_ADDR[8:2]
1 K ROM_ADDR[9:2]
2 K ROM_ADDR[10:2]
4 K ROM_ADDR[11:2]
8 K ROM_ADDR[12:2]
16K ROM_ADDR[13:2]
32K ROM_ADDR[14:2]

Table 5-8. ROM Configuration Encoding

TOTAL ROM SIZE
(BYTES)

ROM_SZ[2:0]
ADDRESS

(BITS)
DATA

1

(BITS)

None 000 - -
512 001 7 2 @ 16
1 K 010 8 2 @ 16
2 K 011 9 2 @ 16
4 K 100 10 2 @ 16
8 K 101 11 2 @ 16

16K

2

110 12 2 @ 16

32K

2

111 13 2 @ 16

NOTES: 1. 2 ROMs, each 16-bits wide

2. 16K and 32K ROMs may require a reduced operating frequency.

Integrated Memories

5-16

 ColdFire2/2M User’s Manual

MOTOROLA

ROM base address register (i.e. the ROM must be based at $0000 if ROM_VLD is
asserted).

5.3.2 ROM Programming Model

The configuration information in the ROM base address register (ROMBAR) controls the
ROM module operation. The ROMBAR is accessible in supervisor mode as control register
$C00 using the MOVEC instruction. All undefined bits are reserved and should always be
written as zero. A hardware reset clears only the valid bit if ROM_VLD is negated. If
ROM_VLD is asserted, ROMBAR is reset to $0121. This activates the ROM with a starting
address of $0000 and all address spaces, except the CPU space, are allowed. This is shown
below where the reset values in parenthesis are valid if ROM_VLD is asserted during a
reset.

Field Definitions:

5.3.2.1 BA:

ROMBAR

[31:9]—BASE ADDRESS.

Defines the base address for the ROM module address range. The number of valid base
address bits in this field is a function of the ROM size as shown in Table 5-9. The base
address is reset to $0 if ROM_VLD is asserted during reset.

BITS 31 16

FIELD

BA

RESET - (0)

R/W W

BITS 15 9 8 7 6 5 1 0

FIELD BA WP - AS V

RESET - (0) - (1) - - 0 (1)

R/W W W - W W

NOTE: The reset values in parenthesis are valid if the ROM_VLD signal is asserted during reset.

 ROM Base Address Register (ROMBAR)

Table 5-9. Valid ROM Base Address Bits

ROM SIZE VALID BA BITS

512 BA[31:9]
1 K BA[31:10]
2 K BA[31:11]
4 K BA[31:12]
8 K BA[31:13]
16K BA[31:14]
32K BA[31:15]

Integrated Memories

MOTOROLA ColdFire2/2M User’s Manual 5-17

5.3.2.2 WP: ROMBAR[8]—WRITE PROTECT.

This bit is reserved for future use. This bit can be used for debug purposes; i.e. it could set
a trip point when a write to ROM occurred.

0 = No effect
1 = An attempted write access will generate an access error exception in the processor.

5.3.2.3 AS ROMBAR[5:1]—ADDRESS SPACE MASKS.

This five-bit field, specified by ROMBAR[5:1], allows certain types of accesses to be
“masked” or inhibited, from accessing the RAM module. The mask bits are defined as:

AS5 - Mask CPU Space and Interrupt Acknowledge Accesses
AS4 - Mask Supervisor Code Accesses
AS3 - Mask Supervisor Data Accesses
AS2 - Mask User Code Accesses
AS1 - Mask User Data Accesses

If a given mask bit is set, then references of that type are NOT allowed to access the ROM
module.

If ASn = 0, then accesses of the given type are allowed by the ROM.

If ASn = 1, then accesses of the given type are not allowed by the ROM. If an access is made
to a space that is masked, it simply becomes mapped to the next valid space.

5.3.2.4 V: ROMBAR [0]—VALID.

The valid bit is specified by ROMBAR[0]. This bit is cleared by a hardware reset. When set,
this bit enables the ROM module, otherwise the module is disabled.

If ROM_SZ is set to zero, this bit is set to zero and the ROM module is disabled. Any attempt
to set the valid bit is disabled when ROM_SZ is set to zero.

5.3.3 ROM INITIALIZATION / ROM BOOT
After a hardware reset, the contents of the ROMBAR depend upon the ROM_VLD signal
polarity and the ROM_SZ[2:0] configuration. If ROM_SZ[2:0] = 0, the valid bit is held
cleared, even if a write is attempted during a load to ROMBAR.

ROM_VLD determines if the ROM module should be active immediately after a hard reset.
Thus, if ROM_VLD is asserted, the first fetches ($0, $4) go to ROM instead of external
memory. Note, if ROM_VLD is asserted, ROM_SZ cannot be set to zero. ROM_VLD
controls the reset value of the ROM base address register (i.e. the ROM must be based at
$0000 if ROM_VLD is asserted).

To map the ROMBAR, a load to the ROMBAR mapping the ROM module to the desired
location within the address space, must be performed.

Integrated Memories

5-18 ColdFire2/2M User’s Manual MOTOROLA

5.3.4 Power Management
As noted previously, depending upon the configuration defined by the ROMBAR, instruction
fetch accesses may be sent to the ROM module and the I-Cache simultaneously. If the
access is mapped to the ROM module, it sources the read data and the I-Cache access is
discarded. If the ROM is used only for data operands, power dissipation can be lowered by
asserting the ASn bits associated with instruction fetches. Additionally, if the ROM contains
only instructions, power dissipation can be reduced by masking operand accesses.

Consider the following examples of typical ROMBAR settings:

Data contained in ROM ROMBAR[7:0]

Only code $2B
Only data $35
Both code and data $21

5.4 RAM MODULE
The ColdFire2/2M has a dedicated bus to support an integrated RAM with the following
features:

• 0 - 32 Kbytes RAM, organized by RAM byte size/4 x 32 bits

• RAM byte-size programmed with RAM_SZ[2:0] static signals

• Single-cycle access

• Physically located on processor’s high-speed local bus

• Byte, word, longword address capability

• Memory mapping defined by user

5.4.1 RAM Operation
The RAM module provides a general-purpose memory block that the ColdFire2/2M can
access in a single cycle. The RAM size is specified via the RAM_SZ[2:0] pins which are
static signals that need to stay valid for all operation. The location of the memory block may
be specified to any 0-modulo-[ICACHE byte size] address within the four gigabyte address
space. The memory is ideal for storing critical code or data structures, or for use as the
system stack. Since the RAM module physically is connected to the processor’s high-speed
local bus, it can service CPU-initiated accesses, or memory referencing commands from the
debug module.

Depending on configuration information, instruction fetches can be sent to both the
instruction cache and the RAM block simultaneously. If the instruction fetch address is
mapped into the region defined by the RAM, the RAM provides data back to the processor,
and the I-cache data is discarded. Accesses from the RAM module are not cached.

Generally, the RAM is loaded by copying a hex image from another memory region into the
RAM address space. This copy function can be performed by the processor during

Integrated Memories

MOTOROLA ColdFire2/2M User’s Manual 5-19

initialization, or can be performed by an emulator during system debug. The emulator
approach uses the BDM serial communication channel to download the hex image from a
host machine into the RAM directly.

5.4.2 RAM Signal Description
These signals interface the ColdFire2/2M to the four integrated arrays that comprise the
RAM. Figure 5-3 illustrates an 8 Kbyte configuration. All ColdFire2/2M signals are
unidirectional and synchronous.

5.4.2.1 RAM ADDRESS BUS (RAM_ADDR[14:2]).

These registered output signals provide the address of the current bus cycle to the
integrated RAMs. This bus should be connected to the address bus (A) of the four compiled

Figure 5-3. Example 8 Kbyte RAM Interface Diagram

RAM 0

RAM 3

CPU CORE

RAM_ADDR[14:2]

RAM_CSB

RAM_DI[31:0]

RAM_DO[31:0]

RAM_ST[3:0]

RAM_RWB[3:0]

SIZE

RAM_SZ[2:0]

CSB

DBI[7:0]

DBO[7:0]

ST

RWB

A[10:0]

CSB

DBI[7:0]

DBO[7:0]

ST

RWB

[12:2]

[31:0]

[31:0]

[3:0]

[3:0]

[31:24]

[31:24]

[7:0]

[7:0]

A[10:0]

[3]

[0]

[3]

[0]

Integrated Memories

5-20 ColdFire2/2M User’s Manual MOTOROLA

RAMs. The number of valid address signals depends on the total RAM size as shown in
Table 5-10.

5.4.2.2 RAM CHIP-SELECT (RAM_CSB). This active-low output signal indicates the
RAMs are currently selected to perform a data transfer with the ColdFire2/2M. This signal
should be connected to the chip-select (CSB) signal of the four compiled RAMs.

5.4.2.3 RAM DATA INPUT BUS (RAM_DI[31:0]). These output signals provide the write
data path between the ColdFire2/2M and the integrated RAM. The data bus is 32-bits wide
and can transfer 8, 16, or 32 bits of data per bus transfer. During a line transfer, the data
lines are time-multiplexed across multiple cycles to carry 128 bits. This bus should be
connected to the data inputs (DBI) of the four compiled RAMs. If only one byte is being
written, the byte will be replicated on all 4 lines; likewise a word will be replicated in both
word positions.

5.4.2.4 RAM DATA OUTPUT BUS (RAM_DO[31:0]). These input signals provide the read
data path between the integrated RAM and the ColdFire2/2M. The data bus is 32-bits wide
and can transfer 8, 16 or 32 bits of data per bus transfer. During a line transfer, the data lines
are time-multiplexed across multiple cycles to carry 128 bits. This bus should be connected
to the data outputs (DBO) of the four compiled RAMs.

5.4.2.5 RAM SIZE (RAM_SZ[2:0]). These static inputs specify the size of the compiled
RAMs connected to the ColdFire2/2M. These pins need to stay valid during all operation. If
the RAM_SZ pins are zero, the RAM cannot be enabled via a CPU space write to RAMBAR.
Therefore if the RAM is enabled while the RAM_SZ pins are at zero, the processor behaves
as if no RAM module existed.

Table 5-11 lists the possible RAM configurations.

Table 5-10. Valid RAM Address Bits

TOTAL RAM SIZE VALID RAM_ADDR BITS

0 None
512 RAM_ADDR[8:2]
1 K RAM_ADDR[9:2]
2 K RAM_ADDR[10:2]
4 K RAM_ADDR[11:2]
8 K RAM_ADDR[12:2]
16K RAM_ADDR[13:2]
32K RAM_ADDR[14:2]

Integrated Memories

MOTOROLA ColdFire2/2M User’s Manual 5-21

5.4.2.6 RAM STROBE (RAM_ST[3:0]). These output signals initiate a read or write cycle
to the integrated RAMs on a low-to-high transition. These signals should be connected
individually to the strobe input (ST) signals of the four compiled RAMs. The ST[0] signal
connects to the high-order byte and ST[3] connects to the low-order byte.

5.4.2.7 RAM READ/WRITE (RAM_RWB[3:0]). These output signals indicate the direction
of the data transfer to the integrated RAMs. A high level indicates a read cycle and a low
level indicates a write cycle. They should be connected individually to the read/write (RWB)
signal of the four compiled RAMs. Like RAM_ST[3:0], the RAM_RWB[3] signal connects to
the high-order byte and RAM_ST[0] connects to the low-order byte.

5.4.3 RAM Programming Model
The configuration information in the RAM base address register (RAMBAR) controls the
operation of the RAM module. The RAMBAR is accessed as control register $C04 using the
privileged MOVEC instruction. The MOVEC instruction provides write-only access to this
register. Additionally, the RAMBAR register may be accessed from the debug module in a
similar manner. From the debug module, the register may be read or written. All undefined
bits are reserved. These bits should be written as zeroes, and return zeroes when read from
the debug module. Only the valid bit is cleared by a hardware reset.

Table 5-11. RAM Configuration Encoding

TOTAL RAM SIZE
(BYTES)

RAM_SZ[2:0]
ADDRESS

(BITS)
DATA1

(BITS)

0 000 - -
512 001 7 4@8
1 K 010 8 4@8
2 K 011 9 4@8
4 K 100 10 4@8
8 K 101 11 4@8

16K2 110 12 4@8

32K2 111 13 4@8

NOTES: 1. 4 RAMs, each 8-bits wide

2. 16K and 32K RAMs may require a reduced operating
frequency.

Integrated Memories

5-22 ColdFire2/2M User’s Manual MOTOROLA

5.4.4 RAM Base Address Register
W

Field Definitions:

5.4.4.1 BA: RAMBAR [31:9]—BASE ADDRESS.

Defines the base address for the RAM module address range. The number of valid base
address bits in this field are a function of the RAM size as shown in Table 5-12. By
programming this field, the RAM may be located anywhere within the four gigabyte address
space of ColdFire.

5.4.4.2 WP: RAMBAR [8]—WRITE PROTECT.

0 = RAM module supports read and write references
1 = RAM module supports only read accesses.

The write protect field is defined by RAMBAR [8]. If set, this bit allows only read
accesses to the RAM. Any attempted write access will generate an access error
exception in the processor.

If cleared, the RAM supports read and write references.

BITS 31 16

FIELD BA

RESET -

R/W W

BITS 15 9 8 7 6 5 1 0

FIELD BA WP - AS V

RESET - - - - 0

R/W W W - W W

 RAM Base Address Register (RAMBAR)

Table 5-12. Valid RAM Base Address Bits

RAM BYTE SIZE VALID BA BITS

512 BA[31:9]
1 K BA[31:10]
2 K BA[31:11]
4 K BA[31:12]
8 K BA[31:13]
16K BA[31:14]
32K BA[31:15]

Integrated Memories

MOTOROLA ColdFire2/2M User’s Manual 5-23

5.4.4.3 AS: RAMBAR [5:1]—ADDRESS SPACE MASKS.

This five bit field, specified by RAMBAR [5:1], allows certain types of accesses to be
“masked”, or inhibited, from accessing the RAM module. The mask bits are defined as:

AS5 - Mask CPU Space and Interrupt Acknowledge Accesses
AS4 - Mask Supervisor Code Accesses
AS3 - Mask Supervisor Data Accesses
AS2 - Mask User Code Accesses
AS1 - Mask User Data Accesses

If a given mask bit is set, then references of that type are NOT allowed to access the RAM
module. These bits are useful for power management as detailed in section 5.4.6.

If ASn = 0, then accesses of the given type are allowed by the RAM.

If ASn = 1, then accesses of the given type are not allowed by the RAM. If an access is made
to a space that is masked, it simply becomes mapped to the next valid space.

5.4.4.4 V: RAMBAR [0]—VALID.

This bit indicates when the contents of the RAMBAR are valid. The base address value is
not used, and the RAM module is not accessible until the V-bit is set. An external bus cycle
is generated if the base address field matches the internal core address, and the V-bit is
cleared.

0 = Contents of RAMBAR are not valid
1 = Contents of RAMBAR are valid

The valid bit is specified by RAMBAR [0]. This bit is cleared by a hardware reset. When set,
this bit enables the RAM module, otherwise the module is disabled.

The mapping of a given access into the RAM used the following algorithm to determine if
the access “hits” in the memory:

if (RAMBAR[0] = 1)
if (requested address [31:9]* = RAMBAR[31:9]*

if (ASn of the requested type = 0)
Access is mapped to the RAM module
if (access = read)
Read the RAM and return the data
if (access = write)

if (RAMBAR[8] = 0)
Write the data into the RAM
else Signal a write-protect access error

* See Table 5-10 for address bit map pertaining to RAM sizes.

Integrated Memories

5-24 ColdFire2/2M User’s Manual MOTOROLA

If RAM_SZ is set to zero, this bit is set to zero, and the RAM module is disabled. Any attempt
to set the valid bit is disabled when RAM_SZ is set to zero.

5.4.5 RAM Initialization
After a hardware reset, the contents of the RAM module are undefined. The valid bit of the
RAMBAR is cleared, disabling the module. If the RAM needs to be initialized with
instructions or data, the following steps should be performed:

1. Load the RAMBAR mapping the RAM module to the desired location within the
address space.

2. Read the source data and write it to the RAM. There are various instructions to
support this function, including memory-to-memory move instructions, or the
MOVEM opcode. The MOVEM instruction is optimized to generate line-sized burst
fetches on 0-modulo-16 addresses, so this opcode generally provides maximum
performance.

3. After the data has been loaded into the RAM, it may be appropriate to load a revised
value into the RAMBAR with a new set of “attributes”. These attributes consist of the
write-protect and address space mask fields.

These initialization functions can be performed by the ColdFire processor, or from an
external emulator using the debug module.

5.4.6 Power Management
As noted previously, depending upon the configuration defined by the RAMBAR, instruction
fetch accesses may be sent to the RAM module and the I-Cache simultaneously. If the
access is mapped to the RAM module, it sources the read data and the I-Cache access is
discarded. If the RAM is used only for data operands, power dissipation can be lowered by
asserting the ASn bits associated with instruction fetches. Additionally, if the RAM contains
only instructions, power dissipation can be reduced by masking operand accesses.

Consider the following examples of typical RAMBAR settings:

Data contained in RAM RAMBAR[7:0]

Only code $2B
Only data $35
Both code and data $21

5.5 INTERACTIONS BETWEEN KBUS MEMORIES
Depending on configuration information, instruction fetches and operand accesses may be
sent to all of the K-Bus memories (i.e. RAM, ROM, and ICACHE) simultaneously. There
needs to be consistency between the ACRs and the default modes defined by CACR
(CACR[9], CACR[8], and CACR[5]).

Integrated Memories

MOTOROLA ColdFire2/2M User’s Manual 5-25

If the access address is mapped into the region defined by the RAM (and this region is not
masked), the RAM provides the data back to the processor, and the I-CACHE data
discarded. Accesses from the RAM module are not cached. The ROM behaves similarly.
The RAM has priority over the ROM. The full priority scheme is as follows:

if (RAM “hits”)
RAM supplies data to the processor

else if (ROM “hits”)
ROM supplies data to the processor

else if (line-fill buffer “hits”)
line-fill buffer supplies data to the processor

else if (icache “hits”)
icache supplies data to the processor

else
master bus cycle accesses to reference data from non-K-Bus memory

MOTOROLA

 ColdFire2/2M User’s Manual

6-1

SECTION 6
MULTIPLY-ACCUMULATE UNIT

This section details the hardware multiply-accumulate (MAC) support functions within the
ColdFire2M. The MAC is not present in the ColdFire2 hard macro, but is an optional high-
speed execution unit that is available within the ColdFire core environment. If the MAC is
present, it executes the integer multiplies at an accelerated speed. The MAC unit is
designed to provide a common set of DSP operations and to enhance the current multiply
instructions in the ColdFire architecture.

The MAC unit provides functionality in three related areas:

• Faster signed and unsigned integer multiplies

• New multiply-accumulate operations supporting signed and unsigned operands

• New miscellaneous register operations

Each is addressed in detail in the following sections.

6.1 INTRODUCTION

The MAC unit is designed to optimize the current ColdFire multiply instructions, MULS and
MULU, and provide additional instructions for algorithms that use multiply-accumulate
operations. As shown in Figure 6-1, these new instructions multiply two numbers, followed
by the addition/subtraction of this product to/from the value contained in the accumulator.
The product may be optionally shifted left or right one bit before the addition or subtraction
takes place. All arithmetic operations use register-based input operands, and summed
values are stored in the internal accumulator. For word operations, the upper or lower word
of each input register can be chosen as a source operand. As a result, two word operations
will require only one register load operation. Some instructions also allow a parallel load to
be performed in addition to the MAC operation.

Multiply-Accumulate Unit

6-2

 ColdFire2/2M User’s Manual

MOTOROLA

The MAC module has been designed for 16-bit multiplies to optimize the die size. Word
operations require two signed or unsigned 16-bit operands and produce a 32-bit result. By
iteratively performing multiple 16-bit operations, the MAC can perform 32-bit operations.
Longword operations require two signed or unsigned 32-bit operands and produce a 32-bit
result. Because the longword operations are iteratively computed, the MAC instructions
have an effective issue rate of one clock for word operations and three clocks for longword
operations.

6.2 MAC PROGRAMMING MODEL

The MAC unit includes three new registers: a 32-bit accumulator (ACC), an 8-bit status
register (MACSR), and a 16-bit mask register (MASK).

6.2.1 Accumulator (ACC)

This is a 32-bit special purpose register used to accumulate the results of MAC operations.
The accumulator is not cleared upon reset.

6.2.2 MAC Status Register (MACSR)

The status register contains the saturation mode control bit, the negative, zero and overflow
flags, as well as the signed/unsigned operation control bit as shown in the next register.

Figure 6-1. MAC Flow Diagram

X

+/-

OPERAND X OPERAND Y

SHIFT 0,1,-1

ACCUMULATOR

Multiply-Accumulate Unit

MOTOROLA

 ColdFire2/2M User’s Manual

6-3

Field Definitions:

OMC[7]–Overflow Mode Control
0 = normal mode
1 = saturation mode

This bit is used to enable or disable saturation mode on overflow. This bit is cleared by
system reset. Refer to

Section 6.4 Overflow Mode

.

S/U[6]–Signed/Unsigned Operations
The S/U bit defines the type of multiply operations that are performed.

0 = signed numbers
1 = unsigned numbers

This bit is cleared by system reset.

N[3]–Negative
This bit is set if the most significant bit of the result is set, cleared otherwise. This bit is
affected only by MAC operations. The MULS and MULU instructions do not change this
value.

Z[2]–Zero
This bit is set if the result equals zero, otherwise, it is cleared. This bit is affected only by
MAC operations. MULS and MULU instructions do not change this value.

V[1]–Overflow
This bit is set if an arithmetic overflow occurs implying that the result cannot be represented
in 32 bits. Once set, this bit remains set until the ACC register is loaded with a new value
using the MOVE to ACC instruction, or the MACSR is explicitly loaded using the MOVE to
MACSR instruction. The MULS and MULU instructions do not change this value.

C[0]–Carry
This field is always zero and is reserved for future use.

6.2.3 Mask Register (MASK)

This is a 16-bit special purpose register used to mask the lower 16 address bits during MAC
load operations. The field definition follows.

BITS 7 6 5 4 3 2 1 0

FIELD

OMC S/U - - N Z V C

RESET

0 0 0 0 - - - 0

R/W

R/W R/W R R R/W R/W R/W R

 MAC Status Register (MACSR)

Multiply-Accumulate Unit

6-4

 ColdFire2/2M User’s Manual

MOTOROLA

Field Definitions:

MASK[15:0]–Address Mask
This field is logically ANDed with the lower 16 bits of the effective address during MAC
instructions with a register load performed using the mask addressing mode modifier.

The actions of the mask addressing mode depend on the effective addressing mode as
shown in Table 6-1.

When loading data into the data registers, the MASK register can be used to implement a
very efficient circular queue.

6.3 SHIFTING OPERATIONS

The MAC unit is capable of shifting a product before the result is added to or subtracted from
the accumulator (ACC). Since there is the possibility of overflowing a 32-bit product, use the
following guidelines when performing MAC instructions:

• For both word and longword unsigned operations, a zero is shifted into the product on
right shifts.

• For signed word operations, the sign bit is shifted into the product on right shifts, unless
the product is zero.

• For signed, longword operations, the sign bit is shifted into the product unless an
overflow occurs or the product is zero, in which case a zero is shifted in.

6.4 OVERFLOW MODE

When dealing with potential overflow conditions, software overhead can be minimized by
enabling hardware support for saturation arithmetic. Saturation mode is controlled by the

BITS 15 0

FIELD

MASK

RESE
T

-

R/W

R/W

 MAC Mask Register (MASK)

Table 6-1. Mask Addressing Mode

EFFECTIVE ADDRESSING MODE OUTPUT ADDRESS NEW AN

(An) An & {0xFFFF, MASK} -

(An)+ An (An +4) & {0xFFFF, MASK}

-(An) (An - 4) & {0xFFFF, MASK} (An - 4) & {0xFFFF, MASK}

(d16, An) (An + d16) & {0xFFFF, MASK} -
NOTE: {upper, lower} notation indicates upper and lower order words

Multiply-Accumulate Unit

MOTOROLA

 ColdFire2/2M User’s Manual

6-5

OMC bit in the MACSR. In saturation mode, if a MAC instruction overflows 32 bits during the
multiply portion of an operation, the overflow bit (V) will be set in the MACSR and the
accumulator (ACC) will contain the most positive or the most negative value possible. As
seen in Table 6-2, the value depends on the signed/unsigned mode (S/U bit in the MACSR),
multiply result, and the addition/subtraction operation.

The overflow value will remain in the ACC until the V bit in the MACSR is cleared by loading
a new value into the ACC or MACSR.

6.5 MAC INSTRUCTION SET SUMMARY

The MAC unit in the ColdFire2M enhances the multiply operations that are currently
supported by the ColdFire2 architecture, adds new multiply-accumulate instructions, and
adds register instructions for accessing the new MAC registers. Table 6-3 below
summarizes the MAC unit instruction set. Refer to

Appendix B New MAC Instructions

 for
details.

Table 6-2. Accumulator Result in Saturation Mode

SIGNED/UNSIGNED
MULTIPLY/

RESULT
MAC

INSTRUCTION
MAC

OPERATION
ACCUMULATOR

RESULT

Signed

Positive
MAC, MACL Addition $7FFFFFFF

MSAC, MSACL Subtraction $80000000

Negative
MAC, MACL Addition $80000000

MSAC, MSACL Subtraction $7FFFFFFF

Unsigned -
MAC, MACL Addition $FFFFFFFF

MSAC, MSACL Subtraction $00000000

Multiply-Accumulate Unit

6-6

 ColdFire2/2M User’s Manual

MOTOROLA

Table 6-3. MAC Instruction Set Summary

INSTRUCTION OPERAND SYNTAX OPERAND SIZE OPERATION

MULS <ea>,Dx 16 x 16

→

 32
32 x 32

→

 32
<ea>

×

 Dx

→

 Dx
Note: signed operation

MULU <ea>,Dx 16 x 16

→

 32
32 x 32

→

 32
<ea>

×

 Dx

→

 Dx
Note: unsigned operation

MAC Ry,Rx ,<shift> 16

×

 16

+ 32 →

 32
32

 ×

32

+ 32 →

 32
ACC + (Ry

×

 Rx){ << 1 | >> 1}

→

 ACC

MACL Ry,Rx,<shift>,<ea>,Rw 16

×

 16

+ 32 →

 32
32

 ×

32

+ 32 →

 32
ACC + (Ry

×

 Rx){ << 1 | >> 1}

→

 ACC; (<ea>{& MASK})

→

 Rw

MSAC Ry,Rx,<shift> 32 - 16

×

 16

→

 32
32 - 32

 ×

32

→

 32
ACC - (Ry

×

 Rx){ << 1 | >> 1} SF

→

 ACC

MSACL Ry,Rx,<shift>,<ea>,Rw 32 - 16

×

 16

→

 32
32 - 32

 ×

32

→

 32
ACC - (Ry

×

 Rx){ << 1 | >> 1} SF

→

ACC; (<ea>{& MASK})

→

 Rw

MOVE from ACC ACC,Rx 32 ACC

→

 Rx
MOVE from

MACSR
 MACSR,Rx

MACSR,CCR
32
8

MACSR

→

 Rx
MACSR

→

 CCR

MOVE from
MASK

MASK,Rx 32 MASK

→

 Rx

MOVE to ACC Ry,ACC
#<data>,ACC

32
32

Ry

→

 ACC
#<data>

→

 ACC
MOVE to CCR Dy,CCR,

#<data>,CCR
16 Dy

→

 CCR
#<data>

→

 CCR
MOVE to MACSR Ry,MACSR

#<data>,MACSR
32 Ry

→

 MACSR
#<data>

→

 MACSR
MOVE to MASK Ry,MASK

#<data>,MASK
32
32

Ry

→

 MASK
#<data>

→

 MASK

MOTOROLA

 ColdFire2/2M User’s Manual

7-1

SECTION 7
DEBUG SUPPORT

This section details the hardware debug support functions within the ColdFire2/2M. The
general topic of debug support has been divided into three separate areas:

• Real-Time Trace Support

• Background Debug Mode (BDM)

• Real-Time Debug Support

Each is addressed in detail in the following sections.

The logic required to support these three areas is contained in a debug module, which is
shown in the system block diagram in Figure 7-1.

7.1 SIGNAL DESCRIPTION

This section describes the ColdFire2/2M signals associated with the debug module. All
ColdFire2/2M signals are unidirectional and synchronous.

7.1.1 Break Point (BKPTB)

This active-low, unidirectional input signal is used to request a manual break point. It will
cause the processor to enter a halted state after the completion of the current instruction.
This status will be reflected on the processor status (PST) outputs.

Figure 7-1. Processor/Debug Module Interface

COLDFIRE CPU

DEBUG

MODULE

INTERNAL BUSESCORE

TRACE PORT
DDATA, PST

BDM PORT
DSCLK, DSI, DSO

BKPTB

Debug Support

7-2

 ColdFire2/2M User’s Manual

MOTOROLA

7.1.2 Debug Data (DDATA[3:0])

These output signals display the captured processor status and break point status.

7.1.3 Development Serial Clock (DSCLK)

This input signal is used as the development serial clock for the serial interface to the Debug
Module.The maximum frequency is 1/2 the clock (CLK) frequency.

7.1.4 Development Serial Input (DSI)

This input signal provides the single-bit communication for the debug module commands.

7.1.5 Development Serial Output (DSO)

This output signal provides single-bit communication for the debug module responses.

7.1.6 Processor Status (PST[3:0])

These output signals report the processor status. Table 7-1 shows the encoding of these
signals. These signals indicate the current status of the processor pipeline and, as a result,
are not related to the current bus transfer.

.

.

7.2 REAL-TIME TRACE

In the area of debug functions, one fundamental requirement is support for real-time trace
functionality, i.e., definition of the dynamic execution path. The ColdFire2/2M solution is to
include a parallel output port providing encoded processor status and data to an external
development system. This port is partitioned into two nibbles (4 bits): one nibble allows the

Table 7-1. Processor Status Encoding

PST[3:0]
DEFINITION

(HEX) (BINARY)

$0 0000 Continue execution
$1 0001 Begin execution of an instruction
$2 0010 Reserved
$3 0011 Entry into user-mode
$4 0100 Begin execution of

PU

LSE orWDDATA instruction
$5 0101 Begin execution of taken branch
$6 0110 Reserved
$7 0111 Begin execution of

RTE

 instruction
$8 1000 Begin 1-byte transfer on DDATA
$9 1001 Begin 2-byte transfer on DDATA
$A 1010 Begin 3-byte transfer on DDATA
$B 1011 Begin 4-byte transfer on DDATA
$C 1100 Exception processing†
$D 1101 Emulator-mode entry exception processing†
$E 1110 Processor is stopped, waiting for interrupt†
$F 1111 Processor is halted †

NOTE: †These encodings are asserted for multiple cycles.

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-3

processor to transmit information concerning the execution status of the core (processor
status

,

 PST[3:0]), while the other nibble allows operand data to be displayed (debug data,
DDATA[3:0]). The processor status timing is synchronous with the processor clock (CLK)
and may not be related to the current bus transfer. Table 7-1 shows the encoding of these
signals.

The processor status (PST) outputs can be used with an external image of the program to
completely track the dynamic execution path of the machine. The tracking of this dynamic
path is complicated by any change-of-flow operation. This is especially evident when the
branch target address is calculated based on the contents of a program visible register
(variant addressing.) For this reason, the debug data (DDATA) outputs will display the target
address of a taken branch instruction. Because the DDATA bus is only 4 bits wide, the
address is displayed a nibble at a time across multiple clock cycles.

The debug module includes two 32-bit storage elements for capturing the internal ColdFire2/
2M bus information. These two elements effectively form a FIFO buffer connecting the
internal bus to the external development system through the DDATA signals. The FIFO
buffer captures branch target addresses along with certain operand read/write data for
eventual display on the DDATA output port one nibble at a time. The execution speed of the
ColdFire2/2M is affected only when both storage elements contain valid data

waiting to be
dumped onto the DDATA port. In this case, the processor core is stalled until one FIFO entry
is available. In all other cases, data output on the DDATA port does not impact execution
speed.

7.2.1 Processor Status Signal Encoding

The processor status (PST) signals are encoded to indicate a variety of conditions that are
not always visible outside of the ColdFire2/2M.

7.2.1.1 CONTINUE EXECUTION (PST = $0).

Most instructions complete in a single cycle.
If an instruction requires more clock cycles, the subsequent clock cycles are indicated by
driving the PST outputs with this encoding.

7.2.1.2 BEGIN EXECUTION OF AN INSTRUCTION (PST = $1).

For most instructions,
this encoding signals the

first cycle

of an instruction’s execution. Some instructions generate
a different unique encoding.

7.2.1.3 ENTRY INTO USER MODE (PST = $3).

This encoding indicates the ColdFire2/2M
has entered user mode. This encoding is signaled after the instruction which causes the
user mode to be entered is executed (signaled with the appropriate encoding.)

7.2.1.4 BEGIN EXECUTION OF PULSE OR WDDATA INSTRUCTIONS (PST = $4).

The
ColdFire2/2M instruction set architecture includes a PULSE opcode. This opcode generates
a unique PST encoding, $4, when executed. This instruction can define logic analyzer
triggers for debug and/or performance analysis. Additionally, a WDDATA instruction is
supported that allows the processor core to write any operand (byte, word, long) directly to
the DDATA port, independent of any debug module configuration. This opcode also
generates the special PST encoding, $4, when executed, but a data transfer on DDATA will

Debug Support

7-4

 ColdFire2/2M User’s Manual

MOTOROLA

also be indicated. The size of the transfer will depend on the format of the WDDATA
instruction.

7.2.1.5 BEGIN EXECUTION OF TAKEN BRANCH (PST = $5).

This encoding is
generated whenever a taken branch is executed. The branch target may be optionally
displayed on DDATA depending on the control parameters contained in the configuration/
status register (CSR). The number of bytes of the address to be displayed is also controlled
in the CSR and indicated during the data transfer on the following clock cycle.

The bytes are always displayed in a least-significant to most-significant order. The
processor captures only those target addresses associated with taken branches using a
variant addressing mode, i.e. all JMP and JSR instructions using address register indirect
or indexed addressing modes, all RTE and RTS instructions as well as all exception vectors.

The simplest example of a branch instruction using a variant address is the compiled code
for a C language “case” statement. Typically, the evaluation of this statement uses the
variable of an expression as an index into a table of offsets, where each offset points to a
unique case within the structure. For these types of change-of-flow operations, the
ColdFire2/2M processor uses the debug pins to output a sequence of information on
successive clock cycles

1. Identify a taken branch has been executed using the PST pins ($5).

2. Using the PST pins, optionally signal the target address is to be displayed on the
DDATA pins. The encoding ($9, $A, $B) identifies the number of bytes that are
displayed.

3. The new target address is optionally available on subsequent cycles using the nibble-
wide DDATA port. The number of bytes of the target address displayed on this port is
a configurable parameter (2, 3, or 4 bytes).

Another example of a variant branch instruction would be a JMP (A0) instruction. If the CSR
was programmed to display the lower two bytes of an address, the output of the PST and
DDATA signals when this instruction executed are shown in Figure 7-2.

In the first cycle, PST is driven with a $5 indicating a taken branch with a variant address. In
the second cycle, PST is driven with a $9 indicating a two-byte address will be displayed
four bits at a time on the DDATA signals over the next four clock cycles. The remaining four
clock cycles display the lower two-bytes of the address (A0), least significant nibble to most
significant nibble. The output of the PST signals after the branch instruction completes will

Figure 7-2. Example PST Diagram

CLK

$5 $9 $0PST

$0 $0 A[3:0] A[7:4] A[11:8] A[15:12]DDATA

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-5

be dependent on the next instruction in the pipeline. The PST can continue with the next
instruction before the address has completely displayed on the DDATA because of the
DDATA FIFO. If the FIFO is full and the next instruction needs to display something on
DDATA, the pipeline will stall (PST = $0) until space is available in the FIFO.

7.2.1.6 BEGIN EXECUTION OF RTE INSTRUCTION (PST = $7).

The unique encoding is
generated whenever the return-from-exception instruction is executed.

7.2.1.7 BEGIN DATA TRANSFER (PST = $8 - $A).

These encodings indicate the number
of bytes to be displayed on the DDATA port on subsequent clock cycles. This encoding is
driven onto the PST port one machine cycle before the actual data is displayed on DDATA.

7.2.1.8 EXCEPTION PROCESSING (PST = $C).

This encoding is displayed during normal
exception processing. Exceptions which enter emulation mode (debug interrupt, or optional
trace) generate a different encoding. Because this encoding defines a multicycle mode, the
PST outputs are driven with this value until exception processing is completed.

7.2.1.9 EMULATOR-MODE EXCEPTION PROCESSING (PST = $D).

Exceptions which
enter emulation mode (debug interrupt, or optional trace) generate a different this encoding.
Because this encoding defines a multicycle mode, the PST outputs are driven with this value
until exception processing is completed.

7.2.1.10 PROCESSOR STOPPED (PST = $E).

This encoding is generated as a result of
the STOP instruction. The ColdFire2/2M remains in the stopped state until an interrupt
occurs. Because this encoding defines a multicycle mode, the PST outputs are driven with
this value until the stopped mode is exited.

7.2.1.11 PROCESSOR HALTED (PST = $F).

This encoding is generated as when the
ColdFire2/2M is halted (see

Section 7.3.1 CPU Halt

.) Because this encoding defines a
multicycle mode, the PST outputs are driven with this value until the halted mode is exited.

7.3 BACKGROUND DEBUG MODE (BDM)

The ColdFire2/2M supports a modified version of the background debug mode (BDM)
functionality found on Motorola’s CPU32 family of parts. BDM implements a low-level
system debugger in the microprocessor hardware. Communication with the development
system is handled via a dedicated, high-speed serial command interface (BDM port).

Unless noted otherwise, the BDM functionality provided by the ColdFire2/2M is a proper
subset of the CPU32 functionality. The main differences include the following:

• ColdFire2/2M implements the BDM controller in a dedicated hardware module.
Although some BDM operations do require the CPU to be halted (e.g. CPU register
accesses), other BDM commands such as memory accesses can be executed while
the processor is running.

• DSCLK, DSI, and DSO are treated as synchronous signals, where the inputs, DSCLK
and DSI, must meet the required input setup and hold timings, and the output, DSO, is
specified as a delay relative to the rising edge of the processor clock.

Debug Support

7-6

 ColdFire2/2M User’s Manual

MOTOROLA

• On CPU32 parts, the DSO signal can inform hardware that a serial transfer can start.
ColdFire clocking schemes restrict the use of this bit. Because DSO changes only when
DSCLK is high, DSO cannot be used to indicate the start of a serial transfer. The
development system should use either a free-running DSCLK or count the number of
clocks in any given transfer.

• The read/write system register commands, RSREG and WSREG, have been replaced
by read/write control register commands, RCREG and WCREG. These commands use
the register coding scheme from the MOVEC instruction.

• The read/write debug module register commands, RDMREG and WDMREG, have
been added to support debug module register accesses.

• CALL and RST commands are not supported and will generate an illegal command
response.

• Illegal command responses can be returned using the FILL and DUMP commands.

• For any command performing a byte-sized memory read operation, the upper 8 bits of
the response data are undefined. The referenced data is returned in the lower 8 bits of
the response.

• The debug module forces alignment for memory-referencing operations: long accesses
are forced to a 0-modulo-4 address; word accesses are forced to a 0-modulo-2
address. An address error response can no longer be returned.

7.3.1 CPU Halt

Although some BDM operations can occur in parallel with CPU operation, unrestricted BDM
operation requires the CPU to be halted. A number of sources can cause the CPU to halt,
including the following as shown in order of priority:

1. The occurrence of the catastrophic fault-on-fault condition automatically halts the
processor. The halt status, $F, is posted on the PST port.

2. The occurrence of a hardware breakpoint can be configured to generate a pending halt
condition in a manner similar to the assertion of the BKPTB signal. In all cases, the
occurrence of this type of breakpoint halts the processor in an imprecise manner.
Once the hardware breakpoint is asserted, the processor halts at the next sample
point. See

Section 7.4.1 Theory of Operation

 for more detail.

3. The execution of the HALT

,

also known as BGND on the 683xx devices, instruction
immediately suspends execution and posts the halt status ($F) on the PST outputs.
By default, this is a supervisor instruction and attempted execution while in user mode
generates a privilege-violation exception. A User Halt Enable (UHE) control bit is
provided in the Configuration/Status Register (CSR) to allow execution of HALT in
user mode.

4. The assertion of the BKPTB input pin is treated as a pseudo-interrupt, i.e., the halt
condition is made pending until the processor core samples for halts/interrupts. The
processor samples for these conditions once during the execution of each instruction.
If there is a pending halt condition at the sample time, the processor suspends
execution and enters the halted state. The halt status, $F, is reflected in the PST
outputs.

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-7

There are two special cases involving the assertion of the BKPTB pin to be considered.

After the master reset signal (MRSTB) is negated, the processor waits for 16 clock cycles
before beginning reset exception processing. If the BKPTB input pin is asserted within the
first eight cycles after MRSTB is negated, the processor will enter the halt state, signaling
that halt status, $F, on the PST outputs. While in this state, all resources accessible via the
debug module can be referenced. This is the only opportunity to force the ColdFire2/2M into
emulation mode via the EMU bit in the configuration/status register (CSR). Once the system
initialization is complete, the processor response to a BDM GO command is dependent on
the set of BDM commands performed while breakpointed. Specifically, if the processor’s PC
register was loaded, then the GO command simply causes the processor to exit the halted
state and pass control to the instruction address contained in the PC. Note in this case, the
normal reset exception processing is bypassed. Conversely, if the PC register was not
loaded, then the GO command causes the processor to exit the halted state and continue
with reset exception processing.

The ColdFire2/2M also handles a special case with the assertion of BKPTB while the
processor is stopped by execution of the STOP instruction. For this case, the processor exits
the stopped mode and enters the halted state. Once halted, the standard BDM commands
may be exercised. When the processor is restarted, it continues with the execution of the
next sequential instruction, i.e., the instruction following the STOP opcode.

The halt source is indicated in CSR[27:24]; for simultaneous halt conditions, the highest
priority source is indicated.

7.3.2 BDM Serial Interface

Once the CPU is halted and the halt status reflected on the PST outputs (PST[3:0] = $F),
the development system may send unrestricted commands to the debug module. The
debug module implements a synchronous protocol using a three-pin interface: development
serial clock (DSCLK), development serial input (DSI), and development serial output (DSO).
The development system serves as the serial communication channel master and is
responsible for generation of the clock (DSCLK). The operating range of the serial channel
is DC to 1/2 of the processor frequency. The channel uses a full duplex mode, where data
is transmitted and received simultaneously by both master and slave devices. The
transmission consists of 17-bit packets composed of a status/control bit and a 16-bit data
word. As seen in Figure 7-3, data is exchanged on the positive edge of CLK when DSCLK
is high (i.e. DSI is sampled and DSO is driven.) The DSCLK signal must also be sampled
low (on a positive edge of CLK) between each bit exchange. The MSB is transferred first.

Debug Support

7-8

 ColdFire2/2M User’s Manual

MOTOROLA

Both DSCLK and DSI are synchronous inputs and must meet input setup and hold times
with respect to CLK. The DSCLK signal essentially acts as a pseudo “clock enable” and is
sampled on the rising edge of CLK. If the setup time of DSCLK is met, then the internal logic
transitions on the rising edge of CLK, and DSI is sampled on the same CLK rising edge. The
DSO output is specified as a delay from the DSCLK-enabled CLK rising edge. All events in
the debug module’s serial state machine are based on the rising edge of the microprocessor
clock (see Figure 7-4 below). Also refer to the Electrical Characteristics section of this
manual.

7.3.2.1 RECEIVE PACKET FORMAT.

The basic receive packet of information is 17 bits
long,16 data bits plus a status bit, as shown below in Figure 7-5.

Figure 7-3. BDM Serial Transfer

Figure 7-4. BDM Signal Sampling

16 15 0

S DATA FIELD [15:0]

Figure 7-5. Receive BDM Packet

CLK

DSCLK

16 15 14 0DSI

16 15 14 1 0DSO

CLK

DSCLK

DSI

DSO

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-9

Status[16]
The status bit indicates the status of CPU-generated messages (always single word), with
the data field encoded as listed in Table 7-2.

Data Field[15:0]
The data field contains the message data to be communicated from the debug module to
the development system. The response message is always a single word, with the data field
encoded as shown in Table 7-2.

7.3.2.2 TRANSMIT PACKET FORMAT.

The basic transmit packet of information is 17 bits
long,16 data bits plus a control bit, as shown below in Figure 7-6.

Control[16]
The control bit is not used but is reserved by Motorola for future use. Command and data
transfers initiated by the development system should clear bit 16.

Data Field[15:0]
The data field contains the message data to be communicated from the development
system to the debug module.

7.3.3 BDM Command Set

The ColdFire2/2M supports a subset of BDM instructions from the current 683xx parts, as
well as extensions to provide access to new hardware features. The BDM commands should
not be issued whenever the ColdFire2/2M is accessing the debug module registers using
the WDEBUG instruction.

7.3.3.1 BDM COMMAND SET SUMMARY.

The BDM command set is summarized in
Figure 7-6. Subsequent paragraphs contain detailed descriptions of each command.

Table 7-2. CPU-Generated Message Encoding

S BIT DATA MESSAGE TYPE

0 xxxx Valid data transfer
0 $FFFF Command complete; status OK
1 $0000 Not ready with response; come again
1 $0001 TEA-terminated bus cycle; data invalid
1 $FFFF Illegal command

16 15 0

C DATA FIELD [15:0]

Figure 7-6. Transmit BDM Packet

Debug Support

7-10

 ColdFire2/2M User’s Manual

MOTOROLA

7.3.3.2 COLDFIRE BDM COMMANDS.

All ColdFire Family BDM commands include a 16-
bit operation word followed by an optional set of one or more extension words.

Operation Field
The operation field specifies the command.

Table 7-3. BDM Command Summary

COMMAND MNEMONIC DESCRIPTION
CPU

IMPACT

1

PAGE

READ A/D REGISTER RAREG/RDREG Read the selected address or data register and
return the results via the serial interface.

HALTED 7-13

WRITE A/D REGISTER WAREG/WDREG The data operand is written to the specified
address or data register.

HALTED 7-13

READ MEMORY
LOCATION

READ Read the data at the memory location specified
by the longword address.

CYCLE
STEAL

7-14

WRITE MEMORY
LOCATION

WRITE Write the operand data to the memory location
specified by the longword address.

CYCLE
STEAL

7-16

DUMP MEMORY
BLOCK

DUMP Used in conjunction with the READ command
to dump large blocks of memory. An initial
READ is executed to set up the starting
address of the block and to retrieve the first
result. Subsequent operands are retrieved with
the DUMP command.

CYCLE
STEAL

7-17

FILL MEMORY BLOCK FILL Used in conjunction with the WRITE command
to fill large blocks of memory. An initial WRITE
is executed to set up the starting address of the
block and to supply the first operand.
Subsequent operands are written with the FILL
command.

CYCLE
STEAL

7-19

RESUME EXECUTION GO The pipeline is flushed and refilled before
resuming instruction execution at the current
PC.

HALTED 7-21

NO OPERATION NOP NOP performs no operation and may be used
as a null command.

PARALLEL 7-21

READ CONTROL
REGISTER

RCREG Read the system control register. HALTED 7-22

WRITE CONTROL
REGISTER

WCREG Write the operand data to the system control
register.

HALTED 7-23

READ DEBUG MODULE
REGISTER

RDMREG Read the Debug Module register. PARALLEL 7-24

WRITE DEBUG
MODULE REGISTER

WDMREG Write the operand data to the Debug Module
register.

PARALLEL 7-25

NOTE: 1. General command effect and/or requirements on CPU operation:

Halted - The CPU must be halted to perform this command

Steal - Command generates bus cycles which can be interleaved with CPU accesses

Parallel - Command is executed in parallel with CPU activity

Refer to command summaries for detailed operation descriptions.

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER
EXTENSION WORD(S)

BDM Command Format

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-11

R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the transfer is
from the CPU to the development system. When the bit is cleared, data is written to the CPU
or to memory from the development system.

Operand Size
For sized operations, this field specifies the operand data size. All addresses are expressed
as 32-bit absolute values. The size field is encoded as listed in Table 7-4.

Address / Data (A/D) Field
The A/D field is used in commands that operate on address and data registers in the
processor. It determines whether the register field specifies a data or address register. A one
indicates an address register; zero, a data register.

Register Field
In commands that operate on processor registers, this field specifies which register is
selected. The field value contains the register number.

Extension Word(s) (as required):
Certain commands require extension words for addresses and/or immediate data.
Addresses require two extension words because only absolute long addressing is permitted.
Immediate data can be either one or two words in length—byte and word data each require
a single extension word; longword data requires two words. Both operands and addresses
are transferred most significant word first. In the following descriptions of the BDM command
set, the optional set of extension words is defined as the “Operand Data.”

7.3.3.3 COMMAND SEQUENCE DIAGRAM.

A command sequence diagram (see Figure
7-7) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each bubble corresponds
to the data transmitted by the development system to the debug module; the bottom half
corresponds to the data returned by the debug module in response to the development
system commands. Command and result transactions are overlapped to minimize latency.

The cycle in which the command is issued contains the development system command
mnemonic (in this example, “read memory location”). During the same cycle, the debug
module responds with either the lowest order results of the previous command or with a
command complete status (if no results were required).

Table 7-4. BDM Size Field Encoding

ENCODING OPERAND SIZE

00 Byte
01 Word
10 Long
11 Reserved

Debug Support

7-12

 ColdFire2/2M User’s Manual

MOTOROLA

During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The debug module returns a “not ready” response ($10000) unless the
received command was decoded as unimplemented, in which case the response data is the
illegal command ($1FFFF) encoding. If an illegal command response occurs, the
development system should retransmit the command.

NOTE

The response can be ignored unless a memory bus cycle is in
progress. Otherwise, the debug module can accept a new serial
transfer after eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The debug module always returns the “not ready” response in this cycle. At the
completion of the third cycle, the debug module initiates a memory read operation. Any
serial transfers that begin while the memory access is in progress return the “not ready”
response.

Results are returned in the two serial transfer cycles following the completion of the memory
access. The data transmitted to the debug module during the final transfer is the opcode for
the following command. Should a memory access generate a bus error, an error status
($10001) is returned in place of the result data.

Figure 7-7. Command Sequence Diagram

 COMMANDS TRANSMITTED TO THE DEBUG MODULE

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY DEBUG MODULE

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE DEBUG MODULE

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXXXX

XXX
BERR

MS RESULT
NEXT CMD
LS RESULT

READ
MEMORY

LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS
 ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

XXX

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-13

7.3.3.4 COMMAND SET DESCRIPTIONS.

The BDM command set is summarized in
Table 7-3. Subsequent paragraphs contain detailed descriptions of each command.

Note

All the accompanying BDM commands assume the control bit
(C) is zero. The BDM results are defined with the status bit (S)
as zero. Refer to

Section 7.3.2 BDM Serial Interface

 for
information on the serial packet format

Unassigned command opcodes are reserved by Motorola for future expansion. All unused
command formats within any revision level will perform a NOP and return the ILLEGAL
command response.

7.3.3.4.1 Read A/D Register (RAREG/RDREG).

Read the selected address or data
register and return the 32-bit result. A bus error response is returned if the CPU core is not
halted.

Formats:

\

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected register are returned as a longword value. The data is returned
most significant word first.

7.3.3.4.2 Write A/D Register (WAREG/WDREG).

The operand data is written to the
specified address or data register. All 32 register bits are altered by the write. A bus error
response is returned if the CPU core is not halted.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $1 $8 A/D REGISTER

RAREG/RDREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]
DATA [15:0]

RAREG/RDREG Result

XXX
MS RESULT

NEXT CMD
LS RESULT

RAREG/RDREG
???

XXX
BERR

NEXT CMD
"NOT READY"

Debug Support

7-14

 ColdFire2/2M User’s Manual

MOTOROLA

Command Formats:

Command Sequence:

Operand Data:
Longword data is written into the specified address or data register. The data is supplied
most significant word first.

Result Data:
Command complete status will be indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete.

7.3.3.4.3 Read Memory Location (READ).

Read the operand data from the memory
location specified by the longword address. The address space is defined by the contents
of the low-order 5 bits {TT, TM} of the address attribute register (AATR). The hardware
forces the low-order bits of the address to zeros for word and longword accesses to ensure
that operands are always accessed on natural boundaries: words on 0-modulo-2 addresses,
longwords on 0-modulo-4 addresses.

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $0 $8 A/D REGISTER
DATA [31:16]
DATA [15:0]

WAREG/WDREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $0 $0
ADDRESS [31:16]
ADDRESS [15:0]

Byte READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

Byte READ Result

MS DATA
"NOT READY"

XXX

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDREG/WAREG
???

NEXT CMD
"CMD COMPLETE"

BERR

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-15

Command Sequence:

Operand Data:
The single operand is the longword address of the requested memory location.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $4 $0
ADDRESS [31:16]
ADDRESS [15:0]

Word READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

Word READ Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $8 $0
ADDRESS [31:16]
ADDRESS [15:0]

Long READ Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]
DATA [15:0]

Long READ Result

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 RESULT
NEXT CMD

READ
MEMORY

LOCATION

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 MS RESULT
XXX

READ
MEMORY

LOCATION

NEXT CMD
LS RESULT

Debug Support

7-16

 ColdFire2/2M User’s Manual

MOTOROLA

Result Data:
The requested data is returned as either a word or longword. Byte data is returned in the
least significant byte of a word result, with the upper byte undefined. Word results return 16
bits of significant data; longword results return 32 bits. A value of $0001 (with the status bit
set) will be returned if a bus error occurs.

7.3.3.4.4 Write Memory Location (WRITE).

Write the operand data to the memory
location specified by the longword address. The address space is defined by the contents
of the low-order 5 bits {TT, TM} of the address attribute register (AATR). The hardware
forces the low-order bits of the address to zeros for word and longword accesses to ensure
that operands are always accessed on natural boundaries: words on 0-modulo-2 addresses,
longwords on 0-modulo-4 addresses.

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $0 $0
ADDRESS [31:16]
ADDRESS [15:0]

X X X X X X X X DATA [7:0]

Byte WRITE Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $4 $0
ADDRESS [31:16]
ADDRESS [15:0]

DATA [15:0]

Word WRITE Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $8 $0
ADDRESS [31:16]
ADDRESS [15:0]

DATA [31:16]
DATA [15:0]

Long WRITE Command

Debug Support

MOTOROLA

 ColdFire2/2M User’s Manual

7-17

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first operand is a longword absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least significant
byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:
Successful write operations will be indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete. A value of $0001 (with the status bit set) will be
returned if a bus error occurs.

7.3.3.4.5 Dump Memory Block (DUMP).

DUMP is used in conjunction with the READ
command to dump large blocks of memory. An initial READ is executed to set up the starting
address of the block and to retrieve the first result. The DUMP command retrieves
subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and
saved in a temporary register (address breakpoint high (ABHR)). Subsequent DUMP
commands use this address, perform the memory read, increment it by the current operand
size, and store the updated address in ABHR.

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

DATA
"NOT READY"

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"

Debug Support

7-18

 ColdFire2/2M User’s Manual

MOTOROLA

NOTE

The DUMP command does not check for a valid address in
ABHR—DUMP is a valid command only when preceded by
another DUMP, NOP or by a READ command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is given, allowing the operand size
to be dynamically altered.

Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $0 $0

Byte DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
X X X X X X X X DATA [7:0]

Byte DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$1 $D $4 $0

Word DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA [15:0]

Word DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$1 $D $8 $0

Long DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA [31:16]
DATA [15:0]

Long DUMP Result

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-19

Command Sequence:

Operand Data:
None

Result Data:
Requested data is returned as either a word or longword. Byte data is returned in the least
significant byte of a word result. Word results return 16 bits of significant data; longword
results return 32 bits. A value of $0001 (with the status bit set) will be returned if a bus error
occurs.

7.3.3.4.6 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE command
to fill large blocks of memory. An initial WRITE is executed to set up the starting address of
the block and to supply the first operand. The FILL command writes subsequent operands.
The initial address is incremented by the operand size (1, 2, or 4) and is saved in address
breakpoint high (ABHR) after the memory write. Subsequent FILL commands use this
address, perform the write, increment it by the current operand size, and store the updated
address in ABHR.

NOTE

The FILL command does not check for a valid address in
ABHR—FILL is a valid command only when preceded by
another FILL, NOP or by a WRITE command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a FILL command is processed, allowing the operand
size to be altered dynamically.

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY

LOCATION

DUMP (B/W)
???

XXX
"NOT READY"

NEXT CMD
 MS RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY

LOCATION

DUMP (LONG)
???

NEXT CMD
LS RESULT

Debug Support

7-20 ColdFire2/2M User’s Manual MOTOROLA

Formats:

Command Sequence:

Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted as a
16-bit word, justified in the least significant byte; 16- and 32-bit operands are transmitted as
16 and 32 bits, respectively.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$1 $C $0 $0

X X X X X X X X DATA [7:0]

Byte FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$1 $C $4 $0

DATA [15:0]

Word FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$1 $C $8 $0

DATA [31:16]
DATA [15:0]

Long FILL Command

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR

"CMD COMPLETE"

DATA
"NOT READY"

XXX

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

WRITE
MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR

"CMD COMPLETE"

MS DATA
"NOT READY"

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

LS DATA
"NOT READY"

WRITE
MEMORY

LOCATION

FILL (B/W)
???

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-21

Result Data:
Command complete status will be indicated by returning the data $FFFF (with the status bit
cleared) when the register write is complete. A value of $0001 (with the status bit set) will be
returned if a bus error occurs.

7.3.3.4.7 Resume Execution (GO). The pipeline is flushed and refilled before resuming
normal instruction execution. Prefetching begins at the current PC and current privilege
level. If either the PC or SR is altered during BDM, the updated value of these registers is
used when prefetching begins.

Formats:

Command Sequence:

Operand Data:
None

Result Data:
The “command complete” response ($0FFFF) is returned during the next shift operation.

7.3.3.4.8 No Operation (NOP). NOP performs no operation and may be used as a null
command where required.

Formats:

Command Sequence:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$0 $C $0 $0

GO Command

15 12 11 8 7 4 3 0
$0 $0 $0 $0

NOP Command

GO
???

NEXT CMD
"CMD COMPLETE"

NOP
???

NEXT CMD
"CMD COMPLETE"

Debug Support

7-22 ColdFire2/2M User’s Manual MOTOROLA

Operand Data:
None

Result Data:
The “command complete” response, $FFFF (with the status bit cleared), is returned during
the next shift operation.

7.3.3.4.9 Read Control Register (RCREG). Read the selected control register and return
the 32-bit result. Accesses to the processor/memory control registers are always 32 bits in
size, regardless of the implemented register width. The second and third words of the
command effectively form a 32-bit address used by the debug module to generate a special
bus cycle to access the specified control register. The 12-bit Rc field is the same as that
used by the MOVEC instruction.

Formats:

Rc encoding:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$2 $9 $8 $0
$0 $0 $0 $0
$0 Rc

RCREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA [31:16]
DATA [15:0]

RCREG Result

Table 7-5. Control Register Map

Rc REGISTER DEFINITION

$002 Cache Control Register (CACR)
$004 Access Control Register 0 (ACR0)
$005 Access Control Register 1 (ACR1)
$801 Vector BASE Register (VBR)
$804 MAC Status Register (MACSR)†
$805 MAC Mask Register (MASK)†
$806 MAC Accumulator (ACC)†
$80E Status Register (SR)
$80F Program Counter (PC)
$C00 ROM Base Address Register (ROMBAR0)
$C04 RAM Base Address Register (RAMBAR0)

NOTE: †Available on the ColdFire2M only.

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-23

Command Sequence:

Operand Data:
The single operand is the 32-bit Rc control register select field.

Result Data:
The contents of the selected control register are returned as a longword value. The data is
returned most-significant-word first. For those control registers with widths less than 32 bits,
only the implemented portion of the register is guaranteed to be correct. The remaining bits
of the longowrd are undefined. As an example, a read of the 16-bit SR will return the SR in
the lower word and undefined data in the upper word.

7.3.3.4.10 Write Control Register (WCREG). The operand (longword) data is written to
the specified control register. The write alters all 32 register bits.

Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$2 $8 $8 $0
$0 $0 $0 $0
$0 Rc

DATA [31:16]
DATA [15:0]

WCREG Command

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

RCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

MS RESULT

READ
MEMORY

LOCATION
NEXT CMD
LS RESULT

XXX

Debug Support

7-24 ColdFire2/2M User’s Manual MOTOROLA

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first long operand selects the register to
which the operand data is to be written. The second operand is the data.

Result Data:
Successful write operations return $FFFF. Bus errors on the write cycle are indicated by the
assertion of bit 16 in the status message and by a data pattern of $0001.

7.3.3.4.11 Read Debug Module Register (RDMREG). Read the selected debug module
register and return the 32-bit result. The only valid register selection for the RDMREG
command is the CSR (DRc = $0).

Command Formats:

DRc encoding:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$2 $D $8 DRc

RDMREG BDM Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DATA [31:16]
DATA [15:0]

RDMREG BDM Result

Table 7-6. Definition of DRc Encoding - Read

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC INITIAL STATE

$0 Configuration/Status CSR $0
$1-$F Reserved - –

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

WCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

 "CMD COMPLETE"
NEXT CMD

WRITE
MEMORY

LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-25

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected debug register are returned as a longword value. The data is
returned most-significant-word first.

7.3.3.4.12 Write Debug Module Register (WDMREG). The operand (longword) data is
written to the specified debug module register. All 32 bits of the register are altered by the
write. The DSCLK signal must be inactive while CPU accesses are being performed.

Command Format:

DRc encoding:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
$2 $C $8 DRc

DATA [31:16]
DATA [15:0]

WDMREG BDM Command

Table 7-7. Definition of DRc Encoding - Write

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC INITIAL STATE

$0 Configuration/Status CSR $0
$1-$5 Reserved - –

$6 Bus Attributes and Mask AATR $0005
$7 Trigger Definition TDR $0
$8 PC Breakpoint PBR –
$9 PC Breakpoint Mask PBMR –

$A-$B Reserved – –
$C Operand Address High Breakpoint ABHR –
$D Operand Address Low Breakpoint ABLR –
$E Data Breakpoint DBR –
$F Data Breakpoint Mask DBMR –

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

RDMREG
???

Debug Support

7-26 ColdFire2/2M User’s Manual MOTOROLA

Command Sequence:

Operand Data:
Longword data is written into the specified debug register. The data is supplied most-
significant-word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

7.3.3.4.13 Unassigned Opcodes. Unassigned command opcodes are reserved by
Motorola. All unused command formats within any revision level will perform a NOP and
return the ILLEGAL command response.

7.4 REAL-TIME DEBUG SUPPORT
The ColdFire2/2M provides support for the debug of real-time applications. For these types
of embedded systems, the processor cannot be halted during debug, but must continue to
operate. The foundation of this area of debug support is that while the processor cannot be
halted to allow debug, the system can tolerate small intrusions into the real-time operation.

As discussed in the previous section, the debug module provides a number of hardware
resources to support various hardware breakpoint functions. Specifically, three types of
breakpoints are supported: PC with mask, operand address range, and data with mask.
These three basic breakpoints can be configured into one- or two-level triggers with the
exact trigger response also programmable. The debug module programming model is
accessible from either the external development system using the serial interface or from
the processor’s supervisor programming model using the WDEBUG instruction.

7.4.1 Theory of Operation
The breakpoint hardware can be configured to respond to triggers in several ways. The
desired response is programmed into the Trigger Definition Register. In all situations where
a breakpoint triggers, an indication is provided on the DDATA output port, when not
displaying captured operands or branch addresses, as shown in Table 7-8.

MS DATA
"NOT READY"

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDMREG
???

NEXT CMD
"CMD COMPLETE"

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-27

The breakpoint status is also posted in the CSR.

The new BDM instructions load and configure the desired breakpoints using the appropriate
registers. As the system operates, a breakpoint trigger generates a response as defined in
the TDR. If the system can tolerate the processor being halted, a BDM entry can be used.
With the TRC bits of the TDR = $1, the breakpoint trigger causes the core to halt as reflected
in the status of PST = $F. For PC breakpoints, the halt occurs before the targeted instruction
is executed. For address and data breakpoints, the processor may have executed several
additional instructions. As a result, trigger reporting is considered imprecise.

If the processor core cannot be halted, the special debug interrupt can be used. With this
configuration, TRC bits of the TDR = $2, the breakpoint trigger is converted into a debug
interrupt to the processor (see Section 4.2.8 Debug Interrupt .) This interrupt is treated as
higher than the nonmaskable level 7 interrupt request. As with all interrupts, it is made
pending when the processor samples, once per instruction. Again, the hardware forces the
PC breakpoint to occur immediately (before the execution of the targeted instruction). This
is possible because the PC breakpoint comparison is enabled at the same time the interrupt
sampling occurs. For the address and data breakpoints, the reporting is considered
imprecise because several additional instructions may be executed after the triggering
address or data is seen.

Once the debug interrupt is recognized, the processor aborts execution and initiates
exception processing. At the initiation of the exception processing, the core enters emulator
mode. After the standard 8-byte exception stack is created, the processor fetches a unique
exception vector, $C, from the vector table.

Execution continues at the instruction address contained in this exception vector. All
interrupts are ignored while in emulator mode. Users can program the debug-interrupt
handler to perform the necessary context saves using the supervisor instruction set. As an
example, this handler may save the state of all the program-visible registers as well as the
current context into a reserved memory area.

Once the required operations are complete, the return-from-exception (RTE) instruction is
executed and the processor exits emulator mode. Once the debug interrupt handler has
completed its execution, the external development system can then access the reserved
memory locations using the BDM commands to read memory.

Table 7-8. DDATA, CSR[31:28] Breakpoint Response

DDATA[3:0], CSR[31:28] BREAKPOINT STATUS

 $0 No breakpoints enabled
$1 Waiting for level 1 breakpoint
$2 Level 1 breakpoint triggered

 $3-4 Reserved
$5 Waiting for level 2 breakpoint
$6 Level 2 breakpoint triggered

$7-$F Reserved

Debug Support

7-28 ColdFire2/2M User’s Manual MOTOROLA

7.4.1.1 EMULATOR MODE. Emulator mode is used to facilitate non-intrusive emulator
functionality. This mode can be entered in three different ways:

• The EMU bit in the configuration/status register (CSR) may be programmed to force the
ColdFire2/2M into emulation mode. This bit is examined only when MRSTB is negated
and the processor begins reset exception processing. It may be set while the ColdFire2/
2M is halted before the reset exception processing begins. Refer to Section 7.3.1 CPU
Halt .

• A debug interrupt always enters emulation mode when the debug interrupt exception
processing begins.

• The TCR bit in the CSR may be programmed to force the ColdFire2/2M into emulation
mode when trace exception processing begins.

During emulation mode, the ColdFire2/2M’s exhibits the following properties:

• All interrupts are ignored, including level seven.

• If the MAP bit in the CSR is set, all memory accesses are forced, including the
exception stack frame writes and the vector fetch, into a specially mapped address
space signalled by TT = $2, TM = $5 or $6.

• If the MAP bit in the CSR is set, all caching of memory accesses is disabled.

The return-from-exception (RTE) instruction exits emulation mode. The processor status
output port provides a unique encoding for emulator mode entry ($D) and exit ($7).

7.4.1.2 REUSE OF DEBUG MODULE HARDWARE. The debug module implementation
provides a common hardware structure for both BDM and breakpoint functionality. Several
structures are used for both BDM and breakpoint purposes. Table 7-9 identifies the shared
hardware structures.

The shared use of these hardware structures means the loading of the register to perform
any specified function is destructive to the shared function. For example, if an operand
address breakpoint is loaded into the debug module, a BDM command to access memory
overwrites the breakpoint. If a data breakpoint is configured, a BDM write command
overwrites the breakpoint contents.

7.4.2 Programming Model
In addition to the existing BDM commands that provide access to the processor’s registers
and the memory subsystem, the debug module contains nine registers to support the

Table 7-9. Shared BDM/Breakpoint Hardware

REGISTER BDM FUNCTION BREAKPOINT FUNCTION

AATR Bus attributes for all memory
commands

Attributes for address
breakpoint

ABHR Address for all memory commands Address for address
breakpoint

DBR Data for All BDM write commands Data for data breakpoint

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-29

required functionality. All of these registers are treated as 32-bit quantities, regardless of the
actual number of bits in the implementation. The registers, known as the debug control
registers, are accessed through the BDM port using two new BDM commands: WDMREG
and RDMREG. These commands contain a 4-bit field, DRc, which specifies the particular
register being accessed.

These registers are also accessible from the processor’s supervisor programming model
through the execution of the WDEBUG instruction. Thus, the breakpoint hardware within the
debug module may be accessed by the external development system using the serial
interface, or by the operating system running on the processor core. It is the responsibility
of the software to guarantee that all accesses to these resources are serialized and logically
consistent. The hardware provides a locking mechanism in the CSR to allow the external
development system to disable any attempted writes by the processor to the breakpoint
registers (setting IPW = 1). The BDM commands should not be issued whenever the
ColdFire2/2M is accessing the debug module registers using the WDEBUG instruction.

Figure 7-8 illustrates the debug module programming model.

7.4.2.1 ADDRESS BREAKPOINT REGISTERS (ABLR, ABHR). The address breakpoint
registers define a region in the operand address space of the processor that can be used as
part of the trigger. The full 32-bits of the ABLR and ABHR values are compared with the
internal address signals of the ColdFire2/2M. The trigger definition register (TDR)
determines if the trigger is the inclusive range bound by ABLR and ABHR, all addresses
outside this range, or the address in ABLR only. The ABHR is accessible in supervisor mode
as debug control register $C using the WDEBUG instruction and via the BDM port using the
RDMREG and WDMREG commands. The ABLR is accessible in supervisor mode as debug
control register $D using the WDEBUG instruction and via the BDM port using the
WDMREG commands. The ABHR is overwritten by the BDM hardware when accessing
memory as described in Section 7.4.1.2 Reuse of Debug Module Hardware .

Figure 7-8. Debug Programming Model

ADDRESS
BREAKPOINT REGISTERS

PC BREAKPOINT
REGISTERS

DATA BREAKPOINT
REGISTERS

ABLR
ABHR

PBR
PBMR

DBMR
DBR

TDR

15

0

31

TRIGGER DEFINITION
REGISTER

ADDRESS ATTRIBUTE
REGISTERAATR

7

0

15

CSR
CONFIGURATION/
STATUS

Debug Support

7-30 ColdFire2/2M User’s Manual MOTOROLA

Field Definition:

ADDRESS[31:0]–Low Address
This field contains the 32-bit address which marks the lower bound of the address
breakpoint range.

Field Definition:

ADDRESS[31:0]–High Address
This field contains the 32-bit address which marks the upper bound of the address
breakpoint range.

7.4.2.2 ADDRESS ATTRIBUTE REGISTER (AATR). The AATR defines the address
attributes and a mask to be matched in the trigger. The AATR value is compared with the
internal address attribute signals of the ColdFire2/2M, as defined by the setting of the TDR.
The AATR is accessible in supervisor mode as debug control register $6 using the
WDEBUG instruction and via the BDM port using the WDMREG command. The lower five
bits of the AATR are also used for BDM command definition to define the address space for
memory references as described in Section 7.4.1.2 Reuse of Debug Module Hardware .

BITS 31 0

FIELD ADDRESS

RESET -

R/W W

 Address Breakpoint Low Register (ABLR)

BITS 31 0

FIELD ADDRESS

RESET -

R/W W

 Address Breakpoint High Register (ABHR)

BITS 15 14 13 12 11 10 8 7 6 5 4 3 2 0

FIELD RM SZM TTM TMM R SZ TT TM

RESET 0 0 0 0 0 0 0 101

R/W W W W W W W W W

 Address Attribute Register (AATR)

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-31

Field Definitions:

RM[15]–Read/Write Mask
This field corresponds to the R-field. Setting this bit causes R to be ignored in address
comparisons.

SZM[14:13]–Size Mask
This field corresponds to the SZ field. Setting a bit in this field causes the corresponding bit
in SZ to be ignored in address comparisons.

TTM[12:11]–Transfer Type Mask
This field corresponds to the TT field. Setting a bit in this field causes the corresponding bit
in TT to be ignored in address comparisons.

TMM[10:8]–Transfer Modifier Mask
This field corresponds to the TM field. Setting a bit in this field causes the corresponding bit
in TM to be ignored in address comparisons.

R[7]–Read/Write
This field is compared with the internal R/W signal of the ColdFire2/2M. A high level
indicates a read cycle and a low level indicates a write cycle.

SZ[6:5]—Size
This field is compared to the internal size signals of the ColdFire2/2M. These signals
indicate the data size for the bus transfer.

00 = Longword
01 = Byte
10 = Word
11 = Reserved

TT[4:3]—Transfer Type
This field is compared with the internal TT signals of the ColdFire2/2M. These signals
indicate the transfer type for the bus transfer. These signals are always encoded as if the
ColdFire2/2M is in the ColdFire IACK mode (see Section 3.1.15 Master Transfer Type
(MTT[1:0]).)

00 = ColdFire2/2M Access
01 = Reserved
10 = Emulator Mode Access
11 = Acknowledge/CPU Space Access

These bits also define the TT encoding for BDM memory commands. In this case, the 01
encoding generates an alternate master access.

Debug Support

7-32 ColdFire2/2M User’s Manual MOTOROLA

TM[2:0]—Transfer Modifier
This field is compared with the internal TM signals of the ColdFire2/2M. These signals
provide supplemental information for each transfer type. These signals are always encoded
as if the ColdFire2/2M is in the ColdFire IACK mode (see Section 3.1.13 Master Transfer
Modifier (MTM[2:0]).) The encoding for normal ColdFire2/2M transfers is:

000 = Reserved
001 = User Data Access
010 = User Code Access
011 = Reserved
100 = Reserved
101 = Supervisor Data Access
110 = Supervisor Code Access
111 = Reserved

The encoding for emulator mode transfers is:

0xx = Reserved
100 = Reserved
101 = Emulator Mode Data Access
110 = Emulator Mode Code Access
111 = Reserved

The encoding for acknowledge/CPU space transfers is:

000 = CPU Space Access
001 = Interrupt Acknowledge Level 1
010 = Interrupt Acknowledge Level 2
011 = Interrupt Acknowledge Level 3
100 = Interrupt Acknowledge Level 4
101 = Interrupt Acknowledge Level 5
110 = Interrupt Acknowledge Level 6
111 = Interrupt Acknowledge Level 7

These bits also define the TM encoding for BDM memory commands.

7.4.2.3 PROGRAM COUNTER BREAKPOINT REGISTER (PBR, PBMR). The PC
breakpoint registers define a region in the code address space of the processor that can be
used as part of the trigger. The PBR value is masked by the PBMR value, allowing only
those bits in PBR that have a corresponding zero in PBMR to be compared with the
processor’s program counter register, as defined in the TDR. The PBR is accessible in
supervisor mode as debug control register $8 using the WDEBUG instruction and via the
BDM port using the RDMREG and WDMREG commands. The PBMR is accessible in
supervisor mode as debug control register $9 using the WDEBUG instruction and via the
BDM port using the WDMREG command.

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-33

Field Definition:

ADDRESS[31:0]–PC Breakpoint Address
This field contains the 32-bit address to be compared with the PC as a breakpoint trigger.

Field Definition:

MASK[31:0]–PC Breakpoint Mask
This field contains the 32-bit mask for the PC breakpoint trigger. A zero in a bit position
causes the corresponding bit in the PBR to be compared to the appropriate bit of the PC. A
one causes that bit to be ignored.

7.4.2.4 DATA BREAKPOINT REGISTER (DBR, DBMR). The data breakpoint registers
define a specific data pattern that can be used as part of the trigger into debug mode.The
DBR value is masked by the DBMR value, allowing only those bits in DBR that have a
corresponding zero in DBMR to be compared with internal data bus of the ColdFire2/2M, as
defined in the TDR. The DBR is accessible in supervisor mode as debug control register $E
using the WDEBUG instruction and via the BDM port using the RDMREG and WDMREG
commands. The DBMR is accessible in supervisor mode as debug control register $F using
the WDEBUG instruction and via the BDM port using the WDMREG command. The DBR is
overwritten by the BDM hardware when accessing memory as described in Section 7.4.1.2
Reuse of Debug Module Hardware .

BITS 31 0

FIELD ADDRESS

RESET -

R/W W

 Program Counter Breakpoint Register (PBR)

BITS 31 0

FIELD MASK

RESET -

R/W W

 Program Counter Breakpoint Mask Register (PBMR)

BITS 31 0

FIELD ADDRESS

RESET -

R/W W

 Data Breakpoint Register (DBR)

Debug Support

7-34 ColdFire2/2M User’s Manual MOTOROLA

Field Definition:

ADDRESS[31:0]–Data Breakpoint Value
This field contains the 32-bit value to be compared with the internal data bus as a breakpoint
trigger.

Field Definition:

MASK[31:0]–Data Breakpoint Mask
This field contains the 32-bit mask for the data breakpoint trigger. A zero in a bit position
causes the corresponding bit in the DBR to be compared to the appropriate bit of the internal
data bus. A one causes that bit to be ignored.

The data breakpoint register supports both aligned and misaligned operand references. The
relationship between the processor address, the access size, and the corresponding
location within the 32-bit data bus is shown in Table 7-10.

7.4.2.5 TRIGGER DEFINITION REGISTER (TDR). The TDR configures the operation of
the hardware breakpoint logic within the debug module and controls the actions taken under
the defined conditions. The breakpoint logic may be configured as a one- or two-level
trigger, where bits [31:16] of the TDR define the 2nd level trigger and bits [15:0] define the
first level trigger. The TDR is accessible in supervisor mode as debug control register $7
using the WDEBUG instruction and via the BDM port using the WDMREG command.

BITS 31 0

FIELD MASK

RESET -

R/W W

 Data Breakpoint Mask Register (DBMR)

Table 7-10. Misaligned Data Operand References

ADDRESS[1:0] ACCESS SIZE OPERAND LOCATION

00 Byte Data[31:24]
01 Byte Data[23:16]
10 Byte Data[15:8]
11 Byte Data[7:0]
00 Word Data[31:16]
10 Word Data[15:0]
00 Long Data[31:0]

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-35

Field Definitions:

TRC–Trigger Response Control
The trigger response control determines how the processor is to respond to a completed
trigger condition. The trigger response is always displayed on the DDATA pins.

00 = display on DDATA only
01 = processor halt
10 = debug interrupt
11 = reserved

EBL–Enable Breakpoint Level
If set, this bit serves as the global enable for the breakpoint trigger. If cleared, all breakpoints
are disabled.

EDLW–Enable Data Breakpoint for the Data Longword
If set, this bit enables the data breakpoint based on the entire internal data bus. The
assertion of any of the ED bits enables the data breakpoint. If all bits are cleared, the data
breakpoint is disabled.

EDWL–Enable Data Breakpoint for the Lower Data Word
If set, this bit enables the data breakpoint based on the low-order word of the internal data
bus.

EDWU–Enable Data Breakpoint for the Upper Data Word
If set, this bit enables the data breakpoint trigger based on the high-order word of the internal
data bus.

BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIELD TRC EBL
EDL
W

EDW
L

EDW
U

EDL
L

EDL
M

EDU
M

EDU
U

DI EAI EAR EAL EPC PCI

RESE
T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W W W W W W W W W W W W W W W W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD - EBL
EDL
W

EDW
L

EDW
U

EDL
L

EDL
M

EDU
M

EDU
U

DI EAI EAR EAL EPC PCI

RESE
T

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W - W W W W W W W W W W W W W W

 Trigger Definition Register (TDR)

Debug Support

7-36 ColdFire2/2M User’s Manual MOTOROLA

EDLL–Enable Data Breakpoint for the Lower Lower Data Byte
If set, this bit enables the data breakpoint trigger based on the low-order byte of the low-
order word of the internal data bus.

EDLM–Enable Data Breakpoint for the Lower Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the high-order byte of the low-
order word of the internal data bus.

EDUM–Enable Data Breakpoint for the Upper Middle Data Byte
If set, this bit enables the data breakpoint trigger on the low-order byte of the high-order word
of the internal data bus.

EDUU–Enable Data Breakpoint for the Upper Upper Data Byte
If set, this bit enables the data breakpoint trigger on the high-order byte of the high-order
word of the internal data bus.

DI–Data Breakpoint Invert
This bit provides a mechanism to invert the logical sense of all the data breakpoint
comparators. This can develop a trigger based on the occurrence of a data value not equal
to the one programmed into the DBR.

EAI–Enable Address Breakpoint Inverted
If set, this bit enables the address breakpoint based outside the range defined by ABLR and
ABHR. The assertion of any of the EA bits enables the address breakpoint. If all three bits
are cleared, this breakpoint is disabled.

EAR–Enable Address Breakpoint Range
If set, this bit enables the address breakpoint based on the inclusive range defined by ABLR
and ABHR.

EAL–Enable Address Breakpoint Low
If set, this bit enables the address breakpoint based on the address contained in the ABLR.

EPC–Enable PC Breakpoint
If set, this bit enables the PC breakpoint.

PCI–PC Breakpoint Invert
If set, this bit allows execution outside a given region as defined by PBR and PBMR to
enable a trigger. If cleared, the PC breakpoint is defined within the region defined by PBR
and PBMR.

7.4.2.6 CONFIGURATION/STATUS REGISTER (CSR). The CSR defines the operating
configuration for the processor and memory subsystem. In addition to defining the
microprocessor configuration, this register also contains status information from the
breakpoint logic. The CSR is cleared during system reset. The CSR can be read and written
to by the external development system and written to by the supervisor programming model.

Debug Support

MOTOROLA ColdFire2/2M User’s Manual 7-37

The CSR is accessible in supervisor mode as debug control register $0 using the WDEBUG
instruction and via the BDM port using the RDMREG and WDMREG commands.

Field Definitions:

STATUS[31:28]–Breakpoint Status
This 4-bit field provides read-only status information concerning the hardware breakpoints.
This field is defined as follows:

000x = no breakpoints enabled
001x = waiting for level 1 breakpoint
010x = level 1 breakpoint triggered
101x = waiting for level 2 breakpoint
110x = level 2 breakpoint triggered

The breakpoint status is also output on the DDATA port when not busy displaying other
ColdFire2/2M data. A write to the TDR resets this field.

FOF[27]–Fault-on-Fault
If this read-only status bit is set, a catastrophic halt has occurred and forced entry into BDM.
This bit is cleared on a read from the CSR.

TRG[26]–Hardware Breakpoint Trigger
If this read-only status bit is set, a hardware breakpoint has halted the processor core and
forced entry into BDM. This bit is cleared by reading CSR, or when the processor is
restarted.

BITS 31 28 27 26 25 24 23 17 16

FIELD STATUS FOF TRG
HAL

T
BKP

T
- IPW

RESE
T

0 0 0 0 0 - 0

R/W1 R R R R R - R/W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 0

FIELD MAP TRC EMU DDC UHE BTB - NPL IPI SSM -

RESE
T

0 0 0 0 0 0 0 0 0 0 -

R/W† R/W R/W R/W R/W R/W R/W R R/W R/W R/W -

NOTE: †The CSR is a write only register from the programming model. It can be read from and written to via the BDM
port.

 Configuration/Status Register (CSR)

Debug Support

7-38 ColdFire2/2M User’s Manual MOTOROLA

HALT[25]–Processor Halt
If this read-only status bit is set, the processor has executed the HALT instruction and forced
entry into BDM. This bit is cleared by reading the CSR, or when the processor is restarted.

BKPT[24]–Breakpoint Assert
If this read-only status bit is set, the BKPTB signal was asserted, forcing the processor into
BDM. This bit is cleared on a read from the CSR, or when the processor is restarted.

IPW[16]–Inhibit Processor Writes to Debug Registers
If set, this bit inhibits any processor-initiated writes to the debug module’s programming
model registers. This bit can only be modified by commands from the external development
system.

MAP[15]–Force Processor References in Emulator Mode
If set, this bit forces the processor to map all references while in emulator mode to a special
address space, TT = $2, TM = $5 (data) or $6 (text). If cleared, all emulator-mode references
are mapped into supervisor code and data spaces.

TRC[14]–Force Emulation Mode on Trace Exception
If set, this bit forces the processor to enter emulator mode when a trace exception occurs.

EMU[13]–Force Emulation Mode
If set, this bit forces the processor to begin execution in emulator mode when a trace
exception occurs. Refer to Section 7.4.1.1 Emulator Mode .

DDC[12:11]–Debug Data Control
This 2-bit field provides configuration control for capturing operand data for display on the
DDATA port. The encoding is:

00 = no operand data is displayed
01 = capture all M-Bus write data
10 = capture all M-Bus read data
11 = capture all M-Bus read and write data

In all cases, the DDATA port displays the number of bytes defined by the operand reference
size, i.e., byte displays 8 bits, word displays 16 bits, and long displays 32 bits (one nibble at
a time across multiple clock cycles.) Refer to Section 7.2.1.7 Begin Data Transfer (PST =
$8 - $A).

UHE[10]-User Halt Enable
This bit selects the CPU privilege level required to execute the HALT instruction.

0 = HALT is a privileged, supervisor-only instruction
1 = HALT is a non-privileged, supervisor/user instruction

Debug Support

7-39 ColdFire2/2M User’s Manual MOTOROLA

BTB[8:9]–Branch Target Bytes
This 2-bit field defines the number of bytes of branch target address to be displayed on the
DDATA outputs. The encoding is

00 = 0 bytes
01 = lower two bytes of the target address
10 = lower three bytes of the target address
11 = entire four-byte target address

Refer to Section 7.2.1.5 Begin Execution of Taken Branch (PST = $5) .

NPL[6]–Non-pipelined Mode
If set, this bit forces the processor core to operate in a nonpipeline mode of operation. In this
mode, the processor effectively executes a single instruction at a time with no overlap.

IPI[5]–Ignore Pending Interrupts
If set, this bit forces the processor core to ignore any pending interrupt requests signalled
while executing in single-instruction-step mode.

SSM[4]–Single-Step Mode
If set, this bit forces the processor core to operate in a single-instruction-step mode. While
in this mode, the processor executes a single instruction and then halts. While halted, any
of the BDM commands may be executed. On receipt of the GO command, the processor
executes the next instruction and then halts again. This process continues until the single-
instruction-step mode is disabled.

Reserved - All bits labelled “Reserved” or “0” are currently unused and are reserved for
future use. These bits should always be written as “0”.

7.4.3 Concurrent BDM and Processor Operation
The debug module supports concurrent operation of both the processor and most BDM
commands. BDM commands may be executed while the processor is running, except for
the operations that access processor/memory registers:

• Read/Write Address and Data Registers

• Read/Write Control Registers

For BDM commands that access memory, the debug module requests the ColdFire2/2M’s
internal bus. The processor responds by stalling the instruction fetch pipeline and then
waiting until all current bus activity is complete. At that time, the processor relinquishes the
internal bus to allow the debug module to perform the required operation. After the
conclusion of the debug module bus cycle, the processor reclaims ownership of the bus. By
implementing this scheduling mechanism, the processor can minimize the amount of
intrusion caused by debug module requests.

Under certain conditions, the processor may never grant the processor's internal bus to the
debug module causing the BDM command to never be performed. Specifically, the

Debug Support

7-40 ColdFire2/2M User’s Manual MOTOROLA

processor's internal bus grant may be withheld from the debug module if the processor is
executing a tight loop where the entire loop is contained within one aligned longword.

Examples include:

align 4
label1: nop

bra.b label1

align 4
label2: bra.w label2

The solution to this scheduling problem is to force the loop to be aligned ACROSS a
longword boundary. Given this alignment, the processor will always correctly grant the
processor's internal bus to the debug module.

The development system must use caution in configuring the Breakpoint Registers if the
processor is executing. The debug module does not contain any hardware interlocks, so
Motorola recommends that the TDR be disabled while the Breakpoint Registers are being
loaded. At the conclusion of this process, the TDR can be written to define the exact trigger.
This approach guarantees that no spurious breakpoint triggers will occur.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed
while the CPU is writing the debug registers (DSCLK must be inactive).

7.4.4 Motorola Recommended BDM Pinout
The ColdFire BDM connector is a 26-pin Berg Connector arranged 2x13, shown in Figure
7-9.

Debug Support

7-41 ColdFire2/2M User’s Manual MOTOROLA

Table 7-11 shows the correlation between the standard ColdFire connector and the
ColdFire2/2M’s signals.

7.4.5 Differences Between the ColdFire2/2M BDM and CPU32 BDM
1. DSCLK, BKPT, and DSI need to meet the setup and hold times relative to the rising

edge of the processor clock to prevent the processor from propagating metastable
states.

NOTES: 1. Supplied by target

2. Pins reserved for BDM developer use. Contact developer.

3. * Denotes a vectored signal.

Figure 7-9. Recommended BDM Connector

Table 7-11. BDM Connector Correlation

CONNECTOR COLDFIRE2/2M CONNECTOR COLDFIRE2/2M

+5V +5V DSO DSO
BKPT BKPTB GND GND

CLK_CPU CLK PST0 PST[0]
DDATA0 DDATA[0] PST1 PST[1]
DDATA1 DDATA[1] PST2 PST[2]
DDATA2 DDATA[2] PST3 PST[3]
DDATA3 DDATA[3] RESET MRSTB
DSCLK DSCLK TEA MTEAB

DSI DSI Vcc_CPU VDD

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

EVELOPER RESERVED2

GND

GND

RESET*

+5V1

GND

PST2

PST0

DDATA2

DDATA0*

MOTOROLA RESERVED

GND

VCC_CPU

BKPT

DSCLK

DEVELOPER RESERVE

DSI

DSO

PST3*

PST1

DDATA3*

DDATA1

GND

MOTOROLA RESERVED

CLK_CPU

TEA

Debug Support

7-42 ColdFire2/2M User’s Manual MOTOROLA

2. DSO transitions relative to the rising edge of DSCLK only. In the CPU32 BDM, DSO
transitions between serial transfers to indicate to the development system that a
command has successfully completed. The ColdFire BDM does not support this
feature.

3. The development system must note that the DSO is not valid during the first rising
edge of DSCLK. Instead, the first rising edge of DSCLK causes DSO to transmit the
MSB of DSO. A serial transfer is illustrated in Figure 7-3.

MOTOROLA

 ColdFire2/2M User’s Manual

8-1

SECTION 8
TEST OPERATION

The ColdFire2/2M test stategy includes:

1. At-speed parallel scan testing via 16 parallel scan chains to provide high fault
coverage

2. The use of an I/O test ring to enable scan testing of the embedded CPU and the
surrounding ASIC logic

3. A methodology to provide testing of the integrated memories connected to the CPU
with a minimal required pinout.

The following sections describe the signals and methodologies for:

• Scan Testing

• Integrated Memory Testing

IDDQ testing can also be performed contingent upon the ability to constrain the design to
avoid conditions that cause high leakage currents.

8.1 SIGNALS REQUIRED TO PERFORM SCAN TEST

This section describes the ColdFire2/2M signals dedicated to the scan testing of the
ColdFire2/2M. These signals are required to be muxed out to package pins. All ColdFire2/
2M signals are unidirectional and synchronous.

8.1.1 Scan Enable (SCAN_ENABLE)

This active-high input signal enables scan testing of the ColdFire2/2M. It forces all internal
flip-flops to be linked together into sixteen parallel scan chains.

8.1.2 Scan Exercise Array (SCAN_XARRAY)

This active-high input signal is used to exercise the integrated memory arrays during scan
testing. This signal causes random writes to the internal RAMs by strobing the write strobes
while scanning. The array output data does not affect the scan via use of the SCAN_MODE
pin.

8.1.3 Scan Input (SI[15:0])

These input signals are connected to the16 internal ColdFire2/2M scan chain inputs.

Test Operation

8-2

 ColdFire2/2M User’s Manual

MOTOROLA

8.1.4 Scan Mode (SCAN_MODE).

This active-high, unidirection input signal gates off all memory array outputs during scan
testing.SCAN_MODE must be asserted for the duration of scan testing.

8.1.5 Scan Output (SO[15:0])

These output signals are connected to the 16 internal ColdFire2/2M scan chain outputs.

8.1.6 I/O Test Ring Clock (TRCLK)

This input signal is the synchronous clock used to transition the test ring during scan testing.
TR_CLK is connected to the clock input of all I/O test ring registers.

8.1.7 I/O Test Ring Core Mode Enable (CORE_TEST)

This active-high input signal enables the core mode of the test ring during scan testing. The
test ring is in scan core mode if CORE_TEST is asserted and in scan ASIC mode if
CORE_TEST is negated.

8.1.8 I/O Test Ring Data Input (TR_SDI[1:0])

These input signals are the serial data inputs for the I/O test ring chains.

8.1.9 I/O Test Ring Data Output (TR_SDO[1:0])

These output signals are the serial output data from the I/O test ring chains.

8.1.10 I/O Test Ring Enable (TR_SE)

This active-high input signal enables the test ring. TR_SE is connected to the scan enable
input of all I/O test ring scannable registers.

8.1.11 I/O Test Ring Mode (TR_MODE)

This active-high input signal enables the scan test mode of the test ring. The test ring is in
scan test mode if TR_MODE is asserted and in normal functional mode if negated.
TR_MODE should be asserted for the duration of scan testing, and be held negated for the
duration of memory testing and during functional operation of the device.

8.1.12 TEST WRITE INHIBIT (TEST_WR_INH).

Optional: Asserting this signal will prevent strobing; i.e. writing, of any of the integrated
memories. However, as long as SCAN_MODE is asserted, the array outputs are gated off
from the ColdFire2/2M and will not affect the scan vectors.

8.2 SCAN OPERATION

Motorola provides ATPG vectors for the ColdFire2/2M. The signals listed in the previous
section must be brought out to package pins (muxed out) in order for Motorola supplied scan
vectors to be applied. This section provides an understanding of the ColdFire2/2M scan
implementation. The following diagram illustrates the ColdFire2/2M scan test
implementation:

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-3

Figure 8-1. Scan Test Implementation Diagram

SI/SO refer to the 16 parallel scan chains that cover the registers in ColdFire2/
2M.SCAN_EN controls these chains. If these pins, plus all other inputs and outputs of
ColdFire2/2M were muxed to package pins, ATPG coverage of the core would be enabled.
The I/O test ring allows stimulus to be applied to embedded ColdFire2/2M inputs and allows
ColdFire2/2M embedded outputs to be observed with a minimum of pins muxed to the chip
periphery. SI[15:0] is used to load the ColdFire2/2M parallel scan chains while TR_SDI[1:0]
set up the appropriate values on the ColdFire2/2M inputs for each scan vector. SO[15:0] and
TR_SDO[1:0] are used to observe and verify the scan behavior.

The I/O test ring isolates the ASIC logic from the ColdFire2/2M enabling separate scan
testing of each. It is comprised of two scan chains, each containing 44 registers (half
scannable, half not; see Table 8-3, Table 8-4 and Figure 8-2). The heads of the chains are
TR_SDI[0] and TR_SDI[1]. The tails of the chains are TR_SDO[0] and TR_SDO[1]. The I/O
test ring also enables input and output spec testing as follows: the clocks (TR_CLK and
CLK) can be skewed to verify that a transition launched from the scan ring is captured at the
input register in a specified period of time. This is then verified by capturing outputs of the
ColdFire2/2M and shifting the scan data out to compare to expected values. This is also how
output specs are verified: the clocks can be skewed a specified amount, and an output
transition can be captured by the scan ring. Again, the data is shifted out and values
compared to expected values. See Table 8-1 for scan chain I/O and length information.

SO[15:0]S1[15:0]

OUTPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

TR_SDI[1:0]

TR_SDO[1:0]

TEST RING

CF2 CPU

COLDFIRE2/2M

Test Operation

8-4

 ColdFire2/2M User’s Manual

MOTOROLA

In functional mode, the I/O test ring adds a 2:1 multiplexor delay to the inputs and outputs
of the core. Each cell in the I/O test ring pairs an input and an output which allows for the
sharing of registers.

Figure 8-2. I/O Test Ring Cell

Table 8-1. Parallel Scan Chain Information

SCAN CHAIN
DESIGNATOR

SCAN CHAIN
INPUT

SCAN CHAIN
OUTPUT

LENGTH

0 SI[0] SO[15] 99
1 SI[1] SO[14] 99
2 SI[2] SO[13] 99
3 SI[3] SO[12] 99
4 SI[4] SO[11] 99
5 SI[5] SO[10] 99
6 SI[6] SO[9] 99
7 SI[7] SO[8] 99
8 SI[8] SO[7] 99
9 SI[9] SO[6] 99

10 SI[10] SO[5] 99
11 SI[11] SO[4] 99
12 SI[12] SO[3] 99
13 SI[13] SO[2] 99
14 SI[14] SO[1] 99
15 SI[15] SO[0] 84

I/O TEST RING 0 TRSDI[0] TRSDO[0] 88
I/O TEST RING 1 TRSDI[1] TRSDO[1] 88

TRSDI TRSDO

CF2 COREASIC

CORE_IN
0

1
FF2

FF1

D Q
CK

D
SDI
SE

CK

Q

0

1

0

1

ASIC_OUT

ASIC_IN
CORE_OUT

CORE_TEST TR_SE TRCLK TR_MODE

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-5

The I/O test ring behaves in the same manner for the ASIC logic as it does for ColdFire2/
2M. Table 8-2 lists the I/O test ring control signal configurations for the different modes of
testing. Table 8-3 and Table 8-4 list each signal, which I/O test ring chain it is part of, and
how deep (how many cells from TRSDI[1:0] it is in the chain. Note that an X means that the
signal needs to be driven, however high or low is optional. The actual value is a don’t care.

* Needs to driven high or low. The actual value is a don’t care.

Table 8-2. I/O TEST RING MODE CONFIGURATioNS

LOAD
SCAN

ColdFire2/2M
SCAN
ASIC

SHIFT OUT
FUNCTIONAL
(NON-SCAN)

CORE_TEST *X 1 0 *X *X
TR_SE 1 0 0 1 *X
TRCLK ON ON ON ON *X

TR_MODE *X 1 1 *X 0
TR_SDI[1:0] APPLY DATA *X *X *X *X

Table 8-3. I/O TEST RING CHAIN 0 (TRSDI[0]/TRSDO[0])

CORE INPUT CORE OUTPUT
CELL #

(2 REGS/
CELL)

CORE INPUT CORE OUTPUT
CELL #

(2 REGS/
CELL)

MRDATA_IE MWDATA_OE HEAD OF I/O
TEST RING

CHAIN 0

MRDATA[21] MWDATA[21] 23

MRDATA[0] MWDATA[0] 2 MRDATA[22] MWDATA[22] 24
MRDATA[1] MWDATA[1] 3 MRDATA[23] MWDATA[23] 25
MRDATA[2] MWDATA[2] 4 MRDATA[24] MWDATA[24] 26
MRDATA[3] MWDATA[3] 5 MRDATA[25] MWDATA[25] 27
MRDATA[4] MWDATA[4] 6 MRDATA[26] MWDATA[26] 28
MRDATA[5] MWDATA[5] 7 MRDATA[27] MWDATA[27] 29
MRDATA[6] MWDATA[6] 8 MRDATA[28] MWDATA[28] 30
MRDATA[7] MWDATA[7] 9 MRDATA[29] MWDATA[29] 31
MRDATA[8] MWDATA[8] 10 MRDATA[30] MWDATA[30] 32
MRDATA[9] MWDATA[9] 11 MRDATA[31] MWDATA[31] 33

MRDATA[10] MWDATA[10] 12 MTEAB MKILLB 34
MRDATA[11] MWDATA[11] 13 IPLB[0] MTM[0] 35
MRDATA[12] MWDATA[12] 14 IPLB[1] MTM[1] 36
MRDATA[13] MWDATA[13] 15 IPLB2] MTM[2] 37
MRDATA[14] MWDATA[14] 16 ICH_SZ[0] PST[0] 38
MRDATA[15] MWDATA[15] 17 ICH_SZ[1] PST[1] 39
MRDATA[16] MWDATA[16] 18 ICH_SZ[2] PST[2] 40
MRDATA[17] MWDATA[17] 19 SRAM_SZ[0] DDATA[0] 41
MRDATA[18] MWDATA[18] 20 SRAM_SZ[1] DDATA[1] 42
MRDATA[19] MWDATA[19] 21 SRAM_SZ[2] DDATA[2] 43
MRDATA[20] MWDATA[20] 22 ROM_SZ[2] TEST_RHIT TAIL OF I/O

TEST RING
CHAIN 0

Test Operation

8-6

 ColdFire2/2M User’s Manual

MOTOROLA

Table 8-4. I/O TEST RING CHAIN 1 (TRSDI[1]/TRSDO[1])

8.3 INTEGRATED MEMORY TESTING

A test mode is provided to test embedded SRAM, ROM, and/or ICACHE arrays that connect
directly to the ColdFire2/2M. All integrated memories are tested by placing the ColdFire2/
2M into test mode (TEST_MODE = 1) and performing reads and writes via the test bus and
system-bus. These busses allow external access to the integrated memories via functional
paths. The path from the test/system bus to the memory arrays is a pipelined path. The test
bus input signals serve as multiplexor select signals to enable the correct path from
MRDATA and TEST_ADDR to a particular array, and from the particular array out through
MWDATA. During test mode, ColdFire2/2M is idle and does not execute code.

The following section details the signal descriptions, test methodology, and data transfer
mechanisms.

8.3.1 Test Bus Signal Description

This section describes the ColdFire2/2M signals dedicated to testing the integrated
memories. Additional signals are required to be either asserted or negated during memory
test and are described here also. If all three types of integrated memories are used; ie.

CORE INPUT CORE OUTPUT
CELL #

(2 REGS/
CELL)

CORE INPUT CORE OUTPUT
CELL #

(W REGS/
CELL)

NC mfrzb HEAD OF I/O
TEST RING

CHAIN 1

TEST_CTRL MADDR[18] 23

MRDATA[0] MARBC[0] 2 TEST_RD MADDR[19] 24
ROM_SZ[0] MARBC[1] 3 TEST_DATA_RD MADDR[20] 25
ROM_SZ[1] PST[3] 4 TEST_RAM_RD MADDR[21] 26

MRSTB DDATA[3] 5 TEST_ROM_RD MADDR[22] 27
DSCLK DSO 6 ROM_VLD MADDR[23] 28

IACK_68k MRW 7 TEST_IVLD_INH MADDR[24] 29
TEST_MODE MTT[0] 8 NC MADDR[25] 30
TEST_KTA MTT[1] 9 NC MADDR[26] 31

TEST_ADDR[2] MADDR[5] 10 TEST_ITAG_WRT MADDR[27] 32
TEST_ADDR[3] MADDR[6] 11 TEST_DATA_WRT MADDR[28] 33
TEST_ADDR[4] MADDR[7] 12 TEST_RAM_WRT MADDR[29] 34
TEST_ADDR[5] MADDR[8] 13 MTAB MADDR[30] 35
TEST_ADDR[4] MADDR[9] 14 BKPTB MADDR[31] 36
TEST_ADDR[7] MADDR10] 15 NC MADDR[0] 37
TEST_ADDR[8] MADDR[11] 16 NC MADDR[1] 38
TEST_ADDR[9] MADDR[12] 17 NC MADDR[2] 39

TEST_ADDR[10] MADDR[13] 18 NC MADDR[3] 40
TEST_ADDR[11] MADDR[14] 19 NC MADDR[4] 41
TEST_ADDR[12] MADDR[15] 20 NC MSIZ[0] 42
TEST_ADDR[13] MADDR[16] 21 NC MSIZ[1] 43
TEST_ADDR[14] MADDR[17] 22 NC MTSB TAIL OF I/O

TEST RING
CHAIN 1

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-7

SRAM, ROM, and ICACHE, all signals listed here must be brought out to package pins via
muxing. If only one or two types of integrated memories are used, a subset of signals listed
here must be brought out to package pins. I.E. some of the test input control pins could be
negated instead of needing to be muxed out. Also, depending upon array size, not all of
TEST_ADDR may be necessary. All ColdFire2/2M signals are unidirectional and
synchronous.

8.3.1.1 TEST ADDRESS BUS (TEST_ADDR[14:2]).

These input signals are used to
specify an address when testing the integrated memories.

8.3.1.2 TEST CONTROL (TEST_CTRL).

This active-high input signal indicates the test
address bus (TEST_ADDR[14:2]) will be latched on the next positive clock edge.

8.3.1.3 TEST IDATA READ (TEST_IDATA_RD).

This active-high input signal is used to
test the instruction cache data memory read operation.

8.3.1.4 TEST IDATA WRITE (TEST_IDATA_WRT).

This active-high input signal is used to
test the instruction cache data memory write operation.

8.3.1.5 TEST INSTRUCTION CACHE READ HIT (TEST_RHIT).

This active-high output
signal indicates a hit has occurred when accessing the instruction cache during memory
array testing.

8.3.1.6 TEST INVALIDATE INHIBIT (TEST_IVLD_INH).

This active-high input signal
inhibits the invalidate operation when testing the instruction cache.

8.3.1.7 TEST ITAG WRITE (TEST_ITAG_WRT).

This active-high input signal is used to
test the instruction cache tag memory write operation.

8.3.1.8 TEST KTA MODE ENABLE (TEST_KTA).

This active-high input signal allows the
instruction cache tag and data arrays to be read in parallel, mimicking the functional
operation. This allows testing of the speed path from the tag and data arrays to the core.

8.3.1.9 TEST MODE ENABLE (TEST_MODE).

This active-high input signal is used to
enable all of the integrated memory test signals. TEST_MODE should be asserted for the
duration of memory testing.

8.3.1.10 TEST SRAM READ (TEST_SRAM_RD).

This active-high input signal is used to
test the integrated SRAM memory read operation.

8.3.1.11 TEST SRAM WRITE (TEST_SRAM_WRT).

This active-high input signal is used
to test the integrated SRAM memory write operation.

8.3.1.12 TEST READ (TEST_RD).

This active-high input signal is used to test read
operations on all of the integrated memories.

8.3.1.13 TEST ROM READ (TEST_ROM_RD).

This active-high input signal is used to test
the integrated ROM memory read operation.

Test Operation

8-8

 ColdFire2/2M User’s Manual

MOTOROLA

8.3.1.14 TEST WRITE INHIBIT (TEST_WR_INH).

This active-high input signal disables
the write strobes to the SRAM and instruction cache compiled RAMS. TEST_WR_INH
should be negated for the duration of memory test.

8.3.1.15 MIE.

This active-high input signal enables the capturing of MRDATA into the
memory arrays. MIE should be asserted for the duration of memory testing.

8.3.1.16 TR_MODE.

This signal needs to be negated to keep the I/O test ring in functional
mode. TR_MODE should be negated for the duration of memory testing.

8.3.1.17 MWDATA[31:0].

 The M-Bus write data bus is used to observe array data during
array reads.

8.3.1.18 MRDATA[31:0].

The M-Bus read data bus is used to apply write data during array
writes.

8.3.1.19 SCAN_MODE.

 This signal must be negated to allow array output data into the
ColdFire2/2M.

8.3.1.20 SCAN_SE.

 This signal must be negated to allow functional operation of the
ColdFire2/2M.

8.3.1.21 SCAN_XARRAY.

This signal should be negated to prevent continuous strobing of
the ColdFire2/2M integrated memories.

8.3.2 Memory Test Theory of Operation

A write consists of 4 cycles; i.e. it is not until the fourth cycle after applying TEST_ADDR and
MRDATA, with the array’s write control signal active, that data is strobed into the array. Data
and address can be updated continuously every cycle to fill the array via the pipeline.

A read consists of 6 cycles; i.e. it is not until the sixth cycle after applying TEST_ADDR, with
the array’s read control signal active, that data appears on MWDATA. Address can be
updated continuously every cycle to read the array via the pipeline.

Both the SRAM and ICACHE DATA arrays are accessed as noted above. The ROM is read
as noted above. Two test modes exist for the ICACHE TAG array. Essentially the TAG and
DATA array are written. Leaving TEST_MODE asserted, TEST_KTA is then asserted and
address applied. TEST_RHIT will be asserted 4 cycles later, ICACHE DATA array data will
subsequently appear on MWDATA 2 cycles later.

The processor must be placed in reset in accordance with the system reset specification.
The sequence (MRSTB asserted 6 cycles, stall 8cycles) must be executed both upon
entering test mode at power-up, as well as when switching into test mode from any other
mode. It is this sequence that directs the CPU to go into an idle mode to allow integrated
memory testing.

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-9

8.3.3 Test Mode

The test mode is entered by asserting TEST_MODEand MIE, negating TEST_CTRL,
TEST_WR_INH, and TR_MODE, and resetting the ColdFire2/2M as described in

Section
3.9 Reset Operation .

MRSTB must be asserted (low) >= 6 cycles. The first test sequence
should not begin until at least eight clock cycles after MRSTB is negated. TEST_MODE and
MIE should remain asserted during all test sequences. TEST_WR_INH and TR_MODE
should remain negated during all test sequences.

8.3.4 Instruction Cache Tag RAM Testing

The instruction cache tag RAM consists of up to 2K addresses that can be accessed
individually through the test bus. Testing the compiled tag RAM is accomplished by first
writing into the tag RAM to set the valid bit, and reading the tag RAM to check for a cache hit.

8.3.4.1 INSTRUCTION CACHE TAG RAM WRITE FUNCTION.

Writing to the instruction
cache tag RAM is performed though the test bus and MRDATA[31:0] after entering test
mode. The address and control signals are input on the test bus and the data to be written
to the tag RAM is input on MRDATA[31:0].

Writes to the tag RAM are performed in a pipelined fashion as shown in Figure 8-3. All input
signals are latched on the positive edge of CLK and all outputs transition on the positive
edge of CLK.

Test Operation

8-10

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
On the first clock cycle of the tag RAM write sequence, the first tag RAM address should be
driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the first data value associated with the address asserted in C1 should
be driven onto MRDATA[31:0] and the next address should be driven onto
TEST_ADDR[14:2].

Clock 3 (C3)
On the third cycle, the next address and data values should be driven.

Clock 4 (C4)
On the fourth cycle, the next address and data values should be driven and
TEST_ITAG_WRT should be asserted. The remaining addresses and data are driven each
successive clock cycle and TEST_ITAG_WRT should remain asserted until the last data
value has been latched.

Clock 5 (C5)
The fifth clock cycle is identical to C4. The first write to the tag RAM occurs.

Figure 8-3. Test Instruction Cache Tag Write Cycles

C1 C2 C3 C4 C5 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4 A5TEST_ADDR

TEST_CTRL

D0 D1 D2 D3 D4MRDATA

TEST_ITAG_WRT

A0 A1ICH_ADDR

ICHT_CSB

ICHT_RWB

T0 T1ICHT_DI

ICHT_ST

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-11

Clock n (Cn)
The remaining clock cycles in the test are identical to C5.

Throughout the entire sequence, the data value being driven is associated with the address
driven in the previous clock cycle. The format of the data value written to the tag RAM
depends on the cache configuration. The data value consists of the significant upper bits
latched on MRDATA with the valid bit (bit eight) set. See

Section 5.1 Instruction Cache

for
more information.

8.3.4.2 INSTRUCTION CACHE TAG RAM READ FUNCTION.

Reading from the
instruction cache tag RAM is not performed as a typical input address, read data operation.
Instead, reading the instruction cache tag RAM is performed though the test bus and
MRDATA[31:0] after entering test mode. The address and control signals are input on the
test bus and the expected value of the data from the tag RAM is input on MRDATA[31:0].

Reads from the tag RAM are performed in a pipelined fashion as shown in Figure 8-4. All
input signals are latched on the positive edge of CLK and all outputs transition on the
positive edge of CLK.

Figure 8-4. Test Instruction Cache Tag Read Cycles

C1 C2 C3 C4 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4TEST_ADDR

TEST_CTRL

D0 D1 D2 D3MRDATA

A0 A1ICH_ADDR

ICHT_CSB

ICHT_RWB

ICHT_ST

T0 T1ICHT_DO

TEST_RHIT

Test Operation

8-12

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
On the first clock cycle of the tag RAM read sequence, the first data RAM address should
be driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the first expected data value associated with the address asserted in
C1 should be driven onto MRDATA[31:0] and the next address should be driven onto
TEST_ADDR[14:2]. The remaining addresses and expected data are driven each
successive clock cycle.

Clock 3 (C3)
The third clock cycle is identical to C2.

Clock 4 (C4)
The fourth clock cycle is identical to C3. The first read from the tag RAM occurs in C4, three
cycles after the first address was driven. If the value read from the tag RAM is equal to the
associated value latched on MRDATA[31:0] and the valid bit is set, TEST_RHIT will be
asserted.

Clock n (Cn)
The remaining clock cycles in the test are identical to C4.

Throughout the entire sequence, TEST_RHIT is associated with the address driven three
clock cycles earlier. For this reason, three stall cycles (TEST_CTRL negated) should occur
after the last address is driven before the next sequence to wait for the last TEST_RHIT.

8.3.4.3 INSTRUCTION CACHE TAG RAM WRITE FOLLOWED BY READ FUNCTION.

The following timing diagram illustrates the minimum number of cycles necessary to perform
a write followed by read of the instruction cache tag RAM. A certain sequence is neccessary
because of the pipelined datapath to the arrays from MRDATA and MWDATA.

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-13

.

Figure 8-5. I-Cache Tag Write Followed by Read

Clock 1 (C1)
On the first clock cycle , the data RAM address A1 should be driven onto TEST_ADDR[14:2]
and TEST_ITAG_WRT should be asserted.

Clock 2 (C2)
On the second cycle, the D1, data value associated with the address asserted in C1, should
be driven onto MRDATA[31:0]. The address value driven in C1, A1, can optionally be driven
in C2. TEST_ITAG_WRT remains asserted.

Clock 3 (C3)
The third clock cycle is a stall cycle necessary because of the pipelined data path. The
address driven in C1, A1, must be driven during C3.TEST_ITAG_WRT remains asserted.

Clock 4 (C4)

The next write address, A2, should be driven onto TEST_ADDR[14:2] during C4. The data
driven in C2, D1, must be driven in C4.TEST_ITAG_WRT remains asserted.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 A2

D2D1

D3D2D2D1D1

A1 A1 A2 A2 A3 A3

D2D1

CLK

TEST_MODE

TEST_CTRL

TEST_ITAG_WRT

TEST_RD

TEST_ADDR

MRDATA

TEST_RHIT

ICHT_ADDR

ICHT_DI

ICHT_DO

WRITE READ STALL WR RD

STALL

Test Operation

8-14

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 5(C5)
TEST_ITAG_WRT must be negated during C5. A1 and D1, associated with C1/C2, are at
the ICACHE tag array during C5; i.e. the actual WRITE to the array occurs in this cycle. The
data value associated with the address asserted in C4, D2, is driven onto MRDATA[31:0]
during this cycle as well. You have the option of driving A2 during this cycle.

Clock 6 (C6)

The TEST_RHIT signal will assert during this cycle if the ICACHE tag array data for A1
matches D1, the access in Cycles C1 and C2; i.e. it is in this cycle that the actual READ
occurs. A2 must be driven onto TEST_ADDR[14:2] during this cycle. TEST_ITAG_WRT
asserts and D2 can optionally be driven during this cycle.

Clock 7 (C7)

On C7, D2, must be driven onto MRDATA[31:0] and the next data RAM address, A3, should
be driven onto TEST_ADDR[14:2]. This is a stall cycle. TEST_ITAG_WRT remains asserted
during this cycle.

Clock 8 (C8)

During C8, TEST_ITAG_WRT must be negated. A3 can optionally be driven during this
cycle; D3 must be driven during this cycle. The actual write of A2/D2 occurs during this
cycle.

This periodic 3-cycle sequence continues; ie. C4-C6 are repeated during C7-C9, C10-C12,
etc. These three cycles are STALL, WRITE, then READ. TEST_ITAG_WRT always negates
during the “C5” cycle or the WRITE cycle and asserts during the “C6-C7” cycles..
TEST_RHIT always asserts if no error during “C6” or the READ cycle. The address is
asserted in the “C4” cycle, optionally asserted in the “C5” cycle and again asserted during
the “C6” cycle. The corresponding data to that address is driven in “C5”, optionally driven in
“C6” and then driven again in “C7”.

8.3.5 Instruction Cache Data RAM Testing

The instruction cache data RAM consists of up to 8K long words that can be accesses
individually through the test bus. Testing the compiled data RAM is accomplished by first
writing test patterns into the data RAM, reading the data RAM, and verifying the results.

8.3.5.1 INSTRUCTION CACHE DATA RAM WRITE FUNCTION.

Writing to the instruction
cache data RAM is performed though the test bus and MRDATA[31:0] after entering test
mode. The address and control signals are input on the test bus and the data to be written
to the data RAM is input on MRDATA[31:0].

Writes to the data RAM are performed in a pipelined fashion as shown in Figure 8-6. All input
signals are latched on the positive edge of CLK and all outputs transition on the positive
edge of CLK.

Test Operation

MOTOROLA

 ColdFire2/2M User’s Manual

8-15

Clock 1 (C1)
On the first clock cycle of the data RAM write sequence, the first data RAM address should
be driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the first data value associated with the address asserted in C1 should
be driven onto MRDATA[31:0] and the next address should be driven onto
TEST_ADDR[14:2].

Clock 3 (C3)
On the third cycle, the next address and data values should be driven and
TEST_IDATA_WRT should be asserted.

Clock 4 (C4)
The fourth clock cycle is identical to C3. The remaining addresses and data are driven each
successive clock cycle and TEST_IDATA_WRT should remain asserted until the last data
value has been latched. The first write to the data RAM occurs.

Clock n (Cn)
The remaining clock cycles in the test are identical to C4.

Figure 8-6. Test Instruction Cache Data Write Cycles

C1 C2 C3 C4 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4TEST_ADDR

TEST_CTRL

D0 D1 D2 D3MRDATA

TEST_IDATA_WRT

A0 A1ICH_ADDR

ICHD_CSB

ICHD_RWB

D0 D1ICHD_DI

ICHD_ST

Test Operation

8-16

 ColdFire2/2M User’s Manual

MOTOROLA

Throughout the entire sequence, the data value being driven is associated with the address
driven in the previous clock cycle.

8.3.5.2 INSTRUCTION CACHE DATA RAM READ FUNCTION.

Reading from the
instruction cache data RAM is performed though the test bus and MWDATA[31:0] after
entering test mode. The address and control signals are input on the test bus and the data
from the data RAM is output on MWDATA[31:0].

Reads from the data RAM are performed in a pipelined fashion as shown in Figure 8-7. All
input signals are latched on the positive edge of CLK and all outputs transition on the
positive edge of CLK.

Clock 1 (C1)
On the first clock cycle of the data RAM read sequence, the first data RAM address should
be driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the next addresses should be driven onto TEST_ADDR[14:2].

Figure 8-7. Test Instruction Cache Data Read Cycles

C1 C2 C3 C4 C5 C6 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4 A5 A6TEST_ADDR

TEST_CTRL

TEST_IDATA_RD

TEST_RD

A0 A1 A2 A3ICH_ADDR

ICHD_CSB

ICHD_RWB

ICHD_ST

D0 D1 D2 D3ICHD_DO

D0 D1MWDATA

Test Operation

8-17

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 3 (C3)
The third cycle is identical to C2.

Clock 4 (C4)
On the fourth cycle, the next address should be driven and TEST_IDATA_RD should be
asserted. The first read from the data RAM occurs in C4.

Clock 5 (C5)
On the fifth cycle, the next address should be driven and TEST_RD should be asserted. The
remaining addresses are driven each successive clock cycle and TEST_IDATA_RD should
remain asserted until the last data value has been read from the data RAM.

Clock 6 (C6)
Cycle 6 is identical to C5. The MWDATA[31:0] signals are driven with the first data, five
cycles after the associated address was driven. TEST_RD should remain asserted until the
last data value has been driven onto MWDATA[31:0].

Clock n (Cn)
The remaining clock cycles in the test are identical to C6.

Throughout the entire sequence, the data value being driven is associated with the address
driven five clock cycles earlier. For this reason, five stall cycles (TEST_CTRL negated)
should occur after the last address is driven before the next sequence to wait for the last
data to be driven.

8.3.5.3 INSTRUCTION CACHE DATA RAM WRITE FOLLOWED BY READ FUNCTION.

The following timing diagram illustrates the minimum number of cycles necessary to perform
a write followed by read of the instruction cache data RAM. A certain sequence is
neccessary because of the pipelined datapath to the arrays from MRDATA and MWDATA.

Test Operation

8-18

 ColdFire2/2M User’s Manual

MOTOROLA

Figure 8-8. I-Cache Data Write/Read

Clock 1 (C1)
On the first clock cycle , A1 (data RAM address) should be driven onto TEST_ADDR[14:2]
and TEST_IDATA_WRT should be asserted.

Clock 2 (C2)
On the second cycle, D1 (the data value associated with A1, the address asserted in C1)
should be driven onto MRDATA[31:0]. A1 must continue to be driven during this cycle.
TEST_IDATA_WRT continues to be asserted.

Clock 3 (C3)
On the third cycle, the next data RAM address, A2, is driven onto TEST_ADDR[14:2]. D1
can optionally be driven during this cycle. TEST_IDATA_WRT remains asserted during this
cycle.

Clock 4 (C4)
D2 should be driven onto MRDATA[31:0] during this cycle. TEST_IDATA_RD must be
asserted here for the length of this test. TEST_IDATA_WRT is negated during this cycle.
The actual WRITE to the ICACHE data array of the C1/C2 (A1/D1) access occurs during this
cycle. A2 must remain driven during this cycle.

C1 C2 C3 C4 C5 C6 C7 C8 C9

A1 A2 A3

TEST_RD

TEST_ADDR

MRDATA

ICHT_ADDR

ICHD_DI

ICHD_DO

WRITE READ

A4

D1 D2 D3 D4

D1 D2

A3A2A1

D1 D2 D3

D1 D2 D3

WRITE READ READWRITE

TEST_IDATA_RD

TEST_IDATA_WRT

MWDATA

Test Operation

8-19

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 5(C5)

The next data RAM address, A3, should be driven onto TEST_ADDR[14:2] during this cycle.
TEST_RD is asserted here for the length of this test. TEST_IDATA_WRT is asserted during
this cycle. The acutal READ of the ICACHE data array C1/C2 (A1/D1) access occurs during
this cycle. D2 can optionally be driven during this cycle.

Clock 6 (C6)

D3, the data associated with the C5 address, A3, is driven onto MRDATA[31:0] during this
cycle. TEST_IDATA_WRT is negated during this cycle .The actual WRITE of the ICACHE
data access C3/C4 (A2/D2) occurs during this cycle. A3 must remain driven in this cycle.

Clock 7 (C7)

A4 should be driven onto TEST_ADDR[14:2] during this cycle. TEST_IDATA_WRT is
asserted. The C1/C2 access read data, D1, will be driven onto MWDATA[31:0] during this
cycle. The actual READ of the ICACHE data array C3/C4 access (A2/D2) occurs during this
cycle. D3 can optionally be driven in this cycle.

Clock 8 (C8)

D4 must be driven onto MRDATA[31:0] during this cycle. A4 must remain driven.
TEST_IDATA_WRT is negated. The actual WRITE of the ICACHE data array C3/C4
access, A3/D, occurs here.

Clock 9 (C9)

A5 must be driven onto TEST_ADDR[14:2] during this cycle. TEST_IDATA_WRT is
asserted. D4 can optionally be driven in this cycle. The C5/C6 access read data, D2, will be
driven onto MWDATA[31:0] during this cycle. The actual READ of the ICACHE data array
C5/C6 access (A3/D3) occurs during this cycle.

This periodic 2-cycle sequence continues; ie. C6-C7 are repeated during C8-C9, C10-C11,
etc. The “C6” cycle is the actual WRITE cyle and the “C7” cycle is the actual READ cycle
where the data from the previous actual WRITE/READ sequence is displayed on MWDATA.

8.3.6 Instruction Cache KTA Mode Testing

The KTA mode tests the read data path for both of the instruction cache (tag and data)
RAMs. This test checks the valid bit and performs a compare between the upper bits of the
appropriate tag and the upper bits of the address to determine a cache hit. If the read is a
hit, the value from the data RAM is returned. This mimicks the reading of the instruction
cache during normal operation. Both RAMs are first written using instruction cache data and
tag write cycles.

Both the MRDATA[31:15] signals and part of the TEST_ADDR[14:2] signals are used to
drive data into the array and compare against during the read.

Test Operation

8-20

 ColdFire2/2M User’s Manual

MOTOROLA

A 512 byte ICACHE array uses an ICACHE tag array sized 32x24; thus having 5 address
bits. TEST_ADDR[8:4] is used to address the tag array, while TEST_ADDR[8:2] addresses
the ICACHE data array (128x32). {MRDATA[31:15], TEST_ADDR[14:9]} is used to compare
data to the tag array. These 23 bits compare to the 23 bits of address in the tag array, the
24th bit is the valid bit.

Table 8-5. TEST KTA CONFIGURATioNS

ICACHE SZ TAG ARRAY SZ TAG ARRAY TEST_ADDR MRDATA & TEST_ADDR

BYTES
LOCATIONS X #
OF DATA BITS

ADDR BITS USED TO ADDR USED FOR DATA WRITES/CMPRS

512 32x24 5 TEST_ADDR[8:4] {MRDATA[31:15], TEST_ADDR[14:9]}
1K 64x23 6 TEST_ADDR[9:4] {MRDATA[31:15], TEST_ADDR[14:10]}
2K 128x22 7 TEST_ADDR[10:4] {MRDATA[31:15], TEST_ADDR[14:11]}
4K 256x21 8 TEST_ADDR[11:4] {MRDATA[31:15], TEST_ADDR[14:12]}
8K 512x20 9 TEST_ADDR[12:4] {MRDATA[31:15], TEST_ADDR[14:13]}

16K 1Kx19 10 TEST_ADDR[13:4] {MRDATA[31:15], TEST_ADDR[14]}
32K 2Kx18 11 TEST_ADDR[14:4] MRDATA[31:15]

Test Operation

8-21

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
On the first clock cycle of the KTA mode sequence, the first data RAM address should be
driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Figure 8-9. KTA Mode Cycles

C1 C2 C3 C4 C5 C6 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4 A5 A6TEST_ADDR

TEST_CTRL

T0 T1 T2 T3 T4 T5MRDATA

TEST_KTA

TEST_IDATA_RD

TEST_RD

A0 A1 A2 A3ICH_ADDR

ICHT_CSB

ICHT_RWB

ICHT_ST

T0 T1 T2 T3ICHT_DO

ICHD_CSB

ICHD_RWB

ICHD_ST

D0 D1 D2 D3ICHD_DO

TEST_RHIT

D0 D1MWDATA

Test Operation

8-22

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 2 (C2)
On the second cycle, the next data RAM addresses should be driven onto
TEST_ADDR[14:2]. The MRDATA[31:8] signals should be driven with the tag information
expected from the tag RAM for the line associated with the address driven in C1.

Clock 3 (C3)
The third cycle is identical to C2.

Clock 4 (C4)
On the fourth cycle, the next address should be driven, TEST_KTA should be asserted, and
TEST_IDATA_RD should be asserted. The first read from the cache RAMs occur in C4. If
the value from the tag RAM is equal to the tag value driven in C2, TEST_RHIT will be
asserted.

Clock 5 (C5)
On the fifth cycle, the next address should be driven and TEST_RD should be asserted. The
remaining addresses are driven each successive clock cycle and TEST_KTA and
TEST_IDATA_RD should remain asserted until the last data value has been read from the
data RAM.

Clock 6 (C6)
Cycle 6 is identical to C5. The MWDATA[31:0] signals are driven with the first data, five
cycles after the associated address was driven. TEST_RD should remain asserted until the
last data value has been driven onto MWDATA[31:0].

Clock n (Cn)
The remaining clock cycles in the test are identical to C6.

8.3.7 ROM Testing

The ROM consists of up to 8K long words that can be accesses individually through the test
bus. Testing the compiled ROM is accomplished by reading the ROM and verifying the
results.

8.3.7.1 ROM READ FUNCTION.

Reading from the ROM is performed though the test bus
and MWDATA[31:0] after entering test mode. The address and control signals are input on
the test bus and the data from the ROM is output on MWDATA[31:0].

Reads from the ROM are performed in a pipelined fashion as shown in Figure 8-10. All input
signals are latched on the positive edge of CLK and all outputs transition on the positive
edge of CLK.

Test Operation

8-23

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 1 (C1)
On the first clock cycle of the ROM read sequence, the first ROM address should be driven
onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the next addresses should be driven onto TEST_ADDR[14:2].

Clock 3 (C3)
The third cycle is identical to C2.

Clock 4 (C4)
On the fourth cycle, the next address should be driven and TEST_ROM_RD should be
asserted. The first read from the ROM does not occur until C4.

Clock 5 (C5)
On the fifth cycle, the next address should be driven and TEST_RD should be asserted. The
remaining addresses are driven each successive clock cycle and TEST_ROM_RD should
remain asserted until the last data value has been read from the ROM.

Figure 8-10. Test ROM Read Cycles

C1 C2 C3 C4 C5 C6 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4 A5 A6TEST_ADDR

TEST_CTRL

TEST_ROM_RD

TEST_RD

A0 A1 A2 A3ROM_ADDR

ROM_CSB

ROM_ENB

D0 D1 D2 D3ROM_DO

D0 D1MWDATA

Test Operation

8-24

 ColdFire2/2M User’s Manual

MOTOROLA

Clock 6 (C6)
Cycle six is identical to C5. The MWDATA[31:0] signals are driven with the first data, five
cycles after the associated address was driven. TEST_RD should remain asserted until the
last data value has been driven onto MWDATA[31:0].

Clock n (Cn)
The remaining clock cycles in the test are identical to C6.

Throughout the entire sequence, the data value being driven is associated with the address
driven five clock cycles earlier. For this reason, five stall cycles (TEST_CTRL negated)
should occur after the last address is driven before the next sequence to wait for the last
data to be driven.

8.3.8 SRAM Testing
The SRAM consists of up to 8K longwords that can be accesses individually through the test
bus. Testing the compiled SRAM is accomplished by first writing test patterns into the
SRAM, reading the SRAM, and verifying the results.

8.3.8.1 SRAM WRITE FUNCTION. Writing to the SRAM is performed though the test bus
and MRDATA[31:0] after entering test mode. The address and control signals are input on
the test bus and the data to be written to the SRAM is input on MRDATA[31:0].

Writes to the SRAM are performed in a pipelined fashion as shown in Figure 8-11. All input
signals are latched on the positive edge of CLK and all outputs transition on the positive
edge of CLK.

Test Operation

8-25 ColdFire2/2M User’s Manual MOTOROLA

Clock 1 (C1)
On the first clock cycle of the SRAM write sequence, the first SRAM address should be
driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the first data value associated with the address asserted in C1 should
be driven onto MRDATA[31:0] and the next address should be driven onto
TEST_ADDR[14:2].

Clock 3 (C3)
On the third cycle, the next address and data values should be driven and
TEST_SRAM_WRT should be asserted. The remaining addresses and data are driven each
successive clock cycle and TEST_SRAM_WRT should remain asserted until the last data
value has been latched.

Clock 4 (C4)
On the fourth cycle, the next address and data values should be driven. The first write to the
SRAMs occurs in cycle four, three cycles after the first address was driven.

Figure 8-11. Test SRAM Write Cycles

C1 C2 C3 C4 C5

CLK

TEST_MODE

A0 A1 A2 A3 A4TEST_ADDR

TEST_CTRL

D0 D1 D2 D3MRDATA

TEST_SRAM_WRT

A0 A1SRAM_ADDR

SRAM_CSB

SRAM_RWB

D0 D1SRAM_DI

SRAM_ST

Test Operation

8-26 ColdFire2/2M User’s Manual MOTOROLA

Clock n (Cn)
The remaining clock cycles in the test are identical to C4.

Throughout the entire sequence, the data value being driven is associated with the address
driven in the previous clock cycle.

8.3.8.2 SRAM READ FUNCTION. Reading from the SRAM is performed though the test
bus and the MWDATA[31:0] after entering test mode. The address and control signals are
input on the test bus and the data from the SRAM is output on MWDATA[31:0].

Reads from the SRAM are performed in a pipelined fashion as shown in Figure 8-12. All
input signals are latched on the positive edge of CLK and all outputs transition on the
positive edge of CLK.

Clock 1 (C1)
On the first clock cycle of the SRAM read sequence, the first SRAM address should be
driven onto TEST_ADDR[14:2] and TEST_CTRL should be asserted.

Clock 2 (C2)
On the second cycle, the next addresses should be driven onto TEST_ADDR[14:2].

Figure 8-12. Test SRAM Read Cycles

C1 C2 C3 C4 C5 C6 CN

CLK

TEST_MODE

A0 A1 A2 A3 A4 A5 A6TEST_ADDR

TEST_CTRL

TEST_SRAM_RD

TEST_RD

A0 A1 A2 A3SRAM_ADDR

SRAM_CSB

SRAM_RWB

SRAM_ST

D0 D1 D2 D3SRAM_DO

D0 D1MWDATA

Test Operation

8-27 ColdFire2/2M User’s Manual MOTOROLA

Clock 3 (C3)
The third cycle is identical to C2.

Clock 4 (C4)
On the fourth cycle, the next address should be driven and TEST_SRAM_RD should be
asserted. The first read to the SRAM does not occur until C4, three cycles after the first
address was driven.

Clock 5 (C5)
On the fifth cycle, the next address should be driven and TEST_RD should be asserted. The
remaining addresses are driven each successive clock cycle and TEST_SRAM_RD should
remain asserted until the last data value has been read from the SRAM.

Clock 6 (C6)
Cycle six is identical to C5. The MWDATA[31:0] signals are driven with the first data, five
cycles after the associated address was driven. TEST_RD should remain asserted until the
last data value has been driven onto MWDATA[31:0].

Clock n (Cn)
The remaining clock cycles in the test are identical to C6.

Throughout the entire sequence, the data value being driven is associated with the address
driven five clock cycles earlier. For this reason, five stall cycles (TEST_CTRL negated)
should occur after the last address is driven before the next sequence to wait for the last
data to be driven.

8.3.8.3 SRAM WRITE FOLLOWED BY READ FUNCTION. The following timing diagram
illustrates the minimum number of cycles necessary to perform a write followed by read of
the SRAM. A certain sequence is neccessary because of the pipelined datapath to the
arrays from MRDATA and MWDATA.

Test Operation

8-28 ColdFire2/2M User’s Manual MOTOROLA

Figure 8-13. SRAM Write Followed by Read

Clock 1 (C1)
On the first clock cycle , A1, SRAM address, should be driven onto TEST_ADDR[14:2] and
TEST_SRAM_WRT should be asserted.

Clock 2 (C2)
On the second cycle, D1 (the data value associated with A1, the address asserted in C1)
should be driven onto MRDATA[31:0]. A1 must continue to be driven during this cycle.
TEST_SRAM_WRT remains asserted.

Clock 3 (C3)

C3 is a stall cycle. TEST_SRAM_WRT must remain asserted

Clock 4 (C4)

C4 is a stall cycle. TEST_SRAM_WRT must negate during this cycle which does the actual
WRITE of A1/D1 at the array. TEST_SRAM_RD must assert during this cycle.

A1TEST_ADDR

D1 D2 D3

A0 A2 A3

TEST_CTRL

TEST_KTA

TEST_IDATA_RD

TEST_RD

TEST_RHIT

MWDATA D0

D1 D1 D1 D2

ICH_ADDR[14:2]

D0

A3A2A1A0

D0 D1 D2 D3ICHD_DO

If 8K cache, TEST_ADDR[14:13] are used as the lower two bits of data to be compared for the hit signal.

Test Operation

8-29 ColdFire2/2M User’s Manual MOTOROLA

Clock 5 (C5)

The next SRAM address, A2, should be driven onto TEST_ADDR[14:2] during this cycle.
TEST_RD is asserted here; it will remain asserted during the next cycle C5, and then repeat
2 cycles negated, 2 cycles asserted for the duration of this type of test. TEST_IDATA_WRT
remains negated during this cycle; it will repeat two cycles asserted, two cyles negated.
TEST_SRAM_RD remains asserted during this cycle. The acutal READ of the ICACHE data
array C1/C2 (A1/D1) access occurs during this cycle.

Clock 6 (C6)

D2, associated with A2, is driven onto MRDATA[31:0] during this cycle. A2 remains driven.
TEST_RD remains asserted, TEST_SRAM_RD negates, and TEST_SRAM_WRT asserts
during this cycle.

Clock 7 (C7)

D1 is driven onto MWDATA[31:0]. This is a stall cycle; TEST_SRAM_RD remains negated,
TEST_RD negates, and TEST_SRAM_WRT remains asserted during this cycle.

Clock 8 (C8)

The repetition of C4-C7 begins on C8. TEST_SRAM_RD is asserted, TEST_RD negated,
and TEST_SRAM_WRT negated during this cycle. The actual WRITE of A2/D2 at the array
occurs during this cycle.

Clock 9 (C9)

C9 mimmicks C5: TEST_SRAM_RD remains asserted, TEST_RD asserts, and
TEST_SRAM_WRT remains negated. A3 is driven onto TEST_ADDR[14:2]. The actual
READ of A2/D2 at the array occurs during this cycle.

Clock 10 (C10)

C10 mimmicks C6: A3 remains driven on TEST_ADDR[14:2]; D3 asserts on
MRDATA[31:0]. TEST_SRAM_RD negates, TEST_RD remains asserted, and
TEST_SRAM_WRT asserts during this cycle.

Clock 11 (C11)

C11 mimmicks C7: D2 is driven onto MWDATA[31:0]. This is a stall cycle; TEST_SRAM_RD
remains negated, TEST_RD negates, and TEST_SRAM_WRT remains asserted during this
cycle.

This periodic 4-cycle sequence continues; ie. C4-C7 are repeated during C8-C11, C12-C15,
etc. The “C4” cycle is the actual WRITE cyle and the “C5” cycle is the actual READ cycle.
During the “C7’ cycle the data from the previous actual WRITE/READ sequence at the array
is displayed on MWDATA.

MOTOROLA

 ColdFire2/2M User’s Manual

9-1

SECTION 9
INSTRUCTION EXECUTION TIMING

This section presents ColdFire2/2M instruction execution times in terms of clock cycles. The
number of operand references for each instruction is also included, enclosed in parentheses
following the number of clock cycles. Each timing entry is presented as

C

(r/w) where:

•

C

 - The number of ColdFire2/2M clock cycles, including all applicable operand fetches
and writes, as well as all internal cycles required to complete the instruction execution.

• r/w - The number of operand reads (r) and writes (w) required by the instruction. An
operation performing a read-modify-write function is denoted as (1/1).

This section includes assumptions concerning the timing values and the execution time
details and applies to both the ColdFire2 and ColdFire2M unless otherwise noted.

9.1 TIMING ASSUMPTIONS

The timing data presented in this section have the following assumptions:

1. The operand execution pipeline (OEP) is loaded with the opword and all required
extension words at the beginning of each instruction execution. This implies that the
OEP doesn’t wait for the instruction fetch pipeline (IFP) to supply opwords and/or
extension words.

2. The OEP does not experience any sequence-related pipeline stalls. For the ColdFire2/
2M, the most common example of this type of stall involves consecutive STORE
operations, excluding the MOVEM instruction. For all STORE operations (except
MOVEM), certain hardware resources within the ColdFire2/2M are marked as ‘busy’
for two clock cycles after the final DSOC cycle of the STORE instruction. If a
subsequent STORE instruction is encountered within this 2-cycle window, it will be
stalled until the resource again becomes available. Thus, the maximum pipeline stall
involving consecutive STORE operations is 2 cycles. The MOVEM instruction uses a
different set of resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the
memory itself. Thus, the timing details provided in this section assume an infinite zero-
wait state memory is attached to the ColdFire2/2M.

4. All operand data accesses are aligned on the same byte boundary as the operand
size: 16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-
modulo-4 addresses.

Instruction Execution Timing

9-2

 ColdFire2/2M User’s Manual

MOTOROLA

If the operand alignment fails these guidelines, the misalignment unit is used. The processor
core decomposes the misaligned operand reference into a series of aligned accesses as
shown in Table 9-1.

9.2 MOVE INSTRUCTION EXECUTION TIMES

The execution times for the MOVE.{B,W} instructions are shown in Table 9-2, while Table
9-3 provides the timing for MOVE.L.

For all

tables in this section, the execution time (ET) of any instruction using the PC-relative
effective addressing modes is exactly equivalent to the time using the comparable An-
relative mode.

The nomenclature “xxx.wl” refers to both forms of absolute addressing, xxx.w and xxx.l.

Table 9-1. Misaligned Operand References

ADDRESS[1:0] SIZE KBUS OPERATIONS ADDITIONAL C(R/W)

x1 word byte, byte 2(1/0) if read
1(0/1) if write

x1 long byte, word, byte 3(2/0) if read
2(0/2) if write

10 long word, word 2(1/0) if read
1(0/1) if write

Instruction Execution Timing

MOTOROLA

 COLDFIRE2/2M User’s Manual

9-3

.

Table 9-2. Move Byte and Word Execution Times

SOURCE
DESTINATION

RX (AX) (AX)+ -(AX) (D16,AX) (D8,AX,XN*SF) XXX.WL

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
(Ay)+ 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)
-(Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1)

(d16,Ay) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,Ay,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

xxx.w 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —
xxx.l 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

(d16,PC) 3(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —
(d8,PC,Xn*SF) 4(1/0) 4(1/1) 4(1/1) 4(1/1) — — —

#xxx 1(0/0) 3(0/1) 3(0/1) 3(0/1) — — —

Table 9-3. Move Long Execution Times

SOURCE
DESTINATION

RX (AX) (AX)+ -(AX) (D16,AX) (D8,AX,XN*SF) XXX.WL

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)
Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
(Ay)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)
-(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,Ay,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —
xxx.l 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —
(d8,PC,Xn*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) — — —

Instruction Execution Timing

9-4

 ColdFire2/2M User’s Manual

MOTOROLA

9.3 STANDARD ONE OPERAND INSTRUCTION EXECUTION TIMES

Table 9-4. One Operand Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN) (D16,AN) (D8,AN,XN*SF) XXX.WL #XXX

clr.b <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.w <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —
clr.l <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

ext.w Dx 1(0/0) — — — — — — —
ext.l Dx 1(0/0) — — — — — — —
extb.l Dx 1(0/0) — — — — — — —
neg.l Dx 1(0/0) — — — — — — —
negx.l Dx 1(0/0) — — — — — — —
not.l Dx 1(0/0) — — — — — — —
scc Dx 1(0/0) — — — — — — —

swap Dx 1(0/0) — — — — — — —
tst.b <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
tst.w <ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
tst.l <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

Instruction Execution Timing

MOTOROLA

 COLDFIRE2/2M User’s Manual

9-5

9.4 STANDARD TWO OPERAND INSTRUCTION EXECUTION TIMES

Table 9-5. Two Operand Instruction Execution Times

OPCODE <EA>

EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN)
(D16,AN)
(D16,PC)

(D8,AN,XN*SF)
(D8,PC,XN*SF)

XXX.WL #XXX

add.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
add.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
addi.l #imm,Dx 1(0/0) — — — — — — —
addq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
addx.l Dy,Dx 1(0/0) — — — — — — —
and.l <ea>,Dn 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
and.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
andi.l #imm,Dx 1(0/0) — — — — — — —
asl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
asr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
bchg Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
bchg #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
bclr Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
bclr #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
bset Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
bset #imm,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — —
btst Dy,<ea> 2(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
btst #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — — 1(0/0)

cmp.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
cmpi.l #imm,Dx 1(0/0) — — — — — — —
eor.l Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
eori.l #imm,Dx 1(0/0) — — — — — — —
lea <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —
lsl.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)
lsr.l <ea>,Dx 1(0/0) — — — — — — 1(0/0)

moveq #imm,Dx — — — — — — — 1(0/0)
muls.w <ea>,Dx 9(0/0)

1

11(1/0)

1

11(1/0)

1

11(1/0)

1

11(1/0)

1

12(1/0)

1

11(1/0)

1

9(0/0)

1

3(0/0)

2

5(1/0)

2

5(1/0)

2

5(1/0)

2

5(1/0)

2

6(1/0)

2

5(1/0)

2

3(0/0)

2

mulu.w <ea>,Dx 9(0/0)

1

11(1/0)

1

11(1/0)

1

11(1/0)

1

11(1/0)

1

12(1/0)

1

11(1/0)

1

9(0/0)

1

3(0/0)

2

5(1/0)

2

5(1/0)

2

5(1/0)

2

5(1/0)

2

6(1/0)

2

5(1/0)

2

3(0/0)

2

muls.l <ea>,Dx 18(0/0)

1

20(1/0)

1

20(1/0)

1

20(1/0)

1

20(1/0)

1

- - -

5(0/0)

2

7(1/0)

2

7(1/0)

2

7(1/0)

2

7(1/0)

2

- - -

mulu.l <ea>,Dx 18(0/0)

1

20(1/0)

1

20(1/0)

1

20(1/0)

1

20(1/0)

1

- - -

5(0/0)

2

7(1/0)

2

7(1/0)

2

7(1/0)

2

7(1/0)

2

- - -

or.l <ea>,Dn 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
or.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
or.l #imm,Dx 1(0/0) — — — — — — —

sub.l <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)
sub.l Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
subi.l #imm,Dx 1(0/0) — — — — — — —

NOTES: 1. Applies to the ColdFire2 only.

2. Applies to the ColdFire2M only.

Instruction Execution Timing

9-6

 ColdFire2/2M User’s Manual

MOTOROLA

subq.l #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —
subx.l Dy,Dx 1(0/0) — — — — — — —

Table 9-5. Two Operand Instruction Execution Times (Continued)

OPCODE <EA>

EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN)
(D16,AN)
(D16,PC)

(D8,AN,XN*SF)
(D8,PC,XN*SF)

XXX.WL #XXX

NOTES: 1. Applies to the ColdFire2 only.

2. Applies to the ColdFire2M only.

Instruction Execution Timing

MOTOROLA

 COLDFIRE2/2M User’s Manual

9-7

9.5 MISCELLANEOUS INSTRUCTION EXECUTION TIMES

Table 9-6. Miscellaneous Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN) (D16,AN) (D8,AN,XN*SF) XXX.WL #XXX

cpush — — 9(0/1) — — — — — —
link.w Ay,#imm 2(0/1) — — — — — — —

move.w CCR,Dx 1(0/0) — — — — — — —
move.w <ea>,CCR 1(0/0) — — — — — — 1(0/0)
move.w SR,Dx 1(0/0) — — — — — — —
move.w <ea>,SR 7(0/0) — — — — — — 7(0/0)

2

move.l

1

<ea>,ACC 1(0/0) - - - - - - 1(0/0)

move.l

1

<ea>,MACSR 1(0/0) - - - - - - 1(0/0)

move.l

1

<ea>,MASK 1(0/0) - - - - - - 1(0/0)

move.l

1

ACC,<ea> 2(0/0) - - - - - - -

move.l

1

MACSR,<ea> 2(0/0) - - - - - - -

move.l

1

MASK,<ea> 2(0/0) - - - - - - -

movec Ry,Rc 9(0/1) — — — — — — —
movem.l <ea>,&list — 1+n(n/0)

3

— — 1+n(n/0)

3

— — —

movem.l &list,<ea> — 1+n(0/n)

3

— — 1+n(0/n)

3

— — —

nop — 3(0/0) — — — — — — —
pea <ea> — 2(0/1) — — 2(0/1)

4

3(0/1)

5

2(0/1) —

pulse 1(0/0) — — — — — — —
stop #imm — — — — — — — 3(0/0)

 6

trap #imm — — — — — — — 15(1/2)
tpf 1(0/0) — — — — — — —

tpf.w #imm 1(0/0) — — — — — — —
tpf.l #imm 1(0/0) — — — — — — —
unlk Ax 2(1/0) — — — — — — —

wddata <ea> — 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 3(1/0)
wdebug <ea> — 5(2/0) — — 5(2/0) — — —

NOTES: 1. Applies to the ColdFire2M only.

2. If a MOVE.W #imm,SR instruction is executed and imm[13] = 1, the execution time is 1(0/0).

3. n is the number of registers moved by the movem opcode.

4. PEA execution times are the same for (d16,PC)

5. PEA execution times are the same for (d8,PC,Xn*SF)

6. The execution time for STOP is the time required until the ColdFire2/2M begins sampling continuously for
interrupts.

Instruction Execution Timing

9-8

 ColdFire2/2M User’s Manual

MOTOROLA

9.6 MAC INSTRUCTION EXECUTION TIMING

These instructions are supported on the ColdFire2M only.

9.7 BRANCH INSTRUCTION EXECUTION TIMES

Table 9-7. MAC Instruction Execution Times

OPCODE <EA>

EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN)
(D16,AN)
(D16,PC)

(D8,AN,XN*SF)
(D8,PC,XN*SF)

XXX.WL #XXX

mac.w Ry,Rx 1(0/0) - - - - - - -
mac.l Ry,Rx 3(0/0) - - - - - - -

msac.w Ry,Rx 1(0/0) - - - - - - -
msac.l Ry,Rx 3(0/0) - - - - - - -
macl.w Ry,Rx,<ea>,Rw - 2(1/0) 2(1/0) 2(1/0) 2(1/0)† - - -
macl.l Ry,Rx,<ea>,Rw - 4(1/0) 4(1/0) 4(1/0) 4(1/0)† - - -

msacl.w Ry,Rx,<ea>,Rw - 2(1/0) 2(1/0) 2(1/0) 2(1/0)† - - -
msacl.l Ry,Rx,<ea>,Rw - 4(1/0) 4(1/0) 4(1/0) 4(1/0)† - - -

NOTE: †Effective address of (d16,PC) not supported

Table 9-8. General Branch Instruction Execution Times

OPCODE <EA>
EFFECTIVE ADDRESS

RN (AN) (AN)+ -(AN) (D16,AN) (D8,AN,XI*SF) XXX.WL #XXX

bsr — — — — 3(0/1) — — —
jmp <ea> — 3(0/0) — — 3(0/0) 4(0/0) 3(0/0) —
jsr <ea> — 3(0/1) — — 3(0/1) 4(0/1) 3(0/1) —
rte — — 8(2/0) — — — — —
rts — — 5(1/0) — — — — —

Table 9-9. BRA, Bcc Instruction Execution Times

OPCODE
FORWARD

TAKEN
FORWARD

NOT TAKEN
BACKWARD

TAKEN
BACKWARD
NOT TAKEN

bra 2(0/0) — 2(0/0) —
Bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0)

MOTOROLA

 ColdFire2/2M User’s Manual

A-1

APPENDIX A
REGISTER SUMMARY

A.1 REGISTER ACCESS METHODS

All of the ColdFire2/2M registers are accessed via special instructions or addressing modes.
None of them are mapped into the user data address space. Table A-1 lists the
ColdFire2/2M registers and their control register addresses.

Table A-1. Register Summary

REGISTER ACRONYM
PROGRAM ACCESS

1

DEBUG ACCESS

2

INSTRUCTION RC COMMAND DRC

Address Attribute Register AATR WDEBUG $6 WDMREG $6

Address Breakpoint Registers (High) ABHR WDEBUG $C WDMREG $C

Address Breakpoint Registers (Low) ABLR WDEBUG $D WDMREG $D

Access Control Register 0 ACR0 MOVEC $004 RCREG,WCREG $004

Access Control Register 1 ACR1 MOVEC $005 RCREG,WCREG $005

Accumulator

3

ACC MOVE to/from ACC - RCREG,WCREG $806

Address Registers A0-A6 MOVE - RAREG,WAREG -

Cache Control Register CACR MOVEC $002 RCREG,WCREG $002

Condition Code Register CCR MOVE to/from CCR - RCREG,WCREG $80E

Configuration/Status Register CSR WDEBUG $0 RDMREG,WDMREG $0

Data Breakpoint Mask Register DBMR WDEBUG $F WDMREG $F

Data Breakpoint Register DBR WDEBUG $E WDMREG $E

Data Registers D0-D7 MOVE - RDREG,WDREG -

MAC Status Register

3

MACSR MOVE to/from MACSR - RCREG,WCREG $804

Mask Register

3

MASK MOVE to/from MASK - RCREG,WCREG $805

Program Counter PC - - RCREG,WCREG $80F

Program Counter Breakpoint Mask Register PBMR WDEBUG $9 WDMREG $9

Program Counter Breakpoint Register PBR WDEBUG $8 WDMREG $8

RAM Base Address Register RAMBAR0 MOVEC $C04 RCREG,WCREG $C04

ROM Base Address Register ROMBAR0 MOVEC $C00 RCREG,WCREG $C00

NOTES: 1. Refer to the

ColdFire Programmer’s Reference Manual

 (MCF5200PRM/AD).

2. Refer to

Section 7.3.3.1 BDM Command Set Summary

.

3. ColdFire2M only.

Register Summary

A-2

 ColdFire2/2M User’s Manual

MOTOROLA

A.1 REGISTER FORMATS

Stack Pointer A7,SP MOVE - RAREG/WAREG -

Status Register SR MOVE to/from SR - RCREG,WCREG $80E

Trigger Definition Register TDR WDEBUG $7 WDMREG $7

Vector Base Register VBR MOVEC $801 RCREG,WCREG $801

BITS 15 14 13 12 11 10 8 7 6 5 4 3 2 0

FIELD

RM SZM TTM TMM R SZ TT TM

RESET

0 0 0 0 0 0 0 101

R/W

W W W W W W W W

Figure A-2. Address Attribute Register (AATR)

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

Figure A-3. Address Breakpoint High Register (ABHR)

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

Figure A-4. Address Breakpoint Low Register (ABLR)

Table A-1. Register Summary (Continued)

REGISTER ACRONYM
PROGRAM ACCESS

1

DEBUG ACCESS

2

INSTRUCTION RC COMMAND DRC

NOTES: 1. Refer to the

ColdFire Programmer’s Reference Manual

 (MCF5200PRM/AD).

2. Refer to

Section 7.3.3.1 BDM Command Set Summary

.

3. ColdFire2M only.

Register Summary

MOTOROLA

 ColdFire2/2M User’s Manual

A-3

BITS 31 24 23 16

FIELD

AB AM

RESE
T

0 0

R/W

W W

BITS 15 14 13 12 8 7 6 5 4 3 2 1 0

FIELD

EN SM - ENIB CM
BUF
W

- WP -

RESE
T

0 0 - 0 0 0 - 0 -

R/W

W W - W W W - W -

Figure A-5. Access Control Register (ACR0, ACR1)

BITS 31 30 29 28 27 26 25 24 23 18 17 16

FIELD

CEN
B

-
CPS

H
CFR

Z
- CINV - PARK

RESE
T

0 - 0 0 - 0 - 0

R/W

W - W W - W - W

BITS 15 11 10 9 8 7 6 5 4 2 1 0

FIELD

-
CBE

N
CMO

D
CBU

F
-

CWR
P

- CLNF

RESE
T

- 0 0 0 - 0 - 0

R/W

- W W W - W - W

Figure A-6. Cache Control Register (CACR)

BITS 7 6 5 4 3 2 1 0

FIELD

- - - X N Z V C

RESET

0 0 0 0 0 0 0 0

R/W

R R R R/W R/W R/W R/W R/W

Figure A-7. Condition Code Register (CCR)

Register Summary

A-4

 ColdFire2/2M User’s Manual

MOTOROLA

BITS 31 28 27 26 25 24 23 17 16

FIELD

STATUS FOF TRG
HAL

T
BKP

T
- IPW

RESE
T

0 0 0 0 0 - 0

R/W

1

R R R R R - R/W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 0

FIELD

MAP TRC EMU DDC UHE BTB - NPL IPI SSM -

RESE
T

0 0 0 0 0 0 0 0 0 0 -

R/W

† R/W R/W R/W R/W R/W R/W R R/W R/W R/W -

NOTE: †The CSR is a write only register from the programming model. It can be read from and written to via the BDM
port.

Figure A-8. Configuration/Status Register (CSR)

BITS 31 0

FIELD

MASK

RESET

-

R/W

W

Figure 1-9. Data Breakpoint Mask Register (DBMR)

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

Figure 1-10. Data Breakpoint Register (DBR)

BITS 7 6 5 4 3 2 1 0

FIELD

OMC S/U - - N Z V C

RESET

0 0 0 0 - - - 0

R/W

R/W R/W R R R/W R/W R/W R

Figure 1-11. MAC Status Register (MACSR)

Register Summary

MOTOROLA

 ColdFire2/2M User’s Manual

A-5

BITS 15 0

FIELD

MASK

RESE
T

-

R/W

R/W

Figure 1-12. MAC Mask Register (MASK)

BITS 31 0

FIELD

MASK

RESET

-

R/W

W

Figure 1-13. Program Counter Breakpoint Mask Register (PBMR)

BITS 31 0

FIELD

ADDRESS

RESET

-

R/W

W

Figure 1-14. Program Counter Breakpoint Register (PBR)

BITS 31 16

FIELD

BA

RESE
T

-

R/W

W

BITS 15 9 8 7 6 5 4 3 2 1 0

FIELD

BA WP - CSM SCM SDM UCM UDM V

RESE
T

- - - - - - - - 0

R/W

W W - W W W W W W

Figure A-15. SRAM Base Address Register (RAMBAR0)

Register Summary

A-6

 ColdFire2/2M User’s Manual

MOTOROLA

BITS 31 16

FIELD

BA

RESE
T

- (0)

R/W

W

BITS 15 9 8 7 6 5 4 3 2 1 0

FIELD

BA WP - CSM SCM SDM UCM UDM V

RESE
T

- (0) - (1) - - (1) - (0) - (0) - (0) - (0) 0 (1)

R/W

W W - W W W W W W

NOTE: The reset values in parenthesis are valid if the ROM_VLD signal is asserted during reset.

Figure A-16. ROM Base Address Register (ROMBAR0)

BITS 15 14 13 12 11 10 8 7 5 4 3 2 1 0

FIELD

T - S M - I - X N Z V C

RESET

0 0 1 1 0 7 0 0 0 0 0 0

R/W

R/W R R/W R/W R R/W R R/W R/W R/W R/W R/W

Figure A-17. Status Register (SR)

BITS 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FIELD

TRC EBL
EDL
W

EDW
L

EDW
U

EDL
L

EDL
M

EDU
M

EDU
U

DI EAI EAR EAL EPC PCI

RESE
T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W

W W W W W W W W W W W W W W W

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIELD

- EBL
EDL
W

EDW
L

EDW
U

EDL
L

EDL
M

EDU
M

EDU
U

DI EAI EAR EAL EPC PCI

RESE
T

- 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R/W

- W W W W W W W W W W W W W W

Figure A-18. Trigger Definition Register (TDR)

MOTOROLA

 ColdFire2/2M User’s Manual

B-1

APPENDIX B
NEW MAC INSTRUCTIONS

B.1 ENHANCED INTEGER-MULTIPLY INSTRUCTIONS

Opcodes for the MULS and MULU instructions are described in the

MCF5200 Family
Programmer’s Reference Manual

. The only change to these opcodes is the improved
execution efficiency.

B.2 NEW MAC INSTRUCTIONS

This section describes the new MAC instructions for the ColdFire2M. Details of each
instruction description

are

 arranged in alphabetical order by instruction mnemonic. For
notational conventions, refer to Table 1-4 in Section 1.8 Instruction Set Summary.

New MAC Instructions

B-2

 ColdFire2/2M User’s Manual

MOTOROLA

MAC

Multiply and Accumulate

MAC

Operation:

ACC + ((Ry

×

 Rx){<< 1 | >> 1})

→

 ACC

Assembler
Syntax:

MAC.<size> Ry.,Rx.
MAC.<size> Ry.,Rx.,<shift>

Attributes:

size = (Word, Long)
ul = (Upper, Lower)
shift = (<<, >>)

Description: Multiplies

 two

16-

 or 32-bit numbers to produce a 32-bit result, then

adds

 this
product, optionally shifted left or right one bit, to the accumulator (ACC). The result is
stored back into the accumulator. If 16-bit operands are used, the upper or lower word
of each register must be specified.

MAC Status Register:

OMC - not affected.
S/U - not affected.
N - set if the most significant bit of the result is set, otherwise cleared.
Z - set if the result is zero, otherwise cleared.
V - set if an overflow is generated, otherwise unchanged.
C - always cleared.

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

Ry - Source Y field
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 6, 11, 10, 9 (MSB to LSB).

OMC S/U - - N Z V C
- - 0 0 * * * 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 RW 0 0 RW 0 0 RX

- SZ SF 0 U/LW U/LX -

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-3

Rx - Source X field
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 3, 2, 1, 0 (MSB to LSB).

SZ - Size field
0 = word-sized input operands
1 = long-sized input operands

SF - Scale Factor field
00 = none
01 = product << 1
10 = reserved
11 = product >> 1

U/Ly -Source YWord Select field
This bit determines which 16-bit operand of the source W register is used in the operation
for word-sized operations only.

0 = lower word
1 = upper word

U/Lx - Source X Word Select field
This bit determines which 16-bit operand of the source X register is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

New MAC Instructions

B-4

 ColdFire2/2M User’s Manual

MOTOROLA

MACL

Multiply and Accumulate

MACL

with Register Load

Operation:

ACC + ((Ry

×

 Rx){<< 1 | >> 1})

→

 ACC
(<ea>{& MASK})

→

 Ry

Assembler
Syntax:

MACL.<size> Ry.,Rx.,<ea>,Rw
MACL.<size> Ry.,Rx.,<shift>,<ea>,Rw
MACL.<size> Ry.,Rx.,<shift>,<ea>&,Rw

Attributes:

size = (Word, Long)
ul = (Upper, Lower)
shift = (<<, >>)
ea = Effective Address

Description: Multiplies

 two

16-

 or 32-bit numbers to produce a 32-bit result, then

adds

 this
product, optionally shifted left or right one bit, to the accumulator (ACC). The result is stored
back into the accumulator. If 16-bit operands are used, the upper or lower word of each
register must be specified.

In parallel with this operation, a 32-bit operand is fetched from
the memory location defined by <ea> and loaded into the destination register, Rw. If the
mask addressing mode is used, the low-order word of <ea> is ANDed with the mask
register. Refer to

Section 6.2.3 Mask Register (MASK)

.

MAC Status Register:

OMC - not affected.
S/U - not affected.
N - set if the most significant bit of the result is set, otherwise cleared.
Z - set if the result is zero, otherwise cleared.
V - set if an overflow is generated, otherwise unchanged.
C - always cleared.

Processor Condition Codes:

Not affected

OMC S/U - - N Z V C
- - 0 0 * * * 0

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-5

Instruction Format:

Instruction Fields:

Ry -Source Yfield
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 15, 14, 13, 12 (MSB to LSB).

Rx - Source X field
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 3, 2, 1, 0 (MSB to LSB).

Rw - Destination field
Specifies a destination register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7.
Note that bit ordering is 6, 11, 10, 9 (MSB to LSB).

<ea> - Effective Address of Memory Operand field

SZ - Size field
0 = word-sized input operands
1 = long-sized input operands

SF - Scale Factor field
00 = none
01 = product << 1
10 = reserved
11 = product >> 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 RY 0 1 RY
<EA>

MODE REG
RW SZ SF 0 U/LY U/LX MAM 0 RX

ADDRESSING
MODE

MODE REGISTER
ADDRESSING

MODE
MODE REGISTER

Dn - - (xxx).W - -
An - - (xxx).L - -

(An) 010 reg.num:An #<data> - -
(An)+ 011 reg.num:An
-(An) 100 reg.num:An

(d16,An) 101 reg.num:An (d16,PC) - -
(d8,An,Xn) - - (d8,PC,Xn) - -

New MAC Instructions

B-6

 ColdFire2/2M User’s Manual

MOTOROLA

U/Ly -Source YWord Select field
This bit determines which 16-bit operand of the source Yregister is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

U/Lx - Source X Word Select field
This bit determines which 16-bit operand of the source X register is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

MAM - Mask Addressing Mode Modifier
This bit determines if the mask addressing mode should be used. Refer to

Section 6.2.3
Mask Register (MASK)

.

0 = normal addressing mode
1 = mask addressing mode

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-7

MSAC

Multiply and Subtract

MSAC

Operation:

ACC - ((Ry

×

 Rx){<< 1 | >> 1})

→

 ACC

Assembler
Syntax:

MSAC.<size> Ry.,Rx.
MSAC.<size> Ry.,Rx.,<shift>

Attributes:

size = (Word, Long)
ul = (Upper, Lower)
shift = (<<, >>)

Description: Multiplies

 two

16-

or 32-bit numbers to produce a 32-bit result, then

subtracts

this product, optionally shifted left or right one bit, from the accumulator
(ACC). The result is stored back into the accumulator. If 16-bit operands are used, the
upper or lower word of each register must be specified.

MAC Status Register:

OMC - not affected.
S/U - not affected.
N - set if the most significant bit of the result is set, otherwise cleared.
Z - set if the result is zero, otherwise cleared.
V - set if an overflow is generated, otherwise unchanged.
C - always cleared.

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

Ry - Operand Yfield
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 6, 11, 10, 9 (MSB to LSB).

OMC S/U - - N Z V C
- - 0 0 * * * 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 RY 0 0 RY 0 0 RX

- SZ SF 1 U/LY U/LX -

New MAC Instructions

B-8

 ColdFire2/2M User’s Manual

MOTOROLA

Rx - Operand X field
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 3, 2, 1, 0 (MSB to LSB).

SZ - Size field
0 = word-sized input operands
1 = long-sized input operands

SF - Scale Factor field
00 = none
01 = product << 1
10 = reserved
11 = product >> 1

U/Ly -Source YWord Select field
This bit determines which 16-bit operand of the source Yregister is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

U/Lx - Source X Word Select field
This bit determines which 16-bit operand of the source X register is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-9

MSACL

Multiply and Subtract

MSACL

with Register Load

Operation:

ACC - ((Ry

×

 Rx){<< 1 | >> 1})

→

 ACC
(<ea>{& MASK})

→

 Rw

Assembler
Syntax:

MSACL.<size> Ry.,Rx.,<ea>,Rw
MSACL.<size> Ry.,Rx.,<shift>,<ea>,Rw
MSACL.<size> Ry.,Rx.,<shift>,<ea>&,Rw

Attributes:

size = (Word, Long)
ul = (Upper, Lower)
shift = (<<, >>)
ea = Effective Address

Description: Multiplies two 16-

 or 32-bit numbers to produce a 32-bit result, then subtracts
this product, optionally shifted left or right one bit, from the accumulator (ACC). The result is
stored back into the accumulator. If 16-bit operands are used, the upper or lower word of
each register must be specified.

In parallel with this operation, a 32-bit operand is fetched
from the memory location defined by <ea> and loaded into the destination register, Rw. If
the mask addressing mode is used, the low-order word of <ea> is ANDed with the mask
register. Refer to

Section 6.2.3 Mask Register (MASK)

.

MAC Status Register:

OMC - not affected.
S/U - not affected.
N - set if the most significant bit of the result is set, otherwise cleared.
Z - set if the result is zero, otherwise cleared.
V - set if an overflow is generated, otherwise unchanged.
C - always cleared.

Processor Condition Codes:

Not affected

OMC S/U - - N Z V C
- - 0 0 * * * 0

New MAC Instructions

B-10

 ColdFire2/2M User’s Manual

MOTOROLA

Instruction Format:

Instruction Fields:

Ry -Source Yfield
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 15, 14, 13, 12 (MSB to LSB).

Rx - Source X field
Specifies a source register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7. Note
that bit ordering is 3, 2, 1, 0 (MSB to LSB).

Rw - Destination field
Specifies a destination register operand, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7.
Note that bit ordering is 6, 11, 10, 9 (MSB to LSB).

<ea> - Effective Address of Memory Operand field

SZ - Size field
0 = word-sized input operands
1 = long-sized input operands

SF - Scale Factor field
00 = none
01 = product << 1
10 = reserved
11 = product >> 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 RY 0 1 RY
<EA>

MODE REG
RW SZ SF 1 U/LY U/LX MAM 0 RX

ADDRESSING
MODE

MODE REGISTER
ADDRESSING

MODE
MODE REGISTER

Dn - - (xxx).W - -
An - - (xxx).L - -

(An) 010 reg.num:An #<data> - -
(An)+ 011 reg.num:An
-(An) 100 reg.num:An

(d16,An) 101 reg.num:An (d16,PC) - -
(d8,An,Xn) - - (d8,PC,Xn) - -

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-11

U/Ly -Source YWord Select field
This bit determines which 16-bit operand of the source Yregister is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

U/Lx - Source X Word Select field
This bit determines which 16-bit operand of the source X register is used in the operation for
word-sized operations only.

0 = lower word
1 = upper word

MAM - Mask Addressing Mode Modifier
This bit determines if the mask addressing mode should be used. Refer to

Section 6.2.3
Mask Register (MASK)

.

0 = normal addressing mode
1 = mask addressing mode

B.3 NEW REGISTER INSTRUCTIONS

This section describes the new register instructions for the ColdFire2M.

Details

 of each
instruction description

are

 arranged in alphabetical order by instruction mnemonic. For
notational conventions, refer to Table 1-4 in Section 1.8 Instruction Set Summary.

New MAC Instructions

B-12

 ColdFire2/2M User’s Manual

MOTOROLA

MOVE MOVE
from ACC

Move from Accumulator

from ACC

Operation:

ACC

→

 Rx

Assembler
Syntax:

MOVE.<size> ACC, Rx

Attributes:

size = Long

Description: Moves

 a 32-bit value from the accumulator (ACC) to a register. The size of the
operation must be specified as long.

MAC Status Register:

Not affected

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

Rx[3:0] specifies the destination register, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7.

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 0 0 0 1 1 0 0 0 RX

New MAC Instructions

MOTOROLA

 ColdFire2/2M User’s Manual

B-13

MOVE MOVE
from MACSR

Move from MAC Status Reg

from MACSR

Operation:

MACSR

→

 Rx[7:0]
0

→

 Rx[31:8]

Assembler
Syntax:

MOVE.<size> MACSR, Rx

Attributes:

size = Long

Description: Moves

 the contents of the MAC status register (MACSR), zero-extended to
long size, into a general-purpose register, Rx. The size of the operation must be
specified as long.

MAC Status Register:

Not affected

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

Rx[3:0] specifies the destination register, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7.

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 1 0 0 1 1 0 0 0 RX

New MAC Instructions

B-14

 ColdFire2/2M User’s Manual

MOTOROLA

MOVE MOVE
from MASK Move from Mask from MASK
Operation: MASK → Rx[15:0]

0xFFFF → Rx[31:16]

Assembler
Syntax: MOVE.<size> MASK, Rx

Attributes: size = Long

Description: Moves a 32-bit value from the mask register (MASK), one-extended to long
size, to a register. The size of the operation must be specified as long.

MAC Status Register:

Not affected

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

Rx[3:0] specifies the destination register, where $0 is D0,..., $7 is D7, $8 is A0,..., $F is A7.

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 1 1 0 1 1 0 0 0 RX

New MAC Instructions

MOTOROLA ColdFire2/2M User’s Manual B-15

MOVE MOVE
to ACC Move to Accumulator to ACC
Operation: Source → ACC

Assembler
Syntax: MOVE.<size> <ea>, ACC

Attributes: size = Long

Description: Moves a 32-bit value from a register or an immediate value into the
accumulator (ACC). The size of the operation must be specified as long.

MAC Status Register:

OMC - not affected.
S/U - not affected.
N - set if the most significant bit of the result is set, otherwise cleared.
Z - set if the result is zero, otherwise cleared.
V - always cleared.
C - always cleared.

Processor Condition Codes:

Not affected

Instruction Format:

OMC S/U - - N Z V C
- - 0 0 * * 0 0

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 0 0 0 1 0 0
<EA>

MODE REG

New MAC Instructions

B-16 ColdFire2/2M User’s Manual MOTOROLA

Instruction Fields:

<ea> - Effective Address

ADDRESSING
MODE

MODE REGISTER
ADDRESSING

MODE
MODE REGISTER

Dn 000 reg.num:Dn (xxx).W - -
An 001 reg.num:An (xxx).L - -

(An) - - #<data> 111 100
(An)+ - -
-(An) - -

(d16,An) - - (d16,PC) - -
(d8,An,Xn) - - (d8,PC,Xn) - -

New MAC Instructions

MOTOROLA ColdFire2/2M User’s Manual B-17

MOVE MOVE
to CCR Move to Condition Code Register to CCR
Operation: MACSR[4:0] → CCR[4:0]

Assembler
Syntax: MOVE.<size> MACSR,CCR

Attributes: size = Long

Description: Moves the indicator flags of the MAC status register (MACSR) into the
processor’s condition code cegister (CCR). The size of the operation must be specified as
long.

MAC Status Register:

Not affected

Processor Condition Codes:

X - not affected.
N - set to the value of MACSR bit 3, N.
Z - set to the value of MACSR bit 2, Z.
V - set to the value of MACSR bit 1, V.
C - set to the value of MACSR bit 0, C.

Instruction Format
:

X N Z V C
- * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0

New MAC Instructions

B-18 ColdFire2/2M User’s Manual MOTOROLA

MOVE MOVE
to MACSR Move to MAC Status Register to MACSR
Operation: Source → MACSR

Assembler
Syntax: MOVE.<size> <ea>, MACSR

Attributes: size = Long

Description: Moves the low-order byte of a 32-bit value from a register or an immediate
value into the MAC status register (MACSR). The size of the operation must be
specified as long.

MAC Status Register:

OMC - set to the value of bit 7 of the source operand.
S/U - set to the value of bit 6 of the source operand.
N - set to the value of bit 3 of the source operand.
Z - set to the value of bit 2 of the source operand.
V - set to the value of bit 1 of the source operand.
C - always cleared.

Processor Condition Codes:

Not affected

Instruction Format:

OMC S/U - - N Z V C
* * 0 0 * * * 0

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 1 0 0 1 0 0
<EA>

MODE REG

New MAC Instructions

MOTOROLA ColdFire2/2M User’s Manual B-19

Instruction Fields:

<ea> - Effective Address

ADDRESSING
MODE

MODE REGISTER
ADDRESSING

MODE
MODE REGISTER

Dn 000 reg.num:Dn (xxx).W - -
An 001 reg.num:An (xxx).L - -

(An) - - #<data> 111 100
(An)+ - -
-(An) - -

(d16,An) - - (d16,PC) - -
(d8,An,Xn) - - (d8,PC,Xn) - -

New MAC Instructions

B-20 ColdFire2/2M User’s Manual MOTOROLA

MOVE MOVE
to MASK Move to Modulus Register to MASK
Operation: Source → MASK

Assembler
Syntax: MOVE.<size> <ea>, MASK

Attributes: size = Long

Description: Moves the low-order word of a 32-bit value from a register or an immediate
value into the mask register (MASK). The size of the operation must be specified as
long.

MAC Status Register:

Not affected

Processor Condition Codes:

Not affected

Instruction Format:

Instruction Fields:

<ea> - Effective Address

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 1 1 0 1 0 0
<EA>

MODE REG

ADDRESSING
MODE

MODE REGISTER
ADDRESSING

MODE
MODE REGISTER

Dn 000 reg.num:Dn (xxx).W - -
An 001 reg.num:An (xxx).L - -

(An) - - #<data> 111 100
(An)+ - -
-(An) - -

(d16,An) - - (d16,PC) - -
(d8,An,Xn) - - (d8,PC,Xn) - -

New MAC Instructions

MOTOROLA ColdFire2/2M User’s Manual B-21

B.4 OPERATION CODE MAP
All MAC instructions are mapped into line A, i.e. bits 15-12 of the instruction are 1010 ($A).

1. MAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 RY 0 0 RY 0 0 RX

- SZ SF 0 U/LY U/LX -

2. MSAC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 RY 0 0 RY 0 0 RX

- SZ SF 1 U/LY U/LX -

3. MACL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 RY 0 1 RY
<EA>

MODE REG
RY SZ SF 0 U/LY U/LX MAM 0 RX

4. MSACL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 RW 0 1 RY
<EA>

MODE REG
RY SZ SF 1 U/LY U/LX MAM 0 RX

5. MOVE to ACC

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 0 0 0 1 0 0
<EA>

MODE REG

6. MOVE to MACSR

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 1 0 0 1 0 0
<EA>

MODE REG

7. MOVE to MASK

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 1 1 0 1 0 0
<EA>

MODE REG

8. MOVE from ACC

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 0 0 0 1 1 0 0 0 RX

New MAC Instructions

B-22 ColdFire2/2M User’s Manual MOTOROLA

9. MOVE from MACSR

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 1 0 0 1 1 0 0 0 RX

10. MOVE from MASK

15 14 13 12 11 10 9 8 7 6 5 4 3 0
1 0 1 0 1 1 0 1 1 0 0 0 RX

11. MOVE to CCR

15 14 13 12 11 10 9 8 7 6 5 0

1 0 1 0 0 0 0 1 0 0
<EA>

MODE REG

MOTOROLA

 COLDFIRE2/2M USER’S MANUAL

Index-1

INDEX

A

A0 - A7 1-12
AABR 7-29, 7-30, 7-32, 7-33, A-2, A-4, A-5
AATR 7-28, 7-30
ABLR/ABHR 7-28, 7-29
ACC 1-14, 6-2
access

alternate master 3-5
emulator mode 3-5
interrupt acknowledge mode 3-5
normal mode 3-4

access control
programming model 5-8
registers 5-8, 5-9, A-3

access error exception 4-7
accumulator (ACC) 1-14, 6-2
ACR 5-8, 5-9, A-3
address error exception 4-8
address registers (A0 – A6) 1-12
address space 2-3, 3-1, 3-4
addressing mode summary 1-18
alternate master 1-9
alternate master access 3-5
arbitration 3-30
arbitration algorithm 3-30
autovectored interrupts 4-12

B

background debug mode

See

 BDM
BDM 7-5

command format 7-10
command sequence diagram 7-11, 7-12
command set 7-9
connector 7-39
CPU32 7-40
dump memory block (DUMP) 7-17
fill memory block (FILL) 7-19
no operation (NOP) 7-21
read A/D Register (RAREG/RDREG)

7-13

read control register (RCREG) 7-22
read debug module register (RDMREG)

7-24
read memory location (READ) 7-14
recommended connector 7-40
resume execution (GO) 7-21
sampling diagram 7-8
serial interface 7-7
serial transfer diagram 7-8
write A/D register (WAREG/WDREG)

7-13
write control register (WCREG) 7-23
write debug module register (WDMREG)

7-25
write memory location (WRITE) 7-16

BKPTB 2-11, 7-1, 7-6, 7-7
branch indication on PST 7-3
bus arbitration 3-30

programming model 3-31
bus errors 3-28

C

cache

See

instruction cache
cacheability 5-5
CACR 3-31, 5-6, A-3
CCR 1-12, 1-13, A-3
CLK 2-6
clock (CLK) 2-6
coherency 5-6
coldfire system diagram 1-8
coldfire2 1-1
coldfire2m 1-1, 1-13, 6-1, B-1
compiled RAM 5-1, 5-4
condition code register (CCR) 1-13, A-3
configuration encoding 2-8, 2-10, 2-11, 5-3,

5-12, 5-16
core block diagram 1-10
CPU halt 7-5, 7-6
CSR 7-36, 7-37, A-4

Index-2

 ColdFire2/2M User’s Manual

MOTOROLA

D

D0 - D7 1-12
data formats 1-16
data registers (D0 – D7) 1-12
data sheet 10-6
data transfer mechanism 3-4
data transfers 3-6
DBR/DBMR 7-28, 7-33
DDATA 2-12, 7-2, 7-3, 7-4, 7-5
debug module 7-1

BDM 7-5
command set 7-9
DUMP 7-17
FILL 7-19
GO 7-21
NOP 7-21
RAREG/RDREG 7-13
RCREG 7-22
RDMREG 7-24
READ 7-14
serial interface 7-7
WAREG/WDREG 7-13
WCREG 7-23
WDMREG 7-25
WRITE 7-16

concurrent operation 7-39
CPU halt 7-6
emulator mode 7-27, 7-38
hardware reuse 7-28
interrupt 4-10, 7-26
programming model 7-28
real-time support 7-26
real-time trace 7-2
registers

address attribute (AATR) 7-30
address attribute breakpoint (AABR)

7-29, 7-30, 7-32, 7-33, A-2,
A-4, A-5

address breakpoint (ABLR, ABHR)
7-29

configuration/status register (CSR)
7-36, 7-37, A-4

data breakpoint (DBR, DBMR) 7-33
program counter breakpoint (PBR,

PBMR) 7-32
trigger definition (TDR) 7-34, A-6

signals 7-1

break point (BKPTB) 2-11, 7-1
debug data (DDATA) 2-12, 7-2
development serial clock (DSCLK)

2-12, 7-2
development serial input (DSI) 2-12,

7-2
development serial output (DSO)

2-12, 7-2
processor status (PST) 2-12, 7-2

theory of operation 7-26

See also

 registers, signals
definitions 10-1
development cycle 1-5
diagrams

BDM command sequence 7-12
BDM sampling 7-8
BDM serial transfer 7-8
bus exception 3-29
coldfire system 1-8
core block 1-10
design system overview 1-7
example instruction cache interface 5-2
example ROM interface 5-11
example SRAM interface 5-15
flexcore integrated processor 1-3
instruction cache data read 8-8
instruction cache data write 8-7
instruction cache tag read 8-5
instruction cache tag write 8-4
integer address formats 1-17
integer data formats 1-16
interrupt acknowledge 3-24, 3-26
KTA mode 8-10
line read transfer 3-13
line write transfer 3-16, 3-17
MAC flow 6-2
memory operand addressing 1-18
misaligned transfer 3-19
processor status 7-4
processor/debug module interface 7-1
read transfer 3-8
recommended BDM connector 7-40
reset 3-30
ROM read 8-12
signals block 2-1
SRAM read 8-15
SRAM write 8-14

MOTOROLA

 ColdFire2/2M User’s Manual

Index-3

wait state 3-21
write transfer 3-10

DSCLK 2-12, 7-2, 7-8
DSI 2-12, 7-2
DSO 2-12, 7-2
DUMP 7-17

E

electrical chacteristics 10-1
emulator mode 7-5, 7-27, 7-38
emulator mode access 3-5
enhanced integer multiply instructions B-1
exception processing 4-1, 7-5

flowchart 4-2
overview 4-1
self-aligning stack 4-4
stack frame definition 4-3

exception vector table 4-5
exceptions 4-7

access error 4-7
address error 4-8
bus cycle diagram 3-29
control cycles 3-27
debug interrupt 4-10, 7-26
format error 4-10
illegal instruction 4-9
interrupt 4-10
priorities 4-6
privilege violation 4-9
reset 4-7
simultaneous 4-6
trace 4-9
TRAP instruction 4-10
unimplemented opcode 4-9
vector number 4-4, 4-5

external bus 1-9

F

fault-on-fault halt 3-29, 4-6, 7-6
FILL 7-19
flexcore 1-8

advantages 1-4
development cycle 1-5
integrated processor diagram 1-3
integrated processors 1-2
module types 1-4

flowcharts

exception processing 4-2
interrupt acknowledge 3-23
line read transfer 3-12
line write transfer 3-15
read transfer 3-7
write transfer 3-9

format error exceptions 4-10
freezing the instruction cache 5-7

G

general control signals 2-6
clock (CLK) 2-6
interrupt priority level (IPLB) 2-6

GO 7-21

H

HALT 7-6
HALT instruction 7-5
hard module 1-4

I

IACK_68K 2-3, 2-5, 2-6, 3-1, 3-3, 3-4, 3-22
ICH_ADDR 2-7, 5-2
ICH_SZ 2-8, 5-3
ICHD_CSB 2-7, 5-2
ICHD_DI 2-7, 5-2
ICHD_DO 2-7, 5-2
ICHD_RWB 2-7, 5-3
ICHD_ST 2-7, 5-2
ICHT_CSB 2-8, 5-3
ICHT_DI 2-8, 5-3
ICHT_DO 2-8, 5-3
ICHT_RWB 2-9, 5-4
ICHT_ST 2-9, 5-4
illegal instruction exception 4-9
instruction cache 1-10, 5-1

cacheability 5-5
coherency 5-6
configuration encoding 2-8, 5-3
data RAM testing 8-6
example interface diagram 5-2
freezing 5-7
interaction with other modules 5-4
invalidating 5-5, 5-7
KTA mode testing 8-9
line fill encoding 5-8

Index-4

 ColdFire2/2M User’s Manual

MOTOROLA

miss fetch algorithm 5-4, 5-8
physical organization 5-4
programming model 5-6
registers

cache control (CACR) 5-6, A-3
reset 5-6
signals 5-1

address bus (ICH_ADDR) 2-7, 5-2
cache tag output bus (ICHT_DO)

2-8, 5-3
data chip select (ICHD_CSB) 2-7,

5-2
data input bus (ICHD_DI) 2-7, 5-2
data output bus (ICHD_DO) 2-7, 5-2
data read/write (ICHD_RWB) 2-7,

5-3
data strobe (ICHD_ST) 2-7, 5-2
size(ICH_SZ) 2-8, 5-3
tag chip select (ICHT_CSB) 2-8, 5-3
tag input bus (ICHT_DI) 2-8, 5-3
tag read/write (ICHT_RWB) 2-9, 5-4
tag strobe (ICHT_ST) 2-9, 5-4

tag RAM testing 8-3
write protection 5-8

See also

registers, signals
instruction execution timing 9-1

assumptions 9-1
branch 9-8
MAC 9-8
miscellaneous 9-7
MOVE 9-2
one operand 9-4
two operand 9-5

instruction set summary 1-19, 6-5
integer data formats 1-16
integer programming model 1-11
integrated memories 5-1

testing 8-1
integrated memory test signals 2-12
integrated processors 1-2
interrupt acknowledge

diagram 3-24, 3-26
flowchart 3-23

interrupt acknowledge access 3-5
interrupt acknowledge bus cycle 3-22
interrupt acknowledge mode 2-3, 2-5, 2-6,

3-1, 3-3, 3-4, 3-22

interrupt priority level (IPLB) 2-6, 4-10
interrupts 4-10

autovectored 4-12
debug 4-10, 7-26
level seven 4-11
spurious 3-27, 4-12
uninitialized 4-12

invalidating cache entries 5-5, 5-7
IPLB 2-6, 4-10

K

KTA mode 8-9

L

level seven interrupts 4-11
line access patterns 3-11
line fills 5-4
line read transfer

diagram 3-13
flowchart 3-12

line write transfer
diagram 3-16, 3-17
flowchart 3-15

M

MAC 9-8, B-2
MAC Status Register (MACSR) 6-2
MAC status register (MACSR) 1-14
MAC unit 6-1

enhanced integer multiply instructions
B-1

instruction set summary 6-5
instruction timing 9-8
introduction 6-1
new MAC instructions B-1
new register instructions B-12
overflow mode 6-3, 6-4
programming model 1-13, 6-2
registers

ACC 6-2
MACSR 6-2
MASK 6-3

saturation mode 6-3, 6-4
shifting 6-4

MACL 9-8, B-4
MACSR 1-14, 6-2

MOTOROLA

 ColdFire2/2M User’s Manual

Index-5

MADDR 2-3, 3-1, 3-8, 3-10, 3-13, 3-16,
3-24, 3-26

MARB 1-10
MARBC 2-3, 3-1
MASK 6-3
mask (MASK) 6-3
mask addressing mode 6-4
master bus 1-8, 3-1

arbitration 1-10, 3-30
arbitration algorithm 3-30
bus errors 3-28
data transfer mechanism 3-4
data transfers 3-6
exception control cycles 3-27
line read transfers 3-11
line write transfers 3-14
misaligned operands 3-18
normal read transfers 3-6
normal write transfers 3-9
requirements for read transfer 3-5
requirements for write transfers 3-6
reset 3-29
signals 3-1

68K IACK mode enable (IACK_68K)
2-3, 2-5, 2-6, 3-1, 3-3, 3-4,
3-22

abiter control (MARBC) 2-3, 3-1
address bus (MADDR) 2-3, 3-1
freeze (MFRZB) 2-4, 3-2
kill (MKILLB) 2-4, 3-2
read data bus (MRDATA) 2-4, 3-2
read data input enable (MIE) 2-4, 3-2
read/write (MRWB) 2-4, 3-2
reset (MRSTB) 2-4, 3-2
size (MSIZ) 2-4, 3-2
transfer acknowledge (MTAB) 2-5,

3-2
transfer error acknowledge (MTEAB)

2-5, 3-3
transfer modifier (MTM) 2-5, 3-3
transfer start (MTSB) 2-6, 3-3
transfer type (MTT) 2-6, 3-3
write data bus (MWDATA) 2-6, 3-4

transfer modifier encoding 2-5, 3-3
transfer size encoding 2-5, 3-2
transfer type 3-4
transfer type encoding 2-6, 3-4

write data output enable (MWDATAOE)
2-6, 3-4

See also

registers, signals
memory operand addressing diagram 1-18
memory organization 1-17
MFRZB 2-4, 3-2
MIE 2-4, 3-2, 3-8, 3-13, 3-25, 3-27
misaligned operands 3-18
misaligned transfer diagram 3-19
misalignment unit 3-18
miss fetch algorithm 5-4, 5-8
MKILLB 2-4, 3-2
module types 1-4
MOVE from ACC 9-7, B-13
MOVE from MACSR 9-7, B-14
MOVE from MASK 9-7, B-15
MOVE to ACC 9-7, B-16
MOVE to CCR 9-7, B-18
MOVE to MACSR B-19
Move to MACSR 9-7
MOVE to MASK 9-7, B-21
MOVEC instruction 3-31, 5-6, 5-8, 5-12,

5-17, 7-22, A-1
MRDATA 2-4, 3-2, 3-8, 3-13, 3-25, 3-27
MRSTB 2-4, 3-2
MRWB 2-4, 3-2, 3-8, 3-10, 3-13, 3-16, 3-24,

3-26
MSAC 9-8, B-7
MSACL 9-8, B-9
MSIZ 2-4, 3-2, 3-8, 3-10, 3-13, 3-16, 3-24,

3-26
MTAB 2-5, 3-2, 3-8, 3-13, 3-16, 3-25, 3-27
MTEAB 2-5, 3-3
MTM 2-5, 3-3, 3-13
MTSB 2-6, 3-3, 3-8, 3-10, 3-13, 3-16, 3-24,

3-26
MTT 2-6, 3-3, 3-8, 3-10, 3-13, 3-16, 3-24,

3-26
MULS and MULU 9-5, B-1
multiple exceptions 4-6
multiply-accumulate unit

See

MAC unit
MWDATA 2-6, 3-4, 3-10, 3-16
MWDATAOE 2-6, 3-4, 3-10, 3-16

N

new MAC instructions B-1

Index-6

 ColdFire2/2M User’s Manual

MOTOROLA

new register instructions B-12
NOP 4-8, 7-21
normal access 3-4
notational conventions 1-19

O

overflow mode 6-3, 6-4

P

parameterizable module 1-5
PBMR 7-32
PBR 7-32
PC 1-12
performance 3-20
pipeline stalls 3-20
power 2-4, 3-2
privilege mode 1-15, 3-4, 4-2, 7-3
privilege violation exception 4-9
processor status 2-12, 7-2, 7-3
processor status diagram 7-4
processor status encoding 7-3
program counter (PC) 1-12
programming model 1-11

access control 5-8
bus arbitration 3-31
debug module 7-28
instruction cache 5-6
integer 1-11
MAC unit 1-13, 6-2
ROM module 5-12
SRAM module 5-16
supervisor 1-14

PST 2-12, 7-2, 7-3
PULSE instruction 2-12, 7-2, 7-3

R

RAMBAR0 5-17, A-5
RAREG A-1
RAREG/RDREG 7-13
RCREG 7-22, A-1
RDMREG 7-24, A-1
READ 7-14
read transfer

diagram 3-8
flowchart 3-7

read transfers 3-6, 3-11

real-time debug support 7-26
real-time trace 7-2
registers

access control
ACR 1-15, 5-8, 5-9, A-3

access methods A-1
debug module

AABR 7-29, 7-30, 7-32, 7-33, A-2,
A-4, A-5

AATR 7-28, 7-30
ABLR/ABHR 7-28, 7-29
CSR 7-36, 7-37, A-4
DBR/DBMR 7-28, 7-33
PBR/PBMR 7-32
TDR 7-34, A-6

instruction cache
CACR 1-15, 5-6, A-3

integer unit
A0 - A6 1-12
CCR 1-13, A-3
D0 - D7 1-12
PC 1-12
SP 1-12

MAC unit
ACC 1-14, 6-2
MACSR 1-14, 6-2
MASK 6-3

ROM module
ROMBAR0 1-15, 5-12, A-6

SRAM module
RAMBAR0 1-15, 5-17, A-5

summary A-1
supervisor

SR 1-15, 4-2, A-6
VBR 1-15, 4-6

reset 2-4, 3-2, 3-29, 3-30, 4-7, 5-6, 5-8,
5-12, 5-17

ROM module 1-11, 5-10
configuration encoding 2-10, 5-12
example interface diagrams 5-11
programming model 5-12
registers

ROM base address (ROMBAR0)
5-12, A-6

signals 5-10
activate (ROM_ACTB) 2-10, 5-12
address bus (ROM_ADDR) 2-9, 5-11

MOTOROLA

 ColdFire2/2M User’s Manual

Index-7

data output bus (ROM_DO) 2-9, 5-11
enable (ROM_ENB) 2-9, 5-11
size (ROM_SZ) 2-9, 5-12

testing 8-11

See also

registers, signals
ROM_ACTB 2-10, 5-12
ROM_ADDR 2-9, 5-11
ROM_DO 2-9, 5-11
ROM_ENB 2-9, 5-11
ROM_SZ 2-9, 5-12
ROMBAR0 5-12, A-6
RTE instruction 2-12, 4-6, 4-10, 7-2, 7-4,

7-5, 7-27

S

saturation mode 6-3, 6-4
SBC 1-11, 3-6
scan signals

enable (SCAN_ENABLE) 2-14, 8-16
exercise array (SCAN_XARRAY) 2-14,

8-16
input (SCAN_IN) 2-14, 8-16
mode (SCAN_MODE) 2-14, 8-17
output (SCAN_OUT) 2-14, 8-17

SCAN_ENABLE 2-14, 8-16
SCAN_IN 2-14, 8-16
SCAN_MODE 2-14, 8-17
SCAN_OUT 2-14, 8-17
SCAN_XARRAY 2-14, 8-16
shifting operations 6-4
signals

summary 2-1
block diagram 2-1
debug module 7-1

BKPTB 2-11, 7-1
DDATA 2-12, 7-2
DSCLK 2-12, 7-2
DSI 2-12, 7-2
DSO 2-12, 7-2
PST 2-12, 3-29, 4-6, 7-2

general control 2-6
CLK 2-6
IPLB 2-6, 4-10

instruction cache 5-1
ICH_ADDR 2-7, 5-2
ICH_SZ 2-8, 5-3
ICHD_CSB 2-7, 5-2

ICHD_DI 2-7, 5-2
ICHD_DO 2-7, 5-2
ICHD_RWB 2-7, 5-3
ICHD_ST 2-7, 5-2
ICHT_CSB 2-8, 5-3
ICHT_DI 2-8, 5-3
ICHT_DO 2-8, 5-3
ICHT_RWB 2-9, 5-4
ICHT_ST 2-9, 5-4

master bus 3-1
IACK_68K 2-3, 2-5, 2-6, 3-1, 3-3,

3-4, 3-22
MADDR 2-3, 3-1
MARBC 2-3, 3-1
MFRZB 2-4, 3-2
MIE 2-4, 3-2
MKILLB 2-4, 3-2, 3-20
MRDATA 2-4, 3-2, 3-5, 3-6
MRSTB 2-4, 3-2, 3-30
MRWB 2-4, 3-2
MSIZ 2-4, 3-2, 3-6, 3-9
MTAB 2-5, 3-2, 3-27
MTEAB 2-5, 3-3, 3-28
MTM 2-5, 3-3, 3-4
MTSB 2-6, 3-3
MTT 2-6, 3-3, 3-4
MWDATA 2-6, 3-4, 3-6, 3-9
MWDATAOE 2-6, 3-4

ROM module 5-10
ROM_ACTB 2-10, 5-12
ROM_ADDR 2-9, 5-11
ROM_DO 2-9, 5-11
ROM_ENB 2-9, 5-11
ROM_SZ 2-9, 5-12

scan
SCAN_ENABLE 2-14, 8-16
SCAN_IN 2-14, 8-16
SCAN_MODE 2-14, 8-17
SCAN_OUT 2-14, 8-17
SCAN_XARRAY 2-14, 8-16

SRAM module 5-14
SRAM_ADDR 2-10, 5-15
SRAM_CSB 2-10, 5-16
SRAM_DI 2-11, 5-16
SRAM_DO 2-11, 5-16
SRAM_RWB 2-11, 5-16
SRAM_ST 2-11, 5-16

Index-8

 ColdFire2/2M User’s Manual

MOTOROLA

SRAM_SZ 2-11, 5-16
test bus 2-12

TEST_ADDR 2-13, 8-1, 8-4
TEST_CTRL 2-13, 8-1, 8-4
TEST_ICH_RHIT 2-13, 8-2, 8-6,

8-11
TEST_IDATA_RD 2-13, 8-1, 8-9
TEST_IDATA_WRT 2-13, 8-2, 8-7
TEST_ITAG_WRT 2-13, 8-2, 8-4
TEST_IVLD_INH 2-13, 8-2
TEST_KTA 2-13, 8-2, 8-11
TEST_MODE 2-13, 8-2, 8-3
TEST_READ 2-13, 8-2, 8-9
TEST_ROM_RD 2-13, 8-2, 8-12
TEST_SRAM_RD 2-13, 8-2, 8-16
TEST_SRAM_WRT 2-13, 8-2, 8-14
TEST_WR_INH 2-13, 8-2

signed/unsigned MAC operations 6-3
slave bus 1-9
slave modules 1-11
soft module 1-4
SP 1-12, 4-4
spurious interrupt 3-27
spurious interrupts 4-12
SR 1-15, 3-4, 4-2, 4-10, A-6
SRAM module 1-11, 5-14

configuration encoding 2-11, 5-16
example interface diagram 5-15
programming model 5-16
registers

base address (RAMBAR0) 5-17, A-5
signals 5-14

address bus (SRAM_ADDR) 2-10,
5-15

chip select (SRAM_CSB) 2-10, 5-16
data input bus (SRAM_DI) 2-11, 5-16
data output bus (SRAM_DO) 2-11,

5-16
read/write (SRAM_RWB) 2-11, 5-16
size (SRAM_SZ) 2-11, 5-16
strobe (SRAM_ST) 2-11, 5-16

testing 8-13
write protection 5-13, 5-17

See also

registers, signals
SRAM_ADDR 2-10, 5-15
SRAM_CSB 2-10, 5-16
SRAM_DI 2-11, 5-16

SRAM_DO 2-11, 5-16
SRAM_RWB 2-11, 5-16
SRAM_ST 2-11, 5-16
SRAM_SZ 2-11, 5-16
stack frame 4-3
stack pointer (A7,SP) 1-12
status register (SR) 1-15, 4-2, A-6
STOP instruction 4-9, 7-5, 7-7
supervisor programming model 1-14
system bus controller (SBC) 1-11, 3-6

T

TDR 7-34, A-6
test bus 8-1

signals 2-12
address bus (TEST_ADDR) 2-13,

8-1, 8-4
control (TEST_CTRL) 2-13, 8-1, 8-4
IDATA read (TEST_IDATA_RD)

2-13, 8-1, 8-9
IDATA write (TEST_IDATA_WRT)

2-13, 8-2, 8-7
instruction cache read hit

(TEST_ICH_RHIT) 2-13, 8-2,
8-6, 8-11

invalidate inhibit (TEST_IVLD_INH)
2-13, 8-2

ITAG write (TEST_ITAG_WRT)
2-13, 8-2, 8-4

KTA mode enable (TEST_KTA)
2-13, 8-2, 8-11

mode enable (TEST_MODE) 2-13,
8-2, 8-3

read (TEST_RD) 2-13, 8-2, 8-9
ROM read (TEST_ROM_RD) 2-13,

8-2, 8-12
SRAM read (TEST_SRAM_RD)

2-13, 8-2, 8-16
SRAM write (TEST_SRAM_WRT)

2-13, 8-2, 8-14
write inhibit (TEST_WR_INH) 2-13,

8-2
test mode 8-3
TEST_ADDR 2-13, 8-1, 8-4
TEST_CTRL 2-13, 8-1, 8-4
TEST_ICH_RHIT 2-13, 8-2, 8-6, 8-11
TEST_IDATA_RD 2-13, 8-1, 8-9

MOTOROLA

 ColdFire2/2M User’s Manual

Index-9

TEST_IDATA_WRT 2-13, 8-2, 8-7
TEST_ITAG_WRT 2-13, 8-2, 8-4
TEST_IVLD_INH 2-13, 8-2
TEST_KTA 2-13, 8-2, 8-11
TEST_MODE 2-13, 8-2, 8-3
TEST_READ 2-13, 8-2, 8-9
TEST_ROM_RD 2-13, 8-2, 8-12
TEST_SRAM_RD 2-13, 8-2, 8-16
TEST_SRAM_WRT 2-13, 8-2, 8-14
TEST_WR_INH 2-13, 8-2
testing

cache data RAM 8-6
cache tag RAM 8-3
integrated memories 8-1
KTA mode 8-9
ROM 8-11
SRAM 8-13

trace exception 4-9
trace mode 4-2, 4-9
transfer modifier encoding 2-5, 3-3
transfer size encoding 2-5, 3-2
transfer type 3-4
transfer type encoding 2-6, 3-4
transfers

line read 3-11
line write 3-14
normal read 3-6
normal write 3-9

TRAP instruction exceptions 4-9, 4-10

U

unimplemented opcode exception 4-9
uninitialized interrupts 4-12

V

variant addressing 7-3, 7-4
VBR 1-15, 4-6
vector base register (VBR) 1-15, 4-6
vector number 4-5

W

wait state diagram 3-21
wait states 3-10, 3-17, 3-20
WAREG A-1
WAREG/WDREG 7-13
WCREG 7-23, A-1
WDDATA instruction 2-12, 7-2, 7-3
WDEBUG instruction A-1
WDMREG 7-25, A-1
WRITE 7-16
write protection 5-8, 5-10, 5-13, 5-17
write transfer

diagram 3-10
flowchart 3-9

write transfers 3-9, 3-14

MOTOROLA
SEMICONDUCTOR
TECHNICAL 	INFORMATION

Order this document
by MC68306/D

MC68306

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

© MOTOROLA, 1992

Product Brief
Integrated EC000 Processor

The MC68306 is an integrated processor containing a 68EC000 processor and elements common to many
68000- and 68EC000-based systems. Designers of virtually any application requiring 68000-class
performance will find that the MC68306 reduces design time by providing valuable system elements pre-
packaged in one chip. The combination of peripherals offered in the MC68306 can be found in a diverse
range of microprocessor-based systems, including embedded control and general computing. Systems
requiring serial communication and dynamic random access memory (DRAM) can especially benefit from
using the MC68306.

The MC68306's high level of functional integration results in significant reductions in component count,
power consumption, board space, and cost while yielding much higher system reliability and shorter design
time. Complete code compatibility with the MC68000 affords the designer access to a broad base of
established real-time kernels, operating systems, languages, applications, and development tools, many of
which are oriented towards embedded control. Figure 1 shows a simplified block diagram of the MC68306.

TWO-CHANNEL
SERIAL

I/O

PORT A

EC000
CORE

PROCESSOR

CHIP
SELECTS

INTERRUPT
CONTROLLER

PORT B

DRAM
CONTROLLER

JTAG
PORT

MODE
CONTROLLER

CLOCK

8

8

24

16

16-BIT
TIMER

Figure 1. MC68306 Simplified Block Diagram

2 MC68306 PRODUCT INFORMATION MOTOROLA

The primary features of the MC68306 are as follows:

• Functional Integration on a Single Piece of Silicon

• EC000 Core—Identical to MC68EC000 Microprocessor

— Complete Code Compatibility with MC68000 and MC68EC000
— High Performance—2.4 MIPS

• Two-Channel Universal Synchronous/Asynchronous Receiver/Transmitter (a DUART)

— Baud Rate Generators
— Modem Control
— Identical to MC68681/MC2681
— Integrated 16-Bit Timer/Counter (useful for periodic interrupt generation, event counting, etc.)

• Dynamic Random Access Memory (DRAM) Controller

— Supports 16 Mbytes using 4M x 1 DRAMs, 64 Mbytes using 16M x 1 DRAMs (compatible with
larger future-generation DRAMs)

— Provides 0 Wait State Interface to 80-ns DRAMs
— Programmable Refresh Timer Provides CAS-before-RAS Refresh

• Chip Selects

— Eight Programmable Chip Select Signals
— Provide Eight Separate 1-Mbyte Spaces or Four Separate 16-Mbyte Spaces Locatable

anywhere within the 4-Gbyte Address Range of the EC000 Core
— Programmable Wait States

• Programmable Interrupt Controller

• Bus Watchdog Timer

• 24 Address Lines, 16 Data Lines

• 16.67-MHz, 5-V Operation

• 128-Pin Plastic Quad Flat Pack (QFP) or 132-Pin Plastic Quad Flat Pack (PQFP)

MOTOROLA MC68306 PRODUCT INFORMATION 3

M68300 FAMILY
The MC68306 is one of a series of components in Motorola's M68300 family. Other members of the family
include the MC68302, MC68330, MC68331, MC68332, MC68F333, MC68334, and MC68340.

ORGANIZATION

The M68300 family of integrated processors and controllers is built on an M68000 core processor and a
selection of intelligent peripherals appropriate for a set of applications. Common system glue logic such as
address decoding, wait state insertion, interrupt prioritization, and watchdog timing is also included.

Each member of the M68300 family is distinguished by its selection of peripherals. Peripherals are chosen
to address specific applications but are often useful in a wide variety of applications. The peripherals may be
highly sophisticated timing or protocol engines that have their own processors, or they may be more
traditional peripheral functions, such as UARTs and timers.

ADVANTAGES

By incorporating so many major features into a single M68300 family chip, a system designer can realize
significant savings in design time, power consumption, cost, board space, pin count, and programming. The
equivalent functionality can easily require 20 separate components. Each component might have 16–64
pins, totaling over 350 connections. Most of these connections require interconnects or are duplications.
Each connection is a candidate for a bad solder joint or misrouted trace. Each component is another part to
qualify, purchase, inventory, and maintain. Each component requires a share of the printed circuit board.
Each component draws power, which is often used to drive large buffers to get the signal to another chip.
The cumulative power consumption of all the components must be available from the power supply. The
signals between the CPU and a peripheral might not be compatible nor run from the same clock, requiring
time delays or other special design considerations.

In an M68300 family component, the major functions and glue logic are all properly connected internally,
timed with the same clock, fully tested, and uniformly documented. Only essential signals are brought out to
pins. The primary package is the surface-mount plastic quad flat pack for the smallest possible footprint.

4 MC68306 PRODUCT INFORMATION MOTOROLA

MC68306 SIGNALS
Figure 2 is a detailed diagram showing the integrated peripherals and signals.

TWO-
CHANNEL

SERIAL
I/O RxDB

RxDA

TxDB

TxDA

X2
X1

PORT A

 EXTAL
XTAL

CLKOUT

JTAG
PORT

INPUT/
OUTPUT

PORT

RTSB/OP1
RTSA/OP0

A19–A16

FC2–FC0

D15–D0

RESET
BERR
HALT
AS
UDS

R/W

BR
BG
BGACK

EC000
CORE

PROCESSOR
TCK
TMS
TDI

TDO

PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

DRAM
CONTROLLER

INTERRUPT
CONTROLLER

MODE
CONTROLLER

CTSB/IP1
CTSA/IP0

C
S0

C
S1

C
S2

C
S3

C
S4

/A
23

C
S5

/A
22

C
S6

/A
21

C
S7

/A
20

PORT B

CHIP
SELECTS

AMODE

RAS1
RAS0
CAS1

IRQ7
IRQ4
IRQ1

IACK7
IACK4
IACK1

A15/DRAMA14–A1/DRAMA0
CAS0

IRQ6/PB7
IRQ5/PB6
IRQ3/PB5
IRQ2/PB4

IACK6/PB3
IACK5/PB2
IACK3/PB1
IACK2/PB0

TRST

LDS

UW
LW

DTACK

DRAMW

OE

CLOCK

IP2

16-BIT
TIMER/

COUNTER

O
P3

Figure 2. MC68306 Detailed Block Diagram

MOTOROLA MC68306 PRODUCT INFORMATION 5

EC000 CORE PROCESSOR
The core processor is the heart of an integrated processor; it supervises system functions, makes decisions,
manipulates data, and directs I/O. The EC000 core is a core implementation of the MC68000 32-bit
microprocessor architecture. The programmer can use any of the eight 32-bit data registers for fast
manipulation of data and any of the eight 32-bit address registers for indexing data in memory. Flexible
instructions support data movement, arithmetic functions, logical operations, shifts and rotates, bit set and
clear, conditional and unconditional program branches, and overall system control.

The EC000 core can operate on data types of single bits, binary-coded decimal (BCD) digits, and 8, 16, and
32 bits. The integrated chip selects allow peripherals and data in memory to reside anywhere in the 4-Gbyte
linear address space. A supervisor operating mode protects system-level resources from the more restricted
user mode, allowing a true virtual environment to be developed. Many addressing modes complement these
instructions, including predecrement and postincrement, which allow simple stack and queue maintenance
and scaled indexing for efficient table accesses. Data types and addressing modes are supported
orthogonally by all data operations and with all appropriate addressing modes. Position-independent code is
easily written.

Like all M68000 family processors, the EC000 core recognizes interrupts of seven different priority levels
and allows the peripheral to vector the processor to the desired service routine. Internal trap exceptions
ensure proper instruction execution with good addresses and data, allow operating system intervention in
special situations, and permit instruction tracing. Hardware signals can either terminate or rerun bad
memory accesses before instructions process data incorrectly. The EC000 core provides 2.4 MIPS at 16.67
MHz.

ON-CHIP PERIPHERALS
To improve total system throughput and reduce part count, board size, and cost of system implementation,
the M68300 family integrates on-chip, intelligent peripheral modules and typical glue logic. The functions on
the MC68306 include two serial channels, a DRAM controller, a parallel port, and system glue logic.

68681 MODULE

Most digital systems use serial I/O to communicate with host computers, operator terminals, or remote
devices. The MC68306 contains a two-channel, full-duplex UART with an integrated timer. An on-chip baud
rate generator provides standard baud rates up the 38.4K baud to each channel's receiver and transmitter.
The 68681 module is identical to the MC68681/MC2681 DUART.

Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8 bits with even,
odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive buffers and two-byte transmit
buffers minimize CPU service calls. Each channel provides a wide variety of error detection and maskable
interrupt capability. Full-duplex, autoecho loopback, local loopback, and remote loopback modes can be
selected. Multidrop applications are also supported.

A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel can be
programmed for a different baud rate. Full modem support is provided with separate request-to-send (RTS)
and clear-to-send (CTS) signals for each channel.

The integrated 16-bit timer/counter can operate in a counter mode or a timer mode. The timer/counter can
function as a system stopwatch, a real-time single interrupt generator, or a device watchdog when in counter
mode. In timer mode, the timer/counter can be used as a programmable clock source for channels A and B,
a periodic interrupt generator, or a variable duty cycle square-wave generator.

6 MC68306 PRODUCT INFORMATION MOTOROLA

DRAM CONTROLLER

DRAM is used in many systems, since it is the least expensive form of high-speed storage available.
However, considerable design effort is often spent designing the interface between the processor and
DRAM. The MC68306 contains a full DRAM controller, greatly reducing design time and complexity.

The DRAM controller provides RAS and CAS signals for two separate banks of DRAMs. Each bank can
include up to 16 devices; 15 multiplexed address lines are also available. Thus, using 4M x 1 DRAMs, up to
16 Mbytes of DRAM are supported; and with 16M x 1 DRAMs, up to 64 Mbytes of DRAM are supported. A
programmable refresh timer provides CAS-before-RAS refreshes at designated intervals.

The DRAM controller has its own address registers that control the address range selected by each RAS
and CAS signal, leaving the eight integrated chip selects free for other system peripherals. DRAM accesses
are 0 wait states using 80-ns DRAMs.

CHIP SELECTS

The MC68306 provides up to eight programmable chip select outputs, in most cases eliminating the need
for external address decoding. All handshaking and timing signals are provided, with up to 950-ns access
times. Each chip select can access a 16 Mbyte address space located anywhere in the 4-Gbyte address
range. Internal registers allow the base address, range, and cycle duration of each chip select to be
independently programmed. After reset, CS0 responds to all accesses until the chip selects have been
properly programmed. Four of the chip selects are multiplexed with the most significant address bits (A23–
A20). The AMODE input determines the functions of these outputs.

PARALLEL PORTS

Two 8-bit parallel ports are provided. The port pins can be individually programmed to be inputs or outputs.
If the pins are programmed to be inputs, the value on those pins can be read by accessing an on-board
register. If the pins are programmed to be outputs, the pins will reflect the value programmed into another
on-board register. The port B pins are multiplexed with four interrupt request and four interrupt acknowledge
lines. The function of these pins is controlled by the internal registers.

INTERRUPT CONTROLLER

Seven input signals are provided to trigger an external interrupt, one for each of the seven priority levels
supported. Each input can be programmed to be active high or active low. Seven separate outputs indicate
the priority level of the interrupt being serviced. Interrupts at each priority level can be pre-programmed to go
to the default service routine. For maximum flexibility, interrupts can be vectored to the correct service
routine by the interrupting device.

CLOCK

To save on system costs, the MC68306 has an on-board oscillator that can be driven with a 16.67 MHz
crystal. A bus clock output is provided by a CLKOUT pin. Alternatively, an external 16.67 MHz oscillator can
be used, with a tight skew between the input clock signal and the bus clock on the CLKOUT pin.

BUS WATCHDOG TIMER

A bus watchdog timer is provided to automatically terminate and report as erroneous any bus cycle that is
not normally terminated after a pre-programmed length of time. The user can program this timeout period to
be up to 4096 clocks.

MOTOROLA MC68306 PRODUCT INFORMATION 7

MODE CONTROLLER

One input signal is used to determine the function of the multiplexed address/chip select pins. The mode
input is sampled on the rising edge of RESET .

IEEE 1149.1 TEST

To aid in system diagnostics, the MC68306 includes dedicated user-accessible test logic that is fully
compliant with the IEEE 1149.1 standard for boundary scan testability, often referred to as JTAG (Joint Test
Action Group).

PHYSICAL
The MC68306 is available as 16.67 MHz, 0°C to +70°C, and 5.0 V ± 5% supply voltage. Twenty power and
ground leads minimize ground bounce and ensure proper isolation of different sections of the chip. A total of
128 pins are used for signals and power. The MC68306 is available in a 128-pin gull-wing plastic quad flat
pack (QFP) with 0.8-mm lead spacing. For customers desiring emulation capability, the MC68306 is
available in a 132-pin gull-wing plastic quad flat pack (PQFP) with 0.25 in. lead spacing.

MORE INFORMATION

The documents listed in the following table contain detailed information on the MC68306. These documents
may be obtained from the Literature Distribution Centers at the addresses listed on the back page.

Documentation

Document Title Order Number Contents

M68300 Integrated Processor Family BR1114/D M68300 Family Overview

MC68306 User's Manual MC68306UM/AD Detailed Information for Design

M68000 Family Programmer's Reference
Manual

M68000PM/AD M68000 Family Instruction Set

The 68K Source BR729/D Independent Vendor Listing Supporting
Software and Development Tools

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po

 Industrial Estate, Tai Po, N.T., Hong Kong.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do
vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding
the design or manufacture of the part. Motorola and µ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative
Action Employer.

© MOTOROLA, 1993

MC68306
Integrated EC000 Processor

User’s Manual

µ

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

PREFACE

The complete documentation package for the MC68306 consists of the MC68306UM/AD,
MC68306 EC000 Integrated Processor User’s Manual, M68000PM/AD, MC68000 Family
Programmer’s Reference Manual, and the MC68306P/D, MC68306 EC000 Integrated
Processor Product Brief.

The MC68306 EC000 Integrated Processor User’s Manual describes the programming,
capabilities, registers, and operation of the MC68306; the MC68000 Family Programmer’s
Reference Manual provides instruction details for the MC68306; and the MC68306 EC000
Integrated Processor Product Brief provides a brief description of the MC68306
capabilities.

This user’s manual is organized as follows:

Section 1 Introduction
Section 2 Signal Descriptions
Section 3 68000 Bus Operation Description
Section 4 EC000 Core Processor
Section 5 System Operation
Section 6 Serial Module
Section 7 IEEE 1149.1 Test Access Port
Section 8 Electrical Specifications
Section 9 Ordering Information and Mechanical Data

68K FAX-IT – Documentation Comments

FAX 512-891-8593—Documentation Comments Only

The Motorola High-End Technical Publications Department provides a fax number for you
to submit any questions or comments about this document or how to order other
documents. We welcome your suggestions for improving our documentation. Please do
not fax technical questions.

Please provide the part number and revision number (located in upper right-hand corner
of the cover) and the title of the document. When referring to items in the manual, please
reference by the page number, paragraph number, figure number, table number, and line
number if needed.

When sending a fax, please provide your name, company, fax number, and phone
number including area code.

Applications and Technical Information
For questions or comments pertaining to technical information, questions, and
applications, please contact one of the following sales offices nearest you.

— Sales Offices —
UNITED STATES

ALABAMA, Huntsville (205) 464-6800
ARIZONA, Tempe (602) 897-5056
CALIFORNIA, Agoura Hills (818) 706-1929
CALIFORNIA, Los Angeles (310) 417-8848
CALIFORNIA, Irvine (714) 753-7360
CALIFORNIA, Rosevllle (916) 922-7152
CALIFORNIA, San Diego (619) 541-2163
CALIFORNIA, Sunnyvale (408) 749-0510
COLORADO , Colorado Springs (719) 599-7497
COLORADO , Denver (303) 337-3434
CONNECTICUT, Wallingford (203) 949-4100
FLORIDA , Maitland (407) 628-2636
FLORIDA , Pompano Beach/
 Fort Lauderdale (305) 486-9776
FLORIDA , Clearwater (813) 538-7750
GEORGlA , Atlanta (404) 729-7100
IDAHO , Boise (208) 323-9413
ILLINOIS , Chicago/Hoffman Estates (708) 490-9500
INDlANA, Fort Wayne (219) 436-5818
INDIANA, Indianapolis (317) 571-0400
INDIANA, Kokomo (317) 457-6634
IOWA , Cedar Rapids (319) 373-1328
KANSAS , Kansas City/Mission (913) 451-8555
MARYLAND , Columbia (410) 381-1570
MASSACHUSETTS, Marborough (508) 481-8100
MASSACHUSETTS, Woburn (617) 932-9700
MICHIGAN, Detroit (313) 347-6800
MINNESOTA, Minnetonka (612) 932-1500
MISSOURI , St. Louis (314) 275-7380
NEW JERSEY, Fairfield (201) 808-2400
NEW YORK, Fairport (716) 425-4000
NEW YORK, Hauppauge (516) 361-7000
NEW YORK, Poughkeepsie/Fishkill (914) 473-8102
NORTH CAROLINA , Raleigh (919) 870-4355
OHIO, Cleveland (216) 349-3100
OHIO, Columbus Worthington (614) 431-8492
OHIO, Dayton (513) 495-6800
OKLAHOMA, Tulsa (800) 544-9496
OREGON , Portland (503) 641-3681
PENNSYLVANIA , Colmar (215) 997-1020
 Philadelphia/Horsham (215) 957-4100
TENNESSEE, Knoxville (615) 690-5593
TEXAS , Austin (512) 873-2000
TEXAS , Houston (800) 343-2692
TEXAS , Plano (214) 516-5100
VIRGINIA , Richmond (804) 285-2100
WASHINGTON , Bellevue (206) 454-4160
 Seattle Access (206) 622-9960
WISCONSIN, Milwaukee/Brookfield (414) 792-0122

Field Applications Engineering Available
Through All Sales Offices

CANADA

BRITISH COLUMBIA, Vancouver (604) 293-7605
ONTARIO , Toronto (416) 497-8181
ONTARIO , Ottawa (613) 226-3491
QUEBEC, Montreal (514) 731-6881

INTERNATIONAL

AUSTRALIA, Melbourne (61-3)887-0711
AUSTRALIA, Sydney (61(2)906-3855
BRAZIL, Sao Paulo 55(11)815-4200
CHINA, Beijing 86 505-2180

FINLAND, Helsinki 358-0-35161191
 Car Phone 358(49)211501
FRANCE, Paris/Vanves 33(1)40 955 900
GERMANY , Langenhagen/ Hanover 49(511)789911
GERMANY , Munich 49 89 92103-0
GERMANY , Nuremberg 49 911 64-3044
GERMANY , Sindelfingen 49 7031 69 910
GERMANY ,Wiesbaden 49 611 761921
HONG KONG, Kwai Fong 852-4808333
 Tai Po 852-6668333
INDIA , Bangalore (91-812)627094
ISRAEL, Tel Aviv 972(3)753-8222
ITALY, Milan 39(2)82201
JAPAN, Aizu 81(241)272231
JAPAN, Atsugi 81(0462)23-0761
JAPAN, Kumagaya 81(0485)26-2600
JAPAN, Kyushu 81(092)771-4212
JAPAN, Mito 81(0292)26-2340
JAPAN, Nagoya 81(052)232-1621
JAPAN, Osaka 81(06)305-1801
JAPAN, Sendai 81(22)268-4333
JAPAN, Tachikawa 81(0425)23-6700
JAPAN, Tokyo 81(03)3440-3311
JAPAN, Yokohama 81(045)472-2751
KOREA , Pusan 82(51)4635-035
KOREA , Seoul 82(2)554-5188
MALAYSIA , Penang 60(4)374514
MEXICO , Mexico City 52(5)282-2864
MEXICO , Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160
NETHERLANDS, Best (31)49988 612 11
PUERTO RICO , San Juan (809)793-2170
SINGAPORE (65)2945438
SPAIN, Madrid 34(1)457-8204
 or 34(1)457-8254
SWEDEN, Solna 46(8)734-8800
SWITZERLAND, Geneva 41(22)7991111
SWITZERLAND, Zurich 41(1)730 4074
TAlWAN , Taipei 886(2)717-7089
THAILAND , Bangkok (66-2)254-4910
UNITED KINGDOM , Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES

COLORADO , Grand Junction
 Cheryl Lee Whltely (303) 243-9658
KANSAS , Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190
NEVADA , Reno
 Galena Technology Group (702) 746 0642
NEW MEXICO, Albuquerque
 S&S Technologies, lnc. (505) 298-7177
UTAH, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099
WASHINGTON , Spokane
 Doug Kenley (509) 924-2322
ARGENTINA , Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS

Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631

MOTOROLA MC68306 USER'S MANUAL v

TABLE OF CONTENTS
Paragraph Page

Number Title Number

Section 1
Introduction

1.1 MC68EC000 Core processor.. 1-2
1.2 On-Chip Peripherals ... 1-3
1.2.1 Serial Module ... 1-3
1.2.2 DRAM Controller .. 1-4
1.2.3 Chip Selects... 1-4
1.2.4 Parallel Ports.. 1-4
1.2.5 Interrupt Controller ... 1-4
1.2.6 Clock .. 1-5
1.2.7 Bus Timeout Monitor .. 1-5
1.2.8 Mode Controller ... 1-5
1.2.9 IEEE 1149.1 Test... 1-5

Section 2
Signal Descriptions

2.1 Bus Signals ... 2-5
2.1.1 Address Bus (A23–A1) .. 2-5
2.1.2 Address Strobe (AS) .. 2-5
2.1.3 Bus Error (BERR) .. 2-5
2.1.4 Bus Request (BR) .. 2-5
2.1.5 Bus Grant (BG) .. 2-6
2.1.6 Bus Grant Acknowledge (BGACK) ... 2-6
2.1.7 Data Bus (D15–D0) ... 2-6
2.1.8 Data Transfer Acknowledge (DTACK) ... 2-6
2.1.9 DRAM Multiplexed Address Bus (DRAMA14 –DRAMA0) 2-6
2.1.10 Processor Function Codes (FC2–FC0).. 2-6
2.1.11 Halt (HALT) .. 2-7
2.1.12 Read/Write (R/W) ... 2-7
2.1.13 Upper And Lower Data Strobes (UDS , LDS) ... 2-7
2.1.14 Upper Byte Write (UW) .. 2-8
2.1.15 Lower Byte Write (LW)... 2-8
2.1.16 Output Enable (OE) ... 2-8
2.1.17 Reset (RESET) .. 2-8
2.2 Chip Select Signals... 2-9

vi MC68306 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

2.3 DRAM Controller Signals.. 2-9
2.3.1 Column Address Strobe (CAS1–CAS0)... 2-9
2.3.2 Row Address Strobe (RAS1–RAS0) .. 2-9
2.3.3 DRAM Write Signal (DRAMW) ... 2-9
2.4 Interrupt Control and Parallel Port Signals ... 2-9
2.4.1 Interrupt Request (IRQ7–IRQ1) ... 2-9
2.4.2 Interrupt Acknowledge (IACK7–IACK1) ... 2-9
2.4.3 Port A Signals (PA7–PA0) ... 2-9
2.4.4 Port B (PB7–PB0) .. 2-9
2.5 Clock and Mode Control Signals .. 2-10
2.5.1 Crystal Oscillator (EXTAL, XTAL) .. 2-10
2.5.2 Clock Out (CLKOUT) ... 2-10
2.5.3 Address Mode (AMODE) ... 2-10
2.6 Serial Module Signals ... 2-10
2.6.1 Channel A Receiver Serial-Data Input (RxDA) .. 2-10
2.6.2 Channel A Transmitter Serial-Data Output (TxDA) ... 2-10
2.6.3 Channel B Receiver Serial-Data Input (RxDB) .. 2-10
2.6.4 Channel B Transmitter Serial-Data Output (TxDB) ... 2-10
2.6.5 CTSA ... 2-11
2.6.6 RTSA ... 2-11
2.6.7 CTSB ... 2-11
2.6.8 RTSB ... 2-11
2.6.9 Crystal Oscillator (X1, X2) ... 2-11
2.6.10 IP2 ... 2-11
2.6.11 OP3 ... 2-11
2.7 JTAG Port Test Signals .. 2-11
2.7.1 Test Clock (TCK) ... 2-12
2.7.2 Test Mode Select (TMS).. 2-12
2.7.3 Test Data In (TDI) .. 2-12
2.7.4 Test Data Out (TDO) ... 2-12
2.7.5 Test Reset (TRST) .. 2-12

Section 3
68000 Bus Operation Description

3.1 Data Transfer Operations ... 3-1
3.1.1 Read Cycle .. 3-1
3.1.2 Write Cycle .. 3-4
3.1.3 Read-Modify-Write Cycle... 3-7
3.1.4 CPU Space Cycle .. 3-11

MOTOROLA MC68306 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

3.2 Bus Arbitration .. 3-12
3.2.1 Requesting the Bus ... 3-15
3.2.2 Receiving the Bus Grant .. 3-16
3.2.3 Acknowledgment of Mastership (3-Wire Bus Arbitration Only) 3-16
3.3 Bus Arbitration Control .. 3-16
3.4 Bus Error and Halt Operation ... 3-24
3.4.1 Bus Error Operation ... 3-24
3.4.2 Retrying the Bus Cycle .. 3-25
3.4.3 Halt Operation.. 3-26
3.4.4 Double Bus Fault ... 3-27
3.5 Reset Operation.. 3-28
3.6 The Relationship of DTACK, BERR , and HALT .. 3-28
3.7 Asynchronous Operation .. 3-30
3.8 Synchronous Operation .. 3-33

Section 4
EC000 Core Processor

4.1 Features.. 4-1
4.2 Processing States ... 4-1
4.3 Programming Model ... 4-2
4.3.1 Data Format Summary... 4-3
4.3.2 Addressing Capabilities Summary ... 4-4
4.3.3 Notation Conventions .. 4-5
4.4 EC000 Core Instruction Set Overview .. 4-7
4.5 Exception Processing ... 4-12
4.5.1 Exception Vectors .. 4-14
4.6 Processing of Specific Exceptions .. 4-16
4.6.1 Reset Exception... 4-17
4.6.2 Interrupt Exceptions ... 4-17
4.6.3 Uninitialized Interrupt Exception .. 4-18
4.6.4 Spurious Interrupt Exception.. 4-18
4.6.5 Instruction Traps .. 4-18
4.6.6 Illegal and Unimplemented Instructions ... 4-18
4.6.7 Privilege Violations... 4-19
4.6.8 Tracing ... 4-19
4.6.9 Bus Error .. 4-20
4.6.10 Address Error ... 4-21
4.6.11 Multiple Exceptions .. 4-21

viii MC68306 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 5
System Operation

5.1 MC68306 Address Space ... 5-1
5.2 Register Description ... 5-3
5.2.1 System Register .. 5-3
5.2.2 Timer Vector Register .. 5-4
5.2.3 Bus Timeout Period Register... 5-4
5.2.4 Interrupt Registers ... 5-5
5.2.4.1 Interrupt Control Register ... 5-5
5.2.4.2 Interrupt Status Register... 5-6
5.2.5 I/O Port Registers .. 5-6
5.2.5.1 Port Pins Register ... 5-7
5.2.5.2 Port Direction Register ... 5-7
5.2.5.3 Port Data Register .. 5-8
5.2.6 Chip Selects... 5-8
5.2.6.1 Chip Select Configuration Registers (High Half) .. 5-9
5.2.6.2 Chip Select Configuration Registers (Low Half) ... 5-10
5.2.7 DRAM Control Registers ... 5-12
5.2.7.1 DRAM Refresh Register ... 5-13
5.2.7.2 DRAM Bank Configuration Register (High Half) ... 5-14
5.2.7.3 DRAM Bank Configuration Register (Low Half) .. 5-14
5.2.8 Automatic DTACK Generation... 5-16
5.3 Crystal Oscillator .. 5-16

Section 6
Serial Module

6.1 Module Overview .. 6-2
6.1.1 Serial Communication Channels A and B.. 6-3
6.1.2 Baud Rate Generator Logic ... 6-3
6.1.3 Timer/Counter .. 6-3
6.1.4 Interrupt Control Logic ... 6-3
6.1.5 Comparison of Serial Module to MC68681.. 6-4
6.2 Serial Module Signal Definitions ... 6-4
6.2.3 Channel A Transmitter Serial Data Output (TxDA).. 6-4
6.2.4 Channel A Receiver Serial Data Input (RxDA) .. 6-5
6.2.5 Channel B Transmitter Serial Data Output (TxDB).. 6-5
6.2.6 Channel B Receiver Serial Data Input (RxDB) .. 6-6
6.2.7 Channel A Request-To-Send (RTSA/OP0) ... 6-6
6.2.7.1 RTSA .. 6-6
6.2.7.2 OP0 .. 6-6
6.2.8 Channel B Request-To-Send (RTSB/OP1) ... 6-6

MOTOROLA MC68306 USER'S MANUAL ix

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

6.2.8.1 RTSB .. 6-6
6.2.8.2 OP1... 6-6
6.2.9 Channel A Clear-To-Send (CTSA/IP0) .. 6-6
6.2.9.1 CTSA .. 6-6
6.2.9.2 IP0 .. 6-6
6.2.10 Channel B Clear-To-Send (CTSB/IP1) .. 6-6
6.2.10.1 CTSB .. 6-6
6.2.10.2 IP1 .. 6-6
6.3 Operation .. 6-7
6.3.1 Baud Rate Generator... 6-7
6.3.2 Transmitter and Receiver Operating Modes .. 6-7
6.3.2.1 Transmitter .. 6-9
6.3.2.2 Receiver.. 6-10
6.3.2.3 FIFO Stack .. 6-11
6.3.3 Looping Modes .. 6-13
6.3.3.1 Automatic Echo Mode... 6-13
6.3.3.2 Local Loopback Mode... 6-13
6.3.3.3 Remote Loopback Mode ... 6-13
6.3.4 Multidrop Mode .. 6-14
6.3.5 Counter/Timer .. 6-16
6.3.5.1 Counter Mode ... 6-16
6.3.5.2 Timer Mode... 6-16
6.3.6 Bus Operation .. 6-17
6.3.6.1 Read Cycles 6-17
6.3.6.2 Write Cycles.. 6-17
6.3.6.3 Interrupt Acknowledge Cycles .. 6-17
6.4 Register Description and Programming .. 6-17
6.4.1 Register Description .. 6-17
6.4.1.1 Mode Register 1 (DUMR1) ... 6-18
6.4.1.2 Mode Register 2 (DUMR2) ... 6-20
6.4.1.3 Status Register (DUSR).. 6-22
6.4.1.4 Clock-Select Register (DUCSR) ... 6-24
6.4.1.5 Command Register (DUCR) ... 6-26
6.4.1.6 Receiver Buffer (DURB) ... 6-29
6.4.1.7 Transmitter Buffer (DUTB) .. 6-29
6.4.1.8 Input Port Change Register (DUIPCR) ... 6-29
6.4.1.9 Auxiliary Control Register (DUACR) .. 6-30
6.4.1.10 Interrupt Status Register (DUISR) .. 6-31
6.4.1.11 Interrupt MASK Register (DUIMR).. 6-33
6.4.1.12 Count Register Current MSB of Counter (DUCUR) .. 6-33
6.4.1.13 Count Register Current LSB of Counter (DUCLR) ... 6-33
6.4.1.14 Counter/Timer Upper Preload Register (CTUR) ... 6-34

x MC68306 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

6.4.1.15 Counter/Timer Lower Pimer Register (CTLR) .. 6-34
6.4.1.16 Interrupt Vector Register (DUIVR) .. 6-34
6.4.1.17 Input Port Register .. 6-34
6.4.1.18 Output Port Control Register (DUOPCR) ... 6-35
6.4.1.19 Output Port Data Register (DUOP) .. 6-35
6.4.1.20 Start Counter Command Register .. 6-36
6.4.1.21 Stop Counter Command Register .. 6-36
6.4.2 Programming ... 6-36
6.4.2.1 Serial Module Initialization. ... 6-36
6.4.2.2 I/O Driver Example ... 6-37
6.4.2.3 Interrupt Handling ... 6-37
6.5 Serial Module Initialization Sequence ... 6-43

Section 7
IEEE 1149.1 Test Access Port

7.1 Overview... 7-1
7.2 TAP Controller .. 7-3
7.3 Boundary Scan Register... 7-3
7.4 Instruction Register... 7-9
7.4.1 EXTEST (000) 7-10
7.4.2 SAMPLE/PRELOAD (110) .. 7-10
7.4.3 BYPASS (010, 101, 111) ... 7-11
7.4.4 CLAMP (011) .. 7-11
7.5 MC68306 Restrictions .. 7-11
7.6 Non-IEEE 1149.1 Operation ... 7-12

Section 8
Electrical Specifications

8.1 Maximum Ratings ... 8-1
8.2 Thermal Characteristics .. 8-1
8.3 Power Considerations... 8-2
8.4 AC Electrical Specification Definitions .. 8-2
8.5 DC Electrical Specifications .. 8-4
8.6 AC Electrical Specifications—Clock Timing.. 8-4
8.7 AC Electrical Specifications—Read and Write ... 8-5
8.8 AC Electrical Specifications—Chip Selects .. 8-9
8.9 AC Electrical Specifications—Bus Arbitration ... 8-10
8.10 Bus Operation—DRAM Accesses AC Timing Specifications 8-12
8.11Serial Module Electrical Characteristics .. 8-15
8.12 Serial Module AC Electrical Characteristics—Clock Timing 8-16
8.13 AC Electrical Characteristics—Port Timing .. 8-16
8.14 AC Electrical Characteristics—Interrupt Reset ... 8-16

MOTOROLA MC68306 USER'S MANUAL xi

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

8.14 AC Electrical Characteristics—Interrupt Reset ... 8-16
8.15 AC Electrical Characteristics—Transmitter Timing ... 8-17
8.16 AC Electrical Characteristics—Receiver Timing ... 8-18
8.17 IEEE 1149.1 Electrical Characteristics ... 8-19

Section 9
Ordering Information and Mechanical Data

9.1 Standard Ordering Information ... 9-1
9.2 Pin Assignments 9-2

xii MC68306 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS
Figure Page

Number Title Number

Figure 1-1. MC68306 Simplified Block Diagram... 1-1

Figure 2-1. MC68306 Detailed Block Diagram ... 2-2

Figure 3-1. Word Read Cycle Flowchart .. 3-2
Figure 3-2. Byte Read Cycle Flowchart .. 3-2
Figure 3-3. Read and Write Cycle Timing Diagram .. 3-3
Figure 3-4. Word and Byte Read Cycle Timing Diagram ... 3-3
Figure 3-5. Word Write Cycle Flowchart ... 3-5
Figure 3-6. Byte Write Cycle Flowchart .. 3-6
Figure 3-7. Word and Byte Write Cycle Timing Diagram.. 3-6
Figure 3-8. Read-Modify-Write Cycle Flowchart ... 3-8
Figure 3-9. Read-Modify-Write Cycle Timing Diagram ... 3-9
Figure 3-10. Interrupt Acknowledge Cycle ... 3-11
Figure 3-11. Interrupt Acknowledge Cycle Timing Diagram 3-12
Figure 3-12. Three-Wire Bus Arbitration Cycle Flowchart .. 3-13
Figure 3-13. Two-Wire Bus Arbitration Cycle Flowchart ... 3-14
Figure 3-14. Three-Wire Bus Arbitration Timing Diagram .. 3-15
Figure 3-15. Two-Wire Bus Arbitration Timing Diagram ... 3-15
Figure 3-16. External Asynchronous Signal Synchronization 3-17
Figure 3-17. Bus Arbitration Unit State Diagrams... 3-19
Figure 3-18. Three-Wire Bus Arbitration Timing Diagram—Processor Active 3-20
Figure 3-19. Three-Wire Bus Arbitration Timing Diagram—Bus Inactive 3-21
Figure 3-20. Three-Wire Bus Arbitration Timing Diagram—Special Case 3-22
Figure 3-21. Two-Wire Bus Arbitration Timing Diagram—Processor Active 3-23
Figure 3-22. Two-Wire Bus Arbitration Timing Diagram—Bus Inactive 3-24
Figure 3-23. Two-Wire Bus Arbitration Timing Diagram—Special Case 3-25
Figure 3-24. Bus Error Timing Diagram .. 3-26
Figure 3-25. Retry Bus Cycle Timing Diagram ... 3-27
Figure 3-26. Halt Operation Timing Diagram.. 3-28
Figure 3-27. Reset Operation Timing Diagram... 3-29
Figure 3-28 Fully Asynchronous Read Cycle ... 3-32
Figure 3-29. Fully Asynchronous Write Cycle... 3-32
Figure 3-30. Pseudo-Asynchronous Read Cycle ... 3-33
Figure 3-31. Pseudo-Asynchronous Write Cycle.. 3-34
Figure 3-32. Synchronous Read Cycle... 3-36
Figure 3-33. Synchronous Write Cycle ... 3-37

MOTOROLA MC68306 USER'S MANUAL xiii

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

Figure 4-1. Programmer's Model .. 4-2
Figure 4-2. Status Register ... 4-3
Figure 4-3. General Exception Processing Flowchart .. 4-13
Figure 4-4. General Form of Exception Stack Frame ... 4-14
Figure 4-5. Exception Vector Format .. 4-15
Figure 4-6. Address Translated from 8-Bit Vector Number 4-15
Figure 4-7. Supervisor Stack Order for Bus or Address Error Exception 4-21

Figure 5-1. Chip Select Expansion ... 5-12
Figure 5-2. Oscillator Circuit Diagram... 5-17

Figure 6-1. Simplified Block Diagram ... 6-1
Figure 6-2. External and Internal Interface Signals .. 6-5
Figure 6-3. Baud Rate Generator Block Diagram ... 6-7
Figure 6-4. Transmitter and Receiver Functional Diagram 6-8
Figure 6-5. Transmitter Timing Diagram ... 6-9
Figure 6-6. Receiver Timing Diagram ... 6-11
Figure 6-7. Looping Modes Functional Diagram ... 6-14
Figure 6-8. Multidrop Mode Timing Diagram .. 6-15
Figure 6-9. Serial Module Programming Model .. 6-18
Figure 6-10. Serial Module Programming Flowchart .. 6-38

Figure 7-1. Test Access Port Block Diagram .. 7-2
Figure 7-2. TAP Controller State Machine .. 7-3
Figure 7-3. Output Cell (O.Cell) .. 7-7
Figure 7-4. Input Cell (I.Cell) ... 7-7
Figure 7-5. Output Control Cell (En.Cell) .. 7-8
Figure 7-6. Bidirectional Cell (IO.Cell) .. 7-8
Figure 7-7. Bidirectional Cell (IOx0.Cell)... 7-9
Figure 7-8. General Arrangement for Bidirectional Pins ... 7-9
Figure 7-9. Bypass Register ... 7-11

Figure 8-1. Drive Levels and Test Points for AC Specifications 8-3
Figure 8-2. Clock Output Timing ... 8-4
Figure 8-3. Read Cycle Timing Diagram... 8-7
Figure 8-4. Write Cycle Timing Diagram ... 8-8
Figure 8-5. Chip Select and Interrupt Acknowledge Timing Diagram 8-9
Figure 8-6. Bus Arbitration Timing Diagram ... 8-10
Figure 8-7. Bus Arbitration Timing Diagram ... 8-11
Figure 8-8. DRAM Timing – 0-Wait Read, No Refresh ... 8-13
Figure 8-9. DRAM Timing – 1-Wait Write, No Refresh ... 8-14
Figure 8-10. DRAM Timing – 0- and 1-Wait Refresh .. 8-14

xiv MC68306 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

Figure 8-11. DRAM Timing – 1-Wait, Test and Set .. 8-15
Figure 8-12. Clock Timing... 8-16
Figure 8-13. Port Timing ... 8-16
Figure 8-14. Interrupt Reset Timing .. 8-17
Figure 8-15. Transmit Timing ... 8-17
Figure 8-16. Receive Timing .. 8-18
Figure 8-17. Test Clock Input Timing Diagram ... 8-19
Figure 8-18. Boundary Scan Timing Diagram .. 8-20
Figure 8-19. Test Access Port Timing Diagram .. 8-20

MOTOROLA MC68306 USER'S MANUAL xv

LIST OF TABLES
Table Page

Number Title Number

Table 2-1. Bus Signal Summary ... 2-3
Table 2-2. Chip Select Signal Summary ... 2-3
Table 2-3. DRAM Controller Signal Summary .. 2-3
Table 2-4. Interrupt and Parallel Port Signal Summary .. 2-4
Table 2-5. Clock and Mode Control Signal Summary... 2-4
Table 2-6. Serial Module Signal Summary ... 2-4
Table 2-7. JTAG Signal Summary .. 2-5
Table 2-8. Function Code Outputs .. 2-7
Table 2-9. Data Strobe Control of Data Bus ... 2-8

Table 3-1. DTACK, BERR, and HALT Assertion Results ... 3-24
Table 3-2. BERR and HALT Negation Results ... 3-25

Table 4-1. Processor Data Formats.. 4-3
Table 4-2. Effective Addressing Modes .. 4-4
Table 4-3. Notation Conventions .. 4-5
Table 4-4. EC000 Core Instruction Set Summary .. 4-8
Table 4-5. Exception Vector Assignments .. 4-16
Table 4-6. Exception Grouping and Priority .. 4-22

Table 5-1. MC68306 Memory Map ... 5-2
Table 5-2. Chip Select Match Bits .. 5-11
Table 5-3. DRAM Address Multiplexer.. 5-13
Table 5-4. DRAM Bank Match Bits ... 5-15

Table 6-1. PMx and PT Control Bits ... 6-20
Table 6-2. B/Cx Control Bits ... 6-20
Table 6-3. CMx Control Bits.. 6-21
Table 6-4. SBx Control Bits .. 6-22
Table 6-5. RCSx Control Bits.. 6-25
Table 6-6. TCSx Control Bits .. 6-26
Table 6-7. MISCx Control Bits .. 6-27
Table 6-8. TCx Control Bits .. 6-28
Table 6-9. RCx Control Bits .. 6-28
Table 6-10. Counter/Timer Mode and Source Select Bits .. 6-30

xvi MC68306 USER'S MANUAL MOTOROLA

LIST OF TABLES (Continued)
Table Page

Number Title Number

Table 7-1. Boundary Scan Control Bits .. 7-4
Table 7-2. Boundary Scan Bit Definitions ... 7-5
Table 7-3. Instructions .. 7-10

MOTOROLA MC68306 USER'S MANUAL 1-1

SECTION 1
INTRODUCTION

The MC68306 is an integrated processor containing an MC68EC000 processor and
elements common to many MC68000- and MC68EC000-based systems. Designers of
virtually any application requiring MC68000-class performance will find that the MC68306
reduces design time by providing valuable system elements integrated in one chip. The
combination of peripherals offered in the MC68306 can be found in a diverse range of
microprocessor-based systems, including embedded control and general computing.
Systems requiring serial communication and dynamic random access memory (DRAM)
can especially benefit from using the MC68306.

The MC68306's high level of functional integration results in significant reductions in
component count, power consumption, board space, and cost while yielding much higher
system reliability and shorter design time. Complete code compatibility with the MC68000
affords the designer access to a broad base of established real-time kernels, operating
systems, languages, applications, and development tools, many of which are oriented
towards embedded control. Figure 1-1 shows a simplified block diagram of the MC68306.

TWO-CHANNEL
SERIAL

I/O

PORT A

EC000
CORE

PROCESSOR

CHIP
SELECTS

INTERRUPT
CONTROLLER

PORT B

DRAM
CONTROLLER

JTAG
PORT

MODE
CONTROLLER

CLOCK

8

8

24

16

16-BIT
TIMER

8

Figure 1-1. MC68306 Simplified Block Diagram

1-2 MC68306 USER'S MANUAL MOTOROLA

The primary features of the MC68306 are as follows:

• Functional Integration on a Single Piece of Silicon

• EC000 Core—Identical to MC68EC000 Microprocessor

— Complete Code Compatibility with MC68000 and MC68EC000

— High Performance—2.4 MIPS

— Extended Internal Address Range – to 4 Gbyte

• Two-Channel Universal Synchronous/Asynchronous Receiver/Transmitter (DUART)

— Baud Rate Generators

— Modem Control

— Compatible with MC68681/MC2681

— Integrated 16-Bit Timer/Counter

• DRAM Controller

— Supports up to 16 Mbytes using 4M x 1 DRAMs, 64 Mbytes using 16M x 1 DRAMs

— Provides Zero Wait State Interface to 80-ns DRAMs

— Programmable Refresh Timer Provides CAS -before-RAS Refresh

• Chip Selects

— Eight Programmable Chip Select Signals

— Provide Eight Separate 1-Mbyte Spaces or Four Separate 16-Mbyte Spaces

— Programmable Wait States

• Programmable Interrupt Controller

• Bus Timeout

• 24 Address Lines, 16 Data Lines

• 16.67 MHz, 5 Volt Operation

• 144-Pin Thin Quad Flat Pack (TQFP)or 132-Pin Plastic Quad Flat Pack (PQFP)

1.1 MC68EC000 CORE PROCESSOR

The MC68EC000 is a core implementation of the MC68000 32-bit microprocessor
architecture. The programmer can use any of the eight 32-bit data registers for fast
manipulation of data and any of the eight 32-bit address registers for indexing data in
memory. Flexible instructions support data movement, arithmetic functions, logical
operations, shifts and rotates, bit set and clear, conditional and unconditional program
branches, and overall system control.

The MC68EC000 core can operate on data types of single bits, binary-coded decimal
(BCD) digits, and 8, 16, and 32 bits. The integrated chip selects allow peripherals and
data in memory to reside anywhere in the 4-Gbyte linear address space. A supervisor
operating mode protects system-level resources from the more restricted user mode,
allowing a true virtual environment to be developed. Many addressing modes complement

MOTOROLA MC68306 USER'S MANUAL 1-3

these instructions, including predecrement and postincrement, which allow simple stack
and queue maintenance and scaled indexing for efficient table accesses. Data types and
addressing modes are supported orthogonally by all data operations and with all
appropriate addressing modes. Position-independent code is easily written.

Like all M68000 family processors, the MC68EC000 core recognizes interrupts of seven
different priority levels and allows either an automatic vector or a peripheral-supplied
vector to direct the processor to the desired service routine. Internal trap exceptions
ensure proper instruction execution with good addresses and data, allow operating system
intervention in special situations, and permit instruction tracing. Hardware signals can
either terminate or rerun bad memory accesses before instructions process data
incorrectly. The EC000 core provides 2.4 MIPS at 16.67 MHz.

1.2 ON-CHIP PERIPHERALS

To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 family integrates on-chip, intelligent peripheral modules and
typical glue logic. The functions on the MC68306 include two serial channels, a
timer/counter, a DRAM controller, a parallel port, and system glue logic.

1.2.1 Serial Module

Most digital systems use serial I/O to communicate with host computers, operator
terminals, or remote devices. The MC68306 contains a two-channel, full-duplex UART
with an integrated timer. An on-chip baud rate generator provides standard baud rates up
the 38.4K baud to each channel's receiver and transmitter. The serial module is identical
to the MC68681/MC2681 DUART.

Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8
bits with even, odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive
buffers and two-byte transmit buffers minimize CPU service calls. Each channel provides
a wide variety of error detection and maskable interrupt capability. Full-duplex, autoecho
loopback, local loopback, and remote loopback modes can be selected. Multidrop
applications are also supported.

A 3.6864 MHz crystal drives the baud rate generators. Each transmit and receive channel
can be programmed for a different baud rate. Full modem support is provided with
separate request-to-send (RTS) and clear-to-send (CTS) signals for each channel.

The integrated 16-bit timer/counter can operate in a counter mode or a timer mode. The
timer/counter can function as a system stopwatch, a real-time single interrupt generator,
or a device watchdog when in counter mode. In timer mode, the timer/counter can be
used as a programmable clock source for channels A and B, a periodic interrupt
generator, or a variable duty cycle square-wave generator.

1.2.2 DRAM Controller

DRAM is used in many systems since it is the least expensive form of high-speed storage
available. However, considerable design effort is often spent designing the interface

1-4 MC68306 USER'S MANUAL MOTOROLA

between the processor and DRAM. The MC68306 contains a full DRAM controller, greatly
reducing design time and complexity.

The DRAM controller provides row address strobe (RAS) and column address strobe
(CAS) signals for two separate banks of DRAMs. Each bank can include up to 16 devices;
up to 15 multiplexed address lines are also available. Thus, using 4M x 1 DRAMs, up to
16 Mbytes of DRAM are supported; with 16M x 1 DRAMs, up to 64 Mbytes of DRAM are
supported. A programmable refresh timer provides CAS-before-RAS refreshes at
designated intervals.

The DRAM controller has its own address registers that control the address range
selected by each RAS and CAS signal, leaving the eight integrated chip selects free for
other system peripherals. DRAM accesses are zero wait states using 80-ns DRAMs.

1.2.3 Chip Selects

The MC68306 provides up to eight programmable chip select outputs, in most cases
eliminating the need for external address decoding. All handshaking and timing signals
are provided, with up to 950-ns access times. Each chip select can access a 16 Mbyte
address space located anywhere in the 4-Gbyte address range. Internal registers allow
the base address, range, and cycle duration of each chip select to be independently
programmed. After reset, chip select (CS0) responds to all accesses until the chip selects
have been properly programmed. Four of the chip selects are multiplexed with the most
significant address bits (A23–A20). The address mode (AMODE) input determines the
functions of these outputs.

1.2.4 Parallel Ports

Two 8-bit parallel ports are provided. The port pins can be individually programmed to be
inputs or outputs. If the pins are programmed to be inputs, the value on those pins can be
read by accessing an on-board register. If the pins are programmed to be outputs, the
pins will reflect the value programmed into another on-board register. The port B pins are
multiplexed with four interrupt request and four interrupt acknowledge lines. The function
of these pins is controlled by the internal registers.

1.2.5 Interrupt Controller

Seven input signals are provided to trigger an external interrupt, one for each of the seven
priority levels supported. Each input can be programmed to be active high or active low.
Seven separate outputs indicate the priority level of the interrupt being serviced. Interrupts
at each priority level can be pre-programmed to go to the default service routine. For
maximum flexibility, interrupts can be vectored to the correct service routine by the
interrupting device.

1.2.6 Clock

To save on system costs, the MC68306 has an on-board oscillator that can be driven with
a 16.67-MHz crystal. A bus clock output is provided by a CLKOUT pin. Alternatively, an

MOTOROLA MC68306 USER'S MANUAL 1-5

external 16.67-MHz oscillator can be used, with a tight skew between the input clock
signal and the bus clock on the CLKOUT pin.

1.2.7 Bus Timeout Monitor

A bus timeout monitor is provided to automatically terminate and report as erroneous any
bus cycle that is not normally terminated after a pre-programmed length of time. The user
can program this timeout period to be up to 4096 clocks.

1.2.8 IEEE 1149.1 Test

To aid in system diagnostics, the MC68306 includes dedicated user-accessible test logic
that is fully compliant with the IEEE 1149.1 standard for boundary scan testability, often
referred to as JTAG (Joint Test Action Group).

MOTOROLA MC68306 USER'S MANUAL 2-1

SECTION 2
SIGNAL DESCRIPTION

This section contains a brief description of the input and output signals, with reference (if
applicable) to other sections which give greater detail on its use. Figure 2-1 provides a
detailed diagram showing the integrated peripherals and signals, and Tables 2-1–2-7
provides a quick reference for determining a signal's name, mnemonic, its use as an input
or output, active state, and type identification.

NOTE

The terms assertion and negation will be used extensively.
This is done to avoid confusion when dealing with a mixture of
“active low” and “active high” signals. The term assert or
assertion is used to indicate that a signal is active or true,
independent of whether that level is represented by a high or
low voltage. The term negate or negation is used to indicate
that a signal is inactive or false.

2-2 MC68306 USER'S MANUAL MOTOROLA

TWO-
CHANNEL

SERIAL
I/O RxDB

RxDA

TxDB

TxDA

X2
X1/CLK

PORT A

 EXTAL
XTAL

CLKOUT

JTAG
PORT

FLOW
CONTROL

RTSB/OP1
RTSA/OP0

A19–A16

FC2–FC0

D15–D0

RESET
BERR
HALT
AS
UDS

R/W

BR
BG
BGACK

EC000
CORE

PROCESSOR
TCK
TMS
TDI

TDO

PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0

DRAM
CONTROLLER

INTERRUPT
CONTROLLER

MODE
CONTROLLER

CTSB/IP1
CTSA/IP0

C
S0

C
S1

C
S2

C
S3

C
S4

/A
20

C
S5

/A
21

C
S6

/A
22

C
S7

/A
23

PORT B

CHIP
SELECTS

AMODE

RAS1
RAS0
CAS1

IRQ7
IRQ4
IRQ1

IACK7
IACK4
IACK1

A15/DRAMA14–A1/DRAMA0
CAS0

IRQ6/PB7
IRQ5/PB6
IRQ3/PB5
IRQ2/PB4

IACK6/PB3
IACK5/PB2
IACK3/PB1
IACK2/PB0

TRST

LDS

UW
LW

DTACK

DRAMW

OE

CLOCK

IP2

16-BIT
TIMER/

COUNTER

O
P3

Figure 2-1. MC68306 Detailed Block Diagram

MOTOROLA MC68306 USER'S MANUAL 2-3

Table 2-1. Bus Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Address Signals A23–A1 Output Yes

Address Strobe AS Output Yes 4.7 K

Bus Error BERR I/O — 2.2 K

Bus Grant BG Output No

Bus Grant Acknowledge BGACK Input — (1)

Bus Request BR Input — (1)

Data Bus D15–D0 I/O Yes

Data Transfer Acknowledge DTACK I/O — 2.2 K

DRAM Multiplexed Address14–0 DRAMA14–DRAMA0 Output Yes

Function Codes FC2–FC0 Output Yes

Halt HALT I/O — 2.2 K

Lower Data Strobe LDS I/O Yes 4.7 K

Upper Data Strobe UDS I/O Yes 4.7 K

Lower-Byte Write Strobe LW Output No

Upper-Byte Write Strobe UW Output No

Output Enable OE Output No

Read/Write R/W Output Yes

Reset RESET I/O — 2.2 K

NOTES:

1. Pullup may be required, value depends on individual application. Must not be left floating.

Table 2-2. Chip Select Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Chip Select CS3–CS0 Output Yes 4.7 K

Chip Select 4–7/Address Port 23–
20

CS7–CS4/ A23–A20 Output Yes 4.7 K

Table 2-3. DRAM Controller Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Column Address Strobe CAS1–CAS0 Output Yes 4.7 K

Row Address Strobe RAS1–RAS0 Output Yes 4.7 K

DRAM Write Signal DRAMW Output Yes

2-4 MC68306 USER'S MANUAL MOTOROLA

Table 2-4. Interrupt and Parallel Port Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Interrupt Request Level 7, 4, 1 IRQ7, IRQ4, IRQ1 Input — (2)

Interrupt Request Level 6/Port B 7 IRQ6/PB7 I/O — (2)

Interrupt Request Level 5/Port B 6 IRQ5/PB6 I/O — (2)

Interrupt Request Level 3/Port B 5 IRQ3/PB5 I/O — (2)

Interrupt Request Level 2/Port B 4 IRQ2/PB4 I/O — (2)

Interrupt Acknowledge 7, 4, 1 IACK7, IACK4, IACK1 Output —

Interrupt Acknowledge 6/Port B 7 IACK6 /PB3 I/O — (2)

Interrupt Acknowledge 5/Port B 6 IACK5 /PB2 I/O — (2)

Interrupt Acknowledge 3/Port B 5 IACK3 /PB1 I/O — (2)

Interrupt Acknowledge 2/Port B 4 IACK2 /PB0 I/O — (2)

Port A PA7–PA0 I/O — (2)

NOTES:
2. Pullup or pulldown may be required, value depends on individual application.

Table 2-5. Clock and Mode Control Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Crystal Oscillator or External
Clock

EXTAL Input —

Crystal Oscillator XTAL Output —

System Clock CLKOUT Output No

Address Mode AMODE Input —

MOTOROLA MC68306 USER'S MANUAL 2-5

Table 2-6. Serial Module Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pullup Required

Channel A Receiver Serial Data RxDA Input —

Channel A Transmitter Serial
Data

TxDA Output No

Channel B Receiver Serial Data RxDB Input —

Channel B Transmitter Serial
Data

TxDB Output No

Channel A Clear-to-Send CTSA /IP0 Input — (1)

Channel A Request-to-Send RTSA /OP0 Output No

Channel B Clear-to-Send CTSB /IP1 Input — (1)

Channel B Request-to-Send RTSB /OP1 Output No

Crystal Output X2 Output No

Crystal Input or External Clock X1/CLK Input —

Parallel Input 2 IP2 Input — (1)

Parallel Output 3 OP3 Output No

NOTES:

1. Pullup may be required, value depends on individual application. Must not be left floating.

Table 2-7. JTAG Signal Summary

Signal Name Mnemonic
Input/

Output
Three-State During

Bus Arbitration
Pulldown Required

Test Clock TCK Input —

Test Data Input TDI Input —

Test Data Output TDO Output —

Test Mode Select TMS Input —

Test Reset TRST Input — 4.7 K (3)

NOTES:

3. Pin has internal pullup, but external pulldown may be required for correct initialization.

2.1 BUS SIGNALS

The following signals are used for the MC68306 bus.

2.1.1 Address Bus (A23–A1)

This 23-bit, unidirectional, three-state bus is capable of addressing 16 Mbytes of data.
This bus provides the address for bus operation during all cycles except interrupt
acknowledge cycles. During interrupt acknowledge cycles, address lines A1, A2, and A3
provide the level number of the interrupt being acknowledged, and address lines A23–A4

2-6 MC68306 USER'S MANUAL MOTOROLA

are driven to logic high. A23–A20 are only available in address mode (AMODE=0). A15–
A1 are multiplexed with DRAM address.

2.1.2 Address Strobe (AS)

Assertion of this three-state signal indicates that the information on the address bus is a
valid address.

2.1.3 Bus Error (BERR)

Assertion of this bi-directional, open-drain signal indicates a problem in the current bus
cycle. The MC68306 can assert this signal to terminate a bus cycle when no external
response is received. An external source can assert BERR to indicate a problem such as:

1. No response from a device

2. No interrupt vector number returned

3. An illegal access request rejected by a memory management unit

4. Some other application-dependent error

Either the processor retries the bus cycle or performs exception processing, as
determined by interaction between the bus error signal and the halt signal.

2.1.4 Bus Request (BR)

This input can be wire-ORed with bus request signals from all other devices that could be
bus masters. Assertion of this signal indicates to the processor that some other device
needs to become the bus master. Bus requests can be issued at any time during a bus
cycle or between cycles.

2.1.5 Bus Grant (BG)

This output signal indicates to all other potential bus master devices that the processor will
relinquish bus control at the end of the current bus cycle.

2.1.6 Bus Grant Acknowledge (BGACK)

Assertion of this input indicates that some other device has become the bus master. This
signal should not be asserted until the following conditions are met:

1. A bus grant has been received.

2. Address strobe is inactive, which indicates that the microprocessor is not using the
bus.

3. Data transfer acknowledge is inactive, which indicates that neither memory nor
peripherals are using the bus.

4. Bus grant acknowledge is inactive, which indicates that no other device is claiming
bus mastership.

MOTOROLA MC68306 USER'S MANUAL 2-7

BGACK can be negated (pulled high), and the MC68306 will operate in a two-wire bus
arbitration system.

2.1.7 Data Bus (D15–D0)

This bi-directional, three-state bus is the general-purpose data path. It is 16 bits wide and
can transfer and accept data of either word or byte length. During an interrupt
acknowledge cycle, an external device can supply the interrupt vector number on data
lines D7–D0.

2.1.8 Data Transfer Acknowledge (DTACK)

Assertion of this bi-directional, open-drain signal indicates the completion of the data
transfer. When the processor recognizes DTACK during a read cycle, data is latched, and
the bus cycle is terminated. When DTACK is recognized during a write cycle, the bus
cycle is terminated. The MC68306 generates DTACK for all internal cycles, DRAM cycles,
and autovector IACK cycles, and can be programmed to generate DTACK for any chip
select cycle. (Refer to 3.7 Asynchronous Operation and 3.8 Synchronous Operation.)

2.1.9 DRAM Multiplexed Address Bus (DRAMA14–DRAMA0)

These signals provide fifteen multiplexed address bits used during row address strobe.

2.1.10 Processor Function Codes (FC2–FC0)

These function code outputs indicate the mode (user or supervisor) and the address
space type currently being accessed, as shown in Table 2-8. The function code outputs
are valid whenever AS is asserted.

Table 2-8. Function Code Outputs

Function Code Output

FC2 FC1 FC0 Address Space Type

Low Low Low (Undefined, Reserved)

Low Low High User Data

Low High Low User Program

Low High High (Undefined, Reserved)

High Low Low (Undefined, Reserved)

High Low High Supervisor Data

High High Low Supervisor Program

High High High CPU Space

2.1.11 Halt (HALT)

External assertion of this bi-directional signal causes the processor to stop bus activity at
the completion of the bus cycle for which the input met set-up time requirements (i.e.,
current or next cycle). This operation places all control signals in the inactive state. For

2-8 MC68306 USER'S MANUAL MOTOROLA

additional information about the interaction between HALT and RESET , refer to 3.5 Reset
Operation and for more information on HALT and BERR , refer to 3.4 Bus Error and Halt
Operation.

Processor assertion of HALT indicates a double bus fault condition. This condition is
unrecoverable; the MC68306 must be externally reset to resume operation.

2.1.12 Read/Write (R/W)

This three-state, bi-directional signal defines the data bus transfer as a read or write cycle.
The R/W signal relates to the data strobe signals described in the following paragraphs.

2.1.13 Upper And Lower Data Strobes (UDS , LDS)

These three-state, bi-directional signals and R/W control the flow of data on the data bus.
Table 2-9 lists the combinations of these signals, the corresponding data on the bus, and
the OE, LW, and UW signals. When the R/W line is high, the processor reads from the
data bus. When the R/W line is low, the processor drives the data bus. When another bus
master controls the bus, the UDS, LDS, and R/ W pins become inputs and the OE, LW,

and UW signals are still decoded as shown in Table 2-9.

Table 2-9. Data Strobe Control of Data Bus

UDS LDS R/W D8–D15 D0–D7 OE UW LW

High High — No Valid Data No Valid Data High High High

Low Low High Valid Data Bits
15–8

Valid Data Bits
7–0

Low High High

High Low High No Valid Data Valid Data Bits
7–0

Low High High

Low High High Valid Data Bits
15–8

No Valid Data Low High High

Low Low Low Valid Data Bits
15–8

Valid Data Bits
7–0

High Low Low

High Low Low Valid Data Bits
7–0*

Valid Data Bits
7–0

High High Low

Low High Low Valid Data Bits
15–8

Valid Data Bits
15–8*

High Low High

*These conditions are a result of current implementation and may not appear
 on future devices.

2.1.14 Upper-Byte Write (UW)

This signal is a combination of R/W low and UDS low for writing the upper-byte of a 16-bit
port. This signal simplifies memory system design by explicitly signalling that data is valid
on the upper portion of the data bus on a write operation. UW is also decoded for external
bus masters.

MOTOROLA MC68306 USER'S MANUAL 2-9

2.1.15 Lower-Byte Write (LW)

This signal is a combination of R/W low and LDS low for writing the lower-byte of a 16-bit
port. This signal simplifies memory system design by explicitly signalling that data is valid
on the lower portion of the data bus on a write operation. LW is also decoded for external
bus masters.

2.1.16 Output Enable (OE)

OE is a combination of R/W high and an active data strobe (UDS or LDS). OE is also
decoded for external bus masters.

2.1.17 Reset (RESET)

The external assertion of this bi-directional, open-drain signal can start a system
initialization sequence by resetting the processor. The processor assertion of RESET

(from executing a RESET instruction) resets all external devices of a system without
affecting the internal state of the processor. The interaction of internal and external
RESET , and the HALT signal is described in paragraph 3.5 Reset Operation.

2.2 CHIP SELECT SIGNALS

These eight three-state signals provide address decodes with programmable base and
range. CS7–CS4 are only available in chip select mode (AMODE bit =1). CS3–CS0 are
always available.

2.3 DRAM CONTROLLER SIGNALS

The following signals are used to control an external DRAM for the MC68306.

2.3.1 Column Address Strobe (CAS1–CAS0)

These three-state signals provide column address strobe timing for external DRAM. CAS0
controls data lines D15–D8 and CAS1 controls D7–D0.

2.3.2 Row Address Strobe (RAS1–RAS0)

These three-state signals provide row address strobe timing for external DRAM. Each
RAS controls a separate bank of DRAM.

2.3.3 DRAM Write Signal (DRAMW)

This signal provides write control for external DRAM.

2.4 INTERRUPT CONTROL AND PARALLEL PORT SIGNALS

The following signals are used for interrupt control on the MC68306.

2-10 MC68306 USER'S MANUAL MOTOROLA

2.4.1 Interrupt Request (IRQ7–IRQ1)

Three input signals (IRQ7, IRQ4, IRQ1) notify the core processor of an interrupt request.
Four additional interrupt request lines (IRQ6, IRQ5, IRQ3, and IRQ2) are shared with
parallel port B pins and may be individually programmed as interrupts.

2.4.2 Interrupt Acknowledge (IACK7–IACK1)

Three output signals (IACK7, IACK4, IACK1) indicate an interrupt acknowledge cycle.
Four additional interrupt acknowledge lines (IACK6, IACK5, IACK3, and IACK2) are
shared with parallel port B pins and may be individually programmed as interrupt
acknowledges.

2.4.3 Port A Signals (PA7–PA0)

These eight pins serve as port A parallel input/output signals.

2.4.4 Port B (PB7–PB0)

These eight pins are shared with IRQ6, IRQ5, IRQ3, IRQ2 and IACK6, IACK5, IACK3,
IACK2, and can be individually programmed to serve as port B parallel input/output
signals.

2.5 CLOCK AND MODE CONTROL SIGNALS

These four pins are used to connect an external crystal to the on-chip oscillator and define
the four multifunction pins.

2.5.1 Crystal Oscillator (EXTAL, XTAL)

These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to EXTAL, with XTAL left open,
and must drive CMOS levels. A crystal or clock input must be supplied at all times.

2.5.2 Clock Out (CLKOUT)

This output signal is the system clock output and is used as the bus timing reference by
external devices.

2.5.3 Address Mode (AMODE)

This input signal provides mode control for the multi-function chip select pins. When set to
zero, A23–A20 is selected and when set to one, CS7–CS4 is selected. The mode
selection is static: AMODE is latched at the end of any system reset.

2.6 SERIAL MODULE SIGNALS

The following paragraphs describe the signals used by the serial module on the MC68306.

MOTOROLA MC68306 USER'S MANUAL 2-11

2.6.1 Channel A Receiver Serial-Data Input (RxDA)

This signal is the receiver serial-data input for channel A. The least-significant bit is
received first. Data on this pin is sampled on the rising edge of the programmed clock
source.

2.6.2 Channel A Transmitter Serial-Data Output (TxDA)

This signal is the transmitter serial-data output for channel A. The least-significant bit is
transmitted first. This output is held high (mark condition) when the transmitter is disabled,
idle, or operating in the local loopback mode. (Mark is high and space is low). Data is
shifted out this pin on the falling edge of the programmed clock source.

2.6.3 Channel B Receiver Serial-Data Input (RxDB)

This signal is the receiver serial-data input for channel B. The least-significant bit is
received first. Data on this pin is sampled on the rising edge of the programmed clock
source.

2.6.4 Channel B Transmitter Serial-Data Output (TxDB)

This signal is the transmitter serial-data output for channel B. The least-significant bit is
transmitted first. This output is held high (mark condition) when the transmitter is disabled,
idle, or operating in the local loopback mode. Data is shifted out of this pin on the falling
edge of the programmed clock source.

2.6.5 CTSA

This input can be used as the channel A clear-to-send active low input (CTSA) or general -
purpose input (IP0). A change-of-state detector is also associated with this input.

2.6.6 RTSA

This output can be used as the channel A active low request-to-send (RTSA) output, or a
general-purpose output (OP0). When used as RTSA, it is automatically negated and
reasserted by either the receiver or transmitter.

2.6.7 CTSB

This input can be used as the channel B clear-to-send active low input (CTSB) or general -
purpose input. A change-of-state detector is also associated with this input.

2.6.8 RTSB

This output can be used as a general-purpose output or the channel B active low request-
to-send (RTSB) output. When used for this function, it is automatically negated and
reasserted by either the receiver or transmitter.

2-12 MC68306 USER'S MANUAL MOTOROLA

2.6.9 Crystal Oscillator (X1/CLK, X2)

These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to X1/CLK, with X2 left floating,
and must drive CMOS levels. A crystal or clock input must be supplied at all times.

2.6.10 IP2

This input can be used as a general-purpose input, the channel B receiver external clock
input (RxCB), or the counter/timer external clock input. When this input is used as the
external clock by the receiver, the received data is sampled on the rising edge of the
clock. A change-of-state detector is also associated with this input.

2.6.11 OP3

This output can be used as a general-purpose output, the open-drain active low counter-
ready output, the open-drain timer output, the channel B transmitter 1X-clock output, or
the channel B receiver 1X-clock output.

2.7 JTAG PORT TEST SIGNALS

The following signals are used with the on-chip test logic defined by the IEEE 1149.1
standard. See IEEE 1149.1 Test Access Port for more information on the use of these
signals.

2.7.1 Test Clock (TCK)

This input provides a clock for on-chip test logic defined by the IEEE 1149.1 standard.

2.7.2 Test Mode Select (TMS)

This input controls test mode operations for on-chip test logic defined by the IEEE 1149.1
standard. Connecting TMS to VCC disables the test controller, making all JTAG circuits
transparent to the system.

2.7.3 Test Data In (TDI)

This input is used for serial test instructions and test data for on-chip test logic defined by
the IEEE 1149.1 standard.

2.7.4 Test Data Out (TDO)

This output is used for serial test instructions and test data for on-chip test logic defined by
the IEEE 1149.1 standard.

2.7.5 Test Reset (TRST)

This input is the master reset for on-chip test logic defined by the IEEE 1149.1 standard.

MOTOROLA MC68306 USER'S MANUAL 3-1

SECTION 3
68000 BUS OPERATION DESCRIPTION

This section describes control signal and bus operation during data transfer operations,
bus arbitration, bus error and halt conditions, and reset operation.

NOTE

The terms assertion and negation are used extensively in this
manual to avoid confusion when describing a mixture of
"active-low" and "active-high" signals. The term assert or
assertion is used to indicate that a signal is active or true,
independently of whether that level is represented by a high or
low voltage. The term negate or negation is used to indicate
that a signal is inactive or false.

3.1 DATA TRANSFER OPERATIONS

Transfer of data between devices involves the following signals:
1. Address bus A1 through A31

2. Data bus D0 through D7 and/or D8 through D15

3. Control signals

The address and data buses are separate parallel buses used to transfer data using an
asynchronous bus structure. In all cases, the bus master must deskew all signals it issues
at both the start and end of a bus cycle. In addition, the bus master must deskew the
acknowledge and data signals from the slave device.

The following paragraphs describe the read, write, read-modify-write, and CPU space
cycles. The indivisible read-modify-write cycle implements interlocked multiprocessor
communications. A CPU space cycle is a special processor cycle.

3.1.1 Read Cycle

During a read cycle, the processor receives either one or two bytes of data from the
memory or from a peripheral device. If the instruction specifies a word or long-word
operation, the processor reads both upper and lower bytes simultaneously by asserting
both upper and lower data strobes. A long-word read is accomplished by two consecutive
word reads. When the instruction specifies byte operation, the processor uses the internal
A0 bit to determine which byte to read and issues the appropriate data strobe. When A0 is
zero, the upper data strobe is issued; when A0 is one, the lower data strobe is issued.
When the data is received, the processor internally positions the byte appropriately.

3-2 MC68306 USER'S MANUAL MOTOROLA

The word read cycle flowchart is shown in Figure 3-1. The byte read cycle flowchart is
shown in Figure 3-2. The read and write cycle timing is shown in Figure 3-3. Figure 3-4
shows the word and byte read cycle timing diagram.

BUS MASTER

ADDRESS THE DEVICE

1) SET R/W TO READ
2) PLACE FUNCTION CODE ON FC2–FC0
3) PLACE ADDRESS ON ADDRESS BUS
4) ASSERT ADDRESS STROBE (AS)
5) ASSERT UPPER DATA STROBE (UDS)
 AND LOWER DATA STROBE (LDS)

ACQUIRE THE DATA

1) LATCH DATA
2) NEGATE UDS AND LDS
3) NEGATE AS

TERMINATE THE CYCLE

OUTPUT THE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D15–D0
3) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

1) REMOVE DATA FROM D15–D0
2) NEGATE DTACK

SLAVE

START NEXT CYCLE

Figure 3-1. Word Read Cycle Flowchart

BUS MASTER

ADDRESS THE DEVICE

1) SET R/W TO READ
2) PLACE FUNCTION CODE ON FC2–FC0
3) PLACE ADDRESS ON ADDRESS BUS
4) ASSERT ADDRESS STROBE (AS)
5) ASSERT UPPER DATA STROBE (UDS)
 OR LOWER DATA STROBE (LDS)
 (BASED ON A0)

ACQUIRE THE DATA

1) LATCH DATA
2) NEGATE UDS AND LDS
3) NEGATE AS

TERMINATE THE CYCLE

OUTPUT THE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D7–D0 OR D15–D8
 (BASED ON UDS OR LDS)
3) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

1) REMOVE DATA FROM D7–D0
 OR D15–D8
2) NEGATE DTACK

SLAVE

START NEXT CYCLE

Figure 3-2. Byte Read Cycle Flowchart

MOTOROLA MC68306 USER'S MANUAL 3-3

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 w w w w S5 S6 S7
CLK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

READ WRITE 2 WAIT STATE READ

Figure 3-3. Read and Write Cycle Timing Diagram

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7

*Internal Signal Only

CLK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

READ WRITE READ

A0 *

Figure 3-4. Word and Byte Read Cycle Timing Diagram

3-4 MC68306 USER'S MANUAL MOTOROLA

A bus cycle consists of eight states. The various signals are asserted during specific
states of a read cycle as follows:

STATE 0 The read cycle starts in state 0 (S0). The processor places valid function
codes on FC0–FC2, a valid address on the bus, and drives R/W high to
identify a read cycle.

STATE 1 During state 1 (S1), no bus signals are altered.

STATE 2 On the rising edge of state 2 (S2), the processor asserts AS and
UDS/LDS .

STATE 3 During state 3 (S3), no bus signals are altered.

STATE 4 During state 4 (S4), the processor waits for a cycle termination signal
(DTACK or BERR). If neither termination signal is asserted before the falling
edge at the end of S4, the processor inserts wait states (full clock cycles)
until either DTACK or BERR is asserted.

Case 1: DTACK received, with or without BERR .

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 Sometime between state 2 (S2) and state 6 (S6), data from the device is
driven onto the data bus.

STATE 7 On the falling edge of the clock entering state 7 (S7), the processor latches
data from the addressed device and negates AS and UDS , LDS . The device
negates DTACK or BERR at this time.

Case 2: BERR received without DTACK .

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 During state 6 (S6), no bus signals are altered.

STATE 7 During state 7 (S7), no bus signals are altered.

STATE 8 During state 8 (S8), no bus signals are altered.

STATE 9 AS and UDS/LDS negated. Slave negates BERR.

3.1.2 Write Cycle

During a write cycle, the processor sends bytes of data to the memory or peripheral
device. If the instruction specifies a word or long-word operation, the processor issues
both UDS and LDS and writes both bytes. A long-word write is accomplished by two
consecutive word writes. When the instruction specifies a byte operation, the processor
uses the internal A0 bit to determine which byte to write and issues the appropriate data

MOTOROLA MC68306 USER'S MANUAL 3-5

strobe. When the A0 bit equals zero, UDS is asserted; when the A0 bit equals one, LDS is
asserted.

The word write cycle flowchart is shown in Figure 3-5. The byte write cycle flowchart is
shown in Figure 3-6. The word and byte write cycle timing is shown in Figure 3-7.

BUS MASTER

ADDRESS THE DEVICE

1) PLACE FUNCTION CODE ON FC2–FC0
2) PLACE ADDRESS ON ADDRESS BUS
3) ASSERT ADDRESS STROBE (AS)
4) SET R/W TO WRITE
5) PLACE DATA ON D15–D0
6) ASSERT UPPER DATA STROBE (UDS)
 AND LOWER DATA STROBE (LDS)

TERMINATE THE CYCLE

INPUT THE DATA

1) DECODE ADDRESS
2) LATCH DATA ON D15–D0
3) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

SLAVE

START NEXT CYCLE

1) NEGATE DTACK

TERMINATE OUTPUT TRANSFER

1) NEGATE UDS AND LDS
2) NEGATE AS
3) REMOVE DATA FROM D15–D0
4) SET R/W TO READ

Figure 3-5. Word Write Cycle Flowchart

3-6 MC68306 USER'S MANUAL MOTOROLA

BUS MASTER

ADDRESS THE DEVICE

1) PLACE FUNCTION CODE ON FC2–FC0
2) PLACE ADDRESS ON ADDRESS BUS
3) ASSERT ADDRESS STROBE (AS)
4) SET R/W TO WRITE
5) PLACE DATA ON D0–D7 OR D15–D8
 (ACCORDING TO INTERNAL A0)
6) ASSERT UPPER DATA STROBE (UDS)
 OR LOWER DATA STROBE (LDS)
 (BASED ON INTERNAL A0)

1) NEGATE UDS AND LDS
2) NEGATE AS
3) REMOVE DATA FROM D7-D0 OR
 D15-D8
4) SET R/W TO READ TERMINATE THE CYCLE

INPUT THE DATA

1) DECODE ADDRESS
2) LATCH DATA ON D7–D0 IF LDS IS
 ASSERTED. LATCH DATA ON D15–D8
 IF UDS IS ASSERTED
3) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

SLAVE

START NEXT CYCLE

TERMINATE OUTPUT TRANSFER

1) NEGATE DTACK

Figure 3-6. Byte Write Cycle Flowchart

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7

*INTERNAL SIGNAL ONLY

A0*

CLK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

EVEN BYTE WRITEWORD WRITE ODD BYTE WRITE

Figure 3-7. Word and Byte Write Cycle Timing Diagram

MOTOROLA MC68306 USER'S MANUAL 3-7

The descriptions of the eight states of a write cycle are as follows:

STATE 0 The write cycle starts in S0. The processor places valid function codes on
FC2–FC0, a valid address on the address bus, and drives R/W high (if
a preceding write cycle has left R/W low).

STATE 1 During S1, no bus signals are altered.

STATE 2 On the rising edge of S2, the processor asserts AS and drives R/W low.

STATE 3 During S3, the data bus is driven out of the high-impedance state as the
data to be written is placed on the bus.

STATE 4 At the rising edge of S4, the processor asserts UDS and/or LDS;. The
processor waits for a cycle termination signal (DTACK or BERR). If
neither termination signal is asserted before the falling edge at the end of
S4, the processor inserts wait states (full clock cycles) until either DTACK or
BERR is asserted.

Case 1: DTACK received, with or without BERR .

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered.

STATE 7 On the falling edge of the clock entering S7, the processor negates AS,
UDS , and/or LDS . As the clock rises at the end of S7, the processor places
the data bus in the high-impedance state, and drives R/W
high. The device negates DTACK or BERR at this time.

Case 2: BERR received without DTACK .

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 During state 6 (S6), no bus signals are altered.

STATE 7 During state 7 (S7), no bus signals are altered.

STATE 8 During state 8 (S8), no bus signals are altered.

STATE 9 AS and UDS/LDS negated. Slave negates BERR. At the end of S9, three-
state data and drive R/W high.

3.1.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read operation, modifies the data in the arithmetic
logic unit, and writes the data back to the same address. The address strobe (AS) remains
asserted throughout the entire cycle, making the cycle indivisible. The test and set (TAS)
instruction uses this cycle to provide a signaling capability without deadlock between
processors in a multiprocessing environment. The TAS instruction (the only instruction

3-8 MC68306 USER'S MANUAL MOTOROLA

that uses the read-modify-write cycle) only operates on bytes. Thus, all read-modify-write
cycles are byte operations. The read-modify-write flowchart is shown in Figure 3-8 and the
timing diagram is shown in Figure 3-9.

BUS MASTER

ADDRESS THE DEVICE

1) SET R/W TO READ
2) PLACE FUNCTION CODE ON FC2–FC0
3) PLACE ADDRESS ON ADDRESS BUS
4) ASSERT ADDRESS STROBE (AS)
5) ASSERT UPPER DATA STROBE (UDS)
 OR LOWER DATA STROBE (LDS)

TERMINATE THE CYCLE

OUTPUT THE DATA

1) DECODE ADDRESS
2) PLACE DATA ON D7–D0 OR D15–D0
3) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

SLAVE

START NEXT CYCLE

1) REMOVE DATA FROM D7–D0
 OR D15–D8
2) NEGATE DTACK

1) LATCH DATA
1) NEGATE UDS AND LDS
2) START DATA MODIFICATION

ACQUIRE THE DATA

START OUTPUT TRANSFER

1) SET R/W TO WRITE
2) PLACE DATA ON D7–D0 OR D15–D8
3) ASSERT UPPER DATA STROBE (UDS)
 OR LOWER DATA STROBE (LDS)

TERMINATE OUTPUT TRANSFER

1) NEGATE UDS OR LDS
2) NEGATE AS
3) REMOVE DATA FROM D7–D0 OR
 D15–D8
4) SET R/W TO READ

INPUT THE DATA

1) STORE DATA ON D7–D0 OR D15–D8
2) ASSERT DATA TRANSFER
 ACKNOWLEDGE (DTACK)

TERMINATE THE CYCLE

1) NEGATE DTACK

Figure 3-8. Read-Modify-Write Cycle Flowchart

MOTOROLA MC68306 USER'S MANUAL 3-9

CLK

A31–A1

AS

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

INDIVISIBLE CYCLE

UDS OR LDS

R/W

DTACK

D15–D8 OR
D7–D0

FC2–FC0

Figure 3-9. Read-Modify-Write Cycle Timing Diagram

The descriptions of the read-modify-write cycle states are as follows:

STATE 0 The read cycle starts in S0. The processor places valid function codes on
FC2–FC0, a valid address on the address bus, and drives R/W high to
identify a read cycle.

STATE 1 During S1, no bus signals are altered.

STATE 2 On the rising edge of S2, the processor asserts AS and UDS /LDS.

STATE 3 During S3, no bus signals are altered.

STATE 4 During S4, the processor waits for a cycle termination signal (DTACK or
BERR). If neither termination signal is asserted before the falling
edge at the end of S4, the processor inserts wait states (full clock cycles)
until either DTACK or BERR is asserted.

Case R1: DTACK only.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, data from the device are driven onto the data bus.

STATE 7 On the falling edge of the clock entering S7, the processor accepts data from
the device and negates UDS /LDS . The device negates DTACK at this
time.

STATES
8–11 The bus signals are unaltered during S8–S11, during which the arithmetic

logic unit makes appropriate modifications to the data.

3-10 MC68306 USER'S MANUAL MOTOROLA

STATE 12 The write portion of the cycle starts in S12. The valid function codes on
FC2–FC0, the address bus lines, AS, and R/W remain unaltered.

STATE 13 During S13, no bus signals are altered.

STATE 14 On the rising edge of S14, the processor drives R/W low.

STATE 15 During S15, the data bus is driven out of the high-impedance state as the
data to be written are placed on the bus.

STATE 16 At the rising edge of S16, the processor asserts UDS /LDS . The processor
waits for D T A C K or BERR . If neither termination signal is asserted
before the falling edge at the close of S16, the processor inserts wait states
(full clock cycles) until either DTACK or BERR is asserted.

Case W1: DTACK with or without BERR .

STATE 17 During S17, no bus signals are altered.

STATE 18 During S18, no bus signals are altered.

STATE 19 On the falling edge of the clock entering S19, the processor negates AS and
UDS /LDS . As the clock rises at the end of S19, the processor
places the data bus in the high-impedance state, and drives
R/W high. The device negates DTACK or BERR at this time.

Case R2: DTACK and BERR on read.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered, and data from the device is ignored.

STATE 7 AS and UDS /LDS are negated. The cycle terminates without the write
portion.

Case R3: BERR only on read.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered..

STATE 7 During S7, no bus signals are altered.

STATE 8 During S8, no bus signals are altered.

STATE 9 AS and UDS /LDS are negated. The cycle terminates without the write
portion.

Case W2: BERR only on write.

MOTOROLA MC68306 USER'S MANUAL 3-11

STATE 17 During S17, no bus signals are altered.

STATE 18 During S18, no bus signals are altered.

STATE 19 During S19, no bus signals are altered.

STATE 20 During S20. no bus signals are altered.

STATE 21 The processor negates AS and UDS /LDS.

3.1.4 CPU Space Cycle

A CPU space cycle, indicated when the function codes are all high, is a special processor
cycle. In the 68EC000 core, CPU space is used only for interrupt acknowledge cycles.
Figure 3-10 shows the encoding of an interrupt acknowledge cycle.

1 11 11INTERRUPT
ACKNOWLEDGE

31

LEVEL 1

3 1 0

Figure 3-10. Interrupt Acknowledge Cycle

The interrupt acknowledge cycle places the level of the interrupt being acknowledged on
address bits A3–A1 and drives all other address lines high. The interrupt acknowledge
cycle reads a vector number when the device places a vector number on the data bus.

The timing diagram for an interrupt acknowledge cycle is shown in Figure 3-11.

3-12 MC68306 USER'S MANUAL MOTOROLA

CLK

FC2–FC0

A23–A4

AS

UDS*

LDS

R/W

DTACK

D15–D8

D7–D0

IPL2–IPL0

STACK
PCL

(SSP)

IACK CYCLE
(VECTOR NUMBER

ACQUISITION)

STACK AND
VECTOR

FETCH

A3–A1

Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing. The processor does not
recognize anything on data lines D8 through D15 at this time.

LAST BUS CYCLE OF INSTRUCTION
(READ OR WRITE)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6

*

IPL2–IPL0 TRANSITION
IPL2–IPL0 SAMPLED
IPL2–IPL0 VALID INTERNALLY

SW SW

IACK

Figure 3-11. Interrupt Acknowledge Cycle Timing Diagram

3.2 BUS ARBITRATION

Bus arbitration is a technique used by bus master devices to request, to be granted, and
to acknowledge bus mastership. Bus arbitration consists of the following:

1. Asserting a bus mastership request

2. Receiving a grant indicating that the bus is available at the end of the current cycle

3. Acknowledging that mastership has been assumed

Figure 3-12 is a flowchart showing the bus arbitration cycle of the EC000 core. Figure 3-
13 is a timing diagram of the bus arbitration cycle charted in Figure 3-12. This technique
allows processing of bus requests during data transfer cycles.

MOTOROLA MC68306 USER'S MANUAL 3-13

There are two ways to arbitrate the bus, 3-wire and 2-wire bus arbitration. The EC000
core can do either 2-wire or 3-wire bus arbitration. Figures 3-12 and 3-14 show 3-wire bus
arbitration and Figures 3-13 and 5-15 show 2-wire bus arbitration. BGACK must be pulled
high for 2-wire bus arbitration.

GRANT BUS ARBITRATION

REQUEST THE BUS

1) ASSERT BUS REQUEST (BR)

REQUESTING DEVICE

1) EXTERNAL ARBITRATION DETER-
 MINES NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE
3) NEXT BUS MASTER ASSERTS BUS
 GRANT ACKNOWLEDGE (BGACK)
 TO BECOME NEW MASTER
4) BUS MASTER NEGATES BR

TERMINATE ARBITRATION

1) NEGATE BGACK

PROCESSOR

1) ASSERT BUS GRANT (BG)

ACKNOWLEDGE BUS MASTERSHIP

OPERATE AS BUS MASTER

1) PERFORM DATA TRANSFERS (READ
 AND WRITE CYCLES) ACCORDING
 TO THE SAME RULES THE PRO-
 CESSOR USES

REARBITRATE OR RESUME
PROCESSOR OPERATION

RELEASE BUS MASTERSHIP

1) NEGATE BG (AND WAIT FOR BGACK
 TO BE NEGATED)
2) IF BR REMAINS ASSERTED AFTER
 BGACK ASSERTED, RE-ASSERT BG.

Figure 3-12. Three-Wire Bus Arbitration Cycle Flowchart

3-14 MC68306 USER'S MANUAL MOTOROLA

GRANT BUS ARBITRATION

REQUEST THE BUS

1) ASSERT BUS REQUEST (BR)

REQUESTING DEVICE

1) NEGATE BUS REQUEST (BR)

PROCESSOR

1) ASSERT BUS GRANT (BG)

OPERATE AS BUS MASTER

REARBITRATE OR RESUME
PROCESSOR OPERATION

RELEASE BUS MASTERSHIPACKNOWLEDGE RELEASE OF
BUS MASTERSHIP

1) NEGATE BUS GRANT (BG)

1) EXTERNAL ARBITRATION DETER-
 MINES NEXT BUS MASTER
2) NEXT BUS MASTER WAITS FOR
 CURRENT CYCLE TO COMPLETE

Figure 3-13. Two-Wire Bus Arbitration Cycle Flowchart

MOTOROLA MC68306 USER'S MANUAL 3-15

CLK

FC2–FC0

A31–A1

AS

LDS/ UDS

R/W

DTACK

D15–D0

BR

BG

BGACK

PROCESSOR DMA DEVICE PROCESSOR DMA DEVICE

Figure 3-14. Three-Wire Bus Arbitration Timing Diagram

CLK

FC2–FC0

A19–A0

AS

DS

R/W

DTACK

D7–D0

PROCESSOR

BR

BG

S0 S6S2 S4 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6

DMA DEVICE PROCESSOR DMA DEVICE

Figure 3-15. Two-Wire Bus Arbitration Timing Diagram

3-16 MC68306 USER'S MANUAL MOTOROLA

The timing diagram in Figure 3-14 shows that the bus request is negated at the time that
an acknowledge is asserted. This type of operation applies to a system consisting of a
processor and one other device capable of becoming bus master. In systems having
several devices that can be bus masters, bus request lines from these devices can be
wire-ORed at the processor, and more than one bus request signal could occur.

The bus grant signal is negated a few clock cycles after the assertion of the bus grant
acknowledge signal. However, if bus requests are pending, the processor reasserts bus
grant for another request a few clock cycles after bus grant (for the previous request) is
negated. In response to this additional assertion of bus grant, external arbitration circuitry
selects the next bus master before the current bus master has completed the bus activity.

The timing diagram in Figure 3-15 also applies to a system consisting of a processor and
one other device capable of becoming bus master. Since the 2-wire bus arbitration
scheme does not use a bus grant acknowledge signal, the external master must continue
to assert BR until it has completed its bus activity. The processor negates bus grant when
BR is negated.

3.2.1 Requesting the Bus

External devices capable of becoming bus masters assert BR to request the bus. This
signal can be wire-ORed (not necessarily constructed from open-collector devices) from
any of the devices in the system that can become bus master. The processor, which is at
a lower bus priority level than the external devices, relinquishes the bus after it completes
the current bus cycle.

3.2.2 Receiving the Bus Grant

The processor asserts BG as soon as possible. Normally, this process immediately
follows internal synchronization, except when the processor has made an internal decision
to execute the next bus cycle but has not yet asserted AS for that cycle. In this case, BG is
delayed until AS is asserted to indicate to external devices that a bus cycle is in progress.

BG can be routed through a daisy-chained network or through a specific priority-encoded
network. Any method of external arbitration that observes the protocol can be used.

3.2.3 Acknowledgment of Mastership (3-Wire Bus Arbitration Only)

Upon receiving BG , the requesting device waits until AS, DTACK, and BGACK are
negated before asserting BGACK. The negation of AS indicates that the previous bus
master has completed its cycle. (No device is allowed to assume bus mastership while AS

is asserted.) The negation of BGACK indicates that the previous master has released the
bus. The negation of DTACK indicates that the previous slave has terminated the
connection to the previous master. (In some applications, DTACK might not be included in
this function; general-purpose devices would be connected using AS only.) When BGACK

is asserted, the asserting device is bus master until it negates BGACK . BGACK should not
be negated until after the bus cycle(s) is complete. A device relinquishes control of the bus
by negating BGACK .

MOTOROLA MC68306 USER'S MANUAL 3-17

The bus request from the granted device should be negated after BGACK is asserted. If
another bus request is pending, BG is reasserted within a few clocks, as described in 3.3
Bus Arbitration Control. The processor does not perform any external bus cycles before
reasserting BG .

3.3 BUS ARBITRATION CONTROL

All asynchronous bus arbitration signals to the processor are synchronized before being
used internally. As shown in Figure 3-16, synchronization requires a maximum of one and
a half cycles of the system clock. The input asynchronous signal is sampled on the falling
edge of the clock and is valid internally after the next rising edge.

This synchronization scheme is used for all other asynchronous inputs also: RESET,

HALT, DTACK, BERR, IPL2–IPL0.

CLK

BR (EXTERNAL)

BR (iNTERNAL)

47

INTERNAL SIGNAL VALID

EXTERNAL SIGNAL SAMPLED

Figure 3-16. External Asynchronous Signal Synchronization

Bus arbitration control is implemented with a finite state machine (see Figure 3-17). In
Figure 3-17, input signals R and A are the internally synchronized versions of BR and
BGACK. The BG output is shown as G, and the internal three-state control signal is shown
as T. If T is true, the address, data, and control buses are placed in the high-impedance
state when AS is negated. All signals are shown in positive logic (active high), regardless
of their true active voltage level. State changes (valid outputs) occur on the next rising
edge of the clock after the internal signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in
Figure 3-18. The bus arbitration timing while the bus is inactive (e.g., the processor is
performing internal operations for a multiply instruction) is shown in Figure 3-19.

3-18 MC68306 USER'S MANUAL MOTOROLA

When a bus request is made after the MPU has begun a bus cycle and before AS has
been asserted (S0), the special sequence shown in Figure 3-20 applies. Instead of being
asserted on the next rising edge of clock, BG is delayed until the second rising edge
following its internal assertion.

RA

XX

RA

RA

RA

XX

R+A

XA
RA

RX

1 1

R = Bus Request Internal
A = Bus Grant Acknowledge Internal
G = Bus Grant
T = Three-state Control to Bus Control Logic
X = Don't Care

Notes:
1. State machine will not change if
 the bus is S0 or S1. Refer to

5.2.3.BUS ARBITRATION CONTROL.
2. The address bus will be placed in
 the high-impedance state if T is
 asserted and AS is negated.

R

R

R

X

R

X

R

R

(a) 3-Wire Bus Arbitration

(b) 2-Wire Bus Arbitration

GT

GT

GT

GT

RA

RA

RA

RA

XA

RA

GT
RA

GT

GT

GT

GT

GT

GT

GT
STATE 1

STATE 0

STATE 4

STATE 2

STATE 3

Figure 3-17. Bus Arbitration Unit State Diagrams

MOTOROLA MC68306 USER'S MANUAL 3-19

Figures 3-18, 3-19, and 3-20 apply to processors using 3-wire bus arbitration. Figures
3-21, 3-22, and 3-23 apply to processors using 2-wire bus arbitration.

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1
CLK

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BGACK NEGATED INTERNAL
BGACK SAMPLED
BGACK NEGATED

BR

BG

BGACK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Figure 3-18. Three-Wire Bus Arbitration Timing Diagram—Processor Active

3-20 MC68306 USER'S MANUAL MOTOROLA

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4
CLK

BGACK NEGATED
BG ASSERTED AND BUS THREE STATED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BR

BG

BGACK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D0

BUS RELEASED FROM THREE STATE AND PROCESSOR STARTS NEXT BUS CYCLE

PROCESSORPROCESSOR BUS
INACTIVE ALTERNATE BUS MASTER

Figure 3-19. Three-Wire Bus Arbitration Timing Diagram—Bus Inactive

MOTOROLA MC68306 USER'S MANUAL 3-21

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BGACK NEGATED INTERNAL
BGACK SAMPLED
BGACK NEGATED

BR

BG

BGACK

AS

UDS

LDS

R/W

DTACK

D15–D0

S0 S2 S4 S6 S0 S2 S4 S6 S0

CLK

FC2–FC0

A31–A1

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Figure 3-20. Three-Wire Bus Arbitration Timing Diagram—Special Case

3-22 MC68306 USER'S MANUAL MOTOROLA

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1
CLK

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BR NEGATED INTERNAL
BR SAMPLED
BR NEGATED

BR

BG

BGACK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Figure 3-21. Two-Wire Bus Arbitration Timing Diagram—Processor Active

MOTOROLA MC68306 USER'S MANUAL 3-23

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4
CLK

BR NEGATED
BG ASSERTED AND BUS THREE STATED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BR

BG

BGACK

FC2–FC0

A31–A1

AS

UDS

LDS

R/W

DTACK

D15–D0

BUS RELEASED FROM THREE STATE AND PROCESSOR STARTS NEXT BUS CYCLE

PROCESSORPROCESSOR BUS
INACTIVE ALTERNATE BUS MASTER

Figure 3-22. Two-Wire Bus Arbitration Timing Diagram—Bus Inactive

3-24 MC68306 USER'S MANUAL MOTOROLA

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BR NEGATED INTERNAL
BR SAMPLED
BR NEGATED

BR

BG

BGACK

AS

UDS

LDS

R/W

DTACK

D15–D0

S0 S2 S4 S6 S0 S2 S4 S6 S0

CLK

FC2–FC0

A31–A1

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Figure 3-23. Two-Wire Bus Arbitration Timing Diagram—Special Case

3.4 BUS ERROR AND HALT OPERATION

In a bus architecture that requires a handshake from an external device, such as the
asynchronous bus used in the M68000 Family, the handshake may not always occur. A
bus error input is provided to terminate a bus cycle in error when the expected signal is
not asserted. Different systems and different devices within the same system require
different maximum-response times. External circuitry can be provided to assert the bus
error signal after the appropriate delay following the assertion of address strobe.

3.4.1 Bus Error Operation

A bus error is recognized when BERR is asserted, HALT is negated, and DTACK is not
asserted before BERR (or not at all).

When the bus error condition is recognized, the current bus cycle is terminated in S7
(DTACK and BERR together) or S9 (BERR alone) for a read cycle, a write cycle, or the
read portion of a read-modify-write cycle. For the write portion of a read-modify-write
cycle, the current bus cycle is terminated in S19 (DTACK and BERR together) or S21

MOTOROLA MC68306 USER'S MANUAL 3-25

(BERR alone). As long as BERR remains asserted, the data bus is in the high-impedance
state. Figure 3-24 shows the timing for the normal bus error.

S0 S2 S4 S6
CLK

FC2–FC0

A31–A1

w w w w S8

AS

LDS/UDS

R/W

DTACK

D15–D0

BERR

HALT
INITIATE BUS ERROR

DETECTION
INITIATE BUS

ERROR STACKING
RESPONSE

FAILUREREAD

Figure 3-24. Bus Error Timing Diagram

After the aborted bus cycle is terminated and BERR is negated, the processor enters
exception processing for the bus error exception. During the exception processing
sequence, the following information is placed on the supervisor stack:

1. Status register

2. Program counter (two words, which may be up to five words past the instruction
being executed)

3. Error information

The first two items are identical to the information stacked by any other exception. The
EC000 core stacks bus error information to help determine and to correct the error.

After the processor has placed the required information on the stack, the bus error
exception vector is read from vector table entry 2 (offset $08) and placed in the program
counter. The processor resumes execution at the address in the vector, which is the first
instruction in the bus error handler routine.

3.4.2 Retrying the Bus Cycle

The assertion of the bus error signal during a bus cycle in which HALT is also asserted by
an external device initiates a retry operation. Figure 3-25 is a timing diagram of the retry
operation.

3-26 MC68306 USER'S MANUAL MOTOROLA

S0 S2 S4 S6
CLK

FC2-FC0

A23–A1

S8 S0 S2 S4 S6

AS

LDS/UDS

R/W

DTACK

D15–D0

BERR

HALT

1 CLOCK PERIOD≥

READ HALT RETRY

Figure 3-25. Retry Bus Cycle Timing Diagram

The processor terminates the bus cycle, and remains in this state until HALT is negated.
Then the processor retries the preceding cycle using the same function codes, address,
and data (for a write operation). BERR should be negated at least one clock cycle before
HALT is negated.

NOTE

To guarantee that the entire read-modify-write cycle runs
correctly and that the write portion of the operation is
performed without negating the address strobe, the processor
does not retry a read-modify-write cycle. When BERR occurs
during a read-modify-write operation, a bus error operation is
performed whether or not HALT is asserted.

3.4.3 Halt Operation

HALT performs a halt/run/single-step operation. When HALT is asserted by an external
device, the processor halts and remains halted as long as the signal remains asserted, as
shown in Figure 3-26.

While the processor is halted, bus arbitration is performed as usual. Should a bus error
occur while HALT is asserted, the processor performs the retry operation previously
described.

NOTE

If a RESET instruction is executed while HALT is asserted, the
CPU will be reset.

MOTOROLA MC68306 USER'S MANUAL 3-27

S0 S2 S4 S6
CLK

FC2–FC0

A31–A1

S0 S2 S4 S6

AS

R/W

DTACK

D15–D0

HALT

LDS/UDS

READ HALT READ

Figure 3-26. Halt Operation Timing Diagram

The single-step mode is derived from correctly timed transitions of HALT. HALT is negated
to allow the processor to begin a bus cycle, then asserted to enter the halt mode when the
cycle completes. The single-step mode proceeds through a program one bus cycle at a
time for debugging purposes. The halt operation and the hardware trace capability allow
tracing of either bus cycles or instructions one at a time. These capabilities and a software
debugging package provide total debugging flexibility.

3.4.4 Double Bus Fault

When a bus error exception occurs, the processor begins exception processing by
stacking information on the supervisor stack. If another bus error occurs during exception
processing (i.e., before execution of another instruction begins) the processor halts and
asserts HALT. This is called a double bus fault. Only an external reset operation can
restart a processor halted due to a double bus fault.

A retry operation does not initiate exception processing; a bus error during a retry
operation does not cause a double bus fault. The processor can continue to retry a bus
cycle indefinitely if external hardware requests.

A double bus fault occurs during a reset operation when a bus error occurs while the
processor is reading the vector table (before the first instruction is executed). The reset
operation is described in the following paragraph.

3.5 RESET OPERATION

RESET is asserted externally for the initial processor reset. Subsequently, the signal can
be asserted either externally or internally (executing a RESET instruction).

3-28 MC68306 USER'S MANUAL MOTOROLA

After the processor is reset, it reads the reset vector table entry (address $00000) and
loads the contents into the supervisor stack pointer (SSP). Next, the processor loads the
contents of address $00004 (vector table entry 1) into the program counter. Then the
processor initializes the interrupt level in the status register to a value of seven. No other
register is affected by the reset sequence. Figure 3-27 shows the timing of the reset
operation.

T 4 CLOCKS

2 3 4 5 6

NOTES:
 1. Internal start-up time
 2. SSP high read in here
 3. SSP low read in here

4. PC High read in here
5. PC Low read in here
6. First instruction fetched here

Bus State Unknown:

All Control Signals Inactive.
 Data Bus in Read Mode:

CLK

+ 5 VOLTS

VCC

RESET

HALT

BUS CYCLES

<

T 100 MILLISECONDS≥

1

Figure 3-27. Reset Operation Timing Diagram

The active-low RESET signal is asserted by the EC000 core when a RESET instruction is
executed. This signal should reset all external devices (the EC000 core itself is not
affected). The processor drives RESET for 124 clock periods. The RESET signal is
asserted by an external source to reset the EC000 core. RESET by itself will reset the
EC000 core unless the processor is executing a RESET instruction. To guarantee a reset
of the core, RESET must be asserted for at least 132 clocks (i.e., longer than the
maximum duration of the RESET instruction), or RESET and HALT must be asserted
together for at least 10 clocks.

3.6 THE RELATIONSHIP OF DTACK, BERR, AND HALT

To properly control termination of a bus cycle for a retry or a bus error condition, DTACK,
BERR , and HALT should be asserted and negated on the rising edge of the processor
clock. This relationship assures that when two signals are asserted simultaneously, the
required setup time (specification #47, AC Electrical SpecificationsÑRead and Write
Cycles) for both of them is met during the same bus state. External circuitry should be
designed to incorporate this precaution. A related specification, #48, can be ignored when
DTACK, BERR , and HALT are asserted and negated on the rising edge of the processor
clock.

MOTOROLA MC68306 USER'S MANUAL 3-29

The possible bus cycle terminations can be summarized as follows (case numbers refer to
Table 3-1).

Normal Termination: DTACK is asserted. BERR and HALT remain negated (case 1).

Halt Termination: HALT is asserted coincident with or preceding DTACK, and
BERR remains negated (case 2).

Bus Error Termination: BERR is asserted in lieu of, coincident with, or preceding
DTACK (case 3).

Retry Termination: HALT and BERR asserted in lieu of, coincident with, or before
DTACK (case 5).

Table 3-1 shows the details of the resulting bus cycle terminations for various
combinations of signal sequences.

Table 3-1. DTACK, BERR , and HALT Assertion Results

Case
No.

Control
Signal

Asserted on Rising
 Edge of State EC000 Core Results

N N+2

1 DTACK

BERR

HALT

A
NA
NA

S
NA
X

Normal cycle terminate and continue.

2 DTACK

BERR

HALT

A
NA
A/S

S
NA
S

Normal cycle terminate and halt. Continue
when HALT negated.

3 DTACK

BERR

HALT

X
A

NA

X
S

NA

Terminate and take bus error trap.

4 DTACK

BERR

HALT

A
NA
NA

S
A

NA

Normal cycle terminate and continue.

5 DTACK

BERR

HALT

X
A

A/S

X
S
S

Terminate and retry when HALT removed.

6 DTACK

BERR

HALT

A
NA
NA

S
A
A

Normal cycle terminate and continue.

LEGEND:
N — The number of the current even bus state (e.g., S4, S6, etc.)
A — Signal asserted in this bus state

NA — Signal not asserted in this bus state
X — Don't care
S — Signal asserted in preceding bus state and remains asserted in this state

NOTE: All operations are subject to relevant setup and hold times.

3-30 MC68306 USER'S MANUAL MOTOROLA

The negation of BERR and HALT under several conditions is shown in Table 3-2. (DTACK

is assumed to be negated normally in all cases; for reliable operation, both DTACK and
BERR should be negated when address strobe is negated).

EXAMPLE A:
A system uses a watchdog timer to terminate accesses to unused address space. The
timer asserts BERR after timeout (case 3).

EXAMPLE B:
A system uses error detection on random-access memory (RAM) contents. The system
designer may:

1. Delay DTACK until the data is verified. If data is invalid, return BERR and HALT
simultaneously to retry the error cycle (case 5).

2. Delay DTACK until the data is verified. If data is invalid, return BERR at the same
time as DTACK (case 3).

Table 3-2. BERR and HALT Negation Results

Conditions of
Termination in

Negated on Rising
Edge of State

Table 4-4 Control Signal N N+2 Results—Next Cycle

Bus Error BERR

HALT

•
•

or
or

•
•

Takes bus error trap.

Rerun BERR

HALT

•
•

or • Illegal sequence; usually traps to vector number 0.

Rerun BERR

HALT

•
•

Reruns the bus cycle.

Normal BERR

HALT

•
• or •

May lengthen next cycle.

Normal BERR

HALT • or
•

none
If next cycle is started, it will be terminated as a bus
error.

• = Signal is negated in this bus state.

3.7 ASYNCHRONOUS OPERATION

To achieve clock frequency independence at a system level, the bus can be operated in
an asynchronous manner. Asynchronous bus operation uses the bus handshake signals
to control the transfer of data. The handshake signals are AS , UDS, LDS , DTACK, BERR ,
and HALT. AS indicates the start of the bus cycle, and UDS and LDS signal valid data for
a write cycle. After placing the requested data on the data bus (read cycle) or latching the
data (write cycle), the slave device (memory or peripheral) asserts DTACK to terminate
the bus cycle. If no device responds or if the access is invalid, external control logic
asserts BERR , or BERR and HALT, to abort or retry the cycle. Figure 3-28 shows the use
of the bus handshake signals in a fully asynchronous read cycle. Figure 3-29 shows a fully
asynchronous write cycle.

MOTOROLA MC68306 USER'S MANUAL 3-31

AS

R/W

DTACK

UDS/LDS

DATA

ADDR

Figure 3-28 Fully Asynchronous Read Cycle

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

Figure 3-29. Fully Asynchronous Write Cycle

In the asynchronous mode, the accessed device operates independently of the frequency
and phase of the system clock. For example, the MC68681 dual universal asynchronous
receiver/transmitter (DUART) does not require any clock-related information from the bus
master during a bus transfer. Asynchronous devices are designed to operate correctly
with processors at any clock frequency when relevant timing requirements are observed.

A device can use a clock at the same frequency as the system clock (e.g., 8, 10, or 12.5
MHz), but without a defined phase relationship to the system clock. This mode of
operation is pseudo-asynchronous; it increases performance by observing timing
parameters related to the system clock frequency without being completely synchronous
with that clock. A memory array designed to operate with a particular frequency processor
but not driven by the processor clock is a common example of a pseudo-asynchronous
device.

The designer of a fully asynchronous system can make no assumptions about address
setup time, which could be used to improve performance. With the system clock frequency
known, the slave device can be designed to decode the address bus before recognizing
an address strobe. Parameter #11 (refer to AC Electrical Specifications—Read and
Write Cycles) specifies the minimum time before address strobe during which the
address is valid.

3-32 MC68306 USER'S MANUAL MOTOROLA

In a pseudo-asynchronous system, timing specifications allow DTACK to be asserted for a
read cycle before the data from a slave device is valid. The length of time that DTACK

may precede data is specified as parameter #31. This parameter must be met to ensure
the validity of the data latched into the processor. No maximum time is specified from the
assertion of AS to the assertion of DTACK. During this unlimited time, the processor
inserts wait cycles in one-clock-period increments until DTACK is recognized. Figure 3-30
shows the important timing parameters for a pseudo-asynchronous read cycle.

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

11

17

A

31

28

29

Figure 3-30. Pseudo-Asynchronous Read Cycle

During a write cycle, after the processor asserts AS but before driving the data bus, the
processor drives R/W low. Parameter #55 specifies the minimum time between the
transition of R/W and the driving of the data bus, which is effectively the maximum turnoff
time for any device driving the data bus.

After the processor places valid data on the bus, it asserts the data strobe signal(s). A
data setup time, similar to the address setup time previously discussed, can be used to
improve performance. Parameter #26 is the minimum time a slave device can accept valid
data before recognizing a data strobe. The slave device asserts DTACK after it accepts
the data. Parameter #25 is the minimum time after negation of the strobes during which
the valid data remains on the address bus. Parameter #28 is the maximum time between
the negation of the strobes by the processor and the negation of DTACK by the slave
device. If DTACK remains asserted past the time specified by parameter #28, the
processor may recognize it as being asserted early in the next bus cycle and may
terminate that cycle prematurely. Figure 3-31 shows the important timing specifications for
a pseudo-asynchronous write cycle.

MOTOROLA MC68306 USER'S MANUAL 3-33

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

11

55

22

26
28

29

20A

C

Figure 3-31. Pseudo-Asynchronous Write Cycle

3.8 SYNCHRONOUS OPERATION

In some systems, external devices use the system clock to generate DTACK and other
asynchronous input signals. This synchronous operation provides a closely coupled
design with maximum performance, appropriate for frequently accessed parts of the
system. For example, memory can operate in the synchronous mode, but peripheral
devices operate asynchronously. For a synchronous device, the designer uses explicit
timing information shown in AC Electrical Specifications—Read and Write Cycles.
These specifications define the state of all bus signals relative to a specific state of the
processor clock.

The standard M68000 bus cycle consists of four clock periods (eight bus cycle states)
and, optionally, an integral number of clock cycles inserted as wait states. Wait states are
inserted as required to allow sufficient response time for the external device. The following
state-by-state description of the bus cycle differs from those descriptions in 3.1.1 Read
Cycle and 3.1.2 Write Cycle by including information about the important timing
parameters that apply in the bus cycle states.

STATE 0 The bus cycle starts in S0, during which the clock is high. At the rising edge
of S0, the function code for the access is driven externally. Parameter #6A
defines the delay from this rising edge until the function codes are valid.
Also, the R/W signal is driven high; parameter #18 defines the delay from
the same rising edge to the transition of R/W . The minimum value for
parameter #18 applies to a read cycle preceded by a write cycle; this value
is the maximum hold time for a low on R/W beyond the initiation of the read
cycle.

3-34 MC68306 USER'S MANUAL MOTOROLA

STATE 1 Entering S1, a low period of the clock, the address of the accessed device
is driven externally with an assertion delay defined by parameter #6.

STATE 2 On the rising edge of S2, a high period of the clock, AS is asserted. During
a read cycle, UDS and/or LDS is also asserted at this time. Parameter
#9 defines the assertion delay for these signals. For a write cycle, the R/W
signal is driven low with a delay defined by parameter #20.

STATE 3 On the falling edge of the clock entering S3, the data bus is driven out of
the high-impedance state with the data being written to the accessed
device (in a write cycle). Parameter #23 specifies the data assertion delay.
In a read cycle, no signal is altered in S3.

STATE 4 Entering the high clock period of S4, U D S /LDS is asserted
(during a write cycle) on the rising edge of the clock. As in S2 for a read
cycle, parameter #9 defines the assertion delay from the rising edge of S4
for U D S /LDS . In a read cycle, no signal is altered by the
processor during S4.

Until the falling edge of the clock at the end of S4 (beginning of S5), no
response from any external device except RESET is acknowledged by the
processor. If either DTACK or BERR is asserted before the falling edge of
S4 and satisfies the input setup time defined by parameter #47, the
processor enters S5 and the bus cycle continues. If either DTACK or BERR

is asserted but without meeting the setup time defined by parameter #47,
the processor may recognize the signal and continue the bus cycle; the
result is unpredictable. If neither DTACK nor BERR is asserted before the
next rise of clock, the bus cycle remains in S4, and wait states (complete
clock cycles) are inserted until one of the bus cycle terminations is met.

STATE 5 S5 is a low period of the clock, during which the processor does not alter
any signal.

STATE 6 S6 is a high period of the clock, during which data for a read operation is
set up relative to the falling edge (entering S7). Parameter #27 defines the
minimum period by which the data must precede the falling edge. For a
write operation, the processor changes no signal during S6.

STATE 7 On the falling edge of the clock entering S7, the processor latches data
and negates A S and UDS/LDS during a read cycle. The hold
time for these strobes from this falling edge is specified by parameter #12.
The hold time for data relative to the negation of A S and UDS /LDS is
specified by parameter #29. For a write cycle, only AS and UDS /LDS ,
are negated; timing parameter #12 also applies.

MOTOROLA MC68306 USER'S MANUAL 3-35

On the rising edge of the clock, at the end of S7 (which may be the start of
S0 for the next bus cycle), the processor places the address bus in the
high-impedance state. During a write cycle, the processor also places the
data bus in the high-impedance state and drives R/W high. External logic
circuitry should respond to the negation of the AS and UDS /LDS by negating
DTACK and/or BERR . Parameter #28 is the hold time for DTACK, and
parameter #30 is the hold time for BERR .

Figure 3-32 shows a synchronous read cycle and the important timing parameters that
apply. The timing for a synchronous read cycle, including relevant timing parameters, is
shown in Figure 3-33.

ADDR

UDS/LDS

R/W

AS

CLOCK

DTACK

6

9

S0 S1 S2 S3 S4 S5 S6 S7 S0

18

47

27

DATA

Figure 3-32. Synchronous Read Cycle

3-36 MC68306 USER'S MANUAL MOTOROLA

ADDR

UDS/LDS

R/W

AS

CLOCK

DTACK

6

S0 S1 S2 S3 S4 S5 S6 S7 S0

18

DATA

23 53

47

9

Figure 3-33. Synchronous Write Cycle

A key consideration when designing in a synchronous environment is the timing for the
assertion of DTACK and BERR by an external device. To properly use external inputs, the
processor must synchronize these signals to the internal clock. The processor must
sample the external signal, which has no defined phase relationship to the CPU clock,
which may be changing at sampling time, and must determine whether to consider the
signal high or low during the succeeding clock period. Successful synchronization requires
that the internal machine receives a valid logic level, whether the input is high, low, or in
transition.

Parameter #47 of AC Electrical Specifications—Read and Write Cycles is the
asynchronous input setup time. Signals that meet parameter #47 are guaranteed to be
recognized at the next falling edge of the system clock. However, signals that do not meet
parameter #47 are not guaranteed to be recognized. In addition, if DTACK is recognized
on a falling edge, valid data is latched into the processor (during a read cycle) on the next
falling edge, provided the data meets the setup time required (parameter #27). When
parameter #27 has been met, parameter #31 may be ignored. If DTACK is asserted with
the required setup time before the falling edge of S4, no wait states are incurred, and the
bus cycle runs at its maximum speed of four clock periods.

MOTOROLA MC68306 USER'S MANUAL 4-1

SECTION 4
EC000 CORE PROCESSOR

The EC000 core has a 16-bit data bus and 32-bit address bus while the full architecture
provides for 32-bit address and data register operations.

4.1 FEATURES

The following resources are available to the EC000 core:

• 8 32-Bit Address Registers

• 8 32-Bit Data Registers

• 4-Gbyte Direct Addressing Range

• 56 Powerful Instructions

• Operations on Five Main Data Types

• Memory-Mapped Input/Output (I/O)

• 14 Addressing Modes

4.2 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing,
or halted. It is in the normal processing state when executing instructions, fetching
instructions and operands, and storing instruction results.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe after an exception. The processor enters
exception processing when an exceptional internal condition arises such as tracing an
instruction, an instruction results in a trap, or executing specific instructions. External
conditions, such as interrupts and access errors, also cause exceptions. Exception
processing ends when the first instruction of the exception handler begins to execute.

The processor halts when it receives an access error or generates an address error while
in the exception processing state. For example, if during exception processing of one
access error another access error occurs, the processor is unable to complete the
transition to normal processing and cannot save the internal state of the machine. The
processor assumes that the system is not operational and halts. Only an external reset
can restart a halted processor. Note that when the processor executes a STOP
instruction, it is in a special type of normal processing state, one without bus cycles. The
processor stops, but it does not halt.

4-2 MC68306 USER'S MANUAL MOTOROLA

4.3 PROGRAMMING MODEL

The EC000 core executes instructions in one of two modes—user mode or supervisor
mode. The user mode provides the execution environment for the majority of application
programs. The supervisor mode, which allows some additional instructions and privileges,
is used by the operating system and other system software.

To provide upward compatibility of code written for a specific implementation of the EC000
core, the user programmer's model, illustrated in Figure 4-1, is common to all
implementations. In the user programmer's model, the EC000 core offers 16, 32-bit,
general-purpose registers (D0–D7, A0–A7), a 32-bit program counter, and an 8-bit
condition code register. The first eight registers (D0–D7) are used as data registers for
byte (8-bit), word (16-bit), and long-word (32-bit) operations. The second set of seven
registers (A0–A6) and the user stack pointer (USP) can be used as software stack
pointers and base address registers. In addition, the address registers can be used for
word and long-word operations. All of the 16 registers can be used as index registers. The
supervisor programmer's model consists of supplementary registers used in the
supervisor mode.

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0

31 0

31 0

SSP
SR(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

SUPERVISOR STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN
THE USER PROGRAMMING MODEL)

USER STACK POINTER

DATA REGISTERS

ADDRESS REGISTERS

EC1

Figure 4-1. Programmer's Model

MOTOROLA MC68306 USER'S MANUAL 4-3

The status register, illustrated in Figure 4-2, contains the interrupt mask (eight levels
available) and the following condition codes: overflow (V), zero (Z), negative (N), carry (C),
and extend (X). Additional status bits indicate that the processor is in the trace (T) mode
and/or in the supervisor (S) state.

T 0 S 0 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE MODE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER STATE

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

EC2

Figure 4-2. Status Register

4.3.1 Data Format Summary

The processor supports the basic data formats of the M68000 family. The instruction set
supports operations on other data formats such as memory addresses.

The operand data formats supported by the integer unit (IU) are the standard twos-
complement data formats defined in the M68000 family architecture. Registers, memory,
or instructions themselves can contain IU operands. The operand size for each instruction
is either explicitly encoded in the instruction or implicitly defined by the instruction
operation. Table 4-1 lists the data formats for the processor. Refer to M68000PM/AD,
M68000 Family Programmer’s Reference Manual, for details on data format organization
in registers and memory.

Table 4-1. Processor Data Formats

Operand Data Format Size Notes

Bit 1 Bit —

Binary-Coded Decimal (BCD) 8 Bits Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte

Byte Integer 8 Bits —

Word Integer 16 Bits —

Long-Word Integer 32 Bits —

4-4 MC68306 USER'S MANUAL MOTOROLA

4.3.2 Addressing Capabilities Summary

The EC000 core supports the basic addressing modes of the M68000 family. The register
indirect addressing modes support postincrement, predecrement, offset, and indexing,
which are particularly useful for handling data structures common to sophisticated
applications and high-level languages. The program counter indirect mode also has
indexing and offset capabilities. This addressing mode is typically required to support
position-independent software. Besides these addressing modes, the processor provides
index sizing and scaling features.

An instruction’s addressing mode can specify the value of an operand, a register
containing the operand, or how to derive the effective address of an operand in memory.
Each addressing mode has an assembler syntax. Some instructions imply the addressing
mode for an operand. These instructions include the appropriate fields for operands that
use only one addressing mode. Table 4-2 lists a summary of the effective addressing
modes for the processor. Refer to M68000PM/AD, M68000 Family Programmer’s
Reference Manual, for details on instruction format and addressing modes.

Table 4-2. Effective Addressing Modes

Addressing Modes Syntax

Register Direct Addressing
 Data Register Direct
 Address Register Direct

EA=Dn
EA=An

Absolute Data Addressing
 Absolute Short
 Absolute Long

EA=(Next Word)
EA=(Next Two Words)

Program Counter Relative Addressing
 Relative with Offset
 Relative with Index and Offset

EA=(PC)+d16
EA=(PC)+d8

Register Indirect Addressing
 Register Indirect
 Postincrement Register Indirect
 Predecrement Register Indirect
 Register Indirect with Offset
 Indexed Register Indirect with Offset

EA=(An)
EA=(An), An ¨ An+N
An ¨ An–N, EA=(An)
EA=(An)+d16
EA=(An)+(Xn)+d8

Immediate Data Addressing
 Immediate
 Quick Immediate

DATA=Next Word(s)
Inherent Data

Implied Addressing
 Implied Register EA=SR, USP, SSP, PC,

VBR, SFC, DFC

MOTOROLA MC68306 USER'S MANUAL 4-5

4.3.3 Notation Conventions

Table 4-3 lists the notation conventions used in this manual unless otherwise specified.

Table 4-3. Notation Conventions

Single and Double Operand Operations

+ Arithmetic addition or postincrement indicator.

– Arithmetic subtraction or predecrement indicator.

× Arithmetic multiplication.

÷ Arithmetic division or conjunction symbol.

~ Invert; operand is logically complemented.

Λ Logical AND

V Logical OR

⊕ Logical exclusive OR

˘ Source operand is moved to destination operand.

 ̄̆ Two operands are exchanged.

<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.

sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format ÷ Offset Word ˘ (SSP); SSP – 2 ˘ SSP; PC ˘ (SSP); SSP – 4 ˘ SSP; SR
˘ (SSP); SSP – 2 ˘ SSP; (Vector) ˘ PC

STOP Enter the stopped state, waiting for interrupts.

<operand>10 The operand is BCD; operations are performed in decimal.

If <condition>
 then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false
and the optional “else” clause is present, the operations after “else” are performed. If the
condition is false and else is omitted, the instruction performs no operation. Refer to the Bcc
instruction description as an example.

Register Specification

An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.

BR Base Register—An, PC, or suppressed.

Dc Data register D7–D0, used during compare.

Dh, Dl Data registers high- or low-order 32 bits of product.

Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.

Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.

4-6 MC68306 USER'S MANUAL MOTOROLA

Table 4-3. Notation Conventions (Continued)

Data Format And Type

<fmt> Operand Data Format: Byte (B), Word (W), Long (L), or Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in
the packed decimal format.

Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).

() Identifies an indirect address in a register.

[] Identifies an indirect address in memory.

bd Base Displacement

dn Displacement Value, n Bits Wide (example: d16 is a 16-bit displacement).

LSB Least Significant Bit

LSW Least Significant Word

MSB Most Significant Bit

MSW Most Significant Word

od Outer Displacement

SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).

SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.

Register Names

CCR Condition Code Register (lower byte of status register)

PC Program Counter

SR Status Register

MOTOROLA MC68306 USER'S MANUAL 4-7

Table 4-3. Notation Conventions (Concluded)

Register Codes

* General Case.

C Carry Bit in CCR

cc Condition Codes from CCR

FC Function Code

N Negative Bit in CCR

U Undefined, Reserved for Motorola Use.

V Overflow Bit in CCR

X Extend Bit in CCR

Z Zero Bit in CCR

— Not Affected or Applicable.

Stack Pointers

SP Active Stack Pointer

SSP Supervisor Stack Pointer

USP User Stack Pointer

Miscellaneous

<ea> Effective Address

<label> Assemble Program Label

<list> List of registers, for example D3–D0.

LB Lower Bound

m Bit m of an Operand

m–n Bits m through n of Operand

UB Upper Bound

4.4 EC000 CORE INSTRUCTION SET OVERVIEW

Design of the instruction set gives special emphasis to support of structured, high-level
languages and to ease of assembly language programming. Each instruction, with a few
exceptions, operates on bytes, words, and long words, and most instructions can use any
of the 14 addressing modes. Over 1000 useful instructions are provided by combining
instruction types, data types, and addressing modes. These instructions include signed
and unsigned multiply and divide, "quick" arithmetic operations, BCD arithmetic, and
expanded operations (through traps). Additionally, the highly symmetric, proprietary
microcoded structure of the instruction set provides a sound, flexible base for the future.

The EC000 core instruction set is listed in Table 4-4. For detailed information on the
EC000 core instruction set, refer to M68000PM/AD, M68000 Programmer's Reference
Manual.

4-8 MC68306 USER'S MANUAL MOTOROLA

Table 4-4. EC000 Core Instruction Set Summary

Opcode Operation Syntax

ABCD BCD Source + BCD Destination + X ˘ Destination ABCD Dy,Dx
ABCD –(Ay),–(Ax)

ADD Source + Destination ˘ Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination ˘ Destination ADDA <ea>,An

ADDI Immediate Data + Destination ˘ Destination ADDI #<data>,<ea>

ADDQ Immediate Data + Destination ˘ Destination ADDQ #<data>,<ea>

ADDX Source + Destination + X ˘ Destination ADDX Dy,Dx
ADDX –(Ay),–(Ax)

AND Source Λ Destination ˘ Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data Λ Destination ˘ Destination ANDI #<data>,<ea>

ANDI to CCR Source Λ CCR ˘ CCR ANDI #<data>,CCR

ANDI to SR If supervisor state
then Source Λ SR ˘ SR

else TRAP

ANDI #<data>,SR

ASL, ASR Destination Shifted by count ˘ Destination ASd Dx,Dy1

ASd #<data>,Dy1

ASd <ea>1

Bcc If condition true
then PC + dn ˘ PC

Bcc <label>

BCHG ~(bit number of Destination) ˘ Z;
~(bit number of Destination) ˘ (bit number) of
Destination

BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR ~(bit number of Destination) ˘ Z;
0 ˘ bit number of Destination

BCLR Dn,<ea>
BCLR #<data>,<ea>

BRA PC + dn ˘ PC BRA <label>

BSET ~(bit number of Destination) ˘ Z;
1 ˘ bit number of Destination

BSET Dn,<ea>
BSET #<data>,<ea>

BSR SP – 4 ˘ SP; PC ˘ (SP); PC + dn ˘ PC BSR <label>

BTST –(bit number of Destination) ˘ Z; BTST Dn,<ea>
BTST #<data>,<ea>

CHK If Dn < 0 or Dn > Source
then TRAP

CHK <ea>,Dn

CLR 0 ˘ Destination CLR <ea>

CMP Destination – Source ˘ cc CMP <ea>,Dn

CMPA Destination – Source CMPA <ea>,An

CMPI Destination – Immediate Data CMPI #<data>,<ea>

MOTOROLA MC68306 USER'S MANUAL 4-9

Table 4-4. EC000 Core Instruction Set Summary (Continued)

Opcode Operation Syntax

CMPM Destination – Source ˘ cc CMPM (Ay)+,(Ax)+

DBcc If condition false
then (Dn–1 ˘ Dn;

If Dn ≠ –1
then PC + dn ˘ PC)

DBcc Dn,<label>

DIVS Destination ÷ Source ˘ Destination DIVS.W <ea>,Dn 32 ÷ 16 ˘ 16r:16q
DIVS.L <ea>,Dq 32 ÷ 32 ˘ 32q
DIVS.L <ea>,Dr:Dq 64 ÷ 32 ˘ 32r:32q

DIVU Destination ÷ Source ˘ Destination DIVU.W <ea>,Dn 32 ÷ 16 ˘ 16r:16q
DIVU.L <ea>,Dq 32 ÷ 32 ˘ 32q
DIVU.L <ea>,Dr:Dq 64 ÷ 32 ˘ 32r:32q

EOR Source ⊕ Destination ˘ Destination EOR Dn,<ea>

EORI Immediate Data ⊕ Destination ˘ Destination EORI #<data>,<ea>

EORI to CCR Source ⊕ CCR ˘ CCR EORI #<data>,CCR

EORI to SR If supervisor state
then Source ⊕ SR ˘ SR

else TRAP

EORI #<data>,SR

EXG Rx ¯ ˘ Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT Destination Sign – Extended ˘ Destination EXT.W Dn extend byte to word
EXT.L Dn extend word to long word

JMP Destination Address ˘ PC JMP <ea>

JSR SP – 4 ˘ SP; PC ˘ (SP)
Destination Address ˘ PC

JSR <ea>

LEA <ea> ˘ An LEA <ea>,An

LINK SP – 4 ˘ SP; An ˘ (SP)
SP ˘ An, SP+d ˘ SP

LINK An,dn

LSL, LSR Destination Shifted by count ˘ Destination LSd Dx,Dy1

LSd #<data>,Dy1

LSd <ea>1

MOVE Source ˘ Destination MOVE <ea>,<ea>

MOVE from SR If supervisor state
then SR ˘ Destination

else TRAP

MOVE SR,<ea>

MOVE to CCR Source ˘ CCR MOVE <ea>,CCR

MOVE to SR If supervisor state
then Source ˘ SR

else TRAP

MOVE <ea>,SR

MOVE USP If supervisor state
then USP ˘ An or An ˘ USP

else TRAP

MOVE USP,An
MOVE An,USP

4-10 MC68306 USER'S MANUAL MOTOROLA

Table 4-4. EC000 Core Instruction Set Summary (Continued)

Opcode Operation Syntax

MOVEA Source ˘ Destination MOVEA <ea>,An

MOVEM Registers ˘ Destination
Source ˘ Registers

MOVEM <list>,<ea>2

MOVEM <ea>,<list>2

MOVEP Source ˘ Destination MOVEP Dx,(dn,Ay)
MOVEP (dn,Ay),Dx

MOVEQ Immediate Data ˘ Destination MOVEQ #<data>,Dn

MULS Source × Destination ˘ Destination MULS.W <ea>,Dn 16 × 16 ˘ 32
MULS.L <ea>,Dl 32 × 32 ˘ 32
MULS.L <ea>,Dh–Dl 32 × 32 ˘ 64

MULU Source × Destination ˘ Destination MULU.W <ea>,Dn 16 × 16 ˘ 32
MULU.L <ea>,Dl 32 × 32 ˘ 32
MULU.L <ea>,Dh–Dl 32 × 32 ˘ 64

NBCD 0 – (Destination10) – X ˘ Destination NBCD <ea>

NEG 0 – (Destination) ˘ Destination NEG <ea>

NEGX 0 – (Destination) – X ˘ Destination NEGX <ea>

NOP None NOP

NOT ~ Destination ˘ Destination NOT <ea>

OR Source V Destination ˘ Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination ˘ Destination ORI #<data>,<ea>

ORI to CCR Source V CCR ˘ CCR ORI #<data>,CCR

ORI to SR If supervisor state
then Source V SR ˘ SR

else TRAP

ORI #<data>,SR

PEA SP – 4 ˘ SP; <ea> ˘ (SP) PEA <ea>

RESET If supervisor state
then Assert RSTO Line

else TRAP

RESET

ROL, ROR Destination Rotated by count ˘ Destination ROd Rx,Dy1

ROd #<data>,Dy1

ROXL, ROXR Destination Rotated with X by count ˘ Destination ROXd Dx,Dy1

ROXd #<data>,Dy1

ROXd <ea>1

RTE If supervisor state
then (SP) ˘ SR; SP + 2 ˘ SP; (SP) ˘ PC;
SP + 4 ˘ SP; restore state and deallocate
stack according to (SP)

else TRAP

RTE

RTR (SP) ˘ CCR; SP + 2 ˘ SP;
(SP) ˘ PC; SP + 4 ˘ SP

RTR

RTS (SP) ˘ PC; SP + 4 ˘ SP RTS

MOTOROLA MC68306 USER'S MANUAL 4-11

Table 4-4. EC000 Core Instruction Set Summary (Concluded)

Opcode Operation Syntax

SBCD Destination10 – Source10 – X ˘ Destination SBCD Dx,Dy
SBCD –(Ax),–(Ay)

Scc If condition true
then 1s ˘ Destination

else 0s ˘ Destination

Scc <ea>

STOP If supervisor state
then Immediate Data ˘ SR; STOP

else TRAP

STOP #<data>

SUB Destination – Source ˘ Destination SUB <ea>,Dn
SUB Dn,<ea>

SUBA Destination – Source ˘ Destination SUBA <ea>,An

SUBI Destination – Immediate Data ˘ Destination SUBI #<data>,<ea>

SUBQ Destination – Immediate Data ˘ Destination SUBQ #<data>,<ea>

SUBX Destination – Source – X ˘ Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register 31–16 ¯ ˘ Register 15–0 SWAP Dn

TAS Destination Tested ˘ Condition Codes;
1 ˘ bit 7 of Destination

TAS <ea>

TRAP SSP – 2 ˘ SSP; Format ÷ Offset ˘ (SSP);
SSP – 4 ˘ SSP; PC ˘ (SSP); SSP – 2 ˘ SSP;
SR ˘ (SSP); Vector Address ˘ PC

TRAP #<vector>

TRAPV If V
then TRAP

TRAPV

TST Destination Tested ˘ Condition Codes TST <ea>

UNLK An ˘ SP; (SP) ˘ An; SP + 4 ˘ SP UNLK An

NOTES:
1. d is direction, left or right.
2. List refers to register.

4-12 MC68306 USER'S MANUAL MOTOROLA

4.5 EXCEPTION PROCESSING

This section describes the processing for each type of exception, exception priorities, the
return from an exception, and bus fault recovery. This section also describes the formats
of the exception stack frames.

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include the execution of the routine itself. Exception processing is the
transition from the normal processing of a program to the processing required for any
special internal or external condition that preempts normal processing. External conditions
that cause exceptions are interrupts from external devices, bus errors, and resets. Internal
conditions that cause exceptions are instructions, address errors, and tracing. For
example, the TRAP, TRAPV, CHK, RTE, and DIV instructions can generate exceptions as
part of their normal execution. In addition, illegal instructions and privilege violations cause
exceptions. Exception processing uses an exception vector table and an exception stack
frame.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not
guaranteed to occur in the order in which they are described in this section. Figure 4-3
illustrates a general flowchart for the steps taken by the processor during exception
processing.

During the first step, the processor makes an internal copy of the status register (SR).
Then the processor changes to the supervisor mode by setting the S-bit and inhibits
tracing of the exception handler by clearing the trace enable (T) bit in the SR. For the
reset and interrupt exceptions, the processor also updates the interrupt priority mask in
the SR.

During the second step, the processor determines the vector number for the exception.
For interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the
vector number. For all other exceptions, internal logic provides the vector number. This
vector number is used in the last step to calculate the address of the exception vector.
Throughout this section, vector numbers are given in decimal notation.

MOTOROLA MC68306 USER'S MANUAL 4-13

EXIT

FETCH VECTOR
NUMBER

(DOUBLE BUS FAULT)

EXECUTE EXCEPTION
HANDLER

EXIT

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

SAVE CONTENTS
TO STACK FRAME

(SEE NOTE)

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE
BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

OTHERWISE

SAVE INTERNAL
COPY OF SR

S 1
T 0

(SEE NOTE)

NOTE: These blocks vary for reset and interrupt exceptions.

➧

EC28

➧

Figure 4-3. General Exception Processing Flowchart

4-14 MC68306 USER'S MANUAL MOTOROLA

The third step is to save the current processor contents for all exceptions other than reset
exception, which does not stack information. The processor creates an exception stack
frame on the active supervisor stack and fills it with information appropriate for the type of
exception. Other information can also be stacked, depending on which exception is being
processed and the state of the processor prior to the exception. Figure 4-4 illustrates the
general form of the exception stack frame.

EVEN BYTE ODD BYTE

 PROGRAM COUNTER LOW

 PROGRAM COUNTER HIGH

SSP

7 0 7 0
015

STATUS REGISTER

HIGHER
ADDRESS

Figure 4-4. General Form of Exception Stack Frame

The last step initiates execution of the exception handler. The new program counter value
is fetched from the exception vector. The processor then resumes instruction execution.
The instruction at the address in the exception vector is fetched, and normal instruction
decoding and execution is started.

4.5.1 Exception Vectors

An exception vector is a memory location from which the processor fetches the address of
a routine to handle an exception. Each exception type requires a handler routine and a
unique vector. All exception vectors are two words in length (see Figure 4-5), except for
the reset vector, which is four words long. All exception vectors reside in the supervisor
data space, except for the reset vector, which is in the supervisor program space. A vector
number is an 8-bit number that is multiplied by four to obtain the offset of an exception
vector. Vector numbers are generated internally or externally, depending on the cause of
the exception. For interrupts, during the interrupt acknowledge bus cycle, a peripheral
provides an 8-bit vector number (see Figure 4-6) to the processor on data bus lines D7–
D0.

The processor forms the vector offset by left-shifting the vector number two bit positions
and zero-filling the upper-order bits to obtain a 32-bit long-word vector offset. In the
EC000 core this offset is used as the absolute address to obtain the exception vector
itself, which is illustrated in Figure 4-6.

MOTOROLA MC68306 USER'S MANUAL 4-15

NEW PROGRAM COUNTER (HIGH)

NEW PROGRAM COUNTER (LOW)

A1=0

A1=1

WORD 0

WORD 1

EVEN BYTE (A0=0) ODD BYTE (A0=0)

EC30

Figure 4-5. Exception Vector Format

A31 A0A10

ALL ZEROES v7 v6 v5 v4 v3 v2 v1 v0 0 0

Figure 4-6. Address Translated from 8-Bit Vector Number

The actual address on the address bus is truncated to the number of address bits
available on the bus of the particular implementation of the M68000 architecture. In the
EC000 core, this is 24 address bits. The memory map for exception vectors is shown in
Table 4-5.

The vector table is 512 words long (1024 bytes), starting at address 0 (decimal) and
proceeding through address 1023 (decimal). The vector table provides 255 unique
vectors, some of which are reserved for trap and other system function vectors. Of the
255, 192 are reserved for user interrupt vectors. However, the first 64 entries are not
protected, so user interrupt vectors may overlap at the discretion of the systems designer.

4-16 MC68306 USER'S MANUAL MOTOROLA

Table 4-5. Exception Vector Assignments

Vector
Number(s)

Vector Offset
(Hex) Space6 Assignment

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer2

Reset Initial Program Counter2

Bus Error
Address Error

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Integer Divide by Zero
CHK Instruction
TRAPV Instruction

8
9
10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator (Unimplemented A-Line Opcode)
Line 1111 Emulator (Unimplemented F-Line Opcode)

121

131

14
15

030
034
038
03C

—
—
SD
SD

(Unassigned, Reserved)
(Unassigned, Reserved)
Format Error5

Uninitialized Interrupt Vector

16–231 040–05C — (Unassigned, Reserved)

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt3

Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080–0BC SD TRAP #0–15 Instruction Vectors4

48–631 0C0–0FC — (Unassigned, Reserved)

64–255 100–3FC SD User Defined Vectors

NOTES:
1. Vector numbers 12, 13, 16–23, and 48–63 are reserved for future enhancements by Motorola.

No user peripheral devices should be assigned these numbers.
2. Reset vector (0) requires four words, unlike the other vectors which only require two words,

and is located in the supervisor program space.
3. The spurious interrupt vector is taken when there is a bus error indication during interrupt processing.
4. TRAP #n uses vector number 32+ n.
5. Reserved.
6. SP denotes supervisor program space, and SD denotes supervisor data space.

4.6 PROCESSING OF SPECIFIC EXCEPTIONS

The exceptions are classified according to their sources, and each type is processed
differently. The following paragraphs describe in detail the types of exceptions and the
processing of each type.

MOTOROLA MC68306 USER'S MANUAL 4-17

4.6.1 Reset Exception

The reset exception corresponds to the highest exception level. The processing of the
reset exception is performed for system initiation and recovery from catastrophic failure.
Any processing in progress at the time of the reset is aborted and cannot be recovered.
The processor is forced into the supervisor state, and the trace state is forced off. The
interrupt priority mask is set at level 7. The vector number is internally generated to
reference the reset exception vector at location 0 in the supervisor program space.
Because no assumptions can be made about the validity of register contents, in particular
the SSP, neither the program counter nor the status register are saved. The address in
the first two words of the reset exception vector is fetched as the initial SSP, and the
address in the last two words of the reset exception vector is fetched as the initial program
counter. Finally, instruction execution is started at the address in the program counter.
The initial program counter should point to the power-up/restart code.

The RESET instruction does not cause a reset exception; it asserts the RESET signal to
reset external devices, which allows the software to reset the system to a known state and
continue processing with the next instruction.

4.6.2 Interrupt Exceptions

Seven levels of interrupt priorities are provided, numbered from 1–7. Level 7 has the
highest priority. Devices can be chained externally within interrupt priority levels, allowing
an unlimited number of peripheral devices to interrupt the processor. The status register
contains a 3-bit mask indicating the current interrupt priority, and interrupts are inhibited
for all priority levels less than or equal to the current priority. Priority level 7 is a special
case. Level 7 interrupts cannot be inhibited by the interrupt priority mask, thus providing a
non-maskable interrupt capability. An interrupt is generated each time the interrupt
request level changes from some lower level to level 7. A level 7 interrupt may still be
caused by the level comparison if the request level is a 7 and the processor priority is set
to a lower level by an instruction.

An interrupt request is made to the processor by encoding the interrupt request level on
the IPL2–IPL0; a zero indicates no interrupt request. Interrupt requests arriving at the
processor do not force immediate exception processing, but the requests are made
pending. Pending interrupts are detected between instruction executions. If the priority of
the pending interrupt is lower than or equal to the current processor priority, execution
continues with the next instruction, and the interrupt exception processing is postponed
until the priority of the pending interrupt becomes greater than the current processor
priority.

If the priority of the pending interrupt is greater than the current processor priority, the
exception processing sequence is started. A copy of the status register is saved; the
privilege mode is set to supervisor mode; tracing is suppressed; and the processor priority
level is set to the level of the interrupt being acknowledged. The processor fetches the
vector number from the interrupting device by executing an interrupt acknowledge cycle,
which displays the level number of the interrupt being acknowledged on the address bus.
If external logic requests an automatic vector, the processor internally generates a vector
number corresponding to the interrupt level number. If external logic indicates a bus error,

4-18 MC68306 USER'S MANUAL MOTOROLA

the interrupt is considered spurious, and the generated vector number references the
spurious interrupt vector. The processor then proceeds with the usual exception
processing. The saved value of the program counter is the address of the instruction that
would have been executed had the interrupt not been taken. The appropriate interrupt
vector is fetched and loaded into the program counter, and normal instruction execution
commences in the interrupt handling routine.

4.6.3 Uninitialized Interrupt Exception

An interrupting device provides a EC000 core interrupt vector number and asserts data
transfer acknowledge (DTACK) or bus error (BERR) during an interrupt acknowledge
cycle by the EC000 core. If the vector register has not been initialized, the responding
M68000 family peripheral provides vector number 15, the uninitialized interrupt vector.
This response conforms to a uniform way to recover from a programming error.

4.6.4 Spurious Interrupt Exception

During the interrupt acknowledge cycle, if no device responds by asserting DTACK, BERR

should be asserted to terminate the vector acquisition. The processor separates the
processing of this error from bus error by forming a short format exception stack and
fetching the spurious interrupt vector instead of the bus error vector. The processor then
proceeds with the usual exception processing.

4.6.5 Instruction Traps

Traps are exceptions caused by instructions; they occur when a processor recognizes an
abnormal condition during instruction execution or when an instruction is executed that
normally traps during execution.

Exception processing for traps is straightforward. The status register is copied; the
supervisor mode is entered; and tracing is turned off. The vector number is internally
generated; for the TRAP instruction, part of the vector number comes from the instruction
itself. The program counter, and the copy of the status register are saved on the
supervisor stack. The saved value of the program counter is the address of the instruction
following the instruction that generated the trap. Finally, instruction execution commences
at the address in the exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction always
forces an exception and is useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user program detects a run-time
error, which may be an arithmetic overflow or a subscript out of bounds. A signed divide
(DIVS) or unsigned divide (DIVU) instruction forces an exception if a division operation is
attempted with a divisor of zero.

4.6.6 Illegal and Unimplemented Instructions

Illegal instruction is the term used to refer to any of the word bit patterns that do not match
the bit pattern of the first word of a legal processor instruction. If such an instruction is
fetched, an illegal instruction exception occurs. Motorola reserves the right to define

MOTOROLA MC68306 USER'S MANUAL 4-19

instructions using the opcodes of any of the illegal instructions. Three bit patterns always
force an illegal instruction trap on all M68000 family-compatible microprocessors. The
patterns are: $4AFA, $4AFB, and $4AFC. Two of the patterns, $4AFA and $4AFB, are
reserved for Motorola system products. The third pattern, $4AFC, is reserved for customer
use (as the take illegal instruction trap (ILLEGAL) instruction).

Word patterns with bits 15–12 equaling 1010 or 1111 are distinguished as unimplemented
instructions, and separate exception vectors are assigned to these patterns to permit
efficient emulation. These separate vectors allow the operating system to emulate
unimplemented instructions in software.

Exception processing for illegal instructions is similar to that for traps. After the instruction
is fetched and decoding is attempted, the processor determines that execution of an illegal
instruction is being attempted and starts exception processing. The exception stack frame
is then pushed on the supervisor stack, and the illegal instruction vector is fetched.

4.6.7 Privilege Violations

To provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user mode causes an exception. The privileged
instructions are as follows:

AND Immediate to SR MOVE USP
EOR Immediate to SR OR Immediate to SR
MOVE to SR RESET
MOVE from SR RTE
MOVEC STOP
MOVES

Exception processing for privilege violations is nearly identical to that for illegal
instructions. After the instruction is fetched and decoded and the processor determines
that a privilege violation is being attempted, the processor starts exception processing.
The status register is copied; the supervisor mode is entered; and tracing is turned off.
The vector number is generated to reference the privilege violation vector, and the current
program counter and the copy of the status register are saved on the supervisor stack.
The saved value of the program counter is the address of the first word of the instruction
causing the privilege violation. Finally, instruction execution commences at the address in
the privilege violation exception vector.

4.6.8 Tracing

To aid in program development, the EC000 core includes a facility to allow tracing
following each instruction. When tracing is enabled, an exception is forced after each
instruction is executed. Thus, a debugging program can monitor the execution of the
program under test.

The trace facility is controlled by the T-bit in the supervisor portion of the status register. If
the T-bit is cleared (off), tracing is disabled and instruction execution proceeds from
instruction to instruction as normal. If the T-bit is set (on) at the beginning of the execution
of an instruction, a trace exception is generated after the instruction is completed. If the

4-20 MC68306 USER'S MANUAL MOTOROLA

instruction is not executed because an interrupt is taken or because the instruction is
illegal or privileged, the trace exception does not occur. The trace exception also does not
occur if the instruction is aborted by a reset, bus error, or address error exception. If the
instruction is executed and an interrupt is pending on completion, the trace exception is
processed before the interrupt exception. During the execution of the instruction, if an
exception is forced by that instruction, the exception processing for the instruction
exception occurs before that of the trace exception.

As an extreme illustration of these rules, consider the arrival of an interrupt during the
execution of a TRAP instruction while tracing is enabled. First, the trap exception is
processed, then the trace exception, and finally the interrupt exception. Instruction
execution resumes in the interrupt handler routine.

After the execution of the instruction is complete and before the start of the next
instruction, exception processing for a trace begins. A copy is made of the status register.
The transition to supervisor mode is made, and the T-bit of the status register is turned off,
disabling further tracing. The vector number is generated to reference the trace exception
vector, and the current program counter and the copy of the status register are saved on
the supervisor stack. The saved value of the program counter is the address of the next
instruction. Instruction execution commences at the address contained in the trace
exception vector.

4.6.9 Bus Error

When a bus error exception occurs, the current bus cycle is aborted. The current
processor activity, whether instruction or exception processing, is terminated, and the
processor immediately begins exception processing.

Exception processing for a bus error follows the usual sequence of steps. The status
register is copied, the supervisor mode is entered, and tracing is turned off. The vector
number is generated to refer to the bus error vector. Since the processor is fetching the
instruction or an operand when the error occurs, the context of the processor is more
detailed. To save more of this context, additional information is saved on the supervisor
stack. The program counter and the copy of the status register are saved. The value
saved for the program counter is advanced 2–10 bytes beyond the address of the first
word of the instruction that made the reference causing the bus error. If the bus error
occurred during the fetch of the next instruction, the saved program counter has a value in
the vicinity of the current instruction, even if the current instruction is a branch, a jump, or
a return instruction. In addition to the usual information, the processor saves its internal
copy of the first word of the instruction being processed and the address being accessed
by the aborted bus cycle. Specific information about the access is also saved: type of
access (read or write), processor activity (processing an instruction), and function code
outputs when the bus error occurred. The processor is processing an instruction if it is in
the normal state or processing a group 2 exception; the processor is not processing an
instruction if it is processing a group 0 or a group 1 exception. Figure 4-7 illustrates how
this information is organized on the supervisor stack. If a bus error occurs during the last
step of exception processing, while either reading the exception vector or fetching the
instruction, the value of the program counter is the address of the exception vector.
Although this information is not generally sufficient to effect full recovery from the bus

MOTOROLA MC68306 USER'S MANUAL 4-21

error, it does allow software diagnosis. Finally, the processor commences instruction
processing at the address in the vector. It is the responsibility of the error handler routine
to clean up the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, an address error, or
a reset, the processor halts and all processing ceases. This halt simplifies the detection of
a catastrophic system failure, since the processor removes itself from the system to
protect memory contents from erroneous accesses. Only an external reset operation can
restart a halted processor.

LOWER
ADDRESS

015

I/N FUNCTION CODE

HIGH

LOW

2345

R/W

STATUS REGISTER
INSTRUCTION REGISTER

LOW
HIGH

ACCESS ADDRESS

PROGRAM COUNTER

R/W (READ/WRITE): WRITE = 0, READ = 1. I/N
(INSTRUCTION/NOT): INSTRUCTION = 0, NOT = 1.

EC33

Figure 4-7. Supervisor Stack Order for Bus or Address Error Exception

4.6.10 Address Error

An address error exception occurs when the processor attempts to access a word or long-
word operand or an instruction at an odd address. An address error is similar to an
internally generated bus error. The bus cycle is aborted, and the processor ceases current
processing and begins exception processing. The exception processing sequence is the
same as that for a bus error, including the information to be stacked, except that the
vector number refers to the address error vector. Likewise, if an address error occurs
during the exception processing for a bus error, address error, or reset, the processor is
halted.

4.6.11 Multiple Exceptions

When multiple exceptions occur simultaneously, they are processed according to a fixed
priority. Table 4-6 lists the exceptions, grouped by characteristics, with group 0 as the
highest priority. Within group 0, reset has highest priority, followed by address error and
then bus error. Within group 1, trace has priority over external interrupts, which in turn
takes priority over illegal instruction and privilege violation. Since only one instruction can
be executed at a time, no priority relationship applies within group 2.

4-22 MC68306 USER'S MANUAL MOTOROLA

Table 4-6. Exception Grouping and Priority

Group Exception Processing

0 Reset, Address
Error, and Bus
Error

Exception processing begins within two clock cycles.

1 Trace, Interrupt,
Illegal, and
Privilege

Exception processing begins before the next instruction.

2 TRAP, TRAPV,
CHK, and DIV

Exception processing is started by normal instruction execution.

The priority relationship between two exceptions determines which is taken, or taken first,
if the conditions for both arise simultaneously. Therefore, if a bus error occurs during a
TRAP instruction, the bus error takes precedence, and the TRAP instruction processing is
aborted. In another example, if an interrupt request occurs during the execution of an
instruction while the T-bit in the status register (SR) is asserted, the trace exception has
priority and is processed first. Before instruction execution resumes, however, the interrupt
exception is also processed, and instruction processing finally commences in the interrupt
handler routine. As a general rule, the lower the priority of an exception, the sooner the
handler routine for that exception executes. This rule does not apply to the reset
exception; its handler is executed first even though it has the highest priority, because the
reset operation clears all other exceptions.

MOTOROLA MC68306 USER'S MANUAL 5-1

SECTION 5
SYSTEM OPERATION

This section contains detailed descriptions and programming information for the system
functions and registers outside the EC000 core in the MC68306.

NOTE

None of the MC68306 internal resources are accessible by an
external bus master. The following address map and operation
descriptions apply only to accesses by the internal EC000
core.

The effect of the RESET instruction and external assertion of the hardware RESET signal
on MC68306 components is:

External RESET RESET Instruction

EC000 Core Yes No

Serial Module Yes Yes

MC68306 Registers See Individual Descriptions No

5.1 MC68306 ADDRESS SPACE

The full 32-bit address capability of the MC68306 (corresponding to a 4-Gbyte address
space) is decoded internally. A small portion of this address space is devoted to internal
resources such as the serial module, configuration registers, and parallel ports. Table 5-1
is a memory map of the MC68306.

5-2 MC68306 USER'S MANUAL MOTOROLA

Table 5-1. MC68306 Memory Map

FC A(31–0) D(15–8) (EVEN ADDRESS) D(7–0) (ODD ADDRESS)

5 FFFFFFFE/F SYSTEM TIMER VECTOR

5 FFFFFFFC/D REFRESH RATE BUS TIMEOUT PERIOD

5 FFFFFFFA INTERRUPT CONTROL REGISTER

5 FFFFFFF8 INTERRUPT STATUS REGISTER

5 FFFFFFF6 RESERVED2

5 FFFFFFF4/5 PORT A PIN ASSIGNMENT PORT B PIN ASSIGNMENT

5 FFFFFFF2/3 PORT A DATA DIRECTION PORT B DATA DIRECTION

5 FFFFFFF0/1 PORT A DATA PORT B DATA

5 FFFFFFEF–
FFFFFFE8

RESERVED2

5 FFFFFFE6
FFFFFFE4

DRAM BANK 1 CONFIGURATION (LOW)
DRAM BANK 1 CONFIGURATION (HIGH)

5 FFFFFFE2
FFFFFFE0

DRAM BANK 0 CONFIGURATION (LOW)
DRAM BANK 0 CONFIGURATION (HIGH)

5 FFFFFFDE
FFFFFFDC

CHIP SELECT 7 CONFIGURATION (LOW)
CHIP SELECT 7 CONFIGURATION (HIGH)

5 FFFFFFDA
FFFFFFD8

CHIP SELECT 6 CONFIGURATION (LOW)
CHIP SELECT 6 CONFIGURATION (HIGH)

5 FFFFFFD6
FFFFFFD4

CHIP SELECT 5 CONFIGURATION (LOW)
CHIP SELECT 5 CONFIGURATION (HIGH)

5 FFFFFFD2
FFFFFFD0

CHIP SELECT 4 CONFIGURATION (LOW)
CHIP SELECT 4 CONFIGURATION (HIGH)

5 FFFFFFCE
FFFFFFCC

CHIP SELECT 3 CONFIGURATION (LOW)
CHIP SELECT 3 CONFIGURATION (HIGH)

5 FFFFFFCA
FFFFFFC8

CHIP SELECT 2 CONFIGURATION (LOW)
CHIP SELECT 2 CONFIGURATION (HIGH)

5 FFFFFFC6
FFFFFFC4

CHIP SELECT 1 CONFIGURATION (LOW)
CHIP SELECT 1 CONFIGURATION (HIGH)

5 FFFFFFC2
FFFFFFC0

CHIP SELECT 0 CONFIGURATION (LOW)
CHIP SELECT 0 CONFIGURATION (HIGH)

5 FFFFFFBF–
FFFFF800

RESERVED3

5 FFFFF7FF–
FFFFF7E0

RESERVED2 SERIAL MODULE

5 FFFFF7DF–
FFFFF000

RESERVED4

1, 2, 6 FFFFFFFF–
FFFFF000

AVAILABLE FOR CHIP SELECT/DRAM

1, 2, 5, 6 FFFFEFFF–
00000000

AVAILABLE FOR CHIP SELECT/DRAM

7 – INTERRUPT ACKNOWLEDGE: VECTOR SUPPLIED ON D7–D0

1. A(31–24) are copied from A23 (sign-extended) in 16 Mbyte emulation mode.

2. Write data ignored, read data indeterminate.

3. Duplicate of FFFFFFC0–FFFFFFFF.

4. Duplicate of FFFF7FE0–FFFF7FFF

MOTOROLA MC68306 USER'S MANUAL 5-3

5.2 REGISTER DESCRIPTION

The following paragraphs describe the registers in the MC68306. The address of the
register is listed above the register. The numbers in the first row are the bit positions of
each bit in the register. The second row is the bit mnemonic. The reset value for each bit
is listed beneath the bit mnemonic. Where the reset value is U, the value is indeterminate
after power-up, and not affected by reset.

5.2.1 System Register

The system register controls system functions. The value of the AMODE bit after reset is
the value of the AMODE pin latched at reset.

FFFFFFFE

15 14 13 12 11 10 9 8

BTERR BTEN 0 AMOD
E

0 DUIPL
2

DUIPL
1

DUIPL
0

RESET
:
0

0 0 AMOD
E

0 1 0 0

SUPERVISOR ONLY

BTERR—Bus Timeout Error
This bit is read-only, and is cleared when read. Writes to this bit are ignored.

0 = No bus timeout bus error.
1 = Bus timeout bus error occurred.

BTEN—Bus Timeout Enable
This bit is used to enable the bus timeout timer.

0 = Bus timeout timer is disabled.
1 = Bus timeout timer is enabled.

AMODE—Address Mode
This bit selects the function of the multiplexed address and chip select pins. The
address mode pin is latched at the end of reset, so the value must be valid and stable at
this time. Writes to this bit are ignored.

0 = Address lines selected.
1 = Chip select lines selected.

5-4 MC68306 USER'S MANUAL MOTOROLA

DUIPL2–0—DUART Interrupt Priority Level
This bit selects the interrupt priority level for the serial module.

000 = Reserved
001 = Interrupt priority level 1
010 = Interrupt priority level 2
011 = Interrupt priority level 3
100 = Interrupt priority level 4
101 = Interrupt priority level 5
110 = Interrupt priority level 6
111 = Interrupt priority level 7

5.2.2 Timer Vector Register
FFFFFFFF

7 6 5 4 3 2 1 0

TVEC
7

TVEC
6

TVEC
5

TVEC
4

TVEC
3

TVEC
2

TVEC
1

TVEC
0

RESE
T:
0

0 0 0 1 1 1 1

SUPERVISOR ONLY

TVEC7–0—Timer Vector
The value set in this field supplies the vector for the DUART timer interrupt handler.

5.2.3 Bus Timeout Period Register
FFFFFFFC

7 6 5 4 3 2 1 0

BT7 BT6 BT5 BT4 BT3 BT2 BT1 BT0

RESE
T:
U

U U U U U U U

SUPERVISOR ONLY

A programmable-period timer can generate a bus error to terminate any bus cycle after 16
to 4096 wait states, programmable in 16-wait state increments. The bus timeout timer is
enabled by the BTEN bit in the system register.

The bus timeout timer restarts between the read and write portions of a TAS indivisible
cycle.

BT7–0—Bus Timeout Period
The value set in this field supplies the bus timeout timer period. The bus timeout timer
period can be calculated from the equation:
Period = (16 × (register value +1)) × EXTAL

MOTOROLA MC68306 USER'S MANUAL 5-5

Where:

EXTAL is the crystal period in nanoseconds and period is in nanoseconds.

5.2.4 Interrupt Registers

Up to seven prioritized external interrupts can be supported by programming the following
registers. More interrupt sources can be supported by external daisy-chaining. The
interrupt inputs are internally synchronized. Edge-triggered interrupts are not supported.

Each interrupt can be either active-high or active-low. The active level is self-programmed
during reset, with no software intervention. Every interrupt must be at its inactive level at
the end of reset. Each interrupt can be enabled or disabled by programming the
corresponding bit in the interrupt control register.

Each interrupt can be auto-vectored, by programming the interrupt control register. Auto-
vectored interrupt acknowledge cycles are zero wait states. If no active interrupt is present
at the level being acknowledged, the MC68306 automatically generates a spurious
interrupt vector, which is a zero wait state. Interrupt input synchronization is frozen during
an interrupt acknowledge cycle, so the acknowledge can safely be used to automatically
negate the interrupt.

5.2.4.1 INTERRUPT CONTROL REGISTER

FFFFFFFA/B

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IENT IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 — AVEC
7

AVEC6 AVEC5 AVEC4 AVEC3 AVEC
2

AVEC
1

RESE
T:
0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

SUPERVISOR ONLY

IENT—Timer Interrupt Enable
This bit enables the DUART timer interrupt.

0 = Interrupts disabled.
1 = Interrupts enabled.

IEN7–1—Interrupt Enable 7 through 1
These bits enable interrupt 7, 6, 5, 4, 3, 2, and 1.

0 = Interrupt disabled.
1 = Interrupt enabled.

AVEC7–1—Autovector Enable 7 through 1
These bits enable autovectoring for interrupts 7, 6, 5, 4, 3, 2, and 1.

0 = No autovector.

5-6 MC68306 USER'S MANUAL MOTOROLA

1 = Autovector.

5.2.4.2 INTERRUPT STATUS REGISTER. An enabled, active interrupt appears as a one
in the interrupt status register, regardless of the active voltage level programmed at reset.
This register is read-only, writes to this register are ignored.

FFFFFFF8/9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQT IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQD IX7 IX6 IX5 IX4 IX3 IX2 IX1

RESE
T:
0

0 0 0 0 0 0 0 0 IRQ7 PB7/IR
Q6

PB6/IR
Q5

IRQ4 PB5/IR
Q3

PB4/IR
Q2

IRQ1

SUPERVISOR ONLY

IRQT—DUART Timer Interrupt State
0 = No interrupt.
1 = Interrupt asserted.

IRQ7–1—Interrupt Request 7 through 1
These bits indicate interrupt status for the external interrupts 7, 6, 5, 4, 3, 2, and 1.

0 = No interrupt.
1 = Interrupt asserted.

IRQD—DUART Interrupt State
This bit indicates the DUART interrupt state.

0 = No DUART interrupt.
1 = DUART interrupt asserted

IX7–1—Reset (inactive) level of external interrupts 7 through 1.
0 = Active high interrupt pin.
1 = Active low interrupt pin.

5.2.5 I/O Port Registers

The following paragraphs describe the registers controlling the parallel ports. All port pins
are reset to input by a system reset, so pullup or pulldown resistors should be added
externally as needed. To enable a port A bit as an output, write a one to the appropriate
bit position of the port direction register. If a bit is programmed as an output, the data
written to the port data register appears in true form at the pin. The data read back from
the port pins register is the same level as appears at the pin. The data read from the port
data register is the last value written to the register, regardless of the level at the pin. The
port data register is not affected by any reset, so it should be initialized before enabling
any bits as outputs.

MOTOROLA MC68306 USER'S MANUAL 5-7

Port B pins can be individually programmed as either IRQ, IACK or parallel port signals.
To use any of the port B pins PB7–PB4 as interrupt request signals (IRQ6, IRQ5, IRQ3,
IRQ2) be sure the bit is programmed as an input. Interrupt enables are provided for each
interrupt level.

To use any of the port B pins PB3–PB0 as IACK6 , IACK5, IACK3, or IACK2, program the
port data bit and the autovector bit to zero.

To use any of the port B pins PB3–PB0 as port inputs, ensure that the autovector bit is
one.

Open-drain or open-source operation can be emulated by programming the appropriate
fixed data (e.g. 0 = open-drain) and toggling the direction control. PB7–PB4 pins can be
programmed as outputs even when enabled as interrupt inputs, allowing inputs to be
tested or emulated if the interrupt is open-drain or open-source. The active interrupt level
is the inverse of the IX register bit.

5.2.5.1 PORT PINS REGISTER

FFFFFFF4/5

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

RESE
T:

PA7
PA6 PA5 PA4 PA3 PA2 PA1 PA0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

SUPERVISOR ONLY

The port pin register bits are the data at the port pins, regardless of pin direction. The
port pins register is read-only, writes are ignored.

5.2.5.2 PORT DIRECTION REGISTER

FFFFFFF2/3

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PADIR
7

PADIR
6

PADIR
5

PADIR
4

PADIR
3

PADIR
2

PADIR
1

PADIR
0

PBDIR
7

PBDIR
6

PBDIR5 PBDIR4 PBDIR3 PBDIR2 PBDIR
1

PBDIR
0

RESE
T:
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SUPERVISOR ONLY

The port direction register bits determine the direction of data flow at the port pins.

PADIR7–0—Port A Direction Register Bit 7–0
This bit determines the direction of data flow at port A pins 7 through 0.

0 = Input.
1 = Output.

PBDIR7–0—Port B Direction Register Bit 7–0

5-8 MC68306 USER'S MANUAL MOTOROLA

This bit determines the direction of data flow at port B pins 7–0.
0 = Input.
1 = Output.

5.2.5.3 PORT DATA REGISTER. The port data register bits return the value as written,
regardless of the direction register and pin state. For pins configured as outputs, the
corresponding value in the port data register is driven externally.

FFFFFFF0/1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAD7 PAD6 PAD5 PAD4 PAD3 PAD2 PAD1 PAD0 PBD7 PBD6 PBD5 PBD4 PBD3 PBD2 PBD1 PBD0

RESE
T:
U

U U U U U U U U U U U U U U U

SUPERVISOR ONLY

PAD7–0—Port A Data Bit 7 through 0.

PBD7–0—Port B Data Bit 7 through 0.

5.2.6 Chip Selects

The chip-select outputs are all active-low decodes of the high fifteen internal address bits
(A31–A17), the three function code bits, and the read/write cycle type. The active duration
of any chip select is the period of the address strobe low and either a data strobe or
read/write low. Thus there are separate chip select pulses for the read and write portions
of a read-modify-write cycle.

The four mask bits (CSM3–CSM0) are decoded to an n-of-15 mask, where n is the binary
value of CSM3–CSM0. On every bus cycle, the n most significant address bits of the
range A31–A17 are compared, and the remaining less significant bits are ignored.

The fifteen address bits are first masked by each chip select mask, then compared with
each chip select base address (CSA31–CSA17). All CSAx bits not used in the comparison
must be zero. The function code is matched with the CSFC qualifiers, and the cycle type
is matched with the CSR/CSW qualifiers. If all three qualifiers are successful for any chip
select, the cycle is a hit.

If the cycle hits multiple chip selects, the lowest numbered chip select has priority. All chip
selects have priority over DRAM. After reset, CS0 responds to the entire 4 Gbyte address
space, except for the range dedicated to internal resources, i.e., CS0 responds to
00000000–FFFFEFFF. The other chip selects are not affected by any reset, and must be
explicitly programmed. This applies to all chip selects, whether used or not.

MOTOROLA MC68306 USER'S MANUAL 5-9

NOTE

Unused chip selects must be disabled to prevent interference
with other chip selects, DRAM, or externally decoded
resources.

There are three ways to disable a chip select, corresponding to the three match
conditions:

1. All CSFCx bits are zero

2. Both CSW/CSR are zero

3. Any unused CSAx bit is one.

Chip selects 7 through 4 are still matched even if running in address mode (AMODE = 0).
They can be disabled, or they can be used to provide automatic DTACK timing for
externally decoded resources.

If more decodes are necessary than are supplied on the MC68306, one of the existing
chip selects should be used (Figure 5-1) to enable the external decoding, since some
signals used to qualify the chip selects are not available externally.

The registers listed below allow the base address, range, and cycle duration of each chip
select to be independently programmed. The chip select configuration registers do not
support byte writes. The registers can be written as either 16-bit or 32-bit, but 32-bit
accesses are preferred. Any write access affects all 16 bits of the high half or low half
register. Only chip select 0 is affected by reset.

5.2.6.1 CHIP SELECT CONFIGURATION REGISTERS (HIGH HALF)

FFFFFFC0 (CS0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSA31 CSA3
0

CSA2
9

CSA2
8

CSA2
7

CSA2
6

CSA2
5

CSA2
4

CSA2
3

CSA22 CSA21 CSA20 CSA19 CSA18 CSA17 CSW

RESE
T:
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

SUPERVISOR ONLY

FFFFFFDC (CS7), FFFFFFD8 (CS6), FFFFFFD4 (CS5), FFFFFFD0 (CS4), FFFFFFCC (CS3), FFFFFFC8 (CS2),
FFFFFFC4 (CS1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSA31 CSA3
0

CSA2
9

CSA2
8

CSA2
7

CSA2
6

CSA2
5

CSA2
4

CSA2
3

CSA22 CSA21 CSA20 CSA19 CSA18 CSA17 CSW

RESE
T:
U

U U U U U U U U U U U U U U U

SUPERVISOR ONLY

CSA31–CSA17—Chip Select Address
This bit field selects the base address for each chip select.

5-10 MC68306 USER'S MANUAL MOTOROLA

CSW—Chip Select Write
This bit determines whether write cycles are permitted to chip select space. If read and
write cycles are both inhibited, chip select is inhibited.

0 = Write cycles are inhibited to chip select space
1 = Write cycles are permitted to chip select space

5.2.6.2 CHIP SELECT CONFIGURATION REGISTERS (LOW HALF)

FFFFFFC2 (CS0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSR CSFC
6

CSFC
5

— — CSFC
2

CSFC
1

— CSM3 CSM2 CSM1 CSM0 CSDT3 CSDT2 CSDT
1

CSDT
0

RESE
T:
0

1 1 1 1 1 1 1 0 0 0 0 1 1 1 0

SUPERVISOR ONLY

FFFFFFDE (CS7), FFFFFFDA (CS6), FFFFFFD6 (CS5), FFFFFFD2 (CS4), FFFFFFCE (CS3), FFFFFFCA (CS2),
FFFFFFC6 (CS1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSR CSFC
6

CSFC
5

— — CSFC
2

CSFC
1

— CSM3 CSM2 CSM1 CSM0 CSDT3 CSDT2 CSDT
1

CSDT
0

RESE
T:
U

U U U U U U U U U U U U U U U

SUPERVISOR ONLY

CSR—Chip Select Read
This bit determines whether read cycles are permitted to chip select space. If read and
write cycles are both inhibited, chip select is inhibited.

0 = Read cycles are inhibited to chip select space
1 = Read cycles are permitted to chip select space

CSFC 6, 5, 2, 1—Chip Select Function Code Enable
This bit determines which function code accesses are permitted to chip select space. If
all function code cycles are inhibited, chip select is inhibited.

0 = Function code ‘n’ cycles are inhibited to chip select space
1 = Function code ‘n’ cycles are permitted to chip select space

CSM3–0—Chip Select Address Match
This field determines which chip select bits must match address bits for chip select to
occur. CSA bits not included in match must be set to zero, or else this chip select is
inhibited.

0000 = A31–A17 ignored in chip select address match
0001 = A31 must match CSA31; A30–A17 ignored in chip select address match
0010 = A31–A30 must match CSA31–CSA30; A29–A17 ignored in chip select

address match

MOTOROLA MC68306 USER'S MANUAL 5-11

.........
1111 = A31–A17 must match CSA31–CSA17 in chip select address match

Table 5-2 shows the entire range of address bits that must match for a chip select to
occur.

Table 5-2. Chip Select Match Bits

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17

0000 x x x x x x x x x x x x x x x

0001 • x x x x x x x x x x x x x x

0010 • • x x x x x x x x x x x x x

0011 • • • x x x x x x x x x x x x

0100 • • • • x x x x x x x x x x x

0101 • • • • • x x x x x x x x x x

0110 • • • • • • x x x x x x x x x

0111 • • • • • • • x x x x x x x x

1000 • • • • • • • • x x x x x x x

1001 • • • • • • • • • x x x x x x

1010 • • • • • • • • • • x x x x x

1011 • • • • • • • • • • • x x x x

1100 • • • • • • • • • • • • x x x

1101 • • • • • • • • • • • • • x x

1110 • • • • • • • • • • • • • • x

1111 • • • • • • • • • • • • • • •

x = Address bit is a don’t care, CSA bit must be 0 to allow match.

• = Address bit must match CSA bit for chip select to occur.

CSDT3–0—Chip Select DTACK Wait State Selection
This field determines whether automatic DTACK is returned, and how many wait states
are inserted if automatic DTACK is enabled. When automatic DTACK is selected, the
write portion of a TAS indivisible cycle is the same length as a normal write cycle to the
same location. Any external DTACK generation circuit must recognize that AS remains
asserted throughout a read-write indivisible cycle, if it supports TAS.

0000 = Automatic DTACK, 0 wait states 1000 = Automatic DTACK, 8 wait states
0001 = Automatic DTACK, 1 wait state 1001 = Automatic DTACK, 9 wait states
0010 = Automatic DTACK, 2 wait states 1010 = Automatic DTACK, 10 wait states
0011 = Automatic DTACK, 3 wait states 1011 = Automatic DTACK, 11 wait states
0100 = Automatic DTACK, 4 wait states 1100 = Automatic DTACK, 12 wait states
0101 = Automatic DTACK, 5 wait states 1101 = Automatic DTACK, 13 wait states
0110 = Automatic DTACK, 6 wait states 1110 = Automatic DTACK, 14 wait states
0111 = Automatic DTACK, 7 wait states 1111 = No automatic DTACK, external

DTACK required

5-12 MC68306 USER'S MANUAL MOTOROLA

Figure 5-1 shows a method of expanding the number of chip selects in case more are
required for the application.

MC68306

74F138
ADDR

CS7

A0

A1

A2

E1

E3

E2

Q0

Q1

Q2

Q3

Q4

Q5

Q6

Q7

EXCS0 ($080XXX)

EXCS1 ($088XXX)

EXCS2 ($090XXX)

EXCS3 ($098XXX)

EXCS4 ($0A0XXX)

EXCS5 ($0A8XXX)

EXCS6 ($0B0XXX)

EXCS7 ($0B8XXX)

A15

A16

A17

A18

A19

CS0
CS1
CS2
CS3
CS4
CS5
CS6

AMODE

}

}

1 MBYTE ADDRESS
SPACE EACH

32 KBYTE ADDRESS
SPACE EACH

1

2

3

4

5

6

Figure 5-1. Chip Select Expansion

5.2.7 DRAM Control Registers

The DRAM address space decode mechanism is identical to the chip select mechanism.
Bank 0 has priority over bank 1, but all chip selects have priority over DRAM. The
MC68306 DRAM controller provides CAS-before-RAS refresh only. The refresh timer is a
programmable period counter that generates a refresh request every 16 to 4096 EXTAL
periods, programmable in 16 EXTAL period increments. Programming the refresh rate is
described in paragraph 5.2.7.1. When a refresh is pending, a refresh cycle is inserted at
the earliest availability of the RAS/CAS signals. Both banks and both bytes are refreshed
together.

The refresh timer is not affected by any reset, and refresh cycles will appear under reset.
The refresh timer is initialized by a write to the refresh rate register. When this register is
written, the first refresh occurs immediately, so the refresh rate should be programmed
after the DRAM configuration register DRDT bit. After power-up, the refresh rate register
value is random. If power consumption is critical, the refresh rate should be set as soon as
possible. In a system with soft-reset recovery, the hard/soft reset decision could take a
long time. A safe algorithm is to read the register first; if it contains the correct value, do
nothing. This will not disturb the timer, and the reset recovery can proceed at leisure.

Refresh stops only when the MC68306 is arbitrated off the bus. If the internal EC000 BG

signal is asserted while a refresh cycle is in progress, the external BG signal is delayed
until the refresh is complete. However, no refresh will occur during another master's
tenure of the bus if the BG or BGACK signals are recognized before a refresh cycle starts.
The task of DRAM refresh must be assumed by any other bus master. The refresh timer is
not suspended while the bus is arbitrated away, so a refresh cycle is likely when the

MOTOROLA MC68306 USER'S MANUAL 5-13

68306 regains bus ownership. Only one refresh cycle occurs after bus ownership is
regained, regardless of the time the bus was granted away.

The DRAM controller provides RAS/CAS timing, 15 multiplexed address bits, and refresh
timing. All DRAM accesses are either zero or one wait state cycles, unless delayed by a
refresh. Zero wait state operation supports DRAMs up to 80 ns RAS access, and one wait
state cycles supports DRAMs up to 120 ns RAS access (at 16.67 MHz). External DTACK
is not allowed on DRAM accesses. A refresh can add up to three extra wait-states to zero
wait-state accesses or 4 extra wait-states to one-wait state accesses. Read-modify-write
cycles to DRAM use page mode, and the write portion is always zero wait-state,
regardless of the DRDT bit setting.

The organization of external DRAM is one or two banks, by two bytes. CAS0 controls the
high byte (D15–D8) and CAS1 controls the low byte (D7–D0).

The minimum bank size is 128 Kbytes (64K × 2 bytes), because of the address
multiplexer, shown in Table 5-3.

Table 5-3. DRAM Address Multiplexer

Value Of:
At RAS When DRSZ2–0 Is:

At CAS:
111 110 101 100 011 010 001 000

DRAMA14 A30 A29 A28 A27 A26 A25 A24 A23 A15

DRAMA13 A29 A28 A27 A26 A25 A24 A23 A22 A14

DRAMA12 A28 A27 A26 A25 A24 A23 A22 A21 A13

DRAMA11 A27 A26 A25 A24 A23 A22 A21 A20 A12

DRAMA10 A26 A25 A24 A23 A22 A21 A20 A19 A11

DRAMA9 A25 A24 A23 A22 A21 A20 A19 A18 A10

DRAMA8 A24 A23 A22 A21 A20 A19 A18 A17 A9

DRAMA7 A23 A22 A21 A20 A19 A18 A17 A16 A8

DRAMA6 A22 A21 A20 A19 A18 A17 A16 A15 A7

DRAMA5 A21 A20 A19 A18 A17 A16 A15 A14 A6

DRAMA4 A20 A19 A18 A17 A16 A15 A14 A13 A5

DRAMA3 A19 A18 A17 A16 A15 A14 A13 A12 A4

DRAMA2 A18 A17 A16 A15 A14 A13 A12 A11 A3

DRAMA1 A17 A16 A15 A14 A13 A12 A11 A10 A2

DRAMA0 A16 A15 A14 A13 A12 A11 A10 A9 A1

Because the DRAM address multiplexer provides contiguous address bits to the full 15-bit
DRAMA bus width during RAS, more banks can be supported by externally decoding bits
beyond the RAS address width of the DRAMs. If this is done, the DRAMA, CAS, and
DRAMW signals should be buffered. This will almost certainly require the wait state. Also,
DRAMs with more row address pins than column address pins are supported.

5-14 MC68306 USER'S MANUAL MOTOROLA

5.2.7.1 DRAM REFRESH REGISTER. The refresh timer is a programmable period
counter that generates a refresh request every 16 to 4096 EXTAL periods, programmable
in 16 EXTAL period increments.

FFFFFFFC

15 14 13 12 11 10 9 8

RR7 RR6 RR5 RR4 RR3 RR2 RR1 RR0

RESET
:

U
U U U U U U U

SUPERVISOR ONLY

RR7–0—Refresh Rate Period
The value set in this field supplies the refresh rate for the DRAM controller. The refresh
rate can be calculated from the equation:

Period = (16 × (register value +1)) × EXTAL

Where:

EXTAL is the crystal period in nanoseconds and period is in nanoseconds.

5.2.7.2 DRAM BANK CONFIGURATION REGISTER (HIGH HALF). The DRAM
configuration registers are not affected by any reset, and must be explicitly programmed.
This applies to both banks, whether used or not. Unused banks must be disabled to
prevent interference with other address decodes.

FFFFFFE4/5 (DR1), FFFFFFE0/1 (DR0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRA31 DRA3
0

DRA2
9

DRA2
8

DRA2
7

DRA2
6

DRA2
5

DRA2
4

DRA2
3

DRA2
2

DRA21 DRA20 DRA19 DRA18 DRA1
7

DRW

RESE
T:
U

U U U U U U U U U U U U U U U

SUPERVISOR ONLY

DRA31–DRA17—DRAM Bank Address
This bit field selects the base address for DRAM bank.

DRW—DRAM Write
This bit determines whether write cycles are permitted to DRAM bank space. If read and
write cycles are both inhibited, the DRAM bank is inhibited.

0 = Write cycles are inhibited to DRAM bank space
1 = Write cycles are permitted to DRAM bank space

NOTE

Never perform a TAS instruction to DRAM if the DRAM is
configured as write-only.

MOTOROLA MC68306 USER'S MANUAL 5-15

5.2.7.3 DRAM BANK CONFIGURATION REGISTER (LOW HALF)

FFFFFFE6/7 (DR1), FFFFFFE2/3 (DR0)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRR DRFC
6

DRFC
5

— — DRFC
2

DRFC
1

— DRM3 DRM2 DRM1 DRM0 DRSZ2 DRSZ1 DRSZ
0

DRDT

RESE
T:
U

U U U U U U U U U U U U U U U

SUPERVISOR ONLY

DRR—DRAM Read
This bit determines whether read cycles are permitted to DRAM bank space. If read and
write cycles are both inhibited, DRAM bank is inhibited.

0 = Read cycles are inhibited to DRAM bank space
1 = Read cycles are permitted to DRAM bank space

DRFC6, 5, 2, 1—DRAM Bank Function Code 6, 5, 2, 1 Enable
This bit determines which function code accesses are permitted to DRAM bank space. If
all function code cycles are inhibited, the DRAM bank is inhibited.

0 = Function code n cycles are inhibited to DRAM bank space
1 = Function code n cycles are permitted to DRAM bank space

DRM3–0—DRAM Bank Address Match
This field determines which DRAM bank address bits must match address bits for
DRAM bank to occur. DRA bits not included in match must be set to zero, or else
DRAM bank is inhibited.

0000 = A31–A17 ignored in DRAM bank address match
0001 = A31 must match DRA31; A30–A17 ignored in DRAM bank address match
0010 = A31–A30 must match DRA31–DRA30; A29–A17 ignored in DRAM bank

address match
.....
1111 = A31–A17 must match DRA31–DRA17 in DRAM bank address match

Table 5-4 shows the entire range of address bits that must match for a DRAM bank to
occur.

5-16 MC68306 USER'S MANUAL MOTOROLA

Table 5-4. DRAM Bank Match Bits

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17

0000 x x x x x x x x x x x x x x x

0001 • x x x x x x x x x x x x x x

0010 • • x x x x x x x x x x x x x

0011 • • • x x x x x x x x x x x x

0100 • • • • x x x x x x x x x x x

0101 • • • • • x x x x x x x x x x

0110 • • • • • • x x x x x x x x x

0111 • • • • • • • x x x x x x x x

1000 • • • • • • • • x x x x x x x

1001 • • • • • • • • • x x x x x x

1010 • • • • • • • • • • x x x x x

1011 • • • • • • • • • • • x x x x

1100 • • • • • • • • • • • • x x x

1101 • • • • • • • • • • • • • x x

1110 • • • • • • • • • • • • • • x

1111 • • • • • • • • • • • • • • •

x = Address bit is a don’t care, DRA bit must be 0 to allow match.

• = Address bit must match DRA bit for DRAM bank to occur.

DRSZ—DRAM Size
DRAM address multiplexer provides (8 + DRSZ2–0) CAS address bits.

NOTE

Both DRAM banks must be the same size and speed. The
DRAM logic uses the DRSZ and DRDT values programmed in
the bank 0 configuration register only. These bits in the bank 1
configuration register are ignored.

DRDT—DRAM Automatic DTACK Response
0 = Automatic DTACK, 0 wait states
1 = Automatic DTACK, 1 wait state

NOTE

The write portion of a TAS is always 0-wait, regardless of the
state of DRDT.

MOTOROLA MC68306 USER'S MANUAL 5-17

5.2.8 Automatic DTACK Generation

All eight chip selects and both DRAM banks can be independently programmed for
automatic DTACK generation . Chip select accesses can be programmed for 0 to 14 wait
states or external DTACK, supporting memories as slow as 960 ns (at 16.67 MHz) with no
external logic. Programming the automatic DTACK for chip selects is described in
paragraph 5.2.6.2. Programming the automatic DTACK for DRAM banks is described in
paragraph 5.2.7.3.

For the chip select address spaces, if automatic DTACK is enabled, the write portion of a
TAS (test and set) indivisible cycle is the same length as a normal write to the same
location. Any external DTACK generation circuit must recognize that AS remains asserted
throughout a read-write indivisible cycle if it supports TAS.

For the DRAM address spaces, the write portion of a TAS is always 0-wait, regardless of
DRDT.

5.3 CRYSTAL OSCILLATOR

The oscillator circuit is designed for applications using a crystal or ceramic resonator
operating from 1 MHz to 20 MHz. The bias resistor and small startup capacitors are
integrated into the oscillator circuit, shown in Figure 5-2. Depending on the crystal and
application, an additional external capacitor may be required (consult crystal vendor for
specific information). The following equation can be used to calculate the size of external
capacitance:

CL = CP +
CIN Χ COUT

CIN + COUT

Where:
CP is the parasitic capacitance, which can be neglected in most cases.

CIN is the total input capacitance, consisting of Cext + C1.

COUT is the total output capacitance, consisting of C2 and external parasitic
capacitances (e.g., board and package capacitances).

5-18 MC68306 USER'S MANUAL MOTOROLA

+ +C1
15 pf

C2
12 pf

+

EXTAL, X1 XTAL, X2

CEXT

MC68306

10 M

Figure 5-2. Oscillator Circuit Diagram

MOTOROLA MC68306 USER'S MANUAL 6-1

SECTION 6
SERIAL MODULE

The MC68306 serial module is a dual universal asynchronous/synchronous receiver/
transmitter that interfaces directly to the CPU. The serial module, shown in Figure 6-1,
consists of the following major functional areas:

• Two Independent Serial Communication Channels (A and B)

• Baud Rate Generator Logic

• Sixteen Bit Timer/Counter

• Internal Channel Control Logic

• Interrupt Control Logic

.. .

SERIAL COMMUNICATIONS
CHANNELS A AND B

BAUD RATE
GENERATOR LOGIC

INTERNAL CHANNEL
CONTROL LOGIC

X1/CLK
X2

INTERRUPT CONTROL
LOGIC

RxDB

RxDA

TxDB

TxDA

IP0
IP1
IP2
OP0
OP1
OP3

16-BIT TIMER/COUNTER

Figure 6-1. Simplified Block Diagram

6-2 MC68306 USER'S MANUAL MOTOROLA

6.1 MODULE OVERVIEW

Features of the serial module are as follows:

• Two, Independent, Full-Duplex Asynchronous/Synchronous Receiver/Transmitter
Channels

• Quadruple-Buffered Receiver

• Double-Buffered Transmitter

• Independently Programmable Baud Rate for Each Receiver and Transmitter
Selectable from:

—18 Fixed Rates: 50 to 38.4 kBaud

—Timer-Generated Baud Rate Up to 170 kbaud

• Programmable Data Format:

—Five to Eight Data Bits Plus Parity

—Odd, Even, No Parity, or Force Parity

—Nine-Sixteenths to Two Stop Bits Programmable in One-Sixteenth Bit Increments

• Programmable Channel Modes:

—Normal (Full Duplex)

—Automatic Echo

—Local Loopback

—Remote Loopback

• Automatic Wakeup Mode for Multidrop Applications

• Multi-Function Three-Bit Input Port

—Can Be Clock or Control Inputs

—Change of State Detection Available

• Multi-Function Three-Bit Output Port

—Individual Bit Set/Reset Capability

—Can Be Status or Interrupt Signal

• Multi-Function Sixteen-Bit Programmable Counter/Timer

• Eight Maskable Interrupt Conditions

• Timer/Counter Interrupt Can Be Independently Programmed

• Parity, Framing, and Overrun Error Detection

• False-Start Bit Detection

• Line-Break Detection and Generation

• Detection of Breaks Originating in the Middle of a Character

• Start/End Break Interrupt/Status

MOTOROLA MC68306 USER'S MANUAL 6-3

6.1.1 Serial Communication Channels A and B

Each communication channel provides a full-duplex asynchronous/synchronous receiver
and transmitter using an operating frequency independently selected from a baud rate
generator or an external clock input.

The transmitter accepts parallel data from the bus, converts it to a serial bit stream, inserts
the appropriate start, stop, and optional parity bits, then outputs a composite serial data
stream on the channel transmitter serial data output (TxDx). Refer to 6.3.2.1 Transmitter
for additional information.

The receiver accepts serial data on the channel receiver serial data input (RxDx), converts
it to parallel format, checks for a start bit, stop bit, parity (if any), or break condition, and
transfers the assembled character onto the bus during read operations. Refer to 6.3.2.2
Receiver for additional information.

6.1.2 Baud Rate Generator Logic

The crystal oscillator operates directly from a 3.6864-MHz crystal connected across the
X1/CLK input and the X2 output or from an external clock of the same frequency
connected to X1/CLK. The clock serves as the basic timing reference for the baud rate
generator and other internal circuits.

The baud rate generator operates from the oscillator or external CMOS clock input and is
capable of generating 18 commonly used data communication baud rates ranging from 50
to 38.4k by producing internal clock outputs at 16 times the actual baud rate. Refer to 6.2
Serial Module Signal Definitions and 6.3.1 Baud Rate Generator for additional
information.

6.1.3 Timer/Counter

The timer/counter provides for an input which bypasses the baud rate generator, and
provides a synchronous clock mode of operation when used as a divide-by-1 clock and an
asynchronous clock mode when used as a divide-by-16 clock. The external clock input
allows the user to use the external input as the only clock source for the serial module if
multiple baud rates are not required.

6.1.4 Interrupt Control Logic

Two interrupt request signals (IRQ and TIRQ) are provided to notify the CPU of an
interrupt condition. The IRQ output is the logical NOR of all (up to eight) unmasked
interrupt status bits in the interrupt status register (DUISR). The TIRQ output is the
inverted counter/timer ready interrupt status. TIRQ can be masked by the IENT bit of the
interrupt control register external to the serial module.

The interrupt level of the serial module IRQ is programmed in the system register external
to the serial module. When an interrupt at this level is acknowledged, the serial module is
serviced before the external IRQ7 of the same level.

6-4 MC68306 USER'S MANUAL MOTOROLA

The TIRQ interrupt (if enabled) is fixed at level seven. When a level seven interrupt is
acknowledged, the TIRQ interrupt is serviced before the external IRQ7. If the serial
module IRQ is also programmed at level seven, the TIRQ interrupt is serviced first, then
the serial module IRQ, then the external IRQ7 last.

If the TIRQ interrupt is enabled, the serial module counter/timer ready interrupt in the
DUISR should be masked, and the IRQ service routine should not service the
counter/timer ready condition.

6.1.5 Comparison of Serial Module to MC68681

The serial module is code compatible with the MC68681 with some modifications, but
OP2, OP4–7, and IP3–5 are not pinned out. A new interrrupt output (TIRQ) is available.

6.2 SERIAL MODULE SIGNAL DEFINITIONS

The following paragraphs contain a brief description of the serial module signals. Figure 6-
2 shows both the external and internal signal groups.

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

6.2.1 Crystal Input or External Clock (X1/CLK)

This input is one of two connections to a crystal or a single connection to an external
clock. A crystal or an external clock signal, at 3.6864 MHz, must be supplied when using
the baud rate generator. If a crystal is used, a capacitor of approximately 10 pF should be
connected from this signal to ground. If this input is not used, it must be connected to VCC
or GND.

6.2.2 Crystal Output (X2)

This output is the additional connection to a crystal. If a crystal is used, a capacitor of
approximately 5 pF should be connected from this signal to ground. If an external CMOS-
level clock is used on X1/CLK, the X2 output must be left open.

6.2.3 Channel A Transmitter Serial Data Output (TxDA)

This signal is the transmitter serial data output for channel A. The output is held high
('mark' condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal on the falling edge of the clock source, with the
least significant bit transmitted first.

MOTOROLA MC68306 USER'S MANUAL 6-5

.. .

ADDRESS BUS

I

N
T
E
R
N

A
L

B
U

S

DATA

D7–D0

EXTER
N

AL
IN

TER
FAC

E SIG
N

ALS
X1/CLK

X2

BAUD RATE
GENERATOR

LOGIC

CHANNEL B

FOUR-CHARACTER
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT BUFFER

RxDB

TxDB

CHANNEL A

FOUR-CHARACTER
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT BUFFER

RxDA

TxDA

CONTROL

INTERNAL
CONTROL

LOGIC
S

E
R
I

A
L

M
O
D
U

L
E

INTERFACE
TO CPU

INPUT PORT

OUTPUT PORT

IRQ

TIRQ

16-BIT
COUNTER/TIMER

Figure 6-2. External and Internal Interface Signals

6.2.4 Channel A Receiver Serial Data Input (RxDA)

This signal is the receiver serial data input for channel A. Data received on this signal is
sampled on the rising edge of the clock source, with the least significant bit received first.

6.2.5 Channel B Transmitter Serial Data Output (TxDB)

This signal is the transmitter serial data output for channel B. The output is held high
('mark' condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal at the falling edge of the clock source, with the
least significant bit transmitted first.

6-6 MC68306 USER'S MANUAL MOTOROLA

6.2.6 Channel B Receiver Serial Data Input (RxDB)

This signal is the receiver serial data input for channel B. Data on this signal is sampled
on the rising edge of the clock source, with the least significant bit received first.

6.2.7 Channel A Request-To-Send (RTSA/OP0)

This active-low output signal is programmable as the channel A request-to-send or as a
dedicated parallel output.

6.2.7.1 RTSA . When used for this function, this signal can be programmed to be
automatically negated and asserted by either the receiver or transmitter. When connected
to the clear-to-send (CTS≈) input of a transmitter, this signal can be used to control serial
data flow.

6.2.7.2 OP0. When used for this function, this output is controlled by bit 0 in the output
port data register (DUOP).

6.2.8 Channel B Request-To-Send (RTSB/OP1)

This active-low output signal is programmable as the channel B request-to-send or as a
dedicated parallel output.

6.2.8.1 RTSB . When used for this function, this signal can be programmed to be
automatically negated and asserted by either the receiver or transmitter. When connected
to the CTS≈ input of a transmitter, this signal can be used to control serial data flow.

6.2.8.2 OP1. When used for this function, this output is controlled by bit 1 in the DUOP
register.

6.2.9 Channel A Clear-To-Send (CTSA /IP0)

This active-low input is programmable as the channel A clear-to-send or as a dedicated
parallel input. It can generate an interrupt on change-of-state.

6.2.9.1 CTSA. When used for this function, this signal is the channel A clear-to-send input.

6.2.9.2 IP0. When used for this function, this signal is a general-purpose input.

6.2.10 Channel B Clear-To-Send (CTSB/ IP1)

This active-low input is programmable as the channel B clear-to-send or as a dedicated
parallel input. It can generate an interrupt on change-of-state.

6.2.10.1 CTSB. When used for this function, this signal is the channel B clear-to-send
input.

6.2.10.2 IP1. When used for this function, this signal is a general-purpose input.

MOTOROLA MC68306 USER'S MANUAL 6-7

6.3 OPERATION

The following paragraphs describe the operation of the baud rate generator, transmitter
and receiver, and other functional operating modes of the serial module.

6.3.1 Baud Rate Generator

The baud rate generator consists of a crystal oscillator, baud rate generator, and clock
selectors (see Figure 6-3). The crystal oscillator operates directly from a 3.6864-MHz
crystal or from an external clock of the same frequency. Baud rates are selected by
programming the clock-select register (DUCSR) for each channel.

..

BAUD RATE

GENERATOR LOGIC

CRYSTAL
OSCILLATOR

BAUD RATE
GENERATOR

CLOCK
SELECTORS

X1

X2

EXTERNAL

INTERFACE

Figure 6-3. Baud Rate Generator Block Diagram

6.3.2 Transmitter and Receiver Operating Modes

The functional block diagram of the transmitter and receiver, including command and
operating registers, is shown in Figure 6-4. The paragraphs that follow contain
descriptions for both these functions in reference to this diagram. For detailed register
information, refer to 6.4 Register Description and Programming.

6-8 MC68306 USER'S MANUAL MOTOROLA

..

CHANNEL A

CHANNEL B

TRANSMIT
BUFFER (TBA)

(2 REGISTERS)

RECEIVER HOLDING REGISTER 1

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 3

RECEIVER SHIFT REGISTER

TxDA

RxDA

FIFO

TRANSMIT HOLDING REGISTER

TRANSMIT SHIFT REGISTER

RECEIVE
BUFFER (RBA)
(4 REGISTERS)

W

R

COMMAND REGISTER (CRA)

MODE REGISTER 1 (MR1A)

MODE REGISTER 2 (MR2A)

STATUS REGISTER (SRA)

W

R/W

R/W

R

EXTERNAL
INTERFACE

RECEIVER HOLDING REGISTER 1

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 3

RECEIVER SHIFT REGISTER

TxDB

RxDB

FIFO

TRANSMIT HOLDING REGISTER

TRANSMIT SHIFT REGISTER

RECEIVE
BUFFER (RBB)
(4 REGISTERS)

W

R

COMMAND REGISTER (CRB)

MODE REGISTER 1 (MR1B)

MODE REGISTER 2 (MR2B)

STATUS REGISTER (SRB)

W

R/W

R/W

R

TRANSMIT
BUFFER (TBB)

 (2 REGISTERS)

NOTE:
 R/W = READ/WRITE
 R = READ
 W = WRITE

Figure 6-4. Transmitter and Receiver Functional Diagram

MOTOROLA MC68306 USER'S MANUAL 6-9

6.3.2.1 TRANSMITTER. The transmitters are enabled through their respective command
registers (DUCR) located within the serial module. The serial module signals the CPU
when it is ready to accept a character by setting the transmitter-ready bit (TxRDY) in the
channel's status register (DUSR). Functional timing information for the transmitter is
shown in Figure 6-5.

The transmitter converts parallel data from the CPU to a serial bit stream on TxDx. It
automatically sends a start bit followed by the programmed number of data bits, an
optional parity bit, and the programmed number of stop bits. The least significant bit is
sent first. Data is shifted from the transmitter output on the falling edge of the clock
source.

C1 C2 C3 C4 C6

W W W W W W W W

C1 C2 C3 C4 STOP
BREAK

START
BREAK

C5
NOT

TRANSMITTED

C6

BREAK

C1 IN
TRANSMISSION

TxDx

TRANSMITTER
ENABLED

TxRDY
(SR2)

CS

CTS
(IP0)

RTS
 (OP0)

 2

1

NOTES:
 1. TIMING SHOWN FOR MR2(4) = 1
 2. TIMING SHOWN FOR MR2(5) = 1
 3. C = TRANSMIT CHARACTER
 4. W = WRITE

N

MANUALLY ASSERTED
BY BIT- SET COMMAND

MANUALLY
ASSERTED

Figure 6-5. Transmitter Timing Diagram

Following transmission of the stop bits, if a new character is not available in the transmitter
holding register, the TxDx output remains high ('mark' condition), and the transmitter
empty bit (TxEMP) in the DUSR is set. Transmission resumes and the TxEMP bit is
cleared when the CPU loads a new character into the transmitter buffer (DUTB). If a
disable command is sent to the transmitter, it continues operating until the character in the

6-10 MC68306 USER'S MANUAL MOTOROLA

transmit shift register, if any, is completely sent out. If the transmitter is reset through a
software command, operation ceases immediately (refer to 6.4.1.5 Command Register
(DUCR)). The transmitter is re-enabled through the DUCR to resume operation after a
disable or software reset.

If clear-to-send operation is enabled, CTS≈ (IP0 for channel A, IP1 for channel B) must be
asserted for the character to be transmitted. If CTS≈ is negated in the middle of a
transmission, the character in the shift register is transmitted, and TxDx remains in the
'mark' state until CTS≈ is asserted again. If the transmitter is forced to send a continuous
low condition by issuing a send break command, the state of CTS≈ is ignored by the
transmitter.

The transmitter can be programmed to automatically negate request-to-send (RTS≈: OP0
for channel A, OP1 for channel B) outputs upon completion of a message transmission. If
the transmitter is programmed to operate in this mode, RTS≈ must be manually asserted
before a message is transmitted. In applications in which the transmitter is disabled after
transmission is complete and RTS≈ is appropriately programmed, RTS≈ is negated one bit
time after the character in the shift register is completely transmitted. The transmitter must
be manually re-enabled by reasserting RTS≈ before the next message is to be sent.

6.3.2.2 RECEIVER. The receivers are enabled through their respective DUCRs located
within the serial module. Functional timing information for the receiver is shown in Figure
6-6. The receiver looks for a high-to-low (mark-to-space) transition of the start bit on
RxDx. When a transition is detected, the state of RxDx is sampled each 16× clock for
eight clocks, starting one-half clock after the transition (asynchronous operation) or at the
next rising edge of the bit time clock (synchronous operation). If RxDx is sampled high, the
start bit is invalid, and the search for the valid start bit begins again. If RxDx is still low, a
valid start bit is assumed, and the receiver continues to sample the input at one-bit time
intervals, at the theoretical center of the bit, until the proper number of data bits and parity,
if any, is assembled and one stop bit is detected. Data on the RxDx input is sampled on
the rising edge of the programmed clock source. The least significant bit is received first.
The data is then transferred to a receiver holding register, and the RxRDY bit in the
appropriate DUSR is set. If the character length is less than eight bits, the most significant
unused bits in the receiver holding register are cleared.

After the stop bit is detected, the receiver immediately looks for the next start bit.
However, if a nonzero character is received without a stop bit (framing error) and RxDx
remains low for one-half of the bit period after the stop bit is sampled, the receiver
operates as if a new start bit is detected. The parity error (PE), framing error (FE), overrun
error (OE), and received break (RB) conditions (if any) set error and break flags in the
appropriate DUSR at the received character boundary and are valid only when the RxRDY
bit in the DUSR is set.

If a break condition is detected (RxDx is low for the entire character including the stop bit),
a character of all zeros is loaded into the receiver holding register, and the RB and
RxRDY bits in the DUSR are set. The RxDx signal must return to a high condition for at
least one-half bit time before a search for the next start bit begins.

MOTOROLA MC68306 USER'S MANUAL 6-11

C6, C7, C8 ARE LOST

RxD

RECEIVER
ENABLED

RxRDY
(SR0)

FFULL
(SR1)

OVERRUN
(SR4)

RTS
(OP0)

1

STATUS DATA STATUS DATA STATUS DATA

CS

RESET BY COMMAND

OPR(0) = 1

C4C3 C5 C6 C7 C8C1 C2

NOTES:
 1. Timing shown for MR1(7) = 1
 2. Timing shown for OPCR(4) = 1 and MR1(6) = 0
 3. R = Read
 4. C = Received CharacterN

R R R R RR RR

C1 C2 C3 C4

C5
LOST

STATUS DATA

Figure 6-6. Receiver Timing Diagram

The receiver detects the beginning of a break in the middle of a character if the break
persists through the next character time. When the break begins in the middle of a
character, the receiver places the damaged character in the receiver first-in-first-out
(FIFO) stack and sets the corresponding error conditions and RxRDY bit in the DUSR.
Then, if the break persists until the next character time, the receiver places an all-zero
character into the receiver FIFO and sets the corresponding RB and RxRDY bits in the
DUSR.

6.3.2.3 FIFO STACK. The FIFO stack is used in each channel's receiver buffer logic. The
stack consists of three receiver holding registers. The receive buffer consists of the FIFO
and a receiver shift register connected to the RxDx (refer to Figure 6-4). Data is
assembled in the receiver shift register and loaded into the top empty receiver holding

6-12 MC68306 USER'S MANUAL MOTOROLA

register position of the FIFO. Thus, data flowing from the receiver to the CPU is quadruple
buffered.

In addition to the data byte, three status bits, PE, FE, and RB, are appended to each data
character in the FIFO; OE is not appended. By programming the ERR bit in the channel's
mode register (DUMR1), status is provided in character or block modes.

The RxRDY bit in the DUSR is set whenever one or more characters are available to be
read by the CPU. A read of the receiver buffer produces an output of data from the top of
the FIFO stack. After the read cycle, the data at the top of the FIFO stack and its
associated status bits are 'popped', and new data can be added at the bottom of the stack
by the receiver shift register. The FIFO-full status bit (FFULL) is set if all three stack
positions are filled with data. Either the RxRDY or FFULL bit can be selected to cause an
interrupt.

In the character mode, status provided in the DUSR is given on a character-by-character
basis and thus applies only to the character at the top of the FIFO. In the block mode, the
status provided in the DUSR is the logical OR of all characters coming to the top of the
FIFO stack since the last reset error command. A continuous logical OR function of the
corresponding status bits is produced in the DUSR as each character reaches the top of
the FIFO stack. The block mode is useful in applications where the software overhead of
checking each character's error cannot be tolerated. In this mode, entire messages are
received, and only one data integrity check is performed at the end of the message. This
mode allows a data-reception speed advantage, but does have a disadvantage since
each character is not individually checked for error conditions by software. If an error
occurs within the message, the error is not recognized until the final check is performed,
and no indication exists as to which character in the message is at fault.

In either mode, reading the DUSR does not affect the FIFO. The FIFO is 'popped' only
when the receive buffer is read. The DUSR should be read prior to reading the receive
buffer. If all three of the FIFO's receiver holding registers are full when a new character is
received, the new character is held in the receiver shift register until a FIFO position is
available. If an additional character is received during this state, the contents of the FIFO
are not affected. However, the character previously in the receiver shift register is lost, and
the OE bit in the DUSR is set when the receiver detects the start bit of the new
overrunning character.

To support control flow capability, the receiver can be programmed to automatically
negate and assert RTS≈. When in this mode, RTS≈ is automatically negated by the
receiver when a valid start bit is detected and the FIFO stack is full. When a FIFO position
becomes available, RTS≈ is asserted by the receiver. Using this mode of operation,
overrun errors are prevented by connecting the RTS≈ to the CTS≈ input of the transmitting
device.

If the FIFO stack contains characters and the receiver is disabled, the characters in the
FIFO can still be read by the CPU. If the receiver is reset, the FIFO stack and all receiver
status bits, corresponding output ports, and interrupt request are reset. No additional
characters are received until the receiver is re-enabled.

MOTOROLA MC68306 USER'S MANUAL 6-13

6.3.3 Looping Modes

Each serial module channel can be configured to operate in various looping modes as
shown in Figure 6-7. These modes are useful for local and remote system diagnostic
functions. The modes are described in the following paragraphs with further information
available in 6.4 Register Description and Programming.

The channel's transmitter and receiver should both be disabled when switching between
modes. The selected mode is activated immediately upon mode selection, regardless of
whether a character is being received or transmitted.

6.3.3.1 AUTOMATIC ECHO MODE. In this mode, the channel automatically retransmits
the received data on a bit-by-bit basis. The local CPU-to-receiver communication
continues normally, but the CPU-to-transmitter link is disabled. While in this mode,
received data is clocked on the receiver clock and retransmitted on TxDx. The receiver
must be enabled, but the transmitter need not be enabled.

Since the transmitter is not active, the DUSR TxEMP and TxRDY bits are inactive, and
data is transmitted as it is received. Received parity is checked, but not recalculated for
transmission. Character framing is also checked, but stop bits are transmitted as received.
A received break is echoed as received until the next valid start bit is detected.

6.3.3.2 LOCAL LOOPBACK MODE. In this mode, TxDx is internally connected to RxDx.
This mode is useful for testing the operation of a local serial module channel by sending
data to the transmitter and checking data assembled by the receiver. In this manner,
correct channel operations can be assured. Also, both transmitter and CPU-to-receiver
communications continue normally in this mode. While in this mode, the RxDx input data
is ignored, the TxDx is held marking, and the receiver is clocked by the transmitter clock.
The transmitter must be enabled, but the receiver need not be enabled.

6.3.3.3 REMOTE LOOPBACK MODE. In this mode, the channel automatically transmits
received data on the TxDx output on a bit-by-bit basis. The local CPU-to-transmitter link is
disabled. This mode is useful in testing receiver and transmitter operation of a remote
channel. While in this mode, the receiver clock is used for the transmitter.

Since the receiver is not active, received data cannot be read by the CPU, and the error
status conditions are inactive. Received parity is not checked and is not recalculated for
transmission. Stop bits are transmitted as received. A received break is echoed as
received until the next valid start bit is detected.

6-14 MC68306 USER'S MANUAL MOTOROLA

(a) Automatic Echo

(b) Local Loopback

(c) Remote Loopback

DISABLED

DISABLED

DISABLED

DISABLED

Rx

Tx

Rx

Tx

Rx

Tx TxDx
OUTPUT

RxDx
INPUT

RxDx
INPUT

RxDx
INPUT

TxDx
OUTPUT

TxDx
OUTPUT

DISABLED

DISABLED

CPU

CPU

CPU

DISABLED

DISABLED

Figure 6-7. Looping Modes Functional Diagram

6.3.4 Multidrop Mode

A channel can be programmed to operate in a wakeup mode for multidrop or
multiprocessor applications. Functional timing information for the multidrop mode is shown
in Figure 6-8. The mode is selected by setting bits 3 and 4 in mode register 1 (DUMR1).
This mode of operation allows the master station to be connected to several slave stations
(maximum of 256). In this mode, the master transmits an address character followed by a
block of data characters targeted for one of the slave stations. The slave stations have
their channel receivers disabled. However, they continuously monitor the data stream sent
out by the master station. When an address character is sent by the master, the slave
receiver channel notifies its respective CPU by setting the RxRDY bit in the DUSR and
generating an interrupt (if programmed to do so). Each slave station CPU then compares
the received address to its station address and enables its receiver if it wishes to receive
the subsequent data characters or block of data from the master station. Slave stations
not addressed continue to monitor the data stream for the next address character. Data
fields in the data stream are separated by an address character. After a slave receives a
block of data, the slave station's CPU disables the receiver and initiates the process
again.

MOTOROLA MC68306 USER'S MANUAL 6-15

STATUS DATA STATUS DATA

1 0C0 1
ADDR

1
ADDR

2

A/D A/D A/DMASTER STATION

1 0C0 10 ADDR
1

ADDR
2

A/D A/D A/D A/D A/D
PERIPHERAL
STATION

MR1(2) = 1
W W W W W W

MR1(2) = 0
ADDR2

ADDR1MR1(4:3) = 11
MR1(2) = 1

0

MR1(4–3) = 11 ADDR
W R R R R R

C0 ADDR

RECEIVER
ENABLED

RxD

CS

TxD

TRANSMITTER
ENABLED

TxRDY
(SR2)

CS

W
ENABLE

Figure 6-8. Multidrop Mode Timing Diagram

A transmitted character from the master station consists of a start bit, a programmed
number of data bits, an address/data (A/D) bit flag, and a programmed number of stop
bits. The A/D bit identifies the type of character being transmitted to the slave station. The
character is interpreted as an address character if the A/D bit is set or as a data character
if the A/D bit is cleared. The polarity of the A/D bit is selected by programming bit 2 of the
DUMR1. The DUMR1 should be programmed before enabling the transmitter and loading
the corresponding data bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream,
regardless of whether it is enabled or disabled. If the receiver is disabled, it sets the
RxRDY bit and loads the character into the receiver holding register FIFO stack provided
the received A/D bit is a one (address tag). The character is discarded if the received A/D
bit is a zero (data tag). If the receiver is enabled, all received characters are transferred to
the CPU via the receiver holding register stack during read operations.

6-16 MC68306 USER'S MANUAL MOTOROLA

In either case, the data bits are loaded into the data portion of the stack while the A/D bit
is loaded into the status portion of the stack normally used for a parity error (DUSR bit 5).
Framing error, overrun error, and break detection operate normally. The A/D bit takes the
place of the parity bit; therefore, parity is neither calculated nor checked. Messages in this
mode may still contain error detection and correction information. One way to provide
error detection, if 8-bit characters are not required, is to use software to calculate parity
and append it to the 5-, 6-, or 7-bit character.

6.3.5 Counter/Timer

The 16-bit counter/timer can operate in a counter mode or a timer mode. In either mode,
the counter/timer clock source can be programmed to come from several sources and the
counter/timer output can be programmed to appear on output port pin OP3 (inverted). The
preload value stored in the concatenation of the counter/timer upper register (DUCTUR)
and the counter/timer lower register (DUCTLR) can be from $0002 through $FFFF and
this value can be changed at any time. In the counter mode, the counter/timer can be
started and stopped by the CPU. Thus, this mode allows the counter/timer to be used as a
system stopwatch, a real-time single interrupt generator, or a device watchdog. In the
timer mode, the counter/timer runs continuously and cannot be started or stopped by the
CPU. Instead, the CPU only resets the counter/timer. Thus, this mode allows the
counter/timer to be used as a programmable clock source for channels A and B, periodic
interrupt generator, or a variable duty cycle square-wave generator. Upon power-up and
after reset, the counter/timer operates in counter mode.

6.3.5.1 COUNTER MODE. In the counter mode, the counter/timer counts down from the
preload value using the programmed counter clock source. The counter clock source can
be the X1/CLK pin, the channel A transmitter clock, the channel B transmitter clock, or an
external clock on the input port pin IP2. The CPU can start and stop the counter and can
read the count value (DUCUR:DUCLR). When a read at the start counter command
address is performed, the counter initializes itself with the preload value and begins a
countdown sequence. Upon reaching $0000 (terminal count), the counter sets the
counter/timer-output and the counter/timer ready bit in the interrupt status register
(DUISR[3]), rolls over from $0000 to $FFFF, and continues counting. The counter can be
programmed to generate an interrupt request for this condition on the IRQ or TIRQ output.
If the preload value is changed by the CPU, the counter will not recognize the new value
until it receives the next start counter command (and must reinitialize itself). When a read
at the stop counter command address is performed, the counter stops the countdown
sequence and clears the C/T output and DUISR[3]. The count value should only be read
while the counter is stopped. This is because only one of the count registers (either
DUCUR or DUCLR) can be read at a time and if the counter is running, a decrement of
DUCLR that requires a borrow from the DUCUR could take place between the two reads.

6.3.5.2 TIMER MODE. In the timer mode, the counter/timer generates a square-wave
output derived from the programmed timer input (clock source). The timer clock source is
X1/CLK or an external input on input port pin IP2, divided by one or sixteen. The square
wave generated by the timer has a period of twice the preload value times the period of
the clock source, is available as a clock source for both communications channels, and

MOTOROLA MC68306 USER'S MANUAL 6-17

can be programmed to appear on output pin OP3 (inverted). The timer runs continuously
and cannot be stopped by the CPU. Because the timer cannot be stopped, the count
value (DUCUR/DUCLR) should not be read. When a read at the start counter command
address is performed, the timer terminates the current countdown sequence, clears its
output, reinitializes itself with the preload value, and begins a new countdown sequence.
Upon reaching $0000 (terminal count), the timer inverts its output, reinitializes itself with
the preload value, and repeats the countdown sequence. If the timer output toggled from
one to zero, the CTR/TMR_RDY bit (DUISR[3]) is also set. The timer can be programmed
to generate an interrupt request for this condition on the IRQ or TIRQ output. If the preload
value is changed by the CPU, the timer will not recognize the new value until it reaches
the next terminal count (and must reinitialize itself). This feature is very useful when
generating variable duty cycle square waves. When a read at the stop counter command
address is performed, the timer clears DUISR bit 3 but does not stop. Because in timer
mode the counter/timer runs continuously, it should be completely configured (preload
value loaded and start counter command issued) before programming the timer output to
appear on OP3.

6.3.6 Bus Operation

This section describes the operation of the bus during read, write, and interrupt
acknowledge cycles to the serial module. All serial module registers must be accessed as
bytes.

6.3.6.1 READ CYCLES. The serial module is accessed by the CPU with a variable
number of wait states, depending on the relative phase of the CPU and serial module
clocks. The maximum number of wait states for a 16.67 MHz CPU clock and 3.6864 MHz
serial module clock is six. The serial module responds to reads with byte data on D7–D0.
Reserved registers return logic zero during reads.

6.3.6.2 WRITE CYCLES. The serial module is accessed by the CPU with a variable
number of wait states, up to six. The serial module accepts write data on D7–D0. Write
cycles to read-only registers and reserved registers complete in a normal manner without
exception processing; however, the data is ignored.

6.3.6.3 INTERRUPT ACKNOWLEDGE CYCLES. The serial module is capable of
arbitrating for interrupt servicing and supplying the interrupt vector when it has
successfully won arbitration. The vector number must be provided if interrupt servicing is
necessary; thus, the interrupt vector register (DUIVR) must be initialized. If the DUIVR is
not initialized, a spurious interrupt exception will be taken if interrupts are generated.

6.4 REGISTER DESCRIPTION AND PROGRAMMING

This section contains a detailed description of each register and its specific function as
well as flowcharts of basic serial module programming.

6.4.1 Register Description

The operation of the serial module is controlled by writing control bytes into the
appropriate registers. A list of serial module registers and their associated addresses is

6-18 MC68306 USER'S MANUAL MOTOROLA

shown in Figure 6-9. The mode, status, command, and clock-select registers are
duplicated for each channel to provide independent operation and control.

NOTE

All serial module registers are only accessible as bytes. The
contents of the mode registers (DUMR1 and DUMR2), clock-
select register (DUCSR), and the auxiliary control register
(DUACR) bit 7 should only be changed after the
receiver/transmitter is issued a software RESET command—
i.e., channel operation must be disabled. Care should also be
taken if the register contents are changed during
receiver/transmitter operations, as undesirable results may be
produced.

In the registers discussed in the following pages, the numbers above the register
description represent the bit position in the register. The register description contains the
mnemonic for the bit. The values shown below the register description are the values of
those register bits after a hardware reset. A value of U indicates that the bit value is
unaffected by reset. The read/write status is shown in the last line.

Address Register Read (R/W = 1) Register Write (R/W = 0)

FFFFF7E1 MODE REGISTER A (DUMR1A, DUMR2A) MODE REGISTER A (DUMR1A, DUMR2A)

FFFFF7E3 STATUS REGISTER A (DUSRA) CLOCK-SELECT REGISTER A (DUCSRA)

FFFFF7E5 DO NOT ACCESS1 COMMAND REGISTER A (DUCRA)

FFFFF7E7 RECEIVER BUFFER A (DURBA) TRANSMITTER BUFFER A (DUTBA)

FFFFF7E9 INPUT PORT CHANGE REGISTER (DUIPCR) AUXILIARY CONTROL REGISTER (DUACR)

FFFFF7EB INTERRUPT STATUS REGISTER (DUISR) INTERRUPT MASK REGISTER (DUIMR)

FFFFF7ED COUNTER MODE:CURRENT MSB OF COUNTER COUNTER/TIMER UPPER REGISTER

FFFFF7EF COUNTER MODE:CURRENT LSB OF COUNTER COUNTER/TIMER LOWER REGISTER

FFFFF7F1 MODE REGISTER B (DUMR1B, DUMR2B) MODE REGISTER B (DUMR1B, DUMR2B)

FFFFF7F3 STATUS REGISTER B (DUSRB) CLOCK-SELECT REGISTER B (DUCSRB)

FFFFF7F5 DO NOT ACCESS1 COMMAND REGISTER B (DUCRB)

FFFFF7F7 RECEIVER BUFFER B (DURBB) TRANSMITTER BUFFER B (DUTBB)

FFFFF7F9 INTERRUPT VECTOR REGISTER (DUIVR) INTERRUPT VECTOR REGISTER (DUIVR)

FFFFF7FB INPUT PORT REGISTER (DUIP) OUTPUT PORT CONFIGURATION REGISTER
(DUOPCR)

FFFFF7FD START COUNTER COMMAND2 OUTPUT PORT (DUOP)2 BIT SET

FFFFF7FF STOP COUNTER COMMAND2 OUTPUT PORT (DUOP)2 BIT RESET

NOTES:
1. This address is used for factory testing and should not be read. Reading this location wiill result in undesired effects and

possible incorrect transmission or reception of characters. Register contents may also be changed.
2. Address-triggered commands

Figure 6-9. Serial Module Programming Model

6.4.1.1 MODE REGISTER 1 (DUMR1). DUMR1 controls some of the serial module
configuration. This register can be read or written at any time. It is accessed when the

MOTOROLA MC68306 USER'S MANUAL 6-19

channel A mode register pointer points to DUMR1. The pointer is set to DUMR1 by
RESET or by a set pointer command, using control register A. After reading or writing
DUMR1A, the pointer points to DUMR2A.

DUMR1A, DUMR1B
7 6 5 4 3 2 1 0

RxRTS RxIRQ ERR PM1 PM0 PT B/C1 B/C0

RESET:
0 0 0 0 0 0 0 0

Read/Write

RxRTS—Receiver Request-to-Send Control
1 = Upon receipt of a valid start bit, RTS≈ is negated if the channel's FIFO is full.

RTS≈ is reasserted when the FIFO has an empty position available.
0 = The receiver has no effect on RTS≈.

This feature can be used for flow control to prevent overrun in the receiver by using the
RTS≈ output to control the CTS≈ input of the transmitting device. If both the receiver and
transmitter are programmed for RTS control, RTS control will be disabled for both since
this configuration is incorrect. See 6.4.1.17 Mode Register 2 for information on
programming the transmitter RTS≈ control.

RxIRQ—Receiver Interrupt Select
1 = FFULL is the source that generates IRQ.
0 = RxRDY is the source that generates IRQ.

ERR—Error Mode
This bit controls the meaning of the three FIFO status bits (RB, FE, and PE) in the
DUSR for the channel.

1 = Block mode—The values in the channel DUSR are the accumulation (i.e., the
logical OR) of the status for all characters coming to the top of the FIFO since the
last reset error status command for the channel was issued. Refer to 6.4.1.5
Command Register (DUCR) for more information on serial module commands.

0 = Character mode—The values in the channel DUSR reflect the status of the
character at the top of the FIFO.

NOTE

ERR = 0 must be used to get the correct A/D flag information
when in multidrop mode.

PM1–PM0—Parity Mode
These bits encode the type of parity used for the channel (see Table 6-1). The parity bit
is added to the transmitted character, and the receiver performs a parity check on
incoming data. These bits can alternatively select multidrop mode for the channel.

6-20 MC68306 USER'S MANUAL MOTOROLA

PT—Parity Type
This bit selects the parity type if parity is programmed by the parity mode bits, and if
multidrop mode is selected, it configures the transmitter for data character transmission
or address character transmission. Table 6-1 lists the parity mode and type or the
multidrop mode for each combination of the parity mode and the parity type bits.

Table 6-1. PMx and PT Control Bits

PM1 PM0 Parity Mode PT Parity Type

0 0 With Parity 0 Even Parity

0 0 With Parity 1 Odd Parity

0 1 Force Parity 0 Low Parity

0 1 Force Parity 1 High Parity

1 0 No Parity X No Parity

1 1 Multidrop Mode 0 Data Character

1 1 Multidrop Mode 1 Address Character

B/C1–B/C0—Bits per Character
These bits select the number of data bits per character to be transmitted. The character
length listed in Table 6-2 does not include start, parity, or stop bits.

Table 6-2. B/Cx Control Bits

B/C1 B/C0 Bits/Character

0 0 Five Bits

0 1 Six Bits

1 0 Seven Bits

1 1 Eight Bits

6.4.1.2 MODE REGISTER 2 (DUMR2). DUMR2 controls some of the serial module
configuration. It is accessed when the channel A mode register pointer points to DUMR2,
which ocurs after any access to DUMR1. Accesses to DUMR2 do not change the pointer.

DUMR2A, DUMR2B
7 6 5 4 3 2 1 0

CM1 CM0 TxRTS TxCTS SB3 SB2 SB1 SB0

RESET:
0 0 0 0 0 0 0 0

Read/Write

CM1–CM0—Channel Mode
These bits select a channel mode as listed in Table 6-3. See 6.3.3 Looping Modes for
more information on the individual modes.

MOTOROLA MC68306 USER'S MANUAL 6-21

Table 6-3. CMx Control Bits

CM1 CM0 Mode

0 0 Normal

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback

TxRTS—Transmitter Ready-to-Send
This bit controls the negation of the RTSA or RTSB signals. The output is normally
asserted by setting OP0 or OP1 and negated by clearing OP0 or OP1 (see 6.4.1.18
Output Port Control Register (DUOPCR)).

1 = In applications where the transmitter is disabled after transmission is complete,
setting this bit causes the particular OP bit to be cleared automatically one bit
time after the characters, if any, in the channel transmit shift register and the
transmitter holding register are completely transmitted, including the programmed
number of stop bits. This feature is used to automatically terminate transmission
of a message. If both the receiver and the transmitter in the same channel are
programmed for RTS control, RTS control is disabled for both since this is an
incorrect configuration.

0 = The transmitter has no effect on RTS≈.

TxCTS—Transmitter Clear-to-Send
1 = Enables clear-to-send operation. The transmitter checks the state of the CTS≈

input each time it is ready to send a character. If CTS≈ is asserted, the character
is transmitted. If CTS≈ is negated, the channel TxDx remains in the high state,
and the transmission is delayed until CTS≈ is asserted. Changes in CTS≈ while a
character is being transmitted do not affect transmission of that character. If both
TxCTS and TxRTS are enabled, TxCTS controls the operation of the transmitter.

0 = The CTS≈ has no effect on the transmitter.

SB3–SB0—Stop-Bit Length Control
These bits select the length of the stop bit appended to the transmitted character as
listed in Table 6-4. Stop-bit lengths of nine-sixteenth to two bits, in increments of one-
sixteenth bit, are programmable for character lengths of six, seven, and eight bits. For a
character length of five bits, one and one-sixteenth to two bits are programmable in
increments of one-sixteenth bit. In all cases, the receiver only checks for a high
condition at the center of the first stop-bit position—i.e., one bit time after the last data
bit or after the parity bit, if parity is enabled.
If an external 1× clock is used for the transmitter, DUMR2 bit 3 = 0 selects one stop bit,
and DUMR2 bit 3 = 1 selects two stop bits for transmission.

6-22 MC68306 USER'S MANUAL MOTOROLA

Table 6-4. SBx Control Bits

SB3 SB2 SB1 SB0 Length 6-8 Bits Length 5 Bits

0 0 0 0 0.563 1.063

0 0 0 1 0.625 1.125

0 0 1 0 0.688 1.188

0 0 1 1 0.750 1.250

0 1 0 0 0.813 1.313

0 1 0 1 0.875 1.375

0 1 1 0 0.938 1.438

0 1 1 1 1.000 1.500

1 0 0 0 1.563 1.563

1 0 0 1 1.625 1.625

1 0 1 0 1.688 1.688

1 0 1 1 1.750 1.750

1 1 0 0 1.813 1.813

1 1 0 1 1.875 1.875

1 1 1 0 1.938 1.938

1 1 1 1 2.000 2.000

6.4.1.3 STATUS REGISTER (DUSR). The DUSR indicates the status of the characters in
the FIFO and the status of the channel transmitter and receiver.

DUSRA, DUSRB
7 6 5 4 3 2 1 0

RB FE PE OE TxEMP TxRDY FFULL RxRDY

RESET:
0 0 0 0 0 0 0 0

Read Only

RB—Received Break
1 = An all-zero character of the programmed length has been received without a stop

bit. The RB bit is only valid when the RxRDY bit is set. Only a single FIFO
position is occupied when a break is received. Further entries to the FIFO are
inhibited until the channel RxDx returns to the high state for at least one-half bit
time, which is equal to two successive edges of the internal or external 1× clock
or 16 successive edges of the external 16× clock.
The received break circuit detects breaks that originate in the middle of a
received character. However, if a break begins in the middle of a character, it
must persist until the end of the next detected character time.

0 = No break has been received.

MOTOROLA MC68306 USER'S MANUAL 6-23

FE—Framing Error
1 = A stop bit was not detected when the corresponding data character in the FIFO

was received. The stop-bit check is made in the middle of the first stop-bit
position. The bit is valid only when the RxRDY bit is set.

0 = No framing error has occurred.

PE—Parity Error
1 = When the with parity or force parity mode is programmed in the DUMR1, the

corresponding character in the FIFO was received with incorrect parity. When the
multidrop mode is programmed, this bit stores the received A/D bit. This bit is
valid only when the RxRDY bit is set.

0 = No parity error has occurred.

OE—Overrun Error
1 = One or more characters in the received data stream have been lost. This bit is

set upon receipt of a new character when the FIFO is full and a character is
already in the shift register waiting for an empty FIFO position. When this occurs,
the character in the receiver shift register and its break detect, framing error
status, and parity error, if any, are lost. This bit is cleared by the reset error status
command in the DUCR.

0 = No overrun has occurred.

TxEMP—Transmitter Empty
1 = The channel transmitter has underrun (both the transmitter holding register and

transmitter shift registers are empty). This bit is set after transmission of the last
stop bit of a character if there are no characters in the transmitter holding register
awaiting transmission.

0 = The transmitter buffer is not empty. Either a character is currently being shifted
out, or the transmitter is disabled. The transmitter is enabled/disabled by
programming the TCx bits in the DUCR.

TxRDY—Transmitter Ready
This bit is duplicated in the DUISR; bit 0 for channel A and bit 4 for channel B.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted.

0 = The transmitter holding register was loaded by the CPU, or the transmitter is
disabled.

FFULL—FIFO Full
1 = A character has been received in channel B and is waiting in the receiver buffer

FIFO.
0 = The FIFO is not full, but may contain up to two unread characters.

6-24 MC68306 USER'S MANUAL MOTOROLA

RxRDY—Receiver Ready
1 = One or more characters has been received in channel B and is waiting in the

receiver buffer FIFO.
0 = The CPU has read the receiver buffer, and no characters remain in the FIFO

after this read.

6.4.1.4 CLOCK-SELECT REGISTER (DUCSR). The DUCSR selects the baud rate clock
for the channel receiver and transmitter.

DUCSRA, DUCSRB
7 6 5 4 3 2 1 0

RCS3 RCS2 RCS1 RCS0 TCS3 TCS2 TCS1 TCS0

RESET:
0 0 0 0 0 0 0 0

Write Only

RCS3–RCS0—Receiver Clock Select
These bits select the baud rate clock for the channel receiver from a set of baud rates
listed in Table 6-5. The baud rate set selected depends upon the auxiliary control
register (DUACR) bit 7. Set 1 is selected if DUACR bit 7 = 0, and set 2 is selected if
DUACR bit 7 = 1. The receiver clock is always 16 times the baud rate shown in this list,
except when the clock select bits = 1111.

MOTOROLA MC68306 USER'S MANUAL 6-25

Table 6-5. RCSx Control Bits

RCS3 RCS2 RCS1 RCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 TIMER TIMER

1 1 1 0 – –

1 1 1 1 – –

TCS3–TCS0—Transmitter Clock Select
These bits select the baud rate clock for the channel transmitter from a set of baud rates
listed in Table 6-6 The baud rate set selected depends upon DUACR bit 7. Set 1 is
selected if DUACR bit 7 = 0, and set 2 is selected if DUACR bit 7 = 1. The transmitter
clock is always 16 times the baud rate shown in this list, except when the clock select
bits = 1111.

6-26 MC68306 USER'S MANUAL MOTOROLA

Table 6-6. TCSx Control Bits

TCS3 TCS2 TCS1 TCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 TIMER TIMER

1 1 1 0 – –

1 1 1 1 – –

6.4.1.5 COMMAND REGISTER (DUCR). The DUCR is used to supply commands to the
channel. Multiple commands can be specified in a single write to the DUCR if the
commands are not conflicting—e.g., reset transmitter and enable transmitter commands
cannot be specified in a single command.

DUCRA, DUCRB
7 6 5 4 3 2 1 0

– MISC2 MISC1 MISC0 TC1 TC0 RC1 RC0

RESET:
0 0 0 0 0 0 0 0

Write Only

MISC3–MISC0—Miscellaneous Commands
These bits select a single command as listed in Table 6-7.

MOTOROLA MC68306 USER'S MANUAL 6-27

Table 6-7. MISCx Control Bits

MISC2 MISC1 MISC0 Command

0 0 0 No Command

0 0 1 Reset Mode Register Pointer

0 1 0 Reset Receiver

0 1 1 Reset Transmitter

1 0 0 Reset Error Status

1 0 1 Reset Break-Change Interrupt

1 1 0 Start Break

1 1 1 Stop Break

Reset Mode Register Pointer—The reset mode register pointer command causes the
mode register pointer to point to DUMR1.

Reset Receiver—The reset receiver command resets the channel receiver. The receiver
is immediately disabled, the FFULL and RxRDY bits in the DUSR are cleared, and the
receiver FIFO pointer is reinitialized. All other registers are unaltered. This command
should be used in lieu of the receiver disable command whenever the receiver
configuration is changed because it places the receiver in a known state.

Reset Transmitter—The reset transmitter command resets the channel transmitter. The
transmitter is immediately disabled, and the TxEMP and TxRDY bits in the DUSR are
cleared. All other registers are unaltered. This command should be used in lieu of the
transmitter disable command whenever the transmitter configuration is changed
because it places the transmitter in a known state.

Reset Error Status—The reset error status command clears the channel's RB, FE, PE,
and OE bits (in the DUSR). This command is also used in the block mode to clear all
error bits after a data block is received.

Reset Break-Change Interrupt—The reset break-change interrupt command clears the
delta break (DBx) bits in the DUISR.

Start Break—The start break command forces the channel's TxDx low. If the transmitter
is empty, the start of the break conditions can be delayed up to one bit time. If the
transmitter is active, the break begins when transmission of the character is complete. If
a character is in the transmitter shift register, the start of the break is delayed until the
character is transmitted. If the transmitter holding register has a character, that
character is transmitted after the break. The transmitter must be enabled for this
command to be accepted. The state of the CTS≈ input is ignored for this command.

Stop Break—The stop break command causes the channel's TxDx to go high (mark)
within two bit times. Characters stored in the transmitter buffer, if any, are transmitted.

TC1–TC0—Transmitter Commands
These bits select a single command as listed in Table 6-8.

6-28 MC68306 USER'S MANUAL MOTOROLA

Table 6-8. TCx Control Bits

TC1 TC0 Command

0 0 No Action Taken

0 1 Enable Transmitter

1 0 Disable Transmitter

1 1 Do Not Use

No Action Taken—The no action taken command causes the transmitter to stay in its
current mode. If the transmitter is enabled, it remains enabled; if disabled, it remains
disabled.

Transmitter Enable—The transmitter enable command enables operation of the
channel's transmitter. The TxEMP and TxRDY bits in the DUSR are also set. If the
transmitter is already enabled, this command has no effect.

Transmitter Disable—The transmitter disable command terminates transmitter operation
and clears the TxEMP and TxRDY bits in the DUSR. However, if a character is being
transmitted when the transmitter is disabled, the transmission of the character is
completed before the transmitter becomes inactive. If the transmitter is already
disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

RC1–RC0—Receiver Commands
These bits select a single command as listed in Table 6-9.

Table 6-9. RCx Control Bits

RC1 RC0 Command

0 0 No Action Taken

0 1 Enable Receiver

1 0 Disable Receiver

1 1 Do Not Use

No Action Taken—The no action taken command causes the receiver to stay in its
current mode. If the receiver is enabled, it remains enabled; if disabled, it remains
disabled.

Receiver Enable—The receiver enable command enables operation of the channel's
receiver. If the serial module is not in multidrop mode, this command also forces the
receiver into the search-for-start-bit state. If the receiver is already enabled, this
command has no effect.

Receiver Disable—The receiver disable command disables the receiver immediately.
Any character being received is lost. The command has no effect on the receiver status
bits or any other control register. If the serial module is programmed to operate in the

MOTOROLA MC68306 USER'S MANUAL 6-29

local loopback mode or multidrop mode, the receiver operates even though this
command is selected. If the receiver is already disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

6.4.1.6 RECEIVER BUFFER (DURB). The receiver buffer contains three receiver holding
registers and a serial shift register. The channel's RxDx pin is connected to the serial shift
register. The holding registers act as a FIFO. The CPU reads from the top of the stack
while the receiver shifts and updates from the bottom of the stack when the shift register
has been filled (see Figure 6-4).

DURBA, DURBB
7 6 5 4 3 2 1 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

RESET:
0 0 0 0 0 0 0 0

Read Only

RB7–RB0—These bits contain the character in the receiver buffer.

6.4.1.7 TRANSMITTER BUFFER (DUTB). The transmitter buffer consists of two registers,
the transmitter holding register and the transmitter shift register (see Figure 6-4). The
holding register accepts characters from the bus master if the TxRDY bit in the channel's
DUSR is set. A write to the transmitter buffer clears the TxRDY bit, inhibiting any more
characters until the shift register is ready to accept more data. When the shift register is
empty, it checks to see if the holding register has a valid character to be sent (TxRDY bit
cleared). If there is a valid character, the shift register loads the character and reasserts
the TxRDY bit in the channel's DUSR. Writes to the transmitter buffer when the channel's
DUSR TxRDY bit is clear and when the transmitter is disabled have no effect on the
transmitter buffer.

DUTBA, DUTBB
7 6 5 4 3 2 1 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

RESET:
0 0 0 0 0 0 0 0

Write Only

TB7–TB0—These bits contain the character in the transmitter buffer.

6.4.1.8 INPUT PORT CHANGE REGISTER (DUIPCR). The DUIPCR shows the current
state and the change-of-state for the IP0, IP1, and IP2 pins.

DUIPCR
7 6 5 4 3 2 1 0

0 COS2 COS1 COS0 1 IP2 IP1 IP0

RESET:
0 0 0 0 1 IP2 IP1 IP0

Read Only

6-30 MC68306 USER'S MANUAL MOTOROLA

Bits 7, 6, 3, 2—Reserved

COS2, COS1, COS0—Change-of-State
1 = A change-of-state (high-to-low or low-to-high transition), lasting longer than 25–

50 µs has occurred at the corresponding IPx input. When these bits are set, the
DUACR can be programmed to generate an interrupt to the CPU.

0 = No change-of-state has occurred since the last time the CPU read the DUIPCR.
A read of the DUIPCR also clears the DUISR COS bit.

IP2, IP1, IP0—Current State
Starting two serial clock periods after reset, the IPx bits reflect the state of the IPx pins.
If a CTS≈ pin is detected as asserted at that time, the associated COSx bit will be set,
which will initiate an interrupt if the corresponding IECx bit of the DUACR register is
enabled.

1 = The current state of the respective IPx input is logic one (negated, if used as
CTS).

0 = The current state of the respective IPx input is logic zero (asserted, if used as
CTS).

6.4.1.9 AUXILIARY CONTROL REGISTER (DUACR). The DUACR selects which baud
rate is used and controls the handshake of the transmitter/receiver.

DUACR
7 6 5 4 3 2 1 0

BRG CTMS2 CTMS1 CTMS0 – IEC2 IEC1 IEC0

RESET:
0 0 0 0 0 0 0 0

Write Only

BRG—Baud Rate Generator Set Select
1 = Set 2 of the available baud rates is selected.
0 = Set 1 of the available baud rates is selected. Refer to 6.4.1.4 Clock-Select

Register (DUCSR) for more information on the baud rates.

CTMS2–0— Counter/Timer Mode and Source Select
Table 6-10 lists the counter/timer mode and source select bit fields.

MOTOROLA MC68306 USER'S MANUAL 6-31

Table 6-10. Counter/Timer Mode and Source Select Bits

MISC2 MISC1 MISC0 Mode Command Clock Source Select Command

0 0 0 Counter External–IP2

0 0 1 Counter TxCA

0 1 0 Counter TxCB

0 1 1 Counter Crystal or External Clock

1 0 0 Timer External–IP2

1 0 1 Timer External–IP2 Divided by 16

1 1 0 Timer Crystal or External Clock

1 1 1 Timer External Clock Divided by 16

IEC2, IEC1, IEC0—Input Enable Control
1 = DUISR bit 7 will be set and an interrupt will be generated when the

corresponding bit in the DUIPCR (COS2, COS1, or COS0) is set by an external
transition on the IPx input (if bit 7 of the interrupt mask register (DUIMR) is set to
enable interrupts).

0 = Setting the corresponding bit in the DUIPCR has no effect on DUISR bit 7.

6.4.1.10 INTERRUPT STATUS REGISTER (DUISR). The DUISR provides status for all
potential interrupt sources. The contents of this register are masked by the DUIMR. If a
flag in the DUISR is set and the corresponding bit in DUIMR is also set, the IRQ output is
asserted. If the corresponding bit in the DUIMR is cleared, the state of the bit in the
DUISR has no effect on the output.

NOTE

The IDUMR does not mask reading of the DUISR. True status
is provided regardless of the contents of DUIMR. The contents
of DUISR are cleared when the serial module is reset.

DUISR
7 6 5 4 3 2 1 0

COS DBB RxRDYB TxRDYB CTR/TM
R

_RDY

DBA RxRDYA TxRDYA

RESET:
0 0 0 0 1 0 0 0

Read Only

COS—Change-of-State
1 = A change-of-state has occurred at one of the IPx inputs and has been selected to

cause an interrupt by programming bit 2, 1 and/or bit 0 of the DUACR.
0 = No selected COSx in the DUIPCR.

6-32 MC68306 USER'S MANUAL MOTOROLA

DBB—Delta Break B
1 = The channel B receiver has detected the beginning or end of a received break.
0 = No new break-change condition to report. Refer to 6.4.1.5 Command Register

(DUCR) for more information on the reset break-change interrupt command.

RxRDYB—Channel B Receiver Ready or FIFO Full
The function of this bit is programmed by DUMR1B bit 6. It is a duplicate of either the

FFULL or RxRDY bit of DUSRB.

TxRDYB—Channel B Transmitter Ready
This bit is the duplication of the TxRDY bit in DUSRB.

1 = The transmitter holding register is empty and ready to be loaded with a character.
0 = The transmitter holding register was loaded by the CPU, or the transmitter is

disabled. Characters loaded into the transmitter holding register when TxRDYx=0
are not transmitted.

CTR/TMR_RDY—Counter/Timer Ready
1 = Counter/timer ready.
0 = Counter/timer not ready.

DBA—Delta Break A. See DBB.

RxRDYA—Channel A Receiver Ready or FIFO Full. See RxRDYB.
The function of this bit is programmed by DUMR1A bit 6.

TxRDYA—Channel A Transmitter Ready. See TxRDYB.
This bit is the duplication of the TxRDY bit in DUSRA.

6.4.1.11 INTERRUPT MASK REGISTER (DUIMR). The DUIMR selects the corresponding
bits in the DUISR that cause an interrupt output (IRQ). If one of the bits in the DUISR is
set and the corresponding bit in the DUIMR is also set, the IRQ output is asserted. If the
corresponding bit in the DUIMR is zero, the state of the bit in the DUISR has no effect on
the IRQ output. The DUIMR does not mask the reading of the DUISR.

DUIMR
7 6 5 4 3 2 1 0

COS DBB FFULLB TxRDYB CTR/TM
R

_RDY

DBA FFULLA TxRDYA

RESET:
0 0 0 0 0 0 0 0

Write Only

COS—Change-of-State
1 = Enable interrupt
0 = Disable interrupt

MOTOROLA MC68306 USER'S MANUAL 6-33

DBB—Delta Break B
1 = Enable interrupt
0 = Disable interrupt

FFULLB—Channel B FIFO Full
1 = Enable interrupt
0 = Disable interrupt

TxRDYB, TxRDYA—Transmitter Ready
1 = Enable interrupt
0 = Disable interrupt

CTR/TMR_RDY—Counter/Timer Ready
1 = Enable interrupt
0 = Disable interrupt

DBA—Delta Break A
1 = Enable interrupt
0 = Disable interrupt

FFULLA—Channel A FIFO Full
1 = Enable interrupt
0 = Disable interrupt

6.4.1.12 COUNT REGISTER: CURRENT MSB OF COUNTER (DUCUR). This register
holds the most-significant byte of the current value in the counter/timer. It should only be
read when the counter/timer is in counter mode and the counter is stopped. See 6.3.5
Counter/Timer for further information.

6.4.1.13 COUNT REGISTER: CURRENT LSB OF COUNTER (DUCLR). This register
holds the least-significant byte of the current value in the counter/timer. It should only be
read when the counter/timer is in counter mode and the counter is stopped. See 6.3.5
Counter/Timerfor further information.

6.4.1.14 COUNTER/TIMER UPPER PRELOAD REGISTER (DUCTUR). This register
holds the eight most-significant bits of the preload value to be used by the conter/timer in
either the count or timer mode. The minimum value that can be loaded on the
concatenation of DUCTUR with DUCTLR is 0002 (hex). This register is write only and
cannot be read by the CPU.

6.4.1.15 COUNTER/TIMER LOWER PRELOAD REGISTER (DUCTLR). This register
holds the eight least-significant bits of the preload value to be used by the conter/timer in
either the count or timer mode. The minimum value that can be loaded on the
concatenation of DUCTUR with DUCTLR is 0002 (hex). This register is write only and
cannot be read by the CPU.

6-34 MC68306 USER'S MANUAL MOTOROLA

6.4.1.16 INTERRUPT VECTOR REGISTER (DUIVR). The DUIVR contains the 8-bit
vector number of the IRQ interrupt.

DUIVR
7 6 5 4 3 2 1 0

IVR7 IVR6 IVR5 IVR4 IVR3 IVR2 IVR1 IVR0

RESET:
0 0 0 0 1 1 1 1

Read /Write

IVR7–IVR0—Interrupt Vector Bits
Each module that generates interrupts can have an interrupt vector field. This 8-bit
number indicates the offset from the base of the vector table where the address of the
exception handler for the specified interrupt is located. The DUIVR is reset to $0F,
which indicates an uninitialized interrupt condition. See Section 4 EC000 Core
Processor for more information.

6.4.1.17 INPUT PORT REGISTER. The DUIP register shows the current state of the IPx
inputs.

DUIP
7 6 5 4 3 2 1 0

1 1 IP5 IP4 IP3 IP2 IP1 IP0

1 1 1 1 1 IP2 IP1 IP0

Read Only

IP5, IP4, IP3, IP2, IP1, IP0—Current State
1 = The current state of the respective IP input is logic one.
0 = The current state of the respective IP input is logic zero.

The information contained in these bits is latched and reflects the state of the input pins
at the time that the DUIP is read.

NOTE

These bits have the same function and value of the DUIPCR
bits 1 and 0.

IP5, IP4, and IP3 are not pinned out on the MC68306, and are
internally set to logic one.

6.4.1.18 OUTPUT PORT CONTROL REGISTER (DUOPCR). The DUOPCR configures
six bits of the 8-bit parallel DUOP for general-purpose use or for auxiliary functions serving
the communication channels.

MOTOROLA MC68306 USER'S MANUAL 6-35

DUOPCR
7 6 5 4 3 2 1 0

OP7
T≈RDYB

OP6
T≈RDYA

OP5
R≈RDYB

OP4
R≈RDYA

OP3 OP2

RESET:
0 0 0 0 0 0 0 0

Write Only

NOTE

OP bits 7, 6, 5, 4, and 2 are not pinned out on the MC68306;
thus changing bits 7, 6, 5, 4, 1, and 0 of this register has no
effect.

OPCR3–OPCR2—Output Port 3 Function Select
00 = OPR bit 3
01 = Counter/timer output
10 = TxCB (1X)
11 = RxCB (1X)

NOTE

OP3 is open-drain in this mode, and an external pullup is
required.

OPCR1–OPCR0—Output Port 2 Function Select
00 = OPR bit 2
01 = TxCA (16X)
10 = TxCA (1X)
11 = RxCA (1X)

6-36 MC68306 USER'S MANUAL MOTOROLA

6.4.1.19 OUTPUT PORT DATA REGISTER (DUOP). The bits in the DUOP register are
set by performing a bit set command (writing to $FFFFF7FD) and are cleared by
performing a bit reset command (writing to offset $FFFFF7FF).

Bit Set

DUOP
7 6 5 4 3 2 1 0

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0

RESET:
0 0 0 0 0 0 0 0

Write Only

NOTE

The output port bits are inverted at the pins.

OP bits 7, 6, 5, 4, and 2 are not pinned out on the MC68306;
thus, changing these bits has no effect.

OP3, OP1, OP0 —Output Port Parallel Outputs
1 = A write cycle to the OP bit set command address sets all OP bits corresponding

to one bits on the data bus.
0 = These bits are not affected by writing a zero to this address.

Bit Reset

DUOP
7 6 5 4 3 2 1 0

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0

RESET:
0 0 0 0 0 0 0 0

Write Only

OP3, OP1, OP0 —Output Port Parallel Outputs
1 = A write cycle to the OP bit reset command address clears all OP bits

corresponding to one bits on the data bus.
0 = These bits are not affected by writing a zero to this address.

6.4.1.20 Start Counter Command Register. A read at this address starts the
counter/timer. The read data has no meaning.

6.4.1.21 Stop Counter Command Register. A read at this address stops the counter and
clears the counter output (visible on OP3) if counter mode is selected. A read at this
address also clears DUISR CTR/TMR_RDY bit in counter or timer mode. The read data
has no meaning.

MOTOROLA MC68306 USER'S MANUAL 6-37

6.4.2 Programming

The basic interface software flowchart required for operation of the serial module is shown
in Figure 6-10. The routines are divided into three categories:

• Serial Module Initialization

• I/O Driver

• Interrupt Handling

6.4.2.1 SERIAL MODULE INITIALIZATION. The serial module initialization routines
consist of SINIT and CHCHK. SINIT is called at system initialization time to check channel
A and channel B operation. Before SINIT is called, the calling routine allocates two words
on the system stack. Upon return to the calling routine, SINIT passes information on the
system stack to reflect the status of the channels. If SINIT finds no errors in either channel
A or channel B, the respective receivers and transmitters are enabled. The CHCHK
routine performs the actual channel checks as called from the SINIT routine. When called,
SINIT places the specified channel in the local loopback mode and checks for the
following errors:

• Transmitter Never Ready

• Receiver Never Ready

• Parity Error

• Incorrect Character Received

6.4.2.2 I/O DRIVER EXAMPLE. The I/O driver routines consist of INCH and OUTCH.
INCH is the terminal input character routine and gets a character from the channel
receiver. OUTCH is used to send a character to the channel transmitter.

6.4.2.3 INTERRUPT HANDLING. The interrupt handling routine consists of SIRQ, which
is executed after the serial module generates an interrupt caused by a channel A change-
in-break (beginning of a break). SIRQ then clears the interrupt source, waits for the next
change-in-break interrupt (end of break), clears the interrupt source again, then returns
from exception processing to the system monitor.

6-38 MC68306 USER'S MANUAL MOTOROLA

SERIAL MODULE

INITIATE:

CHANNEL A
CHANNEL B
INTERRUPTS

POINT TO CHANNEL A

SAVE CHANNEL A
STATUS

POINT TO CHANNEL B

SAVE CHANNEL B
STATUS

ANY
ERRORS IN
CHANNEL A

?

ENABLE CHANNEL
A'S RECEIVER

ASSERT CHANNEL A
REQUEST TO SEND

ANY
ERRORS IN
CHANNEL B

?

ENABLE CHANNEL
B'S TRANSMITTER

RETURN

SINIT

CHK1

CHK2

ENABLA

Y

N

ENABLB

SINITR

CALL CHCHK

CALL CHCHK

Y

N

Figure 6-10. Serial Module Programming Flowchart (1 of 5)

MOTOROLA MC68306 USER'S MANUAL 6-39

N

Y

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK

MODE

ENABLE CHANNEL'S
TRANSMITTER

 CLEAR CHANNEL
STATUS WORD

IS
TRANSMITTER

READY
?

WAITED
TOO LONG

?

WAITED
TOO LONG

?

N

Y

SEND CHARACTER
TO TRANSMITTER

HAS
RECEIVER
RECEIVED

CHARACTER
?

CHCHK

TxCHK

SNDCHR

RxCHK
N

YN

SET TRANSMITTER-
NEVER-READY FLAG

SET RECEIVER-
NEVER-READY FLAG

A B

Y

Figure 6-10. Serial Module Programming Flowchart (2 of 5)

6-40 MC68306 USER'S MANUAL MOTOROLA

B

Y

N

N

A

Y

A B

Y

N

RETURN

HAVE
FRAMING ERROR

?

SET FRAMING
ERROR FLAG

HAVE
PARITY ERROR

?

SET PARITY
ERROR FLAG

GET CHARACTER
FROM RECEIVER

SAME
AS CHARACTER
TRANSMITTED

?

SET INCORRECT
CHARACTER FLAG

DISABLE CHANNEL'S
TRANSMITTER

RESTORE CHANNEL
TO ORIGINAL MODE

FRCHK RSTCHN

PRCHK

CHRCHK

Figure 6-10. Serial Module Programming Flowchart (3 of 5)

MOTOROLA MC68306 USER'S MANUAL 6-41

WAS
IRQx CAUSED
BY BEGINNING

OF A BREAK
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

HAS
END-OF-BREAK
IRQx ARRIVED

YET
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

REMOVE BREAK
CHARACTER FROM

RECEIVER FIFO

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

RTE

SIRQR

N

Y

N

DOES
CHANNEL A

RECEIVER HAVE A
CHARACTER

?

SAVE IN
SYSTEM BUFFER

N

Y

ABRKI1

ABRKI

Y

INCH

RETURN

 SIRQ

Figure 6-10. Serial Module Programming Flowchart (4 of 5)

6-42 MC68306 USER'S MANUAL MOTOROLA

OUTCH

N

Y

IS
CHANNEL

TRANSMITTER
READY

?

SEND CHARACTER
TO CHANNEL

TRANSMITTER

RETURN

Figure 6-10. Serial Module Programming Flowchart (5 of 5)

MOTOROLA MC68306 USER'S MANUAL 6-43

6.5 SERIAL MODULE INITIALIZATION SEQUENCE

If the serial capability of the MC68306 is being used, the following steps are required to
properly initialize the serial module.

NOTE

The serial module registers can be accessed by word or byte
operations, but only the data byte D7–D0 is valid.

Command Register (DUCR)
• Reset the receiver and transmitter for each channel.

The following steps program both channels:

Interrupt Vector Register (DUIVR)
• Program the vector number for a serial module interrupt.

Interrupt Mask Register (DUIMR)
• Enable the desired interrupt sources.

Auxiliary Control Register (DUACR)
• Select baud rate set (BRG bit).

• Initialize the input enable control (IEC bits).

• Select counter/timer mode and clock source if necessary.

Output Port Control Register (DUOPCR)
• Select the function of the output port pins.

The following steps are channel specific:

Clock Select Register (DUCSR)
• Select the receiver and transmitter clock.

Mode Register 1 (DUMR1)
• If desired, program operation of receiver ready-to-send (RxRTS bit).

• Select receiver-ready or FIFO-full notification (R/F bit).

• Select character or block error mode (ERR bit).

• Select parity mode and type (PM and PT bits).

• Select number of bits per character (B/Cx bits).

Mode Register 2 (DUMR2)
• Select the mode of channel operation (CMx bits).

• If desired, program operation of transmitter ready-to-send (TxRTS bit).

6-44 MC68306 USER'S MANUAL MOTOROLA

• If desired, program operation of clear-to-send (TxCTS bit).

• Select stop-bit length (SBx bits).

Command Register (DUCR)
• Enable the receiver and transmitter.

MOTOROLA MC68306 USER'S MANUAL 7-1

SECTION 7
IEEE 1149.1 TEST ACCESS PORT

The MC68306 includes dedicated user-accessible test logic that is fully compatible with
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to development of this
standard under the sponsorship of the Test Technology Committee of IEEE and the Joint
Test Action Group (JTAG). The MC68306 implementation supports circuit-board test
strategies based on this standard.

The test logic includes a test access port (TAP) consisting of five dedicated signal pins, a
16-state controller, an instruction register, and four test data registers. A boundary scan
register links all device signal pins into a single shift register. The test logic, implemented
using static logic design, is independent of the device system logic. The MC68306
implementation provides the following capabilities:

a. Perform boundary scan operations to test circuit-board electrical continuity

b. Sample the MC68306 system pins during operation and transparently shift
out the result in the boundary scan register

c. Bypass the MC68306 for a given circuit-board test by effectively reducing the
boundary scan register to a single bit

d. Disable the output drive to pins during circuit-board testing

e. Drive output pins to stable levels

NOTE

Certain precautions must be observed to ensure that the IEEE
1149.1 test logic does not interfere with non-test operation.
See 7.6 Non-IEEE 1149.1 Operation for details.

7.1 OVERVIEW

NOTE

This description is not intended to be used without the
supporting IEEE 1149.1 document.

The discussion includes those items required by the standard and provides additional
information specific to the MC68306 implementation. For internal details and applications
of the standard, refer to the IEEE 1149.1 document.

7-2 MC68306 USER'S MANUAL MOTOROLA

An overview of the MC68306 implementation of IEEE 1149.1 is shown in Figure 7-1. The
MC68306 implementation includes a 16-state controller, a 3-bit instruction register, and
four test registers (a 1-bit bypass register, a 124-bit boundary scan register, a 3-bit module
mode register, and a 32-bit ID register). This implementation includes a dedicated TAP
consisting of the following signals:

TRST — active low JTAG logic reset (with pullup).
TCK — test clock input to synchronize the test logic (with pulldown).
TMS — test mode select input (with an internal pullup resistor) that is sampled on the

rising edge of TCK to sequence the TAP controller's state machine.
TDI — test data input (with an internal pullup resistor) that is sampled on the rising

edge of TCK.
TDO — three-state test data output that is actively driven in the shift-IR and shift-DR

controller states. TDO changes on the falling edge of TCK.

3-BIT INSTRUCTION REGISTER

TAP
CTLR

TMS

TCK

BOUNDARY SCAN REGISTER

BYPASS

TDI

M
U
X

M
U
X TDO

TEST DATA REGISTERS

(124 BITS)

2 0

123 0

TRST

2 0

31 0

ID = 2040101D

MODE

ID

DECODER

Figure 7-1. Test Access Port Block Diagram

MOTOROLA MC68306 USER'S MANUAL 7-3

7.2 TAP CONTROLLER

The TAP controller is responsible for interpreting the sequence of logical values on the
TMS signal. It is a synchronous state machine that controls the operation of the JTAG
logic. The state machine is shown in Figure 7-2; the value shown adjacent to each arc
represents the value of the TMS signal sampled on the rising edge of the TCK signal. For
a description of the TAP controller states, please refer to the IEEE 1149.1 document.

TEST LOGIC
 RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR

UPDATE-DR

EXIT2-IR

UPDATE -IR

1

0
1 1

0

1

0

0

1

0

1

0

0

11

1

0

0

1

0

1

11

0

11
0

0

0

0

0

1

Figure 7-2. TAP Controller State Machine

7.3 BOUNDARY SCAN REGISTER

The MC68306 IEEE 1149.1 implementation has a 124-bit boundary scan register. This
register contains bits for all device signal and clock pins and associated control signals.

7-4 MC68306 USER'S MANUAL MOTOROLA

The XTAL and X2 pins are associated with analog signals and are not included in the
boundary scan register.

All MC68306 bidirectional pins, except the open-drain I/O pins (HALT, DTACK, BERR, and
RESET), have a single register bit for pin data and an associated control bit in the
boundary scan register. All open drain I/O pins have a single register bit for pin data and
no associated control bit. To ensure proper operation, the open-drain pins require external
pullups. Twenty-four control bits in the boundary scan register define the output enable
signal for associated groups of bidirectional and three-state pins. The control bits and their
bit positions are listed in Table 7-1.

Table 7-1. Boundary Scan Control Bits

Name Bit Number Name Bit Number Name Bit Number

OPOE3 8 PPOE15 26 PPOE7 42

PPOE8 12 PPOE0 28 DOE 58

PPOE9 14 PPOE1 30 HiZ 67

PPOE10 16 PPOE2 32 DRAMWOE 86

PPOE11 18 PPOE3 34 DRAMOE 88

PPOE12 20 PPOE4 36 CPMOE 97

PPOE13 22 PPOE5 38 CSOE 100

PPOE14 24 PPOE6 40 AOE 118

Boundary scan bit definitions are shown in Table 7-2. The first column in Table 7-2 defines
the bit's ordinal position in the boundary scan register. The shift register bit nearest TDO
(i.e., first to be shifted out) is defined as bit 0; the last bit to be shifted out is bit 123.

The second column references one of the five MC68306 cell types depicted in Figures
7-3–7-7, which describe the cell structure for each type.

The third column lists the pin name for all pin-related bits or defines the name of
bidirectional control register bits.

The last column indicates the associated boundary scan register control bit.

Bidirectional pins include a single scan bit for data (IO.Cell) as depicted in Figure 7-7.
These bits are controlled by one of the two bits shown in Figures 7-5 and 7-6. The value of
the control bit determines whether the bidirectional pin is an input or an output. One or
more bidirectional data bits can be serially connected to a control bit as shown in Figure
7-8. Note that, when sampling the bidirectional data bits, the bit data can be interpreted
only after examining the IO control bit to determine pin direction.

MOTOROLA MC68306 USER'S MANUAL 7-5

Table 7-2. Boundary Scan Bit Definitions

Bit
Num Cell Type Signal Control

Bit
Num Cell Type Signal Control

0 O.Cell OP1 HiZ 34 En.Cell PPOE3

1 O.Cell OP0 HiZ 35 IO.Cell PB3/IACK6 PPOE3

2 I.Cell IP1 36 En.Cell PPOE4

3 I.Cell IP0 37 IO.Cell PB4/IRQ2 PPOE4

4 O.Cell TXDB HiZ 38 En.Cell PPOE5

5 I.Cell RXDB 39 IO.Cell PB5/IRQ3 PPOE5

6 O.Cell TXDA HiZ 40 En.Cell PPOE6

7 I.Cell RXDA 41 IO.Cell PB6/IRQ5 PPOE6

8 En.Cell OPOE3 42 En.Cell PPOE7

9 O.Cell OP3 OPOE3 43 IO.Cell PB7/IRQ6 PPOE7

10 I.Cell IP2 44 O.Cell IACK1 HiZ

11 I.Cell X1 45 O.Cell IACK4 HiZ

12 En.Cell PPOE8 46 O.Cell IACK7 HiZ

13 IO.Cell PA0 PPOE8 47 I.Cell IRQ1

14 En.Cell PPOE9 48 I.Cell IRQ4

15 IO.Cell PA1 PPOE9 49 I.Cell IRQ7

16 En.Cell PPOE10 50 IO.Cell D0 DOE

17 IO.Cell PA2 PPOE10 51 IO.Cell D1 DOE

18 En.Cell PPOE11 52 IO.Cell D2 DOE

19 IO.Cell PA3 PPOE11 53 IO.Cell D3 DOE

20 En.Cell PPOE12 54 IO.Cell D4 DOE

21 IO.Cell PA4 PPOE12 55 IO.Cell D5 DOE

22 En.Cell PPOE13 56 IO.Cell D6 DOE

23 IO.Cell PA5 PPOE13 57 IO.Cell D7 DOE

24 En.Cell PPOE14 58 En.Cell DOE

25 IO.Cell PA6 PPOE14 59 IO.Cell D8 DOE

26 En.Cell PPOE15 60 IO.Cell D9 DOE

27 IO.Cell PA7 PPOE15 61 IO.Cell D10 DOE

28 En.Cell PPOE0 62 IO.Cell D11 DOE

29 IO.Cell PB0/IACK2 PPOE0 63 IO.Cell D12 DOE

30 En.Cell PPOE1 64 IO.Cell D13 DOE

31 IO.Cell PB1/IACK3 PPOE1 65 IO.Cell D14 DOE

32 En.Cell PPOE2 66 IO.Cell D15 DOE

33 IO.Cell PB2/IACK5 PPOE2 67 En.Cell HiZ

7-6 MC68306 USER'S MANUAL MOTOROLA

Table 7-2. Boundary Scan Bit Definitions (Continued)

Bit
Num

Cell Type
Signal Control

Bit
Num

Cell Type
Signal Control

68 IO.Cell BERR BERR 96 O.Cell CS3 CSOE

69 IO.Cell DTACK DTACK 97 En.Cell CPMOE

70 IO.Cell FC0 CPMOE 98 O.Cell A20/CS4 CSOE

71 IO.Cell FC1 CPMOE 99 O.Cell A21/CS5 CSOE

72 IO.Cell FC2 CPMOE 100 En.Cell CSOE

73 IOx0.Cell RESET RESET 101 O.Cell A22–CS6 CSOE

74 IOx0.Cell HALT HALT 102 O.Cell A23–CS7 CSOE

75 O.Cell CLKOUT HiZ 103 IO.Cell A1/DRAMA0 CPMOE

76 I.Cell BR 104 IO.Cell A2/DRAMA1 CPMOE

77 O.Cell BG HiZ 105 IO.Cell A3/DRAMA2 CPMOE

78 I.Cell BGACK 106 IO.Cell A4/DRAMA3 CPMOE

79 IO.Cell AS CPMOE 107 IO.Cell A5/DRAMA4 CPMOE

80 IO.Cell R/W CPMOE 108 IO.Cell A6/DRAMA5 CPMOE

81 IO.Cell UDS CPMOE 109 IO.Cell A7/DRAMA6 CPMOE

82 IO.Cell LDS CPMOE 110 IO.Cell A8/DRAMA7 CPMOE

83 O.Cell UW HiZ 111 IO.Cell A9/DRAMA8 CPMOE

84 O.Cell LW HiZ 112 IO.Cell A10/DRAMA9 CPMOE

85 O.Cell OE HiZ 113 IO.Cell A11/DRAMA10 CPMOE

86 En.Cell DRAMWOE 114 IO.Cell A12/DRAMA11 CPMOE

87 O.Cell DRAMW DRAMWOE 115 IO.Cell A13/DRAMA12 CPMOE

88 En.Cell DRAMOE 116 IO.Cell A14/DRAMA13 CPMOE

89 O.Cell RAS1 DRAMOE 117 IO.Cell A15/DRAMA14 CPMOE

90 O.Cell RAS0 DRAMOE 118 En.Cell AOE

91 O.Cell CAS1 DRAMOE 119 O.Cell A16 AOE

92 O.Cell CAS0 DRAMOE 120 O.Cell A17 AOE

93 O.Cell CS0 CSOE 121 O.Cell A18 AOE

94 O.Cell CS1 CSOE 122 O.Cell A19 AOE

95 O.Cell CS2 CSOE 123 I.Cell AMODE

MOTOROLA MC68306 USER'S MANUAL 7-7

1

MUX
1

G1

1
MUX

1

G1

FROM
LAST
CELL

1 D

C1

CLOCK DR

1 D

C1

UPDATE DR

SHIFT DR
TO NEXT

 CELL

TO OUTPUT
BUFFER

1 – EXTEST
0 – OTHERWISE

DATA FROM
SYSTEM

LOGIC

Figure 7-3. Output Cell (O.Cell)

FROM LAST
 CELL

1
MUX

1

G1

TO DEVICE
LOGIC

INPUT
 PIN

SHIFT DRCLOCK DR

1D

C1

TO NEXT
 CELL

Figure 7-4. Input Cell (I.Cell)

7-8 MC68306 USER'S MANUAL MOTOROLA

1
MUX

1

G1

1
MUX

1

G1

 OUTPUT
CONTROL

FROM
SYSTEM

LOGIC

FROM
LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 ENABLE

1 – EXTEST
0 – OTHERWISE

SHIFT DR

Figure 7-5. Output Control Cell (En.Cell)

1

MUX
1

G1

1
MUX

1

G1

OUTPUT
FROM

SYSTEM
LOGIC

FROM LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 DRIVER

 1 – EXTEST
 0 – OTHERWISE SHIFT DR

FROM PIN

INPUT TO
SYSTEM
LOGIC

Figure 7-6. Bidirectional Cell (IO.Cell)

MOTOROLA MC68306 USER'S MANUAL 7-9

1

MUX
1

G1

1
MUX

1

G1

OUTPUT
FROM

SYSTEM
LOGIC

FROM
PREVIOUS

CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 DRIVER

 1 – EXTEST
 0 – OTHERWISE SHIFT DR

FROM PIN

INPUT TO
SYSTEM
LOGIC

Figure 7-7. Bidirectional Cell (IOx0.Cell)

IO.CELL

EN

FROM LAST CELL

OUTPUT
DATA

INPUT
 DATA

OUTPUT
ENABLE

I/O
PIN

TO NEXT CELL

*

NOTE: More than one lO.Cell could be serially connected and controlled by a single En.Cell.

EN.CELL

Figure 7-8. General Arrangement for Bidirectional Pins

7.4 INSTRUCTION REGISTER

The MC68306 IEEE 1149.1 implementation includes the three mandatory public
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS), the optional public ID
instruction, plus one additional public instruction (CLAMP) defined by IEEE 1149.1. The

7-10 MC68306 USER'S MANUAL MOTOROLA

MC68306 includes a 3-bit instruction register without parity, consisting of a shift register
with three parallel outputs. Data is transferred from the shift register to the parallel outputs
during the update-IR controller state. The three bits are used to decode the six unique
instructions listed in Table 7-3.

The parallel output of the instruction register is reset to 001 in the test-logic-reset
controller state. Note that this preset state is equivalent to the ID instruction.

Table 7-3. Instructions

Code

B2 B1 B0 Instruction

0 0 0 EXTEST

0 0 1 ID

0 1 0 BYPASS

0 1 1 CLAMP

1 0 0 MODULE MODE

1 0 1 BYPASS

1 1 0 SAMPLE/PRELOAD

1 1 1 BYPASS

During the capture-IR controller state, the parallel inputs to the instruction shift register are
loaded with the 3-bit binary value (001). The parallel outputs, however, remain unchanged
by this action since an update-IR signal is required to modify them.

7.4.1 EXTEST (000)

The external test (EXTEST) instruction selects the 124-bit boundary scan register.
EXTEST asserts internal reset for the MC68306 system logic to force a predictable benign
internal state while performing external boundary scan operations.

By using the TAP, the register is capable of a) scanning user-defined values into the
output buffers, b) capturing values presented to input pins, c) controlling the direction of
bidirectional pins, and d) controlling the output drive of three-state output pins. For more
details on the function and uses of EXTEST, please refer to the IEEE 1149.1 document.

7.4.2 SAMPLE/PRELOAD (110)

The SAMPLE/PRELOAD instruction selects the 124-bit boundary scan register and
provides two separate functions. First, it provides a means to obtain a snapshot of system
data and control signals. The snapshot occurs on the rising edge of TCK in the capture-
DR controller state. The data can be observed by shifting it transparently through the
boundary scan register.

MOTOROLA MC68306 USER'S MANUAL 7-11

NOTE

Since there is no internal synchronization between the IEEE
1149.1 clock (TCK) and the system clock (CLKOUT), the user
must provide some form of external synchronization to achieve
meaningful results.

The second function of SAMPLE/PRELOAD is to initialize the boundary scan register
output bits prior to selection of EXTEST. This initialization ensures that known data will
appear on the outputs when entering the EXTEST instruction.

7.4.3 BYPASS (010, 101, 111)

The BYPASS instruction selects the single-bit bypass register as shown in Figure 7-9.
This creates a shift-register path from TDI to the bypass register and, finally, to TDO,
circumventing the 124-bit boundary scan register. This instruction is used to enhance test
efficiency when a component other than the MC68306 becomes the device under test.

1
MUX

1

G1

1 D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

Figure 7-9. Bypass Register

When the bypass register is selected by the current instruction, the shift-register stage is
set to a logic zero on the rising edge of TCK in the capture-DR controller state. Therefore,
the first bit to be shifted out after selecting the bypass register will always be a logic zero.

7.4.4 CLAMP (011)

When the CLAMP instruction is invoked, the boundary scan multiplexer control signal
EXTEST is asserted, and the BYPASS register is selected. CLAMP should be invoked
after valid data has been shifted into the boundary scan register, e.g. by
SAMPLE/PRELOAD. CLAMP allows static levels to be presented at the MC68306 output
and bidirectional pins, like EXTEST, but without the shift latency of the boundary scan
register from TDI to TDO.

7.5 MC68306 RESTRICTIONS

The control afforded by the output enable signals using the boundary scan register and
the EXTEST instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. The user must avoid situations in which the MC68306
output drivers are enabled into actively driven networks. Overdriving the TDO driver when
it is active is not recommended.

7-12 MC68306 USER'S MANUAL MOTOROLA

Also, the MC68306 contains dynamic logic, so EXTAL must be driven by a free-running
clock at all times.

7.6 NON-IEEE 1149.1 OPERATION

In non-IEEE 1149.1 operation, the IEEE 1149.1 test logic must be kept transparent to the
system logic by forcing the TAP controller into the test-logic-reset state. This requires
either:

1. An active (low) signal applied to TRST .

2. A minimum of five consecutive TCK rising edges withh TMS high. TMS has an
internal pullup, and may be left unconnected.

If TMS either remains unconnected or is connected to VCC, then the TAP controller
cannot leave the test-logic-reset state, regardless of the state of TCK or TRST.

MOTOROLA MC68306 USER'S MANUAL 8-1

This device contains protective
circuitry against damage due to
high static voltages or electrical
fields; however, it is advised that
normal precautions be taken to
avoid application of any voltages
higher than maximum-rated
voltages to this high-impedance
circuit. Reliability of operation is
enhanced if unused inputs are
tied to an appropriate logic
voltage level (e.g., either GND
or VCC).

SECTION 8
ELECTRICAL CHARACTERISTICS

This section contains detailed information on power considerations, DC/AC electrical
characteristics, and AC timing specifications of the MC68306. Refer to Section 9
Ordering Information and Mechanical Data for specific part numbers corresponding to
voltage, frequency, and temperature ratings.

8.1 MAXIMUM RATINGS
Rating Symbol Value Unit

Supply Voltage1, 2 VCC –0.3 to + 7.0 V

Input Voltage1, 2 Vin –0.3 to + 7.0 V

Operating Temperature Range TA 0 to 70 °C

Storage Temperature Range Tstg –55 to +150 °C

NOTES:
1. Permanent damage can occur if maximum ratings are exceeded. Exposure

to voltages or currents in excess of recommended values affects device
reliability. Device modules may not operate normally while being exposed
to electrical extremes.

2. Although sections of the device contain circuitry to protectagainst damage
from high static voltages or electrical fields, take normal precautions to
avoid exposure to voltages higher than maximum-rated voltages.

The following ratings define a range of conditions in which the device will operate without
being damaged. However, sections of the device may not operate normally while being
exposed to the electrical extremes.

8.2 THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit

Thermal Resistance—Junction to Case
Plastic 132-Pin QFP
Plastic 144-Pin Thin QFP

θJC
20*
20*

°C/W

Thermal Resistance—Junction to Ambient
Plastic 132-Pin QFP
Plastic 144-Pin Thin QFP

θJA
42*
42*

°C/W

* Estimated

8-2 MC68306 USER'S MANUAL MOTOROLA

8.3 POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:

TJ = TA + (PD • θJA) (1)

where:
TA = Ambient Temperature, °C
θJA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD = PINT + PI/O
PINT = IC C x VCC, Watts—Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins—User Determined

For most applications, PI/O < PINT and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

PD = K ÷ (TJ + 273°C)

Solving Equations (1) and (2) for K gives:

K = PD • (TA + 273°C) + θJA • PD2

where K is a constant pertaining to the particular part. K can be determined from equation
(3) by measuring PD (at thermal equilibrium) for a known TA. Using this value of K, the
values of PD and TJ can be obtained by solving Equations (1) and (2) iteratively for any
value of TA.

8.4 AC ELECTRICAL SPECIFICATION DEFINITIONS

The AC specifications presented consist of output delays, input setup and hold times, and
signal skew times. All signals are specified relative to an appropriate edge of the clock and
possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure
8-1. To test the parameters guaranteed by Motorola, inputs must be driven to the voltage
levels specified in that figure. Outputs are specified with minimum and/or maximum limits,
as appropriate, and are measured as shown in Figure 8-1. Inputs are specified with
minimum setup and hold times and are measured as shown. Finally, the measurement for
signal-to-signal specifications is also shown.

NOTE

The testing levels used to verify conformance to the AC
specifications do not affect the guaranteed DC operation of the
device as specified in the DC electrical specifications.

MOTOROLA MC68306 USER'S MANUAL 8-3

0.8 V

2.0 V

B

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0 V

0.8 V

2.0 V

0.8 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n+1

2.0 V

0.8 V

B

A

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

DRIVE
TO 0.5 V

DRIVE
TO 2.4 V

2.0 V

0.8 V

2.0 V

0.8 V

F

CLKOUT

OUTPUTS(1)

OUTPUTS(2)

INPUTS(3)

INPUTS(4)

ALL SIGNALS(5)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:
A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.
E. Signal valid to signal valid specification (maximum or minimum).
F. Signal valid to signal invalid specification (maximum or minimum).

E

A

C

C

Figure 8-1. Drive Levels and Test Points for AC Specifications

8-4 MC68306 USER'S MANUAL MOTOROLA

8.5 DC ELECTRICAL SPECIFICATIONS
(The electrical specifications in this document are preliminary)

Characteristic Symbol Min Max Unit

Input High Voltage (except clock) VIH 2.0 VCC V

Input Low Voltage VIL GND– 0.3 0.8 V

Clock Input High Voltage VIHC 0.7*(VCC) VCC+0.3 V

Input Leakage Current (All Input Only Pins)1 Vin = VCC or GND Iin –2.5 2.5 µA

Three-State (Off State) Input Current
@ 2.4 V/0.4 V

ITSI — 20 µA

Output High Voltage
(IOH = Rated Maximum)

VOH VCC –0.75 — V

Output Low Voltage
(IOL = Rated Maximum)

VOL
— 0.5

V

Current Drain 2 TA = 70°C, VCC = 5.25 V, f = 16.67 MHz ID — 100 mA

Power Dissipation f = 16.67 MHz PD — 0.5 W

Input Capacitance 3

All Input-Only Pins
All I/O Pins

Cin
—
—

10
20

pF

Load Capacitance 3 CL — 100 pF

1. Not including internal pullup or pulldown
2. Currents listed are with no loading.
3. Capacitance is periodically sampled rather than 100% tested.

8.6 AC ELECTRICAL SPECIFICATIONS—CLOCK TIMING
(The electrical specifications in this document are preliminary; see Figure 8-2.)

Num. Characteristic Symbol Min Max Unit

Frequency of Operation f 8.0 16.7 MHz

1 Cycle time tcyc 60 125 ns

Crystal Oscillator Start-Up Time tgidyup — TBD ms

2 EXTAL Pulse Width Low tCW 27 62.5 ns

3 EXTAL Pulse Width High tCW 27 62.5 ns

4,5 EXTAL Rise and Fall Times tCr
tCf

—
—

5
5

ns

1A External Clock to CLKOUT Skew (Typical) 8 ns

2A CLKOUT Pulse Width Low

2 –5

2 +5 ns

3A CLKOUT Pulse Width High

3 –5

3 +5 ns

MOTOROLA MC68306 USER'S MANUAL 8-5

0.8 V

3.8 V

Timing measurements are referenced to and from a low voltage of 0.8 V and a high
 voltage of 3.8 V, unless otherwise noted. The voltage swing through this range
 should start outside and pass through the range such that the rise or fall will be linear
 between 0.8 V and 3.8 V.

NOTE:

4 5

1

2 3

1.5 V

1

2A 3A

1.5 V

1A

3.8 V
1.5 V
0.8 V

1A

1.5 V

EXTAL

CLKOUT

1.5 V 1.5 V

Figure 8-2. Clock Output Timing

8.7 AC ELECTRICAL SPECIFICATIONS—READ AND WRITE
CYCLES (The electrical specifications in this document are preliminary; see Figures 8-3 and 8-4)

16.67 MHz

Num Characteristic Min Max Unit

6 CLKOUT Low to Address Valid (Row Address for DRAM Cycle) — 30 ns

6A CLKOUT High to FC Valid — 30 ns

7 CLKOUT High to Data Bus High Impedance (Maximum) — 50 ns

8 CLKOUT High to Address, FC Invalid (Minimum) 0 — ns

91 CLKOUT High to AS, LDS, UDS Asserted 3 30 ns

9A UDS, LDS Asserted to OE, UW, LW Asserted 0 15 ns

112 Address Valid to AS, LDS, UDS Asserted (Read)/ AS Asserted
(Write)

15 — ns

11A2 FC Valid to AS, LDS, UDS Asserted (Read)/ AS,Asserted
(Write)

45 — ns

121 CLKOUT Low to AS, LDS, UDS Negated 3 30 ns

12A UDS, LDS Negated to OE, UW, LW Negated 0 15 ns

132 AS, LDS, UDS Negated to Address, FC Invalid 15 — ns

142 AS (and LDS, UDS Read) Width Asserted 120 — ns

14A2 LDS, UDS, Width Asserted (Write) 50 — ns

152 AS, LDS, UDS Width Negated 60 — ns

16 CLKOUT High to Control Bus High Impedance — 50 ns

172 AS, LDS, UDS Negated to R/W Invalid 15 — ns

181 CLKOUT High to R/W High (Read) 0 30 ns

201 CLKOUT High to R/W Low (Write) 0 30 ns

8-6 MC68306 USER'S MANUAL MOTOROLA

8.7 AC ELECTRICAL SPECIFICATIONS—READ AND WRITE
CYCLES (Continued)

16.67 MHz

Num Characteristic Min Max Unit

20A6 AS Asserted to R/W Low (Write) — 10 ns

212 Address Valid to R/W Low (Write) 0 — ns

21A2 FC Valid to R/W Low (Write) 30 — ns

222 R/W Low to LDS, UDS Asserted (Write) 30 — ns

23 CLKOUT Low to Data-Out Valid (Write) — 30 ns

252 AS, LDS, UDS Negated to Data-Out Invalid (Write) 15 — ns

262 Data-Out Valid to LDS, UDS Asserted (Write) 15 — ns

275 Data-In Valid to CLKOUT Low (Setup Time on Read) 5 — ns

282 AS, LDS, UDS Negated to DTACK Negated (Asynchronous
Hold)

0 110 ns

29 AS, LDS, UDS Negated to Data-In Invalid (Hold Time on Read) 0 — ns

29A AS, LDS, UDS Negated to Data-In High Impedance — 90 ns

30 AS, LDS, UDS Negated to BERR Negated 0 — ns

312,5 DTACK Asserted to Data-In Valid (Setup Time) — 50 ns

32 HALT and RESET Input Transition Time — 150 ns

475 Asynchronous Input Setup Time 5 — ns

483 BERR Asserted to DTACK Asserted 10 — ns

53 Data-Out Hold from CLKOUT High 0 — ns

55 R/W Asserted to Data Bus Impedance Change 0 — ns

564 HALT/RESET Pulse Width 10 — Clks

NOTES:
1. For a loading capacitance of less than or equal to 50 pF, subtract 5 ns from the value given in the

maximum columns.
2. Actual value depends on clock period.
3. If #47 is satisfied for both DTACK and BERR, #48 may be ignored. In the absence of DTACK, BERR

is an asynchronous input using the asynchronous input setup time (#47).
4. For power-up, the MC68306 must be held in the reset state for 100 ms to allow stabilization of on-chip

circuitry. After the system is powered up, #56 refers to the minimum pulse width required to reset the
controller.

5. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK asserted to data
setup time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time
(#27) for the following clock cycle.

6. When AS and R/W are equally loaded (±20%), subtract 5 ns from the values given in these columns.
7. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before

asserting BGACK.
8. The minimum value must be met to guarantee proper operation. If the maximum value is exceeded, BG may be

reasserted.
9. AS is always asserted, regardless of whether it is mapped to internal or external resources. If the designer

wishes to decode more chip selects than are provided, use one of CS0–7 as the enable for the external decode.

MOTOROLA MC68306 USER'S MANUAL 8-7

6A

8

13

14

12

47 28

29

27
48

47

30
47

32

56

47

32

S0 S1 S2 S3 S4 S5 S6

CLKOUT

FC2–FC0

A23–A1

AS

LDS / UDS

R/W

DTACK

DATA IN

BERR / BR
(NOTE 2)

HALT / RESET

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

S7

31

11A

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK, BERR, IRQx) guarantees
 their recognition at the next falling edge of the clock.
 2. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

9

15

OE 9A

12A

6

11

29A

Figure 8-3. Read Cycle Timing Diagram

8-8 MC68306 USER'S MANUAL MOTOROLA

8

15

13

9

14

12

17

18

47 28

25

26

48

47 30

47

32

56

47

32

S0 S1 S2 S3 S4 S5 S6

CLKOUT

FC2–FC0

A23–A1

AS

LDS / UDS

R/W

DTACK

DATA OUT

BERR / BR
(NOTE 3)

HALT / RESET

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

S7

237

11
9

53

55

21

22

20

11A

2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge
 of S2 (specification #20A).

14A20A

UW, LW

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK, BERR, IRQx) guarantees
 their recognition at the next falling edge of the clock.

 3. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

(NOTE 2)

(NOTE 2)

15A

9A

12A

6

Figure 8-4. Write Cycle Timing Diagram

MOTOROLA MC68306 USER'S MANUAL 8-9

8.8 AC ELECTRICAL SPECIFICATIONS—CHIP SELECTS AND
INTERRUPT ACKNOWLEDGE (The electrical specifications in this document are preliminary.)

16.67 MHz

Num Characteristic Min Max Unit

61 Address Valid to CS≈ Asserted (Read or Write) 15 — ns

61A FC Valid to CS≈ Asserted (Read or Write) 45 — ns

62 AS V DS to CS≈ 0 5 ns

63 AS V R/W to CS≈ 0 5 ns

64 CS≈ Width Asserted 120 — ns

65 CS≈ Negated to FC, Addess Invalid 15 — ns

66 CS≈ Negated to R/ W Invalid 15 — ns

67 Data-Out Valid to CS≈ Negated (Write) 90 — ns

68 CS≈ Negated to Data-Out Invalid (Write) 15 — ns

69 CS≈ Negated to Data-In High Impedance — 90 ns

70 CLKOUT High to IACK≈ Asserted 0 30 ns

70A LDS High to IACK≈ Negated 0 10 ns

V = Boolean OR

S0 S1 S2 S3 S4 S5 S6

CLKOUT

FC2–FC0,
A23–A0

AS

R/W

DATA

(NOTE 1)

LDS / UDS

CS

S12 S13 S14 S15 S16 S17 S18

62 62

63

65 65

66

63

67
68

READ WRITE

(NOTE 1)

9A

9A

OE

UW, LW
NOTE: THE WRITE CYCLE ILLUSTRATED IS PART OF A TEST AND SET INSTRUCTION.

6161

64
69

IN OUT

64

IACKx 70

61A

70A

12A

61A

12A

Figure 8-5. Chip Select and Interrupt Acknowledge Timing Diagram

8-10 MC68306 USER'S MANUAL MOTOROLA

8.9 AC ELECTRICAL SPECIFICATIONS—BUS ARBITRATION (The electrical
specifications in this document are preliminary. See Figures 8-6–8-7)

16.67 MHz

Num Characteristic Min Max Unit

7 CLKOUT High to Address, Data Bus High Impedance (Maximum) — 50 ns

16 CLKOUT High to Control Bus High Impedance — 50 ns

33 CLKOUT High to BG Asserted — 40 ns

34 CLKOUT High to BG Negated — 40 ns

35 BR Asserted to BG Asserted 1.5 6.5 Clks

36 BR Negated to BG Negated 1.5 3.5 Clks

37 BGACK Asserted to BG Negated 1.5 3.5 Clks

37A2 BGACK Asserted to BR Negated 20 ns 1.5 Clks

38 BG Asserted to Control, Address, Data Bus High Impedance (AS Negated) — 50 ns

39 BG Width Negated 1.5 — Clks

47 Asynchronous Input Setup Time 10 — ns

57 BGACK Negated to Bus Driven 1 — Clks

58 BR Negated to Bus Driven 1 — Clks

CLK

33

35

BR

BG

AS

DS

R/W

FC2–FC0

A19–A0

D7–D0

47

38

36

58

34

39

47

16

7

Figure 8-6. Bus Arbitration Timing Diagram

MOTOROLA MC68306 USER'S MANUAL 8-11

C
LK

ST
R

O
BE

S
AN

D
 R

/W BR

BG
AC

K

BG

35

33
38

34
39

46

37

37
A

36

N
O

T
E

:
S

et
up

 ti
m

e
to

 th
e

cl
oc

k
(#

47
)

fo
r

th
e

as
yn

ch
ro

no
us

 in
pu

ts
 B

E
R

R
, B

G
A

C
K

, B
R

, D
T

A
C

K
, H

A
LT

, R
E

S
E

T
, a

nd
 IR

Q
x

gu
ar

an
te

es
 th

ei
r

 r
ec

og
ni

tio
n

at
 th

e
ne

xt
 fa

lli
ng

 e
dg

e
of

 th
e

cl
oc

k.

Figure 8-7. Bus Arbitration Timing Diagram

8-12 MC68306 USER'S MANUAL MOTOROLA

8.10 BUS OPERATION—DRAM ACCESSES AC TIMING
SPECIFICATIONS (The electrical specifications in this document are preliminary. See Figures 8-8–8-11)

16.67 MHz

0-Wait 1-Wait

Num. Characteristic Min Max Min Max Unit

71 CLKOUT High to RAS≈ Asserted (0 Wait State Operation) 0 30 – – ns

71A AS Asserted to RAS≈ Asserted (0 Wait State Operation) 0 10 – – ns

72 CLKOUT Low to RAS≈ Asserted (1 Wait State Operation) – – 0 25 ns

73 CLKOUT Low to Row Address Valid 0 30 0 30 ns

74 Row Address Valid to RAS≈ Asserted 15 – 30 – ns

75 RAS≈ Asserted to Row Address Invalid 20 – 40 – ns

76 CLKOUT High to Row Address Invalid (0 Wait State Operation) 0 – – – ns

77 CLKOUT Low to Row Address Invalid (1 Wait State Operation) – – 0 – ns

78 RAS≈ Width Asserted (Non-Page Mode) 120 180 150 210 ns

79 RAS≈ Width Asserted (Page Mode) 480 540 510 570 ns

80 RAS≈ Width Negated (Back to Back Cycles) 60 – 90 – ns

81 RAS≈ Asserted to CAS≈ Asserted 45 – 60 – ns

82 CLKOUT High to Column Address Valid (0 Wait State Operation) 0 30 – – ns

83 CLKOUT Low to Column Address Valid (1 Wait State Operation) – – 0 30 ns

84 CLKOUT Low to CAS≈ Asserted (0 Wait State Operation) 0 20 – – ns

85 CLKOUT High to CAS≈ Asserted (1 Wait State Operation) – – 0 20 ns

86 Column Address Valid to CAS≈ Asserted 20 – 20 – ns

87 CAS≈ Asserted to Column Address Invalid 75 – 100 – ns

88 CAS≈ Width Asserted 60 90 90 120 ns

89 CLKOUT Low to RAS≈ /CAS≈ Negated 0 30 0 30 ns

89A AS Negated to RAS≈ /CAS≈ Negated 0 10 0 10 ns

90 CAS≈ Width Negated (Back to Back Cycles) 150 – 180 – ns

91 CAS≈ Width Negated (Page Mode2) 240 300 240 300 ns

92 UDS/LDS Asserted to CAS≈ Asserted1 (Page Mode 2) 0 10 0 10 ns

93 DRAMW Low to CAS≈ Asserted (Write) 30 – 60 – ns

94 Data Out Valid to CAS≈ Asserted (Write) 15 – 45 – ns

95 CLKOUT Low to CAS≈ Asserted (Refresh Cycle) 0 20 0 20 ns

96 CLKOUT High to CAS≈ Negated (Refresh Cycle) 0 20 0 20 ns

97 CAS≈ Width Asserted (Refresh Cycle) 80 120 140 180 ns

98 CAS≈ Asserted to RAS≈ Asserted (Refresh Cycle) 20 60 20 60 ns

99 CLKOUT High to RAS≈ Asserted (Refresh Cycle) 0 30 0 30 ns

100 CLKOUT Low to RAS≈ Negated (Refresh Cycle) 0 25 0 25 ns

101 RAS≈ Width Asserted (Refresh Cycle) 80 120 140 180 ns

102 DRAMW High to RAS≈ Asserted (Refresh Cycle) 20 60 20 60 ns

103 DRAMW High Hold After RAS≈ Asserted (Refresh Cycle) 20 – 20 – ns

NOTES:
1. On write portion of TAS, CAS assertion is gated by UDS/LDS (not CLKOUT as in all other operation).
2. Page mode is used on Read-Modify-Write (TAS instruction) cycles only.

MOTOROLA MC68306 USER'S MANUAL 8-13

CLKOUT

FC0–FC2

D15–D0

A15/DRAMA 14–
 A1/DRAMA 0

AS

UDS, LDS

R/W

UW, LW

OE

DTACK

DRAMW

RAS

CAS

71

73

74

75

78

88
81

76

80

82

84

86

87

90

71A

89A

89

80

90

Figure 8-8. DRAM Timing – 0-Wait Read, No Refresh

8-14 MC68306 USER'S MANUAL MOTOROLA

CLKOUT

FC0–FC2

D15–D0

A15/DRAMA 14–
 A1/DRAMA 0

AS

UDS, LDS

R/W

UW, LW

OE

DTACK

DRAMW

RAS

CAS

73

74

75

78

88
81

80

83

85

86

87

90
93

72

77

94

71A

89A

89

80

90

Figure 8-9. DRAM Timing – 1-Wait Write, No Refresh

CLKOUT

DRAMW

RAS

CAS

99

96 95

100

1-WAIT STATE 0-WAIT STATE

97 97

98

101 101

102103
100

80

90 90

80

96

103

98

99

102

95

Figure 8-10. DRAM Timing – 0- and 1-Wait Refresh

MOTOROLA MC68306 USER'S MANUAL 8-15

CLKOUT

FC0–FC2

D15–D0

A15/DRAMA 14–
 A1/DRAMA 0

AS

UDS, LDS

R/W

UW, LW

OE

DTACK

DRAMW

RAS

CAS

* NOTE: TAS IS A BYTE-ONLY INSTRUCTION, THEREFORE ONLY ONE OF UW, LW AND ONLY ONE CAS WILL BE ASSERTED.

91

7980

90

92

Figure 8-11. DRAM Timing – 1-Wait, Test and Set

8.11 SERIAL MODULE ELECTRICAL CHARACTERISTICS
(TA = 0 °C to 70 °C, VCC = 5.0 V ±5%, See Note 1)

Characteristic Symbol Min Max Unit

X1/CLK Input Leakage Current IX1L 2.5 µA

X1/CLK Frequency (see Note 2) fCLK 2.0 4.0 MHz

Counter/Timer Clock Frequency (IP2) fCTC 0 16.67 MHz

NOTES:
1. All voltage measurements are referenced to ground (GND). For testing, all input signals except X1/CLK swing

between 0.4 V and 2.4 V with a maximum transition time of 20 ns. For X1/CLK, this swing is between 0.4 V and
4.4 V. All time measurements are referenced at input and output voltages of 0.8 V and 2.0 V as appropriate.
Test conditions for outputs: CL = 150 pF, RL = 750 Ω to VCC.

2. To use the standard baud rates selected by the clock-select register given in Tables 6-5 and 6-6, the X1/CLK
frequency should be set to 3.6864 MHz or a 3.6864 MHz crystal should be connected across pins X1/CLK and X2.

3. IP5–2 for RxC, TxC are not supported in the MC68306.

8-16 MC68306 USER'S MANUAL MOTOROLA

8.12 SERIAL MODULE AC ELECTRICAL CHARACTERISTICS—CLOCK
TIMING (See Figure 8-12.)

Characteristic Symbol Min Max Unit

Counter/Timer Clock High or Low Time tCTC 25 — ns

Clock Rise Time tr — 20 ns

Clock Fall Time tf — 20 ns

t ftr

t CLK
t CTC

t CLK
t CTC

X1/CLK
IP2 FOR C/T CLK

Figure 8-12. Clock Timing

8.13 AC ELECTRICAL CHARACTERISTICS—PORT TIMING
(See Figure 8-13 and Note.)

Characteristic Symbol Min Max Unit

Port Input Setup Time to LDS Asserted tPS 0 — ns

Port Input Hold Time from LDS Negated tPH 0 — ns

Port Output Valid from LDS Negated tPD — 60 ns

NOTE: Test conditions for port outputs: CL = 50 pF, RL = 27 kΩ to VCC.

tPS

LDS

OP0, OP1, OP3

IP0-IP2

OLD DATA NEW DATA

t PD

tPH

Figure 8-13. Port Timing

MOTOROLA MC68306 USER'S MANUAL 8-17

8.14 AC ELECTRICAL CHARACTERISTICS—INTERRUPT RESET
TIMING (See Figure 8-14 and Note)

Characteristic Symbol Min Max Unit

OP3 High (When Used as Counter Interrupt) from LDS Negated
After Stop Counter Command

tIR
— 100 ns

NOTE: Test conditions for interrupt output: CL = 50 pF, RL = 2 kΩ to VCC.

t IR

LDS

OP3 *

* When used as counter interrupt output.

Figure 8-14. Interrupt Reset Timing

8.15 AC ELECTRICAL CHARACTERISTICS—TRANSMITTER TIMING
(See Figure 8-15 and Note)

Characteristic Symbol Min Max Unit

TxD Output Valid from TxC Low tTxD — 100 ns

CTS Input Setup to Tx Clock High * tCS 30 — ns

CTS Input Hold from Tx Clock High * tCH 30 — ns

RTS Output Valid from Tx Clock tTRD — 100 ns

* CTS is an asynchronous input. This specification is only provided to guarantee CTS recognition on a particular Tx clock
 edge.

Tx CLOCK SOURCE
(X1 OR IP2)

TxD

t TxD

1 BIT TIME

OP0, OP1
WHEN USED

AS TxRTS

t TRD

tCS

IP0, IP1
WHEN USED

AS CTS

t TxD

t CH

Figure 8-15. Transmit Timing

8-18 MC68306 USER'S MANUAL MOTOROLA

8.16 AC ELECTRICAL CHARACTERISTICS—RECEIVER TIMING
(See Figure 8-16 and Note)

Characteristic Symbol Min Max Unit

RxD Data Setup Time to RxC High tRxS 240 — ns

RxD Data Hold Time from RxC High tRxH 200 — ns

RTS Output Valid from Rx Clock tRRD — 100 ns

RxD

Rx CLOCK SOURCE
(X1 OR IP2)

t RxS t RxH

OP0, OP1 *

t RRD

* When used as RxRTS

Figure 8-16. Receive Timing

MOTOROLA MC68306 USER'S MANUAL 8-19

8.17 IEEE 1149.1 ELECTRICAL CHARACTERISTICS
(The electrical specifications in this document are preliminary; see Figures 8-17–8-19.)

Num. Characteristic Min Max Unit

TCK Frequency of Operation 0 10.0 MHz

1 TCK Cycle Time 100 — ns

2 TCK Clock Pulse Width Measured at 1.5 V 45 — ns

3 TCK Rise and Fall Times 0 5 ns

6 Boundary Scan Input Data Setup Time 15 — ns

7 Boundary Scan Input Data Hold Time 15 — ns

8 TCK Low to Output Data Valid 0 80 ns

9 TCK Low to Output High Impedance 0 80 ns

10 TMS, TDI Data Setup Time 15 — ns

11 TMS, TDI Data Hold Time 15 — ns

12 TCK Low to TDO Data Valid 0 30 ns

13 TCK Low to TDO High Impedance 0 30 ns

14 TRST Width Low 80 — ns

V

V
TCK

1

2 2

33

IH

IL

Figure 8-17. Test Clock Input Timing Diagram

8-20 MC68306 USER'S MANUAL MOTOROLA

TCK

DATA
OUTPUTS

DATA
INPUTS

DATA
OUTPUTS

DATA
OUTPUTS

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

7

8

IL

IH

6

9

8

Figure 8-18. Boundary Scan Timing Diagram

TCLK

TDI
TMS

TDO

TDO

TDO

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

11

12

13

12

IL

IH

10

 Figure 8-19. Test Access Port Timing Diagram

MOTOROLA MC68306 USER'S MANUAL 9-1

SECTION 9
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the ordering information, pin assignments, and package dimensions
for the MC68306.

9.1 STANDARD ORDERING INFORMATION

Package Type Frequency (MHz) Temperature Order Number

132-Lead Plastic Quad Flat Pack (FC Suffix) 8–16.7 0°C to 70°C MC68306FC16

144-Lead Thin Quad Flat Pack (PV Suffix) 8–16.7 0°C to 70°C MC68306PV16

9-2 MC68306 USER'S MANUAL MOTOROLA

9.2 PIN ASSIGNMENTS

132-Lead Plastic Quad Flat Pack (PQFP)

G
N

D
A1

2/
D

R
AM

A1
1

A1
4/

D
R

AM
A1

3
A1

5/
D

R
AM

A1
4

A1
6

VD
D

A1
7

A1
8

A1
9

AM
O

D
E

TD
O

G
N

D
TD

I
TM

S
TC

K
TR

ST

N/C

PB4/IRQ2

GND

PB6/IRQ5

PB
7/

IR
Q

6
IA

C
K1

IA
C

K4
 G

N
D

 IA
C

K7
 IR

Q
1

IR
Q

4
IR

Q
7

 D
0

VD
D

 D
1

 D
2

 D
3

 D
4D
5

G
N

DD
6

D
7

D
8

D
9

VD
D

 D
11

D
12

D
13

D
14D
15

G
N

D
BE

R
R

D
TA

C
K

FC
0

 F
C

1
N

/C A2
2/

C
S6

A2
3/

C
S7

G
N

D
A1

/D
R

AM
A0

A2
/D

R
AM

A1
A3

/D
R

AM
A2

A4
/D

R
AM

A3
A5

/D
R

AM
A4

A6
/D

R
AM

A5
VD

D
A7

/D
R

AM
A6

A8
/D

R
AM

A7
A9

/D
R

AM
A8

A1
0/

D
R

AM
A9

A1
1/

D
R

AM
A1

0

TOP VIEW

1
132

67
50

51

34

18

100

84
PB5/IRQ3

N/C
FC2

HALT
GND

CLKOUT
XTAL

EXTAL
BR

GND

LW

OE
DRAMW

RAS1

RAS0
CAS1
CAS0
CS0
CS1

GND
CS2
CS3

A20/CS4
A21/CS5

VDD

VDD

D
10 N
/C

A1
3/

D
R

AM
A1

2

RESET

BG

BGACK
AS

R/W
UDS
LDS

UW

 OP0/RTSA
 IP1/CTSB

PB3/IACK6

 OP1/RTSB

PB2/IACK5

PA7
PA6
VDD
PA5
PA4
PA3
PA2
PA1
GND

X1
X2
IP2
OP3
VDD
RXDA
TXDA
RXDB
TXDB

PA0

GND
IP0/CTSA

PB0/IACK2
PB1/IACK3

17

83

116
117

MOTOROLA MC68306 USER'S MANUAL 9-3

144-Lead Thin Quad Flat Pack (TQFP)

G
N

D
A1

2/
D

R
AM

A1
1

A1
4/

D
R

AM
A1

3
A1

5/
D

R
AM

A1
4

A1
6

VC
C

A1
7

A1
8

A1
9

AM
O

D
E

TD
O

G
N

D
TD

I
TM

S
TC

K
TR

ST

N/C

PB4/IRQ2

GND

PB6/IRQ5

PB
7/

IR
Q

6
IA

C
K1

IA
C

K4
 G

N
D

 IA
C

K7
 IR

Q
1

IR
Q

4
IR

Q
7

 D
0

VC
C

 D
1

 D
2

 D
3

 D
4D
5

G
N

DD
6

D
7

D
8

D
9

VC
C

 D
11

D
12

D
13

D
14D
15

G
N

D
BE

R
R

D
TA

C
K

FC
0

 F
C

1

N
/C A2

2/
C

S6
A2

3/
C

S7

G
N

D
A1

/D
R

AM
A0

A2
/D

R
AM

A1
A3

/D
R

AM
A2

A4
/D

R
AM

A3
A5

/D
R

AM
A4

A6
/D

R
AM

A5
VC

C
A7

/D
R

AM
A6

A8
/D

R
AM

A7
A9

/D
R

AM
A8

A1
0/

D
R

AM
A9

A1
1/

D
R

AM
A1

0

MC68306
144-PIN TQFP
(TOP VIEW)

1
144

7237
36

PB5/IRQ3

N/C
FC2

HALT
GND

CLKOUT
XTAL

EXTAL
BR

GND

LW
OE

DRAMW
RAS1

RAS0
CAS1
CAS0
CS0
CS1

GND
CS2
CS3

A20/CS4
A21/CS5

VCC

VCC

D
10 N
/C

A1
3/

D
R

AM
A1

2

RESET

BG

BGACK
AS

R/W
UDS
LDS

UW

 OP0/RTSA
 IP1/CTSB

PB3/IACK6

 OP1/RTSB

PB2/IACK5

PA7
PA6
VCC
PA5
PA4
PA3
PA2
PA1
GND

X1
X2
IP2
OP3
VCC
RXDA
TXDA
RXDB
TXDB

PA0

GND
IP0/CTSA

PB0/IACK2
PB1/IACK3

108
109

N
/C

N
/C

N
/C

N
/C

N
/C

N
/C

N/C

N/C
N/C N/C

N/C
N/C73

9-4 MC68306 USER'S MANUAL MOTOROLA

9.3 PACKAGE DIMENSIONS
132 Pin PQFP (FC Suffix)

Z PIN 1 INDENT

X

0.25 (0.010) T X Y ZS

D 132 PL

DIM
A

MILLIMETERS INCHES
MIN MAX MIN MAX

24.06 24.20 0.947 0.953
24.06 24.20 0.947 0.953

4.07 4.57 0.160 0.180
0.21 0.30 0.008 0.012

0.64 BSC 0.025 BSC
0.51 1.01 0.020 0.040
0.16 0.20 0.006 0.008
0.51 0.76 0.020 0.030

0° 8 0 8° ° °

27.88 1.097
1.08527.31 27.55 1.075

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH
 3. DIMENSIONS A, B, N, AND R DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE MOLD PROTRUSION FOR DIMENSIONS A AND B IS
 0.25 (0.010), FOR DIMENSIONS N AND R IS 0.18 (0.007).
 4. DATUM PLANE -W- IS LOCATED AT THE UNDERSIDE OF LEADS
 WHERE LEADS EXIT PACKAGE BODY.
 5. DATUMS -X- , -Y-, AND -Z- TO BE DETERMINED WHERE CENTER LEADS EXIT
PACKAGE BODY AT DATUM -W- .
 6. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE, DATUM -T-.
 7. DIMENSIONS A, B, N AND R TO BE DETERMINED AT DATUM PLANE -W- .

Y

G

P P

S S S

0.05. (0.002)

0.20 (0.008) T X Y ZS S S S

0.20 (0.008) T X Y ZS S S S

0.25 (0.010) T X Y ZS S S S

0.05 (0.002)

N

S

A

H

C

0.20 (0.008) T X Y ZS S S S K M

J
W

SEATING PLANE

.10 (0.004)

T

27.88 1.097

1.08527.31 27.55 1.075

28.01
28.01

1.103
1.103

SECTION P-P

20.32 REF 0.800 REF

B
C
D
G
H
J
K
L
M
N
R
S
V

CASE 831A-01

VLBR

MOTOROLA MC68306 USER'S MANUAL 9-5

144-Lead Thin Quad Flat Pack (PV Suffix)

MOTOROLA MC68306 USER’S MANUAL Index-1

INDEX

— A —

Access Error, 4-1
Exception, 4-21

Addressing Modes, 4-4
Index Sizing and Scaling, 4-4
Indexing, 4-4
Postincrement, Predecrement, Offset, and

Program Counter Indirect, 4-4
Register Indirect, 4-4

AS, 3-4, 3-7, 3-16
Asynchronous Bus Arbitration Signals, 3-17
Asynchronous Mode, 3-32
Autovector, 5-5
Automatic DTACK Generation, 5-16

— B —

Baud Rate Generator, 6-3, 6-4, 6-7
BERR, 3-4, 3-7, 3-10, 3-37
BG, 3-16
Boundary Scan Bit Definitions, 7-5
Boundary Scan, 7-1

Bit Definitions, 7-5
Bus Arbitration, 3-12
Bus Error Exception, 3-28, 4-20
Bus Grant Signal, 3-16
Bus Timeout Period Register, 5-4
Byte Read Cycle Flowchart, 3-2

— C —

Chip Select Configuration Register, 5-9
Counter Mode, 6-16
Counter/Timer, 6-16
CTLR, 6-34
CTUR, 6-34

— D —

Data Formats, 4-3
Data Types

Access Errors, 4-1
M-bit, 4-14

Denormalized Numbers, 4-3
Infinities, 4-3
NANs, 4-3
Normalized Numbers, 4-3
Zeros, 4-3

Double Bus Fault, 3-29
DRAM

Configuration Register, 5-14
Refresh Register, 5-13

DTACK, 3-4, 3-7, 3-10, 3-33, 3-37
DUACR, 6-30

DUCR, 6-26
DUCSR, 6-24
DUCUR, 6-33
DUIMR, 6-33
DUIP, 6-34
DUIPCR, 6-29
DUISR, 6-31
DUIVR, 6-34
DUMR1, 6-18
DUMR2, 6-20
DUOP, 6-35
DUOPCR, 6-35
DURBA, 6-29
DURBB, 6-29
DUSR, 6-22
DUTBA, 6-29
DUTBB, 6-29

— E —

Exception Handler, 4-14
Exceptions, 4-12
Exception Vector, 4-14

Table, 4-12

— F —

FC2–FC0, 3-4, 3-7
FIFO Stack, 6-11

— H —

HALT, 3-28

— I —

I/O Driver Routines, 6-37
Initialization Routines, 6-36
Instructions

STOP, 4-1
TRAP, TRAPV, CHK, RTE, and DIV, 4-12

Interrupt, 4-1
Acknowledge Bus Cycle, 4-12
Control Register, 5-5
Handling Routine, 6-37
Priorities, 4-17
Priority Mask, 4-12
Request Signals, 6-3
Request, 4-17
Status Register, 5-6
Priority Mask, 4-12

Index-2 MC68306 USER’S MANUAL MOTOROLA

— J —

JTAG, 7-1

— L —

LDS, 3-7
Level 7 Interrupts, 4-17
Looping Modes, 6-13

— N —

Non-IEEE 1149.1 Operation, 7-12

— O —

Operand Size, 4-3
Oscillator Circuit, 5-16

— P —

Package Dimensions, 9-1
Pin Assignments, 9-1
Port Data Register, 5-8
Port Direction Register, 5-7
Port Pin Register, 5-7
Privileged Instructions, 4-19
Processing States

Normal, Exception, Halted, 4-1

— R —

R/W, 3-4, 3-7
Read Cycle, 3-1
Read-Modify-Write Cycle, 3-7
Reset Exception, 4-17
Retry Operation, 3-28

— S —

Serial Module Counter/Timer Interrupt, 6-4
Single Step, 3-28
Stack Frame, 4-14
Status Register, 4-12
System Register, 5-3

— T —

TAP, 7-1
TAS, 3-7
Three-Wire Bus Arbitration, 3-12
Timer Mode, 6-16
Timer Vector Register, 5-4

Timer/Counter, 6-3
Trace Exception, 4-19
Two-Wire Bus Arbitration, 3-12

— U —

UDS, 3-7
UDS/LDS, 3-4, 3-10
Uninitialized Interrupt Vector, 4-18

— V —

Valid Start Bit, 6-10
Vector Number, 4-12

— W —

Word Read Cycle Flowchart, 3-2
Write Cycle, 3-4

Order this document by
 MC68307/D

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MOTOROLA
SEMICONDUCTOR
TECHNICAL INFORMATION

Technical Summary

Integrated Multiple-Bus Processor

MC68307
MC68307V

 MOTOROLA, 1993

The MC68307 is an integrated processor combining a static 68EC000 processor with multiple interchip bus
interfaces. The MC68307 is designed to provide optimal integration and performance for applications such as
digital cordless telephones, portable measuring equipment, and point-of-sale terminals. By providing 3.3 V,
static operation in a small package, the MC68307 delivers cost-effective performance to handheld, battery-
powered applications.

The MC68307 (shown in Figure 1) contains a static EC000 core processor, multiple bus interfaces, a serial
channel, two timers, and common system glue logic. The multiple bus interfaces include: dynamic 68000 bus,
8051 bus, and Motorola bus (M-bus) or I

2

C bus

1

. The dynamically sized 68000 bus allows 16-bit performance
out of static random access memory (SRAM) while still providing a low-cost interface to an 8-bit read-only
memory (ROM). The 8051 bus interfaces gluelessly to 8051-type devices and allows the reuse of application-
specific integrated circuits (ASICs) designed for this industry standard bus. The M-bus is an industry standard
2-wire interface which provides efficient communications with peripherals such as EEPROM, analog/digital (A/
D) converters, and liquid crystal display (LCD) drivers. Thus, the MC68307 interfaces gluelessly to boot ROM,
SRAM, 8051 devices, M-bus devices, and memory-mapped peripherals. The MC68307 also incorporates a
slave mode which allows the EC000 core to be turned off, providing a 3.3-V static, low-power multi-function
peripheral for higher performance M68000 family processors.

1.

I

2

C bus is a proprietary Philips interface bus.

PROCESSOR CONTROL, CLOCK
AND LOW POWER

68000 INTERNAL BUS

8/16-BIT M68000
BUS INTERFACE

INTERRUPT
 CONTROLLER

DUAL
TIMER

MODULE

UART
SERIAL I/O

M-BUS
MODULE

STATIC EC000 CORE PROCESSOR

DYNAMIC BUS SIZING EXTENSION

SYSTEM INTEGRATION MODULE
 (SIM07)

8051 BUS INTERFACE

CHIP SELECT AND DTACK

Figure 1. MC68307 Block Diagram

PARALLEL I/O PORTS

SYSTEM PROTECTION

JTAG PORT

2 MC68307 TECHNICAL INFORMATION MOTOROLA

The main features of the MC68307 include:

• Static EC000 Core Processor—Identical to MC68EC000 Microprocessor
— Full compatibility with MC68000 and MC68EC000
— 24-bit address bus, for 16-Mbyte off-chip address space
— 16-bit on-chip data bus for MC68000 bus operations
— Static design allows processor clock to be stopped providing dramatic power savings
— 2.4 MIPS performance at 16.67-MHz processor clock

• External M68000 Bus Interface with Dynamic Bus Sizing for 8-bit and 16-bit Data Ports

• External 8-Bit Data Bus Interface (8051-Compatible)

• M-Bus Module
— Provides interchip bus interface for EEPROMs, LCD controllers, A/D converters, etc.
— Compatible with industry-standard I

2

C bus
— Master or slave operation modes, supports multiple masters
— Automatic interrupt generation with programmable level
— Software-programmable clock frequency
— Data rates from 4–100 Kbit/s above 3.0-MHz system clock

• Universal Asynchronous Receiver/Transmitter (UART) Module
— Flexible baud rate generator
— Based on MC68681 Dual Universal Asynchronous Receiver/Transmitter (DUART) programming

model
— 5 Mbits/s maximum transfer rate at 16.67-MHz system clock
— Automatic interrupt generation with programmable level
— Modem control signals available (CTS,RTS)

• Timer Module
— Dual channel 16-bit general purpose counter/timer
— Multimode operation, independent capture/compare registers
— Automatic interrupt generation with programmable level
— Third 16-bit timer configured as a software watchdog
— 60-ns resolution at 16.67-MHz system clock
— Each timer has an input and an output pin

• System Integration Module (SIM07), Incorporating Many Functions Typically Relegated to External Pro-
grammable Array Logic (PALs), Transistor-Transistor Logic (TTL), and ASICs, such as:
— System configuration, programmable address mapping
— System protection by hardware watchdog logic
— Power-down mode control, programmable processor clock driver
— Four programmable chip selects with wait state generation logic
— Three simple peripheral chip selects
— Parallel input/output ports, some with interrupt capability
— Programmed interrupt vector response for on-chip peripheral modules
— IEEE 1149.1 boundary scan test access port (JTAG)

• Operation from DC to 16.67 MHz (Processor Clock)

• Operating Voltages of 3.3V

±

 0.3V and 5V

±

 0.5V

• Compact 100-Lead Quad Flat Pack (QFP) Package

MOTOROLA MC68307 TECHNICAL INFORMATION 3

M68300 FAMILY

The MC68307 is one of a series of components in Motorola's M68300 family. Other members of the family
include the MC68302, MC68306, MC68330, MC68331, MC68332, MC68F333, MC68334, MC68340,
MC68341, MC68349, and MC68360.

ORGANIZATION

The M68300 family of integrated processors and controllers is built on an M68000 core processor and a
selection of intelligent peripherals appropriate for a set of applications. Common system glue logic such as
address decoding, wait state insertion, interrupt prioritization, and watchdog timing is also included.

Each member of the M68300 family is distinguished by its selection of on-chip peripherals. Peripherals are
chosen to address specific applications but are often useful in a wide variety of applications. The peripherals
may be highly sophisticated timing or protocol engines that have their own processors, or they may be more
traditional peripheral functions, such as UARTs and timers.

ADVANTAGES

By incorporating so many major features into a single M68300 family chip, a system designer can realize
significant savings in design time, power consumption, cost, board space, pin count, and programming. The
equivalent functionality can easily require 20 separate components. Each component might have 16–64 pins,
totaling over 350 connections. Most of these connections require interconnects or are duplications. Each
connection is a candidate for a bad solder joint or misrouted trace. Each component is another part to qualify,
purchase, inventory, and maintain. Each component requires a share of the printed circuit board. Each
component draws power, which is often used to drive large buffers to get the signal to another chip. The
cumulative power consumption of all the components must be available from the power supply. The signals
between the central processing unit (CPU) and a peripheral might not be compatible nor run from the same
clock, requiring time delays or other special design considerations.

In an M68300 family component, the major functions and glue logic are all properly connected internally, timed
with the same clock, fully tested, and uniformly documented. Only essential signals are brought out to pins.
The primary package is the surface-mount plastic QFP for the smallest possible footprint.

4 MC68307 TECHNICAL INFORMATION MOTOROLA

MC68307 ARCHITECTURE

To improve total system throughput and reduce part count, board size and cost of system implementation, the
MC68307 integrates a powerful processor, intelligent peripheral modules, and typical system interface logic.
These functions include the SIM07, timers, UART, M-bus interface, and 8051-compatible bus interface.

The EC000 processor core communicates with these modules via an internal bus, providing the opportunity for
fully synchronized communication between all modules and allowing interrupts to be handled in parallel with data
transfers, greatly improving system performance.

STATIC EC000 CORE

The EC000 core is a core implementation of the MC68000 32-bit microprocessor architecture. The features of
the EC000 core processor include:

• Low power, static HCMOS implementation

• 24-bit address bus, 16-bit data bus

• Seventeen 32-bit data and address registers

• 56 powerful instruction types that support high level development languages

• 14 addressing modes and five main data types

• Seven priority levels for interrupt control

The EC000 core is completely upward user code-compatible with all other members of the M68000
microprocessor families and thus has access to a broad base of established real-time kernels, operating
systems, languages, applications, and development tools.

EC000 Core Programming Model

The EC000 core offers sixteen 32-bit registers and a 32-bit program counter (see Figure 2). The first eight
registers (D7–D0) are used as data registers for byte (8-bit), word (16-bit) and long-word (32-bit) operations.
Because the use of the data registers will affect the condition code register (indicating negative number, carry,
and overflow conditions) they are primarily used for data manipulation. The second set of seven registers (A6–
A0) and the user stack pointer (USP) may be used as software stack pointers and base address registers. These
registers can be used for word and long-word operations and do not affect the condition code register. All of the
registers (D7–D0 and A6–A0) may be used as index registers.

In supervisor mode, the upper byte of the status register (SR) and the supervisor stack pointer (SSP) are also
available to the programmer. These registers are shown in Figure 3.

The SR (refer to Figure 4) contains the interrupt mask (seven levels available) as well as the following condition
codes: extend (X), negative (N), zero (Z), overflow (V), and carry (C). Additional status bits indicate whether the
processor is in trace mode (T-bit) and in supervisor or user state (S-bit).

MOTOROLA MC68307 TECHNICAL INFORMATION 5

Figure 2. User Programming Model

Figure 3. Supervisor Programming Model Supplement

Figure 4. Status Register

DATA REGISTERS

ADDRESS REGISTERS

31 16 15 8

7

0

USER STACK POINTERA7 (USP)

D0
D1
D2
D3
D4
D5
D6
D7

A0
A1
A2
A3
A4
A5
A6

0151631

31 16 15 0

31 0

0

PC PROGRAM COUNTER

STATUS REGISTERCCR

7

T S I2 I1 I0 X N Z V C

15 13 10 8 4 0

TRACE MODE
SUPERVISOR STATE

INTERRUPT MASK

EXTEND
NEGATIVE

OVERFLOW
CARRY

SYSTEM BYTE USER BYTE

CONDITION CODES ZERO

6 MC68307 TECHNICAL INFORMATION MOTOROLA

Data Types and Addressing Modes

Five basic data types are supported:

1.) Bits

2.) Binary coded decimal (BCD) digits (4 bits)

3.) Bytes (8 bits)

4.) Words (16 bits)

5.) Long words (32 bits)

In addition, operations on other data types such as memory addresses, status word data, etc. are provided in the
instruction set.

The 14 addressing modes listed in Table 1 include six basic types:

1.) Register direct

2.) Register indirect

3.) Absolute

4.) Program counter relative

5.) Immediate

6.) Implied

Included in the register indirect addressing modes is the capability to perform postincrementing,
predecrementing, offsetting, and indexing. The program counter relative mode can also be modified via indexing
and offsetting.

Instruction Set Overview

The EC000 core instruction set is listed in Table 2. The instruction set facilitates ease of programming by
supporting high-level languages. Each instruction, with few exceptions, operates on bytes, words, and long-
words, and most instructions can use any of the 14 addressing modes. Combining instruction types, data types,
and addressing modes, over 1000 useful instructions are provided. These instructions include signed and
unsigned, multiply and divide, quick arithmetic operations, BCD arithmetic, and expanded operations (through
traps).

MOTOROLA MC68307 TECHNICAL INFORMATION 7

Table 1. Addressing Modes

Addressing modes Syntax

Register direct addressing
Data register direct
Address register direct

Dn
An

Absolute data addressing
Absolute short
Absolute long

xxx.W
xxx.L

Program counter relative addressing
Relative with offset
Relative with index offset

d

16

(PC)
d

8

(PC, Xn)

Register indirect addressing register
Register indirect
Postincrement register indirect
Predecrement register indirect
Register indirect with offset
Indexed register indirect with offset

(An)
(An)+
–(An)

d

16

(An)
d

8

(An, Xn)

Immediate data addressing
Immediate
Quick immediate

#xxx
#1–#8

Implied addressing
Implied register SR/USP/SP/PC

Legend:
Dn = Data Register
An = Address Register
Xn = Address or Data Register Used as Index Register
SR = Status Register
PC = Program Counter
SP = Stack Pointer

USP = User Stack Pointer
<> = Effective Address
d

8

= 8-Bit Offset (Displacement)
d

16

= 16-Bit Offset (Displacement)
#xxx = Immediate Data

8 MC68307 TECHNICAL INFORMATION MOTOROLA

Table 2. Instruction Set

Mnemonic Description Mnemonic Description

ABCD Add decimal with extend MOVEM Move multiple registers
ADD Add MOVEP Move peripheral data

ADDA Add address MOVEQ Move quick
ADDQ Add quick MOVE from SR Move from status register
ADDI Add immediate MOVE to SR Move to status register
ADDX Add with extend MOVE to CCR Move to condition codes
AND Logical AND MOVE USP Move user stack pointer
ANDI AND immediate MULS Signed multiply

ANDI to CCR AND immediate to condition codes MULU Unsigned multiply
ANDI to SR AND immediate to status register NBCD Negate decimal with extend

ASL Arithmetic shift left NEG Negate
ASR Arithmetic shift right NEGX Negate with extend
Bcc Branch conditionally NOP No operation

BCHG Bit test and change NOT Ones complement
BCLR Bit test and clear OR Logical OR
BRA Branch always ORI OR immediate
BSET Bit test and set ORI to CCR OR immediate to condition codes
BSR Branch to subroutined set ORI to SR OR immediate to status register
BTST Bit test PEA Push effective address
CHK Check register against bounds RESET Reset external devices
CLR Clear operand ROL Rotate left without extend
CMP Compare ROR Rotate right without extend

CMPA Compare address ROXL Rotate left with extend
CMPM Compare memory ROXR Rotate right with extend
CMPI Compare immediate RTE Return from exception
DBcc Test cond, decrement and branch RTR Return and restore
DIVS Signed divide RTS Return from subroutine
DIVU Unsigned divide SBCD Subtract decimal with extend
EOR Exclusive OR Scc Set conditional
EORI Exclusive OR immediate STOP Stop

EORI to CCR Exclusive OR immediate to condition codes SUB Subtract
EORI to SR Exclusive OR immediate to status register SUBA Subtract address

EXG Exchange registers SUBI Subtract immediate
EXT Sign extend SUBQ Subtract quick
JMP Jump SUBX Subtract with extend
JSR Jump to subroutine SWAP Swap data register halves
LEA Load effective address TAS Test and set operand
LINK Link stack TRAP Trap
LSL Logical shift left TRAPV Trap on overflow
LSR Logical shift right TST Test

MOVE Move UNLK Unlink
MOVEA Move address — —

MOTOROLA MC68307 TECHNICAL INFORMATION 9

SYSTEM INTEGRATION MODULE

The MC68307 system integration module (SIM07) consists of several functions that control the system start-up,
initialization, configuration, and the external bus with a minimum of external devices.

The SIM07 features include:

• System configuration

• Oscillator & clock dividers

• Reset control, power-down mode control

• Chip-selects and wait states

• External bus interfaces, 68000 and 8051-compatible

• Parallel input/outputs with interrupt capability

• Interrupt configuration/response

• Software watchdog

• JTAG test access port

System Configuration

The MC68307 system configuration logic consists of a module base address register (MBAR) and a system
control register (SCR) which together allow the user to configure operation of the following functions:

• Base address and address space of internal peripheral registers

• Low-power (stand-by) modes

• Hardware watchdog for system protection

• 8051-compatible bus

• Peripheral chip selects

• Data bus size control for chip selected address ranges

Chip Select Logic and Dynamic Bus Sizing

The MC68307 provides four programmable chip-select signals (CS3–CS0). For a given chip-select block, the
user may choose whether the chip-select allows read-only, write-only, or both read and write accesses, whether
the chip-select should match only one function code value or all values, whether a

DTACK

 is automatically
generated for this chip-select, and after how many wait states (from zero to six) the DTACK will be generated.
Each of the chip selects includes a dynamic bus-sizing extension to the basic 68000 bus which allows the system
designer to mix 16-bit and 8-bit contiguous address memory devices (RAM, ROM) on a 16-bit data bus system.

An additional feature of CS2 allows the user to opt either to use the programmable chip select CS2 or to use four
peripheral chip selects (CS2A, CS2B, CS2C, and CS2D). When the four peripheral chip selects are enabled,
each one selects a16-Kbyte block within the programmed range of CS2.

10 MC68307 TECHNICAL INFORMATION MOTOROLA

External Bus Interface

The external bus interface handles the transfer of information between the internal EC000 core and the memory,
peripherals, or other processing elements in the external address space. It consists of a 68000 bus interface and
an 8051-compatible bus interface. The external 68000 bus provides up to 24 address lines and 16 data lines.
Each bus access can appear externally either as a 68000 bus cycle (either 16-bit or 8-bit dynamic data bus width)
or as an 8-bit wide 8051-compatible bus cycle (multiplexing 8 bits of address and data) with the appropriate sets
of control signals.

Parallel General-Purpose I/O Ports

The MC68307 supports two general-purpose I/O ports, port A (8-bits) and port B (16-bits), whose pins can be
configured as general-purpose I/O pins or as dedicated peripheral interface pins for the on-chip modules.

Each port pin can be independently programmed as general-purpose I/O pins, even when other pins related to
the same on-chip peripheral are used as dedicated pins. Even if all the pins for a particular peripheral are
configured as general-purpose I/O, the peripheral will still operate normally (although this is only useful in the
case of the timer module). Power consumption may be reduced by turning off unused modules.

Interrupt Controller

The interrupt controller supports interrupts from three sources. The first source is an external, nonmaskable
interrupt input on the IRQ7 signal, which always causes an interrupt priority level 7 request to the EC000 core.
Assuming no other source is programmed as a level 7 source, this input will always obtain the immediate
attention of the core.

The second source is an external interrupt received through the 8-channel latched interrupt port (INT8–INT1).
Each INTx signal can be programmed with an interrupt priority level, and each can have pending interrupts
cleared independently of the others.

The third source of interrupts is the on-chip peripherals. The interrupt controller allows the user to assign the
interrupt priority level each of the four on-chip peripherals will use, and to determine a particular vector number
to be presented when the respective module receives an interrupt acknowledge from the processor via the
interrupt controller logic.

Software Watchdog

A software watchdog timer is used to protect against system failures by providing a means to escape from
unexpected input conditions, external events, or programming errors. Once started, the software watchdog timer
must be cleared by software on a regular basis so that it never reaches its time-out value. Upon reaching the
time-out value, the assumption is made that a system failure has occurred, and the software watchdog logic
resets the MC68307.

MOTOROLA MC68307 TECHNICAL INFORMATION 11

Low-Power Stop Logic

Various options for power-saving are available: turning off unused peripherals, reducing processor clock speed,
disabling the processor altogether or a combination of these.

A wake-up from power-down can be achieved by causing an interrupt at the interrupt controller logic which runs
throughout the period of processor power-down. Any interrupt will cause a wake-up of the EC000 core followed
by processing of that interrupt.

The on-chip peripherals can initiate a wake-up; for example, the timer can be set to wake-up after a certain
elapsed time, or number of external events, or the UART can cause a wake-up on receiving serial data.

The clocks provided to the various internal modules can all be disabled to further reduce power consumption. In
the case of the UART, its clock is restarted automatically by a transition on the RxD pin, so that incoming data is
clocked in. When the data has been completely received, an interrupt from the UART wakes-up the processor
core. If the other on-chip peripherals (the timer and M-bus) are required to cause a wake-up, then their clocks
should not be disabled in this manner.

JTAG Test Access Port

To aid in system diagnostics the MC68307 includes dedicated user-accessible test logic that is fully compliant
with the IEEE 1149.1 standard for boundary scan testability, often referred to as JTAG (joint test action group).

SIM07 Programming Model

The SIM07 programming model is listed in Tables 3–7. The FC (function code) column in each table indicates
whether a register is restricted to supervisor access (S) or programmable to exist in either supervisor or user
space (S/U). With the exception of the system configuration registers (listed in Table 3), the address column
of each table contains the offset from the base address (MBASE) contained in the MBAR.

Table 3. SIM07 System Configuration Registers

Address FC Register Name

$0000F0 — Reserved—No external bus access
$0000F2 S Module Base Address Register (MBAR)
$0000F4 S System Control Register (SCR)
$0000F6 S System Control Register (SCR)
$0000F8 — Reserved—No external bus access
$0000FA — Reserved—No external bus access
$0000FC — Reserved—No external bus access
$0000FE — Reserved—No external bus access

12 MC68307 TECHNICAL INFORMATION MOTOROLA

Table 4. SIM07 Chip Select Registers

Address FC Register Name

MBASE+$040 S/U Base register 0
MBASE+$042 S/U Option register 0
MBASE+$044 S/U Base register 1
MBASE+$046 S/U Option register 1
MBASE+$048 S/U Base register 2
MBASE+$04A S/U Option register 2
MBASE+$04C S/U Base register 3
MBASE+$04E S/U Option register 3

Table 5. SIM07 External Bus Interface Registers

Address FC Register Name

MBASE+$011 S/U Do not access byte $010 Port A control register (PACNT)
MBASE+$013 S/U Do not access byte $012 Port A data direction register (PADDR)
MBASE+$015 S/U Do not access byte $014 Port A data register (PADAT)
MBASE+$016 S/U Port B control register (PBCNT)
MBASE+$018 S/U Port B data direction register (PBDDR)
MBASE+$01A S/U Port B data register (PBDAT)

Table 6. SIM07 Interrupt Controller Registers

Address FC Register Name

MBASE+$020 S/U Latched interrupt control register 1 (LICR1)
MBASE+$022 S/U Latched interrupt control register 2 (LICR2)
MBASE+$024 S/U Peripheral interrupt control register (PICR)
MBASE+$027 S/U Do not access byte $026 Programmable interrupt vector register (PIVR)

Table 7. SIM07 Software Watchdog Registers

Address FC Register Name

MBASE+$12A S/U Watchdog reference register (WRR)
MBASE+$12C S/U Watchdog counter register (WCR)

MOTOROLA MC68307 TECHNICAL INFORMATION 13

DUAL TIMER MODULE

The MC68307 includes two independent, identical, general-purpose timers. Each general-purpose timer block
contains a free-running 16-bit timer which can be used in various modes, to capture the timer value with an
external event, to trigger an external event or interrupt when the timer reaches a set value, or to count external
events. Each has an 8-bit prescaler to allow programmable clock input frequency derived from the system
clock (divided by 1 or by 16) or external count input. The output pins (one per timer) have a variety of program-
mable modes and the output signal can be an active-low pulse or a toggle of the current output. The features
of the 16-bit timer include:

• Maximum period of 16 seconds (at 16.67 MHz)

• 60-ns resolution (at 16.67 MHz)

• Programmable sources for the clock input, including external clock

• Input capture capability with programmable trigger edge on input pins

• Output compare with programmable mode for the output pins

• Two timers externally cascadeable to form a 32-bit timer

• Free-run and restart modes

Dual Timer Programming Model

Table 8 shows the programming model for the dual timer module.

The FC (function code) column indicates
whether a register is restricted to supervisor access (S) or programmable to exist in either supervisor or user
space (S/U). The address column contains the offset from the base address (MBASE) contained in the SIM07
MBAR

.

Table 8. Dual Timer Module Registers

Address FC Register Name

MBASE+$120 S/U Timer mode register 1 (TMR1)
MBASE+$122 S/U Timer reference register 1 (TTR1)
MBASE+$124 S/U Timer capture register 1 (TCR1)
MBASE+$126 S/U Timer counter 1 (TCN1)
MBASE+$129 S/U Do not access byte $128 Timer event register 1 (TER1)
MBASE+$130 S/U Timer mode register 2 (TMR2)
MBASE+$132 S/U Timer reference register 2 (TRR1)
MBASE+$134 S/U Timer capture register 2 (TCR2)
MBASE+$136 S/U Timer counter 2 (TCN2)
MBASE+$139 S/U Do not access byte $138 Timer event register 2 (TER2)

14 MC68307 TECHNICAL INFORMATION MOTOROLA

M-BUS INTERFACE MODULE

The M-bus is a two-wire, bidirectional serial bus which provides a simple and efficient means of data exchange
between devices; it is fully compatible with the I

2

C bus standard. The maximum data rate is limited to 100 kbit/s
at 16.67-MHz system clock speed. The maximum communication length and the number of devices that can be
connected are limited by a maximum bus capacitance of 400 pF. The serial bit clock frequency of the M-bus is
programmable and ranges from 3830 Hz to 757 kHz for a 16.67-MHz internal operating frequency.

The M-bus system is a true multimaster bus including collision detection and arbitration to prevent data corruption
(when two or more masters intend to control the bus simultaneously). The M-bus system uses the SDA and SCL
signals for data transfer. All devices connected to the M-bus interface must have open-drain or open-collector
output; a logic AND function is exercised in both lines with pull-up resistors.

The features of the M-bus include:

• Fully compatible with I

2

C bus standard

• Multimaster operation

• Software programmable for one of 32 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration-lost driven interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Generate/detect the START or STOP signal

• Repeated START signal generation

• Generate/recognize the acknowledge bit

• Bus busy detection

M-Bus Programming Model

The programming model for the M-bus module is listed in Table 9. The FC (function code) column indicates
whether a register is restricted to supervisor access (S) or programmable to exist in either supervisor or user
space (S/U). The address column contains the offset from the base address (MBASE) contained in the SIM07
MBAR

.

Table 9. M-Bus Module Registers

Address FC Register Name

MBASE+$141 S/U Do not access byte $140 M-bus address register (MADR)
MBASE+$143 S/U Do not access byte $142 M-bus frequency divider register (MFDR)
MBASE+$145 S/U Do not access byte $144 M-bus control register (MBCR)
MBASE+$147 S/U Do not access byte $146 M-bus status register (MBSR)
MBASE+$149 S/U Do not access byte $148 M-bus data I/O register (MBDR)

MOTOROLA MC68307 TECHNICAL INFORMATION 15

UART MODULE

The UART module in the MC68307 is based on the MC68681 DUART, which is part of the M68000 family of
peripherals which directly interfaces to the MC68000 processor via an asynchronous bus structure. The UART
module consists of internal control logic, timing and baud-rate generator logic, interrupt control logic, and the
serial communications channel. Only one serial channel is implemented for the MC68307.

Clocking is provided by the MC68307 system clock, via a programmable prescaler. This allows various baud
rates to be chosen. Modem support is provided with request-to-send (RTS) and clear-to-send (CTS) signals
available. The serial port can sustain data rates of 5Mbits/s.

The features of the UART include:

• Full-duplex asynchronous/synchronous receiver/transmitter channels

• Maximum data transfer: 1X clock—5 Mbits/s, 16X clock—625 Kbits/s

• Quadruple-buffered receiver data registers

• Double-buffered transmitter data registers

• Programmable baud rate for serial channel
— User defined rate derived from a programmable timer

• Programmable data format
— Five to eight data bits plus parity
— Odd, even, no parity, or force parity
— One, one and one-half, or two stop bits programmable in 1/16 bit increments

• Programmable channel modes for diagnostics
— Normal (full duplex)/automatic echo/local loopback/remote loopback

• Automatic wake-up mode for multidrop applications

• Versatile interrupt system
— Single interrupt output with eight maskable interrupting conditions
— Interrupt vector output on interrupt acknowledge

• Parity, framing, and overrun error detection

• False-start bit detection

• Line-break detection and generation

• Detects break which originates in the middle of a character

• Interrupt or poll on start/stop break

16 MC68307 TECHNICAL INFORMATION MOTOROLA

UART Programming Model

The programming model for the UART module is listed in Table 10. The FC (function code) column indicates
whether a register is restricted to supervisor access (S) or programmable to exist in either supervisor or user
space (S/U). The address column contains the offset from the base address (MBASE) contained in the SIM07
MBAR.

Table 10. UART Module Registers

Address FC Register Name

MBASE+$101 S/U Do not access byte $100 UART mode register (UMR1,UMR2)
MBASE+$103 S/U Do not access byte $102 UART status/clock select register (USR,UCSR)
MBASE+$105 S/U Do not access byte $104 UART command register (UCR)
MBASE+$107 S/U Do not access byte $106 (read) UART receive buffer (UTB, URB)
MBASE+$107 S/U Do not access byte $106 (write) UART transmit buffer (UTB, URB)
MBASE+$109 S/U Do not access byte $108 (read) UART CTS change register (UCCR)
MBASE+$109 S/U Do not access byte $108 (write) UART auxiliary control register (UACR)
MBASE+$10B S/U Do not access byte $10A (read) UART interrupt status register (UISR)
MBASE+$10B S/U Do not access byte $10A (write) UART interrupt mask register (UIMR)
MBASE+$10D S/U Do not access byte $10C Baud rate gen prescaler msb (UBG1)
MBASE+$10F S/U Do not access byte $10E Baud rate gen prescaler lsb (UBG2)
MBASE+$119 S/U Do not access byte $118 UART interrupt vector register (UIVR)
MBASE+$11B S/U Do not access byte $11A UART CTS unlatched input port (UCP)
MBASE+$11D S/U Do not access byte $11C UART RTS output bit set cmd (URBS)
MBASE+$11F S/U Do not access byte $11E UART RTS output bit reset cmd (URBR)

MOTOROLA MC68307 TECHNICAL INFORMATION 17

EXTERNAL SIGNAL DESCRIPTIONS

Figure 5 shows the MC68307 input and output signals in their respective functional groups. Table 11 briefly
describes each of the MC68307 signals.

Figure 5. MC68307 Detailed Block Diagram

68000 INTERNAL BUS

TD
O

TD

I
TM

S
TC

K

CS2B/PA0

MULTIPLEXED
PARALLEL I/O

MULTIPLEXED
PARALLEL I/O

SYSTEM
INTEGRATION

MODULE
(SIM07)

8-/16-BIT
68000 BUS
INTERFACE

8051 BUS
INTERFACE

CHIP

AND DTACK

PROCESSOR
CONTROL,

CLOCK AND
LOW POWER

M-BUS
(I2C)

MODULE

UART
SERIAL

I/O

DUAL
TIMER

MODULE

STATIC EC000 CORE PROCESSOR

DYNAMIC BUS SIZING EXTENSION

 VCC
 GND

6

6

EX
TA

L
XT

AL

C
LK

O
U

T

SC
L/

PB
0

SD
A/

PB
1

TX
D

/P
B2

R

XD
/P

B3

R T
S/

PB
4

C
TS

/P
B5

TI
N

1/
PB

6

TI
N

2/
PB

7

CS2C/PA1
CS2D/PA2

TOUT1/PA3
TOUT2/PA4

BR/PA5
BG/PA6

BGACK/PA7

AS
UDS
LDS
R/W

DTACK

D15–D0

A23–A8

AD7–AD0 /A7–A0

RD
WR
ALE

CS3
CS2/CS2A

CS1
CS0

BUSW
IRQ7

RESET
HALT

TRST/RSTIN

INT1/PB8
INT2/PB9

INT3/PB10
INT4/PB11
INT5/PB12
INT6/PB13
INT7/PB14
INT8/PB15

JTAG
PORT

SELECT

INTERRUPT
CONTROLLER

18 MC68307 TECHNICAL INFORMATION MOTOROLA

Table 11. Signal index

Mnemonic Description Configuration

D15-D0 Data bus Bidirectional
A23-A8 Address bus out Output

AD7-AD0/A7-A0 Multiplexed 8051 address/data/Address bus out Bidirectional
AS Address strobe Output

UDS Upper data strobe Output
LDS Lower data strobe Output
R/W Read/write Output

DTACK Data acknowledge Bidirectional
HALT System halt Bidirectional

RESET System reset Bidirectional
TRST/RSTIN Power-on reset Input

CS0 Chip select 0 (ROM) Output
CS1 Chip select 1 (RAM) Output

CS2/CS2A Chip select 2 (peripherals) Output
CS3 Chip select 3 (8051) Output
ALE Address latch enable (8051) Output
RD 8051-bus read Output
WR 8051-bus write Output

EXTAL External clock/crystal in Input
XTAL External crystal Output

CLKOUT Clock to system Output
BUSW Initial data bus width for CS0 Input

CS2B/PA0 Chip select 2B / I/O port A bit 0 Bidirectional
CS2C/PA1 Chip select 2C / I/O port A bit 1 Bidirectional
CS2D/PA2 Chip select 2D / I/O port A bit 2 Bidirectional

TOUT1/PA3 Timer 1 output / I/O port A bit 3 Bidirectional
TOUT2/PA4 Timer 2 output / I/O port A bit 4 Bidirectional

BR/PA5 Bus request input / I/O port A bit 5 Bidirectional
BG/PA6 Bus grant output / I/O port A bit 6 Bidirectional

BGACK/PA7 Bus grant acknowledge output / I/O port A bit 7 Bidirectional
IRQ7 Interrupt level 7 Input

SCL/PB0 Serial M-bus clock / port B bit 0 Bidirectional
SDA/PB1 Serial M-bus data / port B bit 1 Bidirectional
TxD/PB2 UART transmit data / port B bit 2 Bidirectional
RxD/PB3 UART receive data / port B bit 3 Bidirectional
RTS/PB4 Request-to-send / port B bit 4 Bidirectional
CTS/PB5 Clear-to-send / port B bit 5 Bidirectional
TIN1/PB6 Timer 1 input / port B bit 6 Bidirectional
TIN2/PB7 Timer 2 input / port B bit 7 Bidirectional
INT1/PB8 Interrupt in 1 / port B bit 8 Bidirectional
INT2/PB9 Interrupt in 2 / port B bit 9 Bidirectional
INT3/PB10 Interrupt in 3 / port B bit 10 Bidirectional
INT4/PB11 Interrupt in 4 / port B bit 11 Bidirectional
INT5/PB12 Interrupt in 5 / port B bit 12 Bidirectional
INT6/PB13 Interrupt in 6 / port B bit 13 Bidirectional
INT7/PB14 Interrupt In 7 / port B bit 14 Bidirectional
INT8/PB15 Interrupt in 8 / port B bit 15 Bidirectional

MOTOROLA MC68307 TECHNICAL INFORMATION 19

ELECTRICAL CHARACTERISTICS

AC ELECTRICAL SPECIFICATION DEFINITIONS

The AC specifications presented consist of output delays, input setup and hold times and signal skew times. All
signals are specified relative to an appropriate edge of the clock and possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure 6. To test the parameters
guaranteed by Motorola, inputs must be driven to the voltage levels specified in the figure. Outputs are specified
with minimum and/or maximum limits, as appropriate, and are measured as shown. Inputs are specified with
minimum setup and hold times, and are measured as shown. Finally, the measurement for signal-to-signal
specifications are shown.

Note that the testing levels used to verify conformance to the AC specifications does not affect the guaranteed
DC operation of the device as specified in the DC electrical characteristics.

a. Not including internal pull-up or pull-down.
b. Currents listed are with no loading.
c. Capacitance is periodically sampled rather than 100% tested.

PRELIMINARY

 DC ELECTRICAL SPECIFICATIONS

Characteristic Symbol Min Max Unit

Input high voltage (except clock) V

IH

2.0 V

CC

V

Input low voltage V

IL

GND 0.8 V

Clock input high voltage VIHC 0.7 V

CC

V

CC

 + 0.3 V

Input leakage current @5.25V (all input-only pins)

a

I

IN

– 2.5 2.5

µ

A

Three-state (off state) input current @2.4V/0.4V I

TSI

— 20

µ

A

Output high voltage (I

OH

 = rated maximum) V

OH

V

CC

 – 0.75 — V

Output low voltage (I

OL

 = rated maximum) V

OL

— 0.5 V

Current dissipation
V

CC

 = 5.0V

±

0.5V

b

f

EXT

= 16.67MHz

V

CC

 = 3.3V

±

0.3V

b

f

EXT

= 8MHz
Low power STOP mode
V

CC

 = 5.0V±0.5V fEXT = 16.67MHz
VCC = 3.3V±0.3V fEXT = 8MHz

ID —
—

—
—

30
TBD

TBD
TBD

mA

Power dissipation
VCC = 5.0V±0.5V fEXT = 16.67MHz
VCC = 3.3V±0.3V fEXT = 8MHz

PD —
—

0.26
TBD

W

Input capacitancec

All input-only pins
All I/O pins

CIN —
—

10
20

pF

Load capacitancec

All output pins (except SCL and SDA)
SCL, SDA

CL —
—

100
400

pF

20 MC68307 TECHNICAL INFORMATION MOTOROLA

Figure 6. Drive Levels and Test Points for AC Specifications

0.8 V

2.0 V

B
DRIVE TO

0.5 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0 V

0.8 V

2.0 V

0.8 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n+1

2.0 V

0.8 V

B

A

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE TO
0.5 V

DRIVE TO
2.4 V

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE
TO 0.5 V

DRIVE
TO 2.4 V

2.0 V

0.8 V

2.0 V

0.8 V

F

CLK

OUTPUTS(1) CLK

OUTPUTS(2) CLK

INPUTS(3) CLK

INPUTS(4) CLK

ALL SIGNALS(5)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:
A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.
E. Signal valid to signal valid specification (maximum or minimum).
F. Signal valid to signal invalid specification (maximum or minimum).

DRIVE
TO 2.4 V

E

A

MOTOROLA MC68307 TECHNICAL INFORMATION 21

 .

PRELIMINARY AC ELECTRICAL SPECIFICATIONS—CONTROL TIMING

(See Figure 7)

Num Characteristic

3.3 V 5 V

Unit8 MHz 16.67 MHz
Min Max Min Max

Frequency of operation 0.0 8.33 0.0 16.67 MHz
1 Cycle time 120 — 60 — ns

2,3 Clock pulse width 54 — 27 — ns
4,5 Clock rise and fall time — 5 — 5 ns

Figure 7. Clock Timing

0.8 V

2.0 V

4 5

1

2 3

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 V and a
 high voltage of 2.0 V, unless otherwise noted. The voltage swing through this
 range should start outside and pass through the range such that the rise or
 fall will be linear between 0.8 V and 2.0 V.

22 MC68307 TECHNICAL INFORMATION MOTOROLA

PRELIMINARY AC TIMING SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figures 8–10)

Num Characteristic

3.3V 5V

Unit8.33 MHz 16.67 MHz
Min Max Min Max

6 Clock low to address valid — 60 — 30 ns
7 Clock high to address, data bus high impedance (maximum) — 100 — 50 ns
8 Clock high to address (minimum) 0 — 0 — ns
9a Clock high to AS, CSx, LDS, UDS asserted 3 60 3 30 ns
11b Address valid to AS, CSx, LDS, UDS asserted (read) / AS, CSx asserted

(write)
30 — 15 — ns

12a Clock low to AS, CSx, LDS, UDS negated 3 60 3 30 ns
13b AS, CSx, LDS, UDS negated to address, FC invalid 30 — 15 — ns
14b AS, CSx, (and LDS, UDS read) width asserted 240 — 120 — ns

14Ab LDS, UDS width asserted 100 — 50 — ns
15b AS, CSx, LDS, UDS width negated 120 — 60 — ns
17c AS, CSx, LDS, UDS negated to R/W invalid 30 — 15 — ns
18a Clock high to R/W high (read) 0 60 0 30 ns
20 Clock high to R/W low (write) 0 60 0 30 ns

20Ac AS, CSx, asserted to R/W low (write) — 20 — 10 ns
21b Address valid to R/W low (write) 0 — 0 — ns
22c R/W low to LDS, UDS asserted (write) 60 — 30 — ns
23 Clock low to data-out valid (write) — 60 — 30 ns
25b AS, CSx, LDS, UDS negated to data-out invalid (write) 30 — 15 — ns
26b Data-out valid to LDS,UDS asserted (write) 30 — 15 — ns
27d Data-in valid to clock low (setup time on read) 10 — 5 — ns
28b AS, CSx, LDS, UDS negated to DTACK negated (asynchronous hold) 0 220 0 110 ns
29 AS, CSx, LDS, UDS negated to data-in invalid (hold time on read) 0 — 0 — ns

29A AS, CSx, LDS, UDS negated to data-in high impedance — 180 — 90 ns
30 AS, CSx, LDS, UDS negated to BR negated 0 — 0 — ns
31 DTACK asserted to data-in valid (setup time) — 100 — 50 ns
32 HALT and RESET input transition time 0 300 0 150 ns
33 Clock high to BG asserted 0 40 0 20 ns
34 Clock high to BG negated 0 40 0 20 ns
35 BR asserted to BG asserted 1.5 3.5 1.5 3.5 Clks
36 BR negated to BG negated 1.5 3.5 1.5 3.5 Clks
37 BGACK asserted to BG asserted 1.5 3.5 1.5 3.5 Clks
38 BG asserted to control, address, data bus high impedance (AS, CSx

negated)
— 100 — 50 ns

39 BG width negated 1.5 — 1.5 — Clks
46 BGACK width low 1.5 — 1.5 — Clks
47d Asynchronous input setup time 10 — 5 — ns
53 Data-out hold from clock high 0 — 0 — ns

MOTOROLA MC68307 TECHNICAL INFORMATION 23

.

a. For a loading capacitance of less than or equal to 50 pF, subtract 5 ns from the value given in the maximum
columns.

b. Actual value depends on clock period.
c. When AS, CSx and R/W are equally loaded (±20%), subtract 5 ns from the values given in these columns.
d. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK asserted to data

setup time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time
(#27) for the following clock cycle.

e. For power-up, the MC68307 must be held in the reset state for 128 clock cycles after CLK and VCC become
stable to allow stabilization of on-chip circuitry. After the system is powered up, #56 refers to the minimum
pulse width required to reset the controller.

55 R/W asserted to data bus impedance change 40 — 20 — ns
56e HALT/RESET pulse width 10 — 10 — Clks
57 BGACK negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks
58 BR negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks

NOTES:

PRELIMINARY AC TIMING SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figures 8–10)

Num Characteristic

3.3V 5V

Unit8.33 MHz 16.67 MHz
Min Max Min Max

24 MC68307 TECHNICAL INFORMATION MOTOROLA

Figure 8. Read Cycle Timing Diagram

S0 S1 S2 S3 S4 S5 S6

CLK

S7

8

13

14

12

47 28

29

27

47

47

32

56

47

32

A23–A1

CSx, AS

LDS / UDS

R/W

DTACK

D15–D0

 BR
(NOTE 2)

HALT / RESET

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

31

11A

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK) guarantees
 their recognition at the next falling edge of the clock.
 2. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

9

15

6

11

29A

MOTOROLA MC68307 TECHNICAL INFORMATION 25

Figure 9. Write Cycle Timing Diagram

8

15

13

9

14

12

17

18

47 28

25

26

48

47

47

32

56

47

32

S0 S1 S2 S3 S4 S5 S6

CLK

A23–A1

CSx, AS

LDS / UDS

R/W

DTACK

D15–D0

 BR
(NOTE 3)

HALT / RESET

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

S7

237

11
9

53

55

21

22

20

11A

2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge
 of S2 (specification #20A).

14A20A

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK) guarantees
 their recognition at the next falling edge of the clock.

 3. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

(NOTE 2)

(NOTE 2)

15A

6

26 MC68307 TECHNICAL INFORMATION MOTOROLA

a. Wait states can be added.

Figure 10. Bus Arbitration Timing

PRELIMINARY 8051 BUS INTERFACE MODULE
AC ELECTRICAL SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figures 11 and 12)

Symbol Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

 tcyc Cycle time 120 — 60 — ns

TLHLL ALE pulse width 2 x tcyc – 40 — 2 x tcyc – 40 — ns

TAVLL Address valid to ALE low tcyc – 40 — tcyc – 40 — ns

TLLAX Address hold after ALE low tcyc – 35 — tcyc – 35 — ns

TRLRH RD pulse widtha 5 x tcyc — 5 x tcyc —8051 ns

TWLWH WR pulse width(1) 5 x tcyc — 5 x tcyc — ns

TRLDV RD low to valid data in(1) — 5 x tcyc – 165 — 5 x tcyc – 165 ns

TRHDX Data hold after RD 0 — 0 — ns
TRHDZ Data float after RD — 0.5 x tcyc — 0.5 x tcyc ns

TLLDV ALE low to valid data in(1) — 8 x tcyc – 150 — 8 x tcyc – 150 ns

TAVDV Address to valid data in(1) — 9 x tcyc – 165 — 9 x tcyc – 165 ns

TLLWL ALE low to RD or WR low 3 x tcyc– 50 3 x tcyc + 50 3 x tcyc– 50 3 x tcyc + 50 ns

TAVWL Address to RD low or WR low 4 x tcyc – 130 — 4 x tcyc – 130 — ns

TQVWX Data valid to WR transition tcyc – 60 — tcyc – 60 — ns

TQVWH Data valid to WR high(1) 7 x tcyc– 150 — 7 x tcyc– 150 — ns

TWHQX Data held after WR tcyc– 50 — tcyc– 50 — ns

TRLAZ RD low to address float — — — — ns
TWHLH RD or WR high to ALE high tcyc– 40 tcyc+ 50 tcyc– 40 tcyc+ 50 ns

NOTE:

CLK

Strobes

BR

BGACK

BG

R/W
and

36

35

46

39
34

38
33

37

MOTOROLA MC68307 TECHNICAL INFORMATION 27

Figure 11. External Dat3a Memory Read Cycle

Figure 12. External Data Memory Write Cycle

ALE

RD

AD7 – AD0

A23–A8

Address Data in Address

TLHLL TWHLH

TLLDV

TLLWL TRLRH

TAVLL

TLLAX
TRLDV TRHDZ

TRLAZ

TRHDX

TAVWL
TAVDV

ALE

WR

AD7–AD0

A23–A8

Address Data out Address

TLHLL TWHLH

TLLWL TWLWH

TAVLL

TLLAX
TWHQX

TAVWL

TQVWX

TQVWH

28 MC68307 TECHNICAL INFORMATION MOTOROLA

PRELIMINARY IEEE 1149.1 ELECTRICAL SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figures 13–15)

Num Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

TCK frequency of operation 0 10.0 0 10.0 MHz
1 TCK cycle time 100 — 100 — ns
2 TCK clock pulse width measured at 1.5 V 45 — 45 — ns
3 TCK rise and fall times 0 5 0 5 ns
6 Boundary scan input data setup time 15 — 15 — ns
7 Boundary scan input data hold time 15 — 15 — ns
8 TCK low to output data valid 0 80 0 80 ns
9 TCK low to output high impedance 0 80 0 80 ns

10 TMS, TDI data setup time 15 — 15 — ns
11 TMS, TDI data hold time 15 — 15 — ns
12 TCK low to TDO data valid 0 30 0 30 ns
13 TCK low to TDO high impedance 0 30 0 30 ns
14 TRST width low 80 — 80 — ns

Figure 13. Test Clock Input Timing Diagram

Figure 14. Boundary Scan Timing Diagram

3

VIH

VIL

2

3

1

2

TCK

6 7

TCK

Data inputs

Data outputs

Data outputs

Data outputs

Input data valid

Output data valid

Output data valid

VIH

VIL

8

9

8

MOTOROLA MC68307 TECHNICAL INFORMATION 29

Figure 15. Test Access Port Timing Diagram

PRELIMINARY TIMER MODULE ELECTRICAL SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 16)

Num Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

1 Timer input capture pulse width 100 — 50 — ns
2 TINclock low pulse width 100 — 50 — ns
3 TIN clock high pulse width and input capture high pulse width 2 — 2 — Clk
4 TIN clock cycle time 3 — 3 — Clk
5 Clock high to TOUT valid — 70 — 35 ns

NOTE: The TIN specifications do not apply to the use of TIN1 as a baud rate generator input clock. In such a case, spec-
ifications may be used.

Figure 16. Timer Module Timing Diagram

TCLK

TDI

TDO

TDO

TDO

Input data valid

Output data valid

Output data valid

VIH

VIL

TMS

10 11

13

12

12

Clock 0

TOUT
(output)

5

2

4 3

1

TIN
(input)

30 MC68307 TECHNICAL INFORMATION MOTOROLA

PRELIMINARY UART ELECTRICAL SPECIFICATIONS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figures 17 and 18)

Num Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

1 TxD output valid from TxC low — 700 — 350 ns
2 RxD data setup time to RxC high 480 — 240 — ns
3 RxD data hold time from RxC high 400 — 200 — ns

Figure 17. Transmitter Timing

Figure 18. Receiver Timing

Clock

1 bit time

TxD

(1 or 16 clocks)

1

Clock 1X

RxD

2 3

MOTOROLA MC68307 TECHNICAL INFORMATION 31

PRELIMINARY M-BUS INTERFACE INPUT SIGNAL TIMING
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 19)

Num Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

1 Start condition hold time 2 — 2 — Clk

2 Clock low period 4.7 — 4.7 — Clk

3 SDA/SCL rise time — 2 — 1 µs
4 Data hold time 0 — 0 — Clk

5 SDA/SCL fall time — 600 — 300 ns
6 Clock high period 4 — 4 — Clk

7 Data setup time 500 — 250 — µs
8 Start condition setup time (for repeated start condition only) 2 — 2 — Clk

9 Stop condition setup time 2 — 2 — Clk

PRELIMINARY M-BUS INTERFACE OUTPUT SIGNAL TIMING

(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 19)

Num Characteristic

3.3V 5V

Unit8 MHz 16.67 MHz
Min Max Min Max

1 Start condition hold time 8 — 8 — Clk

2 Clock low period 11 — 11 — Clk

3 SDA/SCL rise time — 2 — 1 µs
4 Data hold time 0 2 0 2 Clk

5 SDA/SCL fall time — 600 — 300 ns
6 Clock high period 11 — 11 — Clk

7 Data setup time (Spec
2) x Clk

— (Spec
2) x Clk

— ns

8 Start condition setup time (for repeated start condition only) 20 — 10 — Clk

9 Stop condition setup time 20 — 10 — Clk

Figure 19. M-Bus Interface Input/Output Signal Timing

5

SDA

SCL

9
8

7

6

3

2

4
1

32 MC68307 TECHNICAL INFORMATION MOTOROLA

MECHANICAL DATA

The MC68307 is available in a 100-lead QFP package (FG suffix). Figure 20 shows the MC68307 pinout.
Figure 21 shows the case drawing for the MC68307.

Figure 20. MC68307 FG Suffix—Pinout

A13
A12
A11
A10
GND
A9
A8
A7/AD7
A6/AD6
A5/AD5

A22
A21
A20
A19
A18
VCC
A17
A16
A15
A14

D7
D6
D5
D4

VCC
D3
D2
D1
D0

TDO

TMS
D15
D14
D13
D12

GND
D11
D10
D9
D8

79 52

80

81

100

1 30

31

50

51
PB

0/
SC

L
PB

1/
SD

A
VC

C
PB

2/
Tx

D
PB

3/
R

xD
PB

4/
R T

S
PB

5/
C

TS
PB

6/
TI

N
1

PB
7/

TI
N

2
PB

8/
IN

T1

PB
10

/IN
T3

PB
11

/IN
T4

PB
12

/IN
T5

PB
13

/IN
T6

PB
14

/IN
T7

PB
15

/IN
T8

VC
C

PA
0/

C
S2

B
PA

1/
C

S2
C

PA
2/

C
S2

D
PA

3/
TO

U
T1

PA
4/

TO
U

T2
PA

5/
BR

PA
6/

BG
G

N
D

PA
7/

BG
AC

K
IR

Q
7

A2
3

PB
9/

IN
T2

G
N

D

TR
ST

/R
ST

IN
VC

C
H

AL
T

R
ES

ET
TC

K
C

S0
C

S1
C

S2
A/

C
S2

C
S3

G
N

D

TD
I

AL
E

R
D

G
N

D
W

R AS
U

D
S

LD
S

R
/W

D
TA

C
K

C
LK

O
U

T
EX

TA
L

XT
AL

BU
SW

A0
/A

D
0

A1
/A

D
1

A2
/A

D
2

VC
C

A3
/A

D
3

A4
/A

D
4

MC68307
(TOP VIEW)

MOTOROLA MC68307 TECHNICAL INFORMATION 33

Figure 21. MC68307 FG Suffix—Package Dimensions

A B

0.20 (0.008) C A – B D
0.05 (0.002)

D

0.20 (0.008) C A – B DS S

0.05 (0.002) A-B

A – B

0.20 H A – B DM S S

DETAIL "C"

K

DIM

A

MILLIMETERS INCHES
MIN MAX MIN MAX
19.90 20.10 NOTES:

 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 3. CONTROLLING DIMENSION: MILLIMETER. INCHES ARE IN "()".
 4. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS
 COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE
 PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
 5. DATUMS -A-, -B-, AND -D- TO BE DETERMINED AT DATUM PLANE -H-.
 6. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE -C-.
 7. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE
 PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE
 MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-.
 8. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D
 DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE
 LOCATED ON THE LOWER RADIUS OR THE FOOT.

G
C

SEATING
PLANE

H
∩ 0.1 (0.004)

DATUM
PLANE

DETAIL "C"

SECTION B-B

BASE METAL

0.02 (0.008) C A – B DM S

DETAIL "A"

DETAIL "A"

P

A, B, D
HDATUM

PLANE

B 13.90
C 3.30
D 0.22 0.38
E 2.55 3.05
F
G .0.65 BSC
H 0.10 0.36
J 0.17 0.23
K
L 12.35 REF
M 5° 16° 16°
N
P 0.325 BSC
Q 0° 7° 0° 7°
R
S

—

M
C

AA

V

A

L

S

B

1

H

E

M

NJ

F

D

U

R
T

W
X

Q

B

B

S

M S S

0.20 (0.008) H A – B DS S

14.10

0.22 0.33

0.65 0.95

0.13 0.17

0.25 0.35

T
23.65 24.15

0.13 —
0° 0°— —

17.65 18.15
U
V
W
X

0.40 —
1.95 REF

M

 1. DUE TO SPACE LIMITATION, CASE 842B-01 SHALL BE REPRESENTED
 BY A GENERAL (SMALLER) CASE OUTLINE DRAWING RATHER THAN
 SHOWING ALL 100 LEADS.

Y 0.58 REF
Z 0.83 REF

AA 18.85 REF

Z

Y

30

5081

31100

5180

M

5°

0.7830.783 0.7910.791
0.5470.547 0.5550.555

0.1300.130——
0.0090.009 0.0150.015

0.1200.1200.1000.100
0.0090.009 0.0130.013

.0.026 BSC

.0.013 BSC

.0.486 REF

0.0040.004 0.0140.014
0.0090.009
0.0370.0370.0260.026

0.0070.007

0.0050.005 0.0070.007

0.0140.0140.0100.010
0.9310.931 0.9510.951

——0.0050.005

0.6950.695 0.7150.715

0.007 REF
0.023 REF
0.033 REF
0.742 REF

—0.0160.016

CASE 842B-01CASE 842B-01
MC68307FGMC68307FG

µ

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MORE INFORMATION

The documents listed in the following table contain detailed information on the MC68307. These documents
may be obtained from the Literature Distribution Centers at the addresses listed below.

Table 12. Documentation

Document Title Order Number Contents

M68300 Integrated Processor Family BR1114/D M68300 Family Overview

MC68307 User's Manual MC68307UM/AD Detailed information for design

M68000 Family Programmer's Reference Manual M68000PM/AD M68000 Family Instruction Set

The 68K Source BR729/D Independent vendor listing supporting
 software and development tools

Parts Not Suitable for New Designs

For Additional Information

End-Of-Life Product Change Notice

http://www.mot.com/SPS/HPESD/prod/eol/68307_eol.html

 MOTOROLA, 1994

µ

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MC68307

Integrated Multiple-Bus

Processor User’s Manual

Thi d t t d ith F M k 4 0 4

MOTOROLA

MC68307 USER’S MANUAL

iii

68K FAX-IT

Documentation Comments

FAX 512-891-8593—Documentation Comments Only

The Motorola High-Performance Embedded Systems Technical Communications Depart-
ment provides a fax number for you to submit any questions or comments about this docu-
ment or how to order other documents. We welcome your suggestions for improving our
documentation. Please do not fax technical questions.

Please provide the part number and revision number (located in upper right-hand corner of
the cover) and the title of the document. When referring to items in the manual, please ref-
erence by the page number, paragraph number, figure number, table number, and line num-
ber if needed.

When sending a fax, please provide your name, company, fax number, and phone number
including area code.

Applications and Technical Information

For questions or comments pertaining to technical information, questions, and applications,
please contact one of the following sales offices nearest you.

iv

MC68307 USER’S MANUAL

MOTOROLA

—

Sales Offices —

Field Applications Engineering Available Through All Sales Offices

UNITED STATES

ALABAMA

, Huntsville (205) 464-6800

ARIZONA

, Tempe (602) 897-5056

CALIFORNIA

, Agoura Hills (818) 706-1929

CALIFORNIA

, Los Angeles (310) 417-8848

CALIFORNIA

, Irvine (714) 753-7360

CALIFORNIA

, Rosevllle (916) 922-7152

CALIFORNIA

, San Diego (619) 541-2163

CALIFORNIA

, Sunnyvale (408) 749-0510

COLORADO

, Colorado Springs (719) 599-7497

COLORADO

, Denver (303) 337-3434

CONNECTICUT

, Wallingford (203) 949-4100

FLORIDA

, Maitland (407) 628-2636

FLORIDA

, Pompano Beach/
 Fort Lauderdale (305) 486-9776

FLORIDA

, Clearwater (813) 538-7750

GEORGlA

, Atlanta (404) 729-7100

IDAHO

, Boise (208) 323-9413

ILLINOIS

, Chicago/Hoffman Estates (708) 490-9500

INDlANA

, Fort Wayne (219) 436-5818

INDIANA

, Indianapolis (317) 571-0400

INDIANA

, Kokomo (317) 457-6634

IOWA

, Cedar Rapids (319) 373-1328

KANSAS

, Kansas City/Mission (913) 451-8555

MARYLAND

, Columbia (410) 381-1570

MASSACHUSETTS

, Marborough (508) 481-8100

MASSACHUSETTS

, Woburn (617) 932-9700

MICHIGAN

, Detroit (313) 347-6800

MINNESOTA

, Minnetonka (612) 932-1500

MISSOURI

, St. Louis (314) 275-7380

NEW JERSEY

, Fairfield (201) 808-2400

NEW YORK

, Fairport (716) 425-4000

NEW YORK

, Hauppauge (516) 361-7000

NEW YORK

, Poughkeepsie/Fishkill (914) 473-8102

NORTH CAROLINA

, Raleigh (919) 870-4355

OHIO

, Cleveland (216) 349-3100

OHIO

, Columbus/Worthington (614) 431-8492

OHIO

, Dayton (513) 495-6800

OKLAHOMA

, Tulsa (800) 544-9496

OREGON

, Portland (503) 641-3681

PENNSYLVANIA

, Colmar (215) 997-1020
 Philadelphia/Horsham (215) 957-4100

TENNESSEE

, Knoxville (615) 690-5593

TEXAS

, Austin (512) 873-2000

TEXAS

, Houston (800) 343-2692

TEXAS

, Plano (214) 516-5100

VIRGINIA

, Richmond (804) 285-2100

WASHINGTON

, Bellevue (206) 454-4160
 Seattle Access (206) 622-9960

WISCONSIN

, Milwaukee/Brookfield (414) 792-0122

CANADA
BRITISH COLUMBIA

, Vancouver (604) 293-7605

ONTARIO

, Toronto (416) 497-8181

ONTARIO

, Ottawa (613) 226-3491

QUEBEC

, Montreal (514) 731-6881

INTERNATIONAL
AUSTRALIA

, Melbourne (61-3)887-0711

AUSTRALIA

, Sydney (61(2)906-3855

BRAZIL

, Sao Paulo 55(11)815-4200

CHINA

, Beijing 86 505-2180

FINLAND

, Helsinki 358-0-35161191
 Car Phone 358(49)211501

FRANCE

, Paris/Vanves 33(1)40 955 900

GERMANY

, Langenhagen/ Hanover 49(511)789911

GERMANY

, Munich 49 89 92103-0

GERMANY

, Nuremberg 49 911 64-3044

GERMANY

, Sindelfingen 49 7031 69 910

GERMANY

, Wiesbaden 49 611 761921

HONG KONG

, Kwai Fong 852-4808333
 Tai Po 852-6668333

INDIA

, Bangalore (91-812)627094

ISRAEL

, Tel Aviv 972(3)753-8222

ITALY

, Milan 39(2)82201

JAPAN

, Aizu 81(241)272231

JAPAN

, Atsugi 81(0462)23-0761

JAPAN

, Kumagaya 81(0485)26-2600

JAPAN

, Kyushu 81(092)771-4212

JAPAN

, Mito 81(0292)26-2340

JAPAN

, Nagoya 81(052)232-1621

JAPAN

, Osaka 81(06)305-1801

JAPAN,

Sendai 81(22)268-4333

JAPAN,

Tachikawa 81(0425)23-6700

JAPAN,

Tokyo 81(03)3440-3311

JAPAN

, Yokohama 81(045)472-2751

KOREA

, Pusan 82(51)4635-035

KOREA

, Seoul 82(2)554-5188

MALAYSIA

, Penang 60(4)374514

MEXICO

, Mexico City 52(5)282-2864

MEXICO

, Guadalajara 52(36)21-8977
 Marketing 52(36)21-9023
 Customer Service 52(36)669-9160

NETHERLANDS

, Best (31)49988 612 11

PUERTO RICO

, San Juan (809)793-2170

SINGAPORE

(65)2945438

SPAIN

, Madrid 34(1)457-8204
 or 34(1)457-8254

SWEDEN

, Solna 46(8)734-8800

SWITZERLAND

, Geneva 41(22)7991111

SWITZERLAND

, Zurich 41(1)730 4074

TAlWAN

, Taipei 886(2)717-7089

THAILAND

, Bangkok (66-2)254-4910

UNITED KINGDOM

, Aylesbury 44(296)395-252

FULL LINE REPRESENTATIVES
COLORADO

, Grand Junction
 Cheryl Lee Whltely (303) 243-9658

KANSAS

, Wichita
 Melinda Shores/Kelly Greiving (316) 838 0190

NEVADA

, Reno
 Galena Technology Group (702) 746 0642

NEW MEXICO

, Albuquerque
 S&S Technologies, lnc. (505) 298-7177

UTAH

, Salt Lake City
 Utah Component Sales, Inc. (801) 561-5099

WASHINGTON

, Spokane
 Doug Kenley (509) 924-2322

ARGENTINA

, Buenos Aires
 Argonics, S.A. (541) 343-1787

HYBRID COMPONENTS RESELLERS

Elmo Semiconductor (818) 768-7400
Minco Technology Labs Inc. (512) 834-2022
Semi Dice Inc. (310) 594-4631

MOTOROLA MC68307 USER’S MANUAL v

PREFACE

The MC68307 User’s Manual describes the programming, capabilities, and operation of the
MC68307 and the MC68000 Family Programmer’s Reference Manual provides instruction
details for the MC68307.

The organization of this manual is as follows:

Section 1 Introduction

Section 2 Signal Description

Section 3 Bus Operation

Section 4 EC000 Core Processor

Section 5 System Integration Module

Section 6 Dual Timer Module

Section 7 M-Bus Interface Module

Section 8 Serial Module

Section 9 IEEE 1149.1 Test Access Port

Section 10 Applications Information

Section 11 Electrical Characteristics

Section 12 Ordering Information and Mechanical Data

MOTOROLA

MC68307

USER’S MANUAL

vii

TABLE OF CONTENTS

Section 1
Introduction

1.1 M68300 Family ... 1-3
1.1.1 Organization ... 1-3
1.1.2 Advantages... 1-3
1.2 MC68307 Architecture .. 1-4
1.2.1 EC000 Core Processor... 1-4
1.2.2 System Integration Module (SIM07) ... 1-4
1.2.2.1 External Bus Interface .. 1-5
1.2.2.2 Chip Select And Wait State Generation ... 1-5
1.2.2.3 System Configuration and Protection ... 1-5
1.2.2.4 Parallel Input/Output Ports ... 1-5
1.2.2.5 Interrupt Controller.. 1-6
1.2.3 Timer Module.. 1-6
1.2.4 UART Module ... 1-6
1.2.5 M-Bus Module... 1-6
1.2.6 Test Access Port... 1-7

Section 2
Signal Description

2.1 Bus Signals ... 2-5
2.1.1 Address Bus (A23–A0) ... 2-5
2.1.1.1 Address Bus (A23–A8) ... 2-5
2.1.1.2 Address Bus (AD7–AD0).. 2-5
2.1.2 Data Bus (D15–D0) .. 2-6
2.2 Chip Selects.. 2-6
2.2.1 Chip Select 0 (CS0) .. 2-6
2.2.2 Chip Select 1 (CS1) .. 2-6
2.2.3 Chip Select 2 (CS2, CS2B, CS2C, CS2D) ... 2-6
2.2.4 Chip Select 3 (CS3) .. 2-7
2.3 Bus Control Signals .. 2-7
2.3.1 Data Transfer Acknowledge (DTACK).. 2-7
2.3.2 Address Strobe (AS)... 2-8
2.3.3 Read/Write (R/W) ... 2-8
2.3.4 Data Strobes, Upper and Lower (UDS, LDS) ... 2-8
2.3.5 8051 Address Latch Enable (ALE) ... 2-9
2.3.6 8051-Compatible Bus Read (RD) ... 2-9
2.3.7 8051-Compatible Bus Write (WR) .. 2-9
2.3.8 Bus Width Select for CS0 (BUSW0) ... 2-9
2.4 Exception Control Signals... 2-9

Thi d t t d ith F M k 4 0 4

Table of Contents

viii

MC68307

USER’S MANUAL

MOTOROLA

2.4.1 Reset (RESET)... 2-9
2.4.2 Power-On Reset (RSTIN)... 2-10
2.4.3 Halt (HALT)... 2-10
2.4.4 Bus Request (BR/PA5)... 2-10
2.4.5 Bus Grant (BG/PA6) ... 2-10
2.4.6 Bus Grant Acknowledge (BGACK /PA7) .. 2-10
2.5 Clock Signals .. 2-10
2.5.1 Crystal Oscillator (EXTAL, XTAL)... 2-10
2.5.2 Clock Output (CLKOUT)... 2-11
2.6 Test Signals .. 2-11
2.6.1 Test Clock (TCK) .. 2-11
2.6.2 Test Mode Select (TMS)... 2-11
2.6.3 Test Data In (TDI)... 2-11
2.6.4 Test Data Out (TDO) .. 2-11
2.7 M-Bus I/O Signals... 2-11
2.7.1 Serial Clock (SCL/PB0) .. 2-11
2.7.2 Serial Data (SDA/PB1) ... 2-12
2.8 UART I/O Signals ... 2-12
2.8.1 Transmit Data (TxD/PB2) ... 2-12
2.8.2 Receive Data (RxD/PB3).. 2-12
2.8.3 Request-To-Send (RTS/PB4)... 2-12
2.8.4 Clear-To-Send (CTS/PB5).. 2-12
2.9 Timer I/O Signals .. 2-12
2.9.1 Timer 1 Input (TIN1/PB6) ... 2-12
2.9.2 Timer 2 Input (TIN2/PB7) ... 2-13
2.9.3 Timer 1 Output (TOUT1/PA3)... 2-13
2.9.4 Timer 2 Output (TOUT2/PA4)... 2-13
2.10 Interrupt Request Inputs ... 2-13
2.10.1 Interrupt Inputs (INT1–INT8/PB8–PB15).. 2-13
2.10.2 Non-Maskable Interrupt Input (IRQ7) ... 2-13
2.11 Use of Pullup Resistors .. 2-13
2.12 Signal Index .. 2-14

Section 3
Bus Operation

3.1 Data Transfer Operations ... 3-1
3.1.1 16-Bit M68000 Bus Operation .. 3-1
3.1.2 16-Bit M68000 Bus Read Cycle ... 3-2
3.1.3 16-Bit M68000 Bus Write Cycle.. 3-5
3.1.4 Read-Modify-Write Cycle.. 3-8
3.1.5 CPU Space Cycle... 3-11
3.1.6 8-Bit M68000 Dynamically-Sized Bus .. 3-11
3.1.7 8051-Bus Operation ... 3-13
3.2 Bus Arbitration .. 3-15
3.2.1 Requesting the Bus .. 3-17

Table of Contents

MOTOROLA

MC68307

USER’S MANUAL

ix

3.2.2 Receiving the Bus Grant... 3-18
3.2.3 Acknowledgment of Mastership (Three-Wire Bus Arbitration Only) 3-18
3.3 Bus Arbitration Control.. 3-19
3.4 Bus Error And Halt Operation ... 3-27
3.4.1 Bus Error Operation.. 3-27
3.4.2 Retrying the Bus Cycle ... 3-29
3.4.3 Halt Operation... 3-30
3.4.4 Double Bus Fault .. 3-31
3.5 Reset Operation.. 3-31
3.6 Asynchronous Operation .. 3-32
3.7 Synchronous Operation .. 3-35

Section 4
EC000 Core Processor

4.1 Features.. 4-1
4.2 Processing States ... 4-1
4.3 Programming Model.. 4-2
4.3.1 Data Format Summary ... 4-3
4.3.2 Addressing Capabilities Summary.. 4-3
4.3.3 Notation Conventions ... 4-4
4.4 EC000 Core Instruction Set Overview .. 4-6
4.5 Exception Processing ... 4-9
4.5.1 Exception Vectors... 4-12
4.6 Processing of Specific Exceptions .. 4-12
4.6.1 Reset Exception.. 4-14
4.6.2 Interrupt Exceptions.. 4-14
4.6.3 Uninitialized Interrupt Exception ... 4-15
4.6.4 Spurious Interrupt Exception .. 4-15
4.6.5 Instruction Traps ... 4-16
4.6.6 Illegal and Unimplemented Instructions.. 4-16
4.6.7 Privilege Violations ... 4-17
4.6.8 Tracing.. 4-17
4.6.9 Bus Error... 4-18
4.6.10 Address Error.. 4-18
4.6.11 Multiple Exceptions... 4-19

Section 5
System Integration Module

5.1 Module Operation ... 5-2
5.1.1 MC68307 System Configuration... 5-2
5.1.1.1 Module Base Address Register Operation ... 5-2
5.1.1.2 System Control Register Functions .. 5-4
5.1.1.3 System Protection Functions.. 5-5
5.1.2 Chip Select and Wait-State Logic ... 5-5
5.1.2.1 Programmable Data-Bus Size .. 5-6

Table of Contents

x

MC68307

USER’S MANUAL

MOTOROLA

5.1.2.2 Peripheral Chip Selects .. 5-7
5.1.2.3 8051-Compatible Bus Chip Select ... 5-8
5.1.2.4 Global Chip Select Operation (Reset Defaults) .. 5-8
5.1.2.5 Overlap in Chip Select Ranges .. 5-8
5.1.3 External Bus Interface Logic... 5-9
5.1.3.1 M68000 Bus Interface .. 5-9
5.1.3.2 8051-Compatible Bus Interface.. 5-10
5.1.3.3 Port A, Port B General-Purpose I/O Ports .. 5-10
5.1.4 Interrupt Processing ... 5-13
5.1.4.1 Interrupt Controller Logic .. 5-14
5.1.4.2 Interrupt Vector Generation.. 5-15
5.1.4.3 IRQ7 Non-Maskable Interrupt .. 5-17
5.1.4.4 General-Purpose Interrupt Inputs... 5-17
5.1.4.5 Peripheral Interrupt Handling ... 5-18
5.1.5 Low-Power Sleep Logic.. 5-19
5.2 Programming Model ... 5-20
5.2.1 System Configuration and Protection Registers....................................... 5-22
5.2.1.1 Module Base Address Register (MBAR) .. 5-22
5.2.1.2 System Control Register (SCR).. 5-23
5.2.1.3 System Status Register Bits Description.. 5-23
5.2.1.4 System Control Register Bits Description. ... 5-25
5.2.2 Chip Select Registers ... 5-30
5.2.2.1 Base Registers (BR3–BR0).. 5-30
5.2.2.2 Option Registers (OR3–OR0) .. 5-32
5.2.3 External Bus Interface Control Registers ... 5-34
5.2.3.1 Port A Control Register (PACNT)... 5-34
5.2.3.2 Port A Data Direction Register (PADDR) ... 5-35
5.2.3.3 Port A Data Register (PADAT) ... 5-35
5.2.3.4 Port B Control Register (PBCNT)... 5-36
5.2.3.5 Port B Data Direction Register (PBDDR) ... 5-36
5.2.3.6 Port B Data Register (PBDAT) ... 5-37
5.2.4 Interrupt Control Registers ... 5-38
5.2.4.1 Latched Interrupt Control Registers 1,2 (LICR1,LICR2)......................... 5-38
5.2.4.2 Peripheral Interrupt Control Register (PICR).. 5-39
5.2.4.3 Programmable Interrupt Vector Register (PIVR).................................... 5-40
5.3 MC68307 Initialization Procedure... 5-41
5.3.1 Startup—Cold Reset... 5-41
5.3.2 SIM Configuration... 5-41

Section 6
Dual Timer Module

6.1 Overview... 6-1
6.2 Module Operation ... 6-1
6.2.1 General-Purpose Timer Units... 6-1
6.2.2 Software Watchdog Timer .. 6-3

Table of Contents

MOTOROLA

MC68307

USER’S MANUAL

xi

6.3 Programming Model.. 6-4
6.3.1 General Purpose Timer Units ... 6-4
6.3.1.1 Timer Mode Register (TMR1, TMR2) ... 6-4
6.3.1.2 Timer Reference Registers (TRR1, TRR2)... 6-5
6.3.1.3 Timer Capture Registers (TCR1, TCR2) .. 6-5
6.3.1.4 Timer Counter (TCN1, TCN2)... 6-5
6.3.1.5 Timer Event Registers (TER1, TER2) .. 6-6
6.3.2 Software Watchdog Timer .. 6-7
6.3.2.1 Watchdog Reference Register (WRR).. 6-7
6.3.2.2 Watchdog Counter Register (WCR) ... 6-7
6.4 Timer Programming Examples ... 6-8
6.4.1 Initialization and Reference Compare Function.. 6-8
6.4.2 Event Counting Function and Interrupts ... 6-9
6.4.3 Input Capture Function ... 6-9
6.4.4 Watchdog Usage Example ... 6-10

Section 7
M-Bus Interface Module

7.1 M-Bus System Configuration .. 7-2
7.2 M-Bus Protocol ... 7-2
7.2.1 START Signal ... 7-3
7.2.2 Slave Address Transmission .. 7-3
7.2.3 Data Transfer.. 7-3
7.2.4 Repeated START Signal .. 7-4
7.2.5 STOP Signal ... 7-4
7.2.6 Arbitration Procedure.. 7-4
7.2.7 Clock Synchronization .. 7-4
7.2.8 Handshaking... 7-5
7.2.9 Clock Stretching.. 7-5
7.3 Programming Model.. 7-5
7.3.1 M-Bus Address Register (MADR)... 7-6
7.3.2 M-Bus Frequency Divider Register (MFDR) ... 7-6
7.3.3 M-Bus Control Register (MBCR) .. 7-7
7.3.4 M-Bus Status Register (MBSR) .. 7-9
7.3.5 M-Bus Data I/O Register (MBDR)... 7-10
7.4 M-Bus Programming Examples .. 7-10
7.4.1 Initialization Sequence.. 7-10
7.4.2 Generation of START ... 7-11
7.4.3 Post-Transfer Software Response.. 7-11
7.4.4 Generation of STOP ... 7-12
7.4.5 Generation of Repeated START... 7-13
7.4.6 Slave Mode... 7-13
7.4.7 Arbitration Lost.. 7-13

Table of Contents

xii

MC68307

USER’S MANUAL

MOTOROLA

Section 8
Serial Module

8.1 Module Overview .. 8-2
8.1.1 Serial Communication Channel .. 8-2
8.1.2 Baud Rate Generator Logic.. 8-3
8.1.3 Baud Rate Generator/Timer ... 8-3
8.1.4 Interrupt Control Logic .. 8-3
8.1.5 Comparison of Serial Module to MC68681... 8-3
8.2 Serial Module Signal Definitions ... 8-3
8.2.1 Transmitter Serial Data Output (TxD)... 8-4
8.2.2 Receiver Serial Data Input (RxD) ... 8-4
8.2.3 Request-To-Send (RTS)... 8-4
8.2.4 Clear-To-Send (CTS) ... 8-5
8.3 Operation .. 8-5
8.3.1 Baud Rate Generator/Timer ... 8-5
8.3.2 Transmitter and Receiver Operating Modes... 8-5
8.3.2.1 Transmitter ... 8-6
8.3.2.2 Receiver ... 8-8
8.3.2.3 FIFO Stack ... 8-8
8.3.3 Looping Modes ... 8-10
8.3.3.1 Automatic Echo Mode .. 8-10
8.3.3.2 Local Loopback Mode .. 8-11
8.3.3.3 Remote Loopback Mode .. 8-11
8.3.4 Multidrop Mode... 8-12
8.3.5 Bus Operation... 8-14
8.3.5.1 Read Cycles ... 8-14
8.3.5.2 Write Cycles ... 8-14
8.3.5.3 Interrupt Acknowledge Cycles.. 8-14
8.4 Register Description and Programming.. 8-14
8.4.1 Register Description ... 8-14
8.4.1.1 Mode Register 1 (UMR1) ... 8-15
8.4.1.2 Mode Register 2 (UMR2) ... 8-17
8.4.1.3 Status Register (USR).. 8-19
8.4.1.4 Clock-select Register (UCSR).. 8-21
8.4.1.5 Command Register (UCR) ... 8-23
8.4.1.6 Receiver Buffer (URB).. 8-25
8.4.1.7 Transmitter Buffer (UTB) .. 8-25
8.4.1.8 Input Port Change Register (UIPCR) ... 8-26
8.4.1.9 Auxiliary Control Register (UACR) ... 8-26
8.4.1.10 Interrupt Status Register (UISR) .. 8-27
8.4.1.11 Interrupt Mask Register (UIMR).. 8-28
8.4.1.12 Timer Upper Preload Register (UBG1)... 8-29
8.4.1.13 Timer Upper Preload Register (UBG2)... 8-29
8.4.1.14 Interrupt Vector Register (UIVR) .. 8-29
8.4.1.15 Input Port Register (UIP) .. 8-29

Table of Contents

MOTOROLA

MC68307

USER’S MANUAL

xiii

8.4.1.16 Output Port Data Registers (UOP1, UOP0).. 8-30
8.4.2 Programming .. 8-30
8.4.2.1 Serial Module Initialization.. 8-31
8.4.2.2 I/O Driver Example ... 8-31
8.4.2.3 Interrupt Handling ... 8-31
8.5 Serial Module Initialization Sequence ... 8-31

Section 9
IEEE 1149.1 Test Access Port

9.1 Overview ... 9-1
9.2 Tap Controller ... 9-3
9.3 Boundary Scan Register ... 9-4
9.4 Instruction Register ... 9-9
9.4.1 EXTEST (0000) .. 9-10
9.4.2 SAMPLE/PRELOAD (0010).. 9-10
9.4.3 BYPASS (1111) .. 9-10
9.4.4 CLAMP (1100) .. 9-11
9.5 MC68307 Restrictions... 9-11
9.6 Non-IEEE 1149.1 Operation ... 9-11

Section 10
Applications Information

10.1 MC68307 Minimum Stand-Alone System Hardware 10-1
10.1.1 MC68307 Signal Configuration... 10-1
10.1.2 EPROM Memory Interface.. 10-5
10.1.3 RAM Memory Interface... 10-5
10.1.4 RS232 UART Port .. 10-5
10.1.5 EPROM Timing... 10-6
10.1.6 RAM Timing .. 10-6
10.2 Power Management.. 10-7
10.2.1 Fully Static Operation ... 10-7
10.2.2 Prescalable CPU Clock .. 10-8
10.2.3 Wake-Up... 10-8
10.2.4 Low-Power Sleep Mode.. 10-9
10.2.5 Low-Power Stop Mode ... 10-9
10.3 Using M-Bus Software to Communicate Between Processor Systems 10-10
10.3.1 Overview of M-Bus Software Transfer Mechanism 10-11
10.3.2 M-Bus Master Mode Operation... 10-12
10.3.3 M-Bus Slave Mode Operation... 10-12
10.3.4 Description of Setup ... 10-13
10.3.5 Software Flow ... 10-13
10.3.6 Transfer Blocks... 10-14
10.3.7 Software Implementation .. 10-14
10.3.7.1 Software Listing 1—M-Bus Master Software.. 10-17
10.3.7.2 Software Listing 2—M-Bus Slave Software.. 10-21

Table of Contents

xiv

MC68307

USER’S MANUAL

MOTOROLA

10.4 MC68307 UART Driver Examples .. 10-24
10.4.1 Software Listing 3 ... 10-24
10.5 Swapping ROM and RAM Mapping on the MC68307 10-27
10.5.1 Software Implementation.. 10-27
10.5.1.1 Software Listing 4... 10-28

Section 11
Electrical Characteristics

11.1 Maximum Ratings ... 11-1
11.2 Thermal Characteristics.. 11-1
11.3 Power Considerations... 11-2
11.4 AC Electrical Specification Definitions .. 11-2
11.5 DC Electrical Specifications.. 11-4
11.6 AC Electrical Specifications—Clock Timing.. 11-4
11.7 AC Electrical Specifications—Read and Write Cycles................................ 11-5
11.8 AC Electrical Specifications—Bus Arbitration... 11-9
11.9 AC Electrical Specifications—8051 Bus Interface Module 11-11
11.10 Timer Module Electrical Characteristics ... 11-13
11.11 UART Electrical Characteristics.. 11-14
11.12 AC Electrical Characteristics—M-Bus Input Signal Timing....................... 11-15
11.13 AC Electrical Characteristics—M-Bus Output Signal Timing.................... 11-15
11.14 AC Electrical Characteristics—Port Timing .. 11-16
11.15 IEEE 1149.1 Electrical Characteristics ... 11-17

Section 12
Ordering Information and Mechanical Data

12.1 Standard Ordering Information ... 12-1
12.2 100-Pin PQFP Pin Assignments... 12-1
12.3 100-Pin PQFP Package Dimensions.. 12-2
12.4 100-Pin TQFP Pin Assignments ... 12-3
12.5 100-Pin TQFP Package Dimensions .. 12-4

Index

MOTOROLA

MC68307

 USER’S MANUAL

xv

LIST OF ILLUSTRATIONS

1-1 MC68307 Block Diagram ... 1-1
2-1 MC68307 Detailed Block Diagram ... 2-2
3-1 Word Read Cycle Flowchart (16-Bit Bus)... 3-2
3-2 Byte Read Cycle Flowchart (16-Bit Bus) .. 3-3
3-3 Read and Write Cycle Timing Diagram (16-Bit Bus) .. 3-3
3-4 Word and Byte Read Cycle Timing Diagram (16-Bit Bus).................................. 3-4
3-5 Word Write Cycle Flowchart (16-Bit Bus)... 3-5
3-6 Byte Write Cycle Flowchart (16-Bit Bus) .. 3-6
3-7 Word and Byte Write Cycle Timing Diagram.. 3-6
3-8 Read-Modify-Write Cycle Flowchart... 3-8
3-9 Read-Modify-Write Cycle Timing Diagram ... 3-9
3-10 Interrupt Acknowledge Cycle – Address Bus ... 3-11
3-11 Interrupt Acknowledge Cycle Timing Diagram ... 3-12
3-12 8051-Compatible Read Cycle Signals.. 3-14
3-13 8051-Compatible Write Cycle Signals.. 3-14
3-14 Three-Wire Bus Arbitration Cycle Flowchart .. 3-15
3-15 Two-Wire Bus Arbitration Cycle Flowchart... 3-16
3-16 Three-Wire Bus Arbitration Timing Diagram .. 3-17
3-17 Two-Wire Bus Arbitration Timing Diagram ... 3-17
3-18 External Asynchronous Signal Synchronization... 3-19
3-19 Bus Arbitration Unit State Diagrams... 3-20
3-20 Three-Wire Bus Arbitration Timing Diagram—Processor Active...................... 3-21
3-21 Three-Wire Bus Arbitration Timing Diagram—Bus Inactive 3-22
3-22 Three-Wire Bus Arbitration Timing Diagram—Special Case............................ 3-23
3-23 Two-Wire Bus Arbitration Timing Diagram—Processor Active 3-24
3-24 Two-Wire Bus Arbitration Timing Diagram—Bus Inactive................................ 3-25
3-25 Two-Wire Bus Arbitration Timing Diagram—Special Case 3-26
3-26 Bus Error Timing Diagram.. 3-28
3-27 Retry Bus Cycle Timing Diagram ... 3-29
3-28 Halt Operation Timing Diagram.. 3-30
3-29 Reset Operation Timing Diagram... 3-32
3-30 Fully Asynchronous Read Cycle .. 3-33
3-31 Fully Asynchronous Write Cycle... 3-33
3-32 Pseudo-Asynchronous Write Cycle.. 3-34
3-33 Pseudo-Asynchronous Read Cycle.. 3-34
3-34 Synchronous Read Cycle... 3-37
3-35 Synchronous Write Cycle ... 3-37
4-1 Programming Model ... 4-2
4-2 Status Register... 4-3

Thi d t t d ith F M k 4 0 4

List of Illustrations

xvi

MC68307 USER’S MANUAL

MOTOROLA

4-3 General Form of Exception Stack Frame... 4-10
4-4 General Exception Processing Flowchart .. 4-11
4-5 Exception Vector Format.. 4-12
4-6 Address Translated from 8-Bit Vector Number .. 4-12
4-7 Supervisor Stack Order for Bus or Address Error Exception 4-19
5-1 Module Base Address, Decode Logic .. 5-3
5-2 Chip-Select Block Diagram .. 5-6
5-3 External Bus Interface Logic .. 5-9
5-4 Interrupt Controller Logic Block Diagram ... 5-15
6-1 Timer Block Diagram.. 6-2
7-1 M-Bus Interface Block Diagram ... 7-2
7-2 M-Bus Transmission Signals.. 7-3
7-3 M-Bus Clock Synchronization .. 7-5
7-4 Flow-Chart of Typical M-Bus Interrupt Routine .. 7-14
8-1 Simplified Block Diagram ... 8-1
8-2 External and Internal Interface Signals .. 8-4
8-3 Baud Rate Generator Block Diagram... 8-5
8-4 Transmitter and Receiver Functional Diagram... 8-6
8-5 Transmitter Timing Diagram... 8-7
8-6 Receiver Timing Diagram... 8-9
8-7 Looping Modes Functional Diagram .. 8-11
8-8 Multidrop Mode Timing Diagram .. 8-13
8-9 Serial Mode Programming Flowchart... 8-32
9-1 Test Access Port Block Diagram.. 9-2
9-2 TAP Controller State Machine.. 9-3
9-3 Output Cell (O.Cell).. 9-6
9-4 Input Cell (I.Cell) .. 9-7
9-5 Output Control Cell (En.Cell).. 9-7
9-6 Bidirectional Cell (IO.Cell) .. 9-8
9-7 Bidirectional Cell (IOx0.Cell) .. 9-8
9-8 General Arrangement for Bidirectional Pins... 9-9
9-9 Bypass Register ... 9-10
10-1 MC68307 Minimum System Configuration... 10-3
10-2 Hardware Setup ... 10-13
10-3 Master/Slave Responsibilities for the Master Transmit Block 10-15
10-4 Summary of M-Bus Activity for the Master Transmit Block 10-15
10-5 Master/Slave Responsibilities for the Master Receive Block 10-16
10-6 Summary of M-Bus Activity for the Master Receive Block 10-16
10-7 Memory Map after Swap Complete.. 10-28
11-1 Drive Levels and Test Points for AC Specifications ... 11-3
11-2 Clock Timing .. 11-5
11-3 Read Cycle Timing Diagram .. 11-7
11-4 Write Cycle Timing Diagram .. 11-8
11-5 Three-Wire Bus Arbitration Diagram .. 11-9
11-6 Two-Wire Bus Arbitration Timing Diagram... 11-10

List of Illustrations

MOTOROLA

MC68307 USER’S MANUAL

xvii

11-7 External 8051 Bus Read Cycle .. 11-12
11-8 External 8051 Bus Write Cycle... 11-12
11-9 Timer Module Timing Diagram ... 11-13
11-10 Transmitter Timing ... 11-14
11-11 Receiver Timing ... 11-14
11-12 M-Bus Interface Input/Output Signal Timing .. 11-15
11-13 Port Timing ... 11-16
11-14 Test Clock Input Timing Diagram ... 11-17
11-15 Boundary Scan Timing Diagram .. 11-18
11-16 Test Access Port Timing Diagram.. 11-18

MOTOROLA

MC68307 USER’S MANUAL

xix

LIST OF TABLES

2-1 68000 Bus Signal Summary... 2-3
2-2 8051 Bus Signal Summary... 2-3
2-3 Chip Select Signal Summary.. 2-3
2-4 Interrupt Port Signal Summary ... 2-4
2-5 Clock and Mode Control Signal Summary ... 2-4
2-6 Serial Module Signal Summary .. 2-4
2-7 JTAG Signal Summary... 2-4
2-8 Timer Module Signal Summary .. 2-5
2-9 M-Bus Module Signal Summary... 2-5
2-10 Data Strobe Control of Data Bus.. 2-8
2-11 Signal Index.. 2-14
4-1 Processor Data Formats .. 4-3
4-2 Effective Addressing Modes... 4-4
4-3 Notation Conventions ... 4-4
4-4 EC000 Core Instruction Set Summary ... 4-6
4-5 Exception Vector Assignments... 4-13
4-6 Exception Grouping and Priority... 4-19
5-1 Address Block Selection in Peripheral Chip Select Mode 5-7
5-2 Port A Pin Functions... 5-12
5-3 Port B Pin Functions... 5-12
5-4 Interrupt Vector Response ... 5-16
5-5 MC68307 Configuration Memory Map ... 5-20
5-6 DTACK Field Encoding .. 5-32
7-1 M-Bus Prescaler Values... 7-7
8-1 Serial Module Programming Model .. 8-15
8-2 PMx and PT Control Bits .. 8-16
8-3 B/Cx Control Bits .. 8-17
8-4 CMx Control Bits .. 8-17
8-5 SBx Control Bits ... 8-18
8-6 RCSx Control Bits .. 8-21
8-7 TCSx Control Bits... 8-22
8-8 MISCx Control Bits ... 8-23
8-9 TCx Control Bits ... 8-24
8-10 RCx Control Bits... 8-24
8-11 Timer Mode and Source Select Bits... 8-27
9-1 Boundary Scan Control Bits ... 9-4
9-2 Boundary Scan Bit Definitions.. 9-5
9-3 Instructions ... 9-9
10-1 Power Contribution from Modules .. 10-7

Thi d t t d ith F M k 4 0 4

MOTOROLA

MC68307 USER’S MANUAL

1-1

SECTION 1
INTRODUCTION

The MC68307 is an integrated processor combining a static EC000 processor with multiple
interchip bus interfaces. The MC68307 is designed to provide optimal integration and
performance for applications such as digital cordless telephones, portable measuring
equipment, and point-of-sale terminals. By providing 3.3 V, static operation in a small
package, the MC68307 delivers cost-effective performance to handheld, battery-powered
applications.

The MC68307 (see Figure 1-1) contains a static EC000 core processor, multiple bus
interfaces, a serial channel, two timers, and common system glue logic. The multiple bus
interfaces include: dynamic 68000 bus, 8051-compatible bus, and Motorola bus (M-bus) or
I

2

C bus

1

.

The dynamically-sized 68000 bus allows 16-bit performance using static random access
memory (SRAM) while providing a low-cost interface to an 8-bit read-only memory (ROM).
The 8051-compatible bus interfaces gluelessly to 8051-type devices and allows the reuse

1.

I

2

C bus is a proprietary Philips interface bus.

Figure 1-1. MC68307 Block Diagram

PROCESSOR CONTROL AND
CLOCK

68000 INTERNAL BUS

8/16-BIT M68000
BUS INTERFACE

INTERRUPT
 CONTROLLER

DUAL
TIMER

MODULE

UART
SERIAL I/O

M-BUS
MODULE

STATIC EC000 CORE PROCESSOR

DYNAMIC BUS SIZING EXTENSION

SYSTEM INTEGRATION MODULE
 (SIM07)

8051 BUS INTERFACE

CHIP SELECT AND DTACK

PARALLEL I/O PORTS

SYSTEM PROTECTION

POWER MANAGEMENT

JTAG PORT

Thi d t t d ith F M k 4 0 4

Introduction

1-2

MC68307 USER’S MANUAL

MOTOROLA

of application-specific integrated circuits (ASICs) designed for this industry standard bus.
The M-bus is an industry-standard 2-wire interface that provides efficient communications
with peripherals such as EEPROM, analog/digital (A/D) converters, and liquid crystal display
(LCD) drivers. Thus, the MC68307 interfaces gluelessly to boot ROM, SRAM, 8051 devices,
M-bus devices, and memory-mapped peripherals. The MC68307 also incorporates a slave
mode which allows the EC000 core to be disabled, providing a 3.3-V or 5-V static, low-power
multifunction peripheral for higher performance M68000 family processors.

The main features of the MC68307 include:

• Static EC000 Core Processor
— Full Compatibility with M68000 and EC000
— 24-Bit Address Bus, for 16-Mbyte Off-Chip Address Space
— 16-Bit On-Chip Data Bus for M68000 Bus Operations
— 2.7 MIPS Performance at 16.67 MHz Processor Clock
— Processor Disable Mmode for Use as a Peripheral to an External Processor
— Emulation Mode for Use with In-Circuit Emulator

• External M68000 Bus Interface with Dynamic Bus Sizing for 8-Bit and 16-Bit Data Ports

• External 8051-Compatible 8-Bit Data Bus Interface

• Power Management
— Fully Static Operation with Processor Shutdown and Wake-Up Modes for Substatial

Power Savings
— Very Rapid Response to Interrupts from the Power-Down State
— Operates from DC to 16.67 MHz System Clock
— Clock Enable/Disable for Each Peripheral

• M-Bus Module
— Provides Interchip Bus Interface for EEPROMs, LCD Controllers, A/D Converters,

etc.
— Compatible with Industry-Standard I

2

C Bus
— Master or Slave Operation Modes, Supports Multiple Masters
— Automatic interrupt Generation with Programmable Level
— Software-Programmable Clock Frequency
— Data Rates from 4–100 Kbit/s above 3.0 MHz System Clock

• Universal Asynchronous Receiver/Transmitter (UART) Module
— Flexible Baud Rate Generator
— Based on MC68681 Dual Universal Asynchronous Receiver/Transmitter (DUART)

Programming Model
— 5 Mbits/s Maximum Transfer Rate at 16.67 MHz System Clock
— Automatic Interrupt Generation with Programmable Level
— Modem Control Signals Available (CTS, RTS)

• Timer Module
— Dual Channel 16-Bit General-Purpose Counter/Timer
— Multimode Operation, Independent Capture/Compare Registers
— Automatic Interrupt Generation with Programmable Level
— 60-ns Resolution at 16.67 MHz System Clock
— Separate Input and Output Pins for Each Timer

Introduction

MOTOROLA

MC68307 USER’S MANUAL

1-3

• System Integration Module (SIM07), Incorporating Many Functions Typically Relegated
to External Programmable Array Logic (PALs), Transistor-Transistor Logic (TTL), and
ASICs, Such as:
—System Configuration, Programmable Address Mapping
—System Protection by Hardware Watchdog Logic and Software Watchdog Timer
—Power-Down Mode Control, Programmable Processor Clock Driver
—Four Programmable Chip Selects with Wait State Generation Logic
—Three Simple Peripheral Chip Selects
—Parallel Input/Output Ports, Some with Interrupt Capability
—Programmed Interrupt Vector Response for On-Chip Peripheral Modules
—IEEE 1149.1 Boundary Scan Test Access Port (JTAG)

• Operating Voltages of 3.3V

±

 0.3V and 5V

±

 0.5V

• 0 to 70

°

C (Standard part); –40 to +85

°

C (Extended Temperature Part)

• Compact 100-Lead Quad Flat Pack (QFP) and 100-Lead Thin Quad Flat Pack (TQFP)
Packages

1.1 M68300 FAMILY

The MC68307 is one of a series of components in Motorola's M68300 family. Other mem-
bers of the family include the MC68302, MC68306, MC68322, MC68330, MC68331,
MC68332, MC68F333, MC68334, MC68340, MC68341, MC68349, MC68356, and
MC68360.

1.1.1 Organization

The M68300 family of integrated processors and controllers is built on an M68000 core pro-
cessor and a selection of intelligent peripherals appropriate for a set of applications. Com-
mon system glue logic such as address decoding, wait state insertion, interrupt prioritization,
and watchdog timing is also included.

Each member of the M68300 family is distinguished by its selection of on-chip peripherals.
Peripherals are chosen to address specific applications, but are often useful in a wide variety
of applications. The peripherals may be highly sophisticated timing or protocol engines that
have their own processors, or they may be more traditional peripheral functions, such as
UARTs and timers.

1.1.2 Advantages

By incorporating so many major features into a single M68300 family chip, a system
designer can realize significant savings in design time, power consumption, cost, board
space, pin count, and programming. The equivalent functionality can easily require 20 sep-
arate components. Each component might have 16–64 pins, totalling over 350 connections.
Most of these connections require interconnects or are duplications. Each connection is a
candidate for a bad solder joint or misrouted trace. Each component is another part to qual-
ify, purchase, inventory, and maintain. Each component requires a share of the printed cir-
cuit board. Each component draws power, which is often used to drive large buffers to get
the signal to another chip. The cumulative power consumption of all the components must
be available from the power supply. The signals between the central processing unit (CPU)

Introduction

1-4

MC68307 USER’S MANUAL

MOTOROLA

and a peripheral might not be compatible nor run from the same clock, requiring time delays
or other special design considerations.

In an M68300 family component, the major functions and glue logic are all properly con-
nected internally, timed with the same clock, fully tested, and uniformly documented. Only
essential signals are brought out to pins. The primary package is the surface-mount plastic
QFP for the smallest possible footprint.

1.2 MC68307 ARCHITECTURE

To improve total system throughput and reduce part count, board size and cost of system
implementation, the MC68307 integrates a powerful processor, intelligent peripheral mod-
ules, and typical system interface logic. These functions include the SIM07, timers, UART,
M-bus interface, and 8051-compatible bus interface.

The EC000 core processor communicates with these modules via an internal bus, providing
the opportunity for fully synchronized communication between all modules and allowing
interrupts to be handled in parallel with data transfers, greatly improving system perfor-
mance.

1.2.1 EC000 Core Processor

The EC000 is a core implementation of the M68000 32-bit microprocessor architecture. The
programmer can use any of the eight 32-bit data registers for fast manipulation of data and
any of the eight 32-bit address registers for indexing data in memory. Flexible instructions
support data movement, arithmetic functions, logical operations, shifts and rotates, bit set
and clear, conditional and unconditional program branches, and overall system control.

The EC000 core can operate on data types of single bits, binary-coded decimal (BCD) digits,
and 8, 16, and 32 bits. The integrated chip selects allow peripherals and data in memory to
reside anywhere in the 16-Mbyte linear address space. A supervisor operating mode pro-
tects system-level resources from the more restricted user mode, allowing a true virtual envi-
ronment to be developed. Many addressing modes complement these instructions,
including predecrement and postincrement, which allow simple stack and queue mainte-
nance and scaled indexing for efficient table accesses. Data types and addressing modes
are supported orthogonally by all data operations and with all appropriate addressing
modes. Position-independent code is easily written.

Like all M68000 family processors, the EC000 core recognizes interrupts of seven different
priority levels and, in conjunction with the integrated interrupt controller, allows a pro-
grammed vector to direct the processor to the desired service routine. Internal trap excep-
tions ensure proper instruction execution with good addresses and data, allow operating
system intervention in special situations, and permit instruction tracing. The hardware time-
out can terminate bad memory accesses before instructions process data incorrectly. The
EC000 core provides 2.7 millions of bits per second (MIPS) at 16.67 MHz.

1.2.2 System Integration Module (SIM07)

The SIM07 provides the external bus interface for the EC000 core. It also eliminates much
of the glue logic that typically supports a microprocessor and its interface with the peripheral

Introduction

MOTOROLA

MC68307 USER’S MANUAL

1-5

and memory system. The SIM07 provides programmable circuits to perform address-decod-
ing and chip selects, wait-state insertion, interrupt handling, clock generation, discrete I/O,
and power management features.

1.2.2.1 EXTERNAL BUS INTERFACE.

The external bus interface (EBI) handles the trans-
fer of information between the internal EC000 core and memory, peripherals, or other pro-
cessing elements in the external address space. It consists of an M68000 bus interface and
an 8051-compatible bus interface. The external M68000 bus provides up to 24 address lines
and 16 data lines. Each bus access can appear externally either as an M68000 bus cycle
(either 16-bit or 8-bit dynamic data bus width) or an 8-bit wide 8051-compatible bus cycle
(multiplexing address and 8-bit data) with the respective sets of control signals. The default
bus cycle is an M68000 16-bit-wide one, the 8051-compatible address space being pro-
grammable.

1.2.2.2 CHIP SELECT AND WAIT STATE GENERATION.

Four programmable chip select
outputs provide signals to enable external memory and peripheral circuits, providing all
handshaking and timing signals for automatic wait-state insertion and data bus sizing.

Base memory address and block size are both programmable, with some restrictions, (e.g.
a starting address must be on a boundary which is a multiple of the block size). Each chip-
select is general-purpose. However one of the chip-selects can be programmed to select an
addressing range which is decoded as an 8051-compatible bus access, and another can be
used to enable one of four simple external peripherals. Data bus width (8-bit or 16-bit) is pro-
grammable on all four chip-selects and further decoding is available for protection from user
mode access or read-only access.

1.2.2.3 SYSTEM CONFIGURATION AND PROTECTION.

The SIM07 provides configura-
tion registers that allow general system functions to be controlled and monitored. For exam-
ple, all on-chip registers can be relocated as a block by programming a module base
address, power-down modes can be selected, and the source of the most recent RESET or
BERR can be checked. The hardware watchdog features can be enabled or disabled and
the bus timeout times can be programmed.

The power-down mode allows software to disable the EC000 core during periods of inactiv-
ity. This feature works in conjunction with the interrupt control logic to allow any interrupt
condition to cause a wake-up, which causes the EC000 core to resume processing without
requiring any RESET or re-initialization. All register contents are preserved, and the inter-
rupt which caused wake-up is serviced in the normal manner as soon as the clock restarts.
To reduce power consumption further, the internal clocks to the on-chip peripheral modules
can be disabled by software.

1.2.2.4 PARALLEL INPUT/OUTPUT PORTS.

Two general-purpose ports (A and B) are
provided for input/output, although the pins for these ports are shared with other functions.
Some bits in port A are multiplexed with the peripheral chip-select lines and timer output sig-
nals, and port B is multiplexed with various peripheral I/O lines from the UART, M-Bus and
Timer modules. Maximum flexibility is therefore available for differing hardware configura-
tions. Eight of the 16 Port B lines are also latched inputs to the interrupt controller, with pro-
grammable interrupt priority level.

Introduction

1-6

MC68307 USER’S MANUAL

MOTOROLA

1.2.2.5 INTERRUPT CONTROLLER.

The SIM07 coordinates all interrupt sources, both
from on-chip peripherals (timer1, timer2, M-bus, and UART) and off-chip inputs (IRQ7, and
INT1–INT8). It provides interrupt requests to the EC000 core with programmable priority
level, and responds to acknowledge cycles by providing programmed vectors unique to
each source.

1.2.3 Timer Module

The timer module comprises two independent, identical general-purpose timers, and a soft-
ware watchdog timer. Each general-purpose timer block contains a free-running 16-bit timer
that can be used in various modes, to capture the timer value with an external event, to trig-
ger an external event or interrupt when the timer reaches a set value, or to count external
events. Each has an 8-bit prescaler to allow a programmable clock input frequency derived
from the system clock or external count input. The output pins (one per timer) have a pro-
grammable mode.

A software watchdog timer is also provided for system protection. If required, this resets the
EC000 core if it is not refreshed periodically by software.

1.2.4 UART Module

The MC68307 contains a full-duplex UART module, with an on-chip baud-generator provid-
ing both standard and nonstandard baud rates up to 5 Mb/s. The module is functionally
equivalent to the MC68681 DUART, although only one serial channel is implemented. Data
formats can be 5, 6, 7, or 8 bits with even, odd, or no parity and up to two stop bits in 1/16
increments. Four-byte receive buffers and two-byte transmit buffers minimize CPU service
calls. A wide variety of error detection and maskable interrupt capability is provided on each
channel. Full-duplex autoecho loopback, local loopback, and remote loopback modes can
be selected. Multidrop applications are supported.

Clocking is provided by the MC68307 system clock, via a programmable prescaler allowing
various baud rates to be chosen. Modem support is provided with request-to-send (RTS)
and clear-to-send (CTS) lines available. The serial port can sustain data rates of 5 Mbps.

1.2.5 M-Bus Module

The M-bus interface module provides a two-wire, bidirectional serial bus which provides a
simple, efficient way for data exchange between devices. It is compatible with the I

2

C-bus
standard. M-bus minimizes the interconnection between devices in the end-system. It is
best suited for applications which need occasional bursts of fast communication over a short
distance, among a number of devices. The maximum data rate is limited to 595 kbps at
16.67 MHz (100 kbps to be compatible with I

2

C), the maximum communication length and
number of devices which can be connected are limited physically by the maximum bus
capacitance and logically by the number of unique addresses.

The M-bus system is a true multimaster bus including collision detection and arbitration to
prevent data corruption if two or more masters intend to control the bus simultaneously. This
feature provides the capability for complex applications with multiprocessor control. It may
also be used for rapid testing and alignment of end products via external diagnostic connec-
tions.

Introduction

MOTOROLA

MC68307 USER’S MANUAL

1-7

1.2.6 Test Access Port

To aid in system diagnostics, the MC68307 includes dedicated user-accessible test logic
that is compliant with the IEEE 1149.1 standard for boundary scan testability, often referred
to as JTAG (Joint Test Action Group). This is described briefly in

Section 9 IEEE 1149.1
Test Access Port

. For further information refer to the IEEE 1149.1 standard.

MOTOROLA

MC68307 USER’S MANUAL

2-1

SECTION 2
SIGNAL DESCRIPTION

This section contains a brief description of the input and output signals, with reference (if
applicable) to other sections which give greater detail on its use. Figure 2-1 provides a
detailed diagram showing the integrated peripherals and signals, and Table 2-2 to Table 2-
9 provide a quick reference for determining a signal's name, mnemonic, its use as an input
or output, active state, and type identification.

NOTE

The terms

assertion

 and

negation

 will be used extensively.
This is done to avoid confusion when dealing with a mixture of
“active-low” and “active-high” signals. The term assert or asser-
tion is used to indicate that a signal is active or true, independent
of whether that level is represented by a high or low voltage. The
term negate or negation is used to indicate that a signal is inac-
tive or false.

Thi d t t d ith F M k 4 0 4

Signal Description

2-2

MC68307 USER’S MANUAL

MOTOROLA

 .

Figure 2-1. MC68307 Detailed Block Diagram

16-BIT 68000 INTERNAL BUS

TD
O

TD

I
TM

S
TC

K

CS2B/PA0

MULTIPLEXED
PARALLEL I/O

MULTIPLEXED
PARALLEL I/O

SYSTEM
INTEGRATION

MODULE
(SIM07)

8-/16-BIT
68000 BUS
INTERFACE

8051 BUS
INTERFACE

CHIP

AND DTACK

PROCESSOR
CONTROL,

CLOCK AND
LOW POWER

M-BUS
(I2C)

MODULE

UART
SERIAL

I/O

DUAL
TIMER

MODULE

STATIC EC000 CORE PROCESSOR

DYNAMIC BUS SIZING EXTENSION

 VCC
 GND

6

6

EX
TA

L
XT

AL

C
LK

O
U

T

SC
L/

PB
0

SD
A/

PB
1

C
TS

/P
B5

R

TS
/P

B4

R
XD

/P
B3

TX

D
/P

B2

TI
N

1/
PB

6

TI
N

2/
PB

7

CS2C/PA1
CS2D/PA2

TOUT1/PA3
TOUT2/PA4

BR/PA5
BG/PA6

BGACK/PA7

AS
UDS
LDS
R/W

DTACK

D15–D0

A23–A8

AD7–AD0 /A7–A0

RD
WR
ALE

CS3
CS2/CS2A

CS1
CS0

BUSW0
IRQ7

RESET
HALT

RSTIN

INT1/PB8
INT2/PB9

INT3/PB10
INT4/PB11
INT5/PB12
INT6/PB13
INT7/PB14
INT8/PB15

JTAG
PORT

SELECT

INTERRUPT
CONTROLLER

Signal Description

MOTOROLA

MC68307 USER’S MANUAL

2-3

Table 2-1. 68000 Bus Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Address Signals A23–A0 Output Yes (4)
Address Strobe AS Output Yes (3)
Bus Grant BG/PA6 Output (2) No —
Bus Grant Acknowledge BGACK/PA7 Input (2) — (1)
Bus Request BR/PA5 Input (2) — (1)
Data Bus D15–D0 I/O Yes —
Data Transfer Acknowledge DTACK I/O Yes 2.2 K

Ω

Halt HALT I/O — 2.2 K

Ω

Lower Data Strobe LDS Output Yes (3)
Upper Data Strobe UDS Output Yes (3)
Read/Write R/W Output Yes (3)
Reset RESET I/O — 2.2 K

Ω

Table 2-2. 8051 Bus Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Address/Data Bus AD7–AD0 I/O Yes —
Address Latch Enable ALE Output No —
8051 Read Strobe RD Output No —
8051 Write Strobe WR Output No —
NOTES:
1. Pullup may be required (value depends on individual application). This pin must not be left floating.
2. These signals have dual functions as port A I/O lines. Their function is programmed in the port A control register.
3. A pull-up is required if the output is decoded, otherwise leave unconnected. (Value of pull-up resistor depends on

individual application.
4. A pull-up is required on A23 if it is decoded. Pull-ups on whole bus minimize sleep mode power consumption.

Table 2-3. Chip Select Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Chip Select CS3–CS0 Output No —

Peripheral Chip Select CS2D/PA0, CS2C/
PA1, CS2B/PA2 Output (1) No —

NOTE:
1. These signals have dual functions as port A I/O lines. Their function is programmed in the port A control register.

Signal Description

2-4

MC68307 USER’S MANUAL

MOTOROLA

Table 2-4. Interrupt Port Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Interrupt Request Level 7 IRQ7 Input — (1)
Latched Interrupt 1 INT1/PB8 Input (2) — (1)
Latched Interrupt 2 INT2/PB9 Input (2) — (1)
Latched Interrupt 3 INT3/PB10 Input (2) — (1)
Latched Interrupt 4 INT4/PB11 Input (2) — (1)
Latched Interrupt 5 INT5/PB12 Input (2) — (1)
Latched Interrupt 6 INT6/PB13 Input (2) — (1)
Latched Interrupt 7 INT7/PB14 Input (2) — (1)
Latched Interrupt 8 INT8/PB15 Input (2) — (1)
NOTES:
1. Pullup or pulldown may be required (value depends on individual application).
2. These signals have dual functions as port B I/O lines. Their function is programmed in the port B control register.

Table 2-5. Clock and Mode Control Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Crystal Oscillator or External Clock EXTAL Input — —
Crystal Oscillator XTAL Output — —
System Clock CLKOUT Output No —
Initial Bus Width for CS0 BUSW0 Input — —
Power-On Reset RSTIN Input — (1)
NOTE:
1. Pullup may be required (value depends on individual application). This pin must not be left floating.

Table 2-6. Serial Module Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

UART Transmitter Serial Data TxD/PB2 Output (1) No —
UART Receiver Serial Data RxD/PB3 Input (1) — —
UART Request-to-Send RTSA/PB4 Output (1) No —
UART Clear-to-Send CTSA/PB5 Input (1) — (2)
NOTES:
1. These signals have dual functions as port B I/O lines. Their function is programmed in the port B control register.
2. Pullup may be required (value depends on individual application). If used as CTSA this pin must not be left floating.

Table 2-7. JTAG Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Test Clock TCK Input — —
Test Data Input TDI Input — —
Test Data Output TDO Output — —
Test Mode Select TMS Input — —

Signal Description

MOTOROLA

MC68307 USER’S MANUAL

2-5

2.1 BUS SIGNALS

The following signals are used for the MC68307 bus.

2.1.1 Address Bus (A23–A0)

The address bus signals are outputs that define the address of a byte (or the most significant
byte) to be transferred during a bus cycle. The MC68307 places the address on the bus at
the beginning of a bus cycle, it is valid while the address strobe output (AS) is asserted. The
complete address bus (A23–A0) is capable of addressing 16 Mbytes of data.

The address bus signals are three-stated when the MC68307 is arbitrated off the bus by an
external bus master. They are also three-stated during reset of the EC000 core.

The address bus consists of the following groups of signals. Refer to

Section 3 Bus Oper-
ation

 for information on the address bus and its relationship to bus operation.

2.1.1.1 ADDRESS BUS (A23–A8).

These signals are always used as address output lines.
They are valid when address strobe (AS) is asserted. Chip-selected memory and peripher-
als, including 8051-compatible bus devices, need not decode the upper address bits,
depending on the programmed block size for that chip select.

2.1.1.2 ADDRESS BUS (AD7–AD0).

In addition to carrying eight address signals A7–A0,
these low-order address lines also carry the 8-bit data bus during 8051-compatible bus
cycles, as indicated by the relevant strobe signals (RD and WR). At the start of each type of
bus cycle (both M68000 and 8051-compatible), they carry the eight low-order address bits
A7–A0. In M68000 bus cycles, they are valid addresses when address strobe (AS) is
asserted. Chip select 3 (CS3) should be used to distinguish 8051 bus cycles if necessary.

Table 2-8. Timer Module Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

Timer Input 1 TIN1/PB6 Input (1) — (2)
Timer Input 2 TIN2/PB7 Input (1) — (2)
Timer Output 1 TOUT1/PA3 Output (1) — —
Timer Output 2 TOUT2/PA4 Output (1) — —
NOTES:
1. These signals have dual functions as port A and port B I/O lines. Their function is programmed in the port A or port B

control register.
2. Pullup may be required (value depends on individual application). If used as timer inputs, these pins must not be left

floating.

Table 2-9. M-Bus Module Signal Summary

Signal Name Mnemonic
Input/
Output

Three-State During
Bus Arbitration

Pullup Resistor
Required

M-Bus clock SCL/PB0 I/O (1) — 2.2 K

Ω

M-Bus data SDA/PB1 I/O (1) — 2.2 K

Ω

NOTE:
1. These signals have dual functions as port B I/O lines. Their function is programmed in the port B control register.

Signal Description

2-6

MC68307 USER’S MANUAL

MOTOROLA

Address line A0 is included for 8-bit data-bus interfaces only, i.e., the 8051-compatible bus,
as described above, and also the dynamically-sized 68000 bus when programmed to use
an 8-bit data-bus width. During 16-bit data-bus width cycles, the A0 output is meaningless,
and should be ignored, as it may well hold a misleading value. The UDS and LDS signals
should be used to further decode the even/odd byte access in this case.

2.1.2 Data Bus (D15–D0)

This 16-bit bidirectional parallel bus contains the data being transferred to or from the
MC68307 during M68000 bus cycles. Its value should be ignored during 8051-compatible
bus read and write cycles, it is not three-stated in either case. A read or write operation may
transfer 8 or 16 bits of data (one or two bytes) in one bus cycle.

During an internal peripheral access, the data bus reflects the value read or written, for emu-
lation and debug purposes. Care is required, therefore, if external buffers are needed.

The data bus has a programmable 8-bit bus size option for M68000 bus cycles, which is
used in conjunction with the programmable chip-select dynamic bus sizing. If a chip select
is configured for 8-bit port size, any 16-bit transfers appears externally as two 8-bit transfers.
In this case, the 8-bit data uses the D15–D8 lines only.

2.2 CHIP SELECTS

The programmable chip select outputs allow system designers to interface the MC68307
directly to memory and peripheral devices without having to perform address decode requir-
ing additional external logic. Although they can be programmed for many different configu-
rations, each one has a particular usage to which it is tailored, giving added functionality.
They are asserted coincident with the address strobe (AS) output, and are all active-low.
Refer to

Section 5 System Integration Module

 for details of how the chip selects can be
programmed.

2.2.1 Chip Select 0 (CS0)

This signal is the chip select for a boot ROM containing the reset vectors and initialization
program. From a cold reset, this chip select is asserted on every bus cycle in the first 8K
bytes of address space until is is programmed otherwise. The BUSW0 pin specifies how this
chip select behaves from cold reset, whether it is an 8-bit wide data bus access (BUSW0=0)
or a 16-bit wide data bus access (BUSW0=1).

2.2.2 Chip Select 1 (CS1)

This signal is primarily intended to be an enable for a RAM memory device. From a cold
reset, this signal does not assert until it is programmed with a valid base address and
address mask. The data bus width for memory devices selected by this chip select is also
programmable, between 8- and 16-bit data, in the system control register.

2.2.3 Chip Select 2 (CS2, CS2B, CS2C, CS2D)

Although the CS2/CS2A pin can be used as a general-purpose M68000 chip-select (CS2),
it can, together with the CS2B, CS2C, CS2D signals, be used to enable one of four miscel-
laneous peripherals. The CS2 output address range can be relocated like any of the other

Signal Description

MOTOROLA

MC68307 USER’S MANUAL

2-7

chip selects by programming, but it has the three extra enable outputs which are used to
further divide this address space. If they are used, each of the four peripheral enable outputs
decode fixed 16-Kbyte address ranges within the confines of the programmed range of CS2
(which should therefore be a block 64K bytes in size). Refer to

Section 5.1.2.2 Peripheral
Chip Selects

 and

Section 5.2.2 Chip Select Registers

 for details. The data bus width for
memory devices selected by this chip select is programmable, between 8- and 16-bit data,
in the system control register.

The CS2/CS2A chip select signal has its own pin on the MC68307, but the three extra
enable outputs CS2B, CS2C, CS2D are multiplexed with the port A input/output functions,
and require to be programmed to use these pins at cold reset. This is done by setting bits in
the port A control register (PACNT) as well as a bit in the system control register to enable
the peripheral address decoder. As port A defaults to an input port on cold reset, these three
additional peripheral chip select lines, if they are used, should have pullup resistors to
ensure peripherals are not accidentally enabled during system initialization.

When programmed as general-purpose input/output port lines, CS2B–CS2D function as
PA0–PA2.

2.2.4 Chip Select 3 (CS3)

This chip select output can be programmed to perform an 8051-compatible bus cycle rather
than a M68000 bus cycle. If 8051-compatible bus access is not required in a design, then
this signal can be programmed to be a general purpose chip-select output. The data bus
width for M68000-bus memory devices selected by this chip select is programmable,
between 8- and 16-bit data, in the system control register. If the 8051-compatible bus inter-
face is enabled, then the data-bus width for this chip select should be programmed to be 8
bits. The 8051-compatible bus has an address space (typically 64 Kbytes long, but not
restricted) which can be located anywhere in memory, as long as it does not overlap with
other programmed chip select ranges.

2.3 BUS CONTROL SIGNALS

These are signals that may be decoded or provided by external logic, to control the various
types of bus access which can occur.

The bus control signals are three-stated whenever the MC68307 is arbitrated off the bus by
an external bus master.

2.3.1 Data Transfer Acknowledge (DTACK)

This bidirectional, open-drain, active-low signal indicates that the data transfer has been
completed. DTACK is an output when it is generated internally by the programmable wait-
state generators in the chip-select logic (including CS3 for 8051-compatible bus accesses),
or during an access to internal peripheral registers. It is an input for all other M68000 bus
cycles, i.e., when the MC68307 accesses an external device not within the range of the chip-
select logic or when programmed to be generated externally for any particular chip-select.
In this case, external logic must assert it in order to complete the bus cycle.

Signal Description

2-8

MC68307 USER’S MANUAL

MOTOROLA

2.3.2 Address Strobe (AS)

This three-state active-low output signal indicates that there is a valid address on the
address bus during M68000 bus cycles. It should be ignored during 8051-compatible bus
cycles as the eight low-order address lines also carry the data bus during such a cycle. Dur-
ing all types of bus cycle, it should be taken into account when other bus masters are arbi-
trating for the bus, as it indicates that the MC68307 is still using the bus.

When the bus is arbitrated to an external master, or during reset, AS is three-stated.

2.3.3 Read/Write (R/W)

This three-state output signal defines the data-bus transfer as a read or a write cycle. The
R/W signal relates to the data strobe signals described in the following paragraphs. When
the R/W line is high, the processor reads from the data bus. When the R/W line is low, the
processor drives the data bus. The processor also drives the data bus during a read from
an internal location, to aid emulation and debug.

When the bus is arbitrated to an external master, or during reset, R/W is three-stated.

2.3.4 Data Strobes, Upper and Lower (UDS, LDS)

These three-state active-low output signals control the flow of data on the M68000 data bus.
Table 2-10 lists the combinations of these signals and the corresponding data on the bus in
16-bit wide mode.

In 8-bit wide bus mode (programmed in conjunction with chip selects), all bus cycles appear
as 8-bit reads or writes to the upper half of the data bus (D15–D8), and so UDS only is
asserted. A0 should be used to determine even or odd byte being addressed in this case; it
is valid whenever the external AS signal is asserted during such a cycle. There is no external
indication of data-bus width other than the chip-select asserted. The user has the knowledge
of what bus width that chip-select is programmed to provide, for any given configuration of
the MC68307 in a system.

Table 2-10. Data Strobe Control of Data Bus

UDS LDS R/W D15–D8 D7–D0

High High — No Valid Data No Valid Data

Low Low High Valid Data Bits 15–8 Valid Data Bits 7–0

High Low High No Valid Data Valid Data Bits 7–0

Low High High Valid Data Bus 15–8 No Valid Data

Low Low Low Valid Data Bits 15–8 Valid Data Bits 7–0

High Low Low Valid Data Bits 7–0 Valid Data Bits 7–0

Low High Low Valid Data Bits 15–8 Valid Data Bits 15–8

Signal Description

MOTOROLA

MC68307 USER’S MANUAL

2-9

When the bus is arbitrated to an external master, or during reset, UDS and LDS are three-
stated. D7–D0 should be regarded as invalid in 8-bit-wide bus mode.

2.3.5 8051 Address Latch Enable (ALE)

This output signal is used to latch the low byte of address (AD7–AD0 signals) during access
to external 8051-compatible peripheral circuits. Its function is tied to CS3 logic which can be
programmed to locate the 8051-compatible bus address space anywhere in the memory
map. For a discussion of the timing of the 8051-compatible bus signals, refer to

Section 3
Bus Operation

. ALE is not three-stated during external bus mastership or system reset.

2.3.6 8051-Compatible Bus Read (RD)

This active-low output indicates that the bus cycle in progress is an 8051 read cycle, and
that an addressed 8051 peripheral should provide data on the AD7–AD0 lines within the
specified access time. RD is not three-stated during external bus mastership or system
reset.

2.3.7 8051-Compatible Bus Write (WR)

This active-low output indicates that the bus cycle in progress is an 8051 write cycle, and
that an addressed 8051 peripheral should accept the valid data which is now on the
AD7-AD0 lines. WR is not three-stated during external bus mastership or system reset.

2.3.8 Bus Width Select for CS0 (BUSW0)

The state on this input pin is read at reset, and is used to choose the data bus width for mem-
ory accesses for CS0 (Refer to

Section 5.2.1.2 System Control Register (SCR)

). Hold
BUSW0 low for an 8-bit data bus, or high for a 16-bit data bus during bus cycles which trigger
CS0. BUSW0 does not choose the bus width for CS1, CS2 or CS3; that is done by user ini-
tialization code. Internally, the MC68307 always has a 16-bit bus.

2.4 EXCEPTION CONTROL SIGNALS

The following paragraphs describe the exception control signals.

2.4.1 Reset (RESET)

The external assertion of this bidirectional active-low signal simultaneously with the asser-
tion of HALT starts a system initialization sequence by resetting the whole MC68307 (pro-
cessor, SIM, and internal peripherals). This is called a cold reset or system reset. The
processor assertion of RESET (from executing a RESET instruction) resets all external
devices of a system and internal peripherals of the MC68307 without affecting the initial
state of the processor, chip select logic, port configuration, or Interrupt configuration. This is
called a software reset or peripheral reset. Refer to

Section 3 Bus Operation

 for further
information on reset operation.

During a cold reset, the address bus, data bus, and bus control pins (AS, UDS, LDS, R/W)
are all three-stated. Chip select outputs, CS3–CS0, remain high. None of these signals are
three-stated during a peripheral reset.

Signal Description

2-10

MC68307 USER’S MANUAL

MOTOROLA

2.4.2 Power-On Reset (RSTIN)

This active-low input signal causes the MC68307 (processor, SIM, and peripherals) to enter
the reset state (cold reset). The assertion of RSTIN causes RESET to be asserted out to
reset external circuitry; however, note that HALT is not asserted as a result of RSTIN asser-
tion. Internal power-on reset circuitry provides a reset pulse of at least 32768 clocks width
at power-on or when RSTIN is subsequently asserted. This reset pulse length can be
extended by adding an external RC network, to ensure that RSTIN is held low for long
enough to apply the reset pulse for 128 CPU clocks after V

CC

 and clock are stable. Refer to

Section 10.1 MC68307 Minimum Stand-Alone System Hardware

 for an example circuit.

2.4.3 Halt (HALT)

This active-low bidirectional signal can be asserted with RESET to cause a cold reset as
above. If asserted alone, it causes the processor to stop after completion of the current bus
cycle. As long as HALT is held asserted, all bus control signals go to their inactive state,
except BGACK, and all three-state bus signals (A23–A0, D15–D0 only) are placed in the
high-impedance state. When the processor has stopped executing instructions (e.g., after a
double bus fault), the MC68307 asserts this signal.

2.4.4 Bus Request (BR/PA5)

This input signal indicates to the MC68307 that an external device desires to become the
bus master on the MC68307 external bus. Refer to

Section 3 Bus Operation

for details of
the bus arbitration features. When programmed as general-purpose input/output, this signal
functions as bit 5 of port A.

2.4.5 Bus Grant (BG/PA6)

This output signal indicates to all external bus master devices (if any) that the MC68307
releases bus control at the end of the current bus cycle to an external requesting bus master.
During cold reset, BG reflects the value of BR. When programmed as general-purpose input/
output, this signal functions as bit 6 of port A.

2.4.6 Bus Grant Acknowledge (BGACK /PA7)

This input signal indicates that some other device besides the MC68307 has become the
bus master. When programmed as general-purpose input/output, this signal functions as bit
7 of port A.

2.5 CLOCK SIGNALS

The following paragraphs describe the clock signals.

2.5.1 Crystal Oscillator (EXTAL, XTAL)

This input provides two clock generation options (crystal and external clock). EXTAL may
be used with XTAL to connect an external crystal to the on-chip oscillator and clock gener-
ator. If an external clock is used, the clock source should be connected to EXTAL, and XTAL
must be left unconnected. The oscillator uses an internal frequency equal to the external
crystal frequency. The frequency of EXTAL may range from DC to 16.67 MHz, although if a

Signal Description

MOTOROLA

MC68307 USER’S MANUAL

2-11

crystal is used it should be in the range 1 MHz to 16.67 MHz. When an external clock is
used, it must provide a CMOS level at the required system clock frequency.

2.5.2 Clock Output (CLKOUT)

This output clock signal is derived from the on-chip clock oscillator. This clock is used by the
processor and the internal peripherals. All MC68307 bus timings are referenced to the CLK-
OUT signal rather than the EXTAL input signal, as there is a skew between the two. The
clock output is active from reset, but can be turned off by the software writing to the system
control register, in order to save power or control external devices.

2.6 TEST SIGNALS

The following signals are used with the on-board test logic defined by the IEEE 1149.1 stan-
dard. Refer to

Section 9 IEEE 1149.1 Test Access Port

 for more information on the use of
these signals.

2.6.1 Test Clock (TCK)

This input provides a clock for on-board test logic defined by the IEEE1149.1 standard.

2.6.2 Test Mode Select (TMS)

This input controls test mode operations for on-board test logic defined by the IEEE 1149.1
standard. Connecting TMS to VCC disables the test controller, making all JTAG circuits
transparent to the system.

2.6.3 Test Data In (TDI)
This input is used for serial test instructions and test data for on-board test logic defined by
the IEEE 1149.1 standard.

2.6.4 Test Data Out (TDO)
This output is used for serial test instructions and test data for on-chip test logic defined by
the IEEE 1149.1 standard.

2.7 M-BUS I/O SIGNALS
The M-bus is an I2C-bus-compatible serial interface on two wires. All devices connected to
the bus must have open-drain or open-collector outputs. The logical AND function is exer-
cised on both lines with pullup resistors being required. The pins are multiplexed with port
B, individual pin function being programmable. Port B bits 0 and 1 are therefore always
open-drain input/outputs. Refer to Section 7 M-Bus Interface Module for more information
on these signals.

2.7.1 Serial Clock (SCL/PB0)
This bidirectional open-drain signal is the clock signal for the M-bus interface. Either it is
driven by the M-bus module when the bus is in the master mode or it becomes the clock
input when the M-bus is in the slave mode. When programmed as general-purpose input/
output, this signal functions as bit 0 of port B.

Signal Description

2-12 MC68307 USER’S MANUAL MOTOROLA

2.7.2 Serial Data (SDA/PB1)
This bidirectional open-drain signal is the data input/output for the M-bus interface. When
programmed as general-purpose input/output, this signal functions as bit 1 of port B.

2.8 UART I/O SIGNALS
The following signals are used by the UART serial I/O module for data and clock signals.
Refer to Section 8 Serial Module for more information on these signals.

2.8.1 Transmit Data (TxD/PB2)
This bidirectional signal can be programmed as the transmitter serial data output for the
UART module. The output is held high ('mark' condition) when the transmitter is disabled,
idle, or operating in the local loopback mode. Data is shifted out on this signal at the falling
edge of the serial clock source, with the least significant bit transmitted first. When pro-
grammed as a general-purpose input/output, this signal functions as bit 2 of the 16-bit sec-
ondary port, port B.

2.8.2 Receive Data (RxD/PB3)
This bidirectional signal can be programmed as the receiver serial data input for the UART
module. Data received on this signal is sampled on the rising edge of the serial clock source,
with the least significant bit received first. When the UART clock has been stopped for
power-down mode, any transition on this pin can optionally restart it. When programmed as
a general-purpose input/output, this signal functions as bit 3 of port B.

2.8.3 Request-To-Send (RTS/PB4)
This bidirectional signal can be programmed as an active-low request-to-send output from
the UART module. When programmed as a general-purpose input/output, this signal func-
tions as bit 4 of port B.

2.8.4 Clear-To-Send (CTS/PB5)
This bidirectional input signal can be programmed as the active-low clear-to-send input for
the UART module. When programmed as general-purpose input/output, this signal func-
tions as bit 5 of port B.

2.9 TIMER I/O SIGNALS
The following external signals are used by the timer module. Refer to Section 6 Dual Timer
Module for additional information on these signals.

2.9.1 Timer 1 Input (TIN1/PB6)
This bidirectional signal can be programmed as a clock input that causes events to occur in
timer/counter channel 1, either causing a clock to the event counter or providing a trigger to
the timer value capture logic. When programmed as a general-purpose input/output, this
signal functions as bit 6 of port B.

Signal Description

MOTOROLA MC68307 USER’S MANUAL 2-13

2.9.2 Timer 2 Input (TIN2/PB7)
This bidirectional signal can be programmed as a clock input that causes events to occur in
timer/counter channel 2, either causing a clock to the event counter or providing a trigger to
the timer value capture logic. When programmed as general-purpose input/output, this sig-
nal functions as bit 7 of port B.

2.9.3 Timer 1 Output (TOUT1/PA3)
This bidirectional signal can be programmed to toggle or pulse low for one system clock
duration when timer/counter channel 1 reaches a reference value. When programmed as
general-purpose I/O, this signal functions as bit 3 of port A.

2.9.4 Timer 2 Output (TOUT2/PA4)
This bidirectional signal can be programmed to toggle or pulse low for one system clock
duration when timer/counter channel 2 reaches a reference value. When programmed as
general-purpose I/O, this signal functions as bit 4 of port A.

2.10 INTERRUPT REQUEST INPUTS
These pins can be programmed to be either prioritized interrupt request lines or port B gen-
eral-purpose input/output lines.

2.10.1 Interrupt Inputs (INT1–INT8/PB8–PB15)
These eight bidirectional signals may be configured as general-purpose parallel I/O ports
with interrupt capability. Each of the pins can be configured either as an input or an output.
When configured as an input, each pin can generate a separate, maskable interrupt on a
high-to-low transition, which is latched internally. The interrupt request level (IPL) can be
programmed individually for each pin, and each causes a unique vector to be fetched during
the subsequent interrupt processing.

2.10.2 Non-Maskable Interrupt Input (IRQ7)
IRQ7 is the highest priority interrupt available to the EC000 core, it is a nonmaskable inter-
rupt (IPL=7) and cannot be superseded by any other interrupt request. This is an active-low
input.

2.11 USE OF PULLUP RESISTORS
In general, pins that are input-only or output-only do not require external pullup resistors.
However, see the notes on low power consumption in the following paragraphs.

The open-drain bidirectional signals (HALT, RESET, DTACK, SCL/PB0, SDA/PB1) always
require pullup resistors.

The bus control outputs (AS, UDS, LDS, R/W) three-state at reset during bus arbitration and
low-power sleep mode. They need pullups only if they are decoded for use in the user’s
design or if minimum power consumption is required, otherwise they can be left as
unconnected outputs.

Signal Description

2-14 MC68307 USER’S MANUAL MOTOROLA

The address and data bus also three-state at reset and during bus arbitration and power-
down mode. In this case the designer must decide whether a short period of floating values
on the bus is a concern. The internal pullups on the bidirectional data bus pins are not
sufficient to drive external levels. Again, adding pullups will help minimize power
consumption in low-power sleep mode.

Bidirectional I/O pins default to inputs on reset. If they are to be used as outputs later, or
their function changed to an alternate output function for the pin then a pullup or pulldown
may be required. One example is the CS2B, CS2C, and CS2D signals, multiplexed with port
A lines. If these chip-selects are used they should have pullups otherwise they will float from
reset until they are setup.

The RSTIN input can either be left floating or pulled up if the default power-on reset time is
required, or can have an external RC network to stretch reset time. Refer to Section 3.5
Reset Operation and Section 10.1 MC68307 Minimum Stand-Alone System Hardware
for details of use of this pin.

For maximum reliability, unused inputs should not be left floating. If they are input-only, they
may be pulled to VCC or ground. Unused outputs may be left unconnected. Unused I/O pins
may be configured as outputs after reset, and left unconnected.

If the MC68307 is to be held in reset for extended periods of time in an application (other
than what occurs in normal power-on reset or board test sequences) due to a special appli-
cation requirement (such as VCC dropping below required specifications, etc.) then three-
stated signals and inputs should be pulled up or down. This decreases stress on the device
transistors and saves power.

Refer to Section 2.4.1 Reset (RESET) and Section 3.5 Reset Operation for the condition
of all pins during reset.

Refer to Section 12 Ordering Information and Mechanical Data for details of pin assign-
ments.

2.12 SIGNAL INDEX
Table 2-11 lists the signal index.

Table 2-11. Signal Index
Pin Name Description of Pin Function(s) Direction

TDO Test Data Out Output
TDI Test Data In Input
TMS Test Mode Select Input
TCK Test Clock In Input

D15–D0 Data Bus Bidirectional
A23–A8 Address Bus Out Output

A7–A0/AD7–AD0 Address Bus Out/Multiplexed 8051 Address/Data Bidirectional
AS Address Strobe Output

UDS Upper Data Strobe Output
LDS Lower Data Strobe Output
R/W Read/Write Output

Signal Description

MOTOROLA MC68307 USER’S MANUAL 2-15

DTACK Data Acknowledge Bidirectional
HALT System Halt Bidirectional

RESET System Reset Bidirectional
RSTIN Power-On Reset Input
CS0 Chip Select 0 (ROM) Output
CS1 Chip Select 1 (RAM) Output

CS2/CS2A Chip Select 2 (Peripherals) Output
CS3 Chip Select 3 (8051) Output
ALE 8051-Address Latch Enable Output
RD 8051-Bus Read Output
WR 8051-Bus Write Output

EXTAL External Clock/Crystal In Input
XTAL External Crystal Output

CLKOUT Clock to System Output
BUSW0 Initial Data Bus Width for CS0 Input

CS2B/PA0 Chip Select 2B/I/O Port A Bit 0 Bidirectional
CS2C/PA1 Chip Select 2C/I/O Port A Bit 1 Bidirectional
CS2D/PA2 Chip Select 2D/I/O Port A Bit 2 Bidirectional

TOUT1/PA3 Timer 1 Output/I/O Port A Bit 3 Bidirectional
TOUT2/PA4 Timer 2 Output/I/O Port A Bit 4 Bidirectional

BR/PA5 Bus Request Input/I/O Port A Bit 5 Bidirectional
BG/PA6 Bus Grant Output/I/O Port A Bit 6 Bidirectional

BGACK/PA7 Bus Grant Acknowledge Output/I/O Port A Bit 7 Bidirectional
IRQ7 Interrupt Level 7 Input

SCL/PB0 Serial M-Bus Clock/Port B Bit 0 Bidirectional
SDA/PB1 Serial M-Bus Data/Port B Bit 1 Bidirectional
TxD/PB2 UART Transmit Data/Port B Bit 2 Bidirectional
RxD/PB3 UART Receive Data/Port B Bit 3 Bidirectional
RTS/PB4 Request-to-Send/Port B Bit 4 Bidirectional
CTS/PB5 Clear-To-Send/Port B Bit 5 Bidirectional
TIN1/PB6 Timer 1 Input/Port B Bit 6 Bidirectional
TIN2/PB7 Timer 2 Input/Port B Bit 7 Bidirectional
INT1/PB8 Interrupt In 1/Port B Bit 8 Bidirectional
INT2/PB9 Interrupt In 2/Port B Bit 9 Bidirectional
INT3/PB10 Interrupt In 3/Port B Bit 10 Bidirectional
INT4/PB11 Interrupt In 4/Port B Bit 11 Bidirectional
INT5/PB12 Interrupt In 5/Port B Bit 12 Bidirectional
INT6/PB13 Interrupt In 6/Port B Bit 13 Bidirectional
INT7/PB14 Interrupt In 7/Port B Bit 14 Bidirectional
INT8/PB15 Interrupt In 8/Port B Bit 15 Bidirectional

Table 2-11. Signal Index (Continued)
Pin Name Description of Pin Function(s) Direction

MOTOROLA

MC68307 USER’S MANUAL

3-1

SECTION 3
BUS OPERATION

This section describes control signal and bus operation during data transfer operations, bus
arbitration, bus error and halt conditions, and reset operation.

NOTE

The terms

assertion

 and

negation

 are used extensively in this
manual to avoid confusion when describing a mixture of “active-
low” and “active-high” signals. The term assert or assertion is
used to indicate that a signal is active or true, independently of
whether that level is represented by a high or low voltage. The
term negate or negation is used to indicate that a signal is inac-
tive or false.

3.1 DATA TRANSFER OPERATIONS

Transfer of data between devices involves the following signals:

1. A23–A0

2. D7–D0 and/or D15–D0

3. Control signals

The address and data buses are separate parallel buses used to transfer data using an
asynchronous bus structure. In all cases, the bus master must deskew all signals it issues
at both the start and end of a bus cycle. In addition, the bus master must deskew the
acknowledge and data signals from the slave device.

The 8051-compatible bus uses A23–A0 for both address and data.

3.1.1 16-Bit M68000 Bus Operation

The M68000 16-bit bus mode of operation is the default mode of the MC68307. The internal
data bus width is 16-bits, and the EC000 core always operates in a 16-bit mode.

This mode is appropriate for:

• External 16-bit memory and peripheral devices, which read and write from the whole
data bus, or

• 8-bit peripherals which do not require a contiguous address space, that is, they occupy
either even byte locations only (if connected to the upper half of the data bus) or odd
byte locations only (if connecetd to the lower half of the data bus).

Thi d t t d ith F M k 4 0 4

Bus Operation

3-2

MC68307 USER’S MANUAL

MOTOROLA

In this mode address bus A23–A1 is used, with data bus D15–D0 and control signals AS,
UDS, LDS, R/W, and DTACK.

3.1.2 16-Bit M68000 Bus Read Cycle

During a read cycle, the processor receives either one or two bytes of data from the memory
or from a peripheral device. If the instruction specifies a word or long-word operation, the
processor reads both upper and lower bytes simultaneously by asserting both upper and
lower data strobes. A long-word read is accomplished by two consecutive word reads. When
the instruction specifies byte operation, the processor uses the internal A0 bit to determine
which byte to read and issues the appropriate data strobe. When A0 is zero, the upper data
strobe is issued; when A0 is one, the lower data strobe is issued. When the data is received,
the processor internally positions the byte appropriately.

The word read cycle flowchart is shown in Figure 3-1. The byte read cycle flowchart is shown
in Figure 3-2. The read and write cycle timing is shown in Figure 3-3. Figure 3-4 shows the
word and byte read cycle timing diagram.

Figure 3-1. Word Read Cycle Flowchart (16-Bit Bus)

BUS MASTER SLAVE

ACQUIRE THE DATA

INPUT THE DATA

START NEXT CYCLE

1) SET R/W TO READ
2) PLACE ADDRESS ON A23–A1
3) ASSERT ADDRESS STROBE (AS)
4) ASSERT UPPER DATA STROBE (UDS)

AND LOWER DATA STROBE (LDS)

TERMINATE THE CYCLE

ADDRESS THE DEVICE

1) LATCH DATA
2) NEGATE UDS AND LDS
3) NEGATE AS

1) DECODE ADDRESS
2) PLACE DATA ON D15–D0
3) ASSERT DATA TRANSFER

ACKNOWLEDGE (DTACK)

1) REMOVE DATA FROM D15–D0
2) NEGATE DTACK

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-3

Figure 3-2. Byte Read Cycle Flowchart (16-Bit Bus)

Figure 3-3. Read and Write Cycle Timing Diagram (16-Bit Bus)

BUS MASTER SLAVE

ACQUIRE THE DATA

INPUT THE DATA

START NEXT CYCLE

1) SET R/W TO READ
2) PLACE ADDRESS ON A23–A1
3) ASSERT ADDRESS STROBE (AS)
4) ASSERT UPPER DATA STROBE (UDS)

OR LOWER DATA STROBE (LDS)
(BASED ON A0)

TERMINATE THE CYCLE

ADDRESS THE DEVICE

1) LATCH DATA
2) NEGATE UDS AND LDS
3) NEGATE AS

1) DECODE ADDRESS
2) PLACE DATA ON D7–D0 or D15–D8

(BASED ON UDS OR LDS)
3) ASSERT DATA TRANSFER

ACKNOWLEDGE (DTACK)

1) REMOVE DATA FROM D7–D0 OR
D15–D8

2) NEGATE DTACK

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 w w w w S5 S6 S7
CLK

A23–A0

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

READ WRITE 2 WAIT STATE READ

Bus Operation

3-4

MC68307 USER’S MANUAL

MOTOROLA

A bus cycle consists of eight states. The various signals are asserted during specific states
of a read cycle as follows:

STATE 0 The read cycle starts in state 0 (S0). The processor places a valid address on
the bus, and drives R/W high to identify a read cycle.

STATE 1 During state 1 (S1), no bus signals are altered.

STATE 2 On the rising edge of state 2 (S2), the processor asserts AS and UDS/LDS.

STATE 3 During state 3 (S3), no bus signals are altered.

STATE 4 During state 4 (S4), the processor waits for a cycle termination signal (DTACK
or BERR). If neither termination signal is asserted before the falling edge at
the end of S4, the processor inserts wait states (full clock cycles) until either
DTACK or BERR is asserted. Note that the BERR signal does not appear on
an external pin on the MC68307; the internal hardware watchdog generates it.

Case 1: DTACK received, with or without BERR.

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 Sometime between state 2 (S2) and state 6 (S6), data from the device is
driven onto the data bus.

Figure 3-4. Word and Byte Read Cycle Timing Diagram (16-Bit Bus)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7
CLK

A23–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

WORD ODD BYTE READ EVEN BYTE READ

A0

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-5

STATE 7 On the falling edge of the clock entering state 7 (S7), the processor latches
data from the addressed device and negates AS and UDS, LDS. The device
negates DTACK at this time.

Case 2: BERR received without DTACK.

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 During state 6 (S6), no bus signals are altered.

STATE 7 During state 7 (S7), no bus signals are altered.

STATE 8 During state 8 (S8), no bus signals are altered.

STATE 9 AS and UDS/LDS negated. Slave negates BERR.

3.1.3 16-Bit M68000 Bus Write Cycle

During a write cycle, the processor sends bytes of data to the memory or peripheral device.
If the instruction specifies a word or long-word operation, the processor issues both UDS
and LDS and writes both bytes. A long-word write is accomplished by two consecutive word
writes. When the instruction specifies a byte operation, the processor uses the internal A0
bit to determine which byte to write and issues the appropriate data strobe. When the A0 bit
equals zero, UDS is asserted; when the A0 bit equals one, LDS is asserted. The word write
cycle flowchart is shown in Figure 3-5. The byte write cycle flowchart is shown in Figure 3-
1. The word and byte write cycle timing is shown in Figure 3-7.

Figure 3-5. Word Write Cycle Flowchart (16-Bit Bus)

BUS MASTER SLAVE

TERMINATE OUTPUT TRANSFER

INPUT THE DATA

START NEXT CYCLE

1) PLACE ADDRESS ON A23–A1
2) ASSERT ADDRESS STROBE (AS)
3) SET R/W TO WRITE
4) PLACR DATA ON D15–D0
5) ASSERT UPPER DATA STROBE (UDS)

AND LOWER DATA STROBE (LDS)

TERMINATE THE CYCLE

ADDRESS THE DEVICE

1) NEGATE UDS AND LDS
3) NEGATE AS
3) REMOVE DATA FROM D15–D0
4) SET R/W TO READ

1) DECODE ADDRESS
2) LATCH DATA ON D15–D0
3) ASSERT DATA TRANSFER

ACKNOWLEDGE (DTACK)

1) NEGATE DTACK

Bus Operation

3-6

MC68307 USER’S MANUAL

MOTOROLA

Figure 3-6. Byte Write Cycle Flowchart (16-Bit Bus)

Figure 3-7. Word and Byte Write Cycle Timing Diagram

BUS MASTER SLAVE

TERMINATE OUTPUT TRANSFER

INPUT THE DATA

START NEXT CYCLE

1) PLACE ADDRESS ON A23–A1
2) ASSERT ADDRESS STROBE (AS)
3) SET R/W TO WRITE
4) PLACE DATA ON D7–D0 OR D15–D8

(ACCORDING TO INTERNAL A0)
5) ASSERT UPPER DATA STROBE (UDS)

OR LOWER DATA STROBE (LDS)
(BASED ON INTERNAL A0)

TERMINATE THE CYCLE

ADDRESS THE DEVICE

1) NEGATE UDS AND LDS
2) NEGATE AS
3) REMOVE DATA FROM D7–D0 OR

D15–D8
4) SET R/W TO READ

1) DECODE ADDRESS
2) LATCH DATA ON D7–D0 IF LDS IS

ASSERTED. LATCH DATA ON
D15–D8 IF UDS IS ASSERTED

3) ASSERT DATA TRANSFER
ACKNOWLEDGE (DTACK)

1) NEGATE DTACK

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7

A0

CLK

A23–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

EVEN BYTE WRITEWORD WRITE ODD BYTE WRITE

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-7

The descriptions of the eight states of a write cycle are as follows:

STATE 0 The write cycle starts in S0. The processor places a valid address on the
address bus, and drives R/W high (if a preceding write cycle has left R/W low).

STATE 1 During S1, no bus signals are altered.

STATE 2 On the rising edge of S2, the processor asserts AS and drives R/W low.

STATE 3 During S3, the data bus is driven out of the high-impedance state as the data
to be written is placed on the bus.

STATE 4 At the rising edge of S4, the processor asserts UDS and/or LDS;. The
processor waits for a cycle termination signal (DTACK or BERR). If neither
termination signal is asserted before the falling edge at the end of S4, the
processor inserts wait states (full clock cycles) until either DTACK or BERR is
asserted. Note that the BERR signal does not appear on an external pin on
the MC68307; the internal hardware watchdog generates it.

Case 1: DTACK received, with or without BERR.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered.

STATE 7 On the falling edge of the clock entering S7, the processor negates AS, UDS,
and/or LDS. As the clock rises at the end of S7, the processor places the data
bus in the high-impedance state, and drives R/W high. The device negates
DTACK or BERR at this time.

Case 2: BERR received without DTACK.

STATE 5 During state 5 (S5), no bus signals are altered.

STATE 6 During state 6 (S6), no bus signals are altered.

STATE 7 During state 7 (S7), no bus signals are altered.

STATE 8 During state 8 (S8), no bus signals are altered.

STATE 9 AS and UDS/LDS negated. Slave negates BERR. At the end of S9, three-
state data and drive R/W high.

Bus Operation

3-8

MC68307 USER’S MANUAL

MOTOROLA

3.1.4 Read-Modify-Write Cycle

The read-modify-write cycle performs a read operation, modifies the data in the arithmetic
logic unit, and writes the data back to the same address. The address strobe (AS) remains
asserted throughout the entire cycle, making the cycle indivisible. The test and set (TAS)
instruction uses this cycle to provide a signaling capability without deadlock between pro-
cessors in a multiprocessing environment. The TAS instruction (the only instruction that
uses the read-modify-write cycle) only operates on bytes. Thus, all read-modify-write cycles
are byte operations. The read-modify-write flowchart is shown in Figure 3-8 and the timing
diagram is shown in Figure 3-9.

The descriptions of the read-modify-write cycle states are as follows:

STATE 0 The read cycle starts in S0. The processor places a valid address on the
address bus, and drives R/W high to identify a read cycle.

Figure 3-8. Read-Modify-Write Cycle Flowchart

BUS MASTER SLAVE

START OUTPUT TRANSFER

INPUT THE DATA

START NEXT CYCLE

1) SET R/W TO READ
2) PLACE ADDRESS ON A23–A1
3) ASSERT ADDRESS STROBE (AS)
4) ASSERT UPPER DATA STROBE (UDS)

OR LOWER DATA STROBE (LDS)

TERMINATE THE CYCLE

ADDRESS THE DEVICE

1) SET R/W TO WRITE
2) PLACE DATA ON D7–D0 OR D15–D8
3) ASSERT UPPER DATA STROBE (UDS)

OR LOWER DATA STROBE (LDS)

1) DECODE ADDRESS
2) PLACE DATA ON D7–D0 OR D15–D8
3) ASSERT DATA TRANSFER

ACKNOWLEDGE (DTACK)

1) REMOVE DATA FROM D7–D0 OR
D15–D8

2) NEGATE DTACK

ACQUIRE THE DATA

1) LATCH DATA
2) NEGATE UDS AND LDS
3) START DATA MODIFICATION

INPUT THE DATA

1) STORE DATA ON D7–D0 OR D15–D8
2) ASSERT DATA TRANSFER

ACKNOWLEDGE (DTACK)

TERMINATE THE CYCLE

1) NEGATE DTACK

TERMINATE OUTPUT TRANSFER

1) NEGATE UDS AND LDS
2) NEGATE AS
3) REMOVE DATA FROM D7–D0 OR

D15–D8
4) SET R/W TO READ

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-9

STATE 1 During S1, no bus signals are altered.

STATE 2 On the rising edge of S2, the processor asserts AS and UDS/LDS.

STATE 3 During S3, no bus signals are altered.

STATE 4 During S4, the processor waits for a cycle termination signal (DTACK or
BERR). If neither termination signal is asserted before the falling edge at the
end of S4, the processor inserts wait states (full clock cycles) until either
DTACK or BERR is asserted.

Case R1: DTACK only.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, data from the device are driven onto the data bus.

STATE 7 On the falling edge of the clock entering S7, the processor accepts data from the
device and negates UDS/LDS. The device negates DTACK or BERR at this time.

STATE 8–11 The bus signals are unaltered during S8–S11, during which the arithmetic
logic unit makes appropriate modifications to the data.

STATE 12 The write portion of the cycle starts in S12. The address bus lines, AS and R/
W remain unaltered.

STATE 13 During S13, no bus signals are altered.

STATE 14 On the rising edge of S14, the processor drives R/W low.

Figure 3-9. Read-Modify-Write Cycle Timing Diagram

CLK

A23–A0

AS

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

INDIVISIBLE CYCLE

UDS OR LDS

R/W

DTACK

D15–D8 OR
D7–D0

FC2–FC0

Bus Operation

3-10

MC68307 USER’S MANUAL

MOTOROLA

STATE 15 During S15, the data bus is driven out of the high-impedance state as the data
to be written are placed on the bus.

STATE 16 At the rising edge of S16, the processor asserts UDS/LDS. The processor
waits for DTACK or BERR. If neither termination signal is asserted before the
falling edge at the close of S16, the processor inserts wait states (full clock
cycles) until either DTACK or BERR is asserted.

Case W1: DTACK with or without BERR.

STATE 17 During S17, no bus signals are altered.

STATE 18 During S18, no bus signals are altered.

STATE 19 On the falling edge of the clock entering S19, the processor negates AS and
UDS/LDS. As the clock rises at the end of S19, the processor places the data
bus in the high-impedance state, and drives R/W high. The device negates
DTACK or BERR at this time.

Case R2: DTACK and BERR on read.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered, and data from the device is ignored.

STATE 7 AS and UDS/LDS are negated. The cycle terminates without the write portion.

Case R3: BERR only on read.

STATE 5 During S5, no bus signals are altered.

STATE 6 During S6, no bus signals are altered.

STATE 7 During S7, no bus signals are altered.

STATE 8 During S8, no bus signals are altered.

STATE 9 AS and UDS/LDS are negated. The cycle terminates without the write portion.

Case W2: BERR only on write.

STATE 17 During S17, no bus signals are altered.

STATE 18 During S18, no bus signals are altered.

STATE 19 During S19, no bus signals are altered.

STATE 20 During S20, no bus signals are altered.

STATE 21 The processor negates AS and UDS/LDS.

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-11

3.1.5 CPU Space Cycle

A CPU space cycle, indicated when the internal function codes are all high, is a special pro-
cessor cycle. In the EC000 core, CPU space is used only for interrupt acknowledge cycles.
Figure 3-10 shows the encoding of an interrupt acknowledge cycle. No response is expected
or allowed from external devices. On the MC68307 this cycle is an indication of the internal
interrupt controller’s vector response.

As the MC68307 implementation does not provide function code pins to differentiate CPU
space cycles (the internal function code signals are all high in this type of cycle), care is
required when decoding addresses which may match the above address. No problems will
be encountered as long as the chip selects are used as a term in the decoding logic. This
will ensure that CPU space cycles are not decoded. The interrupt acknowledge cycle places
the level of the interrupt being acknowledged on address bits A3–A1 and drives all other
address lines high. The interrupt acknowledge cycle reads a vector number when the
MC68307 interrupt controller places a vector number on the data bus.

The timing diagram for an interrupt acknowledge cycle is shown in Figure 3-11.

3.1.6 8-Bit M68000 Dynamically-Sized Bus

M68000 8-bit bus cycles appear when the MC68307 dynamic bus sizing is enabled. This
bus sizing adds cycle-by-cycle control of data bus width to the EC000 core bus, as for the
MC68020, but with the difference that the bus width is controlled via the chip selects, rather
than external DSACK1 and DSACK0 inputs.

This provides the flexibility of differing bus widths for RAM, ROM and peripherals, without
the pin overhead of the MC68020 solution (DSACK1, DSACK0, SIZ1 and SIZ0).

Each of the four programmable chip selects has a default bus width of 8- or 16-bits associ-
ated with it. The initial bus width of CS0 is set upon reset by the state of the BUSW external
pin (0 for an 8-bit data bus, 1 for a 16-bit data bus).

The bus widths for CS2, CS3 and CS4 should be programmed during system initialization
using the BUSWx bits in the system configuration register (SCR), according to the system
design. The default after reset is 16-bits wide.

All bus accesses not matched by any of the chip selects or the internal peripheral address
ranges require an external DTACK input to terminate the cycle. The data bus width of such
cycles is 16-bits by default; the EBUSW bit in the system configuration register (SCR) can
be cleared to specify external DTACK cycles as 8-bit data bus.

Figure 3-10. Interrupt Acknowledge Cycle – Address Bus

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
INTERRUPT

ACKNOWLEDGE LEVEL 1

3 1 023

Bus Operation

3-12

MC68307 USER’S MANUAL

MOTOROLA

When using the M68000 8-bit bus, transfer of the data between the MC68307 and other de-
vices on the bus involves the following signals:

• Address Bus A23–A0

• Data Bus D15–D0

• Control Signals (AS, UDS, R/W, DTACK). LDS is not used.

All M68000 8-bit bus cycles use the upper half of the data bus (D15–D8) for reads and
writes. Note that this differs from the static 8-bit bus provided by the MC68HC001, MC68008
and MC68302, which use the lower half (D7–D0).

Therefore, only UDS is asserted during such cycles, never LDS. The chip select logic can
control the data strobes in this way only because it determines the bus width that is pro-
grammed for a particular chip-select before DTACK is asserted.

Figure 3-11. Interrupt Acknowledge Cycle Timing Diagram

CLK

A23–A4

AS

UDS*

LDS

R/W

DTACK

D15–D8

D7–D0

IPL2–IPL0
(INTERNAL)

STACK
PCL

(SSP)

IACK CYCLE
(VECTOR NUMBER

ACQUISITION)

STACK AND
VECTOR

FETCH

A3–A0

Although a vector number is one byte, both data strobes are asserted due to the microcode used for exception processing.
The processor does not recognize anything on data lines D15–D8 at this time.

LAST BUS CYCLE OF INSTRUCTION
(READ OR WRITE)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6

*

IPL2–IPL0 TRANSITION
IPL2–IPL0 SAMPLED
IPL2–IPL0 VALID INTERNALLY

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-13

3.1.7 8051-Bus Operation

The 8051-compatible bus is a multiplexed address/data bus scheme which provides an 8-
bit-wide data interface to memories and peripherals. It is typically used for ASIC devices
where pin count minimization is important.

Individual read and write strobes are provided, along with a latch enable signal which indi-
cates that the multiplexed portion of the bus is carrying a valid address which is latched by
the memory or peripheral device at the beginning of the cycle.

When using the 8051-compatible 8-bit bus, transfer of data between the MC68307 and other
devices on the bus involves the following signals:

• Address/data multiplexed bus AD7–AD0

• Optionally higher-order address bus A23–A8 or part thereof

• Control signals (CS3, ALE, RD, WR)

If the 8051-compatible interface is enabled, one of the MC68307 programmable chip selects
(CS3) is used to indicate the address range to be decoded as 8051 accesses. The base
address and address mask should be programmed as described in

Section 5.1.2.3 8051-
Compatible Bus Chip Select

.

The device being addressed can decode address lines A8 and higher if an addressing range
larger than 256-bytes is required, up to the maximum address range of the MC68307.

During 8051-compatible bus cycles, the M68000 strobe outputs are still asserted, indicating
the “underlying” M68000 bus-cycle, and the D15–D0 outputs reflect the internal data-bus
value being presented to the EC000 processor core.

Figure 3-12 and Figure 3-13 show examples of 8051-compatible read and write cycle timing
diagrams, respecitively.

Bus Operation

3-14

MC68307 USER’S MANUAL

MOTOROLA

Figure 3-12. 8051-Compatible Read Cycle Signals

Figure 3-13. 8051-Compatible Write Cycle Signals

ALE

RD

AD7 – AD0

D15–D0

ADDRESS DATA OUT ADDRESS

DATA

xDS

AS

CLK

CS3

A23–A8 ADDRESS

ALE

WR

AD7 – AD0

D15–D0

ADDRESS DATA OUT ADDRESS

DATA

xDS

AS

CLK

CS3

A23–A8 ADDRESS

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-15

3.2 BUS ARBITRATION

Bus arbitration is a technique used by bus master devices to request, to be granted, and to
acknowledge bus mastership. Bus arbitration consists of the following:

1. Asserting a bus mastership request

2. Receiving a grant indicating that the bus is available at the end of the current cycle

3. Acknowledging that mastership has been assumed

Figure 3-14 is a flowchart showing the bus arbitration cycle of the EC000 core. Figure 3-16
is a timing diagram of the bus arbitration cycle charted in Figure 3-14. This technique allows
processing of bus requests during data transfer cycles.

There are two ways to arbitrate the bus; three-wire and two-wire bus arbitration. The EC000
core can do either two-wire or three-wire bus arbitration. Figure 3-14 and Figure 3-16 show

Figure 3-14. Three-Wire Bus Arbitration Cycle Flowchart

PROCESSOR REQUESTING DEVICE

REQUEST THE BUS

REARBITRATE OR RESUME

ASSERT BUS GRANT (BG)
ACKNOWLEDGE BUS MASTERSHIP

GRANT BUS ARBITRATION
ASSERT BUS REQUEST (BR)

1) EXTERNAL ARBITRATION
DETERMINES NEXT BUS MASTER

2) NEXT BUS MASTER WAITS FOR
CURRENT CYCLE TO COMPLETE

3) NEXT BUS MASTER ASSERTS BUS
GRANT ACKNOWLEDGE (BGACK) TO
BECOME NEW MASTER

4) BUS MASTER NEGATES BR
TERMINATE ARBITRATION

1) NEGATE BG (AND WAIT FOR BGACK
TO BE NEGATED)

2) IF BR REMAINS ASSERTED AFTER
BGACK ASSERTED, RE-ASSERT BG OPERATE AS BUS MASTER

PERFORM DATA TRANSFERS (READ
AND WRITE CYCLES) ACCORDING TO
THE SAME RULES AS THE PROCESSOR
USES

RELEASE BUS MASTERSHIP

NEGATE BGACKPROCESSOR OPERATION

Bus Operation

3-16

MC68307 USER’S MANUAL

MOTOROLA

three-wire bus arbitration and Figure 3-15 and Figure 3-17 show two-wire bus arbitration.
BGACK must be pulled high for two-wire bus arbitration.

The timing diagram in Figure 3-16 shows that the bus request is negated at the time that an
acknowledge is asserted. This type of operation applies to a system consisting of a proces-
sor and one other device capable of becoming bus master. In systems having several
devices that can be bus masters, bus request lines from these devices can be wire-ORed
at the processor, and more than one bus request signal could occur.

The bus grant signal is negated a few clock cycles after the assertion of the bus grant
acknowledge signal. However, if bus requests are pending, the processor reasserts bus
grant for another request a few clock cycles after bus grant (for the previous request) is
negated. In response to this additional assertion of bus grant, external arbitration circuitry
selects the next bus master before the current bus master has completed the bus activity.

The timing diagram in Figure 3-17 also applies to a system consisting of a processor and
one other device capable of becoming bus master. Since the two-wire bus arbitration
scheme does not use a bus grant acknowledge signal, the external master must continue to
assert BR until it has completed its bus activity. The processor negates BG when BR is
negated.

Figure 3-15. Two-Wire Bus Arbitration Cycle Flowchart

PROCESSOR REQUESTING DEVICE

REQUEST THE BUS

REARBITRATE OR RESUME

ASSERT BUS GRANT (BG)
OPERATE AS BUS MASTER

GRANT BUS ARBITRATION
ASSERT BUS REQUEST (BR)

1) EXTERNAL ARBITRATION
DETERMINES NEXT BUS MASTER

2) NEXT BUS MASTER WAITS FOR
CURRENT CYCLE TO COMPLETE

ACKNOWLEDGE RELEASE OF

NEGATE BUS GRANT (BG)

RELEASE BUS MASTERSHIP

NEGATE BUS REQUEST (BR)

PROCESSOR OPERATION

BUS MASTERSHIP

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-17

3.2.1 Requesting the Bus

External devices capable of becoming bus masters assert BR to request the bus. This signal
can be wire-ORed (not necessarily constructed from open-collector devices) from any of the
devices in the system that can become bus master. The processor, which is at a lower bus
priority level than the external devices, relinquishes the bus after it completes the current
bus cycle.

Figure 3-16. Three-Wire Bus Arbitration Timing Diagram

Figure 3-17. Two-Wire Bus Arbitration Timing Diagram

CLK

A23–A0

AS

LDS/ UDS

R/W

DTACK

D15–D0

BR

BG

BGACK

PROCESSOR DMA DEVICE PROCESSOR DMA DEVICE

CLK

A23–A0

AS

DS

R/W

DTACK

D7–D0

PROCESSOR

BR

BG

S0 S6S2 S4 S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6

DMA DEVICE PROCESSOR DMA DEVICE

Bus Operation

3-18

MC68307 USER’S MANUAL

MOTOROLA

3.2.2 Receiving the Bus Grant

The processor asserts BG as soon as possible. Normally, this process immediately follows
internal synchronization, except when the processor has made an internal decision to exe-
cute the next bus cycle but has not yet asserted AS for that cycle. In this case, BG is delayed
until AS is asserted to indicate to external devices that a bus cycle is in progress. One such
case is during a dynamically sized cycle; BG will not assert until the second half of the cycle.

BG can be routed through a daisy-chained network or through a specific priority-encoded
network. Any method of external arbitration that observes the protocol can be used.

3.2.3 Acknowledgment of Mastership (Three-Wire Bus Arbitration Only)

Upon receiving BG, the requesting device waits until AS, DTACK, and BGACK are negated
before asserting BGACK. The negation of AS indicates that the previous bus master has
completed its cycle. (No device is allowed to assume bus mastership while AS is asserted.)
The negation of BGACK indicates that the previous master has released the bus. The nega-
tion of DTACK indicates that the previous slave has terminated the connection to the previ-
ous master. (In some applications, DTACK might not be included in this function; general-
purpose devices would be connected using AS only.) When BGACK is asserted, the assert-
ing device is bus master until it negates BGACK. BGACK should not be negated until after
the bus cycle(s) is complete. A device relinquishes control of the bus by negating BGACK.

The BR from the granted device should be negated after BGACK is asserted. If another bus
request is pending, BG is reasserted within a few clocks, as described in

Section 3.3 Bus
Arbitration Control

. The processor does not perform any external bus cycles before reas-
serting BG.

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL

3-19

3.3 BUS ARBITRATION CONTROL

All asynchronous bus arbitration signals to the processor are synchronized before being
used internally. As shown in Figure 3-18, synchronization requires a maximum of one and
a half cycles of the system clock. The input asynchronous signal is sampled on the falling
edge of the clock and is valid internally after the next rising edge.

Bus arbitration control is implemented with a finite state machine (see Figure 3-19). In Figure
3-19, input signals R and A are the internally synchronized versions of BR and BGACK. The
BG output is shown as G, and the internal three-state control signal is shown as T. If T is
true, the address, data, and control buses are placed in the high-impedance state when AS
is negated. All signals are shown in positive logic (active high), regardless of their true active
voltage level. State changes (valid outputs) occur on the next rising edge of the clock after
the internal signal is valid.

A timing diagram of the bus arbitration sequence during a processor bus cycle is shown in
Figure 3-20. The bus arbitration timing while the bus is inactive (e.g., the processor is per-
forming internal operations for a multiply instruction) is shown in Figure 3-21.

When a bus request is made after the MPU has begun a bus cycle and before AS has been
asserted (S0), the special sequence shown in Figure 3-22 applies. Instead of being asserted
on the next rising edge of clock, BG is delayed until the second rising edge following its inter-
nal assertion.

Figure 3-20, Figure 3-21, and Figure 3-22 apply to processors using three-wire bus arbitra-
tion. Figure 3-23, Figure 3-24, and Figure 3-25 apply to processors using two-wire bus
arbitration.

Figure 3-18. External Asynchronous Signal Synchronization

CLK

BR (EXTERNAL)

BR (iNTERNAL)

47

INTERNAL SIGNAL VALID

EXTERNAL SIGNAL SAMPLED

Bus Operation

3-20

MC68307 USER’S MANUAL

MOTOROLA

Figure 3-19. Bus Arbitration Unit State Diagrams

R = Bus Request Internal
A = Bus Grant Acknowledge Internal
G = Bus Grant
T = Three-State Control to Bus Control Logic
X = Don't Care

1. State machine will not change if the bus is S0 or S1.
2. The address bus will be placed in the high-impedance state if T is asserted and AS is

negated.

RA

XX

RA

RA

RA

XX

R + A

XA
RA

RX

1 1

R

R

R

X

R

X

R

R

(a) Three-Wire Bus Arbitration

(b) Two-Wire Bus Arbitration

GT

GT

GT

GT

RA

RA

RA

RA

XA

RA

GT
RA

GT

GT

GT

GT

GT

GT

GT
STATE 1

STATE 0

STATE 4

STATE 2

STATE 3

Bus Operation

MOTOROLA

MC68307 USER’S MANUAL 3-21

Figure 3-20. Three-Wire Bus Arbitration Timing Diagram—Processor Active

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1
CLK

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BGACK NEGATED INTERNAL
BGACK SAMPLED
BGACK NEGATED

BR

BG

BGACK

A23–A0

AS

UDS

LDS

R/W

DTACK

D15–D0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Bus Operation

3-22 MC68307 USER’S MANUAL MOTOROLA

Figure 3-21. Three-Wire Bus Arbitration Timing Diagram—Bus Inactive

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4
CLK

BGACK NEGATED
BG ASSERTED AND BUS THREE STATED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BR

BG

BGACK

A23–A0

AS

UDS

LDS

R/W

DTACK

D15–D0

BUS RELEASED FROM THREE STATE AND PROCESSOR STARTS NEXT BUS CYCLE

PROCESSORPROCESSOR BUS
INACTIVE ALTERNATE BUS MASTER

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-23

Figure 3-22. Three-Wire Bus Arbitration Timing Diagram—Special Case

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BGACK NEGATED INTERNAL
BGACK SAMPLED
BGACK NEGATED

BR

BG

BGACK

AS

UDS

LDS

R/W

DTACK

D15–D0

S0 S2 S4 S6 S0 S2 S4 S6 S0

CLK

A23–A0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Bus Operation

3-24 MC68307 USER’S MANUAL MOTOROLA

Figure 3-23. Two-Wire Bus Arbitration Timing Diagram—Processor Active

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4 S5 S6 S7 S0 S1
CLK

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BR NEGATED INTERNAL
BR SAMPLED
BR NEGATED

BR

BG

BGACK

A23–A0

AS

UDS

LDS

R/W

DTACK

D15–D0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-25

Figure 3-24. Two-Wire Bus Arbitration Timing Diagram—Bus Inactive

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3 S4
CLK

BR NEGATED
BG ASSERTED AND BUS THREE STATED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BR

BG

BGACK

A23–A0

AS

UDS

LDS

R/W

DTACK

D15–D0

BUS RELEASED FROM THREE STATE AND PROCESSOR STARTS NEXT BUS CYCLE

PROCESSORPROCESSOR BUS
INACTIVE ALTERNATE BUS MASTER

Bus Operation

3-26 MC68307 USER’S MANUAL MOTOROLA

Figure 3-25. Two-Wire Bus Arbitration Timing Diagram—Special Case

BUS THREE-STATED
BG ASSERTED
BR VALID INTERNAL
BR SAMPLED
BR ASSERTED

BUS RELEASED FROM THREE STATE AND
PROCESSOR STARTS NEXT BUS CYCLE
BR NEGATED INTERNAL
BR SAMPLED
BR NEGATED

BR

BG

BGACK

AS

UDS

LDS

R/W

DTACK

D15–D0

S0 S2 S4 S6 S0 S2 S4 S6 S0

CLK

A23–A0

PROCESSOR ALTERNATE BUS MASTER PROCESSOR

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-27

3.4 BUS ERROR AND HALT OPERATION
In a bus architecture that requires a handshake from an external device, such as the asyn-
chronous bus used in the M68000 family, the handshake may not always occur. A bus mon-
itor is provided to terminate a bus cycle in error when the expected signal is not asserted.
Different systems and different devices within the same system require different maximum-
response times. This internal circuitry asserts the internal EC000 core bus error signal after
the appropriate delay following the assertion of address strobe.

3.4.1 Bus Error Operation
When the bus error condition is recognized, the current bus cycle is terminated in S7 for a
read cycle, a write cycle, or the read portion of a read-modify-write cycle. For the write por-
tion of a read-modify-write cycle, the current bus cycle is terminated in S19.

After the aborted bus cycle is terminated, the processor enters exception processing for the
bus error exception. During the exception processing sequence, the following information is
placed on the supervisor stack:

1. Status register

2. Program counter (two words, which may be up to five words past the instruction being
executed)

3. Error information

The first two items are identical to the information stacked by any other exception. The
EC000 core stacks bus error information to help determine and to correct the error.

After the processor has placed the required information on the stack, the bus error exception
vector is read from vector table entry 2 (offset $08) and placed in the program counter. The
processor resumes execution at the address in the vector, which is the first instruction in the
bus error handler routine. Refer to Figure 3-26 for an example bus error timing diagram.

Bus Operation

3-28 MC68307 USER’S MANUAL MOTOROLA

Figure 3-26. Bus Error Timing Diagram

S0 S2 S4 S6
CLK

A23–A0

w w w w S8

AS

LDS/UDS

R/W

DTACK

D15–D0

BERR

HALT
INITIATE BUS ERROR

DETECTION
INITIATE BUS

ERROR STACKING
RESPONSE

FAILUREREAD

(Internal)

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-29

3.4.2 Retrying the Bus Cycle
If the internal bus error signal is asserted during a bus cycle in which HALT is asserted by
an external device, the EC000 core will initiate a retry operation. Figure 3-27 is a timing dia-
gram of the retry operation.

The EC000 core terminates the bus cycle, then puts the data bus in the high-impedance
state. The processor remains in this state until HALT is negated. Then the processor retries
the preceding cycle using the same function codes, address, and data (for a write opera-
tion). BERR should be negated at least one clock cycle before HALT is negated.

NOTES

There is no external connection to BERR; hence, users can not
normally initiate a retry operation. The internal bus error is as-
serted whenever a write protect violation, address decode con-
flict, or hardware watchdog timeout occurs (assuming the
offending condition is enabled in the SCR).

To guarantee that the entire read-modify-write cycle runs cor-
rectly and that the write portion of the operation is performed
without negating the address strobe, the processor does not re-
try a read-modify-write cycle. When BERR is asserted during a
read-modify-write operation, a bus error operation is performed
whether or not HALT is asserted.

Figure 3-27. Retry Bus Cycle Timing Diagram

S0 S2 S4 S6
CLK

A23–A1

S8 S0 S2 S4 S6

AS

LDS/UDS

R/W

DTACK

D15–D0

BERR
(INTERNAL)

HALT

1 CLOCK PERIOD≥

READ HALT RETRY

Bus Operation

3-30 MC68307 USER’S MANUAL MOTOROLA

3.4.3 Halt Operation
HALT performs a halt/run/single-step operation. When HALT is asserted by an external
device, the processor halts and remains halted as long as the signal remains asserted, as
shown in Figure 3-28.

While the processor is halted, bus arbitration is performed as usual.

NOTE

If HALT is asserted while a RESET instruction is being executed,
the CPU is reset.

The single-step mode is derived from correctly timed transitions of HALT. HALT is negated
to allow the processor to begin a bus cycle, then asserted to enter the halt mode when the
cycle completes. The single-step mode proceeds through a program one bus cycle at a time
for debugging purposes. The halt operation and the hardware trace capability allow tracing
of either bus cycles or instructions one at a time. These capabilities and a software debug-
ging package provide total debugging flexibility.

Figure 3-28. Halt Operation Timing Diagram

S0 S2 S4 S6
CLK

A23–A0

S0 S2 S4 S6

AS

R/W

DTACK

D15–D0

HALT

LDS/UDS

READ HALT READ

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-31

3.4.4 Double Bus Fault
When a bus error exception occurs, the processor begins exception processing by stacking
information on the supervisor stack. If another bus error occurs during exception processing
(i.e., before execution of another instruction begins) the processor halts and asserts HALT.
This is called a double bus fault. Only an external reset operation or a software watchdog
timeout can restart a processor halted due to a double bus fault.

A double bus fault occurs during a reset operation when a bus error occurs while the pro-
cessor is reading the vector table (before the first instruction is executed). The reset opera-
tion is described in the following paragraphs.

3.5 RESET OPERATION
RESET can be asserted externally for the initial processor reset. Subsequently, the signal
can be asserted either externally or internally (executing a RESET instruction). For proper
external reset operation, HALT must also be asserted.

The RESET and HALT bidirectional pins represent the standard M68000 method of reset.
The MC68307 adds a master reset input (RSTIN) which resets the MC68307. RSTIN gen-
erates a RESET, causing external devices in the system to be reset; note that HALT is not
asserted.

At initial power-on, the MC68307’s power-on reset asserts RESET and HALT internally until
VDD reaches a minimum level. They are then held asserted for 32768 EXTAL clocks, to
ensure that the clock source has time to stabilize.

Subsequent assertions of RSTIN also incur a 32768 clock hold after the negating edge,
which equates to 2ms for a 16.667 MHz system clock. Because of this debouncing effect,
this input is often used in preference to RESET and HALT when a reset switch is required.

After the processor is reset, it reads the reset vector table entry (address $00000) and loads
the contents into the supervisor stack pointer (SSP). Next, the processor loads the contents
of address $00004 (vector table entry 1) into the program counter. Then the processor ini-
tializes the interrupt level in the status register to a value of seven. No other register is
affected by the reset sequence. Figure 3-29 shows the timing of the reset operation.

Bus Operation

3-32 MC68307 USER’S MANUAL MOTOROLA

The active-low RESET signal is asserted by the EC000 core when a RESET instruction is
executed. This signal should reset all external devices and internal peripherals (the EC000
core itself is not affected). The processor drives RESET for 124 clock periods. To guarantee
a reset of the core during this time, internal logic will stretch any RESET or HALT assertion
to 132 clocks.

3.6 ASYNCHRONOUS OPERATION
To achieve clock frequency independence at a system level, the bus can be operated in an
asynchronous manner. Asynchronous bus operation uses the bus handshake signals to
control the transfer of data. The handshake signals are AS, UDS, LDS, DTACK, the internal
BERR, and HALT. AS indicates the start of the bus cycle, and UDS and LDS signal valid
data for a write cycle. After placing the requested data on the data bus (read cycle) or latch-
ing the data (write cycle), the slave device (memory or peripheral) or the internal wait-state
generator asserts DTACK to terminate the bus cycle. If no device responds or if the access
is invalid, internal control logic asserts the internal BERR, to abort the cycle. Figure 3-31
shows the use of the bus handshake signals in a fully asynchronous read cycle. Figure 3-
30 shows a fully asynchronous write cycle.

In the asynchronous mode, the accessed device operates independently of the frequency
and phase of the system clock. For example, the MC68681 dual universal asynchronous
receiver/transmitter (DUART) does not require any clock-related information from the bus
master during a bus transfer. Asynchronous devices are designed to operate correctly with
processors at any clock frequency when relevant timing requirements are observed.

A device can use a clock at the same frequency as the system clock, but without a defined
phase relationship to the system clock. This mode of operation is pseudo-asynchronous; it

Figure 3-29. Power-On Reset Operation Timing Diagram

T 4 CLOCKS

2 3 4 5 6

NOTES:
 1. Internal start-up time
 2. SSP high read in here
 3. SSP low read in here

4. PC High read in here
5. PC Low read in here
6. First instruction fetched here

Bus State Unknown:

All Control Signals Inactive.
 Data Bus in Read Mode:

CLK

+ 3 VOLTS

VDD

RESET

HALT

BUS SIGNALS

<

T > 32768 CLOCKS

1

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-33

increases performance by observing timing parameters related to the system clock fre-
quency without being completely synchronous with that clock. A memory array designed to
operate with a particular frequency processor but not driven by the processor clock is a com-
mon example of a pseudo-asynchronous device.

The designer of a fully asynchronous system can make no assumptions about address
setup time, which could be used to improve performance. With the system clock frequency
known, the slave device can be designed to decode the address bus before recognizing an
address strobe. Parameter #11 (refer to Section 11.7 AC Electrical Specifications—Read
and Write Cycles (VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH)
(see Figure 11-3 and Figure 11-4)) specifies the minimum time before address strobe dur-
ing which the address is valid.

In a pseudo-asynchronous system, timing specifications allow DTACK to be asserted for a
read cycle before the data from a slave device is valid. The length of time that DTACK may
precede data is specified as parameter #31. This parameter must be met to ensure the valid-
ity of the data latched into the processor. No maximum time is specified from the assertion
of AS to the assertion of DTACK. During this unlimited time, the processor inserts wait
cycles in one-clock-period increments until DTACK is recognized. Figure 3-33 shows the
important timing parameters for a pseudo-asynchronous read cycle.

During a write cycle, after the processor asserts AS but before driving the data bus, the pro-
cessor drives R/W low. Parameter #55 specifies the minimum time between the transition

Figure 3-30. Fully Asynchronous Write Cycle

Figure 3-31. Fully Asynchronous Read Cycle

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

AS

R/W

DTACK

UDS/LDS

DATA

ADDRADDR

AS

R/W

UDS/LDS

DATA

DTACK

Bus Operation

3-34 MC68307 USER’S MANUAL MOTOROLA

of R/W and the driving of the data bus, which is effectively the maximum turnoff time for any
device driving the data bus.

After the processor places valid data on the bus, it asserts the data strobe signal(s). A data
setup time, similar to the address setup time previously discussed, can be used to improve
performance. Parameter #26 is the minimum time a slave device can accept valid data
before recognizing a data strobe. The slave device asserts DTACK after it accepts the data.
Parameter #25 is the minimum time after negation of the strobes during which the valid data
remains on the address bus. Parameter #28 is the maximum time between the negation of
the strobes by the processor and the negation of DTACK by the slave device. If DTACK
remains asserted past the time specified by parameter #28, the processor may recognize it
as being asserted early in the next bus cycle and may terminate that cycle prematurely. Fig-
ure 3-33 shows the important timing specifications for a pseudo-asynchronous write cycle.

Figure 3-32. Pseudo-Asynchronous Read Cycle

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

11

17

A

31

28

29

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

Bus Operation

MOTOROLA MC68307 USER’S MANUAL 3-35

Figure 3-33. Pseudo-Asynchronous Write Cycle

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

11

55

22

26
28

29

20A

C

ADDR

AS

R/W

UDS/LDS

DATA

DTACK

Bus Operation

3-36 MC68307 USER’S MANUAL MOTOROLA

3.7 SYNCHRONOUS OPERATION
In some systems, external devices use the system clock to generate DTACK and other
asynchronous input signals. This synchronous operation provides a closely coupled design
with maximum performance, appropriate for frequently accessed parts of the system. For
example, memory can operate in the synchronous mode, but peripheral devices operate
asynchronously. For a synchronous device, the designer uses explicit timing information
shown in Section 11.7 AC Electrical Specifications—Read and Write Cycles (VCC =
5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (see Figure 11-3 and Figure
11-4). These specifications define the state of all bus signals relative to a specific state of
the processor clock.

The standard M68000 bus cycle consists of four clock periods (eight bus cycle states) and,
optionally, an integral number of clock cycles inserted as wait states. Wait states are
inserted as required to allow sufficient response time for the external device. The following
state-by-state description of the bus cycle differs from those descriptions in Section 3.1.2
16-Bit M68000 Bus Read Cycle and Section 3.1.3 16-Bit M68000 Bus Write Cycle by
including information about the important timing parameters that apply in the bus cycle
states.

STATE 0 The bus cycle starts in S0, during which the clock is high. At the rising edge
of S0, the function code for the access is driven externally. Parameter #6A
defines the delay from this rising edge until the function codes are valid.
Also, the R/W signal is driven high; parameter #18 defines the delay from
the same rising edge to the transition of R/W. The minimum value for
parameter #18 applies to a read cycle preceded by a write cycle; this value
is the maximum hold time for a low on R/W beyond the initiation of the read
cycle.

STATE 1 Entering S1, a low period of the clock, the address of the accessed device is
driven externally with an assertion delay defined by parameter #6.

STATE 2 On the rising edge of S2, a high period of the clock, AS is asserted. During a
read cycle, UDS and/or LDS is also asserted at this time. Parameter #9
defines the assertion delay for these signals. For a write cycle, the R/W signal
is driven low with a delay defined by parameter #20.

STATE 3 On the falling edge of the clock entering S3, the data bus is driven out of the
high-impedance state with the data being written to the accessed device (in a
write cycle). Parameter #23 specifies the data assertion delay. In a read cycle,
no signal is altered in S3.

STATE 4 Entering the high clock period of S4, UDS/LDS is asserted (during a write
cycle) on the rising edge of the clock. As in S2 for a read cycle, parameter #9
defines the assertion delay from the rising edge of S4 for UDS/LDS. In a read
cycle, no signal is altered by the processor during S4.

Until the falling edge of the clock at the end of S4 (beginning of S5), no
response from any external device except RESET is acknowledged by the

Bus Operation

3-37 MC68307 USER’S MANUAL MOTOROLA

processor. If DTACK is asserted before the falling edge of S4 and satisfies the
input setup time defined by parameter #47, the processor enters S5 and the
bus cycle continues. If DTACK is asserted but without meeting the setup time
defined by parameter #47, the processor may recognize the signal and
continue the bus cycle; the result is unpredictable. If DTACK is not asserted
before the next rise of clock, the bus cycle remains in S4, and wait states
(complete clock cycles) are inserted until one of the bus cycle terminations is
met. DTACK is normally generated by the internal wait-state generator.

STATE 5 S5 is a low period of the clock, during which the processor does not alter any
signal.

STATE 6 S6 is a high period of the clock, during which data for a read operation is set
up relative to the falling edge (entering S7). Parameter #27 defines the
minimum period by which the data must precede the falling edge. For a write
operation, the processor changes no signal during S6.

STATE 7 On the falling edge of the clock entering S7, the processor latches data and
negates AS and UDS/LDS during a read cycle. The hold time for these
strobes from this falling edge is specified by parameter #12. The hold time for
data relative to the negation of AS and UDS/LDS is specified by parameter
#29. For a write cycle, only AS and UDS/LDS, are negated; timing parameter
#12 also applies.

On the rising edge of the clock, at the end of S7 (which may be the start of S0
for the next bus cycle), the processor places the address bus in the high-
impedance state. During a write cycle, the processor also places the data bus
in the high-impedance state and drives R/W high. External logic circuitry
should respond to the negation of the AS and UDS/LDS by negating DTACK,
if it was asserted externally. Parameter #28 is the hold time for DTACK.

Figure 3-34 shows a synchronous read cycle and the important timing parameters that
apply. The timing for a synchronous read cycle, including relevant timing parameters, is
shown in Figure 3-35.

A key consideration when designing in a synchronous environment is the timing for the
assertion of DTACK by an external device. To properly use external inputs, the processor
must synchronize these signals to the internal clock. The processor must sample the exter-
nal signal, which has no defined phase relationship to the CPU clock, which may be chang-
ing at sampling time, and must determine whether to consider the signal high or low during
the succeeding clock period. Successful synchronization requires that the internal machine
receives a valid logic level, whether the input is high, low, or in transition.

Parameter #47 of Section 11.7 AC Electrical Specifications—Read and Write Cycles
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (see Figure 11-3 and
Figure 11-4) is the asynchronous input setup time. Signals that meet parameter #47 are
guaranteed to be recognized at the next falling edge of the system clock. However, signals
that do not meet parameter #47 are not guaranteed to be recognized. In addition, if DTACK

Bus Operation

3-38 MC68307 USER’S MANUAL MOTOROLA

is recognized on a falling edge, valid data is latched into the processor (during a read cycle)
on the next falling edge, provided the data meets the setup time required (parameter #27).
When parameter #27 has been met, parameter #31 may be ignored. If DTACK is asserted
with the required setup time before the falling edge of S4, no wait states are incurred, and
the bus cycle runs at its maximum speed of four clock periods.

Figure 3-34. Synchronous Read Cycle

Figure 3-35. Synchronous Write Cycle

ADDR

UDS/LDS

R/W

AS

CLOCK

DTACK

6

9

S0 S1 S2 S3 S4 S5 S6 S7 S0

18

47

27

DATA

ADDR

AS

UDS/LDS

R/W

DATA

DTACK

CLOCK

ADDR

UDS/LDS

R/W

AS

CLOCK

DTACK

6

S0 S1 S2 S3 S4 S5 S6 S7 S0

18

DATA

23 53

47

9

ADDR

AS

UDS/LDS

R/W

DATA

DTACK

CLOCK

MOTOROLA

MC68307 USER’S MANUAL

4-1

SECTION 4
EC000 CORE PROCESSOR

The EC000 core has a 16-bit data bus and 32-bit address bus while the full architecture pro-
vides for 32-bit address and data register operations.

4.1 FEATURES

The following resources are available to the EC000 core:

• Eight 32-Bit Address Registers

• Eight 32-Bit Data Registers

• 56 Powerful Instructions

• Operations on Five Main Data Types

• Memory-Mapped Input/Output (I/O)

• 14 Addressing Modes

4.2 PROCESSING STATES

The processor is always in one of three states: normal processing, exception processing, or
halted. It is in the normal processing state when executing instructions, fetching instructions
and operands, and storing instruction results.

Exception processing is the transition from program processing to system, interrupt, and
exception handling. Exception processing includes fetching the exception vector, stacking
operations, and refilling the instruction pipe after an exception. The processor enters excep-
tion processing when an exceptional internal condition arises such as tracing an instruction,
an instruction results in a trap, or executing specific instructions. External conditions, such
as interrupts and access errors, also cause exceptions. Exception processing ends when
the first instruction of the exception handler begins to execute.

The processor halts when it receives an access error or generates an address error while in
the exception processing state. For example, if during exception processing of one access
error another access error occurs, the processor is unable to complete the transition to nor-
mal processing and cannot save the internal state of the machine. The processor assumes
that the system is not operational and halts. Only an external reset can restart a halted pro-
cessor. Note that when the processor executes a STOP instruction, it is in a special type of
normal processing state, one without bus cycles. The processor stops, but it does not halt.

Thi d t t d ith F M k 4 0 4

EC000 Core Processor

4-2

MC68307 USER’S MANUAL

MOTOROLA

4.3 PROGRAMMING MODEL

The EC000 core executes instructions in one of two modes—user mode or supervisor
mode. The user mode provides the execution environment for the majority of application
programs. The supervisor mode, which allows some additional instructions and privileges,
is used by the operating system and other system software.

To provide upward compatibility of code written for a specific implementation of the EC000
core, the user programmer's model, illustrated in Figure 4-1, is common to all implementa-
tions. In the user programmer's model, the EC000 core offers 16, 32-bit, general-purpose
registers (D7–D0, A7–A0), a 32-bit program counter, and an 8-bit condition code register.
The first eight registers (D7–D0) are used as data registers for byte (8-bit), word (16-bit), and
long-word (32-bit) operations. The second set of seven registers (A6–A0) and the user stack
pointer (USP) can be used as software stack pointers and base address registers. In addi-
tion, the address registers can be used for word and long-word operations. All of the 16 reg-
isters can be used as index registers. The supervisor programmer's model consists of
supplementary registers used in the supervisor mode.

The status register, illustrated in Figure 4-2, contains the interrupt mask (eight levels avail-
able) and the following condition codes: overflow (V), zero (Z), negative (N), carry (C), and
extend (X). Additional status bits indicate that the processor is in the trace (T) mode and/or
in the supervisor (S) state.

Figure 4-1. Programming Model

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0

31 0

31 0

SSP
SR(CCR)

 PROGRAM COUNTER
CONDITION CODE REGISTER

SUPERVISOR STACK POINTER
STATUS REGISTER (CCR IS ALSO SHOWN IN
THE USER PROGRAMMING MODEL)

USER STACK POINTER

DATA REGISTERS

ADDRESS REGISTERS

EC000 Core Processor

MOTOROLA

MC68307 USER’S MANUAL

4-3

4.3.1 Data Format Summary

The processor supports the basic data formats of the M68000 family. The instruction set
supports operations on other data formats such as memory addresses.

The operand data formats supported by the integer unit (IU) are the standard twos-
complement data formats defined in the M68000 family architecture. Registers, memory, or
instructions themselves can contain IU operands. The operand size for each instruction is
either explicitly encoded in the instruction or implicitly defined by the instruction operation.
Table 4-1 lists the data formats for the processor. Refer to M68000PM/AD,

M68000 Family
Programmer’s Reference Manual,

 for details on data format organization in registers and
memory.

4.3.2 Addressing Capabilities Summary

The EC000 core supports the basic addressing modes of the M68000 family. The register
indirect addressing modes support postincrement, predecrement, offset, and indexing,
which are particularly useful for handling data structures common to sophisticated applica-
tions and high-level languages. The program counter indirect mode also has indexing and
offset capabilities. This addressing mode is typically required to support position-indepen-
dent software. Besides these addressing modes, the processor provides index sizing and
scaling features.

Figure 4-2. Status Register

Table 4-1. Processor Data Formats

Operand Data Format Size Notes

Bit 1 Bit —
Binary-Coded Decimal (BCD) 8 Bits Packed: 2 Digits/Byte; Unpacked: 1 Digit/Byte
Byte Integer 8 Bits —
Word Integer 16 Bits —
Long-Word Integer 32 Bits —

T 0 S 0 0 I2 I1 I0 X N Z V C0 0 0

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

TRACE MODE

INTERRUPT
PRIORITY MASK

SUPERVISOR/USER STATE

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

15 14 13 12 11 10 9 8 7 56 4 3 2 1 0

EC000 Core Processor

4-4

MC68307 USER’S MANUAL

MOTOROLA

An instruction’s addressing mode can specify the value of an operand, a register containing
the operand, or how to derive the effective address of an operand in memory. Each address-
ing mode has an assembler syntax. Some instructions imply the addressing mode for an
operand. These instructions include the appropriate fields for operands that use only one
addressing mode. Table 4-2 lists a summary of the effective addressing modes for the pro-
cessor. Refer to M68000PM/AD,

M68000 Family Programmer’s Reference Manual,

 for
details on instruction format and addressing modes.

4.3.3 Notation Conventions

Table 4-3 lists the notation conventions used in this manual unless otherwise specified.

Table 4-2. Effective Addressing Modes

Addressing Modes Syntax

Register Direct Addressing
Data Register Direct
Address Register Direct

EA = Dn
EA = An

Absolute Data Addressing
Absolute Short
Absolute Long

EA = (Next Word)
EA = (Next Two Words)

Program Counter Relative Addressing
Relative with Offset
Relative with Index and Offset

EA = (PC)+d

16

EA = (PC)+d

8

Register Indirect Addressing
Register Indirect
Postincrement Register Indirect
Predecrement Register Indirect
Register Indirect with Offset
Indexed Register Indirect with Offset

EA = (An)
EA = (An), An ¨ An+N
An ¨ An–N, EA = (An)
EA = (An)+d

16

EA = (An)+(Xn)+d

8

Immediate Data Addressing
Immediate
Quick Immediate

DATA = Next Word(s)
Inherent Data

Implied Addressing
Implied Register EA = SR, USP, SSP, PC

Table 4-3. Notation Conventions

Single and Double Operand Operations

+ Arithmetic addition or postincrement indicator.
– Arithmetic subtraction or predecrement indicator.

×

Arithmetic multiplication.

÷

Arithmetic division or conjunction symbol.
~ Invert; operand is logically complemented.

Λ

Logical AND
V Logical OR

≈

Logical exclusive OR

⇒

Source operand is moved to destination operand.

⇔

Two operands are exchanged.
<op> Any double-operand operation.

<operand>tested Operand is compared to zero and the condition codes are set appropriately.
sign-extended All bits of the upper portion are made equal to the high-order bit of the lower portion.

Other Operations

TRAP Equivalent to Format

÷

 Offset Word

⇒

 (SSP); SSP – 2

⇒

 SSP; PC

⇒

 (SSP); SSP – 4

⇒

 SSP;
SR

⇒

 (SSP); SSP – 2

⇒

 SSP; (Vector)

⇒

 PC
STOP Enter the stopped state, waiting for interrupts.

<operand>10 The operand is BCD; operations are performed in decimal.

EC000 Core Processor

MOTOROLA

MC68307 USER’S MANUAL

4-5

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false and
the optional “else” clause is present, the operations after “else” are performed. If the condition is
false and else is omitted, the instruction performs no operation. Refer to the Bcc instruction de-
scription as an example.

Register Specification

An Any Address Register n (example: A3 is address register 3)
Ax, Ay Source and destination address registers, respectively.

BR Base Register—An, PC, or suppressed.
Dc Data register D7–D0, used during compare.

Dh, Dl Data registers high- or low-order 32 bits of product.
Dn Any Data Register n (example: D5 is data register 5)

Dr, Dq Data register’s remainder or quotient of divide.
Du Data register D7–D0, used during update.

Dx, Dy Source and destination data registers, respectively.
Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.
Xn Index Register—An, Dn, or suppressed.

Data Format And Type
<fmt> Operand Data Format: Byte (B), Word (W), Long (L), or Packed (P).

B, W, L Specifies a signed integer data type (twos complement) of byte, word, or long word.

k A twos complement signed integer (–64 to +17) specifying a number’s format to be stored in the
packed decimal format.

Subfields and Qualifiers

#<xxx> or #<data> Immediate data following the instruction word(s).
() Identifies an indirect address in a register.
[] Identifies an indirect address in memory.
bd Base Displacement
dn Displacement Value, n Bits Wide (example: d16 is a 16-bit displacement).

LSB Least Significant Bit
LSW Least Significant Word
MSB Most Significant Bit
MSW Most Significant Word

od Outer Displacement
SCALE A scale factor (1, 2, 4, or 8, for no-word, word, long-word, or quad-word scaling, respectively).
SIZE The index register’s size (W for word, L for long word).

{offset:width} Bit field selection.

Register Names

CCR Condition Code Register (lower byte of status register)
PC Program Counter
SR Status Register

Register Codes

* General Case.
C Carry Bit in CCR
cc Condition Codes from CCR
FC Function Code
N Negative Bit in CCR
U Undefined, Reserved for Motorola Use.
V Overflow Bit in CCR
X Extend Bit in CCR
Z Zero Bit in CCR
— Not Affected or Applicable.

Table 4-3. Notation Conventions (Continued)

EC000 Core Processor

4-6

MC68307 USER’S MANUAL

MOTOROLA

4.4 EC000 CORE INSTRUCTION SET OVERVIEW

Design of the instruction set gives special emphasis to support of structured, high-level lan-
guages and to ease of assembly language programming. Each instruction, with a few excep-
tions, operates on bytes, words, and long words, and most instructions can use any of the
14 addressing modes. Over 1000 useful instructions are provided by combining instruction
types, data types, and addressing modes. These instructions include signed and unsigned
multiply and divide, “quick” arithmetic operations, BCD arithmetic, and expanded operations
(through traps). Additionally, the highly symmetric, proprietary microcoded structure of the
instruction set provides a sound, flexible base for the future.

The EC000 core instruction set is listed in Table 4-4. For detailed information on the EC000
core instruction set, refer to M68000PM/AD,

M68000 Family Programmer's Reference Man-
ual

.

Stack Pointers

SP Active Stack Pointer
SSP Supervisor Stack Pointer
USP User Stack Pointer

Miscellaneous

<ea> Effective Address
<label> Assemble Program Label
<list> List of registers, for example D3–D0.

LB Lower Bound
m Bit m of an Operand

m–n Bits m through n of Operand
UB Upper Bound

Table 4-4. EC000 Core Instruction Set Summary

Opcode Operation Syntax

ABCD BCD Source + BCD Destination + X

⇒

 Destination ABCD Dy,Dx
ABCD –(Ay),–(Ax)

ADD Source + Destination

⇒

 Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination

⇒

 Destination ADDA <ea>,An
ADDI Immediate Data + Destination

⇒

 Destination ADDI #<data>,<ea>
ADDQ Immediate Data + Destination

⇒

 Destination ADDQ #<data>,<ea>

ADDX Source + Destination + X

⇒

 Destination ADDX Dy,Dx
ADDX –(Ay),–(Ax)

AND Source

Λ

 Destination

⇒

 Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data

Λ

 Destination

⇒

 Destination ANDI #<data>,<ea>
ANDI to CCR Source

Λ

 CCR

⇒

 CCR ANDI #<data>,CCR

ANDI to SR
If supervisor state

then Source

Λ

 SR

⇒

 SR
else TRAP

ANDI #<data>,SR

ASL, ASR Destination Shifted by count

⇒

 Destination
ASd Dx,Dy

1

ASd #<data>,Dy

1

ASd <ea>

1

Bcc If condition true
then PC + dn

⇒

 PC Bcc <label>

Table 4-3. Notation Conventions (Continued)

EC000 Core Processor

MOTOROLA

MC68307 USER’S MANUAL

4-7

BCHG
~(bit number of Destination)

⇒

 Z;
~(bit number of Destination)

⇒

 (bit number) of Des-
tination

BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR ~(bit number of Destination)

⇒

 Z;
0

⇒

 bit number of Destination
BCLR Dn,<ea>
BCLR #<data>,<ea>

BRA PC + dn

⇒

 PC BRA <label>

BSET ~(bit number of Destination)

⇒

 Z;
1

⇒

 bit number of Destination
BSET Dn,<ea>
BSET #<data>,<ea>

BSR SP – 4

⇒

 SP; PC

⇒

 (SP); PC + dn

⇒

 PC BSR <label>

BTST –(bit number of Destination)

⇒

 Z; BTST Dn,<ea>
BTST #<data>,<ea>

CHK If Dn < 0 or Dn > Source
then TRAP CHK <ea>,Dn

CLR 0

⇒

 Destination CLR <ea>
CMP Destination – Source

⇒

cc CMP <ea>,Dn
CMPA Destination – Source CMPA <ea>,An
CMPI Destination – Immediate Data CMPI #<data>,<ea>
CMPM Destination – Source

⇒

 cc CMPM (Ay)+,(Ax)+

DBcc
If condition false

then (Dn–1

⇒

 Dn;
If Dn

≠

 –1
then PC + dn

⇒

 PC)
DBcc Dn,<label>

DIVS Destination

÷

 Source

⇒

 Destination
DIVS.W <ea>,Dn 32

÷

 16

⇒

 16r:16q
DIVS.L <ea>,Dq 32

÷

 32

⇒

 32q
DIVS.L <ea>,Dr:Dq 64

÷

 32

⇒

 32r:32q

DIVU Destination

÷

 Source

⇒

 Destination
DIVU.W <ea>,Dn 32

÷

 16

⇒

 16r:16q
DIVU.L <ea>,Dq 32

÷

 32

⇒

 32q
DIVU.L <ea>,Dr:Dq 64

÷

 32 ⇒ 32r:32q
EOR Source ⊕ Destination ⇒ Destination EOR Dn,<ea>
EORI Immediate Data ⊕ Destination ⇒ Destination EORI #<data>,<ea>
EORI to CCR Source ⊕ CCR ⇒ CCR EORI #<data>,CCR

EORI to SR
If supervisor state

then Source ⊕ SR ⇒ SR
else TRAP

EORI #<data>,SR

EXG Rx ⇔ Ry
EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT Destination Sign – Extended ⇒ Destination EXT.W Dn extend byte to word
EXT.L Dn extend word to long word

JMP Destination Address ⇒ PC JMP <ea>

JSR SP – 4 ⇒ SP; PC ⇒ (SP)
Destination Address ⇒ PC JSR <ea>

LEA <ea> ⇒ An LEA <ea>,An

LINK SP – 4 ⇒ SP; An ⇒ (SP)
SP ⇒ An, SP+d ⇒ SP LINK An,dn

LSL, LSR Destination Shifted by count ⇒ Destination
LSd Dx,Dy1

LSd #<data>,Dy1

LSd <ea>1

MOVE Source ⇒ Destination MOVE <ea>,<ea>

MOVE from SR
If supervisor state

then SR ⇒ Destination
else TRAP

MOVE SR,<ea>

MOVE to CCR Source ⇒ CCR MOVE <ea>,CCR

MOVE to SR
If supervisor state

then Source ⇒ SR
else TRAP

MOVE <ea>,SR

MOVE USP
If supervisor state

then USP ⇒ An or An ⇒ USP
else TRAP

MOVE USP,An
MOVE An,USP

Table 4-4. EC000 Core Instruction Set Summary (Continued)

EC000 Core Processor

4-8 MC68307 USER’S MANUAL MOTOROLA

MOVEA Source ⇒ Destination MOVEA <ea>,An

MOVEM Registers ⇒ Destination
Source ⇒ Registers

MOVEM <list>,<ea>2

MOVEM <ea>,<list>2

MOVEP Source ⇒ Destination
MOVEP Dx,(dn,Ay)
MOVEP (dn,Ay),Dx

MOVEQ Immediate Data ⇒ Destination MOVEQ #<data>,Dn

MULS Source × Destination ⇒ Destination
MULS.W <ea>,Dn 16 × 16 ⇒ 32
MULS.L <ea>,Dl 32 × 32 ⇒ 32
MULS.L <ea>,Dh–Dl 32 × 32 ⇒ 64

MULU Source × Destination ⇒ Destination
MULU.W <ea>,Dn 16 × 16 ⇒ 32
MULU.L <ea>,Dl 32 × 32 ⇒ 32
MULU.L <ea>,Dh–Dl 32 × 32 ⇒ 64

NBCD 0 – (Destination10) – X ⇒ Destination NBCD <ea>

NEG 0 – (Destination) ⇒ Destination NEG <ea>
NEGX 0 – (Destination) – X ⇒ Destination NEGX <ea>
NOP None NOP
NOT ~ Destination ⇒ Destination NOT <ea>

OR Source V Destination ⇒ Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination ⇒ Destination ORI #<data>,<ea>
ORI to CCR Source V CCR ⇒ CCR ORI #<data>,CCR

ORI to SR
If supervisor state

then Source V SR ⇒ SR
else TRAP

ORI #<data>,SR

PEA SP – 4 ⇒ SP; <ea> ⇒ (SP) PEA <ea>

RESET
If supervisor state

then Assert RSTO Line
else TRAP

RESET

ROL, ROR Destination Rotated by count ⇒ Destination ROd Rx,Dy1

ROd #<data>,Dy1

ROXL, ROXR Destination Rotated with X by count ⇒ Destination
ROXd Dx,Dy1

ROXd #<data>,Dy1

ROXd <ea>1

RTE

If supervisor state
then (SP) ⇒ SR; SP + 2 ⇒ SP; (SP) ⇒ PC;
SP + 4 ⇒ SP; restore state and deallocate
stack according to (SP)

else TRAP

RTE

RTR (SP) ⇒ CCR; SP + 2 ⇒ SP;
(SP) ⇒ PC; SP + 4 ⇒ SP RTR

RTS (SP) ⇒ PC; SP + 4 ⇒ SP RTS

SBCD Destination10 – Source10 – X ⇒ Destination SBCD Dx,Dy
SBCD –(Ax),–(Ay)

Scc
If condition true

then 1s ⇒ Destination
else 0s ⇒ Destination

Scc <ea>

STOP
If supervisor state

then Immediate Data ⇒ SR; STOP
else TRAP

STOP #<data>

SUB Destination – Source ⇒ Destination SUB <ea>,Dn
SUB Dn,<ea>

SUBA Destination – Source ⇒ Destination SUBA <ea>,An
SUBI Destination – Immediate Data ⇒ Destination SUBI #<data>,<ea>
SUBQ Destination – Immediate Data ⇒ Destination SUBQ #<data>,<ea>

SUBX Destination – Source – X ⇒ Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register 31–16 ⇔ Register 15–0 SWAP Dn

Table 4-4. EC000 Core Instruction Set Summary (Continued)

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-9

4.5 EXCEPTION PROCESSING
This section describes the processing for each type of exception, exception priorities, the
return from an exception, and bus fault recovery. This section also describes the formats of
the exception stack frames.

Exception processing is the activity performed by the processor in preparing to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include the execution of the routine itself. Exception processing is the
transition from the normal processing of a program to the processing required for any special
internal or external condition that preempts normal processing. External conditions that
cause exceptions are interrupts from external devices, bus errors, and resets. Internal
conditions that cause exceptions are instructions, address errors, and tracing. For example,
the TRAP, TRAPV, CHK, RTE, and DIV instructions can generate exceptions as part of their
normal execution. In addition, illegal instructions and privilege violations cause exceptions.
Exception processing uses an exception vector table and an exception stack frame.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition, stacking, etc.) are not guaranteed
to occur in the order in which they are described in this section. Figure 4-4 illustrates a gen-
eral flowchart for the steps taken by the processor during exception processing.

During the first step, the processor makes an internal copy of the status register, S-bit, T-
bits, I-bits (SR). Then the processor changes to the supervisor mode by setting the S-bit and
inhibits tracing of the exception handler by clearing the trace enable (T) bit in the SR. For
the reset and interrupt exceptions, the processor also updates the interrupt priority mask in
the SR

During the second step, the processor determines the vector number for the exception. For
interrupts, the processor performs an interrupt acknowledge bus cycle to obtain the vector
number. For all other exceptions, internal logic provides the vector number. This vector num-
ber is used in the last step to calculate the address of the exception vector. Throughout this
section, vector numbers are given in decimal notation.

The third step is to save the current processor contents for all exceptions other than reset
exception, which does not stack information. The processor creates an exception stack
frame on the active supervisor stack and fills it with information appropriate for the type of

TAS Destination Tested ⇒ Condition Codes;
1 ⇒ bit 7 of Destination TAS <ea>

TRAP
SSP – 2 ⇒ SSP; Format ÷ Offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP); SSP – 2 ⇒ SSP;
SR ⇒ (SSP); Vector Address ⇒ PC

TRAP #<vector>

TRAPV If V
then TRAP TRAPV

TST Destination Tested ⇒ Condition Codes TST <ea>
UNLK An ⇒ SP; (SP) ⇒ An; SP + 4 ⇒ SP UNLK An
NOTES:
1. d is direction, left or right.
2. List refers to register.

Table 4-4. EC000 Core Instruction Set Summary (Continued)

EC000 Core Processor

4-10 MC68307 USER’S MANUAL MOTOROLA

exception. Other information can also be stacked, depending on which exception is being
processed and the state of the processor prior to the exception. Figure 4-3 illustrates the
general form of the exception stack frame.

The last step initiates execution of the exception handler. The new program counter value
is fetched from the exception vector. The processor then resumes instruction execution. The
instruction at the address in the exception vector is fetched, and normal instruction decoding
and execution is started.

Figure 4-4 shows a general exception processiong flowchart.

Figure 4-3. General Form of Exception Stack Frame

EVEN BYTE ODD BYTE

 PROGRAM COUNTER LOW

 PROGRAM COUNTER HIGH

SSP

15 8 7 0
015

STATUS REGISTER

HIGHER
ADDRESS

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-11

Figure 4-4. General Exception Processing Flowchart

EXIT

FETCH VECTOR
NUMBER

(DOUBLE BUS FAULT)

EXECUTE EXCEPTION
HANDLER

EXIT

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

SAVE CONTENTS
TO STACK FRAME

(SEE NOTE)

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE
BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

OTHERWISE

SAVE INTERNAL
COPY OF SR

S 1
T 0

(SEE NOTE)

NOTE: These blocks vary for reset and interrupt exceptions.

➧
➧

EC000 Core Processor

4-12 MC68307 USER’S MANUAL MOTOROLA

4.5.1 Exception Vectors
An exception vector is a memory location from which the processor fetches the address of
a routine to handle an exception. Each exception type requires a handler routine and a
unique vector. All exception vectors are two words in length (see Figure 4-5), except for the
reset vector, which is four words long. All exception vectors reside in the supervisor data
space, except for the reset vector, which is in the supervisor program space. A vector num-
ber is an 8-bit number that is multiplied by four to obtain the offset of an exception vector.
Vector numbers are generated internally or externally, depending on the cause of the excep-
tion. For interrupts, during the interrupt acknowledge bus cycle, a peripheral provides an 8-
bit vector number (see Figure 4-6) to the processor on data bus lines D7–D0.

The processor forms the vector offset by left-shifting the vector number two bit positions and
zero-filling the upper-order bits to obtain a 32-bit long-word vector offset. In the EC000 core
this offset is used as the absolute address to obtain the exception vector itself, which is illus-
trated in Figure 4-6.

The actual address on the address bus is truncated to the number of address bits available
on the bus of the particular implementation of the M68000 architecture. In the EC000 core,
this is 24 address bits. The memory map for exception vectors is shown in Table 4-5.

The vector table is 512 words long (1024 bytes), starting at address 0 (decimal) and pro-
ceeding through address 1023 (decimal). The vector table provides 255 unique vectors,
some of which are reserved for trap and other system function vectors. Of the 255, 192 are
reserved for user interrupt vectors. However, the first 64 entries are not protected, so user
interrupt vectors may overlap at the discretion of the systems designer.

4.6 PROCESSING OF SPECIFIC EXCEPTIONS
The exceptions are classified according to their sources, and each type is processed differ-
ently. The following paragraphs describe in detail the types of exceptions and the processing
of each type. The exception vector assignments are listed in Table 4-5.

Figure 4-5. Exception Vector Format

Figure 4-6. Address Translated from 8-Bit Vector Number

NEW PROGRAM COUNTER (HIGH)

NEW PROGRAM COUNTER (LOW)

A1=0

A1=1

WORD 0

WORD 1

EVEN BYTE (A0=0) EVEN BYTE (A0=1)

ALL ZEROES V7 V6 V5 V4 V3 V2 V1 V0

A23 A0A10

0 0

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-13

Table 4-5. Exception Vector Assignments
Vector

Number
Address
(Decimal)

Address
(Hex)

Address
Space Vector Assignment

0 0 000 SP Reset: Initial SSP3

1 4 004 SP Reset: Initial PC3

2 8 008 SD Bus Error
3 12 00C SD Address Error
4 16 010 SD Illegal Instruction
5 20 014 SD Zero Divide
6 24 018 SD CHK Instruction
7 28 01C SD TRAPV Instruction
8 32 020 SD Privilege Violation
9 36 024 SD Trace
10 40 028 SD Line 1010 Emulator
11 44 02C SD Line 1111 Emulator

121 48 030 SD (Unassigned, Reserved)

131 52 034 SD (Unassigned, Reserved)

141 56 038 SD (Unassigned, Reserved)

15 60 03C SD Uninitialized Interrupt Vector6

16–231 64–92 040–05C SD (Unassigned, Reserved)

24 96 060 SD Spurious Interrupt by BERR4

25 100 064 SD (Unassigned, Reserved)
26 104 068 SD (Unassigned, Reserved)
27 108 06C SD (Unassigned, Reserved)
28 112 070 SD (Unassigned, Reserved)
29 116 074 SD (Unassigned, Reserved)
30 120 078 SD (Unassigned, Reserved)
31 124 07C SD (Unassigned, Reserved)

32–47 128–188 080–0BC SD TRAP Instruction Vectors5

48–591 192–236 0C0–0EE SD (Unassigned, Reserved)

60–631 240–252 0F0–0FC SD Module Base Addr & System Configuration Regs

64–255 256–1020 100–3FC SD User Interrupt Vectors
NOTES:
1. In this table, SP = Supervisor Program Space, SD = Supervisor Data Space.
2. Vector numbers 12–14, 16–23, and 48–63 are reserved for future enhancements by Motorola (with

vectors 60–63 being used by the MC68307 SIM). No user peripheral devices should be assigned these
numbers.

3. Unlike the other vectors which only require two words, reset vector (0) requires four words and is located
in the supervisor program space.

4. The EC000 core spurious interrupt vector is taken when there is no bus error indication during interrupt
processing. This feature is not used by the MC68307. The MC68307 handles this condition separately; it
outputs the spurious interrupt vector from the interrupt controller when it cannot provide an interrupt
source.

5. TRAP #n uses vector number 32+n.
6. Vector number 15 is never used in the MC68307. The interrupt controller ensures that there is never an

uninitialized interrupt.

EC000 Core Processor

4-14 MC68307 USER’S MANUAL MOTOROLA

4.6.1 Reset Exception
The reset exception corresponds to the highest exception level. The processing of the reset
exception is performed for system initiation and recovery from catastrophic failure. Any pro-
cessing in progress at the time of the reset is aborted and cannot be recovered. The proces-
sor is forced into the supervisor state, and the trace state is forced off. The interrupt priority
mask is set at level 7. The vector number is internally generated to reference the reset
exception vector at location 0 in the supervisor program space. Because no assumptions
can be made about the validity of register contents, in particular the SSP, neither the pro-
gram counter nor the status register are saved. The address in the first two words of the
reset exception vector is fetched as the initial SSP, and the address in the last two words of
the reset exception vector is fetched as the initial program counter. Finally, instruction exe-
cution is started at the address in the program counter. The initial program counter should
point to the power-up/restart code.

The RESET instruction does not cause a reset exception; it asserts the RESET signal to
reset external devices, which allows the software to reset the system to a known state and
continue processing with the next instruction.

4.6.2 Interrupt Exceptions
NOTE

In the MC68307, all external and internal interrupt requests are
controlled by the interrupt controller. The interrupt controller is
always the interrupting device to the EC000 core, supplying the
appropriate interrupt request level to the EC000 core via the
internal IPL2–IPL0 lines. When the EC000 core performs an
interrupt acknowledge, the interrupt controller provides the
corresponding vector on the data bus and terminates the access
with a DTACK. This section considers the interrupt processing
from the perspective of the EC000 core. It is worth noting that,
from the MC68307’s perspective, the EC000 IPL2–IPL0 lines
are internal, and also the EC000 autovectoring is not supported,
but is instead handled separately by the interrupt controller.
Refer to Section 5.1.4 Interrupt Processing for further
information on the interrupt operation.

Seven levels of interrupt priorities are provided, numbered from 1–7. Level 7 has the highest
priority. Devices can be chained externally within interrupt priority levels, allowing an unlim-
ited number of peripheral devices to interrupt the processor. The status register contains a
3-bit mask indicating the current interrupt priority, and interrupts are inhibited for all priority
levels less than or equal to the current priority. Priority level 7 is a special case. Level 7 inter-
rupts cannot be inhibited by the interrupt priority mask, thus providing a non-maskable inter-
rupt capability. An interrupt is generated each time the interrupt request level changes from
some lower level to level 7. A level 7 interrupt may still be caused by the level comparison
if the request level is a 7 and the processor priority is set to a lower level by an instruction.

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-15

An interrupt request is made to the processor by encoding the interrupt request level on the
IPL2–IPL0; a zero indicates no interrupt request. Interrupt requests arriving at the processor
do not force immediate exception processing, but the requests are made pending. Pending
interrupts are detected between instruction executions. If the priority of the pending interrupt
is lower than or equal to the current processor priority, execution continues with the next
instruction, and the interrupt exception processing is postponed until the priority of the pend-
ing interrupt becomes greater than the current processor priority.

If the priority of the pending interrupt is greater than the current processor priority, the excep-
tion processing sequence is started. A copy of the status register is saved; the privilege
mode is set to supervisor mode; tracing is suppressed; and the processor priority level is set
to the level of the interrupt being acknowledged. The processor fetches the vector number
from the interrupting device by executing an interrupt acknowledge cycle, which displays the
level number of the interrupt being acknowledged on the address bus. If external logic
requests an automatic vector, the processor internally generates a vector number corre-
sponding to the interrupt level number. If external logic indicates a bus error, the interrupt is
considered spurious, and the generated vector number references the spurious interrupt
vector. The processor then proceeds with the usual exception processing. The saved value
of the program counter is the address of the instruction that would have been executed had
the interrupt not been taken. The appropriate interrupt vector is fetched and loaded into the
program counter, and normal instruction execution commences in the interrupt handling rou-
tine.

4.6.3 Uninitialized Interrupt Exception
NOTE

The uninitialized interrupt vector of the EC000 core is never
used in the MC68307, but is described here for completeness;
the MC68307 handles all interrupt conditions separately in the
interrupt controller (see Section 5.1.4 Interrupt Processing).

An interrupting device provides a EC000 core interrupt vector number and asserts data
transfer acknowledge (DTACK) or bus error (BERR) during an interrupt acknowledge cycle
by the EC000 core. If the vector register has not been initialized, the responding M68000
family peripheral provides vector number 15, the uninitialized interrupt vector. This response
conforms to a uniform way to recover from a programming error.

4.6.4 Spurious Interrupt Exception
NOTE

The spurious interrupt vector of the EC000 core is never used in
the MC68307, but is described here for completeness; the
MC68307 handles all interrupt conditions separately in the inter-
rupt controller (see Section 5.1.4 Interrupt Processing).

During the interrupt acknowledge cycle, if no device responds by asserting DTACK, BERR
should be asserted to terminate the vector acquisition. The processor separates the pro-
cessing of this error from bus error by forming a short format exception stack and fetching

EC000 Core Processor

4-16 MC68307 USER’S MANUAL MOTOROLA

the spurious interrupt vector instead of the bus error vector. The processor then proceeds
with the usual exception processing.

4.6.5 Instruction Traps
Traps are exceptions caused by instructions; they occur when a processor recognizes an
abnormal condition during instruction execution or when an instruction is executed that nor-
mally traps during execution.

Exception processing for traps is straightforward. The status register is copied; the supervi-
sor mode is entered; and tracing is turned off. The vector number is internally generated; for
the TRAP instruction, part of the vector number comes from the instruction itself. The pro-
gram counter, and the copy of the status register are saved on the supervisor stack. The
saved value of the program counter is the address of the instruction following the instruction
that generated the trap. Finally, instruction execution commences at the address in the
exception vector.

Some instructions are used specifically to generate traps. The TRAP instruction always
forces an exception and is useful for implementing system calls for user programs. The
TRAPV and CHK instructions force an exception if the user program detects a run-time
error, which may be an arithmetic overflow or a subscript out of bounds. A signed divide
(DIVS) or unsigned divide (DIVU) instruction forces an exception if a division operation is
attempted with a divisor of zero.

4.6.6 Illegal and Unimplemented Instructions
Illegal instruction is the term used to refer to any of the word bit patterns that do not match
the bit pattern of the first word of a legal processor instruction. If such an instruction is
fetched, an illegal instruction exception occurs. Motorola reserves the right to define instruc-
tions using the opcodes of any of the illegal instructions. Three bit patterns always force an
illegal instruction trap on all M68000 family-compatible microprocessors. The patterns are:
$4AFA, $4AFB, and $4AFC. Two of the patterns, $4AFA and $4AFB, are reserved for
Motorola system products. The third pattern, $4AFC, is reserved for customer use (as the
take illegal instruction trap (ILLEGAL) instruction).

Word patterns with bits 15–12 equaling 1010 or 1111 are distinguished as unimplemented
instructions, and separate exception vectors are assigned to these patterns to permit effi-
cient emulation. These separate vectors allow the operating system to emulate unimple-
mented instructions in software.

Exception processing for illegal instructions is similar to that for traps. After the instruction is
fetched and decoding is attempted, the processor determines that execution of an illegal
instruction is being attempted and starts exception processing. The exception stack frame
is then pushed on the supervisor stack, and the illegal instruction vector is fetched.

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-17

4.6.7 Privilege Violations
To provide system security, various instructions are privileged. An attempt to execute one
of the privileged instructions while in the user mode causes an exception. The privileged in-
structions are as follows:

AND Immediate to SR MOVE USP
EOR Immediate to SR OR Immediate to SR
MOVE to SR RESET
MOVE from SR RTE
MOVEC STOP
MOVES

Exception processing for privilege violations is nearly identical to that for illegal instructions.
After the instruction is fetched and decoded and the processor determines that a privilege
violation is being attempted, the processor starts exception processing. The status register
is copied; the supervisor mode is entered; and tracing is turned off. The vector number is
generated to reference the privilege violation vector, and the current program counter and
the copy of the status register are saved on the supervisor stack. The saved value of the
program counter is the address of the first word of the instruction causing the privilege vio-
lation. Finally, instruction execution commences at the address in the privilege violation
exception vector.

4.6.8 Tracing
To aid in program development, the EC000 core includes a facility to allow tracing following
each instruction. When tracing is enabled, an exception is forced after each instruction is
executed. Thus, a debugging program can monitor the execution of the program under test.

The trace facility is controlled by the T-bit in the supervisor portion of the status register. If
the T-bit is cleared (off), tracing is disabled and instruction execution proceeds from instruc-
tion to instruction as normal. If the T-bit is set (on) at the beginning of the execution of an
instruction, a trace exception is generated after the instruction is completed. If the instruction
is not executed because an interrupt is taken or because the instruction is illegal or privi-
leged, the trace exception does not occur. The trace exception also does not occur if the
instruction is aborted by a reset, bus error, or address error exception. If the instruction is
executed and an interrupt is pending on completion, the trace exception is processed before
the interrupt exception. During the execution of the instruction, if an exception is forced by
that instruction, the exception processing for the instruction exception occurs before that of
the trace exception.

As an extreme illustration of these rules, consider the arrival of an interrupt during the exe-
cution of a TRAP instruction while tracing is enabled. First, the trap exception is processed,
then the trace exception, and finally the interrupt exception. Instruction execution resumes
in the interrupt handler routine.

After the execution of the instruction is complete and before the start of the next instruction,
exception processing for a trace begins. A copy is made of the status register. The transition
to supervisor mode is made, and the T-bit of the status register is turned off, disabling further
tracing. The vector number is generated to reference the trace exception vector, and the cur-

EC000 Core Processor

4-18 MC68307 USER’S MANUAL MOTOROLA

rent program counter and the copy of the status register are saved on the supervisor stack.
The saved value of the program counter is the address of the next instruction. Instruction
execution commences at the address contained in the trace exception vector.

4.6.9 Bus Error
When a bus error exception occurs, the current bus cycle is aborted. The current processor
activity, whether instruction or exception processing, is terminated, and the processor imme-
diately begins exception processing.

Exception processing for a bus error follows the usual sequence of steps. The status register
is copied, the supervisor mode is entered, and tracing is turned off. The vector number is
generated to refer to the bus error vector. Since the processor is fetching the instruction or
an operand when the error occurs, the context of the processor is more detailed. To save
more of this context, additional information is saved on the supervisor stack. The program
counter and the copy of the status register are saved. The value saved for the program
counter is advanced 2–10 bytes beyond the address of the first word of the instruction that
made the reference causing the bus error. If the bus error occurred during the fetch of the
next instruction, the saved program counter has a value in the vicinity of the current instruc-
tion, even if the current instruction is a branch, a jump, or a return instruction. In addition to
the usual information, the processor saves its internal copy of the first word of the instruction
being processed and the address being accessed by the aborted bus cycle. Specific infor-
mation about the access is also saved: type of access (read or write), processor activity (pro-
cessing an instruction), and function code outputs when the bus error occurred. The
processor is processing an instruction if it is in the normal state or processing a group 2
exception; the processor is not processing an instruction if it is processing a group 0 or a
group 1 exception. Figure 4-7 illustrates how this information is organized on the supervisor
stack. If a bus error occurs during the last step of exception processing, while either reading
the exception vector or fetching the instruction, the value of the program counter is the
address of the exception vector. Although this information is not generally sufficient to effect
full recovery from the bus error, it does allow software diagnosis. Finally, the processor com-
mences instruction processing at the address in the vector. It is the responsibility of the error
handler routine to clean up the stack and determine where to continue execution.

If a bus error occurs during the exception processing for a bus error, an address error, or a
reset, the processor halts and all processing ceases. This halt simplifies the detection of a
catastrophic system failure, since the processor removes itself from the system to protect
memory contents from erroneous accesses. Only an external reset operation can restart a
halted processor.

4.6.10 Address Error
An address error exception occurs when the processor attempts to access a word or long-
word operand or an instruction at an odd address. An address error is similar to an internally
generated bus error. The bus cycle is aborted, and the processor ceases current processing
and begins exception processing. The exception processing sequence is the same as that
for a bus error, including the information to be stacked, except that the vector number refers
to the address error vector. Likewise, if an address error occurs during the exception pro-
cessing for a bus error, address error, or reset, the processor is halted.

EC000 Core Processor

MOTOROLA MC68307 USER’S MANUAL 4-19

4.6.11 Multiple Exceptions
When multiple exceptions occur simultaneously, they are processed according to a fixed pri-
ority. Table 4-6 lists the exceptions, grouped by characteristics, with group 0 as the highest
priority. Within group 0, reset has highest priority, followed by address error and then bus
error. Within group 1, trace has priority over external interrupts, which in turn takes priority
over illegal instruction and privilege violation. Since only one instruction can be executed at
a time, no priority relationship applies within group 2.

The priority relationship between two exceptions determines which is taken, or taken first, if
the conditions for both arise simultaneously. Therefore, if a bus error occurs during a TRAP
instruction, the bus error takes precedence, and the TRAP instruction processing is aborted.
In another example, if an interrupt request occurs during the execution of an instruction while
the T-bit in the status register (SR) is asserted, the trace exception has priority and is pro-
cessed first. Before instruction execution resumes, however, the interrupt exception is also
processed, and instruction processing finally commences in the interrupt handler routine. As
a general rule, the lower the priority of an exception, the sooner the handler routine for that
exception executes. This rule does not apply to the reset exception; its handler is executed
first even though it has the highest priority, because the reset operation clears all other
exceptions.

Figure 4-7. Supervisor Stack Order
for Bus or Address Error Exception

Table 4-6. Exception Grouping and Priority
Group Exception Processing

0 Reset, Address Error, and Bus Error Exception processing begins within two clock cycles.
1 Trace, Interrupt, Illegal, and Privilege Exception processing begins before the next instruction.
2 TRAP, TRAPV, CHK, and DIV Exception processing is started by normal instruction execution.

LOWER
ADDRESS

015

I/N FUNCTION CODE

HIGH

LOW

2345

R/W

STATUS REGISTER
INSTRUCTION REGISTER

LOW
HIGH

ACCESS ADDRESS

PROGRAM COUNTER

R/W (READ/WRITE): WRITE = 0, READ = 1. I/N
(INSTRUCTION/NOT): INSTRUCTION = 0, NOT = 1.

MOTOROLA

MC68307 USER’S MANUAL

5-1

SECTION 5
SYSTEM INTEGRATION MODULE

The MC68307 system integration module (SIM) consists of several functions that control the
system start-up, initialization, configuration, and the external bus with a minimum number of
external devices. The SIM contains the following functions:

• System Configuration

• Oscillator and Clock Dividers

• Reset Control, Power-Down Mode Control

• Chip Selects and Wait States

• External Bus Interfaces, M68000 and 8051-Compatible

• Parallel Input/Output Lines with Interrupt Capability

• Interrupt Configuration/Response

The MC68307 SIM is similar to the system integration logic found in other Motorola
integrated processors, the M68000 family, although each is tailored to the specific needs of
the part and its intended application.

Thi d t t d ith F M k 4 0 4

System Integration Module

5-2

MC68307 USER’S MANUAL

MOTOROLA

5.1 MODULE OPERATION

The various internal functional blocks of the SIM are described here, with a description of
operation of each, along with methods and recommendations for programming the register
locations that configure the MC68307 to suit the user's target system.

5.1.1 MC68307 System Configuration

The MC68307 system configuration logic consists of a module base address register
(MBAR), and a system control register (SCR) which together allow the user to configure op-
eration of the following functions:

• Base Address and Address Space of Internal Peripheral Registers

• Low-Power (Standby) Modes

• Hardware Watchdog Modes for System Protection

• 8051-Compatible Bus Enable or Disable

• Peripheral Chip Selects Enable or Disable

• Data Bus Size Control for Chip Selected Address Ranges

5.1.1.1 MODULE BASE ADDRESS REGISTER OPERATION.

The MBAR, must be
programmed upon cold reset in order to specify the base address of the various registers
which comprise the SIM and the other on-chip peripherals. The format of this register is
described later in this section, along with a description of the complete memory map of the
EC000 internal registers and peripherals.

The on-chip peripherals require a reserved 4096-byte block of address space for their
registers. This block location is determined by writing the intended base address to the
MBAR in supervisor data space. The MBAR is an on-chip read/write register which is
located at an unused vector entry in the MC68307 vector table. The address of the MBAR
entry within the vector table is $0000F2; it is a 16-bit value. For further details, refer to

Section 5.2.1 System Configuration and Protection Registers

.

The module base address and on-chip peripherals address decode logic block diagram is
shown here in Figure 5-1.

After a cold reset, the on-chip peripheral base address is undefined and it is not possible to
access the on-chip peripherals at any address until the MBAR is written. The MBAR and the
SCR can always be accessed at their fixed addresses.

Do not assign other devices on the system bus an address that falls within the address
range of the on-chip peripherals defined by the MBAR. Bus contention could result if this is
done inadvertently. If this happens, the address decode conflict (ADC) status bit in the SCR
is set. This can cause a BERR to be generated, if the address decode conflict enable
(ADCE) bit in the SCR is set.

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-3

NOTE

The MBAR and SCR registers are internally reset only when a
cold reset occurs by the simultaneous assertion of RESET and
HALT, assertion of RSTIN, power-on reset or software watch-
dog timeout. They are unaffected by a wake-up from power-
down mode. The chip select (CSx) lines are not asserted on ac-
cesses to the MBAR and SCR locations. Thus, it is very conve-
nient to use CSx lines to select external ROM/RAM that overlaps
or encloses the MBAR and SCR register locations ($0000F0-
$0000FF), since no potential bus contention can occur. If exter-
nally-decoded chip selects are used, then contention cannot be
ignored.

Figure 5-1. Module Base Address, Decode Logic

CHIP-SELECT MODULE REGISTERS

UART MODULE REGISTERS

M-BUS MODULE REGISTERS

TIMER MODULE REGISTERS

INTERRUPT CONTROLLER REGISTERS

INPUT/OUTPUT PORT REGISTERS
MODULE

ADDRESS
DECODE

LOGIC

EC000 CORE

D15–D0

FC2–0

A23–A0

CTRL

MODULE BASE ADDRESS REG

System Integration Module

5-4

MC68307 USER’S MANUAL

MOTOROLA

5.1.1.2 SYSTEM CONTROL REGISTER FUNCTIONS.

The SCR allows various settings to
be made which influence the operation of the system, for example, power-down and
oscillator control logic, the bus interface, and the hardware watchdog protection. It also
includes status bits which allow exception handler code to monitor the cause of exceptions
and resets.

Most of the functions controlled by these register bits are described in detail elsewhere; they
include:

CD Enable divided frequency to EC000 core

LPEN Low-power enable (to select low-power sleep mode)

CKD Clock-output disable (to inhibit CLKOUT pin and therefore save power)

LPCD2–0 Processor clock speed during low-power modes

UACD Clock disable for UART peripheral module

MBCD Clock disable for M-bus peripheral module

TMCD Clock disable for timer peripheral module

UACW Auto wakeup of UART clock if data received

BUSW0 Chip select 0 bus width 8-bit or 16-bit

BUSW1 Chip select 1 bus width 8-bit or 16-bit

BUSW2 Chip select 2 bus width 8-bit or 16-bit

BUSW3 Chip select 3 bus width 8-bit or 16-bit

EPCS Chip select 2A-2D peripheral chip select mode enable

E8051 Chip select 3 8051-compatible bus interface enable

ADCE Address decode conflict enable to cause BERR

WPVE Write protect violation enable to cause BERR

HWDE Hardware watchdog enable

HW2–0 Hardware watchdog timeout value setting

Status bits included in the SCR are:

RS1–0 Reset source register

ADC Address decode conflict status bit

WPV Write protect violation status bit

HWT Hardware timeout status bit

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-5

5.1.1.3 SYSTEM PROTECTION FUNCTIONS.

The facilities provided for system protection
are the hardware watchdog (bus monitor) and the software watchdog timer.

The hardware watchdog provides a bus monitor which causes an internal bus error (BERR
assertion) when a bus cycle is not terminated by DTACK after a programmable number of
clock cycles has elapsed. The hardware watchdog timeout (HWT) status bit in the SCR is
also set, so that a bus error exception handler can determine the cause of the bus error.

The hardware watchdog logic consists of a 10-bit down-counter and a 4-bit fixed prescaler.
When enabled, the watchdog timer commences counting clock cycles as AS is asserted (for
internal or external bus masters). The count is terminated normally by the negation of AS;
however, if the count reaches zero before AS is negated, BERR is asserted until AS is
negated. The hardware watchdog logic uses four control bits and one status bit in the SCR.

The effective range of the bus timeout is from 128 clock cycles to 16384 clock cycles (at
16MHz, from 8

µ

s to 1ms).

For operation of the software watchdog timer, refer to

Section 6 Dual Timer Module

.

5.1.2 Chip Select and Wait-State Logic

The MC68307 provides a set of four programmable chip-select signals. Each has a common
set of features and some have particular special features associated with them. These
features were described in terms of the MC68307 input/output pins in

Section 2 Signal
Description

, but will be described again here in detail. For each memory area the user may
also define an internally generated cycle termination signal (DTACK) with programmable
number of wait-states. This feature eliminates board space that would otherwise be
necessary for cycle termination logic.

The four chip selects allow up to four different classes of memory to be used in a system
without external decode or wait-state generation logic. For example, a typical configuration
could be a 8-bit EPROM, a fast 16-bit SRAM, up to four simple I/O peripherals, and a non-
volatile RAM with an 8051-compatible interface.

The chip select block diagram is shown in Figure 5-2.

The basic chip select model allows the chip select output signal to assert in response to an
address match. The signals are asserted externally shortly after AS goes low. The address
match is described in terms of a base address and an address mask. Thus the size in bytes
of the matching block must be a power of 2, and the base address must be an integer
multiple of this size. Thus an 8-Kbyte block size must begin on an 8-Kbyte boundary, and a
64-Kbyte block size can only begin on a 64-Kbyte boundary, etc.

The minimum resolution of block size, and hence base address, is any multiple of 8192,
because only address lines A23 down to A13 are compared or masked. Each chip select
can be enabled or disabled independently of the others, and the registers are read-write so
that the values programmed can be read back.

System Integration Module

5-6

MC68307 USER’S MANUAL

MOTOROLA

For a given chip select block, the user may also choose whether the chip select allows read-
only, write-only, or read/write accesses, whether the chip select should match only one
function code value or all values, whether a DTACK is automatically generated for this chip
select and after how many wait states (from zero to six).

5.1.2.1 PROGRAMMABLE DATA-BUS SIZE.

Each of the chip selects include the facility of
a data-bus port sizing extension to the basic M68000 bus which allows the system designer
to mix 16-bit and 8-bit contiguous address memory devices (RAM, ROM) on a 16-bit data
bus system. If the EC000 core executes a 16-bit data transfer instruction, then two 8-bit bus
cycles appear, using the external M68000 data bus upper half (D15–D8) only, the least
significant bit of address (A0) incrementing automatically from one to the next. A0 should be
ignored in 16-bit data-bus cycles, even if only the upper or lower byte is being read/written.

Note that a 16-bit data bus is always used internally for access to peripheral registers,
regardless of any mode settings for the external bus. Where peripheral registers are 16-bits
wide, they can be read or written in one bus cycle only, eliminating possible conflicts and
reading of inaccurate values where 16-bit-wide register contents are volatile (timer counter
registers, for example) or where the whole 16-bit value affects some aspect of system
operation (chip select base address, for example).

Where internal peripherals are 8-bits wide, e.g., the MC68681-compatible UART, they are
accessed at every alternate (odd) address. It is recommended that any external peripheral
that needs only an 8-bit data-bus interface but does not require contiguous address
locations, uses a chip select configured as 16-bit data-bus width, and connects to D7–D0.
This balances more evenly the load on the two halves of the data bus in an 8-bit system.

Figure 5-2. Chip-Select Block Diagram

BASE REGISTER 0 (BR0)

COMPARE LOGIC

OPTION REGISTER0 (OR0)

CS0

CS0

CS1

CS2

CS3

DTACK GENERATION

R/W

CS1

CS2

CS3

D
AT

A
BU

S

AD
D

R
ES

S
AN

D
 F

U
N

C
TI

O
N

 C
O

D
ES

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-7

The default for each chip select is a 16-bit data-bus width. The BUSWx bits in the SCR
enable 8-bit data-bus width for each of the four chip select ranges. The initial bus width for
chip select 0 is selected by placing a logic 0 or 1 on the BUSW pin at reset, to specify 8-bit
or 16-bit wide data bus respectively. This allows a boot EPROM of either data bus width to
be used in any given system.

All external accesses which do not match one of the chip select address ranges use the
value of the EBUSW bit in the SCR to determine their data bus width.

NOTE

If byte operations are performed where 8-bit bus mode is used,
there is no difference in throughput compared to 16-bit bus
mode. However, if 32-bit long word or 16-bit word operations are
used over the 8-bit data bus (including all instruction fetches),
the performance is exactly half that of the equivalent speed 16-
bit-wide data bus.

5.1.2.2 PERIPHERAL CHIP SELECTS.

Chip select 2 (CS2 signal) features a peripheral
chip select (PCS) mode, selected by setting the enable peripheral chip select (EPCS) bit in
the SCR. If this chip select is programmed with a block size of 64 Kbytes, and the EPCS bit
in the SCR set, then the CS2/CS2A pin, along with CS2B, CS2C, and CS2D (which are
multiplexed with port A input/output lines) function as four peripheral chip selects, each
gated to select a particular 16-Kbyte block within the programmed 64-Kbyte range.

For example, if the base address is programmed as $100000 with size $10000 (64K), and
the PCS mode is enabled, then the blocks are selected according to Table 5-1:

This feature is ideal for miscellaneous peripheral devices in the address space, even if they
only require one or two bytes per peripheral. If this feature is not enabled (refer to

Section
5.2.1.2 System Control Register (SCR)

), then the CS2/CS2A pin functions as CS2, a
general-purpose programmable M68000-bus chip select, and the CS2B, CS2C and CS2D
signals are never asserted.

NOTE

Port A general-purpose I/O lines have programmable control
over their function on a bit by bit basis, via the port A control reg-
ister (PACNT). For example it is possible to use only CS2A and
CS2B, leaving the port A lines which would have been used by
CS2C and CS2D, to function as general-purpose I/O.

Table 5-1. Address Block Selection in Peripheral Chip Select Mode

Chip Select Pin
Address Block

A15 A14
Start Address End Address

CS2A $100000 $103FFF 0 0

CS2B $104000 $107FFF 0 1

CS2C $108000 $10BFFF 1 0

CS2D $10C000 $10FFFF 1 1

System Integration Module

5-8

MC68307 USER’S MANUAL

MOTOROLA

5.1.2.3 8051-COMPATIBLE BUS CHIP SELECT.

Chip select 3 (CS3 signal) can be used
to define the addressing range of the 8051-compatible bus mode, when this mode is
enabled in the SCR E8051 bit. Otherwise (if the 8051-compatible bus mode is not used) chip
select 3 is available for any general purpose memory or peripheral. In this case, the 8051-
compatible bus read and write strobes (RD and WR), and the address latch enable (ALE)
signal are always negated. This bus always uses an 8-bit data-bus width, and so the
BUSW3 bit in the SCR should be set along with the E8051 bit.

5.1.2.4 GLOBAL CHIP SELECT OPERATION (RESET DEFAULTS).

Chip select 0 is
initialized from cold reset to assert in response to any address in the first 8K bytes of memory
space, in order to ensure a chip select to the boot ROM or EPROM, to fetch the reset vector
and execute the initialization code, which should set up the module base address and the
four chip select ranges early on in that initialization sequence.

The data bus port size for CS0 on reset, and hence the data width of the boot ROM device,
are programmed by placing logic 0 or 1 on the BUSW pin during reset, for 8-bit and 16-bit
wide data bus respectively.

The other 3 chip selects are initialized to be invalid, and so do not assert until they are
programmed.

5.1.2.5 OVERLAP IN CHIP SELECT RANGES.

The user should not normally program
more than one chip select line to the same area. If this accidentally occurs, only one chip
select line is driven because of internal line priorities. CS0 has the highest priority, and CS3
the lowest. The address compare logic sets the address decode conflict (ADC) status bit in
the SCR, and also generates a bus error (or BERR is asserted) if the address decode
conflict enable (ADCE) bit was set by the user in the SCR.

BERR is never asserted on write accesses to the chip select registers.

If one chip select is programmed to be read-only, and another is programmed to be write-
only, then there is no overlap conflict between these two chip selects, and the address
decode conflict (ADC) status bit in the SCR is not set.

When the CPU attempts to write to a read-only location, as programmed by the user when
setting up the chip selects, the chip select logic sets the write protect violation (WPV) bit in
the SCR, and will also generate BERR if the write protect violation enable (WPVE) bit is set
in the SCR. The CSx line is not asserted.

NOTE

The chip select logic is reset only on cold reset (assertion of
RESET and HALT, or RSTIN). The chip select (CSx) lines are
never asserted on accesses to the MBAR and SCR locations.
Thus, it is very convenient to use CSx lines to select external
ROM/RAM that overlaps or encloses the MBAR and SCR

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-9

register locations ($0000F0–$0000FF), since no potential bus
contention can occur.

The chip select logic does not allow an address match during in-
terrupt acknowledge (function code 7) cycles.

The programming of the chip select module is discussed in the next chapter. For further
information, refer to

Section 5.2.2 Chip Select Registers

.

5.1.3 External Bus Interface Logic

This logic controls the interaction of the EC000 core processor, the on-chip M68000
peripheral bus, the external M68000 and 8051-compatible buses, in conjunction with the
programmable chip select logic and the various user settings in the system configuration
and protection logic. A block diagram of this logic is shown in Figure 5-3.

5.1.3.1 M68000 BUS INTERFACE.

The M68000 bus interface adds bus-sizing functionality
(8-bit or 16-bit data bus) to the basic M68000 bus of the EC000 core processor. The external
bus interface logic links the data bus multiplexers with the programmable chip selects and
SCR bits, and co-ordinates an 8-bit or 16-bit bus transfer. The BUSWx bits in the SCR define
the current data-bus width (port size) for each of the four chip selects. On cold reset, the

Figure 5-3. External Bus Interface Logic

ALE

WR
RD

AD7–AD0

D15–D0

A23–A8

CS2/CS2A

CS2

PA0/CS2B
PA1/CS2C
PA2/CS2D

CS3

CS3

CS1

CS0

E8051

EPCS

PORT A DATA

PORT A DDR

PORT A CONTROL
PAX

EC000 CORE

D15–D0

CTRL

A23–A0

CHIP-SELECTS

CONTROL

SCR

EPCS

E8051

BUSWX

PORT A LOGIC
PADAT

PADDR

PACNT

PORT A
MUX

LOGIC

PERIPH
CHIP-SELECT

DECODE

8051-BUS

TIMING AND

MUX LOGIC

EXTERNAL

DATA BUS

SIZE

CONTROL

LOGIC

CS0

CS1

CS2

CS3

System Integration Module

5-10

MC68307 USER’S MANUAL

MOTOROLA

default state of BUSW0 reflects the value of the BUSW external pin (0 = 8-bit data bus, 1 =
16-bit data bus), and the default state of the other BUSWx bits is for a 16-bit port size.

When the data-bus sizing logic is used to configure a chip select as an 8-bit port select, any
16-bit bus cycles from the processor appears on the external pins as two 8-bit read or write
cycles with normal M68000 timings on all signals and the addition of a valid A0 signal. D15–
D8 is always used for bus cycles of this kind.

NOTE

If byte operations are performed where 8-bit bus mode is used,
there is no difference in throughput compared to 16-bit bus
mode. However, if 32-bit long word or 16-bit word operations are
used over the 8-bit data bus (including all instruction fetches),
the performance is exactly half that of the equivalent speed 16-
bit-wide data bus.

5.1.3.2 8051-COMPATIBLE BUS INTERFACE.

The 8051-compatible bus interface
contains logic to multiplex the low eight address lines (A7–A0) and the low eight data lines
(D7–D0) onto the same pins. CS3 is used to select the memory area assigned to the 8051-
compatible bus, it controls the external bus interface logic, triggering the address latch
enable signal, and gating the RD and WR signals. Refer to

Section 5.1.2 Chip Select and
Wait-State Logic

 and

Section 5.2.2 Chip Select Registers

 for details of how to configure
the chip select logic for this interface. Also refer to

Section 5.2.1 System Configuration
and Protection Registers

 for details of how to configure the MC68307 pins for the 8051-
compatible bus.

The 8051-compatible interface uses the same 8-bit data bus sizing scheme as offered with
the M68000 chip selects. As such, there is no restriction on the data operations which can
be used—both byte, word and long transfers can be initiated by the processor to an 8051-
compatible device which can have contiguous byte locations.

5.1.3.3 PORT A, PORT B GENERAL-PURPOSE I/O PORTS.

The MC68307 supports two
general purpose I/O ports, port A and port B, whose pins can be configured as general-
purpose input/output pins or dedicated peripheral interface pins for the on-chip modules
(UART, M-bus, timer, interrupts, peripheral chip selects). Port A is an 8-bit I/O port. Port B
is a 16-bit I/O port.

Each of the 8 port A and 16 port B pins are independently configured as a general-purpose
I/O pin if the corresponding bit in the port A or B control register (PACNT, PBCNT) is cleared.
Port pins are configured as dedicated on-chip peripheral pins if the corresponding PACNT
or PBCNT bit is set. Refer to

Section 5.2.3 External Bus Interface Control Registers

 for
details of programming the general-purpose ports.

For each port pin, when acting as a general-purpose I/O pin, the signal direction for that pin
is determined by the corresponding control bit in the port A or B data direction register
(PADDR, PBDDR). The port I/O pin is configured as an input if the corresponding PADDR
or PBDDR bit is cleared; it is configured as an output if the corresponding PADDR or
PBDDR bit is set. All PADDR, PBDDR, PACNT, and PBCNT bits are cleared on cold reset,

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-11

configuring all port A and B pins as general-purpose inputs. (Note that the port pins do not
have internal pullup resistors).

When a port pin is used as general-purpose I/O, it may be accessed through the port A or
B data register (PADAT, PBDAT). Data written to the PADAT or PBDAT is stored in an out-
put latch.

• If a port pin is configured as an output, the output latch data is gated onto the port pin.
In this case, when the PADAT or PBDAT is read, the contents of the output latch data
associated with the output port pin are read.

• If a port pin is configured as an input, data written to PADAT or PBDAT is still stored in
the output latch, but is prevented from reaching the port pin. In this case, when PADAT
or PBDAT is read, the current state of the port pin is read.

If port pins are selected as dedicated on-chip peripheral pins, the corresponding bit in the
PADDR or PBDDR is ignored, and the actual direction of the pin is determined by the
operating mode of the on-chip peripheral. In this case, the PADAT or PBDAT register
contains, for those bit positions, the current state of the peripheral's input pin or output driver.

The dedicated functions for port A input/output lines are the extra peripheral chip select
outputs (CS2B, CS2C, and CS2D) for simple external peripherals (PA2–PA0), the timer
output signals TOUT1 and TOUT2 (PA4 and PA3), and the bus arbitration signals BR, BG,
and BGACK (PA7–PA5).

Certain port pins may be selected as general-purpose I/O pins, even when other pins related
to the same on-chip peripheral are used as dedicated pins. For example, a system which
requires a UART interface using TxD and RxD signals only, and not requiring RTS or CTS,
is free to program RTS/PB4 and CTS/PB5 as general-purpose I/O. What the peripheral now
receives as input, given that some of its pins have been reassigned, is shown in Table 5-2.
If an input pin to an I/O peripheral is used as a general-purpose I/O pin, then the actual input
to the peripheral is automatically connected internally to V

DD

 or GND, based on the pin's
function. This does not affect the operation of the port I/O pins in their general-purpose I/O
function. Note also that even if all the pins for a particular peripheral are configured as
general-purpose input/output, the peripheral still operates as normal, although this is only
useful in the case of the timer module.

System Integration Module

5-12

MC68307 USER’S MANUAL

MOTOROLA

The MC68307 port A pins which have alternate functions are shown in Table 5-2.

The MC68307 port B pins that have alternate functions are shown in Table 5-3.

The high eight lines of port B (PB15–PB8) have as their dedicated function a latched
interrupt capability. Each of these pins, when configured as a dedicated interrupt input in the
port B control register (PBCNT), functions as an active-low input to a latch in the interrupt
controller logic (refer to

Section 5.1.4.1 Interrupt Controller Logic

). As before, even if
these pins are configured for their dedicated function, their current state may still be read by
software as if they were general-purpose input signals.

Table 5-2. Port A Pin Functions

PACNT
Bit = 0 Pin
Function

PACNT
Bit = 1 Pin
Function

Default Input to
On-Chip Peripheral

PA0 CS2B (Output)

PA1 CS2C (Output)

PA2 CS2D (Output)

PA3 TOUT1 (Output)

PA4 TOUT2 (Output)

PA5 BR 1

PA6 BG (Output)

PA7 BGACK 1

Table 5-3. Port B Pin Functions

PBCNT
Bit = 0 Pin
Function

PBCNT
Bit = 1 Pin
Function

Default Input to
On-Chip

Peripheral

PB0 SCL 1

PB1 SDA 1

PB2 TxD (Output)

PB3 RxD 1

PB4 RTS (Output)

PB5 CTS 1

PB6 TIN1 1

PB7 TIN2 1

PB8 INT1 1

PB9 INT2 1

PB10 INT3 1

PB11 INT4 1

PB12 INT5 1

PB13 INT6 1

PB14 INT7 1

PB15 INT8 1

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-13

5.1.4 Interrupt Processing

Interrupt processing on the MC68307 involves four steps. A typical sequence is as follows:

1. The interrupt controller on the MC68307 collects interrupt events from on and off-chip
peripherals, prioritizes them, and presents the highest priority request to the EC000
core processor.

2. The EC000 core processor responds to the interrupt request by executing an interrupt
acknowledge bus cycle after the completion of the current instruction.

3. The interrupt controller recognizes the interrupt acknowledge cycle and places the in-
terrupt vector for that interrupt request onto the EC000 core processor bus.

4. The EC000 core processor reads the vector, reads the address of the interrupt handler
in the exception vector table, and then begins execution at that address.

Steps 2 and 4 are the responsibility of the EC000 core processor on the MC68307, whereas
steps 1 and 3 are the responsibility of the interrupt controller on the MC68307.

External devices are forbidden from responding to IACK cycles with a vector, this is always
done by the interrupt controller. No FC2–FC0 signals are available for decode.

The EC000 core processor is not modified for use on the MC68307, thus steps 2 and 4
operate exactly as they would on the M68000 devices. In step 2, the EC000 processor
status register (SR) is available to mask interrupts globally or to determine which priority
levels can currently generate interrupts. Also in step 2, the interrupt acknowledge cycle is
executed.

The interrupt acknowledge cycle carries out a M68000 bus read cycle except that FC2–FC0
are encoded as 111, A3–A1 are encoded with the interrupt priority level (1–7, with 7 (i.e.,
111) being the highest), and A19–A16 are driven high. This cycle is visible externally, but no
chip selects are asserted.

In step 4, the EC000 core processor reads the vector number, multiplies it by 4 to get the
vector address, fetches a 4-byte program address from that vector address, and then jumps
to that 4-byte address. That 4-byte address is the location of the first instruction in the
interrupt handler.

Steps 1 and 3 are the responsibility of the interrupt controller on the MC68307. Here a
number of configuration options are available. For instance, for step 1 (interrupt generation),
all interrupt sources have programmable interrupt priority levels (IPL). In step 3 (vector
response), a block of vectors can be allocated to the interrupt sources under program
control. These and other interrupt controller options are introduced in the following
paragraphs.

System Integration Module

5-14

MC68307 USER’S MANUAL

MOTOROLA

5.1.4.1 INTERRUPT CONTROLLER LOGIC.

This block of logic coordinates all the
interrupt sources on the MC68307, gathering interrupt request signals from both the on-chip
peripheral modules and external inputs, prioritizing them and performing programmed IPL
requests to the EC000 core processor. When the EC000 core processor responds to a
request with an interrupt acknowledge cycle, as is standard in M68000 implementations, the
interrupt controller logic forwards the correct vector depending on the original source of the
interrupt. Software can clear pending interrupts from any source via the registers in the
interrupt controller logic, and can program the location of the block of vectors used for
interrupt sources via the programmable interrupt vector register (PIVR).

For an external interrupt interface, the interrupt controller logic provides two distinct facilities.
First is the nonmaskable interrupt input on the IRQ7 pin, which always causes an interrupt
priority level 7 request to the EC000 core processor. Assuming no other source is
programmed as a level 7 source, this input always obtains the immediate attention of the
core. For an interrupt to be successfully processed, RAM must be available for the stack,
and often this RAM is selected by one of the programmable chip selects. So upon system
startup there is a brief period where RAM is not available for the stack. To ensure no
problems resulting from interrupts (particularly IRQ7) during this period, there is an interlock
which prevents any interrupt from reaching the EC000 core processor until the first write
cycle to the PIVR. The user should ensure that both RAM chip selects and the system stack
are set up prior to this write operation.

The second of the external input methods is an 8-channel latched interrupt port, multiplexed
with the port B input/output pins. Each of the 8 inputs can be programmed with an IPL, and
each can have any pending interrupts cleared independently of the others.

The interrupt controller includes daisy-chaining functions in order to avoid contention when
the EC000 core processor issues an interrupt acknowledge cycle. So if more than one inter-
rupt source has the same IPL, they are daisy-chained in the following priority scheme:

IRQ7 Input Highest Priority

INT1–INT8 Inputs •

Timer 1Interrupt •

Timer 2 Interrupt •

UART Interrupt •

M-Bus Interrupt Lowest Priority

The priority within the eight latched interrupt inputs is that INT1 is the highest, and INT8 is
the lowest.

The block diagram of the interrupt controller is shown in Figure 5-4.

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-15

5.1.4.2 INTERRUPT VECTOR GENERATION.

Pending interrupts are presented to the
EC000 core processor in order of priority. The core responds to an interrupt request by
initiating an interrupt acknowledge cycle to receive a vector number, which allows the core
to locate the interrupt's service routine. The interrupt controller always provides the vector
corresponding to the highest priority, unmasked, pending interrupt with the IPL priority equal
to that echoed on A3–A1 during the IACK cycle.

The following procedure is used. The four most significant bits of the interrupt vector are
programmed by the user in the PIVR. These four bits are concatenated with four bits
generated by the interrupt controller to provide an 8-bit vector number to the core. The
interrupt controller's encoding of the four low-order bits of the interrupt vector is shown in
Table 5-4. An example vector calculation is shown following Table 5-4.

When the core initiates an interrupt acknowledge cycle for an interrupt and there is no
interrupt pending, the interrupt controller encodes the error code binary 0000 onto the four
low-order bits of the interrupt vector to indicate a spurious interrupt. As the interrupt
controller responds to all interrupt acknowledge cycles, there will never be a bus error during
such cycles, and the EC000 core vector number 24 (spurious interrupt by bus error) will
never be used.

Figure 5-4 shows the interrupt controller logic block diagram.

Figure 5-4. Interrupt Controller Logic Block Diagram

IRQ7
INPUT PIN

INT1–INT8
INPUT PINS

ON-CHIP IRQ'S
(T1,T2,MB,UA)

IACK TO
UART

IACK
DAISY-CHAIN

IACK
CYCLE

DECODE

PRIORITY
CONTROL

REGISTERS

D15–D0

FC2–0

A23–A0

CTRL/IPL

EC000 CORE

PROGRAMMABLE
VECTOR
OUTPUT

LATCHED
INTERRUPT

INPUT
LOGIC

IRQ7
INPUT
LOGIC

ON-CHIP
PERIPHERAL

INPUT
LOGIC

IPL
PRIORITY
ENCODE

System Integration Module

5-16

MC68307 USER’S MANUAL

MOTOROLA

1. Formulate 8-bit vector (source is TIMER 2):

*

2. Multiply by 4 to get address:

1 0 1 0 1 0 1 1 0 0 = $2AC

Note that $2AC is in the user interrupt vector area of the exception vector table. V7–
V4 was purposely chosen to cause this.

3. Read 32-bit value at $2ac and jump:

*

 The UART module handles its own interrupt vector separately, it can be programmed to provide any
vector by placing a value into the UART interrupt vector register (UIVR). For consistency with the
other interrupt sources, this value can be programmed as xxxx1100.

Table 5-4. Interrupt Vector Response

Vector Interrupt Source
Priority if Same IPL

Programmed

xxxx0000 Spurious Interrupt

xxxx0001 IRQ7 Input (Highest)

xxxx0010 INT1 Input •

xxxx0011 INT2 Input •

xxxx0100 INT3 Input •

xxxx0101 INT4 Input •

xxxx0110 INT5 Input •

xxxx0111 INT6 Input •

xxxx1000 INT7 Input •

xxxx1001 INT8 Input •

xxxx1010 Timer 1 •

xxxx1011 Timer 2 •

xxxx1100 (Reserved for UART)

*

•

xxxx1101 M-Bus Module (Lowest)

V7–V4 4-Bit Vector

V7–V5 programmed by software in the
programmable interrupt vector register
4-bit vector from Table 5-4.

1 0 1 0 1 0 1 1

$2AC 0007

Interrupt handler begins at $070302
(24-bit addresses are used on the
MC68307)

$2AE 0302

System Integration Module

MOTOROLA

MC68307 USER’S MANUAL

5-17

5.1.4.3 IRQ7 NON-MASKABLE INTERRUPT.

The IRQ7 input functions as a nonmaskable
interrupt (NMI) which always generates a level 7 interrupt to the EC000 core processor.
Priority level 7 cannot be disabled by the interrupt priority mask in the SR of the EC000 core
processor.

The interrupt controller logic passes an interrupt from the IRQ7 signal to the processor.
When the processor responds with an interrupt acknowledge cycle for level 7, the interrupt
controller issues the appropriate vector.

The IRQ7 input is edge sensitive and subject to two clock falling edges of synchronization
before being considered valid. If it is still asserted when a level 7 interrupt handler routine
exits (thus bringing the processor priority level below 7) then it is ignored until it negates for
one clock period before the next valid assertion. If the software needs to read the state of
the IRQ7 signal then the signal can be connected to an unused general-purpose input/
output pin, configured as an input.

An interlock is provided which prevents any interrupt including IRQ7 from reaching the
EC000 core processor until the PIVR is first written with a vector range. This allows the user
to ensure safety upon system startup before essential resources (e.g., chip selects for RAM
which contain stack) have been set up.

5.1.4.4 GENERAL-PURPOSE INTERRUPT INPUTS.

The eight general-purpose latched
interrupt lines, INT1–INT8 share device pins with the high byte of port B I/O. To enable any
or all of these lines as dedicated interrupt inputs, the corresponding bit or bits in the PBCNT
must be set to one. As discussed already, the current state of the interrupt pin is always
available to software by reading the PBDAT, so that an interrupt handler can quickly
determine the source of the interrupt (it can also determine this by the vector number).

Before interrupts are enabled in system initialization software, the required IPL should be
programmed into the latched interrupt control registers (LICR1 and LICR2). Each of these
16-bit registers contains the priority setting bits (IPL) for four of the general-purpose interrupt
lines, along with pending interrupt reset (PIR) bits for each of them, allowing the interrupt
response software to clear any pending latched interrupt conditions. Note that the PIR bits
do not clear the source of interrupt; this must either happen automatically (by the interrupting
device hardware) after the interrupt condition is presented to the MC68307, or software must
explicitly address the device in question, and clear the condition manually. Note also that
when the IPL is changed for these latched interrupts, the PIR bit must also be set. This
avoids the possibility of any spurious interrupts occurring. Refer to

Section 5.2.4 Interrupt
Control Registers

 for further details and programming information.

If the IPL for any one general-purpose interrupt line is programmed as 000, then that line is
effectively disabled. Another way to mask a particular interrupt line from causing interrupts,
without having to reprogram its priority level in the LICRx, is to clear the relevant bit in the
PBCNT.

When the EC000 runs an interrupt acknowledge cycle in response to the external interrupt
condition at a certain IPL, the interrupt controller module provides the appropriate vector as
discussed in

Section 5.1.4.2 Interrupt Vector Generation

. User software at the address

System Integration Module

5-18

MC68307 USER’S MANUAL MOTOROLA

pointed to by the respective vector location should respond to the interrupt as appropriate,
including setting the PIR bit for that general-purpose interrupt input in the relevant LICRx
register, to indicate end-of-service.

Refer to Section 5.1.4 Interrupt Processing for a short discussion of daisy-chaining with
reference to the external interrupt inputs.

NOTE

The latched interrupts need to be asserted for 2 clock falling
edges before they are considered valid, and are latched.

5.1.4.5 PERIPHERAL INTERRUPT HANDLING. The MC68307 on-chip I/O peripherals,
consisting of the two timer channels, the UART and the M-bus modules, are all capable of
being a source of interrupts. The interrupt controller logic coordinates the reception of
Interrupt Request signals from these three peripherals, the return of acknowledge
information with associated daisy-chaining (refer to Section 5.1.4 Interrupt Processing),
and the ultimate providing of vector information to the EC000 core processor.

The peripheral interrupt control register (PICR) allows the user to define which IPL each of
these four peripheral sources will use. The PIVR and UIVR allow the user to define a
particular vector number to be presented when the respective module receives an interrupt
acknowledge from the processor via the interrupt controller logic. These interrupt vector
registers are initialized upon cold reset with the uninitialized interrupt vector (hex $0F), and
must be programmed with the required vector number for normal operation. It is important
not to use reserved interrupt vector locations for this purpose, especially the ones used by
the MBAR and SCR register group.

In the case of the UART, there are multiple sources within the UART module which can
cause an interrupt, e.g., transmit ready, received character/buffer, break change of state. In
order to determine which of these should be serviced, the software interrupt handler must
read the relevant status register within the UART module. Note that the UART module has
its own vector register, allowing it to issue any programmed vector in response to an
interrupt acknowledge cycle.

In the case of the M-bus interface, there are multiple sources within the M-bus module which
can cause an interrupt, e.g., byte transferred, slave Rx address match, arbitration lost.
Again, the relevant status register within the M-bus interface module must be read to
elaborate on the condition being reported.

Finally, in the case of the timer module, there are multiple sources which can cause an
interrupt, e.g., compare or capture for each of the two functional timer channels. The timer
event registers can be read to determine the cause of the condition.

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-19

5.1.5 Low-Power Sleep Logic
Various options for power-saving are available—turning off unused peripherals, reducing
processor clock speed, disabling the processor altogether, or a combination of these. The
SCR includes a clock divider enable bit (CDEN) which substitutes a divided-down version
of the system clock as the clock input to the EC000 core. The division is by a power-of-2, as
programmed in the CD2–0 bits, allowing a 16MHz system clock to be divided down to
approximately 64kHz. There is also a low-power sleep mode enable (LPEN) bit which stops
the clock to the EC000 processor altogether after using bus arbitration to turn off the external
bus. Prior to this happening, the peripherals which are not required can be disabled or their
clocks stopped by programming the appropriate registers, thus further reducing power
consumption. The MC68307 crystal oscillator is not stopped by these internal modes. For
lowest power operation, the external clock source can be slowed or removed altogether by
the user.

NOTE

Because bus arbitration is used, the external address, data bus-
es and control signals (AS, UDS, LDS, R/W) are tristated and so
should have weak pullups to minimize system power consump-
tion.

So, various options for power-saving are available—turning off unused peripherals,
reducing processor clock speed, disabling the processor altogether, or a combination of
these.

A wakeup from low-power sleep mode can be achieved by causing an interrupt at the
interrupt controller Logic which continues to run throughout the period of processor sleep.
Any interrupt source causes a wakeup of the EC000 core processor followed by processing
of that interrupt when unmasked in the SR.

The wakeup operation involves the internal sleep/wake-up logic restarting the clock to the
EC000 core processor and releasing the bus. Normal processing resumes with all register
contents intact, i.e., the processor continues execution from the address following the low-
power enable instruction sequence. Interrupt exception processing is initiated for the
interrupt which caused the wakeup.

After a wakeup, the reset source bits in the SCR are set to a value which indicates a wakeup
has happened. Normally, these bits show the source of the most recent reset of the core
processor. A sleep/wakeup sequence does not cause ANY reset of the static core processor
or the on-chip peripherals. User software can issue a RESET instruction if any external
peripherals require reset after a period of being in sleep mode.

The on-chip peripherals can initiate a wake-up, for example, the timer can be set to wake-
up after a certain elapsed time, or number of external events, or the UART can cause a
wake-up on receiving serial data.

The clocks provided to the various internal modules can all be gated off, to further reduce
power consumption (refer to Section 5.2.1.2 System Control Register (SCR) for details).

System Integration Module

5-20 MC68307 USER’S MANUAL MOTOROLA

In the case of the UART, its clock is restarted automatically by a transition on the RxD pin,
so that incoming data is clocked in. When the data has been completely received, then an
interrupt from the UART can wake-up the core processor as described above. If the other
on-chip modules are required to cause a wake-up (the timer and M-bus), then their clocks
should not be gated off in this manner.

5.2 PROGRAMMING MODEL
The various modules in the MC68307, including the SIM, contain registers which are used
to control the modules and provide status information from the modules. Most of these
registers reside in one 4096-byte range of addresses in the memory map of the EC000 core
processor. The only exceptions to this rule are the MBAR and the SCR. These reside in the
initial memory map of the MC68307 overlaying Motorola-reserved locations of the exception
vector table. Table 5-5 shows all MC68307 on-chip locations.

Table 5-5. MC68307 Configuration Memory Map

Address System Configuration Registers

$0000F0 Reserved–No External Bus Access

$0000F2 Module Base Address Register (MBAR)

$0000F4 System Control Register (SCR)

$0000F6 System Control Register (SCR), continued

$0000F8 Reserved–No External Bus Access

$000FA Reserved–No External Bus Access

$0000FC Reserved–No External Bus Access

$0000FE Reserved–No External Bus Access

Address SIM Module–External Bus Interface Registers

MBASE+$011 Do Not Access Byte $010 Port A Control Register (PACNT)

MBASE+$013 Do Not Access Byte $012 Port A Data Direction Register (PADDR)

MBASE+$015 Do Not Access Byte $014 Port A Data Register (PADAT)

MBASE+$016 Port B Control Register (PBCNT)

MBASE+$018 Port B Data Direction Register (PBDDR)

MBASE+$01A Port B Data Register (PBDAT)

Address SIM Module–Interrupt Controller Registers

MBASE+$020 Latched Interrupt Control Register 1 (LICR1)

MBASE+$022 Latched Interrupt Control Register 2 (LICR2)

MBASE+$024 Peripheral Interrupt Control Register (PICR)

MBASE+$027 Do Not Access Byte $026 Programmable Interrupt Vector Reg (PIVR)

Address SIM Module–Chip Select Registers

MBASE+$040 Base Register 0 (BR0)

MBASE+$042 Option Register 0 (OR0)

MBASE+$044 Base Register 1 (BR1)

MBASE+$046 Option Register 1 (OR1)

MBASE+$048 Base Register 2 (BR2)

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-21

A software RESET instruction resets only the UART, timer, and M-bus registers. None of
the system configuration registers are reset except by a cold reset.

MBASE+$04A Option Register 2 (OR2)

MBASE+$04C Base Register 3 (BR3)

MBASE+$04E Option Register 3 (OR3)

Address SIM Module–UART Module Registers

MBASE+$101 Do Not Access Byte $100 UART Mode Register (UMR1, UMR2)

MBASE+$103 Do Not Access Byte $102 UART Status/Clock Select Reg(USR, UCSR)

MBASE+$105 Do Not Access Byte $104 UART Command Register (UCR)

MBASE+$107 Do Not Access Byte $106 (Read) UART Receive Buffer (UTB, URB)

MBASE+$107 Do Not Access Byte $106 (Write) UART Transmit Buffer (UTB, URB)

MBASE+$109 Do Not Access Byte $108 (Read) UART Input Port Change Register (UIPCR)

MBASE+$109 Do Not Access Byte $108 (Write) UART Control Reg (UACR)

MBASE+$10B Do Not Access Byte $10A (Read) UART Interrupt Status Reg (UISR)

MBASE+$10B Do Not Access Byte $10A (Write) UART Interrupt Mask Reg (UIMR)

MBASE+$10D Do Not Access Byte $10C Baud Rate Gen Prescaler msb (UBG1)

MBASE+$10F Do Not Access Byte $10E Baud Rate Gen Prescaler lsb (UBG2)

MBASE+$119 Do Not Access Byte $118 UART Interrupt Vector Register (UIVR)

MBASE+$11B Do Not Access Byte $11A UART Register Input Port (UIP)

MBASE+$11D Do Not Access Byte $11C UART Output Port Bit Set Cmd (UOP1)

MBASE+$11F Do Not Access Byte $11E UART Output Port Bit Reset Cmd (UOP0)

Address SIM Module–Timer Module Registers

MBASE+$120 Timer Mode Register 1 (TMR1)

MBASE+$122 Timer Reference Register 1 (TRR1)

MBASE+$124 Timer Capture Register 1 (TCR1)

MBASE+$126 Timer Counter 1 (TCN1)

MBASE+$129 Do Not Access Byte $128 Timer Event Register 1 (TER1)

MBASE+$12A Watchdog Reference Register (WRR)

MBASE+$12C Watchdog Counter Register (WCR)

MBASE+$130 Timer Mode Register 2 (TMR2)

MBASE+$132 Timer Reference Register 2 (TRR1)

MBASE+$134 Timer Capture Register 2 (TCR2)

MBASE+$136 Timer Counter 2 (TCN2)

MBASE+$139 Do Not Access Byte $138 Timer Event Register 2 (TER2)

Address SIM Module–M-Bus Module Registers

MBASE+$141 Do Not Access Byte $140 M-Bus Address register (MADR)

MBASE+$143 Do Not Access Byte $142 M-Bus Frequency Divider Register (MFDR)

MBASE+$145 Do Not Access Byte $144 M-Bus Control Register (MBCR)

MBASE+$147 Do Not Access Byte $146 M-Bus Status Register (MBSR)

MBASE+$149 Do Not Access Byte $148 M-Bus Data I/O Register (MBDR)

Address SIM Module–Chip Select Registers

System Integration Module

5-22 MC68307 USER’S MANUAL MOTOROLA

5.2.1 System Configuration and Protection Registers
Four reserved long-word entries in the M68000 exception vector table (refer to Table 4-5)
are used as addresses for internal system configuration registers. These entries are at
locations $0F0, $0F4, $0F8, and $0FC. The first entry is the on-chip MBAR entry; the
second is the on-chip SCR entry; the third and fourth entries are reserved for future use by
Motorola. Note that some other manufacturers use these reserved locations for other
purposes, for example, a dedicated set of autovector locations for on-chip peripherals. In the
MC68307, this concept is replaced by programmable interrupt vectors, which can use any
spare block of 16 vector locations, except for the reserved ones.

5.2.1.1 MODULE BASE ADDRESS REGISTER (MBAR). The MBAR can be read or
written at any time. It is a 16-bit read-write location, and resides in the exception vector table,
at address hex $0000F2, in supervisor data space. The MBAR cannot be accessed in user
data space. The register consists of the high address bits, the compare function code bit,
and the function code bits, as shown below. The register should only be accessed with Word
size instructions. Upon a total system reset, the MBAR value may be read as $BFFF, but
this value holds no meaning, and therefore the on-chip peripheral locations cannot be
accessed at any address, until the MBAR is written by the user.

FC2–FC0—Function Codes
This field should be initialized to provide the required function code which is used when
the on-chip registers are accessed. The primary function of this field is to allow the user
to select whether or not the block of registers should be accessible in supervisor data
space only (101B) or user data space only (001B). If both are required, then the CFC bit
should be cleared to 0.

NOTE

Do not assign this field to the M68000 core interrupt acknowl-
edge space (FC2–FC0 = 111).

CFC—Compare Function Codes
This bit allows the system configuration logic to determine whether or not the user wishes
to restrict the on-chip peripheral registers to access by one function code alone, as spec-
ified by the FC2–FC0 bits.

0 = The FCx bits in the MBAR are ignored. Accesses to the MC68307 peripheral reg-
isters block occur without comparing the FCx bits.

1 = The FCx bits in the MBAR are compared. The address space compare logic uses
the FCx bits to detect address matches.

MBAR $0000F2
15 13 12 11 0

FC2–FC0 CFC BA23–BA12

RESET:

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Read/Write Supervisor only

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-23

BA23–BA12—Base Addresses
This field should be initialized to provide the base address for the block of on-chip periph-
eral registers. As only address bits from A12 upwards can be specified, the block of on-
chip locations thus resides at an address which is a multiple of 4096. This block can be
anywhere in the address space, although should not overlap with the other chip selected
areas required in the user's application.

5.2.1.2 SYSTEM CONTROL REGISTER (SCR). The SCR can be read or written at any
time by 8-bit, 16-bit or 32-bit transfers. It is a 32-bit read/write location, and resides in the
exception vector table, at address hex $0000F4–$0000F7, in supervisor data space. The
SCR cannot be accessed in user data space. The register consists of eight status bits (bits
31–24, also called the system status register), and 24 system control bits. The eight system
status bits are normally 0 and are set to 1 by some event in the system. Writing a 0 to these
locations has no effect; writing a 1 clears the status bit.

The meanings of the various bits within this register are described in Section 5.2.1.3
System Status Register Bits Description and Section 5.2.1.4 System Control Register
Bits Description.

5.2.1.3 SYSTEM STATUS REGISTER BITS DESCRIPTION. The following paragraphs
describe the system status register bits.

ADC—Address Decode Conflict
This bit is set when a conflict has occurred in the chip select logic because two or more
chip select lines attempt assertion in the same bus cycle. This conflict may be caused by
a programming error in which the user-allocated memory areas for each chip select over-
lap each other. Provided the ADCE bit is set, if ADC is set this causes BERR to be assert-
ed. If this bit is already set when another address decode conflict occurs, BERR is still
generated. The chip select logic protects the MC68307 from issuing two simultaneous
chip selects by employing a priority system. Write a one to this location to clear the status
bit. Writing a zero has no effect.

SCR $0000F4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADC WPV HWT — RS1–0 — — ADCE WPVE EPCS E8051 BUSW0 BUSW1 BUSW2 BUSW3

RESET:

0 0 0 X 0 0 X X 0 0 0 0 BUSW 1 1 1

Read/Write Supervisor only

SCR continued $0000F6
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HWDE HW2–0 UACW UACD TMCD MBCD LPEN CDEN CKD EBUSW — CD2–0

RESET:

1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0

Read/Write Supervisor only

System Integration Module

5-24 MC68307 USER’S MANUAL MOTOROLA

NOTE

Regardless of the state of the chip select programming, this bit
is not set and BERR is not asserted for an address decode con-
flict occurring during access to a SCR. This is provided to guar-
antee access to the system configuration registers (MBAR and
SCR) during initialization.

WPV—Write-Protect Violation
This bit is set when the EC000 core processor attempts to write to a location that has the
RW bit set to zero (read only) in its associated chip select base register. Provided the
WPVE bit is set, BERR is asserted on the bus cycle that sets this bit. If WPV and WPVE
are both set when a second write protect violation occurs, BERR is still generated. The
chip select is not asserted.
Write a one to this location to clear the status bit. Writing a zero has no effect.

HWT—Hardware Watchdog Timeout
This status bit is set during a bus error (BERR asserted) caused by the hardware watch-
dog timeout reaching its timeout period without a DTACK being received or generated in-
ternally. Note that the bus error occurs even if this status bit is already set.
Write a one to this location to clear the status bit. Writing a zero has no effect.

RS1–RS0 — Reset Source Indication
These bits record the source of the most recent reset condition or wakeup from sleep
mode (not including a peripheral reset initiated by the processor running a RESET instruc-
tion). Writing to these bits has no effect on their set value. The valid combinations are as
follows (RS1 first, then RS0):

00 = Cold reset (power-on)
01 = Cold reset (reset/halt input signals)
10 = Warm reset (software watchdog timeout)
11 = Wakeup from low-power sleep mode (no reset involved)

Bits 28, 25 and 24—Reserved by Motorola
These status bits are as yet undefined, and may be used for Motorola internal test or for
future options. As such they may at times have a 1 or a 0 value. Do not rely on them being
always zero when performing comparisons.

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-25

5.2.1.4 SYSTEM CONTROL REGISTER BITS DESCRIPTION. The following paragraphs
describe the system control register bits.

ADCE—Address Decode Conflict Enable
This bit is used to enable or disable the automatic bus error condition (BERR) which can
be raised when the chip select logic reports an address conflict.

0 = BERR is not asserted by a conflict in the chip select logic when two or more chip
select lines are programmed to overlap the same area.

1 = BERR is asserted by a conflict in the chip select logic when two or more chip select
lines are programmed to overlap the same area.

After cold reset, this bit defaults to zero, so the automatic bus error is disabled.

NOTE

When the chip select logic reports an address conflict, the ADC
bit is set, regardless of the value of ADCE bit.

WPVE—Write-Protect Violation Enable
This bit is used to enable or disable the automatic bus error condition (BERR asserted)
which can be raised when the chip select logic reports a write-protect violation.

0 = BERR is not asserted when a write protect violation occurs.
1 = BERR is asserted when a write protect violation occurs.

After cold reset, this bit defaults to zero, so the automatic bus error is disabled.

NOTE

When the chip select logic reports a write-protect violation, the
WPV bit is set, regardless of the value of the WPVE bit.

EPCS—Enable Peripheral Chip Selects
This bit enables or disables the expansion of chip select 2 and its output pin into 4 individ-
ual peripheral chip selects. For description of usage, refer to Section 5.1.2.2 Peripheral
Chip Selects.

0 = The CS2/CS2A output pin functions as a generic chip select, CS2. The CS2B/PA0,
CS2C/PA1, and CS2D/PA2 pins function as general-purpose input/output PA0,
PA1 and PA2, subject to correct programming of the PACNT.

1 = The CS2/CS2A output pin functions as a the first of four peripheral chip select out-
puts, CS2A. The CS2B/PA0, CS2C/PA1, and CS2D/PA2 pins function as the other
three peripheral chip select outputs, CS2B, CS2C, CS2D, subject to correct pro-
gramming of the PACNT. The block size for this chip select should be 64-Kbytes;
each output signal selects a 16-Kbyte range within the block. If less than four pe-
ripheral chip selects are required, they can be individually enabled/disabled in
PACNT.

System Integration Module

5-26 MC68307 USER’S MANUAL MOTOROLA

E8051—Enable 8051-Compatible Bus
This bit enables or disables the expansion of chip select 3 into an 8051-compatible bus
interface, with ALE, RD and WR pins indicating the timing of an 8-bit multiplexed lower
address/data bus. For description of usage, refer to Section 5.1.2.3 8051-Compatible
Bus Chip Select.

0 = The CS3 output pin functions as a generic M68000-bus chip select.
1 = The CS3 output pin functions as a chip select for the 8051-compatible bus. The ad-

dress latch enable output and RD/WR output strobes are active for this bus cycle.
Each bus cycle has timing which is compatible with 8051 memory and peripherals,
rather than M68000 ones. The lower 8 address lines function as a multiplexed ad-
dress/data bus. The BUSW3 bit should be programmed for 8-bit bus width (value
zero), as the 8051-compatible bus necessitates an 8-bit data-bus width.

BUSW0—Bus Width for Chip-Select 0
This bit defines the data bus width (port size) for the memory device selected by CS0,
which is usually the boot ROM device. BUSW0 controls the bus sizing logic whenever
CS0 asserts on an address match.

0 = The bus width for CS0-controlled memory accesses is 8-bits.
1 = The bus width for CS0-controlled memory accesses is 16-bits.

After cold reset, this bit takes on the logic value which was present on the BUSW external
pin during the reset, thus allowing the boot ROM data width to be selected.

BUSW1—Bus Width for Chip-Select 1
This bit defines the data bus width (port size) for the memory device selected by CS1.
BUSW1 controls the bus sizing logic whenever CS1 asserts on an address match.

0 = The bus width for CS1-controlled memory accesses is 8-bits.
1 = The bus width for CS1-controlled memory accesses is 16-bits.

After cold reset, this bit defaults to one, so the default width for CS1-controlled memory
accesses is 16-bits.

BUSW2—Bus Width for Chip-Select 2
This bit defines the data bus width (port size) for the memory device selected by CS2 and
also the four peripheral chip select outputs (CS2A, CS2B, CS2C, CS2D) if they are en-
abled by the EPCS bit. BUSW2 controls the bus sizing logic whenever CS2 asserts on an
address match.

0 = The bus width for CS2-controlled memory/peripheral accesses is 8-bits.
1 = The bus width for CS2-controlled memory/peripheral accesses is 16-bits.

After cold reset, this bit defaults to one, so the default width for CS2-controlled memory
accesses is 16-bits.

BUSW3—Bus Width for Chip-Select 3
This bit defines the data bus width (port size) for the M68000 memory device selected by
CS3. BUSW3 controls the bus sizing logic whenever CS3 asserts on an address match.

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-27

Note that if the 8051-compatible bus is enabled by the E8051 bit, then CS3 accesses are
required to be an 8-bit data-bus size, and so this bit should be cleared.

0 = The bus width for CS3-controlled memory accesses is 8-bits.
1 = The bus width for CS3-controlled memory accesses is 16-bits.

After cold reset, this bit defaults to one, so the default width for CS3-controlled M68000
memory accesses is 16-bits.

HWDE—Hardware Watchdog Enable
0 = The hardware watchdog is disabled.
1 = The hardware watchdog is enabled.

After cold reset, this bit defaults to one to enable the hardware watchdog.

HW2–HW0—Hardware Watchdog Count 2–0
000 = BERR is asserted after 128 clock cycles (8 µs, 16MHz clock)
001 = BERR is asserted after 256 clock cycles (16 µs, 16MHz clock)
010 = BERR is asserted after 512 clock cycles (32 µs, 16MHz clock)
011 = BERR is asserted after 1K clock cycles (64 µs, 16MHz clock)
100 = BERR is asserted after 2K clock cycles (128 µs, 16MHz clock)
101 = BERR is asserted after 4K clock cycles (256 µs, 16MHz clock)
110 = BERR is asserted after 8K clock cycles (512 µs, 16MHz clock)
111 = BERR is asserted after 16K clock cycles (1 ms, 16MHz clock)

After cold reset, these bits default to all ones; thus, BERR is asserted after 1 ms for a 16-
MHz system clock.

NOTE

Successive timeouts of the hardware watchdog may vary
slightly in length. The counter resolution is 16 clock cycles.

System Integration Module

5-28 MC68307 USER’S MANUAL MOTOROLA

UACW—UART Clock Wakeup
Setting this bit allows a transition on the RxD pin of the UART to cause an automatic re-
start of the UART clock, allowing it to receive a character, even when the UART had its
clock stopped by the setting of the UACD bit. If the UART is configured to cause an inter-
rupt on Rx character or framing error, and the UART interrupt is enabled in the peripheral
interrupt control register, then the reception of a character causes an interrupt and a
wakeup of the EC000 core processor if it was in low-power mode (as enabled by the
LPEN bit).

0 = A transition on RxD does not restart the UART clock if disabled by UACD.
1 = A transition on RxD restarts the UART clock if disabled by UACD.

After a cold reset, this bit is cleared.
Note that software should also handle framing errors if this feature is used, in order to
avoid spurious transitions on RxD causing unnecessary power consumption. If interrupt
on framing error is not enabled in this situation, then the UART module remains active
even if the EC000 core is in low-power mode. The interrupt handler would normally set
the UART and EC000 core back into low-power mode.

UACD—UART Clock Disable
Setting this bit disables the clock to the UART module immediately. As such it should only
be done when no essential data is being transmitted or received by the UART channel.

0 = The clock to the UART module is active.
1 = The clock to the UART module is disabled.

After a cold reset, this bit is cleared, and so the UART clock is active.
Refer also to the description of the UART clock wakeup (UACW bit above).

TMCD—Timer Clock Disable
Setting this bit disables the clock to the timer module immediately. As such it should only
be done when no software task depends on a timer channel timeout for completion, de-
pending on the user's application.

0 = The clock to the timer module is active.
1 = The clock to the timer module is disabled.

After a cold reset, this bit is cleared, and so the timer clock is active.

MBCD—M-Bus Clock Disable
Setting this bit disables the clock to the M-bus module immediately. As such it should only
be done when no essential data is being transmitted or received by the M-bus channel.

0 = The clock to the M-bus module is active.
1 = The clock to the M-bus module is disabled.

After a cold reset, this bit is cleared, and so the M-bus clock is active.

LPEN—Low-Power Sleep Mode Enable
Setting this bit allows the EC000 core processor to be placed into the low-power sleep
mode, stopping its clock input and holding the processor in a known state ready for wake-
up as described previously. The sequence for user software to stop the EC000 core clock

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-29

is first to set the LPEN bit and then to issue a STOP instruction immediately to place the
processor in a known state.

0 =The CPU clock is to be maintained at the programmed frequency.
1 =The CPU should be shut down as the following STOP instruction is executed. The

sleep/wake-up logic coordinates the re-awakening operation when it receives an
interrupt from any source. The STOP instruction should unmask all interrupts so
that the processor will exit from the STOP on wakeup.

After either cold reset or wakeup, this bit is cleared in hardware, and so the processor
clock runs. Note that for minimum power consumption, any unused peripherals can have
their clocks stopped as well, using the UACD, MBCD, CKD and TMCD bits. All these bits
should be programmed in one write cycle. Refer to Section 5.1.5 Low-Power Sleep Log-
ic for further details.

CDEN—Clock Divider Enable
Setting this bit allows the internal clock signal for the EC000 core processor to be reduced
in frequency as programmed in the CD2–CD0 bits.

0 =The CPU clock is to be maintained at the full operating frequency of the system clock
input.

1 =The CPU clock should be maintained with a reduced frequency as programmed in
the clock divider bits (CD2–CD0).

After a cold reset, this bit is cleared, so the EC000 core runs at full speed. This bit is un-
affected by a wake-up, hence if the EC000 core enters sleep mode with a reduced clock
frequency it will wake-up with the same reduced clock frequency. Note that the LPEN bit
always overrides the CDEN/CD2–CD0 setting.

CKD—Clock-Output Disable
This bit allows the MC68307 CLKOUT pin to be disabled after reset, if it is not required
externally. Turning this driver off effectively saves power and reduces potential RFI prob-
lems.

0 = The CLKOUT pin is enabled. The system clock frequency is available.
1 = The CLKOUT pin is disabled, and is driven permanently high.

After cold reset, this bit defaults to zero, thus the CLKOUT pin is active.

EBUSW—Bus Width for Non-Chip-Select Cycles with External DTACK
This bit defines the data bus width (port size) for bus cycles which do not match any of the
programmable chip selects or internal locations, and therefore require an external DTACK
to terminate the cycle.

0 = The bus width for non-chip-selected memory accesses is 8-bits.
1 = The bus width for non-chip-selected memory accesses is 16-bits.

After cold reset, this bit defaults to one, so the default width for non-chip-selected memory
accesses is 16-bits.

Bit 3—Reserved by Motorola
This control bit is as yet undefined, and may be used for Motorola internal test or for future
derivative products. Leave its value as zero always.

System Integration Module

5-30 MC68307 USER’S MANUAL MOTOROLA

CD2–CD0—Low-Power Clock Divider Ratio
Program these bits to specify the frequency of clock signal for the EC000 core processor
when CPU clock division is enabled by the CDEN bit.

After a cold reset , these bits are cleared, so the EC000 core would run at half the system
clock frequency, if the CDEN bit was set. These bits are unaffected by wake-up. For main
low-power sleep (LPEN) operation, the CD2–CD0 and CDEN bit values are ignored.

NOTE

The clock divider ratio should only be changed from one divider
value to another when the CDEN bit is zero, i.e. when the CPU
is operating at full speed. Changing from one reduced speed to
another is not recommended.

5.2.2 Chip Select Registers
Each of the four chip select units has two registers that define its specific operation. These
registers are a 16-bit base register (BR) and a 16-bit option register (OR) (e.g., BR0 and
OR0). These registers may be modified by the EC000 core. The BR should normally be
programmed after the OR since the BR contains the chip select enable bit. Programming
both registers at once using a long word write is also recommended.

5.2.2.1 BASE REGISTERS (BR3–BR0). These 16-bit registers consist of a base address
field, a read-write bit, a function code field and an enable bit.

FC2–FC0—Function Code Field
These bits are used to set the address space function code. The address compare logic
uses these bits to determine whether an address match exists within its address space
and, therefore, whether to assert the chip select line. Although the FC2–FC0 signals are

Value Division Ratio
Frequency from
16MHz EXTAL

000 ÷2 ~8MHz

001 ÷4 ~4MHz

010 ÷8 ~2MHz

011 ÷16 ~1MHz

100 ÷32 ~512kHz

101 ÷64 ~256kHz

110 ÷128 ~128kHz

111 ÷256 ~64kHz

BR0, BR1, BR2, BR3 MBASE+$040, $044, $048, $04C
15 13 12 2 1 0

FC2 FC1 FC0 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 RW EN

RESET:

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Read/Write Supervisor or User

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-31

not available externally on the MC68307, they are still available internally for comparison
purposes.

111 = Not supported; reserved. Chip select does not activate if this value is used
110 = Value may be used
 • •
 • •
000 = Value may be used

After system reset, the FCx field in BR3–BR0 defaults to supervisor program space
(FC=110) to select a ROM device containing the reset vector. Because of the priority
mechanism and the enable (EN) bit, only the CS0 line is active after a system reset.

NOTE

The FCx bits can be masked and ignored by the chip select logic
using the compare function code bit (CFC) in the option register
(ORx).

BA23–BA13—Base Address
These bits are used to set the starting address of a particular address space. The address
compare logic uses only A23–A13 to cause an address match within its block size.
After system reset, the base address defaults to zero to select a ROM device on which
the reset vector resides. All base address values default to zero on system reset, but, be-
cause of the priority mechanism, only CS0 is active.

NOTE

All address bits can be masked and ignored by the chip select
logic through the base address mask in the option register
(ORx).

RW—Read/Write
This bit, in conjunction with the mask read/write bit (MRW) in the option register (ORx),
allows a chip select to assert for only read cycles, only write cycles, or both types of cycle.

0 = The chip select line is asserted for read operations only.
1 = The chip select line is asserted for write operations only.

After system reset, this bit defaults to zero (read-only operation).

NOTE

This bit can be masked and ignored by the read-write compare
logic, as determined by the mask read/write bit (MRW) in the op-
tion register (ORx). The line is then asserted for both read and
write cycles.

On write protect violation cycles (RW=0 and MRW=1), a bus error exception (BERR) is
generated if the write protect violation enable bit (WPVE) in the SCR is set, and the WPV
status bit in the SCR is set so that the exception handler can determine the reason for Bus
Error.

System Integration Module

5-32 MC68307 USER’S MANUAL MOTOROLA

EN—Enable
This bit enables or disables one of the chip select outputs and its associated DTACK gen-
erator. This bit can be set in the same write cycle as the setting of other fields.

0 = The chip select line is disabled.
1 = The chip select line is enabled.

After system reset, all chip selects are enabled, however only chip select 0 asserts due to
the priority mechanism. The chip select does not require disabling before changing its pa-
rameters, although care should be taken if altering the configuration of the chip select that
is currently asserting on the instruction stream, e.g., to relocate ROM to a higher address.
It is best to ensure that both base register and option register are written in one long word
cycle.

5.2.2.2 OPTION REGISTERS (OR3–OR0). These four 16-bit registers consist of a base
address mask field, a read/write mask bit, a compare function code bit, and a DTACK
generation field.

DTACK Field
These bits are used to determine whether DTACK is generated internally with a program-
mable number of wait states or externally by the peripheral. With internal DTACK gener-
ation, zero to six wait states can be automatically inserted before the DTACK pin is
asserted as an output (Refer to Table 5-6).
Chip select 3 when used in the 8051-compatible bus mode, has a minimum of 6 and a
maximum of 12 wait-states. The meaning of the DTACK bits changes accordingly as
shown in the table.

OR0, OR1, OR2, OR3 MBASE+$042, $046, $04A, $04E
15 13 12 2 1 0

DTACK Base Address Mask (M23–M13) MRW CFC

RESET:

1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1

Read/Write Supervisor or User

Table 5-6. DTACK Field Encoding

Bits M68000-Bus Cycles
Description

8051-Compatible Bus Cycles
Description15 14 13

0 0 0 No Wait State 6 Wait States

0 0 1 1 Wait State 7 Wait States

0 1 0 2 Wait States 8 Wait States

0 1 1 3 Wait States 9 Wait States

1 0 0 4 Wait States 10 Wait States

1 0 1 5 Wait States 11 Wait States

1 1 0 6 Wait States 12 Wait States

1 1 1 External DTACK External DTACK

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-33

When all the bits in this field are set to one, DTACK must be generated externally, and the
MC68307 waits for DTACK (input) to terminate its bus cycle.
After system reset, the bits of the DTACK field default to six wait states (M68000 cycles)
or 12 wait states (8051-cycles).
The DTACK generator uses the MC68307 internal processor clock to generate the pro-
grammable number of wait states. The number of wait states remains constant as pro-
grammed even if the processor clock speed is reduced using sleep modes.

NOTE

Do not assert DTACK externally when it is programmed to be
generated internally. The signal is bidirectional, and outputs as
an indication of the internally generated signal.

M23–M13—Base Address Mask
These bits are used to set the block size of a particular chip select line. The address com-
pare logic uses only the address bits that are not masked (i.e., mask bit set to one) to de-
tect an address match within its block size.

0 = The address bit in the corresponding base register (BR) is masked; the address
compare logic does not use this address bit. The corresponding external address
line value is a don't care in the comparison.

1 = The address bit in the corresponding BR is not masked; the address compare logic
uses this address bit.

For example, for a 64-Kbyte block, this field should be M13–M15 = 0 with the rest of the
base address mask bits (M23–M16) equal to one.
After system reset, the bits of the base address mask field default to ones, (selecting the
smallest block size of 8 Kbytes) to allow CS0 to select the ROM device containing the re-
set vector.

MRW—Mask Read/Write
This bit is used to disable or enable the comparison of read or write cycle during the chip
select matching process.

0 = The read/write bit (RW) in the base register (BR) is masked. The chip select is as-
serted for both read and write operations.

1 = The RW bit in the BR is not masked. The chip select is asserted for read-only or
write-only operations as programmed by the corresponding RW bit in BR3–BR0.

After system reset, this bit defaults to zero.

System Integration Module

5-34 MC68307 USER’S MANUAL MOTOROLA

CFC—Compare Function Code
0 = The function code 2-0 bits (FC2–FC0) in the base register (BR) are ignored. The

chip select is asserted without comparing the FCx bits.
1 = The FCx bits on the BR are compared. The address space compare logic uses the

FCx bits to assert the CSx line.
After system reset, this bit defaults to one.

NOTE

Even when CFC=0, if the function code lines are internally gen-
erated as “111” (CPU space cycle), the chip select is not assert-
ed.

5.2.3 External Bus Interface Control Registers
These consist only of the control and data registers associated with the external general-
purpose/dedicated I/O signals. All other configuration of the external bus interface is
contained within either the system configuration or the chip select logic blocks.

5.2.3.1 PORT A CONTROL REGISTER (PACNT). This 8-bit read/write register is used by
the user to specify the function of the I/O lines in port A, the 8-bit I/O port, as general-purpose
I/O, or dedicated I/O for the on-chip peripherals.

From a cold reset, these register bits are all cleared, thus configuring all port A I/O lines as
general-purpose inputs. Bootstrap software must write an appropriate value into PACNT to
reflect the system hardware setup, before any of the peripherals which need port A pins can
be used properly. Pullup resistors may be required if the dedicated peripheral outputs (which
share port A pins) are used, as these signals would otherwise momentarily float at cold reset
until configured in the PACNT register.

CA7–CA0—Port A Pin Assignment Control
These bits are used to determine whether the corresponding port A input/output line are
configured as general-purpose functions or dedicated functions.

0 = The corresponding port A I/O bit is to be a general-purpose I/O bit.
1 = The corresponding port A I/O bit is to be a dedicated I/O bit.

PACNT MBASE+$011
7 0

CA7 CA6 CA5 CA4 CA3 CA2 CA1 CA0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-35

5.2.3.2 PORT A DATA DIRECTION REGISTER (PADDR). This 8-bit read/write register is
used by the user to program the general-purpose I/O lines in port A, the 8-bit I/O port, as
inputs or outputs.

From a cold reset, these register bits are all cleared, configuring all port A I/O lines as
general-purpose inputs. Bootstrap software must write an appropriate value into PADDR if
any of the port A lines are required as outputs. Pullup resistors may be required to solve the
problem of port A I/O lines perhaps floating at cold reset, until PADDR is written. They may
also be required if the peripheral chip select feature (which shares port A pins) is used, as
these signals would otherwise momentarily float at cold reset until configured.

DA7–DA0—Data Direction Field A
These bits are used to determine whether the corresponding port A input/output line are
inputs or latched outputs. As such, the DDR bit for any one port A line is ignored unless
that port A line is configured as general-purpose I/O in the PACNT. If a particular general-
purpose I/O line has its direction changed from an input to an output, the initial data which
appears on that pin is the last data written to the latch by the PADAT register.

0 = The corresponding port A I/O bit is to be an input.
1 = The corresponding port A I/O bit is to be an output.

5.2.3.3 PORT A DATA REGISTER (PADAT). This 8-bit read/write register is used by the
user to read or write the logic states of the general-purpose I/O lines in port A, the 8-bit I/O
port.

From a cold reset, these register bits are all cleared, so when any port A lines are configured
as outputs, a logic zero appears on those pins, unless PADAT is written with an initial data
value to be written.

PA7–PA0—Port A Data Field
If the corresponding port A bit is configured as a general-purpose output in the PADDR
and PACNT, then writing a certain logic value to that bit in the PADAT register enables
that logic level to appear on the output pin. Data written is latched internally, even for pins

PADDR MBASE+$013
7 0

DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

PADAT MBASE+$015
7 0

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

System Integration Module

5-36 MC68307 USER’S MANUAL MOTOROLA

which are not currently configured as outputs. If a port line is reconfigured from being an
input to being an output, then the most recently latched value appears on that pin.
If the corresponding port A bit is configured as a general-purpose input in the PADDR and
PACNT, then the current status of that pin can be read by reading PADAT and examining
the value in that bit position. Reading PADAT bits for pins configured as general-purpose
outputs simply returns the output value as stored in the latch. Reading PADAT bits for pins
configured as dedicated inputs/outputs for on-chip peripherals returns the current state of
the pin, whether it is an input or an output.

1 = The corresponding port A bit (input or output) currently holds a logic 1 (high) value
(read cycle) OR a logic 1 is to be stored to that bit (write cycle).

0 = The corresponding port A bit (input or output) currently holds a logic 0 (low) value
(read cycle) OR a logic 0 is to be stored to that bit (write cycle).

5.2.3.4 PORT B CONTROL REGISTER (PBCNT). This 16-bit read/write register is used by
the user to specify the function of the I/O lines in port B, the 16-bit I/O port, as general-
purpose I/O, or dedicated I/O for the on-chip peripherals.

From a cold reset, these register bits are all cleared, thus configuring all port B I/O lines as
general-purpose inputs. Bootstrap software must write an appropriate value into PBCNT to
reflect the system hardware setup, before any of the peripherals which need port B pins can
be used properly. Pullup resistors may be required if the dedicated peripheral outputs (which
share port B pins) are used, as these signals would otherwise momentarily float at cold reset
until configured in the PBCNT register.

CB15–CB0—Port B Pin Assignment Control
These bits are used to determine whether the corresponding port B input/output line are
configured as general-purpose functions or dedicated functions.

0 = The corresponding port B I/O bit is to be a general-purpose I/O bit.
1 = The corresponding port B I/O bit is to be a dedicated I/O bit.

5.2.3.5 PORT B DATA DIRECTION REGISTER (PBDDR). This 16-bit read/write register
is used by the user to program the general-purpose I/O lines in port B, the 16-bit I/O port,
as inputs or outputs.

From a cold reset, these register bits are all cleared, configuring all port B I/O lines as
general-purpose inputs. Bootstrap software must write an appropriate value into PBDDR if

PBCNT MBASE+$016
15 0

CB15 CB14 CB13 CB12 CB11 CB10 CB9 CB8 CB7 CB6 CB5 CB4 CB3 CB2 CB1 CB0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/Write Supervisor or User

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-37

any of the port B lines are required as outputs. Pullup resistors may be required to solve the
problem of port B I/O lines perhaps floating at cold reset, until PBDDR is written.

Bits 15–0—Data Direction Field B (DB15–DB0)
These bits are used to determine whether the corresponding port B input/output line are
inputs or latched outputs. As such, the DDR bit for any one port B line is ignored unless
that port B line is configured as a general-purpose output in the PBCNT. If a particular
general-purpose I/O line has its direction changed from an input to an output, the initial
data which appears on that pin is the last data written to the latch by the PBDAT register.

0 = The corresponding port B I/O bit is to be an input.
1 = The corresponding port B I/O bit is to be an ouput.

5.2.3.6 PORT B DATA REGISTER (PBDAT). This 16-bit read/write register is used by the
user to read or write the logic states of the general-purpose I/O lines in port B, the 8-bit I/O
port.

From a cold reset, these register bits are all cleared, so when any port B lines are configured
as outputs, a logic zero appears on those pins, unless PBDAT is written with an initial data
value to be written.

PB7–PB0—Port B Data Field
If the corresponding port B bit is configured as a general-purpose output in the PBDDR,
then writing a certain logic value to that bit in the PBDAT register enables that logic level
to appear on the output pin. Data written is latched internally, even for pins which are not
currently configured as outputs. As already mentioned, if a port line is reconfigured from
being an input to being an output, then the most recently latched value appears on that
pin.
If the corresponding port B bit is configured as a general-purpose input in the PBDDR,
then the current status of that pin can be read by reading PBDAT and examining the value
in that bit position. Reading PBDAT bits for pins configured as general-purpose outputs
simply returns the output value as stored in the latch. Reading PBDAT bits for pins con-

PBDDR MBASE+$018
15 0

DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/Write Supervisor or User

PBDAT MBASE+$01A
15 0

PB15 PB14 PB13 PB12 PB11 PB10 PB9 PB8 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/Write Supervisor or User

System Integration Module

5-38 MC68307 USER’S MANUAL MOTOROLA

figured as dedicated inputs/outputs for on-chip peripherals returns the current state of the
pin, whether it is an input or an output.

1 = The corresponding Port B bit (input or output) currently holds a logic 1 (high) value
(read cycle) OR a logic 1 is to be stored to that bit (write cycle).

0 = The corresponding Port B bit (input or output) currently holds a logic 0 (low) value
(read cycle) OR a logic 0 is to be stored to that bit (write cycle).

5.2.4 Interrupt Control Registers
The following paragraphs describe the interrupt control registers.

5.2.4.1 LATCHED INTERRUPT CONTROL REGISTERS 1,2 (LICR1,LICR2). These reg-
isters control the interrupt priorities for the external general-purpose latched interrupt input
signals, and also allow software to reset any pending interrupts from these lines. There are
eight general-purpose latched interrupt inputs altogether, each has four bits assigned to it in
these registers. The registers can be read or written at any time. When read, the data re-
turned is the last value that was written to the register, with the exception of the reset bits,
which are transitory functions. The registers can be accessed by either word (16-bit) or byte
(8-bit) data transfer instructions. An 8-bit write to one half of a register leaves the other half
intact.

PIR1–PIR8—Pending Interrupt Reset 1–8
These bits allow the user to clear any pending interrupt on the interrupt input latch for the
specified input (INT1–INT8). The action of writing a logic 1 to one of these bit positions
clears the latch, so that the interrupt input must be toggled before another interrupt is
latched. It is not necessary to subsequently write a logic 0 to 'release' the reset condition,
this is done internally.
When read, these bits indicate the current value of the latched interrupt, a 1 indicating ac-
tive, a zero inactive.
These bits also enable a new value of the IPL field to be set. Each interrupt channel ig-
nores the value written to its INTxIPL(2–0) field UNLESS the corresponding PIRx bit is

LICR1 MBASE+$020
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIR1 INT1IPL(2–0) PIR2 INT2IPL(2–0) PIR3 INT3IPL(2–0) PIR4 INT4IPL(2–0)

RESET:

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Read/Write Supervisor or User

LICR2 MBASE+$022
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PIR5 INT5IPL(2–0) PIR6 INT6IPL(2–0) PIR7 INT7IPL(2–0) PIR8 INT8IPL(2–0)

RESET:

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

Read/Write Supervisor or User

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-39

set. To avoid altering the IPL field values when only a pending interrupt reset is required,
use an AND.B, AND.W or AND.L operation with an immediate value containing ones for
the PIRx bit positions required to be set, with the corresponding IPL fields set to 111.

1 = The corresponding INT1–INT8 interrupt latch is cleared, so that a pending interrupt
on that line is discarded. The new IPL value for that interrupt source is stored (write
cycle).

0 = The corresponding INT1–INT8 interrupt latch is unaffected. Any pending interrupt
on that line remains pending. The IPL value for that source remains unchanged
(write cycle).

INT1IPL(2–0)–INT8IPL(2–0)—Interrupt Priority Level 1–8
These bits allow the user to specify the IPL for the corresponding general-purpose latched
interrupt input line. When an interrupt occurs, the interrupt controller logic asserts the cor-
rect priority code on the EC000 interrupt level inputs, and respond to the subsequent ac-
knowledge cycle by outputting the correct vector. The IPL for any of the 8 external
interrupt sources INT1–INT8 can only be changed if the corresponding PIRx bit is also
written as 1.

000 = The corresponding INT1–INT8 interrupt line is inhibited and cannot generate
interrupts. Its state can still be read via the port B registers.

001–111= The corresponding INT1–INT8 interrupt line is enabled, and can generate an
interrupt to the EC000 core processor with the indicated priority level.

NOTE

Do not write a 1 to a PIR bit without also supplying the correct
IPL2–IPL0 value for that interrupt channel. The IPL2–IPL0 value
is written, and if ‘000’ is supplied, then that channel is effectively
disabled. Use the AND method as described above.

5.2.4.2 PERIPHERAL INTERRUPT CONTROL REGISTER (PICR). This register controls
the interrupt priorities for the interrupt signals from the MC68307 internal I/O modules, in the
same way as the latched interrupt control registers do so for the external latched interrupt
input lines The modules which can provide interrupts to the EC000 core processor are: the
M-bus interface module, the timer module (both channels), and the UART interface module.
Each of these sources has four bits assigned to it in the peripheral interrupt control register.
The PICR can be read or written at any time. When read, the data returned is the last value
that was written to the register. This register can be accessed by either word (16-bit) or byte
(8-bit) data transfer instructions. An 8-bit write to one half of the register leaves the other half
intact.

PICR MBASE+$024
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— T1IPL(2–0) — T2IPL(2–0) — UAIPL(2–0) — MBIPL(2–0)

RESET:

X 0 0 0 X 0 0 0 X 0 0 0 X 0 0 0

Read/Write Supervisor or User

System Integration Module

5-40 MC68307 USER’S MANUAL MOTOROLA

Interrupt Priority Level Timer 1, Timer 2, UART, MBUS, T1IPL2–0, T2IPL2–0, MBIPL2–0,
UAIPL2–0

These bits allow the user to specify the IPL for the corresponding on-chip peripheral mod-
ule interrupt input line (Timer 1, Timer 2, UART and M-bus respectively). When an inter-
rupt occurs, the interrupt controller logic asserts the correct priority code on the EC000
interrupt level inputs, and respond to the subsequent acknowledge cycle by coordinating
the return of the appropriate vector, as programmed into the programmable interrupt vec-
tor register or UART interrupt vector register.

000 = The corresponding interrupt source is inhibited and cannot generate inter-
rupts.

001 - 111 =The corresponding interrupt source is enabled, and can generate an inter-
rupt to the EC000 core processor with the indicated priority level.

The remaining four bits (Bits 14, 11, 7, 3) are reserved for future implementation, and
should always be written as one. When read, their value should be ignored.

5.2.4.3 PROGRAMMABLE INTERRUPT VECTOR REGISTER (PIVR). This register spec-
ifies the vector numbers which is returned by the interrupt controller in response to Interrupt
Acknowledge cycles for the various peripherals and discrete interrupt sources. The high four
bits of the vector number are programmed in the PIVR, and the low four bits are provided
by the interrupt controller depending on the highest priority source which is currently active
for the specific IPL being responded to in the current acknowledge cycle.

IV7–IV4—Interrupt Vector Numbers 7–4
These bits provide the high four bits of the interrupt vector for interrupt acknowledge cy-
cles from all sources except the UART, which provides its own, unique vector number.
The UART has a separate vector register for historical reasons, due to its compatibility
with the MC68681 DUART.

Bits 3–0—Unused
These bits are ignored on a write cycle, and return 1 on a read cycle. The interrupt con-
troller provides the appropriate encoding on these four bits of the vector (Refer to Section
5.1.4.2 Interrupt Vector Generation).

After cold reset, this register contains the value $0F, although no interrupts are ever
propagated to the CPU until the PIVR is first programmed (not even level 7 interrupts). Only
write to the PIVR after the CPU stack pointer has been set up to point to valid addressable
RAM, i.e., after the chip selects for RAM have been set up.

PIVR MBASE+$027
7 6 5 4 3 2 1 0

IV7 IV6 IV5 IV4 —

RESET:

0 0 0 0 1 1 1 1

Read/Write Supervisor or User

System Integration Module

MOTOROLA MC68307 USER’S MANUAL 5-41

5.3 MC68307 INITIALIZATION PROCEDURE
The following paragraphs describe the initialization procedure.

5.3.1 Startup—Cold Reset
Upon cold reset (power-on reset, RSTIN asserted, RESET and HALT pins asserted or
software watchdog timeout), all external accesses in the first 8K bytes of the memory
address space asserts chip select 0, which should be used to enable a boot ROM device.
Before the chip selects can be set up any other way, the MC68307 on-chip register block
must be located in its desired memory map slot by programming the module base address
register in supervisor data space at address $0000F2. Note that accessing this on-chip
register does not in any way access the ROM on chip select 0, whose address range
includes the MBAR address.

5.3.2 SIM Configuration
The cold reset routine should configure all of the following SIM functions: chip selects, I/O
pin function definition and initial value, interrupt controller IPL levels and vector numbers.
These are the “system integration” features which would not normally be changed
subsequently, although there is nothing to prevent this if required.

MOTOROLA

MC68307 USER’S MANUAL

6-1

SECTION 6
DUAL TIMER MODULE

6.1 OVERVIEW

The MC68307 includes three timer units: two identical general-purpose timers and a soft-
ware watchdog timer.

Each general-purpose timer consists of a timer mode register (TMR), a timer capture regis-
ter (TCR), a 16-bit timer counter (TCN), a timer reference register (TRR), and a timer event
register (TER). The TMR contains the prescaler value programmed by the user. The soft-
ware watchdog timer, which has a watchdog reference register (WRR) and a watchdog
counter (WCN), uses a fixed prescaler value. The timer block diagram is shown in Figure 6-
1.

The two identical general-purpose 16-bit timer units have the following features:

• Maximum Period of 16 Seconds (at 16.67 MHz)

• 60-ns Resolution (at 16.67 MHz)

• Programmable Sources for the Clock Input, Including External Clock

• Input Capture Capability with Programmable Trigger Edge on Input Pins

• Output Compare with Programmable Mode for the Output Pins

• Two Timers Externally Cascadable to Form a 32-Bit Timer

• Free Run and Restart Modes

The watchdog timer has the following features:

• 16-bit Counter and Reference Register

• Maximum Period of 16.78 Seconds (at 16 MHz)

• 0.5 ms Resolution (at 16 MHz)

• Timeout Causes Reset of the MC68307 (CPU and Peripherals).

6.2 MODULE OPERATION

The following paragraphs describe the operation of the dual timer module.

6.2.1 General-Purpose Timer Units

The clock input to the prescaler may be selected from the system clock (divided by 1 or by
16) or from the corresponding timer input (TIN1 or TIN2) pin. TIN is internally synchronized
to the internal clock. The clock input source is selected by the ICLK bits of the corresponding

Thi d t t d ith F M k 4 0 4

Dual Timer Module

6-2

MC68307 USER’S MANUAL

MOTOROLA

TMR. The prescaler is programmed to divide the clock input by values from 1 to 256. The
output of the prescaler is used as an input to the 16-bit counter.

The maximum resolution of the timer is one system clock cycle (60ns at 16.67 MHz). The
maximum period (when the reference value is all ones) is 268,435,456 cycles (16.78 sec-
onds at 16.00 MHz).

Each timer may be configured to count until a reference is reached and then either start a
new time count immediately or continue to run. The free run/restart (FRR) bit of the corre-
sponding TMR selects each mode. Upon reaching the reference value, the corresponding
TER bit is set, and an interrupt is issued if the output reference interrupt enable (ORI) bit in
TMR is set.

Figure 6-1. Timer Block Diagram

TIMER

CLOCK

GENERATOR

DIVIDER

MODE REGISTER

PRESCALER MODE BITS

TIMER COUNTER

15 0

REFERENCE REGISTER

15 0

CAPTURE REGISTER

15 0

15 0

7 0

EVENT REG

CAPTURE

DETECTION

SYSTEM CLOCK
OR SYSTEM
CLOCK/16

TIN1

TOUT1

TIN2

TOUT2

TIMER COUNTER

15 0

REFERENCE REGISTER

15 0

BY 256

INTERNAL
RESET

SYSTEM
CLOCK/16

 TIMER 1

TIMER 2

GENERAL-PURPOSE
TIMERS

WATCHDOG TIMER

CLOCK

D
AT

A
BU

S
(1

6)

DIVIDE

INTERRUPT
CONTROLLER

Dual Timer Module

MOTOROLA

MC68307 USER’S MANUAL

6-3

Each timer may output a signal on the timer output (TOUT1 or TOUT2) pin when the refer-
ence value is reached, as selected by the output mode (OM) bit of the corresponding TMR.
This signal can be an active-low pulse or a toggle of the current output, under program con-
trol. The output can also be used as an input to the other timer, resulting in a 32-bit timer.

Each timer has a 16-bit TCR, which is used to latch the value of the counter when a defined
transition (of TIN1 or TIN2) is sensed by the corresponding input capture edge detector. The
type of transition triggering the capture is selected by the capture edge (CE) bits in the cor-
responding TMR. Upon a capture or reference event, the corresponding TER bit is set, and
a maskable interrupt is issued.

6.2.2 Software Watchdog Timer

A software watchdog timer is used to protect against system failures by providing a means
to escape from unexpected input conditions, external events, or programming errors. The
third 16-bit timer block is used for this purpose. Once started, the software watchdog timer
must be cleared by software on a regular basis so that it never reaches its timeout value.
Upon reaching the timeout value, the assumption is made that a system failure has
occurred, and the software watchdog logic initiates a reset of the MC68307.

The software watchdog timer counts from zero to a maximum of 32768 (16.67 seconds at
16.00 MHz) with a resolution or step size of 8192 clock periods (0.5 ms at 16.00 MHz). This
timer uses a 16-bit counter with an 8-bit prescaler value.

The software watchdog timer uses the system clock divided by 16 as the input to the pres-
caler. The prescaler circuitry divides the clock input by a fixed value of 256. The output of
this prescaler circuitry is connected to the input of the 16-bit counter. Since the least signif-
icant bit of the WCN is not used in the comparison with the WRR reference value, the effec-
tive value of the prescaler is 512.

The timer counts until the reference value is reached and then starts a new time count imme-
diately. Upon reaching the reference value, the counter asserts an internal output to the
MC68307 reset logic. The reset source bits (RS1-RS0) in the system control register (SCR)
are updated with the cause of reset being indicated as software watchdog. Refer to

Section
5.2.1.2 System Control Register (SCR)

 for further details of the RSx bits.

The value of the timer can be read any time.

Dual Timer Module

6-4

MC68307 USER’S MANUAL

MOTOROLA

6.3 PROGRAMMING MODEL

The following paragraphs describe the programming model of the dual timer module.

6.3.1 General Purpose Timer Units

The Timer registers may be modified at any time by the user.

6.3.1.1 TIMER MODE REGISTER (TMR1, TMR2).

TMR1 and TMR2 are identical 16-bit
memory-mapped registers. They are cleared by reset.

PS—Prescaler Value
The prescaler is programmed to divide the clock input by values from 1 to 256. The value
00000000 divides the clock by 1; the value 11111111 divides the clock by 256.

CE1–CE0—Capture Edge and Enable Interrupt
00 = Disable interrupt on capture event
01 = Capture on rising edge only and enable interrupt on capture event
10 = Capture on falling edge only and enable interrupt on capture event
11 = Capture on any edge and enable interrupt on capture event

OM—Output Mode
0 = Active-low pulse for one CLKO clock cycle (60ns at 16.67 MHz)
1 = Toggle output

ORI—Output Reference Interrupt Enable
0 = Disable interrupt for reference reached (does not affect interrupt on capture func-

tion)
1 = Enable interrupt upon reaching the reference value

FRR—Free Run/Restart
0 = Free run: timer count continues to increment after the reference value is reached.
1 = Restart: timer count is reset immediately after the reference value is reached.

ICLK1–ICLK0—Input Clock Source for the Timer
00 = Stop count
01 = Master system clock
10 = Master system clock divided by 16. Note that this clock source is not synchronized

to the timer; thus, successive timeouts may vary slightly in length.
11 = Corresponding TIN pin, TIN1 or TIN2 (falling edge)

TMR1
TMR2

MBASE+$120
MBASE+$130

15 8 7 6 5 4 3 2 1 0

PRESCALER VALUE (PS7–0) CE1–CE0 OM ORI FRR ICLK1–ICLK0 RST

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/Write Supervisor or User

Dual Timer Module

MOTOROLA

MC68307 USER’S MANUAL

6-5

RST—Reset Timer
This bit performs a software reset of the timer similar to that of an external reset, although
while this bit is zero, the other register values can still be written. Effectively, a transition
of this bit from one to zero is what resets the register values. The counter/timer/prescaler
is not clocked unless the timer is enabled.

0 = Reset timer (software reset)
1 = Enable timer

NOTE

After reset, the TOUT signal begins in a high state, but is not
available externally until the port A control register (PACNT) is
configured for this function.

6.3.1.2 TIMER REFERENCE REGISTERS (TRR1, TRR2).

Each TRRx is a 16-bit register
containing the reference value that is compared with the free-running TCN as part of the out-
put compare function. TRR1 and TRR2 are memory-mapped read-write registers.

TRR1 and TRR2 are set to all ones by reset. The reference value is not matched until TCN
increments to equal TRR.

6.3.1.3 TIMER CAPTURE REGISTERS (TCR1, TCR2).

Each TCRx is a 16-bit register
used to latch the value of the TCN during a capture operation when an edge occurs on the
respective TIN1 or TIN2 pin, as programmed in the TMR. TCR1 and TCR2 appear as mem-
ory-mapped read-only registers to the user and are cleared at reset.

6.3.1.4 TIMER COUNTER (TCN1, TCN2).

TCN1 and TCN2 are 16-bit up-counters. Each is
memory-mapped and can be read by the user at any time. A read cycle to TCN1 and TCN2
yields the current value of the timer and does not affect the counting operation.

TRR1
TRR2

MBASE+$122
MBASE+$132

15 0

16-Bit Reference Compare Value REF(15–0)

RESET:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Read/Write Supervisor or User

TCR1
TCR2

MBASE+$124
MBASE+$134

15 0

16-Bit Captured Counter Value CAP(15–0)

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read-only Supervisor or User

Dual Timer Module

6-6

MC68307 USER’S MANUAL

MOTOROLA

A write cycle to TCN1 and TCN2 causes it and the corresponding prescaler to be reset.

6.3.1.5 TIMER EVENT REGISTERS (TER1, TER2).

Each TERx is an 8-bit register used to
report events recognized by any of the timers. On recognition of an event, the timer sets the
appropriate bit in the TER, regardless of the corresponding interrupt enable bits (ORI and
CE) in the TMR.

TER1 and TER2, which appear to the user as memory-mapped registers, may be read at
any time.

A bit is cleared by writing a one to that bit (writing a zero does not affect a bit’s value). More
than one bit may be cleared at a time. Both bits must be cleared before the timer negates
the IRQ to the interrupt controller. This register is cleared at reset.

Bits 7–2—Reserved by Motorola.
These bits are currently zero when read.

REF—Output Reference Event
The counter has reached the TRR value. The ORI bit in the TMR is used to enable the
interrupt request caused by this event. Write a one to this bit to clear the event condition.

CAP—Capture Event
The counter value has been latched into the TCR. The CE bits in the TMR are used to
enable the interrupt request caused by this event. Write a one to this bit to clear the event
condition.

TCN1
TCN2

MBASE+$126
MBASE+$136

15 0

16-Bit Timer Counter Value COUNT(15–0)

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Read/Write Supervisor or User

TER1
TER2

MBASE+$129
MBASE+$139

7 2 1 0

RESERVED, READ AS 0 REF CAP

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

Dual Timer Module

MOTOROLA

MC68307 USER’S MANUAL

6-7

6.3.2 Software Watchdog Timer

The software watchdog timer module has an 8-bit prescaler that is not accessible to the
user, a read-only 16-bit watchdog counter register WCR, and a WRR.

6.3.2.1 WATCHDOG REFERENCE REGISTER (WRR).

The WRR is a 16-bit register con-
taining the reference value for the watchdog timeout. The WRR appears as a memory-
mapped read-write register to the user.

Reset initializes the register to $FFFF, enabling the watchdog timer and setting it to the max-
imum timeout period. This causes a timeout to occur if there is an error in the boot program.

Reference Value
This 15-bit field should be written with the limit value for the corresponding WCR count
bits. It is 15-bits wide because the least-significant bit of the WCR is not compared.

EN — Enable Watchdog
1 = The watchdog timer is enabled, software should periodically write to the WCR lo-

cation, so that the counter never reaches the above reference value.
0 = The watchdog timer is disabled, and does not count.

6.3.2.2 WATCHDOG COUNTER REGISTER (WCR).

The WCR is a 16-bit up-counter,
appears as a memory-mapped register and may be read at any time. Clearing EN in the
WRR causes the counter to be reset and disables the count operation.

A read cycle to WCR causes the current value of the watchdog timer to be read. Reading
the watchdog timer does not affect the counting operation.

A write cycle to WCR causes the counter and prescaler to be reset. A write cycle should be
executed on a regular basis so that the watchdog timer is never allowed to reach the refer-
ence value during normal program operation.

WRR MBASE+$12A

15 0

15-Bit Reference Value REF(15–1) EN

RESET:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Read/Write Supervisor or User

WCR MBASE+$12C

15 0

16-Bit Counter Value COUNT(15–0)

RESET:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Read/Write Supervisor or User

Dual Timer Module

6-8

MC68307 USER’S MANUAL

MOTOROLA

6.4 TIMER PROGRAMMING EXAMPLES

The programming examples below are written in M68000 assembly language. They refer to
symbolic names of MC68307 registers and bit fields within those registers. For access to on-
chip locations, the addressing mode Offset_From(A5) is used. Below is a list of the bit defi-
nitions used in the examples.

* TMRx bit definitions (non-zero cases only)

RST EQU $0001 TMRx RST ; enable timer
ICLK01 EQU $0002 TMRx ICLK ; use system clock
ICLK10 EQU $0004 TMRx ICLK ; use system clock divide by 16
ICLK11 EQU $0006 TMRx ICLK ; use TINx as clock
FRR EQU $0008 TMRx FRR ; restart timer on ref. compare
ORI EQU $0010 TMRx ORI ; enable interrupt on ref. compare
OM EQU $0020 TMRx OM ; toggle TOUTx
CE01 EQU $0040 TMRx CE ; capture on +ve edge clk + interrupt
CE10 EQU $0080 TMRx CE ; capture on -ve edge clk + interrupt
CE11 EQU $00C0 TMRx CE ; capture on both clk edges + interrupt

* TERx bit masks

REF EQU $02 ; isolate TERx REF bit
CAP EQU $01 ; isolate TERx CAP bit

The examples assume that the timer is in a reset state prior to execution of the code
sequence, that is, either this is the first timer access after a system reset or the timer mode
register RST bit has had a programmed transition from 1 to 0.

6.4.1 Initialization and Reference Compare Function

This code sequence starts both timers in an output reference compare mode, outputting a
repeating pulse on each channel’s TOUT pin after a preset period. The reference value and
prescale value have been made different in each case to demonstrate programming of dif-
ferent periods.

Interrupts are disabled in this example. If the ORI bit were also set, interrupts would be
enabled, one for each corresponding TOUTx pulse.

TOUTx is also set to output to a single clock pulse on each match. The alternate mode is
toggle mode, accomplished by also setting the OM bit of TMRx.

Note that the timer mode registers can be programmed in one operation. There is no need
to have separate writes to take the timer out of reset, to program the various modes and then
to finally start the clock.

* Enable timer output pins in port A control register

OR.B #$18,PACNT(A5) ; TOUT1, 2 pins67 dedicated

* Setup timer 1 and timer 2 to run independently of each other
* Both counters reset (and repeat forever) after reference reached
* Both disabled interrupts for reference

Dual Timer Module

MOTOROLA

MC68307 USER’S MANUAL

6-9

* Active-low pulses on TOUT1 and TOUT2
* Both disabled interrupts on capture

* TOUT1 pulse generated every (2 x 9) CPU clocks with no interrupts
* Timer 1 prescaler: divide by 2, reference: divide by 9

MOVE.W #8,TRR1(A5) ; reference value 8
MOVE.W #RST+ICLK01+FRR+$0100,TMR1(A5); value=$010B

* TOUT2 pulse generated every (3 x 7) CPU clocks with no interrupts
* Timer 2 prescalar: divide by 3, reference: divide by 7

MOVE.W #6,TRR2(A5) ; reference value 6
MOVE.W #RST+ICLK01+FRR+$0200,TMR2(A5); value=$020B

6.4.2 Event Counting Function and Interrupts

A variation on the reference compare function demonstrated above is the following example
of event counting with an interrupt to the CPU after N events have been counted.

Note that the reference register is programmed with the compare value before the timer is
started, otherwise a spurious compare may occur. Although the timer channel is in reset
(RST bit = 0), other registers can be accessed.

* Enable timer 1 input pin in port B control register

OR.W #$0040,PBCNT(A5) ; TIN1 pin dedicated

* Set up TIN1 as clock source;
* Interrupt generated every 4 TIN1 clocks, so reference value = 3
* Counter reset after reference reached
* Enable interrupt for reference
* Active-low pulse on TOUT1
* Disable interrupt on capture
* Prescaler: divide by 1

MOVE.W #3,TRR1(A5) ; reference value 3
MOVE.W #RST+ICLK11+FRR+ORI,TMR1(A5) ; value=$001F
STOP $2000 ; wait for IRQ

....

INT_T1;ANDI.B #REF,TER1(A5) ; clear REF event bit
.... ; Process the interrupt

RTE

6.4.3 Input Capture Function

This example provides an interrupt routine that reads the captured timer value each time the
TIN2 pin has a transition from 0 to 1. The timer is programmed to be free-running (FRR bit
not set) and so the reference value is ignored.

Dual Timer Module

6-10

MC68307 USER’S MANUAL

MOTOROLA

Note that the interrupt service routine does not check which event bit is set as the cause of
the interrupt. A more robust system would do this, and indeed a timer channel could have
both interrupt sources enabled.

* Enable timer 2 input pin in port B control register

OR.W #$0080,PBCNT(A5) ; TIN2 pin dedicated

* Capture on TIN2 +ve edge using system clock as clock source
* Get captured timer word in register D5
* Counter free-running
* Disable interrupt for reference
* Enable interrupt on capture on +ve TIN2 edge
* Prescaler: divide by 1

MOVE.W #RST+ICLK01+CE01,TMR2(A5); value=$0043
....

INT_T2:ANDI.B #CAP,TER2(A5) ; clear CAP event bit
MOVE.W TCR2(A5),D5 ; Process the interrupt
RTE

6.4.4 Watchdog Usage Example

The first example shows how to disable the watchdog after system reset if it is not required.
Note that if a RESET instruction is executed, the timer module is reset, and so the watchdog
is enabled again.

* Disable watchdog timer forever

MOVE.W #$0000,WRR(A5) ; clear WRR EN bit

The second example shows setting the watchdog timer to timeout every 10mS unless it is
periodically reset by software. The watchdog is clocked by the system clock divided by 16,
and there is a fixed 8-bit prescaler, so the resulting clock count value increments every
0.24576mS for a 16.67 MHz system clock.

The watchdog reference register is programmed to match on a compare value of 40, to give
an approximate 10mS timeout. Note that the least significant bit of the counter is not com-
pared and the corresponding reference register bit must be 1 to enable the watchdog.

* Program watchdog for 10mS timeout

MOVE.W #$0029,WRR(A5) ; enable = 1, timeout = 40
....

MOVE.W D0,WCR ; tickle watchdog counter

Note that it does not matter what data value is written to the WCR to keep it from timing out.
The example uses D0 as the source, since it results in the fastest executing instruction. (The
CLR instruction on a 68000 reads the location before clearing it.)

MOTOROLA

MC68307 USER’S MANUAL

7-1

SECTION 7
M-BUS INTERFACE MODULE

Motorola bus (in short: M-bus) is a two-wire, bidirectional serial bus which provides a simple,
efficient method of data exchange between devices. It is compatible with the widely-used
I

2

C bus standard. This two wire bus minimizes the interconnection between devices and
eliminates the need for an address decoder.

This bus is suitable for applications which need occasional communications in a short dis-
tance among a number of devices. It also provides flexibility that allows additional devices
to be connected to the bus for further expansion and system developing.

The interface is designed to operate up to 100 Kb/s with maximum bus loading and timing.
The device is capable of operating at higher baud rates, with reduced bus loading. The max-
imum communication length and number of devices that can be connected are limited by a
maximum bus capacitance of 400 pF.

M-bus system is a true multi-master bus including collision detection and arbitration to pre-
vent data corruption if two or more masters attempt to control the bus simultaneously. This
feature provides the capability for complex applications with multi-processor control. It may
also be used for rapid testing and alignment of end products via external connections to an
assembly-line computer.

The M-bus module has the following key features:

• Compatible with I

2

C Bus Standard

• Multi-Master Operation

• Software Programmable for One of 32 Different Serial Clock Frequencies

• Software Selectable Acknowledge Bit

• Interrupt Driven Byte By Byte Data Transfer

• Arbitration Lost Interrupt with Automatic Mode Switching from Master to Slave

• Calling Address Identification Interrupt

• Start and Stop Signal Generation/Detection

• Repeated START Signal Generation

• Acknowledge Bit Generation/Detection

• Bus Busy Detection

A block diagram of the complete M-bus module is shown in Figure 7-1.

Thi d t t d ith F M k 4 0 4

M-Bus Interface Module

7-2

MC68307 USER’S MANUAL

MOTOROLA

7.1 M-BUS SYSTEM CONFIGURATION

The M-bus system uses a serial data line (SDA) and a serial clock line (SCL) for data trans-
fer. All devices connected to it must have open drain or open collector outputs. The logical
AND function is exercised on both lines with pull-up resistors.

7.2 M-BUS PROTOCOL

Normally, a standard communication is composed of four parts: START signal, slave
address transmission, data transfer, and STOP signal. They are described briefly in the fol-
lowing sections and illustrated in Figure 7-2.

Figure 7-1. M-Bus Interface Block Diagram

REGISTERS & M68000 BUS INTERFACE

INPUT

SYNC

IN/OUT

DATA

SHIFT

REGISTER

ADDRESS

COMPARE

SCL SDA

IRQADDR DATA

CLOCK

CONTROL

START,

STOP &

ARBITRATION

CONTROL

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-3

7.2.1 START Signal

When the bus is free, i.e., no master device is engaging the bus (both SCL and SDA lines
are at logical high), a master may initiate communication by sending a START signal. As
shown in Figure 7-2, a START signal is defined as a high-to-low transition of SDA while SCL
is high. This signal denotes the beginning of a new data transfer (each data transfer may
contain several bytes of data) and wakes up all slaves.

7.2.2 Slave Address Transmission

The first byte of data transfer immediately after the START signal is the slave address
transmitted by the master. This is a seven bits long calling address followed by a R/W bit.
The R/W bit tells the slave the desired direction of data transfer.

Only the slave with a calling address that matches the one transmitted by the master
responds by sending back an acknowledge bit. This is done by pulling the SDA low at the
9th clock (refer to Figure 7-2).

7.2.3 Data Transfer

Once successful slave addressing is achieved, the data transfer can proceed byte by byte
in a direction specified by the R/W bit previously sent by the calling master.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held
stable while SCL is high as shown in Figure 7-2. There is one clock pulse on SCL for each
data bit, the MSB being transferred first. Each data byte has to be followed by an acknowl-

Figure 7-2. M-Bus Transmission Signals

SCL

SDA

START
SIGNAL

ACK
BIT

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

STOP
SIGNAL

NO

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

REPEATED

3 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

CALLING ADDRESS READ/ DATA BYTE

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

NEW CALLING ADDRESS

9 9

XX

ACK
BIT

WRITE

START
SIGNAL

START
SIGNAL

ACK
BIT

CALLING ADDRESS READ/
WRITE

STOP
SIGNAL

NO
ACK
BIT

READ/
WRITE

M-Bus Interface Module

7-4

MC68307 USER’S MANUAL

MOTOROLA

edge bit, which is signalled from the receiving device by pulling the SDA low at the 9th clock.
So one complete data byte transfer needs 9 clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the
slave. The master can then generate a stop signal to abort the data transfer or a start signal
(repeated start) to commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission,
it means 'end of data' to the slave, so that the slave should release the SDA line for the mas-
ter to generate STOP or START signal.

7.2.4 Repeated START Signal

As shown in Figure 7-2, a repeated START signal is to generate a START signal without
first generating a STOP signal to terminate the communication. This is used by the master
to communicate with another slave or with the same slave in different mode (transmit/
receive mode) without releasing the bus.

7.2.5 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus.
However, the master may generate a START signal followed by a calling command without
generating a STOP signal first. This is called repeated START. A STOP signal is defined as
a low-to-high transition of SDA while SCL at logical high. (Refer to Figure 7-2).

7.2.6 Arbitration Procedure

M-bus is a true multi-master bus that allows more than one master to be connected on it. If
two or more masters try to control the bus at the same time, a clock synchronization proce-
dure determines the bus clock, for which the low period is equal to the longest clock low
period and the high is equal to the shortest one among the masters. The relative priority of
the contending masters is determined by a data arbitration procedure, a bus master loses
arbitration if it transmits logic “1” while another master transmits logic “0”. The losing masters
immediately switch over to slave receive mode and stop driving SDA output. In this case the
transition from master to slave mode does not generate a STOP condition. Meanwhile, a
status bit is set by hardware to indicate lost of arbitration.

7.2.7 Clock Synchronization

Since wire-AND logic is performed on SCL line, a high-to-low transition on SCL line affects
all the devices connected on the bus. The devices start counting their low period and once
a device's clock has gone low, it holds the SCL line low until the clock high state is reached.
However, the change from low to high in this device clock may not change the state of the
SCL line if another device clock is still within its low period. Therefore, synchronized clock
SCL is held low by the device with the longest low period. Devices with shorter low periods
enter a high wait state during this time (Refer to Figure 7-3). When all devices concerned
have counted off their low period, the synchronized clock SCL line is released and is pulled
high. There is then no difference between the device clocks and the state of the SCL line
and all the devices start counting their high periods. The first device to complete its high
period pulls the SCL line low again.

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-5

7.2.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave
devices may hold the SCL low after completion of one byte transfer (9 bits). In such case, it
halts the bus clock and forces the master clock into wait states until the slave releases the
SCL line.

7.2.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a
transfer. After the master has driven SCL low the slave can drive SCL low for the required
period and then release it. If the slave SCL low period is greater than the master SCL low
period then the resulting SCL bus signal low period is stretched.

7.3 PROGRAMMING MODEL

There are five registers used in the M-bus interface and the internal configuration of these
registers is discussed in the following paragraphs. A block diagram of the M-bus module is
shown in Figure 7-1.

Figure 7-3. M-Bus Clock Synchronization

SCL1

SCL2

SCL

INTERNAL COUNTER RESET

WAIT START COUNTING HIGH PERIOD

M-Bus Interface Module

7-6

MC68307 USER’S MANUAL

MOTOROLA

7.3.1 M-Bus Address Register (MADR)

ADR7–ADR1—Slave Address
This field contains the specific slave address to be used by the M-bus module.

Bit 0—Reserved by Motorola.

7.3.2 M-Bus Frequency Divider Register (MFDR)

Bits 7–5—Reserved by Motorola.

MBC4–MBC0—M-Bus Clock Rate 4–0
This field is used to prescale the clock for bit rate selection. Due to the potential slow rise
and fall times of the SCL and SDA signals the bus signals are sampled at the prescaler
frequency. This sampling incurs an overhead of 6 clocks per SCL pulse. The serial bit
clock frequency is equal to the CPU clock divided by the divider shown in Table 7-1 plus
the sampling overhead of 6 clocks per cycle.
For a 16.67 MHz internal operating frequency, the serial bit clock frequency of M-bus
ranges from 3825 Hz to 595 kHz.

MADR MBASE+$141

7 1 0

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 —

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

MFDR MBASE+$143

7 6 5 4 3 2 1 0

— — — MBC4 MBC3 MBC2 MBC1 MBC0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-7

7.3.3 M-Bus Control Register (MBCR)

MEN—M-Bus Enable
This bit controls the software reset of the entire M-bus module.

1 = The M-bus module is enabled. This bit must be set before any other MBCR bits
have any effect.

0 = The module is reset and disabled. This is the power-on reset situation. When low
the interface is held in reset but registers can still be accessed.

If the M-bus module is enabled in the middle of a byte transfer the interface behaves as
follows. Slave mode ignores the current transfer on the bus and start operating whenever
a subsequent start condition is detected. Master mode is not aware that the bus is busy,
hence if a start cycle is initiated then the current bus cycle may become corrupt. This
would ultimately result in either the current bus master or the M-bus module losing arbi-
tration, after which bus operation would return to normal.

Table 7-1. M-Bus Prescaler values

MBC4–MBC0 Divider MBC4–MBC0 Divider

00000 22 10000 352

00001 24 10001 384

00010 28 10010 448

00011 34 10011 544

00100 44 10100 704

00101 48 10101 768

00110 56 10110 896

00111 68 10111 1088

01000 88 11000 1408

01001 96 11001 1536

01010 112 11010 1792

01011 136 11011 2176

01100 176 11100 2816

01101 192 11101 3072

01110 224 11110 3584

01111 272 11111 4352

MBCR MBASE+$145

7 6 5 4 3 2 1 0

MEN MIEN MSTA MTX TXAK RSTA — —

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

M-Bus Interface Module

7-8

MC68307 USER’S MANUAL

MOTOROLA

MIEN—M-Bus Interrupt Enable
1 = Interrupts from the M-bus module are enabled. An M-bus interrupt occurs provided

the MIF bit in the status register is also set.
0 = Interrupts from the M-bus module are disabled. Note that this does not clear any

currently pending interrupt condition.

MSTA—Master/Slave Mode Select Bit
Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START signal is
generated on the bus, and the master mode is selected. When this bit is cleared, a STOP
signal is generated and the operation mode changes from master to slave.
MSTA is cleared without generating a STOP signal when the master loses arbitration.

1 = Master mode
0 = Slave mode

MTX—Transmit/Receive Mode Select Bit
This bit selects the direction of master and slave transfers. When addressed as a slave
this bit should be set by software according to the SRW bit in the status register. In master
mode this bit should be set according to the type of transfer required. Hence for address
cycles this bit is always high.

1 = Transmit
0 = Receive

TXAK—Transmit Acknowledge Enable
This bit specifies the value driven onto SDA during acknowledge cycles for both master
and slave receivers.

1 = No acknowledge signal response is sent (i.e., acknowledge bit = 1)
0 = An acknowledge signal is sent out to the bus at the 9th clock bit after receiving one

byte data.

RSTA—Repeat Start
Writing a 1 to this bit generates a repeated START condition on the bus, provided we are
the current bus master. This bit is always read as a low. Attempting a repeated start at the
wrong time, if the bus is owned by another master, results in loss of arbitration.

1 = Generate repeat start cycle.
0 = Do not generate repeat start cycle.

Bits 1–0—Reserved by Motorola.

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-9

7.3.4 M-Bus Status Register (MBSR)

This status register is read-only with exception of the MIF and MAL bits, which are software
clearable. All bits are cleared upon reset except the MCF and RXAK bits.

MCF—Data Transferring Bit
While one byte of data is being transferred, this bit is cleared. It is set by the falling edge
of the 9th clock of a byte transfer.

1 = Transfer complete
0 = Transfer in progress

MAAS—Addressed As a Slave Bit
When its own specific address (M-bus address register) is matched with the calling ad-
dress, this bit is set. The CPU is interrupted provided the MIEN is set. Then the CPU
needs to check the SRW bit and set its TX/RX mode accordingly.
Writing to the M-bus control register clears this bit.

1 = Addressed as a slave
0 = Not addressed as a slave

MBB—Bus Busy Bit
This bit indicates the status of the bus. When a START signal is detected, the MBB is set.
If a STOP signal is detected, it is cleared.

1 = Bus is busy
0 = Bus is idle

MAL—Arbitration Lost
The arbitration lost bit (MAL) is set by hardware when the arbitration procedure is lost. Ar-
bitration is lost in the following circumstances:

1.SDA sampled as low when the master drives a high during an address or data trans-
mit cycle.

2.SDA sampled as a low when the master drives a high during the acknowledge bit of
a data receive cycle.

3.A start cycle is attempted when the bus is busy.
4.A repeated start cycle is requested in slave mode.
5.A stop condition is detected when the master did not request it.

This bit must be cleared by software, writing a low to this bit clears it.

Bit 3—Reserved by Motorola.

MBSR MBASE+$147

7 6 5 4 3 2 1 0

MCF MAAS MBB MAL — SRW MIF RXAK

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

M-Bus Interface Module

7-10

MC68307 USER’S MANUAL

MOTOROLA

SRW—Slave Read/Write
When MAAS is set this bit indicates the value of the R/W command bit of the calling ad-
dress sent from master. This bit is only valid when a complete transfer has occurred and
no other transfers have been initiated. Checking this bit, the CPU can select slave trans-
mit/receive mode according to the command of master.

1 = Slave transmit, master reading from slave.
0 = Slave receive, master writing to slave.

MIF—M-Bus Interrupt
The MIF bit is set when an interrupt is pending, which causes a processor interrupt re-
quest provided MIEN is set. MIF is set when one of the following events occurs:

1.Complete one byte transfer (set at the falling edge of the 9th clock).
2.Receive a calling address that matches its own specific address in slave receive

mode.
3.Arbitration lost.

This bit must be cleared by software, writing a low to it, in the interrupt routine.

RXAK—Received Acknowledge
The value of SDA during the acknowledge bit of a bus cycle. If the RXAK is low, it indicates
an acknowledge signal has been received after the completion of 8 bits data transmission
on the bus. If RXAK is high, it means no acknowledge signal is detected at the 9th clock.

1 = No acknowledge received
0 = Acknowledge received

7.3.5 M-Bus Data I/O Register (MBDR)

In master transmit mode, data written into the MBDR is sent to the bus automatically. The
most significant bit is sent first. In master receive mode, reading this register initiates next
byte data receiving. In slave mode, the same function is available after it is addressed.

7.4 M-BUS PROGRAMMING EXAMPLES

The following paragraphs provide programming examples for the M-bus module.

7.4.1 Initialization Sequence

Reset puts the M-bus control register to its default status. Before the interface can be used
to transfer serial data, an initialization procedure must be carried out:

1. Update MFDR, select division ratio required to obtain SCL frequency from system
clock.

MBDR MBASE+$149

7 0

D7 D6 D5 D4 D3 D2 D1 D0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-11

2. Update MADR to define its own slave address.

3. Set MEN bit of MBCR to enable the M-bus interface system.

4. Modify the bits of MBCR to select master/slave mode, transmit/receive mode, interrupt
enable or not.

7.4.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting
the 'master transmitter' mode. If the device is connected to a multi-master bus system, the
state of the M-bus busy bit (MBB) must be tested to check whether the serial bus is free.

If the bus is free (MBB=0), the start condition and the first byte (the slave address) can be
sent. The data written to the data register comprises the slave calling address and the LSB
set to indicate the direction of transfer required from the slave.

The bus free time (i.e. the time between a STOP condition and the following START condi-
tion) is built into the hardware that generates the START cycle. Depending on the relative
frequencies of the system clock and the SCL period it may be necessary to wait until the M-
bus is busy after writing the calling address to the MBDR before proceeding with the follow-
ing instructions. This is illustrated in the following example.

An example of a program which generates the START signal and transmits the first byte of
data (slave address) is shown below:

CHFLAG BTST.B #5,MBSR ; CHECK THE MBB BIT OF THE
BNE.S CHFLAG ; STATUS REGISTER. IF IT IS

; SET, WAIT UNTIL IT IS CLEAR
TXSTART BSET.B #4,MBCR ; SET TRANSMIT MODE

BSET.B #5,MBCR ; SET MASTER MODE
; i.e. GENERATE START CONDITION

MOVE.B CALLING,MBDR ; TRANSMIT THE CALLING
; ADDRESS, D0=R/W

MBFREE BTST.B #5,MBSR ; CHECK THE MBB BIT OF THE
BEQ.S MBFREE ; STATUS REGISTER. IF IT IS

; CLEAR, WAIT UNTIL IT IS SET

7.4.3 Post-Transfer Software Response

Transmission or reception of a byte sets the data transferring bit (MCF) to 1, which indicates
one byte communication is finished. Also the M-bus interrupt bit (MIF) is set, an interrupt is
generated if the interrupt function is enable during initialization by setting the MIEN bit. Soft-
ware must clear the MIF bit in the interrupt routine first. The MCF bit is cleared by reading
from the MBDR in receive mode or writing to MBDR in transmit mode.

Software may service the M-bus I/O in the main program by monitoring the MIF bit if the
interrupt function is disabled. Note that polling should monitor the MIF bit rather than the
MCF bit since their operation is different when arbitration is lost.

M-Bus Interface Module

7-12

MC68307 USER’S MANUAL

MOTOROLA

Note that when an interrupt occurs at the end of the address cycle the master is always in
transmit mode, i.e. the address is transmitted. If master receive mode is required, indicated
by R/W bit in MBDR, then the MTX bit should be toggled at this stage.

During slave mode address cycles (MAAS=1) the SRW bit in the status register is read to
determine the direction of the subsequent transfer and the MTX bit is programmed accord-
ingly. For slave mode data cycles (MAAS=0) the SRW bit is not valid, the MTX bit in the con-
trol register should be read to determine the direction of the current transfer.

The following is an example of a software response by a 'master transmitter' in the interrupt
routine (refer to Figure 7-4).

ISR BCLR.B #1,MBSR ; CLEAR THE MIF FLAG
BTST.B #5,MBCR ; CHECK THE MSTA FLAG,
BEQ.S SLAVE ; BRANCH IF SLAVE MODE
BTST.B #4,MBCR ; CHECK THE MODE FLAG,
BEQ.S RECEIVE ; BRANCH IF IN RECEIVE MODE
BTST.B #0,MBSR ; CHECK ACK FROM RECEIVER
BNE.B END ; IF NO ACK, END OF TRANSMISSION

TRANSMIT MOVE.B DATABUF,MBDR ; TRANSMIT NEXT BYTE OF DATA

7.4.4 Generation of STOP

A data transfer ends with a STOP signal generated by the master device. A master trans-
mitter can simply generate a STOP signal after all the data has been transmitted. The fol-
lowing is an example showing how a stop condition is generated by a master transmitter.

MASTX BTST.B #0,MBSR ; IF NO ACK, BRANCH TO END
BNE.B END
MOVE.B TXCNT,D0 ; GET VALUE FROM THE

; TRANSMITTING COUNTER
BEQ.S END ; IF NO MORE DATA, BRANCH TO

; END
MOVE.B DATABUF,MBDR ; TRANSMIT NEXT BYTE OF DATA
SUBI.B #1,TXCNT ; DECREASE THE TXCNT
BRA.S EMASTX ; EXIT

END BCLR #5,MBCR ; GENERATE A STOP CONDITION
EMASTX RTE ; RETURN FROM INTERRUPT

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter
by not acknowledging the last byte of data which can be done by setting the transmit
acknowledge bit (TXAK) before reading the 2nd last byte of data. Before reading the last
byte of data, a STOP signal must be generated first. The following is an example showing
how a STOP signal is generated by a master receiver.

MASR SUBI.B #1,RXCNT
BEQ.S ENMASR ; LAST BYTE TO BE READ
MOVE.B RXCNT,D1 ; CHECK SECOND LAST BYTE
SUBI.B #1,D1 ; TO BE READ
BNE.S NXMAR ; NOT LAST ONE OR SECOND LAST

LAMAR BSET.B #3,MBCR ; SECOND LAST, DISABLE ACK
; TRANSMITTING

BRA NXMAR

M-Bus Interface Module

MOTOROLA

MC68307 USER’S MANUAL

7-13

ENMASR BCLR.B #5,MBCR ; LAST ONE, GENERATE 'STOP'
; SIGNAL

NXMAR MOVE.B MBDR,RXBUF ; READ DATA AND STORE
RTE

7.4.5 Generation of Repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can gen-
erate another START signal followed by another slave address without first generate a
STOP signal. A program example is as shown.

RESTART BSET.B #2,MBCR ; ANOTHER START (RESTART)
MOVE.B CALLING,MBDR ; TRANSMIT THE CALLING

; ADDRESS, D0=R/W-

7.4.6 Slave Mode

In slave interrupt service routine, the master addressed as slave bit (MAAS) should be
tested to check if a calling of its own address has just been received (refer to Figure 7-4). If
MAAS is set, software should set the transmit/receive mode select bit (MTX bit of MBCR)
according to the R/W command bit (SRW). Writing to the MBCR clears the MAAS automat-
ically. Note that the only time MAAS is read as set is from the interrupt at the end of the
address cycle where an address match occurred; interrupts resulting from subsequent data
transfers clear MAAS. A data transfer may now be initiated by writing information to MBDR,
for slave transmits, or dummy reading from MBDR, in slave receive mode. The slave drives
SCL low between byte transfers, SCL is released when the MBDR is accessed in the
required mode.

In slave transmitter routine, RXAK must be tested before transmitting next byte of data.
When RXAK is set, this signals 'end of data' from the master receiver, which must then
switch from transmitter mode to receiver mode by software. This is followed by a dummy
read, which releases the SCL line so that the master can generate a STOP signal.

7.4.7 Arbitration Lost

Only one master can engage the bus at any one time. Those devices wishing to engage the
bus, but having lost arbitration, switch immediately to slave receive mode by hardware. Their
data output to the SDA line is stopped, but the SCL is still generated until the end of the byte
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of
this transfer with MAL=1 and MSTA=0. If one master attempts to start transmission while
the bus is being engaged by another master, the hardware inhibits the transmission; the
MSTA bit is cleared without generating a STOP condition; an interrupt to CPU is generated
and MAL is set to indicate that the attempt to engage the bus failed. In these cases, the slave
service routine should test MAL first; MAL should be cleared by software if it is set.

M-Bus Interface Module

7-14

MC68307 USER’S MANUAL

MOTOROLA

Figure 7-4. Flow-Chart of Typical M-Bus Interrupt Routine

READ ?

READ ?

CLEAR

MASTER
MODE

?

TX/RX
?

LAST BYTE
TRANSMITTED

?

RXAK=0
?

END OF
ADDR CYCLE
(MASTER RX)

?

WRITE NEXT
BYTE TO MBDR

SWITCH TO
RX MODE

DUMMY READ
FROM MBDR

GENERATE
STOP SIGNAL

READ DATA
FROM MBDR
AND STORE

SET TXAK =1 GENERATE
STOP SIGNAL

2ND LAST
BYTE TO BE

LAST
BYTE TO BE

ARBITRATION
LOST

?

CLEAR MAL

MAAS=1
?

MAAS=1
?

SRW=1
?

TX/RX
?

SET TX
MODE

WRITE DATA
TO MBDR

SET RX
MODE

DUMMY READ
FROM MBDR

ACK FROM
RECEIVER

?

TX NEXT
BYTE

READ DATA
FROM MBDR
AND STORE

SWITCH TO
RX MODE

DUMMY READ
FROM MBDR

RTE

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(WRITE)

(READ)

N

MIF

MOTOROLA

MC68307 USER’S MANUAL

8-1

SECTION 8
SERIAL MODULE

The MC68307 serial module is a universal asynchronous/synchronous receiver/transmitter
that interfaces directly to the CPU. The serial module, shown in Figure 8-1, consists of the
following major functional areas:

• Serial Communication Channel

• Sixteen Bit Timer for Baud Rate Generation

• Internal Channel Control Logic

• Interrupt Control Logic

Figure 8-1. Simplified Block Diagram

SERIAL COMMUNICATIONS

CHANNEL

16-BIT TIMER

FOR BAUD RATE GENERATION

INTERNAL CHANNEL

CONTROL LOGIC

INTERRUPT CONTROL

LOGIC

CTS

RTS

RXD

TXD

SYSTEM CLOCK

Thi d t t d ith F M k 4 0 4

Serial Module

8-2

MC68307 USER’S MANUAL

MOTOROLA

8.1 MODULE OVERVIEW

Features of the serial module are as follows:

• Full-Duplex Asynchronous/Synchronous Receiver/Transmitter Channel

• Quadruple-Buffered Receiver

• Double-Buffered Transmitter

• Independently Programmable Baud Rate for Receiver and Transmitter Selectable from:
— Timer-Generated Baud Rate Up to 260 kbaud

• Programmable Data Format:
— Five to Eight Data Bits Plus Parity

— Odd, Even, No Parity, or Force Parity

— Nine-Sixteenths to Two Stop Bits Programmable in One-Sixteenth Bit Increments

• Programmable Channel Modes:
— Normal (Full Duplex)

— Automatic Echo

— Local Loopback

— Remote Loopback

• Automatic Wakeup Mode for Multidrop Applications

• Eight Maskable Interrupt Conditions

• Parity, Framing, and Overrun Error Detection

• False-Start Bit Detection

• Line-Break Detection and Generation

• Detection of Breaks Originating in the Middle of a Character

• Start/End Break Interrupt/Status

8.1.1 Serial Communication Channel

The communication channel provides a full-duplex asynchronous/synchronous receiver and
transmitter using an operating frequency derived from the system clock.

The transmitter accepts parallel data from the bus, converts it to a serial bit stream, inserts
the appropriate start, stop, and optional parity bits, then outputs a composite serial data
stream on the channel transmitter serial data output (TxD). Refer to

Section 8.3.2.1 Trans-
mitter

 for additional information.

The receiver accepts serial data on the channel receiver serial data input (RxD), converts it
to parallel format, checks for a start bit, stop bit, parity (if any), or break condition, and trans-
fers the assembled character onto the bus during read operations. Refer to

Section 8.3.2.2
Receiver

 for additional information.

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-3

8.1.2 Baud Rate Generator Logic

The Baud rate Generator logic consists of an internal UART clock input which is not avail-
able as an external pin, but is a derivative of the IMBP system clock, a baud-rate generator
(BRG) and a programmable 16-bit timer. The clock serves as the basic timing reference for
the baud-rate generator and other internal circuits.

The 16-bit timer is used to produce a 16X clock for any baud rate by counting down the sys-
tem clock, it acts as a programmable divider. This feature is especially useful for non-stan-
dard system clock frequencies and baud rates.

8.1.3 Baud Rate Generator/Timer

The 16-bit timer is used as a baud rate generator, and provides a synchronous clock mode
of operation when used as a divide-by-1 clock and an asynchronous clock mode when used
as a divide-by-16 clock. This allows flexible baud rates for various system clock rates of the
MC68307, the divisor value being directly programmable.

8.1.4 Interrupt Control Logic

An internal interrupt request signal (IRQ) is provided to notify the MC68307 interrupt control-
ler of an interrupt condition. The output is the logical NOR of all (up to eight) unmasked inter-
rupt status bits in the interrupt status register (UISR).

The interrupt level of the serial module is programmed in the MC68307 interrupt controller
external to the serial module. When an interrupt at this level is acknowledged, the serial
module provides an automatic vector if UART is highest priority at this level.

8.1.5 Comparison of Serial Module to MC68681

The MC68307 is code compatible with the MC68681, except that only channel A is imple-
mented, and the timer/counter is used as a baud rate clock, dividing the MC68307 clock fre-
quency. The input and output port lines (IPx and OPx) are not implemented except for CTS
and RTS functions.

8.2 SERIAL MODULE SIGNAL DEFINITIONS

The following paragraphs contain a brief description of the serial module signals. Figure 8-
2 shows both the external and internal signal groups.

NOTE

The terms

assertion

 and

negation

 are used throughout this sec-
tion to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term

assert

 or

assertion

 indicates
that a signal is active or true, independent of the level represent-
ed by a high or low voltage. The term

negate

 or

negation

 indi-
cates that a signal is inactive or false.

Serial Module

8-4

MC68307 USER’S MANUAL

MOTOROLA

8.2.1 Transmitter Serial Data Output (TxD)

This signal is the transmitter serial data output. The output is held high ('mark' condition)
when the transmitter is disabled, idle, or operating in the local loopback mode. Data is
shifted out on this signal on the falling edge of the clock source, with the least significant bit
transmitted first.

Note that in order to use the TxD signal, the MC68307 port B control register must be set up
to enable the corresponding I/O pin for this function. By default this signal functions as port
B bit 2.

8.2.2 Receiver Serial Data Input (RxD)

This signal is the receiver serial data input. Data received on this signal is sampled on the
rising edge of the clock source, with the least significant bit received first.

Note that in order to use the RxD, the MC68307 port B control register must be set up to
enable the corresponding I/O pin for this function. By default this signal functions as port B
bit 3.

8.2.3 Request-To-Send (RTS)

This active-low output signal can be programmed to be automatically negated and asserted
by either the receiver or transmitter. When connected to the clear-to-send (CTS) input of a
transmitter, this signal can be used to control serial data flow.

Figure 8-2. External and Internal Interface Signals

INTERNAL

CONTROL

LOGIC

FOUR-CHARACTER
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT BUFFER

INPUT PORT

OUTPUT PORT

EX
TE

R
N

AL
 IN

TE
R

FA
C

E
SI

G
N

AL
S

 IN
TE

R
FA

C
E

TO
 C

PU

SE
R

IA
L

M
O

D
U

LE
 IN

TE
R

N
AL

 B
U

S

ADDRESS BUS

CONTROL

DATA

16-BIT TIMER/
BAUD RATE GENERATOR

SYSYTEM CLOCK

IRQ

CTS

RTS

RXD

TXD

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-5

8.2.4 Clear-To-Send (CTS)

This active-low input is the clear-to-send input. It can generate an interrupt on change-of-
state.

Note that in order to use the RTS or CTS signals, the MC68307 port B control register must
be set up to enable the corresponding I/O pins for these functions. By default these signals
function as port B bits 4 and 5 respectively.

8.3 OPERATION

The following paragraphs describe the operation of the baud rate generator, transmitter and
receiver, and other functional operating modes of the serial module.

8.3.1 Baud Rate Generator/Timer

The baud rate generator (see Figure 8-3) consists of a 16-bit timer clocked by the MC68307
system clock. Baud rates are selected by programming a divide value into the 16-bit timer.

8.3.2 Transmitter and Receiver Operating Modes

The functional block diagram of the transmitter and receiver, including command and oper-
ating registers, is shown in Figure 8-4. The paragraphs that follow contain descriptions for
both these functions in reference to this diagram. For detailed register information, refer to

Section 8.4 Register Description and Programming

Figure 8-3. Baud Rate Generator Block Diagram

16-BIT

TIMER

BAUD RATE

GENERATOR

CLOCK

SELECTORS

BAUD RATE GENERATOR

LOGIC

SYSTEM CLOCK

Serial Module

8-6

MC68307 USER’S MANUAL

MOTOROLA

8.3.2.1 TRANSMITTER.

The transmitter is enabled through its command register (UCR)
located within the serial module. The serial module signals the CPU when it is ready to
accept a character by setting the transmitter-ready bit (TxRDY) in the UART status register
(USR). Functional timing information for the transmitter is shown in Figure 8-5.

The transmitter converts parallel data from the CPU to a serial bit stream on TxD. It auto-
matically sends a start bit followed by the programmed number of data bits, an optional par-
ity bit, and the programmed number of stop bits. The least significant bit is sent first. Data is
shifted from the transmitter output on the falling edge of the clock source.

Following transmission of the stop bits, if a new character is not available in the transmitter
holding register, the TxD output remains high ('mark' condition), and the transmitter empty
bit (TxEMP) in the USR is set. Transmission resumes and the TxEMP bit is cleared when
the CPU loads a new character into the transmitter buffer (UTB). If a disable command is
sent to the transmitter, it continues operating until the character in the transmit shift register,
if any, is completely sent out. If the transmitter is reset through a software command, oper-
ation ceases immediately (refer to

Section 8.4.1.5 Command Register (UCR)

). The trans-
mitter is re-enabled through the UCR to resume operation after a disable or software reset.

If clear-to-send operation is enabled, CTS must be asserted for the character to be trans-
mitted. If CTS is negated in the middle of a transmission, the character in the shift register

Figure 8-4. Transmitter and Receiver Functional Diagram

RECEIVER SHIFT REGISTER

COMMAND REGISTER (UCR) W

STATUS REGISTER (USR) R

TRANSMIT SHIFT REGISTER

MODE REGISTER 1 (UMR1) R/W

MODE REGISTER 2 (UMR2) R/W

TRANSMIT HOLDING REGISTER W

RECEIVER HOLDING REGISTER 3

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 1 R
FIFO

RECEIVE

TRANSMIT
BUFFER (TRB)

(2 REGISTERS)

BUFFER (URB)
(4REGISTERS)

CHANNEL A EXTERNAL
INTERFACE

RXD

TXD

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-7

is transmitted, and TxD remains in the 'mark' state until CTS is asserted again. If the trans-
mitter is forced to send a continuous low condition by issuing a send break command, the
state of CTS is ignored by the transmitter.

The transmitter can be programmed to automatically negate the request-to-send (RTS) out-
put upon completion of a message transmission. If the transmitter is programmed to operate
in this mode, RTS must be manually asserted before a message is transmitted. In applica-
tions in which the transmitter is disabled after transmission is complete and RTS is appro-
priately programmed, RTS is negated one bit time after the character in the shift register is
completely transmitted. The transmitter must be manually re-enabled by reasserting RTS
before the next message is to be sent.

Figure 8-5. Transmitter Timing Diagram

C1 C2 C3 C4 C6

W W W W W W W W

C1 C2 C3 C4 STOP
BREAK

START
BREAK

C5
NOT

TRANSMITTED

C6

BREAK

C1 IN
TRANSMISSION

TxD

TRANSMITTER
ENABLED

TxRDY
(SR2)

CS

CTS

RTS

 2

1

NOTES:
 1. TIMING SHOWN FOR UMR2(4) = 1
 2. TIMING SHOWN FOR UMR2(5) = 1
 3. CN = TRANSMIT CHARACTER
 4. W = WRITE

MANUALLY ASSERTED
BY BIT- SET COMMAND

MANUALLY
ASSERTED

Serial Module

8-8

MC68307 USER’S MANUAL

MOTOROLA

8.3.2.2 RECEIVER.

The receiver is enabled through its UCR located within the serial mod-
ule. Functional timing information for the receiver is shown in Figure 8-6. The receiver looks
for a high-to-low (mark-to-space) transition of the start bit on RxD. When a transition is
detected, the state of RxD is sampled each 16

×

 clock for eight clocks, starting one-half clock
after the transition (asynchronous operation) or at the next rising edge of the bit time clock
(synchronous operation). If RxD is sampled high, the start bit is invalid, and the search for
the valid start bit begins again. If RxD is still low, a valid start bit is assumed, and the receiver
continues to sample the input at one-bit time intervals, at the theoretical center of the bit,
until the proper number of data bits and parity, if any, is assembled and one stop bit is
detected. Data on the RxD input is sampled on the rising edge of the programmed clock
source. The least significant bit is received first. The data is then transferred to a receiver
holding register, and the RxRDY bit in the USR is set. If the character length is less than
eight bits, the most significant unused bits in the receiver holding register are cleared.

After the stop bit is detected, the receiver immediately looks for the next start bit. However,
if a non-zero character is received without a stop bit (framing error) and RxD remains low
for one-half of the bit period after the stop bit is sampled, the receiver operates as if a new
start bit is detected. The parity error (PE), framing error (FE), overrun error (OE), and
received break (RB) conditions (if any) set error and break flags in the USR at the received
character boundary and are valid only when the RxRDY bit in the USR is set.

If a break condition is detected (RxD is low for the entire character including the stop bit), a
character of all zeros is loaded into the receiver holding register, and the RB and RxRDY
bits in the USR are set. The RxD signal must return to a high condition for at least one-half
bit time before a search for the next start bit begins.

The receiver detects the beginning of a break in the middle of a character if the break per-
sists through the next character time. When the break begins in the middle of a character,
the receiver places the damaged character in the receiver first-in-first-out (FIFO) stack and
sets the corresponding error conditions and RxRDY bit in the USR. Then, if the break per-
sists until the next character time, the receiver places an all-zero character into the receiver
FIFO and sets the corresponding RB and RxRDY bits in the USR.

8.3.2.3 FIFO STACK.

The FIFO stack is used in the UART's receiver buffer logic. The stack
consists of three receiver holding registers. The receive buffer consists of the FIFO and a
receiver shift register connected to the RxD (refer to Figure 8-4). Data is assembled in the
receiver shift register and loaded into the top empty receiver holding register position of the
FIFO. Thus, data flowing from the receiver to the CPU is quadruple buffered.

In addition to the data byte, three status bits, PE, FE, and RB, are appended to each data
character in the FIFO; OE is not appended. By programming the ERR bit in the channel's
mode register (UMR1), status is provided in character or block modes.

The RxRDY bit in the USR is set whenever one or more characters are available to be read
by the CPU. A read of the receiver buffer produces an output of data from the top of the FIFO
stack. After the read cycle, the data at the top of the FIFO stack and its associated status
bits are 'popped', and new data can be added at the bottom of the stack by the receiver shift

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-9

register. The FIFO-full status bit (FFULL) is set if all three stack positions are filled with data.
Either the RxRDY or FFULL bit can be selected to cause an interrupt.

In the character mode, status provided in the USR is given on a character-by-character
basis and thus applies only to the character at the top of the FIFO. In the block mode, the
status provided in the USR is the logical OR of all characters coming to the top of the FIFO
stack since the last reset error command. A continuous logical OR function of the corre-
sponding status bits is produced in the USR as each character reaches the top of the FIFO
stack. The block mode is useful in applications where the software overhead of checking
each character's error cannot be tolerated. In this mode, entire messages are received, and
only one data integrity check is performed at the end of the message. This mode allows a
data-reception speed advantage, but does have a disadvantage since each character is not
individually checked for error conditions by software. If an error occurs within the message,

Figure 8-6. Receiver Timing Diagram

C6, C7, C8 ARE LOST

RxD

RECEIVER
ENABLED

RxRDY
(SR0)

FFULL
(SR1)

OVERRUN
(SR4)

RTS
(OP0)

1

STATUS DATA STATUS DATA STATUS DATA

CS

RESET BY COMMAND

UOP(0) = 1

C4C3 C5 C6 C7 C8C1 C2

NOTES:
 1. Timing shown for MR1(7) = 1
 2. Timing shown for MR1(6) = 0
 3. R = Read
 4. C = Received Character

N

R R R R RR RR

C1 C2 C3 C4
C5
LOST

STATUS DATA

Serial Module

8-10

MC68307 USER’S MANUAL

MOTOROLA

the error is not recognized until the final check is performed, and no indication exists as to
which character in the message is at fault.

In either mode, reading the USR does not affect the FIFO. The FIFO is 'popped' only when
the receive buffer is read. The USR should be read prior to reading the receive buffer. If all
three of the FIFO's receiver holding registers are full when a new character is received, the
new character is held in the receiver shift register until a FIFO position is available. If an addi-
tional character is received during this state, the contents of the FIFO are not affected. How-
ever, the character previously in the receiver shift register is lost, and the OE bit in the USR
is set when the receiver detects the start bit of the new overrunning character.

To support control flow capability, the receiver can be programmed to automatically negate
and assert RTS. When in this mode, RTS is automatically negated by the receiver when a
valid start bit is detected and the FIFO stack is full. When a FIFO position becomes avail-
able, RTS is asserted by the receiver. Using this mode of operation, overrun errors are pre-
vented by connecting the RTS to the CTS input of the transmitting device.

Note that in order to use the RTS or CTS signals, the MC68307 port B control register must
be set up to enable the corresponding I/O pins for these functions. By default these signals
function as port B bits 4 and 5 respectively.

If the FIFO stack contains characters and the receiver is disabled, the characters in the FIFO
can still be read by the CPU. If the receiver is reset, the FIFO stack and all receiver status
bits, corresponding output ports, and interrupt request are reset. No additional characters
are received until the receiver is re-enabled.

8.3.3 Looping Modes

The UART can be configured to operate in various looping modes as shown in Figure 8-7.
These modes are useful for local and remote system diagnostic functions. The modes are
described in the following paragraphs with further information available in

Section 8.4 Reg-
ister Description and Programming

.

The UART's transmitter and receiver should both be disabled when switching between
modes. The selected mode is activated immediately upon mode selection, regardless of
whether a character is being received or transmitted.

8.3.3.1 AUTOMATIC ECHO MODE.

In this mode, the UART automatically retransmits the
received data on a bit-by-bit basis. The local CPU-to-receiver communication continues nor-
mally, but the CPU-to-transmitter link is disabled. While in this mode, received data is
clocked on the receiver clock and retransmitted on TxD. The receiver must be enabled, but
the transmitter need not be enabled.

Since the transmitter is not active, the TxEMP and TxRDY bits in USR are inactive, and data
is transmitted as it is received. Received parity is checked, but not recalculated for transmis-
sion. Character framing is also checked, but stop bits are transmitted as received. A
received break is echoed as received until the next valid start bit is detected.

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-11

8.3.3.2 LOCAL LOOPBACK MODE.

In this mode, TxD is internally connected to RxD. This
mode is useful for testing the operation of a local serial module channel by sending data to
the transmitter and checking data assembled by the receiver. In this manner, correct chan-
nel operations can be assured. Also, both transmitter and CPU-to-receiver communications
continue normally in this mode. While in this mode, the RxD input data is ignored, the TxD
is held marking, and the receiver is clocked by the transmitter clock. The transmitter must
be enabled, but the receiver need not be enabled.

8.3.3.3 REMOTE LOOPBACK MODE.

In this mode, the channel automatically transmits
received data on the TxD output on a bit-by-bit basis. The local CPU-to-transmitter link is
disabled. This mode is useful in testing receiver and transmitter operation of a remote chan-
nel. While in this mode, the receiver clock is used for the transmitter.

Since the receiver is not active, received data cannot be read by the CPU, and the error sta-
tus conditions are inactive. Received parity is not checked and is not recalculated for trans-
mission. Stop bits are transmitted as received. A received break is echoed as received until
the next valid start bit is detected.

Figure 8-7. Looping Modes Functional Diagram

(a) Automatic Echo

(b) Local Loopback

(c) Remote Loopback

DISABLED

DISABLED

DISABLED

DISABLED

Rx

Tx

Rx

Tx

Rx

Tx TxD
OUTPUT

RxD
INPUT

RxD
INPUT

RxD
INPUT

TxD
OUTPUT

TxD
OUTPUT

DISABLED

DISABLED

CPU

CPU

CPU

DISABLED

DISABLED

Serial Module

8-12

MC68307 USER’S MANUAL

MOTOROLA

8.3.4 Multidrop Mode

The UART can be programmed to operate in a wakeup mode for multidrop or multiprocessor
applications. Functional timing information for the multidrop mode is shown in Figure 8-8.
The mode is selected by setting bits 3 and 4 in mode register 1 (UMR1). This mode of oper-
ation allows the master station to be connected to several slave stations (maximum of 256).
In this mode, the master transmits an address character followed by a block of data charac-
ters targeted for one of the slave stations. The slave stations have their channel receivers
disabled. However, they continuously monitor the data stream sent out by the master sta-
tion. When an address character is sent by the master, the slave receiver channel notifies
its respective CPU by setting the RxRDY bit in the USR and generating an interrupt (if pro-
grammed to do so). Each slave station CPU then compares the received address to its sta-
tion address and enables its receiver if it wishes to receive the subsequent data characters
or block of data from the master station. Slave stations not addressed continue to monitor
the data stream for the next address character. Data fields in the data stream are separated
by an address character. After a slave receives a block of data, the slave station's CPU dis-
ables the receiver and initiates the process again.

A transmitted character from the master station consists of a start bit, a programmed number
of data bits, an address/data (A/D) bit flag, and a programmed number of stop bits. The A/
D bit identifies the type of character being transmitted to the slave station. The character is
interpreted as an address character if the A/D bit is set or as a data character if the A/D bit
is cleared. The polarity of the A/D bit is selected by programming bit 2 of UMR1. UMR1
should be programmed before enabling the transmitter and loading the corresponding data
bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream, regardless
of whether it is enabled or disabled. If the receiver is disabled, it sets the RxRDY bit and
loads the character into the receiver holding register FIFO stack provided the received A/D
bit is a one (address tag). The character is discarded if the received A/D bit is a zero (data
tag). If the receiver is enabled, all received characters are transferred to the CPU via the
receiver holding register stack during read operations.

In either case, the data bits are loaded into the data portion of the stack while the A/D bit is
loaded into the status portion of the stack normally used for a parity error (USR bit 5). Fram-
ing error, overrun error, and break detection operate normally. The A/D bit takes the place
of the parity bit; therefore, parity is neither calculated nor checked. Messages in this mode
may still contain error detection and correction information. One way to provide error detec-
tion, if 8-bit characters are not required, is to use software to calculate parity and append it
to the 5-, 6-, or 7-bit character.

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-13

Figure 8-8. Multidrop Mode Timing Diagram

STATUS DATA STATUS DATA

1 0C0 1ADDR
1

ADDR
2

A/D A/D A/DMASTER STATION

1 0C0 10 ADDR
1

ADDR
2

A/D A/D A/D A/D A/D
PERIPHERAL
STATION

UMR1(2) = 1
W W W W W W

UMR1(2) = 0
ADDR2

ADDR1UMR1(4:3) = 11
UMR1(2) = 1

0

UMR1(4–3) = 11 ADDR
W R R R R R

C0 ADDR

RECEIVER
ENABLED

RxD

CS

TxD

TRANSMITTER
ENABLED

TxRDY
(USR2)

CS

W
ENABLE

Serial Module

8-14

MC68307 USER’S MANUAL

MOTOROLA

8.3.5 Bus Operation

This section describes the operation of the bus during read, write, and interrupt acknowl-
edge cycles to the serial module. All serial module registers must be accessed as bytes.

8.3.5.1 READ CYCLES.

The serial module is accessed by the CPU with zero wait states,
as the MC68307 system clock is also used for the serial module. The serial module
responds to reads with byte data on D7–D0. Reserved registers return logic zero during
reads.

8.3.5.2 WRITE CYCLES.

The serial module is accessed by the CPU with zero wait states.
The serial module accepts write data on D7–D0. Write cycles to read-only registers and
reserved registers complete in a normal manner without exception processing; however, the
data is ignored.

8.3.5.3 INTERRUPT ACKNOWLEDGE CYCLES.

The serial module is capable of arbitrat-
ing for interrupt servicing and supplying the interrupt vector when it has successfully won
arbitration. The vector number must be provided if interrupt servicing is necessary; thus, the
interrupt vector register (UIVR) must be initialized. If the UIVR is not initialized, a spurious
interrupt exception is taken if interrupts are generated. This works in conjunction with the
MC68307 interrupt controller, which allows a programmable IPL for the interrupt.

8.4 REGISTER DESCRIPTION AND PROGRAMMING

This section contains a detailed description of each register and its specific function as well
as flowcharts of basic serial module programming.

8.4.1 Register Description

The operation of the serial module is controlled by writing control bytes into the appropriate
registers. A list of serial module registers and their associated addresses is shown in Table
8-1.

NOTE

All serial module registers are only accessible as bytes. The
contents of the mode registers (UMR1 and UMR2), clock-select
register (UCSR), and the auxiliary control register (UACR) bit 7
should only be changed after the receiver/transmitter is issued a
software RESET command—i.e., channel operation must be
disabled. Care should also be taken if the register contents are
changed during receiver/transmitter operations, as undesirable
results may be produced.

In the registers discussed in the following pages, the numbers above the register description
represent the bit position in the register. The register description contains the mnemonic for
the bit. The values shown below the register description are the values of those register bits
after a hardware reset. A value of U indicates that the bit value is unaffected by reset. The
read/write status is shown in the last line.

Serial Module

MOTOROLA

MC68307 USER’S MANUAL

8-15

8.4.1.1 MODE REGISTER 1 (UMR1).

UMR1 controls some of the serial module configura-
tion. This register can be read or written at any time. It is accessed when the mode register
pointer points to UMR1. The pointer is set to UMR1 by RESET or by a set pointer command,
using the control register. After reading or writing UMR1, the pointer points to UMR2.

RxRTS—Receiver Request-to-Send Control
1 = Upon receipt of a valid start bit, RTS is negated if the UART's FIFO is full. RTS is

reasserted when the FIFO has an empty position available.
0 = The receiver has no effect on RTS.

This feature can be used for flow control to prevent overrun in the receiver by using the
RTS output to control the CTS input of the transmitting device. If both the receiver and
transmitter are programmed for RTS control, RTS control is disabled for both since this
configuration is incorrect. See

Section 8.4.1.2 Mode Register 2 (UMR2)

 for information
on programming the transmitter RTS control.

Table 8-1. Serial Module Programming Model

Address Register Read (R/W = 1) Register Write (R/W = 0)

MBASE+$101 MODE REGISTER (UMR1, UMR2) MODE REGISTER (UMR1, UMR2)
MBASE+$103 STATUS REGISTER (USR) CLOCK-SELECT REGISTER (UCSR)

MBASE+$105 DO NOT ACCESS1 COMMAND REGISTER (UCR)

MBASE+$107 RECEIVER BUFFER (URB) TRANSMITTER BUFFER (UTB)
MBASE+$109 INPUT PORT CHANGE REGISTER (UIPCR) AUXILIARY CONTROL REGISTER (UACR)
MBASE+$10B INTERRUPT STATUS REGISTER (UISR) INTERRUPT MASK REGISTER (UIMR)
MBASE+$10D BAUD RATE GENERATOR PRESCALE MSB (UBG1)
MBASE+$10F BAUD RATE GENERATOR PRESCALE LSB (UBG2)

DO NOT ACCESS1

MBASE+$119 INTERRUPT VECTOR REGISTER (UIVR) INTERRUPT VECTOR REGISTER (UIVR)

MBASE+$11B INPUT PORT REGISTER (UIP) DO NOT ACCESS1

MBASE+$11D DO NOT ACCESS1 OUTPUT PORT BIT SET CMD (UOP1)

2

MBASE+$11F DO NOT ACCESS1 OUTPUT PORT BIT RESET CMD (UOP0)

2

NOTES
1. This address is used for factory testing and should not be read. Reading this location results in undesired effects and

possible incorrect transmission or reception of characters. Register contents may also be changed.
2. Address-triggered commands.

UMR1 MBASE + $101

7 6 5 4 3 2 1 0

RxRTS RxIRQ ERR PM1 PM0 PT B/C1 B/C0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

Serial Module

8-16

MC68307 USER’S MANUAL

MOTOROLA

RxIRQ—Receiver Interrupt Select
1 = FFULL is the source that generates IRQ.
0 = RxRDY is the source that generates IRQ.

ERR—Error Mode
This bit controls the meaning of the three FIFO status bits (RB, FE, and PE) in the USR.

1 = Block mode—The values in the channel USR are the accumulation (i.e., the logical
OR) of the status for all characters coming to the top of the FIFO since the last reset
error status command for the channel was issued. Refer to

Section 8.4.1.5 Com-
mand Register (UCR) for more information on serial module commands.

0 = Character mode—The values in the channel USR reflect the status of the character
at the top of the FIFO.

NOTE

ERR = 0 must be used to get the correct A/D flag information
when in multidrop mode.

PM1–PM0—Parity Mode
These bits encode the type of parity used for the channel (see Table 8-2). The parity bit
is added to the transmitted character, and the receiver performs a parity check on incom-
ing data. These bits can alternatively select multidrop mode for the channel.

PT—Parity Type
This bit selects the parity type if parity is programmed by the parity mode bits, and if mul-
tidrop mode is selected, it configures the transmitter for data character transmission or ad-
dress character transmission. Table 8-2 lists the parity mode and type or the multidrop
mode for each combination of the parity mode and the parity type bits.

Table 8-2. PMx and PT Control Bits

PM1 PM0 Parity Mode PT Parity Type

0 0 With Parity 0 Even Parity

0 0 With Parity 1 Odd Parity

0 1 Force Parity 0 Low Parity

0 1 Force Parity 1 High Parity

1 0 No Parity X No Parity

1 1 Multidrop Mode 0 Data Character

1 1 Multidrop Mode 1 Address Character

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-17

B/C1–B/C0—Bits per Character
These bits select the number of data bits per character to be transmitted. The character
length listed in Table 8-3 does not include start, parity, or stop bits.

8.4.1.2 MODE REGISTER 2 (UMR2). UMR2 controls some of the serial module configura-
tion. It is accessed when the mode register pointer points to UMR2, which occurs after any
access to UMR1. Accesses to UMR2 do not change the pointer.

CM1–CM0—Channel Mode
These bits select a channel mode as listed in Table 8-4. See Section 8.3.3 Looping
Modes for more information on the individual modes.

TxRTS—Transmitter Ready-to-Send
This bit controls the negation of the RTS signal.

1 = In applications where the transmitter is disabled after transmission is complete,
setting this bit causes the particular OP bit to be cleared automatically one bit time
after the characters, if any, in the channel transmit shift register and the transmitter
holding register are completely transmitted, including the programmed number of
stop bits. This feature is used to automatically terminate transmission of a mes-
sage. If both the receiver and the transmitter in the same channel are programmed
for RTS control, RTS control is disabled for both since this is an incorrect configu-
ration.

0 = The transmitter has no effect on RTS.

Table 8-3. B/Cx Control Bits

B/C1 B/C0 Bits/Character

0 0 Five Bits

0 1 Six Bits

1 0 Seven Bits

1 1 Eight Bits

UMR2 MBASE + $101
7 6 5 4 3 2 1 0

CM1 CM0 TxRTS TxCTS SB3 SB2 SB1 SB0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

Table 8-4. CMx Control Bits

CM1 CM0 Mode

0 0 Normal

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback

Serial Module

8-18 MC68307 USER’S MANUAL MOTOROLA

TxCTS—Transmitter Clear-to-Send
1 = Enables clear-to-send operation. The transmitter checks the state of the CTS input

each time it is ready to send a character. If CTS is asserted, the character is trans-
mitted. If CTS is negated, the channel TxD remains in the high state, and the trans-
mission is delayed until CTS is asserted. Changes in CTS while a character is
being transmitted do not affect transmission of that character. If both TxCTS and
TxRTS are enabled, TxCTS controls the operation of the transmitter.

0 = The CTS has no effect on the transmitter.

SB3–SB0—Stop-Bit Length Control
These bits select the length of the stop bit appended to the transmitted character as listed
in Table 8-5. Stop-bit lengths of nine-sixteenth to two bits, in increments of one-sixteenth
bit, are programmable for character lengths of six, seven, and eight bits. For a character
length of five bits, one and one-sixteenth to two bits are programmable in increments of
one-sixteenth bit. In all cases, the receiver only checks for a high condition at the center
of the first stop-bit position—i.e., one bit time after the last data bit or after the parity bit, if
parity is enabled.
If an external 1× clock is used for the transmitter, UMR2 bit 3 = 0 selects one stop bit, and
UMR2 bit 3 = 1 selects two stop bits for transmission.

Table 8-5. SBx Control Bits

SB3 SB2 SB1 SB0 Length 6-8 Bits Length 5 Bits

0 0 0 0 0.563 1.063

0 0 0 1 0.625 1.125

0 0 1 0 0.688 1.188

0 0 1 1 0.750 1.250

0 1 0 0 0.813 1.313

0 1 0 1 0.875 1.375

0 1 1 0 0.938 1.438

0 1 1 1 1.000 1.500

1 0 0 0 1.563 1.563

1 0 0 1 1.625 1.625

1 0 1 0 1.688 1.688

1 0 1 1 1.750 1.750

1 1 0 0 1.813 1.813

1 1 0 1 1.875 1.875

1 1 1 0 1.938 1.938

1 1 1 1 2.000 2.000

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-19

8.4.1.3 STATUS REGISTER (USR). The USR indicates the status of the characters in the
FIFO and the status of the transmitter and receiver.

RB—Received Break
1 = An all-zero character of the programmed length has been received without a stop

bit. The RB bit is only valid when the RxRDY bit is set. Only a single FIFO position
is occupied when a break is received. Further entries to the FIFO are inhibited until
RxD returns to the high state for at least one-half bit time, which is equal to two suc-
cessive edges of the internal or external 1× clock or 16 successive edges of the
external 16× clock.
The received break circuit detects breaks that originate in the middle of a received
character. However, if a break begins in the middle of a character, it must persist
until the end of the next detected character time.

0 = No break has been received.

FE—Framing Error
1 = A stop bit was not detected when the corresponding data character in the FIFO was

received. The stop-bit check is made in the middle of the first stop-bit position. The
bit is valid only when the RxRDY bit is set.

0 = No framing error has occurred.

PE—Parity Error
1 = When the with parity or force parity mode is programmed in the UMR1, the corre-

sponding character in the FIFO was received with incorrect parity. When the mul-
tidrop mode is programmed, this bit stores the received A/D bit. This bit is valid only
when the RxRDY bit is set.

0 = No parity error has occurred.

OE—Overrun Error
1 = One or more characters in the received data stream have been lost. This bit is set

upon receipt of a new character when the FIFO is full and a character is already in
the shift register waiting for an empty FIFO position. When this occurs, the charac-
ter in the receiver shift register and its break detect, framing error status, and parity
error, if any, are lost. This bit is cleared by the reset error status command in the
UCR.

0 = No overrun has occurred.

USR MBASE + $103
7 6 5 4 3 2 1 0

RB FE PE OE TxEMP TxRDY FFULL RxRDY

RESET:

0 0 0 0 0 0 0 0

Read Only Supervisor or User

Serial Module

8-20 MC68307 USER’S MANUAL MOTOROLA

TxEMP—Transmitter Empty
1 = The transmitter has underrun (both the transmitter holding register and transmitter

shift registers are empty). This bit is set after transmission of the last stop bit of a
character if there are no characters in the transmitter holding register awaiting
transmission.

0 = The transmitter buffer is not empty. Either a character is currently being shifted out,
or the transmitter is disabled. The transmitter is enabled/disabled by programming
the TCx bits in the UCR.

TxRDY—Transmitter Ready
1 = The transmitter holding register is empty and ready to be loaded with a character.

This bit is set when the character is transferred to the transmitter shift register. This
bit is also set when the transmitter is first enabled. Characters loaded into the trans-
mitter holding register while the transmitter is disabled are not transmitted.

0 = The transmitter holding register was loaded by the CPU, or the transmitter is dis-
abled.

FFULL—FIFO Full
1 = A character has been received and is waiting in the receiver buffer FIFO.
0 = The FIFO is not full, but may contain up to two unread characters.

RxRDY—Receiver Ready
1 = One or more characters has been received and is waiting in the receiver buffer

FIFO.
0 = The CPU has read the receiver buffer, and no characters remain in the FIFO after

this read.

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-21

8.4.1.4 CLOCK-SELECT REGISTER (UCSR). The UCSR selects the baud rate clock for
the receiver and transmitter. The baud rates listed in Table 8-6 and Table 8-7 are only valid
if an appropriate frequency is used for the MC68307 system clock, for example, 3.6864
MHz. This is not generally the case, and so a more generic method of baud rate generation
is provided by the 16-bit timer. In order to use this mode, program the UCSR to the value
$DD.

RCS3–RCS0—Receiver Clock Select
These bits select the baud rate clock for the receiver from a set of baud rates listed in Ta-
ble 8-6. The baud rate set selected depends upon the auxiliary control register (UACR)
bit 7. Set 1 is selected if UACR bit 7 = 0, and set 2 is selected if UACR bit 7 = 1. The re-
ceiver clock is always 16 times the baud rate shown in this list.

UCSR MBASE + $103
7 6 5 4 3 2 1 0

RCS3 RCS2 RCS1 RCS0 TCS3 TCS2 TCS1 TCS0

RESET:

0 0 0 0 0 0 0 0

Write Only Supervisor or User

Table 8-6. RCSx Control Bits

RCS3 RCS2 RCS1 RCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 TIMER TIMER

1 1 1 0 — —

1 1 1 1 — —

NOTE: These values are only valid for a 3.6864 MHz
MC68307 clock.

Serial Module

8-22 MC68307 USER’S MANUAL MOTOROLA

TCS3–TCS0—Transmitter Clock Select
These bits select the baud rate clock for the transmitter from a set of baud rates listed in
Table 8-7. The baud rate set selected depends upon UACR bit 7. Set 1 is selected if
UACR bit 7 = 0, and set 2 is selected if UACR bit 7 = 1. The transmitter clock is always 16
times the baud rate shown in this list.

Table 8-7. TCSx Control Bits

TCS3 TCS2 TCS1 TCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 TIMER TIMER

1 1 1 0 — —

1 1 1 1 — —

NOTE: These values are only valid for a 3.6864 MHz
MC68307 clock.

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-23

8.4.1.5 COMMAND REGISTER (UCR). The UCR is used to supply commands to the
UART. Multiple commands can be specified in a single write to the UCR if the commands
are not conflicting—e.g., reset transmitter and enable transmitter commands cannot be
specified in a single command.

MISC3–MISC0—Miscellaneous Commands
These bits select a single command as listed in Table 8-8.

Reset Mode Register Pointer—The reset mode register pointer command causes the
mode register pointer to point to UMR1.
Reset Receiver—The reset receiver command resets the receiver. The receiver is imme-
diately disabled, the FFULL and RxRDY bits in the USR are cleared, and the receiver
FIFO pointer is reinitialized. All other registers are unaltered. This command should be
used in lieu of the receiver disable command whenever the receiver configuration is
changed because it places the receiver in a known state.
Reset Transmitter—The reset transmitter command resets the transmitter. The transmit-
ter is immediately disabled, and the TxEMP and TxRDY bits in the USR are cleared. All
other registers are unaltered. This command should be used in lieu of the transmitter dis-
able command whenever the transmitter configuration is changed because it places the
transmitter in a known state.
Reset Error Status—The reset error status command clears the RB, FE, PE, and OE bits
(in the USR). This command is also used in the block mode to clear all error bits after a
data block is received.
Reset Break-Change Interrupt—The reset break-change interrupt command clears the
delta break (DBx) bits in the UISR.
Start Break—The start break command forces TxD low. If the transmitter is empty, the
start of the break conditions can be delayed up to one bit time. If the transmitter is active,

UCR MBASE + $105
7 6 5 4 3 2 1 0

— MISC2 MISC1 MISC0 TC1 TC0 RC1 RC0

RESET:

0 0 0 0 0 0 0 0

Write Only Supervisor or User

Table 8-8. MISCx Control Bits

MISC2 MISC1 MISC0 Command

0 0 0 No Command

0 0 1 Reset Mode Register Pointer

0 1 0 Reset Receiver

0 1 1 Reset Transmitter

1 0 0 Reset Error Status

1 0 1 Reset Break-Change Interrupt

1 1 0 Start Break

1 1 1 Stop Break

Serial Module

8-24 MC68307 USER’S MANUAL MOTOROLA

the break begins when transmission of the character is complete. If a character is in the
transmitter shift register, the start of the break is delayed until the character is transmitted.
If the transmitter holding register has a character, that character is transmitted after the
break. The transmitter must be enabled for this command to be accepted. The state of the
CTS input is ignored for this command.
Stop Break—The stop break command causes TxD to go high (mark) within two bit times.
Characters stored in the transmitter buffer, if any, are transmitted.

TC1–TC0—Transmitter Commands
These bits select a single command as listed in Table 8-9.

No Action Taken—The no action taken command causes the transmitter to stay in its cur-
rent mode. If the transmitter is enabled, it remains enabled; if disabled, it remains dis-
abled.
Transmitter Enable—The transmitter enable command enables operation of the channel's
transmitter. The TxEMP and TxRDY bits in the USR are also set. If the transmitter is al-
ready enabled, this command has no effect.
Transmitter Disable—The transmitter disable command terminates transmitter operation
and clears the TxEMP and TxRDY bits in the USR. However, if a character is being trans-
mitted when the transmitter is disabled, the transmission of the character is completed be-
fore the transmitter becomes inactive. If the transmitter is already disabled, this command
has no effect.
Do Not Use—Do not use this bit combination because the result is indeterminate.

RC1–RC0—Receiver Commands
These bits select a single command as listed in Table 8-10.

No Action Taken—The no action taken command causes the receiver to stay in its current
mode. If the receiver is enabled, it remains enabled; if disabled, it remains disabled.
Receiver Enable—The receiver enable command enables operation of the channel's re-
ceiver. If the serial module is not in multidrop mode, this command also forces the receiver

Table 8-9. TCx Control Bits

TC1 TC0 Command

0 0 No Action Taken

0 1 Enable Transmitter

1 0 Disable Transmitter

1 1 Do Not Use

Table 8-10. RCx Control Bits

RC1 RC0 Command

0 0 No Action Taken

0 1 Enable Receiver

1 0 Disable Receiver

1 1 Do Not Use

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-25

into the search-for-start-bit state. If the receiver is already enabled, this command has no
effect.
Receiver Disable—The receiver disable command disables the receiver immediately. Any
character being received is lost. The command has no effect on the receiver status bits or
any other control register. If the serial module is programmed to operate in the local loop-
back mode or multidrop mode, the receiver operates even though this command is select-
ed. If the receiver is already disabled, this command has no effect.
Do Not Use—Do not use this bit combination because the result is indeterminate.

8.4.1.6 RECEIVER BUFFER (URB). The receiver buffer contains three receiver holding
registers and a serial shift register. The RxD pin is connected to the serial shift register. The
holding registers act as a FIFO. The CPU reads from the top of the stack while the receiver
shifts and updates from the bottom of the stack when the shift register has been filled (see
Figure 8-4).

RB7–RB0—These bits contain the character in the receiver buffer.

8.4.1.7 TRANSMITTER BUFFER (UTB). The transmitter buffer consists of two registers,
the transmitter holding register and the transmitter shift register (see Figure 8-3). The hold-
ing register accepts characters from the bus master if the TxRDY bit in the channel's USR
is set. A write to the transmitter buffer clears the TxRDY bit, inhibiting any more characters
until the shift register is ready to accept more data. When the shift register is empty, it checks
to see if the holding register has a valid character to be sent (TxRDY bit cleared). If there is
a valid character, the shift register loads the character and reasserts the TxRDY bit in the
USR. Writes to the transmitter buffer when the channel's USR TxRDY bit is clear and when
the transmitter is disabled have no effect on the transmitter buffer.

TB7–TB0—These bits contain the character in the transmitter buffer.

URB MBASE + $107
7 6 5 4 3 2 1 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

RESET:

0 0 0 0 0 0 0 0

Read Only Supervisor or User

UTB MBASE + $107
7 6 5 4 3 2 1 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

RESET:

0 0 0 0 0 0 0 0

Write Only Supervisor or User

Serial Module

8-26 MC68307 USER’S MANUAL MOTOROLA

8.4.1.8 INPUT PORT CHANGE REGISTER (UIPCR). The UIPCR shows the current state
and the change-of-state for the CTS pin.

Bits 7, 6, 5, 3, 2, 1—Reserved by Motorola.

COS—Change-of-State
1 = A change-of-state (high-to-low or low-to-high transition), lasting longer than 25–50

µs has occurred at the corresponding IPx input. When these bits are set, the UACR
can be programmed to generate an interrupt to the CPU.

0 = No change-of-state has occurred since the last time the CPU read the UIPCR. A
read of the UIPCR also clears the UISR COS bit.

CTS—Current State
Starting two serial clock periods after reset, the CTS bit reflects the state of the CTS pin.
If the CTS pin is detected as asserted at that time, the COS bit is set, which initiates an
interrupt if the IEC bit of the UACR register is enabled.

1 = The current state of the CTS input is logic one.
0 = The current state of the CTS input is logic zero.

8.4.1.9 AUXILIARY CONTROL REGISTER (UACR). The UACR selects which baud rate is
used and controls the handshake of the transmitter/receiver.

BRG—Baud Rate Generator Set Select
1 = Set 2 of the available baud rates is selected.
0 = Set 1 of the available baud rates is selected. Refer to Section 8.4.1.4 Clock-select

Register (UCSR) for more information on the baud rates.

UIPCR MBASE + $109
7 6 5 4 3 2 1 0

0 0 0 COS 1 1 1 CTS

RESET:

0 0 0 0 0 1 1 CTS

Read Only Supervisor or User

UACR MBASE + $109
7 6 5 4 3 2 1 0

BRG CTMS2 CTMS1 CTMS0 — — — IEC

RESET:

0 0 0 0 0 0 0 0

Write Only Supervisor or User

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-27

CTMS2–0—Timer Mode and Source Select
Table 8-11 shows the timer mode and source select bit fields.

IEC—Input Enable Control
1 = UISR bit 7 is set and an interrupt is generated when the COS bit in the UIPCR is

set by an external transition on the CTS input (if bit 7 of the interrupt mask register
(UIMR) is set to enable interrupts).

0 = Setting the corresponding bit in the UIPCR has no effect on UISR bit 7.

8.4.1.10 INTERRUPT STATUS REGISTER (UISR). The UISR provides status for all poten-
tial interrupt sources. The contents of this register are masked by the UIMR. If a flag in the
UISR is set and the corresponding bit in UIMR is also set, the internal interrupt output is
asserted. If the corresponding bit in the UIMR is cleared, the state of the bit in the UISR has
no effect on the output.

NOTE

The UIMR does not mask reading of the UISR. True status is
provided regardless of the contents of UIMR. The contents of
UISR are cleared when the serial module is reset.

COS—Change-of-State
1 = A change-of-state has occurred at the CTS input and has been selected to cause

an interrupt by programming bit 0 of the UACR.
0 = COS bit in the UIPCR is not selected.

DB—Delta Break
1 = The receiver has detected the beginning or end of a received break.
0 = No new break-change condition to report. Refer to Section 8.4.1.5 Command

Register (UCR) for more information on the reset break-change interrupt com-
mand.

RxRDY—Receiver Ready or FIFO Full
The function of this bit is programmed by UMR1 bit 6. It is a duplicate of either the

FFULL or RxRDY bit of USR.

Table 8-11. Timer Mode and Source Select Bits

CTMS2 CTMS1 CTMS0 Mode Command Clock Source Select Command

0 1 1 Counter Crystal or External Clock

NOTE: Other values are invalid on the MC68307 and should not be used.

UISR MBASE + $10B
7 6 5 4 3 2 1 0

COS — — — — DB RxRDY TxRDY

RESET:

0 0 0 0 0 0 0 0

Read Only Supervisor or User

Serial Module

8-28 MC68307 USER’S MANUAL MOTOROLA

TxRDY—Transmitter Ready
This bit is the duplication of the TxRDY bit in USR.

1 = The transmitter holding register is empty and ready to be loaded with a character.
0 = The transmitter holding register was loaded by the CPU, or the transmitter is dis-

abled. Characters loaded into the transmitter holding register when TxRDY=0 are
not transmitted.

8.4.1.11 INTERRUPT MASK REGISTER (UIMR). The UIMR selects the corresponding bits
in the UISR that cause an interrupt. If one of the bits in the UISR is set and the corresponding
bit in the UIMR is also set, the internal interrupt output is asserted. If the corresponding bit
in the UIMR is zero, the state of the bit in the UISR has no effect on the interrupt output. The
UIMR does not mask the reading of the UISR.

COS—Change-of-State
1 = Enable interrupt
0 = Disable interrupt

DB—Delta Break
1 = Enable interrupt
0 = Disable interrupt

FFULL—FIFO Full
1 = Enable interrupt
0 = Disable interrupt

TxRDY—Transmitter Ready
1 = Enable interrupt
0 = Disable interrupt

UIMR MBASE + $10B
7 6 5 4 3 2 1 0

COS — — — — DB FFULL TxRDY

RESET:

0 0 0 0 0 0 0 0

Write Only Supervisor or User

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-29

8.4.1.12 TIMER UPPER PRELOAD REGISTER (UBG1). This register holds the eight most
significant bits of the preload value to be used by the timer in order to provide a given baud
rate. The minimum value that can be loaded on the concatenation of UBG1 with UBG2 is
$0002. This register is write only and cannot be read by the CPU.

8.4.1.13 TIMER UPPER PRELOAD REGISTER (UBG2). This register holds the eight least
significant bits of the preload value to be used by the timer in order to provide a given baud
rate. The minimum value that can be loaded on the concatenation of UBG1 with UBG2 is
$0002. This register is write only and cannot be read by the CPU.

8.4.1.14 INTERRUPT VECTOR REGISTER (UIVR). The UIVR contains the 8-bit vector
number of the internal interrupt. See Section 5.1.4.2 Interrupt Vector Generation,

IVR7–IVR0—Interrupt Vector Bits
This 8-bit number indicates the offset from the base of the vector table where the address
of the exception handler for the specified interrupt is located. The UIVR is reset to $0F,
which indicates an uninitialized interrupt condition. See Section 5.1.4.2 Interrupt Vector
Generation for more information.

8.4.1.15 INPUT PORT REGISTER (UIP). The UIP register shows the current state of the
CTS input.

CTS—Current State
1 = The current state of the CTS input is logic one.
0 = The current state of the CTS input is logic zero.

The information contained in this bit is latched and reflects the state of the input pin at the
time that the UIP is read.

NOTE

This bit has the same function and value as the UIPCR bit 0.

UIVR MBASE + $119
7 6 5 4 3 2 1 0

IVR7 IVR6 IVR5 IVR4 IVR3 IVR2 IVR1 IVR0

RESET:

0 0 0 0 0 0 0 0

Read/Write Supervisor or User

UIP MBASE + $11B
7 6 5 4 3 2 1 0

— — — — — — — CTS

RESET:

1 1 1 1 1 1 1 1

Read Only Supervisor or User

Serial Module

8-30 MC68307 USER’S MANUAL MOTOROLA

8.4.1.16 OUTPUT PORT DATA REGISTERS (UOP1, UOP0). The RTS output is set by
performing a bit set command (writing to UOP1) and is cleared by performing a bit reset
command (writing to UOP0).

Bit Set

RTS—Output Port Parallel Output
1 = A write cycle to the OP bit set command address sets all OP bits corresponding to

one bits on the data bus.
0 = These bits are not affected by writing a zero to this address.

NOTE

The output port bits are inverted at the pins, so the RTS set bit
provides an asserted RTS pin.

Bit Reset

RTS—Output Port Parallel Output
1 = A write cycle to the OP bit reset command address clears all OP bits corresponding

to one bits on the data bus.
0 = These bits are not affected by writing a zero to this address.

8.4.2 Programming
The basic interface software flowchart required for operation of the serial module is shown
in Figure 8-9. The routines are divided into three categories:

• Serial Module Initialization

• I/O Driver

• Interrupt Handling

UOP1 MBASE + $11D
7 6 5 4 3 2 1 0

RTS

RESET:

— — — — — — — 0

Write Only Supervisor or User

UOP0 MBASE + $11F
7 6 5 4 3 2 1 0

RTS

RESET:

— — — — — — — —

Write Only Supervisor or User

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-31

8.4.2.1 SERIAL MODULE INITIALIZATION. The serial module initialization routines con-
sist of SINIT and CHCHK. SINIT is called at system initialization time to check UART oper-
ation. Before SINIT is called, the calling routine allocates two words on the system stack.
Upon return to the calling routine, SINIT passes information on the system stack to reflect
the status of the UART. If SINIT finds no errors, the receiver and transmitter are enabled.
The CHCHK routine performs the actual checks as called from the SINIT routine. When
called, SINIT places the UART in the local loopback mode and checks for the following er-
rors:

• Transmitter Never Ready

• Receiver Never Ready

• Parity Error

• Incorrect Character Received

8.4.2.2 I/O DRIVER EXAMPLE. The I/O driver routines consist of INCH and OUTCH. INCH
is the terminal input character routine and gets a character from the receiver. OUTCH is
used to send a character to the transmitter.

8.4.2.3 INTERRUPT HANDLING. The interrupt handling routine consists of SIRQ, which is
executed after the serial module generates an interrupt caused by a change-in-break
(beginning of a break). SIRQ then clears the interrupt source, waits for the next change-in-
break interrupt (end of break), clears the interrupt source again, then returns from exception
processing to the system monitor.

8.5 SERIAL MODULE INITIALIZATION SEQUENCE
If the serial capability of the MC68307 is being used, the following steps are required to prop-
erly initialize the serial module.

NOTE

The serial module registers can be accessed by word or byte op-
erations, but only the data byte D7–D0 is valid.

Command Register (UCR)

• Reset the Receiver and Transmitter.

Interrupt Vector Register (UIVR)

• Program the Vector Number for a Serial Module Interrupt.

Interrupt Mask Register (UIMR)

• Enable the Desired Interrupt Sources.

Auxiliary Control Register (UACR)

• Select Baud Rate Set (BRG bit).

• Initialize the Input Enable Control (IEC bit).

• Select Timer Mode and Clock Source if Necessary.

Serial Module

8-32 MC68307 USER’S MANUAL MOTOROLA

Clock Select Register (UCSR)

• Select the Receiver and Transmitter Clock. Use Timer as Source if Required.

Mode Register 1 (UMR1)

• If Desired, Program Operation of Receiver Ready-to-Send (RxRTS Bit).

• Select Receiver-Ready or FIFO-Full Notification (R/F Bit).

• Select Character or Block Error Mode (ERR Bit).

• Select Parity Mode and Type (PM and PT Bits).

• Select Number of Bits Per Character (B/Cx Bits).

Mode Register 2 (UMR2)

• Select the Mode of Operation (CMx bits).

• If Desired, Program Operation of Transmitter Ready-to-Send (TxRTS Bit).

• If Desired, Program Operation of Clear-to-Send (TxCTS Bit).

• Select Stop-Bit Length (SBx Bits).

Command Register (UCR)

• Enable the Receiver and Transmitter.

Figure 8-9. Serial Mode Programming Flowchart (1 of 5)

SERIAL MODULE

INITIATE:

CHANNEL
INTERRUPTS

SAVE CHANNEL
STATUS

ANY
ERRORS

?

ENABLE RECEIVER

ASSERT
REQUEST TO SEND

RETURN

SINIT

CHK1

ENABLA

Y

N

SINITR

CALL CHCHK

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-33

Figure 8-9. Serial Mode Programming Flowchart (2 of 5)

Y

N

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK

MODE

ENABLE
TRANSMITTER CLEAR

STATUS WORD

IS
TRANSMITTER

READY
?

WAITED
TOO LONG

?

WAITED
TOO LONG

?

N

Y

SEND CHARACTER
TO TRANSMITTER

HAS
CHARACTER BEEN

RECEIVED
?

CHCHK

TxCHK

SNDCHR

RxCHK
N

YN

SET TRANSMITTER-
NEVER-READY FLAG

SET RECEIVER-
NEVER-READY FLAG

A B

Y

Serial Module

8-34 MC68307 USER’S MANUAL MOTOROLA

Figure 8-9. Serial Mode Programming Flowchart (3 of 5)

B

Y

N

N

A

Y

A B

Y

N

RETURN

HAVE
FRAMING ERROR

?

SET FRAMING
ERROR FLAG

HAVE
PARITY ERROR

?

SET PARITY
ERROR FLAG

GET CHARACTER
FROM RECEIVER

SAME AS
TRANSMITTED
CHARACTER

?

SET INCORRECT
CHARACTER FLAG

DISABLE
TRANSMITTER

RESTORE
TO ORIGINAL MODE

FRCHK RSTCHN

PRCHK

CHRCHK

Serial Module

MOTOROLA MC68307 USER’S MANUAL 8-35

Figure 8-9. Serial Mode Programming Flowchart (4 of 5)

WAS
IRQ CAUSED

BY BEGINNING
OF A BREAK

?

CLEAR CHANGE-IN-
BREAK STATUS BIT

HAS
END-OF-BREAK
IRQ ARRIVED

YET
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

REMOVE BREAK
CHARACTER FROM

RECEIVER FIFO

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

RTE

SIRQR

N

Y

N

DOES
CHANNEL A

RECEIVER HAVE A
CHARACTER

?

PLACE CHARACTER
IN D0

N

Y

ABRKI1

ABRKI

Y

INCH

RETURN

 SIRQ

Serial Module

8-36 MC68307 USER’S MANUAL MOTOROLA

Figure 8-9. Serial Mode Programming Flowchart (5 of 5)

OUTCH

N

Y

IS
 TRANSMITTER

READY
?

SEND CHARACTER
TO TRANSMITTER

RETURN

MOTOROLA

MC68307 USER’S MANUAL

9-1

SECTION 9
IEEE 1149.1 TEST ACCESS PORT

The MC68307 includes dedicated user-accessible test logic that is fully compatible with the

IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture

. Problems asso-
ciated with testing high-density circuit boards have led to development of this standard
under the sponsorship of the Test Technology Committee of IEEE and the Joint Test Action
Group (JTAG). The MC68307 implementation supports circuit-board test strategies based
on this standard.

The test logic includes a test access port (TAP) consisting of five dedicated signal pins, a
16-state controller, an instruction register, and four test data registers. A boundary scan reg-
ister links all device signal pins into a single shift register. The test logic, implemented using
static logic design, is independent of the device system logic. The MC68307 implementation
provides the following capabilities:

1. Perform boundary scan operations to test circuit-board electrical continuity

2. Sample the MC68307 system pins during operation and transparently shift
out the result in the boundary scan register

3. Bypass the MC68307 for a given circuit-board test by effectively reducing the bound-
ary scan register to a single bit

4. Disable the output drive to pins during circuit-board testing

5. Drive output pins to stable levels

NOTE

Certain precautions must be observed to ensure that the IEEE
1149.1 test logic does not interfere with non-test operation. See

Section 9.6 Non-IEEE 1149.1 Operation

 for details.

9.1 OVERVIEW

NOTE

This description is not intended to be used without the support-
ing IEEE 1149.1 document.

The discussion includes those items required by the standard and provides additional infor-
mation specific to the MC68307 implementation. For internal details and applications of the
standard, refer to the IEEE 1149.1 document.

An overview of the MC68307 implementation of IEEE 1149.1 is shown in Figure 9-1. The
MC68307 implementation includes a 16-state controller, a 4-bit instruction register, and four

Thi d t t d ith F M k 4 0 4

IEEE 1149.1 Test Access Port

9-2

MC68307 USER’S MANUAL

MOTOROLA

test registers (a 1-bit bypass register, a 117-bit boundary scan register, a 6-bit module mode
register, and a 32-bit ID register). This implementation includes a dedicated TAP consisting
of the following signals:

TCK —test clock input to synchronize the test logic (with pulldown).
TMS —test mode select input (with an internal pullup resistor) that is sampled on the

rising edge of TCK to sequence the TAP controller's state machine.
TDI —test data input (with an internal pullup resistor) that is sampled on the rising

edge of TCK.
TDO —three-state test data output that is actively driven in the shift-IR and shift-DR

controller states. TDO changes on the falling edge of TCK.
No TRST pin is provided since the TAP pin is reset by an internal power-on reset circuit.

Figure 9-1. Test Access Port Block Diagram

4-BIT INSTRUCTION REGISTER

TAP
CTLR

TMS

TCK

BOUNDARY SCAN REGISTER

BYPASS

TDI

M
U
X

M
U
X

TDO

TEST DATA REGISTERS

(117 BITS)

3 0

116 0

2 0

31 0

ID = 1040201D

MODE

ID

DECODER

IEEE 1149.1 Test Access Port

MOTOROLA

MC68307 USER’S MANUAL

9-3

9.2 TAP CONTROLLER

The TAP controller is responsible for interpreting the sequence of logical values on the TMS
signal. It is a synchronous state machine that controls the operation of the JTAG logic. The
state machine is shown in Figure 9-2; the value shown adjacent to each arc represents the
value of the TMS signal sampled on the rising edge of the TCK signal. For a description of
the TAP controller states, please refer to the IEEE 1149.1 document.

Figure 9-2. TAP Controller State Machine

TEST LOGIC
 RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR

UPDATE-DR

EXIT2-IR

UPDATE -IR

1

0
1 1

0

1

0

0

1

0

1

0

0

11

1

0

0

1

0

1

11

0

11
0

0

0

0

0

1

IEEE 1149.1 Test Access Port

9-4

MC68307 USER’S MANUAL

MOTOROLA

9.3 BOUNDARY SCAN REGISTER

The MC68307 IEEE 1149.1 implementation has a 124-bit boundary scan register. This reg-
ister contains bits for all device signal and clock pins and associated control signals. The
XTAL, EXTAL and RSTIN pins are associated with analog signals and are not included in
the boundary scan register.

All MC68307 bidirectional pins, except the open-drain I/O pins (HALT, DTACK, RESET,
SCL and SDA), have a register bit for the output path and another for the input path. In addi-
tion, SCL and SDA have a third bit which controls these pins. All open drain I/O pins have a
single register bit for pin data and no associated control bit. To ensure proper operation, the
open-drain pins require external pullups. Thirty-two control bits in the boundary scan register
define the output enable signal for associated groups of bidirectional and three-state pins.
The control bits and their bit positions are listed in Table 9-1.

Boundary scan bit definitions are shown in Table 9-2. The first column in Table 9-2 defines
the bit's ordinal position in the boundary scan register. The shift register bit nearest TDO
(i.e., first to be shifted out) is defined as bit 0; the last bit to be shifted out is bit 116.

The second column references one of the five MC68307 cell types depicted in Figure 9-3 to
Figure 9-7, which describe the cell structure for each type.

The third column lists the pin name for all pin-related bits or defines the name of bidirectional
control register bits.

The last column indicates the associated boundary scan register control bit.

Bidirectional pins include a single scan bit for data (IO.Cell) as depicted in Figure 9-7. These
bits are controlled by one of the two bits shown in Figure 9-5 and Figure 9-6. The value of
the control bit determines whether the bidirectional pin is an input or an output. One or more
bidirectional data bits can be serially connected to a control bit as shown in Figure 9-8. Note
that, when sampling the bidirectional data bits, the bit data can be interpreted only after
examining the IO control bit to determine pin direction.

Table 9-1. Boundary Scan Control Bits

Name Bit Number Name Bit Number Name Bit Number Name Bit Number

bus.ctl 3 pa3.ctl 57 pb11.ctl 73 pb3.ctl 89
rw.ctl 10 pa2.ctl 59 pb10.ctl 75 pb2.ctl 91

adb.ctl 21 pa1.ctl 61 pb9.ctl 77 pb1.pu 93
ab.ctl 46 pa0.ctl 63 pb8.ctl 79 pb1.ctl 94
pa7.ctl 49 pb15.ctl 65 pb7.ctl 81 pb0.pu 96
pa6.ctl 51 pb14.ctl 67 pb6.ctl 83 pb0.ctl 97
pa5.ctl 53 pb13.ctl 69 pb5.ctl 85 dhi.ctl 99
pa4.ctl 55 pb12.ctl 71 pb4.ctl 87 dlo.ctl 108

IEEE 1149.1 Test Access Port

MOTOROLA

MC68307 USER’S MANUAL

9-5

Table 9-2. Boundary Scan Bit Definitions

Bit
Num

Cell Type Signal Control
Bit

Num
Cell Type Signal Control

0 O.Cell ALE pb0.pu 45 IO.Cell A22 ab.ctl
1 O.Cell RD pb0.ctl 46 En.Cell ab.ctl —
2 O.Cell WR SCL 47 IO.Cell A23 ab.ctl
3 En.Cell bus.ctl dhi.ctl 48 I.Cell IRQ7 —
4 IO.Cell AS D15 49 En.Cell pa7.ctl —
5 IO.Cell UDS D14 50 IO.Cell BGACK pa7.ctl
6 IO.Cell LDS D13 51 En.Cell pa6.ctl —
7 IO.Cell RW D12 52 IO.Cell BG pa6.ctl
8 O.Cell DTACK D11 53 En.Cell pa5.ctl —
9 I.Cell DTACK D10 54 IO.Cell BR pa5.ctl
10 En.Cell rw.ctl D9 55 En.Cell pa4.ctl —
11 O.Cell HALT D8 56 IO.Cell TOUT2 pa4.ctl
12 I.Cell HALT dlo.ctl 57 En.Cell pa3.ctl —
13 O.Cell RESET D7 58 IO.Cell TOUT1 pa3.ctl
14 I.Cell RESET D6 59 En.Cell pa2.ctl —
15 O.Cell CS0 D5 60 IO.Cell CS2D pa2.ctl
16 O.Cell CS1 D4 61 En.Cell pa1.ctl —
17 O.Cell CS2 D3 62 IO.Cell CS2C pa1.ctl
18 O.Cell CS3 D2 63 En.Cell pa0.ctl —
19 O.Cell CLKOUT D1 64 IO.Cell CS2B pa0.ctl
20 I.Cell BUSW D0 65 En.Cell pb15.ctl —
21 En.Cell adb.ctl pb0.pu 66 IO.Cell INT8 pb15.ctl
22 IO.Cell AD0 pb0.ctl 67 En.Cell pb14.ctl —
23 IO.Cell AD1 SCL 68 IO.Cell INT7 pb14.ctl
24 IO.Cell AD2 dhi.ctl 69 En.Cell pb13.ctl —
25 IO.Cell AD3 D15 70 IO.Cell INT6 pb13.ctl
26 IO.Cell AD4 D14 71 En.Cell pb12.ctl —
27 IO.Cell AD5 D13 72 IO.Cell INT5 pb12.ctl
28 IO.Cell AD6 D12 73 En.Cell pb11.ctl —
29 IO.Cell AD7 D11 74 IO.Cell INT4 pb11.ctl
30 IO.Cell A8 D10 75 En.Cell pb10.ctl —
31 IO.Cell A9 D9 76 IO.Cell INT3 pb10.ctl
32 IO.Cell A10 D8 77 En.Cell pb9.ctl —
33 IO.Cell A11 dlo.ctl 78 IO.Cell INT2 pb9.ctl
34 IO.Cell A12 ab.ctl 79 En.Cell pb8.ctl —
35 IO.Cell A12 ab.ctl 80 IO.Cell INT1 pb8.ctl
36 IO.Cell A13 ab.ctl 81 En.Cell pb7.ctl —
37 IO.Cell A14 ab.ctl 82 IO.Cell TIN2 pb7.ctl
38 IO.Cell A15 ab.ctl 83 En.Cell pb6.ctl —
39 IO.Cell A16 ab.ctl 84 IO.Cell TIN1 pb6.ctl
40 IO.Cell A17 ab.ctl 85 En.Cell pb5.ctl —
41 IO.Cell A18 ab.ctl 86 IO.Cell CTS pb5.ctl
42 IO.Cell A19 ab.ctl 87 En.Cell pb4.ctl —
43 IO.Cell A20 ab.ctl 88 IO.Cell RTS pb4.ctl
44 IO.Cell A21 ab.ctl 89 En.Cell pb3.ctl —
90 IO.Cell RXD pb3.ctl 104 IO.Cell D11 dhi.ctl

IEEE 1149.1 Test Access Port

9-6

MC68307 USER’S MANUAL

MOTOROLA

91 En.Cell pb2.ctl — 105 IO.Cell D10 dhi.ctl
92 IO.Cell TXD pb2.ctl 106 IO.Cell D9 dhi.ctl
93 En.Cell pb1.pu — 107 IO.Cell D8 dhi.ctl
94 En.Cell pb1.ctl — 108 En.Cell dlo.ctl —

95 IO.Cell SDA pb1.ctl/
pb1.pu 109 IO.Cell D7 dlo.ctl

96 En.Cell pb0.pu — 110 IO.Cell D6 dlo.ctl
97 En.Cell pb0.ctl — 111 IO.Cell D5 dlo.ctl

98 IO.Cell SCL pb0.ctl/
pb0.pu 112 IO.Cell D4 dlo.ctl

99 En.Cell dhi.ctl — 113 IO.Cell D3 dlo.ctl
100 IO.Cell D15 dhi.ctl 114 IO.Cell D2 dlo.ctl
101 IO.Cell D14 dhi.ctl 115 IO.Cell D1 dlo.ctl
102 IO.Cell D13 dhi.ctl 116 IO.Cell D0 dlo.ctl
103 IO.Cell D12 dhi.ctl

Figure 9-3. Output Cell (O.Cell)

Table 9-2. Boundary Scan Bit Definitions (Continued)

1
MUX

1

G1

1
MUX

1

G1

FROM
LAST
CELL

1 D

C1

CLOCK DR

1 D

C1

UPDATE DR

SHIFT DR
TO NEXT

 CELL

TO OUTPUT
BUFFER

1 – EXTEST
0 – OTHERWISE

DATA FROM
SYSTEM

LOGIC

IEEE 1149.1 Test Access Port

MOTOROLA

MC68307 USER’S MANUAL

9-7

Figure 9-4. Input Cell (I.Cell)

Figure 9-5. Output Control Cell (En.Cell)

FROM LAST
 CELL

1
MUX

1

G1

TO DEVICE
LOGIC

INPUT
 PIN

SHIFT DRCLOCK DR

1D

C1

TO NEXT
 CELL

1
MUX

1

G1

1
MUX

1

G1

 OUTPUT
CONTROL

FROM
SYSTEM

LOGIC

FROM
LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 ENABLE

1 – EXTEST
0 – OTHERWISE

SHIFT DR

IEEE 1149.1 Test Access Port

9-8

MC68307 USER’S MANUAL

MOTOROLA

Figure 9-6. Bidirectional Cell (IO.Cell)

Figure 9-7. Bidirectional Cell (IOx0.Cell)

1

MUX
1

G1

1
MUX

1

G1

OUTPUT
FROM

SYSTEM
LOGIC

FROM LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 DRIVER

 1 – EXTEST
 0 – OTHERWISE SHIFT DR

FROM PIN

INPUT TO
SYSTEM
LOGIC

1

MUX
1

G1

1
MUX

1

G1

OUTPUT
FROM

SYSTEM
LOGIC

FROM
PREVIOUS

CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 DRIVER

 1 – EXTEST
 0 – OTHERWISE SHIFT DR

FROM PIN

INPUT TO
SYSTEM
LOGIC

IEEE 1149.1 Test Access Port

MOTOROLA

MC68307 USER’S MANUAL

9-9

9.4 INSTRUCTION REGISTER

The MC68307 IEEE 1149.1 implementation includes the three mandatory public instructions
(EXTEST, SAMPLE/PRELOAD, and BYPASS), the optional public ID instruction, plus two
additional public instructions (CLAMP and HI-Z) defined by IEEE 1149.1. The MC68307
includes a 4-bit instruction register without parity, consisting of a shift register with four par-
allel outputs. Data is transferred from the shift register to the parallel outputs during the
update-IR

controller state. The four bits are used to decode the seven unique instructions
listed in Table 9-3.

The parallel output of the instruction register is reset to 0001 in the test-logic-reset

controller
state. Note that this preset state is equivalent to the ID instruction.

Figure 9-8. General Arrangement for Bidirectional Pins

Table 9-3. Instructions

Code
Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST
0 0 0 1 ID
0 0 1 0 SAMPLE
1 0 0 1 HI-Z
1 1 0 0 CLAMP
1 1 0 1 MODULE MODE
1 1 1 1 BYPASS

IO.CELL

EN

FROM LAST CELL

OUTPUT
DATA

INPUT
 DATA

OUTPUT
ENABLE

I/O
PIN

TO NEXT CELL

*

NOTE: More than one lO.Cell could be serially connected and controlled by a single En.Cell.

EN.CELL

*

IEEE 1149.1 Test Access Port

9-10

MC68307 USER’S MANUAL

MOTOROLA

During the capture-IR

controller state, the parallel inputs to the instruction shift register are
loaded with the 4-bit binary value (0001). The parallel outputs, however, remain unchanged
by this action since an update-IR signal is required to modify them.

9.4.1 EXTEST (0000)

The external test (EXTEST) instruction selects the 117-bit boundary scan register. EXTEST
asserts internal reset for the MC68307 system logic to force a predictable benign internal
state while performing external boundary scan operations.

By using the TAP, the register is capable of a) scanning user-defined values into the output
buffers, b) capturing values presented to input pins, c) controlling the direction of bidirec-
tional pins, and d) controlling the output drive of three-state output pins. For more details on
the function and uses of EXTEST, please refer to the IEEE 1149.1 document.

9.4.2 SAMPLE/PRELOAD (0010)

The SAMPLE/PRELOAD instruction selects the 117-bit boundary scan register and pro-
vides two separate functions. First, it provides a means to obtain a snapshot of system data
and control signals. The snapshot occurs on the rising edge of TCK in the capture-DR con-
troller state. The data can be observed by shifting it transparently through the boundary scan
register.

NOTE

Since there is no internal synchronization between the IEEE
1149.1 clock (TCK) and the system clock (CLKOUT), the user
must provide some form of external synchronization to achieve
meaningful results.

The second function of SAMPLE/PRELOAD is to initialize the boundary scan register output
bits prior to selection of EXTEST. This initialization ensures that known data appears on the
outputs when entering the EXTEST instruction.

9.4.3 BYPASS (1111)

The BYPASS instruction selects the single-bit bypass register as shown in Figure 9-9. This
creates a shift-register path from TDI to the bypass register and, finally, to TDO, circumvent-
ing the 117-bit boundary scan register. This instruction is used to enhance test efficiency
when a component other than the MC68307 becomes the device under test.

Figure 9-9. Bypass Register

1
MUX

1

G1

1 D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

IEEE 1149.1 Test Access Port

MOTOROLA

MC68307 USER’S MANUAL

9-11

When the bypass register is selected by the current instruction, the shift-register stage is set
to a logic zero on the rising edge of TCK in the capture-DR controller state. Therefore, the
first bit to be shifted out after selecting the bypass register is always a logic zero.

9.4.4 CLAMP (1100)

When the CLAMP instruction is invoked, the boundary scan multiplexer control signal
EXTEST is asserted, and the BYPASS register is selected. CLAMP should be invoked after
valid data has been shifted into the boundary scan register, e.g., by SAMPLE/PRELOAD.
CLAMP allows static levels to be presented at the MC68307 output and bidirectional pins,
like EXTEST, but without the shift latency of the boundary scan register from TDI to TDO.

9.5 MC68307 RESTRICTIONS

The control afforded by the output enable signals using the boundary scan register and the
EXTEST instruction requires a compatible circuit-board test environment to avoid device-
destructive configurations. The user must avoid situations in which the MC68307 output
drivers are enabled into actively driven networks. Overdriving the TDO driver when it is
active is not recommended.

9.6 NON-IEEE 1149.1 OPERATION

In non-IEEE 1149.1 operation, the IEEE 1149.1 test logic must be kept transparent to the
system logic by forcing the TAP controller into the test-logic-reset state. This requires the
TMS, TCK and TDI inouts to be high.

MOTOROLA

MC68307 USER’S MANUAL

10-1

SECTION 10
APPLICATIONS INFORMATION

10.1 MC68307 MINIMUM STAND-ALONE SYSTEM HARDWARE

This section details a simple stand-alone system using the MC68307. It demonstrates the
simplicity of system hardware design and inherent low system chip count when using the
highly integrated MC68307. The system hardware is shown in Figure 10-1.

The 5-V design consists of a 16.67MHz MC68307, 8-bit boot EPROM, 16-bit SRAM, an
RS232 driver and a few logic gates. It is considered stand-alone in that a dumb terminal (or
terminal emulator) can be serially connected to the UART (via RS232) and used to control
the system.

10.1.1 MC68307 Signal Configuration

BUSW0 is tied low, meaning that the MC68307 boots up in 8-bit mode after reset. Alterna-
tively, BUSW0 could use a pull-up resistor to select 16-bit mode at reset, requiring a further
8-bit or a more expensive 16-bit EPROM.

Clock crystal connection is simple. Figure 10-1 shows a typical configuration. The usual
oscillator start-up capacitors and bias resistor are included on-chip. The crystal parameters
do not need to be particular values; C

o

 (Shunt capacitance) < 10pF and Rx = 50 ohms were
used in this case. An oscillator module could be used if preferred, connected to the EXTAL
pin with XTAL unconnected.

CLKOUT is typically used as the reference clock for external system peripherals. In this case
it remains unconnected.

The RSTIN input can be used to extend the power-on reset time if desired. If slower system
peripherals require an extended RESET at power-up, an RC network attached to RSTIN can
be used. In this case, the standard 32K clock stretch time at power-on suffices. At
16.67MHz, the 32K clocks equate to a 2ms RESET hold-on interval allowing the clock and
power supply to normalize. RSTIN is attached to a debounced button to cold reset the
MC68307 (and the system if other devices are connected to the RESET output). On each
reset button press, the device is held in reset for the same 32K clocks as power-on.

RESET and HALT are bidirectional open drain lines, requiring low value pull-up resistors to
maintain the inactive state when not asserted. RESET and HALT are not used here, but
could be asserted together to reset the system hardware if required. In this case the reset
is not lengthened internally by 32k clocks.

Thi d t t d ith F M k 4 0 4

Applications Information

10-2

MC68307 USER’S MANUAL

MOTOROLA

IRQ7 is used as a non-maskable software abort interrupt source, driven by a debounced
abort button. Whenever the button is pressed, a level 7 interrupt is asserted to the MC68307.
At the next instruction boundary the interrupt request is acknowledged, with the MC68307
generating the corresponding interrupt vector. In fact, the MC68307 always supplies all its
own interrupt vectors, whether the interrupt request is generated internally (by on-chip mod-
ules), or externally (IRQ7, INT8–INT1). Therefore, the interrupt vector numbers should be
set up in the MC68307’s PIVR to point to the appropriate vector location in memory.

DTACK is a bidirectional open drain line used to terminate bus accesses. In this design,
DTACK is generated internally and asserted as an output using the MC68307’s internal chip
select and wait state control. External decode may also assert DTACK as an input.

AS, UDS, LDS, and R/W control signals are all outputs. As the main asynchronous bus con-
trols, each line has a pull-up resistor such that they are in the inactive state when they are
not actively driven. They are not driven during reset, arbitration or CPU stop periods.

Chip select outputs (CS0, CS1, CS2 and CS3) are always driven and do not need pull-up
resistors.

The 8051-compatible control lines (ALE, RD, WR) are all unused outputs.

The JTAG input lines (TDI, TMS, TCK) are not used, so are pulled inactive through resistors.
The TDO output is not connected.

Port A and port B signals default to general purpose inputs after reset. If they are to remain
unconnected, they should be reprogrammed as outputs. Otherwise pull-up resistors are
necessary to ensure known input logic levels. All the port lines except PB2–PB5 remain
unconnected and are reprogrammed as outputs. Port lines PB2–PB5 are used in their ded-
icated UART function. The TXD and RTS output lines use pull-up resistors to ensure logic
levels between booting-up as a general purpose input and reprogramming as a UART out-
put.

A23 uses a pull-up resistor to select normal MC68307 processor mode at power-up. If
instead it is pulled low through a resistor, a slave mode is selected. Do not connect A23 to
a supply rail directly. Always use a pull-up/pull-down resistor.

Address/data/control buses are three-stated when the MC68307 is arbitrated off the bus,
held in reset, or the CPU is stopped (via LPEN bit in SCR). If the buses are to be three-stated
for an extended period of time, pull-up resistors are recommended for these lines. The pull-
up resistor value is typically in the range 20k to 50k ohms, subject to leakage current and
loading requirements.

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-3

Figure 10-1. MC68307 Minimum System Configuration (1 of 2)

AS
UDS
LDS
R/W

A23
A22–A0
D15–D0

CS0
CS1

PA0–PA7
PB0–PB1
PB2/TxD
PB3/RxD
PB4/RTS

RSTIN
CLKOUT
EXTAL

XTAL

IRQ7

DTACK
HALT
RESET
BUSW0

TMS

TDI

TCK

PB5/CTS
PB6–PB15

5V

33K

TDO

ALE
RD
WR

10K 10K 4K7 2K2 4K7

5V 5V

16.67 MHz

5V

10µF

5V

33K

5V

33K

5V

33K

10µF
+

+

–

–

5V

10µF
+

–

–

+
10µF

Tx
Rx

RTS
CTS

TO RS232
CONNECTOR

Tx3
Rx3
Tx2
Rx2
Tx1
Rx1

VSS
C1–

C1+
VCC

VDD

C2+

C2–
GND

DI3
DO3
DI2

DO2
DI1

DO1

5V

33K

5V

33K

5V

33K

5V

33K

CONNECT

AND RAM
TO EPROM

COMPONENTS

MC145407

RESET

5V5V

10K 10K

MC68307

ABORT

5V5V

10K 10K

5V 5V 5V

1
2
3
17
11
12
13
14
15
16

20
19
18

4
10

9
8
7
6
5

5V

10K

CS2
CS3

Applications Information

10-4

MC68307 USER’S MANUAL

MOTOROLA

Figure 10-1. MC68307 Minimum System Configuration (2 of 2)

A0 A012

A1 A111

A2 A210

A3 A39

A4 A48

A5 A57

A6 A66

A7 A75

A8 A827

A9 A926

A10 A1023

A11 A1125

A12 A124

A13 A1328

A14 A1429

A15 A153

A16 A162

D0D8 13

D1D9 14

D2D10 15

D3D11 17

D4D12 18

D5D13 19

D6D14 20

D7D15 21

PGM31

E22
VPP1

G24
CS0

5V 5V

10K

128K x 8
EPROM

27C010

A15

10 A1
9 A2
8 A3
7 A4
6 A5
5 A6
4 A7
3 A8
25 A9
24 A10
21 A11
23 A12
2 A13
26 A14
1

D0D0 11

D1D1 12

D2D2 13

D3D3 15

D4D4 16

D5D5 17

D6D6 18

D7D7 19

E20

W27

G24

32K x 8
STATIC RAM

MCM6206

10
9
8
7
6
5
4
3
25
24
21
23
2
26
1

D0D8 11

D1D9 12

D2D10 13

D3D11 15

D4D12 16

D5D13 17

D6D14 18

D7D15 19

E20

W27

G24

32K x 8
STATIC RAM

MCM6206

R/W
LDS

CS1

UDS

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14 A15

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-5

10.1.2 EPROM Memory Interface

The BUSW0 signal is used to select either an 8- or 16-bit EPROM mode for boot-up after
reset. In this case BUSW0 is tied low, and a standard, low cost, 8-bit EPROM is used. The
EPROM interface is a straight connection of CS0, address and data. The 8 data lines are
connected on the upper half of the data bus (D15–D8).

CS0 is used to select the EPROM and enable its output for a specified address range. After
reset, the default CS0 programming is for the first 8 Kbytes address range, accessible with
6 wait states. The CS0 registers are usually reprogrammed as one of the first software activ-
ities, to set up the desired address space and wait state options.

Some processor systems need a read/write control signal to the EPROM output enable to
avoid data contention in the event of an accidental write to ROM. The MC68307 can avoid
this by programming CS0 to assert for read accesses only.

Note that with BUSW0 pulled high, the 16-bit EPROM interface using two 8-bit EPROMs is
equally simple. Both EPROMs are chip selected by CS0. The upper (even) byte EPROM is
output enabled by UDS, while the lower (odd) byte EPROM is output enabled by LDS. The
address lines used by two 27C010’s would be A17–A1.

10.1.3 RAM Memory Interface

The 16-bit RAM interface is controlled using CS1, UDS, LDS, R/W, address and data. CS1
is used to select RAM for read/write accesses within a programmed address range. It must
be software configured before any RAM accesses are possible. For example, stacking oper-
ations such as interrupt or exception handling, and subroutine branches are not possible
until CS1 is configured. In this instance, CS1 should be programmed as a 16-bit port, with
suitable address range, address space and wait states.

The UDS/LDS signals are used to qualify accesses to the upper/lower byte of the selected
RAM data word. The R/W dictates whether a RAM read or write takes place.

It simplifies the interface to output enable the RAMs each time they are chip selected.
Although, when using alternative RAMs, care should be taken that the RAMs do not drive
data out when output enabled during a write. Almost all RAMs including the MCM6206 can
do this.

Note that for an 8-bit RAM interface using an MC6206, CS1 could be connected to the chip
enable, UDS to the output enable, R/W to the read/write, A14–A0 to the address lines and
D15-D8 to the data bus. After reset, CS1 must be software configured for 8-bit mode.

10.1.4 RS232 UART Port

The MC68307’s UART signals (TxD, RxD, RTS, CTS) are connected to an MC145407
RS232 level driver. On the RS232 side, the UART signals are made available to a standard
RS232 connector. This creates a communication channel between the user and system. For
instance, a terminal (or terminal emulator) could control the system via a user preferred
debug monitor coded into the EPROM; this is an invaluable debug feature during the devel-
opment stages of a system design.

Applications Information

10-6

MC68307 USER’S MANUAL

MOTOROLA

10.1.5 EPROM Timing

The EPROM interface offers zero wait state accesses with a 100ns EPROM. A timing worth
special note is the EPROM enable to EPROM data out time. CS0 is asserted on the rising
edge of S2, and the selected EPROM has to return valid data a setup time before the falling
edge of S6 (an access time of approximately 2.5 clocks). At 5V and 16.67MHz, the equation
for the EPROM access time is as follows:

2.5 clocks – data setup time – clock to CS asserted time (maximum)= 150 – 5 – 30 = 115ns

Programming CS0 for 1 wait state would increase this access time to 175ns, while 6 wait
states permit an access time up to 475ns at 16.67MHz, and 5V.

For slow memories, the EPROM chip enable high to output float time should be confirmed
to ensure the EPROM-driven data is removed before the start of the next bus cycle (next
rising edge of S2). Although the exact timing is dependent upon the system, a maximum
time of 1 clock from CS0 negated to EPROM data floating is a good guideline for use with
the MC68307.

10.1.6 RAM Timing

The R/W signal is always setup prior to the RAM chip enable, so the timing is always RAM
enable (E) controlled rather than write (W) controlled. Besides the additional delay intro-
duced by the OR gate for decoding the RAM upper/lower byte enables, the RAM read timing
is the same as that of the EPROM. It is the RAM write timing that dictates the RAM access
time requirements.

The RAM chip enable to end of write time determines the necessary speed of RAM. The chip
enable time begins on the rising edge of S4 when the data strobes (UDS, LDS) are asserted,
and ends when the data strobes/CS1 negate, approximately 1 clock later. This typically
includes RAMs with access times of up to 60–70ns, for zero wait states at 16.67MHz and
5V (check specific RAM manufacturer’s data sheets). The MCM6206s used have a 35ns
access time.

For proper timing of write cycles, it is also important to know how much time elapses
between CS negated and the data output hold time. With a 5V, 16.67MHz MC68307, the
data out hold time is a 15ns minimum. Thus, on the enable controlled RAM write cycle, the
RAM data-in hold time requirement must be

≤

15ns OR gate delay. When using a 74F32 OR
gate, the RAM data-in hold time must be

≤

 7ns and while using a 74AC32 it must be

≤

 5ns.
For the MCM6206, it is 0.

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-7

10.2 POWER MANAGEMENT

The fully static MC68307 has a number of flexible power management features that enable
the power consumption to be minimized for different applications. This section describes
how to use these features to best effect in reducing overall system power consumption.

10.2.1 Fully Static Operation

The MC68307 is fully static; this means that the clock to the device can be stopped com-
pletely without causing damage. In addition the clock can be restarted with no loss of status
occurring.

These two fundamental benefits of fully static operation are utilized in the MC68307 power
management features. The MC68307 allows the clocks to different modules within the
device to be stopped under software control in order to minimize power consumption for a
particular user application. The external clock input can also be varied in frequency between
DC (i.e., stopped externally) and the maximum operating frequency (16.67 MHz).

By setting the appropriate bits in the configuration register (MBCD, TMCD, UACD, CKD and
LPEN), the internal clocks to the M-bus, timer, UART, CLKOUT and CPU can be individually
stopped. With the exception of the CPU, these clocks can all be restarted by clearing the
corresponding bit in the configuration register. When a module clock is turned off, the mod-
ule current consumption is reduced to very low leakage levels.

Table 10-1 gives typical percentage power savings that can be made by stopping the clocks
to modules that are not used in a particular operating mode. These figures are from mea-
surements taken on a development board. They represent percentages of full operating
power consumption and are averages over four different test cases (16.67MHz and 8MHz
at 5V and 3.3V).

Table 10-1. Power Contribution from Modules

Module Percentage I

DD

All Operational 100%
CLKOUT 5%
M-bus 6%
Timer 7%
UART 15%
CPU (EC000) 61%
Low-Power Sleep 6%

Applications Information

10-8

MC68307 USER’S MANUAL

MOTOROLA

10.2.2 Prescalable CPU Clock

It is apparent from Table 10-1 that the EC000 CPU core contributes the most significant per-
centage of the total power consumption. As well as being able to stop the clock to the CPU
completely (when the CPU clock is stopped it cannot process code) this clock can be selec-
tively programmed to a prescaled value. This is achieved by writing to the CDEN bit in the
configuration register, with the CD2–CD0 bits set to select the required prescale value.

Only the CPU clock is divided by this prescale value, the enabled clocks to the peripheral
modules remain at the system clock frequency. Hence the module interfaces will operate as
normal.

This mode of operation is useful when the CPU is required to do some background house-
keeping tasks, which do not require the full processing power of the CPU, but one or more
of the peripheral modules is required to be operating at full speed. The CPU can subse-
quently select full speed clock by writing to the configuration register when an event occurs
that requires the full processing power.

The power consumption of the CPU is approximately proportional to the frequency, hence
by carefully selecting the correct prescale value for the current task, the power contribution
of the CPU to the overall device can be minimized.

10.2.3 Wake-Up

When the CPU clock has been stopped in low-power sleep mode it can only be restarted by
a wake-up condition or a system reset. Any event that causes an interrupt wakes-up the
CPU. For an interrupt to occur, the corresponding module must be clocked and the interrupt
priority level must be set to nonzero in the corresponding field of the interrupt control regis-
ter.

It is also possible to set a bit in the configuration register (UACW) that automatically restarts
the clock to the UART when a falling edge is detected on the RxD line. Any subsequent inter-
rupt from the UART module wakes-up the CPU.

This very flexible feature enables the CPU to wake-up in response to many different events,
for example:

—If UART receives a character
—If M-bus activity is detected
—After a fixed time by programming a timer
—If an external interrupt occurs

Because there is no loss of data in the fully static CPU core, the wake-up latency is reduced
to the minimum of only 10 system clocks. When the CPU wakes-up it immediately processes
the interrupt and then returns to the mainline code from which it stopped its own clock.

A STOP instruction is not absolutely necessary when the MC68307 is put into low-power
sleep mode, although, if such an instruction is used it will be handled correctly by the CPU.
Care must be taken with the interrupt mask since any interrupt wakes-up the CPU, but only
interrupts of priority greater than the mask cause the CPU to exit from the sleep instruction.

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-9

The wake-up latency is increased slightly to 24 system clocks when a STOP instruction is
used. Note that the MC68307 does not execute the LPSTOP instruction used by some other
Motorola microprocessors (for example, MC68060, MC68340, and MC68360).

All enabled interrupts wake-up the CPU. If the interrupt mask in the CPU is set to a level
greater than the active interrupt, this interrupt will not be processed immediately by the CPU.
This technique gives the absolute minimum wake-up latency, since time-critical code can be
placed immediately after the instruction that stopped the CPU clock, but before the interrupt
mask is lowered to process the interrupt which caused the wake-up.

The MC68307 does not require or generate a reset on wake-up. If the MC68307 is reset the
CPU clock and all the other internal clocks are restarted, however the wake-up latency will
be large since reset exception processing is required.

10.2.4 Low-Power Sleep Mode

When all the internal clocks are stopped, including the CPU, the MC68307 is said to be in
low-power sleep mode.

In low-power sleep mode the external clock, either crystal oscillator or square wave input, is
still toggling. The only logic internal to the MC68307 that is getting clocked is the reset circuit
and interrupt controller. The device can wake-up from low-power sleep mode by an external
interrupt on IRQ7 or any of the INTx inputs. In addition the UART clock can automatically
restart when a falling edge is detected on RxD, and subsequently wake-up the CPU when
an interrupt occurs.

The CPU is arbitrated off the system bus when it enters low-power sleep mode. The address
and data buses are three-stated. For a system that has the MC68307 in this mode for pro-
longed periods of time, the system address and data buses should be pulled up using high
value resistors (e.g., 22–100Kohms depending upon signal loading) to prevent these buses
floating to mid-range voltage levels and hence generating large currents in input buffers.

When a crystal is connected across EXTAL and XTAL pins on the MC68307 the contribution
of the oscillator cell to the sleep-mode current is large. Depending on the type of crystal
used, this bias current can be up to several milliamps. Careful choice of crystal and board
layout can help minimize the effect of the bias current, but it will always make a significant
contribution to sleep current. If an external oscillator is used to generate a square wave input
to EXTAL, the bias current is much less. When an external oscillator is used, the XTAL pin
should be left completely unconnected.

Low-power sleep mode consumes about 4% to 6% of the fully operational power depending
on the configuration of the oscillator pins.

10.2.5 Low-Power Stop Mode

The power consumption of the MC68307 can be minimized by stopping the clock to the
EXTAL pin externally. This is referred to as low-power stop mode. External hardware is
required to control the system clock circuit. The current consumption of the MC68307 is at
an absolute minimum in this mode.

Applications Information

10-10

MC68307 USER’S MANUAL

MOTOROLA

Note that since the external clock input to the MC68307 is stopped the device cannot wake-
up from low-power stop mode directly.

Because the MC68307 is fully static, the clock can be stopped at any time and in any phase.
Lowest power will be obtained if the clock is stopped after the device has been put into low-
power sleep mode. If the clock is stopped when the CPU is executing a bus cycle or pro-
cessing an instruction the current will not be minimal. Low-power sleep mode uses arbitra-
tion to ensure that the CPU is idle before stopping the internal clock.

When the clock is restarted, the MC68307 will continue processing from where it was previ-
ously with no loss of status. If the device is in low-power sleep mode an interrupt will be
required to wake-up the CPU.

Instead of stopping the clock externally the frequency could be reduced to a very low value
in order to minimize power. The whole MC68307 could operate at this reduced frequency,
allowing timers for example to wake-up the CPU after a long delay and subsequently set a
general purpose port line to reselect the maximal frequency external clock.

Whenever the external clock is being stopped, started or multiplexed, care must be taken to
ensure that no pulses narrower than the specified minimum clock high or low periods are
generated (minimum pulse width = 27 ns). If an external crystal is stopped then started again
there may be considerable wake-up latency due to the crystal start-up time. This depends
on the external component selection and is not a function of the MC68307.

10.3 USING M-BUS SOFTWARE TO COMMUNICATE BETWEEN
PROCESSOR SYSTEMS

M-bus is an I

2

C-compatible bus interface used in the MC68300 family. It is a serial interface
comprising two open drain bidirectional signals, namely serial clock (SCL) and serial data
(SDA). Multiple devices can be connected directly to these open drain lines, and indeed this
is good reason for the widespread adoption of the bus as an efficient IC communication
method in end-systems.

A typical scenario would consist of a processor with an M-bus master controlling the data
flow between several slaves, such as LCDs, real-time clocks, keypads, A/D converters and
memories. Moreover, a built-in bus collision mechanism supports multiple M-bus masters as
well as multiple slaves. The M-bus module of the MC68300 is flexible enough to operate as
either an M-bus master or a slave.

This section demonstrates control software for M-bus communication between two identical
MC68307 systems, one configured with an M-bus master and the other an M-bus slave.
Only a short piece of initialization code must be changed to make the MC68307 code appli-
cable to other MC68300 devices with M-bus.

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-11

10.3.1 Overview of M-Bus Software Transfer Mechanism

For clarity, a brief overview of the M-bus software control mechanism is provided here.

The M-bus communication is on a byte-wide basis. The components of the hardware trans-
fer protocol are a START condition, 8 data bits, an acknowledge bit and a STOP condition.
Before starting a communication, an M-bus master should carry out a software check to
ensure the bus is free, and therefore all other M-bus transfers are complete. Thereafter, the
bus master initiates a transfer by software, writing a START condition onto the bus. This is
an indicator to all connected M-bus devices that the master is taking charge of the bus and
that the address of the targeted slave is to follow. For the MC68300 M-bus master, writing
the targeted slave address to the data register initiates the 8-bit transfer (MSB first).

If a system has two or more M-bus masters which poll the bus free and start a transfer at
the same time, then the collision detection arbitration throughout the transfer of the slave
address transfer and subsequent data bytes decides which device gets charge of the bus.
If the MC68300 M-bus loses arbitration in this way, it stops driving data onto the bus to pre-
vent data corruption. Furthermore, it switches automatically into slave mode, pre-empting
the alternate master addressing it as a slave. If interrupts are enabled, an interrupt is gen-
erated on the completion of that byte, and a status bit indicates arbitration lost as the inter-
rupt source.

The first data byte transmitted by the M-bus master is always the targeted slave address,
with the least significant bit determining whether the slave remains ready to receive or trans-
mit subsequent bytes. The addressed slave can then acknowledge the received byte, or not,
depending upon the software protocol and acknowledge capability of the slave devices
used. Each acknowledge is like a 9th data bit, asserted by the receiver as a handshake to
successfully transmitted data.

A block transfer comprising a series of data bytes (and acknowledge bits) follows as com-
manded by the software protocol. The bus remains busy throughout the block, precluding
all other masters from starting transfers. At the end of the block, the bus master relinquishes
the bus by software placing a STOP condition onto the bus.

Ultimately, the M-bus master is responsible for starting and stopping transfers, but the num-
ber of bytes transferred can be dictated by either the master or slave depending upon the
desired software protocol. For example, a slave may acknowledge all bytes received until it
saturates, at which point the master STOPs the block transfer. Alternatively, the slave
receiver may acknowledge received bytes until the master transmitter indiates that there are
no more bytes to send. Indeed, both master and slave can be charged with controlling the
transfer block. For instance, the software protocol may transfer a byte count as part of the
communication or use a fixed number of transfer bytes every time.

For the best choice in software control, transfers can adopt either a status polling method or
interrupts at the end of each byte. The interrupt option is most commonly used to minimize
the processor overhead or the time during which the processor is tied up with the transfers.
If enabled, the interrupts are generated on the completion of each 9 bits (8 data bits plus an
acknowledge).

Applications Information

10-12

MC68307 USER’S MANUAL

MOTOROLA

10.3.2 M-Bus Master Mode Operation

Using interrupts to transmit data to the addressed slave is straight forward. During the M-
bus initialization, the MC68300 M-bus sets up the master transmitter mode, sets the M-bus
frequency, enables interrupts, provides an interrupt handler and STARTs the block transfer.
The targeted slave address (with LSB = 1 for slave receiver mode) is transmitted by writing
to the M-bus data register. On each subsequent end-of-byte interrupt, further data bytes are
transmitted by writing data to the M-bus data register until the block is complete. On the
interrupt at the end of the last byte the software STOPs the transfer.

For receiving from the addressed slave, the initialization is exactly the same. Remember that
even if receiving, the first operation is to transmit the targeted slave address (except that this
time LSB = '0'). In the interrupt handler at the end of the slave address transmit byte, the
transmit mode is changed to receive. Then, to initiate the first byte receive operation, the
MC68300 M-bus master software carries out a dummy read of the data register. No sensible
data is read at this point, but it is the action of this read which starts the data receive. At the
end of each subsequent received byte, the interrupt generated is used to read the data reg-
ister again for valid data, and to start the next byte receive. This continues until the master
receiver STOPs the block transfer.

The receiver is always responsible for the generation of acknowledges. The MC68300 M-
bus receiver can be programmed to generate acknowledges automatically for each byte
received. Most slave transmitters take an acknowledge from the master receiver to mean
that further bytes are desired. In fact, for some slave transmitters it is necessary for the mas-
ter receiver to acknowledge all received bytes except the last one, to indicate that more data
byte transmits are required. This is not a requirement of the MC68300 M-bus slave.

10.3.3 M-Bus Slave Mode Operation

Many of the principles discussed for the master operation also hold true for the slave
MC68300 M-bus. The main differences are that the MC68300 slave M-bus is not controlling
the transfer (STARTing and STOPping) or providing the M-bus clock, but is instead following
what the master dictates.

For slave operation, again initialize the M-bus frequency, M-bus slave address, interrupt
handler and interrupt enable. As the first transfer is always the receipt of the slave address,
slave receive mode should always be programmed initially. All target slave addresses which
are transmitted by the master (first byte after START) are then checked against the pro-
grammed MC68300 M-bus slave address for a match. When they match, the MC68300 M-
bus slave generates an interrupt (if enabled), and a status bit indicates the cause as M-bus
addressed-as-slave (MAAS).

On entering the corresponding interrupt handler, the software read/write status indicator is
read to determine whether the slave is to receive or transmit subsequent bytes and that the
transmit/receive mode is set accordingly. If in transmit mode, the first data byte transmit is
initiated by writing to the data register. If in receive mode, the first receive byte is initiated by
a dummy read of the data register. There is no sensible data read at this point, but having
started the receive process, data register reads in subsequent end-of-byte interrupts obtain

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-13

valid data and initiate the next byte receive. Again, the software protocol between M-bus
master and slave determines the use of acknowledges.

10.3.4 Description of Setup

The hardware consists of two identical MC68307 systems connected together via the M-bus
as shown in Figure 10-2. Both systems have the MC68307 processor core executing
instructions prefetched from its own ROM.

Figure 10-2. Hardware Setup

Each MC68307 system has 128 Kbytes EPROM and 128 Kbytes SRAM and runs a debug
monitor. A complete description of the system hardware is provided in AN490, titled “Multiple
Bus Interfaces using the MC68307.

Using the monitor's download facility, an M-bus control program is downloaded into the
SRAM of each board. The code allows one system to control its M-bus module as a master,
while the other implements an M-bus slave. Together, the two software programs allow the
MC68307 M-bus master to write data to the MC68307 M-bus slave and later read it back for
verification.

10.3.5 Software Flow

The MC68307 master M-bus controls the number of blocks transferred via START and
STOP conditions. In this example, there are only two communication blocks, one transmit-
ting data to the slave (master transmit block), and one receiving data back from the slave
for verification (master receive block). The master/slave responsibilities during the master
transmit block are outlined in Figure 10-3 and for the master receive block in Figure 10-5.

On these diagrams, note that for a given transfer byte, the end-of-byte interrupts on the mas-
ter and slave occur at around the same time. The built-in M-bus transfer mechanism means
it does not matter in which order they are serviced. The master and slave interrupt service
order used in the flowcharts of Figure 10-3 and Figure 10-5 is purely for demonstration pur-
poses. The interrupt handlers are shown such that the data flow is always from transmitter
to receiver, although, it should be understood that the master and slave interrupt handlers
are happening at the same time, as are the transmit and receive of a particular byte between
the two systems.

MC68307
SYSTEM

SCL
SDA

MASTER
M-BUS

MC68307
SYSTEM

SCL
SDA

SLAVE
M-BUS

5V

2.2K2.2K

Applications Information

10-14

MC68307 USER’S MANUAL

MOTOROLA

10.3.6 Transfer Blocks

The master M-bus controls of the number of data bytes within each transmit/receive block.
Observe Figure 10-4 and Figure 10-6, which give a summary of the activity on the M-bus
during the master transmit and master receive blocks respectively.

When the master is transmitting data (master transmit block) the slave acknowledges all
bytes received, and the master decides when the transfer is completed by setting a STOP
condition (see Figure 10-4). When the master is receiving data (master receive block) it
decides when the transfer is complete by stopping acknowledges on the last received byte,
thereby stopping the slave transmitting, and setting a STOP condition (see Figure 10-6).

10.3.7 Software Implementation

The software used is shown in

Section 10.3.7.1 Software Listing 1—M-bus Master Soft-
ware

 and

Section 10.3.7.2 Software Listing 2—M-bus Slave Software

. Only the method
of enabling the M-bus and interrupts at the start of the software listings is specific to the
MC68307. Thereafter, the code is generic for any MC68300 device with an M-bus module.

The MC68300 M-bus slave software should always be set running before the master soft-
ware, such that the prospective slave is initialized as a receiver before the master transmits
the slave address.

The software uses interrupts to control the byte transfers within each block. The M-bus mas-
ter starts the transfer by transmitting the slave address. Thereafter interrupts are generated
on both the master and slave M-bus to control the test. The M-bus hardware protocol does
not care which order the interrupts are serviced by the master (transmitter or receiver) or
slave (transmitter or receiver) at the end of each byte. Consider that the master is in charge
of generating the SCL clocks to shift data out the transmitter and into the receiver, when a
transmit/receive is initiated by writing/reading the M-bus data register respectively. How-
ever, the clocks do not start until the slave has released the clock line on the bus by making
its corresponding read/write of its M-bus data register. Therefore, both MC68300 M-bus
master and slave interrupts have to initiate the next data transfer.

The slave frequency can be programmed as greater or less than that of the master. M-bus
implements a clock synchronization mechanism such that the clock with the shortest high
time and longest low time dictates the open drain clock. For example, if the programmed
slave M-bus clock frequency is less than the master, the slave can stretch the clock as nec-
essary.

The number of transfer and receive blocks and the number of data bytes within each block
can be altered in the master software. The slave software remains the same throughout. If
the user desires detailed crosschecks on the software flow, interrupt counts (for number of
bytes transferred) or a flag passing mechanisms could be implemented. For simplicity this
is not used in the example software.

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-15

Figure 10-3. Master/Slave Responsibilities for the Master Transmit Block

Figure 10-4. Summary of M-Bus Activity for the Master Transmit Block

M-BUS MASTER TRANSMITTER ACTIVITYM-BUS SLAVE RECEIVER ACTIVITY

– INTERRUPT AT END OF ADDRESS Tx
 – VERIFY ACKNOWLEDGE
 – REMAIN IN Tx MODE
 – WRITE 1ST DATA BYTE (AA) TO

 MBDR TO INITIATE Tx

– INTERRUPT AT END OF 1ST DATA BYTE Tx
 – VERIFY ACKNOWLEDGE
 – WRITE 2ND DATA BYTE (55) TO
 MBDR TO INITIATE Tx

– INTERRUPT AT END OF 2ND DATA BYTE Tx
 – VERIFY ACKNOWLEDGE
 – STOP BLOCK TRANSFER

– SET SLAVE Rx MODE – SET MASTER Tx MODE
– START BLOCK TRANSFER
– WRITE SLAVE ADDRESS TO MBDR TO

INITIATE ADDRESS Tx (66)
(SLAVE IS TO Rx DATA, SO LSB = 0)

– Tx SLAVE ADDRESS– Rx SLAVE ADDRESS

– AUTO– ACKNOWLEDGE ADDRESS
– INTERRUPT ON SLAVE ADDRESS MATCH
 – SET Tx/Rx MODE TO Rx
 – DUMMY READ OF MBDR, READY

 Rx 1ST DATA BYTE

– Tx DATA– Rx DATA

– AUTO- ACKNOWLEDGE DATA
– INTERRUPT AT END OF 1ST DATA BYTE Rx
 – READ 1ST BYTE OF VALID DATA FROM

 MBDR (AA), AND READY FOR NEXT Rx

– Tx DATA– Rx DATA

– AUTO-ACKNOWLEDGE DATA
– INTERRUPT AT END OF 2ND DATA BYTE Rx
 – READ 2ND BYTE OF VALID DATA FROM
 MBDR (55), AND READY FOR NEXT Rx

MASTER ACTIVITY

M-BUS

SLAVE ACTIVITY

START 66 ACK AA ACK 55 ACK STOP

START
BLOCK

TX SLAVE
ADDRESS

(SLAVE TO RX)

RX SLAVE
ADDRESS ACK

TX 1ST DATA
BYTE

ACKACK
RX 1ST DATA

BYTE

TX 2ND DATA
BYTE

RX 2ND DATA
BYTE

STOP
BLOCK

Applications Information

10-16

MC68307 USER’S MANUAL

MOTOROLA

Figure 10-5. Master/Slave Responsibilities for the Master Receive Block

Figure 10-6. Summary of M-Bus Activity for the Master Receive Block

– SET MASTER Tx MODE
– START BLOCK TRANSFER
– WRITE SLAVE ADDRESS TO MBDR TO

INITIATE ADDRESS Tx (67)
(SLAVE TO Rx SO LSB = 1)

M-BUS MASTER RECEIVER ACTIVITYM-BUS SLAVE TRANSMITTER ACTIVITY

– AUTO-ACKNOWLEDGE DATA
– INTERRUPT AT END OF 1ST DATA BYTE Rx
 – READ OF MBDR READY TO Rx 2ND

 DATA BYTE (55)

– NO ACKNOWLEDGE
– INTERRUPT AT END OF 2ND BYTE Rx

 – STOP BLOCK TRANSFER

– Tx SLAVE ADDRESS– Rx SLAVE ADDRESS

– AUTO-ACKNOWLEDGE ADDRESS
– INTERRUPT ON SLAVE ADDRESS MATCH
 – SET Tx/Rx MODE TO Tx
 – WRITE 1ST DATA BYTE (AA) TO

 MBDR READY TO Tx

– T x DATA

– INTERRUPT AT END OF ADDRESS Tx
 – VERIFY ACKNOWLEDGE
 – SET Tx/Rx MODE TO Rx
 – DUMMY READ OF MBDR TO INITIATE

 RX OF 1ST DATA BYTE (AA)

 – Rx DATA

 – Rx DATA

– Tx DATA

– INTERRUPT AT END OF 2ND DATA BYTE Tx
 – NO ACKNOWLEDGE, SO END Tx
 – SWITCH TO SLAVE Rx MODE READY

 FOR NEXT SLAVE ADDRESS

– SET SLAVE Rx MODE

– INTERRUPT AT END OF 1ST DATA BYTE Tx
 – VERIFY ACKNOWLEDGE
 – WRITE 2ND DATA BYTE (AA) TO
 MBDR TO INITIATE Tx

MASTER ACTIVITY

M-BUS

SLAVE ACTIVITY

START 67 ACK AA ACK 55 NO ACK STOP

START
BLOCK

Tx SLAVE
ADDRESS

(SLAVE TO Tx)

Rx SLAVE
ADDRESS

ACK

Rx 1ST DATA
BYTE

NO
ACK

ACK

Tx 1ST DATA
BYTE

Rx 2ND DATA
BYTE

Tx 2ND DATA
BYTE

STOP
BLOCK

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-17

10.3.7.1 SOFTWARE LISTING 1—M-BUS MASTER SOFTWARE

*––
* MOTOROLA 68307 IMBP TEST BOARD - M-bus
*––
*
* MODULE: MBM_INT.SRC DATE: 8/4/94
*
* Developed by : Motorola
* HI-END Applications
* East Kilbride.
*
* NOTES:
* Master M-bus Routine using interrupts for a Master/Slave Test
*
* The number of bytes transmitted and received is completely
* controlled by the master. (i.e. When the slave is receiving data,
* it acknowledges all the time, and the master dictates the number of
* bytes to transfer. When the slave is transmitting, the master
* receiver acknowledges dictate whether the slave is to send further
* bytes or not.
*
* The Master:
* 1) Writes out the slave chip address, and 2 slave data bytes.
* 2) Writes out the slave chip address, and reads 2 slave data bytes
* 3) Verifies the data read back against that originally sent.
*
*––
* External Reference Declarations
*––

XREF SCR ; System Control Reg
XREF PBCNT ; Port B Control Reg
XREF PIVR ; Peripheral Interrupt Vector Reg
XREF PICR ; Peripheral Interrupt Control Reg
XREF MADR ; M-bus Address Reg
XREF MFDR ; M-bus Freq Divider Reg
XREF MBCR ; M-bus Control Reg
XREF MBSR ; M-bus Status Reg
XREF MBDR ; M-bus Data Reg

*––
* Constants
*––
UVECBASE EQU $100 ; User Vector Base
MBUSVEC EQU UVECBASE+($D*4) ; M-bus vector location
MBUSHAN EQU $15000 ; M-bus Interrupt Handler location

S307_AD EQU $66 ; Slave 68307 M-bus Address
DRXCNT EQU $3 ; Data RECEIVE COUNT (2 + 1 Dummy)
ATXCNT EQU $1 ; Address TRANSMIT COUNT
DTXCNT EQU $2 ; Data TRANSMIT COUNT

*––
* Main Program
*––

Applications Information

10-18

MC68307 USER’S MANUAL

MOTOROLA

ORG $10000 ; Random location for assembly
AND.L #$FFFFFEFF,SCR ; Clear SCR bit 8, M-bus CLock Active
MOVE.B #$40,PIVR ; Vector = #$40, Vector @ address $100
OR.W #$000D,PICR ; M-bus Interrupt level = 5
MOVE.L #MBUSHAN,MBUSVEC ; Set up M-bus Interrupt Handler
OR.W #$0003,PBCNT ; Enable M-bus Lines
BSR INIT_MBM ; Initialize M-bus as master

* WRITE TO SLAVE 68307 M-bus
* Write Chip Address, and Two bytes of data
START BSR MBBUSY ; Poll the M-bus, wait till bus free

MOVE.B #0,V_DRXCNT ; Data RECEIVE COUNT
MOVE.B #ATXCNT,V_ATXCNT ; Address TRANSMIT COUNT
MOVE.B #DTXCNT,V_DTXCNT ; Data TRANSMIT COUNT
MOVE.B #1,V_WRITE ; Set Write to slave var = TRUE
MOVE.B #S307_AD,V_CHIPAD; Slave 68307 M-bus receiver Addr.
MOVE.L #S307_DATA,A0 ; Pointer to stored data for transfer

BSRWRITE1 ; Send out the Chip Address

* READ FROM SLAVE 68307 M-bus
* Write Chip Address, and READ Two bytes of data

BSR MBBUSY ; Poll the M-bus, wait till bus free

MOVE.B #DRXCNT,V_DRXCNT ; Data RECEIVE COUNT
MOVE.B #ATXCNT,V_ATXCNT ; Address TRANSMIT COUNT
MOVE.B #0,V_DTXCNT ; Data TRANSMIT COUNT
MOVE.B #0,V_WRITE ; Set Write to slave var = FALSE
MOVE.B #S307_AD,D6 ; Alter chip address lsb for
OR.B #$01,D6 ; slave transmit and
MOVE.B D6,V_CHIPAD ; write to chip address variable
MOVE.L #S307_DATA,A0 ; Pointer to data for memory 1

BSR WRITE1 ; Send out the Chip Address

*Test Complete
BSR MBBUSY ; Poll the M-bus, wait till bus free

FOREVER BRA FOREVER ; Test complete & passed, loop forever

*––
* M-Bus Setup/Initialization
*––
INIT_MB MMOVE.W #$2700,SR ; Disable interrupts – set to level 7

MOVE.B #0,MBSR ; Clear interrupt pend, arbitr. lost
MOVE.B #$0C,MFDR ; Set frequency
MOVE.B #$00,MBCR ; Disable and reset M-bus
MOVE.B #$80,MBCR ; Enable M-bus
RTS

* NOTE - By not writing MADR, the 68307 M-bus slave address = 0

*––
* Poll the M-bus BUSY
*––

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-19

MBBUSY BTST #5,MBSR ; Test MBB bit,
BNE MBBUSY ; and wait until it is clear
RTS

*––
* Generation first byte of data transfer
*––
WRITE1 BTST #5,MBSR ; Test MBB bit,

BNE WRITE1 ; and wait until it is clear
TXSTART

BSET #4,MBCR ; Set TRANSMIT Mode
BSET #5,MBCR ; Set Master Mode (Generate START)
BSET #6,MBCR ; Enable M-bus Interrupts
MOVE.W #$2000,SR ; Enable interrupts – set to level 0

MBFREE BTST #5,MBSR ; Test MBB bit,
BEQ MBFREE ; If bus is still free, wait until busy
RTS

*––
* Post Byte Transmission/Reception Software Response
*––

ORG MBUSHAN ; Start of Interrupt Handler
ISR BCLR #1,MBSR ; Clear the MIF Flag

MOVE.L D0,-(A7) ; Push D0 Register to Stack
MOVE.L D1,-(A7) ; Push D1 Register to Stack
MOVE.L #0,D0 ; Clear general data reg
MOVE.L #0,D1 ; Clear general data reg

BTST #5,MBCR ; Check the MSTA Flag
BEQ SLAVE ; Branch if Slave Mode

BTST #4,MBCR ; Check the MODE Flag
BEQ MASTRX ; Branch if Receive Mode

*––
* Master TRANSMIT caused Interrupt
*––
MASTX BTST #0,MBSR ; Check ACK From Receiver,

BNE ENDMASTX ; If no ACK, End Transmission

TXADDR MOVE.B V_ATXCNT,D1 ; Check Address TX COUNT
BEQ TXDATA ; If address complete go to data
SUBQ.B #1,V_ATXCNT ; Decrement Address Tx Count

TXDATA MOVE.B V_WRITE,D1 ; Check if writing or reading slave
BEQ SETMASTRX ; If reading set to Master receive

MOVE.B V_DTXCNT,D1 ; CHECK Data TX COUNT
BEQ ENDMASTX ; If no more data then STOP bit
SUBQ.B #1,V_DTXCNT ; Reduce Tx Count
MOVE.B (A0)+,MBDR ; Transmit next byte
BRA END ; Exit

ENDMASTX BCLR #5,MBCR ; Generate STOP Condition

Applications Information

10-20

MC68307 USER’S MANUAL

MOTOROLA

BRA END ; Exit

SETMASTRX BCLR #3,MBCR ; Enable TXAK
BCLR #4,MBCR ; Set Master Receive Mode
BSET #5,MBCR ; Set Master Mode (Generate START)

*––
* Master RECEIVE
*––
MASTRX SUBQ.B #1,V_DRXCNT ; Decrement receive count

MOVE.B V_DRXCNT,D1
CMP.B #DRXCNT-1,D1 ; First byte read Check
BNE NOTFIRST ; If not first, read etc. as usual
MOVE.B MBDR,D0 ; If first, DUMMY read only to start Rx
BRA END

NOTFIRST CMP.B #0,D1

BEQ ENMASR ; Last byte to be read check
SUBQ.B #1,D1 ; Last second byte to be read check
BNE NXMAR ; Not last one or last second, so branch

LAMAR BSET #3,MBCR ; Last second, disable ACK transmitting
BRA NXMAR

ENMASR BCLR #5,MBCR ; Last one, generate STOP signal

NXMAR MOVE.B MBDR,D0 ; Read data
CMP.B (A0)+,D0 ; Compare with written data
BEQ END ; If data as expected o.k.

READERR BRA READERR ; Else ERROR loop forever.

END MOVE.L (A7)+,D1 ; Pop D1 Register From Stack
MOVE.L (A7)+,D0 ; Pop D0 Register From Stack
RTE

SLAVE NOP
BRA SLAVE ; Slave operation not implemented

*––
* Buffers and Variables
*––
V_WRITE DC.B $1 ; Slave write = True
V_CHIPAD DC.B S307_AD ; Chip Address variable = Slave 307 Add
V_DRXCNT DC.B DRXCNT ; Set up variables - Data Receive Count
V_ATXCNT DC.B ATXCNT ; - Addr Transmit Count
V_DTXCNT DC.B DTXCNT ; - Data Transmit Count
S307_DATA DC.B $AA,$55 ; Chip 1 Data

END

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-21

10.3.7.2 SOFTWARE LISTING 2—M-BUS SLAVE SOFTWARE

*––
* MOTOROLA 68307 IMBP TEST BOARD - M-bus
*––
*
* MODULE: MBM_INT.SRC DATE: 8/4/94
*
* Developed by : Motorola
* HI-END Applications
* East Kilbride.
*
* NOTES:
* Slave M-bus Routine using interrupts for a Master/Slave Test
*
* The number of bytes transmitted and received is completely
* controlled by the master. (i.e. When the slave is receiving data,
* it acknowledges all the time, and the master dictates the number of
* bytes to transfer. When the slave is transmitting, the master
* receiver acknowledges dictate whether the slave is to send further
* bytes or not.
*
* The Slave:
* 1) Recognizes its slave chip address, and receives 2 data bytes.
* 2) Recognizes its slave chip address, and transmits the 2 bytes
*––
* External Reference Declarations
*––

XREF SCR ; System Control Reg
XREF PBCNT ; Port B Control Reg
XREF PIVR ; Peripheral Interrupt Vector Reg
XREF PICR ; Peripheral Interrupt Control Reg
XREF MADR ; M-bus Address Reg
XREF MFDR ; M-bus Freq Divider Reg
XREF MBCR ; M-bus Control Reg
XREF MBSR ; M-bus Status Reg
XREF MBDR ; M-bus Data Reg

*––
* Constants
*––
UVECBASE EQU $100 ; User Vector Base
MBUSVEC EQU UVECBASE+($D*4) ; M-bus vector location
MBUSHAN EQU $15000 ; M-bus Interrupt Handler location

S307_AD EQU $66 ; Slave 68307 M-bus Address

*––
* Main Program
*––

ORG $10000 ; Random location for assembly
AND.L #$FFFFFEFF,SCR ; Clear SCR bit 8, M-bus Clock Active
MOVE.B #$40,PIVR ; Vector = #$40, Vector @ address $100
OR.W #$000D,PICR ; M-bus Interrupt level = 5
MOVE.L #MBUSHAN,MBUSVEC ; Set up M-bus Interrupt Handler

Applications Information

10-22

MC68307 USER’S MANUAL

MOTOROLA

OR.W #$0003,PBCNT ; Enable M-bus Lines
BSR INIT_MBS ; Initialize M-bus as slave

FINISH BRA FINISH ; Loop forever

*––
* M-Bus Setup/Initialization
*––
INIT_MBS MOVE.W #$2700,SR ; Disable interrupts – set to level 7

MOVE.B #0,MBSR ; Clear interrupt pend, arbitr. lost
MOVE.B #$10,MFDR ; Set frequency
MOVE.B #S307_AD,MADR ; Set M-bus slave address
MOVE.B #$00,MBCR ; Disable and reset M-bus
OR.B #$C0,MBCR ; Enable M-bus, Ints, TXAK
MOVE.W #$2300,SR ; Enable INTS by setting to level 3
RTS

*––
* Poll the M-bus BUSY
*––
MBBUSY BTST #5,MBSR ; Test MBB bit,

BNE MBBUSY ; and wait until it is clear
RTS

*––
* Post Byte Transmission/Reception Software Response
*––

ORG MBUSHAN ; Start of Interrupt Handler
ISR BCLR #1,MBSR ; Clear the MIF Flag

MOVE.L D0,-(A7) ; Push D0 Register to Stack
MOVE.L D1,-(A7) ; Push D1 Register to Stack
MOVE.L #0,D0 ; Clear general data reg
MOVE.L #0,D1 ; Clear general data reg

* Interrupt Counter
ADDQ.L #1,D3 ; (Not used, simply monitor)

BTST #5,MBCR ; Check the MSTA Flag
BEQ SLAVE ; Branch if Slave mode

MASTER BRA MASTER ; Master not implemented, so error

*––
SLAVE MOVE.B MBSR,D6 ; Read MBSR

BTST.B #6,D6 ; Is it slave address byte?
BEQ SLAVE_DATA ; If not, then data

*––
* Addressed as Slave
*––
SLAVE_ADD BTST #2,D6 ; Read SRW to verify slave Tx or Rx

BEQ INIT_SRX ; If Rx, initialize Slave receive count

INIT_STX OR.B #$10,MBCR ; Set transmit mode
MOVE.L #DATABUF,A0 ; Pointer to data storage buffer
MOVE.B (A0)+,MBDR ; First data byte transmit

Applications Information

MOTOROLA

MC68307 USER’S MANUAL

10-23

BRA END_SLAVE

INIT_SRX AND.B #$E7,MBCR ; Set receive mode and TXAK
MOVE.L #DATABUF,A0 ; Pointer to data storage buffer
MOVE.B MBDR,D0 ; Start receive via Dummy byte read
BRA END_SLAVE

*––
* Slave Data
*––
SLAVE_DATA BTST #4,MBCR ; Read Tx or Rx mode

BEQ SRX_DATA

*––
* Post Slave data Transmit Control
*––
STX_DATA BTST #0,MBSR ; Check ACK From Receiver,

BEQ NXT_TX ; If ACK, then TX Next Data Byte

AND.B #$EF,MBCR ; TX complete so swap to Rx
MOVE.B MBDR,D0 ; Dummy read to free bus (SCL)
BRA END_SLAVE ; Finish and await Master

NXT_TX MOVE.B (A0)+,MBDR ; Tx next data byte
BRA END_SLAVE ; Exit

*––
* Post Slave data Receive Control
*––
SRX_DATA MOVE.B MBDR,D0 ; Read Data

MOVE.B D0,(A0)+ ; Store data in next buffer location

END_SLAVE MOVE.L (A7)+,D1 ; Pop D1 Register from Stack
MOVE.L (A7)+,D0 ; Pop D0 Register from Stack
RTE

*––
* Buffers and Variables
*––
DATABUF DS.B 0 ; Slave data buffer between Rx and Tx

END

Applications Information

10-24 MC68307 USER’S MANUAL MOTOROLA

10.4 MC68307 UART DRIVER EXAMPLES
The MC68307 UART driver code listed in this section was developed from MC68681
DUART driver software. The two principal changes described below are (a) the implemen-
tation of one UART channel, and (b) the use of the UART timer as the UART baud rate
source. The UART driver code is given in Section 10.4.1 Software Listing 3. It provides
well commented initialization, status, input and output routines.

(a) Where the DUART implemented two serial channels, the MC68307 UART implements
one. Accordingly, the memory map has changed to include only those registers appropri-
ate to the single channel (channel A).

(b) For peak integration of the MC68307, all internal module clocks are based on the sin-
gle processor clock. So, while the MC68681 based the standard baud rate settings of its
clock select register on a fixed 3.6864MHz external clock source, the MC68307’s baud
rate is developed from its 16.67MHz to D.C. range processor clock source. Therefore, the
MC68307 uses its programmable UART timer to prescale this processor clock source,
and generate the baud rate reference as desired.

The equation to calculate the UART timer prescaler for a desired baud rate is:

Baud rate generator prescaler = 68307 clock frequency/[16 x 2 x (UART baud rate)]

where, Baud rate generator prescaler = {UBG1:UBG2}

e.g., For 9600 baud from a 16.67MHz clock, the UART timer prescaler is 54 decimal (36
Hex). So, UBG1 = 0x00 and UBG2 = 0x36.

NOTE

The standard baud rate settings of the MC68307’s UART clock
select register (UCSR) are only relevant if the processor clock
frequency is a suitable multiple of 3.6864 MHz.

10.4.1 Software Listing 3
SIO EQU $FFF101 ; Serial IO Base Address

* PORTW EQU 1 ; Byte wide port
PORTW EQU 2 ; Word wide port
* PORTW EQU 4 ; Long word wide port

CON_INDEX EQU 0

UMR1 EQU 0*PORTW ; Mode register 1
UMR2 EQU 0*PORTW ; Mode register 2
USR EQU 1*PORTW ; Status register
UCSR EQU 1*PORTW ; Clock select register
UCR EQU 2*PORTW ; Command register
URB EQU 3*PORTW ; Receiver buffer register
UTB EQU 3*PORTW ; Transmitter buffer regiseter
UACR EQU 4*PORTW ; Auxiliary control register

Applications Information

MOTOROLA MC68307 USER’S MANUAL 10-25

UISR EQU 5*PORTW ; Interrupt status register
UBG1 EQU 6*PORTW ; Counter/timer upper register
UBG2 EQU 7*PORTW ; Counter/timer lower register

BRGSET1 EQU 0 ; Bit 7 selects set 1 if clear
*––
CRGSET2 EQU $E0 ; Bit 7 selects set 2 if set

; Timer mode, divided by 1
SCALEU EQU 0 ; Upper Byte Prescaler for Timer
SCALEL EQU 54 ; Lower Byte Prescale for Timer
*––
CON_SR EQU SIO+CON_INDEX+USR
CON_RH EQU SIO+CON_INDEX+URB
CON_CR EQU SIO+CON_INDEX+UCR
CON_TH EQU SIO+CON_INDEX+UTB

BRKRECD_BIT EQU 7 ; Break received if set
ERRFRAME_BIT EQU 6 ; Framing error if set
ERRPAR_BIT EQU 5 ; Parity error if set
ERROVER_BIT EQU 4 ; Overrun error if set
TXEMT_BIT EQU 3 ; Transmitter empty if set
TXRDY_BIT EQU 2 ; Transmitter ready
FFULL_BIT EQU 1 ; Fifo full if set
RXRDY_BIT EQU 0 ; Receiver ready if set

RSTMRPTR EQU $10 ; Reset mode register pointer
RSTRCVR EQU $20 ; Reset receiver
RSTXMIT EQU $30 ; Reset transmitter
RSTERROR EQU $40 ; Reset errors
RSTBRK EQU $50 ; Reset break change interrupt
SETBRK EQU $60 ; Start break
ENDBRK EQU $70 ; Stop break
DISTX EQU $08 ; Disable transmitter
ENATX EQU $04 ; Enable transmitter
DISRX EQU $02 ; Disable receiver
ENARX EQU $01 ; Enable receiver

PAGE
*––
* INIT PROCEDURE (BOTH PORTS)
* INPUT: NONE
* OUTPUT: NONE
*––
CON_INIT:

MOVEM.L D1/A0-A1,-(SP) ; Save registers
MOVE.L #2000,D1

CON_WAIT:
BTST.B #TXEMT_BIT,CON_SR; wait for xmtr to finish
NOP
DBNE D1,CON_WAIT
LEA.L SIO+CON_INDEX,A0 ; Console port
MOVE.L #$001307DD,D1 ; No parity

; 8 data bits
; 1 stop bit
; Timer for baud rate

Applications Information

10-26 MC68307 USER’S MANUAL MOTOROLA

BSR INIT ; INIT console
MOVEM.L (SP)+,D1/A0-A1 ; Restore registers
RTS

INIT:
MOVE.B #RSTMRPTR,UCR(A0); Reset MODE register
MOVE.B #CRGSET2,SIO+UACR; Set the baud rate set
MOVE.B #SCALEU,SIO+UBG1 ; Set timer prescalar for 9600 baud
MOVE.B #SCALEL,SIO+UBG2 ;
MOVE.B #0,UISR(A0) ; Clear INT status register
ROL.L #8,D1
ROL.L #8,D1
MOVE.B D1,UMR1(A0) ; Setup MODE register 1
ROL.L #8,D1
MOVE.B D1,UMR2(A0) ; Setup MODE register 2
ROL.L #8,D1
MOVE.B D1,UCSR(A0) ; set baud rate clock as timer
MOVE.B #RSTRCVR,UCR(A0) ; Reset the transmitter
MOVE.B #RSTXMIT,UCR(A0) ; Reset the receiver
MOVE.B #ENARX,UCR(A0) ; Enable receiver
RTS

PAGE
*––
* STATUS PROCEDURE:
* INPUT: NONE
* OUTPUT: D0 = 0 IF RECEIVE BUFFER EMPTY
* = 1 IF RECEIVE BUFFER FULL
* = 2 IF BREAK DETECTED
*––
CON_STS:

MOVE.B CON_SR,D0 ;Read status register
BTST.B #RXRDY_BIT,D0
BEQ CON_STS_1 ; nothing yet
BTST.L #BRKRECD_BIT,D0 ; Break?
BEQ CON_STS_1 ; No
MOVE.B CON_RH,D0 ; Read in break char
MOVE.B #RSTBRK,CON_CR ; Req'd by 68681
MOVE.B #RSTERROR,CON_CR ;
MOVE.B #2,D0 ; Break status
RTS

CON_STS_1:
ANDI.B #1,D0 ; Return 1 or 0
RTS

*––
* INPUT PROCEDURE
* INPUT: NONE
* OUTPUT: D0 = CHARACTER
* THIS IS CALLED ONLY AFTER A STATUS OF 'BUFFER FULL' HAS BEEN READ
*––
CON_IN:

MOVE.B CON_RH,D0
MOVE.B #RSTERROR,CON_CR ;
RTS

Applications Information

MOTOROLA MC68307 USER’S MANUAL 10-27

PAGE
*––
* OUTPUT PROCEDURE
* INPUT: D0.B = CHARACTER
* OUTPUT: NONE
* CALLER ASSUMES CHARACTER IS 'LOGICALLY' WRITTEN AFTER THIS CALL
*––
CON_OUT:

MOVE.B #ENATX,CON_CR ;Enable transmitter
CON_OUT_1:

BTST.B #TXRDY_BIT,CON_SR;Wait until
BEQ.S CON_OUT_1 ;transmitter ready
MOVE.B D0,CON_TH ;Send char
RTS

END

10.5 SWAPPING ROM AND RAM MAPPING ON THE MC68307
It is often essential for embedded systems to locate the exception and interrupt vectors in
read/write memory, to allow vector table changes after system boot-up. Indeed, before
being able to port some debug monitors to an application this is a requirement.

For CPU32 based MC68300 integrated processors, the vector base register (VBR) resolves
this issue, permitting vectors to be located anywhere in the address space. For MC68300
processors with an M68000 processor core (MC68302, MC68306, MC68307, etc.) this fea-
ture is not available, and a ROM/RAM swap technique is necessary to exchange the usual
ROM at address $0 with RAM.

This section demonstrates a RAM/ROM swap mechanism specifically for the MC68307.
However, the method can be applied equally to the other M68000 core based members of
the MC68300 family.

10.5.1 Software Implementation
The swap mechanism relies on a section of position-independent code and careful repro-
gramming of the chip selects registers during boot up. Section 10.5.1.1 Software Listing
4 provides full details of the code used.

Initially, the ROM and RAM chip selects reserve areas in the memory map at base address
$0 and address $200000 respectively. Thereafter, a swap code routine is copied from ROM
into RAM, before jumping to RAM to execute it. On completion, the execution returns to con-
tinue in ROM, which is now relocated at base address $080000. Finally, the RAM is then
relocated at base address $0 as required. The resulting memory map is shown in Figure 10-
7.

Applications Information

10-28 MC68307 USER’S MANUAL MOTOROLA

Figure 10-7. Memory Map after Swap Complete

The method described uses an application with 512 Kbytes of EPROM and 128 Kbytes of
SRAM. If further details of the hardware are required, a full description is available in AN490,
titled “Multiple Bus Interfaces Using the MC68307”.

The swap relies on the code being loaded at address $080000 during the link process,
although, any other multiple of the ROM size could be used (e.g., $080000, $100000 and
so on....), so long as the ROM chip select is programmed accordingly.

10.5.1.1 SOFTWARE LISTING 4

*––
* 68307 PROCESSOR REGISTERS.
REG_BASE EQU $FFF000 ; start of internal registers

MBAR EQU $0000F2 ; Base Address Register
SCR EQU $0000F4 ; System Control Register(32 bits)

BR0 EQU REG_BASE+$040 ; CS0 Base Register
OR0 EQU REG_BASE+$042 ; CS0 Option register
BR1 EQU REG_BASE+$044 ; CS1 Base register
OR1 EQU REG_BASE+$046 ; CS1 Option Register
WRR EQU REG_BASE+$12A ; Software Watchdog Reference Reg

*––
TMP_BASE EQU $00200000 ; TEMP RAM BASE FOR ROM/RAM SWAP

*––
* Start-up code section
SECT 9,c

DC.L STACK ; Initial SP
DC.L $08 ; Initial PC

START AND.W #$FFFF,MBAR ; 68307 register base at $FFF000
MOVE.W #$0000,WRR ; Disable Software Watchdog

MOVE.W #$1F02,OR0 ; 0 waits, 512kB block, r/w not masked,

ROM

RAM
000000

01FFFF

080000

0FFFFF

FFF000

COMMENTS

16-BIT WIDE
0 WAIT STATE

ADDRESS
BOARD FEATURE

8 OR 16 BIT,

PROGRAMMABLE

MC68307 REGISTERS

RANGE

VIA MC68307 MBAR

0 WAIT STATE

Applications Information

MOTOROLA MC68307 USER’S MANUAL 10-29

; FC's masked
MOVE.W #$C001,BR0 ; CS0 Supervisor program space, base $0,

; read, EN

MOVE.W #$1FC0,OR1 ; 0 waits, 128kB block, r/w bit masked,
; FC's masked

MOVE.W #$A401,BR1 ; CS1 Supervisor data space, base
; $200000, read, EN

*––
* Copy swap code to RAM
*––

LEA SWAPC(PC),A0 ; Get start address of SWAP code
LEA SWAPCE(PC),A1 ; Get end address of SWAP code
MOVEA.L #TMP_BASE,A2 ; Get address of temp RAM base

SWAPLP CMPA.L A0,A1 ; Has all code been copied?
BEQ JUMPSC ; If so, jump to code RAM
MOVE.W (A0)+,(A2)+ ; Otherwise, copy ROM code to RAM
BRA SWAPLP ; Continue in swapping loop

JUMPSC JMP (TMP_BASE).L ; Execute SWAP code in RAM

*––
* Code for RAM to $0 and ROM to $80000 swap
* A section of code is set up to relocate ROM to $80000
* This is copied to RAM, jumped to in RAM and executed,
* before jumping back to ROM and relocating RAM at $0.
*––
SWAPC MOVE.W #$C101,BR0 ; Place ROM at $80000 by writing to BR0

JMP (SWAPCE).L ; Return back to new ROM location
SWAPCE

MOVE.W #$A001,BR1 ; Place RAM at $0 by writing to BR1

MOTOROLA

MC68307 USER’S MANUAL

11-1

SECTION 11
ELECTRICAL CHARACTERISTICS

This section contains detailed information on power considerations, DC/AC electrical char-
acteristics, and AC timing specifications of the MC68307. Refer to

Section 12 Ordering
Information and Mechanical Data

 for specific part numbers corresponding to voltage, fre-
quency, and temperature ratings.

11.1 MAXIMUM RATINGS

The following ratings define a range of conditions in which the device will operate without
being damaged. However, sections of the device may not operate normally while being
exposed to the electrical extremes.

11.2 THERMAL CHARACTERISTICS

Rating Symbol Value Unit

This device contains protective circuitry
against damage due to high static voltag-
es or electrical fields; however, it is ad-
vised that normal precautions be taken to
avoid application of any voltages higher
than maximum-rated voltages to this
high-impedance circuit. Reliability of op-
eration is enhanced if unused inputs are
tied to an appropriate logic voltage level
(e.g., either GND or VCC).

Supply Voltage

1, 2

VCC –0.3 to + 7.0 V

Input Voltage

1, 2

Vin –0.3 to + 7.0 V

Operating Temperature Range TA –40 to 85

°

C

Storage Temperature Range Tstg –55 to +150

°

C

NOTES:
1.Permanent damage can occur if maximum ratings are exceeded. Exposure to

voltages or currents in excess of recommended values affects device
reliability. Device modules may not operate normally while being exposed to
electrical extremes.

2.Although sections of the device contain circuitry to protectagainst damage from
high static voltages or electrical fields, take normal precautions to avoid
exposure to voltages higher than maximum-rated voltages.

Characteristic Symbol Value Unit

Thermal Resistance—Junction to Case
Plastic 100-Pin QFP
Plastic 100-Pin Thin QFP

θ

JC 20

1

20

1

°

C/W

Thermal Resistance—Junction to Ambient
Plastic 100-Pin QFP
Plastic 100-Pin Thin QFP

θ

JA 42

1

42

1

°

C/W

NOTE:
1. Estimated

Thi d t t d ith F M k 4 0 4

Electrical Characteristics

11-2

MC68307 USER’S MANUAL

MOTOROLA

11.3 POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in

°

C can be obtained from:

TJ = TA + (PD •

θ

JA) (1)

where:

TA = Ambient Temperature,

°

C

θ

JA = Package Thermal Resistance, Junction-to-Ambient,

°

C/W
PD = PINT + PI/O

PINT = ICC x

VCC, Watts—Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins—User Determined

For most applications, PI/O < PINT and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

PD = K

÷

 (TJ + 273

°

C) (2)

Solving Equations (1) and (2) for K gives:

K = PD • (TA + 273

°

C) +

θ

JA • PD

2

(3)

where K is a constant pertaining to the particular part. K can be determined from equation
(3) by measuring PD (at thermal equilibrium) for a known TA. Using this value of K, the val-
ues of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value
of TA.

11.4 AC ELECTRICAL SPECIFICATION DEFINITIONS

The AC specifications presented consist of output delays, input setup and hold times, and
signal skew times. All signals are specified relative to an appropriate edge of the clock and
possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure 11-
1. To test the parameters guaranteed by Motorola, inputs must be driven to the voltage lev-
els specified in that figure. Outputs are specified with minimum and/or maximum limits, as
appropriate, and are measured as shown in Figure 11-1. Inputs are specified with minimum
setup and hold times and are measured as shown. Finally, the measurement for signal-to-
signal specifications is also shown.

NOTE

The testing levels used to verify conformance to the AC specifi-
cations do not affect the guaranteed DC operation of the device
as specified in the DC electrical specifications.

Electrical Characteristics

MOTOROLA

MC68307 USER’S MANUAL

11-3

Figure 11-1. Drive Levels and Test Points for AC Specifications

0.8 V

2.0 V

B

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0 V

0.8 V

2.0 V

0.8 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n+1

2.0 V

0.8 V

B

A

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

DRIVE
TO 0.5 V

DRIVE
TO 2.4 V

2.0 V

0.8 V

2.0 V

0.8 V

F

CLKOUT

OUTPUTS(1)

OUTPUTS(2)

INPUTS(3)

INPUTS(4)

ALL SIGNALS(5)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:
A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.
E. Signal valid to signal valid specification (maximum or minimum).
F. Signal valid to signal invalid specification (maximum or minimum).

E

A

C

C

Electrical Characteristics

11-4

MC68307 USER’S MANUAL

MOTOROLA

11.5 DC

ELECTRICAL SPECIFICATIONS

11.6 AC ELECTRICAL SPECIFICATIONS—CLOCK TIMING

(see Figure 11-2)

Characteristic Symbol Min Max Unit

Input high voltage (except EXTAL) V

IH

2.0 V

CC

V

Input low voltage V

IL

GND – 0.3 0.8 V

Clock input high voltage (EXTAL) VIHC 0.7 V

CC

V

CC

 + 0.3 V

Input leakage current @5.25V (all input-only pins)

1

I

IN

– 2.5 2.5

µ

A

Three-state (off state) input current @2.4V/0.4V I

TSI

— 20

µ

A

Output high voltage (I

OH

 = 4mA) V

OH

V

CC

 – 0.75 — V

Output low voltage (I

OL

 = 4mA) V

OL

— 0.5 V

Current dissipation
V

CC

 = 5.0V

±

0.5V

2

, f

EXT

= 16.67MHz

V

CC

 = 3.3V

±

0.3V

2

, f

EXT

= 8MHz
Low power SLEEP mode
V

CC

 = 5.0V

±

0.5V, f

EXT

 = 16.67MHz
V

CC

 = 3.3V

±

0.3V, f

EXT

 = 8MHz

I

D

—
—

—
—

TBD
TBD

TBD
TBD

mA

Power dissipation
V

CC

 = 5.0V

±

0.5V, f

EXT

= 16.67MHz
V

CC

 = 3.3V

±

0.3V, f

EXT

= 8MHz
P

D

—
—

TBD
TBD

W

Input capacitance

3

All input-only pins
All I/O pins

C

IN

—
—

10
20

pF

Load capacitance

3

All output pins (except SCL and SDA)
SCL, SDA

C

L

—
—

100
400 pF

NOTES:
1. Not including internal pull-up or pull-down.
2. Currents listed are with no loading.
3. Capacitance is periodically sampled rather than 100% tested.

Num Characteristic
3.3 V 3.3 V or 5 V

8.33 MHz 16.67 MHz
Min Max Min Max

Frequency of operation 0.0 8.33 0.0 16.67
1 Clock period (EXTAL) 120 — 60 —

2,3 Clock pulse width (EXTAL) 54 — 27 —
4,5 Clock rise and fall times (EXTAL) — 5 — 5

Electrical Characteristics

MOTOROLA

MC68307 USER’S MANUAL

11-5

11.7 AC ELECTRICAL SPECIFICATIONS—READ AND WRITE CYCLES

(V

CC

 = 5.0V

±

 0.5V or 3.3Vdc

±

 0.3V; GND = 0Vdc; T

A

 = T

L

 to T

H

) (see Figure 11-3 and Figure 11-4

)

Figure 11-2. Clock Timing

Num Characteristic
3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz
Min Max Min Max

6 Clock low to address valid — 60 — 30 ns
7 Clock high to address, data bus high impedance (maximum) — 100 — 50 ns
8 Clock high to address invalid (minimum) 0 — 0 — ns

9

1

Clock high to AS, CSx, LDS, UDS asserted 3 60 3 30 ns

11

2

Address valid to AS, CSx, LDS, UDS asserted (read)/AS, CSx asserted
(write) 30 — 15 — ns

12

1

Clock low to AS, CSx, LDS, UDS negated 3 60 3 30 ns

13

2

 AS, CSx, LDS, UDS negated to address invalid 30 — 15 — ns

14

2

 AS, CSx, (and LDS, UDS read) width asserted 240 — 120 — ns

14A

2

LDS, UDS width asserted (write) 120 — 60 — ns

15

2

 AS, CSx, LDS, UDS width negated 120 — 60 — ns

16 Clock high to control bus high impedence — 100 — 50 ns

17

2

 AS, CSx, LDS, UDS negated to R/W invalid 30 — 15 — ns

18

1

Clock high to R/W high (read) 0 60 0 30 ns

20

1

Clock high to R/W low (write) 0 60 0 30 ns

20A

2,3

 AS, CSx, asserted to R/W low (write) — 20 — 10 ns

21

2

Address valid to R/W low (write) 0 — 0 — ns

22

2

R/W low to LDS, UDS asserted (write) 60 — 30 — ns

23 Clock low to data-out valid (write) — 60 — 30 ns

25

2

 AS, CSx, LDS, UDS negated to data-out invalid (write) 30 — 15 — ns

26

2

Data-out valid to LDS,UDS asserted (write) 30 — 15 — ns

27

4

Data-in valid to clock low (setup time on read) 10 — 5 — ns

282 AS, CSx, LDS, UDS negated to DTACK negated (asynchronous hold) 0 220 0 110 ns

29 AS, CSx, LDS, UDS negated to data-in invalid (hold time on read) 0 — 0 — ns
29A AS, CSx, LDS, UDS negated to data-in high impedance — 180 — 90 ns

312,4 DTACK asserted to data-in valid (setup time) — 100 — 50 ns

32 HALT,RESET and RSTIN input transition time 0 300 0 150 ns
33 Clock high to BG asserted 0 40 0 20 ns

0.8 V

3.8 V

Timing measurements are referenced to and from a low voltage of 0.8 V and a high
 voltage of 3.8 V, unless otherwise noted. The voltage swing through this range
 should start outside and pass through the range such that the rise or fall will be linear
 between 0.8 V and 3.8 V.

NOTE:

4 5

1

2 3

Electrical Characteristics

11-6 MC68307 USER’S MANUAL MOTOROLA

34 Clock high to BG negated 0 40 0 20 ns

359 BR asserted to BG asserted (for last cycle of operand transfer) 1.5 3.5 1.5 3.5 Clks

36 BR negated to BG negated 1.5 3.5 1.5 3.5 Clks
37 BGACK asserted to BG asserted 1.5 3.5 1.5 3.5 Clks

37A2 BGACK asserted to BR negated 40 ns 1.5 20 ns 1.5 Clks

38 BG asserted to control, address, data bus high impedance (AS, CSx
negated) — 100 — 50 ns

39 BG width negated 1.5 — 1.5 — Clks
46 BGACK width low 1.5 — 1.5 — Clks

474 Asynchronous input setup time 10 — 5 — ns

53 Data-out hold from clock high 0 — 0 — ns
55 R/W asserted to data bus impedance change 0 — 0 — ns

565 HALT/RESET pulse width, RSTIN pulse width 10 — 10 — Clks

57 BGACK negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks
58 BR negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks

NOTES:
1. For a loading capacitance of less than or equal to 50 pF, subtract 5 ns from the value given in the maximum

columns.
2. Actual value depends on clock period.
3. When AS, CSx and R/W are equally loaded (±20%), subtract 5 ns from the values given in these columns.
4. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK asserted to data setup

time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time (#27) for the
following clock cycle.

5. For power-up, the MC68307 is held in the reset state for 32768 clock cycles after VCC becomes stable to allow
stabilization of on-chip circuitry. After the system is powered up, #56 refers to the minimum pulse width of RESET/
HALT required to reset the controller. This pulse is stretched internally to 132 clocks. If RSTIN is used, the pulse is
stretched internally to 32768 clocks, and RESET and HALT are asserted as outputs.

6. The processor will negate BG and begin driving the bus again if external arbitration logic negates BR before
asserting BGACK.

7. The minimum value must be met to ensure proper operation. If the maximum value is exceeded, BG may be
reeasserted.

8. AS is always asserted, regardless of whether it is mapped to internal or external peripherals/memory. If the designer
wishes to decode more chip selects than are provided, one of CS0 – CS3 should be used as the enable for the
external decode.

9. During a read modify write cycle or a dynamically sized cycle, BG is delayed if BR is asserted before the last bus
cycle of the operand transfer, in order to ensure operand coherency. BG will be asserted once AS has asserted for
the last bus cycle of the transfer.

Num Characteristic
3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz
Min Max Min Max

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-7

Figure 11-3. Read Cycle Timing Diagram

13

14

12

47 28

29

27

47

47

32

56

47

32

A23–A0

 CSx, AS

LDS / UDS

R/W

DTACK

D15–D0

BR
(NOTE 2)

HALT / RESET,

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

31

11A

 2. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

8

9

15

6

11

29A

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK, IRQ7, INTx) guarantees
 their recognition at the next falling edge of the clock.

18

S0 S1 S2 S3 S4 S5 S6

CLK

S7

17

RSTIN

Electrical Characteristics

11-8 MC68307 USER’S MANUAL MOTOROLA

Figure 11-4. Write Cycle Timing Diagram

S0 S1 S2 S3 S4 S5 S6

CLK

S7

8

15

13

9

14

12

17

18

A23–A0

CSx, AS

LDS / UDS

R/W

11
9

21

22

20

11A

14A20A

(NOTE 2)

(NOTE 2)

6

47 28

25

26

48

47

47

32

56

47

32

DTACK

D15–D0

BR
(NOTE 3)

HALT / RESET,

47

ASYNCHRONOUS
INPUTS

(NOTE 1)

237
53

55

2. Because of loading variations, R/W may be valid after AS even though both are initiated by the rising edge
 of S2 (specification #20A).

NOTES:
 1. Setup time (#47) for asynchronous inputs (HALT, RESET, BR, BGACK, DTACK, IRQ7, INTx) guarantees
 their recognition at the next falling edge of the clock.

 3. BR need fall at this time only to ensure being recognized at the end of the bus cycle.

15A

RSTIN

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-9

11.8 AC ELECTRICAL SPECIFICATIONS—BUS ARBITRATION
(See Figure 11-5 and Figure 11-6.)

Num Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

7 Clock high to address, data bus high impedance (maximum) — 100 — 50 ns

16 Clock high to control bus high impedence — 100 — 50 ns

33 Clock high to BG asserted 0 40 0 20 ns

34 Clock high to BG negated 0 40 0 20 ns

35 BR asserted to BG asserted (for last cycle of operand transfer) 1.5 3.5 1.5 3.5 Clks

36 BR negated to BG negated 1.5 3.5 1.5 3.5 Clks

37 BGACK asserted to BG asserted 1.5 3.5 1.5 3.5 Clks

37A1 BGACK asserted to BR negated 40 ns 1.5 20 ns 1.5 Clks

38 BG asserted to control, address, data bus high impedance (AS, CSx
negated) — 100 — 50 ns

39 BG width negated 1.5 — 1.5 — Clks

472 Asynchronous input setup time 10 — 5 — Clks

57 BGACK negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks

58 BR negated to AS, CSx, LDS, UDS, R/W driven 1.5 — 1.5 — Clks

NOTES:
1. Actual value depends on clock period.
2. If the asynchronous input setup time (#47) requirement is satisfied for DTACK, the DTACK asserted to data setup

time (#31) requirement can be ignored. The data must only satisfy the data-in to clock low setup time (#27) for the
following clock cycle.

Figure 11-5. Three-Wire Bus Arbitration Diagram

37A
36

37
46

3934

33
38

35

STROBES
AND R/W

BR

BGACK

BG

CLK

NOTE: Setup time to the clock (#47) for the asynchronous inputs BGACK, BR, DTACK, HALT, RESET, IRQ7
and INTx guarantees their recognition at the next falling edge of the clock.

Electrical Characteristics

11-10 MC68307 USER’S MANUAL MOTOROLA

Figure 11-6. Two-Wire Bus Arbitration Timing Diagram

CLK

33

35

BR

BG

AS

UDS, LDS

R/W

A19–A0

D7–D0

47

38

36

58

34

39

47

16

7

CSx

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-11

11.9 AC ELECTRICAL SPECIFICATIONS—8051 BUS INTERFACE
MODULE (VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 11-7 and

Figure 11-8.)

Refer to Section 3 Bus Operation for a description of the 8051 diagram relative to the
underlying 68000 bus cycle.

Symbol Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

 tcyc Cycle time 120 — 60 — ns

TLHLL ALE pulse width high tcyc – 30 — tcyc – 15 — ns

TAVLL Address valid to ALE low 1.5 x tcyc – 30 — 1.5 x tcyc – 15 — ns

TLLAX Address hold after ALE low tcyc – 60 — tcyc – 30 — ns

TRLRH RD pulse width asserted1 4.5 x tcyc – 30 — 4.5 x tcyc - 15 — ns

TWLWH WR pulse width asserted1 4.5 x tcyc – 30 — 4.5 x tcyc - 15 — ns

TRLDV RD asserted to valid data in1 — 4.5 x tcyc – 70 — 4.5 x tcyc – 35 ns

TRHDX Data hold after RD negated 0 — 0 — ns

TRHDZ Data float after RD negated — 0.5 x tcyc — 0.5 x tcyc ns

TLLDV ALE low to valid data in1 — 7.5 x tcyc – 70 — 7.5 x tcyc – 35 ns

TAVDV Address to valid data in1 — 9 x tcyc – 70 — 9 x tcyc – 35 ns

TLLWL ALE low to RD or WR asserted 3 x tcyc – 57 3 x tcyc + 57 3 x tcyc – 27 3 x tcyc + 27 ns

TAVWL Address valid to RD or WR asserted 4.5 x tcyc – 30 — 4.5 x tcyc – 15 — ns

TQVWX Data valid to WR asserted tcyc – 60 — tcyc – 30 — ns

TQVWH Data valid to WR negated1 5.5 x tcyc – 60 — 5.5 x tcyc – 30 — ns

TWHQX Data hold after WR negated tcyc – 90 — tcyc – 45 — ns

TRLAZ RD asserted to address float — 0 — 0 ns

TWHLH RD or WR negated to ALE high 1.5 x tcyc – 30 1.5 x tcyc+ 30 1.5 x tcyc – 15 1.5 x tcyc + 15 ns

NOTES:
1. Wait states can be added.
2. The values in the table are for the minimum 6 wait states of 8051 mode.

Electrical Characteristics

11-12 MC68307 USER’S MANUAL MOTOROLA

Figure 11-7. External 8051 Bus Read Cycle

Figure 11-8. External 8051 Bus Write Cycle

ALE

RD

AD7–AD0

A23–A8

ADDRESS DATA IN ADDRESS

TLHLL TWHLH

TLLDV

TLLWL TRLRH

TAVLL
TLLAX TRLDV TRHDZ

TRLAZ

TRHDX

TAVWL
TAVDV

ALE

WR

AD7–AD0

A23–A8

ADDRESS DATA OUT ADDRESS

TLHLL TWHLH

TLLWL TWLWH

TAVLL
TLLAX TWHQX

TAVWL

TQVWX

TQVWH

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-13

11.10 TIMER MODULE ELECTRICAL CHARACTERISTICS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 11-9.)

Num Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

1 TIN clock low pulse width 1 — 1 — Clk

2 TIN clock high pulse width and input capture high pulse width 2 — 2 — Clk

3 TIN clock cycle time 3 — 3 — Clk

4 Clock high to TOUT valid — 70 — 35 ns

Figure 11-9. Timer Module Timing Diagram

CLKOUT

TOUT
(OUTPUT)

4

3 2

1

TIN
(INPUT)

1

Electrical Characteristics

11-14 MC68307 USER’S MANUAL MOTOROLA

11.11 UART ELECTRICAL CHARACTERISTICS
(VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH)

(See Figure 11-10 and Figure 11-11.)

Num Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

1 TxD output valid from TxC low — 200 — 100 ns

2 RxD data setup time to RxC high 480 — 240 — ns

3 RxD data hold time from RxC high 400 — 200 — ns

Figure 11-10. Transmitter Timing

Figure 11-11. Receiver Timing

CLOCK

1 BIT TIME

TxD

(1 OR 16 CLOCKS)

1

CLOCK 1X

RxD

2 3

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-15

11.12 AC ELECTRICAL CHARACTERISTICS—M-BUS INPUT SIGNAL
TIMING (VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 11-12.)

11.13 AC ELECTRICAL CHARACTERISTICS—M-BUS OUTPUT SIGNAL
TIMING (VCC = 5.0V ± 0.5V or 3.3Vdc ± 0.3V; GND = 0Vdc; TA = TL to TH) (See Figure 11-12.)

Num Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

1 Start condition hold time 2 — 2 — Clk

2 Clock low period 4.7 — 4.7 — Clk

3 SDA/SCL rise time — 2 — 1 µs

4 Data hold time 0 — 0 — Clk

5 SDA/SCL fall time — 600 — 300 ns

6 Clock high period 4 — 4 — Clk

7 Data setup time 500 — 250 — µs

8 Start condition setup time (for repeated start condition only) 2 — 2 — Clk

9 Stop condition setup time 2 — 2 — Clk

Num Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

1 Start condition hold time 8 — 8 — Clk

2 Clock low period 11 — 11 — Clk

3 SDA/SCL rise time — 2 — 1 µs

4 Data hold time 0 2 0 2 Clk

5 SDA/SCL fall time — 600 — 300 ns

6 Clock high period 11 — 11 — Clk

7 Data setup time Spec 2
x Clk — Spec 2

x Clk — ns

8 Start condition setup time (for repeated start condition only) 20 — 10 — Clk

9 Stop condition setup time 20 — 10 — Clk

Figure 11-12. M-Bus Interface Input/Output Signal Timing

5

SDA

SCL

987

6
3

2

4
1

Electrical Characteristics

11-16 MC68307 USER’S MANUAL MOTOROLA

11.14 AC ELECTRICAL CHARACTERISTICS—PORT TIMING
(See Figure 11-13.)

Characteristic Symbol

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

Port Input Setup Time to UDS, LDS Asserted tPS 0 — 0 — ns

Port Input Hold Time from UDS, LDS Negated tPH 0 — 0 — ns

Port Output Valid from UDS, LDS Negated tPD — 30 — 60 ns

NOTE: Test conditions for port outputs: CL = 50 pF, RL = 27 kΩ to VCC.

Figure 11-13. Port Timing

tPS

UDS, LDS

PORTA, PORTB

PORTA, PORTB

OLD DATA NEW DATA

tPD

tPH

Electrical Characteristics

MOTOROLA MC68307 USER’S MANUAL 11-17

11.15 IEEE 1149.1 ELECTRICAL CHARACTERISTICS
(See Figure 11-14, Figure 11-15, and Figure 11-16.)

Num. Characteristic

3.3V 3.3 V or 5 V

Unit8.33 MHz 16.67 MHz

Min Max Min Max

TCK Frequency of Operation 0 10.0 0 5.0 MHz

1 TCK Cycle Time 100 — 200 — ns

2 TCK Clock Pulse Width Measured at 1.5 V 45 — 45 — ns

3 TCK Rise and Fall Times 0 5 0 10 ns

6 Boundary Scan Input Data Setup Time 15 — 30 — ns

7 Boundary Scan Input Data Hold Time 15 — 30 — ns

8 TCK Low to Output Data Valid 0 80 0 160 ns

9 TCK Low to Output High Impedance 0 80 0 160 ns

10 TMS, TDI Data Setup Time 15 — 30 — ns

11 TMS, TDI Data Hold Time 15 — 30 — ns

12 TCK Low to TDO Data Valid 0 30 0 60 ns

13 TCK Low to TDO High Impedance 0 30 0 60 ns

Figure 11-14. Test Clock Input Timing Diagram

V

V
TCK

1

2 2

33

IH

IL

Electrical Characteristics

11-18 MC68307 USER’S MANUAL MOTOROLA

Figure 11-15. Boundary Scan Timing Diagram

Figure 11-16. Test Access Port Timing Diagram

TCK

DATA
OUTPUTS

DATA
INPUTS

DATA
OUTPUTS

DATA
OUTPUTS

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

7

8

IL

IH

6

9

8

TCLK

TDI
TMS

TDO

TDO

TDO

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

11

12

13

12

IL

IH

10

MOTOROLA

MC68307 USER’S MANUAL

12-1

SECTION 12
ORDERING INFORMATION AND MECHANICAL DATA

This section contains the ordering information, pin assignments, and package dimensions
for the MC68307.

12.1 STANDARD ORDERING INFORMATION

Package Type Frequency (MHz)
Supply

Voltage (V)
Temperature Order Number

100-Pin Plastic Quad Flat Pack (FG Suffix) 16.67 5 0

°

C to 70

°

C MC68307FG16

100-Pin Thin Quad Flat Pack (PU Suffix) 16.67 5 –40

°

C to 70

°

C MC68307PU16

100-Pin Plastic Quad Flat Pack (FG Suffix) 16.67 5 –40

°

C to 85

°

C MC68307CFG16

100-Pin Plastic Quad Flat Pack (FG Suffix) 16.67 3.3 –40

°

C to 70

°

C MC68307FG16V

100-Pin Thin Quad Flat Pack (PU Suffix) 8.33 3.3 –40

°

C to 70

°

C MC68307PU8V

100-Pin Thin Quad Flat Pack (PU Suffix) 16.67 3.3 –40

°

C to 70

°

C MC68307PU16V

Thi d t t d ith F M k 4 0 4

Ordering Information and Mechanical Data

12-2

MC68307 USER’S MANUAL

MOTOROLA

12.2 100-PIN PQFP PIN ASSIGNMENTS (FG SUFFIX)

A13
A12
A11
A10
GND
A9
A8
A7/AD7
A6/AD6
A5/AD5

A22
A21
A20
A19
A18
VCC
A17
A16
A15
A14

D7
D6
D5
D4

VCC
D3
D2
D1
D0

TDO

TMS
D15
D14
D13
D12

GND
D11
D10

D9
D8

79 52

80

81

100

1 30

31

50

51

PB
0/

SC
L

PB
1/

SD
A

VC
C

PB
2/

Tx
D

PB
3/

R
xD

PB
4/

R T
S

PB
5/

C
TS

PB
6/

TI
N

1
PB

7/
TI

N
2

PB
8/

IN
T1

PB
10

/IN
T3

PB
11

/IN
T4

PB
12

/IN
T5

PB
13

/IN
T6

PB
14

/IN
T7

PB
15

/IN
T8

VC
C

PA
0/

C
S2

B
PA

1/
C

S2
C

PA
2/

C
S2

D
PA

3/
TO

U
T1

PA
4/

TO
U

T2
PA

5/
BR

PA
6/

BG
G

N
D

PA
7/

BG
AC

K
IR

Q
7

A2
3

PB
9/

IN
T2

G
N

D

R
ST

IN
VC

C
H

AL
T

R
ES

ET
TC

K
C

S0
C

S1
C

S2
A/

C
S2

C
S3

G
N

D

TD
I

AL
E

R
D

G
N

D
W

R AS
U

D
S

LD
S

R
/W

D
TA

C
K

C
LK

O
U

T
EX

TA
L

XT
AL

BU
SW

A0
/A

D
0

A1
/A

D
1

A2
/A

D
2

VC
C

A3
/A

D
3

A4
/A

D
4

MC68307
(TOP VIEW)

Ordering Information and Mechanical Data

MOTOROLA

MC68307 USER’S MANUAL

12-3

12.3 100-PIN PQFP PACKAGE DIMENSIONS (FG SUFFIX)

Dim. Min. Max. Notes Dim. Min. Max.

A 19.90 20.10

1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. All dimensions in mm.
3. Datum plane –H– is located at the bottom of the lead and is

coincident with the lead where it exits the plastic body at the bottom
of the parting line.

4. Datums A–B and –D– to be determined at datum plane –H–.
5. Dimensions S and V to be determined at seating plane –C–.
6. Dimensions A and B do not include mould protrusion; allowable

protrusion is 0.25mm per side. Dimensions A and B do include
mould mismatch and are determined at datum plane –H–.

7. Dimension D does not include dambar protrusion; allowable
protrusion is 0.08mm total in excess of the D dimension at
maximum material condition. Dambar cannot be located on the
lower radius or the foot.

P 0.325 BSC

B 13.90 14.10 Q 0° 7°
C 2.85 3.15 R 0.13 0.30

D 0.22 0.38 S 23.10 23.37

E 2.55 3.05 T 0.13 —

F 0.22 0.33 U 0° —

G 0.65 BSC V 17.10 17.37

H 0.25 0.35 W 0.40 —

J 0.13 0.23 X 1.60 REF

K 0.75 0.92 Y 0.58 REF

L 12.35 REF Z 0.83 REF

M 5° 16° AA 18.85 REF

N 0.13 0.17 —

–A–
LV

0.2 C A–B DM S S

0.
2

H
A–

B
D

M
S

S

Z

AAY

–B–

–D–

A

0.05 A–B

S
0.2 H A–B DM S S

B

0.
2

C
A–

B
D

M
S

S

0.
05

 A
–B

Case No. 842B-01
QFP-100 14x20

1 30

5180

31

5081

100

P

–A, B, D–

Detail ‘A’

Detail ‘A’

J

F

N

D

0.2 C A–B DM S S

Base metal

Detail ‘B’

–C–
Seating
plane

H

E
C

G
Detail ‘B’

0.10

–H– Datum
plane

Detail ‘C’

M

M

Detail ‘C’

–H–
Datum
plane

X

K

Q

R

U
W

T

Ordering Information and Mechanical Data

12-4

MC68307 USER’S MANUAL

MOTOROLA

12.4 100-PIN TQFP PIN ASSIGNMENTS (PU SUFFIX)

 V
D

D

 D
5

 D
4

 D
3

 2
6

 2
7

 2
9

 3
0

 3
1

 3
2

 3
3

 3
4

 3
5

 3
6

 3
8

 3
9

 4
0

 4
1

 2
8

75
74

72
71
70
69
68
67
66
65
64
63
62
61
60

73

 VDD
 PB2/TxD

 PB4/RTS
 PB5/CTS
 PB6/TIN1
 PB7/TIN2
 PB8/INT1
 PB9/INT2
 PB10/INT3
 VSS
 PB11/INT4
 PB12/INT5
 PB13/INT6
 PB14/INT7
 PB15/INT8

 PB3/RxD

VSS
WR

UDS
LDS
R/W

DTACK
RSTIN

VDD
HALT

RESET
TCK
CS0
CS1

CS2A/CS2
CS3

AS

A3
/A

D
3

A4
/A

D
4

A6
/A

D
6

A7
/A

D
7 A8

A9

A1
0

A1
1

A1
2

A1
3

A1
4

A1
5

A1
6

A1
7

A5
/A

D
5

 R
D

 A
LE

 T
D

O
 D

0
 D

1
 D

2

 D
6

 D
7

 D
8

 D
9

 D
10

 T
D

I

 1
 2

 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

 3

VS
S

 3
7

10
0 99

97

96

95

94

92

91

90

89

88

87

86

85

98

93

59
58
57
56
55
54
53
52
51

 VDD
 PA0/CS2B
 PA1/CS2C
 PA2/CS2D
 PA3/TOUT1
 PA4/TOUT2
 PA5/BR
 PA6/BG
 VSS

 V
SS

 D
13

 D
12

 D
11

 D
14

 D
15

 T
M

S
 P

B0
/S

C
L

 P
B1

/S
D

A

83

82

81

80

79

78

77

76

84

 18

 20
 19

 17

 21
 22
 23
 24
 25

CLKOUT
EXTAL

XTAL
BUSW

A0/AD0
A1/AD1
A2/AD2

VDD

VSS

 4
3

 4
5

 4
4

 4
2

 4
6

 4
7

 4
8

 4
9

 5
0

A1
8

A1
9

A2
0

A2
1

A2
2

A2
3

IR
Q

7
PA

7/
BG

AC
K

VD
D

MC68307
(TOP VIEW)

Ordering Information and Mechanical Data

12-5

MC68307 USER’S MANUAL

MOTOROLA

12.5 100-PIN TQFP PACKAGE DIMENSIONS (PU SUFFIX)

���!��(�$�

���

�

��� ��� ��� ���

��
���

�������$� �������$�

�����������

�� ������$� ��	���$�

	 �������$� �������$�

	� ������$� ��	���$�

 ��� ���

� ���� ���� ����	 ����

� ��
� ���� ����
 �����

� ���� ��	� ����� �����

� ���� ���� ����� ���
�

 ���� ��	
 ����� �����

� ������$� ��	���$�

� ���� ��	� ����� �����

� �����#�� ���	��#��

�� ���� ��	� ����� �����

� ������$� ��
���$�

�� ������$� ��
����$�

� ���� ��� ����� ����

� ������$� ��
���$�

�� ������$� ��
����$�

� ��	��#�� ������#��

� �����#�� ���
��#��

θ �� �� �� ��

θ �� ��

θ �	� �	�

θ �� �
� �� �
�

 !%�$�
�� ���� $�! � �� � �� %!��#� �� �� "�#� � $�

*������� ���	�
	� �! %#!��� �� ���� $�! �� �������%�#�

� ��%&�� ���� �$� �!��%��� �%� �!%%!�� !�� ����

� �� �$� �!� ���� %� (�%�� %��� ����� (��#�� %��
����� �)�%$� %��� "��$%��� �!�*� �%� %��� �!%%!�
!�� %��� "�#%� �� �� ��

�� ��%&�$� ����� ���� � �� � �� %!� ��� ��%�#�� ��
�%� ��%&�� ����

�� ���� $�! $� $� � �� '� %!� ��� ��%�#�� ��� �%
$��%� �� "�� �� �%��

� ���� $�! $� �� � �� �� �!� !%� � ��&��� �!��
"#!%#&$�! �� � ���!(����� "#!%#&$�! � �$
��	��� �������� "�#� $����� � ���� $�! $� �� � �� �� �!
� ��&��� �!��� ��$��%��� � �� �#�
��%�#�� ��� �%� ��%&�� ����

�� ���� $�! � �� �!�$� !%� � ��&��� �����#
"#!%#&$�! �� � �����#� "#!%#&$�! � $����
 !%� ��&$�� %��� ����� (��%�� %!� �)����� ��
��
��������� � �� ��&�� $"���� ��%(�� � "#!%#&$�!
� �� ������ %� ����� !#� "#!%#&$�! � �����
�����
��

�

�

� � � � �

� �

� � � �

��

 V1 B1 3X VIEW Y

 S1

 A1

4X 25 TIPS
4X

 V

 S

 A

 B

��

��� ��

��

��

�� ��

�

2X 02

$��%� �

"�� � VIEW AA
2X 03

C

–L–

 ��	��������� � ���

 ��	��������� % ���

–M–

����������
� %

–H–

–T–

–N–

C2

C1
K

Z

W

�����"�� �

VIEW AA

AB
)�������

 G

VIEW Y

AB

"��%� �

UJ

D

F

#!%�%�����°

��$����%��

SECTION AB–AB

$����������	�

E

Θ1

Θ

��	���������

2XR R1

��

–X– $��������������
� $%

CASE 983-01

MOTOROLA

MC68307 USER’S MANUAL

INDEX-1

INDEX

Numerics

8051-compatible bus 2-9, 5-8
8051-compatible bus interface 5-10

A

A23–A0 2-5
access errors 4-1
AD7–AD0 2-6
address bus 2-5
address latch enable 2-9
address strobe 2-8
addressing modes 4-4

index sizing and scaling 4-3
indexing 4-3
offset 4-3
postincrement 4-3
predecrement 4-3
program counter indirect 4-3
register indirect 4-3

ALE 2-9
AS 2-8, 3-4, 3-7, 3-8, 3-18
asynchronous bus arbitration signals 3-19
asynchronous mode 3-32

B

base registers 5-30
baud rate generator 8-5
BERR 3-4
BG 2-10, 3-18
BGACK 2-10
boundary scan 9-1
boundary scan bit definitions 9-4
BR 2-10
BR3-BR0 5-30
bus arbitration 3-15

2-wire 3-15
3-wire 3-15

bus control signals 2-7
bus error exception 3-31

bus grant 2-10
bus grant acknowledge 2-10
bus grant signal 3-16
bus request 2-10
bus width select 2-9
BUSW0 2-9
byte read cycle flowchart 3-2

C

chip select registers 5-30
chip selects 1-5, 2-6, 5-5
clear-to-send 2-12
CLKOUT 2-11
clock output 2-11
clock signals 2-10
crystal oscillator 2-10
CS0 2-6
CS1 2-6
CS2 2-6
CS3 2-7
CTS 2-12

D

data bus 2-6, 3-29
data formats 4-3
data strobes 2-8
data transfer acknowledge 2-7
data types

denormalized numbers 4-3
infinities 4-3
NANs 4-3
normalized numbers 4-3
zeros 4-3

denormalized numbers 4-3
double bus fault 3-31
DTACK 2-7, 3-4
dual timer module 6-1

Thi d t t d ith F M k 4 0 4

Index

INDEX-2

MC68307 USER’S MANUAL

MOTOROLA

E

EBI 1-5
EPROM memory interface 10-5
EPROM timing 10-6
exceptions 4-9

access errors 4-1
address error exception 4-18
bus error exception 4-18
control signals 2-9
exception vector 4-12
exceptions handler 4-10
reset exception 4-14
SR

M-bit 4-10
trace exception 4-17
vector assignments 4-13
vector table 4-9

EXTAL 2-10
external bus interface 1-5

control registers 5-34
logic 5-9

F

FIFO stack 8-8
floating-point unit

(see data types)
function codes 3-29

G

general purpose timer units 6-4
general-purpose I/O ports 5-10
general-purpose interrupt inputs 5-17
general-purpose timer units 6-1
global chip select operation 5-8

H

HALT 2-10
halt 2-10

I

I/O driver routines 8-31
index sizing and scaling 4-3
indexing 4-3
infinities 4-3
initialization routines 8-31

instructions
STOP 4-1
TRAP, TRAPV, CHK, RTE, and DIV 4-9

INT1 - INT8 2-13
interrupts 4-1

acknowledge bus cycle 4-9
control registers 5-38
controller logic 5-14
general-purpose interrupt inputs 5-17
handling routine 8-31
latched interrupt control registers 5-38
level 7 interrupts 4-14
non-maskable interrupt 5-17
peripheral interrupt control register 5-39
peripheral interrupt handling 5-18
priorities 4-14
priority mask 4-9
processing 5-13
requests 4-15

inputs 2-13
signals 8-3

uninitialized interrupt vector 4-15
vector generation 5-15

IRQ7 2-13, 5-17

J

JTAG 9-1
instruction register 9-9

L

latched interrupt control registers 5-38
LDS 2-8, 3-7
LICR1, LICR2 5-38
looping modes 8-10
low-power sleep mode 10-9
low-power stop logic 5-19
low-power stop mode 10-9

M

M68000 bus interface 5-9
MBAR 5-22
M-Bus

address register 7-6
arbitration lost 7-13
arbitration procedure 7-4
clock stretching 7-5

Index

MOTOROLA

MC68307 USER’S MANUAL

INDEX-3

clock synchronization 7-4
control register 7-7
data I/O register 7-10
data transfer 7-3
frequency divider register 7-6
generation of repeated START 7-13
generation of START 7-11
generation of STOP 7-12
handshaking 7-5
I/O signals 2-11
initialization sequence 7-10
interface module 7-1
interrupt routine 7-14
master mode 10-12
module 1-6
post-transfer software 7-11
programming examples 7-10
programming model 7-5
protocol 7-2
registers

MADR 7-6
MBCR 7-7
MBDR 7-10
MBSR 7-9
MFDR 7-6

repeated START signal 7-4
slave address transmission 7-3
slave mode 7-13, 10-12
software 10-10
START signal 7-3
status register 7-9
STOP signal 7-4
system configuration 7-2

module base address register 5-2, 5-22

N

NANs 4-3
non-IEEE 1149.1 operation 9-11
non-maskable interrupt 5-17
non-maskable interrupt input 2-13
normalized numbers 4-3

O

offset 4-3
operand size 4-3
option registers 5-32

OR3-OR0 5-32
overlap in chip-select ranges 5-8

P

package dimensions
PQFP 12-2
TQFP 12-4

PACNT 5-34
PADAT 5-35
PADDR 5-35
parallel I/O ports 1-5
PB7 2-13
PBCNT 5-36
PBDAT 5-37
PBDDR 5-36
peripheral chip-selects 5-7
peripheral interrupt control register 5-39
peripheral interrupt handling 5-18
PICR 5-39
pin assignments

PQFP 12-1
TQFP 12-3

Port A 5-10, 5-12
control register 5-34
data direction register 5-35
data register 5-35

Port B 2-11–2-13, 5-10, 5-12
control register 5-36
data direction register 5-36
data register 5-37

postincrement 4-3
power-on reset 2-10
predecrement 4-3
privileged instructions 4-17
processing states

normal, exception, halted 4-1
program counter indirect 4-3
programmable data-bus size 5-6

R

R/W 2-8, 3-4, 3-7
RAM memory interface 10-5
RAM timing 10-6
RD 2-9
read cycle 3-2
read/write 2-8

Index

INDEX-4

MC68307 USER’S MANUAL

MOTOROLA

read-modify-write cycle 3-8, 3-29
receive data 2-12
register indirect 4-3
request-to-send 2-12
RESET 2-9
reset 2-9
RS232 UART port 10-5
RSTIN 2-10
RTS 2-12
RxD 2-12

S

SCL 2-11
SCR 5-23
SDA 2-12
serial clock 2-11
serial data 2-12
serial module registers

UACR 8-26
UBG1 8-29
UBG2 8-29
UCR 8-23
UCSR 8-21
UIMR 8-28
UIP 8-29
UIPCR 8-26
UISR 8-27
UIVR 8-29
URB 8-25
USR 8-19
UTB 8-25

signal configuration 10-1
signal index 2-14
SIM configuration 5-41
SIM programming model 5-20
SIM07 1-4
single-step 3-30
software listings 10-17–10-29
software watchdog timer 6-3, 6-7
stack frame 4-9
stand alone hardware 10-1
startup - cold reset 5-41
status register 4-9
swapping ROM and RAM mapping 10-27
system configuration and protection 1-5

registers 5-22
system control register 5-4, 5-23

system integration module 1-4, 5-1
system protection functions 5-5

T

TAP 9-1
TAS 3-8
TCK 2-11
TCN1, TCN2 6-5
TCR1, TCR2 6-5
TDI 2-11
TDO 2-11
TER1, TER2 6-6
test access port 1-7
test clock 2-11
test data in 2-11
test data out 2-11
test mode select 2-11
test signals 2-11
timer 1-6

capture registers 6-5
counter 6-5
event registers 6-6
I/O signals 2-12
mode register 6-4
reference registers 6-5
registers

TCN1, TCN2 6-5
TCR1, TCR2 6-5
TER1, TER2 6-6
TMR1, TMR2 6-4
TRR1, TRR2 6-5

timer 1 input 2-12
timer 1 output 2-13
timer 2 input 2-13
timer 2 output 2-13

timer/counter 8-3
TIN1 2-12
TIN2 2-13
TMR1, TMR2 6-4
TMS 2-11
TOUT1 2-13
TOUT2 2-13
transmit data 2-12
TRR1, TRR2 6-5
TxD 2-12

Index

MOTOROLA

MC68307 USER’S MANUAL

INDEX-5

U

UACR 8-26
UART driver examples 10-24
UART I/O signals 2-12
UART module 1-6
UBG1 8-29
UBG2 8-29
UCR 8-23
UCSR 8-21
UDS 2-8, 3-7
UDS/LDS 3-4, 3-10
UIMR 8-28
UIP 8-29
UIPCR 8-26
UISR 8-27
UIVR 8-29
URB 8-25
USR 8-19
UTB 8-25

V

valid start bit 8-8
vector number 4-9

W

wait state generation 1-5
wait-state logic 5-5
wake-up 10-8
watchdog counter register 6-7
watchdog reference register 6-7
WCR 6-7
word read cycle flowchart 3-2
WR 2-9
write cycle 3-5
WRR 6-7

X

XTAL 2-10

Z

zeros 4-3

© 1997 Motorola, Inc. All Rights Reserved.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different
applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with
such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and
 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MC68322
Integrated Printer Processor

User’s Manual

Windows Printing System™ is a registered trademark of Microsoft Corporation.
PostScript® is a registered trademark of Adobe Systems, Inc. Centronics® is a registered trademark of

Centronics Inc. All other trademarks are the property of their respective owners.

MOTOROLA MC68322 USER’S MANUAL v

ABOUT THIS MANUAL

The MC68322 Integrated Printer Processor User’s Manual contains information about the
programming capabilities, registers, and overall operation of the MC68322 device.

CONVENTIONS
The following conventions should help you navigate through this manual. Anything that is
not on this list is in plain text.

• Signals, pins, lines, and bit names appear in uppercase text.

• Register acronyms appear in uppercase text, but their full names are in lowercase.

• Cross references appear in initial-cap bold text.

• Instructions appear in lowercase bold text.

All acronyms and mnemonics are defined the first time they appear in each section. The
easiest way to start using this manual is to use the index to find the topic you’re interested in.

SUPPLEMENTAL DOCUMENTATION
There are two manuals available from Motorola that will enable you to have a more
well-rounded reference source for the MC68322. To order them, see the back cover of this
manual for the Motorola Literature Distribution Center contact information or click here to go
to the LDC website.

• The M68000 Family Programmer’s Reference Manual (M68000PM/AD) provides
instructions and detailed information on the EC000 core and other devices.

• The MC68322 Integrated Printer Processor Product Brief (MC68322P/D) provides a
brief description of the MC68322’s capabilities.

GIVE US YOUR OPINION
We are constantly trying to make our documentation easier to access and use, so please
give us your feedback. You can either print out and send us the form on the following page
or fill out the survey on the web at http://www.mot.com/SPS/ADC/site/docs_survey.html.
You can also visit the Motorola Imaging and Storage Division website at
http://www.mot.com/isd for information about applications, errata, and other products. This
manual is also available in PDF format at that site.

MOTOROLA
IMAGING AND STORAGE DIVISION

CUSTOMER DOCUMENTATION SURVEY

Fill out this form and fax it to the ISD Information Development team at (512) 891-8593.

Title of Manual:

1. Did the information in this document appear to be organized in a logical manner? _____

2. Was the level of writing appropriate for you as a user of this Motorola product? _____

3. Were the illustrations and graphics clear and easy to understand? _____

4. Some information, such as signal summaries, may have been duplicated in other sections for the
purpose of making it easier for you to use. Did you find it useful? _____

5. Did any of the technical information assume too much prerequisite knowledge? _____

6. If you answered yes to #5, do you need more task-oriented information? _____

7. Were there enough example applications in the manual? _____

8. The Information Development team is considering the placement of documentation on CD-ROM in the
future. Does your computer have a CD player? _____

9. What information should we add to the next version of this document?

10. What information should we delete from the next version of this document?

11. Was there technical information in this document that you have a question about? Explain.

Thank you for your comments. They will be used to improve this and other Motorola customer documentation.

Name:

Title:

Company:

Address:

City/State/Zip/Country:

Email Address:

Phone Number:

MOTOROLA MC68322 USER’S MANUAL vii

TABLE OF CONTENTS

Paragraph Page
Number Title Number

Section 1
Introduction

1.1 Features ...1-2
1.2 Processors and Modules ..1-3
1.2.1 The EC000 Core ..1-3
1.2.2 Graphics Unit ..1-4
1.2.3 Bus Interface Unit ...1-5
1.2.4 System Integration Module ...1-5
1.2.5 DRAM Controller ..1-6
1.2.6 DMA Interface ..1-6
1.2.7 Parallel Port Interface ...1-6
1.3 Internal Memory Map ...1-6
1.4 Understanding the MC68322 ...1-8
1.4.1 Printer Languages ..1-8
1.4.2 Bitmap ..1-9
1.4.3 Banding ..1-10
1.4.4 Halftoning ...1-10
1.4.5 Duplex Printing ...1-11

Section 2
Signal Descriptions

2.1 Address Bus ...2-3
2.2 Data Bus ...2-3
2.3 System Interface ..2-4
2.3.1 Reset (RESET) ...2-4
2.3.2 System Clock ...2-4
2.3.3 High Impedance Mode ...2-5
2.4 External Bus Master Interface ..2-6
2.5 DRAM Interface ..2-7
2.6 DMA Interface ..2-8
2.7 Printer Communication Interface ..2-8
2.8 Print Engine Video Controller Interface ..2-8
2.9 Parallel Port Interface ...2-9

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

viii MC68322 USER’S MANUAL MOTOROLA

Section 3
The Core

3.1 Programming Model ... 3-1
3.2 Data Types and Addressing Modes ... 3-3
3.3 Instruction Set Summary .. 3-4

Section 4
Bus Operation

4.1 EC000 Core Read Cycle .. 4-1
4.2 EC000 Core Write Cycle .. 4-4
4.3 Interrupt Acknowledge Bus Cycle .. 4-6
4.4 Reset Operation ... 4-8
4.5 External Bus Master ... 4-9
4.5.1 MC68322 Bus Arbitration ... 4-9
4.5.2 External Bus Master Read Cycle ... 4-10
4.5.3 External Bus Master Write Cycle ... 4-11
4.5.4 Illegal Address Interrupt ... 4-12

Section 5
Interrupt and Exception Handling

5.1 Internal Interrupts ... 5-1
5.1.1 Hardware Interrupts ... 5-2
5.1.2 Software Interrupts ... 5-3
5.2 External Interrupts .. 5-4
5.3 Timer Module ... 5-6
5.4 Core Exception Handling ... 5-7
5.4.1 Processing Specific Exceptions ... 5-10
5.4.2 Multiple Exceptions .. 5-13
5.4.3 Exception Bus Cycles .. 5-14
5.5 Module Soft-Reset Register ... 5-14

Section 6
System Integration Module

6.1 Chip-Select Registers And Banks .. 6-1
6.2 Synchronous and AsynchronouS Chip-Select Access Timing 6-4

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA MC68322 USER’S MANUAL ix

Section 7
DRAM Controller

7.1 DRAM Registers and Banks ...7-1
7.1.1 Base Address and Size Fields ...7-1
7.1.2 ROM Mode ...7-2
7.1.2.1 Functional Description ..7-2
7.1.2.2 Timing Example ..7-3
7.1.2.3 Address Demultiplexing Circuit7-4
7.1.2.4 Operational Example ..7-4
7.2 DRAM Control Register ..7-5
7.3 DRAM Timing Modes ...7-5
7.4 DRAM Accesses ..7-6
7.4.1 DRAM Refresh Cycles ...7-6
7.4.2 DRAM Read Cycles ...7-7
7.4.3 DRAM Write Cycles ..7-8
7.4.4 DRAM Bus Arbitration ..7-9
7.4.5 DRAM Burst Accesses ...7-10
7.5 Power-Up Sequence ..7-10

Section 8
DMA Interface

8.1 DMA Configuration Registers ...8-2
8.1.1 Transfer Address Fields ...8-2
8.1.2 Transfer Count Fields ...8-3
8.1.3 Flush Request Fields ..8-3
8.2 GDMA Control Register ..8-3
8.3 DMA Speed Register ..8-4
8.4 DMA Interrupt Event Registers ...8-5
8.5 Initiating A DMA Operation ...8-6
8.6 DMA Transfers ...8-6
8.6.1 PDMA Transfers ...8-7
8.6.2 GDMA MC68322 Bus Read and Write Cycles8-7
8.6.3 GDMA DRAM Bus Read and Write Cycles8-8
8.7 DMA Transfer Termination ...8-9
8.7.1 Normal Termination ..8-9
8.7.2 Bad Address Termination ...8-10
8.7.3 Core-Forced Termination ...8-10

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

x MC68322 USER’S MANUAL MOTOROLA

Section 9
Parallel Port Interface

9.1 PPI Registers ... 9-2
9.1.1 Parallel Port Interface Register .. 9-2
9.1.2 Parallel Port Control Register ... 9-4
9.1.3 PPI Interrupt Event Register .. 9-6
9.2 Hardware Handshaking .. 9-8
9.2.1 Compatibility Handshaking ... 9-8
9.2.2 ECP Handshaking .. 9-9
9.2.2.1 Command Byte Detection ... 9-9
9.2.2.2 RLE Decompression.. 9-10
9.2.3 Disabling Hardware Handshaking .. 9-10
9.3 Software-Controlled Handshaking ... 9-11
9.4 Digital Filtering ... 9-11
9.5 Error Cycles ... 9-12
9.6 Parallel Port Data Bus Latching ... 9-13
9.7 PPI on Reset .. 9-14
9.8 PPI Data Transfer Rate .. 9-14

Section 10
Print Engine Interface

10.1 Print Engine Interface Registers .. 10-2
10.1.1 Printer Communication Register .. 10-2
10.1.2 PVC Control Register ... 10-3
10.1.3 Printer Control Block Register Set ... 10-5
10.1.4 PVC Interrupt Event Register ... 10-6
10.1.5 Printer Communication Interrupt Event Register 10-8
10.2 Printer Communication Protocol .. 10-8
10.3 Print Engine Interface Operation .. 10-9
10.3.1 Synchronous/Asynchronous PVC Operation 10-10
10.3.2 Command Operation .. 10-11
10.3.2.1 CCLK Supplied By MC68322 10-11
10.3.2.2 CCLK Supplied By Print Engine 10-12
10.3.3 Status Operation .. 10-13
10.3.3.1 CCLK Supplied By MC68322 10-13
10.3.3.2 CCLK Supplied By Print Engine 10-14
10.3.4 PLL Video Clock Divisor ... 10-15
10.4 PVC On Reset .. 10-16
10.5 PVC Video Data Timing ... 10-16

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA MC68322 USER’S MANUAL xi

10.5.1 1X Video Clock(PVCCR Bit 0 = 0) ..10-17
10.5.2 VCLK Rising Edge (PVCCR Bit 1 = 11)10-17
10.5.3 Border Polarity High (PVCCR Bit 5 = 0)10-17

Section 11
RISC Graphics Processor

11.1 RGP Registers ...11-2
11.1.1 RGP Start Register ...11-2
11.1.2 RGP Diagnostic Register ...11-2
11.1.3 RGP Interrupt Event Register ...11-2
11.2 RGP Basic Operation ...11-3

Section 12
Graphic Operations

12.1 Types of Bitmaps ..12-1
12.2 Graphic Operands ..12-2
12.3 Types of Graphic Operands ...12-3
12.4 Boolean Codes ...12-3
12.5 Bit Block Transfers ...12-5
12.6 Scanline Transfers ...12-5
12.6.1 Scanline Tables and Bit String Specifiers12-6
12.6.2 Scanline Run Operation ...12-8
12.6.3 Executing During Banded Applications12-9
12.6.4 Halftone Companion Tables ...12-10
12.7 Scanline and Halftone Table Example ...12-13
12.8 BitBLT and Scanline Order Execution ..12-14
12.9 Location and Address Constraints ...12-15

Section 13
Graphic Orders

13.1 Types of Graphic Orders ..13-1
13.1.1 Initialization ...13-1
13.1.2 Program Flow Control ..13-3
13.1.3 Bit Block Transfer ...13-3
13.1.4 Expanded Bit Block Transfer ..13-3
13.1.5 Scanline Transfer ...13-4
13.2 Sequence of the Display List ..13-5
13.3 Graphic Order Addresses ...13-5
13.3.1 Physical vs Logical Address ...13-6

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

xii MC68322 USER’S MANUAL MOTOROLA

13.3.2 Duplex Addresses .. 13-6
13.4 Band Number and Band Faults .. 13-7
13.5 Graphic Order Descriptions .. 13-8

Section 14
Electrical and Thermal Characteristics

14.1 Maximum Ratings .. 14-1
14.2 Thermal Characteristics ... 14-1
14.3 DC Electrical Specifications ... 14-2
14.4 AC Electrical Specifications ... 14-3
14.4.1 Clock and Reset Timing ... 14-3
14.4.2 MC68322 Bus Timing ... 14-4
14.4.3 DRAM Timing ... 14-12
14.4.4 IDMA Timing .. 14-13
14.4.5 Print Engine Interface Timing ... 14-14
14.4.6 Interrupt Timing .. 14-16
14.4.7 Parallel Port Interface Timing ... 14-17
14.4.8 External Bus Master Timing ... 14-18

Section 15
Ordering Information and Mechanical Data

15.1 Ordering Information .. 15-1
15.2 Pin Assignment .. 15-1
15.3 Mechanical Data .. 15-3

Appendix A
In-Circuit Emulation Interface

A.1 ICE Interface Signals ...A-1
A.1.1 ICE Signal Descriptions ...A-2
A.2 ICE Adaptor Board Design ...A-4
A.3 ICE Adaptor Board Schematics ...A-6
A.3.1 In-Circuit Emulation Interface ...A-12
A.4 ICE Pin Assignment ...A-16

TABLE OF CONTENTS (Continued)

Paragraph Page
Number Title Number

MOTOROLA MC68322 USER’S MANUAL xiii

Appendix B
Applications

B.1 Configuring The MC68322 .. B-1
B.2 Configuring The DRAM and DRAM SIMM .. B-2
B.3 Configuring The Flash EPROM ... B-4
B.4 Configuring The Random Control Logic .. B-7
B.5 Configuring The Serial EEPROM .. B-8
B.6 Configuring The In-Circuit Emulation .. B-9
B.7 Configuring The Parallel Port .. B-10
B.8 Configuring The Generic Print Engine Interface B-11
B.9 MC68322 Memory Map Initialization Example B-12
B.10 MC68322 Internal Registers Sample Code B-13

Appendix C
Memory-Mapped Register Summary

C.1 MC68322 Mask Register ... C-3
C.2 Test Register ... C-3

Appendix D
Alternate Pin Functions

D.1 Pins ... D-1
D.2 State During Reset .. D-2
D.3 Registers ... D-2
D.4 Input Pin Mode .. D-3
D.5 Buzzer ... D-3
D.6 In-Circuit Emulation ... D-3
D.7 Operation Example .. D-4

Appendix E
Glossary

Index

xiv MC68322 USER’S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS

Figure Page
Number Title Number

1-1. MC68322 Block Diagram ...1-3
1-2. Graphics Unit Data Flow Diagram ..1-5
1-3. 16M Memory Map ..1-7
1-4. 256M Memory Map ..1-7
1-5. Memory Map Address Register ..1-7
1-6. Bitmap Structure ..1-9
1-7. Unpacked And Packed Bitmaps ...1-9
1-8. Duplex Laser Printer Paper Path ...1-11
1-9. Example of a Duplex Printing Operation ..1-12

2-1. Functional Signal Groups ...2-1
2-2. CLK1 Phase Relationship ..2-4

3-1. EC000 Core Programming Model ..3-2

4-1. Read Cycle Flowchart ..4-2
4-2. External Timing Diagram to Chip-Selects Banks ...4-2
4-3. External Timing Diagram to Chip-Select Banks ...4-3
4-4. Word and Byte Read Cycle Timing Diagram to DRAM4-3
4-5. Write Cycle Flowchart ..4-4
4-6. Word and Byte Write Cycle Timing Diagram to Chip-Selects4-5
4-7. Word Write Cycle Timing Diagram to DRAM ...4-6
4-8. Internal Interrupt Acknowledge Cycle ..4-7
4-9. Interrupt Acknowledge Cycle Timing Diagram ...4-7
4-10. Reset Operation Timing Diagram ...4-8
4-11. Bus Arbitration Timing Diagram ...4-10
4-12. External Bus Master Read Cycle ...4-11
4-13. External Bus Master Write Cycle ...4-12

5-1. Software Interrupt Event Register ..5-3
5-2. External Interrupt Registers (EXIR0/2–EXIR1/3) ...5-4
5-3. Timer Register ..5-6
5-4. Timer Interrupt Event Register ...5-6
5-5. General Exception Processing Flowchart ..5-7
5-6. General Form of an Exception Stack Frame ..5-8
5-7. Module Soft-Reset Register ...5-14

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

MOTOROLA MC68322 USER’S MANUAL xv

6-1. Chip-Select Register (CSR7–CSR0) ..6-1
6-2. Chip-Select DMA Timing and Recovery Registers ..6-3
6-3. Synchronous Read or Write Timing Diagram ...6-5
6-4. Asynchronous Read or Write Timing Diagram ...6-6
6-5. Special Asynchronous Read or Write Timing Diagram6-6

7-1. DRAM Register (DRAM5–DRAM0) ..7-1
7-2. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 0)7-3
7-3. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 1)7-3
7-4. Address Demultiplexing Example ..7-4
7-5. DRAM Control Register ..7-5
7-6. DRAM Refresh Cycle ...7-6
7-7. DRAM Timing Mode 0 (Read Cycle, ROM Mode = 0)7-7
7-8. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 0)7-7
7-9. DRAM Timing Mode 2 (Read Cycle, ROM Mode = 0)7-8
7-10. DRAM Timing Mode 0 (Write Cycle) ..7-8
7-11. DRAM Timing Mode 1 (Write Cycle) ..7-9
7-12. DRAM Timing Mode 2 (Write Cycle) ..7-9

8-1. PDMA and GDMA Configuration Registers ...8-2
8-2. GDMA Control Register ...8-3
8-3. DMA Speed Register ...8-4
8-4. DMA Interrupt Event Registers ..8-5
8-5. GDMA MC68322 Bus Read Or Write Cycle ...8-8
8-6. Byte-Sized DMA DRAM Write Transfer ...8-9
8-7. Word-Sized DMA DRAM Write Transfer ..8-9

9-1. Parallel Port Interface Controller Block Diagram ..9-1
9-2. Parallel Port Interface Register ..9-2
9-3. Parallel Port Control Register ...9-4
9-4. PPI Interrupt Event Register ..9-6
9-5. Compatibility Mode Timing Diagram ..9-8
9-6. ECP Mode Timing Diagram ...9-9
9-7. Error Cycle Timing Diagram ...9-13
9-8. Parallel Port Data Latch Timing Diagram ...9-13

10-1. Printer Communication Register ..10-2
10-2. PVC Control Register ...10-3
10-3. Printer Control Block Register Set ...10-5
10-4. PVC Interrupt Event Register ...10-6

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

xvi MC68322 USER’S MANUAL MOTOROLA

10-5. Printer Communication Interrupt Event Register ... 10-8
10-6. PVC Video Interface State Diagram .. 10-10
10-7. Command Operation—MC68322 Supplies CCLK 10-12
10-8. Command Operation—Print Engine Supplies CCLK 10-13
10-9. Status Operation—MC68322 Supplied CCLK ... 10-14
10-10. Status Operation—Print Engine Supplied CCLK ... 10-14

11-1. RGP Start Register .. 11-2
11-2. RGP Diagnostic Register ... 11-2
11-3. RGP Interrupt Event Register .. 11-2

12-1. Eight Common Graphic Operation Transfers ... 12-3
12-2. 256 Possible Boolean Coded Graphic Operation Transfers 12-4
12-3. Bit String Specifier Formats ... 12-7
12-4. Scanline Run Operation ... 12-8
12-5. Illegal Bit String Specifier Use .. 12-9
12-6. 32-Bit Halftone Specifier Format .. 12-10
12-7. 48-Bit Halftone Specifier Format .. 12-11
12-8. Scanline and Halftone Table Example ... 12-13

13-1. Controlling Left and Right Clipping of Expanded Bit Maps 13-4
13-2. Halftone Specification for bitBLT Operations ... 13-7
13-3. Destination bitBLT to Banded Bitmap—0° Page ... 13-10
13-4. Destination bitBLT to Banded Bitmap—180° Page 13-10
13-5. Source/Destination bitBLT to Banded Bitmap—0° Page 13-12
13-6. Source/Destination bitBLT to Banded Bitmap—180° Page 13-12
13-7. Source/Halftone/Destination bitBLT to Banded Bitmap—0° Page 13-15
13-8. Source/Halftone/Destination bitBLT to Banded Bitmap—180° Page 13-15
13-9. Expanded Source, Destination bitBLT To Banded Bitmap, 0° Page 13-18
13-10. Expanded Source, Destination bitBLT To Banded Bitmap, 180° Page 13-18
13-11. Expanded Source, Halftone, Destination bitBLT To Banded

Bitmap, 0° Page ... 13-22
13-12. Expanded Source, Halftone, Destination bitBLT To Banded

Bitmap, 180° Page ... 13-22
13-13. Destination bitBLT to Frame .. 13-23
13-14. Source/Destination bitBLT to Frame .. 13-24
13-15. Source/Halftone/ Destination bitBLT to Frame .. 13-26
13-16. Expanded Source, Destination bitBLT To Frame .. 13-28
13-17. Expanded Source, Halftone, Destination bitBLT To Frame 13-31
13-18. Destination bitBLT to Unbanded Bitmap ... 13-32

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

MOTOROLA MC68322 USER’S MANUAL xvii

13-19. Source/Destination bitBLT to Unbanded Bitmap ..13-33
13-20. Source/Halftone/Destination bitBLT to Unbanded Bitmap13-35
13-21. Expanded Source, Destination bitBLT To Unbanded Bitmap13-37
13-22. Expanded Source, Halftone, Destination bitBLT to Unbanded Bitmap13-40
13-23. Banded Bitmap Parameters ...13-44
13-24. Halftone Bitmap Parameters ..13-46
13-25. Unpacked Source Bitmap ..13-47
13-26. Destination Scanline Transfer to Banded Bitmap, 0° Page13-50
13-27. Destination Scanline Transfer to Banded Bitmap, 180° Page13-50
13-28. Halftone, Destination Scanline Transfer to Banded Bitmap, 0° Page13-53
13-29. Halftone, Destination Scanline Transfer to Banded Bitmap, 180° Page13-53
13-30. Destination Scanline Transfer to Frame ...13-54
13-31. Halftone, Destination Scanline Transfer to Frame13-56
13-32. Destination Scanline Transfer to Unbanded Bitmap13-57
13-33. Halftone, Destination Scanline Transfer to Unbanded Bitmap13-59

14-1. Clock AC Timing ..14-3
14-2. Reset AC Timing ..14-3
14-3. Read Access (2:2:1:3) ..14-5
14-4. Read Access (2:4:–1:3) ..14-5
14-5. Read Access (4:2:–1:3) ..14-6
14-6. Read Access (2:2:3:3) ..14-6
14-7. Read Access (2:4:1:3) ..14-7
14-8. Read Access (4:2:1:3) ..14-7
14-9. Read Access (2:6:–1:3) ..14-8
14-10. Read Access (4:4:–1:3) ..14-8
14-11. Read Access (6:2:-1:3) ..14-9
14-12. Write Access (4:2:–1:3) ..14-9
14-13. Write Access (4:2:1:3) ..14-10
14-14. Write Access (4:4:–1:3) ..14-10
14-15. DMA Read Cycle AC Timing ..14-11
14-16. DMA Write Cycle AC Timing ..14-11
14-17. DRAM Read Cycle AC Timing ...14-12
14-18. DRAM Write Cycle AC Timing ...14-12
14-19. DMA Request/Acknowledge AC Timing ...14-13
14-20. Print Engine Interface Input AC Timing ..14-15
14-21. Print Engine Interface Output AC Timing ...14-15
14-22. Video Clock AC Timing ..14-15
14-23. PVC AC Timing ..14-16
14-24. Print Engine Interface AC Timing ...14-16
14-25. Interrupt Interface AC Timing ...14-16
14-26. Parallel Port Interface AC Timing ...14-17

LIST OF ILLUSTRATIONS (Continued)

Figure Page
Number Title Number

xviii MC68322 USER’S MANUAL MOTOROLA

14-27. External Bus Master Read Cycle AC Timing ... 14-18
14-28. External Bus Master Write Cycle AC Timing ... 14-19
14-29. External Bus Master Bus Arbitration AC Timing .. 14-19
14-30. External Bus Master Multiple Cycle AC Timing ... 14-19

15-1. MC68322 160-Lead Plastic Quad Flat Pack (PQFP) 15-2
15-2. 160 Pin QFP Package Dimensions .. 15-3

A-1. ICE Interface Block Diagram ..A-5
A-2. MC68322 PGA Pinout ..A-6
A-3. MC68000 Emulator Connection ...A-7
A-4. PGA Connector ..A-8
A-5. Test Points ...A-9
A-6. ICE Adaptor Board ...A-10
A-7. ICE Adaptor Board—Silkscreen ...A-11
A-8. ICE Reset AC Timing ...A-12
A-9. ICE Read Cycle AC Timing ..A-13
A-10. ICE Write Cycle AC Timing ..A-14
A-11. ICE Interrupt Acknowledge Cycle AC Timing ..A-15
A-12. ICE Bus Arbitration AC Timing ...A-15

B-1. MC68322 Connection ..B-2
B-2. DRAM Connection ...B-3
B-3. DRAM SIMM Connection ...B-4
B-4. Flash EEPROM Connection (1 of 2) ..B-5
B-5. Reset Circuit ..B-7
B-6. Front Panel Buffers and Latches ...B-8
B-7. 4-Kbit Serial EEPROM Connection ..B-8
B-8. MC68322 ICE Interface ...B-9
B-9. Parallel Port Connector Interface ...B-10
B-10. Print Engine Interface ..B-11
B-11. Initialized Memory Map From Code Example ..B-12

MOTOROLA MC68322 USER’S MANUAL xix

LIST OF TABLES

Table Page
Number Title Number

2-1. Signal Summary ...2-2
2-2. HI-Z and TEST Combinations ..2-5
2-3. DRAM Address Multiplexer ..2-7

3-1. Processor Data Formats ..3-3
3-2. Effective Addressing Modes ...3-3
3-3. Notational Conventions ..3-4
3-4. Instruction Set Summary ..3-6

5-1. Hardware Interrupt Events ...5-2
5-2. External Interrupt Polarity ...5-5
5-3. Exception Vector Assignments ..5-9
5-4. Exception Grouping and Priority ..5-13

6-1. Size Field Encoding ...6-3
6-2. Synchronous Timing Values ..6-4

7-1. DRAM Size Options ...7-2
7-2. DRAM Timing Modes ...7-5

8-1. DM Field Encoding ...8-4

10-1. SLC and SRC Encodings ...10-3
10-2. PLL Video Clock Divisor ...10-15

12-1. Graphic Operation Data Operand Constant Values12-2
12-2. Bit String Specifier Field Definitions ...12-8
12-3. bitBLT and Scanline Execution Times ...12-14

13-1. Graphic Order Organization ...13-2
13-2. Graphic Orders Sorted by Opcode ...13-8
13-3. Supported Scaling Factors ...13-17

LIST OF TABLES (Continued)

Table Page
Number Title Number

xx MC68322 USER’S MANUAL MOTOROLA

A-1. ICE Interface Signal Summary ...A-1
A-2. Data Strobe Control of Data Bus ...A-2
A-3. Function Code Outputs ..A-3

C-1. Memory-Mapped Register Set .. C-1

D-1. ALTPIN SEL Bit Descriptions .. D-1

MOTOROLA MC68322 USER’S MANUAL 1-1

SECTION 1
INTRODUCTION

The MC68322 is a high-performance integrated printer processor that combines an
MC68000 compatible EC000 core processor, a RISC graphics processor (RGP), a print
engine video controller (PVC), and numerous system integration features on a single
integrated circuit. It is the first of Motorola’s M68000 Family designed specifically for
nonimpact printers. The MC68322 provides a unique solution for new designs as well as an
excellent migration path for existing M68000-powered printers. Additionally, the new chip
finds ready application to the inkjet printer and multifunction-peripheral (fax/modem/printer)
markets and other embedded control applications, which require very fast bit manipulations.
The dual processor and dual bus architecture gives the MC68322 the ability to deliver
excellent performance. Historically, printer applications have been solved using a single
general-purpose processor with external application specific circuitry. The MC68322
employs a highly specialized, multiprocessor architecture that enables the user to take
advantage of memory reduction techniques. This design implementation provides a
technically superior and more cost effective system solution.

The specialized display list banding techniques (executed by the RGP) enable system
memory requirements to be significantly reduced. The use of software memory reduction
techniques alone (an approach taken by conventional controllers) lack the power needed to
handle complex pages, causing the controller to fall back to lower resolution or reduced
page throughput. The MC68322 optimizes overall system performance by integrating an
EC000 core, RGP, and PVC using a unique dual bus architecture. This architecture
eliminates bus contention between processing units and modules creating a true parallel
processing environment. The additional bandwidth allows each processing unit to operate
at peak performance. Working in conjunction with an on-chip, programmable, bursting
DRAM controller, the processing units are capable of achieving outstanding throughput.
These dedicated processing units enable the MC68322 to produce 600 dpi images using
substantially less memory than conventional controllers. The MC68322 extends these
benefits to low-cost 4-8 ppm printers.

The MC68322 significantly reduces component count, board space, power consumption
and their inherent costs while yielding higher reliability and shorter design time. It also
provides support for toner conservation, thus enabling the print controller to conserve toner
when printing in draft mode. The MC68322 also provides the perfect printing environment
for users of complex page description languages (such as PCL and PostScript®) and less
scaleable graphics imaging models such as Windows Printing System™ and QuickDraw®).
Complete code compatibility with the M68000 Family gives the designer access to a broad
base of established real-time kernels, operating systems, languages, applications, and
development tools, many of which are optimized for embedded processing and printing
applications.

Introduction

1-2 MC68322 USER’S MANUAL MOTOROLA

1.1 FEATURES
The following list summarizes the main features of the MC68322:

• Static EC000 Core Processor

❏ Complete code compatibility with M68000 Family
❏ Glueless interface to peripherals
❏ 256M address range

• Graphics Unit

❏ Memory reduction techniques
— Run length encoded scan line tables

❏ RISC graphics processor
— Processes multi-operation graphics orders from display list
— Requires significantly less bitmap image memory due to hardware

banding capability
— Dedicated graphics bus allows up to 8 ppm performance at 600 dpi resolution

❏ Print engine video controller
— Converts bitmap image to serial datastream and feeds print engine
— Generic, programmable, nonimpact printer communications interface
— Toner conservation technique

❏ Dedicated high-performance DMA controller for graphics unit operations

• Bus Interface Unit

❏ Dual bus architecture allows separate buses to function independently
❏ Distributed processing optimizes system performance
❏ Write buffer for EC000 core enhances performance

• System Integration Module

• Eight Programmable Chip Selects

❏ 256K to 256M of address space
❏ Independently programmable timing parameters for each bank
❏ Integrated system timer

• DRAM System Integration Module

❏ Supports 512K, 2M, and 8M DRAM bank sizes
❏ Directly controls up to 6 banks of DRAM; supports up to 48M of DRAM
❏ Programmable transparent refresh of DRAM banks
❏ Bursting DRAM interface

• General-Purpose DMA Controller Module

❏ Provides high-speed downloads to and from DRAM

• IEEE 1284 Parallel Port Controller Module

❏ DMA controller supports 2M/sec bidirectional communication transfers

• 16-, 20-, or 25-MHz Operation

• 160-Pin Plastic Quad Flat Packaging

Introduction

MOTOROLA MC68322 USER’S MANUAL 1-3

1.2 PROCESSORS AND MODULES
To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 Family integrates intelligent peripheral modules with typical
glue logic on-chip. The MC68322 consists of two processor units (the EC000 core and RGP)
and six modules that assist them (the PVC, bus interface unit, system integration module,
DRAM system integration module, DMA controller, and parallel port interface). Figure 1-1
illustrates the MC68322 block diagram.

Figure 1-1. MC68322 Block Diagram

1.2.1 The EC000 Core
The MC68322 contains a static, low-power, 16-bit microprocessor (EC000 core), which
performs general-purpose computing, I/O and exception handling, and display list
rendering. The core has a 16-bit data path that is upward compatible with 32-bit machines.
It also has a 32-bit internal architecture with internal 32-bit data and address registers, and
an extended address range. The address range is 28 bits for internal register decoding of
chip-selects and DRAM controller functions. This address range allows for full code
compatibility with existing M68000 Family-based designs and future upward compatibility to
higher performance designs. The core is register and memory-map compatible with the
industry standard MC68000, MC68EC000, and MC68HC000 processors.

The MC68322 is designed to support in-circuit emulation with existing emulators so that new
hardware and software designs being ported to the MC68322 can be tested rapidly. This is
accomplished by providing signals in a 208-pin grid array (PGA) package that are not
available in the 160-pin quad flat pack (QFP) package.

PARALLEL PORT
PARALLEL PORT

IEEE 1284

DMASTATIC
EC000 CORE

CLOCK

PROM

LO
C

AL
 T

AL
K

SE
R

IA
L

ET
H

ER
N

ET

SC
SI

PERIPHERAL
(OPTIONAL)

SYSTEM
INTEGRATION
MODULE (SIM)

DRAM CONTROL

DRAM PRINT ENGINE

BUS
INTERFACE UNIT

RISC GRAPHICS
PROCESSOR (RGP)

GRAPHICS UNIT

PRINT ENGINE VIDEO
CONTROLLER (PVC)

DMA

IN-CIRCUIT
EMULATION
(OPTIONAL)

GRAPHICS BUS

EC000 BUS

Introduction

1-4 MC68322 USER’S MANUAL MOTOROLA

1.2.2 Graphics Unit
The graphics unit performs all graphics functions required by complex PDLs, such as
bit-block transfer (bitBLT). A bitBLT is a CPU-intensive function of logically bits from one
memory location to another. The graphics unit acts as a dedicated hardware execution
engine to perform the bitBLT function with virtually no intervention from the core. bitBLT
operations are performed very fast by the graphics unit, supporting one, two, and three
operand bitBLT operations to yield 256 logical bitBLT operation combinations.

The graphics unit contains two independent processing units that can function in parallel
with the core—a RISC graphics processor (RGP) and a print engine video controller (PVC).
Both processing units perform burst read and write accesses to DRAM through the DRAM
controller. The RGP is a high-performance bit-image processor optimized for the 16-bit
DRAM controller on the MC68322. It achieves performance levels that enable the MC68322
to be used effectively in banding applications or in other high-speed, high-density bitmapped
graphics products. The RGP is comprised of four major blocks:

• Graphic order parser

• Graphic order execution unit

• Writeback logic

• Band control registers

The PVC contains a generic nonimpact printer communication interface, which can be used
with most of the printers currently on the market. The communications interface is 8-bit
synchronous full duplex and supports almost all laser and inkjet printers. Internal interrupt
events (if enabled) indicate that a serial command has been sent or a serial status has been
received. This interface accesses a memory-mapped register called the printer
communication interface register, which contains 8-bit command and status fields. Using
these fields, the printer communication interface controls the CBSY and SBSY signals to
provide a handshake that communicates between the PVC and the print engine. In addition
to this communication interface, the PVC also provides for serialization of the bitmap image
data through the video data output at a clock rate specified by the video clock input. A digital
phase-locked loop is also provided for those printers that do not supply a video clock source.

The RGP interprets a list of special instructions called graphic orders (a display list that the
core or host application processor generates) to render a banded bitmap page image. After
a page or band image is rendered by the RGP, the PVC converts the bitmap image into a
serial datastream and transfers the rendered page image through the video port to the print
engine. Both the RGP and PVC require only a minimal amount of initialization and
intervention by the core to produce an image and transfer it to the print engine. Figure 1-2
illustrates the data flow of the graphics unit.

Introduction

MOTOROLA MC68322 USER’S MANUAL 1-5

Figure 1-2. Graphics Unit Data Flow Diagram

1.2.3 Bus Interface Unit
The dual bus architecture of the MC68322 allows the printing workload to be distributed
among processing units and executed in parallel. The bus interface unit (BIU) allows the
core and graphics unit, which reside on the MC68322 bus and graphics bus, to function
independently. This is done through an arbitration unit which accommodates core accesses
to DRAM residing on the graphics bus. However, to print pages correctly, the graphics unit
gets higher priority than the core for DRAM accesses. The core performs instruction and
PROM data fetches without any impact to graphics bus operations. The BIU contains a
single-word, writeback buffer that reduces peak bus traffic generated by multiple active
modules. The writeback buffer provides a no-wait state write profile to the core and delays
the write until the graphics unit stops using the graphics bus.

1.2.4 System Integration Module
The system integration module (SIM) provides the ROM, PROM, and peripheral
chip-selects. It contains eight chip-select banks that can be programmed to decode
addresses and supply internal DTACK termination. These eight chip-select banks are
individually programmable for an address range of 256K to 64M. They can be located
anywhere within the 256M memory map and can be either contiguous or disjointed, as
required by the operating environment. Also, each chip-select bank can be independently
size or disabled.

The chip-selects for each bank can be set up to provide a wide range of timing parameters,
such as setup, access, hold, and recovery times for both read and write bus cycles. The
MC68322’s SIM provides internal bus cycle auto-acknowledge and the asynchronous WAIT
signal allows external devices to insert additional wait states as needed. The SIM also
allows SRAM to be added to the MC68322 bus for system stack space, temporary data
storage, or as a buffer for peripheral data.

MC68322

EC000
CORE

GRAPHICS UNIT

PRINT ENGINE

DRAM

DISPLAY
LIST

BAND1

BAND0

•

•

•
•

•
•

PROM

•
•
•
•
•
•
•
•
•
•
•
•

DRAM
CONTROL

RISC GRAPHICS
PROCESSOR (RGP)

PRINT ENGINE VIDEO
CONTROLLER (PVC)

Introduction

1-6 MC68322 USER’S MANUAL MOTOROLA

1.2.5 DRAM Controller
The MC68322 provides a fully integrated bursting DRAM controller containing six DRAM
banks of varying programmable sizes and locations. They can be located contiguously or
disjointedly, as required by the operating environment. The DRAM controller multiplexes
addresses to provide up to 8M of DRAM address space per bank. The timing parameters
for each DRAM bank are preprogrammed to provide a 3-, 4-, or 5-clock access from industry
standard fast-page mode DRAMs. On reset, all DRAM banks are disabled. Additionally, the
DRAM controller provides a separate 16-bit DRAM data path and a write enable signal for
a glueless DRAM interface. DRAM refresh cycles are carried out with CAS before RAS
refresh cycles. The DRAM refresh rate is fully programmable and the controller performs
refreshes from system reset until it is initialized.

1.2.6 DMA Interface
The DMA interface contains two DMA controllers—a single-ended general-purpose DMA
(GDMA) and a dedicated parallel port interface DMA (PDMA) controller. The DMA interface
can be programmed to transfer data from a high-speed I/O peripheral to DRAM with minimal
intervention from the core.

1.2.7 Parallel Port Interface
The MC68322 contains a direct, IEEE 1284 Level 2 compliant, bidirectional 8-bit PPI. The
PPI supports four IEEE 1284 communications modes—compatibility (Centronics™), nibble,
byte, and enhanced capabilities port (ECP). It also fully supports all variants of these modes,
including device ID requests and run-length encoded data compression. The PPI contains
specialized hardware to provide automatic handshaking during forward data transfers.
When hardware handshaking is used in conjunction with the PDMA, transfer rates as high
as 2M/sec and up can be achieved in the ECP forward mode. The hardware handshaking
can also be completely disabled for the software to directly control the parallel port interface
signals and support new protocols. Control and data signals provide a glueless interface to
the parallel port.

1.3 INTERNAL MEMORY MAP
The MC68322 uses memory-mapped registers that occupy 4K of memory space. With these
registers the hardware configuration and timing can be set, the status information can be
read, and the PVC, RGP, DMA, and PPI interfaces can be controlled. All registers can be
written and read, except for a few read-only and write-only registers that are noted. For more
information about each register, see its corresponding module’s section. Appendix C
Memory-Mapped Register Summary discusses all the registers and their location in
memory during power-up.

Register operations are implemented within one MC68322 bus cycle for both read and write
operations and are completed without asserting any wait states. The registers should only
be read and/or written as 16-bit words. All register addresses are on word boundaries. The
MC68322 powers up with a 16M memory map with the registers occupying the upper 4K of
the 16M of memory space. They are located at address range 0x00FFF000 through
0x00FFFFFF. The MC68322 memory map for a 16M memory space is illustrated in
Figure 1-3.

Introduction

MOTOROLA MC68322 USER’S MANUAL 1-7

Figure 1-3. 16M Memory Map

After power-up, the MC68322 can be configured for the full 256M address space and the
registers can be moved to start at a higher address. The MC68322 memory map for a 256M
memory space is illustrated in Figure 1-4.

Figure 1-4. 256M Memory Map

The memory map address register contains bits 27–24 of the register set’s base address
and is illustrated in Figure 1-5. This register is used to relocate the memory-mapped
registers within the memory map.

Figure 1-5. Memory Map Address Register

DRAM, ROM, or I/O can be programmed individually to reside anywhere in the memory
map. The address space for registers, ROM or I/O (chip-selects), and DRAM can overlap.
In case of an address overlap, registers have the highest priority, then chip-selects, and
finally the DRAM. Only the device with the highest priority responds to the access.

UNDEFINED

INTERNAL
REGISTERS

ROM AND I/O BANKS 0–7
DRAM BANKS 0–5

FFFFFFFF

01000000
00FFFFFF

00FFF000
00FFEFFF

00000000

UNDEFINED

INTERNAL REGISTERS
ROM AND I/O BANKS 0–7

DRAM BANKS 0–5

FFFFFFFF

10000000
0FFFFFFF

00000000

RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
REGISTER BASE

ADDRESS (A27–A24)00FFF900

Introduction

1-8 MC68322 USER’S MANUAL MOTOROLA

1.4 UNDERSTANDING THE MC68322
Familiarity with some of the basic printer operation concepts is key to understanding how
the MC68322 works. These concepts include understanding printer languages, bitmaps,
banding, halftoning, and duplex printing.

1.4.1 Printer Languages
There are three basic types of printer languages:

1. Printer Control Language (PCL)—A term coined by Hewlett Packard when LaserJet
printers were first introduced. It embodies a relatively simple set of escape sequences
reminiscent of ANSI 3.64. Of the common printer languages, PCL is considered
moderately complex.

2. Page Description Languages (PDL)—Actual programming languages. The major
players are Adobe’s PostScript and Microsoft’s TrueImage and they resemble other
languages like BASIC, FORTRAN, and C, except that PDLs are interpreted rather
than compiled. The instructions for how the page is to be formed are described in
lexical verbs such as FINDFONT and MOVETO. This means that the parsing and
interpretation of these languages must be done in the printer engine itself. Generally,
PDLs describe one page at a time and each page is a separate PDL program. Also,
PDLs are considered highly complex.

3. Document Description Languages (DDL)—Similar to PDLs in that they are
programming languages with lexical verbs. The difference between DDLs and PDLs
is that DDLs generally describe an entire document consisting of multiple pages. This
increases the storage requirements of a printer in that the entire document must be
parsed and interpreted before any printing can begin. Like PDLs, DDLs are considered
highly complex.

Introduction

MOTOROLA MC68322 USER’S MANUAL 1-9

1.4.2 Bitmap
A bitmap is a two dimensional array of memory bits. A scanline is one row in the array. There
is no special term for each column of the array. The junction point of a scanline and a column
is a pixel. The bitmap width, called the X dimension, is the number of pixels in each scanline.
The bitmap height, called the Y dimension, is the number of scanlines in the bitmap array.
Figure 1-6 illustrates these terms.

Figure 1-6. Bitmap Structure

A bitmap can be stored in memory as either packed or unpacked, as illustrated in Figure 1-7.
Packed bitmaps occupy less memory than unpacked bitmaps. In an unpacked bitmap, each
scanline begins on a byte or word boundary. In a packed bitmap, scanlines follow one
another without regard to byte or word boundaries. The MC68322 supports both packed and
unpacked bitmap structures.

Figure 1-7. Unpacked And Packed Bitmaps

BI
T

M
AP

 H
EI

G
H

T
(Y

 D
IM

EN
SI

O
N

)

COLUMN

PIXEL

SCANLINE

UNPACKED BIT MAP
30 BYTES (7 BYTES WASTED)

PACKED BIT MAP
23 BYTES (BYTE WASTED)

X DIMENSION WARP = X DIMENSION
WARP

1–
2

1–
2

Introduction

1-10 MC68322 USER’S MANUAL MOTOROLA

In addition to width and height dimensions, an unpacked bitmap also possesses an attribute
known as the bitmap warp, which is the distance between the beginning of each consecutive
scanline. The bitmap warp is the value used to obtain Y dimension movement within the
bitmap. For example, to move from one pixel to a pixel in the same column, but in the next
lower scanline, simply add the bitmap warp to the current position in memory. A packed
bitmap also has a bitmap warp that is equal to the width of the bitmap.

1.4.3 Banding
Banding is a process in which the page to be printed is constructed in a series of partial page
images or bands. To better accommodate banding, the MC68322 allows the page image to
be represented in an intermediate form. In this intermediate form, the page image is
represented by a series of graphic orders, which are collectively called a display list and are
maintained in memory.

The PDL or PCL emulator firmware running on the core generates the display list before the
print engine begins the actual printing process. The RGP executes the graphic orders in the
display list to build the bitmapped image in bands as the print engine is started. Generally,
band n+1 is being constructed while band n is being output to the print engine.

1.4.4 Halftoning
Halftoning involves applying a pattern or halftone screen to a data transfer to modify its
appearance. Halftone screens are used to produce shades of gray in a monochrome printing
environment such as printing presses, dot matrix printers, or laser printers. Halftone screens
are commonly seen in newspapers because that is where photographs with levels of gray
are represented with a medium that only allows black and white. Halftone screens are
repetitive in both the X and Y dimensions of a bitmap array. For example, to perform
shading, a 10101010 pattern might be applied to the even scanlines and a 01010101 pattern
to the odd scanlines.

Introduction

MOTOROLA MC68322 USER’S MANUAL 1-11

1.4.5 Duplex Printing
The MC68322 supports duplex printing applications. Duplex printing is the operation of
placing an image on both sides of a page before it leaves the printer. In a duplex laser
printer, paper travels out of the input hopper and under a drum to receive a toner image. The
paper then travels through a fuser to set the toner onto the first side of the paper and into an
internal duplex hopper. Next, the paper moves out of the duplex hopper and under the drum
again to receive the second toner image, this time on the reverse side of the paper. Finally,
once the second image has been fused, the paper is placed in the output hopper.

Figure 1-8. Duplex Laser Printer Paper Path

Since the image is placed on both sides of the page in duplex printing, image orientation is
important. When the page is turned to read either side, both images must appear right-side
up. To achieve the correct image orientation, the physical characteristics of the print engine
and the format of the printed page must be taken into consideration. For example, it is
important to know how the page is turned over to expose both sides to the drum inside the
print engine as well as how the page is going to be bound in the completed document.

Images printed on the opposite side of a page may have to be rotated 180°. Understandably,
these types of pages are called 180° pages. They require pixel data to be transmitted from
the page image bitmap starting at the bottom-right corner and then continuing from right to
left, bottom to top. Pages that do not require this type of rotation are called 0˚ pages and
they are transmitted starting at the top-left corner and then continuing from left to right, top
to bottom.

In banding applications, 180° pages require special attention. Since the page image is
transmitted to the print engine in bottom to top order, bands must be generated in this order
too. The MC68322 directly supports 180° page rendering and printing as required by duplex
banding applications. The RGP and graphic order instruction set are specifically designed
to render images either top to bottom or bottom to top, thus enabling banding of both 0° and
180° pages on duplex printers.

DRUM

PAPER DIRECTION
INPUT

HOPPER

DUPLEX
HOPPER

(INTERNAL)

OUTPUT
HOPPER

FUSER

DOUBLE SIDED PAPER PATH

Introduction

1-12 MC68322 USER’S MANUAL MOTOROLA

There are two elements to keep in mind when determining image orientation—the feed edge
and the binding edge. The feed edge of a page is the edge that is first fed into the print
engine. The binding edge of a page is the edge that will be used in the binding process. For
example, if a document is to be stored in a three-ring binder, the binding edge would be the
edge of the paper where the holes are punched. To determine whether the second side of
a page needs to be rotated, the feed edge must be compared to the binding edge. If the feed
edge is the same as the binding edge, then the second side does not need to be rotated.
However, if the feed edge is different from the binding edge, then the second side must be
rotated 180° to have the proper orientation between both sides of the page.

Figure 1-9 illustrates a duplex printing operation. The paper is fed by its short edge when
the binding edge is defined as the long edge. This means the second pass image should be
rotated 180°. During the first pass, paper travels from the input hopper and under the drum
and an image is placed on the page. After fusing, the page is placed face down in the duplex
hopper. During the second pass, paper travels from the duplex hopper and under the drum
and another image is placed on the page. After fusing, the page is placed in the output
hopper with the second pass image facing up. To properly orient the two images on the page
the second pass data must be sent to the printer in right to left and bottom to top order so
that a 180° image rotation will occur.

Figure 1-9. Example of a Duplex Printing Operation
PAPER MOTION PAST DRUM PAPER MOTION PAST DRUM

FIRST PIXEL
SCANNED

ONTO PAGE

DRUMLASER SCAN DIRECTION LASER SCAN DIRECTION

FIRST PASS SECOND PASS
FIRST PIXEL

SCANNED
ONTO PAGE

MOTOROLA MC68322 USER’S MANUAL 2-1

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the MC68322 input and output signals as
illustrated in the figure below.

Figure 2-1. Functional Signal Groups

CLK2

BUSY
SELECT

PERROR

PD7–PD0

MA10–MA0

MD15–MD0

MEMORY ADDRESS BUS

MEMORY DATA BUS

MC68322

DATA BUS

A25–A1

D15–D0

ADDRESS BUS

SYSTEM
INTERFACE

MC68322 BUS
INTERFACE

DRAM
INTERFACE

DMA
INTERFACE

PRINTER
COMMUNICATION

INTERFACE

PVC
INTERFACE

EXTERNAL
BUS MASTER
INTERFACE

PARALLEL PORT
INTERFACE

RESET

CS7–CS0
RD
WRU
WRL
WAIT

VCLK

FSYNC

LSYNC

VIDEO

PRINT

SELECTIN

STROBE

AUTOFD

INIT

ACK

FAULT

CCLK

CBSY

SBSY

CMD/STS

STS

RAS5–RAS0
CAS1–CAS0

DREQ
DACK

WE

HI-Z

AS

R/W

EDTACK

BR

BG

IRQ1–IRQ0

TEST

Signal Descriptions

2-2 MC68322 USER’S MANUAL MOTOROLA

Table 2-1. Signal Summary

SIGNAL NAME MNEMONIC INPUT/OUTPUT ACTIVE STATE
THREE-STATED

ON BG ON HI-Z

Address Bus A25–A1 Input/Output — Yes Yes

Parallel Port Acknowledge ACK Output Low No Yes

Address Strobe AS Input/Output Low Yes Yes

Parallel Port Autofeed AUTOFD Input Low — —

Bus Grant BG Output Low No Yes

Bus Request BR Input Low — —

Parallel Port Busy BUSY Output High No Yes

Column Address Strobe CAS1–CAS0 Output Low No Yes

Command Busy CBSY Output Low No Yes

Command Clock CCLK Input/Output — No Yes

2X System Clock CLK2 Input — — —

Command/Status Data CMD/STS Input/Output Low No Yes

Chip Select CS7–CS0 Output Low No Yes

Data Bus D0–D15 Input/Output — No Yes

DMA Data Acknowledge DACK Output Low — Yes

DMA Data Request DREQ Input Programmable — —

External Master DTACK EDTACK Output Low No Yes

Parallel Port Fault FAULT Output Low No Yes

Frame Synchronization FSYNC Input Programmable — —

Parallel Port Initialization Input INIT Input Low — —

Interrupt Request IRQ1–IRQ0 Input Programmable — —

Line Synchronization LSYNC Input Programmable — —

DRAM Multiplexed Address Bus MA10–MA0 Output — No Yes

DRAM Memory Data Bus MD15–MD0 Input/Output — No Yes

Parallel Port Data Bus PD7–PD0 Input/Output — No Yes

Parallel Port Paper Error PERROR Output Low No Yes

Print Request PRINT Output Programmable No Yes

Read/Write R/W Input/Output Read-High
Write-Low

Yes* Yes

DRAM Row Address Strobe RAS5–RAS0 Output Low No Yes

Read Strobe RD Output Low No Yes

Reset RESET Input Low — —

Status Busy SBSY Input Low — —

Parallel Port Selected SELECT Output High No Yes

Parallel Port Select In SELECTIN Input Low — —

Parallel Port Data Strobe STROBE Input Low — —

Signal Descriptions

MOTOROLA MC68322 USER’S MANUAL 2-3

2.1 ADDRESS BUS
This 25-bit, bidirectional, three-state bus is capable of directly addressing 64M of data. The
address bus acts as an output when the core or general-purpose DMA is accessing the
chip-select banks and it acts as an input when the device is in an external bus master mode.
In the external bus master mode, the address bus is sent to the MC68322’s internal decode
circuits.

2.2 DATA BUS
This 16-bit, bidirectional, three-state bus is the general-purpose data path. It acts as an input
when one of the following conditions occur:

• When data from ROM, PROM, or I/O is required in the form of data or instructions.

• When an external bus master performs a write cycle.

On the other hand, it acts as an output when one of the following conditions occur:

• When data is sent to an I/O device.

• When an external bus master is reading data.

During an interrupt acknowledge cycle, the data bus is not used.

Status Data STS Input Low — —

High Impedance HI-Z Input Low — —

Power Input V
CC

Input — — —

Video Clock VCLK Input Programmable — —

Video VIDEO Output Programmable No Yes

Processor Wait WAIT Input Low — —

DRAM Write Enable WE Output Low No Yes

Write Enable - Lower WRL Output Low No Yes

Write Enable - Upper WRU Output Low No Yes

NOTE: * Becomes An Input On BG, Which Effectively Three-States The Signal.

Note: Assertion and negation are used to specify forcing a signal to a particular state.
Assertion and assert refer to a signal that is active or true. Negation and negate
refer to a signal that is inactive or false. These terms are used independent of
the voltage level (high or low) that they represent.

Table 2-1. Signal Summary (Continued)

SIGNAL NAME MNEMONIC INPUT/OUTPUT ACTIVE STATE
THREE-STATED

ON BG ON HI-Z

Signal Descriptions

2-4 MC68322 USER’S MANUAL MOTOROLA

2.3 SYSTEM INTERFACE

2.3.1 Reset (RESET)
The RESET signal is an input only signal that causes a total system reset, thus resetting the
processor and external devices. This is different than a reset caused by the reset
instruction, which does not reset external devices or internal registers. In effect, the internal
state of the processor is not affected. Regardless, using the reset instruction on the
MC68322 is not recommended.

2.3.2 System Clock
To develop the internal clocks needed by the MC68322, CLK2 is internally buffered. The
MC68322 divides the system clock (CLK2) frequency by two to generate a CLK1 signal that
is used internally by the core and most modules. The input frequency of the CLK2 signal is
twice the system frequency.

CLK2 can be slowed or stopped to reduce device and system power consumption. However,
CLK2 is necessary to refresh DRAM, and complete removal of the CLK2 signal can cause
a loss of data in DRAM.

The internal CLK1 signal functions continuously through reset. The phase relationship
between CLK1 and CLK2 is determined by the trailing edge of RESET. Figure 2-2 illustrates
the internal timing of the MC68322 in which RESET is doubly synchronized and the trailing
edge is used to synchronize CLK1.

Figure 2-2. CLK1 Phase Relationship

CLK2

RESET

r1

r2

r3

CLK1

CLK1

or

CLK1 SYNCED

Signal Descriptions

MOTOROLA MC68322 USER’S MANUAL 2-5

CLK1 can be generated with external logic, as illustrated in the following equations. This
logic runs off CLK2, takes system reset in as RESETIN, and generates CLK1 and RESET
as outputs.

!rst1x := !RESETINx; "Sync reset input (internal use)
!RESETx := !rst1x; "Reset to MC68322
!rst2x := !RESETx; "Delayed reset (internal use)
!CLK1 := CLK1 "Toggle

RESETx & !rst2x "Sync at trailing edge of RESET

Where:
! = Inverted
& = Logical AND
= Logical OR
:= = Registered Output
= = Combination; Non-Registered Output
; = Line Termination
" = Comment

This external logic works in a similar manner as the logic used inside the MC68322. The
external CLK1 runs continuously, even during reset, and only its phase is adjusted based
on the trailing edge of the RESETIN input. The asynchronous RESETIN input is
synchronized to avoid metastability problems and a synchronous RESET output signal is
produced to reset the MC68322 and ensure that it generates its internal CLK1 in phase with
its external CLK1.

2.3.3 High Impedance Mode
The high impedance mode HI-Z and TEST pins can be used to place the MC68322 into a
three-state mode that allows an in-circuit emulator to be used. Table 2-2 shows all
combinations of the HI-Z and TEST pins. See Appendix D Alternate Pin Functions for
more information on the proper use of the input pin mode.

Table 2-2. HI-Z and TEST Combinations

HI-Z TEST FUNCTION

0 0 Three-State All Outputs

0 1 Input Pin Mode, A(22:25) Three-Stated

1 0 Normal Mode, A(22:25) Enabled

1 1 Special Test Mode (Do Not Use)

Signal Descriptions

2-6 MC68322 USER’S MANUAL MOTOROLA

2.4 EXTERNAL BUS MASTER INTERFACE
The following signals control the MC68322 bus operation.

PIN NAME DESCRIPTION

AS Address Strobe—The active low AS signal indicates a valid address on the address bus. AS is an output when
the core or internal DMA initiates an access on the MC68322 bus and an input when an external bus master
controls the MC68322 bus.

R/W Read/Write—This signal defines a data bus transfer as a read (active high) or write cycle (active low). R/W is
an output when the core or internal DMA initiates an access on the MC68322 bus, and an input when an external
bus master has control of the MC68322 bus.

EDTACK External Bus Master Data Transfer Acknowledge—This output signal is sent to an external bus master to
indicate that the data transfer is complete. When EDTACK is recognized during a read cycle, the external bus
master latches the data and terminates the bus cycle. When EDTACK is recognized during a write cycle, the
bus cycle is terminated.

BR Bus Request—This active low input is ORed with all other devices that can be bus masters. This active-low
input signal informs the core that another device is ready to be the bus master.

BG Bus Grant—This active low output indicates to all other potential bus masters that the MC68322 bus is
available. BG will assert after the assertion of BR, but only after all bus cycles have terminated.

CS7-CS0 Chip-Select—These signals are output only and can be programmed to provide from 256K to 64M decode.
These signals continue to function as they are programmed when an alternate bus master has control of the
MC68322 bus.

RD Read—This signal is an output only strobe that is asserted during a read operation on the MC68322 bus. A read
cycle can be initiated by the core, internal DMA, or external bus master. The read strobe remains negated during
an MC68322 bus write cycle.

WRU Upper Write Strobe—This strobe is an output only signal that is asserted during a write operation on the
MC68322 bus. A write cycle can be initiated by the core, internal DMA, or external bus master. The upper write
strobe asserts during all word write operations and during byte write operations to the upper portion of the data
bus (D15-D8). WRU remains negated during a read and a lower byte write cycle.

WRL Lower Write Strobe—This strobe is an output only signal that asserts during a write operation on the MC68322
bus. A write cycle can be initiated by the core, internal DMA, or external bus master. The lower write strobe
asserts during all word write operations and during byte write operations to the lower portion of the data bus (D7-
D0). WRL remains negated during a read and an upper byte write cycle.

WAIT Wait—This input only signal that extends an MC68322 bus cycle beyond the programmed values. Be aware that
WAIT can only prolong bus cycles for chip-select banks.

IRQ1-IRQ0 External Interrupt Request—These input only signals have programmable assertion levels and are used to
connect external interrupting devices to the MC68322. These two signals are sent through the internal interrupt
controller before posting an interrupt to the core.

Signal Descriptions

MOTOROLA MC68322 USER’S MANUAL 2-7

2.5 DRAM INTERFACE
The following signals control the DRAM bus operation:

PIN NAME DESCRIPTION

MA10–MA0 Memory Address Bus—These 11 output only signals connect to the internally multiplexed DRAM address bus.
They directly drive the memory address bus to a DRAM array. The low-order address signals change to provide
bursting capability. See Table 2-3 for a list of DRAM address multiplexing values.

MD15–MD0 Memory Data Bus—This signal connects to a 16-bit bidirectional three-stateable memory data bus. The
memory data bus is used to transfer byte- and word-sized data to and from DRAM.

RAS5-RAS0 Row Address Strobe—These output signals provide row address strobes for external DRAM. RASx asserts
when a memory reference occurs that is internally decoded for the DRAM bank(s).

CAS1-CAS0 Column Address Strobe—These output signals provide the column address strobe timing for the external
DRAM. The CAS1 signal asserts when a byte write operation occurs to the upper memory data bus (MD15-
MD8). CAS0 asserts when a byte write operation occurs to the lower memory data bus (MD7-MD0). However,
both CAS1 and CAS0 assert for byte-sized read operations and word-sized read and write operations.

WE Write Enable—This output signal asserts when an external DRAM access write cycle is initiated providing the
write control for external DRAM.

Table 2-3. DRAM Address Multiplexer

ROW
ADDRESS

COLUMN
ADDRESS

MEMORY
ADDRESS

DRAM SIZE × 16 BITS

A10 A01 MA0 4 Mbit, 1 Mbit, 256 Kbit

A11 A02 MA1 4 Mbit, 1 Mbit, 256 Kbit

A12 A03 MA2 4 Mbit, 1 Mbit, 256 Kbit

A13 A04 MA3 4 Mbit, 1 Mbit, 256 Kbit

A14 A05 MA4 4 Mbit, 1 Mbit, 256 Kbit

A15 A06 MA5 4 Mbit, 1 Mbit, 256 Kbit

A16 A07 MA6 4 Mbit, 1 Mbit, 256 Kbit

A17 A08 MA7 4 Mbit, 1 Mbit, 256 Kbit

A18 A09 MA8 4 Mbit, 1 Mbit, 256 Kbit

A20 A19 MA9 4 Mbit, 1 Mbit

A22 A21 MA10 4 Mbit

Signal Descriptions

2-8 MC68322 USER’S MANUAL MOTOROLA

2.6 DMA INTERFACE
The following signals control the DMA interface. They are used to transfer data from the
MC68322 bus to DRAM or vice versa.

2.7 PRINTER COMMUNICATION INTERFACE
The following signals communicate with the print engine. Due to various interfaces with
different print engines, some signals may not be needed.

2.8 PRINT ENGINE VIDEO CONTROLLER INTERFACE
The print engine video controller (PVC) interface consists of five signals designed to
interface directly to most laser print engines and input/output polarities are programmable.
The following signals are used to transfer data from the MC68322 to the print engine.

PIN NAME DESCRIPTION

DREQ Data Request—This input signal, whose polarity is programmable, is asserted by a peripheral device to request
a transfer between the internal core bus and DRAM. The assertion of the DREQ signal starts a DMA operation.

DACK Data Acknowledge—This active-low output signal indicates that a DMA transfer is complete.

PIN NAME DESCRIPTION

CBSY Command Busy—This output only signal indicates that a command byte is being sent to the print engine.

SBSY Status Busy—This input only signal indicates that a status is ready to be received from the print engine.

CCLK Command Clock—This bidirectional signal is used to clock command and status data between the MC68322
and the print engine. It is not a free running clock and remains inactive until CBSY or SBSY is asserted. The
print engine or the MC68322 can supply CCLK. The direction of this pin is programmable and engine dependent.

CMD/STS Command/Status—This bidirectional signal is provided because some print engines require command and
status on the same line. It is used to exchange command and status information between the print engine and
the MC68322. The direction of this pin is programmable and engine dependent.

STS Status—This input signal is used by the print engine to supply data to the MC68322. Data sent through this
signal is synchronous with the CCLK.

PIN NAME DESCRIPTION

VCLK Video Shift Clock—This input signal is a free-running clock that is used to drive the video transfer. The print
engine or an onboard oscillator can supply VCLK.

FSYNC Frame Synchronize—This input only signal indicates frame synchronization. The print engine asserts the
FSYNC signal to begin a page. The active polarity of this signal is programmable.

LSYNC Line Synchronize—This input signal indicates that the print engine is ready to accept data for
the next scanline. The active polarity of this signal is programmable.

PRINT Print Request—This output signal indicates that the MC68322 is ready to begin printing. The
assertion of this signal initiates the printing process. The active polarity of this pin is
programmable.

VIDEO Video Data—This output signal provides the serial video data to the printer. The default
polarity is low for active video and high for inactive video. The VIDEO output driver can sink
and source 24 mA. The active polarity of this signal is programmable.

Signal Descriptions

MOTOROLA MC68322 USER’S MANUAL 2-9

2.9 PARALLEL PORT INTERFACE
The MC68322 has 17 pins dedicated to parallel port communications. These pins are
designed to interface to an IEEE 1284-compatible or compliant host and meet all electrical
driver/receiver requirements for Level 2 compliance. All inputs are TTL-compatible and
received with Schmitt triggers with over 200 mV of hysteresis. All outputs are symmetrical
and can sink and source 16 mA at 0.4 and 3.0 V, respectively. This provides a direct
connection (through series resistors) between the MC68322 and the parallel port connector,
thus no external buffering or latching logic is required.

The following signal descriptions are for compatibility mode operation only. Control signals
carry different meanings when other IEEE 1284 modes are used. When other modes are
discussed, the IEEE 1284 signal name is provided in parentheses following the MC68322
pin name. Applications that do not require a parallel port can use these pins as
general-purpose, individually controllable I/O pins.

PIN NAME DESCRIPTION

PD7-PD0 Parallel Port Data Bus—This 8-bit, bidirectional, three-stateable bus is used to exchange data between an
external host computer and the MC68322.

SELECTIN Parallel Port Select In—This input signal is used by the parallel port interface to request “on-line” status
information.

STROBE Data Strobe—This input signal indicates when valid data is present on the parallel port data bus.

AUTOFD Parallel Port Autofeed—This input signal indicates autofeed control.

INIT Initialization Input—This input signal is used to initialize parallel port input control.

ACK Parallel Port Acknowledge—This output signal indicates that a transfer on the parallel port data bus is
complete.

BUSY Parallel Port Busy—This output signal indicates that the parallel port is busy.

SELECT Parallel Port Selected—This output signal indicates that the device on the parallel port is “on-line” or “off-line”.

PERROR Parallel Port Error—This output signal indicates that a problem exists with the paper in the printer. It could
mean that the printer has a paper jam or is out of paper.

FAULT Parallel Port Fault—This output signal indicates that an error condition exists with the printer. It could mean that
the printer is out of toner or has been taken offline.

MOTOROLA MC68322 USER’S MANUAL 3-1

SECTION 3
THE CORE

The MC68322 has an embedded EC000 core that controls its operation. The full
architecture provides for 32-bit address and data register operations via the 16-bit data bus
and internal 32-bit address bus. The core has the following features:

• Eight 32-bit address registers

• Eight 32-bit data registers

• 4G direct addressing range

• Fifty-six instructions

• Operations on five data types

• Memory-mapped input/output

• Fourteen addressing modes

3.1 PROGRAMMING MODEL
The EC000 core programming model is separated into two modes of access—user and
supervisor. The user mode provides the execution environment for a majority of the
application programs. The supervisor mode allows some additional instructions and
privileges that the operating system and other system software use. The M68000 Family
Programmer’s Reference Manual can be another source for programming model
information.

The Core

3-2 MC68322 USER’S MANUAL MOTOROLA

Figure 3-1. EC000 Core Programming Model

As illustrated in Figure 3-1, the user mode provides access to sixteen 32-bit,
general-purpose registers, a 32-bit program counter, and an 8-bit condition code register.
The first eight registers (D0–D7) are used as data registers for byte (8-bit), word (16-bit), and
long-word (32-bit) operations. The second set of seven registers (A0–A6) and the user stack
pointer (A7/USP) can be used as software stack pointers and base address registers. In
addition, the address registers can be used for word and long-word operations. However, all
16 registers can be used as index registers. The condition code register provides
information on integer overflow, zeros, negatives, carries, and extends. It is contained in the
low-order byte of the status register.

The supervisor mode provides access to two supplementary registers—status register
(high-order byte) and supervisor stack pointer (A7/SSP). The status register has access to
the condition codes, but also includes the interrupt mask (in the high-order byte) with eight
levels of interrupts available. It also indicates whether the core is in trace or supervisor
mode.

SUPERVISOR PROGRAMMING MODEL

USER PROGRAMMING MODEL

CCR
PC
A7/USP
A6
A5
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0

31 0

31 0

A7'/SSP
SR(CCR*)

PROGRAM COUNTER
CONDITION CODE REGISTER

SUPERVISOR STACK POINTER
STATUS REGISTER

USER STACK POINTER

DATA REGISTERS

ADDRESS REGISTERS

NOTE: *CCR is also illustrated in the user programming model.

16 15 8 7

The Core

MOTOROLA MC68322 USER’S MANUAL 3-3

3.2 DATA TYPES AND ADDRESSING MODES
The core supports the basic data formats of the M68000 Family. The instruction set supports
operations on other data formats, such as memory addresses. The operand data formats
supported by the core are the standard twos-complement data formats defined in the
M68000 Family architecture. Registers, memory, or instructions themselves can contain
integer unit operands. The operand size for each instruction is either explicitly encoded in
the instruction or implicitly defined by the instruction operation. Table 3-1 lists the data
formats for the core. Refer to the M68000 Family Programmer’s Reference Manual for
details on data format organization in registers and memory.

The core also supports the basic addressing modes of the M68000 Family. The register
indirect addressing modes support postincrement, predecrement, offset, and index
capabilities. The program counter relative mode also supports indexing and offsetting.
Table 3-2 lists a summary of the data addressing modes for the core. Refer to the M68000
Family Programmer’s Reference Manual for details on the core’s effective addressing
modes.

Table 3-1. Processor Data Formats

OPERAND DATA FORMAT SIZE

Bit 1 Bit

Binary-Coded Decimal (BCD) 8 Bits

Byte Integer 8 Bits

Word Integer 16 Bits

Long-Word Integer 32 Bits

Table 3-2. Effective Addressing Modes

ADDRESSING MODES SYNTAX

Register Direct Addressing
 Data Register Direct
 Address Register Direct

EA = Dn
EA = An

Absolute Data Addressing
 Absolute Short
 Absolute Long

EA = (Next Word)
EA = (Next Two Words)

Program Counter Relative Addressing
 Relative With Offset
 Relative With Index and Offset

EA = (PC) + d16
EA = (PC) + d8

Register Indirect Addressing
 Register Indirect
 Postincrement Register Indirect
 Predecrement Register Indirect
 Register Indirect With Offset
 Indexed Register Indirect With Offset

EA = (An)
EA = (An), An =An + N
An = An –N, EA = (An)
EA = (An) + d16
EA = (An) + (Xn) + d8

Immediate Data Addressing
 Immediate
 Quick Immediate

DATA = Next Word(s)
Inherent Data

Implied Addressing
 Implied Register EA = SR, USP, SSP, PC

The Core

3-4 MC68322 USER’S MANUAL MOTOROLA

3.3 INSTRUCTION SET SUMMARY
Table 3-3 lists the notational conventions used throughout this manual and Table 3-4
summarizes the core instruction set by opcode. In the syntax descriptions, the left operand
is the source operand and the right operand is the destination operand.

Table 3-3. Notational Conventions

SINGLE- AND DOUBLE-OPERAND OPERATIONS

≠ Not equal.

+ Arithmetic addition or postincrement indicator.

– Arithmetic subtraction or predecrement indicator.

× Arithmetic multiplication.

÷ Arithmetic division or conjunction symbol.

~ Invert; operand is logically complemented.

L Logical AND

V Logical OR

≈ Logical exclusive OR

- Source operand is moved to destination operand.

= Two operands are exchanged.

< Relational test; true if source operand is less than destination operand.

> Relational test; true if source operand is greater than destination operand.

<operand> Any double-operand operation.

<operand> tested Operand is compared to zero and the condition codes are set appropriately.

<operand> sign-extended
<operand>

All bits of the upper portion are made equal to the high-order bit of the lower portion.

<operand> shifted
by <count>

The source operand is shifted by the number of count.

<operand> rotated
by <count>

The source operand is rotated by the number of count.

bit number of <operand> Selects a single bit of the operand.

OTHER OPERATIONS

TRAP 1 - S-bit of SR;
SSP – 4 - SSP; PC - (SSP); SSP – 2 - SSP;
SR - (SSP); Vector Address - PC

STOP Enter the stopped state, waiting for interrupts.

<operand>10 The operand is BCD; operations are performed in decimal.

If <condition>
then <operations>
else <operations>

Test the condition. If true, the operations after “then” are performed. If the condition is false and the optional “else”
clause is present, the operations after “else” are performed. If the condition is false and “else” is omitted, the
instruction performs no operation. Refer to the Bcc instruction description as an example.

REGISTER SPECIFICATION

An Any Address Register n (example: A3 is address register 3)

Ax, Ay Source and destination address registers, respectively.

Dn Any Data Register n (example: D5 is data register 5)

The Core

MOTOROLA MC68322 USER’S MANUAL 3-5

Dx, Dy Source and destination data registers, respectively.

Rn Any Address or Data Register

Rx, Ry Any source and destination registers, respectively.

Xn Index Register—An, Dn, or suppressed.

DATA FORMAT AND TYPE

<fmt> Operand Data Format: Byte (B), Word (W), Long (L)

SUBFIELDS AND QUALIFIERS

#<xxx> or #<data> Immediate data following the instruction word(s).

SINGLE- AND DOUBLE-OPERAND OPERATIONS

() Identifies an indirect address in a register.

[] Identifies an indirect address in memory.

dn Displacement Value, n Bits Wide (example: d
16

 is a 16-bit displacement).

REGISTER NAMES

CCR Condition Code Register (lower byte of status register)

PC Program Counter

SR Status Register

REGISTER CODES

C Carry Bit in CCR

cc Condition Codes from CCR

N Negative Bit in CCR

U Undefined, Reserved for Motorola Use

V Overflow Bit in CCR

X Extend Bit in CCR

Z Zero Bit in CCR

STACK POINTERS

SP Active Stack Pointer

SSP Supervisor (Master or Interrupt) Stack Pointer

USP User Stack Pointer

MISCELLANEOUS

<ea> Effective Address

<label> Assembly Program Label

<list> List of registers, for example D3–D0.

Table 3-3. Notational Conventions (Continued)

The Core

3-6 MC68322 USER’S MANUAL MOTOROLA

Table 3-4. Instruction Set Summary

OPCODE OPERATION SYNTAX

ABCD Source
10

 + Destination
10

 + X - Destination ABCD Dy,Dx
ABCD –(Ay), –(Ax)

ADD Source + Destination - Destination ADD <ea>,Dn
ADD Dn,<ea>

ADDA Source + Destination - Destination ADDA <ea>,An

ADDI Immediate Data + Destination - Destination ADDI #<data>,<ea>

ADDQ Immediate Data + Destination -Destination ADDQ # <data>,<ea>

ADDX Source + Destination + X - Destination ADDX Dy, Dx
ADDX –(Ay), –(Ax)

AND Source Λ Destination - Destination AND <ea>,Dn
AND Dn,<ea>

ANDI Immediate Data Λ Destination - Destination ANDI # <data>, <ea>

ANDI to CCR Source Λ CCR - CCR ANDI # <data>, CCR

ANDI to SR If supervisor state then Source Λ SR - SR else TRAP ANDI # <data>, SR

ASL, ASR Destination Shifted by <count> - Destination ASd Dx,Dy
ASd # <data>,Dy
ASd <ea>

Bcc If (condition true) then PC + dn - PC Bcc <label>

BCHG ~ (<bit number> of Destination) - Z;
~ (<bit number> of Destination) - <bit number> of Destination

BCHG Dn,<ea>
BCHG # <data>,<ea>

BCLR ~ (<bit number> of Destination) - Z;
0 - <bit number> of Destination

BCLR Dn,<ea>
BCLR # <data>,<ea>

BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction

BKPT # <data>

BRA PC + dn - PC BRA <label>

BSET ~ (<bit number> of Destination) - Z;
1 - <bit number> of Destination

BSET Dn,<ea>
BSET # <data>,<ea>

BSR SP – 4 - SP; PC -(SP); PC + dn - PC BSR <label>

BTST ~ (<bit number> of Destination) -Z; BTST Dn,<ea>
BTST # <data>,<ea>

CHK If Dn < 0 or Dn > Source then TRAP CHK <ea>,Dn

CLR 0 - Destination CLR <ea>

CMP Destination – Source - cc CMP <ea>,Dn

CMPA Destination – Source - cc CMPA <ea>,An

CMPI Destination – Immediate Data - cc CMPI # <data>,<ea>

CMPM Destination – Source - cc CMPM (Ay)+, (Ax)+

DBcc If condition false then (Dn – 1 - Dn;
If Dn ≠ –1 then PC + dn - PC)

DBcc Dn,<label>

DIVS Destination ÷ Source - Destination DIVS.W <ea>,Dn32/16 - 16r:16q

DIVU Destination ÷ Source - Destination DIVU.W <ea>,Dn32/16 - 16r:16q

The Core

MOTOROLA MC68322 USER’S MANUAL 3-7

OPCODE OPERATION SYNTAX

EOR Source ⊕ Destination - Destination EOR Dn,<ea>

EORI Immediate Data ⊕ Destination - Destination EORI # <data>,<ea>

EORI to CCR Source ⊕ CCR - CCR EORI # <data>,CCR

EORI to SR If supervisor state then Source ⊕ SR - SR else TRAP EORI # <data>,SR

EXG Rx = - Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT Destination Sign-Extended - Destination EXT.W Dn extend byte to word
EXT.L Dn extend word to long word

ILLEGAL SSP – 4 - SSP; PC - (SSP);
SSP – 2 - SSP; SR - (SSP);
Illegal Instruction Vector Address - PC

ILLEGAL

JMP Destination Address - PC JMP <ea>

JSR SP – 4 - SP; PC - (SP)
Destination Address - PC

JSR <ea>

LEA <ea> - An LEA <ea>,An

LINK SP – 4 - SP; An - (SP)
SP - An, SP + dn - SP

LINK An, # <displacement>

LSL,LSR Destination Shifted by <count> - Destination LSd Dx,Dy
LSd # <data>,Dy
LSd <ea>

MOVE Source - Destination MOVE <ea>,<ea>

MOVEA Source - Destination MOVEA <ea>,An

MOVE to CCR Source - CCR MOVE <ea>,CCR

MOVE from SR SR - Destination MOVE SR,<ea>

MOVE to SR If supervisor state then Source - SR else TRAP MOVE <ea>,SR

MOVE USP If supervisor state then USP - An or An - US else TRAP MOVE USP,An
MOVE An,USP

MOVEM Registers - Destination;
Source - Registers

MOVEM <list>,<ea>
MOVEM <ea>,<list>

MOVEP Source - Destination MOVEP Dx,(d
16

,Ay)
MOVEP (d

16
,Ay),Dx

MOVEQ Immediate Data - Destination MOVEQ # <data>,Dn

MULS Source × Destination - Destination MULS.W <ea>,Dn 16 x 16 - 32

MULU Source × Destination - Destination MULU.W <ea>,Dn 16 x 16 - 32

NBCD 0 – (Destination
10

) – X - Destination NBCD <ea>

NEG 0 – (Destination) - Destination NEG <ea>

NEGX 0 – (Destination) – X - Destination NEGX <ea>

NOP None NOP

Table 3-4. Instruction Set Summary (Continued)

The Core

3-8 MC68322 USER’S MANUAL MOTOROLA

OPCODE OPERATION SYNTAX

NOT ~Destination - Destination NOT <ea>

OR Source V Destination - Destination OR <ea>,Dn
OR Dn,<ea>

ORI Immediate Data V Destination - Destination ORI # <data>,<ea>

ORI to CCR Source V CCR - CCR ORI # <data>,CCR

ORI to SR If supervisor state then Source V SR - SR else TRAP ORI # <data>,SR

PEA Sp – 4 - SP; <ea> - (SP) PEA <ea>

RESET 1 If supervisor state then Assert RESET Line else TRAP RESET

ROL, ROR Destination Rotated by <count> - Destination ROd Dx,Dy
ROd # <data>,Dy
ROd <ea>

ROXL,
ROXR

Destination Rotated with X by <count> - Destination ROXd Dx,Dy
ROXd # <data>,Dy
ROXd <ea>

RTE If supervisor state
then (SP) - SR; SP + 2 - SP; (SP) - PC; SP + 4 - SP;
restore state and deallocate stack according to (SP) else TRAP

RTE

RTR (SP) - CCR; SP + 2 - SP;
(SP) - PC; SP + 4 - SP

RTR

RTS (SP) - PC; SP + 4 - SP RTS

SBCD Destination
10

– Source
10 – X - Destination SBCD Dx,Dy

SBCD –(Ax),–(Ay)

Scc If condition true then 1s - Destination else 0s - Destination Scc <ea>

STOP If supervisor state then Immediate Data -SR; STOP else TRAP STOP # <data>

SUB Destination – Source - Destination SUB <ea>,Dn
SUB Dn,<ea>

SUBA Destination – Source - Destination SUBA <ea>,An

SUBI Destination – Immediate Data - Destination SUBI # <data>,<ea>

SUBQ Destination – Immediate Data - Destination SUBQ # <data>,<ea>

SUBX Destination – Source – X - Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register [31:16] ¯ - Register [15:0] SWAP Dn

TAS Destination Tested - Condition Codes; 1 -bit 7 of Destination TAS <ea>

TRAP 1 - S-bit of SR; SSP – 4 - SSP; PC - (SSP); SSP – 2 - SSP;
SR - (SSP); Vector Address - PC

TRAP # <vector>

TRAPV If V then TRAP TRAPV

TST Destination Tested - Condition Codes TST <ea>

UNLK An - SP; (SP) - An; SP + 4 - SP UNLK An

NOTES:

1. Does Not Reset External Devices Or Internal Registers. Has No Effect On Any MC68322 Modules.

2. d Is Direction, L, Or R.

Table 3-4. Instruction Set Summary (Continued)

MOTOROLA MC68322 USER’S MANUAL 4-1

SECTION 4
BUS OPERATION

The MC68322 bus consists of the address and data buses (A25–A0 and D15–D0
respectively). These are separate parallel buses that transfer data using an asynchronous
protocol. The graphics bus consists of the MC68322’s DRAM address and data buses
(MA10–MA0 and MD15–MD0 respectively), which are separate parallel buses on which
data is transferred to and from DRAM using an asynchronous protocol. This section
describes control signals and bus operation during data transfers on the MC68322 bus and
graphics bus. It also describes arbitration of the bus and external bus mastership.

Except during external bus mastership, the EC000 core directs the MC68322 bus and
graphics bus using the following the CSx, RD, WRU, WRL, R/W, RAS5–RAS0,
CAS1–CAS0, MA10–MA0, and WE control signals to transfer data. These control signals
indicate the bus cycle beginning and type as well as the address space and size of the
transfer. They control all transfers to and from the core including:

• Internal registers read or write

• ROM read

• DRAM read or write

• I/O read or write

4.1 EC000 CORE READ CYCLE
During a read cycle, the core receives data from memory (DRAM or EPROM), an internal
register, or a peripheral device; reading either one or two bytes of data in all cases. If the
instruction specifies a word (or long-word) operation, the core reads both upper and lower
bytes simultaneously. When the instruction specifies a byte operation, the core uses the
internal A0 bit to determine which byte to read. Once the data is received, the core correctly
positions the byte internally. Figure 4-1 illustrates a word- and byte-sized read cycle
flowchart. Figure 4-2 illustrates the internal word read cycle timing diagram to chip-selects.
Figure 4-3 illustrates the internal byte- and word-sized read cycle timing diagram to
chip-selects, while Figure 4-4 illustrates the internal byte- and word-sized read cycle timing
diagram to DRAM.

Note: AS asserts for MC68322 chip-select bus operations only.

Bus Operation

4-2 MC68322 USER’S MANUAL MOTOROLA

Figure 4-1. Read Cycle Flowchart

Figure 4-2. External Timing Diagram to Chip-Selects Banks

EC000 CORE

ADDRESS THE DEVICE

ACQUIRE THE DATA

TERMINATE THE CYCLE

INPUT THE DATA

BUS INTERFACE UNIT

1) DECODE ADDRESS
2) ASSERT CHIP-SELECT (MC68322

BUS ONLY)
3) ASSERT RD (MC68322 BUS ONLY)
4) ASSERT MULTIPLEXED ADDRESS

ON MA10–MA0 (DRAM ONLY)
5) ASSERT RAS AND CAS (DRAM ONLY)
6) READ DATA FROM SOURCE
7) PLACE DATA ON INTERNAL D15–D0
8) ASSERT INTERNAL DTACK
9) ASSERT WAIT TO STALL EXTERNAL

MC68322 BUS ACCESS (OPTIONAL)

1) PLACE ADDRESS ON A27–A0
2) ASSERT AS (MC68322 BUS ONLY)
4) ASSERT R/W

1) LATCH DATA
2) NEGATE AS

1) REMOVE DATA FROM INTERNAL
D15–D0

2) NEGATE RD (MC68322 BUS ONLY)
3) NEGATE INTERNAL DTACK AND RD

STROBE
4) NEGATE MA10–MA0, RAS, AND CAS

(DRAM ONLY)
START NEXT CYCLE

S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 W W S6
CLK1

CSx

A25–A0

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

RD

WRU and WRL

WORD READ WORD WRITE SLOW READ

NOTE: UDS, LDS, and DTACK are internal signals only.

Bus Operation

MOTOROLA MC68322 USER’S MANUAL 4-3

Figure 4-3. External Timing Diagram to Chip-Select Banks

Figure 4-4. Word and Byte Read Cycle Timing Diagram to DRAM

S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 W
CLK1

CSx

A25–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

RD

WORD READ BYTE READ SLOW BYTE READ

A0

W S6

NOTE: A0, UDS, LDS, and DTACK are internal signals only.

S0 S2 S4 S6 S0W W

AS

R/W

UDS and LDS

DTACK

MA10–MA0

RAS5–RAS0

CAS1–CAS0

MD15–MD0

WE

COLUMNROW

READ DATA

NOTE: UDS, LDS, and DTACK are internal signals only.

Bus Operation

4-4 MC68322 USER’S MANUAL MOTOROLA

4.2 EC000 CORE WRITE CYCLE
During a write cycle, the core sends data to memory (DRAM or EPROM), an internal
register, or a peripheral device; writing bytes of data in all cases. If the instruction specifies
a word (or long-word) operation, the core writes both upper and lower bytes simultaneously.
When the instruction specifies a byte operation, the core uses the internal A0 to determine
which byte to write and then issues the data strobe required for that byte.

A transfer is initiated by asserting the address strobe (AS) and providing a valid internal
function code and address. The address is decoded by each module. Once a transfer is
initiated, the core uses the timing and wait state characteristics for the active interface to
pace the internal core bus cycle. Using the wait state information of the selected module,
the core waits the specified number of cycles, transfers data, and then terminates the cycle
by asserting the internal DTACK signal to the core. The core, in turn, then terminates the
internal core bus cycle within two clocks (S4–S7). All transfers on the internal core bus
require the minimum access time of four clock cycles. Figure 4-5 illustrates the write cycle
flowchart and Figure 4-6 illustrates the word and byte write cycle timing diagram to
chip-selects.

Figure 4-5. Write Cycle Flowchart

EC000 CORE

ADDRESS THE DEVICE

ACQUIRE THE DATA

TERMINATE THE CYCLE

INPUT THE DATA

BUS INTERFACE UNIT

1) DECODE ADDRESS
2) ASSERT CHIP-SELECT (MC68322

BUS ONLY)
3) ASSERT WRU AND WRL DEPENDING

ON UDS AND LDS (MC68322 BUS
ONLY)

4) ASSERT MULTIPLEXED ADDRESS
ON MA10–MA0 (DRAM ONLY)

5) ASSERT CS1 AND CS0 DEPENDING
ON UDS AND LDS (DRAM ONLY)

6) ASSERT RAS (DRAM ONLY)
7) WRITE DATA FROM DESTINATION
8) RECEIVE DATA ON INTERNAL

D15–D0
9) ASSERT INTERNAL DTACK
10) ASSERT WAIT TO STALL EXTERNAL
 MC68322 BUS ACCESS (OPTIONAL)

1) PLACE ADDRESS ON A27–A0
2) ASSERT AS (MC68322 BUS ONLY)
4) ASSERT R/W

1) REMOVE DATA FROM INTERNAL
D15–D0

2) NEGATE AS
3) SET R/W TO READ

2) NEGATE INTERNAL DTACK
2) NEGATE WRU AND WRL (MC68322

BUS ONLY)
3) NEGATE MA10–MA0, WE, RAS, AND

CAS (DRAM ONLY)
START NEXT CYCLE

Bus Operation

MOTOROLA MC68322 USER’S MANUAL 4-5

Figure 4-6. Word and Byte Write Cycle Timing Diagram to Chip-Selects

When the core initiates a DRAM write cycle, the data is latched in an internal write buffer
and a zero wait-state DTACK is generated to the core. The data from the write buffer is
written to DRAM through the graphics bus as soon as the bus is available. Subsequent write
cycles to DRAM are held off if the write buffer is full. The write buffer allows the core to
execute the next instructions while waiting for data to be written to DRAM, thus increasing
the processor’s performance. Figure 4-7 illustrates the word and byte write cycle timing
diagram to DRAM.

S0 S2 S4 S6 S0 S2 S4 S6 S0 S2 S4 S6

WORD WRITE ODD BYTE WRITE EVEN BYTE WRITE

A0

CLK1

A25–A1

AS

UDS

LDS

R/W

DTACK

D15–D8

D7–D0

CSx

WRU

WRL

NOTE: A0, UDS, LDS, and DTACK are internal signals only.

Bus Operation

4-6 MC68322 USER’S MANUAL MOTOROLA

Figure 4-7. Word Write Cycle Timing Diagram to DRAM

4.3 INTERRUPT ACKNOWLEDGE BUS CYCLE
Whenever an interrupt is generated by one of the modules on the MC68322 (or when an
external interrupt arrives), a bit will be set in the corresponding interrupt event register and
the internal IPLX signals will be asserted according to the level programmed for that module.
In response to these active internal IPLx signals, the core transparently initiates an interrupt
acknowledge cycle. During this cycle, the core sets all internal function code signals
(FC2–FC0) high, displays the interrupt level on internal A3–A1, drives A23–A4 and the
internal A0 high, and initiates a read cycle. All MC68322 interrupts are autovectored.

During the interrupt acknowledge bus cycle, with AS detected, an internal AVEC signal is
asserted to the core as an indication that the interrupt is an automatic vector interrupt. AVEC
is negated when AS goes inactive. The internal IPL2–IPL0 signals remain asserted until the
core clears the interrupt event by clearing the appropriate bit in the module’s interrupt event
register. The IPLx signals can, however, change from one level to another before they are
serviced if a different level interrupt is generated. As part of the interrupt handling routine,
the interrupt sources of that level should be cleared. Figure 4-8 illustrates the internal
interrupt acknowledge timing diagram and Figure 4-9 illustrates the interrupt acknowledge
cycle timing diagram.

S0 S2 S4 S6 S0 S2 S4

CLK1

MA10–MA0

MD15–MD0

AS

CSx

UDS

DTACK

CAS1, CAS0

WE

RAS5–RAS0

ROW COL. CYCLE 2

WRITE DATA

NOTE: UDS and DTACK are internal signals only.

Bus Operation

MOTOROLA MC68322 USER’S MANUAL 4-7

Figure 4-8. Internal Interrupt Acknowledge Cycle

Figure 4-9. Interrupt Acknowledge Cycle Timing Diagram

A3–A1

FC2–FC0

CLK1

AS

AVEC

NOTE: These signals are internal signals only.

CLK1

A27–A4, A0

AS

UDS and LDS

R/W

DTACK

D15–D8

D7–D0

AUTO
VECTOR CYCLE

STACK AND
VECTOR

FETCH

A3–A1

LAST BUS CYCLE OF INSTRUCTION
(READ OR WRITE)

S0 S2 S4 S6 S7 S2 S4 S6 S0 S2 W S5 S6

CSx

AVEC

NOTE: A0, UDS, LDS, AVEC, and DTACK are internal signals only.

Bus Operation

4-8 MC68322 USER’S MANUAL MOTOROLA

4.4 RESET OPERATION
RESET is externally asserted for the initial processor reset. When RESET is driven by an
external device, the entire system (including the core and internal registers) are reset.
Resetting the MC68322 initializes the internal state. The processor reads the reset vector
table entry (address 00016) and loads the contents into the supervisor stack pointer. Next,
the processor loads the contents of address 00416 (vector table entry 1) into the program
counter. Refer to Table 5-3 for more information about exception vector assignments. The
processor then initializes the interrupt level in the status register to a value of seven.
Figure 4-10 illustrates the timing of the reset operation. RESET must be asserted for at least
132 clocks for initial reset. For a subsequent external reset, asserting this signal for 10 clock
cycles or longer resets the MC68322.

Figure 4-10. Reset Operation Timing Diagram

If the core executes the reset instruction, the internal state of the MC68322, its internal
registers, and its external devices are all unaffected. Neither the status register nor any of
the internal registers are affected by a reset instruction execution. Also, the RESET signal
will not assert during the execution of a reset instruction. However, using the reset
instruction on the MC68322 is not recommended.

T >= 132 CLOCKS

T <= 4 CLOCKS

NOTE 2 NOTE 3 NOTE 4 NOTE 5 NOTE 6

NOTE 1

NOTES:
 1. Internal start-up time.
 2. SSP high read in here.
 3. SSP low read in here.
 4. PC high read in here.
 5. PC low read in here.
 6. First instruction fetched here.

ALL CONTROL SIGNALS INACTIVE;
DATA BUS IN READ MODE.

CLK1

+ 5 VOLTS

VCC

RESET

BUS CYCLES

Bus Operation

MOTOROLA MC68322 USER’S MANUAL 4-9

4.5 EXTERNAL BUS MASTER
The design of the MC68322 bus allows only one bus master at a given time. The core can
be disabled as the bus master so that DMA or an external device can have full access to
MC68322 resources. This provides a significant improvement in performance and takes full
advantage of the high integration in the MC68322. The design also provides the external bus
master with access to DRAM, chip-selects, or register memory resources in the lower 64M
of memory. However, the external bus master cannot access memory above this 64M
boundary. A handshake between the MC68322 and the external bus master achieves the
exchange of bus mastership.

When the MC68322 is in external bus master mode, the external bus master drives many
of the signals into the MC68322. The external bus master is limited in that it is unable to
detect generated interrupts, can perform only word-sized operations, and cannot perform
read-modify-write cycles.

4.5.1 MC68322 Bus Arbitration
Bus arbitration is the protocol by which an external device or DMA becomes the MC68322
bus master. The bus interface unit manages the bus arbitration signals so that the core
alternates cycles between GDMA and the external master. Systems having several devices
that become bus master require external circuitry to assign priorities to the devices. So when
two or more external devices try to become bus master at the same time, the one having the
highest priority is the bus master first. These external devices must assert the bus arbitration
signals in the following sequence:

1. An external device asserts the bus request (BR) signal. This can be a wire-ORed
signal (although it need not be constructed from open-collector devices) that informs
the MC68322 that an external device requires control of the bus.

2. The MC68322 three-states A25–A1, D15–D0, AS, and R/W. Then it asserts the bus
grant (BG) signal to indicate the bus is available.

3. The external device controls the bus cycle by driving the control signals and the
MC68322 asserts EDTACK to denote the end of each external bus master cycle.

BR can be issued at any time during a bus cycle or between cycles. BG is asserted when
the bus is available. When the requesting device receives BG and more than one external
device can be bus master, the requesting device should begin whatever arbitration is
required. The external device asserts and maintains BR during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure:

1. The external device must have received the BG signal through the arbitration process.

2. In a multiple bus master situation, it is important to be sure that only one processor has
the bus at any given time.

Bus Operation

4-10 MC68322 USER’S MANUAL MOTOROLA

The external bus master can negate BR as soon as the MC68322 asserts EDTACK. The
bus is then granted back to the core when BR is negated. If BR is negated before EDTACK
is asserted, BG remains active until EDTACK is asserted and negated. The external bus
master should not assert BR for long periods of time because this would starve the core and
other modules for memory cycles. DRAM accesses and refreshes continue regardless of
bus arbitration. Figure 4-11 illustrates a bus arbitration timing diagram.

Figure 4-11. Bus Arbitration Timing Diagram

4.5.2 External Bus Master Read Cycle
When the external bus master reads from DRAM, chip-selects, or internal registers, the data
is internally latched at the end of the read cycle. The MC68322 asserts EDTACK and drives
the data out onto the data bus. When the external bus master reads from the chip-selects,
the data is latched on the CLK1 that RD is negated. The chip-select devices stop driving the
data bus when RD is negated. When the hold time is satisfied, then the MC68322 drives the
data bus with the data and EDTACK is asserted. The hold time provides a data turnaround
time starting from the time the chip-select device drives the data to the time the MC68322
drives the data. Read data is valid while EDTACK is asserted. When the external bus master
receives EDTACK, it is free to negate AS and to stop driving the address bus. Only
word-sized read cycles are supported. Figure 4-12 illustrates a read cycle from the external
bus master.

A27–A0

AS

CLK1

S0 S4 S6 S0X S2 S4 W S6 S0

R/W

S2 S2

BG

BR

D15–D0

CONTROLLER EXTERNAL READ CONTROLLER

EDTACK

Bus Operation

MOTOROLA MC68322 USER’S MANUAL 4-11

Figure 4-12. External Bus Master Read Cycle

4.5.3 External Bus Master Write Cycle
When the external bus master writes to DRAM, chip-selects, or internal registers, it asserts
EDTACK when the write cycle to the device is complete. The write data on the data bus goes
directly to the device being written. Once the external bus master receives EDTACK, it is
free to negate AS and to stop driving the data and address buses. Only word-sized write
cycles are supported and there is no data strobe signal available to the external bus master.
The external bus master is required to supply valid data from the beginning of the cycle.
Figure 4-13 illustrates a write cycle from the external bus master.

BR

BG

AS

R/W

A25–A1

D15–D0

EDTACK

A B GFED IHC

NOTES:
A = Master requests bus by asserting BR.
B = MC68322 grants bus by asserting BG.
C = Master drives A25–A1.
D = Master asserts AS.
E = MC68322 drives D15–D0 and asserts EDTACK.
F = Master negates AS and stops driving A25–A1.
G = MC68322 stops driving D15–D0 and negates EDTACK.
H = Master negates BR.
I = MC68322 negates BG.

Bus Operation

4-12 MC68322 USER’S MANUAL MOTOROLA

Figure 4-13. External Bus Master Write Cycle

4.5.4 Illegal Address Interrupt
If the external bus master accesses a memory location not mapped to a register, DRAM, or
chip-select, the MC68322 asserts EDTACK immediately and waits for AS to be negated
before it negates EDTACK. This bad access by the external bus master causes an illegal
address interrupt bit to be set in the software interrupt event register. This causes a level 7
interrupt event to be posted to the core, but no interrupts are posted to the external master.

BR

BG

AS

R/W

A25–A1

D15–D0

EDTACK

A B HGFED JIC

NOTES:
A = Master requests bus by asserting BR.
B = MC68322 grants bus by asserting BG.
C = Master drives A1–A25 and asserts R/W.
D = Master asserts AS.
E = Master drives D0–D15.
F = MC68322 and asserts EDTACK.
G = Master deasserts AS and stops driving D0–D15 and A1–A25.
H = MC68322 deasserts EDTACK.
I = Master deasserts BR.
J = MC68322 deasserts BG.

MOTOROLA MC68322 USER’S MANUAL 5-1

SECTION 5
INTERRUPT AND EXCEPTION HANDLING

The MC68322 supports two types of interrupts—internal and external. These interrupts are
posted to the EC000 core through an internal interrupt controller, which uses an exception
processing routine to handle the interrupt. The core’s internal status register contains a 3-bit
interrupt priority mask that ranges from level 0 to 7 (level 7 being the highest) mask level.
Interrupts are inhibited for all priority levels less than or equal to the current mask level.
Priority level 7 is a special case. Level 7 interrupts cannot be inhibited by the interrupt priority
mask, thus providing a nonmaskable interrupt capability. Level 7 interrupts can be
generated in two ways. First, an interrupt is generated each time the interrupt event level
changes from a level below level 7. Second, a level 7 interrupt occurs if the interrupt request
level is a 7 and the core priority mask is dropped from level 7 to a lower level by the
execution of an instruction.

5.1 INTERNAL INTERRUPTS
The MC68322 modules function simultaneously and independently of the core. At the
completion of a module’s operation, the module is capable of posting an internal interrupt to
the core through an internal interrupt controller. For example, the printer video controller
(PVC) could post a page-end interrupt to signal the core that it has finished rendering a
page. The controller ranks the interrupt based on a module’s programmed interrupt priority
level and then posts the interrupt event to the core. This type of internal interrupt event is
called a hardware interrupt because it is initiated by one of the MC68322 modules.

The MC68322 supports another type of interrupt event called a software interrupt. This type
of interrupt is initiated by the software by programming some internal registers on the
MC68322. Once the software has initiated such an event, the interrupt will be posted to the
core in exactly the same way as a hardware interrupt event. The advantage that these
MC68322 hardware interrupts provide over the typical 68000 Family software exceptions is
that these software interrupts can be set at a lower priority level than the current interrupt
event and thus be delayed until the core runs at a lower priority level. This causes the
software interrupt to be serviced sometime between the current interrupt and the next
noninterrupt operation. See Section 5.4.2.3 Instruction Traps for more information.

Interrupt and Exception Handling

5-2 MC68322 USER’S MANUAL MOTOROLA

5.1.1 Hardware Interrupts
There are 31 hardware interrupt events that can be posted from a module to the core. The
interrupt events are grouped together by module and listed in Table 5-1. Each module has
a corresponding interrupt level register, which is used to set the needed interrupt level for
the module. Each module’s interrupt event register is individually described in the section
detailing the corresponding module.

A module’s interrupt event register contains three basic parts—interrupt enable field,
interrupt event bit fields, and interrupt level field. When an enable bit is set, it allows the
interrupt event to cause an interrupt. When clear, the interrupt is masked. An interrupt event
bit reflects the status of an interrupt event, regardless of the masking in the enable field. To
determine the source of the interrupt, the software reads these bits and applies the mask in
the enable field. The interrupt event bits are cleared with the software by writing a 1 to the
bit positions to be cleared in the module’s interrupt event register.

Table 5-1. Hardware Interrupt Events

POSTING MODULE INTERRUPT EVENTS

PVC Illegal DRAM Address
Video Underrun
Band Underrun
Page End
Band Begin

RGP Error
Done

Printer Communication Command Sent
Status Received

Timer Timer Interrupt

GDMA Illegal Address
DMA Complete
Terminal Count Reached

PDMA Illegal Address
DMA Complete
Terminal Count Reached

PPI SELECTIN High
SELECTIN Low
STROBE High
STROBE Low
AUTOFD High
AUTOFD Low
INIT High
INIT Low
Data Received
ECP Command Received
Invalid Termination

External Interrupt 0 External Interrupt Source 0

External Interrupt 1 External Interrupt Source 1

External Interrupt 2 External Interrupt Source 2

External Interrupt 3 External Interrupt Source 3

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-3

The interrupt level field reflects the interrupt priority level for that module. Level 7 is the
highest priority, level 1 is the lowest, and level 0 indicates that no interrupt is requested. If
an event occurs and causes the same level of interrupt as is currently being serviced (at the
same time an interrupt of that level is being cleared) the interrupt level will become active
again after two clocks. The interrupt level to the core could change if the priority level of an
active interrupt is changed. To avoid potential problems, priority levels should be changed
only while the corresponding interrupt is masked. Some interrupt event registers have status
bits in addition to the interrupt bits. These status bits cannot cause an interrupt to the core.
However, the software can read them at any time to obtain more information about the
module’s status.

5.1.2 Software Interrupts
There are seven independent software interrupts that can be set and cleared under software
control; each corresponding to levels 7 through 1. Software can read the software interrupt
event register for status information (or write to it to clear) or set an interrupt. Like the basic
format for each module’s interrupt event registers described above, the software interrupt
event register contains an enable field, several software status fields, and the software
interrupt event bits. Figure 5-1 illustrates the software interrupt event register.

Figure 5-1. Software Interrupt Event Register

Software interrupts are set by writing to the bits of the software interrupt event register’s SET
field. Writing a 1 to Bit 0 of the SET field generates a level 1 interrupt, Bit 1 a level 2, and so
on. The EVENT field reflects the state of the pending software interrupt. Software interrupts
can be set at any time and multiple interrupts can be set at the same time, if needed.
However, keep in mind that setting an interrupt that has already been set will have no effect.
Software interrupts are cleared by writing the EVENT field. Each bit corresponds to one of
the seven software interrupts. Writing a 1 to a bit position will clear that software interrupt,
while a zero in a bit position has no effect. For Bit 0, writing a 1 clears a level 1 interrupt, for
Bit 6 writing a 1 clears a level 2 interrupt, and so on. The interrupt service routine must clear
its interrupt to avoid another interrupt when the routine completes.

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE00FFF790

00FFF792

00FFF794

EVENT

SET

CIAEIA

Interrupt and Exception Handling

5-4 MC68322 USER’S MANUAL MOTOROLA

The MC68322 completely decodes the address map and generates an internal DTACK. If
the core presents an address that does not match any of the programmed addresses for the
modules, none of the modules will generate DTACK. This condition is called an illegal
address. When an illegal address is detected, the core interface asserts an internal DTACK
and sets a level 7 interrupt to indicate an error condition. The software interrupt event
register’s CIA bit is then set, thus indicating that the core has accessed a memory location
that is not mapped to a register, chip-select, or DRAM. The interrupt is cleared by writing a
1 to the CIA bit position. The core will never have a bus error condition. The EIA bit is set if
the external bus master accesses a memory location that is not mapped to a register, chip-
select, or DRAM. This interrupt generates a level 7 interrupt to the core. The interrupt is
cleared by writing a 1 to the EIA bit position.

5.2 EXTERNAL INTERRUPTS
The MC68322 provides up to four pins for external interrupts (IRQ3–IRQ0). IRQ1 and IRQ0
are dedicated interrupt pins. IRQ3 and IRQ2 are multiplexed pins and must be programmed
to be used as interrupt pins. Refer to Appendix D Alternate Pin Functions for more details.
These inputs can be individually programmed for active polarity and either level or edge
sensitivity. External interrupts are asynchronous to the MC68322 and are synchronized
inside the MC68322 for proper operation. Two registers control each source of external
interrupt—external interrupt 0/2 and 1/3 registers (EXIR0/2–EXIR1/3). Figure 5-2 illustrates
these registers.

Figure 5-2. External Interrupt Registers (EXIR0/2–EXIR1/3)

 = RESERVED

EXTERNAL
INTERRUPT
REGISTER 0/2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENB000FFF770

00FFF772

00FFF774

00FFF776

00FFF778

00FFF780

00FFF782

00FFF784

00FFF786

00FFF788

REQ0STS0

INTERRUPT
LEVEL

MODE0

SEN0

EXTERNAL
INTERRUPT
REGISTER 1/3

ENB1

REQ1STS1

INTERRUPT
LEVEL

MODE1

SEN1

ENB2

STS2

STS3 REQ3

REQ2

MODE2

MODE3

SEN2

ENB3

SEN3

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-5

ENBx—External Interrupt Enable
External interrupts are enabled when set and disabled when cleared. This bit affects the
interrupt to the core, but not the interrupt event in the STSx or REQx fields.

STSx—External Interrupt Status
This bit reflects the status of the corresponding IRQ signal after it is synchronized with CLK1.

REQx—External Interrupt Request
This bit is set when an external interrupt event occurs. To remove the interrupt, the core
should write a 1 to the REQx bit. If this bit and the ENBx bit are set, an interrupt is posted.

Interrupt Level Register
This field is used to set the interrupt level. A level 7 is the highest priority and level 1 is the
lowest priority. Level 0 indicates that the interrupt is disabled.

MODEx—External Interrupt Mode
This field controls the external interrupt polarity and whether it is level sensitive or edge
sensitive. Table 5-2 lists the MODEx field encodings.

SENx—External Interrupt (Software Enable)
This bit is only used when the external interrupt is level sensitive. SENx is only set by the
software and only cleared by the hardware. It allows the software to control a level-sensitive
interrupt without using the ENBx bit. The software cannot clear SENx, but it is set by the
software and cleared by the hardware when a level-sensitive interrupt is received. This bit
is also forced clear if the MODEx field is set for edge-sensitive interrupts (102 or 112). When
an external interrupt occurs, REQx is set and SENx is automatically cleared.

Because a level-sensitive interrupt may not change, caution must be taken so that the core
is not constantly interrupted. It is recommended that an external interrupt be disabled before
the SENx field in the external interrupt register is initialized by the software.

Table 5-2. External Interrupt Polarity

ENCODING DESCRIPTION

00 Active Low Level

01 Active High Level

10 Falling Edge Transition

11 Rising Edge Transition

Interrupt and Exception Handling

5-6 MC68322 USER’S MANUAL MOTOROLA

5.3 TIMER MODULE
For the operating software to monitor time, the MC68322 provides a timer that continuously
posts an interrupt event to the core at regular intervals. Like the other modules of the
MC68322, the timer runs independent of the core (even though its interval can be changed
by the core at any time).

A timer operation is initiated by a write to the interval field in the timer register. At 16MHz,
the width of the timer register provides an interrupt frequency range from 125ns to more than
one second. Typically, this register is only set once during software initialization to produce
interrupts every 50ms. Figure 5-3 illustrates the timer register.

Figure 5-3. Timer Register

The timer interval field specifies the number of 1× clocks between timer interrupts. The timer
count field provides the current 1× clock count value in case more precise timing is required.
The interval field must be initialized before a timer interrupt event is enabled in the timer
interrupt event register (TIER), which is illustrated in Figure 5-4.

Figure 5-4. Timer Interrupt Event Register

The timer interval and count fields in the timer register consist of a high byte and low word.
First the high byte should be loaded, followed by the low word, which is the natural order of
an core long-word write access. Loading the low word causes the new interval to be loaded
into the timer counter. The count field counts down to zero, generates an interrupt, and then
reloads from the interval field. The value read from the count field reflects the current state
of the timer counter. The count field should be read twice to determine the actual timer
count. The timer count will decrement between the read of the high byte and the low word
portions of the count field, which can cause the high byte to decrement. For example, if the
timer counts down from 30016 to 2FF16 between reads, then the software may incorrectly
read the upper byte as 3 and the lower word as FF16 for a total of 3FF16.

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIMER INTERVAL (HIGH BYTE)00FFF600

00FFF602

00FFF604

00FFF606

TIMER INTERVAL (LOW WORD)

TIMER COUNT (HIGH BYTE)

TIMER COUNT (LOW WORD)

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENB00FFF730

00FFF732

00FFF734

INT

LEVEL

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-7

5.4 CORE EXCEPTION HANDLING
Exception processing is the activity performed by the core in preparation to execute a
special routine for any condition that causes an exception. In particular, exception
processing does not include the execution of the routine itself. It is the transition from the
normal processing of a program to the processing required for any special internal or
external condition that preempts normal processing. External conditions that cause
exceptions are interrupts from external devices, address errors, and resets. Internal
conditions that cause exceptions are instructions, address errors, and tracing. For example,
the trap, trapv, chk, rte, and div instructions can generate exceptions as part of their
normal execution. In addition, illegal instructions and privilege violations cause exceptions.
Exception processing uses an exception vector table and an exception stack frame.

Exception processing occurs in four functional steps. However, all individual bus cycles
associated with exception processing (vector acquisition and stacking) are not guaranteed
to occur in the order in which they are described in this section. Figure 5-5 illustrates a
general flowchart for the steps taken by the core during exception processing.

Figure 5-5. General Exception Processing Flowchart

EXIT

FETCH VECTOR
NUMBER

EXECUTE EXCEPTION
HANDLER

ENTRY

SAVE CONTENTS
TO STACK FRAME

(SEE NOTE)

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

SAVE INTERNAL
COPY OF SR

S 1
T 0

(SEE NOTE)

NOTE: These blocks vary for reset and interrupt exceptions.

Interrupt and Exception Handling

5-8 MC68322 USER’S MANUAL MOTOROLA

During the first step, the core makes an internal copy of the internal status register (SR),
except during the reset exception, which does not make a copy of the internal status
register. Then the core changes to the supervisor mode by setting the S bit and inhibits
tracing of the exception routine by clearing the T bit in the SR. For the reset and interrupt
exceptions, the core also updates the interrupt priority mask in the internal status register.
During the second step, the core determines the vector number for the exception and
internal logic provides the vector number for all exceptions. This vector number is used in
the last step to calculate the address of the exception vector. Please note that throughout
this section, vector numbers are given in decimal notation.

The third step is to save the current core contents for all exceptions other than the reset
exception, which does not stack information. The core creates an exception stack frame on
the active supervisor stack and fills it with information appropriate for the type of exception.
Other information can also be stacked, depending on which exception is being processed
and the state of the core prior to the exception. Figure 5-6 illustrates the general form of the
exception stack frame.

Figure 5-6. General Form of an Exception Stack Frame

The last step initiates execution of the exception routine. The new internal program counter
value is fetched from the exception vector. The core then resumes instruction execution.
The instruction at the address in the exception vector is fetched and normal instruction
decoding and execution is started. The memory map for exception vectors is listed in
Table 5-3. The vector table is 512 words long (1,024 bytes), starting at address 0 (decimal),
and proceeding through address 1,023 (decimal). The vector table provides 255 unique
vectors, some of which are reserved for trap and other system function vectors. Of the 255,
192 are reserved for user interrupt vectors. However, the first 64 entries are not protected,
so user interrupt vectors may overlap at the discretion of the systems designer.

Note: All interrupt exceptions on the MC68322 are autovectored. See Section 5.4.2.2
Interrupt Exceptions for more details.

STATUS REGISTER

PROGRAM COUNTER

15 0

SP

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-9

Table 5-3. Exception Vector Assignments

VECTOR
NUMBER(S)

VECTOR OFFSET
(HEX)

SPACE4 ASSIGNMENT

0 000 SP Reset Initial Interrupt Stack Pointer 2

1 004 SP Reset Initial Program Counter 2

2 008 SD Not Applicable

3 00C SD Address Error

4 010 SD Illegal Instruction

5 014 SD Integer Divide By Zero

6 018 SD CHK Instruction

7 01C SD TRAPV Instruction

8 020 SD Privilege Violation

9 024 SD Trace

10 028 SD Line 1010 Emulator (Unimplemented A-Line Opcode)

11 02C SD Line 1111 Emulator (Unimplemented F-Line Opcode)

121 030 — (Unassigned, Reserved)

131 034 — (Unassigned, Reserved)

14 038 SD Format Error

15 03C SD Not Applicable

16-231 040–05C — (Unassigned, Reserved)

24 060 SD Not Applicable

25 064 SD Level 1 Interrupt Autovector

26 068 SD Level 2 Interrupt Autovector

27 06C SD Level 3 Interrupt Autovector

28 070 SD Level 4 Interrupt Autovector

29 074 SD Level 5 Interrupt Autovector

30 078 SD Level 6 Interrupt Autovector

31 07C SD Level 7 Interrupt Autovector

32–47 080–0BC SD TRAP #0–15 Instruction Vectors

48–631 0C0–0FC — (Unassigned, Reserved)

64–255 100–3FC SD User Defined Vectors

NOTES:

1. Vector Numbers 12, 13, 16–23, And 48–63 Are Reserved For Future Enhancements By Motorola. No User-Peripheral Devices
Should Be Assigned These Numbers.

2. Reset Vector (0)RRequires Four Words (Unlike The Other Vectors, Which Only Require Two Words) And Is Located In The
Supervisor Program Space.

3. TRAP #n Uses Vector Number 32+ n.

4. SP Denotes Supervisor Program Space And SD Denotes Supervisor Data Space.

Interrupt and Exception Handling

5-10 MC68322 USER’S MANUAL MOTOROLA

5.4.1 Processing Specific Exceptions
The exceptions are classified according to their sources and each type is processed
differently. There are three types of exceptions—reset, interrupt, and instruction traps.

5.4.2.1 RESET EXCEPTION. The reset exception corresponds to the highest exception
level. The processing of the reset exception is performed for system initiation and recovery
from catastrophic failure. Any processing in progress at the time of the reset is aborted and
cannot be recovered. The core is forced into the supervisor state and the trace state is
forced off. The interrupt priority mask is set at level 7. The vector number is internally
generated to reference the reset exception vector at location 0 in the supervisor program
space. Because no assumptions can be made about the validity of register contents, in
particular the SSP, neither the internal program counter nor the internal status register are
saved. The address in the first two words of the reset exception vector is fetched as the initial
SSP, and the address in the last two words is fetched as the initial internal program counter.
Finally, instruction execution is started at the address in the internal program counter. The
initial internal program counter should point to the power-up/restart code.

The MC68322 does support the reset instruction, but the instruction will not affect any
changes in the system and should be avoided due to the long execution time of the
instruction. A reset exception is initiated by RESET, not the reset instruction. The reset
instruction does not assert the RESET signal and does not modify any internal registers. The
execution of the reset instruction does not affect the state or function of other on-chip
modules.

5.4.2.2 INTERRUPT EXCEPTIONS. An interrupt event is posted to the core by the interrupt
controller using the internal IPL2–IPL0. Interrupt events arriving at the core do not force
immediate exception processing, but the requests are given a pending status. Pending
interrupts are detected between instruction executions. If the priority of the pending interrupt
is lower than or equal to the current core priority mask level, execution continues with the
next instruction, and the interrupt exception processing is postponed until the current core
priority mask level becomes less than the pending interrupt event.

If the priority of the pending interrupt is greater than the current core priority mask level, the
exception processing sequence is started. A copy of the internal status register is saved, the
privilege mode is set to supervisor mode, tracing is suppressed, and the core priority mask
level is set to the level of the interrupt being acknowledged. The core internally generates a
vector number corresponding to the interrupt level number. It then proceeds with the usual
exception processing. The saved value of the internal program counter is the address of the
instruction that would have been executed had the interrupt not been taken. The appropriate
interrupt vector is fetched and loaded into the internal program counter and normal
instruction execution commences in the interrupt handling routine.

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-11

5.4.2.3 INSTRUCTION TRAPS. Traps are exceptions caused by instructions and they occur
when the core recognizes an abnormal condition during instruction execution or when an
instruction is executed that normally traps during execution. Exception processing for traps
is straightforward. The internal status register is copied, the supervisor mode is entered, and
tracing is turned off. The vector number is internally generated, but as the trap instruction,
part of the vector number comes from the instruction itself. The internal program counter and
the copy of the internal status register are saved on the supervisor stack. The saved value
of the internal program counter is the address of the instruction following the instruction that
generated the trap. Finally, instruction execution commences at the address in the
exception vector.

Some instructions are used specifically to generate traps. The trap instruction always forces
an exception and is useful for implementing system calls for user programs. The trapv and
chk instructions force an exception if the user program detects a run-time error, which can
be an arithmetic overflow or a subscript out of bounds. A signed divide (divs) or unsigned
divide (divu) instruction forces an exception if a division operation is attempted with a divisor
of zero.

5.4.2.4 ILLEGAL AND UNIMPLEMENTED INSTRUCTIONS. An illegal instruction refers to
any of the word bit patterns that do not match the bit pattern of the first word of a legal core
instruction. If such an instruction is fetched, an illegal instruction exception occurs. Motorola
reserves the right to define instructions using the opcodes of any of the illegal instructions.
Three bit patterns always force an illegal instruction trap on all M68000 Family-compatible
microprocessors. These patterns are: 4AFA16, 4AFB16, and 4AFC16. Two of the patterns,
4AFA16 and 4AFB16, are reserved for Motorola system products. The third pattern, 4AFC16,
is reserved for customer use (as the take illegal instruction trap—illegal—instruction).

Word patterns with bits 15–12 equaling 10102 or 11112 are distinguished as unimplemented
instructions and separate exception vectors are assigned to these patterns to permit
efficient emulation. Opcodes beginning with bit patterns equaling 11112 (F line) are
implemented in the MC68020 as coprocessor instructions. These separate vectors allow the
operating system to emulate unimplemented instructions in the software. Exception
processing for illegal instructions is similar to that for traps. After the instruction is fetched
and decoding is attempted, the core determines that execution of an illegal instruction is
being attempted and starts exception processing. The exception stack frame is then pushed
on the supervisor stack and the illegal instruction vector is fetched.

Interrupt and Exception Handling

5-12 MC68322 USER’S MANUAL MOTOROLA

5.4.2.5 PRIVILEGE VIOLATIONS. To provide system security, various instructions are
privileged. An attempt to execute one of the privileged instructions while in the user mode
causes an exception. The privileged instructions are as follows:

• and immediate to sr

• move usp

• eor immediate to sr

• or immediate to sr

• move to sr

• reset

• move from sr

• rte

• movec

• stop

• moves

Exception processing for privilege violations is nearly identical to that for illegal instructions.
The core starts exception processing once the instruction is fetched, decoded, and the core
determines that a privilege violation is being attempted. The internal status register is
copied, the supervisor mode is entered, and tracing is turned off. The vector number is
generated to reference the privilege violation vector and the current internal program
counter and copy of the internal status register are saved on the supervisor stack. The saved
value of the internal program counter is the address of the first word of the instruction
causing the privilege violation. Finally, instruction execution commences at the address in
the privilege violation exception vector.

5.4.2.6 TRACING. To aid in program development, the core includes a facility to allow
tracing after each instruction. When tracing is enabled, an exception is forced after the
execution of each instruction. Thus, a debugging program can monitor the execution of the
program under test.

The trace facility is controlled by the T bit in the supervisor portion of the internal status
register. If the T bit is cleared, tracing is disabled and instruction execution proceeds from
instruction to instruction as normal. If the T bit is set (on) at the beginning of an instruction’s
execution, a trace exception is generated after the completion of the instruction. If the
instruction is not executed because an interrupt is taken or because the instruction is illegal
or privileged, the trace exception does not occur. The trace exception also does not occur if
the instruction is aborted by a reset, bus error, or address error exception. If the instruction
is executed and an interrupt is pending on completion, the trace exception is processed
before the interrupt exception. During the execution of the instruction, if an exception is
forced by that instruction, the exception processing for the instruction exception occurs
before that of the trace exception.

Interrupt and Exception Handling

MOTOROLA MC68322 USER’S MANUAL 5-13

As an extreme illustration of these rules, consider the arrival of an interrupt during the
execution of a trap instruction while tracing is enabled. First, the trap exception is
processed, then the trace exception, and finally the interrupt exception. After the execution
of the instruction is complete and before the start of the next instruction, exception
processing for a trace begins and a copy of the internal status register is made. The
transition to supervisor mode is made and the T bit of the internal status register is turned
off, thus disabling further tracing. The vector number is generated to reference the trace
exception vector and the current internal program counter and the copy of the internal status
register are saved on the supervisor stack. The saved value of the internal program counter
is the address of the next instruction. Instruction execution commences at the address
contained in the trace exception vector.

5.4.2.7 ADDRESS ERROR. An address error exception occurs when the core attempts to
access a word or long-word operand or an instruction at an odd address. The bus cycle is
aborted and the core ceases current processing and begins exception processing. Likewise,
if an address error occurs during the exception processing for an address error (or reset) the
core is halted. A common example of address error generation is when the stack pointer is
pointing at an odd address.

5.4.2 Multiple Exceptions
When multiple exceptions occur simultaneously, they are processed according to a fixed
priority. Table 5-4 lists the exceptions, grouped by characteristics, with group 0 having the
highest priority. Within group 0, reset has the highest priority, followed by an address error.
Within group 1, trace has priority over external interrupts, which takes priority over illegal
instruction and privilege violation. Since only one instruction can be executed at a time, no
priority relationship applies within group 2.

The priority relationship between two exceptions determines which one is taken (or taken
first) if the conditions for both arise simultaneously. In another example, if an interrupt event
occurs during the execution of an instruction while the T bit in the internal status register is
asserted, the trace exception has priority and is processed first. However, before instruction
execution resumes, the interrupt exception is processed. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. This rule
does not apply to the reset exception. Its handler is executed first (even though it has the
highest priority) because the reset operation clears all other exceptions.

Table 5-4. Exception Grouping and Priority

GROUP EXCEPTION PROCESSING

0 Reset and Address Error Exception Processing Begins Within Two Clock Cycles.

1 Trace, Interrupt, Illegal, and Privilege Exception Processing Begins Before The Next Instruction.

2 trap, trapv, chk, and div Exception Processing Is Started By Normal Instruction Execution.

Interrupt and Exception Handling

5-14 MC68322 USER’S MANUAL MOTOROLA

5.4.3 Exception Bus Cycles
Because the MC68322 has a self-contained core, all addresses generated during bus
cycles should decode to an internal register, chip-select bank, or DRAM. In the event that
an undefined memory location is accessed, a core illegal address interrupt event is posted
and generates an interrupt if enabled. Therefore, an external BERR is not required. All
vectors in the exception vector table should be initialized, including the address error
exception. The core could have the stack pointer set to an odd byte boundary, which would
result in an address error exception.

5.5 MODULE SOFT-RESET REGISTER
The module soft-reset register (MSRR) contains four write-only bit fields that are used to
independently initialize a corresponding module to a known state. Figure 5-9 illustrates the
MSRR.

Figure 5-7. Module Soft-Reset Register

The GDR and PDR bits, when set, reset the GDMA and PDMA respectively. These two bits
provide for a recovery from an addressing error or any other error that causes the DMA
channel to stop in an indeterminate condition. The RGP bit then returns the RGP to its idle
state and the PVC bit returns the print engine video controller to its idle state. The PVC bit
can be used in the event that the PVC has an address error or if an underrun condition
occurs.

RESERVED GDR00FFF7A0 PDR RGP PVC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOTOROLA MC68322 USER’S MANUAL 6-1

SECTION 6
SYSTEM INTEGRATION MODULE

The system integration module (SIM) provides the ROM, PROM, and peripheral
chip-selects. It contains eight programmable chip-select banks to decode the address and
supply internal DTACK to the core after the appropriate number of wait states.

6.1 CHIP-SELECT REGISTERS AND BANKS
The MC68322 contains eight noncontiguous memory-mapped chip-select registers
(CSR7–CSR0), each corresponding to a variably sized chip-select bank (CSB7–CSB0) in
memory. Each chip-select register (CSR) indicates the corresponding chip-select bank’s
location, size, and timing for read and write accesses (such as data setup, hold, and
recovery time). Only the core or an external bus master can access the CSRs as word or
long-word sized registers. Figure 6-1 illustrates the eight chip-select registers.

Figure 6-1. Chip-Select Register (CSR7–CSR0)

00FFF000

00FFF002

00FFF010

00FFF012

00FFF020

00FFF022

00FFF030

00FFF032

00FFF040

00FFF042

00FFF050

00FFF052

00FFF060

00FFF062

00FFF070

00FFF072

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSR0

CSR1

CSR2

CSR3

CSR4

CSR5

CSR6

CSR7

BASE ADDRESS (A27—A18)SIZE

WSET WACC RACCWHLD RSETRHLD

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

BASE ADDRESS (A27—A18)SIZE

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

WSET WACC RACCWHLD RSETRHLD

 = RESERVED

System Integration Module

6-2 MC68322 USER’S MANUAL MOTOROLA

The upper word of the memory-mapped CSR contains the bit fields that control timing
characteristics for read and write cycles on the chip-select bank. By manipulating these
fields, different timing are created for read and write cycles on a bank-by-bank basis.

WHLD—Write Hold Time
CSx hold time from trailing edge of WRU and WRL for write operations.

WSET—Write Setup Time
CSx setup time before leading edge of WRU and WRL for write operations.

WACC—Write Access Time
Indicates the duration of the WRU and WRL signals during write operations.

RHLD—Read Hold Time
CSx hold time from falling edge of RD for read operations.

RSET—Read Setup Time
CSx setup time before leading edge of RD for read operations.

RACC—Read Access Time
Indicates the duration of the RD signal during read operations.

The chip-select active time (in CLK1s) for read operations is derived from these fields
through the calculation:

active read time = RSET + RACC + RHLD + 11/2

The chip-select active time (in CLK1s) for write operations is derived from the calculation:

active write time = WSET + WACC + WHLD + 11/2

There are two guidelines that the software must follow when programming these timing
parameters:

• The minimum allowed value for active read time and active write time is 21/2.

• The minimum allowed value for WSET = 1, which produces a write setup time of 2.

The CSR’s size field contains the chip-select bank’s size and should have a defined
programmed value. Because each CSR has its own size field, each chip-select bank can be
a different size or completely removed from the memory map. This bit field allows a
maximum bank size of 64M. Table 6-1 lists the encodings for the size field.

System Integration Module

MOTOROLA MC68322 USER’S MANUAL 6-3

The CSR’s base address field contains the chip-select bank’s address and allows each bank
to be programmed anywhere in the 256M range of the memory map. The bits in the base
address field correspond to bits 27–18 of the chip-select bank’s starting address.

At reset, CSR7–CSR1 are disabled. The base address of CSR0 is set to zero so the core
can fetch the reset vector. CSR0 should be connected to ROMs containing the startup code
and is enabled with a size of 8M on power-up. The programmable parameters should
provide setup and hold times for data to the core. The read data is latched on the rising edge
of the RD signal for any cycle with RHLD different than zero. If RHLD is equal to zero, the
read data must be set up by the rising edge of the CSx signal that negates half of CLK1
before the RD signal. On power-up, CSR0’s WSET and RSET fields are also set to zero and
the write and read ACC and HLD fields will be at their maximum. Be aware that the software
must program the chip-select parameters for banks 7–1 before using them.

A chip-select bank can be individually located anywhere in the 256M range of the memory
map and can overlap with DRAM or other chip-select banks. In case of an address overlap,
all memory-mapped registers have priority over chip-select banks. Likewise, chip-select
banks have priority over DRAM banks and lower numbered chip-select banks have priority
over higher numbered chip-select banks. For example, CSB0 has a higher priority than
CSB7. There are two additional timing registers accessed by the core—chip-select DMA
timing register and chip-select recovery register. Figure 6-2 illustrates these two registers.

Figure 6-2. Chip-Select DMA Timing and Recovery Registers

The chip-select DMA timing register (CSDTR) is a dedicated register that provides access
timing parameters to the chip-select bank accessed by the general-purpose DMA (GDMA)
during DMA transfers. These timing fields function in a similar manner as those in the upper
word portion of a CSR. However, the normal timing parameters for the bank are not used
when the bank is accessed by the GDMA. See Section 8 DMA Interface for more details.

Table 6-1. Size Field Encoding

ENCODING BANK SIZE ENCODING BANK SIZE

0 Disabled 5 4M

1 256K 6 8M

2 512K 7 16M

3 1M 8 32M

4 2M 9 64M

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00FFF082 RECRESERVED RECOVERY SELECT

00FFF080 WSET WACC RACC CSDTR

CSRR

WHLD RSETRHLD

System Integration Module

6-4 MC68322 USER’S MANUAL MOTOROLA

The chip-select recovery register (CSRR) contains a REC field that controls the chip-select
recovery time. This recovery time applies to a chip-select only if it has been enabled in the
recovery select field. The REC field provides a common programmable recovery value for
all chip-select banks. Since the recovery time is common for all the chip-select banks, it
should be programmed to satisfy the maximum recovery value for all chip-select banks. If
the recovery time has not been satisfied between successive access to a bank (with
recovery enabled) the second access is delayed.

Each bit of the recovery select field corresponds to a chip-select bank. If recovery is
enabled, it is forced for that bank, regardless of when it is accessed by GDMA, the core, or
an external bus master.

6.2 SYNCHRONOUS AND ASYNCHRONOUS CHIP-SELECT
ACCESS TIMING

In synchronous mode, once the programmed timing values are satisfied, the system
integration module generates an internal DTACK to the core and terminates the MC68322
bus cycle. Table 6-2 lists the core’s synchronous access timing values for the chip-selects
and Figure 6-3 illustrates a synchronous read or write access.

Table 6-2. Synchronous Timing Values

PARAMETER
NAME

CSR FIELD FORMULA (CLK1)
MIN. VALUES

(CLK1)
MAX. VALUE

(CLK1)

Read Setup RSET RSET Time = RSET + 1 1 4

Write Setup WSET WSET Time = WSET + 1 2 4

Read Access RACC RACC Time = RACC + 1 1 16

Write Access WACC WACC Time = WACC + 1 1 16

Read Hold RHLD RHLD Time = RHLD – 1/2 – 1/2 21/2

Write Hold WHLD WHLD Time = WHLD – 1/2 – 1/2 21/2

Recovery REC REC Time = REC + 11/2 1/2 321/2

NOTE: The Value WSET = 0 Produces A WSET Time = 2.

System Integration Module

MOTOROLA MC68322 USER’S MANUAL 6-5

Figure 6-3. Synchronous Read or Write Timing Diagram

In asynchronous mode, read and write access timings (WACC and RACC) must be
programmed to be at least two, so that WAIT will be properly recognized by the MC68322.
This value results in read and write access times of three CLK1s, which is the minimum
required for a proper asynchronous access. Once RACC and WACC are satisfied, the
MC68322 samples WAIT. If WAIT is active at the end of the access time, the access is
stalled. After WAIT becomes inactive and a two CLK1 recovery from WAIT, RHLD and
WHLD are satisfied. If WAIT becomes inactive and RHLD and WHLD are zero, an internal
DTACK is generated to the core and the cycle is terminated. Figures 6-4 and 6-5 illustrate
normal and special asynchronous read or write timing.

A25–A1

INTERNAL CLK1

CSx

RD, or WRU and WRL

D15–D0 (READ)

SET = 2 => SET TIME = 3
ACC = 1 => ACC TIME = 2
HLD = 2 => HLD TIME = 1
REC = 2 => REC TIME = 3

SET TIME ACC TIME HLD TIME

CHIP-SELECT TIME RECTIME

NOTE 1 NOTE 2

D15–D0 (WRITE)

S0 S4 XS2 X X X S6

NOTES:
 1. Recovery starts here; no access to CSx will
 start until recovery is satisfied.
 2. Delayed EC000 core access starts here.
 3. WAIT is inactive.

1/
21/
2

System Integration Module

6-6 MC68322 USER’S MANUAL MOTOROLA

Figure 6-4. Asynchronous Read or Write Timing Diagram

Figure 6-5. Special Asynchronous Read or Write Timing Diagram

A15–A1

CSx

RD or WRL and WRU

WAIT

D15–D0 (READ)

D15–D0 (WRITE)

ADDED WAIT TIME
WAIT

REC TIME

SET TIME ACC TIME

HLD TIME

INTERNAL CLK1

NOTE:
 1. There is one CLK1 of synchronization delay on WAIT.
 2. Chip-select bank recovery starts.

NOTE 2CHIP-SELECT TIME

SET = 1 => SET TIME = 2
ACC = 3 => ACC TIME = 4
HLD = 2 => HLD TIME = 1

S0 S2 S4 W W W W W W W W W W W S6

1/
2

NOTE: There is one CLK1 of synchronization delay on WAIT.

A25–A1

INTERNAL CLK1

CSx

RD or WRL and WRU

WAIT

ADDED
WAIT TIME

WAIT
REC
TIME

SET TIME ACC TIME

CHIP-SELECT TIME

S0 S2 S4 W W W W W S7S6W W W W

SET = 2 => SET TIME = 3
ACC = 3 => ACC TIME = 4
HLD = 0 => HLD TIME = –

D15–D0 (READ)

D15–D0 (WRITE)

1/
2

MOTOROLA MC68322 USER’S MANUAL 7-1

SECTION 7
DRAM CONTROLLER

The MC68322 supports fast-page mode DRAM devices. However, nibble mode and static
column DRAM devices are not supported. The MC68322 directly supports up to six banks
of DRAM with bank sizes of 256Kbits × 16, 1Mbit × 16, and 4Mbits × 16. All DRAM sizes are
a fixed data width of one word of 16 bits. Each of the six banks can support 512K to 8M.

The RISC graphics processor (RGP), printer video controller (PVC), DMAs, and EC000 core
can all make accesses through the DRAM controller. The RGP and PVC use burst cycle
accesses to maximize DRAM bus bandwidth, while the core does not burst to or from
DRAM. All burst cycles from these modules occur within 256-word DRAM page boundaries.
Core write accesses to the DRAM controller use data pipelining that allows for a reduction
of internal bus arbitration delays.

7.1 DRAM REGISTERS AND BANKS

7.1.1 Base Address and Size Fields
Each of the six DRAM banks correspond to an internal DRAM register. These six DRAM
registers (DRAM5–DRAM0) are word-sized and indicate the DRAM bank’s size and
location. Figure 7-1 illustrates these registers.

Figure 7-1. DRAM Register (DRAM5–DRAM0)

DRAM000FFF100

00FFF110

SIZE BASE ADDRESS (A27—A19)

SIZE BASE ADDRESS (A27—A19)

SIZE BASE ADDRESS (A27—A19)

SIZE BASE ADDRESS (A27—A19)

SIZE BASE ADDRESS (A27—A19)

SIZE BASE ADDRESS (A27—A19)

DRAM2

DRAM4

DRAM5

00FFF120

00FFF130

00FFF140

00FFF150

DRAM1

DRAM3

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ROM
MODE
ROM

MODE
ROM

MODE
ROM

MODE
ROM

MODE
ROM

MODE

DRAM Controller

7-2 MC68322 USER’S MANUAL MOTOROLA

Because each DRAM register contains a size field, each DRAM bank can be individually
programmed for a different size or disabled entirely. The available sizes are either 512K, 2M,
or 8M, depending on the size field’s encoding. There are no limitations in the ordering of
bank sizes. Table 7-1 lists the size field encodings and the equivalent DRAM bank sizes.

The base address field, contained in each DRAM register, allows the six DRAM banks to be
individually located at any location in the 256-byte memory map. The DRAM register base
address field contains bits 27–19 of the corresponding DRAM bank’s starting address.
These DRAM banks can be contiguous to or disjointed from each other, as required by the
operating environment. Even though the DRAM bank can be any size, the starting address
must be unique, non-overlapping, and located on an address boundary equal to its size. For
example, an 8M DRAM bank must be on an 8M address boundary. DRAM address space
can, however, overlap with other registers, ROM, or I/O space. In case of an overlap, DRAM
has the lowest priority.

7.1.2 ROM Mode
The MC68322 DRAM controller ‘‘ROM mode’’ is available in the G59B Mask Set. The ROM
mode of operation causes the selected DRAM channel to run with extended cycle times
while the remainder of the channels operate at full speed. This will place font ROMs on one
of the DRAM channels with only an external latch required to demultiplex the address
signals. By placing the font ROMs on one of the DRAM channels, the MC68322 RGP will
have direct access to font data, which eliminates the need for a font cache, thus reducing
overall system DRAM requirements. ROM mode is selected for a particular DRAM channel
by setting the ROM mode bit in the corresponding DRAM register (see Figure 7-1 for
details).

7.1.2.1 FUNCTIONAL DESCRIPTION. When the ROM mode is selected for one of the
DRAM channels, the accesses to that channel are extended. Each initial and burst access
is extended by one CLK1 period (two CLK2 periods). For example, in timing mode 1 the
normal DRAM access time in CLK1s would be 4:2:2:2...; but when the ROM mode is
selected, the access time becomes 5:3:3:3... for that particular channel. This timing
relaxation in the ROM mode allows ROMs (which typically have longer access times than
DRAM) to operate effectively on one (or more) of the DRAM channels.

Table 7-1. DRAM Size Options

ENCODING DRAM BANK ORGANIZATION

00 Disabled (No Size)

01 256 Kbit × 16 (512K)

10 1 Mbit × 16 (2M)

11 4 Mbit × 16 (8M)

DRAM Controller

MOTOROLA MC68322 USER’S MANUAL 7-3

At the same time, the other channels in the normal mode will run at full speed, thereby
achieving maximum use of the available bandwidth in the DRAMs and maximizing system
performance. In addition to extending the accesses, one CLK1 of idle time is inserted at the
end of the entire access to the channel when in the ROM mode. This idle clock allows the
data bus to return to a state of high impedance because ROMs can drive the data bus for
an extended period of time after an access.

7.1.2.2 TIMING EXAMPLE. Figures 7-2 and 7-3 illustrate the difference between the
DRAM accesses when in normal mode and ROM mode. This example is for DRAM timing
mode 1, but similar behavior is exhibited in timing modes 0 and 2.

Figure 7-2. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 0)

Figure 7-3. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 1)

Note: The IDLE state shown here will also occur at the end of a refresh cycle whenever
the ROM mode is selected for at least one of the DRAM channels.

CLK2

DATA

ROW COLUMN

NEXT ACCESS...

FAST PAGE CYCLESINGLE CYCLE

INITIAL ACCESS

MA10-0

RAS5-0

CAS1-0

MD15-0 DATA

COLUMN COLUMNROW

CLK2

DATA

ROW COLUMN

NEXT...

FAST PAGE CYCLESINGLE CYCLE

INITIAL ACCESS

MA10-0

RAS5-0

CAS1-0

MD15-0 DATA

COLUMN

IDLE

DRAM Controller

7-4 MC68322 USER’S MANUAL MOTOROLA

7.1.2.3 ADDRESS DEMULTIPLEXING CIRCUIT. The MC68322 multiplexes the
addresses on the DRAM bus as required by standard DRAM devices. To connect ROM to
one of the DRAM channels, a simple address demultiplexing circuit must be used. The
following circuit provides an example of how to implement this logic in a system.

Figure 7-4. Address Demultiplexing Example

7.1.2.4 OPERATIONAL EXAMPLE. A typical MC68322-based system might be a 16-MHz
design that uses 70ns DRAMs. To achieve maximum system performance in this case,
select DRAM timing mode 2. This system might also include 120ns font ROMs that could
be attached to one of the DRAM channels using a circuit such as the one illustrated above.
Such an arrangement would minimize system cost by reducing the overall DRAM
requirements. If the ROM mode was not used, the system would need to be slowed to timing
mode 0 to accommodate these font ROMs. This slowdown would still produce a functional
system, but overall performance would be hindered because this setup would not fully utilize
the available bandwidth in the DRAMs. Instead, timing mode 2 should be selected for this
system and the ROM mode should be activated for the DRAM channel supporting the font
ROMs. These actions will optimize system performance as well as support the
DRAM-based font ROMs that help reduce system costs.

68322

MA(9:0)

MA(9:0)

RAS5* CE1*

74F00
LMA(9)

LATCH
CE0*

LMA(8:0)

74ALS821

ROM 512K X 16

MD(15:0)

TO SECOND ROM
512K X 16
(OPTIONAL)

SIGNALS ROM ADDRESS PINS

MA(9) A(18)
LMA(8:0) A(17:9)
MA(8:0) A(8:0)

THE CIRCUIT FOR THE 74F00 SHOULD BE AS FOLLOWS:

RAS5*

LMA(9)

LATCH

CE1*

CE0*

2 MBYTE DRAM --> ROM CIRCUIT

DRAM Controller

MOTOROLA MC68322 USER’S MANUAL 7-5

7.2 DRAM CONTROL REGISTER
The DRAM control register (DRMCR) contains two fields—DRAM timing select (TS) and
DRAM refresh interval (RIC). Figure 7-5 illustrates this register.

Figure 7-5. DRAM Control Register

The TS field is used to select one of three DRAM timing modes. The timing mode selected
applies to all banks. All DRAM devices connected to the MC68322 must operate at the same
speed because the DRAM controller does not support independently programmable bank
speeds. The exception to this is the ability to slow down individual DRAM banks by setting
the ROM mode bit in the corresponding DRAM register. See Section 7.1.2 ROM Mode for
details.

The RIC field provides the refresh time interval in CLK1s. The CAS and RAS timing
parameters for refresh are hardcoded and cannot be programmed. However, the RIC field
can be changed at any time and the new value will take effect when the next terminal count
is reached and a refresh cycle begins. Then the new RIC field value is loaded into the refresh
counter.

7.3 DRAM TIMING MODES
Three DRAM timing modes provide wait state profiles optimized for various DRAM speeds
at system frequencies of 16, 20, and 25MHz. These timing modes are not fixed to any
specific system clock frequency and can therefore be used regardless of system clock
frequency as long as the DRAM device timing is satisfied. The DRAM controller
automatically bursts for both read and write bus cycles. Table 7-2 lists the timing modes,
their associated DRAM control register TS field encodings, and the recommended system
speeds.

Table 7-2. DRAM Timing Modes

MODE/WAIT STATE PROFILE
TS FIELD

ENCODING
RECOMMENDED SYSTEM SPEED

Timing Mode 0 5:3:3:3…reads
5:2:2:2…writes

00 25MHz with 80ns

Timing Mode 1 4:2:2:2…reads
4:2:2:2…writes

01 20MHz with 100ns or 25MHz with 70ns

Timing Mode 2 3:2:1:2…reads
3:2:2:2…writes

10 16MHz with 80ns, 20MHz with 60ns, or 25MHz
with 50ns

Not Used 11 Not Used

00FFF160

00FFF162

 = RESERVED

TS

REFRESH INTERVAL COUNT (RIC)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DRAM Controller

7-6 MC68322 USER’S MANUAL MOTOROLA

7.4 DRAM ACCESSES
When the RGP, PVC, one of the DMAs, or core accesses DRAM, the MC68322 begins a
DRAM read or write cycle to one of the DRAM banks. The software must assure that eight
or more refresh cycles (described below) have occurred before any access to the DRAM is
performed. This is a requirement of the DRAM devices rather than the MC68322.

7.4.1 DRAM Refresh Cycles
DRAM refresh is accomplished through the use of CAS before RAS refresh cycles with the
refresh interval fully programmable. In CAS before RAS refresh cycles, the DRAM provides
its own refresh address, thus eliminating the need to generate an external refresh address.
The refresh cycle timing is fixed and satisfies the timing requirements for the highest system
clock speeds. During the refresh cycle, WE is always driven high to prevent enabling of the
test mode feature found in some DRAM devices.

All refresh cycles are transparent in that they take place between DRAM accesses without
forcing the microprocessor to halt execution. If the core accesses a chip-select bank or
chip-select register, a DRAM refresh cycle can occur simultaneously. However, if the core
accesses DRAM during a refresh operation, it is delayed until the refresh cycle completes.
When the refresh cycle occurs, the RGP and PVC will also be delayed. Figure 7-6 illustrates
a DRAM refresh cycle.

Figure 7-6. DRAM Refresh Cycle

START

REFRESH CYCLE

RF1 RF2 RF3 RF4

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

DRAM Controller

MOTOROLA MC68322 USER’S MANUAL 7-7

7.4.2 DRAM Read Cycles
The timing mode selected during setup determines the sequence of events that join to form
a DRAM read cycle. WE remains negated during these events. The events in timing order
are:

• The row address is placed on the memory address bus (MA10–MA0).

• The address selects one of the RAS signals, which is then asserted.

• The column address is placed on the memory address bus (MA10–MA0).

• The CAS1 and CAS0 are asserted.

• Data is read.

• RASx, CAS1, and CAS0 are negated.

Figures 7-7 to 7-9 illustrate the DRAM read cycle timings for each of the three timing modes.

Figure 7-7. DRAM Timing Mode 0 (Read Cycle, ROM Mode = 0)

Figure 7-8. DRAM Timing Mode 1 (Read Cycle, ROM Mode = 0)

START STARTWAIT WAIT WAITWAIT WAIT READ DATA READ DATA

ROW COLUMN CYCLE 1 COLUMN CYCLE 2

DATA VALID DATA VALID

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

START STARTWAIT WAITWAIT READ DATA READ DATA

ROW COLUMN CYCLE 1 COLUMN CYCLE 2

DATA VALID DATA VALID

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

DRAM Controller

7-8 MC68322 USER’S MANUAL MOTOROLA

Figure 7-9. DRAM Timing Mode 2 (Read Cycle, ROM Mode = 0)

7.4.3 DRAM Write Cycles
A DRAM write cycle begins in the same manner as a DRAM read cycle, except that data to
be written is placed on the DRAM data bus (MD15–MD0) and WE is asserted at the
beginning of the cycle. CAS1 and CAS0 are asserted according to the internal LDS and UDS
signals. The cycle ends by negating the RASx, CAS1, CAS2, and WE. It is important to note
that the MC68322 implements early write cycles, which means that the assertion of CAS1
and CAS2 strobes data into DRAM. Figures 7-10 to 7-12 illustrate the DRAM write cycle
timings for each of the three timing modes.

Figure 7-10. DRAM Timing Mode 0 (Write Cycle)

START STARTWAIT WAITREAD DATA READ DATA READ DATA

ROW COLUMN COLUMN COLUMN

DATA DATA DATA

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

FAST PAGE CYCLE

START STARTWAIT WAITWAIT WAIT WRITE DATA WRITE DATA

ROW COLUMN CYCLE 1 COLUMN CYCLE 2

DATA VALID DATA VALID

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

DRAM Controller

MOTOROLA MC68322 USER’S MANUAL 7-9

Figure 7-11. DRAM Timing Mode 1 (Write Cycle)

Figure 7-12. DRAM Timing Mode 2 (Write Cycle)

When a DRAM write cycle is initiated by the core, the data is latched into a buffer and an
early internal DTACK is generated to the core. Subsequent write cycles to DRAM are
delayed if the write buffer is full. The write buffer allows the core to execute the next
instruction(s) while waiting for the word to be written to DRAM, thus increasing the
MC68322’s performance.

7.4.4 DRAM Bus Arbitration
Arbitration for the DRAM bus is performed with strict priorities. If the bus is busy, the core
will be delayed a maximum of 13 internal accesses before it has access to DRAM.

START STARTWAIT WAITWAIT WRITE DATA WRITE DATA

ROW COLUMN CYCLE 1 COLUMN CYCLE 2

DATA VALID DATA VALID

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

START STARTWAIT WAITWRITE DATA WRITE DATA

ROW COLUMN CYCLE 1 COLUMN CYCLE 2

DATA VALID DATA VALID

SINGLE CYCLE FAST PAGE CYCLE

CLK2

MA10–MA0

RAS5–RAS0

CAS1–CAS0

D15–D0

WE

DRAM Controller

7-10 MC68322 USER’S MANUAL MOTOROLA

7.4.5 DRAM Burst Accesses
Burst accesses are carried out by using the fast-page mode operation of the DRAM.
Fast-page mode is used for all multi-word burst cycles. In fast-page mode, the cycle is
carried out as described for read and write cycles, except that only CAS1 and CAS2 are
negated while RASx remains asserted. After the defined interval (defined by the memory
access timing register) the column address is incremented and the CAS signals reassert,
initiating another memory cycle. The DRAM controller interface will not burst across a
256-word address page boundary. If a burst access tries to cross a 256-word page, the cycle
will terminate and a new one will begin.

7.5 POWER-UP SEQUENCE
Once RESET is negated, the DRAM controller automatically performs DRAM refresh cycles.
To guarantee proper DRAM operation after a power-up sequence or extended low
frequency or static operation, some DRAMs require an 8-cycle precharge. To meet this
requirement, the system should set the DRAM controller to the correct values and then
perform eight reads from DRAM, thus disregarding the data.

On reset, the DRAM registers and the DRMCR’s TS field are set to zero. Setting the TS field
to zero selects the most conservative timing mode. All DRAM banks are disabled and the
DRMCR refresh interval count (RIC) is set to a minimum value for the most frequent refresh
rate. Software must load the RIC field with the proper value during initialization, but before
it enables any DRAM bank, the DRAM register for a bank must be programmed with a valid
starting address.

MOTOROLA MC68322 USER’S MANUAL 8-1

SECTION 8
DMA INTERFACE

The MC68322 DMA interface provides support for high-speed data transfers between
external sources and DRAM. The DMA interface contains two channels—the parallel port
DMA (PDMA) and the general-purpose DMA (GDMA). Both of these channels are
single-ended and operate independently from each other with the single restriction that
DRAM can only be accessed one channel at a time. Each DMA channel contains control
state machines, a 16-bit data latch, data steering multiplexers, and counters for addresses
and transferred data.

Each channel is interfaced and activated through a corresponding register. Once they are
activated, the data steering multiplexers are configured based on direction and data width
and the source controller begins requesting data. When source data is available, the source
control state machine latches the data and signals the destination control state machine to
start the destination operation. Destination transfer requests begin immediately after the first
source data is received. DMA transfers continue until all the data has been transferred (the
destination counter decrements to zero), a flush request is posted, or an error occurs.

The GDMA supports bidirectional byte- and word-sized data transfers between external
DMA devices (such as I/O) and DRAM. The GDMA transfers to or from a single address on
the MC68322 bus while automatically incrementing the address on the memory address bus
(MA10–MA0). This provides a high-speed method of transferring data to or from a peripheral
or DRAM. The PDMA operates like the GDMA, except that all transfers occur between the
parallel port interface and DRAM. In addition, it is designed to support only byte-sized data
transfers.

DMA Interface

8-2 MC68322 USER’S MANUAL MOTOROLA

8.1 DMA CONFIGURATION REGISTERS
The DMA interface provides two internal memory-mapped configuration register sets called
PDMA and GDMA. These registers configure each DMA channel and provide
programmability for transfer address and count. Figure 8-1 illustrates the DMA interface
registers.

Figure 8-1. PDMA and GDMA Configuration Registers

8.1.1 Transfer Address Fields
The PDMA configuration register contains the PDMA DRAM transfer address field. The
GDMA configuration register contains two transfer address fields—GDMA DRAM transfer
address (GDTA) and GDMA chip-select transfer address (GCSTA). These fields define the
base address for the beginning of the transfer and they cannot be written while the BSY bit
in the active channel’s interrupt event register is set. The transfer address fields support the
entire 256M address range of the MC68322.

The GDTA field increments during a DMA transfer. For word-sized data transfers using the
GDMA channel, the transfer address is incremented after every word is transferred. When
receiving byte-sized data, the data is packed into words prior to accessing DRAM and the
address is incremented after every full word is transferred to DRAM. Likewise, for sending
byte-sized data, a word access to DRAM is made, the address in incremented, and the data
is sent unpacked as bytes to the MC68322 bus. All byte-sized data packing is organized as
big endian data.

The MC68322 bus address used for the GDMA channel is fixed and not incremented. The
transfer address for the MC68322 bus is used to access one of eight possible chip-select
banks. The GDMA chip-select transfer address appears on the output address pins of the
MC68322 bus interface (A25–A1). It is assumed the device that is connected to the banks
on the MC68322 bus used for the DMA handles any addressing issues internally.

PDMA CONFIGURATION
REGISTERS

00FFF200

00FFF202

00FFF204

00FFF206

GDMA CONFIGURATION
REGISTERS

00FFF210

00FFF212

00FFF214

00FFF216

00FFF218

00FFF21A

0000 PDMA DRAM TRANSFER ADDRESS (HIGH WORD)

PDMA TRANSFER COUNT

GDMA TRANSFER COUNT

PDMA DRAM TRANSFER ADDRESS (LOW WORD)

0000

0000

GDMA DRAM TRANSFER ADDRESS (HIGH WORD)

GDMA DRAM TRANSFER ADDRESS (LOW WORD)

GDMA CHIP-SELECT TRANSFER ADDRESS (HIGH WORD)

GDMA CHIP-SELECT TRANSFER ADDRESS (LOW WORD)

FR

FR

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA Interface

MOTOROLA MC68322 USER’S MANUAL 8-3

8.1.2 Transfer Count Fields
Each DMA configuration register provides a 14-bit programmable transfer count field, thus
allowing for a maximum 16-Kbyte or 16-Kword transfers. The transfer count is in words if the
selected DMA channel is programmed to perform word-sized transfers. Similarly, the
transfer count is in bytes if the DMA channel is programmed to perform byte-sized transfers.
Writing this register activates the DMA channel, so that all other configuration register fields
must be initialized before writing the transfer count field.

When activated, the transfer count value is loaded into an internal counter and decremented
after each destination transfer. The transfer count field is not double buffered, so writing a
new value during an active transfer will not start the next DMA operation at the conclusion
of the current operation. However, if a new value is written to the transfer count field during
an active transfer, the new value is ignored.

During an active transfer, reading the transfer count field will reflect the current value of the
destination transfer count. This value is required to determine the amount of data remaining
to be transferred when a DMA channel is shut down using flush request. To assure an
accurate value after issuing a flush request, the transfer count should be read only after
receiving a DMA complete interrupt event. This ensures that all data was transferred and is
reflected in the count value.

8.1.3 Flush Request (FR) Fields
Each DMA channel contains a write-only control field (FR) that allows the core real-time
control over an active DMA transfer. A read by the core results in a value of zero. The FR bit
(when set during an active transfer) shuts down the transfer and then returns the DMA
channel to a condition ready for a new operation. For transfers to DRAM, the FR bit instructs
the channel to disable reading source data and to finish transferring any data left in the
internal data latch to DRAM. For transfers from DRAM, the FR bit instructs the DMA channel
to disable reading source data and to discard any data left in the internal data latch that was
read from DRAM. When completed, a DMA complete interrupt is posted and the DMA
channel controllers return to the idle state.

8.2 GDMA CONTROL REGISTER
The GDMA control register (GDMCR) is used to configure the transfer direction, transfer
data width, and DREQ input mode, as well as enable CS× during MC68322 bus cycles. This
register is not double buffered and writing a new value during an active transfer will change
the current operational mode of the GDMA channel. This is not recommended. When read
by the core, the register reflects the current programmed bit fields. Figure 8-2 illustrates the
GDMA control register.

Figure 8-2. GDMA Control Register

 RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00FFF21C DDS DM W

DMA Interface

8-4 MC68322 USER’S MANUAL MOTOROLA

The DM field is used to select how the GDMA channel recognizes an external DMA device
request. Table 8-1 lists the field encodings and available options.

Setting the DS bit causes the MC68322 bus interface signal (CS×) to be asserted during a
DMA-generated MC68322 bus cycle. If cleared, CS× will not be asserted during the cycle.
When the W bit is set, the GDMA channel performs byte-sized transfers, but word-sized
transfers when cleared. When the D bit is set, the GDMA channel transfers data from DRAM
to an external DMA device and when cleared the GDMA channel transfers the data from an
external DMA device to DRAM.

8.3 DMA SPEED REGISTER
The SPD bit in the DMA speed (DMASP) register controls the maximum time that the GDMA
waits between accesses to DRAM. When set, GDMA waits a maximum of 29 DRAM bus
cycles plus six CLK1 periods for DRAM refresh. This is used for low-memory bandwidth
devices such as serial ports. When DMASP is clear, GDMA waits a maximum of 17 DRAM
bus cycles plus six CLK1 periods for DRAM refresh. This setting is used for high-memory
bandwidth applications. GDMA latency occurs when the core, RISC graphics processor,
print engine video controller, or an external bus master uses the DRAM bus. The minimum
latency is zero. If the DRAM bus is idle when the GDMA makes a request, its DRAM bus
cycle starts immediately. Figure 8-3 illustrates DMASP, which indicates the speed of the
DMA throughput.

Figure 8-3. DMA Speed Register

Table 8-1. DM Field Encoding

ENCODING DREQ REQUEST OPTION

00 Active Low Level

01 Active High Level

10 Falling Edge Transition

11 Rising Edge Transition

 RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPD00FFF904

DMA Interface

MOTOROLA MC68322 USER’S MANUAL 8-5

8.4 DMA INTERRUPT EVENT REGISTERS
The DMA interface provides two memory-mapped interrupt event registers for each DMA
channel. These registers provide real-time and interrupt status to the core. Figure 8-4
illustrates the two DMA interrupt registers.

Figure 8-4. DMA Interrupt Event Registers

Interrupt events for either channel can be individually enabled or disabled by programming
each bit of the enable field. Setting each bit enables its respective event and clearing it
masks the event. If an event is enabled, an interrupt is sent to the core. The following are
GDMA and PDMA interrupt events and their bit field descriptions.

BSY—Busy
This bit is set when the DMA channel’s transfer count field is written, indicating that the
channel is active and that the core should not write to the channel’s configuration registers.
This bit is cleared when the final transfer has completed and the channel remains idle and
is ready to accept new register values.

FLL—Full
This bit is set when byte- or word-sized data is held in the DMA data latch and is cleared
when the transfer operation is complete. The combination of the BSY and FLL bits indicate
real-time status.

TCR and CMP—Terminal Count Reached and Complete
The TCR bit indicates when a DMA transfer is completed under normal termination (the
number of transfer operations equals the value programmed in the channel’s configuration
register transfer count field). When the TCR bit is set, the DMA channel is finished with its
transfer. The CMP bit is then set, indicating that the DMA registers are ready to be written
for the next DMA transfer.

Note: The DMA interrupt registers are located in the interrupt register portion of the
memory map and are therefore not necessarily located contiguously with the
other DMA registers.

00FFF740

00FFF742

00FFF744

00FFF750

00FFF752

00FFF754

ENABLE

TCRFLL CMP ILA

ILA

INTERRUPT
LEVEL

BSY GDMA INTERRUPT
EVENT REGISTER

PDMA INTERRUPT
EVENT REGISTER

ENABLE

TCRFLL CMP

INTERRUPT
LEVEL

BSY

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMA Interface

8-6 MC68322 USER’S MANUAL MOTOROLA

ILA—Illegal Address
An illegal address interrupt is generated if a DMA channel attempts to access a DRAM or
chip-select bank using an out-of-range address. This bit is set if the channel’s configuration
register GDTA, GCSTA, or PDTA fields do not access a valid address. If this error occurs,
the DMA channel will halt all transfer operations and park in an error condition. The DMA
channel must then be reset using the soft-reset register’s GDR or PDR bits before starting
a new operation.

The interrupt level field indicates the interrupt level. If any of the events in the channel’s
interrupt event register occur, an interrupt level indicated by this field is sent to the EC000
core. The interrupt levels range from seven to zero (zero disables interrupts).

8.5 INITIATING A DMA OPERATION
The DMA channel is activated after programming the channel’s configuration register and
writing the transfer count field. The software must ensure that a DMA channel is idle before
writing the transfer count field. Writing a zero value to the transfer count field is allowed, but
not recommended. New values should not be written into the DMA registers during active
transfers because undefined results will occur.

For transfers to the MC68322 bus from DRAM, the GDMA immediately requests data from
DRAM. After receiving data from DRAM, the GDMA begins monitoring the external DREQ
input. When the external DMA device requests data, it is read out of the internal data latch
and presented through the MC68322 bus to complete the data transfer. This process
continues until all data is transferred, an address error occurs, or the transfer is terminated
by the core through a flush request.

For data transfers to DRAM from the MC68322 bus, the GDMA begins monitoring the
external DREQ input. When data is available from the external DMA device, the MC68322
bus cycle starts and the data is loaded into the internal data latch. Once the internal data
latch is loaded with source data, the GDMA requests a DRAM cycle and, when granted,
writes the data to memory. This process continues until all data is transferred, an address
error occurs, or the transfer is terminated by the core through a flush request.

During an active DMA transfer, the system software can decide to reallocate the DMA
resource to another device. By issuing a flush request, the current DMA operation will be
terminated. When the CMP bit in the interrupt event register is set, new values for the DMA
channel registers can be written and the channel restarted.

8.6 DMA TRANSFERS
Because both DMA channels operate on a demand basis, all DMA-initiated transfers
(through either the PDMA or GDMA channels) use a data request and acknowledge type
handshake.

The GDMA supports both word- and byte-sized transfers. For word-sized transfers, the
external DMA device must connect to D15–D0 and for byte-sized transfers the device must
connect to D7–D0. WRU and WRL signals are both asserted during an MC68322
word-sized bus write cycle, but only WRL is asserted during byte-sized writes.

DMA Interface

MOTOROLA MC68322 USER’S MANUAL 8-7

Support for byte-sized transfers is handled automatically by the DMA interface through data
packing and it requires no external logic. Byte-sized data received from the core or PPI are
packed into words prior to requesting a DRAM access. Data sent to the core as bytes are
read in as words from DRAM and unpacked to bytes for transfer. All data transfers to and
from memory are in big endian format, thus assuring compatibility with the processor’s data
organization in memory.

8.6.1 PDMA Transfers
Handshaking for the PDMA channel is transparent and handled internally between the PPI
and the PDMA channel. A typical transfer cycle for the PPI is described in Section 9 Parallel
Port Interface.

8.6.2 GDMA MC68322 Bus Read and Write Cycles
GDMA handshaking uses the DREQ and DACK signals. DREQ is an input signal that has a
programmable level or edge sensitivity with polarity control. The default configuration is
active low level. DACK is an output signal that is used by the external DMA device to
acknowledge that a GDMA cycle is in progress. The polarity for the DACK output is fixed to
provide an active low output.

A GDMA cycle is requested when DREQ is asserted by the external DMA device, such as
PROM or I/O. After the DMA interface internally synchronizes DREQ, it arbitrates for the
MC68322 bus and, when granted, asserts DACK. After DACK is asserted, the internal bus
interface unit (BIU) performs the GDMA cycle defined by the GDMA configuration register.
After the cycle completes, DACK is negated and the DMA cycle terminates.

During a GDMA bus cycle, CS× can be disabled. This option supports external DMA devices
that require CS× to be inactive during a DMA operation. The DS bit in the GDMA
configuration register controls the operation of CS× during a DMA-generated MC68322 bus
cycle.

A GDMA MC68322 bus write cycle occurs when the GDMA channel is configured to transfer
from DRAM to an external DMA device. A word-sized GDMA write cycle asserts the WRU
and WRL signals and a byte-sized GDMA write cycle asserts WRL and negates WRU.
Figure 8-5 illustrates the typical timing for a fast DMA read or write cycle. The bus cycle
timing shown is obtained using minimum values for all timing parameters.

DMA Interface

8-8 MC68322 USER’S MANUAL MOTOROLA

Figure 8-5. GDMA MC68322 Bus Read Or Write Cycle

The GDMA can be mapped to any chip-select bank. To optimize DMA access timing, the
chip-select DMA timing register is provided. See Section 6 System Integration Module for
more information. This register provides a separate chip-select bank timing that is specific
to a DMA access. During a GDMA access to a chip-select bank, the internal DACK signal
has a timing that is identical to the CS×. The DS bit in the GDMA configuration register
controls the assertion of the CS× with DACK during a GDMA access.

8.6.3 GDMA DRAM Bus Read and Write Cycles
The DMA interface is one of five interfaces that internally arbitrates for control of the DRAM
bus. A GDMA DRAM bus read cycle request is generated when the internal data latch can
accept new data. This can occur either when the DMA interface is first started or after data
is transferred to a destination. A GDMA DRAM bus write cycle request is generated as soon
as data is available from the DMA source.

Figures 8-6 and 8-7 illustrate byte- and word-sized DMA write transfers across both
MC68322 and DRAM buses. In these figures, the transfer count register is set to two.

DATA VALID

ADDRESS VALID

DMA REQUEST MC68322 BUS CYCLE
MC68322
BUS REQ.

NOTE 2

CLK2

DREQ

DACK

A23–A1

CS7–CS0

RD or
WRU and WRL

D15–D0

REQUEST REQUEST WAIT WAIT
MC68322
BUS REQ. DATA RECOVERYSTART

NOTE 1

NOTES:
 1) This diagram illustrates DREQ programmed as an active low input.

DREQ is an asynchronous input and is synchronized internally by the
GDMA interface; it requires no setup or hold time to be
recognized for proper operation. However, to guarantee recognition of
the input at a certain edge of CLK, DREQ must satisfy a setup
requirement that it remain active for at least two consecutive CLK rising
edges to be detected by the GDMA interface.

 2) Setup and hold requirements must be met to prevent the start of the next
GDMA cycle. If back to back GDMA cycles are preferred, DREQ must
stay active and detected as a low at this time.

DMA Interface

MOTOROLA MC68322 USER’S MANUAL 8-9

Figure 8-6. Byte-Sized DMA DRAM Write Transfer

Figure 8-7. Word-Sized DMA DRAM Write Transfer

8.7 DMA TRANSFER TERMINATION
A DMA transfer can terminate when one of the three following conditions occur—normal
termination, bad address, or an core-forced termination.

8.7.1 Normal Termination
Normal termination is the normal conclusion of a DMA transfer and it occurs when the
source and destination transfer counters have decremented to zero and no address value
errors have occurred. When the DMA transfer completes, the CMP and TCR bits in the
channel’s interrupt event register are set and an interrupt is posted to the core if enabled.

MC68322 BUS DRAMMC68322 BUS

LOAD
TRANSFER

COUNT

BUSY

FULL

CYCLE ACTIVE

DMA REQUEST

INTERRUPT

DRAMMC68322 BUS DRAMMC68322 BUS

LOAD
TRANSFER

COUNT

BUSY

FULL

CYCLE ACTIVE

DMA REQUEST

INTERRUPT

DMA Interface

8-10 MC68322 USER’S MANUAL MOTOROLA

8.7.2 Bad Address Termination
If at some point during the DMA transfer an address supplied by the DMA to the DRAM or
MC68322 bus interfaces is incorrect (not mapped to a valid bank), an address fault occurs.
The DMA transfer terminates, the ILA bit in the channel’s interrupt event register is set, and
an interrupt is posted to the core if enabled. As a result of this bad address error, the DMA
channel will park in an error condition. The DMA channel must then be reset using one of
soft-reset register’s DMA bits before a new operation can be initiated. A write to either the
GDR or PDR bits in the soft-reset register will initiate a DMA soft-reset operation. See
Section 5 Interrupt and Exception Handling for more information. During the reset
condition, only the DMA channel control logic is affected. Initial register values are not
cleared.

8.7.3 Core-Forced Termination
If, during a DMA transfer, the core sets the FR bit in the channel’s configuration register, the
DMA controller will terminate any ongoing transfer for that channel. If the DMA channel is
receiving data from the MC68322 bus or the PPI, any data remaining in the internal data
latch is written to DRAM. If the DMA channel is sending data to the MC68322 bus, any data
remaining in the data latch is discarded. When the data transfers are complete, the channel
shuts down, sets the CMP bit in the channel’s interrupt event register, and returns to the idle
state. Depending on the value remaining in the transfer counters, it is possible to set the FR
bit in the channel’s configuration register, and still have the DMA transfer terminate normally
due to the transfer counters decrementing to zero. If this condition occurs, both the CMP and
TCR bits will be set in the channel’s interrupt event register.

MOTOROLA MC68322 USER’S MANUAL 9-1

SECTION 9
PARALLEL PORT INTERFACE

The MC68322 contains a direct-connect, fully IEEE 1284 Level 2 compliant, bidirectional
parallel port interface (PPI). The PPI supports four IEEE 1284 communications modes—
compatibility (Centronics™), nibble, byte, and enhanced capabilities port (ECP). It also
supports all variants of these modes, including device ID requests and run-length encoded
(RLE) data compression.

The PPI contains specific hardware to support automatic handshaking during host to
peripheral (forward) data transfers in compatibility and ECP modes, and run-length
detection and decompression of host to peripheral data during ECP transfers. This can
substantially improve data rates when operating the parallel port in compatibility or ECP
mode. When hardware handshaking is used in combination with the PPI’s dedicated DMA
controller, data rates as high as 2M per second can be achieved in ECP forward mode. The
software can disable and enable hardware handshaking to allow direct control of PPI signals
as well as to support future protocols. The remainder of IEEE 1284 operations (negotiation,
reverse data transfers, and termination cycles) must be carried out by the software. Please
note that IEEE 1284 EPP communications mode is not supported.

The PPI contains an interface controller that consists of a data receive and transmit latch,
run-length encoding decompression logic, input conditioning logic, and edge detector logic.
The RLE decompression is accomplished through a smart state machine and additional
control logic. The PPI has input conditioning logic to filter the incoming control signals.
Figure 9-1 illustrates the PPI controller block diagram.

Figure 9-1. Parallel Port Interface Controller Block Diagram

PD7–PD0

DIGITAL
FILTER/
EDGE

DETECTION

BUSY

ACK

PARALLEL PORT
DATA BUS

STATE
 MACHINE

CONTROL
REGISTERS

CONTROL
REGISTERS

DATA
RECEIVE

LATCH RLE
DECOMPRESSION

LOGIC

DATA
TRANSMIT

LATCH

SELECTIN

STROBE

AUTOFD

INIT

FAULT

SELECT

PERROR

Parallel Port Interface

9-2 MC68322 USER’S MANUAL MOTOROLA

9.1 PPI REGISTERS
There are three memory-mapped registers that control the PPI:

• PPI interface register

• PPI control register

• PPI interrupt event register

9.1.1 Parallel Port Interface Register
The parallel port interface register (PPIR) is a read/write register that contains two 8-bit
fields—one that controls the ACK pulse width and another that contains the latched parallel
data transmitted from the host to the printer. The PPIR also contains eleven bits that control
the parallel port interface signals. These eleven bits consist of four read-only bits that are
used to read the logic level of the host input pins, two read-only bits to read the logic level
on the BUSY and ACK printer output pins, and five read/write bits control the logic levels on
the printer output pins. Figure 9-2 illustrates the parallel port interface register.

Figure 9-2. Parallel Port Interface Register

ACKW—ACK Width
This field defines the ACK pulse width when compatibility mode is enabled (PPCR MODE
field = 01). The ACK pulse width is selectable from 0 to 255 CLK1 periods wide. At 16 MHz,
the software can set pulse widths anywhere in the range of 0 to 16 µs. If the field is clear,
no ACK pulse is issued. Otherwise, the cycle proceeds as normal.

ACKW can be changed at any time and with any PPCR MODE encoding selected, but it can
only be used during a compatibility mode handshaking cycle. If ACKW is changed near the
end of a data transfer (when an ACK is already low), then the new pulse width value does
not affect the current cycle. The new value of ACKW is used when the next cycle occurs.

CMD—Command
When read, this bit provides the logic level of AUTOFD when STROBE transitioned from
high to low with the PPCR’s PDE bit clear. If set, AUTOFD was latched high and if clear,
AUTOFD was latched low. This is a read-only bit, so writing CMD has no effect.

STR*AFD*INT* SIN* ACK1*BSY1* ACK200FFF302

00FFF304

00FFF306

BSY2 PER SEL FLT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

*These bits are read-only bits.

CMD DATA

ACKW

 = RESERVED

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-3

DATA
This field is an 8-bit read/write field. When read, DATA provides the latched logic levels on
the parallel port data bus when STROBE last transitioned from high to low with the PPCR’s
PDE clear. When written, the value defines the logic levels to be driven by the MC68322
when PD7–PD0 is enabled by setting the PDE bit. The most-significant bit of the DATA field
corresponds to PD7 and the least-significant bit to PD0.

The CMD and DATA fields latch the logic levels on the parallel port data bus (PD7–PD0)
and AUTOFD pins, which is used to indicate command bytes during ECP mode forward data
transfers. The CMD and DATA fields should not be read while the PDMA channel is
enabled; doing so clears the PDMA request.

INT—INIT Status (Read-only)
Indicates the level read on INIT after synchronization and optional digital filtering.

AFD—AUTOFD Status (Read-only)
Indicates the level read on AUTOFD after synchronization and optional digital filtering.

STR—STROBE Status (Read-only)
Indicates the level read on STROBE after synchronization and optional digital filtering.

SIN—SELECTIN Status (Read-only)

Indicates the level read on SELECTIN after synchronization and optional digital filtering.

ACK1—ACK Status (Read-only)
Indicates the level driven on ACK. This bit is the ACK2 bit NOR’ed with ACK from the PPI
state machine. This bit is set on reset.

BSY1—BUSY Status (Read-only)
Indicates the level driven on BUSY. This bit is the BSY2 bit OR’ed with BUSY from the PPI
state machine. This bit is set on reset.

ACK2—ACK Control
ACK2 forces a low level to be driven on ACK. This is generally done when hardware
handshaking is disabled and the PPI state machine is idle. The ACK2 bit is NOR’ed with
ACK from the PPI state machine before driving ACK. If ACK2 is set, then the ACK pin is
forced low and the ACK1 bit is cleared.

BSY2—BUSY Control
BSY2 forces a high level to be driven on BUSY. This is generally done when hardware
handshaking is disabled and the PPI state machine is idle. The BSY2 bit is OR’ed with
BUSY from the PPI state machine before driving BUSY. If BSY2 is set, then BUSY is forced
high and the BSY1 bit is set. BSY2 is set on reset.

PER—PERROR Control
Setting this bit drives a high level and clearing it drives a low level on PERROR.

Parallel Port Interface

9-4 MC68322 USER’S MANUAL MOTOROLA

SEL—SELECT Control Bit
Setting this bit drives a high level and clearing it drives a low level on SELECT.

FLT—FAULT Control Bit
Setting this bit drives a high level and clearing it drives a low level on FAULT.

9.1.2 Parallel Port Control Register
The parallel port control register (PPCR) is a read/write register containing nine bits that
configure the operation of the PPI. Figure 9-3 illustrates the PPCR.

Figure 9-3. Parallel Port Control Register

FLL—Full
This bit is a read-only status bit that indicates when parallel port data from the host is latched
in the DATA field of the PPIR. FLL is cleared when the PPIR’s DATA field is read. When
handshaking and DMA are enabled, FLL is set and then cleared as data is latched and read
during forward data transfers. The FLL bit is also cleared when the RST bit is set.

RLD—Run-Length Decompression
This bit is a read-only status bit that indicates when run-length decompression is taking
place during ECP forward data transfers. RLD is set when a run-length count is received and
loaded into the internal counter and cleared when the last of the decompressed data is read
from the PPIR’s DATA field. This bit can only be set when ECP with RLE (MODE = 112) is
enabled. If the MODE field is reprogrammed during decompression, decompression
continues and RLD remains set until the operation is complete. RLD is also cleared when
RST is issued.

ABT—Abort
This bit causes the PPI to use SELECTIN to detect when the host suddenly aborts a reverse
transfer and returns to compatibility mode. If ABT is set, a low level on SELECTIN causes
the PDE bit to be cleared and the PD7–PD0 output drivers to be three-stated. In fact, if ABT
is set and SELECTIN is low, setting the PDE bit has no effect. This protection logic, as with
all internal PPI logic, operates on a synchronized and optionally digitally filtered SELECTIN
that is latched into the PPIR.

Note: The FLT, SEL, PER, and BSY2 bits are arranged to correspond to their use as
parallel port data lines during nibble mode reverse data transfers. When
hardware handshaking is enabled, BUSY and ACK are controlled by the PPI
state machine. When hardware handshaking is disabled and the PPI state
machine is idle, BUSY and ACK can be controlled by the software using the
BSY2 and ACK2 bits.

FLL RLD ABT PDE ERC MODE DFE00FFF300 RSTRESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-5

PDE—Parallel Port Data Bus Output Enable
This bit performs two functions—controls the state of the three-state output buffers and
qualifies the latching of data from the output drivers into the PPIR’s DATA field When clear,
PDE disables the PD7–PD0 output buffers and allows data to be latched into the DATA field
on every high to low transition of STROBE. When set, PDE enables the PD7–PD0 output
buffers, preventing data from being latched into the DATA field. In this state, the DATA field
is unaffected by transitions on STROBE. Setting the ABT bit affects the operation of PDE. If
the ABT bit is set, SELECTIN must remain high to allow PDE to be set or remain set. If the
ABT bit is set and SELECTIN goes low, PDE is cleared, and setting PDE will have no effect.

ERC—Error Cycle
The ERC bit is used to execute an error cycle when in compatibility mode (MODE = 012).
When set, ERC sets the BSY1 bit in the PPIR, which immediately causes the MC68322 to
drive BUSY high. If ERC is set when a compatibility mode handshake sequence is in
progress, BSY1 remains set beyond the end of the cycle. The ERC bit does not affect an
ACK pulse that is already active, but does prevent an ACK pulse if it is about to be
generated. While ERC is set, the software can set or clear the PPIR’s SEL, PER, and FLT
bits. When ERC is cleared, the PPI generates an ACK pulse and negates BUSY to
automatically conclude the error cycle.

When the MODE bit is set to any value except 012, setting ERC has no effect. Setting
MODE = 012 when ERC is already set, causes the handshake controller to immediately
begin an error cycle as described above.

MODE
This 2-bit field selects and enables a hardware handshaking mode for forward data
transfers. The following paragraphs describe the functions for encoding the MODE field.

00 = Disable all hardware handshaking so that handshaking can be performed
by the software.

01 = Enable compatibility mode hardware handshaking during forward data transfers.
In this mode, the PPI responds to a high to low transition on STROBE and
automatically sets and clears the BSY1 and ACK1 bits in the PPIR to handshake
with the host. MODE can be reprogrammed at any time, but if a compatibility
mode cycle is currently in progress, it completes as normal. However, MODE
should only be changed from compatibility mode handshaking when BUSY is
high. This ensures that no parallel port activity is taking place when reconfiguring
the PPI.

10 = Enable ECP mode hardware handshaking without RLE support during forward
data transfers. In this mode, the PPI responds to a high to low transition on
STROBE and automatically sets and clears the BSY1 bit in the PPIR to
handshake with the host. Reception of both run-length counts and channel
addresses causes the PIER’s CRD bit to be set. The software is responsible for
responding to channel addresses and performing data decompression. MODE

Parallel Port Interface

9-6 MC68322 USER’S MANUAL MOTOROLA

can be reprogrammed at any time, but if an ECP cycle is currently in progress, it
completes as normal.

11 = Enable ECP mode hardware handshaking with RLE support during forward data
transfers. The PPI performs the same ECP mode handshaking as above, except
RLE decompression is enabled. RLE decompression enables the PPI to detect
and intercept run-length counts and to automatically perform data
decompression. However, during this mode, only channel addresses cause the
PIER’s CRD bit to be set. The software is responsible for responding to channel
addresses. If MODE is reprogrammed when decompression is occurring (when
the RLD bit is set), the decompression continues unhindered to completion. The
RST bit can be set to immediately abort decompression.

DFE—Digital Filtering Enable
Setting this bit enables digital filtering on all four host control signal inputs—SELECTIN,
STROBE, AUTOFD, and INIT.

RST—Reset
Setting this bit causes the PPI’s handshake control and decompression logic to immediately
terminate the current operation and return to idle. RST clears the RLD and FLL bits. The PPI
state machine BUSY and ACK are negated. If the PPIR’s BSY2 and ACK2 bits are clear,
then BSY1 = 0 and ACK1 = 1. The software should set the MODE field to 00 to disable
handshaking when setting RST to prevent the PPI state machine from starting again. RST
is a write-only bit and setting it causes the reset. Clearing RST has no effect. This bit always
reads as zero.

9.1.3 PPI Interrupt Event Register
The PPI interrupt event register (PIER) contains 11 bits that can be enabled and used to
drive the parallel port using a software driver. Eight of the eleven bits indicate when a rising
or falling edge is seen on any of SELECTIN, INIT, AUTOFD, or STROBE host inputs. The
remaining three bits indicate when a data or command byte is received or when an invalid
termination event is detected. Figure 9-4 illustrates the PIER.

Figure 9-4. PPI Interrupt Event Register

The following bits describe each of the parallel port interrupt events that can be posted by
the PPI. The first eight interrupt events signal level changes that occur at the host control
signal input pins. Note that these events are detected after the host inputs are synchronized,
optionally digitally filtered, and recorded in the PPIR.

 = RESERVED

15 14 13 12 11 10

IVD

9 8 7 6 5 4 3 2 1 0

CRD DRD INL INH AFL AFH STL STH SNL SNH

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE

INTERRUPT
LEVEL

00FFF760

00FFF762

00FFF764

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-7

IVD—Invalid Transition
This bit is set when SELECTIN transitions from high to low in the middle of an ECP forward
data transfer handshake sequence. The invalid transition interrupt is posted if SELECTIN is
low when STROBE is low or BUSY is high. This event can be posted only when ECP is
enabled.

CRD—Command Received
This bit is set when a command byte is latched into the PPIR’s DATA field. If ECP without
RLE (MODE = 102) is enabled, then a command received interrupt is posted when a run-
length or channel address is received. If ECP with RLE (MODE = 112) is enabled, then a
command received interrupt is posted when a channel address is received. This event can
only be posted when ECP is enabled.

DRD—Data Received
This bit is set when data is latched into the PPIR’s DATA field, which occurs on every high
to low transition of STROBE when the PPCR’s PDE bit is clear. This interrupt is also set if
ECP with RLE (MODE = 112) is enabled and data decompression is in progress.

INL—INIT Low
This bit is set when a high-to-low transition on INIT is reported in the PPIR.

INH—INIT High
This bit is set when a low-to-high transition on INIT is reported in the PPIR.

AFL—AUTOFD Low
This bit is set when a high-to-low transition on AUTOFD is reported in the PPIR.

AFH—AUTOFD High
This bit is set when a low-to-high transition on AUTOFD is reported in the PPIR.

STL—STROBE Low
This bit is set when a high-to-low transition on STROBE is reported in the PPIR.

STH—STROBE High
This bit is set when a low-to-high transition on STROBE is reported in the PPIR.

SNL—SELECTIN Low
This bit is set when a high-to-low transition on SELECTIN is reported in the PPIR.

SNH—SELECTIN High
This bit is set when a low-to-high transition on SELECTIN is reported in the PPIR.

Parallel Port Interface

9-8 MC68322 USER’S MANUAL MOTOROLA

9.2 HARDWARE HANDSHAKING
The PPI supports three hardware handshaking modes for forward data transfers that are
enabled and disabled by the software. One mode supports forward data transfers during
compatibility mode and the other two modes support forward data transfers during ECP
mode. Only one of the three modes can be enabled at a time or all modes can be disabled.
When disabled, the software must assume full responsibility for handshaking and use the
PIER and PPIR to read and control the logic levels on all parallel port pins.

9.2.1 Compatibility Handshaking
Compatibility mode hardware handshaking is enabled by setting the PPCR’s MODE = 01

2
.

When this mode of handshaking is enabled, the PPI automatically generates BUSY when
the leading edge of STROBE from the host is received and latches the logic levels on
PD7–PD0 and AUTOFD into the PPIR. The PPI then waits for STROBE to negate and the
PPIR’s DATA field to be read. After both of these events occur, the PPI asserts ACK for the
duration specified in the PPIR’s ACKW field and then negates ACK and BUSY to conclude
the data transfer.

When data is latched into the PPIR’s DATA field, the PPI generates two interrupt
events—a parallel port DMA (PDMA) request and a core interrupt request. The software can
alternate between PDMA and interrupt-based data transfers. The PDMA request remains
active until the data is read by either the PDMA channel or core in response to the interrupt
event. If the PDMA has been enabled, it responds to the request by reading the PPIR’s
DATA field and writing the data to DRAM. When the PDMA channel reads the DATA field,
ACK is pulsed, BUSY is negated, and the PDMA request is cleared.

The PIER’s ENABLE field can be programmed to interrupt the core when parallel port data
is received. If enabled, the PIER’s DRD bit, when set, will generate a data received interrupt
event. When the core reads the PPIR’s DATA field, ACK is pulsed, BUSY is negated, and
the PDMA request is cleared. The PPI functions without using the PDMA, but the system
throughput will be dramatically impacted. Therefore, using the PDMA is strongly
recommended. Figure 9-5 illustrates the compatibility mode timing.

Figure 9-5. Compatibility Mode Timing Diagram

DATA

STROBE

BUSY

ACK

LATCH DATA
REQUEST INTERRUPT

READ DATA
MAKE ACK PULSE

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-9

9.2.2 ECP Handshaking
The PPI supports two ECP hardware handshaking modes for forward data transfers—one
with run-length encoding and one without. ECP hardware handshaking is enabled by setting
the MODE field in the PPCR to 102, while ECP hardware handshaking with RLE is enabled
by setting MODE = 112. The basic operation of these two handshake modes is identical.

When either mode is enabled, the PPI automatically responds to STROBE by latching the
logic levels on PD7–PD0 and AUTOFD in the PPIR’s DATA field. When the PPIR’s DATA
field is read, the PPI drives BUSY high, waits for STROBE to go high, and then drives BUSY
low to conclude the cycle. Since no ACK pulse is generated, the pulse width duration
specified in the PPIR’s ACKW field is not used. Like compatibility handshake mode, data is
latched at the leading edge of STROBE, thus causing a PDMA request and the posting of a
data received interrupt event (setting the DRD bit in the PIER). DMA and interrupt operation
is the same as described for compatibility handshaking mode.

Two additional interrupts events can be posted by the PPI when an ECP handshake mode
is programmed—command received and invalid termination (setting the CRD and/or IVD
bits in the PIER). A CRD is posted when a command byte is received from the host and an
IVD is posted when SELECTIN transitions illegally in the middle of a handshake sequence;
that is, an invalid termination interrupt is posted if SELECTIN is low when STROBE is low
or BUSY is high. Such an event can be caused by the user changing a switch box or a
parallel cable coming loose. An invalid termination interrupt event should be treated as an
immediate termination and the PPI should be returned to compatibility mode operation.
Figure 9-6 illustrates the ECP mode timing.

Figure 9-6. ECP Mode Timing Diagram

9.2.2.1 COMMAND BYTE DETECTION. When ECP is enabled (MODE = 102 or 112), the
PPI monitors the AUTOFD level that is latched into the PPIR’s CMD bit, to detect and
intercept command bytes. If CMD is clear, the PPI interprets the data as a command byte
and examines the most-significant bit to interpret the byte. If PD7 = 0, the command byte is
a run-length count and if it is 1 the command byte is a channel address. The action taken
with a channel address or run-length count depends on which ECP handshaking mode is
selected.

DATA

STROBE

BUSY

LATCH DATA
REQUEST INTERRUPT

READ DATA
MAKE BUSY PULSE

Parallel Port Interface

9-10 MC68322 USER’S MANUAL MOTOROLA

If ECP without RLE is enabled (MODE = 102), a channel address and run-length count
always generates a command received interrupt event. The PPI does not perform any
decompression. BUSY remains low until the PPIR’s DATA field is read by the core. No data
received interrupt event is posted and no PDMA request is generated for the command byte.
If ECP with RLE is enabled (MODE = 112) and a channel address is received, a command
received interrupt event is posted. BUSY remains low until the PPIR’s DATA field is read by
the core. If the PPI detects a run-length count, RLE decompression will occur on the next
data byte that is received. No command or data received interrupt events are posted and no
PDMA request is generated for the run-length command byte.

9.2.2.2 RLE DECOMPRESSION. When ECP with RLE handshaking is enabled,
run-length counts are detected and automatically loaded into an internal counter. The PPI
then sets the PPCR’s RLD bit. A run-length count of zero is interpreted as a replication factor
of one and a run-length count of 127 is interpreted as a factor of 128. BUSY is driven high
when the run-length value is loaded into the counter and lowered when STROBE returns
high. The PPI then waits for the next data byte.

When the next data byte arrives, BUSY remains low for the entire decompression period. In
the MC68322, depending on internal bus utilization, a replication factor of 128 could result
in BUSY remaining low for 1 to 2 ms while STROBE remains low. As decompression occurs,
the PPI generates PDMA requests and data received interrupts events in exactly the same
manner as when it receives uncompressed data. When the run-length counter decrements
to zero, the last PPIR DATA field read results in the BUSY being driven high and then low
following the rising edge of STROBE. The RLD bit is also cleared at this time. After a
run-length command is received the next byte usually is a data byte. If the next byte is also
a run-length, then this new run-length is used. If the next byte is a channel address, then a
command received interrupt event is posted and the PPI state machine continues waiting
for the next data byte.

If the PPCR’s MODE field is changed after the run-length command was received, but
before the data byte was received, then RLD remains set. When ECP with RLE is enabled
again, decompression will begin when the data byte is received. If MODE is changed while
decompression is occurring (RLD is set and the data byte was received), the decompression
continues until completion. If decompression must be immediately aborted, RST should be
issued in the PPCR.

The PPCR’s FLL bit is set when the run-length is received and immediately cleared when
the run-length is loaded into the counter. FLL is set again when the data byte is received and
cleared when the run-length counter reaches zero and the last data byte is decompressed.

9.2.3 Disabling Hardware Handshaking
When hardware handshaking is disabled (MODE = 002), the software is responsible for
controlling the PPI. However, the PPIR’s DATA field continues to latch parallel port data on
the leading edge of STROBE, even with all hardware handshaking disabled. Also, host
control signal inputs are always synchronized to CLK1 to prevent metastable events from
reaching the internal logic of the MC68322. This does not include PD7–PD0 since they are
guaranteed to be stable when STROBE is low.

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-11

9.3 SOFTWARE-CONTROLLED HANDSHAKING
By clearing the PPCR’s MODE field, the software controls all parallel port operations,
including negotiation and termination phases, as well as reverse data transfers. The
software can also respond to parallel port inputs by way of polling or interrupts. This gives
the software the flexibility to adapt to new and revised protocols. The software controls
BUSY and ACK with the BSY2 and ACK2 bits in the PPIR. Normally, the PPI state machine
should be idle when using BSY2 and ACK2. The software can issue a reset (by setting the
RST bit in the PPCR) to force the PPI state machine to idle.

When polling, status bits in the PIER report the logic level at each parallel port input pin and
control bits allow separate and direct control of each of the output pins. The host inputs are
always synchronized to the internally generated CLK1 signal to prevent metastable events
from reaching the microprocessor. This results in a maximum of one CLK1 period of delay
before an external event appears in the PIER. The SELECTIN, INIT, AUTOFD, and
STROBE signals can also be digitally filtered to improve noise immunity. Digital filtering
adds another CLK1 period of delay before level changes on these signals are indicated in
the PIER.

9.4 DIGITAL FILTERING
The MC68322 contains digital filter circuitry on host control signal inputs (SELECTIN,
STROBE, AUTOFD, and INIT) to improve noise immunity and make the PPI more
impervious to inductive switching noise. Digital filtering can be enabled, regardless of
whether hardware handshaking is enabled or disabled. When digital filtering is disabled, the
host control signals are synchronized to the internally generated CLK1 signal to prevent
metastable events from reaching the internal logic of the MC68322. However, the
synchronization logic does not prevent glitches on the host control signals from reaching the
PPI’s internal logic and causing spurious events.

When digital filtering is enabled, the host control signals are first synchronized and then
passed through individual digital filters. The digital filter samples the host input on the rising
edge of CLK1 and passes a logic level change through, but only if the host signal is sampled
at the same logic level for a second consecutive clock. Digital filtering protects internal logic
from glitches as wide as one CLK1 period. Such internal logic includes the hardware
handshake control logic, the PPCR, and the parallel port interrupt controller.

Synchronization plus digital filtering adds two CLK1 periods of delay before a level change
on one of the host signals appears in the PPCR, and three CLK1 periods of delay before an
output responds to an input (before BUSY responds to STROBE). Likewise, synchronization
and digital filtering of STROBE affect the point at which PD7–PD0 and AUTOFD are latched
into the PPIR. Without digital filtering, PD7–PD0 and AUTOFD are sampled on the second
rising edge of CLK1 after STROBE is first sampled low. With digital filtering, PD7–PD0 and
AUTOFD are sampled on the third rising edge of CLK1 after STROBE is first sampled low.
Digital filtering can be disabled to avoid the one clock penalty that it adds to recognizing
input signals. This is an option in specialized applications that have a high bandwidth
requirement and the ability to guarantee signal integrity between the host and the printer.
Otherwise, it is highly recommended that digital filtering be enabled.

Parallel Port Interface

9-12 MC68322 USER’S MANUAL MOTOROLA

9.5 ERROR CYCLES
An example of an error cycle is when the user takes the printer off-line, a paper jam occurs,
or the printer runs out of paper. When any of these or other events occur, the printer runs
an error cycle to alert the host of a change in the operational status of the printer. An error
cycle consists of asserting the BUSY signal and changing the states of SELECT, PERROR,
and/or FAULT to reflect the error condition. This is done by manipulating the ERC bit in the
PPCR, which in turn triggers the PPI to set or clear bits in the PIER.

In compatibility mode, the software sets ERC to notify the PPI when an error cycle occurs.
This causes the PPI to immediately set the BSY1 bit in the PIER. After 1 µs, the software
can set or clear the SEL, PER, or FLT bits in the PPIR, to indicate the error condition. After
the error condition is cleared, the software returns the SEL, PRR, and FLT to their normal
negated state. After 1 µs, the software clears ERC, and the handshake logic concludes the
cycle by generating an ACK pulse and clearing BSY1.

If ERC is set and then STROBE is received from the host, then the handshake logic
performs the data transfer and data is still latched, but no acknowledge is generated until
ERC is cleared. In other words, the ERC bit prevents the handshake logic from generating
an ACK pulse and clearing BSY1. Instead, ACK1 and BSY1 remain set in the PPIR and the
transfer cycle is extended. As long as ERC remains set, BUSY remains high, and the
software can manipulate status lines to indicate the error condition. After the error condition
is cleared, the software returns the SEL, PER, and FLT bits in the PPIR to their normal
negated state. After 1 µs the software clears ERC, and the handshake logic concludes the
cycle by generating an ACK pulse and clearing BSY1.

If ERC is set when the handshake logic is in the middle of a transfer, data is still latched, but
no acknowledge is generated until ERC is cleared. In other words, ERC prevents the
handshake logic from generating an ACK pulse and clearing BSY1. If ERC happens to be
set near the end of the cycle after the handshake logic has begun to generate an ACK pulse,
the hardware continues to produce the ACK pulse as normal. Setting ERC does not affect
an ACK pulse that is already active, but does prevent an ACK pulse that hasn’t yet started
(as described above). This behavior can result in two ACK pulses being generated while
BUSY is high. The first ACK is generated in response to STROBE and the second after ERC
is cleared. Figure 9-7 illustrates the timing diagram for an error cycle.

Parallel Port Interface

MOTOROLA MC68322 USER’S MANUAL 9-13

Figure 9-7. Error Cycle Timing Diagram

9.6 PARALLEL PORT DATA BUS LATCHING
Latching is enabled only when the PPCR’s PDE bit is clear. Latching occurs based on every
high to low transition of STROBE, regardless of the handshaking mode being enabled or
disabled. STROBE, like all PPI control inputs, is synchronized and optionally digitally filtered
before it is used internally by the PPI. This affects the point at which parallel port data is
latched. The 9-bit data input to the latch is not synchronized or digitally filtered. Figure 9-8
illustrates the timing diagram for parallel port data bus latching.

Figure 9-8. Parallel Port Data Latch Timing Diagram

ERC

SELECT

PERR

FAULT

BUSY

ACK

1µs DELAY 1µs DELAY

DATA

CLK1

STROBE

BUSY

DATA LATCHED
IF DFE = 0

DATA LATCHED
IF DFE = 1

Parallel Port Interface

9-14 MC68322 USER’S MANUAL MOTOROLA

9.7 PPI ON RESET
The assertion of RESET causes all PPI registers and register fields to be cleared to zero
(with one exception). The BSY2 bit in the PPIR is set and remains that way until the software
explicitly clears it. This is intended to delay the host long enough for the software to initialize
the PPI.

The RST bit in the PPCR resets the PPI state machine, which includes the hardware
handshake controller and run-length decompression logic. Normally, when RST is set,
MODE is set to 002 to prevent the state machine from starting again. RST immediately
causes the handshake controller and the run-length decompression logic to return to idle.
The handshake controller immediately discontinues handshaking with the host, terminates
decompression, and any pending DMA request is removed. When the PPI state machine is
in the idle state, BUSY and ACK are negated. If BSY2 and ACK2 are clear, then BSY1 will
be cleared and ACK1 will be set. RST also clears RLD and FLL bits in the PPCR. The
software should issue RST under error conditions, such as when an invalid transition
interrupt occurs or when the software detects a time-out error.

9.8 PPI DATA TRANSFER RATE
The expected data transfer rate in a system depends on several factors—capability of the
host computer, memory speed, and bandwidth used. The block size of the data transfer
affects the data rate because of the overhead involved. Forward data transfers are DMA
based and reverse data transfers are interrupt based. Overhead cycles such as the
negotiation phases are also interrupt based. The following are expected data transfer rates.

• Compatibility mode (forward) data rate = 400K/sec. Actually, the PPI is capable of a
compatibility mode forward data rate of 2M/sec. The 400K/sec is determined by the
IEEE 1284 specification.

• ECP mode (forward) data rate = 2M/sec.

• ECP decompression (forward) data rate = 4M/sec.

• Nibble mode (reverse) data rate = 5K/sec.

• Byte mode (reverse) data rate = 10K/sec.

MOTOROLA MC68322 USER’S MANUAL 10-1

SECTION 10
PRINT ENGINE INTERFACE

The MC68322 uses an 8-bit, half-duplex, synchronous serial protocol to communicate with
the print engine. This print engine interface contains an integrated print engine video
controller (PVC) as well as control logic for the 8-bit serial communication channel
compatible with many print engines. The print engine interface is one of the two components
of the graphics unit; the other being the RISC graphics processor.

The PVC can drive virtually all laser printers currently on the market. It automatically
retrieves video data from DRAM using burst cycles and manages all parameters associated
with the video image. This type of print engine video interface eliminates all the software
overhead associated with the transfer of the bitmap image to the print engine. The software
starts the transfer and waits for the end of page or band interrupt event, which allows the
core to start processing the next page. The PVC also saves a significant amount of
hardware cost. Static RAMs and FIFOs are unnecessary since the bitmap image is
transferred directly from DRAM, serialized, and then transmitted to the print engine. The
PVC uses an efficient page mode access to DRAM to fill its internal eight word queue
(FIFO).

The PVC is divided into two subsystems:

• A memory subsystem that performs direct memory accesses to DRAM to obtain video
data from a page or band bitmap.

• A video subsystem that serializes the data and handshakes with the printer to transmit
the video data.

The memory subsystem contains a data fetch controller, an 8-word deep FIFO, and many
counters. It interfaces to the core through a set of memory-mapped registers called the
printer control block. The video subsystem’s task is to interface with the print engine and
serialize and transmit video data. It contains a video interface controller, a 16-bit shift
register, a phase-locked loop (PLL) clock circuit, and some counters.

The PLL video clock divisor divides the VCLK input by 32, 24, 16, 12, 8, or 4 to produce the
dot clock for the PVC. This is accomplished internally by using a prescaler and by using
either the rising edge or both edges of the clock for the PLL. This feature allows for direct
support of multiple resolutions using a single external oscillator. For example, the PVC can
transmit 300 × 300, 600 × 300, 600 × 600, or 1200 × 600 resolution page images using the
same VCLK input frequency.

Print Engine Interface

10-2 MC68322 USER’S MANUAL MOTOROLA

The print engine interface is capable of sending and receiving information to and from a print
engine, which is done at the same time as all other operations within the MC68322. This
transmission and reception of information is synchronous either to the clock supplied by the
interface or to the clock supplied by the print engine. For transmitting video data, the PVC
can run synchronously from a 1× video rate from the print engine. If the print engine does
not supply a video clock, the PVC can phase lock to a print engine’s synchronization signal
and generate an internal video rate to use during transmission. The phase-locked loop
circuitry runs off of a clock from an external oscillator.

10.1 PRINT ENGINE INTERFACE REGISTERS
The print engine interface contains several registers that control the engine interface
protocol, signals, and interrupts. These registers include the printer communication register,
the PVC control register, the printer control block register set, the PVC interrupt event
register, and the printer communication interrupt event register.

10.1.1 Printer Communication Register
The printer communication register (PCOMR) contains several bits and fields that control
the status of data transfers to or from the print engine.

Figure 10-1. Printer Communication Register

The core uses the printer command field (write-only) to send an 8-bit command to the print
engine and the printer status field (read-only) receives an 8-bit serial command. The 12-bit
CCLK divisor field determines the period of the clock supplied to the print engine. CCLK
period = CLK1 period × (CCLK Divisor + 1) × 16. At 16MHz, this provides a range of 1µs to
4.1ms per CCLK period.

The PCOMR has three bits that determine the various modes of operation—the CMD/STS
bidirectional (CSB) bit, the SCLK source (SRC) bit, and the CCLK source (CRC) bit. The
CSB bit indicates whether CMD/STS is bidirectional (CSB=1) or output only (CSB=0). The
values programmed in the SRC and CRC bits determine whether the MC68322 (SRC,
CRC=1) or the print engine (SRC, CRC=0) have supplied status or command clocks,
respectively.

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRINTER COMMAND00FFF500

00FFF502

00FFF504

PRINTER STATUS

CCLK DIVISOR CSB SRC CRC

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-3

10.1.2 PVC Control Register
The PVC control register (PVCCR) contains bits that control the polarity of all MC68322
inputs and outputs used by the PVC. The PVCCR should be written after an MC68322 reset
and before a print operation begins.

Figure 10-2. PVC Control Register

While the PVC is active, the polarity of input signals should not be altered. The PVC
responds to a polarity change if it occurs while the PVC is waiting for a transition, but this
should be avoided. The PVCCR also contains the video clock source control bits, the PLL
video clock divisor control, and the SmartToner control bits.

SDN—SmartToner Density
This field selects one of four halftone patterns, where 002 = 1/2 density, 012 = 1/4 density,
102 = 1/6 density, and 112 = 1/8 density. This will affect the amount of toner used and the
quality of the printed page when the SmartToner feature is enabled.

SLC and SRC—SmartToner Left and Right Edge Control
These fields are used to select which dot the halftone pattern is applied to on the left and
right edges of a character. If the halftone pattern starts and ends on the first dot, then the
character will appear more jagged than if it starts and ends on the second or third dot. For
example, if the halftone pattern starts and ends on the second dot, then the character will
have a one dot wide border on the left and right sides, with the halftone pattern applied in
between.

PLE—PLL Edge
This bit is set to clock on both edges and clear to clock on rising edge only.

PLD—PLL Divisor
This field controls the PLL video clock prescaler. A PLD value of 002, 012, 102, or 112 causes
the VCLK input to prescale by one, two, three, or four before clocking the 8× PLL.

Table 10-1. SLC and SRC Encodings

ENCODING HALFTONE PATTERN

00 1st Dot

01 2nd Dot

10 3rd Dot

11 Not Used

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRT00FFF400

00FFF402 VCSVCPLSPFSPPRPBDPVDPPLDPLESRCSLCSDN

Print Engine Interface

10-4 MC68322 USER’S MANUAL MOTOROLA

VDP—VIDEO Polarity Control
Set if VIDEO is active high; clear if active low.

BDP—Border Polarity Control
Set to drive low logic level in a nonprinting area; clear to drive high.

PRP—PRINT Polarity Control
Set if PRINT is active high; clear if active low.

FSP—FSYNC Polarity Control
Set if FSYNC is active high; clear if active low.

LSP—LSYNC Polarity Control
Set if LSYNC is active high; clear if active low.

VCP—VCLK Polarity Control
Set if rising edge is to be used; clear if falling edge is to be used.

VCS—VCLK Source
Clear if VCLK input is 1× clock; set if VCLK input is an external oscillator driving the 8× PLL.

PRT—PRINT
This bit controls the level of the MC68322’s PRINT output pin. When the PRT bit is set,
PRINT is asserted, but when it is clear, PRINT is negated. The active level of PRINT is
determined by the PRP bit. In nonprinting applications or for applications that do not require
a PRINT interface signal, the PRINT output pin can be used as a general-purpose output.

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-5

10.1.3 Printer Control Block Register Set
The printer control block (PCB) register set is a group of six registers that define a print
operation for the PVC to execute. The PCB values define the dimensions and location of the
band image, page margins, and band control data. Loading the page image bit address
portion of the PCB is the stimulus that starts the PVC and begins a print operation. The entire
PCB register set is doubled buffered, which allows two print operations to be loaded at a
time. Basically, when the first operation finishes, the second operation immediately begins
executing. This is especially useful in banding applications.

Figure 10-3. Printer Control Block Register Set

The PCB’s vertical and horizontal margin registers position the page image on the printed
page. The vertical margin value specifies the number of scanlines that are skipped before
the first scanline of page image data and the horizontal margin value defines the number of
internal video clocks that are skipped before the first bit is transmitted at the start of each
scanline.

The PCB’s page image height and width registers describe the limits of the page image as
it is to be read from memory and transmitted to the print engine. The page image height is
measured in scanlines, but the page image width is in bits. The PCB also contains three 1-
bit fields that control the execution of a print operation on a band-by-band basis.

BND—Band
This bit is used during banding applications to indicate when the current band image is to be
followed by another band on a page. It is set for all bands, but cleared for the last band in a
sequence or when only one band appears on a page.

B2T—Bottom to Top
This bit is set to indicate the render direction. When B2T is clear, it indicates a top to bottom
and left to right direction. When set, it indicates a bottom to top and right to left direction.

SME—SmartToner Enable
This bit is used to reduce the amount of toner the printer uses. When it is enabled, a halftone
pattern is applied to the video data sent to the print engine. The print image in memory is
not affected. The SME bit is double buffered and can be set or cleared for a specific page.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BNDB2TSME

VERTICAL MARGIN00FFF404

00FFF406

00FFF408

00FFF40A

00FFF40C

00FFF410

00FFF412

HORIZONTAL MARGIN

PAGE IMAGE HEIGHT

PAGE IMAGE WIDTH

PAGE IMAGE BIT ADDRESS, LOW WORD

PAGE IMAGE BIT ADDRESS, HIGH WORD0

RESERVED

Print Engine Interface

10-6 MC68322 USER’S MANUAL MOTOROLA

The page image bit address fields hold the starting address of the band image to be printed.
This address is a bit address and points to the first bit of data to be transmitted to the print
engine. Loading the page image bit address fields is also the stimulus that starts the PVC
and initiates a print operation. The values of all other PCB registers must be set before the
page image bit address register is loaded.

10.1.4 PVC Interrupt Event Register
The PVC interrupt event register (PVCIR) contains five bits that indicate PVC interrupts
events, two that report normal events (band begin and page end), and three that report
errors (video under, band under, and PVC error). A PVC error interrupt event results from
an illegal address or out-of-range address. If an error is detected by the PVC during the
processing of the PCB register set, it sets one of these five interrupt sources in the PVCIR.
After any of these interrupts occur, the PVC’s operation is undefined and must be
immediately reset by the module soft reset register’s (MSRR) PVC bit to return it to normal
operation.

Figure 10-4. PVC Interrupt Event Register

BSY—PVC Busy
This bit indicates when the PVC is executing a print operation.

PFL—PCB Full
This bit indicates when the PCB register set is available for a new print operation. The PCB
registers should only be loaded when the PFL bit is clear. When the PFL bit is set, the PCB
register set should not be altered.

Note: It is not recommended that you change the SmartToner options in the PVCCR
(SLC, SRC, and SDN bits) while printing a page.

Note: The PVCIR is located in the interrupt register portion of the memory map and,
therefore, is not necessarily located contiguously with the other print engine
interface registers.

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BSY PFL PBB PGE BUD VUD ILA

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE

INTERRUPT
LEVEL

00FFF700

00FFF702

00FFF704

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-7

PBB—Page/Band Begin
This bit is posted at the start of every page or band. At the start of a page, PBB is set after
it receives FSYNC from the print engine and provides timing information to the software for
controlling the PVCCR’s PRT bit (typically, the timing of a print engine’s PRINT signal is
referenced to FSYNC). When starting a band in the middle of a page, a page/band begin
interrupt event is posted when the first page image data is read from memory.

PGE—Page End
This bit is issued at the bottom of every page (end-of-page is determined by the BND bit in
the PCB control field) immediately after the last word of the last scanline is read from
memory. In response to a page end interrupt event, the page or band buffer can be
reclaimed and reused for the next page.

BUD—Band Underrun
This bit indicates a banding error, which is posted when the last word of one band is read,
but the PCB register set (specifically, the page image bit address) for the next band is not
yet loaded. Band underruns usually point to a page description that is too complicated for
the given banding environment. This bit is only set when the BND bit in the PCB control field
is set, thus indicating that the image data is a band.

VUD—Video Underrun
This bit indicates that a video underrun has occurred. It is posted if the print engine requests
video data faster than the PVC can access memory. A video underrun is usually the result
of a band underrun or PVC error, but can also mean the memory configuration is too slow
for the video rate of the print engine.

ILA—Illegal Address
This bit indicates the PVC’s attempt to read from DRAM memory that is nonexistent because
of an out-of-range address. The out-of-range address occurs when reading page image
data and can be the result of loading an illegal memory address in the page image bit
address register or reading beyond the end of memory space. The PVC shuts down in
response to an out-of-range address. In this state, the PVC only responds to a PVC
soft-reset that is required to return the PVC to normal operation.

Print Engine Interface

10-8 MC68322 USER’S MANUAL MOTOROLA

10.1.5 Printer Communication Interrupt Event Register
The printer communication interrupt event register (PCIER) indicates when a serial
command has been sent or a serial status has been received.

Figure 10-5. Printer Communication Interrupt Event Register

The command sent (CMS) bit indicates that the PCOMR’s printer command field has been
written and that the 8 bits of command data have been sent to the print engine. This interrupt
event bit notifies the core that the command has been sent.

The status receive (STR) bit indicates that a status received interrupt event is active. This
occurs when the interface receives one byte of status data and the SBSY pin is deactivated.
STR is set when the SBSY pin is inactive to prevent a command operation from occurring
before the print engine is ready to receive it.

10.2 PRINTER COMMUNICATION PROTOCOL
The print engine interface uses the CBSY and SBSY pins to indicate the direction of data
transfer and it uses the CCLK pin to pace data transmissions. It does not employ
handshaking, but it asserts the CBSY and SBSY pins before the actual data transmission
so there is sufficient time for the logic to prepare for the subsequent data. CCLK remains
inactive until either the CBSY or SBSY pin is asserted and then goes through eight periods,
one per data bit. During a command transfer to the print engine, the MC68322 shifts a bit on
each CCLK falling edge and expects the print engine to sample the datastream on each
rising edge. Similarly, for a status transfer from the print engine, the MC68322 samples the
datastream on each rising edge and expects the print engine to shift a bit on each falling
edge.

Note: The PCIER is located in the interrupt register portion of the memory map and,
therefore, is not necessarily located contiguously with the other print engine
interface registers.

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE00FFF720

00FFF722

00FFF724

CMS STR

LEVEL

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-9

10.3 PRINT ENGINE INTERFACE OPERATION
Page images are generally rendered by the RISC graphics processor (RGP) into an area of
memory known as the band buffer. After a page image is rendered, the PVC is programmed
to transmit the contents of the band buffer to the print engine. The PVC starts by loading the
PCB register set with the dimension and location of the page image. Once the page image
bit address register is written, the memory subsystem sets the PVCCR’s PFL and BSY bits
and begins to fetch data from memory to fill its FIFO. After the video subsystem is started,
which is also started when the page image bit address register is written, PFL is cleared.

Next, the video interface controller begins waiting for FSYNC and once it arrives, a
page/band begin interrupt event is posted and the controller waits for the leading active edge
of LSYNC. Then after LSYNC arrives, the vertical margin count is decremented and the
controller again waits for LSYNC. When the vertical margin decrements to zero, the next
LSYNC causes the horizontal margin count to be decremented for each internal video clock
until it reaches zero. At this time, the first bit of video data is transmitted.

Video data is loaded from the memory subsystem’s FIFO into a 16-bit shift register. On each
active edge VCLK, data is shifted out. When the last data bit is shifted out, the shift register
is reloaded. As the video subsystem shifts out video data and empties the FIFO, the memory
subsystem makes additional memory fetches. The FIFO is filled until the page image height
and width values decrement to zero, at which time BSY is cleared and the memory
subsystem returns to idle. Every internal video clock decrements the page width counter.
When the page width counter reaches zero, the page height counter is decremented and, if
it is not zero, the video interface controller returns again to wait for LSYNC.

When the page width and page height reach zero, the transmission completes and the video
interface controller posts a page end interrupt event and returns to idle. If the BND bit was
set in the PCB’s band control register, the controller returns instead to end-of-band idle and
waits for another page address to load before resuming execution. A state diagram for the
video interface controller machine is illustrated in Figure 10-6.

Print Engine Interface

10-10 MC68322 USER’S MANUAL MOTOROLA

Figure 10-6. PVC Video Interface State Diagram

10.3.1 Synchronous/Asynchronous PVC Operation
The PVC interfaces with print engines that provide either an asynchronous or synchronous
interface. A print engine interface is considered synchronous if it supplies a video clock and
a synchronous control signal. If a print engine supplies no clock, the interface is considered
asynchronous. The PVC is programmed for synchronous operation by clearing the
PVCCR’s VCS bit. This causes the PVC to use VCLK as a 1× clock source to clock video
data. The VCLK period defines the width of a video dot. The active edge of VCLK is
programmed by setting the PVCCR’s VCP bit.

A synchronous print engine interface must source VCLK at a frequency that equals the
expected video dot rate and supply an LSYNC signal that meets the setup and hold
requirements of the MC68322 relative to the VCLK source. However, VCLK must be a
free-running clock.

VM>0

IDLE

WAIT
FOR

SYNC

START

START

FSYNC

LSYNC
&VM > 0

LSYNC &VM=0 &HM>0

LSYNC & VM = 0
&HM = 0

!LSYNC

FSYNC = FSYNC Asserted
HM = Horizontal Margin Register Value
LSYNC = Leading Edge of LSYNC Detected
PH = Page Image Height Register Value
PM = Page Image Width Register Value
START = Load of Page Image Bit Address Register
VM = Vertical Margin Register Value

VM = 0
&HM > 0

VM = 0
&HM = 0

HM > 0

HM = 0

PW > 0

PW = 0
&PH = 0
&!BAND

PW = 0
&PH = 0
&BAND

PW = 0
&PH > 0

!FSYNC

!START

!START

WAIT
FOR

SYNC

PRINT
VERTICAL
 MARGIN

PRINT
HORIZONTAL

MARGIN

END OF
 BAND
 IDLE

PRINT
VIDEO
IMAGE

NOTES:

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-11

The PVC is programmed for asynchronous operation by setting the PVCCR’s VCS bit. This
causes the PVC to use the VCLK as a clock source and to enable the internal PLL circuitry.
The VCLK input is either 4, 8, 12, 16, 24, or 32 times the frequency of the video data rate
the print engine requires. The PLL circuit continuously generates an internal 1× clock to
drive the video subsystem. When a print operation is active and LSYNC arrives, the PLL
adjusts the frequency of the internal 1× clock in synchronization with LSYNC’s arrival. The
PLL guarantees that each scanline starts at the same point on the page with a maximum
offset of an eighth of a dot.

The PLL always takes a 1-dot clock delay to synchronize with LSYNC. Depending on the
PLL prescaler value selected, this will be a fixed time in the range of 4 to 32 VCLK periods.
A horizontal margin of zero dots is allowed. Asynchronous interfaces need only provide an
LSYNC signal that accurately identifies the start of each scanline. And, again, the VCLK
source must be a free-running clock.

On reset, the print engine interface is programmed for synchronous operation. If you want
asynchronous operation with the PLL, the PVCCR’s VCS bit must be set. After changing the
VCS bit, a PVC reset interrupt event must be posted by setting the PVC bit in the MSRR.
This will reset the video state machines to a known state. The VCS bit should be changed
only between pages when the video state machines are inactive.

10.3.2 Command Operation
Commands are sent to the print engine based on CCLK. Writing another command to the
PCOMR printer command field before one is finished should be avoided because it will
corrupt the data. The PCOMR should be properly programmed to choose between the
command and status modes. SBSY and STS, which are used during status operations,
should not be asserted during a command operation.

10.3.2.1 CCLK SUPPLIED BY MC68322. In this mode, a write to the PCOMR’s printer
command field makes CBSY active. CBSY completely brackets a command transmission
by providing a setup and hold of one half CCLK period each. This allows sufficient time for
the print engine to detect the impending command byte and prepare its internal logic. Setting
the PCOMR’s CRC bit allows the MC68322 to supply CCLK. The value of the PCOMR’s
CCLK divisor field should be programmed to provide sufficient setup and hold time for the
command data, with respect to the rising edge of the CCLK.

Command data is transferred on CMD/STS, which remains in high impedance until the
CBSY setup time is satisfied. CMD/STS is then brought active (for one CLK1 period) and
each bit is driven on the falling edge of CCLK. The print engine should sample the command
data on the rising edge of CCLK. At the end of the transmission, CMD/STS is brought high
for one CLK1 period and then returns to the high impedance state.

When CBSY transitions to an inactive state (indicating the end of the command operation),
the PCIER’s CMS bit is set to notify the core that the command has been sent, thus causing
a command sent interrupt event to occur. The software should not try to write another
command until this interrupt is received.

Print Engine Interface

10-12 MC68322 USER’S MANUAL MOTOROLA

A recovery cycle is then initiated, during which no command or status operations are
performed. If a subsequent command operation is initiated during this time, it will be latched
and started after the recovery. If SBSY becomes active, indicating a status operation, then
it must remain active until the end of the recovery, which has the duration of one half CCLK
period. Figure 10-7 illustrates the timing diagram for a command operation when the core
supplies CCLK.

Figure 10-7. Command Operation—MC68322 Supplies CCLK

10.3.2.2 CCLK SUPPLIED BY PRINT ENGINE. In this mode, the print engine interface
expects eight rising edge transitions of CCLK from the print engine. Because CCLK is
asynchronous to CLK1, it is synchronized inside the MC68322. As a result, the period of this
signal can be no less than four CLK1 periods. When a command operation is initiated, CBSY
transitions to an active state and stays active until all command bits are transferred and hold
time (the value in the PCOMR’s CCLK divisor field) for the last command bit is satisfied.

Command data is transferred on CMD/STS, which remains in high impedance until the first
falling edge of CCLK. The command bit changes three CLK1 periods after every falling edge
of the CCLK. At the end of the transmission, CMD/STS is brought high for one CLK1 period
and then returns to the high impedance state. When CBSY transitions to an inactive state
(indicating the end of the command operation), the PCIER’s CMS bit is set to notify the core
that the command has been sent, thus causing a command sent interrupt event to occur.
The software should not try to write another command until this interrupt is received.

SBSY and STS, which are used during status operations, should not be asserted during a
command operation. Figure 10-8 illustrates the timing diagram for a command operation
when the print engine supplies CCLK.

CBSY

CMD/STS

1C 3C 4C 5C 6C 7C 8C 9C 10C2C

A B

C

SBSY and STS are not sampled during command operations.
A = CBSY setup; half CCLK period.
B = CMD sampled by the print engine.
C = Recovery cycle; half CCLK period.

NOTES:

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-13

Figure 10-8. Command Operation—Print Engine Supplies CCLK

10.3.3 Status Operation
CCLK status information is sent to the MC68322 from the print engine. During the status
operation, serial data is assembled into the PCOMR’s printer status field. Status information
can be supplied to the MC68322 on either the STS or CMD/STS signals. If status
information is driven on STS, the CMD/STS signal will be in a high impedance state. CBSY
is in a high impedance state during the status operation.

10.3.3.1 CCLK SUPPLIED BY MC68322. In this mode, the MC68322 print engine
interface generates eight high to low transitions of CCLK so that the status data can be
sampled at every rising edge. The PICR’s CCLK divisor field must be programmed to
provide sufficient setup and hold time for the status data to be sampled.

After all eight bits of the status are sampled, the print engine interface enters a recovery
cycle. The recovery time is one half CCLK period as programmed in the PCOMR’s CCLK
divisor field. During the recovery time, SBSY is not sampled and if a command operation is
initiated it will be latched and executed after the recovery. When the status operation is
complete, the PCIER’s STR bit is set, thus indicating that the PCOMR’s printer status field
is full. If enabled, this bit can and will cause an interrupt event.

SBSY is an asynchronous signal to the print engine interface and is internally synchronized
to CLK1. The print engine should not assert the signal at any time during a command
operation or recovery cycle. Once SBSY has been asserted, it must remain that way until
the status operation is initiated. Figure 10-9 illustrates the timing diagram for a status
operation when the core supplies CCLK.

CBSY

CCLK

CMD/STS

1C 3C 4C 5C 6C 7C 8C 9C 10C2C

A B C

D

SBSY and STS are not sampled during command operations.
A = CMD transmitted with the first falling edge of CCLK.
B = CMD sampled by the print engine.
C = CMD/STS hold; controlled by the CCLK divisor field.
D = Recovery cycle; half CCLK period. Any print engine response
 is acknowledged after recovery cycle.

NOTES:

Print Engine Interface

10-14 MC68322 USER’S MANUAL MOTOROLA

Figure 10-9. Status Operation—MC68322 Supplied CCLK

10.3.3.2 CCLK SUPPLIED BY PRINT ENGINE. In this mode, the print engine is expected
to supply eight high to low transitions of CCLK so that the status can be sampled on every
rising edge. The CCLK period must be at least four CLK1s for proper sampling of each
status bit. After all eight bits of the status are sampled, the print engine interface enters a
recovery cycle. The recovery time is one half CCLK period as programmed in the PCOMR’s
CCLK divisor field. When the status operation is complete, the PCIER’s STR bit is set, thus
indicating that the PCOMR’s printer status field is full. If enabled, this bit causes an interrupt
event.

SBSY is an asynchronous signal to the print engine interface and is internally synchronized
to CLK1. The print engine should not assert the signal at any time during a command
operation or recovery cycle. Once SBSY has been asserted, it must remain that way until
the status operation is initiated. Figure 10-10 illustrates the timing diagram for a status
operation when the print engine supplies CCLK.

Figure 10-10. Status Operation—Print Engine Supplied CCLK

SBSY

CCLK

STS

A B

CBSY and CMD/STS are in high impedance.
A = STS is sampled by the EC000 core.
B = Recovery cycle; half CCLK period. Any pending command
 is acknowledged after the recovery.

NOTES:

1C 3C 4C 5C 6C 7C 8C 9C2C

SBSY

CCLK

STS

A B

A = STS is sampled by the EC000 core.
B = Recovery cycle half CCLK period. Any pending command
 is acknowledged after the recovery.

NOTE: CBSY and CMD/STS are in high impedance.

1C 3C 4C 5C 6C 7C 8C 9C 10C2C

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-15

10.3.4 PLL Video Clock Divisor
The 8× PLL circuitry can clock on either the rising edge or both edges of its clock. This is
controlled by the PVCCR’s PLE bit. If the PLL clocks on the rising edge, it divides its input
clock by eight to produce a dot clock. This dot clock will have no more than 1/8 dot jitter. If
the PLL clocks on both edges, it divides its input clock by four to produce a dot clock. When
PLD = 00 or 10, and PLE = 01, the dot clock has no more than 1/7 dot jitter. When the duty
cycle of the VCLK is less than 50%, the amount of jitter will increase when using both clock
edges. The duty cycle does not adversely affect the jitter of the dot clock when using the
rising edge only mode. PLD and PLE have an effect only when the PVCCR’s VCS bit selects
the PLL clock. After changing the PLD or PLE bits, a PVC soft-reset must be posted. The
PLD and PLE bits should only be changed between pages when the video state machine is
inactive. Table 10-2 lists all values of PLD, PLE, and the resulting dot clock.

In some cases there are multiple configurations that produce the same effective dot clock.
It is preferable to use the rising edge of the clock when there is a choice because it will
produce slightly less jitter.

The prescaler can be set to divide by three. This is useful in a situation where only one
resolution is required because this would allow a common input clock for both VCLK and
CLK2. For example, if an 8 ppm engine at 300 × 300 dpi requires a dot clock of 2.5 MHz,
then VCLK could be 30 MHz. This 30-MHz clock could also be used for the processor clock
(CLK2) so that an oscillator could be eliminated from the board.

Table 10-2. PLL Video Clock Divisor

PLD
ENCODING

PLE
ENCODING

PRESCALE
VALUE

CLOCK EDGE DOT CLOCK
CLOCK
JITTER

0 0
1

+1 Rising
Both

VCLK ÷ 8
VCLK ÷ 4

1/8 Dot
1/7 Dot

1 0
1

+2 Rising
Both

VCLK ÷ 16
VCLK ÷ 8

1/8 Dot
1/8 Dot

2 0
1

+3 Rising
Both

VCLK ÷ 24
VCLK ÷ 12

1/8 Dot
1/7 Dot

3 0
1

+4 Rising
Both

VCLK ÷ 32
VCLK ÷ 16

1/8 Dot
1/8 Dot

NOTE: ClockJitter When PLLDIV = 0 And PLL EDGE = 1 Is Dependent On VCLK Input Clock Symmetry.

Print Engine Interface

10-16 MC68322 USER’S MANUAL MOTOROLA

10.4 PVC ON RESET
There are two sources for a PVC reset interrupt event—the MC68322 RESET pin and the
MSRR’s PVC bit. The RESET pin resets the entire device while the PVC soft-reset only
resets the PVC and PLL logic. The state of the PVC after each type of reset is similar in that:

• The PLL is reset

• All PVC controllers return to idle

• The PVCIR’s PFL and BSY bits are cleared

There are two important differences during a MC68322 reset—all PVC registers are cleared
and any pending PVC interrupts are cleared. Following the assertion of the RESET input, all
PVC registers are cleared to zeros. This causes the PVC to assume a default interface. The
default interface uses a 1× clock, interprets all inputs, and drives all outputs as active low
signals. If this interface is not correct for the specific print engine, the PVCCR must be
written to define a different interface. If the PVCCR’s VCS bit changes, then the PVC will
need to be soft-reset.

During a PVC soft-reset interrupt event, no PVC registers are affected. Any pending print
operation is cleared and the next print operation is assumed to start at the beginning of a
page. Any pending interrupts remain pending. A PVC reset interrupt event only occurs after
the conclusion of the PVC’s on-going memory cycle.

10.5 PVC VIDEO DATA TIMING
The following timing diagram illustrates the relationship between the video data and the
assertion of the LSYNC signal when the horizontal margin is set to zero.

There are many other variable associated with the behavior of the PVC. The above timing
diagram corresponds to a system configuration in the following manner.

LSYNC

VCLK

VIDEO

5ns (MIN) 2ns (MIN)
20ns (MAX)

Print Engine Interface

MOTOROLA MC68322 USER’S MANUAL 10-17

10.5.1 1X Video Clock(PVCCR Bit 0 = 0)
If the PLL is used, then video data will be clocked out by an “effective video clock” that is
generated internal to the MC68322. Recognition of the LSYNC signal and the subsequent
output of video data is relative to this internal clock since it is located outside the chip. For
applications that use an external ASIC to post-process the video data, use the 1X clock
mode.

10.5.2 VCLK Rising Edge (PVCCR Bit 1 = 11)
If VCP = 0, the specifications shown above are relative to the falling edge of VCLK.

10.5.3 Border Polarity High (PVCCR Bit 5 = 0)
This bit controls the state of the video out signal in the “margin” area of the page. If this bit
is set, the video signal is driven low when the video data is not being driven out of the part.

MOTOROLA MC68322 USER’S MANUAL 11-1

SECTION 11
RISC GRAPHICS PROCESSOR

The RISC graphics processor (RGP) is one of the two components of the graphics unit; the
other being the print engine interface. The RGP executes a display list of graphic orders (a
special list of instructions) to render a page image. This section describes the following RGP
functional blocks and how they operate.

• Graphic order parser

• Graphic order execution unit

• Band registers

• Arithmetic logic unit

• Pixel data files

• Boolean logic unit

The graphic order parser is responsible for reading the display list and determining opcode
type and, if a banded opcode, the appropriate band to process the graphic order. It is also
responsible for aligning and transferring the operands into the band registers, interpreting,
aligning, and transferring scanline table bit string specifiers into the band registers, as well
as writing back any modified operands in the event of a band fault.

The graphic order execution unit is a collection of state machines that control all aspects of
the graphic operations, including calculation of effective addresses, rectangular pixel array
widths in words, barrel shifter rotation offsets, left/right mask values, and halftone
positioning. The band registers hold the graphic order operands and values that are required
for internal use. The arithmetic logic unit performs all internal calculations including addition,
subtraction, increment by one, decrement by one, and comparison. It is also used to
calculate and modify effective addresses for source, destination, and halftone bit maps.

The pixel data files (along with internal barrel shifters) hold source, halftone, and destination
data, and it constantly adjusts so that all the data is uniformly aligned. These data files
operate independently from the remainder of the RGP, requesting new data at the same
time existing data is processed through the barrel shifters or Boolean logic unit for
subsequent writing to memory.

The Boolean logic unit carries out all combinations of 1-, 2-, and 3-operand Boolean
operations, combining source, halftone, and destination data together in one of 256 possible
combinations. Left and right masking is used to preserve the original destination data at the
left and right edges of the destination bitmap.

RISC Graphics Processor

11-2 MC68322 USER’S MANUAL MOTOROLA

11.1 RGP REGISTERS
There are three registers that provide control of and receive status from the RGP—the RGP
start register, the RGP diagnostic register, and the RGP interrupt event register.

11.1.1 RGP Start Register
The RGP starts by writing the address of a display list into the RGP start register (RSR).
When the RSR is loaded, the first graphic order is fetched. The RSR in the MC68322 is
double buffered, thus allowing a second display list address to be loaded into the RSR prior
to the completion of the first display list. The second display list is automatically started as
soon as the first one finishes.

Figure 11-1. RGP Start Register

11.1.2 RGP Diagnostic Register
The RGP diagnostic register (RDR) contains the byte address of the graphic order opcode
or operand being interpreted from the display list. It is frozen when an error occurs and the
RGP interrupt event register’s RER bit is set. Depending on the nature of the error, the RDR
can be frozen beyond the exact point in the display list where an RGP error occurs because
of the prefetch characteristics of the RGP. The RDR resumes functioning when a soft-reset
of the RGP occurs.

Figure 11-2. RGP Diagnostic Register

11.1.3 RGP Interrupt Event Register
The RGP interrupt event register (RIER) processes and controls interrupts from the RGP to
the core.

Figure 11-3. RGP Interrupt Event Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HIGH WORD000000FFF800

00FFF802 LOW WORD 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HIGH WORD000000FFF804

00FFF806 LOW WORD 0

 = RESERVED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ENABLE00FFF710

00FFF712

00FFF714

RBY DLF RDN RER

INTERRUPT
LEVEL

RISC Graphics Processor

MOTOROLA MC68322 USER’S MANUAL 11-3

The RDN and RER bits are set by the RGP to indicate one interrupt event to the core and
each event bit has a corresponding bit in the enable field. The RBY bit indicates that the
RGP is executing a display list and the DLF bit indicates that a second display list is queued.
The RGP sets the RBY bit when the RSR is loaded and clears the RBY bit when it
encounters a STOP graphic order. If a second display list start address is loaded before a
STOP graphic order is encountered, the RGP keeps RBY set as the second display list
starts.

Since the RSR is double buffered, the DLF bit is set only after a second display list address
is loaded. If a second display list address was loaded and RGP reaches the end of the
current display list, it clears the DLF bit, keeps RBY set, and starts reading the second
display list. DLF is cleared as soon as a STOP graphic order opcode for the current display
list is encountered. If the RSR is loaded when DLF is set, the new address overwrites the
previously queued address. Also, when an error occurs, RBY and DLF retain their state until
the RGP is soft-reset.

11.2 RGP BASIC OPERATION
The RGP can render either an entire page from a display list or multiple bands from a single
banded display list. The RGP is activated by writing the starting address of a display list to
the RSR. The RGP then executes the display list and renders a page or band image and
when the end of the display list is reached, the RGP generates an RGP done interrupt event
to the core and waits for another display list address. Be aware that a second display list
address can be loaded while the RGP is working on the first display list. In this case, an
interrupt is generated upon completion of the first display list and the second display begins
executing immediately. Also, a second interrupt is generated upon completion of the second
display list.

The ability of the RGP to render multiple bands from a single banded display list allows for
complete freedom in the design of a banded memory system. A banded display list contains
band information near the beginning of the list. This band information includes the address
and size of the band, as well as the band number that is to be processed. The RGP uses
this information to determine which orders from the display list to process and where in
memory to create the bitmap image for the specific band. After one band is fully rendered
and the RGP generates an RGP done interrupt event, the software should adjust the display
list to reflect the next band information and then restart the RGP. The quantity, size, and
location of band buffers is determined by the core’s software. These band parameters can
be dynamically altered to suit a particular application or page complexity. The band numbers
are under software control to allow for nonsequential band processing applications like
duplex printing.

Depending on the length of the display lists and interrupt latency, one or both display lists
can complete and generate an RGP done interrupt event before any interrupt is even
serviced. To determine whether one or both display lists has executed, the software must
first clear the RIER’s RDN bit, then reread it to examine the current setting. If the RIER’s
RBY bit is set and a RGP done interrupt is being serviced, then one display list has finished
and the second display list is currently being executed. If the RBY bit is clear, both display
lists have finished and the RGP is sitting idle.

RISC Graphics Processor

11-4 MC68322 USER’S MANUAL MOTOROLA

The RGP can detect certain errors during the execution of a display list, including an
out-of-range display list start address, out-of-range graphic order operand addresses, and
illegal graphic order opcodes. When the RGP detects one of these errors, it immediately
stops processing the current display list and sets the RIER’s RER bit. When RER is set, the
RDR determines the graphic order that generated the error. However, the RGP must be
reset by an RGP soft-reset to return it to normal operation. A write to the RGP bit in the soft-
reset register initiates an RGP soft-reset operation. See Section 5 Interrupt and Exception
Handling for more information. On an RGP soft-reset, the RGP registers are initialized as
follows:

1. RSR is purged.

2. RIER’s DLF and RBY bits are cleared.

3. RDR is cleared to all zeros.

4. Internal Boolean code registers that hold the Boolean values defined by the
SET_BOOL graphic orders are cleared to all zeros.

If the RSR is loaded between the time an RGP error is detected and the time the soft-reset
is issued, the address stored in the RSR is lost. Additionally, if RDR information is needed,
the RDR must be read before an RGP soft-reset is executed. Due to the prefetching
characteristics of the RGP, and depending on the type of error, the address returned by the
RDR may be slightly beyond the source of the error.

When a graphic order is interrupted due to a band fault, all parameters necessary to resume
the data transfer at the point where the band fault occurred are written back into the display
list. In addition, the graphic order’s band number is incremented (or decremented for 180°
pages) and written back into the display list to ensure that the graphic order is executed for
the next band. Since the hardware automatically updates graphic orders that generate band
faults, graphic orders that span multiple bands execute without any software intervention.
Once a graphic order has been updated after a band fault, the execution of the display list
continues with the next graphic order in the list.

MOTOROLA MC68322 USER’S MANUAL 12-1

SECTION 12
GRAPHIC OPERATIONS

The MC68322’s graphics unit (comprised of the print engine interface and the RISC
graphics processor) operates on a display list, which is a collection of graphic orders. A
graphic order is a special instruction or command that directs the MC68322 to perform a
discrete function, such as setting internal environment registers or executing graphic
operand transfers (source to destination bit maps). The MC68322 supports two types of
transfers—bit block and scanline.

12.1 TYPES OF BITMAPS
The basic element of a graphic operand is the bitmap. As described in Section 1
Introduction, a bitmap is a two dimensional array composed of scanlines (each row in the
array) and pixels (the junction of a scanline and column in the array). The width of the bitmap
(X dimension) is the number of pixels in the scanline and the height of the bitmap (Y
dimension) is the number of scanlines. Graphic orders use six types of bit maps:

• Banded—A banded bitmap has a warp associated with it that defines the X dimension
and a logical coordinate that defines the Y dimension. When specifying a banded
bitmap in a transfer of data, the transfer of data is checked against the Y boundary of
the bitmap. If the data falls beyond the Y boundary, a band fault occurs and the transfer
of data for the current graphic order is prematurely terminated.

• Unbanded—An unbanded bitmap also has a warp associated with it that only defines
the X dimension. However, there is no logical coordinate associated with its Y
dimension. The significance of this is that no boundary checks are made for unbanded
bit maps. When specifying an unbanded bitmap in a transfer of data, it is assumed that
the bitmap is of sufficient size to complete the transfer.

• Unexpanded—An unexpanded bitmap is a two dimensional array of pixels that
represents a low resolution image. Typically, an unexpanded bitmap describes a
bitmap image that is created at 75, 100, 150, 200, or 300 dpi. In contrast, all other bit
maps have an implied resolution that matches the print engine resolution, which can be
300, 600, or 1200 dpi. Unexpanded bit maps can be positioned anywhere in memory,
packed or unpacked, and they do not need to be aligned to word boundaries. Also, an
unexpanded bitmap is always used as a source bitmap by expanded graphic orders.

• Expanded—An expanded bitmap is a conceptual term that describes the outcome of
processing an unexpanded source bitmap during the execution of an expanded graphic
order. The expanded graphic order increases the resolution of the unexpanded bitmap
to match the resolution of the destination bitmap being used in a transfer. Since the
RGP expands the unexpanded bit maps during the transfer, expanded bit maps never
actually exist in memory.

Graphic Operations

12-2 MC68322 USER’S MANUAL MOTOROLA

• Frame—A frame bitmap is a two dimensional array of pixels that is generally a subset
of some larger bitmap array (the width and warp are identical). For example, a frame
bitmap could describe the bounding box of a character. To better illustrate this
difference, suppose a rectangle is transferred to a bitmap, both the warp of the bitmap
and the width of the rectangle being transferred must be specified. When transferring a
rectangle to a frame bitmap, the warp is the width of the rectangle being transferred.
Operations that involve transferring pixels to frame bit maps are particularly useful
when a small rectangle of a larger image must be saved for future reference. The frame
bitmap is the smallest possible storage means for the rectangle because the scanlines
are packed in memory. The end of one scanline and the beginning of the next have no
unused bits between them.

• Halftone—A halftone bitmap is a special type of bitmap because it is automatically
replicated in both the horizontal and vertical directions. It is intended to hold a pattern
that is repetitively applied to data being transferred from a source bitmap to a
destination bitmap, thus causing a change in the appearance of the data.

12.2 GRAPHIC OPERANDS
Up to three operands are used when composing the print image—source, destination, and
halftone. The source operand is typically located in a frame or unexpanded bitmap, the
destination operand in a banded or unbanded bitmap, and the halftone operand in a halftone
bitmap. These operands are represented by a specific 1-byte constant value, which is listed
in Table 12-1.

These five constant values can be combined using Boolean arithmetic computations to yield
a 1-byte Boolean code that corresponds to a specific transfer effect. See Section 12.4
Boolean Codes for more information.

Table 12-1. Graphic Operation Data
Operand Constant Values

CONSTANTS BINARY CODING

Zero 00000000

One 11111111

Destination 10101010

Source 11001100

Halftone 11110000

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-3

12.3 TYPES OF GRAPHIC OPERANDS
Graphic orders specify which graphic operands to transfer and there are three types:

• All graphic orders of the form XXXX_D (such as SET_BOOL_D) define 1-operand
transfers that specify only the destination bitmap.

• All graphic orders of the form XXXX_SD or XXXX_HD (such as BLT2F_SD or
SL2UB_HD) define 2-operand transfers that specify the destination bitmap and either
the source or halftone bitmap (the halftone applied to the destination).

• All graphic orders of the form XXXX_SHD (such as BLT2BB_SHD) define 3-operand
transfers that specify the destination bitmap, source bitmap, and halftone bitmap (the
halftone applied to the source and destination).

12.4 BOOLEAN CODES
The preferred result of a graphic operand transfer must be specified by means of the 1-byte
Boolean code that directs the MC68322 to logically combine the given source, destination,
and/or halftone operands during the graphic operation. Figure 12-1 illustrates eight common
Boolean-coded graphic operation transfers and all 256 Boolean-coded graphic operation
transfer combinations are represented in Figure 12-2. They involve all possible logical
combinations between the true and inverted versions of the three operands.

Figure 12-1. Eight Common Graphic Operation Transfers

HT = HALFTONE
BIT MAP

S = SOURCE
BIT MAP

D = DESTINATION
BIT MAP

CLEAR

CLEAR TO BLACK CLEAR TO PATTERN

OPAQUE TRANSPARENT

OPAQUE TRANSFER SEMI-TRANSPARENT

FULLY TRANSPARENT
(D 0) (D S) (D S + D) (D S Λ HT + D)

(D 1) (D HT) (D S Λ HT) (D S Λ HT + !S Λ D)

Graphic Operations

12-4 MC68322 USER’S MANUAL MOTOROLA

Figure 12-2. 256 Possible Boolean Coded Graphic Operation Transfers

The Boolean codes shown in Figure 12-2 are derived from the constants listed in
Table 12-1. For example, setting the Boolean code to EE16 causes the MC68322 to OR the
source and destination operands, thus producing a transparent combination of the two. This
combination, illustrated in Figure 12-2 (row E0, column 0E), is calculated by logically OR’ing
the destination and source constants.

DESTINATION V SOURCE = BOOLEAN CODE

10101010 V 11001100 = 11101110 = EE16

00 00

80 80

10 10

90 90

20 20

A0 A0

30 30

B0 B0

40 40

C0 C0

50 50

D0 D0

60 60

E0 E0

70 70

F0 F0

00

00

01

01

02

02

03

03

04

04

05

05

06

06

07

07

08

08

09

09

0A

0A

0B

0B

0C

0C

0D

0D

0E

0E

0F

0F

DESTINATION
BIT MAP

SOURCE
BIT MAP

HALFTONE
BIT MAP

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-5

A more complicated graphic operation transfer is calculated in the same way. For example,
the Boolean code for a semi-transparent source transfer onto the destination bitmap
involving halftoning (sometimes used by PostScript) is determined as follows:

Take caution when calculating a Boolean code to ensure only operand values that are
contained in the graphic operation transfer are used. For example, the halftone value should
not be used when specifying the Boolean code for a transfer involving a source/destination
graphic order. If this constraint is violated, the MC68322 treats the extra parameter(s) as
zero. Thus, if the Boolean code for dest = (source Λ halftone) V dest is used to specify a
transfer involving a source/destination graphic order, the MC68322 treats the halftone
parameter as zero. The resulting operation becomes dest = (source Λ 0) V dest or simply,
dest = dest.

12.5 BIT BLOCK TRANSFERS
A bit block transfer (bitBLT) is an operation that combines up to three rectangular bit maps
(source, halftone, and destination) in some Boolean combination and places the result in the
original destination bitmap. An expanded bitBLT operation is similar to a standard bitBLT
operation, except that each pixel of the source bitmap is replicated in one or both
dimensions by scaling factors from 1 to 16. An expanded bitBLT graphic order reads an
unexpanded source bitmap directly from memory and expands it to match the resolution of
the destination bitmap. Then it is combined with the destination and/or halftone bitmap to
complete the transfer.

For normal or expanded bitBLT operations, if the destination bitmap is a banded bitmap, the
transfer terminates prematurely if the transfer frame extends below the bottom of the band.
This is considered a band fault. The remainder of the display list is processed in the event
of a band fault, but the transfer operation that caused the band fault will resume when the
display list is rerun to render the next band of the page image.

12.6 SCANLINE TRANSFERS
Scanline transfers are used to operate on nonrectangular regions of bit maps. In their
simplest form, they are used to fill arbitrary polygons and draw vectors. A scanline transfer
involves operating on a specified set of scanline runs on one or more bit maps. The set of
scanline runs is defined by a scanline table, which contains a series of bit string specifiers.
Each bit string specifier is a compressed run-length encoding of a scanline run. The
compressed format of scanline tables not only saves memory, but also improves
performance since fewer memory fetches must be performed.

[(NOT SOURCE) Λ DESTINATION] V (SOURCE Λ HALFTONE) = BOOLEAN CODE

[(NOT 11001100) Λ 10101010] V (11001100 Λ 11110000) = 11100010 = E216

Graphic Operations

12-6 MC68322 USER’S MANUAL MOTOROLA

Scanline operations arise quite often from two sources. The first occurs from outline fonts,
which describe the outline of a set of characters via splines, lines, and arcs. The outlines are
scaled for the preferred point size through software algorithms. The result is a set of scanline
endpoints that must be filled to create a solid character. The second occurs from vector
images such as wire-frame diagrams, which are entered as either a series of line drawing
graphic orders or as a previously generated bitmap. Since these vector images contain a
high percentage of white space, they typically require less storage space when described
as a series of scanline operations. Scanline transfers operate on a destination bitmap and
specify a halftone bitmap to render grayed or patterned images. No source bitmap is
involved in a scanline transfer.

12.6.1 Scanline Tables and Bit String Specifiers
A scanline table consists of a series of bit string specifiers representing an image that has
been compressed using run-length encoding. For example, bitmap fonts can be converted
into this format to reduce memory requirements for font storage. A scanline table can also
be used to efficiently represent line art and filled polygon shapes.

Each bit string specifier describes a displacement along with a run-length encoded definition
of a graphics operation for the RGP to perform on a single scanline. The MC68322 supports
three different sizes of bit string specifier formats: 16-, 32-, and 48-bit. The smaller formats
help to reduce memory requirements when short displacements or scanline runs are
required. The larger formats allow any pixel in a bitmap to be reached with a single specifier.
Three bit string specifiers are supported:

• 16-Bit—Conditionally moves to the next scanline, goes a short distance left or right from
there, and then draws a line that is a maximum of 63 bits long.

• 32-Bit—Moves vertically up to three scanlines, goes a large distance left or right from
there, and then draws a line that is a maximum of 4,095 bits long.

• 48-Bit—Moves a very large distance in both X and Y dimensions and then draws a line
that is a maximum of 16,383 bits long.

All bit string specifiers are multiples of 16 bits and must always be located on word memory
boundaries (0 mod 2 byte addresses). Each bit string specifier consists of an ID field, an
unsigned run length (RL) field, and a signed displacement (DX, DY, or DZ) field. Figure 12-3
illustrates the three types of bit string specifier formats.

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-7

Figure 12-3. Bit String Specifier Formats

The ID field identifies the type of bit string specifier. The bit string specifiers are designed to
be recognizable no matter what direction the scanline table is read from memory. This is
required to properly handle scanline graphic orders in a duplex banding environment where
0° and 180° pages are possible. Thus, the ID fields in the 32- and 48-bit bit string specifiers
are duplicated to allow parsing of the scanline table in either direction. The RL field indicates
the number of pixels to be drawn horizontally during the scanline run.

The displacement fields indicate the number of horizontal and vertical pixels to skip before
drawing a scanline. The DX field indicates the signed horizontal movement along the X
dimension of the bitmap. The DY field indicates the unsigned vertical movement along the
Y dimension of the bitmap. The DZ field is the signed aggregate displacement based on a
calculation of the preferred X and Y movements along with the destination warp. Thus, the
warp of the target bitmap must be known before building a scanline table containing 48-bit
bit string specifiers. This calculation is DZ = (DY x DW) + DX, where DW is the unsigned
warp of the target destination bitmap. Note that DY is signed for this calculation. Table 12-2
lists the definitions for each field of the three types of bit string specifiers.

16-BIT SPECIFIER

32-BIT SPECIFIER

48-BIT SPECIFIER

ID=0

ID = 102

ID = 102

ID = 112

ID = 112

+0

+2

+0

+0

BYTE ADDRESS
OF WORD

+2

+4

DY

DY

RL

RL

RL

DX

DX

MSB

LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTES:
 RL = Run Length (unsigned)
 DX = X Dimension Displacement—Horizontal (signed)
 DY = Y Dimension Displacement—Vertical (unsigned)
 DZ = X and Y Dimension Displacement—Horizontal and Vertical (signed)

DZ

Graphic Operations

12-8 MC68322 USER’S MANUAL MOTOROLA

A 16-bit null termination bit string specifier of 000016 is placed before the beginning and after
the end of every scanline table. This is a real specifier that specifies no movement of the
base pointer and a run of zero pixels. Note that the null terminators can be shared between
scanline tables placed adjacent in memory. In other words, the ending point 000016 of one
scanline table serves as the starting point 000016 for the next scanline table. The dual
termination of the scanline tables is required for duplex banding applications where the
MC68322 reads the scanline table in both forward and reverse directions to render 0° and
180° pages.

12.6.2 Scanline Run Operation
When a scanline graphic order begins, the current destination address is established by the
initial address specified in the graphic order. The MC68322 maintains a current destination
address value and updates it after each bit string specifier is executed. For 0° pages, after
a scanline run occurs, the current destination address points to the pixel immediately
following the last pixel in the run. For 180° pages, the current destination address points
where the last specifier’s X and Y displacements put it.

The displacements specified by DX, DY (for 16- and 32-bit bit string specifiers), and DZ (for
48-bit bit string specifiers) are applied before executing the scanline run for a 0° page and
after executing it for a 180° page. Figure 12-4 illustrates a scanline run using the values in
the bit string specifier fields. Notice that destination address A is the initial address for 0°
pages as well as the final address for 180° pages and, in turn, address B is the final address
for 0° pages and the initial address for 180° pages.

Figure 12-4. Scanline Run Operation

Table 12-2. Bit String Specifier Field Definitions

BIT STRING TYPE FIELD DEFINITION

16-bit DY Zero to one scanline.

RL 0 to 63 pixels.

DX +127 to –128 pixels.

32-bit DY Zero to three scanlines.

RL 0 to 4,095 pixels.

DX +8,191 to –8,192 pixels.

48-bit RL 0 to 16,383 pixels.

DZ +536,870,991 to –536,870,992 pixels.

DY

DX RL

DESTINATION
ADDRESS A

DISPLACEMENT

DESTINATION
ADDRESS B

SCANLINE RUN

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-9

When rendering to banded bit maps of 0° pages or to frame and unbanded bit maps, the
displacement is added to the current destination address before the scanline is drawn. The
scanline run is then completed in a left to right direction. When rendering to banded bit maps
of 180° pages, the run length is first subtracted from the current destination address and that
address is saved. Then the scanline run is carried out in a left to right direction and the
displacement is subtracted from the saved destination address.

12.6.3 Executing During Banded Applications
When executing a scanline table for a banded bitmap, the MC68322 performs boundary
checking to detect a band fault before executing each bit string specifier. A band fault occurs
when the destination bitmap is a banded bitmap and the scanline frame extends below the
end of the band. A band fault will cause the scanline transfer to terminate prematurely. The
remainder of the display list is processed in the event of a band fault, but the execution of
the scanline table resumes when the display list is rerun to render the next band of the page
image.

The MC68322 does not, however, check for a band fault while processing the scanline run
lengths. During banding applications, there are two ways to use bit string specifiers that can
cause unwanted destruction of data. The destruction occurs when the bit string specifier
causes processing to occur outside of the banded bitmap. One way is when a bit string
specifier contains a signed offset that references a previous band (see Figure 12-5). The
MC68322 checks only the lower boundary of the banded bitmap, so the violation goes
undetected. Normally, the MC68322 would process the bit string specifier’s run length at a
memory location that is not contained within the target bitmap.

Figure 12-5. Illegal Bit String Specifier Use

Another way is when a bit string specifier contains a run length that wraps from one scanline
to another and the new scanline is beyond the end of the current band. The MC68322 does
not check horizontal and vertical boundaries while processing the bit string specifier’s run.

PREVIOUS
BAND

CURRENT
BAND

CASE 1

OK

CASE 2

NEXT
BAND

Graphic Operations

12-10 MC68322 USER’S MANUAL MOTOROLA

12.6.4 Halftone Companion Tables
A halftone bitmap is automatically replicated in both the X and Y dimensions. For scanline
graphic orders, the task is complex since each scanline run describes an individual area on
which to be operated. For example, on 0° pages after the displacement required by the bit
string specifier has been applied, the proper location in the halftone bitmap must be
calculated. For the 16-bit bit string specifier, this task is relatively straightforward and can be
carried out with a minimum number of cycles. For the 32- and 48-bit specifiers, the task is
considerably more complex because of the much larger displacement values associated
with them. The task can be accomplished, but at a significant cost in overhead cycles. To
reduce the penalty for the larger bit string specifier formats, a halftone companion table is
employed. This eliminates virtually all overhead cycles in return for only slightly higher
memory storage requirements within typical scanline tables.

The halftone companion table contains a list of corresponding halftone specifiers (similar in
composition to bit string specifiers) for each 32- and 48-bit bit string specifier in the scanline
table. There is no corresponding halftone specifier for 16-bit bit specifiers because they are
halftoned without assistance. The halftone specifiers use displacements instead of absolute
values. This minimizes the number of halftone tables to one per halftone pattern for each
halftoned character. Thus, if a character is halftoned, only one halftone table must be
constructed, regardless of the number of times the character is used. The same halftone
table for a particular character can be used with different halftone patterns if the dimensions
of each halftone bitmap are identical.

Each field of a halftone specifier corresponds to a similar field in the 32- or 48-bit bit string
specifier. As illustrated in Figure 12-6, the 32-bit halftone specifier contains two fields—a
halftone horizontal movement (HDX) and a halftone run length (HRL). HDX corresponds to
the 32-bit bit string specifier’s DX field and HRL corresponds to the RL field.

Figure 12-6. 32-Bit Halftone Specifier Format

HDX and HRL are defined as follows where HW is equal to the warp of the target halftone
bitmap:

HDX = DX mod HW (DX ≥ 0) V [HW – (– DX mod HW)] mod HW (DX < 0)

HRL = RL mod HW

+0

BYTE ADDRESS
OF WORD

+2 HRL

HDX

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTES:
 HRL = Halftone Run Length (unsigned)
 HDX = X Dimension Displacement—Horizontal (unsigned)

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-11

Both HDX and HRL are unsigned values, but their values should satisfy the following
boundary conditions:

0 < HRL < HW

0 < HDX < HW

The Y displacement found in the 32-bit bit string specifier (DY field) is automatically handled
by the MC68322 and has no corresponding field in the companion halftone specifier. HRL
is required for 180° pages since the graphics unit uses this offset to internally render
scanline runs from left to right.

As illustrated in Figure 12-7, the corresponding halftone specifier for the 48-bit bit string
specifier is 80 bits long and contains four fields—halftone vertical movement (HDY), halftone
horizontal movement (HDX), halftone run length (HRL), and halftone physical starting
address (HDA).

Figure 12-7. 48-Bit Halftone Specifier Format

The preferred horizontal and vertical displacements used in the original calculation of the bit
string’s DZ field are required to generate the parameters of the companion halftone
specifier. The four parameters for the 48-bit companion halftone specifier are defined as
follows:

HRL = RL mod HW

HDX = DX mod HW (DX ≥ 0) or [HW – (– DX mod HW)] mod HW (DX < 0)

HDY = DY mod HH (DY ≥ 0) or [HH – (– DY mod HH)] mod HH (DY < 0)

HDA = (HDY × HW) + HDX

BYTE ADDRESS
OF WORD

+0

+2

+4

+6

+8

HDY

HDX

HRL

MSB

LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NOTES:
 HRL = Halftone Run Length (unsigned)
 HDX = X Dimension Displacement—Horizontal (unsigned)
 HDY = Y Dimension Displacement—Vertical (unsigned)
 HDA = Halftone Starting Address Displacement (unsigned)

HDA

Graphic Operations

12-12 MC68322 USER’S MANUAL MOTOROLA

Where:

DX and DY are the signed X and Y dimension values used in the calculation of DZ

HH is the target halftone bitmap height

HW is the target halftone bitmap width

HRL, HDX, HDY, and HDA are all unsigned values and their values should satisfy the
following boundary conditions:

0 < HRL < HW

0 < HDX < HW

0 < HDY < HH

0 < HDA < HZ

Where:

HZ is the total number of bits in the halftone bitmap

Any 32- or 48-bit bit string specifier, with a corresponding halftone specifier, must not have
a horizontal displacement that extends beyond either side of the destination bitmap. The
halftoning operation does not track the Y dimension displacement caused by wrapping
around the sides of a bitmap. Of course, the same is true for the run lengths since no
horizontal clipping is performed at the left or right edges of the destination bitmap for any
graphic order.

Unlike the scanline table, the halftone table requires no 000016 terminators. The parsing of
the halftone table tracks that of the scanline table, reading both tables in parallel. For
32- and 48-bit specifiers, the MC68322 reads a specifier from each table and for 16-bit
specifiers, only the scanline table is read. The halftone specifiers, like their bit string
counterparts, must be located on word-aligned boundaries and, consequently, the halftone
table address pointer specified in the scanline graphic order must be word aligned (0 mod 2
byte address).

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-13

12.7 SCANLINE AND HALFTONE TABLE EXAMPLE
Figure 12-8 illustrates an example scanline table, its corresponding halftone table, and the
resulting image. Notice that the halftone table contains only two specifiers, since the
scanline table is mostly composed of 16-bit bit string specifiers, and that the halftone table
is not terminated with 000016 null specifiers, but the scanline table is.

Figure 12-8. Scanline and Halftone Table Example

HTS #2

HTS #6

NULL

BSS #1

BSS #2

BSS #3

BSS #4

BSS #5

0

0

RL = 1000

RL = 30 DX = 0

DX = –30

3

HRL = 0

HRL = 4

HDY = 5

HDX = 1

HDX = 2

HW = 8

H
H

 =
 8

#1

DA

#5

#4

#3#2

#6

(–30, +3)

(–999, +1789)

DESTINATION BIT MAP
COMPANION HALF-

TONE TABLESCANLINE TABLE

DW = 2400

HALFTONE
BIT MAP

BSS #6

RL = 500

HDA = 41 = 5 x 8 + 1

NOTES:
 HTS = Halftone Specifier
 BSS = Bit String Specifier

0 RL = 60 DX = 60

1 RL = 60 DX = –60

1 RL = 60 DX = –60

NULL 0

DZ = 4292601
(1789 x 2400 – 999)

Graphic Operations

12-14 MC68322 USER’S MANUAL MOTOROLA

12.8 bitBLT AND SCANLINE ORDER EXECUTION
Table 12-3 lists the bitBLT and scanline transfer timings based on an MC68322 system
running at 20 MHz with DRAM running at 3, 2, 1, 2 bus cycles.

Table 12-3. bitBLT and Scanline Execution Times

OPERANDS/ORDERS TIME (ΜS)

bITBLT EXECUTION TIME (32 × 32)

D = f(S)
D = f(S,D)
D = f(H,D)
D = f(S,H,D)
D = f() Solid fill

30.75
30.75
31.05
40.65
21.00

bITBLT EXECUTION TIME (30 × 50)

D = f(S)
D = f(S,D)
D = f(H,D)
D = f(S,H,D)
D = f() Solid fill

48.90
48.90
47.10
63.30
31.65

bITBLT EXECUTION TIME (100 × 100)

D = f(S)
D = f(S,D)
D = f(H,D)
D = f(S,H,D)
D = f() Solid fill

139.05
156.30
148.05
189.45
93.50

SCANLINE EXECUTION TIME (30 × 50)

D = f(SL,D)
D = f(SL,H,D)

70.05
195.90

Graphic Operations

MOTOROLA MC68322 USER’S MANUAL 12-15

12.9 LOCATION AND ADDRESS CONSTRAINTS
Display lists, scanline tables, and halftone tables must reside in DRAM space because the
graphics unit cannot access chip-select space. The graphics unit can, however, fetch
instructions from any of the MC68322’s six DRAM channels and from one channel to
another if two channels define a continuous region of memory. Keep in mind though, that
due to its internal prefetch queues, the graphics unit must be able to read eight words
beyond every display list, scanline table, and halftone table. If this rule is broken, an RGP
error interrupt event could occur and cause the graphics unit to shut down.

The addressing conventions discussed in previous sections also apply to graphic order
address parameters. All address fields are 32 bits wide. Address parameters that reference
bit maps specify bit addresses, while all others require conventional byte addresses. The
RGP requires all display lists, scanline tables, and companion halftone tables to start on
word-aligned addresses. Since all graphic orders, bit string specifiers, and halftone
specifiers are an even number of bytes in length, this guarantees that all successive orders
and specifiers begin at word-aligned addresses as well. This requirement also guarantees
that all word and long-word operands and field values are aligned on word boundaries. This
is important for the core, which can access word and long-word data only on word
boundaries. These rules do not apply to the actual bitmap data, which has no alignment
requirements.

The RGP internally stores all addresses in 32-bit registers and performs all address
calculations using 32-bit arithmetic. When the RGP makes an access to DRAM for bitmap
data, the bitmap address must first be converted to a byte address to accommodate the
fetch. This conversion is done first by stripping off the low order four bits (these bits select a
bit within the word) and then shifting the address to the right by three bits. This produces a
word-aligned byte address that is used for a 16-bit DRAM fetch of the bitmap data.

MOTOROLA MC68322 USER’S MANUAL 13-1

SECTION 13
GRAPHIC ORDERS

This section describes the MC68322 graphic orders and lists them in alphabetical order. For
each graphic order a functional description, opcode, parameter format, and definitions of its
parameters are provided. Graphic orders specify one or more graphic operands, as
indicated in the mnemonic by the last few characters. See Section 12 Graphic Operations
for more information.

13.1 TYPES OF GRAPHIC ORDERS
The five types of graphic orders consist of the following:

• Initialization

• Program flow control

• Bit block transfer

• Expanded bit block transfer

• Scanline transfers

The initialization, bit block transfer, and expanded bit block transfer graphic orders are
processed as a stream of instructions from the display list. The scanline graphic orders
include a pointer to a scanline table that is a compressed run-length encoding of an image,
such as a font character.

13.1.1 Initialization
Initialization graphic orders (those whose mnemonics begin with SET) define bitmap
parameters and Boolean codes to be used during transfers. The SET_BMAP graphic orders
are defined for four bitmap types—banded, unbanded, source, and halftone. They are used
to load bitmap parameters into internal registers. The four SET_BOOL graphic orders are
defined for each type of Boolean operation—destination only (_D), halftone and destination
(_HD), source and destination (_SD), and source, halftone, and destination (_SHD). They
are all used to load the four Boolean code registers that will govern the bitBLT or scanline
transfer graphic order to be executed.

The RGP has four internal registers that contain the Boolean code used during operand
transfers—BOOL_D, BOOL_SD, BOOL_HD, and BOOL_SHD. The register BOOL_D is
loaded using the SET_BOOL_D graphic order and holds the Boolean code used during
destination only bitBLTs and scanline transfers. BOOL_SD and BOOL_HD are loaded using
the SET_BOOL_SD and SET_BOOL_HD graphic orders. BOOL_SD holds the Boolean
codes used during source, destination bitBLTs.

Graphic Orders

13-2 MC68322 USER’S MANUAL MOTOROLA

BOOL_HD holds the Boolean code used during halftone, destination scanline transfers.
BOOL_SHD contains the Boolean code used during source, halftone, destination bitBLTs.
bitBLTs can use BOOL_D, BOOL_SD or BOOL_SHD Boolean codes and scanline transfers
can use BOOL_D or BOOL_HD.

Table 13-1. Graphic Order Organization

TYPE GRAPHIC ORDER DESCRIPTION

Initialization SET_BBMAP Set Banded Destination Bitmap Parameters.

SET_UBMAP Set Unbanded Destination Bitmap Parameters.

SET_SBMAP Set Source Bitmap Parameters.

SET_HTBMAP Set Halftone Bitmap Parameters.

SET_BOOL_D Set Boolean Operator For Destination Only Transfers.

SET_BOOL_HD Set Boolean Operator For Halftone, Destination Transfers.

SET_BOOL_SD Set Boolean Operator For Source, Destination Transfers.

SET_BOOL_SHD Set Boolean Operator For Source, Halftone, Destination Transfers.

Program Flow Control JUMP Jump To The Specified Address In The Display List.

STOP Stop Execution Of The Graphic Orders.

Bit Block Transfers BL2F_D bitBLT To Frame, Destination Only.

BL2F_SD bitBLT To Frame Source, Destination.

BL2F_SHD bitBLT To Frame Source, Halftone, Destination.

BL2UB_D bitBLT To Unbanded bitmap, Destination Only.

BL2UB_SD bitBLT To Unbanded bitmap, Source, Destination.

BL2UB_SHD bitBLT To Unbanded bitmap, Source, Halftone, Destination.

BL2BB_D bitBLT To Banded bitmap, Destination Only.

BL2BB_SD bitBLT To Banded bitmap, Source, Destination.

BL2BB_SHD bitBLT To Banded bitmap, Source, Halftone, Destination.

Expanded Bit Block Transfers BLT2F_XD bitBLT To Frame expanded Source, Destination.

BLT2F_XHD bitBLT To Frame expanded Source, Halftone, Destination.

BLT2UB_XD bitBLT To Unbanded bitmap, expanded Source, Destination.

BLT2UB_XHD bitBLT To Unbanded bitmap, expanded Source, Halftone, Destination.

BLT2BB_XD bitBLT To Banded bitmap, expanded Source, Destination.

BLT2BB_XHD bitBLT To Banded bitmap, expanded Source, Halftone, Destination.

Scanline Transfers SL2F_D Scanline To Frame, Destination Only.

SL2F_HD Scanline To Frame, Halftone, Destination.

SL2UB_D Scanline To Unbanded bitmap, Destination Only.

SL2UB_HD Scanline To Unbanded bitmap, Halftone, Destination.

SL2BB_D Scanline To Banded bitmap, Destination Only.

SL2BB_HD Scanline To Banded bitmap, Halftone, Destination.

Graphic Orders

MOTOROLA MC68322 USER’S MANUAL 13-3

13.1.2 Program Flow Control
Program flow control graphic orders control the execution order for the display list. JUMP
allows the execution to change to a different point in the display list. During banding, it is
common to build a display list along with several headers. These headers contain a
SET_BBMAP graphic order to set the parameters for the current band and a JUMP graphic
order to move execution to the main body of the display list. The STOP graphic order signals
the end of the display list and normally results in an interrupt to the core.

13.1.3 Bit Block Transfer
Bit block transfer (bitBLT) graphic orders specify a rectangular bitmap transfer. There are
nine different bitBLT graphic orders that provide the nine combinations of destination bitmap
and operand type. Three of these control bitBLTs to frames, three control bitBLTs to
unbanded bit maps, and three control bitBLTs to banded bit maps. These graphic orders rely
on certain parameters being previously set by initialization graphic orders.

13.1.4 Expanded Bit Block Transfer
There are six expanded bitBLT graphic orders that are used to manipulate and transfer low
resolution bitmap images. Two of these control expanded bitBLTs to frames, two control
expanded bitBLTs to unbanded bit maps, and two control expanded bitBLTs to banded bit
maps. These graphic orders rely on certain parameters being previously set by initialization
graphic orders. Expanded bitBLT graphic orders are particularly useful in applications that
regularly receive low resolution bitmap images. Note that the warp of the unexpanded
bitmap is included as an operand of each expanded bitBLT graphic order.

Expanded bitBLT graphic orders can read unexpanded bit maps that are 75 × 75, 100 × 100,
150 × 150, 200 × 200, and 300 × 300 dpi, and expand the images in both the X and Y
dimensions during the transfer to match any combination of 300, 600, or 1200 dpi. This is
accomplished by specifying two expansion factors in the graphic order: one for the X
dimension and one for the Y dimension. An expansion factor of 1, 2, 3, 4, 6, 8, 12, or 16 can
be specified in the X dimension and any value from 1 to 16 in the Y dimension. This allows
a single-step expansion to printer resolutions of 300, 600, and 1200 dpi.

The expanded bitBLT graphic orders support clipping of expanded bit maps, in both the X
and Y dimensions. Clipping in the X dimension is controlled by two graphic order operand
values, XOFF and FW, as illustrated in Figure 13-1. XOFF is an offset in bits from the left
edge of the expanded bitmap and FW is the transfer frame width. Together, XOFF and FW
provide bit-granular control of clipping at the left and right extremes of the expanded bitmap.
When clipping, other graphic order operands may also require adjusting, including the
destination address (DA), halftone address (HA), and halftone X remainder (HXR).

Clipping in the Y dimension is controlled in a similar way with the two graphic order operand
values YOFF and FH. YOFF is an offset in scanlines from the top edge of the expanded
bitmap (or bottom edge, when rendering in bottom to top order) and FH is the transfer frame
height. Together, YOFF and FH provide scanline granular control of clipping at the top and
bottom extents of the expanded bitmap. When clipping, other graphic order operands may
also require adjusting, including the DA, HA, and the halftone Y remainder (HYR).

Graphic Orders

13-4 MC68322 USER’S MANUAL MOTOROLA

Figure 13-1. Controlling Left and Right Clipping of Expanded Bit Maps

13.1.5 Scanline Transfer
Scanline graphic orders differ from bitBLT graphic orders in that the individual scanline runs
describe the transfer and can effectively generate a nonrectangular and unconnected
destination area. There are six different scanline graphic orders that provide the six
combinations of destination bit maps and operand types. Two of these control scanline
transfers to frames, two control scanline transfers to unbanded bit maps, and two control
scanline transfers to banded bit maps.

Each scanline graphic order specifies a pointer to a scanline table. The graphics unit
executes the whole scanline table before continuing to execute the rest of the graphic orders
in the display list. As with the bitBLT graphic orders, the scanline graphic orders rely on
certain parameters being previously set by initialization graphic orders.

UNEXPANDED
SOURCE BITMAP

EXPANDED
SOURCE BITMAP

DESTINATION
BITMAPXMUL

SA

FW

XO
FF

YOFF

YM
U

L

FH

DW

DA

FW

FH

Graphic Orders

MOTOROLA MC68322 USER’S MANUAL 13-5

13.2 SEQUENCE OF THE DISPLAY LIST
The following is an example of a typical display list illustrating how the initialization graphic
orders work with the bitBLT and scanline graphic orders.

13.3 GRAPHIC ORDER ADDRESSES
In the following graphic order descriptions, operand lengths for addresses are sometimes
given as a pair of numbers. For example, 28 of 32. This indicates that the address (in this
case a byte address) occupies the least-significant 28 bits of the long-word operand and that
the MC68322 controls the four most-significant bits. For more information on address
constraints for graphic orders, scanline tables, and bit maps see Section 12 Graphic
Operations.

Some graphic orders specify address parameters that must be aligned to byte or word
boundaries. When a byte address is required to be aligned on a word boundary, its least
significant bit should be zero. The MC68322 forces the bit to be zero internally. There are
two combinations of address granularity and alignment used by MC68322 graphic orders.
In the descriptions of graphic orders and definitions of their parameters, the following two
phrases are used:

• Bit address—A 32-bit bitmap address that points to any bit location in memory and
specifies bitmap locations and pixels.

• Byte address, word aligned—A 28-bit word-aligned address that points to any word
location in DRAM space. It is used for referencing graphic order instructions, scanline
tables, and halftone companion tables.

SET_UBMAP Set parameters for rendering a full page into an unbanded bitmap.

SET_BOOL_D and BLT2UB_D Set the destination only Boolean code to draw in white, and clear the entire page.

SET_SBMAP Set up for transfer from a font cartridge of a bit mapped font.

SET_BOOL_SD Draw the following characters in black.

BLT2UB_SD, BLT2UB_SD, and
BLT2UB_SD

Place three characters on the page.

SET_HTBMAP Identify a light gray repeating halftone pattern.

SET_BOOL_HD Identify a light gray repeating halftone pattern.

SL2UB_HD Apply the halftone gray pattern during an upcoming transfer.

STOP Render an entire scanline table image in light gray

Graphic Orders

13-6 MC68322 USER’S MANUAL MOTOROLA

13.3.1 Physical vs Logical Address
For graphic orders that render images to frames or unbanded bit maps, the address
parameters are interpreted as physical addresses and the MC68322 uses them to access
memory directly. In the case of banded bit maps, where only a portion of the physical page’s
image may be present in memory, address parameters are interpreted as logical addresses.

The MC68322 must translate logical addresses to physical space before graphic order
execution begins. Translation information is provided to the MC68322 at the same time the
banded bitmap dimensions are defined (via the SET_BBMAP order). Physical addresses
are translated back to logical addresses when a band fault occurs, so an updated logical
address parameter can be written back to the graphic order.

13.3.2 Duplex Addresses
Based on the value of the bottom-to-top (B2T) parameter in the SET_BBMAP graphic order,
bitBLTs and scanline transfers can be rendered in a top to bottom direction for a 0° page or
in a bottom to top direction for a 180° page. When bit block transferring to a banded bitmap
with the B2T flag set, the definition of certain graphic order parameters change. Namely, the
frame bitmap address parameters DA, SA, and HA must be provided so they are pointing to
the bottom left corners of their respective frames (instead of the upper left) and the HYR
halftone parameter must provide the number of scanlines remaining to reach the top of the
bitmap (instead of the bottom). Figure 13-2 uses the halftone bitmap parameters to illustrate
this requirement.

The parameters of scanline operations are also affected when rendering a page from
bottom-to-top, since scanline and halftone tables must be executed in reverse order when
the B2T flag is set. DA, which normally gives the starting position for the scanline table, must
instead give the address of the pixel just beyond the last run in the scanline table. The
scanline table address, which normally points to the most-significant byte of the first bit string
specifier in the table, must instead point to the most-significant byte of the last word. In
addition, if a halftone is involved, HA, HXR, and HYR must be provided with respect to the
same pixel at the end of the image and halftone table address must point to the
most-significant byte of the last word in the halftone companion table.

Unbanded and frame bitmap operations are always rendered in top to bottom order by the
graphics unit, independent of the value of the B2T flag. Notice that for full-page duplex
applications, page images can always be rendered top-to-bottom and then printed 0° or
180° when rotated by the PVC. The B2T flag is important for banded duplex applications
because it allows the bands to be rendered in the reverse order as needed for delivery to
the print engine.

Note: in contrast to the order in which the print engine video controller reads an image
from memory. When the B2T bit is set in the PCB control register, the PVC reads
memory in a bottom to top, right to left order, and in doing so, produces an image
that appears rotated 180°.

Graphic Orders

MOTOROLA MC68322 USER’S MANUAL 13-7

Figure 13-2. Halftone Specification for bitBLT Operations

13.4 BAND NUMBER AND BAND FAULTS
Each of the MC68322 graphic orders that operate on a banded bitmap contains a band
number parameter. The band number is used by the MC68322 to determine when to
execute the graphic order. Graphic orders whose band numbers match the current band
being rendered are executed. Otherwise, the graphic order is skipped. Band numbers
always increase in value from the top band to the bottom band of the image, regardless of
the type of page (0° or 180°) being rendered. The band number for a graphic order must be
determined by the software. It must be the number of the band where the first scanline of a
graphic order resides when rendering a 0° page or the number of the band where the last
scanline of a graphics order resides when rendering a 180° page.

In banding applications, bitBLT and scanline operations can extend beyond the bottom (or
top, for 180° pages) boundary of a band. The MC68322 detects such band crossings (or
band faults) during the course of the bitBLT or scanline operation. When a band fault occurs,
the operation is prematurely terminated and the MC68322 accesses the display list to
update the graphic order’s parameters, including its band number, bitmap and scanline table
addresses, and frame bitmap heights. The graphic order parameters are written back into
the display list to begin the operation following the point of the band fault at the top (or bottom
for 180° pages) of the next band. The MC68322 automatically adjusts the band number
when the graphic order spans multiple bands. When a band fault occurs, the band number
is incremented or decremented depending on the setting of the B2T flag. If the B2T flag is
clear, the band number is incremented when an operation crosses a band boundary. If the
B2T flag is set, the band number is decremented.

HXR

HXR

HALFTONE BITMAP,
SHOWN TILED

SOURCE
FRAME

HA

HA

HYR

HYR

0° PAGE
TOP TO BOTTOM

HALFTONE BITMAP,
SHOWN TILED

SOURCE
FRAME

180° PAGE
TOP TO BOTTOM

Graphic Orders

13-8 MC68322 USER’S MANUAL MOTOROLA

Band faults only occur during graphic orders that operate on banded bit maps. In the
descriptions that follow, parameters updated by the MC68322 as the result of a band fault
are marked with asterisks. In some cases, however, certain parameters will not be updated.
Specifically, this affects source and halftone parameters. If the Boolean code for a two or
three operand graphic order describes a function that does not require a source and/or
halftone operand, then no bitmap is accessed and no parameters will be updated if a band
fault occurs.

13.5 GRAPHIC ORDER DESCRIPTIONS
Table 13-2 contains the graphic orders sorted by opcode value with the page number they
appear on.

Table 13-2. Graphic Orders Sorted by Opcode

OPCODE GRAPHIC ORDER PAGE OPCODE GRAPHIC ORDER PAGE

0x00 STOP 13-60 0x17 BLT2F_XHD 13-29

0x01 JUMP 13-41 0x20 BLT2UB_D 13-32

0x08 SET_BBMAP 13-42 0x22 BLT2UB_SD 13-33

0x09 SET_UBMAP 13-48 0x23 BLT2UB_SHD 13-34

0x0A SET_SBMAP 13-47 0x24 SL2UB_D 13-57

0x0B SET_HTBMAP 13-46 0x25 SL2UB_HD 13-58

0x0C SET_BOOL_D 13-45 0x26 BLT2UB_XD 13-36

0x0D SET_BOOL_HD 13-45 0x27 BLT2UB_XHD 13-38

0x0E SET_BOOL_SD 13-45 0x30 BLT2BB_D 13-9

0x0F SET_BOOL_SHD 13-45 0x32 BLT2BB_SD 13-11

0x10 BLT2F_D 13-23 0x33 BLT2BB_SHD 13-13

0x12 BLT2F_SD 13-24 0x34 SL2BB_D 13-49

0x13 BLT2F_SHD 13-25 0x35 SL2BB_HD 13-51

0x14 SL2F_D 13-54 0x36 BLT2BB_XD 13-16

0x15 SL2F_HD 13-55 0x37 BLT2BB_XHD 13-19

0x16 BLT2F_XD 13-27

Graphic Orders BLT2BB_D

MOTOROLA MC68322 USER’S MANUAL 13-9

BLT2BB_D
Destination Only bitBLT to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The BLT2BB_D graphic order causes the MC68322 to modify a frame of a destination
banded bitmap. The destination pixels are manipulated as specified by the current BOOL_D
Boolean code. The destination bitmap parameters must have been previously defined by
the SET_BBMAP graphic order.

DA specifies the logical bit address of the area, or transfer frame, that starts in the
destination banded bitmap. The logical bit address is converted to a physical bit address, by
adding the PSUBL value set by the SET_BBMAP graphic order. The start of the transfer
frame must be within the bounds of the banded bitmap, but the end of the transfer frame
may extend past the end of the bitmap. DA must point to the upper left corner of the transfer
frame when the B2T flag is clear and to the lower left corner of the transfer frame when B2T
is set. The warp of the destination banded bitmap is set by the SET_BBMAP graphic order,
which allows the bitmap to be packed or unpacked.

When a band fault is detected, the MC68322 rewrites the graphic order to update some of
its parameters. The BAND number is incremented (or decremented, when the B2T flag is
set), DA is repositioned to the starting pixel of the respective frame to be processed in the
next band and FH is written back with the number of remaining scanlines in the destination
frame.

Related Graphic Orders

SET_BOOL_D

SET_BBMAP

PARAMETERS SIZE DESCRIPTION

0x30
BAND*

DA*
FW
FH*

Byte
Byte

Long Word
Word
Word

BLT2BB_D Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Frame width in bits.
Frame height in scanlines.

Graphic Orders BLT2BB_D

13-10 MC68322 USER’S MANUAL MOTOROLA

Figure 13-3. Destination bitBLT to Banded Bitmap—0° Page

Figure 13-4. Destination bitBLT to
Banded Bitmap—180° Page

EOBPA

DESTINATION
BANDED BITMAP

DWB

DA

FW

BOOL_D APPLIED
TO FRAME FH

EOBPA

DESTINATION
BANDED BITMAP

DWB

DA

FW

BOOL_D APPLIED
TO FRAME

FH

Graphic Orders BLT2BB_SD

MOTOROLA MC68322 USER’S MANUAL 13-11

BLT2BB_SD
Source/Destination bitBLT to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The BLT2BB_SD graphic order causes the MC68322 to bitBLT a source frame to a
destination banded bitmap. The source and destination pixels are combined as specified by
the current BOOL_SD Boolean code. The destination bitmap parameters must have been
previously defined by the SET_BBMAP graphic order. The source frame warp is assumed
to be the FW specified in the BLT2BB_SD graphic order unless a non-zero source bitmap
warp was previously defined by the SET_SBMAP graphic order, in which case the latter is
used.

DA specifies the logical bit address of the area or transfer frame that starts in the destination
banded bitmap. The logical bit address is converted to a physical bit address by adding the
PSUBL value set by the SET_BBMAP graphic order. The start of the transfer frame must be
within the bounds of the banded bitmap, but the end of the transfer frame may extend past
the end of the bitmap. DA must point to the upper left corner of the transfer frame when the
B2T flag is clear and to the lower left corner of the transfer frame when B2T is set. The warp
of the destination banded bitmap is set by the SET_BBMAP graphic order, which allows the
bitmap to be packed or unpacked. The source physical bit address (SA) must point to the
upper left corner of the source frame when the B2T flag is clear and to the lower left corner
of the source frame when the B2T flag is set.

When a band fault is detected, the MC68322 rewrites the graphic order to update some of
the parameters. The BAND number is incremented (or decremented when the B2T flag is
set), DA and SA are repositioned to the starting pixel of the respective frame to be
processed in the next band, and FH is written back with the number of remaining scanlines
in the frame to be transferred.

Related Graphic Orders

SET_BOOL_SD

SET_BBMAP

SET_SBMAP

PARAMETERS SIZE DESCRIPTION

0x32
BAND*

DA*
FW
FH*
SA*

Byte
Byte

Long Word
Word
Word

Long Word

BLT2BB_SD Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.

Graphic Orders BLT2BB_SD

13-12 MC68322 USER’S MANUAL MOTOROLA

Figure 13-5. Source/Destination bitBLT
to Banded Bitmap—0° Page

Figure 13-6. Source/Destination bitBLT
to Banded Bitmap—180° Page

EOBPA

SOURCE BITMAP

SW

FW

FH

DESTINATION
BANDED BITMAP

DWB

DA

SA

FW

BOOL_SD USED
TO COMBINE FRAMES FH

EOBPA

SOURCE BITMAP

SW

FW

FH

DESTINATION
BANDED BITMAP

DWB

DA

SA

FW

BOOL_SD USED
TO COMBINE FRAMES

FH

Graphic Orders BLT2BB_SHD

MOTOROLA MC68322 USER’S MANUAL 13-13

BLT2BB_SHD
Source/Halftone/Destination bitBLT to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The BLT2BB_SHD graphic order causes the MC68322 to bitBLT a source frame to a
destination banded bitmap and apply a halftone bitmap in the process. The source, halftone,
and destination pixels are combined, as specified by the current BOOL_SHD Boolean code.
The destination bitmap parameters must have been previously defined by the SET_BBMAP
graphic order.

The source frame warp is assumed to be the FW specified in the BLT2BB_SHD graphic
order, unless a non-zero source bitmap warp was previously defined by the SET_SBMAP
graphic order, in which case the latter is used. The halftone bitmap dimensions must have
been previously defined by the SET_HTBMAP graphic order. During the processing of
halftones, wrapping occurs at the edges of the bitmap and this results in horizontal and
vertical replication (tiling) of the bitmap to cover the entire bitBLT frame area.

Halftone tiled patterns are typically anchored to the page. Thus, a bitBLT may need to take
on the halftone pattern starting at various points in the halftone bitmap depending on where
it is being positioned on the page. The halftone parameters HXR, HYR, and HA define the
precise halftone pixel that corresponds to the upper left (or lower left, when the B2T flag is
set) corners of the source and destination frames. HXR specifies the number of pixels
remaining to the right edge of the bitmap and HYR defines the number of scanlines
remaining to the bottom edge (or top edge, when the B2T flag is set). HXR and HYR must
be in the following ranges—1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the
width and height of the halftone bitmap, respectively.

For example, when the B2T flag is clear, if the starting pixel in the halftone bitmap is
determined to be at the upper left, HXR must be set to HW, and HYR to HH. If, instead, a
180° page is being rendered and the B2T flag is set, HXR must still be set to HW, but HYR
must be set to one.

PARAMETERS SIZE DESCRIPTION

0x33
BAND*

DA*
FW
FH*
SA*
HXR
HYR*
HA*

Byte
Byte

Long Word
Word
Word

Long Word
Word
Word

Long Word

BLT2BB_SHD Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2BB_SHD

13-14 MC68322 USER’S MANUAL MOTOROLA

DA specifies the logical bit address of the area or transfer frame that begins in the
destination banded bitmap. The logical bit address is converted to a physical bit address, by
adding the PSUBL value set by the SET_BBMAP graphic order. The start of the transfer
frame must be within the bounds of the banded bitmap, but the end of the transfer frame
may extend past the end of the bitmap.

DA must point to the upper left corner of the transfer frame when the B2T flag is clear and
to the lower left corner of the transfer frame when B2T is set. The warp of the destination
banded bitmap is set by the SET_BBMAP graphic order, which allows the bitmap to be
packed or unpacked. The SA must point to the upper left corner of the source frame when
the B2T flag is clear and to the lower left corner of the source frame when the B2T flag is set.

When a band fault is detected, the MC68322 rewrites the graphic order to update some of
its parameters. The BAND number is incremented (or decremented when the B2T flag is
set). DA, SA, and HA are repositioned to the starting pixel of the respective frame to be
processed in the next band. Lastly, FH and HYR are written back with the number of
remaining scanlines in their respective frames to be transferred.

Related Graphic Orders

SET_BOOL_SHD

SET_BBMAP

SET_HTBMAP

SET_SBMAP

Graphic Orders BLT2BB_SHD

MOTOROLA MC68322 USER’S MANUAL 13-15

Figure 13-7. Source/Halftone/Destination
bitBLT to Banded Bitmap—0° Page

Figure 13-8. Source/Halftone/Destination bitBLT to
Banded Bitmap—180° Page

EOBPA

SOURCE BITMAP
SW

FW

FH

DESTINATION
BANDED BITMAP

DWB

DA

SA

FW

BOOL_SHD USED
TO COMBINE FRAMES FH

HALFTONE BITMAP

HXR

HW

HA

H
H

H
YR

DWB

DA

SA

HA

H
H

H
YR

EOBPA

SOURCE BITMAP

SW

FH

DESTINATION
BANDED BITMAP

BOOL_SHD USED
TO COMBINE FRAMES

HALFTONE BITMAP

HXR

FW

HW

FH

FW

Graphic Orders BLT2BB_XD

13-16 MC68322 USER’S MANUAL MOTOROLA

BLT2BB_XD
Expanded Source, Destination bitBLT to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The BLT2BB_XD graphic order transfers a low resolution source frame to a destination
banded bitmap. Before being combined with the destination, the source frame is scaled to
match the resolution of the destination bitmap, which results in an intermediate expanded
source bitmap. The pixels of the expanded source and destination bit maps are combined,
as specified by the Boolean code set in the last SET_BOOL_SD order. The destination
bitmap parameters must have been previously defined by the SET_BBMAP graphic order.
DA specifies the logical bit address of the area or transfer frame that begins in the
destination banded bitmap. The logical bit address is converted to a physical bit address by
adding the PSUBL value set by the SET_BBMAP graphic order. The start of the transfer
frame must be within the bounds of the banded bitmap, but the end of the transfer frame
may extend past the end of the bitmap. DA must point to the upper left corner of the transfer
frame when the B2T flag is clear and to the lower left corner of the transfer frame when B2T
is set. The warp of the destination banded bitmap is set by the SET_BBMAP graphic order,
which allows the bitmap to be packed or unpacked.

The FW and FH parameters define the area of the destination bitmap on which the operation
is performed. FW is the frame width in bits and at a maximum equals the quantity
W × (XMUL + 1) where W is the width of the unexpanded source bitmap. FH is the frame
height in scanlines and at a maximum equals the quantity H × (YMUL + 1) where H is the
height of the unexpanded source bitmap. Specifying FW and FH as defined above causes
the entire expanded source image to be combined with the destination bitmap. Specifying
an FW and/or FH value less than the values defined by the above equations causes only a
portion of the expanded source frame to be applied to the destination. When used in
combination with XOFF and YOFF, clipping can be affected at any or all extents of the
expanded source bitmap.

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap when the B2T flag is clear and to the lower left corner of the
bitmap when the B2T flag is set. The warp of the unexpanded bitmap is set by the source
width operand. This value is added to SA to locate the beginning of each successive
scanline. Note that the source warp set by the SET_SBMAP graphic order has no effect on
this graphic order.

PARAMETERS SIZE DESCRIPTION

0x36
BAND*

DA*
FW
FH*
SA*
SW

XOFF:XMUL
YOFF*:YMUL

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

BLT2BB_XD Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.

Graphic Orders BLT2BB_XD

MOTOROLA MC68322 USER’S MANUAL 13-17

The XOFF:XMUL parameter is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other than those listed are ignored and no X scaling is performed.

The XOFF field occupies the four most-significant bits and indicates the number of bits to be
clipped at the left edge of the expanded source bitmap. XOFF ranges from 0–XMUL. If
XOFF is zero, no clipping occurs at the left extent, but if it is non-zero, XOFF number of bits
in the left edge of the expanded bitmap are skipped and the next bit is the first one
transferred to the destination bitmap. The YOFF:YMUL parameter is also divided into two
fields. The least-significant four bits contain the YMUL field, which specifies the factor used
to scale the unexpanded source bitmap in the Y dimension. YMUL can equal any value from
0–15, which represents a scaling factor of 1–16. The YOFF field occupies the four
most-significant bits and indicates the number of scanlines to be clipped at the top or bottom
edge of the expanded source bitmap, depending on the value of the B2T flag. When B2T is
clear, YOFF is defined from the top edge of the source bitmap. When B2T is set, YOFF is
defined from the bottom edge. YOFF ranges from 0–YMUL. If YOFF is zero, no clipping
occurs at the top or bottom extent, but if it is non-zero, YOFF number of scanlines at the top
or bottom edge of the expanded bitmap are skipped and the next scanline is the first line
transferred to the destination bitmap.

A band fault is detected when the transfer frame extends past the end of the destination
bitmap, which is defined by the EOBPA operand in the SET_BBMAP graphic order. When
a band fault is detected, the MC68322 rewrites the graphic order to update its operands. The
BAND number is incremented (or decremented, when the B2T flag is set), DA and SA are
repositioned to the starting pixel of the respective frame to be processed in the next band,
and YOFF is updated according to the current position in the expanded source bitmap.
Lastly, FH is written back with the number of scanlines in the frame to be transferred.

Related Graphic Orders

SET_BOOL_SD

SET_BBMAP

Table 13-3. Supported Scaling Factors

EXPANSION FACTOR XMUL VALUE

1 0

2 1

3 2

4 3

6 5

8 7

12 11

16 15

Graphic Orders BLT2BB_XD

13-18 MC68322 USER’S MANUAL MOTOROLA

Figure 13-9. Expanded Source, Destination
bitBLT To Banded Bitmap, 0° Page

Figure 13-10. Expanded Source, Destination
bitBLT To Banded Bitmap, 180° Page

EOBPA

BOOL_SD USED
TO COMBINE FRAMES

DWB

EXPANDED
SOURCE BITMAP

DESTINATION
BANDED BITMAP

XMUL

FW

XO
FF

YOFF

YM
U

L

FH

DA

FH

SW

UNEXPANDED
SOURCE BITMAP

SA

FW

EOBPA

BOOL_SD USED
TO COMBINE FRAMES

DW8

EXPANDED
SOURCE BITMAP

DESTINATION
BANDED BITMAP

XMUL

FW

XO
FF

YOFFYM
U

L

DA

FH
SW

UNEXPANDED
SOURCE BITMAP

SA FW

FH

Graphic Orders BLT2BB_XHD

MOTOROLA MC68322 USER’S MANUAL 13-19

BLT2BB_XHD
Expanded Source, Halftone, Destination bitBLT to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The BLT2BB_XHD graphic order transfers a low resolution source frame to a destination
banded bitmap and applies a halftone bitmap in the process. Before being combined with
the destination, the source frame is scaled to match the resolution of the destination bitmap.
This results in an intermediate expanded source bitmap. The pixels of the expanded source,
halftone, and destination bit maps are combined as specified by the Boolean code set in the
last SET_BOOL_SHD order. The destination bitmap parameters must have been previously
defined by the SET_BBMAP graphic order and the halftone bitmap dimensions by the
SET_HTBMAP graphic order. During the processing of halftones, wrapping occurs at the
edges of the bitmap. This results in horizontal and vertical replication (tiling) of the bitmap to
cover the entire destination frame area.

The DA parameter specifies the logical bit address of the area or transfer frame that starts
in the destination banded bitmap. The logical bit address is converted to a physical bit
address by adding the PSUBL value in the SET_BBMAP graphic order. The start of the
transfer frame must be within the bounds of the banded bitmap, but the end of the transfer
frame may extend past the end of the bitmap. DA must point to the upper left corner of the
transfer frame when the B2T flag is clear and to the lower left corner of the transfer frame
when B2T is set. The warp of the destination banded bitmap is set by the SET_BBMAP
graphic order, which allows the bitmap to be packed or unpacked.

The FW and FH parameters define the area of the destination bitmap on which the operation
is performed. FW is the frame width in bits and at a maximum equals the quantity
W × (XMUL + 1) where W is the width of the unexpanded source bitmap. FH is the frame
height in scanlines and at a maximum equals the quantity H × (YMUL + 1) where H is the
height of the unexpanded source bitmap. Specifying FW and FH as defined above causes
the entire expanded source image to be combined with the destination bitmap. Specifying
an FW and/or FH value less than the values defined by the above equations causes only a
portion of the expanded source frame to be applied to the destination. When used in
combination with XOFF and YOFF, clipping can be affected at any or all extents of the
expanded source bitmap.

PARAMETERS SIZE DESCRIPTION

0x37
BAND*

DA*
FW
FH*
SA*
SW

XOFF:XMUL
YOFF*:YMUL

HXR
HYR*
HA*

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

Word
Word

Long Word

BLT2BB_XHD Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2BB_XHD

13-20 MC68322 USER’S MANUAL MOTOROLA

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap when the B2T flag is clear and to the lower left corner of the
bitmap when the B2T flag is set. The warp of the unexpanded bitmap is set by the SW
parameter. This value is added to SA to locate the beginning of each successive scanline.
Notice that the source warp set by the SET_SBMAP graphic order has no effect on this
graphic order.

The XOFF:XMUL operand is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other that those listed are ignored and no X scaling is performed. The XOFF field occupies
the four most-significant bits and indicates the number of bits to be clipped at the left edge
of the expanded source bitmap. XOFF ranges from 0–XMUL. If XOFF is zero, no clipping
occurs at the left extent, but if it is non-zero, XOFF number of bits in the left edge of the
expanded bitmap are skipped and the next bit is the first bit transferred to the destination
bitmap. The YOFF:YMUL operand is also divided into two fields. The least-significant four
bits contain the YMUL field, which specifies the factor used to scale the unexpanded source
bitmap in the Y dimension. YMUL can equal any value from 0–15, which represents a
scaling factor of 1–16.

The YOFF field occupies the four most-significant bits in the YOFF:YMUL operand. YOFF
indicates the number of scanlines to be clipped at the top or bottom edge of the expanded
source bitmap, depending on the value of the B2T flag. When B2T is clear, YOFF is defined
from the top edge of the source bitmap. When B2T is set, YOFF is defined from the bottom
edge. YOFF ranges from 0–YMUL. If YOFF is zero, no clipping occurs at the top or bottom
extent, but if it is non-zero, YOFF number of scanlines at the top or bottom edge of the
expanded bitmap are skipped and the next scanline is the first one transferred to the
destination bitmap.

Halftone tiled patterns are typically anchored to the page. Thus, a bitBLT may need to take
on the halftone pattern starting at various points in the halftone bitmap depending on where
it is positioned on the page. The halftone parameters HXR, HYR, and HA define the precise
halftone pixel that corresponds to the upper left (or lower left, when the B2T flag is set)
corners of the source and destination frames. HXR specifies the number of pixels remaining
to the right edge of the bitmap and HYR defines the number of scanlines remaining to the
bottom edge (or top edge, when the B2T flag is set).

Graphic Orders BLT2BB_XHD

MOTOROLA MC68322 USER’S MANUAL 13-21

HXR and HYR must be in the following ranges—1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where
HW and HH are the width and height of the halftone bitmap, respectively. For example,
when the B2T flag is clear, if the starting pixel in the halftone bitmap is determined to be at
the upper left, HXR must be set to HW and HYR to HH. If, instead, a 180° page is rendered
and the B2T flag is set, HXR must still be set to HW, but HYR must be set to one. The HA
parameter defines a physical bit address within the halftone bitmap. HA must point to the
upper left corner of the transfer frame when the B2T flag is clear and to the lower left corner
of the frame when the B2T flag is set. Also, HA must be consistent with HXR and HYR.

A band fault is detected when the transfer frame extends past the end of the destination
bitmap which is defined by the EOBPA operand in the SET_BBMAP graphic order. When a
band fault is detected, the MC68322 rewrites the graphic order to update its operands. The
BAND number is incremented (or decremented, when the B2T flag is set), DA, SA, and HA
are repositioned to the starting pixel of the respective frame to be processed in the next band
and YOFF is updated according to the current position in the expanded source bitmap.
Lastly, FH and HYR are written back with the number of remaining scanlines in their
respective frames to be transferred.

Related Graphic Orders

SET_BOOL_SHD

SET_BBMAP

SET_HTBMAP

Graphic Orders BLT2BB_XHD

13-22 MC68322 USER’S MANUAL MOTOROLA

Figure 13-11. Expanded Source, Halftone, Destination
bitBLT To Banded Bitmap, 0° Page

Figure 13-12. Expanded Source, Halftone, Destination
bitBLT To Banded Bitmap, 180° Page

EOBPA

DWB

DA

HXR

HW

HA

H
H

H
YR

BOOL_SHD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION
BANDED BITMAPXMUL

FW

XO
FF

YOFF

YM
U

L

FH

SW

UNEXPANDED
SOURCE BITMAP

SA

FW

FH

HALFTONE BITMAP

EOBPA

DWB

DA

HXR

HW

HA

H
H H

YR

BOOL_SHD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION
BANDED BITMAP

XMUL

FW

XO
FF

YOFF

YM
U

L

SW

SA

FW

FH

FH

Graphic Orders BLT2F_D

MOTOROLA MC68322 USER’S MANUAL 13-23

BLT2F_D
Destination Only bitBLT to Frame

The BLT2F_D graphic order causes the MC68322 to modify a destination frame bitmap. The
destination pixels are manipulated as specified by the current BOOL_D Boolean code. The
destination bitmap warp is taken to be the FW specified in the BLT2F_D graphic order. The
destination physical bit address (DA) must point to the upper left corner of the frame.

Related Graphic Orders

SET_BOOL_D

Figure 13-13. Destination
bitBLT to Frame

PARAMETERS SIZE DESCRIPTION

0x10
0x00
DA
FW
FH

Byte
Byte

Long Word
Word
Word

BLT2F_D Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.

DESTINATION
FRAME

DA

BOOL_D APPLIED
TO FRAME

FW

FH

Graphic Orders BLT2F_SD

13-24 MC68322 USER’S MANUAL MOTOROLA

BLT2F_SD
Source/Destination bitBLT to Frame

The BLT2F_SD graphic order causes the MC68322 to bitBLT a source frame to a
destination frame. The source and destination pixels are combined as specified by the
current BOOL_SD Boolean code.

The destination bitmap warp is taken to be the FW specified in the BLT2F_SD graphic order.
FW is also assumed to be the source frame warp, unless a non-zero source bitmap warp
was previously defined by the SET_SBMAP graphic order, in which case the latter is used.
The DA and SA parameters must point to the upper left corners of their respective frames.

Related Graphic Orders

SET_BOOL_SD

SET_SBMAP

Figure 13-14. Source/Destination bitBLT to Frame

PARAMETERS SIZE DESCRIPTION

0x12
0x00
DA
FW
FH
SA

Byte
Byte

Long Word
Word
Word

Long Word

BLT2F_SD Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.

DESTINATION
FRAME

BOOL_SD USED
TO COMBINE FRAMES

SA

SOURCE BITMAP

SW

FH

FW FW

FH

DA

Graphic Orders BLT2F_SHD

MOTOROLA MC68322 USER’S MANUAL 13-25

BLT2F_SHD
Source/Halftone/Destination bitBLT to Frame

The BLT2F_SHD graphic order causes the MC68322 to bitBLT a source frame to a
destination frame and apply a halftone bitmap in the process. The source, halftone, and
destination pixels are combined as specified by the current BOOL_SHD Boolean code. The
destination bitmap warp is taken to be the FW specified in the BLT2F_SHD graphic order.
FW is also assumed to be the source frame warp, unless a non-zero source bitmap warp
was previously defined by the SET_SBMAP graphic order, in which case the latter is used.
The SET_HTBMAP graphic order must previously define the halftone bitmap dimensions.
During the processing of halftones, wrapping occurs at the edges of the bitmap and results
in horizontal and vertical replication (tiling) of the bitmap to cover the entire bitBLT frame
area.

Halftone tiled patterns are typically anchored to the page. A bitBLT may need to take on the
halftone pattern starting at various points in the halftone bitmap, depending on where it is
positioned on the page. The halftone parameters HXR, HYR, and HA define the precise
halftone pixel that corresponds to the upper left corners of the source and destination
frames. HXR specifies the number of pixels remaining to the right edge of the bitmap and
HYR defines the number of scanlines remaining to the bottom edge. HXR and HYR must be
in the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH; to start at the lower right, HXR and HYR must both be set to one. The DA, SA, and HA
parameters must point to the upper left corners of their respective frames.

Related Graphic Orders

SET_BOOL_SHD

SET_HTBMAP

SET_SBMAP

PARAMETERS SIZE DESCRIPTION

0x13
0x00
DA
FW
FH
SA

HXR
HYR
HA

Byte
Byte

Long Word
Word
Word

Long Word
Word
Word

Long Word

BLT2F_SHD Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2F_SHD

13-26 MC68322 USER’S MANUAL MOTOROLA

B

Figure 13-15. Source/Halftone/
Destination bitBLT to Frame

HA

DWU

DA

SA

H
H

H
YR

SOURCE BITMAP

SW

FH

DESTINATION
UNBANDED BITMAP

BOOL_SHD USED
TO COMBINE FRAMES

HALFTONE BITMAP

HXR

FW

HW

FH

FW

Graphic Orders BLT2F_XD

MOTOROLA MC68322 USER’S MANUAL 13-27

BLT2F_XD
Expanded Source, Destination bitBLT to Frame

The BLT2F_XD graphic order transfers a low resolution source frame to a destination frame.
Before being combined with the destination, the source frame is scaled to match the
resolution of the destination bitmap. This results in an intermediate expanded source
bitmap. The pixels of the expanded source and destination bit maps are combined as
specified by the Boolean code set in the last SET_BOOL_SD order.

The DA parameter specifies the physical bit address of the destination frame. It must point
to the upper left corner of the destination frame. The destination frame will be packed since
its warp is assumed to equal FW. The FW and FH parameters define the area of the
destination bitmap on which the operation is performed. FW is the frame width in bits and at
a maximum equals the quantity W × (XMUL + 1) where W is the width of the unexpanded
source bitmap. FH is the frame height in scanlines and at a maximum equals the quantity H
× (YMUL + 1) where H is the height of the unexpanded source bitmap. Specifying FW and
FH as defined above causes the entire expanded source image to be combined with the
destination bitmap. Specifying an FW and/or FH value less than the values defined by the
above equations causes only a portion of the expanded source frame to be applied to the
destination. When used in combination with XOFF and YOFF, clipping can be affected at
any or all extents of the expanded source bitmap.

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap. The warp of the bitmap is set by the SW operand. This value
is added to SA to locate the beginning of each successive scanline. Note that the source
warp set by the SET_SBMAP graphic order has no effect on this graphic order.

The XOFF:XMUL operand is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other than those listed are ignored and no X scaling is performed.

PARAMETERS SIZE DESCRIPTION

0x16
0x00
DA
FW
FH
SA
SW

XOFF:XMUL
YOFF:YMUL

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

BLT2F_XD Opcode.
Reserved.
Destination physical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.

Graphic Orders BLT2F_XD

13-28 MC68322 USER’S MANUAL MOTOROLA

The XOFF field occupies the four most-significant bits and indicates the number of bits to be
clipped at the left edge of the expanded source bitmap. XOFF ranges from 0–XMUL. If
XOFF is zero, no clipping occurs at the left extent, but if it is non-zero, XOFF number of bits
in the left edge of the expanded bitmap are skipped and the next bit is the first one
transferred to the destination bitmap.

The YOFF:YMUL parameter is also divided into two fields. The least-significant four bits
contain the YMUL field, which specifies the factor used to scale the unexpanded source
bitmap in the Y dimension. YMUL can equal any value from 0–15, which represents a
scaling factor of 1–16.

The YOFF field occupies the four most-significant bits and indicates the number of scanlines
to be clipped at the top edge of the expanded source bitmap. YOFF ranges from 0–YMUL.
If YOFF is zero, no clipping occurs at the top or bottom extent, but if it is non-zero, YOFF
number of scanlines at the top edge of the expanded bitmap are skipped and the next
scanline is the first one transferred to the destination bitmap.

Related Graphic Orders

SET_BOOL_SD

Figure 13-16. Expanded Source, Destination bitBLT To Frame

DA

BOOL_SD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION
FRAME

XMUL

FW

XO
FF

YOFF

YM
U

L

FH

SW

UNEXPANDED
SOURCE BITMAP

SA

FW

FH

Graphic Orders BLT2F_XHD

MOTOROLA MC68322 USER’S MANUAL 13-29

BLT2F_XHD
Expanded Source, Halftone, Destination bitBLT to Banded Bitmap

The BLT2F_XHD graphic order transfers a low resolution source frame to a destination
frame and applies a halftone bitmap in the process. Before being combined with the
destination, the source frame is scaled to match the resolution of the destination bitmap,
which results in an intermediate expanded source bitmap. The pixels of the expanded
source, halftone, and destination bit maps are combined as specified by the Boolean code
set in the last SET_BOOL_SHD order. The SET_HTBMAP graphic order must previously
define the halftone bitmap dimensions. During the processing of halftones, wrapping occurs
at the edges of the bitmap and this results in horizontal and vertical replication (tiling) of the
bitmap to cover the entire destination frame area. The DA parameter specifies the physical
bit address of the destination frame. It must point to the upper left corner of the destination
frame. The destination frame will be packed since its warp is assumed to equal FW.

The FW and FH parameters define the area of the destination bitmap on which the operation
is performed. FW is the frame width in bits and at a maximum equals the quantity
W × (XMUL + 1) where W is the width of the unexpanded source bitmap. FH is the frame
height in scanlines and at a maximum equals the quantity H × (YMUL + 1) where H is the
height of the unexpanded source bitmap. Specifying FW and FH as defined above causes
the entire expanded source image to be combined with the destination bitmap. Specifying
an FW and/or FH value less than the values defined by the above equations causes only a
portion of the expanded source frame to be applied to the destination. When used in
combination with XOFF and YOFF, clipping can be affected at any or all extents of the
expanded source bitmap.

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap. The warp of the bitmap is set by the SW parameter. This
value is added to SA to locate the beginning of each successive scanline. Note that the
source warp set by the SET_SBMAP graphic order has no effect on this graphic order.

PARAMETERS SIZE DESCRIPTION

0x17
0x00
DA
FW
FH
SA
SW

XOFF:XMUL
YOFF:YMUL

HXR
HYR
HA

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

Word
Word

Long Word

BLT2F_XHD Opcode.
Reserved.
Destination physical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2F_XHD

13-30 MC68322 USER’S MANUAL MOTOROLA

The XOFF:XMUL parameter is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other than those listed are ignored and no X scaling is performed.

The XOFF field occupies the four most-significant bits and indicates the number of bits to be
clipped at the left edge of the expanded source bitmap. XOFF ranges from 0–XMUL. If
XOFF is zero, no clipping occurs at the left extent, but if it is non-zero, XOFF number of bits
in the left edge of the expanded bitmap are skipped and the next bit is the first one
transferred to the destination bitmap. The YOFF:YMUL parameter is also divided into two
fields. The least-significant four bits contain the YMUL field, which specifies the factor used
to scale the unexpanded source bitmap in the Y dimension. YMUL can equal any value from
0–15, which represents a scaling factor of 1–16.

The YOFF field occupies the four most-significant bits and indicates the number of scanlines
to be clipped at the top edge of the expanded source bitmap. YOFF ranges from 0–YMUL.
If YOFF is zero, no clipping occurs at the top or bottom extent, but if it is non-zero, YOFF
number of scanlines at the top edge of the expanded bitmap are skipped and the next
scanline is the first one transferred to the destination bitmap.

Halftone tiled patterns are typically anchored to the page. A bitBLT may need to take on the
halftone pattern starting at various points in the halftone bitmap, depending on where it is
positioned on the page. The halftone parameters HXR, HYR, and HA define the precise
halftone pixel that corresponds to the upper left corners of the source and destination
frames. HXR specifies the number of pixels remaining to the right edge of the bitmap and
HYR defines the number of scanlines remaining to the bottom edge. HXR and HYR must be
in the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH; to start at the lower right, HXR and HYR must be set to one. The HA parameter defines
a physical bit address within the halftone bitmap and must point to the upper left corner of
the transfer frame. HA must be consistent with HXR and HYR.

Related Graphic Orders

SET_BOOL_SHD

SET_HTBMAP

Graphic Orders BLT2F_XHD

MOTOROLA MC68322 USER’S MANUAL 13-31

Figure 13-17. Expanded Source, Halftone, Destination
bitBLT To Frame

DA

HXR

HW

HA

H
H

H
YR

BOOL_SHD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION FRAME

XMUL

FW

XO
FF

YOFF

YM
U

L

SW

UNEXPANDED
SOURCE BITMAP

SA

FW
FH

HALFTONE BITMAP

FH

Graphic Orders BLT2UB_D

13-32 MC68322 USER’S MANUAL MOTOROLA

BLT2UB_D
Destination Only bitBLT to Unbanded Bitmap

The BLT2UB_D graphic order causes the MC68322 to modify the frame of a destination
unbanded bitmap. The destination pixels are manipulated as specified by the current
BOOL_D Boolean code. The SET_UBMAP graphic order must previously define the
destination bitmap warp. The DA parameter must always point to the upper left corner of the
frame.

Related Graphic Orders

SET_BOOL_D

SET_UBMAP

Figure 13-18. Destination bitBLT
to Unbanded Bitmap

PARAMETERS SIZE DESCRIPTION

0x20
0x00
DA
FW
FH

Byte
Byte

Long Word
Word
Word

BLT2UB_D Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.

DESTINATION
UNBANDED BITMAP

DWU

DA

BOOL_D APPLIED
TO FRAME FH

FW

Graphic Orders BLT2UB_SD

MOTOROLA MC68322 USER’S MANUAL 13-33

BLT2UB_SD
Source/Destination bitBLT to Unbanded Bitmap

The BLT2UB_SD graphic order causes the MC68322 to bitBLT a source frame to a
destination unbanded bitmap. The source and destination pixels are combined as specified
by the current value in the BOOL_SD Boolean code register.

The SET_UBMAP graphic order must previously define the destination bitmap warp. The
source frame warp is assumed to be the FW specified in the BLT2UB_SD graphic order
unless a non-zero source bitmap warp was previously defined by the SET_SBMAP graphic
order, in which case the latter is used. The DA and SA parameters must point to the upper
left corners of their respective frames.

Related Graphic Orders

SET_BOOL_SD

SET_SBMAP

SET_UBMAP

Figure 13-19. Source/Destination bitBLT to Unbanded Bitmap

PARAMETERS SIZE DESCRIPTION

0x22
0x00
DA
FW
FH
SA

Byte
Byte

Long Word
Word
Word

Long Word

BLT2UB_SD Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.

SOURCE BITMAP

SW

DESTINATION
UNBANDED BITMAP

SA

DWU

DA

BOOL_SD USED
TO COMBINE FRAMES FH

FW

FH

FW

Graphic Orders BLT2UB_SHD

13-34 MC68322 USER’S MANUAL MOTOROLA

BLT2UB_SHD
Source/Halftone/Destination bitBLT to Unbanded Bitmap

The BLT2UB_SHD graphic order causes the MC68322 to bitBLT a source frame to a
destination unbanded bitmap and apply a halftone bitmap in the process. The source,
halftone, and destination pixels are combined as specified by the current value in the
BOOL_SHD Boolean code register.

The SET_UBMAP graphic order must be previously define the destination bitmap warp. The
source frame warp is assumed to be the FW specified in the BLT2UB_SHD graphic order
unless a non-zero source bitmap warp was previously defined by the SET_SBMAP graphic
order, in which case the latter is used. The SET_HTBMAP graphic order must previously
define the halftone bitmap dimensions. During the processing of halftones, wrapping occurs
at the edges of the bitmap and results in horizontal and vertical replication (tiling) of the
bitmap to cover the entire bitBLT frame area.

Halftone tiled patterns are typically anchored to the page. Thus, a bitBLT may need to take
on the halftone pattern starting at various points in the halftone bitmap, depending on where
it is positioned on the page. The halftone parameters HXR, HYR, and HA define the precise
halftone pixel that corresponds to the upper left corners of the source and destination
frames. HXR specifies the number of pixels remaining to the right edge of the bitmap and
HYR defines the number of scanlines remaining to the bottom edge. HXR and HYR must be
in the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH; to start at the lower right, HXR and HYR must both be set to one. The DA, SA, and HA
parameters must point to the upper left corners of their respective frames.

Related Graphic Orders

SET_BOOL_SHD

SET_HTBMAP

SET_SBMAP

SET_UBMAP

PARAMETERS SIZE DESCRIPTION

0x23
0x00
DA
FW
FH
SA

HXR
HYR
HA

Byte
Byte

Long Word
Word
Word

Long Word
Word
Word

Long Word

BLT2UB_SHD Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Frame height in scanlines.
Source physical bit address.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2UB_SHD

MOTOROLA MC68322 USER’S MANUAL 13-35

Figure 13-20. Source/Halftone/Destination
bitBLT to Unbanded Bitmap

HA

DWU

DA

SA

H
H

H
YR

SOURCE BITMAP

SW

FH

DESTINATION
UNBANDED BITMAP

BOOL_SHD USED
TO COMBINE FRAMES

HALFTONE BITMAP

HXR

FW

HW

FH

FW

Graphic Orders BLT2UB_XD

13-36 MC68322 USER’S MANUAL MOTOROLA

BLT2UB_XD
Expanded Source, Destination bitBLT to Unbanded Bitmap

The BLT2UB_XD graphic order transfers a low resolution source frame to a destination
unbanded bitmap. Before being combined with the destination, the source frame is scaled
to match the resolution of the destination bitmap. This results in an intermediate expanded
source bitmap. The pixels of the expanded source and destination bit maps are combined
as specified by the Boolean code set in the last SET_BOOL_SD order. The SET_UBMAP
graphic order must previously define the destination bitmap warp.

The DA parameter specifies the physical bit address of the area or transfer frame within the
destination unbanded bitmap. The entire transfer frame must be within the bounds of the
banded bitmap. DA must point to the upper left corner of the transfer frame. The warp of the
destination unbanded bitmap is set by the SET_UBMAP graphic order, which allows the
bitmap to be packed or unpacked.

The FW and FH parameters define the area of the destination bitmap on which the operation
is performed. FW is the frame width in bits and at a maximum equals the quantity
W × (XMUL + 1) where W is the width of the unexpanded source bitmap. FH is the frame
height in scanlines and at a maximum equals the quantity H × (YMUL + 1) where H is the
height of the unexpanded source bitmap. Specifying FW and FH as defined above causes
the entire expanded source image to be combined with the destination bitmap. Specifying
an FW and/or FH value less than the values defined by the above equations causes only a
portion of the expanded source frame to be applied to the destination. When used in
combination with XOFF and YOFF, clipping can be affected at any or all extents of the
expanded source bitmap.

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap. The warp of the bitmap is set by the SW operand. This value
is added to SA to locate the beginning of each successive scanline. Note that the source
warp set by the SET_SBMAP graphic order has no effect on this graphic order.

PARAMETERS SIZE DESCRIPTION

0x26
0x00
DA
FW
FH
SA
SW

XOFF:XMUL
YOFF:YMUL

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

BLT2UB_XD Opcode.
Reserved.
Destination physical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.

Graphic Orders BLT2UB_XD

MOTOROLA MC68322 USER’S MANUAL 13-37

The XOFF:XMUL parameter is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other than those listed are ignored and no X scaling is performed.

The XOFF field occupies the four most-significant bits and indicates the number of bits to be
clipped at the left edge of the expanded source bitmap. XOFF ranges from 0–XMUL. If
XOFF is zero, no clipping occurs at the left extent, but if it is non-zero, XOFF number of bits
in the left edge of the expanded bitmap are skipped and the next bit is the first one
transferred to the destination bitmap. The YOFF:YMUL parameter is also divided into two
fields. The least-significant four bits contain the YMUL field, which specifies the factor used
to scale the unexpanded source bitmap in the Y dimension. YMUL can equal any value from
0–15, which represents a scaling factor of 1–16.

The YOFF field occupies the four most-significant bits and indicates the number of scanlines
to be clipped at the top edge of the expanded source bitmap. YOFF ranges from 0–YMUL.
If YOFF is zero, no clipping occurs at the top or bottom extent, but if it is non-zero, YOFF
number of scanlines at the top edge of the expanded bitmap are skipped and the next
scanline is the first one transferred to the destination bitmap.

Related Graphic Orders

SET_BOOL_SD

SET_UBMAP

Figure 13-21. Expanded Source, Destination
bitBLT To Unbanded Bitmap

DA

BOOL_SD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION UNBANDED
BITMAP

XMUL

FW

XO
FF

YOFF

YM
U

L

SW

UNEXPANDED
SOURCE BITMAP

SA

DWU

FH

FH

Graphic Orders BLT2UB_XHD

13-38 MC68322 USER’S MANUAL MOTOROLA

BLT2UB_XHD
Expanded Source, Halftone, Destination bitBLT to Unbanded Bitmap

The BLT2UB_XHD graphic order transfers a low resolution source frame to a destination
unbanded bitmap and applies a halftone bitmap in the process. Before being combined with
the destination, the source frame is scaled to match the resolution of the destination bitmap.
This results in an intermediate expanded source bitmap. The pixels of the expanded source,
halftone, and destination bit maps are combined as specified by the Boolean value set in the
last SET_BOOL_SHD order.

The SET_UBMAP graphic order must previously define the destination bitmap warp and the
SET_HTBMAP graphic order must do the same for the halftone bitmap dimensions. During
the processing of halftones, wrapping occurs at the edges of the bitmap and this results in
horizontal and vertical replication (tiling) of the bitmap to cover the entire destination frame
area. The DA parameter specifies the physical bit address of the area or transfer frame
within the destination unbanded bitmap. The entire transfer frame must be within the bounds
of the banded bitmap. DA must point to the upper left corner of the transfer frame. The warp
of the destination unbanded bitmap is set by the SET_UBMAP graphic order, which allows
the bitmap to be packed or unpacked.

The FW and FH parameters define the area of the destination bitmap on which the operation
is performed. FW is the frame width in bits and at a maximum equals the quantity
W × (XMUL + 1) where W is the width of the unexpanded source bitmap. FH is the frame
height in scanlines and at a maximum equals the quantity H × (YMUL + 1) where H is the
height of the unexpanded source bitmap. Specifying FW and FH as defined above causes
the entire expanded source image to be combined with the destination bitmap. Specifying
an FW and/or FH value less than the values defined by the above equations causes only a
portion of the expanded source frame to be applied to the destination. When used in
combination with XOFF and YOFF, clipping can be affected at any or all extents of the
expanded source bitmap.

PARAMETERS SIZE DESCRIPTION

0x27
0x00
DA
FW
FH
SA
SW

XOFF:XMUL
YOFF:YMUL

HXR
HYR
HA

Byte
Byte

Long Word
Word
Word

Long Word
Word

Two 4-bit Fields
Two 4-bit Fields

Word
Word

Long Word

BLT2UB_XHD Opcode.
Reserved.
Destination physical bit address.
Destination frame width in bits.
Destination frame height in scanlines.
Unexpanded source physical bit address.
Unexpanded source frame warp in bits.
X offset and X multiplier in bits.
Y offset and Y multiplier in scanlines.
Halftone X remainder.
Halftone Y remainder.
Halftone physical bit address of the starting pixel.

Graphic Orders BLT2UB_XHD

MOTOROLA MC68322 USER’S MANUAL 13-39

The SA parameter defines the unexpanded source bitmap bit address. It must point to the
upper left corner of the bitmap. The warp of the bitmap is set by the SW operand. This value
is added to SA to locate the beginning of each successive scanline. Note that the source
warp set by the SET_SBMAP graphic order has no effect on this graphic order.

The XOFF:XMUL parameter is divided into two fields. The least-significant four bits contain
the XMUL field, which specifies the factor used to scale the unexpanded source bitmap in
the X dimension. XMUL must equal a specific value from 0–15, which represents a scaling
factor of 1–16. Only certain scaling factors are supported, as defined in Table 13-3. Values
other than those listed are ignored and no X scaling is performed.

The XOFF field occupies the four most-significant bits and indicates the number of bits to be
clipped at the left edge of the expanded source bitmap. XOFF ranges from 0–XMUL. If
XOFF is zero, no clipping occurs at the left extent, but if it is non-zero, XOFF number of bits
in the left edge of the expanded bitmap are skipped and the next bit is the first one
transferred to the destination bitmap. The YOFF:YMUL parameter is also divided into two
fields. The least-significant four bits contain the YMUL field, which specifies the factor used
to scale the unexpanded source bitmap in the Y dimension. YMUL can equal any value from
0–15, which represents a scaling factor of 1–16.

The YOFF field occupies the four most-significant bits and indicates the number of scanlines
to be clipped at the top edge of the expanded source bitmap. YOFF ranges from 0–YMUL.
If YOFF is zero, no clipping occurs at the top or bottom extent, but if it is non-zero, YOFF
number of scanlines at the top edge of the expanded bitmap are skipped and the next
scanline is the first one transferred to the destination bitmap.

Halftone tiled patterns are typically anchored to the page. Thus, a bitBLT may need to take
on the halftone pattern starting at various points in the halftone bitmap, depending on where
it is positioned on the page. The halftone parameters HXR, HYR, and HA define the precise
halftone pixel that corresponds to the upper left corners of the source and destination
frames. HXR specifies the number of pixels remaining to the right edge of the bitmap, and
HYR defines the number of scanlines remaining to the bottom edge. HXR and HYR must be
in the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH; to start at the lower right, HXR and HYR must both be set to one.

The HA parameter defines a physical bit address within the halftone bitmap and must point
to the upper left corner of the transfer frame. HA must be consistent with HXR and HYR.

Related Graphic Orders

SET_BOOL_SHD

SET_UBMAP

SET_HTBMAP

Graphic Orders BLT2UB_XHD

13-40 MC68322 USER’S MANUAL MOTOROLA

Figure 13-22. Expanded Source, Halftone,
Destination bitBLT to Unbanded Bitmap

DWU

DA

HXR

HW

HA

H
H

H
YR

BOOL_SHD USED
TO COMBINE FRAMES

EXPANDED
SOURCE BITMAP

DESTINATION UNBANDED
BITMAP

XMUL

FW

XO
FF

YOFF

YM
U

L

SW

UNEXPANDED
SOURCE BITMAP

SA

FW

FH

HALFTONE BITMAP

FH

Graphic Orders JUMP

MOTOROLA MC68322 USER’S MANUAL 13-41

JUMP
Jump to Graphic Order

The JUMP graphic order indicates a new byte address where the display list continues. The
MC68322 updates its internal display list pointer with the address following the graphic order
and resumes execution at this address when it encounters the JUMP graphic order. GOA
must be a word-aligned address, with the least-significant bit equal to zero. If the first bit is
equal to one, the RGP forces it to zero.

PARAMETERS SIZE DESCRIPTION

0x01
0x00
GOA

Byte
Byte

28 of 32 bits

JUMP Opcode.
Reserved.
Graphic order physical byte address.

Graphic Orders SET_BBMAP

13-42 MC68322 USER’S MANUAL MOTOROLA

SET_BBMAP
Set Banded Bitmap Parameters

The SET_BBMAP graphic order specifies the structure of a banded bitmap. The current
band number, render direction, and warp are provided in addition to a signed value for
mapping logical addresses to physical addresses and a physical address indicating the end
of the band buffer. These parameters are used in all subsequent graphic orders that only
operate on a banded bitmap. They do not, however, affect transfers to frames or unbanded
bit maps.

The SET_BBMAP graphic order specifies a current band number to be rendered from the
remainder of the display list. The current band number is used in comparison against the
band numbers found in subsequent bitBLT and scanline graphic orders that operate on the
banded bitmap. The result of each band number comparison determines whether a graphic
order is executed during the current pass of the display list. Note that a banded display list
is executed several times. One pass for each band of the page.

The B2T parameter contains a 1-bit flag to indicate render direction. When the
least-significant bit of the B2T byte is set, all subsequent bitBLT and scanline transfers to
banded bit maps are rendered in bottom-to-top order. In other words, bitBLTs begin at the
bottom-most scanline of each frame and proceed towards the top of the frame. Scanline line
tables are read starting with the last bit string specifier and executed in reverse order. When
the B2T flag is set, the MC68322 expects all starting pixel addresses and table addresses
to point to the bottom or end of their respective operands instead of the top. Graphic orders
that operate on frames or unbanded bit maps are unaffected by the B2T flag and are always
rendered in a forward direction. By rendering in a reverse direction, the bands of a 180° page
can be created in opposite order and transmitted to the print engine to print the back side of
duplex pages. The DWB parameter specifies the destination warp of the banded bitmap.
Note that if the banded bitmap is destined to be printed by the print engine video controller,
the bitmap must adhere to page image requirements. In part, the warp of the bitmap must
equal to 0 mod 16 and the bitmap must not contain any pad words.

PARAMETERS SIZE DESCRIPTION

0x08
0x00

BAND
B2T
DWB

PSUBL
EOBPA

Byte
Byte
Byte

1 of 8 bits
Word

Long Word
Long Word

SET_BBMAP Opcode.
Reserved.
Current band number.
Bottom to top duplex direction.
Destination banded bitmap warp in bits.
Signed difference between the physical and logical address spaces in bits.
End of band physical bit address.

Graphic Orders SET_BBMAP

MOTOROLA MC68322 USER’S MANUAL 13-43

The value of PSUBL is used to translate the logical destination addresses found in
subsequent banded graphic orders into physical memory addresses. Once mapped to
physical memory space, the graphic transfer can begin. The value for PSUBL can be
computed from the physical address of the current band buffer and the logical address of
the top-most pixel in the band:

PSUBL = buffer address
PHYSICAL – top-most pixel address

LOGICAL

Given PSUBL, the graphics unit can translate logical destination addresses to and from
physical address space using the following calculations:

Map logical into physical: DA
PHYSICAL

 = DA
LOGICAL + PSUBL

Map physical into logical: DA
LOGICAL

 = DA
PHYSICAL

 – PSUBL

The EOBPA parameter is used to detect band faults. The EOBPA address must specify the
first bit outside the banded bitmap buffer. As a graphic transfer proceeds, the current
destination address—a physical address—is compared against EOBPA. If it is found to be
greater than or equal to EOBPA (or, when the B2T flag is set, less than or equal to EOBPA),
a band fault occurs. The transfer is prematurely terminated, the current destination address
is translated back into logical space, and the logical address is written (along with
accompanying parameters) back into the display list.

Related Graphic Orders

BLT2BB_D

BLT2BB_SD

BLT2BB_SHD

BLT2BB_XD

BLT2BB_XHD

SL2BB_D

SL2BB_HD

Graphic Orders SET_BBMAP

13-44 MC68322 USER’S MANUAL MOTOROLA

Figure 13-23. Banded Bitmap Parameters

EOBPA

BAND NUMBER = BAND

180° PAGE
(B2T = 1)

0° PAGE
(B2T = 0)

DESTINATION
BANDED BITMAP

DWB

DWB

EOBPA

DESTINATION
BANDED BITMAP

BAND NUMBER = BAND

Graphic Orders SET_BOOL_XXX

MOTOROLA MC68322 USER’S MANUAL 13-45

SET_BOOL_XXX
Set Boolean Code

Note: A generalized algorithm for generating the Boolean code values is given in Section 12 Graphic Operations.

The SET_BOOL_D graphic order specifies the Boolean code to be used by all 1-operand
transfer graphic orders that specify only the destination bitmap. The SET_BOOL_HD
graphic order specifies the Boolean code to be used by all 2-operand transfer graphic orders
that specify a halftone bitmap as one of their operands.

The SET_BOOL_SD graphic order specifies the Boolean code to be used by all 2-operand
transfer graphic orders that specify a source bitmap as one of their operands. The
SET_BOOL_SHD graphic order specifies the Boolean code to be used by all 3-operand
transfer graphic orders that specify both a source and halftone bitmap as well as a
destination bitmap as operands.

Related Graphic Orders

PARAMETERS SIZE DESCRIPTION

0x0C
BOOL_D

0x0D
BOOL_HD

0x0E
BOOL_SD

0x0F
BOOL_SHD

Byte
Byte

Byte
Byte

Byte
Byte

Byte
Byte

SET_BOOL_D Opcode.
Destination-only Boolean code.

SET_BOOL_HD Opcode.
Halftone/Destination-only Boolean code.

SET_BOOL_SD Opcode.
Source/Destination-only Boolean code.

SET_BOOL_SHD Opcode.
Source/Halftone/Destination Boolean code.

FOR SET_BOOL_D FOR SET_BOOL_HD FOR SET_BOOL_SD FOR SET_BOOL_SHD

BLT2BB_D SL2BB_HD BLT2BB_SD BLT2BB_SHD

BLT2F_D SL2F_HD BLT2F_SD BLT2F_SHD

BLT2UB_D SL2UB_HD BLT2UB_SD BLT2UB_SHD

SL2BB_D BLT2BB_XD BLT2BB_XHD

SL2F_D BLT2F_XD BLT2F_XHD

SL2UB_D BLT2UB_XD BLT2UB_XHD

Graphic Orders SET_HTBMAP

13-46 MC68322 USER’S MANUAL MOTOROLA

SET_HTBMAP
Set Halftone Bitmap Parameters

The SET_HTBMAP graphic order specifies the structure of a halftone bitmap. This graphic
order specifies the width (HW), height (HH), and total size in bits (HZ) of the halftone bitmap.
These parameters are used in all subsequent graphic orders that operate with halftones and
they are dimensional only, meaning that no physical base address is given in the
parameters. Instead, each subsequent graphic order operating with the halftone defines its
own physical starting address in the bitmap, in addition to positional parameters. Both HW
and HH must be in the range 1–65,535 inclusive (zero values are illegal). HZ is always equal
to the product of HW and HH. The halftone bitmap must be packed. The width of the bitmap
can be any value from 1–65,535 bits. A halftone bitmap narrower than 32 bits should be
replicated to at least 32 bits to minimize the cost of replicating the halftone pattern across
wide areas. This type of replication is not necessary in the Y dimension. The MC68322
contains specialized caching hardware to achieve the greatest performance with 32- and
64-bit wide word-aligned halftones.

Related Graphic Orders

BLT2BB_SHD

BLT2F_SHD

BLT2UB_SHD

BLT2BB_XHD

BLT2F_XHD

BLT2UB_XHD

SL2BB_HD

SL2F_HD

SL2UB_HD

Figure 13-24. Halftone Bitmap Parameters

PARAMETERS SIZE DESCRIPTION

0x0B
0x00
HZ
HW
HH

Byte
Byte

Long Word
Word
Word

SET_HTBMAP Opcode.
Reserved.
Halftone bitmap total size in bits.
Halftone bitmap width in bits.
Halftone bitmap height in scanlines.

HALFTONE BITMAP

HW

HZ = HW x HH H
H

Graphic Orders SET_SBMAP

MOTOROLA MC68322 USER’S MANUAL 13-47

SET_SBMAP
Set Source Bitmap Parameters

The SET_SBMAP graphic order specifies the structure of a source bitmap. The warp of the
bitmap is provided and, if non-zero, is used in all subsequent bitBLT graphic orders that
specify a source bitmap. If the source bitmap warp is set to zero, the width of the destination
frame specified by a subsequent bitBLT graphic order is assumed to be the warp of the
source bitmap. This feature is particularly useful when a series of bitBLT operations are
performed from a font or collection of source frames where each frame has a different width.
By setting the source warp to zero, the SET_SBMAP graphic order does not need to be
included prior to each transfer.

The SW parameter is typically set to a non-zero value when it references a source which is
not packed in memory. This is a common occurrence in bitmapped fonts stored in font
cartridges. Each scanline of a character in a font begins on a word boundary (0 mod 2 byte
address).

Related Graphic Orders

BLT2BB_SD

BLT2F_SD

BLT2UB_SD

BLT2BB_SHD

BLT2F_SHD

BLT2UB_SHD

Figure 13-25. Unpacked Source Bitmap

PARAMETERS SIZE DESCRIPTION

0x0A
0x00
SW

Byte
Byte
Word

SET_SBMAP Opcode.
Reserved.
Source bitmap warp in bits.

W
AS

TE
D

 S
PA

C
E

SOURCE BITMAP
WARP

SOURCE BITMAP
WIDTH

Graphic Orders SET_UBMAP

13-48 MC68322 USER’S MANUAL MOTOROLA

SET_UBMAP
Set Unbanded Bitmap Parameters

The SET_UBMAP graphic order specifies the structure of an unbanded bitmap. The warp
of the bitmap is provided and is used in all subsequent graphic orders that operate on an
unbanded bitmap. Transfers to frames and banded bit maps are not affected by the DWU
value.

Related Graphic Orders

BLT2UB_D

BLT2UB_SD

BLT2UB_SHD

SL2UB_D

SL2UB_HD

PARAMETERS SIZE DESCRIPTION

0x09
0x00
DWU

Byte
Byte
Word

SET_UBMAP Opcode.
Reserved.
Destination unbanded bitmap warp in bits.

Graphic Orders SL2BB_D

MOTOROLA MC68322 USER’S MANUAL 13-49

SL2BB_D
Destination Only Scanline Transfer to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The SL2BB_D graphic order causes the MC68322 to render a scanline table image to a
banded bitmap. The destination is manipulated as specified by the Boolean code last set by
the SET_BOOL_D graphic order. The SET_BBMAP graphic order must previously define
the destination banded bitmap parameters.

When the B2T flag is clear, SLTA points to the most-significant byte of the first bit string
specifier in the table and DA refers to the pixel to which the displacement of the first bit string
specifier is added (not necessarily the first bit of the first run). When the B2T flag is set, SLTA
points to the most-significant byte of the last word of the final bit string specifier in the table,
and DA refers to the pixel that lies just past the end of the final bit string specifier run. In
neither case does SLTA point to the 000016 scanline table terminators. Since the scanline
table’s bit string specifiers must be placed at word boundaries, SLTA must be word-aligned.

When a band fault is detected, the MC68322 rewrites the scanline graphic order to update
its parameters. The BAND number is incremented (or decremented when the B2T flag is
set). DA is written back corresponding to the pixel following the last run rendered (or when
the B2T flag is set, the pixel preceding the next bit string specifier’s run) and SLTA points to
the next specifier to be executed when the rest of the scanline table is rendered to the next
band. The contents of the scanline table is left unchanged after a band fault.

Related Graphic Orders

SET_BOOL_D

SET_BBMAP

PARAMETERS SIZE DESCRIPTION

0x34
BAND*

DA*
SLTA*

Byte
Byte

Long Word
28 of 32 bits

SL2BB_D Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Scanline table physical byte address, word aligned.

Graphic Orders SL2BB_D

13-50 MC68322 USER’S MANUAL MOTOROLA

Figure 13-26. Destination Scanline Transfer to
Banded Bitmap, 0° Page

Figure 13-27. Destination Scanline Transfer to
Banded Bitmap, 180° Page

EOBPA

SCANLINE TABLE DESTINATION
BANDED BITMAP

DWB

DA

SLTA

0x00

FIRST
DISPLACEMENT

BOOL_D APPLIED
TO FRAME

BITSTRING
SPECIFIERS

EOBPA

SCANLINE TABLE DESTINATION
BANDED BITMAP

DWB

DA

SLTA

0x00

BOOL_D APPLIED
TO FRAME

BITSTRING
SPECIFIERS

Graphic Orders SL2BB_HD

MOTOROLA MC68322 USER’S MANUAL 13-51

SL2BB_HD
Halftone/Destination Scanline Transfer to Banded Bitmap

Note: * Denotes A Parameter That The MC68322 Updates When The Frame Crosses A Band Boundary.

The SL2BB_HD graphic order causes the MC68322 to render a scanline table image to a
banded bitmap and apply a halftone bitmap in the process. The destination and halftone
pixels are combined as specified by the Boolean code last set by the SET_BOOL_HD
graphic order. The SET_BBMAP graphic order must previously define the destination
banded bitmap parameters and the SET_HTBMAP graphic order must do the same for the
halftone bitmap dimensions.

Halftone tiled patterns are typically anchored to the page. The rendering of a scanline table
may need to take on the halftone pattern starting at various points in the halftone bitmap,
depending on where it is positioned on the page. The halftone parameters HXR, HYR, and
HA define the precise halftone pixel that corresponds to the initial destination address given
in the graphic order. Remember that the initial destination address is not where the first pixel
is drawn—when the B2T flag is clear, it is the point to which the first bit string specifier’s
displacement is added and when the B2T flag is set, the point immediately to the right of the
last bit string specifier’s run.

HXR specifies the number of pixels remaining to the right edge of the bitmap and HYR
defines the number of scanlines remaining to the bottom edge (or top edge, when the B2T
flag is set). HXR and HYR must be in the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤
HH, where HW and HH are the width and height of the halftone bitmap, respectively. For
example, when the B2T flag is clear, if the starting pixel in the halftone bitmap is determined
to be at the upper left, HXR must be set to HW, and HYR to HH; if instead a 180° page is
being rendered and the B2T flag is set, HXR must still be set to HW, but HYR must be set
to one.

PARAMETERS SIZE DESCRIPTION

0x35
BAND*

DA*
HXR*
HYR*
HA*

HTTA*
SLTA*

Byte
Byte

Long Word
Word
Word

Long Word
28 of 32 bits
28 of 32 bits

SL2BB_HD Opcode.
Band number when graphic order is executed.
Destination logical bit address.
Halftone X remainder.
Halftone Y remainder.
Halftone physical address of the starting pixel.
Companion halftone table physical byte address, word aligned.
Scanline table physical byte address, word aligned.

Graphic Orders SL2BB_HD

13-52 MC68322 USER’S MANUAL MOTOROLA

When the B2T flag is clear, SLTA and HTTA point to the most-significant byte of the first
specifier in their respective tables, and DA, HXR, HYR, and HA refer to the pixel to which
the displacement of the first bit string specifier is added (not necessarily the first bit of the
first run). When the B2T flag is set, SLTA and HTTA point to the most-significant byte of the
last word of the final specifier in their respective tables, and DA, HXR, HYR, and HA refer to
the pixel just past the end of the final bit string specifier run. In neither case does SLTA point
to the 000016 scanline table terminators. Since both the scanline table and companion
halftone table’s bit string specifiers must be placed at word boundaries, HTTA and SLTA
must be word aligned.

When a band fault is detected, the MC68322 rewrites the scanline graphic order to update
most of its parameters. The BAND number is incremented (or decremented when the B2T
flag is set). DA and HA are written back corresponding to the pixel following the last run
rendered (or when the B2T flag is set, the pixel preceding the next bit string specifier’s run)
and HYR is written back with the number of remaining scanlines in the halftone frame to be
transferred. Last, HTTA and SLTA point to the next specifier to be executed when the rest
of the scanline table is rendered to the next band. The contents of the scanline and
companion halftone tables are left unchanged after a band fault.

Related Graphic Orders

SET_BOOL_HD

SET_HTBMAP

SET_BBMAP

Graphic Orders SL2BB_HD

MOTOROLA MC68322 USER’S MANUAL 13-53

Figure 13-28. Halftone, Destination Scanline
Transfer to Banded Bitmap, 0° Page

Figure 13-29. Halftone, Destination Scanline
Transfer to Banded Bitmap, 180° Page

COMPANION
HALFTONE TABLE

HTTA

HALFTONE
SPECIFIERS

EOBPA

SCANLINE
TABLE

DESTINATION
BANDED BITMAP

DWB

DA

SLTA

0x00

FIRST
DISPLACEMENT

BOOL_HD USED
TO COMBINE FRAMES

BITSTRING
SPECIFIERS

HXR

HW

HA

H
H

H
YR

HALFTONE BITMAP

BOOL_HD
USED TO
COMBINE
FRAMES

COMPANION
HALFTONE TABLE

HTTA

HALFTONE
SPECIFIERS

EOBPA

SCANLINE
TABLE

DESTINATION
BANDED BITMAP

DWB

DA

SLTA

0x00

HXR

HW

HA

H
H

H
YR

HALFTONE BITMAP

BITSTRING
SPECIFIERS

Graphic Orders SL2F_D

13-54 MC68322 USER’S MANUAL MOTOROLA

SL2F_D
Destination Only Scanline Transfer to Frame

The SL2F_D graphic order causes the MC68322 to render a scanline table image to a
frame. The destination is manipulated as specified by the Boolean code last set by the
SET_BOOL_D graphic order. The destination frame warp is taken from the graphic order’s
FW parameter.

SLTA points to the most-significant byte of the first bit string specifier in the table (not to the
000016 header) and DA refers to the pixel to which the displacement of the first bit string
specifier is added (not necessarily the first bit of the run). Since the scanline table’s bit string
specifiers must be placed at word boundaries, SLTA must be word-aligned.

Related Graphic Orders

SET_BOOL_D

Figure 13-30. Destination Scanline Transfer to Frame

PARAMETERS SIZE DESCRIPTION

0x14
0x00
DA
FW

SLTA

Byte
Byte

Long Word
Word

28 of 32 bits

SL2F_D Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Scanline table physical byte address, word aligned.

BOOL_D
APPLIED

TO FRAME

SCANLINE
TABLE

DESTINATION
FRAME

SLTA

0x00

FW

DA FIRST
DISPLACEMENT

BITSTRING
SPECIFIERS

Graphic Orders SL2F_HD

MOTOROLA MC68322 USER’S MANUAL 13-55

SL2F_HD
Halftone/Destination Scanline Transfer to Frame

The SL2F_HD graphic order causes the MC68322 to render a scanline table image to a
frame and apply a halftone bitmap in the process. The destination and halftone pixels are
combined as specified by the Boolean code last set by the SET_BOOL_HD graphic order.
The destination frame warp is taken from the graphic order’s frame width (FW) parameter.
The SET_HTBMAP graphic order must previously define the halftone bitmap dimensions.

Halftone tiled patterns are typically anchored to the page. The rendering of a scanline table
may need to take on the halftone pattern starting at various points in the halftone bitmap,
depending on where it is positioned on the page. The halftone parameters HXR, HYR, and
HA define the precise halftone pixel that corresponds to the initial destination address given
in the graphic order. Remember that the initial destination address is not where the first pixel
is drawn—it is the point to which the first bit string specifier’s displacement is added.

HXR specifies the number of pixels remaining to the right edge of the bitmap and HYR
defines the number of scanlines remaining to the bottom edge. HXR and HYR must be in
the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH.

HTTA and SLTA point to the most-significant byte of the first specifier in their respective
tables, and DA, HXR, HYR, and HA refer to the pixel to which the displacement of the first
bit string specifier is added (not necessarily the first bit of the first run). Since both the
scanline table and companion halftone table’s specifiers must be placed at word
boundaries, HTTA and SLTA must be word-aligned.

Related Graphic Orders

SET_BOOL_HD

SET_HTBMAP

PARAMETERS SIZE DESCRIPTION

0x15
0x00
DA
FW
HXR
HYR
HA

HTTA
SLTA

Byte
Byte

Long Word
Word
Word
Word

Long Word
28 of 32 bits
28 of 32 bits

SL2F_HD Opcode.
Reserved.
Destination physical bit address.
Frame width in bits.
Halftone X remainder.
Halftone Y remainder.
Halftone physical address of the starting pixel.
Companion halftone table physical byte address, word aligned.
Scanline table physical byte address, word aligned.

Graphic Orders SL2F_HD

13-56 MC68322 USER’S MANUAL MOTOROLA

Figure 13-31. Halftone, Destination Scanline Transfer to Frame

FIRST
DISPLACEMENT

BOOL_HD
USED TO
COMBINE
FRAMES

COMPANION
HALFTONE TABLE

HTTA

SCANLINE
TABLE

DESTINATION
BANDED BITMAP

FW

DA

0x00

HXR

HW

HA

H
H

H
YR

HALFTONE BITMAP

BITSTRING
SPECIFIERS

HALFTONE
SPECIFIERS

SLTA

Graphic Orders SL2UB_D

MOTOROLA MC68322 USER’S MANUAL 13-57

SL2UB_D
Destination Only Scanline Transfer to Unbanded Bitmap

The SL2UB_D graphic order causes the MC68322 to render a scanline table image to an
unbanded bitmap. The destination is manipulated as specified by the SET_BOOL_D
graphic order. The SET_UBMAP graphic order must previously define the destination
unbanded bitmap warp.

SLTA points to the most-significant byte of the first bit string specifier in the table (not to the
000016 header) and DA refers to the pixel to which the displacement of the first bit string
specifier is added (not necessarily the first bit of the run). Since the scanline table’s bit string
specifiers must be placed at word boundaries, SLTA must be word aligned.

Related Graphic Orders

SET_BOOL_D

SET_UBMAP

Figure 13-32. Destination Scanline Transfer to Unbanded Bitmap

PARAMETERS SIZE DESCRIPTION

0x24
0x00
DA

SLTA

Byte
Byte

Long Word
28 of 32 bits

SL2F_D opcode.
Reserved.
Destination physical bit address.
Scanline table physical byte address, word aligned.

FIRST
DISPLACEMENT

BOOL_D
APPLIED
TO FRAME

SCANLINE
TABLE

DESTINATION
UNBANDED BITMAP

DWU

DA

0x00

BITSTRING
SPECIFIERS

SLTA

Graphic Orders SL2UB_HD

13-58 MC68322 USER’S MANUAL MOTOROLA

SL2UB_HD
Halftone/Destination Scanline Transfer to Unbanded Bitmap

The SL2UB_HD graphic order causes the MC68322 to render a scanline table image to an
unbanded bitmap and apply a halftone bitmap in the process. The destination and halftone
pixels are combined as specified by the Boolean code last set by the SET_BOOL_HD
graphic order. The SET_UBMAP graphic order must previously define the destination
unbanded bitmap warp and the SET_HTBMAP graphic order must do the same for the
halftone bitmap dimensions.

Halftone tiled patterns are typically anchored to the page. Thus, the rendering of a scanline
table may need to take on the halftone pattern starting at various points in the halftone
bitmap, depending on where it is positioned on the page. The halftone parameters HXR,
HYR, and HA define the precise halftone pixel that corresponds to the initial destination
address given in the graphic order. Remember that the initial destination address is not
where the first pixel is drawn—it is the point to which the first bit string specifier’s
displacement is added.

HXR specifies the number of pixels remaining to the right edge of the bitmap and HYR
defines the number of scanlines remaining to the bottom edge. HXR and HYR must be in
the following ranges: 1 ≤ HXR ≤ HW and 1 ≤ HYR ≤ HH, where HW and HH are the width
and height of the halftone bitmap, respectively. For example, if the starting pixel in the
halftone bitmap is determined to be at the upper left, HXR must be set to HW, and HYR to
HH.

HTTA and SLTA point to the most-significant byte of the first specifier in their respective
tables and DA, HXR, HYR, and HA refer to the pixel to which the displacement of the first
bit string specifier is added (not necessarily the first bit of the first run). Since both the
scanline table and companion halftone table’s specifiers must be placed at word
boundaries, HTTA and SLTA must be word-aligned.

Related Graphic Orders

SET_BOOL_HD

SET_HTBMAP

SET_UBMAP

PARAMETERS SIZE DESCRIPTION

0x25
0x00
DA

HXR
HYR
HA

HTTA
SLTA

Byte
Byte

Long Word
Word
Word

Long Word
28 of 32 bits
28 of 32 bits

SL2F_HD Opcode.
Reserved.
Destination physical bit address.
Halftone X remainder.
Halftone Y remainder.
Halftone physical address of the starting pixel.
Companion halftone table physical byte address, word aligned.
Scanline table physical byte address, word aligned.

Graphic Orders SL2UB_HD

MOTOROLA MC68322 USER’S MANUAL 13-59

Figure 13-33. Halftone, Destination Scanline
Transfer to Unbanded Bitmap

FIRST
DISPLACEMENT

BOOL_HD
USED TO
COMBINE
FRAMES

COMPANION
HALFTONE TABLE

HTTA

SCANLINE
TABLE

DESTINATION
UNBANDED BITMAP

DWU

DA

0x00

HXR

HW

HA

H
H

H
YR

HALFTONE BITMAP

BITSTRING
SPECIFIERS

HALFTONE
SPECIFIERS

SLTA

Graphic Orders STOP

13-60 MC68322 USER’S MANUAL MOTOROLA

STOP
Stop Display List Execution

The STOP graphic order indicates the end of a display list. The MC68322 RGP halts
execution and generates an RGP done interrupt event when the STOP graphic order is
encountered.

PARAMETERS SIZE DESCRIPTION

0x00
0x00

Byte
Byte

STOP Opcode.
Reserved.

MOTOROLA MC68322 USER’S MANUAL 14-1

SECTION 14
ELECTRICAL AND THERMAL CHARACTERISTICS

This section contains information on the maximum rating and thermal characteristics for the
MC68322, which is subject to change. For the most recent specifications, contact a Motorola
sales office.

14.1 MAXIMUM RATINGS

14.2 THERMAL CHARACTERISTICS

CHARACTERISTIC SYMBOL VALUE UNIT This device contains protective circuitry
against damage due to high static voltages
or electrical fields. However, it is advised
that normal precautions be taken to avoid
application of any voltages higher than
maximum-rated voltages to this
high-impedance circuit. Reliability of
operation is enhanced if unused inputs are
tied to an appropriate logic voltage level
(e.g., either GND or VCC).

Supply Voltage 1 2 V
CC

–0.3 to +7.0 V

Input Voltage 1 2 V
in

–0.3 to +7.0 V

Maximum Operating Junction Temperature T
J

TBD °C

Minimum Operating Ambient Temperature T
A

0 to 70 ˚ C °C

Storage Temperature Range T
stg

–55 to +150 °C

NOTES:

1. Permanent damage can occur if maximum ratings are exceeded. Exposure to
voltages or currents in excess of recommended values affects device reliability.
Device modules may not operate normally while being exposed to electrical
extremes.

2. Although sections of the device contain circuitry to protect against damage
from high static voltages or electrical fields, take normal precautions to
Thermal Characteristics

CHARACTERISTIC SYMBOL VALUE RATING

Thermal Resistance, Junction to Case—PGA Package θJC TBD °C/W

Electrical and Thermal Characteristics

14-2 MC68322 USER’S MANUAL MOTOROLA

14.3 DC ELECTRICAL SPECIFICATIONS

NOTES: 1. Not including internal pull-up.

2. Currents listed are with no loading.

3. The output drive derating factor applies only to load capacitance values greater than CL. Output drive derating factors are not accurate
for load capacitance values less than CL or for capacitance greater than 250 pF.

4. Capacitance is periodically sampled rather than always tested.

CHARACTERISTICS SYMBOL MIN. MAX. UNIT

Input High Voltage V
IH

2.0 VCC V

Input Low Voltage V
IL

GND 0.8 V

Input Leakage Current 1 I
IN

— 2.5 µA

Three-State and Open Drain Leakage Current I
TSI

— 20 µA

Output High Voltage (I
OH

 = Rated Maximum) V
CC

 = 4.75 V V
OH

2.4 — V

Output Low Voltage (I
OL

 = Rated Maximum) V
OL

— 0.5 V

Current Drain, TA = 70°C, V
CC

 = 5.25V, f = 16.667 MHz 2 I
D

— TBD mA

Power Dissipation 16.67 MHz = f P
D

— TBD W

Input Capacitance
All Input-Only Pins
All I/O Pins

C
IN —

—
10
20

pF

Load Capacitance C
L

— 80 pF

Output Drive Derating Factor 3
8 mA Output Pins: (WE, WRU, WRL, RD, D15–D0, CS7–CS0, A25–A1, PRINT,

MD15–MD0, MA10–MA0, I_RESET, I_DTACK, I_CLK1, R/W,
DTACK, BG, AS, DACK, CBSY, CCLK, and CMD/STS)

16 mA Output Pins: (SELECT, RAS5–RAS0, PERROR, PD7–PD0, FAULT, CAS1,
CAS0, BUSY, and ACK)

24 mA Output Pin: (VIDEO)

ICE Bond-Out Option
4 mA Output Pins: (I_DLEN, I_IPL2–I_IPL0, I_HALT, I_BR, and I_AVEC)

K
L

—

—
—

—

0.09

0.05
0.04

0.13

ns/pF

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-3

14.4 AC ELECTRICAL SPECIFICATIONS

14.4.1 Clock and Reset Timing

Figure 14-1. Clock AC Timing

Figure 14-2. RESET AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

Frequency of Operation 1 2 4 20 MHz

1 CLK2 Period 25 — ns

2, 3 CLK2 Pulse Width 8 — ns

4, 5 CLK2 Rise and Fall Times — 4 ns

6 RESET Pulse Width 3 20 — CLK2s

7 RESET Asynchronous Input Setup before CLK2 4 5 — ns

NOTES:

1. The frequency of operation is equal to one-half the CLK2 frequency.

2. The MC68322 is a 100% static cell design, and has no absolute lower limit on operating frequency. However, system
requirements, including the minimum DRAM refresh period, require special attention below 4 MHz.

3. For power-up, the MC68322 must be held in the reset state for 100 ms to allow stabilization of on-chip circuitry. After the system
is powered up, this requirement refers to the minimum pulse width required to reset the processor.

4. RESET is an asynchronous input and is synchronized internally by the MC68322. It requires no setup or hold time in order to
be recognized for proper operation. However, to guarantee recognition of the input at a certain edge of CLK2, RESET must
satisfy the setup requirement.

CLK2

1

2 3

4

2.0 V
1.5 V
0.8 V

5

CLK2

RESET

7

6

7

Electrical and Thermal Characteristics

14-4 MC68322 USER’S MANUAL MOTOROLA

14.4.2 MC68322 Bus Timing

The timing diagrams that follow illustrate core reads and writes. Figures 14-3 through 14-5
illustrate combinations of chip-select parameters that produce zero wait-state reads on the
EC000 bus. Figures 14-6 through 14-9 illustrate combinations of chip-select parameters that
produce one wait-state reads on the EC000 bus. Figure 14-11 illustrates the only
combination of chip-select parameters that produce zero wait-state writes on the EC000
bus. Figures 14-12 through 14-14 illustrate combinations of chip-select parameters that
produce one wait-state writes on the EC000 bus. The access times for each timing diagram
are shown in parentheses in CLK2s. The numbers within the parentheses are defined as
follows:

(Setup:Access:Hold:Recover)

The Setup value indicates the number of CLK2s between the assertion of the chip-select
and RD, WRU, or WRL. The Access value indicates the number of CLK2s that the RD,
WRU, or WRL signal will remain asserted. The Hold value indicates the number of CLK2s
between the negation of RD, WRU, or WRL and chip-select. Note that some of the access
times are flagged with an asterisk (*) because the access has a hold time of -1 CLK2s. This
situation occurs whenever the “hold” value in one of the chip-select registers is set to zero.
In this case, the chip-select actually negates one CLK2 before the RD, WRU, or WRL. This
is important because for reads in such cases, the data must be set up to the negation of the
chip-select rather than the negation of the RD signal. The Recover value indicates the
number of CLK2s between the negation and reassertion of the chip-select (chip-select high
time.) These timing diagrams are all shown without extra recovery clocks, so the recovery
time for each of the cycles will be 3 CLK2s.

NUM CHARACTERISTIC MIN MAX UNIT

8 Address Bus Valid from CLK2, EC000 Cycle 3 30 ns

9 Address Bus Valid from CLK2, DMA Cycle 2 20 ns

10 Data Bus Driven and Valid from CLK2 2 20 ns

11 Data Bus High Impedance from CLK2 2 20 ns

12 Data Bus Setup before CLK2 2 — ns

13 Data Bus Hold after CLK2 5 — ns

14 CS7–CS0 Valid from CLK2, EC000 Cycle 3 30 ns

15 CS7–CS0 Valid from CLK2, DMA Cycle 2 20 ns

16 RD, WRL, WRU Valid from CLK2 2 20 ns

17 WAIT Asynchronous Input Hold after CLK2 * 5 — ns

18 AS, R/W Valid from CLK2 3 30 ns

NOTE: WAIT is an asynchronous input and is synchronized internally by the MC68322. It requires no setup or hold time in order to be
recognized for proper operation. However, to guarantee recognition of the input at a certain edge of CLK2, WAIT must satisfy the hold
requirement.

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-5

To calculate the total cycle time, add the values in the parentheses. For example, Figure 1-3
shows an access time of (2:2:1:3). The total cycle time for this setup will be 8 CLK2s or 4
CLK1s, which is a zero wait-state access for the core.

Figure 14-3. Read Access (2:2:1:3)

Figure 14-4. Read Access (2:4:–1:3)*

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3

8

9

18

18

14

16 16

14

18

9

17

13

12

EC000 Core Read Cycle AC Timing
Zero Wait State Access

RSET=0; RACC=0; RHLD=1

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3

8

9

18

18

14

16 16

14

18

9

17

13a

12

EC000 Core Read Cycle AC Timing
Zero Wait State Access

RSET=0; RACC=1; RHLD=0
Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

14-6 MC68322 USER’S MANUAL MOTOROLA

Figure 14-5. Read Access (4:2:–1:3)

Figure 14-6. Read Access (2:2:3:3)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3

8

9

18

18

14

16 16

14

18

9

17

12

EC000 Core Read Cycle AC Timing
Zero Wait State Access

RSET=1; RACC=0; RHLD=0

13a

Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 W W S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=0; RACC=0; RHLD=2

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-7

Figure 14-7. Read Access (2:4:1:3)

Figure 14-8. Read Access (4:2:1:3)

S0 S1 S2 S3 S4 W W S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=0; RACC=1; RHLD=1

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 W W S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=1; RACC=0; RHLD=1

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

14-8 MC68322 USER’S MANUAL MOTOROLA

Figure 14-9. Read Access (2:6:–1:3)

Figure 14-10. Read Access (4:4:–1:3)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13a

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=0; RACC=2; RHLD=0

W W

Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13a

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=1; RACC=1; RHLD=0

W W

Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-9

Figure 14-11. Read Access (6:2:-1:3)

Figure 14-12. Write Access (4:2:–1:3)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1

8

9

18

18

14

16 16

14

18

9

17

13a

12

EC000 Core Read Cycle AC Timing
One Wait State Access

RSET=2; RACC=0; RHLD=0

W W

Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

RD

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1 S2 S3

8

9

18

14

16 16

14

18

9

17

10

EC000 Core Write Cycle AC Timing
Zero Wait State Access

WSET=1; WACC=0; WHLD=0

11

18

WRU, WRL

Hold Time of -1 CLK2s (The Chip-Select Negates Before The RD)

A25-A1

CLK2

CS7-CS0

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

14-10 MC68322 USER’S MANUAL MOTOROLA

Figure 14-13. Write Access (4:2:1:3)

Figure 14-14. Write Access (4:4:–1:3)

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1

8

9

18

14

16 16

14

18

9

17

10

EC000 Core Write Cycle AC Timing
One Wait State Access

WSET=1; WACC=0; WHLD=1

11

18

W W

Hold Time of -1 CLK2s (The Chip-Select Negates Before The wru/wrl

WRU, WRL

A25-A1

CLK2

CS7-CS0

D15-D0

WAIT

AS

R/W

S0 S1 S2 S3 S4 S5 S6 S7 S0 S1

8

9

18

14

16 16

14

18

9

17

10

EC000 Core Write Cycle AC Timing
One Wait State Access

WSET=1; WACC=1; WHLD=0

11

18

W W

Hold Time of -1 CLK2s (The Chip-Select Negates Before The WRU/WRL

WRU, WRL

A25-A1

CLK2

CS7-CS0

D15-D0

WAIT

AS

R/W

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-11

Figure 14-15. DMA Read Cycle AC Timing

Figure 14-16. DMA Write Cycle AC Timing

S0 S1 S2 S3 S4 S5 S6 S7 W S0

9 9

15

18

18

15

18

16 16

17

12
13

CLK2

A25–A1

D15–D0

R/W

AS

WAIT

CS7–CS0

RD

S0 S1 S2 S3 S4 W W S5 S6 S7 W

9

15

18 18

15

16

10 11

16

17

CLK2

A25–A1

D15–D0

R/W

AS

WAIT

CS7–CS0

WRU, WRL

Electrical and Thermal Characteristics

14-12 MC68322 USER’S MANUAL MOTOROLA

14.4.3 DRAM Timing

Figure 14-17. DRAM Read Cycle AC Timing

Figure 14-18. DRAM Write Cycle AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

19 MA10–MA0 Row Address Valid from CLK2 2 25 ns

20 MA10–MA0 Column Address Valid from CLK2 2 20 ns

21 MD15–MD0 Driven and Valid from CLK2 2 20 ns

22 MD15–MD0 High Impedance from CLK2 2 20 ns

23 MD15–MD0 Setup before CLK2 5 — ns

23A MD15–MD0 Hold after CLK2 5 — ns

24 RAS5–RAS0, CAS1–CAS0 Valid from CLK2 2 14 ns

25 WE Valid from CLK2 2 20 ns

CLK2

MA10–MA0

MD15–MD0

RAS5–RAS0

CAS1–CAS0

WE

19 20 20

22

19

24

25

24

24 24

23 23A

19 20 20

22

19

24

2525

24

24 24

2121

24

21

CLK2

MA10–MA0

MD15–MD0

RAS5–RAS0

CAS1–CAS0

WE

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-13

14.4.4 IDMA Timing

Figure 14-19. DMA Request/Acknowledge AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

26 DACK Valid from CLK2 2 20 ns

27 DREQ Asynchronous Input Hold after CLK2 * 5 — ns

28 DREQ Asynchronous Input Pulse Width 2 — CLK2s

NOTE: * Denotes that DREQ is an asynchronous input and is synchronized internally by the MC68322. It requires no setup or hold time to be
recognized for proper operation. However, to guarantee recognition of the input at a certain edge of CLK2, DREQ must satisfy the hold
requirement.

CLK2

27 27

26 2628

DACK

DREQ

Electrical and Thermal Characteristics

14-14 MC68322 USER’S MANUAL MOTOROLA

14.4.5 Print Engine Interface Timing

NUM CHARACTERISTIC MIN MAX UNIT

29 CCLK Period 1 16 — CLK2s

30 CCLK Pulse Width 1 8 — CLK2s

31 CCLK, CMD/STS, SBSY, STS Asynchronous Input Hold after CLK2 2 5 — ns

32 CCLK, CBSY, CMD/STS Valid from CLK2 2 20 ns

33 CCLK, CBSY, CMD/STS Driven from CLK2 2 20 ns

34 CCLK, CBSY, CMD/STS High Impedance from CLK2 2 20 ns

Frequency of Operation
1× Mode
PLL Mode

—
—

25
80

MHz

35 VCLK Period
1× Mode
PLL Mode

40
12.5

—
—

ns

36,37 VCLK Pulse Width
1× Mode
PLL Mode

8
4

—
—

ns

38, 39 VCLK Rise and Fall Times
1× Mode
PLL Mode

—
—

8
8

ns

40 FSYNC, LSYNC Asynchronous Input Hold after VCLK 3 4

1× Mode (FSYNC only)
PLL Mode

5
5

—
—

ns

41 LSYNC Setup before VCLK 5 6
5 — ns

42 LSYNC Hold after VCLK 5 6
5 — ns

43 FSYNC, LSYNC Pulse Width 6
1× Mode
PLL Mode

2
2

—
—

dots

44 PRINT Valid from CLK2 2 20 ns

NOTES:

1. Applies only when CCLK is configured as an input.

2. CCLK and CMD/STS when configured as inputs, and SBSY and STS, are asynchronous inputs and are synchronized internally by
the MC68322. They require no setup or hold time in order to be recognized for proper operation. However, to guarantee recognition
of an input at a certain edge of CLK2, the input must satisfy the hold requirement.

3. FSYNC (in 1× or PLL mode) and LSYNC (in PLL mode only) are asynchronous inputs and are synchronized internally by the
MC68322. They require no setup or hold time to be recognized for proper operation. However, to guarantee recognition of an input
at a certain edge of CLK2, the input must satisfy the hold requirement.

4. The specification is relative to the edge of VCLK selected by the VCP bit in the PVCCR.

5. LSYNC is a synchronous input when the PVC operates in 1× mode.

6. The minimum pulse widths for FSYNC and LSYNC depend on the video dot rate, and is specified in video dot periods (dots). In 1×
mode, the video dot period is equal to the VCLK period. In PLL mode, the video dot period is determined by the VCLK period and
the configuration of the PLL.

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-15

Figure 14-20. Print Engine Interface Input AC Timing

Figure 14-21. Print Engine Interface Output AC Timing

Figure 14-22. Video Clock AC Timing

CLK2

CBSY

CCLK

CMD/STS

33 34

32 32

CLK2

SBSY

CCLK

CMD/STS,

31 31

31

30

30

29

35

36 37

38 39

VCLK
2.0 V
1.5 V
0.8 V

Electrical and Thermal Characteristics

14-16 MC68322 USER’S MANUAL MOTOROLA

Figure 14-23. PVC AC Timing

Figure 14-24. Print Engine Interface AC Timing

14.4.6 Interrupt Timing

Figure 14-25. Interrupt Interface AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

45 IRQ1–IRQ0 Asynchronous Input Hold after CLK2 5 — ns

46 IRQ1–IRQ0 Pulse Width 2 — CLK2s

NOTE IRQ1–IRQ0 are asynchronous inputs and are synchronized internally by the MC68322. They require no setup or hold time to be
recognized for proper operation. However, to guarantee recognition of an input at a certain edge of CLK2, the input must satisfy the
hold requirement.

VCLK

FSYNC

LSYNC
(PLL MODE)

LSYNC
(1X MODE)

40 40

42

43

41

41

43

43

CLK2

PRINT

44 44

CLK2

IRQ0–IRQ1

46

45

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-17

14.4.7 Parallel Port Interface Timing

Figure 14-26. Parallel Port Interface AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

47 PD7–PD0, ACK, BUSY, SELECT, PERROR, FAULT Output Valid from CLK2 2 20 ns

48 PD7–PD0 Driven from CLK2 2 20 ns

49 PD7–PD0 High Impedance from CLK2 2 20 ns

50 PD7–PD0, SELECTIN, STROBE, AUTOFD, INIT Asynchronous Input Hold
after CLK2 *

5 — ns

NOTE: * Denotes that PD7–PD0, SELECTIN, STROBE, AUTOFD, INIT are asynchronous inputs and are synchronized internally by the
MC68322. They require no setup or hold time to be recognized for proper operation. However, to guarantee recognition of an input at
a certain edge of CLK2, the input must satisfy the hold requirement.

CLK2

PD7–PD0 (OUTPUT)

48

50

47

49

SELECTIN, STROBE,
AUTOFD, INIT, &

PD7–PD0 (INPUT)

ACK, BUSY, SELECT,
PERROR, & FAULT

Electrical and Thermal Characteristics

14-18 MC68322 USER’S MANUAL MOTOROLA

14.4.8 External Bus Master Timing

Figure 14-27. External Bus Master Read Cycle AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

51 BG Valid from CLK2 2 20 ns

52 Address Bus, AS, R/W Driven from CLK2 2 20 ns

53 Address Bus, AS, R/W High Impedance from CLK2 2 20 ns

54 DTACK Low from CLK2 2 20 ns

55 DTACK High from AS High 0 10 ns

56 AS, BR Asynchronous Input Hold after CLK2 * 5 — ns

57 Address Bus, R/W Setup before AS Low 0 — ns

58 Address Bus, AS, R/W Hold after DTACK Low 0 — ns

59 Data Bus Valid from CLK2 (Read Cycle) 2 20 ns

60 Data Bus High Impedance after DTACK High (Read Cycle) 0 — ns

61 Data Bus Valid after AS Low (Write Cycle) — 4 CLK2s

62 Data Bus Hold after DTACK Low (Write Cycle) 0 — ns

63 BR High after AS Low (Hold Time) 0 — ns

64 AS Width High 2 — CLK2s

NOTE: * Denotes that AS and BR are asynchronous inputs and are synchronized internally by the MC68322. They require no setup or hold
time to be recognized for proper operation. However, to guarantee recognition of an input at a certain edge of CLK2, the input must
satisfy the hold requirement.

CLK2

A25–A1

D15–D0

53

51 51

5257

54

55

59 60

56 56

58

DTACK

BR

BG

AS

R/W

Electrical and Thermal Characteristics

MOTOROLA MC68322 USER’S MANUAL 14-19

Figure 14-28. External Bus Master Write Cycle AC Timing

Figure 14-29. External Bus Master Bus Arbitration AC Timing

Figure 14-30. External Bus Master Multiple Cycle AC Timing

53

51 51

5257

54 55

56 56

58

61 62

CLK2

A25–A1

D15–D0

DTACK

BR

BG

AS

R/W

51

53

56 56

56 56

63

CLK2

BR

BG

AS

51

53

56

56

64

CLK2

BR

BG

AS

MOTOROLA MC68322 USER’S MANUAL 15-1

SECTION 15
ORDERING INFORMATION AND MECHANICAL DATA

This section contains MC68322 ordering information, pin assignments, and package
dimensions.

15.1 ORDERING INFORMATION
The following table provides ordering information pertaining to the MC68322 package types,
frequencies, temperatures, and Motorola order numbers.

15.2 PIN ASSIGNMENT
The following illustrates the MC68322 pin assignments for the 160 PQFP package.

PACKAGE TYPE FREQUENCY TEMPERATURE ORDER NUMBER

160 Pin QFP
FT Suffix

25 MHz
20 MHz

16.667 MHz

0 to 70° C MC68322FT25
MC68322FT20
MC68322FT16

Ordering Information and Mechanical Data

15-2 MC68322 USER’S MANUAL MOTOROLA

Figure 15-1. MC68322 160-Lead Plastic Quad Flat Pack (PQFP)

MC68322
(TOP VIEW)

1 40

120 81

160

121

41

80

SELECT
INIT

PERROR

BUSY
ACK

PD7
PD6
GND
PD5
PD4
PD3

RESET
TEST
IRQ1

PD2

PD0

STROBE

G
N

D
IR

Q
0

C
S7

C
S6

C
S5

C
S4

C
S1

C
S0

G
N

D

A24

A22
A23

A21
A20

GND
A18

A16

A17

A15
A14

A13

A11
A12

A10
A9
GND
A8
A7

A5

A6

A2

DACK
A1

DREQ
GND
CCLK

STS

SB
SY

C
M

D
/S

TS

C
BS

Y
PR

IN
T

FS
YN

C
LS

YN
C

VI
D

EO

VC
LK

G
N

D
R

AS
5

R
AS

4

R
AS

2
R

AS
3

G
N

D
R

AS
1

R
AS

0
W

E

C
AS

0
C

AS
1

M
D

15
M

D
14

M
D

13
M

D
12

G
N

D

M
D

9
M

D
10

M
D

8

M
D

7
M

D
6

M
D

4

M
D

5

M
D

3
M

D
2

G
N

D

M
D

1

A3

MD0
MA10

MA9

MA7
MA6

GND
MA5

MA4

MA3
MA2
MA1

VCC

SELECTIN
HI-Z

MA0

GND

V C
C

VCC

V C
C

V C
C

V C
C

C
S3

C
S2

C
LK

2

W
R

U

W
R

L
R

D
W

AI
T

AS R
/W

G
N

D
ED

TA
C

K
BR BG D
15

D
14

D
13

D
12

D
11

D
10 D

9
D

8
D

7
G

N
D

G
N

D D
6

D
5

D
4

D3

D2
D1
D0

GND
A25

A4

M
D

11

MA8

PD1

FAULT
AUTOFD

A19

VCC

VCC

V C
C

V C
C

V C
C

V C
C

VCC

VCC

VCC

Ordering Information and Mechanical Data

MOTOROLA MC68322 USER’S MANUAL 15-3

15.3 MECHANICAL DATA

Figure 15-2. 160 Pin QFP Package Dimensions

A B

L

120

121

160

1 40

81

80

41

D

0.
20

 (0
.0

08
)

H
A

–
B

D
M

S
S

0.
20

 (0
.0

08
)

H
A

–
B

D
M

S
S

0.
50

 (0
.0

02
)

A
–

B

0.20 (0.008) H A – B DM S S

0.20 (0.008) H A – B DM S S

0.50 (0.002) A – B S

A

Z

B V

DETAIL "A"

Y

L

MG

C
SEATING
PLANE

H

.010 (0.004)

DATUM
PLANE

DETAIL "C"
M

C E

H

DETAIL "A"

P

A, B, D

SECTION "AA"

F

BASE METAL
D

J N

0.08 (0.003) C A – B DM S S

DETAIL "C"

H
DATUM
PLANE

W

X
K

U

T QR
A

A

NOTES:
1. Dimensioning and tolerancing per ANSI Y14.5M, 1982.
2. Controlling dimension: millimeter.
3. Datum plane –H– is located at bottom of lead and is coincident with the lead where the lead exits the plastic body at the bottom of the parting line.
4. Datums A, B, and D to be determined at datum plane –H–.
5. Dimensions S and V to be determined at seating plane –C–.
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.25 (.010) per side. Dimensions A and B do include mold mismatch

and are determined at datum plane –H–.
7. Dimension D does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 (.003) total in excess of the D dimension at maximum

material condition. Dambar cannot be located on the lower radius or the foot.

27.90 28.10 1.098 1.106
27.90 28.10 1.098 1.106
3.45 3.85 0.136 0.152
0.28 0.42 0.011 0.017
3.20 3.56 0.126 0.140
0.28 0.34 0.011 0.013

0.65 BSC 0.0256 BSC
0.25 0.35 0.010 0.014
0.11 0.18 0.0043 0.0071
0.70 0.90 0.027 0.036
25.35 REF 0.998 REF

0.11 0.14 0.0043 0.0055

MILLIMETERS INCHES
MIN MAX MIN MAX DIM

P 0.325 BSC 0.0128 BSC
Q 0° 7° 0° 7°
R 0.13 0.30 0.005 0.012
S 31.00 31.40 1.220 1.236
T 0.13 — 0.005 —
U 0° — 0° —
V 31.00 31.40 1.220 1.236
W 0.40 — 0.016 —
X 1.60 REF 0.063 REF
Y 1.325 REF 0.0522 REF
Z 1.325 REF 0.0522 REF

MILLIMETERS INCHES
MIN MAX MIN MAXDIM

A
B
C
D
E
F
G
H
J
K
L
M
N

5° 9° 5° 9°

MOTOROLA MC68322 USER’S MANUAL A-1

APPENDIX A
IN-CIRCUIT EMULATION INTERFACE

This section describes an in-circuit emulation (ICE) device and interface board for the
MC68322. A special in-circuit emulation board-out package is available to provide a
full-featured emulation device while using standard M68000 emulators. The ICE device
uses a 208-pin grid array (PGA) package instead of the production version 160-pin plastic
quad flat pack (PQFP). These extra pins, which connect to the MC68322’s ICE device,
interface between the logic board containing a MC68322 PQFP and a standard MC68000
ICE. The ICE interface contains a PGA connector for the logic board, the MC68322 ICE, a
small amount of logic, and a connector for an MC68000 ICE with some minor modifications.

A.1 ICE INTERFACE SIGNALS
The following pins are used to connect the MC68322 to an ICE. The ICE bond-out is for
engineering use only and should not be used in production. The ICE option aids in the reuse
of existing emulators for standard M68000 Family processors. Some of these signals are
dedicated to this interface and only appear on the ICE bond-out package. In addition, some
of these signals are used by the processor bus and an external bus master interface. The
direction of the pins is from the perspective of the MC68322. Table A-1 lists a summary of
the ICE interface signals.

Table A-1. ICE Interface Signal Summary

SIGNAL NAME MNEMONIC
INPUT/

OUTPUT
ACTIVE
STATE

ON BG ON HI-Z

Clock (Internal) I_CLK1 Output — No No

ICE Address Bits I_A(27–26) Input — — —

ICE Auto Vector I_AVEC Output Low No No

ICE Bus Grant I_BG Input Low — —

ICE Bus Request I_BR Output Low No No

ICE Enable ICEN Input Low — —

ICE Data Latch Enable I_DLEN Output Low No No

ICE Data Transfer Acknowledge I_DTACK Output Low No No

ICE Function Code I_FC(2–0) Input — — —

ICE Processor Halt I_HALT Output Low No No

In-Circuit Emulation Interface

A-2 MC68322 USER’S MANUAL MOTOROLA

A.1.1 ICE Signal Descriptions
I_CLK1
INTERNAL CLOCK—Output. This signal is used for a 1× clock that is a buffered version of
the clock to the MC68EC000 core processor. Typically, this signal is connected directly to
the MC68000 ICE clock pin.

I_A27–I_A26
INTERNAL ADDRESS—Input. These signals are address bits that expand the addressing
capability of the MC68EC000 core. They are used by the internal system integration module,
internal registers, and DRAM accesses. For the most part, these signals will not be used and
should be pulled low.

I_UDS, I_LDS
INTERNAL UPPER AND LOWER DATA STROBE—Input. These active low input signals
control the flow of data on the data bus, as specified in Table A-2. When R/W is high, the
processor reads from the data bus as indicated and when it is low, the processor writes to
the data bus. Typically, these signals are connected directly to the MC68000 ICE.

SIGNAL NAME MNEMONIC
INPUT/

OUTPUT
ACTIVE
STATE

ON BG ON HI-Z

ICE Lower Data Strobe I_LDS Input Low — —

ICE Interrupt Priority Level I_IPL2–I_ IPL0 Output Low No No

ICE RESET I_RESET Output Low No No

ICE Upper Data Strobe I_UDS Input Low — —

Table A-2. Data Strobe Control of Data Bus

I_UDS I_LDS R/W D15–D8 D7–D0

High High — No Valid Data No Valid Data

Low Low High Valid Data Bits (Read) 15–8 Valid Data Bits (Read) 7–0

High Low High No Valid Data Valid Data Bits (Read) 7–0

Low High High Valid Data Bits (Read) 15–8 No Valid Data

Low Low Low Valid Data Bits (Write) 15–8 Valid Data Bits (Write) 7–0

High Low Low Valid Data Bits (Write) 7–0* Valid Data Bits (Write) 7–0

Low High Low Valid Data Bits (Write) 15–8 Valid Data Bits (Write) 15–8*

NOTE: * Denotes That These Conditions Are A Result Of Current Implementation And May
Not Appear On Future Devices.

Table A-1. ICE Interface Signal Summary (Continued)

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-3

I_IPL2–I_IPL0
INTERNAL INTERRUPT PRIORITY LEVEL—Output. These three active low outputs
indicate the encoded priority level of the device requesting an interrupt. Level 7 is the highest
priority while level 0 indicates that no interrupts are requested. Level 7 cannot be masked.
The least-significant bit is provided in I_IPL0 and the most-significant bit is contained in
I_IPL2. Typically, these signals are connected directly to the MC68000 ICE.

I_FC2–I_FC0
INTERNAL FUNCTION CODE—Input. These function code input signals indicate the
processing mode, user or supervisor, and the cycle type currently being executed (see
Table A-3). The information indicated by the function code outputs is valid whenever AS is
active. The function code signals are internal signals used to decode an interrupt
acknowledge bus cycle. Typically, these signals are connected directly to the MC68000 ICE.

I_BR
INTERNAL BUS REQUEST—Output. This signal is used by the internal bus arbitration
control logic. It should be connected directly to the M68000 emulator BR signal.

I_BG
INTERNAL BUS GRANT—Input. This signal is used by the internal bus arbitration control
logic. It should be connected directly to the M68000 emulator BG signal.

I_AVEC
INTERNAL AUTOVECTOR—Output. This signal is used by an emulator to assert the
I_AVEC signal during an interrupt acknowledge cycle. It should be connected directly to the
M68000 emulator AVEC or VPA signal.

Table A-3. Function Code Outputs

FUNCTION CODE
OUTPUT CYCLE TIME

I_FC2 I_FC1 I_FC0

Low Low Low Undefined, Reserved

Low Low High User Data

Low High Low User Program

Low High High Undefined, Reserved

High Low Low Undefined, Reserved

High Low High Supervisor Data

High High Low Supervisor Program

High High High Interrupt Acknowledge

In-Circuit Emulation Interface

A-4 MC68322 USER’S MANUAL MOTOROLA

I_RESET
INTERNAL RESET—Output. This signal is used by an emulator to assert the RESET signal.
Typically this signal is connected directly to the MC68000 ICE.

I_HALT
INTERNAL HALT—Output. This signal is used to assert the emulator HALT signal. It should
be connected directly to the M68000 emulator HALT signal.

I_DLEN
ICE DATA LATCH ENABLE—Output. This signal is used by external latches to latch
incoming data before being sent to the emulator.

ICEN
ICE ENABLE—Input. This signal should be asserted during in circuit emulation because it
will force the MC68322 to act as a slave device to an external M68000 processor. It must be
asserted or negated before the negation of RESET and remain that way during operation.

A.2 ICE ADAPTOR BOARD DESIGN
In a typical system, the logic board contains an MC68322 and a PGA connector around the
160-pin QFP MC68322. The PGA connects directly to all the signals of the MC68322. The
user plugs the ICE interface into this PGA connector, which asserts the HI-Z input pin on the
MC68322 on the logic board, thereby forcing it to three-state. With the MC68322
three-stated, the MC68322 ICE on the ICE interface has control of all the signals on the logic
board. The MC68322 ICE takes the place of the MC68322 in the system when the ICE
interface is installed.

Normally, the ICEN input pin on the MC68322 ICE is connected to ground, which disables
the internal core and uses an MC68000 ICE for the processor. For diagnostic purposes, if
ICEN is connected high on the ICE module, then the internal core is used. When an
MC68000 ICE is used, IA27–IA26 to the MC68322 ICE are tied to ground. An MC68000 ICE
can only access the lower 64M of memory, but an MC68020 ICE can be used instead. If an
MC68020 ICE is used, then IA27–IA26 are driven by the MC68020 ICE, which can access
the entire 256M of memory. Figure A-1 illustrates the connection between the ICE interface
and the logic board.

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-5

Figure A-1. ICE Interface Block Diagram

ICE MODULE LOGIC BOARD

TO LOGIC

MC68000 ICE
CONNECTOR
(64-PIN DIP)

MC68322 ICE
(208-PIN PGA)

ICEN

PGA
CONNECTOR

PGA
CONNECTOR

MC68322
(160-PIN
PQFP)

HIZ

+5

In-Circuit Emulation Interface

A-6 MC68322 USER’S MANUAL MOTOROLA

A.3 ICE ADAPTOR BOARD SCHEMATICS

Figure A-2. MC68322 PGA Pinout

+5V

1K

1K

+5V
IHALT

IRESET

ICLK1
IHALT
IRESET

IBR
IDTACK

IAVEC
IIPL0
IIPL1
IIPL2

IDLEN

ICCEN

IBG

IFC0
IFC1
IFC2
ILDS
IUDS

A2

J4

A15
D10
C10
C1
E1

M14
N4
B3

F1
T12

R8
D16
F17
J16

T14

U21
MC68322I/C

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10

U14
R13
T13
P12
R12
P11
U12
R11
U11
R10
U10
T10
T9
R9
U9
T8
U8
U7
R7
U6
P7
T6
R6
T5
R5
U4
T4

B11
A12
D11
B12
C12
B13
C13
A14
B14
D13
A16

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

D14
C15
C16
E14
C17
D17
E15
E16
F15
F16
G14
G15
G17
H15
H17
H16

B4
A4
C5
A5
C6
B6
A6
C7

MC68322I/A

+5V
A7
B5
B15
C8
C11
C14
D6
E2
E3
E17
F14
G1
H3
J14
J15
L14
M2
M3
M16
P6
P9
P17
R3
U5
U13

GND
A9
A13
B1
B10
B17
D4
D7
D12
D15
G2
G3
G16
H14
K1
K14
L16
N16
P2
P5
P8
P10
R1
R14
T7
T11
T15
U3

R21
270

R21
270

A26
A27

MC68322I/B

CLK2
RESET

HIZ

H4
D5

A11

TEST68K

BR
AS

R/W

L1
J2
K2

J3

C4

D3
C3

WAIT

IRQ0
IRQ1

B7
D8
B9
A8
D9

P16
R16

U16
P15
P14

U15

K15
L17
L15
M17
M15
N17
J17
K16
K17

G4
F2
F3
F4
D1
D2
E4
C2
J1
H2
H1

K4
K3

BG
EDTACK

CS0
CS1
CS2
CS3
CS4
CS5
CS6
CS7
RD
WRL
WRU

RAS0
RAS1
RAS2
RAS3
RAS4
RAS5
CAS0
CAS1
WE

DACK

CCLK
CBSY
CMD

VIDEO
PRINT

ACK
BUSY
SELECT
PERROR
FAULT

DREQ

SBSY
STS

VCLK
FSYNC
LSYNC

SELECTIN
STROBE
AUTOFD

INIT

P13

T17
R15

N15
N14
R17

A10
A3
C9
B8

10K

270

10K

AS

10K

R/W

+5V

+5V

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-7

Figure A-3. MC68000 Emulator Connection

IFC0
IFC1
IFC2

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
50
51
52

28
27
26

U31
MC68000 (64 DIP)

AS
R/W
IUDS
ILDS
IBG
IRESET
IHALT
NC
NC

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23

6
9
7
8
11
18
17
19
20

5
4
3
2
1

64
63
62
61
60
59
58
57
56
55
54

ID0
ID1
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9

ID10
ID11
ID12
ID13
ID14
ID15

ICLK

IDTACK
IBR

IAVEC

IIPL0
IIPL1
IIPL2

15

10
13
12
22
21

25
24
26

10K

+5VID0
ID1
ID2
ID3
ID4
ID5
ID6
ID7

D0
D1
D2
D3
D4
D5
D6
D7

U35
74ALS573

IDLEN

IDREN

11 1
EN OE

2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12

1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q

1D
2D
3D
4D
5D
6D
7D
8D

ID0
ID1
ID2
ID3
ID4
ID5
ID6
ID7

17
15
13
11

8
6
4
2

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

D0
D1
D2
D3
D4
D5
D6
D7

3
5
7
9
12
14
16
18

1G 2G

IDWEN

U33
74ALS244

1 19

ID8
ID9

ID10
ID11
ID12
ID13
ID14
ID15

17
15
13
11

8
6
4
2

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

D8
D9
D10
D11
D12
D13
D14
D15

3
5
7
9
12
14
16
18

1G 2G

IDWEN

U34
74ALS244

1 19

ID00
ID01
ID02
ID03
ID04
ID05
ID06
ID07

2 3 4 5 6 7 8 9 10

1
+5V

10K
RP31
RES10

ID08
ID09
ID10
ID11
ID12
ID13
ID14
ID15

2 3 4 5 6 7 8 9 10

1
+5V

10K
RP32
RES10

ID8
ID9
ID10
ID11
ID12
ID13
ID14
ID15

D8
D9

D10
D11
D12
D13
D14
D15

U36
74ALS573

IDLEN

IDREN

11 1
EN OE

2
3
4
5
6
7
8
9

19
18
17
16
15
14
13
12

1Q
2Q
3Q
4Q
5Q
6Q
7Q
8Q

1D
2D
3D
4D
5D
6D
7D
8D

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O

14
15
16
17
18
19
20
21
22
23

U32
22V10-10

13
11
10

9
8
7
6
5
4
3
2
1

10K

+5V

+5V

IDREN
IDWEN

A24
A25
ICEEN

IDTACK
IBG
IBR
R/W

AS
IRESET
ICLK1

ICEEN

10K

W1

1

2

(S0)
(S1)
(AEN)

(OTHRGB)

In-Circuit Emulation Interface

A-8 MC68322 USER’S MANUAL MOTOROLA

Figure A-4. PGA Connector

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10

MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

MA0
75
74
73
72
70
69
68
67
65
64
63
62
61
59
58
57
56
55
53
52
51
50
49
47
46

135
133
132
131
130
128
127
126
125
124
122

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

121
120
118
117
116
115
114
113
111
110
109
108
106
105
104
104

156
155
154
152
151
150
148
147

J41 IC68322X/A
(PGA–23x23)

+5V
7

14
29
40
48
60
71
88
93

102
112
123
134
144
153

GND
1

12
21
35
36
45
54
66
78
90
96

107
119
129
138
149

J41 IC68322X/B
(PGA–23x23)

CLK2
RESET

TEST68K
HI-Z

13
158
136
159

BR
AS

R/W

23
19
20

18

EMURST

2
160

WAIT

IRQ0
IRQ1

146
145
141
143
140

87
84

79
83
81

76

98
97
95
94
92
91
101
100
99

11
10
9
8
6
5
4
3
17
16
15

24
22

BG
EDTACK

CS0
CS1
CS2
CS3
CS4
CS5
CS6
CS7
RD
WRL
WRU

RAS0
RAS1
RAS2
RAS3
RAS4
RAS5
CAS0
CAS1
WE

DACK

CCLK
CBSY
CMD

VIDEO
PRINT

ACK
BUSY
SELECT
PERROR
FAULT

DREQ

SBSY
STS

VCLK
FSYNC
LSYNC

SELECTIN
STROBE
AUTOFD

INIT

77

82
80

89
85
86

137
157
139
142

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-9

Figure A-5. Test Points

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

4
36
38
40

IRQ0
CS6
CS4
CS2
CS0
WRL
RD
AS
EDTACK
BG
D14
D12
D10
D08
D06
D04
D02
D00

IRQ1
CS7
CS5
CS3
CS1

CLK2
WRU
WAIT

R/W
BR

D15
D13
D11
D09
D07
D05
D03
D01

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

4
36
38
40

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

4
36
38
40

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

4
36
38
40

1
3
5
7
9
11
13
15
17
19

2
4
6
8

10
12
14
16
18
20

A24
A22
A20
A18
A16
A14
A12
A10
A08
A06
A04
A02

DREQ
STS

SBSY
PRINT

A25
A23
A21
A19
A17
A15
A13
A11
A09
A07
A05
A03
A01

DACK
CMD

CCLK
CBSY

LSYNC
VCLK

RAS4
RAS2
RAS0

CAS0

MD14
MD12
MD10
MD08
MD06
MD04
MD02
MD00

FSYNC
VIDEO

RAS5
RAS3
RAS1
WE
CAS1

MD15
MD13
MD11
MD09
MD07
MD05
MD03
MD01

MA09
MA07
MA05
MA03
MA01

SELIN
FAULT

INIT
BUSY

PD7
PD5
PD3
PD1

STROBE
EMURST

MA10
MA08
MA06
MA04
MA02
MA00

AUTOFD
SELECT
PERROR
ACK
PD6
PD4
PD2
PD0

RESET

ICLK1
IRESET

IBG
ILDS
IUDS
IFC0
IFC1
IFC2

IDLEN
IHALT
IBR
IDTACK
IAVEC
IIPL0
IIPL1
IIPL2

J51
CONN40

J52
CONN40

J53
CONN40

J54
CONN40

J55
CONN20

C5J
22UF

C5H
0.22µF

+5
+ + + + + +C5G

0.22µF
C5F
0.22µF

C5E
0.22µF

C5D
0.22µF

C56
0.1µF

C55
0.1µF

+5

C57
0.1µF

C58
0.1µF

C59
0.1µF

C5A
0.1µF

C5B
0.1µF

C5C
0.1µF

C54
0.1µF

C53
0.1µF

C52
0.1µF

C51
0.1µF

In-Circuit Emulation Interface

A-10 MC68322 USER’S MANUAL MOTOROLA

Figure A-6. ICE Adaptor Board

81

J41

40

39
J51

209 PGA

J53

U17A17

224

U21

1
2
3

A1

J4

J54
J52

64 PIN DIP

1

0.20 0.40

4.70

6.40

3.201.80

0.30

3.30

0.30
0.00 3.60

0.00

NOTES:
1. Component side is shown.
2. Dimensions are in inches unless otherwise specified.
3. Tolerances: Hole location and diameter: +/– 0.010.
4. Connectors J51, J53, J54, and J55 are located on the component side of the PCB.
 5. Connector J41 is located on the solder side of the PCB.

0.40
SQUARE
PAD BOTH
SIDES OF
PCB TYPE 2
PLCS

3.20

3.40

6.20
6.10

1

2

0.156
DIAMETER
THRU

39

40

1

2

J41

1 2

100

39

40 39

12

U
31

 A B C D E F G H J K L M N P R T U

40

80 79

45 44 43

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-11

Figure A-7. ICE Adaptor Board—Silkscreen

J54
GND
GND
MA9
MA7
MA5
MA3
MA1

NC
SIN
FLT
INI

BSY
PD7
PD5
PD3
PD1
STB

ERST
GND
GND

GND
MA10
MA8
MA6
MA4
MA2
MA0
NC
AFD
SEL
PER
ACK
PD6
PD4
PD2
PD0
NC
RST
GND
GND

GND
PRT
SBY

NC
STS
DRQ

NC
A2
A4
A6
A8

A10
A12
A14
A16
A18
A20
A22
A24

GND

GND
GND
CBY
CCK
CMD
DAK
A1
A3
A5
A7
A9
A11
A13
A15
A17
A19
A21
A23
A25
GND

J52

J55
GND
CK1
RST
BG

LDS
UDS
FC0
FC1
FC2

GND

GND
DLE
HLT
BR
DTK
AVC
IP0
IP1
IP2
GND

74ALS244

74ALS573

74ALS244

74ALS573

J53

G
N

D
FSY
VID
N

C
N

C
R

A5
R

A3
R

A1
W

E
C

A1
N

C
M

D
15

M
D

13
M

D
11

M
D

9
M

D
7

M
D

5
M

D
3

M
D

1
G

N
D

G
N

D
LSY
VC

K
N

C
N

C
R

A4
R

A2
R

A0
N

C
C

A0
N

C
M

D
14

M
D

12
M

D
10

M
D

8
M

D
6

M
D

4
M

D
2

M
D

0
G

N
D

G
N

DD
0

D
2

D
4

D
6

D
8

D
10

D
12

D
14

BG
D

TKAS
R

D
W

R
L

C
S0

C
S2

C
S4

C
S6

IR
0

G
N

D

G
N

D
D

1
D

3
D

5
D

7
D

9
D

11
D

13
D

15
BRR

/W
W

AT
W

R
U

C
K2

C
S1

C
S3

C
S5

C
S7

IR
1

G
N

D
J51

U21

J41

RP32

RP31

U33

1

U35

1

R2A
U32

W1

R31 R23

JUMPER IN:
 ICE DISABLED
JUMPER OUT:
 ICE ENABLED

MC68322 ICE

U31

R
27

R
28 R
29 R
32

94MOTMPU0006W08

SILK1

U34

U36

1
1

MC68HC000–16P

MC68322 - PGA

1

In-Circuit Emulation Interface

A-12 MC68322 USER’S MANUAL MOTOROLA

A.3.1 In-Circuit Emulation Interface

Figure A-8. ICE Reset AC Timing

NUM CHARACTERISTIC MIN MAX UNIT

65 I_CLK1 Valid From CLK2 2 15 ns

66 I_RESET, I_HALT Valid From CLK1 1 10 ns

67 I_FC2–I_FC0 Set Up Before CLK1 20 — ns

68 Address Bus, I_A27–I_A26 Set Up Before CLK1 20 — ns

69 AS, I_UDS, I_LDS, R/W Set Up Before CLK1 20 — ns

70 I_FC2–I_FC0, Address Bus, I_A27–I_A26, R/W Hold After I_CLK1 0 — ns

71 CS7–CS0 Valid From AS — 10 ns

72 DTACK, DATALEN Valid From I_CLK1 1 10 ns

73 Data Bus Driven From I_CLK1 (Read Cycle) 1 10 ns

74 Data Bus Valid From I_CLK1 (Read Cycle)* 1 10 ns

75 Data Bus High Impedance From I_CLK1 (Read Cycle) 1 10 ns

76 Data Bus Set Up Before I_CLK1 (Write Cycle) 20 — ns

77 Data Bus Hold After I_CLK1 (Write Cycle) 0 — ns

78 I_AVEC Valid From AS — 10 ns

79 I_IPL2–I_IPL0 Valid From I_CLK1 1 10 ns

80 I_BR Valid From I_CLK1 1 10 ns

81 I_BG Set Up Before I_CLK1 20 — ns

NOTE: * Denotes That This Specification Only Applies To Register And DRAM Read Cycles. During Core Cycles,
Read Data Propagates Directly From The Core To The ICE And Is Unaffected By The MC68322.

CLK2

I_CLK1

I_RESET,
I_HALT

66 66

65 65

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-13

Figure A-9. ICE Read Cycle AC Timing

CLK2

I_CLK1

A25–A1,
I_A26–I_A27

I_FC2–I_FC0

D15–D0

AS

CS7–CS0

I_UDS, I_LDS

I_DLEN

R/W

DTACK

S0 S1 S2 S3 S4 S5 S6 S7 S0

71 71

72

72 72

73
74 75

72

65

70

65

67

68

69 69

In-Circuit Emulation Interface

A-14 MC68322 USER’S MANUAL MOTOROLA

Figure A-10. ICE Write Cycle AC Timing

S0 S1 S2 S3 S4 S5 S6 S7 S0

71 71

72

72 72

76 77

72

65

70

65

67

68

69

69

69

CLK2

I_CLK1

A25–A1,
I_A26–I_A27

I_FC2–I_FC0

D15–D0

AS

CS7–CS0

I_UDS, I_LDS

I_DLEN

R/W

DTACK

In-Circuit Emulation Interface

MOTOROLA MC68322 USER’S MANUAL A-15

Figure A-11. ICE Interrupt Acknowledge Cycle AC Timing

Figure A-12. ICE Bus Arbitration AC Timing

I_IPL2–I_IPL0

I_AVEC

S0 S1 S2 S3 S4 w S6 S7 S0

78 78

65

70

65

67

68

69 69

79

CLK2

I_CLK1

A25–A1,
I_A26–I_A27

I_FC2–I_FC0

AS

I_UDS, I_LDS

R/W

CLK2

I_CLK1

I_BR

I_BG

80 80

65 65

81
81

In-Circuit Emulation Interface

A-16 MC68322 USER’S MANUAL MOTOROLA

A.4 ICE PIN ASSIGNMENT
The following figure illustrates the MC68322 ICE pin assignments and case drawing for the
208 PGA package.

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 174

GND

A

B

C

D

E

F

G

H

J

K

L

M

N

P

R

T

U
D2N/C I_A26 A15 A9 A1 DACK

N/C D0 I_A27 A24 A13 GND A3 I_DLEN N/C

VIDEO

D1 A23 A19 A14 A10 A5 A2

RAS5

I_LDS IRQ1 TEST PD4 PD7 AUTOFD I_FC2 MA4

N/C I_RESET PD0 PD5 ACK INIT GND MA0 MA3 MA8

N/C ICEN STROBE PD1 PD3 PD6 PERROR GND SELECTIN HI-Z MA1 GND MA7

MD1 MD4

N/C GND

I_FC0 MA10 N/C

MD8 MD9 I_IPL1

MD6 MD7

GND I_IPL0 MD5

I_IPL2 CAS0

MD15 MD14

MD11 MD12

RAS4

GND RAS1

RAS0 WE

PRINT LSYNC

CBSY

CAS1

 RAS3

GND

GND D6

D7 GND D5

D11 D9 D8

D13

BR D15 D14

GND R/W EDTACK

RD AS

WRU WRL

GND

I_BR CS1 CS2

CS4 CS5 IRQ0 GND

MC68322 PINOUT
(BOTTOM VIEW)

 A20 A18 A17

 GND

GND A11 A7 CCLK N/C

SBSY

 VCLK

STS

 A12 I_DTACK

GND

D4

PD2CS7

VCC

GND

VCC

VCC

WAIT

VCC

 D3

I_HALT

D12

BG

CS0

CS3

CS6

CLK2

I_BG

D10

A25

VCCVCC

VCC

I_AVEC A8

A16 GND

VCC

RAS2

VCC

MD13

MD3

MD10

I_CLK1

GND

CMD

 FSYNC

VCC

VCC

GND

GND

MD2

MA5

MA6VCCVCC

GND FAULT I_FC1 GND MD0RESET MA9MA2BUSY

SELECT

A22

VCC VCC

GND VCC A21 GND VCC GND A6 A4 DREQ VCC

VCC

VCC

VCC

VCC

VCC

VCC

1 2 3 5 6 7 8 9 10 11 12 13 14 15 16 174

VCC

I_UDS

MOTOROLA MC68322 USER’S MANUAL B-1

APPENDIX B
APPLICATIONS

The MC68322 provides a wide variety of configuration possibilities. The sample design
described in this section demonstrates the detailed components required to design and build
an MC68322-based laser printer. This design demonstrates the typical configuration of
printing systems for laser printers, ink jet printers, fax machines, copiers, and many other
paper and nonpaper handling applications. Also included in this section is a sample code
stub to set up a memory map.

The following schematics describe the required connections for the MC68322, a 512K
DRAM, DRAM SIMM, flash EPROM, random control logic, serial EEPROM, in-circuit
emulation option, parallel port, and generic print engine interface.

B.1 CONFIGURING THE MC68322
The MC68322 requires up to two clock sources to properly clock the device. Some designs
take advantage of a single oscillator to clock the MC68322. For example, if the video rate is
7.8MHz, then a 31.2MHz source could be used to clock CLK2 and VCLK. Several pull-up
resistors may be required to properly negate unused options on the MC68322. Figure B-1
illustrates the MC68322 connection.

Applications

B-2 MC68322 USER’S MANUAL MOTOROLA

Figure B-1. MC68322 Connection

B.2 CONFIGURING THE DRAM AND DRAM SIMM
The DRAM can be mounted directly onto the printed circuit board. The following design
demonstrates a 512K memory option, which is a minimal memory configuration for the
MC68322. However, additional memory can be connected to the MC68322’s DRAM
controller. Figure B-2 illustrates the DRAM connection.

VCLK

FSYNC

40 MHz

MC68322

HI-Z VCC

PARALLEL PORT
CONTROL

PARALLEL
DATA

OSC
33

RESET

WAIT

22.7692 MHz
OSC

33

GND

IRQ0

IRQ1

DREQ

EDTACK

SBSY

STS

LSYNC

CCLK

CBSY

CMD

PRINT

VIDEO

PPC

PD7–PD0

4.7 K

4.7 K

4.7 K

4.7 K

CLK2

+5V +5V

+5V

+5V
+5V

D15–D0

A25–A1

CS7–CS0

RAS5–RAS0

MA10–MA0

MD15–MD0

RD

WRU

WRL

AS

BR

BG

R/W

CAS0

CAS1

WE

DATA

ADDR

CHIP-SELECT

DRAM ADDR

DRAM DATA

Applications

MOTOROLA MC68322 USER’S MANUAL B-3

Figure B-2. DRAM Connection

DRAM SIMM modules may be added to provide more memory, which is necessary in some
designs. The DRAM SIMM module does not have to be buffered. However, using buffers to
isolate the main memory from a memory module can improve design reliability and prevent
field failure(s). Due to the unknown nature of the SIMM modules inserted into the design,
isolation resistors are helpful to reduce undershoot and other electrical problems resulting
from driving a large capacitive load. Figure B-3 illustrates the DRAM SIMM connection.

DRAM DATA

WE LOWER
WE UPPER

CAS LOWER

CAS UPPER

RAS

DRAM ADDR

OE

RAS0

DRAM (256K X 16)

CAS1

CAS0

MA8–MA0

MD15–MD0

WE

Applications

B-4 MC68322 USER’S MANUAL MOTOROLA

Figure B-3. DRAM SIMM Connection

B.3 CONFIGURING THE FLASH EPROM
The flash EPROM in this design demonstrates the methodology used to connect a typical
PROM, ROM or EPROM interface. Different EPROM devices can be used with minimal or
no changes required. This design demonstrates four banks of flash memory connected to
the MC68322, which provides 4M of main memory to support the core with instruction
memory, built-in fonts, and permanent data structures. Figure B-4 illustrates the flash
EPROM connection.

DR_A00
DR_A01
DR_A02
DR_A03
DR_A04
DR_A05
DR_A06
DR_A07
DR_A08
DR_A09
DR_A10

DR_CAS0
DR_CAS1

DR_RAS2
DR_RAS4
DR_RAS3
DR_RAS5

DR_WE

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10

CAS0
CAS1
CAS2
CAS3

RAS0
RAS1
RAS2
RAS3

BS0
BS1
BS2
BS3

WRITE

PD0
PD1
PD2
PD3

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9

DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQ32
DQ33
DQ34
DQ35

MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
NC
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15
NC
MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
NC
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15
NC

12
13
14
15
16
17
18
28
31
32
19

40
43
41
42

44
46
34
33

29
46
66
71

47

67
68
69
70

2
4
6
8
20
22
24
26
36
49
51
53
55
57
61
63
65
37
3
5
7
9
21
23
25
27
35
50
52
54
56
58
60
62
64
38

SIM72

+5V
10
30
59

GND
1
39
72

RAS2

RAS3

RAS4

RAS5

CAS0

CAS1

DR_RAS2

DR_RAS3

DR_RAS4

DR_RAS5

DR_CAS0

DR_CAS1

DR_A00

DR_A01

DR_A02

DR_A03

DR_A04

DR_A05

DR_A06

DR_A07

DR_A08

DR_A09

DR_A10

DR_WE

3
5
7
9
12
14
16
18

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

17
15
13
11

8
6
4
2

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

1G 2G

3
5
7
9
12
14
16
18

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

17
15
13
11

8
6
4
2

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

1 19

MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7

MA8
MA9

MA10
WE

1G 2G

+5V

74ALS244

74ALS244
4.7K

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

22 Ω

1 19

A
p

p
licatio

n
s

M
O

T
O

R
O

LA
 M

C
68322 U

S
E

R
’S

 M
A

N
U

A
L

B
-5

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS0

WRU

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D8
D9
D10
D11
D12
D13
D14
D15

29F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS1

WRU

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS0

WRL

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D0
D1
D2
D3
D4
D5
D6
D7

29F040 29F04029F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

+5

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS1

WRL

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D0
D1
D2
D3
D4
D5
D6
D7

12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

D8
D9
D10
D11
D12
D13
D14
D15

BANK 0 BANK 1

Figure B-4. Flash EEPROM Connection (1 of 2)

32

GND

16

+5

32

GND

16

+5

32

GND

16

+5

32

GND

16

Figure B-4. Flash EEPROM Connection (1 of 2)

A
p

p
licatio

n
s

B
-6

 M
C

68322 U
S

E
R

’S
 M

A
N

U
A

L
M

O
T

O
R

O
LA

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS2

WRU

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D8
D9
D10
D11
D12
D13
D14
D15

29F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS3

WRU

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

29F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS2

WRL

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D0
D1
D2
D3
D4
D5
D6
D7

29F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18

CE
OE
WE

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

CS3

WRL

DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7

D0
D1
D2
D3
D4
D5
D6
D7

29F040
12
11
10

9
8
7
6
5

27
26
23
25

4
28
29

3
2

30
1

22
23
31

13
14
15
17
18
19
20
21

D8
D9
D10
D11
D12
D13
D14
D15

BANK 2 BANK 3

Figure B-4. Flash EEPROM Connection (2 of 2)

+5

32

GND

16

+5

32

GND

16

+5

32

GND

16

+5

32

GND

16

Applications

MOTOROLA MC68322 USER’S MANUAL B-7

B.4 CONFIGURING THE RANDOM CONTROL LOGIC
The MC68322 requires a minimal amount of external control logic, but should have a reliable
reset circuit to sense power-up, low voltage, and push button resets. This sample design
includes a Texas Instruments device (TL7705A) to supply a reliable reset and Figure B-5
illustrates reset circuit usage. Other devices from Motorola and Dallas Semiconductor have
suitable reset circuits for the MC68322. A resistor-capacitor reset circuit is not
recommended for reliable power-up and low-voltage resets.

Figure B-5. Reset Circuit

Other random logic, such as external latches or buffers, may be required to interface with
the print engine. This sample design has two latches to interface with the front panel and
serial EEPROM. Two buffers are used to filter and clean up the incoming signals from the
print engine. Figure B-6 illustrates the front panel buffers and latches.

SENSE

RESIN

CT

RESET

RESET

REF

0.1µF 0.1µF
OPTIONAL

SWITCH

1K

1K RESET

N/C

TL7705A

7

2

3

5

6

1

+5V
+5V

+5V

Applications

B-8 MC68322 USER’S MANUAL MOTOROLA

Figure B-6. Front Panel Buffers and Latches

B.5 CONFIGURING THE SERIAL EEPROM
Often a serial EEPROM is used to store field programmable or default information, such as
page count, printer name, Ethernet address, and resolution. This interface uses four signals
from the random logic interface. The serial interface utilizes the latches and buffers that are
shared with the front panel interface. Figure B-7 illustrates the serial EEPROM connection.

Figure B-7. 4-Kbit Serial EEPROM Connection

EE_DI
EE_CS
PRFD
FP_RST
FP_LED9
FP_LEDWR
FP_VFDCS

D0

A3
A2
A1

74ALS259

CS6

WRL

14 15
EN CL

13

3
2
1

12
11
10
9
7
6
5
4

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

DIN

C
B
A

(0078000F)
(0078000D)
(0078000B)
(00780009)
(00780007)
(00780005)
(00780003)
(00780001)

ODD BYTES

74ALS32

EE_CK
CPRDY
FP_BUZZEN
FP_SWRD
FP_LED8
FP_PWRD
FP_PCLK

D8

A3
A2
A1

74ALS259

CS6

WRU

14 15
EN CL

13

3
2
1

12
11
10
9
7
6
5
4

07
06
05
04
03
02
01
00

DIN

C
B
A

(0078000E)
(0078000C)
(0078000A)
(00780008)
(00780006)
(00780004)
(00780002)
(00780000)

EVEN BYTES

74ALS32

1

2
3

4

5
6

RESET

D0
D1
D2
D3
D4
D5
D6
D7

PPRDY
RDY

EE_DO
FP_PRDD

TOP

74ALS541

1 19
1G 2G

17
15
13
11

8
6
4
2

3
5
7
9
12
14
16
18

2Y4
2Y3
2Y2
2Y1
1Y4
1Y3
1Y2
1Y1

2A4
2A3
2A2
2A1
1A4
1A3
1A2
1A1

CS6

RD

74ALS32
9

10
8

CONTROLLER STATUS REGISTERSCONTROLLER WRITE REGISTERS

+5V

4.7 K

EE_DO

EE_CS
EE_CK
EE_DI

9366

1
2
3

7
6
4

NC
NC
DO

CS
SK
DI

PIN 8: +5V
PIN 5: GND

Applications

MOTOROLA MC68322 USER’S MANUAL B-9

B.6 CONFIGURING THE IN-CIRCUIT EMULATION
The MC68322 provides an ICE option, which is included here. The ICE connection is a
simple pin-grid-array to an ICE board available from Motorola. The ICE option can be
implemented in the prototype stages of designing a printing system and can remain
available through production as a method of testing, debugging, and field service. See
Appendix A In-Circuit Emulation Interface for ICE board specifications.

To provide an ICE option, the HI-Z signal should be connected to a pull-up resistor and not
directly to VCC. The ICE PGA pattern should be placed on the PCB and typically the
MC68322 can be placed inside the cut-out section of the PGA. All signals from the MC68322
160-pin quad flat pack (QFP) must be connected to the ICE PGA connector. The special
version of the MC68322, along with the ICE board, allow a standard MC68000 DIP format
emulator to be used. This type of interface allows existing emulators to be reused with
virtually no additional investment. Figure B-8 illustrates the MC68322 ICE interface.

Figure B-8. MC68322 ICE Interface

A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25

MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10

MD0
MD1
MD2
MD3
MD4
MD5
MD6
MD7
MD8
MD9
MD10
MD11
MD12
MD13
MD14
MD15

PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7

75
74
73
72
70
69
68
67
65
64
63
62
61
59
58
57
56
55
53
52
51
50
49
47
46

135
133
132
131
130
128
127
126
125
124
122

44
43
42
41
39
38
37
34
33
32
31
30
28
27
26
25

121
120
118
117
116
115
114
113
111
110
109
108
106
105
104
104

156
155
154
152
151
150
148
147

IC68322/A (PGA–23x23) IC68322/B (PGA–23x23)

+5V
7

14
29
40
48
60
71
88
93

102
112
123
134
144
153

GND
1

12
21
35
36
45
54
66
78
90
96

107
119
129
138
149

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

CLK2

HI-Z
RESET

13
158
136
159 TEST

BR
AS

R/W

23
19
20

18

161

2
160

WAIT

IRQ0
IRQ1

146
145
141
143
140

87
84

79
83
81

76

98
97
95
94
92
91
101
100
99

11
10
9
8
6
5
4
3
17
16
15

24
22

BG
EDTACK

CS0
CS1
CS2
CS3
CS4
CS5
CS6
CS7
RD
WRL
WRU

RAS0
RAS1
RAS2
RAS3
RAS4
RAS5
CAS0
CAS1
WE

DACK

CCLK
CBSY
CMD

VIDEO
PRINT

ACK
BUSY
SELECT
PERROR
FAULT

DREQ

SBSY
STS

VCLK
FSYNC
LSYNC

SELECTIN
STROBE
AUTOFD

INIT

77

82
80

89
85
86

137
157
139
142

EMURST

Applications

B-10 MC68322 USER’S MANUAL MOTOROLA

B.7 CONFIGURING THE PARALLEL PORT
The MC68322 provides a direct connection, with no external buffers or latches, to virtually
all standard computer parallel ports available. The MC68322 can support 2M/sec and higher
data rates when the internal DMA is utilized. Additionally, the parallel port supports the
IEEE-1284 interface. Figure B-9 demonstrates the interface to a parallel port connector.
External resistors are needed in many implementations to avoid ringing, RF noise, and a
powered down host situation. The powered down host situation exists when the host
computer is turned off while the printer is still powered up or vice-versa. The resistors help
to avoid damage to the printer or host computer in the event that this situation exists for
extended amounts of time.

Figure B-9. Parallel Port Connector Interface

STROBE
PD0
PD1
PD2
PD3
PD4
PD5

2 3 4 5 6 7 8

1

+5V

1.2K RES8

PD6
PD7
INIT

AUTOFD
SELECTIN

2 3 4 5 6 7 8

1

+5V

1.2K RES8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

STROBE
PD0
PD1
PD2
PD3
PD4
PD5
PD6
PD7
ACK

BUSY
PERROR
SELECT
AUTOFD

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

INIT
FAULT

(AUX1)

(AUX2)

SELECTIN5V

(LOGIC GND)
(LOGIC GND)

CENT36

33 Ω

33Ω

Applications

MOTOROLA MC68322 USER’S MANUAL B-11

B.8 CONFIGURING THE GENERIC PRINT ENGINE INTERFACE
The print engine interface requires a minimal amount of external logic to connect to most
print engines. Due to the different front panel interfaces available from print engine
manufactures, the MC68322 may require an external latch or two as demonstrated here.
However, the primary handshake and video signals can be connected directly to the print
engine in most cases. Figure B-10 illustrates the print engine interface. Notice that the
external 555 timer can be eliminated if the BG signal is used in its alternate function (see
Appendix D Alternate Pin Functions).

Figure B-10. Print Engine Interface

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13

PPRDY
TOP
STS

CBSY

VIDEO
CCLK
PRFD

B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13

 (RESERVED)

AUXILIARY POWER
CONN4

BD
RDY
SBSY

PRINT
CPRDY
CMD

(RESERVED)

+5V

(PCLK)

VCC
GND

PCLK
VFDCS
PWRD

LEDWR
PRDD
SWRD

 LED9
LED8

BUZZER
PNLRST

GND
VCC

1
2
3
4
5
6
7
8
9
10
11
12
13
14

+5V

FP_PCLK
FP_VFDCS
FP_PWRD
FP_LEDWR
FP_PRDD
FP_SWRD
FP_LED9
FP_LED8

FP_RST

FP_BUZZER

3

GND

VCC

+5V

FP_BUZZEN

+5V

20K

150K

0.001µF 0.01µF

74F14

555 TIMER

4

7

6
2

8

1

9 8
74F14

CPRDY

PRFD

CPRDY

PRFD
11 10

74F14

1
2
3
4 +5V

(+12V)

VIDEO CONNECTOR
CONN26

FRONT PANEL

FP_LED8

+5V +5V +5V

FP_LED9

13 12

RESET

DISCH
OUT

CONT
THRES
TRIG

Applications

B-12 MC68322 USER’S MANUAL MOTOROLA

B.9 MC68322 MEMORY MAP INITIALIZATION EXAMPLE
The following code example sets up the memory map illustrated in Figure B-11.

Figure B-11. Initialized Memory Map From Code Example

DRAM BANK 0

0x0

0x80000

UNUSED

0x600000

0x700000

CHIP-SELECT BANK 0
(See Note)

0x800000

0xA00000

0xC00000

0xE00000

DRAM BANK 2
(See Note)

DRAM BANK 3

DRAM BANK 4

DRAM BANK 5

SERIAL DEVICE
CHIP-SELECT BANK 6

0xF00000

NOTE: The chip-select banks have priority over the DRAM banks.

Applications

MOTOROLA MC68322 USER’S MANUAL B-13

B.10 MC68322 INTERNAL REGISTERS SAMPLE CODE
BASE322 EQU $00fff000
ADDR0 EQU $0
TIMING0 EQU $2
ADDR1 EQU $10
TIMING1 EQU $12
ADDR2 EQU $20
TIMING2 EQU $22
ADDR3 EQU $30
TIMING3 EQU $32
ADDR4 EQU $40
TIMING4 EQU $42
ADDR5 EQU $50
TIMING5 EQU $52
ADDR6 EQU $60
TIMING6 EQU $62
ADDR7 EQU $70
TIMING7 EQU $72
RECOVERY EQU $82
DRAM0 EQU $100
DRAM1 EQU $110
DRAM2 EQU $120
DRAM3 EQU $130
DRAM4 EQU $140
DRAM5 EQU $150
DRAM_CTRL EQU $160
DRAM_REF EQU $162

SECTION code
XDEF start
XREF main

start: move.l #$0,a5 * Clear a5
move.l #$0,a6 * Clear frame pointer
move.w #$2700,sr * Set up status register
lea BASE322,a0 * Set a0 to base address of 68322
move.w #$0c18,ADDR0(a0) * Set CS0 to 0x600000-0x6fffff
move.w #$0003,TIMING0(a0)
move.w #$1010,ADDR1(a0) * Set CS1 to 0x400000-0x5fffff
move.w #$0003,TIMING1(a0)
move.w #$1008,ADDR2(a0) * Set CS2 to 0x200000-0x3fffff
move.w #$0003,TIMING2(a0)
move.w #$0c38,ADDR6(a0) * Set CS6 to 0xe00000-0xefffff
move.w #$3434,TIMING6(a0)
move.w #$0c3c,ADDR7(a0) * Set CS7 to 0xf00000-0xffffff
move.w #$3434,TIMING7(a0)
move.w #$1540,RECOVERY(a0) * Set recovery for back to back access
move.w #$0200,DRAM0(a0) * DRAM0 = 0x0 - 0x80000
move.w #$0000,DRAM1(a0) * Disabled
move.w #$040c,DRAM2(a0) * DRAM2 = 0x600000 - 0x7fffff
move.w #$0410,DRAM3(a0) * DRAM3 = 0x800000 - 0x9fffff
move.w #$0414,DRAM4(a0) * DRAM4 = 0xa00000 - 0xbfffff
move.w #$0418,DRAM5(a0) * DRAM5 = 0xc00000 - 0xdfffff
move.w #$0000,DRAM_CTRL(a0)
move.w #$0020,DRAM_REF(a0)
bra main * Jump to Main()

end

MOTOROLA MC68322 USER’S MANUAL C-1

APPENDIX C
MEMORY-MAPPED REGISTER SUMMARY

This section summarizes the memory-mapped registers for the MC68322. The following
table contains the name of the register, an image of the register in memory with all of its
associated fields, the address of the register at startup, the register’s encoding at startup,
and the page number where the register is described.

Note: All shaded areas are reserved for future use and should always be written as
zero.

Table C-1. Memory-Mapped Register Set

REG
MEMORY MAP

ADDRESS
VALUE AT RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HIGH BYTE LOW BYTE

CSR0
SIZE BASE ADDRESS (A27–A18) 00FFF000 XX011000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF002 11001111 11001111

CSR1
SIZE BASE ADDRESS (A27–A18) 00FFF010 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF012 00000000 00000000

CSR2
SIZE BASE ADDRESS (A27–A18) 00FFF020 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF022 00000000 00000000

CSR3
SIZE BASE ADDRESS (A27–A18) 00FFF030 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF032 00000000 00000000

CSR4
SIZE BASE ADDRESS (A27–A18) 00FFF040 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF042 00000000 00000000

CSR5
SIZE BASE ADDRESS (A27–A18) 00FFF050 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF052 00000000 00000000

CSR6
SIZE BASE ADDRESS (A27–A18) 00FFF060 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF062 00000000 00000000

CSR7
SIZE BASE ADDRESS (A27–A18) 00FFF070 XX000000 00000000

WHLD WSET WACC RHLD RSET RACC 00FFF072 00000000 00000000
CSDTR WHLD WSET WACC RHLD RSET RACC 00FFF080 00000000 00000000
CSRR REC RECOVERY SELECT 00FFF082 XX000000 00000000

DRAM0 RM SIZE BASE ADDRESS (A27–A19) 00FFF100 XXXX0000 00000000
DRAM1 RM SIZE BASE ADDRESS (A27–A19) 00FFF110 XXXX0000 00000000
DRAM2 RM SIZE BASE ADDRESS (A27–A19) 00FFF120 XXXX0000 00000000
DRAM3 RM SIZE BASE ADDRESS (A27–A19) 00FFF130 XXXX0000 00000000
DRAM4 RM SIZE BASE ADDRESS (A27–A19) 00FFF140 XXXX0000 00000000
DRAM5 RM SIZE BASE ADDRESS (A27–A19) 00FFF150 XXXX0000 00000000

Memory-Mapped Register Summary

C-2 MC68322 USER’S MANUAL MOTOROLA

DRMCR
TS 00FFF160 XXXXXXXX XXXXXX00

REFRESH INTERVAL COUNT (RIC) 00FFF162 XXXXXX00 01000000

PDMA
CONFIG.

REG.

0000 PDMA DRAM TRANSFER ADDRESS (HIGH WORD) 00FFF200 00000000 00000000
PDMA DRAM TRANSFER ADDRESS (LOW WORD) 00FFF202 00000000 00000000

PDMA TRANSFER COUNT 00FFF204 XX000000 00000000
FR 00FFF206 XXXXXXXX XXXXXXX0

GDMA
CONFIG.

REG.

0000 GDMA DRAM TRANSFER ADDRESS (HIGH WORD) 00FFF210 00000000 00000000
GDMA DRAM TRANSFER ADDRESS (LOW WORD) 00FFF212 00000000 00000000

0000 GDMA CHIP-SELECT TRANSFER ADDRESS (HIGH WORD) 00FFF214 00000000 00000000
GDMA CHIP-SELECT TRANSFER ADDRESS (LOW WORD) 00FFF216 00000000 0000000X

GDMA TRANSFER COUNT 00FFF218 XX000000 00000000
FR 00FFF21A XXXXXXXX XXXXXXX0

GDMCR DM DS W D 00FFF21C XXXXXXXX XXX00000
PPCR FLL RLD ABT PDE ERC MODE DFE RST 00FFF300 XXXXXXX0 00000000

PPIR

INT AFD STR SIN ACK
1

BSY
1

ACK
2

BSY
2 PER SEL FLT 00FFF302 XXXXX000 01101000

CMD DATA 00FFF304 XXXXXXX0 00000000
ACK PULSE WIDTH (ACKW) 00FFF306 XXXXXXXX 00000000

PVCCR
PRT 00FFF400 XXXXXXXX XXXXXXX0

SDN SLC SRC PLE PLD VDP BDP PRP FSP LSP VCP VCS 00FFF402 X0000000 00000000

PCB
REG.
SET

VERTICAL MARGIN 00FFF404 00000000 00000000
HORIZONTAL MARGIN 00FFF406 00000000 00000000
PAGE IMAGE HEIGHT 00FFF408 00000000 00000000
PAGE IMAGE WIDTH 00FFF40A 00000000 00000000

SME B2T BND 00FFF40C XXXXXXXX XXXXX000
0 PAGE IMAGE BIT ADDRESS (HIGH WORD) 00FFF410 00000000 00000000

PAGE IMAGE BIT ADDRESS (LOW WORD) 00FFF412 00000000 00000000

PCOMR

PRINTER COMMAND 00FFF500 XXXXXXXX 00000000
PRINTER STATUS 00FFF502 XXXXXXXX 00000000

CCLK DIVISOR CSB SRC CRC 00FFF504 X0000000 00000000

TIMER
REG.

TIMER INTERVAL (HIGH BYTE) 00FFF600 XXXXXXXX 00000000
TIMER INTERVAL (LOW WORD) 00FFF602 00000000 00000000

TIMER COUNT (HIGH BYTE) 00FFF604 XXXXXXXX 00000000
TIMER COUNT (LOW WORD) 00FFF606 00000000 00000000

PVCIR

ENABLE 00FFF700 XXXXXXXX XXX00000
BSY PFL PBB PGE BUD VUD ILA 00FFF702 XXXXXXXX X0000000

INT. LEVEL 00FFF704 XXXXXXXX XXXXX000

RIER

ENABLE 00FFF710 XXXXXXXX XXXXXX00
RBY DLF RDN RER 00FFF712 XXXXXXXX XXXX0000

INT. LEVEL 00FFF714 XXXXXXXX XXXXX000

PCIER

ENABLE 00FFF720 XXXXXXXX XXXXXX00
CMS STR 00FFF722 XXXXXXXX XXXXXX00

INT. LEVEL 00FFF724 XXXXXXXX XXXXX000

TIMER
INT.
REG.

ENA 00FFF730 XXXXXXXX XXXXXXX0
INT 00FFF732 XXXXXXXX XXXXXXX0

INT. LEVEL 00FFF734 XXXXXXXX XXXXX000

Table C-1. Memory-Mapped Register Set (Continued)

REG
MEMORY MAP

ADDRESS
VALUE AT RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HIGH BYTE LOW BYTE

Memory-Mapped Register Summary

MOTOROLA MC68322 USER’S MANUAL C-3

C.1 MC68322 MASK REGISTER
The MC68322 mask (322MSK) register reflects the revision number of the MC68322 chip.

C.2 TEST REGISTER
The test register contains fields that should not be read or written.

RGP Bus Activity
This field indicates the current bus activity while the RGP is processing a display list.

GDMA
INT.
REG.

ENABLE 00FFF740 XXXXXXXX XXXXX000
BSY FLL TCR CMP ILA 00FFF742 XXXXXXXX XXX00000

INT. LEVEL 00FFF744 XXXXXXXX XXXXX000

PDMA
INT.
REG.

ENABLE 00FFF750 XXXXXXXX XXXXX000
BSY FLL TCR CMP ILA 00FFF752 XXXXXXXX XXX00000

INT. LEVEL 00FFF754 XXXXXXXX XXXXX000

PIER

ENABLE 00FFF760 XXXXX000 00000000
IVD CRD DRD IHL INH AFL AFH STL STH SNL SNH 00FFF762 XXXXX000 00000000

INT. LEVEL 00FFF764 XXXXXXXX XXXXX000

EXIR0

ENB2 ENB0 00FFF770 XXXXXXXX XXXXXX00
STS2 REQ2 STS0 REQ0 00FFF772 XXXXXXXX XXXX0000

INT. LEVEL 00FFF774 XXXXXXXX XXXXX000
MODE2 MODE0 00FFF776 XXXXXXXX XXXX0000

SEN2 SEN0 00FFF778 XXXXXXXX XXXXXX00

EXIR1

ENB3 ENB1 00FFF780 XXXXXXXX XXXXXX00
STS3 REQ3 STS1 REQ1 00FFF782 XXXXXXXX XXXX0000

INT. LEVEL 00FFF784 XXXXXXXX XXXXX000
MODE3 MODE1 00FFF786 XXXXXXXX XXXX0000

SEN3 SEN1 00FFF788 XXXXXXXX XXXXXX00

SIER

ENABLE 00FFF790 XXXXXXX0 00000000
EIA CIA EVENT 00FFF792 XXXXXXX0 00000000

SET 00FFF794 XXXXXXXX X0000000
MSRR GDR PDR RGP PVC 00FFF7A0 XXXXXXXX XXXX0000

RSR
0000 HIGH WORD 00FFF800 00000000 00000000

LOW WORD 0 00FFF802 00000000 00000000

RDR
0000 HIGH WORD 00FFF804 00000000 00000000

LOW WORD 0 00FFF806 00000000 00000000
MMAR BASE ADDRESS 00FFF900 XXXXXXXX XXXX0000

322MSK REV 00FFF902 00000000 00000000
DMASP SPD 00FFF904 00000000 00000000

TEST
REG.

RGP BUS ACTIVITY 00FFFA00 00000000 00000000
DMA IPL MD 00FFFA02 XXXXXXXX XXXXX000

PDMA GDMA TMR PCOM RGP PVC 00FFFA04 00000000 00000000
SFT EX1 EX0 PPI 00FFFA06 XXX00000 00000000

Table C-1. Memory-Mapped Register Set (Continued)

REG
MEMORY MAP

ADDRESS
VALUE AT RESET

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 HIGH BYTE LOW BYTE

Memory-Mapped Register Summary

C-4 MC68322 USER’S MANUAL MOTOROLA

DMA—DMA Test
When this bit is set with WAIT asserted, a DRAM cycle will be delayed. This bit is used for
testing the DMA cycles.

IPL—IPL Test
When this bit is set, the IPLx signals output on MA2–MA0. This bit is used with the test
registers interrupt set fields (PDMA, GDMA, TMR, PCOM, etc) to test the interrupt logic in
the MC68322.

MD—Mode Test
When this bit is set with WAIT asserted, the MC68322 goes into test mode.

Set Interrupt
The test register contains 10 fields, collectively called the set interrupt fields, which allow the
capability to set interrupt events for each module. Writing a 1 to a bit will set the
corresponding bit in that module’s interrupt event register. Writing a zero to a bit has no
effect. These fields are write-only.

MOTOROLA MC68322 USER’S MANUAL D-1

APPENDIX D
ALTERNATE PIN FUNCTIONS

This section describes the MC68322 alternate pin functions available in Mask Set G59B. In
small systems where many of the pins are not used, these pins may be individually
programmed as general-purpose inputs and outputs, thereby providing as many as four
I/O pins, 12 output pins, and two interrupt/input pins.

D.1 PINS
The following 18 pins have alternate functions. Each of these pins powers up with their
normal function. Software written for previous revisions of the MC68322 will operate
identically on Mask Set G59B provided users write zeroes to all unused register bits. To
alternately define these pins, the software may program the ALTPIN SEL register to assign
an alternate function to each pin. The following table shows the pins and pin type when the
ALTPIN SEL register bit is set. Note that three of the alternate bus master output signals
share a register bit.

Table D-1. ALTPIN SEL Bit Descriptions

PIN
PIN TYPE

ALTPIN SEL =1

00FFF910
ALTPIN SEL

REGISTER BIT

00FFF912
ALTPIN DIR

REGISTER BIT

00FFF914
ALTPIN IN

REGISTER BIT

00FFF916
ALTPIN OUT

REGISTER BIT

A (22) Input / Output 0 0 0 0
A (23) Input / Output 1 1 1 1
A(24) Input / Output 2 2 2 2
A(25) Input / Output 3 3 3 3
A (21) Output 4 — — 4
CS* (4) Output 5 — — 5
CS* (5) Output 6 — — 6
CS* (6) Output 7 — — 7
CS* (7) Output 8 — — 8

RAS* (4) Output 9 — — 9
RAS* (5) Output 10 — — 10

WRU* Output 11 — — 11
DACK* Output 12 — — 12

AS* Output 13 — — 13
DTACK* Output 13 — — 14

BG* Output / Buzzer 13 — — —
BR* Input / Interrupt 14 — — —

DREQ* Input / Interrupt 15 — — —

Alternate Pin Functions

D-2 MC68322 USER’S MANUAL MOTOROLA

D.2 STATE DURING RESET
The output pins are in the normal deasserted state during reset and the first bus cycles,
except for A[21:25], AS, and RAS[4:5]. Pins A[22:25] may be used as inputs on systems
that require 4M or less of ROM by using the input pin mode as described below.

D.3 REGISTERS
The new registers in the table below control the alternate pin function.

The following bits have been added to the existing external interrupt registers—DREQ
(EXIR2) bits were added to the EXIR0 registers and BR (EXIR3) bits were added to the
EXIR1 registers. The new bits are located immediately adjacent to the bits already contained
in those registers. For example, the EXIR0 enable bit is bit 0 in the EXIR0 ENB register and
the EXIR2 enable bit is bit 1. Similarly, the EXIR0 status and request bits are bit 1 and 0 of
the EXIR0 EVENT register, respectively, and the EXIR2 status and request bits are bit 3
and 2, respectively. EXIR0 and EXIR2 will share the same interrupt level as EXIR1 and
EXIR3. If BR or DREQ are to be used as simple inputs rather than interrupts, the software
should keep the interrupts disabled. Users can check the input pin status by reading the
status bit for the corresponding pin in the appropriate external interrupt event register. In a
similar way, the IRQ0 and IRQ1 pins have always been available as input pins.

REGISTER ADDRESS BITS R/W DESCRIPTION

ALTPIN SEL 00FFF910 16 R/W Select Alternate Function For Each Pin.

ALTPIN DIR 00FFF912 4 R/W Direction Control For A[22:25], 0=In, 1=Out.

ALTPIN IN 00FFF914 4 R Input Status For A[22:25].

ALTPIN OUT 00FFF916 15 R/W Output Control For Output Bits.

REGISTER ADDRESS BITS R/W DESCRIPTION

EXIR0 ENB 00FFF770 1 R/W Interrupt EXIR2 Enable.

EXIR0 EVENT 00FFF772 2 R/W Interrupt EXIR2 Request And Status.

EXIR0 MODE 00FFF776 2 R/W Interrupt EXIR2 Mode.

EXIR0 SEN 00FFF778 1 R/W Interrupt EXIR2 Software Enable Bit.

EXIR1 ENB 00FFF780 1 R/W Interrupt EXIR3 Enable.

EXIR1 EVENT 00FFF782 2 R/W Interrupt EXIR3 Request And Status.

EXIR1 MODE 00FFF786 2 R/W Interrupt EXIR3 Mode.

EXIR1 SEN 00FFF788 1 R/W Interrupt EXIR3 Software Enable Bit.

Alternate Pin Functions

MOTOROLA MC68322 USER’S MANUAL D-3

The registers in the following table have been added for buzzer control.

D.4 INPUT PIN MODE
For A[22:25] to be programmed as input pins, they must be three-stated on power-up to
prevent the processor from driving them during the initial bus cycles, which could cause bus
contention on these lines. To accommodate this condition, A[22:25] will power-up in a
three-state mode when a special state of the HI-Z and TEST pins exists. The normal
functions for BR and DREQ will also be disabled in input pin mode (ALTPIN SEL register
bits 14,15 are set). The table below shows the modes for these pins.

D.5 BUZZER
The BG output pin now has a buzzer control function, which consists of an 8-bit interval
control register, a 1-bit enable register, and a 16-bit free-running counter. The eight bits in
the BUZZER INT register control the value to be loaded into the upper byte of the 16-bit
counter after it reaches a count of zero. The lower byte will always be loaded with $FF. The
enable bit in the BUZZER ENB register causes the output from the BG pin to toggle every
time the counter reaches zero. The buzzer function drives a buzzer on the board or front
panel. On products that need this feature, the buzzer control function saves a 555 chip with
its resistors and capacitors.

D.6 IN-CIRCUIT EMULATION
If the alternate pin function is to be used in a system, then an in-circuit emulator (ICE) cannot
be used for system development. This feature of the G59B Mask Set is not available in an
ICE version. If the alternate pin function will not be used in the system, then the original ICE
version of the MC68322 can be used with an in-circuit emulator.

REGISTER ADDRESS BITS R/W DESCRIPTION

BUZZER INT 00FFF608 8 R/W Buzzer Interval.

BUZZER ENB 00FFF60A 1 R/W Buzzer Enable.

HI-Z TEST FUNCTION

0 0 Three-State All Outputs

0 1 Input Pin Mode, A[22:25] Three-Stated
ALTPIN SEL Register Bits 0-3, 14-15 = 1

1 0 Normal Mode, A[22:25] Enabled
ALTPIN SEL Register Bits 0-15 = 0

1 1 Special Test Mode (Do Not Use)

Alternate Pin Functions

D-4 MC68322 USER’S MANUAL MOTOROLA

D.7 OPERATION EXAMPLE
If the alternate pin functions are not used or if none of them are be used as inputs, then HI-Z
should be connected to Vcc, and TEST (pin 159 of the PQFP package) should be connected
to ground. If some of the input pins will be used, then the input pin mode should be selected
by connecting HI-Z to ground and TEST to Vcc. This connection powers up the A[22:25] pins
to function as input pins and disables the normal BR and DREQ input pin functions. The
software loads the ALTPIN OUT register with the initial values, loads the ALTPIN DIR
register to control the configuration of the A[22:25] pins, and loads the ALTPIN SEL register
to control the pin configurations.

MOTOROLA MC68322 USER’S MANUAL E-1

APPENDIX E
GLOSSARY

This section provides the definitions to some of the key terms used in this document.

address demunging

Reversal of a munge operation on an address. This has the effect of restoring the
original address.

address munging

Address modification in a way that the low-order three bits of the address are
exclusive-OR’ed with a three-bit value that depends on the length of the operand (refer
to the PowerPC™ Microprocessor Family: The Programming Environments
(MPGFPE/AD).

atomic cycle

If multiple bus transactions by a bus master occur in a sequence where the master
retains ownership of the bus during the duration of the sequence, thus preventing other
master(s) from transferring in the middle of the sequence, the sequence is considered
atomic.

autobaud

The process of determining a serial data rate by timing the width of a single bit.

big-endian

An ordering of the bytes within a word where the least-significant byte is at the highest
address and vice versa. For example, a 32-bit wide data bus with big-endian, the
least-significant byte is located on data bus bits 24-31 and the most-significant byte is
on bits 0-7.

blockage

The interval from the time an instruction begins execution until its execution unit is
available for a subsequent instruction (AND has 1 clock latency and 1 clock blockage).

boundedly undefined

Results of a given (not defined) instruction are boundedly undefined if they could have
been achieved by executing an arbitrary sequence of defined instructions in valid form
starting in the state the machine was before the attempt was made to execute the given
instruction.

Glossary

E-2 MC68322 USER’S MANUAL MOTOROLA

breakpoint

An event that forces the machine to branch into a breakpoint exception routine.

bubble

A number inside a circle that is used to identify specific terms in AC timing diagrams.

burst

A bus transfer that has more than one piece of data associated with it.

burst length

The number of data associated with a burst cycle. For example, a burst length of four
has four data pieces (four beats) associated with it.

bus park

Keeps the bus granted to a bus master although it has completed the bus cycle. This
allows the same master to make the next transfer without having to rearbitrate for the
bus.

copyback

Updates to external memory are delayed until forced by the user program or a transfer
of bus control to an external master. At the time of forced update or relinquishment of
the bus, all changes to the cache are written to external memory. Until that time, cache
and external memory are not coherent.

critical-data first

This feature allows the data transferred during the burst cycle to be organized where
the word or data needed first is the first one to transfer within the burst-data block. The
order of transferring can be sequential and usually wraps back to the word (or data)
zero. For example, 1→ 2 → 3 → 0 for a sequence of four data with data 1 as the critical
data.

datastream

A sequence of information to be processed by the CPU.

early termination

Some burst protocols specify the burst length at the beginning of the transfer. Early
termination allows the burst to be terminated before all data beats are transferred.

exception

An error, unusual condition, or external signal that can set a status bit. It may or may
not cause an interrupt, depending on whether or not the corresponding interrupt is
enabled.

Glossary

MOTOROLA MC68322 USER’S MANUAL E-3

execution serialization

Instruction issue is halted until all instructions that are currently in progress complete
execution (all internal pipeline stages and instruction buffers have emptied and all
outstanding memory transactions are completed).

execution stream

The combination of instructions and data on which the CPU operates.

fetch serialization

Instruction fetch is halted until all instructions currently in the processor have completed
execution (all issued instructions as well as the prefetched instructions waiting to be
issued). The machine after fetch serialization is said to be completely synchronized.

fixed transaction

A bus transaction that combines the address and data phase of the bus cycle into a
single event.

flow control instruction

One of: B BR BCR BCC RFI SC and sometimes ISYNC.

half-word

A half-word consists of 2 bytes or 16 bits.

instruction done

Execution finished and results written back.

instruction execution time

All the time between taken and done.

instruction fetch

Reading the instruction data received from the instruction memory (I-Cache, Flash).

instruction issue

Driving valid instruction bits inside the core.

instruction retire

The instruction and all preceding instructions in the program finished execution with no
errors. Retired instructions are said to be architecturally executed.

instruction stream

A sequence of operands to be executed by the CPU.

instruction taken

All resources to perform the instruction are ready and the core begins executing it.

Glossary

E-4 MC68322 USER’S MANUAL MOTOROLA

internal bus

The bus connecting the CPU and SIU.

interrupt

The act of changing the machine state register and other parts of the machine state in
response to an exception.

latency

The interval from the time an instruction begins execution until it produces a result that
is available for use by a subsequent instruction.

little-endian

Byte ordering that assigns the lowest address to the lowest-order 8 bits of the scalar.

master

A device on the bus that requests bus ownership and initiates the bus cycles.

memory controller

A functional logic section of the . It’s primary function is to provide the controls for the
external bus memories and I/O devices.

no operation (NOP)

An instruction whose sole function is to increment the Program Counter, but which
affects no changes to any registers or memory.

pace control

Controls the rate of the data flow between the master and slave. The burst mechanisms
allow this to be controlled by the slave and is useful in slowing down the data transfer
rate. Slave delay can be used in place of pace control. It means the data pace can be
slowed down by the slave.

pipeline

The act of initiating a bus cycle while another bus cycle is in progress. Thus, the bus
can have multiple bus cycles pending at a time.

scan chain

The peripheral buffers of a device, linked in JTAG test mode, that are addressed in a
shift register fashion.

scoreboard

A register tracking system that ensures that values are not pulled from a register before
they are updated by a previous instruction.

sequential instruction

Any instruction that is not a flow control instruction and not ISYNC.

Glossary

MOTOROLA MC68322 USER’S MANUAL E-5

slave

A device that responds to the master’s address. A slave receives data on a write cycle
and gives data to the master on a read cycle.

snoop

The act of monitoring external bus activity by alternate bus masters. By snooping these
external accesses, a CPU can identify accesses to memory locations that contain dirty
data and possibly halt activity to supply correct data.

swap

Four byte lanes, reversing (lane 0 to lane 3, lane 1 to lane 2, lane 2 to lane 1 and lane
3 to lane 0).

tablewalk

An index value is used to identify an entry point in a tree structure that is traversed until
a pointer is found. The system ‘walks’ through a table of pointers to it’s end.

transaction

A bus transaction consists of an address transfer (address phase) and data transfers
(data phase).

time-division multiplex (TDM)

Any serial channel that is divided into channels separated by time.

watchpoint

An event that is reported, but does not change the timing of the machine.

word

A word consists of 4 bytes or 32 bits.

writethrough

Continuous updates, as they occur, of external memory so that cache and memory
maintain coherency at all times.

MOTOROLA MC68322 USER’S MANUAL Index-1

INDEX

Numerics
0° pages

bottom-to-top (B2T) parameter 13-6
scanline run 12-7, 12-8

0˚ pages
definition, 1-11

180° pages
band fault, during 11-4
bottom-to-top (B2T) parameter 13-6
definition, 1-11
scanline run, 12-7, 12-8

322MSK, C-3

A
accessing memory, 4-9
address

bit, defined 13-5
byte, defined 13-5

address boundary, DRAM registers, 7-2
address bus, 2-3, 4-1
address constraints, 12-15
address error exception 5-12
address error, 5-12
address, physical vs logical, 13-6
addresses

physical/logical translation, 13-48
addresses, duplex, 13-6
addresses, graphic orders, 13-5
addressing modes, 3-3
ALTPIN DIR, D-2
ALTPIN IN, D-2
ALTPIN OUT, D-2
ALTPIN SEL, D-1
applications

configuring a generic print engine interface, B-11
configuring the DRAM and DRAM SIMM, B-2
configuring the flash EPROM, B-4
configuring the in-circuit emulation, B-9
configuring the parallel port, B-10
configuring the random control logic, B-7
configuring the serial EEPROM, B-8
MC68322 internal registers sample code, B-13
memory map initialization example, B-12

applications, B-1
asynchronous operation, 10-10

B
band

bit map type described 12-1
buffer, reuse, 10-7
display list defined 11-3
fault, 11-4
number paramenter, 13-7
underrun, interrupt event, 10-7

band buffer, 10-9
band faults, 13-8
band image

starting address 10-6
band numbers, 13-7
banded

duplex operation, 13-7
banded bitmap, 12-1
banding

definition, 1-10
bit address, definition, 13-5
bit block order execution, 12-14
bit block transfer

expanded operation, 12-5
bit block transfer graphic orders, 13-3
bit block transfers, 12-5
bit map

expanded described 12-1
bit maps

expanded
clipping 13-3

bit string specifiers, 12-6
bitBLT

rendering direction, 10-5
bitBLT, 12-5
bit-granular, control of clipping 13-3
bitmap

banded, 12-1
definition, 1-9
expanded, 12-1
frame, 12-2
halftone, 12-2
unbanded, 12-1
unexpanded, 12-1

bitmap types, 12-1
block diagrams

parallel port interface controller, 9-1

Index

Index-2 MC68322 USER’S MANUAL MOTOROLA

BLT2BB_D, 13-9
BLT2BB_SD, 13-11
BLT2BB_SHD, 13-13
BLT2BB_XD, 13-17
BLT2BB_XHD, 13-22
BLT2F_D, 13-27
BLT2F_SD, 13-28
BLT2F_SHD, 13-29
BLT2F_XD, 13-31
BLT2F_XHD, 13-33
BLT2UB_D, 13-36
BLT2UB_SD, 13-37
BLT2UB_SHD, 13-38
BLT2UB_XD, 13-40
BLT2UB_XHD, 13-43
Boolean

code calculating example 12-4
specifying a graphic operatin transfer, 12-3

Boolean codes, 12-3
Boolean logic unit, 11-1
bottom-to-top (B2T), definition, 13-6
BR, asserting, 4-10
burst accesses, DRAM, 7-10
burst cycles

DRAM access 7-1
bus 4-1

address, 2-3
data, 2-3

bus arbitration
DRAM, 7-9
signals, asserting, 4-9

bus arbitration, 4-9
bus cycle, exception, 5-13
bus cycles

DRAM read cycles 7-7
DRAM write cycles 7-8

bus interface unit
GDMA read cycles, performing 8-7

bus mastership, exchanging, 4-9
bus operation

core read cycle, 4-1
core write cycle, 4-4
external bus master, 4-9
interrupt acknowledge bus cycle, 4-6
reset, 4-8

bus operation, 4-1
BUZZER ENB, D-3
BUZZER INT, D-3
byte address, defined 13-5
byte operation, 4-1, 4-4

C
CCLK supplied by MC68322, 10-11, 10-13
CCLK supplied by print engine, 10-12, 10-14
channel address

command received interrupt 9-7
chip-select

recovery value, 6-4
chip-select DMA timing register, 6-3
chip-selects

active read and write times 6-2
banks

DMA access timing, 8-8
location priority 6-3

banks, chip-select registers 6-1
data transfers

synchronous timing values, 6-4
minimum value timings, 6-2
registers

chip-select DMA timing register 6-3
chip-select recovery, 6-4
DMA access timing 8-8
location, 6-3

registers at reset, 6-3
size encodings, 6-2
timing characteristics, 6-2

clipping expanded bit maps 13-3
clocks

command, supplying 10-2
status, supplying, 10-2
video, divisor operation, 10-15

command byte detection, 9-9
command bytes

during ECP mode 9-3
commands to the print engine, 10-11
communications modes, 9-1
compatibility mode (see handshaking)
core

data types and addressing modes, 3-3
DRAM write cycle, 7-9
DRAMcontroller

accesses and refresh cycle, 7-6
instruction set summary, 3-4, 3-6
notational conventions, 3-4
programming model, 3-1

core read cycle, 4-1
core write cycle, 4-4
core, 3-1
CSDTR, 6-3
CSR, 6-1
CSR, (see chip-selects, registers)
CSRR, 6-4

Index

MOTOROLA MC68322 USER’S MANUAL Index-3

D
DA (destination address)

defined 13-3
data bus (D15–D0)

DMA transfers, during 8-6
data bus, 2-3, 4-1
data formats, 3-3
data latch

DMA
during DRAM transfers 8-6
status indication 8-5

data latching
parallel port 9-13

data transfer rate, 9-14
data transfers(see also print engine videio controller

(PVC))
DMA termination, indication of 8-5

data turnaround time, 4-10
DDL, 1-8
default interface, 10-16
definitions, E-1
destination

operand type described 12-2
destination address

duplex operation, 13-6
digital filtering, 9-11
direct memory access (DMA)

DMA accesses 7-1
display list

banded defined, 11-3
errors during execution 11-4
example format 13-5

display lists
address convention, 12-15

DMA
active channel indication 8-5
arbitration 8-8
chip-select bank

access timing 8-8
DRAM bus transfers 8-8
error condition 8-6
external device request 8-4
flush request, described 8-3
flush requst during operation 8-6
GDMA

read cycle, termination 8-7
GDMA configuration registers, described 8-2
GDMA write cycle 8-7
illegal address interrupt 8-6
MC68322 bus cycles, CSx during 8-4
PDMA

during compatibilty mode 9-8
PDMA configuration registers, described 8-2
soft-reset register 5-14
transfers

DMA initiated 8-6
DREQ and DACK during 8-7
size 8-6

DMA interface
channel status indication, 8-5
channels, 8-1
data latch

DRAM transfers, 8-6
data latch status indication, 8-5
DRAM bus, control, 8-8
error condition, 8-10
GDMA

CSx during read cycle, 8-7
handshaking, 8-7
read cycle request, 8-7

initiating an operation, 8-6
invalid address, accessing, 8-6
MC68322 address bus, incrementing, 8-2
operation, 8-1
reallocating resource, 8-6
transfer count field, 8-3
transfers

count, 8-3
direction, programmed, 8-4
flush request, 8-3
termination indication, 8-5
width, programmed, 8-4

DMA interface signals, 2-8
DMA interface, 8-1
DMASP, 8-4
DRAM

bank
size 7-1

banks
described 7-1
location 7-1
reset values 7-10

burst access
page boundary, crossing 7-10

burst accesses 7-10
burst cycles 7-1
bus

DMA control of 8-8
bus transfers

DMA 8-8
devices

operation speed 7-5
pre-charge 7-10

DMA accesses 7-1
DRAM control

TS field encodings 7-5
EC000 Core accesses 7-6, 7-9
fast-page mode 7-1
fast-page mode, burst accesses 7-10
nibble mode 7-1

Index

Index-4 MC68322 USER’S MANUAL MOTOROLA

registers
described 7-1
DRAM control 7-5

reset 7-10
static column 7-1
transfers

DMA data latch during 8-6
WE, RAS, and CAS during DRAM read 7-7

DRAM bus
(see memory data and address bus)

DRAM controller
accesses

burst, 7-10
bus arbitration, 7-9

acesses, 7-6
banks

location, 7-2
devices, 7-1
power-up, 7-10
read cycle, 7-7
registers

reset values, 7-10
registers and banks

base address and size fields, 7-1
ROM mode, 7-2

registers and banks, 7-1
timing mode, 7-5
timing modes, 7-5
write cycles, 7-8

DRAM controller, 7-1
DRAM interface signals, 2-7
DRMCR, 7-5
duplex operation

bottom-to-top (B2T) parameter 13-6
destination address (DA) during 13-6

duplex printing
explanation, 1-11

E
EC000 Core

DMA accesses 7-1
exceptions

address error 5-12
illegal 5-11
privileged violations 5-11
tracing 5-12
unimplemented 5-11

exceptions (see also exceptions)
flush request, DMA 8-3
illegal memory address access 5-3
status register during exception processing 5-7

electrical characteristics, 14-1
enhanced capabilities mode, 9-1
error condition

display list execution, during 11-4
DMA transfers 8-10
RGP operation, during 11-3

error condition, DMA during 8-6
error cycles, 9-12
exception handling, 5-1
exception processing

stack frame during 5-8
status register during 5-7

exception vector number 5-7
exceptions

address error, 5-12
bus cycles, 5-13
causes, 5-11
how processing occurs, 5-6
illegal 5-11
illegal and unimplemented instructions, 5-10
multiple 5-13
multiple, 5-13
operation, 5-6
priority 5-13
privilege violations, 5-11
processing-specific, 5-9
tracing, 5-12
types

instruction traps, 5-10
interrupt, 5-10
reset, 5-9

types, 5-9
unimplemented 5-11

exceptions, 5-6
EXIR0 ENB, D-2
EXIR0 EVENT, D-2
EXIR0 MODE, D-2
EXIR0 SEN, D-2
EXIR1 ENB, D-2
EXIR1 EVENT, D-2
EXIR1 MODE, D-2
EXIR1 SEN, D-2
expanded bit block graphic orders, 13-3
expanded bitmap, 12-1
expanded bitmaps

clipping, 13-3
external bus master

illegal memory address access 5-3
external bus master read cycle, 4-10
external bus master signals, 2-6
external bus master write cycle, 4-11
external bus master, 4-9

Index

MOTOROLA MC68322 USER’S MANUAL Index-5

F
fast-page mode, 7-1
features

core, 3-1
MC68322, 1-2

FH (frame height), defined 13-4
flush request

DMA, during operation, 8-6
flush request, DMA 8-3
frame bit map described 12-2
frame bitmap, 12-2
FW (frame width), defined 13-3

G
GDMA (general purpose DMA), (see DMA)
GDMA, 8-2
GDMCR, 8-3
glossary, E-1
graphic operations

bit block and scanline order execution, 12-14
bit block transfer, 12-5
bitmap types, 12-1
Boolean codes, 12-3
graphic operands

types, 12-3
graphic operands, 12-2
location and address constraints, 12-15
scanline and halftone table example, 12-13
scanline transfer

executing during banded applications, 12-9
halftone companion tables, 12-10
run operation, 12-8

scanline transfer, 12-5
graphic operations, 12-1
graphic order

interrupted 11-4
graphic orders

address alignment, 13-5
addresses, 13-5
band number and fault, 13-7
bitBLT during duplex 13-6
defined 11-1
descriptions, 13-8
display list sequence, 13-5
duplex operation 13-6
example display list format 13-5
execution unit, 11-1
operand types, 12-2
parser, 11-1
scanline during duplex, 13-6
types

bit block transfer, 13-3
expanded bit block transfer, 13-3

initialization, 13-1
program flow control, 13-3
scanline transfer, 13-4

types, 13-1
graphic orders, 13-1
graphics unit

shut down 12-15

H
HA (halftone address), defined 13-3
halftone

32-bit specifier, 12-10
48-bit specifier described 12-11
bit map type described 12-2
operand type described 12-2
specifier boundary conditions 12-12
table

address convention 12-15
table address (HTTA) during duplex

operation 13-6
halftone bitmap, 12-2
halftone companion table, 12-10
halftoning

definition, 1-10
handshaking

compatability
error cycles, 9-12

ECP
enabling with RLE, 9-9
enabling without RLE 9-9
operation 9-9
with RLE, 9-10
without RLE, 9-10

hardware, disabling, 9-10
resetting controller, 9-14
software-controlled, 9-11

handshaking modes
compatability

enabling, 9-8
operation 9-8
PDMA during 9-8

ECP
command bytes during, 9-3

types, 9-8
hardware handshaking, 9-7
horizontal margin (see page, margins)
HTTA (see halfton table address)
HXR (halftone X remainder), defined 13-3
HYR (halftone Y remainder), defined 13-4

Index

Index-6 MC68322 USER’S MANUAL MOTOROLA

I
ICE interface signals, A-1
ICE, A-1
illegal address

DMA access to 8-6
illegal address interrupt, 4-12
illegal and unimplemented instructions, 5-10
illegal instruction exception 5-11
in-circuit emulation interface

adaptor board design, A-4
adaptor board schematics, A-6
pin assignment, A-16
signals, A-1

in-circuit emulation interface, A-1
initialization graphic orders, 13-1
instruction set summary, 3-4, 3-6
instructions

illegal and unimplemented, 5-11
privileged listed 5-11
privileged, 5-11
tracing 5-12
unimplemented emulation 5-11

interrupt acknowledge bus cycle, 4-6
interrupt events

command sent, 10-11
RGP error, 12-15

interrupt handling, 5-1
interrupt, generating, 4-6
interrupts

DTACK, during illegal memory address
access 5-3

error during RGP operation, 11-3
events

band underrun 10-7
command recieve, 9-7
command sent status, 10-8
data received, 9-7
DMA illegal address 8-6
EC000 Core request 9-8
illegal address, PVC, 10-7
page end 10-7
page/band begin, 10-7
PDMA request, 9-8
RGP busy, 11-3
RGP error 11-4
status receive, 10-8
video underrun 10-7

external, 5-4
externally initiated 5-4
hardware, 5-1
illegal memory address access, 5-3
internal, 5-1
IRQx, during external interrupts 5-4
priority level

external, 5-4

registers
external described 5-4
software event described 5-3

software
clearing, 5-3
setting priority level, 5-3

software, 5-3
interrupts, 5-1

J
JUMP, 13-46

L
languages

printer, 1-8
latching, 9-13
location constraints, 12-15

M
mask register, C-3
mastership, assuming, 4-9
MC68322

alternate pin functions, D-1
applications, B-1
bus arbitration, 4-9
bus operation, 4-1
configuration, B-1
core, 3-1
DMA interface, 8-1
DRAM controller, 7-1
electrical and thermal characteristics, 14-1
explanation, 1-8
features, 1-2
graphic operations, 12-1
graphic orders, 13-1
in-circuit emulation interface, A-1
interrupt and exception handling, 5-1
introduction, 1-1
memory-mapped register summary, C-1
parallel port interface, 9-1
print engine interface, 10-1
RISC graphics processor, 11-1
signal descriptions, 2-1
system integration module, 6-1

MC68322 bus
cycles

CSx during DMA generated, 8-4
DMA incrementing address 8-2
DMA read and write cycles 8-7

MC68322 reset, differences during, 10-16
mechanicals, 15-1

Index

MOTOROLA MC68322 USER’S MANUAL Index-7

memory addresses, 3-3
memory data bus

DRAM write cycles 7-8
memory-mapped registers, C-1
modes of operation

exception processing described 5-6
module soft-reset register (MSRR), described 5-14
module soft-reset register, 5-14
MSRR, 5-14
multiple exceptions, 5-13

N
nibble mode, 7-1
notational conventions, 3-4

O
operands

types of graphic order 12-2
operation, bus, 4-1
ordering information, 15-1

P
page

buffer reuse 10-7
height of image, 10-5
image

dimension and location 10-9
height values counted down 10-9
width values counted down, 10-9

width 10-5
page boundary

DRAM burst access 7-10
parallel interface port signals, 2-9
parallel port

control signals 9-8
digital filtering, operation 9-11
error cycles (see error cycles)
hardware handshaking (see handshaking)

parallel port interface
block diagram, 9-1
data latching operation, 9-13
data transfer rate, 9-14
digital filtering, 9-11
error cycles, 9-12
hardware handshaking

disabling, 9-10
ECP, 9-8

hardware handshaking, 9-7
interrupt events, 9-6
PDMA, 9-8
PDMA, (see also DMA)

registers, 9-2
RESET, 9-14
software controlled handshaking, 9-11

parallel port interface, 9-1
PCB, 10-5
PCIER, 10-8
PCL, 1-8
PCOMR, 10-2
PDL, 1-8
PDMA (parallel port DMA), (see DMA)
PDMA, 8-2
performance, improving, 4-9
phase 10-1
phase lock loop

control of video clock, 10-3
phase-locked loop, 10-1
PIER, 9-6
pins (alternate)

functions, D-1
pixel, definition, 12-1
PLL video clock divisor, 10-15
PLL, 10-1
PPCR, 9-4
PPIR, 9-2
prescaler, setting resolution 10-15
print engine

band image starting address, 10-6
clocks

supplying cammand and status 10-2
command operation

end of operation 10-11
interface

operation, described 10-9
reset operation 10-11
synchronous operation 10-10

transmitting data, 10-2
video clock divisor operation 10-15
video rate supplied 10-2

print engine interface
operation

command, 10-11
PLL video clock divisor, 10-15
status, 10-13

operation, 10-9
printer communication protocol, 10-8
PVC on reset, 10-15
registers

printer communication interrupt event, 10-8
printer communication, 10-2
printer control block register set, 10-5
PVC control, 10-3
PVC interrupt event, 10-6

registers, 10-2
synchronous/asynchronous PVC

operation, 10-10

Index

Index-8 MC68322 USER’S MANUAL MOTOROLA

print engine interface, 10-1
print engine video controller

data transfer complete, 10-9
soft-reset, 10-16

print engine video controller (PVC)
soft-reset 10-7
starting 10-9

print engine video controller interface signals, 2-8
print engine video controller, 10-1
printer communication interface signals, 2-8
printer communication protocol, 10-8
printer control block

new print operation indication, 10-6
printer languages, 1-8
printer video controller

soft-reset register 5-14
printer video controller (PVC)

burst cycles 7-1
DMA accesses 7-1

priviledge violation exception 5-11
privileged instructions listed 5-11
program flow control graphic orders, 13-3
PVC reset interrupt event, 10-15
PVC, 10-1
PVCCR, 10-3
PVCIR, 10-6

R
RDR, 11-2
reallocating DMA resource 8-6
refresh cycle

CAS before RAS, timing 7-5
EC000 Core accesses 7-6
timing 7-6
timing parameters, 7-5

refresh cycle, 7-6
refresh cycles

WE during 7-6
registers

alternate pin, D-2
chip-select DMA timing, 6-3
chip-select recovery, 6-4
chip-select related, 6-1
chip-select, 6-1
DMA speed, 8-4
DRAM (see DRAM registers)
DRAM control, 7-5
DRAM, 7-1
external interrupt, 5-4
external interrupt, described 5-4
GDMA configuration

described 8-2
GDMA configuration, 8-2
GDMA control, 8-3

internal status, 5-1
interrupt event, 4-6, 5-1
interrupt level, 5-1
location overlap priority 6-3
mask, C-3
memory-mapped, C-1
module soft-reset (MSRR), described 5-14
parallel port control, 9-4
parallel port interface, 9-2
PDMA configuration, 8-2
PPI interrupt event, 9-6
printer communication interrupt event, 10-8
printer communication, 10-2
printer control block, 10-5
PVC control, 10-3
PVC interrupt event, 10-6
RGP diagnostic, 11-2
RGP interrupt event, 11-2
RGP start, 11-2
software interrupt event

described 5-3
software interrupt event, 4-12, 5-3
status (see EC000 Core)
status, 4-8, 5-7
test, C-3
timer interrupt event, 5-5
timer, 5-5

rendering direction, programmed 10-5
RESET

asserting, 9-14
reset exeption, 5-9
reset instruction

executing, 4-8
reset operation

PVC during, 10-11
PVC, 10-15

reset operation, 4-8
resolution 10-15
resolution, 10-1
RGP, 10-9, 11-1
RICSC graphics processor (RGP)

burst cycles 7-1
RIER, 11-2
RISC graphics processor

DMA accesses, 7-1
errors during display list execution, 11-4
operation, 11-3
registers

RGP diagnostic, 11-2
RGP interrupt event, 11-2
RGP start, 11-2

registers, 11-2
soft-reset register 5-14

RISC graphics processor, 11-1
ROM mode, 7-2

Index

MOTOROLA MC68322 USER’S MANUAL Index-9

RSR, 11-2
run-length

decompression
resetting logic 9-14

decompression, 9-10
run-length encoding

command received interrupt 9-7

S
sample code, B-13
scanline

table
address convention 12-15

table address (STLA) during duplex operation
13-6

scanline and halftone table example, 12-13
scanline graphic orders, 13-4
scanline order execution, 12-14
scanline table, 12-6
scanline, definition, 12-1
scource

operand type described 12-2
SET_BBMAP, 13-47
SET_BOOL_D, 13-50
SET_HTBMAP, 13-51
SET_SBMAP, 13-53
SET_UBMAP, 13-54
signal descriptions, 2-1
signal summary, 2-2
signals

ACK*
during compatibility mode transfer 9-8
software control of 9-4

AUTOFD*
during compatibility mode transfer 9-8

bus arbitration, 4-9
bus control, 4-1
BUSY

software control of 9-4
CAS

DRAM read cycles 7-7
CASx

DRAM burst accesses 7-10
CMD/STS*

direction of 10-2
CSx

DMA access timing 8-8
GDMA read cycle, during 8-7

DACK
DMA access timing 8-8
GDMA handshaking 8-7
GDMA read cycle 8-7

DMA interface, 2-8
DRAM interface, 2-7

DREQ
default configuration 8-7
GDMA handshaking 8-7

DTACK
asynchronous EC000 Core timing 6-5
illegal memory address access 5-3

external bus master, 2-6
external interrupts, 5-4
FAULT*

driving high level on 9-4
FSYNC*

page/band begin interrupt, during 10-7
LDS (lower data strobe) 7-8
parallel port interface, 2-9
print engine video controller interface, 2-8
printer communication interface, 2-8
RAS

DRAM read cycles 7-7
SELECT*

driving high level on 9-3
STROBE*

during compatibility mode transfer 9-8
hardware handshaking disabled 9-10

system interface, 2-4
WAIT

asynchronous EC000 Core timing 6-5
WE

DRAM read cycles 7-7
DRAM write cycles 7-8
during refresh cycles 7-6

WRL
DMA transfers, during 8-6
GDMA write cycle 8-7

WRU
DMA transfers, during 8-6
GDMA write cycle 8-7

SIM, 6-1
SL2BB_D, 13-55
SL2BB_HD, 13-57
SL2F_D, 13-60
SL2F_HD, 13-61
SL2UB_D, 13-63
SL2UB_HD, 13-64
SLTA (see scanline table address)
SmartToner

enabled, 10-5
soft-reset

PVC 10-7
RGP 11-4

specifications, 14-1
SR, 5-7
stack frame

exception 5-8, 5-11
static column, 7-1
STOP, 13-66

Index

Index-10 MC68322 USER’S MANUAL MOTOROLA

supplying valid data, 4-11
system integration module, 6-1
system interface signals, 2-4

T
termination

bad address, 8-10
core-forced, 8-10
normal, 8-9

terminology, E-1
test register, C-3
thermal characteristics, 14-1
TIER, 5-5
timer

count, 5-6
interval 5-6

timer module, 5-5
tracing 5-12
tracing, 5-12
transfer

bit block, 12-5
scanline, 12-5

transfer count field, DMA described 8-3
transfer, initiating, 4-4
transferring data, 4-1

U
unbanded

duplex operation during 13-7
unbanded bit map described 12-1
unbanded bitmap, 12-1
unexpanded bit map described 12-1
unexpanded bitmap, 12-1
unimplemented instruction exception 5-11
unimplemented insturction emulation 5-11

V
vector

numbers, listed 5-8
table 5-8

vertical margin, 10-5
video

underrun, interrupt event, 10-7

W
word operation, 4-4
word-sized read cycle support, 4-10
word-sized write cycle, 4-11

X
X dimension

definition, 1-9
X dimension, definition, 12-1
XOFF, defined 13-3
XON, definition, 13-4

Y
Y dimension

definition, 1-9
Y dimension, definition, 12-1

MOTOROLA
SEMICONDUCTOR
PRODUCT INFORMATION

Order this document
by MC68340/D

MC68340
MC68340V

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

© MOTOROLA INC., 1992
Rev 3

Also Replaces BR752/D

Product Brief
Integrated Processor With DMA

The MC68340 is a high-performance 32-bit integrated processor with direct memory access (DMA),
combining an enhanced M68000-compatible processor, 32-bit DMA, and other peripheral subsystems on a
single integrated circuit. The MC68340 CPU32 delivers 32-bit CISC processor performance from a lower
cost 16-bit memory system. The combination of peripherals offered in the MC68340 can be found in a
diverse range of microprocessor-based systems, including embedded control and general computing.
Systems requiring very high-speed block transfers of data can especially benefit from the MC68340's DMA.

The MC68340's high level of functional integration results in significant reductions in component count,
power consumption, board space, and cost while yielding much higher system reliability and shorter design
time. The 3.3-V MC68340V is particularly attractive to applications requiring a very tight power budget.
Complete code compatibility with the MC68000 affords the designer access to a broad base of established
real-time kernels, operating systems, languages, applications, and development tools—many oriented
towards embedded control. Figure 1 shows a block diagram of the MC68340.

CPU32
CORE

TWO-
CHANNEL

SERIAL
I/O

TWO-CHANNEL DMA
CONTROLLER

EXTERNAL
BUS

INTERFACE

CLOCK

SYSTEM
INTEGRATION

MODULE

BUS
ARBITRATION

INTERMODULE BUS

TIMER
MODULE

TIMER
MODULE

SYSTEM
PROTECTION

IEEE TEST

16

32

Figure 1. MC68340 Simplified Block Diagram

2 MC68340 PRODUCT INFORMATION MOTOROLA

The primary features of the MC68340 are as follows:

• High Functional Integration on a Single Piece of Silicon
• CPU32—MC68020-Derived 32-Bit Central Processor Unit

— Upward Object-Code Compatible with MC68000 and MC68010
— Additional 32-Bit MC68020 Instructions and Addressing Modes
— Unique Embedded Control Instructions
— Fast Two-Clock Register Instructions—10,045 Dhrystones/Second

• Two-Channel Low-Latency DMA Controller for High-Speed Memory Transfers

— Single- or Dual-Address Transfers
— 32-Bit Addresses and Counters
— 8-, 16-, and 32-Bit Data Transfers
— 50 Mbyte/Sec Sustained Transfers (12.5 Mbyte/Sec Memory-to-Memory)

• Two-Channel Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

— Baud Rate Generators
— Modem Control
— MC68681/MC2681 Compatible
— 9.8 Mbits/Sec Maximum Transfer Rate

• Two Independent Counter/Timers

— 16-Bit Counter
— Up to 8-Bit Prescaler
— Multimode Operation
— 80-ns Resolution

• System Integration Module Incorporates Many Functions Typically Relegated to

External PALs, TTL, and ASIC, such as:
— System Configuration — External Bus Interface
— System Protection — Periodic Interrupt Timer
— Chip Select and Wait State Generation — Interrupt Response
— Clock Generation — Bus Arbitration
— Dynamic Bus Sizing — IEEE 1149.1 Boundary Scan (JTAG)
— Up to 16 Discrete I/O Lines — Power-On Reset

• 32 Address Lines, 16 Data Lines
• Power Consumption Control

— Static HCMOS Technology Reduces Power in Normal Operation
— Low Voltage Operation at 3.3 V ±0.3 V (MC68340V only)
— Programmable Clock Generator Throttles Frequency
— Unused Peripherals Can Be Turned Off
— LPSTOP Provides an Idle State for Lowest Standby Current

• 0–16.78 MHz or 0–25.16 MHz Operation
• 144-Pin Ceramic Quad Flat Pack (CQFP) or 145-Pin Plastic Pin Grid Array (PGA)

As a low voltage part, the MC68340V can operate with a 3.3-V power supply. MC68340 is used throughout
this document to refer to both the low voltage and standard 5-V parts since both are functionally equivalent.

MOTOROLA MC68340 PRODUCT INFORMATION 3

M68300 FAMILY

The MC68340 is one of a series of components in Motorola's M68300 Family. Other members of the family
include the MC68302, MC68330, MC68331, MC68332, and MC68F333.

ORGANIZATION

The M68300 family of integrated processors and controllers is built on an M68000 core processor, an on-
chip bus, and a selection of intelligent peripherals appropriate for a set of applications. The CPU32 is a
powerful central processor with nearly the performance of the MC68020. A system integration module
incorporates the external bus interface and many of the smaller circuits that typically surround a
microprocessor for address decoding, wait-state insertion, interrupt prioritization, clock generation,
arbitration, watchdog timing, and power-on reset timing.

Each member of the M68300 family is distinguished by its selection of peripherals. Peripherals are chosen
to address specific applications but are often useful in a wide variety of applications. The peripherals may be
highly sophisticated timing or protocol engines that have their own processors, or they may be more
traditional peripheral functions, such as UARTs and timers. Since each major function is designed in a
standalone module, each module might be found in many different M68300 family parts. Driver software
written for a module on one M68300 part can be used to run the same module that appears on another part.

ADVANTAGES

By incorporating so many major features into a single M68300 family chip, a system designer can realize
significant savings in design time, power consumption, cost, board space, pin count, and programming. The
equivalent functionality can easily require 20 separate components. Each component might have 16–64
pins, totaling over 350 connections. Most of these connections require interconnects or are duplications.
Each connection is a candidate for a bad solder joint or misrouted trace. Each component is another part to
qualify, purchase, inventory, and maintain. Each component requires a share of the printed circuit board.
Each component draws power—often to drive large buffers to get the signal to another chip. The cumulative
power consumption of all the components must be available from the power supply. The signals between
the CPU and a peripheral might not be compatible nor run from the same clock, requiring time delays or
other special design considerations.

In a M68300 family component, the major functions and glue logic are all properly connected internally,
timed with the same clock, fully tested, and uniformly documented. Power consumption stays well under a
watt, and a special standby mode drops current well under a milliamp during idle periods. Only essential
signals are brought out to pins. The primary package is the surface-mount quad flat pack for the smallest
possible footprint; pin grid arrays are also available.

MC68340 SIGNALS

Figure 2 shows the components and signals.

4 MC68340 PRODUCT INFORMATION MOTOROLA

CPU32
68020-BASED
PROCESSOR

TWO-CHANNEL
SERIAL

I/O

TWO-CHANNEL DMA
CONTROLLER TIMER

MODULE

IMB

RxDB

RxDA

TxDB

TxDA

CTSB

CTSA

SC
LK

X2 X1BK

PT
/D

SC
LK

FR
EE

ZE
IP

IP
E/

D
S0

IF
ET

C
H

/D
S1

D
R

EQ
2

D
R

EQ
1

D
AC

K2

D
AC

K1

D
O

N
E2

D
O

N
E1

TG
AT

E1

TG
AT

E2

TI
N

1

TI
N

2

TO
U

T1

TO
U

T2

PORT A

A31/PORT A7/IACK7
A30/PORT A6/IACK6
A29/PORT A5/IACK5
A28/PORT A4/IACK4
A27/PORT A3/IACK3
A26/PORT A2/IACK2
A25/PORT A1/IACK1

A24/PORT A0

PORT B

IRQ7/PORT B7
IRQ6/PORT B6
IRQ5/PORT B5
IRQ3/PORT B3

CS3/IRQ4/PORT B4
CS2/IRQ2/PORT B2
CS1/IRQ1/PORT B1

CS0/AVEC
MODCK/PORT B0

 E
XT

AL

XT
AL

C
LK

O
U

T

EXTERNAL
BUS

INTERFACE

BUS
ARBITRATION

CLOCK

SYSTEM
INTEGRATION

MODULE
(SIM40)

TEST

TC
K

TM
S

TD
I

TD
O

A23–A0

FC3–FC0

D15–D0

RESET

BERR
HALT

AS
DS

R/W
SIZ1
SIZ0

DSACK1
DSACK0

BR
BG

BGACK
RMC

OUTPUT
PORT

TxRDYA/OP6
RxRDYA/FFULLA/OP4
RTSB/OP1
RTSA/OP0

TIMER
MODULE

XF
C

Figure 2. MC68340 Detailed Block Diagram

MOTOROLA MC68340 PRODUCT INFORMATION 5

CENTRAL PROCESSOR UNIT

The CPU32 is a powerful central processor that supervises system functions, makes decisions, manipulates
data, and directs I/O. A special debugging mode simplifies processor emulation during system debug.

CPU32

The CPU32 is an M68000 family processor specially designed for use as a 32-bit core processor and for
operation over the intermodule bus (IMB). Designers used the MC68020 as a model and included advances
of the later M68000 family processors, resulting in an instruction execution performance of 4 MIPS (VAX-
equivalent) at 25.16 MHz.

The powerful and flexible M68000 architecture is the basis of the CPU32. MC68000 (including the
MC68HC000 and the MC68EC000) and MC68010 user programs will run unmodified on the CPU32. The
programmer can use any of the eight 32-bit data registers for fast manipulation of data and any of the eight
32-bit address registers for indexing data in memory. The CPU32 can operate on data types of single bits,
binary-coded decimal (BCD) digits, and 8, 16, and 32 bits. Peripherals and data in memory can reside
anywhere in the 4-Gbyte linear address space. A supervisor operating mode protects system-level
resources from the more restricted user mode, allowing a true virtual environment to be developed.

Flexible instructions for data movement, arithmetic functions, logical operations, shifts and rotates, bit set
and clear, conditional and unconditional program branches, and overall system control are supported,
including a fast 32 × 32 multiply and 32-bit conditional branches. Instructions, such as table lookup and
interpolate and low power stop, support specific requirements of embedded control applications. Many
addressing modes complement these instructions, including predecrement and postincrement, which allow
simple stack and queue maintenance and scaled indexed for efficient table accesses. Data types and
addressing modes are supported orthogonally by all data operations and with all appropriate addressing
modes. Position-independent code is easily written.

The CPU32 is specially optimized to run with the MC68340's 16-bit data bus. Most instructions execute in
one-half the number of clocks compared to the original MC68000, yielding an overall 1.6 times the
performance of the same-speed MC68000 and measuring 10,045 Dhrystones/sec @ 25.16 MHz
(6,742 Dhrystones/sec @ 16.78 MHz).

Like all M68000 family processors, the CPU32 recognizes interrupts of seven different priority levels and
allows the peripheral to vector the processor to the desired service routine. Internal trap exceptions ensure
proper instruction execution with good addresses and data, allow operating system intervention in special
situations, and permit instruction tracing. Hardware signals can either terminate or rerun bad memory
accesses before instructions process data incorrectly.

The CPU32 offers the programmer full 32-bit data processing performance with complete M68000
compatibility, yet with more compact code than is available with RISC processors. The CPU32 is identical in
all CPU32-based M68300 family products.

BACKGROUND DEBUG MODE

A special operating mode is available in the CPU32 in which normal instruction execution is suspended
while special on-chip microcode performs the functions of a debugger. Commands are received over a
dedicated, high-speed, full-duplex serial interface. Commands allow the manual reading or writing of CPU32
registers, reading or writing of external memory locations, and diversion to user-specified patch code. This
background debug mode permits a much simpler emulation environment while leaving the processor chip in
the target system, running its own debugging operations.

6 MC68340 PRODUCT INFORMATION MOTOROLA

ON-CHIP PERIPHERALS

To improve total system throughput and reduce part count, board size, and cost of system implementation,
the M68300 family integrates on-chip, intelligent peripheral modules and typical glue logic. These functions
on the MC68340 include the SIM40, a DMA controller, a serial module, and two timers.

The processor communicates with these modules over the on-chip intermodule bus (IMB). This backbone of
the chip is similar to traditional external buses with address, data, clock, interrupt, arbitration, and
handshake signals. Because bus masters (like the CPU32 and DMA), peripherals, and the SIM40 are all on
the chip, the IMB ensures that communication between these modules is fully synchronized and that
arbitration and interrupts can be handled in parallel with data transfers, greatly improving system
performance. Internal accesses across the IMB may be monitored from outside of the chip, if desired.

Each module operates independently. No direct connections between peripheral modules are made inside
the chip; however, external connections could, for instance, link a serial output to a DMA control line.
Modules and their registers are accessed in the memory map of the CPU32 (and DMA) for easy access by
general M68000 instructions and are relocatable. Each module may be assigned its own interrupt level,
response vector, and arbitration priority. Since each module is a self-contained design and adheres to the
IMB interface specifications, the modules may appear on other M68300 family products, retaining the
investment in the software drivers for the module.

SYSTEM INTEGRATION MODULE

The MC68340 SIM40 provides the external bus interface for both the CPU32 and the DMA. It also
eliminates much of the glue logic that typically supports the microprocessor and its interface with the
peripheral and memory system. The SIM40 provides programmable circuits to perform address decoding
and chip selects, wait-state insertion, interrupt handling, clock generation, bus arbitration, watchdog timing,
discrete I/O, and power-on reset timing. A boundary scan test capability is also provided.

External Bus Interface

 The external bus interface (EBI) handles the transfer of information between the internal CPU32 or DMA
controller and memory, peripherals, or other processing elements in the external address space. Based on
the MC68030 bus, the external bus provides up to 32 address lines and 16 data lines. Address extensions
identify each bus cycle as CPU32 or DMA initiated, supervisor or user privilege level, and instruction or data
access. The data bus allows dynamic sizing for 8- or 16-bit bus accesses (plus 32 bits for DMA).
Synchronous transfers for the CPU32 or the DMA can be made in as little as two clock cycles.
Asynchronous transfers allow the memory system to signal the CPU32 or DMA when the transfer is
complete and to note the number of bits in the transfer. An external master can arbitrate for the bus using a
three-line handshaking interface.

System Configuration And Protection

The M68000 family of processors is designed with the concept of providing maximum system safeguards.
System configuration and various monitors and timers are provided in the MC68340. Power-on reset
circuitry is a part of the SIM40. A bus monitor ensures that the system does not lock up when there is no
response to a memory access. The bus fault monitor can reset the processor when a catastrophic bus
failure occurs. Spurious interrupts are detected and handled appropriately. A software watchdog can pull the
processor out of an infinite loop. An interrupt can be sent to the CPU32 with programmable regularity for
DRAM refresh, time-of-day clock, task switching, etc.

MOTOROLA MC68340 PRODUCT INFORMATION 7

Clock Synthesizer

The clock synthesizer generates the clock signals used by all internal operations as well as a clock output
used by external devices. The clock synthesizer can operate with an inexpensive 32768-Hz watch crystal or
an external oscillator for reference, using an internal phase-locked loop and voltage-controlled oscillator. At
any time, software can select clock frequencies from 131 kHz to 16.78 MHz or 25.16 MHz, favoring either
low power consumption or high performance. Alternately, an external clock can drive the clock signal directly
at the operating frequency. With its fully static HCMOS design, it is possible to completely stop the system
clock without losing the contents of the internal registers.

Chip Select And Wait State Generation

Four programmable chip selects provide signals to enable external memory and peripheral circuits,
providing all handshaking and timing signals with up to 175-ns access times with a 25-MHz system clock
(265 ns @ 16.78 MHz). Each chip select signal has an associated base address and an address mask that
determine the addressing characteristics of that chip select. Address space and write protection can be
selected for each. The block size can be selected from 256 bytes up to 4 Gbytes in increments of 2n.
Accesses can be preselected for either 8- or 16-bit transfers. Fast synchronous termination or up to three
wait states can be programmed, whether or not the chip select signals are used. External handshakes can
also signal the end of a bus transfer. A system can boot from reset out of 8-bit-wide memory, if desired.

Interrupt Handling

Seven input signals are provided to trigger an external interrupt, one for each of the seven priority levels
supported. Seven separate outputs can indicate the priority level of the interrupt being serviced. An input
can direct the processor to a default service routine, if desired. Interrupts at each priority level can be
preprogrammed to go to the default service routine. For maximum flexibility, interrupts can be vectored to
the correct service routine by the interrupting device.

Discrete I/O Pins

When not used for other functions, 16 pins can be programmed as discrete input or output lines.
Additionally, in other peripheral modules, pins for otherwise unused functions can often be used for general
input/output.

IEEE 1149.1 Test

To aid in system diagnostics, the MC68340 includes dedicated user-accessible test logic that is fully
compliant with the IEEE 1149.1 standard for boundary scan testability, often referred to as JTAG (Joint Test
Action Group).

DIRECT MEMORY ACCESS MODULE

The most distinguishing MC68340 characteristic is the high-speed 32-bit DMA controller, used to quickly
move large blocks of data between internal peripherals, external peripherals, or memory, without processor
intervention. The DMA module consists of two, independent, programmable channels. Each channel has
separate request, acknowledge, and done signals. Each channel can operate in a single-address (flyby) or a
dual-address mode.

In single-address mode, only one (the source or the destination) address is provided, and a peripheral
device such as a serial communications controller receives or supplies the data. An external request must
start a single-address transfer. In this mode, each channel supports 32 bits of address and 8, 16, or 32 bits
of data.

8 MC68340 PRODUCT INFORMATION MOTOROLA

In dual-address mode, two bus transfers occur, one from a source device and the other to a destination
device. Dual-address transfers can be started by either an internal or external request. In this mode, each
channel supports 32 bits of address and 8 or 16 bits of data (32 bits require external logic). The source and
destination port size can be selected independently; when they are different, the data will be packed or
unpacked. An 8-bit disk interface can be read twice before the concatenated 16-bit result is passed into
memory.

Byte, word, and long-word counts up to 32 bits can be transferred. All addresses and transfer counters are
32 bits. Addresses increment or remain constant, as programmed. The DMA channels support two external
request modes, burst transfer and cycle steal. Internal requests can be programmed to occupy 25, 50, 75, or
100 percent of the data bus bandwidth. Interrupts can be programmed to postpone DMA completion.

The DMA module can sustain a transfer rate of 12.5 Mbytes/sec in dual-address mode and nearly 50
Mbytes/sec in single-address mode @ 25.16 MHz (8.4 and 33.3 Mbytes/sec @ 16.78 MHz, respectively).
The DMA controller arbitrates with the CPU32 for the bus in parallel with existing bus cycles and is fully
synchronized with the CPU32, eliminating all delays normally associated with bus arbitration by allowing
DMA bus cycles to butt seamlessly with CPU bus cycles.

SERIAL MODULE

Most digital systems use serial I/O to communicate with host computers, operator terminals, or remote
devices. The MC68340 contains a two-channel, full-duplex USART. An on-chip baud rate generator
provides standard baud rates up to 76.8k baud independently to each channel's receiver and transmitter.
The module is functionally equivalent to the MC68681/MC2681 DUART.

Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8 bits with even,
odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive buffers and two-byte transmit
buffers minimize CPU service calls. A wide variety of error detection and maskable interrupt capability is
provided on each channel. Full-duplex, autoecho loopback, local loopback, and remote loopback modes can
be selected. Multidrop applications are supported.

A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel can be
programmed for a different baud rate, or an external 1× and 16× clock input can be selected. Full modem
support is provided with separate request-to-send (RTS) and clear-to-send (CTS) signals for each channel.
One channel also provides service request signals. The two serial ports can sustain rates of 9.8 Mbps with a
25-MHz system clock in 1× mode, 612 kbps in 16× mode (6.5 Mbps and 410 kbps @ 16.78 MHz).

TIMER MODULES

Timers and counters are used in a system to monitor elapsed time, generate waveforms, measure signals,
keep time-of-day clocks, initiate DRAM refresh cycles, count events, and provide “time slices” to ensure that
no task dominates the activity of the processor. A counter that counts clock pulses makes a timer, which is
most useful when it causes certain actions to occur in response to reaching desired counts.

The MC68340 has two, identical, versatile, on-chip counter/timers as well as a simple timer in the SIM40.
These general-purpose counter/timers can be used for precisely timed events without the errors to which
software-based counters and timers are susceptible—e.g., errors caused by dynamic memory refreshing,
DMA cycle steals, and interrupt servicing. The programmable timer operating modes are input capture,
output compare, square-wave generation, variable duty-cycle square-wave generation, variable-width
single-shot pulse generation, event counting, period measurement, and pulse-width measurement.

Each timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a composite 24-bit
resolution. The two timers can be externally cascaded for a maximum count width of 48 bits. The

MOTOROLA MC68340 PRODUCT INFORMATION 9

counter/timer can be clocked by the internal system clock generated by the SIM40 (÷2) or by an external
clock input. Either the processor or external stimuli can trigger the starting and stopping of the counter.
When a counter reaches a predetermined value, either an external output signal can be driven, or an
interrupt can be made to the CPU32. The finest resolution of the timer is 80 ns with a 25-MHz system clock
(125 ns @ 16.78 MHz).

POWER CONSUMPTION MANAGEMENT

The MC68340 is very power efficient due to its advanced 0.8-µ HCMOS process technology and its static
logic design. The resulting power consumption is typically 500 mW in full operation @ 16.78 MHz (750 mW
@ 25 MHz)—far less than the comparable discrete component implementation the MC68340 can replace.
For applications employing reduced voltage operation, selection of the MC68340V, which requires only a
3.3-V power supply, reduces current consumption by 40–60% in all modes of operation (as well as reducing
noise emissions).

The MC68340 has many additional methods of dynamically controlling power consumption during operation.
The frequency of operation can be lowered under software control to reduce current consumption when
performance is less critical. Idle internal peripheral modules can be turned off to save power (5–10% each).
Running a special low power stop (LPSTOP) instruction shuts down the active circuits in the CPU and
peripheral modules, halting instruction execution. Power consumption in this standby mode is reduced to
about 300 µW. Processing and power consumption can be resumed by resetting the part or by generating
an interrupt which can be done with the SIM40's periodic interrupt timer.

PHYSICAL

The MC68340 is available as 0–16.78 MHz and 0–25.16 MHz, 0°C to +70°C and -40°C to +85°C, and 5.0 V
±5% and 3.3 V ±0.3 supply voltages (reduced frequencies at 3.3 V). Thirty-two power and ground leads
minimize ground bounce and ensure proper isolation of different sections of the chip, including the clock
oscillator. A 144 pins are used for signals and power. The MC68340 is available in a gull-wing ceramic quad
flat pack (CQFP) with 0.65 mm lead spacing or a 15 × 15 plastic pin grid array (PPGA) with 0.1-in pin
spacing.

COMPACT DISC-INTERACTIVE

The MC68340 was designed to meet the needs of many markets, including compact disc-interactive (CD-I).
CD-I is an emerging standard for a publishing medium that will bring multimedia to a broad general
audience—the consumer. CD-I players combine television and stereo systems as output devices, with
interactive control using a TV remote-control-like device to provide a multimedia experience selected from
software “titles” contained in compressed form on standard compact discs.

The highly integrated MC68340 is ideal as the central processor for CD-I players. It provides the M68000
microprocessor code compatibility and DMA functions required by the CD-I Green Book specification as well
as many other useful on-chip functions for a very cost-effective solution. The extra demands of full-motion
video CD-I systems make the best use of the MC68340 high performance. The MC68340 is CD-I compliant
and has been CD-I qualified. With its low voltage operation, the MC68340V is the only practical choice for
portable CD-I.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can
and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by customer's
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or
use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action
Employer.

µ

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nipon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-Pacific: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrail Estate,

Tai Po, N.T., Hong Kong.

MORE INFORMATION

The following table identifies the packages, supply voltages, temperature range, and operating frequencies
available for the MC68340.

MC68340 Package/Frequency Availability

Frequency/Volts

Package 8 MHz/3.3 V 16 MHz/3.3 V 16 MHz/5 V 25 MHz/5 V

Plastic Pin Grid Array (RP) 4 4 4 4

Ceramic Quad Flat Pack (FE) 4 4 4 4

Temperature 0–70 °C/-40–85 °C 0–70 °C 0–70 °C/-40–85 °C 0–70 °C

The documents listed in the following table contain detailed information on the MC68340. These documents
may be obtained from the Literature Distribution Centers at the addresses listed at the bottom of this page.

Documentation

Document Number Document Name

BR1114/D M68300 Integrated Processor Family

MC68340UM/AD MC68340 User's Manual

M68000PM/AD M68000 Family Programmer's Reference Manual

AN1063/D DRAM Controller for the MC68340

AN453 Software Implementation of SPI on the MC68340

BR573/D M68340 Evaluation System Product Brief

BR729/D The 68K Source

BR1407/D 3.3 Volt Logic and Interface Circuits

 MOTOROLA
 SEMICONDUCTOR
 TECHNICAL DATA

 µ motorola

M68340EVS

Order this document
by BR753/D

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

Product Brief
M68340EVS EVALUATION SYSTEM

The M68340EVS evaluation system (EVS) is a board set designed to provide a low-cost method of
evaluating the MC68340 integrated processor with direct memory access (IPD), and to provide
development support for design of MC68340-based systems.

The M68340EVS consists of the M68340 business card computer (BCC), M68340 business card
computer development interface (BCCDI), and the M68340 platform board (PFB). Additionally, the EVS
includes two software debug monitor programs (340Bug and EVSbug). Using the EVS (as shown in
Figure 1), the user can design, debug, and evaluate MC68340 IPD-based applications. The EVS also
functions as a production tool for final test or fault analysis of user target systems.

The EVS requires a user-supplied power supply, RS-232C cable, and an RS-232C compatible terminal or
host computer for functional operation. Although the EVS will function using a terminal, the preferred
communication device is a host computer. Operating the EVS with a host computer allows the user to
develop code with an MS-DOS™-based assembler or C compiler. Once code is developed, the program
can be saved and downloaded to the EVS from the host computer.

M68340BCCDI

M68340BCC

CONNECTORS
FOR BCC

CONNECTORS
FOR BCCDI

RS-232C
(BCCDI)

CONNECTOR

RS-232C
(BCC)

CONNECTOR

RS-232C
DB-9

CONNECTOR

M68340PFB

Figure 1. M68340 Evaluation System

MS-DOS is a trademark of Microsoft Corporation.

©MOTOROLA INC., 1990

2 M 6 8 3 4 0 E V S MOTOROLA

M68340 BUSINESS CARD COMPUTER
The BCC operates as a standalone single-board computer or as a predefined core in larger custom
applications. The BCC consists of a 2.3 x 3.9 in. (5.84 x 9.9 cm) printed circuit board (PCB) using surface-
mount technology. The BCC contains the resident MC68340 IPD, on-board memory, and peripheral
interface circuits. The BCC hardware features are as follows:

• MC68340 Integrated Processor with DMA
• 64K x 16-Bit Erasable Programmable Read Only Memory (EPROM)
• 32K x 16-Bit Byte-Addressable Random Access Memory (RAM)
• RS-232C-Compatible Terminal/Host Computer Input/Output (I/O) Port
• Background Mode Interface Port
• EVS Interface Connectors

As shipped, the BCC EPROM contains a debug monitor called 340Bug. Communication with 340Bug
requires either a terminal or a host computer running terminal emulation software. The user can interface with
the 340Bug via the PFB terminal RS-232C port or the BCC RS-232C connector.

The 340Bug uses several on-chip resources to operate. One of the MC68340 serial channels is used for
terminal communications, and several chip selects are used for EPROM and RAM interfacing. The EPROM
containing 340Bug software and RAM must remain in the memory map at the programmed locations for the
340Bug to execute properly. Chip selects, serial port parameters, auto-boot (turnkey), and operating
environments are easily customized by the user.

M68340 BUSINESS CARD COMPUTER DEVELOPMENT INTERFACE
The BCCDI consists of a 2.25 x 3.5 in. (5.7 x 8.9 cm) PCB using surface-mount technology. The BCCDI is a
single-board computer which uses the same EVS interface connectors as the BCC. The BCCDI, in
conjunction with an MS-DOS host computer, provides an alternate debug monitor to the 340Bug, called
EVSbug.

Communication with EVSbug requires a host computer operating the EVS software. The user can
interface with EVSbug via the BCCDI RS-232C port or the PFB PC RS-232C port. The BCCDI hardware
features are as follows:

• MC68HC811E2 Programmable Microcontroller Unit (MCU)
• Motorola Custom Hardware Breakpoint Chip
• RS-232C-Compatible Terminal/Host Computer I/O Port
• Background Mode Interface Port
• EVS Interface Connectors

EVSbug, in conjunction with the BCCDI, implements a debug monitor for the MC68340. EVSbug differs
from 340Bug in that it requires no resources from the MC68340 to operate. EVSbug functions by
placing the MC68340 into background mode when executing the debug monitor commands.

EVSbug commands enable BCC EPROM user-code programming. Programming is controlled via the
BCCDI from data downloaded through the serial interface from the host computer. The EPROM
programming voltage is generated by the PFB power converter.

M68340 PLATFORM BOARD
The PFB consists of a 6 x 10 in. (15.24 x 25.4 cm) PCB, which provides a base for installing the BCC and
BCCDI PCBs. There are four memory expansion sockets on the PFB, allowing the addition of 32K x 8
static RAMs or EPROMs. An additional socket is provided for an MC68881 or MC68882 floating point
coprocessor device. Interface connectors are available for quick connection to a logic analyzer or a
prototype board.

MOTOROLA M 6 8 3 4 0 E V S 3

The PFB also has two DB-9 RS-232C serial communication connectors. These serial connectors are I/O
ports for communicating with the BCC and BCCDI. A header is provided for background mode
connections to the MC68340. The PFB hardware features are as follows:

• Four 32K x 8 RAM/EPROM Sockets (unpopulated)
• MC68881/MC68882 Floating Point Coprocessor Socket (unpopulated)
• External Power Supply Connector (5 V and ground)
• Two RS-232C-Compatible Terminal/Host Computer I/O Ports
• Logic Analyzer Interface Port
• Background Mode Interface Port
• EVS Interface Connectors (for BCC and BCCDI interconnection)

M68340EVS SOFTWARE DEBUG MONITORS
Two software debug monitors (340Bug and EVSbug) are available to the user. Using either debug
monitor program, the user interacts with the EVS through predefined monitor commands entered at the
terminal/host computer keyboard. These commands perform functions such as display or modify
memory, display or modify MC68340 internal registers, program execution under various levels of control,
control access to various I/O peripherals connected to the EVS, and control programming of the BCC
EPROM.

The 340Bug monitor is primarily used with the BCC in the standalone configuration, utilizing an RS-232C
compatible terminal or host computer. The 340Bug monitor is factory programmed in the BCC EPROM.
System evaluation facilities are available for loading and executing user programs. System calls (via TRAP
#15) are an aid in generating user programs. System calls access selected functional routines contained
within 340Bug, including input and output routines. TRAP #15 also transfers control back to 340Bug at
the end of a user program. Table 1 lists the available 340Bug commands.

The EVSbug monitor is factory supplied on two MS-DOS 5 1/4 inch floppy disks. The first disk contains
the CPU32 (MC68340) freeware assembler. The second disk contains the EVSbug monitor program.
Both the assembler and EVSbug monitor are loaded into the host computer by the user. Hardware
breakpoints are supported in EVSbug by a custom hardware breakpoint chip on the BCCDI. The
EVSbug provides a self-contained programming and operating environment. Table 2 lists the available
EVSbug commands.

When using a host computer, either the 340Bug or EVSbug monitor can be used. Assembler and
monitor updates for 340Bug and EVSbug are available via Motorola's Freeware Bulletin Board Service
(512-891-3733). Additional operating systems, debuggers, assemblers, and compliers supplied by third
party vendors in disk or ROM form, may be included with the M68340EVS.

4 M 6 8 3 4 0 E V S MOTOROLA

Table 1. Monitor (340Bug) Commands

Command Description
BC <range><addr> [;B|W|L] Block of Memory Compare
BF <range><data>[<increment>] [;B|W|L] Block of Memory Fill
BM <range><addr> [;B|W|L] Block of Memory Move
BR {<addr>[:<count>]} Breakpoint Insert
BS <range><text> [;B|W|L] or Block of Memory Search
 <range><data>[<mask>] [;B|W|L|N|V]
BV <range><data>[<increment>] [;B|W|L] Block of Memory Verify
DC <exp>|<addr> Data Conversion
DU [<port>]<range>[<text>][<addr>][<offset>] [;B|W|L] Dump S-Records
GD [<addr>] Go Direct (Ignore Breakpoints)
GN Go to Next Instruction
GO [<addr>] Go Execute User Program
GT <addr>[:<count>] Go To Temporary Breakpoint
HE [<command>] Help
LO [<port>][<addr>][;<X/-C/T>][=<text>] Load S-Records from Host
MA [<name>] Macro Define/Display
MAE <name><line#>[<string>] Macro Edit
MAL Macro Expansion Listing Enable
MD[S] <addr>[;<count>|<addr>][; [B|W|L|DI]] Memory Display
MM <addr>[; [[B|W|L][A][N]]|[DI]] Memory Modify
MS <addr>{Hexadecimal number}/{'string'} Memory Set
NOBR [<addr>] Breakpoint Delete
NOMA [<name>] Macro Delete
NOMAL Macro Expansion Listing Disable
NOPA [<port>] Printer Detach
OF [Rn[;A]] Offset Registers Display/Modify
PA [<port>] Printer Attach
PF [<port>] Port Format
RD {[+|-|=][<dname>][/]}{[+|-|=][<reg1>[-<reg2>]][/]} Register Display
RESET Cold/Warm Reset
RM <reg> Register Modify
RS <reg>[<exp>][;A] Register Set
SD Switch Directories
T [<count>] Trace
TC [<count>] Trace On Change of Control Flow
TM [<port>][<escape>] Transparent Mode
TT <addr> Trace To Temporary Breakpoint
VE [<port>][<addr>][;<X/-C>][=<text>] Verify S-Records Against Memory

Diagnostic Monitor (340Diag) Commands
HE Help
ST Self Test
SD Switch Directories
LE Loop-On-Error Mode
SE Stop-On-Error Mode
LC Loop-Continue Mode
NV Non-Verbose Mode
DE Display Error Counters
ZE Clear (Zero) Error Counters
DP Display Pass Count
ZP Zero Pass Count
WL.<size> [<addr> [<data>]] Write Loop
RL.<size> [<addr> [<data>]] Read Loop
WR.<size> [<addr> [<data>]] Write/Read Loop
CPU Central Processor Unit Tests
MT Memory Tests
BERR Bus Error Test

MOTOROLA M 6 8 3 4 0 E V S 5

Table 2. Monitor (EVSbug) Commands

Menu Commands Description
File Load Download (DOS file S-Records) from Host Computer to EVS RAM

Save Upload (Create DOS file S-Records) from EVS RAM or EPROM to Host
Computer
Prog Program BCC EPROM with DOS file (S-Records)

Register Display Display/Examine MC68340 Register Contents
Modify Modify MC68340 Register Contents
I/O Regs Change MC68340 Register Memory Locations via Predefined Register Names

Memory Display Display User Memory Contents
Modify Modify User Memory Contents
Fill Block Fill User Memory with Byte, Word, or Longword
Search Search Block of User Memory with Byte, Word, or Longword
Asm/Dasm Assemble/Disassemble (Interactive)

Debug Go Go (Execute Program)
Status Display Status of MC68340 FREEZE, RESET, and HALT Signal States
Abort Abort/Halt MC68340 Program Execution
Trace Trace Program Execution on a Instruction-by-Instruction Basis
Reset Reset/Re-Initialize MC68340
Call Call/Execute Subroutine and Return to Specified Address

Breakpt Set one Set One Address and Mask Value into Breakpoint Table
Clr one Clear/Delete Specified Address (including Mask Value) from Breakpoint Table
Display Display all Breakpoint Table Addresses and Mask Values
Zap All Remove all Breakpoint Table Addresses and Mask Values

DOS Shell Temporarily Suspend EVSbug Monitor and Exit to DOS
Quit Terminate EVSbug Monitor and Return to DOS

Help Commands Display Description of EVSbug Commands
Version Display BCCDI and EVSbug Firmware Revision Levels

EVS MODES OF OPERATION

There are four modes for configuring the EVS: 1) software debug configuration, 2) hardware debug
configuration, 3) BCC standalone configuration, and 4) limited background mode configuration. These
modes allow the user to configure the EVS for various needs in the development, debug, and test cycle.
Figure 2 illustrates EVS configurations.

SOFTWARE DEBUG CONFIGURATION
The software debug configuration is normally the first mode of operation. In this configuration, application
code can be created or downloaded and executed; the BCC EPROM can be reprogrammed using the
EVSbug debug monitor. This configuration uses the PFB, the BCC, and, optionally, the BCCDI
(depending on which debug monitor is used). In addition, a logic analyzer (via the logic analyzer
connectors on the BCC and PFB) can be used, and the PFB sockets for expanding memory or adding
hardware floating-point support can be used. EVS power and ground are supplied through the PFB.

In the software debug configuration, either the 340Bug or the EVSbug debug monitor can be used.
When using 340Bug, the BCCDI is not used but may remain in the system, and the host computer or
terminal must be connected to the terminal connector on the PFB. If EVSbug is chosen, the BCCDI is
used and must be in place on the PFB; the host computer must be connected to the PC connector on
the PFB. EVSbug gives the additional capabilities of executing hardware breakpoints and
reprogramming the EPROM on the BCC.

6 M 6 8 3 4 0 E V S MOTOROLA

RS-232C

BCC

BCCDI

PFB

RS-232C

(4) LIMITED
BACKGROUND MODE

CONFIGURATION

BCCDI

BACKGROUND
MODE CABLE

PFB

MC68340
 IPU

RS-232C

(2) HARDWARE
DEBUG

CONFIGURATION

BCC

BCCDI

BCC

(1) SOFTWARE
DEBUG

CONFIGURATION

(3) BCC
STANDALONE

CONFIGURATION

TARGET
SYSTEM

TARGET
SYSTEM

Figure 2. EVS Modes of Operation

MOTOROLA M 6 8 3 4 0 E V S 7

HARDWARE DEBUG CONFIGURATION
The hardware debug configuration is used to debug prototype (target system) hardware. To use the
hardware debug configuration, install the BCC in the target system and the BCCDI on the BCC. In this
configuration, emulation of the MC68340 IPD with hardware breakpoints is possible by connecting a host
computer to the BCCDI RS-232C connector and operating the EVSbug debug monitor program. Logic
analyzer connection can be made via the BCCDI EVS interface connectors. Power and ground are
supplied via the user's target system.

BCC STANDALONE CONFIGURATION
Once the hardware and software debug configurations are finished, the BCC standalone configuration
can be employed. In this mode, the BCC is installed on the target system without the BCCDI. The
standalone configuration provides a method for functionally testing the prototype without additional
emulation hardware or software support. Serial communication with a terminal is user-application
dependent. Power and ground are provided by the target system.

A typical use of the standalone configuration is one in which the user code has been debugged and
programmed into the BCC EPROM, using the software debug configuration. Optionally, the BCC
EPROM can be disabled on the BCC, with the boot code contained in target system memory.

LIMITED BACKGROUND MODE CONFIGURATION
Limited background mode configuration is provided for final test or fault analysis of the target system.
This mode requires that a background mode interconnection capability is available on the target system.
A background mode cable (not supplied) is required for connecting the target system and the BCCDI
background mode interface ports. Connection to a host computer is made via the BCCDI RS-232C port.
Power and ground are supplied through the PFB.

The background mode configuration provides the user with limited emulation capabilities because
hardware breakpoints are not available (the Motorola custom hardware breakpoint chip must have access
to the MC68340 IPD address lines to provide breakpoints). However, background instructions may be
used in target code to halt execution. While connected to the BCCDI via the background mode cable,
the user can examine memory locations and download and exercise specific test programs. An entire
final test program can be performed on the target system using the background mode.

 µ motorola

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly
or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Motorola logo are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motorola Literature Distribution: P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive Blakelands, Milton Keynes,
MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.

MORE INFORMATION

The MC68340 IPD combines the following functional units on a single IC:

• CPU32 — 32-bit, MC68020-Derived Core Processor
• Direct Memory Access (DMA) Controller
• Serial I/O — Two-Channel USART with Baud Rate Generators, MC2681/MC68681 Compatible
• Timers — Two independent 16-bit timers with 8-bit prescalers
• System Integration Module (SIM) Incorporating the Following Functions:

- System Configuration - Clock Generation
- System Protection - Interrupt Response
- Chip Select and Wait State - Parallel I/O
- Periodic Interrupt Timer - IEEE 1149.1 (JTAG)

• Up to 20 Discrete I/O Lines
• Static Low-Power Design (HCMOS) with Standby Mode
• 16.78-MHz, Maximum Frequency at 5-V Supply
• 144-Lead Quad Flat Pack or 145 Pin Grid Array

Documentation on the MC68340 Integrated Processor with DMA is available:

BR572/D MC68340 Product Brief
MC68340/D MC68340 Technical Summary
MC68340UM/AD MC68340 User's Manual
M68000PM/AD M68000 Programmer's Reference Manual

More detailed documentation on the M68340EVS evaluation system comes with the product:

M68340EVS/AD1 M68340EVS Evaluation System User's Manual
M68340BCC/AD1 M68340BCC Business Card Computer User's Manual
M68340BUG/AD1 M68340BUG Debug Monitor User's Manual

©MOTOROLA INC., 1992

MC68340
Integrated Processor with DMA

User’s Manual

µ MOTOROLA

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and the are registered trademarks of Motorola, Inc. Motorola, Inc. is an
Equal Opportunity/Affirmative Action Employer.

PREFACE

The complete documentation package for the MC68340 consists of the MC68340UM/AD,
MC68340 Integrated Processor with DMA User’s Manual, M68000PM/AD, MC68000
Family Programmer’s Reference Manual, and the MC68340P/D, MC68340 Integrated
Processor with DMA Product Brief.

The MC68340 Integrated with DMA Processor User’s Manual describes the programming,
capabilities, registers, and operation of the MC68340; the MC68000 Family Programmer’s
Reference Manual provides instruction details for the MC68340; and the MC68340
Integrated Processor with DMA Product Brief provides a brief description of the MC68340
capabilities.

This user’s manual is organized as follows:

Section 1 Device Overview Section 8 Timer Modules
Section 2 Signal Descriptions Section 9 IEEE 1149.1 Test Access
Section 3 Bus Operation Port
Section 4 System Integration Module Section 10 Applications
Section 5 CPU32 Section 11 Electrical Characteristics
Section 6 DMA Controller Module Section 12 Ordering Information and
Section 7 Serial Module Mechanical Data

68K FAX-IT
FAX 512-891-8593

The Motorola High-End Technical Publication Department provides a FAX number for you
to submit any questions and comments about this document. We welcome your
suggestions for improving our documentation or any questions concerning our products.

Please provide the part number and revision number (located in upper right-hand corner
on the cover), and the title of the document when submitting. When referring to items in
the manual please reference by the page number, paragraph number, figure number,
table number, and line number if needed. Reference the line number from the top of the
page.

When we receive a FAX between the hours of 7:30 AM and 5:00 PM EST, Monday
through Friday, we will respond within two hours. If the FAX is received after 5:00 PM or
on the weekend, we will respond within two hours on the first working day following receipt
of the FAX.

When sending a FAX, please provide your name, company, FAX number, and voice
number including area code (so we can talk to a real person if needed).

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL iii

TABLE OF CONTENTS
Paragraph Page
Number Title Number

Section 1
Device Overview

1.1 M68300 Family.. 1-2
1.1.1 Organization .. 1-3
1.1.2 Advantages.. 1-3
1.2 Central Processor Unit... 1-3
1.2.1 CPU32 .. 1-4
1.2.2 Background Debug Mode... 1-4
1.3 On-Chip Peripherals .. 1-5
1.3.1 System Integration Module... 1-5
1.3.1.1 External Bus Interface.. 1-5
1.3.1.2 System Configuration and Protection... 1-6
1.3.1.3 Clock Synthesizer... 1-6
1.3.1.4 Chip Select and Wait State Generation ... 1-6
1.3.1.5 Interrupt Handling... 1-6
1.3.1.6 Discrete I/O Pins.. 1-6
1.3.1.7 IEEE 1149.1 Test Access Port.. 1-7
1.3.2 Direct Memory Access Module... 1-7
1.3.3 Serial Module.. 1-7
1.3.4 Timer Modules... 1-8
1.4 Power Consumption Management.. 1-8
1.5 Physical .. 1-9
1.6 Compact Disc-Interactive .. 1-9
1.7 More Information... 1-10

Section 2
Signal Descriptions

2.1 Signal Index... 2-2
2.2 Address Bus... 2-4
2.2.1 Address Bus (A23–A0) .. 2-4
2.2.2 Address Bus (A31–A24).. 2-4
2.3 Data Bus (D15–D0).. 2-4
2.4 Function Codes (FC3–FC0).. 2-5
2.5 Chip Selects (CS3–CS0) .. 2-5
2.6 Interrupt Request Level (IRQ7, IRQ6, IRQ5, IRQ3) 2-6

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

iv MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

2.7 Bus Control Signals ... 2-6
2.7.1 Data and Size Acknowledge (DSACK1, DSACK0)................................ 2-6
2.7.2 Address Strobe (AS).. 2-6
2.7.3 Data Strobe (DS)... 2-7
2.7.4 Transfer Size (SIZ1, SIZ0) .. 2-7
2.7.5 Read/Write (R/W)... 2-7
2.8 Bus Arbitration Signals.. 2-7
2.8.1 Bus Request (BR).. 2-7
2.8.2 Bus Grant (BG)... 2-7
2.8.3 Bus Grant Acknowledge (BGACK)... 2-7
2.8.4 Read-Modify-Write Cycle (RMC)... 2-8
2.9 Exception Control Signals .. 2-8
2.9.1 Reset (RESET)... 2-8
2.9.2 Halt (HALT).. 2-8
2.9.3 Bus Error (BERR)... 2-8
2.10 Clock Signals .. 2-8
2.10.1 System Clock (CLKOUT).. 2-8
2.10.2 Crystal Oscillator (EXTAL, XTAL)... 2-9
2.10.3 External Filter Capacitor (XFC) .. 2-9
2.10.4 Clock Mode Select (MODCK)... 2-9
2.11 Instrumentation and Emulation Signals ... 2-9
2.11.1 Instruction Fetch (IFETCH).. 2-9
2.11.2 Instruction Pipe (IPIPE)... 2-9
2.11.3 Breakpoint (BKPT).. 2-10
2.11.4 Freeze (FREEZE).. 2-10
2.12 DMA Module Signals... 2-10
2.12.1 DMA Request (DREQ2, DREQ1)... 2-10
2.12.2 DMA Acknowledge (DACK2, DACK1).. 2-10
2.12.3 DMA Done (DONE2, DONE1).. 2-10
2.13 Serial Module Signals... 2-11
2.13.1 Serial Crystal Oscillator (X2, X1) ... 2-11
2.13.2 Serial External Clock Input (SCLK)... 2-11
2.13.3 Receive Data (RxDA, RxDB)... 2-11
2.13.4 Transmit Data (TxDA, TxDB)... 2-11
2.13.5 Clear to Send (CTSA, CTSB)... 2-11
2.13.6 Request to Send (RTSA, RTSB).. 2-11
2.13.7 Transmitter Ready (T≈RDYA)... 2-11
2.13.8 Receiver Ready (R≈RDYA) ... 2-12
2.14 Timer Signals .. 2-12
2.14.1 Timer Gate (TGATE2, TGATE1).. 2-12
2.14.2 Timer Input (TIN2, TIN1) .. 2-12
2.14.3 Timer Output (TOUT2, TOUT1)... 2-12

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL v

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

2.15 Test Signals... 2-13
2.15.1 Test Clock (TCK)... 2-13
2.15.2 Test Mode Select (TMS).. 2-13
2.15.3 Test Data In (TDI).. 2-13
2.15.4 Test Data Out (TDO)... 2-13
2.16 Synthesizer Power (VCCSYN).. 2-13
2.17 System Power and Ground (VCC and GND).. 2-13
2.18 Signal Summary... 2-13

Section 3
Bus Operation

3.1 Bus Transfer Signals.. 3-1
3.1.1 Bus Control Signals ... 3-2
3.1.2 Function Code Signals.. 3-3
3.1.3 Address Bus (A31–A0) .. 3-4
3.1.4 Address Strobe (AS).. 3-4
3.1.5 Data Bus (D15–D0).. 3-4
3.1.6 Data Strobe (DS)... 3-4
3.1.7 Bus Cycle Termination Signals.. 3-4
3.1.7.1 Data Transfer and Size Acknowledge Signals

(DSACK1 and DSACK0)... 3-4
3.1.7.2 Bus Error (BERR)... 3-5
3.1.7.3 Autovector (AVEC).. 3-5
3.2 Data Transfer Mechanism... 3-5
3.2.1 Dynamic Bus Sizing... 3-5
3.2.2 Misaligned Operands... 3-7
3.2.3 Operand Transfer Cases... 3-7
3.2.3.1 Byte Operand to 8-Bit Port, Odd or Even (A0 = X) 3-7
3.2.3.2 Byte Operand to 16-Bit Port, Even (A0 = 0).. 3-8
3.2.3.3 Byte Operand to 16-Bit Port, Odd (A0 = 1) ... 3-9
3.2.3.4 Word Operand to 8-Bit Port, Aligned... 3-9
3.2.3.5 Word Operand to 16-Bit Port, Aligned... 3-10
3.2.3.6 Long-word Operand to 8-Bit Port, Aligned... 3-10
3.2.3.7 Long-Word Operand to 16-Bit Port, Aligned.. 3-12
3.2.4 Bus Operation.. 3-14
3.2.5 Synchronous Operation with DSACK≈... 3-14
3.2.6 Fast Termination Cycles.. 3-15
3.3 Data Transfer Cycles.. 3-16
3.3.1 Read Cycle... 3-16
3.3.2 Write Cycle... 3-18
3.3.3 Read-Modify-Write Cycle... 3-19

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

vi MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

3.4 CPU Space Cycles... 3-21
3.4.1 Breakpoint Acknowledge Cycle... 3-22
3.4.2 LPSTOP Broadcast Cycle... 3-23
3.4.3 Module Base Address Register Access.. 3-27
3.4.4 Interrupt Acknowledge Bus Cycles.. 3-27
3.4.4.1 Interrupt Acknowledge Cycle—Terminated Normally........................ 3-27
3.4.4.2 Autovector Interrupt Acknowledge Cycle ... 3-29
3.4.4.3 Spurious Interrupt Cycle.. 3-30
3.5 Bus Exception Control Cycles.. 3-32
3.5.1 Bus Errors... 3-34
3.5.2 Retry Operation ... 3-36
3.5.3 Halt Operation ... 3-38
3.5.4 Double Bus Fault .. 3-39
3.6 Bus Arbitration... 3-40
3.6.1 Bus Request... 3-43
3.6.2 Bus Grant.. 3-43
3.6.3 Bus Grant Acknowledge.. 3-43
3.6.4 Bus Arbitration Control... 3-44
3.6.5 Show Cycles.. 3-44
3.7 Reset Operation .. 3-46

Section 4
System Integration Module

4.1 Module Overview.. 4-1
4.2 Module Operation... 4-2
4.2.1 Module Base Address Register Operation... 4-2
4.2.2 System Configuration and Protection Operation.................................... 4-3
4.2.2.1 System Configuration .. 4-5
4.2.2.2 Internal Bus Monitor ... 4-6
4.2.2.3 Double Bus Fault Monitor.. 4-6
4.2.2.4 Spurious Interrupt Monitor .. 4-6
4.2.2.5 Software Watchdog.. 4-6
4.2.2.6 Periodic Interrupt Timer ... 4-7
4.2.2.6.1 Periodic Timer Period Calculation... 4-8
4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock 4-9
4.2.2.7 Simultaneous Interrupts by Sources in the SIM40............................. 4-9
4.2.3 Clock Synthesizer Operation.. 4-9
4.2.3.1 Phase Comparator and Filter ... 4-11
4.2.3.2 Frequency Divider .. 4-12
4.2.3.3 Clock Control... 4-13
4.2.4 Chip Select Operation ... 4-13
4.2.4.1 Programmable Features.. 4-14

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL vii

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

4.2.4.2 Global Chip Select Operation .. 4-14
4.2.5 External Bus Interface Operation... 4-15
4.2.5.1 Port A... 4-15
4.2.5.2 Port B... 4-16
4.2.6 Low-Power Stop ... 4-17
4.2.7 Freeze... 4-17
4.3 Programming Model... 4-18
4.3.1 Module Base Address Register (MBAR)... 4-20
4.3.2 System Configuration and Protection Registers..................................... 4-21
4.3.2.1 Module Configuration Register (MCR).. 4-21
4.3.2.2 Autovector Register (AVR)... 4-23
4.3.2.3 Reset Status Register (RSR)... 4-23
4.3.2.4 Software Interrupt Vector Register (SWIV)... 4-24
4.3.2.5 System Protection Control Register (SYPCR)..................................... 4-24
4.3.2.6 Periodic Interrupt Control Register (PICR) ... 4-26
4.3.2.7 Periodic Interrupt Timer Register (PITR)... 4-27
4.3.2.8 Software Service Register (SWSR) .. 4-28
4.3.3 Clock Synthesizer Control Register (SYNCR) .. 4-28
4.3.4 Chip Select Registers .. 4-29
4.3.4.1 Base Address Registers .. 4-30
4.3.4.2 Address Mask Registers.. 4-31
4.3.4.3 Chip Select Registers Programming Example.................................... 4-33
4.3.5 External Bus Interface Control.. 4-33
4.3.5.1 Port A Pin Assignment Register 1 (PPARA1)....................................... 4-33
4.3.5.2 Port A Pin Assignment Register 2 (PPARA2)....................................... 4-34
4.3.5.3 Port A Data Direction Register (DDRA)... 4-34
4.3.5.4 Port A Data Register (PORTA).. 4-34
4.3.5.5 Port B Pin Assignment Register (PPARB) .. 4-35
4.3.5.6 Port B Data Direction Register (DDRB)... 4-35
4.3.5.7 Port B Data Register (PORTB, PORTB1) .. 4-35
4.4 MC68340 Initialization Sequence... 4-36
4.4.1 Startup .. 4-36
4.4.2 SIM40 Module Configuration ... 4-36
4.4.3 SIM40 Example Configuration Code.. 4-38

Section 5
CPU32

5.1 Overview... 5-1
5.1.1 Features.. 5-2
5.1.2 Virtual Memory .. 5-2
5.1.3 Loop Mode Instruction Execution .. 5-3

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

viii MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

5.1.4 Vector Base Register.. 5-4
5.1.5 Exception Handling.. 5-4
5.1.6 Addressing Modes.. 5-5
5.1.7 Instruction Set.. 5-5
5.1.7.1 Table Lookup and Interpolate Instructions... 5-7
5.1.7.2 Low-Power STOP Instruction ... 5-7
5.1.8 Processing States... 5-7
5.1.9 Privilege States... 5-7
5.2 Architecture Summary ... 5-8
5.2.1 Programming Model... 5-8
5.2.2 Registers... 5-10
5.3 Instruction Set.. 5-11
5.3.1 M68000 Family Compatibility... 5-11
5.3.1.1 New Instructions.. 5-11
5.3.1.1.1 Low-Power Stop (LPSTOP).. 5-11
5.3.1.1.2 Table Lookup and Interpolation (TBL).. 5-12
5.3.1.2 Unimplemented Instructions... 5-12
5.3.2 Instruction Format and Notation... 5-12
5.3.3 Instruction Summary .. 5-15
5.3.3.1 Condition Code Register... 5-20
5.3.3.2 Data Movement Instructions ... 5-21
5.3.3.3 Integer Arithmetic Operations... 5-22
5.3.3.4 Logic Instructions.. 5-24
5.3.3.5 Shift and Rotate Instructions... 5-24
5.3.3.6 Bit Manipulation Instructions... 5-25
5.3.3.7 Binary-Coded Decimal (BCD) Instructions .. 5-26
5.3.3.8 Program Control Instructions.. 5-26
5.3.3.9 System Control Instructions.. 5-27
5.3.3.10 Condition Tests ... 5-29
5.3.4 Using the TBL Instructions .. 5-29
5.3.4.1 Table Example 1: Standard Usage... 5-30
5.3.4.2 Table Example 2: Compressed Table .. 5-31
5.3.4.3 Table Example 3: 8-Bit Independent Variable 5-32
5.3.4.4 Table Example 4: Maintaining Precision.. 5-34
5.3.4.5 Table Example 5: Surface Interpolations... 5-36
5.3.5 Nested Subroutine Calls... 5-36
5.3.6 Pipeline Synchronization with the NOP Instruction................................ 5-36
5.4 Processing States... 5-36
5.4.1 State Transitions... 5-37
5.4.2 Privilege Levels... 5-37
5.4.2.1 Supervisor Privilege Level.. 5-37
5.4.2.2 User Privilege Level... 5-39

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL ix

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

5.4.2.3 Changing Privilege Level.. 5-39
5.5 Exception Processing .. 5-39
5.5.1 Exception Vectors... 5-40
5.5.1.1 Types of Exceptions ... 5-41
5.5.1.2 Exception Processing Sequence .. 5-41
5.5.1.3 Exception Stack Frame.. 5-42
5.5.1.4 Multiple Exceptions .. 5-42
5.5.2 Processing of Specific Exceptions .. 5-44
5.5.2.1 Reset ... 5-44
5.5.2.2 Bus Error... 5-46
5.5.2.3 Address Error... 5-46
5.5.2.4 Instruction Traps.. 5-47
5.5.2.5 Software Breakpoints... 5-47
5.5.2.6 Hardware Breakpoints... 5-48
5.5.2.7 Format Error... 5-48
5.5.2.8 Illegal or Unimplemented Instructions .. 5-48
5.5.2.9 Privilege Violations... 5-49
5.5.2.10 Tracing.. 5-50
5.5.2.11 Interrupts... 5-51
5.5.2.12 Return from Exception.. 5-52
5.5.3 Fault Recovery... 5-53
5.5.3.1 Types of Faults .. 5-55
5.5.3.1.1 Type I—Released Write Faults... 5-55
5.5.3.1.2 Type II—Prefetch, Operand, RMW, and MOVEP Faults................. 5-56
5.5.3.1.3 Type III—Faults During MOVEM Operand Transfer 5-57
5.5.3.1.4 Type IV—Faults During Exception Processing 5-57
5.5.3.2 Correcting a Fault ... 5-57
5.5.3.2.1 Type I—Completing Released Writes via Software 5-57
5.5.3.2.2 Type I—Completing Released Writes via RTE................................ 5-57
5.5.3.2.3 Type II—Correcting Faults via RTE.. 5-58
5.5.3.2.4 Type III—Correcting Faults via Software.. 5-58
5.5.3.2.5 Type III—Correcting Faults by Conversion and Restart................. 5-58
5.5.3.2.6 Type III—Correcting Faults via RTE... 5-59
5.5.3.2.7 Type IV—Correcting Faults via Software ... 5-59
5.5.4 CPU32 Stack Frames .. 5-60
5.5.4.1 Four-Word Stack Frame .. 5-60
5.5.4.2 Six-Word Stack Frame... 5-60
5.5.4.3 Bus Error Stack Frame... 5-60
5.6 Development Support.. 5-63
5.6.1 CPU32 Integrated Development Support.. 5-63
5.6.1.1 Background Debug Mode (BDM) Overview .. 5-64
5.6.1.2 Deterministic Opcode Tracking Overview.. 5-64

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

x MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

5.6.1.3 On-Chip Hardware Breakpoint Overview... 5-64
5.6.2 Background Debug Mode... 5-65
5.6.2.1 Enabling BDM ... 5-65
5.6.2.2 BDM Sources .. 5-66
5.6.2.2.1 External BKPT Signal.. 5-66
5.6.2.2.2 BGND Instruction .. 5-66
5.6.2.2.3 Double Bus Fault. ... 5-66
5.6.2.3 Entering BDM .. 5-66
5.6.2.4 Command Execution.. 5-67
5.6.2.5 BDM Registers... 5-67
5.6.2.5.1 Fault Address Register (FAR) ... 5-67
5.6.2.5.2 Return Program Counter (RPC) ... 5-67
5.6.2.5.3 Current Instruction Program Counter (PCC).................................... 5-67
5.6.2.6 Returning from BDM... 5-68
5.6.2.7 Serial Interface.. 5-68
5.6.2.7.1 CPU Serial Logic.. 5-69
5.6.2.7.2 Development System Serial Logic.. 5-71
5.6.2.8 Command Set ... 5-73
5.6.2.8.1 Command Format... 5-73
5.6.2.8.2 Command Sequence Diagram.. 5-74
5.6.2.8.3 Command Set Summary... 5-75
5.6.2.8.4 Read A/D Register (RAREG/RDREG).. 5-76
5.6.2.8.5 Write A/D Register (WAREG/WDREG) .. 5-77
5.6.2.8.6 Read System Register (RSREG).. 5-77
5.6.2.8.7 Write System Register (WSREG)... 5-78
5.6.2.8.8 Read Memory Location (READ)... 5-79
5.6.2.8.9 Write Memory Location (WRITE).. 5-79
5.6.2.8.10 Dump Memory Block (DUMP). ... 5-80
5.6.2.8.11 Fill Memory Block (FILL).. 5-82
5.6.2.8.12 Resume Execution (GO).. 5-83
5.6.2.8.13 Call User Code (CALL).. 5-83
5.6.2.8.14 Reset Peripherals (RST).. 5-85
5.6.2.8.15 No Operation (NOP)... 5-85
5.6.2.8.16 Future Commands.. 5-86
5.6.3 Deterministic Opcode Tracking.. 5-86
5.6.3.1 Instruction Fetch (IFETCH).. 5-86
5.6.3.2 Instruction Pipe (IPIPE)... 5-87
5.6.3.3 Opcode Tracking during Loop Mode .. 5-88
5.7 Instruction Execution Timing... 5-88
5.7.1 Resource Scheduling .. 5-88
5.7.1.1 Microsequencer .. 5-89
5.7.1.2 Instruction Pipeline... 5-89

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xi

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

5.7.1.3 Bus Controller Resources ... 5-89
5.7.1.3.1 Prefetch Controller.. 5-90
5.7.1.3.2 Write Pending Buffer. ... 5-90
5.7.1.3.3 Microbus Controller.. 5-91
5.7.1.4 Instruction Execution Overlap... 5-91
5.7.1.5 Effects of Wait States.. 5-92
5.7.1.6 Instruction Execution Time Calculation .. 5-92
5.7.1.7 Effects of Negative Tails .. 5-93
5.7.2 Instruction Stream Timing Examples .. 5-94
5.7.2.1 Timing Example 1—Execution Overlap.. 5-94
5.7.2.2 Timing Example 2—Branch Instructions .. 5-95
5.7.2.3 Timing Example 3—Negative Tails... 5-96
5.7.3 Instruction Timing Tables .. 5-97
5.7.3.1 Fetch Effective Address ... 5-99
5.7.3.2 Calculate Effective Address.. 5-100
5.7.3.3 MOVE Instruction .. 5-101
5.7.3.4 Special-Purpose MOVE Instruction... 5-101
5.7.3.5 Arithmetic/Logic Instructions... 5-102
5.7.3.6 Immediate Arithmetic/Logic Instructions... 5-105
5.7.3.7 Binary-Coded Decimal and Extended Instructions 5-106
5.7.3.8 Single Operand Instructions... 5-107
5.7.3.9 Shift/Rotate Instructions... 5-108
5.7.3.10 Bit Manipulation Instructions... 5-109
5.7.3.11 Conditional Branch Instructions... 5-110
5.7.3.12 Control Instructions... 5-111
5.7.3.13 Exception-Related Instructions and Operations.................................. 5-111
5.7.3.14 Save and Restore Operations.. 5-111

Section 6
DMA Controller Module

6.1 DMA Module Overview.. 6-2
6.2 DMA Module Signal Definitions... 6-4
6.2.1 DMA Request (DREQ≈).. 6-4
6.2.2 DMA Acknowledge (DACK≈).. 6-4
6.2.3 DMA Done (DONE≈)... 6-4
6.3 Transfer Request Generation ... 6-4
6.3.1 Internal Request Generation... 6-4
6.3.1.1 Internal Request, Maximum Rate... 6-5
6.3.1.2 Internal Request, Limited Rate ... 6-5
6.3.2 External Request Generation ... 6-5
6.3.2.1 External Burst Mode... 6-5

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xii MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

6.3.2.2 External Cycle Steal Mode ... 6-5
6.4 Data Transfer Modes.. 6-6
6.4.1 Single-Address Mode.. 6-6
6.4.1.1 Single-Address Read... 6-7
6.4.1.2 Single-Address Write... 6-9
6.4.2 Dual-Address Mode ... 6-12
6.4.2.1 Dual-Address Read.. 6-12
6.4.2.2 Dual-Address Write .. 6-14
6.5 Bus Arbitration... 6-18
6.6 DMA Channel Operation... 6-18
6.6.1 Channel Initialization and Startup... 6-18
6.6.2 Data Transfers... 6-19
6.6.2.1 Internal Request Transfers.. 6-19
6.6.2.2 External Request Transfers... 6-19
6.6.3 Channel Termination ... 6-20
6.6.3.1 Channel Termination ... 6-20
6.6.3.2 Interrupt Operation.. 6-20
6.6.3.3 Fast Termination Option .. 6-20
6.7 Register Description... 6-22
6.7.1 Module Configuration Register (MCR).. 6-23
6.7.2 Interrupt Register (INTR).. 6-26
6.7.3 Channel Control Register (CCR) ... 6-26
6.7.4 Channel Status Register (CSR)... 6-30
6.7.5 Function Code Register (FCR) ... 6-32
6.7.6 Source Address Register (SAR) .. 6-33
6.7.7 Destination Address Register (DAR)... 6-33
6.7.8 Byte Transfer Counter Register (BTC) .. 6-34
6.8 Data Packing ... 6-35
6.9 DMA Channel Initialization Sequence ... 6-36
6.9.1 DMA Channel Configuration .. 6-36
6.9.1.1 DMA Channel Operation in Single-Address Mode............................ 6-37
6.9.1.2 DMA Channel Operation in Dual-Address Mode 6-37
6.9.2 DMA Channel Example Configuration Code .. 6-38

Section 7
Serial Module

7.1 Module Overview.. 7-2
7.1.1 Serial Communication Channels A and B... 7-3
7.1.2 Baud Rate Generator Logic .. 7-3
7.1.3 Internal Channel Control Logic.. 7-3
7.1.4 Interrupt Control Logic ... 7-3

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xiii

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

7.1.5 Comparison of Serial Module to MC68681... 7-4
7.2 Serial Module Signal Definitions... 7-4
7.2.1 Crystal Input or External Clock (X1) .. 7-5
7.2.2 Crystal Output (X2) ... 7-5
7.2.3 External Input (SCLK).. 7-6
7.2.4 Channel A Transmitter Serial Data Output (TxDA)................................. 7-6
7.2.5 Channel A Receiver Serial Data Input (RxDA).. 7-6
7.2.6 Channel B Transmitter Serial Data Output (TxDB)................................. 7-6
7.2.7 Channel B Receiver Serial Data Input (RxDB).. 7-6
7.2.8 Channel A Request-To-Send (RTSA) .. 7-6
7.2.8.1 RTSA... 7-6
7.2.8.2 OP0.. 7-6
7.2.9 Channel B Request-To-Send (RTSB)... 7-6
7.2.9.1 RTSB... 7-7
7.2.9.2 OP1.. 7-7
7.2.10 Channel A Clear-To-Send (CTSA) ... 7-7
7.2.11 Channel B Clear-To-Send (CTSB).. 7-7
7.2.12 Channel A Transmitter Ready (T≈RDYA)... 7-7
7.2.12.1 T≈RDYA.. 7-7
7.2.12.2 OP6.. 7-7
7.2.13 Channel A Receiver Ready (R≈RDYA)... 7-7
7.2.13.1 R≈RDYA.. 7-7
7.2.13.2 FFULLA... 7-7
7.2.13.3 OP4.. 7-7
7.3 Operation.. 7-8
7.3.1 Baud Rate Generator ... 7-8
7.3.2 Transmitter and Receiver Operating Modes.. 7-8
7.3.2.1 Transmitter ... 7-10
7.3.2.2 Receiver.. 7-11
7.3.2.3 FIFO Stack.. 7-12
7.3.3 Looping Modes ... 7-14
7.3.3.1 Automatic Echo Mode.. 7-14
7.3.3.2 Local Loopback Mode ... 7-14
7.3.3.3 Remote Loopback Mode ... 7-14
7.3.4 Multidrop Mode ... 7-15
7.3.5 Bus Operation.. 7-17
7.3.5.1 Read Cycles... 7-17
7.3.5.2 Write Cycles... 7-17
7.3.5.3 Interrupt Acknowledge Cycles.. 7-17
7.4 Register Description and Programming ... 7-17
7.4.1 Register Description... 7-17
7.4.1.1 Module Configuration Register (MCR).. 7-19

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xiv MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

7.4.1.2 Interrupt Level Register (ILR).. 7-21
7.4.1.3 Interrupt Vector Register (IVR).. 7-21
7.4.1.4 Mode Register 1 (MR1).. 7-22
7.4.1.5 Status Register (SR)... 7-24
7.4.1.6 Clock-Select Register (CSR).. 7-26
7.4.1.7 Command Register (CR) ... 7-27
7.4.1.8 Receiver Buffer (RB)... 7-30
7.4.1.9 Transmitter Buffer (TB)... 7-30
7.4.1.10 Input Port Change Register (IPCR).. 7-31
7.4.1.11 Auxiliary Control Register (ACR).. 7-32
7.4.1.12 Interrupt Status Register (ISR).. 7-32
7.4.1.13 Interrupt Enable Register (IER)... 7-34
7.4.1.14 Input Port (IP)... 7-35
7.4.1.15 Output Port Control Register (OPCR).. 7-35
7.4.1.16 Output Port Data Register (OP) .. 7-37
7.4.1.17 Mode Register 2 (MR2).. 7-37
7.4.2 Programming... 7-40
7.4.2.1 Serial Module Initialization ... 7-40
7.4.2.2 I/O Driver Example.. 7-40
7.4.2.3 Interrupt Handling... 7-40
7.5 Serial Module Initialization Sequence ... 7-46
7.5.1 Serial Module Configuration .. 7-46
7.5.2 Serial Module Example Configuration Code .. 7-47

Section 8
Timer Modules

8.1 Module Overview.. 8-1
8.1.1 Timer and Counter Functions... 8-2
8.1.1.1 Prescaler and Counter... 8-2
8.1.1.2 Timeout Detection... 8-2
8.1.1.3 Comparator.. 8-2
8.1.1.4 Clock Selection Logic.. 8-3
8.1.2 Internal Control Logic... 8-3
8.1.3 Interrupt Control Logic ... 8-4
8.2 Timer Modules Signal Definitions ... 8-4
8.2.1 Timer Input (TIN1, TIN2) .. 8-5
8.2.2 Timer Gate (TGATE1, TGATE2).. 8-6
8.2.3 Timer Output (TOUT1, TOUT2)... 8-6
8.3 Operating Modes .. 8-6
8.3.1 Input Capture/Output Compare.. 8-6
8.3.2 Square-Wave Generator... 8-8

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xv

TABLE OF CONTENTS (Continued)
Paragraph Page
Number Title Number

8.3.3 Variable Duty-Cycle Square-Wave Generator.. 8-9
8.3.4 Variable-Width Single-Shot Pulse Generator... 8-10
8.3.5 Pulse-Width Measurement.. 8-12
8.3.6 Period Measurement.. 8-13
8.3.7 Event Count ... 8-14
8.3.8 Timer Bypass... 8-16
8.3.9 Bus Operation.. 8-17
8.3.9.1 Read Cycles... 8-17
8.3.9.2 Write Cycles... 8-17
8.3.9.3 Interrupt Acknowledge Cycles.. 8-17
8.4 Register Description... 8-17
8.4.1 Module Configuration Register (MCR).. 8-18
8.4.2 Interrupt Register (IR) ... 8-20
8.4.3 Control Register (CR)... 8-20
8.4.4 Status Register (SR)... 8-23
8.4.5 Counter Register (CNTR) .. 8-25
8.4.6 Preload 1 Register (PREL1).. 8-25
8.4.7 Preload 2 Register (PREL2).. 8-26
8.4.8 Compare Register (COM).. 8-26
8.5 Timer Module Initialization Sequence.. 8-27
8.5.1 Timer Module Configuration... 8-27
8.5.2 Timer Module Example Configuration Code... 8-28

Section 9
IEEE 1149.1 Test Access Port

9.1 Overview... 9-1
9.2 TAP Controller... 9-2
9.3 Boundary Scan Register ... 9-3
9.4 Instruction Register... 9-9
9.4.1 EXTEST (000) ... 9-10
9.4.2 SAMPLE/PRELOAD (001) .. 9-10
9.4.3 BYPASS (X1X, 101)... 9-11
9.4.4 HI-Z (100) ... 9-11
9.5 MC68340 Restrictions.. 9-11
9.6 Non-IEEE 1149.1 Operation... 9-12

Section 10
Applications

10.1 Minimum System Configuration... 10-1
10.1.1 Processor Clock Circuitry.. 10-1

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xvi MC68340 USER'S MANUAL MOTOROLA

TABLE OF CONTENTS (Concluded)
Paragraph Page
Number Title Number

10.1.2 Reset Circuitry ... 10-3
10.1.3 SRAM Interface ... 10-3
10.1.4 ROM Interface.. 10-4
10.1.5 Serial Interface.. 10-4
10.2 Memory Interface Information... 10-5
10.2.1 Using an 8-Bit Boot ROM... 10-5
10.2.2 Access Time Calculations... 10-6
10.2.3 Calculating Frequency-Adjusted Output .. 10-7
10.2.4 Interfacing an 8-Bit Device to 16-Bit Memory Using

Single-Address DMA Mode.. 10-10
10.3 Power Consumption Considerations.. 10-10
10.3.1 MC68340 Power Reduction at 5V .. 10-11
10.3.2 MC68340V (3.3 V) ... 10-13

Section 11
Electrical Characteristics

11.1 Maximum Rating ... 11-1
11.2 Thermal Characteristics... 11-1
11.3 Power Considerations ... 11-2
11.4 AC Electrical Specification Definitions ... 11-2
11.5 DC Electrical Specifications ... 11-5
11.6 AC Electrical Specifications Control Timing.. 11-6
11.7 AC Timing Specifications.. 11-8
11.8 DMA Module AC Electrical Specifications... 11-19
11.9 Timer Module Electrical Specifications .. 11-20
11.10 Serial Module Electrical Specifications.. 11-22
11.11 IEEE 1149.1 Electrical Specifications... 11-25

Section 12
Ordering Information and Mechanical Data

12.1 Standard MC68340 Ordering Information ... 12-1
12.2 Pin Assignment ... 12-2
12.2.1 144-Lead Ceramic Quad Flat Pack (FE Suffix)..................................... 12-2
12.2.2 145-Lead Plastic Pin Grid Array (RP Suffix) .. 12-4
12.3 Package Dimensions... 12-6
12.3.1 FE Suffix ... 12-6
12.3.2 RP Suffix... 12-7

Index

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xvii

LIST OF ILLUSTRATIONS
Figure Page
Number Title Number

1-1 Block Diagram... 1-1

2-1 Functional Signal Groups ... 2-1

3-1 Input Sample Window.. 3-2
3-2 MC68340 Interface to Various Port Sizes.. 3-7
3-3 Long-Word Operand Read Timing from 8-Bit Port.. 3-11
3-4 Long-Word Operand Write Timing to 8-Bit Port... 3-12
3-5 Long-Word and Word Read and Write Timing—16-Bit Port 3-13
3-6 Fast Termination Timing.. 3-15
3-7 Word Read Cycle Flowchart ... 3-16
3-8 Word Write Cycle Flowchart.. 3-18
3-9 Read-Modify-Write Cycle Timing ... 3-19
3-10 CPU Space Address Encoding.. 3-21
3-11 Breakpoint Operation Flowchart .. 3-24
3-12 Breakpoint Acknowledge Cycle Timing (Opcode Returned).......................... 3-25
3-13 Breakpoint Acknowledge Cycle Timing (Exception Signaled) 3-26
3-14 Interrupt Acknowledge Cycle Flowchart... 3-28
3-15 Interrupt Acknowledge Cycle Timing .. 3-29
3-16 Autovector Operation Timing.. 3-31
3-17 Bus Error without DSACK≈ ... 3-35
3-18 Late Bus Error with DSACK≈.. 3-36
3-19 Retry Sequence .. 3-37
3-20 Late Retry Sequence ... 3-38
3-21 HALT Timing.. 3-39
3-22 Bus Arbitration Flowchart for Single Request.. 3-41
3-23 Bus Arbitration Timing Diagram—Idle Bus Case.. 3-42
3-24 Bus Arbitration Timing Diagram—Active Bus Case ... 3-42
3-25 Bus Arbitration State Diagram.. 3-45
3-26 Show Cycle Timing Diagram.. 3-46
3-27 Timing for External Devices Driving RESET .. 3-47
3-28 Power-Up Reset Timing Diagram.. 3-48

4-1 SIM40 Module Register Block.. 4-3
4-2 System Configuration and Protection Function .. 4-5
4-3 Software Watchdog Block Diagram .. 4-7
4-4 Clock Block Diagram for Crystal Operation ... 4-10

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xviii MC68340 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page
Number Title Number

4-5 MC68340 Crystal Oscillator.. 4-10
4-6 Clock Block Diagram for External Oscillator Operation................................... 4-11
4-7 Full Interrupt Request Multiplexer.. 4-16
4-8 SIM40 Programming Model.. 4-19

5-1 CPU32 Block Diagram... 5-3
5-2 Loop Mode Instruction Sequence ... 5-3
5-3 User Programming Model... 5-9
5-4 Supervisor Programming Model Supplement .. 5-9
5-5 Status Register.. 5-10
5-6 Instruction Word General Format... 5-12
5-7 Table Example 1... 5-30
5-8 Table Example 2... 5-31
5-9 Table Example 3... 5-33
5-10 Exception Stack Frame.. 5-42
5-11 Reset Operation Flowchart.. 5-45
5-12 Format $0—Four-Word Stack Frame.. 5-60
5-13 Format $2—Six-Word Stack Frame .. 5-60
5-14 Internal Transfer Count Register.. 5-61
5-15 Format $C—BERR Stack for Prefetches and Operands.................................. 5-62
5-16 Format $C—BERR Stack on MOVEM Operand.. 5-62
5-17 Format $C—Four- and Six-Word BERR Stack.. 5-63
5-18 In-Circuit Emulator Configuration .. 5-64
5-19 Bus State Analyzer Configuration ... 5-64
5-20 BDM Block Diagram... 5-65
5-21 BDM Command Execution Flowchart... 5-68
5-22 Debug Serial I/O Block Diagram.. 5-70
5-23 Serial Interface Timing Diagram.. 5-71
5-24 BKPT Timing for Single Bus Cycle.. 5-72
5-25 BKPT Timing for Forcing BDM ... 5-72
5-26 BKPT/DSCLK Logic Diagram .. 5-72
5-27 Command-Sequence Diagram.. 5-75
5-28 Functional Model of Instruction Pipeline .. 5-87
5-29 Instruction Pipeline Timing Diagram... 5-88
5-30 Block Diagram of Independent Resources .. 5-90
5-31 Simultaneous Instruction Execution.. 5-91
5-32 Attributed Instruction Times... 5-92
5-33 Example 1—Instruction Stream ... 5-95
5-34 Example 2—Branch Taken... 5-95
5-35 Example 2—Branch Not Taken.. 5-96
5-36 Example 3—Branch Negative Tail .. 5-96

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xix

LIST OF ILLUSTRATIONS (Continued)
Figure Page
Number Title Number

6-1 DMA Block Diagram... 6-1
6-2 Single-Address Transfers ... 6-3
6-3 Dual-Address Transfer... 6-3
6-4 DMA External Connections to Serial Module.. 6-6
6-5 Single-Address Read Timing (External Burst) .. 6-8
6-6 Single-Address Read Timing (Cycle Steal)... 6-9
6-7 Single-Address Write Timing (External Burst)... 6-10
6-8 Single-Address Write Timing (Cycle Steal)... 6-11
6-9 Dual-Address Read Timing (External Burst—Source Requesting)............... 6-13
6-10 Dual-Address Read Timing (Cycle Steal—Source Requesting)................... 6-14
6-11 Dual-Address Write Timing (External Burst—Destination Requesting)........ 6-16
6-12 Dual-Address Write Timing (Cycle Steal—Destination Requesting)............ 6-17
6-13 Fast Termination Option (Cycle Steal).. 6-21
6-14 Fast Termination Option (External Burst—Source Requesting) 6-22
6-15 DMA Module Programming Model.. 6-23
6-16 Packing and Unpacking of Operands... 6-35

7-1 Simplified Block Diagram.. 7-1
7-2 External and Internal Interface Signals .. 7-5
7-3 Baud Rate Generator Block Diagram.. 7-8
7-4 Transmitter and Receiver Functional Diagram.. 7-9
7-5 Transmitter Timing Diagram ... 7-10
7-6 Receiver Timing Diagram.. 7-12
7-7 Looping Modes Functional Diagram... 7-15
7-8 Multidrop Mode Timing Diagram ... 7-16
7-9 Serial Module Programming Model.. 7-19
7-10 Serial Module Programming Flowchart.. 7-41

8-1 Simplified Block Diagram.. 8-1
8-2 Timer Functional Diagram... 8-3
8-3 External and Internal Interface Signals .. 8-5
8-4 Input Capture/Output Compare Mode... 8-7
8-5 Square-Wave Generator Mode.. 8-8
8-6 Variable Duty-Cycle Square-Wave Generator Mode 8-10
8-7 Variable-Width Single-Shot Pulse Generator Mode.. 8-11
8-8 Pulse-Width Measurement Mode .. 8-12
8-9 Period Measurement Mode .. 8-14
8-10 Event Count Mode.. 8-15
8-11 Timer Module Programming Model... 8-18

9-1 Test Access Port Block Diagram.. 9-2
9-2 TAP Controller State Machine.. 9-3

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xx MC68340 USER'S MANUAL MOTOROLA

LIST OF ILLUSTRATIONS (Continued)
Figure Page
Number Title Number

9-3 Output Latch Cell (O.Latch)... 9-7
9-4 Input Pin Cell (I.Pin).. 9-7
9-5 Active-High Output Control Cell (IO.Ctl1)... 9-8
9-6 Active-Low Output Control Cell (IO.Ctl0).. 9-8
9-7 Bidirectional Data Cell (IO.Cell) ... 9-9
9-8 General Arrangement for Bidirectional Pins.. 9-9
9-9 Bypass Register .. 9-11

10-1 Minimum System Configuration Block Diagram... 10-1
10-2 Sample Crystal Circuit... 10-2
10-3 Statek Corporation Crystal Circuit... 10-2
10-4 XFC and VCCSYN Capacitor Connections.. 10-3
10-5 SRAM Interface ... 10-3
10-6 ROM Interface.. 10-4
10-7 Serial Interface.. 10-5
10-8 External Circuitry for 8-Bit Boot ROM .. 10-5
10-9 8-Bit Boot ROM Timing... 10-6
10-10 Access Time Computation Diagram.. 10-6
10-11 Signal Relationships to CLKOUT .. 10-7
10-12 Signal Width Specifications.. 10-8
10-13 Skew between Two Outputs... 10-9
10-14 Circuitry for Interfacing 8-Bit Device to 16-Bit Memory in

Single-Address DMA Mode.. 10-10
10-15 MC68340 Current vs. Activity at 5 V.. 10-11
10-16 MC68340 Current vs. Voltage/Temperature.. 10-12
10-17 MC68340 Current vs. Clock Frequency at 5 V.. 10-12

11-1 Drive Levels and Test Points for AC Specifications....................................... 11-4
11-2 Read Cycle Timing Diagram... 11-11
11-3 Write Cycle Timing Diagram... 11-12
11-4 Fast Termination Read Cycle Timing Diagram ... 11-13
11-5 Fast Termination Write Cycle Timing Diagram.. 11-14
11-6 Bus Arbitation Timing—Active Bus Case ... 11-15
11-7 Bus Arbitration Timing—Idle Bus Case .. 11-16
11-8 Show Cycle Timing Diagram.. 11-16
11-9 IACK Cycle Timing Diagram... 11-17
11-10 Background Debug Mode Serial Port Timing ... 11-18
11-11 Background Debug Mode FREEZE Timing ... 11-18
11-12 DMA Signal Timing Diagram.. 11-19
11-13 Timer Module Clock Signal Timing Diagram .. 11-20
11-14 Timer Module Signal Timing Diagram.. 11-21
11-15 Serial Module General Timing Diagram .. 11-22

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xxi

LIST OF ILLUSTRATIONS (Concluded)
Figure Page
Number Title Number

11-16 Serial Module Asynchronous Mode Timing (X1).. 11-23
11-17 Serial Module Asynchronous Mode Timing (SCLK–16X)............................ 11-23
11-18 Serial Module Synchronous Mode Timing Diagram 11-23
11-19 Test Clock Input Timing Diagram... 11-25
11-20 Boundary Scan Timing Diagram ... 11-26
11-21 Test Access Port Timing Diagram.. 11-26

11/2/95 SECTION 1: OVERVIEW UM Rev.1.0

xxii MC68340 USER'S MANUAL MOTOROLA

LIST OF TABLES
Table Page

Number Title Number

2-1 Signal Index... 2-2
2-2 Address Space Encoding ... 2-5
2-3 DSACK≈ Encoding... 2-6
2-4 SIZx Signal Encoding.. 2-7
2-5 Signal Summary... 2-14

3-1 SIZx Signal Encoding.. 3-3
3-2 Address Space Encoding ... 3-3
3-3 DSACK≈ Encoding... 3-5
3-4 DSACK≈, BERR, and HALT Assertion Results.. 3-33

4-1 Clock Operating Modes... 4-9
4-2 System Frequencies from 32.768-kHz Reference.. 4-13
4-3 Clock Control Signals.. 4-13
4-4 Port A Pin Assignment Register ... 4-15
4-5 Port B Pin Assignment Register ... 4-16
4-6 SHENx Control Bits.. 4-22
4-7 Deriving Software Watchdog Timeout.. 4-25
4-8 BMTx Encoding... 4-26
4-9 PIRQL Encoding.. 4-26
4-10 DDx Encoding ... 4-32
4-11 PSx Encoding.. 4-32

5-1 Instruction Set.. 5-6
5-2 Instruction Set Summary... 5-16
5-3 Condition Code Computations... 5-20
5-4 Data Movement Operations.. 5-21
5-5 Integer Arithmetic Operations... 5-23
5-6 Logic Operations... 5-24
5-7 Shift and Rotate Operations.. 5-25
5-8 Bit Manipulation Operations ... 5-25
5-9 Binary-Coded Decimal Operations ... 5-26
5-10 Program Control Operations... 5-26
5-11 System Control Operations... 5-28
5-12 Condition Tests ... 5-29
5-13 Standard Usage Entries.. 5-30
5-14 Compressed Table Entries ... 5-32

11/2/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA MC68340 USER'S MANUAL xxiii

LIST OF TABLES (Continued)
Table Page

Number Title Number

5-15 8-Bit Independent Variable Entries ... 5-33
5-16 Exception Vector Assignments... 5-40
5-17 Exception Priority Groups.. 5-43
5-18 Tracing Control.. 5-50
5-19 BDM Source Summary.. 5-67
5-20 Polling the BDM Entry Source.. 5-68
5-21 CPU Generated Message Encoding... 5-70
5-22 Size Field Encoding... 5-74
5-23 BDM Command Summary.. 5-77
5-24 Register Field for RSREG and WSREG.. 5-79

6-1 FRZx Control Bits .. 6-24
6-2 SSIZEx Encoding ... 6-28
6-3 DSIZEx Encoding ... 6-29
6-4 REQx Encoding... 6-29
6-5 BBx Encoding and Bus Bandwidth.. 6-29
6-6 Address Space Encoding ... 6-32

7-1 FRZx Control Bits .. 7-20
7-2 PMx and PT Control Bits.. 7-23
7-3 B/Cx Control Bits... 7-24
7-4 RCSx Control Bits... 7-26
7-5 TCSx Control Bits ... 7-27
7-6 MISCx Control Bits ... 7-28
7-7 TCx Control Bits .. 7-29
7-8 RCx Control Bits.. 7-30
7-9 CMx Control Bits ... 7-38
7-10 SBx Control Bits.. 7-39

8-1 OCx Encoding ... 8-17
8-2 FRZx Control Bits .. 8-19
8-3 IEx Encoding.. 8-21
8-4 POTx Encoding ... 8-22
8-5 MODEx Encoding ... 8-22
8-6 OCx Encoding ... 8-22

9-1 Boundary Scan Control Bits ... 9-4
9-2 Boundary Scan Bit Definitions ... 9-5
9-3 Instructions... 9-10

10-1 Memory Access Times at 16.78 MHz.. 10-7
10-2 Typical Electrical Characteristics... 10-13

MOTOROLA MC68340 USER’S MANUAL 1-1

SECTION 1
DEVICE OVERVIEW

The MC68340 is a high-performance 32-bit integrated processor with direct memory
access (DMA), combining an enhanced M68000-compatible processor, 32-bit DMA, and
other peripheral subsystems on a single integrated circuit. The MC68340 CPU32 delivers
32-bit CISC processor performance from a lower cost 16-bit memory system. The
combination of peripherals offered in the MC68340 can be found in a diverse range of
microprocessor-based systems, including embedded control and general computing.
Systems requiring very high-speed block transfers of data can especially benefit from the
MC68340.

The MC68340's high level of functional integration results in significant reductions in
component count, power consumption, board space, and cost while yielding much higher
system reliability and shorter design time. The 3.3-V MC68340V is particularly attractive to
applications requiring a very tight power budget. Complete code compatibility with the
MC68000 and MC68010 affords the designer access to a broad base of established real-
time kernels, operating systems, languages, applications, and development tools—many
oriented towards embedded control.

CPU32
68020– BASED
PROCESSOR

TWO-
CHANNEL

SERIAL
I/O

TWO-CHANNEL DMA
CONTROLLER

EXTERNAL
BUS

INTERFACE

CLOCK
SYNTHESIZER

SYSTEM
INTEGRATION

MODULE
(SIM40)

BUS
ARBITRATION

INTERMODULE BUS

TIMER TIMER

SYSTEM
PROTECTION

IEEE TEST

CHIP SELECTS
AND

WAIT STATES

Figure 1-1. Block Diagram

1-2 MC68340 USER’S MANUAL MOTOROLA

The primary features of the MC68340, illustrated in Figure 1-1, are as follows:
• High Functional Integration on a Single Piece of Silicon
• CPU32—MC68020-Derived 32-Bit Central Processor Unit

— Upward Object-Code Compatible with MC68000 and MC68010
— Additional MC68020 Instructions and Addressing Modes
— Unique Embedded Control Instructions
— Fast Two-Clock Register Instructions—10,045 Dhrystones

• Two-Channel Low-Latency DMA Controller for High-Speed Memory Transfers
— Single- or Dual-Address Transfers
— 32-Bit Addresses and Counters
— 8-, 16-, and 32-Bit Data Transfers
— 50 Mbyte/Sec Sustained Transfers (12.5 Mbyte/Sec Memory-to-Memory)

• Two-Channel Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
— Baud Rate Generators
— Modem Control
— MC68681/MC2681 Compatible
— 9.8 Mbits/Sec Maximum Transfer Rate

• Two Independent Counter/Timers
— 16-Bit Counter
— Up to 8-Bit Prescaler
— Multimode Operation
— 80-ns Resolution

• System Integration Module Incorporates Many Functions Typically Relegated to
External PALs, TTL, and ASIC, such as:
— System Configuration — External Bus Interface
— System Protection — Periodic Interrupt Timer
— Chip Select and Wait State Generation — Interrupt Response
— Clock Generation — Bus Arbitration
— Dynamic Bus Sizing — IEEE 1149.1 Boundary Scan (JTAG)
— Up to 16 Discrete I/O Lines — Power-On Reset

• 32 Address Lines, 16 Data Lines
• Power Consumption Control

— Static HCMOS Technology Reduces Power in Normal Operation
— Low Voltage Operation at 3.3 V ±0.3 V (MC68340V only)
— Programmable Clock Generator Throttles Frequency
— Unused Peripherals Can Be Turned Off
— LPSTOP Provides an Idle State for Lowest Standby Current

• 0–16.78 MHz or 0–25.16 MHz Operation
• 144-Pin Ceramic Quad Flat Pack (CQFP) or 145-Pin Plastic Pin Grid Array (PGA)

As a low voltage part, the MC68340V can operate with a 3.3-V power supply. MC68340 is
used throughout this manual to refer to both the low voltage and standard 5-V parts since
both are functionally equivalent.

1.1 M68300 FAMILY

The MC68340 is one of a series of components in the M68300 family. Other members of
the family include the MC68302, MC68330, MC68331, MC68332, and MC68333.

MOTOROLA MC68340 USER’S MANUAL 1-3

1.1.1 Organization

The M68300 family of integrated processors and controllers is built on an M68000 core
processor, an on-chip bus, and a selection of intelligent peripherals appropriate for a set of
applications. The CPU32 is a powerful central processor with nearly the performance of
the MC68020. A system integration module incorporates the external bus interface and
many of the smaller circuits that typically surround a microprocessor for address decoding,
wait-state insertion, interrupt prioritization, clock generation, arbitration, watchdog timing,
and power-on reset timing.

Each member of the M68300 family is distinguished by its selection of peripherals.
Peripherals are chosen to address specific applications but are often useful in a wide
variety of applications. The peripherals may be highly sophisticated timing or protocol
engines that have their own processors, or they may be more traditional peripheral
functions, such as UARTs and timers. Since each major function is designed in a
standalone module, each module might be found in many different M68300 family parts.
Driver software written for a module on one M68300 part can be used to run the same
module that appears on another part.

1.1.2 Advantages

By incorporating so many major features into a single M68300 family chip, a system
designer can realize significant savings in design time, power consumption, cost, board
space, pin count, and programming. The equivalent functionality can easily require 20
separate components. Each component might have 16–64 pins, totaling over 350
connections. Most of these connections require interconnects or are duplications. Each
connection is a candidate for a bad solder joint or misrouted trace. Each component is
another part to qualify, purchase, inventory, and maintain. Each component requires a
share of the printed circuit board. Each component draws power—often to drive large
buffers to get the signal to another chip. The cumulative power consumption of all the
components must be available from the power supply. The signals between the CPU and
a peripheral might not be compatible nor run from the same clock, requiring time delays or
other special design considerations.

In a M68300 family component, the major functions and glue logic are all properly
connected internally, timed with the same clock, fully tested, and uniformly documented.
Power consumption stays well under a watt, and a special standby mode drops current
well under a milliamp during idle periods. Only essential signals are brought out to pins.
The primary package is the surface-mount quad flat pack for the smallest possible
footprint; pin grid arrays are also available.

1.2 CENTRAL PROCESSOR UNIT

The CPU32 is a powerful central processor that supervises system functions, makes
decisions, manipulates data, and directs I/O. A special debugging mode simplifies
processor emulation during system debug.

1-4 MC68340 USER’S MANUAL MOTOROLA

1.2.1 CPU32

The CPU32 is an M68000 family processor specially designed for use as a 32-bit core
processor and for operation over the intermodule bus (IMB). Designers used the
MC68020 as a model and included advances of the later M68000 family processors,
resulting in an instruction execution performance of 4 MIPS (VAX-equivalent) at 25.16
MHz.

The powerful and flexible M68000 architecture is the basis of the CPU32. MC68000
(including the MC68HC000 and the MC68EC000) and MC68010 user programs will run
unmodified on the CPU32. The programmer can use any of the eight 32-bit data registers
for fast manipulation of data and any of the eight 32-bit address registers for indexing data
in memory. The CPU32 can operate on data types of single bits, binary-coded decimal
(BCD) digits, and 8, 16, and 32 bits. Peripherals and data in memory can reside anywhere
in the 4-Gbyte linear address space. A supervisor operating mode protects system-level
resources from the more restricted user mode, allowing a true virtual environment to be
developed.

Flexible instructions for data movement, arithmetic functions, logical operations, shifts and
rotates, bit set and clear, conditional and unconditional program branches, and overall
system control are supported, including a fast 32 × 32 multiply and 32-bit conditional
branches. New instructions, such as table lookup and interpolate and low power stop,
support the specific requirements of embedded control applications. Many addressing
modes complement these instructions, including predecrement and postincrement, which
allow simple stack and queue maintenance and scaled indexed for efficient table
accesses. Data types and addressing modes are supported orthogonally by all data
operations and with all appropriate addressing modes. Position-independent code is easily
written.

The CPU32 is specially optimized to run with the MC68340's 16-bit data bus. Most
instructions execute in one-half the number of clocks compared to the original MC68000,
yielding an overall 1.6 times the performance of the same-speed MC68000 and measuring
10,045 Dhrystones/sec @ 25.16 MHz (6,742 Dhrystones/sec @ 16.78 MHz).

Like all M68000 family processors, the CPU32 recognizes interrupts of seven different
priority levels and allows the peripheral to vector the processor to the desired service
routine. Internal trap exceptions ensure proper instruction execution with good addresses
and data, allow operating system intervention in special situations, and permit instruction
tracing. Hardware signals can either terminate or rerun bad memory accesses before
instructions process data incorrectly.

The CPU32 offers the programmer full 32-bit data processing performance with complete
M68000 compatibility, yet with more compact code than is available with RISC
processors. The CPU32 is identical in all CPU32-based M68300 family products.

1.2.2 Background Debug Mode

 A special operating mode is available in the CPU32 in which normal instruction execution
is suspended while special on-chip microcode performs the functions of a debugger.

MOTOROLA MC68340 USER’S MANUAL 1-5

Commands are received over a dedicated, high-speed, full-duplex serial interface.
Commands allow the manual reading or writing of CPU32 registers, reading or writing of
external memory locations, and diversion to user-specified patch code. This background
debug mode permits a much simpler emulation environment while leaving the processor
chip in the target system, running its own debugging operations.

1.3 ON-CHIP PERIPHERALS

To improve total system throughput and reduce part count, board size, and cost of system
implementation, the M68300 family integrates on-chip, intelligent peripheral modules and
typical glue logic. These functions on the MC68340 include the SIM40, a DMA controller,
a serial module, and two timers.

The processor communicates with these modules over the on-chip intermodule bus (IMB).
This backbone of the chip is similar to traditional external buses with address, data, clock,
interrupt, arbitration, and handshake signals. Because bus masters (like the CPU32 and
DMA), peripherals, and the SIM40 are all on the chip, the IMB ensures that
communication between these modules is fully synchronized and that arbitration and
interrupts can be handled in parallel with data transfers, greatly improving system
performance. Internal accesses across the IMB may be monitored from outside of the
chip, if desired.

Each module operates independently. No direct connections between peripheral modules
are made inside the chip; however, external connections could, for instance, link a serial
output to a DMA control line. Modules and their registers are accessed in the memory
map of the CPU32 (and DMA) for easy access by general M68000 instructions and are
relocatable. Each module may be assigned its own interrupt level, response vector, and
arbitration priority. Since each module is a self-contained design and adheres to the IMB
interface specifications, the modules may appear on other M68300 family products,
retaining the investment in the software drivers for the module.

1.3.1 System Integration Module

The MC68340 SIM40 provides the external bus interface for both the CPU32 and the
DMA. It also eliminates much of the glue logic that typically supports the microprocessor
and its interface with the peripheral and memory system. The SIM40 provides
programmable circuits to perform address decoding and chip selects, wait-state insertion,
interrupt handling, clock generation, bus arbitration, watchdog timing, discrete I/O, and
power-on reset timing. A boundary scan test capability is also provided.

1.3.1.1 EXTERNAL BUS INTERFACE. The external bus interface (EBI) handles the
transfer of information between the internal CPU32 or DMA controller and memory,
peripherals, or other processing elements in the external address space. Based on the
MC68030 bus, the external bus provides up to 32 address lines and 16 data lines.
Address extensions identify each bus cycle as CPU32 or DMA initiated, supervisor or user
privilege level, and instruction or data access. The data bus allows dynamic sizing for 8- or
16-bit bus accesses (plus 32 bits for DMA). Synchronous transfers from the CPU32 or the
DMA can be made in as little as two clock cycles. Asynchronous transfers allow the

1-6 MC68340 USER’S MANUAL MOTOROLA

memory system to signal the CPU32 or DMA when the transfer is complete and to note
the number of bits in the transfer. An external master can arbitrate for the bus using a
three-line handshaking interface.

1.3.1.2 SYSTEM CONFIGURATION AND PROTECTION. The M68000 family of
processors is designed with the concept of providing maximum system safeguards.
System configuration and various monitors and timers are provided in the MC68340.
Power-on reset circuitry is a part of the SIM40. A bus monitor ensures that the system
does not lock up when there is no response to a memory access. The bus fault monitor
can reset the processor when a catastrophic bus failure occurs. Spurious interrupts are
detected and handled appropriately. A software watchdog can pull the processor out of an
infinite loop. An interrupt can be sent to the CPU32 with programmable regularity for
DRAM refresh, time-of-day clock, task switching, etc.

1.3.1.3 CLOCK SYNTHESIZER. The clock synthesizer generates the clock signals used
by all internal operations as well as a clock output used by external devices. The clock
synthesizer can operate with an inexpensive 32768-Hz watch crystal or an external
oscillator for reference, using an internal phase-locked loop and voltage-controlled
oscillator. At any time, software can select clock frequencies from 131 kHz to 16.78 MHz
or 25.16 MHz, favoring either low power consumption or high performance. Alternately, an
external clock can drive the clock signal directly at the operating frequency. With its fully
static HCMOS design, it is possible to completely stop the system clock without losing the
contents of the internal registers.

1.3.1.4 CHIP SELECT AND WAIT STATE GENERATION. Four programmable chip
selects provide signals to enable external memory and peripheral circuits, providing all
handshaking and timing signals with up to 175-ns access times with a 25-MHz system
clock (265 ns @ 16.78 MHz). Each chip select signal has an associated base address and
an address mask that determine the addressing characteristics of that chip select.
Address space and write protection can be selected for each. The block size can be
selected from 256 bytes up to 4 Gbytes in increments of 2n. Accesses can be preselected
for either 8- or 16-bit transfers. Fast synchronous termination or up to three wait states
can be programmed, whether or not the chip select signals are used. External
handshakes can also signal the end of a bus transfer. A system can boot from reset out of
8-bit-wide memory, if desired.

1.3.1.5 INTERRUPT HANDLING. Seven input signals are provided to trigger an external
interrupt, one for each of the seven priority levels supported. Seven separate outputs can
indicate the priority level of the interrupt being serviced. An input can direct the processor
to a default service routine, if desired. Interrupts at each priority level can be
preprogrammed to go to the default service routine. For maximum flexibility, interrupts can
be vectored to the correct service routine by the interrupting device.

1.3.1.6 DISCRETE I/O PINS. When not used for other functions, 16 pins can be
programmed as discrete input or output lines. Additionally, in other peripheral modules,
pins for otherwise unused functions can often be used for general input/output.

MOTOROLA MC68340 USER’S MANUAL 1-7

1.3.1.7 IEEE 1149.1 TEST ACCESS PORT. To aid in system diagnostics, the MC68340
includes dedicated user-accessible test logic that is fully compliant with the IEEE 1149.1
standard for boundary scan testability, often referred to as JTAG (Joint Test Action
Group).

1.3.2 Direct Memory Access Module

The most distinguishing MC68340 characteristic is the high-speed 32-bit DMA controller,
used to quickly move large blocks of data between internal peripherals, external
peripherals, or memory without processor intervention. The DMA module consists of two,
independent, programmable channels. Each channel has separate request, acknowledge,
and done signals. Each channel can operate in a single-address or a dual-address (flyby)
mode.

In single-address mode, only one (the source or the destination) address is provided, and
a peripheral device such as a serial communications controller receives or supplies the
data. An external request must start a single-address transfer. In this mode, each channel
supports 32 bits of address and 8, 16, or 32 bits of data.

In dual-address mode, two bus transfers occur, one from a source device and the other to
a destination device. Dual-address transfers can be started by either an internal or
external request. In this mode, each channel supports 32 bits of address and 8 or 16 bits
of data (32 bits require external logic). The source and destination port size can be
selected independently; when they are different, the data will be packed or unpacked. An
8-bit disk interface can be read twice before the concatenated 16-bit result is passed into
memory.

Byte, word, and long-word counts up to 32 bits can be transferred. All addresses and
transfer counters are 32 bits. Addresses increment or remain constant, as programmed.
The DMA channels support two external request modes, burst transfer and cycle steal.
Internal requests can be programmed to occupy 25, 50, 75, or 100 percent of the data bus
bandwidth. Interrupts can be programmed to postpone DMA completion.

The DMA module can sustain a transfer rate of 12.5 Mbytes/sec in dual-address mode
and nearly 50 Mbytes/sec in single-address mode @ 25.16 MHz (8.4 and 33.3 Mbytes/sec
@ 16.78 MHz, respectively). The DMA controller arbitrates with the CPU32 for the bus in
parallel with existing bus cycles and is fully synchronized with the CPU32, eliminating all
delays normally associated with bus arbitration by allowing DMA bus cycles to butt
seamlessly with CPU bus cycles.

1.3.3 Serial Module

Most digital systems use serial I/O to communicate with host computers, operator
terminals, or remote devices. The MC68340 contains a two-channel, full-duplex USART.
An on-chip baud rate generator provides standard baud rates up to 76.8k baud
independently to each channel's receiver and transmitter. The module is functionally
equivalent to the MC68681/MC2681 DUART.

1-8 MC68340 USER’S MANUAL MOTOROLA

Each communication channel is completely independent. Data formats can be 5, 6, 7, or 8
bits with even, odd, or no parity and stop bits up to 2 in 1/16 increments. Four-byte receive
buffers and two-byte transmit buffers minimize CPU service calls. A wide variety of error
detection and maskable interrupt capability is provided on each channel. Full-duplex,
autoecho loopback, local loopback, and remote loopback modes can be selected.
Multidrop applications are supported.

A 3.6864-MHz crystal drives the baud rate generators. Each transmit and receive channel
can be programmed for a different baud rate, or an external 1× and 16× clock input can be
selected. Full modem support is provided with separate request-to-send (RTS) and clear-
to-send (CTS) signals for each channel. One channel also provides service request
signals. The two serial ports can sustain rates of 9.8 Mbps with a 25-MHz system clock in
1× mode, 612 kbps in 16× mode (6.5 Mbps and 410 kbps @ 16.78 MHz).

1.3.4 Timer Modules

Timers and counters are used in a system to monitor elapsed time, generate waveforms,
measure signals, keep time-of-day clocks, initiate DRAM refresh cycles, count events, and
provide “time slices” to ensure that no task dominates the activity of the processor. A
counter that counts clock pulses makes a timer, which is most useful when it causes
certain actions to occur in response to reaching desired counts.

The MC68340 has two, identical, versatile, on-chip counter/timers as well as a simple
timer in the SIM40. These general-purpose counter/timers can be used for precisely timed
events without the errors to which software-based counters and timers are susceptible—
e.g., errors caused by dynamic memory refreshing, DMA cycle steals, and interrupt
servicing. The programmable timer operating modes are input capture, output compare,
square-wave generation, variable duty-cycle square-wave generation, variable-width
single-shot pulse generation, event counting, period measurement, and pulse-width
measurement.

Each timer consists of a 16-bit countdown counter with an 8-bit countdown prescaler for a
composite 24-bit resolution. The two timers can be externally cascaded for a maximum
count width of 48 bits. The counter/timer can be clocked by the internal system clock
generated by the SIM40 (÷2) or by an external clock input. Either the processor or external
stimuli can trigger the starting and stopping of the counter. When a counter reaches a
predetermined value, either an external output signal can be driven, or an interrupt can be
made to the CPU32. The finest resolution of the timer is 80 ns with a 25-MHz system
clock (125 ns @ 16.78 MHz).

1.4 POWER CONSUMPTION MANAGEMENT

The MC68340 is very power efficient due to its advanced 0.8-µ HCMOS process
technology and its static logic design. The resulting power consumption is typically
900 mW in full operation @ 25 MHz (650 mW @ 16.78 MHz)—far less than the
comparable discrete component implementation the MC68340 can replace. For
applications employing reduced voltage operation, selection of the MC68340V, which

MOTOROLA MC68340 USER’S MANUAL 1-9

requires only a 3.3-V power supply, reduces current consumption by 40–60% in all modes
of operation (as well as reducing noise emissions).

The MC68340 has many additional methods of dynamically controlling power
consumption during operation. The frequency of operation can be lowered under software
control to reduce current consumption when performance is less critical. Idle internal
peripheral modules can be turned off to save power (5–10% each). Running a special low
power stop (LPSTOP) instruction shuts down the active circuits in the CPU and peripheral
modules, halting instruction execution. Power consumption in this standby mode is
reduced to about 350 µW. Processing and power consumption can be resumed by
resetting the part or by generating an interrupt with the SIM40's periodic interrupt timer.

1.5 PHYSICAL

The MC68340 is available as 0–16.78 MHz and 0–25.16 MHz, 0°C to +70°C and -40°C to
+85°C, and 5.0 V ±5% and 3.3 V ±0.3 supply voltages (reduced frequencies at 3.3 V).

Thirty-two power and ground leads minimize ground bounce and ensure proper isolation
of different sections of the chip, including the clock oscillator. A 144 pins are used for
signals and power. The MC68340 is available in a gull-wing ceramic quad flat pack
(CQFP) with 25.6-mil (0.001-in) lead spacing or a 15 × 15 plastic pin grid array (PPGA)
with 0.1-in pin spacing.

1.6 COMPACT DISC-INTERACTIVE

The MC68340 was designed to meet the needs of many markets, including compact disc-
interactive (CD-I). CD-I is an emerging standard for a publishing medium that will bring
multimedia to a broad general audience—the consumer. CD-I players combine television
and stereo systems as output devices, with interactive control using a TV remote-control-
like device to provide a multimedia experience selected from software “titles” contained in
compressed form on standard compact discs.

The highly integrated MC68340 is ideal as the central processor for CD-I players. It
provides the M68000 microprocessor code compatibility and DMA functions required by
the CD-I Green Book specification as well as many other useful on-chip functions for a
very cost-effective solution. The extra demands of full-motion video CD-I systems make
the best use of the MC68340 high performance. The MC68340 is CD-I compliant and has
been CD-I qualified. With its low voltage operation, the MC68340V is the only practical
choice for portable CD-I.

1-10 MC68340 USER’S MANUAL MOTOROLA

1.7 MORE INFORMATION

The following table lists available documentation related to the MC68340:

Document Number Document Name

BR1114/D M68300 Integrated Processor Family

MC68340/D MC68340 Technical Summary

MC68340UM/AD MC68340 User's Manual

M68000PM/AD M68000 Family Programmer's Reference Manual

AN1063/D DRAM Controller for the MC68340

AN453 Software Implementation of SPI on the MC68340

BR573/D M68340 Evaluation System Product Brief

BR729/D The 68K Source

BR1407/D 3.3 Volt Logic and Interface Circuits

MOTOROLA MC68340 USER’S MANUAL 2-1

SECTION 2
SIGNAL DESCRIPTIONS

This section contains brief descriptions of the MC68340 input and output signals in their
functional groups as shown in Figure 2-1.

CPU32

CORE

TWO-CHANNEL

SERIAL
I/O

TWO-CHANNEL
DMA

CONTROLLER

TIMER
MODULE

IMB

RxDB

RxDA

TxDB

TxDA

CTSB

CTSA

SC
LK

X2 X1BK
PT

/D
SC

LK

FR
EE

ZE
IP

IP
E/

D
SO

IF
ET

C
H

/D
SI

D
R

EQ
2

D
R

EQ
1

D
AC

K2

D
AC

K1

D
O

N
E2

D
O

N
E1

TG
AT

E1

TG
AT

E2

TI
N

1

TI
N

2

TO
U

T1

TO
U

T2

PORT A

A31/PORT A7/IACK7
A30/PORT A6/IACK6
A29/PORT A5/IACK5
A28/PORT A4/IACK4
A27/PORT A3/IACK3
A26/PORT A2/IACK2
A25/PORT A1/IACK1

A24/PORT A0

PORT B

IRQ7/PORT B7
IRQ6/PORT B6
IRQ5/PORT B5
IRQ3/PORT B3

CS3/IRQ4/PORT B4
CS2/IRQ2/PORT B2
CS1/IRQ1/PORT B1

CS0/AVEC
MODCK/PORT B0

 E
XT

AL

XT
AL

C
LK

O
U

T

EXTERNAL

BUS
INTERFACE

BUS

ARBITRATION

CLOCK

SYSTEM

INTEGRATION
MODULE

TEST

TC
K

TM
S

TD
I

TD
O

A23–A0

FC3–FC0

D15–D0

RESET

BERR

HALT
AS

DS
R/W
SIZ1

SIZ0
DSACK1
DSACK0

BR
BG

BGACK
RMC

OUTPUT
PORT

TxRDYA/OP6
RxRDYA/FFULLA/OP4
RTSB/OP1
RTSA/OP0

TIMER
MODULE

XF
C

Figure 2-1. Functional Signal Groups

2-2 MC68340 USER’S MANUAL MOTOROLA

2.1 SIGNAL INDEX

The input and output signals for the MC68340 are listed in Table 2-1. The name,
mnemonic, and brief functional description are presented. For more detail on each signal,
refer to the signal paragraph. Guaranteed timing specifications for the signals listed in
Table 2-1 can be found in Section 11 Electrical Characteristics .

Table 2-1. Signal Index

Signal Name Mnemonic Function
Input/

Output

Address Bus A23–A0 Lower 24 bits of the address bus Out

Address Bus/Port A7–A0/
Interrupt Acknowledge

A31–A24 Upper eight bits of the address bus, parallel I/O port, or
interrupt acknowledge lines

Out/I/O/Out

Data Bus D15–D0 The 16-bit data bus used to transfer byte or word data I/O

Function Codes FC3–FC0 Identify the processor state and the address space of the
current bus cycle

Out

Chip Select 3–1/
Interrupt Request Level/
Port B4, B2, B1

CS3–CS1 Enables peripherals at programmed addresses, interrupt
priority level to the CPU32, or parallel I/O port

Out/In/
I/O

Chip Select 0/Autovector CS0 Enables peripherals at programmed addresses or
requests an automatic vector

Out/In

Bus Request BR Indicates that an external device requires bus mastership In

Bus Grant BG Indicates that current bus cycle is complete and the
MC68340 has relinquished the bus

Out

Bus Grant Acknowledge BGACK Indicates that an external device has assumed bus
mastership

In

Data and Size
Acknowledge

DSACK1,
DSACK0

Provides asynchronous data transfers and dynamic bus
sizing

In

Read-Modify-Write Cycle RMC Identifies the bus cycle as part of an indivisible read-
modify-write operation

Out

Address Strobe AS Indicates that a valid address is on the address bus Out

Data Strobe DS During a read cycle, DS indicates that an external device
should place valid data on the data bus. During a write
cycle, DS indicates that valid data is on the data bus.

Out

Size SIZ1, SIZ0 Indicates the number of bytes remaining to be transferred
for this cycle

Out

Read/Write R/W Indicates the direction of data transfer on the bus Out

Interrupt Request Level/
Port B7, B6, B5, B3

IRQ7, IRQ6,
IRQ5, IRQ3

Provides an interrupt priority level to the CPU32 or
becomes a parallel I/O port

In/I/O

Reset RESET System reset I/O

Halt HALT Suspends external bus activity I/O

Bus Error BERR Indicates an invalid bus operation is being attempted In

System Clock CLKOUT System clock out Out

Crystal Oscillator EXTAL, XTAL Connections for an external crystal or oscillator to the
internal oscillator circuit

In, Out

External Filter Capacitor XFC Connection pin for an external capacitor to filter the circuit
of the phase-locked loop

In

MOTOROLA MC68340 USER’S MANUAL 2-3

Table 2-1. Signal Index (Continued)

Signal Name Mnemonic Function
Input/

Output

Clock Mode Select/
Port B0

MODCK Selects the source of the internal system clock upon reset
or becomes a parallel I/O port

In/I/O

Instruction Fetch/
Development Serial In

IFETCH/DSI Indicates when the CPU32 is performing an instruction
word prefetch and when the instruction pipeline has been
flushed or provides background debug mode serial in

Out/In

Instruction Pipe/
Development Serial Out

IPIPE/DSO Used to track movement of words through the instruction
pipeline or provides background debug mode serial out

Out/Out

Breakpoint/Development
Serial Clock

BKPT/DSCLK Signals a hardware breakpoint to the CPU32 or provides
background debug mode serial clock

In/—

Freeze FREEZE Indicates that the CPU32 has entered background debug
mode

Out

Transmit Data TxDA, TxDB Transmitter serial data output from the serial module Out

Clear-to-Send CTSA, CTSB Serial module clear-to-send inputs In

Request-to-Send/
OP1, OP0

RTSB, RTSA Channel request-to-send outputs or discrete outputs Out/Out

Serial Crystal Oscillator X1, X2 Connections for an external crystal to the serial module
internal oscillator circuit

Serial Clock SCLK External serial module clock input In

Transmitter Ready/OP6 T≈RDYA Indicates transmit buffer has a character or becomes a
parallel output

Out/Out

Receiver Ready/
FIFO Full/OP4

R≈RDYA Indicates receive buffer has a character, the receiver
FIFO buffer is full or becomes a parallel output

Out/Out/Out

DMA Request DRE

Q2, DREQ1

Input that starts a DMA process In

DMA Acknowledge DACK2,
DACK1

Output that signals an access during DMA Out

DMA Done DONE2,
DONE1

Bi-directional signal that indicates the last transfer I/O

Timer Gate TGATE2,
TGATE1

Counter enable input to timer In

Timer Input TIN2, TIN1 Time reference input to timer In

Timer Output TOUT2,
TOUT1

Output waveform from timer Out

Test Clock TCK Provides a clock for IEEE 1149.1 test logic In

Test Mode Select TMS Controls test mode operations In

Test Data In TDI Shifts in instructions and test data In

Test Data Out TDO Shifts out instructions and test data Out

Synchronizer Power VCCSYN Quiet power supply to VCO; also used to control
synthesizer mode after reset.

—

System Power Supply
and Ground

VCC, GND Power supply and ground to the MC68340 —

2-4 MC68340 USER’S MANUAL MOTOROLA

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

2.2 ADDRESS BUS

The address bus signals are outputs that define the address of the byte (or the most
significant byte) to be transferred during a bus cycle. The MC68340 places the address on
the bus at the beginning of a bus cycle. The address is valid while AS is asserted.

The address bus consists of the following two groups. Refer to Section 3 Bus Operation
for information on the address bus and its relationship to bus operation.

2.2.1 Address Bus (A23–A0)

These three-state outputs (along with A31–A24) provide the address for the current bus
cycle, except in the CPU address space.

2.2.2 Address Bus (A31–A24)

These pins can be programmed as the most significant eight address bits, port A parallel
I/O, or interrupt acknowledge signals. These pins can be used for more than one of their
multiplexed functions as long as the external demultiplexing circuit properly resolves
interaction between the different functions.

A31–A24
These pins can function as the most significant eight address bits.

Port A7–A0
These eight pins can serve as a dedicated parallel I/O port. See Section 4 System
Integration Module for more information on programming these pins.

IACK7– IACK1
The MC68340 asserts one of these pins to indicate the level of an external interrupt
during an interrupt acknowledge cycle. Peripherals can use the IACK≈ signals instead
of monitoring the address bus and function codes to determine that an interrupt
acknowledge cycle is in progress and to obtain the current interrupt level.

 2.3 DATA BUS (D15–D0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68340. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68340 on the

MOTOROLA MC68340 USER’S MANUAL 2-5

last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68340 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle.

2.4 FUNCTION CODES (FC3–FC0)

These signals are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. The function code signals are valid
while AS is asserted. See Table 2-2 for more information.

Table 2-2. Address Space Encoding

Function Code Bits

3 2 1 0 Address Spaces

0 0 0 0 Reserved (Motorola)

0 0 0 1 User Data Space

0 0 1 0 User Program Space

0 0 1 1 Reserved (User)

0 1 0 0 Reserved (Motorola)

0 1 0 1 Supervisor Data Space

0 1 1 0 Supervisor Program Space

0 1 1 1 CPU Space

1 x x x DMA Space

2.5 CHIP SELECTS (CS3–CS0)
These pins can be programmed to be chip select output signals, port B parallel I/O and
autovector input, or additional interrupt request lines. Refer to Section 4 System
Integration Module for more information on these signals.

CS3– CS0
The chip select output signals enable peripherals at programmed addresses. These
signals are inactive high (not high impedance) after reset. CS0 is the chip select for a
boot ROM containing the reset vector and initialization program. It functions as the boot
chip select immediately after reset.

IRQ4, IRQ2, IRQ1
Interrupt request lines are external interrupt lines to the CPU32. These additional
interrupt request lines are selected by the FIRQ bit in the module configuration register.

2-6 MC68340 USER’S MANUAL MOTOROLA

Port B4, B2, B1, AVEC
This signal group functions as three bits of parallel I/O and the autovector input. AVEC
requests an automatic vector during an interrupt acknowledge cycle.

2.6 INTERRUPT REQUEST LEVEL (IRQ7, IRQ6, IRQ5, IRQ3)
These pins can be programmed to be either prioritized interrupt request lines or port B
parallel I/O.

IRQ7, IRQ6, IRQ5, IRQ3
IRQ7, the highest priority, is nonmaskable. IRQ6–IRQ1 are internally maskable
interrupts. Refer to Section 5 CPU32 for more information on interrupt request lines.

Port B7, B6, B5, B3
These pins can be used as port B parallel I/O. Refer to Section 4 System Integration
Module for more information on parallel I/O signals.

2.7 BUS CONTROL SIGNALS

These signals control the bus transfer operations of the MC68340. Refer to Section 3
Bus Operation for more information on these signals.

2.7.1 Data and Size Acknowledge (DSACK1, DSACK0)

These two active-low input signals allow asynchronous data transfers and dynamic data
bus sizing between the MC68340 and external devices as listed in Table 2-3. During bus
cycles, external devices assert DSACK1 and/or DSACK0 as part of the bus protocol.
During a read cycle, this signals the MC68340 to terminate the bus cycle and to latch the
data. During a write cycle, this indicates that the external device has successfully stored
the data and that the cycle may terminate.

Table 2-3. DSACK≈ Encoding

DSACK
1

DSACK
0

Result

1 1 Insert Wait States in Current Bus Cycle
1 0 Complete Cycle—Data Bus Port Size Is 8 Bits
0 1 Complete Cycle—Data Bus Port Size Is 16 Bits
0 0 Reserved—Defaults to 16-Bit Port Size Can Be

Used for 32-Bit DMA Cycles

2.7.2 Address Strobe (AS)

AS is an output timing signal that indicates the validity of both an address on the address
bus and many control signals. AS is asserted approximately one-half clock cycle after the
beginning of a bus cycle.

MOTOROLA MC68340 USER’S MANUAL 2-7

2.7.3 Data Strobe (DS)

DS is an output timing signal that applies to the data bus. For a read cycle, the MC68340
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68340 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.

2.7.4 Transfer Size (SIZ1, SIZ0)

These output signals are driven by the bus master to indicate the number of operand
bytes remaining to be transferred in the current bus cycle as noted in Table 2-4.

Table 2-4. SIZx Signal Encoding

SIZ1 SIZ0 Transfer Size

0 1 Byte

1 0 Word

1 1 Three Byte

0 0 Long Word

2.7.5 Read/Write (R/W)

This active-high output signal is driven by the bus master to indicate the direction of a data
transfer on the bus. A logic one indicates a read from a slave device; a logic zero indicates
a write to a slave device.

2.8 BUS ARBITRATION SIGNALS

The following signals are the bus arbitration control signals used to determine the bus
master. Refer to Section 3 Bus Operation for more information on these signals.

2.8.1 Bus Request (BR)

This active-low input signal indicates that an external device needs to become the bus
master.

2.8.2 Bus Grant (BG)

Assertion of this active-low output signal indicates that the MC68340 has relinquished the
bus.

2.8.3 Bus Grant Acknowledge (BGACK)
Assertion of this active-low input indicates that an external device has become the bus
master.

2-8 MC68340 USER’S MANUAL MOTOROLA

2.8.4 Read-Modify-Write Cycle (RMC)

This output signal identifies the bus cycle as part of an indivisible read-modify-write
operation. It remains asserted during all bus cycles of the read-modify-write operation to
indicate that bus ownership cannot be transferred.

2.9 EXCEPTION CONTROL SIGNALS

These signals are used by the MC68340 to recover from an exception.

2.9.1 Reset (RESET)

This active-low, open-drain, bidirectional signal is used to initiate a system reset. An
external reset signal (as well as a reset from the SIM40) resets the MC68340 and all
external devices. A reset signal from the CPU32 (asserted as part of the RESET
instruction) resets external devices; the internal state of the CPU32 is not affected. The
on-chip modules are reset, except for the SIM40. However, the module configuration
register for each on-chip module is not altered. When asserted by the MC68340, this
signal is guaranteed to be asserted for a minimum of 512 clock cycles. Refer to Section 3
Bus Operation for a description of bus reset operation and Section 5 CPU32 for
information about the reset exception.

2.9.2 Halt (HALT)

This active-low, open-drain, bidirectional signal is asserted to suspend external bus
activity, to request a retry when used with BERR, or to perform a single-step operation. As
an output, HALT indicates a double bus fault by the CPU32. Refer to Section 3 Bus
Operation for a description of the effects of HALT on bus operation.

2.9.3 Bus Error (BERR)

This active-low input signal indicates that an invalid bus operation is being attempted or,
when used with HALT, that the processor should retry the current cycle. Refer to Section
3 Bus Operation for a description of the effects of BERR on bus operation.

2.10 CLOCK SIGNALS

These signals are used by the MC68340 for controlling or generating the system clocks.
See Section 4 System Integration Module for more information on the various clocking
methods and frequencies.

2.10.1 System Clock (CLKOUT)

This output signal is the system clock output and is used as the bus timing reference by
external devices. CLKOUT can be varied in frequency or slowed in low power stop mode
to conserve power.

MOTOROLA MC68340 USER’S MANUAL 2-9

2.10.2 Crystal Oscillator (EXTAL, XTAL)

These two pins are the connections for an external crystal to the internal oscillator circuit.
If an external oscillator is used, it should be connected to EXTAL, with XTAL left open.

2.10.3 External Filter Capacitor (XFC)

This pin is used to add an external capacitor to the filter circuit of the phase-locked loop.
The capacitor should be connected between XFC and VCCSYN.

2.10.4 Clock Mode Select (MODCK)

This pin selects the source of the internal system clock during reset. After reset, it can be
programmed to be port B parallel I/O.

MODCK
The state of this active-high input signal during reset selects the source of the internal
system clock. If MODCK is high during reset, the internal voltage-controlled oscillator
(VCO) furnishes the system clock in crystal mode. If MODCK is low during reset, an
external clock source at the EXTAL pin furnishes the system clock output in external
clock mode.

Port B0
This pin can be used as a port B parallel I/O.

2.11 INSTRUMENTATION AND EMULATION SIGNALS

These signals are used for test or software debugging. See Section 5 CPU32 for more
information on these signals and background debug mode.

2.11.1 Instruction Fetch (IFETCH)
This pin functions as IFETCH in normal operation and as DSI in background debug mode.

IFETCH
This active-low output signal indicates when the CPU32 is performing an instruction
word prefetch and when the instruction pipeline has been flushed.

DSI
This development serial input signal helps to provide serial communications for
background debug mode.

2.11.2 Instruction Pipe (IPIPE)
This pin functions as IPIPE in normal operation and as DSO in background debug mode.

2-10 MC68340 USER’S MANUAL MOTOROLA

IPIPE
This active-low output signal is used to track movement of words through the instruction
pipeline.

DSO
This development serial output signal helps to provide serial communications for
background debug mode.

2.11.3 Breakpoint (BKPT)
This pin functions as BKPT in normal operation and as DSCLK in background debug
mode.

BKPT
This active-low input signal is used to signal a hardware breakpoint to the CPU32.

DSCLK
This development serial clock input helps to provide serial communications for
background debug mode.

2.11.4 Freeze (FREEZE)

Assertion of this active-high output signal indicates that the CPU32 has acknowledged a
breakpoint and has initiated background mode operation.

2.12 DMA MODULE SIGNALS

The following signals are used by the direct memory access (DMA) controller module to
provide external handshake for either a source or destination. See Section 6 DMA
Module for additional information on these signals.

2.12.1 DMA Request (DREQ2, DREQ1)

This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQ≈ starts the DMA process.
The assertion level in external burst mode is level sensitive; in external cycle steal mode,
it is falling-edge sensitive.

2.12.2 DMA Acknowledge (DACK2, DACK1)
This active-low output is asserted by the DMA to signal to a peripheral that an operand is
being transferred in response to a previous transfer request.

2.12.3 DMA Done (DONE2, DONE1)

This active-low bidirectional signal is asserted by the DMA or a peripheral device during
any DMA bus cycle to indicate that the last data transfer is being performed. DONE≈ is an
active input in any mode. As an output, it is only active in external request mode. An
external pullup resistor is required even during operation in the internal request mode.

MOTOROLA MC68340 USER’S MANUAL 2-11

2.13 SERIAL MODULE SIGNALS

The following signals are used by the serial module for data and clock signals. See
Section 7 Serial Module for more information on these signals.

2.13.1 Serial Crystal Oscillator (X2, X1)

These pins furnish the connection to a crystal or external clock, which must be supplied
when using the baud rate generator. An external clock is connected to the X1 pin; X2 is
left floating.

2.13.2 Serial External Clock Input (SCLK)

This input can be used as the external clock input for channel A or channel B, bypassing
the baud rate generator.

2.13.3 Receive Data (RxDA, RxDB)

These signals are the receiver serial data input for each channel. Data received on this
signal is sampled on the rising edge of the clock source, with the least significant bit
received first.

2.13.4 Transmit Data (TxDA, TxDB)

These signals are the transmitter serial data output for each channel. The output is held
high ('mark' condition) when the transmitter is disabled, idle, or operating in the local
loopback mode. Data is shifted out on this signal at the falling edge of the clock source,
with the least significant bit transmitted first.

2.13.5 Clear to Send (CTSA, CTSB)
These active-low signals can be programmed as the clear-to-send inputs for each
channel.

2.13.6 Request to Send (RTSA, RTSB)
These active-low signals can be programmed as request-to-send outputs or used as
discrete outputs.

RTSB, RTSA
When used for this function, these signals function as the request-to-send outputs.

OP1, OP0
When used for this function, these outputs are controlled by the value of bit 1 and bit 0,
respectively, in the output port data registers.

2.13.7 Transmitter Ready (T≈RDYA)
This active-low output can be programmed as the channel A transmitter ready status
indicator or used as a discrete output.

2-12 MC68340 USER’S MANUAL MOTOROLA

T≈RDYA
When used for this function, this signal reflects the complement of the status of bit 2 of
the channel A status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the transmitter contains a character.

OP6
When used for this function, this output is controlled by bit 6 in the output port data
registers.

2.13.8 Receiver Ready (R≈RDYA)
This active-low output signal can be programmed as the channel A receiver ready,
channel A FIFO full indicator, or a dedicated parallel output.

R≈RDYA
When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver contains a character.

FFULLA
When used for this function, this signal reflects the complement of the status of bit 1 of
the interrupt status register. This signal can be used to control parallel data flow by
acting as an interrupt to indicate when the receiver FIFO is full.

OP4
When used for this function, this output is controlled by bit 4 in the output port data
registers.

2.14 TIMER SIGNALS

The following external signals are used by the timer modules. See Section 8 Timer
Modules for additional information on these signals.

2.14.1 Timer Gate (TGATE2, TGATE1)

These active-low inputs can be programmed to enable and disable the counters and
prescalers. TGATE≈ can also be programmed as a simple input.

2.14.2 Timer Input (TIN2, TIN1)

These inputs can be programmed as clocks that cause events to occur in the counters
and prescalers.

2.14.3 Timer Output (TOUT2, TOUT1)

These outputs drive the various output waveforms generated by the timers.

MOTOROLA MC68340 USER’S MANUAL 2-13

2.15 TEST SIGNALS

The following signals are used with the on-board test logic defined by the IEEE 1149.1
standard. See Section 9 IEEE 1149.1 Test Access Port for more information on the use
of these signals.

2.15.1 Test Clock (TCK)

This input provides a clock for on-board test logic defined by the IEEE 1149.1 standard.

2.15.2 Test Mode Select (TMS)

This input controls test mode operations for on-board test logic defined by the IEEE
1149.1 standard.

2.15.3 Test Data In (TDI)

This input is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.

2.15.4 Test Data Out (TDO)

This output is used for serial test instructions and test data for on-board test logic defined
by the IEEE 1149.1 standard.

2.16 SYNTHESIZER POWER (VCCSYN)

This pin supplies a quiet power source to the VCO to provide greater frequency stability. It
is also used to control the synthesizer mode after reset. See Section 4 System
Integration Module for more information.

2.17 SYSTEM POWER AND GROUND (VCC AND GND)

These pins provide system power and ground to the MC68340. Multiple pins are provided
for adequate current capability. All power supply pins must have adequate bypass
capacitance for high-frequency noise suppression.

2.18 SIGNAL SUMMARY

Table 2-5 presents a summary of all the signals discussed in the preceding paragraphs.

2-14 MC68340 USER’S MANUAL MOTOROLA

Table 2-5. Signal Summary

Signal Name Mnemonic Input/Output Active State Three-State

Address Bus A23–A0 Out — Yes

Address Bus Port A7–A0/
Interrupt Acknowledge

A31–A24 Out/I/O/Out —/—/Low Yes

Data Bus D15–D0 I/O — Yes

Function Codes FC3–FC0 Out — Yes

Chip Select 3/Interrupt Request
Level/Port B4, B2, B1

CS3–CS1 Out/In/I/O Low/Low/— No

Chip Select 0/Autovector CS0 Out/In Low/Low No

Bus Request BR In Low —

Bus Grant BG Out Low No

Bus Grant Acknowledge BGACK In Low —

Data and Size Acknowledge DSACK1,
DSACK0

In Low —

Read-Modify-Write Cycle RMC Out Low Yes

Address Strobe AS Out Low Yes

Data Strobe DS Out Low Yes

Size SIZ1, SIZ0 Out — Yes

Read/Write R/W Out High/Low Yes

Interrupt Request Level/
Port B7, B6, B5, B3

IRQ7, IRQ6,
IRQ5, IRQ3

In/I/O Low/— —

Reset RESET I/O Low No

Halt HALT I/O Low No

Bus Error BERR In Low —

System Clock CLKOUT Out — No

Crystal Oscillator EXTAL, XTAL In, Out — —

External Filter Capacitor XFC In — —

Clock Mode Select/Port B0 MODCK In/I/O —/— —

Instruction Fetch/
Development Serial In

IFETCH/DSI Out/In Low/— No/—

Instruction Pipe/
Development Serial Out

IPIPE/DSO Out/Out Low/— No/—

Breakpoint/
Development Serial Clock

BKPT/DSCLK In/In Low/— —/—

Freeze FREEZE Out High No

Receive Data RxDA, RxDB In — —

MOTOROLA MC68340 USER’S MANUAL 2-15

Table 2-5. Signal Summary (Continued)

Signal Name Mnemonic Input/Output Active State Three-State

Transmit Data TxDA, TxDB Out — No

Clear-to-Send CTSA, CTSB In Low —

Request-to-Send/
OP1, OP0

RTSB, RTSA Out/Out Low/— No

Serial Clock SCLK In — —

Transmitter Ready/OP6 T≈RDYA Out/Out Low/— No

Receiver Ready/
FIFO Full/OP4

R≈RDYA Out/Out/Out Low/Low/— No

DMA Request DREQ2, DREQ1 In Low —

DMA Acknowledge DACK2, DACK1 Out Low No

DMA Done DONE2, DONE1 I/O Low No

Timer Gate TGATE2,
TGATE1

In Low —

Timer Input TIN2, TIN1 In — —

Timer Output TOUT2, TOUT1 Out — Yes

Test Clock TCK In — —

Test Mode Select TMS In High —

Test Data In TDI In High —

Test Data Out TDO Out High —

Synchronizer Power VCCSYN – — —

System Power Supply and
Return

VCC, GND – — —

MOTOROLA MC68340 USER’S MANUAL 3-1

SECTION 3
BUS OPERATION

This section provides a functional description of the bus, the signals that control it, and the
bus cycles provided for data transfer operations. It also describes the error and halt
conditions, bus arbitration, and reset operation. Operation of the external bus is the same
whether the MC68340 or an external device is the bus master; the names and
descriptions of bus cycles are from the viewpoint of the bus master. For exact timing
specifications, refer to Section 11 Electrical Characteristics.

The MC68340 architecture supports byte, word, and long-word operands allowing access
to 8- and 16-bit data ports through the use of asynchronous cycles controlled by the
SIZ1/SIZ0 outputs and DSACK1/DSACK0 inputs. The MC68340 requires word and long-
word operands to be located in memory on word boundaries. The only type of transfer that
can be performed to an odd address is a single-byte transfer, referred to as an odd-byte
transfer. For an 8-bit port, multiple bus cycles may be required for an operand transfer due
to either misalignment or a word or long-word operand.

3.1 BUS TRANSFER SIGNALS

The bus transfers information between the MC68340 and external memory or a peripheral
device. External devices can accept or provide 8 bits or 16 bits in parallel and must follow
the handshake protocol described in this section. The maximum number of bits accepted
or provided during a bus transfer is defined as the port width. The MC68340 contains an
address bus that specifies the address for the transfer and a data bus that transfers the
data. Control signals indicate the beginning and type of the cycle as well as the address
space and size of the transfer. The selected device then controls the length of the cycle
with the signal(s) used to terminate the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of the address and provide timing information
for the data. Both asynchronous and synchronous operation is possible for any port width.
In asynchronous operation, the bus and control input signals are internally synchronized to
the MC68340 clock, introducing a delay. This delay is the time required for the MC68340
to sample an input signal, synchronize the input to the internal clocks, and determine
whether it is high or low. In synchronous mode, the bus and control input signals must be
timed to setup and hold times. Since no synchronization is needed, bus cycles can be
completed in three clock cycles in this mode. Additionally, using the fast-termination option
of the chip select signals, two-clock operation is possible.

Furthermore, for all inputs, the MC68340 latches the level of the input during a sample
window around the falling edge of the clock signal. This window is illustrated in Figure 3-1,
where tsu and th are the input setup and hold times, respectively. To ensure that an input
signal is recognized on a specific falling edge of the clock, that input must be stable during

3-2 MC68340 USER’S MANUAL MOTOROLA

the sample window. If an input makes a transition during the window time period, the level
recognized by the MC68340 is not predictable; however, the MC68340 always resolves
the latched level to either a logic high or low before using it. In addition to meeting input
setup and hold times for deterministic operation, all input signals must obey the protocols
described in this section.

SAMPLE WINDOW

tsu

th

CLKOUT

EXT

Figure 3-1. Input Sample Window

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

3.1.1 Bus Control Signals

The MC68340 initiates a bus cycle by driving the A31–A0, SIZx, FCx, and R/W outputs. At
the beginning of a bus cycle, SIZ1 and SIZ0 are driven with FC3–FC0. SIZ1 and SIZ0
indicate the number of bytes remaining to be transferred during an operand cycle
(consisting of one or more bus cycles). Table 3-1 lists the encoding of the SIZx signal.
These signals are valid while AS is asserted. The R/W signal determines the direction of
the transfer during a bus cycle. Driven at the beginning of a bus cycle, R/W is valid while
AS is asserted. R/W only transitions when a write cycle is preceded by a read cycle or
vice versa. The signal may remain low for consecutive write cycles. The RMC signal is
asserted at the beginning of the first bus cycle of a read-modify-write operation and
remains asserted until completion of the final bus cycle of the operation.

MOTOROLA MC68340 USER’S MANUAL 3-3

Table 3-1. SIZx Signal Encoding

SIZ1 SIZ0 Transfer Size

0 1 Byte

1 0 Word

1 1 Three Bytes

0 0 Long Word

3.1.2 Function Code Signals

FC3–FC0 are outputs that indicate one of 16 address spaces to which the address
applies. Fifteen of these spaces are designated as either user or supervisor, program or
data, and normal or direct memory access (DMA) spaces. One other address space is
designated as CPU space to allow the CPU32 to acquire specific control information not
normally associated with read or write bus cycles. FC3–FC0 are valid while AS is
asserted.

Function codes (see Table 3-2) can be considered as extensions of the 32-bit address
that can provide up to 16 different 4-Gbyte address spaces. Function codes are
automatically generated by the CPU32 to select address spaces for data and program at
both user and supervisor privilege levels, a CPU address space for processor functions,
and an alternate master address space. User programs access only their own program
and data areas to increase protection of system integrity and can be restricted from
accessing other information. The S-bit in the CPU32 status register is set for supervisor
accesses and cleared for user accesses to provide differentiation. Refer to 3.4 CPU
Space Cycles for more information.

Table 3-2. Address Space Encoding

Function Code Bits

3 2 1 0 Address Spaces

0 0 0 0 Reserved (Motorola)

0 0 0 1 User Data Space

0 0 1 0 User Program Space

0 0 1 1 Reserved (User)

0 1 0 0 Reserved (Motorola)

0 1 0 1 Supervisor Data Space

0 1 1 0 Supervisor Program Space

0 1 1 1 CPU Space

1 x x x DMA Space

3-4 MC68340 USER’S MANUAL MOTOROLA

3.1.3 Address Bus (A31–A0)

These signals are outputs that define the address of the byte (or the most significant byte)
to be transferred during a bus cycle. The MC68340 places the address on the bus at the
beginning of a bus cycle. The address is valid while AS is asserted.

3.1.4 Address Strobe (AS)

This output timing signal indicates the validity of many control signals and the address on
the address bus. AS is asserted approximately one-half clock cycle after the beginning of
a bus cycle.

3.1.5 Data Bus (D15–D0)

This bidirectional, nonmultiplexed, parallel bus contains the data being transferred to or
from the MC68340. A read or write operation may transfer 8 or 16 bits of data (one or two
bytes) in one bus cycle. During a read cycle, the data is latched by the MC68340 on the
last falling edge of the clock for that bus cycle. For a write cycle, all 16 bits of the data bus
are driven, regardless of the port width or operand size. The MC68340 places the data on
the data bus approximately one-half clock cycle after AS is asserted in a write cycle.

3.1.6 Data Strobe (DS)

DS is an output timing signal that applies to the data bus. For a read cycle, the MC68340
asserts DS and AS simultaneously to signal the external device to place data on the bus.
For a write cycle, DS signals to the external device that the data to be written is valid. The
MC68340 asserts DS approximately one clock cycle after the assertion of AS during a
write cycle.

3.1.7 Bus Cycle Termination Signals

The following signals can terminate a bus cycle.

3.1.7.1 DATA TRANSFER AND SIZE ACKNOWLEDGE SIGNALS (DSACK1 AND
DSACK0). During bus cycles, external devices assert DSACK1 and/or DSACK0 as part
of the bus protocol. During a read cycle, this signals the MC68340 to terminate the bus
cycle and to latch the data. During a write cycle, this indicates that the external device has
successfully stored the data and that the cycle may terminate. These signals also indicate
to the MC68340 the size of the port for the bus cycle just completed (see Table 3-3). Refer
to 3.3.1 Read Cycle for timing relationships of DSACK1 and DSACK0.

Additionally, the system integration module (SIM40) chip select address mask register can
be programmed to internally generate DSACK1 and DSACK0 for external accesses,
eliminating logic required to generate these signals. However, if external DSACK≈ signals
are returned earlier than indicated by the DD bits in the chip select address mask register,
the cycle will terminate sooner than programmed. Refer to Section 4 System Integration
Module for additional information. The SIM40 can alternatively be programmed to
generate a fast termination cycle, providing a two-cycle external access. Refer to 3.2.6
Fast Termination Cycles for additional information on these cycles.

MOTOROLA MC68340 USER’S MANUAL 3-5

3.1.7.2 BUS ERROR (BERR) . This signal is also a bus cycle termination indicator and
can be used in the absence of DSACK≈ to indicate a bus error condition. BERR can also
be asserted in conjunction with DSACK≈ to indicate a bus error condition, provided it
meets the appropriate timing described in this section and in Section 11 Electrical
Characteristics. Additionally, BERR and HALT can be asserted together to indicate a
retry termination. Refer to 3.5 Bus Exception Control Cycles for additional information
on the use of these signals.

The internal bus monitor can be used to generate an internal bus error signal for internal
and internal-to-external transfers. If the bus cycles of an external bus master are to be
monitored, external BERR generation must be provided since the internal bus error
monitor has no information about transfers initiated by an external bus master.

3.1.7.3 AUTOVECTOR (AVEC).This signal can be used to terminate interrupt
acknowledge cycles, indicating that the MC68340 should internally generate a vector
(autovector) number to locate an interrupt handler routine. AVEC can be generated either
externally or internally by the SIM40 (see Section 4 System Integration Module for
additional information). AVEC is ignored during all other bus cycles.

3.2 DATA TRANSFER MECHANISM

The MC68340 supports byte, word, and long-word operands, allowing access to 8- and
16-bit data ports through the use of asynchronous cycles controlled by DSACK1 and
DSACK0. The MC68340 also supports byte, word, and long-word operands, allowing
access to 8- and 16-bit data ports through the use of synchronous cycles controlled by the
fast termination capability of the SIM40.

3.2.1 Dynamic Bus Sizing

The MC68340 dynamically interprets the port size of the addressed device during each
bus cycle, allowing operand transfers to or from 8- and 16-bit ports. During an operand
transfer cycle, the slave device signals its port size (byte or word) and indicates
completion of the bus cycle to the MC68340 through the use of the DSACK≈ inputs. Refer
to Table 3-3 for DSACK≈ encoding.

Table 3-3. DSACK≈ Encoding

DSACK1 DSACK0 Result

1
(Negated)

1
(Negated) Insert Wait States in Current Bus Cycle

1
(Negated)

0
(Asserted) Complete Cycle—Data Bus Port Size Is 8 Bits

0
(Asserted)

1
(Negated) Complete Cycle—Data Bus Port Size Is 16 Bits

0
(Asserted)

0
(Asserted)

Reserved—Defaults to 16-Bit Port Size Can Be
Used for 32-Bit DMA cycles

3-6 MC68340 USER’S MANUAL MOTOROLA

For example, if the MC68340 is executing an instruction that reads a long-word operand
from a 16-bit port, the MC68340 latches the 16 bits of valid data and runs another bus
cycle to obtain the other 16 bits. The operation from an 8-bit port is similar, but requires
four read cycles. The addressed device uses DSACK≈ to indicate the port width. For
instance, a 16-bit device always returns DSACK≈ for a 16-bit port (regardless of whether
the bus cycle is a byte or word operation).

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from
a particular port size be fixed. A 16-bit port must reside on data bus bits 15–0, and an 8-bit
port must reside on data bus bits 15–8. This requirement minimizes the number of bus
cycles needed to transfer data to 8- and 16-bit ports and ensures that the MC68340
correctly transfers valid data.

The MC68340 always attempts to transfer the maximum amount of data on all bus cycles;
for a word operation, it always assumes that the port is 16 bits wide when beginning the
bus cycle. The bytes of operands are designated as shown in Figure 3-2. The most
significant byte of a long-word operand is OP0, and OP3 is the least significant byte. The
two bytes of a word-length operand are OP0 (most significant) and OP1. The single byte
of a byte-length operand is OP0. These designations are used in the figures and
descriptions that follow.

Figure 3-2 shows the required organization of data ports on the MC68340 bus for both
8- and 16-bit devices. The four bytes shown in Figure 3-2 are connected through the
internal data bus and data multiplexer to the external data bus. The data multiplexer
establishes the necessary connections for different combinations of address and data
sizes. The multiplexer takes the two bytes of the 16-bit bus and routes them to their
required positions. The positioning of bytes is determined by the SIZ1/SIZ0 and A0
outputs. The SIZ1/SIZ0 outputs indicate the number of bytes to be transferred during the
current bus cycle (see Table 3-1). The number of bytes transferred during a read or write
bus cycle is equal to or less than the size indicated by the SIZ1/SIZ0 outputs, depending
on port width. For example, during the first bus cycle of a long-word transfer to a word
port, the size outputs indicate that four bytes are to be transferred although only two bytes
are moved on that bus cycle.

The address line A0 also affects the operation of the data multiplexer. During an operand
transfer, A31–A1 indicate the word base address of that portion of the operand to be
accessed, and A0 indicates the byte offset from the base (i.e., either odd or even byte).
Figure 3-2 lists the bytes required on the data bus for read cycles. The entries shown as
OPn are portions of the requested operand that are read or written during that bus cycle
and are defined by SIZ1/SIZ0 and A0 for the bus cycle.

MOTOROLA MC68340 USER’S MANUAL 3-7

OP1OP0
OP0

OP2
OP1
OP0

OP3
OP2
OP1
OP0

31
23

15
7 0

D0D8D15 D7
OP0
OP0

(OP0)
OP0
OP0

(OP0)
(OP0)
OP0

(OP1)
OP1

OP0 (OP1)
OP0 OP1

A0SIZ0SIZ1
Case

(a)
(b)
(c)
(d)
(e)
(f)
(g)

0 1 X 1 0
0 1 0 0 X
0 1 1 0 X
1 0 0 1 0
1 0 0 0 X
0 0 0 1 0
0 0 0 0 X

Transfer Case

Byte to Byte
Byte to Word (Even)
Byte to Word (Odd)
Word to Byte (Aligned)
Word to Word (Aligned)
Long Word to Byte (Aligned)
Long Word to Word (Aligned)

OPERAND

Data Bus
DSACK0DSACK1

NOTES:
 1. Operands in parentheses are ignored by the MC68340 during read cycles.
 2. A 3-byte to byte transfer does occur as the second byte transfer of a long-word to byte port transfer.

Figure 3-2. MC68340 Interface to Various Port Sizes

3.2.2 Misaligned Operands

In this architecture, the basic operand size is 16 bits. Operand misalignment refers to
whether an operand is aligned on a word boundary or overlaps the word boundary,
determined by address line A0. When A0 is low, the address is even and is a word and
byte boundary. When A0 is high, the address is odd and is a byte boundary only. A byte
operand is properly aligned at any address; a word or long-word operand is misaligned at
an odd address.

At most, each bus cycle can transfer a word of data aligned on a word boundary. If the
MC68340 transfers a long-word operand over a 16-bit port, the most significant operand
word is transferred on the first bus cycle, and the least significant operand word is
transferred on a following bus cycle.

The CPU32 restricts all operands (both data and instructions) to be aligned. That is, word
and long-word operands must be located on a word or long-word boundary, respectively.
The only type of transfer that can be performed to an odd address is a single-byte
transfer, referred to as an odd-byte transfer. If a misaligned access is attempted, the
CPU32 generates an address error exception, and enters exception processing. Refer to
Section 5 CPU32 for more information on exception processing.

3.2.3 Operand Transfer Cases

The following cases are examples of the allowable alignments of operands to ports.

3.2.3.1 BYTE OPERAND TO 8-BIT PORT, ODD OR EVEN (A0 = X). The MC68340
drives the address bus with the desired address and the SIZx pins to indicate a single-
byte operand.

3-8 MC68340 USER’S MANUAL MOTOROLA

DSACK0DSACK1A0SIZ0SIZ1
0 1 X 1 0

D0D8D15 D7
(OP0)OP0

OP0
7 0

BYTE OPERAND

DATA BUS
CYCLE 1

For a read operation, the slave responds by placing data on bits 15–8 of the data bus,
asserting DSACK0 and negating DSACK1 to indicate an 8-bit port. The MC68340 then
reads the operand byte from bits 15–8 and ignores bits 7–0.

For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the byte operand from bits 15–8 and places the operand in the
specified location. The slave then asserts DSACK0 to terminate the bus cycle.

3.2.3.2 BYTE OPERAND TO 16-BIT PORT, EVEN (A0 = 0). The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.

DSACK0DSACK1A0SIZ0SIZ1
0 1 0 0 X

D0D8D15 D7
(OP0)OP0

OP0
7 0

BYTE OPERAND

DATA BUS
CYCLE 1

For a read operation, the slave responds by placing data on bits 15–8 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68340 then reads the operand byte
from bits 15–8 and ignores bits 7–0.

For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the operand from bits 15–8 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.

MOTOROLA MC68340 USER’S MANUAL 3-9

3.2.3.3 BYTE OPERAND TO 16-BIT PORT, ODD (A0 = 1). The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a single-byte operand.

DSACK0DSACK1A0SIZ0SIZ1
0 1 1 0 X

D0D8D15 D7
(OP0) OP0

OP0
7 0

BYTE OPERAND

DATA BUS
CYCLE 1

For a read operation, the slave responds by placing data on bits 7–0 of the data bus and
asserting DSACK1 to indicate a 16-bit port. The MC68340 then reads the operand byte
from bits 7–0 and ignores bits 15–8.

For a write operation, the MC68340 drives the single-byte operand on both bytes of the
data bus because it does not know the port size until the DSACK≈ signals are read. The
slave device reads the operand from bits 7–0 of the data bus and uses the address to
place the operand in the specified location. The slave then asserts DSACK1 to terminate
the bus cycle.

3.2.3.4 WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68340 drives the address
bus with the desired address and the SIZx pins to indicate a word operand.

D0D8D15 D7
OP0
OP1

OP0 OP1
15 7 0

DSACK0DSACK1A0SIZ0SIZ1
1 0 0 1 0
0 1 1 1 0

WORD OPERAND

DATA BUS
CYCLE 1
CYCLE 2

(OP1)
(OP1)

8

For a read operation, the slave responds by placing the most significant byte of the
operand on bits 15–8 of the data bus and asserting DSACK0 to indicate an 8-bit port. The
MC68340 reads the most significant byte of the operand from bits 15–8 and ignores bits
7–0. The MC68340 then decrements the transfer size counter, increments the address,
and reads the least significant byte of the operand from bits 15–8 of the data bus.

For a write operation, the MC68340 drives the word operand on bits 15–0 of the data bus.
The slave device then reads the most significant byte of the operand from bits 15–8 of the
data bus and asserts DSACK0 to indicate that it received the data but is an 8-bit port.
The MC68340 then decrements the transfer size counter, increments the address, and
writes the least significant byte of the operand to bits 15–8 of the data bus.

3-10 MC68340 USER’S MANUAL MOTOROLA

3.2.3.5 WORD OPERAND TO 16-BIT PORT, ALIGNED. The MC68340 drives the
address bus with the desired address and the size pins to indicate a word operand.

DSACK0DSACK1A0SIZ0SIZ1
1 0 0 0 X

OP0 OP1
15 0

D0D8D15 D7
OP0 OP1

WORD OPERAND

DATA BUS
CYCLE 1

For a read operation, the slave responds by placing the data on bits 15–0 of the data bus
and asserting DSACK1 to indicate a 16-bit port. When DSACK1 is asserted, the
MC68340 reads the data on the data bus and terminates the cycle.

For a write operation, the MC68340 drives the word operand on bits 15–0 of the data bus.
The slave device then reads the entire operand from bits 15–0 of the data bus and asserts
DSACK1 to terminate the bus cycle.

3.2.3.6 LONG-WORD OPERAND TO 8-BIT PORT, ALIGNED. The MC68340 drives the
address bus with the desired address and the SIZx pins to indicate a long-word operand.

DSACK0DSACK1A0SIZ0SIZ1D0D8D15 D7

LONG-WORD OPERAND

DATA BUS

1 1 1 1 0
1 0 0 1 0
0 1 1 1 0

0 0 0 1 0

OP1OP0 OP2 OP3
31 23 15 7 0

OP0
OP1
OP2
OP3

(OP1)
(OP1)
(OP3)
(OP3)

CYCLE 2
CYCLE 3
CYCLE 4

CYCLE 1

For a read operation, shown in Figure 3-3, the slave responds by placing the most
significant byte of the operand on bits 15–8 of the data bus and asserting DSACK0 to
indicate an 8-bit port. The MC68340 reads the most significant byte of the operand (byte
0) from bits 15–8 and ignores bits 7–0. The MC68340 then decrements the transfer size
counter, increments the address, initiates a new cycle, and reads byte 1 of the operand
from bits 15–8 of the data bus. The MC68340 repeats the process of decrementing the
transfer size counter, incrementing the address, initiating a new cycle, and reading a byte
to transfer the remaining two bytes.

For a write operation, shown in Figure 3-4, the MC68340 drives the two most significant
bytes of the operand on bits 15–0 of the data bus. The slave device then reads only the
most significant byte of the operand (byte 0) from bits 15–8 of the data bus and asserts
DSACK0 to indicate reception and an 8-bit port. The MC68340 then decrements the
transfer size counter, increments the address, and writes byte 1 of the operand to bits
15–8 of the data bus. The MC68340 continues to decrement the transfer size counter,
increment the address, and write a byte to transfer the remaining two bytes to the slave
device.

MOTOROLA MC68340 USER’S MANUAL 3-11

CLKOUT

A31–A0

FC3–FC0

SIZ0

SIZ1

D15–D8

D7–D0

R/W

AS

DS

DSACK0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

OP0

4 BYTES 3 BYTES 2 BYTES 1 BYTE

BYTE
READ

BYTE
READ

BYTE
READ

BYTE
READ

OP1 OP2 OP3

LONG-WORD OPERAND READ FROM 8-BIT BUS

Figure 3-3. Long-Word Operand Read Timing from 8-Bit Port

3-12 MC68340 USER’S MANUAL MOTOROLA

CLKOUT

A31–A0

FC3–FC0

SIZ0

SIZ1

D15–D8

D7–D0

R/W

AS

DS

DSACK0

DSACK1

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

4 BYTES

OP0 OP1 OP2 OP3

(OP3) (OP3)(OP1)(OP1)

WRITE WRITE WRITE WRITE

LONG-WORD OPERAND WRITE TO 8-BIT BUS

2 BYTES 1 BYTE3 BYTES

Figure 3-4. Long-Word Operand Write Timing to 8-Bit Port

3.2.3.7 LONG-WORD OPERAND TO 16-BIT PORT, ALIGNED. Figure 3-5 shows both
long-word and word read and write timing to a 16-bit port.

LONG-WORD OPERAND

DATA BUS
CYCLE 1
CYCLE 2

DSACK0DSACK1A0SIZ0SIZ1
0 0 0 0 X
1 0 0 0 X

OP1OP0 OP2 OP3
31 23 15 7 0

D0D8D15 D7
OP0 OP1
OP2 OP3

MOTOROLA MC68340 USER’S MANUAL 3-13

CLKOUT

A31–A0

FC3–FC0

SIZ0

SIZ1

D15–D8

D7–D0

R/W

AS

DS

DSACK0

DSACK1

2 BYTES 2 BYTES 4 BYTES

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4

2 BYTES 2 BYTES

OP0

OP1

OP2

OP3

OP0

OP1

OP0 OP2 OP0

OP1OP3OP1

WORD READ
FROM 16-BIT BUS

LONG WORD WRITE TO
16-BIT BUS

WORD
WRITE TO
16-BIT BUS

LONG WORD READ
FROM 16-BIT BUS

4 BYTES

Figure 3-5. Long-Word and Word Read and Write Timing—16-Bit Port

The MC68340 drives the address bus with the desired address and drives the SIZx pins to
indicate a long-word operand. For a read operation, the slave responds by placing the two
most significant bytes of the operand on bits 15–0 of the data bus and asserting DSACK1
to indicate a 16-bit port. The MC68340 reads the two most significant bytes of the operand
(bytes 0 and 1) from bits 15–0. The MC68340 then decrements the transfer size counter
by 2, increments the address by 2, initiates a new cycle, and reads bytes 2 and 3 of the
operand from bits 15–0 of the data bus.

For a write operation, the MC68340 drives the two most significant bytes of the operand
on bits 15–0 of the data bus. The slave device then reads the two most significant bytes of
the operand (bytes 0 and 1) from bits 15–0 of the data bus and asserts DSACK1 to
indicate reception and a 16-bit port. The MC68340 then decrements the transfer size
counter by 2, increments the address by 2, and writes bytes 2 and 3 of the operand to bits
15–0 of the data bus.

3-14 MC68340 USER’S MANUAL MOTOROLA

3.2.4 Bus Operation

The MC68340 bus is asynchronous, allowing external devices connected to the bus to
operate at clock frequencies different from the clock for the MC68340. Bus operation uses
the handshake lines (AS, DS, DSACK1/DSACK0, BERR, and HALT) to control data
transfers. AS signals a valid address on the address bus, and DS is used as a condition
for valid data on a write cycle. Decoding the SIZx outputs and lower address line A0
provides strobes that select the active portion of the data bus. The slave device (memory
or peripheral) responds by placing the requested data on the correct portion of the data
bus for a read cycle or by latching the data on a write cycle; the slave asserts the
DSACK1/DSACK0 combination that corresponds to the port size to terminate the cycle.
Alternatively, the SIM40 can be programmed to assert the DSACK1/DSACK0 combination
internally and respond for the slave. If no slave responds or the access is invalid, external
control logic may assert BERR to abort the bus cycle or BERR with HALT to retry the bus
cycle.

DSACK≈ can be asserted before the data from a slave device is valid on a read cycle.
The length of time that DSACK≈ may precede data must not exceed a specified value in
any asynchronous system to ensure that valid data is latched into the MC68340. (See
Section 11 Electrical Characteristics for timing parameters.) Note that no maximum
time is specified from the assertion of AS to the assertion of DSACK≈. Although the
MC68340 can transfer data in a minimum of three clock cycles when the cycle is
terminated with DSACK≈, the MC68340 inserts wait cycles in clock-period increments
until DSACK≈ is recognized. BERR and/or HALT can be asserted after DSACK≈ is
asserted. BERR and or HALT must be asserted within the time specified after DSACK≈ is
asserted in any asynchronous system. If this maximum delay time is violated, the
MC68340 may exhibit erratic behavior.

3.2.5 Synchronous Operation with DSACK≈
Although cycles terminated with DSACK≈ are classified as asynchronous, cycles
terminated with DSACK≈ can also operate synchronously in that signals are interpreted
relative to clock edges. The devices that use these cycles must synchronize the response
to the MC68340 clock (CLKOUT) to be synchronous. Since the devices terminate bus
cycles with DSACK≈, the dynamic bus sizing capabilities of the MC68340 are available.
The minimum cycle time for these cycles is also three clocks. To support systems that use
the system clock to generate DSACK≈ and other asynchronous inputs, the asynchronous
input setup time and the asynchronous input hold time are given. If the setup and hold
times are met for the assertion or negation of a signal such as DSACK≈, the MC68340 is
guaranteed to recognize that signal level on that specific falling edge of the system clock.
If the assertion of DSACK≈ is recognized on a particular falling edge of the clock, valid
data is latched into the MC68340 (for a read cycle) on the next falling clock edge if the
data meets the data setup time. In this case, the parameter for asynchronous operation
can be ignored. The timing parameters are described in Section 11 Electrical
Characteristics.

MOTOROLA MC68340 USER’S MANUAL 3-15

If a system asserts DSACK≈ for the required window around the falling edge of S2 and
obeys the proper bus protocol by maintaining DSACK≈ (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time), no wait states are inserted. The bus cycle runs at its maximum speed for bus cycles
terminated with DSACK≈ (three clocks per cycle). When BERR (or BERR and HALT) is
asserted after DSACK≈, BERR (and HALT) must meet the appropriate setup time prior to
the falling clock edge one clock cycle after DSACK≈ is recognized. This setup time is
critical, and the MC68340 may exhibit erratic behavior if it is violated. When operating
synchronously, the data-in setup and hold times for synchronous cycles may be used
instead of the timing requirements for data relative to DS.

3.2.6 Fast Termination Cycles

With an external device that has a fast access time, the chip select circuit fast termination
enable (FTE) can provide a two-clock external bus transfer. Since the chip select circuits
are driven from the system clock, the bus cycle termination is inherently synchronized with
the system clock. Refer to Section 4 System Integration Module for more information on
chip selects.When fast termination is selected, the DD bits of the corresponding address
mask register are overridden. Fast termination can only be used with zero wait states. To
use the fast termination option, an external device should be fast enough to have data
ready, within the specified setup time, by the falling edge of S4. Figure 3-6 shows the
DSACK≈ timing for a read with two wait states, followed by a fast termination read and
write. When using the fast termination option, DS is asserted only in a read cycle, not in a
write cycle.

CLKOUT

R/W

S0 S2 SW SW S4 S0 S4 S0 S4 S0

AS

DS

DSACKx

D15–D0

S1 S3 S5 S1 S5 S1 S5SW* SW*

FAST
TERMINATION

READ

TWO WAIT STATES IN READ

 * DSACKx only internally asserted for fast termination cycles.

FAST
TERMINATION

WRITE

Figure 3-6. Fast Termination Timing

3-16 MC68340 USER’S MANUAL MOTOROLA

3.3 DATA TRANSFER CYCLES

The transfer of data between the MC68340 and other devices involves the following
signals:

• Address Bus A31–A0

• Data Bus D15–D0

• Control Signals

The address bus and data bus are parallel, nonmultiplexed buses. The bus master moves
data on the bus by issuing control signals, and the bus uses a handshake protocol to
ensure correct movement of the data. In all bus cycles, the bus master is responsible for
de-skewing all signals it issues at both the start and end of the cycle. In addition, the bus
master is responsible for de-skewing the acknowledge and data signals from the slave
devices. The following paragraphs define read, write, and read-modify-write cycle
operations. Each bus cycle is defined as a succession of states that apply to the bus
operation. These states are different from the MC68340 states described for the CPU32.
The clock cycles used in the descriptions and timing diagrams of data transfer cycles are
independent of the clock frequency. Bus operations are described in terms of external bus
states.

3.3.1 Read Cycle

During a read cycle, the MC68340 receives data from a memory or peripheral device. If
the instruction specifies a long-word or word operation, the MC68340 attempts to read two
bytes at once. For a byte operation, the MC68340 reads one byte. The section of the data
bus from which each byte is read depends on the operand size, address signal A0, and
the port size. Refer to 3.2.1 Dynamic Bus Sizing and 3.2.2 Misaligned Operands for
more information. Figure 3-7 is a flowchart of a word read cycle.

BUS MASTER
SLAVE

ADDRESS DEVICE

1. SET R/W TO READ
2. DRIVE ADDRESS ON A31–A0
3. DRIVE FUNCTION CODE ON FC3–FC0
4. DRIVE SIZE PINS FOR OPERAND SIZE

ACQUIRE DATA

1. LATCH DATA

5. ASSERT AS AND DS

START NEXT CYCLE

2. NEGATE AS AND DS

1. DECODE ADDRESS
2. PLACE DATA ON D15–D0

PRESENT DATA

3. DRIVE DSACKx SIGNALS

TERMINATE CYCLE

1. REMOVE DATA FROM D15–D0
2. NEGATE DSACKx

Figure 3-7. Word Read Cycle Flowchart

MOTOROLA MC68340 USER’S MANUAL 3-17

State 0—The read cycle starts in state 0 (S0). During S0, the MC68340 places a valid
address on A31–A0 and valid function codes on FC3–FC0. The function codes select the
address space for the cycle. The MC68340 drives R/W high for a read cycle. SIZ1/SIZ0
become valid, indicating the number of bytes requested for transfer.

State 1—One-half clock later, in state 1 (S1), the MC68340 asserts AS indicating a valid
address on the address bus. The MC68340 also asserts DS during S1. The selected
device uses R/W, SIZ1 or SIZ0, A0, and DS to place its information on the data bus. One
or both of the bytes (D15–D8 and D7–D0) are selected by SIZ1/SIZ0 and A0.

State 2—As long as at least one of the DSACK≈ signals is recognized on the falling edge
of S2 (meeting the asynchronous input setup time requirement), data is latched on the
falling edge of S4, and the cycle terminates.

State 3—If DSACK≈ is not recognized by the start of state 3 (S3), the MC68340 inserts
wait states instead of proceeding to states 4 and 5. To ensure that wait states are
inserted, both DSACK1 and DSACK0 must remain negated throughout the asynchronous
input setup and hold times around the end of S2. If wait states are added, the MC68340
continues to sample DSACK≈ on the falling edges of the clock until one is recognized.

State 4—At the falling edge of state 4 (S4), the MC68340 latches the incoming data and
samples DSACK≈ to get the port size.

State 5—The MC68340 negates AS and DS during state 5 (S5). It holds the address valid
during S5 to provide address hold time for memory systems. R/W, SIZ1 and SIZ0, and
FC3–FC0 also remain valid throughout S5. The external device keeps its data and
DSACK≈ signals asserted until it detects the negation of AS or DS (whichever it detects
first). The device must remove its data and negate DSACK≈ within approximately one
clock period after sensing the negation of AS or DS. DSACK≈ signals that remain
asserted beyond this limit may be prematurely detected for the next bus cycle.

3-18 MC68340 USER’S MANUAL MOTOROLA

3.3.2 Write Cycle

During a write cycle, the MC68340 transfers data to memory or a peripheral device. Figure
3-8 is a flowchart of a word write cycle.

1. NEGATE DS AND AS
2. REMOVE DATA FROM D15–D0

BUS MASTER SLAVE

ADDRESS DEVICE

1. SET R/W TO WRITE
2. DRIVE ADDRESS ON A31–A0
3. DRIVE FUNCTION CODE ON FC3–FC0
4. DRIVE SIZE PINS FOR OPERAND SIZE
5. ASSERT AS
6. PLACE DATA ON D15–D0
7. ASSERT DS

TERMINATE OUTPUT TRANSFER

START NEXT CYCLE

1. DECODE ADDRESS
2. LATCH DATA FROM D15–D0

ACCEPT DATA

3. ASSERT DSACKx SIGNALS

TERMINATE CYCLE

1. NEGATE DSACKx

Figure 3-8. Word Write Cycle Flowchart

State 0—The write cycle starts in S0. During S0, the MC68340 places a valid address on
A31–A0 and valid function codes on FC3–FC0. The function codes select the address
space for the cycle. The MC68340 drives R/W low for a write cycle. SIZ1/SIZ0 become
valid, indicating the number of bytes to be transferred.

State 1—One-half clock later during S1, the MC68340 asserts AS, indicating a valid
address on the address bus.

State 2—During S2, the MC68340 places the data to be written onto D15–D0, and
samples DSACK≈ at the end of S2.

State 3—The MC68340 asserts DS during S3, indicating that data is stable on the data
bus. As long as at least one of the DSACK≈ signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), the cycle terminates one clock
later. If DSACK≈ is not recognized by the start of S3, the MC68340 inserts wait states
instead of proceeding to S4 and S5. To ensure that wait states are inserted, both
DSACK1 and DSACK0 must remain negated throughout the asynchronous input setup
and hold times around the end of S2. If wait states are added, the MC68340 continues to
sample DSACK≈ on the falling edges of the clock until one is recognized. The selected
device uses R/W, SIZ1/SIZ0, and A0 to latch data from the appropriate byte(s) of D15–D8
and D7–D0. SIZ1/SIZ0 and A0 select the bytes of the data bus. If it has not already done
so, the device asserts DSACK≈ to signal that it has successfully stored the data.

MOTOROLA MC68340 USER’S MANUAL 3-19

State 4—The MC68340 issues no new control signals during S4.

State 5—The MC68340 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/W, SIZ1/SIZ0, and FC3–
FC0 also remain valid throughout S5. The external device must keep DSACK≈ asserted
until it detects the negation of AS or DS (whichever it detects first). The device must
negate DSACK≈ within approximately one clock period after sensing the negation of AS
or DS. DSACK≈ signals that remain asserted beyond this limit may be prematurely
detected for the next bus cycle.

3.3.3 Read-Modify-Write Cycle

The read-modify-write cycle performs a read, conditionally modifies the data in the
arithmetic logic unit, and may write the data out to memory. In the MC68340, this
operation is indivisible, providing semaphore capabilities for multiprocessor systems.
During the entire read-modify-write sequence, the MC68340 asserts RMC to indicate that
an indivisible operation is occurring. The MC68340 does not issue a BG signal in response
to a BR signal during this operation. Figure 3-9 is an example of a functional timing
diagram of a read-modify-write instruction specified in terms of clock periods.

CLK

A31–A30

FC3–FC0

S0 S2 S4 S2 S4 S0S0

R/W

SIZ1–SIZ0

AS

DS

DSACKx

D15–D0

READ WRITE

INDIVISIBLE
CYCLE

RMC

OUT

Figure 3-9. Read-Modify-Write Cycle Timing

3-20 MC68340 USER’S MANUAL MOTOROLA

State 0—The MC68340 asserts RMC in S0 to identify a read-modify-write cycle. The
MC68340 places a valid address on A31–A0 and valid function codes on FC3–FC0. The
function codes select the address space for the operation. SIZ1/SIZ0 become valid in S0
to indicate the operand size. The MC68340 drives R/W high for the read cycle.

State 1—One-half clock later during S1, the MC68340 asserts AS indicating a valid
address on the address bus. The MC68340 also asserts DS during S1.

State 2—The selected device uses R/W, SIZ1/SIZ0, A0, and DS to place information on
the data bus. Either or both of the bytes (D15–D8 and D7–D0) are selected by SIZ1/SIZ0
and A0. Concurrently, the selected device may assert DSACK≈.

State 3—As long as at least one of the DSACK≈ signals is recognized by the end of S2
(meeting the asynchronous input setup time requirement), data is latched on the next
falling edge of the clock, and the cycle terminates. If DSACK≈ is not recognized by the
start of S3, the MC68340 inserts wait states instead of proceeding to S4 and S5. To
ensure that wait states are inserted, both DSACK1 and DSACK0 must remain negated
throughout the asynchronous input setup and hold times around the end of S2. If wait
states are added, the MC68340 continues to sample the DSACK≈ signals on the falling
edges of the clock until one is recognized.

State 4—At the end of S4, the MC68340 latches the incoming data.

State 5—The MC68340 negates AS and DS during S5. If more than one read cycle is
required to read in the operand(s), S0–S5 are repeated for each read cycle. When
finished reading, the MC68340 holds the address, R/W, and FC3–FC0 valid in preparation
for the write portion of the cycle. The external device keeps its data and DSACK≈ signals
asserted until it detects the negation of AS or DS (whichever it detects first). The device
must remove the data and negate DSACK≈ within approximately one clock period after
sensing the negation of AS or DS. DSACK≈ signals that remain asserted beyond this limit
may be prematurely detected for the next portion of the operation.

Idle States—The MC68340 does not assert any new control signals during the idle states,
but it may internally begin the modify portion of the cycle at this time. S0–S5 are omitted if
no write cycle is required. If a write cycle is required, R/W remains in the read mode until
S0 to prevent bus conflicts with the preceding read portion of the cycle; the data bus is not
driven until S2.

State 0—The MC68340 drives R/W low for a write cycle. Depending on the write operation
to be performed, the address lines may change during S0.

State 1—In S1, the MC68340 asserts AS, indicating a valid address on the address bus.

State 2—During S2, the MC68340 places the data to be written onto D15–D0.

State 3—The MC68340 asserts DS during S3, indicating stable data on the data bus. As
long as at least one of the DSACK≈ signals is recognized by the end of S2 (meeting the
asynchronous input setup time requirement), the cycle terminates one clock later. If
DSACK≈ is not recognized by the start of S3, the MC68340 inserts wait states instead of

MOTOROLA MC68340 USER’S MANUAL 3-21

proceeding to S4 and S5. To ensure that wait states are inserted, both DSACK1 and
DSACK0 must remain negated throughout the asynchronous input setup and hold times
around the end of S2. If wait states are added, the MC68340 continues to sample
DSACK≈ on the falling edges of the clock until one is recognized. The selected device
uses R/W, DS, SIZ1/SIZ0, and A0 to latch data from the appropriate section(s) of D15–D8
and D7–D0. SIZ1/SIZ0 and A0 select the data bus sections. If it has not already done so,
the device asserts DSACK≈ when it has successfully stored the data.

State 4—The MC68340 issues no new control signals during S4.

State 5—The MC68340 negates AS and DS during S5. It holds the address and data valid
during S5 to provide address hold time for memory systems. R/W and FC3–FC0 also
remain valid throughout S5. If more than one write cycle is required, states S0–S5 are
repeated for each write cycle. The external device keeps DSACK≈ asserted until it detects
the negation of AS or DS (whichever it detects first). The device must remove its data and
negate DSACK≈ within approximately one clock period after sensing the negation of AS
or DS.

3.4 CPU SPACE CYCLES

FC3–FC0 select user and supervisor program and data areas. The area selected by FC3–
FC0 = $7 is classified as the CPU space. The breakpoint acknowledge, LPSTOP
broadcast, module base address register access, and interrupt acknowledge cycles
described in the following paragraphs use CPU space. The CPU space type, which is
encoded on A19–A16 during a CPU space operation, indicates the function that the
MC68340 is performing. On the MC68340, four of the encodings are implemented as
shown in Figure 3-10. All unused values are reserved by Motorola for additional CPU
space types.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T 0BKPT#

19 16

CPU SPACE CYCLES

FUNCTION
CODE

BREAKPOINT
ACKNOWLEDGE

0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
19 16 0

ADDRESS BUS

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1LEVEL
19 16 0

CPU SPACE
TYPE FIELD

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
19 16 0

1 1 1
0

LOW-POWER
STOP BROADCAST 1 1 1

0

INTERRUPT
ACKNOWLEDGE 1 1 1

0

1 1 1
0MODULE BASE

ADDRESS
REGISTER ACCESS

0

0

3

3

3

3

0

0 00000000
31

31

1 1 1 11 1 1 11 1 1 1

0 0 0 00 0 0 0

0 0 0 00 0 0 0

31

31

Figure 3-10. CPU Space Address Encoding

3-22 MC68340 USER’S MANUAL MOTOROLA

3.4.1 Breakpoint Acknowledge Cycle

The breakpoint acknowledge cycle allows external hardware to insert an instruction
directly into the instruction pipeline as the program executes. The breakpoint acknowledge
cycle is generated by the execution of a breakpoint instruction (BKPT) or the assertion of
the BKPT pin. The T-bit state (shown in Figure 3-10) differentiates a software breakpoint
cycle (T = 0) from a hardware breakpoint cycle (T = 1).

When a BKPT instruction is executed (software breakpoint), the MC68340 performs a
word read from CPU space, type 0, at an address corresponding to the breakpoint number
(bits [2–0] of the BKPT opcode) on A4–A2, and the T-bit (A1) is cleared. If this bus cycle is
terminated with BERR (i.e., no instruction word is available), the MC68340 then performs
illegal instruction exception processing. If the bus cycle is terminated by DSACK≈, the
MC68340 uses the data on D15–D0 (for 16-bit ports) or two reads from D15–D8 (for 8-bit
ports) to replace the BKPT instruction in the internal instruction pipeline and then begins
execution of that instruction.

When the CPU32 acknowledges a BKPT pin assertion (hardware breakpoint) with
background mode disabled, the CPU32 performs a word read from CPU space, type 0, at
an address corresponding to all ones on A4–A2 (BKPT#7), and the T-bit (A1) is set. If this
bus cycle is terminated by BERR, the MC68340 performs hardware breakpoint exception
processing. If this bus cycle is terminated by DSACK≈, the MC68340 ignores data on the
data bus and continues execution of the next instruction.

NOTE

The BKPT pin is sampled on the same clock phase as data
and is latched with data as it enters the CPU32 pipeline. If
BKPT is asserted for only one bus cycle and a pipeline flush
occurs before BKPT is detected by the CPU32, BKPT is
ignored. To ensure detection of BKPT by the CPU32, BKPT
can be asserted until a breakpoint acknowledge cycle is
recognized.

The breakpoint operation flowchart is shown in Figure 3-11. Figures 3-12 and 3-13 show
the timing diagrams for the breakpoint acknowledge cycle with instruction opcodes
supplied on the cycle and with an exception signaled, respectively.

MOTOROLA MC68340 USER’S MANUAL 3-23

3.4.2 LPSTOP Broadcast Cycle

The low power stop (LPSTOP) broadcast cycle is generated by the CPU32 executing the
LPSTOP instruction. Since the external bus interface must get a copy of the interrupt
mask level from the CPU32, the CPU32 performs a CPU space type 3 write with the mask
level encoded on the data bus, as shown in the following figure. The CPU space type 3
cycle waits for the bus to be available, and is shown externally to indicate to external
devices that the MC68340 is going into LPSTOP mode. If an external device requires
additional time to prepare for entry into LPSTOP mode, entry can be delayed by asserting
HALT. The SIM40 provides internal DSACK≈ response to this cycle. For more information
on how the SIM40 responds to LPSTOP mode, see Section 4 System Integration
Module .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

— — — — — — — — — — — — — I2 I1 I0

I2–I0—Interrupt Mask Level
The interrupt mask level is encoded on bits 2–0 of the data bus during an LPSTOP
broadcast.

3-24 MC68340 USER’S MANUAL MOTOROLA

ACKNOWLEDGE BREAKPOINT

IF BREAKPOINT INSTRUCTION EXECUTED:
 1. SET R/W TO READ
 2. SET FUNCTION CODE TO CPU SPACE
 3. PLACE CPU SPACE TYPE 0 ON A19–A16
 4. PLACE BREAKPOINT NUMBER ON A2–A4
 5. CLEAR T-BIT (A1)
 6. SET SIZE TO WORD
 7. ASSERT AS AND DS
IF BKPT PIN ASSERTED:
 1. SET R/W TO READ
 2. SET FUNCTION CODE TO CPU SPACE
 3. PLACE CPU SPACE TYPE 0 ON A19–A16
 4. PLACE ALL ONE'S ON A4–A2
 5. SET T-BIT (A-1) TO ONE
 6. SET SIZE TO WORD
 7. ASSERT AS AND DS

(A) (B)

IF BREAKPOINT INSTRUCTION EXECUTED:
 1. PLACE REPLACEMENT OPCODE ON DATA BUS
 2. ASSERT DSACKx
 -OR-
 1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING
IF BKPT PIN ASSERTED:
 1. ASSERT DSACKx
 -OR-
 1. ASSERT BERR TO INITIATE EXCEPTION PROCESSING

1. NEGATE DSACKx or BERR

BREAKPOINT OPERATION FLOW

PROCESSOR

EXTERNAL DEVICE

IF BREAKPOINT INSTRUCTION EXECUTED AND
DSACKx IS ASSERTED:
 1. LATCH DATA
 2. NEGATE AS AND DS
 3. GO TO (A)
IF BKPT PIN ASSERTED AND DSACKx IS ASSERTED:
 1. NEGATE AS AND DS
 2. GO TO (A)
IF BERR ASSERTED:
 1. NEGATE AS AND DS
 2. GO TO (B)

IF BREAKPOINT INSTRUCTION EXECUTED:
 1. PLACE LATCHED DATA IN INSTRUCTION PIPELINE
 2. CONTINUE PROCESSING
IF BKPT PIN ASSERTED:
 1. CONTINUE PROCESSING

IF BREAKPOINT INSTRUCTION EXECUTED:
 1. INITIATE ILLEGAL INSTRUCTION PROCESSING
IF BKPT PIN ASSERTED:
 1. INITIATE HARDWARE BREAKPOINT PROCESSING

Figure 3-11. Breakpoint Operation Flowchart

MOTOROLA MC68340 USER’S MANUAL 3-25

FC3–FC0

SIZ0

D15–D8

R/W

DSACKx

BERR

HALT

AS

DS

BKPT

D7–D0

SIZ1

CPU SPACE

FETCHED
INSTRUCTION

EXECUTIONBREAKPOINT
ACKNOWLEDGE

INSTRUCTION WORD FETCH

A15–A5,A0

A19–A16

CLKOUT

A31–A20

A4–A1

S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 S0

BREAKPOINT ENCODING (0000)

BREAKPOINT NUMBER/T-BIT

BREAKPOINT
OCCURS

READ

Figure 3-12. Breakpoint Acknowledge Cycle Timing (Opcode Returned)

3-26 MC68340 USER’S MANUAL MOTOROLA

EXCEPTION
STACKING

FC3–FC0

SIZ0

D15–D8

R/W

DSACKx

BERR

HALT

AS

DS

BKPT

D7–D0

SIZ1

CPU SPACE

A19–A16

A15–A5, A0

CLKOUT

A31–A20

A4–A1

S0 S1 S2 S3 S4 S5

BREAKPOINT ENCODING (0000)

BREAKPOINT NUMBER/T-BIT

S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5 S0

BREAKPOINT
OCCURS

READ
BREAKPOINT

ACKNOWLEDGE
BUS ERROR ASSERTED

Figure 3-13. Breakpoint Acknowledge Cycle Timing (Exception Signaled)

MOTOROLA MC68340 USER’S MANUAL 3-27

3.4.3 Module Base Address Register Access

All internal module registers, including the SIM40, occupy a single 4-Kbyte block that is
relocatable along 4-Kbyte boundaries. The location is fixed by writing the desired base
address of the SIM40 block to the module base address register using the MOVES
instruction. The module base address register is only accessible in CPU space at address
$0003FF00. The SFC or DFC register must indicate CPU space (FC3–FC0 = $7), using
the MOVEC instruction, before accessing the module base address register. Refer to
Section 4 System Integration Module for additional information on the module base
address register.

3.4.4 Interrupt Acknowledge Bus Cycles

The CPU32 makes an interrupt pending in three cases. The first case occurs when a
peripheral device signals the CPU32 (with IRQ7–IRQ1) that the device requires service
and the internally synchronized value on these signals indicates a higher priority than the
interrupt mask in the status register. The second case occurs when a transition has
occurred in the case of a level 7 interrupt. A recognized level 7 interrupt must be removed
for one clock cycle before a second level 7 can be recognized. The third case occurs if,
upon returning from servicing a level 7 interrupt, the request level stays at 7 and the
processor mask level changes from 7 to a lower level, a second level 7 is recognized. The
CPU32 takes an interrupt exception for a pending interrupt within one instruction boundary
(after processing any other pending exception with a higher priority). The following
paragraphs describe the types of interrupt acknowledge bus cycles that can be executed
as part of interrupt exception processing.

3.4.4.1 INTERRUPT ACKNOWLEDGE CYCLE—TERMINATED NORMALLY. When the
CPU32 processes an interrupt exception, it performs an interrupt acknowledge cycle to
obtain the number of the vector that contains the starting location of the interrupt service
routine. Some interrupting devices have programmable vector registers that contain the
interrupt vectors for the routines they use. The following paragraphs describe the interrupt
acknowledge cycle for these devices. Other interrupting conditions or devices that cannot
supply a vector number will use the autovector cycle described in 3.4.4.2 Autovector
Interrupt Acknowledge Cycle.

3-28 MC68340 USER’S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
3.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are as follows:

1. FC3–FC0 are set to $7 (FC3/FC2/FC1/FC0 = 0111) for CPU address space.

2. A3, A2, and A1 are set to the interrupt request level, and the IACK≈ strobe
corresponding to the current interrupt level is asserted. (Either the function codes
and address signals or the IACK≈ strobes can be monitored to determine that an
interrupt acknowledge cycle is in progress and the current interrupt level.)

3. The CPU32 space type field (A19–A16) is set to $F (interrupt acknowledge).

4. Other address signals (A31–A20, A15–A4, and A0) are set to one.

5. The SIZ0/SIZ1 and R/W signals are driven to indicate a single-byte read cycle.
The responding device places the vector number on the least significant byte
of its data port (for an 8-bit port, the vector number must be on D15–D8; for a
16-bit port, the vector must be on D7–D0) during the interrupt acknowledge cycle.
The cycle is then terminated normally with DSACK≈.

Figure 3-14 is a flowchart of the interrupt acknowledge cycle; Figure 3-15 shows the
timing for an interrupt acknowledge cycle terminated with DSACK≈.

START NEXT CYCLE

RELEASE

1. NEGATE DSACKx

MC68340INTERRUPTING DEVICE

REQUEST INTERRUPT GRANT INTERRUPT

PROVIDE VECTOR NUMBER

ACQUIRE VECTOR NUMBER

1. LATCH VECTOR NUMBER

1. PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA BUS
2. ASSERT DSACKx (OR AVEC IF NO VECTOR
 NUMBER)

2. NEGATE DS AND AS

1. SYNCHRONIZE IRQ7–IRQ1
2. COMPARE IRQ1–IRQ7 TO MASK LEVEL AND
 WAIT FOR INSTRUCTION TO COMPLETE
3. PLACE INTERRUPT LEVEL ON A3–A1;
 TYPE FIELD (A19–A16) = $F
4. SET R/W TO READ
5. SET FC3–FC0 TO 0111
6. DRIVE SIZE PINS TO INDICATE A ONE-BYTE
 TRANSFER
7. ASSERT AS AND DS
8. ASSERT THE CORRESPONDING IACKx STROBE.

Figure 3-14. Interrupt Acknowledge Cycle Flowchart

MOTOROLA MC68340 USER’S MANUAL 3-29

CLKOUT

A31–A4

FC3–FC0

S0 S2 S4 S2 S4 S0

SIZ0

DSACKx

D7–D0

R/W

AS

DS

A3–A1

A0

SIZ1

D15–D8

S0 S1 S2

IRQ7–IRQ1

1 BYTE

INTERRUPT LEVEL

READ
CYCLE INTERNAL

ARBITRATION

IACK CYCLE

IACK7–IACK1
WRITE
STACK

VECTOR FROM 16-BIT PORT

VECTOR FROM 8-BIT PORT

CPU SPACE

0–2 CLOCKS*

*Internal Arbitration may take between 0–2 clock cycles.

Figure 3-15. Interrupt Acknowledge Cycle Timing

3.4.4.2 AUTOVECTOR INTERRUPT ACKNOWLEDGE CYCLE. When the interrupting
device cannot supply a vector number, it requests an automatically generated vector
(autovector). Instead of placing a vector number on the data bus and asserting DSACK≈,
the device asserts AVEC to terminate the cycle. If the DSACK≈ signals are asserted
during an interrupt acknowledge cycle terminated by AVEC, the DSACK≈ signals and

3-30 MC68340 USER’S MANUAL MOTOROLA

data will be ignored if AVEC is asserted before or at the same time as the DSACK≈
signals. The vector number supplied in an autovector operation is derived from the
interrupt level of the current interrupt. When AVEC is asserted instead of DSACK≈ during
an interrupt acknowledge cycle, the MC68340 ignores the state of the data bus and
internally generates the vector number (the sum of the interrupt level plus 24 ($18)).

AVEC is multiplexed with CS0. The FIRQ bit in the SIM40 module configuration register
controls whether the AVEC/CS0 pin is used as an autovector input or as CS0 (refer to
Section 4 System Integration Module for additional information). AVEC is only sampled
during an interrupt acknowledge cycle. During all other cycles, AVEC is ignored.
Additionally, AVEC can be internally generated for external devices by programming the
autovector register. Seven distinct autovectors can be used, corresponding to the seven
levels of interrupt available with signals IRQ7–IRQ1. Figure 3-16 shows the timing for an
autovector operation.

3.4.4.3 SPURIOUS INTERRUPT CYCLE. Requested interrupts, whether internal or
external, are arbitrated internally. When no internal module (including the SIM40, which
responds for external requests) responds during an interrupt acknowledge cycle by
arbitrating for the interrupt acknowledge cycle internally, the spurious interrupt monitor
generates an internal bus error signal to terminate the vector acquisition. The MC68340
automatically generates the spurious interrupt vector number (24) instead of the interrupt
vector number in this case. When an external device does not respond to an interrupt
acknowledge cycle with AVEC or DSACK≈, a bus monitor must assert BERR, which
results in the CPU32 taking the spurious interrupt vector. If HALT is also asserted, the
MC68340 retries the interrupt acknowledge cycle instead of using the spurious interrupt
vector.

MOTOROLA MC68340 USER’S MANUAL 3-31

READ
CYCLE INTERNAL

ARBITRATION
IACK

CYCLE

WRITE
STACK

S0 S2 S4 S2 S4 S0S0 S1 S2

1 BYTE

INTERRUPT LEVEL

CLKOUT

A31–A4

FC3–FC0

SIZ0

DSACKx

D15–D0

R/W

AS

DS

A3–A1

A0

SIZ1

AVEC

IRQ7–IRQ1

IACK7–IACK1

CPU SPACE

0–2 CLOCKS*

* Internal Arbitration may take between 0–2 clocks.

Figure 3-16. Autovector Operation Timing

3-32 MC68340 USER’S MANUAL MOTOROLA

3.5 BUS EXCEPTION CONTROL CYCLES

The bus architecture requires assertion of DSACK≈ from an external device to signal that
a bus cycle is complete. Neither DSACK≈ nor AVEC is asserted in the following cases:

• DSACK≈/AVEC is programmed to respond internally.

• The external device does not respond.

• Various other application-dependent errors occur.

The MC68340 provides BERR when no device responds by asserting DSACK≈/AVEC
within an appropriate period of time after the MC68340 asserts AS. This mechanism
allows the cycle to terminate and the MC68340 to enter exception processing for the error
condition. HALT is also used for bus exception control. This signal can be asserted by an
external device for debugging purposes to cause single bus cycle operation, or, in
combination with BERR, a retry of a bus cycle in error. To properly control termination of a
bus cycle for a retry or a bus error condition, DSACK≈, BERR, and HALT can be asserted
and negated with the rising edge of the MC68340 clock. This assures that when two
signals are asserted simultaneously, the required setup and hold time for both is met for
the same falling edge of the MC68340 clock. This or an equivalent precaution should be
designed into the external circuitry to provide these signals. Alternatively, the internal bus
monitor could be used. The acceptable bus cycle terminations for asynchronous cycles
are summarized in relation to DSACK≈ assertion as follows (case numbers refer to Table
3-4):

• Normal Termination: DSACK≈ is asserted; BERR and HALT remain negated (case 1).

• Halt Termination: HALT is asserted at the same time as or before DSACKx, and
BERR remains negated (case 2).

• Bus Error Termination: BERR is asserted in lieu of, at the same time as, or before
DSACK≈ (case 3) or after DSACK≈ (case 4), and HALT remains negated; BERR is
negated at the same time as or after DSACK≈.

• Retry Termination: HALT and BERR are asserted in lieu of, at the same time as, or
before DSACK≈ (case 5) or after DSACK≈ (case 6); BERR is negated at the same
time as or after DSACK≈, and HALT may be negated at the same time as or after
BERR.

Table 3-4 lists various combinations of control signal sequences and the resulting bus
cycle terminations. To ensure predictable operation, BERR and HALT should be negated
according to the specifications given in Section 11 Electrical Characteristics . DSACK≈
BERR, and HALT may be negated after AS. If DSACK≈ or BERR remain asserted into S2
of the next bus cycle, that cycle may be terminated prematurely.

EXAMPLE A: A system uses a bus monitor timer to terminate accesses to an unpopulated
address space. The timer asserts BERR after timeout (case 3).

MOTOROLA MC68340 USER’S MANUAL 3-33

EXAMPLE B: A system uses error detection and correction on RAM contents. The
designer may:

1. Delay DSACK≈ until data is verified and assert BERR and HALT simultaneously to
indicate to the MC68340 to automatically retry the error cycle (case 5), or if data is
valid, assert DSACK≈ (case 1).

2. Delay DSACK≈ until data is verified and assert BERR with or without DSACK≈ if
data is in error (case 3). This initiates exception processing for software handling of
the condition.

3. Return DSACK≈ prior to data verification; if data is invalid, BERR is asserted on the
next clock cycle (case 4). This initiates exception processing for software handling of
the condition.

4. Return DSACK≈ prior to data verification; if data is invalid, assert BERR and HALT
on the next clock cycle (case 6). The memory controller can then correct the RAM
prior to or during the automatic retry.

Table 3-4. DSACK≈, BERR, and HALT Assertion Results

Asserted on Rising
Edge of State

Case
Num

Control
Signal N N + 2 Result

1 DSACK≈
BERR
HALT

A
NA
NA

S
NA
X

Normal cycle terminate and continue.

2 DSACK≈
BERR
HALT

A
NA
A/S

S
NA
S

Normal cycle terminate and halt; continue
when HALT negated.

3 DSACK≈
BERR
HALT

NA/A
A

NA

X
S
X

Terminate and take bus error exception,
possibly deferred.

4 DSACK≈
BERR
HALT

A
NA
NA

X
A

NA

Terminate and take bus error exception,
possibly deferred.

5 DSACK≈
BERR
HALT

NA/A
A

A/S

X
S
S

Terminate and retry when HALT negated.

6 DSACK≈
BERR
HALT

A
NA
NA

X
A
A

Terminate and retry when HALT negated.

NOTES:
N — Number of the current even bus state (e.g., S2, S4, etc.)
A — Signal is asserted in this bus state

NA — Signal is not asserted in this state
X — Don't care
S — Signal was asserted in previous state and remains asserted in this state

3-34 MC68340 USER’S MANUAL MOTOROLA

3.5.1 Bus Errors

BERR can be used to abort the bus cycle and the instruction being executed. BERR takes
precedence over DSACK≈ provided it meets the timing constraints described in Section
11 Electrical Characteristics. If BERR does not meet these constraints, it may cause
unpredictable operation of the MC68340. If BERR remains asserted into the next bus
cycle, it may cause incorrect operation of that cycle. When BERR is issued to terminate a
bus cycle, the MC68340 can enter exception processing immediately following the bus
cycle, or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the bus controller
before it is ready to execute them. If a bus error occurs on an instruction fetch, the
MC68340 does not take the exception until it attempts to use that instruction word. Should
an intervening instruction cause a branch or should a task switch occur, the bus error
exception does not occur. The bus error condition is recognized during a bus cycle in any
of the following cases:

• DSACK≈ and HALT are negated, and BERR is asserted.

• HALT and BERR are negated, and DSACK≈ is asserted. BERR is then asserted
within one clock cycle (HALT remains negated).

• BERR and HALT are asserted simultaneously, indicating a retry.

When the MC68340 recognizes a bus error condition, it terminates the current bus cycle in
the normal way. Figure 3-17 shows the timing of a bus error for the case in which
DSACK≈ is not asserted. Figure 3-18 shows the timing for a bus error that is asserted
after DSACK≈. Exceptions are taken in both cases. Refer to Section 5 CPU32 for details
of bus error exception processing.

In the second case, in which BERR is asserted after DSACK≈ is asserted, BERR must be
asserted within the time specified for purely asynchronous operation, or it must be
asserted and remain stable during the sample window around the next falling edge of the
clock after DSACK≈ is recognized. If BERR is not stable at this time, the MC68340 may
exhibit erratic behavior. BERR has priority over DSACK≈. In this case, data may be
present on the bus, but it may not be valid. This sequence can be used by systems that
have memory error detection and correction logic and by external cache memories.

MOTOROLA MC68340 USER’S MANUAL 3-35

CLKOUT

S0 S2

DSACKx

R/W

AS

DS

BERR

S0 S2SW S4SW S4

INTERNAL
PROCESSING

STACK
WRITE

READ CYCLE WITH BUS
ERROR

FC3–FC0

D15–D0

A31–A0

Figure 3-17. Bus Error without DSACK≈

3-36 MC68340 USER’S MANUAL MOTOROLA

S0 S2 S4 S0 S2 S4

INTERNAL
PROCESSING

STACK
WRITE

WRITE
CYCLE

CLKOUT

DSACKx

R/W

AS

DS

BERR

FC3–FC0

D15–D0

A31–A0

Figure 3-18. Late Bus Error with DSACK≈

3.5.2 Retry Operation

When both BERR and HALT are asserted by an external device during a bus cycle, the
MC68340 enters the retry sequence shown in Figure 3-19. A delayed retry, which is
similar to the delayed BERR signal described previously, can also occur (see Figure 3-20).
The MC68340 terminates the bus cycle, places the control signals in their inactive state,
and does not begin another bus cycle until the BERR and HALT signals are negated by
external logic. After a synchronization delay, the MC68340 retries the previous cycle using
the same access information (address, function code, size, etc.). BERR should be negated
before S2 of the retried cycle to ensure correct operation of the retried cycle.

MOTOROLA MC68340 USER’S MANUAL 3-37

S0 S2 S0 S2SW S4SW S4

READ RERUNHALTREAD CYCLE WITH
RETRY

DATA
IGNORED

CLKOUT

DSACKx

R/W

AS

DS

BERR

A31–A0

FC3–FC0

D15–D0

HALT

Figure 3-19. Retry Sequence

The MC68340 retries any read or write cycle of a read-modify-write operation separately;
RMC remains asserted during the entire retry sequence. Asserting BR along with BERR
and HALT provides a relinquish and retry operation. The MC68340 does not relinquish the
bus during a read-modify-write operation. Any device that requires the MC68340 to give
up the bus and retry a bus cycle during a read-modify-write cycle must assert only BERR
and BR (HALT must not be included). The bus error handler software should examine the
read-modify-write bit in the special status word (see Section 5 CPU32) and take the
appropriate action to resolve this type of fault when it occurs.

3-38 MC68340 USER’S MANUAL MOTOROLA

S0 S2 S4 S0 S2 S4

HALT WRITE
RERUN

WRITE
CYCLE

CLKOUT

DSACKx

R/W

AS

DS

BERR

A31–A0

FC3–FC0

D15–D10

HALT

Figure 3-20. Late Retry Sequence

3.5.3 Halt Operation

When HALT is asserted and BERR is not asserted, the MC68340 halts external bus
activity at the next bus cycle boundary (see Figure 3-21). HALT by itself does not
terminate a bus cycle. Negating and reasserting HALT in accordance with the correct
timing requirements provides a single-step (bus cycle to bus cycle) operation. Since HALT
affects external bus cycles only, a program that does not require use of the external bus
may continue executing. The single-cycle mode allows the user to proceed through (and
debug) external MC68340 operations, one bus cycle at a time. Since the occurrence of a
bus error while HALT is asserted causes a retry operation, the user must anticipate retry
cycles while debugging in the single-cycle mode. The single-step operation and the
software trace capability allow the system debugger to trace single bus cycles, single
instructions, or changes in program flow.

When the MC68340 completes a bus cycle with HALT asserted, D15–D0 is placed in the
high-impedance state, and bus control signals are negated (not high-impedance state);
the A31–A0, FCx, SIZx, and R/W signals remain in the same state. The halt operation has
no effect on bus arbitration (see 3.6 Bus Arbitration). When bus arbitration occurs while
the MC68340 is halted, the address and control signals are also placed in the high-
impedance state. Once bus mastership is returned to the MC68340, if HALT is still

MOTOROLA MC68340 USER’S MANUAL 3-39

asserted, the A31–A0, FCx, SIZx, and R/W signals are again driven to their previous
states. The MC68340 does not service interrupt requests while it is halted.

CLKOUT

S0 S2 S4

R/W

AS

DS

HALT

S0 S2 S4

BR

BG

BGACK

S0

READ HALT
(ARBITRATION PERMITTED
WHILE THE PROCESSOR IS

HALTED)

READ

DSACKx

A31–A0

FC3–FC0

D15–D10

Figure 3-21. HALT Timing

3.5.4 Double Bus Fault

A double bus fault results when a bus error or an address error occurs during the
exception processing sequence for any of the following:

• A previous bus error

• A previous address error

• A reset

For example, the MC68340 attempts to stack several words containing information about
the state of the machine while processing a bus error exception. If a bus error exception

3-40 MC68340 USER’S MANUAL MOTOROLA

occurs during the stacking operation, the second error is considered a double bus fault.
When a double bus fault occurs, the MC68340 halts and asserts HALT. Only a reset
operation can restart a halted MC68340. However, bus arbitration can still occur (see 3.6
Bus Arbitration). A second bus error or address error that occurs after exception
processing has completed (during the execution of the exception handler routine or later)
does not cause a double bus fault. A bus cycle that is retried does not constitute a bus
error or contribute to a double bus fault. The MC68340 continues to retry the same bus
cycle as long as the external hardware requests it.

Reset can also be generated internally by the halt monitor (see Section 5 CPU32).

3.6 BUS ARBITRATION

The bus design of the MC68340 provides for a single bus master at any one time, either
the MC68340 or an external device. One or more of the external devices on the bus can
have the capability of becoming bus master for the external bus, but not the MC68340
internal bus. Bus arbitration is the protocol by which an external device becomes bus
master; the bus controller in the MC68340 manages the bus arbitration signals so that the
MC68340 has the lowest priority. External devices that need to obtain the bus must assert
the bus arbitration signals in the sequences described in the following paragraphs.
Systems having several devices that can become bus master require external circuitry to
assign priorities to the devices so that, when two or more external devices attempt to
become bus master at the same time, the one having the highest priority becomes bus
master first. The sequence of the protocol is as follows:

1. An external device asserts BR.

2. The MC68340 asserts BG to indicate that the bus is available.

3. The external device asserts BGACK to indicate that it has assumed bus mastership.

NOTE

The MC68340 does not place CS3–CS0 in a high-impedance
state after reset or when the bus is granted to an external
master.

BR may be issued any time during a bus cycle or between cycles. BG is asserted in
response to BR. To guarantee operand coherency, BG is only asserted at the end of an
operand transfer. Additionally, BG is not asserted until the end of a read-modify-write
operation (when RMC is negated) in response to a BR signal. When the requesting device
receives BG and more than one external device can be bus master, the requesting device
should begin whatever arbitration is required. When the external device assumes bus
mastership, it asserts BGACK and maintains BGACK during the entire bus cycle (or
cycles) for which it is bus master. The following conditions must be met for an external
device to assume mastership of the bus through the normal bus arbitration procedure: 1) it
must have received BG through the arbitration process, and 2) BGACK must be inactive,
indicating that no other bus master has claimed ownership of the bus.

MOTOROLA MC68340 USER’S MANUAL 3-41

Figure 3-22 is a flowchart showing bus arbitration for a single device. This technique
allows processing of bus requests during data transfer cycles. Refer to Figures 3-23 and
3-24 for bus arbitration timing diagrams.

BR is negated at the time that BGACK is asserted. This type of operation applies to a
system consisting of the MC68340 and one device capable of bus mastership. In a system
having a number of devices capable of bus mastership, BR from each device can be wire-
ORed to the MC68340. In such a system, more than one bus request could be asserted
simultaneously. BG is negated a few clock cycles after the transition of BGACK. However,
if bus requests are still pending after the negation of BG, the MC68340 asserts another BG
within a few clock cycles after it was negated. This additional assertion of BG allows
external arbitration circuitry to select the next bus master before the current bus master
has finished using the bus. The following paragraphs provide additional information about
the three steps in the arbitration process. Bus arbitration requests are recognized during
normal processing, HALT assertion, and a CPU32 halt caused by a double bus fault.

GRANT BUS ARBITRATION

1. ASSERT BG

TERMINATE ARBITRATION

1. NEGATE BG (AND WAIT FOR
BGACK TO BE NEGATED)

RE-ARBITRATE OR RESUME
PROCESSOR OPERATION

PROCESSOR REQUESTING DEVICE

REQUEST THE BUS

1. ASSERT BR

ACKNOWLEDGE BUS MASTERSHIP

1. EXTERNAL ARBITRATION DETERMINES
 NEXT BUS MASTER
2. NEXT BUS MASTER WAITS FOR BGACK
 TO BE NEGATED
3. NEXT BUS MASTER ASSERTS BGACK
 TO BECOME NEW MASTER
4. BUS MASTER NEGATES BR

OPERATE AS BUS MASTER

RELEASE BUS MASTERSHIP

1. NEGATE BGACK

1. PERFORM DATA TRANSFERS (READ AND
 WRITE CYCLES) ACCORDING TO THE
 SAME RULES THE PROCESSOR USES

Figure 3-22. Bus Arbitration Flowchart for Single Request

3-42 MC68340 USER’S MANUAL MOTOROLA

CLKOUT

AS

D15–D0

A31–A0

BR

BG

BGACK

Figure 3-23. Bus Arbitration Timing Diagram—Idle Bus Case

CLKOUT

A31–A0

R/W

AS

DS

D15–D0

DSACK0,
DSACK1

 BR

BG

BGACK

S0 S1 S2 S3 S4 S5

Figure 3-24. Bus Arbitration Timing Diagram—Active Bus Case

MOTOROLA MC68340 USER’S MANUAL 3-43

3.6.1 Bus Request

External devices capable of becoming bus masters request the bus by asserting BR. This
signal can be wire-ORed to indicate to the MC68340 that some external device requires
control of the bus. The MC68340 is effectively at a lower bus priority level than the
external device and relinquishes the bus after it has completed the current bus cycle (if
one has started). If no BGACK is received while the BR is active, the MC68340 remains
bus master once BR is negated. This prevents unnecessary interference with ordinary
processing if the arbitration circuitry inadvertently responds to noise or if an external
device determines that it no longer requires use of the bus before it has been granted
mastership.

3.6.2 Bus Grant

The MC68340 supports operand coherency; thus, if an operand transfer requires multiple
bus cycles, the MC68340 does not release the bus until the entire transfer is complete.
Therefore, assertion of BG is subject to the following constraints:

• The minimum time for BG assertion after BR is asserted depends on internal
synchronization (see Section 11 Electrical Characteristics).

• During an external operand transfer, the MC68340 does not assert BG until after
the last cycle of the transfer (determined by SIZx and DSACK≈).

• During an external operand transfer, the MC68340 does not assert BG as long as
RMC is asserted.

• If the show cycle bits SHEN1–SHEN0 = 01, the MC68340 does not assert BG to
an external master.

Externally, the BG signal can be routed through a daisy-chained network or a priority-
encoded network. The MC68340 is not affected by the method of arbitration as long as the
protocol is obeyed.

3.6.3 Bus Grant Acknowledge

An external device cannot request and be granted the external bus while another device is
the active bus master. A device that asserts BGACK remains the bus master until it
negates BGACK. BGACK should not be negated until all required bus cycles are
completed. Bus mastership is terminated at the negation of BGACK.

Once an external device receives the bus and asserts BGACK, it should negate BR. If BR
remains asserted after BGACK is asserted, the MC68340 assumes that another device is
requesting the bus and prepares to issue another BG.

3-44 MC68340 USER’S MANUAL MOTOROLA

3.6.4 Bus Arbitration Control

The bus arbitration control unit in the MC68340 is implemented with a finite state machine.
As discussed previously, all asynchronous inputs to the MC68340 are internally
synchronized in a maximum of two cycles of the clock. As shown in Figure 3-25 input
signals labeled R and A are internally synchronized versions of BR and BGACK
respectively. The BG output is labeled G, and the internal high-impedance control signal is
labeled T. If T is true, the address, data, and control buses are placed in the high-
impedance state after the next rising edge following the negation of AS and RMC. All
signals are shown in positive logic (active high) regardless of their true active voltage
level. The state machine shown in Figure 3-25 does not have a state 1 or state 4.

State changes occur on the next rising edge of the clock after the internal signal is valid.
The BG signal transitions on the falling edge of the clock after a state is reached during
which G changes. The bus control signals (controlled by T) are driven by the MC68340
immediately following a state change, when bus mastership is returned to the MC68340.
State 0, in which G and T are both negated, is the state of the bus arbiter while the
MC68340 is bus master. R and A keep the arbiter in state 0 as long as they are both
negated.

The MC68340 does not allow arbitration of the external bus during the RMC sequence.
For the duration of this sequence, the MC68340 ignores the BR input. If mastership of the
bus is required during an RMC operation, BERR must be used to abort the RMC sequence.

3.6.5 Show Cycles

The MC68340 can perform data transfers with its internal modules without using the
external bus, but, when debugging, it is desirable to have address and data information
appear on the external bus. These external bus cycles, called show cycles, are
distinguished by the fact that AS is not asserted externally. DS is used to signal address
strobe timing in show cycles.

After reset, show cycles are disabled and must be enabled by writing to the SHEN bits in
the module configuration register (see 4.3.2.1 Module Configuration Register (MCR)).
When show cycles are disabled, the A31–A0, FCx, SIZx, and R/W signals continue to
reflect internal bus activity. However, AS and DS are not asserted externally, and the
external data bus remains in a high-impedance state. When show cycles are enabled, DS
indicates address strobe timing and the external data bus contains data. The following
paragraphs are a state-by-state description of show cycles, and Figure 3-26 illustrates a
show cycle timing diagram. Refer to Section 11 Electrical Characteristics for specific
timing information.

MOTOROLA MC68340 USER’S MANUAL 3-45

R
STATE 5

G TV

STATE 3

VG T

STATE 2

VG T

STATE 0

VG T

STATE 6

G TV

RAB

R A

AB

RA B+

R A

R

R A+

RA

R A

A+

R - BUS REQUEST
A - BUS GRANT ACKNOWLEDGE
B - BUS CYCLE IN PROGRESS

G - BUS GRANT
T - THREE-STATE SIGNAL TO BUS CONTROL
V - BUS AVAILABLE TO BUS CONTROL

RA

RA

R A

Figure 3-25. Bus Arbitration State Diagram

3-46 MC68340 USER’S MANUAL MOTOROLA

State 0—During state 0, the A31–A0 and FCx become valid, R/W is driven to indicate a
show read or write cycle, and the SIZx pins indicate the number of bytes to transfer.
During a read, the addressed peripheral is driving the data bus, and the user must take
care to avoid bus conflicts.

State 41—One-half clock cycle later, DS (rather than AS) is asserted to indicate that
address information is valid.

State 42—No action occurs in state 42. The bus controller remains in state 42 (wait states
will be inserted) until the internal read cycle is complete.

State 43—When DS is negated, show data is valid on the next falling edge of the system
clock. The external data bus drivers are enabled so that data becomes valid on the
external bus as soon as it is available on the internal bus.

State 0—The A31–A0, FCx, R/W, and SIZx pins change to begin the next cycle. Data
from the preceding cycle is valid through state 0.

A31–A0,
FC2–FC0,
SIZ1–SIZ0

CLKOUT

S0 S42 S1S41 S43 S2S0

R/W

AS, CS

DS

D15–D0

BKPT

SHOW CYCLE START OF EXTERNAL CYCLE

Figure 3-26. Show Cycle Timing Diagram

3.7 RESET OPERATION

The MC68340 has reset control logic to determine the cause of reset, synchronize it if
necessary, and assert the appropriate reset lines. The reset control logic can
independently drive three different lines:

1. EXTRST (external reset) drives the external RESET pin.

2. CLKRST (clock reset) resets the clock module.

MOTOROLA MC68340 USER’S MANUAL 3-47

3. INTRST (internal reset) goes to all other internal circuits.

Synchronous reset sources are not asserted until the end of the current bus cycle,
whether or not RMC is asserted. The internal bus monitor is automatically enabled for
synchronous resets; therefore, if the current bus cycle does not terminate normally, the
bus monitor terminates it. Only single-byte or word transfers are guaranteed valid for
synchronous resets. An external or clock reset is a synchronous reset source.

Asynchronous reset sources indicate a catastrophic failure, and the reset controller logic
immediately resets the system. Resetting the MC68340 causes any bus cycle in progress
to terminate as if DSACK≈ or BERR had been asserted. In addition, the MC68340
appropriately initializes registers for a reset exception. Asynchronous reset sources
include power-up, software watchdog, double bus fault resets, and execution of the
RESET instruction.

If an external device drives RESET low, RESET should be asserted for at least 590 clock
periods to ensure that the MC68340 resets. The reset control logic holds reset asserted
internally until the external RESET is released. When the reset control logic detects that
external RESET is no longer being driven, it drives both internal and external reset low for
an additional 512 cycles to guarantee this length of reset to the entire system. Figure 3-27
shows the RESET timing.

RESET

1 CLOCK

 590 CLOCK 512 CLOCK

PULLED EXTERNAL DRIVEN BY MC68340

Figure 3-27. Timing for External Devices Driving RESET

If reset is asserted from any other source, the reset control logic asserts RESET for 328
input clock periods plus 512 output clock periods, and until the source of reset is negated.

After any internal reset occurs, a 14-cycle rise time is allowed before testing for the
presence of an external reset. If no external reset is detected, the CPU32 begins its vector
fetch.

Figure 3-28 is a timing diagram of the power-up reset operation, showing the relationships
between RESET, VCC, and bus signals. During the reset period, the entire bus three-
states except for non-three-statable signals, which are driven to their inactive state. Once
RESET negates, all control signals are driven to their inactive state, the data bus is in read
mode, and the address bus is driven. After this, the first bus cycle for RESET exception
processing begins.

3-48 MC68340 USER’S MANUAL MOTOROLA

CLKOUT

VCO
LOCK

BUS
CYCLES

RESET

VCC

1 2 3 4BUS STATE
UNKNOWN

ADDRESS AND
CONTROL SIGNALS

THREE-STATED

512
 TCLKOUT

14 CLOCKS≤

NOTES:
 1. Internal start-up time.
 2. SSP read here.
 3. PC read here.
 4. First instruction fetched here.

328
 TCLKIN

× ×

Figure 3-28. Power-Up Reset Timing Diagram

When a RESET instruction is executed, the MC68340 drives the RESET signal for 512
clock cycles. The SIM40 registers and the module control registers in each internal
peripheral module (DMA, timers, and serial modules) are not affected. All other peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.

MOTOROLA MC68340 USER’S MANUAL 4-1

SECTION 4
SYSTEM INTEGRATION MODULE

The MC68340 system integration module (SIM40) consists of several functions that
control the system start-up, initialization, configuration, and the external bus with a
minimum of external devices. It also provides the IEEE 1149.1 boundary scan capabilities.
The SIM40 includes the following functions:

• System Configuration and Protection

• Clock Synthesizer

• Chip Selects and Wait States

• External Bus Interface

• Bus Arbitration

• Dynamic Bus Sizing

• IEEE 1149.1 Test Access Port

4.1 MODULE OVERVIEW

The SIM40 is essentially identical to the SIM implemented in the MC68330. The SIM40
has similar features to the SIM in the MC68331, MC68332, and MC68333. The periodic
interrupt timer, double bus fault monitor, software watchdog, internal bus monitor, and
spurious interrupt monitor are identical. However, many of the other features in the SIM's
differ in their use and details.

The system configuration and protection function controls system configuration and
provides various monitors and timers, including the internal bus monitor, double bus fault
monitor, spurious interrupt monitor, software watchdog timer, and the periodic interrupt
timer.

The clock synthesizer generates the clock signals used by the SIM40 and the other on-
chip modules, as well as CLKOUT used by external devices.

The programmable chip select function provides four chip select signals that can enable
external memory and peripheral circuits, providing all handshaking and timing signals.
Each chip select signal has an associated base address register and an address mask
register that contain the programmable characteristics of that chip select. Up to three wait
states can be programmed by setting bits in the address mask register.

4-2 MC68340 USER’S MANUAL MOTOROLA

The external bus interface (EBI) handles the transfer of information between the internal
CPU32 and memory, peripherals, or other processing elements in the external address
space. See Section 3 Bus Operation for further information.

The MC68340 dynamically interprets the port size of an addressed device during each
bus cycle, allowing operand transfers to or from 8-, 16-, and 32-bit ports. The device
signals its port size and indicates completion of the bus cycle through the use of the
DSACK≈ inputs. Dynamic bus sizing allows a programmer to write code that is not bus-
width specific. For a discussion on dynamic bus sizing, see Section 3 Bus Operation.

The MC68340 includes dedicated user-accessible test logic that is fully compliant with the
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to the development of this
standard under the sponsorship of the IEEE Test Technology Committee and Joint Test
Action Group (JTAG). The MC68340 implementation supports circuit-board test strategies
based on this standard. Refer to Section 9 IEEE 1149.1 Test Access Port for additional
information.

4.2 MODULE OPERATION

The following paragraphs describe the operation of the module base address register,
system configuration and protection, clock synthesizer, chip select functions, and the
external bus interface.

NOTE

The terms assert and negate are used throughout this section
to avoid confusion when dealing with a mixture of active-low
and active-high signals. The term assert or assertion indicates
that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

4.2.1 Module Base Address Register Operation

The module base address register (MBAR) controls the location of all internal module
registers (see 4.3.1 Module Base Address Register (MBAR)). The address stored in this
register is the base address (starting location) for all internal registers. All internal module
registers are contained in a single 4-Kbyte block (see Figure 4-1) that is relocatable along
4-Kbyte boundaries.

The location of the internal registers is fixed by writing the desired base address of the
4-Kbyte block to the MBAR using the MOVES instruction to address $0003FF00 in CPU
space. The source function code (SFC) and destination function code (DFC) registers
contain the address space values (FC3–FC0) for the read or write operand of the MOVES
instruction (see Section 5 CPU32 or M68000PM/AD, Programmer’s Reference Manual).
Therefore, the SFC or DFC register must indicate CPU space (FC3–FC0 = $7), using the
MOVEC instruction, before accessing MBAR. The offset from the base address is shown
above each register diagram.

MOTOROLA MC68340 USER’S MANUAL 4-3

.

MC68340
RELOCATABLE

MODULE
BLOCK

RAM

(TYPICAL)

 $00000000

$XXXXXFFF

MBAR
($0003FF00

FC=0111)

$XXXXX000

$FFF

$07F

$000

$FFFFFFFF

NOTE: $XXXXX is the value contained in the MBAR bits BA31-BA12.

DMA

SERIAL PORTS

TIMER MODULES

SIM 40

$7BF

$780
$721

$67F

$600

$700

Figure 4-1. SIM40 Module Register Block

4.2.2 System Configuration and Protection Operation

The SIM40 allows the user to control certain features of system configuration by writing
bits in the module configuration register (MCR). This register also contains read-only
status bits that show the state of the SIM40.

All M68000 family members are designed to provide maximum system safeguards. As an
extension of the family, the MC68340 promotes the same basic concepts of safeguarded
design present in all M68000 members. In addition, many functions that normally must be
provided by external circuits are incorporated in this device. The following features are
provided in the system configuration and protection function:

SIM40 Module Configuration
The SIM40 allows the user to configure the system to the particular requirements. The
functions include control of FREEZE and show cycle operation, the function of the CS≈
signals, the access privilege of the supervisor/user registers, the level of interrupt
arbitration, and automatic vectoring for external interrupts.

Reset Status
The reset status register provides the user with information on the cause of the most
recent reset. The possible causes of reset include: external, power-up, software
watchdog, double bus fault, loss of clock, and RESET instruction.

4-4 MC68340 USER’S MANUAL MOTOROLA

Internal Bus Monitor
The SIM40 provides an internal bus monitor to monitor the DSACK≈ response time for
all internal bus accesses. An option allows the monitoring of external bus accesses. For
external bus accesses, four selectable response times are provided to allow for
variations in response speed of memory and peripherals used in the system. A bus
error signal is asserted internally if the DSACK≈ response limit is exceeded. BERR is
not asserted externally. This monitor can be disabled for external bus cycles only.

Double Bus Fault Monitor
The double bus fault monitor causes a reset to occur if the internal HALT is asserted by
the CPU32, indicating a double bus fault. A double bus fault results when a bus or
address error occurs during the exception processing sequence for a previous bus or
address error, a reset, or while the CPU32 is loading information from a bus error stack
frame during an RTE instruction. This function can be disabled. See Section 3 Bus
Operation for more information.

Spurious Interrupt Monitor
If no interrupt arbitration occurs during an interrupt acknowledge (IACK) cycle, the bus
error signal is asserted internally. This function cannot be disabled.

Software Watchdog
The software watchdog asserts reset or a level 7 interrupt (as selected by the system
protection and control register) if the software fails to service the software watchdog for
a designated period of time (i.e., because it is trapped in a loop or lost). There are eight
selectable timeout periods. This function can be disabled.

Periodic Interrupt Timer
The SIM40 provides a timer to generate periodic interrupts. The periodic interrupt time
period can vary from 122 µs to 15.94 s (with a 32.768-kHz crystal used to generate the
system clock). This function can be disabled.

Figure 4-2 shows a block diagram of the system configuration and protection function.

MOTOROLA MC68340 USER’S MANUAL 4-5

SOFTWARE
RESET
REQUEST or
IRQ7

HALT
RESET

BERR

SOFTWARE
WATCHDOG

PERIODIC
INTERRUPT TIMER

IRQ7-IRQ1

CLOCK

RESET
STATUS

2
PRESCALER

9

MODULE
CONFIGURATION

REQUEST

BUS
MONITOR

SPURIOUS
INTERRUPT MONITOR

DOUBLE BUS
FAULT MONITOR

Figure 4-2. System Configuration and Protection Function

4.2.2.1 SYSTEM CONFIGURATION. Aspects of the system configuration are controlled
by the MCR and the autovector register (AVR).

The configuration of port B is controlled by the combination of the FIRQ bit in the MCR
and the port B pin assignment register (PPARB). Port B pins can function as dedicated I/O
lines, chip selects, interrupts, or autovector input.

For debug purposes, internal bus accesses can be shown on the external bus. This
function is called show cycles. The SHEN1, SHEN0 bits in the MCR control show cycles.
Bus arbitration can be either enabled or disabled during show cycles.

Arbitration for servicing interrupts is controlled by the value programmed into the interrupt
arbitration (IARB) field of the MCR. Each module that generates interrupts, including the
SIM40, has an IARB field. The value of the IARB field allows arbitration during an IACK
cycle among modules that simultaneously generate the same interrupt level. No two
modules should share the same IARB value. The IARB must contain a value other than $0
for all modules that can generate interrupts; interrupts with IARB = 0 are discarded as
extraneous. The SIM40 arbitrates for both its own interrupts and externally generated
interrupts.

4-6 MC68340 USER’S MANUAL MOTOROLA

There are eight arbitration levels for access to the intermodule bus (IMB). The SIM40 is
fixed at the highest level (above the programmable level 7), and the CPU32 is fixed at the
lowest level (below level 0). The direct memory access (DMA) module is the only other
module that can become bus master and arbitrate for the bus. It must be initialized with a
level other than 0 or 7.

The AVR contains bits that correspond to external interrupt levels that require an
autovector response. The SIM40 supports up to seven discrete external interrupt
requests. If the bit corresponding to an interrupt level is set in the AVR, the SIM40 returns
an autovector in response to the IACK cycle servicing that external interrupt request.
Otherwise, external circuitry must either return an interrupt vector or assert the external
AVEC signal.

4.2.2.2 INTERNAL BUS MONITOR. The internal bus monitor continually checks for the
bus cycle termination response time by checking the DSACK≈, BERR, and HALT status or
the AVEC status during an IACK cycle. The monitor initiates a bus error if the response
time is excessive. The bus monitor feature cannot be disabled for internal accesses to an
internal module. The internal bus monitor cannot check the DSACK≈ response on the
external bus unless the MC68340 is the bus master. The BME bit in the system protection
control register (SYPCR) enables the internal bus monitor for internal-to-external bus
cycles. If the system contains external bus masters whose bus cycles must be monitored,
an external bus monitor must be implemented. In this case, the internal-to-external bus
monitor option must be disabled.

The bus cycle termination response time is measured in clock cycles, and the maximum-
allowable response time is programmable. The bus monitor response time period ranges
from 8 to 64 system clocks (see Table 4-8). These options are provided to allow for
different response times of peripherals that might be used in the system.

4.2.2.3 DOUBLE BUS FAULT MONITOR. A double bus fault is caused by a bus error or
address error during the exception processing sequence. The double bus fault monitor
responds to an assertion of HALT on the internal bus. Refer to Section 3 Bus Operation
for more information. The DBF bit in the reset status register (RSR) indicates that the last
reset was caused by the double bus fault monitor. The double bus fault monitor reset can
be enabled by the DBFE bit in the SYPCR.

4.2.2.4 SPURIOUS INTERRUPT MONITOR. The spurious interrupt monitor issues BERR
if no interrupt arbitration occurs during an IACK cycle. Normally, during an IACK cycle,
one or more internal modules recognize that the CPU32 is responding to interrupt
request(s) and arbitrate for the privilege of returning a vector or asserting AVEC. (The
SIM40 reports and arbitrates for externally generated interrupts.) This feature cannot be
disabled.

4.2.2.5 SOFTWARE WATCHDOG. The SIM40 provides a software watchdog option to
prevent system lock-up in case the software becomes trapped in loops with no controlled
exit. Once enabled by the SWE bit in the SYPCR, the software watchdog requires a
special service sequence to be executed on a periodic basis. If this periodic servicing
action does not occur, the software watchdog times out and issues a reset or a level 7

MOTOROLA MC68340 USER’S MANUAL 4-7

interrupt (as programmed by the SWRI bit in the SYPCR). The address of the interrupt
service routine for the software watchdog interrupt is stored in the software interrupt vector
register (SWIV). Figure 4-3 shows a block diagram of the software watchdog as well as
the clock control circuits for the periodic interrupt timer.

The watchdog clock rate is determined by the SWP bit in the periodic interrupt timer
register (PITR) and the SWT bits in the SYPCR. See Table 4-7 for a list of watchdog
timeout periods.

The software watchdog service sequence consists of the following steps: 1) write $55 to
the software service register (SWSR) and 2) write $AA to the SWSR. Both writes must
occur in the order listed prior to the watchdog timeout, but any number of instructions or
accesses to the SWSR can be executed between the two writes.

CLOCK
DISABLE

PRESCALER (2)

CLOCK
MUX

EXTAL

15 STAGE DIVIDER CHAIN (2)
LPSTOP

SWP
PTP

FREEZE

SWCLK

PITCLK

PRECLK
9

15

.

.

2 2 2 29 11 13 15

RESET

4 MODULUS COUNTER
PIT
INTERRUPT

PITR

Figure 4-3. Software Watchdog Block Diagram

4.2.2.6 PERIODIC INTERRUPT TIMER. The periodic interrupt timer consists of an 8-bit
modulus counter that is loaded with the value contained in the PITR (see Figure
4-3). The modulus counter is clocked by a signal derived from the EXTAL input pin unless
an external frequency source is used. When an external frequency source is used
(MODCK low during reset), the default state of the prescaler control bits (SWP and PTP)
in the PITR is changed to enable both prescalers.

Either clock source (EXTAL or EXTAL ÷ 512) is divided by 4 before driving the modulus
counter (PITCLK). When the modulus counter value reaches zero, an interrupt is
generated. The level of the generated interrupt is programmed into the PIRQL bits in the
periodic interrupt control register (PICR). During the IACK cycle, the SIM40 places the
periodic interrupt vector, programmed into the PIV bits in the PICR, onto the internal bus.
The value of bits 7–0 in the PITR is then loaded again into the modulus counter, and the
counting process starts over. If a new value is written to the PITR, this value is loaded into
the modulus counter when the current count is completed.

4-8 MC68340 USER’S MANUAL MOTOROLA

4.2.2.6.1 Periodic Timer Period Calculation. The period of the periodic timer can be
calculated using the following equation:

PITR count value
periodic interrupt timer period = EXTAL frequency/prescaler value

22

Solving the equation using a crystal frequency of 32.768-kHz with the prescaler disabled
gives:

PITR count value
periodic interrupt timer period = 32768/1

22

periodic interrupt timer period = PITR count value
8192

This gives a range from 122 µs, with a PITR value of $01 (00000001 binary), to 31.128
ms, with a PITR value of $FF (11111111 binary).

Solving the equation with the prescaler enabled (PTP=1 in the PITR) gives the following
values:

PITR count value
periodic interrupt timer period = 32768/512

22

periodic interrupt timer period = PITR count value
16

This gives a range from 62.5 ms, with a PITR value of $01, to 15.94 s, with a PITR value
of $FF.

For fast calculation of periodic timer period using a 32.768-kHz crystal, the following
equations can be used:

With prescaler disabled:

programmable interrupt timer period = PITR (122 µs)

With prescaler enabled:

programmable interrupt timer period = PITR (62.5 ms)

MOTOROLA MC68340 USER’S MANUAL 4-9

4.2.2.6.2 Using the Periodic Timer as a Real-Time Clock. The periodic interrupt timer
can be used as a real-time clock interrupt by setting it up to generate an interrupt with a
one-second period. Rearranging the periodic timer period equation to solve for the desired
count value:

PITR count value = (PIT period) (EXTAL frequency)
(Prescaler value) (22)

PITR count value = (1) (32768)
(512) (22)

PITR count value = 16 (decimal)

Therefore, when using a 32.768-kHz crystal, the PITR should be loaded with a value of
$10 with the prescaler enabled to generate interrupts at a one-second rate.

4.2.2.7 SIMULTANEOUS INTERRUPTS BY SOURCES IN THE SIM40. If multiple
interrupt sources at the same interrupt level are simultaneously asserted in the SIM40, it
will prioritize and service the interrupts in the following order: 1) software watchdog, 2)
periodic interrupt timer, and 3) external interrupts.

4.2.3 Clock Synthesizer Operation

The clock synthesizer can operate with either an external crystal or an external oscillator
for reference, using the internal phase-locked loop (PLL) and voltage-controlled oscillator
(VCO), or an external clock can directly drive the clock signal at the operating frequency.
The four modes of clock operation are listed in Table 4-1.

Table 4-1. Clock Operating Modes

Mode Description
MODCK
Reset
Value

VCCSYN
Operating

Value

Crystal Mode
External crystal or oscillator used with the on-chip PLL and VCO to
generate a system clock and CLKOUT of programmable rates. 5 V 5 V

External Clock
Mode without PLL

The desired operating frequency is driven into EXTAL resulting in a
system clock and CLKOUT of the same frequency, not tightly coupled. 0 V 0 V

External Clock
Mode with PLL

The desired operating frequency is driven into EXTAL, resulting in a
system clock and CLKOUT of the same frequency, with a tight skew
between input and output signals. 0 V 5 V

Limp Mode

Upon input signal loss for either clock mode using the PLL, operation
continues at approximately one-half operating speed (affected by the
value of the X-bit in the SYNCR). X 5 V

In crystal mode (see Figure 4-4), the clock synthesizer can operate from the on-chip PLL
and VCO, using a parallel resonant crystal connected between the EXTAL and XTAL pins,
or an external oscillator connected to EXTAL as a reference frequency source. The
oscillator circuit is shown in Figure 4-5. A 32.768-kHz watch crystal provides an
inexpensive reference, but the reference crystal or external oscillator frequency can be
any frequency in the range specified in Section 11 Electrical Characteristics. When

4-10 MC68340 USER’S MANUAL MOTOROLA

using crystal mode, the system clock frequency is programmable (using the W, X, and Y
bits in the SYNCR) over the range specified in Section 11 Electrical Characteristics
(see Table 4-2.).

EXTAL

PHASE
COMPARATOR

LOW-PASS
FILTER VCO

CRYSTAL
OSCILLATOR

XTAL XFC PIN VDDSYN

XFC

VDDSYN

0.1 µF

0.01 µF

0.1 µF

NOTE 1: Must be low-leakage capacitor.

20 pF 20 pF

20 M

33
0

K

1

÷4
MODULUS
DIVIDER

Y W
FEEDBACK DIVIDER

0

1

SEL

MUX

0$3F

÷64

÷8

6

SEL
0

1
MUX

÷2

0

X

CLKOUT

Figure 4-4. Clock Block Diagram for Crystal Operation

.

XTALEXTAL

60 kΩ

60 kΩ

Figure 4-5. MC68340 Crystal Oscillator

A separate power pin (VCCSYN) is used to allow the clock circuits to run with the rest of
the device powered down and to provide increased noise immunity for the clock circuits.
The source for VCCSYN should be a quiet power supply with adequate external bypass
capacitors placed as close as possible to the VCCSYN pin to ensure a stable operating
frequency. Figure 4-4 shows typical values for the bypass and PLL external capacitors.
The crystal manufacturer's documentation should be consulted for specific
recommendations for external components.

MOTOROLA MC68340 USER’S MANUAL 4-11

To use an external clock source (see Figure 4-6), the operating clock frequency can be
driven directly into the EXTAL pin (the XTAL pin must be left floating for this case). This
approach results in a system clock and CLKOUT that are the same as the input signal
frequency, but not tightly coupled to it. To enable this mode, MODCK must be held low
during reset, and VCCSYN held at 0 V while the chip is in operation.

CLKOUT

PHASE
COMPARATOR

LOW-PASS
FILTER VCO

CRYSTAL
OSCILLATOR

SYSTEM
CLOCK

CLOCK CONTROL

XFC PIN VCCSYN

XFC

VCCSYN

.01 µF

0.1 µF

NOTES:
 1. Must be low-leakage capacitor.
 2. External mode uses this path only.

FEEDBACK
DIVIDER

EXTAL XTAL

1

EXTERNAL
CLOCK

2

Figure 4-6. Clock Block Diagram for External Oscillator Operation

Alternatively, an external clock signal can be directly driven into EXTAL (with XTAL left
floating) using the on-chip PLL. This configuration results in an internal clock and
CLKOUT signal of the same frequency as the input signal, with a tight skew between the
external clock and the internal clock and CLKOUT signals. To enable this mode, MODCK
must be held low during reset, and VCCSYN should be connected to a quiet 5-V source.

If an input signal loss for either of the clock modes utilizing the PLL occurs, chip operation
can continue in limp mode with the VCO running at approximately one-half the operating
speed (affected by the value of the X-bit in the SYNCR), using an internal voltage
reference. The SLIMP bit in the SYNCR indicates that a loss of input signal reference has
been detected. The RSTEN bit in the SYNCR controls whether an input signal loss causes
a system reset or causes the device to operate in limp mode. The SLOCK bit in the
SYNCR indicates when the VCO has locked onto the desired frequency or if an external
clock is being used.

4.2.3.1 PHASE COMPARATOR AND FILTER. The phase comparator takes the output of
the frequency divider and compares it to an external input signal reference. The result of

4-12 MC68340 USER’S MANUAL MOTOROLA

this compare is low-pass filtered and used to control the VCO. The comparator also
detects when the external crystal or oscillator stops running to initiate the limp mode for
the system clock.

The PLL requires an external low-leakage filter capacitor, typically in the range from 0.01
to 0.1 µF, connected between the XFC and VCCSYN pins. The XFC capacitor should
provide 50-MΩ insulation but should not be electrolytic. Smaller values of the external filter
capacitor provide a faster response time for the PLL, and larger values provide greater
frequency stability. For external clock mode without PLL, the XFC pin can be left open.

4.2.3.2 FREQUENCY DIVIDER. The frequency divider circuits divide the VCO frequency
down to the reference frequency for the phase comparator. The frequency divider consists
of 1) a 2-bit prescaler controlled by the W-bit in the SYNCR and 2) a 6-bit modulo
downcounter controlled by the Y-bits in the SYNCR.

Several factors are important to the design of the system clock. The resulting system clock
frequency must be within the limits specified for the device. The frequency of the system
clock is given by the following equation:

FSYSTEM = FCRYSTAL [2(2+2W+X)] × (Y+1)

The maximum VCO frequency limit must also be observed. The VCO frequency is given
by the following equation:

FVCO = FSYSTEM [2
(2–X)]

Since clearing the X-bit causes the VCO to run at twice the system frequency, the VCO
upper frequency limit must be considered when programming the SYNCR. Both the
system clock and VCO frequency limits are given in Section 11 Electrical
Characteristics. Table 4-2 lists some frequencies available from various combinations of
SYNCR bits with a reference frequency of 32.768-KHz.

MOTOROLA MC68340 USER’S MANUAL 4-13

Table 4-2. System Frequencies from 32.768-kHz Reference

Y W = 0; X = 0 W = 0; X = 1 W = 1; X = 0 W = 1; X = 1

000000 131 262 524 1049

000101 786 1573 3146 6291

001010 1442 2884 5767 11534

001111 2097 4194 8389 16777

010100 2753 5505 11010 22020

011001 3408 6816 13631 –

011111 4194 8389 16777 –

100011 4719 9437 18874 –

101000 5374 10748 21496 –

101101 6029 12059 24117 –

110010 6685 13369 – –

110111 7340 14680 – –

111100 7995 15991 – –

111111 8389 16777 – –

NOTE: System frequencies are in kHz.

4.2.3.3 CLOCK CONTROL. The clock control circuits determine the source used for both
internal and external clocks during special circumstances, such as low-power stop
(LPSTOP) execution.

Table 4-3 summarizes the clock activity during LPSTOP in crystal mode operation. Any
clock in the off state is held low. The STEXT and STSIM bits in the SYNCR control clock
activity during LPSTOP. Refer to 4.2.6 Low-Power Stop for additional information.

Table 4-3. Clock Control Signals

Control Bits Clock Outputs

STSIM STEXT SIMCLK CLKOUT

0 0 EXTAL Off

0 1 EXTAL EXTAL

1 0 VCO Off

1 1 VCO VCO

NOTE: SIMCLK runs the periodic interrupt RESET and
IRQ≈ pin synchronizers in LPSTOP mode.

4.2.4 Chip Select Operation

Typical microprocessor systems require external hardware to provide select signals to
external memory and peripherals. The MC68340 integrates these functions on chip to
provide the cost, speed, and reliability benefits of a higher level of integration. The chip
select function contains register pairs for each external chip select signal. The pair
consists of a base address register and an address mask register that define the
characteristics of a single chip select. The register pair provides flexibility for a wide
variety of chip select functions.

4-14 MC68340 USER’S MANUAL MOTOROLA

4.2.4.1 PROGRAMMABLE FEATURES. The chip select function supports the following
programmable features:

Four Programmable Chip Select Circuits
All four chip select circuits are independently programmable from the same list of
selectable features. Each chip select circuit has an individual base address register and
address mask register that contain the programmed characteristics of that chip select.
The base address register selects the starting address for the address block in 256-byte
increments. The address mask register specifies the size of the address block range.
The base address register V-bit indicates that the register information for that chip
select is valid. A global chip select (CS0) allows address decode for a boot ROM before
system initialization occurs.

Variable Block Sizes
The block size, starting from the specified base address, can vary in size from 256
bytes up to 4 Gbytes in 2n increments. The specified base address must be on a
multiple of the the block size. The block size is specified in the address mask register.

Both 8- and 16-Bit Ports Supported
The 8-bit ports are accessible on both odd and even addresses when connected to data
bus bits 15–8; the 16-bit ports can be accessed as odd bytes, even bytes, or even
words. The port size is specified by the PS bits in the address mask register.

Write Protect Capability
The WP bit in each base address register can restrict write access to its range of
addresses.

Fast Termination Option
Programming the FTE bit in the base address register for the fast termination option
causes the chip select to terminate the cycle by asserting the internal DSACK≈ early,
providing a two-cycle external access.

Internal DSACK≈ Generation for External Accesses with Programmable Wait States
DSACK≈ can be generated internally with up to three wait states for a particular device
using the DD bits in the address mask register.

Full 32-Bit Address Decode with Address Space Checking
The FC bits in the base address register and FCM bits in the address mask register are
used to select address spaces for which the chip selects will be asserted.

4.2.4.2 GLOBAL CHIP SELECT OPERATION. Global chip select operation allows
address decode for a boot ROM before system initialization occurs. CS0 is the global chip
select output, and its operation differs from the other external chip select outputs following
reset. When the CPU32 begins fetching after reset, CS0 is asserted for every address
until the V-bit is set in the CS0 base address register.

MOTOROLA MC68340 USER’S MANUAL 4-15

NOTE

If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0
and CS2 "overlap" for a certain range, CS0 will assert when
accessing the "overlapped" address range, and CS2 will not.

Global chip select provides a 16-bit port with three wait states, which allows a boot ROM
to be located in any address space and still provide the stack pointer and program counter
values at $00000000 and $00000004, respectively. Global chip select does not provide
write protection and responds to all function codes. While CS0 is a global chip select, no
other chip select (CS1, CS2, CS3) can be used. CS0 operates in this manner until the
V-bit is set in the CS0 base address register, which will then allow the use of CS3–CS1.
Provided the desired address range is first loaded into the CS0 base address register,
CS0 can be programmed to continue decode for a range of addresses after the V-bit is
set, After the V-bit is set for CS0, global chip select can only be restarted with a system
reset.

A system can use an 8-bit boot ROM if an external 8-bit DSACK≈ that responds in two or
less wait states is generated. The 8-bit DSACK≈ must respond in two or less wait states
so that the global chip select, which responds with three wait states, will not be used. See
Section 10 Applications for a detailed discussion.

4.2.5 External Bus Interface Operation

This section describes port A and port B functions. Refer to Section 3 Bus Operation for
more information about the EBI.

4.2.5.1 PORT A. Port A pins can be independently programmed to function as either
addresses A31–A24, discrete I/O pins, or IACKx pins. The port A pin assignment
registers (PPARA1 and PPARA2) control the function of the port A pins as listed in Table
4-4. Upon reset, port A is configured as input pins. If the system uses these signals as
addresses, pulldowns should be put on these signals to avoid indeterminate values until
the port A registers can be programmed.

Table 4-4. Port A Pin Assignment Register

Pin Function

Signal PPARA1 = 0 PPARA1 = 1 PPARA1 = 0

PPARA2 = 0 PPARA2 = X PPARA2 = 1

A31 A31 PORT A7 IACK7

A30 A30 PORT A6 IACK6

A29 A29 PORT A5 IACK5

A28 A28 PORT A4 IACK4

A27 A27 PORT A3 IACK3

A26 A26 PORT A2 IACK2

A25 A25 PORT A1 IACK1

A24 A24 PORT A0 —

4-16 MC68340 USER’S MANUAL MOTOROLA

4.2.5.2 PORT B. Port B pins can be independently programmed to function as chip
selects, IRQ≈ and MODCK pins, or discrete I/O pins. These pins are multiplexed as
shown in Figure 4-7. Selection of a pin function is accomplished by a combination of the
port B pin assignment register (PPARB) and the FIRQ bit of the MCR. See Table 4-5 for
port B combinations. By changing the value of the FIRQ bit and the corresponding bits in
the PPARB for a particular signal, the port B pins can be configured for different pin
functions. Upon reset, port B is configured as MODCK, IRQ7, IRQ6, IRQ5, IRQ3, and
CS3–CS0.

INTERRUPT
PORT
LOGIC

FULL IRQ
 MUX

AVEC

CHIP-
SELECT
MODULE

CS1/IRQ1/PORT B1

CS3
CS2
CS1

CS0

CS0/AVEC

FIRQ

CS2/IRQ2/PORT B2

CS3/IRQ4/PORT B4

IRQ3/PORT B3
IRQ5/PORT B5
IRQ6/PORT B6
IRQ7/PORT B7
MODCK/PORT B0

IRQ4/PORT B4
IRQ2/PORT B2
IRQ1/PORT B1

Figure 4-7. Full Interrupt Request Multiplexer

Table 4-5. Port B Pin Assignment Register

Pin Function

Signal FIRQ = 0 FIRQ = 0 FIRQ = 1 FIRQ = 1

PPARB = 0 PPARB = 1 PPARB = 0 PPARB = 1

IRQ7 PORTB7 IRQ7 PORTB7 IRQ7

IRQ6 PORTB6 IRQ6 PORTB6 IRQ6

IRQ5 PORTB5 IRQ5 PORTB5 IRQ5

IRQ3 PORTB3 IRQ3 PORTB3 IRQ3

CS3 CS3 CS3 PORTB4 IRQ4

CS2 CS2 CS2 PORTB2 IRQ2

CS1 CS1 CS1 PORTB1 IRQ1

CS0 CS0 CS0 AVEC AVEC

MODCK PORTB0 MODCK PORTB0 MODCK

NOTE: MODCK has no function after reset.

MOTOROLA MC68340 USER’S MANUAL 4-17

The number of wait states programmed into the internal wait state generation logic by a
chip select can be used even though the pin is not used as a CS≈ signal. The
programmed number of wait states in the CS≈ signal applies to the port B pins configured
as IRQ≈ or I/O pins. This is done by programming the chip select with the number of wait
states to be added, as though it were to be used. The DD1/DD0 and PS1/PS0 bits in the
chip select address mask register must be set to add the desired number of wait states
(the V-bit in the module base address register should be set).

4.2.6 Low-Power Stop

Executing the LPSTOP instruction provides reduced power consumption when the
MC68340 is idle; only the SIM40 remains active. Operation of the SIM40 clock and
CLKOUT during LPSTOP is controlled by the STSIM and STEXT bits in the SYNCR (see
Table 4-3). LPSTOP disables the clock to the software watchdog in the low state. The
software watchdog remains stopped until the LPSTOP mode ends; it begins to run again
on the next rising clock edge.

NOTE

When the CPU32 executes the STOP instruction (as opposed
to LPSTOP), the software watchdog continues to run. If the
software watchdog is enabled, it issues a reset or interrupt
when timeout occurs.

The periodic interrupt timer does not respond to an LPSTOP instruction; thus, it can be
used to exit LPSTOP as long as the interrupt request level is higher than the CPU32
interrupt mask level. To stop the periodic interrupt timer while in LPSTOP, the PITR must
be loaded with a zero value before LPSTOP is executed. The bus monitor, double bus
fault monitor, and spurious interrupt monitor are all inactive during LPSTOP.

The STP bit in the MCR of each on-chip module (DMA, timers, and serial modules) should
be set prior to executing the LPSTOP instruction. Setting the STP bit stops all clocks
within each of the modules, except for the clock from the IMB. The clock from the IMB
remains active to allow the CPU32 access to the MCR of each module. The system clock
stops on the low phase of the clock and remains stopped until the STP bit is cleared by
the CPU32 or until reset. For more information, see the description of the MCR STP bit for
each module.

If an external device requires additional time to prepare for entry into LPSTOP mode,
entry can be delayed by asserting HALT (see 3.4.2 LPSTOP Broadcast Cycle).

4.2.7 Freeze

FREEZE is asserted by the CPU32 if a breakpoint is encountered with background mode
enabled. Refer to Section 5 CPU32 for more information on the background mode. When
FREEZE is asserted, the double bus fault monitor and spurious interrupt monitor continue
to operate normally. However, the software watchdog, the periodic interrupt timer and the
internal bus monitor will be affected. When FREEZE is asserted, setting the FRZ1 bit in

4-18 MC68340 USER’S MANUAL MOTOROLA

the MCR disables the software watchdog and periodic interrupt timer, and setting the
FRZ0 bit in the MCR disables the bus monitor.

4.3 PROGRAMMING MODEL

Figure 4-8 is a programming model (register map) of all registers in the SIM40. For more
information about a particular register, refer to the description of the module or function
indicated in the right column. The ADDR (address) column indicates the offset of the
register from the address stored in the module base address register. The FC (function
code) column indicates whether a register is restricted to supervisor access (S) or
programmable to exist in either supervisor or user space (S/U).

For the registers discussed in the following pages, the number in the upper right-hand
corner indicates the offset of the register from the address stored in the module base
address register. The numbers on the top line of the register represent the bit position in
the register. The second line contains the mnemonic for the bit. The numbers below the
register represent the bit values after a hardware reset. The access privilege is indicated
in the lower right-hand corner.

NOTE:

A CPU32 RESET instruction will not affect any of the SIM40
registers.

MOTOROLA MC68340 USER’S MANUAL 4-19

ADDR FC 15 8 7 0

000 S MODULE CONFIGURATION REGISTER (MCR) SYSTEM

PROTECTION

004 S CLOCK SYNTHESIZER CONTROL REGISTER (SYNCR) CLOCK

006 S AUTOVECTOR REGISTER (AVR) RESET STATUS REGISTER (RSR) SYSTEM

PROTECTION

010 S/U RESERVED PORT A DATA (PORTA) EBI

012 S/U RESERVED PORT A DATA DIRECTION (DDRA) EBI

014 S RESERVED PORT A PIN ASSIGNMENT 1 (PPRA1) EBI

016 S RESERVED PORT A PIN ASSIGNMENT 2 (PPRA2) EBI

018 S/U RESERVED PORT B DATA (PORTB) EBI

01A S/U RESERVED PORT B DATA (PORTB1) EBI

01C S/U RESERVED PORT B DATA DIRECTION (DDRB) EBI

01E S RESERVED PORT B PIN ASSIGNMENT (PPARB) EBI

020 S SW INTERRUPT VECTOR (SWIV) SYSTEM PROTECTION CONTROL
(SYPCR)

SYSTEM

PROTECTION

022 S PERIODIC INTERRUPT CONTROL REGISTER (PICR) SYSTEM
PROTECTION

024 S PERIODIC INTERRUPT TIMING REGISTER (PITR) SYSTEM

PROTECTION

026 S RESERVED SOFTWARE SERVICE (SWSR) SYSTEM

PROTECTION

040 S ADDRESS MASK 1 CS0 CHIP SELECT

042 S ADDRESS MASK 2 CS0 CHIP SELECT

044 S BASE ADDRESS 1 CS0 CHIP SELECT

046 S BASE ADDRESS 2 CS0 CHIP SELECT

048 S ADDRESS MASK 1 CS1 CHIP SELECT

04A S ADDRESS MASK 2 CS1 CHIP SELECT

04C S BASE ADDRESS 1 CS1 CHIP SELECT

04E S BASE ADDRESS 2 CS1 CHIP SELECT

050 S ADDRESS MASK 1 CS2 CHIP SELECT

052 S ADDRESS MASK 2 CS2 CHIP SELECT

054 S BASE ADDRESS 1 CS2 CHIP SELECT

056 S BASE ADDRESS 2 CS2 CHIP SELECT

058 S ADDRESS MASK 1 CS3 CHIP SELECT

05A S ADDRESS MASK 2 CS3 CHIP SELECT

05C S BASE ADDRESS 1 CS3 CHIP SELECT

05E S BASE ADDRESS 2 CS3 CHIP SELECT

Figure 4-8. SIM40 Programming Model

4-20 MC68340 USER’S MANUAL MOTOROLA

4.3.1 Module Base Address Register (MBAR)

MBAR 1 $0003FF00
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 IBA18 BA17 BA16

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Space Only

MBAR 2 $0003FF02
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BA15 BA14 BA13 BA12 0 0 AS8 AS7 AS6 AS5 AS4 AS3 AS2 AS1 AS0 V

RESET
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CPU Space Only

BA31–BA12—Base Address Bits 31–12
The base address field is the upper 20 bits of the MBAR that provides for block starting
locations in increments of 4-Kbytes.

Bits 11, 10—Reserved

AS8–AS0—Address Space Bits 8–0
The address space field allows particular address spaces to be masked, placing the 4K
module block into a particular address space(s). If an address space is masked, an
access to the register block location in that address space becomes an external access.
The module block is not accessed. The address space bits are as follows:

AS8—mask DMA Space address space (FC3–FC0 = 1xxx)
AS7—mask CPU Space address space (FC3–FC0 = 0111)
AS6—mask Supervisor Program address space (FC3–FC0 = 0110)
AS5—mask Supervisor Data address space (FC3–FC0 = 0101)
AS4—mask Reserved [Motorola] address space (FC3–FC0 = 0100)
AS3—mask Reserved [User] address space (FC3–FC0 = 0011)
AS2—mask User Program address space (FC3–FC0 = 0010)
AS1—mask User Data address space (FC3–FC0 = 0001)
AS0—mask Reserved [Motorola] address space (FC3–FC0 = 0000)

For each address space bit:
1 = Mask this address space from the internal module selection. The bus cycle goes

external.
0 = Decode for the internal module block.

V—Valid Bit
This bit indicates when the contents of the MBAR are valid. The base address value is
not used; therefore, all internal module registers are not accessible until the V-bit is set.

1 = Contents are valid.
0 = Contents are not valid.

MOTOROLA MC68340 USER’S MANUAL 4-21

NOTE

An access to this register does not affect external space since
the cycle is not run externally.

Example code for accessing the MBAR is as follows:

Register D0 will contain the value of MBAR. MBAR can be read using the following code:

MOVE.L #7,D0 load D0 with the CPU space function code
MOVEC.L D0,SFC load SFC to indicate CPU space
LEA.L $0003FF00,A0 load A0 with the address of MBAR
MOVES.L (A0),D0 load D0 with the contents of MBAR

Address $0003FF00 in CPU space (MBAR) will be loaded with the value $FFFFF001.
This value will set the base address of the internal registers to $FFFFF. MBAR can be
written to using the following code:

MOVE.L #7,D0 load D0 with the CPU space function code
MOVEC.L D0,DFC load DFC to indicate CPU space
LEA.L $0003FF00,A0 load A0 with the address of MBAR
MOVE.L #$FFFFF001,D0 load D0 with the value to be written into MBAR
MOVES.L D0,(A0) write the value contained in D0 into MBAR

4.3.2 System Configuration and Protection Registers

The following paragraphs provide descriptions of the system configuration and protection
registers.

4.3.2.1 MODULE CONFIGURATION REGISTER (MCR). The MCR, which controls the
SIM40 configuration, can be read or written at any time.

MCR $000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 FRZ1 FRZ0 FIRQ 0 0 SHEN1 SHEN0 SUPV 0 0 0 IARB3 IARB2 IARB1 IARB0

RESET:
0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1

Supervisor Only

Bits 15, 11, 10, 6–4—Reserved

FRZ1—Freeze Software Enable
1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer

counters are disabled, preventing interrupts from occurring during software
debug.

0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer
counters continue to run. See 4.2.7 Freeze for more information.

4-22 MC68340 USER’S MANUAL MOTOROLA

FRZ0—Freeze Bus Monitor Enable
1 = When FREEZE is asserted, the bus monitor is disabled.
0 = When FREEZE is asserted, the bus monitor continues to operate as

programmed.

FIRQ—Full Interrupt Request Mode
1 = Configures port B for seven interrupt request lines, autovector, and no external

chip selects.
0 = Configures port B for four interrupt request lines and four external chip selects.

See Table 4-5 for pin function selection.

SHEN1, SHEN0—Show Cycle Enable
These two control bits determine what the EBI does with the external bus during internal
transfer operations (see Table 4-6). A show cycle allows internal transfers to be
externally monitored. The address, data, and control signals (except for AS) are driven
externally. DS is used to signal address strobe timing for show cycles. Data is valid on
the next falling clock edge after DS is negated. However, data is not driven externally,
and AS and DS are not asserted externally for internal accesses unless show cycles
are enabled.

If external bus arbitration is disabled, the EBI will not recognize an external bus request
until arbitration is enabled again. To prevent bus conflicts, external peripherals must not
attempt to initiate cycles during show cycles with arbitration disabled.

Table 4-6. SHENx Control Bits

SHEN1 SHEN0 ACTION

0 0 Show cycles disabled, external arbitration enabled

0 1 Show cycles enabled, external arbitration disabled

1 X Show cycles enabled, external arbitration enabled

SUPV—Supervisor/User Data Space
The SUPV bit defines the SIM40 registers as either supervisor data space or user
(unrestricted) data space.

1 = The SIM40 registers defined as supervisor/user are restricted to supervisor data
access (FC3–FC0 = $5). An attempted user-space write is ignored and returns
BERR.

0 = The SIM40 registers defined as supervisor/user data are unrestricted (FC2 is a
don't care).

IARB3–IARB0—Interrupt Arbitration Bits 3–0
These bits are used to arbitrate for the bus in the case that two or more modules
simultaneously generate an interrupt at the same priority level. No two modules can
share the same IARB value. The reset value of IARB is $F, allowing the SIM40 to
arbitrate during an IACK cycle immediately after reset. The system software should
initialize the IARB field to a value from $F (highest priority) to $1 (lowest priority). A

MOTOROLA MC68340 USER’S MANUAL 4-23

value of $0 prevents arbitration and causes all SIM40 interrupts, including external
interrupts, to be discarded as extraneous.

4.3.2.2 AUTOVECTOR REGISTER (AVR). The AVR contains bits that correspond to
external interrupt levels that require an autovector response. Setting a bit allows the
SIM40 to assert an internal AVEC during the IACK cycle in response to the specified
interrupt request level. This register can be read and written at any time.

AVR $006
7 6 5 4 3 2 1 0

AV7 AV6 AV5 AV4 AV3 AV2 AV1 0

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

NOTE:

The IARB field in the MCR must contain a value other than $0
for the SIM40 to autovector for external interrupts.

4.3.2.3 RESET STATUS REGISTER (RSR). The RSR contains a bit for each reset source
to the SIM40. A set bit indicates the last type of reset that occurred, and only one bit can
be set in the register. The RSR is updated by the reset control logic when the SIM40
comes out of reset. This register can be read at any time; a write has no effect. For more
information, see Section 3 Bus Operation.

RSR $007
7 6 5 4 3 2 1 0

EXT POW SW DBF 0 LOC SYS 0

Supervisor Only

EXT—External Reset
1 = The last reset was caused by an external signal driving RESET.

POW—Power-Up Reset
1 = The last reset was caused by the power-up reset circuit.

SW—Software Watchdog Reset
1 = The last reset was caused by the software watchdog circuit.

DBF—Double Bus Fault Monitor Reset
1 = The last reset was caused by the double bus fault monitor.

Bits 3, 0—Reserved

4-24 MC68340 USER’S MANUAL MOTOROLA

LOC—Loss of Clock Reset
1 = The last reset was caused by a loss of frequency reference to the clock

synthesizer. This reset can only occur if the RSTEN bit in the SYNCR is set and
the VCO is enabled.

SYS—System Reset
1 = The last reset was caused by the CPU32 executing a RESET instruction. The

system reset does not load a reset vector or affect any internal CPU32 registers,
SIM40 configuration registers, or the MCR in each internal peripheral module
(DMA, timers, and serial modules). It will, however, reset external devices and all
other registers in the peripheral modules.

4.3.2.4 SOFTWARE INTERRUPT VECTOR REGISTER (SWIV). The SWIV contains the
8-bit vector that is returned by the SIM40 during an IACK cycle in response to an interrupt
generated by the software watchdog. This register can be read or written at any time. This
register is set to the uninitialized vector, $0F, at reset.

SWIV $020
7 6 5 4 3 2 1 0

SWIV7 SWIV6 SWIV5 SWIV4 SWIV3 SWIV2 SWIV1 SWIV0

RESET:
0 0 0 0 1 1 1 1

Supervisor Only

4.3.2.5 SYSTEM PROTECTION CONTROL REGISTER (SYPCR). The SYPCR controls
the system monitors, the prescaler for the software watchdog, and the bus monitor timing.
This register can be read at any time, but can be written only once after reset.

SYPCR $021
7 6 5 4 3 2 1 0

SWE SWRI SWT1 SWT0 DBFE BME BMT1 BMT0

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

SWE—Software Watchdog Enable
1 = Software watchdog is enabled.
0 = Software watchdog is disabled.

See 4.2.2.5 Software Watchdog for more information.

SWRI—Software Watchdog Reset/Interrupt Select
1 = Software watchdog causes a system reset.
0 = Software watchdog causes a level 7 interrupt to the CPU32.

MOTOROLA MC68340 USER’S MANUAL 4-25

SWT1, SWT0—Software Watchdog Timing
These bits, along with the SWP bit in the PITR, control the divide ratio used to establish
the timeout period for the software watchdog. The software watchdog timeout period is
given by the following formula:

divide count
EXTAL frequency

The software watchdog timeout period, listed in Table 4-7, gives the formula to derive the
software watchdog timeout for any clock frequency. The timeout periods are listed for a
32.768-kHz crystal used with the VCO and for a 16.777-MHz external oscillator.

Table 4-7. Deriving Software Watchdog Timeout

SWP SWT1 SWT0 Software Timeout Period
32.768-kHz

Crystal Period
16.777-MHz External

Clock Period

0 0 0 29/EXTAL Input Frequency 15.6 ms 30 µs

0 0 1 211/EXTAL Input Frequency 62.5 ms 122 µs

0 1 0 213/EXTAL Input Frequency 250 ms 488 µs

0 1 1 215/EXTAL Input Frequency 1 s 1.95 ms

1 0 0 218/EXTAL Input Frequency 8 s 15.6 ms

1 0 1 220/EXTAL Input Frequency 32 s 62.5 ms

1 1 0 222/EXTAL Input Frequency 128 s 250 ms

1 1 1 224/EXTAL Input Frequency 512 s 1 s

NOTE: When the SWP and SWT bits are modified to select a software timeout other than the default, the
software service sequence ($55 followed by $AA written to the software service register) must be
performed before the new timeout period takes effect. Refer to 4.2.2.5 Software Watchdog for
more information.

DBFE—Double Bus Fault Monitor Enable
1 = Enable double bus fault monitor function.
0 = Disable double bus fault monitor function.

For more information, see 4.2.2.3 Double Bus Fault Monitor and Section 5 CPU32 .

BME—Bus Monitor External Enable
1 = Enable bus monitor function for an internal-to-external bus cycle.
0 = Disable bus monitor function for an internal-to-external bus cycle.

For more information see 4.2.2.2 Internal Bus Monitor .

BMT1, BMT0—Bus Monitor Timing
These bits select the timeout period for the bus monitor (see Table 4-8). Upon reset, the
bus monitor is set to 64 system clocks.

4-26 MC68340 USER’S MANUAL MOTOROLA

Table 4-8. BMTx Encoding

BMT1 BMT0 Bus Monitor Timeout Period

0 0 64 system clocks (CLKOUT)

0 1 32 system clocks

1 0 16 system clocks

1 1 8 system clocks

4.3.2.6 PERIODIC INTERRUPT CONTROL REGISTER (PICR). The PICR contains the
interrupt level and the vector number for the periodic interrupt request. This register can
be read or written at any time. Bits 15–11 are unimplemented and always return zero; a
write to these bits has no effect.

PICR $022
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 PIRQL2 PIRQL1 PIRQL0 PIV7 PIV6 PIV5 PIV4 PIV3 PIV2 PIV1 PIV0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Supervisor Only

Bits 15–11—Reserved

PIRQL2–PIRQL0—Periodic Interrupt Request Level
These bits contain the periodic interrupt request level. Table 4-9 lists which interrupt
request level is asserted during an IACK cycle when a periodic interrupt is generated.
The periodic timer continues to run when the interrupt is disabled.

Table 4-9. PIRQL Encoding

PIRQL2 PIRQL1 PIRQL0 Interrupt Request Level

0 0 0 Periodic Interrupt Disabled

0 0 1 Interrupt Request Level 1

0 1 0 Interrupt Request Level 2

0 1 1 Interrupt Request Level 3

1 0 0 Interrupt Request Level 4

1 0 1 Interrupt Request Level 5

1 1 0 Interrupt Request Level 6

1 1 1 Interrupt Request Level 7

NOTE:

Use caution with a level 7 interrupt encoding due to the
SIM40's interrupt servicing order. See 4.2.2.7 Simultaneous
Interrupts by Sources in the SIM40 for the servicing order.

MOTOROLA MC68340 USER’S MANUAL 4-27

PIV7–PIV0—Periodic Interrupt Vector Bits 7–0
These bits contain the value of the vector generated during an IACK cycle in response
to an interrupt from the periodic timer. When the SIM40 responds to the IACK cycle, the
periodic interrupt vector from the PICR is placed on the bus. This vector number is
multiplied by four to form the vector offset, which is added to the vector base register to
obtain the address of the vector.

4.3.2.7 PERIODIC INTERRUPT TIMER REGISTER (PITR). The PITR contains control for
prescaling the software watchdog and periodic timer as well as the count value for the
periodic timer. This register can be read or written at any time. Bits 15–10 are not
implemented and always return zero when read. A write does not affect these bits.

PITR $024
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 SWP PTP PITR7 PITR6 PITR5 PITR4 PITR3 PITR2 PITR1 PITR0

RESET:

0 0 0 0 0 0 MODCK MODCK 0 0 0 0 0 0 0 0

Supervisor Only

Bits 15–10—Reserved

SWP—Software Watchdog Prescale
This bit controls the software watchdog clock source as shown in 4.3.2.5 System
Protection Control Register (SYPCR).

1 = Software watchdog clock prescaled by a value of 512.
0 = Software watchdog clock not prescaled.

The SWP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PTP—Periodic Timer Prescaler Control
This bit contains the prescaler control for the periodic timer.

1 = Periodic timer clock prescaled by a value of 512.
0 = Periodic timer clock not prescaled.

The PTP reset value is the inverse of the MODCK bit state on the rising edge of reset.

PITR7–PITR0—Periodic Interrupt Timer Register Bits 7–0
The remaining bits of the PITR contain the count value for the periodic timer. A zero
value turns off the periodic timer.

4-28 MC68340 USER’S MANUAL MOTOROLA

4.3.2.8 SOFTWARE SERVICE REGISTER (SWSR). The SWSR is the location to which
the software watchdog servicing sequence is written. The software watchdog can be
enabled or disabled by the SWE bit in the SYPCR. SWSR can be written at any time, but
returns all zeros when read.

SWSR $027
7 6 5 4 3 2 1 0

SWSR7 SWSR6 SWSR5 SWSR4 SWSR3 SWSR2 SWSR1 SWSR0

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

4.3.3 Clock Synthesizer Control Register (SYNCR)

The SYNCR can be read or written only in supervisor mode. The reset state of SYNCR
produces an operating frequency of 8.39 MHz when the PLL is referenced to a 32.768-
kHz reference signal. The system frequency is controlled by the frequency control bits in
the upper byte of the SYNCR as follows:

FSYSTEM = FCRYSTAL [2(2+2W+X)] × (Y+1)

SYNCR $004
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W X Y5 Y4 Y3 Y2 Y1 Y0 RSVD 0 0 SLIMP SLOCK RSTEN STSIM STEXT

RESET:
0 0 1 1 1 1 1 1 0 0 0 U U 0 0 0

U = Unaffected by reset Supervisor Only

W—Frequency Control Bit
This bit controls the prescaler tap in the synthesizer feedback loop. Setting the bit
increases the VCO speed by a factor of 4, requiring a time delay for the VCO to relock
(see equation for determining system frequency).

X—Frequency Control Bit
This bit controls a divide-by-two prescaler, which is not in the synthesizer feedback
loop. Setting the bit doubles the system clock speed without changing the VCO speed,
as specified in the equation for determining system frequency; therefore, no delay is
incurred to relock the VCO.

Y5–Y0—Frequency Control Bits
The Y-bits, with a value from 0–63, control the modulus downcounter in the synthesizer
feedback loop, causing it to divide by the value of Y+1 (see the equation for determining
system frequency). Changing these bits requires a time delay for the VCO to relock.

Bits 7–5—Reserved
Bit 7 is reserved for factory testing.

MOTOROLA MC68340 USER’S MANUAL 4-29

SLIMP—Limp Mode
1 = A loss of input signal reference has been detected, and the VCO is running at

approximately one-half the maximum speed (affected by the X-bit), determined
from an internal voltage reference.

0 = External input signal frequency is at VCO reference.

SLOCK—Synthesizer Lock
1 = VCO has locked onto the desired frequency (or system clock is driven

externally).
0 = VCO is enabled, but has not yet locked.

RSTEN—Reset Enable
1 = Loss of input signal causes a system reset.
0 = Loss of input signal causes the VCO to operate at a nominal speed without

external reference (limp mode), and the device continues to operate at that
speed.

STSIM—Stop Mode System Integration Clock
1 = When LPSTOP is executed, the SIM40 clock is driven from the VCO.
0 = When LPSTOP is executed, the SIM40 clock is driven from an external crystal or

oscillator, and the VCO is turned off to conserve power.

STEXT—Stop Mode External Clock
1 = When the LPSTOP instruction is executed, the external clock pin (CLKOUT) is

driven from the SIM40 clock as determined by the STSIM bit.
0 = When the LPSTOP instruction is executed, the external clock (CLKOUT) is held

low to conserve power. No external clock will be driven in LPSTOP mode.

4.3.4 Chip Select Registers

The following paragraphs provide descriptions of the registers in the chip select function,
and an example of how to program the registers. The chip select registers cannot be used
until the V-bit in the MBAR is set.

4-30 MC68340 USER’S MANUAL MOTOROLA

4.3.4.1 BASE ADDRESS REGISTERS. There are four 32-bit base address registers in
the chip select function, one for each chip select signal.

Base Address 1 $044, $04C, $054, $05C
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BA31 BA30 BA29 BA28 BA27 BA26 BA25 BA24 BA23 BA22 BA21 BA20 BA19 BA18 BA17 BA16

RESET:
U U U U U U U U U U U U U U U U

Supervisor Only

Base Address 2 $046, $04E, $056, $05E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BA15 BA14 BA13 BA12 BA11 BA10 BA9 BA8 BFC3 BFC2 BFC1 BFC0 WP FTE NCS V

RESET:
U U U U U U U U U U U U U U 0 0

U = Unaffected by reset Supervisor Only

BA31–BA8—Base Address Bits 31–8
The base address field, the upper 24 bits of each base address register, selects the
starting address for the chip select. The specified base address must be on a multiple of
the selected block size. The corresponding bits, AM31–AM8, in the address mask
register define the size of the block for the chip select. The base address field (and the
base function code field) is compared to the address on the address bus to determine if
a chip select should be generated.

BFC3–BFC0—Base Function Code Bits 3–0
The value programmed into this field causes a chip select to be asserted for a certain
address space type. There are nine function code address spaces (see Section 3 Bus
Operation) specified as either user or supervisor, program or data, CPU, and DMA.
These bits should be used to allow access to one type of address space. If access to
more than one type of address space is desired, the FCMx bits should be used in
addition to the BFCx bits. To prevent access to CPU space, set the NCS bit.

WP—Write Protect
This bit can restrict write accesses to the address range in a base address register. An
attempt to write to the range of addresses specified in a base address register that has
this bit set returns BERR.

1 = Only read accesses are allowed.
0 = Either read or write accesses are allowed.

FTE—Fast-Termination Enable
This bit causes the cycle to terminate early with an internal DSACK≈, giving a fast two-
clock external access. When clear, all external cycles are at least three clocks. If fast
termination is enabled, the DD bits of the corresponding address mask register are
overridden (see Section 3 Bus Operation).

1 = Fast termination cycle enabled (termination determined by PS bits).
0 = Fast termination cycle disabled (termination determined by DD and PS bits).

MOTOROLA MC68340 USER’S MANUAL 4-31

NCS—No CPU Space
This bit specifies whether or not a chip select will assert on a CPU space access cycle
(FC3–FC0 = $7 or $F). If both supervisor data and program accesses are desired, while
ignoring CPU space accesses, then this bit should be set. The NCS bit is cleared at
reset.

1 = Suppress the chip select on a CPU space access.
0 = Assert the chip select on a CPU space access.

V—Valid Bit
This bit indicates that the contents of its base address register and address mask
register pair are valid. The programmed chip selects do not assert until the V-bit is set.
A reset clears the V-bit in each base address register, but does not change any other
bits in the base address and address mask registers (CS0 is a special case, see 4.2.4.2
Global Chip Select Operation).

1 = Contents are valid.
0 = Contents are not valid.

4.3.4.2 ADDRESS MASK REGISTERS. There are four 32-bit address mask registers in
the chip select function, one for each chip select signal.

Address Mask 1 $040, $048, $050, $058
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AM31 AM30 AM29 AM28 AM27 AM26 AM25 AM24 AM23 AM22 AM21 AM20 AM19 AM18 AM17 AM16

RESET:
U U U U U U U U U U U U U U U U

Supervisor Only

Address Mask 2 $042, $04A, $052, $05A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AM15 AM14 AM13 AM12 AM11 AM10 AM9 AM8 FCM3 FCM2 FCM1 FCM0 DD1 DD0 PS1 PS0

RESET:
U U U U U U U U U U U U U U U U

U = Unaffected by reset Supervisor Only

AM31–AM8—Address Mask Bits 31–8
The address mask field, the upper 24 bits of each address mask register, defines the
chip select block size. The block size is equal to 2n, where n = (number of bits set in
the address mask field) + 8.
Any set bit masks the corresponding base address register bit (the base address
register bit becomes a don’t care). By masking the address bits independently, external
devices of different size address ranges can be used. Address mask bits can be set or
cleared in any order in the field, allowing a resource to reside in more than one area of
the address map. This field can be read or written at any time.

4-32 MC68340 USER’S MANUAL MOTOROLA

FCM3–FCM0—Function Code Mask Bits 3–0
This field can be used to mask certain function code bits, allowing more than one
address space type to be assigned to a chip select. Any set bit masks the
corresponding function code bit.

DD1, DD0—DSACK Delay Bits 1 and 0
This field determines the number of wait states added before an internal DSACK≈ is
returned for that entry. Table 4-10 lists the encoding for the DD bits.

NOTE:

The port size field must be programmed for an internal
DSACK≈ response and the FTE bit in the base address
register must be cleared for the DDx bits to have significance.
If external DSACK≈ signals are returned earlier than indicated
by the DDx bits, the cycle will terminate sooner than
programmed. See 4.2.5.2 PORT B for a discussion on using
the internal DSACK≈ generation without using the CS≈ signal.

Table 4-10. DDx Encoding

DD1 DD0 Response

0 0 Zero Wait State

0 1 One Wait State

1 0 Two Wait States

1 1 Three Wait States

PS1, PS0—Port Size Bits 1 and 0
This field determines whether a given chip select responds with DSACK≈ and, if so,
what port size is returned. Table 4-11 lists the encoding for the PSx bits.

Table 4-11. PSx Encoding

PS1 PS0 Mode

0 0 Reserved*

0 1 16-Bit Port

1 0 8-Bit Port

1 1 External DSACK≈ Response

*Use only for 32-bit DMA transfers.

To use the external DSACK≈ response, PS1–PS0 = 11 should be selected to suppress
internal DSACK≈ generation. The DDx bits then have no significance.

MOTOROLA MC68340 USER’S MANUAL 4-33

4.3.4.3 CHIP SELECT REGISTERS PROGRAMMING EXAMPLE. The following listing is
an example of programming a chip select at starting address $00040000, for a block size
of 256 Kbytes, accessing supervisor and user data spaces with a 16-bit port requiring two
wait states. There will be no write protection, no fast termination, and no CPU space
accesses.

base address 1 = $0004
base address 2 = $0013
address mask 1 = $0003
address mask 2 = $FF49

NOTE

If an access matches multiple chip selects, the lowest
numbered chip select will have priority. For example, if CS0
and CS2 "overlap" for a certain range, CS0 will assert when
accessing the "overlapped" address range, and CS2 will not.

4.3.5 External Bus Interface Control

The following paragraphs describe the registers that control the I/O pins used with the
EBI. Refer to the Section 3 Bus Operation for more information about the EBI. For a list
of pin numbers used with port A and port B, see the pinout diagram in Section 12
Ordering Information and Mechanical Data. Section 2 Signal Descriptions shows a
block diagram of the port control circuits.

4.3.5.1 PORT A PIN ASSIGNMENT REGISTER 1 (PPARA1). PPARA1 selects between
an address and discrete I/O function for the port A pins. Any set bit defines the
corresponding pin to be an I/O pin, controlled by the port A data and data direction
registers. Any cleared bit defines the corresponding pin to be an address bit as defined in
the following register diagram. Bits set in this register override the configuration setting of
PPARA2. The $FF reset value of PPARA1 configures it as an input port. This register can
be read or written at any time.

PPARA1 $015
7 6 5 4 3 2 1 0

PRTA7
(A31)

PRTA6
(A30)

PRTA5
(A29)

PRTA4
(A28)

PRTA3
(A27)

PRTA2
(A26)

PRTA1
(A25)

PRTA0
(A24)

RESET:
1 1 1 1 1 1 1 1

Supervisor Only

4-34 MC68340 USER’S MANUAL MOTOROLA

4.3.5.2 PORT A PIN ASSIGNMENT REGISTER 2 (PPARA2). PPARA2 selects between
an address and IACK≈ function for the port A pins. Any set bit defines the corresponding
pin to be an IACK≈ output pin. Any cleared bit defines the corresponding pin to be an
address bit as defined in the register diagram. Any set bits in PPARA1 override the
configuration set in PPARA2. Bit 0 has no function in this register because there is no
level 0 interrupt. This register can be read or written at any time.

PPARA2 $017
7 6 5 4 3 2 1 0

IACK7
(A31)

IACK6
(A30)

IACK5
(A29)

IACK4
(A28)

IACK3
(A27)

IACK2
(A26)

IACK1
(A25)

0

RESET:
0 0 0 0 0 0 0 0

Supervisor Only

The IACK≈ signals are asserted if a bit in PPARA2 is set and the CPU32 services an
external interrupt at the corresponding level. IACK≈ signals have the same timing as
address strobes.

NOTE:

Upon reset, port A is configured as an input port.

4.3.5.3 PORT A DATA DIRECTION REGISTER (DDRA). DDRA controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output. Any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.

DDRA $013
7 6 5 4 3 2 1 0

DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.4 PORT A DATA REGISTER (PORTA). PORTA affects only pins configured as
discrete I/O. A write to PORTA is stored in the internal data latch, and if any port A pin is
configured as an output, the value stored for that bit is driven on the pin. A read of PORTA
returns the value at the pin only if the pin is configured as discrete input. Otherwise, the
value read is the value stored in the internal data latch. This register can be read or written
at any time.

PORTA $011
7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

RESET:
U U U U U U U U

Supervisor/User

MOTOROLA MC68340 USER’S MANUAL 4-35

4.3.5.5 PORT B PIN ASSIGNMENT REGISTER (PPARB). PPARB controls the function
of each port B pin. Any set bit defines the corresponding pin to be an IRQ≈ input or CS≈
as defined in Table 4-5. Any cleared bit defines the corresponding pin to be a discrete I/O
pin (or CS≈ if the FIRQ bit of the MCR is zero) controlled by the port B data and data
direction registers. The MODCK signal has no function after reset. PPARB is configured to
all ones at reset to provide for MODCK, IRQ7, IRQ6, IRQ5, IRQ3, and CS3–CS0. This
register can be read or written at any time.

PPARB $01F
7 6 5 4 3 2 1 0

PPARB7
(IRQ7)

PPARB6
(IRQ6)

PPARB5
(IRQ5)

PPARB4
(IRQ4)

PPARB3
(IRQ3)

PPARB2
(IRQ2)

PPARB1
(IRQ1)

PPARB0
(MODCK)

RESET:
1 1 1 1 1 1 1 1

Supervisor Only

4.3.5.6 PORT B DATA DIRECTION REGISTER (DDRB). DDRB controls the direction of
the pin drivers when the pins are configured as I/O. Any set bit configures the
corresponding pin as an output; any cleared bit configures the corresponding pin as an
input. This register affects only pins configured as discrete I/O. This register can be read
or written at any time.

DDRB $01D
7 6 5 4 3 2 1 0

DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0

RESET:
0 0 0 0 0 0 0 0

Supervisor/User

4.3.5.7 PORT B DATA REGISTER (PORTB, PORTB1). This is a single register that can
be accessed at two different addresses. This register affects only those pins configured as
discrete I/O. A write is stored in the internal data latch, and if any port B pin is configured
as an output, the value stored for that bit is driven on the pin. A read of this register
returns the value stored in the register only if the pin is configured as a discrete output.
Otherwise, the value read is the value of the pin. This register can be read or written at
any time.

PORTB, PORTB1 $019, 01B
7 6 5 4 3 2 1 0

P7 P6 P5 P4 P3 P2 P1 P0

RESET:
U U U U U U U U

Supervisor/User

4-36 MC68340 USER’S MANUAL MOTOROLA

4.4 MC68340 INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the MC68340 after
power-up.

4.4.1 Startup

RESET is asserted by the MC68340 during the time in which VCC is ramping up, the VCO
is locking onto the frequency, and the MC68340 is going through the reset operation. After
RESET is negated, four bus cycles are run, with global CS0 being asserted to fetch the
32-bit supervisor stack pointer (SSP) and the 32-bit program counter (PC) from the boot
ROM. Until programmed differently, CS0 is a global, 16-bit-wide, three-wait-state chip
select. CS0 can be programmed to continue decode for a range of addresses after the
V-bit is set, provided the desired address range is first loaded into the CS0 base address
register. After the V-bit is set for CS0, global chip select can only be restarted with a
system reset.

After the SSP and the PC are fetched, the module base address register (MBAR) should
be initialized, and the MBAR V-bit should be set (CPU space address $0003FF00) with
the desired base address for the internal modules.

4.4.2 SIM40 Module Configuration

The order of the following SIM40 register initializations is not important; however, time can
be saved by initializing the SYNCR first to quickly increase to the desired processor
operating frequency. The module base address register must be initialized prior to any of
following steps.

Clock Synthesizer Control Register (SYNCR):

• Set frequency control bits (W, X, Y) to specify frequency.

• Select action taken during loss of crystal (RSTEN bit): activate a system reset or
operate in limp mode.

• Select system clock and CLKOUT during LPSTOP (STSIM and STEXT bits).

Module Configuration Register (MCR)

• If using the software watchdog, periodic interrupt timer, and/or the bus monitor, select
action taken when FREEZE is asserted (FRZx bits).

• Select port B configuration (FIRQ bit). Note that this bit is used in combination with
the bits in the PPARB to program the function of the port B pins.

• Select the access privilege for the supervisor/user registers (SUPV bit).

• Select the interrupt arbitration level for the SIM40 (IARBx bits).

Autovector Register (AVR)

• Select the desired external interrupt levels for internal autovectoring.

MOTOROLA MC68340 USER’S MANUAL 4-37

System Protection Control Register (SYPCR) (Note that this register can only be written
once after reset.)

• Enable the software watchdog, if desired (SWE bit).

• If the watchdog is enabled, select whether a system reset or a level 7 interrupt is
desired at timeout (SWRI bit).

• If the watchdog is enabled, select the timeout period (SWTx bits).

• Enable the double bus fault monitor, if desired (DBFE bit).

• Enable the external bus monitor, if desired (BME bit).

• Select timeout period for bus monitor (BMTx bits).

Software Watchdog Interrupt Vector Register (SWIV)

• If using the software watchdog, program the vector number for a software watchdog
interrupt.

Periodic Interrupt Timer Register (PITR)

• If using the software watchdog, select whether or not to prescale (SWP bit).

• If using the periodic interrupt timer, select whether or not to prescale (PTP bit).

• Program the count value for the periodic timer, or program a zero value to turn off the
periodic timer (PITRx bits).

Periodic Interrupt Control Register (PICR)

• If using the periodic timer, program the desired interrupt level for the periodic interrupt
timer (PIRQLx bits).

• If using the periodic timer, program the vector number for a periodic timer interrupt.

Chip Select Base Address and Address Mask Registers

• Initialize and set the V-bits in the necessary chip select base address and address
mask registers. Following this step, other system resources requiring the CS≈ signals
can be accessed. Care must be exercised when changing the address for CS0. The
address of the instruction following the MOVE instruction to the CS0 base address
register must match the value of the PC at that time. CS0 must be taken out of global
chip select mode by setting the V-bit in the base address register before CS3–CS1
can be used.

Port A and B Registers

• Program the desired function of the port A signals (PPARA1 and PPARA2 registers).

• Program the desired function of the port B signals (PPARB register).

4-38 MC68340 USER’S MANUAL MOTOROLA

4.4.3 SIM40 Example Configuration Code

The following code is an example configuration sequence for the SIM40 module.

* MC68340 basic SIM40 register initialization example code:
* This code is used to initialize the MC68340's internal SIM40 registers,
* providing basic functions for operation.
* It includes chip select programming for external devices.
* This code would be programmed beginning at offset $0 into ROM which is
* relocated to address $60000 by the initialization code.
* The SSP_VEC and RST_VEC vectors used to initialize the system stack
* pointer and initial PC, respectively, are located at offset $0 after
* reset.

* equates

SSP_INIT EQU $10000 Stack pointer initial value - top of RAM
MBAR EQU $0003FF00 Address of Module Base Address Reg.
MODBASE EQU $FFFFF000 Default Module Base address value

**
* SIM40 register offsets from MBAR base address
MCR EQU $00
SYNCR EQU $04
SYPCR EQU $21
CSAM0 EQU $40
CSBAR0 EQU $44
CSAM1 EQU $48
CSBAR1 EQU $4c
CSAM2 EQU $50
CSBAR2 EQU $54
CSAM3 EQU $58
CSBAR3 EQU $5c

* Reset vectors
* These two vectors should be located at addresses $0 and $4 after a processor
* hardware reset.

ORG $60000
SSP_VEC DC.L SSP_INIT Supervisor stack pointer - initial value
RST_VEC DC.L INIT340 Reset vector pointing to initialization code

MOTOROLA MC68340 USER’S MANUAL 4-39

* Initialization code

* Start Chip Select Initialization:
INIT340 MOVE.W #$2700,SR Init SR - interrupts masked

* Set up default module base address value

MOVEQ.L #7,D0 MBAR is in CPU space
MOVEC.L D0,DFC load DFC to indicate CPU space
MOVE.L #MODBASE+1,D0 Set address/valid bit
MOVES.L D0,MBAR write to MBAR

* Set up system protection register:
* Software watchdog disabled, double bus fault monitor disabled, bus
* monitor BERR after 16 clocks.

MOVE.B #6,SYPCR+MODBASE

* Clock synthesizer control register:
* Switch from 8.3 to 16.7 MHZ

MOVE.W #$7F00,SYNCR+MODBASE X-bit doubles the default speed

* Module configuration register:
* When FREEZE is asserted, software watchdog and periodic interrupt timer
* are disabled, bus monitor is enabled. Port B = 4 IRQs, 4 chip selects.
* Show Cycles enabled, external arbitration enabled. Supervisor/user
* SIM registers unrestricted, Interrupt Arbitration at priority $F

MOVE.W #$420F,MCR+MODBASE

* Now, set up Address masks and base addresses for the chip selects:

LEA CSAM0+MODBASE,A0 Point to CS0 addr. mask location.
MOVEQ #7,D Set up a loop counter.
LEA CSAM0$,A1 Point to addr mask memory location.

LOOP MOVE.L (A1)+,(A0)+ Init. addr mask and base addr reg
DBRA D0,LOOP

4-40 MC68340 USER’S MANUAL MOTOROLA

* Data table for chip select initialization

* CS0 - EPROM - 00060000-0007ffff, 3-wait states, 16-bit term., write protect
CSAM0$ DC.L $0001FFFD
CSBAR0$ DC.L $00060009
* CS1 - RAM - 00000000-0000ffff, fast termination
CSAM1$ DC.L $0000FFF0
CSBAR1$ DC.L $00000005
* CS2 - external device - 00FFE8xx, external termination
CSAM2$ DC.L $000000F3
CSBAR2$ DC.L $00FFE801
* CS3 - secondary memory - 00000000-0003ffff, 3-wait states, 16-bit term.
CSAM3$ DC.L $0003FFFD
CSBAR3$ DC.L $00000001

END

MOTOROLA MC68340 USER’S MANUAL 5-1

SECTION 5
CPU32

The CPU32, the first-generation instruction processing module of the M68300 family, is
based on the industry-standard MC68000 core processor. It has many features of the
MC68010 and MC68020 as well as unique features suited for high-performance processor
applications. The CPU32 provides a significant performance increase over the MC68000
CPU, yet maintains source-code and binary-code compatibility with the M68000 family.

5.1 OVERVIEW

The CPU32 is designed to interface to the intermodule bus (IMB), allowing interaction with
other IMB submodules. In this manner, integrated processors can be developed that
contain useful peripherals on chip. This integration provides high-speed accesses among
the IMB submodules, increasing system performance.

Another advantage of the CPU32 is low power consumption. The CPU32 is implemented
in high-speed complementary metal-oxide semiconductor (HCMOS) technology, providing
low power use during normal operation. During periods of inactivity, the LPSTOP
instruction can be executed, shutting down the CPU32 and other IMB modules, greatly
reducing power consumption.

Ease of programming is an important consideration when using an integrated processor.
The CPU32 instruction format reflects a predominate register-memory interaction
philosophy. All data resources are available to all operations that require them. The
programming model includes eight multifunction data registers and seven general-purpose
addressing registers. The data registers readily support 8-bit (byte), 16-bit (word), and 32-
bit (long-word) operand lengths for all operations. Address manipulation is supported by
word and long-word operations. Although the program counter (PC) and stack pointers
(SP) are special-purpose registers, they are also available for most data addressing
activities. Ease of program checking and diagnosis is enhanced by trace and trap
capabilities at the instruction level.

As processor applications become more complex and programs become larger, high-level
language (HLL) will become the system designer's choice in programming languages.
HLL aids in the rapid development of complex algorithms with less error and is readily
portable. The CPU32 instruction set will efficiently support HLL.

5-2 MC68340 USER’S MANUAL MOTOROLA

5.1.1 Features

Features of the CPU32 are as follows:

• Fully Upward Object-Code Compatible with M68000 Family

• Virtual Memory Implementation

• Loop Mode of Instruction Execution

• Fast Multiply, Divide, and Shift Instructions

• Fast Bus Interface with Dynamic Bus Port Sizing

• Improved Exception Handling for Embedded Control Applications

• Additional Addressing Modes

— Scaled Index

— Address Register Indirect with Base Displacement and Index

— Expanded PC Relative Modes

— 32-Bit Branch Displacements

• Instruction Set Additions

— High-Precision Multiply and Divide

— Trap On Condition Codes

— Upper and Lower Bounds Checking

• Enhanced Breakpoint Instruction

• Trace on Change of Flow

• Table Lookup and Interpolate Instruction

• LPSTOP Instruction

• Hardware BKPT Signal, Background Mode

• Fully Static Implementation

A block diagram of the CPU32 is shown in Figure 5-1. The major blocks depicted operate
in a highly independent fashion that maximizes concurrences of operation while managing
the essential synchronization of instruction execution and bus operation. The bus
controller loads instructions from the data bus into the decode unit. The sequencer and
control unit provide overall chip control, managing the internal buses, registers, and
functions of the execution unit.

5.1.2 Virtual Memory

A system that supports virtual memory has a limited amount of high-speed physical
memory that can be accessed directly by the processor and maintains an image of a
much larger virtual memory on a secondary storage device. When the processor attempts
to access a location in the virtual memory map that is not resident in physical memory, a
page fault occurs. The access to that location is temporarily suspended while the
necessary data is fetched from secondary storage and placed in physical memory. The

MOTOROLA MC68340 USER’S MANUAL 5-3

CPU32 uses instruction restart, which requires that only a small portion of the internal
machine state be saved. After correcting the page fault, the machine state is restored, and
the instruction is refetched and restarted. This process is completely transparent to the
application program.

BUS CONTROL

INSTRUCTION
PREFETCH

AND
DECODE

EXECUTION
UNIT

SEQUENCER

CONTROL
UNIT

BUS
CONTROL

ADDRESS
BUS

DATA BUS 16

32

Figure 5-1. CPU32 Block Diagram

5.1.3 Loop Mode Instruction Execution

The CPU32 has several features that provide efficient execution of program loops. One of
these features is the DBcc looping primitive instruction. To increase the performance of
the CPU32, a loop mode has been added to the processor. The loop mode is used by any
single-word instruction that does not change the program flow. Loop mode is implemented
in conjunction with the DBcc instruction. Figure 5-2 shows the required form of an
instruction loop for the processor to enter loop mode.

ONE-WORD INSTRUCTION

DBcc

 DBcc DISPLACEMENT
$FFFC = 4

Figure 5-2. Loop Mode Instruction Sequence

The loop mode is entered when the DBcc instruction is executed and the loop
displacement is –4. Once in loop mode, the processor performs only the data cycles
associated with the instruction and suppresses all instruction fetches. The termination

5-4 MC68340 USER’S MANUAL MOTOROLA

condition and count are checked after each execution of the data operations of the looped
instruction. The CPU32 automatically exits the loop mode on interrupts or other
exceptions.

5.1.4 Vector Base Register

The vector base register (VBR) contains the base address of the 1024-byte exception
vector table, which consists of 256 exception vectors. Exception vectors contain the
memory addresses of routines that begin execution at the completion of exception
processing. These routines perform a series of operations appropriate for the
corresponding exceptions. Because the exception vectors contain memory addresses,
each consists of one long word, except for the reset vector. The reset vector consists of
two long words: the address used to initialize the supervisor stack pointer (SSP) and the
address used to initialize the PC.

The address of an interrupt exception vector is derived from an 8-bit vector number and
the VBR. The vector numbers for some exceptions are obtained from an external device;
other numbers are supplied automatically by the processor. The processor multiplies the
vector number by 4 to calculate the vector offset, which is added to the VBR. The sum is
the memory address of the vector. All exception vectors are located in supervisor data
space, except the reset vector, which is located in supervisor program space. Only the
initial reset vector is fixed in the processor's memory map; once initialization is complete,
there are no fixed assignments. Since the VBR provides the base address of the vector
table, the vector table can be located anywhere in memory; it can even be dynamically
relocated for each task that is executed by an operating system. Refer to 5.5 Exception
Processing for additional details.

31 0

VECTOR BASE REGISTER (VBR)

5.1.5 Exception Handling

The processing of an exception occurs in four steps, with variations for different exception
causes. During the first step, a temporary internal copy of the status register (SR) is made,
and the SR is set for exception processing. During the second step, the exception vector
is determined. During the third step, the current processor context is saved. During the
fourth step, a new context is obtained, and the processor then proceeds with instruction
processing.

Exception processing saves the most volatile portion of the current context by pushing it
on the supervisor stack. This context is organized in a format called the exception stack
frame. This information always includes the SR and PC context of the processor when the
exception occurred. To support generic handlers, the processor places the vector offset in
the exception stack frame. The processor also marks the frame with a frame format. The
format field allows the return-from-exception (RTE) instruction to identify what information
is on the stack so that it may be properly restored.

MOTOROLA MC68340 USER’S MANUAL 5-5

5.1.6 Addressing Modes

Addressing in the CPU32 is register oriented. Most instructions allow the results of the
specified operation to be placed either in a register or directly in memory; this flexibility
eliminates the need for extra instructions to store register contents in memory.

The seven basic addressing modes are as follows:

• Register Direct

• Register Indirect

• Register Indirect with Index

• Program Counter Indirect with Displacement

• Program Counter Indirect with Index

• Absolute

• Immediate

Included in the register indirect addressing modes are the capabilities to postincrement,
predecrement, and offset. The PC relative mode also has index and offset capabilities. In
addition to these addressing modes, many instructions implicitly specify the use of the SR,
SP and/or PC. Addressing is explained fully in the M68000PM/AD, M68000 Family
Programmer’s Reference Manual.

5.1.7 Instruction Set

The instruction set of the CPU32 is very similar to that of the MC68020 (see Table 5-1).
Two new instructions have been added to facilitate embedded control applications:
LPSTOP and table lookup and interpolate (TBL). The following M68020 instructions are
not implemented on the CPU32:

BFxxx — Bit Field Instructions (BFCHG, BFCLR, BFEXTS, BFEXTU,
BFFFO, BFINS, BFSET, BFTST)

CALLM, RTM — Call Module, Return Module

CAS, CAS2 — Compare and Set (Read-Modify-Write Instructions)

cpxxx — Coprocessor Instructions (cpBcc, cpDBcc, cpGEN, cpRESTORE,
cpSAVE, cpScc, cpTRAPcc)

PACK, UNPK — Pack, Unpack BCD Instructions

The CPU32 traps on unimplemented instructions or illegal effective addressing modes,
allowing user-supplied code to emulate unimplemented capabilities or to define special-
purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 core enhancements.

5-6 MC68340 USER’S MANUAL MOTOROLA

Table 5-1. Instruction Set

Mnemonic Description Mnemonic Description

ABCD Add Decimal with Extend MOVEA Move Address
ADD Add MOVE CCR Move Condition Code Register
ADDA Add Address MOVE SR Move to/from Status Register
ADDI Add Immediate MOVE USP Move User Stack Pointer
ADDQ Add Quick MOVEC Move Control Register
AND Logical AND MOVEM Move Multiple Registers
ANDI Logical AND Immediate MOVEP Move Peripheral Data
ASL Arithmetic Shift Left MOVEQ Move Quick
ASR Arithmetic Shift Right MOVES Move Alternate Address Space
Bcc Branch Conditionally (16 Tests) MULS Signed Multiply
BCHG Bit Test and Change MULU Unsigned Multiply
BCLR Bit Test and Clear NBCD Negate Decimal with Extend
BGND Enter Background Mode NEG Negate
BKPT Breakpoint NEGX Negate with Extend
BRA Branch Always NOP No Operation
BSET Bit Test and Set NOT Ones Complement
BSR Branch to Subroutine OR Logical Inclusive OR
BTST Bit Test ORI Logical Inclusive OR Immediate
CHK Check Register against Bounds PEA Push Effective Address
CHK2 Check Register against Upper and RESET Reset External Devices

 Lower Bounds ROL, ROR Rotate Left and Right
CLR Clear Operand ROXL, ROXR Rotate with Extend Left and Right
CMP Compare RTD Return and Deallocate
CMPA Compare Address RTE Return from Exception
CMPI Compare Immediate RTR Return and Restore
CMPM Compare Memory RTS Return from Subroutine
CMP2 Compare Register against Upper SBCD Subtract Decimal with Extend

 and Lower Bounds Scc Set Conditionally
DBcc Test Condition, Decrement and STOP Stop

 Branch (16 Tests) SUB Subtract
DIVS, DIVSL Signed Divide SUBA Subtract Address
DIVU, DIVUL Unsigned Divide SUBI Subtract Immediate
EOR Logical Exclusive OR SUBQ Subtract Quick
EORI Logical Exclusive OR Immediate SUBX Subtract with Extend
EXG Exchange Registers SWAP Swap Data Register Halves
EXT, EXTB Sign Extend TAS Test and Set Operand
ILLEGAL Take Illegal Instruction Trap TBLS, TBLSN Table Lookup and Interpolate,
JMP Jump Signed
JSR Jump to Subroutine TBLU, TBLUN Table Lookup and Interpolate,
LEA Load Effective Address Unsigned
LINK Link and Allocate TRAPcc Trap Conditionally (16 Tests)
LPSTOP Low-Power Stop TRAPV Trap on Overflow
LSL, LSR Logical Shift Left and Right TST Test
MOVE Move UNLK Unlink

MOTOROLA MC68340 USER’S MANUAL 5-7

5.1.7.1 TABLE LOOKUP AND INTERPOLATE INSTRUCTIONS. To maximize
throughput for real-time applications, reference data is often “particulated” and stored in
memory for quick access. The storage of each data point would require an inordinate
amount of memory. The table instruction requires only a sample of data points stored in
the array, thus reducing memory requirements. Intermediate values are recovered with
this instruction via linear interpolation. The results may be rounded by a round-to-nearest
algorithm.

5.1.7.2 LOW-POWER STOP INSTRUCTION. In applications where power consumption is
a consideration, the CPU32 forces the device into a low-power standby mode when
immediate processing is not required. The low-power stop mode is entered by executing
the LPSTOP instruction. The processor will remain in this mode until a user-specified (or
higher) interrupt level or reset occurs.

5.1.8 Processing States

The processor is always in one of four processing states: normal, exception, halted, or
background. The normal processing state is that associated with instruction execution; the
bus is used to fetch instructions and operands and to store results. The exception
processing state is associated with interrupts, trap instructions, tracing, and other
exception conditions. The exception may be internally generated explicitly by an
instruction or by an unusual condition arising during the execution of an instruction.
Externally, exception processing can be forced by an interrupt, a bus error, or a reset. The
halted processing state is an indication of catastrophic hardware failure. For example, if
during the exception processing of a bus error another bus error occurs, the processor
assumes that the system is unusable and halts. The background processing state is
initiated by breakpoints, execution of special instructions, or a double bus fault.
Background processing allows interactive debugging of the system via a simple serial
interface. Refer to 5.4 Processing States for details.

5.1.9 Privilege States

The processor operates at one of two levels of privilege—supervisor or user. The
supervisor level has higher privileges than the user level. Not all instructions are permitted
to execute in the lower privileged user level, but all instructions are available at the
supervisor level. This scheme allows the supervisor to protect system resources from
uncontrolled access. The processor uses the privilege level indicated by the S-bit in the
SR to select either the user or supervisor privilege level and either the user stack pointer
(USP) or SSP for stack operations.

5-8 MC68340 USER’S MANUAL MOTOROLA

5.2 ARCHITECTURE SUMMARY

The CPU32 is upward source- and object-code compatible with the MC68000 and
MC68010. It is downward source- and object-code compatible with the MC68020. Within
the M68000 family, architectural differences are limited to the supervisory operating state.
User state programs can be executed unchanged on upward-compatible devices.

The major CPU32 features are as follows:

• 32-Bit Internal Data Path and Arithmetic Hardware

• 32-Bit Address Bus Supported by 32-Bit Calculations

• Rich Instruction Set

• Eight 32-Bit General-Purpose Data Registers

• Seven 32-Bit General-Purpose Address Registers

• Separate User and Supervisor Stack Pointers

• Separate User and Supervisor State Address Spaces

• Separate Program and Data Address Spaces

• Many Data Types

• Flexible Addressing Modes

• Full Interrupt Processing

• Expansion Capability

5.2.1 Programming Model

The CPU32 programming model consists of two groups of registers that correspond to the
user and supervisor privilege levels. User programs can only use the registers of the user
model. The supervisor programming model, which supplements the user programming
model, is used by CPU32 system programmers who wish to protect sensitive operating
system functions. The supervisor model is identical to that of MC68010 and later
processors.

The CPU32 has eight 32-bit data registers, seven 32-bit address registers, a 32-bit PC,
separate 32-bit SSP and USP, a 16-bit SR, two alternate function code registers, and a
32-bit VBR (see Figures 5-3 and 5-4).

MOTOROLA MC68340 USER’S MANUAL 5-9

31 16 15 8 7 0

D0

D1

D2

D3 DATA REGISTERS

D4

D5

D6

D7

31 16 15

A0

A1

A2

A3 ADDRESS REGISTERS

A4

A5

A6

31 16 15 0

A7
(USP)

USER STACK POINTER

31 0

PC PROGRAM COUNTER

15 8 7 0

0 CCR CONDITION CODE
REGISTER

Figure 5-3. User Programming Model

31 16 15 0

A7' (SSP) SUPERVISOR STACK
POINTER

15 8 7 0

(CCR) SR STATUS REGISTER

31 0

PC PROGRAM COUNTER

31 3 2 0

SFC ALTERNATE FUNCTION

DFC CODE REGISTERS

Figure 5-4. Supervisor Programming Model Supplement

5-10 MC68340 USER’S MANUAL MOTOROLA

5.2.2 Registers

Registers D7–D0 are used as data registers for bit, byte (8-bit), word (16-bit), long-word
(32-bit), and quad-word (64-bit) operations. Registers A6 to A0 and the USP and SSP are
address registers that may be used as software SPs or base address registers. Register
A7 (shown as A7 and A7' in Figures 5-3 and 5-4) is a register designation that applies to
the USP in the user privilege level and to the SSP in the supervisor privilege level. In
addition, address registers may be used for word and long-word operations. All of the 16
general-purpose registers (D7–D0, A7–A0) may be used as index registers.

The PC contains the address of the next instruction to be executed by the CPU32. During
instruction execution and exception processing, the processor automatically increments
the contents of the PC or places a new value in the PC, as appropriate.

The SR (see Figure 5-5) contains condition codes, an interrupt priority mask (three bits),
and three control bits. Condition codes reflect the results of a previous operation. The
codes are contained in the low byte (CCR) of the SR. The interrupt priority mask
determines the level of priority an interrupt must have to be acknowledged. The control
bits determine trace mode and privilege level. At user privilege level, only the CCR is
available. At supervisor privilege level, software can access the full SR.

The VBR contains the base address of the exception vector table in memory. The
displacement of an exception vector is added to the value in this register to access the
vector table.

Alternate source and destination function code registers (SFC and DFC) contain 3-bit
function codes. The CPU32 generates a function code each time it accesses an address.
Specific codes are assigned to each type of access. The codes can be used to select
eight dedicated 4-Gbyte address spaces. The MOVEC instruction can use registers SFC
and DFC to specify the function code of a memory address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T1 T0 S 0 0 I2 I1 I0 0 0 0 X N Z V C

EXTEND

NEGATIVE

ZERO

OVERFLOW

CARRY

INTERRUPT
PRIORITY MASK

 SUPERVISOR/USER
STATE

TRACE
ENABLE

SYSTEM BYTE
USER BYTE

(CONDITION CODE REGISTER)

Figure 5-5. Status Register

MOTOROLA MC68340 USER’S MANUAL 5-11

5.3 INSTRUCTION SET

The following paragaphs describe the set of instructions provided in the CPU32 and
demonstrate their use. Descriptions of the instruction format and the operands used by
instructions are included. After a summary of the instructions by category, a detailed
description of each instruction is listed in alphabetical order. Complete programming
information is provided, as well as a description of condition code computation and an
instruction format summary.

The CPU32 instructions include machine functions for all the following operations:

• Data Movement

• Arithmetic Operations

• Logical Operations

• Shifts and Rotates

• Bit Manipulation

• Conditionals and Branches

• System Control

The large instruction set encompasses a complete range of capabilities and, combined
with the enhanced addressing modes, provides a flexible base for program development.

5.3.1 M68000 Family Compatibility

It is the philosophy of the M68000 Family that all user-mode programs can execute
unchanged on a more advanced processor and that supervisor-mode programs and
exception handlers should require only minimal alteration.

The CPU32 can be thought of as an intermediate member of the M68000 family. Object
code from an MC68000 or MC68010 may be executed on the CPU32, and many of the
instruction and addressing mode extensions of the MC68020 are also supported.

5.3.1.1 NEW INSTRUCTIONS. Two instructions have been added to the M68000
instruction set for use in embedded control applications: LPSTOP and table lookup and
interpolation (TBL).

5.3.1.1.1 Low-Power Stop (LPSTOP). In applications where power consumption is a
consideration, the CPU32 can force the device into a low-power standby mode when
immediate processing is not required. The low-power mode is entered by executing the
LPSTOP instruction. The processor remains in this mode until a user-specified or higher
level interrupt or a reset occurs.

5-12 MC68340 USER’S MANUAL MOTOROLA

5.3.1.1.2 Table Lookup and Interpolation (TBL). To maximize throughput for real-time
applications, reference data is often precalculated and stored in memory for quick access.
The storage of sufficient data points can require an inordinate amount of memory. The
TBL instruction uses linear interpolation to recover intermediate values from a sample of
data points, and thus conserves memory.

When the TBL instruction is executed, the CPU32 looks up two table entries bounding the
desired result and performs a linear interpolation between them. Byte, word, and long-
word operand sizes are supported. The result can be rounded according to a round-to-
nearest algorithm or returned unrounded along with the fractional portion of the calculated
result (byte and word results only). This extra precision can be used to reduce cumulative
error in complex calculations. See 5.3.4 Using the TBL Instructions for examples.

5.3.1.2 UNIMPLEMENTED INSTRUCTIONS. The ability to trap on unimplemented
instructions allows user-supplied code to emulate unimplemented capabilities or to define
special-purpose functions. However, Motorola reserves the right to use all currently
unimplemented instruction operation codes for future M68000 enhancements. See 5.5.2.8
Illegal or Unimplemented Instructions for more details.

5.3.2 Instruction Format and Notation

All instructions consist of at least one word. Some instructions can have as many as
seven words, as shown in Figure 5-6. The first word of the instruction, called the operation
word, specifies instruction length and the operation to be performed. The remaining
words, called extension words, further specify the instruction and operands. These words
may be immediate operands, extensions to the effective address mode specified in the
operation word, branch displacements, bit number, special register specifications, trap
operands, or argument counts.

15 0

OPERATION WORD

(ONE WORD, SPECIFIES OPERATION AND MODES)

SPECIAL OPERAND SPECIFIERS

(IF ANY, ONE OR TWO WORDS)

IMMEDIATE OPERAND OR SOURCE ADDRESS
EXTENSION

(IF ANY, ONE TO THREE WORDS)

DESTINATION EFFECTIVE ADDRESS EXTENSION

(IF ANY, ONE TO THREE WORDS)

Figure 5-6. Instruction Word General Format

MOTOROLA MC68340 USER’S MANUAL 5-13

Besides the operation code, which specifies the function to be performed, an instruction
defines the location of every operand for the function. Instructions specify an operand
location in one of three ways:

• Register Specification A register field of the instruction contains the number of
the register.

• Effective Address An effective address field of the instruction contains
address mode information.

• Implicit Reference The definition of an instruction implies the use of
specific registers.

The register field within an instruction specifies the register to be used. Other fields within
the instruction specify whether the register is an address or data register and how it is to
be used. The M68000PM/AD, M68000 Family Programmer’s Reference Manual, contains
detailed register information.

Except where noted, the following notation is used in this section:

Data Immediate data from an instruction
Destination Destination contents
Source Source contents
Vector Location of exception vector
An Any address register (A7–A0)
Ax, Ay Address registers used in computation
Dn Any data register (D7–D0)
Rc Control register (VBR, SFC, DFC)
Rn Any address or data register
Dh, Dl Data registers, high- and low-order 32 bits of product
Dr, Dq Data registers, division remainder, division quotient
Dx, Dy Data registers, used in computation
Dym, Dyn Data registers, table interpolation values
Xn Index register
[An] Address extension
cc Condition code
d# Displacement

Example: d16 is a 16-bit displacement
〈ea〉 Effective address
#〈data〉 Immediate data; a literal integer
label Assembly program label
list List of registers

Example: D3–D0
[...] Bits of an operand

Examples: [7] is bit 7; [31:24] are bits 31–24

5-14 MC68340 USER’S MANUAL MOTOROLA

(...) Contents of a referenced location
Example: (Rn) refers to the contents of Rn

CCR Condition code register (lower byte of SR)
X—extend bit
N—negative bit
Z—zero bit
V—overflow bit
C—carry bit

PC Program counter
SP Active stack pointer
SR Status register
SSP Supervisor stack pointer
USP User stack pointer
FC Function code
DFC Destination function code register
SFC Source function code register
+ Arithmetic addition or postincrement
– Arithmetic subtraction or predecrement
/ Arithmetic division or conjunction symbol
× Arithmetic multiplication
= Equal to
≠ Not equal to
> Greater than
≥ Greater than or equal to
< Less than
≤ Less than or equal to
Λ Logical AND
V Logical OR
⊕ Logical exclusive OR
~ Invert; operand is logically complemented
BCD Binary-coded decimal, indicated by subscript

Example: Source10 is a BCD source operand.
LSW Least significant word
MSW Most significant word
{R/W} Read/write indicator

In a description of an operation, a destination operand is placed to the right of source
operands and is indicated by an arrow (⇒).

MOTOROLA MC68340 USER’S MANUAL 5-15

5.3.3 Instruction Summary

The instructions form a set of tools to perform the following operations:

Data movement Bit manipulation

Integer arithmetic Binary-coded decimal arithmetic

Logic Program control

Shift and rotate System control

The complete range of instruction capabilities combined with the addressing modes
described previously provide flexibility for program development. All CPU32 instructions
are summarized in Table 5-2.

5-16 MC68340 USER’S MANUAL MOTOROLA

Table 5-2. Instruction Set Summary

Opcode Operation Syntax

ABCD Source10 + Destination10 + X ⇒ Destination ABCD Dy,Dx
ABCD –(Ay),–(Ax)

ADD Source + Destination ⇒ Destination ADD 〈 ea〉 ,Dn
ADD Dn,〈 ea〉

ADDA Source + Destination ⇒ Destination ADDA 〈ea〉 ,An

ADDI Immediate Data + Destination ⇒ Destination ADDI #〈 data〉,〈 ea〉

ADDQ Immediate Data + Destination ⇒ Destination ADDQ # 〈data 〉,〈ea〉

ADDX Source + Destination + X ⇒ Destination ADDX Dy,Dx
ADDX –(Ay),–(Ax)

AND Source Λ Destination ⇒ Destination AND 〈 ea〉, Dn
AND Dn,〈 ea〉

ANDI Immediate Data Λ Destination ⇒ Destination ANDI #〈 data〉,〈 ea〉

ANDI to CCR Source Λ CCR ⇒ CCR ANDI #〈 data〉 ,CCR

ANDI to SR If supervisor state
the Source Λ SR ⇒ SR

else TRAP

ANDI #〈 data〉 ,SR

ASL,ASR Destination Shifted by 〈 count〉 ⇒ Destination ASd Dx,Dy
ASd # 〈data 〉,Dy
ASd 〈ea〉

Bcc If (condition true) then PC + d ⇒ PC Bcc 〈label〉

BCHG ~(〈 number 〉 of Destination) ⇒ Z;
~(〈 number 〉 of Destination) ⇒ 〈 bit number〉 of
 Destination

BCHG Dn,〈 ea〉
BCHG # 〈data 〉,〈ea〉

BCLR ~(〈 number 〉 of Destination) ⇒ Z;
0 ⇒ 〈 bit number〉 of Destination

BCLR Dn, 〈ea〉
BCLR # 〈data 〉,〈ea〉

BGND If (background mode enabled) then
 enter background mode
else Format/Vector offset ⇒ –(SSP)
 PC ⇒ –(SSP)
 SR ⇒ –(SSP)
 (Vector) ⇒ PC

BGND

BKPT Run breakpoint acknowledge cycle;
TRAP as illegal instruction

BKPT #〈 data〉

BRA PC + d ⇒ PC BRA 〈 label〉

BSET ~(〈 number 〉 of Destination) ⇒ Z;
1 ⇒ 〈 bit number〉 of Destination

BSET Dn,〈 ea〉
BSET #〈 data〉,〈 ea〉

BSR SP – 4 ⇒ SP; PC ⇒ (SP); PC + d ⇒ PC BSR 〈 label〉

BTST – (〈 number 〉 of Destination) ⇒ Z; BTST Dn, 〈ea〉
BTST # 〈data 〉,〈ea〉

CHK If Dn < 0 or Dn > Source then TRAP CHK 〈 ea〉 ,Dn

CHK2 If Rn < lower bound or
 If Rn > upper bound
then TRAP

CHK2 〈ea〉 ,Rn

CLR 0 ⇒ Destination CLR 〈 ea〉

CMP Destination — Source ⇒ cc CMP 〈 ea〉 ,Dn

CMPA Destination — Source CMPA 〈 ea〉 ,An

CMPI Destination — Immediate Data CMPI # 〈data〉,〈 ea〉

CMPM Destination — Source ⇒ cc CMPM (Ay)+,(Ax)+

MOTOROLA MC68340 USER’S MANUAL 5-17

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax

CMP2 Compare Rn < lower-bound or
 Rn > upper-bound
 and Set Condition Codes

CMP2 〈 ea〉 ,Rn

DBcc If condition false then (Dn – 1 ⇒ Dn;
If Dn ≠ –1 then PC + d ⇒ PC)

DBcc Dn,〈 label〉

DIVS
DIVSL

Destination/Source ⇒ Destination DIVS.W 〈 ea〉 ,Dn 32/16 ⇒ 16r:16q
DIVS.L 〈 ea〉 ,Dq 32/32 ⇒ 32q
DIVS.L 〈 ea〉 ,Dr:Dq 64/32 ⇒ 32r:32q
DIVSL.L 〈 ea〉 ,Dr:Dq 32/32 ⇒ 32r:32q

DIVU
DIVUL

Destination/Source ⇒ Destination DIVU.W 〈ea〉 ,Dn 32/16 ⇒ 16r:16q
DIVU.L 〈ea〉 ,Dq 32/32 ⇒ 32q
DIVU.L 〈ea〉 ,Dr:Dq 64/32 ⇒ 32r:32q
DIVUL.L 〈ea〉 ,Dr:Dq 32/32 ⇒ 32r:32q

EOR Source ⊕ Destination ⇒ Destination EOR Dn,〈 ea〉

EORI Immediate Data ⊕ Destination ⇒ Destination EORI # 〈data 〉,〈ea〉

EORI
to CCR

Source ⊕ CCR ⇒ CCR EORI # 〈data 〉,CCR

EORI
to SR

If supervisor state
 the Source ⊕ SR ⇒ SR
else TRAP

EORI # 〈data 〉,SR

EXG Rx ⇔ Ry EXG Dx,Dy
EXG Ax,Ay
EXG Dx,Ay
EXG Ay,Dx

EXT
EXTB

Destination Sign-Extended ⇒ Destination EXT.W Dn extend byte to word
EXT.L Dn extend word to long word
EXTB.L Dn extend byte to long word

LLEGAL SSP – 2 ⇒ SSP; Vector Offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP);
SSp – 2 ⇒ SSP; SR ⇒ (SSP);
Illegal Instruction Vector Address ⇒ PC

ILLEGAL

JMP Destination Address ⇒ PC JMP 〈 ea〉

JSR SP–4 ⇒ SP; PC ⇒ (SP)
Destination Address ⇒ PC

JSR 〈ea〉

LEA 〈ea〉 ⇒ An LEA 〈ea〉 ,An

LINK SP – 4 ⇒ SP; An ⇒ (SP)
SP ⇒ An, SP + d ⇒ SP

LINK An,#〈 displacement〉

LPSTOP If supervisor state
 Immediate Data ⇒ SR
 Interrupt Mask ⇒ External Bus Interface (EBI)
STOP
else TRAP

LPSTOP #〈 data〉

LSL,LSR Destination Shifted by 〈 count〉 ⇒ Destination LSd1 Dx,Dy
LSd1 # 〈data 〉,Dy
LSd1 〈ea〉

MOVE Source ⇒ Destination MOVE 〈 ea〉,〈ea〉

MOVEA Source ⇒ Destination MOVEA 〈 ea〉 ,An

MOVE from
CCR

CCR ⇒ Destination MOVE CCR, 〈ea〉

5-18 MC68340 USER’S MANUAL MOTOROLA

Table 5-2. Instruction Set Summary (Continued)

Opcode Operation Syntax

MOVE to CCR Source ⇒ CCR MOVE 〈 ea〉 ,CCR

MOVE from SR If supervisor state
 then SR ⇒ Destination
else TRAP

MOVE SR,〈 ea〉

MOVE to SR If supervisor state
 then Source ⇒ SR
else TRAP

MOVE 〈 ea〉 ,SR

MOVE USP If supervisor state
 then USP ⇒ An or An ⇒ USP
else TRAP

MOVE USP,An
MOVE An,USP

MOVEC If supervisor state
 then Rc ⇒ Rn or Rn ⇒ Rc
else TRAP

MOVEC Rc,Rn
MOVEC Rn,Rc

MOVEM Registers ⇒ Destination
Source ⇒ Registers

MOVEM register list,〈 ea〉
MOVEM 〈 ea〉 ,register list

MOVEP Source ⇒ Destination MOVEP Dx,(d,Ay)
MOVEP (d,Ay),Dx

MOVEQ Immediate Data ⇒ Destination MOVEQ #〈 data〉 ,Dn

MOVES If supervisor state
 then Rn ⇒ Destination [DFC] or Source
[SFC] ⇒ Rn
else TRAP

MOVES Rn,〈 ea〉
MOVES 〈 ea〉 ,Rn

MULS Source × Destination ⇒ Destination MULS.W 〈 ea〉 ,Dn 16 × 16 ⇒ 32
MULS.L 〈 ea〉 ,Dl 32 × 32 ⇒ 32
MULS.L 〈 ea〉 ,Dh:Dl 32 × 32 ⇒ 64

MULU Source × Destination ⇒ Destination MULU.W 〈ea〉 ,Dn 16 × 16 ⇒ 32
MULU.L 〈 ea〉 ,Dl 32 × 32 ⇒ 32
MULU.L 〈 ea〉 ,Dh:Dl 32 × 32 ⇒ 64

NBCD 0 – (Destination10) – X ⇒ Destination NBCD 〈ea〉

NEG 0 – (Destination) ⇒ Destination NEG 〈 ea〉

NEGX 0 – (Destination) – X ⇒ Destination NEGX 〈 ea〉

NOP None NOP

NOT ~Destination ⇒ Destination NOT 〈 ea〉

OR Source V Destination ⇒ Destination OR 〈ea〉 ,Dn
OR Dn, 〈ea〉

ORI Immediate Data V Destination ⇒ Destination ORI # 〈data 〉,〈ea〉

ORI to CCR Source V CCR ⇒ CCR ORI # 〈data 〉,CCR

ORI to SR If supervisor state
 then Source V SR ⇒ SR
else TRAP

ORI # 〈data 〉,SR

PEA Sp – 4 ⇒ SP; 〈ea〉 ⇒ (SP) PEA 〈ea〉

RESET If supervisor state
 then Assert RESET
else TRAP

RESET

ROL,ROR Destination Rotated by 〈count 〉⇒ Destination ROd1 Rx,Dy
ROd1 # 〈data 〉,Dy
ROd1 〈ea〉

MOTOROLA MC68340 USER’S MANUAL 5-19

Table 5-2. Instruction Set Summary (Concluded)

Opcode Operation Syntax

ROXL,ROXR Destination Rotated with X by 〈count〉 ⇒ Destination ROXd1 Rx,Dy
ROXd1 # 〈data 〉,Dy
ROXd1 〈ea〉

RTD (SP) ⇒ PC; SP + 4 + d ⇒ SP RTD # 〈displacement〉

RTE If supervisor state
 the (SP) ⇒ SR; SP + 2 ⇒ SP; (SP) ⇒ PC;
 SP + 4 ⇒ SP;
 restore state and deallocate stack according to (SP)
else TRAP

RTE

RTR (SP) ⇒ CCR; SP + 2 ⇒ SP;
(SP) ⇒ PC; SP + 4 ⇒ SP

RTR

RTS (SP) ⇒ PC; SP + 4 ⇒ SP RTS

SBCD Destination10 – Source10 – X ⇒ Destination SBCD Dx,Dy
SBCD –(Ax),–(Ay)

Scc If Condition True
 then 1s ⇒ Destination
else 0s ⇒ Destination

Scc 〈ea〉

STOP If supervisor state
 then Immediate Data ⇒ SR; STOP
else TRAP

STOP #〈 data〉

SUB Destination – Source ⇒ Destination SUB 〈 ea〉 ,Dn
SUB Dn,〈 ea〉

SUBA Destination – Source ⇒ Destination SUBA 〈 ea〉 ,An

SUBI Destination – Immediate Data ⇒ Destination SUBI # 〈data 〉,〈ea〉

SUBQ Destination – Immediate Data ⇒ Destination SUBQ #〈 data〉 ,〈ea〉

SUBX Destination – Source – X ⇒ Destination SUBX Dx,Dy
SUBX –(Ax),–(Ay)

SWAP Register [31:16] ⇔ Register [15:0] SWAP Dn

TAS Destination Tested ⇒ Condition Codes;
1 ⇒ bit 7 of Destination

TAS 〈 ea〉

TBLS ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) *
Dx[7:0]} / 256 ⇒ Dx

TBLS.〈 size〉 〈ea〉 , Dx
TBLS.〈 size〉 Dym:Dyn, Dx

TBLSN ENTRY(n) × 256 + {(ENTRY(n + 1) – ENTRY(n)) *
Dx [7:0]} ⇒ Dx

TBLSN. 〈size〉 〈ea〉 ,Dx
TBLSN. 〈size〉 Dym:Dyn, Dx

TBLU ENTRY(n) + {(ENTRY(n + 1) – ENTRY(n)) *
Dx[7:0]} / 256 ⇒ Dx

TBLU. 〈size〉 〈ea〉 ,Dx
TBLU. 〈size〉 Dym:Dyn, Dx

TBLUN ENTRY(n) • 256 + {(ENTRY(n + 1) – ENTRY(n)) •
Dx[7:0]} ⇒ Dx

TBLUN. 〈size〉 〈ea〉 ,Dx
TBLUN. 〈size〉 Dym:Dyn,Dx

TRAP SSP – 2 ⇒ SSP; Format/Offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP); SSP – 2 ⇒ SSP;
SR ⇒ (SSP); Vector Address ⇒ PC

TRAP # 〈vector 〉

TRAPcc If cc then TRAP TRAPcc
TRAPcc.W #〈 data 〉
TRAPcc.L #〈 data〉

TRAPV If V then TRAP TRAPV

TST Destination Tested ⇒ Condition Codes TST 〈 ea〉

UNLK An ⇒ SP; (SP) ⇒ An; SP + 4 ⇒ SP UNLK An
NOTE 1: d is direction, L or R.

5-20 MC68340 USER’S MANUAL MOTOROLA

5.3.3.1 CONDITION CODE REGISTER. The CCR portion of the SR contains five bits that
indicate the result of a processor operation. Table 5-3 lists the effect of each instruction on
these bits. The carry bit and the multiprecision extend bit are separate in the M68000
Family to simplify programming techniques that use them. Refer to Table 5-7 as an
example.

Table 5-3. Condition Code Computations

Operations X N Z V C Special Definition

ABCD * U ? U ? C = Decimal Carry
Z = Z Λ R∂Λ ... Λ R0

ADD, ADDI, ADDQ * * * ? ? V = Sm Λ Dm Λ R∂ V S∂ Λ D∂ Λ Rm
C = Sm Λ Dm V R∂ Λ Dm V Sm Λ R∂

ADDX * * ? ? ? V = Sm Λ Dm Λ R∂ V S∂ Λ D∂ Λ Rm
C = Sm Λ Dm V R∂ Λ Dm V Sm Λ R∂
Z = Z Λ R∂ Λ ... Λ R0

AND, ANDI, EOR, EORI,
MOVEQ, MOVE, OR,
ORI, CLR, EXT, NOT,
TAS, TST

— * * 0 0

CHK — * U U U

CHK2, CMP2 — U ? U ? Z = (R = LB) V (R = UB)
C = (LB < UB) Λ (IR < LB) V (R > UB) V

(UB < LB) Λ (R > UB) Λ (R < LB)

SUB, SUBI, SUBQ * * * ? ? V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm

SUBX * * ? ? ? V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm
Z = Z Λ R∂ Λ ... Λ R0

CMP, CMPI, CMPM — * * ? ? V = S∂ Λ Dm Λ R∂ V Sm Λ D∂ Λ Rm
C = Sm Λ D∂ V Rm Λ D∂ V Sm Λ Rm

DIVS, DIVU — * * ? 0 V = Division Overflow

MULS, MULU — * * ? 0 V = Multiplication Overflow

SBCD, NBCD * U ? U ? C = Decimal Borrow
Z = Z Λ R∂ Λ ... Λ R0

NEG * * * ? ? V = Dm Λ Rm
C = Dm V Rm

NEGX * * ? ? ? V = Dm Λ Rm
C = Dm V Rm
Z = Z Λ R∂ Λ ... Λ R0

ASL * * * ? ? V = Dm Λ (D∂ – 1 V ... V D∂ – r) V D∂ Λ
 (Dm–1 V ... + Dm – r)
C = D∂ – r + 1

ASL (r = 0) — * * 0 0

LSL, ROXL * * * 0 ? C = Dm – r + 1

LSR (r = 0) — * * 0 0

ROXL (r = 0) — * * 0 ? C = X

ROL — * * 0 ? C = Dm – r + 1

ROL (r = 0) — * * 0 0

ASR, LSR, ROXR * * * 0 ? C = Dr – 1

ASR, LSR (r = 0) — * * 0 0

ROXR (r = 0) — * * 0 ? C = X

MOTOROLA MC68340 USER’S MANUAL 5-21

Table 5-3. Condition Code Computations (Continued)

Operations X N Z V C Special Definition

ROR — ∗ ∗ 0 ? C = Dr – 1

ROR (r = 0) — ∗ ∗ 0 0

NOTE: The following notations apply to this table only.

— = Not affected Sm = Source operand MSB

U = Undefined Dm = Destination operand MSB

? = See special definition Rm = Result operand MSB

∗ = General case R = Register tested

X = C n = Bit Number

N = Rm r = Shift count

Z = Rm Λ ... Λ R0 LB = Lower bound

Λ = Boolean AND UB = Upper bound

V = Boolean OR Rm = NOT Rm

5.3.3.2 DATA MOVEMENT INSTRUCTIONS. The MOVE instruction is the basic means of
transferring and storing address and data. MOVE instructions transfer byte, word, and
long-word operands from memory to memory, memory to register, register to memory,
and register to register. Address movement instructions (MOVE or MOVEA) transfer word
and long-word operands and ensure that only valid address manipulations are executed.

In addition to the general MOVE instructions, there are several special data movement
instructions—move multiple registers (MOVEM), move peripheral data (MOVEP), move
quick (MOVEQ), exchange registers (EXG), load effective address (LEA), push effective
address (PEA), link stack (LINK), and unlink stack (UNLK). Table 5-4 is a summary of the
data movement operations.

Table 5-4. Data Movement Operations

Instruction
Operand
Syntax Operand Size Operation

EXG Rn, Rn 32 Rn ⇒ Rn

LEA 〈ea〉 , An 32 〈ea〉 ⇒ An

LINK An, #〈 d〉 16, 32 SP – 4 ⇒ SP, An ⇒ (SP); SP ⇒ An, SP + d ⇒ SP

MOVE 〈ea〉 , 〈 ea〉 8, 16, 32 Source ⇒ Destination

MOVEA 〈ea〉 , An 16, 32 ⇒ 32 Source ⇒ Destination

MOVEM list, 〈ea〉
〈ea〉 , list

16, 32
16, 32 ⇒ 32

Listed registers ⇒ Destination
Source ⇒ Listed registers

MOVEP Dn, (d16, An)

(d16, An), Dn

16, 32 Dn [31:24] ⇒ (An + d); Dn [23:16] ⇒ (An + d + 2);
 Dn [15:8] ⇒ (An + d + 4); Dn [7:0] ⇒ (An + d + 6)
(An + d) ⇒ Dn [31:24]; (An + d + 2) ⇒ Dn [23:16];
 (An + d + 4) ⇒ Dn [15:8]; (An + d + 6) ⇒ Dn [7:0]

MOVEQ #〈 data〉, Dn 8 ⇒ 32 Immediate Data ⇒ Destination

PEA 〈ea〉 32 SP – 4 ⇒ SP; 〈 ea〉 ⇒ SP

UNLK An 32 An ⇒ SP; (SP) ⇒ An, SP + 4 ⇒ SP

5-22 MC68340 USER’S MANUAL MOTOROLA

5.3.3.3 INTEGER ARITHMETIC OPERATIONS. The arithmetic operations include the
four basic operations of add (ADD), subtract (SUB), multiply (MUL), and divide (DIV) as
well as arithmetic compare (CMP, CMPM, CMP2), clear (CLR), and negate (NEG). The
instruction set includes ADD, CMP, and SUB instructions for both address and data
operations with all operand sizes valid for data operations. Address operands consist of
16 or 32 bits. The clear and negate instructions apply to all sizes of data operands.

Signed and unsigned MUL and DIV instructions include:

• Word multiply to produce a long-word product

• Long-word multiply to produce a long-word or quad-word product

• Division of a long-word dividend by a word divisor (word quotient and word
remainder)

• Division of a long-word or quad-word dividend by a long-word divisor (long-word
quotient and long-word remainder)

A set of extended instructions provides multiprecision and mixed-size arithmetic. These
instructions are add extended (ADDX), subtract extended (SUBX), sign extend (EXT), and
negate binary with extend (NEGX). Refer to Table 5-5 for a summary of the integer
arithmetic operations.

MOTOROLA MC68340 USER’S MANUAL 5-23

Table 5-5. Integer Arithmetic Operations

Instruction
Operand
Syntax Operand Size Operation

ADD Dn, 〈ea〉
〈ea〉 , Dn

8, 16, 32
8, 16, 32

Source + Destination ⇒ Destination

ADDA 〈ea〉 , An 16, 32 Source + Destination ⇒ Destination

ADDI #〈 data〉, 〈 ea〉 8, 16, 32 Immediate Data + Destination ⇒ Destination

ADDQ #〈 data〉, 〈 ea〉 8, 16, 32 Immediate Data + Destination ⇒ Destination

ADDX Dn, Dn
– (An), – (An)

8, 16, 32
8, 16, 32

Source + Destination + X ⇒ Destination

CLR 〈ea〉 8, 16, 32 0 ⇒ Destination

CMP 〈ea〉 , Dn 8, 16, 32 (Destination – Source), CCR shows results

CMPA 〈ea〉 , An 16, 32 (Destination – Source), CCR shows results

CMPI #〈 data〉, 〈 ea〉 8, 16, 32 (Destination – Immediate Data), CCR shows results

CMPM (An) +, (An) + 8, 16, 32 (Destination – Source), CCR shows results

CMP2 〈ea〉 , Rn 8, 16, 32 Lower bound ≤ Rn ≤ Upper Bound, CCR shows
results

DIVS/DIVU

DIVSL/DIVUL

〈ea〉 , Dn
〈ea〉 , Dr:Dq

〈ea〉 , Dq
〈ea〉 , Dr:Dq

32/16 ⇒ 16:16
64/32 ⇒ 32:32

32/32 ⇒ 32
32/32 ⇒ 32:32

Destination/Source ⇒ Destination (signed or
unsigned)

EXT Dn
Dn

8 ⇒ 16
16 ⇒ 32

Sign Extended Destination ⇒ Destination

EXTB Dn 8 ⇒ 32 Sign Extended Destination ⇒ Destination

MULS/MULU 〈ea〉 , Dn
〈ea〉 , Dl

〈ea〉 , Dh:Dl

16 × 16 ⇒ 32
32 × 32 ⇒ 32
32 × 32 ⇒ 64

Source × Destination ⇒ Destination (signed or
unsigned)

NEG 〈ea〉 8, 16, 32 0 – Destination ⇒ Destination

NEGX 〈ea〉 8, 16, 32 0 – Destination – X ⇒ Destination

SUB 〈ea〉 , Dn
Dn, 〈ea〉

8, 16, 32 Destination – Source ⇒ Destination

SUBA 〈ea〉 , An 16, 32 Destination – Source ⇒ Destination

SUBI #〈 data〉, 〈 ea〉 8, 16, 32 Destination – Immediate Data ⇒ Destination

SUBQ #〈 data〉, 〈 ea〉 8, 16, 32 Destination – Immediate Data ⇒ Destination

SUBX Dn, Dn
– (An), – (An)

8, 16, 32
8, 16, 32

Destination – Source – X ⇒ Destination

TBLS/TBLU 〈ea〉 , Dn
Dym:Dyn, Dn

8, 16, 32 Dyn – Dym ⇒ Temp
(Temp × Dn [7:0]) ⇒ Temp
(Dym × 256) + Temp ⇒ Dn

TBLSN/TBLUN 〈ea〉 , Dn
Dym:Dyn, Dn

8, 16, 32 Dyn – Dym ⇒ Temp
(Temp × Dn [7:0]) / 256 ⇒ Temp
Dym + Temp ⇒ Dn

5-24 MC68340 USER’S MANUAL MOTOROLA

5.3.3.4 LOGIC INSTRUCTIONS. The logical operation instructions (AND, OR, EOR, and
NOT) perform logical operations with all sizes of integer data operands. A similar set of
immediate instructions (ANDI, ORI, and EORI) provide these logical operations with all
sizes of immediate data. The test (TST) instruction arithmetically compares the operand
with zero, placing the result in the CCR. Table 5-6 summarizes the logical operations.

Table 5-6. Logic Operations

Instruction
Operand
Syntax Operand Size Operation

AND 〈ea〉 , Dn
Dn, 〈ea〉

8, 16, 32
8, 16, 32

Source Λ Destination ⇒ Destination

ANDI #〈 data〉, 〈 ea〉 8, 16, 32 Immediate Data Λ Destination ⇒ Destination

EOR Dn, 〈ea〉 8, 16, 32 Source ⊕ Destination ⇒ Destination

EORI #〈 data〉, 〈 ea〉 8, 16, 32 Immediate Data ⊕ Destination ⇒ Destination

NOT 〈ea〉 8, 16, 32 Destination ⇒ Destination

OR 〈ea〉 , Dn
Dn, 〈ea〉

8, 16, 32
8, 16, 32

Source V Destination ⇒ Destination

ORI #〈 data〉, 〈 ea〉 8, 16, 32 Immediate Data V Destination ⇒ Destination

TST 〈ea〉 8, 16, 32 Source – 0, to set condition codes

5.3.3.5 SHIFT AND ROTATE INSTRUCTIONS. The arithmetic shift instructions, ASR and
ASL, and logical shift instructions, LSR and LSL, provide shift operations in both
directions. The ROR, ROL, ROXR, and ROXL instructions perform rotate (circular shift)
operations, with and without the extend bit. All shift and rotate operations can be
performed on either registers or memory.

Register shift and rotate operations shift all operand sizes. The shift count may be
specified in the instruction operation word (to shift from 1 to 8 places) or in a register
(modulo 64 shift count).

Memory shift and rotate operations shift word-length operands one bit position only. The
SWAP instruction exchanges the 16-bit halves of a register. Performance of shift/rotate
instructions is enhanced so that use of the ROR and ROL instructions with a shift count of
eight allows fast byte swapping. Table 5-7 is a summary of the shift and rotate operations.

MOTOROLA MC68340 USER’S MANUAL 5-25

Table 5-7. Shift and Rotate Operations

Instruction
Operand
Syntax Operand Size Operation

ASL Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

 X/C 0

ASR Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

 X/C

LSL Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

 X/C 0

LSR Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

 X/C0

ROL Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

C

ROR Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

C

ROXL Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

XC

ROXR Dn, Dn
#〈 data〉, Dn

〈ea〉

8, 16, 32
8, 16, 32

16

X C

SWAP Dn 16

MSW LSW

5.3.3.6 BIT MANIPULATION INSTRUCTIONS. Bit manipulation operations are
accomplished using the following instructions: bit test (BTST), bit test and set (BSET), bit
test and clear (BCLR), and bit test and change (BCHG). All bit manipulation operations
can be performed on either registers or memory. The bit number is specified as immediate
data or in a data register. Register operands are 32 bits long, and memory operands are 8
bits long. Table 5-8 is a summary of bit manipulation instructions.

Table 5-8. Bit Manipulation Operations

Instruction
Operand
Syntax Operand Size Operation

BCHG Dn, 〈ea〉
#〈 data〉, 〈 ea〉

8, 32
8, 32

~(〈 bit number 〉 of destination) ⇒ Z ⇒ bit of
 destination

BCLR Dn, 〈ea〉
#〈 data〉, 〈 ea〉

8, 32
8, 32

~(〈 bit number 〉 of destination) ⇒ Z; 0 ⇒ bit of
 destination

BSET Dn, 〈ea〉
#〈 data〉, 〈 ea〉

8, 32
8, 32

~(〈 bit number 〉 of destination) ⇒ Z; 1 ⇒ bit of
 destination

BTST Dn, 〈ea〉
#〈 data〉, 〈 ea〉

8, 32
8, 32

~(〈 bit number 〉 of destination) ⇒ Z

5-26 MC68340 USER’S MANUAL MOTOROLA

5.3.3.7 BINARY-CODED DECIMAL (BCD) INSTRUCTIONS. Five instructions support
operations on BCD numbers. The arithmetic operations on packed BCD numbers are add
decimal with extend (ABCD), subtract decimal with extend (SBCD), and negate decimal
with extend (NBCD). Table 5-9 is a summary of the BCD operations.

Table 5-9. Binary-Coded Decimal Operations

Instruction
Operand
Syntax Operand Size Operation

ABCD Dn, Dn
– (An), – (An)

8
8

Source10 + Destination10 + X ⇒ Destination

NBCD 〈ea〉 8
8

0 – Destination10 – X ⇒ Destination

SBCD Dn, Dn
– (An), – (An)

8
8

Destination10 – Source10 – X ⇒ Destination

5.3.3.8 PROGRAM CONTROL INSTRUCTIONS. A set of subroutine call and return
instructions and conditional and unconditional branch instructions perform program control
operations. Table 5-10 summarizes these instructions.

Table 5-10. Program Control Operations

Instruction
Operand
Syntax Operand Size Operation

Conditional

Bcc 〈 label〉 8, 16, 32 If condition true, then PC + d ⇒ PC

DBcc Dn , 〈label〉 16 If condition false, then Dn – 1 ⇒ PC;
 if Dn ≠ (– 1), then PC + d ⇒ PC

Scc 〈ea〉 8 If condition true, then destination bits are set to 1;
 else destination bits are cleared to 0

Unconditional

BRA 〈 label〉 8, 16, 32 PC + d ⇒ PC

BSR 〈 label〉 8, 16, 32 SP – 4 ⇒ SP; PC ⇒ (SP); PC + d ⇒ PC

JMP 〈ea〉 none Destination ⇒ PC

JSR 〈ea〉 none SP – 4 ⇒ SP; PC ⇒ (SP); destination ⇒ PC

NOP none none PC + 2 ⇒ PC

Returns

RTD #〈 d〉 16 (SP) ⇒ PC; SP + 4 + d ⇒ SP

RTR none none (SP) ⇒ CCR; SP + 2 ⇒ SP; (SP) ⇒ PC; SP + 4 ⇒
SP

RTS none none (SP) ⇒ PC; SP + 4 ⇒ SP

MOTOROLA MC68340 USER’S MANUAL 5-27

To specify conditions for change in program control, condition codes must be substituted
for the letters "cc" in conditional program control opcodes. Condition test mnemonics are
given below. Refer to 5.3.3.10 Condition Tests for detailed information on condition
codes.

CC — Carry clear LS — Low or same

CS — Carry set LT — Less than

EQ — Equal MI — Minus

F — False* NE — Not equal

GE — Greater or equal PL — Plus

GT — Greater than T — True

HI — High VC — Overflow clear

LE — Less or equal VS — Overflow set

*Not applicable to the Bcc instruction

5.3.3.9 SYSTEM CONTROL INSTRUCTIONS. Privileged instructions, trapping
instructions, and instructions that use or modify the CCR provide system control
operations. All of these instructions cause the processor to flush the instruction pipeline.
Table 5-11 summarizes the instructions. The preceding list of condition tests also applies
to the TRAPcc instruction. Refer to 5.3.3.10 Condition Tests for detailed information on
condition codes.

5-28 MC68340 USER’S MANUAL MOTOROLA

Table 5-11. System Control Operations

Instruction
Operand
Syntax Operand Size Operation

Privileged

ANDI #〈 data〉 , SR 16 Immediate Data Λ SR ⇒ SR

EORI #〈 data〉 , SR 16 Immediate Data ⊕ SR ⇒ SR

MOVE 〈ea〉 , SR
SR, 〈ea〉

16
16

Source ⇒ SR
SR ⇒ Destination

MOVEA USP, An
An, USP

32
32

USP ⇒ An
An ⇒ USP

MOVEC Rc, Rn
Rn, Rc

32
32

Rc ⇒ Rn
Rn ⇒ Rc

MOVES Rn, 〈ea〉
〈ea〉 , Rn

8, 16, 32 Rn ⇒ Destination using DFC
Source using SFC ⇒ Rn

ORI #〈 data〉 , SR 16 Immediate Data V SR ⇒ SR

RESET none none Assert RESET line

RTE none none (SP) ⇒ SR; SP + 2 ⇒ SP; (SP) ⇒ PC; SP + 4 ⇒
SP; restore stack according to format

STOP #〈 data〉 16 Immediate Data ⇒ SR; STOP

LPSTOP #〈 data〉 none Immediate Data ⇒ SR; interrupt mask ⇒ EBI;
STOP

Trap Generating

BKPT #〈 data〉 none If breakpoint cycle acknowledged, then execute
returned operation word, else trap as illegal
instruction.

BGND none none If background mode enabled, then enter background
mode, else format/vector offset ⇒ – (SSP);
PC ⇒ – (SSP); SR ⇒ – (SSP); (vector) ⇒ PC

CHK 〈ea〉 , Dn 16, 32 If Dn < 0 or Dn < (ea), then CHK exception

CHK2 〈ea〉 , Rn 8, 16, 32 If Rn < lower bound or Rn > upper bound, then
CHK exception

ILLEGAL none none SSP – 2 ⇒ SSP; vector offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP);
SSP – 2 ⇒ SSP; SR ⇒ (SSP);
llegal instruction vector address ⇒ PC

TRAP #〈 data〉 none SSP – 2 ⇒ SSP; format/vector offset ⇒ (SSP);
SSP – 4 ⇒ SSP; PC ⇒ (SSP); SR ⇒ (SSP);
vector address ⇒ PC

TRAPcc none
#〈 data〉

none
16, 32

If cc true, then TRAP exception

TRAPV none none If V set, then overflow TRAP exception

Condition Code Register

ANDI #〈 data〉, CCR 8 Immediate Data Λ CCR ⇒ CCR

EORI #〈 data〉, CCR 8 Immediate Data ⊕ CCR ⇒ CCR

MOVE 〈ea〉 , CCR
CCR, 〈 ea〉

16
16

Source ⇒ CCR
CCR ⇒ Destination

ORI #〈 data〉, CCR 8 Immediate Data V CCR ⇒ CCR

MOTOROLA MC68340 USER’S MANUAL 5-29

5.3.3.10 CONDITION TESTS. Conditional program control instructions and the TRAPcc
instruction execute on the basis of condition tests. A condition test is the evaluation of a
logical expression related to the state of the CCR bits. If the result is 1, the condition is
true. If the result is 0, the condition is false. For example, the T condition is always true,
and the EQ condition is true only if the Z-bit condition code is true. Table 5-12 lists each
condition test.

Table 5-12. Condition Tests

Mnemonic Condition Encoding Test

T True 0000 1

F* False 0001 0

HI High 0010 C • Z

LS Low or Same 0011 C + Z

CC Carry Clear 0100 C

CS Carry Set 0101 C

NE Not Equal 0110 Z

EQ Equal 0111 Z

VC Overflow Clear 1000 V

VS Overflow Set 1001 V

PL Plus 1010 N

MI Minus 1011 N

GE Greater or Equal 1100 N • V + N • V

LT Less Than 1101 N • V + N • V

GT Greater Than 1110 N • V • Z + N • V • Z

LE Less or Equal 1111 Z + N • V + N • V
* Not available for the Bcc instruction.

• = Boolean AND
+ = Boolean OR
N = Boolean NOT

5.3.4 Using the TBL Instructions

There are four TBL instructions. TBLS returns a signed, rounded byte, word, or long-word
result. TBLSN returns a signed, unrounded byte, word, or long-word result. TBLU returns
an unsigned, rounded byte, word, or long-word result. TBLUN returns an unsigned,
unrounded byte, word, or long-word result. All four instructions support two types of
interpolation data: an n-element table stored in memory and a two-element range stored in
a pair of data registers. The latter form provides a means of performing surface (3D)
interpolation between two previously calculated linear interpolations.

The following examples show how to compress tables and use fewer interpolation levels
between table entries. Example 1 (see Figure 5-7) demonstrates TBL for a 257-entry
table, allowing up to 256 interpolation levels between entries. Example 2 (see Figure 5-8)
reduces table length for the same data to four entries. Example 3 (see Figure 5-9)
demonstrates use of an 8-bit independent variable with an instruction.

5-30 MC68340 USER’S MANUAL MOTOROLA

Two additional examples show how TBLSN can reduce cumulative error when multiple
table lookup and interpolation operations are used in a calculation. Example 4
demonstrates addition of the results of three table interpolations. Example 5 illustrates use
of TBLSN in surface interpolation.

5.3.4.1 TABLE EXAMPLE 1: STANDARD USAGE. The table consists of 257 word
entries. As shown in Figure 5-7, the function is linear within the range 32768 ≤ X ≤ 49152.
Table entries within this range are as given in Table 5-13 .

Table 5-13. Standard Usage Entries

Entry Number X Value Y Value

128* 32768 1311

162 41472 1659

163 41728 1669

164 41984 1679

165 42240 1690

192* 49152 1966
*These values are the end points of the range.
 All entries between these points fall on the line.

X

16384 32768 49152 65536

INDEPENDENT VARIABLE

D
EP

EN
D

EN
T

VA
R

IA
BL

E

Y

Figure 5-7. Table Example 1

MOTOROLA MC68340 USER’S MANUAL 5-31

The table instruction is executed with the following bit pattern in Dx:

31 16 15 0

NOT USED 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0

Table Entry Offset ⇒ Dx [8:15] = $A3 = 163

Interpolation Fraction ⇒ Dx [0:7] = $80 = 128

Using this information, the table instruction calculates dependent variable Y:

Y = 1669 + (128 (1679 – 1669)) / 256 = 1674

5.3.4.2 TABLE EXAMPLE 2: COMPRESSED TABLE. In Example 2 (see Figure 5-8), the
data from Example 1 has been compressed by limiting the maximum value of the
independent variable. Instead of the range 0 ≤ X = 65535, X is limited to 0 ≤ X ≤ 1023.
The table has been compressed to only five entries, but up to 256 levels of interpolation
are allowed between entries.

X
256 512 786 1024

INDEPENDENT VARIABLE

D
EP

EN
D

EN
T

VA
R

IA
BL

E

Y

Figure 5-8. Table Example 2

NOTE

Extreme table compression with many levels of interpolation is
possible only with highly linear functions. The table entries
within the range of interest are listed in Table 5-14.

5-32 MC68340 USER’S MANUAL MOTOROLA

Table 5-14. Compressed Table Entries

Entry Number X Value Y Value

2 512 1311

3 786 1966

Since the table is reduced from 257 to 5 entries, independent variable X must be scaled
appropriately. In this case the scaling factor is 64, and the scaling is done by a single
instruction:

LSR.W #6,Dx

Thus, Dx now contains the following bit pattern:

31 16 15 0

NOT USED 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0

Table Entry Offset ⇒ Dx [8:15] = $02 = 2

Interpolation Fraction ⇒ Dx [0:7] = $8E = 142

Using this information, the table instruction calculates dependent variable Y:

Y = 1331 + (142 (1966 – 1311)) / 256 = 1674

The function chosen for Examples 1 and 2 is linear between data points. If another
function had been been used, interpolated values might not have been identical.

5.3.4.3 TABLE EXAMPLE 3: 8-BIT INDEPENDENT VARIABLE. This example shows
how to use a table instruction within an interpolation subroutine. Independent variable X is
calculated as an 8-bit value, allowing 16 levels of interpolation on a 17-entry table. X is
passed to the subroutine, which returns an 8-bit result. The subroutine uses the data listed
in Table 5-15, based on the function shown in Figure 5-9.

MOTOROLA MC68340 USER’S MANUAL 5-33

Y

X
1024 2048 3072 4096

INDEPENDENT VARIABLE

 IN
D

EP
EN

D
EN

T
VA

R
IA

BL
E

Figure 5-9. Table Example 3

Table 5-15. 8-Bit Independent
Variable Entries

X
(Subroutine)

X
(Instruction)

Y

0 0 0

1 256 16

2 512 32

3 768 48

4 1024 64

5 1280 80

6 1536 96

7 1792 112

8 2048 128

9 2304 112

10 2560 96

11 2816 80

12 3072 64

13 3328 48

14 3584 32

15 3840 16

16 4096 0

The first column is the value passed to the subroutine, the second column is the value
expected by the table instruction, and the third column is the result returned by the
subroutine.

5-34 MC68340 USER’S MANUAL MOTOROLA

The following value has been calculated for independent variable X:

31 16 15 0

NOT USED 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1

Since X is an 8-bit value, the upper four bits are used as a table offset and the lower four
bits are used as an interpolation fraction. The following results are obtained from the
subroutine:

Table Entry Offset ⇒ Dx [4:7] = $B = 11

Interpolation Fraction ⇒ Dx [0:3] = $D = 13

Thus, Y is calculated as follows:

Y = 80 + (13 (64 – 80)) / 16 = 67

If the 8-bit value for X were used directly by the table instruction, interpolation would be
incorrectly performed between entries 0 and 1. Data must be shifted to the left four places
before use:

LSL.W #4, Dx

The new range for X is 0 ≤ X ≤ 4096; however, since a left shift fills the least significant
digits of the word with zeros, the interpolation fraction can only have one of 16 values.

After the shift operation, Dx contains the following value:

31 16 15 0

NOT USED 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0

Execution of the table instruction using the new value in Dx yields:

Table Entry Offset ⇒ Dx [8:15] = $0B = 11

Interpolation Fraction ⇒ Dx [0:7] = $D0 = 208

Thus, Y is calculated as follows:

Y = 80 + (208 (64 – 80)) / 256 = 67

5.3.4.4 TABLE EXAMPLE 4: MAINTAINING PRECISION. In this example, three TBL
operations are performed and the results are summed. The calculation is done once with
the result of each TBL rounded before addition and once with only the final result rounded.
Assume that the result of the three interpolations are as follows (a ".'' indicates the binary
radix point).

TBL # 1 0010 0000 . 0111 0000

TBL# 2 0011 1111 . 0111 0000

TBL # 3 0000 0001 . 0111 0000

MOTOROLA MC68340 USER’S MANUAL 5-35

First, the results of each TBL are rounded with the TBLS round-to-nearest-even algorithm.
The following values would be returned by TBLS:

TBL # 1 0010 0000 .
TBL # 2 0011 1111 .
TBL # 3 0000 0001 .

Summing, the following result is obtained:

0010 0000 .
0011 1111 .
0000 0001 .
0110 0000 .

Now, using the same TBL results, the sum is first calculated and then rounded according
to the same algorithm:

0010 0000 . 0111 0000
0011 1111 . 0111 0000
0000 0001 . 0111 0000
0110 0001 . 0101 0000

Rounding yields:

0110 0001 .

The second result is preferred. The following code sequence illustrates how addition of a
series of table interpolations can be performed without loss of precision in the intermediate
results:

L0:

TBLSN.B 〈ea〉, Dx

TBLSN.B 〈ea〉, Dx

TBLSN.B 〈ea〉, Dl

ADD.L Dx, Dm Long addition avoids problems with carry

ADD.L Dm, Dl

ASR.L #8, Dl Move radix point

BCC.B L1 Fraction MSB in carry

ADDQ.B #1, Dl

L1: . . .

5-36 MC68340 USER’S MANUAL MOTOROLA

5.3.4.5 Table Example 5: Surface Interpolations. The various forms of table can be
used to perform surface (3D) TBLs. However, since the calculation must be split into a
series of 2D TBLs, the possibility of losing precision in the intermediate results is possible.
The following code sequence, incorporating both TBLS and TBLSN, eliminates this
possibility.

L0:

MOVE.W Dx, Dl Copy entry number and fraction number

TBLSN.B 〈ea〉 , Dx

TBLSN.B 〈ea〉, Dl

TBLS.W Dx:Dl, Dm Surface interpolation, with round

ASR.L #8, Dm Read just the result

BCC.B L1 No round necessary

ADDQ.B #1, Dl Half round up

L1: . . .

Before execution of this code sequence, Dx must contain fraction and entry numbers for
the two TBL, and Dm must contain the fraction for surface interpolation. The 〈 ea 〉 fields in
the TBLSN instructions point to consecutive columns in a 3D table. The TBLS size
parameter must be word if the TBLSN size parameter is byte, and must be long word if
TBLSN is word. Increased size is necessary because a larger number of significant digits
is needed to accommodate the scaled fractional results of the 2D TBL.

5.3.5 Nested Subroutine Calls

The LINK instruction pushes an address onto the stack, saves the stack address at which
the address is stored, and reserves an area of the stack for use. Using this instruction in a
series of subroutine calls will generate a linked list of stack frames.

The UNLK instruction removes a stack frame from the end of the list by loading an
address into the SP and pulling the value at that address from the stack. When the
instruction operand is the address of the link address at the bottom of a stack frame, the
effect is to remove the stack frame from both the stack and the linked list.

5.3.6 Pipeline Synchronization with the NOP Instruction

Although the no operation (NOP) instruction performs no visible operation, it does force
synchronization of the instruction pipeline, since all previous instructions must complete
execution before the NOP begins.

5.4 PROCESSING STATES

This section describes the processing states of the CPU32. It includes a functional
description of the bits in the supervisor portion of the SR and an overview of actions taken
by the processor in response to exception conditions.

MOTOROLA MC68340 USER’S MANUAL 5-37

5.4.1 State Transitions

The processor is in normal, background, or exception state unless halted.

When the processor fetches instructions and operands or executes instructions, it is in the
normal processing state. The stopped condition, which the processor enters when a
STOP or LPSTOP instruction is executed, is a variation of the normal state in which no
further bus cycles are generated.

Background state is an alternate operational mode used for system debugging. Refer to
5.6 Development Support for more information.

Exception processing refers specifically to the transition from normal processing of a
program to normal processing of system routines, interrupt routines, and other exception
handlers. Exception processing includes the stack operations, the exception vector fetch,
and the filling of the instruction pipeline caused by an exception. Exception processing
ends when execution of an exception handler routine begins. Refer to 5.5 Exception
Processing for comprehensive information.

A catastrophic system failure occurs if the processor detects a bus error or generates an
address error while in the exception processing state. This type of failure halts the
processor. For example, if a bus error occurs during exception processing caused by a
bus error, the CPU32 assumes that the system is not operational and halts.

The halted condition should not be confused with the stopped condition. After the
processor executes a STOP or LPSTOP instruction, execution of instructions can resume
when a trace, interrupt, or reset exception occurs.

5.4.2 Privilege Levels

To protect system resources, the processor can operate with either of two levels of
access—user or supervisor. Supervisor level is more privileged than user level. All
instructions are available at the supervisor level, but execution of some instructions is not
permitted at the user level. There are separate SPs for each level. The S-bit in the SR
indicates privilege level and determines which SP is used for stack operations. The
processor identifies each bus access (supervisor or user mode) via function codes to
enforce supervisor and user access levels.

In a typical system, most programs execute at the user level. User programs can access
only their own code and data areas and are restricted from accessing other information.
The operating system executes at the supervisor privilege level, has access to all
resources, performs the overhead tasks for the user level programs, and coordinates their
activities.

5.4.2.1 SUPERVISOR PRIVILEGE LEVEL. If the S-bit in the SR is set, supervisor
privilege level applies, and all instructions are executable. The bus cycles generated for
instructions executed in supervisor level are normally classified as supervisor references,
and the values of the function codes on FC2–FC0 refer to supervisor address spaces.

5-38 MC68340 USER’S MANUAL MOTOROLA

All exception processing is performed at the supervisor level. All bus cycles generated
during exception processing are supervisor references, and all stack accesses use the
SSP.

Instructions that have important system effects can only be executed at supervisor level.
For instance, user programs are not permitted to execute STOP, LPSTOP, or RESET
instructions. To prevent a user program from gaining privileged access, except in a
controlled manner, instructions that can alter the S-bit in the SR are privileged. The TRAP
#n instruction provides controlled user access to operating system services.

5.4.2.2 USER PRIVILEGE LEVEL. If the S-bit in the SR is cleared, the processor
executes instructions at the user privilege level. The bus cycles for an instruction executed
at the user privilege level are classified as user references, and the values of the function
codes on FC2–FC0 specify user address spaces. While the processor is at the user level,
implicit references to the system SP and explicit references to address register seven (A7)
refer to the USP.

5.4.2.3 CHANGING PRIVILEGE LEVEL. To change from user privilege level to
supervisor privilege level, a condition that causes exception processing must occur. When
exception processing begins, the current values in the SR, including the S-bit, are saved
on the supervisor stack, and then the S-bit is set to enable supervisory access. Execution
continues at supervisor privilege level until exception processing is complete.

To return to user access level, a system routine must execute one of the following
instructions: MOVE to SR, ANDI to SR, EORI to SR, ORI to SR, or RTE. These
instructions execute only at supervisor privilege level and can modify the S-bit of the SR.
After these instructions execute, the instruction pipeline is flushed, then refilled from the
appropriate address space.

The RTE instruction causes a return to a program that was executing when an exception
occurred. When RTE is executed, the exception stack frame saved on the supervisor
stack can be restored in either of two ways.

If the frame was generated by an interrupt, breakpoint, trap, or instruction exception, the
SR and PC are restored to the values saved on the supervisor stack, and execution
resumes at the restored PC address, with access level determined by the S-bit of the
restored SR.

If the frame was generated by a bus error or an address error exception, the entire
processor state is restored from the stack.

5.5 EXCEPTION PROCESSING

An exception is a special condition that preempts normal processing. Exception
processing is the transition from normal mode program execution to execution of a routine
that deals with an exception. The following paragraphs discuss system resources related
to exception handling, exception processing sequence, and specific features of individual
exception processing routines.

MOTOROLA MC68340 USER’S MANUAL 5-39

5.5.1 Exception Vectors

An exception vector is the address of a routine that handles an exception. The VBR
contains the base address of a 1024-byte exception vector table, which consists of 256
exception vectors. Sixty-four vectors are defined by the processor, and 192 vectors are
reserved for user definition as interrupt vectors. Except for the reset vector which is two
long words, each vector in the table is one long word. Refer to Table 5-16 for information
on vector assignment.

Table 5-16. Exception Vector Assignments

Vector Offset

Vector Number Dec Hex Space Assignment

0 0 000 SP Reset: Initial Stack Pointer

1 4 004 SP Reset: Initial Program Counter

2 8 008 SD Bus Error

3 12 00C SD Address Error

4 16 010 SD Illegal Instruction

5 20 014 SD Zero Division

6 24 018 SD CHK, CHK2 Instructions

7 28 01C SD TRAPcc, TRAPV Instructions

8 32 020 SD Privilege Violation

9 36 024 SD Trace

10 40 028 SD Line 1010 Emulator

11 44 02C SD Line 1111 Emulator

12 48 030 SD Hardware Breakpoint

13 52 034 SD (Reserved for Coprocessor Protocol Violation)

14 56 038 SD Format Error

15 60 03C SD Uninitialized Interrupt

16–23 64
92

040
05C

SD (Unassigned, Reserved)
—

24 96 060 SD Spurious Interrupt

25 100 064 SD Level 1 Interrupt Autovector

26 104 068 SD Level 2 Interrupt Autovector

27 108 06C SD Level 3 Interrupt Autovector

28 112 070 SD Level 4 Interrupt Autovector

29 116 074 SD Level 5 Interrupt Autovector

30 120 078 SD Level 6 Interrupt Autovector

31 124 07C SD Level 7 Interrupt Autovector

32–47 128
188

080
0BC

SD Trap Instruction Vectors (0–15)
—

48–58 192
232

0C0
0E8

SD (Reserved for Coprocessor)
—

59–63 236
252

0EC
0FC

SD (Unassigned, Reserved)

—

64–255 256
1020

100
3FC

SD User-Defined Vectors (192)

5-40 MC68340 USER’S MANUAL MOTOROLA

CAUTION

Because there is no protection on the 64 processor-defined
vectors, external devices can access vectors reserved for
internal purposes. This practice is strongly discouraged.

All exception vectors, except the reset vector, are located in supervisor data space. The
reset vector is located in supervisor program space. Only the initial reset vector is fixed in
the processor memory map. When initialization is complete, there are no fixed
assignments. Since the VBR stores the vector table base address, the table can be
located anywhere in memory. It can also be dynamically relocated for each task executed
by an operating system.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are
obtained from an external device; others are supplied by the processor. The processor
multiplies the vector number by 4 to calculate vector offset, then adds the offset to the
contents of the VBR. The sum is the memory address of the vector.

5.5.1.1 TYPES OF EXCEPTIONS. An exception can be caused by internal or external
events.

An internal exception can be generated by an instruction or by an error. The TRAP,
TRAPcc, TRAPV, BKPT, CHK, CHK2, RTE, and DIV instructions can cause exceptions
during normal execution. Illegal instructions, instruction fetches from odd addresses, word
or long-word operand accesses from odd addresses, and privilege violations also cause
internal exceptions.

Sources of external exception include interrupts, breakpoints, bus errors, and reset
requests. Interrupts are peripheral device requests for processor action. Breakpoints are
used to support development equipment. Bus error and reset are used for access control
and processor restart.

5.5.1.2 EXCEPTION PROCESSING SEQUENCE. For all exceptions other than a reset
exception, exception processing occurs in the following sequence. Refer to 5.5.2.1 Reset
for details of reset processing.

As exception processing begins, the processor makes an internal copy of the SR. After
the copy is made, the processor state bits in the SR are changed—the S-bit is set,
establishing supervisor access level, and bits T1 and T0 are cleared, disabling tracing. For
reset and interrupt exceptions, the interrupt priority mask is also updated.

Next, the exception number is obtained. For interrupts, the number is fetched from CPU
space $F (the bus cycle is an interrupt acknowledge). For all other exceptions, internal
logic provides a vector number.

Next, current processor status is saved. An exception stack frame is created and placed
on the supervisor stack. All stack frames contain copies of the SR and the PC for use by
RTE. The type of exception and the context in which the exception occurs determine what
other information is stored in the stack frame.

MOTOROLA MC68340 USER’S MANUAL 5-41

Finally, the processor prepares to resume normal execution of instructions. The exception
vector offset is determined by multiplying the vector number by 4, and the offset is added
to the contents of the VBR to determine displacement into the exception vector table. The
exception vector is loaded into the PC. If no other exception is pending, the processor will
resume normal execution at the new address in the PC.

5.5.1.3 EXCEPTION STACK FRAME. During exception processing, the most volatile
portion of the current context is saved on the top of the supervisor stack. This context is
organized in a format called the exception stack frame.

The exception stack frame always includes the contents of SR and PC at the time the
exception occurred. To support generic handlers, the processor also places the vector
offset in the exception stack frame and marks the frame with a format code. The format
field allows an RTE instruction to identify stack information so that it can be properly
restored.

The general form of the exception stack frame is illustrated in Figure 5-10. Although some
formats are peculiar to a particular M68000 Family processor, format 0000 is always legal
and always indicates that only the first four words of a frame are present. See 5.5.4
CPU32 Stack Frames for a complete discussion of exception stack frames.

STATUS REGISTER

PROGRAM COUNTER LOW

FORMAT VECTOR OFFSET

OTHER PROCESSOR STATE INFORMATION,
DEPENDING ON EXCEPTION

(0, 2, OR 8 WORDS)

PROGRAM COUNTER HIGH

H
IG

H
ER

 A
D

D
R

ES
SE

S

SP

ST
AC

KI
N

G
 O

R
D

ER

15 0

Figure 5-10. Exception Stack Frame

5.5.1.4 MULTIPLE EXCEPTIONS. Each exception has been assigned a priority based on
its relative importance to system operation. Priority assignments are shown in Table 5-17.
Group 0 exceptions have the highest priorities; group 4 exceptions have the lowest
priorities. Exception processing for exceptions that occur simultaneously is done by
priority, from highest to lowest.

It is important to be aware of the difference between exception processing mode and
execution of an exception handler. Each exception has an assigned vector that points to
an associated handler routine. Exception processing includes steps described in 5.5.1.2
Exception Processing Sequence, but does not include execution of handler routines,
which is done in normal mode.

5-42 MC68340 USER’S MANUAL MOTOROLA

When the CPU32 completes exception processing, it is ready to begin either exception
processing for a pending exception or execution of a handler routine. Priority assignment
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.

Table 5-17. Exception Priority Groups

Group/
Priority

Exception and
Relative Priority

Characteristics

0 Reset Aborts all processing (instruction or
exception); does not save old context.

1.1
1.2

Address Error
Bus Error

Suspends processing (instruction or
exception); saves internal context.

2 BKPT#n, CHK, CHK2,
Division by Zero, RTE,
TRAP#n, TRAPcc, TRAPV

Exception processing is a part of
instruction execution.

3 Illegal Instruction, Line A,
Unimplemented Line F,
Privilege Violation

Exception processing begins before
instruction execution.

4.1
4.2
4.3

Trace
Hardware Breakpoint
Interrupt

Exception processing begins when current
instruction or previous exception
processing is complete.

As a general rule, when simultaneous exceptions occur, the handler routines for lower
priority exceptions are executed before the handler routines for higher priority exceptions.
For example, consider the arrival of an interrupt during execution of a TRAP instruction,
while tracing is enabled. Trap exception processing (2) is done first, followed immediately
by exception processing for the trace (4.1), and then by exception processing for the
interrupt (4.3). Each exception places a new context on the stack. When the processor
resumes normal instruction execution, it is vectored to the interrupt handler, which returns
to the trace handler that returns to the trap handler.

There are special cases to which the general rule does not apply. The reset exception will
always be the first exception handled since reset clears all other exceptions. It is also
possible for high-priority exception processing to begin before low-priority exception
processing is complete. For example, if a bus error occurs during trace exception
processing, the bus error will be processed and handled before trace exception
processing is completed.

MOTOROLA MC68340 USER’S MANUAL 5-43

5.5.2 Processing of Specific Exceptions

The following paragraphs provide details concerning sources of specific exceptions, how
each arises, and how each is processed.

5.5.2.1 RESET. Assertion of RESET by external hardware or assertion of the internal
RESET signal by an internal module causes a reset exception. The reset exception has
the highest priority of any exception. Reset is used for system initialization and for
recovery from catastrophic failure. The reset exception aborts any processing in progress
when it is recognized, and that processing cannot be recovered. Reset performs the
following operations:

1. Clears T0 and T1 in the SR to disable tracing

2. Sets the S-bit in the SR to establish supervisor privilege

3. Sets the interrupt priority mask to the highest priority level (%111)

4. Initializes the VBR to zero ($00000000)

5. Generates a vector number to reference the reset exception vector

6. Loads the first long word of the vector into the interrupt SP

7. Loads the second long word of the vector into the PC

8. Fetches and initiates decode of the first instruction to be executed

Figure 5-11 is a flowchart of the reset exception

After initial instruction prefetches, normal program execution begins at the address in the
PC. The reset exception does not save the value of either the PC or the SR.

If a bus error or address error occurs during reset exception processing sequence, a
double bus fault occurs, the processor halts, and the HALT signal is asserted to indicate
the halted condition.

Execution of the RESET instruction does not cause a reset exception nor does it affect
any internal CPU register. The SIM40 registers and the MCR in each internal peripheral
module (DMA, timers, and serial modules) are not affected. All other internal peripheral
module registers are reset the same as for a hardware reset. The external devices
connected to the RESET signal are reset at the completion of the RESET instruction.

5-44 MC68340 USER’S MANUAL MOTOROLA

.✎

ENTRY

FETCH VECTOR # 0

 1 S
 0 T0,T1
$7 I2:I0
$0 VBR

FETCH VECTOR # 1

 BUS ERROR OTHERWISE
SP (VECTOR # 0)

 BUS ERROR

 PREFETCH 3 WORDS

BUS ERROR/
ADDRESS

ERROR
OTHERWISE BEGIN

INSTRUCTION
EXECUTION

EXIT

(DOUBLE BUS FAULT)

ASSERT HALT

EXIT

➧

 OTHERWISE
PC (VECTOR # 1)➧

➧
➧
➧
➧

Figure 5-11. Reset Operation Flowchart

MOTOROLA MC68340 USER’S MANUAL 5-45

5.5.2.2 BUS ERROR. A bus error exception occurs when an assertion of the BERR signal
is acknowledged. The BERR signal can be asserted by one of three sources:

1. External logic by assertion of the BERR input pin

2. Direct assertion of the internal BERR signal by an internal module

3. Direct assertion of the internal BERR signal by the on-chip hardware watchdog
after detecting a no-response condition

Bus error exception processing begins when the processor attempts to use information
from an aborted bus cycle.

When the aborted bus cycle is an instruction prefetch, the processor will not initiate
exception processing unless the prefetched information is used. For example, if a branch
instruction flushes an aborted prefetch, that word is not accessed, and no exception
occurs.

When the aborted bus cycle is a data access, the processor initiates exception processing
immediately, except in the case of released operand writes. Released write bus errors are
delayed until the next instruction boundary or until another operand access is attempted.

Exception processing for bus error exceptions follows the regular sequence, but context
preservation is more involved than for other exceptions because a bus exception can be
initiated while an instruction is executing. Several bus error stack format organizations are
utilized to provide additional information regarding the nature of the fault.

First, any register altered by a faulted-instruction EA calculation is restored to its initial
value. Then a special status word (SSW) is placed on the stack. The SSW contains
specific information about the aborted access—size, type of access (read or write), bus
cycle type, and function code. Finally, fault address, bus error exception vector number,
PC value, and a copy of the SR are saved.

If a bus error occurs during exception processing for a bus error, an address error, a reset,
or while the processor is loading stack information during RTE execution, the processor
halts. This simplifies isolation of catastrophic system failure by preventing processor
interaction with stacks and memory. Only assertion of RESET can restart a halted
processor.

5.5.2.3 ADDRESS ERROR. Address error exceptions occur when the processor attempts
to access an instruction, word operand, or long-word operand at an odd address. The
effect is much the same as an internally generated bus error. The exception processing
sequence is the same as that for bus error, except that the vector number refers to the
address error exception vector.

Address error exception processing begins when the processor attempts to use
information from the aborted bus cycle. If the aborted cycle is a data space access,
exception processing begins when the processor attempts to use the data, except in the

5-46 MC68340 USER’S MANUAL MOTOROLA

case of a released operand write. Released write exceptions are delayed until the next
instruction boundary or attempted operand access.

An address exception on a branch to an odd address is delayed until the PC is changed.
No exception occurs if the branch is not taken. In this case, the fault address and return
PC value placed in the exception stack frame are the odd address, and the current
instruction PC points to the instruction that caused the exception.

If an address error occurs during exception processing for a bus error, another address
error, or a reset, the processor halts.

5.5.2.4 INSTRUCTION TRAPS. Traps are exceptions caused by instructions. They arise
from either processor recognition of abnormal conditions during instruction execution or
from use of specific trapping instructions. Traps are generally used to handle abnormal
conditions that arise in control routines.

The TRAP instruction, which always forces an exception, is useful for implementing
system calls for user programs. The TRAPcc, TRAPV, CHK, and CHK2 instructions force
exceptions when a program detects a run-time error. The DIVS and DIVU instructions
force an exception if a division operation is attempted with a divisor of zero.

Exception processing for traps follows the regular sequence. If tracing is enabled when an
instruction that causes a trap begins execution, a trace exception will be generated by the
instruction, but the trap handler routine will not be traced (the trap exception will be
processed first, then the trace exception).

The vector number for the TRAP instruction is internally generated—part of the number
comes from the instruction itself. The trap vector number, PC value, and a copy of the SR
are saved on the supervisor stack. The saved PC value is the address of the instruction
that follows the instruction that generated the trap. For all instruction traps other than
TRAP, a pointer to the instruction causing the trap is also saved in the fifth and sixth
words of the exception stack frame.

5.5.2.5 SOFTWARE BREAKPOINTS. To support hardware emulation, the CPU32 must
provide a means of inserting breakpoints into target code and of announcing when a
breakpoint is reached.

The MC68000 and MC68008 can detect an illegal instruction inserted at a breakpoint
when the processor fetches from the illegal instruction exception vector location. Since the
VBR on the CPU32 allows relocation of exception vectors, the exception vector address is
not a reliable indication of a breakpoint. CPU32 breakpoint support is provided by
extending the function of a set of illegal instructions ($4848–$484F).

When a breakpoint instruction is executed, the CPU32 performs a read from CPU space
$0, at a location corresponding to the breakpoint number. If this bus cycle is terminated by
BERR, the processor performs illegal instruction exception processing. If the bus cycle is
terminated by DSACK≈, the processor uses the data returned to replace the breakpoint in
the instruction pipeline and begins execution of that instruction. See Section 3 Bus
Operation for a description of CPU space operations.

MOTOROLA MC68340 USER’S MANUAL 5-47

5.5.2.6 HARDWARE BREAKPOINTS. The CPU32 recognizes hardware breakpoint
requests. Hardware breakpoint requests do not force immediate exception processing, but
are left pending. An instruction breakpoint is not made pending until the instruction
corresponding to the request is executed.

A pending breakpoint can be acknowledged between instructions or at the end of
exception processing. To acknowledge a breakpoint, the CPU performs a read from CPU
space $0 at location $1E (see Section 3 Bus Operation).

If the bus cycle terminates normally, instruction execution continues with the next
instruction, as if no breakpoint request occurred. If the bus cycle is terminated by BERR,
the CPU begins exception processing. Data returned during this bus cycle is ignored.

Exception processing follows the regular sequence. Vector number 12 (offset $30) is
internally generated. The PC of the currently executing instruction, the PC of the next
instruction to execute, and a copy of the SR are saved on the supervisor stack.

5.5.2.7 FORMAT ERROR. The processor checks certain data values for control
operations. The validity of the stack format code and, in the case of a bus cycle fault
format, the version number of the processor that generated the frame are checked during
execution of the RTE instruction. This check ensures that the program does not make
erroneous assumptions about information in the stack frame.

If the format of the control data is improper, the processor generates a format error
exception. This exception saves a four-word format exception frame and then vectors
through vector table entry number 14. The stacked PC is the address of the RTE
instruction that discovered the format error.

5.5.2.8 ILLEGAL OR UNIMPLEMENTED INSTRUCTIONS. An instruction is illegal if it
contains a word bit pattern that does not correspond to the bit pattern of the first word of a
legal CPU32 instruction, if it is a MOVEC instruction that contains an undefined register
specification field in the first extension word, or if it contains an indexed addressing mode
extension word with bits 5–4 = 00 or bits 3–0 ≠ 0000.

If an illegal instruction is fetched during instruction execution, an illegal instruction
exception occurs. This facility allows the operating system to detect program errors or to
emulate instructions in software.

Word patterns with bits 15–12 = 1010 (referred to as A-line opcodes) are unimplemented
instructions. A separate exception vector (vector 10, offset $28) is given to unimplemented
instructions to permit efficient emulation.

Word patterns with bits 15–12 = 1111 (referred to as F-line opcodes) are used for M68000
family instruction set extensions. They can generate an unimplemented instruction
exception caused by the first extension word of the instruction or by the addressing mode
extension word. A separate F-line emulation vector (vector 11, offset $2C) is used for the
exception vector.

5-48 MC68340 USER’S MANUAL MOTOROLA

All unimplemented instructions are reserved for use by Motorola for enhancements and
extensions to the basic M68000 architecture. Opcode pattern $4AFC is defined to be
illegal on all M68000 family members. Those customers requiring the use of an
unimplemented opcode for synthesis of "custom instructions," operating system calls, etc.,
should use this opcode.

Exception processing for illegal and unimplemented instructions is similar to that for traps.
The instruction is fetched and decoding is attempted. When the processor determines that
execution of an illegal instruction is being attempted, exception processing begins. No
registers are altered.

Exception processing follows the regular sequence. The vector number is generated to
refer to the illegal instruction vector or in the case of an unimplemented instruction, to the
corresponding emulation vector. The illegal instruction vector number, current PC, and a
copy of the SR are saved on the supervisor stack, with the saved value of the PC being
the address of the illegal or unimplemented instruction.

5.5.2.9 PRIVILEGE VIOLATIONS. To provide system security, certain instructions can be
executed only at the supervisor access level. An attempt to execute one of these
instructions at the user level will cause an exception. The privileged exceptions are as
follows:

• AND Immediate to SR

• EOR Immediate to SR

• LPSTOP

• MOVE from SR

• MOVE to SR

• MOVE USP

• MOVEC

• MOVES

• OR Immediate to SR

• RESET

• RTE

• STOP

Exception processing for privilege violations is nearly identical to that for illegal
instructions. The instruction is fetched and decoded. If the processor determines that a
privilege violation has occurred, exception processing begins before instruction execution.

Exception processing follows the regular sequence. The vector number (8) is generated to
reference the privilege violation vector. Privilege violation vector offset, current PC, and
SR are saved on the supervisor stack. The saved PC value is the address of the first word
of the instruction causing the privilege violation.

MOTOROLA MC68340 USER’S MANUAL 5-49

5.5.2.10 TRACING. To aid in program development, M68000 processors include a facility
to allow tracing of instruction execution. CPU32 tracing also has the ability to trap on
changes in program flow. In trace mode, a trace exception is generated after each
instruction executes, allowing a debugging program to monitor the execution of a program
under test. The T1 and T0 bits in the supervisor portion of the SR are used to control
tracing.

When T1–T0 = 00, tracing is disabled, and instruction execution proceeds normally (see
Table 5-18).

Table 5-18. Tracing Control

T1 T0 Tracing Function

0 0 No tracing

0 1 Trace on change of flow

1 0 Trace on instruction execution

1 1 Undefined; reserved

When T1–T0 = 01 at the beginning of instruction execution, a trace exception will be
generated if the PC changes sequence during execution. All branches, jumps, subroutine
calls, returns, and SR manipulations can be traced in this way. No exception occurs if a
branch is not taken.

When T1–T0 = 10 at the beginning of instruction execution, a trace exception will be
generated when execution is complete. If the instruction is not executed, either because
an interrupt is taken or because the instruction is illegal, unimplemented, or privileged, an
exception is not generated.

At the present time, T1–T0 = 11 is an undefined condition. It is reserved by Motorola for
future use.

Exception processing for trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. Exception processing follows the
regular sequence; tracing is disabled so that the trace exception itself is not traced. A
vector number is generated to reference the trace exception vector. The address of the
instruction that caused the trace exception, the trace exception vector offset, the current
PC, and a copy of the SR are saved on the supervisor stack. The saved value of the PC is
the address of the next instruction to be executed.

A trace exception can be viewed as an extension to the function of any instruction. If a
trace exception is generated by an instruction, the execution of that instruction is not
complete until the trace exception processing associated with it is also complete.

If an instruction is aborted by a bus error or address error exception, trace exception
processing is deferred until the suspended instruction is restarted and completed
normally. An RTE from a bus error or address error will not be traced because of the
possibility of continuing the instruction from the fault.

5-50 MC68340 USER’S MANUAL MOTOROLA

If an instruction is executed and an interrupt is pending on completion, the trace exception
is processed before the interrupt exception.

If an instruction forces an exception, the forced exception is processed before the trace
exception.

If an instruction is executed and a breakpoint is pending upon completion of the
instruction, the trace exception is processed before the breakpoint.

If an attempt is made to execute an illegal, unimplemented, or privileged instruction while
tracing is enabled, no trace exception will occur because the instruction is not executed.
This is particularly important to an emulation routine that performs an instruction function,
adjusts the stacked PC to beyond the unimplemented instruction, and then returns. The
SR on the stack must be checked to determine if tracing is on before the return is
executed. If tracing is on, trace exception processing must be emulated so that the trace
exception handler can account for the emulated instruction.

Tracing also affects normal operation of the STOP and LPSTOP instructions. If either
instruction begins execution with T1 set, a trace exception will be taken after the
instruction loads the SR. Upon return from the trace handler routine, execution will
continue with the instruction following STOP (LPSTOP), and the processor will not enter
the stopped condition.

5.5.2.11 INTERRUPTS. There are seven levels of interrupt priority and 192 assignable
interrupt vectors within each exception vector table. Careful use of multiple vector tables
and hardware chaining will permit a virtually unlimited number of peripherals to interrupt
the processor.

Interrupt recognition and subsequent processing are based on internal interrupt request
signals (IRQ7–IRQ1) and the current priority set in SR priority mask I2–I0. Interrupt
request level zero (IRQ7–IRQ1 negated) indicates that no service is requested. When an
interrupt of level one through six is requested via IRQ6–IRQ1, the processor compares
the request level with the interrupt mask to determine whether the interrupt should be
processed. Interrupt requests are inhibited for all priority levels less than or equal to the
current priority. Level seven interrupts are nonmaskable.

IRQ7–IRQ1 are synchronized and debounced by input circuitry on consecutive rising
edges of the processor clock. To be valid, an interrupt request must be held constant for
at least two consecutive clock periods.

Interrupt requests do not force immediate exception processing, but are left pending. A
pending interrupt is detected between instructions or at the end of exception processing—
all interrupt requests must be held asserted until they are acknowledged by the CPU. If
the priority of the interrupt is greater than the current priority level, exception processing
begins.

Exception processing occurs as follows. First, the processor makes an internal copy of the
SR. After the copy is made, the processor state bits in the SR are changed—the S-bit is
set, establishing supervisor access level, and bits T1 and T0 are cleared, disabling

MOTOROLA MC68340 USER’S MANUAL 5-51

tracing. Priority level is then set to the level of the interrupt, and the processor fetches a
vector number from the interrupting device (CPU space $F). The fetch bus cycle is
classified as an interrupt acknowledge, and the encoded level number of the interrupt is
placed on the address bus.

If an interrupting device requests automatic vectoring, the processor generates a vector
number (25 to 31) determined by the interrupt level number.

If the response to the interrupt acknowledge bus cycle is a bus error, the interrupt is taken
to be spurious, and the spurious interrupt vector number (24) is generated.

The exception vector number, PC, and SR are saved on the supervisor stack. The saved
value of the PC is the address of the instruction that would have executed if the interrupt
had not occurred.

Priority level 7 interrupt is a special case. Level 7 interrupts are nonmaskable interrupts
(NMI). Level 7 requests are transition sensitive to eliminate redundant servicing and
resultant stack overflow. Transition sensitive means that the level 7 input must change
state before the CPU will detect an interrupt.

An NMI is generated each time the interrupt request level changes to level 7 (regardless
of priority mask value), and each time the priority mask changes from 7 to a lower number
while the request level remains at 7.

Many M68000 peripherals provide for programmable interrupt vector numbers to be used
in the system interrupt request/acknowledge mechanism. If the vector number is not
initialized after reset and if the peripheral must acknowledge an interrupt request, the
peripheral should return the uninitialized interrupt vector number (15).

See Section 3 Bus Operation for detailed information on interrupt acknowledge cycles.

5.5.2.12 RETURN FROM EXCEPTION. When exception stacking operations for all
pending exceptions are complete, the processor begins execution of the handler for the
last exception processed. After the exception handler has executed, the processor must
restore the system context in existence prior to the exception. The RTE instruction is
designed to accomplish this task.

When RTE is executed, the processor examines the stack frame on top of the supervisor
stack to determine if it is valid and determines what type of context restoration must be
performed. See 5.5.4 CPU32 Stack Frames for a description of stack frames.

For a normal four-word frame, the processor updates the SR and PC with data pulled from
the stack, increments the SSP by 8, and resumes normal instruction execution. For a six-
word frame, the SR and PC are updated from the stack, the active SSP is incremented by
12, and normal instruction execution resumes.

For a bus fault frame, the format value on the stack is first checked for validity. In addition,
the version number on the stack must match the version number of the processor that is

5-52 MC68340 USER’S MANUAL MOTOROLA

attempting to read the stack frame. The version number is located in the most significant
byte (bits 15–8) of the internal register word at location SP + $14 in the stack frame. The
validity check ensures that stack frame data will be properly interpreted in multiprocessor
systems.

If a frame is invalid, a format error exception is taken. If it is inaccessible, a bus error
exception is taken. Otherwise, the processor reads the entire frame into the proper
internal registers, de-allocates the stack (12 words), and resumes normal processing. Bus
error frames for faults during exception processing require the RTE instruction to rewrite
the faulted stack frame. If an error occurs during any of the bus cycles required by rewrite,
the processor halts.

If a format error occurs during RTE execution, the processor creates a normal four-word
fault stack frame below the frame that it was attempting to use. If a bus error occurs, a
bus-error stack frame will be created. The faulty stack frame remains intact, so that it may
be examined and repaired by an exception handler or used by a different type of
processor (e.g., MC68010, MC68020, or future M68000 processor) in a multiprocessor
system.

5.5.3 Fault Recovery

There are four phases of recovery from a fault: recognizing the fault, saving the processor
state, repairing the fault (if possible), and restoring the processor state. Saving and
restoring the processor state are described in the following paragraphs.

The stack contents are identified by the special status word (SSW). In addition to
identifying the fault type represented by the stack frame, the SSW contains the internal
processor state corresponding to the fault.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TP MV 0 TR B1 B0 RR RM IN RW LG SIZ FUNC

TP—BERR frame type
MV—MOVEM in progress
TR—Trace pending
B1—Breakpoint channel 1 pending
B0—Breakpoint channel 0 pending
RR—Rerun write cycle after RTE
RM—Faulted cycle was read-modify-write
IN—Instruction/other
RW—Read/write of faulted bus cycle
LG—Original operand size was long word
SIZ—Remaining size of faulted bus cycle
FUNC—Function code of faulted bus cycle

MOTOROLA MC68340 USER’S MANUAL 5-53

The TP field defines the class of the faulted bus operation. Two bus error exception
frame types are defined. One is for faults on prefetch and operand accesses, and the
other is for faults during exception frame stacking:

0 = Operand or prefetch bus fault
1 = Exception processing bus fault

MV is set when the operand transfer portion of the MOVEM instruction is in progress at
the time of a bus fault. If a prefetch bus fault occurs while prefetching the MOVEM
opcode and extension word, both the MV and IN bits will be set.

0 = MOVEM was not in progress when fault occurred
1 = MOVEM was in progress when fault occurred

TR indicates that a trace exception was pending when a bus error exception was
processed. The instruction that generated the trace will not be restarted upon return
from the exception handler. This includes MOVEM and released write bus errors
indicated by the assertion of either MV or RR in the SSW.

0 = Trace not pending
1 = Trace pending

B1 indicates that a breakpoint exception was pending on channel 1 (external breakpoint
source) when a bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

B0 indicates that a breakpoint exception was pending on channel 0 (internal breakpoint
source) when the bus error exception was processed. Pending breakpoint status is
stacked, regardless of the type of bus error exception.

0 = Breakpoint not pending
1 = Breakpoint pending

RR will be set if the faulted bus cycle was a released write. A released write is one that
is overlapped. If the write is completed (rerun) in the exception handler, the RR bit
should be cleared before executing RTE. The bus cycle will be rerun if the RR bit is set
upon return from the exception handler.

0 = Faulted cycle was read, RMW, or unreleased write
1 = Faulted cycle was a released write

Faulted RMW bus cycles set the RM bit. RM is ignored during unstacking.
0 = Faulted cycle was non-RMW cycle
1 = Faulted cycle was either the read or write of an RMW cycle

Instruction prefetch faults are distinguished from operand (both read and write) faults by
the IN bit. If IN is cleared, the error was on an operand cycle; if IN is set, the error was
on an instruction prefetch. IN is ignored during unstacking.

0 = Operand
1 = Prefetch

5-54 MC68340 USER’S MANUAL MOTOROLA

Read and write bus cycles are distinguished by the RW bit. Read bus cycles will set this
bit, and write bus cycles will clear it. RW is reloaded into the bus controller if the RR bit
is set during unstacking.

0 = Faulted cycle was an operand write
1 = Faulted cycle was a prefetch or operand read

The LG bit indicates an original operand size of long word. LG is cleared if the original
operand was a byte or word—SIZ will indicate original (and remaining) size. LG is set if
the original was a long word—SIZ will indicate the remaining size at the time of fault. LG
is ignored during unstacking.

0 = Original operand size was byte or word
1 = Original operand size was long word

The SSW SIZ field shows operand size remaining when a fault was detected. This field
does not indicate the initial size of the operand, nor does it necessarily indicate the
proper status of a dynamically sized bus cycle. Dynamic sizing occurs on the external
bus and is transparent to the CPU. Byte size is shown only when the original operand
was a byte. The field is reloaded into the bus controller if the RR bit is set during
unstacking. The SIZ field is encoded as follows:

00—Long word
01—Byte
10—Word
11—Unused, reserved

The function code for the faulted cycle is stacked in the FUNC field of the SSW, which is
a copy of FC2–FC0 for the faulted bus cycle. This field is reloaded into the bus
controller if the RR bit is set during unstacking. All unused bits are stacked as zeros and
are ignored during unstacking. Further discussion of the SSW is included in 5.5.3.1
Types of Faults.

5.5.3.1 TYPES OF FAULTS. An efficient implementation of instruction restart dictates that
faults on some bus cycles be treated differently than faults on other bus cycles. The
CPU32 defines four fault types: released write faults, faults during exception processing,
faults during MOVEM operand transfer, and faults on any other bus cycle.

5.5.3.1.1 Type I—Released Write Faults. CPU32 instruction pipelining can cause a final
instruction write to overlap the execution of a following instruction. A write that is
overlapped is called a released write. A released write fault occurs when a bus error or
some other fault occurs on the released write.

Released write faults are taken at the next instruction boundary. The stacked PC is that of
the next unexecuted instruction. If a subsequent instruction attempts an operand access
while a released write fault is pending, the instruction is aborted and the write fault is
acknowledged. This action prevents stale data from being used by the instruction.

MOTOROLA MC68340 USER’S MANUAL 5-55

The SSW for a released write fault contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 TR B1 B0 1 0 0 0 LG SIZ FUNC

TR, B1, and B0 are set if the corresponding exception is pending when the bus error
exception is taken. Status regarding the faulted bus cycle is reflected in the LG, SIZ, and
FUNC fields.

The remainder of the stack contains the PC of the next unexecuted instruction, the current
SR, the address of the faulted memory location, and the contents of the data buffer that
was to be written to memory. This data is written on the stack in the format depicted in
Figure 5-15. When a released write fault exception handler executes, the machine will
complete the faulted write and then continue executing instructions wherever the PC
indicates.

5.5.3.1.2 Type II—Prefetch, Operand, RMW, and MOVEP Faults. The majority of bus
error exceptions are included in this category—all instruction prefetches, all operand
reads, all RMW cycles, and all operand accesses resulting from execution of MOVEP
(except the last write of a MOVEP Rn,〈 ea 〉 or the last write of MOVEM, which are type I
faults). The TAS, MOVEP, and MOVEM instructions account for all operand writes not
considered released.

All type II faults cause an immediate exception that aborts the current instruction. Any
registers that were altered as the result of an EA calculation (i.e., postincrement or
predecrement) are restored prior to processing the bus cycle fault.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 B1 B0 0 RM IN RW LG SIZ FUNC

The trace pending bit is always cleared, since the instruction will be restarted upon return
from the handler. Saving a pending exception on the stack causes a trace exception to be
taken prior to restarting the instruction. If the exception handler does not alter the stacked
SR trace bits, the trace is requeued when the instruction is started.

The breakpoint pending bits are stacked in the SSW, even though the instruction is
restarted upon return from the handler. This avoids problems with bus state analyzer
equipment that has been programmed to breakpoint only the first access to a specific
location or to count accesses to that location. If this response is not desired, the exception
handler can clear the bits before return. The RM, IN, RW, LG, FUNC, and SIZ fields all
reflect the type of bus cycle that caused the fault. If the bus cycle was an RMW, the RM bit
will be set, and the RW bit will show whether the fault was on a read or write.

5-56 MC68340 USER’S MANUAL MOTOROLA

5.5.3.1.3 Type III—Faults During MOVEM Operand Transfer. Bus faults that occur as a
result of MOVEM operand transfer are classified as type III faults. MOVEM instruction
prefetch faults are type II faults.

Type III faults cause an immediate exception that aborts the current instruction. None of
the registers altered during execution of the faulted instruction are restored prior to
execution of the fault handler. This includes any register predecremented as a result of the
effective address calculation or any register overwritten during instruction execution. Since
postincremented registers are not updated until the end of an instruction, the register
retains its pre-instruction value unless overwritten by operand movement.

The SSW for faults in this category contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 1 0 TR B1 B0 RR 0 IN RW LG SIZ FUNC

MV is set, indicating that MOVEM should be continued from the point where the fault
occurred upon return from the exception handler. TR, B1, and B0 are set if a
corresponding exception is pending when the bus error exception is taken. IN is set if a
bus fault occurs while prefetching an opcode or an extension word during instruction
restart. RW, LG, SIZ, and FUNC all reflect the type of bus cycle that caused the fault. All
write faults have the RR bit set to indicate that the write should be rerun upon return from
the exception handler.

The remainder of the stack frame contains sufficient information to continue MOVEM with
operand transfer following a faulted transfer. The address of the next operand to be
transferred, incremented or decremented by operand size, is stored in the faulted address
location ($08). The stacked transfer counter is set to 16 minus the number of transfers
attempted (including the faulted cycle). Refer to Figure 5-12 for the stacking format.

5.5.3.1.4 Type IV—Faults During Exception Processing. The fourth type of fault occurs
during exception processing. If this exception is a second address or bus error, the
machine halts in the double bus fault condition. However, if the exception is one that
causes a four- or six-word stack frame to be written, a bus cycle fault frame is written
below the faulted exception stack frame.

The SSW for a fault within an exception contains the following bit pattern:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

1 0 0 TR B1 B0 0 0 0 1 LG SIZ FUNC

TR, B1, and B0 are set if a corresponding exception is pending when the bus error
exception is taken.

The contents of the faulted exception stack frame are included in the bus fault stack
frame. The pre-exception SR and the format/vector word of the faulted frame are stacked.
The type of exception can be determined from the format/vector word. If the faulted
exception stack frame contains six words, the PC of the instruction that caused the initial

MOTOROLA MC68340 USER’S MANUAL 5-57

exception is also stacked. This data is placed on the stack in the format shown in Figure
5-13. The return address from the initial exception is stacked for RTE .

5.5.3.2 CORRECTING A FAULT. There are two ways to complete a faulted released write
bus cycle. The first is to use a software handler. The second is to rerun the bus cycle via
RTE.

Type II fault handlers must terminate with RTE, but specific requirements must also be
met before an instruction is restarted.

There are three varieties of type III operand fault recovery. The first is completion of an
instruction in software. The second is conversion to type II with restart via RTE. The third
is continuation from the fault via RTE.

5.5.3.2.1 Type I—Completing Released Writes via Software. To complete a bus cycle
in software, a handler must first read the SSW function code field to determine the
appropriate address space, access the fault address pointer on the stack, and then
transfer data from the stacked image of the output buffer to the fault address.

Because the CPU32 has a 16-bit internal data bus, long operands require two bus
accesses. A fault during the second access of a long operand causes the LG bit in the
SSW to be set. The SIZ field indicates remaining operand size. If operand coherency is
important, the complete operand must be rewritten. After a long operand is rewritten, the
RR bit must be cleared. Failure to clear the RR bit can cause the RTE instruction to rerun
the bus cycle. Following rewrite, it is not necessary to adjust the PC (or other stack
contents) before executing RTE.

5.5.3.2.2 Type I—Completing Released Writes via RTE. An exception handler can use
the RTE instruction to complete a faulted bus cycle. When RTE executes, the fault
address, data output buffer, PC, and SR are restored from the stack. Any pending
breakpoint or trace exceptions, as indicated by TR, B1, and B0 in the stacked SSW, are
requeued during SSW restoration. The RR bit in the SSW is checked during the
unstacking operation; if it is set, the RW, FUNC, and SIZ fields are restored and the
released write cycle is rerun.

To maintain long-word operand coherence, stack contents must be adjusted prior to RTE
execution. The fault address must be decremented by 2 if LG is set and SIZ indicates a
remaining byte or word. SIZ must be set to long. All other fields should be left unchanged.
The bus controller uses the modified fault address and SIZ field to rerun the complete
released write cycle.

Manipulating the stacked SSW can cause unpredictable results because RTE checks only
the RR bit to determine if a bus cycle must be rerun. Inadvertent alteration of the control
bits could cause the bus cycle to be a read instead of a write or could cause access to a
different address space than the original bus cycle. If the rerun bus cycle is a read,
returned data will be ignored.

5-58 MC68340 USER’S MANUAL MOTOROLA

5.5.3.2.3 Type II—Correcting Faults via RTE. Instructions aborted because of a type II
fault are restarted upon return from the exception handler. A fault handler must establish
safe restart conditions. If a fault is caused by a nonresident page in a demand-paged
virtual memory configuration, the fault address must be read from the stack, and the
appropriate page retrieved. An RTE instruction terminates the exception handler. After
unstacking the machine state, the instruction is refetched and restarted.

5.5.3.2.4 Type III—Correcting Faults via Software. Sufficient information is contained in
the stack frame to complete MOVEM in software. After the cause of the fault is corrected,
the faulted bus cycle must be rerun. Perform the following procedures to complete an
instruction through software:

A. Setup for Rerun

Read the MOVEM opcode and extension from locations pointed to by stackframe PC and
PC + 2. The EA need not be recalculated since the next operand address is saved in the
stack frame. However, the opcode EA field must be examined to determine how to update
the address register and PC when the instruction is complete.

Adjust the mask to account for operands already transferred. Subtract the stacked
operand transfer count from 16 to obtain the number of operands transferred. Scan the
mask using this count value. Each time a set bit is found, clear it and decrement the
counter. When the count is zero, the mask is ready for use.

Adjust the operand address. If the predecrement addressing mode is in effect, subtract the
operand size from the stacked value; otherwise, add the operand size to the stacked
value.

B. Rerun Instruction

Scan the mask for set bits. Read/write the selected register from/to the operand address
as each bit is found.

As each operand is transferred, clear the mask bit and increment (decrement) the operand
address. When all bits in the mask are cleared, all operands have been transferred.

If the addressing mode is predecrement or postincrement, update the register to complete
the execution of the instruction.

If TR is set in the stacked SSW, create a six-word stack frame and execute the trace
handler. If either B1 or B0 is set in the SSW, create another six-word stack frame and
execute the hardware breakpoint handler.

De-allocate the stack and return control to the faulted program.

5.5.3.2.5 Type III—Correcting Faults by Conversion and Restart. In some situations it
may be necessary to rerun all the operand transfers for a faulted instruction rather than
continue from a faulted operand. Clearing the MV bit in the stacked SSW converts a type
III fault into a type II fault. Consequently, MOVEM, like all other type II

MOTOROLA MC68340 USER’S MANUAL 5-59

exceptions, will be restarted upon return from the exception handler. When a fault occurs
after an operand has transferred, that transfer is not "undone". However, these memory
locations are accessed a second time when the instruction is restarted. If a register used
in an EA calculation is overwritten before a fault occurs, an incorrect EA is calculated upon
instruction restart.

5.5.3.2.6 Type III—Correcting Faults via RTE. The preferred method of MOVEM bus
fault recovery is to correct the cause of the fault and then execute an RTE instruction
without altering the stack contents.

The RTE recognizes that MOVEM was in progress when a fault occurred, restores the
appropriate machine state, refetches the instruction, repeats the faulted transfer, and
continues the instruction.

MOVEM is the only instruction continued upon return from an exception handler. Although
the instruction is refetched, the EA is not recalculated, and the mask is rescanned the
same number of times as before the fault; modifying the code prior to RTE can cause
unexpected results.

5.5.3.2.7 Type IV—Correcting Faults via Software. Bus error exceptions can occur
during exception processing while the processor is fetching an exception vector or while it
is stacking. The same stack frame and SSW are used in both cases, but each has a
distinct fault address. The stacked faulted exception format/vector word identifies the type
of faulted exception and the contents of the remainder of the frame. A fault address
corresponding to the vector specified in the stacked format/vector word indicates that the
processor could not obtain the address of the exception handler.

A bus error exception handler should execute RTE after correcting a fault. RTE restores
the internal machine state, fetches the address of the original exception handler, recreates
the original exception stack frame, and resumes execution at the exception handler
address.

If the fault is intractable, the exception handler should rewrite the faulted exception stack
frame at SP + $14 + $06 and then jump directly to the original exception handler. The
stack frame can be generated from the information in the bus error frame: the pre-
exception SR (SP + $0C), the format/vector word (SP + $0E), and, if the frame being
written is a six-word frame, the PC of the instruction causing the exception (SP + $10).
The return PC value is available at SP + $02.

A stacked fault address equal to the current SP may indicate that, although the first
exception received a bus error while stacking, the bus error exception stacking
successfully completed. This occurrence is extremely improbable, but the CPU32
supports recovery from it. Once the exception handler determines that the fault has been
corrected, recovery can proceed as described previously. If the fault cannot be corrected,
move the supervisor stack to another area of memory, copy all valid stack frames to the
new stack, create a faulted exception frame on top of the stack, and resume execution at
the exception handler address.

5-60 MC68340 USER’S MANUAL MOTOROLA

5.5.4 CPU32 Stack Frames

The CPU32 generates three different stack frames: four-word frames, six-word frames,
and twelve-word bus error frames.

5.5.4.1 FOUR-WORD STACK FRAME. This stack frame is created by interrupt, format
error, TRAP #n, illegal instruction, A-line and F-line emulator trap, and privilege violation
exceptions. Depending on the exception type, the PC value is either the address of the
next instruction to be executed or the address of the instruction that caused the exception
(see Figure 5-12).

15 0

SP ⇒ STATUS REGISTER

+$02 PROGRAM COUNTER HIGH

PROGRAM COUNTER LOW

+$06 0 0 0 0 VECTOR OFFSET

Figure 5-12. Format $0—Four-Word Stack Frame

5.5.4.2 SIX-WORD STACK FRAME. This stack frame (see Figure 5-13) is created by
instruction-related traps, which include CHK, CHK2, TRAPcc, TRAPV, and divide-by-zero,
and by trace exceptions. The faulted instruction PC value is the address of the instruction
that caused the exception. The next PC value (the address to which RTE returns) is the
address of the next instruction to be executed.

15 0

SP ⇒ STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 0 0 1 0 VECTOR OFFSET

+$08 FAULTED INSTRUCTION PROGRAM COUNTER HIGH

FAULTED INSTRUCTION PROGRAM COUNTER LOW

Figure 5-13. Format $2—Six-Word Stack Frame

Hardware breakpoints also utilize this format. The faulted instruction PC value is the
address of the instruction executing when the breakpoint was sensed. Usually this is the
address of the instruction that caused the breakpoint, but, because released writes can
overlap following instructions, the faulted instruction PC may point to an instruction
following the instruction that caused the breakpoint. The address to which RTE returns is
the address of the next instruction to be executed.

5.5.4.3 BUS ERROR STACK FRAME. This stack frame is created when a bus cycle fault
is detected. The CPU32 bus error stack frame differs significantly from the equivalent
stack frames of other M68000 Family members. The only internal machine state required
in the CPU32 stack frame is the bus controller state at the time of the error and a single
register.

MOTOROLA MC68340 USER’S MANUAL 5-61

Bus operation in progress at the time of a fault is conveyed by the SSW.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TP MV 0 TR B1 B0 RR RM IN RW LG SIZ FUNC

The bus error stack frame is 12 words in length. There are three variations of the frame,
each distinguished by different values in the SSW TP and MV fields.

An internal transfer count register appears at location SP + $14 in all bus error stack
frames. The register contains an 8-bit microcode revision number, and, for type III faults,
an 8-bit transfer count. Register format is shown in Figure 5-14.

15 8 7 0

MICROCODE REVISION NUMBER TRANSFER COUNT

Figure 5-14. Internal Transfer Count Register

The microcode revision number is checked before a bus error stack frame is restored via
RTE. In a multiprocessor system, this check ensures that a processor using stacked
information is at the same revision level as the processor that created it.

The transfer count is ignored unless the MV bit in the stacked SSW is set. If the MV bit is
set, the least significant byte of the internal register is reloaded into the MOVEM transfer
counter during RTE execution.

For faults occurring during normal instruction execution (both prefetches and non-MOVEM
operand accesses) SSW TP, MV = 00. Stack frame format is shown in Figure 5-15.

Faults that occur during the operand portion of the MOVEM instruction are identified by
SSW TP, MV = 01. Stack frame format is shown in Figure 5-16.

When a bus error occurs during exception processing, SSW TP, MV = 10. The frame
shown in Figure 5-17 is written below the faulting frame. Stacking begins at the address
pointed to by SP – 6 (SP value is the value before initial stacking on the faulted frame).

The frame can have either four or six words, depending on the type of error. Four-word
stack frames do not include the faulted instruction PC (the internal transfer count register
is located at SP + $10 and the SSW is located at SP + $12).

The fault address of a dynamically sized bus cycle is the address of the upper byte,
regardless of the byte that caused the error.

5-62 MC68340 USER’S MANUAL MOTOROLA

15 0

SP ⇒ STATUS REGISTER

+$02 RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C DBUF HIGH

DBUF LOW

+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 0 0 SPECIAL STATUS WORD

Figure 5-15. Format $C—BERR Stack for Prefetches and Operands

15 0

SP ⇒ STATUS REGISTER

+$02 RETURN PROGRAM COUNTER HIGH

RETURN PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C DBUF HIGH

DBUF LOW

+$10 CURRENT INSTRUCTION PROGRAM COUNTER HIGH

CURRENT INSTRUCTION PROGRAM COUNTER LOW

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 0 1 SPECIAL STATUS WORD

Figure 5-16. Format $C—BERR Stack on MOVEM Operand

MOTOROLA MC68340 USER’S MANUAL 5-63

15 0

SP ⇒ STATUS REGISTER

+$02 NEXT INSTRUCTION PROGRAM COUNTER HIGH

NEXT INSTRUCTION PROGRAM COUNTER LOW

+$06 1 1 0 0 VECTOR OFFSET

+$08 FAULTED ADDRESS HIGH

FAULTED ADDRESS LOW

+$0C PRE-EXCEPTION STATUS REGISTER

FAULTED EXCEPTION FORMAT/VECTOR WORD

+$10 FAULTED INSTRUCTION PROGRAM COUNTER HIGH (SIX WORD FRAME ONLY)

FAULTED INSTRUCTION PROGRAM COUNTER LOW (SIX WORD FRAME ONLY)

+$14 INTERNAL TRANSFER COUNT REGISTER

+$16 1 0 SPECIAL STATUS WORD

Figure 5-17. Format $C—Four- and Six-Word BERR Stack

5.6 DEVELOPMENT SUPPORT

All M68000 family members have the following special features that facilitate applications
development.

Trace on Instruction Execution—All M68000 processors include an instruction-by-
instruction tracing facility to aid in program development. The MC68020, MC68030, and
CPU32 can also trace those instructions that change program flow. In trace mode, an
exception is generated after each instruction is executed, allowing a debugger program to
monitor execution of a program under test. See 5.5.2.10 Tracing for more information.

Breakpoint Instruction—An emulator can insert software breakpoints into target code to
indicate when a breakpoint occurs. On the MC68010, MC68020, MC68030, and CPU32,
this function is provided via illegal instructions ($4848–$484F) that serve as breakpoint
instructions. See 5.5.2.5 Software Breakpoints for more information.

Unimplemented Instruction Emulation—When an attempt is made to execute an illegal
instruction, an illegal instruction exception occurs. Unimplemented instructions (F-line, A-
line) utilize separate exception vectors to permit efficient emulation of unimplemented
instructions in software. See 5.5.2.8 Illegal or Unimplemented Instructions for more
information.

5.6.1 CPU32 Integrated Development Support

In addition to standard MC68000 family capabilities, the CPU32 has features to support
advanced integrated system development. These features include background debug
mode, deterministic opcode tracking, hardware breakpoints, and internal visibility in a
single-chip environment.

5-64 MC68340 USER’S MANUAL MOTOROLA

5.6.1.1 BACKGROUND DEBUG MODE (BDM) OVERVIEW. Microprocessor systems
generally provide a debugger, implemented in software, for system analysis at the lowest
level. The BDM on the CPU32 is unique because the debugger is implemented in CPU
microcode.

BDM incorporates a full set of debug options—registers can be viewed and/or altered,
memory can be read or written, and test features can be invoked.

A resident debugger simplifies implementation of an in-circuit emulator. In a common
setup (see Figure 5-18), emulator hardware replaces the target system processor. A
complex, expensive pod-and-cable interface provides a communication path between
target system and emulator.

.. .

IN-CIRCUIT
EMULATOR

TARGET
MCU

TARGET
SYSTEM

Figure 5-18. In-Circuit Emulator Configuration

By contrast, an integrated debugger supports use of a bus state analyzer (BSA) for in-
circuit emulation. The processor remains in the target system (see Figure 5-19), and the
interface is simplified. The BSA monitors target processor operation and the on-chip
debugger controls the operating environment. Emulation is much closer to target
hardware; thus, many interfacing problems (i.e., limitations on high-frequency operation,
AC and DC parametric mismatches, and restrictions on cable length) are minimized.

.

TARGET
SYSTEM

TARGET
MCU

BUS STATE
ANALYZER

Figure 5-19. Bus State Analyzer Configuration

5.6.1.2 DETERMINISTIC OPCODE TRACKING OVERVIEW. CPU32 function code
outputs are augmented by two supplementary signals that monitor the instruction pipeline.
The IFETCH output signal identifies bus cycles in which data is loaded into the pipeline
and signals pipeline flushes. The IPIPE output signal indicates when each mid-instruction
pipeline advance occurs and when instruction execution begins. These signals allow a
BSA to synchronize with instruction stream activity. Refer to 5.6.3 Deterministic Opcode
Tracking for complete information.

5.6.1.3 ON-CHIP HARDWARE BREAKPOINT OVERVIEW. An external breakpoint input
and an on-chip hardware breakpoint capability permit breakpoint trap on any

MOTOROLA MC68340 USER’S MANUAL 5-65

memory access. Off-chip address comparators will not detect breakpoints on internal
accesses unless show cycles are enabled. Breakpoints on prefetched instructions, which
are flushed from the pipeline before execution, are not acknowledged, but operand
breakpoints are always acknowledged. Acknowledged breakpoints can initiate either
exception processing or BDM. See 5.5.2.6 Hardware Breakpoints for more information.

5.6.2 Background Debug Mode

BDM is an alternate CPU32 operating mode. During BDM, normal instruction execution is
suspended, and special microcode performs debugging functions under external control.
Figure 5-20 is a BDM block diagram.

BDM can be initiated in several ways—by externally generated breakpoints, by internal
peripheral breakpoints, by the background instruction (BGND), or by catastrophic
exception conditions. While in BDM, the CPU32 ceases to fetch instructions via the
parallel bus and communicates with the development system via a dedicated, high-speed,
SPI-type serial command interface.

..

SEQUENCERMICROCODE

SERIAL
INTERFACE

BUS
CONTROL

IRC

BERR

BKPT

EXECUTION
UNIT

IPIPE/DSO

IFETCH/DSI

DATA BUS

BERR

BKPT/DSCLK

ADDRESS BUS

IRB

BERR

BKPT

IR

BERR

BKPT

FREEZE

Figure 5-20. BDM Block Diagram

5.6.2.1 ENABLING BDM. Accidentally entering BDM in a nondevelopment environment
could lock up the CPU32 since the serial command interface would probably not be
available. For this reason, BDM is enabled during reset via the BKPT signal.

5-66 MC68340 USER’S MANUAL MOTOROLA

BDM operation is enabled when BKPT is asserted (low) at the rising edge of RESET. BDM
remains enabled until the next system reset. A high BKPT on the trailing edge of RESET
disables BDM. BKPT is relatched on each rising transition of RESET. BKPT is
synchronized internally and must be held low for at least two clock cycles prior to negation
of RESET.

BDM enable logic must be designed with special care. If hold time on BKPT (after the
trailing edge of RESET) extends into the first bus cycle following reset, this bus cycle could
be tagged with a breakpoint. Refer to Section 3 Bus Operation for timing information.

5.6.2.2 BDM SOURCES. When BDM is enabled, any of several sources can cause the
transition from normal mode to BDM. These sources include external BKPT hardware, the
BGND instruction, a double bus fault, and internal peripheral breakpoints. If BDM is not
enabled when an exception condition occurs, the exception is processed normally. Table
5-19 summarizes the processing of each source for both enabled and disabled cases. As
depicted in the table, the BKPT instruction never causes a transition into BDM.

Table 5-19. BDM Source Summary

Source BDM Enabled BDM Disabled

BKPT Background Breakpoint Exception

Double Bus Fault Background Halted

BGND Instruction Background Illegal Instruction

BKPT Instruction Opcode Substitution/
Illegal Instruction

Opcode Substitution/
Illegal Instruction

5.6.2.2.1 External BKPT Signal. Once enabled, BDM is initiated whenever assertion of
BKPT is acknowledged. If BDM is disabled, a breakpoint exception (vector $0C) is
acknowledged. The BKPT input has the same timing relationship to the data strobe trailing
edge as does read cycle data. There is no breakpoint acknowledge bus cycle when BDM
is entered.

5.6.2.2.2 BGND Instruction. An illegal instruction, $4AFA, is reserved for use by
development tools. The CPU32 defines $4AFA (BGND) to be a BDM entry point when
BDM is enabled. If BDM is disabled, an illegal instruction trap is acknowledged. Illegal
instruction traps are discussed in 5.5.2.8 Illegal or Unimplemented Instructions.

5.6.2.2.3 Double Bus Fault. The CPU32 normally treats a double bus fault (two bus faults
in succession) as a catastrophic system error and halts. When this condition occurs during
initial system debug (a fault in the reset logic), further debugging is impossible until the
problem is corrected. In BDM, the fault can be temporarily bypassed so that its origin can
be isolated and eliminated.

5.6.2.3 ENTERING BDM. When the processor detects a BKPT or a double bus fault or
decodes a BGND instruction, it suspends instruction execution and asserts the FREEZE
output. FREEZE assertion is the first indication that the processor has entered BDM. Once
FREEZE has been asserted, the CPU enables the serial communication hardware and
awaits a command.

MOTOROLA MC68340 USER’S MANUAL 5-67

The CPU writes a unique value indicating the source of BDM transition into temporary
register A (ATEMP) as part of the process of entering BDM. A user can poll ATEMP and
determine the source (see Table 5-20) by issuing a read system register command
(RSREG). ATEMP is used in most debugger commands for temporary storage—it is
imperative that the RSREG command be the first command issued after transition into
BDM.

Table 5-20. Polling the BDM Entry Source

Source ATEMP 31–16 ATEMP 15–0

Double Bus Fault SSW* $FFFF

BGND Instruction $0000 $0001

Hardware Breakpoint $0000 $0000

*SSW is described in detail in 5.5.3 Fault Recovery.

A double bus fault during initial SP/PC fetch sequence is distinguished by a value of
$FFFFFFFF in the current instruction PC. At no other time will the processor write an odd
value into this register.

5.6.2.4 COMMAND EXECUTION. Figure 5-21 summarizes BDM command execution.
Commands consist of one 16-bit operation word and can include one or more 16-bit
extension words. Each incoming word is read as it is assembled by the serial interface.
The microcode routine corresponding to a command is executed as soon as the command
is complete. Result operands are loaded into the output shift register to be shifted out as
the next command is read. This process is repeated for each command until the CPU
returns to normal operating mode.

5.6.2.5 BDM REGISTERS. BDM processing uses three special-purpose registers to track
program context during development. A description of each register follows.

5.6.2.5.1 Fault Address Register (FAR). The FAR contains the address of the faulting
bus cycle immediately following a bus or address error. This address remains available
until overwritten by a subsequent bus cycle. Following a double bus fault, the FAR
contains the address of the last bus cycle. The address of the first fault (if one occurred) is
not visible to the user.

5.6.2.5.2 Return Program Counter (RPC). The RPC points to the location where fetching
will commence after transition from BDM to normal mode. This register should be
accessed to change the flow of a program under development. Changing the RPC to an
odd value will cause an address error when normal mode prefetching begins.

5.6.2.5.3 Current Instruction Program Counter (PCC). The PCC holds a pointer to the
first word of the last instruction executed prior to transition into BDM. Due to instruction
pipelining, the instruction pointed to may not be the instruction which caused the
transition. An example is a breakpoint on a released write. The bus cycle may overlap as
many as two subsequent instructions before stalling the instruction sequencer. A BKPT
asserted during this cycle will not be acknowledged until the end of the instruction

5-68 MC68340 USER’S MANUAL MOTOROLA

executing at completion of the bus cycle. PCC will contain $00000001 if BDM is entered
via a double bus fault immediately out of reset.

..

YES

NO

CONTINUE

ENTER (BDM)

• ASSERT FREEZE SIGNAL
• WAIT FOR COMMAND SEND INITIAL COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT OUT 17 BITS
• DISABLE SHIFT CLOCK

EXECUTE COMMAND

• LOAD: NOT READY/ RESPONSE
• PERFORM COMMAND
• STORE RESULTS

READ RESULTS/NEW COMMAND

• LOAD COMMAND REGISTER
• ENABLE SHIFT CLOCK
• SHIFT IN/OUT 17 BITS
• DISABLE SHIFT CLOCK
• READ RESULT REGISTER

 IF RESULTS =
"NOT READY"

CPU32 ACTIVITY DEVELOPMENT SYSTEM ACTIVITY

Figure 5-21. BDM Command Execution Flowchart

5.6.2.6 RETURNING FROM BDM. BDM is terminated when a resume execution (GO) or
call user code (CALL) command is received. Both GO and CALL flush the instruction
pipeline and prefetch instructions from the location pointed to by the RPC.

The return PC and the memory space referred to by the SR SUPV bit reflect any changes
made during BDM. FREEZE is negated prior to initiating the first prefetch. Upon negation
of FREEZE, the serial subsystem is disabled, and the signals revert to IPIPE and IFETCH
functionality.

5.6.2.7 SERIAL INTERFACE. Communication with the CPU32 during BDM occurs via a
dedicated serial interface, which shares pins with other development features. The BKPT
signal becomes the DSCLK; DSI is received on IFETCH, and DSO is transmitted on
IPIPE.

MOTOROLA MC68340 USER’S MANUAL 5-69

The serial interface uses a full-duplex synchronous protocol similar to the serial peripheral
interface (SPI) protocol. The development system serves as the master of the serial link
since it is responsible for the generation of DSCLK. If DSCLK is derived from the CPU32
system clock, development system serial logic is unhindered by the operating frequency of
the target processor. Operable frequency range of the serial clock is from DC to one-half
the processor system clock frequency.

The serial interface operates in full-duplex mode—i.e., data is transmitted and received
simultaneously by both master and slave devices. In general, data transitions occur on the
falling edge of DSCLK and are stable by the following rising edge of DSCLK. Data is
transmitted MSB first and is latched on the rising edge of DSCLK.

The serial data word is 17 bits wide—16 data bits and a status/control (S/C) bit.

16 15 0

S/C DATA FIELD

Bit 16 indicates the status of CPU-generated messages as shown in Table 5-21.

Table 5-21. CPU Generated Message Encoding

Encoding Data Message Type

0 xxxx Valid Data Transfer

0 FFFF Command Complete; Status OK

1 0000 Not Ready with Response; Come Again

1 0001 BERR Terminated Bus Cycle; Data Invalid

1 FFFF Illegal Command

Command and data transfers initiated by the development system should clear bit 16. The
current implementation ignores this bit; however, Motorola reserves the right to use this bit
for future enhancements.

5.6.2.7.1 CPU Serial Logic. CPU serial logic, shown in the left-hand portion of Figure 5-
22, consists of transmit and receive shift registers and of control logic that includes
synchronization, serial clock generation circuitry, and a received bit counter.

Both DSCLK and DSI are synchronized to on-chip clocks, thereby minimizing the chance
of propagating metastable states into the serial state machine. Data is sampled during the
high phase of CLKOUT. At the falling edge of CLKOUT, the sampled value is made
available to internal logic. If there is no synchronization between CPU32 and development
system hardware, the minimum hold time on DSI with respect to DSCLK is one full period
of CLKOUT.

5-70 MC68340 USER’S MANUAL MOTOROLA

..

CONTROL
LOGIC

SERIAL IN
PARALLEL OUT

PARALLEL IN
SERIAL OUT

EXECUTION
UNIT

STATUS

SYNCHRONIZE
MICROSEQUENCER

PARALLEL IN
SERIAL OUT

SERIAL IN
PARALLEL OUT

RESULT LATCH

CONTROL
LOGIC

STATUS DATA

DSI

DSO

DSCLK
SERIAL
CLOCK

16

16

RCV DATA LATCH

CPU

INSTRUCTION
REGISTER BUS

16

COMMAND LATCH

DATA

16

DEVELOPMENT SYSTEM

0

Figure 5-22. Debug Serial I/O Block Diagram

The serial state machine begins a sequence of events based on the rising edge of the
synchronized DSCLK (see Figure 5-23). Synchronized serial data is transferred to the
input shift register, and the received bit counter is decremented. One-half clock period
later, the output shift register is updated, bringing the next output bit to the DSO signal.
DSO changes relative to the rising edge of DSCLK and does not necessarily remain
stable until the falling edge of DSCLK.

One clock period after the synchronized DSCLK has been seen internally, the updated
counter value is checked. If the counter has reached zero, the receive data latch is
updated from the input shift register. At this same time, the output shift register is reloaded
with the “not ready/come again” response. Once the receive data latch has been loaded,
the CPU is released to act on the new data. Response data overwrites the “not ready”
response when the CPU has completed the current operation.

Data written into the output shift register appears immediately on the DSO signal. In
general, this action changes the state of the signal from a high (“not ready” response
status bit) to a low (valid data status bit) logic level. However, this level change only
occurs if the command completes successfully. Error conditions overwrite the “not ready”
response with the appropriate response that also has the status bit set.

MOTOROLA MC68340 USER’S MANUAL 5-71

.

CLKOUT

FREEZE

DSCLK

DSI

SAMPLE
WINDOW

INTERNAL
SYNCHRONIZED

DSCLK

INTERNAL
SYNCHRONIZED

DSI

CLKOUT

DSO

Figure 5-23. Serial Interface Timing Diagram

A user can use the state change on DSO to signal hardware that the next serial transfer
may begin. A timeout of sufficient length to trap error conditions that do not change the
state of DSO should also be incorporated into the design. Hardware interlocks in the CPU
prevent result data from corrupting serial transfers in progress.

5.6.2.7.2 Development System Serial Logic. The development system, as the master of
the serial data link, must supply the serial clock. However, normal and BDM operations
could interact if the clock generator is not properly designed.

Breakpoint requests are made by asserting BKPT to the low state in either of two ways.
The primary method is to assert BKPT during a single bus cycle for which an exception is
desired. Another method is to assert BKPT, then continue to assert it until the CPU32
responds by asserting FREEZE. This method is useful for forcing a transition into BDM
when the bus is not being monitored. Each method requires a slightly different serial logic
design to avoid spurious serial clocks.

Figure 5-24 represents the timing required for asserting BKPT during a single bus cycle.

5-72 MC68340 USER’S MANUAL MOTOROLA

..

SHIFT_CLK

FORCE_BGND

BKPT_TAG

FREEZE

BKPT

Figure 5-24. BKPT Timing for Single Bus Cycle

Figure 5-25 depicts the timing of the BKPT/FREEZE method. In both cases, the serial
clock is left high after the final shift of each transfer. This technique eliminates the
possibility of accidentally tagging the prefetch initiated at the conclusion of a BDM session.
As mentioned previously, all timing within the CPU is derived from the rising edge of the
clock; the falling edge is effectively ignored.

..

BKPT_TAG

FREEZE

SHIFT_CLK

FORCE_BGND

BKPT

Figure 5-25. BKPT Timing for Forcing BDM

Figure 5-26 represents a sample circuit providing for both BKPT assertion methods. As
the name implies, FORCE_BGND is used to force a transition into BDM by the assertion
of BKPT. FORCE_BGND can be a short pulse or can remain asserted until FREEZE is
asserted. Once asserted, the set-reset latch holds BKPT low until the first SHIFT_CLK is
applied.

.. .. .

BKPT/DSCLK

S1

S2

R

Q

Q

RESET

 FORCE_BGND

BKPT_TAG

SHIFT_CLK

Figure 5-26. BKPT/DSCLK Logic Diagram

BKPT_TAG should be timed to the bus cycles since it is not latched. If extended past the
assertion of FREEZE, the negation of BKPT_TAG appears to the CPU32 as the first
DSCLK.

MOTOROLA MC68340 USER’S MANUAL 5-73

DSCLK, the gated serial clock, is normally high, but it pulses low for each bit to be
transferred. At the end of the seventeenth clock period, it remains high until the start of the
next transmission. Clock frequency is implementation dependent and may range from DC
to the maximum specified frequency. Although performance considerations might dictate a
hardware implementation, software solutions can be used provided serial bus timing is
maintained.

5.6.2.8 COMMAND SET. The following paragraphs describe the command set available in
BDM.

5.6.2.8.1 Command Format. The following standard bit format is utilized by all BDM
commands.

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

Bits 15–0—Operation Field
The operation field specifies the commands. This 6-bit field provides for a maximum of
64 unique commands.

R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the
transfer is from CPU to development system. When the bit is cleared, data is written to
the CPU or to memory from the development system.

Operand Size
For sized operations, this field specifies the operand data size. All addresses are
expressed as 32-bit absolute values. The size field is encoded as listed in Table 5-22.

Table 5-22. Size Field Encoding

Encoding Operand Size

00 Byte

01 Word

10 Long

11 Reserved

Address/Data (A/D) Field
The A/D field is used by commands that operate on address and data registers. It
determines whether the register field specifies a data or address register. One indicates
an address register; zero indicates a data register. For other commands, this field may
be interpreted differently.

5-74 MC68340 USER’S MANUAL MOTOROLA

Register Field:
In most commands, this field specifies the register number for operations performed on
an address or data register.

Extension Word(s) (as required):
At this time, no command requires an extension word to specify fully the operation to be
performed, but some commands require extension words for addresses or immediate
data. Addresses require two extension words because only absolute long addressing is
permitted. Immediate data can be either one or two words in length—byte and word
data each require a single extension word, long-word data requires two words. Both
operands and addresses are transferred most significant word first.

5.6.2.8.2 Command Sequence Diagram. A command sequence diagram (see Figure 5-
27) illustrates the serial bus traffic for each command. Each bubble in the diagram
represents a single 17-bit transfer across the bus. The top half in each diagram
corresponds to the data transmitted by the development system to the CPU; the bottom
half corresponds to the data returned by the CPU in response to the development system
commands. Command and result transactions are overlapped to minimize latency.

The cycle in which the command is issued contains the development system command
mnemonic (in this example, read memory location). During the same cycle, the CPU
responds with either the lowest order results of the previous command or with a command
complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the
memory address. The CPU returns a "not ready" response unless the received command
was decoded as unimplemented, in which case the response data is the illegal command
encoding. If an illegal command response occurs, the development system should
retransmit the command.

NOTE

The “not ready” response can be ignored unless a memory bus
cycle is in progress. Otherwise, the CPU can accept a new
serial transfer with eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory
address. The CPU always returns the “not ready” response in this cycle. At the completion
of the third cycle, the CPU initiates a memory read operation. Any serial transfers that
begin while the memory access is in progress return the “not ready” response.

Results are returned in the two serial transfer cycles following the completion of memory
access. The data transmitted to the CPU during the final transfer is the opcode for the
following command. Should a memory access generate either a bus or address error, an
error status is returned in place of the result data.

MOTOROLA MC68340 USER’S MANUAL 5-75

..

 COMMANDS TRANSMITTED TO THE CPU32

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY CPU32

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE CPU

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR/AERR

XXX
MS RESULT

NEXT CMD
LS RESULT

READ
MEMORY

LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS ERROR
OR ADDRESS ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

Figure 5-27. Command-Sequence Diagram

5.6.2.8.3 Command Set Summary. The BDM command set is summarized in Table 5-23.
Subsequent paragraphs contain detailed descriptions of each command.

5-76 MC68340 USER’S MANUAL MOTOROLA

Table 5-23. BDM Command Summary

Command Mnemonic Description

Read A/D Register RAREG/RDREG Read the selected address or data register and return the results
via the serial interface.

Write A/D Register WAREG/WDREG The data operand is written to the specified address or data
register.

Read System Register RSREG The specified system control register is read. All registers that can
be read in supervisor mode can be read in BDM.

Write System Register WSREG The operand data is written into the specified system control
register.

Read Memory Location READ Read the sized data at the memory location specified by the long-
word address. The SFC register determines the address space
accessed.

Write Memory Location WRITE Write the operand data to the memory location specified by the
long-word address. The DFC register determines the address
space accessed.

Dump Memory Block DUMP Used in conjunction with the READ command to dump large blocks
of memory. An initial READ is executed to set up the starting
address of the block and to retrieve the first result. Subsequent
operands are retrieved with the DUMP command.

Fill Memory Block FILL Used in conjunction with the WRITE command to fill large blocks of
memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent
operands are written with the FILL command.

Resume Execution GO The pipeline is flushed and refilled before resuming instruction
execution at the return PC.

Call User Code CALL Current PC is stacked at the location of the current SP. Instruction
execution begins at user patch code.

Reset Peripherals RST Asserts RESET for 512 clock cycles. The CPU is not reset by this
command. Synonymous with the CPU RESET instruction.

No Operation NOP NOP performs no operation and may be used as a null command.

5.6.2.8.4 Read A/D Register (RAREG/RDREG). Read the selected address or data
register and return the results via the serial interface.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 1 1 0 0 0 A/D REGISTER

Command Sequence:

RDREG/RAREG
???

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

Operand Data:
None

MOTOROLA MC68340 USER’S MANUAL 5-77

Result Data:
The contents of the selected register are returned as a long-word value. The data is
returned most significant word first.

5.6.2.8.5 Write A/D Register (WAREG/WDREG). The operand (long-word) data is written
to the specified address or data register. All 32 bits of the register are altered by the write.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0

0 0 1 0 0 0 0 0 1 0 0 0 A/D REGISTER

Command Sequence:

WDREG/WAREG
???

MS DATA

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

"CMD COMPLETE"
NEXT CMD

"NOT READY"

Operand Data:
Long-word data is written into the specified address or data register. The data is
supplied most significant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

5.6.2.8.6 Read System Register (RSREG). The specified system control register is read.
All registers that can be read in supervisor mode can be read in BDM. Several internal
temporary registers are also accessible.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 0 1 0 0 0 REGISTER

Command Sequence:

RSREG
???

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

Operand Data:
None

5-78 MC68340 USER’S MANUAL MOTOROLA

Result Data:
Always returns 32 bits of data, regardless of the size of the register being read. If the
register is less than 32 bits, the result is returned zero extended.

Register Field:
The system control register is specified by the register field (see Table 5-24).

Table 5-24. Register Field for RSREG and WSREG

System Register Select Code

Return Program Counter (RPC) 0000

Current Instruction Program Counter (PCC) 0001

Status Register (SR) 1011

User Stack Pointer (USP) 1100

Supervisor Stack Pointer (SSP) 1101

Source Function Code Register (SFC) 1110

Destination Function Code Register (DFC) 1111

Temporary Register A (ATEMP) 1000

Fault Address Register (FAR) 1001

Vector Base Register (VBR) 1010

5.6.2.8.7 Write System Register (WSREG). Operand data is written into the specified
system control register. All registers that can be written in supervisor mode can be written
in BDM. Several internal temporary registers are also accessible.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 0

0 0 1 0 0 1 0 0 1 0 0 0 REGISTER

Command Sequence:

MS DATA

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

"CMD COMPLETE"
NEXT CMDWSREG

??? "NOT READY"

Operand Data:
The data to be written into the register is always supplied as a 32-bit long word. If the
register is less than 32 bits, the least significant word is used.

Result Data:
“Command complete” status is returned when register write is complete.

MOTOROLA MC68340 USER’S MANUAL 5-79

Register Field:
The system control register is specified by the register field (see Table 5-24). The FAR
is a read-only register—any write to it is ignored.

5.6.2.8.8 Read Memory Location (READ). Read the sized data at the memory location
specified by the long-word address. Only absolute addressing is supported. The SFC
register determines the address space accessed. Valid data sizes include byte, word, or
long word.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 1 OP SIZE 0 0 0 0 0 0

Command Sequence:

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

NEXT CMD
RESULT

XXX
BERR/AERR

READ
MEMORY

LOCATION

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD

XXX
"NOT READY"

MS RESULT

XXX
BERR/AERR

READ
MEMORY

LOCATION

XXX NEXT CMD
LS RESULT

"NOT READY"

Operand Data:
The single operand is the long-word address of the requested memory location.

Result Data:
The requested data is returned as either a word or long word. Byte data is returned in
the least significant byte of a word result, with the upper byte cleared. Word results
return 16 bits of significant data; long-word results return 32 bits.
A successful read operation returns data bit 16 cleared. If a bus or address error is
encountered, the returned data is $10001.

5.6.2.8.9 Write Memory Location (WRITE). Write the operand data to the memory
location specified by the long-word address. The DFC register determines the address

5-80 MC68340 USER’S MANUAL MOTOROLA

space accessed. Only absolute addressing is supported. Valid data sizes include byte,
word, and long word.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 OP SIZE 0 0 0 0 0 0

Command Sequence:

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR/AERR

NEXT CMD
"CMD COMPLETE"

DATA
"NOT READY"

WRITE
MEMORY

LOCATION

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

WRITE (LONG)
???

MS DATA
"NOT READY"

LS DATA
"NOT READY"

WRITE
MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR/AERR

NEXT CMD
"CMD COMPLETE"

Operand Data:
Two operands are required for this instruction. The first operand is a long-word absolute
address that specifies a location to which the operand data is to be written. The second
operand is the data. Byte data is transmitted as a 16-bit word, justified in the least
significant byte; 16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:
Successful write operations return a status of $0FFFF. Bus or address errors on the
write cycle are indicated by the assertion of bit 16 in the status message and by a data
pattern of $0001.

5.6.2.8.10 Dump Memory Block (DUMP). DUMP is used in conjunction with the READ
command to dump large blocks of memory. An initial READ is executed to set up the

MOTOROLA MC68340 USER’S MANUAL 5-81

starting address of the block and to retrieve the first result. Subsequent operands are
retrieved with the DUMP command. The initial address is incremented by the operand size
(1, 2, or 4) and saved in a temporary register. Subsequent DUMP commands use this
address, increment it by the current operand size, and store the updated address back in
the temporary register.

NOTE

The DUMP command does not check for a valid address in the
temporary register—DUMP is a valid command only when
preceded by another DUMP or by a READ command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a DUMP command is given, allowing the operand
size to be altered dynamically.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 OP SIZE 0 0 0 0 0 0

Command Sequence:

DUMP (LONG)
???

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR/AERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY

LOCATION

XXX
"NOT READY"

NEXT CMD
 MS RESULT

XXX
BERR/AERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ
MEMORY

LOCATION

NEXT CMR
LS RESULT

DUMP (LONG)
???

5-82 MC68340 USER’S MANUAL MOTOROLA

Operand Data:
None

Result Data:
Requested data is returned as either a word or long word. Byte data is returned in the
least significant byte of a word result. Word results return 16 bits of significant data;
long-word results return 32 bits. Status of the read operation is returned as in the READ
command: $0xxxx for success, $10001 for bus or address errors.

5.6.2.8.11 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE
command to fill large blocks of memory. An initial WRITE is executed to set up the starting
address of the block and to supply the first operand. Subsequent operands are written
with the FILL command. The initial address is incremented by the operand size (1, 2, or 4)
and is saved in a temporary register. Subsequent FILL commands use this address,
increment it by the current operand size, and store the updated address back in the
temporary register.

NOTE

The FILL command does not check for a valid address in the
temporary register—FILL is a valid command only when
preceded by another FILL or by a WRITE command.
Otherwise, the results are undefined. The NOP command can
be used for intercommand padding without corrupting the
address pointer.

The size field is examined each time a FILL command is given, allowing the operand size
to be altered dynamically.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 OP SIZE 0 0 0 0 0 0

MOTOROLA MC68340 USER’S MANUAL 5-83

Command Sequence:

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"

DATA
"NOT READY"

XXX

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

WRITE
MEMORY

LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR/AERR

"CMD COMPLETE"

MS DATA
"NOT READY"

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

LS DATA
"NOT READY"

WRITE
MEMORY

LOCATION

FILL (B/W)
???

Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted
as a 16-bit word, justified in the least significant byte; 16- and 32-bit operands are
transmitted as 16 and 32 bits, respectively.

Result Data:
Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus or address error during write.

5.6.2.8.12 Resume Execution (GO). The pipeline is flushed and refilled before normal
instruction execution is resumed. Prefetching begins at the return PC and current privilege
level. If either the PC or SR is altered during BDM, the updated value of these registers is
used when prefetching commences.

NOTE

The processor exits BDM when a bus error or address error
occurs on the first instruction prefetch from the new PC—the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

5-84 MC68340 USER’S MANUAL MOTOROLA

Command Sequence:

GO
???

NORMAL
MODE

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

Operand Data:
None

Result Data:
None

5.6.2.8.13 Call User Code (CALL). This instruction provides a convenient way to patch
user code. The return PC is stacked at the location pointed to by the current SP. The
stacked PC serves as a return address to be restored by the RTS command that
terminates the patch routine. After stacking is complete, the 32-bit operand data is loaded
into the PC. The pipeline is flushed and refilled from the location pointed to by the new
PC, BDM is exited, and normal mode instruction execution begins.

NOTE

If a bus error or address error occurs during return address
stacking, the CPU returns an error status via the serial
interface and remains in BDM.

If a bus error or address error occurs on the first instruction
prefetch from the new PC, the processor exits BDM and the
error is trapped as a normal mode exception. The stacked
value of the current PC may not be valid in this case,
depending on the state of the machine prior to entering BDM.
For address error, the PC does not reflect the true return PC.
Instead, the stacked fault address is the (odd) return PC.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

MOTOROLA MC68340 USER’S MANUAL 5-85

Command Sequence:

LS ADDR
"NOT READY"

STACK
RETURN PC

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

CALL
???

NORMAL
MODE

XXX
BERR/AERR

NEXT CMD
"NOT READY"

FREEZE
NEGATED

PREFETCH
STARTED

Operand Data:
The 32-bit operand data is the starting location of the patch routine, which is the initial
PC upon exiting BDM.

Result Data:
None

As an example, consider the following code segment. It outputs a character from the
MC68340 serial module channel A.

CHKSTAT: MOVE.B SRA,D0 Move serial status to D0
BNE.B CHKSTAT Loop until condition true
MOVE.B TBA,OUTPUT Transmit character

MISSING: ANDI.B #3,D0 Check for TxEMP flag
RTS

BDM and the CALL command can be used to patch the code as follows:

1. Breakpoint user program at CHKSTAT

2. Enter BDM

3. Execute CALL command to MISSING

4. Exit BDM

5. Execute MISSING code

6. Return to user program

5.6.2.8.14 Reset Peripherals (RST). RST asserts RESET for 512 clock cycles. The CPU
is not reset by this command. This command is synonymous with the CPU RESET
instruction.

5-86 MC68340 USER’S MANUAL MOTOROLA

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Command Sequence:

RESET
???

ASSERT
RESET

XXX
"NOT READY"

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"CMD COMPLETE"

Operand Data:
None

Result Data:
The “command complete” response ($0FFFF) is loaded into the serial shifter after
negation of RESET.

5.6.2.8.15 No Operation (NOP). NOP performs no operation and may be used as a null
command where required.

Command Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Command Sequence:

XXX
"ILLEGAL" "NOT READY"

NOP
???

NEXT CMD
"CMD COMPLETE"

NEXT CMD

Operand Data:
None

Result Data:
The “command complete” response ($0FFFF) is returned during the next shift
operation.

MOTOROLA MC68340 USER’S MANUAL 5-87

5.6.2.8.16 Future Commands. Unassigned command opcodes are reserved by Motorola
for future expansion. All unused formats within any revision level will perform a NOP and
return the ILLEGAL command response.

5.6.3 Deterministic Opcode Tracking

The CPU32 utilizes deterministic opcode tracking to trace program execution. Two
signals, IPIPE and IFETCH, provide all information required to analyze instruction pipeline
operation.

5.6.3.1 INSTRUCTION FETCH (IFETCH) . IFETCH indicates which bus cycles are
accessing data to fill the instruction pipeline. IFETCH is pulse-width modulated to
multiplex two indications on a single pin. Asserted for a single clock cycle, IFETCH
indicates that the data from the current bus cycle is to be routed to the instruction pipeline.
IFETCH held low for two clock cycles indicates that the instruction pipeline has been
flushed. The data from the bus cycle is used to begin filling the empty pipeline. Both user
and supervisor mode fetches are signaled by IFETCH.

Proper tracking of bus cycles via IFETCH on a fast bus requires a simple state machine.
On a two-clock bus, IFETCH may signal a pipeline flush with associated prefetch followed
immediately by a second prefetch. That is, IFETCH remains asserted for three clocks, two
clocks indicating the flush/fetch and a third clock signaling the second fetch. These two
operations are easily discerned if the tracking logic samples IFETCH on the two rising
edges of CLKOUT, which follow the AS (DS during show cycles) falling edge. Three-clock
and slower bus cycles allow time for negation of the signal between consecutive
indications and do not experience this operation.

5.6.3.2 INSTRUCTION PIPE (IPIPE) . The internal instruction pipeline can be modeled as
a three-stage FIFO (see Figure 5-28). Stage A is an input buffer—data can be used out of
stages B and C. IPIPE signals advances of instructions in the pipeline.

Instruction register A (IRA) holds incoming words as they are prefetched. No decoding
takes place in the buffer. Instruction register B (IRB) provides initial decoding of the
opcode and decoding of extension words; it is a source of immediate data. Instruction
register C (IRC) supplies residual opcode decoding during instruction execution.

.

I

R

C

DATA
BUS

EXTENSION
WORDS

OPCODES
RESIDUAL

I

R

B

I

R

A

Figure 5-28. Functional Model of Instruction Pipeline

5-88 MC68340 USER’S MANUAL MOTOROLA

Assertion of IPIPE for a single clock cycle indicates the use of data from IRB. Regardless
of the presence of valid data in IRA, the contents of IRB are invalidated when IPIPE is
asserted. If IRA contains valid data, the data is copied into IRB (IRA ⇒ IRB), and the IRB
stage is revalidated.

Assertion of IPIPE for two clock cycles indicates the start of a new instruction and
subsequent replacement of data in IRC. This action causes a full advance of the pipeline
(IRB ⇒ IRC and IRA ⇒ IRB). IRA is refilled during the next instruction fetch bus cycle.

Data loaded into IRA propagates automatically through subsequent empty pipeline stages.
Signals that show the progress of instructions through IRB and IRC are necessary to
accurately monitor pipeline operation. These signals are provided by IRA and IRB validity
bits. When a pipeline advance occurs, the validity bit of the stage being loaded is set, and
the validity bit of the stage supplying the data is negated.

Because instruction execution is not timed to bus activity, IPIPE is synchronized with the
system clock, not the bus. Figure 5-29 illustrates the timing in relation to the system clock.

.. .

IPIPE

EXTENSION
WORD USED

INSTRUCTION
START

EXTENSION
WORD USED

INSTRUCTION
START

IR IR IR IRIRB IRC
IR IR

IRB IRC

CLKOUT

IR IR

Figure 5-29. Instruction Pipeline Timing Diagram

IPIPE should be sampled on the falling edge of the clock. The assertion of IPIPE for a
single cycle after one or more cycles of negation indicates use of the data in IRB (advance
of IRA into IRB). Assertion for two clock cycles indicates that a new instruction has started
(IRB ⇒ IRC and IRA ⇒ IRB transfers have occurred). Loading IRC always indicates that
an instruction is beginning execution—the opcode is loaded into IRC by the transfer.

In some cases, instructions using immediate addressing begin executing and initiate a
second pipeline advance simultaneously at the same time. IPIPE will not be negated
between the two indications, which implies the need for a state machine to track the state
of IPIPE. The state machine can be resynchronized during periods of inactivity on the
signal.

5.6.3.3 OPCODE TRACKING DURING LOOP MODE. IPIPE and IFETCH continue to
work normally during loop mode. IFETCH indicates all instruction fetches up through the
point that data begins recirculating within the instruction pipeline. IPIPE continues to
signal the start of instructions and the use of extension words even though data is being
recirculated internally. IFETCH returns to normal operation with the first fetch after exiting
loop mode.

MOTOROLA MC68340 USER’S MANUAL 5-89

5.7 INSTRUCTION EXECUTION TIMING

This section describes the instruction execution timing of the CPU32. External clock
cycles are used to provide accurate execution and operation timing guidelines, but not
exact timing for every possible circumstance. This approach is used because exact
execution time for an instruction or operation depends on concurrence of independently
scheduled resources, on memory speeds, and on other variables.

An assembly language programmer or compiler writer can use the information in this
section to predict the performance of the CPU32. Additionally, timing for exception
processing is included so that designers of multitasking or real-time systems can predict
task-switch overhead, maximum interrupt latency, and similar timing parameters.
Instruction timing is given in clock cycles to eliminate clock frequency dependency.

5.7.1 Resource Scheduling

The CPU32 contains several independently scheduled resources. The organization of
these resources within the CPU32 is shown in Figure 5-30. Some variation in instruction
execution timing results from concurrent resource utilization. Because resource
scheduling is not directly related to instruction boundaries, it is impossible to make an
accurate prediction of the time required to complete an instruction without knowing the
entire context within which the instruction is executing.

5.7.1.1 MICROSEQUENCER. The microsequencer either executes microinstructions or
awaits completion of accesses necessary to continue microcode execution. The
microsequencer supervises the bus controller, instruction execution, and internal
processor operations such as calculation of EA and setting of condition codes. It also
initiates instruction word prefetches after a change of flow and controls validation of
instruction words in the instruction pipeline.

5.7.1.2 INSTRUCTION PIPELINE. The CPU32 contains a two-word instruction pipeline
where instruction opcodes are decoded. Each stage of the pipeline is initially filled under
microsequencer control and subsequently refilled by the prefetch controller as it empties.

Stage A of the instruction pipeline is a buffer. Prefetches completed on the bus before
stage B empties are temporarily stored in this buffer. Instruction words (instruction
operation words and all extension words) are decoded at stage B. Residual decoding and
execution occur in stage C.

Each pipeline stage has an associated status bit that shows whether the word in that
stage was loaded with data from a bus cycle that terminated abnormally.

5.7.1.3 BUS CONTROLLER RESOURCES. The bus controller consists of the instruction
prefetch controller, the write pending buffer, and the microbus controller. These three
resources transact all reads, writes, and instruction prefetches required for instruction
execution.

5-90 MC68340 USER’S MANUAL MOTOROLA

The bus controller and microsequencer operate concurrently. The bus controller can
perform a read or write or schedule a prefetch while the microsequencer controls EA
calculation or sets condition codes.

The microsequencer can also request a bus cycle that the bus controller cannot perform
immediately. When this happens, the bus cycle is queued, and the bus controller runs the
cycle when the current cycle is complete.

MICROSEQUENCER AND CONTROL

CONTROL STORE

CONTROL LOGIC

INSTRUCTION PIPELINE

STAGE STAGE
C B

EXECUTION UNIT

PROGRAM
COUNTER
SECTION

DATA
SECTION

WRITE-PENDING
BUFFER

PREFETCH
CONTROLLER

MICROBUS
CONTROLLER

ADDRESS
BUS

DATA
BUS

BUS CONTROL
SIGNALS

Figure 5-30. Block Diagram of Independent Resources

5.7.1.3.1 Prefetch Controller. The instruction prefetch controller receives an initial
request from the microsequencer to initiate prefetching at a given address. Subsequent
prefetches are initiated by the prefetch controller whenever a pipeline stage is invalidated,
either through instruction completion or through use of extension words. Prefetch occurs
as soon as the bus is free of operand accesses previously requested by the
microsequencer. Additional state information permits the controller to inhibit prefetch
requests when a change in instruction flow (e.g., a jump or branch instruction) is
anticipated.

In a typical program, 10 to 25 percent of the instructions cause a change of flow. Each
time a change occurs, the instruction pipeline must be flushed and refilled from the new
instruction stream. If instruction prefetches, rather than operand accesses, were given

MOTOROLA MC68340 USER’S MANUAL 5-91

priority, many instruction words would be flushed unused, and necessary operand cycles
would be delayed. To maximize available bus bandwidth, the CPU32 will schedule a
prefetch only when the next instruction is not a change-of-flow instruction and when there
is room in the pipeline for the prefetch.

5.7.1.3.2 Write Pending Buffer. The CPU32 incorporates a single-operand write pending
buffer. The buffer permits the microsequencer to continue execution after a request for a
write cycle is queued in the bus controller. The time needed for a write at the end of an
instruction can overlap the head cycle time for the following instruction, thus reducing
overall execution time. Interlocks prevent the microsequencer from overwriting the buffer.

5.7.1.3.3 Microbus Controller. The microbus controller performs bus cycles issued by
the microsequencer. Operand accesses always have priority over instruction prefetches.
Word and byte operands are accessed in a single CPU-initiated bus cycle, although the
external bus interface may be required to initiate a second cycle when a word operand is
sent to a byte-sized external port. Long operands are accessed in two bus cycles, most
significant word first.

The instruction pipeline is capable of recognizing instructions that cause a change of flow.
It informs the bus controller when a change of flow is imminent, and the bus controller
refrains from starting prefetches that would be discarded due to the change of flow.

5.7.1.4 INSTRUCTION EXECUTION OVERLAP. Overlap is the time, measured in clock
cycles, that an instruction executes concurrently with the previous instruction. As shown in
Figure 5-31, portions of instructions A and B execute simultaneously, reducing total
execution time. Because portions of instructions B and C also overlap, overall execution
time for all three instructions is also reduced.

Each instruction contributes to the total overlap time. The portion of execution time at the
end of instruction A that can overlap the beginning of instruction B is called the tail of
instruction A. The portion of execution time at the beginning of instruction B that can
overlap the end of instruction A is called the head of instruction B. The total overlap time
between instructions A and B is the smaller tail of A and the head of B.

OVERLAP OVERLAP

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

Figure 5-31. Simultaneous Instruction Execution

5-92 MC68340 USER’S MANUAL MOTOROLA

The execution time attributed to instructions A, B, and C after considering the overlap is
illustrated in Figure 5-32. The overlap time is attributed to the execution time of the
completing instruction. The following equation shows the method for calculating the
overlap time:

Overlap = min (TailN, HeadN+1)

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION A)

OVERLAP
PERIOD

(ABSORBED BY
INSTRUCTION B)

INSTRUCTION A

INSTRUCTION B

INSTRUCTION C

Figure 5-32. Attributed Instruction Times

5.7.1.5 EFFECTS OF WAIT STATES. The CPU32 access time for on-chip peripherals is
two clocks. While two-clock external accesses are possible when the bus is operated in a
synchronous mode, a typical external memory speed is three or more clocks.

All instruction times listed in this section are for word access only (unless an explicit
exception is given), and are based on the assumption that both instruction fetches and
operand cycles are to a two-clock memory. Any time a long access is made, time for the
additional bus cycle(s) must be added to the overall execution time. Wait states due to
slow external memory must be added to the access time for each bus cycle.

A typical application has a mixture of bus speeds—program execution from an off-chip
ROM, accesses to on-chip peripherals, storage of variables in slow off-chip RAM, and
accesses to external peripherals with speeds ranging from moderate to very slow. To
arrive at an accurate instruction time calculation, each bus access must be individually
considered. Many instructions have a head cycle count, which can overlap the cycles of
an operand fetch to slower memory started by a previous instruction. In these cases, an
increase in access time has no effect on the total execution time of the pair of instructions.

To trace instruction execution time by monitoring the external bus, note that the order of
operand accesses for a particular instruction sequence is always the same provided bus
speed is unchanged and the interleaving of instruction prefetches with operands within
each sequence is identical.

5.7.1.6 INSTRUCTION EXECUTION TIME CALCULATION. The overall execution time
for an instruction depends on the amount of overlap with previous and subsequent
instructions. To calculate an instruction time estimate, the entire code sequence must be

MOTOROLA MC68340 USER’S MANUAL 5-93

analyzed. To derive the actual instruction execution times for an instruction sequence, the
instruction times listed in the tables must be adjusted to account for overlap.

The formula for this calculation is as follows:

C1 − min (T1, H2) + C2 − min (T2, H3) + C3 − min (T3, H4) +

where:

CN is the number of cycles listed for instruction N

TN is the tail time for instruction N

HN is the head time for instruction N

min (TN, HM) is the minimum of parameters TN and HM

The number of cycles for the instruction (CN) can include one or two EA calculations in
addition to the raw number in the cycles column. In these cases, calculate overall
instruction time as if it were for multiple instructions, using the following equation:

〈CEA 〉 − min (TEA, HOP) + COP

where:

〈CEA 〉 is the instruction’s EA time

COP is the instruction’s operation time

TEA is the EA’s tail time

HOP is the instruction operation’s head time

min (TN, HM) is the minimum of parameters TN and HM

The overall head for the instruction is the head for the EA, and the overall tail for the
instruction is the tail for the operation. Therefore, the actual equation for execution time
becomes:

COP1 − min (TOP1, HEA2) + 〈CEA 〉2 − min (TEA2, HOP2) + COP2 − min (TOP2, HEA3) + . . .

Every instruction must prefetch to replace itself in the instruction pipe. Usually, these
prefetches occur during or after an instruction. A prefetch is permitted to begin in the first
clock of any indexed EA mode operation.

Additionally, a prefetch for an instruction is permitted to begin two clocks before the end of
an instruction provided the bus is not being used. If the bus is being used, then the
prefetch occurs at the next available time when the bus would otherwise be idle.

5.7.1.7 EFFECTS OF NEGATIVE TAILS. When the CPU32 changes instruction flow, the
instruction decode pipeline must begin refilling before instruction execution can resume.
Refilling forces a two-clock idle period at the end of the change-of-flow instruction. This
idle period can be used to prefetch an additional word on the new instruction path.

5-94 MC68340 USER’S MANUAL MOTOROLA

Because of the stipulation that each instruction must prefetch to replace itself, the concept
of negative tails has been introduced to account for these free clocks on the bus.

On a two-clock bus, it is not necessary to adjust instruction timing to account for the
potential extra prefetch. The cycle times of the microsequencer and bus are matched, and
no additional benefit or penalty is obtained. In the instruction execution time equations, a
zero should be used instead of a negative number.

Negative tails are used to adjust for slower fetches on slower buses. Normally, increasing
the length of prefetch bus cycles directly affects the cycle count and tail values found in
the tables.

In the following equations, negative tail values are used to negate the effects of a slower
bus. The equations are generalized, however, so that they may be used on any speed bus
with any tail value.

NEW_TAIL = OLD_TAIL + (NEW_CLOCK – 2)

IF ((NEW_CLOCK – 4) >0) THEN

NEW_CYCLE = OLD_CYCLE + (NEW_CLOCK -2) + (NEW_CLOCK – 4)

ELSE

NEW_CYCLE = OLD_CYCLE + (NEW _CLOCK – 2)

where:
NEW_TAIL/NEW_CYCLE is the adjusted tail/cycle at the slower speed

OLD_TAIL/OLD_CYCLE is the value listed in the instruction timing tables

NEW_CLOCK is the number of clocks per cycle at the slower speed

Note that many instructions listed as having negative tails are change-of-flow instructions
and that the bus speed used in the calculation is that of the new instruction stream.

5.7.2 Instruction Stream Timing Examples

The following programming examples provide a detailed examination of timing effects. In
all examples, the memory access is from external synchronous memory, the bus is idle,
and the instruction pipeline is full at the start.

5.7.2.1 TIMING EXAMPLE 1—EXECUTION OVERLAP. Figure 5-33 illustrates execution
overlap caused by the bus controller's completion of bus cycles while the sequencer is
calculating the next EA. One clock is saved between instructions since that is the
minimum time of the individual head and tail numbers.

Instructions
MOVE.W A1, (A0) +
ADDQ.W #1, (A0)
CLR.W $30 (A1)

MOTOROLA MC68340 USER’S MANUAL 5-95

CLOCK

 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

WRITE
FOR 1

1 PRE-
FETCH

READ
FOR 2

WRITE
FOR 2

2 PRE-
FETCH

ADDQ
TO <EA>

ADDQ.W #1,(AO)

EA FETCH
ADDQMOVE A1,(AO)+

MOVE.W A1,(AO)+

EA CALC
CLR

CLR
<EA>

3 PRE-
FETCH

3 PRE-
FETCH

WRITE
FOR 3

CLR.W $30(A1)

Figure 5-33. Example 1—Instruction Stream

5.7.2.2 TIMING EXAMPLE 2—BRANCH INSTRUCTIONS. Example 2 shows what
happens when a branch instruction is executed for both the taken and not-taken cases.
(see Figures 5-34 and 5-35). The instruction stream is for a simple limit check with the
variable already in a data register.

Instructions
MOVEQ #7, D1
CMP.L D1, D0
BLE.B NEXT
MOVE.L D1, (A0)

CLOCK

 1 2 3 4 5 6 7 8 9 0 1 2 3 4

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

1 PRE-
FETCH

CMP
D1,D0

2 PRE-
FETCH

WRITE
FOR 3

CMPMOVEQ

MOVEQ
#7,D1

BLE.B NOT TAKEN

OFFSET
CALC

NEXT
INST.

PRE-
FETCH

PRE-
FETCH

PRE-
FETCH

TAKEN TAKEN TAKEN

Figure 5-34. Example 2—Branch Taken

5-96 MC68340 USER’S MANUAL MOTOROLA

CLOCK

 1 2 3 4 5 6 7 8 9 0 1 2 3 4

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

1 PRE-
FETCH

CMP
D1,D0

MOVEQ

MOVEQ
#7,D1

BLE.B NOT TAKEN

OFFSET
CALC

WRITE
FOR 4

3 PRE-
FETCH

4 PRE-
FETCH

NOT
TAKEN

WRITE
FOR 4

MOVE TO
(A0)

MOVE.L D1,(AO)

CMP

2 PRE-
FETCH

Figure 5-35. Example 2—Branch Not Taken

5.7.2.3 TIMING EXAMPLE 3—NEGATIVE TAILS. This example (see Figure 5-36) shows
how to use negative tail figures for branches and other change-of-flow instructions. In this
example, bus speed is assumed to be four clocks per access. Instruction three is at the
branch destination.

Although the CPU32 has a two-word instruction pipeline, internal delay causes minimum
branch instruction time to be three bus cycles. The negative tail is a reminder that an extra
two clocks are available for prefetching a third word on a fast bus; on a slower bus, there
is no extra time for the third word.

Instructions

MOVEQ #7, D1
BRA.W FARAWAY
MOVE.L D1, D0

CLOCK

 1 2 3 4 5 6 7 8 9 0 1 2 3 4

BUS
CONTROLLER

INSTRUCTION
CONTROLLER

EXECUTION
TIME

MOVEQ OFFSET
CALC

5 6 7 8 9

BRANCH OFFSET

BRA.W FARAWAY

TAKENTAKEN

FETCH MOVE.L FETCH NEXT
INSTRUCTION PREFETCH

MOVE
TO D0

MOVE.L D1,D0MOVEQ #7,D1

Figure 5-36. Example 3—Branch Negative Tail

MOTOROLA MC68340 USER’S MANUAL 5-97

Example 3 illustrates three different aspects of instruction time calculation:
1. The branch instruction does not attempt to prefetch beyond the minimum number of

words needed for itself.

2. The negative tail allows execution to begin sooner than a three-word pipeline would
allow.

3. There is a one-clock delay due to late arrival of the displacement at the CPU.

Only changes of flow require negative tail calculation, but the concept can be generalized
to any instruction—only two words are required to be in the pipeline, but up to three words
may be present. When there is an opportunity for an extra prefetch, it is made. A prefetch
to replace an instruction can begin ahead of the instruction, resulting in a faster processor.

5.7.3 Instruction Timing Tables

The following assumptions apply to the times shown in the subsequent tables.

—A 16-bit data bus is used for all memory accesses.

—Memory access times are based on two clock bus cycles with no wait states.

—The instruction pipeline is full at the beginning of the instruction and is refilled by
the end of the instruction.

Three values are listed for each instruction and addressing mode:

Head: The number of cycles available at the beginning of an instruction to complete a
previous instruction write or to perform a prefetch.

Tail: The number of cycles an instruction uses to complete a write.

Cycles: Four numbers per entry, three contained in parentheses. The outer number is the
minimum number of cycles required for the instruction to complete. Numbers
within the parentheses represent the number of bus accesses performed by the
instruction. The first number is the number of operand read accesses performed
by the instruction. The second number is the number of instruction fetches
performed by the instruction, including all prefetches that keep the instruction and
the instruction pipeline filled. The third number is the number of write accesses
performed by the instruction.

As an example, consider an ADD.L (12, A3, D7.W ∗ 4), D2 instruction.

Paragraph 5.7.3.5 Arithmetic/Logic Instructions shows that the instruction has a head =
0, a tail = 0, and cycles = 2 (0/1/0). However, in indexed, address register indirect
addressing mode, additional time is required to fetch the EA. Paragraph 5.7.3.1 Fetch
Effective Address gives addressing mode data. For (d8, An, Xn.Sz ∗ Scale), head = 4,
tail = 2, cycles = 8 (2/1/0). Because this example is for a long access and the fetch EA
table lists data for word accesses, add two clocks to the tail and to the number of cycles
(“X” in table notation) to obtain head = 4, tail = 4, cycles = 10 (2/1/0).

Assuming that no trailing write exists from the previous instruction, EA calculation requires
six clocks. Replacement fetch for the EA occurs during these six clocks, leaving a head of

5-98 MC68340 USER’S MANUAL MOTOROLA

four. If there is no time in the head to perform a prefetch due to a previous trailing write,
then additional time to perform the prefetches must be allotted in the middle of the
instruction or after the tail.

TOTAL NUMBER OF CLOCKS
NUMBER OF READ CYCLES

NUMBER OF INSTRUCTION ACCESS CYCLES
NUMBER OF WRITE CYCLES

8 (2 /1 /0)

The total number of clocks for bus activity is as follows:

(2 Reads × 2 Clocks/Read) + (1 Instruction Access × 2 Clocks/Access) +
(0 Writes × 2 Clocks/Write) = 6 Clocks of Bus Activity

The number of internal clocks (not overlapped by bus activity) is as follows:

10 Clocks Total − 6 Clocks Bus Activity = 4 Internal Clocks

Memory read requires two bus cycles at two clocks each. This read time, implied in the tail
figure for the EA, cannot be overlapped with the instruction because the instruction has a
head of zero. An additional two clocks are required for the ADD instruction itself. The total
is 6 + 4 + 2 = 12 clocks. If bus cycles take more time (i.e., the memory is off-chip), add an
appropriate number of clocks to each memory access.

The instruction sequence MOVE.L D0, (A0) followed by LSL.L #7, D2 provides an
example of overlapped execution. The MOVE instruction has a head of zero and a tail of
four because it is a long write. The LSL instruction has a head of four. The trailing write
from the MOVE overlaps the LSL head completely. Thus, the two-instruction sequence
has a head of zero and a tail of zero, and a total execution of 8 rather than 12 clocks.

General observations regarding calculation of execution time are as follows:

• Any time the number of bus cycles is listed as "X", substitute a value of one for byte
and word cycles and a value of two for long cycles. For long bus cycles, usually add a
value of two to the tail.

• The time calculated for an instruction on a three-clock (or longer) bus is usually longer
than the actual execution time. All times shown are for two-clock bus cycles.

• If the previous instruction has a negative tail, then a prefetch for the current
instruction can begin during the execution of that previous instruction.

• Certain instructions requiring an immediate extension word (immediate word EA,
absolute word EA, address register indirect with displacement EA, conditional
branches with word offsets, bit operations, LPSTOP, TBL, MOVEM, MOVEC,
MOVES, MOVEP, MUL.L, DIV.L, CHK2, CMP2, and DBcc) are not permitted to begin
until the extension word has been in the instruction pipeline for at least one cycle.
This does not apply to long offsets or displacements.

MOTOROLA MC68340 USER’S MANUAL 5-99

5.7.3.1 FETCH EFFECTIVE ADDRESS. The fetch EA table indicates the number of clock
periods needed for the processor to calculate and fetch the specified EA. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles Notes

Dn – – 0(0/0/0) –

An – – 0(0/0/0) –

(An) 1 1 3(X/0/0) 1

(An)+ 1 1 3(X/0/0) 1

−(An) 2 2 4(X/0/0) 1

(d16,An) or (d16,PC) 1 3 5(X/1/0) 1,3

(xxx).W 1 3 5(X/1/0) 1

(xxx).L 1 5 7(X/2/0) 1

#〈 data〉 .B 1 1 3(0/1/0) 1

#〈 data〉 .W 1 1 3(0/1/0) 1

#〈 data〉 .L 1 3 5(0/2/0) 1

(d8,An,Xn.Sz × Sc) or (d8,PC,Xn.Sz × Sc) 4 2 8(X/1/0) 1,2,3,4

(0) (All Suppressed) 2 2 6(X/1/0) 1,4

(d16) 1 3 7(X/2/0) 1,4

(d32) 1 5 9(X/3/0) 1,4

(An) 1 1 5(X/1/0) 1,2,4

(Xm.Sz × Sc) 4 2 8(X/1/0) 1,2,4

(An,Xm.Sz × Sc) 4 2 8(X/1/0) 1,2,3,4

(d16,An) or (d16,PC) 1 3 7(X/2/0) 1,3,4

(d32,An) or (d32,PC) 1 5 9(X/3/0) 1,3,4

(d16,An,Xm) or (d16,PC,Xm) 2 2 8(X/2/0) 1,3,4

(d32,An,Xm) or (d32,PC,Xm) 1 3 9(X/3/0) 1,3,4

(d16,An,Xm.Sz × Sc) or (d16,PC,Xm.Sz × Sc) 2 2 8(X/2/0) 1,2,3,4

(d32,An,Xm.Sz × Sc) or (d32,PC,Xm.Sz × Sc) 1 3 9(X/3/0) 1,2,3,4

X = There is one bus cycle for byte and word operands and two bus cycles for long-word operands.
For long-word bus cycles, add two clocks to the tail and to the number of cycles.

NOTES:

1. The read of the EA and replacement fetches overlap the head of the operation by the amount
specified in the tail.

2. Size and scale of the index register do not affect execution time.

3. The PC may be substituted for the base address register An.

4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the
head until the head reaches zero, at which time additional clocks must be added to both the tail
and cycle counts.

5-100 MC68340 USER’S MANUAL MOTOROLA

5.7.3.2 CALCULATE EFFECTIVE ADDRESS. The calculate EA table indicates the
number of clock periods needed for the processor to calculate a specified EA. The timing
is equivalent to fetch EA except there is no read cycle. The tail and cycle time are reduced
by the amount of time the read would occupy. The total number of clock cycles is outside
the parentheses. The numbers inside parentheses (r/p/w) are included in the total clock
cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles Notes

Dn – – 0(0/0/0) –

An – – 0(0/0/0) –

(An) 1 0 2(0/0/0) –

(An)+ 1 0 2(0/0/0) –

−(An) 2 0 2(0/0/0) –

(d16,An) or (d16,PC) 1 1 3(0/1/0) 1,3

(xxx).W 1 1 3(0/1/0) 1

(xxx).L 1 3 5(0/2/0) 1

(d8,An,Xn.Sz × Sc) or (d8,PC,Xn.Sz × Sc) 4 0 6(0/1/0) 2,3,4

(0) (All Suppressed) 2 0 4(0/1/0) 4

(d16) 1 1 5(0/2/0) 1,4

(d32) 1 3 7(0/3/0) 1,4

(An) 1 0 4(0/1/0) 4

(Xm.Sz × Sc) 4 0 6(0/1/0) 2,4

(An,Xm.Sz × Sc) 4 0 6(0/1/0) 2,4

(d16,An) or (d16,PC) 1 1 5(0/2/0) 1,3,4

(d32,An) or (d32,PC) 1 3 7(0/3/0) 1,3,4

(d16,An,Xm) or (d16,PC,Xm) 2 0 6(0/2/0) 3,4

(d32,An,Xm) or (d32,PC,Xm) 1 1 7(0/3/0) 1,3,4

(d16,An,Xm.Sz × Sc) or (d16,PC,Xm.Sz × Sc) 2 0 6(0/2/0) 2,3,4

(d32,An,Xm.Sz × Sc) or (d32,PC,Xm.Sz × Sc) 1 1 7(0/3/0) 1,2,3,4

X = There is one bus cycle for byte and word operands and two bus cycles for long operands.
For long bus cycles, add two clocks to the tail and to the number of cycles.

NOTES:

1. Replacement fetches overlap the head of the operation by the amount specified in the tail.

2. Size and scale of the index register do not affect execution time.

3. The PC may be substituted for the base address register An.

4. When adjusting the prefetch time for slower buses, extra clocks may be subtracted from the
head until the head reaches zero, at which time additional clocks must be added to both the tail
and cycle counts.

MOTOROLA MC68340 USER’S MANUAL 5-101

5.7.3.3 MOVE INSTRUCTION. The MOVE instruction table indicates the number of clock
periods needed for the processor to calculate the destination EA and to perform a MOVE
or MOVEA instruction. For entries with CEA or FEA, refer to the appropriate table to
calculate that portion of the instruction time.

Destination EAs are divided by their formats (see 5.3.4.4 Effective Address Encoding
Summary). The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

When using this table, begin at the top and move downward. Use the first entry that
matches both source and destination addressing modes.

Instruction Head Tail Cycles

MOVE Rn, Rn 0 0 2(0/1/0)

MOVE 〈FEA〉 , Rn 0 0 2(0/1/0)

MOVE Rn, (Am) 0 2 4(0/1/x)

MOVE Rn, (Am)+ 1 1 5(0/1/x)

MOVE Rn, −(Am) 2 2 6(0/1/x)

MOVE Rn, 〈CEA 〉 1 3 5(0/1/x)

MOVE 〈FEA〉 , (An) 2 2 6(0/1/x)

MOVE 〈FEA〉 , (An)+ 2 2 6(0/1/x)

MOVE 〈FEA〉 , −(An) 2 2 6(0/1/x)

MOVE #, 〈 CEA〉 2 2 6(0/1/x) ∗

MOVE 〈CEA〉 , 〈 FEA 〉 2 2 6(0/1/x)

X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of cycles.

∗ = An # fetch EA time must be added for this instruction: 〈 FEA 〉 +〈CEA〉 + 〈 OPER〉
NOTE: For instructions not explicitly listed, use the MOVE 〈CEA 〉, 〈 FEA〉 entry. The source

EA is calculated by the calculate EA table, and the destination EA is calculated by
the fetch EA table, even though the bus cycle is for the source EA.

5.7.3.4 SPECIAL-PURPOSE MOVE INSTRUCTION. The special-purpose MOVE
instruction table indicates the number of clock periods needed for the processor to fetch,
calculate, and perform the special-purpose MOVE operation on control registers or a
specified EA. Footnotes indicate when to account for the appropriate EA times. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

5-102 MC68340 USER’S MANUAL MOTOROLA

Instruction Head Tail Cycles

EXG Rn, Rm 2 0 4(0/1/0)

MOVEC Cr, Rn 10 0 14(0/2/0)

MOVEC Rn, Cr 12 0 14-16(0/1/0)

MOVE CCR, Dn 2 0 4(0/1/0)

MOVE CCR, 〈 CEA 〉 0 2 4(0/1/1)

MOVE Dn, CCR 2 0 4(0/1/0)

MOVE 〈FEA〉 , CCR 0 0 4(0/1/0)

MOVE SR, Dn 2 0 4(0/1/0)

MOVE SR, 〈CEA 〉 0 2 4(0/1/1)

MOVE Dn, SR 4 −2 10(0/3/0)

MOVE 〈FEA〉 , SR 0 −2 10(0/3/0)

MOVEM.W 〈CEA〉 , RL 1 0 8 + n × 4 (n + 1, 2, 0) ∗

MOVEM.W RL, 〈CEA 〉 1 0 8 + n × 4 (0, 2, n) ∗

MOVEM.L 〈CEA〉 , RL 1 0 12 + n × 4(2n + 2, 2, 0)

MOVEM.L RL, 〈CEA 〉 1 2 10 + n × 4 (0, 2, 2n)

MOVEP.W Dn, (d16, An) 2 0 10(0/2/2)

MOVEP.W (d16, An), Dn 1 2 11(2/2/0)

MOVEP.L Dn, (d16, An) 2 0 14(0/2/4)

MOVEP.L (d16, An), Dn 1 2 19(4/2/0)

MOVES (Save) 〈CEA〉 , Rn 1 1 3(0/1/0)

MOVES (Op) 〈CEA〉 , Rn 7 1 11(X/1/0)

MOVES (Save) Rn, 〈CEA 〉 1 1 3(0/1/0)

MOVES (Op) Rn, 〈CEA 〉 9 2 12(0/1/X)

MOVE USP, An 0 0 2(0/1/0)

MOVE An, USP 0 0 2(0/1/0)

SWAP Dn 4 0 6(0/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

∗ = Each bus cycle may take up to four clocks without increasing total execution time.
Cr = Control registers USP, VBR, SFC, and DFC
n = Number of registers to transfer

RL = Register List
< = Maximum time (certain data or mode combinations may execute faster).

NOTE: The MOVES instruction has an additional save step which other instructions do not
have. To calculate the total instruction time, calculate the save, the EA, and the
operation execution times, and combine in the order listed, using the equations
given in 5.7.1.6 Instruction Execution Time Calculation.

5.7.3.5 ARITHMETIC/LOGIC INSTRUCTIONS. The arithmetic/logic instruction table
indicates the number of clock periods needed to perform the specified arithmetic/logical
instruction using the specified addressing mode. Footnotes indicate when to account for
the appropriate EA times. The total number of clock cycles is outside the parentheses.

MOTOROLA MC68340 USER’S MANUAL 5-103

The numbers inside parentheses (r/p/w) are included in the total clock cycle number. All
timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

ADD(A) Rn, Rm 0 0 2(0/1/0)

ADD(A) 〈FEA〉 , Rn 0 0 2(0/1/0)

ADD Dn, 〈FEA 〉 0 3 5(0/1/x)

AND Dn, Dm 0 0 2(0/1/0)

AND 〈FEA〉 , Dn 0 0 2(0/1/0)

AND Dn, 〈FEA 〉 0 3 5(0/1/x)

EOR Dn, Dm 0 0 2(0/1/0)

EOR Dn, 〈FEA 〉 0 3 5(0/1/x)

OR Dn, Dm 0 0 2(0/1/0)

OR 〈FEA〉 , Dn 0 0 2(0/1/0)

OR Dn, 〈FEA 〉 0 3 5(0/1/x)

SUB(A) Rn, Rm 0 0 2(0/1/0)

SUB(A) 〈FEA〉 , Rn 0 0 2(0/1/0)

SUB Dn, 〈FEA 〉 0 3 5(0/1/x)

CMP(A) Rn, Rm 0 0 2(0/1/0)

CMP(A) 〈FEA〉 , Rn 0 0 2(0/1/0)

CMP2 (Save)* 〈FEA〉 , Rn 1 1 3(0/1/0)

CMP2 (Op) 〈FEA〉 , Rn 2 0 16-18(X/1/0)

MUL(su).W 〈FEA〉 , Dn 0 0 26(0/1/0)

MUL(su).L (Save)* 〈FEA〉 , Dn 1 1 3(0/1/0)

MUL(su).L (Op) 〈FEA〉 , Dl 2 0 46-52(0/1/0)

MUL(su).L (Op) 〈FEA〉 , Dn:Dl 2 0 46(0/1/0)

DIVU.W 〈FEA〉 , Dn 0 0 32(0/1/0)

DIVS.W 〈FEA〉 , Dn 0 0 42(0/1/0)

DIVU.L (Save)* 〈FEA〉 , Dn 1 1 3(0/1/0)

DIVU.L (Op) 〈FEA〉 , Dn 2 0 <46(0/1/0)

DIVS.L (Save)* 〈FEA〉 , Dn 1 1 3(0/1/0)

DIVS.L (Op) 〈FEA〉 , Dn 2 0 <62(0/1/0)

TBL(su) Dn:Dm, Dp 26 0 28-30(0/2/0)

TBL(su) (Save)* 〈CEA〉 , Dn 1 1 3(0/1/0)

TBL(su) (Op) 〈CEA〉 , Dn 6 0 33-35(2X/1/0)

TBLSN Dn:Dm, Dp 30 0 30-34(0/2/0)

TBLSN (Save)* 〈CEA〉 , Dn 1 1 3(0/1/0)

TBLSN (Op) 〈CEA〉 , Dn 6 0 35-39(2X/1/0)

5-104 MC68340 USER’S MANUAL MOTOROLA

Instruction Head Tail Cycles

TBLUN Dn:Dm, Dp 30 0 34-40(0/2/0)

TBLUN (Save)* 〈CEA〉 , Dn 1 1 3(0/1/0)

TBLUN (Op) 〈CEA〉 , Dn 6 0 39-45(2X/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long
operands. For long bus cycles, add two clocks to the tail and to the number of
cycles.

< = Maximum time (certain data or mode combinations may execute faster).

su = The execution time is identical for signed or unsigned operands.
*These instructions have an additional save operation that other instructions do not have. To

calculate total instruction time, calculate save, 〈 ea〉 , and operation execution times, then
combine in the order shown, using equations in 5.7.1.6 Instruction Execution Time
Calculations. A save operation is not run for long-word divide and multiply instructions
when 〈 FEA〉 = Dn,

MOTOROLA MC68340 USER’S MANUAL 5-105

5.7.3.6 IMMEDIATE ARITHMETIC/LOGIC INSTRUCTIONS. The immediate
arithmetic/logic instruction table indicates the number of clock periods needed for the
processor to fetch the source immediate data value and to perform the specified
arithmetic/logic instruction using the specified addressing mode. Footnotes indicate when
to account for the appropriate fetch effective or fetch immediate EA times. The total
number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles

MOVEQ #, Dn 0 0 2(0/1/0)

ADDQ #, Rn 0 0 2(0/1/0)

ADDQ #, 〈 FEA〉 0 3 5(0/1/x)

SUBQ #, Rn 0 0 2(0/1/0)

SUBQ #, 〈 FEA〉 0 3 5(0/1/x)

ADDI #, Rn 0 0 2(0/1/0)∗

ADDI #, 〈 FEA〉 0 3 5(0/1/x) ∗

ANDI #, Rn 0 0 2(0/1/0)∗

ANDI #, 〈 FEA〉 0 3 5(0/1/x) ∗

EORI #, Rn 0 0 2(0/1/0)∗

EORI #, 〈 FEA〉 0 3 5(0/1/x) ∗

ORI #, Rn 0 0 2(0/1/0)∗

ORI #, 〈 FEA〉 0 3 5(0/1/x) ∗

SUBI #, Rn 0 0 2(0/1/0)∗

SUBI #, 〈 FEA〉 0 3 5(0/1/x) ∗

CMPI #, Rn 0 0 2(0/1/0)∗

CMPI #, 〈 FEA〉 0 3 5(0/1/x) ∗

X = There is one bus cycle for byte and word operands and two bus cycles for long-
word operands. For long-word bus cycles, add two clocks to the tail and to the
number of cycles.

∗ = An # fetch EA time must be added for this instruction: 〈FEA〉 +〈FEA 〉 + 〈OPER〉

5-106 MC68340 USER’S MANUAL MOTOROLA

5.7.3.7 BINARY-CODED DECIMAL AND EXTENDED INSTRUCTIONS. The BCD and
extended instruction table indicates the number of clock periods needed for the processor
to perform the specified operation using the specified addressing mode. No additional
tables are needed to calculate total effective execution time for these instructions. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles

ABCD Dn, Dm 2 0 4(0/1/0)

ABCD −(An), −(Am) 2 2 12(2/1/1)

SBCD Dn, Dm 2 0 4(0/1/0)

SBCD −(An), −(Am) 2 2 12(2/1/1)

ADDX Dn, Dm 0 0 2(0/1/0)

ADDX −(An), −(Am) 2 2 10(2/1/1)

SUBX Dn, Dm 0 0 2(0/1/0)

SUBX −(An), −(Am) 2 2 10(2/1/1)

CMPM (An)+, (Am)+ 1 0 8(2/1/0)

MOTOROLA MC68340 USER’S MANUAL 5-107

5.7.3.8 SINGLE OPERAND INSTRUCTIONS. The single operand instruction table
indicates the number of clock periods needed for the processor to perform the specified
operation using the specified addressing mode. The total number of clock cycles is
outside the parentheses. The numbers inside parentheses (r/p/w) are included in the total
clock cycle number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

CLR Dn 0 0 2(0/1/0)

CLR 〈CEA〉 0 2 4(0/1/x)

NEG Dn 0 0 2(0/1/0)

NEG 〈FEA〉 0 3 5(0/1/x)

NEGX Dn 0 0 2(0/1/0)

NEGX 〈FEA〉 0 3 5(0/1/x)

NOT Dn 0 0 2(0/1/0)

NOT 〈FEA〉 0 3 5(0/1/x)

EXT Dn 0 0 2(0/1/0)

NBCD Dn 2 0 4(0/1/0)

NBCD 〈FEA〉 0 2 6(0/1/1)

Scc Dn 2 0 4(0/1/0)

Scc 〈CEA〉 2 2 6(0/1/1)

TAS Dn 4 0 6(0/1/0)

TAS 〈CEA〉 1 0 10(0/1/1)

TST 〈FEA〉 0 0 2(0/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of
cycles.

5-108 MC68340 USER’S MANUAL MOTOROLA

5.7.3.9 SHIFT/ROTATE INSTRUCTIONS. The shift/rotate instruction table indicates the
number of clock periods needed for the processor to perform the specified operation on
the given addressing mode. Footnotes indicate when to account for the appropriate EA
times. The number of bits shifted does not affect the execution time, unless noted. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles Note

LSd Dn, Dm −2 0 (0/1/0) 1

LSd #, Dm 4 0 6(0/1/0) —

LSd 〈FEA〉 0 2 6(0/1/1) —

ASd Dn, Dm −2 0 (0/1/0) 1

ASd #, Dm 4 0 6(0/1/0) —

ASd 〈FEA〉 0 2 6(0/1/1) —

ROd Dn, Dm −2 0 (0/1/0) 1

ROd #, Dm 4 0 6(0/1/0) —

ROd 〈FEA〉 0 2 6(0/1/1) —

ROXd Dn, Dm −2 0 (0/1/0) 2

ROXd #, Dm −2 0 (0/1/0) 3

ROXd 〈FEA〉 0 2 6(0/1/1) —

d = Direction (left or right)

NOTES:

1. Head and cycle times can be derived from the following table or calculated as follows:
Max (3 + (n/4) + mod(n,4) + mod (((n/4) + mod (n,4) + 1,2), 6)

2. Head and cycle times are calculated as follows: (count ≤ 63): max (3 + n + mod (n + 1,2), 6).

3. Head and cycle times are calculated as follows: (count ≤ 8): max (2 + n + mod (n,2), 6).

Clocks Shift Counts

6 0 1 2 3 4 5 6 8 9 12

8 7 10 11 13 14 16 17 20

10 15 18 19 21 22 24 25 28

12 23 26 27 29 30 32 33 36

14 31 34 35 37 38 40 41 44

16 39 42 43 45 46 48 49 52

18 47 50 51 53 54 56 57 60

20 55 58 59 61 62

22 63

MOTOROLA MC68340 USER’S MANUAL 5-109

5.7.3.10 BIT MANIPULATION INSTRUCTIONS. The bit manipulation instruction table
indicates the number of clock periods needed for the processor to perform the specified
operation on the given addressing mode. The total number of clock cycles is outside the
parentheses. The numbers inside parentheses (r/p/w) are included in the total clock cycle
number. All timing data assumes two-clock reads and writes.

Instruction Head Tail Cycles

BCHG #, Dn 2 0 6(0/2/0)∗

BCHG Dn, Dm 4 0 6(0/1/0)

BCHG #, 〈 FEA〉 1 2 8(0/2/1)∗

BCHG Dn, 〈FEA 〉 2 2 8(0/1/1)

BCLR #, Dn 2 0 6(0/2/0)∗

BCLR Dn, Dm 4 0 6(0/1/0)

BCLR #, 〈 FEA〉 1 2 8(0/2/1)∗

BCLR Dn, 〈FEA 〉 2 2 8(0/1/1)

BSET #, Dn 2 0 6(0/2/0)∗

BSET Dn, Dm 4 0 6(0/1/0)

BSET #, 〈 FEA〉 1 2 8(0/2/1)∗

BSET Dn, 〈FEA 〉 2 2 8(0/1/1)

BTST #, Dn 2 0 4(0/2/0)∗

BTST Dn, Dm 2 0 4(0/1/0)

BTST #, 〈 FEA〉 1 0 4(0/2/0)∗

BTST Dn, 〈FEA 〉 2 0 8(0/1/0)

∗ = An # fetch EA time must be added for this instruction: 〈 FEA 〉 + 〈FEA 〉 + 〈OPER 〉

5-110 MC68340 USER’S MANUAL MOTOROLA

5.7.3.11 CONDITIONAL BRANCH INSTRUCTIONS. The conditional branch instruction
table indicates the number of clock periods needed for the processor to perform the
specified branch on the given branch size, with complete execution times given. No
additional tables are needed to calculate total effective execution time for these
instructions. The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

Instruction Head Tail Cycles

Bcc (taken) 2 −2 8(0/2/0)

Bcc.B (not taken) 2 0 4(0/1/0)

Bcc.W (not taken) 0 0 4(0/2/0)

Bcc.L (not taken) 0 0 6(0/3/1)

DBcc (T, not taken) 1 1 4(0/2/0)

DBcc (F, −1, not taken) 2 0 6(0/2/0)

DBcc (F, not −1, taken) 6 −2 10(0/2/0)

DBcc (T, not taken) 4 0 6(0/1/0)∗

DBcc (F, −1, not taken) 6 0 8(0/1/0)∗

DBcc (F, not −1, taken) 6 0 10(0/0/0)∗

∗ = In loop mode

MOTOROLA MC68340 USER’S MANUAL 5-111

5.7.3.12 CONTROL INSTRUCTIONS. The control instruction table indicates the number
of clock periods needed for the processor to perform the specified operation on the given
addressing mode. Footnotes indicate when to account for the appropriate EA times. The
total number of clock cycles is outside the parentheses. The numbers inside parentheses
(r/p/w) are included in the total clock cycle number. All timing data assumes two-clock
reads and writes.

Instruction Head Tail Cycles

ANDI #, SR 0 −2 12(0/2/0)

EORI #, SR 0 −2 12(0/2/0)

ORI #, SR 0 −2 12(0/2/0)

ANDI #, CCR 2 0 6(0/2/0)

EORI #, CCR 2 0 6(0/2/0)

ORI #, CCR 2 0 6(0/2/0)

BSR.B 3 −2 13(0/2/2)

BSR.W 3 −2 13(0/2/2)

BSR.L 1 −2 13(0/2/2)

CHK 〈FEA〉 , Dn (no ex) 2 0 8(0/1/0)

CHK 〈FEA〉 , Dn (ex) 2 −2 42(2/2/6)

CHK2 (Save) 〈FEA〉 , Dn (no ex) 1 1 3(0/1/0)

CHK2 (Op) 〈FEA〉 , Dn (no ex) 2 0 18(X/0/0)

CHK2 (Save) 〈FEA〉 , Dn (ex) 1 1 3(0/1/0)

CHK2 (Op) 〈FEA〉 , Dn (ex) 2 −2 52(X + 2/1/6)

JMP 〈CEA〉 0 −2 6(0/2/0)

JSR 〈CEA〉 3 −2 13(0/2/2)

LEA 〈CEA〉 , An 0 0 2(0/1/0)

LINK.W An, # 2 0 10(0/2/2)

LINK.L An, # 0 0 10(0/3/2)

NOP 0 0 2(0/1/0)

PEA 〈CEA〉 0 0 8(0/1/2)

RTD # 1 −2 12(2/2/0)

RTR 1 −2 14(3/2/0)

RTS 1 −2 12(2/2/0)

UNLK An 1 0 9(2/1/0)

X = There is one bus cycle for byte and word operands and two bus cycles for long-word
operands. For long-word bus cycles, add two clocks to the tail and to the number of
cycles.

NOTE: The CHK2 instruction involves a save step which other instructions do not have. To
calculate the total instruction time, calculate the save, the EA, and the operation
execution times, and combine in the order listed using the equations given in 5.7.1.6
Instruction Execution Time Calculation.

5-112 MC68340 USER’S MANUAL MOTOROLA

5.7.3.13 EXCEPTION-RELATED INSTRUCTIONS AND OPERATIONS. The exception-
related instructions and operations table indicates the number of clock periods needed for
the processor to perform the specified exception-related actions. No additional tables are
needed to calculate total effective execution time for these instructions. The total number
of clock cycles is outside the parentheses. The numbers inside parentheses (r/p/w) are
included in the total clock cycle number. All timing data assumes two-clock reads and
writes.

Instruction Head Tail Cycles

BKPT (Acknowledged) 0 0 14(1/0/0)

BKPT (Bus Error) 0 −2 35(3/2/4)

Breakpoint (Acknowledged) 0 0 10(1/0/0)

Breakpoint (Bus Error) 0 −2 42(3/2/6)

Interrupt 0 −2 30(3/2/4)∗

RESET 0 0 518(0/1/0)

STOP 2 0 12(0/1/0)

LPSTOP 3 −2 25(0/3/1)

Divide-by-Zero 0 −2 36(2/2/6)

Trace 0 −2 36(2/2/6)

TRAP # 4 −2 29(2/2/4)

ILLEGAL 0 −2 25(2/2/4)

A-line 0 −2 25(2/2/4)

F-line (First word illegal) 0 −2 25(2/2/4)

F-line (Second word illegal) ea = Rn 1 −2 31(2/3/4)

F-line (Second word illegal) ea ≠ Rn (Save) 1 1 3(0/1/0)

F-line (Second word illegal) ea ≠ Rn (Op) 4 −2 29(2/2/4)

Privileged 0 −2 25(2/2/4)

TRAPcc (trap) 2 −2 38(2/2/6)

TRAPcc (no trap) 2 0 4(0/1/0)

TRAPcc.W (trap) 2 −2 38(2/2/6)

TRAPcc.W (no trap) 0 0 4(0/2/0)

TRAPcc.L (trap) 0 −2 38(2/2/6)

TRAPcc.L (no trap) 0 0 6(0/3/0)

TRAPV (trap) 2 −2 38(2/2/6)

TRAPV (no trap) 2 0 4(0/1/0)

∗ = Minimum interrupt acknowledge cycle time is assumed to be three clocks.

NOTE: The F-line (second word illegal) operation involves a save step which other
operations do not have. To calculate the total operation time, calculate the save, the
calculate EA, and the operation execution times, and combine in the order
listed, using the equations given in 5.7.1.6 Instruction Execution Time
Calculation.

MOTOROLA MC68340 USER’S MANUAL 5-113

5.7.3.14 SAVE AND RESTORE OPERATIONS. The save and restore operations table
indicates the number of clock periods needed for the processor to perform the specified
state save or return from exception. Complete execution times and stack length are given.
No additional tables are needed to calculate total effective execution time for these
instructions. The total number of clock cycles is outside the parentheses. The numbers
inside parentheses (r/p/w) are included in the total clock cycle number. All timing data
assumes two-clock reads and writes.

Instruction Head Tail Cycles

BERR on instruction 0 −2 <58(2/2/12)

BERR on exception 0 −2 48(2/2/12)

RTE (four-word frame) 1 −2 24(4/2/0)

RTE (six-word frame) 1 −2 26(4/2/0)

RTE (BERR on instruction) 1 −2 50(12/12/Y)

RTE (BERR on four-word frame) 1 −2 66(10/2/4)

RTE (BERR on six-word frame) 1 −2 70(12/2/6)

< = Maximum time is indicated (certain data or mode combinations execute faster).

Y = If a bus error occurred during a write cycle, the cycle is rerun by the RTE.

MOTOROLA MC68340 USER’S MANUAL 6-1

SECTION 6
DMA CONTROLLER MODULE

The direct memory access (DMA) controller module provides for high-speed transfer
capability to/from an external peripheral or for memory-to-memory data transfer. The DMA
module, shown in Figure 6-1, provides two channels that allow byte, word, or long-word
operand transfers. These transfers can be either single or dual address and to either on-
or off-chip devices. The DMA contains the following features:

• Two, Independent, Fully Programmable DMA Channels

• Single-Address Transfers with 32-Bit Address and 32-Bit Data Capability

• Dual-Address Transfers with 32-Bit Address and 16-Bit Data Capability

• Two 32-Bit Transfer Counters

• Four 32-Bit Address Pointers That Can Increment or Remain Constant

• Operand Packing and Unpacking for Dual-Address Transfers

• Supports All Bus-Termination Modes

• Provides Two-Clock-Cycle Internal Module Access

• Provides Two-Clock-Cycle External Access Using MC68340 Chip Selects

• Provides Full DMA Handshake for Burst Transfers and Cycle Steal

.

INTERRUPT
ARBITRATION

SLAVE BIU

MASTER BIU

BUS
ARBITRATION

I

M
B

DMA CHANNEL 2

DMA CHANNEL 1

DMA
HANDSHAKE
SIGNALS

DMA
HANDSHAKE
SIGNALS

Figure 6-1. DMA Block Diagram

6-2 MC68340 USER’S MANUAL MOTOROLA

6.1 DMA MODULE OVERVIEW

The main purpose of the DMA controller module is to transfer data at very high rates,
usually much faster than the CPU32 under software control can handle. The term DMA is
used to refer to the ability of a peripheral device to access memory in a system in the
same manner as a microprocessor does. DMA operations can greatly increase overall
system performance.

The MC68340 DMA module consists of two, independent, programmable channels. The
term DMA is used throughout this section to reference either channel 1 or channel 2 since
the two are functionally equivalent. Each channel has independent request, acknowledge,
and done signals. However, both channels cannot own the bus at the same time.
Therefore, it is impossible to implicitly address both DMA channels at the same time. The
MC68340 on-chip peripherals do not support the single-address transfer mode.

DMA requests may be internally generated by the channel or externally generated by a
device. For an internal request, the amount of bus bandwidth allocated for the DMA can
be programmed. The DMA channels support two external request modes: burst mode and
cycle steal mode.

The DMA controller supports single- and dual-address transfers. In single-address mode,
a channel supports 32 bits of address and 32 bits of data. Only an external request can be
used to start a transfer in the single-address mode. The DMA provides address and
control signals during a single-address transfer. The requesting device either sends or
receives data to or from the specified address (see Figure 6-2). In dual-address mode, a
channel supports 32 bits of address and 16 bits of data. The dual-address transfers can
be started by either the internal request mode or by an external device using the request
signal. In this mode, two bus transfers occur, one from a source device and the other to a
destination device (see Figure 6-3). In dual-address mode, operands are packed or
unpacked according to port sizes and addresses.

Any operation involving the DMA will follow the same basic steps: channel initialization,
data transfer, and channel termination. In the channel initialization step, the DMA channel
registers are loaded with control information, address pointers, and a byte transfer count.
The channel is then started. During the data transfer step, the DMA accepts requests for
operand transfers and provides addressing and bus control for the transfers. The channel
termination step occurs after operation is complete. The channel indicates the status of
the operation in the channel status register.

MOTOROLA MC68340 USER’S MANUAL 6-3

.

DMA

DMA

PERIPHERALMEMORY

MEMORY

DMA

PERIPHERAL

PERIPHERAL

Figure 6-2. Single-Address Transfers

...

MEMORY

DMA

MEMORY

Figure 6-3. Dual-Address Transfer

6-4 MC68340 USER’S MANUAL MOTOROLA

6.2 DMA MODULE SIGNAL DEFINITIONS

This section contains a brief description of the DMA module signals used to provide
handshake control for either a source or destination external device.

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

6.2.1 DMA Request (DREQ≈)
This active-low input is asserted by a peripheral device to request an operand transfer
between that peripheral and memory. The assertion of DREQ≈ starts the DMA process.
The assertion level in external burst mode is level sensitive; in external cycle steal mode,
it is falling-edge sensitive.

6.2.2 DMA Acknowledge (DACK≈)

This active-low output is asserted by the DMA to signal to a peripheral that an operand is
being transferred in response to a previous transfer request.

6.2.3 DMA Done (DONE≈)

This active-low bidirectional signal is asserted by the DMA or a peripheral device during
any DMA bus cycle to indicate that the last data transfer is being performed. DONE≈ is an
active input in any mode. As an output, DONE≈ is only active in external request mode. An
external pullup resistor is required even if operating only in the internal request mode.

6.3 TRANSFER REQUEST GENERATION

The DMA channel supports two types of request generation methods: internal and
external. Internally generated requests can be programmed to limit the amount of bus
utilization. Externally generated requests can be either burst mode or cycle steal mode.
The request generation method used for the channel is programmed by the channel
control register (CCR) in the REQ field.

6.3.1 Internal Request Generation

Internal requests are accessed in two clocks by the intermodule bus (IMB). The channel is
started as soon as the STR bit in the CCR is set. The channel immediately requests the
bus and begins transferring data. Only internal requests can limit the amount of bus
utilization. The percentage of the bandwidth that the DMA channel can use during a
transfer can be selected by the CCR BB field.

MOTOROLA MC68340 USER’S MANUAL 6-5

6.3.1.1 INTERNAL REQUEST, MAXIMUM RATE. Internal generation using 100% of the
internal bus always has a transfer request pending for the channel until the transfer is
complete. As soon as the channel is started, the DMA will arbitrate for the internal bus and
begin to transfer data when it becomes bus master. If no exceptions occur, all operands in
the data block will be transferred in one burst so that the DMA will use 100% of the
available bus bandwidth.

6.3.1.2 INTERNAL REQUEST, LIMITED RATE. To guarantee that the DMA will not use
all of the available bus bandwidth during a transfer, internal requests can be generated
according to the amount of bus bandwidth allocated to the DMA. There are three
programmed constants in the CCR used to monitor the bus activity and allow the DMA to
use a percentage of the bus bandwidth. Options are 25%, 50%, and 75% of 1024 clock
periods. See Table 6-5 for more information.

6.3.2 External Request Generation

To control the transfer of operands to or from memory in an orderly manner, a peripheral
device uses the DREQ≈ input signal to request service. If the channel is programmed for
external request and the CCR STR bit is set, an external request (DREQ≈) signal must be
asserted before the channel requests the bus and begins a transfer. The DMA supports
external burst mode and external cycle steal mode.

The generation of the request from the source or destination is specified by the ECO bit of
the CCR. The external requests can be for either single- or dual-address transfers.

6.3.2.1 EXTERNAL BURST MODE. For external devices that require very high data
transfer rates, the burst request mode allows the DMA channel to use all of the bus
bandwidth under control of the external device. In burst mode, the DREQ≈ input to the
DMA is level sensitive and is sampled at certain points to determine when a valid request
is asserted by the device. The device requests service by asserting DREQ≈ and leaving it
asserted. In response, the DMA arbitrates for the bus and performs an operand transfer.
During each operand transfer, the DMA asserts DMA acknowledge (DACK≈) to indicate to
the device that a request is being serviced. DACK≈ is asserted on the cycle of either the
source or destination device, depending on which one generated the request as
programmed by the CCR ECO bit.

To allow more than one transfer to be recognized, DREQ≈ must meet the asynchronous
setup and hold times while DACK≈ is asserted in the DMA bus cycle. Upon completion of
a request, DREQ≈ should be held asserted (bursting) into the following DMA bus cycle to
allow another transfer to occur. The recognized request will immediately be serviced. If
DREQ≈ is negated before DACK≈ is asserted, a new request is not recognized, and the
DMA channel releases ownership of the bus.

6.3.2.2 EXTERNAL CYCLE STEAL MODE. For external devices that generate a pulsed
signal for each operand to be transferred, the cycle steal request mode uses the DREQ≈
signal as a falling-edge-sensitive input. The DREQ≈ pulse generated by the device must
be asserted during two consecutive falling edges of the clock to be recognized as valid.

6-6 MC68340 USER’S MANUAL MOTOROLA

Therefore, if a peripheral generates it asynchronously, it must be at least two clock
periods long.

The DMA channel responds to cycle steal requests the same as all other requests.
However, if subsequent DREQ≈ pulses are generated before DACK≈ is asserted in
response to each request, they are ignored. If DREQ≈ is asserted after the DMA channel
asserts DACK≈ for the previous request but before DACK≈ is negated, then the new
request is serviced before bus ownership is released. If a new request is not generated by
the time DACK≈ is negated, the bus is released.

6.3.2.3 EXTERNAL REQUEST WITH OTHER MODULES. The DMA controller can be
externally connected to the serial module and used in conjunction with the serial module
to send or receive data. The DMA takes the place of a separate service routine for
accessing or storing data that is sent or received by the serial module. Using the DMA
also lowers the CPU32 overhead required to handle the data transferred by the serial
module. Figure 6-4 shows the external connections required for using the DMA with the
serial module.

.. .DMA MODULE

DREQ1

DREQ2

TxRDYA

RxRDYA

SERIAL MODULE

Figure 6-4. DMA External Connections to Serial Module

For serial receive, the DMA reads data from the serial receive buffer (RB) register (when
the serial module has filled the buffer on input) and writes data to memory. For serial
transmit, the DMA reads data from memory and writes data to the serial transmit buffer
(TB) register. Only dual-address mode can be used with the serial module. The MC68340
on-chip peripherals do not support single-address transfers.

The timer modules can be used with the DMA in a similar manner. By connecting TOUTx
to DREQ≈, the timer can request a DMA transfer.

6.4 DATA TRANSFER MODES

The DMA channel supports single- and dual-address transfers. The single-address
transfer mode consists of one DMA bus cycle, which allows either a read or a write cycle
to occur. The dual-address transfer mode consists of a source operand read and a
destination operand write. Two DMA bus cycles are executed for the dual-address mode:
a DMA read cycle and a DMA write cycle.

6.4.1 Single-Address Mode

The single-address DMA bus cycle allows data to be transferred directly between a device
and memory without going through the DMA. In this mode, the operand transfer takes

MOTOROLA MC68340 USER’S MANUAL 6-7

place in one bus cycle, where only the memory is explicitly addressed. The DMA bus
cycle may be either a read or a write cycle. The DMA provides the address and control
signals required for the operation. The requesting device either sends or receives data to
or from the specified address. Only external requests can be used to start a transfer when
the single-address mode is selected. An external device uses DREQ≈ to request a
transfer.

Each DMA channel can be independently programmed to provide single-address
transfers. The CCR ECO bit controls whether a source read or a destination write cycle
occurs on the data bus. If the ECO bit is set, the external handshake signals are used with
the source operand and a single-address source read occurs. If the ECO bit is cleared,
the external handshake signals are used with the destination operand, and a single-
address destination write occurs. The channel can be programmed to operate in either
burst transfer mode or cycle steal mode. See 6.7 Register Description for more
information.

If external 32-bit devices and a 32-bit bus are used with the MC68340, the DMA can
control 32-bit transfers between devices that use the 32-bit bus in single-address mode
only. External logic is required to complete a 32-bit (long-word) transfer. If both byte and
word devices are used on an external bus, then an external multiplexer must be used to
correctly transfer data. The SIZx and A0 signals can be used to control this external
multiplexer.

6.4.1.1 SINGLE-ADDRESS READ. During the single-address source (read) cycle, the
DMA controls the transfer of data from memory to a device. The memory selected by the
address specified in the source address register (SAR), the source function codes in the
function code register (FCR), and the source size in the CCR provides the data and
control signals on the data bus. This bus cycle operates like a normal read bus cycle. The
DMA control signals (DACK≈ and DONE≈) are asserted in the source (read) cycle. See
Figures 6-5 and 6-6 for timing diagrams single-address read for external burst and cycle
steal modes.

6-8 MC68340 USER’S MANUAL MOTOROLA

.....

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

CPU CYCLEDMA READCPU CYCLE

NOTE:
 1. Timing to generate more than one DMA request.
 2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
 3. DREQx must be asserted while DACKx is asserted and meet the setup and hold times for
 more than one DMA transfer to be recognized.

DMA READ

CLKOUT

DONEx
(INPUT)

Figure 6-5. Single-Address Read Timing (External Burst)

M
O

T
O

R
O

LA
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

6-9

NOTE:
 1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
 2. To cause another DMA transfer, DREQx is asserted after DACKx is asserted and before DACKx is negated.
 3. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

A31–A0

R/W

AS

DS

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4

D15–D0

DREQx

DACKx

DMA READCPU CYCLE CPU CYCLE CPU CYCLE DMA READ

DONEx
(INPUT)

Figure 6-6. Single-Address Read Timing (Cycle Steal)

FC3–FC0

SIZ1–SIZ0

DSACKx

DONEx
(OUTPUT)

CLKOUT

6-10 MC68340 USER’S MANUAL MOTOROLA

6.4.1.2 SINGLE-ADDRESS WRITE. During the single-address destination (write) cycle,
the DMA controls the transfer of data from a device to memory. The data is written to
memory selected by the address specified in the destination address register (DAR), the
destination function codes in the FCR, and the size in the CCR. The destination (write)
DMA bus cycle has timing identical to a write bus cycle. The DMA control signals (DACK≈
and DONE≈) are asserted in the destination (write) cycle. See Figures 6-7 and 6-8 for
timing diagrams of single-address write for external burst and cycle steal modes.

.

A31–A0

FC3–FC0

SIZ1-SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

CPU CYCLEDMA WRITECPU CYCLE

NOTE:
 1. Timing to generate more than one DMA request.
 2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
 2. DREQx must be asserted while DACKx is asserted, and meet the setup and hold times for
 more than one DMA transfer to be recognized.

DMA WRITE

CLKOUT

DONEx
(INPUT)

Figure 6-7. Single-Address Write Timing (External Burst)

M
O

T
O

R
O

LA
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

6-11

A31–A0

FC3–FC0

SIZ1-SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4

D15–D0

DREQx

DACKx

DMA WRITECPU CYCLE

NOTE:
 1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
 2. To cause another DMA transfer, DREQx is asserted after DACKx is asserted and before DACKx is negated.
 3. DACKx and DONEx (DMA control signals) are asserted in the destination (write) DMA cycle.

CLKOUT

CPU CYCLE DMA WRITE

DONEx
(INPUT)

Figure 6-8. Single-Address Write Timing (Cycle Steal)

CPU CYCLE

DONEx
(OUTPUT)

6-12 MC68340 USER’S MANUAL MOTOROLA

6.4.2 Dual-Address Mode

The dual-address DMA bus cycle transfers data between a device or memory and the
DMA internal holding register (DHR). In this mode, any operand transfer takes place in
two DMA bus cycles, one where a device is addressed and one where memory is
addressed. The data transferred during a dual-address operation is either read from the
data bus into the DHR or written from the DHR to the data bus.

Each DMA channel can each be programmed to operate in the dual-address transfer
mode. In this mode, the operand is read from the source address specified in the SAR and
placed in the DHR. The operand read may take up to four bus cycles to complete because
of differences in operand sizes of the source and destination. The operand is then written
to the address specified in the DAR. This transfer may also be up to four bus cycles long.
In this manner, various combinations of peripheral, memory, and operand sizes may be
used. See 6.7 Register Description for more information.

The dual-address transfers can be started by either the internal request mode or by an
external device using the DREQ≈ input signal. When the external device uses DREQ≈, the
channel can be programmed to operate in either burst transfer mode or cycle steal mode.

6.4.2.1 DUAL-ADDRESS READ. During the dual-address read cycle, the DMA reads data
from a device or memory into the internal DHR. The device or memory is selected by the
address specified in the SAR, the source function codes in the FCR, and the source size
in the CCR. Data is read from the memory or peripheral and placed in the DHR when the
bus cycle is terminated. When the complete operand has been read, the SAR is
incremented by 0, 1, 2, or 4, according to the size and increment information specified by
the SSIZE and SAPI bits of the CCR. The DMA control signals (DACK≈ and DONE≈) are
asserted in the source (read) cycle when the source device makes a request. See Figures
6-9 and 6-10 for timing diagrams of dual-address read for external burst and cycle steal
modes.

M
O

T
O

R
O

LA
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

6-13

NOTE:
 1. Timing to generate more than one DMA transfer.
 2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
 3. DREQx must be asserted while DACKx is asserted and meet the setup and hold times for more than one DMA transfer to be recognized.
 4. DONEx (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

CLKOUT

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4 S0 S2 S4

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

CPU CYCLEDMA WRITEDMA READDMA WRITEDMA READCPU CYCLE

DONEx
(INPUT)

Figure 6-9. Dual-Address Read Timing (External Burst–Source Requesting)

6-14
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

M
O

T
O

R
O

LA

NOTE
 1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
 2. To cause another DMA transfer, the DREQx is asserted after DACKx is asserted and before DACKx is negated.
 3. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.
 4. DONEx (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

DMA READCPU CYCLE

CLKOUT

CPU CYCLE CPU CYCLEDMA WRITE DMA READ DMA WRITE

S0 S2 S4 S0 S2 S4

DONEx
(INPUT)

Figure 6-10. Dual-Address Read Timing (Cycle Steal–Source Requesting)

6.4.2.2 D
U

A
L

-A
D

D
R

E
S

S
 W

R
IT

E
. D

uring the dual-address w
rite cycle, the D

M
A

 w
rites

data to a device or m
em

ory from
 the internal D

H
R

. T
he data in the D

H
R

 is w
ritten to the

device or m
em

ory selected by the address in the D
A

R
, the destination function codes in

MOTOROLA MC68340 USER’S MANUAL 6-15

the FCR, and the size in the CCR. When the complete operand is written, the DAR is
incremented by 0, 1, 2, or 4, according to the increment and size information specified by
the DAPI and DSIZE bits of the CCR, and the byte transfer count register (BTC) is
decremented by the number of bytes transferred. If the BTC is equal to zero and there
were no errors, the CSR DONE bit is set, and the DONE≈ signal for the DMA handshake
is asserted. The DMA control signals (DACK≈ and DONE≈) are asserted in the destination
(write) cycle when the destination device makes a request. See Figures 6-11 and 6-12 for
timing diagrams of dual-address write for external burst and cycle steal modes.

6-16
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

M
O

T
O

R
O

LA

NOTE:
 1. Timing to generate more than one DMA transfer.
 2. DACKx and DONEx (DMA control signals) are asserted in the destination (write) DMA cycle.
 3. DREQx must be asserted while DACKx is asserted and meet the setup and hold times for more than one DMA transfer to be recognized.
 4. DONEx (input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

CLKOUT

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4 S0 S2 S4

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

CPU CYCLEDMA WRITEDMA READDMA WRITEDMA READCPU CYCLE

DONEx
(INPUT)

Figure 6-11. Dual-Address Write Timing (External Burst–Destination Requesting)

M
O

T
O

R
O

LA
M

C
68340 U

S
E

R
’S

 M
A

N
U

A
L

6-17

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 S4S0 S2 S4

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

DMA READCPU CYCLE

NOTE:
 1. DREQx must be active for two consecutive clocks for a DMA request to be recognized.
 2. To cause another DMA transfer, DREQx is asserted after DACKx is asserted and before DACKx is negated.
 3. DACKx and DONEx (DMA control signals) are asserted in the destination (write) DMA cycle.
 4. DONEx (Input) can be asserted in either the read or write DMA bus cycle to indicate that the next DMA transfer will be the last one.

CLKOUT

CPU CYCLE CPU CYCLEDMA WRITE DMA READ DMA WRITE

S0 S2 S4 S0 S2 S4

DONEx
(INPUT)

Figure 6-12. Dual-Address Write Timing (Cycle Steal–Destination Requesting)

6-18 MC68340 USER’S MANUAL MOTOROLA

6.5 BUS ARBITRATION

The DMA controller module uses the M68000 bus arbitration protocol to request bus
mastership for DMA transfers. Each channel arbitrates for the bus independently. The
source (read) DMA bus cycle has timing identical to a read bus cycle. The destination
(write) DMA bus cycle has timing identical to a write bus cycle. However, the DMA
channel transfers are unique in one respect—FC3 can be asserted during the source
operand bus cycle and remain asserted until the end of the destination operand bus cycle.

For internal request generation as soon as the CCR STR bit is set, the DMA channel
arbitrates for the bus and begins to transfer data when it becomes bus master. For
external request generation, the STR bit must be set and a DREQ≈ signal must be
asserted before the channel arbitrates for the bus and begins a transfer.

6.6 DMA CHANNEL OPERATION

The following paragraphs describe the programmable channel functions available for the
DMA channel, the data transfer operations, and behavior during cycle termination. This
description applies to both channels.

Any DMA channel operation adheres to the following basic sequence:
1. Channel Initialization and Startup—The channel registers are initialized. The channel

is then started by setting the CCR STR bit. The first operand transfer request (either
internally or externally generated) is recognized.

2. Data Transfer—After a channel is started, it transfers one operand in response to
each request until an entire data block is transferred.

3. Channel Termination—The channel can terminate by normal completion or from an
error. The channel status register (CSR) indicates the status of the operation.

6.6.1 Channel Initialization and Startup

Before starting a block transfer operation, the channel registers must be initialized with
information describing the channel configuration, request generation method, and data
block. This initialization is accomplished by programming the appropriate information into
the channel registers.

The SAR is loaded with the source (read) address. If the transfer is from a peripheral
device to memory, the source address is the location of the peripheral data register. If the
transfer is from memory to a peripheral device or memory to memory, the source address
is the starting address of the data block. This address may be any byte address. In the
single-address mode with the destination (write) device requesting mode of operation, this
register is not used.

The DAR should contain the destination (write) address. If the transfer is from a peripheral
device to memory or memory to memory, the DAR is loaded with the starting address of
the data block to be written. If the transfer is from memory to a peripheral device, the DAR
is loaded with the address of the peripheral data register. This address may be any byte

MOTOROLA MC68340 USER’S MANUAL 6-19

address. In the single-address mode with the source (read) device requesting mode of
operation, this register is not used.

The manner in which the SAR and DAR change after each cycle depends upon the values
in the CCR SSIZE and DSIZE fields and SAPI and DAPI bits, and the starting address in
the SAR and DAR. If programmed to increment, the increment value is 1, 2, or 4 for byte,
word, or long-word operands, respectively. If the address register is programmed to
remain unchanged (no count), the register is not incremented after the operand transfer.
The SAR and DAR are incremented if a bus error terminates the transfer. Therefore,
either the SAR or the DAR contain the next address after the one that caused the bus
error.

The BTC must be loaded with the number of byte transfers that are to occur. This register
is decremented by 1, 2, or 4 at the end of each transfer. The FCR must be loaded with the
source and destination function codes. Although these function codes may not be used in
the address decode for the memory or peripheral, they are provided if needed. The CSR
must be cleared for channel startup.

Once the channel has been initialized, it is started by writing a one to the STR bit in the
CCR. Programming the channel for internal request causes the channel to request the bus
and start transferring data immediately. If the channel is programmed for external request,
DREQ≈ must be asserted before the channel requests the bus. The DREQ≈ input is
ignored until the channel is started, since the channel does not recognize transfer
requests until it is active.

If any fields in the CCR are modified while the channel is active, that change is effective
immediately. To avoid any problems with changing the setup for the DMA channel, a zero
should be written to the STR bit in the CCR to halt the DMA channel at the end of the
current bus cycle.

6.6.2 Data Transfers

Each operand transfer requires from one to five bus cycles to complete. Once a bus
request is recognized and the operand transfer begins, both the source (read) cycle
and/or the destination (write) cycle occur before a new bus request may be honored, even
if the new bus request is of higher priority.

6.6.2.1 INTERNAL REQUEST TRANSFERS. Internally generated request transfers are
accessed as two-clock bus cycles. (The IMB can access on-chip peripherals in two
clocks.) The percentage of bus bandwidth utilization can be limited for internal request
transfers.

6.6.2.2 EXTERNAL REQUEST TRANSFERS. In single-address mode, only one bus cycle
is run for each request. Since the operand size must be equal to the device port size in
single-address mode, the number of normally terminated bus cycles executed during a
transfer operation is always equal to the value programmed into the corresponding size
field of the CCR. The sequencing of the address bus follows the programming of the CCR
and address register (SAR or DAR) for the channel.

6-20 MC68340 USER’S MANUAL MOTOROLA

Each operand transfer in dual-address mode requires from two to five bus cycles in
response to each operand transfer request. If the source and destination operands are the
same size, two cycles will transfer the complete operand. If the source and destination
operands are different sizes, the number of cycles will vary. If the source is a long-word
and the destination is a byte, there would be one bus cycle for the read and four bus
cycles for the write. Once the DMA channel has started a dual-address operand transfer, it
must complete that transfer before releasing ownership of the bus or servicing a request
for another channel of equal or higher priority, unless one of the bus cycles is terminated
with a bus error during the transfer.

6.6.3 Channel Termination

The channel can terminate by normal completion or from an error. The status of a DMA
operation can be determined by reading the CSR. The DMA channel can also interrupt the
processor to inform it of errors, normal transfer completion, or breakpoints. The fast
termination option can also be used to provide a two-clock access for external requests.

6.6.3.1 CHANNEL TERMINATION. The channel operation can be terminated for several
reasons: the BTC is decremented to zero, a peripheral device asserts DONE≈ during an
operand transfer, the STR bit is cleared in the CCR, a bus cycle is terminated with a bus
error, or a reset occurs.

6.6.3.2 INTERRUPT OPERATION. Interrupts can be generated by error termination of a
bus cycle or by normal channel completion. Specifically, if the CCR interrupt error (INTE)
bit is set and a bus error on source (CCR BES) bit, bus error on destination (CCR BED)
bit, or configuration error (CCR CONF) bit is set, the CCR IRQ bit is set. In this case,
clearing the INTE, BES, BED, or CONF bits causes the IRQ bit to be cleared. If the
interrupt normal (CCR INTN) bit is set and the CCR DONE bit is set, the IRQ bit is set. In
this case, clearing the INTN or the DONE bit causes the IRQ bit to be cleared. If the
interrupt breakpoint (CCR INTB) and the CSR BRKP bits are set, the IRQ bit is set.
Clearing INTB or BRKP clears IRQ.

6.6.3.3 FAST TERMINATION OPTION. Using the system integration module (SIM40) chip
select logic, the fast termination option (Figure 6-13) can be employed to give a fast bus
access of two clock cycles rather than the standard three-cycle access time for external
requests. The fast termination option is described in Section 3 Bus Operation and
Section 4 System Integration Module.

MOTOROLA MC68340 USER’S MANUAL 6-21

..

NOTE:
 1. To cause another DMA transfer, DREQx is asserted after DACKx is asserted and before
 DACKx is negated.
 2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S4 S0 S2 S4 S0 S2

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

DMA READCPU CYCLE

CLKOUT

CPU CYCLE DMA READ

Figure 6-13. Fast Termination Option (Cycle Steal)

If the fast termination option is used with external burst request mode (Figure 6-14), an
extra DMA cycle may result on every burst transfer. Normally, DREQ≈ is negated when
DACK≈ is returned. In the burst mode with fast termination selected, a new cycle starts
even if DREQ≈ is negated simultaneously with DACK≈ assertion.

6-22 MC68340 USER’S MANUAL MOTOROLA

.

NOTE
 1. To cause another DMA transfer, the DREQx is asserted after DACKx is asserted and before DACKx is negated.
 2. DACKx and DONEx (DMA control signals) are asserted in the source (read) DMA cycle.

A31–A0

FC3–FC0

SIZ1–SIZ0

R/W

AS

DS

DSACKx

S0 S2 S4 S0 S0S0 S4

D15–D0

DREQx

DACKx

DONEx
(OUTPUT)

DMA READCPU CYCLE

CLKOUT

CPU CYCLEDMA WRITE DMA READ DMA WRITE

S0 S4S4 S0S0 S4 S4S2

Figure 6-14. Fast Termination Option (External Burst–Source Requesting)

6.7 REGISTER DESCRIPTION

The following paragraphs contain a detailed description of each register and its specific
function. Figure 6-15 is a programmer's model (register map) of all registers in the DMA
module. Each channel has an independent set of registers. For more information about a
particular register, refer to the individual register description. The ADDRESS column
indicates the offset of the register from the base address of the DMA channel. The FC
column designation of S indicates that register access is restricted to supervisor only. A
designation of S/U indicates that access is governed by the SUPV bit in the module
configuration register (MCR).

Unimplemented memory locations return logic zero when accessed. All registers support
both byte and word transfers.

MOTOROLA MC68340 USER’S MANUAL 6-23

ADDRESS FC

CH1 CH2 15 8 7 0

780 7A0 S MODULE CONFIGURATION REGISTER (MCR)

782 7A2 S RESERVED

784 7A4 S INTERRUPT REGISTER

786 7A6 S/U RESERVED

788 7A8 S/U CHANNEL CONTROL REGISTER

78A 7AA S/U CHANNEL STATUS REGISTER FUNCTION CODE REGISTER

78C 7AC S/U SOURCE ADDRESS REGISTER MSBs

78E 7AE S/U SOURCE ADDRESS REGISTER LSBs

790 7B0 S/U DESTINATION ADDRESS REGISTER MSBs

792 7B2 S/U DESTINATION ADDRESS REGISTER LSBs

794 7B4 S/U BYTE TRANSFER COUNTER MSBs

796 7B6 S/U BYTE TRANSFER COUNTER LSBs

798 7B8 S/U RESERVED

79A 7BA S/U RESERVED

79C 7BC S/U RESERVED

79E 7BE S/U RESERVED

Figure 6-15. DMA Module Programming Model

In the registers discussed in the following paragraphs, the numbers in the upper right-
hand corner indicate the offset of the register from the base address specified by the
module base address register (MBAR) in the SIM40. The first number is the offset for
channel 1; the second number is the offset for channel 2. The numbers above the register
represent the bit position in the register. The register contains the mnemonic for the bit.
The value of these bits after a hardware reset is shown below the register. The access
privilege is shown in the lower right-hand corner.

NOTE

A CPU32 RESET instruction will not affect the MCR but will
reset all other registers in the DMA module as though a
hardware reset occurred. The term DMA is used to reference
either channel 1 or channel 2, since the two are functionally
equivalent.

6.7.1 Module Configuration Register (MCR)

The MCR controls the DMA channel configuration. Each DMA channel has an MCR. This
register can be either read or written when the channel is enabled and is in the supervisor
state. The MCR is not affected by a CPU32 RESET instruction.

6-24 MC68340 USER’S MANUAL MOTOROLA

MCR1, MCR2 $780, $7A0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STP FRZ1 FRZ0 SE 0 ISM SUPV MAID IARB

RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Supervisor Only

STP—Stop Bit
1 = Setting the STP bit stops all clocks within the DMA module except for the clock

from the IMB. The clock from the IMB remains active to allow the CPU32 access
to the MCR. The clock stops on the low phase of the clock and remains stopped
until the STP bit is cleared by the CPU32 or a hardware reset. Accesses to DMA
module registers while in stop mode produce a bus error. The DMA module
should be disabled in a known state before setting the STP bit. The STP bit
should be set prior to executing the LPSTOP instruction to reduce overall power
consumption.

0 = The channel operates in normal mode.

NOTE

The DMA module uses only one STP bit for both channels. A
read or write to either MCR accesses the same STP control bit.

FRZ1, FRZ0—Freeze
These bits determine the action taken when the FREEZE signal is asserted on the IMB
when the CPU32 has entered background debug mode. The DMA module negates BR
and keeps it negated until FREEZE is negated or reset. Table 6-1 lists the action taken
for each bit combination.

Table 6-1. FRZx Control Bits

FRZ1 FRZ0 Action

0 0 Ignore FREEZE

0 1 Reserved

1 0 Freeze on Boundary*

1 1 Reserved

*The boundary is defined as any bus cycle by
the DMA module.

NOTE

The DMA module uses only one set of FRZx bits for both
channels. A read or write to either MCR accesses the same
FRZx control bits.

MOTOROLA MC68340 USER’S MANUAL 6-25

SE—Single-Address Enable
This bit is implemented for future MC683xx family compatibility.

1 = In single-address mode, the external data bus is driven during a DMA transfer.
0 = In single-address mode, the external data bus remains in a high-impedance state

during a DMA transfer (used for intermodule DMA).
In dual-address mode, the SE bit has no effect.

Bit 11—Reserved

ISM2–ISM0—Interrupt Service Mask
These bits contain the interrupt service mask level for the channel. When the interrupt
service level on the IMB is greater than the interrupt service mask level, the DMA
vacates the bus and negates BR until the interrupt service level is less than or equal to
the interrupt service mask level.

NOTE

When the CPU32 status register (SR) interrupt priority mask
bits I2–I0 are at a higher level than the DMA ISM bits, the DMA
channel will not start. The channel will begin operation when
the level of the SR I2–I0 bits is less than or equal to the level of
the DMA ISM bits.

SUPV—Supervisor/User
The value of this bit has no effect on registers permanently defined as supervisor-only
access.

1 = The DMA channel registers defined as supervisor/user reside in supervisor data
space and are only accessible from supervisor programs.

0 = The DMA channel registers defined as supervisor/user reside in user data space
and are accessible from either supervisor or user programs.

MAID—Master Arbitration ID
These bits establish bus arbitration priority level among modules that have the capability
of becoming bus master. For the MC68340, the MAID bits are used to arbitrate between
DMA channel 1 and channel 2. If both channels are programmed with the same MAID
level, channel 1 will have priority. These bits are implemented for future MC683xx
Family compatibility. In the MC68340, only the SIM and the DMA can be bus masters.
However, future versions of the MC683xx Family may incorporate other modules that
may also be bus masters. For these devices, the MAID bits will be required. For the
MAID bits, zero is the lowest priority and seven is the highest priority.

IARB — Interrupt Arbitration ID
Each module that generates interrupts has an IARB field. These bits are used to
arbitrate for the bus in the case that two or more modules simultaneously generate an
interrupt at the same priority level. No two modules can share the same IARB value.

6-26 MC68340 USER’S MANUAL MOTOROLA

The reset value of the IARB field is $0, which prevents the DMA module from arbitrating
during the interrupt acknowledge cycle. The system software should initialize the IARB
field to a value from $F (highest priority) to $1 (lowest priority).

NOTE

The DMA module uses only one set of IARB bits for both
channels. A read or write to either MCR accesses the same
IARB control bits.

6.7.2 Interrupt Register (INTR)

The INTR contains the priority level for the channel interrupt request and the 8-bit vector
number of the interrupt. The register can be read or written to at any time while in
supervisor mode and while the DMA module is enabled (i.e., the STP bit in the MCR is
cleared).

INTR1, INTR2 $784, $7A4
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 INTL INTV

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Supervisor Only

Bits 15–11—Reserved

INTL—Interrupt Level Bits
Each module that can generate interrupts has an interrupt level field. The interrupt level
field contains the priority level of the interrupt for its associated channel. The priority
level encoded in these bits is sent to the CPU32 on the appropriate IRQ≈ signal. The
CPU32 uses this value to determine servicing priority. See Section 5 CPU32 for more
information.

INTV—Interrupt Vector Bits
Each module that can generate interrupts has an interrupt vector field. The interrupt
vector field contains the vector number of the interrupt for its associated channel. This
8-bit number indicates the offset from the base of the vector table where the address of
the exception handler for the specified interrupt is located. The INTV field is reset to
$0F, which indicates an uninitialized interrupt condition. See Section 5 CPU32 for more
information.

6.7.3 Channel Control Register (CCR)

The CCR controls the configuration of the DMA channel. This register is accessible in
either supervisor or user space. The CCR can always be read or written to when the DMA
module is enabled (i.e., the STP bit in the MCR is cleared).

MOTOROLA MC68340 USER’S MANUAL 6-27

CCR1, CCR2 $788, $7A8
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INTB INTN INTE ECO SAPI DAPI SSIZE DSIZE REQ BB S/D STR

RESET:
U U U U U U U U U U U U U U U 0

U = Unaffected by reset Supervisor/User

INTB—Interrupt Breakpoint
Setting the interrupt breakpoint bit sets the BRKP bit in the CSR. The logic AND of INTB
and BRKP generates an interrupt request.

1 = Enables an IRQ≈ when a breakpoint is recognized and the channel is the bus
master.

0 = Does not enable an IRQ≈ when a breakpoint is recognized and the channel is
the bus master.

INTN—Interrupt Normal
1 = Enables an IRQ≈ when the channel finishes a transfer without an error condition

(CSR DONE bit is set).
0 = Does not enable an IRQ≈ when the channel finishes a transfer without an error

condition.

INTE—Interrupt Error
1 = Enables an IRQ≈ when the channel encounters an error on source read (CSR

BES bit is set), destination write (CSR BED bit is set), or configuration for
channel setup (CSR CONF bit is set).

0 = Does not enable an IRQ≈ when the channel encounters an error on source read,
destination write, or configuration for channel setup.

ECO—External Control Option
If request generation is programmed to be internal (REQ bits = 00), this bit has no
effect.
Single-Address Mode—This bit defines the direction of transfer.

1 = If request generation is programmed to be external (REQ = 1x), the requesting
device receives the data (read from memory), and the control signals (DREQ≈,
DACK≈, and DONE≈) are used by the requesting device to write data during the
source (read) portion of the transfer.

0 = If request generation is programmed to be external (REQ = 1x), the requesting
device provides the data (write to memory), and the control signals (DREQ≈,
DACK≈, and DONE≈) are used by the requesting device to provide data during
the destination (write) portion of the transfer.

6-28 MC68340 USER’S MANUAL MOTOROLA

Dual-Address Mode—This bit defines which device generates requests.

1 = If request generation is programmed to be external (REQ = 1x), the source
device generates the request, and the control signals (DREQ≈, DACK≈, and
DONE≈) are part of the source (read) portion of the transfer.

0 = If request generation is programmed to be external (REQ = 1x), the destination
device generates the request, and the control signals (DREQ≈, DACK≈, and
DONE≈) are part of the destination (write) portion of the transfer.

SAPI—Source Address Pointer Increment
1 = The SAR is incremented by 1, 2, or 4 after each transfer, according to the source

size. The address that is written into the SAR points to a memory block and is
incremented to complete the data transfer.

0 = The SAR is not incremented during operand transfer. The address that is written
into the SAR points to a peripheral device and is used for the complete data
transfer.

DAPI—Destination Address Pointer Increment
1 = The DAR is incremented by 1, 2, or 4 after each transfer, according to the source

size. The address that is written into the DAR points to a memory block and is
incremented to complete the data transfer.

0 = The DAR is not incremented during operand transfer. The address that is written
into the DAR points to a peripheral device and is used for the complete data
transfer.

SSIZE—Source Size Control Field
This field controls the size of the source (read) bus cycle that the DMA channel is
running. Table 6-2 defines these bits.

Table 6-2. SSIZEx Encoding

Bit 9 Bit 8 Definition

0 0 Long Word*

0 1 Byte

1 0 Word

1 1 Not Used

*External logic is required to complete a long-
word transfer.

MOTOROLA MC68340 USER’S MANUAL 6-29

DSIZE—Destination Size Control Field
This field controls the size of the destination (write) bus cycle that the DMA channel is
running. Table 6-3 defines these bits.

Table 6-3. DSIZEx Encoding

Bit 7 Bit 6 Definition

0 0 Long Word*

0 1 Byte

1 0 Word

1 1 Not Used

*External logic is required to complete a long-
word transfer.

REQ—Request Generation Field
This field controls the mode of operation the DMA channel uses to make an operand
transfer request. Table 6-4 defines these bits.

Table 6-4. REQx Encoding

Bit 5 Bit 4 Definition

0 0 Internal Request at Programmable Rate

0 1 Reserved

1 0 External Request Burst Transfer Mode

1 1 External Request Cycle Steal

BB—Bus Bandwidth Field
This field controls the percentage of 1024 clock periods of the IMB that the DMA
channel can use during internal requests only. Table 6-5 defines these bits.

Table 6-5. BBx Encoding and Bus Bandwidth

REQ Field BB Field Bus Bandwidth

Bit 5 Bit 4 Bit 3 Bit 2 Definition (Clock Periods)

0 0 0 0 25% 256

0 0 0 1 50% 512

0 0 1 0 75% 768

0 0 1 1 100% 1024

6-30 MC68340 USER’S MANUAL MOTOROLA

S/D—Single-/Dual-Address Transfer
1 = The DMA channel runs single-address transfers from a peripheral to memory or

from memory to a peripheral. The destination holding register is not used for
these transfers because the data is transferred directly into the destination
location. The MC68340 on-chip peripherals do not support single-address
transfers.

0 = The DMA channel runs dual-address transfers.

STR—Start
This bit is cleared by a hardware/software reset, writing a logic zero, or setting one of
the following CSR bits: DONE, BES, BED, CONF, or BRKP. The STR bit cannot be set
when the CSR IRQ bit is set. The DMA channel cannot be started until the CSR DONE,
BES, BED, CONF, and BRKP bits are cleared.
Internal Request Mode:

1 = The DMA transfer starts as soon as this bit is set.
0 = The DMA transfer can be stopped by clearing this bit.

External Request Mode:

1 = Setting this bit allows the DMA to start the transfer when a DREQ≈ input is
received from an external device.

0 = The DMA transfer can be stopped by clearing this bit.

NOTE

If any fields in the CCR are modified while the channel is
active, that change is effective immediately. To avoid any
problems with changing the setup for the DMA channel, a zero
should be written to the STR bit in the CCR to halt the DMA
channel at the end of the current bus cycle.

6.7.4 Channel Status Register (CSR)

The CSR contains the channel status information. This register is accessible in either
supervisor or user space. The CSR can always be read or written to when the DMA
module is enabled (i.e., the STP bit in the MCR is cleared).

CSR1, CSR2 $78A, $7AA
7 6 5 4 3 2 1 0

IRQ DONE BES BED CONF BRKP 0 0

RESET
0 0 0 0 0 0 0 0

Supervisor/User

MOTOROLA MC68340 USER’S MANUAL 6-31

IRQ—Interrupt Request
This bit is the logical OR of the DONE, BES, BED, CONF, and BRKP bits and is cleared
when they are all cleared. IRQ is positioned to allow conditional testing as a signed
binary integer. The state of this bit is not affected by the interrupt enable bits in the
CCR. The STR bit in the CCR cannot be set when this bit is set; all error status bits,
except the BRKP bit, must be cleared before the STR bit can be set.

1 = An interrupt condition has occurred.
0 = An interrupt condition has not occurred.

DONE—DMA Done
1 = The DMA channel has terminated normally.
0 = The DMA channel has not terminated normally. This bit is cleared by writing a

logic one or by a hardware reset. Writing a zero has no effect.

BES—Bus Error on Source
1 = The DMA channel has terminated with a bus error during the read bus cycle.
0 = The DMA channel has not terminated with a bus error during the read bus cycle.

This bit is cleared by writing a logic one or by a hardware reset. Writing a zero
has no effect.

BED—Bus Error on Destination
1 = The DMA channel has terminated with a bus error during the write bus cycle.
0 = The DMA channel has not terminated with a bus error during the write bus cycle.

This bit is cleared by writing a logic one or by a hardware reset. Writing a zero
has no effect.

CONF—Configuration Error
A configuration error results when either the SAR or the DAR contains an address that
does not match the port size specified in the CCR and the BTC register does not match
the larger port size or is zero.

1 = The CCR STR bit is set, and a configuration error is present.
0 = The CCR STR bit is set, and no configuration error exists. This bit is cleared by

writing a logic one or by a hardware reset. Writing a zero has no effect.

BRKP—Breakpoint
1 = The breakpoint signal was set during a DMA transfer.
0 = The breakpoint signal was not set during a DMA transfer. This bit is cleared by

writing a logic one or by a hardware reset. Writing a zero has no effect.

Bits 1, 0—Reserved
NOTE

The CSR is cleared by writing $7C to its location. The DMA
channel cannot be started until the CSR DONE, BES, BED,
CONF and BRKP bits are cleared.

6-32 MC68340 USER’S MANUAL MOTOROLA

6.7.5 Function Code Register (FCR)

The FCR contains the source and destination function codes for the channel. This register
is accessible in either supervisor or user space. The FCR can always be read or written to
when the DMA module is enabled (i.e., the STP bit in the MCR is cleared).

FCR1, FCR2 $78B, $7AB
7 6 5 4 3 2 1 0

SFC DFC

RESET:
U U U U U U U U

U = Unaffected by reset. Supervisor/User

SFC—Source Function Code Field
This field can be used to specify the source access to a certain address space type.
The source function code bits are defined in Table 6-6.

DFC—Destination Function Code Field
This field can be used to specify the destination access to a certain address space type.
The destination function code bits are defined in Table 6-6.

Table 6-6. Address Space Encoding

Function Code Bits

3 2 1 0 Address Spaces

0 0 0 0 Reserved (Motorola)

0 0 0 1 User Data Space

0 0 1 0 User Program Space

0 0 1 1 Reserved (User)

0 1 0 0 Reserved (Motorola)

0 1 0 1 Supervisor Data Space

0 1 1 0 Supervisor Program
Space

0 1 1 1 CPU Space

1 x x x DMA Space

NOTE

Although FC3 can be set for DMA transfers to distinguish the
source or destination space from other data or program
spaces, it is not required to be set. Since the CPU32 currently
has only 3-bit SFC and DFC capability, it cannot emulate
FC3 = 1 at this time. However, it is recommended that FC3 be
set to one to distinguish DMA or CPU access during debug.

MOTOROLA MC68340 USER’S MANUAL 6-33

6.7.6 Source Address Register (SAR)

The SAR is a 32-bit register that contains the address of the source operand used by the
DMA to access memory or peripheral registers. This register is accessible in either
supervisor or user space. The SAR can always be read or written to when the DMA
module is enabled (i.e., the STP bit in the MCR is cleared).

SAR1, SAR2 $78C, $7AC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16

RESET:
U U U U U U U U U U U U U U U U

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

RESET:
U U U U U U U U U U U U U U U U

U = Unaffected by reset Supervisor/User

During the DMA read cycle, the SAR drives the address on the address bus. This register
can be programmed to increment (CCR SAPI bit set) or remain constant (CCR SAPI bit
cleared) after each operand transfer.

The register is incremented using unsigned arithmetic and will roll over if overflow occurs.
For example, if the register contains $FFFFFFFF and is incremented by 1, it will roll over
to $00000000. This register is incremented by 1, 2, or 4, depending on the size of the
operand and the memory starting address. If the operand size is byte, then the register is
always incremented by 1. If the operand size is word and the starting address is even-
word aligned, then the register is incremented by 2. If the operand size is long word and
the address is even-word aligned, then the register is incremented by 4. The SAR value
must be aligned to an even-word boundary if the transfer size is word or long word;
otherwise, the CSR CONF bit is set, and the transfer does not occur.

When read, this register always contains the next source address. If a bus error
terminates the transfer, this register contains the next source address that would have
been run had the error not occurred.

6.7.7 Destination Address Register (DAR)

The DAR is a 32-bit register that contains the address of the destination operand used by
the DMA to write to memory or peripheral registers. This register is accessible in either
supervisor or user space. The DAR can always be read or written to when the DMA
module is enabled (i.e., the STP bit in the MCR is cleared).

6-34 MC68340 USER’S MANUAL MOTOROLA

DAR1, DAR2 $790, $7B0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16

RESET:
U U U U U U U U U U U U U U U U

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

RESET:
U U U U U U U U U U U U U U U U

U = Unaffected by reset Supervisor/User

During the DMA write cycle, this register drives the address on the address bus. This
register can be programmed to increment (CCR DAPI bit set) or remain constant (CCR
DAPI bit cleared) after each operand transfer.

The register is incremented using unsigned arithmetic and will roll over if overflow occurs.
For example, if a register contains $FFFFFFFF and is incremented by 1, it will roll over to
$00000000. This register can be incremented by 1, 2, or 4, depending on the size of the
operand and the starting address. If the operand size is byte, the register is always
incremented by 1. If the operand size is word and the starting address is even-word
aligned, the register is incremented by 2. If the operand size is long word and the address
is even-word aligned, the register is incremented by 4. The DAR value must be aligned to
an even-word boundary if the transfer size is word or long word; otherwise, the CSR
CONF bit is set, and the transfer does not occur.

When read, this register always contains the next destination address. If a bus error
terminates the transfer, this register contains the next destination address that would have
been run had the error not occurred.

6.7.8 Byte Transfer Counter Register (BTC)

The BTC is a 32-bit register that contains the number of bytes left to transfer in a given
block. This register is accessible in either supervisor or user space. The BTC can always
be read or written to when the DMA module is enabled (i.e., the STP bit in the MCR is
cleared).

BTC1, BTC2 $794, $7B4
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A31 A30 A29 A28 A27 A26 A25 A24 A23 A22 A21 A20 A19 A18 A17 A16

RESET:
U U U U U U U U U U U U U U U U

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

RESET:
U U U U U U U U U U U U U U U U

U = Unaffected by reset Supervisor/User

MOTOROLA MC68340 USER’S MANUAL 6-35

This register is decremented by 1, 2, or 4 for each successful operand transfer from
source to destination locations. When the BTC decrements to zero and no error has
occurred, the CSR DONE bit is set. In the external request mode, the DONE≈ handshake
line is also asserted when the BTC is decremented to zero.

If the operand size is byte, then the register is always decremented by 1. If the operand
size is word and the starting count is even word, the register is decremented by 2. If the
operand size is word and the byte count is not a multiple of 2, the CSR CONF bit is set,
and a transfer does not occur. If the operand size is long word and the count is even long
word, then the register is decremented by 4. If the operand size is long word and the byte
count is not a multiple of 4, the CSR CONF bit is set, and a transfer does not occur. If the
STR bit is set with a zero count in the BTC, the CONF bit is set, and the STR bit is
cleared.

When read, this register always contains the count for the next access. If a bus error
terminates the transfer, this register contains the count for the next access that would
have been run had the error not occurred.

6.8 DATA PACKING

The internal DHR is a 32-bit register that can serve as a buffer register for the data being
transferred during dual-address DMA cycles. No address is specified since this register
can not be addressed by the programmer. The DHR allows the data to be packed and
unpacked by the DMA during the dual-address transfer. For example, if the source
operand size is byte and the destination operand size is word, then two-byte read cycles
occur, followed by a one-word write cycle (see Figure 6-16). The two bytes of data are
buffered in the DHR until the destination (write) word cycle occurs. The DHR allows for
packing and unpacking of operands for the following sizes: bytes to words, bytes to long
words, words to long words, words to bytes, long words to bytes, and long words to words.

..

BYTE0

BYTE1

BYTE0

BYTE1

BYTE2

BYTE3

BYTE0

BYTE2

BYTE1

BYTE3
BYTE0 BYTE1 BYTE2 BYTE3

BYTE0 BYTE1 BYTE2 BYTE3

BYTE0 BYTE1

SOURCE/DESTINATION DESTINATION/SOURCE

Figure 6-16. Packing and Unpacking of Operands

6-36 MC68340 USER’S MANUAL MOTOROLA

For normal transfers aligned with the size and address, only two bus cycles are required
for each transfer: a read from the source and a write to the destination.

6.9 DMA CHANNEL INITIALIZATION SEQUENCE

The following paragraphs describe DMA channel initialization and operation. If the DMA
capability of the MC68340 is being used, the initialization steps should be performed
during the part initialization sequence. The mode operation steps should be performed to
start a DMA transfer. The DONE≈ pin requires an external pullup resistor even if operating
only in the internal request mode.

6.9.1 DMA Channel Configuration

The following steps can be accomplished in any order when initializing the DMA channel.
These steps need to be performed for each channel used.

Module Configuration Register (MCR)

• Clear the stop bit (STP) for normal operation. (Only one STP bit exists for both
channels.)

• Select whether to respond to or ignore FREEZE (FRZx bits). (Only one set of FRZx
bits exits for both channels.)

• If desired, enable the external data bus operation in single-address mode (SE bit).

• Program the interrupt service mask to set the level below which interrupts are ignored
during a DMA transfer (ISM bits). The channel will begin operation when the level of
the CPU32 SR I2-I0 bits is less than or equal to the level of the DMA ISM bits.

• Select the access privilege for the supervisor/user registers (SUPV bit).

• Program the master arbitration ID (MAID) to establish priority on the IMB between
both DMA channels. Note that the two DMA channels should have distinct MAIDs if
both channels are being used. (If they are programmed the same, channel 1 has
priority.)

• Select the interrupt arbitration level for the DMA channel (IARB bits). (Only one set of
IARB bits exits for both channels.)

Interrupt Register (INTR)

• Program the interrupt priority level for the channel interrupt (INTL bits).

• Program the vector number for the channel interrupt (INTV bits).

Channel Control Register (CCR)

• If desired, enable the interrupt when breakpoint is recognized and the channel is the
bus master (INTB bit).

• If desired, enable the interrupt when done without an error condition (INTN bit).

• If desired, enable the interrupt when the channel encounters an error (INTE bit).

MOTOROLA MC68340 USER’S MANUAL 6-37

• Select the direction of transfer if in single-address mode (ECO bit), or select which
device generates requests if in dual-address mode.

6.9.1.1 DMA CHANNEL OPERATION IN SINGLE-ADDRESS MODE. The following steps
are required to begin a DMA transfer in single-address mode.

Channel Control Register (CCR)

• Write a zero to the start bit (STR) to prevent the channel from starting the transfer
prematurely.

• Select the amount by which to increment the source address for a read cycle (SAPI
bit) or the destination address for a write cycle (DAPI bit).

• Define the transfer size by selecting the source size for a read cycle (SSIZE field) or
by selecting the destination size for a write cycle (DSIZE field).

• Select external burst request mode or external cycle steal request mode (REQ field).

• Set the S/D bit for signal-address transfer.

Channel Status Register (CSR)

• Clear the CSR by writing $7C into it. The DMA cannot be started until the DONE, BES,
BED, CONF, and BRKP bits are cleared.

Function Code Register (FCR)

• Encode the source function code for a read cycle or the destination function code for a
write cycle.

Address Register (SAR or DAR)

• Write the source address for a read cycle or the destination address for a write cycle.

Byte Transfer Counter (BTC)

• Encode the number of bytes to be transferred.

Channel Control Register (CCR)

• Write a one to the start bit (STR) to allow the transfer to begin.

6.9.1.2 DMA CHANNEL OPERATION IN DUAL-ADDRESS MODE. The following steps
are required to begin a DMA transfer in dual-address mode.

Channel Control Register (CCR)

• Write a zero to the start bit (STR) to prevent the channel from starting the transfer
prematurely.

• Select the amount by which to increment the source and destination addresses (SAPI
and DAPI bits).

• Select the source and destination sizes (SSIZE and DSIZE fields).

• Select internal request, external burst request mode, or external cycle steal request
mode (REQ field).

6-38 MC68340 USER’S MANUAL MOTOROLA

• If using internal request, select the amount of bus bandwidth to be used by the DMA
(BB field).

• Clear the S/D bit for dual-address transfer.

Channel Status Register (CSR)

• Clear the CSR by writing $7C into it. The DMA cannot be started until the DONE,
BES, BED, CONF, and BRKP bits are cleared.

Function Code Register (FCR)

• Encode the source and destination function codes.

Address Registers (SAR and DAR)

• Write the source and destination addresses.

Byte Transfer Counter (BTC)

• Encode the number of bytes to be transferred.

Channel Control Register (CCR)

• Write a one to the start bit (STR) to allow the transfer to begin.

6.9.2 DMA Channel Example Configuration Code

The following are examples of configuration sequences for a DMA channel in single- and
dual-addressing modes.

* MC68340 basic DMA channel register initialization example code.
* This code is used to initialize the 68340's internal DMA channel
* registers, providing basic functions for operation.
* The code sets up channel 1 for external burst request generation,
* single-address mode, long word size transfers.
* Control signals are asserted on the DMA read cycle.

Example 1: External Burst Request Generation, Single-Address Transfers.

* SIM40 equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* DMA Channel 1 equates
DMACH1 EQU $780 Offset from MBAR for channel 1 regs
DMAMCR1 EQU $0 MCR for channel 1

* Channel 1 register offsets from channel 1 base address

MOTOROLA MC68340 USER’S MANUAL 6-39

DMAINT1 EQU $4 interrupt register channel 1
DMACCR1 EQU $8 control register channel 1
DMACSR1 EQU $A status register channel 1
DMAFCR1 EQU $B function code register channel 1
DMASAR1 EQU $C source address register channel 1
DMADAR1 EQU $10 destination address register channel 1
DMABTC1 EQU $14 byte transfer count register channel 1
SARADD EQU $10000 source address
NUMBYTE EQU $C number of bytes to transfer

* Initialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* Initialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, single-address mode. ISM field at 2. Make
* sure CPU32 SR I2-I0 bits are less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 7. IARB priority at 1.

MOVE.W #$1271,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.

CLR.W DMACCR1(A0)

* Initialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.

MOVE.W #$0742,DMAINT1(A0)

* Initialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.

MOVE.B #$7C,DMACSR1(A0)

* Initialize function code reg.
* DMA space, user data space for source.

MOVE.B #$99,DMAFCR1(A0)

* Initialize source operand address
* Source address is equal to $10000.

MOVE.L SARADD,DMASAR1(A0)

* Initialize the byte transfer count reg.
* The number of bytes to be transferred is $C or 3 long words

MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers

6-40 MC68340 USER’S MANUAL MOTOROLA

* No interrupts are enabled, source (read) cycle. Increment source
* address, source size is long word, REQ is external burst request.
* Single-address mode, start the DMA transfers.

MOVE.W #$1823,DMACCR1(A0)

END

Example 2: Internal Request Generation, Memory to Memory Transfers.

* MC68340 basic DMA channel register initialization example code.
* This code is used to initialize the 68340's internal DMA channel
* registers, providing basic functions for operation.
* The code sets up channel 1 for internal request generation
* memory to memory transfers.

* SIM40 equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* DMA Channel 1 equates
DMACH1 EQU $780 Offset from MBAR for channel 1 regs
DMAMCR1 EQU $0 MCR for channel 1

* Channel 1 register offsets from channel 1 base address
DMAINT1 EQU $4 interrupt register channel 1
DMACCR1 EQU $8 control register channel 1
DMACSR1 EQU $A status register channel 1
DMAFCR1 EQU $B function code register channel 1
DMASAR1 EQU $C source address register channel 1
DMADAR1 EQU $10 destination address register channel 1
DMABTC1 EQU $14 byte transfer count register channel 1
SARADD EQU $6000 source address
DARADD EQU $8000 destination address
NUMBYTE EQU $E number of bytes to transfer

* Initialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* Initialize DMA channel 1 MCR

MOTOROLA MC68340 USER’S MANUAL 6-41

* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 3. Make
* sure CPU32 SR I2-I0 bits are less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 3. IARB priority at 4.

MOVE.W #$0334,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.

CLR.W DMACCR1(A0)

* Initialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.

MOVE.W #$0742,DMAINT1(A0)

* Initialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.

MOVE.B #$7C,DMACSR1(A0)

* Initialize function code reg.
* DMA space, supervisor data space for source and destination.

MOVE.B #$DD,DMAFCR1(A0)

* Initialize source operand address
* Source address is equal to $6000.

MOVE.L SARADD,DMASAR1(A0)

* Initialize destination operand address
* Destination address is equal to $8000.

MOVE.L DARADD,DMADAR1(A0)

* Initialize the byte transfer count reg.
* The number of bytes to be transferred is $E or 7 words

MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, destination (write) cycle. Increment source and
* destination addresses,source size is word, destination size is word.
* REQ is internal. 100% of bus bandwidth, dual-address transfers,
* start the DMA transfers.

MOVE.W #$0E8D,DMACCR1(A0)

END

Example 3: Internal Request Generation, Memory Block Initialization.

* MC68340 basic DMA channel register initialization example code.

6-42 MC68340 USER’S MANUAL MOTOROLA

* This code is used to initialize the 68340's internal DMA channel
* registers, providing basic functions for operation.
* The code sets up channel 1 for internal request generation
* to perform a memory block initialization for 100 bytes.

* SIM40 equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* DMA Channel 1 equates
DMACH1 EQU $780 Offset from MBAR for channel 1 regs
DMAMCR1 EQU $0 MCR for channel 1

* Channel 1 register offsets from channel 1 base address
DMAINT1 EQU $4 interrupt register channel 1
DMACCR1 EQU $8 control register channel 1
DMACSR1 EQU $A status register channel 1
DMAFCR1 EQU $B function code register channel 1
DMASAR1 EQU $C source address register channel 1
DMADAR1 EQU $10 destination address register channel 1
DMABTC1 EQU $14 byte transfer count register channel 1
SARADD EQU $6000 source address
DARADD EQU $8000 destination address
NUMBYTE EQU $64 number of bytes to transfer

* Initialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* Initialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 3. Make
* sure CPU32 SR I2-I0 bits are less than or equal to ISM bits for channel
* startup.Supervisor/user reg. unrestricted, MAID field at 3.
* IARB priority at 4.

MOVE.W #$0334,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.

CLR.W DMACCR1(A0)

* Initialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.

MOTOROLA MC68340 USER’S MANUAL 6-43

MOVE.W #$0742,DMAINT1(A0)

* Initialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.

MOVE.B #$7C,DMACSR1(A0)

* Initialize function code reg.
* DMA space, supervisor data space for source and destination.

MOVE.B #$DD,DMAFCR1(A0)

* Initialize source operand address
* Source address is equal to $6000.

MOVE.L SARADD,DMASAR1(A0)

* Initialize destination operand address
* Destination address is equal to $8000.

MOVE.L DARADD,DMADAR1(A0)

* Initialize the byte transfer count register
* The number of bytes to be transferred is $64 or 50 words

MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, destination (write) cycle.
* Source address is not incremented. Increment the destination address.
* Source size is word, destination size is word. REQ is internal.
* 100% of bus bandwidth, dual-address transfers, start the DMA transfers.

MOVE.W #$068D,DMACCR1(A0)

END

Example 4: Cycle Steal Request Generation, Dual-Address Transfers.

* MC68340 basic DMA channel register initialization example code.
* This code is used to initialize the 68340's internal DMA channel
* registers, providing basic functions for operation.
* The code sets up channel 1 for external cycle steal request generation,
* dual-address transfers. DMA 16-bit wide data from an odd address to an
* even address. Control signals are asserted on the DMA read cycle.

* SIM40 equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

6-44 MC68340 USER’S MANUAL MOTOROLA

* DMA Channel 1 equates
DMACH1 EQU $780 Offset from MBAR for channel 1 regs
DMAMCR1 EQU $0 MCR for channel 1

* Channel 1 register offsets from channel 1 base address
DMAINT1 EQU $4 interrupt register channel 1
DMACCR1 EQU $8 control register channel 1
DMACSR1 EQU $A status register channel 1
DMAFCR1 EQU $B function code register channel 1
DMASAR1 EQU $C source address register channel 1
DMADAR1 EQU $10 destination address register channel 1
DMABTC1 EQU $14 byte transfer count register channel 1
SARADD EQU $6001 source address is an ODD address
DARADD EQU $10000 destination address is and EVEN address
NUMBYTE EQU $14 number of bytes to transfer

* Initialize DMA Channel 1

LEA MODBASE+DMACH1,A0 Pointer to channel 1

* Initialize DMA channel 1 MCR
* Normal Operation, ignore FREEZE, dual-address mode. ISM field at 0. Make
* CPU32 SR I2-I0 bits are less than or equal to ISM bits for channel startup.
* Supervisor/user reg. unrestricted, MAID field at 4. IARB priority at 8.

MOVE.W #$00C8,(A0)

* Clear channel control reg.
* Clear STR (start) bit to prevent the channel from starting a transfer early.

CLR.W DMACCR1(A0)

* Initialize interrupt reg.
* Interrupt priority at 7, interrupt vector at $42.

MOVE.W #$0742,DMAINT1(A0)

* Initialize channel status reg.
* Clear the DONE, BES, BED, CONF and BRKP bits to allow channel to startup.

MOVE.B #$7C,DMACSR1(A0)

* Initialize function code reg.
* DMA space, supervisor data space for source and destination.

MOVE.B #$DD,DMAFCR1(A0)

* Initialize source operand address

MOTOROLA MC68340 USER’S MANUAL 6-45

* Source address is equal to $6001, and odd address.
MOVE.L SARADD,DMASAR1(A0)

* Initialize destination operand address
* Destination address is equal to $10000, and even address.

MOVE.L DARADD,DMADAR1(A0)

* Initialize the byte transfer count register
* The number of bytes to be transferred is $14 or 20 bytes

MOVE.L NUMBYTE,DMABTC1(A0)

* Channel control reg. init. and Start DMA transfers
* No interrupts are enabled, source (read) cycle.
* Increment the source and destination addresses.
* Source size is byte, destination size is word. REQ is external cycle steal.
* dual-address transfers, start the DMA transfers.

MOVE.W #$1DB1,DMACCR1(A0)

END

MOTOROLA MC68340 USER’S MANUAL 7-1

SECTION 7
SERIAL MODULE

The MC68340 serial module is a dual universal asynchronous/synchronous
receiver/transmitter that interfaces directly to the CPU32 processor via the intermodule
bus (IMB). The serial module, shown in Figure 7-1, consists of the following major
functional areas:

• Two Independent Serial Communication Channels (A and B)

• Baud Rate Generator Logic

• Internal Channel Control Logic

• Interrupt Control Logic

.SERIAL COMMUNICATIONS
CHANNELS A AND B

BAUD RATE
GENERATOR LOGIC

INTERNAL CHANNEL
CONTROL LOGIC

X1
X2
SCLK

INTERRUPT CONTROL
LOGIC

RxDB

RxDA

TxDB

TxDA

CTSB

CTSA

RTSB

RTSA

TxRDYA
RxRDYA

Figure 7-1. Simplified Block Diagram

7-2 MC68340 USER’S MANUAL MOTOROLA

7.1 MODULE OVERVIEW

Features of the serial module are as follows:

• Two, Independent, Full-Duplex Asynchronous/Synchronous Receiver/Transmitter
Channels

• Maximum Data Transfer Rate:

—1× mode: 3 Mbps @ 8.39 MHz CLKOUT, 9.8 Mbps @25 MHz CLKOUT

—16× mode: 188 kbps @ 8.39 MHz CLKOUT, 612 kbps @25 MHz CLKOUT

• Quadruple-Buffered Receiver

• Double-Buffered Transmitter

• Independently Programmable Baud Rate for Each Receiver and Transmitter
Selectable from:

—19 Fixed Rates: 50 to 76.8k Baud

—External 1× Clock or 16× Clock

• Programmable Data Format:

—Five to Eight Data Bits Plus Parity

—Odd, Even, No Parity, or Force Parity

—Nine-Sixteenths to Two Stop Bits Programmable in One-Sixteenth Bit Increments

• Programmable Channel Modes:

—Normal (Full Duplex)

—Automatic Echo

—Local Loopback

—Remote Loopback

• Automatic Wakeup Mode for Multidrop Applications

• Seven Maskable Interrupt Conditions

• Parity, Framing, and Overrun Error Detection

• False-Start Bit Detection

• Line-Break Detection and Generation

• Detection of Breaks Originating in the Middle of a Character

• Start/End Break Interrupt/Status

• On-Chip Crystal Oscillator

MOTOROLA MC68340 USER’S MANUAL 7-3

7.1.1 Serial Communication Channels A and B

Each communication channel provides a full-duplex asynchronous/synchronous receiver
and transmitter using an operating frequency independently selected from a baud rate
generator or an external clock input.

The transmitter accepts parallel data from the IMB, converts it to a serial bit stream,
inserts the appropriate start, stop, and optional parity bits, then outputs a composite serial
data stream on the channel transmitter serial data output (TxDx). Refer to 7.3.2.1
Transmitter for additional information.

The receiver accepts serial data on the channel receiver serial data input (RxDx), converts
it to parallel format, checks for a start bit, stop bit, parity (if any), or break condition, and
transfers the assembled character onto the IMB during read operations. Refer to 7.3.2.2
Receiver for additional information.

7.1.2 Baud Rate Generator Logic

The crystal oscillator operates directly from a 3.6864-MHz crystal connected across the
X1 input and the X2 output or from an external clock of the same frequency connected to
X1. The clock serves as the basic timing reference for the baud rate generator and other
internal circuits.

The baud rate generator operates from the oscillator or external TTL clock input and is
capable of generating 19 commonly used data communication baud rates ranging from 50
to 76.8k by producing internal clock outputs at 16 times the actual baud rate. Refer to 7.2
Serial Module Signal Definitions and 7.3.1 Baud Rate Generator for additional
information.

The external clock input (SCLK), which bypasses the baud rate generator, provides a
synchronous clock mode of operation when used as a divide-by-1 clock and an
asynchronous clock mode when used as a divide-by-16 clock. The external clock input
allows the user to use SCLK as the only clock source for the serial module if multiple baud
rates are not required.

7.1.3 Internal Channel Control Logic

The serial module receives operation commands from the host and, in turn, issues
appropriate operation signals to the internal serial module control logic. This mechanism
allows the registers within the module to be accessed and various commands to be
performed. Refer to 7.4 Register Description and Programming for additional
information.

7.1.4 Interrupt Control Logic

Seven interrupt request (IRQ7–IRQ1) signals are provided to notify the CPU32 that an
interrupt has occurred. These interrupts are described in 7.4 Register Description and
Programming. The interrupt status register (ISR) is read by the CPU32 to determine all

7-4 MC68340 USER’S MANUAL MOTOROLA

currently active interrupt conditions. The interrupt enable register (IER) is programmable
to mask any events that can cause an interrupt.

7.1.5 Comparison of Serial Module to MC68681

The serial module is code compatible with the MC68681 with some modifications. The
following paragraphs describe the differences.

The programming model is slightly altered. The supervisor/user block in the MC68340
closely follows the MC68681. The supervisor-only block has the following changes:

• The interrupt vector register is moved from supervisor/user to supervisor only at a
new address.

• MR2A and MR2B are moved from a hidden address location to a location at the
bottom of the programming model.

The timer/counter is eliminated as well as all associated command and status registers.

Only certain output port pins are available.

There are no IP pins on the MC68340.

RxRTS and TxRTS are more automated on the MC68340.

The XTAL_RDY bit in the ISR should be polled until it is cleared to prevent an unstable
frequency from being applied to the baud rate generator. The following code is an
example:

if (XTAL_RDY==0)
begin
write CSR

end
else

begin
wait
jump loop

end

7.2 SERIAL MODULE SIGNAL DEFINITIONS

The following paragraphs contain a brief description of the serial module signals. Figure 7-
2 shows both the external and internal signal groups.

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true, independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

MOTOROLA MC68340 USER’S MANUAL 7-5

.

DATA BUS
MUX

D15–D0

ADDRESS BUS

IM
B

IN
TE

R
FA

C
E

SI
G

N
AL

S

I

N
T
E
R
N

A
L

B
U

S

DATA BUS
DATA

D7–D0

EXTER
N

AL
IN

TER
FAC

E SIG
N

ALS

X1

X2

SCLK

BAUD RATE
GENERATOR

LOGIC

CHANNEL B

FOUR-CHARACTER
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT BUFFER

RxDB

TxDB

RTSB

CTSB

CHANNEL A

FOUR-CHARACTER
RECEIVE BUFFER

TWO-CHARACTER
TRANSMIT BUFFER

RxDA

TxDA

RTSA

TxRDYA

CTSA

CONTROL

INTERNAL
CONTROL

LOGIC
S

E
R
I

A
L

M
O
D
U

L
E

RxRDYA

Figure 7-2. External and Internal Interface Signals

7.2.1 Crystal Input or External Clock (X1)

This input is one of two connections to a crystal or a single connection to an external
clock. A crystal or an external clock signal, at 3.6864 MHz, must be supplied when using
the baud rate generator. If a crystal is used, a capacitor of approximately 10 pF should be
connected from this signal to ground. If this input is not used, it must be connected to VCC
or GND. Refer to Section 10 Applications for an example of a clock driver circuit.

7.2.2 Crystal Output (X2)

This output is the additional connection to a crystal. If a crystal is used, a capacitor of
approximately 5 pF should be connected from this signal to ground. If an external TTL-
level clock is used on X1, the X2 output must be left open. Refer to Section 10
Applications for an example of a clock driver circuit.

7-6 MC68340 USER’S MANUAL MOTOROLA

7.2.3 External Input (SCLK)

This input can be used as the clock input for channel A and/or channel B and is
programmable in the clock-select registers (CSR). When used as the receiver clock,
received data is sampled on the rising edge of the clock. When used as the transmitter
clock, data is output on the falling edge of the clock. If this input is not used, it must be
connected to VCC or GND.

7.2.4 Channel A Transmitter Serial Data Output (TxDA)

This signal is the transmitter serial data output for channel A. The output is held high
('mark' condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal on the falling edge of the clock source, with the
least significant bit transmitted first.

7.2.5 Channel A Receiver Serial Data Input (RxDA)

This signal is the receiver serial data input for channel A. Data received on this signal is
sampled on the rising edge of the clock source, with the least significant bit received first.

7.2.6 Channel B Transmitter Serial Data Output (TxDB)

This signal is the transmitter serial data output for channel B. The output is held high
('mark' condition) when the transmitter is disabled, idle, or operating in the local loopback
mode. Data is shifted out on this signal at the falling edge of the clock source, with the
least significant bit transmitted first.

7.2.7 Channel B Receiver Serial Data Input (RxDB)

This signal is the receiver serial data input for channel B. Data on this signal is sampled
on the rising edge of the clock source, with the least significant bit received first.

7.2.8 Channel A Request-To-Send (RTSA)

This active-low output signal is programmable as the channel A request-to-send or as a
dedicated parallel output.

7.2.8.1 RTSA. When used for this function, this signal can be programmed to be
automatically negated and asserted by either the receiver or transmitter. When connected
to the clear-to-send (CTS≈) input of a transmitter, this signal can be used to control serial
data flow.

7.2.8.2 OP0. When used for this function, this output is controlled by bit 0 in the output
port data register (OP).

7.2.9 Channel B Request-To-Send (RTSB)

This active-low output signal is programmable as the channel B request-to-send or as a
dedicated parallel output.

MOTOROLA MC68340 USER’S MANUAL 7-7

7.2.9.1 RTSB. When used for this function, this signal can be programmed to be
automatically negated and asserted by either the receiver or transmitter. When connected
to the CTS≈ input of a transmitter, this signal can be used to control serial data flow.

7.2.9.2 OP1. When used for this function, this output is controlled by bit 1 in the OP.

7.2.10 Channel A Clear-To-Send (CTSA)

This active-low input is the channel A clear-to-send.

7.2.11 Channel B Clear-To-Send (CTSB)

This active-low input is the channel B clear-to-send.

7.2.12 Channel A Transmitter Ready (T≈RDYA)

This active-low output signal is programmable as the channel A transmitter ready or as a
dedicated parallel output, and cannot be masked by the interrupt enable register (IER).

7.2.12.1 T≈RDYA. When used for this function, this signal reflects the complement of the
status of bit 2 of the channel A status register (SRA). This signal can be used to control
parallel data flow by acting as an interrupt to indicate when the transmitter contains a
character.

7.2.12.2 OP6. When used for this function, this output is controlled by bit 6 in the OP.

7.2.13 Channel A Receiver Ready (R≈RDYA)

This active-low output signal is programmable as the channel A receiver ready, channel A
FIFO full indicator, or a dedicated parallel output, and cannot be masked by the IER.

7.2.13.1 R≈RDYA. When used for this function, this signal reflects the complement of the
status of bit 1 of the ISR. This signal can be used to control parallel data flow by acting as
an interrupt to indicate when the receiver contains a character.

7.2.13.2 FFULLA. When used for this function, this signal reflects the complement of the
status of bit 1 of the ISR. This signal can be used to control parallel data flow by acting as
an interrupt to indicate when the receiver FIFO is full.

7.2.13.3 OP4. When used for this function, this output is controlled by bit 4 in the OP.

7-8 MC68340 USER’S MANUAL MOTOROLA

7.3 OPERATION

The following paragraphs describe the operation of the baud rate generator, transmitter
and receiver, and other functional operating modes of the serial module.

7.3.1 Baud Rate Generator

The baud rate generator consists of a crystal oscillator, baud rate generator, and clock
selectors (see Figure 7-3). The crystal oscillator operates directly from a 3.6864-MHz
crystal or from an external clock of the same frequency. The SCLK input bypasses the
baud rate generator and provides a synchronous clock mode of operation when used as a
divide-by-1 clock and an asynchronous clock mode when used as a divide-by-16 clock.
The clock is selected by programming the clock-select register (CSR) for each channel.

.

BAUD RATE

GENERATOR LOGIC

CRYSTAL
OSCILLATOR

BAUD RATE
GENERATOR

CLOCK
SELECTORS

X1

X2

SCLK

EXTERNAL

INTERFACE

Figure 7-3. Baud Rate Generator Block Diagram

7.3.2 Transmitter and Receiver Operating Modes

The functional block diagram of the transmitter and receiver, including command and
operating registers, is shown in Figure 7-4. The paragraphs that follow contain
descriptions for both these functions in reference to this diagram. For detailed register
information, refer to 7.4 Register Description and Programming.

MOTOROLA MC68340 USER’S MANUAL 7-9

.

CHANNEL A

CHANNEL B

TRANSMIT
BUFFER (TBA)

(2 REGISTERS)

RECEIVER HOLDING REGISTER 1

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 3

RECEIVER SHIFT REGISTER

TxDA

RxDA

FIFO

TRANSMIT HOLDING REGISTER

TRANSMIT SHIFT REGISTER

RECEIVE
BUFFER (RBA)
(4 REGISTERS)

W

R

COMMAND REGISTER (CRA)

MODE REGISTER A (MR1A)

MODE REGISTER B (MR2A)

STATUS REGISTER (SRA)

W

R/W

R/W

R

EXTERNAL
INTERFACE

RECEIVER HOLDING REGISTER 1

RECEIVER HOLDING REGISTER 2

RECEIVER HOLDING REGISTER 3

RECEIVER SHIFT REGISTER

TxDB

RxDB

FIFO

TRANSMIT HOLDING REGISTER

TRANSMIT SHIFT REGISTER

RECEIVE
BUFFER (RBB)
(4 REGISTERS)

W

R

COMMAND REGISTER (CRB)

MODE REGISTER 1 (MR1B)

MODE REGISTER 2 (MR2B)

STATUS REGISTER (SRB)

W

R/W

R/W

R

TRANSMIT
BUFFER (TBB)

 (2 REGISTERS)

NOTE:
 R/W = READ/WRITE
 R = READ
 W = WRITE

Figure 7-4. Transmitter and Receiver Functional Diagram

7-10 MC68340 USER’S MANUAL MOTOROLA

7.3.2.1 TRANSMITTER. The transmitters are enabled through their respective command
registers (CR) located within the serial module. The serial module signals the CPU32
when it is ready to accept a character by setting the transmitter-ready bit (TxRDY) in the
channel's status register (SR). Functional timing information for the transmitter is shown in
Figure 7-5.

The transmitter converts parallel data from the CPU32 to a serial bit stream on TxDx. It
automatically sends a start bit followed by the programmed number of data bits, an
optional parity bit, and the programmed number of stop bits. The least significant bit is
sent first. Data is shifted from the transmitter output on the falling edge of the clock
source.

C1 C2 C3 C4 C6

W W W W W W W W

C1 C2 C3 C4 STOP
BREAK

START
BREAK

C5
NOT

TRANSMITTED

C6

BREAK

C1 IN
TRANSMISSION

TxDx

TRANSMITTER
ENABLED

TxRDY
(SR2)

CS

CTS

RTS 2

1

NOTES:
 1. TIMING SHOWN FOR MR2(4) = 1
 2. TIMING SHOWN FOR MR2(5) = 1
 3. C = TRANSMIT CHARACTER
 4. W = WRITE

N

MANUALLY ASSERTED
BY BIT- SET COMMAND

MANUALLY
ASSERTED

Figure 7-5. Transmitter Timing Diagram

Following transmission of the stop bits, if a new character is not available in the transmitter
holding register, the TxDx output remains high ('mark' condition), and the transmitter
empty bit (TxEMP) in the SR is set. Transmission resumes and the TxEMP bit is cleared
when the CPU32 loads a new character into the transmitter buffer (TB). If a disable
command is sent to the transmitter, it continues operating until the character in the

MOTOROLA MC68340 USER’S MANUAL 7-11

transmit shift register, if any, is completely sent out. If the transmitter is reset through a
software command, operation ceases immediately (refer to 7.4.1.7 Command Register
(CR)). The transmitter is re-enabled through the CR to resume operation after a disable or
software reset.

If clear-to-send operation is enabled, CTS≈ must be asserted for the character to be
transmitted. If CTS≈ is negated in the middle of a transmission, the character in the shift
register is transmitted, and TxDx remains in the 'mark' state until CTS≈ is asserted again.
If the transmitter is forced to send a continuous low condition by issuing a send break
command, the state of CTS≈ is ignored by the transmitter.

The transmitter can be programmed to automatically negate request-to-send (RTS≈)
outputs upon completion of a message transmission. If the transmitter is programmed to
operate in this mode, RTS≈ must be manually asserted before a message is transmitted.
In applications in which the transmitter is disabled after transmission is complete and
RTS≈ is appropriately programmed, RTS≈ is negated one bit time after the character in
the shift register is completely transmitted. The transmitter must be manually re-enabled
by reasserting RTS≈ before the next message is to be sent.

7.3.2.2 RECEIVER. The receivers are enabled through their respective CRs located within
the serial module. Functional timing information for the receiver is shown in Figure 7-6.
The receiver looks for a high-to-low (mark-to-space) transition of the start bit on RxDx.
When a transition is detected, the state of RxDx is sampled each 16× clock for eight
clocks, starting one-half clock after the transition (asynchronous operation) or at the next
rising edge of the bit time clock (synchronous operation). If RxDx is sampled high, the
start bit is invalid, and the search for the valid start bit begins again. If RxDx is still low, a
valid start bit is assumed, and the receiver continues to sample the input at one-bit time
intervals, at the theoretical center of the bit, until the proper number of data bits and parity,
if any, is assembled and one stop bit is detected. Data on the RxDx input is sampled on
the rising edge of the programmed clock source. The least significant bit is received first.
The data is then transferred to a receiver holding register, and the RxRDY bit in the
appropriate SR is set. If the character length is less than eight bits, the most significant
unused bits in the receiver holding register are cleared.

After the stop bit is detected, the receiver immediately looks for the next start bit.
However, if a nonzero character is received without a stop bit (framing error) and RxDx
remains low for one-half of the bit period after the stop bit is sampled, the receiver
operates as if a new start bit is detected. The parity error (PE), framing error (FE), overrun
error (OE), and received break (RB) conditions (if any) set error and break flags in the
appropriate SR at the received character boundary and are valid only when the RxRDY bit
in the SR is set.

If a break condition is detected (RxDx is low for the entire character including the stop bit),
a character of all zeros is loaded into the receiver holding register, and the RB and
RxRDY bits in the SR are set. The RxDx signal must return to a high condition for at least
one-half bit time before a search for the next start bit begins.

7-12 MC68340 USER’S MANUAL MOTOROLA

C6, C7, C8 ARE LOST

RxD

RECEIVER
ENABLED

RxRDY
(SR0)

FFULL
(SR1)

RxRDYA

OVERRUN
(SR4)

RTS
1

STATUS DATA STATUS DATA STATUS DATA

CS

RESET BY COMMAND

OPR(0) = 1

C4C3 C5 C6 C7 C8C1 C2

NOTES:
 1. Timing shown for MR1(7) = 1
 2. Timing shown for OPCR(4) = 1 and MR1(6) = 0
 3. R = Read
 4. C = Received CharacterN

R R R R RR RR

C1 C2 C3 C4

C5
LOST

STATUS DATA

Figure 7-6. Receiver Timing Diagram

The receiver detects the beginning of a break in the middle of a character if the break
persists through the next character time. When the break begins in the middle of a
character, the receiver places the damaged character in the receiver first-in-first-out
(FIFO) stack and sets the corresponding error conditions and RxRDY bit in the SR. Then,
if the break persists until the next character time, the receiver places an all-zero character
into the receiver FIFO and sets the corresponding RB and RxRDY bits in the SR.

7.3.2.3 FIFO STACK. The FIFO stack is used in each channel's receiver buffer logic. The
stack consists of three receiver holding registers. The receive buffer consists of the FIFO
and a receiver shift register connected to the RxDx (refer to Figure 7-4). Data is

MOTOROLA MC68340 USER’S MANUAL 7-13

assembled in the receiver shift register and loaded into the top empty receiver holding
register position of the FIFO. Thus, data flowing from the receiver to the CPU32 is
quadruple buffered.

In addition to the data byte, three status bits, PE, FE, and RB, are appended to each data
character in the FIFO; OE is not appended. By programming the ERR bit in the channel's
mode register (MR1), status is provided in character or block modes.

The RxRDY bit in the SR is set whenever one or more characters are available to be read
by the CPU32. A read of the receiver buffer produces an output of data from the top of the
FIFO stack. After the read cycle, the data at the top of the FIFO stack and its associated
status bits are 'popped', and new data can be added at the bottom of the stack by the
receiver shift register. The FIFO-full status bit (FFULL) is set if all three stack positions are
filled with data. Either the RxRDY or FFULL bit can be selected to cause an interrupt.

In the character mode, status provided in the SR is given on a character-by-character
basis and thus applies only to the character at the top of the FIFO. In the block mode, the
status provided in the SR is the logical OR of all characters coming to the top of the FIFO
stack since the last reset error command. A continuous logical OR function of the
corresponding status bits is produced in the SR as each character reaches the top of the
FIFO stack. The block mode is useful in applications where the software overhead of
checking each character's error cannot be tolerated. In this mode, entire messages are
received, and only one data integrity check is performed at the end of the message. This
mode allows a data-reception speed advantage, but does have a disadvantage since
each character is not individually checked for error conditions by software. If an error
occurs within the message, the error is not recognized until the final check is performed,
and no indication exists as to which character in the message is at fault.

In either mode, reading the SR does not affect the FIFO. The FIFO is 'popped' only when
the receive buffer is read. The SR should be read prior to reading the receive buffer. If all
three of the FIFO's receiver holding registers are full when a new character is received,
the new character is held in the receiver shift register until a FIFO position is available. If
an additional character is received during this state, the contents of the FIFO are not
affected. However, the character previously in the receiver shift register is lost, and the OE
bit in the SR is set when the receiver detects the start bit of the new overrunning
character.

To support control flow capability, the receiver can be programmed to automatically
negate and assert RTS≈. When in this mode, RTS≈ is automatically negated by the
receiver when a valid start bit is detected and the FIFO stack is full. When a FIFO position
becomes available, RTS≈ is asserted by the receiver. Using this mode of operation,
overrun errors are prevented by connecting the RTS≈ to the CTS≈ input of the
transmitting device.

If the FIFO stack contains characters and the receiver is disabled, the characters in the
FIFO can still be read by the CPU32. If the receiver is reset, the FIFO stack and all
receiver status bits, corresponding output ports, and interrupt request are reset. No
additional characters are received until the receiver is re-enabled.

7-14 MC68340 USER’S MANUAL MOTOROLA

7.3.3 Looping Modes

Each serial module channel can be configured to operate in various looping modes as
shown in Figure 7-7. These modes are useful for local and remote system diagnostic
functions. The modes are described in the following paragraphs with further information
available in 7.4 Register Description and Programming.

The channel's transmitter and receiver should both be disabled when switching between
modes. The selected mode is activated immediately upon mode selection, regardless of
whether a character is being received or transmitted.

7.3.3.1 AUTOMATIC ECHO MODE. In this mode, the channel automatically retransmits
the received data on a bit-by-bit basis. The local CPU32-to-receiver communication
continues normally, but the CPU32-to-transmitter link is disabled. While in this mode,
received data is clocked on the receiver clock and retransmitted on TxDx. The receiver
must be enabled, but the transmitter need not be enabled.

Since the transmitter is not active, the SR TxEMP and TxRDY bits are inactive, and data
is transmitted as it is received. Received parity is checked, but not recalculated for
transmission. Character framing is also checked, but stop bits are transmitted as received.
A received break is echoed as received until the next valid start bit is detected.

7.3.3.2 LOCAL LOOPBACK MODE. In this mode, TxDx is internally connected to RxDx.
This mode is useful for testing the operation of a local serial module channel by sending
data to the transmitter and checking data assembled by the receiver. In this manner,
correct channel operations can be assured. Also, both transmitter and CPU32-to-receiver
communications continue normally in this mode. While in this mode, the RxDx input data
is ignored, the TxDx is held marking, and the receiver is clocked by the transmitter clock.
The transmitter must be enabled, but the receiver need not be enabled.

7.3.3.3 REMOTE LOOPBACK MODE. In this mode, the channel automatically transmits
received data on the TxDx output on a bit-by-bit basis. The local CPU32-to-transmitter link
is disabled. This mode is useful in testing receiver and transmitter operation of a remote
channel. While in this mode, the receiver clock is used for the transmitter.

Since the receiver is not active, received data cannot be read by the CPU32, and the error
status conditions are inactive. Received parity is not checked and is not recalculated for
transmission. Stop bits are transmitted as received. A received break is echoed as
received until the next valid start bit is detected.

MOTOROLA MC68340 USER’S MANUAL 7-15

(a) Automatic Echo

(b) Local Loopback

(c) Remote Loopback

DISABLED

DISABLED

DISABLED

DISABLED

Rx

Tx

Rx

Tx

Rx

Tx TxDx
OUTPUT

RxDx
INPUT

RxDx
INPUT

RxDx
INPUT

TxDx
OUTPUT

TxDx
OUTPUT

DISABLED

DISABLED

CPU

CPU

CPU

DISABLED

DISABLED

Figure 7-7. Looping Modes Functional Diagram

7.3.4 Multidrop Mode

A channel can be programmed to operate in a wakeup mode for multidrop or
multiprocessor applications. Functional timing information for the multidrop mode is shown
in Figure 7-8. The mode is selected by setting bits 3 and 4 in mode register 1 (MR1). This
mode of operation allows the master station to be connected to several slave stations
(maximum of 256). In this mode, the master transmits an address character followed by a
block of data characters targeted for one of the slave stations. The slave stations have
their channel receivers disabled. However, they continuously monitor the data stream sent
out by the master station. When an address character is sent by the master, the slave
receiver channel notifies its respective CPU by setting the RxRDY bit in the SR and
generating an interrupt (if programmed to do so). Each slave station CPU then compares
the received address to its station address and enables its receiver if it wishes to receive
the subsequent data characters or block of data from the master station. Slave stations
not addressed continue to monitor the data stream for the next address character. Data
fields in the data stream are separated by an address character. After a slave receives a
block of data, the slave station's CPU disables the receiver and initiates the process
again.

7-16 MC68340 USER’S MANUAL MOTOROLA

C6, C7, C8 ARE LOST

RxD

RECEIVER
ENABLED

RxRDY
(SR0)

FFULL
(SR1)

RxRDYA

OVERRUN
(SR4)

RTS
1

STATUS DATA STATUS DATA STATUS DATA

CS

RESET BY COMMAND

OPR(0) = 1

C4C3 C5 C6 C7 C8C1 C2

NOTES:
 1. Timing shown for MR1(7) = 1
 2. Timing shown for OPCR(4) = 1 and MR1(6) = 0
 3. R = Read
 4. C = Received CharacterN

R R R R RR RR

C1 C2 C3 C4

C5
LOST

STATUS DATA

Figure 7-8. Multidrop Mode Timing Diagram

A transmitted character from the master station consists of a start bit, a programmed
number of data bits, an address/data (A/D) bit flag, and a programmed number of stop
bits. The A/D bit identifies the type of character being transmitted to the slave station. The
character is interpreted as an address character if the A/D bit is set or as a data character
if the A/D bit is cleared. The polarity of the A/D bit is selected by programming bit 2 of the
MR1. The MR1 should be programmed before enabling the transmitter and loading the
corresponding data bits into the transmit buffer.

In multidrop mode, the receiver continuously monitors the received data stream,
regardless of whether it is enabled or disabled. If the receiver is disabled, it sets the

MOTOROLA MC68340 USER’S MANUAL 7-17

RxRDY bit and loads the character into the receiver holding register FIFO stack provided
the received A/D bit is a one (address tag). The character is discarded if the received A/D
bit is a zero (data tag). If the receiver is enabled, all received characters are transferred to
the CPU32 via the receiver holding register stack during read operations.

In either case, the data bits are loaded into the data portion of the stack while the A/D bit
is loaded into the status portion of the stack normally used for a parity error (SR bit 5).
Framing error, overrun error, and break detection operate normally. The A/D bit takes the
place of the parity bit; therefore, parity is neither calculated nor checked. Messages in this
mode may still contain error detection and correction information. One way to provide
error detection, if 8-bit characters are not required, is to use software to calculate parity
and append it to the 5-, 6-, or 7-bit character.

7.3.5 Bus Operation

This section describes the operation of the IMB during read, write, and interrupt
acknowledge cycles to the serial module. All serial module registers must be accessed as
bytes.

7.3.5.1 READ CYCLES. The serial module is accessed by the CPU32 with no wait states.
The serial module responds to byte reads. Reserved registers return logic zero during
reads.

7.3.5.2 WRITE CYCLES. The serial module is accessed by the CPU32 with no wait
states. The serial module responds to byte writes. Write cycles to read-only registers and
reserved registers complete in a normal manner without exception processing; however,
the data is ignored.

7.3.5.3 INTERRUPT ACKNOWLEDGE CYCLES. The serial module is capable of
arbitrating for interrupt servicing and supplying the interrupt vector when it has
successfully won arbitration. The vector number must be provided if interrupt servicing is
necessary; thus, the interrupt vector register (IVR) must be initialized. If the IVR is not
initialized, a spurious interrupt exception will be taken if interrupts are generated.

7.4 REGISTER DESCRIPTION AND PROGRAMMING

This section contains a detailed description of each register and its specific function as
well as flowcharts of basic serial module programming.

7.4.1 Register Description

The operation of the serial module is controlled by writing control bytes into the
appropriate registers. A list of serial module registers and their associated addresses are
shown in Figure 7-9. The mode, status, command, and clock-select registers are
duplicated for each channel to provide independent operation and control.

7-18 MC68340 USER’S MANUAL MOTOROLA

NOTE

All serial module registers are only accessible as bytes. The
contents of the mode registers (MR1 and MR2), clock-select
register (CSR), and the auxiliary control register (ACR) bit 7
should only be changed after the receiver/transmitter is issued
a software RESET command—i.e., channel operation must be
disabled. Care should also be taken if the register contents are
changed during receiver/transmitter operations, as undesirable
results may be produced.

In the registers discussed in the following pages, the numbers in the upper right-hand
corner indicate the offset of the register from the base address specified in the module
base address register (MBAR) in the SIM40. The numbers above the register description
represent the bit position in the register. The register description contains the mnemonic
for the bit. The values shown below the register description are the values of those
register bits after a hardware reset. A value of U indicates that the bit value is unaffected
by reset. The read/write status and the access privilege are shown in the last line.

NOTE

A CPU32 RESET instruction will not affect the MCR, but will
reset all the other serial module registers as though a
hardware reset had occurred. The module is enabled when the
STP bit in the MCR is cleared. The module is disabled when
the STP bit in the MCR is set.

MOTOROLA MC68340 USER’S MANUAL 7-19

Address FC Register Read (R/W = 1) Register Write (R/W = 0)

700 S1 MCR (HIGH BYTE) MCR (HIGH BYTE)

701 S MCR (LOW BYTE) MCR (LOW BYTE)

702 S DO NOT ACCESS3 DO NOT ACCESS3

703 S DO NOT ACCESS3 DO NOT ACCESS3

704 S INTERRUPT LEVEL (ILR) NTERRUPT LEVEL (ILR)

705 S INTERRUPT VECTOR (IVR) INTERRUPT VECTOR (IVR)

710 S/U2 MODE REGISTER 1A (MR1A) MODE REGISTER 1A (MR1A)

711 S/U STATUS REGISTER A (SRA) CLOCK-SELECT REGISTER A (CSRA)

712 S/U DO NOT ACCESS3 COMMAND REGISTER A (CRA)

713 S/U RECEIVER BUFFER A (RBA) TRANSMITTER BUFFER A (TBA)

714 S/U INPUT PORT CHANGE REGISTER (IPCR) AUXILIARY CONTROL REGISTER (ACR)

715 S/U INTERRUPT STATUS REGISTER (ISR) INTERRUPT ENABLE REGISTER (IER)

716 S/U DO NOT ACCESS3 DO NOT ACCESS3

717 S/U DO NOT ACCESS3 DO NOT ACCESS3

718 S/U MODE REGISTER 1B (MR1B) MODE REGISTER 1B (MR1B)

719 S/U STATUS REGISTER B (SRB) CLOCK-SELECT REGISTER B (CSRB)

71A S/U DO NOT ACCESS3 COMMAND REGISTER B (CRB)

71B S/U RECEIVER BUFFER B (RBB) TRANSMITTER BUFFER B (TBB)

71C S/U DO NOT ACCESS3 DO NOT ACCESS3

71D S/U INPUT PORT REGISTER (IP) OUTPUT PORT CONTROL REGISTER (OPCR)

71E S/U DO NOT ACCESS3 OUTPUT PORT (OP)4 BIT SET

71F S/U DO NOT ACCESS3 OUTPUT PORT (OP)4 BIT RESET

720 S/U MODE REGISTER 2A (MR2A) MODE REGISTER 2A (MR2A)

721 S/U MODE REGISTER 2B (MR2B) MODE REGISTER 2B (MR2B)

NOTES:
1. S = Register permanently defined as supervisor-only access
2. S/U = Register programmable as either supervisor or user access
3. A read or write to these locations currently has no effect.
4. Address-triggered commands

Figure 7-9. Serial Module Programming Model

7.4.1.1 MODULE CONFIGURATION REGISTER (MCR). The MCR controls the serial
module configuration. This register can be either read or written when the module is
enabled and is in the supervisor state. The MCR is not affected by a CPU32 RESET
instruction. Only the MCR can be accessed when the module is disabled (i.e., the STP bit
in the MCR is set).

MCR $700
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STP FRZ1 FRZ0 ICCS 0 0 0 0 SUPV 0 0 0 IARB

RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Read/Write Supervisor Only

7-20 MC68340 USER’S MANUAL MOTOROLA

STP—Stop Mode Bit
1 = The serial module will be disabled. Setting the STP bit stops all clocks within the

serial module (including the crystal or external clock and SCLK), except for the
clock from the IMB. The clock from the IMB remains active to allow CPU32
access to the MCR. The clock stops on the low phase of the clock and remains
stopped until the STP bit is cleared by the CPU32 or a hardware reset. Accesses
to serial module registers while in stop mode produce a bus error. The serial
module should be disabled in a known state prior to setting the STP bit;
otherwise, unpredictable results may occur. The STP bit should be set prior to
executing the LPSTOP instruction to reduce overall power consumption.

0 = The serial module is enabled and will operate in normal mode. When STP = 0,
make sure the external crystal is stable (XTAL_RDY bit (bit 3) of the interrupt
status register (ISR) is zero) before continuing.

NOTE

The serial module should be disabled (i.e., the STP bit in the
MCR is set) before executing the LPSTOP instruction to obtain
the lowest power consumption. The X1/X2 oscillator will
continue to run during LPSTOP if STP = 0.

FRZ1–FRZ0—Freeze
These bits determine the action taken when the FREEZE signal is asserted on the IMB
when the CPU32 has entered background debug mode. Table 7-1 lists the action taken
for each combination of bits.

Table 7-1. FRZx Control Bits

FRZ1 FRZ0 Action

0 0 Ignore FREEZE

0 1 Reserved (FREEZE Ignored)

1 0 Freeze on Character Boundary

1 1 Freeze on Character Boundary

If FREEZE is asserted, channel A and channel B freeze independently of each other.
The transmitter and receiver freeze at character boundaries. The transmitter does not
freeze in the send break mode. Communications can be lost if the channel is not
programmed to support flow control. See Section 5 CPU32 for more information on
FREEZE.

ICCS—Input Capture Clock Select
1 = Selects SCLK as the clear-to-send input capture clock for both channels. Clear-

to-send operation is enabled by setting bit 4 in MR2. The data is captured on the
CTS≈ pins on the rising edge of the clock.

0 = The crystal clock is the clear-to-send input capture clock for both channels.

MOTOROLA MC68340 USER’S MANUAL 7-21

Bits 11–8, 6–4—Reserved

SUPV—Supervisor/User
The value of this bit has no affect on registers permanently defined as supervisor only.

1 = The serial module registers, which are defined as supervisor or user, reside in
supervisor data space and are only accessible from supervisor programs.

0 = The serial module registers, which are defined as supervisor or user, reside in
user data space and are accessible from either supervisor or user programs.

IARB3–IARB0—Interrupt Arbitration Bits
Each module that generates interrupts has an IARB field. These bits are used to
arbitrate for the bus in the case that two or more modules simultaneously generate an
interrupt at the same priority level. No two modules can share the same IARB value.
The reset value of the IARB field is $0, which prevents this module from arbitrating
during the interrupt acknowledge cycle. The system software should initialize the IARB
field to a value from $F (highest priority) to $1 (lowest priority).

7.4.1.2 INTERRUPT LEVEL REGISTER (ILR). The ILR contains the priority level for the
serial module interrupt request. When the serial module is enabled (i.e., the STP bit in the
MCR is cleared), this register can be read or written to at any time while in supervisor
mode.

ILR $704
7 6 5 4 3 2 1 0

0 0 0 0 0 IL2 IL1 IL0

RESET:
0 0 0 0 0 0 0 0

Read/Write Supervisor Only

Bits 7–3—Reserved

IL2–IL0—Interrupt Level Bits
Each module that can generate interrupts has an interrupt level field. The priority level
encoded in these bits is sent to the CPU32 on the appropriate IRQ≈ signal. The CPU32
uses this value to determine servicing priority. The hardware reset value of $00 will not
generate any interrupts. See Section 5 CPU32 for more information.

7.4.1.3 INTERRUPT VECTOR REGISTER (IVR). The IVR contains the 8-bit vector
number of the interrupt. When the serial module is enabled (i.e., the STP bit in the MCR is
cleared), this register can be read or written to at any time while in supervisor mode.

7-22 MC68340 USER’S MANUAL MOTOROLA

IVR $705
7 6 5 4 3 2 1 0

IVR7 IVR6 IVR5 IVR4 IVR3 IVR2 IVR1 IVR0

RESET:
0 0 0 0 1 1 1 1

Read /Write Supervisor Only

IVR7–IVR0—Interrupt Vector Bits
Each module that generates interrupts has an interrupt vector field. This 8-bit number
indicates the offset from the base of the vector table where the address of the exception
handler for the specified interrupt is located. The IVR is reset to $0F, which indicates an
uninitialized interrupt condition. See Section 5 CPU32 for more information.

7.4.1.4 MODE REGISTER 1 (MR1). MR1 controls some of the serial module
configuration. This register can be read or written at any time when the serial module is
enabled (i.e., the STP bit in the MCR is cleared).

MR1A, MR1B $710, $718
7 6 5 4 3 2 1 0

RxRTS R/F ERR PM1 PM0 PT B/C1 B/C0

RESET:
0 0 0 0 0 0 0 0

Read/Write Supervisor/User

RxRTS—Receiver Request-to-Send Control
1 = Upon receipt of a valid start bit, RTS≈ is negated if the channel's FIFO is full.

RTS≈ is reasserted when the FIFO has an empty position available.
0 = RTS≈ is asserted by setting bit 1 or 0 in the OP and negated by clearing bit 1 or

0 in the OP.
This feature can be used for flow control to prevent overrun in the receiver by using the
RTS≈ output to control the CTS≈ input of the transmitting device. If both the receiver
and transmitter are programmed for RTS control, RTS control will be disabled for both
since this configuration is incorrect. See 7.4.1.17 Mode Register 2 for information on
programming the transmitter RTS≈ control.

R/F—Receiver-Ready Select
1 = Bit 5 for channel B and bit 1 for channel A in the ISR reflect the channel FIFO full

status. These ISR bits are set when the receiver FIFO is full and are cleared
when a position is available in the FIFO.

0 = Bit 5 for channel B and bit 1 for channel A in the ISR reflect the channel receiver-
ready status. These ISR bits are set when a character has been received and are
cleared when the CPU32 reads the receive buffer.

MOTOROLA MC68340 USER’S MANUAL 7-23

ERR—Error Mode
This bit controls the meaning of the three FIFO status bits (RB, FE, and PE) in the SR
for the channel.

1 = Block mode—The values in the channel SR are the accumulation (i.e., the logical
OR) of the status for all characters coming to the top of the FIFO since the last
reset error status command for the channel was issued. Refer to 7.4.1.7
Command Register (CR) for more information on serial module commands.

0 = Character mode—The values in the channel SR reflect the status of the
character at the top of the FIFO.

NOTE

ERR = 0 must be used to get the correct A/D flag information
when in multidrop mode.

PM1–PM0—Parity Mode
These bits encode the type of parity used for the channel (see Table 7-2). The parity bit
is added to the transmitted character, and the receiver performs a parity check on
incoming data. These bits can alternatively select multidrop mode for the channel.

PT—Parity Type
This bit selects the parity type if parity is programmed by the parity mode bits, and if
multidrop mode is selected, it configures the transmitter for data character transmission
or address character transmission. Table 7-2 lists the parity mode and type or the
multidrop mode for each combination of the parity mode and the parity type bits.

Table 7-2. PMx and PT Control Bits

PM1 PM0 Parity Mode PT Parity Type

0 0 With Parity 0 Even Parity

0 0 With Parity 1 Odd Parity

0 1 Force Parity 0 Low Parity

0 1 Force Parity 1 High Parity

1 0 No Parity X No Parity

1 1 Multidrop Mode 0 Data Character

1 1 Multidrop Mode 1 Address Character

B/C1–B/C0—Bits per Character
These bits select the number of data bits per character to be transmitted. The character
length listed in Table 7-3 does not include start, parity, or stop bits.

7-24 MC68340 USER’S MANUAL MOTOROLA

Table 7-3. B/Cx Control Bits

B/C1 B/C0 Bits/Character

0 0 Five Bits

0 1 Six Bits

1 0 Seven Bits

1 1 Eight Bits

7.4.1.5 STATUS REGISTER (SR). The SR indicates the status of the characters in the
FIFO and the status of the channel transmitter and receiver. This register can only be read
when the serial module is enabled (i.e., the STP bit in the MCR is cleared).

SRA, SRB $711, $719
7 6 5 4 3 2 1 0

RB FE PE OE TxEMP TxRDY FFULL RxRDY

RESET:
0 0 0 0 0 0 0 0

Read Only Supervisor/User

RB—Received Break
1 = An all-zero character of the programmed length has been received without a stop

bit. The RB bit is only valid when the RxRDY bit is set. Only a single FIFO
position is occupied when a break is received. Further entries to the FIFO are
inhibited until the channel RxDx returns to the high state for at least one-half bit
time, which is equal to two successive edges of the internal or external 1× clock
or 16 successive edges of the external 16× clock.
The received break circuit detects breaks that originate in the middle of a
received character. However, if a break begins in the middle of a character, it
must persist until the end of the next detected character time.

0 = No break has been received.

FE—Framing Error
1 = A stop bit was not detected when the corresponding data character in the FIFO

was received. The stop-bit check is made in the middle of the first stop-bit
position. The bit is valid only when the RxRDY bit is set.

0 = No framing error has occurred.

PE—Parity Error
1 = When the with parity or force parity mode is programmed in the MR1, the

corresponding character in the FIFO was received with incorrect parity. When the
multidrop mode is programmed, this bit stores the received A/D bit. This bit is
valid only when the RxRDY bit is set.

0 = No parity error has occurred.

MOTOROLA MC68340 USER’S MANUAL 7-25

OE—Overrun Error
1 = One or more characters in the received data stream have been lost. This bit is

set upon receipt of a new character when the FIFO is full and a character is
already in the shift register waiting for an empty FIFO position. When this occurs,
the character in the receiver shift register and its break detect, framing error
status, and parity error, if any, are lost. This bit is cleared by the reset error status
command in the CR.

0 = No overrun has occurred.

TxEMP—Transmitter Empty
1 = The channel transmitter has underrun (both the transmitter holding register and

transmitter shift registers are empty). This bit is set after transmission of the last
stop bit of a character if there are no characters in the transmitter holding register
awaiting transmission.

0 = The transmitter buffer is not empty. The transmitter holding register is loaded by
the CPU32, or the transmitter is disabled. The transmitter is enabled/disabled by
programming the TCx bits in the CR.

TxRDY—Transmitter Ready
This bit is duplicated in the ISR; bit 0 for channel A and bit 4 for channel B.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted and are lost.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

FFULL—FIFO Full
1 = A character was transferred from the receiver shift register to the receiver FIFO

and the transfer caused the FIFO to become full (all three FIFO holding register
positions are occupied).

0 = The CPU32 has read the receiver buffer and one or more FIFO positions are
available. Note that if there is a character in the receiver shift register because
the FIFO is full, this character will be moved into the FIFO when a position is
available, and the FIFO will remain full.

RxRDY—Receiver Ready
1 = A character has been received and is waiting in the FIFO to be read by the

CPU32. This bit is set when a character is transferred from the receiver shift
register to the FIFO.

0 = The CPU32 has read the receiver buffer, and no characters remain in the FIFO
after this read.

7-26 MC68340 USER’S MANUAL MOTOROLA

7.4.1.6 CLOCK-SELECT REGISTER (CSR). The CSR selects the baud rate clock for the
channel receiver and transmitter. This register can only be written when the serial module
is enabled (i.e., the STP bit in the MCR is cleared).

NOTE

This register should only be written after the external crystal is
stable (XTAL_RDY bit of the ISR is zero).

CSRA, CSRB $711, $719
7 6 5 4 3 2 1 0

RCS3 RCS2 RCS1 RCS0 TCS3 TCS2 TCS1 TCS0

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

RCS3–RCS0—Receiver Clock Select
These bits select the baud rate clock for the channel receiver from a set of baud rates
listed in Table 7-4. The baud rate set selected depends upon the auxiliary control
register (ACR) bit 7. Set 1 is selected if ACR bit 7 = 0, and set 2 is selected if ACR bit
7 = 1. The receiver clock is always 16 times the baud rate shown in this list, except
when SCLK is used.

Table 7-4. RCSx Control Bits

RCS3 RCS2 RCS1 RCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 76.8k 38.4k

1 1 1 0 SCLK/16 SCLK/16

1 1 1 1 SCLK/1 SCLK/1

MOTOROLA MC68340 USER’S MANUAL 7-27

TCS3–TCS0—Transmitter Clock Select
These bits select the baud rate clock for the channel transmitter from a set of baud rates
listed in Table 7-5. The baud rate set selected depends upon ACR bit 7. Set 1 is
selected if ACR bit 7 = 0, and set 2 is selected if ACR bit 7 = 1. The transmitter clock is
always 16 times the baud rate shown in this list, except when SCLK is used.

Table 7-5. TCSx Control Bits

TCS3 TCS2 TCS1 TCS0 Set 1 Set 2

0 0 0 0 50 75

0 0 0 1 110 110

0 0 1 0 134.5 134.5

0 0 1 1 200 150

0 1 0 0 300 300

0 1 0 1 600 600

0 1 1 0 1200 1200

0 1 1 1 1050 2000

1 0 0 0 2400 2400

1 0 0 1 4800 4800

1 0 1 0 7200 1800

1 0 1 1 9600 9600

1 1 0 0 38.4k 19.2k

1 1 0 1 76.8k 38.4k

1 1 1 0 SCLK/16 SCLK/16

1 1 1 1 SCLK/1 SCLK/1

7.4.1.7 COMMAND REGISTER (CR). The CR is used to supply commands to the
channel. Multiple commands can be specified in a single write to the CR if the commands
are not conflicting—e.g., reset transmitter and enable transmitter commands cannot be
specified in a single command. This register can only be written when the serial module is
enabled (i.e., the STP bit in the MCR is cleared).

CRA, CRB $712, $71A
7 6 5 4 3 2 1 0

MISC3 MISC2 MISC1 MISC0 TC1 TC0 RC1 RC0

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

7-28 MC68340 USER’S MANUAL MOTOROLA

MISC3–MISC0—Miscellaneous Commands
These bits select a single command as listed in Table 7-6.

Table 7-6. MISCx Control Bits

MISC3 MISC2 MISC1 MISC0 Command

0 0 0 0 No Command

0 0 0 1 No Command

0 0 1 0 Reset Receiver

0 0 1 1 Reset Transmitter

0 1 0 0 Reset Error Status

0 1 0 1 Reset Break-Change
Interrupt

0 1 1 0 Start Break

0 1 1 1 Stop Break

1 0 0 0 Assert RTS

1 0 0 1 Negate RTS

1 0 1 0 No Command

1 0 1 1 No Command

1 1 0 0 No Command

1 1 0 1 No Command

1 1 1 0 No Command

1 1 1 1 No Command

Reset Receiver—The reset receiver command resets the channel receiver. The receiver
is immediately disabled, the FFULL and RxRDY bits in the SR are cleared, and the
receiver FIFO pointer is reinitialized. All other registers are unaltered. This command
should be used in lieu of the receiver disable command whenever the receiver
configuration is changed because it places the receiver in a known state.

Reset Transmitter—The reset transmitter command resets the channel transmitter. The
transmitter is immediately disabled, and the TxEMP and TxRDY bits in the SR are
cleared. All other registers are unaltered. This command should be used in lieu of the
transmitter disable command whenever the transmitter configuration is changed
because it places the transmitter in a known state.

Reset Error Status—The reset error status command clears the channel's RB, FE, PE,
and OE bits (in the SR). This command is also used in the block mode to clear all error
bits after a data block is received.

Reset Break-Change Interrupt—The reset break-change interrupt command clears the
delta break (DBx) bits in the ISR.

MOTOROLA MC68340 USER’S MANUAL 7-29

Start Break—The start break command forces the channel's TxDx low. If the transmitter
is empty, the start of the break conditions can be delayed up to one bit time. If the
transmitter is active, the break begins when transmission of the character is complete. If
a character is in the transmitter shift register, the start of the break is delayed until the
character is transmitted. If the transmitter holding register has a character, that
character is transmitted after the break. The transmitter must be enabled for this
command to be accepted. The state of the CTS≈ input is ignored for this command.

Stop Break—The stop break command causes the channel's TxDx to go high (mark)
within two bit times. Characters stored in the transmitter buffer, if any, are transmitted.

Assert RTS—The assert RTS command forces the channel's RTS≈ output low.

Negate RTS—The negate RTS command forces the channel's RTS≈ output high.

TC1–TC0—Transmitter Commands
These bits select a single command as listed in Table 7-7.

Table 7-7. TCx Control Bits

TC1 TC0 Command

0 0 No Action Taken

0 1 Enable Transmitter

1 0 Disable Transmitter

1 1 Do Not Use

No Action Taken—The no action taken command causes the transmitter to stay in its
current mode. If the transmitter is enabled, it remains enabled; if disabled, it remains
disabled.

Transmitter Enable—The transmitter enable command enables operation of the
channel's transmitter. The TxEMP and TxRDY bits in the SR are also set. If the
transmitter is already enabled, this command has no effect.

Transmitter Disable—The transmitter disable command terminates transmitter operation
and clears the TxEMP and TxRDY bits in the SR. However, if a character is being
transmitted when the transmitter is disabled, the transmission of the character is
completed before the transmitter becomes inactive. If the transmitter is already
disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

7-30 MC68340 USER’S MANUAL MOTOROLA

RC1–RC0—Receiver Commands
These bits select a single command as listed in Table 7-8.

Table 7-8. RCx Control Bits

RC1 RC0 Command

0 0 No Action Taken

0 1 Enable Receiver

1 0 Disable Receiver

1 1 Do Not Use

No Action Taken—The no action taken command causes the receiver to stay in its
current mode. If the receiver is enabled, it remains enabled; if disabled, it remains
disabled.

Receiver Enable—The receiver enable command enables operation of the channel's
receiver. If the serial module is not in multidrop mode, this command also forces the
receiver into the search-for-start-bit state. If the receiver is already enabled, this
command has no effect.

Receiver Disable—The receiver disable command disables the receiver immediately.
Any character being received is lost. The command has no effect on the receiver status
bits or any other control register. If the serial module is programmed to operate in the
local loopback mode or multidrop mode, the receiver operates even though this
command is selected. If the receiver is already disabled, this command has no effect.

Do Not Use—Do not use this bit combination because the result is indeterminate.

7.4.1.8 RECEIVER BUFFER (RB). The receiver buffer contains three receiver holding
registers and a serial shift register. The channel's RxDx pin is connected to the serial shift
register. The holding registers act as a FIFO. The CPU32 reads from the top of the stack
while the receiver shifts and updates from the bottom of the stack when the shift register
has been filled (see Figure 7-4). This register can only be read when the serial module is
enabled (i.e., the STP bit in the MCR is cleared).

RBA, RBB $713, $71B
7 6 5 4 3 2 1 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

RESET:
0 0 0 0 0 0 0 0

Read Only Supervisor/User

RB7–RB0—These bits contain the character in the receiver buffer.

7.4.1.9 TRANSMITTER BUFFER (TB). The transmitter buffer consists of two registers,
the transmitter holding register and the transmitter shift register (see Figure 7-4). The
holding register accepts characters from the bus master if the TxRDY bit in the channel's
SR is set. A write to the transmitter buffer clears the TxRDY bit, inhibiting any more

MOTOROLA MC68340 USER’S MANUAL 7-31

characters until the shift register is ready to accept more data. When the shift register is
empty, it checks to see if the holding register has a valid character to be sent (TxRDY bit
cleared). If there is a valid character, the shift register loads the character and reasserts
the TxRDY bit in the channel's SR. Writes to the transmitter buffer when the channel's SR
TxRDY bit is clear and when the transmitter is disabled have no effect on the transmitter
buffer. This register can only be written when the serial module is enabled (i.e., the STP
bit in the MCR is cleared).

TBA, TBB $713, $71B
7 6 5 4 3 2 1 0

TB7 TB6 TB5 TB4 TB3 TB2 TB1 TB0

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

TB7–TB0—These bits contain the character in the transmitter buffer.

7.4.1.10 INPUT PORT CHANGE REGISTER (IPCR). The IPCR shows the current state
and the change-of-state for the CTSA and CTSB pins. This register can only be read
when the serial module is enabled (i.e., the STP bit in the MCR is cleared).

IPCR $714
7 6 5 4 3 2 1 0

0 0 COSB COSA 0 0 CTSB CTSA

RESET:
0 0 0 0 0 0 U U

Read Only Supervisor/User

Bits 7, 6, 3, 2—Reserved

COSB, COSA—Change-of-State
1 = A change-of-state (high-to-low or low-to-high transition), lasting longer than 25–

50 µs when using a crystal as the sampling clock or longer than one or two
periods when using SCLK, has occurred at the corresponding CTS≈ input (MCR
ICCS bit controls selection of the sampling clock for clear-to-send operation).
When these bits are set, the ACR can be programmed to generate an interrupt to
the CPU32.

0 = The CPU32 has read the IPCR. No change-of-state has occurred. A read of the
IPCR also clears the ISR COS bit.

CTSB, CTSA—Current State
Starting two serial clock periods after reset, the CTS≈ bits reflect the state of the CTS≈
pins. If a CTS≈ pin is detected as asserted at that time, the associated COSx bit will be
set, which will initiate an interrupt if the corresponding IECx bit of the ACR register is
enabled.

1 = The current state of the respective CTS≈ input is negated.
0 = The current state of the respective CTS≈ input is asserted.

7-32 MC68340 USER’S MANUAL MOTOROLA

7.4.1.11 AUXILIARY CONTROL REGISTER (ACR). The ACR selects which baud rate is
used and controls the handshake of the transmitter/receiver. This register can only be
written when the serial module is enabled (i.e., the STP bit in the MCR is cleared).

ACR $714
7 6 5 4 3 2 1 0

BRG 0 0 0 0 0 IECB IECA

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

BRG—Baud Rate Generator Set Select
1 = Set 2 of the available baud rates is selected.
0 = Set 1 of the available baud rates is selected. Refer to 7.4.1.6 Clock-Select

Register (CSR) for more information on the baud rates.

IECB, IECA—Input Enable Control
1 = ISR bit 7 will be set and an interrupt will be generated when the corresponding bit

in the IPCR (COSB or COSA) is set by an external transition on the channel's
CTS≈ input (if bit 7 of the interrupt enable register (IER) is set to enable
interrupts).

0 = Setting the corresponding bit in the IPCR has no effect on ISR bit 7.

7.4.1.12 INTERRUPT STATUS REGISTER (ISR). The ISR provides status for all potential
interrupt sources. The contents of this register are masked by the IER. If a flag in the ISR
is set and the corresponding bit in IER is also set, the IRQ≈ output is asserted. If the
corresponding bit in the IER is cleared, the state of the bit in the ISR has no effect on the
output. This register can only be read when the serial module is enabled (i.e., the STP bit
in the MCR is cleared).

NOTE

The IER does not mask reading of the ISR. True status is
provided regardless of the contents of IER. The contents of
ISR are cleared when the serial module is reset.

ISR $715
7 6 5 4 3 2 1 0

COS DBB RxRDYB TxRDYB XTAL_
RDY

DBA RxRDYA TxRDYA

RESET:
0 0 0 0 1 0 0 0

Read Only Supervisor/User

COS—Change-of-State
1 = A change-of-state has occurred at one of the CTS≈ inputs and has been

selected to cause an interrupt by programming bit 1 and/or bit 0 of the ACR.
0 = The CPU32 has read the IPCR.

MOTOROLA MC68340 USER’S MANUAL 7-33

DBB—Delta Break B
1 = The channel B receiver has detected the beginning or end of a received break.
0 = The CPU32 has issued a channel B reset break-change interrupt command.

Refer to 7.4.1.7 Command Register (CR) for more information on the reset
break-change interrupt command.

RxRDYB—Channel B Receiver Ready or FIFO Full
The function of this bit is programmed by MR1B bit 6.

1 = If programmed as receiver ready, a character has been received in channel B
and is waiting in the receiver buffer FIFO. If programmed as FIFO full, a
character has been transferred from the receiver shift register to the FIFO, and
the transfer has caused the channel B FIFO to become full (all three positions
are occupied).

0 = If programmed as receiver ready, the CPU32 has read the receiver buffer. After
this read, if more characters are still in the FIFO, the bit is set again after the
FIFO is 'popped'. If programmed as FIFO full, the CPU32 has read the receiver
buffer. If a character is waiting in the receiver shift register because the FIFO is
full, the bit will be set again when the waiting character is loaded into the FIFO.

TxRDYB—Channel B Transmitter Ready
This bit is the duplication of the TxRDY bit in SRB.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

XTAL_RDY—Serial Clock Running
This bit is always read as a zero when the X1 clock is running. This bit cannot be
enabled to generate an interrupt.

1 = This bit is set at reset.
0 = This bit is cleared after the baud rate generator is stable. The CSR should not be

accessed until this bit is zero.

DBA—Delta Break A
1 = The channel A receiver has detected the beginning or end of a received break.
0 = The CPU32 has issued a channel A reset break-change interrupt command.

Refer to 7.4.1.7 Command Register (CR) for more information on the reset
break-change interrupt command.

7-34 MC68340 USER’S MANUAL MOTOROLA

RxRDYA—Channel A Receiver Ready or FIFO Full
The function of this bit is programmed by MR1A bit 6.

1 = If programmed as receiver ready, a character has been received in channel A
and is waiting in the receiver buffer FIFO. If programmed as FIFO full, a
character has been transferred from the receiver shift register to the FIFO, and
the transfer has caused the channel A FIFO to become full (all three positions
are occupied).

0 = If programmed as receiver ready, the CPU32 has read the receiver buffer. After
this read, if more characters are still in the FIFO, the bit is set again after the
FIFO is 'popped'. If programmed as FIFO full, the CPU32 has read the receiver
buffer. If a character is waiting in the receiver shift register because the FIFO is
full, the bit will be set again when the waiting character is loaded into the FIFO.

TxRDYA—Channel A Transmitter Ready
This bit is the duplication of the TxRDY bit in SRA.

1 = The transmitter holding register is empty and ready to be loaded with a character.
This bit is set when the character is transferred to the transmitter shift register.
This bit is also set when the transmitter is first enabled. Characters loaded into
the transmitter holding register while the transmitter is disabled are not
transmitted.

0 = The transmitter holding register was loaded by the CPU32, or the transmitter is
disabled.

7.4.1.13 INTERRUPT ENABLE REGISTER (IER). The IER selects the corresponding bits
in the ISR that cause an interrupt output (IRQ≈). If one of the bits in the ISR is set and the
corresponding bit in the IER is also set, the IRQ≈ output is asserted. If the corresponding
bit in the IER is zero, the state of the bit in the ISR has no effect on the IRQ≈ output. The
IER does not mask the reading of the ISR. The ISR XTAL_RDY bit cannot be enabled to
generate an interrupt. This register can only be written when the serial module is enabled
(i.e., the STP bit in the MCR is cleared).

IER $715
7 6 5 4 3 2 1 0

COS DBB RxRDYB TxRDYB 0 DBA RxRDYA TxRDYA

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

COS—Change-of-State
1 = Enable interrupt
0 = Disable interrupt

DBB—Delta Break B
1 = Enable interrupt
0 = Disable interrupt

MOTOROLA MC68340 USER’S MANUAL 7-35

RxRDYB—Channel B Receiver Ready or FIFO full
1 = Enable interrupt
0 = Disable interrupt

TxRDYB—Channel B Transmitter Ready
1 = Enable interrupt
0 = Disable interrupt

Bit 3—Reserved

DBA—Delta Break A
1 = Enable interrupt
0 = Disable interrupt

RxRDYA—Channel A Receiver Ready or FIFO full
1 = Enable interrupt
0 = Disable interrupt

TxRDYA—Channel A Transmitter Ready
1 = Enable interrupt
0 = Disable interrupt

7.4.1.14 INPUT PORT (IP). The IP register shows the current state of the CTS≈ inputs.
This register can only be read when the serial module is enabled (i.e., the STP bit in the
MCR is cleared).

IP $71D
7 6 5 4 3 2 1 0

0 0 0 0 0 0 CTSB CTSA

RESET:
0 0 0 0 0 0 U U

Read Only Supervisor/User

CTSB, CTSA—Current State
1 = The current state of the respective CTS≈ input is negated.
0 = The current state of the respective CTS≈ input is asserted.

The information contained in these bits is latched and reflects the state of the input pins
at the time that the IP is read.

NOTE

These bits have the same function and value of the IPCR bits 1
and 0.

7-36 MC68340 USER’S MANUAL MOTOROLA

7.4.1.15 OUTPUT PORT CONTROL REGISTER (OPCR). The OPCR individually
configures four bits of the 8-bit parallel OP for general-purpose use or as an auxiliary
function serving the communication channels. This register can only be written when the
serial module is enabled (i.e., the STP bit in the MCR is cleared).

OPCR $71D
7 6 5 4 3 2 1 0

OP7
T≈RDYB

OP6
T≈RDYA

OP5
R≈RDYB

OP4
R≈RDYA

OP3 OP2 OP1
RTSB

OP0
RTSA

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68340; thus
changing bits 7, 5, 3, and 2 of this register has no effect.

OP6—Output Port 6/T≈RDYA
1 = The OP6/T≈RDYA pin functions as the transmitter-ready signal for channel A.

The signal reflects the complement of the value of bit 2 of the SRA; thus,
T≈RDYA is a logic zero when the transmitter is ready.

0 = The OP6/T≈RDYA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 6 of the OP.

OP4—Output Port 4/R≈RDYA
1 = The OP4/R≈RDYA pin functions as the FIFO-full or receiver-ready signal for

channel A (depending on the value of bit 6 of MR1A). The signal reflects the
complement of the value of ISR bit 1; thus, R≈RDYA is a logic zero when the
receiver is ready.

0 = The OP4/R≈RDYA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 4 of the OP.

OP1—Output Port 1/RTSB
1 = The OP1/RTSB pin functions as the ready-to-send signal for channel B. The

signal is asserted and negated according to the configuration programmed by
RxRTS bit 7 in the MR1B for the receiver and TxRTS bit 5 in the MR2B for the
transmitter.

0 = The OP1/RTSB pin functions as a dedicated output. The signal reflects the
complement of the value of bit 1 of the OP.

MOTOROLA MC68340 USER’S MANUAL 7-37

OP0—Output Port 0/RTSA
1 = The OP0/RTSA pin functions as the ready-to-send signal for channel A. The

signal is asserted and negated according to the configuration programmed by
RxRTS bit 7 in the MR1A for the receiver and TxRTS bit 5 in the MR2A for the
transmitter.

0 = The OP0/RTSA pin functions as a dedicated output. The signal reflects the
complement of the value of bit 0 of the OP.

7.4.1.16 OUTPUT PORT DATA REGISTER (OP). The bits in the OP register are set by
performing a bit set command (writing to offset $71E) and are cleared by performing a bit
reset command (writing to offset $71F). This register can only be written when the serial
module is enabled (i.e., the STP bit in the MCR is cleared).

Bit Set

OP $71E
7 6 5 4 3 2 1 0

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68340;
thus, changing these bits has no effect.

OP6, OP4, OP1, OP0—Output Port Parallel Outputs
1 = These bits can be set by writing a one to the bit position(s) at this address.
0 = These bits are not affected by writing a zero to this address.

Bit Reset

OP $71F
7 6 5 4 3 2 1 0

OP7 OP6 OP5 OP4 OP3 OP2 OP1 OP0

RESET:
0 0 0 0 0 0 0 0

Write Only Supervisor/User

NOTE

OP bits 7, 5, 3, and 2 are not pinned out on the MC68340;
thus, changing these bits has no effect.

OP6, OP4, OP1, OP0—Output Port Parallel Outputs
1 = These bits can be cleared by writing a one to the bit position(s) at this address.
0 = These bits are not affected by writing a zero to this address.

7-38 MC68340 USER’S MANUAL MOTOROLA

7.4.1.17 MODE REGISTER 2 (MR2). MR2 controls some of the serial module
configuration. This register can be read or written at any time the serial module is enabled
(i.e., the STP bit in the MCR is cleared).

MR2A, MR2B $720, $721
7 6 5 4 3 2 1 0

CM1 CM0 TxRTS TxCTS SB3 SB2 SB1 SB0

RESET:
0 0 0 0 0 0 0 0

Read/Write Supervisor/User

CM1–CM0—Channel Mode
These bits select a channel mode as listed in Table 7-9. See 7.3.3 Looping Modes for
more information on the individual modes.

Table 7-9. CMx Control Bits

CM1 CM0 Mode

0 0 Normal

0 1 Automatic Echo

1 0 Local Loopback

1 1 Remote Loopback

TxRTS—Transmitter Ready-to-Send
This bit controls the negation of the RTSA or RTSB signals. The output is normally
asserted by setting OP0 or OP1 and negated by clearing OP0 or OP1 (see 7.4.1.15
Output Port Control Register (OPCR)).

1 = In applications where the transmitter is disabled after transmission is complete,
setting this bit causes the particular OP bit to be cleared automatically one bit
time after the characters, if any, in the channel transmit shift register and the
transmitter holding register are completely transmitted, including the programmed
number of stop bits. This feature is used to automatically terminate transmission
of a message. If both the receiver and the transmitter in the same channel are
programmed for RTS control, RTS control is disabled for both since this is an
incorrect configuration.

0 = Clearing this bit has no effect on the transmitter RTS≈.

MOTOROLA MC68340 USER’S MANUAL 7-39

TxCTS—Transmitter Clear-to-Send
1 = Enables clear-to-send operation. The transmitter checks the state of the CTS≈

input each time it is ready to send a character. If CTS≈ is asserted, the character
is transmitted. If CTS≈ is negated, the channel TxDx remains in the high state,
and the transmission is delayed until CTS≈ is asserted. Changes in CTS≈ while
a character is being transmitted do not affect transmission of that character. If
both TxCTS and TxRTS are enabled, TxCTS controls the operation of the
transmitter.

0 = The CTS≈ has no effect on the transmitter.

SB3–SB0—Stop-Bit Length Control
These bits select the length of the stop bit appended to the transmitted character as
listed in Table 7-10. Stop-bit lengths of nine-sixteenth to two bits, in increments of one-
sixteenth bit, are programmable for character lengths of six, seven, and eight bits. For a
character length of five bits, one and one-sixteenth to two bits are programmable in
increments of one-sixteenth bit. In all cases, the receiver only checks for a high
condition at the center of the first stop-bit position—i.e., one bit time after the last data
bit or after the parity bit, if parity is enabled.
If an external 1× clock is used for the transmitter, MR2 bit 3 = 0 selects one stop bit, and
MR2 bit 3 = 1 selects two stop bits for transmission.

Table 7-10. SBx Control Bits

SB3 SB2 SB1 SB0 Length 6-8 Bits Length 5 Bits

0 0 0 0 0.563 1.063

0 0 0 1 0.625 1.125

0 0 1 0 0.688 1.188

0 0 1 1 0.750 1.250

0 1 0 0 0.813 1.313

0 1 0 1 0.875 1.375

0 1 1 0 0.938 1.438

0 1 1 1 1.000 1.500

1 0 0 0 1.563 1.563

1 0 0 1 1.625 1.625

1 0 1 0 1.688 1.688

1 0 1 1 1.750 1.750

1 1 0 0 1.813 1.813

1 1 0 1 1.875 1.875

1 1 1 0 1.938 1.938

1 1 1 1 2.000 2.000

7-40 MC68340 USER’S MANUAL MOTOROLA

7.4.2 Programming

The basic interface software flowchart required for operation of the serial module is shown
in Figure 7-10. The routines are divided into three categories:

• Serial Module Initialization

• I/O Driver

• Interrupt Handling

7.4.2.1 SERIAL MODULE INITIALIZATION. The serial module initialization routines
consist of SINIT and CHCHK. SINIT is called at system initialization time to check channel
A and channel B operation. Before SINIT is called, the calling routine allocates two words
on the system stack. Upon return to the calling routine, SINIT passes information on the
system stack to reflect the status of the channels. If SINIT finds no errors in either channel
A or channel B, the respective receivers and transmitters are enabled. The CHCHK
routine performs the actual channel checks as called from the SINIT routine. When called,
SINIT places the specified channel in the local loopback mode and checks for the
following errors:

• Transmitter Never Ready

• Receiver Never Ready

• Parity Error

• Incorrect Character Received

7.4.2.2 I/O DRIVER EXAMPLE. The I/O driver routines consist of INCH, OUTCH, and
POUTCH. INCH is the terminal input character routine and gets a character from the
channel A receiver and places it in the lower byte of register D0. OUTCH is used to send
the character in the lower byte of register D0 to the channel A transmitter. POUTCH sends
the character in the lower byte of D0 to the channel B transmitter.

7.4.2.3 INTERRUPT HANDLING. The interrupt handling routine consists of SIRQ, which
is executed after the serial module generates an interrupt caused by a channel A change-
in-break (beginning of a break). SIRQ then clears the interrupt source, waits for the next
change-in-break interrupt (end of break), clears the interrupt source again, then returns
from exception processing to the system monitor.

MOTOROLA MC68340 USER’S MANUAL 7-41

SERIAL MODULE

INITIATE:

CHANNEL A
CHANNEL B
INTERRUPTS

POINT TO CHANNEL A

SAVE CHANNEL A
STATUS

POINT TO CHANNEL B

SAVE CHANNEL B
STATUS

ANY
ERRORS IN
CHANNEL A

?

ENABLE CHANNEL
A'S RECEIVER

ASSERT CHANNEL A
REQUEST TO SEND

ANY
ERRORS IN
CHANNEL B

?

ENABLE CHANNEL
B'S TRANSMITTER

RETURN

SINIT

CHK1

CHK2

ENABLA

Y

N

ENABLB

SINITR

CALL CHCHK

CALL CHCHK

Y

N

Figure 7-10. Serial Module Programming Flowchart (1 of 5)

7-42 MC68340 USER’S MANUAL MOTOROLA

Y

N

CHCHK

PLACE CHANNEL IN
LOCAL LOOPBACK

MODE

ENABLE CHANNEL'S
TRANSMITTER CLEAR

CHANNEL
STATUS WORD

IS
TRANSMITTER

READY
?

WAITED
TOO LONG

?

WAITED
TOO LONG

?

N

Y

SEND CHARACTER
TO TRANSMITTER

HAS
RECEIVER
RECEIVED

CHARACTER
?

CHCHK

TxCHK

SNDCHR

RxCHK
N

YN

SET TRANSMITTER-
NEVER-READY FLAG

SET RECEIVER-
NEVER-READY FLAG

A B

Y

Figure 7-10. Serial Module Programming Flowchart (2 of 5)

MOTOROLA MC68340 USER’S MANUAL 7-43

B

Y

N

N

A

Y

A B

Y

N

RETURN

HAVE
FRAMING ERROR

?

SET FRAMING
ERROR FLAG

HAVE
PARITY ERROR

?

SET PARITY
ERROR FLAG

GET CHARACTER
FROM RECEIVER

SAME
AS CHARACTER
TRANSMITTED

?

SET INCORRECT
CHARACTER FLAG

DISABLE CHANNEL'S
TRANSMITTER

RESTORE CHANNEL
TO ORIGINAL MODE

FRCHK RSTCHN

PRCHK

CHRCHK

Figure 7-10. Serial Module Programming Flowchart (3 of 5)

7-44 MC68340 USER’S MANUAL MOTOROLA

WAS
IRQx CAUSED
BY BEGINNING

OF A BREAK
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

HAS
END-OF-BREAK
IRQx ARRIVED

YET
?

CLEAR CHANGE-IN-
BREAK STATUS BIT

REMOVE BREAK
CHARACTER FROM

RECEIVER FIFO

REPLACE RETURN
ADDRESS ON SYSTEM
STACK AND MONITOR

WARM START ADDRESS

RTE

SIRQR

N

Y

N

DOES
CHANNEL A

RECEIVER HAVE A
CHARACTER

?

PLACE CHARACTER
IN D0

N

Y

ABRKI1

ABRKI

Y

INCH

RETURN

 SIRQ

Figure 7-10. Serial Module Programming Flowchart (4 of 5)

MOTOROLA MC68340 USER’S MANUAL 7-45

POUCH

N

Y

IS
CHANNEL B

TRANSMITTER
READY

?

SEND CHARACTER
IN D0 TO CHANNEL

B TRANSMITTER

N

Y

POUCHI

POUTCHR

WAS
CHARACTER A

CARRIAGE
RETURN

?

IS
CHANNEL B

TRANSMITTER
READY

?

SEND A LINE
FEED CHARACTER TO

CHANNEL B
TRANSMITTER

N

RETURN

OUTCH

N

Y

IS
CHANNEL A

TRANSMITTER
READY

?

SEND CHARACTER
IN D0 TO CHANNEL A

TRANSMITTER

N

Y

OUTCHI

OUTCHR

WAS
CHARACTER A

CARRIAGE
RETURN

?

IS
CHANNEL A

TRANSMITTER
READY

?

SEND A LINE
FEED CHARACTER TO

CHANNEL A
TRANSMITTER

N

RETURN

YY

Figure 7-10. Serial Module Programming Flowchart (5 of 5)

7-46 MC68340 USER’S MANUAL MOTOROLA

7.5 SERIAL MODULE INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the serial module.

7.5.1 Serial Module Configuration

If the serial capability of the MC68340 is being used, the following steps are required to
properly initialize the serial module.

NOTE

The serial module registers can only be accessed by byte operations.

Command Register (CR)
• Reset the receiver and transmitter for each channel.

The following steps program both channels:

Module Configuration Register (MCR)
• Initialize the stop bit (STP) for normal operation.

• Select whether to respond to or ignore FREEZE (FRZx bits).

• Select the input capture clock (ICCS bit).

• Select the access privilege for the supervisor/user registers (SUPV bit).

• Select the interrupt arbitration level for the serial module (IARBx bits).

Interrupt Vector Register (IVR)
• Program the vector number for a serial module interrupt.

Interrupt Level Register (ILR)
• Program the interrupt priority level for a serial module interrupt.

Interrupt Enable Register (IER)
• Enable the desired interrupt sources.

Auxiliary Control Register (ACR)
• Select baud rate set (BRG bit).

• Initialize the input enable control (IEC bits).

Output Port Control Register (OPCR)
• Select the function of the output port pins.

Interrupt Status Register (ISR)
• The XTAL_RDY bit should be polled until it is cleared to ensure that an unstable

crystal input is not applied to the baud rate generator.

MOTOROLA MC68340 USER’S MANUAL 7-47

The following steps are channel specific:

Clock Select Register (CSR)
• Select the receiver and transmitter clock.

Mode Register 1 (MR1)
• If desired, program operation of receiver ready-to-send (RxRTS bit).

• Select receiver-ready or FIFO-full notification (R/F bit).

• Select character or block error mode (ERR bit).

• Select parity mode and type (PM and PT bits).

• Select number of bits per character (B/Cx bits).

Mode Register 2 (MR2)
• Select the mode of channel operation (CMx bits).

• If desired, program operation of transmitter ready-to-send (TxRTS bit).

• If desired, program operation of clear-to-send (TxCTS bit).

• Select stop-bit length (SBx bits).

Command Register (CR)
• Enable the receiver and transmitter.

7.5.2 Serial Module Example Configuration Code

The following code is an example of a configuration sequence for the serial module.

* MC68340 basic serial module register initialization example code.
* This code is used to initialize the 68340's internal serial module registers,
* providing basic functions for operation.
* It sets up serial channel A for communication with a 9600 baud terminal.
* Note: All serial module registers must be accessed as bytes.

* equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* Serial module equates
SERIAL EQU $700 Offset from MBAR for serial module regs
MCRH EQU $0 serial MCR high byte
MCRL EQU $1 serial MCR low byte

7-48 MC68340 USER’S MANUAL MOTOROLA

* Serial register offsets from serial base address
MR1A EQU $10 Mode register 1 A
MR2A EQU $20 Mode register 2 A
SRA EQU $11 Status register A
CSRA EQU $11 Clock select reg A
CRA EQU $12 Command reg A

ACR EQU $14 Auxiliary control reg
OPCR EQU $1D Output port control reg
OP_BS EQU $1E Output port bit set (write 1 to set)
OP_BR EQU $1F Output port bit reset (write 1 to clear)

* Initialize Serial channel A

LEA MODBASE+SERIAL,A0 Pointer to serial channel A

* Module configuration register:
* Enable serial module for normal operation, ignore FREEZE, select the
* crystal clock. Supervisor/user serial registers unrestricted.
* Interrupt arbitration at priority $02.

MOVE.B #$00,MCRH(A0)
MOVE.B #$02,MCRL(A0)

* WAIT FOR TRANSMITTER EMPTY (OR TIMEOUT)
MOVE.W #$2000,D0 init loop counter

XBMTWAIT EQU *
BTST #3,SRA(A0) TX empty in status reg?
NOP
DBNE D0,XBMTWAIT loop until set or timeout

* NEGATE RTSA SIGNAL OUTPUT
MOVE.B #0,OPCR(A0) make OP0-7 general purpose
MOVE.B #$01,OP_BR(A0) clear RTSA/OP0 output

* RESET RECEIVER/TRANSMITTER
MOVE.B #$20,CRA(A0) Issue reset receiver command
MOVE.B #$30,CRA(A0) Issue reset transmitter command

* SET BAUD RATE SET 2
MOVE.B #$80,ACR(A0)

* MODE REGISTER 1
MOVE.B #$93,MR1A(A0) 8 bits, no parity, auto RTS control

MOTOROLA MC68340 USER’S MANUAL 7-49

* MODE REGISTER 2
MOVE.B #$07,MR2A(A0) Normal, 1 stop bit

* SET UP BAUD RATE FOR PORT IN CLOCK SELECT REGISTER
MOVE.B #$BB,CSRA(A0) Set 9600 baud for RX and TX

* SET RTSA ACTIVE
MOVE.B #$01,OP_BS(A0) set RTSA/OP0 output

* ENABLE PORT
MOVE.B #$45,CRA(A0) Reset error status, enable RX & TX

END

MOTOROLA MC68340 USER’S MANUAL 8-1

SECTION 8
TIMER MODULES

Each MC68340 timer module contains a counter/timer (timer 1 and timer 2) as shown in
Figure 8-1. Each timer interfaces directly to the CPU32 via the intermodule bus (IMB).
Each timer consists of the following major areas:

• A General-Purpose Counter/Timer

• Internal Control Logic

• Interrupt Control Logic

TIMER 2

INTERRUPT
CONTROL

LOGIC

IMB
INTERFACE

TIN2

TOUT2

TGATE2

TIMER 2

TIMER 1

INTERRUPT
CONTROL

LOGIC

IMB
INTERFACE

TIN1

TOUT1

TGATE1

TIMER 1

Figure 8-1. Simplified Block Diagram

8.1 MODULE OVERVIEW

Each timer module consists of the following functional features:

• Versatile General-Purpose Timer

• 8-Bit Prescaler/16-Bit Counter

• Timers Can Be Externally Cascaded for a Maximum Count Width of 48 Bits

• Programmable Timer Modes:

— Input Capture/Output Compare

— Square-Wave Generation

— Variable Duty-Cycle Square-Wave Generation

— Variable-Width Single-Shot Pulse Generation

8-2 MC68340 USER’S MANUAL MOTOROLA

— Pulse-Width Measurement

— Period Measurement

— Event Counting

• Seven Maskable Interrupt Conditions Based on Programmable Events

8.1.1 Timer and Counter Functions

The term 'timer' is used to reference either timer 1 or timer 2, since the two are functionally
equivalent.

The timer can perform virtually any application traditionally assigned to timers and
counters. The timer can be used to generate timed events that are independent of the
timing errors to which real-time programmed microprocessors are susceptible—for
example, those of dynamic memory refreshing, DMA cycle steals, and interrupt servicing.

The timer has several functional areas: an 8-bit countdown prescaler, a 16-bit
downcounter, timeout logic, compare logic, and clock selection logic. Figure 8-2 shows a
functional diagram of the timer module.

8.1.1.1 PRESCALER AND COUNTER. The counter can be driven directly by the selected
clock or the prescaler output. Both the counter and prescaler are updated on the falling
edge of the clock. During reset, the prescaler is set to $FF, and the counter is set to
$0000. The counter is loaded with a programmed value on the first falling edge of the
counter clock after the timer is enabled and again when a timeout occurs (counter reaches
$0000). The prescaler and counter can be used as one 24-bit counter by enabling the
prescaler and selecting the divide-by-256 prescaler output. Refer to 8.4 Register
Description for additional information on how to program the timer.

8.1.1.2 TIMEOUT DETECTION. Timeout is achieved when all 16 stages of the counter
transition to zero, a counter value of $0000. Timeout is a defined counter event which
triggers specific actions depending upon the programmed mode of operation. Refer to 8.3
Operating Modes for descriptions of the individual modes.

8.1.1.3 COMPARATOR. The comparator block compares the value in the 16-bit compare
register (COM) with the output of the 16-bit counter. When an exact match is detected,
bits in the status register (SR) are set to indicate this condition. When in the input
capture/output compare mode, a match is a defined counter event that can affect the
output of the timer (TOUTx). Refer to 8.3.1 Input Capture/Output Compare for additional
information on this mode.

MOTOROLA MC68340 USER’S MANUAL 8-3

I
M
B

MODULE CONFIGURATION REGISTER

INTERRUPT REGISTER

CONTROL REGISTER

STATUS REGISTER

PRELOAD 1 REGISTER

PRELOAD 2 REGISTER

(SYSTEM CLOCK)CLOCK

MUX 16-BIT
COUNTER

CLOCK
LOGIC

COUNTER
CLOCK MUX

8-BIT
PRESCALER

SELECTED
CLOCK

TIN

TGATE

TIMEOUT

16-BIT
COMPARATOR

TOUT
COUNTER REGISTER

COMPARE REGISTER

TIMER
EXTERNAL
INTERFACE

Figure 8-2. Timer Functional Diagram

8.1.1.4 CLOCK SELECTION LOGIC. The clock selection logic consists of two
multiplexers that select the clocks applied to the prescaler and counter. The first
multiplexer (labeled clock logic in Figure 8-2) selects between the clock input to the timer
(TINx) or one-half the frequency of the system clock (CLKOUT). This output of the first
multiplexer (called selected clock) is applied to both the 8-bit prescaler and the second
multiplexer. The second multiplexer selects the clock for the 16-bit counter, which is either
the selected clock or the 8-bit prescaler output.

8.1.2 Internal Control Logic

The timer receives operation commands on the IMB and, in turn, issues appropriate
operation signals to the internal timer control logic. This mechanism allows the timer
registers to be accessed and programmed. Refer to 8.4 Register Description for
additional information.

8-4 MC68340 USER’S MANUAL MOTOROLA

8.1.3 Interrupt Control Logic

Each timer provides seven interrupt request outputs (IRQ7–IRQ1) to notify the CPU32
that an interrupt has occurred. The interrupts are described in 8.4 Register Description.
Bits in the SR indicate all currently active interrupt conditions. The interrupt enable (IE)
bits in the control register (CR) are programmable to mask any events that may cause an
interrupt.

8.2 TIMER MODULES SIGNAL DEFINITIONS

This section contains a brief description of the timer module signals (see Figure 8-3).

NOTE

The terms assertion and negation are used throughout this
section to avoid confusion when dealing with a mixture of
active-low and active-high signals. The term assert or assertion
indicates that a signal is active or true independent of the level
represented by a high or low voltage. The term negate or
negation indicates that a signal is inactive or false.

MOTOROLA MC68340 USER’S MANUAL 8-5

EXTERNAL
INTERFACE
SIGNALS

TIMER 2

TIN2

TGATE2

TOUT2

TIN1

TGATE1

TOUT1

CLOCK
LOGIC

PRESCALER

COUNTER

OUTPUT
CONTROL

I
M
B

INTERRUPT
CONTROL

TIMER 1

CLOCK
LOGIC

PRESCALER

COUNTER

OUTPUT
CONTROL

INTERRUPT
CONTROL

EXTERNAL
INTERFACE
SIGNALS

Figure 8-3. External and Internal Interface Signals

8.2.1 Timer Input (TIN1, TIN2)

This input can be programmed to be the clock that causes events to occur in the counter
and prescaler. TINx is internally synchronized to the system clock to guarantee that a valid
TINx level is recognized. Additionally, the high and low levels of TINx must each be stable

8-6 MC68340 USER’S MANUAL MOTOROLA

for at least one system clock period plus the sum of the setup and hold times for TINx.
Refer to Section 11 Electrical Characteristics, for additional information.

8.2.2 Timer Gate (TGATE1, TGATE2)

This active-low input can be programmed to enable and disable the counter and prescaler.
TGATE≈ may also be programmed to be a simple input. For more information on the
modes of operation, refer to 8.3 OPERATING MODES. To guarantee that the timer
recognizes a valid level on TGATE≈, the signal is synchronized with the system clock.
Additionally, the high and low levels of this input must each be stable for at least one
system clock period plus the sum of the setup and hold times for TGATE≈. Refer to
Section 11 Electrical Characteristics , for additional information.

8.2.3 Timer Output (TOUT1, TOUT2)

This output drives the various output waveforms generated by the timer. The initial level
and transitions can be programmed by the output control (OC) bits in the CR.

8.3 OPERATING MODES

The following paragraphs contain a detailed description of each timer operation mode and
of the IMB operation during accesses to the timer. Changing the contents of the CR
should only be attempted when the timer is disabled (the software reset (SWR) bit in the
CR is cleared). Changing the CR while the timer is running may produce unpredictable
results.

8.3.1 Input Capture/Output Compare

This mode has the capability of capturing a counter value by holding the value in the
counter register (CNTR). Additionally, this mode can provide compare information via
TOUTx to indicate when the counter has reached the compare value. This mode can be
used for square-wave generation, pulse-width modulation, or periodic interrupt generation.
This mode can be selected by programming the operation mode bits (MODEx) in the CR
to 000.

The timer is enabled when the counter prescaler enable (CPE) and SWRx bits in the CR
are set. Once enabled, the counter enable (ON) bit in the SR is set, and the next falling
edge of the counter clock causes the counter to be loaded with the value in the preload 1
register (PREL1).

The TGATE≈ signal functions differently in this mode than it does in the other modes.
TGATE≈ does not enable or disable the counter/prescaler input clock; instead, it is used
to disable shadowing. Normally, the counter is decremented on the falling edge of the
counter clock, and the CNTR is updated on the next rising edge of the system clock; thus,
the CNTR shadows the actual value of the counter. The timer gate interrupt (TG) bit in the
SR must be cleared for shadowing to occur. TGATE≈ is used to set the TG bit and disable
shadowing. If the timing gate is enabled (TGE bit of the CR is set), the TG bit is set by the
rising edge of TGATE≈. Shadowing is disabled until the TG bit is cleared by writing a one

MOTOROLA MC68340 USER’S MANUAL 8-7

to its location in the SR. See Figure 8-4 for a depiction of this mode. If the timing gate is
disabled (CR TGE bit is cleared), TGATE≈ has no effect on the operation of the timer;
thus the input capture function is inoperative. At all times, the TGATE≈ level bit (TGL) in
the SR reflects the level of the TGATE≈ signal.

COUNTER
CLOCK

COUNTER

COUNTER
REGISTER

TGATE

TOUT

Modex Bits in Control Register = 000
Preload 1 Register = 8
Compare Register = 7
TGE Bit of Status Register = 1
TG Bit in Status Register Initially = 0
OCx Bits in Control Register = 10

0 0 8 7 6 5 4 3 2 1 0 77880 123456780

0 0 8 7 6 6 6 6 2 1 0 88801 236667800

TG SET TG CLEARED TG SET

TIMEOUT TC SETTC SETENABLE

Figure 8-4. Input Capture/Output Compare Mode

Since the counter is not affected by TGATE≈, it continues to decrement on the falling
edge of the counter clock and load from the PREL1 at timeout, regardless of the value of
TGATE≈.

When the counter counts down to the value contained in the COM, this condition is
reflected by setting the timer compare (TC) and compare (COM) bits in the SR. TOUTx
responds as selected by the OCx bits in the CR. The output level (OUT) bit in the SR
reflects the value on TOUTx. Shadowing does not affect this operation.

If the counter counts down to $0000, a timeout is detected, causing the SR timeout
interrupt (TO) bit to be set and the SR COM bit to be cleared. On the next falling edge of
the counter clock after the timeout is detected, the value in PREL1 is again loaded into the
counter. TOUTx responds as selected by the CR OCx bits.

A square-wave generator can be implemented by programming the CR OCx bits to toggle
mode. The value in the COM should be one-half the value in PREL1 to cause an event to
happen twice in the countdown.

This mode can be used as a pulse-width modulator by programming the CR OCx bits to
zero mode or one mode. The value in the PREL1 specifies the frequency, and the COM
determines the pulse width. The pulse widths can be changed by writing a new value to
the COM.

8-8 MC68340 USER’S MANUAL MOTOROLA

Periodic interrupt generation can be accomplished by enabling the TO, TG, and/or TC bits
in the SR to generate interrupts by programming the IE bits of the CR. When enabled, the
programmed IRQ≈ signal is asserted whenever the specified bits are set.

TOUTx signal transitions can be controlled by writing new values into the COM. Caution
must be exercised when accessing the COM. If it were to be accessed simultaneously by
the compare logic and by a write, the old compare value may actually get compared to the
counter value.

8.3.2 Square-Wave Generator

This mode can be used for generating both square-wave output and periodic interrupts.
The square wave is generated by counting down from the value in the PREL1 to timeout
(counter value of $0000). TOUTx changes state on each timeout as programmed. This
mode can be selected by programming the CR MODEx bits to 001.

The timer is enabled by setting the SWR and CPE bits in the CR and, if TGATE≈ is
programmed to control the enabling and disabling of the counter (TGE bit set in the CR),
then asserting TGATE≈. When the timer is enabled, the ON bit in the SR is set. On the
next falling edge of the counter clock, the counter is loaded with the value stored in the
PREL1 (N). With each successive falling edge of the counter clock, the counter
decrements. The time between enabling the timer and the first timeout can range from N
to N + 1 periods. When TGATE≈ is used to enable the timer, the enabling of the timer is
asynchronous; however, if timing is carefully considered, the time to the first timeout can
be known. For additional details on timing, see Section 11 Electrical Characteristics.

TOUTx behaves as a square wave when the OCx bits of the CR are programmed for
toggle mode. A timeout occurs every N + 1 periods (allowing for the zero cycle), resulting
in a change of state on TOUTx (see Figure 8-5). The SR OUT bit reflects the level of
TOUTx. If this mode is used to generate periodic interrupts, TOUTx may be enabled if a
square wave is also desired.

COUNTER
CLOCK

 0 0 3 2 1 0 3 2 1 0 3 2 1 0COUNTER

TOUT
N: N + 1

N + 1
N + 1

ENABLE TIMEOUT TIMEOUT TIMEOUT

MODEx Bits in Control Register = 001
Preload 1 Register = N = 3
OCx Bits in Control Register = 01

3

Figure 8-5. Square-Wave Generator Mode

If TGATE≈ is negated when it is enabled to control the timer (TGE = 1), the prescaler and
counter are disabled. Additionally, the SR TG bit is set, indicating that TGATE≈ was
negated. The SR ON bit is cleared, indicating that the timer is disabled. If TGATE≈ is

MOTOROLA MC68340 USER’S MANUAL 8-9

reasserted, the timer is re-enabled and begins counting from the value attained when
TGATE≈ was negated. The SR ON bit is set again.

If TGATE≈ is disabled (TGE = 0), TGATE≈ has no effect on the operation of the timer. In
this case, the counter begins counting on the falling edge of the counter clock immediately
after the SWR and CPE bits in the CR are set. The TG bit of the SR cannot be set. At all
times, TGL in the SR reflects the level of TGATE≈.

If the counter counts down to the value stored in the COM register, then the COM and TC
bits in the SR are set. The counter continues counting down to timeout. At this time, the
SR TO bit is set, and the SR COM bit is cleared. The next falling edge of the counter clock
after timeout causes the value in PREL1 to be loaded back into the counter, and the
counter begins counting down from this value.

The period of the square-wave generator can be changed dynamically by writing a new
value into the PREL1. Caution must be used because, if PREL1 is accessed
simultaneously by the counting logic and a CPU32 write, the old PREL1 value may
actually get loaded into the counter at timeout.

Periodic interrupt generation can be accomplished by enabling the TO, TG, and/or TC bits
in the SR to generate interrupts by programming the CR IE bits. When enabled, the
programmed IRQ≈ signal is asserted whenever the specified bits are set.

8.3.3 Variable Duty-Cycle Square-Wave Generator

In this mode, both the PREL1 and PREL2 registers are used to generate a square wave
with virtually any duty cycle. The square wave is generated by counting down from the
value in the PREL1 to timeout (count value $0000), then loading that value from PREL2
and again counting down to timeout. When this second timeout occurs, the value from
PREL1 is loaded into the counter, and the cycle repeats. TOUTx can be programmed to
change state with every timeout, thus generating a variable duty-cycle square wave. This
mode can be selected by programming the MODE bits in the CR to 010.

The timer is enabled by setting both the SWR and CPE bits in the CR and, if TGATE≈ is
enabled (CR TGE bit is set), then asserting TGATE≈. When the timer is enabled, the ON
bit in the SR is set. On the next falling edge of the counter clock, the counter is loaded
with the value stored in the PREL1 register (N1). With each successive falling edge of the
counter clock, the counter decrements. The time between enabling the timer and the first
timeout can range from N1 to N1+1 periods. When TGATE≈ is used to enable the timer,
the enabling of the timer is asynchronous; however, if timing is carefully considered, the
time to the first timeout can be known. For additional details on timing, see the Section 11
Electrical Characteristics.

If the counter counts down to the value stored in the COM register, the COM and timer
compare interrupt (TC) bits in the SR are set. The counter continues counting down to
timeout. At this time, the TO bit in the SR is set, and the COM bit is cleared. The next
falling edge of the counter clock after timeout causes the value in PREL2 (N2) to be
loaded into the counter, and the counter begins counting down from this value. Each

8-10 MC68340 USER’S MANUAL MOTOROLA

successive timeout causes the counter to be loaded alternately with the values from
PREL1 and PREL2.

TOUTx behaves as a variable duty-cycle square wave when the CR OC bits are
programmed for toggle mode. The second timeout occurs after N2 + 1 periods (allowing
for the zero cycle), resulting in a change of state on TOUTx. The third timeout occurs after
N1 + 1 periods, resulting in a change of state on TOUTx, and so on (see Figure 8-6). The
OUT bit in the SR reflects the level of TOUTx.

COUNTER
CLOCK

 0 0 4 3 2 1 0 2 1 0 4 3 2 1COUNTER

TOUT N1: N1 + 1
N2 + 1

N1 + 1

ENABLE TIMEOUT TIMEOUT TIMEOUT

MODEx Bits in Control Register = 010
Preload 1 Register = N1 = 4
Preload 2 Register = N2 = 2
OCx Bits in Control Register = 01

0 2 1 0

TIMEOUT

 N2 + 1

Figure 8-6. Variable Duty-Cycle Square-Wave Generator Mode

If TGATE≈ is negated when it is enabled (TGE = 1), the prescaler and counter are
disabled. Additionally, the TG bit of the SR is set, indicating that TGATE≈ was negated.
The ON bit of the SR is cleared, indicating that the timer is disabled. If TGATE≈ is
reasserted, the timer is re-enabled and begins counting from the value attained when
TGATE≈ was negated. The ON bit is set again.

If TGATE≈ is not enabled (TGE = 0), TGATE≈ has no effect on the operation of the timer.
In this case, the counter would begin counting on the falling edge of the counter clock
immediately after the SWR and CPE bits in the CR are set. The SR TG bit cannot be set.
At all times, the TGL bit in the SR reflects the level of TGATE≈.

The duty cycle of the waveform generated on TOUTx can be dynamically changed by
writing new values into PREL1 and/or PREL2. If PREL1 or PREL2 is being accessed
simultaneously by the counter logic and a CPU32 write, the old preload value may actually
get loaded into the counter at timeout. If at timeout, the counting logic was accessing
PREL2 and the CPU32 was writing to PREL1 (or visa versa), there would be no
unexpected results.

8.3.4 Variable-Width Single-Shot Pulse Generator

This mode is used to produce a one-time pulse that has a delay controlled by the value
stored in PREL1 and a duration controlled by the value stored in PREL2. With TOUTx
programmed to change state, this sequence creates a single pulse of variable width. This
mode can be selected by programming the CR MODE bits to 011.

MOTOROLA MC68340 USER’S MANUAL 8-11

The timer is enabled by setting both the SWR and CPE bits in the CR and, if TGATE≈ is
enabled (TGE bit in the CR is set), then asserting TGATE≈. When the timer is enabled,
the ON bit in the SR is set. On the next falling edge of the counter clock, the counter is
loaded with the value stored in the PREL1 register (N1). With each successive falling
edge of the counter clock, the counter decrements. The time between enabling the timer
and the first timeout can range from N1 to N1 + 1 periods. When TGATE≈ is used to
enable the counter, the enabling of the timer is asynchronous; however, if timing is
carefully considered, the time to the first timeout can be known. For additional details on
timing, see Section 11 Electrical Characteristics.

If the counter counts down to the value stored in the COM, the COM and TC bits in the SR
are set. The counter continues counting down to timeout. At this time, the SR TO bit is set
and the SR COM bit is cleared. The next falling edge of the counter clock after timeout
causes the value in PREL2 (N2) to be loaded into the counter, and the counter begins
counting down from this value. After the second timeout, the selected clock is held high,
disabling the prescaler and counter. Additionally, the SR ON and COM bits are cleared.

TOUTx behaves as a variable-width pulse when the OCx bits of the CR are programmed
for toggle mode. TOUTx is a logic zero between the time that the timer is enabled and the
first timeout. When this event occurs, TOUTx transitions to a logic one. The second
timeout occurs after N2 + 1 periods (allowing for the zero cycle), resulting in TOUTx
returning to a logic zero (see Figure 8-7). The OUT bit in the SR reflects the level of
TOUTx.

COUNTER
CLOCK

COUNTER

TOUT

 0 0 2 1 0 5 4 3 2 1 0

N1: N1 + 1
N2 + 1

ENABLE TIMEOUT TIMEOUT

MODEx Bits in Control Register = 011
Preload 1 Register = N1 = 2
Preload 2 Register = N2 = 5
OCx bits in Control Register = 01

Figure 8-7. Variable-Width Single-Shot Pulse Generator Mode

If TGATE≈ is negated when it is enabled (TGE = 1), the prescaler and counter are
disabled. Additionally, the SR TG bit is set, indicating that TGATE≈ was negated. The SR
ON bit is cleared, indicating that the timer is disabled. If TGATE≈ is reasserted, the timer
is re-enabled and begins counting from the value attained when TGATE≈ was negated.
The ON bit is set again.

If TGATE≈ is not enabled (TGE = 0), TGATE≈ has no effect on the operation of the timer.
In this case, the counter would begin counting on the falling edge of the counter clock

8-12 MC68340 USER’S MANUAL MOTOROLA

immediately after the SWR and CPE bits in the CR are set. The SR TG bit cannot be set.
At all times, the TGL bit in the SR reflects the level of TGATE≈.

The width of the pulse generated on TOUTx (the value in PREL2) can be changed while
the counter is counting down from the value in PREL1. Caution must be used because, if
PREL2 is accessed simultaneously by the counting logic and a CPU32 write, the old
PREL2 value may actually get loaded into the counter at timeout.

8.3.5 Pulse-Width Measurement

This mode is used to count the clock cycles during a particular event (see Figure 8-8). The
event is defined by the assertion and negation of TGATE≈. When TGATE≈ is asserted,
the counter begins counting down from $FFFF. When TGATE≈ is negated, the counter
stops counting and holds the value at which it stopped. Further assertions and negations
of TGATE≈ have no effect on the counter. This mode can be selected by programming
the CR MODEx bits to 100.

The timer is enabled by setting the SWR, CPE, and TGE bits in the CR. Asserting
TGATE≈ starts the counter. When the timer is enabled, the SR ON bit is set. On the next
falling edge of the counter clock, the counter is loaded with the value $FFFF. With each
successive falling edge of the counter clock, the counter decrements. The PREL1 and
PREL2 registers are not used in this mode.

When TGATE≈ is negated, the SR TG bit is set, the ON bit is negated, and the prescaler
and counter are disabled. Subsequent transitions on TGATE≈ do not re-enable the
counter. The TGL bit in the SR reflects the level of TGATE≈ at all times.

COUNTER
CLOCK

TGATE

0 f f f f
f f f f
f f f f
f e d c

MEASURED PULSE

f
f
f
b

f
f
f
b

START
COUNTING

ENABLE

STOP
COUNTING

NO EFFECT

MODEx Bits in Control Register = 100
TGE Bit of Control Register = 1

COUNTER

Figure 8-8. Pulse-Width Measurement Mode

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a timeout is detected. This sets the
SR TO, and the clears the COM bit. At timeout, the next falling edge of the counter clock

MOTOROLA MC68340 USER’S MANUAL 8-13

causes the counter to reload with $FFFF. TOUTx transitions at timeout or is disabled as
programmed by the CR OCx bits. The SR OUT bit reflects the level on TOUTx.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POx bits in the SR is readable and can be thought of as an
extension of the least significant bits in the CNTR.

NOTE

Once the timer has been enabled, do not clear the SR TG bit
until the pulse has been measured and TGATE≈ has been
negated.

8.3.6 Period Measurement

This mode is used to count the period of a particular event. The event is defined by the
assertion, negation, and subsequent reassertion of TGATE≈. When TGATE≈ is asserted,
the counter begins counting down from $FFFF. The negation of TGATE≈ has no effect on
the counter. When TGATE≈ is reasserted, the counter stops counting and holds the value
at which it stopped. Further assertions and negations of TGATE≈ have no effect on the
counter. This mode can be selected by programming the CR MODEx bits to 101.

The timer is enabled by setting the SWR, CPE, and the TGE bits in the CR. The assertion
of TGATE≈ starts the counter. When the timer is enabled, the SR ON bit is set. On the
next falling edge of the counter clock, the counter is loaded with the value of $FFFF. With
each successive falling edge of the counter clock, the counter decrements. The PREL1
and PREL2 registers are not used in this mode.

The first negation of TGATE≈ is ignored, but on the second assertion of TGATE≈, the SR
TG bit is set, the SR ON bit is negated, and the prescaler and counter are disabled.
Subsequent transitions on TGATE≈ do not re-enable the counter. See Figure 8-9 for a
depiction of this mode. The SR TGL bit reflects the level of TGATE≈ at all times.

8-14 MC68340 USER’S MANUAL MOTOROLA

f
f
f
9

START
COUNTING

ENABLE

STOP
COUNTING

NO EFFECT

MODEx Bits in Control Register = 101
TGE Bit of Control Register = 1

TGATE

COUNTER
CLOCK

0 f f f f
f f f f
f f f f
f e d c

f
f
f
b

COUNTER f
f
f
a

f
f
f
9

PERIOD MEASURED

Figure 8-9. Period Measurement Mode

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a timeout is detected. This sets the
SR TO bit, and clears the SR COM bit. At timeout, the next falling edge of the counter
clock reloads the counter with $FFFF. TOUTx transitions at timeout or is disabled as
programmed by the OCx bits of the CR, and the OUT bit in the SR reflects the level on
TOUTx.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POx bits in the SR are readable and can be thought of as an
extension of the least significant bits in the CNTR.

NOTE

Once the timer has been enabled, do not clear the SR TG bit
until the pulse has been measured and TGATE≈ has been
negated.

8.3.7 Event Count

This mode is used to count events by interpreting the falling edges of the counter clock as
events (see Figure 8-10). These events may be external or internal to the chip—for
example, counting the number of system clock cycles required to execute a sequence of
instructions. As another example, by connecting AS to TINx, the number of bus cycles to
complete a sequence of instructions could be counted. This mode can be selected by
programming the CR MODEx bits to 110.

MOTOROLA MC68340 USER’S MANUAL 8-15

COUNTER
CLOCK

TGATE

0 f f f f f
f f f f f
f f f f f
f e d c b

0 0 0 0 0 f f
0 0 0 0 0 f f
0 0 0 0 0 f f
2 1 1 1 0 f e

COUNTER

TG BIT SET TIMEOUT
TO BIT SET

ENABLE

MODEx Bits in Control Register = 110
TGE Bit of the Control Register = 1

0
0
0
1

Figure 8-10. Event Count Mode

The timer is enabled by setting the SWR and CPE bits in the CR and, if TGATE≈ is
enabled (TGE bit of the CR is set), then asserting TGATE≈. When the timer is enabled,
the SR ON bit is set. On the next falling edge of the counter clock, the counter is loaded
with the value of $FFFF. With each successive falling edge of the counter clock, the
counter decrements. The PREL1 and PREL2 registers are not used in this mode.

If TGATE≈ is not enabled (CR TGE bit is cleared), then TGATE≈ does not start or stop
the timer or affect the TG bit of the SR. In this case, the counter would begin counting on
the falling edge of the counter clock immediately after the SWR and CPE bits in the CR
are set.

If TGATE≈ is enabled (CR TGE bit is set), then the assertion of TGATE≈ starts the
counter. The negation of TGATE≈ disables the counter, sets the SR TG bit, and clears the
ON bit in the SR. If TGATE≈ is reasserted, the timer resumes counting from where it was
stopped, and the ON bit is set again. Further assertions and negations of TGATE≈ have
the same effect. The TGL bit in the SR reflects the level of TGATE≈ at all times.

If the counter counts down to the value stored in the COM register, the COM and TC bits
in the SR are set. If the counter counts down to $0000, a timeout is detected. This event
sets the TO in the SR and clears the COM bit. At timeout, the next falling edge of the
counter clock reloads the counter with $FFFF. TOUTx transitions at timeout or is disabled
as programmed by the CR OC bits. The SR OUT bit reflects the level on TOUTx.

To determine the number of cycles counted, the value in the CNTR must be read,
inverted, and incremented by 1 (the first count is $FFFF which, in effect, includes a count
of zero). The counter counts in a true 216 fashion. For measuring pulses of even greater
duration, the value in the POx bits in the SR are readable and can be thought of as an
extension of the least significant bits in the CNTR.

8-16 MC68340 USER’S MANUAL MOTOROLA

8.3.8 Timer Bypass

In this mode, the counter and prescaler cannot be enabled. However TGATE≈ and
TOUTx can be used for I/O. This mode can be selected by programming the CR MODE
bits to 111.

TGATE≈ can be used as a simple input port when the CR is configured as follows:

CR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWR IE2 IE1 IE0 TGE PCLK CPE CLK POT2 POT1 POT0 MODE2 MODE1 MODE0 OC1 OC0

TGATE≈ AS A SIMPLE INPUT

X X 0 X X X 1 X X X X 1 1 1 X X

X-Don’t care

When TGATE≈ is asserted, the SR ON bit is set. When TGATE≈ is negated, the ON bit is
cleared. The value of the TGL bit in the SR reflects the level of TGATE≈. TGATE≈ can
also be used as an input port that generates interrupts on a low-to-high transition of
TGATE≈ when the CR is configured as follows:

CR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWR IE2 IE1 IE0 TGE PCLK CPE CLK POT2 POT1 POT0 MODE2 MODE1 MODE0 OC1 OC0

TGATE≈ AS AN INPUT/INTERRUPT

X X 1 X 1 X 1 X X X X 1 1 1 X X

When TGATE≈ is negated, the SR TG bit is set, and the programmed IRQx signal is
asserted to the CPU32. The TG bit can only be cleared by writing a one to this bit position.
The value of the SR TGL bit reflects the level of TGATE≈.

Additionally, TOUTx can be used as a simple output port when the CR is configured as
follows:

CR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWR IE2 IE1 IE0 TGE PCLK CPE CLK POT2 POT1 POT0 MODE2 MODE1 MODE0 OC1 OC0

TGATE≈ AS A SIMPLE OUTPUT

0 X X X X X 1 X X X X 1 1 1 OC1 OC0

SWR must be a zero to change the value of TOUTx. Changing the value of the CR OCx
bits determines the level of TOUTx as shown in Table 8-1.

MOTOROLA MC68340 USER’S MANUAL 8-17

Table 8-1. OCx Encoding

OC1 OC0 TOUTx

0 0 Hi-Z

0 1 0

1 0 0

1 1 1

A read of the SR while in this mode always shows the TO, TC, and COM bits cleared, and
the PO bits as $FF. The SR OUT bit always indicates the level on the TOUTx pin.

8.3.9 Bus Operation

The following paragraphs describe the operation of the IMB during read, write, and
interrupt acknowledge cycles to the timer.

8.3.9.1 READ CYCLES. The timer is accessed with no wait states. The timer responds to
byte, word, and long-word reads, and 16 bits of valid data are returned. Read cycles from
reserved registers return logic zero.

8.3.9.2 WRITE CYCLES. The timer is accessed with no wait states. The timer responds to
byte, word, and long-word writes. Write cycles to read-only registers and bits as well as
reserved registers complete in a normal manner without exception processing; however,
the data is ignored.

8.3.9.3 INTERRUPT ACKNOWLEDGE CYCLES. The timer is capable of arbitrating for
interrupt servicing and supplying the interrupt vector when it has successfully won
arbitration. The vector number must be provided if interrupt servicing is necessary; thus,
the interrupt register (IR) must be initialized. If the IR is not initialized, a spurious interrupt
exception will be taken if interrupt servicing is necessary.

8.4 REGISTER DESCRIPTION

The following paragraphs contain a detailed description of each register and its specific
function. The operation of the timer is controlled by writing control words into the
appropriate registers. Timer registers and their associated addresses are listed in Figure
8-11. For more information about a particular register, refer to the individual register
description. The ADDR column indicates the offset of the register from the base address
of the timer. An FC column designation of S indicates that register access is restricted to
supervisor only. A designation of S/U indicates that access is governed by the SUPV bit in
the module configuration register (MCR).

8-18 MC68340 USER’S MANUAL MOTOROLA

TIMER 1 TIMER 2 FC 15 0

$600 $640 S MODULE CONFIGURATION REGISTER (MCR)

$602 $642 S RESERVED

$604 $644 S INTERRUPT REGISTER (IR)

$606 $646 S/U CONTROL REGISTER (CR)

$608 $648 S/U STATUS/PRESCALER REGISTER (SR)

$60A $64A S/U COUNTER REGISTER (CNTR)

$60C $64C S/U PRELOAD 1 REGISTER (PREL1)

$60E $64E S/U PRELOAD 2 REGISTER (PREL2)

$610 $650 S/U COMPARE REGISTER (COM)

$612-$63F $652-$67F S/U RESERVED

Figure 8-11. Timer Module Programming Model

In the registers discussed in the following paragraphs, the numbers in the upper right-
hand corner indicate the offset of the register from the base address specified by the
module base address register (MBAR) in the SIM40. The first number is the offset for
timer 1; the second number is the offset for timer 2. The numbers on the top line of the
register represent the bit position in the register. The register contains the mnemonic for
the bit. The value of these bits after a hardware reset is shown below the register. The
access privilege is shown in the lower right-hand corner.

NOTE

A CPU32 RESET instruction will not affect the MCR, but will
reset all other registers in the timer modules as though a
hardware reset occurred.

The term 'timer' is used to reference either timer 1 or timer 2, since the two are functionally
equivalent.

8.4.1 Module Configuration Register (MCR)

The MCR controls the timer module configuration. This register can be either read or
written when the module is enabled and is in the supervisor state. The MCR is not
affected by a CPU32 RESET instruction.

MCR $600, $640
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

STP FRZ1 FRZ0 0 0 0 0 0 SUPV 0 0 0 IARB3 IARB2 IARB1 IARB0

RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Supervisor Only

MOTOROLA MC68340 USER’S MANUAL 8-19

STP—Stop bit
1 = Setting the STP bit stops all clocks within the timer module except for the clock

from the IMB. The clock from the IMB remains active to allow the CPU32 access
to the MCR. The clock stops on the low phase of the clock and remains stopped
until the STP bit is cleared by the CPU32 or a hardware reset. Accesses to timer
module registers while in stop mode produce a bus error. The timer module
should be disabled in a known state prior to setting the STP bit; otherwise,
unpredictable results may occur. The STP bit should be set prior to executing the
LPSTOP instruction to reduce overall power consumption.

0 = The timer operates in normal mode.

FRZ1, FRZ0—Freeze
These bits determine the action taken when the FREEZE signal is asserted on the IMB,
when the CPU32 has entered background debug mode. Table 8-2 lists the action taken
for each bit combination.

Table 8-2. FRZx Control Bits

FRZ1 FRZ0 ACTION

0 0 Ignore FREEZE

0 1 Reserved (FREEZE ignored)

1 0 Execution Freeze

1 1 Execution Freeze

Bits 12–8, 6–4—Reserved

SUPV—Supervisor/User
The value of this bit has no effect on registers permanently defined as supervisor-only
access.

1 = The timer registers defined as supervisor/user reside in supervisor data space
and are only accessible from supervisor programs.

0 = The timer registers defined as supervisor/user reside in user data space and are
accessible from either supervisor or user programs.

IARB3–IARB0—Interrupt Arbitration Bits
Each module that generates interrupts has an IARB field. These bits are used to
arbitrate for the bus in the case that two or more modules simultaneously generate an
interrupt at the same priority level. No two modules can share the same IARB value.
(Timer 1 and timer 2 should be programmed with different values if both are used.) The
reset value of the IARB field is $0, which prevents this module from arbitrating during
the interrupt acknowledge cycle. The system software should initialize the IARB field to
a value from $F (highest priority) to $1 (lowest priority).

8-20 MC68340 USER’S MANUAL MOTOROLA

8.4.2 Interrupt Register (IR)

The IR contains the priority level for the timer interrupt request and the 8-bit vector number
of the interrupt. The register can be read or written to at any time while in supervisor mode
and while the timer module is enabled (i.e., the STP bit in the MCR is cleared).

IR $604, $644
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 IL2 IL1 IL0 IVR7 IVR6 IVR5 IVR4 IVR3 IVR2 IVR1 IVR0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Supervisor Only

Bits 15–11—Reserved

IL2–IL0—Interrupt Level Bits
Each module that can generate interrupts has an interrupt level field. The priority level
encoded in these bits is sent to the CPU32 on the appropriate IRQ≈ signal. The CPU32
uses this value to determine servicing priority. See Section 5 CPU32 for more
information.

IV7–IV0—Interrupt Vector Bits
Each module that can generate interrupts has an interrupt vector (IV) field. This 8-bit
number indicates the offset from the base of the vector table where the address of the
exception handler for the specified interrupt is located. The IV field is reset to $0F,
which indicates an uninitialized interrupt condition. See Section 5 CPU32 for more
information.

8.4.3 Control Register (CR)

The CR controls the operation of the timer. The register can always be read or written
when the timer module is enabled (i.e., the STP bit in the MCR is cleared). Changing the
contents of the CR should only be attempted when the timer is disabled (the SWR bit in
the CR is cleared). Changing the CR while the timer is running may produce unpredictable
results.

CR $606, $646
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWR IE2 IE1 IE0 TGE PCLK CPE CLK POT2 POT1 POT0 MODE2 MODE1 MODE0 OC1 OC0

RESET:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor/User

SWR—Software Reset
1 = Removes the software reset.
0 = A software reset is performed by first clearing this bit and then clearing the TO,

TG, and TC bits in the SR. The prescaler is loaded with $FF, the counter is set to
$0000, and the SR COM bit is cleared. When this bit is zero, the timer is
disabled.

MOTOROLA MC68340 USER’S MANUAL 8-21

IE2–IE0—Interrupt Enable
These bits determine which sources of interrupts, TO, TG, and TC, are enabled to
generate an interrupt request to the CPU32. Table 8-3 lists which interrupts are enabled
for all bit combinations.

Table 8-3. IEx Encoding

IE2 IE1 IE0 Enabled Interrupts

0 0 0 Polling Mode (No Interrupts Enabled)

0 0 1 TC Enabled

0 1 0 TG Enabled

0 1 1 TG and TC Enabled

1 0 0 TO Enabled

1 0 1 TO and TC Enabled

1 1 0 TO and TG Enabled

1 1 1 TO, TG, and TC Enabled

TGE—Timing Gate Enable
1 = The TGATE≈ signal is enabled to control the enabling and disabling of the

prescaler and counter, except in the input capture/output compare mode (see
8.3.1 Input Capture/Output Compare).

0 = The TGATE≈ signal has no effect on the timer operation.

PCLK—Prescaler Clock Select
This bit selects which clock is used for the counter clock.

1 = The counter is decremented by the prescaler output tap as selected by the POT
field in the CR.

0 = The counter is decremented by the selected clock.
The prescaler continues to decrement regardless of how PCLK is set.

CPE—Counter Prescaler Enable
1 = The selected clock is enabled. If the TGE bit is set, then TGATE≈ must also be

asserted (except in the input capture/output compare mode).
0 = The selected clock is held high, halting the prescaler and counter.

CLK—Clock
1 = The selected clock is taken from the TINx input.
0 = The selected clock is one-half the system clock's frequency.

The TOUTx of one timer can be fed externally into the TINx input of the other timer,
resulting in a 32-bit counter if the prescalers are not used and a 48-bit counter if they
are used.

8-22 MC68340 USER’S MANUAL MOTOROLA

POT2–POT0—Prescaler Output Tap
If PCLK is set, these bits encode which of the prescaler's output taps act as the counter
clock. A division of the selected clock is applied to the counter as listed in Table 8-4.

Table 8-4. POT Encoding

POT2 POT1 POT0
Division of

Selected Clock

0 0 1 Divide by 2

0 1 0 Divide by 4

0 1 1 Divide by 8

1 0 0 Divide by 16

1 0 1 Divide by 32

1 1 0 Divide by 64

1 1 1 Divide by 128

0 0 0 Divide by 256

MODE2–MODE0—Operation Mode
These bits select one of the eight modes of operation for the timer as listed in Table 8-5.
Refer to 8.3 Operating Modes for more information on the individual modes.

Table 8-5. MODEx Encoding

MODE2 MODE1 MODE0 OPERATION MODE

0 0 0 Input Capture/Output Compare

0 0 1 Square-Wave Generator

0 1 0 Variable Duty-Cycle Square-Wave Generator

0 1 1 Variable-Width Single-Shot Pulse Generator

1 0 0 Pulse-Width Measurement

1 0 1 Period Measurement

1 1 0 Event Count

1 1 1 Timer Bypass (Simple Test Mode)

OC1–OC0—Output Control
These bits select the conditions under which TOUTx changes (see Table 8-6). These
bits may have a different effect when in the input capture/output compare mode.
Caution should be used when modifying the OC bits near timer events.

Table 8-6. OCx Encoding

OC1 OC0 TOUTx MODE

0 0 Disabled

0 1 Toggle Mode

1 0 Zero Mode

1 1 One Mode

MOTOROLA MC68340 USER’S MANUAL 8-23

Disabled—TOUTx is disabled and three-stated.

Toggle Mode—If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to zero. If the timer is enabled (SWR = 1), timeout events
(counter reaches $0000) toggle TOUTx. In the input capture/output compare mode,
TOUTx is immediately set to zero if the timer is disabled (SWR = 0). If the timer is
enabled (SWR = 1), timer compare events toggle TOUTx. (Timer compare events occur
when the counter reaches the value stored in the COM.)

Zero Mode—If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to zero. If the timer is enabled (SWR = 1), TOUTx will be set
to zero at the next timeout. In the input capture/output compare mode, TOUTx is
immediately set to zero if the timer is disabled (SWR = 0). If the timer is enabled (SWR
= 1), TOUTx will be set to zero at timeouts and set to one at timer compare events. If
the COM is $0000, TOUTx will be set to zero at the timeout/timer compare event.

One Mode—If the timer is disabled (SWR = 0) when this encoding is programmed,
TOUTx is immediately set to one. If the timer is enabled (SWR = 1), TOUTx will be set
to one at the next timeout. In the input capture/output compare mode, TOUTx is
immediately set to one if the timer is disabled (SWR = 0). If the timer is enabled (SWR =
1), TOUTx will be set to one at timeouts and set to zero at timer compare events. If the
COM is $0000, TOUTx will be set to one at the timeout/timer compare event.

8.4.4 Status Register (SR)

The SR contains timer status information as well as the state of the prescaler. This
register is updated on the rising edge of the system clock when a read of its location is not
in progress, allowing the most current information to be contained in this register. The
register can be read, and the TO, TG, and TC bits can be written when the timer module is
enabled (i.e., the STP bit in the MCR is cleared).

SR $608, $648
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IRQ TO TG TC TGL ON OUT COM PO7 PO6 PO5 PO4 PO3 PO2 PO1 PO0

RESET (TGATE≈ NEGATED):

0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1

RESET (TGATE≈ ASSERTED):

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Supervisor/User

IRQ—Interrupt Request bit
The positioning of this bit in the most significant location in this register allows it it be
conditionally tested as if it were a signed binary integer.

1 = An interrupt condition has occurred. This bit is the logical OR of the enabled TO,
TG, and TC interrupt bits.

0 = The bit(s) that caused the interrupt condition has been cleared. If an IRQ≈ signal
has been asserted, it is negated when this bit is cleared.

8-24 MC68340 USER’S MANUAL MOTOROLA

TO—Timeout Interrupt
1 = The counter has transitioned from $0001 to $0000, and the counter has rolled

over. This bit does not affect the programmed IRQ≈ signal if the IE2 bit in the CR
is cleared.

0 = This bit is cleared by the timer whenever the RESET signal is asserted on the
IMB, regardless of the mode of operation. This bit may also be cleared by writing
a one to it. Writing a zero to this bit does not alter its contents. This bit is not
affected by disabling the timer (SWR = 0).

TG—Timer Gate Interrupt
1 = This bit is set whenever the CR TGE bit is set and the TGATE≈ signal

transitions in the manner to which the particular mode of operation responds.
Refer to 8.3 Operating Modes for more details. This bit does not affect the
programmed IRQ≈ signal if the IE1 bit in the CR is cleared.

0 = This bit is cleared by the timer whenever the RESET signal is asserted on the
IMB, regardless of the mode of operation. This bit may also be cleared by writing
a one to it. Writing a zero to this bit does not alter its contents. This bit is not
affected by disabling the timer (SWR = 0).

TC—Timer Compare Interrupt
1 = This bit is set when the counter transitions (off a clock/event falling edge) to the

value in the COM. This bit does not affect the programmed IRQ≈ signal if the IE0
bit in the CR is cleared.

0 = This bit is cleared by the timer whenever the RESET signal is asserted on the
IMB, regardless of the mode of operation. This bit may also be cleared by writing
a one to it. Writing a zero to this bit does not alter its contents. This bit is not
affected by disabling the timer (SWR = 0).

TGL—TGATE≈ Level
1 = The TGATE≈ signal is negated.
0 = The TGATE≈ signal is asserted.

ON—Counter Enabled
1 = This bit is set whenever the SWR and CPE bits are set in the CR. If the CR TGE

bit is set, TGATE≈ must also be asserted (except in the input capture/output
compare mode) since this signal then controls the enabling and disabling of the
counter. If all these conditions are met, the counter is enabled and begins
counting down.

0 = The counter is not enabled and does not begin counting down.

OUT—Output Level
1 = TOUTx is a logic one.
0 = TOUTx is a logic zero, or the pin is three-stated.

COM—Compare Bit
This bit is used to indicate when the counter output value is at or between the value in
the COM and $0000 (timeout).

MOTOROLA MC68340 USER’S MANUAL 8-25

1 = This bit is set when the counter output equals the value in the COM.
0 = This bit is cleared when a timeout occurs, the COM register is accessed (read or

write), the timer is reset with the SWR bit, or the RESET signal is asserted on the
IMB. This bit is cleared regardless of the state of the TC bit.

This bit can be used to indicate when a write to the PREL1 or PREL2 registers will not
cause a problem during a counter reload at timeout. To ensure that the write to the
PREL register is recognized at timeout, the latency between the read of the COM bit
and the write to the PREL register must be considered.

PO7–PO0—Prescaler Output
These bits show the levels on each of the eight output taps of the prescaler. These
values are updated every time that the system clock goes high and a read cycle of this
byte in the SR is not in progress.

8.4.5 Counter Register (CNTR)

The CNTR reflects the value of the counter. This value can be reliably read at any time
since it is updated on every rising edge of the system clock (except in the input
capture/output compare mode) when a read of the register is not in progress. This read-
only register can be read when the timer module is enabled (i.e. the STP bit in the MCR is
cleared).

CNTR $60A, $64A
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT15 CNT14 CNT13 CNT12 CNT11 CNT10 CNT9 CNT8 CNT7 CNT6 CNT5 CNT4 CNT3 CNT2 CNT1 CNT0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor/User

All 24 bits of the prescaler and the counter may be obtained by one long-word read at the
address of the SR, since the CNTR is contiguous to it. Any changes in the prescaler value
due to the two cycles necessary to perform a long-word read should be considered. If this
latency presents a problem, the TGATE≈ signal may be used to disable the decrement
function while the reads are occurring.

8.4.6 Preload 1 Register (PREL1)

The PREL1 stores a value that is loaded into the counter in some modes of operation.
This value is loaded into the counter on the first falling edge of the counter clock after the
counter is enabled. This register can be be read and written when the timer module is
enabled (i.e. the STP bit in the MCR is cleared). However, a write to this register must be
completed before timeout for the new value to be reliably loaded into the counter.

8-26 MC68340 USER’S MANUAL MOTOROLA

PREL1 $60C, $64C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR1-15 PR1-14 PR1-13 PR1-12 PR1-11 PR1-10 PR1-9 PR1-8 PR1-7 PR1-6 PR1-5 PR1-4 PR1-3 PR1-2 PR1-1 PR1-0

RESET:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Supervisor/User

For some modes of operation, this register is also used to reload the counter one falling
clock edge after a timeout occurs. Refer to 8.3 Operating Modes for more information on
the individual modes.

8.4.7 Preload 2 Register (PREL2)

PREL2 is used in addition to PREL1 in the variable duty-cycle square-wave generator and
variable-width single-shot pulse generator modes. When in either of these modes, the
value in PREL1 is loaded into the counter on the first falling edge of the counter clock after
the counter is enabled. After timeout, the value in PREL2 is loaded into the counter. This
register can be be read and written when the timer module is enabled (i.e., the STP bit in
the MCR is cleared). However, a write to this register must be completed before timeout
for the new value to be reliably loaded into the counter.

PREL2 $60E, $64E
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR2-15 PR2-14 PR2-13 PR2-12 PR2-11 PR2-10 PR2-9 PR2-8 PR2-7 PR2-6 PR2-5 PR2-4 PR2-3 PR2-2 PR2-1 PR2-0

RESET:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Supervisor/User

8.4.8 Compare Register (COM)

The COM can be used in any mode. When the 16-bit counter reaches the value in the
COM, the TC and COM bits in the SR are set. In the input capture/output compare mode,
a compare event can be programmed to set, clear, or toggle TOUTx. The register can be
be read and written when the timer module is enabled (i.e., the STP bit in the MCR is
cleared).

COM $610, $650
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

COM15 COM14 COM13 COM12 COM11 COM10 COM9 COM8 COM7 COM6 COM5 COM4 COM3 COM2 COM1 COM0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Supervisor/User

The COM can be used to produce an interrupt when the SR TC bit has been enabled to
produce an interrupt and the counter counts down to a preselected value. The COM can
also be used to indicate that the timer is approaching timeout.

MOTOROLA MC68340 USER’S MANUAL 8-27

Caution must be exercised when accessing the COM. If it were to be accessed
simultaneously by the compare logic and by a write, the old compare value may get
compared to the counter value.

8.5 TIMER MODULE INITIALIZATION SEQUENCE

The following paragraphs discuss a suggested method for initializing the timer module.
Since both timers are functionally equivalent, only one timer module will be referenced.

8.5.1 Timer Module Configuration

If the timer capability of the MC68340 is being used, the following steps should be
followed to initialize a timer module properly. Note that this sequence must be done for
each timer module used.

Control Register (CR)
• Clear the SWR bit to disable the timer.

Status Register (SR)
• Clear the TO, TG, and TG bits to reset the interrupts.

Module Configuration Register (MCR)
• Initialize the STP for normal operation.

• Select whether to respond to or ignore FREEZE (FRZx bits).

• Select the access privilege for the supervisor/user registers (SUPV bit).

• Select the interrupt arbitration level for the timer module (IARBx bits).

Interrupt Register (IR)
• Program the interrupt priority level for the timer interrupts (ILx bits).

• Program the interrupt vector number for the timer interrupts (IVx bits).

Preload Registers (PREL1 and PREL2)
• If required, initialize the preload registers for mode of operation.

Compare Register (COM)
• If desired, initialize the compare register.

The following steps begin operation:

Control Register (CR)
• Set the SWR bit to enable the timer.

• Enable the desired interrupts (IEx bits).

• Enable TGATE if required for mode of operation (TGE bit).

• Select the prescaler clock (PCLK bit).

8-28 MC68340 USER’S MANUAL MOTOROLA

• Enable the counter prescaler (CPE bit).

• Select the selected clock (CLK bit).

• If the PCLK bit is set, select the POTx bits.

• Select the mode of operation (MODEx bits).

• Select the operation of TOUT (OCx bits).

8.5.2 Timer Module Example Configuration Code

The following code is an example of a configuration sequence for the timer module.

* MC68340 basic timer module register initialization example code.
* This code is used to initialize the 68340's internal timer module
* registers, providing basic functions for operation.
* It sets up timer1 for square wave generation.

* equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* Timer1 module equates
TIMER1 EQU $600 Offset from MBAR for timer1 module regs
MCR1 EQU $0 MCR for timer1

* Timer1 register offsets from timer1 base address
IR1 EQU $604 interrupt register timer1
CR1 EQU $606 control register timer1
SR1 EQU $608 status register timer1
CNTR1 EQU $60A counter register timer1
PRLD11 EQU $60C preload register 1 timer1
COM1 EQU $610 compare register timer1

* Initialize Timer1

LEA MODBASE+TIMER1,A0 Pointer to timer1 module

* Disable timer1
CLR.W CR1(A0)

* Clear the TO, TG, and TC bits
CLR.W SR1(A0)

MOTOROLA MC68340 USER’S MANUAL 8-29

* Module configuration register:
* Timer1 module is set for normal operation, ignore FREEZE.
* Supervisor/user timer1 registers unrestricted.
* Interrupt arbitration at priority $03.

MOVE.W #$0003,MCR1(A0)

* Initialize timer1 interrupt level to 2 and vector to $0F
MOVE.W #$020F,IR1(A0)

* Initialize preload 1 to 3
MOVE.W #$0003,PRLD11(A0)

* Initialize the compare register to 0
CLR.W COM1(A0)

* Control register 1:
* Enable timer1, no interrupts are enabled, TGATE signal has no effect.
* Use the selected clock for the counter clock, and enable it.
* Selected clock is 1/2 system's freq. Square-wave generation, toggle TOUT.

MOVE.W #$8205,CR1(A0)

END

* MC68340 basic timer module register initialization example code.
* This code is used to initialize the 68340's internal timer module
* registers, providing basic functions for operation.
* It sets up timer1 for pulse-width measurement. In this mode, the number
* of clock cycles during a particular event are counted. The event is
* defined by the assertion and negation of TGATE.

* equates

MBAR EQU $0003FF00 Address of SIM40 Module Base Address Reg.
MODBASE EQU $FFFFF000 SIM40 MBAR address value

* Timer1 module equates
TIMER1 EQU $600 Offset from MBAR for timer1 module regs
MCR1 EQU $0 MCR for timer1

8-30 MC68340 USER’S MANUAL MOTOROLA

* Timer1 register offsets from timer1 base address
IR1 EQU $604 interrupt register timer1
CR1 EQU $606 control register timer1
SR1 EQU $608 status register timer1
CNTR1 EQU $60A counter register timer1
COM1 EQU $610 compare register timer1

* Initialize Timer1

LEA MODBASE+TIMER1,A0 Pointer to timer1 module

* Disable timer1
CLR.W CR1(A0)

* Allow TGATE to negate and assert so that an accurate count will result.
* If SR1 TGL bit=1, continue looping. TGATE is negated.

LOOP1 BTST.B #$3,SR1(A0)
BNE.B LOOP1

* If TGL bit=0, continue looping. TGATE is asserted.
LOOP2 BTST.B #$3,SR1(A0)
BEQ.B LOOP2

* Ready to initialize timer1, TGATE is negated.

* Module configuration register:
* Timer1 module is set for normal operation, ignore FREEZE.
* Supervisor/user timer1 registers unrestricted.
* Interrupt arbitration at priority $03.

MOVE.W #$0003,MCR1(A0)

* Initialize timer1 interrupt level to 2 and vector to $0F
MOVE.W #$020F,IR1(A0)

* Initialize the compare register to 0
CLR.W COM1(A0)

* Clear the SR1 TG bit (by writing a 1) to use as a flag
MOVE.B #$20,SR1(A0)

* Control register 1:
* Enable timer1, no interrupts are enabled, TGATE signal used to control
* the counter. Use the selected clock for the counter clock, and enable it.
* Selected clock is 1/2 system's freq. Pulse-width measurement,
* disable TOUT.

MOTOROLA MC68340 USER’S MANUAL 8-31

MOVE.W #$8A10,CR1(A0)

* If SR TG bit=0, continue looping TGATE is asserted,
* else TG=1 indicating TGATE was negated. When TG=1, counting is stopped.
 LOOP3 BTST.B #$5,SR1(A0)

BEQ.B LOOP3

* Counting is complete. To determine the number of cycles counted, the value
* in CNTR1 must be read, inverted, and incremented by 1.

MOVE.W CNTR1(A0),D0
NOT.W D0
ADDQ.W #$1,DO

* D0 contains the number of cycles counted.

END

MOTOROLA MC68340 USER’S MANUAL 9-1

SECTION 9
IEEE 1149.1 TEST ACCESS PORT

The MC68340 includes dedicated user-accessible test logic that is fully compatible with
the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems
associated with testing high-density circuit boards have led to development of this
proposed standard under the sponsorship of the Test Technology Committee of IEEE and
the Joint Test Action Group (JTAG). The MC68340 implementation supports circuit-board
test strategies based on this standard.

The test logic includes a test access port (TAP) consisting of four dedicated signal pins, a
16-state controller, an instruction register, and two test data registers. A boundary scan
register links all device signal pins into a single shift register. The test logic, implemented
using static logic design, is independent of the device system logic. The MC68340
implementation provides the following capabilities:

a. Perform boundary scan operations to test circuit-board electrical continuity

b. Sample the MC68340 system pins during operation and transparently shift
out the result in the boundary scan register

c. Bypass the MC68340 for a given circuit-board test by effectively reducing the
boundary scan register to a single bit

d. Disable the output drive to pins during circuit-board testing

NOTE

Certain precautions must be observed to ensure that the IEEE
1149.1 test logic does not interfere with nontest operation. See
9.6 Non-IEEE 1149.1 Operation for details.

9.1 OVERVIEW

NOTE

This description is not intended to be used without the
supporting IEEE 1149.1 document.

The discussion includes those items required by the standard and provides additional
information specific to the MC68340 implementation. For internal details and applications
of the standard, refer to the IEEE 1149.1 document.

9-2 MC68340 USER’S MANUAL MOTOROLA

An overview of the MC68340 implementation of IEEE 1149.1 is shown in Figure 9-1. The
MC68340 implementation includes a 16-state controller, a 3-bit instruction register, and
two test registers (a 1-bit bypass register and a 132-bit boundary scan register). This
implementation includes a dedicated TAP consisting of the following signals:

TCK — a test clock input to synchronize the test logic
TMS — a test mode select input (with an internal pullup resistor) that is sampled on

the rising edge of TCK to sequence the TAP controller's state machine
TDI — a test data input (with an internal pullup resistor) that is sampled on the

rising edge of TCK.
TDO — a three-state test data output that is actively driven in the shift-IR and shift-

DR controller states. TDO changes on the falling edge of TCK.

3-BIT INSTRUCTION REGISTER

DECODER

TAP
CTLR

TMS

TCK

BOUNDARY SCAN REGISTER

BYPASS

TDI
M
U
X

M
U
X TDO

TEST DATA REGISTERS

(133 BITS)

2 0

132 0

Figure 9-1. Test Access Port Block Diagram

9.2 TAP CONTROLLER

The TAP controller is responsible for interpreting the sequence of logical values on the
TMS signal. It is a synchronous state machine that controls the operation of the JTAG
logic. The state machine is shown in Figure 9-2; the value shown adjacent to each arc
represents the value of the TMS signal sampled on the rising edge of the TCK signal. For
a description of the TAP controller states, please refer to the IEEE 1149.1 document.

MOTOROLA MC68340 USER’S MANUAL 9-3

TEST LOGIC
 RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-DR SHIFT-IR

EXIT1-DR EXIT1-IR

PAUSE-DR PAUSE-IR

EXIT2-DR

UPDATE-DR

EXIT2-IR

UPDATE -IR

1

0
1 1

0

1

0

0

1

0

1

0

0

11

1

0

0

1

0

1

11

0

11
0

0

0

0

0

Figure 9-2. TAP Controller State Machine

9.3 BOUNDARY SCAN REGISTER

The MC68340 IEEE 1149.1 implementation has a 132-bit boundary scan register. This
register contains bits for all device signal and clock pins and associated control signals.
The XTAL, X2, and XFC pins are associated with analog signals and are not included in
the boundary scan register.

All MC68340 bidirectional pins, except the open-drain I/O pins (DONE1, DONE2, HALT,
and RESET), have a single register bit for pin data and an associated control bit in the
boundary scan register. All open drain I/O pins have two register bits, input and output, for
pin data and no associated control bit. To ensure proper operation, the open-drain pins
require external pullups. Twenty-three control bits in the boundary scan register define the
output enable signal for associated groups of bidirectional and three-state pins. The
control bits and their bit positions are listed in Table 9-1.

9-4 MC68340 USER’S MANUAL MOTOROLA

Table 9-1. Boundary Scan Control Bits

Name Bit Number Name Bit Number Name Bit Number

tout2.ctl 29 cs0.ctl 66 ab28.ctl 95

irq7.ctl 52 ab.ctl 83 ab29.ctl 97

irq6.ctl 54 berr.ctl 84 ab30.ctl 99

irq5.ctl 56 db.ctl 85 ab31.ctl 101

cs3.ctl 58 ab24.ctl 87 modck.ctl 122

irq3.ctl 60 ab25.ctl 89 ifetch.ctl 125

cs2.ctl 62 ab26.ctl 91 tout1.ctl 130

cs1.ctl 64 ab27.ctl 93

Boundary scan bit definitions are shown in Table 9-2. The first column in Table 9-2 defines
the bit's ordinal position in the boundary scan register. The shift register bit nearest TDO
(i.e., first to be shifted out) is defined as bit 0; the last bit to be shifted out is 131.

The second column references one of the five MC68340 cell types depicted in Figures
9-3–9-7, which describe the cell structure for each type.

The third column lists the pin name for all pin-related bits or defines the name of
bidirectional control register bits. The active level of the control bits (i.e., output driver on)
is defined by the last digit of the cell type listed for each control bit. For example, the
active-high level for irq7.ctl (bit 52) is logic zero since the cell type is IO.Ctl0. The active
level for ab.ctl (bit 83) is logic one, since the cell type is IO.Ctl1. IO.Ctl0 (see Figure 9-6)
differs from IO.Ctl1 (see Figure 9-5) by an inverter in the output enable path.

The fourth column lists the pin type: TS-Output indicates a three-state output pin, I/O
indicates a bidirectional pin, and OD-I/O denotes an open-drain bidirectional pin. An open-
drain output pin has two states: off (high impedance) and logic zero.

The last column indicates the associated boundary scan register control bit for
bidirectional, three-state, and open-drain output pins.

Bidirectional pins include a single scan bit for data (IO.Cell) as depicted in Figure 9-7.
These bits are controlled by one of the two bits shown in Figures 9-5 and 9-6. The value of
the control bit determines whether the bidirectional pin is an input or an output. One or
more bidirectional data bits can be serially connected to a control bit as shown in Figure 9-
8. Note that, when sampling the bidirectional data bits, the bit data can be interpreted only
after examining the IO control bit to determine pin direction.

MOTOROLA MC68340 USER’S MANUAL 9-5

Table 9-2. Boundary Scan Bit Definitions

Bit
Num Cell Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Num Cell Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

0 IO.Cell FC3 I/O* ab.ctl 35 O.Latch R≈RDYA Output —

1 IO.Cell FC2 I/O* ab.ctl 36 O.Latch T≈RDYA Output —

2 IO.Cell FC1 I/O* ab.ctl 37 I.Pin RxDB Input —

3 IO.Cell FC0 I/O* ab.ctl 38 O.Latch TxDB Output —

4 IO.Cell A23 I/O* ab.ctl 39 O.Latch RTSB Output —

5 IO.Cell A22 I/O* ab.ctl 40 I.Pin CTSB Input —

6 IO.Cell A21 I/O* ab.ctl 41 I.Pin SCLK Input —

7 IO.Cell A20 I/O* ab.ctl 42 I.Pin X1 Input —

8 IO.Cell A19 I/O* ab.ctl 43 I.Pin DREQ1 Input —

9 IO.Cell A18 I/O* ab.ctl 44 O.Latch DACK1 Output —

10 IO.Cell A17 I/O* ab.ctl 45 O.Latch DONE1 OD-I/O —

11 IO.Cell A16 I/O* ab.ctl 46 I.Pin DONE1 OD-I/O —

12 IO.Cell A15 I/O* ab.ctl 47 I.Pin DREQ2 Input —

13 IO.Cell A14 I/O* ab.ctl 48 O.Latch DACK2 Output —

14 IO.Cell A13 I/O* ab.ctl 49 O.Latch DONE2 OD-I/O —

15 IO.Cell A12 I/O* ab.ctl 50 I.Pin DONE2 OD-I/O —

16 IO.Cell A11 I/O* ab.ctl 51 IO.Cell IRQ7 I/O irq7.ctl

17 IO.Cell A10 I/O* ab.ctl 52 IO.Ctl0 irq7.ctl — —

18 IO.Cell A9 I/O* ab.ctl 53 IO.Cell IRQ6 I/O irq6.ctl

19 IO.Cell A8 I/O* ab.ctl 54 IO.Ctl0 irq6.ctl — —

20 IO.Cell A7 I/O* ab.ctl 55 IO.Cell IRQ5 I/O irq5.ctl

21 IO.Cell A6 I/O* ab.ctl 56 IO.Ctl0 irq5.ctl — —

22 IO.Cell A5 I/O* ab.ctl 57 IO.Cell CS3 I/O cs3.ctl

23 IO.Cell A4 I/O* ab.ctl 58 IO.Ctl0 cs3.ctl — —

24 IO.Cell A3 I/O* ab.ctl 59 IO.Cell IRQ3 I/O irq3.ctl

25 IO.Cell A2 I/O* ab.ctl 60 IO.Ctl0 irq3.ctl — —

26 IO.Cell A1 I/O* ab.ctl 61 IO.Cell CS2 I/O cs2.ctl

27 I.Pin TGATE2 Input — 62 IO.Ctl0 cs2.ctl — —

28 O.Latch TOUT2 TS-Output tout2.ctl 63 IO.Cell CS1 I/O cs1.ctl

29 IO.Ctl0 tout2.ctl — — 64 IO.Ctl0 cs1.ctl — —

30 I.Pin TIN2 Input — 65 IO.Cell CS0 I/O cs0.ctl

31 I.Pin RxDA Input — 66 IO.Ctl0 cs0.ctl — —

32 O.Latch TxDA Output — 67 IO.Cell D0 I/O db.ctl

33 O.Latch RTSA Output — 68 IO.Cell D1 I/O db.ctl

34 I.Pin CTSA Input — 69 IO.Cell D2 I/O db.ctl

9-6 MC68340 USER’S MANUAL MOTOROLA

Table 9-2. Boundary Scan Bit Definitions (Continued)

Bit
Num Cell Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

Bit
Num Cell Type

Pin/Cell
Name

Pin
Type

Output
CTL Cell

70 IO.Cell D3 I/O db.ctl 101 IO.Ctl0 ab31.ctl — —

71 IO.Cell D4 I/O db.ctl 102 IO.Cell A0 I/O* ab.ctl

72 IO.Cell D5 I/O db.ctl 103 IO.Cell DSACK0 I/O** berr.ctl

73 IO.Cell D6 I/O db.ctl 104 IO.Cell DSACK1 I/O** berr.ctl

74 IO.Cell D7 I/O db.ctl 105 IO.Cell RMC I/O* ab.ctl

75 IO.Cell D8 I/O db.ctl 106 IO.Cell R/W I/O* ab.ctl

76 IO.Cell D9 I/O db.ctl 107 IO.Cell SIZ1 I/O* ab.ctl

77 IO.Cell D10 I/O db.ctl 108 IO.Cell SIZ0 I/O* ab.ctl

78 IO.Cell D11 I/O db.ctl 109 IO.Cell DS I/O* ab.ctl

79 IO.Cell D12 I/O db.ctl 110 IO.Cell AS I/O* ab.ctl

80 IO.Cell D13 I/O db.ctl 111 I.Pin BGACK Input —

81 IO.Cell D14 I/O db.ctl 112 O.Latch BG Output —

82 IO.Cell D15 I/O db.ctl 113 I.Pin BR Input —

83 IO.Ctl1 ab.ctl — — 114 IO.Cell BERR I/O** berr.ctl

84 IO.Ctl0 berr.ctl — — 115 O.Latch HALT OD-I/O —

85 IO.Ctl1 db.ctl — — 116 I.Pin HALT OD-I/O —

86 IO.Cell A24 I/O ab24.ctl 117 O.Latch RESET OD-I/O —

87 IO.Ctl0 ab24.ctl — — 118 I.Pin RESET OD-I/O —

88 IO.Cell A25 I/O ab25.ctl 119 O.Latch CLKOUT Output —

89 IO.Ctl0 ab25.ctl — — 120 I.Pin EXTAL Input —

90 IO.Cell A26 I/O ab26.ctl 121 IO.Cell MODCK I/O modck.ctl

91 IO.Ctl0 ab26.ctl — — 122 IO.Ctl0 modck.ctl — —

92 IO.Cell A27 I/O ab27.ctl 123 O.Latch IPIPE Output —

93 IO.Ctl0 ab27.ctl — — 124 IO.Cell IFETCH I/O* ifetch.ctl

94 IO.Cell A28 I/O ab28.ctl 125 IO.Ctl0 ifetch.ctl — —

95 IO.Ctl0 ab28.ctl — — 126 I.Pin BKPT Input —

96 IO.Cell A29 I/O ab29.ctl 127 O.Latch FREEZE Output —

97 IO.Ctl0 ab29.ctl — — 128 I.Pin TIN1 Input —

98 IO.Cell A30 I/O ab30.ctl 129 O.Latch TOUT1 TS-Output tout1.ctl

99 IO.Ctl0 ab30.ctl — — 130 IO.Ctl0 tout1.ctl — —

100 IO.Cell A31 I/O ab31.ctl 131 I.Pin TGATE1 Input —

NOTES:
The noted pins are implemented differently than defined in the signal definition description:

* Input during Motorola factory test
** Output during Motorola factory test

MOTOROLA MC68340 USER’S MANUAL 9-7

1

MUX
1

G1

1
MUX

1

G1

FROM
LAST
CELL

1 D

C1

CLOCK DR

1 D

C1

UPDATE DR

SHIFT DR
TO NEXT

 CELL

TO OUTPUT
BUFFER

1 – EXTEST
0 – OTHERWISE

DATA FROM
SYSTEM

LOGIC

Figure 9-3. Output Latch Cell (O.Latch)

FROM LAST
 CELL

1
MUX

1

G1

INPUT
 PIN

SHIFT DRCLOCK DR

TO NEXT
 CELL

1D

C1

1
MUX

1

G1

1D

C1

UPDATE DR

 1 – EXTEST
 0 – OTHERWISE

Figure 9-4. Input Pin Cell (I.Pin)

9-8 MC68340 USER’S MANUAL MOTOROLA

FIG. 9-4

1
MUX

1

G1

1
MUX

1

G1

 OUTPUT
CONTROL

FROM
SYSTEM

LOGIC

FROM
LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 ENABLE

R

RESET

(1 = DRIVE)

1 – EXTEST
0 – OTHERWISE

SHIFT DR

Figure 9-5. Active-High Output Control Cell (IO.Ctl1)

1
MUX

1

G1

1
MUX

1

G1

 OUTPUT
CONTROL

FROM
SYSTEM

LOGIC

FROM
LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 ENABLE

R

RESET

(1 = DRIVE)

1 – EXTEST
0 – OTHERWISE

SHIFT DR

Figure 9-6. Active-Low Output Control Cell (IO.Ctl0)

MOTOROLA MC68340 USER’S MANUAL 9-9

1

MUX
1

G1

1
MUX

1

G1

OUTPUT
FROM

SYSTEM
LOGIC

FROM LAST
CELL

1D

C1

CLOCK DR

1D

C1

UPDATE DR

TO NEXT
 CELL

TO OUTPUT
 DRIVER

 1 – EXTEST
 0 – OTHERWISE SHIFT DR

1
MUX

1

G1

FROM OUTPUT
ENABLE

FROM PIN

Figure 9-7. Bidirectional Data Cell (IO.Cell)

IO.CTL0
OR

IO.CTL1

IO.CELL

EN

FROM LAST CELL

OUTPUT
DATA

INPUT
 DATA

OUTPUT
ENABLE

I/O
PIN

TO NEXT CELL

TO NEXT
BIDIRECTIONAL

PIN

*

NOTE: More than one lO.Cell could be serially connected and controlled by a single IO.Ctlx cell.

Figure 9-8. General Arrangement for Bidirectional Pins

9.4 INSTRUCTION REGISTER

The MC68340 IEEE 1149.1 implementation includes the three mandatory public
instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS), but does not support any of
the optional public instructions defined by IEEE 1149.1. One additional public instruction
(HI-Z) provides the capability for disabling all device output drivers. The MC68340

9-10 MC68340 USER’S MANUAL MOTOROLA

includes a 3-bit instruction register without parity, consisting of a shift register with three
parallel outputs. Data is transferred from the shift register to the parallel outputs during the
update-IR controller state. The three bits are used to decode the four unique instructions
listed in Table 9-3.

The parallel output of the instruction register is reset to all ones in the test-logic-reset
controller state. Note that this preset state is equivalent to the BYPASS instruction.

Table 9-3. Instructions

Code

B2 B1 B0 Instruction

0 0 0 EXTEST

0 0 1 SAMPLE/PRELOAD

X 1 X BYPASS

1 0 0 HI-Z

1 0 1 BYPASS

During the capture-IR controller state, the parallel inputs to the instruction shift register are
loaded with the standard 2-bit binary value (01) into the two least significant bits and the
loss-of-crystal (LOC) status signal into bit 2. The parallel outputs, however, remain
unchanged by this action since an update-IR signal is required to modify them.

The LOC status bit of the instruction register indicates whether an internal clock is
detected when operating with a crystal clock source. The LOC bit is clear when a clock is
detected and set when it is not. The LOC bit is always clear when an external clock is
used. The LOC bit can be used to detect faulty connectivity when a crystal is used to clock
the device.

9.4.1 EXTEST (000)

The external test (EXTEST) instruction selects the 132-bit boundary scan register.
EXTEST asserts internal reset for the MC68340 system logic to force a predictable benign
internal state while performing external boundary scan operations.

By using the TAP, the register is capable of a) scanning user-defined values into the
output buffers, b) capturing values presented to input pins, c) controlling the direction of
bidirectional pins, and d) controlling the output drive of three-state output pins. For more
details on the function and uses of EXTEST, please refer to the IEEE 1149.1 document.

9.4.2 SAMPLE/PRELOAD (001)

The SAMPLE/PRELOAD instruction selects the 132-bit boundary scan register and
provides two separate functions. First, it provides a means to obtain a snapshot of system
data and control signals. The snapshot occurs on the rising edge of TCK in the capture-
DR controller state. The data can be observed by shifting it transparently through the
boundary scan register.

MOTOROLA MC68340 USER’S MANUAL 9-11

NOTE

Since there is no internal synchronization between the IEEE
1149.1 clock (TCK) and the system clock (CLKOUT), the user
must provide some form of external synchronization to achieve
meaningful results.

The second function of SAMPLE/PRELOAD is to initialize the boundary scan register
output bits prior to selection of EXTEST. This initialization ensures that known data will
appear on the outputs when entering the EXTEST instruction.

9.4.3 BYPASS (X1X, 101)

The BYPASS instruction selects the single-bit bypass register as shown in Figure 9-9.
This creates a shift-register path from TDI to the bypass register and, finally, to TDO,
circumventing the 132-bit boundary scan register. This instruction is used to enhance test
efficiency when a component other than the MC68340 becomes the device under test.

1
MUX

1

G1

1 D

C1

CLOCK DR

FROM TDI

0

SHIFT DR

TO TDO

Figure 9-9. Bypass Register

When the bypass register is selected by the current instruction, the shift-register stage is
set to a logic zero on the rising edge of TCK in the capture-DR controller state. Therefore,
the first bit to be shifted out after selecting the bypass register will always be a logic zero.

9.4.4 HI-Z (100)

The HI-Z instruction is not included in the IEEE 1149.1 standard. It is provided as a
manufacturer’s optional public instruction to prevent having to backdrive the output pins
during circuit-board testing. When HI-Z is invoked, all output drivers, including the two-
state drivers, are turned off (i.e., high impedance). The instruction selects the bypass
register.

9.5 MC68340 RESTRICTIONS

The control afforded by the output enable signals using the boundary scan register and
the EXTEST instruction requires a compatible circuit-board test environment to avoid
device-destructive configurations. The user must avoid situations in which the MC68340
output drivers are enabled into actively driven networks. Overdriving the TDO driver when
it is active is not recommended.

9-12 MC68340 USER’S MANUAL MOTOROLA

The MC68340 includes on-chip circuitry to detect the initial application of power to the
device. Power-on reset (POR), the output of this circuitry, is used to reset both the system
and IEEE 1149.1 logic. The purpose for applying POR to the IEEE 1149.1 circuitry is to
avoid the possibility of bus contention during power-on. The time required to complete
device power-on is power-supply dependent. However, the IEEE 1149.1 TAP controller
remains in the test-logic-reset state while POR is asserted. The TAP controller does not
respond to user commands until POR is negated.

The MC68340 features a low-power stop mode that uses a CPU instruction called
LPSTOP. The interaction of the IEEE 1149.1 interface with LPSTOP mode is as follows:

1. Leaving the TAP controller test-logic-reset state negates the ability to achieve
minimal power consumption, but does not otherwise affect device functionality.

2. The TCK input is not blocked in LPSTOP mode. To consume minimal power, the
TCK input should be externally connected to VCC or ground.

3. The TMS and TDI pins include on-chip pullup resistors. In LPSTOP mode, these two
pins should remain either unconnected or connected to VCC to achieve minimal
power consumption.

9.6 NON-IEEE 1149.1 OPERATION

In non-IEEE 1149.1 operation, there are two constraints. First, the TCK input does not
include an internal pullup resistor and should be pulled up externally to preclude mid-level
inputs. The second constraint is to ensure that the IEEE 1149.1 test logic is kept
transparent to the system logic by forcing the TAP controller into the test-logic-reset state,
using either of two methods. During power-on, POR forces the TAP controller into this
state. Alternatively, sampling TMS as a logic one for five consecutive TCK rising edges
also forces the TAP controller into this state. If TMS either remains unconnected or is
connected to VCC, then the TAP controller cannot leave the test-logic-reset state,
regardless of the state of TCK.

MOTOROLA MC68340 USER’S MANUAL 10-1

SECTION 10
APPLICATIONS

This section provides guidelines for using the MC68340. Minimum system-configuration
requirements and memory interface information are discussed.

10.1 MINIMUM SYSTEM CONFIGURATION

One of the powerful features of the MC68340 is the small number of external components
needed to create an entire system. The information contained in the following paragraphs
details a simple high-performance MC68340 system (see Figure 10-1). This system
configuration features the following hardware:

• Processor Clock Circuitry

• Reset Circuitry

• SRAM Interface

• ROM Interface

• Serial Interface

CLOCK
CIRCUITRY

MC68340

SRAM

ROM SERIAL
INTERFACE

Figure 10-1. Minimum System Configuration Block Diagram

10.1.1 Processor Clock Circuitry

The MC68340 has an on-chip clock synthesizer that can operate from an on-chip phase-
locked loop (PLL) and a voltage-controlled oscillator (VCO). The clock synthesizer uses
an external crystal connected between the EXTAL and XTAL pins as a reference
frequency source. Figure 10-2 shows a typical circuit using an inexpensive 32.768-kHz
watch crystal. The 20-M resistor connected between the EXTAL and XTAL pins provides
biasing for a faster oscillator startup time. The crystal manufacturer's documentation
should be consulted for specific recommendations on external component values.

10-2 MC68340 USER’S MANUAL MOTOROLA

MC68340

XTAL

EXTAL

20 M

4.7 pF

10 pF

330 k

32.768 kHz

Figure 10-2. Sample Crystal Circuit

The circuit shown in Figure 10-3 is the typical circuit recommended by Statek Corporation,
for 32768 kHz crystal, part number CX-IV. It is recommended to start with these values,
but parameter values may need to be adjusted to compensate for variables in layout.

MC68340

XTAL

EXTAL

22 M

10 pF

20 pF

470 k

32.768 kHz

Figure 10-3. Statek Corporation Crystal Circuit

A separate power pin (VCCSYN) is used to allow the clock circuits to operate with the rest
of the device powered down and to provide increased noise immunity for the clock circuits.
The source for VCCSYN should be a quiet power supply, and external bypass capacitors
(see Figure 10-4) should be placed as close as possible to the VCCSYN pin to ensure a
stable operating frequency.

Additionally, the PLL requires that an external low-leakage filter capacitor, typically in the
range of 0.01 to 0.1 µF, be connected between the XFC and VCCSYN pins. The XFC
capacitor should provide 50-MΩ insulation but should not be electrolytic. For external
clock mode without PLL, the XFC pin can be left open. Smaller values of the external filter
capacitor provide a faster response time for the PLL, and larger values provide greater
frequency stability. Figure 10-4 depicts examples of both an external filter capacitor and
bypass capacitors for VCCSYN.

MOTOROLA MC68340 USER’S MANUAL 10-3

MC68340

XFC

VCCSYN

0.1 F 1

NOTE 1: Must be a low-leakage capacitor.

VCCSYN

0.1 Fµµ 0.01 Fµ

Figure 10-4. XFC and VCCSYN Capacitor Connections

10.1.2 Reset Circuitry

Because it is optional, reset circuitry is not shown in Figure 10-1. The MC68340 holds
itself in reset after power-up and asserts RESET to the rest of the system. If an external
reset pushbutton switch is desired, an external reset circuit is easily constructed by using
open-collector cross-coupled NAND gates to debounce the output from the switch.

10.1.3 SRAM Interface

The SRAM interface is very simple when the programmable chip selects are used.
External circuitry to decode address information and circuitry to return data and size
acknowledge (DSACK≈) is not required. However, external ICs are required to provide
write enables for the high and low bytes of data.

MCM6206-35 MCM6206-35

R/W

CE

E

R/W

CE

E

D7-D0 D15-D8

A15-A1

R/W

SIZ0

CSD15-D0

MC68340

UWE

..
.. ..

..

..
..

..
..

..
..

..
..AS

LWE

A0

Figure 10-5. SRAM Interface

The SRAM interface shown in Figure 10-5 is a two-clock interface at 16.78-MHz operating
frequency. The MCM6206C-35 memories provide an access time of 15 ns when the chip
enable (E) input is low. If buffers are required to reduce signal loading or if slower and less
expensive memories are desired, a three-clock cycle can be used. In the circuit shown in
Figure 10-5, additional memories can be used provided the MC68340 specification for

10-4 MC68340 USER’S MANUAL MOTOROLA

load capacitance on the chip-select (CS≈) signal is not exceeded. (Address buffers may
be needed, however.)

10.1.4 ROM Interface

Using the programmable chip selects creates a very straightforward ROM interface. As
shown in Figure 10-6, no external circuitry is needed. Care must be used, however, not to
overload the address bus. Address buffers may be required to ensure that the total system
input capacitance on the address signals does not exceed the CL specification.

MC68340

A16–A1

D15–D0

CS0

16-BIT
ROM

CE

CE

Figure 10-6. ROM Interface

10.1.5 Serial Interface

The necessary circuitry to create an RS-232 interface with the MC68340 includes an
external crystal and an RS-232 receiver/driver (see Figure 10-7). The resistor and
capacitor values shown are typical; the crystal manufacturer's documentation should be
consulted for specific recommendations on external component values. The circuit shown
does not include modem support (ready-to-send (RTS) and clear-to-send (CTS) are not
shown); however, these signals can be connected to the receiver/driver and to the
connector in a similar manner as the connections for TxDx and RxDx.

MOTOROLA MC68340 USER’S MANUAL 10-5

X1

X2

RxDx

TxDx

MC68340

15 pF

5 pF

3.6864 MHz

Rx1

Tx1

RS
 2

32
C

O
N

N
EC

TO
R

C1+ C2+

MC145407

R

T

10 Fµ10 Fµ
C1- C1-

µ10 Fµ 10 F
VSS

GND

C2+

C2-

VCC

Figure 10-7. Serial Interface

10.2 MEMORY INTERFACE INFORMATION

The following paragraphs contain information on using an 8-bit boot ROM, performing
access time calculations, calculating frequency-adjusted outputs, and interfacing an 8-bit
device to 16-bit memory using the DMA channel single-address mode.

10.2.1 Using an 8-Bit Boot ROM

Upon power-up, the MC68340 uses CS0 to begin operation. CS0 is a three-wait-state, 16-
bit chip select, until otherwise programmed. If an 8-bit ROM is desired, external circuitry
can be added to return an 8-bit DSACK≈ in two wait states (see Figure 10-8).

CLKOUT

CS0

CP

MR

Q0
Q1

Q2
Q3

DSACK0

'393

Figure 10-8. External Circuitry for 8-Bit Boot ROM

The `393 is a falling edge-triggered counter; thus, CS0 is stable during the time in which it
is being clocked. CS0 acts as the asynchronous reset—i.e., when it is asserted, the `393
is allowed to count. The falling edge of S2 provides the first counting edge. Q1 does not
transition on this falling edge, but transitions to a logic one on the subsequent edge.
DSACK0 is Q1 inverted; thus, on the next falling edge, DSACK0 is seen as asserted,
indicating an 8-bit port. When CS0 is negated, Q1 is again held in reset and DSACK0 is
negated. The timing diagram in Figure 10-9 illustrates this operation.

10-6 MC68340 USER’S MANUAL MOTOROLA

S0 S1 S2 SW SW SW SW S3 S4 S5 S0 S1 S2

CLKOUT

CS0

Q1

DSACK0

Figure 10-9. 8-bit Boot ROM Timing

10.2.2 Access Time Calculations

The two time paths that are critical in an MC68340 application using the CS≈ signals are
shown in Figure 10-10. The first path is the time from address valid to when data must be
available to the processor; the second path is the time from CS≈ asserted to when data
must be available to the processor.

CS

D15–D0

A31–A0

CLKOUT

S0 S4S1 S5 S0

t 27

t

CSDVt

t6

ADVt

9

Figure 10-10. Access Time Computation Diagram

As shown in the diagram, an equation for the address access time, tADV, can be
developed as follows:

tADV = tcyc(Nc – 0.5) – ts9 – ts27

where:

tcyc = system CLKOUT period

Nc = number of clocks per bus cycle

ts6 = CLKOUT high to address valid = 30 ns maximum at 16.78 MHz

ts27 = data-in valid to CLKOUT low setup = 5 ns minimum at 16.78 MHz

MOTOROLA MC68340 USER’S MANUAL 10-7

An equation for the chip select access time, tCSDV, can be developed as follows:

tCSDV = tcyc(Nc – 1) – ts9 – ts27
where:

tcyc = system clock period

Nc = number of clocks per access

ts9 = CLKOUT low to CS≈ asserted = 30 ns maximum at 16.78 MHz

ts27 = data-in valid to CLKOUT low setup = 5 ns minimum at 16.78 MHz

Using these equations, the memory access times at 16.78 MHz are shown in Table 10-1.
See Section 11 Electrical Characteristics for more timing information.

Table 10-1. Memory Access Times at 16.78 MHz

Access Time N = 2 N = 3 N = 4 N = 5 N = 6

tADV 54 ns 114 ns 173 ns 233 ns 292 ns

tCSDV 24 ns 84 ns 143 ns 203 ns 263 ns

The values can be used to determine how many clock cycles an access will take, given
the access time of the memory devices and any delays through buffers or external logic
that may be needed.

10.2.3 Calculating Frequency-Adjusted Output

The general relationship between the CLKOUT and most input and output signals is
shown in Figure 10-11. Most outputs transition off of a falling edge of CLKOUT, but the
same principle applies to those outputs that transition off of a rising edge.

CLKOUT

OUTPUTS

ASYNCHRONOUS
INPUTS

t d

t su ht

Figure 10-11. Signal Relationships to CLKOUT

For outputs that are referenced to a clock edge, the propagation delay (td) does not
change as the frequency changes. For instance, specification 6 in the electrical
characteristics, shown in Section 11 Electrical Characteristics, shows that address,
function code, and size information is valid 3 to 30 ns after the rising edge of S0. This
specification does not change even if the device frequency is less than 16.78 MHz.

10-8 MC68340 USER’S MANUAL MOTOROLA

Additionally, the relationship between the asynchronous inputs and the clock edge, as
shown in Figure 10-11, does not change as frequency changes.

A second type of specification indicates the minimum amount of time a signal will be
asserted. This type of specification is illustrated in Figure 10-12.

OUTPUT

CLKOUT

t w

NT/2

t d

Figure 10-12. Signal Width Specifications

The method for calculating a frequency-adjusted tw is as follows:

tw' = tw + N (Tf'/2 – Tf/2) + (Tf'/2 – td)

where:

tw' = the frequency-adjusted signal width

tw = the signal width at 16.78 MHz

N = the number of full one-half clock periods in tw

Tf'/2 = one-half the new clock period

Tf/2 = one-half the clock period at full speed

td = the propagation time from the clock edge

The following calculation uses a 16.78-MHz part, specification 14, AS width asserted, at
12.5 MHz as an example:

tw = 100 ns

N = 3

Tf'/2 = 80/2 = 40 ns

Tf/2 = 60/2 = 30 ns

td = 30 ns maximum

therefore:

tw' = 100 + 3(40 – 30) + (40 – 30) = 140 ns

The third type of specification used is a skew between two outputs (see Figure 10-13).

MOTOROLA MC68340 USER’S MANUAL 10-9

OUTPUT2

OUTPUT1

CLKOUT

T/2

td1

d2

t s

t

Figure 10-13. Skew between Two Outputs

The method for calculating a frequency-adjusted ts is as follows:

ts' = ts + N (Tf'/2 – Tf/2) + (Tf'/2 – td1)

where:

ts' = the frequency-adjusted skew

ts = the skew at full speed

N = the number of full one-half clock periods in ts, if any

Tf'/2 = one-half the new clock period

Tf/2 = one-half the clock period at full speed

td1 = the propagation time for the first output from the clock edge

The following calculation uses a 16.78-MHz port, specification 21, R/W high to A S
asserted, at 8 MHz as an example:

ts = 15 ns minimum

N = 0

Tf'/2 = 125/2 = 62.5 ns

Tf/2 = 60/2 = 30 ns

td1 = 30 ns maximum

therefore:

ts' = 15 + 0(62.5 – 30) + (62.5 – 30) = 47.5 ns minimum

In this manner, new specifications for lower frequencies can be derived for an MC68340.

10-10 MC68340 USER’S MANUAL MOTOROLA

10.2.4 Interfacing an 8-Bit Device to 16-Bit Memory Using Single-
Address DMA Mode

One of the requirements of single-address mode is that the source and destination must
be the same port size. However, the MC68340 can perform direct memory accesses in
single-address mode between an 8-bit device and 16-bit memory. The port size must be
specified as 8 bits, and some external logic is required as shown in Figure 10-14.

DEVICE

74F245

B
T/R

OE
A

MC68340

MEMORY

D15-D8

SIZ0
SIZ1

A0
R/W

D7-D0

Figure 10-14. Circuitry for Interfacing 8-Bit Device to
16-Bit Memory in Single-Address DMA Mode

During even-byte accesses, the data is transferred directly on D15–D8. However, during
odd-byte accesses, the data must be routed on D15–D8 for the 8-bit device and on D7–
D0 for the 16-bit memory.

10.3 POWER CONSUMPTION CONSIDERATIONS

The MC68340 can be designed into low-power applications that involve high-performance
processing capability (32-bits), high functional density, small size, portable capability, and
battery operation.

The MC68340 fits into the following types of applications:

• "Palmtop" Computers • Telephony
— Stylus Input — Cordless Phones
— Voice Input — Cellular Phones
— Image Input • CD-I, CD-ROM

• Transaction Tracking • Defense Industry
— Car Rental — Guidance Systems
— Cargo — Tracking Systems
— Courier • Data Entry
— Handheld • Instruments

• Bar Code Scanners • Handheld Games

MOTOROLA MC68340 USER’S MANUAL 10-11

 10.3.1 MC68340 Power Reduction at 5V

The following figures show how different variables affect typical power consumption at
5 V. Figure 10-15 shows how system activity affects current drain. Figure 10-16 shows
how voltage affects current drain at some typical operating temperatures. Figure 10-17
shows how system clock frequency affects current drain.

0

30

60

90

120

+DMA
OFF

+TIMER 1
OFF

SERIAL
OFF

MAX
CURRENT

INITIALIZATION +TIMER 2
OFF

Typical values
32KHz xtal
16.78 MHz

24 C°

+LPSTOP

.06

I
 (

m
A

)

42

93

81

73

66
62cc

Figure 10-15. MC68340 Current vs. Activity at 5 V

10-12 MC68340 USER’S MANUAL MOTOROLA

60

80

100

120

0 C

24 C

100 C

5.554

Typical values
32KHz xtal
16.78 MHz

peak current

V

CC (V)

I c
c

 (
m

A
)

°

 °

°

Figure 10-16. MC68340 Current vs. Voltage/Temperature

0

30

60

90

120

0 161412108642

Typical values
32KHz xtal

peak current
24 C°

 Clock Frequency (MHz)

I c
c

(m
A

)

Figure 10-17. MC68340 Current vs. Clock Frequency at 5 V

MOTOROLA MC68340 USER’S MANUAL 10-13

10.3.2 MC68340V (3.3 V)

The MC68340V can operate with a 3.3-V power supply for significant power savings. The
formula for power dissipation is

Pd ≈ V2 × f + dc

Table 10-2 shows typical electrical characteristics for both the MC68340 and MC68340V.

Table 10-2. Typical Electrical Characteristics

Parameter MC68340 (5.0 V) MC68340V (3.3 V)

Clock Frequency 0–16.78 MHz
0–25 MHz

0–8.39 MHz
0–16.78 MHz

Typical Current (16 MHz) 95 mA TBD

Typical Current (8 MHz) 55 mA 30 mA

Standby Current 60 µA 25 µA

Running at 3.3 V saves 66% of the power consumption.

The 3.3 V operation provides the following user advantages:

Advantage Benefit

Lower Supply Voltage Fewer Batteries

Fewer Batteries Less Weight
Smaller Size

Lower Current Drain Extended Battery Life

Less Heat Generated No Fan
No Fan Noise

Less EMF Radiation Easier FCC Certification
Less Crosstalk
Closer PCB Traces

High Functional Integration All-In-One 3.3 V Part:
Processor
Peripherals
Glue Logic

These advantages result in a much more portable system.

MOTOROLA MC68340 USER’S MANUAL 11-1

This device contains protective
circuitry against damage due to
high static voltages or electrical
fields; however, it is advised that
normal precautions be taken to
avoid application of any voltages
higher than maximum-rated
voltages to this high-impedance
circuit. Reliability of operation is
enhanced if unused inputs are
tied to an appropriate logic
voltage level (e.g., either GND
or VCC).

SECTION 11
ELECTRICAL CHARACTERISTICS

This section contains detailed information on power considerations, DC/AC electrical
characteristics, and AC timing specifications of the MC68340. Refer to Section 12
Ordering Information and Mechanical Data for specific part numbers corresponding to
voltage, frequency, and temperature ratings.

11.1 MAXIMUM RATINGS
Rating Symbol Value Unit

Supply Voltage1, 2 VCC –0.3 to +6.5 V

Input Voltage1, 2 Vin –0.3 to +6.5 V

Operating Temperature Range TA 0 to 70
or

–40 to +85

°C

Storage Temperature Range Tstg –55 to +150 °C
NOTES:

1. Permanent damage can occur if maximum ratings are exceeded. Exposure
to voltages or currents in excess of recommended values affects device
reliability. Device modules may not operate normally while being exposed to
electrical extremes.

2. Although sections of the device contain circuitry to protect against damage
from high static voltages or electrical fields, take normal precautions to
avoid exposure to voltages higher than maximum-rated voltages.

The following ratings define a range of conditions in which the device will operate without
being damaged. However, sections of the device may not operate normally while being
exposed to the electrical extremes.

11.2 THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit

Thermal Resistance—Junction to Case

Ceramic 144-Pin QFP

Plastic 145-Pin PGA

θJC
6

TBD

°C/W

Thermal Resistance—Junction to Ambient

Ceramic 144-Pin QFP

Plastic 145-Pin PGA

θJA
33

27*

°C/W

* Estimated

11-2 MC68340 USER’S MANUAL MOTOROLA

11.3 POWER CONSIDERATIONS
The average chip-junction temperature, TJ, in °C can be obtained from:

TJ = TA + (PD • θJA) (1)

where:
TA = Ambient Temperature, °C
θJA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD = PINT + PI/O
PINT = ICC x VCC, Watts—Chip Internal Power
PI/O = Power Dissipation on Input and Output Pins—User Determined

For most applications, PI/O < PINT and can be neglected.

An approximate relationship between PD and TJ (if PI/O is neglected) is:

PD = K ÷ (TJ + 273°C)

Solving Equations (1) and (2) for K gives:

K = PD • (TA + 273°C) + θJA • PD2

where K is a constant pertaining to the particular part. K can be determined from equation
(3) by measuring PD (at thermal equilibrium) for a known TA. Using this value of K, the
values of PD and TJ can be obtained by solving Equations (1) and (2) iteratively for any
value of TA.

11.4 AC ELECTRICAL SPECIFICATION DEFINITIONS
The AC specifications presented consist of output delays, input setup and hold times, and
signal skew times. All signals are specified relative to an appropriate edge of the clock and
possibly to one or more other signals.

The measurement of the AC specifications is defined by the waveforms shown in Figure
11-1. To test the parameters guaranteed by Motorola, inputs must be driven to the voltage
levels specified in the figure. Outputs are specified with minimum and/or maximum limits,
as appropriate, and are measured as shown. Inputs are specified with minimum setup and
hold times and are measured as shown. Finally, the measurement for signal-to-signal
specifications are shown.

Note that the testing levels used to verify conformance to the AC specifications do not
affect the guaranteed DC operation of the device as specified in the DC electrical
characteristics.

MOTOROLA MC68340 USER’S MANUAL 11-3

The MC68340V low voltage parts can operate up to 8.39 MHz or 16.78 MHz with a 3.3 V
±0.3 V supply. Separate part numbers are used to distinguish the operation of the parts
according to the supply voltage. Refer to Section 12 Ordering Information and
Mechanical Data for the part numbering schemes. MC68340 is used throughout this
section to refer to the 16.78- or 25.16-MHz parts at 5.0 V ±5%. MC68340V is used
throughout this section to refer to the 8.39- or 16.78-MHz parts at 3.3 V ±0.3 V.

NOTE

The electrical specifications in this section for the MC68340
25.16 MHz at 5.0 V ±5% and the 3.3 V ±0.3 V specifications for
both the 8.39- and 16.78-MHz parts are preliminary.

11-4 MC68340 USER’S MANUAL MOTOROLA

0.8 V

2.0 V

B

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0 V

0.8 V

2.0 V

0.8 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n+1

2.0 V

0.8 V

B

A

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

D

DRIVE
TO 0.5 V

DRIVE
TO 2.4 V

2.0 V

0.8 V

2.0 V

0.8 V

F

CLKOUT

OUTPUTS(1)

OUTPUTS(2)

INPUTS(3)

INPUTS(4)

ALL SIGNALS(5)

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

LEGEND:
A. Maximum output delay specification.
B. Minimum output hold time.
C. Minimum input setup time specification.
D. Minimum input hold time specification.
E. Signal valid to signal valid specification (maximum or minimum).
F. Signal valid to signal invalid specification (maximum or minimum).

E

A

C

C

Figure 11-1. Drive Levels and Test Points for AC Specifications

MOTOROLA MC68340 USER’S MANUAL 11-5

11.5 DC ELECTRICAL SPECIFICATIONS (See notes (a), (b), (c), and (d) corresponding to part

operation, GND = 0 Vdc, TA = 0 to 70°C; see numbered notes)

Characteristic Symbol Min Max Unit

Input High Voltage (except clock) VIH 2.0 VCC V

Input Low Voltage VIL GND 0.8 V

Clock Input High Voltage VIHC 0.7*(VCC) VCC+0.3 V

Undershoot — — –0.8 V

Input Leakage Current (All Input Only Pins) Vin = VCC or GND Iin –2.5 2.5 µA

Hi-Z (Off-State) Leakage Current (All Noncrystal Outputs and I/O Pins)
Vin = 0.5/2.4 V1

IOZ –20 20 µA

Signal Low Input Current TMS, TDI
VIL = 0.8 V

Signal High Input Current TMS, TDI
VIH = 2.0 V

IL

IH

–0.015

–0.015

0.2

0.2

mA

mA

Output High Voltage1, 2

IOH = –0.8 mA, VCC = 4.75 V
All Noncrystal Outputs except HALT, RESET, DONE2, DONE1

VOH 2.4 — V

Output Low Voltage1

IOL = 2.0 mA CLKOUT, FREEZE, IPIPE, IFETCH
IOL = 3.2 mA A23–A0, D15–D0, FC3–FC0, SIZ1, SIZ0
IOL = 5.3 mA All Other Output Only and Group 2 I/O Pins
IOL = 15.3 mA HALT, RESET

VOL —
0.5
0.5
0.5
0.5

V

Total Supply Current at 5 V +5% @ 16.78 MHz
RUN3

LPSTOP (VCO Off)
ICC

SICC

—
180
500

mA
µA

Power Dissipation at 5 V +5% @ 16.78 MHz4 PD — 945 mW

Total Supply Current at 3.3 V + 0.3 V @ 8.39 MHz
RUN5

LPSTOP (VCO Off)
ICC

SICC

—
TBD
TBD

mA
µA

Power Dissipation at 3.3 V +0.3 V @ 8.39 MHz6 PD — TBD mW

Input Capacitance7

All Input-Only Pins
All I/O Pins

Cin —
10
20

pF

Load Capacitance7 CL — 100 pF

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. Input-Only Pins: BERR, BG, BKPT, BR, CTSB, CTSA, DREQ2, DREQ1, DSACK1, DSACK0, EXTAL, RxDB,

RxDA, SCLK, TCK, TDI, TGATE2, TGATE1, TIN2, TIN1, TMS
Output-Only Pins: A23–A0, AS, BG, CLKOUT, DACK2, DACK1, DS, FC3–FC0, FREEZE, IFETCH, IPIPE,
RMC, RTSB, RTSA, R/ W, R≈RDYA, SIZ1, SIZ0, TDO, TOUT2, TOUT1, TxDB, TxDA, T≈RDYA
Input/Output Pins:
Group 1: D15–D0
Group 2: A31–A24, CS3–CS0, DONE2, DONE1, IRQ7, IRQ5, IRQ3, MODCK
Group 3: HALT, RESET

2. VOH specification for HALT, RESET, DONE2, and DONE1 is not applicable because they are open-drain pins.
3. Supply current measured with system clock frequency of 16.78 MHz @ 5.25 V.
4. Power dissipation measured with a system clock frequency of 16.78 MHz, all modules active.
5. Supply current measured with system clock frequency of 8.39 MHz @ 3.6 V.
6. Power dissipation measured with a system clock frequency of 8.39 MHz, all modules active.
7. Capacitance is periodically sampled rather than 100% tested.

11-6 MC68340 USER’S MANUAL MOTOROLA

11.6 AC ELECTRICAL SPECIFICATIONS CONTROL TIMING (See notes (a), (b),

(c), and (d) corresponding to part operation, GND = 0 Vdc, TA = 0 to 70°C; see numbered notes)

3.3 V 3.3 V or 5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

System Frequency1 fsys dc 8.39 dc 16.78 dc 25.16 MHz

Crystal Frequency fXTAL 25 50 25 50 25 50 kHz

On-Chip VCO System Frequency fsys 0.13 8.39 0.13 16.78 0.13 25.16 MHz

On-Chip VCO Frequency Range fVCO 0.1 16.78 0.1 33.5 0.1 50.3 MHz

External Clock Operation fsys 0 8 0 16 0 25 MHz

PLL Start-up Time2 trc — 20 — 20 — 20 ms

Limp Mode Clock Frequency3

SYNCR X-bit = 0
SYNCR X-bit = 1

flimp
—
—

fsys/2
fsys

—
—

fsys/2
fsys

—
—

fsys/2
fsys

kHz

CLKOUT stability4 ∆CLK –1 +1 –1 +1 –1 +1 %

15 CLKOUT Period in Crystal Mode tcyc 119.2 — 59.6 — 40 — ns

1B6 External Clock Input Period tEXTcyc 125 — 62.5 — 40 — ns

1C7 External Clock Input Period with PLL tEXTcyc 125 — 62.5 — 40 — ns

2,38 CLKOUT Pulse Width in Crystal Mode tCW 56 — 28 — 19 — ns

2B, 3B9 CLKOUT Pulse Width in External Mode tEXTCW 56 — 28 — 18 — ns

2C,
3C10

CLKOUT Pulse Width in External w/PLL
Mode

tEXTCW 62.5 — 31 — 20 — ns

4,5 CLKOUT Rise and Fall Times tCrf — 10 — 5 — 4 ns

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. All internal registers retain data at 0 Hz.
2. Assumes that a stable VCCSYN is applied, that an external filter capacitor with a value of 0.1 µF is attached to

the XFC pin, and that the crystal oscillator is stable. Lock time is measured from power-up to RESET release.
This specification also applies to the period required for PLL lock after changing the W and Y frequency control
bits in the synthesizer control register (SYNCR) while the PLL is running, and to the period required for the clock
to lock after LPSTOP.

3. Determined by the initial control voltage applied to the on-chip VCO. The X-bit in the SYNCR controls a divide-
by-two scaler on the system clock output.

4. CLKOUT stability is the average deviation from programmed frequency measured at maximum fsys.
Measurement is made with a stable external clock input applied using the PLL.

5. All crystal mode clock specifications are based on using a 32.768-kHz crystal for the input.
6. When using the external clock input mode (MODCK reset value = 0 V), the minimum allowable tEXTcyc period

will be reduced when the duty cycle of the signal applied to EXTAL exceeds 5% tolerance. The relationship
between external clock input duty cycle and minimum tEXTcyc is expressed:

Minimum tEXTcyc period = minimum tEXTCW / (50% – external clock input duty cycle tolerance).
Minimum external clock low and high times are based on a 45% duty cycle.

7. When using the external clock input mode with the PLL (MODCK reset value = 0 V), the external clock input duty
cycle can be at minimum 20% to produce a CLKOUT with a 50% duty cycle.

8. For crystal mode operation, the minimum CLKOUT pulse width is based on a 47% duty cycle.
9. For external clock mode operation, the minimum CLKOUT pulse width is based on a 45% duty cycle, with a 50%

duty cycle input clock.

MOTOROLA MC68340 USER’S MANUAL 11-7

10. For external clock w/PLL mode operation, the minimum CLKOUT pulse width is based on a 50% duty cycle.
11. For external clock mode, there is a 10–40 ns skew between the input clock signal and the output CLKOUT signal

from the MC68340. Clock skew is measured from the rising edges of the clock signals.
12. For external clock mode w/PLL, there is a 5 ns skew between the input clock signal and the output CLKOUT

signal from the MC68340. Clock skew is measured from the rising edges of the clock signals.

11-8 MC68340 USER’S MANUAL MOTOROLA

11.7 AC TIMING SPECIFICATIONS (See notes (a), (b), (c), and (d) corresponding to part operation,

GND = 0 Vdc, TA = 0 to 70°C; see numbered notes; see Figures 11-2–11-11)

3.3 V
3.3 V or

5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

6 CLKOUT High to Address, FC, SIZ, RMC Valid tCHAV 0 60 0 30 0 20 ns

7 CLKOUT High to Address, Data, FC, SIZ, RMC
High Impedance

tCHAZx 0 120 0 60 0 40 ns

8 CLKOUT High to Address, FC, SIZ, RMC
Invalid

tCHAZn 0 — 0 — 0 — ns

99 CLKOUT Low to AS, DS, CS, IFETCH, IPIPE,
IACK≈ Asserted

tCLSA 3 60 3 30 3 20 ns

9A2 AS to DS or CS Asserted (Read) tSTSA –30 30 –15 15 –6 6 ns

11 Address, FC, SIZ, RMC Valid to AS, CS (and
DS Read) Asserted

tAVSA 30 — 15 — 10 — ns

12 CLKOUT Low to AS, DS, CS, IFETCH,
IPIPE, IACK≈ Negated

tCLSN 3 60 3 30 3 20 ns

13 AS, DS, CS, IACK≈ Negated to Address, FC,
SIZ Invalid (Address Hold)

tSNAI 30 — 15 — 10 — ns

14 AS, CS (and DS Read) Width Asserted tSWA 200 — 100 — 70 — ns

14A DS Width Asserted (Write) tSWAW 90 — 45 — 30 — ns

14B AS, CS, IACK≈ (and DS Read) Width Asserted
(Fast Termination Cycle)

tSWDW 80 — 40 — 30 — ns

153 AS, DS, CS Width Negated tSN 80 — 40 — 30 — ns

16 CLKOUT High to AS, DS, R/W High Impedance tCHSZ — 120 — 60 — 40 ns

17 AS, DS, CS Negated to R/W High tSNRN 30 — 15 — 10 — ns

18 CLKOUT High to R/W High tCHRH 0 60 0 30 0 20 ns

20 CLKOUT High to R/W Low tCHRL 0 60 0 30 0 20 ns

219 R/W High to AS, CS Asserted tRAAA 30 — 15 — 10 — ns

22 R/W Low to DS Asserted (Write) tRASA 140 — 70 — 47 — ns

23 CLKOUT High to Data-Out Valid tCHDO — 60 — 30 — 20 ns

24 Data-Out Valid to Negating Edge of AS, CS,
(Fast Termination Write)

tDVASN 30 — 15 — 10 — ns

25 DS, CS, Negated to Data-Out Invalid (Data-Out
Hold)

tSNDOI 30 — 15 — 10 — ns

26 Data-Out Valid to DS Asserted (Write) tDVSA 30 — 15 — 10 — ns

27 Data-In Valid to CLKOUT Low (Data Setup) tDICL 10 — 5 — 5 — ns

27A Late BERR, HALT, BKPT Asserted to CLKOUT
Low (Setup Time)

tBELCL 40 — 20 — 10 — ns

28 AS, DS Negated to DSACK≈, BERR, HALT
Negated

tSNDN 0 160 0 80 0 50 ns

294 DS, CS Negated to Data-In Invalid (Data-In
Hold)

tSNDI 0 — 0 — 0 — ns

29A4 DS, CS Negated to Data-In High Impedance tSHDI — 120 — 60 — 40 ns

MOTOROLA MC68340 USER’S MANUAL 11-9

11.7 AC TIMING SPECIFICATIONS (Continued)

3.3 V
3.3 V or

5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

304 CLKOUT Low to Data-In Invalid (Fast
Termination Hold)

tCLDI 30 — 15 — 10 — ns

30A4 CLKOUT Low to Data-In High Impendance tCLDH — 180 — 90 — 60 ns

315 DSACK≈ Asserted to Data-In Valid tDADI — 100 — 50 — 32 ns

31A DSACK≈ Asserted to DSACK≈ Valid (Skew) tDADV — 60 — 30 — 20 ns

32 HALT and RESET Input Transition Time tHRrf — 400 — 200 — 140 ns

33 CLKOUT Low to BG Asserted tCLBA — 60 — 30 — 20 ns

34 CLKOUT Low to BG Negated tCLBN — 60 — 30 — 20 ns

356 BR Asserted to BG Asserted (RMC Not
Asserted)

tBRAGA 1 — 1 — 1 — CLKOUT

37 BGACK Asserted to BG Negated tGAGN 1 2.5 1 2.5 1 2.5 CLKOUT

39 BG Width Negated tGH 2 — 2 — 2 — CLKOUT

39A BG Width Asserted tGA 1 — 1 — 1 — CLKOUT

46 R/W Width Asserted (Write or Read) tRWA 300 — 150 — 100 — ns

46A R/W Width Asserted (Fast Termination Write or
Read)

tRWAS 180 — 90 — 60 — ns

47A8 Asynchronous Input Setup Time tAIST 15 — 8, 5 — 5 — ns

47B Asynchronous Input Hold Time tAIHT 30 — 15 — 10 — ns

485,7 DSACK≈ Asserted to BERR, HALT Asserted tDABA — 60 — 30 — 20 ns

53 Data-Out Hold from CLKOUT High tDOCH 0 — 0 — 0 — ns

54 CLKOUT High to Data-Out High Impedance tCHDH — 60 — 30 — 20 ns

55 R/W Asserted to Data Bus Impedance Change tRADC 80 — 40 — 25 — ns

56 RESET Pulse Width (Reset Instruction) tHRPW 512 — 512 — 512 — CLKOUT

56A RESET Pulse Width (Input from External
Device)

tRPWI 590 — 590 — 590 — CLKOUT

57 BERR Negated to HALT Negated (Rerun) tBNHN 0 — 0 — 0 — ns

70 CLKOUT Low to Data Bus Driven (Show Cycle) tSCLDD 0 60 0 30 0 20 ns

71 Data Setup Time to CLKOUT Low (Show
Cycle)

tSCLDS 30 — 15 — 10 — ns

72 Data Hold from CLKOUT Low (Show Cycle) tSCLDH 20 — 10 — 6 — ns

80 DSI Input Setup Time tDSISU 30 — 15 — 10 — ns

81 DSI Input Hold Time tDSIH 20 — 10 — 6 — ns

82 DSCLK Setup Time tDSCSU 30 — 15 — 10 — ns

83 DSCLK Hold Time tDSCH 20 — 10 — 6 — ns

84 DSO Delay Time tDSOD — tcyc
+ 50

— tcyc
+ 25

— tcyc
+ 16

ns

11-10 MC68340 USER’S MANUAL MOTOROLA

11.7 AC TIMING SPECIFICATIONS (Continued)

3.3 V
3.3 V or

5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

85 DSCLK Cycle tDSCCYC 2 — 2 — 2 — CLKOUT

86 CLKOUT High to FREEZE Asserted tFRZA 0 100 0 50 0 35 ns

87 CLKOUT High to FREEZE Negated tFRZN 0 100 0 50 0 35 ns

88 CLKOUT High to IFETCH High Impedance tIFZ 0 100 0 50 0 35 ns

89 CLKOUT High to IFETCH Valid tIF 0 100 0 50 0 35 ns

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. All AC timing is shown with respect to 0.8 V and 2.0 V levels unless otherwise noted.
2. This number can be reduced to 5 ns if strobes have equal loads.
3. If multiple chip selects are used, the CS width negated (#15) applies to the time from the negation of a heavily

loaded chip select to the assertion of a lightly loaded chip select.
4. These hold times are specified with respect to DS or CS on asynchronous reads and with respect to CLKOUT on

fast termination reads. The user is free to use either hold time for fast termination reads.
5. If the asynchronous setup time (#47) requirements are satisfied, the DSACK≈ low to data setup time (#31) and

DSACK≈ low to BERR low setup time (#48) can be ignored. The data must only satisfy the data-in to CLKOUT
low setup time (#27) for the following clock cycle: BERR must only satisfy the late BERR low to CLKOUT low
setup time (#27A) for the following clock cycle.

6. To ensure coherency during every operand transfer, BG will not be asserted in response to BR until after cycles
of the current operand transfer are complete and RMC is negated.

7. In the absence of DSACK≈, BERR is an asynchronous input using the asynchronous setup time (#47).
8. Specification #47A for 16.78 MHz @ 3.3 V ±0.3V will be 8 ns.
9. During interrupt acknowledge cycles up to two wait states may be inserted by the processor between states S0

and S1.

MOTOROLA MC68340 USER’S MANUAL 11-11

R/W

DS

AS

A31–A0

11
14

9

9A

12

2021

46

CS

DSACK1

BERR

D15–D0

47A 28

29

27

27A48

12129

47A

HALT

IFETCH

ASYNCHRONOUS
INPUTS

31

27A

BKPT

RMC

47B

29A

NOTE: All timing is shown with respect to 0.8V and 2.0V levels.

CLKOUT

S0 S2 S4S1 S3 S5

8

FC3–FC0

SIZ1–SIZ0

18

DSACK0

6

13

Figure 11-2. Read Cycle Timing Diagram

11-12 MC68340 USER’S MANUAL MOTOROLA

R/W

AS

DS

A31–A0

CLKOUT

S0 S2 S4S1 S3 S5

6 8

11
14

15

9 12
13

22

CS

9

20 14A 17

DSACK0

BERR

D15–D0

47A 28

27A48

HALT

25
53

55

26
23

54

BKPT

NOTE: All timing is shown with respect to 0.8-V and 2.0-V levels.

46

DSACK1

FC3–FC0

SIZ1–SIZ0

Figure 11-3. Write Cycle Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-13

AS

A31–A0

CLKOUT

S0 S4 S0S1 S5

86

9

DS

D15–D0

12

14B

46A

30
27

30A

R/W

CS
18

BKPT

27A

FC3–FC0

SIZ1–SIZ0

Figure 11-4. Fast Termination Read Cycle Timing Diagram

11-14 MC68340 USER’S MANUAL MOTOROLA

AS

A31–A0

CLKOUT

S0 S1 S0

86

12

R/W

DS

S4 S5

9
14B

20
46A

CS

D15-D0

18

25

24
23

BKPT

27A

FC3–FC0

SIZ1–SIZ0

Figure 11-5. Fast Termination Write Cycle Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-15

CLKOUT

A31–A0

R/W

AS

DS

D15–D0

DSACK1

 BR

BG

BGACK

S0 S1 S2 S3 S4

47A

33

16

7

S5

39A

34

35

37

DSACK0

Figure 11-6. Bus Arbitation Timing—Active Bus Case

11-16 MC68340 USER’S MANUAL MOTOROLA

CLKOUT

AS

D15–D0

A31–A0

BR

BG

BGACK

47A 47A

47A

3735

33 34

Figure 11-7. Bus Arbitration Timing—Idle Bus Case

A31–A0

CLKOUT

S0 S42 S1S41 S43 S2S0

86

18

20

R/W

AS

159
12

72
71

DS

D15–D0

SHOW CYCLE START OF EXTERNAL CYCLE

BKPT

27A

70

Figure 11-8. Show Cycle Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-17

DSACK0

R/W

AS

DS

A31–A0,

CLKOUT

S0 S1 S2 S3 S5S4

6 8

1411

20

13
12

9

9A

2118

46

IACKx

28

31

29

FC3–FC0

SIZ1–SIZ0

29A
27

D15-D0

Up to two wait states may be inserted by the processor between states S0 and S1.

47A

31A

DSACK1

0–2 CLOCKS

*

*

Figure 11-9. IACK Cycle Timing Diagram

11-18 MC68340 USER’S MANUAL MOTOROLA

FREEZE

CLKOUT

BKPT/DSCLK

IFETCH/DSI

IPIPE/DSO

83

81

82

85

80

84

Figure 11-10. Background Debug Mode Serial Port Timing

FREEZE

CLKOUT

IFETCH/DSI

88

86

87

89

Figure 11-11. Background Debug Mode FREEZE Timing

MOTOROLA MC68340 USER’S MANUAL 11-19

11.8 DMA MODULE AC ELECTRICAL SPECIFICATIONS (See notes (a), (b), (c), and

(d) corresponding to part operation, GND = 0 Vdc, TA = 0 to 70°C; see Figure 11-12)

3.3 V 3.3 V or 5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Min Max Min Max Min Max Unit

1 CLKOUT Low to AS, DACK, DONE Asserted — 60 — 30 — 20 ns

2 CLKOUT Low to AS, DACK Negated — 60 — 30 — 20 ns

3 DREQ≈ Asserted to AS Asserted (for DMA Bus
Cycle)

3tcyc + tAIST + tCLSA ns

41 Asynchronous Input Setup Time to CLKOUT
Low

15 — 8, 5 — 5 — ns

5 Asynchronous Input Hold Time from CLKOUT
Low

30 — 15 — 10 — ns

6 AS to DACK Assertion Skew -30 30 –15 15 –10 10 ns

7 DACK to DONE Assertion Skew -30 30 –15 15 –8 8 ns

8 AS, DACK, DONE Width Asserted 200 — 100 — 70 — ns

8A AS, DACK, DONE Width Asserted (Fast
Termination Cycle)

80 — 40 — 28 — ns

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. Specification #4 for 16.78 MHz @ 3.3 V ±0.3 V will be 8 ns.

DONE (INPUT)
DREQ

CLKOUT

AS

DACK

DONE
(OUTPUT)

4 5 1

8

2

1

7

1

6

3

S0 S1 S2 S3 S4 S5 S0 S1 S2 S3 S4 S5

CPU_CYCLE
(DMA REQUEST) DMA_CYCLE

Figure 11-12. DMA Signal Timing Diagram

11-20 MC68340 USER’S MANUAL MOTOROLA

11.9 TIMER MODULE ELECTRICAL SPECIFICATIONS (See notes (a), (b), (c), and (d)

corresponding to part operation, GND = 0 Vdc, TA = 0 to 70°C; see Figures 11-13 and 11-14)

3.3 V 3.3 V or 5.0 V 5.0 V

8.39 MHz 16.78 MHz 25MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

1 CLKOUT Period in Crystal Mode tcyc 119.2 — 59.6 — 40 — ns

2 Clock Rise and Fall Time trf — 20 — 10 — 5 ns

3 TIN/TGATE High or Low Time, Minimum
Pulse Width

— tcyc+40 — tcyc+20 — tcyc+12 — ns

41 Asynchronous Input Setup Time to
CLKOUT Low

— 15 — 8, 5 — 5 — ns

5 Asynchronous Input Hold Time from
CLKOUT Low

— 30 — 15 — 8 — ns

6 Asynchronous Input Setup Time to
CLKOUT High

— 10 — 5 — 3 — ns

7 Asynchronous Input Hold Time from
CLKOUT High

— 30 — 15 — 8 — ns

8 CLKOUT High to TOUT Valid tTO 3 60 3 30 3 20 ns

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. Specification #4 for 16.78 MHz @ 3.3 V ±0.3 V will be 8 ns.

TGATE
TIN

CLKOUT

2

3

2

3

1

Figure 11-13. Timer Module Clock Signal Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-21

5

7

8

4

6

TIN

CLKOUT

 TGATE

TOUT

Figure 11-14. Timer Module Signal Timing Diagram

11-22 MC68340 USER’S MANUAL MOTOROLA

11.10 SERIAL MODULE ELECTRICAL SPECIFICATIONS (See notes (a), (b), (c), and

(d) corresponding to part operation, GND = 0 Vdc, TA = 0 to 70°C; see numbered notes; see Figures 11-15–11-18)

3.3 V
3.3 V or

5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Symbol Min Max Min Max Min Max Unit

1 CLKOUT Cycle Time tcyc 119.2 — 59.6 — 40 — ns

2 Clock Rise or Fall Time trf — 20 — 10 — 5 ns

32 Clock Input (X1 or SCLK) Synchronizer Setup
Time

tCS 15 — 8, 5 — 5 — ns

4 Clock Input (X1 or SCLK) Synchronizer Hold
Time

tCH 30 — 15 — 8 — ns

5 TxD Data Valid from CLKOUT High tVLD 0.5 tcyc Max

6 X1 Cycle Time tX1 2.25 tcyc Min

7 X1 High or Low Time tX1HL 0.55 tcyc + 0.75(tCS + tCH) Min

8 SCLK High or Low Time, Asynchronous (16x)
Mode

tAHL tcyc + tCS + tCH Min

91 SCLK High Time, Synchronous (1x) Mode tSH tcyc(Gx) + tCS(Gx) + tCH(Gx) Min

10 SCLK Low Time, Synchronous (1x) Mode tSL greater of
({1.5tcyc(Tx) + tCS(Tx) + tVLD(Tx)} +

0.5tcyc(Rx) + tCS(Rx) + tCH(Rx)})
or

tSH

Min

11 TxD Data Valid from SCLK Low, Synchronous
(1x) Mode

tT × D 1.5tcyc(Tx) +
tCS(Tx) + tVLD(Tx)

Max

12 RxD Setup Time to SCLK High, Synchronous
(1x) Mode

tR × S 0.5tcyc(Rx) + tCS(Rx) + tCH(Rx) Min

13 RxD Hold Time from SCLK High, Synchronous
(1x) Mode

tR × H 0.5tcyc(Rx) + tCS(Rx) + tCH(Rx) Min

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.
1. Asynchronous operation numbers take into account a receiver and transmitter operating at different clock

frequencies. (Rx) refers to receiver value. (Tx) refers to transmitter value. (Gx) refers to the value that is greater,
either receiver or transmitter.

2. Specification #3 for 16.78 MHz @ 3.3 V ±0.3 V will be 8 ns.

CLKOUT

TxD

1

5

Figure 11-15. Serial Module General Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-23

2 2

6

7 7

X1

Figure 11-16. Serial Module Asynchronous Mode Timing (X1)

SCLK (16x)
2 2

8 8

Figure 11-17. Serial Module Asynchronous Mode Timing (SCLK–16X)

SCLK (1x)

TxD

RxD

2

10 9

11

12
13

2

Figure 11-18. Serial Module Synchronous Mode Timing Diagram

11-24 MC68340 USER’S MANUAL MOTOROLA

11.11 IEEE 1149.1 ELECTRICAL SPECIFICATIONS (See notes (a), (b), (c), and (d)

corresponding to part operation, GND = 0 Vdc, TA = 0 to 70°C; see Figures 11-19–11-21)

3.3 V
3.3 V or

5.0 V 5.0 V

8.39 MHz 16.78 MHz 25.16 MHz

Num. Characteristic Min Max Min Max Min Max Unit

TCK Frequency of Operation 0 8.39 0 16.78 0 25 MHz

1 TCK Cycle Time in Crystal Mode 119.2 — 59.6 — 40 — ns

2 TCK Clock Pulse Width Measured at 1.5 V 56 — 28 — 18 — ns

3 TCK Rise and Fall Times 0 10 0 5 0 3 ns

6 Boundary Scan Input Data Setup Time 32 — 16 — 10 — ns

7 Boundary Scan Input Data Hold Time 52 — 26 — 18 — ns

8 TCK Low to Output Data Valid 0 80 0 40 0 26 ns

9 TCK Low to Output High Impedance 0 120 0 60 0 40 ns

10 TMS, TDI Data Setup Time 30 — 15 — 10 — ns

11 TMS, TDI Data Hold Time 30 — 15 — 10 — ns

12 TCK Low to TDO Data Valid 0 50 0 25 0 16 ns

13 TCK Low to TDO High Impedance 0 50 0 25 0 16 ns

NOTES:
(a) The electrical specifications in this document for both the 8.39 and 16.78 MHz @ 3.3 V ±0.3 V are preliminary,

and apply only to the appropriate MC68340V low voltage part.
(b) The 16.78-MHz specifications apply to the MC68340 @ 5.0 V ±5% operation.
(c) The 25.16 MHz @ 5.0 V ±5% electrical specifications are preliminary.
(d) For extended temperature parts TA = –40 to +85°C. These specifications are preliminary.

V

V
TCK

1

2 2

33

IH

IL

Figure 11-19. Test Clock Input Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 11-25

TCK

DATA
OUTPUTS

DATA
INPUTS

DATA
OUTPUTS

DATA
OUTPUTS

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

7

8

IL

IH

6

9

8

Figure 11-20. Boundary Scan Timing Diagram

TCLK

TDI
TMS

TDO

TDO

TDO

V

V

INPUT DATA VALID

OUTPUT DATA VALID

OUTPUT DATA VALID

11

12

13

12

IL

IH

10

Figure 11-21. Test Access Port Timing Diagram

MOTOROLA MC68340 USER’S MANUAL 12-1

SECTION 12
ORDERING INFORMATION AND MECHANICAL DATA

This section contains ordering information, pin assignments and package dimensions of
the MC68340.

12.1 STANDARD MC68340 ORDERING INFORMATION

Supply
Voltage Package Type Frequency (MHz) Temperature Order Number

5.0 V Ceramic Quad Flat Pack
FE Suffix

0 – 16.78
0 – 16.78
0 – 25

0°C to +70°C
–40°C to +85°C
0°C to +70°C

MC68340FE16
MC68340CFE16
MC68340FE25

5.0 V Plastic Pin Grid Array
RP Suffix

0 – 16.78
0 – 16.78
0 – 25

0°C to +70°C
–40°C to +85°C
0°C to +70°C

MC68340RP16
MC68340CRP16
MC68340RP25

3.3 V Ceramic Quad Flat Pack
FE Suffix

0 – 8.39
0 – 8.39
0 – 16.78

0°C to +70°C
–40°C to +85°C
0°C to +70°C

MC68340FE8V
MC68340CFE8V
MC68340FE16V

3.3 V Plastic Pin Grid Array
RP Suffix

0 – 8.39
0 – 8.39
0 – 16.78

0°C to +70°C
–40°C to +85°C
0°C to +70°C

MC68340RP8V
MC68340CRP8V
MC68340RP16V

12-2 MC68340 USER’S MANUAL MOTOROLA

12.2 PIN ASSIGNMEN — CERAMIC SURFACE MOUNT

12.2.1 144-Lead Ceramic Quad Flat Pack (FE Suffix)

.

V C
C

V C
C

D
SA

C
K 1

D
SA

C
K0

A0 A3
1

A3
0

A2
9

A2
8

A2
7

A2
6

A2
5

A2
4

D
15

D
14

D
13

D
12 V C
C

D
11

D
10 D
9

D
8

D
7

D
6

D
5 D
4 V C
C

D
3

D
2 D
1

D
0

RMC
R/W

SIZ1

SIZ0

DS

AS

BGACK

BG

BR

BERR

HALT

RESET

GND

CLKOUT
VCC

XFC

EXTAL

XTAL

MODCK

VCC

IPIPE

IFETCH

BKPT

FREEZE

TIN1

TOUT1

TGATE1

TCK

TMS

TDI

TDO

VCC

FC
3

FC
2

FC
1

FC
0

A2
3

A2
2

A2
1

A2
0

A1
9

A1
8

A1
7

A1
6

A1
5

A1
4

A1
3

A1
2

A1
1

A1
0 A9 A8 A7 A6 A5 A4 V C
C A3 A2 A1

1
144

TOP VIEW
MC68340

72
73

108
109

9118

36
37 54

127 126

55

9019VCCSYN

V C
C

V C
C

V C
C

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

GND

GND

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

CS0

CS1

CS2

IRQ3

CS3

VCC
IRQ5

IRQ6

 IRQ7

 DONE2

DACK2

DREQ2

DONE1

DACK1

DREQ1

 X2

VCC

X1

SCLK

CTSB

RTSB

TxDB

RxDB

RxRDYA

TxRDYA

CTSA

RTSA

VCC

RxDA

TIN2

TOUT2

TGATE2

GND

GND

GND

VCC

TxDA

MOTOROLA MC68340 USER’S MANUAL 12-3

The VCC and GND pins are separated into groups to help electrically isolate the output
drivers for different functions of the MC68340. These groups are shown in the following
table for the FE suffix package.

Pin Group — FE Suffix VCC GND

Address Bus, Function Codes 41, 50, 59, 68, 134 42, 51, 60, 69, 135

Data Bus 113, 123 114, 124

AS, BG, CLKOUT, DS, FREEZE, HALT, IFETCH, IPIPE,
MODCK, RESET, RMC, R/W, SIZ≈, TDO, TOUT1,
Internal Logic

15, 17, 35, 143 13, 21, 36, 144

CS≈, DACK≈, DONE≈, IRQ≈, RTS≈, R≈RDYA,
TOUT2, TxDx, T≈RDYA, Internal Logic

78, 90, 102 79, 91, 103

Oscillator 19 —

Internal Only 23 55, 126

12-4 MC68340 USER’S MANUAL MOTOROLA

12.2.2 145-Lead Plastic Pin Grid Array (RP Suffix)

.

FC1 FC3 TDI TCK TIN1 FREEZE IPIPE MODCK EXTAL XFC RESET BERR BR AS SIZ1

TIN2

A23 FC2 TDO TMS TOUT1 BKPT VCC XTAL VCC CLKOUT HALT BGACK DS R/W RMC

A22 FC0 GND VCC TGATE1 IFETCH GND VCCSYN GND BG SIZ0 GND DSACK1 DSACK0

A20 GND VCC A0 A3O

A18 A19 A21 A31 A29 A28

A16 A17 GND A27

VCC

VCC VCC

A25 A24 A26

GND D14 D15

D12 D13

D7 D8 D9

GND

D11 D10VCC

GND D5 D6A4 GND NC

A7 A6 A5

A10 A9 A8

A11 GND

A12 A13 GND

A14 A15 GND

VCC

VCC

A3 A2 TGATE2 GND DACK1 IRQ7 GND CS2 D1VCC TxDB GNDVCC VCC D4

D3

D2

D0

CS0IRQ3

CS1CS3

IRQ5IRQ6DACK2

DONE2

DREQ2

DONE1X1

DREQ1SCLK

X2RTSB

CTSBRxDBRxRDYA

TxRDYARTSATxDATOUT2A1

RxDA CTSA

VCC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BOTTOM

VIEW

Q

P

N

M

L

K

J

H

G

F

E

D

C

B

A

VCC

MOTOROLA MC68340 USER’S MANUAL 12-5

The VCC and GND pins are separated into groups to help electrically isolate the different
output drivers of the MC68340. These groups are shown in the following table for the RP
suffix package.

Pin Group — RP Suffix VCC GND

Address Bus, Function Codes D2, G3, K3, K14, M3 D3, G2, J3, K13, M2

Data Bus C14, F13 D13, G13

AS, BG, CLKOUT, DS, FREEZE, HALT, IFETCH, IPIPE,
MODCK, RESET, RMC, R/W, SIZx, TDO, TOUT1, Internal
Logic

M13, N4, N9, P9 N3, N7, N10, N13

CS≈, DACK≈, DONE≈, IRQ≈, RTS≈, R≈RDYA, TOUT2,
TxDx, T≈RDYA, Internal Logic

B11, C4, C7 C5, C8, C11

Oscillator N8 —

Internal Only P7 H3, H13

12-6 MC68340 USER’S MANUAL MOTOROLA

12.3 PACKAGE DIMENSIONS

12.3.1 FE Suffix

X

PIN ONE INDEN

Z

A
/B

 TRIMMED, FORMED DISCRET
SHOWING DATUM FEATUR

Q
Y0.50 T X Y ZS SM

R

K

M
J

C

H

W
M

0.10
T

∩
SEATING PLANE
144X

GD
0.20
0.20

M

M

T
T

X-Y
Z X-Y

Z
S S

S

144X

S/V 0.20
0.20

T
T

X-Y
Z X-Y

Z
S S

S
SIDE VIEW

GULL WING LEAD CONFIGURA

TOP VIEW

DIM
A
B
C
D
G
H
J
K
M
Q

MILLIMETE INCHE
MIN MAX MIN MAX
25.84 27.70 1.017 1.09
25.84 27.70 1.017 1.09
3.55 4.31 0.140 0.170
0.22 0.41 0.009 0.016
0.65 BS 0.0256 BS

0.25 0.88 0.010 0.035
0.13 0.25 0.005 0.010
0.65 0.95 0.026 0.037
0° 8 0 8
0.325 BS 0.0128 BS

° ° °

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. DIM A AND B DEFINE MAXIMUM CERAMIC BODY DIMEN
 INCLUDING GLASS PROTRUSION AND MISMATCH OF CE
 BODY TOP AND BOTTOM.
 4. DATUM PLANE -W- IS LOCATED AT THE UNDERSIDE O
 WHERE LEADS EXIT PACKAGE BODY.
 5. DATUMS X-Y AND Z TO BE DETERMINED WHERE CENT
 EXIT PACKAGE BODY AT DATUM -W-.
 6. DIM S AND V TO BE DETERMINED AT SEATING PLANE
 7. DIM A AND B TO BE DETERMINED AT DATUM PLANE -

FE SUFFIX PACKAG
CERAMIC QFP
CASE 863A-01

S

S

MOTOROLA MC68340 USER’S MANUAL 12-7

12.3.2 RP Suffix

..

D

C

S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
B
C
D
E
F
G
H

K
L
M
N
P
Q

J BOTTOM
VIEW

G

G

DIM

MILLIMETERS INCHES

MIN MAX MIN MAX

A

B

C

D

G

K

1.550 1.570

1.550 1.570

0.895 0.905

39.37 39.88

39.37 39.88

22.75 22.97

22.75 22.97 0.895 0.905

0.100 BASIC2.54 BASIC
2.92 3.43 0.115 0.135

145 PIN PGA
CASE NO. 768E-01

T

PIN
A-1

B

A
V

V

L

K
M 145 PL

L
M
S

V

1.02 1.52 0.040 0.060
0.43 0.55 0.017 0.022

4.32 4.95 0.170 0.195
35.56 BASIC 1.400 BASIC

MOTOROLA MC68330 USER’S MANUAL Index-1

INDEX

— A —

A-Line Instructions, 5-47
A/D

Bit, 7-15–7-16, 7-23
Field, 5-73

Register, 5-76–5-77
A0 Signal, 3-6–3-13
Access Time Calculations, 10-6
Address

Access Time, 10-6
Bus Signals, 2-4, 3-4, 3-16
Error Exception, 3-7, 3-39, 5-42–5-43, 5-45–5-46
Mask Register Example, 4-33
Mask Registers, 4-31, 4-37
Registers, 5-10, 5-13
Space Bits, 4-20
Space Block Size, 4-2, 4-3, 4-14
Spaces, 2-5, 3-3–3-4, 4-2, 4-20, 4-30–4-31, 6-32
Strobe Signal, 2-6, 3-2, 3-4, 3-14–3-21, 3-44, 3-46,

4-22
with Postincrement, 5-14
with Predecrement, 5-14

Advantages, 10-13
Alternate Function Code Registers, 5-10
Applications Profile, 10-10
Arithmetic/Logical Instruction Timing Table, 5-102–

5-104
Assert RTS Command, 7-28–7-29
Asynchronous

Inputs, 3-1–3-2, 3-14–3-15, 3-44
Operation, 3-14
Setup and Hold Times, 3-2, 3-15, 3-18–3-21,10-7

ATEMP Register, 5-67
Automatic Echo Modes, 7-14, 7-38
Autovector

Operation Timing, 3-31
Register, 4-5, 4-6, 4-23
Signal, 2-6, 3-5, 3-29, 3-32, 4-6

Auxiliary Control Register, 7-18, 7-26–7-27, 7-32, 7-46

— B —

B Bits, 5-56, 5-57–5-58
B/C Bits, 7-23–7-24, 7-47
Background Debug Mode, 5-64–5-65, 5-94

Command Execution, 5-67
Command Summary, 5-75–5-76
Serial Interface, 5-68–5-69

Background Processing State, 5-7, 5-37, 5-64–5-73,
5-95–5-101

Base Address Bits, 4-20
Base Address Registers, 4-14, 4-30, 4-33, 4-37
Battery Operation, 10-10
Baud Rate

Clock, 7-2, 7-26–7-27
Generator, 7-3, 7-8

BB Bits, 6-4, 6-29, 6-38
BDM Sources, 5-66
BED Bit, 6-27, 6-27, 6-30–6-31, 6-37
BERR Signal, 5-45–5-47
BES Bit, 6-20, 6-31, 6-37
BFC Bits, 4-30
BGND Instruction, 5-66
Binary-Coded Decimal

Extended Instructions Timing Table, 5-106
Instructions, 5-26

Bit Manipulation Instructions, 5-25
Timing Table, 5-109

Bit Set/Reset Command, 7-37
Bits per Character, 7-23
BKPT Signal, 5-65–5-66, 5-68, 5-71–5-72
BKPT_TAG, 5-72
Block Mode, 7-13, 7-23
BME Bit, 4-6, 4-25, 4-37
BMT Bits, 4-25–4-26, 4-37
Boot ROM, 4-14–4-15, 4-36
Boundary Scan

Bit Definitions, 9-4
Register, 9-1–9-3

Break Condition, 7-11
Breakpoint Acknowledge Cycle

Operation, 3-22
Flowchart, 3-24
Timing, Opcode Returned, 3-25
Timing, Exception Signaled, 3-26

Breakpoint Exception, 5-42, 5-46–5-47, 5-53
Breakpoint Instruction, 3-22, 5-28, 5-40, 5-42,

5-46, 5-63, 5-94, 5-97
Breakpoint Signal, 2-10, 3-22, 3-24, 6-31
BRG Bit, 7-32, 7-46
BRKP Bit, 6-20, 6-27, 6-31, 6-37–6-38
Burst Mode Transfers, 6-5
Bus

Arbitration
Operation, 3-40, 3-41–3-45
Flowchart, 3-41
Interaction with Show Cycles, 3-44

Control, 3-44
State Diagram 3-45

Bandwidth, 6-4–6-5, 6-29
Controller Operation, 5-89–5-90
Cycle Termination Response Time, 4-6, 4-30, 4-32
Cycle Termination, 3-34–3-36, 3-47
Cycle, 3-2
Error Exception, 5-45
Error Signal, 2-8, 3-5, 3-14–3-15, 3-22, 3-24, 3-30,

3-32–3-37, 3-44, 4-4, 4-6, 4-22, 4-30
Error Stack Frame, 5-60–5-63
Errors

Types, 3-34
Timing, without DSACK≈, 3-35
Timing, Late Bus Error, 3-36
Resulting in Double Bus Faults, 3-39

Index-2 MC68340 USER’S MANUAL MOTOROLA

During DMA Transfers, 6-18, 6-20, 6-31,
6-33–6-35

Grant Acknowledge Signal, 3-40–3-44
Request Signal, 2-7, 3-37, 3-40–3-44, 6-25
State Diagram, 3-45

Bypass Register, 9-11
Byte

Transfer Counter, 6-15, 6-19–6-20, 6-34–6-35,
6-37–6-38

— C —

Calculate Effective Address Instruction Timing Table,
5-100

Calculating Frequency Adjusted Output, 10-7,–10-9
CALL Command, 5-68, 5-84–5-85
CD-I, 1-9, 10-11
CD-ROM, 10-11
Cell Types, 9-4

Output Latch Diagram, 9-7
Input Pin Diagram, 9-7
Active-High Output Control Diagram, 9-8
Active-Low Output Control Diagram, 9-8
Bidirectional Data Diagram, 9-9

Change of Flow, 5-91, 5-94
Changing

Privilege Levels, 5-38
Timer Modes, 8-6

Channel
Control Register, 6-4–6-5, 6-18–6-20, 6-26,

6-30, 6-36–6-37
Mode, 7-38
Status Register, 6-18, 6-20, 6-30, 6-37–6-38

Character Mode, 7-13, 7-23
Chip-Select 0 Signal, 3-30, 4-14–4-16, 4-33, 4-36,

10-5
Chip Select, 4-1, 4-13–4-15, 4-29

Access Time, 10-6–10-7
Overlapped, 4-15, 4-33
Programming Example, 4-33
Registers, 4-29
Signals, 2-5, 4-15–4-17, 10-4, 10-6–10-7

Clear to Send Signal, 2-11
CLK Bit, 8-21, 8-27
CLKOUT Signal, 2-8, 4-1, 4-9, 4-11, 4-13, 4-17, 5-69,

8-3, 9-11
Clock

Operating Modes, 4-9–4-12
Select Register, 7-8, 7-18, 7-26–7-27, 7-33, 7-47
Synthesizer Control Register, 4-10–4-11, 4-13,

4-28, 4-36,
Synthesizer, 4-1, 4-9

CM Bits, 7-38
Code Compatibility, 5-8, 5-11
COM Bit, 8-7–8-9, 8-12, 8-24–8-25, 8-27
Command

Format, 5-73–5-74
Register, 7-10–7-11, 7-23, 7-27, 7-46–7-47
Sequence Diagram, 5-74–5-75

Compare Register, 8-2, 8-12, 8-26–8-27
Compressed Tables, 5-31–5-32
Condition Code Register, 5-10, 5-14, 5-20–5-21
Condition Codes, 5-10, 5-26–5-27
Condition Test Instructions, 5-20–5-21, 5-29
Conditional Branch Instruction Timing Table, 5-110
CONF Bit, 6-20, 6-30–6-31, 6-37–6-38
Configuration Code (Modules)

SIM40, 4-38–4-40
DMA, 6-38–6-45
Serial, 7-47–4-49
Timer, 8-28–8-31

Control Instruction Timing Table, 5-111
Control Register, 8-4, 8-20–8-23
COS Bit, 7-31–7-32, 7-34
Counter

Clock, 8-3
Events, 8-2
Register, 8-6–8-7, 8-13–8-14, 8-25

CPE Bit, 8-6, 8-8, 8-21, 8-24, 8-28
CPU Space, 3-3, 3-21–3-23, 3-28

Address Encoding, 3-21
CPU32

Block Diagram, 5-3
Privilege Levels, 5-7, 5-37–5-38
Processing States, 5-7, 5-36–5-37
Programming Model, 5-8–5-9
Serial Logic, 5-71–5-73
Stack Frames, 5-60–5-63

Crystal Oscillator, 4-9–4-10, 4-29
CTS

Bits, 7-31, 7-35
Operation, 7-11

CTSx Signal, 7-6–7-7, 7-11, 7-13, 7-20, 7-22, 7-29,
7-31–7-32, 7-35, 7-39

Current Drain, 10-11
Typical Operation Data, 10-12–10-13

Current Instruction Program Counter, 5-67–5-68
Cycle Steal Transfers, 6-5–6-6
Cycle Termination, 3-1

— D —

DAPI Bits, 6-19, 6-28, 6-37
Data

Bus Signals, 2-4, 3-2, 3-16
Holding Register, 6-12, 6-15
Misalignment, 5-45–5-46
Movement Instructions, 5-21
Port Organization, 3-5–3-7
Registers, 5-10
Strobe Signal, 2-7, 3-4, 3-17–3-21, 3-44–3-46, 4-22
Transfer and Size Acknowledge Signals, 2-6, 3-5,

3-8–3-15, 3-17–3-23, 3-28–3-30, 3-32–3-36, 4-2,
4-4, 4-6, 4-14–4-15, 4-32,

Transfer Capabilities, 3-5, 3-8–3-15
DBA Bit, 7-33, 7-35
DBB Bit, 7-33, 7-34
DBcc Instruction, 5-3

MOTOROLA MC68340 USER’S MANUAL Index-3

DBF Bit, 4-6, 4-23
DBFE Bit, 4-6, 4-25, 4-37
DD Bits, 4-14, 4-17, 4-32
Destination Address Register, 6-15, 6-18–6-19, 6-28,

6-33–6-34, 6-37–6-38
Deterministic Opcode Tracking, 5-64, 5-87–5-88
DFC Bits, 6-32
Differences between MC68020 Instruction Set and

MC68340 Instruction Set, 5-5
DIV Instructions,
DMA

Acknowledge Signals, 2-10, 6-4–6-7, 6-10, 6-12,
6-15

Capabilities, 6-1
Channel

Initialization, 6-18–6-19, 6-36
Operation Sequence, 6-18–6-21
Termination, 6-18, 6-20–6-21

Done Signals, 2-10, 6-4, 6-7, 6-10, 6-12, 6-15
Programming Model, 6-23
Programming Sequence, 6-18
Request Signals, 2-10, 6-4–6-7, 6-18–6-19, 6-21
Timing

Single-Address Read (External Burst), 6-8
Single-Address Read (Cycle Steal), 6-9
Single-Address Write (External Burst), 6-10
Single-Address Write (Cycle Steal), 6-11
Dual-Address Read (External Burst—Source

Requesting), 6-13
Dual-Address Read (Cycle Steal—Source

Requesting), 6-14
Dual-Address Write (External Burst—Destination

Requesting), 6-16
Dual-Address Write (Cycle Steal—Destination

Requesting), 6-17
Fast Termination (Cycle Steal), 6-21
Fast Termination (External Burst Source

Requesting), 6-22
Transfer Type, 3-5
Transfers, Control of Bus, 6-6, 6-18
Transfers, 32 Bits, 6-2, 6-7, 6-35

Documentation, 1-10
DONE Bit, 6-15, 6-20, 6-27, 6-31, 6-37–6-38, 6-30
Double Bus Fault, 3-39, 3-41, 5-43, 5-66

Monitor, 3-40, 4-1, 4-4, 4-6, 4-23, 4-37
DSACK

Encoding, 3-5
Signals, 4-2, 4-4, 4-6, 4-14, 4-32, 10-5

DSCLK Signal, 5-69–5-71
DSI Signal, 5-69, 5-71
DSIZE Bits, 6-15, 6-29, 6-37
DSO Signal, 5-69, 5-71
Dual-Address

Destination Write, 6-15
Mode, 6-12, 6-28, 6-37
Source Read, 6-12
Transfer, 6-3

Dump Memory Block Command, 5-80–5-81
Dynamic Bus Sizing, 3-5, 3-14

— E —

Early Bus Error, 3-34
EBI, 4-2, 4-22, 4-33
ECO Bit, 6-7, 6-27–6-28, 6-37
Effects of Wait States on Instruction Timing, 5-92
Electrical Characteristics, 11-1

AC Electrical Specifications
Definitions, 11-2, 11-4
Control Timing, 11-6–11-7
Timing Specifications, 11-8–11-10
Timing Diagram, 11-11–11-18
DMA Module Specifications, 11-19
DMA Timing Diagram, 11-19
Timer Module Specifications, 11-20
Timer Module Timing Diagrams, 11-20–11-21
Serial Module Specifications, 11-22
Serial Module Timing Diagrams, 11-22–11-23
IEEE 1149.1 Specifications, 11-24
IEEE 1149.1 Timing Diagrams, 11-24–11-25
Typical Characteristics, 10-11

DC Electrical Specifications, 11-5
ERR Bit, 7-13, 7-23, 7-47
Error Status, Serial, 7-13
Event Counting, 8-14–8-15
Exception

Handler, 5-42, 5-51, 5-57, 5-59, 5-56
Priorities, 5-41–5-42
Processing, 3-32, 5-4, 5-38, 5-61

Faults, 5-54–5-59
Sequence, 5-40–5-41
State, 5-7, 5-38, 5-40–5-41

Stack Frame, 5-4,
Vectors, 5-39–5-40

Exception-Related Instructions and Operands Timing
Table, 5-112

EXTAL Pin, 2-9, 4-7, 4-9–4-11, 10-21
External

Bus Interface, 4-2
Bus Master, 3-4, 3-16, 3-40–3-44, 4-6
DMA Request, 6-2, 6-5–6-6, 6-19–6-20, 6-29–6-30
Exceptions, 5-40
Reset, 10-3

— F —

F-Line Instructions, 5-47
Fast Termination Timing, 3-15

Operation, 3-4, 3-15, 4-14, 4-30, 4-33
DMA Transfers, 6-20

Fault
Address Register, 5-67
Correction, 5-57–5-59
Recovery, 5-52
Types, 5-54–5-55, 5-57–5-59, 5-83–5-86

FC Bits, 4-2
FCM Bits, 4-32
FE Bit, 7-13, 7-24, 7-28

Index-4 MC68340 USER’S MANUAL MOTOROLA

Fetch Effective Address Instruction Timing Table, 5-99
FFULL Bit, 7-25
FFULLA Signal, 7-7
Fill Memory Block Command, 5-82
FIRQ Bit, 4-5, 4-16, 4-22, 4-35–4-36
FORCE_BGND, 5-72
Format Error Exception, 5-47, 5-52
Four-Word Stack Frame, 5-51, 5-60
Framing Error, 7-11, 7-24
Freeze Operation, 4-17, 6-24, 7-20, 8-19
FREEZE Signal, 2-10, 4-3, 4-17, 4-22–4-23, 4-36,

5-66–5-68, 5-71–5-72
Frequency Adjusted Signal

Skew, 10-9
Width, 10-8

Frequency Divider, 4-12
FRZ Bits, 4-17–4-18, 4-21–4-22, 4-36, 6-24, 7-20,

7-46, 8-19, 8-27,
FTE Bit, 4-14, 4-30
Full Format Instruction Word,
Function Code, 3, 6-18, 6-32

Encoding, 2-5, 3-3
Register, 6-7, 6-10, 6-12, 6-15, 6-32, 6-38, 6-37
Signals, 2-5, 3-2, 3-17

— G —

Global Chip Select, 4-14–4-15, 4-36
GO Command, 5-68, 5-83–5-84

— H —

Halt
Operation, 3-38, 3-39, 3-41
Signal, 2-8, 3-4, 3-13–3-15, 3-30, 3-32–3-38,

4-4, 4-6, 4-17
Halted Processing State,
Halted Processor Causes, 3-40
Hardware Breakpoints, 5-60, 5-64–5-65

— I —

IACK Signals, 4-15, 4-34
IARB Bits, 4-5, 4-22, 4-36, 6-25–6-26, 6-36,
7-21, 7-46, 8-19, 8-27

ICCS Bit, 7-20, 7-46
IE Bits, 8-4, 8-8–8-9, 8-21, 8-27
IEC Bits, 7-32, 7-46
IEEE 1149.1, 4-2, 9-1

Capabilities, 9-1, 9-4
Implementation, 9-2
Block Diagram, 9-2
Instruction Encoding, 9-10
Control Bits, 9-4
Restrictions, 9-11

IFETCH Signal, 5-64, 5-68–5-69, 5-87–5-88

IL Bits, 7-21, 7-46, 8-20, 8-27
IMB, 6-19, 7-1, 8-1
Immediate Arithmetic/Logical Instruction Timing

Table, 5-105
IN Bit, 5-53, 5-56, 5-61
Input Port, 7-35

Change Register, 7-31
Instruction

Cycles, 5-97
Execution Overlap, 5-91–5-92, 5-94–5-95
Execution Time Calculation, 5-92–5-93
Fetch Signal, 2-19
Heads, 5-91–5-94, 5-97
Pipe Signal, 2-10
Pipeline Operation, 5-89–5-90, 5-93
Register, 9-9–9-10
Stream Timing Examples, 5-94–5-97
Tails, 5-91–5-94, 5-97
Timing Table Overview, 5-97–5-98

INTB Bit, 6-20, 6-27, 6-36
INTE Bit, 6-20, 6-27, 6-36
Integer Arithmetic Operations, 5-46–5-47
Internal

Autovector, 3-4, 3-29, 4-23, 4-36
Bus Arbitration, 6-18
Bus Masters, 4-6, 6-25
Bus Monitor, 3-4, 3-32, 4-4, 4-6, 4-17
Data Multiplexer, 3-7
DMA Request, 6-2, 6-4, 6-5
DSACK signals, 3-5, 3-13–3-14, 3-28, 4-2, 4-4,

4-14–4-15, 4-32
Exceptions, 5-66

Interrupt
Acknowledge Arbitration, 4-6, 6-25–6-26, 7-17
Acknowledge Cycle Types, 3-27

Autovector, 3-29
Autovector, Timing, 3-31
Flowchart, 3-28
Terminated Normally, 3-27, 4-7
Timing, 3-29

Acknowledge Cycle, 3-27
Acknowledge Signals, 3-29
Arbitration, 4-5–4-6, 7-21
Enable Register, 7-4, 7-34, 7-46
Exception, 5-68–5-69
Level Register, 7-21, 7-46
Register, 6-26, 8-20, 8-27
Request Signals, 2-5–2-6, 3-27–3-28, 6-26, 7-3,

7-21, 7-34, 8-4, 8-8, 8-9, 8-20
Status Register, 7-4, 7-22, 7-32, 7-34, 7-46
Vector Register, 7-4, 7-17, 7-21, 7-46

INTL Bits, 6-26, 6-36
INTN Bit, 6-27, 6-36
INTV Bits, 6-26, 6-36
IPIPE Signal, 5-87–5-88, 5-64, 5-68–5-69
IRQ Bit, 6-20, 6-31, 8-23
ISM Bits, 6-25, 6-36
IVR Bits, 7-22, 8-20, 8-27

MOTOROLA MC68340 USER’S MANUAL Index-5

— J —

JTAG, 4-2

— L —

Late Bus Error, 3-34
LG Bit, 5-56–5-57
Limp Mode, 4-19, 4-29
Local Loopback Mode, 7-14, 7-38
Location of Modules, 4-2–4-3, 4-20
Logical Instructions, 4-48
Long-Word

Read
8-Bit Port, Timing, 3-11
16-Bit Port, Timing, 3-13

Write
8-Bit Port, Timing, 3-12
16-Bit Port, Timing, 3-13

Looping Modes, 7-14–7-15
Loss of Input Signal, 4-9, 4-11, 4-29
Low Power Stop

Mode, 3-23, 4-13, 4-17, 4-29, 10-12
Low-Voltage, 10-10, 10-11

LPSTOP Cycle, 3-23

— M —

MAID Bits, 6-25, 6-36
Master Station, 7-15
Maximum Rating, 11-1
MC68681, 7-4
Memory

Access Times, 10-7
Interfacing, 10-5, 10-10

Memory-to-Memory Transfer, 6-1, 6-3, 6-5
Microbus Controller, 5-89, 5-91
Microsequencer Operation, 5-89–5-90
Misaligned Operands, 3-7
MISC Bits, 7-28
MODCK Signal, 2-9, 4-7, 4-35
MODE Bits, 8-6, 8-8–8-10, 8-12–8-14, 8-16, 8-22,

8-28
Mode Register 1, 7-13, 7-16–7-17, 7-22, 7-34, 7-47
Mode Register 2, 7-4, 7-17, 7-38, 7-47
Module Base Address Register, 4-2, 4-20, 4-36

Access, 3-27
Module

Configuration Register, 4-21, 4-36, 6-23, 7-19,
7-46, 8-18, 8-27

Locations, 4-3, 4-5
MOVE Instruction Timing Table, 5-101–5-102
MOVEM

Faults, 5-56, 5-58–5-59, 5-61
MOVEP Faults, 5-55–5-56
Multidrop Mode, 7-15–7-16, 7-23

Timing, 7-16
Multiprocessor Systems, 5-61

— N —

NCS Bit, 4-31
Negate RTS Command, 7-29
Negative Tails, 5-93–5-94
No Operation Command, 5-86

— O —

OC Bits, 8-6–8-8, 8-10, 8-22, 8-28
OE Bit, 7-13, 7-25, 7-28
ON Bit, 8-6, 8-8, 8-11, 8-24
One Mode, 8-23
OP0, 7-6, 7-36–7-38
OP1, 7-7, 7-36–7-38
OP4, 7-7, 7-36–7-37
OP6, 7-7, 7-36–7-37
Opcode Tracking in Loop Mode, 5-88
Operand

Faults, 5-56, 5-58, 5-61
Misalignment, 3-7
Size Field, 5-73

Operation Field, 5-73
Ordering Information, 12-1
OUT Bit, 8-7–8-8, 8-10, 8-24
Output Port

Control Register, 7-36, 7-46
Data Register, 7-6–7-7, 7-22, 7-37

Overrun Error, 7-11, 7-25

— P —

Package Dimensions, 12-6–12-7
Package Types, 1-9, 12-1–12-2, 12-4
Parity

Error, 7-11, 7-24
Mode, 7-23
Type, 7-23

PCLK Bit, 8-21, 8-22, 8-27
PE Bit, 7-11, 7-13, 7-24, 7-28
Period Measurement, 8-13
Periodic Interrupt

Control Register, 4-7, 4-26, 4-37
Generation, 8-6, 8-8, 8-9
Timer Register, 4-7, 4-27, 4-37
Timer, 4-1, 4-4, 4-7, 4-9, 4-17

Periodic Timer Period Calculation, 4-8
Phase Comparator, 4-11–4-12
Phase-Locked Loop, 4-9–4-12, 10-1–10-2
Pin Group, 12-3, 12-5
PIRQL Bits, 4-7, 4-26, 4-37
PITR Bits, 4-27, 4-37
PIV Bits, 4-26
PM Bits, 7-23, 7-47
PO Bits, 8-25
Port A

Data Direction Register, 4-34
Data Register, 4-34

Index-6 MC68340 USER’S MANUAL MOTOROLA

Pin Assignment Register 1, 4-15, 4-33, 4-37
Pin Assignment Register 2, 4-15, 4-34, 4-37
Pins

Functions, 4-15
Assignment Encoding, 4-15, 4-34

Port B
Configuration, 4-5, 4-16
Data Direction Register, 4-35
Data Register, 4-35
Functions, 4-16
Pin Assignment Register, 4-16, 4-35, 4-37
Pins

Functions, 2-6, 2-9, 4-16
Pin Assignment Encoding, 4-16, 4-35

Port Size, 4-14, 6-31
Port Width, 3-1, 3-7
POT Bits, 8-22, 8-28
Power Considerations, 11-2
Power Consumption, 1-8–1-9, 10-11
Power Dissipation, 10-11
Prefetch Controller, 5-90–5-91
Prefetch Faults, 5-55–5-58, 5-62
Preload Register 1, 8-6–8-13, 8-25–8-27
Preload Register 2, 8-10–8-11, 8-13, 8-26–8-27
Privilege Violations, 5-48
Processor Clock Circuitry, 10-1–10-2
Program Control Instructions, 5-26–5-27
Program Counter, 5-6, 5-67–5-68
Programming Model

CPU32, 5-8–5-9
DMA, 6-23
Serial, 7-19
SIM40, 4-19
Timer, 8-18

Propagation Delays, 10-7
PS Bits, 4-14, 4-32
PT Bit, 7-23, 7-47
PTP Bit, 4-7, 4-27, 4-37
Pulse-Width Measurement, 8-12–8-13
Pulse-Width Modulation, 8-6–8-7

— R —

R/F Bit, 7-22, 7-47
R/W Field, 5-73
RB Bit, 7-13, 7-24, 7-30
RC Bits, 7-30
RCS Bits, 7-26
Read

A/D Register Command, 5-76–5-77
Cycle Word Read, Flowchart, 3-16
Memory Location Command, 5-79–5-80
Modify Write Cycle, 5-53
Modify Write Faults, 5-55–5-56, 5-58
System Register Command, 5-67, 5-77–5-78

Read-Modify-Write Cycle Timing, 3-19
Retry Operation, 3-36
Interruption, 3-36, 3-43
Operation, 3-4

Read-Modify-Write Signal, 2-8, 3-19–3-21, 3-40,
3-42–3-43, 3-45

Read/Write Signal, 2-7, 3-2
Real-Time Clock, 4-9
Receive Data Signal, 2-11
Received Break, 7-11, 7-24, 7-33
Receiver, 7-9, 7-11

Baud Rates, 7-26
Buffer, 7-11–7-12, 7-25, 7-30
Disable Command, 7-30
Enable Command, 7-30
FIFO, 7-12–7-13, 7-17, 7-22–7-23, 7-25, 7-33–7-34
Holding Registers, 7-9, 7-11
Ready Signal, 2-12
Shift Register, 7-9, 7-12
Timing, 7-12

Register
Field, 5-74
Indirect Addressing Mode, 5-5

Released Write, 5-57
Remote Loopback Mode, 7-14, 7-38
REQ Bits, 6-27, 6-29, 6-37
Request to Send Signal, 2-11
Reset

Break-Change Interrupt, 7-28
Effect on DMA Transfers, 6-20
Error Status Command, 7-28
Exception, 5-43–5-44
Instruction, 5-85
Peripherals Command, 5-85–5-86
Operation, 3-45, 3-46
Receiver Command, 7-28
Signal, 2-8, 3-45–3-48, 5-66
Status Register, 4-3, 4-23
Types, 3-45
Timing, 3-47
Transmitter Command, 7-28
Values for Counter and Prescaler, 8-2
Vector, 5-4

RESET Signal, 3-45–3-48, 5-43
Retry Bus Cycle Operation, 3-32, 3-34–3-35

Timing, 3-37
Timing, Late Retry, 3-38

Return From Exception, 5-51–5-52
Return Program Counter, 5-67–5-68
Returning From Background Mode, 5-68
RM Bit, 5-53
ROM Interface, 10-3
RR Bit, 5-53
RS-232 Interface, 10-4–10-5
RSTEN Bit, 4-29
RTE Instruction, 5-57–5-59, 5-61
RTS Operation, 7-11, 7-22
RTSA Signal, 7-6, 7-37
RTSB Signal, 7-6, 7-36
RTS≈ Signal, 7-11, 7-13, 7-22, 7-29, 7-38
RW Bit, 5-54
RxDx Signal, 7-6, 7-11, 7-14, 7-24
RxRDA Bit, 7-11, 7-13, 7-15, 7-24, 7-25
RxRDYA Bit, 7-34–7-35

MOTOROLA MC68340 USER’S MANUAL Index-7

R≈RDYA Signal, 7-7, 7-36
RxRDYB Bit, 7-33, 7-35
RxRTS Bit, 7-22, 7-47

— S —

S/D Bit, 6-30, 6-37
SAPI Bits, 6-12, 6-19, 6-28, 6-37
Save and Restore Operations Timing Table, 5-113
SB Bits, 7-39, 7-47
SCLK Signal, 7-3, 7-6, 7-8, 7-20
SE Bit, 6-25, 6-36
Selected Clock, 8-3, 8-21
Serial

Clock Signal, 2-11
Command Control, 7-27
Communication Overview, 7-3
Compatibility with MC68681, 7-4
Crystal Oscillator, 7-3, 7-5
Diagnostic Functions, 7-14
Initialization, 7-46–7-49
Interface Timing, 5-68–5-71
Interface, 10-4–10-5
Maximum Data Transfer Rate, 7-2
Module Capabilities, 7-2
Module Programming Model, 7-19
Module Programming, 7-40
State Machine, 5-69–5-71

SFC Bits, 6-32
Shadowing, 8-6–8-7
SHEN Bits, 4-5, 4-22
Shift and Rotate

Instructions, 5-24–5-25
Instruction Timing Table, 5-108

Show Cycles, 4-3, 4-22
Operation, 3-42–3-43, 3-45

Signal Relationships to CLKOUT, 10-7
Signal Widths, 10-8
SIM40

Configuration, 4-3
Programming Model, 4-19

Simultaneous Interrupts, 4-9
Single Address

Mode, 6-2, 6-6–6-7, 6-10, 6-19, 6-27, 6-37
Source Read, 6-7–6-8
Source Write, 6-10–6-11

Single Operand Instruction Timing Table, 5-107
Single Step Operation, 3-36
Six-Word Stack Frame, 5-52, 5-60
SIZ Bits, 5-56–5-57, 5-73
Size

Signal Encoding, 2-7, 3-3
Signals, 2-7, 3-3, 3-5–3-7

Skew Between Outputs, 10-9
Slave Station, 7-15
SLIMP Bit, 4-11, 4-29
SLOCK, 4-11, 4-29
Software

Breakpoints, 5-53–5-54

Interrupt Vector Register, 4-7, 4-24, 4-36
Operation, 4-4, 4-6, 4-17, 4-27
Service Register, 4-7, 4-28
Service Routine, 4-7, 4-25
Timeout, 4-25
Watchdog, 4-1, 4-4, 4-6
Watchdog Clock Rate, 4-7

Source Address Register, 6-7, 6-12, 6-18–6-19,
6-28, 6-33, 6-37, 6-38

Special Status Word, 5-45, 5-52
Special-Purpose MOVE Instruction Timing Table,

5-101–5-102
Spurious Interrupt, 3-29

Monitor, 4-1, 4-4, 4-6, 4-17,
Square-Wave Generation, 8-6, 8-8–8-9
SRAM Interface, 10-3
SSIZE Bits, 6-12, 6-19, 6-29, 6-37
Stack

Frames, 5-60–5-63
Pointer, 5-60–5-63

Start Break Command, 7-29
Status Register, 5-57, 5-59–5-60, 5-62–5-63, 7-10,

7-11, 7-24, 8-2, 8-4, 8-23–8-25
STEXT Bit, 4-13, 4-17, 4-29, 4-36
Stop Bit, 7-11

Length, 7-39
Stop Break Command, 7-29
STOP Instruction, 4-17
Stop Module Operation, 6-24, 7-20, 8-19
Stopped Processing State, 5-37
STP Bit, 4-17, 6-24, 6-36, 7-20, 7-46, 8-19,
STR Bit, 6-3, 6-4, 6-5, 6-19, 6-30, 6-35, 6-37–6-38
STSIM Bit, 4-13, 4-17, 4-29, 4-36
Supervisor Privilege Level, 3-3
SUPV Bit, 4-22, 6-22, 6-25, 6-36, 7-21, 7-46, 8-19,

8-27
Surface Interpolation with Tables, 5-29–5-36
SW Bit, 4-23
SWE Bit, 4-6, 4=24, 4-37
SWP Bit, 4-7, 4-25, 4-27, 4-37
SWR Bit, 8-6, 8-8, 8-13, 8-20, 8-27
SWRI Bit, 4-7, 4-24, 4-37
SWT Bits, 4-7, 4-25, 4-37
Synchronous

Accesses, 3-4
Operation, 3-14

System
Clock, 8-3
Configuration and Protection, 4-1, 4-3, 4-6
Control Instructions, 5-27–5-28
Protection and Control Register, 4-6, 4-24, 4-37

— T —

Table Lookup and Interpolate Instructions, 5-7,
5-12, 5-29–5-36

TAP Controller, 9-2–9-3
TC Bits, 8-7, 8-24
TCK Signal, 2-13, 9-2, 9-11, 9-12

Index-8 MC68340 USER’S MANUAL MOTOROLA

TCS Bits, 7-27
TDI Signal, 2-13, 9-2
TDO Signal, 2-13, 9-2, 9-4
Test Access Port, 9-1
TG Bit, 8-6, 8-8, 8-23–8-24, 8-27
TGE Bit, 8-8–8-11, 8-15, 8-24, 8-27
TGL Bit, 8-7, 8-24
Thermal Characteristics, 11-1
Three Point Three Volts, 10-11
Timeout, 8-2, 8-7–8-9, 8-12, 8-15
Timer

Bypass, 8-16
Clock Selection Logic, 8-3
Compare Function, 8-2, 8-6–8-9, 8-11–8-12, 8-14,

8-15, 8-25
Counter, 8-2
Counting Function, 8-13, 8-15
Gate Signal, 2-12, 8-6, 8-7–8-16, 8-21, 8-24–8-25
Input Signal, 2-12, 8-2, 8-5–8-17
Interrupt Operation, 8-4, 8-17, 8-19, 8-21,

8-23–8-24, 8-27
Output Signal, 2-12, 8-2, 8-5–8-17
Prescaler, 8-2–8-3, 8-21
Programming Model, 8-28
Uses, 8-2
Using to Compare Values, 8-6–8-8

TMS Signal, 2-13, 9-2
TO Bit, 8-8–8-9, 8-23–8-24, 8-27
Toggle Mode, 8-23
TP Bit, 5-61
TR Bit, 5-56, 5-58, 5-61
Trace

Exception, 5-57
Modes, 5-10

on Instruction Execution, 5-63
Tracing, 5-56–5-58

Control Bits Encoding, 5-53
Transfer Cases, 3-5
Mechanism, 3-5, 3-16–3-18
Transition to Background Mode, 5-65–5-68
Transmit

Data Signal, 2-11
Shift Register, 7-9, 7-11

Transmitter, 7-10–7-11
Baud Rates, 7-27
Buffer, 7-9–7-10, 7-25, 7-30–7-31
Disable Command, 7-29
Enable Command, 7-29
Holding Register, 7-9–7-10, 7-25, 7-33
Ready Signal, 2-11
Timing, 7-10

TRAP Instruction, 5-46
Two-Clock Bus Cycles, 10-3
TxCTS Bit, 7-39, 7-47
TxDx Signal, 7-3, 7-6, 7-10, 7-14, 7-29
TxEMP Bit, 7-10, 7-25, 7-28
TxRDY Bit, 7-10, 7-25, 7-28, 7-31
TxRDYA Bit, 7-34–7-35
TxRDYA Signal, 7-7, 7-36
TxRDYB Bit, 7-33, 7-35

TxRTS Bit, 7-38, 7-47
Types of DMA Interrupts, 6-20

— U —

Unimplemented Instructions, 5-12
Emulation, 5-74
Exception, 5-48, 5-50

UNLK Instruction, 5-36
Use of Chip Selects, 4-15, 10-3–10-4
User

Privilege Level, 5-7, 5-37–5-38, 5-48
Using

8-Bit Boot ROM, 10-5
TGATE as an Input Port, 8-16
Table Lookup and Interpolate Instructions, 5-7, 5-12,

5-20–5-35
TOUT as an Output Port, 8-16–8-17

— V —

V Bit, 4-14–4-15, 4-20, 4-31, 4-36
Variable Duty-Cycle Square-Wave Generator, 8-9–8-10
Variable-Width Single-Shot Pulse Generator, 8-10–8-12
VCCSYN, 2-13, 4-9–4-11, 10-2–10-3
Vector Base Register, 5-4, 5-10, 5-39–5-41, 5-43
Vector Numbers, 5-34–5-40
Virtual Memory, 5-2
Voltage-Controlled Oscillator, 4-9–4-12, 4-28–4-29,

10-1–10-2

— W —

W Bit, 4-10, 4-12–4-13, 4-28, 4-36
Wait States, 3-14, 3-16–3-20, 4-1, 4-14–4-15, 4-17,

4-32
Wakeup Mode, 7-15
Word Operands, 5-12
WP Bit, 4-14
Write

A/D Register Command, 5-77–5-79
Cycle Word, Flowchart, 3-18
Memory Location Command, 5-79–5-80
System Register Command, 5-78–5-79

Write-Pending Buffer, 5-91

— X —

X Bit, 4-9, 4-11–4-13, 4-28, 4-36
X1 Signal, 2-11, 7-5
X2 Signal, 2-11, 7-5
XFC Pin, 2-9, 4-12, 10-2–10-3
XTAL Pin, 2-9, 4-9–4-11, 10-1–10-2
XTAL_RDY Bit, 7-4, 7-26, 7-33–7-34, 7-46

MOTOROLA MC68340 USER’S MANUAL Index-9

— Y —

Y Bits, 4-12–4-13, 4-28, 4-36

— Z —

Zero Mode, 8-23

X

X
X

X
X

MOTOROLA
SEMICONDUCTOR
TECHNICAL 	INFORMATION

Order this document
by M68KIDP/D

M68000IDP

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

© MOTOROLA 1992

Product Brief
M68000 Family Integrated Development Platform
(IDP)

TheM68000 family IDP is a board set designed to provide a low-cost evaluation platform, yet flexible
environment for developing both software and hardware for the family products. The platform provides the
means for M68000 microprocessor and tool evaluation which enables users to properly select the
microprocessor and associated tools for their next application. Because the turnkey development system
requires the user to do very little to power up the system and begin development, significant time savings is
realized by reducing the overall time that the product takes to get to market.

The IDP consists of an M68000 Family microprocessor-based CPU module as well as a generic IDP
motherboard designed to support each CPU module. The IDP also includes two software debug monitor
programs: Integrated Systems' ROM68K™ and Intermetrics' SmartROM™. This configuration allows the user
to take advantage of an entire suite of features, including tracing, assembling, disassembling, and
downloading, that are offered by the two monitors. Optional software is available to expand the development
environment of the IDP by allowing the user to design, debug, and evaluate the M68000 microprocessor-
based applications in real-time and non-real-time operating system environments. The IDP also functions as
a tool for final test or fault analysis of user target systems.

µ MOTOROLA

µ MOTOROLA

M68000 Integrated Development Platform

2 M68KIDP PRODUCT INFORMATION MOTOROLA

The IDP only requires a user-supplied power supply and an RS-232 ASCII terminal or host computer with an
RS-232 serial port. Although the IDP will function using a terminal, the preferred communication device is a
host computer. Operating the IDP with a host computer allows the user to develop, compile, and debug
code using one of many optional software tools. Once code is developed, the program can be saved and
downloaded to the IDP from the host computer.

IDP MOTHERBOARD

The IDP motherboard is a compact (10.7" x 7.5") printed circuit board. The motherboard is designed to
accept any of the M68000 CPU modules and up to five input/output (I/O) modules. Functions provided by
the IDP motherboard includes; bus routing and termination, power distribution, bus master and interrupt
signal routing, serial and parallel I/O, clock calendar functions, and system memory. The IDP motherboard
includes the following hardware features:

• One CPU Slot (M68000 Family CPU module)
• Five IDP Bus-Compatible I/O Slots
• Two RS-232 Serial I/O Channels

• IBM® PC/AT-Compatible Parallel Printer Port/24-Bit Timer
• Battery-Backed Clock/Calendar with 2040 Bytes SRAM
• Two 32-Pin EPROM Sockets, (Up to 512K x 16 EPROM)

• Two Mbytes of 5/2/2/2 Burst Mode DRAM

IDP BUS INTERFACE

The IDP provides a 32-bit data bus and a 28-bit address bus. Transfers take place synchronous to a 25-MHz
clock, providing 36-Mbyte/sec sustained data rates.

The major features of the bus are as follows:

• 25-MHz Synchronous Operation
• 32-Bit Data Bus with Byte-Select Capability
• 28-Bit Address Bus for 16-Mbyte Direct Address Space to 16 Sections
• Individual Interrupt Request/Acknowledge Pair per I/O Slot
• Individual Bus Request/Acknowledge Pair per I/O Slot
• Maximum Data Rate of 36 Mbytes/Sec with 5/2/2/2 Burst Transfers

Five I/O expansion slots on the IDP motherboard enable the user to expand the I/O functionality of the IDP.
In addition, I/O-related software can be used to take advantage of the added functionality. A variety of IDP
bus-compatible I/O modules are available through third-party vendors. These modules include Ethernet,
SCSI, IDE controller, and video controller cards. Additional information on the IDP bus interface can be
obtained for users who want to design their own interface modules.

ROM MONITORS

Two monitor routines, ROM68K and MON68, reside in the ROM on the motherboard. The monitors provide
the user with a generous set of commands for software development and debug. The IDP provides a
convenient way to switch from one monitor to the other while maintaining a consistent development
configuration.

MOTOROLA M68KIDP PRODUCT INFORMATION 3

The IDP boots with the ROM68K. The ROM68K features commands for reading and writing memory, viewing
and/or changing CPU registers, assembling, disassembling, and downloading code via serial port or network
connection. In addition, the monitor can be configured to automatically load a operating system from a host
system and start it running when the target CPU is powered on or reset. Integrated Systems also offers
pSOS+™, a real-time operating system, pROBE+™, a system-level debugger for pSOS+-based
applications, and XRAY+™, a powerful source-evel debugger. XRAY+ and pROBE+ are highly integrated
with the real-time operating system to allow the user to debug on an operating-system level as well as on a
source level. Together, these development tools offer a complete real-time operating system solution for
the user. XRAY+, pROBE+, and pSOS+ are offered as options with the IDP. The pSOS+ and pROBE+ are
available through Motorola.

MON68 features commands to allow the user to set and display memory and registers. In addition, MON68
implements a trace function that allows the user to set breakpoints and examine traces of executed code.
MON68 interfaces directly with Intermetrics' XDB™ source-level debugger. XDB's unique features include
actual target-level access and direct control of program execution at the source statement or machine
instruction level. The user can single step by source lines, machine instructions, and into and over
procedure calls. XDB also has an assertion mechanism for testing a program under user-defined conditions.
XDB is offered as an option with the IDP and can be obtained through Motorola.

Other compatible operating systems, compilers, and debuggers are offered by many third-party vendors,
giving the user the option to tailor the development system specifically for his needs.

IDP MODES OF OPERATION

In addition to its use as a software development tool, the IDP can be used as a microprocessor evaluation
tool as well as a hardware debugging tool depending on it's mode of operation. To accomplish this, the IDP
contains a high-speed address translation table that gives the user the option to remap resources when
using additional hardware that interfaces to the CPU local bus connector.

BYPASS MODE

Bypass mode is entered by default after a reset. In this mode, the address lines A12–A27 are routed directly
through the output multiplexer and onto the IDP Bus. This is considered the normal mode of operation and
is used when it is not necessary to remap IDP memory.

TRANSLATE MODE

In translate mode, CPU addresses A16–A27 form the input to the address translation map. The outputs of
the translation table are routed via the output multiplexer onto IDP address lines A12–A27. In this mode, all
addresses are translated. Using optional interface hardware attached to the IDP via the CPU local bus
connectors, the user may plug into a target system CPU socket. This feature allows the user to debug the
target system hardware while maintaining access to the IDP-based resources. The high-speed address
translation map allows the user to map out portions of the IDP address space that conflict with the target. Bus
arbitration and interrupt control may be software disabled, allowing those functions to be performed by target
system circuitry.

EVALUATION

An optional high-speed memory board connected to the local bus connector provides a mechanism for
measuring the performance of the microprocessor. The onboard memory can be configured so that the user

4 M68KIDP PRODUCT INFORMATION MOTOROLA

can emulate different types of memory (instruction or data areas) and different-sized devices (8-, 16-, or 32-
bit widths). A software-selectable feature allows the user to designate areas of memory to have a specific
number of wait states. In addition, dynamic bus sizing is supported by a feature that allows the user to specify
different size configurations. A 32-bit onbaord timer provides profiling functionality. The user can monitor
activities such as the total number of times certain areas of memory are accessed. Specifically the user can
monitor the number of read accesses, the number of write accesses and the number of times the bus is
utilized. These features provide a powerful tool to assist the user in selecting optimal processor/memory
combinations prior to the actual design while considering important factors such as price/performance
tradeoffs.

IDP CPU MODULE

The IDP CPU module is an IDP bus-compatible module based on an M68000 microprocessor. The CPU
module is designed to be plugged into the IDP motherboard regardless of the microprocessor configuration.
This design approach allows the user to target any of the 68K family by using the generic motherboard with
any of the CPU modules. The CPU module provides the following features:

• M68000 Family MIcroprocessor

• Interrupt Control Circuitry

• IDP Bus Arbitration Circuitry

• Address Translation Map

• 16-Bit to 32-Bit Data Bus Translation (CPU000 only)

• Local Bus

• 25 MHz MC68882 Floating-Point Unit (CPU020, CPU030 only)

The CPU module has two DIN-style connectors. A 96-pin connector has signals that are the same or similar to
the other CPU modules. The 48-pin connector has mostly the control and status signals that are unique to
the specific CPU module. These signals are unbuffered and allow for the direct attachment of circuitry that
cannot tolerate the delays imposed by the IDP bus.

Refer to M68000 CPU modules availability table on back page for CPU modules that are currently available.

MOTOROLA M68KIDP PRODUCT INFORMATION 5

Motoro la re se rve s the ri ght to make changes wi thout furt her notice to an y pro ducts herei n. Motoro la mak es no wa rra nty, re pre sentat ion or gua rant ee
re gard ing th e suit abil ity of it s pro duct s fo r any part icu la r pur pose , nor does Motoro la assu me any lia bil ity ari si ng ou t of the appl ica tio n or use of any pro duct or
circ uit , and sp ecif ica lly di sc lai ms any a nd all lia bil ity, in clu ding w it hout li mit atio n cons equent ial or inci dental damag es. "Ty pic al" par amet ers can and do va ry in
dif feren t app lic atio ns. All opera ting para meter s, in clu din g "Ty pic als " mu st be vali date d for each cu sto mer appl ica tio n by cust omer's techni ca l exper ts.
Motoro la does not co nve y any lic ense under its patent ri ghts nor the r ig hts of others . Motoro la produ cts are not desig ned, int ended, or authori ze d for use as
com ponents in sy st ems inten ded for surg ica l impl ant into the bod y, or other appl ica tio ns intende d to suppor t or sust ain lif e, or for any other app lic atio n in
wh ich the fa ilu re of the Motoro la pro duct co uld cre ate a si tua tion wh er e pe rso nal inju ry or death may occ ur. Sho uld Bu yer purc ha se or use Motoro la prod ucts
for an y such uninten ded or unautho riz ed appli ca tion , Bu yer shall inde mnify and hold Motoro la and it s offic ers , emplo yee s, subs idi ari es, affili ates, and
dis tri butor s harml ess again st all cl aim s, co sts, damages , and exp ense s, and re aso nable at torne y fees ar is in g out of, dir ect ly or in dire ct ly, any cl aim of
pers ona l in jury or death asso cia ted wi th such unint ended or unauthor iz ed use , eve n if su ch clai m all eges that Mot orola wa s neglig ent re gard ing th e desig n or
manufacture of the part. Motorola and are registered trademarks of Motorola Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.µ

M68000 CPU Module Availability

CPU Available

MC68EC000* —

MC68EC020* —

MC68EC030 ✔

MC68EC040* —

MC68020* —

MC68030* —

MC68040* —

MC68340* —

*Contact your local Motorola sales office for future availability of these items.

pSOS+, pROBE+, XRAY+, and ROM68K are registered trade marks of Integrated Systems.
MON68 and XDB are registered trademarks of Intermetrics.
IBM is a registered trademark of International Business Machines.

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No.2 Dai King Street, Tai Po Industrial Estate,
 Tai Po, N.T., Hong Kong.

68K/ColdFire Developer List

Accelerated Technology

Applied Microsystems

(Phone: 800-468-6843) (Fax: 334-661-5788) (Email: sales@atinucleus.com)
Accelerated Technology, Inc. provides source code and non-royalty based Real-Time
Operating System (RTOS) products. The Nucleus PLUS real-time kernel offers support
for many popular RISC, CISC, and DSP microprocessors and development tools. ATI has
a vast array of support products including: file system support; one of the broadest sets of
networking products in the industry; Nucleus WebServ, an embedded web server; and
Nucleus GRAFIX, a simple and complete graphics solution. Nucleus POWERplant embedded
development environment and Nucleus MNT round out the best prototyping environment
in the industry.

(Phone: 800-426-3925) (Fax: 206-883-3049)
Applied Microsystems products support 8,16, and 32-bit Motorola microprocessors, and
include high performance in-circuit emulators, software debugging tools, source-level
debuggers, and language development tools.

Aisys Intellegent Systems

Israel - (Phone: 972-3-922-6860) (Fax: 972-3-922-6863)
Santa Clara, CA - (Phone: 408-327-8820) (Fax: 408-327-8830)
Boston, MA - (Phone: 617-270-7430) (Fax: 617-270-7472)
 (Email: info@aisys.co.il)
Aisys has created an automation breakthrough that can save months of development time and
thousands of dollars. DriveWay 3DE automatically builds device drivers based on user
specifications through a point and click interface. Unlike traditional manual programming
techniques, DriveWay produces highly tuned, fully tested and documented drivers and, as a
result, using DriveWay can save you 70% of the time and 50% of the cost to develop and
 integrate device drivers.

(Phone: 303-223-1616) (Fax: 970-223-9573) -- Development Boards
Arnewsh, Inc.

(Phone: 617-320-9400) (Fax: 617-320-9212) -- Compiler/Debugger
BSO/Tasking

(Phone: 800-325-3110 X1803) (Fax: 508-663-0150) (Email: info@cspi.com)
Manufacturer of Network Multicomputing products used in high performance embedded
systems for signal and image processing applications.

CSPI

-- Compiler/DebuggerCygnus Support

Diab Data (Phone: 415-571-1700) (Fax: 415-571-9068)

Diab Data (DDI) provides ultra high-performance C and C++ compiler suites for the
entire ColdFire(tm) Family. DDI's compiler suites operate on all major PC and UNIX
platforms. DDI can be reached by e-mail at d-veloper@ddi.com.

Embedded Support Tools (EST) (Phone: 791-828-5588) (Fax: 781-821-2268)

EST is a leading developer and manufacturer of emulators and evaluation boards for
Motorola's 68300, PowerPC and ColdFire families. EST's scalable visionICE emulation
system employs a unique open software architecture, delivering high and low-end features
for every stage of embedded development - from low-cost BDM to full ICE complete
with real-time trace and a powerful event system.

Embedded System Products (Phone: 800-525-4302) (Fax: 281-561-9980)
Embedded System Products, founded in 1978, produces the multitasking real-time embedded
kernel RTXC, the out of the box solution for embedded system development. RTXC has
been tested on every processor we support to ensure that it works the first time,
every time. Our confidence in this process is so great that we warrantee our products
at the source code level. Also available from Embedded System Products are an
input-output subsystem, MS-DOS compatible file manager, and TCP/IP communications
utilities. All products are sold ANSI C source code included and royalty-free. ESP can be
reached by e-mail atsales@esphou.com.

Emulation Technology, Inc.
(Phone: 408-982-0660 (Fax: 408-982-0664) -- Socket Adapters

Enea OSE Systems

(Phone: 408-252-6470) (Fax: 408-252-6471) -- Hardware and software for use in
embedded systems networking environment.

FlowPoint

(Phone: 1-800-369-3632) (Email: info.ose@enea.se) -- Real Time Operating Systems

Green Hills Software
(Phone: 805-965-6044 x127) (Fax: 805-965-6343) (Email: sales@ghs.com)

Green Hills Software produces integrated development environments, optimizing compilers
and real-time operating systems for Motorola processors. The MULTI(R) Integrated
Development Environment combines optimized compilers, debuggers, instruction set simulators,
target connectivity, RTOS-awareness and other development tools under an intuitive graphical
interface. Languages include C/C++, Embedded C++, Ada and FORTRAN.

(Phone: 800-55-FORTH) (Fax: 310-372-8493))
SwiftX integrated software development systems from FORTH, Inc. includes a Forth
cross-compiler, assembler, libraries and multitasking kernel for the 68HC11, 68HC12, 68HC16,
68332, 68360 and 68K MCU's. SwiftX produces extremely compact and efficient code and
lets you pack more functionality in the available hardware resources.

Grammar Engine, Inc.
(Phone: 614-889-7878) (Fax: 614-899-7888) -- Emulators.

Hewlett-Packard (Phone: 800-452-4844) (Fax: 719-590-5054)
The Hewlett-Packard, Colorado Springs Division designs and manufactures logic analyzers,
oscilloscopes, emulators/analyzers, software simulators, debuggers/emulators software,
real-time software performance analyzer, C compilers, assemblers, linkers, debug utility for
real-time operating systems, and other software packages for the embedded microprocessor
designers.

Hitex
(Phone: 408-451-3986) (Fax: 408-441-9486) -- Emulators

Huntsville Microsystems
(Phone: 205-881-6005) (Fax: 205-882-6701) (Email: sales@hmi.com)

HMI is a leading supplier of emulators, background mode debuggers
(BMDs), and
simulators for Motorola devices. HMI's $199 BMD solution for 683XX,
ColdFire, and PowerPC are taking the industry by storm. Full
emulation support is provided with the proven HMI-200 Series and
state-of-the-art SPS-2000 Series emulators.

Industrial Programming, Inc.

(Phone: 800-228-6867) (Fax: 516-938-6609) -- RTOS

Integrated Systems
(Phone: 408-542-1500) (Fax: 408-980-0400)

Integrated Systems develops and markets software products and services that enable
users to improve the design and accelerate the implementation of automatic control
systems and other real-time applications with embedded microprocessors.

Interconect Systems, Inc.
(Phone: 805-581-5626) (Fax: 805-581-5032) -- Socket Adapters/Probes.

Intermetrics
(Phone: 800-356-3594 - East & Central U.S.; 714-891-4631 - West U.S.)
(Fax: 617-868-2843)

Intermetrics is a designer of integrated software development products for microprocessors,
digital signal processor, and microcontroller-based computing systems. A wide range
of products are provided including compilers, assemblers, utilities, debuggers and
royalty-free real-time kernels.

JMI Software Systems, Inc.
(Phone: 215-628-0840) (Fax: 215-628-0353) -- RTOS

Kadak Product.s, Ltd.
(Phone: 604-734-2796) (Fax: 604-734-8114) -- Debug Tool, RTOS

Lauterbach Datentechnink GMBH
(Phone: +49-81-04-89430) (Fax: +49-81-04-894349) -- Debuggers/Emulators

Lynx
(Phone: 800-255-5969) (Fax: 408-879-3920) -- RTOS

MetaWare Inc.
(Phone: 408-429-6382) (Fax: 408-429-9273) (Email: techsales@metaware.com)

MetaWare brings 17 years of compiler technology experience to the Motorola Embedded
PowerPC platform. Development tools emphasizing compact, fast, reliable code
generation
for embedded processors make High C/C++TM a leader in embedded development.
The MetaWare toolset includes compiler, assembler, linker/locator, archiver, libraries, and
utilities, integrated with SDS's SingleStepdebugger.

Microtec Division, Mentor Graphics Corp.
(Phone: 800-950-5554) (Fax: 408-487-7001)

Mentor Graphics Microtec is an ISO 9001-certified leading supplier of integrated and
flexible embedded software development tools, real-time operating system (RTOS)
solutions and services to more than 50,000 users worldwide. Microtec's proven VRTX,
RTOS, industry-standard XRAY Debugger and optimizing Microtec C, C++ and Java
Compilers can be used individually or together as an integrated solution to develop a broad
range of embedded applications. For additional company and product information, please
visit our web site.

Microtek International, Inc., EDC
(Phone: 408-955-0225) (Fax: 408-955-9705) -- In-Circuit Emulator.

Microware
(Phone: 800-475-9000) (Fax: 515-224-1352)

Microware develops and markets real-time operating systems to optimize your application
development. Microware offers a wide variety of industry standard programming languages
and advanced software tools for your application requirements.

(Phone: 408-866-1820) (Fax: 408-378-7869) -- In-Circuit Emulators.
Nohau Corp.

Noral Micrologics

Noral specializes in the design and manufacture of debugging tools for Motorola based
designs. Products include real-time debuggers, in-circuit emulators (ICE), background
debug mode (BDM) hardware and simulators.

(Phone: 602-222-9519) (Fax: 602-222-8503)

Object Technology, Inc.

ENVY/Embedded is a complete object-oriented collaborative software engineering
environment designed for complex embedded systems development.

World +44-1254-295800) (Fax: US 508-653-1828 -- World +44-1254-295801
(Email: US harrye@tiac.net -- World info@noral.co.uk)

Precise Technology, Inc.

Orion Instruments

Orion manufactures and distributes high performance in-circuit emulators (ICE) and HLL
source debuggers for ColdFire, 68K, 683XX and 68HC05/08/11 devices. Emulation
systems are hosted on Windows or UNIX platforms.

(Phone: 408-747-0440) (Fax: 408-747-0688) (Sales: sales@oritools.com

Precise Software Technologies Inc. is a leader in high-end RTOS solution company for
CISC, RISC and DSP applications. We supply complete and easy to use solutions with full
source code that include high performance Real-Time Operating Systems, best of class C/
C++ language tools, GUI-based Source Level Cross Debugging, Task Aware Debugging,
and comprehensive I/O components.

(Phone: 613-596-2251) (Fax: 613-596-6713)

P&E Microcomputer Systems, Inc.

P&E supplies BDM Interface Cables, a debugger (ICDCF), assemblers (IASMCF and
CASMCF), and a flash programmer (PROGCF and CPROGCF). Our CDROM was shipped
with the ColdFire 5307PROMO evaluation board which included a FREE.dll of interface
drivers for our cable. With this information customers can make their own BDM production
line testers.

(Phone: 617-353-9206) (Email: pemicro@pemicro.com)

Software Development Systems

SDS provides a complete and open family of embedded, real-time development tools for
Motorola's 68000, ColdFire, and PowerPC microprocessor families. These tools include C
and C++ compilers, assemblers, simulators, debuggers (target monitor, BDM, and JTAG),
interactive development and debugging environments, and awareness of most real-time
operating systems.

(Phone: 708-368-0400) (Fax: 708-990-4641)

Synopsys Logic Modeling

Provides behavioral simulation models for over two hundred Motorola devices.

(Phone: 800-545-9463) (Fax: 510-814-2010)

Wind River Systems

Wind River provides a development environment for complex real-time and embedded
applications. They offer a high-performance operating system, sophisticated networking
facilities and a complete set of cross-development tools. Wind River also provides a
diagnostic and analysis tool that provides visibility into the dynamic operation of an
embedded system.

(Phone: 503-531-2271) (Fax: 503-690-6906)

(Phone: 408-747-0440 US thru Orion, in Japan 81-422-56-9365) (Fax: 408-747-0688)

Yokogawa Digital Corp.

Yokogawa Digital Computer designs and sells in-circuit emulators and development tools
for more than 150 different microprocessors, and is currently one of the world's largest
suppliers of in-circuit emulation products.

MOTOROLA GATEWAY BOARD 1

THE MOTOROLA GATEWAY BOARD

(MCF5202 Microprocessor To MC68EC000 Bus Interface Card)
Jeff Miller

October 15, 1997

1.0 Introduction

The integrated Gateway circuit board will bridge an existing MC68EC000 system to the new ColdFire¨
MCF5202 VL-RISC microprocessor, to evaluate the possibility of moving toward a higher performance architecture.
It can be used to evaluate system enhancements such as on-chip instruction and/or data cache and bursting to external
memory. It can also be used to port software code to the ColdFire architecture directly in a customerÕs system as
opposed to the traditional method of porting code to an evaluation platform. This paper describes the use and opera-
tion of the Gateway board as well as technical information that can be used as a reference design.

2.0 Gateway Board Overview

2.1 Software Considerations

The principal use of this board is to help port system software code from the M68000 architecture to the Cold-
Fire architecture. Users will have to recompile the system software to target the MCF5202 instead of targeting the
M68000. Even though the system will see a hardware interface that looks like a MC68EC000, the software must con-
sist of ColdFire instructions for the MCF5202 to work properly. Refer to Section 8, ÒPorting from M68K Architec-

ture,Ó of the

MCF5202 UserÕs Manual

 for an overview of the issues encountered when upgrading from the M68000 to
the ColdFire microprocessor. In addition, youÕll have to keep three key things in mind while porting system software
code from the MC68EC000 system to the MCF5202 system

1. mapping 32-bit MCF5202 addresses to 24-bit 68EC000 addresses
2. cache coherency
3. RMW cycles

MICROPROCESSORS

¨

2 GATEWAY BOARD MOTOROLA

2.1.1 Mapping 32-bit MCF5202 addresses to 24-bit 68EC000 addresses

The Gateway board transfers only the lower 24-bits of the address from the MCF5202 to the MC68EC000.
This should make no difference in porting the system software (because a 24-bit addressing scheme can still be used,
with the upper 8-bits as a ÒdonÕt-careÒ) except when the on-chip cache is to be used. The MCF5202 allows speciÞc
regions of address space to be assigned access control attributes via the Access Control Registers (ACR0 and ACR1).
Also, within the MCF5202Õs Cache Control Register (CACR), the default cache mode can be set up for regions that
are not mapped by the ACRs. Refer to the ÒCacheÓ section of the

ColdFire MCF5202 UserÕs Manual

 for more
details. The MCF5202 ACRs use address bits 31-24 to determine the region of space to which the corresponding
access control attributes are assigned. Because the original M68000 system used only addresses 23-0, this at Þrst
glance may seem to cause a problem when considering caching certain areas of memory that are smaller than
16Mbytes. However, virtual-to-physical memory mapping can be used to map unique regions in the 24-bit address
space to unique 16Mbyte regions in the 32-bit address space, such that certain areas of the physical memory map can
take advantage of the MCF5202 caching schemes. One example of implementing this would be to simply concate-
nate A[31:24] = $01 in front of the Þrst 24-bit address region, and control the caching scheme for this region using
ACR0. Then concatenate A[31:24] = $02 in front of the second 24-bit address region, which will have a separate
caching scheme, and control the caching scheme for this region with ACR1. Finally, concatenate A[31:24] = $03 in
front of the third 24-bit address region, which could have yet another caching scheme, and control the caching
scheme for this region using the default cache mode in the CACR register. This example memory map translation is
shown in Table 1.

For this example, ACR0 can be set up such that everything within the region $01xxxxxx, which includes
$01000000 - $011FFFFF containing instructions, can have a speciÞc cache attribute such as copyback. ACR1 can be
set up such that everything within the region $02xxxxxx, which includes $02200000 - $023FFFFF containing data,
can have another speciÞc cache attribute such as writethrough. The CACR can be set up such that everything not
mapped by the ACRs, which includes $03400000 - $03FFFFFF containing I/O, can have a third cache attribute such
as cache inhibit. Now, when the software code is compiled, the new MCF5202 memory map that is speciÞc to the
customerÕs system must be used when assigning the corresponding instruction, data, and I/O sections.

2.1.2 Cache Coherency

If the MCF5202 has its cache on and in copyback mode, and if there is another bus master in the system that
can arbitrate the system bus away from the MCF5202 and modify a shared piece of memory, users should be careful
about maintaining cache coherency. Cache coherency is the term used to describe the act of keeping the on-chip
cache consistent (or coherent) with external memory, if other masters will be using the same memory. Refer to the
ÒCache CoherencyÓ section of the

ColdFire MCF5202 UserÕs Manual

. If cache coherency is required, then the sim-
plest way to resolve this problem is to control the shared memory region with one of the ACRs and set this ACRÕs

Table 1: Example Memory Map Translation

68000 MEMORY MAP
A[23:0]

CONTENTS CACHE CONTROL
5202 MEMORY MAP

A[31:0]

$000000

$1FFFFF
Instructions ACR0

$01000000

$011FFFFF

$200000

$3FFFFF
Data ACR1

$02200000

$023FFFFF

$400000

$FFFFFF
I/O CACR

$03400000

$03FFFFFF

MOTOROLA GATEWAY BOARD 3

cache mode to cache-inhibit. This will require the microprocessor to go to external memory to get accurate data as
opposed to having a cache hit within internal memory which could possibly contain stale data.

2.1.3 RMW cycles

If the TAS instruction is used in the original M68000 code for implementing the locked or read-modify-write
transfer sequence in hardware, then new code will have to be written that essentially implements the same locked
transfer in software. This can be done by raising the interrupt mask to 7 and then executing the read, modify, and
write instructions, and then lowering the mask back down to the appropriate level. This will ensure that the sequence
of instructions between the raising and lowering of the mask will execute uninterrupted, except for a level 7 interrupt
which is nonmaskable.

2.2 Hardware Considerations

The target system must have a female 68-pin PLCC socket such that it could hold a 68EC000 PLCC FN pack-
age not a 68EC000 QFP FU package. The Gateway board has a male connector arranged in a PLCC FN fashion that
will sit in this socket. The Gateway board can operate in 8- or 16-bit data mode. The board can handle interrupt
acknowledge cycles for external vector number acquisition or the AVEC* signal can be used to allow internal vector
generation. One difference between the MCF5202 and the 68EC000 is that DA*[1:0] is always asserted whether
AVEC* is asserted or not. Also, the interrupt level being acknowledged is driven onto A/D[4:2] by the MCF5202,
which has to be routed onto address lines A[3:1] for the 68EC000. See Figure 3 for more details. The board also has
control logic to handle bus arbitration for alternate bus masters. If the HALT signal is asserted, the processor will
stop bus activity at the completion of the current bus cycle and will place all control signals in the inactive state and
place all three-state lines in the high-impedance state.

3.0 Performance

The Gateway board performance will be Þrst discussed generally and then speciÞcally with an industry-stan-
dard benchmark. For each bus cycle, there is one extra clock required from the beginning of the ColdFire MCF5202
microprocessor bus cycle to the beginning of the 68EC000 bus cycle. This is due to the multiplexed ATM signal on
the ColdFire which is required to create the FC signals on the 68EC000 bus. Also, there are some bus clocks inherent
to the ColdFire cycle that occur after the 68EC000 bus cycle is done. This is zero to two extra clocks, depending on
the size of the access and whether the access is a read or a write. Therefore, because the fastest possible bus transac-
tion for the 68EC000 is 4 bus clocks, the fastest Gateway board bus transaction can be as few as 5 bus clocks for the
Þrst bus access of a longword write, or as many as 7 bus clocks if doing, for example, a single byte read. Table 2 and
Table 3,compare all possible combinations of accesses between the MCF5202 and the MC68EC000.

4 GATEWAY BOARD MOTOROLA

The industry standard Dhrystone 2.1 benchmark was run on the Motorola Gateway board, as well as some other
systems, and the results are shown in Table 4. If you notice in Table 4, the Gateway board requires about a 7.5MHz
increase in frequency (12.5MHz to 20MHz) to get about the same MIPS performance of the 68EC000 evaluation
board. This is attributable to the handshaking required between the MCF5202 and the 68EC000. Notice, however, if
the internal cache of the MCF5202 is used, the MIPS performance of the system is increased dramaticallyÑmore
than 8 times better than with cache off. In addition, if system bus interface changes are made to take advantage of the
MCF5202 bus interface, such as widening the data bus and allowing bursting (which will be discussed later), even
greater system performance will result.

Table 2: Bus Clock Timing Comparison (16-bit mode)

MCF5202 DATA ACCESS
READ/
WRITE

GATEWAY BOARD
BUS CLOCKS

EQUIVALENT MC68EC000 BUS
CLOCKS TO GET SAME DATA

Byte, Word
Long

Read 7
6+7=13

4
4+4=8

Byte, Word
Long

Write 7
5+7=12

4
4+4=8

Line Fill (4 Longs) Read 6+6+6+6+6+6+6+7=49 4+4+4+4+4+4+4+4=32

Line Fill (4 Longs) Write 5+5+5+5+5+5+5+7=42 4+4+4+4+4+4+4+4=32

Table 3: Bus Clock Timing Comparison (8-bit mode)

MCF5202 DATA ACCESS
READ/
WRITE

GATEWAY BOARD
BUS CLOCKS

EQUIVALENT MC68EC000 BUS
CLOCKS TO GET SAME DATA

Byte

Read

7 4

Word 6+7=13 4+4=8

Long 6+6+6+7=25 4+4+4+4=16

Byte

Write

7 4

Word 5+7=12 4+4=8

Long 5+5+5+7=22 4+4+4+4=16

Line Fill (4 Longs) Read 6+6+6+6+6+6+6+6+
6+6+6+6+6+6+6+7=97

4+4+4+4+4+4+4+4+
4+4+4+4+4+4+4+4=64

Line Fill (4 Longs Write 5+5+5+5+5+5+5+5+
5+5+5+5+5+5+5+7=82

4+4+4+4+4+4+4+4+
4+4+4+4+4+4+4+4=64

MOTOROLA GATEWAY BOARD 5

Table 4: Dhrystone 2.1 Benchmark Performance

4.0 Potential Performance and System Improvements

To fully take advantage of the MCF5202 performance in a target system, the 68EC000 bus could be changed to
interface better to the MCF5202 bus. First, the maximum frequency of operation for the Gateway boardÕs MCF5202
is 33MHz, which can be a substantial improvement over the 12.5MHz, 16.7MHz, or even the 20MHz version of the
68EC000. So, if the 68EC000 system was designed to operate at higher frequencies, this would be an easy way to
increase overall system performance. Second, the 16-bit 68EC000 data bus could be widened to 32-bits so that the
MCF5202 can get a longword in one bus transaction instead of the two bus transactions that are required now through
the Gateway board. Three, when the MCF5202 does a burst access (gives one address, expects 4 longwords of data),
if the 68EC000 system could be changed to provide the secondary 3 longwords faster than the full bus transaction
required by the current 68EC000 system, the overall MCF5202 performance can be improved dramatically. For
example, if the data bus was widened to 32-bits and page mode DRAM was used in the system, the MCF5202 could
potentially do a cache line Þll (4 longwords) in 7 bus clocks (4-1-1-1) instead of 49 bus clocks (6-6-6-6-6-6-6-7).

The MCF5202 was chosen for the Gateway board because of its on-chip 2KB uniÞed cache that allows custom-
ers to experiment among various on-chip memory conÞgurations. For example, the 2KB uniÞed cache can be conÞg-
ured to be 2KB of I-cache only, 2KB of D-cache only, 1KB of I-cache and 1KB of D-cache, or as a normal 2KB
uniÞed cache with a dynamic mixture of both instructions and data. Other ColdFire microprocessors can be selected
according to speciÞc system requirements. For example, the MCF5204, which would not require latches and buffers
because it has a demultiplexed address and data bus (just like the 68EC000) has a little less on-chip memory (512
byte I-cache and 512 byte SRAM) compared to the MCF5202. Therefore, using the MCF5204 would most likely
give a little less performance, but would save overall system cost.

5.0 Debug Support

There is a ColdFire BDM connector (labeled J2) on the Gateway board that is a 26-pin Berg Connector
arranged in two rows of thirteen pins each. This connector is commonly used by software debugger vendors to allow
such features as real-time trace, real-time debug, and background debug.

SYSTEM
DATA

WIDTH
FREQUENCY

DRAM ACCESSES
(TO GET 16 BYTES)

CACHE
MODE

MIPS
(@ GIVEN

FREQUENCY)

MC68EC000 Board 16 bit 12.5 MHz 8-8-8-8-8-8-8-8 N/A 1.01

Gateway Board 8 bit 20 MHz R: 10-10-10-11-10-10-10-11-
 10-10-10-11-10-10-10-11
W: 9- 9- 9-11- 9- 9- 9-11-
 9- 9- 9-11- 9- 9- 9-11

Off 0.56

Gateway Board 16 bit 20 MHz R: 10-11-10-11-10-11-10-11
W: 9-11- 9-11- 9-11- 9-11

Off 1.07

Gateway Board 8 bit 20 MHz R: 10-10-10-10-10-10-10-10-
 10-10-10-10-10-10-10-11
W: 9- 9- 9- 9- 9- 9- 9- 9-
 9- 9- 9- 9- 9- 9- 9-11

Copy-Back 5.95

Gateway Board 16 bit 20 MHz R: 10-10-10-10-10-10-10-11
W: 9- 9- 9- 9- 9- 9- 9-11

Copy-Back 9.12

MCF5202 Board 32 bit 20 MHz 8-4-4-4 Copy-Back 12.6

6 GATEWAY BOARD MOTOROLA

6.0 Bus Operation

The Gateway board supports a synchronous interface between the MCF5202 bus and the MC68EC000 bus.
The waveforms in this document are meant to provide a functional description of the bus cycles required for data
transfer operations. The examples below show a longword read and write to a 16-bit wide data bus of the
MC68EC000 as well as an Interrupt Acknowledge Cycle. Note that at all times the MCF5202 will not burst
(TBI*=0) and that the address phase lasts for only one clock (AA*=0).

Figure 1: Longword Read To A 16-Bit Port

AD[31:16]

CLOCK

READ D[31:16]ADDR

00

ADDR

ADDR

ADDR

READ D[15:0]

00

01 01

10

READ D[31:24]

READ D[23:16]

READ D[15:8]

READ D[7:0]

TS*

R/W*

TT[1:0]

ATM

SIZ[1:0]

AD[15:0]

DA*[1:0]

FC[2:0]

A[23:0]

AS*

UDS

LDS

DTACK*

D[15:8]

D[7:0]

w S0 S2 S4 S6 w w

PS1

w

PS1 PS2 PS3 PS4 PS5 PS1 PS1

S0 S2 S4 S6 w w

PS2 PS3 PS4 PS5 PS1 PS1

w

PS1

MOTOROLA GATEWAY BOARD 7

Figure 2: Longword Write To A 16-Bit Port

CLOCK

w S0 S2 S4 S6 w

PS1

w

PS1 PS2 PS3 PS4 PS5 PS1

S0 S2 S4 S6 w w

PS2 PS3 PS4 PS5 PS1 PS1

w

PS1

WRITE D[31:16]ADDR

00

ADDR

00

01

WRITE D[31:24]

ADDR

ADDR

WRITE D[15:0]

01

WRITE D[23:16] WRITE D[7:0]

WRITE D[15:8]

10

AD[31:16]

TS*

R/W*

TT[1:0]

ATM

SIZ[1:0]

AD[15:0]

DA*[1:0]

FC[2:0]

A[23:0]

AS*

UDS

LDS

DTACK*

D[15:8]

D[7:0]

8 GATEWAY BOARD MOTOROLA

Figure 3: Interrupt-Acknowledge Operation

CLOCK

VECTOR

01

11

01 or

01

TS*

R/W*

TT[1:0]

ATM

SIZ[1:0]

AD[23:5]

DA*[1:0]

FC[2:0]

A[23:4]

AS*

UDS

LDS

DTACK*

D[15:8]

D[7:0]

w S0 S2 S4 S6 w w

PS1

w

PS1 PS2 PS3 PS4 PS5 PS1 PS1

S0 S2 S4 S6 w w

PS2 PS3 PS4 PS5 PS1 PS1

w

PS1

IPL

AD[31:24]

AD[4:2]

AD[1:0]

AVEC*

IPL*[2:0]

LEVEL

A[3:1]

A0

IPL LEVEL IPL LEVEL

VECTOR

IPL
LEVEL

IACK CYCLE
(VECTOR NUMBER

ACQUISITION)
(AUTOVECTORED)

IACK CYCLE

w

PS1

10
01 or

10

MOTOROLA GATEWAY BOARD 9

7.0 PLD State Diagram

Figure 4: SimpliÞed PLD State Diagram

8.0 PLD ABEL Code

MODULE gateway

TITLE 'The controlling signals between a 5202 and a 68EC000'

gateway device 'ispLSI';

pLSI property 'PART ispLSI1016-80LT44';
pLSI property 'IGNORE_FIXED_PIN OFF';
pLSI property 'PULLUP ON';
pLSI property 'Y1_AS_RESET ON';

pLSI property 'LOCK AVEC 1';
pLSI property 'LOCK HALT 2';
pLSI property 'LOCK PCLK 5';
"pLSI property 'LOCK SDI 8';
pLSI property 'LOCK TT1 9';
pLSI property 'LOCK TT0 10';
pLSI property 'LOCK ATM 11';
pLSI property 'LOCK BR68K 15';
"pLSI property 'LOCK SDO 18';
pLSI property 'LOCK SIZ1 19';
pLSI property 'LOCK BDCF 21';
"pLSI property 'LOCK SCLK 27';
"pLSI property 'LOCK RSTI 29';

Reset

Wait
for

beginning
of ColdFire

cycle

Begin a
68EC000

cycle

Data
Acknowledge

to the
MCF5202

Wait
for

Acknowledge
from

68EC000

TS

TS

TS

TS

DTACK

DTACK

Grant to
ColdFire

Grant to
68EC000 No

Grant

BDCF

BDCF

No
Grant

BR68KBR68KBR68K BR68K

Bus Master

Assert
other control

signals

10 GATEWAY BOARD MOTOROLA

"pLSI property 'LOCK ISPMODE 30';
pLSI property 'LOCK AD0 38';
pLSI property 'LOCK MODE 40';
pLSI property 'LOCK SIZ0 41';
pLSI property 'LOCK RnW 42';
pLSI property 'LOCK DTACK 43';
pLSI property 'LOCK TS 44';
pLSI property 'LOCK AENORM 3';
pLSI property 'LOCK AEIACK 4';
pLSI property 'LOCK FC2 12';
pLSI property 'LOCK FC1 13';
pLSI property 'LOCK FC0 14';
pLSI property 'LOCK BG68K 16';
pLSI property 'LOCK BGCF 20';
pLSI property 'LOCK LDAT 22';
pLSI property 'LOCK OEBA8 23';
pLSI property 'LOCK OEAB8 24';
pLSI property 'LOCK OEBA16 25';
pLSI property 'LOCK OEAB16 26';
pLSI property 'LOCK UDS 31';
pLSI property 'LOCK LDS 32';
pLSI property 'LOCK ADLT 33';
pLSI property 'LOCK AS 34';
pLSI property 'LOCK DA1 35';
pLSI property 'LOCK DA0 36';
pLSI property 'LOCK AEUP 37';

"--

DECLARATIONS
"Inputs - All Positive Logic
!AVEC pin 1 istype 'input'; "nAVEC
!HALT pin 2 istype 'input'; "nHALT
PCLK pin 5 istype 'input'; "CLK from motherboard to uP

" pin 8 istype 'input'; SDI - only used for in-circuit programming of PLD
TT1 pin 9 istype 'input';
TT0 pin 10 istype 'input';
ATM pin 11 istype 'input';
!BR68K pin 15 istype 'input'; "nBR68K

" pin 18 istype 'input'; SDO - only used for in-circuit programming of PLD
SIZ1 pin 19 istype 'input';
!BDCF pin 21 istype 'input'; "nBDCF

" pin 27 istype 'input'; SCLK - only used for in-circuit programming of PLD
!RSTI pin istype 'input'; "pin 29 - nRSTI - RESET pin

" pin 30 istype 'input'; ISPMODE - only used for in-circuit programming of PLD
AD0 pin 38 istype 'input'; "AD0 (unlatched)
MODE pin 40 istype 'input'; "Dedicated IN3 - 0=8-bit, 1=16-bit
SIZ0 pin 41 istype 'input';
RnW pin 42 istype 'input';
!DTACK pin 43 istype 'input'; "nDTACK
!TS pin 44 istype 'input'; "nTS

"Outputs - All Positive Logic
!AENORM pin 3 istype 'output'; "Addr Enable for NORM Op - AENORM=0=HIZ, AENORM=1=output
!AEIACK pin 4 istype 'output'; "Addr Enable for IACK Op - AEIACK=0=HIZ, AEIACK=1=output
FC2 pin 12 istype 'output';
FC1 pin 13 istype 'output';
FC0 pin 14 istype 'output';

MOTOROLA GATEWAY BOARD 11

!BG68K pin 16 istype 'output'; "nBG68K
!BGCF pin 20 istype 'output'; "nBGCF
LDAT pin 22 istype 'output'; "(!nLE16_8) - 0=transparent latches, L-2-H=latches data
!OEBA8 pin 23 istype 'output'; "nOEBA8 =0=HIZ, 1=output from B (TDAT) to A (AD) enabled
!OEAB8 pin 24 istype 'output'; "nOEAB8 =0=HIZ, 1=output from A (AD) to B (TDAT) enabled
!OEBA16 pin 25 istype 'output'; "nOEBA16=0=HIZ, 1=output from B (TDAT) to A (AD) enabled
!OEAB16 pin 26 istype 'output'; "nOEAB16=0=HIZ, 1=output from A (AD) to B (TDAT) enabled
!UDS pin 31 istype 'output'; "nUDS
!LDS pin 32 istype 'output'; "nLDS
!ADLT pin 33 istype 'output'; "Addr Latch - 0=transparent latches, L-2-H=latches data
!AS pin 34 istype 'output'; "nAS
!DA1 pin 35 istype 'output'; "nDA1
!DA0 pin 36 istype 'output'; "nDA0
!AEUP pin 37 istype 'output'; "Addr Enable for A[23:8] - AEUP=0=HIZ, AEUP=1=output

"---

"Internal Nodes

PQ0,PQ1,PQ2 node istype 'reg, buffer';
A0 node istype 'reg,buffer';
ATMA node istype 'reg,buffer';
NQ1 node istype 'reg';
NQ2 node istype 'reg';
NCLK node;
BQ0,BQ1 node istype 'reg,buffer';

"Constants
c,k,x,z = .C.,.K.,.X.,.Z.; "this is used for test vectors

"State Value Constants

psreg = [PQ2,PQ1,PQ0]; "Positive Clk State Register
PS0 = [0,0,0]; "!PQ2&!PQ1&!PQ0
PS1 = [0,0,1]; "!PQ2&!PQ1&PQ0
PS2 = [0,1,1]; Ò!PQ2&PQ1&PQ0
PS3 = [0,1,0]; "!PQ2&PQ1&!PQ0
PS4 = [1,1,0]; "PQ2&PQ1&!PQ0
PS5 = [1,0,0]; "PQ2&!PQ1&!PQ0

PSTATE0 = !PQ2&!PQ1&!PQ0;
PSTATE1 = !PQ2&!PQ1&PQ0;
PSTATE2 = !PQ2&PQ1&PQ0;
PSTATE3 = !PQ2&PQ1&!PQ0;
PSTATE4 = PQ2&PQ1&!PQ0;
PSTATE5 = PQ2&!PQ1&!PQ0;

bsreg = [BQ1,BQ0]; "BusArb State Register
BS0 = [0,0];
BS1 = [0,1];
BS2 = [1,1];
BS3 = [1,0];

Equations
"Initializations

psreg.clk = PCLK;
psreg.ar = RSTI;
A0.clk = TS; "AD0 is latched when TS is asserted

12 GATEWAY BOARD MOTOROLA

ATMA.clk = TS; "ATM is latched when TS is asserted

NQ1.ar = RSTI;
NQ2.ar = RSTI;
NQ1.clk= PCLK; "Clock NegClk machine 1 with pos clk
NQ2.clk= !PCLK; "Clock NegClk machine 2 with the inverted pos clk
bsreg.clk = PCLK;
bsreg.ar = RSTI;

"Output enables

AS.oe = !BG68K; Òenable when the 68K is not granted the bus
UDS.oe = !BG68K; Òenable when the 68K is not granted the bus
LDS.oe = !BG68K; "enable when the 68K is not granted the bus
FC0.oe = !BG68K; "enable when the 68K is not granted the bus
FC1.oe = !BG68K; "enable when the 68K is not granted the bus
FC2.oe = !BG68K; "enable when the 68K is not granted the bus

"Sequential Logic

A0 := AD0;
ATMA := ATM;
NQ1 := !NQ1;
NQ2 := NQ1;

"---

"Combinational Logic - (See NOTE 2)

NCLK = NQ1 !$ NQ2; "XNOR the outputs of the two NegClk state machines to produce NCLK

" AS is asserted for PS3, PS4, and the posclk of PS5
AS = PSTATE3 # PSTATE4 # PSTATE5&!NCLK;

" OEBA16 = (CF is master & not halted & during AS)&(16-bit read & !IACK)
OEBA16 = (!BG68K & !HALT & AS) & (RnW&MODE & !(TT1 & TT0));

" OEBA8 = (CF is master & not halted & during AS)&(8-bit read # IACK)
OEBA8 = (!BG68K & !HALT & AS) & (RnW&!MODE # TT1&TT0);

" OEAB16 = (CF is master & not halted & during AS)&(16-bit write)
OEAB16 = (!BG68K & !HALT & AS) & (!RnW&MODE);

" OEAB8 = (CF is master & not halted & during AS)&(8-bit write
OEAB8 = (!BG68K & !HALT & AS) & (!RnW&!MODE);

" UDS = (Read&PS3 # PS4 # PCLK&PS5) & (16-bit) & !(Odd & Byte)
UDS = (RnW&PSTATE3 # PSTATE4 # PSTATE5&!NCLK) & MODE & !(A0 & !SIZ1&SIZ0);

" LDS = (Read&PS3 # PS4 # PCLK&PS5) & !(16-bit & Even & Byte & !IACK)
LDS = (RnW&PSTATE3 # PSTATE4 # PSTATE5&!NCLK) & !(MODE & !A0 & !SIZ1&SIZ0 & !(TT1&TT0));

DA1 = PSTATE5 & MODE; "PS5 & 16-bit
DA0 = PSTATE5 & !MODE; "PS5 & !16-bit
LDAT = PSTATE5 & NCLK; "PS5 & NCLK

"ADLT = (TS&PS1 # PS2 # PS3 # PS4 # PCLK&PS5)
ADLT = (TS&PSTATE1 # PSTATE2 # PSTATE3 # PSTATE4 # PSTATE5&!NCLK);

AENORM = (!BG68K & !HALT) & !(TT1&TT0); "(CF is master & not halted) & !(IACK-Access)
AEIACK = (!BG68K & !HALT) & (TT1&TT0); "(CF is master & not halted) & (IACK-Access)
AEUP = (!BG68K & !HALT); "(CF is master & not halted)

MOTOROLA GATEWAY BOARD 13

"Function Codes for EC000 - (See NOTE 1)
" FC2 = ((ATM & Normal-Access) # (IACK-Access))

FC2 = (ATM # (TT1&TT0));
" FC1 = ((ATMA & Normal-Access) # (IACK-Access))

FC1 = (ATMA # (TT1&TT0));
" FC0 = ((!ATMA & Normal-Access) # (IACK-Access))

FC0 = (!ATMA # (TT1&TT0));

"---

STATE_DIAGRAM psreg;

STATE PS0: "RESET and waiting for TS to de-assert

IF TS THEN PS0; "Wait for TS to de-assert
ELSE PS1;

STATE PS1: "Waiting for TS to assert, Beginning of ColdFire cycle

IF !TS THEN PS1; "Waiting for TS to assert
ELSE PS2;

STATE PS2: "Beginning of 68K cycle, assert FCÕs and Address

IF HALT THEN PS2; ÒIf HALT is asserted then stay in state 2
ELSE PS3; "else goto state 3

STATE PS3: "Assert other control signals

GOTO PS4; "Unconditionally goto state 4

STATE PS4: "Waiting for DTACK from 68K

IF (TT1 & TT0 & AVEC) THEN "if TT[1:0]=11 (IACK and AVEC) then
PS5; "goto state 5 (just DA the cycle)

ELSE
 IF (DTACK) THEN "else if (Normal or IACK without AVEC), look for DTACK

PS5; "goto state 5
 ELSE

PS4; "else stay in state 4

STATE PS5: "Data acknowledge to ColdFire

GOTO PS1; "Unconditionally goto state 1

"--

STATE_DIAGRAM bsreg;

STATE BS0: "Give the bus to CF, and wait for Request
BGCF=1; "Assert Grant to CF
BG68K=0; "Do not assert Grant to 68K
IF BR68K THEN "If there is a Bus Request,

BS1; "goto state 1
ELSE "else if no request,

BS0; "stay in state 0

14 GATEWAY BOARD MOTOROLA

STATE BS1: "Got a Request, wait for CF to quit driving the bus
BGCF=0; BG68K=0; "Do not assert either Grant
IF !BDCF THEN "If CF is not driving the bus,

BS2; "then goto state 2
ELSE "else if CF is driving the bus,

BS1; "stay in state 1

STATE BS2: "Done driving the bus, give the bus to 68K, wait for
Request to go away

BGCF=0; "Do not assert Grant to CF
BG68K=1; "Assert Grant to 68K
IF BR68K THEN "If 68K is still requesting the bus,

BS2; "then stay in state 2
ELSE "else if no longer requesting the bus,

BS3; "goto state 3

STATE BS3: "Request went away, delay one clock, then bus back to CF
BGCF=0; BG68K=0; "Do not assert either Grant
GOTO BS0; "goto state 0

"---
"NOTE 1:

" ATMa ATMd TT1 TT0 FC2 FC1 FC0 Notes
"
" 0 0 0 0 0 0 1 Normal User Data
" 1 0 0 0 0 1 0 Normal User Instruction
" 0 1 0 0 1 0 1 Normal Supervisor Data
" 1 1 0 0 1 1 0 Normal Supervisor Instruction
" X X 0 1 0 0 0 Reserved
" X X 1 0 ? ? ? Emulator Access
" X X 1 1 1 1 1 CPU Space or IACK

"NOTE 2:

"RnW MODE A0 (!SIZ1& AENORM AEIACK UDS LDS OExxxx Notes
" SIZ0)

" 1 1 0 1 1 0 1 0 OEBA16 Read,16-bit,even,byte,Normal
" 1 1 0 1 0 1 1 1 OEBA8 Read,16-bit,even,byte,IACK
" 1 1 0 0 x x 1 1 OEBA16 Read,16-bit,even,!byte
" 1 1 1 1 x x 0 1 OEBA16 Read,16-bit,odd, byte
" 1 1 1 0 x x 1 1 OEBA16 Read,16-bit,odd,!byte (N/A)
" 1 0 x x x x 0 1 OEBA8 Read,8-bit
" 0 1 0 1 x x 1 0 OEAB16 Write,16-bit,even,byte
" 0 1 0 0 x x 1 1 OEAB16 Write,16-bit,even,!byte
" 0 1 1 1 x x 0 1 OEAB16 Write,16-bit,odd,byte
" 0 1 1 0 x x 1 1 OEAB16 Write,16-bit,odd,!byte (N/A)
" 0 0 x x x x 0 1 OEAB8 Write,8-bit

END

MOTOROLA GATEWAY BOARD 15

9.0 Block Diagram

Figure 5: Gateway Board Block Diagram

10.0 Gateway Board Physical Layout

Figure 6: Physical Layout (Actual Size

)

PLD 68EC000
Connector

(68-pin PLCC)

ColdFire
MCF5202

B
D
M

A

DA/D

U
1

U
2

J3

U
9

U
6

U
8

U
7

U
4

U
5

U
3

J2

IS
P

C
ol

dF
ir

e
G

at
ew

ay
 B

oa
rd

S/
N

19

10
26 44

60
61

1

26
25

2
B

D
M

Component Side Solder Side

10

91

26

27

44
60

61

J1

43

3.
5

in
.

2 in.

J1
J2

J3

16 GATEWAY BOARD MOTOROLA

11.0 Gateway Board Bill Of Material

Table 5: Bill Of Material

ITEM QTY MANUFACTURER PART NO. REF. DES. DESCRIPTION

1 1 Motorola XCF5202PU33A U1 IC, MCF5202, 33 MHz, 100pin, TQFP

2 1 Lattice ISPLSI1016-90LT44 U2 IC, PLD, 44 pins, TQFP

3 4 Motorola MC74F573DW U3-U5, U9 IC, 74F573, 20 pins, SOL20

4 3 Motorola MC74F543DW U6-U8 IC, 74F543, 24 pins, SOL24

5 4 Venkel CR1206-8W-103JT R1-R4 Res, 10K, 5%, 1/8W, 1206

6 4 Venkel CR1206-8W-472JT R5-R8 Res, 4.7K, 5%, 1/8W, 1206

7 4 Samtec TMS-117-55-G-S J1 Conn, HDR, 17 pins, 50Mil ctr, single row, 1X17

8 1 AMP 1-103783-3 J2 Conn, HDR, 26 pins, 100Mil ctr, dual row, 2X13

9 1 AMP 1-87499-3 J3 Conn, HDR, 8 pins, 100Mil ctr, single row, 1X8

10 1 Samwa
Venkel

CS3216X7R103K500R
C1206X7R500-103KNE

C1 Cap, 0.01UF, 10%, 50V, 1206

11 1 Panasonic S1012-36-ND C2 Cap, 33UF, 10%, 16V, 1206, TANT

12 22 Samwa
Venkel

CS3216X7R104K500R
C1206X7R500-104KNE

C3-C24 Cap,0.1UF, 10%, 50V, 1206

13 1 Samwa
Venkel

CS3216COG100K500R
C1206C0G500-100JNE

C25 Cap, 10PF, 10%, 50V, 1206

MOTOROLA GATEWAY BOARD 17

12.0 ColdFire Gateway Board Schematics (1 of 2)

CLK 87 CLK

RSTnRST 67

74
73
72
71
70

TCK
TMS/BKPT
TDI/DSI
TDO/DSO

TRST/DSCLK
DDATA0
DDATA1
DDATA2
DDATA3

81
82
83
84

PST0
PST1
PST2
PST3

56
57
58
59

PST0
PST1
PST2
PST3

DDATA0
DDATA1
DDATA2
DDATA3

BKPT
DSI

DSO
DSCLK

U1
MCF5202

MTMOD0
MTMOD1
MTMOD2

JCE

89
90
91
92
95

A/D0
A/D1
A/D2
A/D3

A/D4
A/D5
A/D6
A/D7
A/D8

96
97
98
1

A/D9
A/D10
A/D11
A/D12

2
3
4
5

AD9
AD10
AD11
AD12

AD5
AD6
AD7
AD8

AD1
AD2
AD3
AD4

HIZ

A/D13
A/D14
A/D15

8
9
10

AD13
AD14
AD15

AD0

85

76
77
78

75

11
14
15
16
17

A/D16
A/D17
A/D18
A/D19

A/D20
A/D21
A/D22
A/D23
A/D24

20
21
22
23

A/D25
A/D26
A/D27
A/D28

26
27
28
29

AD25
AD26
AD27
AD28

AD21
AD22
AD23
AD24

AD17
AD18
AD19
AD20

A/D29
A/D30
A/D31

30
33
34

AD29
AD30
AD31

AD16
7

13
19
25
32
38
46
53
60
69
80
88
94

100

VCC
VCC
VCC

VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC

6
12
18
24
31
37
45
52
61
68
79
86
93
99

GND
GND
GND

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

RNW
TT0
TT1

SIZ0
SIZ1
ATM

SIZ1
ATM

R/W
TT0
TT1

SIZ0

nTS

nDA0
nDA1
nTEA

DA1
TEA

TS
AA

DTIP
DA0

nBDCF
nBGCF

nIPL0
nIPL1
nIPL2

IPL1
IPL2

BR
BD
BG

IPL0

nAVECAVEC

39
35
36
41
42
63

40
48
47
43
44
55

50
49
51

64
65
66

62

TBI 54

OEAEUPPER 1

CADLT 11

2
3
4
5
6
7
8
9

AD16
AD17
AD18

AD19
AD20
AD21
AD22
AD23

D0
D1
D2

D3
D4
D5
D6
D7

74F573
U9

19
18
17
16
15
14
13
12

Q0
Q1
Q2

Q3
Q4
Q5
Q6
Q7

A16
A17
A18

A19
A20
A21
A22
A23

OEAEUPPER 1

CADLT 11

2
3
4
5
6
7
8
9

AD8
AD9

AD10

AD11
AD12
AD13
AD14
AD15

D0
D1
D2

D3
D4
D5
D6
D7

74F573
U3

19
18
17
16
15
14
13
12

Q0
Q1
Q2

Q3
Q4
Q5
Q6
Q7

A8
A9

A10

A11
A12
A13
A14
A15

OEAEIACK 1

CADLT 11

2
3
4
5
6
7
8
9

AD5
AD2
AD3

AD4
AD5
AD5
AD6
AD7

D0
D1
D2

D3
D4
D5
D6
D7

74F573
U5

19
18
17
16
15
14
13
12

Q0
Q1
Q2

Q3
Q4
Q5
Q6
Q7

A0
A1
A2

A3
A4
A5
A6
A7

OEAENORM 1

CADLT 11

2
3
4
5
6
7
8
9

AD0
AD1
AD2

AD3
AD4
AD5
AD6
AD7

D0
D1
D2

D3
D4
D5
D6
D7

74F573
U4

19
18
17
16
15
14
13
12

Q0
Q1
Q2

Q3
Q4
Q5
Q6
Q7

A0
A1
A2

A3
A4
A5
A6
A7

GND

GND
GND
GND

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

VCC
VCC
VCC

VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC

4.7K
nRST

10K

4.7K
VCC

nTEA

nBGCF

VCC

VCC

4.7K
nIPL0

4.7K

4.7K
VCC

nIPL1

nIPL2

VCC

VCC

GND

GND
GND

VCC

VCC

GND

10K
BKPT VCC

10K
DSI

10K
VCC ISPEN VCC

0.01UF

ISPEN GND

10 PF

VCC GND

33 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

0.1 UF

VCC GND

B
Y

PA
SS

 F
O

R
 U

2
-

U
9

B
Y

PA
SS

 F
O

R
 U

1

18 GATEWAY BOARD MOTOROLA

ColdFire Gateway Board Schematics (2 of 2)

D12
D11
D10

D9
D8
D7
D6
D5

61
62
63

64
65
66
67
68

EC000 CONN
J1 / A

GND
D4
D3

D2
D1
D0

nAS
UDS

1
2
3

4
5
6
7
8

LDS 9

RNW
nDTACK
nBG68K

nBR68K
VCC
VCC
CLK
GND

10
11
12

13
14
15
16
17

EC000 CONN
J1 / B

GND
MODE
nHALT

nRST

nAVEC
nTEA
nIPL2

18
19
20

21
22
23
24
25

nIPL1 26

nIPL0
FC2
FC1

FC0
A0
A1
A2
A3

27
28
29

30
31
32
33
34

EC000 CONN
J1 / C

GND
A4
A5

A6
A7
A8
A9

A10

35
36
37

38
39
40
41
42

A11 43

A12
A13
A14

A15
A16
A17
A18
A19

44
45
46

47
48
49
50
51

EC000 CONN
J1 / D

A20
VCC
A21

A22
A23

GND
D15
D14

52
53
54

55
56
57
58
59

D13 60

GND
GND

nRST
VCC
GND
PST2
PST0

1
3
5

7
9

11
13
15

BDM CONN
J2

DDATA2
DDATA0

GND
VCC

17
19
21

23
25

2
4
6

8
10
12
14
16
18
20
22

24
26

BKPT
DSCLK

DSI
DSO
PST3
PST1
DDATA3
DDATA1
GND

CLK
nTEA

VCC
SDO
SDI

ISPEN

ISPMODE
GND

SCLK

1
2
3

4
5
6
7
8

ISP CONN
J3

EABGND 11

LEABnLE16_8 14

3
4
5
6
7
8
9

10

AD16
AD17
AD18

AD19
AD20
AD21
AD22
AD23

A0
A1
A2

A3
A4
A5
A6
A7

74F543
U6

22
21
20
19
18
17
16
15

B0
B1
B2

B3
B4
B5
B6
B7

D0
D1
D2

D3
D4
D5
D6
D7

OEABnOEAB16 13

GNDEBA 23

nLE16_8LEBA 1

nOEBA16OEBA 2

EABGND 11

LEABnLE16_8 14

3
4
5
6
7
8
9

10

AD24
AD25
AD26

AD27
AD28
AD29
AD30
AD31

A0
A1
A2

A3
A4
A5
A6
A7

74F543
U7

22
21
20
19
18
17
16
15

B0
B1
B2

B3
B4
B5
B6
B7

D8
D9
D10

D11
D12
D13
D14
D15

OEABnOEAB16 13

GNDEBA 23

nLE16_8LEBA 1

nOEBA16OEBA 2

EABGND 11

LEABnLE16_8 14

3
4
5
6
7
8
9

10

AD24
AD25
AD26

AD27
AD28
AD29
AD30
AD31

A0
A1
A2

A3
A4
A5
A6
A7

74F543
U8

22
21
20
19
18
17
16
15

B0
B1
B2

B3
B4
B5
B6
B7

D0
D1
D2

D3
D4
D5
D6
D7

OEABnOEAB8 13

GNDEBA 23

nLE16_8LEBA 1

nOEBA8OEBA 2

nAVEC
nHALT

AENORM

AEIACK
CLK
VCC

ISPEN
SDI

I/O 28
I/O 29
I/O 30

I/O 31
Y0
VCC
ISPEN/NC
SDI/IN 0

ISPLSI-1016
U2

TT1
TT0

ATM

FC2
FC1
FC0

nBR68K
nBG68K

I/O 0
I/O 1
I/O 2

I/O 3
I/O 4
I/O 5
I/O 6
I/O 7

GND GND
SDO/IN 1
I/O 8
I/O 9
I/O 10
I/O 11

SDO
SIZ1

nBGCF
nBDCF

nLE16_8

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22

I/O 27
I/O 26
I/O 25

I/O 24
IN 3

GND
I/O 23
I/O 22
I/O 21
I/O 20
I/O 19

I/O 18
I/O 17
I/O 16

IN 2/MODE
Y1/RESET

VCC
Y2/SCLK

I/O 15
I/O 14
I/O 13
I/O 12

44
43
42

41
40
39
38
37
36

35
34
33
32
31
30

29
28
27
26
25
24
23

nTS
nDTACK
RNW

SIZ0
MODE
GND
AD0
AEUPPER
nDA0
nDA1
nAS

ADLT
LDS
UDS
ISPMODE
nRST
VCC
SCLK
nOEAB16
nOEBA16
nOEAB8
nOEBA8

MOTOROLA GATEWAY BOARD 19

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
speciÞcally disclaims any and all liability, including without limitation consequential or incidental damages. ÒTypicalÓ parameters can and do vary in different
applications. All operating parameters, including ÒTypicalsÓ must be validated for each customer application by customerÕs technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its ofÞcers, employees, subsidiaries, afÞliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/AfÞrmative Action Employer.

SBC5204 USER'S MANUAL
REVISION 1.1

Copyright 1996, 1997 Arnewsh Inc.
Arnewsh Inc.

P.O. Box 270352
Fort Collins, CO 80527-0352

Phone: (970) 223-1616
 Fax: (970) 223-9573

iii

COPYRIGHT

Copyright 1996, 1997 by Arnewsh Inc.

All rights reserved. No part of this manual and the dBUG software provided in Flash ROM’s/EPROM’s
may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. Use of the program or any part thereof, for any
purpose other than single end user by the purchaser is prohibited.

DISCLAIMER

The information in this manual has been carefully examined and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Arnewsh reserves the right to make
changes to any product(s) herein to improve reliability, function, or design. The SBC306 board is not
intended for use in life and/or property critical applications. Here, such applications are defined to be any
situation in which any failure, malfunction, or unintended operation of the board could, directly, or
indirectly, threaten life, result in personal injury, or cause damage to property. Although every effort has
been made to make the supplied software and its documentation as accurate and functional as possible,
Arnewsh Inc. will not assume responsibility for any damages incurred or generated by this product.
Arnewsh does not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights, if any, or the rights of others.

WARNING

THIS BOARD GENERATES, USES, AND CAN RADIATE
RADIO FREQUENCY ENERGY AND, IF NOT INSTALLED
PROPERLY, MAY CAUSE INTERFERENCE TO RADIO
COMMUNICATIONS. AS TEMPORARILY PERMITTED
BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A
COMPUTING DEVICES PURSUANT TO SUBPART J OF
PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH
INTERFERENCE. OPERATION OF THIS PRODUCT IN A
RESIDENTIAL AREA IS LIKELY TO CAUSE
INTERFERENCE, IN WHICH CASE THE USER, AT
HIS/HER OWN EXPENSE, WILL BE REQUIRED TO
CORRECT THE INTERFERENCE.

iv

LIMITED WARRANTY

Arnewsh Inc. warrants this product against defects in material and workmanship for a period of
sixty (60) days from the original date of purchase. This warranty extends to the original
customer only and is in lieu of all other warrants, including implied warranties of
merchantability and fitness. In no event will the seller be liable for any incidental or
consequential damages. During the warranty period, Arnewsh will replace, at no charge,
components that fail, provided the product is returned (properly packed and shipped prepaid) to
Arnewsh at address below. Dated proof of purchase (such as a copy of the invoice) must be
enclosed with the shipment. We will return the shipment prepaid via UPS.

This warranty does not apply if, in the opinion of Arnewsh Inc., the product has been damaged by
accident, misuse, neglect, misapplication, or as a result of service or modification (other than
specified in the manual) by others.

Please send the board and cables with a complete description of the problem to:

Arnewsh Inc.
P.O. Box 270352
Fort Collins, CO 80527-0352
Phone: (970) 223-1616
Fax : (970) 223-9573

Motorola is a registered trademark of Motorola Inc.
IBM PC and IBM AT are registered trademark of IBM Corp.
All other trademark names mentioned in this manual are the registered trade mark repective
owners.

v

TABLE OF CONTENTS

Page
CHAPTER 1 INTRODUCTION TO THE SBC5204 BOARD 1-1

 1.1 INTRODUCTION 1-1
 1.2 GENERAL HARDWARE DESCRIPTION 1-1
 1.3 SYSTEM MEMORY 1-3
 1.4 SERIAL COMMUNICATION CHANNELS 1-3
 1.5 PARALLEL I/O PORTS 1-3
 1.6 PROGRAMMABLE TIMERS/COUNTERS 1-3
 1.7 ISA BUS CONNECTOR.................................. 1-3
 1.8 SYSTEM CONFIGURATION 1-4
 1.9 INSTALLATION AND SETUP 1-4
 1.9.1 Unpacking 1-4
 1.9.2 Preparing the Board for Use 1-4
 1.9.3 Providing Power to the Board 1-4
 1.9.4 Selecting Terminal Baud Rate 1-5
 1.9.5 The Terminal Character Format 1-5
 1.9.6 Connecting the Terminal 1-5
 1.9.7 Using Personal Computer as a Terminal 1-5
 1.10 SYSTEM POWER-UP AND INITIAL OPERATION 1-9
 1.11 SBC5204 JUMPER SETUP............................... 1-9
 1.12 USING THE BDM 1-10

CHAPTER 2 USING THE MONITOR/DEBUG FIRMWARE 2-1

 2.1 WHAT IS dBUG....................................... 2-1
 2.2 OPERATIONAL PROCEDURE 2-3
 2.2.1 System Power-up 2-3
 2.2.2 System Initialization 2-3
 2.2.2.1 RESET Button 2-4
 2.2.2.2 ABORT Button 2-4
 2.2.2.3 Software Reset Command 2-4

 2.2.2.4 User Program 2-4
 2.2.3 System Operation 2-4
 2.3 TERMINAL CONTROL CHARACTERS 2-5
 2.4 dBUG COMMAND SET 2-5
 2.4.1 BF - Block Memory Fill 2-7
 2.4.2 BM - Block Move 2-8
 2.4.3 BR - Breakpoint 2-9
 2.4.4 BS - Block Search 2-10
 2.4.5 DATA - Data Conversion 2-11
 2.4.6 DI - Disassemble 2-12
 2.4.7 DL - Download Serial 2-13
 2.4.8 DN - Download Network.......................... 2-14
 2.4.9 Go - Execute 2-15
 2.4.10 GT - Execute Till a Temporary Breakpoint 2-16
 2.4.11 Help - Help 2-17
 2.4.12 IRD - Internal Registers Display 2-18
 2.4.13 IRM - Internal Registers Modify 2-19
 2.4.14 MD - Memory Display 2-20
 2.4.15 MM - Memory Modify 2-21

vi

 2.4.16 RD - Register Display 2-22
 2.4.17 RM - Register Modify 2-23
 2.4.18 RESET - Reset the board and dBUG 2-24
 2.4.19 SET - Set Configuration 2-25
 2.4.20 SHOW - Show Configuration 2-27
 2.4.21 STEP - Step Over 2-28
 2.4.22 SYMBOL - Symbol Name Management 2-29
 2.4.23 TRACE - Trace Into 2-30
 2.4.24 UPDBUG - Update the dBUG Image 2-31
 2.4.25 UPUSER - Update User Code In Flash 2-32
 2.4.26 VERSION - Display dBUG Version 2-33
 2.5 TRAP #15 Functions 2-34
 2.5.1 OUT_CHAR 2-34
 2.5.2 IN_CHAR 2-34
 2.5.3 CHAR_PRESENT 2-35
 2.5.4 EXIT_TO_dBUG 2-35

CHAPTER 3 HARDWARE DESCRIPTION AND RECONFIGURATION 3-1

 3.1 THE PROCESSOR AND SUPPORT LOGIC 3-1
 3.1.1 The Processor 3-1
 3.1.2 The Reset Logic 3-1
 3.1.2.1 The ATS/BUSW Line 3-2
 3.1.3 The Clock Circuitry 3-2
 3.1.4 Watchdog Timer (BUS MONITOR) 3-2
 3.1.5 Interrupt Sources 3-2
 3.1.6 Internal SRAM 3-3
 3.1.7 The MCF5204 Registers and Memory Map 3-3
 3.1.8 Reset Vector Mapping 3-4
 3.1.9 DTACK Generation 3-4
 3.1.10 Wait State Generator 3-5
 3.2 THE EXTERNAL SRAM 3-5
 3.3 THE EPROM/FLASH ROM 3-5
 3.4 THE UART LOGIC 3-7
 3.4.1 MC68HC901 3-7
 3.5 THE PARALLEL I/O PORT.............................. 3-7
 3.6 THE ISA BUS LOGIC 3-7
 3.7 THE CONNECTORS AND THE EXPANSION BUS 3-8
 3.7.1 The Terminal Connector J1 3-8
 3.7.2 The ISA Bus Auxiliary Connector J2 3-8
 3.7.3 The Power Supply Connector J3 and J4 3-9
 3.7.4 The Programming Connector J5 3-9
 3.7.5 The Auxiliary Communication Connector J6 3-10
 3.7.6 The Debug Connector J7 3-10
 3.7.7 The Processor Expansion Bus J8 and J9 3-10
 3.7.8 The ISA Bus Connector P1 3-13
 3.8 THE SBC5204 JUMPERS 3-15

APPENDIX A NETWORK DOWNLOAD A-1

 A.1 Configuring dBUG for Network Downloads A-1

vii

 A.1.1 Required Network Parameters A-1
 A.1.2 Configuring dBUG Network Parameters A-2
 A.1.3 Troubleshooting Network Problems A-2

1

CHAPTER 1

INTRODUCTION TO THE SBC5204 BOARD

1.1 INTRODUCTION

The SBC5204 is a versatile single board computer based on MCF5204 ColdFire Processor. It may be used
as a powerful microprocessor based controller in a variety of applications. With the addition of a terminal,
it serves as a complete microcomputer for development/evaluation, training and educational use. The user
must only connect an RS-232 compatible terminal (or a personal computer with terminal emulation
software) and a power supply to have a fully functional system.

Provisions have been made to connect this board to additional user supplied boards, via the Microprocessor
Expansion Bus connectors, to expand memory and I/O capabilities. Additional boards may require bus
buffers to permit additional bus loading.

Furthermore, provisions have been made in the PC-board to permit configuration of the board in a way
which best suits an application. Options available are: 1M of SRAM, Timer, I/O, ISA bus interface, and
up to 1M bytes of Flash or 2M bytes of EPROM. In addition, all of the I/O functions of the MCF5204 are
available for the user.

1.2 GENERAL HARDWARE DESCRIPTION

The SBC5204 board provides the RAM, Flash ROM, optional Ethernet interface (ISA bus), RS232, and
all the built-in I/O functions of the MCF5204 for learning and evaluating the attributes of the MCF5204.
The MCF5204 is a member of the ColdFire family of processors. It is a 32-bit processor with 32 bits of
addressing and 32 lines of data. The processor has eight 32-bit data registers, 8 32-bit address registers, a
32-bit program counter, and a 16-bit status register.

The MCF5204 has a System Integration Module referred to as SIM. The module incorporate many of the
functions needed for system design. These include programmable chip-select logic, System Protection
logic, General purpose I/O, and Interrupt controller logic. The chip-select logic can select up to six
memory banks or peripherals. The chip-select logic also allows programmable number of wait-state to
allow the use of slower memory (refer to MCF5204 User's Manual by Motorola for detail information
about the SIM.) The SBC5204 dBUG monitor only uses five of the chip selects to access the Flash
ROM’s, one bank of SRAM’s, MC68HC901, and ISA bus interface. All other functions of the SIM are
available to the user.

A hardware watchdog timer (Bus Monitor) circuit is included in the SIM which monitors the bus activities.
If a bus cycle is not terminated within a programmable time, the watchdog timer will assert an internal
transfer error signal to terminate the bus cycle. A block diagram of the board is shown in Figure 1.1.

2

XCEIVERS

MC68HC901

Flash ROM/
EPROM

SRAM

Data and
Address
Xceivers

LSI2032

MCF5204

ISA
BUS

RS232

Figure 1.1

P1

U13,U14

U8

U11, U12

U7

I/O PORTS
ADDRESS BUS

DATA BUS

CONTROL BUS

3

1.3 SYSTEM MEMORY

There are two 32-pin sockets on the board for EPROM’s or Flash ROM’s (U13, U14), U13 is the most
significant byte and the U14 is the least significant byte. The EPROM sockets can be set up via jumpers
(JP2, JP3, and JP4) to accept 27C256, 27C512, 27C010, 27C020, 27C040, and 27C080 EPROM’s. or
29F010, and 29F040. The SBC5204 comes with two 29F010 Flash ROM’s which are programmed with
a debugger/monitor firmware. The dBUG driver only supports 29F010 Flash ROM.

There are two 32-pin sockets for SRAM’s which can accept 128Kx8 and 512Kx8 SRAM’s. JP2 is used to
make the selection.

1.4 SERIAL COMMUNICATION CHANNELS

The MCF5204 has one built-in Serial Communication Channel with baud rate generator. This signals of
this channel are passed through external Driver/Receivers to make the channel compatible with RS-232.
This channel is not used by the debugger and is available to user. The SBC5204, however, has one
MC68HC901 which has four timers and a serial communication port. One timer channel is used as baud
rate generator for the serial channel. The RXD and TXD lines are passed through external Driver/Receiver
to make this channel compatible with RS-232C level (Note: only 2 main signals are available, RXD and
TXD signals). This channel is the “TERMINAL” channel used by the debugger for communication with
external terminal/PC.

1.5 PARALLEL I/O PORTS

Some of the multifunction pins of the MCF5204 can be used as Port A general purpose I/O pins. These
pins are available to user except A20/PA0 which may be used for EPROM selection when using 8M
EPROM’s.

1.6 PROGRAMMABLE TIMER/COUNTER

The MCF5204 has two built in general purpose timer/counters. These timers are not used by the debugger
and are available to the user. The signals for the timer share the pins with Port A and are available on the
connector J9. There are also three timers in MC68HC901 which are available to user.

1.7 ISA BUS CONNECTOR

The SBC5204 has one ISA bus connector to allow the use of off-the-shelf ISA I/O cards. The main reason
for this connector is to install an Ethernet card to support down-load via network.

1.8 SYSTEM CONFIGURATION

The SBC5204 board requires only the following items for minimum system configuration (Fig. 1.2):

 a. The SBC5204 board (provided).
 b. Power supply (+5 Vdc regulated or 7.5V to 12V DC), about 0.5 Amp.
 c. RS-232C compatible terminal or a PC with terminal emulation software.

4

 d. Communication cable (provided).

Refer to next sections for initial setup.

1.9 INSTALLATION AND SETUP

The following sections describe all the steps needed to prepare the board for operation. Please read the
following sections carefully before using the board. When you are preparing the board for the first time, do
not use the optional features (Ethernet, ISA BUS). The minimum configuration does not require any
modifications. After the board is functional in its minimal configuration, you may use other features by
following the instructions provided in the following sections.

1.9.1 Unpacking

Unpack the computer board from its shipping box. Save the box for storing or reshipping. Refer to the
following list and verify that all the items are present. You should have received:

a. SBC5204 Single Board Computer.

b. SBC5204 User's Manual, this documentation.

c. One communication cable.

WARNING

AVOID TOUCHING THE MOS DEVICES. STATIC DISCHARGE
CAN AND WILL DAMAGE THESE DEVICES.

Once you verified that all the items are present, remove the board from its protective jacket. Check the
board for any visible damage. Ensure that there are no broken, damaged, or missing parts. If you have not
received all the items listed above or they are damaged, please contact Arnewsh Inc. immediately in order
to correct the problem.

1.9.2 Preparing the Board for Use

The board as shipped is ready to be connected to a terminal and the power supply without any need for
modification. However, follow the steps below to insure proper operation from the first time you apply the
power. Figure 1.3 shows the placement of the jumpers and the connectors which you need to refer to in the
following sections. The steps to be taken are:

a. Connecting the power supply.
b. Connecting the terminal.

1.9.3 Providing Power to the Board

The board accepts two means of power supply connections. Connector J3 is a 2.1mm power jack and J4
lever actuated connector. The board accepts either +5V regulated supply or +7.5V to 12V DC (regulated
or unregulated), less than one Amp via either connectors. Jumper JP1 selects between +5 and +7.5-12V

5

options. Make sure the jumper JP1 is in proper location for your option. Connect power supply as
marked on the board and shown below (do not turn the power supply on yet):

Contact NO. Voltage
 1 +5 Vdc or +7.5-12V

 2 Ground

Jumper JP1.
Jumper Pin Function

1 and 2 +5V regulated
2 and 3 +7.5-12V DC, regulated or unregulated (default)

1.9.4 Selecting Terminal Baud Rate

The serial channel of MC68HC901 which is used for serial communication channel has a built in software
programmable baud rate generator (timer). It can be programmed to a number of baud rates. After the
power-up or a manual RESET, the dBUG firmware configures the channel for 19200 baud. After the
dBUG is running, you may issue the SET command to choose any baud rate supported by the dBUG.
Refer to Chapter 2 for the discussion of this command.

1.9.5 The Terminal Character Format

The character format of the communication channel is fixed at the power-up or RESET. The character
format is 8 bits per character, no parity, and one stop bit. You need to insure that your terminal or PC is
set to this format.

1.9.6 Connecting the Terminal

The board is now ready to be connected to a terminal. Use the communication cable provided to connect
the terminal to the SBC5204. The cable has a 9-pin female D-sub connector at one end and a 9-pin male
D-sub connector at the other end. Attach the 9-pin male connector to J1 connector on the board. Attach
the 9-pin female connector to a 9-pin-to-25-pin adapter, if necessary, to make it compatible with the
connector on the back of the terminal.

1.9.7 Using a Personal Computer as a Terminal

You may use your personal computer as a terminal provided you also have a terminal emulation software
such as PROCOMM, KERMIT, QMODEM, or similar packages. Use the communication cable provided
to connect the PC to the SBC5204. The cable has a 9-pin female D-sub connector at one end and a 9-pin
male D-sub connector at the other end. Connect the 9-pin male connector to J1 connector on SBC5204.
Connect the 9-pin female connector to one of the available serial communication channels normally referred
to as COM1 (COM2, etc.) on the IBM PC’s or compatible. Depending on the kind of serial connector on
the back of your PC, the connector on your PC may be a male 25-pin or 9-pin. You may need to obtain a
9-pin-to-25-pin adapter to make the connection. If you need to build an adapter, refer to Figure 1.4 which
shows the pin assignment for the 9-pin connector on the board.

6

ISA BUS

SBC5204

+5, GND
Power Supply

MICROPROCESSOR
EXPANSION BUS

BACKGROUND DEBUG

P1
J1

J6

J7 J8

J9

RS232 TERMINAL
or PC

dBUG>

Figure 1.2. System Configuration

J3

J4

7

Once the connection to the PC is made, you are ready to power-up the PC and run the terminal emulation
software. When you are in the terminal mode, you need to select the baud rate and the character format for
the channel. Most terminal emulation software packages provide a command known as "Alt-p" (press the p
key while pressing the Alt key) to choose the baud rate and character format. Make sure you select 8 bits,
no parity, one stop bit (see Section 1.9.5). Then, select the baud rate as 19200. Now you are ready to
apply power to the board.

1. Data Carrier Detect, Output (shorted to pins 6 and 8).
2. Receive Data, Output from board (receive refers to terminal side).
3. Transmit Data, Input to board (transmit refers to terminal side).
4. Data Terminal Ready, input (not used).
5. Signal Ground.
6. Data Set Ready, Output (shorted to pins 1 and 8).
7. Request to Send, input.
8. Clear to send, output (shorted to pins 1 and 6).
9. Not connected.

Figure 1.4. Pin assignment for the J1 (Terminal) connector.

8

P1

J1

J1

J6

J7 J8

J9

JP3

JP2

JP1

J4

J3

J2

JP4

Figure 1.3. Jum
per and connector placem

ent.

9

1.10 SYSTEM POWER-UP AND INITIAL OPERATION

Now that you have connected all the cables, you may apply power to the board. After power is applied, the
dBUG initializes the board then displays the power-up message on the terminal which includes the amount
of the memory present.

Hard Reset

Installed SRAM: 256K

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug xx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

The board is now ready for operation under the control of the debugger as described in Chapters 2. If you
do not get the above response, perform the following checks:

1. Make sure that the power supply is properly set and connected to the board.

2. Check that the terminal and board are set for the same character format and baud.

3. Press the red RESET (red switch) button to insure that the board has been initialized
 properly.

If you still are not receiving the proper response, your board may have been damaged in shipping. Contact
Arnewsh for further instructions.

1.11 SBC5204 JUMPER SETUP

The jumpers on the board are discussed in Chapter 3. However, a brief discussion of the jumper settings
are as follows:

1. Jumper JP1. This jumper selects the power supply selection.

Jumper Pin Function
1 and 2 +5V regulated.
2 and 3 +7.5-12V DC regulated or unregulated (default)

10

2. Jumper JP2. This jumper selects the SRAM size and EPROM Size.

Jumper Pin Function
2 to 4 Selects 128Kx8 SRAM (default)
1 to 3 Selects 128Kx8 Flash Memory (default)

3. Jumper JP3. This jumper selects between Flash and EPROM.

Jumper Pin Function
3 to 5
and

4 to 6

Select Flash (default)

4. Jumper JP4. This jumper selects the size of EPROM or Flash.

Jumper Pin Function
7 to 9
and

8 to 10

Selects 128Kx8 EPROM/Flash

1.12 USING THE BDM

The MCF5204 has a built in debug mechanism referred to as BDM. The SBC5204 has the necessary
connector, J7, to facilitate this connection.

In order to use the BDM, simply connect the 26-pin IDC header at the end of the BDM cable provided by
the BDM development tool (third party tool) to the J7 connector. No special setting is needed. Refer to the
BDM User's Manual for additional instructions.

1

CHAPTER 2

USING THE MONITOR/DEBUG FIRMWARE

The SBC5204 Computer Board has a resident firmware package that provides a self-contained
programming and operating environment. The firmware, named dBUG, provides the user with
monitor/debug, disassembly, program download, and I/O control functions. This Chapter is a how-to-use
description of the dBUG package, including the user interface and command structure.

2.1 WHAT IS dBUG?

dBUG is a resident firmware package for the ColdFire family Computer Boards. The firmware (stored in
two 128Kx8 Flash ROM devices) provides a self-contained programming and operating environment.
dBUG interacts with the user through pre-defined commands that are entered via the terminal.

The user interface to dBUG is the command line. A number of features have been implemented to achieve
an easy and intuitive command line interface.

dBUG assumes that an 80x24 character dumb-terminal is utilized to connect to the debugger. For serial
communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1. The baud rate is 19200
but can be changed after the power-up.

The command line prompt is “dBUG> “. Any dBUG command may be entered from this prompt. dBUG
does not allow command lines to exceed 80 characters. Wherever possible, dBUG displays data in 80
columns or less. dBUG echoes each character as it is typed, eliminating the need for any “local echo” on
the terminal side.

In general, dBUG is not case sensitive. Commands may be entered either in upper or lower case, depending
upon the user’s equipment and preference. Only symbol names require that the exact case be used.

Most commands can be recognized by using an abbreviated name. For instance, entering “h” is the same
as entering “help”. Thus, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and allows for repeated execution of these commands with minimal typing. After a command is
entered, simply press <RETURN> or <ENTER> to invoke the command again. The command is executed
as if no command line parameters were provided.

An additional function called the "TRAP 15 handler" allows the user program to utilize various routines
within dBUG. The TRAP 15 handler is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 2-1. After the system initialization, the board
waits for a command line input from the user terminal. When a proper command is entered, the operation
continues in one of the two basic modes. If the command causes execution of the user program, the dBUG
firmware may or may not be re-entered, depending on the discretion of the user. For the alternate case, the
command will be executed under control of the dBUG firmware, and after command completion, the system
returns to command entry mode.

2

Figure 2-1. Flow Diagram of dBUG Operational Mode.

3

During command execution, additional user input may be required depending on the command function.

For commands that accept an optional <width> to modify the memory access size, the valid values are:
.B 8-bit (byte) access
.W 16-bit (word) access
.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16-bit.

The core ColdFire register set is maintained by dBUG. These are listed below:
A0-A7
D0-D7
PC
SR

All control registers on ColdFire are not readable by the supervisor programming model, and thus not
accessible via dBUG. User code may change these registers, but caution must be exercised as changes may
render dBUG useless.

A reference to “SP” actually refers to “A7”.

2.2 OPERATIONAL PROCEDURE

System power-up and initial operation are described in detail in Chapter 1. This information is repeated
here for convenience and to prevent possible damage.

2.2.1 System Power-up

a. Be sure the power supply is connected properly prior to power-up.
b. Make sure the terminal is connected to TERMINAL (J1) connector.
c. Turn power on to the board.

2.2.2 System Initialization

The act of powering up the board will initialize the system. The processor is reset and dBUG is invoked.

dBUG performs the following configurations of internal resources during the initialization. The instruction
cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash. However, a copy
of the exception table is made at address $00000000 in SRAM. To take over an exception vector, the user
places the address of the exception handler in the appropriate vector in the vector table located at
0x00000000, and then points the VBR to 0x00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The Port A
general purpose I/O pins are configured for dedicated peripheral functions, i.e. the UART.

4

After initialization, the terminal will display:

Hard Reset

Installed SRAM: 256K

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug xx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

If you did not get this response check the setup. Refer to Section 1.10. Note, the date
‘Aug xx 1996 xx:xx:xx’ may vary in different revisions.
Other means can be used to re-initialize the SBC5204 Computer Board firmware. These means are
discussed in the following paragraphs.

2.2.2.1 RESET Button. RESET is the red button located in the middle side of the board. Depressing this
button causes all processes to terminate, resets the MCF5204 processor and board logic’s and restarts the
dBUG firmware. Pressing the RESET button would be the appropriate action if all else fails.

2.2.2.2 ABORT Button. ABORT is the black button located next to RESET button in the middle side of
the board. The abort function causes an interrupt of the present processing (a level 7 interrupt on
MCF5204) and gives control to the dBUG firmware. This action differs from RESET in that no processor
register or memory contents are changed, the processor and peripherals are not reset, and dBUG is not
restarted. Also, in response to depressing the ABORT button, the contents of the MCF5204 core internal
registers are displayed.

The abort function is most appropriate when software is being debugged. The user can interrupt the
processor without destroying the present state of the system.

2.2.2.3 Software Reset Command. dBUG does have a command that causes the dBUG to restart as if a
hardware reset was invoked. The command is "RESET".

2.2.2.4 USER Program. The user can return control of the system to the firmware by recalling dBUG via
his/her program. Instructions can be inserted into the user program to call dBUG via the TRAP 15
handler.

2.2.3 System Operation

After system initialization, the terminal will display:

Hard Reset

Installed SRAM: 256K

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5204 EVS Debugger V2.1 (Aug xx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

5

and waits for a command.

The user can call any of the commands supported by the firmware. A standard input routine controls the
system while the user types a line of input. Command processing begins only after the line has been
entered and followed by a carriage-return.

NOTES

1. The user memory is located at addresses $00010000-$xxxxxxxx, $xxxxxxxx is
the maximum RAM address of the memory installed in the board. When first
learning the system, the user should limit his/her activities to this area of the
memory map. Address range $00000000-$0000FFFF is used by dBUG.

2. If a command causes the system to access an unused address (i.e., no memory or
peripheral devices are mapped at that address), a bus trap error will occur. This
results in the terminal printing out a trap error message and the contents of all
the MCF5204 core registers. Control is returned to the dBUG monitor.

2.3 TERMINAL CONTROL CHARACTERS

The command line editor remembers the last five commands, in a history buffer, which were issued. They
can be recalled and then executed using control keys.

Several keys are used as a command line edit and control functions. It is best to be familiar with these
functions before exercising the system. These functions include:

a. RETURN (carriage- return) - will enter the command line and causes processing to begin.
b. Delete (Backspace) key or CTRL-H - will delete the last character entered on the terminal.
c. CTRL-D - Go down in the command history buffer, you may modify then press enter key.
d. CTRL-U - Go up in the command history buffer, you may modify then press enter key.
e. CTRL-R - Recall and execute the last command entered, does not need the enter key to be

pressed.

For characters requiring the control key (CTRL) , the CTRL should be pushed and held down and then the
other key (H) should be pressed.

2.4 dBUG COMMAND SET

Table 2-1 lists the dBUG commands. Each of the individual commands is described in the following
pages.

6

TABLE 2-1. dBUG Commands.

 COMMAND
MNEMONIC

 DESCRIPTION SYNTAX PAGE

BF BLOCK FILL BF<WIDTH> BEGIN END DATA 2-7
BM BLOCK MOVE BM BEGIN END DEST 2-8
BS BLOCK SEARCH BS <WIDTH> BEGIN END DATA 2-9
BR BREAKPOINT BR ADDR <-R> <-C COUNT> <-T TRIGGER> 2-10
DATA DATA CONVERT DATA VALUE 2-11
DI DISASSEMBLE DI <ADDR> 2-12
DL DOWNLOAD SERIAL DL <OFFSET> 2-13
DN DOWNLOAD NETWORK DN <-C> <-E> <-S> <-I> <-O OFFSET> <FILENAME> 2-14
GO EXECUTE GO <ADDR> 2-15
GT Go TILL BREAKPOINT GT <ADDR> 2-16
HELP HELP HELP <COMMAND> 2-17
IRD INTERNAL REGISTER

DISPLAY
IRD <MODULE.REGISTER> 2-18

IRM INTERNAL REGISTER
MODIFY

IRM <MODULE.REGISTER> <DATA> 2-19

MD MEMORY DISPLAY MD <WIDTH> <BEGIN> <END> 2-20
MM MEMORY MODIFY MM <WIDTH> ADDR <DATA> 2-21
RD REGISTER DISPLAY RD <REG> 2-22
RM REGISTER MODIFY RM REG DATA 2-23
RESET RESET RESET 2-24
SET SET CONFIGURATIONS SET OPTION <VALUE> 2-25
SHOW SHOW CONFIGURATIONS SHOW OPTION 2-27
STEP STEP (OVER) STEP 2-28
SYMBOL SYMBOL MANAGEMENT SYMBOL <SYMB> <-A SYMB VALUE> <-R SYMB>

 <-C | L | S>
2-29

TRACE TRACE(INTO) TRACE <NUM> 2-30
UPDBUG UPDATE DBUG UPDBUG 2-31
UPUSER UPDATE USER FLASH UPUSER 2-32
VERSION SHOW VERSION VERSION 2-33

7

2.4.1 BF - Block of Memory Fill BF

Usage: BF<width> begin end data

The BF command fills a contiguous block of memory starting at address begin, stopping at address end,
with the value data. Width modifies the size of the data that is written.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value 0x1234, the
command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a byte value of 0xAB, the
command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and bss_end), the
command is:

bf bss_start bss_end 0

8

2.4.2 BM - Block Move BM

 Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin, stopping at address end,
to the new address dest. The BM command copies memory as a series of bytes, and does not alter the
original block.

The value for addresses begin, end, and dest may be an absolute address specified as a hexadecimal value,
or a symbol name. If the destination address overlaps the block defined by begin and end, an error message
is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the location
0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to 0x00200000,
the command is:

bm data_start data_end 200000

9

2.4.3 BR - Breakpoint BR

Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name. Count and trigger are numbers converted
according to the user defined radix, normally hexadecimal.
If no argument is provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no address is specified
in conjunction with the -r option, then all breakpoints are removed.
Each time a breakpoint is encountered during the execution of target code, its count value is incremented by
one. By default, the initial count value for a breakpoint is zero, but the -c option allows setting the initial
count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is compared
against the trigger value. If the count value is equal to or greater than the trigger value, a breakpoint is
encountered and control returned to dBUG. By default, the initial trigger value for a breakpoint is one, but
the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are initialized to the
values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main(), the command is:

br _main

When the target code is executed and the processor reaches main(), control will be returned to dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must attempt to execute the function bench() a third time
before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

10

2.4.4 BS - Block Search BS

Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping at address
end, for the value data. Width modifies the size of the data that is compared during the search.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and ending at
0x00080000 the command is:

bs 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value 0x1234. If no
match is found, then the address is incremented to 0x00040002 and the next 16-bit value is read and
compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000 and ending at
0x00080000, the command is:

bs.l 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value 0x0000ABCD.
If no match is found, then the address is incremented to 0x00040004 and the next 32-bit value is read and
compared.

To search the BSS section (defined by the symbols bss_start and bss_end) for the byte value 0xAA, the
command is:

bs.b bss_start bss_end AA

11

2.4.5 DATA - Data Conversion DATA

Usage: DATA data

The DATA command displays data in both decimal and hexadecimal notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed into the
DATA command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value. Otherwise data is
interpreted as a decimal value.
All values are treated as 32-bit quantities.

Examples:

To display the decimal equivalent of 0x1234, the command is:

data 0x1234

To display the hexadecimal equivalent of 1234, the command is:

data 1234

12

2.4.6 DI - Disassemble DI

Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. This is especially useful for branch target addresses and subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no address is provided
to the DI command, then the DI command uses the address of the last opcode that was disassembled.

Examples:

To disassemble code that starts at 0x00040000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

di _main

13

2.5.7 DL - Download Serial DL

Usage: DL <offset>

The DL command performs an S-record download of data obtained from the serial port. The value for
offset is converted according to the user defined radix, normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.
The DL command checks the destination address for validity. If the destination is an address below the
defined user space (0x00000000-0x00010000), then an error message is displayed and downloading
aborted.

If the S-record file contains the entry point address, then the program counter is set to reflect this address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and adjust the destination address by 0x40, the
command is:

dl 0x40

14

2.4.8 DN - Download Network DN

Usage: DN <-c> <-e> <-i> <-s> <-o offset> <filename>

The DN command downloads code from the network. The DN command handle files which are either S-
record, COFF or ELF formats. The DN command uses Trivial File Transfer Protocol, TFTP, to transfer
files from a network host. This command only works with 100% NE2000 compatible boards.

In general, the type of file to be downloaded and the name of the file must be specified to the DN command.
The -c option indicates a COFF download, the -e option indicates an ELF download, -I option indicates an
image fownload, and the -s indicates an S-record download. The -o option works only in conjunction with
the -s option to indicate and optional offset for S-record download. The filename is passed directly to the
TFTP server and, therefore, must be a valid filename on the server.

If neither of the -c, -e, -i, -s or filename options are specified, then a default filename and filetype will be
used. Default filename and filetype parameters are manipulated using the set and show commands.

The DN command checks the destination address for validity. If the destination is an address below the
defined user space, then an error message is displayed and downloading aborted.

For ELF and COFF files which contain symbolic debug information, the symbol tables are extracted from
the file during download and used by dBUG. Only global symbols are kept in dBUG. The dBUG symbol
table is not cleared prior to downloading, so it is the user’s responsibility to clear the symbol table as
necessary prior to downloading.

If an entry point address is specified in the S-record, COFF or ELF file, the program counter is set
accordingly.

Examples:

To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default filetype with the name “bench.out”, the command is:

dn bench.out

To download a file using the default filename and filetype, the command is:

dn

This command requires proper Network address and parameter setup. Refer to Appendix A for this
procedure. Also refer to “SET” command to setup the base address and the IRQ for the card.

15

2.4.9 Go - Execute GO

Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.
 If no argument is provided, the GO command begins executing instructions at the current program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code encounters a
breakpoint, illegal instruction, or other exception which causes control to be handed back to dBUG.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

16

2.4.10 GT - Execute Till a Temporary Breakpoint GT

Usage: GT <addr>

The GT command executes the target code starting at address in PC (whatever the PC has) until a
temporary breakpoint as given in the command line is reached.

Example:

To execute code at the current program counter and stop at breakpoint address 0x10000, the command is:
GT 10000

17

2.4.11 HELP - Help HE

Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In addition, the
address of where user code may start is given. If command is provided, then a brief listing of the syntax of
the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

The help list is longer than one page. The help command displays one screen full and ask for an input to
display the rest of the list.

To obtain help on the breakpoint command, the command is:

help br

18

2.4.12 IRD - Internal Registers Display IRD

Usage: IRD <module.register>

This commands displays the internal registers of different modules inside the MCF5204. In the command
line, the module refers to the module name where the register is located and the register refers to the
specific register needed.

The registers are organized according to the module to which they belong. The available modules on the
MCF5204 are SIM, UART, and TIMER. Refer to MCF5204 User’s Manual.

Example:

ird sim.sypcr ;display the SYPCR register in the SIM module.

19

 2.4.13 IRM - Internal Registers MODIFY IRM

Usage: IRM module.register data

This commands modifies the contents of the internal registers of different modules inside the MCF5204. In
the command line, the module refers to the module name where the register is located, register refers to the
specific register needed, and data is the new value to be written into that register.

The registers are organized according to the module to which they belong. The available modules on the
MCF5204 are SIM, UART, and TIMER. Refer to MCF5204 User’s Manual

Example:

irm timer.tmr1 0021 ;write 0021 into TMR1 register in the TIMER module.

20

2.4.14 MD - Memory Display MD

Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and stopping at
address end. The value for addresses begin and end may be an absolute address specified as a
hexadecimal value, or a symbol name. Width modifies the size of the data that is displayed.

Memory display starts at the address begin. If no beginning address is provided, the MD command uses
the last address that was displayed. If no ending address is provided, then MD will display memory up to
an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the command is:
md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at 0x00050000, the command is:

md.l 40000 50000

This command may be repeated by simply pressing the carriage-return (Enter) key. It will continue
with the address after the last display address.

21

2.2.15 MM - Memory Modify MM

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

22

2.4.16 RD - Register Display RD

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

23

2.4.17 RM - Register Modify RM

Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the name of the
register, and the value for data may be a symbol name, or it is converted according to the user defined
radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM command updates
the copy of the register in the buffer. The actual value will not be written to the register until target code is
executed.

Examples:

To change register D0 to contain the value 0x1234, the command is:

rm D0 1234

24

2.4.18 RESET - Reset the board and dBUG
RESET

Usage: RESET

The RESET command attempts to reset the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. This code attempts to
initialize the devices on the board and dBUG data structures. If the RESET command fails to reset the
board to your satisfaction, cycle power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

25

2.4.19 SET - Set Configuration SET

Usage: SET option <value>
SET

The SET command allows the setting of user configurable options within dBUG. The options are listed
below. If the SET command is issued without option, it will show the available options and values.

The board needs a RESET after this command in order for the new option(s) to take effect.

baud - This is the baud rate for the first serial port on the board. All communications between dBUG and
the user occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit, 8N1. Do not
choose 38400 baud.

base - This is the default radix for use in converting number from their ASCII text representation to the
internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices are binary (base
2), octal (base 8), and decimal (base 10).

client - This is the network Internet Protocol, IP, address of the board. For network communications, the
client IP is required to be set to a unique value, usually assigned by your local network administrator.

server - This is the network IP address of the machine which contains files accessible via TFTP. Your
local network administrator will have this information and can assist in properly configuring a TFTP server
if one does not exist.

gateway - This is the network IP address of the gateway for your local subnetwork. If the client IP address
and server IP address are not on the same subnetwork, then this option must be properly set. Your local
network administrator will have this information.

netmask - This is the network address mask to determine if use of a gateway is required. This field must be
properly set. Your local network administrator will have this information.

filename - This is the default filename to be used for network download if no name is provided to the DN
command.

filetype - This is the default file type to be used for network download if no type is provided to the DN
command. Valid values are: “srecord”, “coff”, “image”, and “elf”.

autoboot - This option allows for the automatic downloading and execution of a file from the network.
This option can be used to automatically boot an operating system from the network. Valid values are:
“on” and “off”. This option is not implemented on the current reviosion of dBUG.

nicbase - this is base address of the network interface card. When using network card, the base address of
that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the address of the card. dBUG does not set or configure the interface card. It only uses this
address to access the card. The user should provide this information to dBUG.

nicirq - this is the IRQ used in the network interface card. When using network card, the IRQ used by
that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the IRQ of the card. dBUG does not set or configure the interface card. It only uses this IRQ to
access the card. The user should provide this information to dBUG.

26

flashws - This command is used to adjust the number of wait state for the Flash ROM.

sramws - This command is used to adjust the number of wait state for the SRAM.

Examples:

To see all the available options and supported choices, the command is:

set

To set the baud rate of the board to be 19200, the command is:

set baud 19200

Now press the RESET button (RED) or RESET command for the new baud to take effect. This baud will
be programmed in Flash ROM and will be used during the power-up.

In order to use the KNE2000TLC ethernet ISA card in the system, the debugger need to know its IRQ and
its base address. The Kingston Technology Corporation ethernet card KNE2000TLC has a default base
address of $300 and uses IRQ3. To set up the debugger for ethernet communication, the following
commands should be issued first.

set nicbase 300
set nicirq 3

27

2.4.20 SHOW - Show Configuration SHOW

Usage: SHOW option
SHOW

The SHOW command displays the settings of the user configurable options within dBUG. Most options
configurable via the SET command can be displayed with the SHOW command. If the SHOW command
is issued without any option, it will show all options.

Examples:

To display all the current options, the command is:

show

To display the current baud rate of the board, the command is:

show baud

To display the TFTP server IP address, the command is:

show server

28

2.4.21 STEP - Step Over ST

Usage: STEP

The ST command can be used to “step over” a subroutine call, rather than tracing every instruction in the
subroutine. The ST command sets a breakpoint one instruction beyond the current program counter and
then executes the target code.

The ST command can be used for BSR and JSR instructions. The ST command will work for other
instructions as well, but note that if the ST command is used with an instruction that will not return, i.e.
BRA, then the temporary breakpoint may never be encountered and thus dBUG may not regain control.

Examples:

To pass over a subroutine call, the command is:

step

29

2.4.22 SYMBOL - Symbol Name Management SYMBOL

Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol name is
provided to the SYMBOL command, then the symbol table is searched for a match on the symbol name and
its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a symbol
name from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the symbol table, and the -s
option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table lookups,
either by the SYMBOL command or by the disassembler, will only use the first 31 characters. Symbol
names are case sensitive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l

30

2.4.23 TRACE - Trace Into TR

Usage: TRACE <num>

The TRACE command allows single instruction execution. If num is provided, then num instructions are
executed before control is handed back to dBUG. The value for num is a decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single instruction
execution, and the target code executed. Control returns to dBUG after a single instruction execution of the
target code.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

31

2.4.24 UPDBUG - Update the dBUG Image UPDBUG

Usage: UPDBUG

The UPDBUG command is used for updating the dBUG image in Flash. When updates to the MCF5204
EVS dBUG are available, the updated image is downloaded to address 0x00010000. The new image is
placed into Flash using the UPDBUG command. The user is prompted for verification before performing
the operation. Use this command with extreme caution, as any error can render dBUG, and thus the board,
useless!

32

2.4.25 UPUSER - Update User Code In Flash UPUSER

Usage: UPUSER

The UPUSER command places user code and data into space allocated for the user in Flash, the last 128K
of Flash ROM. To place code and data in user Flash, the image is downloaded to address 0x00010000,
and the UPUSER command issued. This commands programs the entire upper 128K of Flash. Users
access this space starting at address 0xFFE20000.

33

2.4.26 VERSION - Display dBUG Version VERSION

Usage: VERSION

The VERSION command display the version information for dBUG. The dBUG version number and build
date are both given.

The version number is separated by a decimal, for example, “v1.1”. The first number indicates the version
of the CPU specific code, and the second number indicates the version of the board specific code.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

version

34

2.5 TRAP #15 Functions

An additional utility within the dBUG firmware is a function called the TRAP 15 handler. This function
can be called by the user program to utilize various routines within the dBUG, to perform a special task,
and to return control to the dBUG. This section describes the TRAP 15 handler and how it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR_PRESENT, and
EXIT_TO_dBUG.

2.5.1 OUT_CHAR

This function (function code 0x0013) sends a character, which is in lower 8 bits of D1, to terminal.

Assembly example:

/* assume d1 contains the character */
 move.l #$0013,d0 Selects the function
TRAP #15 The character in d1 is sent to terminal

C example:

void board_out_char (int ch)
{

/* If your C compiler produces a LINK/UNLK pair for this routine,
 * then use the following code which takes this into account
*/

#if l
/* LINK a6,#0 -- produced by C compiler */
asm (“ move.l 8(a6),d1”); /* put ‘ch’ into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
/* UNLK a6 -- produced by C compiler */

#else
/* If C compiler does not produce a LINK/UNLK pair, the use
 * the following code.
*/
 asm (“ move.l 4(sp),d1”); /* put ‘ch’ into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

#endif
}

2.5.2 IN_CHAR

This function (function code 0x0010) returns an input character (from terminal) to the caller . The
returned character is in D1.

Assembly example:

move.l #$0010,d0 Select the function
trap #15 Make the call, the input character is in d1.

35

C example:

int board_in_char (void)
{

asm (“ move.l #0x0010,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
asm (“ move.l d1,d0”); /* put the character in d0 */

}

2.5.3 CHAR_PRESENT

This function (function code 0x0014) checks if an input character is present to receive. A value of zero is
returned in D0 when no character is present. A non-zero value in D0 means a character is present.

Assembly example:

move.l #$0014,d0 Select the function
trap #15 Make the call, d0 contains the response (yes/no).

C example:

int board_char_present (void)
{

asm (“ move.l #0x0014,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

}

2.5.4 EXIT_TO_dBUG

This function (function code 0x0000) transfers the control back to the dBUG, by terminating the user
code. The register context are preserved.

Assembly example:

move.l #$0000,d0 Select the function
trap #15 Make the call, exit to dBUG.

C example:

void board_exit_to_dbug (void)
{

asm (“ move.l #0x0000,d0”); /* select the function */
asm (“ trap #15”); /* exit and transfer to dBUG */

}

1

CHAPTER 3

HARDWARE DESCRIPTION AND RECONFIGURATION

This chapter provides a functional description of the SBC5204 board hardware. With the description given
here and the schematic diagram provided at the end of this manual, the user can gain a good understanding
of the board's design. In this manual, an active low signal is indicated by a "-" preceding the signal name.

3.1 THE PROCESSOR AND SUPPORT LOGIC

This part of the Chapter discusses the CPU and general supporting logic on the SBC5204 board.

3.1.1 The Processor

The microprocessor used in the SBC5204 is the highly integrated MCF5204, 32-bit processor. The
MCF5204 uses a ColdFire processor as the core with 512 bytes of instruction cache, a UART, two Timers,
512 bytes of SRAM, one-byte wide parallel I/O port, and the supporting integrated system logic. All the
registers of the core processor are 32 bits wide except for the Status Register (SR) which is 16 bits wide.
This processor communicates with external devices over a 16-bit wide data bus, D0-D15. This chip can
address the entire 4 G Bytes of memory space using internal chip-select logic. However, it provides only
22 address lines, A0-A21. All the processor's signals are available at J8 and J9 for off the board
expansion. Refer to section 3.7 for pin assignment.

The MCF5204 has an IEEE JTAG-compatible port and BDM port. These signals are available at J7 and
J9. The processor also has the logic to generate six (6) chip selects, -CS0 to -CS5.

3.1.2 The Reset Logic

The reset logic provides system initialization under two modes. Under system power-up and when the
RESET switch, S2 (red switch), is activated. The power-on and the RESET switch assert the processor's -
RESET line to reset the processor.

U4 is used to produce both active high and low RESET. The -RESET signal is for on board devices and
RESET is for the ISA Bus.

dBUG performs the following configurations of internal resources during the initialization. The instruction
cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash. However, a copy
of the exception table is made at address $00000000 in SRAM. To take over an exception vector, the user
places the address of the exception handler in the appropriate vector in the vector table located at
$00000000, and then points the VBR to $00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The Port A
general purpose I/O pins are configured for dedicated peripheral functions, i.e. the UART.

2

3.1.2.1 The ATS/BUSW Line

The ATS/BUSW line can be configure to function as -ATS or BUSW after reset. If the -IRQ0 is kept low
during Reset, the pin is -ATS otherwise, it is BUSW. The SBC5204 leaves the -IRQ0 high during the
reset which chooses the BUSW function. If the -ATS function is needed, the user may press the ABORT
button (BLACK) while pressing the RESET button (RED) which will cause the -IRQ0 t remain low when
resetting the board and the -ATS function will be selected.

3.1.3 The Clock Circuitry

The SBC5204 uses a 25MHZ oscillator (U3) to provide the clock to CLK pin of the processor. This clock
also feeds to LSI2032 for its internal use and to produce clock for the ISA timings and MC68HC901 (1/4
system clock).

3.1.4 Watchdog Timer (BUS MONITOR)

A bus cycle is initiated by the processor providing the necessary information for the bus cycle (e.g. address,
data, control signals, etc.) and asserting the -CS low. Then, the processor waits for an acknowledgment (-
DTACK signal) from the addressed device before it can complete the bus cycle. It is possible (due to
incorrect programming) that the processor attempts to access part of the address space which physically
does not exist. In this case, the bus cycle will go on for ever, since there is no memory or I/O device to
provide an acknowledgment signal, and the processor will be in an infinite wait state. The MCF5204 has
the necessary logic built into the chip to watch the duration of the bus cycle. If the cycle is not terminated
within the preprogrammed duration the logic will internally assert Transfer Error signal. In response, the
processor will terminate the bus cycle and an access fault exception (trap) will take place.

The duration of the Watchdog is selected by BMT0-1 bits in System Protection Register. The dBUG
initializes this register with the value 00 which provides for 1024 system clock time-out.

3.1.5 Interrupt Sources

The ColdFire family of processors can receive interrupts for seven levels of interrupt priorities. When the
processor receives an interrupt which has higher priority than the current interrupt mask (in status register),
it will perform an interrupt acknowledge cycle at the end of the current instruction cycle. This interrupt
acknowledge cycle indicates to the source of the interrupt that the request is being acknowledged and the
device should provide the proper vector number to indicate where the service routine for this interrupt level
is located. If the source of interrupt is not capable of providing a vector, its interrupt should be set up as
autovector interrupt which directs the processor to a predefined entry into the exception table (refer to the
MCF5204 User's Manual).

The processor goes to different service routine via the exception table. This table is in the Flash and the
VBR points to it. However, a copy of this table is made in the RAM starting at $00000000. To take over
an exception vector, the user places the address of the exception handler in the appropriate vector in the
vector table located at $00000000, and then points the VBR to $00000000.

The MCF5204 has four external interrupt request lines (-IRQ0, -IRQ1, -IRQ2, -IRQ3) and four internal
requests from Timer1, Timer2, Software watchdog timer, and UART. Each interrupt source , external and
internal, can be programmed for any priority level. In case of similar priority level, a second relative
priority between 1 to 3 will be assigned.

3

On SBC5204, the internal Timers, Software Watchdog Timer, and UART are disabled and not used.
However, the software watchdog is programmed for Level 7, priority 2 and uninitialized vector. The
UART is programmed for Level 3, priority 2 and autovector. The Timers are at Level 5 with Timer 1 with
priority 3 and Timer 2 with priority 2 and both for autovector.

The SBC5204 uses -IRQ0 to support the ABORT function using the ABORT switch S1 (black switch).
This switch is used to force a non-maskable interrupt (level 7, priority 3) if the user's program execution
should be aborted without issuing a RESET (refer to Chapter 2 for more information on ABORT). Since
the ABORT switch is not capable of generating a vector in response to level seven interrupt acknowledge
from the processor, the debugger programs this request for autovector mode.

The MC68HC901 reports its interrupt request on -IRQ1 line which is set for Level 1, priority 3. It uses
the vectored mode for acknowledgment. The chip-select -CS3 is used to generate the -IACK signal for
MC68HC901. The MC68HC901 is programmed to generate vectors $F0 to $FF. This should not be
changed.

The -IRQ2 and -IRQ3 lines of the MCF5204 are not used on this board. However, the -IRQ2 is
programmed for Level 1 with priority 1 and the -IRQ3 is programmed for Level 1 with priority 2. The user
may use these lines for external interrupt request. Refer to MCF5204 User’s Manual for more information
about the interrupt controller.

3.1.6 Internal SRAM

The MCF5204 has 512 bytes of internal memory. This memory is mapped to $02000000 and is not used
by the dBUG. It is available to the user.

3.1.7 The MCF5204 Registers and Memory Map

The memory and I/O resources of the SBC5204 are divided into three groups, MCF5204 Internal, External
resources, and the ISA Bus address. All the I/O registers are memory mapped.

The MCF5204 has built in logic and six Chip-select pins (-CS0, -CS1, -CS2, -CS3, -CS4, -CS5) which
are used to enable external memory and I/O devices. There are eighteen (18) 32-bit registers to specify the
address range, type of access, and the method of DTACK generation for each chip-select pin. These
registers are programmed by dBUG to map the external memory and I/O devices.

The SBC5204 uses chip-select zero (-CS0) to enable the EPROM/Flash ROM (refer to Section 3.3.) The
SBC5204 also uses -CS1 to enable the SRAM (refer to Section 3.2), -CS2 for enabling the MC68HC901,
-CS3 for Interrupt acknowledge of MC68HC901, and -CS4 for ISA Bus I/O space. The SBC5204 does
not use the -CS5.

The chip select mechanism of the MCF5204 allows the memory mapping to be defined based on the
memory space desired (User/Supervisor, Program/Data spaces).

All the MCF5204 internal registers, configuration registers, parallel I/O port registers, DUART registers
and system control registers are mapped by MBAR register at 1K-byte boundary. It is mapped to
$01000000 by dBUG. For complete map of these registers refer to the MCF5204 User's Manual.

The SBC5204 board can have up to 1M bytes of SRAM installed. The first 1M bytes are reserved for this
memory. Refer to Section 3.2 for a discussion of RAM. The dBUG is programmed in two 29F010 Flash

4

ROM’s which only occupies 256K bytes of the address space. The first 128K bytes are used by dBUG
and the second half is left for user. Refer to section 3.3.

The MC68HC901 is used as dBUG serial communication, baud rate generator, and ISA Bus interrupt
request. Refer to section 3.4.1.

The ISA Bus interface maps all the I/O space of the ISA bus to the MCF5204 memory at address
$04000000. Refer to section 3.6.

TABLE 3.1. The SBC5204 memory map.

ADDRESS RANGE SIGNAL and DEVICE
$00000000-$000FFFFF1 -CS1, Up to 1M bytes of SRAM’s.
$01000000-$010003FF Internal Module registers
$02000000-$020001FF Internal SRAM
$03000000-$030FFFFF -CS2, 1M space for MC68HC901. -CS3 is used for IACK
$04000000-$040FFFFF -CS4, 1M ISA Bus area
$FFE00000-$FFE3FFFF -CS0, 256K bytes of Flash ROM.

1 Refer to the text for more detail.

All the unused area of the memory map is available to the user.

3.1.8 Reset Vector Mapping

After reset, the processor attempts to get the initial stack pointer and initial program counter values from
locations $000000-$000007 (the first eight bytes of memory space). This requires the board to have a
nonvolatile memory device in this range with proper information. However, in some systems, it is preferred
to have RAM starting at address $00000000. In MCF5204, the -CS0 responds to any accesses after reset
until the V-bit is set for CS0. This includes the reset vector range. Since -CS0 is connected to Flash
ROM’s, the Flash ROM’s appear to be at address $00000000 which provides the initial stack pointer and
program counter (the first 8 bytes of the EPROM). The initialization routine, however, programs the chip-
select logic and locates the Flash ROM to start at $FFE00000 and the SRAM’s to start at $00000000.

3.1.9 DTACK Generation

The processor starts a bus cycle by providing the necessary information (address A1-A23, R/-W, etc.) and
asserting the -CS. The processor then waits for an acknowledgment (-DTACK) by the addressed device
before it can complete the bus cycle. This -DTACK is used not only to indicate the presence of a device, it
also allows devices with different access time to communicate with the processor properly. The MCF5204,
as part of the chip-select logic, has a built in mechanism to generate the -DTACK for all external devices
which do not have the capability to generate the -DTACK on their own. The Flash ROM’s and SRAM’s
can not generate the -DTACK. Their chip-select logic’s are programmed by dBUG to generate the -
DTACK internally after a preprogrammed number of wait states. In order to support the future expansion
of the board, the -DTACK input of the processor is also connected to the Processor Expansion Bus, J9.
This allows the expansion boards to assert this line to indicate their -DTACK to the processor. On the
expansion boards, however, this signal should be generated through an open collector buffer with no
pull-up resistor, a pull-up resistor is included on the board. All the -DTACK’s from the expansion boards
should be connected to this line.

5

3.1.10 Wait State Generator

The Flash ROM and SRAM chips on the board may require some adjustments on the cycle time of the
processor to make them compatible with processor speed. To extend the CPU bus cycles for the slower
devices, the chip-select logic of the MCF5204 can be programmed to generate the -DTACK after a given
number of wait states. Refer to Sections 3.2 and 3.3 information about wait state requirements of SRAM’s
and Flash ROM’s respectively.

3.2 THE EXTERNAL SRAM

The SBC5204 has two 32-pin sockets (U11 and U12) for static RAM’s. These sockets support both the
128Kx8 (such as KM681000BLP) and 512Kx8 (such as HM628512). The board may be configured for
256K and 1M bytes of SRAM’s. The dBUG will detect the total memory installed on power-up.

The are two memory configuration choices:

a. 256K bytes - For 256K bytes, install two 128Kx8 SRAM chips in U11 and U12. The memory
address range will be $00000000-$0003FFFF. The jumper JP2 pins 2 and 4 should be connected
(default).

b. 1M bytes - For 1M bytes, install two 512x8 SRAM chips in U11 and U12. The memory address
range will be $00000000-$000FFFFF. The jumper JP2 pins 4 and 6 should be connected.

The debugger programs the chip-select to generate one wait state for the SRAM.

1 2

3 4
5 6

JP2

3.3 THE EPROM/ FLASH ROM

There are two sockets for EPROM’s/Flash ROM’s on the SBC5204, U13 (high, even byte) and U14 (low,
odd byte). These sockets support 32K, 64K, 128K, 256K, 512K, and 1M-byte EPROM’s such as
27C256, 27C512, 27C010, 27C020, 27C040, and 27C080 chips for a total of up to 2M bytes. The
sockets also support the Flash ROM’s such as 29F010 and 29F040 which are 5-volt only devices.

If the user wishes to modify the size or the type of the memory chips, the jumpers JP2, JP3, and JP4
should be modified to accommodate different size and type of memory chips. Refer to Figure 3.1 for
jumper selection.

The board is shipped with two 29F010, 128K-byte, FLASH ROM’s for a total of 256K bytes. The first
128K of the Flash contains dBUG firmware. The second half (last 128K) is available to the user. The
high byte (even address) chip is installed in U13 socket and the low byte (odd address) chip is installed in
U14 socket. The chip-select signal generated by the MCF5204 (-CS0) enables both chips.

The MCF5204 chip-select logic can be programmed to generate the -DTACK for -CS0 signal after a
certain number of wait states. The dBUG programs this parameter to three wait-states.

6

JP3 Configuration
MEMORY TYPE JUMPER SETUP
FLASH ROM Connect 3 to 5 and 4 to 6 (default)
EPROM Connect 1 to 3 and 2 to 4

JP2 Configuration
MEMORY TYPE JUMPER SETUP
FLASH ROM Connect 3 to 5 (default)
EPROM Connect 1 to 3

1 2

3 4
5 6

JP2

JP4 Configuration for EPROM
MEMORY SIZE JUMPER SETUP
27C256 (256K EPROM) 5 to 7 and 6 to 8
27C512 (512K EPROM) 7 to 9 and 6 to 8
27C010 (1M EPROM) 3 to 5 and 7 to 9

4 to 6 and 8 to 10
27C020 (2M EPROM) 3 to 5 and 7 t 9

4 to 6 and 8 to 10
27C040 (4M EPROM) 3 to 5 and 7 to 9

2 to 4 and 8 to 10
27C080 (8M EPROM) 1 to 3 and 7 to 9

2 to 4 and 8 to 10

 JP4 Configuration for FLASH ROM
MEMORY SIZE JUMPER SETUP
29F010 (1M, Flash) and 29F040
(4M Flash)

7 to 9 and 8 to 10

 Note: Only connect the pins specified. Leave the rest open.

Figure 3.1. Jumper setup for the Flash/EPROM sockets.

7

3.4 THE UART LOGIC

The MCF5204 has a built in UART, This serial channel with software programmable baud rate generator
is not used by the SBC5204 or dBUG and it is available to the user. The dBUG, however, programs the
interrupt level for UART to Level 3, priority 2 and autovector mode of operation. The signals of this
channel are available on J9 and are passed through the RS-232 driver/receiver and are available on DB-9
connector J6. Refer to the MCF5204 User’s Manual for programming and the register map.

3.4.1 MC68HC901

To provide the board with one independent serial communication channel for dBUG communication with
terminal or PC, an MC68HC901 is used. This device provides four timer channels (A, B, C, and D), one
serial communication channel, and 8 input lines. Channel D timer is used as the baud rate generator for the
serial communication channel.

The clock source for the timers is the 2.4576MHZ crystal. The clock signal to drive the MC68HC901
logic is one-fourth of the processor’s clock.

The TXD (SO) signal and the RXD (SI) signal are passed through RS-232 driver/receiver and are
available on J1. The eight input lines are used to report the ISA Bus interrupts (IRQ3, IRQ4, IRQ5, IRQ6,
IRQ7, IRQ9, IRQ10, and IRQ11). The interrupt from MC68HC901 is reported to MCF5204 on -IRQ1
of the MCF5204. The interrupt level for the MC68HC901 is set for Level 1 with priority 3. The vectors
used for MC68HC901 are $F0 to $FF. It generates 16 vectors. This should not be changed.

The -CS2 is used to access the MC68HC901 internal registers, it is mapped to $03000000. The -CS3 is
programmed to generate an Interrupt Acknowledge signal to drive the -IACK of the MC68HC901. Refer
to MC68HC901 User’s Manual for functional description and the programming model.

3.5 THE PARALLEL I/O Port

The MCF5204 has one 8-bit parallel port. All the pins have dual functions. They can be configured as I/O
or their alternate function via the Pin Assignment register. PA0/A20 and PA1/A21 are available on J8 and
the rest are available on J9. User may use them based on the application. However, A20 will be used by
8M EPROM’s if they are installed. Otherwise A20 and A21 can be changed to I/O pin. For more
information on this refer to MCF5204 User’s Manual from Motorola. The dBUG programs these pins for
their dedicated peripheral functions.

3.6 THE ISA BUS LOGIC

The SBC5204 includes the necessary logic, drivers, and the connector (P1) to allow the use of off-the-shelf
ISA Bus I/O cards. The slot can be used with 8- or 16-bit ISA cards. Due to architectural differences
between ISA and ColdFire buses, all accesses to the ISA bus must be 16-bits. In addition, for byte
accessing, even ISA-space addresses are located starting at $04000000, and odd ISA-space addresses are
located starting at $04010000. For example, consider 4 sequential registers starting at ISA-space address
$320. Their ColdFire addresses become, in order, $04000320, $04010320, $04000322, and $04010322.

The main purpose for this setup is to allow the use of Ethernet card (NE2000 compatible) to facilitate
network down load, refer to chapter 2 for network download command (DN). The dBUG driver only
accepts 100% NE2000 compatible cards.

8

The ISA Bus interrupt request lines IRQ3, IRQ4, IRQ5, IRQ6, IRQ7, IRQ9, IRQ10, and IRQ11 are
connected to I0 to I7 of the MC68HC901. The requested interrupt is then routed to -IRQ1 of the
MCF5204.

3.7 THE CONNECTORS AND THE EXPANSION BUS

There are ten connectors on the SBC5204 which are used to connect the board to external I/O devices and
or expansion boards. This section provides a brief discussion and the pin assignments of the connectors.

3.7.1 The Terminal Connector J1

The SBC5204 uses a 9-pin D-sub female connector J1 for connecting the board to a terminal or a PC with
terminal emulation software. The available signals are a working subset of the RS-232C standard. Table
3.2 shows the pin assignment.

TABLE 3.2. The J1 (TERMINAL) Connector pin assignment.

PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send (shorted to 8)
8 Output Clear to Send (shorted to 7)
9 Not Used

3.7.2 The ISA Bus Auxiliary Power Connector J2

The ISA Bus requires +/-12 and -5 as well as +5 volts supply. Since they are not always needed the
connector used for these is a simple burg connector. Table 3.3 shows the Pin assignment for J2.

TABLE 3.3. The J2 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 +12 Volts
2 Ground
3 -12 Volts
4 -5 Volts

9

3.7.3 The Power Supply Connectors J3 and J4

The SBC5204 needs +5 volts supply (less than an Amp.). The power can be +5 Volts regulated or +7.5 to
+12 Volts DC (regulated or unregulated) which utilizes the on board regulator U9. Jumper JP1 (Table 3.6)
makes the selection between +5 Volts regulated and the +7.5-12 Volts supply. If pins 1 and 2 are
connected, the board needs external +5 Volts regulated supply. If pins 2 and 3 are connected, then a DC
supply of +7.5 to +12 volts may be used. In either case, the power may be connected to the board through
J3 (2.1mm power jack) or the J4 two-contact lever actuated terminal block. On J3 the center pin (pin 1) is
the plus supply and the body (pin 3) is the ground. On J4 the Red handle (pin 1) is the plus supply and the
black handle (pin 2) is the ground. Tables 3.4 and 3.5 show the Pin assignment for J3 and J4.

TABLE 3.4. The J3 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 (center pin) Plus Supply

2 (body) Ground

TABLE 3.5. The J4 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 Plus Supply
2 Ground

TABLE 3.6. The Jumper JP1.

Jumper
Pins

Selection

1 to 2 regulated +5 Volts
2 to 3 +7.5 to +12 regulated or unregulated (default)

3.7.4 The Programming Connector J5

The J5 connector is used to program the ispLSI2032. This Connector is not a user connector.

TABLE 3.7. The J5 Connector Pin Assignment.

PIN NO. SIGNAL NAME
1 +5 Volts
2 -SDO
3 -SDI
4 -ISPEN
5 No Connect (key)
6 -MODE
7 GND
8 SCLK

10

3.7.5 The Auxiliary Serial Communication Connector J6

The MCF5204 has a built-in UART. This channel is not used by the SBC5204 dBUG and it is available
to the user. The signals of this channel are available on J9 and the they are also run trough RS-232
driver/receivers and are available on J6. The available signals form a working subset of the RS-232C
standard. Table 3.8 shows the pin assignment for J6.

TABLE 3.8. The J6 Connector pin assignment.

 PIN NO. DIRECTION SIGNAL NAME
1 Output Connected to pin 6 and 8
2 Output Receive Data
3 Input Transmit Data
4 No connect
5 Signal Ground
6 Output Connected to 1 and 8
7 Input Clear to Send
8 Output Request to Send (connected to 1 & 6)
9 Not Used

3.7.6 The Debug Connector J7

The MCF5204 does have background Debug Port, Real-Time Trace Support, and Real-Time Debug
Support. The necessary signals are available at connector J7. Table 3.9 shows the pin assignment.

3.7.7 The Processor Expansion Bus J8 and J9

All the processors signals are available on two burg headers J8 and J9 for future expansion. Although
these signals are not buffered, they can drive at least one TTL load with some having more than one TTL
load capability. User may refer to the data sheets for the major parts and the schematic at the end of this
manual to obtain an accurate loading capability. All the primary signals to/from the processor needed for
expansion are available on J8. Secondary signals (less likely to be used) and I/O signals are available on
J9. Therefore, a single 50-wire flat ribbon cable with the IDC connectors may be used for most of future
expansions. Tables 3.10 and 3.11 show the pin assignment for J8 and J9 respectively.

11

TABLE 3.9. The J7 Connector pin assignment.

 PIN NO. SIGNAL NAME
1 No Connect
2 -BKPT
3 Ground
4 DSCLK
5 Ground
6 No Connect
7 -RESET
8 DSI
9 +5 Volts

10 DSO
11 Ground
12 MTMOD2/PST3
13 MTMOD1/PST2
14 MTMOD0/PST1
15 -HIZ/PST0
16 DDAT3
17 DDAT2
18 DDAT1
19 DDAT0
20 Ground
21 MTMOD3
22 No Connect
23 Ground
24 CLK
25 +5 Volts
26 No Connect

12

TABLE 3.10. The J8 Connector pin assignment.

 PIN NO. SIGNAL NAME
1 A0
2 D0
3 A1
4 D1
5 A2
6 D2
7 A3
8 D3
9 A4
10 D4
11 A5
12 D5
13 A6
14 D6
15 A7
16 D7
17 A8
18 D8
19 A9
20 D9
21 A10
22 D10
23 A11
24 D11
25 A12
26 D12
27 A13
28 D13
29 A14
30 D14
31 A15
32 D15
33 A16
34 +5 Volts
35 A17
36 Ground
37 A18
38 -CS2
39 A19
40 -CS3
41 A20
42 -CS4
43 A21
44 -CS5
45 +5 Volts
46 -RE
47 -UDS
48 -WE
49 Ground
50 -LDS

13

Table 3.11. The J9 Connector pin assignment.

PIN NO. SIGNAL NAME
1 TCLK
2 TIN
3 DSCLK
4 TOUT
5 DSI
6 TXD
7 DSO
8 RXD
9 -BKPT
10 -RTS
11 +5 Volts
12 -CTS
13 Ground
14 +5 Volts
15 DDATA0
16 Ground
17 DDATA1
18 -IRQ0
19 DDATA2
20 -IRQ1
21 DDATA3
22 -IRQ2
23 +5 Volts
24 -IRQ3
25 Ground
26 Ground
27 MTMOD0/PST1
28 -CS0
29 MTMOD1/PST2
30 -HIZ/PST0
31 MTMOD2/PST3
32 BUSW
33 MTMOD3
34 -DTACK
35 -RESET
36 +5 Volts
37 Ground
38 -CS1
39 CLK
40 No Connect

3.7.8 The ISA Bus Connector P1

The SBC5204 can utilize the ISA Bus 16-bit I/O cards. The P1 connector is ISA Bus compatible
connector. Table 3.12 shows the pin assignment.

14

TABLE 3.12. The P1 Connector pin assignment.

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 GND 2 IOCHK*
3 RESET 4 SD7
5 +5V 6 SD6
7 IRQ9 8 SD5
9 -5V 10 SD4
11 DRQ2 12 SD3
13 -12V 14 SD2
15 ZWS* 16 SD1
17 +12V 18 SD0
19 GND 20 IOCHRDY
21 SMFMW* 22 AEN
23 SMFMR* 24 SA19
25 IOW* 26 SA18
27 IOR* 28 SA17
29 DACK3* 30 SA16
31 DRQ3 32 SA15
33 DACK1* 34 SA14
35 DRQ1 36 SA13
37 REFSH 38 SA12
39 SYSCLK 40 SA11
41 IRQ7 42 SA10
43 IRQ6 44 SA9
45 IRQ5 46 SA8
47 IRQ4 48 SA7
49 IRQ3 50 SA6
51 DACK2* 52 SA5
53 TC 54 SA4
55 BALE 56 SA3
57 +5V 58 SA2
59 OSC 60 SA1
61 GND 62 SA0
63 MEMCS16* 64 SBHE*
65 IOCS16 66 LA23
67 IRQ10 68 LA22
69 IRQ11 70 LA21
71 IRQ12 72 LA20
73 IRQ15 74 LA19
75 IRQ14 76 LA18
77 DACK0* 78 LA17
79 DRQ0 80 MEMB*
81 DACK5* 82 MEMW*
83 DRQ5 84 SD8
85 DACK6* 86 SD9
87 DRQ6 88 SD10
89 DACK7* 90 SD11
91 DRQ7 92 SD12
93 +5V 94 SD13
95 MASTER* 96 SD14
97 GND 98 SD15

15

3.8 THE SBC5204 JUMPERS

There are a total of four jumpers on the SBC5204 board to configure the board for different setup. Table
3.13 shows what these jumpers are for and the section where more information can be found.

TABLE 3.13. The SBC5204 Jumpers.

Jumper No. Function (section)
JP1 Power Supply Selection, (section 3.7.3)
JP2 RAM and EPROM size selection (section 3.2 and 3.3)
JP3 Flash/ EPROM selection (section 3.3)
JP4 Flash/EPROM size selection (section 3.3)

A-1

Appendix A

A.1 Configuring dBUG for Network Downloads

dBUG has the ability to perform downloads over an Ethernet network using the Trivial File Transfer
Protocol, TFTP. Prior to using this feature, several parameters are required for network downloads to
occur. The information that is required and the steps for configuring dBUG are described below.

A1.1 Required Network Parameters

For performing network downloads, dBUG needs six parameters; four are network-related, and two are
download-related. The parameters are listed below, with the dBUG designation following in parenthesis.

All computers connected to an Ethernet network running the IP protocol need three network-specific
parameters. These parameters are:

• Internet Protocol, IP, address for the computer (client IP),
• IP address of the Gateway for non-local traffic (gateway IP), and
• Network netmask for flagging traffic as local or non-local (netmask).

In addition, the dBUG network download command requires the following three parameters:

• IP address of the TFTP server (server IP),
• Name of the file to download (filename),
• Type of the file to download (filetype of S-record, COFF, Elf, or Image).

Your local system administrator can assign a unique IP address for the board, and also provide you the IP
addresses of the gateway, netmask, and TFTP server. Fill out the lines below with this information.

Client IP: ___.___.___.___ (IP address of the board)
Server IP: ___.___.___.___ (IP address of the TFTP server)
Gateway: ___.___.___.___ (IP address of the gateway)
Netmask: ___.___.___.___ (Network netmask)

A.1.2 Configuring dBUG Network Parameters

Once the network parameters have been obtained, dBUG must be configured. The following commands are
used to configure the network parameters.

set client <client IP>
set server <server IP>
set gateway <gateway IP>
set netmask <netmask>

For example, the TFTP server is named ‘santafe’ and has IP address 123.45.67.1. The board is assigned
the IP address of 123.45.68.15. The gateway IP address is 123.45.68.250, and the netmask is
255.255.255.0. The commands to dBUG are:

set client 123.45.68.15
set server 123.45.67.1

A-2

set gateway 123.45.68.250
set netmask 255.255.255.0

The last step is to inform dBUG of the name and type of the file to download. Prior to giving the name of
the file, keep in mind the following.

Most, if not all, TFTP servers will only permit access to files starting at a particular sub-directory. (This
is a security feature which prevents reading of arbitrary files by unknown persons.) For example, SunOS
uses the directory /tftp_boot as the default TFTP directory. When specifying a filename to a SunOS TFTP
server, all filenames are relative to /tftp_boot. As a result, you normally will be required to copy the file to
download into the directory used by the TFTP server.

A default filename for network downloads is maintained by dBUG. To change the default filename, use the
command:

set filename <filename>

When using the Ethernet network for download, either S-record, COFF, Elf, or Image files may be
downloaded. A default filetype for network downloads is maintained by dBUG as well. To change the
default filetype, use the command:

set filetype <srecord|coff|elf|image>

Continuing with the above example, the compiler produces an executable COFF file, ‘a.out’. This file is
copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out

Change the default filename and filetype with the commands:

set filename a.out
set filetype coff

Finally, perform the network download with the ‘dn’ command. The network download process uses the
configured IP addresses and the default filename and filetype for initiating a TFTP download from the
TFTP server.

A.1.3 Troubleshooting Network Problems
Most problems related to network downloads are a direct result of improper configuration. Verify that all
IP addresses configured into dBUG are correct. This is accomplished via the ‘show’ command.

Using an IP address already assigned to another machine will cause dBUG network download to fail, and
probably other severe network problems. Make certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. Are status LEDs lit indicating that network
traffic is present?

Check for proper configuration and operation of the TFTP server. Most Unix workstations can execute a
command named ‘tftp‘which can be used to connect to the TFTP server as well. Is the default TFTP root
directory present and readable?

A-3

If ‘ICMP_DESTINATION_UNREACHABLE’ or similar ICMP message appears, then a serious error has
occurred. Reset the board, and wait one minute for the TFTP server to time out and terminate any open
connections. Verify that the IP addresses for the server and gateway are correct.

A-4

1.0

COPYRIGHT ARNEWSH, INC.

P.O. BOX 270352 FORT COLLINS, CO 80527-0352

B

1 4Thursday, October 17, 1996

SBC5204.CPU
Size Document Number Rev

Date: Sheet of

+5

+5 +5

+5

+5

+5

+5

+5

+5 +5 +5 +5 +5 +5
+5 +5 +5 +5 +5 +5

+5

+5

+5

+5

+5

-CS0
-CS1
-CS2
-CS3
-CS4
-CS5

A[0..21]

D[0..15]

I0
I1
I2
I3
I4
I5
I6
I7

SI
SO

-DTACK901

RESET

CLK

TCLK
DSO
DSI

DSCLK
-BKPT

-LDS
-UDS

-WE
-RE

-DTACK
BUSW

-RTS
-CTS
RXD
TXD

TOUT
TIN

DDATA3

DDATA0
DDATA1
DDATA2

MTMOD0
MTMOD1
MTMOD2
MTMOD3

-HIZ

-RESET

-IRQ0
-IRQ1
-IRQ2
-IRQ3

SOFT_G0

CLK4MHZ

|LINK

| ISA.SCH
| CONNECT.SCH

| MEMORY.SCH

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15

D8
D9
D10
D11
D12
D13
D14
D15

A0
A1
A2
A3
A4

U4

TL7705ACP

VCC
8

SENSE
7

RESET
5

RESET
6

REF
1

GND
4

CT
3

RESIN
2

S2

U3
25MHZ

NC
1

G
ND

7
CL

K
8

VC
C

14

SP6
5x4.7K

123456

SP7
9x4.7K

1

2 3 4 5 6 7 8 9 10SP5H

9x4.7K

1 9

SP5C

9x4.7K

1
4

SP5D
9x4.7K

1
5

SP5I
9x4.7K

1
10

SP5F
9x4.7K

1
7

SP5G

9x4.7K

1 8

U7

MCF5204

A0
99

A1
100

A2
1

A3
4

A4
5

A5
6

A6
7

A7
8

A8
11

A9
12

A10
13

A11
14

A12
15

A13
18

A14
19

A15
20

A16
21

A17
22

A18
25

A19
26

PP0/A20
27

PP1/A21
28

D0
75

D1
72

D2
71

D3
70

D4
69

D5
68

D6
65

D7
64

D8
63

D9
62

D10
61

D11
58

D12
57

D13
56

D14
55

D15
54

CS0
34

CS1
35

CS2
36

CS3
90

CS4
91

CS5
92

VS
S

3
VS

S
10

VS
S

17

VS
S

24
VS

S
31

VS
S

46
VS

S
52

VS
S

59
VS

S
66

VS
S

73
VS

S
80

VS
S

95

VD
D

2
VD

D
9

VD
D

16
VD

D
23

VD
D

30
VD

D
45

VD
D

53
VD

D
60

VD
D

67
VD

D
74

VD
D

81
VD

D
96

RESET
77

HIZ/PST0
78

MTMOD0/PST1
79

MTMOD1/PST2
82

MTMOD2/PST3
83

MTMOD3
89

IRQ0
37

IRQ1
38

IRQ2
39

IRQ3
40

DDATA0
93

DDATA1
94

DDATA2
97

DDATA3
98

TIN/PP2
32

TOUT/PP3
33

TXD/PP4
41

RXD/PP5
42

CTS/PP6
48

RTS/PP7
49

BUSW/ATS
50

DTACK
51

RE
47

WE
29

UWE/UDS
43

LWE/LDS
44

BKPT/TMS
88

DSCLK/TRST
86

DSI/TDI
85

DSO/TDO
84

TCLK
76

CLK
87

SP5B
9x4.7K

1
3

SP5A
9x4.7K

1
2

U8

MC68HC901

D0
41

D1
42

D2
43

D3
44

D4
45

D5
46

D6
47

D7
48

RS1
3

RS2
4

RS3
5

RS4
6

RS5
7

R/W
2

CS
52

DS
51

DTACK
50

RESET
24

CLK
39

XTAL1
19

XTAL2
20

I0
25

I1
26

I2
27

I3
28

I4
29

I5
30

I6
31

I7
32

SI
10

SO
9

RC
11

TC
8

RR
35

TR
34

TAO
15

TBO
16

TCO
17

TDO
18

TAI
22

TBI
23

IEI
38IEO
37IRQ
36IACK
49

VCC
12

GND
40

A-5

{Doc} {RevCode}

{Title}

B

1 1Friday, November 08, 1996

Title

Size Document Number Rev

Date: Sheet of

{Doc} {RevCode}

{Title}

B

1 1Friday, November 08, 1996

Title

Size Document Number Rev

Date: Sheet of

1.0

COPYRIGHT ARNEWSH, INC.

P.O. BOX 270352 FORT COLLINS, CO 80527-0352

B

2 4Friday, November 08, 1996

SBC5204.MEMORY
Size Document Number Rev

Date: Sheet of

+5+5

+5

+5

+5 +5

+5

A[1..21]

D[0..15]

-CS0

-CS1
-RE

-UDS

-LDS

A1 D8 A1 D0
A2 D9 A2 D1
A3 D10 A3 D2
A4 D11 A4 D3
A5 D12 A5 D4
A6 D13 A6 D5
A7 D14 A7 D6
A8 D15 A8 D7
A9 A9
A10 A10
A11 A11
A12 A12
A13 A13
A14 A14
A15 A15
A16 A16
A17 A17

A19 A19

A1 D8 A1 D0
A2 D9 A2 D1
A3 D10 A3 D2
A4 D11 A4 D3
A5 D12 A5 D4
A6 D13 A6 D5
A7 D14 A7 D6
A8 D15 A8 D7
A9 A9
A10 A10
A11 A11
A12 A12
A13 A13
A14 A14
A15 A15

A17

A20

A16

A18
A19

A19
A17

A18

U14

27C080

A012

A1
11

A210

A3
9

A4
8

A5
7

A6
6

A7
5

A8
27

A926

A10
23

A1125

A12
4

A1328

A14
29

A153

A16
2

CE
22

OE
24

A19/A18
1 A18/WE
31

O0 13

O1
14

O2 15

O3
17

O4
18

O5
19

O6
20

O7
21

A1730

VCC 32

GND 16

U12

HM628512

A0
12

A111

A2
10

A39

A4
8

A57

A6
6

A75

A8
27

A926

A10
23

A11
25

A12
4

A13
28

A14
3

A15
31

A162

W
29

A17/E
30

E22

OE
24

GND
16

VCC
32

D0
13

D1 14

D2
15

D3 17

D4
18

D5 19

D6
20

D7 21

A18/NC1

U11

HM628512

A0
12

A111

A2
10

A39

A4
8

A57

A6
6

A75

A8
27

A926

A10
23

A11
25

A12
4

A13
28

A14
3

A15
31

A162

W
29

A17/E
30

E22

OE
24

GND
16

VCC
32

D0
13

D1 14

D2
15

D3 17

D4
18

D5 19

D6
20

D7 21

A18/NC1

U13

27C080

A012

A1
11

A210

A3
9

A4
8

A5
7

A6
6

A7
5

A8
27

A926

A10
23

A1125

A12
4

A1328

A14
29

A153

A16
2

CE
22

OE
24

A19/A18
1 A18/WE
31

O0 13

O1
14

O2 15

O3
17

O4
18

O5
19

O6
20

O7
21

A1730

VCC 32

GND 16

JP2
1 2
3 4
5 6

JP3
1 2
3 4
5 6

JP4
1 2
3 4
5
7 8

109

6

A-6

1.0

COPYRIGHT ARNEWSH, INC.

P.O. BOX 270352 FORT COLLINS, CO 80527-0352

B

3 4Thursday, October 17, 1996

SBC5204.ISA
Size Document Number Rev

Date: Sheet of

+5

+5

+5

+5

+5

+5

+5

+5

+5

+5

A[1..16]

D[0..15]

V-5
V-12

V+12

RESET

-UDS
-DTACK

-WE

CLK4MHZ

-CS4

-CS2

I[0..7]

-IRQ0
-LDS

CLK

-DTACK901

SOFT_G0

-CS3

SD15 D15
SD14 D14
SD13 D13
SD12 D12
SD11 D11
SD10 D10
SD9 D9
SD8 D8

D7
D6
D5
D4
D3
D2
D1
D0

I5

A15
A14
A13
A12
A11

I4 A10
I3 A9
I2 A8
I1 A7
I0 A6

A5
A4
A3
A2
A1
A16

I6
I7

SD8
SD9
SD10
SD11
SD12
SD13
SD14
SD15

P1

CONNECTOR_ISA

GND
1

RESET3

+5
5

IRQ9
7

-5V
9

DRQ211

ZWS*
15 -12
13

+12V17

GND
19

SMFMW*
21

SMFMR*
23

IOW*25

IOR*
27

DACK3*
29

DRQ3
31

DACK1*33

DRQ1
35

REFSH
37

SYSCLK39

IRQ7
41

IRQ6
43

IRQ5
45

IRQ447

IRQ3
49

DACK2*
51

TC53

BALE
55

+5V
57

OSC
59

GND61

MEMCS16*
63

IOCS16
65

IRQ10
67

IRQ11
69

IRQ1271

IRQ15
73

IRQ14
75

DACK0*
77

DRQ079

DACK5*
81

DRQ5
83

DACK6*85

DRQ6
87

DACK7*
89

DRQ7
91

+5V93

MASTER*
95

GND
97

IOCHK*
2

SD7 4

SD6
6

SD5
8

SD4
10

SD3 12

SD2
14

SD1
16

SD0 18

IOCHRDY
20

SA19
24

SA18 26

SA17
28

SA16
30

SA15
32

SA14 34

SA13
36

SA12
38

SA11 40

SA10
42

SA9
44

SA8
46

SA7 48

SA6
50

SA5
52

SA4 54

SA3
56

SA2
58

SA1
60

SA0 62

AEN
22

SBHE*
64

LA23
66

LA22
68

LA21
70

LA20 72

LA19
74

LA18
76

LA17
78

MEMB* 80

MEMW*
82

SD8
84

SD9 86

SD10
88

SD11
90

SD12
92

SD13 94

SD14
96

SD15
98

U5

74FCT16245

1B1
2

1B2
3

1B3
5

1B4 6

1B5
8

1B6
9

1B7 11

1B8
12

2B1
13

2B2
14

2B3 16

2B4
17

2B5
19

2B6
20

2B7 22

2B8
23

1DIR 1

1OE
48

2OE
25

2DIR
24

GND
4

GND
10

GND 15

GND
21

GND
28

GND
34

GND39

GND
45

1A1
47

1A2
46

1A3
44

1A443

1A5
41

1A6
40

1A738

1A8
37

2A1
36

2A2
35

2A333

2A4
32

2A5
30

2A6
29

2A727

2A8
26

VCC7

VCC
18

VCC
31

VCC
42

U6

74FCT16244

1Y1
2

1Y23

1Y3
5

1Y4
6

2Y18

2Y2
9

2Y3
11

2Y4
12

3Y113

3Y2
14

3Y3
16

3Y417

4Y1
19

4Y2
20

4Y3
22

4Y423

1OE
1

2OE
48

3OE
25

4OE
24

GND4

GND
10

GND
15

GND
21

GND 28

GND
34

GND
39

GND
45

1A1
47

1A2 46

1A3
44

1A4
43

2A1 41

2A2
40

2A3
38

2A4
37

3A1 36

3A2
35

3A3
33

3A4 32

4A1
30

4A2
29

4A3
27

4A4 26

VCC
7

VCC
18

VCC
31

VCC
42

SP3
9x4.7K

1

2 3 4 5 6 7 8 9 10

SP1
9x4.7K

1

2345678910

SP2
7x4.7K

1 2 3 4 5 6 7 8

U2

14.31818MHZ

NC
1

GND
7 CLK

8

VCC
14

U1

LSI2032

I/O0
15

I/O1
16

I/O2
17

I/O318

I/O4
19

I/O5
20

I/O621

I/O7
22

I/O8
25

I/O9
26

I/O1027

I/O11
28

I/O12
29

I/O13
30

I/O1431

I/O15
32

IN1/SDO
24

IN0/SDI
14

ISPEN
13

MODE36

Y2/SCLK
33

Y0
11

Y1/RESET35

GOE0
2

VCC
12

VCC
34

GND
1

GND 23

I/O16
37

I/O17
38

I/O18
39

I/O19 40

I/O20
41

I/O21
42

I/O22 43

I/O23
44

I/O24
3

I/O25
4

I/O26 5

I/O27
6

I/O28
7

I/O29
8

I/O30 9

I/O31
10

S1

SP4
7x4.7K

1

2
3
4
5
6
7
8

J5
1
2
3
4
5
6
7
8

A-7

1.0

COPYRIGHT ARNEWSH, INC.

P.O. BOX 270352 FORT COLLINS, CO 80527-0352

B

4 4Thursday, October 17, 1996

SBC5204.CONNECTORS
Size Document Number Rev

Date: Sheet of

+5

+5 +5

+5

+5

+5

+5

D[0..15]

A[0..21]

-CS2
-CS3
-CS4
-CS5
-RE
-WE
-LDS

-UDS

TCLK
DSCLK

DSI
DSO

-BKPT

DDATA0
DDATA1
DDATA2
DDATA3

MTMOD0
MTMOD1
MTMOD2
MTMOD3

CLK

TIN
TOUT
TXD
RXD
-RTS
-CTS

-IRQ0
-IRQ1
-IRQ2
-IRQ3

-CS0

SO
SI

-RESET

-HIZ
BUSW
-DTACK

-CS1

V-5

V-12

V+12

A0 D0
A1 D1
A2 D2
A3 D3
A4 D4
A5 D5
A6 D6
A7 D7
A8 D8
A9 D9
A10 D10
A11 D11
A12 D12
A13 D13
A14 D14
A15 D15
A16
A17
A18
A19
A20
A21

J7
1
3
5
7
9

11
13
15
17
19
21
23
25

2
4
6
8

10
12
14
16
18
20
22
24
26

J8
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

35
37
39 40

38
36

41
43
45
47
49 50

48
46
44
42

J9
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

35
37
39 40

38
36

J2

1234

J3

1

2

3

J4

1

2

U9
LT1086CT

VIN
3

G
ND

1

VOUT
2

JP1

1

2

3

J6
5
9
4
8
3
7
2
6
1

J1
5
9
4
8
3
7
2
6
1

U10

MC145407

DI1
15

DO1
16

DI2
13

DO2
14

DI311

DO3
12

TX1
6

RX1
5

TX2
8

RX2
7

TX3 10

RX3
9

VCC
19

VDD17
C2-

3 C2+
1

C1+
20

C1-
18

VSS
4

GND 2

SBC5206 USER'S MANUAL
REVISION 1.1

Copyright 1996, 1997 Arnewsh Inc.
Arnewsh Inc.

P.O. Box 270352
Fort Collins, CO 80527-0352

Phone: (970) 223-1616
 Fax: (970) 223-9573

COPYRIGHT

Copyright 1996, 1997 by Arnewsh Inc.

All rights reserved. No part of this manual and the dBUG software provided in Flash ROM’s/EPROM’s
may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. Use of the program or any part thereof, for any
purpose other than single end user by the purchaser is prohibited.

DISCLAIMER

The information in this manual has been carefully examined and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Arnewsh reserves the right to make
changes to any product(s) herein to improve reliability, function, or design. The SBC5206 board is not
intended for use in life and/or property critical applications. Here, such applications are defined to be any
situation in which any failure, malfunction, or unintended operation of the board could, directly, or
indirectly, threaten life, result in personal injury, or cause damage to property. Although every effort has
been made to make the supplied software and its documentation as accurate and functional as possible,
Arnewsh Inc. will not assume responsibility for any damages incurred or generated by this product.
Arnewsh does not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights, if any, or the rights of others.

 WARNING

THIS BOARD GENERATES, USES, AND CAN RADIATE
RADIO FREQUENCY ENERGY AND, IF NOT INSTALLED
PROPERLY, MAY CAUSE INTERFERENCE TO RADIO
COMMUNICATIONS. AS TEMPORARILY PERMITTED
BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A
COMPUTING DEVICES PURSUANT TO SUBPART J OF
PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH
INTERFERENCE. OPERATION OF THIS PRODUCT IN A
RESIDENTIAL AREA IS LIKELY TO CAUSE
INTERFERENCE, IN WHICH CASE THE USER, AT
HIS/HER OWN EXPENSE, WILL BE REQUIRED TO
CORRECT THE INTERFERENCE.

 LIMITED WARRANTY

Arnewsh Inc. warrants this product against defects in material and workmanship for a period of
sixty (60) days from the original date of purchase. This warranty extends to the original
customer only and is in lieu of all other warrants, including implied warranties of
merchantability and fitness. In no event will the seller be liable for any incidental or
consequential damages. During the warranty period, Arnewsh will replace, at no charge,
components that fail, provided the product is returned (properly packed and shipped prepaid) to
Arnewsh at address below. Dated proof of purchase (such as a copy of the invoice) must be
enclosed with the shipment. We will return the shipment prepaid via UPS.

This warranty does not apply if, in the opinion of Arnewsh Inc., the product has been damaged
by accident, misuse, neglect, misapplication, or as a result of service or modification (other than
specified in the manual) by others.

Please send the board and cables with a complete description of the problem to:

Arnewsh Inc.
P.O. Box 270352
Fort Collins, CO 80527-0352
Phone: (970) 223-1616
Fax : (970) 223-9573

Motorola is a registered trademark of Motorola Inc.
IBM PC and IBM AT are registered trademark of IBM Corp.
All other trademark names mentioned in this manual are the registered trade mark of respective
owners.

i

TABLE OF CONTENTS

Page
CHAPTER 1 INTRODUCTION TO THE SBC5206 BOARD 1-1

 1.1 INTRODUCTION ... 1-1
 1.2 GENERAL HARDWARE DESCRIPTION 1-1
 1.3 SYSTEM MEMORY .. 1-3
 1.4 SERIAL COMMUNICATION CHANNELS 1-3
 1.5 PARALLEL I/O PORTS 1-3
 1.6 PROGRAMMABLE TIMER/COUNTER 1-3
 1.7 ISA BUS CONNECTOR..................................... 1-3
 1.8 SYSTEM CONFIGURATION 1-3
 1.9 INSTALLATION AND SETUP 1-4
 1.9.1 Unpacking .. 1-4
 1.9.2 Preparing the Board for Use 1-4
 1.9.3 Providing Power to the Board 1-4
 1.9.4 Selecting Terminal Baud Rate 1-5
 1.9.5 The Terminal Character Format 1-5
 1.9.6 Connecting the Terminal 1-5
 1.9.7 Using Personal Computer as a Terminal 1-5
 1.10 SYSTEM POWER-UP AND INITIAL OPERATION 1-9
 1.11 SBC5206 JUMPER SETUP.................................. 1-9
 1.12 USING THE BDM .. 1-10

CHAPTER 2 USING THE MONITOR/DEBUG FIRMWARE 2-1

 2.1 WHAT IS dBUG.. 2-1
 2.2 OPERATIONAL PROCEDURE 2-3
 2.2.1 System Power-up 2-3
 2.2.2 System Initialization 2-3

 2.2.2.1 SOFT RESET Button 2-4
 2.2.2.2 ABORT Button 2-4
 2.2.2.3 Software Reset Command 2-4
 2.2.2.4 User Program 2-4

 2.2.3 System Operation 2-4
 2.3 TERMINAL CONTROL CHARACTERS 2-5
 2.4 dBUG COMMAND SET 2-5
 2.4.1 BF - Block Memory Fill 2-7
 2.4.2 BM - Block Move 2-8
 2.4.3 BR - Breakpoint 2-9
 2.4.4 BS - Block Search 2-10
 2.4.5 DATA - Data Conversion 2-11
 2.4.6 DI - Disassemble 2-12
 2.4.7 DL - Download Serial 2-13
 2.4.8 DN - Download Network............................. 2-14
 2.4.9 Go - Execute 2-15
 2.4.10 GT - Execute Till a Temporary Breakpoint 2-16
 2.4.11 Help - Help 2-17
 2.4.12 IRD - Internal Registers Display 2-18
 2.4.13 IRM - Internal Registers Modify 2-19
 2.4.14 MD - Memory Display 2-20
 2.4.15 MM - Memory Modify 2-21
 2.4.16 RD - Register Display 2-22
 2.4.17 RM - Register Modify 2-23

ii

 2.4.18 RESET - Reset the board and dBUG 2-24
 2.4.19 SET - Set Configuration 2-25
 2.4.20 SHOW - Show Configuration 2-27
 2.4.21 STEP - Step Over 2-28
 2.4.22 SYMBOL - Symbol Name Management 2-29
 2.4.23 TRACE - Trace Into 2-30
 2.4.24 UPDBUG - Update the dBUG Image 2-31
 2.4.25 UPUSER - Update User Code In Flash 2-32
 2.4.26 VERSION - Display dBUG Version 2-33
 2.5 TRAP #15 Functions 2-34
 2.5.1 OUT_CHAR ... 2-34
 2.5.2 IN_CHAR .. 2-34
 2.5.3 CHAR_PRESENT 2-35
 2.5.4 EXIT_TO_dBUG 2-35

CHAPTER 3 HARDWARE DESCRIPTION AND RECONFIGURATION 3-1

 3.1 THE PROCESSOR AND SUPPORT LOGIC 3-1
 3.1.1 The Processor 3-1
 3.1.2 The Reset Logic 3-1
 3.1.3 The -HIZ Signal 3-2
 3.1.4 The Clock Circuitry 3-2
 3.1.5 Watchdog Timer (BUS MONITOR) 3-2
 3.1.6 Interrupt Sources 3-2
 3.1.7 Internal SRAM 3-3
 3.1.8 The MCF5206 Registers and Memory Map 3-3
 3.1.9 Reset Vector Mapping 3-4
 3.1.10 -TA Generation 3-4
 3.1.11 Wait State Generator 3-5
 3.2 THE DRAM SIMM 3-5
 3.3 THE EPROM/FLASH ROM 3-5
 3.4 THE SERIAL COMMUNICATION CHANNELS..................... 3-7
 3.4.1 The MCF5206 DUART................................. 3-7
 3.4.2 MC68HC901 .. 3-7
 3.4.3 Motorola Bus (M-Bus) Module 3-7
 3.5 THE PARALLEL I/O PORT................................. 3-7
 3.6 THE ISA BUS LOGIC 3-8
 3.7 THE CONNECTORS AND THE EXPANSION BUS 3-8
 3.7.1 The Programming Connector J1 3-8
 3.7.2 The ISA Bus Auxiliary Power Connector J2 3-8
 3.7.3 The Power Supply Connector J3 and J4 3-9
 3.7.4 The Terminal Connector J5 3-9
 3.7.5 The Auxiliary Communication Connector J6 3-10
 3.7.6 The Processor Expansion Bus J7, J9, and J10 3-10
 3.7.6 The Debug Connector J8 3-10
 3.7.8 The ISA Bus Connector P1 3-10
 3.8 THE SBC5206 JUMPERS 3-16

APPENDIX A NETWORK DOWNLOAD A-1

 A.1 Configuring dBUG for Network Downloads A-1
 A.1.1 Required Network Parameters A-1
 A.1.2 Configuring dBUG Network Parameters A-2
 A.1.3 Troubleshooting Network Problems A-2

1-1

CHAPTER 1

INTRODUCTION TO THE SBC5206 BOARD

1.1 INTRODUCTION

The SBC5206 is a versatile single board computer based on MCF5206 ColdFire Processor. It may be
used as a powerful microprocessor based controller in a variety of applications. With the addition of a
terminal, it serves as a complete microcomputer for development/evaluation, training and educational use.
The user must only connect an RS-232 compatible terminal (or a personal computer with terminal
emulation software) and a power supply to have a fully functional system.

Provisions have been made to connect this board to additional user supplied boards, via the
Microprocessor Expansion Bus connectors, to expand memory and I/O capabilities. Additional boards
may require bus buffers to permit additional bus loading.

Furthermore, provisions have been made in the PC-board to permit configuration of the board in a way
which best suits an application. Options available are: up to 32M of DRAM, Timer, I/O, ISA bus
interface, and up to 1M bytes of Flash or 2M bytes of EPROM. In addition, all of the I/O functions of the
MCF5206 are available for the user.

1.2 GENERAL HARDWARE DESCRIPTION

The SBC5206 board provides the RAM, Flash ROM, optional Ethernet interface (ISA bus), RS232, and
all the built-in I/O functions of the MCF5206 for learning and evaluating the attributes of the MCF5206.
The MCF5206 is a member of the ColdFire family of processors. It is a 32-bit processor with 32 bits of
addressing and 32 lines of data. The processor has eight 32-bit data registers, eight 32-bit address
registers, a 32-bit program counter, and a 16-bit status register.

The MCF5206 has a System Integration Module referred to as SIM. The module incorporates many of
the functions needed for system design. These include programmable chip-select logic, System
Protection logic, General purpose I/O, and Interrupt controller logic. The chip-select logic can select up
to eight memory banks or peripherals in addition to two banks of DRAM’s. The chip-select logic also
allows programmable number of wait-state to allow the use of slower memory (refer to MCF5206 User's
Manual by Motorola for detail information about the SIM.) The SBC5206 only uses four of the chip
selects to access the Flash ROM’s, MC68HC901, ISA bus interface, and the IACK for MC68HC901.
The DRAM controller is used to control one SIMM module of up to 32M bytes of DRAM, both -RAS
lines are used. All other functions of the SIM are available to the user.

A hardware watchdog timer (Bus Monitor) circuit is included in the SIM which monitors the bus
activities. If a bus cycle is not terminated within a programmable time, the watchdog timer will assert an
internal transfer error signal to terminate the bus cycle. A block diagram of the board is shown in Figure
1.1.

1-2

XCEIVERS

MC68HC901

Flash ROM/
EPROM

DRAM
SIMM

Data and
Address
Xceivers

LSI2032

MCF5206

ISA
BUS

RS232

Figure 1.1

P1

U10,U13

U12

U15

U11

I/O PORTS
ADDRESS BUS

DATA BUS

CONTROL BUS

1-3

1.3 SYSTEM MEMORY

There are two 32-pin sockets on the board for EPROM’s or Flash ROM’s (U10, U13), U13 is the most
significant byte and the U10 is the least significant byte. The EPROM sockets can be set up via jumpers
(JP2, and JP3) to accept 27C512, 27C010, 27C020, 27C040, and 27C080 EPROM’s. or 29F010, and
29F040. The SBC5206 comes with two 29F010 Flash ROM’s which are programmed with a
debugger/monitor firmware. The dBUG only supports 29F010 flash ROM.

There is one 72-pin SIMM socket for DRAM which can accept 256Kx32 to 8Mx32 SIMM modules. The
debugger detects the DRAM size installed.

1.4 SERIAL COMMUNICATION CHANNELS

The MCF5206 has two built-in UART’s with baud rate generator. The signals of channel one are passed
through external Driver/Receivers to make the channel compatible with RS-232. These channels are not
used by the debugger and are available to user. In addition, the signals of both channels are available at
connector J7. The SBC5206, however, has one MC68HC901 which has four timers and a serial
communication port. One timer channel is used as baud rate generator for the serial channel. The SI and
SO lines are passed through external Driver/Receiver to make this channel compatible with RS-232C
level (Note: only 2 main signals are available, SI and SO signals). This channel is the “TERMINAL”
channel used by the debugger for communication with external terminal/PC. The MCF5206 also
incorporate the M-Bus which is compatible with I2C Bus standard.

1.5 PARALLEL I/O PORTS

MCF5206 offers one 8-bit general purpose parallel I/O port. Each pin can be individually programmed as
input or output. The parallel port is multiplexed with PST(3:0) and DDATA(3:0) debug signals. The
default is parallel I/O function after reset.

1.6 PROGRAMMABLE TIMER/COUNTER

The MCF5206 has two built in general purpose timer/counters. These timers are not used by the
debugger and are available to the user. The signals for the timer are available on the connector J7. There
are also three timers in MC68HC901 which are available to user.

1.7 ISA BUS CONNECTOR

The SBC5206 has one ISA bus connector to allow the use of off-the-shelf ISA I/O cards. The main
reason for this connector is to install an Ethernet card to support down-load via network.

1.8 SYSTEM CONFIGURATION

The SBC5206 board requires only the following items for minimum system configuration (Fig. 1.2):

 a. The SBC5206 board (provided).
 b. Power supply (+5 Vdc regulated or 7.5V to 12V DC), minimum of 0.4 Amp.
 c. RS-232C compatible terminal or a PC with terminal emulation software.

1-4

 d. Communication cable (provided).

Refer to next sections for initial setup.

1.9 INSTALLATION AND SETUP

The following sections describe all the steps needed to prepare the board for operation. Please read the
following sections carefully before using the board. When you are preparing the board for the first time,
do not use the optional features (Ethernet, ISA BUS). The minimum configuration does not require any
modifications. After the board is functional in its minimal configuration, you may use other features by
following the instructions provided in the following sections.

1.9.1 Unpacking

Unpack the computer board from its shipping box. Save the box for storing or reshipping. Refer to the
following list and verify that all the items are present. You should have received:

a. SBC5206 Single Board Computer.

b. SBC5206 User's Manual, this documentation.

c. One communication cable.

 WARNING

AVOID TOUCHING THE MOS DEVICES. STATIC DISCHARGE
CAN AND WILL DAMAGE THESE DEVICES.

Once you verified that all the items are present, remove the board from its protective jacket. Check the
board for any visible damage. Ensure that there are no broken, damaged, or missing parts. If you have
not received all the items listed above or they are damaged, please contact Arnewsh Inc. immediately in
order to correct the problem.

1.9.2 Preparing the Board for Use

The board as shipped is ready to be connected to a terminal and the power supply without any need for
modification. However, follow the steps below to insure proper operation from the first time you apply
the power. Figure 1.3 shows the placement of the jumpers and the connectors which you need to refer to
in the following sections. The steps to be taken are:

a. Connecting the power supply.
b. Connecting the terminal.

1.9.3 Providing Power to the Board

The board accepts two means of power supply connections. Connector J3 is a 2.1mm power jack and J4
lever actuated connector. The board accepts either +5V regulated supply or +7.5V to 12V DC (regulated
or unregulated), less than one Amp via either connectors. Jumper JP1 selects between +5 and +7.5-12V
options. Make sure the jumper JP1 is in proper location for your option. Connect power supply as
marked on the board and shown below (do not turn the power supply on yet):

Contact NO. Voltage
 1 +5 Vdc or +7.5-12V

 2 Ground

Jumper JP1.

1-5

Jumper Pin Function
1 and 2 +5V regulated
2 and 3 +7.5-12V DC regulated or unregulated (default)

1.9.4 Selecting Terminal Baud Rate

The serial channel of MC68HC901 which is used for serial communication channel has a built in software
programmable baud rate generator (timer). It can be programmed to a number of baud rates. After the
power-up or a manual RESET, the dBUG firmware configures the channel for 19200 baud. After the
dBUG is running, you may issue the SET command to choose any baud rate supported by the dBUG.
Refer to Chapter 2 for the discussion of this command.

1.9.5 The Terminal Character Format

The character format of the communication channel is fixed at the power-up or RESET. The character
format is 8 bits per character, no parity, and one stop bit. You need to insure that your terminal or PC is
set to this format.

1.9.6 Connecting the Terminal

The board is now ready to be connected to a terminal. Use the communication cable provided to connect
the terminal to the SBC5206. The cable has a 9-pin female D-sub connector at one end and a 9-pin male
D-sub connector at the other end. Attach the 9-pin male connector to J5 connector on the board. Attach
the 9-pin female connector to a 9-pin-to-25-pin adapter, if necessary, to make it compatible with the
connector on the back of the terminal.

1.9.7 Using a Personal Computer as a Terminal

You may use your personal computer as a terminal provided you also have a terminal emulation software
such as PROCOMM, KERMIT, QMODEM, or similar packages. Use the communication cable provided
to connect the PC to the SBC5206. The cable has a 9-pin female D-sub connector at one end and a 9-pin
male D-sub connector at the other end. Connect the 9-pin male connector to J5 connector on SBC5206.
Connect the 9-pin female connector to one of the available serial communication channels normally
referred to as COM1 (COM2, etc.) on the IBM PC’s or compatible. Depending on the kind of serial
connector on the back of your PC, the connector on your PC may be a male 25-pin or 9-pin. You may
need to obtain a 9-pin-to-25-pin adapter to make the connection. If you need to build an adapter, refer to
Figure 1.4 which shows the pin assignment for the 9-pin connector on the board.

1-6

ISA BUS

SBC5206

+5, GND
Power Supply

MICROPROCESSOR
EXPANSION BUS

BACKGROUND DEBUG

P1J5

J6

J7 J8 J9 J10

RS232 TERMINAL
or PC

dBUG>

Figure 1.2. System Configuration

1-7

Once the connection to the PC is made, you are ready to power-up the PC and run the terminal emulation
software. When you are in the terminal mode, you need to select the baud rate and the character format
for the channel. Most terminal emulation software packages provide a command known as "Alt-p" (press
the p key while pressing the Alt key) to choose the baud rate and character format. Make sure you select
8 bits, no parity, one stop bit (see Section 1.9.5). Then, select the baud rate as 19200. Now you are ready
to apply power to the board.

1. Data Carrier Detect, Output (shorted to pins 6 and 8).
2. Receive Data, Output from board (receive refers to terminal side).
3. Transmit Data, Input to board (transmit refers to terminal side).
4. Data Terminal Ready, input (not used).
5. Signal Ground.
6. Data Set Ready, Output (shorted to pins 1 and 8).
7. Request to Send, input.
8. Clear to send, output (shorted to pins 1 and 6).
9. Not connected.

Figure 1.4. Pin assignment for the J5 (Terminal) connector.

1-8

P1

J1
J5 J6

J7

J8

J9

J10

JP3
JP2JP1J4J3

J2

Figure 1.3. Jumper and connector placement.

1-9

1.10 SYSTEM POWER-UP AND INITIAL OPERATION

Now that you have connected all the cables, you may apply power to the board. After power is applied,
the dBUG initializes the board then displays the power-up message on the terminal which includes the
amount of the memory present.

Hard Reset

DRAM Size: 1M

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5206 EVS Debugger V1.1 (xxx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

The board is now ready for operation under the control of the debugger as described in Chapters 2. If you
do not get the above response, perform the following checks:

1. Make sure that the power supply is properly set and connected to the board.

2. Check that the terminal and board are set for the same character format and baud.

3. Press the red RESET (red switch) button to insure that the board has been initialized
 properly.

If you still are not receiving the proper response, your board may have been damaged in shipping.
Contact Arnewsh for further instructions.

1.11 SBC5206 JUMPER SETUP

The jumpers on the board are discussed in Chapter 3. However, a brief discussion of the jumper settings
are as follows:

1. Jumper JP1. This jumper selects the power supply selection.

Jumper Pin Function
1 and 2 +5V regulated
2 and 3 +7.5-12V DC regulated or unregulated (default)

1-10

2. Jumper JP2. This jumper selects between Flash and EPROM.

Jumper Pin Function
3 to 5
and

4 to 6

Select Flash (default)

3. Jumper JP3. This jumper selects the size of EPROM or Flash.

Jumper Pin Function
7 to 9
and

8 to 10

Selects 128Kx8 EPROM/Flash

1.12 USING THE BDM

The MCF5206 has a built in debug mechanism referred to as BDM. The SBC5206 has the necessary
connector, J8, to facilitate this connection.

In order to use the BDM, simply connect the 26-pin IDC header at the end of the BDM cable provided by
the BDM development tool (third party tool) to the J8 connector. No special setting is needed. Refer to
the BDM User's Manual for additional instructions.

2-1

CHAPTER 2

USING THE MONITOR/DEBUG FIRMWARE

The SBC5206 Computer Board has a resident firmware package that provides a self-contained
programming and operating environment. The firmware, named dBUG, provides the user with
monitor/debug, disassembly, program download, and I/O control functions. This Chapter is a how-to-use
description of the dBUG package, including the user interface and command structure.

2.1 WHAT IS dBUG?

dBUG is a resident firmware package for the ColdFire family Computer Boards. The firmware (stored in
two 128Kx8 Flash ROM devices) provides a self-contained programming and operating environment.
dBUG interacts with the user through pre-defined commands that are entered via the terminal.

The user interface to dBUG is the command line. A number of features have been implemented to
achieve an easy and intuitive command line interface.

dBUG assumes that an 80x24 character dumb-terminal is utilized to connect to the debugger. For serial
communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1. The baud rate is 19200
but can be changed after the power-up.

The command line prompt is “dBUG> “. Any dBUG command may be entered from this prompt. dBUG
does not allow command lines to exceed 80 characters. Wherever possible, dBUG displays data in 80
columns or less. dBUG echoes each character as it is typed, eliminating the need for any “local echo” on
the terminal side.

In general, dBUG is not case sensitive. Commands may be entered either in upper or lower case,
depending upon the user’s equipment and preference. Only symbol names require that the exact case be
used.

Most commands can be recognized by using an abbreviated name. For instance, entering “h” is the same
as entering “help”. Thus, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and allows for repeated execution of these commands with minimal typing. After a command is
entered, simply press <RETURN> or <ENTER> to invoke the command again. The command is
executed as if no command line parameters were provided.

An additional function called the "TRAP 15 handler" allows the user program to utilize various routines
within dBUG. The TRAP 15 handler is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 2-1. After the system initialization, the board
waits for a command line input from the user terminal. When a proper command is entered, the operation
continues in one of the two basic modes. If the command causes execution of the user program, the
dBUG firmware may or may not be re-entered, depending on the discretion of the user. For the alternate
case, the command will be executed under control of the dBUG firmware, and after command
completion, the system returns to command entry mode.

2-2

Figure 2-1. Flow Diagram of dBUG Operational Mode.

2-3

During command execution, additional user input may be required depending on the command function.

For commands that accept an optional <width> to modify the memory access size, the valid values are:
.B 8-bit (byte) access
.W 16-bit (word) access
.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16-bit.

The core ColdFire register set is maintained by dBUG. These are listed below:
A0-A7
D0-D7
PC
SR

All control registers on ColdFire are not readable by the supervisor programming model, and thus not
accessible via dBUG. User code may change these registers, but caution must be exercised as changes
may render dBUG useless.

A reference to “SP” actually refers to “A7”.

2.2 OPERATIONAL PROCEDURE

System power-up and initial operation are described in detail in Chapter 1. This information is repeated
here for convenience and to prevent possible damage.

2.2.1 System Power-up

a. Be sure the power supply is connected properly prior to power-up.
b. Make sure the terminal is connected to TERMINAL (J5) connector.
c. Turn power on to the board.

2.2.2 System Initialization

The act of powering up the board will initialize the system. The processor is reset and dBUG is invoked.

dBUG performs the following configurations of internal resources during the initialization. The
instruction cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash.
However, a copy of the exception table is made at address $00000000 in DRAM. To take over an
exception vector, the user places the address of the exception handler in the appropriate vector in the
vector table located at 0x00000000, and then points the VBR to 0x00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The system
pins are configured for -CS4, -CS5, -WE0, -WE1, -IRQ1, -IRQ4, -IRQ7.

2-4

After initialization, the terminal will display:

Hard Reset

DRAM Size: 1M

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5206 EVS Debugger V1.1 (xxx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

If you did not get this response check the setup. Refer to Section 1.10. Note, the date
‘ xxx 1996 xx:xx:xx’ may vary in different revisions.
Other means can be used to re-initialize the SBC5206 Computer Board firmware. These means are
discussed in the following paragraphs.

2.2.2.1 SOFT RESET Button. SOFT RESET is the red button located in the middle side of the board.
Depressing this button causes all processes to terminate, resets the MCF5206 processor and board logic’s
and restarts the dBUG firmware. Pressing the RESET button would be the appropriate action if all else
fails. The Reset button issues a soft reset and therefore, the memory controller remains functional. If
total reset is needed, the board should be powered down and up again. During the power-up, both the -
RSTI and -HIZ are asserted to cause Hard Reset.

2.2.2.2 ABORT Button. ABORT is the black button located next to RESET button in the middle side of
the board. The abort function causes an interrupt of the present processing (a level 7 interrupt on
MCF5206) and gives control to the dBUG firmware. This action differs from RESET in that no
processor register or memory contents are changed, the processor and peripherals are not reset, and dBUG
is not restarted. Also, in response to depressing the ABORT button, the contents of the MCF5206 core
internal registers are displayed.

The abort function is most appropriate when software is being debugged. The user can interrupt the
processor without destroying the present state of the system.

2.2.2.3 Software Reset Command. dBUG does have a command that causes the dBUG to restart as if a
hardware reset was invoked. The command is "RESET".

2.2.2.4 USER Program. The user can return control of the system to the firmware by recalling dBUG
via his/her program. Instructions can be inserted into the user program to call dBUG via the TRAP 15
handler.

2.2.3 System Operation

After system initialization, the terminal will display:

Hard Reset

DRAM Size: 1M

Copyright 1995-1996 Motorola, Inc. All Rights Reserved.
ColdFire MCF5206 EVS Debugger V1.1 (xxx 1996 xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

and waits for a command.

2-5

The user can call any of the commands supported by the firmware. A standard input routine controls the
system while the user types a line of input. Command processing begins only after the line has been
entered and followed by a carriage-return.

NOTES

1. The user memory is located at addresses $00010000-$xxxxxxxx, $xxxxxxxx is
the maximum RAM address of the memory installed in the board. When first
learning the system, the user should limit his/her activities to this area of the
memory map. Address range $00000000-$0000FFFF is used by dBUG.

2. If a command causes the system to access an unused address (i.e., no memory
or peripheral devices are mapped at that address), a bus trap error will occur.
This results in the terminal printing out a trap error message and the contents of
all the MCF5206 core registers. Control is returned to the dBUG monitor.

2.3 TERMINAL CONTROL CHARACTERS

The command line editor remembers the last five commands, in a history buffer, which were issued.
They can be recalled and then executed using control keys.

Several keys are used as a command line edit and control functions. It is best to be familiar with these
functions before exercising the system. These functions include:

a. RETURN (carriage- return) - will enter the command line and causes processing to begin.
b. Delete (Backspace) key or CTRL-H - will delete the last character entered on the terminal.
c. CTRL-D - Go down in the command history buffer, you may modify then press enter key.
d. CTRL-U - Go up in the command history buffer, you may modify then press enter key.
e. CTRL-R - Recall and execute the last command entered, does not need the enter key to be

pressed.

For characters requiring the control key (CTRL) , the CTRL should be pushed and held down and then
the other key (H) should be pressed.

2.4 dBUG COMMAND SET

Table 2-1 lists the dBUG commands. Each of the individual commands is described in the following
pages.

2-6

TABLE 2-1. dBUG Commands.

 COMMAND
MNEMONIC

 DESCRIPTION SYNTAX PAGE

BF BLOCK FILL BF<WIDTH> BEGIN END DATA 2-7

BM BLOCK MOVE BM BEGIN END DEST 2-8

BS BLOCK SEARCH BS <WIDTH> BEGIN END DATA 2-9

BR BREAKPOINT BR ADDR <-R> <-C COUNT> <-T TRIGGER> 2-10

DATA DATA CONVERT DATA VALUE 2-11

DI DISASSEMBLE DI <ADDR> 2-12

DL DOWNLOAD SERIAL DL <OFFSET> 2-13

DN DOWNLOAD NETWORK DN <-C> <-E> <-S> <-I> <-O OFFSET> <FILENAME> 2-14

GO EXECUTE GO <ADDR> 2-15

GT Go TILL BREAKPOINT GT <ADDR> 2-16

HELP HELP HELP <COMMAND> 2-17

IRD INTERNAL REGISTER
DISPLAY

IRD <MODULE.REGISTER> 2-18

IRM INTERNAL REGISTER
MODIFY

IRM <MODULE.REGISTER> <DATA> 2-19

MD MEMORY DISPLAY MD <WIDTH> <BEGIN> <END> 2-20

MM MEMORY MODIFY MM <WIDTH> ADDR <DATA> 2-21

RD REGISTER DISPLAY RD <REG> 2-22

RM REGISTER MODIFY RM REG DATA 2-23

RESET RESET RESET 2-24

SET SET CONFIGURATIONS SET OPTION <VALUE> 2-25

SHOW SHOW CONFIGURATIONS SHOW OPTION 2-27

STEP STEP (OVER) STEP 2-28

SYMBOL SYMBOL MANAGEMENT SYMBOL <SYMB> <-A SYMB VALUE> <-R SYMB>
 <-C | L | S>

2-29

TRACE TRACE(INTO) TRACE <NUM> 2-30

UPDBUG UPDATE DBUG UPDBUG 2-31

UPUSER UPDATE USER FLASH UPUSER 2-32

VERSION SHOW VERSION VERSION 2-33

2-7

2.4.1 BF - Block of Memory Fill BF

Usage: BF<width> begin end data

The BF command fills a contiguous block of memory starting at address begin, stopping at address end,
with the value data. Width modifies the size of the data that is written.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value 0x1234, the
command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a byte value of 0xAB,
the command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and bss_end), the
command is:

bf bss_start bss_end 0

2-8

2.4.2 BM - Block Move BM

 Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin, stopping at address
end, to the new address dest. The BM command copies memory as a series of bytes, and does not alter
the original block.

The value for addresses begin, end, and dest may be an absolute address specified as a hexadecimal
value, or a symbol name. If the destination address overlaps the block defined by begin and end, an error
message is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the location
0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to 0x00200000,
the command is:

bm data_start data_end 200000

2-9

2.4.3 BR - Breakpoint BR

Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name. Count and trigger are numbers converted
according to the user defined radix, normally hexadecimal.
If no argument is provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no address is
specified in conjunction with the -r option, then all breakpoints are removed.
Each time a breakpoint is encountered during the execution of target code, its count value is incremented
by one. By default, the initial count value for a breakpoint is zero, but the -c option allows setting the
initial count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is compared
against the trigger value. If the count value is equal to or greater than the trigger value, a breakpoint is
encountered and control returned to dBUG. By default, the initial trigger value for a breakpoint is one,
but the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are initialized to the
values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main(), the command is:

br _main

When the target code is executed and the processor reaches main(), control will be returned to dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must attempt to execute the function bench() a third time
before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

2-10

2.4.4 BS - Block Search BS

Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping at address
end, for the value data. Width modifies the size of the data that is compared during the search.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and ending at
0x00080000 the command is:

bs 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value 0x1234. If no
match is found, then the address is incremented to 0x00040002 and the next 16-bit value is read and
compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000 and ending at
0x00080000, the command is:

bs.l 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value 0x0000ABCD.
If no match is found, then the address is incremented to 0x00040004 and the next 32-bit value is read and
compared.

To search the BSS section (defined by the symbols bss_start and bss_end) for the byte value 0xAA, the
command is:

bs.b bss_start bss_end AA

2-11

2.4.5 DATA - Data Conversion DATA

Usage: DATA data

The DATA command displays data in both decimal and hexadecimal notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed into the
DATA command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value. Otherwise data is
interpreted as a decimal value.
All values are treated as 32-bit quantities.

Examples:

To display the decimal equivalent of 0x1234, the command is:

data 0x1234

To display the hexadecimal equivalent of 1234, the command is:

data 1234

2-12

2.4.6 DI - Disassemble DI

Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. This is especially useful for branch target addresses and subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no address is provided
to the DI command, then the DI command uses the address of the last opcode that was disassembled.

Examples:

To disassemble code that starts at 0x00040000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

di _main

2-13

2.5.7 DL - Download Serial DL

Usage: DL <offset>

The DL command performs an S-record download of data obtained from the serial port. The value for
offset is converted according to the user defined radix, normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset.
The DL command checks the destination address for validity. If the destination is an address below the
defined user space (0x00000000-0x00010000), then an error message is displayed and downloading
aborted.

If the S-record file contains the entry point address, then the program counter is set to reflect this address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and adjust the destination address by 0x40, the
command is:

dl 0x40

2-14

2.4.8 DN - Download Network DN

Usage: DN <-c> <-e> <-i> <-s> <-o offset> <filename>

The DN command downloads code from the network. The DN command handle files which are either S-
record, COFF or ELF formats. The DN command uses Trivial File Transfer Protocol, TFTP, to transfer
files from a network host. This command only works with 100% NE2000 compatible boards.

In general, the type of file to be downloaded and the name of the file must be specified to the DN
command. The -c option indicates a COFF download, the -e option indicates an ELF download, -I option
indicates an image download, and the -s indicates an S-record download. The -o option works only in
conjunction with the -s option to indicate and optional offset for S-record download. The filename is
passed directly to the TFTP server and, therefore, must be a valid filename on the server.

If neither of the -c, -e, -i, -s or filename options are specified, then a default filename and filetype will be
used. Default filename and filetype parameters are manipulated using the set and show commands.

The DN command checks the destination address for validity. If the destination is an address below the
defined user space, then an error message is displayed and downloading aborted.

For ELF and COFF files which contain symbolic debug information, the symbol tables are extracted from
the file during download and used by dBUG. Only global symbols are kept in dBUG. The dBUG symbol
table is not cleared prior to downloading, so it is the user’s responsibility to clear the symbol table as
necessary prior to downloading.

If an entry point address is specified in the S-record, COFF or ELF file, the program counter is set
accordingly.

Examples:

To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default filetype with the name “bench.out”, the command is:

dn bench.out

To download a file using the default filename and filetype, the command is:

dn

This command requires proper Network address and parameter setup. Refer to Appendix A for
this procedure. Also refer to “SET” command to setup the base address and the IRQ for the card.

2-15

2.4.9 Go - Execute GO

Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.
 If no argument is provided, the GO command begins executing instructions at the current program
counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code encounters a
breakpoint, illegal instruction, or other exception which causes control to be handed back to dBUG.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

2-16

2.4.10 GT - Execute Till a Temporary Breakpoint GT

Usage: GT <addr>

The GT command executes the target code starting at address in PC (whatever the PC has) until a
temporary breakpoint as given in the command line is reached.

Example:

To execute code at the current program counter and stop at breakpoint address 0x10000, the command is:
GT 10000

2-17

2.4.11 HELP - Help HE

Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In addition, the
address of where user code may start is given. If command is provided, then a brief listing of the syntax
of the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

The help list is longer than one page. The help command displays one screen full and ask for an input to
display the rest of the list.

To obtain help on the breakpoint command, the command is:

help br

2-18

2.4.12 IRD - Internal Registers Display IRD

Usage: IRD <module.register>

This commands displays the internal registers of different modules inside the MCF5206. In the command
line, the module refers to the module name where the register is located and the register refers to the
specific register needed.

The registers are organized according to the module to which they belong. The available modules on the
MCF5206 are SIM, UART1, UART2, TIMER, M-Bus, DRAMC, and Chip-Select. Refer to MCF5206
User’s Manual.

Example:

ird sim.sypcr ;display the SYPCR register in the SIM module.

2-19

 2.4.13 IRM - Internal Registers MODIFY IRM

Usage: IRM module.register data

This commands modifies the contents of the internal registers of different modules inside the MCF5206.
In the command line, the module refers to the module name where the register is located, register refers to
the specific register needed, and data is the new value to be written into that register.

The registers are organized according to the module to which they belong. The available modules on the
MCF5206 are SIM, UART1, UART2, TIMER, M-Bus, DRAMC, Chip-Select. Refer to MCF5206
User’s Manual.

Example:

irm timer.tmr1 0021 ;write 0021 into TMR1 register in the TIMER module.

2-20

2.4.14 MD - Memory Display MD

Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and stopping at
address end. The value for addresses begin and end may be an absolute address specified as a
hexadecimal value, or a symbol name. Width modifies the size of the data that is displayed.

Memory display starts at the address begin. If no beginning address is provided, the MD command uses
the last address that was displayed. If no ending address is provided, then MD will display memory up to
an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the command is:
md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at 0x00050000, the command is:

md.l 40000 50000

This command may be repeated by simply pressing the carriage-return (Enter) key. It will continue
with the address after the last display address.

2-21

2.2.15 MM - Memory Modify MM

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

2-22

2.4.16 RD - Register Display RD

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

2-23

2.4.17 RM - Register Modify RM

Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the name of the
register, and the value for data may be a symbol name, or it is converted according to the user defined
radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM command updates
the copy of the register in the buffer. The actual value will not be written to the register until target code
is executed.

Examples:

To change register D0 to contain the value 0x1234, the command is:

rm D0 1234

2-24

2.4.18 RESET - Reset the board and dBUG
RESET

Usage: RESET

The RESET command attempts to reset the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. This code attempts
to initialize the devices on the board and dBUG data structures. If the RESET command fails to reset the
board to your satisfaction, cycle power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

2-25

2.4.19 SET - Set Configuration SET

Usage: SET option <value>
SET

The SET command allows the setting of user configurable options within dBUG. The options are listed
below. If the SET command is issued without option, it will show the available options and values.

The board needs a RESET after this command in order for the new option(s) to take effect.

baud - This is the baud rate for the first serial port on the board. All communications between dBUG and
the user occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit, 8N1. Do not
choose 38400 baud.

base - This is the default radix for use in converting number from their ASCII text representation to the
internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices are binary (base
2), octal (base 8), and decimal (base 10).

client - This is the network Internet Protocol, IP, address of the board. For network communications, the
client IP is required to be set to a unique value, usually assigned by your local network administrator.

server - This is the network IP address of the machine which contains files accessible via TFTP. Your
local network administrator will have this information and can assist in properly configuring a TFTP
server if one does not exist.

gateway - This is the network IP address of the gateway for your local subnetwork. If the client IP
address and server IP address are not on the same subnetwork, then this option must be properly set.
Your local network administrator will have this information.

netmask - This is the network address mask to determine if use of a gateway is required. This field must
be properly set. Your local network administrator will have this information.

filename - This is the default filename to be used for network download if no name is provided to the DN
command.

filetype - This is the default file type to be used for network download if no type is provided to the DN
command. Valid values are: “s-record”, “coff”, “image”, and “elf”.

autoboot - This option allows for the automatic downloading and execution of a file from the network.
This option can be used to automatically boot an operating system from the network. Valid values are:
“on” and “off”. This option is not implemented on the current of dBUG.

nicbase - this is base address of the network interface card. When using network card, the base address
of that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the address of the card. dBUG does not set or configure the interface card. It only uses this
address to access the card. The user should provide this information to dBUG.

nicirq - this is the IRQ used in the network interface card. When using network card, the IRQ used by
that card is needed by the dBUG in order to communicate with it. This command is used to inform the
dBUG of the IRQ of the card. dBUG does not set or configure the interface card. It only uses this IRQ to
access the card. The user should provide this information to dBUG.

Examples:

To see all the available options and supported choices, the command is:

set

2-26

To set the baud rate of the board to be 19200, the command is:

set baud 19200

Now press the RESET button (RED) or RESET command for the new baud to take effect. This baud will
be programmed in Flash ROM and will be used during the power-up.

In order to use the KNE2000TLC Ethernet ISA card in the system, the debugger need to know its IRQ
and its base address. The Kingston Technology Corporation Ethernet card KNE2000TLC has a default
base address of $300 and uses IRQ3. To set up the debugger for Ethernet communication, the following
commands should be issued first.

set nicbase 300
set nicirq 3

2-27

2.4.20 SHOW - Show Configuration SHOW

Usage: SHOW option
SHOW

The SHOW command displays the settings of the user configurable options within dBUG. Most options
configurable via the SET command can be displayed with the SHOW command. If the SHOW command
is issued without any option, it will show all options.

Examples:

To display all the current options, the command is:

show

To display the current baud rate of the board, the command is:

show baud

To display the TFTP server IP address, the command is:

show server

2-28

2.4.21 STEP - Step Over ST

Usage: STEP

The ST command can be used to “step over” a subroutine call, rather than tracing every instruction in the
subroutine. The ST command sets a breakpoint one instruction beyond the current program counter and
then executes the target code.

The ST command can be used for BSR and JSR instructions. The ST command will work for other
instructions as well, but note that if the ST command is used with an instruction that will not return, i.e.
BRA, then the temporary breakpoint may never be encountered and thus dBUG may not regain control.

Examples:

To pass over a subroutine call, the command is:

step

2-29

2.4.22 SYMBOL - Symbol Name Management SYMBOL

Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol name
is provided to the SYMBOL command, then the symbol table is searched for a match on the symbol name
and its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a symbol
name from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the symbol table, and the -s
option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table lookups,
either by the SYMBOL command or by the disassembler, will only use the first 31 characters. Symbol
names are case sensitive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l

2-30

2.4.23 TRACE - Trace Into TR

Usage: TRACE <num>

The TRACE command allows single instruction execution. If num is provided, then num instructions are
executed before control is handed back to dBUG. The value for num is a decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single instruction
execution, and the target code executed. Control returns to dBUG after a single instruction execution of
the target code.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

2-31

2.4.24 UPDBUG - Update the dBUG Image UPDBUG

Usage: UPDBUG

The UPDBUG command is used for updating the dBUG image in Flash. When updates to the MCF5206
EVS dBUG are available, the updated image is downloaded to address 0x00010000. The new image is
placed into Flash using the UPDBUG command. The user is prompted for verification before performing
the operation. Use this command with extreme caution, as any error can render dBUG, and thus the
board, useless!

2-32

2.4.25 UPUSER - Update User Code In Flash UPUSER

Usage: UPUSER

The UPUSER command places user code and data into space allocated for the user in Flash, the last 128K
of Flash ROM. To place code and data in user Flash, the image is downloaded to address 0x00010000,
and the UPUSER command issued. This commands programs the entire upper 128K of Flash. Users
access this space starting at address 0xFFE20000.

2-33

2.4.26 VERSION - Display dBUG Version VERSION

Usage: VERSION

The VERSION command display the version information for dBUG. The dBUG version number and
build date are both given.

The version number is separated by a decimal, for example, “v1.1”. The first number indicates the
version of the CPU specific code, and the second number indicates the version of the board specific code.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

version

2-34

2.5 TRAP #15 Functions

An additional utility within the dBUG firmware is a function called the TRAP 15 handler. This function
can be called by the user program to utilize various routines within the dBUG, to perform a special task,
and to return control to the dBUG. This section describes the TRAP 15 handler and how it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR_PRESENT, and
EXIT_TO_dBUG.

2.5.1 OUT_CHAR

This function (function code 0x0013) sends a character, which is in lower 8 bits of D1, to terminal.

Assembly example:

/* assume d1 contains the character */
 move.l #$0013,d0 Selects the function
TRAP #15 The character in d1 is sent to terminal

C example:

void board_out_char (int ch)
{

/* If your C compiler produces a LINK/UNLK pair for this routine,
 * then use the following code which takes this into account
*/

#if l
/* LINK a6,#0 -- produced by C compiler */
asm (“ move.l 8(a6),d1”); /* put ‘ch’ into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
/* UNLK a6 -- produced by C compiler */

#else
/* If C compiler does not produce a LINK/UNLK pair, the use
 * the following code.
*/
 asm (“ move.l 4(sp),d1”); /* put ‘ch’ into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

#endif
}

2.5.2 IN_CHAR

This function (function code 0x0010) returns an input character (from terminal) to the caller . The
returned character is in D1.

Assembly example:

move.l #$0010,d0 Select the function
trap #15 Make the call, the input character is in d1.

C example:

int board_in_char (void)
{

asm (“ move.l #0x0010,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

2-35

asm (“ move.l d1,d0”); /* put the character in d0 */
}

2.5.3 CHAR_PRESENT

This function (function code 0x0014) checks if an input character is present to receive. A value of zero is
returned in D0 when no character is present. A non-zero value in D0 means a character is present.

Assembly example:

move.l #$0014,d0 Select the function
trap #15 Make the call, d0 contains the response (yes/no).

C example:

int board_char_present (void)
{

asm (“ move.l #0x0014,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

}

2.5.4 EXIT_TO_dBUG

This function (function code 0x0000) transfers the control back to the dBUG, by terminating the user
code. The register context are preserved.

Assembly example:

move.l #$0000,d0 Select the function
trap #15 Make the call, exit to dBUG.

C example:

void board_exit_to_dbug (void)
{

asm (“ move.l #0x0000,d0”); /* select the function */
asm (“ trap #15”); /* exit and transfer to dBUG */

}

3-1

CHAPTER 3

HARDWARE DESCRIPTION AND RECONFIGURATION

This chapter provides a functional description of the SBC5206 board hardware. With the description
given here and the schematic diagram provided at the end of this manual, the user can gain a good
understanding of the board's design. In this manual, an active low signal is indicated by a "-" preceding
the signal name.

3.1 THE PROCESSOR AND SUPPORT LOGIC

This part of the Chapter discusses the CPU and general supporting logic on the SBC5206 board.

3.1.1 The Processor

The microprocessor used in the SBC5206 is the highly integrated MCF5206, 32-bit processor. The
MCF5206 uses a ColdFire processor as the core with 512 bytes of instruction cache, two UART channels,
two Timers, 512 bytes of SRAM, Motorola M-Bus Module supporting the I2C, one-byte wide parallel I/O
port, and the supporting integrated system logic. All the registers of the core processor are 32 bits wide
except for the Status Register (SR) which is 16 bits wide. This processor communicates with external
devices over a 32-bit wide data bus, D0-D31 with support for 8 and 16-bit ports. This chip can address
the entire 4 G Bytes of memory space using internal chip-select logic. However, it provides only 28
address lines, A0-A27. All the processor's signals are available at J7, J9, and J10 for off the board
expansion. Refer to section 3.7 for pin assignment.

The MCF5206 has an IEEE JTAG-compatible port and BDM port. These signals are available at J8. The
processor also has the logic to generate up to eight (8) chip selects, -CS0 to -CS8 and two banks of
DRAM’s.

3.1.2 The Reset Logic

The reset logic provides system initialization under two modes. Under system power-up and when the
RESET switch, S2 (red switch), is activated. The power-on generates the Master RESET by asserting the
-RSTI and -HIZ which causes total system reset. The RESET switch generates Normal Reset which
resets the entire processor except the DRAM controller.

U9 is used to produce active low power-on RESET signal which feeds the LSI2032 (U4) along with the
Push-button RESET. The U4 device generates the system reset (-RESET) and ISA bus RESET signals.

dBUG performs the following configurations of internal resources during the initialization. The
instruction cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash.
However, a copy of the exception table is made at address $00000000 in DRAM. To take over an
exception vector, the user places the address of the exception handler in the appropriate vector in the
vector table located at $00000000, and then points the VBR to $00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs. The parallel
I/O port is configured for I/O.

3.1.3 The -HIZ Signal

The -HIZ signal is actively driven by the LSI2032 (U4). This Signal is available for monitor on J10.
However, this signal should not be driven by the user. If the user need to drive the -HIZ, it should be

3-2

done through -HIZ_INLOW signal which is available on J7. The -HIZ_INLOW signal feeds the U4 which
drives the -HIZ signal to the processor.

3.1.4 The Clock Circuitry

The SBC5206 uses a 25MHZ oscillator (U8) to provide the clock to CLK pin of the processor. This
clock also feeds to LSI2032 for its internal use and to produce clock for the ISA timings and
MC68HC901 (1/4 system clock).

3.1.5 Watchdog Timer (BUS MONITOR)

A bus cycle is initiated by the processor providing the necessary information for the bus cycle (e.g.
address, data, control signals, etc.) and asserting the -CS or -RAS low. Then, the processor waits for an
acknowledgment (-TA signal) from the addressed device before it can complete the bus cycle. It is
possible (due to incorrect programming) that the processor attempts to access part of the address space
which physically does not exist. In this case, the bus cycle will go on for ever, since there is no memory
or I/O device to provide an acknowledgment signal, and the processor will be in an infinite wait state.
The MCF5206 has the necessary logic built into the chip to watch the duration of the bus cycle. If the
cycle is not terminated within the preprogrammed duration the logic will internally assert Transfer Error
signal. In response, the processor will terminate the bus cycle and an access fault exception (trap) will
take place.

The duration of the Watchdog is selected by BMT0-1 bits in System Protection Register. The dBUG
initializes this register with the value 00 which provides for 1024 system clock time-out.

3.1.6 Interrupt Sources

The ColdFire family of processors can receive interrupts for seven levels of interrupt priorities. When the
processor receives an interrupt which has higher priority than the current interrupt mask (in status
register), it will perform an interrupt acknowledge cycle at the end of the current instruction cycle. This
interrupt acknowledge cycle indicates to the source of the interrupt that the request is being acknowledged
and the device should provide the proper vector number to indicate where the service routine for this
interrupt level is located. If the source of interrupt is not capable of providing a vector, its interrupt
should be set up as autovector interrupt which directs the processor to a predefined entry into the
exception table (refer to the MCF5206 User's Manual).

The processor goes to different service routine via the exception table. This table is in the Flash and the
VBR points to it. However, a copy of this table is made in the RAM starting at $00000000. To take over
an exception vector, the user places the address of the exception handler in the appropriate vector in the
vector table located at $00000000, and then points the VBR to $00000000.

The MCF5206 has three external interrupt request lines (-IRQ1, -IRQ4, -IRQ7) which can be set up either
as -IPL0-2 lines for encoded interrupt request or dedicated -IRQ lines (1, 4, and 7). The SBC5206
configures these lines as -IRQ lines. There are also six internal interrupt requests from Timer1, Timer2,
Software watchdog timer, UART1, UART2, and MBUS. Each interrupt source , external and internal,
can be programmed for any priority level. In case of similar priority level, a second relative priority
between 1 to 3 will be assigned.
On SBC5206, the internal Timers, Software Watchdog Timer, M-Bus, and UART’s are disabled and not
used. However, the software watchdog is programmed for Level 7, priority 2 and uninitialized vector.
The UART1 is programmed for Level 3, priority 2 and autovector. The UART2 is programmed for Level
3, priority 1 and autovector. The M-Bus is at Level 3, priority 0 and autovector. The Timers are at Level
5 with Timer 1 with priority 3 and Timer 2 with priority 2 and both for autovector.

The SBC5206 uses -IRQ7 to support the ABORT function using the ABORT switch S1 (black switch).
This switch is used to force a non-maskable interrupt (level 7, priority 3) if the user's program execution
should be aborted without issuing a RESET (refer to Chapter 2 for more information on ABORT). Since

3-3

the ABORT switch is not capable of generating a vector in response to level seven interrupt acknowledge
from the processor, the debugger programs this request for autovector mode.

The MC68HC901 reports its interrupt request on -IRQ4 line which is set for Level 4, priority 2. It uses
the vectored mode for acknowledgment. The chip-select -CS1 is used to generate the -IACK signal for
MC68HC901. The MC68HC901 is programmed to generate vectors $F0 to $FF. This should not be
changed.

The -IRQ1 line of the MCF5206 is not used on this board. However, the -IRQ1 is programmed for Level
1 with priority 1 and autovector. The user may use this line for external interrupt request. Refer to
MCF5206 User’s Manual for more information about the interrupt controller.

3.1.7 Internal SRAM

The MCF5206 has 512 bytes of internal memory. This memory is mapped to $20000000 and is not used
by the dBUG. It is available to the user.

3.1.8 The MCF5206 Registers and Memory Map

The memory and I/O resources of the SBC5206 are divided into three groups, MCF5206 Internal,
External resources, and the ISA Bus address. All the I/O registers are memory mapped.

The MCF5206 has built in logic and up to eight chip-select pins (-CS0 to -CS7) which are used to enable
external memory and I/O devices. In addition there are two -RAS lines for DRAM’s. There are eighteen
(32) registers to specify the address range, type of access, and the method of -TA generation for each
chip-select and -RAS pins. These registers are programmed by dBUG to map the external memory and
I/O devices.

The SBC5206 uses chip-select zero (-CS0) to enable the EPROM/Flash ROM (refer to Section 3.3.) The
SBC5206 uses -RAS1 and -RAS2 to enable the DRAM SIMM module (refer to Section 3.2), -CS2 for
enabling the MC68HC901, -CS1 for Interrupt acknowledge of MC68HC901, and -CS3 for ISA Bus I/O
space.

The chip-select signals -CS4, -CS5, -CS6, and -CS7 share their pins with address lines A24, A25, A26,
and A27 and the write-enable lines -WE3, -WE2, -WE1, and -WE0. The pins for -CS6 and -CS7 are
programmed as write enable line -WE1 and -WE0 respectively to support the on-board Flash ROM. The
pins for -CS4 and -CS5 are programmed as chip select lines.

The chip select mechanism of the MCF5206 allows the memory mapping to be defined based on the
memory space desired (User/Supervisor, Program/Data spaces).

3-4

All the MCF5206 internal registers, configuration registers, parallel I/O port registers, DUART registers
and system control registers are mapped by MBAR register at 1K-byte boundary. It is mapped to
$10000000 by dBUG. For complete map of these registers refer to the MCF5206 User's Manual.

The SBC5206 board can have up to 32M bytes of DRAM installed. The first 32M bytes are reserved for
this memory. Refer to Section 3.2 for a discussion of RAM. The dBUG is programmed in two 29F010
Flash ROM’s which only occupies 256K bytes of the address space. The first 128K bytes are used by
dBUG and the second half is left for user. Refer to section 3.3.

The MC68HC901 is used as dBUG serial communication, baud rate generator, and ISA Bus interrupt
request. Refer to section 3.4.2.

The ISA Bus interface maps all the I/O space of the ISA bus to the MCF5206 memory at address
$04000000. Refer to section 3.6.

TABLE 3.1. The SBC5206 memory map.

ADDRESS RANGE SIGNAL and DEVICE
$00000000-$01FFFFFF1 -RAS1, -RAS2, Up to 32M bytes of DRAM’s.
$10000000-$100003FF Internal Module registers
$20000000-$200001FF Internal SRAM
$30000000-$300FFFFF -CS2, 1M space for MC68HC901. -CS1 is used for IACK.
$40000000-$400FFFFF -CS3, 1M ISA Bus area
$FFE00000-$FFE3FFFF -CS0, 256K bytes of Flash ROM.

1 Refer to the text for more detail.

All the unused area of the memory map is available to the user.

3.1.9 Reset Vector Mapping

After reset, the processor attempts to get the initial stack pointer and initial program counter values from
locations $000000-$000007 (the first eight bytes of memory space). This requires the board to have a
nonvolatile memory device in this range with proper information. However, in some systems, it is
preferred to have RAM starting at address $00000000. In MCF5206, the -CS0 responds to any accesses
after reset until the CSMR0 is written. This includes the reset vector range. Since -CS0 is connected to
Flash ROM’s, the Flash ROM’s appear to be at address $00000000 which provides the initial stack
pointer and program counter (the first 8 bytes of the Flash ROM). The initialization routine, however,
programs the chip-select logic and locates the Flash ROM’s to start at $FFE00000 and the DRAM’s to
start at $00000000.

3.1.10 -TA Generation

The processor starts a bus cycle by providing the necessary information (address, R/-W, etc.) and
asserting the -TS. The processor then waits for an acknowledgment (-TA) by the addressed device before
it can complete the bus cycle. This -TA is used not only to indicate the presence of a device, it also
allows devices with different access time to communicate with the processor properly. The MCF5206, as
part of the chip-select logic, has a built in mechanism to generate the -TA for all external devices which
do not have the capability to generate the -TA on their own. The Flash ROM’s and DRAM’s can not
generate the -TA. Their chip-select logic’s are programmed by dBUG to generate the -TA internally after
a preprogrammed number of wait states. In order to support the future expansion of the board, the -TA
input of the processor is also connected to the Processor Expansion Bus, J9. This allows the expansion
boards to assert this line to indicate their -TA to the processor. On the expansion boards, however, this
signal should be generated through an open collector buffer with no pull-up resistor, a pull-up resistor is
included on the board. All the -TA’s from the expansion boards should be connected to this line.

3.1.11 Wait State Generator

3-5

The Flash ROM’s and DRAM SIMM on the board may require some adjustments on the cycle time of
the processor to make them compatible with processor speed. To extend the CPU bus cycles for the
slower devices, the chip-select logic of the MCF5206 can be programmed to generate the -TA after a
given number of wait states. Refer to Sections 3.2 and 3.3 information about wait state requirements of
DRAM’s and Flash ROM’s respectively.

3.2 THE DRAM SIMM

The SBC5206 has one 72-pin SIMM socket (U15) for DRAM SIMM. This socket supports DRAM
SIMM’s of 256Kx32, 1Mx32, 2Mx32, 4Mx32, and 8Mx32. No special configuration is needed. The
dBUG will detect the total memory installed on power-up. The SIMM speed should be 70ns. The
DRAM Access timing is 3,2,2,2.

3.3 THE EPROM/FLASH ROM

There are two sockets for EPROM’s/Flash ROM’s on the SBC5206, U13 (high, even byte) and U10 (low,
odd byte). These sockets support 64K, 128K, 256K, 512K, and 1M-byte EPROM’s such as 27C256,
27C512, 27C010, 27C020, 27C040, and 27C080 chips for a total of up to 2M bytes. The sockets also
support the Flash ROM’s such as 29F010 and 29F040 which are 5-volt only devices.

If the user wishes to modify the size or the type of the memory chips, the jumpers JP2 and JP3 should be
modified to accommodate different size and type of memory chips. Refer to Figure 3.1 for jumper
selection. Although, the board supports different types of Flash ROM’s and EPROM’s, the dBUG Flash
driver is setup for 29F010 device only.

The board is shipped with two 29F010, 128K-byte, FLASH ROM’s for a total of 256K bytes. The first
128K of the Flash contains dBUG firmware. The second half (last 128K) is available to the user. The
high byte (even address) chip is installed in U13 socket and the low byte (odd address) chip is installed in
U10 socket. The chip-select signal generated by the MCF5206 (-CS0) enables both chips.

The MCF5206 chip-select logic can be programmed to generate the -TA for -CS0 signal after a certain
number of wait states. The dBUG programs this parameter to three wait-states.

3-6

JP2 Configuration
MEMORY TYPE JUMPER SETUP
FLASH ROM Connect 3 to 5 and 4 to 6 (default)
EPROM Connect 1 to 3 and 2 to 4

1 2

3 4
5 6

JP2

JP3 Configuration for EPROM
MEMORY SIZE JUMPER SETUP
27C512 (512K EPROM) 6 to 8
27C010 (1M EPROM) 3 to 5 and

4 to 6 and 8 to 10
27C020 (2M EPROM) 3 to 5 and

4 to 6 and 8 to 10
27C040 (4M EPROM) 3 to 5 and

2 to 4 and 8 to 10
27C080 (8M EPROM) 1 to 3 and

2 to 4 and 8 to 10

 JP3

 JP3 Configuration for FLASH ROM
MEMORY SIZE JUMPER SETUP
29F010 (1M Flash) and 29F040
(4M Flash)

7 to 9 and 8 to 10

 Note: Only connect the pins specified. Leave the rest open.

Figure 3.1. Jumper setup for the Flash/EPROM sockets.

3-7

3.4 THE SERIAL COMMUNICATION CHANNELS

The SBC5206 offers a number of serial communications. They are discussed in this section.

3.4.1 The MCF5206 DUART

The MCF5206 has two built in UART’s, These serial channels with software programmable baud rate
generators are not used by the SBC5206 or dBUG and are available to the user. The dBUG, however,
programs the interrupt level for UART1 to Level 3, priority 2 and autovector mode of operation. The
interrupt level for UART2 to Level 3, priority 1 and autovector mode of operation. The signals of these
channels are available on J7. The signals of UART1 are also passed through the RS-232 driver/receiver
and are available on DB-9 connector J6. Refer to the MCF5206 User’s Manual for programming and the
register map.

3.4.2 MC68HC901

To provide the board with one independent serial communication channel for dBUG communication with
terminal or PC, an MC68HC901 is used. This device provides four timer channels (A, B, C, and D), one
serial communication channel, and 8 input lines. Channel D timer is used as the baud rate generator for
the serial communication channel.

The clock source for the timers is the 2.4576MHZ crystal. The clock signal to drive the MC68HC901
logic is one-fourth of the processor’s clock.

The TXD (SO) signal and the RXD (SI) signal are passed through RS-232 driver/receiver and are
available on J5. The eight input lines are used to report the ISA Bus interrupts (IRQ3, IRQ4, IRQ5,
IRQ6, IRQ7, IRQ9, IRQ10, and IRQ11). The interrupt from MC68HC901 is reported to MCF5206 on -
IRQ4 of the MCF5206. The interrupt level for the MC68HC901 is set for Level 4 with priority 2. The
vectors used for MC68HC901 are $F0 to $FF. It generates 16 vectors. This should not be changed.

The -CS2 is used to access the MC68HC901 internal registers, it is mapped to $30000000. The -CS1 is
programmed to generate an Interrupt Acknowledge signal to drive the -IACK of the MC68HC901. Refer
to MC68HC901 User’s Manual for functional description and the programming model.

3.4.3 Motorola Bus (M-Bus) Module

The MCF5206 has a built in M-Bus module which allows interchip bus interface for a number of I/O
devices. It is compatible with industry-standard I2C Bus. The SBC5206 does not use this module and it
is available to the user. The two M-Bus signals are SDA and SCL which are available at J7 connector.
These signals are open-collector signals. However, they have pull-up resistors on the SBC5206. The
interrupt control register for M-Bus is set for Level 3, priority 0 and autovector.

3.5 THE PARALLEL I/O Port

The MCF5206 has one 8-bit parallel port. All the pins have dual functions. They can be configured as
I/O or their alternate function via the Pin Assignment register. All pins are configured as I/O pins.

3-8

3.6 THE ISA BUS LOGIC

The SBC5206 includes the necessary logic, drivers, and the connector (P1) to allow the use of off-the-
shelf ISA Bus I/O cards. The slot can be used with 8- or 16-bit ISA cards. The ISA-space addresses are
located starting at $40000000.

The main purpose for this setup is to allow the use of Ethernet card (NE2000 compatible) to facilitate
network down load, refer to chapter 2 for network download command (DN). The dBUG driver only
accepts 100% NE2000 compatible cards.

The ISA Bus interrupt request lines IRQ3, IRQ4, IRQ5, IRQ6, IRQ7, IRQ9, IRQ10, and IRQ11 are
connected to I0 to I7 of the MC68HC901. The requested interrupt is then routed to -IRQ4 of the
MCF5206.

3.7 THE CONNECTORS AND THE EXPANSION BUS

There are eleven connectors on the SBC5206 which are used to connect the board to external I/O devices
and or expansion boards. This section provides a brief discussion and the pin assignments of the
connectors.

3.7.1 The Programming Connector J1

The J1 connector is used to program the ispLSI2032. This Connector is not a user connector.

TABLE 3.2. The J1 Connector Pin Assignment.

PIN NO. SIGNAL NAME
1 +5 Volts
2 -SDO
3 -SDI
4 -ISPEN
5 No Connect (key)
6 -MODE
7 GND
8 SCLK

3.7.2 The ISA Bus Auxiliary Power Connector J2

The ISA Bus requires +/-12 and -5 as well as +5 volts supply. Since they are not always needed the
connector used for these is a simple burg connector. Table 3.3 shows the Pin assignment for J2.

TABLE 3.3. The J2 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 +12 Volts
2 Ground
3 -12 Volts
4 -5 Volts

3.7.3 The Power Supply Connectors J3 and J4

The SBC5206 needs +5 volts supply (less than an Amp.). The power can be +5 Volts regulated or +7.5
to +12 Volts DC (regulated or unregulated) which utilizes the on board regulator U14. Jumper JP1 (Table
3.6) makes the selection between +5 Volts regulated and the +7.5-12 Volts supply. If pins 1 and 2 are

3-9

connected, the board needs external +5 Volts regulated supply. If pins 2 and 3 are connected, then a DC
supply of +7.5 to +12 volts may be used. In either case, the power may be connected to the board through
J3 (2.1mm power jack) or the J4 two-contact lever actuated terminal block. On J3 the center pin (pin 1) is
the plus supply and the body (pin 3) is the ground. On J4 the pin 1 is the plus supply and pin 2 is the
ground. Tables 3.4 and 3.5 show the Pin assignment for J3 and J4.

TABLE 3.4. The J3 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 (center pin) Plus Supply

2 (body) Ground

TABLE 3.5. The J4 Connector pin assignment.

PIN NUMBER SIGNAL NAME
1 Plus Supply
2 Ground

TABLE 3.6. The Jumper JP1.

Jumper Pins Selection
1 to 2 regulated +5 Volts
2 to 3 +7.5 to +12 DC regulated or unregulated

3.7.4 The Terminal Connector J5

The SBC5206 uses a 9-pin D-sub female connector J5 for connecting the board to a terminal or a PC with
terminal emulation software. The available signals are a working subset of the RS-232C standard. Table
3.7 shows the pin assignment.

TABLE 3.7. The J5 (TERMINAL) Connector pin assignment.

PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send (shorted to 8)
8 Output Clear to Send (shorted to 7)
9 Not Used

3.7.5 The Auxiliary Serial Communication Connector J6

The MCF5206 has two built-in UART’s. These channels are not used by the SBC5206 dBUG and they
are available to the user. The signals of these channels are available on J7. The signals on UART1 are
also run trough RS-232 driver/receivers and are available on J6. The available signals form a working
subset of the RS-232C standard. Table 3.8 shows the pin assignment for J6.

TABLE 3.8. The J6 Connector pin assignment.

3-10

 PIN NO. DIRECTION SIGNAL NAME
1 Output Connected to pin 6 and 8
2 Output Receive Data
3 Input Transmit Data
4 No connect
5 Signal Ground
6 Output Connected to 1 and 8
7 Input Clear to Send
8 Output Request to Send (connected to 1 & 6)
9 Not Used

3.7.6 The Processor Expansion Bus J7, J9, and J10

All the processors signals are available on three burg headers J7, J9 and J10 for future expansion.
Although these signals are not buffered, they can drive at least one TTL load with some having more than
one TTL load capability. User may refer to the data sheets for the major parts and the schematic at the
end of this manual to obtain an accurate loading capability. All the primary signals to/from the processor
needed for simple memory expansion are available on J9. The remaining expansion signals and I/O
signals are available on J7 and J10. Therefore, a single 60-wire flat ribbon cable with the IDC connectors
may be used for most of future expansions. Tables 3.9, 3.11 and 3.12 show the pin assignment for J7, J9,
and J10 respectively.

3.7.7 The Debug Connector J8

The MCF5206 does have background Debug Port, Real-Time Trace Support, and Real-Time Debug
Support. The necessary signals are available at connector J8. Table 3.10 shows the pin assignment.

3.7.8 The ISA Bus Connector P1

The SBC5206 can utilize the ISA Bus 16-bit I/O cards. The P1 connector is ISA Bus compatible
connector. Table 3.13 shows the pin assignment.

3-11

TABLE 3.9. The J7 Connector pin assignment.

 PIN NO. SIGNAL NAME

1 -CS0
2 -CTS1
3 -CS1
4 TXD1
5 -CS2
6 RXD1
7 -CS3
8 -RTS1
9 -IRQ4
10 -CTS2
11 -BR
12 -RTS2
13 -BD
14 RXD2
15 -BG
16 TXD2
17 SDA
18 TIN0
19 SCL
20 TIN1
21 -IRQ7
22 TOUT0
23 +5 Volts
24 TOUT1
25 Ground
26 -HIZ_INLOW

3-12

TABLE 3.10. The J8 Connector pin assignment.

 PIN NO. SIGNAL NAME

1 No Connect
2 -BKPT
3 Ground
4 DSCLK
5 Ground
6 No Connect
7 -RESET
8 DSI
9 +5 Volts
10 DSO
11 Ground
12 PST3
13 PST2
14 PST1
15 PST0
16 DDAT3
17 DDAT2
18 DDAT1
19 DDAT0
20 Ground
21 No Connect
22 No Connect
23 Ground
24 CLK
25 +5 Volts
26 No Connect

3-13

 TABLE 3.11. The J9 Connector pin assignment.

 PIN NO. SIGNAL NAME
1 A0
2 D16
3 A1
4 D17
5 A2
6 D18
7 A3
8 D19
9 A4
10 D20
11 A5
12 D21
13 A6
14 D22
15 A7
16 D23
17 A8
18 D24
19 A9
20 D25
21 A10
22 D26
23 A11
24 D27
25 A12
26 D28
27 A13
28 D29
29 A14
30 D30
31 A15
32 D31
33 A16
34 TT0
35 A17
36 TT1
37 A18
38 ATM
39 A19
40 SIZ0
41 A20
42 SIZ1
43 A21
44 R/-W
45 A22
46 -TS
47 A23
48 -TA
49 A24/-CS4/-WE3
50 -TEA
51 A25/-CS5/-WE2
52 -ATA
53 A26/-CS6/-WE1
54 -RESET
55 A27/-CS7/-WE0
56 -IRQ1
57 CLK
58 +5 Volts
59 Ground
60 Ground

3-14

Table 3.12. The J10 Connector pin assignment.

PIN NO. SIGNAL NAME
1 TCK
2 D0
3 DSCLK
4 D1
5 DSI
6 D2
7 DSO
8 D3
9 -BKPT
10 D4
11 +5 Volts
12 D5
13 Ground
14 D6
15 PP0/DDATA0
16 D7
17 PP1/DDATA1
18 D8
19 PP2/DDATA2
20 D9
21 PP3/DDATA3
22 D10
23 PP4/PST0
24 D11
25 PP5/PST1
26 D12
27 PP6/PST2
28 D13
29 PP7/PST3
30 D14
31 -HIZ
32 D15
33 MTMOD0
34 -CAS0
35 -RAS0
36 -CAS1
37 -RAS1
38 -CAS2
39 -DRAMW
40 -CAS3

3-15

 TABLE 3.13. The P1 Connector pin assignment.

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 GND 2 IOCHK*
3 RESET 4 SD7
5 +5V 6 SD6
7 IRQ9 8 SD5
9 -5V 10 SD4
11 DRQ2 12 SD3
13 -12V 14 SD2
15 ZWS* 16 SD1
17 +12V 18 SD0
19 GND 20 IOCHRDY
21 SMFMW* 22 AEN
23 SMFMR* 24 SA19
25 IOW* 26 SA18
27 IOR* 28 SA17
29 DACK3* 30 SA16
31 DRQ3 32 SA15
33 DACK1* 34 SA14
35 DRQ1 36 SA13
37 REFSH 38 SA12
39 SYSCLK 40 SA11
41 IRQ7 42 SA10
43 IRQ6 44 SA9
45 IRQ5 46 SA8
47 IRQ4 48 SA7
49 IRQ3 50 SA6
51 DACK2* 52 SA5
53 TC 54 SA4
55 BALE 56 SA3
57 +5V 58 SA2
59 OSC 60 SA1
61 GND 62 SA0
63 MEMCS16* 64 SBHE*
65 IOCS16 66 LA23
67 IRQ10 68 LA22
69 IRQ11 70 LA21
71 IRQ12 72 LA20
73 IRQ15 74 LA19
75 IRQ14 76 LA18
77 DACK0* 78 LA17
79 DRQ0 80 MEMB*
81 DACK5* 82 MEMW*
83 DRQ5 84 SD8
85 DACK6* 86 SD9
87 DRQ6 88 SD10
89 DACK7* 90 SD11
91 DRQ7 92 SD12
93 +5V 94 SD13
95 MASTER* 96 SD14
97 GND 98 SD15

3-16

3.8 THE SBC5206 JUMPERS

There are a total of three jumpers on the SBC5206 board to configure the board for different setup. Table
3.14 shows what these jumpers are for and the section where more information can be found.

TABLE 3.14. The SBC5206 Jumpers.

Jumper No. Function (section)
JP1 Power Supply Selection, (section 3.7.3)
JP2 Flash/EPROM type selection (section 3.3)
JP3 Flash/EPROM size selection (section 3.3)

A-1

 Appendix A

A.1 Configuring dBUG for Network Downloads

dBUG has the ability to perform downloads over an Ethernet network using the Trivial File Transfer
Protocol, TFTP. Prior to using this feature, several parameters are required for network downloads to
occur. The information that is required and the steps for configuring dBUG are described below.

A1.1 Required Network Parameters

For performing network downloads, dBUG needs six parameters; four are network-related, and two are
download-related. The parameters are listed below, with the dBUG designation following in parenthesis.

All computers connected to an Ethernet network running the IP protocol need three network-specific
parameters. These parameters are:

• Internet Protocol, IP, address for the computer (client IP),
• IP address of the Gateway for non-local traffic (gateway IP), and
• Network netmask for flagging traffic as local or non-local (netmask).

In addition, the dBUG network download command requires the following three parameters:

• IP address of the TFTP server (server IP),
• Name of the file to download (filename),
• Type of the file to download (filetype of S-record, COFF, Elf, or Image).

Your local system administrator can assign a unique IP address for the board, and also provide you the IP
addresses of the gateway, netmask, and TFTP server. Fill out the lines below with this information.

Client IP: ___.___.___.___ (IP address of the board)
Server IP: ___.___.___.___ (IP address of the TFTP server)
Gateway: ___.___.___.___ (IP address of the gateway)
Netmask: ___.___.___.___ (Network netmask)

A.1.2 Configuring dBUG Network Parameters

Once the network parameters have been obtained, dBUG must be configured. The following commands
are used to configure the network parameters.

set client <client IP>
set server <server IP>
set gateway <gateway IP>
set netmask <netmask>

For example, the TFTP server is named ‘santafe’ and has IP address 123.45.67.1. The board is assigned
the IP address of 123.45.68.15. The gateway IP address is 123.45.68.250, and the netmask is
255.255.255.0. The commands to dBUG are:

set client 123.45.68.15
set server 123.45.67.1
set gateway 123.45.68.250
set netmask 255.255.255.0

The last step is to inform dBUG of the name and type of the file to download. Prior to giving the name of
the file, keep in mind the following.

Most, if not all, TFTP servers will only permit access to files starting at a particular sub-directory. (This
is a security feature which prevents reading of arbitrary files by unknown persons.) For example, SunOS
uses the directory /tftp_boot as the default TFTP directory. When specifying a filename to a SunOS

A-2

TFTP server, all filenames are relative to /tftp_boot. As a result, you normally will be required to copy
the file to download into the directory used by the TFTP server.

A default filename for network downloads is maintained by dBUG. To change the default filename, use
the command:

set filename <filename>

When using the Ethernet network for download, either S-record, COFF, Elf, or Image files may be
downloaded. A default filetype for network downloads is maintained by dBUG as well. To change the
default filetype, use the command:

set filetype <srecord|coff|elf|image>

Continuing with the above example, the compiler produces an executable COFF file, ‘a.out’. This file is
copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out

Change the default filename and filetype with the commands:

set filename a.out
set filetype coff

Finally, perform the network download with the ‘dn’ command. The network download process uses the
configured IP addresses and the default filename and filetype for initiating a TFTP download from the
TFTP server.

A.1.3 Troubleshooting Network Problems
Most problems related to network downloads are a direct result of improper configuration. Verify that all
IP addresses configured into dBUG are correct. This is accomplished via the ‘show’ command.

Using an IP address already assigned to another machine will cause dBUG network download to fail, and
probably other severe network problems. Make certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. Are status LEDs lit indicating that
network traffic is present?

Check for proper configuration and operation of the TFTP server. Most Unix workstations can execute a
command named ‘tftp‘which can be used to connect to the TFTP server as well. Is the default TFTP root
directory present and readable?

If ‘ICMP_DESTINATION_UNREACHABLE’ or similar ICMP message appears, then a serious error
has occurred. Reset the board, and wait one minute for the TFTP server to time out and terminate any
open connections. Verify that the IP addresses for the server and gateway are correct.

M5206EC3 USER'S MANUAL
REVISION 1.2

Cadre III
A Framework for Solutions

4150 Freidrich Lane Suite D
Austin, Texas 78744

Support: (USA only): (800) 410-2031
(512) 326-9455

Email: support@cadreiii.com
Web: www@cadreiii.com

iii

LIMITED WARRANTY

Cadre III warrants this product against defects in material and workmanship for a period of sixty
(60) days from the original date of purchase. This warranty extends to the original customer only
and is in lieu of all other warrants, including implied warranties of merchantability and fitness. In
no event will the seller be liable for any incidental or consequential damages. During the warranty
period, Cadre III will replace, at no charge, components that fail, provided the product is returned
(properly packed and shipped prepaid) to Cadre III at the address below. Dated proof of
purchase, such as a copy of the invoice, must be enclosed with the shipment. We will return the
shipment prepaid via UPS.

This warranty does not apply if, in the opinion of Cadre III, the product has been damaged by
accident, misuse, neglect, misapplication, or as a result of service or modification (other than
specified in the manual) by others.

Please send the board and cables with a complete description of the problem to:

Cadre III
4150 Freidrich Lane, Suite D

Austin, Texas 78744

HELPFUL INFORMATION

Information for the MCF5206e processor and evaluation board is updated frequently at the
following URL: http://www.motorola.com/ColdFire.
Visit http://www.motorola.com/ColdFire to obtain the follow information.

1. Source code for the assembler
2. Most current User manual for the MCF5206e processor
3. Most current User manual for the M5206EC3
4. Addendum for the MCF5206e
5. Application notes
6. Example code for the MCF5206e
7. B.O.M. for the M5206EC3

These example files are also available on the web site: S-REC, COFF, ELF.

Refer to the electronic version of this user manual at www.motorola.com/ColdFire for the most
current information.

Want to find out how others are using ColdFire integrated microprocessors in their applications?
Sign up at www.wildrice.com and follow the instructions.

iv

Disclaimer

The information in this manual has been carefully examined and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Motorola reserves the right to make
changes to any product(s) herein to improve reliability, function, or design. The M5206EC3 board is not
intended for use in life and/or property critical applications. Here, such applications are defined to be any
situation in which any failure, malfunction, or unintended operation of the board could, directly, or
indirectly, threaten life, result in personal injury, or cause damage to property. Although every effort has
been made to make the supplied software and its documentation as accurate and functional as possible.
Motorola Inc. will not assume responsibility for any damages incurred or generated by this product.
Motorola does not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights, if any, or the rights of others.

Warning

This board generates, uses, and can radiate radio frequency energy and, if not installed
properly, may cause interference to radio communications. As temporarily permitted by
regulation, it has not been tested for compliance with the limits for class a computing
devices pursuant to Subpart J of Part 15 of the FCC rules, which provide reasonable
protection against such interference. Operation of this product in a residential area is
likely to cause interference, in which case users, at their own expense, will be required to
correct the interference.

Motorola is a registered trademark of Motorola Inc.
IBM PC and IBM AT is registered trademarks of IBM Corp.
I2C is a proprietary bus of Philips

v

TABLE OF CONTENTS

1 INTRODUCTION TO THE M5206EC3 BOARD ... 1-1

1.1 OVERVIEW.. 1-1
1.2 GENERAL HARDWARE DESCRIPTION.. 1-1
1.3 SYSTEM MEMORY... 1-2
1.4 SERIAL COMMUNICATION CHANNELS.. 1-3
1.5 PARALLEL I/O PORTS.. 1-3
1.6 PROGRAMMABLE TIMER/COUNTER .. 1-3
1.7 ON-BOARD ETHERNET ... 1-3
1.8 SYSTEM CONFIGURATION... 1-3
1.9 INSTALLATION AND SETUP... 1-4

1.9.1 Unpacking.. 1-4
1.9.2 Preparing the Board for Use .. 1-4
1.9.3 Providing Power to the Board .. 1-5
1.9.4 Selecting Terminal Baud Rate .. 1-5
1.9.5 The Terminal Character Format... 1-5
1.9.6 Connecting the Terminal .. 1-5
1.9.7 Using a Personal Computer as a Terminal ... 1-6

1.10 SYSTEM POWER-UP AND INITIAL OPERATION .. 1-7
1.11 M5206EC3 JUMPER SETUP .. 1-8

1.11.1 Jumper JP1 .. 1-8
1.11.2 Jumper JP2 - Flash Upper Half/Lower Half Boot... 1-8
1.11.3 Jumper J6 and J7 - CPU Power JP6 and 7... 1-8

1.12 USING THE BDM... 1-8

2 USING THE MONITOR/DEBUG FIRMWARE... 2-9

2.1 WHAT IS DBUG? ... 2-9
2.2 OPERATIONAL PROCEDURE .. 2-10

2.2.1 System Power-Up ... 2-10
2.2.2 System Initialization... 2-11

2.3 TERMINAL CONTROL CHARACTERS.. 2-12
2.4 DBUG COMMAND SET... 2-13

2.4.1 AS - Assemble ... 2-14
2.4.2 BC - Compare Blocks of Memory ... 2-16
2.4.3 BF - Block of Memory Fill ... 2-17
2.4.4 BM - Block Move ... 2-18
2.4.5 BR - Breakpoin .. 2-19
2.4.6 BS - Block Search .. 2-20
2.4.7 DATA - Data Conversion ... 2-21
2.4.8 DI - Disassemble.. 2-22
2.4.9 DL - Download Serial .. 2-23
2.4.10 DN - Download Network .. 2-24
2.4.11 Go - Execute .. 2-26
2.4.12 GT - Execute Till a Temporary Breakpoint... 2-27
2.4.13 HELP - Help .. 2-28
2.4.14 IRD - Internal Registers Display .. 2-29
2.4.15 IRM - Internal Registers MODIFY ... 2-30
2.4.16 MD - Memory Display.. 2-31
2.4.17 MM - Memory Modify .. 2-32
2.4.18 RD - Register Display .. 2-33
2.4.19 RM - Register Modify... 2-34
2.4.20 RESET - Reset the board and dBUG .. 2-35
2.4.21 SET - Set Configuration ... 2-36
2.4.22 SHOW - Show Configuration.. 2-38
2.4.23 STEP - Step Over ... 2-39
2.4.24 SYMBOL - Symbol Name Management... 2-40
2.4.25 TRACE - Trace Into ... 2-41
2.4.26 UPDBUG - Update the dBUG Image ... 2-42

vi

2.4.27 UPUSER - Update User Code In Flash .. 2-43
2.4.28 VERSION - Display dBUG Version .. 2-44

2.5 TRAP #15 FUNCTIONS ... 2-45
2.5.1 OUT_CHAR... 2-45
2.5.2 IN_CHAR... 2-45
2.5.3 CHAR_PRESENT... 2-46
2.5.4 EXIT_TO_dBUG.. 2-46

3 HARDWARE DESCRIPTION AND RECONFIGURATION... 3-47

3.1 PROCESSOR AND SUPPORT LOGIC ... 3-47
3.1.1 Processor ... 3-47
3.1.2 Reset Logic .. 3-47
3.1.3 -HIZ Signal .. 3-47
3.1.4 Clock Circuitry .. 3-48
3.1.5 Watchdog Timer (Bus Monitor) .. 3-48
3.1.6 Interrupt Sources ... 3-48
3.1.7 Internal SRAM ... 3-49
3.1.8 MCF5206e Registers and Memory Map ... 3-49
3.1.9 Reset Vector Mapping .. 3-50
3.1.10 -TA Generation .. 3-50
3.1.11 Wait State Generator.. 3-50

3.2 ADRAM SIMM... 3-51
3.3 FLASH ROM... 3-51

3.3.1 JP2 Jumper and User’s Program.. 3-51
3.4 SERIAL COMMUNICATION CHANNELS.. 3-51

3.4.1 MCF5206e Two UARTs.. 3-51
3.4.2 Motorola Bus (M-Bus) Module... 3-52

3.5 PARALLEL I/O PORT.. 3-52
3.6 ONBOARD ETHERNET LOGIC .. 3-52
3.7 CONNECTORS AND THE EXPANSION BUS .. 3-54

3.7.1 The Terminal Connector P1 ... 3-54
3.7.2 The Auxiliary Serial Communication Connector P2 ... 3-54
3.7.3 Logical Analyzer Connectors LA1-4 and Processor Expansion Bus J2, J3, and J4 3-54
3.7.4 Debug Connector J5 .. 3-60

APPENDIX A CONFIGURING DBUG FOR NETWORK DOWNLOADS .. 1

A.1 REQUIRED NETWORK PARAMETERS.. 1
A.2 CONFIGURING DBUG NETWORK PARAMETERS .. 2
A.3 TROUBLESHOOTING NETWORK PROBLEMS .. 3

APPENDIX B FPLA CODE ... 5

APPENDIX C SCHEMATICS ... 9

APPENDIX D MC5206EC3 BILL OF MATERIALS ... 19

vii

TABLES

TABLE 1. JP1, -CS0 SELECT... 1-8
TABLE 2. JP2, UPPER/LOWER HALF BOOT ... 1-8
TABLE 3. DBUG COMMANDS .. 2-13
TABLE 4. ROM MONITOR DEFAULT M5206EC3 MEMORY MAP.. 3-50
TABLE 5. P1 (TERMINAL) CONNECTOR PIN ASSIGNMENT... 3-54
TABLE 6. P2 CONNECTOR PIN ASSIGNMENT.. 3-54
TABLE 7. J2 CONNECTOR PIN ASSIGNMENT .. 3-55
TABLE 8. J3 CONNECTOR PIN ASSIGNMENT .. 3-56
TABLE 9. J4 CONNECTOR PIN ASSIGNMENT .. 3-57
TABLE 10. LA1 CONNECTOR PIN ASSIGNMENT.. 3-57
TABLE 11. LA2 CONNECTOR PIN ASSIGNMENT.. 3-58
TABLE 12. LA3 CONNECTOR PIN ASSIGNMENT.. 3-58
TABLE 13. LA4 CONNECTOR PIN ASSIGNMENT.. 3-59
TABLE 14. J5 CONNECTOR PIN ASSIGNMENT .. 3-60

viii

FIGURES

FIGURE 1. BLOCK DIAGRAM OF THE M5206EC3 BOARD... 1-2
FIGURE 2. PIN ASSIGNMENT FOR P1 (TERMINAL) CONNECTOR .. 1-6
FIGURE 3. SYSTEM CONFIGURATION ... 1-6
FIGURE 4. JUMPER AND CONNECTOR PLACEMENT ... 1-7
FIGURE 5. FLOW DIAGRAM OF DBUG OPERATIONAL MODE... 2-11

1-1

1 INTRODUCTION TO THE M5206EC3 BOARD

1.1 OVERVIEW

The M5206EC3 is a versatile single-board computer based on the MCF5206e ColdFire® processor,
which you can use as a powerful microprocessor-based controller in a variety of applications.
With the addition of a terminal, the M5206EC3 serves as a complete microcomputer for
development/evaluation, training, and educational use. You just have to connect an RS-232-
compatible terminal (or a personal computer with terminal emulation software) and a power
supply to have a fully functional system.

Provisions have been made to connect this board to additional user-supplied boards via the
Microprocessor Expansion Bus connectors to expand memory and I/O capabilities. Additional
boards may require bus buffers to compensate for added bus loading.

Furthermore, the PC-board permits configuration in a way that best suits an application.
Available features include: as much as 4 MBytes DRAM, 1 MByte of SRAM (not included),
timer, serial and parallel I/O, Ethernet, DMA, I-cache, internal SRAM, chip select module, and 1
MByte of Flash. In addition, all of the signals are easily accessible to any logical analyzer with
mictor probes or berg connectors to assist with debug. All of the processor’s signals are also
available via connectors J8 and J9 for expansion purposes.

1.2 GENERAL HARDWARE DESCRIPTION

The M5206EC3 board provides the RAM, Flash ROM, on-board NE2000-compatible Ethernet
interface (10 Mbit/sec), RS-232, and all the built-in I/O functions of the MCF5206e for learning
and evaluating the attributes of the MCF5206e. The MCF5206e—a member of the ColdFire Family
of processors—is a 32-bit processor with 32 bits of addressing and 32 lines of data. The processor
has eight 32-bit data registers, eight 32-bit address registers, a 32-bit program counter, and a 16-
bit status register.

The MCF5206e has a System Integration Module (SIM) that incorporates many system design
functions, such as programmable chip-select logic, system protection logic, general-purpose I/O,
and interrupt controller logic. The chip-select logic can select as many as eight memory banks or
peripherals and the DRAM controller allows a glueless interface to two banks of DRAMs. The
chip-select logic also allows a programmable number of wait states for using slower memory
(refer to MCF5206e User's Manual , downloadable at http://www.Motorola.com/ColdFire, for
detail information about the SIM.) The M5206EC3 only uses three of the chip selects to access
the Flash ROMs, SRAM (which is not populated on board, but you can add later) and the
Ethernet. The DRAM controller controls one SIMM module, 4 MBytes of DRAM, both RAS
lines, and all four CAS lines are used. All other functions of the SIM are available.

A hardware watchdog timer (bus monitor) circuit is included in the SIM that monitors the bus
activities. If a bus cycle is not terminated within a programmable time, the watchdog timer will
assert an internal transfer error signal to terminate the bus cycle. The ROM monitor never uses
the hardware watchdog timer feature but it is available to enable it in your code.

1-2

I/O Ports

Addr Bus

Data Bus

SRAM
(Optional)

MCF5206e
ColdFire

Flash 1Mbyte
U13, U15

ADRAM
SIMM

U7

Data
Buffers
U6

Contr Bus

Mictor & Expansion
Connectors

BDM
Connector

ispLSI
2032LV

U10

Et
he

rn
et

 U
17

P5
RJ45

XCEIVERS
P1,
P2
RS232

Figure 1. Block Diagram of the M5206EC3 Board

1.3 SYSTEM MEMORY

There are two on-board Flash ROMs (U13, U15). U13 is the most significant byte; U15, the least
significant byte. The M5206EC3 comes with two 29LV004 Flash ROMs programmed with a
debugger/monitor firmware. Both AM29LV004DT Flash are 4 Mbits, each giving a total of 1
MByte of Flash memory. The Debug only supports 29LV004 Flash ROM.

The one 72-pin SIMM socket for ADRAM supports as much as 32 MBytes of 3.3V ADRAM.
The board comes with 4 MBytes of 3.3V ADRAM installed.

The MCF5206e has 8 KBytes organized as 2048x32 bits of internal SRAM.

The internal cache of the MCF5206e is a nonblocking 4 KByte direct-mapped instruction cache.
The ROM monitor currently does not use the cache, but user code can enable and use the I-cache.

1-3

1.4 SERIAL COMMUNICATION CHANNELS

The MCF5206e has two built-in UARTs with independent baud-rate generators. The signals of
channel one are passed through external driver/receivers to make the channel RS-232 compatible.
The debugger uses UART1 to let you access with a terminal. In addition, the signals of both
channels are available on the mictor connectors LA1 and LA3 to be viewed by a logic analyzer.
The UART1 channel is the TERMINAL channel the debugger uses for communicating with the
external terminal/PC. The TERMINAL baud rate is set at 19200.

The MCF5206e also incorporates the M-Bus, which is compatible with I2C bus standard.

1.5 PARALLEL I/O PORTS

The MCF5206e offers one 8-bit general-purpose parallel I/O port. Each pin can be individually
programmed as input or output. The parallel port bits PP(3:0) are multiplexed with PST(3:0) and
PP(7:4) are multiplexed with DDATA(3:0). The Pin Assignment Register (PAR) controls both
nibbles of the parallel port. After reset, all pins are configured as general-purpose parallel I/O.
The ROM monitor configures the pins as PST(3:0) and DDATA(3:0).

1.6 PROGRAMMABLE TIMER/COUNTER

The MCF5206e has two built-in general-purpose 16-bit timer/counters. The MCF5206EC3 ROM
monitor does not use these timers, so they are available for you to use. The signals for the timer
are available on the LA1 and J2.

1.7 ON-BOARD ETHERNET

The M5206EC3 has an on-board Ethernet (NE2000 compatible) operating at 10 Mbits. The on-
board ROM monitor is programmed to perform fast downs from a network to memory in S-
Record, COFF, or ELF. See the Ethernet section in the appendix for more information.

1.8 SYSTEM CONFIGURATION

The M5206EC3 board requires only the following items for minimum system configuration (see
Figure 3):

1. The M5206EC3 board (provided)
2. Power supply, 7.5V to 9V with minimum of 1.5 amp
3. RS-232C-compatible terminal or any computer with terminal emulation software

and an RS-232 port
 4. Communication cable (provided)

1-4

1.9 INSTALLATION AND SETUP

The following sections describe all the steps needed to prepare the board for operation. Please
read the following sections carefully before using the board. When you are preparing the board
for the first time, be sure to check that all jumpers are in the default locations. After the board is
functional in its standard configuration, you can use the Ethernet by following the instructions
provided in the following sections.

1.9.1 Unpacking
1. Unpack the computer board from its shipping box.
2. Save the box for storing or reshipping.
3. Refer to the following list and verify that all the items are present. You should have received:

a. M5206EC3 single board computer
b. M5206EC3 user's manual, this documentation
c. One serial (RS-232) communication cable
d. One Computer Systems BDM wiggler cable

WARNING
AVOID TOUCHING THE MOS DEVICES. STATIC

DISCHARGE CAN AND WILL DAMAGE THESE DEVICES.

Once you verified that all the items are present:

1. Remove the board from its protective jacket.
2. Check the board for any visible damage and ensure that there are no broken, damaged, or

missing parts. If you have not received all the items listed above or they are damaged,
please contact Cadre III immediately in order to correct the problem.

Cadre III
4150 Freidrich Lane, Suite D

Austin, Texas 78744
Support: (USA only): (800) 410-2031

(512) 326-9455

1.9.2 Preparing the Board for Use
The board as shipped is ready to be connected to a terminal and the power supply without any
modification. However, follow the steps below to ensure proper operation from the first time you
apply the power. Figure 4 shows the placement of the jumpers and the connectors, and section
1.11 explains the default jumper settings.

1-5

1.9.3 Providing Power to the Board
The board accepts two types of power supply connections. Connector P4 is a 2.1mm barrel
connector power jack with center positive and P3 is a lever-actuated connector for bare-wire
insertion. The board accepts 7.5V to 9V DC (regulated or unregulated) at 1.5 amp through either
one of the connectors (see below). Power supplied to the processor passes through jumpers J6
and J7 (note: power connected to the pullup resistors attached to the processor does not
pass through J6 or J7). Both J6 and J7 are in parallel with each other and can perform power
analysis.

Note: On boards labeled “Rev 1.2”, the silkscreen for D9 and D10 are incorrect. D9 should be
labeled +3.3V and D10 should be labeled +5V. For those board revisions higher than Rev 1.2,
ignore this note.

Contact NO. Voltage
 1 +7.5-9V

 2 Ground

1.9.4 Selecting Terminal Baud Rate
The MCF5206e serial channel used for serial communication has a built-in timer the ROM
monitor uses to generate the baud rate for terminal communication. You can program the serial
channel to several baud rates. After power-up or a manual reset, the ROM monitor firmware
configures the UART channel 1 for 19200 baud. Once the ROM monitor is running, you can
issue the SET command to choose any baud rate the ROM monitor supports. Refer to Chapter 2
for more information on this command.

1.9.5 The Terminal Character Format
The character format of the communication channel is fixed at power -up or reset. The character
format is 8 bits per character, no parity, and one stop bit. Make sure your terminal is set to this
format. Handshaking is set to none.

1.9.6 Connecting the Terminal
Use the RS-232 serial cable to connect the terminal to the M5206EC3. The cable has a 9-pin
female D subconnector at one end and a 9-pin male D subconnector at the other end (see Figure
2). Connect the 9-pin male connector to P1 connector on M5206EC3. Connect the 9-pin female
connector to one of the available serial communication channels normally referred to as COMx
(COM1, COM2, etc.) on the IBM PC or compatible machine. Depending on the kind of serial
connector on the back of your PC, that connector may be a male 25-pin or 9-pin. 9-pin-to-25-pin
adapters are available at most electronics stores.

1-6

1.9.7 Using a Personal Computer as a Terminal
You can use your personal computer as a terminal provided you also have installed terminal
emulation software such as PROCOMM, KERMIT, QMODEM, Windows 95® Hyper Terminal or
similar packages. Connect as described in 1.9.6 Connecting the Terminal.

Once the connection to the PC is made, you are ready to power-up the PC and run the terminal
emulation software. When the PC is in terminal mode, you need to select the baud rate and the
character format for the channel. Most terminal emulation software packages provide a command
known as "Alt-p" (press the p key while pressing the Alt key) to choose the baud rate and
character format. Select 8 bits, no parity, one stop bit. Then, select the baud rate as 19200. Now
apply power to the board.

Figure 2. Pin assignment for P1 (Terminal) connector

1. Data Carrier Detect, Output (shorted to pins 4 and 6)
2. Receive Data, Output from board (receive refers to terminal side)
3. Transmit Data, Input to board (transmit refers to terminal side)
4. Data Terminal Ready, input (shorted to pin 1 and 6)
5. Signal Ground
6. Data Set Ready, Output (shorted to pins 1 and 4).
7. Request to Send, input
8. Clear to send, output
9. Not connected

Figure 3. System Configuration

Microprocessor
Expansion bus I/O

Ethernet RJ45

ADRAM SIMM

RS232 DB-9
Connectors
(P1-2)

Microprocessor
Expansion bus I/O
(J3-J4)

Background Debug Mode
(BDM) Connector (J5) Mictor connectors

(LA1-4)
+7.5 to 12v GND
Power Supply

LA3

LA1

P3 P4
J3

J4
J5

P1 P2 J2 P5

MCF5206e
U7

LA2

LA43.3V -> 0
5V -> 0
LED

Ethernet
LED ->
0

1-7

Figure 4. Jumper and Connector Placement

1.10 SYSTEM POWER-UP AND INITIAL OPERATION

Now that you have connected all the cables, you can apply power to the board. After power is
applied, dBUG initializes the board then displays the power-up message on the terminal, which
includes the amount of the memory present.

Hard Reset
DRAM Size: 4M

Copyright 1997-1998 Motorola, Inc. All Rights Reserved.
ColdFire® MCF5206e EVS Debugger V1.4.1 (JUL 1998 12:10:48:)
Enter ‘help’ for help.

dBUG>

Note: You can download from the web any updates to the ROM Monitor.

The board is now ready for operation under the control of the debugger as described in Chapter 2.
If you do not receive the above response, perform the following checks:

1. Make sure that the power supply is properly set and connected to the board.
2. Check that both LEDs D9 and D10 are lit (the board requires a minimum of

7.5 to 9 V DC).
3. Check that the terminal and board are set for the same character format and

baud rate.
4. Press the black RESET button to ensure that the board has been initialized

properly.

If you still are not receiving the proper response, your board may have been damaged in shipping.
Contact Cadre III for further instructions.

LA3

LA1

P3 P4
J3

J4
J5

P1 P2 J2 P5

MCF5206e
U7LA2

LA4

TP1
JP1

JP2

JP7 JP6

1-8

1.11 M5206EC3 JUMPER SETUP

The jumpers on the board are discussed in Chapter 3. However, here’s a brief discussion of the
jumper settings.

1.11.1 Jumper JP1
This jumper selects between -CS0 to Flash or a header.

Table 1. JP1, -CS0 Select
JP1 FUNCTION

1 and 2 Flash (default)
2 and 3 Header (TP1)

1.11.2 Jumper JP2 - Flash Upper Half/Lower Half Boot
This jumper allows the MCF5206e to boot from the lower or upper half of the flash. The default
is the lower half. Refer to Section 3.3.1 for information on using this jumper.

Table 2. JP2, Upper/Lower Half BOOT
JP2 FUNCTION

1 and 2 Lower (default)
2 and 3 Upper

1.11.3 Jumper J6 and J7 - CPU Power JP6 and 7
These jumpers pass power to the ColdFire CPU. Without a minimum of one jumper, the CPU will
not get any power.

JP6 JP7 FUNCTION
ON ON Power (default)
OFF OFF No Power

1.12 USING THE BDM

The MCF5206e has a built-in debug mechanism referred to as BDM that uses the J5 header.

The BDM cable (provided) is to be used with third-party developer software tools such as SDS or
P&E. For a current list of third-party development tools, visit the Motorola ColdFire web site at
http://www.motorola.com/ColdFire. The BDM cable connects to the parallel port of a computer
and to the MC5206EC3 J5 header.

IMPORTANT: There is no key to protect the BDM cable from being rotated and plugged in
incorrectly. To prevent hooking up the BDM cable incorrectly, notice pin 1 on the cable and the
notation on the board. A red strip on the ribbon cable normally notes which side of the cable pin
1 is located. There is also a pin-1 marking on the board near the connector.

2-9

2 USING THE MONITOR/DEBUG FIRMWARE

The M5206EC3 computer board has a resident firmware package that provides a self-contained
programming and operating environment. The firmware, named dBUG, provides you with
monitor/debug, disassembly, program download, and I/O control functions. This chapter explains
how to use the dBUG package, including the user interface and command structure.

2.1 WHAT IS dBUG?

The dBUG package is a resident firmware package for the ColdFire® Family evaluation boards.
The firmware (stored in two 512Kx8 Flash ROM devices) provides a self-contained programming
and operating environment. The dBUG package interacts with you through predefined commands
that are entered from the terminal.

The user interface to dBUG is the command line. A number of features have been implemented
to achieve an easy and intuitive command line interface.

The dBUG package assumes that an 80x24 character dumb terminal is used to connect to the
debugger. For serial communications, dBUG requires eight data bits, no parity, and one stop bit,
8N1. The baud rate is 19200 but can be changed after the power-up using the SET command
(see Section 2.4.21).

The command line prompt is “dBUG>“. Enter any dBUG command from this prompt. Command
lines cannot exceed 80 characters in length. Wherever possible, dBUG displays data in 80
columns or less. The dBUG echoes each character as you type them, eliminating the need for any
“local echo” on the terminal side.

In general, dBUG is not case sensitive. You can enter commands in either upper or lower case.
Only symbol names require the exact case.

Most commands can be recognized by using an abbreviated name. For instance, entering “h” is the
same as entering “help”. Therefore, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. The
dBUG recognizes these commands and allows for repeated execution of these commands with
minimal typing. After a command is entered, simply press <RETURN> or <ENTER> to invoke
the command again. The command is executed as if no command line parameters were provided.

An additional function called the "TRAP 15 handler" lets you program various routines within
dBUG. The TRAP 15 handler is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 5. After system initialization, the board
waits for a command-line input from the user terminal. When a proper command is entered, the
operation continues in one of the two basic modes. If the command causes execution of the user
program, the dBUG firmware may or may not be re-entered, depending on programming of the
user program (see Section 2.5.4). For the other mode, the command will be executed under

2-10

control of the dBUG firmware, and after command completion, the system will return to
command-entry mode.

During command execution, additional user input may be required depending on the command
function.

For commands that accept an optional <width> to modify the memory access size, the valid
values are as follows:

.B 8-bit (byte) access

.W 16-bit (word) access

.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16-bit.

The dBUG maintains the core ColdFire register set. These are listed below.

A0-A7
D0-D7
PC
SR

All control registers on ColdFire are not readable by the supervisor-programming model, and thus
not accessible via dBUG. User code can change these registers, but be careful as changes may
render dBUG useless.

A reference to “SP” actually refers to “A7”.

2.2 OPERATIONAL PROCEDURE

2.2.1 System Power-Up

a. Be sure the power supply is connected properly prior to power-up.
b. Make sure the terminal is connected to the terminal (P1) connector.
c. Turn power on to the board.

2-11

Figure 5. Flow Diagram of dBUG Operational Mode

2.2.2 System Initialization
Powering up the board will initialize the system. The processor is reset and dBUG is invoked.

The dBUG performs the following configurations of internal resources during the initialization.
The instruction cache is invalidated and disabled. The Vector Base Register, VBR, points to the
Flash. However, a copy of the exception table is made at address $00000000 in ADRAM. To
take over an exception vector, place the address of the exception handler in the appropriate vector
in the vector table located at 0x00000000, and then point the VBR to 0x00000000. The software
watchdog timer is disabled, bus monitor is enabled, and internal timers are placed in a stop
condition. Interrupt controller registers are initialized with unique interrupt level/priority pairs.

After initialization, the terminal will display the following:

Hard Reset
DRAM Size: 4M
NE2000: 0x300

Copyright 1997-1998 Motorola, Inc. All Rights Reserved.
ColdFire® MCF5206e EVS Debugger Vx.x.x (xxx 199x xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

If you did not receive this response, recheck the setup. Refer to Section 1.10 System Power-
Up And Initial Operation. Note, the date “xxx 199x xx:xx:xx” may vary in different
revisions.

Initialize

Command
Line Input

from
Terminal?

Execute
Comman
d
Function

Does
Command Line

Cause User Program
Execution?

Jump to User
Program and

Begin Execution

Yes

Yes

No

No

2-12

You can re-initialize the M5206EC3 computer board firmware using other methods, which are
discussed in the following paragraphs.

2.2.2.1 HARD RESET BUTTON
Hard RESET is the red button located in the lower right side of the board. Depressing this button
terminates all processes, resets the MCF5206e processor and board logic, and restarts the dBUG
firmware. Pressing the RESET button would be the appropriate action if all else fails.

2.2.2.2 ABORT BUTTON
ABORT is the black button located next to RESET button on the right side of the board. The
abort function interrupts the present processing (a level 7 interrupt on MCF5206e) and passes
control to the dBUG firmware. This action differs from RESET in that no processor register or
memory contents are changed, the processor and peripherals are not reset, and dBUG is not
restarted. Also, in response to depressing the ABORT button, the contents of the MCF5206e
core internal registers are displayed.

The abort function is most appropriate when software is being debugged. You can interrupt the
processor without destroying the present state of the system.

2.2.2.3 SOFTWARE RESET COMMAND
The dBUG does have a command that restarts the dBUG as if a hardware reset was invoked. The
command is “RESET”.

2.2.2.4 USER MEMORY ADDRESS
User memory is located at addresses $00020000-$xxxxxxxx, where $xxxxxxxx is the maximum
RAM address of the memory installed in the board. When first learning the system, you should
limit your activities to this area of the memory map. The dBUG uses the address range
$00000000-$0001FFFF. The memory map is documented in detail in Section 3.1.8.

2.3 TERMINAL CONTROL CHARACTERS

The command line editor uses a history buffer to remember the last five commands issued. These
commands can be recalled and then executed using control keys.

Several keys serve as a command line edit and control functions. It is best to become familiar with
these functions before working with the system. These functions include:

a. RETURN (carriage- return) - will enter the command line and initiates processing
b. Delete (Backspace) key or CTRL-H - will delete the last character entered
c. CTRL-D - Go down in the command history buffer; you can modify, then press enter
d. CTRL-U - Go up in the command history buffer; you can modify, then press enter
e. CTRL-R - Recall and execute the last command entered; does not require pressing

RETURN

For characters requiring the control key (CTRL), the CTRL should be held down while the other
key is pressed.

2-13

2.4 dBUG COMMAND SET

Table 3 lists the dBUG commands. Each of the individual commands is described in the following
pages.

Table 3. dBUG Commands

 COMMAND
MNEMONIC

 DESCRIPTION SYNTAX PAGE

AS Assemble AS <addr> <instruction> 2-6
BC Block Compare BD <1ST ADDR> <2ND ADDR> <LENGTH> 2-7
BF Block Fill BF<WIDTH> BEGIN END DATA 2-8
BM Block Move BM BEGIN END DEST 2-9
BS Block Search BS <WIDTH> BEGIN END DATA 2-11
BR Breakpoint BR ADDR <-R> <-C COUNT> <-T TRIGGER> 2-10
DATA Data Convert DATA VALUE 2-12
DI Disassemble DI <ADDR> 2-13
DL Download Serial DL <OFFSET> 2-14
DN Download Network DN <-C> <-E> <-S> <-I> <-O OFFSET> <FILENAME> 2-15
GO Execute GO <ADDR> 2-16
GT Go TILL BREAKPOINT GT <ADDR> 2-17
HELP Help HELP <COMMAND> 2-18
IRD Internal Register Display IRD <MODULE.REGISTER> 2-19
IRM Internal Register Modify IRM <MODULE.REGISTER> <DATA> 2-20
MD Memory Display MD <WIDTH> <BEGIN> <END> 2-21
MM Memory Modify MM <WIDTH> ADDR <DATA> 2-22
RD Register Display RD <REG> 2-23
RM Register Modify RM REG DATA 2-24
RESET Reset RESET 2-25
SET Set Configurations SET OPTION <VALUE> 2-26
SHOW Show Configurations SHOW OPTION 2-28
STEP Step (Over) STEP 2-29
SYMBOL Symbol Management SYMBOL <SYMB> <-A SYMB VALUE> <-R SYMB>

 <-C | L | S>
2-30

TRACE Trace(Into) TRACE <NUM> 2-31
UPDBUG Update Dbug UPDBUG 2-32
UPUSER Update User Flash UPUSER 2-33
VERSION Show Version VERSION 2-34

Note:
If a command causes the system to access an unused address (i.e., no memory
or peripheral devices are mapped at that address), a bus trap error will occur,

which results in a trap error message and reveals the contents of all the
MCF5206e core registers. Control is returned to the dBUG monitor.

Parameters enclosed in < > symbols are optional.

2-14

2.4.1 AS - Assemble AS
Usage: AS <addr> <instruction>

The AS command assembles instructions. The value for addr can be an absolute address specified
as a hexadecimal value or a symbol name. The instruction can be any valid instruction for the
target processor.

The assembler keeps track of the address where the last instruction’s opcode was written. If no
address is provided to the AS command and the AS command has not been used since system
reset, then AS defaults to the beginning address of user space for the target board.

If no instruction is forwarded to the AS command, then AS prompts with the address where
opcode will be written, and continues to assemble instructions until you terminate the AS
command by inputting a period (.).

The inline assembler allows the use of case-sensitive symbols defined by equate statements and
labels that are stored in the symbol table. The syntax for defining symbols and labels is as follows:

Symbol equ value
Symbol: equ value
Symbol .equ value
Symbol: .equ value
Label: instruction
Label:

Constants and operands may be input in several different bases:

0x followed by hexadecimal constant
$ followed by hexadecimal constant
@ followed by octal constant
% followed by binary constant
digit decimal constant

The assembler also supports the different syntax allowed for the indexed, displacement and
immediate addressing modes:

(12,An) or 12(An)
(4,PC,Xn) or 4(PC,Xn)
(0x1234).L or 0x1234.L

Examples:

To assemble one ‘move’ instruction at the next assemble address, the command is:

as move.l #0x25,d0

To assemble multiple lines at 0x12000, the command is:

as 12000
then:

2-15

0x00012000: start: nop
0x00012002: nop
0x00012004: lsr.l #1,d0
0x00012006: cmp #4,d0
0x00012008: beq start
0x0001200A:

2-16

2.4.2 BC - Compare Blocks of Memory BC
Usage: BC first second length

The BC command compares two contiguous blocks of memory; the first block starting at address
“first”, the second block starting at address “second”, both of length “length”. If the blocks are not
identical, the addresses of the first mismatch are displayed. The value for addresses “first” and
“second” can be an absolute address specified as a hexadecimal value or a symbol name. The value
for length can be a symbol name or a number converted according to the user-defined radix,
normally hexadecimal.

Examples:

To verify that the code in the first block of user FLASH space (128K) is identical to the code in
user ADRAM space, the command is,

 bc 20000 FFE20000 20000 .

2-17

2.4.3 BF - Block of Memory Fill BF
Usage: BF<width> begin end data

The BF command fills a contiguous block of memory starting at address “begin”, stopping at
address “end”, with the value, “data”. Width modifies the size of the data that is written.

The value for addresses “begin” and “end” can be an absolute address specified as a hexadecimal
value, or a symbol name. The value for “data” can be a symbol name or a number converted
according to the user defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size and then increments the
address accordingly during the operation. Thus, for the duration of the operation, this command
performs properly aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value 0x1234,
the command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a byte value of
0xAB, the command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and bss_end),
the command is:

bf bss_start bss_end 0

2-18

2.4.4 BM - Block Move BM
Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address “begin”, stopping at
address “end”, to the new address, “dest”. The BM command copies memory as a series of bytes and
does not alter the original block.

The value for addresses “begin”, “end”, and “dest” can be an absolute address specified as a hexadecimal
value or a symbol name. If the destination address overlaps the block defined by “begin” and “end”,
an error message is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the location
0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to
0x00200000, the command is:

bm data_start data_end 200000

2-19

2.4.5 BR - Breakpoint BR
Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr can be an
absolute address specified as a hexadecimal value, or a symbol name. Count and trigger are
numbers converted according to the user-defined radix, normally hexadecimal. If no argument is
provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no address is
specified in conjunction with the -r option, all breakpoints are removed.

Each time a breakpoint is encountered during the execution of target code, its count value is
incremented by one. By default, the initial count value for a breakpoint is zero, but the -c option
allows setting the initial count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is
compared against the trigger value. If the count value is equal to or greater than the trigger value,
a breakpoint is encountered and control returned to dBUG. By default, the initial trigger value
for a breakpoint is one, but the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are
initialized to the values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main(), the command is:

br _main

When the target code is executed and the processor reaches main(), control will returned to
dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must try to execute the function bench() a third
time before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

2-20

2.4.6 BS - Block Search BS
Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address “begin”, stopping at
address “end”, for the value, “data”. “Width” modifies the size of the data that is compared during the
search.

The value for addresses “begin” and “end” can be an absolute address specified as a hexadecimal value
or a symbol name. The value for “data” can be a symbol name or a number converted according to
the user-defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the
address accordingly during the operation. Thus, for the duration of the operation, this command
performs properly aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and ending at
0x00080000 the command is:

bs 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value
0x1234. If no match is found, the address increments to 0x00040002 and the next 16-bit value is
read and compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000 and ending
at 0x00080000, the command is:

bs.l 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value
0x0000ABCD. If no match is found, the address increments to 0x00040004 and the next 32-bit
value is read and compared.

To search the BSS section (defined by the symbols bss_start and bss_end) for the byte value
0xAA, the command is:

bs.b bss_start bss_end AA

2-21

2.4.7 DATA - Data Conversion DATA
Usage: DATA data

The DATA command displays data in both decimal and hexadecimal notation.

The value for data can be a symbol name or an absolute value. If an absolute value passed into
the DATA command is prefixed by “0x”, data is interpreted as a hexadecimal value. Otherwise,
data is interpreted as a decimal value. All values are treated as 32-bit quantities.

Examples:

To display the decimal equivalent of 0x1234, the command is:

data 0x1234

To display the hexadecimal equivalent of 1234, the command is:

data 1234

2-22

2.4.8 DI - Disassemble DI
Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr can be an
absolute address specified as a hexadecimal value or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. This is especially useful for branch target addresses and subroutine calls.

The DI command tries to track the address of the last disassembled opcode. If no address is
provided to the DI command, the DI command uses the address of the last disassembled opcode.

Examples:

To disassemble code that starts at 0x00040000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

di _main

2-23

2.4.9 DL - Download Serial DL
Usage: DL <offset>

The DL command performs an S-record download of data obtained from the serial port. The
value for offset is converted according to the user-defined radix, normally hexadecimal.

If offset is provided, the destination address of each S-record is adjusted by offset. The DL
command checks the destination address for validity. If the destination is an address below the
defined user space (0x00000000-0x00020000), an error message is displayed and downloading
aborted.

If the S-record file contains the entry point address, the program counter is set to reflect this
address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port and adjust the destination address by 0x40,
the command is:

dl 0x40

2-24

2.4.10 DN - Download Network DN
Usage: DN <-c> <-e> <-i> <-s> <-o offset> <filename>

The DN command downloads code from the network. The DN command handle files that are
S-record, COFF, or ELF formats. The DN command uses Trivial File Transfer Protocol, TFTP,
to transfer files from a network host.

In general, the type of file to be downloaded and the name of the file must be specified to the DN
command. The -c option indicates a COFF download, the -e option indicates an ELF download, -
I option indicates an image download, and the -s indicates an S-record download. The -o option
works only in conjunction with the -s option to indicate and optional offset for S-record
download. The filename is passed directly to the TFTP server and, therefore, must be a valid
filename on the server.

If neither of the -c, -e, -i, -s or filename options are specified, then a default filename and file type
will be used. Default filename and file type parameters are manipulated using the SET and
SHOW commands.

The DN command checks the destination address for validity. If the destination is an address
below the defined user space, an error message is displays and downloading is aborted.

For ELF and COFF files, which contain symbolic debug information, the symbol tables are
extracted from the file during download and used by dBUG. Only global symbols are kept in
dBUG.

Note: The dBUG symbol table is not cleared prior to downloading, so it is your responsibility to
clear the symbol table as necessary prior to downloading.

If an entry point address is specified in the S-record, COFF, or ELF file, the program counter is
set accordingly.

Examples:

To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default file type with the name “bench.out”, the command is:

dn bench.out

To download a file using the default filename and file type, the command is:

dn

2-25

This command requires proper Network address and parameter setup. Refer to Appendix
A for this procedure.

2-26

2.4.11 Go - Execute GO
Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr can be an
absolute address specified as a hexadecimal value or a symbol name. If no argument is provided,
the GO command begins executing instructions at the current program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target code,
and the context is switched to the target program. Control is regained only when the target code
encounters a breakpoint, illegal instruction, or other exception that hands control back to dBUG.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

2-27

2.4.12 GT - Execute Till a Temporary Breakpoint GT
Usage: GT <addr>

The GT command executes the target code starting at the address in PC (whatever the PC has)
until a temporary breakpoint as given in the command line is reached.

Example:

To execute code at the current program counter and stop at breakpoint address 0x10000, the
command is:

GT 10000

2-28

2.4.13 HELP - Help HE
Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In
addition, the address of where user code can start is given. If <command> is provided, a brief
listing of the syntax of the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

The help list is longer than one page. The help command displays one full screen and asks for an
input to display the rest of the list.

To obtain help on the breakpoint command, the command is:

help br

2-29

2.4.14 IRD - Internal Registers Display IRD
Usage: IRD <module.register>

This commands displays the internal registers of different modules inside the MCF5206e. In the
command line, the module refers to the module name where the register is located and the register
refers to the specific register needed.

The registers are organized according to the module to which they belong. The available modules
on the MCF5206e are SIM, UART1, UART2, TIMER, DMA, M-Bus, DRAMC, and Chip
Select. Refer to the MCF5206e User’s Manual for more details.

Example:

ird sim.sypcr ;display the SYPCR register in the SIM module.

2-30

2.4.15 IRM - Internal Registers MODIFY IRM
Usage: IRM module.register data

This commands modifies the contents of the internal registers of different modules inside the
MCF5206e. In the command line, the module refers to the module name where the register is
located, register refers to the specific register needed, and data is the new value to be written into
that register.

The registers are organized according to the module to which they belong. The available modules
on the MCF5206e are SIM, UART1, UART2, TIMER, M-Bus, DRAMC, Chip-Select. Refer to
MCF5206e User’s Manual for more information.

Example:

irm timer.tmr1 0021 ;write 0021 into TMR1 register in the TIMER module.

2-31

2.4.16 MD - Memory Display MD
Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address “begin” and stopping
at address “end”. The value for addresses “begin” and “end” can be an absolute address specified as a
hexadecimal value or a symbol name. “Width” modifies the size of the data that is displayed.

Memory display starts at the address “begin”. If no beginning address is provided, the MD
command uses the last displayed address. If no ending address is provided, MD will display
memory up to an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments the
address accordingly during the operation. Thus, for the duration of the operation, this command
performs properly aligned memory accesses.

Examples:

To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the
command is:

md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at 0x00050000, the
command is:

md.l 40000 50000

This command can be repeated by pressing the RETURN key. It will continue with the
address after the last display address.

2-32

2.4.17 MM - Memory Modify MM
Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr can be an
absolute address specified as a hexadecimal value or a symbol name. “Width” changes the size of the
data that is modified. The value for data may be a symbol name or a number converted according
to the user defined radix, normally hexadecimal.

If a value for data is provided, the MM command immediately sets the contents of addr to data.
If no value for data is provided, the MM command enters into a loop. The loop obtains a value
for data, sets the contents of the current address to data, increments the address according to the
data size, and repeats. The loop terminates when an invalid entry for the data value is entered,
i.e., a period.

This command first aligns the starting address for the data access size then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs
properly aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

2-33

2.4.18 RD - Register Display RD
Usage: RD <reg>

The RD command displays the register set of the target. If no argument for reg is provided, then
all registers are displayed. Otherwise, the value for reg is displayed.

Examples:

To display all the registers and their values, the command is:

rd

To display only the program counter, the command is:

rd pc

2-34

2.4.19 RM - Register Modify RM
Usage: RM reg data

The RM command modifies the contents of the register “reg to data”. The value for “reg” is the
name of the register, and the value for “data” can be a symbol name or it is converted according to
the user defined radix, normally hexadecimal.

The dBUG preserves the registers by storing a copy of the register set in a buffer. The RM
command updates the copy of the register in the buffer. The actual value will not be written to
the register until target code is executed.

Examples:

To change register D0 to contain the value 0x1234, the command is:

rm D0 1234

2-35

2.4.20 RESET - Reset the board and dBUG RESET
Usage: RESET

The RESET command tries to reset the board and dBUG to their initial power-up states.

The RESET command executes the same sequence of code that occurs at power up. This code
tries to initialize the devices on the board and dBUG data structures. If the RESET command
fails to reset the board to your satisfaction, cycle power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

2-36

2.4.21 SET - Set Configuration SET
Usage: SET option <value>

SET

The SET command allows the setting of user-configurable options within dBUG. The options are
listed below. If the SET command is issued without an option, it will show the available options
and values.

See Appendix A for information on configuring dBUG for network downloads. The board needs
a RESET after this command in order for the new option(s) to take effect.

baud - This is the baud rate for the first serial port on the board. All communication between
dBUG and you occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit,
8N1. Do not choose 38400 baud.

base - This is the default radix for use in converting number from their ASCII text representation
to the internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices
are binary (base 2), octal (base 8), and decimal (base 10).

client - This is the network Internet Protocol (IP) address of the board. For network
communications, the client IP must be set to a unique value, usually assigned by your local
network administrator.

server - This is the network IP address of the machine that contains files accessible via TFTP.
Your local network administrator will have this information and can assist in properly configuring
a TFTP server if one does not exist.

gateway - This is the network IP address of the gateway for your local subnetwork. If the client
IP address and server IP address are not on the same subnetwork, then this option must be
properly set. Your local network administrator will have this information.

netmask - This is the network address mask to determine if use of a gateway is required. This
field must be properly set. Your local network administrator will have this information.

filename - This is the default filename to be used for network download if no name is provided to
the DN command.

filetype - This is the default file type to be used for network download if no type is provided to
the DN command. Valid values are: “s-record”, “coff”, “image”, and “elf”.

autoboot - This option allows for the automatic download and execution of a file from the
network. You can use this option to automatically boot an operating system from the network.
Valid values are: “on” and “off”. This option is not implemented on the current of dBUG.

nicbase - This is base address of the network interface. This command is used to inform the
dBUG of the address of the network interface. The default value shows 0x0000. However, this
parameter is hard coded to 0x300. DO NOT CHANGE THIS OPTION.

macaddr - This is the Ethernet MAC address of the board. For network communications, the
MAC address must be set to a unique value. Any address that is not already in use is suitable.

2-37

Examples:

To see all the available options and supported choices, the command is:

set

To set the baud rate of the board to be 19200, the command is:

set baud 19200

Now press the RESET button (RED) or RESET command for the new baud to take effect. This
baud will be programmed in Flash ROM and will be used during the power up.

2-38

2.4.22 SHOW - Show Configuration SHOW
Usage: SHOW option

SHOW

The SHOW command displays the settings of the user-configurable options within dBUG. The
SHOW command can display most configurable options via the SET commands. If the SHOW
command is issued without any option, it will show all options.

Examples:

To display all the current options, the command is:

show

To display the current baud rate of the board, the command is:

show baud

To display the TFTP server IP address, the command is:

show server

2-39

2.4.23 STEP - Step Over ST
Usage: STEP

You can use the ST command to “step over” a subroutine call rather than trace every instruction in
the subroutine. The ST command sets a breakpoint one instruction beyond the current program
counter and then executes the target code.

You can also use the ST command for BSR and JSR instructions. The ST command will work
for other instructions as well, but note that if the ST command is used with an instruction that will
not return, i.e. BRA, the temporary breakpoint may never be encountered and thus dBUG may
not regain control.

Example:

To pass over a subroutine call, the command is:

step

2-40

2.4.24 SYMBOL - Symbol Name Management SYMBOL
Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol
name is provided to the SYMBOL command, the symbol table is searched for a match on the
symbol name and its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a
symbol name from the table.

The -c option clears the entire symbol table; the -l option lists the contents of the symbol table;
and the -s option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table
lookups, either by the SYMBOL command or by the disassembler, will use only the first 31
characters. Symbol names are case sensitive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l

2-41

2.4.25 TRACE - Trace Into TR
Usage: TRACE <num>

The TRACE command allows single instruction execution. If <num> is provided, then <num>
instructions are executed before control is returned to dBUG. The value for <num> is a decimal
number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single instruction
execution, and the target code executed. Control returns to dBUG after a single instruction
execution of the target code.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

2-42

2.4.26 UPDBUG - Update the dBUG Image UPDBUG
Usage: UPDBUG

The UPDBUG command update the dBUG image in Flash. When updates to the MCF5206e
EVS dBUG are available, the updated image is downloaded to address 0x00020000. The new
image is placed into Flash using the UPDBUG command. You are prompted for verification
before performing the operation. Use this command with extreme caution as any error can render
dBUG
--and thus the board--useless.

2-43

2.4.27 UPUSER - Update User Code In Flash UPUSER
Usage: UPUSER <number of sectors>

The UPUSER command places user code and data into space allocated for you in Flash. Six
sectors of 128K each are available as user space. To place code and data in user Flash, the image
is downloaded to address 0x00020000 and the UPUSER command issued. This command
programs all six sectors of user Flash space. You access this space starting at address
0xFFE20000. To program less than six sectors, supply the number of sectors you want to
program after the UPUSER command.

Examples:

To program all 6 sectors of user FLASH space, the command is:

 upuser or upuser 6

To program only 128K of user FLASH space, the command is:

 upuser 1

2-44

2.4.28 VERSION - Display dBUG Version VERSION
Usage: VERSION

The VERSION command displays the version information for dBUG. The dBUG version number
and build date are both given.

The version number is separated by a decimal, for example, “v1.1.1”. The first number indicates the
version of the CPU specific code, the second indicates the version of the board specific code, and
the third indicates the version of the board-specific code.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

version

2-45

2.5 TRAP #15 Functions

An additional utility within the dBUG firmware is a function called the TRAP 15 handler. The
user program to use various routines within the dBUG, to perform a special task, and to return
control to the dBUG can call this function. This section describes the TRAP 15 handler and how
it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR_PRESENT,
and EXIT_TO_dBUG.

2.5.1 OUT_CHAR
This function (function code 0x0013) sends a character, which is in lower 8 bits of D1, to
terminal.

Assembly example:

/* assume d1 contains the character */
 move.l #$0013,d0 Selects the function
TRAP #15 The character in d1 is sent to terminal

C example:

void board_out_char (int ch)
{

/* If your C compiler produces a LINK/UNLK pair for this routine,
 * then use the following code which takes this into account
*/

#if l
/* LINK a6,#0 -- produced by C compiler */
asm (“ move.l 8(a6),d1”); /* put ‘ch’into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */

/* make the call */
/* UNLK a6 -- produced by C compiler */

#else
/* If C compiler does not produce a LINK/UNLK pair, the use
 * the following code.
*/
 asm (“ move.l 4(sp),d1”); /* put ‘ch’into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */

/* make the call */
#endif
}

2.5.2 IN_CHAR
This function (function code 0x0010) returns an input character (from terminal) to the caller. The
returned character is in D1.

Assembly example:

move.l #$0010,d0 Select the function
trap #15 Make the call, the input character is in d1.

C example:

int board_in_char (void)
{

asm (“ move.l #0x0010,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
asm (“ move.l d1,d0”); /* put the character in d0 */

2-46

}

2.5.3 CHAR_PRESENT
This function (function code 0x0014) checks if an input character is present to receive. A value
of zero is returned in D0 when no character is present. A non-zero value in D0 means a character
is present.

Assembly example:

move.l #$0014,d0 Select the function
trap #15 Make the call, d0 contains the response (yes/no).

C example:

int board_char_present (void)
{

asm (“ move.l #0x0014,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

}

2.5.4 EXIT_TO_dBUG
This function (function code 0x0000) transfers the control back to the dBUG, by terminating the
user code. The register context are preserved.

Assembly example:

move.l #$0000,d0 Select the function
trap #15 Make the call, exit to dBUG.

C example:

void board_exit_to_dbug (void)
{

asm (“ move.l #0x0000,d0”); /* select the function */
asm (“ trap #15”); /* exit and transfer to dBUG */

3-47

3 HARDWARE DESCRIPTION AND RECONFIGURATION

This chapter provides a functional description of the M5206EC3 board hardware (the schematics
are located in Appendix C). In this manual, an active low signal is indicated by a dash ("-")
preceding the signal name.

3.1 PROCESSOR AND SUPPORT LOGIC

This part of the chapter discusses the ColdFire processor and general supporting logic on the
M5206EC3 board.

3.1.1 Processor
Refer to Section 1.2 for a detailed description of the MCF5206e processor.

The MCF5206e has an IEEE JTAG-compatible port and BDM port. These signals are available at
port J5. The processor also has the logic to generate as many as eight chip selects (-CS0 to -CS7)
and supports ADRAM. The processor defaults to the BDM debug mode.

3.1.2 Reset Logic
The reset logic provides system initialization under two modes (under system power-up and when
the RESET switch, S1 [red switch], is active). The power-on generates the master RESET by
asserting the -RSTI and –HIZ that reset the total system. The RESET switch generates normal
reset that resets the entire processor except for the DRAM controller.

U11 and U12 produce active-low power-on RESET signals that feed the LSI2032V (U10) along
with the push-button RESET. The U4 device generates the system reset (-RESET), FLASH and
Ethernet RESET signals.

DBUG configures internal resources during the initialization by invalidating and disabling the
instruction cache. The Vector Base Register, VBR, points to the Flash. However, a copy of the
exception table is made at address $00000000 in DRAM. To take over an exception vector, you
must place the address of the exception handler in the appropriate vector in the vector table
located at $00000000, and then point the VBR to $00000000.

The software watchdog timer is disabled and internal timers are placed in a stop condition.
Interrupt controller registers are initialized with unique interrupt level/priority pairs. The parallel
I/O port is configured for input.

3.1.3 -HIZ Signal
The –HIZ signal is actively driven by the LSI2032V (U10). This signal is available for monitoring
on LA1 and J4. However, you should not drive this signal. If you need to drive –HIZ, it should be
done through the –HIZ_INLOW signal that is available on J2 pin 26. The –HIZ_INLOW signal
feeds the U10 that drives the –HIZ signal to the processor.

3-48

3.1.4 Clock Circuitry
The M5206EC3 uses a 54 MHz oscillator (U4) to provide the clock to the CLK pin of the
processor. In addition to U4, a 20-MHz oscillator (U18) feeds into the Ethernet chip. U4 also
drives the LSI2032 internal clock requirements. The 20-MHz oscillator is not used by the internal
logic of the LSI2032 although it is connected in the schematic.

3.1.5 Watchdog Timer (Bus Monitor)
The processor initiates a bus cycle that provides the necessary information for the bus cycle (e.g.
address, data, control signals, etc.) and asserting the -CS or -RAS low. Then, the processor waits
for an acknowledgment (-TA signal) from the addressed device before it can complete the bus
cycle. It is possible (due to incorrect programming) that the processor can try to access part of
the address space that physically does not exist. In this case, the bus cycle will continue forever
because there is no memory or I/O device to provide an acknowledgment signal, leaving the
processor in an infinite wait state. The MCF5206e has the necessary logic built into the chip to
watch the duration of the bus cycle. If the cycle is not terminated within the preprogrammed
duration, the logic will internally assert a transfer-error signal. In response, the processor will
terminate the bus cycle and an access fault exception (trap) will occur.

The duration of the watchdog is selected by BMT0-1 bits in System Protection Register. The
dBUG initializes this register with the value 00, which provides for 1024 system clock time-out.

3.1.6 Interrupt Sources
The ColdFire Family of processors can receive interrupts for seven levels of interrupt priorities.
When the processor receives an interrupt that has higher priority than the current interrupt mask
(in status register), it will perform an interrupt-acknowledge cycle at the end of the current
instruction cycle. This interrupt-acknowledge cycle indicates to the source of the interrupt that the
request is being acknowledged and the device should provide the proper vector number to
indicate where the service routine for this interrupt level is located. If the source of the interrupt
can’t provide a vector, its interrupt should be set up as autovector interrupt, which directs the
processor to a predefined entry into the exception table (refer to the MCF5206e User's Manual).

The processor goes to a service routine via the exception table. This table is in the Flash and the
VBR points to it. A copy of this table is made in the RAM starting at $00000000. To set an
exception vector, place the address of the exception handler in the appropriate vector in the
vector table located at $00000000, and then point the VBR to $00000000.

The MCF5206e has three external interrupt request lines. You can program the external interrupt
request pins to a interrupt priority-level signals (-IPL[2:0]) or predefined interrupt request pins (-
IRQ7, -IRQ4, -IRQ1). The M5206EC3 configures these lines as predefined interrupt request
pins. The only interrupt signal used on the M5206EC3 is –IRQ4 and -IRQ7 for the Ethernet. By
changing the external interrupt request pins to a interrupt priority-level signal, the Ethernet will no
longer function. There are also six internal interrupt requests from Timer1, Timer2, software
watchdog timer, UART1, UART2, and MBUS. You can program each external and internal for
any priority level. In case of similar priority level, a second relative priority between 0 to 3 will be
assigned.

3-49

The software watchdog is programmed for Level 7, priority 2, and uninitialized vector. The
UART1 is programmed for Level 3, priority 2, and autovector. The UART2 is programmed for
Level 3, priority 1, and autovector. The M-Bus is at Level 3, priority 0, and autovector. The
timers are at Level 5 with Timer 1 with priority 3 and Timer 2 with priority 2 and both for
autovector.

The M5206EC3 uses -IRQ7 to support the ABORT function using the ABORT switch S1 (red
switch). This switch forces a nonmaskable interrupt (level 7, priority 3) if your program
execution should be aborted without issuing a RESET (refer to Chapter 2 for more information
on ABORT). Because the ABORT switch can’t generate a vector in response to level 7 interrupt
acknowledge from the processor, the debugger programs this request for autovector mode.
Additional circuitry prevents debouncing of the switch, which causes the ABORT signal to assert
for a minimum of 30µ seconds.

The -IRQ1 line of the MCF5206e is not used on this board. However, the -IRQ1 is programmed
for Level 1 with priority 1 and autovector. You can use this line for external interrupt request.
Refer to MCF5206e User’s Manual for more information about the interrupt controller.

3.1.7 Internal SRAM
The MCF5206e has 8 KBytes of internal memory. This memory, which is mapped to
0x00400000, is not used by the dBUG but is available to users.

3.1.8 MCF5206e Registers and Memory Map
The memory and I/O resources of the M5206EC3 are divided into three groups, MCF5206e
internal, external resources, and the Ethernet controller. All the I/O registers are memory
mapped.

The MCF5206e has built-in logic and as many as eight chip-select pins (-CS0 to -CS7) that enable
external memory and I/O devices. In addition, two -RAS lines are available for DRAMs and
registers to specify the address range, type of access, and the method of -TA generation for each
chip-select and -RAS pins. The dBUG programs these registers to map the external memory and
I/O devices.

The M5206EC3 uses chip-select zero (-CS0) to enable the Flash ROMs (refer to Section 3.3).
The M5206EC3 uses -RAS1, -RAS2, -CAS0, -CAS1, -CAS2, and -CAS3 to enable the ADRAM
SIMM module (refer to Section 3.2), -CS2 for SRAM (not populated), and -CS3 for Ethernet bus
I/O space.

The chip-select mechanism of the MCF5206e allows the memory mapping to be defined based on
the memory space required (user/supervisor, program/data spaces).

The MBAR register maps all MCF5206e internal registers, configuration registers, parallel I/O
port registers, UART registers, and system control registers at any 1 KByte boundary. The
dBUG maps MBAR to 0x10000000. For a complete map of these registers, refer to the
MCF5206e User's Manual.

The M5206EC3 board can have as much as 32 MBytes of 3.3V ADRAM installed. Refer to
Section 3.2 for a discussion of RAM. The dBUG is programmed in two 29LV004B Flash ROMs
that only occupy 1 MBytes of the address space. ROM monitor uses the first 128 KBytes. The
following six 128 KByte sectors are available to users. Refer to section 3.3.

3-50

The Ethernet bus interface maps all the I/O space of the Ethernet bus to the MCF5206e memory
at address $40000000. Refer to section 3.6.

Table 4. ROM Monitor Default M5206EC3 Memory Map

ADDRESS RANGE SIGNAL and DEVICE
$00000000-$003FFFFF -RAS1, -RAS2, 4 MBytes of ADRAMs
$00400000-$00401FFF Internal SRAM (8 KBytes)
$10000000-$100003FF Internal Module registers
$30000000-$3007FFFF1 -CS2, External SRAM (512 KBytes)
$40000000-$4000FFFFF -CS3, 1M Byte Ethernet Bus area
$FFE00000-$FFEFFFFF -CS0, 1 MBytes of Flash ROM

1. Not installed. Level 2 cache footprint accepts Motorola’s MCM69F737TQ chip and any other SRAM
with the same electrical specifications and package.

All the unused area of the memory map is available to users.

3.1.9 Reset Vector Mapping
After reset, the processor attempts to get the initial stack pointer and initial program counter
values from locations $000000-$000007 (the first eight bytes of memory space). This operation
requires the board to have a nonvolatile memory device in this range with proper information.
However, in some systems, it is preferable to have RAM starting at address $00000000. In the
MCF5206e, the -CS0 responds to any accesses after reset until the CSMR0 is written. Because -
CS0 is connected to the Flash ROMs, they appear to be at address $00000000, which provides
the initial stack pointer and program counter (the first eight bytes of the Flash ROM). The
initialization routine, however, programs the chip-select logic and locates the Flash ROMs to start
at $FFE00000 and the DRAMs to start at $00000000.

3.1.10 -TA Generation
The processor starts a bus cycle by providing the necessary information (address, R/-W, etc.) and
asserting the -TS. The processor then waits for an acknowledgment (-TA) by the addressed
device before it can complete the bus cycle. This -TA is used not only to indicate the presence of
a device, it also allows devices with different access time to properly communicate with the
processor . The MCF5206e, as part of the chip-select logic, has a built-in mechanism to generate
the -TA for all external devices that do not have the capability to generate the -TA on their own.
The Flash ROMs and DRAMs can not generate the -TA. Their chip-select logic is programmed
by the ROM monitor to generate the -TA internally after a preprogrammed number of wait states.
In order to support the future expansion of the board, the -TA input of the processor is also
connected to the Processor Expansion Bus, J3, which allows the expansion boards to assert this
line to indicate its
-TA to the processor. On the expansion boards, however, this signal should be generated through
an open collector buffer with no pullup resistor (a pullup resistor is included on the board). All
the -TAs from the expansion boards should be connected to this line.

3.1.11 Wait State Generator
The Flash ROMs and ADRAM SIMM on the board may require some adjustments on the cycle
time of the processor to make them compatible with processor speed. To extend the CPU bus
cycles for the slower devices, you can program the chip-select logic of the MCF5206e to generate
the -TA after a given number of wait states. Refer to Sections 3.2 and 3.3 for information about
wait state requirements of ADRAMs and Flash ROMs, respectively.

3-51

3.2 ADRAM SIMM

The M5206EC3 has one 168-pin SIMM socket (U23) for ADRAM SIMM at 3.3 V. This socket
supports DRAM SIMMs of 250Kx32, 1Mx32, 2Mx32, 4Mx32, and 8Mx32. No special
configurations are needed. The dBUG will detect the total memory installed on power-up. The
SIMM speed should be 60ns. (Note: NOT SV ADRAM SIMM).

3.3 FLASH ROM

There are two 512 KByte Flash ROMs on the M5206EC3: U13 (high, even byte), and U15 (low,
odd byte).

The board is shipped with two 29LV004, 512 KByte FLASH ROMs for a total of 1 MBytes. The
first 128 KBytes and last 128 KBytes are reserved by the ROM monitor firmware. 768 KBytes
are available to users. The chip-select signal generated by the MCF5206e (-CS0) enables both
chips.

You can program the MCF5206e chip-select logic to generate the -TA for -CS0 signal after a
certain number of wait states. The dBUG programs this parameter to three wait states.

3.3.1 JP2 Jumper and User’s Program
When the jumper is set between pins 1 and 2, the behavior is normal. When the jumper is set
between pins 2 and 3, the board boots from the second half of Flash virtual address of (0x80000)
physical address of (0xFFE80000).

Procedure:
1. Compile and link as though the code was to be placed at the base of the Flash, but set up so

that it will download to the ADRAM starting at address 0x80000. You need to refer to the
compiler for this, as the procedure will depend on the compiler used (in Diab Data, a shadow
in the linker file is used).

2. Set up the jumper for Normal operation, pin1 connected to pin 2.

3. Download to ADRAM (if using serial or Ethernet, start ROM monitor first. If using BDM via
wiggler, download first, then start ROM monitor by pointing PC to 0xffe00400 and run.)

4. In ROM Monitor, run “upuser” command.

5. Move the jumper to pins 2 and 3 and press “reset” to execute the code in user space.

3.4 SERIAL COMMUNICATION CHANNELS

The M5206EC3 offers a number of serial communications that are discussed in this section.

3.4.1 MCF5206e Two UARTs
The MCF5206e has two built-in UARTs, each with its own software-programmable baud-rate
generators. Only one channel serves as the ROM monitor-to-terminal output and the other is
available to users. The ROM monitor, however, programs the interrupt level for UART1 to Level
3, priority 2, and autovector mode of operation. The interrupt level for UART2 is programmed

3-52

to Level 3, priority 1, and autovector mode of operation. The signals of these channels are
available on port LA1 and J2. The signals of UART1 and UART2 are also passed through the
RS-232 driver/receiver and are available on DB-9 connectors P1 and P2. Refer to the MCF5206e
User’s Manual for programming and the register map.

3.4.2 Motorola Bus (M-Bus) Module
The MCF5206e has a built-in M-Bus module that allows interchip bus interface for a number of
I/O devices. It is compatible with industry-standard I2C Bus. The M5206EC3 does not use this
module and it is available to users. The two M-Bus signals are SDA and SCL that are available at
the LA1 and J2 connector. These signals are open-collector signals. However, they have pullup
resistors on the M5206EC3. These signals are connected to the ADRAM SIMM module I2C
interface but not used by the debugger. The interrupt control register for M-Bus is set for Level
3, priority 0, and autovector.

3.5 PARALLEL I/O PORT

The MCF5206e has one 8-bit parallel port. All the pins have dual functions and can be configured
as I/O or their alternate function via the Pin Assignment Register. All pins are configured as I/O
pins by the ROM monitor.

3.6 ONBOARD ETHERNET LOGIC

The M5206EC3 includes the necessary logic, drivers, and the NE2000-compatible Ethernet chip
to allow 10 Mbit transfer rate on a network. The Ethernet space addresses are located starting at
0x40000000. The interface base address is 0x300 and uses the ColdFire IRQ4. Thus, the address
of the chip is 0x40000300.

Note that all registers should be addressed as WORD (even though the registers are bytes) and
that the even address registers are addressed as they are (no change); the read word will have the
byte of the data in the lower byte of the word.

For odd-addressed bytes, the address is mapped to 0x400083xx-1. Note that odd bytes are
addressed as even addresses but increased by 0x8000. Still the read byte will be in the lower byte
of the read word.

Below is an example of the data structure used to define the registers. For the description of the
registers, refer to the Data Sheet for Davicom DM9008, a copy of this document ion is available
on the ColdFire web site at http://www.mot.com/ColdFire.

typedef struct
{

NATURAL16 CR;
union
{

struct
{

/* Even registers */
NATURAL16 CLDA1; /* CLDA1 (rd) PSTOP (wr) */
NATURAL16 TSR; /* TSR (rd) TPSR (wr) */
NATURAL16 FIFO; /* FIFO (rd) TBCR1 (wr) */
NATURAL16 CRDA0; /* CRDA0 (rd) RSAR0 (wr) */
NATURAL16 RBCR0; /* Remote Byte Count 0 (wr) */
NATURAL16 RSR; /* RSR (rd) RCR (wr) */
NATURAL16 CNTR1; /* CNTR1 (rd) DCR (wr) */

3-53

NATURAL16 DATAPORT;

NATURAL16 reserved[(0x10000-0x0012)/2];

/* Odd registers */
NATURAL16 CLDA0; /* CLDA0 (rd) PSTART (wr) */
NATURAL16 BNRY; /* Boundary pointer (rd wr) */
NATURAL16 NCR; /* NCR (rd) TBCR0 (wr) */
NATURAL16 ISR; /* Interrupt Status Register (rd wr) */
NATURAL16 CRDA1; /* CRDA1 (rd) RSAR1 (wr) */
NATURAL16 RBCR1; /* Remote Byte Count 1 (wr) */
NATURAL16 CNTR0; /* CNTR0 (rd) TCR (wr) */
NATURAL16 CNTR2; /* CNTR2 (rd) IMR (wr) */

} page0;
struct
{

/* Even registers */
NATURAL16 PAR1; /* Physical Address Byte 1 */
NATURAL16 PAR3; /* Physical Address Byte 3 */
NATURAL16 PAR5; /* Physical Address Byte 5 */
NATURAL16 MAR0; /* Multicast Address Byte 0 */
NATURAL16 MAR2; /* Multicast Address Byte 2 */
NATURAL16 MAR4; /* Multicast Address Byte 4 */
NATURAL16 MAR6; /* Multicast Address Byte 6 */

NATURAL16 reserved[(0x10000-0x0010)/2];

/* Odd registers */
NATURAL16 PAR0; /* Physical Address Byte 0 */
NATURAL16 PAR2; /* Physical Address Byte 2 */
NATURAL16 PAR4; /* Physical Address Byte 4 */
NATURAL16 CURR; /* Current Page Register (rd wr) */
NATURAL16 MAR1; /* Multicast Address Byte 1 */
NATURAL16 MAR3; /* Multicast Address Byte 3 */
NATURAL16 MAR5; /* Multicast Address Byte 5 */
NATURAL16 MAR7; /* Multicast Address Byte 7 */

} page1;
struct
{

/* Even registers */
NATURAL16 PSTOP; /* PSTOP (rd) CLDA1 (wr) */
NATURAL16 TPSR; /* Transmit Page Start Address (rd) */
NATURAL16 ACU; /* Address Counter Upper */
NATURAL16 reserved0;
NATURAL16 reserved2;
NATURAL16 RCR; /* Receive Configuration Register (rd)

*/
NATURAL16 DCR; /* Data Configuration Register (rd) */

NATURAL16 reserved[(0x10000-0x0010)/2];

/* Odd registers */
NATURAL16 PSTART; /* PSTART (rd) CLDA0 (wr) */
NATURAL16 RNPP; /* Remote Next Packet Pointer */
NATURAL16 LNPP; /* Local Next Packet Pointer */
NATURAL16 ACL; /* Address Counter Lower */
NATURAL16 reserved1;
NATURAL16 reserved3;
NATURAL16 TCR; /* Transmit Configuration Register (rd)

*/
NATURAL16 IMR; /* Interrupt Mask Register (rd) */

} page2;
} regs;

} NS8390;

The main purpose for this setup is to allow the use of the Ethernet card (NE2000-compatible) to
facilitate network download. Refer to Chapter 2 for the network download command (DN). The
dBUG driver is 100 percent NE2000-compatible.

The Ethernet Bus interrupt request line is hardwired to the ColdFire IRQ4.

3-54

The onboard ROM monitor lets you download files from a network to memory in different
formats. The current formats supported are S-Record, COFF, ELF, or Image.

3.7 CONNECTORS AND THE EXPANSION BUS

There are 10 connectors on the M5206EC3 that connect the board to external I/O devices and or
expansion boards. This section provides a brief discussion and the pin assignments of the
connectors.

3.7.1 The Terminal Connector P1
The signals on UART1 that run through the RS-232 driver/receivers drive the terminal. The
M5206EC3 uses a 9-pin D-sub female connector P1 for connecting the board to a terminal or a
PC with terminal emulation software. The available signals are a working subset of the RS-232C
standard. Table 5, the P1 (Terminal) Connector pin assignment, shows the pin assignment.

Table 5. P1 (Terminal) Connector Pin Assignment

PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send
8 Output Clear to Send
9 Not Used

3.7.2 The Auxiliary Serial Communication Connector P2
The MCF5206e has two built-in UARTs. One channel on port P2, which is not used by the
M5206EC3 ROM monitor, is available to users. The available signals form a working subset of
the RS-232C standard. Table 6, the P2 Connector Pin Assignment, shows the pin assignment for
P2.

Table 6. P2 Connector Pin Assignment

 PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send
8 Output Clear to Send
9 Not Used

3.7.3 Logical Analyzer Connectors LA1-4 and Processor Expansion Bus J2, J3, and J4
All the processor signals are available on four mictor connectors (LA1-4). You can refer to the
data sheets for the major parts and the schematic at the end of this manual to get an accurate

3-55

loading capability. Subsets of the signals are available on J2, J3, and J4 for easier access. Tables
7 through 13 show the pin assignment for J2, J3, J4, LA1, LA2, LA3, and LA4, respectively.

Table 7. J2 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 -CS0 2 -CTS1
3 -CS1 4 TXD1
5 -CS2 6 RXD1
7 -CS3 8 -RTS1
9 -IRQ4 10 -CTS2

11 -BR 12 -RTS2
13 -BD 14 RXD2
15 -BG 16 TXD2
17 SDA 18 TIN0
19 SCL 20 TIN1
21 -IRQ7 22 TOUT0
23 +5V 24 TOUT1
25 GND 26 HIZ_INLOW
27 +5V 28 +5V

3-56

Table 8. J3 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 A0 2 D16
3 A1 4 D17
5 A2 6 D18
7 A3 8 D19
9 A4 10 D20
11 A5 12 D21
13 A6 14 D22
15 A7 16 D23
17 A8 18 D24
19 A9 20 D25
21 A10 22 D26
23 A11 24 D27
25 A13 26 D28
27 A13 28 D29
29 A14 30 D30
31 A15 32 D31
33 A16 34 TT0
35 A17 36 TT1
37 A18 38 ATM
39 A19 40 SIZ0
41 A20 42 SIZ1
43 A21 44 R/-W
45 A22 46 -TS
47 A23 48 -TA
49 A24 50 -TEA
51 A25 52 -ATA
53 A26 54 -RSTI
55 A27 56 -IRQ1
57 54 MHz CLK 58 +5V
59 GND 60 GND

3-57

Table 9. J4 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 TCLK 2 D0
3 DSCLK 4 D1
5 DSDI 6 D2
7 DSDO 8 D3
9 BKPT 10 D4

11 +5V 12 D5
13 GND 14 D6
15 PP0 16 D7
17 PP1 18 D8
19 PP2 20 D9
21 PP3 22 D10
23 PP4 24 D11
25 PP5 26 D12
27 PP6 28 D13
29 PP7 30 D14
31 -HIZ 32 D15
33 MTMOD 34 -CAS0
35 -RAS0 36 -CAS1
37 -RAS1 38 -CAS2
39 -DRAMW 40 -CAS3

Table 10. LA1 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 NC 2 NC
3 NC 4 PP4
5 PP5 6 PP6
7 PP7 8 SCL
9 SDA 10 TOUT0

11 TOUT1 12 TIN1
13 TIN0 14 TXD1
15 TXD1 16 -RTS1
17 -CTS1 18 TXD2
19 RXD2 20 NC
21 NC 22 NC
23 NC 24 NC
25 NC 26 NC
27 -TRST/DSCLK 28 TCLK
29 TDO/DSO 30 -HIZ
31 TDI/DSI 32 TMS/-BKPT
33 MTMOD 34 -CTS2
35 -RTS2 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-58

Table 11. LA2 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 NC 2 NC
3 54 MHz CLK 4 A27
5 A26 6 A25
7 A24 8 A23
9 A22 10 A21

11 A20 12 A19
13 A18 14 A17
15 A16 16 A15
17 A14 18 A13
19 A12 20 PP3
21 PP2 22 PP1
23 PP0 24 A0
25 A1 26 A2
27 A3 28 A4
29 A5 30 A6
31 A7 32 A8
33 A9 34 A10
35 A11 36 20 MHz CLK
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

Table 12. LA3 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME
1 NC 2 NC
3 NC 4 -DRAW
5 -CAS3 6 -CAS2
7 -CAS1 8 -CAS0
9 -RAS1 10 -RAS0

11 -BG 12 -BD
13 -BR 14 -IRQ1
15 -IRQ4 16 -IRQ7
17 -ATA 18 -RSTI
19 -TS 20 NC
21 NC 22 NC
23 NC 24 -CS0
25 -CS1 26 -CS2
27 -CS3 28 TT0
29 TT1 30 ATM
31 SIZ0 32 SIZ1
33 R/-W 34 -TA
35 -TEA 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-59

Table 13. LA4 Connector Pin Assignment

 PIN NO. SIGNAL NAME PIN NO. SIGNAL
NAME

1 NC 2 NC
3 NC 4 D0
5 D1 6 D2
7 D3 8 D4
9 D5 10 D6

11 D7 12 D8
13 D9 14 D10
15 D11 16 D12
17 D13 18 D14
19 D15 20 D31
21 D30 22 D29
23 D28 24 D27
25 D26 26 D25
27 D24 28 D23
29 D22 30 D21
31 D20 32 D19
33 D18 34 D17
35 D16 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-60

3.7.4 Debug Connector J5
The MCF5206e has a background debug port, real-time trace support, and real-time debug
support available at connector J5. Table 14 (The J5 Connector Pin Assignment) shows the pin
assignment.

Table 14. J5 Connector Pin Assignment

 PIN NO. SIGNAL NAME
1 No Connect
2 -BKPT
3 Ground
4 DSCLK
5 Ground
6 No Connect
7 -RESET
8 DSI
9 +3.3 Volts
10 DSO
11 Ground
12 PST3
13 PST2
14 PST1
15 PST0
16 DDAT3
17 DDAT2
18 DDAT1
19 DDAT0
20 Ground
21 10K pull down
22 No Connect
23 Ground
24 54 MHz CLK
25 3.3 Volts
26 -TA

1

Appendix A CONFIGURING dBUG FOR NETWORK
DOWNLOADS

The dBUG module can perform downloads over an Ethernet network using the Trivial File
Transfer Protocol (TFTP). Before using this feature, several parameters are required for network
downloads to occur. This information and the steps for configuring dBUG are described below.

A.1 Required Network Parameters

For performing network downloads, dBUG requires six parameters: four that are network-
related; two that are download-related. These parameters are listed below with the dBUG
designation following in parenthesis.

All computers connected to an Ethernet network running the IP protocol need three network-
specific parameters. These parameters are:

• Internet Protocol, IP, address for the computer (client IP)
• IP address of the Gateway for non-local traffic (gateway IP)
• Network netmask for flagging traffic as local or non-local (netmask)

In addition, the dBUG network download command requires the following three parameters:

• IP address of the TFTP server (server IP)
• Name of the file to download (filename)
• Type of the file to download (file type of S-record, COFF, ELF, or Image)

Your local system administrator can assign a unique IP address for the board and also provide you
with the IP addresses of the gateway, netmask, and TFTP server. Fill out the lines below with
this information.

Client IP: ___.___.___.___ (IP address of the board)
Server IP: ___.___.___.___ (IP address of the TFTP server)
Gateway: ___.___.___.___ (IP address of the gateway)
Netmask: ___.___.___.___ (Network netmask)

2

A.2 Configuring dBUG Network Parameters

Once the network parameters have been obtained, you must configure the ROM monitor. The
following commands are used to configure the network parameters.

set client <client IP>
set server <server IP>
set gateway <gateway IP>
set netmask <netmask>
set Macaddr <macaddr>

For example, the TFTP server is named “santafe” and has IP address 123.45.67.1. The board is
assigned the IP address of 123.45.68.15. The gateway IP address is 123.45.68.250, and the
netmask is 255.255.255.0. The commands to dBUG are as follows:

set client 123.45.68.15
set server 123.45.67.1
set gateway 123.45.68.250
set netmask 255.255.255.0
set Macaddr 00:00:00:00:00:00

The last step is to inform dBUG of the name and type of the file to download. Prior to giving the
name of the file, keep in mind the following:

1. Most, if not all, TFTP servers will permit access only to files starting at a particular sub-
directory. (This is a security feature that prevents reading of arbitrary files by unknown persons.)
For example, SunOS uses the directory /tftp_boot as the default TFTP directory. When
specifying a filename to a SunOS TFTP server, all filenames are relative to /tftp_boot. As a
result, you normally will be required to copy the file to download into the directory the TFTP
server uses.

2. A default filename for network downloads is maintained by dBUG. To change the default
filename, use the command:

set filename <filename>

3. When using the Ethernet network for download, S-record, COFF, ELF, or Image files can be
downloaded. A default file type for network downloads is maintained by dBUG as well. To
change the default file type, use the command:

set filetype <srecord|coff|elf|image>

4. Continuing with the above example, the compiler produces an executable COFF file, “a.out”.
This file is copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out

5. Change the default filename and file type with the commands:

3

set filename a.out
set filetype coff

6. Finally, perform the network download with the “dn” command. The network download process
uses the configured IP addresses and the default filename and file type for initiating a TFTP
download from the TFTP server.

A.3 Troubleshooting Network Problems

Most problems related to network downloads are a direct result of improper configuration.
Verify that all IP addresses configured into dBUG are correct (use the “show” command).

Using an IP address already assigned to another machine will cause the dBUG network download
to fail, and probably create other severe network problems. Make certain the client IP address is
unique for the board.

Check for proper insertion or connection of the network cable. Is the status LED lit indicating
that network traffic is present?

Check for proper configuration and operation of the TFTP server. Most Unix workstations can
execute a command named “tftp” that can connect to the TFTP server as well. Is the default TFTP
root directory present and readable?

The “ICMP_DESTINATION_UNREACHABLE” or similar ICMP message signifies a serious error has occurred.
Reset the board, and wait one minute for the TFTP server to time out, and terminate any open connections. Verify
that the IP addresses for the server and gateway are correct.

5

Appendix B FPLA CODE

module isa2
title 'isa controller'
"Feb 26 '98 version v1 of the 5206e
"isa2 device 'ispLSI';
;"***"
;"This abel file contains the code for a NE2000 compatible ethernet"
;"for the 55206e Coldfire processor as well as reset and IRQ7 (abort)"
;"It was targeted to Lattice ispLSI 2032 fpga "
;"CS: B3D3 "
;"***"
;"***"
;"Declaration Section "
;"***"
;" constants"
 C,P,X,Z,H,L = .C.,.P.,.X.,.Z.,1,0;
;"***"
DLYIOCHRDY0 node ISTYPE 'reg_d,buffer';
DLYIOCHRDY,ENDIT,END16,END8 node;
STARTISA node ISTYPE 'reg_d,buffer';
SBHE,IOR,IOW,ISAOE node;
DA,DLYDA node ISTYPE 'reg_d,buffer';
ABORTML,DAOE,CLK16MHZ,CLK8MHZ node ISTYPE 'reg_d,buffer';

CLK2MHZ node ISTYPE 'reg_d,buffer';

RSTMH node;
BCLK0 node ISTYPE 'reg_d,buffer';
BCLK1 node ISTYPE 'reg_d,buffer';
BCLK2 node ISTYPE 'reg_d,buffer';

DSL, ISASWAPL, SBHEL, ISAOEL, DTACKL, ISASELL node;

ABORTOL pin 3 ISTYPE 'reg_d, buffer';
RST_L pin 4; "Output - to ColdFire reset
DB_CS_L pin 5; "Output - Data buffer enable for ethernet
A0IN pin 6; "INPUT - A0 received from CF through buffers
IOCHRDY pin 7; "Input - asserted by ethernet
IOCS16L pin 9; "Input - asserted by ethernet
SIZ1 pin 10;
XCLK0 pin 11; "Input - global clock
IOWL pin 15; "Input - write signal from ethernet
RD pin 16; "INPUT - R/-W from the ColdFire
CLK4MHZ pin 17 ISTYPE 'reg_d,buffer';
BALE pin 18; "Output - address latch enable
A0 pin 19; "OUTPUT - A0 sent to the ethernet
CS3_L pin 22; "Input - From ColdFire
HIZ_INLOW pin 25; "Input - From Header to allow a HIZ
PORIN_L pin 26; "Input - Suppy Voltage Supervisor

EIRQ pin 28; "Input - Ethernet IRQ 3
IRQ4_L pin 29; "Output - IRQ 3 into the ColdFire
ETHER_RST pin 30; "Input - Hard Reset switch
ABORTIL pin 31; "INPUT - abort signal received from the
Abort swith
HIZ_L pin 32; "Output - to ColdFire *HIZ
IORL pin 37; "Input - read signal from ethernet
OE_FLASH_L pin 38; "Output - Flash output enable
A16 pin 39;
TAL pin 40; "Input / Output - Transfer acknowledge
BDM_RST pin 41; "Input - Reset from the BDM
SIZ0 pin 43;
"BDM_RST_L pin 44; Input - BDM reset input

XCLK1 pin 35; "Clock - 20MHz

6

; "********************************"
; " Lattice attributes "
; "********************************"
pLSI property 'CLK CLK54 CLK0 ';
pLSI property 'CLK XCLK0 CLK1 ';
pLSI property 'CLK CLK8MHZ SLOWCLK ';
pLSI property 'ISP ON';
pLSI property 'PULLUP ON';
pLSI property 'Y1_AS_RESET OFF';

; "--------------------------------"
; " Output inverter macro "
; "--------------------------------"
OB21 MACRO (XO0, A0)
 {
 ?XO0 = !?A0;
};

; "--------------------------------"
; " Tristate Output inverter macro "
; "--------------------------------"
OT21 MACRO (XO0, A0, OE)
 {
 ?XO0.OE = ?OE;
 ?XO0 = !?A0;
};

CBU43 MACRO (Q0,Q1,Q2,CLK,EN,CS)
{
 [?Q0..?Q2].clk = ?CLK;
 ?Q0.D = ?Q0.Q & !?CS $?EN & !?CS ;
 ?Q1.D = ?Q1.Q & !?CS $ (?Q0.Q & ?EN & !?CS);
 ?Q2.D = ?Q2.Q & !?CS $ (?Q0.Q & ?Q1.Q & ?EN & !?CS);
};

equations

;"###"
;"Bidirectional circuit equations"
;"###"

OT21 (TAL, DA, DAOE)
OB21 (IORL, IOR)
OB21 (IOWL, IOW)

"new for the M5206e

OE_FLASH_L = !RD;

"Same as the M5206e

IRQ4_L = !EIRQ # !PORIN_L;

"used to enable the data buffers to the ethernet
!DB_CS_L = !ETHER_RST & !CS3_L;

ABORTML := ABORTIL ;

ABORTML.clk = CLK4MHZ ;

ABORTOL := ABORTML ;

ABORTOL.clk = CLK4MHZ ;

"Ethernet reset
ETHER_RST = !PORIN_L # !BDM_RST;

7

"CPU reset
!RST_L = !PORIN_L # !BDM_RST;

!HIZ_L = !RST_L # !HIZ_INLOW; " # !BDM_RST;

DAOE := !CS3_L # DA;

DAOE.clk = XCLK0 ;

A0 = !SIZ1 & SIZ0 & !A0IN # A16 ;

SBHE = STARTISA & !SIZ1 & SIZ0 & !A0IN #
 STARTISA & SIZ1 & !SIZ0 & !A0IN #

STARTISA & !SIZ1 & !SIZ0 & !A0IN ;

CLK16MHZ := !CLK16MHZ ;

CLK16MHZ.clk = XCLK0 ;

CLK8MHZ := CLK8MHZ & !CLK16MHZ #
!CLK8MHZ & CLK16MHZ ;

CLK8MHZ.clk = XCLK0 ;

CLK4MHZ := CLK4MHZ $ (CLK16MHZ & CLK8MHZ);

CLK4MHZ.clk = XCLK0 ;

CLK2MHZ := CLK2MHZ $ (CLK4MHZ & CLK16MHZ & CLK8MHZ);

CLK2MHZ.clk = XCLK0 ;

DA := !CS3_L & END16 & ENDIT & !IOCS16L & RD & !CLK4MHZ & SBHE #
 !CS3_L & END8 & ENDIT & RD & !CLK4MHZ #
 DLYDA & !CS3_L #
 DA & !CS3_L;

DA.clk=XCLK0;

DLYDA :=!CS3_L & END16 & ENDIT & !IOCS16L & !RD & !CLK4MHZ & SBHE #
!CS3_L & END8 & ENDIT & IOCS16L & !RD & !CLK4MHZ #
!CS3_L & END8 & ENDIT & !SBHE & !RD & !CLK4MHZ ;

DLYDA.clk=XCLK0;

STARTISA := !CS3_L & !ENDIT ;

STARTISA.clk = CLK4MHZ ;

CBU43 (BCLK0,BCLK1,BCLK2,CLK4MHZ,STARTISA,!STARTISA)

BALE = STARTISA & !CLK4MHZ & !BCLK2 & !BCLK1 & !BCLK0 & !IOR & !IOW ;

IOR = STARTISA & !BCLK2 & !BCLK1 & BCLK0 & !CLK4MHZ & RD #
 IOR & !CS3_L ;

IOW = STARTISA & !BCLK2 & !BCLK1 & BCLK0 & !CLK4MHZ & !RD #
 IOW & STARTISA ;

END16 = !BCLK2 & BCLK1 & !BCLK0 & !CLK4MHZ#
END16 & STARTISA ;

END8 = BCLK2 & !BCLK1 & BCLK0 & !CLK4MHZ #
END8 & STARTISA ;

ENDIT = END16 & !IOCS16L & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & SBHE &
STARTISA#

END8 & IOCS16L & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & STARTISA #
END8 & !SBHE & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & STARTISA ;

DLYIOCHRDY0:= IOCHRDY;

DLYIOCHRDY0.clk = CLK4MHZ ;

8

DLYIOCHRDY = IOCHRDY & CLK4MHZ #
 DLYIOCHRDY & !CLK4MHZ ;

9

Appendix C SCHEMATICS

10
Tuesday, July 07, 1998

11

Tuesday, July 07, 1998

VDD

VDD

VDD VDD
VDD

VDD

D1

D20
D21

D24

D28

D4

D14

D0

D22

D26

D30

D2

D7

D16

D8
D9
D10

D19

D23

D27

D31

D18

D25

D12
D13

D3

D5
D6

D11

D15

D17

D29

*CS0
*CS1
*CS2
*CS3

*RAS1

*CAS1
*CAS2
*CAS3

*RAS0

*CAS0

A4
A5

A18

A10

A14

A6

A21

A12

A1

A9

A11

A15

A24

A16

A27

A3

A25

A7

A23

A8

A26

A17

A0

A20

A2

A22

A19

A13

U4

54MHz

VCC
14

CLK
8

GND
7

NC
1

SIP3 9x4.7K

VCC
1

R
1

2
R

2
3

R
3

4
R

4
5

R
5

6
R

6
7

R
7

8
R

8
9

R
9

10

R10

4.75K
R11

4.75K

SIP1 9x4.7K

VCC
1

R
1

2
R

2
3

R
3

4
R

4
5

R
5

6
R

6
7

R
7

8
R

8
9

R
9

10

R9

4.75K

U1
MCF5206EFT

VC
C

0
6

VC
C

1
12

VC
C

2
18

VC
C

3
24

VC
C

4
30

VC
C

5
36

VC
C

6
44

VC
C

7
52

VC
C

8
60

VC
C

9
69

VC
C

10
77

VC
C

11
86

VC
C

12
94

VC
C

13
10

2
VC

C
14

11
0

VC
C

15
11

8
VC

C
16

12
8

VC
C

17
14

0
VC

C
18

15
0

VC
C

19
16

0

G
N

D
0

3
G

N
D

1
9

G
N

D
2

15
G

N
D

3
21

G
N

D
4

27
G

N
D

5
33

G
N

D
6

39
G

N
D

7
48

G
N

D
8

56
G

N
D

9
65

G
N

D
10

73
G

N
D

11
82

G
N

D
12

90
G

N
D

13
98

G
N

D
14

10
6

G
N

D
15

11
4

G
N

D
16

12
3

G
N

D
17

13
4

G
N

D
18

14
5

G
N

D
19

15
5

*RSTI
59

*IRQ7
62

*IRQ4
63

*IRQ1
64

MTMOD
129

G
N

D
20

13
0

G
N

D
21

13
1

CLK
135

D0
120

D1
119

D2
117

D3
116

D4
115

D5
113

D6
112

D7
111

D8
109

D9
108

D10
107

D11
105

D12
104

D13
103

D14
101

D15
100

D16
99

D17
97

D18
96

D19
95

D20
93

D21
92

D22
91

D23
89

D24
88

D25
87

D26
85

D27
84

D28
83

D29
81

D30
80

D31
79

*CS0
42

*CS1
43

*CS2
45

*CS3
46

A0
1

A1
2

A2
4

A3
5

A4
7

A5
8

A6
10

A7
11

A8
13

A9
14

A10
16

A11
17

A12
19

A13
20

A14
22

A15
23

A16
25

A17
26

A18
28

A19
29

A20
31

A21
32

A22
34

A23
35

A24/CS4/WE3
37

A25/CS5/WE2
38

A26/CS6/WE1
40

A27/CS7/WE0
41

*CTS2
132

*RTS2/*RSTO
133

RXD2
136

TXD2
137

*CTS1
138

*RTS1
139

RXD1
141

TXD1
142

TIN0
143

TIN1
144

TOUT0
146

TOUT1
147

SDA
148

SCL
149

*RAS0
70

*RAS1
71

*CAS0
72

*CAS1
74

*CAS2
75

*CAS3
76

*DRAMW
78

TT0
47

TT1
49

ATM
50

SIZ0
51

SIZ1
53

R/*W
54

*TS
58

*TA
55

*TEA
57

*ATA
61

PP0/DDATA0
159

PP1/DDATA1
158

PP2/DDATA2
157

PP3/DDATA3
156

PP4/PST0
154

PP5/PST1
153

PP6/PST2
152

PP7/PST3
151

*BR
66

*BD
67

*BG
68

TMS/*BKPT
127

TDI/DSI
126

TDO/DSO
124

*HIZ
125

*TRST/DSCLK
121

TCK
122

SIP2 9x4.7K

VCC
1

R
1

2
R

2
3

R
3

4
R

4
5

R
5

6
R

6
7

R
7

8
R

8
9

R
9

10

JP3

Power Analysis

12

D[31:0]

A[27:0]

*IRQ7
*IRQ4
*IRQ1

*BR
*BD
*BG

PP0

PP3
PP4
PP5
PP6
PP7

PP1
PP2

TT0
TT1
ATM
SIZ0
SIZ1
R/*W
*TS
*TA
*TEA
*ATA

*RAS[1:0]

*DRAMW

*CTS2

TXD2
*CTS1
*RTS1
RXD1
TXD1
TIN0
TIN1

TOUT0
TOUT1

SDA
SCL

RXD2
*RTS2/*RSTO

*RSTI

TMS/*BKPT
TDI/DSI

TDO/DSO
*HIZ

*TRST/DSCLK
TCK

*CS[3:0]

*CAS[3:0]

54MHZ CLK

MTMOD

12
Tuesday, July 07, 1998

VDD

VCC

VCC

VCC

VCC

*RAS1
*RAS0

*CAS2
*CAS3

*CAS1
*CAS0

PP3
PP4

PP2

PP7

PP0
PP1

PP6
PP5

PP[7:0]

A11

A23

D22
D4

D14

A6
A7

A21

A26

D26
D6

D11

D2

D5

D24

A11

A4

A16
A17
A18

A20

D28

D14

D12

A3

A5

A14
A15

A24
A25

D20

D15

D27

D13

D2

D9

D0

A23
A9
A10

A19

D23

D6

D30

D1

D11

D19

D5

A20

D24

D3

D31

D7

D7

A22

A1

A12

D15

D20

D4

D9

D16

D8

A0

A2

A26

D10

D21

A17

D18

D29

A27

D26

D28

D3

D1

D31

A18

A10

A14

A16

D19

D25

A5

A24

A6

D17

A12

A13

D18

D29
A27

A0

D8

D17

D27

A22

A13

D13

D25

A9
A8

D16

D30

A2

A21

A19

D0

A1

D21
D22

A15

D10

A25

A3
A4

D12

A7

A8
D23

*CS0

*CS2
*CS1

*CS1
*CS2

*CS3

*CS3

*CS0

J5

BDM connector

RSV0
1

GND0
3

GND1
5

*RESETI
7

VCC
9

GDN2
11

PST2
13

PST0
15

DDATA2
17

DATA0
19

RSV1
21

GND3
23

VDD
25

BKPT
2

DSCLK
4

RSV3
6

DSDI
8

DSDO
10

PST3
12

PST1
14

DDATA3
16

DDATA1
18

GND4
20

RSV2
22

CLK_CPU
24

*TA
26

J4

HEADER 20X2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

TP1

Chip Select 0
1

LA3

Mictor

I/O 1
4

I/O 2
5

I/O 3
6

I/O 4
7

I/O 5
8

I/O 6
9

I/O 7
10

I/O 8
11

I/O 9
12

I/O 10
13

I/O 11
14

I/O 12
15

I/O 13
16

I/O 14
17

I/O 15
18

I/O 16
19

I/O 17
35

I/O 18
34

I/O 19
33

I/O 20
32

I/O 21
31

I/O 22
30

I/O 23
29

I/O 24
28

I/O 25
27

I/O 26
26

I/O 27
25

I/O 28
24

I/O 29
23

I/O 30
22

I/O 31
21

I/O 32
20

NC1
1

NC2
2

NC3
37

NC4
38

GN
D1

39
GN

D2
40

GN
D3

41
GN

D4
42

GN
D5

43
CL

K
1

3
CL

K
2

36

R23

10K

J3

HEADER 30X2

1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60

LA4

Mictor

I/O 1
4

I/O 2
5

I/O 3
6

I/O 4
7

I/O 5
8

I/O 6
9

I/O 7
10

I/O 8
11

I/O 9
12

I/O 10
13

I/O 11
14

I/O 12
15

I/O 13
16

I/O 14
17

I/O 15
18

I/O 16
19

I/O 17
35

I/O 18
34

I/O 19
33

I/O 20
32

I/O 21
31

I/O 22
30

I/O 23
29

I/O 24
28

I/O 25
27

I/O 26
26

I/O 27
25

I/O 28
24

I/O 29
23

I/O 30
22

I/O 31
21

I/O 32
20

NC1
1

NC2
2

NC3
37

NC4
38

GN
D1

39
GN

D2
40

GN
D3

41
GN

D4
42

GN
D5

43
CL

K
1

3
CL

K
2

36

LA2

Mictor

I/O 1
4

I/O 2
5

I/O 3
6

I/O 4
7

I/O 5
8

I/O 6
9

I/O 7
10

I/O 8
11

I/O 9
12

I/O 10
13

I/O 11
14

I/O 12
15

I/O 13
16

I/O 14
17

I/O 15
18

I/O 16
19

I/O 17
35

I/O 18
34

I/O 19
33

I/O 20
32

I/O 21
31

I/O 22
30

I/O 23
29

I/O 24
28

I/O 25
27

I/O 26
26

I/O 27
25

I/O 28
24

I/O 29
23

I/O 30
22

I/O 31
21

I/O 32
20

NC1
1

NC2
2

NC3
37

NC4
38

GN
D1

39
GN

D2
40

GN
D3

41
GN

D4
42

GN
D5

43
CL

K
1

3
CL

K
2

36LA1

Mictor

I/O 1
4

I/O 2
5

I/O 3
6

I/O 4
7

I/O 5
8

I/O 6
9

I/O 7
10

I/O 8
11

I/O 9
12

I/O 10
13

I/O 11
14

I/O 12
15

I/O 13
16

I/O 14
17

I/O 15
18

I/O 16
19

I/O 17
35

I/O 18
34

I/O 19
33

I/O 20
32

I/O 21
31

I/O 22
30

I/O 23
29

I/O 24
28

I/O 25
27

I/O 26
26

I/O 27
25

I/O 28
24

I/O 29
23

I/O 30
22

I/O 31
21

I/O 32
20

NC1
1

NC2
2

NC3
37

NC4
38

GN
D1

39
GN

D2
40

GN
D3

41
GN

D4
42

GN
D5

43
CL

K
1

3
CL

K
2

36

J2

2x14 Header

12
34
56
78
910

1112
1314
1516
1718
1920
2122
2324
2526
2728

*DRAMW

*RAS[1:0]

*TEA

TT1
TT0

*CS[3:0]

R/*W
SIZ1

ATM

*TA

*TS
*RSTI

*ATA

PP1
PP2
PP3

PP4
PP5
PP6
PP7
SCL
SDA

TIN0

RXD1
TXD1

*RTS1
*CTS1
TXD2
RXD2
*RTS2
*CTS2
MTMOD

TMS/*BKPT
TDI/DSI

*HIZ
TDO/DSO

TCLK
*TRST/DSCLK

D[31:0]

TOUT0

TIN1
TOUT1

CS0_HEADER

*IRQ1

SIZ0

*CAS[3:0]

54MHZ CLK
20MHZ CLK

PP0

*BG

*IRQ7

*BR
*BD

*IRQ4

A[27:0]

BDM_RESET

HIZ_INLOW

13
Tuesday, July 07, 1998

VCC
VCC

VCC

VDD

VDD

B_D25
B_D24

B_D17

B_D26
B_D27

B_D16

B_D21

B_D29

B_D22
B_D23

B_D19
B_D18

B_D30

B_D20

B_D31

B_D28

D23

D25

D0

D3

D13

D19

D22

D4

D14

D6

D9

D20

D24
D23

D30

D25

D12

D31

D18

D29

D7
D8

D16

D30

D24

D19

D22

D26

D29

D18

D20

D28

D28

D26

D10

D1

D17

D21

D15

D16

D5

D27

D27

D17

D21

D2

D31

D11
A21

A10

A14

A17

A11

A9

A13
A12

A19

A15

A23

*CAS1

*CAS3
*CAS2

*CAS0

*RAS0
*RAS1

U6

M
C

74
LC

X
16

24
5D

T

D0
2

D1
3

D2
5

D3
6

D4
8

D5
9

D6
11

D7
12

D8
13

D9
14

D10
16

D11
17

D12
19

D13
20

D14
22

D15
23

O0
47

O1
46

O2
44

O3
43

O4
41

O5
40

O6
38

O7
37

O8
36

O9
35

O10
33

O11
32

O12
30

O13
29

O14
27

O15
26

OE1
48

OE2
25

DIR1
1

DIR2
24

GND7
45

GND0
4

GND1
10

GND2
15

GND3
21

GND4
28

GND5
34

GND6
39

VCC0
7

VCC1
18

VCC2
42

VCC3
31

U7

1
to

 3
2M

eg
, 7

2
pi

n
si

m
m

 s
oc

ke
t

A0
12

A1
13

A2
14

A3
15

A4
16

A5
17

A6
18

A7
28

A8
31

NC/A9
32

NC/NC/A10
19

*RAS0
44

*RAS1
45

*RAS2
34

*RAS3
33

*CAS0
40

*CAS1
43

*CAS2
41

*CAS3
42

*WE
47

NC1
11

NC2
29

NC3
35

NC4
37

NC5
38

DQ0
2

DQ1
4

DQ2
6

DQ3
8

DQ4
20

DQ5
22

DQ6
24

DQ7
26

DQ8
49

DQ9
51

DQ10
53

DQ11
55

DQ12
57

DQ13
61

DQ14
63

DQ15
65

DQ16
3

DQ17
5

DQ18
7

DQ19
9

DQ20
21

DQ21
23

DQ22
25

DQ23
27

DQ24
50

DQ25
52

DQ26
54

DQ27
56

DQ28
58

DQ29
60

DQ30
62

DQ31
64

VCC0
10

VCC1
30

VCC2
59

VSS0
1

VSS1
39

VSS2
72

PD1
67

PD2
68

PD3
69

PD4
70

NC6
71

NC7
66

NC8
48

NC9
46

NC10
36

R47
270

R42
270

R43
270

R44
270

R45
270

R46
270

R48
270

U23

M
C

74
LC

X
24

4D
T

1D0
2

1D1
4

1D2
6

1D3
8

1O0
18

1O1
16

1O2
14

1O3
12

2D0
17

2D1
15

2D2
13

2D3
11

2O0
3

2O1
5

2O2
7

2O3
9

1OE
1

2OE
19

GND
10

VDD
20

B_D[31:16]
D[31:0]

R/*W

*BD_CS

*DRAMW

*CAS[3:0]

*RAS[1:0]

A[27:0]

14
Tuesday, July 07, 1998

R25

4.75K

R24

4.75K

JP1

1x3

J1
1

J2
2

J3
3

R26

4.75K

U13

AM
29

LV
00

4T
-1

00
EI

A18
13

A17
40

A16
1

A15
2

A14
3

A13
4

A12
5

A11
6

A10
36

A9
7

A8
8

A7
14

A6
15

A5
16

A4
17

A3
18

A2
19

A1
20

A0
21

*CE
22

*OE
24

*WE
9

*RESET
10

*RY_BY
12

DQ7
35

DQ6
34

DQ5
33

DQ4
32

DQ3
28

DQ2
27

DQ1
26

DQ0
25

VCC0
30

VCC1
31

GND0
23

GND1
39

NC0
11

NC1
29

NC2
37

NC3
38

U15

AM
29

LV
00

4T
-1

00
EI

A18
13

A17
40

A16
1

A15
2

A14
3

A13
4

A12
5

A11
6

A10
36

A9
7

A8
8

A7
14

A6
15

A5
16

A4
17

A3
18

A2
19

A1
20

A0
21

*CE
22

*OE
24

*WE
9

*RESET
10

*RY_BY
12

DQ7
35

DQ6
34

DQ5
33

DQ4
32

DQ3
28

DQ2
27

DQ1
26

DQ0
25

VCC0
30

VCC1
31

GND0
23

GND1
39

NC0
11

NC1
29

NC2
37

NC3
38

U14

MCM69F737TQ11

QA0
51

QA1
52

QA2
53

QA3
56

QA4
57

QA5
58

QA6
59

QA7
62

QA8
63

QB9
68

QB10
69

QB11
72

QB12
73

QB13
74

QB14
75

QB15
78

QB16
79

QB17
80

QC18
1

QC19
2

QC20
3

QC21
6

QC22
7

QC23
8

QC24
9

QC25
12

QC26
13

QD27
18

QD28
19

QD29
22

QD30
23

QD31
24

QD32
25

QD33
28

QD34
29

QD35
30

SA0
37

SA1
36

SA2
32

SA3
33

SA4
34

SA5
35

SA6
44

SA7
45

SA8
46

SA9
47

SA10
48

SA11
49

SA12
50

SA13
81

SA14
82

SA15
99

SA16
100

*ADSP
84

*ADV
83

*ADSC
85

K
89

*G
86

*SW
87

*SGW
88

*SBA
93

*SBB
94

*SBC
95

*SBD
96

*LBO
31

*SE1
98

*SE2
97

*SE3
92

NC
0

14
NC

1
16

NC
2

38
NC

3
39

NC
4

42
NC

5
43

NC
6

64
NC

7
66

VS
S0

5
VS

S1
10

VS
S2

17
VS

S3
21

VS
S4

26
VS

S5
40

VS
S6

55
VS

S7
60

VS
S8

67
VS

S9
71

VS
S1

0
76

VS
S1

1
90

VD
DQ

1
4

VD
DQ

2
11

VD
DQ

3
20

VD
DQ

4
27

VD
DQ

5
54

VD
DQ

6
61

VD
DQ

7
70

VD
DQ

8
77

VD
D0

15
VD

D1
41

VD
D2

65
VD

D3
91

R39

4.7K

JP2

FLASH
J1

1

J2
2

J3
3

*CS0_Header

*CS0

*CS2

BCLK

SYS_RESET

D[31:0]

*OE_FLASH

A[27:0]

15
Tuesday, July 07, 1998 of

VCC

VCC

VCC

VCC

VCC

VCC

B_D24

B_D29

B_D17

B_D27
B_D26

B_D23

B_D31

B_D18

B_D30

B_D19

B_D25

B_D22

B_D20

B_D16

B_D28

B_D21

A9
A8
A7

A5
A6

A4
A3
A2
A1

R30
4.75K

U18

20MHz

VCC
14

CLK
8

GND
7

NC
1

D11

LED

R35

270

R36

50

R37

50

C16
.01uF

R28
4.75K

L1

FERRITE_BEAD

C14
.01uF

C15
10uF

R34

4.75K

R33

4.75K

R32

4.75K

R38

4.75K

U17

AT93C46-10SC-2.7

DI
3

DO
4

SK
2 CS
1

ORG
6NC
7

GND
5

VCC
8

P5

RJ 45 8P

Gray
1

Brown
2

Yellow
3

Green
4

Red
5

Black
6

Orange
7

Blue
8

C12
.1uF

C13
.1uF

2

GRN2
7

TPTX+
1

TXD-
3

TPRX+
6

TPRX-
8

TXB+
16

NC1
15

TXB-
14

NC2
10

RXB+
11

RXB-
9

R29
4.75K

R31
22

U16

DM9008F

SD0
26

SD1
27

SD2
28

SD3
29

SD4
30

SD5
31

SD6
32

SD7
33

SD8
88

SD9
87

SD10
86

SD11
85

SD12
84

SD13
83

SD14
82

SD15
81

SA0
96

SA1
97

SA2
98

SA3
99

SA4
3

SA5
4

SA6
5

SA7
7

SA8
9

SA9
11

SA10
12

SA11
13

SA14
15

SA15
16

SA16
17

SA17
18

SA18
20

SA19
22

BALE
2

SYSCLK
14

*IOR
19

*IOW
21

*SMEMR
23

RST
35

*AEN
24

*MEMW
89

*MEMR
90

AVDD0
36

AVDD1
47

AVDD2
48

AGND0
43

AGND1
44

AGND2
51

*IO16
95

*IOCHRDY
25

BNCEN
54

LILED
55

MSD0_EEDI
64

MSD1_EEDO
65

MSD2_EECK
66

MSD3
67

MSD4
68

MSD5_BNCSW
69

MSD6_SLOT
70

MSD7
71

EECS
79

*BPCS
80

PA0
63

PA1
62

PA2
61

PA3
60

PA4
59

PA5
58

PA6
57

PA7
56

IRQ3
6

IRQ4
8

IRQ5
10

IRQ9
34

IRQ10
94

IRQ11
93

IRQ12
92

IRQ15
91

X1
78

X2
77

TX+
38

TX-
37

RX+
40

RX-
39

CD+
42

CD-
41

TPTX+
50

TPTX-
49

TPRX+
46

TPRX-
45

VCC0
1

VCC1
53

VCC2
72

GND0
73

GND1
74

GND2
75

GND3
52

GND4
100

NC
76

B_D[31:16]

SYS_RESET

*IOW
*IOR

PALCLK

BALE

SA0A[27:0]
ETHER_IRQ3

*IO16

*IOCHRDY

20MHZ_CLK

16

Tuesday, July 07, 1998

VCC

VDD

PP7
PP6
PP5
PP4

PP3

PP0

PP2
PP1

5
9
4
8
3
7
2
6
1

5
9
4
8
3
7
2
6
1

15

DO1
16

RX1
5TX1
6

DI2
13

DO2
14

DI3
11

DO3
12

C2+
1

C2-
3

VCC
19

VDD
17

TX2
8

RX2
7

TX3
10

RX3
9

C1+
20

C1-
18

VSS
4

GND
2

14

DO1
15

RX1
2TX1
3

DI2
12

DO2
13

DI3
10

DO3
11

VCC
16

VDD
1

TX2
5

RX2
4

TX3
7

RX3
6

VSS
8

GND
9

D1

LED

R1

270

R2

270

D2

LED

R3

270

D3

LED

R4

270

D4

LED

R5

270

D5

LED

R7

270

D7

LED

R8

270

D8

LED

D6

LED

R6

270

U24

M
C7

4L
CX

24
4D

T

1D0
2

1D1
4

1D2
6

1D3
8

1O0
18

1O1
16

1O2
14

1O3
12

2D0
17

2D1
15

2D2
13

2D3
11

2O0
3

2O1
5

2O2
7

2O3
9

1OE
1

2OE
19

GND
10

VDD
20

RXD1
TXD1

*CTS1
*RTS1

RXD2
TXD2

*RTS2
*CTS2

PP[7:0]

17

B

8 9Tuesday, July 07, 1998 of

VDD

VDD

VCC

VDD

VCC

VDD

C7
.1uF

C9
.1uF

C8
.1uF

U12

TLC7705ID

*RESIN
2

CT
3

GND
4

VCC
8

SENSE
7

*RESET
5

RESET
6

REF
1

D10

5V

S1

Hard Reset

U11

TLC7733ID

*RESIN
2

CT
3

GND
4

VDD
8

SENSE
7

*RESET
5

RESET
6

CONTROL
1

R15

270

D9

3.3V

R13

270
U10

ispLSI2032V-100LJ44

I/O_0
15

I/O_1
16

I/O_2
17

I/O_3
18

I/O_4
19

I/O_5
20

I/O_6
21

I/O_7
22

I/O_8
25

I/O_9
26

I/O_10
27

I/O_11
28

I/O_12
29

I/O_13
30

I/O_14
31

I/O_15
32

*IN_1_TDO
24

*IN_0_TDI
14

*IPSEN
13

*MODE
36

Y 2_SCLK
33

Y0
11

*Y1_RESET
35

GOE
2

I/O_31
10

I/O_30
09

I/O_29
08

I/O_28
07

I/O_27
06

I/O_26
05

I/O_25
04

I/O_24
03

I/O_23
44

I/O_22
43

I/O_21
42

I/O_20
41

I/O_19
40

I/O_18
39

I/O_17
38

I/O_16
37

VCC0
12

VCC1
34

GND0
1

GND1
23

C11

.01uF

J1

ispHeader

1
2
3
4
5
6
7
8

R14
4.75K

R16
270

R17
4.75K

R18
4.75K

R19
4.75K

R20
4.75K R22

4.75K

C77
.001uF

U25

TLC7733ID

*RESIN
2

CT
3

GND
4

VDD
8

SENSE
7

*RESET
5

RESET
6

CONTROL
1

R41
4.75K

S2

IRQ7

*IO16

*IOCHRDY
BALE

PALCLK

*IOW

SYS_RESET

R/*W

SA0

*CS3

*IRQ4

*HIZ

*RSTI

*IOR

ETHER_IRQ3

*OE_FLASH

54MHZ CLK

SIZ1

SIZ0

A16

HIZ_INLOW

A0
*BD_CS

20MHZ_CLK

*TA
BDM_RESET

Ether_RESET

*IRQ7

18
B

9 9Tuesday, July 07, 1998

Title

Size Document Number Rev

Date: Sheet of

VDD

VDD

VDD

VDDVDD

VDD

VDD

VCC

VDD

CPU

FLASH

SRAM ispLSI_2032LV

BUFFERS

SVS 5V & 3V

NOTE: .01uF caps are NPO material & the 1000pF caps are NPO material
8 Bit Buffers

C59
.01uF

C55
.01uF

C54
.01uF

C56
.01uF

C57
.01uF

C58
.01uF

C61
.01uF

C52
.01uF

C51
.01uF

C60
.01uF

C53
.01uF

C62
.01uF

C23
1000pF

C26
1000pF

C22
1000pF

C19
1000pF

C25
1000pF

C28
1000pF

C20
1000pF

C27
1000pF

C24
1000pF

C18
1000pF

C17
1000pF

C21
1000pF

C35
1000pF

C33
1000pF

C32
1000pF

C30
1000pF

C31
1000pF

C34
1000pF

C29
1000pF

C36
1000pF

C41
.01uF

C42
.01uF

C44
.01uF

C43
.01uF

C45
.01uF

C46
.01uF

C37
.01uF

C38
.01uF

C39
.01uF

C40
.01uF

C48
.01uF

C49
.01uF

C50
.01uF

C47
.01uF

C64
.01uF

C63
.01uF

+ C66

10uF TANT.

dual wire connector

Mouser Electronics 800-346-6873 Part No.163-5004

1
2
3

U21

LT1086CT3.3

GN
D

1

VOUT
2

VIN
3

U22

LT1086CT5.0

GN
D

1
VOUT

2
VIN

3

D12

1N5400CT

C72
.01uF

C74
.01uF

C75
.01uF

C73
.01uF

C76
.01uF

C79
.01uF

C78
.01uF

C80
1000pF

19

Appendix D MC5206EC3 BILL OF MATERIALS

ITEM ASSY PART
NO.

MFG VENDOR/
PART NO.

DESC. REF.
DES.

1 5 10uF 16V DIG/PCE3031CT-ND 10uF C1 - C4;
C15

2 9 .1uF VENKEL/C0805X7R500-
104KNE

.1uF C5 - C9;
C12, C13,
C67, C70

3 38 .01uF VENKEL/C0805x7R500-
103KNE

.01uF C11, C14,
C16, C37-

C64;
C72 -
C76;

C78,C79
4 22 1000pF VENKEL/C0805COG500-

102JNE
1000pF C17 -

C36; C77,
C80

5 4 10uF TANT. VENKEL/TA016TCM106KBR 10uF TANT C65, C66,
C68, C69

6 1 200 uF DIG/PCE2048CT-ND 200 uF C71
7 11 90T HSMG-T400 CM NEW/09THSMG-T400 LED, GRN D1 - D11
10 2 1 X 3 Berg DIG/S1011-03-ND 1 X 3 JP1, JP2
11 1 ispHeader 1x 8 Berg DIG/S1011-13-ND ispHeader J1
12 1 2 x 13 Header Berg DIG/S2011-13-ND 2 X 13 header J2
13 1 Header 30 x 2 Berg DIG/S2011-30-ND Header 30 x 2 J3
14 1 Header 20 x 2 Berg DIG/S2011-20-ND Header 20 x 2 J4
15 1 BDM connector

13 x 2
Berg DIG/S2011-13-ND BDM

connector
J5

16 4 767054-1 AMP TIME/767054-1 Mictor
767054-1

LA1 - LA4

17 1 BLM31A700SPT Murata
Erie

NEWARK/BLM31A700SPT Ferrite_Bead L1

18 2 748875-1 AMP NEWARK/66F1579 Conn, 9, D,
Female, RA

P1, P2

19 1 2SV-02 Augut NEWARK/46F897 Conn, 2-pin
pwr

P3

20 1 RAPC722 SWC NEWARK/93F7715 Power conn
3-pin

P4

21 12 270 VENKEL/CR0805-10W-271JT 270 R1-R8;
R13, R15,
R16, R35

22 21 4.75K VENKEL/CR0805-10W-
4751FT

4.75K R9 - R11;
R14, R17

- R20;
R22, R24

- R30;
R32 -

R34; R38,
R41

23 7 22 ohm VENKEL/CF1206-8W-220JT 220 ohm
1206

R42 - R48

24 1 10K VENKEL/CR0805-10W-103JT 10K R23
25 1 22 VENKEL/CR0805-10W-220JT 22 R31
26 2 50 805 5% .1W VENKEL/CR0805-10W-470JT 50 R36, R37
27 3 0 X 4.7K DIG/4310R-1-472-ND RPAK, 4.7K,

10-pin 9RES
SIP1-SIP3

28 1 Hard Reset -
KS11R23CQD

C&K ARROW/KS11R23CQD Hard Reset-
KS11R23CQ

D

S1

20

29 1 IRQ7 -
KS11R22CQD

C&K ARROW/KS11R22CQD IRQ7 -
KS11R23CQ

D

S2

30 1 Chip-Select 0
1 x 1 CONN

DIG/S1011-01-ND Chip Select 0 TP1

31 1 MC145407DW Motorola NEWARK/MC145407DW MC145407D
W

U3

32 1 MC145406DW Motorola NEW/08T MC145406DW MC145406D
W

U2

33 1 MCF5206EFT Motorola BRAD MCF5206EFT U1
34 1 P1100-HCV 54

MHz
PLET OMNIPRO/P1100-HC-53 125

MHz
XTAL, 54

MHz
U4

36 1 MC74LCX16245D
T

Motorola NEW/83F4287 MC72LCS162
45DT

U6

37 1 822019-4 AMP MOUSER/571-8220194 SKT, SIMM,
72-pin

XU7

38 1 ispLSI2032LV-
100LJ

ispLSI2032LV-
110LJ

ispLSI2032V-
110LJ

ispLSI2032V-
100LJ

Lattice INSIGHT ELECTRONICS ispLSI2032LV
-100LJ

ispLSI2032LV
-110LJ

ispLSI2032V-
110LJ

ispLSI2032V-
100LJ

U10

39 2 TL7733ID or
TL7733IP

TI LINTECH/TLC7733ID TL7733ID OR
TL7733IP

U11, U25

40 1 TL7705ID or
TI7705IP

TI LINTECH/TLC7705ID TL7705ID or
TI7705IP

U12

41 2 AM29LV004T-
100EI

AMD ARROW/AM29LV004T-
100EC

AM29LV004T-
100EI

U13, U15

42 1 MCM69F737TQ1
1

Motorola BRAD/NO POP MCM69F737T
Q11

U14

43 1 DM9008F Davicom DAVICOM/DM9008F/B DM9008F U16
44 1 AT93C46-10SC-

2.7
Atmel BRAD/NO POP AT93C46-

10SC-2.7
U17

45 1 P1100-HVC 20
MHz

PLET OMNIPRO/P1100-HC-
2000MHz

XTAL, 20MHz U18

46 1 FD22-101G Halo EL ERIC/FD22-101G FD22-101 U19
47 1 555153-1 AMP MOUSER/571-5551641 RJ 45 8P P5
48 1 LT1086CT3.3 DIG/LT1086CM-3.3-ND LT1086CM3.3 U21
49 1 LT1086CT5.0 DIG/LT1086CT-5-ND LT1086CT5.0 U22
50 2 IC197-4004-2000 YAM ERIC/IC197-4004-2000 SKT, TSOP44 XU13,

XU15
51 1 1N5400 DIG/1N5400CT-ND IN5400 D12
52 1 822275-1 AMP DIG/A2142-ND SKT, PLCC-

44
XU10

53 1 1MX32 3.3V EDO
60ns

SMART
MOD.

BRAD/SM532013091X656 SIMM U7

54 1 .001UF 805 VENDEL/C0805-COG500-
102JNE

C77

57 1 2 PIN
CONNECTOR,

1 X 2

DIG/S1011-02-ND JP3

58 3 SHORT JUMPER
UNPLATED

DIG/929950-00-ND

59 1 PAN PACIFIC
SERIAL CABLE

PAN
PACIFIC

S-9MF-6

60 1 4-40 HEX NUTS DIG DIG/H216-ND
61 1 4-40 X 1/4

SCREWS
DIG DIG/H142-ND

62 5 TAPERED SQ.
WHITE PAD

DIG DIG/SJ5518-9-ND

SBC5307 USER'S MANUAL
REVISION 2.0

Copyright 1998 Arnewsh Inc.
Arnewsh Inc.

P.O. Box 270352
Fort Collins, CO 80527-0352

Phone: (970) 223-1616
 Fax: (970) 223-9573

iii

COPYRIGHT

Copyright 1998 by Arnewsh Inc.

All rights reserved. No part of this manual and the dBUG software provided in Flash ROM’s/EPROM’s
may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise. Use of the program or any part thereof, for any
purpose other than single end user by the purchaser is prohibited.

DISCLAIMER

The information in this manual has been carefully examined and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Furthermore, Motorola reserves the right to make
changes to any product(s) herein to improve reliability, function, or design. The LAB5307rev2 board is
not intended for use in life and/or property critical applications. Here, such applications are defined to be
any situation in which any failure, malfunction, or unintended operation of the board could, directly, or
indirectly, threaten life, result in personal injury, or cause damage to property. Although every effort has
been made to make the supplied software and its documentation as accurate and functional as possible,
Motorola Inc. will not assume responsibility for any damages incurred or generated by this product.
Motorola does not assume any liability arising out of the application or use of any product or circuit
described herein, neither does it convey any license under its patent rights, if any, or the rights of others.

WARNING

THIS BOARD GENERATES, USES, AND CAN RADIATE
RADIO FREQUENCY ENERGY AND, IF NOT INSTALLED
PROPERLY, MAY CAUSE INTERFERENCE TO RADIO
COMMUNICATIONS. AS TEMPORARILY PERMITTED
BY REGULATION, IT HAS NOT BEEN TESTED FOR
COMPLIANCE WITH THE LIMITS FOR CLASS A
COMPUTING DEVICES PURSUANT TO SUBPART J OF
PART 15 OF FCC RULES, WHICH ARE DESIGNED TO
PROVIDE REASONABLE PROTECTION AGAINST SUCH
INTERFERENCE. OPERATION OF THIS PRODUCT IN A
RESIDENTIAL AREA IS LIKELY TO CAUSE
INTERFERENCE, IN WHICH CASE THE USER, AT
HIS/HER OWN EXPENSE, WILL BE REQUIRED TO
CORRECT THE INTERFERENCE.

LIMITED WARRANTY

iv

Arnewsh Inc. warrants this product against defects in material and workmanship for a period of
sixty (60) days from the original date of purchase. This warranty extends to the original
customer only and is in lieu of all other warrants, including implied warranties of
merchantability and fitness. In no event will the seller be liable for any incidental or
consequential damages. During the warranty period, Arnewsh will replace, at no charge,
components that fail, provided the product is returned (properly packed and shipped prepaid) to
Arnewsh at address below. Dated proof of purchase (such as a copy of the invoice) must be
enclosed with the shipment. We will return the shipment prepaid via UPS.

This warranty does not apply if, in the opinion of Arnewsh Inc., the product has been damaged by
accident, misuse, neglect, misapplication, or as a result of service or modification (other than
specified in the manual) by others.

Please send the board and cables with a complete description of the problem to:

Arnewsh Inc.
P.O. Box 270352
Fort Collins, CO 80527-0352
Phone: (970) 223-1616
Fax : (970) 223-9573

Motorola is a registered trademark of Motorola Inc.
IBM PC and IBM AT are registered trademark of IBM Corp.

ALL OTHER TRADEMARK NAMES MENTIONED IN THIS MANUAL ARE THE
REGISTERED TRADE MARK OF RESPECTIVE OWNERS.

v

... TABLE OF CONTENTS

CHAPTER 1................................ 1-1

1.1 INTRODUCTION 1-1
1.2 GENERAL HARDWARE DESCRIPTION................................ 1-1
1.3 SYSTEM MEMORY................................ 1-3
1.4 SERIAL COMMUNICATION CHANNELS................................ 1-3
1.5 PARALLEL I/O PORTS................................ 1-3
1.6 PROGRAMMABLE TIMER/COUNTER 1-3
1.7 ON BOARD ETHERNET................................ 1-4
1.8 SYSTEM CONFIGURATION................................ 1-4
1.9 INSTALLATION AND SETUP................................ 1-4

1.9.1. Unpacking 1-4
1.9.2. Preparing the Board for Use 1-5
1.9.3. Providing Power to the Board 1-5
1.9.4. Selecting Terminal Baud Rate 1-5
1.9.5. The Terminal Character Format 1-5
1.9.6. Connecting the Terminal 1-5
1.9.7. Using a Personal Computer as a Terminal 1-6

1.10 SYSTEM POWER-UP AND INITIAL OPERATION 1-9
1.11 SBC5307 JUMPER SETUP 1-9

1.11.1. Jumper JP1- Flash Upper Half/Lower Half Boot................................ 1-9
1.11.2. Jumper JP2 - This jumper selects between /CS0 to Flash or a header................................ 1-10

1.12 USING THE BDM 1-10

CHAPTER 2................................ 2-1

2.1 WHAT IS DBUG?................................ 2-1
2.2 OPERATIONAL PROCEDURE................................ 2-2

2.2.1. System Power-up................................ 2-2
2.2.2. System Initialization................................ 2-4

2.2.2.1. Hard RESET Button. 2-4
2.2.2.2. ABORT Button................................. 2-4
2.2.2.3. Software Reset Command................................. 2-4
2.2.2.4. USER Program. 2-5

2.2.3. System Operation 2-5
2.3 TERMINAL CONTROL CHARACTERS................................ 2-5
2.4 DBUG COMMAND SET................................ 2-6

2.4.1. AS - Assemble AS 2-8
2.4.2. BC - Compare Blocks of Memory BC 2-10
2.4.3. BF - Block of Memory Fill BF 2-11
2.4.4. BM - Block Move BM 2-12
2.4.5. BR - Breakpoint BR 2-13
2.4.6. BS - Block Search BS 2-14
2.4.7. DATA - Data Conversion DATA................................ 2-15
2.4.8. DI - Disassemble DI 2-16
2.4.9. DL - Download Serial DL 2-17
2.4.10. DN - Download Network DN 2-18
2.4.11. Go - Execute GO 2-19
2.4.12. GT - Execute Till a Temporary Breakpoint GT................................ 2-20
2.4.13. HELP - Help HE 2-21
2.4.14. IRD - Internal Registers Display IRD 2-22
2.4.15. IRM - Internal Registers MODIFY IRM 2-23
2.4.16. MD - Memory Display MD 2-24
2.4.17. MM - Memory Modify MM 2-25
2.4.18. RD - Register Display RD 2-26
2.4.19. RM - Register Modify RM 2-27
2.4.20. RESET - Reset the board and dBUG RESET 2-28

vi

2.4.21. SET - Set Configuration SET 2-29
2.4.22. SHOW - Show Configuration SHOW 2-31
2.4.23. STEP - Step Over ST 2-32
2.4.24. SYMBOL - Symbol Name Management SYMBOL 2-33
2.4.25. TRACE - Trace Into TR 2-34
2.4.26. UPDBUG - Update the dBUG Image UPDBUG 2-35
2.4.27. UPUSER - Update User Code In Flash UPUSER 2-36

2.5 TRAP #15 FUNCTIONS 2-38
2.5.1. OUT_CHAR................................ 2-38
2.5.2. IN_CHAR................................ 2-38
2.5.3. CHAR_PRESENT 2-39
2.5.4. EXIT_TO_dBUG................................ 2-39

CHAPTER 3................................ 3-1

3.1 THE PROCESSOR AND SUPPORT LOGIC................................ 3-1
3.1.1. The Processor 3-1
3.1.2. The Reset Logic 3-1
3.1.3. The -HIZ Signal 3-2
3.1.4. The Clock Circuitry 3-2
3.1.5. Watchdog Timer (BUS MONITOR) 3-2
3.1.6. Interrupt Sources 3-2
3.1.7. Internal SRAM 3-3
3.1.8. The MCF5307 Registers and Memory Map 3-3
3.1.9. Reset Vector Mapping 3-4
3.1.10. /TA Generation 3-4
3.1.11. Wait State Generator 3-4

3.2 THE SDRAM DIMM 3-5
3.3 FLASH ROM 3-5

3.3.1. JP1 Jumper and User’s Program 3-5
3.4 THE SERIAL COMMUNICATION CHANNELS................................ 3-5

3.4.1. The MCF5307 DUART................................ 3-6
3.4.2. Motorola Bus (M-Bus) Module................................ 3-6

3.5 THE PARALLEL I/O PORT 3-6
3.6 ON BOARD ETHERNET LOGIC 3-7
3.7 THE CONNECTORS AND THE EXPANSION BUS 3-9

3.7.1. The Terminal Connector J4................................ 3-9
3.7.2. The Auxiliary Serial Communication Connector J7 3-9
3.7.3. Logical Analyzer connectors LA1-5 and Processor Expansion Bus J8 & J9 3-10
3.7.4. The Debug Connector J1................................ 3-15

APPENDIX A (CONFIGURING DBUG FOR NETWORK DOWNLOADS)................................ 1

A.1 REQUIRED NETWORK PARAMETERS 1
A.2 CONFIGURING DBUG NETWORK PARAMETERS................................ 1
A.3 TROUBLESHOOTING NETWORK PROBLEMS 2

APPENDIX B (FPLA CODE) 5

APPENDIX C (SCHEMATICS)................................ 9

APPENDIX D (PIN ARRAY LAYOUT)................................18

vii

...TABLES

TABLE 1 – JP1, UPPER/LOWER HALF BOOT 1-10
TABLE 2 – JP2, /CS0 SELECT 1-10
TABLE 3 - DBUG COMMANDS................................ 2-7
TABLE 4 - THE LAB5307REV2 MEMORY MAP 3-4
TABLE 5 - THE J4 (TERMINAL) CONNECTOR PIN ASSIGNMENT................................ 3-9
TABLE 6 - THE J7 CONNECTOR PIN ASSIGNMENT 3-10
TABLE 7 - THE J8 CONNECTOR PIN ASSIGNMENT 3-10
TABLE 8 - THE J9 CONNECTOR PIN ASSIGNMENT 3-11
TABLE 9 - THE LA2 CONNECTOR PIN ASSIGNMENT 3-12
TABLE 10 - THE LA1 CONNECTOR PIN ASSIGNMENT................................ 3-13
TABLE 11 - THE LA3 CONNECTOR PIN ASSIGNMENT................................ 3-13
TABLE 12 - THE LA4 CONNECTOR PIN ASSIGNMENT................................ 3-14
TABLE 13 - THE LA5 CONNECTOR PIN ASSIGNMENT................................ 3-14
TABLE 14 - THE J1 CONNECTOR PIN ASSIGNMENT 3-15

viii

.. FIGURES

FIGURE 1 BLOCK DIAGRAM OF THE BOARD................................ 1-2
FIGURE 2 PIN ASSIGNMENT FOR J4 (TERMINAL) CONNECTOR. 1-6
FIGURE 3 SYSTEM CONFIGURATION 1-7
FIGURE 4 JUMPER AND CONNECTOR PLACEMENT................................ 1-8
FIGURE 5 FLOW DIAGRAM OF DBUG OPERATIONAL MODE. 2-3

1-1

CHAPTER 1

INTRODUCTION TO THE SBC5307 BOARD

1.1 INTRODUCTION

The SBC5307 is a versatile single board computer based on MCF5307 ColdFire® Processor. It may be
used as a powerful microprocessor based controller in a variety of applications. With the addition of a
terminal, it serves as a complete microcomputer for development/evaluation, training and educational use.
The user must only connect an RS-232 compatible terminal (or a personal computer with terminal
emulation software) and a power supply to have a fully functional system.

Provisions have been made to connect this board to additional user supplied boards, via the Microprocessor
Expansion Bus connectors, to expand memory and I/O capabilities. Additional boards may require bus
buffers to permit additional bus loading.

Furthermore, provisions have been made in the PC-board to permit configuration of the board in a way,
which best suits, an application. Options available are: up to 8M SDRAM, SRAM, Timer, I/O, Ethernet,
and 1M bytes of Flash. In addition, all of the signals are easily accessible to any logical analyzer with
mictor probes to assist in debugging. Most of the processor’s signals are also available via connectors J8
and J9 for expansion purposes.

1.2 GENERAL HARDWARE DESCRIPTION

The SBC5307 board provides the RAM, Flash ROM, on board NE2000 compatible Ethernet interface
(10M bit/sec), RS232, and all the built-in I/O functions of the MCF5307 for learning and evaluating the
attributes of the MCF5307. The MCF5307 is a member of the ColdFire® family of processors. It is a 32-
bit processor with 32 bits of addressing and 32 lines of data. The processor has eight 32-bit data registers,
eight 32-bit address registers, a 32-bit program counter, and a 16-bit status register.

The MCF5307 has a System Integration Module referred to as SIM. The module incorporates many of the
functions needed for system design. These include programmable chip-select logic, System Protection
logic, General purpose I/O, and Interrupt controller logic. The chip-select logic can select up to eight
memory banks or peripherals in addition to two banks of DRAM’s. The chip-select logic also allows
programmable number of wait-state to allow the use of slower memory (refer to MCF5307 User's Manual
by Motorola for detail information about the SIM.) The SBC5307 only uses three of the chip selects to
access the Flash ROM’s, SRAM (which is not populated on board, may be added by the user) and the
Ethernet. The DRAM controller is used to control one SIMM or one DIMM module 8M bytes of DRAM,
both -RAS lines and all four –CAS lines are used. All other functions of the SIM are available to the user.

A hardware watchdog timer (Bus Monitor) circuit is included in the SIM that monitors the bus activities.
If a bus cycle is not terminated within a programmable time, the watchdog timer will assert an internal
transfer error signal to terminate the bus cycle. A block diagram of the board is shown in Figure 1.

1-2

Addr
Buffer
U10,,U11

ispLSI
2032LV
 U9

XCEIVERS

Flash 1Mbit

DRAM
 DIMM

Data

Buffers

U16

MCF5307

RJ45 Et
he

rn
et

U
12J3

U20,U21

U23I/O PORTS ADDR BUS

DATA BUS

CONTROL BUS

Mictor and Expansion Connectors

Figure 1 Block Diagram of the board

1-3

1.3 SYSTEM MEMORY

There are two on board Flash ROM’s (U20, U21), U20 is the most significant byte and the U21 is the least
significant byte. The SBC5307 comes with two 29LV004 Flash ROM’s programmed with a
debugger/monitor firmware. Both AM29LV004DT Flash are 4Mbits each giving a total of 1Mbyte of
Flash memory. The dBUG only supports 29LV004 flash ROM.

There is one 168-pin DIMM socket for SDRAM. It currently supports 1M x 4 Bank x 16-Bits SDRAM
totaling 8M of RAM.

The MCF5307 has 4K bytes organized as 1024x32 bits of internal SRAM.

The internal cache of the MCF5307 is a non-blocking, 8kbyte, 4-way set-associative, unified (instruction
and data cache with a 16-byte line size. The ROM Monitor currently does not utilize the cache, but
programs downloaded with the ROM Monitor can use the cache.

1.4 SERIAL COMMUNICATION CHANNELS

The MCF5307 has 2 built-in UART’s with independent baud rate generators. The signals of channel one
are passed through external Driver/Receivers to make the channel compatible with RS-232. UART1 is
used by the debugger for the user to access with a terminal. In addition, the signals of both channels are
available on the mictor connectors LA1 and LA3 to be viewed by a logic analyzer. UART1 channel is the
“TERMINAL” channel used by the debugger for communication with external terminal/PC. The
“TERMINAL’ baud rate is set at 19200. The MCF5307 also incorporate the M-Bus, which is compatible
with I2C Bus standard. The I 2C bus is connected to the DIMM socket with an ID# = 0, however, the
debugger does not use this feature.

1.5 PARALLEL I/O PORTS

MCF5307 offers one 16-bit general-purpose parallel I/O port. Each pin can be individually programmed
as input or output. The parallel port bits PP (7:0) is multiplexed with TT (1:0), TM (2:0), DREQ (1:0),
and XTIP. The second set of parallel port bits PP (15:8) is multiplexed with address bus bits A (31:24).
Both bytes of the parallel port are controlled by the Pin Assignment Register (PAR). The pins are
programmable on a pin by pin basis. The setting of the multiplex pins are determined by the configuration
byte during reset. After reset, all pins are configured as general-purpose parallel I/O.

1.6 PROGRAMMABLE TIMER/COUNTER

The MCF5307 has two built in general purpose timer/counters. These timers are available to the user.
The signals for the timer are available on the LA4 to be viewed by a logic analyzer.

1-4

1.7 ON BOARD ETHERNET

The SBC5307 has an on board Ethernet (NE2000 compatible) operating at 10M bits. The on board ROM
MONITOR is programmed to allow a user to download files from a network to memory in different
formats. The current formats supported are S-Record, COFF, ELF, or Image.

1.8 SYSTEM CONFIGURATION

The SBC5307 board requires only the following items for minimum system configuration (Figure 3):

1. The SBC5307 board (provided).
2. Power supply, 7.5V to 9V with minimum of 1.5 Amp.
3. RS-232C compatible terminal or a PC with terminal emulation software.
4. Communication cable (provided).

Refer to next sections for initial setup.

1.9 INSTALLATION AND SETUP

The following sections describe all the steps needed to prepare the board for operation. Please read the
following sections carefully before using the board. When you are preparing the board for the first time, be
sure to check that all jumpers are in the default locations. The standard configuration does not require any
modifications. After the board is functional in its standard configuration, you may use the Ethernet by
following the instructions provided in the following sections.

1.9.1. Unpacking

Unpack the computer board from its shipping box. Save the box for storing or reshipping. Refer to the
following list and verify that all the items are present. You should have received:

a. SBC5307 Single Board Computer

b. SBC5307 User's Manual, this documentation

c. One communication cable

WARNING

AVOID TOUCHING THE MOS DEVICES. STATIC DISCHARGE
CAN AND WILL DAMAGE THESE DEVICES.

Once you verified that all the items are present, remove the board from its protective jacket. Check the
board for any visible damage. Ensure that there are no broken, damaged, or missing parts. If you have not
received all the items listed above or they are damaged, please contact Arnewsh immediately in order to
correct the problem.

1-5

1.9.2. Preparing the Board for Use

The board as shipped is ready to be connected to a terminal and the power supply without any need for
modification. However, follow the steps below to insure proper operation from the first time you apply the
power. Figure 4 shows the placement of the jumpers and the connectors, which you need to refer to in the
following sections. The steps to be taken are:

a. Connecting the power supply.
b. Connecting the terminal.

1.9.3. Providing Power to the Board

The board accepts two means of power supply connections. Connector J5 is a 2.1mm power jack and J6
lever actuated connector. The board accepts 7.5V to 9V DC (regulated or unregulated) at 1.5 Amp via
either one of the connectors.

Contact NO. Voltage
 1 +7.5-9V

 2 Ground

1.9.4. Selecting Terminal Baud Rate

The serial channel of MCF5307 which is used for serial communication has a built in timer used by the
ROM MONITOR to generate the baud rate used to communicate with a terminal.. It can be programmed
to a number of baud rates. After the power-up or a manual RESET, the ROM Monitor firmware
configures the channel for 19200 baud. After the ROM Monitor is running, you may issue the SET
command to choose any baud rate supported by the ROM Monitor. Refer to Chapter 2 for the discussion
of this command.

1.9.5. The Terminal Character Format

The character format of the communication channel is fixed at the power-up or RESET. The character
format is 8 bits per character, no parity, and one stop bit. You need to insure that your terminal or PC is
set to this format.

1.9.6. Connecting the Terminal

The board is now ready to be connected to a terminal. Use the RS-232 serial cable to connect the PC to the
SBC5307. The cable has a 9-pin female D-sub connector at one end and a 9-pin male D-sub connector at
the other end. Connect the 9-pin male connector to J4 connector on SBC5307. Connect the 9-pin female
connector to one of the available serial communication channels normally referred to as COM1 (COM2,
etc.) on the IBM PC’s or compatible. Depending on the kind of serial connector on the back of your PC,
the connector on your PC may be a male 25-pin or 9-pin. You may need to obtain a 9-pin-to-25-pin
adapter to make the connection. If you need to build an adapter, refer to Figure 2 which shows the pin
assignment for the 9-pin connector on the board.

1-6

1.9.7. Using a Personal Computer as a Terminal

You may use your personal computer as a terminal provided you also have a terminal emulation software
such as PROCOMM, KERMIT, QMODEM, Windows 95 Hyper Terminal or similar packages. Then
connect as described in 1.9.6 Connecting the Terminal .

Once the connection to the PC is made, you are ready to power-up the PC and run the terminal emulation
software. When you are in the terminal mode, you need to select the baud rate and the character format for
the channel. Most terminal emulation software packages provide a command known as "Alt-p" (press the p
key while pressing the Alt key) to choose the baud rate and character format. Make sure you select 8 bits,
no parity, one stop bit, see section The Terminal Character Format . Then, select the baud rate as 19200.
Now you are ready to apply power to the board.

Figure 2 Pin assignment for J4 (Terminal) connector.

1. Data Carrier Detect, Output (shorted to pins 4 and 6).
2. Receive Data, Output from board (receive refers to terminal side).
3. Transmit Data, Input to board (transmit refers to terminal side).
4. Data Terminal Ready, input (shorted to pin 1 and 6).
5. Signal Ground.
6. Data Set Ready, Output (shorted to pins 1 and 4).
7. Request to Send, input.
8. Clear to send, output
9. Not connected.

1-7

SBC5307

+7.5 to 12V, GND
Power Supply

MICROPROCESSOR
EXPANSION BUS

BACKGROUND DEBUG (BDM) Connector

J4

J7

J8 J9

RS232 TERMINAL
or PC

dBUG>

J6

J1

U23

SDRAM DIMM

Figure 3 System Configuration

1-8

J1

J4

J7

J8 J9

JP1

J2

Figure 4 Jumper and connector placement

1-9

1.10 SYSTEM POWER-UP AND INITIAL OPERATION

Now that you have connected all the cables, you may apply power to the board. After power is applied, the
dBUG initializes the board then displays the power-up message on the terminal, which includes the amount
of the memory present.

Hard Reset
DRAM Size: 8M
NE2000: 0x300

Copyright 1997-1998 Motorola, Inc. All Rights Reserved.
ColdFire® MCF5307 EVS Debugger Vx.x.x (xxx 199x xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

The board is now ready for operation under the control of the debugger as described in Chapters 2. If you
do not get the above response, perform the following checks:

1. Make sure that the power supply is properly set and connected to the board.

2. Check that the terminal and board are set for the same character format and baud.

3. Press the black RESET button to insure that the board has been initialized
properly.

If you still are not receiving the proper response, your board may have been damaged in shipping. Contact
Arnewsh Inc. for further instructions.

1.11 SBC5307 Jumper Setup

The jumpers on the board are discussed in Chapter 3. However, a brief discussion of the jumper settings is
as follows:

1.11.1. Jumper JP1- Flash Upper Half/Lower Half Boot

This jumper allows the MC5307 to boot from the lower or upper half of the flash. The default is the lower
half.

1-10

 Table 1 – JP1, Upper/Lower Half BOOT
 JP1 Function

 1 and 2 Lower (default)
 2 and 3 Upper

1.11.2. Jumper JP2 - This jumper selects between /CS0 to Flash or a header

Table 2 – JP2, /CS0 select
JP3 Function

1 and 2 Flash (default)
2 and 3 header

1.12 USING THE BDM

The MCF5307 has a built in debug mechanism referred to as BDM. The SBC5307 has the necessary
connector, J1, to facilitate this connection.

In order to use the BDM, simply connect the 26-pin IDC header at the end of the BDM cable provided by
the BDM development tool (third party tool) to the J1 connector. No special setting is needed. Refer to the
BDM User's Manual for additional instructions.

IMPORTANT: There is no key to protect the BDM cable from being rotated and plugged in incorrectly.
To prevent hooking up the BDM cable incorrectly, be careful to notice pin 1 on the cable and the notation
on the board. A red strip on the ribbon cable normally notes which side of the cable is pin 1. There is pin
1 marking on the board near the connector noting pin 1 on the connector.

2-1

CHAPTER 2

USING THE MONITOR/DEBUG FIRMWARE

The SBC5307 Computer Board has a resident firmware package that provides a self-contained
programming and operating environment. The firmware, named dBUG, provides the user with
monitor/debug, disassembly, program download, and I/O control functions. This Chapter is a how-to-use
description of the dBUG package, including the user interface and command structure.

2.1 WHAT IS dBUG?

dBUG is a resident firmware package for the ColdFire® family Computer Boards. The firmware (stored in
two 512Kx8 Flash ROM devices) provides a self-contained programming and operating environment.
dBUG interacts with the user through pre-defined commands that are entered via the terminal.

The user interface to dBUG is the command line. A number of features have been implemented to achieve
an easy and intuitive command line interface.

dBUG assumes that an 80x24 character dumb-terminal is utilized to connect to the debugger. For serial
communications, dBUG requires eight data bits, no parity, and one stop bit, 8N1. The baud rate is 19200
but can be changed after the power-up.

The command line prompt is “dBUG> “. Any dBUG command may be entered from this prompt. dBUG
does not allow command lines to exceed 80 characters. Wherever possible, dBUG displays data in 80
columns or less. dBUG echoes each character as it is typed, eliminating the need for any “local echo” on
the terminal side.

In general, dBUG is not case sensitive. Commands may be entered either in upper or lower case, depending
upon the user’s equipment and preference. Only symbol names require that the exact case be used.

Most commands can be recognized by using an abbreviated name. For instance, entering “h” is the same
as entering “help”. Thus, it is not necessary to type the entire command name.

The commands DI, GO, MD, STEP and TRACE are used repeatedly when debugging. dBUG recognizes
this and allows for repeated execution of these commands with minimal typing. After a command is
entered, simply press <RETURN> or <ENTER> to invoke the command again. The command is executed
as if no command line parameters were provided.

An additional function called the "TRAP 15 handler" allows the user program to utilize various routines
within dBUG. The TRAP 15 handler is discussed at the end of this chapter.

The operational mode of dBUG is demonstrated in Figure 5. After the system initialization, the board waits
for a command-line input from the user terminal. When a proper command is entered, the operation
continues in one of the two basic modes. If the command causes execution of the user program, the dBUG
firmware may or may not be re-entered, depending on the discretion of the user. For the alternate case, the

2-2

command will be executed under control of the dBUG firmware, and after command completion, the system
returns to command entry mode.

During command execution, additional user input may be required depending on the command function.

For commands that accept an optional <width> to modify the memory access size, the valid values are:
.B 8-bit (byte) access
.W 16-bit (word) access
.L 32-bit (long) access

When no <width> option is provided, the default width is .W, 16-bit.

The core ColdFire® register set is maintained by dBUG. These are listed below:
A0-A7
D0-D7
PC
SR

All control registers on ColdFire® are not readable by the supervisor-programming model, and thus not
accessible via dBUG. User code may change these registers, but caution must be exercised as changes may
render dBUG useless.

A reference to “SP” actually refers to “A7”.

2.2 OPERATIONAL PROCEDURE

System power-up and initial operation are described in detail in Chapter 1. This information is repeated
here for convenience and to prevent possible damage.

2.2.1. System Power-up

a. Be sure the power supply is connected properly prior to power-up.
b. Make sure the terminal is connected to TERMINAL (J4) connector.
c. Turn power on to the board.

2-3

Figure 5 Flow Diagram of dBUG Operational Mode.

2-4

2.2.2. System Initialization

The act of powering up the board will initialize the system. The processor is reset and dBUG is invoked.

dBUG performs the following configurations of internal resources during the initialization. The instruction
cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash. However, a copy
of the exception table is made at address $00000000 in SDRAM. To take over an exception vector, the
user places the address of the exception handler in the appropriate vector in the vector table located at
0x00000000, and then points the VBR to 0x00000000.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers initialized with unique interrupt level/priority pairs.

After initialization, the terminal will display:

Hard Reset
DRAM Size: 8M
NE2000: 0x300

Copyright 1997-1998 Motorola, Inc. All Rights Reserved.
ColdFire® MCF5307 EVS Debugger Vx.x.x (xxx 199x xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

If you did not get this response check the setup. Refer to Section 1.10 SYSTEM POWER-UP AND
INITIAL OPERATION. Note, the date ‘xxx 199x xx:xx:xx’ may vary in different revisions.

Other means can be used to re-initialize the SBC5307 Computer Board firmware. These means are
discussed in the following paragraphs.

2.2.2.1. Hard RESET Button.

Hard RESET is the red button located in the lower right side of the board. Depressing this button causes
all processes to terminate, resets the MCF5307 processor and board logic’s and restarts the dBUG
firmware. Pressing the RESET button would be the appropriate action if all else fails.

2.2.2.2. ABORT Button.

ABORT is the black button located next to RESET button on the right side of the board. The abort
function causes an interrupt of the present processing (a level 7 interrupt on MCF5307) and gives control
to the dBUG firmware. This action differs from RESET in that no processor register or memory contents
are changed, the processor and peripherals are not reset, and dBUG is not restarted. Also, in response to
depressing the ABORT button, the contents of the MCF5307 core internal registers are displayed.

The abort function is most appropriate when software is being debugged. The user can interrupt the
processor without destroying the present state of the system.

2.2.2.3. Software Reset Command.

dBUG does have a command that causes the dBUG to restart as if a hardware reset was invoked. The
command is "RESET".

2-5

2.2.2.4. USER Program.

The user can return control of the system to the firmware by recalling dBUG via his/her program.
Instructions can be inserted into the user program to call dBUG via the TRAP 15 handler.

2.2.3. System Operation

After system initialization, the terminal will display:

Hard Reset
DRAM Size: 8M
NE2000: 0x300

Copyright 1997-1998 Motorola, Inc. All Rights Reserved.
ColdFire® MCF5307 EVS Debugger Vx.x.x (xxx 199x xx:xx:xx:)
Enter ‘help’ for help.

dBUG>

and waits for a command.

The user can call any of the commands supported by the firmware. A standard input routine controls the
system while the user types a line of input. Command processing begins only after the line has been
entered and followed by a carriage-return.

NOTES

1. The user memory is located at addresses $00020000-$xxxxxxxx, $xxxxxxxx is
the maximum RAM address of the memory installed in the board. When first
learning the system, the user should limit his/her activities to this area of the
memory map. Address range $00000000-$0001FFFF is used by dBUG.

2. If a command causes the system to access an unused address (i.e., no memory or
peripheral devices are mapped at that address), a bus trap error will occur. This
results in the terminal printing out a trap error message and the contents of all
the MCF5307 core registers. Control is returned to the dBUG monitor.

2.3 TERMINAL CONTROL CHARACTERS

The command line editor remembers the last five commands, in a history buffer, which were issued. They
can be recalled and then executed using control keys.

Several keys are used as a command line edit and control functions. It is best to be familiar with these
functions before exercising the system. These functions include:

a. RETURN (carriage- return) - will enter the command line and causes processing to begin.
b. Delete (Backspace) key or CTRL-H - will delete the last character entered on the terminal.

2-6

c. CTRL-D - Go down in the command history buffer, you may modify then press enter key.
d. CTRL-U - Go up in the command history buffer, you may modify then press enter key.
e. CTRL-R - Recall and execute the last command entered, does not need the enter key to be

pressed.

For characters requiring the control key (CTRL) , the CTRL should be pushed and held down and then the
other key (H) should be pressed.

2.4 dBUG COMMAND SET

Table 3 lists the dBUG commands. Each of the individual commands is described in the following pages.

2-7

Table 3 - dBUG Commands

 COMMAND
MNEMONIC

 DESCRIPTION SYNTAX PAGE

AS ASSEMBLE AS <addr> <instruction> 2-8
BF BLOCK FILL BF<WIDTH> BEGIN END DATA 2-11
BM BLOCK MOVE BM BEGIN END DEST 2-12
BS BLOCK SEARCH BS <WIDTH> BEGIN END DATA 2-14
BR BREAKPOINT BR ADDR <-R> <-C COUNT> <-T TRIGGER> 2-13
DATA DATA CONVERT DATA VALUE 2-15
DI DISASSEMBLE DI <ADDR> 2-16
DL DOWNLOAD SERIAL DL <OFFSET> 2-17
DN DOWNLOAD NETWORK DN <-C> <-E> <-S> <-I> <-O OFFSET> <FILENAME> 2-18
GO EXECUTE GO <ADDR> 2-19
GT Go TILL BREAKPOINT GT <ADDR> 2-20
HELP HELP HELP <COMMAND> 2-21
IRD INTERNAL REGISTER

DISPLAY
IRD <MODULE.REGISTER> 2-22

IRM INTERNAL REGISTER
MODIFY

IRM <MODULE.REGISTER> <DATA> 2-23

MD MEMORY DISPLAY MD <WIDTH> <BEGIN> <END> 2-24
MM MEMORY MODIFY MM <WIDTH> ADDR <DATA> 2-25
RD REGISTER DISPLAY RD <REG> 2-26
RM REGISTER MODIFY RM REG DATA 2-27
RESET RESET RESET 2-28
SET SET CONFIGURATIONS SET OPTION <VALUE> 2-29
SHOW SHOW

CONFIGURATIONS
SHOW OPTION 2-31

STEP STEP (OVER) STEP 2-32
SYMBOL SYMBOL MANAGEMENT SYMBOL <SYMB> <-A SYMB VALUE> <-R SYMB>

 <-C | L |
S>

2-33

TRACE TRACE(INTO) TRACE <NUM> 2-34
UPDBUG UPDATE DBUG UPDBUG 2-35
UPUSER UPDATE USER FLASH UPUSER 2-36
VERSION SHOW VERSION VERSION 2-37

2-8

2.4.1. AS - Assemble AS

Usage: AS <addr> <instruction>

The AS command assembles instructions. The value for addr may be an absolute address specified as a
hexadecimal value, or a symbol name. Instruction may be any valid instruction for the target processor.

The assembler keeps track of the address where the last instruction’s opcode was written. If no address is
provided to the AS command and the AS command has not been used since system reset, then AS defaults
to the beginning address of user-space for the target board.

If no instruction is passed to the AS command, then AS prompts with the address where opcode will be
written, and continues to assemble instructions until the user terminates the AS command by inputting a
period, “.”.

The inline assembler permits the use of case-sensitive symbols defined by equate statements and labels
which are stored in the symbol table. The syntax for defining symbols and labels is as follows:

Symbol equ value
Symbol: equ value
Symbol .equ value
Symbol: .equ value
Label: instruction
Label:

Constants and operands may be input in several different bases:

0x followed by hexadecimal constant
$ followed by hexadecimal constant
@ followed by octal constant
% followed by binary constant
digit decimal constant

The assembler also supports the different syntax’s capable for the indexed, displacement and immediate
addressing modes:

(12,An) or 12(An)
(4,PC,Xn) or 4(PC,Xn)
(0x1234).L or 0x1234.L

Examples:

To assemble one ‘move’ instructions at the next assemble address, the command is:

as move.l #0x25,d0

To assemble multiple lines at 0x12000, the command is:

as 12000
then:

0x00012000: start: nop

2-9

0x00012002: nop
0x00012004: lsr.l #1,d0
0x00012006: cmp #4,d0
0x00012008: beq start
0x0001200A:

2-10

2.4.2. BC - Compare Blocks of Memory BC

Usage: BC first second length

The BC command compares two contiguous blocks of memory the first block starting at address 'first', the
second block starting at address 'second', both of length 'length'. If the blocks are not identical,
then the addresses of the first mismatch are displayed. The value for addresses 'first' and 'second' may be
an absolute address specified as a hexadecimal value or a symbol name. The value for length may be a
symbol name or a number converted according to the user defined radix, normally hexadecimal.

Examples:

To verify that the code in the first block of user FLASH space (128K) is identical to the code in user
SDRAM space, the command is,

 bc 20000 FFE20000 20000 .

2-11

2.4.3. BF - Block of Memory Fill BF

Usage: BF<width> begin end data

The BF command fills a contiguous block of memory starting at address begin, stopping at address end,
with the value data. Width modifies the size of the data that is written.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To fill a memory block starting at 0x00010000 and ending at 0x00040000 with the value 0x1234, the
command is:

bf 10000 40000 1234

To fill a block of memory starting at 0x00010000 and ending at 0x0004000 with a byte value of 0xAB, the
command is:

bf.b 10000 40000 AB

To zero out the BSS section of the target code (defined by the symbols bss_start and bss_end), the
command is:

bf bss_start bss_end 0

2-12

2.4.4. BM - Block Move BM

 Usage: BM begin end dest

The BM command moves a contiguous block of memory starting at address begin, stopping at address end,
to the new address dest. The BM command copies memory as a series of bytes, and does not alter the
original block.

The value for addresses begin, end, and dest may be an absolute address specified as a hexadecimal value,
or a symbol name. If the destination address overlaps the block defined by begin and end, an error message
is produced and the command exits.

Examples:

To copy a block of memory starting at 0x00040000 and ending at 0x00080000 to the location
0x00200000, the command is:

bm 40000 80000 200000

To copy the target code’s data section (defined by the symbols data_start and data_end) to 0x00200000,
the command is:

bm data_start data_end 200000

2-13

2.4.5. BR - Breakpoint BR

Usage: BR addr <-r> <-c count> <-t trigger>

The BR command inserts or removes breakpoints at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name. Count and trigger are numbers converted
according to the user-defined radix, normally hexadecimal.
If no argument is provided to the BR command, a listing of all defined breakpoints is displayed.

The -r option to the BR command removes a breakpoint defined at address addr. If no address is specified
in conjunction with the -r option, then all breakpoints are removed.
Each time a breakpoint is encountered during the execution of target code, its count value is incremented by
one. By default, the initial count value for a breakpoint is zero, but the -c option allows setting the initial
count for the breakpoint.

Each time a breakpoint is encountered during the execution of target code, the count value is compared
against the trigger value. If the count value is equal to or greater than the trigger value, a breakpoint is
encountered and control returned to dBUG. By default, the initial trigger value for a breakpoint is one, but
the -t option allows setting the initial trigger for the breakpoint.

If no address is specified in conjunction with the -c or -t options, then all breakpoints are initialized to the
values specified by the -c or -t option.

Examples:

To set a breakpoint at the C function main(), the command is:

br _main

When the target code is executed and the processor reaches main(), control will be returned to dBUG.

To set a breakpoint at the C function bench() and set its trigger value to 3, the command is:

br _bench -t 3

When the target code is executed, the processor must attempt to execute the function bench() a third time
before returning control back to dBUG.

To remove all breakpoints, the command is:

br -r

2-14

2.4.6. BS - Block Search BS

Usage: BS<width> begin end data

The BS command searches a contiguous block of memory starting at address begin, stopping at address
end, for the value data. Width modifies the size of the data that is compared during the search.

The value for addresses begin and end may be an absolute address specified as a hexadecimal value, or a
symbol name. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To search for the 16-bit value 0x1234 in the memory block starting at 0x00040000 and ending at
0x00080000 the command is:

bs 40000 80000 1234

This reads the 16-bit word located at 0x00040000 and compares it against the 16-bit value 0x1234. If no
match is found, then the address is incremented to 0x00040002 and the next 16-bit value is read and
compared.

To search for the 32-bit value 0xABCD in the memory block starting at 0x00040000 and ending at
0x00080000, the command is:

bs.l 40000 80000 ABCD

This reads the 32-bit word located at 0x00040000 and compares it against the 32-bit value 0x0000ABCD.
If no match is found, then the address is incremented to 0x00040004 and the next 32-bit value is read and
compared.

To search the BSS section (defined by the symbols bss_start and bss_end) for the byte value 0xAA, the
command is:

bs.b bss_start bss_end AA

2-15

2.4.7. DATA - Data Conversion DATA

Usage: DATA data

The DATA command displays data in both decimal and hexadecimal notation.

The value for data may be a symbol name or an absolute value. If an absolute value passed into the
DATA command is prefixed by ‘0x’, then data is interpreted as a hexadecimal value. Otherwise data is
interpreted as a decimal value.
All values are treated as 32-bit quantities.

Examples:

To display the decimal equivalent of 0x1234, the command is:

data 0x1234

To display the hexadecimal equivalent of 1234, the command is:

data 1234

2-16

2.4.8. DI - Disassemble DI

Usage: DI <addr>

The DI command disassembles target code pointed to by addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.

Wherever possible, the disassembler will use information from the symbol table to produce a more
meaningful disassembly. This is especially useful for branch target addresses and subroutine calls.

The DI command attempts to track the address of the last disassembled opcode. If no address is provided
to the DI command, then the DI command uses the address of the last opcode that was disassembled.

Examples:

To disassemble code that starts at 0x00040000, the command is:

di 40000

To disassemble code of the C function main(), the command is:

di _main

2-17

2.4.9. DL - Download Serial DL

Usage: DL <offset>

The DL command performs an S-record download of data obtained from the serial port. The value for
offset is converted according to the user defined radix, normally hexadecimal.

If offset is provided, then the destination address of each S-record is adjusted by offset. The DL command
checks the destination address for validity. If the destination is an address below the defined user space
(0x00000000-0x00020000), then an error message is displayed and downloading aborted.
If the S-record file contains the entry point address, then the program counter is set to reflect this address.

Examples:

To download an S-record file through the serial port, the command is:

dl

To download an S-record file through the serial port, and adjust the destination address by 0x40, the
command is:

dl 0x40

2-18

2.4.10. DN - Download Network DN

Usage: DN <-c> <-e> <-i> <-s> <-o offset> <filename>

The DN command downloads code from the network. The DN command handle files which are either S-
record, COFF or ELF formats. The DN command uses Trivial File Transfer Protocol, TFTP, to transfer
files from a network host.

In general, the type of file to be downloaded and the name of the file must be specified to the DN command.
The -c option indicates a COFF download, the -e option indicates an ELF download, -I option indicates an
image download, and the -s indicates an S-record download. The -o option works only in conjunction with
the -s option to indicate and optional offset for S-record download. The filename is passed directly to the
TFTP server and, therefore, must be a valid filename on the server.

If neither of the -c, -e, -i, -s or filename options are specified, then a default filename and file type will be
used. Default filename and file type parameters are manipulated using the set and show commands.

The DN command checks the destination address for validity. If the destination is an address below the
defined user space, then an error message is displayed and downloading aborted.

For ELF and COFF files, which contain symbolic debug information, the symbol tables are extracted from
the file during download and used by dBUG. Only global symbols are kept in dBUG. The dBUG symbol
table is not cleared prior to downloading, so it is the user’s responsibility to clear the symbol table as
necessary prior to downloading.

If an entry point address is specified in the S-record, COFF or ELF file, the program counter is set
accordingly.

Examples:

To download an S-record file with the name “srec.out”, the command is:

dn -s srec.out

To download a COFF file with the name “coff.out”, the command is:

dn -c coff.out

To download a file using the default filetype with the name “bench.out”, the command is:

dn bench.out

To download a file using the default filename and filetype, the command is:

dn

This command requires proper Network address and parameter setup. Refer to Appendix A for this
procedure.

2-19

2.4.11. Go - Execute GO

Usage: GO <addr>

The GO command executes target code starting at address addr. The value for addr may be an absolute
address specified as a hexadecimal value, or a symbol name.
 If no argument is provided, the GO command begins executing instructions at the current program counter.

When the GO command is executed, all user-defined breakpoints are inserted into the target code, and the
context is switched to the target program. Control is only regained when the target code encounters a
breakpoint, illegal instruction, or other exception which causes control to be handed back to dBUG.

Examples:

To execute code at the current program counter, the command is:

go

To execute code at the C function main(), the command is:

go _main

To execute code at the address 0x00040000, the command is:

go 40000

2-20

2.4.12. GT - Execute Till a Temporary Breakpoint GT

Usage: GT <addr>

The GT command executes the target code starting at address in PC (whatever the PC has) until a
temporary breakpoint as given in the command line is reached.

Example:

To execute code at the current program counter and stop at breakpoint address 0x10000, the command is:
GT 10000

2-21

2.4.13. HELP - Help HE

Usage: HELP <command>

The HELP command displays a brief syntax of the commands available within dBUG. In addition, the
address of where user code may start is given. If command is provided, then a brief listing of the syntax of
the specified command is displayed.

Examples:

To obtain a listing of all the commands available within dBUG, the command is:

help

The help list is longer than one page. The help command displays one screen full and ask for an input to
display the rest of the list.

To obtain help on the breakpoint command, the command is:

help br

2-22

2.4.14. IRD - Internal Registers Display IRD

Usage: IRD <module.register>

This commands displays the internal registers of different modules inside the MCF5307. In the command
line, the module refers to the module name where the register is located and the register refers to the
specific register needed.

The registers are organized according to the module to which they belong. The available modules on the
MCF5307 are SIM, UART1, UART2, TIMER, M-Bus, DRAMC, and Chip-Select. Refer to MCF5307
User’s Manual.

Example:

ird sim.sypcr ;display the SYPCR register in the SIM module.

2-23

2.4.15. IRM - Internal Registers MODIFY IRM

Usage: IRM module.register data

This commands modifies the contents of the internal registers of different modules inside the MCF5307. In
the command line, the module refers to the module name where the register is located, register refers to the
specific register needed, and data is the new value to be written into that register.

The registers are organized according to the module to which they belong. The available modules on the
MCF5307 are SIM, UART1, UART2, TIMER, M-Bus, DRAMC, Chip-Select. Refer to MCF5307
User’s Manual.

Example:

irm timer.tmr1 0021 ;write 0021 into TMR1 register in the TIMER module.

2-24

2.4.16. MD - Memory Display MD

Usage: MD<width> <begin> <end>

The MD command displays a contiguous block of memory starting at address begin and stopping at
address end. The value for addresses begin and end may be an absolute address specified as a
hexadecimal value, or a symbol name. Width modifies the size of the data that is displayed.

Memory display starts at the address begin. If no beginning address is provided, the MD command uses
the last address that was displayed. If no ending address is provided, then MD will display memory up to
an address that is 128 beyond the starting address.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To display memory at address 0x00400000, the command is:

md 400000

To display memory in the data section (defined by the symbols data_start and data_end), the command is:
md data_start

To display a range of bytes from 0x00040000 to 0x00050000, the command is:

md.b 40000 50000

To display a range of 32-bit values starting at 0x00040000 and ending at 0x00050000, the command is:

md.l 40000 50000

This command may be repeated by simply pressing the carriage-return (Enter) key. It will continue
with the address after the last display address.

2-25

2.4.17. MM - Memory Modify MM

Usage: MM<width> addr <data>

The MM command modifies memory at the address addr. The value for address addr may be an
absolute address specified as a hexadecimal value, or a symbol name. Width modifies the size of the data
that is modified. The value for data may be a symbol name, or a number converted according to the user
defined radix, normally hexadecimal.

If a value for data is provided, then the MM command immediately sets the contents of addr to data. If no
value for data is provided, then the MM command enters into a loop. The loop obtains a value for data,
sets the contents of the current address to data, increments the address according to the data size, and
repeats. The loop terminates when an invalid entry for the data value is entered, i.e., a period.

This command first aligns the starting address for the data access size, and then increments the address
accordingly during the operation. Thus, for the duration of the operation, this command performs properly
aligned memory accesses.

Examples:

To set the byte at location 0x00010000 to be 0xFF, the command is:

mm.b 10000 FF

To interactively modify memory beginning at 0x00010000, the command is:

mm 10000

2-26

2.4.18. RD - Register Display RD

Usage: RD <reg>

The RD command displays the register set of the target. If no argument for reg is provided, then all
registers are displayed. Otherwise, the value for reg is displayed.

Examples:

To display all the registers and their values, the command is:
rd

To display only the program counter, the command is:

rd pc

2-27

2.4.19. RM - Register Modify RM

Usage: RM reg data

The RM command modifies the contents of the register reg to data. The value for reg is the name of the
register, and the value for data may be a symbol name, or it is converted according to the user defined
radix, normally hexadecimal.

dBUG preserves the registers by storing a copy of the register set in a buffer. The RM command updates
the copy of the register in the buffer. The actual value will not be written to the register until target code is
executed.

Examples:

To change register D0 to contain the value 0x1234, the command is:

rm D0 1234

2-28

2.4.20. RESET - Reset the board and dBUG RESET

Usage: RESET

The RESET command attempts to reset the board and dBUG to their initial power-on states.

The RESET command executes the same sequence of code that occurs at power-on. This code attempts to
initialize the devices on the board and dBUG data structures. If the RESET command fails to reset the
board to your satisfaction, cycle power or press the reset button.

Examples:

To reset the board and clear the dBUG data structures, the command is:

reset

2-29

2.4.21. SET - Set Configuration SET

Usage: SET option <value>
SET

The SET command allows the setting of user configurable options within dBUG. The options are listed
below. If the SET command is issued without option, it will show the available options and values.

The board needs a RESET after this command in order for the new option(s) to take effect.

baud - This is the baud rate for the first serial port on the board. All communications between dBUG and
the user occur using either 9600 or 19200 bps, eight data bits, no parity, and one stop bit, 8N1. Do not
choose 38400 baud.

base - This is the default radix for use in converting number from their ASCII text representation to the
internal quantity used by dBUG. The default is hexadecimal (base 16), and other choices are binary (base
2), octal (base 8), and decimal (base 10).

client - This is the network Internet Protocol, IP, address of the board. For network communications, the
client IP is required to be set to a unique value, usually assigned by your local network administrator.

server - This is the network IP address of the machine which contains files accessible via TFTP. Your
local network administrator will have this information and can assist in properly configuring a TFTP server
if one does not exist.

gateway - This is the network IP address of the gateway for your local subnetwork. If the client IP address
and server IP address are not on the same subnetwork, then this option must be properly set. Your local
network administrator will have this information.

netmask - This is the network address mask to determine if use of a gateway is required. This field must be
properly set. Your local network administrator will have this information.

filename - This is the default filename to be used for network download if no name is provided to the DN
command.

filetype - This is the default file type to be used for network download if no type is provided to the DN
command. Valid values are: “s-record”, “coff”, “image”, and “elf”.

autoboot - This option allows for the automatic downloading and execution of a file from the network.
This option can be used to automatically boot an operating system from the network. Valid values are:
“on” and “off”. This option is not implemented on the current of dBUG.

nicbase - this is base address of the network interface. This command is used to inform the dBUG of the
address of the network interface. The default value shows 0x0000. However, this parameter is hard coded
to 0x300. DO NOT CHANGE THIS OPTION.

macaddr - This is the ethernet MAC address of the board. For network communications, the MAC address
is required to be set to a unique value. Any address that is not already in use is suitable.

2-30

Examples:

To see all the available options and supported choices, the command is:

set

To set the baud rate of the board to be 19200, the command is:

set baud 19200

Now press the RESET button (RED) or RESET command for the new baud to take effect. This baud will
be programmed in Flash ROM and will be used during the power-up.

2-31

2.4.22. SHOW - Show Configuration SHOW

Usage: SHOW option
SHOW

The SHOW command displays the settings of the user configurable options within dBUG. Most options
configurable via the SET command can be displayed with the SHOW command. If the SHOW command
is issued without any option, it will show all options.

Examples:

To display all the current options, the command is:

show

To display the current baud rate of the board, the command is:

show baud

To display the TFTP server IP address, the command is:

show server

2-32

2.4.23. STEP - Step Over ST

Usage: STEP

The ST command can be used to “step over” a subroutine call, rather than tracing every instruction in the
subroutine. The ST command sets a breakpoint one instruction beyond the current program counter and
then executes the target code.

The ST command can be used for BSR and JSR instructions. The ST command will work for other
instructions as well, but note that if the ST command is used with an instruction that will not return, i.e.
BRA, then the temporary breakpoint may never be encountered and thus dBUG may not regain control.

Examples:

To pass over a subroutine call, the command is:

step

2-33

2.4.24. SYMBOL - Symbol Name Management SYMBOL

Usage: SYMBOL <symb> <-a symb value> <-r symb> <-c|l|s>

The SYMBOL command adds or removes symbol names from the symbol table. If only a symbol name is
provided to the SYMBOL command, then the symbol table is searched for a match on the symbol name and
its information displayed.

The -a option adds a symbol name and its value into the symbol table. The -r option removes a symbol
name from the table.

The -c option clears the entire symbol table, the -l option lists the contents of the symbol table, and the -s
option displays usage information for the symbol table.

Symbol names contained in the symbol table are truncated to 31 characters. Any symbol table lookups,
either by the SYMBOL command or by the disassembler, will only use the first 31 characters. Symbol
names are case sensitive.

Examples:

To define the symbol “main” to have the value 0x00040000, the command is:

symbol -a main 40000

To remove the symbol “junk” from the table, the command is:

symbol -r junk

To see how full the symbol table is, the command is:

symbol -s

To display the symbol table, the command is:

symbol -l

2-34

2.4.25. TRACE - Trace Into TR

Usage: TRACE <num>

The TRACE command allows single instruction execution. If num is provided, then num instructions are
executed before control is handed back to dBUG. The value for num is a decimal number.

The TRACE command sets bits in the processors’ supervisor registers to achieve single instruction
execution, and the target code executed. Control returns to dBUG after a single instruction execution of the
target code.

Examples:

To trace one instruction at the program counter, the command is:

tr

To trace 20 instructions from the program counter, the command is:

tr 20

2-35

2.4.26. UPDBUG - Update the dBUG Image UPDBUG

Usage: UPDBUG

The UPDBUG command is used for updating the dBUG image in Flash. When updates to the MCF5307
EVS dBUG are available, the updated image is downloaded to address 0x00020000. The new image is
placed into Flash using the UPDBUG command. The user is prompted for verification before performing
the operation. Use this command with extreme caution, as any error can render dBUG, and thus the board,
useless!

2-36

2.4.27. UPUSER - Update User Code In Flash UPUSER

Usage: UPUSER <number of sectors>

The UPUSER command places user code and data into space allocated for the user in Flash. There are six
sectors of 128K each available as user space. To place code and data in user Flash, the image is
downloaded to address 0x00020000, and the UPUSER command issued. This command programs
all six sectors of user Flash space. Users access this space starting at address 0xFFE20000. To program
less than six sectors, supply the number of sectors you wish to program after the UPUSER command.

Examples:

To program all 6 sectors of user FLASH space, the command is:

 upuser or upuser 6

To program only 128K of user FLASH space, the command is:

 upuser 1

2-37

VERSION - Display dBUG Version VERSION

Usage: VERSION

The VERSION command display the version information for dBUG. The dBUG version number and build
date are both given.

The version number is separated by a decimal, for example, “v1.1”. The first number indicates the version
of the CPU specific code, and the second number indicates the version of the board specific code.

The version date is the day and time at which the entire dBUG monitor was compiled and built.

Examples:

To display the version of the dBUG monitor, the command is:

version

2-38

2.5 TRAP #15 Functions

An additional utility within the dBUG firmware is a function called the TRAP 15 handler. This function
can be called by the user program to utilize various routines within the dBUG, to perform a special task,
and to return control to the dBUG. This section describes the TRAP 15 handler and how it is used.

There are four TRAP #15 functions. These are: OUT_CHAR, IN_CHAR, CHAR_PRESENT, and
EXIT_TO_dBUG.

2.5.1. OUT_CHAR

This function (function code 0x0013) sends a character, which is in lower 8 bits of D1, to terminal.

Assembly example:

/* assume d1 contains the character */
 move.l #$0013,d0 Selects the function
TRAP #15 The character in d1 is sent to terminal

C example:

void board_out_char (int ch)
{

/* If your C compiler produces a LINK/UNLK pair for this routine,
 * then use the following code which takes this into account
*/

#if l
/* LINK a6,#0 -- produced by C compiler */
asm (“ move.l 8(a6),d1”); /* put ‘ch’into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
/* UNLK a6 -- produced by C compiler */

#else
/* If C compiler does not produce a LINK/UNLK pair, the use
 * the following code.
*/
 asm (“ move.l 4(sp),d1”); /* put ‘ch’into d1 */
asm (“ move.l #0x0013,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

#endif
}

2.5.2. IN_CHAR

This function (function code 0x0010) returns an input character (from terminal) to the caller. The returned
character is in D1.

Assembly example:

2-39

move.l #$0010,d0 Select the function
trap #15 Make the call, the input character is in d1.

C example:

int board_in_char (void)
{

asm (“ move.l #0x0010,d0”); /* select the function */
asm (“ trap #15”); /* make the call */
asm (“ move.l d1,d0”); /* put the character in d0 */

}

2.5.3. CHAR_PRESENT

This function (function code 0x0014) checks if an input character is present to receive. A value of zero is
returned in D0 when no character is present. A non-zero value in D0 means a character is present.

Assembly example:

move.l #$0014,d0 Select the function
trap #15 Make the call, d0 contains the response (yes/no).

C example:

int board_char_present (void)
{

asm (“ move.l #0x0014,d0”); /* select the function */
asm (“ trap #15”); /* make the call */

}

2.5.4. EXIT_TO_dBUG

This function (function code 0x0000) transfers the control back to the dBUG, by terminating the user
code. The register context are preserved.

Assembly example:

move.l #$0000,d0 Select the function
trap #15 Make the call, exit to dBUG.

C example:

void board_exit_to_dbug (void)
{

asm (“ move.l #0x0000,d0”); /* select the function */
asm (“ trap #15”); /* exit and transfer to dBUG */

}

3-1

CHAPTER 3

HARDWARE DESCRIPTION AND RECONFIGURATION

This chapter provides a functional description of the SBC5307 board hardware. With the description given
here and the schematic diagram provided at the end of this manual, the user can gain a good understanding
of the board's design. In this manual, an active low signal is indicated by a "-" preceding the signal name.

3.1 THE PROCESSOR AND SUPPORT LOGIC

This part of the Chapter discusses the CPU and general supporting logic on the SBC5307 board.

3.1.1. The Processor

The microprocessor used in the SBC5307 is the highly integrated MCF5307, 32 -bit processor. The
MCF5307 uses a ColdFire® processor as the core with 8K bytes of unified cache, two UART channels,
two Timers, 4K bytes of SRAM, Motorola M-Bus Module supporting the I2C, one-byte wide parallel I/O
port, and the supporting integrated system logic. All the registers of the core processor are 32 bits wide
except for the Status Register (SR) which is 16 bits wide. This processor communicates with external
devices over a 32-bit wide data bus, D0-D31 with support for 8 and 16-bit ports. This chip can address
the entire 4 G Bytes of memory space using internal chip-select logic. All the processor's signals are
available through mictor connectors, LA1, LA2, LA3, LA4 and LA5. Refer to section 3.7 for pin
assignment.

The MCF5307 has an IEEE JTAG-compatible port and BDM port. These signals are available at port J1.
The processor also has the logic to generate up to eight (8) chip selects, -CS0 to -CS7, and support
ADRAM or SDRAM.

3.1.2. The Reset Logic

The reset logic provides system initialization. The reset occurs during power-on and asserts the *RSTI
which causes total system reset. The reset is also triggered by the red reset switch and resets the entire
processor.

U5 is used to produce active low power-on RESET signal which feeds into the ispLSI2032 (U9 where the
Push-button RESET also goes. The U9 device generates the system reset (-RESET) and Ethernet RESET
signals.

ROM Monitor performs the following configurations of internal resources during the initialization. The
instruction cache is invalidated and disabled. The Vector Base Register, VBR, points to the Flash.
However, a copy of the exception table is made at address $00000000 in the SDRAM.

The Software Watchdog Timer is disabled, Bus Monitor enabled, and internal timers are placed in a stop
condition. Interrupt controller registers are initialized with unique interrupt level/priority pairs. The
parallel I/O port is configured for I/O.

3-2

3.1.3. The -HIZ Signal

The -HIZ signal is actively driven by the LSI2032 (U9). This Signal is available for monitor on
connector LA3. However, this signal should not be driven by the user.

3.1.4. The Clock Circuitry

The SBC5307 uses a 45MHZ oscillator (U22) to provide the clock to CLK pin of the processor. In
addition to U22, there also exist a 20MHz oscillator which feeds into the Ethernet chip. The bus clock out
of the MCF5307 drives a clock buffer chip which is fed into the edge select pin of the MCF5307, the
ispLSI2032 for Ethernet timing (1/4 bus clock), SRAM (U19), and SDRAM (U23).

3.1.5. Watchdog Timer (BUS MONITOR)

A bus cycle is initiated by the processor providing the necessary information for the bus cycle (e.g. address,
data, control signals, etc.) and asserting the -CS or -RAS low. Then, the processor waits for an
acknowledgment (-TA signal) from the addressed device before it can complete the bus cycle. It is possible
(due to incorrect programming) that the processor attempts to access part of the address space which
physically does not exist. In this case, the bus cycle will go on for ever, since there is no memory or I/O
device to provide an acknowledgment signal, and the processor will be in an infinite wait state. The
MCF5307 has the necessary logic built into the chip to watch the duration of the bus cycle. If the cycle is
not terminated within the preprogrammed duration the logic will internally assert a Transfer Error signal.
In response, the processor will terminate the bus cycle and an access fault exception (trap) will take place.

The duration of the Watchdog is selected by BMT0-1 bits in System Protection Register. The dBUG
initializes this register with the value 00, which provides for 1024 system clock time-out.

3.1.6. Interrupt Sources

The ColdFire® family of processors can receive interrupts for seven levels of interrupt priorities. When the
processor receives an interrupt which has higher priority than the current interrupt mask (in status register),
it will perform an interrupt acknowledge cycle at the end of the current instruction cycle. This interrupt
acknowledge cycle indicates to the source of the interrupt that the request is being acknowledged and the
device should provide the proper vector number to indicate where the service routine for this interrupt level
is located. If the source of interrupt is not capable of providing a vector, its interrupt should be set up as
autovector interrupt which directs the processor to a predefined entry into the exception table (refer to the
MCF5307 User's Manual).

The processor goes to a service routine via the exception table. This table is in the Flash and the VBR
points to it. However, a copy of this table is made in the RAM starting at $00000000. To set an exception
vector, the user places the address of the exception handler in the appropriate vector in the vector table
located at $00000000, and then points the VBR to $00000000.

The MCF5307 has four external interrupt request lines. You can program the external interrupt request
pins to level 1, 3, 5, and 7 or levels 2, 4, 6, and 7. The SBC5307 configures these lines as level 1, 3, 5, and
7. There are also six internal interrupt requests from Timer1, Timer2, Software watchdog timer, UART1,
UART2, and MBUS. Each interrupt source, external and internal, can be programmed for any priority
level. In case of similar priority level, a second relative priority between 0 to 3 will be assigned.

3-3

However, the software watchdog is programmed for Level 7, priority 2 and uninitialized vector. The
UART1 is programmed for Level 3, priority 2 and autovector. The UART2 is programmed for Level 3,
priority 1 and autovector. The M-Bus is at Level 3, priority 0 and autovector. The Timers are at Level 5
with Timer 1 with priority 3 and Timer 2 with priority 2 and both for autovector.

The SBC5307 uses -IRQ7 to support the ABORT function using the ABORT switch S1 (red switch). This
switch is used to force a non-maskable interrupt (level 7, priority 3) if the user's program execution should
be aborted without issuing a RESET (refer to Chapter 2 for more information on ABORT). Since the
ABORT switch is not capable of generating a vector in response to level seven interrupt acknowledge from
the processor, the debugger programs this request for autovector mode.

The -IRQ1 line of the MCF5307 is not used on this board. However, the -IRQ1 is programmed for Level 1
with priority 1 and autovector. The user may use this line for external interrupt request. Refer to
MCF5307 User’s Manual for more information about the interrupt controller.

3.1.7. Internal SRAM

The MCF5307 has 4K bytes of internal memory. This memory is mapped to 0x00800000 and is not used
by the dBUG. It is available to the user.

3.1.8. The MCF5307 Registers and Memory Map

The memory and I/O resources of the SBC5307 are divided into three groups, MCF5307 Internal, External
resources, and the ethernet controller. All the I/O registers are memory mapped.

The MCF5307 has built in logic and up to eight chip-select pins (/CS0 to /CS7) which are used to enable
external memory and I/O devices. In addition there are two -RAS lines for DRAM’s. There are registers to
specify the address range, type of access, and the method of -TA generation for each chip-select and -RAS
pins. These registers are programmed by dBUG to map the external memory and I/O devices.

The SBC5307 uses chip-select zero (/CS0) to enable the Flash ROM’s (refer to Section 3.3.) The
SBC5307 uses /RAS1, /RAS2, /CAS0, /CAS1, /CAS2, and /CAS3 to enable the SDRAM DIMM module
(refer to Section 3.2), /CS2 for SRAM (not populated), and /CS3 for Ethernet Bus I/O space.

The chip select mechanism of the MCF5307 allows the memory mapping to be defined based on the
memory space desired (User/Supervisor, Program/Data spaces).

All the MCF5307 internal registers, configuration registers, parallel I/O port registers, DUART registers
and system control registers are mapped by MBAR register at any 1K-byte boundary. It is mapped to
0x10000000 by dBUG. For complete map of these registers refer to the MCF5307 User's Manual.

The SBC5307 board can have up to 8M bytes of SDRAM installed. The first 8M bytes are reserved for
this memory. Refer to Section 3.2 for a discussion of RAM. The dBUG is programmed in two 29LV004B
Flash ROM’s which only occupies 1M bytes of the address space. The first 128K bytes are used by ROM
Monitor and the second half is left for user. Refer to section 3.3.

The Ethernet Bus interface maps all the I/O space of the Ethernet bus to the MCF5307 memory at address
$FE600000. Refer to section 3.6.

3-4

Table 4 - The SBC5307 memory map
ADDRESS RANGE SIGNAL and DEVICE

$00000000-$007FFFFF /RAS1, /RAS2, 8M bytes of SDRAM’s.
$00800000-$00800FFF Internal SRAM (4K bytes)
$10000000-$100003FF Internal Module registers

$FE400000-$FE47FFFF1 External SRAM (512K bytes)

$FE600000-$FE7FFFFF /CS3, 2M Ethernet Bus area
$FFE00000-$FFEFFFFF /CS0, 1M bytes of Flash ROM.

1. Not installed. Level 2 cache footprint accepts Motorola’s MCM69F737TQ chip and any other
SRAM with the same electrical specifications and package.

All the unused area of the memory map is available to the user.

3.1.9. Reset Vector Mapping

After reset, the processor attempts to get the initial stack pointer and initial program counter values from
locations $000000-$000007 (the first eight bytes of memory space). This requires the board to have a
nonvolatile memory device in this range with proper information. However, in some systems, it is preferred
to have RAM starting at address $00000000. In MCF5307, the /CS0 responds to any accesses after reset
until the CSMR0 is written. Since /CS0 is connected to Flash ROM’s, the Flash ROMs appear to be at
address $00000000 which provides the initial stack pointer and program counter (the first 8 bytes of the
Flash ROM). The initialization routine, however, programs the chip-select logic and locates the Flash
ROM’s to start at $FFE00000 and the DRAMs to start at $00000000.

3.1.10. /TA Generation

The processor starts a bus cycle by providing the necessary information (address, R/*W, etc.) and asserting
the /TS. The processor then waits for an acknowledgment (/TA) by the addressed device before it can
complete the bus cycle. This /TA is used not only to indicate the presence of a device, it also allows
devices with different access time to communicate with the processor properly. The MCF5307, as part of
the chip-select logic, has a built in mechanism to generate the /TA for all external devices which do not
have the capability to generate the /TA on their own. The Flash ROM’s and DRAM’s can not generate the
/TA. Their chip-select logic’s are programmed by ROM Monitor to generate the /TA internally after a
preprogrammed number of wait states. In order to support the future expansion of the board, the /TA input
of the processor is also connected to the Processor Expansion Bus, J9. This allows the expansion boards to
assert this line to indicate their /TA to the processor. On the expansion boards, however, this signal should
be generated through an open collector buffer with no pull-up resistor, a pull-up resistor is included on the
board. All the /TA’s from the expansion boards should be connected to this line.

3.1.11. Wait State Generator

The Flash ROM’s and SDRAM DIMM on the board may require some adjustments on the cycle time of
the processor to make them compatible with processor speed. To extend the CPU bus cycles for the slower
devices, the chip-select logic of the MCF5307 can be programmed to generate the /TA after a given
number of wait states. Refer to Sections 3.2 and 3.3 information about wait state requirements of
SDRAM’s and Flash ROM’s respectively.

3-5

3.2 THE SDRAM DIMM

The SBC5307 has one 168-pin DIMM socket (U23) for SDRAM DIMM. This socket supports SDRAM
DIMM’s of 1M x 4 x 16-Bits SDRAM x 2. No special configuration is needed. The DIMM speed should
be a minimum of 70ns. The SDRAM Access timing is 2,4,2,1,-1 for tRCD, tRAS, tRP, tRWL, and tEP

respectfully. These timings determine how long the data is delayed after the /CAS signal (or the read
command) is asserted during a SDRAM access. This corresponds to the tRCD specifications in most
SDRAM’s. The other timings that correspond to the SDRAM are the active command to precharge
command (tRAS), precharge command to active command (tRP), last data input to precharge command
(tRWL), and last data out to early precharge (t EP).

3.3 FLASH ROM

There are two 512Kbyte Flash ROM’s on the SBC5307, U20 (high, even byte) and U21 (low, odd byte).

The board is shipped with two 29LV004, 512K-byte, FLASH ROM’s for a total of 1M bytes. The first
128K of the Flash contains ROM Monitor firmware. The last 896K is available to the user. The chip-
select signal generated by the MCF5307 (/CS0) enables both chips.

The MCF5307 chip-select logic can be programmed to generate the /TA for /CS0 signal after a certain
number of wait states. The dBUG programs this parameter to three wait-states.

3.3.1. JP1 Jumper and User’s Program

This jumper allows users to test code from the boot without having to overwrite the ROM Monitor.
When the jumper is set between pins 1 and 2, the behavior is normal. When the jumper is set between pins
2 and 3, the board boots from the second half of Flash (0x80000).

Procedure:
1. Compile and link as though the code was to be place at the base of the flash, but setup so that it will

download to the SDRAM starting at address 0x80000. The user need to refer to the compiler for this,
since it will depend upon the compiler used (in Diab Data, a shadow in the linker file is used).

2. Set up the jumper for Normal operation, pin1 connected to pin 2.

3. Download to SDRAM (If using serial or ethernet, start ROM Monitor first. If using BDM via wiggler,
download first, then start ROM Monitor by pointing PC to 0xffe00400 and run.)

4. In ROM Monitor, run 'upuser' command.

5. Move jumper to 3.3V and reset, pin 2 connected to pin 3. User code should be running.

3.4 THE SERIAL COMMUNICATION CHANNELS

The SBC5307 offers a number of serial communications. They are discussed in this section.

3-6

3.4.1. The MCF5307 DUART

The MCF5307 has two built in UART’s, each with its own software programmable baud rate generators,
only one channel is the ROM Monitor to Terminal output and other is available to the user. The ROM
Monitor, however, programs the interrupt level for UART1 to Level 3, priority 2 and autovector mode of
operation. The interrupt level for UART2 to Level 3, priority 1 and autovector mode of operation. The
signals of these channels are available on port LA1 and LA3. The signals of UART1 and UART2 are also
passed through the RS-232 driver/receiver and are available on DB-9 connectors J4 and J7. Refer to the
MCF5307 User’s Manual for programming and the register map.

3.4.2. Motorola Bus (M-Bus) Module

The MCF5307 has a built in M-Bus module which allows interchip bus interface for a number of I/O
devices. It is compatible with industry-standard I2C Bus. The SBC5307 does not use this module and it is
available to the user. The two M-Bus signals are SDA and SCL which are available at LA4 connector.
These signals are open-collector signals. However, they have pull-up resistors on the SBC5307. These
signals are connected to the SDRAM DIMM module I2C interface but not used by the debugger. The
interrupt control register for M-Bus is set for Level 3, priority 0 and autovector.

3.5 THE PARALLEL I/O Port

The MCF5307 has one 16-bit parallel port. All the pins have dual functions. They can be configured as
I/O or their alternate function via the Pin Assignment register. All pins are configured as I/O pins by the
ROM Monitor

3-7

3.6 ON BOARD ETHERNET LOGIC

The SBC5307 includes the necessary logic, drivers, and the NE2000 compatible Ethernet chip to allow
10M bit transfer rate on a network. The Ethernet-space addresses are located starting at 0xFE600000.

The interface base address is 0x300 and uses IRQ3. However, the Ethernet base address in our system as
mentioned earlier is 0xFE600000. Which brings the address of chip to 0xFE600300. Note that all
registers should be addressed as WORD (eventhough the registers are bytes) also note that the even address
registers are addressed as they are (no change), the read word will have the byte of the data in the lower
byte of the word.

For odd addressed bytes, the address is mapped to 0xFE6083xx-1. Note that odd-bytes are addressed as
even addresses but increased by 0x8000. Still the read byte will be in the lower byte of the read word
Below is an example of the data structure used to define the registers. For the description of the registers
refer to the Data Sheet for Davicom DM9008, a copy of this document in on Coldfire Website.

typedef struct
{

NATURAL16 CR;
union
{

struct
{

/* Even registers */
NATURAL16 CLDA1; /* CLDA1 (rd) PSTOP (wr) */
NATURAL16 TSR; /* TSR (rd) TPSR (wr) */
NATURAL16 FIFO; /* FIFO (rd) TBCR1 (wr) */
NATURAL16 CRDA0; /* CRDA0 (rd) RSAR0 (wr) */
NATURAL16 RBCR0; /* Remote Byte Count 0 (wr) */
NATURAL16 RSR; /* RSR (rd) RCR (wr) */
NATURAL16 CNTR1; /* CNTR1 (rd) DCR (wr) */

NATURAL16 DATAPORT;

NATURAL16 reserved[(0x10000-0x0012)/2];

/* Odd registers */
NATURAL16 CLDA0; /* CLDA0 (rd) PSTART (wr) */
NATURAL16 BNRY; /* Boundary pointer (rd wr) */
NATURAL16 NCR; /* NCR (rd) TBCR0 (wr) */
NATURAL16 ISR; /* Interrupt Status Register (rd wr) */
NATURAL16 CRDA1; /* CRDA1 (rd) RSAR1 (wr) */
NATURAL16 RBCR1; /* Remote Byte Count 1 (wr) */
NATURAL16 CNTR0; /* CNTR0 (rd) TCR (wr) */
NATURAL16 CNTR2; /* CNTR2 (rd) IMR (wr) */

} page0;
struct
{

/* Even registers */
NATURAL16 PAR1; /* Physical Address Byte 1 */
NATURAL16 PAR3; /* Physical Address Byte 3 */

3-8

NATURAL16 PAR5; /* Physical Address Byte 5 */
NATURAL16 MAR0; /* Multicast Address Byte 0 */
NATURAL16 MAR2; /* Multicast Address Byte 2 */
NATURAL16 MAR4; /* Multicast Address Byte 4 */
NATURAL16 MAR6; /* Multicast Address Byte 6 */

NATURAL16 reserved[(0x10000-0x0010)/2];

/* Odd registers */
NATURAL16 PAR0; /* Physical Address Byte 0 */
NATURAL16 PAR2; /* Physical Address Byte 2 */
NATURAL16 PAR4; /* Physical Address Byte 4 */
NATURAL16 CURR; /* Current Page Register (rd wr) */
NATURAL16 MAR1; /* Multicast Address Byte 1 */
NATURAL16 MAR3; /* Multicast Address Byte 3 */
NATURAL16 MAR5; /* Multicast Address Byte 5 */
NATURAL16 MAR7; /* Multicast Address Byte 7 */

} page1;
struct
{

/* Even registers */
NATURAL16 PSTOP; /* PSTOP (rd) CLDA1 (wr) */
NATURAL16 TPSR; /* Transmit Page Start Address (rd) */
NATURAL16 ACU; /* Address Counter Upper */
NATURAL16 reserved0;
NATURAL16 reserved2;
NATURAL16 RCR; /* Receive Configuration Register (rd) */
NATURAL16 DCR; /* Data Configuration Register (rd) */

NATURAL16 reserved[(0x10000-0x0010)/2];

/* Odd registers */
NATURAL16 PSTART; /* PSTART (rd) CLDA0 (wr) */
NATURAL16 RNPP; /* Remote Next Packet Pointer */
NATURAL16 LNPP; /* Local Next Packet Pointer */
NATURAL16 ACL; /* Address Counter Lower */
NATURAL16 reserved1;
NATURAL16 reserved3;
NATURAL16 TCR; /* Transmit Configuration Register (rd) */
NATURAL16 IMR; /* Interrupt Mask Register (rd) */

} page2;
} regs;

} NS8390;

The main purpose for this setup is to allow the use of Ethernet card (NE2000 compatible) to facilitate
network download, refer to chapter 2 for network download command (DN). The dBUG driver is 100%
NE2000 compatible.

The Ethernet Bus interrupt request line is hardwired to IRQ3.

3-9

The on board ROM MONITOR is programmed to allow a user to download files from a network to
memory in different formats. The current formats supported are S-Record, COFF, ELF, or Image.

3.7 THE CONNECTORS AND THE EXPANSION BUS

There are 8 connectors on the SBC5307 which are used to connect the board to external I/O devices and or
expansion boards. This section provides a brief discussion and the pin assignments of the connectors.

3.7.1. The Terminal Connector J4

The signals on UART1 that runs through RS-232 driver/receivers are used to drive the Terminal. The
SBC5307 uses a 9-pin D-sub female connector J4 for connecting the board to a terminal or a PC with
terminal emulation software. The available signals are a working subset of the RS-232C standard. Table 5
- The J4 (Terminal) Connector pin assignment shows the pin assignment.

Table 5 - The J4 (Terminal) Connector pin assignment
PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send
8 Output Clear to Send
9 Not Used

3.7.2. The Auxiliary Serial Communication Connector J7

The MCF5307 has two built-in UART’s. One channel is not used by the SBC5307 ROM Monitor and is
available to the user. This signal is available on port J7. The available signals form a working subset of
the RS-232C standard. Table 6 - The J7 Connector pin assignment shows the pin assignment for J7.

3-10

Table 6 - The J7 Connector pin assignment
 PIN NO. DIRECTION SIGNAL NAME
1 Output Data Carrier Detect (shorted to 4 & 6)
2 Output Receive data
3 Input Transmit data
4 Input Data Terminal Ready (shorted to 1 & 6)
5 Signal Ground
6 Output Data Set Ready (shorted to 1 & 4)
7 Input Request to Send
8 Output Clear to Send
9 Not Used

3.7.3. Logical Analyzer connectors LA1-5 and Processor Expansion Bus J8 & J9

All the processors signals are available on 5 mictor connectors LA1-5. User may refer to the data sheets
for the major parts and the schematic at the end of this manual to obtain an accurate loading capability. A
subset of the signals are available on J8 and J9 for easier access. Tables 7-14 show the pin assignment for
J8, J9, LA1, LA2, LA3, LA4 and LA5 respectively.

Table 7 - The J8 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 TIN1 2 TT0_PP0
3 TOUT1 4 TT1_PP1
5 TIN0 6 TM0_PP2
7 TOUT0 8 TM1_PP3
9 SCL 10 TM2_PP4

11 SDA 12 DREQ1_PP5
13 /IRQ1 14 DREQ0_PP6
15 /IRQ5 16 XTIP_PP7
17 /CS0_HEADER 18 A24_PP8
19 /BWE0 20 A25_PP9
21 /BWE1 22 A26_PP10
23 /BWE2 24 A27_PP11
25 /BWE3 26 A28_PP12
27 /OE 28 A29_PP13
29 /CS4 30 A30_PP14
31 /CS5 32 A31_PP15
33 /RTS0 34 GND

3-11

Table 8 - The J9 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 D1 2 D2
3 D0 4 D3
5 A0 6 D4
7 A1 8 D5
9 A2 10 D6

11 A3 12 D7
13 A4 14 D8
15 A5 16 D9
17 A6 18 D10
19 A7 20 D11
21 A8 22 D12
23 A9 24 D13
25 A10 26 D14
27 A11 28 D15
29 A12 30 D16
31 A13 32 D17
33 A14 34 D18
35 A15 36 D19
37 A16 38 D20
39 A17 40 D21
41 A18 42 D22
43 A19 44 D23
45 A20 46 D24
47 A21 48 D25
49 A22 50 D26
51 A23 52 D27
53 R/-W 54 D28
55 -AS 56 D29
57 -TA 58 D30
59 GND 60 D31

3-12

Table 9 - The LA2 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 NC 2 NC
3 NC 4 A0
5 A1 6 A3
7 A5 8 A7
9 A9 10 A11

11 A13 12 A15
13 A17 14 A19
15 A21 16 A23
17 A25_PP9 18 A27_PP11
19 A29_PP13 20 A31_PP15
21 A30_PP14 22 A28_PP12
23 A26_PP10 24 A24_PP8
25 A22 26 A20
27 A18 28 A16
29 A14 30 A12
31 A10 32 A8
33 A6 34 A4
35 A2 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-13

Table 10 - The LA1 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 NC 2 NC
3 PSTCLK 4 TXD1
5 TXD2 6 NC
7 NC 8 SIZ0
9 /CS0 10 /BG

11 NC 12 /IRQ3
13 /CF_RSTI 14 /TA
15 /CS4 16 /CS3
17 /CS2 18 /AS
19 /IRQ5 20 /BR
21 /TS 22 /CS5
23 /CS6 24 /CS7
25 R/-W 26 /IRQ7
27 /IRQ1 28 /BD
29 /CS1 30 /OE
31 SIZ1 32 NC
33 NC 34 NC
35 NC 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

Table 11 - The LA3 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 NC 2 NC
3 NC 4 PST3
5 PST0 6 PST1
7 PST2 8 DREQ0_PP6
9 DREQ1_PP5 10 MTMOD0

11 MTMOD1 12 RXD2
13 /RTS2 14 RXD1
15 MTMOD2 16 DSCLK_/TRST
17 DSDO_TDI 18 TCK
19 /BKPT_TMS 20 /HIZ
21 DSDO_TDO 22 /CTS2
23 /CTS1 24 /RTSI
25 MTMOD3 26 DDATA0
27 DDATA1 28 DDATA2
29 DDATA3 30 XTIP_PP7
31 TMO_PP2 32 TM1_PP3
33 TT0_PP3 34 TM2_PP4
35 TT1_PP1 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-14

Table 12 - The LA4 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 NC 2 NC
3 BCLK0 4 /R_RAS0
5 /R_CAS2 6 /R_RAS1
7 /R_CAS0 8 /R_CAS1
9 /R_CAS3 10 /R_SRAS

11 /R_DRAMW 12 /R_SCAS
13 R_SCKE 14 TIN0
15 TOUT0 16 PPLTPA
17 EDGSEL 18 SCL
19 SDA 20 NC
21 NC 22 NC
23 NC 24 NC
25 NC 26 NC
27 NC 28 NC
29 NC 30 /BWE0
31 /BWE3 32 /BEW2
33 /BWE1 34 /TIN1
35 TOUT1 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

Table 13 - The LA5 Connector pin assignment
 PIN NO. SIGNAL NAME PIN NO. SIGNAL NAME

1 NC 2 NC
3 NC 4 D1
5 D3 6 D5
7 D7 8 D9
9 D11 10 D13

11 D15 12 D17
13 D19 14 D21
15 D23 16 D25
17 D27 18 D29
19 D31 20 D30
21 D28 22 D26
23 D24 24 D22
25 D20 26 D18
27 D16 28 D14
29 D12 30 D10
31 D8 32 D6
33 D4 34 D2
35 D0 36 NC
37 NC 38 NC
39 GND 40 GND
41 GND 42 GND
43 GND

3-15

3.7.4. The Debug Connector J1

The MCF5307 does have background Debug Port, Real-Time Trace Support, and Real-Time Debug
Support. The necessary signals are available at connector J1. Table 14 - The J1 Connector pin assignment
shows the pin assignment.

Table 14 - The J1 Connector pin assignment
 PIN NO. SIGNAL NAME

1 No Connect
2 -BKPT
3 Ground
4 DSCLK
5 Ground
6 No Connect
7 -RESET
8 DSI
9 No Connect

10 DSO
11 Ground
12 PST3
13 PST2
14 PST1
15 PST0
16 DDAT3
17 DDAT2
18 DDAT1
19 DDAT0
20 Ground
21 No Connect
22 No Connect
23 Ground
24 CLK
25 +3.3 Volts
26 No Connect

1

APPENDIX A (Configuring dBUG for Network Downloads)

The dBUG module has the ability to perform downloads over an Ethernet network using the Trivial File
Transfer Protocol, TFTP. Prior to using this feature, several parameters are required for network
downloads to occur. The information that is required and the steps for configuring dBUG are described
below.

A.1 Required Network Parameters

For performing network downloads, dBUG needs 6 parameters; 4 are network-related, and 2 are download-
related. The parameters are listed below, with the dBUG designation following in parenthesis.

All computers connected to an Ethernet network running the IP protocol need 3 network-specific
parameters. These parameters are:

• Internet Protocol, IP, address for the computer (client IP),
• IP address of the Gateway for non-local traffic (gateway IP), and
• Network netmask for flagging traffic as local or non-local (netmask).

 In addition, the dBUG network download command requires the following three parameters:

• IP address of the TFTP server (server IP),
• Name of the file to download (filename),
• Type of the file to download (filetype of S-record, COFF, ELF, or Image).

Your local system administrator can assign a unique IP address for the board, and also provide you the IP
addresses of the gateway, netmask, and TFTP server. Fill out the lines below with this information.

Client IP: ___.___.___.___ (IP address of the board)
Server IP: ___.___.___.___ (IP address of the TFTP server)
Gateway: ___.___.___.___ (IP address of the gateway)
Netmask: ___.___.___.___ (Network netmask)

A.2 Configuring dBUG Network Parameters

Once the network parameters have been obtained, the Rom Monitor must be configured. The following
commands are used to configure the network parameters.

set client <client IP>
set server <server IP>
set gateway <gateway IP>
set netmask <netmask>
set Macaddr <macaddr>

For example, the TFTP server is named ‘santafe’ and has IP address 123.45.67.1. The board is assigned
the IP address of 123.45.68.15. The gateway IP address is 123.45.68.250, and the netmask is
255.255.255.0. The commands to dBUG are:

2

set client 123.45.68.15
set server 123.45.67.1
set gateway 123.45.68.250
set netmask 255.255.255.0
set Macaddr 00:00:00:00:00:00

The last step is to inform dBUG of the name and type of the file to download. Prior to giving the name of
the file, keep in mind the following.

Most, if not all, TFTP servers will only permit access to files starting at a particular sub-directory. (This
is a security feature which prevents reading of arbitrary files by unknown persons.) For example, SunOS
uses the directory /tftp_boot as the default TFTP directory. When specifying a filename to a SunOS TFTP
server, all filenames are relative to /tftp_boot. As a result, you normally will be required to copy the file to
download into the directory used by the TFTP server.

A default filename for network downloads is maintained by dBUG. To change the default filename, use the
command:

set filename <filename>

When using the Ethernet network for download, either S-record, COFF, ELF, or Image files may be
downloaded. A default filetype for network downloads is maintained by dBUG as well. To change the
default filetype, use the command:

set filetype <srecord|coff|elf|image>

Continuing with the above example, the compiler produces an executable COFF file, ‘a.out’. This file is
copied to the /tftp_boot directory on the server with the command:

rcp a.out santafe:/tftp_boot/a.out

Change the default filename and filetype with the commands:

set filename a.out
set filetype coff

Finally, perform the network download with the ‘dn’ command. The network download process uses the
configured IP addresses and the default filename and filetype for initiating a TFTP download from the
TFTP server.

A.3 Troubleshooting Network Problems
Most problems related to network downloads are a direct result of improper configuration. Verify that all
IP addresses configured into dBUG are correct. This is accomplished via the ‘show ’command.

Using an IP address already assigned to another machine will cause dBUG network download to fail, and
probably other severe network problems. Make certain the client IP address is unique for the board.

Check for proper insertion or connection of the network cable. IS status LED lit indicating that network
traffic is present?

3

Check for proper configuration and operation of the TFTP server. Most Unix workstations can execute a
command named ‘tftp’ which can be used to connect to the TFTP server as well. Is the default TFTP root
directory present and readable?

If ‘ICMP_DESTINATION_UNREACHABLE’ or similar ICMP message appears, then a serious error has
occurred. Reset the board, and wait one minute for the TFTP server to time out and terminate any open
connections. Verify that the IP addresses for the server and gateway are correct.

5

APPENDIX B (FPLA code)

module isa2
title 'Ethernet controller'
"Feb 26 '98 version v1 of the 5307
"isa2 device 'ispLSI';
;"***"
;"This abel file contains the code for a NE2000 compatible Ethernet"
;"for the 55307 Coldfire processor as well as reset and IRQ7 (abort)"
;"It was targeted to Lattice ispLSI 2032 fpga "
;"CS: B3D3 "
;"***"
;"***"
;"Declaration Section "
;"***"
;" constants"
 C,P,X,Z,H,L = .C.,.P.,.X.,.Z.,1,0;
;"***"
DLYIOCHRDY0 node ISTYPE 'reg_d,buffer';
DLYIOCHRDY,ENDIT,END16,END8 node;
STARTISA node ISTYPE 'reg_d,buffer';
SBHE,IOR,IOW,ISAOE node;
DA,DLYDA node ISTYPE 'reg_d,buffer';
ABORTML,DAOE,CLK16MHZ node ISTYPE 'reg_d,buffer';

CLK4MHZ node ISTYPE 'reg_d,buffer';

RSTMH node;
BCLK0 node ISTYPE 'reg_d,buffer';
BCLK1 node ISTYPE 'reg_d,buffer';
BCLK2 node ISTYPE 'reg_d,buffer';

ABORTOL pin 3 ISTYPE 'reg_d, buffer';
RST_L pin 4; "Output - to ColdFire reset
DB_CS_L pin 5; "Output - Data buffer enable for
ethernet
A0IN pin 6; "INPUT - A0 received from CF through
buffers
IOCHRDY pin 7; "Input - asserted by ethernet
IOCS16L pin 9; "Input - asserted by ethernet
SIZ1 pin 10;
XCLK0 pin 11; "Input - global clock
IOWL pin 15; "Input - write signal from ethernet
RD pin 16; "INPUT - R/W* from the ColdFire
CLK8MHZ pin 17 ISTYPE 'reg_d,buffer';
BALE pin 18; "Output - address latch enable
A0 pin 19; "OUTPUT - A0 sent to the ethernet
PORIN_L pin 26; "Input - Suppy Voltage Supervisor
CS3_L pin 22; "Input - From ColdFire
RSTIN_L pin 27; "Input - Hard Reset switch
ETHER_IRQ pin 28; "Input - Ethernet IRQ 3
IRQ3 pin 29; "Output - IRQ 3 into the ColdFire
RST_H pin 30; "Output - to the Ethernet
ABORTIL pin 31; "INPUT - abort signal received from the
Abort swith
HIZ_L pin 32; "Output - to ColdFire *HIZ
IORL pin 37; "Input - read signal from ethernet
A16 pin 39;
TAL pin 40; "Input / Output - Transfer acknowledge
SBHEL pin 41; "Output - sent to the ethernet

6

SIZ0 pin 43;
BDM_RST_L pin 44; "Input - BDM reset input

; "********************************"
; " Lattice attributes "
; "********************************"
pLSI property 'CLK XCLK0 CLK0 ';
pLSI property 'CLK CLK8MHZ SLOWCLK ';
pLSI property 'ISP ON';
pLSI property 'PULLUP ON';
pLSI property 'Y1_AS_RESET OFF';

; "--------------------------------"
; " Output inverter macro "
; "--------------------------------"
OB21 MACRO (XO0, A0)
 {
 ?XO0 = !?A0;
};

; "--------------------------------"
; " Tristate Output inverter macro "
; "--------------------------------"
OT21 MACRO (XO0, A0, OE)
 {
 ?XO0.OE = ?OE;
 ?XO0 = !?A0;
};

CBU43 MACRO (Q0,Q1,Q2,CLK,EN,CS)
{
 [?Q0..?Q2].clk = ?CLK;
 ?Q0.D = ?Q0.Q & !?CS $?EN & !?CS ;
 ?Q1.D = ?Q1.Q & !?CS $ (?Q0.Q & ?EN & !?CS);
 ?Q2.D = ?Q2.Q & !?CS $ (?Q0.Q & ?Q1.Q & ?EN & !?CS);
};

equations

;"###"
;"Bidirectional circuit equations"
;"###"

OT21 (TAL, DA, DAOE)
OB21 (IORL, IOR)
OB21 (IOWL, IOW)
OB21 (RST_L, RST_H)

SBHEL = 1;

IRQ3 = !ETHER_IRQ;

!DB_CS_L = !RST_H & !CS3_L;

ABORTML := ABORTIL ;

ABORTML.clk = CLK8MHZ ;

ABORTOL := ABORTML ;

7

ABORTOL.clk = CLK8MHZ ;

RSTMH = !RSTIN_L ;

RST_H = RSTMH # !PORIN_L # !BDM_RST_L;

!HIZ_L = !RST_L;

DAOE := !CS3_L # DA;

DAOE.clk = XCLK0 ;

A0 = !SIZ1 & SIZ0 & !A0IN #
 A16 ;

SBHE = STARTISA & !SIZ1 & SIZ0 & !A0IN #
 STARTISA & SIZ1 & !SIZ0 & !A0IN #

STARTISA & !SIZ1 & !SIZ0 & !A0IN ;

CLK16MHZ := !CLK16MHZ ;

CLK16MHZ.clk = XCLK0 ;

CLK8MHZ := CLK8MHZ & !CLK16MHZ #
!CLK8MHZ & CLK16MHZ ;

CLK8MHZ.clk = XCLK0 ;

CLK4MHZ := CLK4MHZ $ (CLK16MHZ & CLK8MHZ);

CLK4MHZ.clk = XCLK0 ;

DA := !CS3_L & END16 & ENDIT & !IOCS16L & RD & !CLK8MHZ & SBHE #
 !CS3_L & END8 & ENDIT & RD & !CLK8MHZ #
 DLYDA & !CS3_L #
 DA & !CS3_L;

DA.clk=XCLK0;

DLYDA :=!CS3_L & END16 & ENDIT & !IOCS16L & !RD & !CLK8MHZ & SBHE #
!CS3_L & END8 & ENDIT & IOCS16L & !RD & !CLK8MHZ #
!CS3_L & END8 & ENDIT & !SBHE & !RD & !CLK8MHZ ;

DLYDA.clk=XCLK0;

STARTISA := !CS3_L & !ENDIT ;

STARTISA.clk = CLK8MHZ ;

CBU43 (BCLK0,BCLK1,BCLK2,CLK8MHZ,STARTISA,!STARTISA)

BALE = STARTISA & !CLK8MHZ & !BCLK2 & !BCLK1 & !BCLK0 & !IOR & !IOW ;

IOR = STARTISA & !BCLK2 & !BCLK1 & BCLK0 & !CLK8MHZ & RD #
 IOR & !CS3_L ;

IOW = STARTISA & !BCLK2 & !BCLK1 & BCLK0 & !CLK8MHZ & !RD #
 IOW & STARTISA ;

END16 = !BCLK2 & BCLK1 & !BCLK0 & !CLK8MHZ#
END16 & STARTISA ;

END8 = BCLK2 & !BCLK1 & BCLK0 & !CLK8MHZ #
END8 & STARTISA ;

8

ENDIT = END16 & !IOCS16L & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & SBHE &
STARTISA#

END8 & IOCS16L & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & STARTISA #
END8 & !SBHE & IOCHRDY & DLYIOCHRDY0 & DLYIOCHRDY & STARTISA ;

DLYIOCHRDY0:= IOCHRDY;

DLYIOCHRDY0.clk = CLK8MHZ ;

DLYIOCHRDY = IOCHRDY & CLK8MHZ #
 DLYIOCHRDY & !CLK8MHZ ;

;"**"
;" Test Vector Section"
;"**"
test_vectors 'HIZ_L Test Vector'
([XCLK0, RSTIN_L ,PORIN_L,BDM_RST_L,CS3_L]->[RST_H])
 [P,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,0,1,1]->[X];
 [C,1,0,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,0,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,0]->[X];
 [C,0,1,1,0]->[X];
 [C,0,1,1,0]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,0,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,0]->[X];
 [C,1,1,1,0]->[X];
 [C,1,1,0,0]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
 [C,1,1,1,1]->[X];
end

9

APPENDIX C (Schematics)

10

ARN.SBC5307.CPU

SBC5307 Evaluat ion Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH INC., P.O. BOX 270352, FORT COLLINS, CO 80527

Title

Size Document Number

Date: Sheet

+3.3

+3.3

+3.3

+3.3

+3.3
+3.3

+3.3

+3.3

+3.3

+3.3

-IRQ1

-TS

-HIZ

-BR

DSDI_TDI

-BWE2

-IRQ7

-TA

DSCLK_TRST

-BWE1

-IRQ5

R/-W

-BWE0

-BD

-IRQ3

-AS

-BKPT_TMS

-BWE3

-CF_RSTI

CLKIN_SLOW

-SRAS

-CAS0

BCLKO

-CAS3

SIZ0

PSTCLK

SIZ1

EDGESEL

-CAS1

-RSTO

DSDO_TDO

-SCAS

-RAS0

TCK

-CAS2

-BG

-RAS1

-DRAMW

SCKE

PVDD

PLLTPA

R_SCKE

-R_SCAS

-R_SRAS

-R_DRAMW

-R_CAS3/DQM3

-R_CAS2/DQM2

-R_CAS1/DQM1

-R_CAS0/DQM0

-R_RAS1/SO2

-R_RAS0/SO0

MTMOD0
MTMOD1
MTMOD2
MTMOD3

NORMAL MODE IS HARD-WIRED

-RTS1

A17

A10

A2

PP
3

TXD1

-RTS2
-CST2

A27
A26

A21

A25

A14

PP
6

PP[0:7]

A29

-CS4

TXD2

A22

A1

-CS3

-PST[0:3]

A15

A7

PP
0

TIN1

PS
T1

RXD2

A13

PP
5

A31
A30

A18

A16

-CS7

A12
A11

PP
7

RXD1

PS
T3

A19

A6

-CS6

-CST1

TIN0

A23

A4
A3

PP
2

A28

A9
A8

-CS2

PS
T2

-CS5

-OE

A5

A0

PP
1

PS
T0

SDA
SCL

A24

A20

-CS1

PP
4

-CS0

D[0:31]

A[0:31]

TOUT1
TOUT0

DDATA0
DDATA1
DDATA2
DDATA3

D0 D1 D2 D3 D4 D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

D5 D6 D7 D8 D9 D10

L3

FERRITE_BEAD

1 2

C53
0.01 UF

L2

FERRITE_BEAD

1 2

SP3
4.7Kx9

1

2 3

C68
0.1 UF

SP1
4.7Kx9

1

2 3 4 5 6 7 8 9 10

R24 22

R28 22

R29 22

R36 22

R37 22

R38 22

R30 22

R39 22

R40 22

R19
4.7K

R49
4.7K

R20 4.7K

R48 4.7K

R47 4.7K

R46 4.7K

C6
1500 PF

C7
1500 PF

C8
1500 PF

C9
1500 PF

C10
1500 PF

C11
1500 PF

C12
1500 PF

C13
1500 PF

C79
1500 PF

C80
1500 PF

C81
1500 PF

C82
1500 PF

C83
1500 PF

C85
1500 PF

C86
1500 PF

R25

4.7K

R31

4.7K

R32

4.7K

R33

4.7K

SP2
4.7Kx9

1

2 3 4 5 6 7 8 9 10

U7

MCF5307

G
ND

9
61

DD
AT

A0
18

6

G
ND

10
69

M
TM

O
D0

17
6

G
ND

11
77

DD
AT

A1
18

7

G
ND

13
93

PS
T0

19
2

G
ND

14
10

1

DD
AT

A2
18

9

G
ND

15
10

4

M
TM

O
D1

17
7

G
ND

16
10

9

DD
AT

A3
19

0

G
ND

17
11

7

TT
0/

PP
0

20
7

G
ND

18
12

5

M
TM

O
D2

18
1

G
ND

19
13

3

PS
T1

19
3

G
ND

20
14

1

M
TM

O
D3

18
2

G
ND

21
14

8
BWE0

96

G
ND

22
15

6

G
ND

12
85

PS
T2

19
5

G
ND

23
16

2

TT
1/

PP
1

20
6

G
ND

24
16

9

PS
T3

19
6

G
ND

25
17

3

IRQ1
72

G
ND

26
17

8

TM
0/

PP
2

20
4

G
ND

27
18

3

BWE1
98

G
ND

28
18

8

TM
1/

PP
3

20
3

G
ND

29
19

4

CS0
50

G
ND

30
20

1

TM
2/

PP
4

20
2

G
ND

31
20

8

BWE2
99

DR
EQ

1/
PP

5
20

0

IRQ3
71

DR
EQ

0/
PP

6
19

9

BWE3
100

XT
IP

/P
P7

19
8

PLLTPA
179

IRQ5
70

CS1
51

IRQ7
68

G
ND

1
4

CS2
54

VC
C1

1

CS3
55

G
ND

2
10

CS4
56

A0
2

CS5
58

G
ND

3
17

CS6
59

VC
C2

7

CS7
60

G
ND

4
25

D0
14

7

G
ND

5
33

VC
C3

13

G
ND

6
41

A1
3

G
ND

7
48

VC
C4

21

G
ND

8
53

D1
14

6

VC
C5

29

A2
5VC

C6
37

D2
14

4

VC
C7

45

A3
6

VC
C8

52

D3
14

3

VC
C9

57

A4
8

VC
C1

0
65

D4
14

2

VC
C1

1
73

A5
9

VC
C1

2
81

D5
14

0

VC
C1

3
89

A6
11

VC
C1

4
97

D6
13

9

VC
C1

5
10

5
A7

12

VC
C1

6
11

3

D7
13

8

VC
C1

7
12

1
A8

14

VC
C1

8
12

9

D8
13

6

VC
C1

9
13

7

A9
15

VC
C2

0
14

5

D9
13

5

VC
C2

1
15

2

A10
16

VC
C2

2
15

7

D1
0

13
4

VC
C2

3
16

7

A11
18

VC
C2

4
17

1

D1
1

13
2

VC
C2

5
17

5

A12
19

VC
C2

6
18

0

D1
2

13
1

VC
C2

7
18

5

A13
20

VC
C2

8
19

1

D1
3

13
0

A14
22

D1
4

12
8

A15
23

D1
5

12
7

A16
24

D1
6

12
6

A17
26

D1
7

12
4

A18
27

D1
8

12
3

A19
28

D1
9

12
2

A20
30

D2
0

12
0

A21
31

D2
1

11
9

A22
32

D2
2

11
8

A23
34

D2
3

11
6

A24/PP8
35

D2
4

11
5

A25/PP9
36

D2
5

11
4

A26/PP10
38

D2
6

11
2

A27/PP11
39

D2
7

11
1

A28/PP12
40

D2
8

11
0

A29/PP13
42

D2
9

10
8

A30/PP14
43

D3
0

10
7

A31/PP15
44

D3
1

10
6

VC
C2

9
19

7
VC

C3
0

20
5

TA
64

AS
62

R/W
63

TS
66

RSTI
67

BR
74

BD
75

BG
76

OE
49

SIZ0
46

SIZ1
47

TO
UT

0
79

TO
UT

1
78

TI
N0

80
TI

N1
82

RAS0/SO0
83

RAS1/SO2
84

CAS0/DQM0
86

CAS1/DQM1
87

CAS2/DQM2
88

CAS3/DQM3
90

DRAMW
91

SRAS
92

SCAS
94

SCKE
95

SCL
102

SDA
103

DSCLK/TRST
149

TCK
150

DSO/TDO
151

DSI/TDI
153

BKPT/TMS
154

HIZ
155

BCLKO
170

RSTO
172

CLKIN
174

PSTCLK
184

CT
S2

15
8

RT
S2

15
9

RX
D2

16
0

TX
D2

16
1

CT
S1

16
3

RT
S1

16
4

RX
D1

16
5

TX
D1

16
6

EDGESEL
168

R41 22

11

ARN.SBC5307.CONNECTORS

SBC5307 Evaluation Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352, COLLINS, CO 80527

Title

Size Document Number

Date: Sheet

+3.3

+3.3

+3.3

+3.3

+3.3

A[0:31]

D[0:31]

PSTCLK

TXD1

TXD2

SIZ0
SIZ1
-CS0
-OE
-BG
-CS1

-BD
-IRQ3
-IRQ1
-CF_RSTI
-IRQ7
-TA
R/-W
-CS4
-CS7
-CS3
-CS6
-CS2
-CS5
-AS
-TS
-IRQ5
-BR

BCLKO

-R_RAS0/SO0
TOUT1
-R_CAS2/DQM2
TIN1
-R_RAS1/SO2
-BWE1
-R_CAS0/DQM0
-BWE2
-R_CAS1/DQM1
-BWE3
-R_CAS3/DQM3
-BWE0
-R_SRAS

-R_DRAMW

-R_SCAS

R_SCKE

TIN0

TOUT0

PLLTPA

EDGESEL

SCL

SDA

PST3
PP1
PST0
PP4
PST1
PP0
PST2
PP3
PP6
PP2
PP5
PP7

DDATA3

DDATA2
RXD2
DDATA1
-RTS2
DDATA0
RXD1

-RTS1
DSCLK_TRST
-CTS1
DSDI_TDI
-CTS2
TCK
DSDO_TDO

-HIZ
-BKPT_TMS

BCLK_OFFBRD

MTMOD0

MTMOD1

MTMOD3
MTMOD2

-C
S2

-C
S3

-C
S4

-C
S5

-C
S6

-C
S7

-A
S

R/
-W -T

S
-C

F_
RS

TI
-IR

Q
7

-IR
Q

5

-IR
Q

1
-IR

Q
3

-S
RA

S

-T
A

-B
R

-B
D

-B
G

TO
UT

1
TO

UT
0

TI
N0

TI
N1

-R
AS

0
-R

AS
1

-C
AS

0
-C

AS
1

-C
AS

2

-C
AS

3
-D

RA
M

W

-S
CA

S
SC

KE
-B

W
E0

-B
W

E1
-B

W
E2

-B
W

E3 SC
L

SD
A

SIZ0
SIZ1

-OE
-CS0
-CS1

DDATA[0:3]
PST[0:3]
PP[0:7]

PS
TC

LK

M
TM

O
D3

M
TM

O
D2

PV
DD

PL
LT

PA

M
TM

O
D1

M
TM

O
D0

CL
KI

N_
SL

O
W

-R
ST

O

BC
LK

O

ED
G

ES
EL TX

D1
RX

D1
-R

TS
1

-C
TS

1

TX
D2

RX
D2

-C
TS

2
-R

TS
2

D[0:31]

D1
D0
D3
D2
D5
D4
D7
D6
D9
D8
D11
D10
D13
D12
D15
D14
D17
D16
D19
D18
D21
D20
D23
D22
D25
D24
D27
D26
D29
D28
D31
D30

A26

A8

A21

A9

A24

A25

A16

A29

A12

A28

A11

A27

A31

A14

A30

A15

A2

A13

A18

A[0:31]

A1

A17

A4

A20

A3

A0

A7
A10

A23

A6

A19
A22

A5

A31

A0
A1

A2
A3

A17
A18
A19

A20
A21
A22

A23
A24
A25

A26
A27
A28

A29
A30

A4
A5

A6
A7

A8
A9
A10

A11
A12
A13

A14
A15
A16

PP0
PP1

PP2
PP3
PP4

PP5
PP6
PP7

PST3
PST2

PST1
PST0

DDATA3

DDATA1
DDATA0

DDATA2

LA1

Mictor_Connector

IO_2
35IO_1
4

IO_4
34

NC1
1

IO_6
33

IO_3
5

IO_8
32

NC2
2

IO_10
31

IO_5
6

IO_12
30

NC3
37

IO_14
29

IO_7
7

IO_16
28

NC4
38

IO_18
27

IO_9
8

IO_20
26

IO_11
9

IO_22
25

IO_13
10

IO_24
24

IO_15
11

IO_26
23

IO_17
12

IO_28
22

IO_19
13

IO_30
21

IO_21
14

IO_32
20

IO_23
15

IO_25
16

IO_27
17

IO_29
18

IO_31
19

CLK_0_1
3

CLK_0_2
36

G1
39

G2
40

G3
41

G4
42

G5
43

LA5

Mictor_Connector

IO_2
35IO_1
4

IO_4
34

NC1
1

IO_6
33

IO_3
5

IO_8
32

NC2
2

IO_10
31

IO_5
6

IO_12
30

NC3
37

IO_14
29

IO_7
7

IO_16
28

NC4
38

IO_18
27

IO_9
8

IO_20
26

IO_11
9

IO_22
25

IO_13
10

IO_24
24

IO_15
11

IO_26
23

IO_17
12

IO_28
22

IO_19
13

IO_30
21

IO_21
14

IO_32
20

IO_23
15

IO_25
16

IO_27
17

IO_29
18

IO_31
19

CLK_0_1
3

CLK_0_2
36

G1
39

G2
40

G3
41

G4
42

G5
43

LA3

Mictor_Connector

IO_2
35IO_1
4

IO_4
34

NC1
1

IO_6
33

IO_3
5

IO_8
32

NC2
2

IO_10
31

IO_5
6

IO_12
30

NC3
37

IO_14
29

IO_7
7

IO_16
28

NC4
38

IO_18
27

IO_9
8

IO_20
26

IO_11
9

IO_22
25

IO_13
10

IO_24
24

IO_15
11

IO_26
23

IO_17
12

IO_28
22

IO_19
13

IO_30
21

IO_21
14

IO_32
20

IO_23
15

IO_25
16

IO_27
17

IO_29
18

IO_31
19

CLK_0_1
3

CLK_0_2
36

G1
39

G2
40

G3
41

G4
42

G5
43

LA4

Mictor_Connector

IO_2
35IO_1
4

IO_4
34

NC1
1

IO_6
33

IO_3
5

IO_8
32

NC2
2

IO_10
31

IO_5
6

IO_12
30

NC3
37

IO_14
29

IO_7
7

IO_16
28

NC4
38

IO_18
27

IO_9
8

IO_20
26

IO_11
9

IO_22
25

IO_13
10

IO_24
24

IO_15
11

IO_26
23

IO_17
12

IO_28
22

IO_19
13

IO_30
21

IO_21
14

IO_32
20

IO_23
15

IO_25
16

IO_27
17

IO_29
18

IO_31
19

CLK_0_1
3

CLK_0_2
36

G1
39

G2
40

G3
41

G4
42

G5
43

LA2

Mictor_Connector

IO_2
35IO_1
4

IO_4
34

NC1
1

IO_6
33

IO_3
5

IO_8
32

NC2
2

IO_10
31

IO_5
6

IO_12
30

NC3
37

IO_14
29

IO_7
7

IO_16
28

NC4
38

IO_18
27

IO_9
8

IO_20
26

IO_11
9

IO_22
25

IO_13
10

IO_24
24

IO_15
11

IO_26
23

IO_17
12

IO_28
22

IO_19
13

IO_30
21

IO_21
14

IO_32
20

IO_23
15

IO_25
16

IO_27
17

IO_29
18

IO_31
19

CLK_0_1
3

CLK_0_2
36

G1
39

G2
40

G3
41

G4
42

G5
43

C84
1500 PF

C87
1500 PF

C88
1500 PF

C70
1500 PF

C69
1500 PF

C41
1500 PF

C40
1500 PF

C23
1500 PF

C22
1500 PF

C67
1500 PF

C39
1500 PF

C50
1500 PF

C51
1500 PF

C52
1500 PF

C20
1500 PF

C21
1500 PF

C38
1500 PF

U8

MCF5307_Socket

PI
N1

57
15

7
PI

N1
58

15
8

PI
N1

59
15

9
PI

N1
60

16
0

PI
N1

61
16

1
PI

N1
62

16
2

PI
N1

63
16

3
PI

N1
64

16
4

PI
N1

65
16

5
PI

N1
66

16
6

PI
N1

67
16

7
PI

N1
68

16
8

PI
N1

69
16

9
PI

N1
70

17
0

PI
N1

71
17

1
PI

N1
72

17
2

PI
N1

73
17

3
PI

N1
74

17
4

PI
N1

75
17

5
PI

N1
76

17
6

PI
N1

77
17

7
PI

N1
78

17
8

PI
N1

79
17

9
PI

N1
80

18
0

PI
N1

81
18

1
PI

N1
82

18
2

PI
N1

83
18

3
PI

N1
84

18
4

PI
N1

85
18

5
PI

N1
86

18
6

PI
N1

87
18

7
PI

N1
88

18
8

PI
N1

89
18

9
PI

N1
90

19
0

PI
N1

91
19

1
PI

N1
92

19
2

PI
N1

93
19

3
PI

N1
94

19
4

PI
N1

95
19

5
PI

N1
96

19
6

PI
N1

97
19

7
PI

N1
98

19
8

PI
N1

99
19

9
PI

N2
00

20
0

PI
N2

01
20

1
PI

N2
02

20
2

PI
N2

03
20

3
PI

N2
04

20
4

PI
N2

05
20

5
PI

N2
06

20
6

PI
N2

07
20

7
PI

N2
08

20
8

PIN1
1

PIN2
2

PIN3
3

PIN4
4

PIN5
5

PIN6
6

PIN7
7

PIN8
8

PIN9
9

PIN10
10

PIN11
11

PIN12
12

PIN13
13

PIN14
14

PIN15
15

PIN16
16

PIN17
17

PIN18
18

PIN19
19

PIN20
20

PIN21
21

PIN22
22

PIN23
23

PIN24
24

PIN25
25

PIN26
26

PIN27
27

PIN28
28

PIN29
29

PIN30
30

PIN31
31

PIN32
32

PIN33
33

PIN34
34

PIN35
35

PIN36
36

PIN37
37

PIN38
38

PIN39
39

PIN40
40

PIN41
41

PIN42
42

PIN43
43

PIN44
44

PIN45
45

PIN46
46

PIN47
47

PIN48
48

PIN49
49

PIN50
50

PIN51
51

PIN52
52

PIN105
PIN106
PIN107
PIN108
PIN109
PIN110
PIN111
PIN112
PIN113
PIN114
PIN115
PIN116
PIN117
PIN118
PIN119
PIN120
PIN121
PIN122
PIN123
PIN124
PIN125
PIN126
PIN127
PIN128
PIN129
PIN130
PIN131
PIN132
PIN133
PIN134
PIN135
PIN136
PIN137
PIN138
PIN139
PIN140
PIN141
PIN142
PIN143
PIN144
PIN145
PIN146
PIN147
PIN148
PIN149
PIN150
PIN151
PIN152
PIN153
PIN154
PIN155
PIN156

PI
N5

3
53

PI
N5

4
54

PI
N5

5
55

PI
N5

6
56

PI
N5

7
57

PI
N5

8
58

PI
N5

9
59

PI
N6

0
60

PI
N6

1
61

PI
N6

2
62

PI
N6

3
63

PI
N6

4
64

PI
N6

5
65

PI
N6

6
66

PI
N6

7
67

PI
N6

8
68

PI
N6

9
69

PI
N7

0
70

PI
N7

1
71

PI
N7

2
72

PI
N7

3
73

PI
N7

4
74

PI
N7

5
75

PI
N7

6
76

PI
N7

7
77

PI
N7

8
78

PI
N7

9
79

PI
N8

0
80

PI
N8

1
81

PI
N8

2
82

PI
N8

3
83

PI
N8

4
84

PI
N8

5
85

PI
N8

6
86

PI
N8

7
87

PI
N8

8
88

PI
N8

9
89

PI
N9

0
90

PI
N9

1
91

PI
N9

2
92

PI
N9

3
93

PI
N9

4
94

PI
N9

5
95

PI
N9

6
96

PI
N9

7
97

PI
N9

8
98

PI
N9

9
99

PI
N1

00
10

0
PI

N1
01

10
1

PI
N1

02
10

2
PI

N1
03

10
3

PI
N1

04
10

4

12

ARN.SBC5307.BUFFERS

SBC5307 Evaluation Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352, FORT COLLINS, CO 80527

Title

Size Document Number

Date: Sheet

+3.3
+3.3

+3.3

+3.3

+3.3

+3.3

+3.3

B_D[16:31]

D[0:31]

R / -W
-BD_CS

MA[0:23]A[0:31]

-CF_RSTI

INITIAL RESET CONFIGURATIONS:

D0: PRESET DIV0
D1: PRESET DIV1
D2: PRESET FREQ0
D3: PRESET FREQ1
D4: ADDR_CONF
D5: CS_CONF0
D6: CS_CONF1
D7: CS_CONF2

B_D[16:31]

D[0:31]

B_D17
B_D18
B_D19
B_D20
B_D21
B_D22
B_D23
B_D24
B_D25
B_D26
B_D27
B_D28
B_D29
B_D30
B_D31

D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

D16 B_D16

MA[0:23]

MA0
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15

MA16
MA17
MA18

MA20
MA21

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

A16
A17
A18
A19
A20
A21

D0
D1
D2
D3
D7
D6
D5
D4

MA19

A22
A23

MA22
MA23

U16

MC74LCX16245DT

1B1
2

1B2
3

1B3
5

1B4
6

1B5
8

1B6
9

1B7
11

1B8
12

2B1
13

2B2
14

2B3
16

2B4
17

2B5
19

2B6
20

2B7
22

2B8
23

1DIR
1

1OE
48

2OE
25

2DIR
24

G N D
4

G N D
10

G N D
15

G N D
21

G N D
28

G N D
34

G N D
39

G N D
45

1A1
47

1A2
46

1A3
44

1A4
43

1A5
41

1A6
40

1A7
38

1A8
37

2A1
36

2A2
35

2A3
33

2A4
32

2A5
30

2A6
29

2A7
27

2A8
26

VCC
7

VCC
18

VCC
31

VCC
42

U10

MC74LCX244DW

2O0
3

2O1
5

1O0
18

2O2
7

1O3
12

2O3
9

1O1
16

2D0
17

1O2
14

VCC
20

1D0
2

2D1
15

1D1
4

2D2
13

1D2
6

2D3
11

1D3
8

1OE*
1

2OE*
19

G N D
10

U15

MC74LCX244DW

2O0
3

2O1
5

1O0
18

2O2
7

1O3
12

2O3
9

1O1
16

2D0
17

1O2
14

VCC
20

1D0
2

2D1
15

1D1
4

2D2
13

1D2
6

2D3
11

1D3
8

1OE*
1

2OE*
19

G N D
10

C29
0.1 UF

C43
0.1 UF

C27
0.1 UF

C28
0.1 UF

C46
0.1 UF

C60
0.1 UF

C42
0.1 UF

C26
0.1 UF

C44
0.1 UF

C45
0.1 UF

U11

MC74LCX16244DT

1Y1
2

1Y2
3

1Y3
5

1Y4
6

2Y1
8

2Y2
9

2Y3
11

2Y4
12

3Y1
13

3Y2
14

3Y3
16

3Y4
17

4Y1
19

4Y2
20

4Y3
22

4Y4
23

1OE
1

2OE
48

3OE
25

4OE
24

G N D
4

G N D
10

G N D
15

G N D
21

G N D
28

G N D
34

G N D
39

G N D
45

1A1
47

1A2
46

1A3
44

1A4
43

2A1
41

2A2
40

2A3
38

2A4
37

3A1
36

3A2
35

3A3
33

3A4
32

4A1
30

4A2
29

4A3
27

4A4
26

VCC
7

VCC
18

VCC
31

VCC
42

JP1

1

2

3
R52

4.7K

13

ARN.SBC5307.FLASH

SBC5307 Evaluation Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC. , P .O. BOX 270357, FORT COLLINS, CO 80527

Title

Size Document Number

Date: Sheet

+3.3

+3.3+3.3+3.3+3.3

+3.3

+3.3

+3.3

+3.3

BCLK_SRAM

-BWE2
-BWE0
-BWE1
-BWE3

-CS2

D[0:31]

MA[0:23]

-OE

-BWE0

-RSTO

-BWE1

-CS0_HEADER

-CS0

D[0:31]

MA[0:23]

D[0:31]

D15
D14
D13
D12
D11
D10
D9
D8

D31
D30
D29
D28
D27
D26
D25
D24

D23
D22
D21
D20
D19
D18
D17
D16

D7
D6
D5
D4
D3
D2
D1
D0

MA2
MA3
MA4
MA5
MA6
MA7
MA8
MA9
MA10
MA11
MA12
MA13
MA14
MA15
MA16
MA17
MA18

D31
D30
D29
D28
D27
D26
D25
D24

D23
D22
D21
D20
D19
D18
D17
D16

MA19
MA18
MA17
MA16
MA15
MA14
MA13
MA12
MA11
MA10
MA9
MA8
MA7
MA6
MA5
MA4
MA3
MA2
MA1

MA19
MA18
MA17
MA16
MA15
MA14
MA13
MA12
MA11
MA10
MA9
MA8
MA7
MA6
MA5
MA4
MA3
MA2
MA1

U20

AM29LV004T-100EC

D7
35

A0
21

D6
34

A1
20

D5
33

A2
19

D4
32

A3
18

D3
28

A4
17

D2
27

A5
16

D1
26

A6
15

D0
25

A7
14 A8
8 A9
7 A10

36 A11
6 A12
5 A13
4 A14
3 A15
2 A16
1 A17

40 A18
13

CE*
22

OE*
24

WE*
9

RY_BY*
12

VCC1
31

VCC2
30

G N D 1
23G N D 2
39

RESET*
10

NC1
11NC2
29NC3
37NC4
38

U21

AM29LV004T-100EC

D7
35

A0
21

D6
34

A1
20

D5
33

A2
19

D4
32

A3
18

D3
28

A4
17

D2
27

A5
16

D1
26

A6
15

D0
25

A7
14 A8
8 A9
7 A10

36 A11
6 A12
5 A13
4 A14
3 A15
2 A16
1 A17

40 A18
13

CE*
22

OE*
24

WE*
9

RY_BY*
12

VCC1
31

VCC2
30

G N D 1
23G N D 2
39

RESET*
10

NC1
11NC2
29NC3
37NC4
38

U19

MCM69F737TQ11

NC6
43

NC1
14

NC7
64

VDD1
4

NC8
66

NC2
16

G N D 1
5

NC3
38

VDD2
11

NC4
39

G N D 2
10

NC5
42

VDD3
15

SA0
37

VDD4
20G N D 3

17

VDD5
27G N D 4

21

VDD6
41

SA1
36

VDD7
54

G N D 5
26

VDD8
61

G N D 6
40

VDD9
65

QA8
63

VDD10
70

G N D 7
55

VDD11
77

G N D 8
60

VDD12
91

SA2
32

G N D 9
67

GND10
71

SA3
33

GND11
76

GND12
90

QB17
80

SA4
34

SA5
35

QA7
62

SA6
44

SA7
45

QC26
13

SA8
46

SA9
47

QA6
59

SA10
48

SA11
49

QB16
79

SA12
50

SA13
81

QA5
58

SA14
82

SA15
99

QD35
30

SA16
100

ADSP*
84

QA4
57

QB15
78

QA3
56

QC25
12

QA2
53

QB14
75

QA1
52

QD34
29

QA0
51

QB13
74

QC24
9

QB12
73

QD33
28

QB11
72

QC23
8

QB10
69

QD32
25

QB9
68

QC22
7

QD31
24

QC21
6

QD30
23

QC20
3

QD29
22

QC19
2

QD28
19

QC18
1

QD27
18

ADV*
83

ADSC
85

K
89

G*
86

SW*
87

SGW*
88

SBD*
96

SBC*
95

SBB*
94

SBA*
93

LBO*
31

SE1*
98

SE2*
97

SE3*
92

R50
4.7K

R44
4.7K

R43
4.7K

R42
4.7K

R45

4.7K

C77
0.1 UF

C78
0.1 UF

C75
0.1 UF

C74
0.1 UF

C57
0.1 UF

C58
0.1 UF

C92
0.1 UF

C93
0.1 UF

C94
0.1 UF

C59
0.1 UF

C62
0.1 UF

C61
0.1 UF

C76
0.1 UF

C89
0.1 UF

C90
0.1 UF

JP2

1

2

3

14

ARN.SBC5307.ETHERNET

SBC5307 Evaluation Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352 FORT COLLINS, CO 80527

Title

Size Document Number

Date: Sheet

+5

+5

+5

+5

+5

+5+5

+5

+5

+5

+5

-IO16

-ETH_IRQ3

- IOCHRDY
BALE

ECLK

-IOR

-IOW

ETH_RESET

SA0

MA[0:23]

B_D[16:31] B_D[16:31]

MA[0:23]

MA8

MA6

MA1
MA2
MA3
MA4
MA5

MA9

MA7

B_D16
B_D17
B_D18
B_D19
B_D20
B_D21
B_D22
B_D23
B_D24
B_D25
B_D26
B_D27
B_D28
B_D29
B_D30
B_D31

L1
FERRITE_BEAD

1 2

C65
10 UF TANT.

C64
0.01 UF

U1

FD22-101G

TPTX+
16

NC1
15

TPTX-
14

TPRX+
11

NC2
10

TPRX-
9

TDX+
1

AGND1
2

TXD-
3

RXI+
6

AGND2
7

RXI-
8

C3
0.1 UF

C4
0.1 UF

D3

GREEN LED

R21

270

R13
49.9

R10
49.9

C5
0.01 UF

U13

AT93C46-10SC-2.7

SK
2

DI
3

D O
4

CS*
1

N C
7

O R G
6

VCC
8

G N D
5

R17
4.7K

U6

OSC 20 MHZ

N C
1

G N D
7 CLK

8

VCC
14

R12
4.7K

R16

22

T7

1
1

T8

1
1

T9

1
1

T11

1
1

T12

1
1

T13

1
1

T14

1
1

R15
4.7K

R14

4.7K

R27
4.7K

C63
0.1 UF

C47
0.1 UF

C31
0.1 UF

C34
0.1 UF

C33
0.1 UF

R18
4.7K

U12

DM9008F

GND4
52 GND3
73 GND2
74 GND1
75

VCC1
1

IRQ3
6

VCC2
53

PA7
56

VCC3
72

IRQ4
8

MSD7
71

IRQ5
10

PA6
57

IRQ9
34

SYSCLK
14

IRQ10
94

PA5
58

IRQ11
93

MSD6_SLOT
70

IRQ12
92

PA4
59

IRQ15
91

SA0
96

PA3
60

MSD5_BNCSW
69

PA2
61

IOR*
19

PA1
62

MSD4
68

PA0
63

SD0
26

MSD3
67

IOW*
21

MSD2_EECK
66

SA1
97

MSD1_EED0
65

SMEMR*
23

MSD0_EED1
64

SD1
27

RST
35

SA2
98

AEN*
24

SD2
28

MEMW*
89

SA3
99

MEMR*
90

SD3
29

AVDD1
36

SA4
3

AVDD2
47

SD4
30

AVDD3
48

SA5
4

AGND1
43

SD5
31

AGND2
44

SA6
5

AGND3
51

SD6
32

SA7
7

SD7
33

SA8
9

SD8
88

SA9
11

SD9
87

SA10
12

SD10
86

SA11
13

SD11
85

SD12
84

SD13
83

SD14
82

SD15
81

SA14
15

SA15
16

SA16
17

SA17
18

SA18
20

SA19
22

BALE
2

EECS
79

BPCS*
80

IO16*
95

IOCHRDY*
25

X1
78

X2
77

BNCEN
54

TX+
38

TX-
37

RX+
40

RX-
39

C D +
42

CD-
41

TPTX+
50

TPTX-
49

TPRX+
46

TPRX-
45

LILED
55

N C
76

GND0
100

R26
4.7K

15

ARN.SBC5307.SDRAM 1.0

SBC5307 Evaluation Board

B

6 8Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352 FORT COLLINS, CO 80527

Title

Size Document Number Rev

Date: Sheet of

+3.3

+3.3

+3.3

D[0:31]MA[0:23]

BCLK_SDRAM

R_SCKE

-R_SCAS

-R_SRAS

-R_DRAMW

-R_CAS0/DQM0
-R_CAS1/DQM1
-R_CAS2/DQM2
-R_CAS3/DQM3

-R_RAS1/SO2
-R_RAS0/SO0

SCL
SDA

MA22
MA23

MA[0:23]

D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
D18
D17
D16
D31
D30
D29
D28
D27
D26
D25
D24
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

D[0:31]

MA10

MA19
MA20

MA14

MA21

MA9

MA13
MA12

MA17

MA11

MA18

MA15

C95
0.1 UF

C96
0.1 UF

C98
0.1 UF

C97
0.1 UF

C99
0.1 UF

C100
0.1 UF

C101
0.1 UF

C102
0.1 UF

C103
0.1 UF

C104
0.1 UF

C105
0.1 UF

C106
0.1 UF

C109
0.1 UF

C108
0.1 UF

C107
0.1 UF

C110
0.1 UF

C111
0.1 UF

U23

KMM366S104BTN-GO

CB0
21

VSS1
1

DU1
31

CB1
22

DU2
44

VDD1
6

DU3
48

VSS2
12

DQM7
131

VSS3
23

CB2
52

VDD2
18

CB3
53

VSS4
32

VREF1
62

A0
33

CKE1
63

CB4
105

VSS5
43

CB5
106

CLK2
79

VDD3
26

VSS6
54

DQM6
130

NC8
109

CLK1
125

A11
123

VSS7
64

CB6
136

VDD4
40

CB7
137

A12
126

VSS8
68

A13
132

VREF2
146

D9
13

VSS9
78

NC9
134

VDD5
41

NC10
135

CLK3
163

VSS10
85

DQM5
113

VSS11
96

NC11
145

VDD6
49

VSS12
107

NC12
147

A1
117

VSS13
116

VDD7
59

VSS14
127

DQM4
112

VSS15
138

VDD8
73

VSS16
148

D63
161

VSS17
152

VDD9
84

VSS18
162

DQM3
47

VDD10
90

A2
34

VDD11
102

DQM2
46

VDD12
110

D8
11

VDD13
124

DQM1
29

VDD14
133

A3
118

VDD15
143

DQM0
28

VDD16
157

D62
160

VDD17
168

A4
35

D7
10

A5
119

D61
159

A6
36

D6
9

A7
120

D60
158

A8
37

D5
8

A9
121

D59
156

A10_AP
38

D4
7

BA0
122

D58
155

D3
5

D57
154

D2
4

D56
153

D1
3

D55
151

D0
2

D54
150

D53
149

D52
144

D51
142

D50
141

D49
140

D48
139

D47
104

D46
103

D45
101

D44
100

D43
99

D42
98

D41
97

D40
95

D39
94

D38
93

D37
92

D36
91

D35
89

D34
88

D33
87

D32
86

D31
77

D30
76

D29
75

D28
74

D27
72

D26
71

D25
70

D24
69

D23
67

D22
66

D21
65

D20
60

D19
58

D18
57

D17
56

D16
55

D15
20

D14
19

D13
17

D12
16

D11
15

D10
14

CKE0
128

RAS*
115

CAS*
111

WE*
27

SO2*
45

SO0*
30

SDA
82

SCL
83

SA2
167

SA1
166

SA0
165

CLK0
42

NC0
24

NC1
25

BA1
39

NC2
50

NC3
51

NC4
61

NC5
80

NC6
81

NC7
108

SO1*
114

SO3*
129

NC13
164

16

ARN.SBC5307.FPLA

SBC5307 Evaluation Board

B

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352, FORT COLLINS, CO 80527

T itle

Size Document Number

Date:

+3.3

+5

+3.3

+5

+3.3

+5

+3.3

+5

-IOW
R/-W
ECLK
BALE
SA0

-R_RAS0/SO0
-R_RAS1/SO2

-CS3

-ETH_IRQ3
-IRQ3

ETH_RESET

-HIZ

BCLK_FPLA

IRQ7*

HARD_RESET

NOT INSTALLED

U5

TL7705ACD

VCC
8

SENSE
7

RESET
5

RESET
6

REF
1

GND
4

CT
3

RESIN
2

S1

S2

R9

270

D2

GREEN LED

D1
GREEN LED

C18

0.1 UF
C32
0.1 UF

C17

0.1 UF

R8
270

J2
1
2
3
4
5
6
7
8

C2
0.01 UF

T4

1
1

T10

1
1

T6

1
1

T5

1
1

C54
0.1 UF

R51
4.7K

R6 4.7K

R11 4.7K

R3 4.7K

R4 4.7K

R5 4.7K

R53 4.7K

U9

ispLSI2032V-100LJ

I/O31
10

I/O0
15

I/O30
9

I/O1
16

I/O29
8

I/O2
17

I/O28
7

I/O3
18

I/O27
6

I/O4
19

I/O26
5

I/O5
20

I/O25
4

I/O6
21

I/O24
3

I/O7
22

I/O23
44

I/O8
25

I/O22
43

I/O9
26

I/O21
42

I/O10
27

I/O20
41

I/O11
28

I/O19
40

I/O12
29

I/O18
39

I/O13
30

I/O17
38

I/O14
31

I/O16
37

I/O15
32

TDO*/IN1
24

TDI*/IN 0
14

ispEN*/NC
13

TMS*/NC
36

TCK*/Y2
33

Y0
11

RESET*/Y1
35

GOE0
2

VCC0
12

VCC1
34

GND0
1

GND1
23

U4

TLC7733ID

VCC
8

SENSE
7

RESET
5

RESET
6

CONTROL
1

GND
4

CT
3

RESIN
2

C112
10 UF TANT.

R7
270

17

ARN.SBC5307.POWER

SBC5307 Evaluation Board

B

Sunday, March 22, 1998

COPYRIGHT ARNEWSH, INC., P.O. BOX 270352, FORT COLLINS, CO 80527

Title

Size Document Number

Date:

+3.3

+3.3

+3.3

+3.3

+3.3

+5

+5

+5

-BKPT_TMS
DSCLK_TRST

DSDI_TDI
DSDO_TDO
PST3
PST1
DDATA3
DDATA1

PSTCLK
-TA

-BDM_RSTI

PST2
PST0

DDATA2
DDATA0

BCLK_SRAM

BCLK_OFFBRD

BCLK_FPLA

BCLK_SDRAM

EDGESEL

BCLKO

CLKIN_SLOW

A26

PP4

PP1

PP7

A25

PP3

PP0

A24

PP5

PP2

PP6

A27
A28
A29
A30
A31

SCL

-CS0_HEADER
-IRQ5

TOUT1
TIN0

TOUT0

SDA

TIN1

-IRQ1

D[0:31]

A[0:31]

-BWE0
-BWE1
-BWE2
-BWE3

-OE
-CS4
-CS5

R/-W
-AS
-TA

-RSTO

TXD1
RXD1
-RTS1
-CTS1

TXD2
RXD2
-RTS2
-CTS2

DEBUGGER PORT

EXPANSION PORT

EXPANSION/ I/O PORT

D0
D1 D2

D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23

J5

1

2

3

J6

1

2

U14
LT1086CT5.0

VIN
3

G
ND

1

VOUT
2

C35
10 UF TANT.

C48

10 UF TANT.

U17
LT1086CT3.3

VIN
3

G
ND

1

VOUT
2

C91
200 UF

J1
1
3
5
7
9

11
13
15
17
19
21
23
25

2
4
6
8
10
12
14
16
18
20
22
24
26

R2

4.7K

R1
10K

U22

OSC 45 MHZ

NC
1

GND
7 CLK

8

VCC
14

U18

CDC351DW

GND1
1

Y1
23

GND2
12

Y2
21

GND3
13

Y3
19

GND4
17

Y4 18

GND520

Y5
16

GND6
24

Y6
14

VCC1
3

Y7
11

Y8
9

Y9 4

Y10
2

0E5

A
6

P0
7

P1
8

VCC2
10

VCC3
15

VCC4
22

R34
4.7K

R35

22

J8
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

C55
0.1 UF

C56
0.1 UF

C71
0.1 UF

C72
0.1 UF

C73
0.1 UF

J9
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34

35
37
39 40

38
36

41
43
45
47
49 50

48
46
44
42

51
53
55
57
59 60

58
56
54
52

U2

MC145407DW

DI1
15

DO1
16

DI213

DO2
14

DI3
11

DO3
12

TX1
6

RX1
5

TX2 8

RX2
7

TX3
10

RX3
9

VCC
19

VDD
17

C2-3 C2+
1

C1+
20

C1- 18

VSS
4

GND
2

C24
10 UF TANT.

C16

10 UF TANT.

C15
10 UF TANT.

C1
10 UF TANT.

U3

MC145406DW

DI1
14

TX1
3

DO1
15

DI2
12 RX1

2

DO2
13

DI3
10

TX2
5

DO3
11

VCC
16

RX2
4

VDD
1

TX3
7

RX3
6

VSS
8

GND
9

C25
0.1 UF

D4

1N5404CT

18

APPENDIX D (Pin Array Layout)

This layout represents the pattern for the MCF5307 socket if used on the SBC5307 board. The pin
numbers corresponds to the MCF5307 processor.

4

49

1

52

53

56

101

104

104

105

153
156

157

160

205

208

	Return to Main Menu
	Return to 0X0 Product Page
	
	Table of Contents
	List of Illustrations
	List of Tables
	MC68020/EC020 Acronym List
	Sec. 1- Introduction
	1.1 Features
	1.2 Programming Model
	1.3 Data Types and Addressing Modes Overview
	1.4 Instruction Set Overview
	1.5 Virtual Memory and Virtual Machine Concepts
	1.5.1 Virtual Memory
	1.5.2 Virtual Machine

	1.6 Pipelined Architecture

	Sec. 2- Processing States
	2.1 Privilege Levels
	2.1.1 Supervisor Privilege Level
	2.1.2 User Privilege Level
	2.1.3 Changing Privilege Level

	2.2 Address Space Types
	2.3 Exception Processing
	2.3.1 Exception Vectors
	2.3.2 Exception Stack Frame

	Sec. 3- Signal Description
	3.1 Signal Index
	3.2 Function Code Signals
	3.3 Address Bus
	3.4 Data Bus
	3.5 Transfer Size Signals
	3.6 Asynchronous Bus Control Signals
	3.7 Interrupt Control Signals
	3.8 Bus Arbitration Control Signals
	3.9 Bus Exception Control Signals
	3.10 Emulator Support Signal
	3.11 Clock
	3.12 Power Supply Connections
	3.13 Signal Summary

	Sec. 4- On-Chip Cache Memory
	4.1 On-Chip Cache Organization and Operation
	4.2 Cache Reset
	4.3 Cache Control
	4.3.1 Cache Control Register
	4.3.2 Cache Address Register

	Sec. 5- Bus Operation
	5.1 Bus Transfer Signals
	5.1.1 Bus Control Signals
	5.1.2 Address Bus
	5.1.3 Address Strobe
	5.1.4 Data Bus
	5.1.5 Data Strobe
	5.1.6 Data Buffer Enable
	5.1.7 Bus Cycle Termination Signals

	5.2 Data Transfer Mechanism
	5.2.1 Dynamic Bus Sizing
	5.2.2 Misaligned Operands
	5.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment
	5.2.4 Address, Size, and Data Bus Relationships
	5.2.5 Cache Interactions
	5.2.6 Bus Operation
	5.2.7 Synchronous Operation with DSACK1/DSACK0

	5.3 Data Transfer Cycles
	5.3.1 Read Cycle
	5.3.2 Write Cycle
	5.3.3 Read-Modify-Write Cycle

	5.4 CPU Space Cycles
	5.4.1 Interrupt Acknowledge Bus Cycles
	5.4.2 Breakpoint Acknowledge Cycle
	5.4.3 Coprocessor Communication Cycles

	5.5 Bus Exception Control Cycles
	5.5.1 Bus Errors
	5.5.2 Retry Operation
	5.5.3 Halt Operation
	5.5.4 Double Bus Fault

	5.6 Bus Synchronization
	5.7 Bus Arbitration
	5.7.1 MC68020 Bus Arbitration
	5.7.2 MC68EC020 Bus Arbitration

	5.8 Reset Operation

	Sec. 6- Exception Processing
	6.1 Exception Processing Sequence
	6.1.1 Reset Exception
	6.1.2 Bus Error Exception
	6.1.3 Address Error Exception
	6.1.4 Instruction Trap Exception
	6.1.5 Illegal Instruction and Unimplemented Instruction Exceptions
	6.1.6 Privilege Violation Exception
	6.1.7 Trace Exception
	6.1.8 Format Error Exception
	6.1.9 Interrupt Exceptions
	6.1.10 Breakpoint Instruction Exception
	6.1.11 Multiple Exceptions
	6.1.12 Return from Exception

	6.2 Bus Fault Recovery
	6.2.1 Special Status Word
	6.2.2 Using Software to Complete the Bus Cycles
	6.2.3 Completing the Bus Cycles with RTE

	6.3 Coprocessor Considerations
	6.4 Exception Stack Frame Formats

	Sec. 7- Coprocessor Interface Description
	7.1 Introduction
	7.1.1 Interface Features
	7.1.2 Concurrent Operation Support
	7.1.3 Coprocessor Instruction Format
	7.1.4 Coprocessor System Interface

	7.2 Coprocessor Instruction Types
	7.2.1 Coprocessor General Instructions
	7.2.2 Coprocessor Conditional Instructions
	7.2.3 Coprocessor Context Save and Restore Instructions

	7.3 Coprocessor Interface Register Set
	7.3.1 Response CIR
	7.3.2 Control CIR
	7.3.3 Save CIR
	7.3.4 Restore CIR
	7.3.5 Operation Word CIR
	7.3.6 Command CIR
	7.3.7 Condition CIR
	7.3.8 Operand CIR
	7.3.9 Register Select CIR
	7.3.10 Instruction Address CIR
	7.3.11 Operand Address CIR

	7.4 Coprocessor Response Primitives
	7.4.1 ScanPC
	7.4.2 Coprocessor Response Primitive General Format
	7.4.3 Busy Primitive
	7.4.4 Null Primitive
	7.4.5 Supervisor Check Primitive
	7.4.6 Transfer Operation Word Primitive
	7.4.7 Transfer from Instruction Stream Primitive
	7.4.8 Evaluate and Transfer Effective Address Primitive
	7.4.9 Evaluate Effective Address and Transfer Data Primitive
	7.4.10 Write to Previously Evaluated Effective Address Primitive
	7.4.11 Take Address and Transfer Data Primitive
	7.4.12 Transfer to/from Top of Stack Primitive
	7.4.13 Transfer Single Main Processor Register Primitive
	7.4.14 Transfer Main Processor Control Register Primitive
	7.4.15 Transfer Multiple Main Processor Registers Primitive
	7.4.16 Transfer Multiple Coprocessor Registers Primitive
	7.4.17 Transfer Status Register and ScanPC Primitive
	7.4.18 Take Preinstruction Exception Primitive
	7.4.19 Take Midinstruction Exception Primitive
	7.4.20 Take Postinstruction Exception Primitive

	7.5 Exceptions
	7.5.1 Coprocessor-Detected Exceptions
	7.5.2 Main-Processor-Detected Exceptions
	7.5.3 Coprocessor Reset

	7.6 Coprocessor Summary

	Sec. 8- Instruction Execution Timing
	8.1 Timing Estimation Factors
	8.1.1 Instruction Cache and Prefetch
	8.1.2 Operand Misalignment
	8.1.3 Bus/Sequencer Concurrency
	8.1.4 Instruction Execution Overlap
	8.1.5 Instruction Stream Timing Examples

	8.2 Instruction Timing Tables
	8.2.1 Fetch Effective Address
	8.2.2 Fetch Immediate Effective Address
	8.2.3 Calculate Effective Address
	8.2.4 Calculate Immediate Effective Address
	8.2.5 Jump Effective Address
	8.2.6 MOVE Instruction
	8.2.7 Special-Purpose MOVE Instruction
	8.2.8 Arithmetic/Logical Instructions
	8.2.9 Immediate Arithmetic/Logical Instructions
	8.2.10 Binary-Coded Decimal Operations
	8.2.11 Single-Operand Instructions
	8.2.12 Shift/Rotate Instructions
	8.2.13 Bit Manipulation Instructions
	8.2.14 Bit Field Manipulation Instructions
	8.2.15 Conditional Branch Instructions
	8.2.16 Control Instructions
	8.2.17 Exception-Related Instructions
	8.2.18 Save and Restore Operations

	Sec. 9- Applications Information
	9.1 Floating-Point Units
	9.2 Byte Select Logic for the MC68020/EC020
	9.3 Power and Ground Considerations
	9.4 Clock Driver
	9.5 Memory Interface
	9.6 Access Time Calculations
	9.7 Module Support
	9.7.1 Module Descriptor
	9.7.2 Module Stack Frame

	9.8 Access Levels
	9.8.1 Module Call
	9.8.2 Module Return

	Sec. 10- Electrical Characteristics
	10.1 Maximum Ratings
	10.2 Thermal Considerations
	10.2.1 MC68020 Thermal Characteristics and DC Electrical Characteristics
	10.2.2 MC68EC020 Thermal Characteristics and DC Electrical Characteristics

	10.3 AC Electrical Characteristics

	Sec. 11- Ordering Information and Mechanical Data
	11.1 Standard Ordering Information
	11.1.1 Standard MC68020 Ordering Information
	11.1.2 Standard MC68EC020 Ordering Information

	11.2 Pin Assignments and Package Dimensions
	11.2.1 MC68020 RC and RP Suffix- Pin Assignment
	11.2.2 MC68020 RC Suffix - Package Dimensions
	11.2.3 MC68020 RP Suffix- Packabe Dimensions
	11.2.4 MC68020 FC and FE Suffix - Pin Assignment
	11.2.5 MC68020 FC Suffix - Package Dimensions
	11.2.6 MC68020 FE Suffix - Package Dimensions
	11.2.7 MC68EC020 RP Suffix - Pin Assignment
	11.2.8 MC68EC020 RP Suffix - Package Dimensions
	11.2.9 MC68EC020 FG Suffix - Pin Assignment
	11.2.10 MC68EC020 FG Suffix - Package Dimensions

	Appx. A- Interfacing an MC68EC020 to a DMA Device That Supports a Three-Wire Bus Arbitration Protocol
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	030um.pdf
	Return to Main Menu
	Return to 68K Product Page
	
	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Features
	1.2 MC68030 Extensions to the M68000 Family
	1.3 Programming Model
	1.4 Data Types and Addressing Modes
	1.5 Instruction Set Overview
	1.6 Virtual Memory and Virtual Machine Concepts
	1.6.1 Virtual Memory
	1.6.2 Virtual Machine

	1.7 The Memory Management Unit
	1.8 Pipelined Achitecture
	1.9 The Cache Memories

	Sec. 2- Data Organization and Addressing Capabilities
	2.1 Instruction Operands
	2.2 Organization of Data in Registers
	2.2.1 Data Registers
	2.2.2 Address Registers
	2.2.3 Control Registers

	2.3 Organization of Data In Memory
	2.4 Addressing Modes
	2.4.1 Data Register Direct Mode
	2.4.2 Address Register Direct Mode
	2.4.3 Address Register Indirect Mode
	2.4.4 Address Register Indirect with Postincrement Mode
	2.4.5 Address Register Indirect with Predecrement Mode
	2.4.6 Address Register Indirect with Displacement Mode
	2.4.7 Address Register Indirect with Index Mode
	2.4.8 Address Register Indirect with Index Mode
	2.4.9 Memory Indirect Postindexed Mode
	2.4.10 Memory Indirect Preindexed Mode
	2.4.11 Program Counter Indirect with Displacement Mode
	2.4.12 Program Counter Indirect with Index Mode
	2.4.13 Program Counter Indirect with Index Mode
	2.4.14 Program Counter Memory Indirect Postindexed Mode
	2.4.15 Program Counter Memory Indirect Preindexed Mode
	2.4.16 Absolute Short Addressing Mode
	2.4.17 Absolute Long Addressing Mode
	2.4.18 Immediate Data

	2.5 Effective Address Encoding Summary
	2.6 Programmer's View of Addressing Modes
	2.6.1 Addressing Capabilities
	2.6.2 General Addressing Mode Summary

	2.7 M68000 Family Addressing Compatibility
	2.8 Other Data Structures
	2.8.1 System Stack
	2.8.2 User Program Stacks
	2.8.3 Queues

	Sec. 3- Instruction Set Summary
	3.1 Instruction Format
	3.2 Instruction Summary
	3.2.1 Data Movement Instructions
	3.2.2 Integer Arithmetic Instructions
	3.2.3 Logical Instructions
	3.2.4 Shift and Rotate Instructions
	3.2.5 Bit Manipulation Instructions
	3.2.6 Bit Field Operations
	3.2.7 Binary-coded Decimal Instructions
	3.2.8 Program Control Instructions
	3.2.9 System Control Instructions
	3.2.10 Memory Management Unit Instructions
	3.2.11 Multiprocessor Instructions

	3.3 Integer Condition Codes
	3.3.1 Condition Code Computation
	3.3.2 Conditional Tests

	3.4 Instruction Set Summary
	3.5 Instruction Examples
	3.5.1 Using the CAS and CAS2 Instructions
	3.5.2 Nested Subroutine Calls
	3.5.3 Bit Field Operations
	3.5.4 Pipeline Synchronization with the Nop Instruction

	Sec. 4 - Processing States
	4.1 Privilege Levels
	4.1.1 Supervisor Privilege Level
	4.1.2 User Privilege Level
	4.1.3 Changing Privilege Level

	4.2 Address Space Types
	4.3 Exception Processing
	4.3.1 Exception Vectors
	4.3.2 Exception Stack Frame

	Sec. 5 - Signal Description
	5.1 Signal Index
	5.2 Function Code Signals
	5.3 Address Bus
	5.4 Data Bus
	5.5 Transfer Size Signals
	5.6 Bus Control Signals
	5.6.1 Operand Cycle Start
	5.6.2 External Cycle Start
	5.6.3 Read/Write
	5.6.4 Read-Modify-Write Cycle
	5.6.5 Address Strobe
	5.6.6 Data Strobe
	5.6.7 Data Buffer Enable
	5.6.8 Data Transfer and Size Acknowledge
	5.6.9 Synchronous Termination

	5.7 Cache Control Signals
	5.7.1 Cache Inhibit Input
	5.7.2 Cache Inhibit Output
	5.7.3 Cache Burst Request
	5.7.4 Cache Burst Acknowledge

	5.8 Interrupt Control Signals
	5.8.1 Interrupt Priority Level Signals
	5.8.2 Interrupt Pending
	5.8.3 Autovector

	5.9 Bus Arbitration Control Signals
	5.9.1 Bus Request
	5.9.2 Bus Grant
	5.9.3 Bus Grant Acknowledge

	5.10 Bus Exception Control Signals
	5.10.1 Reset
	5.10.2 Halt
	5.10.3 Bus Error

	5.11 Emulator Support Signals
	5.11.1 Cache Disable
	5.11.2 MMU Disable
	5.11.3 Pipeline Refill
	5.11.4 Internal Microsequencer Status

	5.12 Clock
	5.13 Power Supply Connections
	5.14 Signal Summary

	Sec. 6- On-Chip Cache Memories
	6.1 On-Chip Cache Organization and Operation
	6.1.1 Instruction Cache
	6.1.2 Data Cache
	6.1.3 Cache Filling

	6.2 Cache Reset
	6.3 Cache Control
	6.3.1 Cache Control Register
	6.3.2 Cache Address Register

	Sec. 7 - Bus Operation
	7.1 Bus Transfer Signals
	7.1.1 Bus Control Signals
	7.1.2 Address Bus
	7.1.3 Address Strobe
	7.1.4 Data Bus
	7.1.5 Data Strobe
	7.1.6 Data Buffer Enable
	7.1.7 Bus Cycle Termination Signals

	7.2 Data Transfer Mechanism
	7.2.1 Dynamic Bus Sizing
	7.2.2 Misaligned Operands
	7.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment
	7.2.4 Address, Size, and Data Bus Relationships
	7.2.5 MC68030 versus MC68020 Dynamic Bus Sizing
	7.2.6 Cache Filling
	7.2.7 Cache Interactions
	7.2.8 Asynchronous Operation
	7.2.9 Synchronous Operation with DSACKx
	7.2.10 Synchronous Operation with STERM

	7.3 Data Transfer Cycles
	7.3.1 Asynchronous Read Cycle
	7.3.2 Asynchronous Write Cycle
	7.3.3 Asynchronous Read-Modify-Write Cycle
	7.3.4 Synchronous Read Cycle
	7.3.5 Synchronous Write Cycle
	7.3.6 Synchronous Read-Modify-Write Cycle
	7.3.7 Burst Operation Cycles

	7.4 CPU Space Cycles
	7.4.1 Interrupt Acknowledge Bus Cycles
	7.4.2 Breakpoint Acknowledge Cycle
	7.4.3 Coprocessor Communication Cycles

	7.5 Bus Exception Control Cycles
	7.5.1 Bus Errors
	7.5.2 Retry Operation
	7.5.3 Halt Operation
	7.5.4 Double Bus Fault

	7.6 Bus Synchronization
	7.7 Bus Arbitration
	7.7.1 Bus Request
	7.7.2 Bus Grant
	7.7.3 Bus Grant Acknowledge
	7.7.4 Bus Arbitration Control

	7.8 Reset Operation

	Sec. 8- Exception Processing
	8.1 Exception Processing Sequence
	8.1.1 Reset Exception
	8.1.2 Bus Error Exception
	8.1.3 Address Error Exception
	8.1.4 Instruction Trap Exception
	8.1.5 Illegal Instruction and Unimplemented Instruction Exceptions
	8.1.6 Privilege Violation Exception
	8.1.7 Trace Exception
	8.1.8 Format Error Exception
	8.1.9 Interrupt Exceptions
	8.1.10 MMU Configuration Exception
	8.1.11 Breakpoint Instruction Exception
	8.1.12 Multiple Exceptions
	8.1.13 Return from Exception

	8.2 Bus Fault Recovery
	8.2.1 Special Status Word
	8.2.2 Using Software to Complete the Bus Cycles
	8.2.3 Completing the Bus Cycles with Rte

	8.3 Coprocessor Considerations
	8.4 Exception Stack Frame Formats

	Sec. 9- Memory Management Unit
	9.1 Translation Table Structure
	9.1.1 Translation Control
	9.1.2 Translation Table Descriptors

	9.2 Address Translation
	9.2.1 General Flow for Address Translation
	9.2.2 Effect of RESET on MMU
	9.2.3 Effect of MMUDIS on Address Translation

	9.3 Transparent Translation
	9.4 Address Translation Cache
	9.5 Translation Table Details
	9.5.1 Descriptor Details
	9.5.2 General Table Search
	9.5.3 Variations in Translation Table Structure
	9.5.4 Detail of Table Search Operations
	9.5.5 Protection

	9.6 MC68030 and MC68851 MMU Differences
	9.7 Registers
	9.7.1 Root Pointer Registers
	9.7.2 Translation Control Register
	9.7.3 Transparent Translation Registers
	9.7.4 MMU Status Register
	9.7.5 Register Programming Considerations

	9.8 MMU Instructions
	9.9 Defining and Using Page Tables in an Operating System
	9.9.1 Root Pointer Registers
	9.9.2 Task Memory Map Definition
	9.9.3 Impact of MMU Features on Table Definition

	9.10 An Example of Paging Implementation in an Operating System
	9.10.1 System Description
	9.10.2 Allocation Routines
	9.10.3 Bus Error Handler Routine

	Sec. 10- Coprocessor Interface Description
	10.1 Introduction
	10.1.1 Interface Features
	10.1.2 Concurrent Operation Support
	10.1.3 Coprocessor Instruction Format
	10.1.4 Coprocessor System Interface

	10.2 Coprocessor Instruction Types
	10.2.1 Coprocessor General Instructions
	10.2.2 Coprocessor Conditional Instructions
	10.2.3 Coprocessor Save and Restore Instructions

	10.3 Coprocessor Interface Register Set
	10.3.1 Response CIR
	10.3.2 Control CIR
	10.3.3 Save CIR
	10.3.4 Restore CIR
	10.3.5 Operation Word CIR
	10.3.6 Command CIR
	10.3.7 Condition CIR
	10.3.8 Operand CIR
	10.3.9 Register Select CIR
	10.3.10 Instruction Address CIR
	10.3.11 Operand Address CIR

	10.4 Coprocessor Response Primitives
	10.4.1 ScanPC
	10.4.2 Coprocessor Response Primitive General Format
	10.4.3 Busy Primitive
	10.4.4 Null Primitive
	10.4.5 Supervisor Check Primitive
	10.4.6 Transfer Operation Word Primitive
	10.4.7 Transfer from Instruction Stream Primitive
	10.4.8 Evaluate and Transfer Effective Address Primitive
	10.4.9 Evaluate Effective Address and Transfer Data Primitive
	10.4.10 Write to Previously Evaluated Effective Address Primitive
	10.4.11 Take Address and Transfer Data Primitive
	10.4.12 Transfer to/from Top of Stack Primitive
	10.4.13 Transfer Single Main Processor Register Primitive
	10.4.14 Transfer Main Processor Control Register Primitive
	10.4.15 Transfer Multiple Main Processor Registers Primitive
	10.4.16 Transfer Multiple Coprocessor Registers Primitive
	10.4.17 Transfer Status Register and ScanPC Primitive
	10.4.18 Take Pre-Instruction Exception Primitive
	10.4.19 Take Mid-Instruction Exception Primitive
	10.4.20 Take Post-Instruction Exception Primitive

	10.5 Exceptions
	10.5.1 Coprocessor-Detected Exceptions
	10.5.2 Main-Processor-Detected Exceptions
	10.5.3 Coprocessor Reset

	10.6 Coprocessor Summary

	Sec. 11- Instruction Exeution Timing
	11.1 Performance Tradeoffs
	11.2 Resource Scheduling
	11.2.1 Microsequencer
	11.2.2 Instruction Pipe
	11.2.3 Instruction Cache
	11.2.4 Data Cache
	11.2.5 Bus Controller Resources
	11.2.6 Memory Management Unit

	11.3 Instruction Execution Timing Calculations
	11.3.1 Instruction-Cache Case
	11.3.2 Overlap and Best Case
	11.3.3 Average No-Cache Case
	11.3.4 Actual Instruction-Cache-Case Execution Time Calculations

	11.4 Effect of Data Cache
	11.5 Effect of Wait States
	11.6 Instruction Timing Tables
	11.6.1 Fetch Effective Address
	11.6.2 Fetch Immediate Effective Address
	11.6.3 Calculate Effective Address
	11.6.4 Calculate Immediate Effective Address
	11.6.5 Jump Effective Address
	11.6.6 MOVE Instruction
	11.6.7 Special-Purpose Move Instruction
	11.6.8 Arithmetical/Logical Instructions
	11.6.9 Immediate Arithmetical/Logical Instructions
	11.6.10 Binary-Coded Decimal and Extended Instructions
	11.6.11 Single Operand Instructions
	11.6.12 Shift/Rotate Instructions
	11.6.13 Bit Manipulation Instructions
	11.6.14 Bit Field Manipulation Instructions
	11.6.15 Conditional Branch Instructions
	11.6.16 Control Instructions
	11.6.17 Exception-Related Instructions and Operations
	11.6.18 Save and Restore Operations

	11.7 Address Translation Tree Search Timing
	11.7.1 MMU Effective Address Calculation
	11.7.2 MMU Instruction Timing

	11.8 Interrupt Latency
	11.9 Bus Arbitration Latency

	Sec. 12 - Applications Information
	12.1 Adapting the MC68030 to MC68020 Designs
	12.1.1 Signal Routing
	12.1.2 Hardware Differences
	12.1.3 Software Differences

	12.2 Floating-Point Units
	12.3 Byte Select Logic for the MC68030
	12.4 Memory Interface
	12.4.1 Access Time Calculations
	12.4.2 Burst Mode Cycles

	12.5 Static RAM Memory Banks
	12.5.1 A Two-Clock Synchronous Memory Bank Using SRAMS
	12.5.2 A 2-1-1-1 Burst Mode Memory Bank Using SRAMS
	12.5.3 A 3-1-1-1 Burst Mode Memory Bank Using SRAMS

	12.6 External Caches
	12.6.1 Cache Implementation
	12.6.2 Instruction-Only External Cache Implementations

	12.7 Debugging Aids
	12.7.1 Status and Refill
	12.7.2 Real-Time Instruction Trace

	12.8 Power and Ground Considerations

	Sec. 13 - Electrical Characteristics
	13.1 Maximum Ratings
	13.2 Thermal Characteristics - PGA Package

	Sec. 14- Ordering Information and Mechanical Data
	14.1 Standard MC68030 Ordering Information
	14.2 Pin Assignments - Pin Grid Array
	14.3 Pin Assignments - Ceramic Surface Mount
	14.4 Package Dimensions

	Appx. A- M68000 Family Summary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	040um.pdf
	Return to Main Menu
	Reurn to 68K Product Page
	
	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Differences
	1.1.1 MC68040V and MC68LC040
	1.1.2 MC68EC040 and MC68EC040V

	1.2 Features
	1.3 Extensions to the M68000 Family
	1.4 Functional Blocks
	1.5 Processing States
	1.6 Programming Model
	1.7 Data Format Summary
	1.8 Addressing Capabilities Summary
	1.9 Notational Conventions
	1.10 Instruction Set Overview

	Sec. 2- Integer Unit
	2.1 Integer Unit Pipeline
	2.2 Integer Unit Register Description
	2.2.1 Integer Unit User Programming Model
	2.2.2 Integer Unit Supervisor Programming Model

	Sec. 3- Memory Management Unit
	3.1 Memory Management Programming Model
	3.1.1 User and Supervisor Root Pointer Registers
	3.1.2 Translation Control Register
	3.1.3 Transparent Translation Registers
	3.1.4 MMU Status Register

	3.2 Logical Address Translation
	3.2.1 Translation Tables
	3.2.2 Descriptors
	3.2.3 Translation Table Example
	3.2.4 Variations in Translation Table Structure
	3.2.5 Table Search Accesses
	3.2.6 Address Translation Protection

	3.3 Address Translation Caches
	3.4 Transparent Translation
	3.5 Address Translation Summary
	3.6 MMU Effect on RSTI and MDIS
	3.6.1 Errect of RSTI on the MMUs
	3.6.2 Effect of MDIS on Address Translation

	3.7 MMU Instructions
	3.7.1 MOVEC
	3.7.2 PFLUSH
	3.7.3 PTEST
	3.7.4 Register Programming Considerations

	Sec. 4- Instruction and Data Caches
	4.1 Cache Operation
	4.2 Cache Management
	4.3 Caching Modes
	4.3.1 Cachable Accesses
	4.3.2 Cache-Inhibited Accesses
	4.3.3 Special Accesses

	4.4 Cache Protocol
	4.4.1 Read Miss
	4.4.2 Write Miss
	4.4.3 Read Hit
	4.4.4 Write Hit

	4.5 Cache Coherency
	4.6 Memory Accesses for Cache Maintenance
	4.6.1 Cache Filling
	4.6.2 Cache Pushes

	4.7 Cache Operation Summary
	4.7.1 Instruction Cache
	4.7.2 Data Cache

	Sec. 5- Signal Description
	5.1 Address Bus
	5.2 Data Bus
	5.3 Transfer Attribute Signals
	5.3.1 Transfer Type
	5.3.2 Transfer Modifier
	5.3.3 Transfer Line Number
	5.3.4 User-Programmable Attributes
	5.3.5 Read/Write
	5.3.6 Transfer Size
	5.3.7 Lock
	5.3.8 Lock End
	5.3.9 Cache Inhibit Out

	5.4 Bus Transfer Control Signals
	5.4.1 Transfer Start
	5.4.2 Transfer in Progress
	5.4.3 Transfer Acknowledge
	5.4.4 Transfer Error Acknowledge
	5.4.5 Transfer Cache Inhibit
	5.4.6 Transfer Burst Inhibit

	5.5 Snoop Control Signals
	5.5.1 Snoop Control
	5.5.4 Memory Inhibit

	5.6 Arbitration Signals
	5.6.1 Bus Request
	5.6.2 Bus Grant
	5.6.3 Bus Busy

	5.7 Processor Control Signals
	5.7.1 Cache Disable
	5.7.2 Reset In
	5.7.3 Reset Out

	5.8 Interrupt Control Signals
	5.8.1 Interrupt Priority Level
	5.8.2 Interrupt Pending Status
	5.8.3 Autovector

	5.9 Status and Clock Signals
	5.9.1 Processor Status
	5.9.2 Bus Clock
	5.9.3 Processor Clock

	5.10 MMU Disable
	5.11 Data Latch Enable
	5.12 Test Signals
	5.12.1 Test Clock
	5.12.2 Test Mode Select
	5.12.3 Test Data In
	5.12.4 Test Data Out
	5.12.5 Test Reset

	5.13 Power Supply Connections
	5.14 Signal Summary

	Sec. 6- IEEE 1149.1A Test Access Port (JTAG)
	6.1 Overview
	6.2 Instruction Shift Register
	6.2.1 EXTEST
	6.2.2 HIGHZ
	6.2.3 Sample/Preload
	6.2.4 DRVCTL.T
	6.2.5 Shutdown
	6.2.6 Private
	6.2.7 DRVCTL.S
	6.2.8 Bypass

	6.3 Boundary Scan Register
	6.4 Restrictions
	6.5 Disabling the IEEE Standard 1149.1A Operation
	6.6 Motorola M68040 BSDL Description
	6.7 MC68040, MC68LC040, MC68EC040 JTAG Electrical Characteristics

	Sec. 7 - Bus Operation
	7.1 Bus Characteristics
	7.2 Data Transfer Mechanism
	7.3 Misaligned Operands
	7.4 Processor Data Transfers
	7.4.1 Byte, Word, and Long-Word Read Transfers
	7.4.2 Line Read Transfer
	7.4.3 Byte, Word, and Long-Word Write Transfers
	7.4.4 Line Write Transfers
	7.4.5 Read-Modify-Write Transfers

	7.5 Acknowledge Bus Cycles
	7.5.1 Interrupt Acknowledge Bus Cycles
	7.5.2 Breakpoint Interrupt Acknowledge Bus Cycle

	7.6 Bus Exception Control Cycles
	7.6.1 Bus Errors
	7.6.2 Retry Operation
	7.6.3 Double Bus Fault

	7.7 Bus Synchronization
	7.8 Bus Arbitration and Examples
	7.8.1 Bus Arbitration
	7.8.2 Bus Arbitration Examples

	7.9 Bus Snooping Operation
	7.9.1 Snoop-Inhibited Cycle
	7.9.2 Snoop-Enabled Cycle (No Intervention Required)
	7.9.3 Snoop Read Cycle (Intervention Required)
	7.9.4 Snoop Write Cycle (Intervention Required)

	7.10 Reset Operation
	7.11 Special Modes of Operation
	7.11.1 Output Buffer Impedance Selection
	7.11.2 Multiplexed Bus Mode
	7.11.3 Data Latch Enable Mode

	Sec. 8- Exception Processing
	8.1 Exception Processing Overview
	8.2 Interger Unit Exceptions
	8.2.1 Access Fault Exception
	8.2.2 Address Error Exception
	8.2.3 Instruction Trap Exception
	8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions
	8.2.5 Privilege Violation Exception
	8.2.6 Trace Exception
	8.2.7 Format Error Exception
	8.2.8 Breakpoint Instruction Exception
	8.2.9 Interrupt Exception
	8.2.10 Reset Exception

	8.3 Exception Priorities
	8.4 Return from Exceptions
	8.4.1 Four-Word Stack Frame
	8.4.2 Four-Word Throwaway Stack Frame
	8.4.3 Six-Word Stack Frame
	8.4.4 Floating-Point Post-Instruction Stack Frame
	8.4.5 Eight-Word Stack Frame
	8.4.6 Access Error Stack Frame

	Sec. 9- Floating-Point Unit
	9.1 Floating-Point Unit Pipeline
	9.2 Floating-Point User Programming Model
	9.2.1 Floating-Point Data Registers
	9.2.2 Floating-Point Control Register
	9.2.3 Floating-Point Status Register
	9.2.4 Floating-Point Instruction Address Register

	9.3 Floating-Point Data Formats and Data Types
	9.4 Computational Accuracy
	9.4.1 Intermediate Result
	9.4.2 Rounding the Result

	9.5 Postprocessing Operation
	9.5.1 Underflow, Round, Overflow
	9.5.2 Conditional Testing

	9.6 Floating-Point Exceptions
	9.6.1 Unimplemented Floating-Point Instructions
	9.6.2 Unsupported Floating-Point Data Types

	9.7 Floating-Point Arithmetic Exceptions
	9.7.1 Branch/Set On Unordered
	9.7.2 Signaling Not-a-Number
	9.7.3 Operand Error
	9.7.4 Overflow
	9.7.5 Underflow
	9.7.6 Divide by Zero
	9.7.7 Inexact Result

	9.8 Floating-Point State Frames

	Sec. 10- Instruction Timings
	10.1 Overview
	10.2 Instruction Timing Examples
	10.3 CINV and CPUSH Instruction Timing
	10.4 Move Instruction Timing
	10.5 Miscellaneous Interger Unit Instruction Timings
	10.6 Integer Unit Instruction Timings
	10.7 Floating-Point Unit Instruction Timings
	10.7.1 Miscellaneous Integer Unit Support Timings
	10.7.2 Integer Unit Support Timings
	10.7.3 Timings in the Floating-Point Unit

	Sec. 11- MC68040 Electrical and Thermal Characteristics
	11.1 Maximum Ratings
	11.2 Thermal Characteristics
	11.3 DC Electrical Specifications
	11.4 Power Dissipation
	11.5 Clock AC Timing Specifications
	11.6 Output AC Timing Specifications
	11.7 Input AC Timing Specifications
	11.8 MC68040 Thermal Device Characteristics
	11.8.1 MC68040 Die and Package
	11.8.2 MC68040 Power Considerations

	11.9 MC68040 Thermal Management Techniques
	11.9.1 Still Air
	11.9.2 Forced Air
	11.9.3 With Heat Sink
	11.9.4 With Heat Sink and Forced Air

	Sec. 12 - Ordering Information and Mechanical Data
	12.1 Ordering Information
	12.2 Pin Assignments
	12.2.1 MC68040 Pin Grid Array
	12.2.2 MC68LC040 Pin Grid Array
	12.2.3 MC68EC040 Pin Grid Array
	12.2.4 MC68040V and MC68EC040V Pin Grid Array
	12.2.5 MC68LC040 Quad Flat Pack
	12.2.6 MC68EC040 Quad Flat Pack
	12.2.7 MC68040V and MC68EC040V Quad Flat Pack

	12.3 Mechanical Data

	Appx. A- MC68LC040
	A.1 MC68LC040 Differences
	A.2 Interrupt Priority Level
	A.3 JTAG Scan
	A.4 Data Latch and Multiplexed Bus Modes
	A.5 Floating-Point Unit
	A.5.1 Unimplemented Floating-Point Instructions and Exceptions
	A.5.2 MC68LC040 Stack Frames

	A.6 MC68LC040 Electrical Characteristics
	A.6.1 Maximum Ratings
	A.6.2 Thermal Characteristics
	A.6.3 DC Electrical Specifications
	A.6.4 Power Dissipation
	A.6.5 Clock AC Timing Specifications
	A.6.6 Output AC Timing Specifictions
	A.6.7 Input AC Timing Specifications

	Appx. B- MC68EC040
	B.1 MC68EC040 Differences
	B.2 JTAG Scan
	B.3 Access Control Units
	B.3.1 Access Control Registers
	B.3.2 Address Comparison
	B.3.3 Effect of RSTI on the ACU

	B.4 Special Modes of Operation
	B.5 Exception processing
	B.5.1 Unimplemented Floating-Point Instructions and Exceptions
	B.5.2 MC68EC040 Stack Frames

	B.6 Software Considerations
	B.7 MC68EC040 Electrical Characteristics
	B.7.1 Maximum Ratings
	B.7.2 Thermal Characteristics
	B.7.3 DC Electrical Specifications
	B.7.4 Power Dissipation
	B.7.5 Clock AC Timing Specifications
	B.7.6 Output AC Timing Specifications
	B.7.7 Input AC Timing Specifications

	Appx. C- MC68040V and MC68EC040V
	C.1 Additional Signals
	C.1.1 Low Frequency Operation
	C.1.2 Loss of Clock
	C.1.3 System Clock Disable

	C.2 Low-Power Stop Mode
	C.2.1 Bus Arbitration and Snooping
	C.2.2 Low Frequency Operation
	C.2.3 Changing BCLK Frequency
	C.2.4 LPSTOP Instruction Summary

	C.3 Clocking During Normal Operation
	C.4 Reset Operation
	C.5 Power Cycling
	C.6 MC68040V and MC68EC040V JTAG
	C.6.1 Instruction Shift Register
	C.6.2 Boundary Scan Register
	C.6.3 Restrictions
	C.6.4 Disabling the IEEE Standard 1149.1A Operation
	C.6.5 MC68040V and MC68EC040V JTAG Electrical Characteristics

	C.7 MC68040V and MC68EC040V Electrical Characteristics
	C.7.1 Maximum Ratings
	C.7.2 Thermal Characteristics
	C.7.3 DC Electrical Specifications
	C.7.4 Power Dissipation
	C.7.5 Clock AC Timing Specifications
	C.7.6 Output AC Timing Specifications
	C.7.7 Input AC Timing Specifications

	Appx. D-M68000 Family Summary
	Appx. E- Floating-Point Emulation
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	060_d.pdf
	Return to Main Menu
	Return to 68K Product Page

	060um.pdf
	Return to Main Menu
	Return to 68K Product Page
	
	Preface
	Acronym List
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Differences Among M68060 Family Members
	1.1.1 MC68LC060
	1.1.2 MC68EC060

	1.2 Features
	1.3 Architecture
	1.4 Processor Overview
	1.4.1 Functional Blocks
	1.4.2 Integer Unit

	1.5 Processing States
	1.6 Programming Model
	1.7 Data Format Sumamry
	1.8 Addressing Capabilities Summary
	1.9 Instruction Set Overview
	1.10 Notational Conventions

	Sec. 2 - Signal Description
	2.1 Address and Control Signals
	2.1.1 Address Bus
	2.1.2 Cycle Long-Word Address

	2.2 Data Bus
	2.3 Transfer Attribute Signals
	2.3.1 Transfer Cycle Type
	2.3.2 Transfer Cycle Modifier
	2.3.3 Transfer Line Number
	2.3.4 User-Programmable Page Attributes
	2.3.5 Read/Write
	2.3.6 Transfer Size
	2.3.7 Bus Lock
	2.3.8 Bus Lock End
	2.3.9 Cache Inhibit Out
	2.3.10 Byte Select Lines

	2.4 Master Transfer Control Signals
	2.4.1 Transfer Start
	2.4.2 Transfer in Progress
	2.4.3 Starting Termination Acknowledge Signal Sampling

	2.5 Slave Transfer Control Signals
	2.5.1 Transfer Acknowledge
	2.5.2 Transfer Retry Acknowledge
	2.5.3 Transfer Error Acknowledge
	2.5.4 Transfer Burst Inhibit
	2.5.5 Transfer Cache Inhibit

	2.6 Snoop Control
	2.7 Arbitration Signals
	2.7.1 Bus Request
	2.7.2 Bus Grant
	2.7.3 Bus Grant Relinquish Control
	2.7.4 Bus Tenure Termination
	2.7.5 Bus Busy

	2.8 Processor Control Signals
	2.8.1 Cache Disable
	2.8.2 MMU Disable
	2.8.3 Reset In
	2.8.4 Reset Out

	2.9 Interrupt Control Signals
	2.9.1 Interrupt Priority Level
	2.9.2 Interrupt Pending Status
	2.9.3 Autovector

	2.10 Status and Clock Signals
	2.10.1 Processor Status
	2.10.2 MC68060 Processor Clock
	2.10.3 Clock Enable

	2.11 Test Signals
	2.11.1 JTAG Enable
	2.11.2 Test Clock
	2.11.3 Test Mode Select
	2.11.4 Test Data In
	2.11.5 Test Data Out
	2.11.6 Test Reset

	2.12 Thermal Sensing Pins
	2.13 Power Supply Connections
	2.14 Signal Summary

	Sec. 3- Integer Unit
	3.1 Integer Unit Execution Pipelines
	3.2 Integer Unit Register Description
	3.2.1 Integer Unit User Programming Model
	3.2.2 Integer Unit Supervisor Programming Model

	Sec. 4- Memory Management Unit
	4.1 Memory Management Programming Model
	4.1.1 User and Supervisor Root Pointer Registers
	4.1.2 Translation Control Register
	4.1.3 Transparent Translation Registers

	4.2 Logical Address Translation
	4.2.1 Translation Tables
	4.2.2 Descriptors
	4.2.3 Translation Table Example
	4.2.4 Variations in Translation Table Structure
	4.2.5 Table Search Accesses
	4.2.6 Address Translation Protection

	4.3 Address Translation Caches
	4.4 Transparent Translation
	4.5 Address Translation summary
	4.6 RSTI and MDIS Effect on the MMU
	4.6.1 Effect of RSTI on the MMUs
	4.6.2 Effect of MDIS on Address Translation

	4.7 MMU Instructions
	4.7.1 MOVEC
	4.7.2 PFLUSH
	4.7.3 PLPA

	Sec. 5- Caches
	5.1 Cache Operation
	5.2 Cache Control Register
	5.3 Cache Management
	5.4 Caching Modes
	5.4.1 Cachable Accesses
	5.4.2 Cache-Inhibited Accesses
	5.4.3 Special Accesses

	5.5 Cache Protocol
	5.5.1 Read Miss
	5.5.2 Write Miss
	5.5.3 Read Hit
	5.5.4 Write Hit

	5.6 Cache Coherency
	5.7 Memory Accesses for Cache Maintenance
	5.7.1 Cache Filling
	5.7.2 Cache Pushes

	5.8 Push Buffer
	5.9 Store Buffer
	5.10 Push Buffer and Store Buffer Bus Operation
	5.11 Branch Cache
	5.12 Cache Operation Summary
	5.12.1 Instruction Cache
	5.12.2 Data Cache

	Sec. 6- Floating-Point Unit
	6.1 Floating-Point User Programming Model
	6.1.1 Floating-Point Data Registers
	6.1.2 Floating-Point Control Register
	6.1.3 Floating-Point Status Register
	6.1.4 Floating-Point Instruction Address Register

	6.2 Floating-Point Data Formats and Data Types
	6.3 Computational Accuracy
	6.3.1 Intermediate Result
	6.3.2 Rounding the Result

	6.4 Postprocessing Operation
	6.4.1 Underflow, Round, and Overflow
	6.4.2 Conditional Testing

	6.5 Floating-Point Exceptions
	6.5.1 Unimplemented Floating-Point Instructions
	6.5.2 Unsupported Floating-Point Data Types
	6.5.3 Unimplemented Effective Address Exception

	6.6 Floating-Point Arithmetic Exceptions
	6.6.1 Branch/Set on Unordered
	6.6.2 Signaling Not-a-Number
	6.6.3 Operand Error
	6.6.4 Overflow
	6.6.5 Underflow
	6.6.6 Divide-By-Zero
	6.6.7 Inexact Result

	6.7 Floating-Point State Frames

	Sec. 7- Bus Operation
	7.1 Bus Characteristics
	7.2 Full-, Half-, and Quarter-Speed Bus Operation and BCLK
	7.3 Acknowledge Termination Ignore State Capability
	7.4 Bus Control Register
	7.5 Data Transfer Mechanism
	7.6 Misaligned Operands
	7.7 Processor Data Transfers
	7.7.1 Byte, Word, and Long-Word Read Transfer Cycles
	7.7.2 Line Read Transfer
	7.7.3 Byte, Word, and Long-Word Write Cycles
	7.7.4 Line Write Cycles
	7.7.5 Locked Read-Modify-Write Cycles
	7.7.6 Emulating CAS2 and CAS Misaligned
	7.7.7 Using CLA in Increment A3 and A2

	7.8 Acknowledge Cycles
	7.8.1 Interrupt Acknowledge Cycles
	7.8.2 Breakpoint Acknowledge Cycle

	7.9 Bus Exception Control Cycles
	7.9.1 Bus Errors
	7.9.2 Retry Operation
	7.9.3 Double Bus Fault

	7.10 Bus Synchronization
	7.11 Bus Arbitration
	7.11.1 MC68040-Arbitration Protocol
	7.11.2 MC68060-Arbitration Protocol
	7.11.3 External Arbiter Considerations

	7.12 Bus Snooping Operation
	7.13 Reset Operation
	7.14 Special Modes of Operation
	7.14.1 Acknowledge Termination Ignore State Capability
	7.14.2 Acknowledge Termiation Protocol
	7.14.3 Extra Data Write Hold Time Mode

	Sec. 8- Exception Processing
	8.1 Exception Processing Overview
	8.2 Integer Unit Exceptions
	8.2.1 Access Error Exception
	8.2.2 Address Error Exception
	8.2.3 Instruction Trap Exception
	8.2.4 Illegal Instruction and Unimplemented Instruction Exceptions
	8.2.5 Privilege Violation Exception
	8.2.6 Trace Exception
	8.2.7 Format Error Exception
	8.2.8 Breakpoint Instruction Exception
	8.2.9 Interrupt Exception
	8.2.10 Reset Exception

	8.3 Exception Priorities
	8.4 Return from Exceptions
	8.4.1 Four-Word Stack Frame
	8.4.2 Six-Word Stack Frame
	8.4.3 Floating-Point Post-Instruction Stack Frame
	8.4.4 Eight-Word Stack Frame
	8.4.5 Recovering from an Access Error
	8.4.6 Bus Errors and Pending Memory Writes
	8.4.7 Branch Prediction Error

	Sec. 9- IEEE 1149-1 Test and Debug Pipe Control Modes
	9.1 IEEE 1149.1 Test Access Port Mode
	9.1.1 Overview
	9.1.2 JTAG Instrucion Shift Register
	9.1.3 JTAG Test Data Registers
	9.1.4 Restrictions
	9.1.5 Disabling the IEEE 1149.1 Standard Operation
	9.1.6 Motorola MC68060 BSDL Description

	9.2 Debug Pipe Control Mode
	9.2.1 Debug Command Interface
	9.2.2 Debug Pipe Control Mode Commands
	9.2.3 Emulator Mode

	9.3 Switching Between JTAG and Debug Pipe Control Modes of Operation

	Sec. 10- Instruction Execution Timing
	10.1 Superscalar Operand Execution Pipelines
	10.1.1 Dispatch Test 1: sOEP Opword and Required Extensio Words are Valid
	10.1.2 Dispatch Tet 2: Instruction Classification
	10.1.3 Dispatch Test 3: Allowable Effective Addressing Mode in the sOEP
	10.1.4 Dispatch Test 4: Allowable Operand Data Memory Reference
	10.1.5 Dispatch Test 5: No Register Conflicts on sOEP.AGU Resources
	10.1.6 Dispatch Test 6: No Register Conflicts on sOEP.IEE Resources

	10.2 Timing Assumptions
	10.3 Cache and ATC Performance Degradation Times
	10.3.1 Instruction ATC Miss
	10.3.2 Data ATC Miss
	10.3.3 Instruction Cache Miss
	10.3.4 Data Cache Miss

	10.4 Effective Address Calculation Times
	10.5 Move Instruction Execution Times
	10.6 Standard Instruction Execution Times
	10.7 Immediate Instruction Execution Times
	10.8 Single-Operand Instruction Execution Times
	10.9 Shift/Rotate Execution Times
	10.10 Bit Manipulation and Bit Field Execution Times
	10.11 Branch Instruction Execution Times
	10.12 LEA, PEA, and MOVEM Execution Times
	10.13 Multiprecision Instruction Execution Times
	10.14 Status Register, Moves, and Miscellaneous Instruction Execution Times
	10.15 FPU Instruction Execution Times
	10.16 Exception Processing Times

	Sec. 11- Applications Information
	11.1 Guidelines for Porting Software to the MC68060
	11.1.1 User Code
	11.1.2 Supervisor Code
	11.1.3 Precise Vs. Imprecise Exception Mode
	11.1.4 Other Considerations

	11.2 Using an MC68060 in an Existing MC68040 System
	11.2.1 Power Considerations
	11.2.2 Output Hold Time Differences
	11.2.3 Bus Arbitration
	11.2.4 Snooping
	11.2.5 Special Modes
	11.2.6 Clocking
	11.2.7 PSTx Encoding
	11.2.8 Miscellaneous Pullup Resistors

	11.3 Example DRAM Access
	11.4 Thermal Management
	11.5 Support Devices

	Sec. 12 - Electrical and Thermal Characteristics
	12.1 Maximum Ratings
	12.2 Thermal Characteristics
	12.3 Power Dissipation
	12.4 DC Electrical Specifications
	12.5 Clock Input Specifications
	12.6 Output AC Timing Specifications
	12.7 Input AC Timing Specifications

	Sec. 13 - Ordering Information and Mechanical Data
	13.1 Ordering Information
	13.2 Pin Assignments
	13.2.1 MC68060, MC68LC060, and MC68EC060 Pin Grid Array
	13.2.2 MC68060, MC68LC060, and MC68EC060

	13.3 Mechanical Data

	Appx. B-MC68EC060
	B.1 Address Translation Differences
	B.2 Instruction Differences

	Appx. C- MC68060 Software Package
	C.1 Module Format
	C.2 Unimplemented Integer Instructions
	C.2.1 Integer Emulation Results
	C.2.2 Module 1: Unimplemented Integer Instruction Exception
	C.2.3 Module 2: Unimplemented Integer Instruction Library

	C.3 Floating-Point Emulation Package
	C.3.1 Floating-Point Emulation Results
	C.3.2 Module 3: Full Floating-Point Kernel
	C.3.3 Module 4: Partial Floating-Point Kernel
	C.3.4 Module 5: Floating-Point Library

	C.4 Operating System Dependencies
	C.4.1 Instruction and Data Fetches
	C.4.2 Instructions Not Recommended

	C.5 Installation Notes
	C.5.1 Installing the Library Modules
	C.5.2 Installing the Kernel Modules
	C.5.3 Release Notes and Module Offset Assignments
	C.5.4 AESOP Electronic Bulletin Board

	Appx. D- MC68060 Insturctions

	2M_um.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	List of Illustrations
	List of Tables
	List of Acronyms
	Sec. 1- Overview
	1.1 Flexcore Integrated Processors
	1.2 Development Cycle
	1.3 System Architecture
	1.4 Programming Model
	1.5 Integer Data Formats
	1.6 Orgainzation of Data in Registers
	1.7 Addressing Mode Summary
	1.8 Instruction Set Summary

	Sec. 2- Signal Summary
	2.1 Introduction
	2.2 Master Bus Signals
	2.3 General Control Signals
	2.4 Integrated Memory Signals
	2.5 Debug Signals
	2.6 Test Signals

	Sec. 3- Master Bus Operation
	3.1 Signal Description
	3.2 Data Transfer Mechanism
	3.3 Data Transfers
	3.4 Misaligned Operands
	3.5 Invalid Master Bus Cycles
	3.6 Pipeline Stalls
	3.7 Interrupt Acknowledge Bus Cycles
	3.8 Master Bus Exception Control Cycles
	3.9 Reset Operation
	3.10 Master Bus Arbitration

	Sec. 4- Exception Processing
	4.1 Exception Processing Overview
	4.2 Exceptions

	Sec. 5- Integrated Memories
	5.1 Instruction Cache
	5.2 Access Control Registers
	5.3 ROM Module
	5.4 RAM Module
	5.5 Interactions Between KBUS Memories

	Sec. 6 - Multiply-Accumulate Unit
	6.1 Introduction
	6.2 MAC Programming Model
	6.3 Shifting Operations
	6.4 Overflow Mode
	6.5 MAC Instruction Set Summary

	Sec. 7 - Debug Support
	7.1 Signal Description
	7.2 Real-Time Trace
	7.3 Background Debug Mode (BDM)
	7.4 Real-Time Debug Support

	Sec. 8 - Test Operation
	8.1 Signals Required to Perform Scan Test
	8.2 Scan Operation
	8.3 Integrated Memory Testing

	Sec. 9 - Instruction Execution Timing
	9.1 Timing Assumptions
	9.2 Move Instruction Execution Times
	9.3 Standard One Operand Instruction Execution Times
	9.4 Standard Two Operand Instruction Execution Times
	9.5 Miscellaneous Instruction Execution Times
	9.6 MAC Instruction Execution Timing
	9.7 Branch Instruction Execution Times

	Appx. A - Register Summary
	A.1 Register Access Methods
	A.1 Register Formats

	Appx. B- New MAC Instructions
	B.1 Enhanced Integer-Multiply Instructions
	B.2 New MAC Instructions
	MAC-Multiply and Accumulate
	MACL - Multiply and Accumulate with Register Load
	MSAC - Multiply and Subtract
	MSACL - Multiply and Subtract with Register Load

	B.3 New Register Instructions
	MOVE from ACC - Move from Accumulator
	MOVE from MACSR - Move from MAC Status Reg
	MOVE from MASK - Move from Mask
	MOVE to ACC - Move to Accumulator
	MOVE to CCR - Move to Condition Code Register
	MOVE to MACSR - Move to MAC Status Register
	MOVE to MASK

	B.4 Operation Code Map
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	306_D.pdf
	Return to Main Menu
	Return to 3XX Home
	
	Integrated EC000 Processor
	M68300 FAMILY
	ORGANIZATION
	ADVANTAGES
	MC68306 Signals/diagram

	EC000 Core Processor
	On-Chip Peripherals
	68681 MODULE
	DRAM CONTROLLER
	CHIP SELECTS
	PARALLEL PORTS
	INTERRUPT CONTROLLER
	CLOCK
	BUS WATCHDOG TIMER
	MODE CONTROLLER
	IEEE 1149.1 TEST

	PHYSICAL
	MORE INFORMATION

	306um.pdf
	Return to Main Menu
	Return to 3XX Home
	
	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 MC68EC000 Core Processor
	1.2 On-Chip Peripherals
	1.2.1 Serial Module
	1.2.2 DRAM Controller
	1.2.3 Chip Selects
	1.2.4 Parallel Ports
	1.2.5 Interrupt Controller
	1.2.6 Clock
	1.2.7 Bus Timeout Monitor
	1.2.8 IEEE 1149.1 Test

	Sec. 2- Signal Description
	2.1 Bus Signals
	2.1.1 Address Bus
	2.1.2 Address Strobe
	2.1.3 Bus Error
	2.1.4 Bus Request
	2.1.5 Bus Grant
	2.1.6 Bus Grant Acknowledge
	2.1.7 Data Bus
	2.1.8 Data Transfer Acknowledge
	2.1.9 DRAM Multiplexed Address Bus
	2.1.10 Processor Function Codes
	2.1.11 Halt
	2.1.12 Read/Write
	2.1.13 Upper and Lower Data Strobes
	2.1.14 Upper-Byte Write
	2.1.15 Lower-Byte Write
	2.1.16 Output Enable
	2.1.17 Reset

	2.2 Chip Select Signals
	2.3 DRAM Controller Signals
	2.3.1 Column Address Strobe
	2.3.2 Row Address Strobe
	2.3.3 DRAM Write Signal

	2.4 Interrupt Control and Parallel Port Signals
	2.4.1 Interrupt Request
	2.4.2 Interrupt Acknowledge
	2.4.3 Port A Signals
	2.4.4 Port B

	2.5 Clock and Mode Control Signals
	2.5.1 Crystal Oscillator
	2.5.2 Clock Out
	2.5.3 Address Mode

	2.6 Serial Module Signals
	2.6.1 Channel A Receiver Serial-Data Input
	2.6.2 Channel A Transmitter Serial-Data Output
	2.6.3 Channel B Receiver Serial-Data Input
	2.6.4 Channel B Transmitter Serial-Data Output
	2.6.5 CTSA
	2.6.6 RTSA
	2.6.7 CTSB
	2.6.8 RTSB
	2.6.9 Crystal Oscillator
	2.6.10 IP2
	2.6.11 OP3

	2.7 JTAG Port Test Signals
	2.7.1 Test Clock
	2.7.2 Test Mode Select
	2.7.3 Test Data In
	2.7.4 Test Data Out
	2.7.5 Test Reset

	Sec. 3- 68000 Bus Operation Description
	3.1 Data Transfer Operations
	3.1.1 Read Cycle
	3.1.2 Write Cycle
	3.1.3 Read-Modify-Write Cycle

	3.2 Bus Arbitration
	3.2.1 Requesting the Bus
	3.2.2 Receiving the Bus Grant
	3.2.3 Acknowledgment of Mastership

	3.3 Bus Arbitration Control
	3.4 Bus Error and Halt Operation
	3.4.1 Bus Error Operation
	3.4.2 Retrying the Bus Cycle
	3.4.3 Halt Operation
	3.4.4 Double Bus Fault

	3.5 Reset Operation
	3.6 The Relationship of DTACK, BERR, and HALT
	3.7 Asynchronous Operation
	3.8 Synchronous Operation

	Sec. 4- EC000 Core Processor
	4.1 Features
	4.2 Processing States
	4.3 Programming Model
	4.3.1 Data Format Summary
	4.3.2 Addressing Capabilities Summary
	4.3.3 Notation Conventions

	4.4 EC000 Core Instruction Set Overview
	4.5 Exception Processing
	4.5.1 Exception Vectors

	4.6 Processing of Specific Exceptions
	4.6.1 Reset Exception
	4.6.2 Interrupt Exceptions
	4.6.3 Uninitialized Interrupt Exception
	4.6.4 Spurious Interrupt Exception
	4.6.5 Instruction Traps
	4.6.6 Illegal and Unimplemented Instructions
	4.6.7 Privilege Violations
	4.6.8 Tracing
	4.6.9 Bus Error
	4.6.10 Address Error
	4.6.11 Multiple Exceptions

	Sec. 5- System Operation
	5.1 MC68306 Address Space
	5.2 Register Description
	5.2.1 System Register
	5.2.2 Timer Vector Register
	5.2.3 Bus Timeout Period Register
	5.2.4 Interrupt Registers
	5.2.5 I/O Port Registers
	5.2.6 Chip Selects
	5.2.7 DRAM Control Registers
	5.2.8 Automatic DTACK Generation

	5.3 Crystal Oscillator

	Sec. 6- Serial Module
	6.1 Module Overview
	6.1.1 Serial Communication Channels A & B
	6.1.2 Baud Rate Generator Logic
	6.1.3 Timer/Counter
	6.1.4 Interrupt Control Logic
	6.1.5 Comparison of Serial Module to MC68681

	6.2 Serial Module Signal Definitions
	6.2.1 Crystal Input or External Clock
	6.2.2 Crystal Output
	6.2.3 Channel A Transmitter Serial Data Output
	6.2.4 Channel A Receiver Serial Data Input
	6.2.5 Channel B Transmitter Serial Data Output
	6.2.6 Channel B Receiver Serial Data Input
	6.2.7 Channel A Request-To-Send
	6.2.8 Channel B Request-To-Send
	6.2.9 Channel A Clear-To-Send
	6.2.10 Channel B Clear-To-Send

	6.3 Operation
	6.3.1 Baud Rate Generator
	6.3.2 Transmitter and Receiver Operating Modes
	6.3.3 Looping Modes
	6.3.4 Multidrop Mode
	6.3.5 Counter/Timer
	6.3.6 Bus Operation

	6.4 Register Description and Programming
	6.4.1 Register Description
	6.4.2 Programming

	6.5 Serial Module Initialization Sequence

	Sec. 7- IEEE 1149.1 Test Access Port
	7.1 Overview
	7.2 Tap Controller
	7.3 Boundary Scan Register
	7.4 Instruction Register
	7.4.1 Extest
	7.4.2 Sample/Preload
	7.4.3 Bypass
	7.4.4 Clamp

	7.5 MC68306 Restrictions
	7.6 Non-IEEE 1149.1 Operation

	Sec. 8- Electrical Characteristics
	8.1 Maximum Ratings
	8.2 Thermal Characteristics
	8.3 Power Considerations
	8.4 AC Electrical Specification Definitions
	8.5 DC Electrical Specifications
	8.6 AC Electrical Specifications - Clock Timing
	8.7 AC Electrical Specifications - Read and Write Cycles
	8.8 AC Electrical Specifications - Chip Selects and Interrupt Acknowledge
	8.9 AC Electrical Specifications - Bus Arbitration
	8.10 Bus Operation - DRAM Accesses AC Timing Specifications
	8.11 Serial Module Electrical Characteristics
	8.12 Serial Module AC Electrical Characteristics - Clock Timing
	8.13 AC Electrical Characteristics - Port Timing
	8.14 AC Electrica Characteristics - Interrupt Reset Timing
	8.15 AC Electrical Characteristics - Transmitter Timing
	8.16 AC Electrical Characteristics - Receiver Timing
	8.17 IEEE 1149.1 Electrical Characteristics

	Sec. 9- Ordering Information and Mechanical Data
	9.1 Standard Ordering Information
	9.2 Pin Assignments
	9.3 Package Dimensions

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

	307_d.pdf
	Return to Main Menu
	Return to 3XX Home
	
	M68300 Family
	MC68307 Architecture
	External Signal Descriptions
	Electrical Characteristics
	Mechanical Data

	307um.pdf
	Return to Main Menu
	Return to 3XX Home
	
	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 M68300 Family
	1.1.1 Organization
	1.1.2 Advantages

	1.2 MC68307 Architecture
	1.2.1 EC000 Core Processor
	1.2.2 System Integration Module
	1.2.3 Timer Module
	1.2.4 UART Module
	1.2.5 M-Bus Module
	1.2.6 Test Access Port

	Sec. 2- Signal Description
	2.1 Bus Signals
	2.1.1 Address Bus
	2.1.2 Data Bus

	2.2 Chip Selects
	2.2.1 Chip Select 0
	2.2.2 Chip Select 1
	2.2.3 Chip Select 2
	2.2.4 Chip Select 3

	2.3 Bus Control Signals
	2.3.1 Data Transfer Acknowledge
	2.3.2 Address Strobe
	2.3.3 Read/Write
	2.3.4 Data Strobes, Upper and Lower
	2.3.5 8051 Address Latch Enable
	2.3.6 8051-Compatible Bus Read
	2.3.7 8051-Compatible Bus Write
	2.3.8 Bus Width Select for CS0

	2.4 Exception Control Signals
	2.4.1 Reset
	2.4.2 Power-On Reset
	2.4.3 Halt
	2.4.4 Bus Request
	2.4.5 Bus Grant
	2.4.6 Bus Grant Acknowledge

	2.5 Clock Signals
	2.5.1 Crystal Oscillator
	2.5.2 Clock Output

	2.6 Test Signals
	2.6.1 Test Clock
	2.6.2 Test Mode Select
	2.6.3 Test Data In
	2.6.4 Test Data Out

	2.7 M-Bus I/O Signals
	2.7.1 Serial Clock
	2.7.2 Serial Data

	2.8 Uart I/O Signals
	2.8.1 Transmit Data
	2.8.2 Receive Data
	2.8.3 Request-To-Send
	2.8.4 Clear-To-Send

	2.9 Timer I/O Signals
	2.9.1 Timer 1 Input
	2.9.2 Timer 2 Input
	2.9.3 Timer 1 Output
	2.9.4 Timer 2 Output

	2.10 Interrupt Request Inputs
	2.10.1 Interrupt Inputs
	2.10.2 Non-Maskable Interrupt Input

	2.11 Use of Pullup Resistors
	2.12 Signal Index

	Sec. 3 - Bus Operation
	3.1 Data Transfer Operations
	3.1.1 16-Bit M68000 Bus Operation
	3.1.2 16-Bit M68000 Bus Read Cycle
	3.1.3 16-Bit M68000 Bus Write Cycle
	3.1.4 Read-Modify-Write Cycle
	3.1.5 CPU Space Cycle
	3.1.6 8-Bit M68000 Dynamically-Sized Bus
	3.1.7 8051-Bus Operation

	3.2 Bus Arbitration
	3.2.1 Requesting the Bus
	3.2.2 Receiving the Bus Grant
	3.2.3 Acknowledgment of Mastership

	3.3 Bus Arbitration Control
	3.4 Bus Error and Halt Operation
	3.4.1 Bus Error Operation
	3.4.2 Retrying the Bus Cycle
	3.4.3 Halt Operation
	3.4.4 Double Bus Fault

	3.5 Reset Operation
	3.6 Asynchronous Operation
	3.7 Synchronous Operation

	Sec. 4- EC000 Core Processor
	4.1 Features
	4.2 Processing States
	4.3 Programming Model
	4.3.1 Data Format Summary
	4.3.2 Addressing Capabilities Summary
	4.3.3 Notation Conventions

	4.4 EC000 Core Instruction Set Overview
	4.5 Exception Processing
	4.5.1 Exception Vectors

	4.6 Processing of Specific Exceptions
	4.6.1 Reset Exception
	4.6.2 Interrupt Exceptions
	4.6.3 Uninitialized Interrupt Exception
	4.6.4 Spurious Interrupt Exception
	4.6.5 Instruction Traps
	4.6.6 Illegal and Unimplemented Instructions
	4.6.7 Privilege Violations
	4.6.8 Tracing
	4.6.9 Bus Error
	4.6.10 Address Error
	4.6.11 Multiple Exceptions

	Sec. 5- System Integration Module
	5.1 Module Operation
	5.1.1 MC68307 System Configuration
	5.1.2 Chip Select and Wait-State Logic
	5.1.3 External Bus Interface Logic
	5.1.4 Interrupt Processing
	5.1.5 Low-Power Sleep Logic

	5.2 Programming Model
	5.2.1 System Configuration and Protection Registers
	5.2.2 Chip Select Registers
	5.2.3 External Bus Interface Control Registers
	5.2.4 Interrupt Control Registers

	5.3 MC68307 Initialization Procedure
	5.3.1 Startup-Cold Reset
	5.3.2 SIM Configuration

	Sec. 6- Dual Timer Module
	6.1 Overview
	6.2 Module Operation
	6.2.1 General-Purpose Timer Units
	6.2.2 Software Watchdog Timer

	6.3 Programming Model
	6.3.1 General Purpose Timer Units
	6.3.2 Software Watchdog Timer

	6.4 Timer Programming Examples
	6.4.1 Initialization and Reference Compare Function
	6.4.2 Event Counting Function and Interrupts
	6.4.3 Input Capture Function
	6.4.4 Watchdog Usage Example

	Sec. 7- M-Bus Interface Module
	7.1 M-Bus System Configuration
	7.2 M-Bus Protocol
	7.2.1 START Signal
	7.2.2 Slave Address Transmission
	7.2.3 Data Transfer
	7.2.4 Repeated START Signal
	7.2.5 STOP Signal
	7.2.6 Arbitration Procedure
	7.2.7 Clock Synchronization
	7.2.8 Handshaking
	7.2.9 Clock Stretching

	7.3 Programming Model
	7.3.1 M-Bus Address Register
	7.3.2 M-Bus Frequency Divider Register
	7.3.3 M-Bus Control Register
	7.3.4 M-Bus Status Register
	7.3.5 M-Bus Data I/O Register

	7.4 M-Bus Programming Examples
	7.4.1 Initialization Sequence
	7.4.2 Generation of START
	7.4.3 Post-Transfer Software Response
	7.4.4 Generation of STOP
	7.4.5 Generation of Repeated START
	7.4.6 Slave Mode
	7.4.7 Arbitration Lost

	Sec. 8- Serial Module
	8.1 Module Overview
	8.1.1 Serial Communication Channel
	8.1.2 Baud Rate Generator Logic
	8.1.3 Baud Rate Generator/Timer
	8.1.4 Interrupt Control Logic
	8.1.5 Comparison of Serial Module to MC68681

	8.2 Serial Module Signal Definitions
	8.2.1 Transmitter Serial Data Output
	8.2.2 Receiver Serial Data Input
	8.2.3 Request-To-Send
	8.2.4 Clear-To-Send

	8.3 Operation
	8.3.1 Baud Rate Generator/Timer
	8.3.2 Transmitter and Receiver Operating Modes
	8.3.3 Looping Modes
	8.3.4 Multidrop Mode
	8.3.5 Bus Operation

	8.4 Register Description and Programming
	8.4.1 Register Description
	8.4.2 Programming

	8.5 Serial Module Initialization Sequence

	Sec. 9- IEEE1149.1 Test Access Port
	9.1 Overview
	9.2 Tap Controller
	9.3 Boundary Sca n Register
	9.4 Instruction Register
	9.4.1 Extest
	9.4.2 Sample/Preload
	9.4.3 Bypass
	9.4.4 Clamp

	9.5 MC68307 Restrictions
	9.6 Non-IEEE 1149.1 Operation

	Sec. 10- Applications Information
	10.1 MC68307 Minimum Stand-Alone System Hardware
	10.1.1 MC68307 Signal Configuration
	10.1.2 EPROM Memory Interface
	10.1.3 RAM Memory Interface
	10.1.4 RS232 UART Port
	10.1.5 EPROM Timing
	10.1.6 RAM Timing

	10.2 Power Management
	10.2.1 Fully Static Operation
	10.2.2 Prescalable CPU Clock
	10.2.3 Wake-Up
	10.2.4 Low-Power Sleep Mode
	10.2.5 Low-Power Stop Mode

	10.3 Using M-Bus Software to Communication Between Processor Systems
	10.3.1 Overview of M-Bus Software Transfer Mechanism
	10.3.2 M-Bus Master Mode Operation
	10.3.3 M-Bus Slave Mode Operation
	10.3.4 Description of Setup
	10.3.5 Software Flow
	10.3.6 Transfer Blocks
	10.3.7 Software Implementation

	10.4 MC68307 UART Driver Examples
	10.4.1 Software Listing 3

	10.5 Swapping ROM and RAM Mapping on the MC68307
	10.5.1 Software Implementation

	Sec. 11- Electrical Characteristics
	11.1 Maximum Ratings
	11.2 Thermal Characteristics
	11.3 Power Considerations
	11.4 AC Electrical Specification Definitions
	11.5 DC Electrical Specifications
	11.6 AC Electrical Specifications - Clock Timing
	11.7 AC Electrical Specifications - Read and Write Cycles
	11.8 AC Electrical Specifications - Bus Arbitration
	11.9 AC Electrical Specifications - 8051 Bus Interface Module
	11.10 Timer Module Electrical Characteristics
	11.11 UART Electrical Characteristics
	11.12 AC Electrical Characteristics - M-Bus Input Signal Timing
	11.13 AC Electrical Characteristics - M-Bus Output Signal Timing
	11.14 AC Electrical Characteristics - Port Timing
	11.15 IEEE 1149.1 Electrical Characteristics

	Sec. 12 - Ordering Information and Mechanical Data
	12.1 Standard Ordering Information
	12.2 100-Pin PQFP Pin Assignments
	12.3 100-Pin PQFP Package Dimensions
	12.4 100-Pin TQFP Pin Assignments
	12.5 100-Pin TQFP Package Dimensions

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

	322um.pdf
	Return to Main Menu
	Return to 3XX Home
	
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Introduction
	1.1 Features
	1.2 Processors and Modules
	1.2.1 The EC000 Core
	1.2.2 Graphics Unit
	1.2.3 Bus Interface Unit
	1.2.4 System Integration Module
	1.2.5 DRAM Controller
	1.2.6 DMA Interface
	1.2.7 Parallel Port Interface

	1.3 Internal Memory Map
	1.4 Understanding the MC68322
	1.4.1 Printer Languages
	1.4.2 Bitmap
	1.4.3 Banding
	1.4.4 Halftoning
	1.4.5 Duplex Printing

	Sec. 2- Signal Descriptions
	2.1 Address Bus
	2.2 Data Bus
	2.3 System Interface
	2.3.1 Reset
	2.3.2 System Clock
	2.3.3 High Impedance Mode

	2.4 External Bus Master Interface
	2.5 DRAM Interface
	2.6 DMA Interface
	2.7 Printer Communication Interface
	2.8 Print Engine Video Controller Interface
	2.9 Parallel Port Interface

	Sec. 3- The Core
	3.1 Programming Model
	3.2 Data Types and Addressing Modes
	3.3 Instruction Set Summary

	Sec. 4- Bus Operation
	4.1 EC000 Core Read Cycle
	4.2 EC000 Core Write Cycle
	4.3 Interrupt Acknoeledge Bus Cycle
	4.4 Reset Operation
	4.5 External Bus Master
	4.5.1 MC68322 Bus Arbitration
	4.5.2 External Bus MAster Read Cycle
	4.5.3 External Bus Master Write Cycle
	4.5.4 Illegal Address Interrupt

	Sec. 5- Interrupt and Exception Handling
	5.1 Internal Interrupts
	5.1.1 Hardware Interrupts
	5.1.2 Software Interrupts

	5.2 External Interrupts
	5.3 Timer Module
	5.4 Core Exception Handling
	5.4.1 Processing Specific Exceptions
	5.4.2 Multiple Exceptions

	Sec. 6- System Integration Module
	6.1 Chip-Select Registers and Banks
	6.2 Synchronous and Asynchronous Chip-Select Access Timing

	Sec. 7 - DRAM Controller
	7.1 DRAM Registers and Banks
	7.1.1 Base Address and Size Fields
	7.1.2 ROM Mode

	7.2 DRAM Control Register
	7.3 DRAM Timing Modes
	7.4 DRAM Accesses
	7.4.1 DRAM Refresh Cycles
	7.4.2 DRAM Read Cycles
	7.4.3 DRAM Write Cycles
	7.4.4 DRAM Bus Arbitration
	7.4.5 DRAM Burst Accesses

	7.5 Power-Up Sequence

	Sec. 8- DMA Interface
	8.1 DMA Configuration Registers
	8.1.1 Transfer Address Fields
	8.1.2 Transfer Count Fields
	8.1.3 Flush Request Fields

	8.2 GDMA Control Register
	8.3 DMA Speed Register
	8.4 DMA Interrupt Event Registers
	8.5 Initiating a DMA Operation
	8.6 DMA Transfers
	8.6.1 PDMA Transfers
	8.6.2 GDMA MC68322 Bus Read and Write Cycles
	8.6.3 GDMA DRAM Bus Read and Write Cycles

	8.7 DMA Transfer Termination
	8.7.1 Normal Termination
	8.7.2 Bad Address Termination
	8.7.3 Core-Forced Termination

	Sec. 9 - Parallel Port Interface
	9.1 PPI Registers
	9.1.1 Parallel Port Interface Register
	9.1.2 Parallel Port Control Register
	9.1.3 PPI Interrupt Event Register

	9.2 Hardware Handshaking
	9.2.1 Compatibility Handshaking
	9.2.2 ECP Handshaking
	9.2.3 Disabling Hardware Handshaking

	9.3 Software-Controlled Handshaking
	9.4 Digital Filtering
	9.5 Error Cycles
	9.6 Parallel Port Data Bus Latching
	9.7 PPI on Reset
	9.8 PPI Data Transfer Rate

	Sec. 10- Print Engine Interface
	10.1 Print Engine Interface Registers
	10.1.1 Printer Communication Register
	10.1.2 PVC Control Register
	10.1.3 Printer Control Block Register Set
	10.1.4 PVC Interrupt Event Register
	10.1.5 Printer Communication Interrupt Event Register

	10.2 Printer Communication Protocol
	10.3 Print Engine Interface Operation
	10.3.1 Synchronous/Asynchronous PVC Operation
	10.3.2 Command Operation
	10.3.3 Status Operation
	10.3.4 PLL Video Clock Divisor

	10.4 PVC on Reset
	10.5 PVC Video Data Timing
	10.5.1 1X Video Clock
	10.5.2 VCLK Rising Edge
	10.5.3 Border Polarity High

	Sec. 11- RISC Graphics Processor
	11.1 RGP Registers
	11.1.1 RGP Start Register
	11.1.2 RGP Diagnostic Register
	11.1.3 RGP Interrupt Event Register

	11.2 RGP Basic Operation

	Sec. 12- Graphic Operations
	12.1 Types of Bitmaps
	12.2 Graphic Operands
	12.3 Types of Graphic Operands
	12.4 Boolean Codes
	12.5 Bit Block Transfers
	12.6 Scanline Transfers
	12.6.1 Scanline Tables and Bit String Specifiers
	12.6.2 Scanline Run Operation
	12.6.3 Executing During Banded Applications
	12.6.4 Halftone Companion Tables

	12.7 Scanline and Halftoe Table Example
	12.8 bitBLT and Scanline Order Execution
	12.9 Location and Address Constraings

	Sec. 13- Graphic Orders
	13.1 Types of Graphic Orders
	13.1.1 Initialization
	13.1.2 Program Flow Control
	13.1.3 Bit Block Transfer
	13.1.4 Expanded Bit Block Transfer
	13.1.5 Scanline Transfer

	13.2 Sequence of the Display List
	13.3 Graphic Order Addresses
	13.3.1 Physical vs. Logical Address
	13.3.2 Duplex Addresses

	13.4 Band Number and Band Faults
	13.5 Graphic Order Descriptions

	Sec. 14- Electrical and Thermal Characteristics
	14.1 Maximum Ratings
	14.2 Thermal Characteristics
	14.3 DC Electrical Specifications
	14.4 AC Electrical Specifications
	14.4.1 Clock and Reset Timing
	14.4.2 MC68322 Bus Timing
	14.4.3 DRAM Timing
	14.4.4 IDMA Timing
	14.4.5 Print Engine Interface Timing
	14.4.6 Interrupt Timing
	14.4.7 Parallel Port Interface Timing
	14.4.8 External Bus Master Timing

	Sec. 15- Ordering Information and Mechanical Data
	15.1 Ordering Information
	15.2 Pin Assignment
	15.3 Mechanical Data

	Appx A- In-Circuit Emulation Interface
	A.1 Ice Interface Signals
	A.1.1 ICE Signal Descriptions

	A.2 ICE Adaptor Board Design
	A.3 ICE Adaptor Board Schematics
	A.3.1 In-Circuit Emulation Interface

	A.4 ICE Pin Assignment

	Appx. B- Applications
	B.1 Configuring the MC68322
	B.2 Configuring the DRAM and DRAM SIMM
	B.3 Configuring the Flash Eprom
	B.4 Configuring the Random Control Logic
	B.5 Configuring the Serial EEPROM
	B.6 Configuring the In-Circuit Emulation
	B.7 Configuring the Parallel Port
	B.8 Configuring the Generic Print Engine Interface
	B.9 MC68322 Memory Map Initialization Example
	B.10 MC68322 Internal Registers Sample Code

	Appx. C- Memory-Mapped Register Summary
	C.1 MC68322 Mask Register
	C.2 Test Register

	Appx. D- Alternate Pin Functions
	D.1 Pins
	D.2 State During Reset
	D.3 Registers
	D.4 Input Pin Mode
	D.5 Buzzer
	D.6 In-Circuit Emulation
	D.7 Operation Example

	Appx. E- Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	340_d.pdf
	Return to Main Menu
	Return to 3XX Product Page
	
	M68300 Family
	MC68340 Signals
	Central Processor Unit
	On-Chip Peripherals
	Power Consumption Management
	Physical
	Compact Disc-Interactive

	340evs_d.pdf
	Return to Main Menu
	Return to 3XX Product Page

	340um.pdf
	Return to Main Menu
	Return to 3XX Home
	
	Preface
	Table of Contents
	List of Illustrations
	List of Tables
	Sec. 1- Device Overview
	1.1 M68300 Family
	1.1.1 Organization
	1.1.2 Advantages

	1.2 Central Processor Unit
	1.2.1 CPU32
	1.2.2 Background Debug Mode

	1.3 On-Chip Peripherals
	1.3.1 System Integration Module
	1.3.2 Direct Memory Access Module
	1.3.3 Serial Module
	1.3.4 Timer Modules

	1.4 Power Consumption Management
	1.5 Physical
	1.6 Compact Disc-Interactive
	1.7 More Information

	Sec. 2- Signal Descriptions
	2.1 Signal Index
	2.2 Address Bus
	2.2.1 Address Bus
	2.2.2 Address Bus

	2.3 Data Bus
	2.4 Function Codes
	2.5 Chip Selects
	2.6 Interrupt Request Level
	2.7 Bus Control Signals
	2.7.1 Data and Size Acknowledge
	2.7.2 Address Strobe
	2.7.3 Data Strobe
	2.7.4 Transfer Size
	2.7.5 Read/Write

	2.8 Bus Arbitration Signals
	2.8.1 Bus Request
	2.8.2 Bus Grant
	2.8.3 Bus Grant Acknowledge
	2.8.4 Read-Modify-Write Cycle

	2.9 Exception Control Signals
	2.9.1 Reset
	2.9.2 Halt
	2.9.3 Bus Error

	2.10 Clock Signals
	2.10.1 System Clock
	2.10.2 Crystal Oscillator
	2.10.3 External Filter Capacitor
	2.10.4 Clock Mode Select

	2.11 Instrumentation and Emulation Signals
	2.11.1 Instruction Fetch
	2.11.2 Instruction Pipe
	2.11.3 Breakpoint
	2.11.4 Freeze

	2.12 DMA Module Signals
	2.12.1 DMA Request
	2.12.2 DMA Acknowledge
	2.12.3 DMA Done

	2.13 Serial Module Signals
	2.13.1 Serial Crystal Oscillator
	2.13.2 Serial External Clock Input
	2.13.3 Receive DAta
	2.13.4 Transmit Data
	2.13.5 Clear to Send
	2.13.6 Request to Send
	2.13.7 Transmitter Ready
	2.13.8 Receiver Ready

	2.14 Timer Signals
	2.14.1 Timer Gate
	2.14.2 Timer Input
	2.14.3 Timer Output

	2.15 Test Signals
	2.15.1 Test Clock
	2.15.2 Test Mode Select
	2.15.3 Test Data In
	2.15.4 Test Data Out

	2.16 Synthesizer Power
	2.17 System Power and Ground
	2.18 Signal Summary

	Sec. 3- Bus Operation
	3.1 Bus Transfer Signals
	3.1.1 Bus Control Signals
	3.1.2 Function Code Signals
	3.1.3 Address Bus
	3.1.4 Address Strobe
	3.1.5 Data Bus
	3.1.6 Data Strobe
	3.1.7 Bus Cycle Termination Signals

	3.2 Data Transfer Mechanism
	3.2.1 Dynamic Bus Sizing
	3.2.2 Misaligned Operands
	3.2.3 Operand Transfer Cases
	3.2.4 Bus Operation
	3.2.5 Synchronous Operation with DSACK
	3.2.6 Fast Termination Cycles

	3.3 Data Transfer Cycles
	3.3.1 Read Cycle
	3.3.2 Write cycle
	3.3.3 Read-Modify-Write Cycle

	3.4 CPU Space Cycles
	3.4.1 Breakpoint Acknowledge Cycle
	3.4.2 LPSTOP Broadcast Cycle
	3.4.3 Module Base Address Register Access
	3.4.4 Interrupt Acknowledge Bus Cycles

	3.5 Bus Exception Control Cycles
	3.5.1 Bus Errors
	3.5.2 Retry Operation
	3.5.3 Halt Operation
	3.5.4 Double Bus Fault

	3.6 Bus Arbitration
	3.6.1 Bus Request
	3.6.2 Bus Grant
	3.6.3 Bus Grant Acknowledge
	3.6.4 Bus Arbitration Control
	3.6.5 Show Cycles

	3.7 Reset Operation

	Sec. 4- System Integration Module
	4.1 Module Overview
	4.2 Module Operation
	4.2.1 Module Base Address Register Operation
	4.2.2 System Configuration and Protection Operation
	4.2.3 Clock Synthesizer Operation
	4.2.4 Chip Select Operation
	4.2.5 External Bus Interface Operation
	4.2.6 Low-Power Stop
	4.2.7 Freeze

	4.3 Programming Model
	4.3.1 Module Base Address Register
	4.3.2 System Configuration and Protection Registers
	4.3.3 Clock Synthesizer Control Register
	4.3.4 Chip Select Registers
	4.3.5 External Bus Interface Control

	4.4 MC68340 Initialization Sequence
	4.4.1 Startup
	4.4.2 SIM40 Module Configuration
	4.4.3 SIM40 Example Configuration Code

	Sec. 5- CPU32
	5.1 Overview
	5.1.1 Features
	5.1.2 Virtual Memory
	5.1.3 Loop Mode Instruction Execution
	5.1.4 Vector Base Register
	5.1.5 Exception Handling
	5.1.6 Addressing Modes
	5.1.7 Instruction Set
	5.1.8 Processing States
	5.1.9 Privilege States

	5.2 Architecture Summary
	5.2.1 Programming Model
	5.2.2 Registers

	5.3 Instruction Set
	5.3.1 M68000 Family Compatibility
	5.3.2 Instruction Format and Notation
	5.3.3 Instruction Summary
	5.3.4 Using the TBL Instructions
	5.3.5 Nested Subroutine Calls
	5.3.6 Pipeline Synchronization with the NOP Instruction

	5.4 Processing States
	5.4.1 State Transitions
	5.4.2 Privilege Levels

	5.5 Exception Processing
	5.5.1 Exception Vectors
	5.5.2 Processing of Specific Exceptions
	5.5.3 Fault Recovery
	5.5.4 CPU32 Stack Frames

	5.6 Development Support
	5.6.1 CPU32 Integrated Development Support
	5.6.2 Background Debug Mode
	6.5.3 Deterministic Opcode Tracking

	5.7 Instruction Execution Timing
	5.7.1 Resource Scheduling
	5.7.2 Instruction Stream Timing Examples
	5.7.3 Instruction Timing Tables

	Sec. 6- DMA Controller Module
	6.1 DMA Module Overview
	6.2 DMA Module Signal Definitions
	6.2.1 DMA Request
	6.2.2 DMA Acknowledge
	6.2.3 DMA Done

	6.3 Transfer Request Generation
	6.3.1 Internal Request Generation
	6.3.2 External Request Generation

	6.4 Data Transfer Modes
	6.4.1 Single-Address Mode
	6.4.2 Dual-Address Mode

	6.5 Bus Arbitration
	6.6 DMA Channel Operation
	6.6.1 Channel Initialization and Startup
	6.6.2 Data Transfers
	6.6.3 Channel Termination

	6.7 Register Description
	6.7.1 Module Configuration Register
	6.7.2 Interrupt Register
	6.7.3 Channel Control Register
	6.7.4 Channel Status Register
	6.7.5 Function Code Register
	6.7.6 Source Address Register
	6.7.7 Destination Address Register
	6.7.8 Byte Transfer Counter Register

	6.8 Data Packing
	6.9 DMA Channel Initialization Sequence
	6.9.1 DMA Channel Configuration
	6.9.2 DMA Channel Example Configuration Code

	Sec. 7- Serial Module
	7.1 Module Overview
	7.1.1 Serial Communication Channels A & B
	7.1.2 Baud Rate Generator Logic
	7.1.3 Internal Channel Control Logic
	7.1.4 Interrupt Control Logic
	7.1.5 Comparison of Serial Module to MC68681

	7.2 Serial Module Signal Definitions
	7.2.1 Crystal Input or External Clock
	7.2.2 Crystal Output
	7.2.3 External Input
	7.2.4 Channel A Transmitter Serial Data Output
	7.2.5 Channel A Receiver Serial Data Input
	7.2.6 Channel B Transmitter Serial Data Output
	7.2.7 Channel B Receiver Serial Data Input
	7.2.8 Channel A Request-To-Send
	7.2.9 Channel B Request-To-Send
	7.2.10 Channel A Clear-To-Send
	7.2.11 Channel B Clear-To-Send
	7.2.12 Channel A Transmitter Ready
	7.2.13 Channel A Receiver Ready

	7.3 Operation
	7.3.1 Baud Rate Generator
	7.3.2 Transmitter and Receiver Operating Modes
	7.3.3 Looping Modes
	7.3.4 Multidrop Mode
	7.3.5 Bus Operation

	7.4 Register Description and Programming
	7.4.1 Register Description
	7.4.2 Programming

	7.5 Serial Module Initialization Sequence
	7.5.1 Serial Module Configuration
	7.5.2 Serial Module Example Configuration Code

	Sec. 8- Timer Modules
	8.1 Module Overview
	8.1.1 Timer and Counter Functions
	8.1.2 Internal Control Logic
	8.1.3 Interrupt Control Logic

	8.2 Timer Modules Signal Definitions
	8.2.1 Timer Input
	8.2.2 Timer Gate
	8.2.3 Timer Output

	8.3 Operating Modes
	8.3.1 Input Capture/Output Compare
	8.3.2 Square-Wave Generator
	8.3.3 Variable Duty-Cycle Square-Wave Generator
	8.3.4 Variable-Width Single-Shot Pulse Generator
	8.3.5 Pulse-Width Measurement
	8.3.6 Period Measurement
	8.3.7 Event Count
	8.3.8 Timer Bypass
	8.3.9 Bus Operation

	8.4 Register Description
	8.4.1 Module Configuration Register
	8.4.2 Interrupt Register
	8.4.3 Control Register
	8.4.4 Status Register
	8.4.5 Counter Register
	8.4.6 Preload 1 Register
	8.4.7 Preload 2 Register
	8.4.8 Compare Register

	8.5 Timer Module Initialization Sequence
	8.5.1 Timer Module Configuration
	8.5.2 Timer Module Example Configuration Code

	Sec. 9- IEEE 1149.1 Test Access Port
	9.1 Overview
	9.2 Tap Controller
	9.3 Boundary Scan Register
	9.4 Instruction Register
	9.4.1 Extest
	9.4.2 Sample/Preload
	9.4.3 Bypass
	9.4.4 HI-Z

	9.5 MC68340 Restrictions
	9.6 Non-IEEE 1149.1 Operation

	Sec. 10- Applications
	10.1 Minimum System Configuration
	10.1.1 Processor ClockCircuitry
	10.1.2 Reset Circuitry
	10.1.3 SRAM Interface
	10.1.4 ROM Interface
	10.1.5 Serial Interface

	10.2 Memory Interface Information
	10.2.1 Using an 8-Bit Boot ROM
	10.2.2 Access Time Calculations
	10.2.3 Calculating Frequency-Adjusted Output
	10.2.4 Interfacing an 8-Bit Device to 16-Bit MEmory Using Single-Address DMA Mode

	10.3 Power Consumption Considerations
	10.3.1 MC68340 Power Reduction at 5V
	10.3.2 MC68340V

	Sec. 11- Electrical Characteristics
	11.1 Maximum Ratings
	11.2 Thermal Characteristics
	11.3 Power Considerations
	11.4 AC Electrical Specification Definitions
	11.5 DC Electrical Specifications
	11.6 AC Electrical Specifications Control Timing
	11.7 AC Timing Specifications
	11.8 DMA Module AC Electrical Specifications
	11.9 Timer Module Electrical Specifications
	11.10 Serial Module Electrical Specifications
	11.11 IEEE1149.1 Electrical Specifications

	Sec. 12- Ordering Information and Mechanical Data
	12.1 Standard MC68340 Ordering Information
	12.2 Pin Assignment - Ceramic Surface Mount
	12.3 Package Dimensions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	68kidp_d.pdf
	Return to Main Menu
	Return to 68K Product Page

	developers.pdf
	Return to Main Menu
	
	Accelerated Technology
	Applied Microsystems Corporation
	Aisys Intelligent Systems
	Arnewsh, Inc.
	BSO/Tasking
	CSPI
	Diab Data
	Embedded Support Tools
	Embedded System Products
	Emulation Technology, Inc.
	Enea OSE Systems
	FlowPoint
	Grammar Engine, Inc.
	Green Hills Software
	Hewlett-Packard
	Hitex
	Huntsville Microsystems
	Industrial Programming, Inc.
	Integrated Systems
	Interconnect Systems, Inc.
	Intermetrics
	JMI Software Systems Inc.
	Kadak Products, Ltd.
	Lauterbach Datentechnink GMBH
	Lynx
	MetaWare, Inc.
	Microtec Division, Mentor Graphics Corp.
	Microtek International, Inc., EDC
	Microware
	Noral Micrologics
	Object Technology, Inc.
	Orion Instruments
	Precise Technology, Inc.
	P&E Microcomputer Systems, Inc.
	Software Development Systems
	Synopsys Logic Modeling
	Wind River Systems
	Yokogawa Digital Corp.

	M5202gw.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	1.0 Introduction
	2.0 Gateway Board Overview
	2.1 Software Considerations
	2.1.1 Mapping 32-bit MCF5202 addresses to 24-bit 68EC000 addresses
	2.1.2 Cache Coherency
	2.1.3 RMW Cycles

	2.2 Hardware Considerations

	3.0 Performance
	4.0 Potential Performance and System Improvements
	5.0 Debug Support
	6.0 Bus Operation
	7.0 PLD Statem Diagram
	8.0 PLD ABEL Code
	9.0 Block Diagram
	10.0 Gateway Board Physical Layou;t
	11.0 Gateway Board Bill of Material
	12.0 ColdFire Gateway Board Schematics

	M5204an.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	Sec. 1- Introduction to the SBC5204 Board
	1.1 Introduction
	1.2 General Hardware Description
	1.3 System Memory
	1.4 Serial Communication Channels
	1.5 Parallel I/O Ports
	1.6 Programmable Timer/Counter
	1.7 ISA Bus Connector
	1.8 System Configuration
	1.9 Installation and Setup
	1.9.1 Unpacking
	1.9.2 Preparing the Board for Use
	1.9.3 Providing Power to the Board
	1.9.4 Selecting Terminal Baud Rate
	1.9.5 The Terminal Character Format
	1.9.6 Connecting the Terminal
	1.9.7 Using a Personal Computer as a Terminal

	1.10 System Power-Up and Initial Operation
	1.11 SBC5204 Jumper Setup
	1.12 Using the BDM

	Sec. 2- Using the Monitor/Debug Firmware
	2.1 What is dBUG?
	2.2 Operational Procedure
	2.2.1 System Power-Up
	2.2.2 System Intialization
	2.2.3 System Operation

	2.3 dBUG Command Set
	2.4 dBUG Command Set
	2.4.1 BF - Block of Memory Fill
	2.4.2 BM - Block Move
	2.4.3 BR - Breakpoint
	2.4.4 BS - Block Search
	2.4.5 DATA - Data Conversion
	2.4.6 DI- Disassemble
	2.5.7 DL - Download Serial
	2.4.8 DN - Download Network
	2.4.9 Go- Execute
	2.4.10 GT - Execute Till a Temporary Breakpoint
	2.4.11 HELP - Help
	2.4.12 IRD - Internal Registers Display
	2.4.13 IRM - Internal Registers MODIFY
	2.4.14 MD - Memory Display
	2.2.15 MM - Memory Modify
	2.4.16 RD - Register Display
	2.4.17 RM - Register Modify
	2.4.18 RESET - Reset the board and dBUG
	2.4.19 SET - Set Configuration
	2.4.20 SHOW - Show Configuration
	2.4.21 STEP - Step Over
	2.4.22 SYMBOL - Symbol Name Management
	2.4.23 TRACE - Trace Into
	2.4.24 UPDBUG - Update the dBUG Image
	2.4.25 UPUSER - Update User Code In Flash
	2.4.26 VERSION - Display dBUG Version

	2.5 TRAP #15 Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 CHAR_PRESENT
	2.5.4 EXIT_TO_dBUG

	Sec. 3 - Hardware Description and Reconfiguration
	3.1 The Processor and Support Logic
	3.1.1 The Processor
	3.1.2 The Reset Logic
	3.1.3 The Clock Circuitry
	3.1.4 Watchdog Timer
	3.1.5 Interrupt Sources
	3.1.6 Internal SRAM
	3.1.7 The MCF5204 Registers and Memory Map
	3.1.8 Reset Vector Mapping
	3.1.9 DTACK Generation
	3.1.10 Wait State Generator

	3.2 The External SRAM
	3.3 The EPROM/Flash ROM
	3.4 The UART Logic
	3.4.1 MC68HC901

	3.5 The Parallel I/O Port
	3.6 the ISA Bus Logic
	3.7 The Connectors and the Expansion Bus
	3.7.1 The Terminal Connector J1
	3.7.2 The ISA Bus Auxiliary Power Connector J2
	3.7.3 The Power Supply Connectors J3 and J4
	3.7.4 The Programming Connector J5
	3.7.5 The Auxiliary Serial Communication Connector J6
	3.7.6 The Debug Connector J7
	3.7.7 The Processor Expansion Bus J8 and J9
	3.7.8 The ISA Bus Connector P1

	3.8 The SBC5204 Jumpers

	Appendix A
	A.1 Configuring dBUG for Network Downloads
	A.1.1 Required Network Parameters
	A.1.2 Configuring dBUG Network Parameters
	A.1.3 Troubleshooting Network Problems

	M5206an.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	Chap. 1- Introduction to the SBC5206 Board
	1.1 Introduction
	1.2 General Hardware Description
	1.3 System Memory
	1.4 Serial Communication Channels
	1.5 Parallel I/O Ports
	1.6 Programmable Timer/Counter
	1.7 ISA Bus Connector
	1.8 System Configuration
	1.9 Installation and Setup
	1.9.1 Unpacking
	1.9.2 Preparing the Board for Use
	1.9.3 Providing Power to the Board
	1.9.4 Selecting Terminal Baud Rate
	1.9.5 The Terminal Character Format
	1.9.6 Connecting the Terminal
	1.9.7 Using a Personal Computer as a Terminal

	1.10 System Power-Up and Initial Operation
	1.11 SBC5206 Jumper Setup
	1.12 Using the BDM

	Chap. 2- Using the Monitor/Debug Firmware
	2.1 What is dBUG?
	2.2 Operational Procedure
	2.2.1 System Power-Up
	2.2.2 System Initialization
	2.2.3 System Operation

	2.3 Terminal Control Characters
	2.4 dBUG Command Set
	2.4.1 BF - Block of Memory Fill
	2.4.2 BM - Block Move
	2.4.3 BR - Breakpoint
	2.4.4 BS - Block Search
	2.4.5 DATA - Data Conversion
	2.4.6 DI - Disassemble
	2.5.7 DL - Download Serial
	2.4.8 DN - Download Network
	2.4.9 Go - Execute
	2.4.10 GT - Execute Till a Temporary Breakpoint
	2.4.11 HELP - Help
	2.4.12 IRD - Internal Registers Display
	2.4.13 IRM - Internal Registers MODIFY
	2.4.14 MD - Memory Display
	2.2.15 MM - Memory Modify
	2.4.16 RD - Register Display
	2.4.17 RM - Register Modify
	2.4.18 RESET - Reset the Board and dBUG
	2.4.19 SET - Set Configuration
	2.4.20 SHOW - Show Configuration
	2.4.21 STEP - Step Over
	2.4.22 SYMBOL - Symbol Name Management
	2.4.23 TRACE - Trace Into
	2.4.24 UPDBUG - Update the dBUG Image
	2.4.25 UPUSER - Update User Code In Flash
	2.4.26 VERSION - Display dBUG Version

	2.5 TRAP #15 Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 CHAR_PRESENT
	2.5.4 EXIT_TO_dBUG

	Chap. 3- Hardware Description and Reconfiguration
	3.1 The Processor and Support Logic
	3.1.1 The Processor
	3.1.2 The Reset Logic
	3.1.3 The -HIZ Signal
	3.1.4 The Clock Circuitry
	3.1.5 Watchdog Timer (BUS MONITOR)
	3.1.6 Interrupt Sources
	3.1.7 Internal SRAM
	3.1.8 The MCF5206 Registers and Memroy Map
	3.1.9 Reset Vector Mapping
	3.1.10 TA Generation
	3.1.11 Wait State Generator

	3.2 The DRAM SIMM
	3.3 The EPROM/FLASH ROM
	3.4 The Serial Communication Channels
	3.4.1 The MCF5206 DUART
	3.4.2 MC68HC901
	3.4.3 Motorola Bus (M-Bus) Module

	3.5 The Parallel I/O Port
	3.6 The ISA Bus Logic
	3.7 The Connectors and the Expansion Bus
	3.7.1 The Programming Connector J1
	3.7.2 The ISA Bus Auxiliary Power Connector J2
	3.7.3 The Power Supply Connectors J3 and J4
	3.7.4 The Terminal Connector J5
	3.7.5 The Auxiliary Serial Communication Connector J6
	3.7.6 The Processor Expansion Bus J7, J9 and J10
	3.7.7 The Debug Connector J8
	3.7.8 The ISA Bus Connector P1

	3.8 The SBC5206 Jumpers

	Appx. A
	A.1 Configuring dBUG for Network Downloads
	A.1.1 Required Network Parameters
	A.1.2 Configuring dBUG Network Parameters
	A.1.3 Troubleshooting Network Problems

	M5206eC3.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	Limited Warranty
	Helpful Information
	Disclaimer
	Table of Contents
	Figures
	Sec. 1- Introduction to the M5206EC3 Board
	1.1 Overview
	1.2 General Hardware Description
	1.3 System Memory
	1.4 Serial Communication Channels
	1.5 Parallel I/O Ports
	1.6 Programmable Timer/Counter
	1.7 On-Board Ethernet
	1.8 System Configuration
	1.9 Installation and Setup
	1.9.1 Unpacking
	1.9.2 Preparing the Board for Use
	1.9.3 Providing Power to the Board
	1.9.4 Selecting Terminal Baud Rate
	1.9.5 The Terminal Character Format
	1.9.6 Connecting the Terminal
	1.9.7 Using a Personal Computer as a Terminal

	1.10 System Power-Up and Initial Operation
	1.11 M5206EC3 Jumper Setup
	1.11.1 Jumper JPI
	1.11.2 Jumper JP2 - Flash Upper Half/Lower Half Boot
	1.11.3 Jumper J6 and J7 - CPU Power JP6 and 7

	1.12 Using the BDM

	Sec. 2- Using the Monitor/Debug Firmware
	2.1 What is dBUG?
	2.2 Operational Procedure
	2.2.1 System Power-Up
	2.2.2 System Initialization

	2.3 Terminal Control characters
	2.4 dBUG Command Set
	2.4.1 AS- Assemble
	2.4.2 BC - Compare Blocks of Memory
	2.4.3 BF - Block of Memory Fill
	2.4.4 BM - Block Move
	2.4.5 BR - Breakpoint
	2.4.6 BS - Block Search
	2.4.7 Data - Data Conversion
	2.4.8 DI - Disassemble
	2.4.9 DL - Download Serial
	2.4.10 DN - Download Network
	2.4.11 Go - Execute
	2.4.12 GT - Execute Till a Temporary Breakpoint
	2.4.13 HELP - Help
	2.4.14 IRD - Internal Registers Display
	2.4.15 IRM - Internal Registers MODIFY
	2.4.16 MD - Memory Display
	2.4.17 MM - Memory Modify
	2.4.18 RD - Register Diaplay
	2.4.19 RM - Register Modify
	2.4.20 RESET - Reset the board and dBUG
	2.4.21 SET - Set Configuration
	2.4.22 SHOW - Show Configuration
	2.4.23 STEP - Step Over
	2.4.24 SYMBOL - Symbol Name Management
	2.4.25 TRACE - Trace Into
	2.4.26 UPDBUG - Update the dBUG Image
	2.4.27 UPUSER - Update User Code In Flash
	2.4.28 VERSION - Display dBUG Version

	2.5 TRAP #15 Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 CHAR_PRESENT
	2.5.4 EXIT_TO_dBUG

	Sec. 3- Hardware Description and Reconfiguration
	3.1 Processor and Support Logic
	3.1.1 Processor
	3.1.2 Reset Logic
	3.1.3 -HIZ Signal
	3.1.4 Clock Circuitry
	3.1.5 Watchdog Timer (Bus Monitor)
	3.1.6 Interrupt Sources
	3.1.7 Internal SRAM
	3.1.8 MCF5206e Registers and Memory Map
	3.1.9 Reset Vector Mapping
	3.1.10 -TA Generation
	3.1.11 Wait State Generator

	3.2 ADRAM SIMM
	3.3 FLASH ROM
	3.3.1 JP2 Jumper and User's Program

	3.4 Serial Communication Channels
	3.4.1 MCF5206e Two UARTs
	3.4.2 Motorola Bus (M-Bus) Module

	3.5 Parallel I/O Port
	3.6 Onboard Ethernet Logic
	3.7 Connectors and the Expansion Bus
	3.7.1 The Terminal Connector P1
	3.7.2 The Auxiliary Serial Communication Connector P2
	3.7.3 Logical Analyzer Connectors LA1-4 and Processor Expansion Bus J2, J3, and J4
	3.7.4 Debug Connector J5

	Appx A- Configuring dBUG for Network Downloads
	A.1 Required Network Parameters
	A.2 Configuring dBUG Network Parameters
	A.3 Troubleshooting Network Problems

	Appx B - FPLA Code
	Appx C- Schematics
	Appx D- MC5206EC3 Bill of Materials

	M5307an.pdf
	Return to Main Menu
	Return to ColdFire Product Page
	
	Table of Contents
	List of Tables
	List of Figures
	Chap. 1- Introduction to the SBC5307 Board
	1.1 Introduction
	1.2 General Hardware Description
	1.3 System Memory
	1.4 Serial Communication Channels
	1.5 Parallel I/O Ports
	1.6 Programmable Timer/Counter
	1.7 On Board Ethernet
	1.8 System Configuration
	1.9 Installation and Setup
	1.9.1 Unpacking
	1.9.2 Preparing the Board for Use
	1.9.3 Providing Power to the Board
	1.9.4 Selecting Terminal Baud Rate
	1.9.5 The Termial Character Format
	1.9.6 Connecting the Terminal
	1.9.7 Using a Personal Computer as a Terminal

	1.10 System Power-Up and Intial Opeation
	1.11 SBC5307 Jumper Setup
	1.11.1 Jumper JPI - Flash Upper Half/Lower Half Boot

	1.12 Using the BDM

	Chap. 2 - Using the Monitor/Debug Firmware
	2.1 What IS dBUG?
	2.2 Operational Procedure
	2.2.1 System Power-Up
	2.2.2 System Initialization
	2.2.3 System Operation

	2.3 Terminal Control Characters
	2.4 dBUG Command Set
	2.4.1 AS - Assemble
	2.4.2 BC - Compare Blocks of Memory
	2.4.3 BF - Block of Memory Fill
	2.4.4 BM - Block Move
	2.4.5 BR - Breakpoint
	2.4.6 - BS - Block Search
	2.4.7 DATA - Data Conversion
	2.4.8 DI - Disassemble
	2.4.9 DL - Download Serial
	2.4.10 DN - Download Network
	2.4.11 Go - Execute
	2.4.12 GT - Execute Till a Temporary Breakpoint
	2.4.13 HELP - Help
	2.4.14 IRD - Internal Registers Display
	2.4.15 IRM - Internal Registers MODIFY
	2.4.16 MD- Memory Display
	2.4.17 MM - Memory Modify
	2.4.18 RD - Register Display
	2.4.19 RM - Register Modify
	2.4.20 RESET - Reset the board and dBUG
	2.4.21 SET - Set Configuration
	2.4.22 SHOW - Show Configuration
	2.4.23 STEP - Step Over
	2.4.24 SYMBOL - Symbol Name Management
	2.4.25 TRACE - Trace Into
	2.4.26 UPDBUG - Update the dBUG Image
	2.4.27 UPUSER - Update User Code In Flash

	2.5 TRAP #15 Functions
	2.5.1 OUT_CHAR
	2.5.2 IN_CHAR
	2.5.3 CHAR_PRESENT
	2.5.4 EXIT_TO_dBUG

	Chap. 3- Hardware Description and Reconfiguration
	3.1 The Processor and Support Logic
	3.1.1 The Processor
	3.1.2 The Reset Logic
	3.1.3 The-HIZ Signal
	3.1.4 The Clock Circuitry
	3.1.5 Watchdog Timer (BUS MONITOR)
	3.1.6 Interrupt Sources
	3.1.7 Internal SRAM
	3.1.8 The MCF5307 Registers and Memory Map
	3.1.9 Reset Vector Mapping
	3.1.10 /TA Generation
	3.1.11 Wait State Generator

	3.2 The SDRAM DIMM
	3.3 FLASH ROM
	3.3.1 JPI Jumper and User's Program

	3.4 The Serial Communication Channels
	3.4.1 The MCF5307 DUART
	3.4.2 Motorola Bus (M-Bus) Module

	3.5 The Parallel I/O Port
	3.6 On Board Ethernet Logic
	3.7 The Connectors and the Expansion Bus
	3.7.1 The Terminal Connector J4
	3.7.2 The Auxiliary Serial Communication Connector J7
	3.7.3 Logical Analyzer connectors LAI-5 and Processor Expansion Bus J8 & J9
	3.7.4 The Debug Connector J1

	Appx. A-Configuring dBUG for Network Downloads)
	A.1 Required Network Parameters
	A.2 Configuring dBUG Network Parameters
	A.3 Trougleshooting Network Problems

	Appx. B- FPLA Code
	Appx. C- Schematics
	Appx. D.- Pin Array Layout

