This page intentionally left blank.

Relays, Contactors, Timers, Transformers and Circuit Breakers for General Purpose Industrial \& Commercial Applications

This technical databook includes specification information for a broad selection of components. Electromechanical relays, contactors, timers, solid state relays, input/output modules, sensors, protective relays, magnetic circuit breakers, themal circuit breakers and transformers are all described in the databook.

Locating a product in this databook

Immediately following this introductory page is an alphanumeric index bf the product series in this databook. This is helpful if you already know the series designator of the product for whichyou are seeking specifications. The index is followed by a selector guidethat provides a brief overview of the various series in our extensive product line. This is intended to help you quickly detemine which product series may be best suited foragiven application. The selector guide also lists the page number in the databook where much more detailed specifications for each series may be found.

Need more help selecting a product series?

The body of this databook is divided into 14 major product categories. Each section begins with an alphanumeric index of the product series contained therein. Additionally, a "question tree" is included on the first or second page of several sections to help in narrowing your search to product series that may be appropropriate for a given application. While by no means definitive, these tools can prove to be an effective starting point.

Finding out more details

If you need additional specification information, please contact Tyco Electronics Technical Support(see inside) back cover for Technical Support contact information.) Information about our products also can be found on our website at http://relays.tycoelectronics.com. Our website is updated more frequently than the printed technical databook, so you may find information there which is more current than our databook.

Note regarding product availability

This databook lists a broad range of products which are available with varying leadtimes. Some are normally maintained in stock for immediate delivery. Many other products are available within what would be considered "normal" leadtimes for our industry. However, there may be extended leadtimes for some nonstock items. Additionally, there are minimum quantity requirements. You should consult with your Tyco Electronics authorized distributor or sales engineer regarding availability and minimum order requirements before specifying a particular non-stock model.

Changes in specifications/ availability

We constantly endeavor to enhance the quality of our products and update our product offering; therefore, specifications and product availability are subject to change without notice.

Disclaimer

While Tyco Electronics has made every reasonable effort to ensure the accuracy of the information in this databook, Tyco Electronics does not guarantee that it is error-free, nor does Tyco Electronics make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. Tyco Electronics reserves the right to make any adjustments to the information contained herein at any time without notice. Tyco Electronics expressly disclaims all implied warranties (and all express warranties, except as otherwise stated in this databook) regarding the information contained herein, including but not limited to any implied warranties or merchantability or fitness for a particular purpose. It is recommended that you test any new or replacement product before incorporating into a system.

The dimensions in this databook are for reference purposes only and are subject to change without notice. Dimensions are in inches over (millimeters), unless otherwise specified. Specifications are subject to change without notice. Consult Tyco Electronics at 1-800-522-6752 for latest dimensions and design specifications, or use the global contact list shown on inside back cover.

Alphanumeric Index

Mature and Low Volume Products

Some product series are not described in the databook, as they may not represent the most effective solution for many new design requirements. How ever, many of the non-cataloged products are still available for sale. Contact a Tyco Electronics Technical Specialist (see inside back cover) for more details about AGASTAT, AXICOM , CII, HARTM AN, KILOVAC, OEG, P\&B, PRODUCTS UNLIM ITED, SCHRACK or TYCO relay or circuit breaker products that you cannot find in this databook.

Circuit Breakers 101-124	$\mathbf{1}$
Transformers 201-212	$\mathbf{2}$
Low -signal PC Board Relays $301-338$	$\mathbf{3}$

M id-Range PC Board Relays ... 401-498 4

Power PC Board Relays
501-512

 Special Application Relays901-920	$\mathbf{9}$
Automotive Relays1001-1026	$\mathbf{1 0}$

Input/Output M odules1101-1126	$\mathbf{1 1}$

M odules.................................1201-1256

Contact Designators and Materials／Agency Approvals

Contact Forms

Design	Sequence	Symbol	Form
SPST－NO	Make（1）	$\bullet \quad \quad_{\square}^{1}$	A
SPST－NC	Break（1）	$\bullet \quad 又_{1} \square^{\uparrow}$	B
SPDT	Break（1）－Make（2）	$\stackrel{-}{2}{ }_{1}^{2}{ }^{\uparrow}$	C
SPDT	Make（1）before Break（2）	$: \quad x_{2} \underbrace{0}_{1}$	D
$\begin{aligned} & \text { SPDT } \\ & \text { (B-M-B) } \end{aligned}$	Break（1）－Make（2） before Break（3）	8^{3}	E

Design	Sequence	Symbol	Form
SPDT－NO	Center OFF		K
SPST－NO （DM）	Double Make（1）		X
SPST （DB）	Double Break（1）	$\bullet \mathbf{x} \mathbf{K}_{1}$	Y
SPDT－NC－NO （DB－DM）	Double Break（1） Double Make（2）	$\bullet \mathbf{8}$	Z
SPST－NO （DM）	Double Make		U

P\＆B Numbers for Contact Arrangements
To simplify the listing of contact arrangements，P\＆B standard relays carry code numbers to designate the various contact forms listed in the follow－ ing table．These numerals are used as abbreviations of the switching
arrangements；for example：a PM17 relay has a 4PDT（four－pole－double－ throw）contact arrangement．

Contact Code and NARM Designator

1－1A SPST－NO
2－1B SPST－NC
3－1X SPST－NO－DM
4－1Y SPST－NC－DB
5－1C SPDT
6－1Z SPDT－NC－NO（DM－DB）
7－2A DPST－NO
8－2B DPST－NC
9－2X DPST－NO－DM
10－2Y DPST－NC－DB
11－2C DPDT
12－3A 3PST－NO
13－3B 3PST－NC
14－3С 3PDT
15－4A 4PST－NO
16－4B 4PST－NC
17－4C 4PDT
18－5A 5PST－NO
19－5B 5PST－NC
20－5C 5PDT
21－6A 6PST－NO
22－6B 6PST－NC
23－6C 6PDT
24－7A 7PST－NO
25－7B 7PST－NC
26－7C 7PDT
27－8A 8PST－NO
28－8B 8PST－NC

SP－Single Pole
DP－Double Pole

3P－Three Pole 4P－Four Pole

29－8C 8PDT
30－9A 9PST－NO
31－9B 9PST－NC
32－9C 9PDT
33－10A 10PST－NO
34－10B 10PST－NC
35－10C 10PDT
36－11A 11PST－NO
37－11B 11PST－NC
38－11C 11PDT
39－12A 12PST－NO
40－12B 12PST－NC
41－12C 12PDT
42－3X 3PST－NO－DM
$43-2 X+1 Y$ DPST－NO－DM＋SPST－NC－DB
44－2X DPST－NO－DM
$45-1 X+2 Y$ SPST－NO－DM＋DPST－NC－DB
46－3Y 3PST－NC－DB
47－4X 4PST－NO－DM
$48-2 \mathrm{X}+2 \mathrm{Y}$ 2PST－NO－DM +2 PST－NC－DB
49－4Y 4PST－NC－DB
50－1A +1 B SPST－NO＋SPST－NC
$51-1$ A +1 C SPST－NO＋SPDT
$52-1 B+1 C$ SPST－NC＋SPDT
$58-1 \mathrm{~A}+2 \mathrm{~B}$ SPST－NO＋DPST－NC
$59-2 A+1 B$ DPST－NO＋SPST－NC
$60-2 A+2 B$ DPST－NO＋DPST－NC
$61-2 A+1 C$ DPST－NO＋SPDT
$\begin{array}{ll}\text { SB－Single Break } & \text { ST－Single Throw } \\ \text { DB－Double Break } & \text { DT－Double Throw }\end{array}$
$62-1 \mathrm{~A}+2 \mathrm{C}$ SPST－NO＋DPDT
$63-1 \mathrm{~B}+2 \mathrm{C}$ SPST－NC＋DPDT
$64-2 B+1 C$ DPST－NC＋SPDT
$65-1 \mathrm{~A}+1 \mathrm{~B}+1 \mathrm{C}$ SPST－NO＋SPST－NC ＋SPDT
$67-3 \mathrm{~A}+1 \mathrm{~B}$ 3PST－NO＋SPST－NC
$68-3 A+1 \mathrm{C}$ 3PST－NO＋SPDT
$69-3 B+1 C$ 3PST－NC＋SPDT
70－3A +3 B 3PST－NO +3 3STT－NC
$71-2 A+2 C$ DPST－NO＋DPDT
$72-2 B+2 C$ DPST－NC＋DPDT
$73-1 \mathrm{~A}+3 \mathrm{C}$ SPST－NO +3 PDT
$74-3 \mathrm{~A}+2 \mathrm{C}$ 3PST－NO＋DPDT
$75-1 B+3 C$ SPST－NC＋3PDT
$76-1 \mathrm{~A}+3 \mathrm{~B}$ SPST－NO +3 3PST－NC
$77-1 \mathrm{~A}+1 \mathrm{~B}+2 \mathrm{C}$ SPST－NO + SPST－NC ＋DPDT
$78-1 \mathrm{~A}+2 \mathrm{~B}+1 \mathrm{C}$ SPST－NO＋DPST－NC
＋SPDT
$79-2 A+1 B+1 C$ DPST－NO＋SPST－NC ＋SPDT
$80-2 A+6 B$ DPST－NO＋6PST－NC
$81-4 \mathrm{~A}+4 \mathrm{~B} 4$ PST－NO +4 PST－NC
$82-2 A+4 C$ DPST－NO +4 PDT
$83-4 \mathrm{~A}+1 \mathrm{~B} 4$ PST－NO + SPST－NC
84－4A＋2B 4PST－NO－DPST－NC
$85-3 A+2 B$ 3PST－NO－DPST－NC

DM－Double Make
NO－Normally Open

CO stands for changeover，a term sometimes used for a double throw configuration．

Common Contact Material Abbreviations Used in this Databook

Ag is silver．
AgCdO is silver－cadmium oxide．
AgNi 0.15 is fine grain silver．
AgNi or AgNi 20 is silver－nickel alloy．
AgPd is silver－palladium alloy．
AgSn is silver－tin alloy．

AgSnO is silver－tin oxide．
Au is gold．
AuAgNi is gold－silver－nickel alloy．
AuPtAg is gold－platinum－silver alloy．
AuRh is gold－rhodium alloy．
Hg is mercury．

PdCu is palladium－copper alloy．
PdNi is palladium－nickel alloy．
Rh is rhodium．
Ru is ruthenium．
W is tungsten．

Logos of Various Approval Agencies／Laboratories Used in this Databook

민－UL Recognized for USA．
© 9 －UL Recognized for Canada．
${ }^{\boldsymbol{c}} \mathrm{NS}_{\mathrm{us}}$－UL Recognized for USA \＆Canada．
（41）－UL Listed．
（18）－CSA Certification．
© ${ }^{\text {P1 }}$－－CSA Component Acceptance．
食－VDE Approved
—OE－VDE Component Mark
（ －－TUV Approved．
（D）－Demko Approved．
트－CECC Approved．
（土）－SEV Approved．
＜－Factory Mutual Approved．
KEURAR－Kema－Keur Certification．

Circuit Breakers					
	P\&B	P\&B	P\&B	P\&B	P\&B
Series	W57	W54	W58	W28	W51
Type	Thermal	Thermal	Thermal	Thermal	Thermal
Features	- Compact design - Quick connect terminals - Button extends for visible trip indication - Push-to-reset operation - Optional protective boot ${ }_{c} \mathbf{N B}_{\mathrm{us}}$	- Quick connect or screw terminals - Button extends for visible trip indication - Push-to-reset operation - Optional protective boot	- Quick connect or screw terminals - Button extends for visible trip indication - Push-to-reset operation	- Replaces slow blow glass cartridge fuse and holder - Snap-in mounting - Button provides visible trip indication - Push-to-reset or switchable version	- Rocker actuated breaker/ switch - Convenient, snap-in mounting - Optional indicator light - Quick connect terminals - Push-to-reset operation
Approximate Size and Weight (per pole)	$\begin{gathered} .575 " \times 1.15 \text { " } \times .889 \text { "d } \\ (14.6 \times 29.2 \times 22.6 \mathrm{~d}) \\ .5 \mathrm{oz}(14.3 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .575^{\prime \prime} \times 1.378 \text { " } \times 1.22^{\prime \prime} \mathrm{d} \\ (14.6 \times 35.0 \times 31.0 \mathrm{~d}) \\ .9 \mathrm{oz} .(25 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .66 " \times 1.38 " \times 1.38 \text { "d } \\ (16.8 \times 34.9 \times 34.9 \mathrm{~d}) \\ 1.5 \mathrm{oz} .(43 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .54 " \times .63 " \times 1.54 " \mathrm{~d} \\ (13.7 \times 15.9 \times 39.0 \mathrm{~d}) \\ .35 \mathrm{oz}(10 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .598 " \times 1.311^{1 "} \times 1.2322^{\mathrm{ld}} \\ (15.2 \times 33.3 \times 31.3 \mathrm{~d}) \\ .37 \mathrm{oz} .(10.5 \mathrm{~g}) \\ \hline \end{gathered}$
No. of Poles	1	1	1	1	1
Circuit Function	Series Trip				
Current Rating	4-20 Amps	5-40 Amps	1-30 Amps	0.5-20 Amps	5-20 Amps
Max. Operating Voltage	$\begin{aligned} & \text { 50VDC } \\ & \text { 250VAC } \end{aligned}$	$\begin{gathered} \text { 50VDC } \\ 250 \mathrm{VAC} \end{gathered}$	$\begin{gathered} 50 \mathrm{VDC} \\ \text { 250VAC } \end{gathered}$	$\begin{gathered} 32 \mathrm{VDC} \\ \text { 250VAC } \end{gathered}$	50 VDC 125 or 250 VAC (model dependent)
Trip Time at 200\% of Rating	4 to 40 Sec .	5 to 30 Sec .	1-4A Models - 10 to 45 Sec . 5-30A Models - 6 to 30 Sec .	0.5-2A Models 4.5 to 28 Sec. 3-15A Models 2.2 to 15 Sec .	4 to 40 Sec .
Interrupt Capacity	1,000A	1,000A	$\begin{aligned} & \text { 2,000A @ 50VDC } \\ & \text { 1,000A @ 250VAC } \end{aligned}$	$\begin{aligned} & \text { 1,000A @32VDC } \\ & \text { or } 250 \mathrm{VAC} \end{aligned}$	1,000A
Terminal Options	$\begin{gathered} .250 "(6.35) \\ \text { Quick Connect } \end{gathered}$.250" (6.35) Quick Connect, \#8-32 Screw	.250" (6.35) Quick Connect, \#6-32 Screw	.250" (6.35) Quick Connect (Do not solder)	250" (6.35) Quick Connect or PC terminals
Mounting Options	3/8"-24 Threaded Bushing, M11-1.0 Threaded Bushing or M12-1.0 Threaded Bushing	3/8"-24 Threaded Bushing, M11-1.0 Threaded Bushing or M12-1.0 Threaded Bushing	7/16"-28 Threaded Bushing, 15/32" - 32 Threaded Bushing	Snaps into 5/8" (15.9) panel cutout from the front	Snaps into . $531 \times 1.122^{\prime \prime}$ (13.5×28.5) panel cutout from the front
Page Number	103	105	107	110	112

[^0]| Circuit Breakers | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | P\＆B | P\＆B | P\＆B | P\＆B | P\＆B |
| Series | W33 | W23 | W31 | W6 | W9 |
| Type | Thermal | Thermal | Thermal | Magnetic | Magnetic |
| Features | －Rocker actuator in various colors
 －Convenient，snap－in mounting
 －Optional lighted rockers
 －Models with aux．switch available
 －Designed to meet IEC and VDE requirements
 可（18） | －Push／pull actuation for manual on／off and reset
 데（ब1） | －Toggle actuation for manual on／off and reset
 규（ㅏㅏ | －Compact design
 －Variety of time delay options
 －Toggle actuation for manual on／off and reset
 －Optional aux．switch
 凫（18） | －Variety of time delay options
 －Toggle actuation for manual on／off and reset
 －Optional aux．switch
 吹（18 |
| Approximate Size and Weight （per pole） | $\begin{gathered} .98 " \times 1.89 \text { " } \times 1.72^{\prime \prime} \mathrm{d} \\ (24.9 \times 48.0 \times 43.8 \mathrm{~d}) \\ 1.2 \mathrm{oz} .(35 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .69 \mathrm{"} \times 1.38 \mathrm{l} \times 1.6 \mathrm{kd} \\ (17.5 \times 34.9 \times 40.6 \mathrm{~d}) \\ 2 \mathrm{oz} .(57 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .69 " \times 1.38 " \times 1.6 \mathrm{ld} \\ (17.5 \times 34.9 \times 40.6 \mathrm{~d}) \\ 2 \mathrm{oz} .(57 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .75 " \times 2.0 \mathrm{~N} \times 1.64 \mathrm{ld} \\ (19.1 \times 50.8 \times 42.1 \mathrm{~d}) \\ 2.5 \mathrm{oz} .(71 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .75 \mathrm{"} \times 2.5 \mathrm{~F} \times 2.1 \mathrm{ld} \\ (19.1 \times 63.5 \times 53.0 \mathrm{~d}) \\ 2.5 \mathrm{oz}(71 \mathrm{~g}) \end{gathered}$ |
| No．of Poles | 1 or 2 | 1 | 1 | 1 through 4 | 1 through 4 |
| Circuit Function | Series Trip，both poles or
 Series Trip，one pole； Switch only，one pole | Series Trip | Series Trip | Series Trip w／or w／o Aux．Switch | Series Trip w／or w／o Aux．Switch |
| Current Rating | 5－20 Amps | 1－50 Amps | 1－50 Amps | ．25－50 Amps | ．25－50 Amps |
| Max．Operating Voltage | $\begin{aligned} & \text { 50VDC } \\ & \text { 250VAC } \end{aligned}$ | 50VDC
 250VAC | $\begin{gathered} 50 \mathrm{VDC} \\ \text { 250VAC } \end{gathered}$ | $\begin{gathered} \text { 65VDC } \\ 277 \text { VAC } \\ \text { 480VAC 3ø-Wye } \end{gathered}$ | $\begin{gathered} \text { 65VDC } \\ 277 \text { VAC } \\ \text { 480VAC } 3 \varnothing \text {-Wye } \end{gathered}$ |
| Trip Time at 200\％of Rating | 10 to 45 Sec ． | 1－3A M odels－
 11 to 30 Sec ．
 5－50A Models－
 6 to 22 Sec ． | 1－3A Models－
 11 to 30 Sec ．
 5－50A Models－
 6 to 22 Sec ． | 30 ms to 150 Sec． depending upon trip curve specified． | 30 ms to 150 Sec ． depending upon trip curve specified． |
| Interrupt Capacity | $\begin{aligned} & \text { 1,000A @ 50VDC } \\ & \text { 2,000A @250VAC } \end{aligned}$ | 1－25A Models－ 2，000A＠50VDC 1，000A＠250VAC 30－50A Models－ 1，000A＠50VDC or 250VAC | 1－25A Models－ 2，000A＠50VDC 1，000A＠250VAC 30－50A M odels－ 1，000A＠50VDC or 250VAC | 0．25－20A Models－
 2，000A＠65VDC
 5，000A＠277VAC
 or 480VAC，30－Wye
 21－50A Models－
 2，000A＠65VDC
 2，500A＠277VAC | $\begin{gathered} \text { 2,000A @65VDC } \\ \text { 5,000A @ 277VAC } \\ \text { or 480VAC, 3Ø-Wye } \end{gathered}$ |
| Terminal Options | $\begin{gathered} .250 "(6.35) \\ \text { Quick Connect, } \\ \text { Solder } \end{gathered}$ | \＃8－32 Screw | \＃8－32 Screw | $\text { . } 250 \text { " (6.35) }$
 Quick Connect， \＃10－32 Screw | \＃10－32 Stud |
| Mounting Options | Snaps into $.875 \times 1.75 "$
 （ 22.2×44.5 ）
 panel cutout from the front | 3／8＂－24 Threaded Bushing | 15／32＂－32 Threaded Bushing | \＃6－32 Tapped Holes， M3 Tapped Holes | \＃6－32 Tapped Holes， M3 Tapped Holes |
| Page Number | 114 | 116 | 116 | 119 | 119 |

	Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．	
Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only．	（millimeters）unless otherw ise	subject to change．

Transformers					
	PRODUCTS UNLIMITED		PRODUCTS UNLIMITED	PRODUCTS UNLIMITED	PRODUCTS UNLIMITED
Series	4000	4000	4700	4700	57
Type	Class II UL1585 Transformer Non-Inherently Energy Limited Secondary Fusing Required (Opt. integral fuse or breaker)	Class II UL1585 Transformer Non-Inherently Energy Limited Secondary Fusing Required (Opt. integral fuse or breaker)	UL506 Transformer Non-Fused	UL506 Transformer Non-Fused	Transformer Relay Inherently Energy Limited 9100 or 9400 Series Relay
VA Rating	60 \& 75VA	60 \& 75VA	$60,100 \& 150 \mathrm{VA}$	$60,100 \& 150 \mathrm{VA}$	40VA
Terminal Options	Wire Leads	Quick Connect	Wire Leads	Quick Connect	Wire Leads and Screws (optional Quick Connects)
Mounting Options	Foot or Panel	Foot or Panel	Foot	Foot	Plate
Agency Approval	${ }^{\text {c }}$	${ }^{\text {c }} \mathbf{M s}_{\text {us }}$	${ }^{\text {c }}$	${ }^{\text {c }} \mathbf{N s}_{\text {us }}$	${ }^{\text {c }} \mathbf{M s}_{\text {us }}$
Page Number	209	210	211	211	212

Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.

Low－Signal Printed Circuit B oard Relays							
	P\＆B	P\＆B	OEG	OEG	P\＆B	AXICOM	OEG
Series	JWS	JWD	OL	OMR	159／160	V23026	TSC
Features	－10W rating －Dry reed relay －SIP configuration －Molded package －Wave solderable and immersion cleanable 吅（18	－10W rating －Dry reed relay －DIP configuration －Molded package －Wave solderable and immersion cleanable 미（18	－10W rating －Dry reed relay －Plastic dust cover －Consult factory for wave solderable and immersion cleanable model	－10W rating －Dry reed relay －Open or with plastic dust cover	－10W rating －Hg wetted reed relay －Fast operating speed －No contact bounce －Single，dual and bifilar coils －Single－side stable or bistable contacts	－1A rating －Miniature relay －Sealed case －Through－hole or surface mount －Low coil power requirement －Latching or non－ latching 包（18）	－1A rating －Miniature relay －Meets FCC Part 68 isolation －Sealed，immerssion cleanable case －Sensitive coil 呮（18
Approximate Dimensions	$\begin{gathered} .80 " \times .26 " \times .31 \mathrm{~h} h \\ (20.3 \times 6.6 \times 7.8 \mathrm{~h}) \\ 0.08 \mathrm{oz} .(2 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .77^{\prime \prime} \times .30 \text { " } \times .32 \mathrm{~h} h \\ (19.6 \times 7.62 \times 8.0 \mathrm{~h}) \\ 0.08 \text { oz. }(2 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .795 " \times .31 " \times .26 \mathrm{~h} h \\ (20.2 \times 7.9 \times 6.6 \mathrm{~h}) \\ 0.07 \mathrm{oz} .(2 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .8 \times \times .32 " \times .35 " h \\ (20.3 \times 8.0 \times 9.0 \mathrm{~h}) \\ 0.16 \text { oz. }(4.5 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .4^{4 " \times .535 " \times 1.56 \mathrm{~h}} \\ (10.2 \times 13.6 \times 39.6 \mathrm{~h}) \\ 1 \mathrm{oz} .(28 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .51 " \times .31 " \times .27 \mathrm{~h} \\ (13 \times 7.9 \times 6.9 \mathrm{~h}) \\ 0.06 \mathrm{oz} .(1.7 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .49^{\prime \prime} \times .29 " \times .39 \mathrm{~h} \\ (12.5 \times 7.5 \times 10.0 \mathrm{~h}) \\ 0.1 \mathrm{oz} .(3 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form A	1 Form A， 1 Form B 1 Form C， 2 Form A	1 Form A， 2 Form A	1 Form A， 2 Form A	1 Form C， 1 Form D	1 Form C	1 Form C
Contact Material	Ru	Ru	Rh \＆Ru	Rh \＆Ru	Hg	RhAu overlay PdNi	Au overlay AgNi
Maximum Contact Rating	10W	$\begin{aligned} & 10 \mathrm{~W} \\ & \text { Form } \mathrm{A} \& B \\ & 3 \mathrm{~W} \\ & \text { Form C } \end{aligned}$	10W	10W	2 A	1A，AC or DC 125VAC，150VDC 60VA，30W resistive	1A，AC or DC 30VDC，120VAC 24 W or 120VA resistive
Expected Mechanical Life	1×10^{8} Ops．	1×10^{8} Ops．	$1 \times 10^{8} \mathrm{Ops}$.	$1 \times 10^{8} \mathrm{Ops}$.	$1 \times 10^{9} \mathrm{Ops}$.	$1 \times 10^{8} \mathrm{Ops}$.	5×10^{7} Ops．
Expected Electrical Life at Rated Load	1×10^{6} Ops．	$1 \times 10^{9} \mathrm{Ops}$.	$\begin{gathered} 2.5 \times 10^{5} @ 0.4 \mathrm{~A}, \\ 125 \mathrm{VAC} \\ 3 \times 10^{6} @ 1 \mathrm{~A}, \\ 24 \mathrm{VDC} \end{gathered}$	1×10^{5}			
Nominal Coil Voltage	5－24VDC	5－24VDC	6－24VDC	$5-24 \mathrm{VDC}$	2．2－9，000 ohms	5－24VDC	5－24VDC
Nominal Coil Power	50－272mW	50－288mW	100－270mW	$100-280 \mathrm{~mW}$	20－115mW	67－128mW	150 mW
Mounting Options	PC board （THT and SMT）	PC board					
Sockets／ Connectors	－	Fits 14 －pin IC socket	－	－	－	－	－
Page Number	303	303	304	306	308	314	316

Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．		
Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only．	（millimeters）unless otherwise	subject to change．

Low－Signal Printed Circuit Board Relays							
	P\＆B	OEG	AXICOM	AXICOM	AXICOM	AXICOM	AXICOM
Series	T81	OUAZ	IM	FP2	V23079	FT2／FU2	FX2
Features	－0．5－1A rating －Miniature，high density package －Tape sealed， immersion cleanable case －Sensitive coil option －Meets FCC Part 68 isolation 包（18）	－0．5－1A rating －Miniature，high density package －Tape sealed， immersion cleanable case －Sensitive coil option －Meets FCC Part 68 isolation 미（자	－2A rating －Ultraminiature relay －High sensitivity coil －High mechanical shock resistance －Low coil power requirement	－2A rating －Low profile relay －High sensitivity coil －High mechanical shock resistance －Latching and non－ latching versions －Sealed immersion cleanable case 只（ब18）	－2A rating －Vertical mount －High dielectric －Latching and non－ latching versions －Meets FCC Part 68 insulation －Sealed immersion cleanable case	－2A rating －Vertical mount －High dielectric version －Meets FCC Part 68 insulation －Sealed immersion cleanable case	－2A rating －Vertical mount －Latching and non－ latching versions －Meets FCC Part 68 insulation －Sealed immersion cleanable case
Approximate Dimensions	$\begin{gathered} .61 " \times .45 " \times .43 " \mathrm{~h} \\ (15.4 \times 11.4 \times 11.0 \mathrm{~h}) \\ 0.14 \mathrm{oz} .(4 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .61^{\prime \prime} \times .45^{\prime \prime} \times .43^{\prime \prime} \mathrm{h} \\ (15.4 \times 11.4 \times 11.0 \mathrm{~h}) \\ 0.14 \mathrm{oz} .(4 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .393^{\prime \prime} \times .236 \text { " } \times .2222^{\prime \prime} h \\ (10 \times 6 \times 5.65 \mathrm{~h}) \\ 0.03 \text { oz. (.75g) } \end{gathered}$	$\begin{gathered} .574 " \times .35 " \times .196 \mathrm{~h} h \\ (14.02 \times 9.02 \times 5.0 \mathrm{~h}) \\ 0.08 \mathrm{oz} .(2 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .574^{\prime \prime} \times .283 \text { " } \times .389^{\prime \prime} h \\ (14.6 \times 7.2 \times 9.9 \mathrm{~h}) \\ 0.084 \text { oz. }(2.5 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .590 " \times .295 " \times .377 " \mathrm{~h} \\ (15.0 \times 7.5 \times 9.6 \mathrm{~h}) \\ 0.12 \mathrm{oz} .(3 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .587 " \times .283 " \times .421 \mathrm{~h} \\ (14.9 \times 7.3 \times 10.7 \mathrm{~h}) \\ 0.1 \mathrm{oz} .(2.5 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form C	1 Form C	2 Form C				
Contact Material	Au overlay AgPd	Au overlay AgPd	Au overlay PdRu	Au overlay AgNi	Au overlay AgNi	Au overlay AgNi	PdRu
Maximum Contact Rating	$\begin{gathered} \text { 1A @ } 24 \mathrm{VDC} \text { or } \\ 0.5 \mathrm{~A} @ 120 \mathrm{VAC}, \\ \text { resistive } \end{gathered}$	1A＠24VDC or 120VAC， resistive	2A，AC or DC 250VAC，220VDC 60 W or 62.5 VA ， resistive	2A，AC or DC 125VDC，250VAC 30 W or 62.5 VA ， resistive	$\begin{aligned} & 2 \mathrm{~A}, \mathrm{AC} \text { or DC } \\ & 220 \mathrm{VDC}, 250 \mathrm{VAC} \\ & 60 \mathrm{~W} \text { or } 60 \mathrm{VA}, \\ & \text { resistive } \end{aligned}$	2A，AC or DC 125VDC，250VAC 30 W or 62.5 VA ， resistive	$\begin{gathered} 2 \mathrm{~A}, \mathrm{AC} \text { or } \mathrm{DC} \\ 220 \mathrm{VDC}, 250 \mathrm{VAC} \\ 60 \mathrm{~W} \text { or } 62.5 \mathrm{VA}, \\ \text { resistive } \end{gathered}$
Expected Mechanical Life	5×10^{6} Ops．	5×10^{6} Ops．	1×10^{8} Ops．				
Expected Electrical Life at Rated Load	$\begin{aligned} & 1.5 \times 10^{5} @ 1 \mathrm{~A}, \\ & 24 \mathrm{VDC} \\ & 1 \times 10^{5} @ 0.5 \mathrm{~A}, \\ & 120 \mathrm{VAC} \end{aligned}$	$1 \times 10^{5} @ 1 \mathrm{~A}$	$\begin{gathered} 5 \times 10^{5} @ 1 \mathrm{~A}, \\ 30 \mathrm{VDC} \\ 1 \times 10^{5} @ 2 \mathrm{~A}, \\ 30 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 3 \times 10^{5} @ 1.25 \mathrm{~A} \\ 24 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 2 \times 10^{5} @ 2 \mathrm{~A} \\ 30 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 1 \times 10^{5} @ 1.25 \mathrm{~A}, \\ 24 \mathrm{VDC} \end{gathered}$	$\begin{gathered} 5 \times 10^{5} @ 2 \mathrm{~A} \\ 30 \mathrm{VDC} \end{gathered}$
Nominal Coil Voltage	$3-24 V D C$	5－24VDC	1．5－24VDC	$3-48 \mathrm{VDC}$	$3-48 \mathrm{VDC}$	$3-48 \mathrm{VDC}$	$3-48 \mathrm{VDC}$
Nominal Coil Power	（standard） 450 mW （sensitive） 200 mW	（standard） 450 mW （sensitive）200mW	$100-200 \mathrm{~mW}$	80－200mW	70－140mW	$200-300 \mathrm{~mW}$	$80-300 \mathrm{~mW}$
Mounting Options	PC board， Socket	PC board， Socket	PC board （THT and SMT）	PC board （THT）	PC board （THT and SMT）	PC board （THT and SMT）	PC board （THT）
Sockets／ Connectors	Fits 12－pin IC socket	Fits 12－pin IC socket	－	－	－	－	－
Page Number	318	319	321	323	325	327	329

[^1]| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low－Signal PC Board Relays | | | | | Mid－Range PC Board Relays | | |
| | P\＆B | AXICOM | AXICOM | AXICOM | SCHRACK | SCHRACK | OEG |
| Series | 190 | V23105 | MT2 | MT4 | PE | RE | PCN |
| Features | －2A rating
 －Mini DIP relay
 －Various coil sensitivity options
 －Sealed immersion cleanable case
 －Meets FCC Part 68 insulation | －3A rating
 －Mini DIP relay
 －High sensitivity coil
 －Sealed immersion cleanable case
 －Meets FCC Part 68 insulation | －1．25A rating
 －Miniature，telecom relay
 －Meets FCC Part 68 isolation
 －Sealed，immersion cleanable case | －1．25A rating
 －Miniature，telecom relay
 －Meets FCC Part 68 isolation
 －Sealed，immersion cleanable case | －5A rating
 －Sensitive coil
 －Flux－tight case for wave soldering
 －Class F coil | －6A rating
 －Sensitive coil
 －DIP cofiguration
 －4kV coil－to－contact isolation
 －Immersion cleanable case with knock－off nib
 －VDE 0110 ${ }^{2} \mathbf{N D}_{\text {us }}$ | －3A rating
 －Ultra slim ．197＂ （5mm）package
 －Sensitive coil
 －3kV coil－to－contact isolation
 －Immersion cleanable case cinus vDE |
| Approximate Dimensions | $\begin{gathered} .807 " \mathrm{x} .398 \text { " } \times .453 \mathrm{hh} \\ (20.5 \times 10.1 \times 11.5 \mathrm{~h}) \\ 0.21 \mathrm{oz}(6 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} .795 " \times .394 " x .45 " \mathrm{~h} \\ (20.2 \times 10.0 \times 11.43 \mathrm{~h}) \\ 0.2 \mathrm{oz} .(6 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} .795 " x .393 " x .433 " h \\ (20.2 \times 10.0 \times 11.0 \mathrm{~h}) \\ 0.18 \text { oz. (} 5 \mathrm{~g} \text {) } \\ \hline \end{gathered}$ | $\begin{gathered} .795 " \times .582 " \times .433 " \mathrm{~h} \\ (20.2 \times 14.8 \times 11.0 \mathrm{~h}) \\ 0.25 \text { oz. }(7 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} .79 " \times .39 " \times .39 " \mathrm{~h} \\ (20 \times 10 \times 10 \mathrm{~h}) \\ 0.18 \mathrm{oz} .(5 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} .79 \text { " } \times .39 \text { " } \times .42^{\prime \prime} \mathrm{h} \\ (20 \times 10 \times 10.6 \mathrm{~h}) \\ 0.18 \mathrm{oz} .(5 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} .79 " x .197 " x .492 \mathrm{~h} \\ (20 \times 5 \times 12.5 \mathrm{~h}) \\ 0.1 \mathrm{oz} .(3 \mathrm{~g}) \\ \hline \end{gathered}$ |
| Contact
 Arrangements | 2 Form C | 2 Form C | 2 Form C | 4 Form C | 1 Form C | 1 Form A | 1 Form A |
| Contact Material | Au overlay Ag | Au overlay AgNi | Au overlay AgNi | Au overlay AgNi | AgNi 90／10 | AgCdO or Au overlay AgNi | AgNi |
| Maximum
 Contact
 Rating | $\begin{gathered} 2 \mathrm{~A}, \mathrm{AC} \text { or DC } \\ 125 \mathrm{VDC}, 125 \mathrm{VAC} \\ 60 \mathrm{~W} \text { or } 62.5 \mathrm{VA}, \\ \text { resistive } \end{gathered}$ | 3A，AC or DC 250VDC，230VAC 60 W or 120VA， resistive | 1．25A，AC or DC
 150VAC or VDC
 30 W or 62．5VA， resistive | $1.25 \mathrm{~A}, \mathrm{AC}$ or DC
 150VAC or VDC
 30 W or 62．5VA， resistive | 5A＠250VAC | 6A＠250VAC | 3 A ＠250VAC |
| Expected Mechanical Life | 15×10^{6} Ops． | 15×10^{6} Ops． | 1×10^{8} Ops． | 1×10^{8} Ops． | 15×10^{6} Ops． | 3×10^{7} Ops． | 2×10^{7} Ops． |
| Expected
 Electrical
 Life at
 Rated Load | $\begin{gathered} 1 \times 10^{5} @ 1.8 \mathrm{~A} \\ 30 \mathrm{VDC} \end{gathered}$ | $\begin{gathered} 1 \times 10^{5} @ 2 \mathrm{~A} \\ 30 \mathrm{VDC} \end{gathered}$ | $\begin{gathered} 2 \times 10^{5} @ 1.25 \mathrm{~A} \\ 24 \mathrm{VDC} \end{gathered}$ | $\begin{gathered} 2 \times 10^{5} @ 1.25 \mathrm{~A}, \\ 24 \mathrm{VDC} \end{gathered}$ | 1×10^{5} | 5×10^{5} | 1×10^{5} |
| Nominal Coil Voltage | $3-48 \mathrm{VDC}$ | $3-48 \mathrm{VDC}$ | 4．5－48VDC | 4．5－48VDC | $5-48 \mathrm{VDC}$ | $5-48 \mathrm{VDC}$ | 5－24VDC |
| Nominal Coil Power | $150-500 \mathrm{~mW}$ | $150-500 \mathrm{~mW}$ | $150-550 \mathrm{~mW}$ | 300 mW | 200 mW | 200 mW | 120 mW |
| Mounting Options | PC board |
| Sockets／
 Connectors | Fits 16－pin IC Socket | Fits 16 －pin IC Socket | Fits 16 －pin IC Socket | － | － | － | － |
| Page Number | 331 | 333 | 335 | 337 | 403 | 405 | 407 |

Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．

Electronics			Issued	d 3－03		S	ECTOR GUID
Mid－Range Printed Circuit B oard Relays							
	SCHRACK	SCHRACK	P\＆B	OEG	OEG	P\＆B	OEG
Series	V23092 ${ }_{\text {（SNR）}}$	RY II	T75	PCJ	PCH	T77	OJ／OJE
Features	－6A rating －Ultra slim ．197＂ （5mm）package －Low coil power requirement －Immersion cleanable case －DIN mount module available ${ }^{2} \mathbf{N S}_{\text {us }} \text { VDE }$	－8A rating －Meets international specifications －Sensitive coil －Low profile design －Flux－tight or washable case ${ }^{c} \mathrm{NN}_{\text {US }}$（VOE）	－8－14A rating －Meets international specifications －Sensitive coil －Low profile design －Immersion cleanable case	－5A rating －Slim profile for high density mount －200mW coil －4，000Vrms coil－to－ contact breakdown －UL508	－5－10A rating －Small size relay － 1 Form C contact arrangement － $4,000 \mathrm{Vms}$ coil－to－ contact breakdown －UL873 －UL Class F coil available	－3－10A rating －Small size －4，000 Vrms coil－to－ contact breakdown －Sealed or flux tight case －Class F coil insulation	－3－10A rating －Small size －4，000 Vrms coil－to－ contact breakdown －Sealed or flux tight case －Sensitive models available
Approximate Dimensions	$\begin{gathered} .20 " \times 1.1^{1 "} \times .59 \mathrm{~h} h \\ (5 \times 28 \times 15 \mathrm{~h}) \\ 0.21 \mathrm{oz}(6 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.12 " \times .40^{\prime \prime} \times .48^{\prime \prime} \mathrm{h} \\ (28.5 \times 10.1 \times 12.3 \mathrm{~h}) \\ 0.28 \mathrm{oz} .(8 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.12 \text { " } \times .39 \text { " x } .59 \text { "h } \\ (28.5 \times 10 \times 15 \mathrm{~h}) \\ 0.65 \mathrm{oz} .(18.5 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .80 \times .28 \times .59 \mathrm{~h} \\ (20.4 \times 7 \times 15 \mathrm{~h}) \\ .14 \mathrm{oz}(4 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .78 \times .39 \times .60 \\ (19.8 \times 9.9 \times 15.2 \mathrm{~h}) \\ .25 \mathrm{oz}(7 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .72 " \times .39 " \times .57 \mathrm{~h} \\ (18.2 \times 10.0 \times 14.7 \mathrm{~h}) \\ 0.36 \mathrm{oz} .(9 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .72 " \times .39 " \times .57 \mathrm{~h} \\ (18.2 \times 10.0 \times 14.7 \mathrm{~h}) \\ 0.36 \mathrm{oz}(9 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form A， 1 Form C	1 Form A， 1 Form C	1 Form A， 1 Form C	1 Form A	1 Form C	1 Form A	1 Form A
Contact Material	AgSnO， Au plated AgSnO， AgNi 90／10	AgCdO，AgNi 0．15， au plated AgNi0．15， AgSnO	AgCdO	AgNi	AgSnO	Ag Ag Alloy	Ag Ag Alloy
Maximum Contact Rating	6A，25VAC	8A＠250VAC	$\begin{gathered} \text { 14A @ 120VAC, } \\ \text { resistive } \\ 10 \mathrm{~A} @ 240 \mathrm{VAC} \\ 8 \mathrm{~A} @ 24 \mathrm{VDC} \end{gathered}$	$\begin{aligned} & \text { 5A @ 250VAC or } \\ & 28 \mathrm{VDC} \\ & \text { resistive } \end{aligned}$	10A＠125VAC（NO） 5A＠277VAC or 30VDC（NO） 3A＠277VAC or 30VDC（NC） resistive	$\begin{gathered} 3 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 250 \mathrm{VAC} \\ \text { 10A @28VDC or } \\ 120 \mathrm{VAC} \end{gathered}$	$\begin{gathered} 3 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ \text { 250VAC } \\ 5 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 250 \mathrm{VAC} \\ \text { 10A @28VDC or } \\ \text { 120VAC } \end{gathered}$
Expected Mechanical Life	2×10^{7} Ops．	3×10^{7} Ops．	2×10^{7} Ops．	5×10^{6} Ops．	5×10^{6} Ops．	$1 \times 10^{7} \mathrm{Ops}$.	1×10^{7} Ops．
Expected Electrical Life at Rated Load	5×10^{4}	1×10^{5}	5×10^{4}	1×10^{5}	1×10^{5}	1×10^{5}	1×10^{5}
Nominal Coil Voltage	12－24VDC	5－48VDC	$3-60 V D C$	5－24VDC	$5-48 \mathrm{VDC}$	$3-24 V D C$	$5-48 \mathrm{VDC}$
Nominal Coil Power	210 mW	220 mW	230 mW	200 mW	$200-400 \mathrm{~mW}$	200－450mW	200－450mW
Mounting Options	PC board						
Sockets／ Connectors	－	－	－	－	－	－	－
Page Number	409	412	414	416	418	420	422

M id-Range Printed Circuit B oard Relays							
	OEG	SCHRACK	SCHRACK	P\&B	OEG	P\&B	OEG
Series	PCD/PCDF	PB	V23148 (U/UB)	T73	OUDH	T7N	PCE
Features	- 10-15A rating - Low-profile relay - Sensitive coil - Sealed or flux tight case - Available with quick connect terminals for load	- 10A rating - Miniature relay - Low complexity design - Flux tight case - Available Class F coil insulation ${ }^{c} \boldsymbol{N}_{\text {us }}^{\circ} \text { VDE }$	- 7A rating - Standard or latching type - Sensitive version available - 2 kV or 4 kV dieleectric options - Sealed case ${ }_{c} \mathrm{Ni}_{\mathrm{us}}$	- 10A rating - Low-profile relay - Sealed case - UL508 - Class F coil insulation standard	- 10A rating - Low-profile relay - Flux tight or sealed case - Class A coil insulation standard	- 10A rating - Low-profile relay - UL Class F coil standard - Immersion cleanable sealed case	- 10A rating - Low-profile relay - UL Class F coil standard - Immersion cleanable sealed case
Approximate Dimensions	$\begin{gathered} .90 " \times .63 " \times .40 " \mathrm{~h} \\ (23.0 \times 16.1 \times 10.2 \mathrm{~h}) \\ 0.35 \mathrm{oz} .(10 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .59 " \times .59 " \times .79 " \mathrm{~h} \\ (15.0 \times 15.0 \times 20.0 \mathrm{~h}) \\ 0.2 \mathrm{oz} .(5.4 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .64 " \times .84 " \times .59 \mathrm{~h} \mathrm{~h} \\ (16.2 \times 21.2 \times 14.9 \mathrm{~h}) \\ 0.34 \mathrm{oz} .(9.5 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .88 " \times .69 " \times .61 \mathrm{~h} h \\ (22.3 \times 17.6 \times 15.5 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .88 " \times .69 " \times .61 \mathrm{~h} h \\ (22.3 \times 17.6 \times 15.5 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .87 " \times .63 " \times .65 " \mathrm{~h} \\ (22.0 \times 16.0 \times 16.4 \mathrm{~h}) \\ 0.38 \mathrm{oz} .(11 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{array}{\|c} .87 " \times .63 " \times .65 " \mathrm{~h} \\ (22.0 \times 16.0 \times 16.4 \mathrm{~h}) \\ 0.38 \text { oz. }(11 \mathrm{~g}) \\ \hline \end{array}$
Contact Arrangements	1 Form A	1 Form A	1 Form A, 1 Form B, 1 Form C	1 Form A, 1 Form C	1 Form A, 1 Form C	1 Form A, 1 Form C	1 Form A, 1 Form C
Contact Material	AgSnO	AgNi 90/10	AgNi 0.15	AgCdO	Ag Alloy	AgCdO	AgCdO, AgSnO
Maximum Contact Rating	15A @ 125VAC (QC version only) 10A @ 28VDC or 250VAC resistive	10A @ 240VAC (NO) 3A @ 240VAC (NC)	$\begin{aligned} & \text { 7A @ 250VAC or } \\ & 24 \mathrm{VDC} \\ & \text { resistive } \end{aligned}$	$\begin{gathered} \text { 10A @ 120VAC } \\ \text { 6A @ 24VDC } \end{gathered}$	$\begin{gathered} \text { 10A @ 120VAC } \\ \text { 6A @ 24VDC } \end{gathered}$	$\begin{gathered} \text { 10A @ 240VAC } \\ \text { or 28VDC } \end{gathered}$	$\begin{gathered} \text { 10A @ 250VAC } \\ \text { or 28VDC } \end{gathered}$
Expected Mechanical Life	1×10^{7} Ops.	5×10^{6} Ops.	2×10^{7} Ops.	$1 \times 10^{7} \mathrm{Ops}$.			
Expected Electrical Life at Rated Load	1×10^{5}	$\begin{gathered} 1 \times 10^{5} \text { at } 6 \mathrm{~A}, 240 \mathrm{VAC} \\ (\mathrm{NO}) \\ 2.5 \times 10^{4} \text { at } 10 \mathrm{~A}, \\ 240 \mathrm{VAC}(\mathrm{NO}) \end{gathered}$	5×10^{4} at 7A (NO)	1×10^{5}	1×10^{5}	1×10^{5} Ops.	1×10^{5} Ops.
Nominal Coil Voltage	5-48VDC	6-24VDC	6-48VDC	$3-48 \mathrm{VDC}$	5-48VDC	$3-48 \mathrm{VDC}$	6-48VDC
Nominal Coil Power	200-250mW	360 mW	$330-800 \mathrm{~mW}$	450-660mW	450-660mW	360 mW	360 mW
Mounting Options	PC board	PC board, Socket	PC board, Socket				
Sockets / Connectors	-	-	-	-	-	PC terminals (10A rated)	PC terminals (10A rated)
Page Number	424	426	428	430	432	434	436

[^2]| | | | | 3-03 | | SE | ETOR GUID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mid-Range Printed Circuit B oard Relays | | | | | | | |
| | OEG | P\&B | OEG | OEG | P\&B/SCHRACK | SCHRACK | SCHRACK |
| Series | ORWH | T7C | SRUDH | SRUUH | $\mathbf{R T}$ (DC) | RT (AC) | RT (Sens.) |
| Features | - 10A rating
 - Low-profile relay
 - Flux-tight or sealed case ${ }_{c} \boldsymbol{M}_{\text {us }}^{\circ} \Delta$ | - 5-12A rating
 - Compact design
 - $1,500 \mathrm{Vms}$ coil-tocontact breakdown
 - Immersion cleanable or fluxtight case
 - UL Class F coil standard | - 12A rating
 - Compact design
 - $1,500 \mathrm{Vms}$ coil-tocontact breakdown
 - Immersion cleanable or fluxtight case $c \mathbb{N}_{\text {us }}^{\circ} \Delta$ | - 15A rating
 - Compact design
 - 1,500 Vrms coil-tocontact breakdown
 - Immersion cleanable or fluxtight case
 ${ }^{\circ} \mathrm{NH}_{\text {us }} \Delta$ | - 8-16A rating
 - Immersion cleanable or fluxtight case
 - Low profile case
 - 10 mm coil-tocontact spacing for 5 kV isolation | - 8-16A rating
 - Immersion cleanable or fluxtight case
 - Low profile case
 - 10 mm coil-tocontact spacing for 5 kV isolation $c \mathbb{N}_{\text {Us }}^{\circ}$ | - 10A rating
 - Sensitive coil
 - Immersion cleanable or fluxtight case
 - Low profile case
 - 10mm coil-tocontact spacing for 5 kV isolation ${ }^{c} \boldsymbol{N}_{\text {US }}^{\circ} \text { VOE }(\stackrel{+}{5})$ |
| Approximate Dimensions | $\begin{gathered} .75 " \times .61 " \times .6 \mathrm{~h} \\ (20.3 \times 16.5 \times 20.6 \mathrm{~h}) \\ 0.33 \mathrm{oz} .(9.5 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .80 " \times .65 " \times .81 \mathrm{~h} \\ (20.3 \times 16.5 \times 20.6 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .80 " \times .65 " \times .81 \mathrm{~h} \\ (20.3 \times 16.5 \times 20.6 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .80 " \times .65 " \times .81^{\prime \prime} \mathrm{h} \\ (20.3 \times 16.5 \times 20.6 \mathrm{~h}) \\ 0.42 \mathrm{oz}(12 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.14^{\prime \prime} \times .50 \text { " } \times .62^{\prime \prime} \mathrm{h} \\ (29 \times 12.7 \times 15.7 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.14^{\prime \prime} \times .50 \text { " } \times .62^{\prime \prime} \mathrm{h} \\ (29 \times 12.7 \times 15.7 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.14^{\prime \prime} \times .50 \text { " x } .62^{\prime \prime} \mathrm{h} \\ (29 \times 12.7 \times 15.7 \mathrm{~h}) \\ 0.42 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$ |
| Contact
 Arrangements | 1 Form A, 1 Form C | 1 Form A,
 1 Form C | 1 Form A,
 1 Form C | 1 Form A,
 1 Form C | 1 Form A, 2 Form A, 1 Form C, 2 Form C | 1 Form A, 2 Form A, 1 Form C, 2 Form C | 1 Form A, 1 Form C |
| Contact Material | AgCdO | AgCdO, Ag | AgCdO | AgCdO | AgNi 90/10 | AgNi 90/10 | AgNi 90/10 |
| Maximum
 Contact
 Rating | 10A @ 277VAC or 28VDC (NO) 15A @ 120VAC (NO) 10A/6A @ 250VAC or 28VDC (NO/NC) | 10A @ 240VAC or 28VDC 12A @120VAC | 10A @ 240VAC or 28VDC 12A @ 120VAC | 10A @ 240VAC or 28VDC 15A @ 120VAC | 16A, AC or DC 250VAC, 30VDC (16A version) | 16A, AC or DC 250VAC, 30VDC (16A version) | $\begin{aligned} & \text { 10A, AC } \\ & \text { 250VAC } \end{aligned}$ |
| Expected Mechanical Life | $1 \times 10^{7} \mathrm{Ops}$. | 1×10^{7} Ops. | 1×10^{7} Ops. | 1×10^{7} Ops. | $1 \times 10^{7} \mathrm{Ops}$. | 1×10^{7} Ops. | 1×10^{7} Ops. |
| Expected
 Electrical
 Life at
 Rated Load | $\begin{gathered} 1 \times 10^{5} \text { Ops. at } \\ 10 \mathrm{~A} @ 250 \mathrm{VAC} \text { (NO) } \end{gathered}$ | 1×10^{5} Ops. | 1×10^{5} Ops. | 1×10^{5} Ops. | $\begin{gathered} 5 \times 10^{4} \\ \text { (16A version) } \end{gathered}$ | $\begin{gathered} 5 \times 10^{4} \\ \text { (16A version) } \end{gathered}$ | 1.5×10^{5} |
| Nominal Coil Voltage | $3-48 \mathrm{VDC}$ | $3-48 V D C$ | 6-48VDC | $3-48 \mathrm{VDC}$ | 5-110VDC | 24-230VAC | 5-60VDC |
| Nominal Coil Power | 360 mW | 360 mW | 360 mW | $360-510 \mathrm{~mW}$ | 400 mW | .75VA | 250 mW |
| Mounting Options | PC board, Socket |
| Sockets/
 Connectors | PC terminals (10A rated) | Screw terminals, PC terminals | Screw terminals, PC terminals | Screw terminals, PC terminals |
| Page Number | 438 | 440 | 442 | 442 | 446 | 448 | 451 |

Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.
Dimensions are shown for Dimensions are in inches over Specifications and availability www.tycoelectronics.com

Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.

Electronics			Issue	d 3－03			ECTOR GUIDE
M id－Range Printed Circuit B oard Relays							
	OEG		OEG	OEG	OEG	OEG	OEG
	OMIF	PCI	OSA	OSZ	SDT	SDT－R	PCK
Features	－20A rating －Flux－tight case －5，000 Vrms coil－to－ contact breakdown －Quick connect terminals for load 只（（1）	－3A rating －Slim design －Sealed or flux－ tight case －Magnetic blowout option for DC loads －Handles audio speaker loads 只（1）	－TV－3／4 rating －Flux－tight case －Low profile case －3，000 Vrms coil－to－ contact breakdown	－TV－8 rating －4，000 Vms coil－to－ contact breakdown －Sealed or flux－tight case	－10A／TV－5 rating －4，000 Vms coil－to－ contact breakdown －Sealed or flux－tight case	－TV－8／TV－5 rating －Standard or sensitive coil － $4,000 \mathrm{Vms}$ coil－to－ contact breakdown －Flux－tight case	－16A rating －5，000 Vrms coil－to－ contact breakdown －Quick connect terminals for load －Flux－tight case
Approximate Dimensions	$\begin{gathered} 1.14 \text { " } \times .50 \text { " } \times .96 \text { "h } \\ (29.2 \times 12.8 \times 24.5 \mathrm{~h}) \\ 0.53 \mathrm{oz} .(15 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .945 \text { " x } .394 \text { " x } .984 \text { "h } \\ (24 \times 10 \times 25 \mathrm{~h}) \\ 0.41 \text { oz. (10.5g) } \end{gathered}$	$\begin{gathered} .96^{\prime \prime} \times .508^{\prime \prime} \times .976 \mathrm{~h} \\ (24.4 \times 12.9 \times 24.8 \mathrm{~h}) \\ 0.46 \mathrm{oz} .(13 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .96 " \times .508 " \times .9766^{\prime \prime} \mathrm{h} \\ (24.4 \times 12.9 \times 24.8 \mathrm{~h}) \\ 0.46 \text { oz. (13g) } \end{gathered}$	$\begin{gathered} .96 " \times .409 " \times .984^{1 " h} \\ (24.4 \times 10.4 \times 25 \mathrm{~h}) \\ 0.39 \mathrm{oz} .(11 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .945 " \times .394 \text { " } \times .984^{\prime \prime} \mathrm{h} \\ (24 \times 10.4 \times 25 \mathrm{~h}) \\ 0.39 \text { oz. (11g) } \end{gathered}$	$\begin{gathered} .866 \times .417 \times 1.05 \mathrm{~h} \\ (22 \times 10.6 \times 26.7 \mathrm{~h}) \\ .46 \mathrm{oz}(13 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form A	2 Form A	2 Form A	1 Form A	1 Form A	1 Form A	1 Form A
Contact Material	AgSnO	Ag Alloy	AgSnO（DM5 type） AG－GS Alloy（DM3）	AgSnO	AgSnO	AgSnO	AgSnO
Maximum Contact Rating	20A＠125VAC， 16A＠240VAC， 16A＠24VDC	$\begin{gathered} 3 \mathrm{~A} @ 120 \mathrm{VAC} \text { or } \\ 24 \mathrm{VDC} \end{gathered}$	$\begin{array}{\|c} \text { TV-3 @ 120VAC (UL) } \\ \text { TV-4 @120VAC (CSA) } \\ \text { 5A @120VAC or } \\ 30 \mathrm{VDC} \text { (DM5) } \\ \\ \text { 3A @120VAC or } \\ 24 \mathrm{VDC} \text { (DM3) } \end{array}$	$\begin{gathered} \text { TV-8 @ 120VAC (UL) } \\ \text { 16A @120VAC or } \\ \text { 24VDC } \end{gathered}$	$\begin{aligned} & \text { TV-5 @ 120VAC (UL) } \\ & \text { 10A @ 250VAC or } \\ & \text { 30VDC } \end{aligned}$	$\begin{aligned} & \text { TV-8 @ 120VAC (UL) } \\ & \text { 10A @ 250VAC or } \\ & \text { 30VDC (Std. Coil) } \\ & \text { TV-5 @120VAC (UL) } \\ & \text { 5A @ 250VAC or } \\ & \text { 30VDC (Sens. Coil) } \end{aligned}$	$\begin{aligned} & \text { 16A @ 250VAC or } \\ & \text { 24VDC } \end{aligned}$
Expected Mechanical Life	1×10^{7} Ops．	1×10^{7} Ops．	1×10^{7} Ops．	1×10^{7}	1×10^{7}	1×10^{7}	2×10^{6}
Expected Electrical Life at Rated Load	1×10^{5}	1×10^{5}	1×10^{5}	$\begin{gathered} 1 \times 10^{5} \\ 2.5 \times 10^{4} \\ \text { at TV-8 } \end{gathered}$	$\begin{gathered} 1 \times 10^{5} \\ 2.5 \times 10^{4} \\ \text { at TV-5 } \end{gathered}$	$\begin{gathered} 1 \times 10^{5} \\ 2.5 \times 10^{4} \\ \text { at TV-5 or TV-8 } \end{gathered}$	1×10^{5}
Nominal Coil Voltage	12－24VDC	$5-24 \mathrm{VDC}$	5－48VDC	$5-48 \mathrm{VDC}$	5－48VDC	$5-48 \mathrm{VDC}$	5－24VDC
Nominal Coil Power	540 mW	350 mW	540 mW	540 mW	540 mW	250mW（Sensitive） 540mW（Standard）	500 mW
Mounting Options	PC board， Socket	PC board					
Sockets／ Connectors	Screw terminals， PC terminals	－	－	－	－	－	－
Page Number	466	468	470	472	474	476	478

Dimensions are shown for Dimensions are in inches over Specifications and availability ww．tycoelectronics．com

			Issu	3-03			CTOR G
M id-Range Printed Circuit B oard Relays							
			SCHRACK	SCHRACK	SCHRACK	SCHRACK	SCHRACK
	V23057 (Card E)	RP \|1/2	RP \|//1	RP 3 SL	0409	V23077 (IF)	0410
Features	- 8A rating - Horizontal or vertical version - Single or bifurcated contacts - 4,000 Vrms coil-tocontact breakdown - Washable case ${ }^{c} \mathrm{Ni}_{\text {us }}$ (VOE	- 8A rating - Slim design - Sealed or fluxtight case - 4,000 Vrms coil-tocontact breakdown	- 8-16A rating - Slim design - Sealed or fluxtight case - 4,000 Vrms coil-tocontact breakdown	- 120A inrush rating - 16A rating - Standard and latching types - Sealed or flux-tight case - 4,000 Vrms coil-tocontact breakdown ${ }^{c} \mathrm{ND}_{\text {us }}$ VDE	- 500A inrush rating - 10A rating - Flux-tight case - 4,000 Vrms coil-tocontact breakdown	- 16 rating - Quick connect terminals for load - 4,000 Vrms coil-tocontact breakdown - Flux-tight case	- 16A rating - Quick connect terminals for load - 4,000 Vrms coil-tocontact breakdown - Form X model provides 3 mm contact gap - Flux-tight case
Approximate Dimensions	$\begin{gathered} 1.10 " \times .984 " \times .425 \mathrm{hh} \\ (28.0 \times 25.0 \times 10.8 \mathrm{~h}) \\ 0.28 \mathrm{oz} .(8 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.14^{\prime \prime} \times .496 " \times 1.0^{\prime \prime} \mathrm{h} \\ (29.0 \times 12.6 \times 25.5 \mathrm{~h}) \\ 0.63 \mathrm{oz} .(18 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.14 " \times .496 " \times 1.0^{\prime \prime} \mathrm{h} \\ (29.0 \times 12.6 \times 25.5 \mathrm{~h}) \\ 0.63 \mathrm{oz} .(18 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.12 " \times .48 " \times .996 \mathrm{~h} \\ (28.5 \times 12.2 \times 25.3 \mathrm{~h}) \\ 0.63 \mathrm{oz} .(18 \mathrm{~g}) \end{gathered}$	$\begin{gathered} .96 " \times .409 " \times .984 \mathrm{~h} h \\ (24.4 \times 10.4 \times 25 \mathrm{~h}) \\ 0.35 \mathrm{oz} .(10 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.594^{\prime \prime} \times .52^{\prime \prime} \times 1.14^{\prime \mathrm{h}} \mathrm{~h} \\ (40.5 \times 13.2 \times 29 \mathrm{~h}) \\ 0.92 \mathrm{oz} .(26 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.594 " \times .492 " \times 1.12 " \mathrm{~h} \\ (40.5 \times 12.5 \times 28.5 \mathrm{~h}) \\ 0.85 \mathrm{oz} .(24 \mathrm{~g}) \\ \hline \end{gathered}$
Contact Arrangements	1 Form A. 1 Form C	$\begin{aligned} & 2 \text { Form A, } \\ & 2 \text { Form C } \end{aligned}$	1 Form A, 1 Form C	1 Form A	1 Form A	1 Form A, 1 Form B,	1 Form A, 1 Form B, 1 Form X (only VDE)
Contact Material	$\begin{gathered} \text { AgNi 0.15, } \\ \text { AgNi 20, AgCdO } \end{gathered}$	$\begin{gathered} \mathrm{AgCdO} \\ \text { AgNi } 0.15 \end{gathered}$	$\begin{gathered} \mathrm{AgCdO}, \\ \text { AgNi } 0.15 \end{gathered}$	AgSnO	AgCdO with W prerun	AgCdO	AgSnO, AgNi (1 Form X only)
Maximum Contact Rating	8A @ 250VAC 5A @ 250VAC with AgNi 0.15	8A @ 250VAC	16A @ 250VAC 12A @ 250VAC 8A @ 250VAC	120A peak inrush 16A @ 250VAC TV-8 @ 120VAC	500A peak inrush 10A @ 250VAC	16A @ 250VAC	16A @ 250VAC
Expected Mechanical Life	$2 \times 10^{7} \mathrm{Ops}$.	$2 \times 10^{7} \mathrm{Ops}$.	3×10^{7} Ops.	3×10^{7}	3×10^{7}	3×10^{7}	1×10^{7}
Expected Electrical Life at Rated Load	2.5×10^{5}	$\begin{gathered} 1 \times 10^{5} \\ (\text { AgCdO) } \end{gathered}$	$\begin{aligned} & 1.5 \times 10^{5} \\ & (\mathrm{AgCdO}) \end{aligned}$	$\begin{gathered} 2 \times 10^{5} \\ 2.5 \times 10^{4} \\ \text { at TV-8 } \end{gathered}$	2.5×10^{5}	$\begin{aligned} & 1 \times 10^{5}(\text { Form } A) \\ & 5 \times 10^{4}(\text { Form B) } \end{aligned}$	$\begin{gathered} 1 \times 10^{5}(\text { Form A) } \\ 1.5 \times 10^{5}(\text { Form B) } \\ 3 \times 10^{4}(\text { Form X) } \end{gathered}$
Nominal Coil Voltage	6-60VDC	5-110VDC	5-110VDC	5-60VDC	6-60VDC	6-48VDC	6-60VDC
Nominal Coil Power	450-500mW	500 mW	500 mW	500mW-1.5W	820 mW	360 mW	360 mW
Mounting Options	PC board	PC board, Socket	PC board, Socket	PC board	PC board	PC board	PC board
Sockets / Connectors	-	Screw terminals, PC terminals	Screw terminals, PC terminals	-	-	-	-
Page Number	480	482	484	486	488	489	491

[^3]| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mid-Range P. C. Board Relays | | | | Power Printed Circuit B oard Relays | | | | |
| | OEG | SCHRACK | P\&B | OEG | P\&B | P\&B | P\&B | P\&B |
| | PCG | 0430 | 600 | PCF | T90 | T9A | 491 | T92 |
| Features | - TV-5 rating
 - 4,000 Vrms coil-to-contact breakdown
 - Flux-tight case | -10-16A rating
 - 4,000 Vrms coil-to-contact breakdown
 - Plastic dust cover
 - PC board, bracket or panel mount
 - 3 mm contact gap version w/ or w/o magnetic blowout 7) VDE | - 15A rating
 - Sensitive coil
 - Unsealed dust cover or sealed case
 - Range of contact materials, ratings | - 25A rating
 - $5,000 \mathrm{Vms}$ coil-to-contact breakdown
 - Flux-tight case
 - Quick connect terminals for load
 只 (18) \triangle | - 30A rating
 - Less than 1W coil power requirement
 - Class F insulation
 - Open, dust cover or immersion cleanable case | - 30A rating
 - QC and PC terms.
 - Meets UL 873 / UL 508 spacings
 - Optional flanged case for panel mounting
 미 (18) | - 20A rating
 - QC and PC terms.
 - Meets UL 873 / UL 508 spacings
 - Optional flanged case for panel mounting
 | - 30A rating
 - Two pole unit can break both sides of the AC line
 - PC board or panel mount
 - Ideal for HVAC / appliance apps.
 - 8mm spacing
 민(자 $\because(4)$ |
| Approximate Dimensions | $\begin{gathered} 1.11^{\prime \prime} \times .56 " \times .98 \mathrm{~h} \\ (28.2 \times 14.2 \times 24.9 \mathrm{~h}) \\ 0.63 \mathrm{oz} .(18 \mathrm{~g}) \end{gathered}$ | $\begin{array}{\|c} 1.15 \times .51 \times .81 \mathrm{~h} \\ (29.2 \times 12.9 \times 20.6 \mathrm{~h}) \\ .46 \mathrm{oz}(13 \mathrm{~g}) \end{array}$ | $\begin{gathered} 1.25^{\prime \prime} \times .775^{\prime \prime} \times 1.2^{\prime \prime} \mathrm{h} \\ (31.8 \times 19.7 \times 30.5 \mathrm{~h}) \\ 1.6 \mathrm{oz} .(45 \mathrm{~g}) \end{gathered}$ | $1.2^{\prime \prime} \times .63$ " $\times 1.04^{\prime \prime} \mathrm{h}$ $(30.4 \times 16.0 \times 26.5 \mathrm{~h})$ $.99 \mathrm{oz} .(28 \mathrm{~g})$ | $\begin{array}{\|c} 1.20 " \times .95 " x .67 " h \\ (30.5 \times 24.1 \times 16.9 \mathrm{~h}) \\ 0.9 \mathrm{oz} .(26 \mathrm{~g}) \end{array}$ | $\begin{gathered} 1.27 " \times 1.08 \text { " } \times 1.10^{\prime \prime} \mathrm{h} \\ (32.3 \times 27.4 \times 27.9 \mathrm{~h}) \\ .9 \text { oz. }(26 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.26 \text { " } \times 1.08 \text { " } \times 1.10 \text { "h } \\ (32.5 \times 27.4 \times 27.9 \mathrm{~h}) \\ 1.2 \text { oz. }(33 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 2.06 " \times 1.36 \text { " } \times 1.21 \mathrm{~h} \\ (52.3 \times 34.5 \times 30.7 \mathrm{~h}) \\ 3 \mathrm{oz}(86 \mathrm{~g}) \end{gathered}$ |
| Contact
 Arrangements | 2 Form A | 1 Form A through 2 Form C | 1 Form A, 1 Form B, 1 Form C | 1 Form A | 1 Form A,
 1 Form C | 1 Form A, 1 Form C | 1 Form A, 1 Form B 1 Form C | 2 Form A,
 2 Form C |
| Contact Material | AgSnO | $\begin{gathered} \mathrm{AgCdO} \text { or } \\ \mathrm{AgCu} 3 \end{gathered}$ | Au flashed AgCd, AuAg, AgCdO, Au flashed Coin Ag, Fine Ag, AgCd, Pd | AgSnO | AgCdO | AgCdO | AgCdO | AgCdO |
| Maximum Contact Rating | $\begin{aligned} & \text { TV-5 @ 120VAC } \\ & \text { 8A @ 250VAC } \\ & \text { 5A @ 250VAC } \end{aligned}$ | 16A @ 250VAC
 (1 pole types)
 10A @ 250 VAC
 (2 pole types) | $\begin{gathered} \text { From15A @150VAC } \\ \text { for AgCdO } \\ \text { to 2A @ 28VDC } \\ \text { for Pd } \end{gathered}$ | $\begin{aligned} & \text { 25A @ 250VAC } \\ & \text { 23A @277VAC } \end{aligned}$ | $\begin{gathered} \text { 30A @ 240VAC } \\ \text { 20A @ 28VDC } \\ \text { 6A @ 277VAC } \\ 2 \text { HP @240VAC } \\ \text { (Form A) } \end{gathered}$ | $\begin{gathered} \text { 30A @ 240VAC } \\ \text { 20A @28VDC } \\ \text { 10A @277VAC } \\ \text { 98LRA/22FLA @ } \\ \text { 120VAC } \\ 2 \text { HP @240VAC } \\ \text { (Form A) } \end{gathered}$ | $\begin{gathered} \text { 20A @ 240VAC } \\ \text { 20A @28VDC } \\ \text { 10A @277VAC } \\ \text { 98LRA/22FLA @ } \\ \text { 120VAC } \\ 2 \text { HP @240VAC } \\ \text { (Form A) } \end{gathered}$ | 30A @ 277VAC 20A @ 28VDC 10A @ 600VAC TV10A @120VAC 2.5 HP @ 240 VAC 1 HP @120VAC |
| Expected Mechanical Life | 1×10^{7} Ops. | 2.5×10^{5} | $1 \times 10^{7} \mathrm{Ops}$. | $1 \times 10^{7} \mathrm{Ops}$. | 1×10^{7} Ops. | 1×10^{7} Ops. | 1×10^{7} Ops. | 5×10^{6} Ops. |
| Expected
 Electrical
 Life at Rated Load | $\begin{gathered} 1 \times 10^{5} \text { at } 5 \mathrm{~A} \\ 5 \times 10^{4} \text { at } 8 \mathrm{~A} \\ 2.5 \times 10^{4} \text { at TV-5 } \end{gathered}$ | $\begin{gathered} 2.5 \times 10^{5} \\ \text { except } \\ 1.5 \times 10^{5} \text { for } \\ 3 \mathrm{~mm} \text { gap type } \end{gathered}$ | 1×10^{5} | $1 \times 10^{5} \mathrm{Ops}$. |
| Nominal Coil Voltage | 5-48VDC | $\begin{aligned} & 12-110 \mathrm{VDC} \\ & 24-230 \mathrm{VAC} \end{aligned}$ | $3-48 \mathrm{VDC}$ | 6-48VDC | 5-110VDC | 5-110VDC | 12-220VAC | $\begin{aligned} & \text { 12-110VDC } \\ & \text { 24-240VAC } \end{aligned}$ |
| Nominal Coil Power | 540 mW | $\begin{aligned} & \text { 1.0W (DC) } \\ & \text { 1.8VA (AC) } \end{aligned}$ | 110mW (3-5A types) 240mW (15A types) | 900 mW | 850-930mW | 900 mW , 1.0W | 2.0VA | $\begin{gathered} \text { 1.7W (DC) } \\ \text { 4.0VA (AC) } \end{gathered}$ |
| Mounting Options | PC board | PC board, Bracket, Panel | PC board | PC board | PC board | PC board, Panel mount | PC board, Panel mount | PC board Panel mount |
| Sockets/ Connectors | - | - | - | - | - | - | - | - |
| Page Number | 493 | 495 | 497 | 502 | 504 | 506 | 509 | 511 |

Relays with Forcibly Guided Contacts						
	SCHRACK	SCHRACK	SCHRACK	SCHRACK	SCHRACK	
	V23047 (SR2M)	SR4	SR6D/M	V23050 (SR6)	SR6-Sensitive	SR6Z
Features	- 6A rating - Forcibly guided contacts - Two poles - Use for emergency shutoff; machine, elevator,escalator, light barrier control ${ }^{c} \mathrm{ND}_{\mathrm{us}}$	- 8A rating - Forcibly guided contacts - Four poles - Compact size - Use for emergency shutoff; machine, elevator,escalator, light barrier control ${ }^{\mathrm{c}} \mathrm{NB}_{\mathrm{us}}$	- 8A rating - Forcibly guided contacts - Four poles - Larger spacings for increased isolation - Use for emergency shutoff; machine, elevator,escalator, light barrier control	- 8A rating - Forcibly guided contacts - Six poles - Use for emergency shutoff; machine, elevator,escalator, light barrier control ${ }^{\mathbf{M}} \mathbf{N}_{\text {US VDE }} \Delta$	- 8A rating - Forcibly guided contacts - Six poles - Sensitive, polarized coil - Use for emergency shutoff; machine, elevator,escalator, light barrier control	- 8A rating - Forcibly guided contacts - Six poles - DIN mount module - Use for emergency shutoff; machine, elevator,escalator, light barrier control
Approximate Dimensions	$\begin{gathered} 1.14 \text { " } \times .50 \text { " } \times 1.0^{\prime \prime} \mathrm{h} \\ (29 \times 12.7 \times 25.4 \mathrm{~h}) \\ 0.6 \mathrm{oz} .(18 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.57 \text { "x } .51 \text { "x } .63 \text { "h } \\ (40 \times 13 \times 16 \mathrm{~h}) \\ 0.56 \mathrm{oz} .(16 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.165 " \times .65 " \times .63^{\prime \prime} \mathrm{h} \\ (55 \times 16.5 \times 16 \mathrm{~h}) \\ 1.06 \mathrm{oz} .(30 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.17 " \times .65 " \times .63 " h \\ (55.0 \times 16.5 \times 16.0 \mathrm{~h}) \\ 1.01 \mathrm{oz} .(30 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.17 " \times .65 " \times .63 \text { "h } \\ (55.0 \times 16.5 \times 16.0 \mathrm{~h}) \\ 1.01 \mathrm{oz} .(30 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.81^{\prime \prime} \times 3.42^{\prime \prime} \times .2 .12^{\prime \prime h} \\ (46 \times 87 \times 54 \mathrm{~h}) \\ 3.17 \mathrm{oz} .(90 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form $A+1$ Form B, 2 Form C	$\begin{aligned} & 2 \text { Form } A+2 \text { Form } B \text {, } \\ & 3 \text { Form } A+1 \text { Form } B \end{aligned}$	$\begin{aligned} & 2 \text { Form } A+2 \text { Form B, } \\ & 3 \text { Form } A+1 \text { Form B } \end{aligned}$	$\begin{aligned} & 4 \text { Form } A+2 \text { Form } B \text {, } \\ & 3 \text { Form } A+3 \text { Form B, } \\ & 5 \text { Form } A+1 \text { Form } B \end{aligned}$	4 Form $A+2$ Form B, 3 Form $A+3$ Form B, 5 Form $A+1$ Form B	$\begin{aligned} & 4 \text { Form } A+2 \text { Form } B \text {, } \\ & 3 \text { Form } A+3 \text { Form B, } \\ & 5 \text { Form } A+1 \text { Form } B \\ & \hline \end{aligned}$
Contact Material	AgNi	AgNi	AgNi	AgNi	AgNi	AgNi
Maximum Contact Rating	6A @ 250VAC	8A @ 250VAC				
Expected Mechanical Life	1×10^{7} Ops.	1×10^{7} Ops.	1×10^{7} Ops.	$1 \times 10^{7} \mathrm{Ops}$.	1×10^{7} Ops.	1×10^{7} Ops.
Expected Electrical Life at Rated Load	-	-	-	-	-	-
Nominal Coil Voltage	5-110VDC	5-110VDC	5-110VDC	5-110VDC	5-48VDC	24VDC, 24VACNDC, 115VACNDC, 230VAC
Nominal Coil Power	700mW	800 mW	1.2W	1.2W	800 mW	-
Mounting Options	PC board, Socket	PC board				
Sockets/ Connectors	Screw terminals, PC terminals	-	-	-	-	-
Page Number	603	606	607	609	611	613

[^4]| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plug-in / Panel M ount Relays | | | | | | | |
| | P\&B | P\&B | OEG | SCHRACK | P\&B | P\&B | SCHRACK |
| Series | R10 | KHA/KHS | PCL(H) | PT | K10 | KUP | RM2/3/7 |
| Features | - 0-7.5A rating
 - Up to 8 poles
 - Highly sensitive coils available
 - Many contact options
 - Various case, terminal and mounting styles
 品 (1) | - 0-5A rating
 - Compact package
 - 2PDT \& 4PDT
 - Smoked dust cover
 - Various mounting configurations
 - Indicator lamp available
 - Hermetically sealed case option
 미(ㅏㅇ | - 3-15A rating
 - Compact package
 - One through four poles
 - Smoked dust cover
 - AC and DC coils
 미(ㅛㅏ | - 6-12A rating
 - Low profile
 - DPDT, 3PDT \& 4PDT
 - Mechanical indicator
 - Manual test with locking tab option
 - AC and DC coils
 ${ }^{C N} \mathrm{~N}_{\text {US }}$ VOE | - 15A rating
 - Compact package
 - DPDT
 - Smoked dust cover
 - Various mounting configurations
 - AC and DC coils
 이 (18 | - 10A rating
 - Open or enclosed
 - Plain or bracket mount dust covers
 - Optional indicator lamp and push-totest button
 - Several socket styles
 只 (18) | - 10-16A rating
 - Mechanical indicator standard
 - Plain or bracket mount dust covers
 - Several socket styles |
| Approximate Dimensions | $\begin{gathered} 1.17^{\prime \prime} \times .74^{\prime \prime} \times 1.18^{\prime \prime} \mathrm{h} \\ (29.6 \times 18.7 \times 30.2 \mathrm{~h}) \\ 1.0 \mathrm{oz} .(28 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.11^{\prime \prime} \times .86 " \times 1.28 \mathrm{~h} \\ (28.2 \times 21.8 \times 34.9 \mathrm{~h}) \\ 1.6 \mathrm{oz} .(45 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.08 \times .83 \times 1.32 \mathrm{~h} \\ (27.5 \times 21.2 \times 33.6 \mathrm{~h}) \\ 1.13 \mathrm{oz}(32 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} .886 " \times 1.1^{1 "} \times 1.14^{\mathrm{H}} \mathrm{~h} \\ (22.5 \times 28 \times 29 \mathrm{~h}) \\ 1.06 \mathrm{oz} .(30 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.11^{\prime \prime} \times .86 " \times 1.28 \mathrm{lh} \\ (28.2 \times 21.8 \times 34.9 \mathrm{~h}) \\ 1.8 \mathrm{oz} .(51 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.53^{\prime \prime} \times 1.41^{\prime \prime} \times 1.91^{\prime \mathrm{h}} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.52^{\prime \prime} \times 1.40^{\prime \prime} \times 1.91^{\prime \mathrm{h}} \\ (38.5 \times 35.5 \times 48.4 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \end{gathered}$ |
| Contact Arrangements | 1 Form C to 8 Form C | $\begin{aligned} & 2 \text { Form C, } \\ & 4 \text { Form C } \end{aligned}$ | 1 Form A through 4 Form C | 2 Form C, 3 Form C 4 Form C | 2 Form C | 1 Form A to 4 Form C | 2 Form C,
 3 Form C |
| Contact Material | AgCdO, Ag, Au overlay Ag | Ag, AgCdO, AuAgNi, Au overlay Ag, Au diffused Ag | Ag (4 pole only), Ag Alloy | AgNi 90/10, Au plated AgNi 90/10 | AgCdO | $\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$ | AgCdO |
| Maximum Contact Rating | Dry circuit to 7.5A @ 28VDC or 115VAC 1/8HP @ 110-120VAC 1/6HP @ 220-240VAC | Dry circuit to 5A
 @ 28VDC or 240VAC 1/10HP @ 120-240VAC | 3 A to 15A
 @ 250VAC or 24VDC resistive | 12A@240VAC (DPDT) 8A@240VAC (3PDT) 6A@240VAC (4PDT) | 15A @ 30VDC or 120VAC 10A @ 277VAC 1/3HP @ 120VAC 1/2HP @ 240VAC | $\begin{gathered} \text { 5A @ 28VDC or } \\ \text { 240VAC } \\ \text { 10A @28VDC or } \\ \text { 240VAC } \\ \text { 1/3HP @120VAC } \\ 1 / 2 \mathrm{HP} @ 250-600 \mathrm{VAC} \end{gathered}$ | $\begin{aligned} & \text { 16A @ 400VAC } \\ & \text { (RM2/7) } \\ & \text { 10A @ 400VAC } \\ & \text { (RM3) } \end{aligned}$ |
| Expected Mechanical Life | 1×10^{8} Ops. | 1×10^{7} Ops. | 1×10^{8} Ops. | 3×10^{7} Ops. (DC coil) 2×10^{7} Ops. (AC coil) | 1×10^{7} Ops. | 1×10^{7} Ops. | 2×10^{7} Ops. |
| Expected
 Electrical
 Life at Rated Load | $\begin{gathered} 2 \times 10^{4} \\ \text { to } 6 \times 10^{5} \end{gathered}$ | 1×10^{5} |
| Nominal Coil Voltage | $\begin{aligned} & 3-115 \mathrm{VDC} \\ & 6-115 \mathrm{~V} / \Delta C \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-220 \mathrm{VDC} \\ & 6-230 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-110 V D C \\ & 6-240 V A C \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-220 \mathrm{VDC} \\ & 6-400 \mathrm{VAC} \end{aligned}$ |
| Nominal Coil Power | $\begin{gathered} 36 \mathrm{~mW} \text { to } 1.6 \mathrm{~W}(\mathrm{DC}) \\ 1.5 \mathrm{VA}(\mathrm{AC}) \end{gathered}$ | $\begin{aligned} & 0.9 \mathrm{~W} \text { (DC) } \\ & 1.2 \mathrm{VA}(\mathrm{AC}) \end{aligned}$ | $\begin{gathered} 0.9-1 \mathrm{~W}(\mathrm{DC}) \\ 1.4 \mathrm{VA}(\mathrm{AC}) \end{gathered}$ | $\begin{aligned} & 0.75 \mathrm{~W} \text { (DC) } \\ & \text { IVA (AC) } \end{aligned}$ | $\begin{aligned} & 0.9 \mathrm{~W} \text { (DC) } \\ & 1.2 \mathrm{VA} \text { (AC) } \end{aligned}$ | $\begin{gathered} 1.2-1.8 \mathrm{~W}(\mathrm{DC}) \\ 2.0-2.75 \mathrm{VA}(\mathrm{AC}) \end{gathered}$ | $\begin{aligned} & \text { 1.2-1.6W (DC) } \\ & \text { 2.3-2.8VA (AC) } \end{aligned}$ |
| Mounting Options | Socket, Panel mount, PC board | Socket, Panel mount, PC board | Socket, Panel mount, PC board | Socket, PC board | Socket, Panel mount, PC board | Socket, Panel mount, PC board | Socket, Panel mount |
| Sockets/ Connectors | Screw terminal, Solder terminal, PC terminal | Screw terminal, Solder terminal, PC terminal, Quick connect terminal | Screw terminal, Solder terminal, PC terminal, Quick connect terminal |
| Page Number | 703 | 709 | 713 | 717 | 720 | 723 | 733 |

Plug-in / Panel M ount Relays							
	P\&B	P\&B	P\&B	SCHRACK	P\&B	P\&B	P\&B
Series	KUEP	KUIP	KUGP	RM5/6	KUMP	KUP93	KRPA/KRP
Features	- 10A rating - Switches DC currents. - Magnetic blowout - Plain or bracket mount dust covers - Optional indicator lamp	- 10A rating - 8 mm coil-tocontact spacing - Plain or bracket mount dust covers - Several socket styles	- 10A rating - 3mm contact gap - 8 mm coil-to- contact spacing - Plain or bracket mount dust cover - Several socket styles	- 10-16A rating - Mechanical indicator standard - Optional push-totest button - $3 m m$ contact gap - Plain or bracket mount dust cover - Several socket styles 	- 15A rating - Open or enclosed - Plain or bracket mount dust covers - Optional indicator lamp and push-totest button - Several socket styles 미(ㅏ)	- 3-10A rating - Designed primarily for HVAC industry - Accepted pin pattern for HVAC - Plain dust cover	- 10A rating - Octal-type plug - Dust cover - Optional indicator lamp
Approximate Dimensions	$\begin{gathered} 1.53 " \times 1.41 " \times 1.91 \mathrm{~h} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.53 " \times 1.41^{\prime \prime} \times 1.91 \mathrm{~h} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.53^{\prime \prime} \times 1.41^{\prime \prime} \times 1.91^{\prime \mathrm{h}} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \text { oz. }(85 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.52^{\prime \prime} \times 1.40 " \times 1.91^{\prime \prime h} \\ (38.5 \times 35.5 \times 48.4 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.53 " \times 1.41^{\prime \prime} \times 1.91^{\prime \prime} \mathrm{h} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} 1.53 " \times 1.41^{\prime \prime} \times 1.91^{\prime \prime} \mathrm{h} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.41^{\prime \prime} \times 1.41^{\prime \prime} \times 2.00^{\prime \prime h} \\ (35.7 \times 35.7 \times 50.8 \mathrm{~h}) \\ 3 \mathrm{oz} .(85 \mathrm{~g}) \\ \hline \end{gathered}$
Contact Arrangements	$\begin{gathered} 1 \text { Form } X, 2 \text { Form A, } \\ 2 \text { Form C } \end{gathered}$	1 Form A to 3 Form C	1 Form A, 2 Form A, 3 Form A, 1 Form X	2 Form A 3 Form A	1 Form A to 3 Form C	3 Form C	1 Form C to 3 Form C
Contact Material	AgCdO	Ag, AgCdO	AgCdO	AgCdO	AgCdO	$\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$
Maximum Contact Rating	10A @150VDC (1X) 5A @150VDC (2A) 3A @150VDC (2C)	$\begin{gathered} 5 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 10 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 1 / 3 \mathrm{HP} @ 120 \mathrm{VAC} \\ 1 / 2 \mathrm{HP} @ 250-600 \mathrm{VAC} \end{gathered}$	5A @ 28VDC or 240VAC 10A @ 28VDC or 240VAC 1/3HP @120VAC 1/2HP @ 250-600VAC	$\begin{gathered} \text { 16A @ 400VAC } \\ \text { (RM5) } \\ \text { 10A @ 400VAC } \\ \text { (RM6) } \end{gathered}$	$\begin{gathered} \text { 15A @ 277VAC } \\ \text { 10A @28VDC or } \\ 240 \mathrm{VAC} \\ 1 / 3 \mathrm{HP} @ 120 \mathrm{VAC} \\ 1 / 2 \mathrm{HP} @ 250-600 \mathrm{VAC} \end{gathered}$	$\begin{gathered} \text { 3A @ 32VDC or } \\ \text { 250VAC } \\ 5 \mathrm{~A} \text { @ 28VDC or } \\ \text { 240VAC } \\ \text { 10A @ 28VDC or } \\ \text { 240VAC } \end{gathered}$	$\begin{gathered} \text { 5A @ 28VDC or } \\ 120 \mathrm{VAC} \\ 10 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 1 / 3 \mathrm{HP} @ 120 \mathrm{VAC} \\ 1 / 2 \mathrm{HP} @ 240 \mathrm{VAC} \end{gathered}$
Expected Mechanical Life	1×10^{7} Ops.	1×10^{7} Ops.	$1 \times 10^{7} \mathrm{Ops}$.	2×10^{7} Ops.	1×10^{7} Ops.	1×10^{7} Ops.	1×10^{7} Ops.
Expected Electrical Life at Rated Load	1×10^{5}						
Nominal Coil Voltage	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-220 \mathrm{VDC} \\ & 6-400 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$
Nominal Coil Power	$\begin{aligned} & \text { 1.2-1.8W (DC) } \\ & \text { 2.0-2.7VA (AC) } \end{aligned}$	$\begin{gathered} 1.2 \mathrm{~W}(\mathrm{DC}) \\ 2.0-2.7 \mathrm{VA}(\mathrm{AC}) \end{gathered}$	$\begin{aligned} & \text { 1.8W (DC) } \\ & \text { 2.7VA (AC) } \end{aligned}$	$\begin{aligned} & \text { 1.6W (DC) } \\ & \text { 2.8VA (AC) } \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~W} \text { (DC) } \\ & \text { 2.7VA (AC) } \end{aligned}$	$\begin{gathered} 1.2 \mathrm{~W}(\mathrm{DC}) \\ 2.0-2.7 \mathrm{VA}(\mathrm{AC}) \end{gathered}$	$\begin{gathered} 1.2 \mathrm{~W} \text { (DC) } \\ \text { 2.0VA (AC) } \end{gathered}$
Mounting Options	Socket, Panel mount, PC board	Socket, Panel mount, PC board	Socket, Panel mount, PC board	Socket, Panel mount	Socket, Panel mount, PC board	Socket	Socket
Sockets/ Connectors	Screw terminal, Solder terminal, PC terminal, Quick connect terminal	Screw terminal, Solder terminal, PC terminal, Quick connect terminal	Screw terminal, Solder terminal, PC terminal, Quick connect terminal	Screw terminal, Solder terminal, PC terminal	Screw terminal, Solder terminal, PC terminal, Quick connect terminal	PC terminal	Screw terminal
Page Number	723	723	723	733	723	731	737

[^5]| | | | | 3－03 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Plug－in／Panel M ount Relays | | | | | | | Power Relay |
| | SCHRACK | P\＆B | P\＆B | P\＆B | SCHRACK | SCHRACK | P\＆B |
| Series | MT | KR－E | KA | KRP－3H | RM8 | 0419 | KUHP |
| Features | －10A rating
 －Lockable push－to－ test button
 －Octal－type plug
 －Optional LED， protection and timing modules
 －Mechanical indicator
 品（18） | －10A rating
 －Hermetically sealed steel case for use in hazardous locations
 －Octal－type plug
 只 | －10A rating
 －Compact，open－ style relay
 －Ruggedly constructed
 －Cost effective
 －Highly efficient for switching light power loads | －20A rating
 －Available as open relay or with dust cover and octal－ type plug | －25A rating
 －Enclosed
 －Integral mechanical indicator standard
 －Bracket mount case
 －2，500Vrms coil－to－ contact breakdown | －16A rating
 －Compatible with RAST 5 connector
 －3mm contact gap
 － $4,000 \mathrm{Vrms}$ coil－to－ contact breakdown
 －Designed for European domestic appliances
 cNㅔㄴ（S）（N） （VOE（D） | －20－30A rating
 －Various mounting options
 － $3,750 \mathrm{~V}$ rms coil－to－ contact breakdown |
| Approximate Dimensions | $\begin{gathered} 1.40^{\prime \prime} \times 1.40^{\prime \prime} \times 2.24 \mathrm{hh} \\ (35.5 \times 35.5 \times 57 \mathrm{~h}) \\ 2.82 \mathrm{oz} .(80 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.44 \text { " } \times 1.66 \text { " } \times 2.12^{\prime \prime h} \\ (36.6 \times 42.2 \times 53.8 \mathrm{~h}) \\ 4.8 \mathrm{oz} .(136 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.92^{\prime \prime} \times 1.47 \text { " } \times 1.38^{\prime \prime h} \\ (48.8 \times 37.3 \times 34.9 \mathrm{~h}) \\ 1.7 \mathrm{oz} .(48 \mathrm{~g})-\mathrm{KA} \end{gathered}$ | $\begin{gathered} 1.53 \text { " } \times 1.41 \text { " } \times 2.28 \text { "h } \\ (38.9 \times 35.7 \times 57.9 \mathrm{~h}) \\ 2 \mathrm{oz} .(57 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.52^{\prime \prime} \times 1.40^{\prime \prime} \times 1.91^{\prime \prime h} \\ (38.5 \times 35.5 \times 48.4 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.85 " \times .98 " \times 1.85 \mathrm{~h} h \\ (47 \times 24 \times 47 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.53 \text { " } \times 1.41^{\prime \prime} \times 1.91 \mathrm{~h} \\ (38.9 \times 35.7 \times 48.4 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \end{gathered}$ |
| Contact
 Arrangements | 2 Form C，
 3 Form C | 1 Form A to 3 Form C | 1 Form A to 3 Form C | 1 Form X | 2 Form C | 2 Form A | 1 Form C to
 2 Form C |
| Contact Material | AgNi 90／10
 Au overlay AgNi 90／10 | $\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$ | $\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$ | AgCdO | AgCdO | AgCdO， AgNi | AgCdO |
| Maximum
 Contact
 Rating | 10A＠250VAC （4A＠250VAC for bifurcated contacts） 1／2HP＠240VAC 1／4HP＠120VAC | $\begin{gathered} 5 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 120 \mathrm{VAC} \\ 10 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 1 / 6 \mathrm{HP} @ 120 \mathrm{VAC} \end{gathered}$ | $\begin{gathered} \text { 5A @ 120VAC } \\ \text { 10A @120VAC } \\ \text { 6A @240VAC } \\ \text { 1/6HP @120VAC } \\ 1 / 3 \mathrm{HP} @ 240 \mathrm{VAC} \end{gathered}$ | $\begin{aligned} & \text { 20A @ 120VAC } \\ & \text { 1HP @120/240VAC } \end{aligned}$ | $\begin{gathered} \text { 25A @ 250VAC } \\ \text { 2HP @240VAC } \\ 1.5 \mathrm{HP} @ 120 \mathrm{VAC} \end{gathered}$ | 16A＠250VAC | （1C）30A＠240VAC
 25A＠28VDC
 1HP＠120VAC
 （2C）20A＠240VAC or 28VDC
 3／4HP＠120VAC |
| Expected Mechanical Life | 2×10^{7} Ops． | 1×10^{7} Ops． | 1×10^{7} Ops． | 2.5×10^{6} Ops． | 2×10^{7} Ops． | 2×10^{6} Ops． | 1×10^{7} Ops． |
| Expected
 Electrical
 Life at
 Rated Load | 3×10^{5} | 1×10^{5} | 1×10^{5} | 1×10^{5} | 3×10^{4} | $\begin{gathered} 1 \times 10^{5} \text { (AC coil) } \\ 2.5 \times 10^{5} \text { (DC coil) } \end{gathered}$ | 1×10^{5} |
| Nominal Coil Voltage | $\begin{aligned} & 6-220 \mathrm{VDC} \\ & 6-230 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-240 \mathrm{VAC} \end{aligned}$ | $\begin{gathered} 12-24 \mathrm{VDC} \\ 24-115 \mathrm{VAC} \end{gathered}$ | $\begin{gathered} 12-24 \mathrm{VDC} \\ 110-400 \mathrm{AC}, 50 \mathrm{~Hz} . \end{gathered}$ | $\begin{gathered} 12-24 \mathrm{VDC} \\ 24-120 \mathrm{VAC} \end{gathered}$ |
| Nominal Coil Power | $\begin{aligned} & 1.2 \mathrm{~W} \text { (DC) } \\ & \text { 2.3VA (AC) } \end{aligned}$ | $\begin{aligned} & 1.2 \mathrm{~W}(\mathrm{DC}) \\ & \text { 2.0VA (AC) } \end{aligned}$ | $\begin{aligned} & \text { 1.2W (DC) } \\ & \text { 2.0VA (AC) } \end{aligned}$ | $\begin{aligned} & \text { 1.2W (DC) } \\ & \text { 2.0VA (AC) } \end{aligned}$ | $\begin{gathered} \text { 1.2W (DC) } \\ \text { 2.8VA (AC) } \end{gathered}$ | $\begin{gathered} 1.3 \mathrm{~W}(\mathrm{DC}) \\ 2.0-2.5 \mathrm{VA}(\mathrm{AC}) \end{gathered}$ | $\begin{aligned} & \text { 1.2W (DC) } \\ & \text { 2.7VA (AC) } \end{aligned}$ |
| Mounting Options | Socket | Socket | Panel mount | Socket， Panel mount | Panel mount | Panel mount | Panel mount |
| Sockets／
 Connectors | Screw terminal | Screw terminal | － | Screw terminal | Screw terminal， Solder terminal， PC terminal， Quick connect terminal | － | － |
| Page Number | 742 | 737 | 737 | 737 | 733 | 745 | 803 |

Dimensions are shown for \quad Dimensions are in inches over \quad Specifications and availability \quad www．tycoelectronics．com

Pow er Relays \& Definite Purpose Contactors							
		P\&B	P\&B	P\&B	PRODUCTS UNLIMITED		PRODUCTS UNLIMITED
Series	RM C/D	S86/S87	PM	PRD	9400	9100	38
Features	- 30A rating - Enclosed - Optional push-totest button, LED indicator and protection diode - Bracket mount case - 2,500Vrms coil-tocontact breakdown	- 20A rating - Economical switching in a compact package - Choice of two mounting brackets 데 (ब18)	- 25A rating - 4PDT - High dielectric strength - Screw or quick connect terminals - Dust cover available	- 10-50A rating - High inrush capacity - Available with magnetic blowouts - Optional auxiliary switch	- 8-12FLA rating - Used extensively in HVAC applications - Double make and double break contacts - Various mounting bracket options ${ }_{c} \mathrm{NI}_{\text {us }}$	- 3-12FLA rating - Used extensively in HVAC applications - Single and double pole models - Multi-positional mounting	- 35A rating - Used extensively in HVAC applications - Potential motor starting relay - Various mounting postions and brackets - Custom-built to customer specs ${ }_{c} \boldsymbol{N}_{\mathrm{us}}$
Approximate Dimensions	$\begin{gathered} 1.52 \mathrm{\prime} \mathrm{\prime} \times 1.40 \mathrm{~N} \times 1.91^{1 \mathrm{~h}} \\ (38.5 \times 35.5 \times 48.4 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(92 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.31 " \times 2.07^{\prime \prime} \times 2.42^{\prime \prime} \mathrm{h} \\ (33.3 \times 52.6 \times 61.5 \mathrm{~h}) \\ 2.9 \mathrm{oz} .(82 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 3.39 " \times 2.66 " \times 2.72 \mathrm{~h} \\ (86.2 \times 67.5 \times 69.1 \mathrm{~h}) \\ 14 \mathrm{oz} .(397 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 3.38 " \times 2.51 " \times 2.50^{\prime \prime} \mathrm{h} \\ (85.7 \times 63.8 \times 63.5 \mathrm{~h}) \\ 10 \mathrm{oz} .(284 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.84^{\prime \prime} \times 1.26^{\prime \prime} \times 1.5^{\prime \prime} \mathrm{h} \\ (46.8 \times 32.1 \times 38.1 \mathrm{~h}) \\ 2.9 \mathrm{oz} .(82 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.11 " \times 1.83 " \times 2.36 \mathrm{~h} h \\ (53.6 \times 46.5 \times 60.1 \mathrm{~h}) \\ 6.1 \mathrm{oz} .(173 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.03 " \times 1.82 " \times 1.82^{\prime \prime} \mathrm{h} \\ (51.6 \times 46.2 \times 46.2 \mathrm{~h}) \\ 5.8 \mathrm{oz}(164 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form X, ! Form Z	1 Form C, 2 Form C	4 Form C	1 Form A to 2 Form C	1 Form X, 1 Form Y, 1 Form Z, 1 Form C (jumpered 1 Form X)	1 Form A through 2 Form C, including mixed forms	1 Form B
Contact Material	AgCdO	Ag, AgCdO	AgCdO	Ag, AgCdO	Fine Ag (pilot), AgAlloy	Ag, Fine Ag, AuAlloy (pilot)	AgCdO
Maximum Contact Rating	30A @ 250VAC	$\begin{aligned} & \text { 20A @ 277VAC } \\ & \text { 1HP @125VAC } \\ & \text { 2HP @250VAC } \end{aligned}$	$\begin{aligned} & \text { 25A @ 277VAC } \\ & \text { 10A @28VDC } \\ & 1 \mathrm{HP} @ 240 \mathrm{VAC} \end{aligned}$	50A @ 277VAC 30A @ 277VAC 20A @ 125VDC 1.5HP @ 120VAC 2HP @ 250VAC	```12FLA/60LRA @ 125VAC 8FLA/48LRA @ 240/277VAC 25A @240/277VAC, resistive (Form X)```	$\begin{gathered} \text { 12FLA/60LRA @ } \\ \text { 125VAC } \\ \text { 6FLA/35LRA @ } \\ \text { 250/277VAC } \\ \text { 25A @240/277VAC, } \\ \text { resistive (Form A) } \end{gathered}$	35A @ 277VAC, inductive
Expected Mechanical Life	1×10^{7} Ops.	1×10^{6} Ops.	1×10^{7} Ops.	$2 \times 10^{6} \mathrm{Ops}$.	1×10^{6} Ops.	1×10^{6} Ops.	$7.5 \times 10^{5} \mathrm{Ops}$.
Expected Electrical Life at Rated Load	4.5×10^{4}	5×10^{4}	1×10^{5}	1×10^{5}	$\begin{gathered} 1 \times 10^{5} \\ \text { (inductive load) } \\ 2.5 \times 10^{5} \\ \text { (resistive load) } \end{gathered}$	1×10^{5} (inductive load) 2.5×10^{5} (resistive load)	2.5×10^{5}
Nominal Coil Voltage	$\begin{gathered} 6-220 \mathrm{VDC} \\ 24-400 \mathrm{VAC} \end{gathered}$	$\begin{gathered} 6-125 \mathrm{VDC} \\ \text { 12-240VAC } \end{gathered}$	$\begin{aligned} & 6-125 \mathrm{VDC} \\ & \text { 12-20VAC } \end{aligned}$	$\begin{aligned} & 6-110 \mathrm{VDC} \\ & 6-480 \mathrm{VAC} \end{aligned}$	$\begin{aligned} & \text { 12-24VDC } \\ & 6-277 \mathrm{VAC} \end{aligned}$	$\begin{gathered} 12-24 \mathrm{VDC} \\ 24-277 \mathrm{VAC} \end{gathered}$	130-495VAC
Nominal Coil Power	$\begin{aligned} & 1.2 \mathrm{~W} \text { (DC) } \\ & \text { 2.8VA (AC) } \end{aligned}$	$\begin{aligned} & \text { 1.13-4.5W (DC) } \\ & \text { 4.0VA (AC) } \end{aligned}$	$\begin{aligned} & 4.4 \mathrm{~W}(\mathrm{DC}) \\ & \text { 14VA (AC) } \end{aligned}$	$\begin{aligned} & \text { 2.0W (DC) } \\ & \text { 9.8VA (AC) } \end{aligned}$	$\begin{aligned} & 3.0 \mathrm{~W}(\mathrm{DC}) \\ & \text { 4.0VA (AC) } \end{aligned}$	$\begin{aligned} & \text { 5.75W (DC) } \\ & 9.5 \mathrm{VA} \text { (AC) } \end{aligned}$	5VA
Mounting Options	Panel mount						
Sockets / Connectors	-	-	-	-	-	-	-
Page Number	805	807	809	811	814	816	818

Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.		
Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only.	(millimeters) unless otherwise	subject to change.

Dimensions are shown for Dimensions are in inches over Specifications and availability www.tycoelectronics.com

Power Relays \& Definite Purpose Contactors				Latching, Impulse, Rotary \& Special Application Relays			
		PRODUCTS UNLIMITED	PRODUCTS UNLIMITED	SCHRACK	OEG	SCHRACK	P\&B
Series	93-3100	96-3186	A-3100	PE (latching)	PCKWK	RT (latching)	KUL
Features	- 25-40FLA rating - 4 pole - Arc cover standard on 40FLA types, optional on others - Convenient mounting plate - Optional auxiliary switches ${ }^{\mathrm{F}} \mathrm{N}_{\mathrm{us}}$	- 75-90FLA rating - 3 pole - Arc cover standard - Convenient mounting plate - Optional auxiliary switches ${ }_{c} \mathrm{HN}_{\text {us }}$	- 120FLA rating - 3 pole - Arc cover standard - Convenient mounting plate - Optional auxiliary switches	- 5A rating - Magentic latching relay - Single coil ${ }_{C N} \mathbf{N}_{\text {us (VOE }}$	- 16A rating - Magentic latching relay - Dual coil	- 16A rating - Magentic latching relay - Single or dual coil ${ }^{C T} \mathbf{N}_{\text {us }} \text { VOE }$	- 10A rating - Magentic latching relay - Single or dual coil - Sockets available
Approximate Dimensions	$\begin{gathered} 3.05 " \times 3.75 " \times 2.63^{\prime \prime h} \\ (77.6 \times 95.2 \times 66.9 \mathrm{~h}) \\ 24 \mathrm{oz} .(683 \mathrm{~g}) \\ \hline \end{gathered}$	$3.75^{\prime \prime} \times 5.0^{\prime \prime} \times 4.06^{\prime \prime} h$ ($95.2 \times 127 \times 103 \mathrm{~h}$) 64 oz. (1,820g)	$\begin{gathered} 4.625^{\prime \prime} \times 6.375 " \times 5.0 \mathrm{~h} \\ (117.5 \times 161.9 \times 127 \mathrm{~h}) \\ 128 \text { oz. }(3,640 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .787 \text { " } \times .394^{\prime \prime} \times .394^{\prime \prime} \mathrm{h} \\ (20 \times 20 \times 10 \mathrm{~h}) \\ .18 \mathrm{oz} .(5 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .957 \text { " } \times .457 " \times 1.05 \mathrm{~h} \\ (24.3 \times 11.6 \times 26.7 \mathrm{~h}) \\ .49 \mathrm{oz} .(14 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.14^{\prime \prime} \times .50 \text { " x } .62^{\prime \prime h} \\ (29 \times 12.7 \times 15.7 \mathrm{~h}) \\ .46 \mathrm{oz} .(13 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.53 " \times 1.41^{\prime \prime} \times 2.16^{\prime \prime} \mathrm{h} \\ (38.9 \times 35.7 \times 54.8 \mathrm{~h}) \\ 3.4 \mathrm{oz} .(96 \mathrm{~g}) \\ \hline \end{gathered}$
Contact Arrangements	4 Form X	3 Form X	3 Form X	1 Form C	1 Form A	1 Form C, 2 Form C	1 Form C, 2 Form C, 3 Form C
Contact Material	AgCdO	AgCdO	AgCdO	AgNi 90/10	AgSnO	AgNi 90/10	$\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$
Maximum Contact Rating	40FLA/240LRA @ 240/277VAC 40FLA/200LRA @ 480VAC 40FLA/160LRA @ 600VAC 50A res. @600VAC	90FLA/540LRA @ 240VAC 90FLA/450LRA @ 480VAC 90FLA/360LRA @ 600VAC 120A res. @ 600VAC	$\begin{gathered} \text { 120FLA/720LRA @ } \\ \text { 240VAC } \\ \text { 120FLA/600LRA @ } \\ \text { 480VAC } \\ \text { 120FLA/480LRA @ } \\ \text { 600VAC } \\ \text { 150A res. @600VAC } \\ \hline \end{gathered}$	5A @ 250VAC	16A @ 277VAC	$\begin{gathered} \text { 16A @ 240VAC } \\ \text { (1 pole) } \\ \text { 8A @ } 240 \mathrm{VAC} \\ \text { (2 pole) } \end{gathered}$	$\begin{gathered} 5 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 10 \mathrm{~A} @ 28 \mathrm{VDC} \text { or } \\ 240 \mathrm{VAC} \\ 1 / 4 \mathrm{HP} @ 120 \mathrm{VAC} \\ 1 / 3 \mathrm{HP} @ 250-600 \mathrm{VAC} \end{gathered}$
Expected Mechanical Life	-	-	-	5×10^{6} Ops.	5×10^{6} Ops.	$\begin{aligned} & 5 \times 10^{6} \text { Ops. (1 pole) } \\ & 2 \times 10^{6} \text { Ops. (2 pole) } \end{aligned}$	$1 \times 10^{7} \mathrm{Ops}$.
Expected Electrical Life at Rated Load	-	-	-	1×10^{5}	1×10^{5}	$\begin{aligned} & 1 \times 10^{4} \text { (1 pole) } \\ & 3 \times 10^{4}(2 \text { pole }) \end{aligned}$	1×10^{5}
Nominal Coil Voltage	24-480VAC	24-480VAC	24-480VAC	$32-24 V D C$	312 VDC	$5-24 \mathrm{VDC}$	$\begin{gathered} 12-48 \mathrm{VDC} \\ 24-240 \mathrm{VAC} \end{gathered}$
Nominal Coil Power	9.0-9.5VA	27.0VA	40.0-48.0VA	360 mW	1,800mW (set) 800 mW (reset)	400mW (1 coil) 600 mW (2 coil)	1.6W (DC dual coil) 1.2W (DC single coil)
Mounting Options	Panel mount	Panel mount	Panel mount	PC board	PC board	PC board	Socket
Sockets / Connectors	-	-	-	-	-	-	Screw terminal, Solder terminal, PC terminal, Quick connect terminal
Page Number	836	838	840	902	904	906	908

[^6]| | P\&B | P\&B | P\&B | | AGASTAT | AGASTAT | AGASTAT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series | KB-KBP | S89/S90 | MDR | 136 | GP | ML | TR |
| Features | - 10A rating
 - Dual coil, mechanical latching relay
 - Available as an open relay or in a clear dust cover with plug-in base
 - Up to 5 poles
 - Sockets available
 ロ | - 10-20A rating
 - Low cost, bistable, impulse relay
 - Optional dust cover with plug-in base
 - Up to 4 poles | - 10A rating
 - Rotary relay
 - Withstands highimpact shock blows with no contact chatter
 - Latching \& nonlatching types
 - Up to 24 poles | - 20A rating
 - Traffic control (flash transfer) relay
 - Clear plastic dust cover with 8position J ones plug
 - CALTRANS and NEMA approved | - 10A rating
 - Control relay
 - Articulated design produces wide contact gap
 - Plastic dust cover
 - Optional mag. blow-out
 - Sockets available
 (IIL) (SA) | - 10A rating
 - Magnetic latching control relay
 - Articulated design produces wide contact gap
 - Plastic dust cover
 - Optional mag. blow-out
 - Sockets available
 (II) (SA | - 10A rating
 - On- delay timing control relay
 - Articulated design produces wide contact gap
 - Plastic dust cover
 - Optional mag. blow-out
 - Sockets available
 (II) (SH) |
| Approximate Dimensions | $\begin{array}{\|c} 1.78 " \times 2.41^{\prime \prime} \times 3.56 \mathrm{~h} \\ (45.2 \times 61.1 \times 90.4 \mathrm{~h}) \\ 10.8 \text { oz. }(306 \mathrm{~g}) \\ \hline \end{array}$ | $\begin{gathered} 2.70 " \times 2.00^{\prime \prime} \times 2.42^{\prime h} \\ (68.6 \times 50.8 \times 61.5 \mathrm{~h}) \\ 7.8 \text { oz. }(241 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 2.63 " \times 2.63 " \times 3.13^{\prime \prime h} \\ (66.7 \times 66.7 \times 79.5 \mathrm{~h}) \\ 32 \mathrm{oz} .(900 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 2.375 " \times 1.75 " \times 2.8^{\prime \prime h} \\ (60.3 \times 44.4 \times 71.1 \mathrm{~h}) \\ 11 \mathrm{oz} .(312 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 1.77 " \times 1.77 \mathrm{"x} 4.3 \mathrm{hn} \\ (45.0 \times 45.0 \times 109.0 \mathrm{~h}) \\ 10.3 \mathrm{oz} .(288 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 1.77 \text { " } \times 1.77 \text { " } \times 4.3 \text { "h } \\ \text { (45.0x45.0x109.0h) } \\ 10.3 \text { oz. (288g) } \end{gathered}$ | $\begin{gathered} 1.77 \text { " } \times 1.77 \text { " } \times 4.3 \text { "h } \\ \text { (45.0×45.0x109.0h) } \\ 10.3 \mathrm{oz} .(288 \mathrm{~g}) \end{gathered}$ |
| Contact
 Arrangements | 2 Form C to 5 Form C | 1 Form A to 4 Form C | 4 Form C to 24 Form C | 2 Form C | 4 Form C | 4 Form C | 4 Form C |
| Contact Material | AgCdO | $\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$ | $\begin{gathered} \mathrm{Ag} \\ \mathrm{AgCdO} \end{gathered}$ | AgPd | Ag Plated | Ag Plated | Ag Plated |
| Maximum
 Contact
 Rating | 10A @ 120VAC | $\begin{gathered} \text { (S89) 15A @ 250VAC } \\ 1 / 2 \mathrm{HP} @ 125 \mathrm{VAC} \\ (\mathrm{~S} 90) \text { 20A @ 277VAC } \\ 2 \text { HP @ 250VAC } \end{gathered}$ | 10A @ 115VAC 3A @ 28VDC 800mA @ 125VDC | $\begin{aligned} & \text { 20A Tungsten @ } \\ & \text { 120VAC } \end{aligned}$ | 10A @ 120VAC | 10A @ 120VAC | 10A @ 120VAC |
| Expected Mechanical Life | 5×10^{5} Ops. | $1 \times 10^{5} \mathrm{Ops}$. | - | 5×10^{6} Ops. | 1×10^{8} Ops. | 1×10^{8} Ops. | 1×10^{8} Ops. |
| Expected
 Electrical
 Life at
 Rated Load | 5×10^{4} | 5×10^{4} | - | 2.5×10^{5} | 1×10^{6} | 1×10^{6} | 1×10^{6} |
| Nominal Coil Voltage | $\begin{aligned} & 12-110 \mathrm{VDC} \\ & 24-240 \mathrm{VAC} \end{aligned}$ | $\begin{gathered} 6-24 \mathrm{VDC} \\ 24-240 \mathrm{VAC} \end{gathered}$ | $\begin{aligned} & \text { 28-125VDC } \\ & 115-440 \mathrm{VAC} \end{aligned}$ | 120VAC | $\begin{aligned} & 12-250 \mathrm{VDC} \\ & 24-220 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 12-250 \mathrm{VDC} \\ & 24-220 \mathrm{VAC} \end{aligned}$ | $\begin{gathered} \text { 24-215VDC } \\ \text { 120VAC } \end{gathered}$ |
| Nominal Coil Power | $\begin{gathered} \text { 2.7W (DC) } \\ \text { 5.3-7.8VA (AC) } \end{gathered}$ | $\begin{aligned} & \text { 6.33W (DC) } \\ & \text { 9VA (AC) } \end{aligned}$ | 5.1-21.8W | 10VA | $\begin{aligned} & \text { 6W } \\ & \text { 6VA } \end{aligned}$ | $\begin{aligned} & \text { 6W } \\ & \text { 6VA } \end{aligned}$ | $\begin{aligned} & \text { 6W } \\ & \text { 6VA } \end{aligned}$ |
| Mounting Options | Socket | Panel mount, Socket | Panel mount | Socket | Socket | Socket | Socket |
| Sockets/ Connectors | Screw terminal, Solder terminal | Screw terminal | - | 8-position J ones plug | Screw terminal | Screw terminal | Screw terminal |
| Page Number | 910 | 912 | 914 | 916 | 917 | 917 | 917 |

Dimensions are shown for Dimensions are in inches over Specifications and availability www.tycoelectronics.com

				Issued 3-03			SELE	ECTOR GUID
Automotive Relays								
	TYCO ELECTRONICS							
Series	V23086	T72M	VKP	V2R	VFM	VF4	VF7	VTF
Features	-20A rating - Micro-miniature PC board relay -60\% less volume than comparable relays - Sealed case	-20A rating - Miniature PC board relay - Sealed case - $105^{\circ} \mathrm{C}$ Ambient	- 40A rating - PC board relay - Available open or with sealed case - Various contact arrangements - Minimum PCB real estate	- 20A rating - Motor reversing contact arragement - Sealed case - Miniature PC board relay - $105^{\circ} \mathrm{C}$ ambient	-20A rating - Miniature relay for plug-in or PC board mounting - Plastic enclosure - Various contact arrangements	- 40A rating - Plug-in or PC board mountable relay - Various enclosure options - Various contact arrangements - Optional mounting bracket	- 70A rating - Plug-in or PC board mountable relay - 1 Form A contact arrangement - Optional mounting bracket	- 279W rating - Turn signal, hazard, or combination versions - Flash rate not sensitive to load current - Electronic timing with relay output - Meets applicable U.S. standards
Approximate Dimensions	$\begin{gathered} .472^{\prime \prime} \times .508 " \times .39 \mathrm{~h} h \\ (12.0 \times 12.9 \times 9.9 \mathrm{~h}) \\ 0.14 \mathrm{oz} .(4 \mathrm{~g}) \\ \hline \end{gathered}$	$\begin{gathered} .89 " \times .65 " \times .67 \mathrm{H} h \\ (22.5 \times 16.5 \times 17 \mathrm{~h}) \\ 0.4 \mathrm{oz} .(12 \mathrm{~g}) \end{gathered}$.911"x.748"x.715"h ($23.1 \times 19.0 \times 18.2 \mathrm{~h}$) 0.7 oz. (20g)	$\begin{gathered} 1.46 \text { " } \times .65 \text { " } \times .67 \mathrm{~h} \mathrm{~h} \\ (37.1 \times 16.5 \times 17 \mathrm{~h}) \\ 0.9 \mathrm{oz} .(25 \mathrm{~g}) \end{gathered}$	$\begin{aligned} & .610 " x .906 " \times 1.02 \mathrm{~h} \\ & (15.5 \times 23 \times 26 \mathrm{~h}) \\ & 0.7 \mathrm{oz} .(19.8 \mathrm{~g}) \end{aligned}$	$\begin{array}{\|c\|} \hline 1.12^{\prime \prime} \times 1.12^{\prime \prime} \times .987 \mathrm{~h} \\ (28.5 \times 28.5 \times 25.1 \mathrm{~h}) \\ 1.1 \mathrm{oz} .(31 \mathrm{~g}) \\ \hline \end{array}$	$\begin{gathered} 1.04 " \times 1.04 " \times .992 \mathrm{~h} \\ (26.5 \times 26.5 \times 25.2 \mathrm{~h}) \\ 1.1 \text { oz. }(31 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.12 " \times 1.12 " \times 1.6^{\prime \prime} \mathrm{h} \\ (28.5 \times 28.5 \times 40.5 \mathrm{~h}) \\ 1.3 \mathrm{oz} .(37 \mathrm{~g}) \end{gathered}$
Contact Arrangements	1 Form C	1 Form C	1 Form A, 1 Form C	$\begin{aligned} & 2 \times 1 \text { Form C } \\ & \text { (H-Bridge) } \end{aligned}$	1 Form A, 1 Form C	1 Form A, 1 Form C	1 Form A	1 Form A
Contact Material	AgNi 0.15 AgSnO	AgNi 0.15 AgSnO	AgNi 0.15 PdCu, AgSnO AgSnO	AgNi 0.15	$\begin{gathered} \text { AgSnO } \\ \text { AgNi } 0.15 \end{gathered}$	$\begin{gathered} \mathrm{AgSnO} \\ \text { AgNi } 0.15 \end{gathered}$	AgNi 0.15	PdCu AgCu
Contact Rating @ $85^{\circ} \mathrm{C}$ (Form A only, nominal coil voltage)	20A @ 14VDC	20A @ 14VDC	40A @ 14VDC	20A @ 14VDC	20A @ 14VDC	40A @ 14VDC	70A @ 14VDC	55W to 275W (Lamp)
Expected Mech. Life	$1 \times 10^{7} \mathrm{Ops}$.	1×10^{7} Ops.						
Expected Electrical Life at Rated Load	1×10^{5}	$\begin{gathered} 1 \times 10^{6}-3 \times 10^{6} \\ \text { (Load dependent) } \end{gathered}$						
Nominal Coil Voltage	12VDC	12 \& 24VDC	12 \& 24VDC	12VDC	12VDC	12 \& 24VDC	12VDC	12VDC
Nominal Coil Power	.55W	.8W	1.6W	$\begin{aligned} & .64 \mathrm{~W} \\ & .91 \mathrm{~W} \end{aligned}$	1.6W	1.6W-1.81W	2.0 W	1.6W
Mounting Options	PC board	PC board	PC board	PC board	Plug-in	PC board, Plug-in, Bracket	Plug-in, Bracket	Plug-in
Sockets / Connectors	-	-	-	-	PC terminal socket, wiring harness style connector	PC terminal socket, wiring harmess style connector with or without bracket	Wiring harness style connector	PC terminal socket, wiring hamess style connector with or without bracket
Page Number	1002	1005	1007	1012	1014	1017	1021	1024

[^7]| Electronics Issued 3－03 | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Solid State Relays \＆Input／Output M odules | | | | | | | | |
| | P\＆B | | P\＆B | P\＆B | I
 P\＆B | P\＆B | T $\begin{aligned} & \text { E } \\ & 50 \\ & 50 \end{aligned}$
 P\＆B | P\＆B |
| Series | SSRT | SSR | SSRD | SSRO | IAC | OAC | IDC | ODC |
| Features | －10－25A rating
 －＂Hockey Puck＂ package
 －LED indicator
 －Triac output
 －AC \＆DC input | －25－125A rating
 －＂Hockey Puck＂ package
 －LED indicator
 －Inverse parallel SCR output
 －AC \＆DC input | －25－40A rating per output
 －Two independent solid state relays in one＂Hockey Puck＂package
 －Inverse parallel SCR output
 ${ }_{c} \mathrm{MB}_{\mathrm{us}}$ | －20A rating per output
 －Four independent solid state relays in one＂Hockey Puck＂package
 －Triac output
 ${ }^{c} \mathrm{~N}_{\mathrm{us}}$ | －0．05A output rating
 －AC input module
 －Industry standard 0.6 ＂（15．2mm） wide package
 －Series operation compatible | －5A output rating
 －AC output module
 －Industry standard $0.6^{\prime \prime}(15.2 \mathrm{~mm})$ wide package
 －Series operation compatible | －0．05A output rating
 －DC input module
 －Industry standard 0.6 ＂$(15.2 \mathrm{~mm})$ wide package
 －Series operation compatible | －3A output rating
 －DC output module
 －Industry standard $0.6^{\prime \prime}$（15．2mm） wide package
 －Series operation compatible |
| Approximate Dimensions | $\left\lvert\, \begin{gathered} 1.75 " \times 2.25 " \times .87 " \mathrm{~h} \\ (44.4 \times 57.2 \times 22 \mathrm{~h}) \\ 3.5 \mathrm{oz} .(98 \mathrm{~g}) \end{gathered}\right.$ | $\begin{gathered} 1.75^{\prime \prime} \times 2.25 " \times .87 \mathrm{~h} \\ (44.4 \times 57.2 \times 22 \mathrm{~h}) \\ 3.5 \mathrm{oz}(98 \mathrm{~g}) \end{gathered}$ | $\left\lvert\, \begin{gathered} 1.75 " \times 2.25 " \times .89 " \mathrm{~h} \\ (44.4 \times 57.2 \times 22.6 \mathrm{~h}) \\ 3.5 \mathrm{oz} .(98 \mathrm{~g}) \end{gathered}\right.$ | $\left\lvert\, \begin{gathered} 1.75 " \times 2.3^{\prime \prime} \times .85 \mathrm{~h} \\ (44.4 \times 58.4 \times 21.6 \mathrm{~h}) \\ 3.5 \mathrm{oz} .(98 \mathrm{~g}) \end{gathered}\right.$ | $\begin{gathered} 1.7^{\prime \prime} \times .60 \text { " } \times 1.25^{\prime \prime} \mathrm{h} \\ (43.2 \times 15.2 \times 31.8 \mathrm{~h}) \\ 1.48 \mathrm{oz} .(42 \mathrm{~g}) \end{gathered}$ | $\left\lvert\, \begin{gathered} 1.77^{\prime \prime} \times .60 \times 1.255^{\prime \prime} \\ (43.2 \times 15.2 \times 31.8 \mathrm{~h}) \\ 1.48 \text { oz. }(42 \mathrm{~g}) \end{gathered}\right.$ | $\left(\begin{array}{c} 1.7^{\prime \prime} \times .60^{\prime \prime} \times 1.25^{\prime \prime h} \\ (43.2 \times 15.2 \times 31.8 \mathrm{~h}) \\ 1.48 \mathrm{oz}(42 \mathrm{~g}) \end{array}\right.$ | $\begin{gathered} 1.7^{\prime \prime} \times .60^{\prime \prime} \times 1.25^{\prime \prime} \mathrm{h} \\ (43.2 \times 15.2 \times 31.8 \mathrm{~h}) \\ 1.48 \mathrm{oz}(42 \mathrm{~g}) \end{gathered}$ |
| Switch Arrangement | 1 Form A | 1 Form A | （2）$\times 1$ Form A | （4）$\times 1$ Form A | 1 Form A （sinking） | 1 Form A | 1 Form A （sinking） | 1 Form A |
| Coupling | Optical |
| Input | $\begin{gathered} 3-32 \mathrm{VDC} \\ 90-280 \mathrm{VAC} \end{gathered}$ | $\begin{gathered} 3-32 \mathrm{VDC} \\ 90-280 \mathrm{VAC} \end{gathered}$ | 4－15VDC | 4－15VDC | 18－36VACNDC 90－140VACNDC 180－280VACNDC | 5VDC 15VDC 24VDC | $\begin{gathered} 3.3-32 \mathrm{VDC} \\ 4-32 \mathrm{VDC} \\ 10-60 \mathrm{VDC} \end{gathered}$ | $\begin{gathered} 5 \mathrm{VDC} \\ \text { 15VDC } \\ \text { 24VDC } \end{gathered}$ |
| Output Switching | Zero | Zero， Random | Zero， Random | Zero， Random | Random | Zero | Random | Random |
| Min．Output Current | ．1A | .05 or ．1A （model dependent） | ．1A | ．15A | >0 | ．05A | >0 | ．01A |
| Max．Output Current | 25A | 125A | 40A | 20A | 0．05A | 3 A to 5A | 0．05A | $\begin{gathered} \text { 1A @ } 250 \mathrm{~V} \\ 3 \mathrm{~A} @ 60 \mathrm{~V} \end{gathered}$ |
| Min．Output Voltage | 24V | 24 or 48 V （model dependent） | 24 V | 24V | >0 | 24V | >0 | 3 V |
| Max．Output Voltage | 280 V | 280 or 660V （model dependent） | 280V | 280V | 30 V | 280 V | 30 V | $\begin{aligned} & 60 \mathrm{~V}, \\ & 250 \mathrm{~V} \end{aligned}$ |
| Output Type | AC | AC | AC | AC | DC | AC | DC | DC |
| Terminals | Screw | Screw | Quick connect | Quick connect | Printed circuit | Printed circuit | Printed circuit | Printed circuit |
| Mounting | Chassis mount | Chassis mount | Chassis mount | Chassis mount | Mounting board | Mounting board | Mounting board | Mounting board |
| Page Number | 1102 | 1104 | 1106 | 1108 | 1110 | 1110 | 1110 | 1110 |

[^8]| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Solid State Input／Output M odules | | | | | Time Delay Relays | | |
| | P\&B | P\＆B | P\＆B | P\＆B | | | AGASTAT |
| Series | IACM | OACM | IDCM | ODCM | Series | 3RP1 | 48K |
| Features | －0．05A output rating
 －Slim line AC input module
 －Only $0.4^{\prime \prime}$（ 10.2 mm ） wide package
 －Series operation compatible | －5A output rating
 －Slim line AC output module
 －Only $0.4^{\prime \prime}$（ 10.2 mm ） wide package
 －Series operation compatible | －0．05A output rating
 －Slim line DC input module
 －Only $0.4^{\prime \prime}(10.2 \mathrm{~mm})$ wide package
 －Series operation compatible | －3A output rating
 －Slim line DC output module
 －Only $0.4^{\prime \prime}(10.2 \mathrm{~mm})$ wide package
 －Series operation compatible | Features | －3A rating
 －Programmable time delay relay
 －Universal or fixed input voltage
 －Fits 35 mm DIN track
 －Consult factory for VDE file | －10A rating
 －Programmable time delay relay
 －Universal input voltage
 －LED status indicators
 －1／16 DIN style enclosure
 只（18）$C \in$ |
| Approximate Dimensions | $\begin{gathered} 1.7^{\prime \prime} \times .4^{\prime \prime} \times 1.0^{\prime \prime} \mathrm{h} \\ (43.2 \times 10.2 \times 25.4 \mathrm{~h}) \\ 0.9 \mathrm{oz}(25.5 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.7^{\prime \prime} \times .4^{\prime \prime} \times 1.0^{\prime \mathrm{h}} \\ (43.2 \times 10.2 \times 25.4 \mathrm{~h}) \\ 0.9 \mathrm{oz}(25.5 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.7^{\prime \prime} \times .4 \text { " } \times 1.0^{\prime \prime} \mathrm{h} \\ (43.2 \times 10.2 \times 25.4 \mathrm{~h}) \\ 0.9 \mathrm{oz} .(25.5 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.7^{\prime \prime} \times .4^{\prime \prime} \times 1.0^{\prime \prime} \mathrm{h} \\ (43.2 \times 10.2 \times 25.4 \mathrm{~h}) \\ 0.9 \mathrm{oz} .(25.5 \mathrm{~g}) \end{gathered}$ | Approximate Dimensions | $\begin{gathered} 4.02 \text { " } \times .886 \text { " } \times 3.39 \text { "h } \\ (102 \times 22.5 \times 86 \mathrm{~h}) \\ 5.3 \mathrm{oz} .(150 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.89 \text { " } \times 1.89 " \times 2.73 \mathrm{lh} \\ (48.0 \times 48.0 \times 69.3 \mathrm{~h}) \\ 5.0 \mathrm{oz} .(142 \mathrm{~g}) \end{gathered}$ |
| Switch
 Arrangement | 1 Form A （sinking） | 1 Form A | 1 Form A （sinking） | 1 Form A | Contact Arrang． | 1 Form C，
 2 Form C | 2 Form C |
| Coupling | Optical | Optical | Optical | Optical | Contact Rating | 3A＠250VAC | 10A＠30VDC or 120／240VAC |
| Input | 18－36VACNDC 90－140VACNDC 180－280VACNDC | $\begin{gathered} \text { 5VDC } \\ \text { 15VDC } \\ \text { 24VDC } \\ 3-15 V D C \end{gathered}$ | $\begin{gathered} 3.3-32 \mathrm{VDC} \\ 4-32 \mathrm{VDC} \\ 10-60 \mathrm{VDC} \end{gathered}$ | $\begin{gathered} \text { 5VDC } \\ \text { 15VDC } \\ \text { 24VDC } \\ \text { 3-15VDC } \end{gathered}$ | Mode of Operation | Programmable： $8-16$ timing functions or Delay On | Programmable 8 functions（11－pin） 4 functions（8－pin） or Delay On |
| Output Switching | Random | Zero， Random | Random | Random | Delay Time | 0.05 sec ．to 100 hr ． | 0.1 sec ．to 10 hr ． |
| Minimum Output Current | >0 | ．05A | >0 | ．01A | Type of Control | Rotary switches \＆ Potentiometer Adj． | Knob \＆ Rotary switches |
| Maximum Output Current | 0．05A | 3A to 5A | 0．05A | 3 A | Maximum Repeatability | $\pm 1 \%$ | $\pm 0.5 \% \pm 0.02 \mathrm{sec}$. |
| Minimum Output Voltage | >0 | 24V | >0 | 3 V | Precision | Tolerance $\pm 5 \%$ | Overall Accuracy $\pm 1.0 \% \pm 0.02 \mathrm{sec} .$ |
| Maximum Output Voltage | 30 V | 280 V | 30 V | 60 V | | | |
| Output Type | DC | AC | DC | DC | Temp．Range | $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ | $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ |
| Terminals | Printed circuit | Printed circuit | Printed circuit | Printed circuit | Input Voltage | 24－240VACNDC； 24VACNDC．110VAC； 24VACNDC．220VAC | $\begin{gathered} \text { 24-240VAC; } \\ \text { 24-125VDC; } \\ \text { 120VAC } \end{gathered}$ |
| Mounting | Mounting board | Mounting board | Mounting board | Mounting board | Mounting | DIN Mount | Plug－in |
| Page Number | 1118 | 1118 | 1118 | 1118 | Page Number | 1207 | 1210 |

	Every 1444 P\&B	P\&B	P\&B	AGASTAT	AGASTAT	P\&B	P\&B
Series	CNT	CNS	CNM5	SSF	SCF	CN1	CG
Features	- 10A rating - Programmable timer/counter - Digital display - Universal input voltage - 1/16 DIN style enclosure 기 (18)	- 10A rating - Programmable time delay relay - Universal input voltage - 1/16 DIN style enclosure	- 10A rating - Economical, programmable time delay relay - Digital accuracy - LED shows status - 1/16 DIN style enclosure	- 10A rating - Programmable time delay module with replaceable relay - Universal input voltage	- 10A rating - Programmable time delay relay - Slim plug-in package with mating socket	- 10A rating - Economical single function (on delay) time delay relay - Digital accuracy - LED shows status - 1/16 DIN style enclosure	- 10A rating - Top of the line P\&B non-programmable time delay relays - Extended timing ranges
Approximate Dimensions	$\begin{gathered} 1.88^{\prime \prime} \times 1.88 \text { " } \times 2.83^{\prime \prime h} \\ (47.8 \times 47.8 \times 71.9 \mathrm{~h}) \\ 4.3 \text { oz. (122g) } \end{gathered}$	$1.88^{\prime \prime} \times 1.88^{\prime \prime} \times 2.83^{\prime \prime} h$ $(47.8 \times 47.8 \times 71.9 \mathrm{~h})$ 4.3 oz. (122g)	$\begin{gathered} 1.88 " \times 1.88 " \times 2.83 \text { "h } \\ (47.8 \times 47.8 \times 71.9 \mathrm{~h}) \\ 4.3 \mathrm{oz} .(122 \mathrm{~g}) \end{gathered}$	$3.81 " \times 2.19$ " $\times 2.67$ " h ($97 \times 56 \times 68 \mathrm{~h})$ 5.5 oz. (156g)	$\begin{gathered} 2.84 " \times 1.42 \text { " } \times 3.53 \mathrm{~h} \\ (72 \times 36 \times 90 \mathrm{~h}) \\ 3.5 \mathrm{oz} .(99 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 1.88 \text { " } \times 1.88 \text { " } \times 2.83^{\prime \prime} h \\ (47.8 \times 47.8 \times 71.9 \mathrm{~h}) \\ 4.3 \text { oz. (122g) } \end{gathered}$	$\begin{gathered} 2.41^{\prime \prime} \times 1.788^{\prime \prime} \times 2.94^{\prime \prime h} \\ (61.1 \times 45.2 \times 74.6 \mathrm{~h}) \\ 8 \mathrm{oz} .(227 \mathrm{~g}) \end{gathered}$
Contact Arrang.	2 Form C						
Contact Rating	10A @ 30VDC or 277VAC	$\begin{gathered} \text { 10A @ 30VDC or } \\ 277 \mathrm{VAC} \end{gathered}$	10A @ 30VDC or 277VAC	$\begin{gathered} \text { 10A @28VDC or } \\ \text { 120VAC } \end{gathered}$	$\begin{aligned} & 5 \text { or 10A @ } 28 \mathrm{VDC} \text { or } \\ & \text { 120VAC } \end{aligned}$	10A @ 30VDC or 277VAC	10A @ 240VAC
Mode of Operation	Programmable: 10 timing functions 2 counting functions	Programmable: 8 functions (11-pin) 4 functions (8-pin)	Programmable: 5 timing functions	Programmable 4 functions	Programmable 4 functions	On Delay	Delay on Operate Delay on Release Interval On
Delay Time	0.1 sec . to 9,990 hr.	0.1 sec . to 100 min .	0.1 sec . to 9,990 hr.	0.1 sec . to 10 hr .	0.1 sec . to 10 hr .	0.1 sec . to $9,990 \mathrm{hr}$.	1 min . to 50 min .
Type of Control	Thumbwheel switches	DIP switches \& Potentiometer Adj.	Thumbwheel switches \& Rotary switch	Recessed Potentiometer Adj.	Recessed dials and Potentiometer Adj.	Thumbwheel switches	Potentiometer Adj.
Maximum Repeatability	$\pm 0.1 \% \pm 0.05 \mathrm{sec}$.	$\pm 0.2 \%$	$\pm 0.05 \% \pm 0.04 \mathrm{sec}$.	$\pm 1 \% \pm 0.01 \mathrm{sec}$.	$\pm 1 \% \pm 0.01 \mathrm{sec}$.	$\pm 0.05 \% \pm 0.04 \mathrm{sec}$.	$\begin{aligned} & \pm 0.5 \% \text { (AC) } \\ & \pm 0.1 \% \text { (DC) } \end{aligned}$
Precision	$\begin{gathered} \text { Tolerance } \\ \pm 0.1 \% \pm 0.05 \mathrm{sec} . \end{gathered}$	Tolerance Min. spec. at min.; $+20 \%,-0$ at max.	$\begin{gathered} \text { Tolerance } \\ \pm 0.05 \% \pm 0.04 \mathrm{sec} . \end{gathered}$	Overall Accuracy $\pm 3 \% \pm 0.01 \mathrm{sec} .$	Overall Accuracy $\pm 3 \% \pm 0.01 \mathrm{sec} \text {. }$	$\begin{gathered} \text { Tolerance } \\ \pm 0.05 \% \pm 0.04 \mathrm{sec} . \end{gathered}$	Tolerance $+0,-10 \%$ at min. $+10 \%,-0$ at max.
Temp. Range	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Input Voltage	$\begin{gathered} \text { 12VDC } \\ \text { 24-240VACNDC } \end{gathered}$	24-240VACNDC	120VAC	$\begin{gathered} \text { 24-125VDC } \\ \text { 24-240VAC or } \\ \text { User-selectable } \end{gathered}$	$\begin{aligned} & \text { 12-125VDC } \\ & \text { 24-240VAC } \end{aligned}$	120VAC	$\begin{gathered} 12-24 \mathrm{VDC} \\ 120-240 \mathrm{VAC} \end{gathered}$
Mounting	Plug-in	Plug-in	Plug-in	DIN-mount or panel mount	Plug-in	Plug-in	Plug-in
Page Number	1211	1213	1215	1217	1218	1219	1220

Dimensions are shown for Dimensions are in inches over Specifications and availability

[^9]| Electronic | | | | Issued 3－03 | | | SELE | CTOR GUIDE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time Delay Relays \＆M odules | | | | | | | | |
| | | AGASTAT | AGASTAT | AGASTAT | |
 AGASTAT | AGASTAT | AGASTAT |
| Series | SSC | SCB／SCC | STA | SRC | SST | SCE | VTM－1 | VTM1 |
| Features | －10A rating
 －Specification grade
 －Choose from 13 different timing ranges | －10A rating
 －Specification grade
 －Choose from 13 different timing ranges
 －Premium components | －10A rating
 －Specification grade
 －Choose from 13 different timing ranges
 －LED indicators
 －Space－saving quick connect plug－in terminals
 쑈 | －10A rating
 －Specification grade
 －Repeat cycle timer
 －Choose from 13 different timing ranges
 －Premium components $c \in$ | －10A rating
 －Industrial grade
 －Wide choice of functions
 － 9 different timing ranges | －10A rating
 －Specification grade
 －True Off Delay
 － 6 different timing ranges | －1A rating
 －Specification grade
 －In－line timing module
 －Solid state output switch
 －Universal input voltage
 听（18） | －1A rating
 －On Delay timing module
 －Solid state output switch
 －External Res． adjustable 只 (1) |
| Approximate Dimensions | $\begin{gathered} 1.97 " \times 1.97 " \times 3.25^{\prime \prime} \mathrm{h} \\ (50 \times 50 \times 83 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.97 \text { " } \times 1.97 \text { " } \times 3.25 \text { "h } \\ (50 \times 50 \times 83 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 1.5 " \times 1.39 " \times 3.045 \mathrm{~h} \\ (38 \times 35 \times 77 \mathrm{~h}) \\ 4.2 \mathrm{oz} .(119 \mathrm{~g}) \\ \hline \end{gathered}$ | $\begin{gathered} 1.97 \text { " } \times 1.97 \text { " } \times 3.25 \text { "h } \\ (50 \times 50 \times 83 \mathrm{~h}) \\ 5.3 \mathrm{oz} .(149 \mathrm{~g}) \end{gathered}$ | $\left(\begin{array}{c} 2.0^{\prime \prime} \times 2.0^{\prime \prime} \times 3.2^{\prime \prime} \mathrm{h} \\ (50.8 \times 50.8 \times 81.3 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{array}\right.$ | $\begin{gathered} 1.97 " \times 1.97 " \times 3.255^{\prime \prime} \mathrm{h} \\ (50 \times 50 \times 83 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{gathered}$ | $\left\lvert\, \begin{gathered} 2.13 " \times 2.65 " \times 0.76 " \mathrm{~h} \\ (54 \times 67 \times 19 \mathrm{~h}) \\ 3 \mathrm{oz} .(84 \mathrm{~g}) \end{gathered}\right.$ | $2.0 " \times 2.0 " \times 1.25 \mathrm{~h} h$ $(50.8 \times 50.8 \times 31.8 \mathrm{~h})$ $4 \mathrm{oz} .(112 \mathrm{~g})$ |
| Contact． Arrang． | 2 Form C | 1 Form C， 2 Form C | 1 Form A | 1 Form A |
| Contact Rating | $\begin{gathered} \text { 10A @ 28VDC or } \\ \text { 120VAC } \end{gathered}$ | $\begin{gathered} \text { 10A @ 28VDC or } \\ \text { 120VAC } \end{gathered}$ | 10A＠28VDC or 120VAC | $\begin{gathered} \text { 10A @ 28VDC or } \\ \text { 120VAC } \end{gathered}$ | 10A＠120／240VAC | 10A＠120／240VAC
 （1 pole）or
 5A＠120／240VAC | 1A＠240VACNDC | 1A＠240VACNDC |
| Mode of Operation | On Delay Off Delay Interval | On Delay Off Delay Interval | On Delay
 Off Delay Interval Accum．On Delay | Repeat Cycle | On Delay，Off Delay， Interval，One Shot， Repeat Cycle | True Off Delay | On Delay | On Delay |
| Delay Time | 0.1 sec ．to 10 hr ． | 0.1 sec ．to 10 hr ． | 0.1 sec ．to 10 hr ． | 0.1 sec ．to 60 min ． | 0.1 sec ．to 120 min ． | 0.1 sec ．to 10 min ． | 1 sec ．to $1,000 \mathrm{sec}$ ． | 0.5 sec ．to 60 min ． |
| Type of Control | Fixed， Potentiometer Adj．， Ext．Res．Adj． | Fixed， Potentiometer Adj．， Ext．Res．Adj． | Fixed， Potentiometer Adj．， Ext．Res．Adj． | Potentiometer Adj． | Potentiometer Adj． | Fixed， Potentiometer Adj．， | Ext．Res．Adj． | Ext．Res．Adj． |
| Maximum Repeatability | $\pm 1 \% \pm 0.004 \mathrm{sec}$ ． | $\pm 0.5 \% \pm 0.004 \mathrm{sec}$ ． | $\pm 0.5 \% \pm 0.004 \mathrm{sec}$ ． | $\pm 1 \% \pm 0.004 \mathrm{sec}$. | $\pm 1 \%$ | $\pm 1 \%$ | $\pm 2 \%$ | $\pm 1 \%$ |
| Precision | Overall Accuracy $\pm 5.25 \%$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \end{gathered}$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \end{gathered}$ | Overall Accuracy $\pm 2.25 \%$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 5 \% \end{gathered}$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 5 \% \end{gathered}$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \end{gathered}$ | $\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \text { at } \\ R=1 \text { megohm } \end{gathered}$ |
| Temp．Range | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$（SCB） | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $-23^{\circ} \mathrm{C}$ to $+54^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ |
| Input Voltage | $\begin{aligned} & 12-120 \mathrm{VDC} \\ & 24-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & \text { 12-120VDC } \\ & \text { 24-240VAC } \end{aligned}$ | $\begin{aligned} & 12-120 \mathrm{VDC} \\ & 24-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & 12-120 \mathrm{VDC} \\ & 24-240 \mathrm{VAC} \end{aligned}$ | $\begin{aligned} & \text { 12-120VDC } \\ & \text { 24-120VAC } \end{aligned}$ | $\begin{aligned} & 24-125 \mathrm{VDC} \\ & 24-120 \mathrm{VAC} \end{aligned}$ | $\begin{gathered} 24-240 \text { VACNDC } \\ \text { or 12VDC } \end{gathered}$ | 12－120VACNDC |
| Mounting | Plug－in | Plug－in | Plug－in | Plug－in | Plug－in | Plug－in | Panel mount | Panel Mount |
| Page Number | 1234 | 1235 | 1236 | 1237 | 1238 | 1239 | 1240 | 1241 |

Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．
 reference purposes only．

				Issued 3－03			SEL	ctor GuId
Time Delay Relays \＆M odules								
		AGASTAT	AGASTAT	AGASTAT	AGASTAT	AGASTAT	AGASTAT	
Series	VTMA1	VTMR1	VTM2	VTM3	VTM4	VTM7	7000	2100
Features	－1A rating －On Delay timing module －Solid state output switch －Internal potentiometer	－8A rating －On Delay timing module －Electromechanical relay output －Internal potentiometer	－1A rating －Off Delay timing module －Solid state output switch －External Res． adjustable	－1A rating －Interval timing module －Solid state output switch －External Res． adjustable	－1A rating －One Shot timing module －Solid state output switch －Extemal Res． adjustable	－1A rating －Repeat cycle timing module －Independently adjustable on and off times －Solid state output switch －External Res． adjustable 미（ㅏㅏ	－20A rating －Electropneumatic time delay relay －Calibrated timing head －Front terminals －Optional auxiliary switches －Many options （1L）$\subset \in$	－10A rating －Miniature electropneumatic time delay relay －Knob or key adj． －Hermetically sealed，high shock and vibration option $c \epsilon$
Approximate Dimensions	$\begin{gathered} 2.0 \mathrm{O} \times 2.0 \mathrm{0} \times 1.25 \mathrm{~h} \\ (50.8 \times 50.8 \times 31.8 \mathrm{~h}) \\ 4 \text { oz. }(112 \mathrm{~g}) \end{gathered}$	$2.0 " \times 2.01 \times 1.25 \mathrm{H} h$ $(50.8 \times 50.8 \times 31.8 \mathrm{~h})$ 4 oz．$(112 \mathrm{~g})$	$\begin{array}{\|c\|} 2.0 " \times 2.01 " \times 1.25 " \mathrm{~h} \\ (50.8 \times 50.8 \times 31.8 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{array}$	$2.01 \times 2.01 \times 1.25 \mathrm{~h}$ $(50.8 \times 50.8 \times 31.8 \mathrm{~h})$ 4 oz．$(112 \mathrm{~g})$	$\begin{array}{\|c} 2.0 \mathrm{O} \times 2.0 \mathrm{0} \times 1.25 \mathrm{~h} \\ (50.8 \times 50.8 \times 31.8 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{array}$	$\begin{gathered} 2.0 " \times 2.0 " \times 1.25 \mathrm{~h} h \\ (50.8 \times 50.8 \times 31.8 \mathrm{~h}) \\ 4 \mathrm{oz} .(112 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 4.52 " \times 2.57 " \times 2.83 \text { "h } \\ (114.8 \times 65.3 \times 71.9 \mathrm{~h}) \\ 36 \mathrm{oz} .(1.02 \mathrm{~kg}) \end{gathered}$	$1.52 " \times 1.52 " \times 4.26 \mathrm{~h} h$ $(38.6 \times 38.6 \times 108.2 \mathrm{~h})$ $17 \mathrm{oz} .(482 \mathrm{~g})$
Contact． Arrang．	1 Form A	1 Form C	1 Form A	1 Form A	1 Form A	1 Form A	2 Form C， 4 Form C	2 Form C
Contact Rating	1A＠240VACNDC	8A＠120VAC	1A＠240VACNDC	1A＠240VACNDC	1A＠240VACNDC	1A＠240VACNDC	$\begin{gathered} \text { 20A @ 120/240VAC } \\ 15 \mathrm{~A} @ 30 \mathrm{VDC} \end{gathered}$	10A＠120VAC or 30VDC
Mode of Operation	On Delay	On Delay	Off Delay	Interval	One Shot （Latching Interval）	Repeat Cycle	On Delay， Off Delay， On Delay－Off Delay	On Delay， Off Delay
Delay Time	0.5 sec ．to 60 min ．	15 to 300 sec ．	0.5 sec ．to 60 min ．	0.1 sec ．to 60 min ．	0.03 to 180 sec ．			
Type of Control	Potentiometer Adj．	Potentiometer Adj．	Ext．Res．Adj．	Ext．Res．Adj．	Ext．Res．Adj．	Ext．Res．Adj．	Knob	Knob
Maximum Repeatability	$\pm 5 \%$	$\pm 5 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 1 \%$	$\pm 5-15 \%$（model \＆ delay dependent）	$\pm 5-8 \%$（temp． dependent）
Precision	Overall Accuracy $-0 \%,+10 \%$ at Max． $-30 \%,+10 \%$ at Min．	Overall Accuracy $-0 \%,+10 \%$ at Max． $-30 \%,+10 \%$ at Min．	$\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \text { at } \\ R=1 \text { megohm } \end{gathered}$	$\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \text { at } \\ R=1 \text { megohm } \end{gathered}$	$\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \text { at } \\ R=1 \text { megohm } \end{gathered}$	$\begin{gathered} \text { Overall Accuracy } \\ \pm 2 \% \text { at } \\ R=1 \text { megohm } \end{gathered}$	－	－
Temp．Range	$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$	$-29^{\circ} \mathrm{C}$ to $+74^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Input Voltage	24－240VACNDC	120VAC	12－120VACNDC	12－120VACNDC	12－120VACNDC	12－120VACNDC	$\begin{aligned} & \text { 12-550VAC } \\ & \text { 28-550VDC } \end{aligned}$	$\begin{aligned} & \text { 120-240VAC } \\ & \text { 12-125VDC } \end{aligned}$
Mounting	Panel Mount							
Page Number	1242	1243	1244	1245	1246	1247	1248	1254

[^10]| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sensors，M onitors \＆Protective Relays | | | | | | | |
| | P\＆B | AGASTAT | AGASTAT | AGASTAT | | KILOVAC | KILOVAC |
| Series | CS | VCA | VMA | PMA／PMB | SDAS－01 | WD25 | WD2759 |
| Features | －Single phase voltage sensor
 －Functions as either an overvoltage or an undervoltage sensor
 －Choice of fixed pick－up and knob adjustable drop－out or knob adjustable pick－up and drop－ out
 可（148 | －Single phase undervoltage relay
 －Fixed pick－up and internal potentiometer adjustable drop－out
 －Compact design | －Single phase undervoltage relay
 －Fixed pick－up and internal potentiometer adjustable drop－out
 －Locking potentiometer
 P1 | －Three phase power quality monitor
 －Monitors voltage， phase imbalance， phase sequence， phase loss．
 －Start－up delay and locking potentiometer options． | －Single phase current sensor
 －AC current sensor is offered in both overcurrent and undercurrent types
 －Inductive coupling to power line
 －Potentiometer adjustable | －Paralleling（snych check）relay
 －Checks synchroniza－ tion of two circuits for voltage，phase relationship and frequency
 －Adjustable setpoints
 －Single dead bus， double dead bus and generator to generator types | －Overvoltage／ undervoltage relay
 －User adjustable sensing voltages， number of phases， over and under－ voltage setpoints， and time delays． |
| Approximate Dimensions | $\begin{gathered} 2.41 " \times 1.78^{\prime \prime} \times 2.94^{\prime \prime} \mathrm{h} \\ (61.1 \times 42.2 \times 76.6 \mathrm{~h}) \\ 8 \mathrm{oz} .(227 \mathrm{~g}) \end{gathered}$ | $2.0^{\prime \prime} \times 2.0^{\prime \prime} \times 1.25^{\prime \prime} \mathrm{h}$ （ $50.8 \times 50.8 \times 31.8 \mathrm{~h}$ ） 3.2 oz．（90．7g） | $\begin{gathered} 1.94 \text { " } \times 1.94 \text { " } \times 3.25 \text { "h } \\ (49 \times 49 \times 83 \mathrm{~h}) \\ 6 \text { oz. (168g) } \end{gathered}$ | $\begin{gathered} 3.85 " \times 2.18 \text { " } \times 5.31 \text { "h } \\ (98 \times 55 \times 135 \mathrm{~h}) \\ 24 \mathrm{oz} .(625 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 1.53 \text { " } \times 1.41 \text { " } \times 2.72 \text { "h } \\ (38.9 \times 35.7 \times 70.6 \mathrm{~h}) \\ 3.2 \mathrm{oz} .(90 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 2.95 " \times 2.87 " \times 4.41 \mathrm{~h} \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$ | $\begin{gathered} 2.95 " \times 2.87 " \times 4.41 \mathrm{~h} \mathrm{~h} \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$ |
| Contact／Switch Arrangement | 2 Form C | 1 Form C | 2 Form C | 1 Form $\mathrm{A}+1$ Form C | 2 Form C | 2 Form C | 1 Form C for undervoltage and 1 Form C for overvoltage |
| Contact／Switch Rating | $\begin{gathered} \text { 10A @ 28VDC } \\ \text { or 120VAC } \end{gathered}$ | $\begin{aligned} & \text { 7A @ 250VAC } \\ & \text { 3A @ 30VDC } \end{aligned}$ | $\begin{aligned} & \text { 7A @ 250VAC } \\ & \text { 3A @ 30VDC } \end{aligned}$ | $\begin{aligned} & \text { 8A @ 250VAC } \\ & \text { 3A @ 30VDC } \end{aligned}$ | 2A＠28VDC or 1A＠120VAC | $\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$ | $\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$ |
| Monitor／Sense Range or Threshold | 16 to 140 VAC or VDC in various ranges | 120VAC or 240VAC， nominal | 15 to 240 VAC or VDC in various ranges | 110 to 600VAC in various ranges | 1.5 to 15A AC | 120 to 480VAC， nominal 575VAC，Max． $40-400 \mathrm{~Hz}$ ． | 120 to 480 VAC ， nominal 700VAC，Max． $50-400 \mathrm{~Hz}$ ． |
| Temperature Range | $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ | $-23^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ | $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ | $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ |
| Terminals | Octal plug | Quick Connect | Octal plug | Screws | Quick connect | Screws | Screws |
| Mounting Options | Socket | Panel | Socket | DIN－rail，Panel or Machine Tool Rail （with optional adapter plate） | Socket | DIN－rail or Panel | DIN－rail or Panel |
| Sockets | Screw terminal | － | Screw terminal | － | Screw terminal， Solder terminal， PC terminal， Quick connect terminal | － | － |
| Page Number | 1302 | 1303 | 1304 | 1305 | 1307 | 1308－1309 | 1308 \＆ 1310 |

Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．
Dimensions are shown for Dimensions are in inches over ww．tycoelectronics．com
reference purposes only．
Specifications and
subject to change．

	KILOVAC	KILOVAC	KILOVAC	KILOVAC
Series	WD32	WD47	WD5051	WD810U
Features	- Reverse power relay - Monitors the direction of power from AC generators - Adjustable trip set and time delay	- Phase sequence relay - Monitors the correct phase rotation and loss of phase. - No adjustments or calibration necessary.	- One and three phase overcurrent relay - Nominal sensing current, instantaneous over current (IOC) setpoint, time over current (TOC) setpoint and time overcurrent time delay are user configured. 9	- Over/ underfrequency relay - User selectable nominal frequency, underfrequency (UF) trip set, overfrequency (OF) trip set, UF time delay and OF time delay. TJ
Approximate Dimensions	$\begin{gathered} 2.95 " \times 2.87 " \times 4.41 \mathrm{~h} \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.95 " \times 2.87 " \times 4.41 \mathrm{~h} h \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.95^{\prime \prime} \times 2.87 " \times 4.41^{\text {"h }} \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$	$\begin{gathered} 2.95 " \times 2.87 " \times 4.41 \mathrm{lh} \\ (75 \times 73 \times 112 \mathrm{~h}) \\ 14.4 \mathrm{oz} .(400 \mathrm{~g}) \end{gathered}$
Contact / Switch Arrangement	2 Form C	2 Form C	1 Form C for IOC and 1 Form C for TOC	1 Form C for UF and 1 Form C for OF
Contact / Switch Rating	$\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$	$\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$	$\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$	$\begin{aligned} & \text { 5A @ 120VAC or } \\ & \text { 30VDC } \end{aligned}$
Monitor / Sense Range or Threshold	120 to 480VAC, nominal 575VAC, Max. $40-400 \mathrm{~Hz}$. 5A, nominal	120 to 480VAC, nominal 575VAC, Max. $50-400 \mathrm{~Hz}$.	$\begin{gathered} 1,3,6 \text { or } 8 \mathrm{~A} \\ 40-400 \mathrm{~Hz} . \end{gathered}$	50,60 or 400 Hz ., nominal 1000 Hz, ,Max. 20 to 480VAC, 575VAC, Max.
Temperature Range	$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$			
Terminals	Screws	Screws	Screws	Screws
Mounting Options	DIN-rail or Panel	DIN-rail or Panel	DIN-rail or Panel	DIN-rail or Panel
Sockets	-	-	-	-
Page Number	1308 \& 1311	1308 \& 1312	1308 \& 1313	1308 \& 1314

Need Protective Relays in Steel Cases?

Our steel-cased protective relays are not desribed in this technical databook as they do not represent the most cost-effective solution for many design requirements. While the plastic-cased WD... series products are more appropriate for many new industrial applications, we still offer our steelcased protective relays. For details on KILOVAC steel-cased protective relays, consult technical support (see inside back cover)] or visit our website at www.tycoelectronics.com.

Looking for high performance relay products?

Our KILOVAC high voltage relays; HARTM AN and KILOVAC high performance power relays, sensors and contactors; and CII high performance signal level relays, timers, sensors and solenoids are not described in detail in this technical databook. We have included an overview of those product lines in section 14 beginning on page 1401 For detailed information on our broad high performance relay product line, consult technical support (see inside back cover) or visit our website at www.tycoelectronics.com.

Alphanumeric Index

Series	Type	Page
W6.	M agnetic Circuit Breaker	119
W9.	. M agnetic Circuit Breaker	119
W23	. Thermal Circuit Breaker	116
W28	. Thermal Circuit Breaker	110
W31	. Thermal Circuit Breaker	116
W33	. Thermal Circuit Breaker	114
W51	. Thermal Circuit Breaker	112
W54.	.Thermal Circuit Breaker	105
W57.	. Thermal Circuit Breaker	103
W58....	. Thermal Circuit Breaker ..	107

NOTE: A question tree that may help you in selecting an appropriate circuit breaker for your application can be found on the next page.

$\mathrm{P}_{\&} \mathrm{~B}$ Circuit Breaker Question Tree

This guide helps the user select one or more circuit breaker series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a breaker for a particular application.

W57
 series

Compact, Push To Reset Only Thermal Circuit Breaker

${ }^{c} \mathrm{MN}_{\mathrm{us}}$

Features

- New, compact, design.
- 4 to 20 amp ratings.
- Cannot be manually tripped.
- Button extends for visual trip indication.
- Push button to reset breaker.
- Numerous mounting and termination options.

Agency Approvals

W57 series is UL 1077 Recognized as Supplementary Protectors, File E69543, for Canada and the United States.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also sek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Calibration: Will continuously carry 100\% of rating.
May trip between 101% and 134%, but must trip at 135% of rating within one hour at $+25^{\circ} \mathrm{C}$.
Dielectric Strength: 1,500VAC (60 seconds).
Insulation Resistance: 100 megohms.
Maximum Operating Voltages: 50VDC; 250VAC, $50 / 60 \mathrm{~Hz}$.

Interrupt Capacity: 1,000 amps in accordance with UL standard 1077.
Resettable Overload Capacity: Ten times rated current.
Reset Time: 60 seconds.

Typical Resistance vs. Current Rating @ $+\mathbf{2 5}^{\circ} \mathrm{C}$

Current Rating in Amps	Typical Resistance in Ohms	Current Rating in Amps	Typical Resistance in Ohms
4.0	0.062	10.0	0.025
5.0	0.050	12.0	0.021
6.0	0.042	15.0	0.017
7.0	0.036	20.0	0.012
8.0	0.031		

Mechanical/Environmental Data

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Termination: .250 " (6.35 mm) quick connects.
Mounting: Various options. See Ordering Information and drawings.
Approximate Weight: 0.5 oz . (14.3g).

Time vs. Current Trip Curve @ +25 ${ }^{\circ} \mathrm{C}$

Ambient Compensation Table

Ambient Temperature in ${ }^{\circ}$ C	Rating Correction Factor	
	3-6A Models	7-20A Models
10	.80	.80
20	.90	.90
25	100	100
30	110	105
40	125	115
50	161	125
60	2.15	140

To use this chart: Divide the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve.
Do not use these devices outside their specified operating temperature ranges.

Outline Dimensions

Optional Protective Boot
Silicone rubber boot is bonded to integral alumimum nut.

1-1423696-5
Black boot for W57 with 3/8"-24 bushing.

1-1423696-7 Clear boot for W57 with $3 / 8$ "-24 bushing.

1-1423696-4
Black boot for W57 with M 11×10 bushing.

1-1423696-6
Clear boot for W57 with M 11×10 bushing.

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.

W57-XB1A4A10-5	W57-XB1A4A10-15	W57-XB1A7A10-5	W57-XB1A7A10-15
W57-XB1A4A10-10	W57-XB1A4A10-20	W57-XB1A7A10-10	W57-XB1A7A10-20

ORDERING NOTE: Many options illustrated below are not listed in the "Ordering Information" chart above. Options denoted by "Special" or "Special Order" in their descriptions are only offered on a special order basis. Additionally, mounting hardware can be ordered separately. These options are subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding these options.

Mounting Bushings and Recommended Panel Cutouts

Standard Option 1 - M11 X 1.0 Thread Standard Option 2 \& 6-3/8" - 24UNF Thread Standard Option 7 - M12 X 1.0 Thread

Termination Options

Mounting Hardware Options

$\rightarrow \mid(15.0)$	$\rightarrow \underset{(14.0)}{.551 \mathrm{DIA}}$	$\text { . } 740 \mathrm{DIA}$	$\rightarrow \left\lvert\, \begin{gathered} 740 \mathrm{DIA} . \\ (18.8) \end{gathered}\right.$		
Standard Knurled Nut	Standard Hex Nut	Special Integrated Knurled Nut	Special Integrated Knurled Nut with Small Holes	Special Embossed Aluminum	Special Silver Printing On Black

Features

- New design.
- 5 to 40 amp ratings. (35A and 40A models will not be submitted for UL).
- Cannot be manually tripped.
- Button extends for visual trip indication.
- Push button to reset breaker.
- Numerous mounting and termination options.

Agency Approvals

W54 series (except 35A and 40A models) is UL 1077 Recognized as Supplementary Protectors, File E69543, for Canada and the United States.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Calibration: Will continuously carry 100\% of rating.
May trip between 101% and 134\%, but must trip at 135\% of rating within one hour at $+25^{\circ} \mathrm{C}$.
Dielectric Strength: 1,500VAC (60 seconds).
Insulation Resistance: 100 megohms.
Maximum Operating Voltages: 50VDC; 250VAC .

W54 series

Push To Reset Only Thermal Circuit Breaker

${ }^{c} \mathrm{HN}_{\mathrm{us}}$

Interrupt Capacity: 1,000 amps in accordance with UL standard 1077.
Resettable Overload Capacity: Ten times rated current.
Reset Time: 60 seconds.

Typical Resistance vs. Current Rating @ $25^{\circ} \mathrm{C}$

Current Rating in Amps	Typical Resistance in Ohms	Current Rating in Amps	Typical Resistance in Ohms
5.0	0.050	15.0	0.017
6.0	0.042	20.0	0.012
7.0	0.036	25.0	0.010
8.0	0.031	30.0	0.008
10.0	0.025	35.0	0.007
12.0	0.021	40.0	0.006

Mechanical/Environmental Data

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Termination: .250 " (6.35 mm) quick connects or \#8-32 screws.
Mounting: Various options. See Ordering Information and drawings.
Approximate Weight: 0.9 oz. (25.0g).

Time vs. Current Trip Curve @ $+25^{\circ} \mathrm{C}$

Ambient Compensation Table

Ambient Temperature in ${ }^{\circ} \mathbf{C}$	Rating Correction Factor	
	4-8A Models	9-30A Models
10	.90	.80
20	.98	.90
25	100	100
30	110	105
40	125	115
50	161	131
60	2.00	155

To use this chart: Divide the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve.
Do not use these devices outside their specified operating temperature ranges.

Outline Dimensions

Optional Protective Boot
Silicone rubber boot is bonded to integral alumimum nut.

1-1423696-5
Black boot for W54 with 3/8"-24 bushing.

1-1423696-7

Clear boot for W54 with 3/8"-24 bushing.

1-1423696-4
Black boot for W54 with M 11 X 10 bushing.

1-1423696-6
Clear boot for W54 with M 11×10 bushing.

Ordering Information

1. Designator:
W = Circuit breaker
2. Series Number:
$54=$ Single Pole, Push-to-Reset, Thermal Model
Circuit Function:
3 $=$ Series Trip

Our authorized distributors are more likely to stock the following items for immediate delivery.
W54-XB1A4A10-5
W54-XB1A4A10-10
W54-XB1A4A10-20
W54-XB1A4A10-15

Mounting Bushings and Recommended Panel Cutouts

Termination Options

Mounting Hardware Options

Optional Nameplates

ORDERING NOTE:

Many options illustrated here are not listed in the "Ordering Information" chart above. Options denoted by "Special" or "Special Order" in their descriptions are only offered on a special order basis. Additionally, mounting hardware can be ordered separately. These options are subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding these options.

Features

- 0.5 amp to 30 amp ratings.
- Cannot be manually tripped.
- Button extends for visual trip indication.
- Push button to reset breaker.
- Termination is screw or .250 " QC.

Agency Approvals

W58 Series is UL 1077 Recognized as Supplementary Protectors, File E69543, and CSA Certified as Appliance Component Protectors, File LR15734.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ +25 ${ }^{\circ} \mathrm{C}$

Calibration: Breaker will continuously carry 100\% of rated load. It may trip between 101\% and 145\% of rated load, but must trip at 145% at $25^{\circ} \mathrm{C}$.
Dielectric Strength: Over 1,500 volts RMS.
Maximum Operating Voltages: 50VDC; 250VAC.
Interrupt Capacity: 2,000 amps at 50VDC (0.5-30 amp models).
$1,000 \mathrm{amps}$ at 250VAC ($0.5-30 \mathrm{amp}$ models). Note: 30 Oamp model not UL or CSA.
Resettable Overload Capacity: Ten times rated current.

W58 series

Push To Reset Only Thermal Circuit Breaker

只

(18)

Maximum Resistance vs. Current Rating @ +25 ${ }^{\circ} \mathrm{C}$

Current Rating in Amps	Maximum Resistance in Ohms	Current Rating in Amps	Maximum Resistance in Ohms
0.5	5.0	8	0.020
1	135	9	0.020
2	0.32	10	0.014
3	0.18	12	0.010
4	0.10	15	0.010
5	0.026	20	0.005
6	0.026	25	0.006
7	0.020	30^{*}	0.004

*No UL/CSA

Mechanical/Environmental Data

Shock: Withstands to 10 g .
Endurance Cycling: Over 1,000 cycles at 200\% of rated load.
Vibration: Withstands to 10 g at $10-55 \mathrm{~Hz}$.
Weight: Less than $11 / 2 \mathrm{oz}$. (42.5g).

Time vs. Current Trip Curve @ $\mathbf{+ 2 5}^{\circ} \mathrm{C}$

Ambient Compensation Chart

Ambient Temperature In Degrees Centigrade (${ }^{\circ} \mathrm{C}$)

To use this chart: Read up from the ambient temperature to the curve, and across to find a correction factor. Multiply the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve.

Ordering Information

Typical Part No.	W	58	-X	B
1. Designator: W = Circuit breaker				
2. Series Number: $58=$ Single Pole, Push-to-Reset				
3. Circuit Function: $X=$ Series Trip				
4. Button:				
A = White, plain, no rate marking, no trip band $B=$ White with red rate marking, red trip band $\mathrm{C}=$ White with black rate marking, red trip band	$\begin{aligned} & E=\text { White wit } \\ & F=\text { White wit } \end{aligned}$	rate ck rat	king,	and band

5. Mounting Bushing:
$1=7 / 16^{\prime \prime} \times .500^{\prime \prime}(12.70 \mathrm{~mm})$ long
$4=15 / 32^{\prime \prime} \times .300^{\prime \prime}(7.62 \mathrm{~mm})$ long, black
$6=3 / 8^{\prime \prime} \times .465 "(1181 \mathrm{~mm})$ long, round
6. Terminals:

A $=$ Quick connect .250 " (6.35 mm) straight
C $=6 / 32$ screw 90° (screws installed)
$D=6 / 32$ screw 90° (screws bulk packed)
7. Mounting Hardware:
$\begin{array}{ll}4=\text { Knurled nut/hex nut } & 15=\text { Two hex nuts/lock washer } \\ 6=\text { Knurled nut/hex nut/lock washer } & 99=\text { No mtg. hardware supplied (Use C, Step \#8) } \\ 12=\text { Knurled nut/lock washer } & \end{array}$
Note: For other hardware combinations, order separately. See mounting hardware Ordering Information table.
8. Mounting Hardware Packaging:

A = Assembled to bushing
B = Bulk unassembled
$\mathrm{C}=$ No mounting hardware
9. Specify Amp Rating:

9. Specify Amp Rating:						
0.5	3	6	9	15	30^{*}	
1	4	7	10	20		
2	5	8	12	25		*Not UL or CSA

Stock Items - Authorized distributors are more likely to stock the following items.

W58-XB1A4A-1	W58-XB1A4A-6	W58-XB1A4A-15	W58-XC4C12A-2	W58-XC4C12A-15
W58-XB1A4A-2	W58-XB1A4A-7	W58-XB1A4A-20	W58-XC4C12A-3	W58-XC4C12A-20
W58-XB1A4A-3	W58-XB1A4A-8	W58-XB1A4A-25	W58-XC4C12A-5	W58-XC4C12A-25
W58-XB1A4A-4	W58-XB1A4A-10	W58-XB1A4A-30	W58-XC4C12A-7	W58-XC4C12A-30
W58-XB1A4A-5	W58-XB1A4A-12	W58-XC4C12A-1	W58-XC4C12A-10	

Outline Dimensions

Terminal Options

187

Mounting Hardware

Hex Nut
Knurled Nut
Lockwasher
Pal Nut

Mounting Bushing

Type 1

Recommended Cutout

Type 4

Type 6

W28 series

Features

- Switchable version combines on-off switch and circuit protection in a single unit.
- Approved to many international standards (push to reset type).
- Replaces slow blow glass cartridge fuse.
- Labor-saving snap-in mounting.
- Button extends for visual trip indication on push to reset model.
- Rocker on switchable model moves to "overload" position upon trip.

Agency Approvals

W28 series is UL 1077 Recognized as Supplementary Protectors, File E69543, and CSA Certified as Appliance Component Protectors, File LR15734. W28 breakers have been issued Certificate of Suitability CS2190N as supplementary Equipment Protectors by the Energy Authority of New South Wales, Australia. W28 breakers are also DEMKO (Denmark) and SEV (Switzerland) approved. VDE approved for use in office equipment and provides 8 mm isolation. 16 amp and 20 amp models do not have VDE, DEMKO and SEV approvals at present. W28-S is UL 1077 Recognized, and CSA Certified for models up to and including 15 amps.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Calibration: Will continuously carry 100% of rating.
3-20 amp models - may trip between 101\% and 134\%, but must trip at 135% of rating within one hour at $+25^{\circ} \mathrm{C}$. 0.25-2 amp models - may trip between 101\% and 174\%, but must trip at 175% of rating within one hour at $+25^{\circ} \mathrm{C}$.
Dielectric Strength: Over 1,500 volts RMS.
Maximum Operating Voltages: 32VDC; 250VAC, $50 / 60 \mathrm{~Hz}$.
Interrupt Capacity: 1,000 amps at 250VAC, $50 / 60 \mathrm{~Hz}$. and 32VDC in accordance with UL standard 1077.

Switchable or
 Push to Reset
 Fuseholder-Type
 Thermal Circuit Breaker

Note: VDE, Demko, Semko not available on 16A and 20A W28 only.

Resettable Overload Capacity: Six times rated current for 0.25 through 2 amp models. Ten times rated current for 3 through 20 amp models.
Reset Time: 180 seconds max. for 0.25 through 2 amp models. 10 to 60 seconds for 3 through 20 amp models.

Typical Resistance vs. Current Rating @ $\mathbf{+ 2 5}^{\circ} \mathrm{C}$

Current Rating in Amps	Typical Resistance in Ohms	Current Rating in Amps	Typical Resistance in Ohms
0.25	14.0	8.0	0.016
0.50	3.55	9.0	0.014
0.75	2.0	10.0	0.011
10	0.89	110	0.01
2.0	0.17	12.0	0.009
3.0	0.069	13.0	0.009
4.0	0.043	14.0	0.007
5.0	0.030	15.0	0.007
6.0	0.026	16.0	0.007
7.0	0.017	20.0	0.006

Mechanical/Environmental Data

Endurance Cycling(switchable type): Typically 30,000 operations at 100\% of rating.
Termination: . 250 " $(6.35 \mathrm{~mm})$ quick connects. Soldering to terminals is not recommended.
Mounting: Snaps into panel from front. See Recommended Panel Cutouts. Approximate Weight: 0.35 oz (10 g).

Time vs. Current Trip Curve @ $+25^{\circ} \mathrm{C}$

Ambient Compensation Chart

To use this chart: Read up from the ambient temperature to the curve, and across to find a correction factor. Multiply the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve. Do not use these devices outside their specified operating temperature ranges.

Ordering Information

Stock Items - Authorized distributors are more likely to stock the following items.					
W28-XQ1A-0.25	W28-XQ1A-2	W28-XQ1A-6	W28-XQ1A-12	W28-XT1A-12	
W28-XQ1A-0.50	W28-XQ1A-3	W28-XQ1A-7	W28-XQ1A-15		
W28-XQ1A-0.75	W28-XQ1A-4	W28-XQ1A-8	W28-XQ1A-20		
W28-XQ1A-1	W28-XQ1A-5	W28-XQ1A-10	W28-XT1A-10		

Outline Dimensions

Push-to-Reset Type

Switchable Type

Recommended Panel Cutouts

Features

- Compact, trip-free, rocker-actuated design.
- 5 to 20 amp ratings.
- Provides circuit protection and power switching in a single unit.
- Available with optional indicator lamp.
- Snaps into the same cutout as many common power switches.
- Various color, marking and termination options.

Agency Approvals

W51 series is UL 1077 Recognized as Supplementary Protectors, File E69543, for Canada and the United States.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Calibration: Will continuously carry 100\% of rating.
May trip between 101\% and 134\%, but must trip at 135\% of rating within one hour at $+25^{\circ} \mathrm{C}$.
Dielectric Strength: 1,500VAC (60 seconds).
Insulation Resistance: 100 megohms.
Maximum Operating Voltages: 50VDC; 125 or $250 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (model dependent).

W51 series

Rocker-Actuated
 Thermal Circuit Breaker/Power Switch With Optional Indicator Lamp

${ }_{c} \mathrm{NH}_{\text {us }}$

Interrupt Capacity: 1,000 amps in accordance with UL standard 1077.
Resettable Overload Capacity: Ten times rated current.
Switch Endurance Cycling: Typically 6,000 operations at 100\% of rating. Reset Time: 60 seconds.

Typical Resistance vs. Current Rating @ +25 ${ }^{\circ} \mathrm{C}$

Current Rating in Amps	Typical Resistance in Ohms	Current Rating in Amps	Typical Resistance in Ohms
5.0	0.050	10.0	0.025
6.0	0.042	15.0	0.017
7.0	0.036	20.0	0.0125
8.0	0.031		

Mechanical/Environmental Data

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Termination: . 250 " (6.35 mm) quick connects, solder terminals or right angle PC terminals.
Mounting: Snaps into $1122 \times .531(28.5 \times 13.5)$ panel cutout.
Approximate Weight: 0.37 oz . (10.5g).

Time vs. Current Trip Curve @ $\mathbf{+ 2 5}^{\circ} \mathrm{C}$

Ambient Compensation Table

Ambient Temperature in ${ }^{\circ} \mathbf{C}$	Rating Correction Factor	
	5-6A Models	7-20A Models
10	.80	.80
20	.90	.90
25	100	100
30	110	105
40	125	115
50	161	125
60	2.15	140

To use this chart: Divide the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve
Do not use these devices outside their specified operating temperature ranges.

Outline Dimensions

Recommended Panel Cutout

Panel Thickness

W51 series circuit breakers accommodate panel thicknesses from 0.030 in . to 0.118 in . $(0.75 \mathrm{~mm}-3.0 \mathrm{~mm}$).

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.

W51-A121B1-5	W51-A121B1-15	W51-A122B1-5	W51-A122B1-15	W51-A152A1-5	W51-A152A1-15
W51-A121B1-10	W51-A121B1-20	W51-A122B1-10	W51-A122B1-20	W51-A152A1-10	W51-A152A1-20

ORDERING NOTE: Some options illustrated below are not listed in the "Ordering Information" chart above. Options denoted by "Special" or "Special Order" in their descriptions are only offered on a special order basis. Other base and button colors and intermediate amp ratings are also available on a special order basis. All special order items are subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding items with these options.

Case Styles

Angular Button Design
 Design

Marking Options

Terminal Types

Features

- Combines on/off switch and circuit protection in a single unit.
- 2 to 20 amp ratings ($<2 \mathrm{~A}$ types available as special order).
- One or two pole sensing.
- Lighted or non-lighted rocker actuator in various colors.
- Convenient, snap-in mounting.
- Optional auxiliary switch available.
- Trip-free operation.

W33 series

One- and Two-Pole, Switchable Thermal Circuit Breaker / Power Switch With Optional Indicator Lamp

枵 (18)

Electrical Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Calibration: Breaker will continuously carry 100\% of rated load. It may trip between 101% and 135%, but must trip at 135% within one hour at $+25^{\circ} \mathrm{C}$.
Dielectric Strength: Over 2,000 volts RMS.
Maximum Operating Voltages: 50VDC; 250VAC to 400 Hz .
Interrupt Capacity: 1,000 amps at 50VDC; 250VAC, 60 Hz . and
125/250VAC, 400 Hz.
$1,500 \mathrm{amps}$ at $125 / 250 \mathrm{VAC}, 60 \mathrm{~Hz}$.
Resettable Overload Capacity: Ten times rated current.

Mechanical/Environmental Data

Termination: Poles 1\&2: .250" (6.35mm) quick connect/solder terminals. Opt. Aux. Sw.: . 110 " (2.79 mm) quick connect terminals.
Mounting: Snaps into panel from front.
Actuator: Rocker or lighted rocker.
Shock: 30 g tested to IEC 68-2-27, test Ea.
Vibration: 8 g tested to IEC 68-2-6, test Fc.
Switch Endurance Cycling: 50,000 operations at rated load.
1,000 operations at 200% rated load.

Time vs. Current Trip Curve @ $+\mathbf{2 5}^{\circ} \mathrm{C}$

Ambient Compensation Chart

Ambient Temperature In Degrees Centigrade (${ }^{\circ} \mathrm{C}$)
To use this chart: Read up from the ambient temperature to the curve, and across to find a correction factor. Multiply the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve.

Ordering Information

Stock Items - Authorized distributors are more likely to stock the following items.

W33-S1N1Q-5	W33-S4B1Q-10	W33-T4B1Q-5
W33-S1N1Q-15	W33-S4B1Q-15	W33-T4B1Q-10
W33-S1N1Q-20	W33-T2N1Q-20	W33-T4B1Q-15

Outline Dimensions

Schematic

NEON - AC
INCANDESCENT-DC

W23

W31

Features

- 0.5 amp to 50 amp ratings may be used as on/off switch.
- Cannot be reset against overload.
- W23 has visible trip indicator.
- Screw termination
- Trip-free operation.

Agency Approvals

W23 and W31 are UL 1077 Recognized as Supplementary Protectors. File E69543, and CSA Certified as Appliance Component Protectors, File LR15734.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data @ +25º

Calibration: Will continuously carry 100\% of rating, may trip between 101% and 134% of rating at $25^{\circ} \mathrm{C}$. Must trip at 135% in one hour.
Maximum Operating Voltages: 50VDC or 250VAC (to 400 Hz).
Interrupting Capacity:
With 4X Max. Series Fuse Protection
0.5-50 amp models - 1000 amps at 240VAC.

30-50 amp models - 1000 amps at 50VDC.
Without 4X Max. Series Fuse Protection
0.5-25 amp models - 2000 amps at 50VDC.
$10-20 \mathrm{amp}$ models - 2000 amps at 120VAC.
Resettable Overload Capacity: Ten times rated current.
Dielectric Strength: Over 1,500 volts RMS.

W23/W31 series

Toggle or
 Push/Pull Actuator Thermal Circuit Breaker

국 (1)

Maximum Resistance vs. Current Rating @ +25 ${ }^{\circ} \mathrm{C}$

Current Rating in Amps	Maximum Resistance in Ohms $\pm \mathbf{3 0 \%}$
1	.61
5	.03
10	.01
15	.006
20	.004
30	.003
40	.002
50	.002

Mechanical/Environmental Data

Endurance Cycling: More than 6,000 cycles at 100\% of rating, or 10,000 mechanical cycles.
Humidity: Will meet requirements of MIL-STD-202, Method 106.
Salt Spray: Will meet requirements of MIL-STD-202, M ethod 101, Test Condition B.
Termination: Two \#8-32 screw terminals.
Mounting: W23 - Threaded bushing, 3/8" (9.53mm) diameter. W31 - Threaded bushing, 15/32" (1191mm) diameter, with or without anti-rotation flats.
Weight: Less than 2 oz. (57g).

Time Vs. Current Trip Curve @ $+25^{\circ} \mathrm{C}$

Ambient Compensation Chart

Ambient Temperature In Degrees Centigrade (${ }^{\circ} \mathrm{C}$)

To use this chart: Read up from the ambient temperature to the curve, and across to find a correction factor. Multiply the breaker rating by the correction factor to determine the compensated rating. Calculate the overloads in terms of the compensated rating to use the published trip curve.

Ordering Information

Stock Items - Authorized distributors are more likely to stock the following items.

W23-X1A1G-1	W23-X1A1G-7.50	W23-X1A1G-25	W23-X1A1G-50
W23-X1A1G-2	W23-X1A1G-10	W23-X1A1G-30	
W23-X1A1G-3	W23-X1A1G-15	W23-X1A1G-35	
W23-X1A1G-5	W23-X1A1G-20	W23-X1A1G-40	

Ordering Information

Stock Items - Authorized distributors are more likely to stock the following items.

W31-X2M 1G-1	W31-X2M 1G-10	W31-X2M 1G-35
W31-X2M1G-2	W31-X2M1G-15	W31-X2M 1G-40
W31-X2M1G-3	W31-X2M1G-20	W31-X2M 1G-50

W23 Outline Dimensions

Terminal Style 1

Hex Nut
(55-001D - Silver Color)

Lockwasher
(88-006B - Silver Color)

Knurled Nut (55-008A - Silver Color)

Terminal Style 3

All dimensions are given as $\underset{(\mathrm{mm})}{\substack{\text { inches }}}$

W31 Outline Dimensions

Terminal Style 1

Terminal Style 5

Mounting Hardware

(55-001B - Silver Color)

Lockwasher
(88-002B - Silver Color)

Knurled Nut (55-010B - Silver Color)

Features

- Designed for the international market. UL Recognized, CSA Certified, and VDE approved.
- Ratings to 50 amps .
- Heavy duty \#10-32 stud connections. (W9)
- Quick-connect or screw terminals. (W6)
- Optional 10 amp auxiliary switch.
- Several delay curve options.
- Trip-free operation.

Agency Approvals

UL: Recognized as Supplementary Protector under UL 1077. File E69543.
CSA: Certified as a Supplementary Protector. File LR15734.
VDE: Approved to VDE 0642/EN 60934 (Circuit Breakers for Equipment) License No. 73782.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Electrical Data

Auxiliary Switch: See Auxiliary Switch Ratings Table 2 for details. Calibration: Breakers will hold 100\% of rated current. Breakers may trip between 101% and 124% of rated load (149% for 400 Hz . units and 134% for AC/DC units). Breakers must trip at 125% of rated load and above (150% for 400 Hz . units and 135\% for AC/DC units).
Dielectric Strength: 50/60 or 400 Hz ., 1500V: DC, 1100 V .
Insulation Resistance: 100 M egohms at 500VDC.
Endurance: 10,000 on/off cycles - 6000 at rated load, 4000 at no load. Units tested at six cycles per minute, 1 second on and 9 seconds off at $25^{\circ} \mathrm{C}$ ambient.

W6/W9 series

Magnetic Hydraulic Circuit Breakers

叮 (18) 会

Typical Resistance and Impedance

Current (Amps)	DC Resistance (Ohms)	$\mathbf{5 0 / 6 0 ~ H z}$ Impedance (Ohms)	$\mathbf{4 0 0 ~ H z}$ Impedance (Ohms)
0.2	90	90	180
10	12	12	2.0
2.0	0.28	0.28	0.50
5.0	0.04	0.04	0.05
10.0	0.013	0.013	0.025
20.0	0.004	0.005	0.0065
30.0	0.0027	0.004	0.004
40.0	0.002	0.002	0.003
50.0	0.0015	0.0015	0.0025

Tolerance: $0.1-4.99 \pm 15 \% ; 5-9.99 \pm 20 \% ; 10-15 \pm 25 \% ; 16-30 \pm 50 \%$.

Mechanical/Environmental Data

Operating Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Humidity: Meets requirements of Mil-STD-202 method 103.
Shock: Tested per Mil-STD-202, method 213, test condition C (100g @ 6 ms).
Vibration:Tested per Mil-STD-202, method 201, 10-55 Hz., 0.06" (152mm) total excursion in 2 planes.
Fungus And Moisture Resistance: Special moisture resistant finish applied to all ferrous parts. Plastic parts are made of inherently fungus resistant material.
Marking: W6 units have ON and OFF molded on the rocker of rocker actuated units (rocker actuated VDE units have international " 1 " and " 0 "). W9 units have ON and OFF molded into the area at the base of the toggle. International " 1 " and " 0 " symbols are marked on the toggle for both W6 and W9.
Mounting: Units are mounted with two \#6-32 screws from the front of the panel. Metric models for use with M3 x 0.5 screws are available. To maintain published performance specifications, units should not be mounted more than 90° from their nomal upright position.
Weight: Approximately 2.5 ounces per pole.

Approvals and Ratings Table 1

6 Series ULCSA (All Circuit Functions)				
Maximum Voltage	Frequency (Hz)	Phase	Current Rating (Amps)	Interrupting Capacity (Amps)
65	DC		0.2-50	2,000
277	50/60	1	0.2-20	5,000
277	50/60	1	21-50	2,500
277/480	50/60	30-Wye	0.2-20	5,000
250	400	1	0.2-20	2,500
250	400	1	21-50	1,250
250	400	30-Wye	0.2-20	2,500
W9 Series UL/CSA (All Circuit Functions)				
Maximum Voltage	Frequency (Hz)	Phase	Current Rating (Amps)	Interrupting Capacity (Amps)
65	DC	-	0.2-50	2,000
277	50/60	1	0.2-50	5,000
277/480	50/60	30-Wye	0.2-20	5,000
250	400	1	0.2-50	2,500
250	400	3Ø-Wye	0.2-50	2,500

W6 Series VDE (Circuit Function X)

Maximum Voltage	Frequency (Hz)	Phase	Current Rating (Amps)	Interrupting Capacity (Amps)
65	50	-	$0.2-50$	2,000
250	$50 / 60$	1	$0.2-30$	5,000
250	$50 / 60$	1	$31-50$	2,000
$415 / 240$	$50 / 60$	30	$0.2-30$	5,000

W9 Series VDE (Circuit Function X)

Maximum Voltage	Frequency (Hz)	Phase	Current Rating (Amps)	Interrupting Capacity (Amps)
65	DC	-	$0.2-50$	2,000
250	$50 / 60$	1	$0.2-30$	5,000
250	$50 / 60$	1	$31-50$	2,000
$415 / 240$	$50 / 60$	$3 \varnothing$	$0.2-30$	5,000

Approvals and Ratings Table 2

ULCSA

Switch Number	Voltage $\mathbf{5 0 / 6 0} \mathbf{~ H z}$	Current (Amps)	Terminals WxTxL
A	125	10	$.093 \times .020 \times .250$ $(2.36 \times .51 \times 6.40)$

Time vs. Current Trip Curves For W6 Series and W9 Series
AC $50 / 60 \mathrm{~Hz}$.

MOTOR START
CURVE 10 HIGH INRUSH $50 / 60 \mathrm{~Hz}$. AC

 OF BREAKER RATING

CURVE 12 HIGH INRUSH $50 / 60 \mathrm{~Hz}$.

AC 400 Hz .

CURVE 3 AC VOLTAGE 400 Hz.

Note:
For instantaneous curves for all voltages refer to Curve 0 Non-Time Delay under the AC $50 / 60 \mathrm{~Hz}$. heading.

Pulse Tolerance Specifications

Pulse tolerance is defined as a single pulse of a half sine wave ($1 / 2$ cycle or 8 milliseconds) that will not trip the breaker. An inertia wheel for increased pulse tolerance is available by specifying " P " after the time delay curve number in the ordering information. The table at right lists pulse tolerance values of standard and inertia delay models.

		Pulse Tolerance Value	
Voltage	Time Delay Curve	Standard	Inertia Delay
	2	7.5	18
AC	3	6	18
$50 / 60 \mathrm{~Hz}$.	10	18	30
	12	18	30
AC	13	18	30
400 Hz.	2	6.5	18

To determine pulse tolerance multiply breaker rating by value in table. For example, a 2A breaker with time delay curve 3 has a standard pulse tolerance of $12 A(2 A \times 6)$. The same breaker with an inertia delay has a pulse tolerance of $36 A(2 A \times 18)$.

Ordering Information

W6 Series

9. VDE Approval:

Blank = UL/CSA approved breaker
$\mathrm{V}=\mathrm{VDE}$ approved breaker without auxiliary switch

Authorized distributors are more likely to stock the following items.

W67-A2Q12-5	W67-X2Q12-5	W67-X2Q13-1	W67-X2Q13-25	W67-X2Q52-15	W68-X2Q12-5	W68-X2Q12-30	
W67-A2Q12-10	W67-X2Q12-7	W67-X2Q13-2	W67-X2Q13-30	W67-X2Q52-20	W68-X2Q12-7	W68-X2Q13-15	
W67-X2Q10-3	W67-X2Q12-10	W67-X2Q13-3	W67-X2Q50-5	W67-X2Q52-30	W68-X2Q12-10	W68-X2Q110-10	W69-X2Q12-20
W67-X2Q10-5	W67-X2Q12-15	W67-X2Q13-10	W67-X2Q50-10	W67-X2Q110-15	W68-X2Q12-15	W68-X2Q110-20	
W67-X2Q12-2	W67-X2Q12-20	W67-X2Q13-15	W67-X2Q52-5	W67-X2Q110-20	W68-X2Q12-20	W69-X2Q12-5	
W67-X2Q12-3	W67-X2Q12-30	W67-X2Q13-20	W67-X2Q52-10	W68-X2Q12-3	W68-X2Q12-25	W69-X2Q12-10	W69-X2Q110-20

Ordering Information

8. VDE Approval:

Blank = UL/CSA approved breaker
$\mathrm{V}=$ VDE approved breaker without auxiliary switch
Authorized distributors are more likely to stock the following items.

W91-X112-1	W91-X112-15	W91-X113-15	W91-X152-40	W92-X112-5	W92-X112-30	W92-X1110-30	W93-X112-30
W91-X112-2	W91-X112-20	W91-X150-5	W91-X152-50	W92-X112-7	W92-X112-40	W93-X112-5	W93-X112-40
W91-X112-3	W91-X112-40	W91-X152-10	W91-X1110-20	W92-X112-10	W92-X112-50	W93-X112-10	W93-X112-50
W91-X112-5	W91-X112-50	W91-X152-15	W92-X112-1	W92-X112-15	W92-X113-15	W93-X112-15	W93-X1110-20
W91-X112-7	W91-X113-5	W91-X152-20	W92-X112-2	W92-X112-20	W92-X113-20	W93-X112-20	W93-X1110-30
W91-X112-10	W91-X113-10	W91-X152-30	W92-X112-3	W92-X112-25	W92-X1110-20	W93-X112-25	
Dimensions are reference purpos		Dimensions are in inches over (millimeters) unless otherwise specified.		Specifications and availability subject to change.		www.tycoelectronics.com Technical support: Refer to inside back cover.	

Outline Dimensions - Toggle Actuator Models

W6 Series

W6 Series

2 Pole

Not
Multi-pole models furnished with separate handle tie hardware.

Panel Mounting Cutout

3 Pole

4 Pole

Notes
1 Terminal protrusion dimensions are referenced from back of mounting panel.
2. Main terminals are male quick connect type .250 (6.35) wide $x .031$ (.79) thick $\times .377$ (9.58) long. Optional $8-32 \times .250$ (6.35) or 10-32 x . 250 (6.35) screw type.
3. Panel mounting cutout detail mtg. detail tol.: $\pm .005$ (.13) unless noted. Add additional cutouts to correspond to number of poles. Outline drawing tolerance $\pm .015$ (.38) unless noted. Dimensions in brackets () are in millimeters

UL/CSA Models W/Screw Terminals

ULCSA/VDE Models W/Aux. Switch

Outline Dimensions - Rocker Actuator Models

W6 Series

Panel Mounting Cutout

Outline Dimensions

W9 Series

Series Trip Model

Series Trip Model
With Common Enclosed Auxiliary Switch

1 Pole

VDE Rocker Marking

Notes:
1 Outline drawing tolerance $\pm .015$ (.38) unless noted. Dimensions in brackets () are in millimeters.
2. Mounting Detail Tol.: $\pm .005$ (.13) unless noted

Series Trip Model

Panel Mounting Cutout Detail

Alphanumeric Index

Series	Type	Page
4000	5-30VA, Wire Leads, Class II	204
4000	10-30VA, QC Terminals, Class II	205
4000	20-40VA, Plate Mount, Class II	206
4000.	40-50VA, Wire Leads, Class II	207
4000	40-50VA, QC Terminals, Class II	208
4000	60-75VA, Wire Leads, Class II	209
4000 ..	60-75VA, QC Terminals, Class II	210
4700.	60-150VA, Wire Leads or QC, UL 508	211
$57 . .$.	... Transformer Relay for HVAC	212

Transformers...Questions and Answers

What is a Transformer?

A transformer is a passive electrical device which is designed to change one AC voltage to another by magnetic induction. It "steps-up" or "steps-down" voltage in order to match incoming supply voltage from the utility to the voltage required by the user's end product. Typical USA supply voltages are 120, 208, 240, 277, 480 (and 575 in Canada). Common International voltages include 110, 220, 380, and 415.

What is an Isolation Transformer?

An isolation transformer is a transformer whose primary and secondary windings are separate for the purpose of isolating the circuit from the supply source.

What is an Autotransformer?

An autotransformer has only one winding, which is shared by the primary and secondary circuits. Autotransformers do not provide isolation but offer a substantial savings when used to obtain small increments of voltage above or below the input voltage.

What is a Class II Transformer?

A Class II transformer is used to supply Class II circuits. Class II transformers have a maximum VA (Volt-Ampere) rating of less than 100 and a maximum secondary output of 30 VAC . The maximum VA generally offered is 75 and the most common secondary voltage is 24 VAC . All Class II transformers are either inherently or non-inherently limited. This means that the maximum output current of the transformer is limited, either by the intrinsic coil impedance or by a fuse or circuit breaker. These transformers are designed to meet the requirements of U.L. 1585.

Inherently Energy Limited Transformers - Class II transformers up to 50 VA are "Inherently Limited" which means that the transformer, if overloaded, will short itself out and fail safely, not requiring a fuse.
Non-Inherently Energy Limited Transformers - 60 thru 75 VA Class II transformers are generally protected by a resettable circuit breaker or a fuse within the transformer secondary. Without this overload protection, the transformer would not satisfy the safety requirements for a Class II circuit.

What is a General Purpose Transformer?

General purpose transformers include any VA rating along with primary and secondary voltage ratings up to 600 VAC. Although internal fusing is an option, no fusing is required. However, applicable U.L. specifications may require fusing in the end product. These transformers are designed to meet the requirements of U.L. 506
What is Voltage Regulation?
Voltage regulation is the percent of change in the output voltage when the load is reduced from full load to no load while the input voltage remains constant.
What is the effect of a load on a control transformer?
A control transformer is designed to provide rated output voltage at full VA. As the load decreases, the output voltage will go up. Conversely, increases in load will result in lower output voltages. Typically, the smaller the VA size of the unit, the greater difference there is between no-load and full-load voltage.

Part Numbering System

This chart illustrates a breakdown of our part numbering system on a few of our most popular models. Consult factory for your specific requirements.

Example: 4000-01E07BB999 This part number is a Class II transformer with a 120 V primary and 24 V secondary. It is 40 VA and inherently energy limited. This is a foot mount transformer with quick connect terminals (line \& load) exiting out of the same side of the transformer cover.
Note: This is a partial listing only. Consult factory for your specific requirements. All combinations of voltage and VA may not be available.

Custom Transformer Capabilities

In addition to our industry leading standard transformer series (see the following pages), We have a proven track record of being an innovative leader in custom transformer designs. We specialize in working with our customers in the initial stages of their design process, offering ideas and suggestions which lead to a transformer product that can be manufactured with the lowest Defective Parts Per Million (DPPM) levels and at the highest value to the customer. The following is a list of guidelines for transformer products which compliment our Demand Flow Manufacturing system.

Leaded Transformers - Quick Connect Transformers - PC Mount Transformers - Inductors

- 5 VA through 400 VA
- Spray on rust preventative
- Butt stack and weld lamination construction
- Molded bobbin construction
- Numerous welded bracket options
- Molded cover with integral strain relief for lead or quick connect terminal

When a transformer fits the above criteria and the customer is willing to share in the design process with us, we can both benefit from Design For Manufacturing (DFM), as demonstrated in the following example:

Our electrical and mechanical design groups are ready to work with you on your specific product needs.

4000 series

Class II UL 1585 Transformer 5 VA - 30VA Inherently Energy Limited No Secondary Fusing Required Wire Leads

cTus File E87824

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Wire Size: All leads are 18 AWG stranded 2/64" (. 794 mm) insulation thickness. Standard parts have 12" (305 mm) total length with $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ strip.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 5VA - $10.56 \mathrm{oz} .(300 \mathrm{~g}) ; 10 \mathrm{VA}-10.88 \mathrm{oz}$. (308 g);

Features

- Type K Foot M ount - features a steel bracket welded to the bottom of the laminations for easy mounting
- Type G Panel M ount - features .179" (4.55 mm) diameter holes in each corner to allow direct mounting to a panel.
- Multiple voltage combinations are available. Consult factory for availability.

20VA - 14.24 oz. (404 g); 30VA - 19.2 oz. (544 g).

Standard "999" Models Available

Primary V	Secondary V	20VA
120	24	$4000-01$ C02K999
120	24	$4000-01$ C02K999

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

Partial Listing of Custom Models

Primary V	Secondary V	5VA	10VA	20VA	30VA
120	24	4000-01X19K*	4000-01A19K*	4000-01C02K*	4000-01M 04K*
240	24	4000-02X19K*	4000-02A19K*	4000-02C02K*	4000-02M04K*
277	24	4000-03X19K*	4000-03A19K*	4000-03C02K*	4000-03M 04K*
480	24	4000-04X19K*	4000-04A19K*	4000-04C02K*	4000-04M $04 \mathrm{~K}^{*}$
208/240	24	-	-	4000-09C02K*	4000-09M04K*
120	12	-	-	4000-20C02K*	-

* A three digit customer ID suffix will be assigned by the factory.

All custom model part numbers are listed as Type K Foot M ount. To specify Type G Panel Mount, replace K in above part numbers with G .

Outline Dimensions

Details regarding leads on standard models

	Primary Leads								Secondary Leads	
Voltage	COM	120	208	240	277	480	575	24	VAC	
Color	Black	White	Red	Orange	Brown	Black/Red	Gray	Blue	Yellow	
Length [inches (mm)]	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	
Strip Length [inches (mm)]	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	

4000 series

Class II UL 1585 Transformer 10VA - 30VA Inherently Energy Limited No Secondary Fusing Required Quick Connect Terminals

c(1) us File E87824

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Terminals: Standard male quick connects are $.250^{\prime \prime} \times .032^{\prime \prime}(6.35 \times .81$
mm). Other available quick connects include $.187^{\prime \prime} \times .032^{\prime \prime}$ ($4.75 \times .81 \mathrm{~mm}$) and $.187^{\prime \prime} \times .020^{\prime \prime}(4.75 \times .51 \mathrm{~mm})$.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 10VA - 10.9 oz . (308 g); 20VA - 14.1 oz . (399 g); 30VA - 18.6 oz. (525 g).

Features

- Type BB Same Side Termination - features quick connect terminals with line and load terminations on the same side of transformer.
- Type AE Laydown Termination - features quick connect terminals with line and load terminations on the top of transformer.
- Type AB Opposite Side Termination - features quick connect terminals with line and load terminations on opposite sides of transformer.
- Multiple voltage combinations are available. Consult factory for availability.

Standard "999" Models Available
No standard models are offered.

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

Partial Listing of Custom Models

Primary V	Secondary V	10VA	20VA	30VA	30VA
120	24	4000-01A19BB*	4000-01C02BB*	4000-01M 04BB*	4000-01M 04BB*
240	24	4000-02A19BB*	4000-02C02BB*	4000-02M 04 BB* $^{\text {* }}$	4000-02M 04BB*
277	24	-	-	4000-03M04BB*	4000-03M 04BB*
480	24	-	-	4000-04M 04 BB* $^{\text {* }}$	4000-04M 04BB*
208/240	24	-	-	4000-09M04BB*	4000-09M 04BB*
120	12	-	4000-20C02BB*	-	-

* A three digit customer ID suffix will be assigned by the factory.

To specify Type AE Laydown Termination, replace BB in above part numbers with AE.

Outline Dimensions

Type BB
Same Side
Termination

Type AE
Laydown
Termination

Type AB
Opposite Side Termination

Features

- Type BC Plate Mount - mounted on a 4" (1016 mm) square plate designed to fit a standard 4" (1016 mm) square electrical box.
- The line voltage is connected inside the electrical boxto the color-coded leads on the transformer. The low voltage is terminated to either $1 / 4$ " $(4.75 \mathrm{~mm})$ quick connects and/or \#6-32 screw furnished on the secondary side.
- Multiple voltage combinations are available. Consult factory for availability.

Standard "999" Models Available

Primary V	Secondary V	20VA	40VA
120	24	$4000-01 C 02 B C 999$	$4000-01 \mathrm{~V} 18 B C 999$

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

4000 series

Class II UL 1585 Transformer
 20VA - 40VA Inherently Energy Limited
 No Secondary Fusing Required Plate for Electrical Box Mounting

${ }^{\text {ch }}{ }_{\text {us }}$ File E87824

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Wire Size: All leads are 18 AWG stranded 2/64" (. 794 mm) insulation thickness. Standard parts have 12 " $(305 \mathrm{~mm})$ total length with $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ strip.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 20VA - 19.2 oz. (544 g); 40VA - $32 \mathrm{oz} .(906 \mathrm{~g}$).

Partial Listing of Custom Models

Primary V	Secondary V	20VA	40VA
120	24	$4000-01 C 02 B C *$	$4000-01 \mathrm{~V} 18 \mathrm{BC*}$
$208 / 240$	24	$4000-09$ C02BC* *	$4000-09 \mathrm{~V} 18 \mathrm{BC}^{*}$

* A three digit customer ID suffix will be assigned by the factory. All custom model part numbers are listed as Type K Foot Mount. To specify Type G Panel Mount, replace K in above part numbers with G.

Outline Dimensions

Details regarding leads on standard models

	Primary Leads							
Voltage	COM	120	208	240	277	480	575	24
Color	Black	White	Red	Orange	Brown	Black/Red	Gray	Blue
Length [inches (mm)]	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$
Strip Length [inches (mm)]	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$

4000 series

Class II UL 1585 Transformer 40 VA - 50VA Inherently Energy Limited No Secondary Fusing Required Wire Leads

${ }_{\text {c }}$ (Nus File E87824

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Wire Size: All leads are 18 AWG stranded 2/64" (. 794 mm) insulation thickness. Standard parts have $12^{\prime \prime}(305 \mathrm{~mm})$ total length with 1/2" (12.7 mm) strip.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 40VA - 24.3 oz (600 g); 50VA - 33.6 oz . (953 g).

Standard "999" Models Available

Primary V	Secondary V	40VA	50VA
120	24	4000-01E07K999	4000-01AW18K999
277	24	4000-03E07K999	4000-03AW18K999
480	24	4000-04E07K999	4000-04AW18K999
120/208/240	24	4000-05E07K999	-
208/240	24	4000-09E07K999	4000-09AW18K999

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

Partial Listing of Custom Models

Primary V	Secondary V	40VA	40VA	50VA
120	24	4000-01V18K*	4000-01E07K*	4000-01AW18K*
240	24	4000-02V18K*	4000-02E07K*	4000-02AW18K*
277	24	4000-03V18K*	4000-03E07K*	4000-03AW18K*
480	24	4000-04V18K*	4000-04E07K*	4000-04AW18K*
120/208/240	24	-	4000-05E07K*	-
208/240	24	4000-09V18K*	4000-09E07K*	4000-09AW18K*
208/240/480	24	-	4000-13E07K*	-
380/415	24	4000-51V18K*	4000-51E07K*	4000-51AW18K*
575	24	4000-78V18K*	4000-78E07K*	4000-78AW18K*

* A three digit customer ID suffix will be assigned by the factory

All custom model part numbers are listed as Type K Foot Mount. To specify Type G Panel Mount, replace K in above part numbers with G .

Outline Dimensions

Type K Foot Mount

Type G Panel Mount

[1] Applies to V18 models.
[2] Applies to E07 \& AW18 models.
" A " and " B " Dimensions

	40 VA / V18	40 VA / E07	50 VA / AW18
"A" Dimension [inches (mm)]	$2.25(57.15)$	$2.125(53.98)$	2.56 (65.02)
"B" Dimension [inches (mm)]	$125(3175)$	$0.875(22.22)$	$125(3175)$

Details regarding leads on standard models

	Primary Leads					Secondary Leads		
Voltage	COM	120	208	240	277	480	575	24
Color	Black	White	Red	Orange	Brown	Black/Red	Gray	Blue
Length [inches (mm)]	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$
Strip Length [inches (mm)]	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$

Features

- Type BB Same Side Termination - features quick connect terminals with line and load terminations on the same side of transformer.
- Type AE Laydown Termination - features quick connect terminals with line and load terminations on the top of transformer.
- Type AB Opposite Side Termination - features quick connect terminals with line and load terminations on opposite sides of transformer.
- Multiple voltage combinations are available. Consult factory for availability.

4000 series

Class II UL 1585 Transformer 40VA - 50VA Inherently Energy Limited No Secondary Fusing Required Quick Connect Terminals

c ${ }^{\text {ch }}$ us File E87824

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application

Specifications

Terminals: Standard male quick connects are .250" x .032" (6.35 x . 81
$\mathrm{mm})$. Other available quick connects include $.187^{\prime \prime}$ x $.032^{\prime \prime}$
$(4.75 \times .81 \mathrm{~mm})$ and $.187^{\prime \prime} \times .020^{\prime \prime}(4.75 \times .51 \mathrm{~mm})$.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: \quad 40VA - 22.4 oz . (636 g); 50VA - 35.2 oz . (999 g).

Standard "999" Models Available

Primary V	Secondary V	40VA
120	24	$4000-01$ E07AE999
120	24	$4000-01 E 07 B B 999$
$208 / 240$	24	$4000-09 E 07 A E 999$

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

Partial Listing of Custom Models

Primary V	Secondary V	40VA	40VA	40VA	50VA
120	24	4000-01E07BB*	4000-01V18BB*	4000-01V18AB*	4000-01AW18BB*
240	24	4000-02E07BB*	4000-02V18BB*	4000-02V18AB*	4000-02AW18BB*
277	24	4000-03E07BB*	4000-03V18BB*	4000-03V18AB*	4000-03AW18BB*
480	24	4000-04E07BB*	4000-04V18BB*	4000-04V18AB*	4000-04AW18BB*
208/240	24	4000-09E07BB*	4000-09V18BB*	4000-09V18AB*	4000-09AW18BB*
380/415	24	4000-51E07BB*	4000-51V18BB*	4000-51V18AB*	4000-51AW18BB*
575	24	4000-78E07BB*	4000-78V18BB*	-	4000-78AW18BB*

To specify Type AE Laydown Termination, replace BB in above part numbers with AE.

Outline Dimensions

Type BB
Same Side
Termination

Type AE
Laydown
Termination

[1] Applies to V18 models.
[2] Applies to E07 \& AW18 models.

	$40 \mathrm{VA} / \mathrm{V} 18$	40 VA / E07	$50 \mathrm{VA} / \mathrm{AW} 18$
"A" Dimension [inches (mm)]	2.25 (57.15)	2.125 (53.98)	2.56 (65.02)
"B" Dimension [inches (mm)]	125 (3175)	0.875 (22.22)	125 (3175)

Features

- Type K Foot M ount - features a steel bracket welded to the bottom of the laminations for easy mounting.
- Type G Panel Mount - features .218" (5.54 mm) diameter holes in each cormer to allow direct mounting to a panel.
- For agency approval, $60 \& 75 \mathrm{VA}$ transformers must have one of the following overcurrent protectors in series with the secondary winding: Internal fuse, integral circuit breaker. Any customer-supplied fusing or protection must be approved by the factory.
- Multiple voltage combinations are available. Consult factory for availability.

Standard "999" Models Available

Primary V	Secondary V	75 VA
120	24	$4000-01 \mathrm{1} 15 \mathrm{K999}$
277	24	$4000-03 \mathrm{~J} 15 \mathrm{K999}$
$208 / 240$	24	$4000-09 \mathrm{~J} 15 \mathrm{K999}$
575	24	$4000-78 \mathrm{~J} 15 \mathrm{K999}$
$120 / 208 / 240 / 480$	24	$4000-08 \mathrm{~J} 15 \mathrm{~K} 999$

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog. All 75VA standard models come with an integral circuit breaker.

4000 series

Class II UL 1585 Transformer 60VA -75VA Non-Inherently Energy Limited Secondary Fusing Required Wire Leads

c ${ }^{\text {™ }}$ us \quad File E87824

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Wire Size: All leads are 18 AWG stranded 2/64" (. 794 mm) insulation thickness. Standard parts have 12" (305 mm) total length with $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ strip.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 60VA - 35.2 oz . $(997 \mathrm{~g}$); 75VA - 38.4 oz . (1087 g).
Partial Listing of Custom Models

Primary V	Secondary V	60VA	75VA
120	24	$4000-01 \mathrm{~L} 15 K^{*}$	$4000-01 \mathrm{~J} 15 K^{*}$
240	24	$4000-02 \mathrm{L15K}$	$4000-02 \mathrm{~J} 15 \mathrm{~K}^{*}$
277	24	$4000-03 \mathrm{~L} 15 K^{*}$	$4000-03 \mathrm{~J} 15 \mathrm{~K}^{*}$
480	24	$4000-04 \mathrm{~L} 15 \mathrm{~K}^{*}$	$4000-04 \mathrm{~J} 15 \mathrm{~K}^{*}$
$120 / 208 / 240$	24	$4000-05 \mathrm{~L} 15 \mathrm{~K}^{*}$	$4000-05 \mathrm{~J} 15 \mathrm{~K}^{*}$
$208 / 240$	24	$4000-09 \mathrm{~L} 15 \mathrm{~K}^{*}$	$4000-09 \mathrm{~J} 15 \mathrm{~K}^{*}$
$208 / 240 / 480$	24	-	$4000-13 \mathrm{~J} 15 \mathrm{~K}^{*}$
$380 / 415$	24	-	$4000-51 \mathrm{~J} 15 \mathrm{~K}^{*}$
575	24	-	$4000-78 \mathrm{~J} 15 \mathrm{~K}^{*}$

* A three digit customer ID suffix will be assigned by the factory. For Type G Panel Mount, replace K in above part numbers with G.

Outline Dimensions

Type K

Foot Mount Internally Fused

Type K
Foot Mount -
Integral
Circuit
Breaker

Type G
Panel Mount

" A " and " B " Dimensions for 60VA \& 75VA Models

	L15K \& J 15K Internally Fused	L15K \& J 15K w/ Integral Circuit Breaker	J 41K Standard Part
"A" Dimension [inches (mm)]	2.475 (62.86)	3.25 (82.55)	3.45 (87.63)
"B" Dimension [inches (mm)]	100 (25.4)	100 (25.4)	1125 (28.58)

Details regarding leads on standard models

	Primary Leads							Secondary Leads	
Voltage	COM	120	208	240	277	480	575	24	VAC
Color	Black	White	Red	Orange	Brown	Black/Red	Gray	Blue	Yellow
Length [inches (mm)]	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)	12 (305)
Strip Length [inches (mm)]	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)	0.5 (12.7)

4000 series

Class II UL 1585 Transformer 60VA -75VA Non-Inherently Energy Limited Secondary Fusing Required Quick Connect Terminals

${ }^{\text {c }} \mathbf{N H}_{\text {us }}$ File E87824

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications

Terminals: Standard male quick connects are .250 " x $.032^{\prime \prime}(6.35 \times .81$
$\mathrm{mm})$. Other available quick connects include $.187^{\prime \prime} \times .032$ "
($4.75 \times .81 \mathrm{~mm}$) and $.187^{\prime \prime} \times .020^{\prime \prime}(4.75 \times .51 \mathrm{~mm})$.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: $\quad 60 \mathrm{VA}-35.2 \mathrm{oz}$. 997 g); 75VA - $38.4 \mathrm{oz} .(1087 \mathrm{~g})$.
Partial Listing of Custom Models

Primary V	Secondary V	60VA	75VA
120	24	4000-01L15BB*	4000-01J 15BB*
240	24	4000-02L15BB*	4000-02J 15BB*
277	24	4000-03L15BB*	4000-03J 15BB*
480	24	4000-04L15BB*	4000-04J 15BB*
120/208/240	24	4000-05L15BB*	4000-05J 15BB*
208/240	24	4000-09L15BB*	4000-09J 15BB*
208/240/480	24	-	4000-13J 15BB*
380/415	24	-	4000-51J 15BB*
575	24	-	4000-78J 15BB*

* A three digit customer ID suffix will be assigned by the factory.

For Type AE Laydown Termination, replace BB in above part numbers with AE.

Outline Dimensions

Type BB Same Side Termination

Type AE
Laydown
Termination -
Internally Fused

Type AE
Laydown
Termination -
Integral
Circuit
Breaker

Features

- Type K Foot Mount - features wire leads and a steel bracket welded to the bottom of the laminations for easy mounting.
- Type BB Same Side Termination - features quick connect terminals with
line and load terminations on the same side of transformer.
- Multiple voltage combinations are available. Consult factory for availability.

Standard "999" Models Available

Primary V	Secondary V	60VA	100VA
120	24	$4700-81$ L15K999	-
$120 / 208 / 240 / 480$	24	-	$4700-08$ K18K999

For more details about standard models see Part Numbering System table at beginning of transformer section in this catalog .

4700 series

UL 506 Transformer 60VA - 150VA Non-Fused Wire Leads or Quick Connects

${ }^{\text {ch }}{ }_{\text {us }} \quad$ File E102980

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application

Specifications

Wire Size: All leads are 18 AWG stranded $2 / 64^{\prime \prime}(.794 \mathrm{~mm})$ insulation thickness. Standard parts have $12^{\prime \prime}(305 \mathrm{~mm})$ total length with $1 / 2^{\prime \prime}(12.7 \mathrm{~mm})$ strip.
Terminals: Standard male quick connects are $.250^{\prime \prime} \times .032^{\prime \prime}(6.35 \times .81$ mm). Other available quick connects include $.187^{\prime \prime} \times .032^{\prime \prime}$ $\left(4.75 \times .81 \mathrm{~mm}\right.$) and $.187^{\prime \prime} \times .020^{\prime \prime}(4.75 \times .51 \mathrm{~mm})$.
Frequency: $50 / 60 \mathrm{~Hz}$.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Weight: 60VA - 36.8 oz . (1042 g); 100VA - 80 oz . (2270 g); 150VA - 83.2 oz. (2356 g).

Partial Listing of Custom Models

Primary V	Secondary V	100VA	150VA
120	24	4700-01K18K*	4700-01Z18K*
277	24	4700-03K18K*	4700-03Z18K*
480	24	4700-04K18K*	4700-04Z18K*
120/208/240/480	24	4700-08K18K*	-
208/240	24	4700-09K18K*	4700-09718K*
208/230/460	24	4700-12K18K*	-
208/240/480	24	4700-13K18K*	-
400	24	4700-48K18K*	4700-48Z18K*
575	24	4700-78K18K*	4700-78Z18K*
460/575	24	4700-130K18K*	4700-130Z18K*

Outline Dimensions

Type K
Foot Mount 60VA

Type K Foot Mount 100VA

	Primary Leads							
Voltage	COM	120	208	240	277	480	575	24
Color	Black	White	Red	Orange	Brown	Black/Red	Gray	Blue
Length [inches (mm)]	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$	$12(305)$
Strip Length [inches (mm)]	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$	$0.5(12.7)$

Features

- Cover mounts on conventional 4" square box.
- All leads terminate in the box.
- Leads are $8^{\prime \prime}$ (203.2 mm) long with $1 / 2^{\prime \prime}$ (12.7 mm) stripped)
- Standard transformer is 40VA Class II Energy Limited. Other transformers are available.
- Five secondary terminations (two are hot) for thermostat connection and \#6-32 screw termination is standard. Quick connects are optional.
- Assembled with choice of 9100 or 9400 series relays.
- Custom-built to meet customer requirements.

57 series

Transformer Relay for HVAC Applications

c ${ }^{\text {Tus }}$ File E113772

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Relay Data @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) through 2 Form C (DPDT), depending upon relay selected
Rating: 9100 Series Relay: 12 FLA, 60 LRA, 15A resistive @ 125VAC; 6 FLA, 36 LRA, 15A resistive @ 240VAC;
3/4 HP @ 125/250VAC.
9400 Series Relay: 12 FLA, 60 LRA, 18A resistive @ 125VAC;
8 FLA, 48 LRA, 18A resistive @ 240VAC.

Specifications

Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.
Weight: 32 oz. (909 g) approximately

Ordering Information

57 series products are custom-built. Your Tyco Electronics sales engineer will need to consult with the factory to develop a model meeting your needs.
Standard part numbers listed below are more likely to be available from stock.
Custom parts only.

Outline Dimensions

Alphanumeric Index

Series	Type Pag	Page
159/160	Mercury-Wetted Reed Relays	308
190	DPDT, THT Relay	331
D2N (V23105)......	DPDT, THT Relay	333
FP2	DPDT, THT Relay	323
FT2/FU2.	DPDT, SMT or THT Relay	327
FX2	DPDT, THT Relay	29
	DPDT, SMT or THT Relay	321
J WD/J WS ..	SPST-NO - DPDT, Dry Reed Relay	303
MT2	DPDT, THT Relay	335
MT4	4PDT, THT Relay	337
OL	SPST-NO \& DPST-NO, Dry Reed Relay	304
OMR.	SPST-NO \& DPST-NO, Dry Reed Relay	306
OUAZ	SPDT, THT Relay	319
T81	SPDT, THT Relay.	318
P1 (V23026).	SPDT, SMT or THT Relay	314
P2 (V23079).	DPDT, SMT or THT Relay	325
TSC	SPDT, THT Relay.	316
V23026 (P1).	SPDT, SMT or THT Relay	314
V23079 (P2).........	DPDT, SMT or THT Relay	325
V23105 (D2N).......	DPDT, THT Relay	333

[^11]
High Performance Relays

If you need a low signal relay capable of switching up to 6Ghz or enduring challenging environments such as extreme shock, vibration, or temperature, you should consider our CII high performance relays. There is an overview of our high performance relay product line in section 14 of this databook.

Low Signal ($<3 A$), PC Board Relay Question Tree

This guide helps the user select one or more relay series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a relay for a particular application.

Features

- J WD has dual in-line package (DIP) configuration. (14-pin DIP)
- J WS has single in-line package (SIP) configuration.
- Low cost, dry reed reliability with various contact arrangements.
- Wave solderable and immersion cleanable.
- Optional coil suppression diode.

Contact Data @ 25 ${ }^{\circ}$ C

Arrangements: 1 Form A (SPST - NO) on J WD \& WSS. 1 Form B (SPST - NC), 1 Form C (SPDT) and 2 Form A (DPST-NO) on J WD only.
Material: Ruthenium.
Expected Mechanical Life: 100 million operations.
Expected Electrical Life:

	Resistive Load	End of Life Criteria	No. of Operations
Forms A \& B	20VDC, 500mA	500 mV Loss	1×10^{6}
	20VDC, 250mA	500 mV Loss	20×10^{6}
	Low Level (5VDC, 1mA)	50 Ohms	100×10^{6}
Form C	12VDC, 500mA	500 mV Loss	1×10^{6}
	10VDC, 10mA	50 Ohms	25×10^{6}
	Low Level (5VDC, 1mA)	50 Ohms	100×10^{6}

Contact Ratings:

Maximum Switched Voltage: 100VDC for Forms A \& B; 28VDC for Form C.
Maximum Switched Current: 500 mA for all models.
Maximum Switched Power:10W for Forms A \& B; 3W for Form C. Initial Contact Resistance: 200 milliohms, max. at 10mA, 6VDC.

Initial Dielectric Strength

Between Open Contacts: 250VDC for Forms A \& B; 175VDC for Form C. Between Contacts and Coil: 500VDC.

Initial Insulation resistance
Between Mutually Insulated Conductors: 1010 ohms at 100VDC.
Coil Data @ $25^{\circ} \mathrm{C}$
See Ordering Information table.
Operate Data @ $25^{\circ} \mathrm{C}$
Operate Time (Including Bounce)t: 1.5 ms , max.
Release Time (Including Bounce)t: 0.5 ms , max., for Forms A \& B; 3.0 ms , max., for Form C.
\dagger At or from Nominal Coil Voltage.

Environmental Data

Temperature Range: $-35^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Shock: 100 g , max., in three planes for $8 \mathrm{~ms}, 1 / 2$ wave pulse.
Vibration: 20 g , max., between 10 and $2,000 \mathrm{~Hz}$.

Mechanical Data

Termination: Printed circuit terminals on 0.100 " (2.54 mm) grid centers. Enclosure Type: Black molded epoxy package.
Weight: 0.08 oz . $(2.3 \mathrm{~g}$) approximately.

Wiring Diagrams (Top Views)

Dia. 1

Dia. 2
Dia. 3
Dia. 4

Dia. 5
Dia. 6

Dia. 7

Note: Terminal numbers are for reference only and do not appear on relays.
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

JWD/J WS series

Dual In-Line Package \&
 Single In-Line Package
 Dry Reed Relays

気 File E29244 (18) File LR81479
Ordering Information - Boldface items are more likely to be stocked.

Relay Part No.	Diode	Nom. Volt- age (VDC)	Resis- tance (10\% (Ohms)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Max. Volt- age (VDC)	Nom. Coil Power (mW)	Wir- ing Dia. No.
JWD (DIP units) with 1 Form A (SPST-NO) contacts rated 10W max.								
JWD-107-1	No	$5 / 6$	500	3.8	0.5	19	$50 / 72$	1
JWD-107-5	Yes	$5 / 6$	500	3.8	0.5	19	$50 / 72$	1
JWD-107-3	No	12	1,200	9.6	1.0	19	120	1
JWD-107-7	Yes	12	1,200	9.6	1.0	19	120	1
JWDD-171-5	No	24	2,150	19.2	2.0	40	268	2
JWD-171-10	Yes	24	2,150	19.2	2.0	40	268	2

JWD (DIP units) with 2 Form A (DPST-NO) contacts rated 10W max.

JWD-171-21	No	$5 / 6$	200	3.8	0.5	14	$125 / 180$	3
JWD-171-25	Yes	$5 / 6$	200	3.8	0.5	14	$125 / 180$	3
JWD-171-23	No	12	500	9.6	1.0	19	288	3
JWD-171-27	Yes	12	500	9.6	1.0	19	288	3
JWD-171-24	No	24	2,200	19.2	2.0	40	262	3
JWD-171-28	Yes	24	2,200	19.2	2.0	40	262	3

JWD (DIP units) with 1 Form B (SPST-NC) contacts rated 10W max.

JWD-171-12	No	$5 / 6$	500	3.8	0.5	7	$50 / 72$	4
JWD-171-17	Yes	$5 / 6$	500	3.8	0.5	7	$50 / 72$	4
JWD-171-14	No	12	1,200	9.6	1.0	16	120	4
JWD-171-19	Yes	12	1,200	9.6	1.0	16	120	4
JWD-171-15	No	24	2,200	19.2	2.0	40	262	4
JWD-171-20	Yes	24	2,200	19.2	2.0	40	262	4

JWD (DIP units) with 1 Form C (SPDT) contacts rated 3W max.

JWD-172-1	No	5/6	200	3.8	0.5	12	125/180	5
JWD-172-5	Yes	5/6	200	3.8	0.5	12	125/180	5
JWD-172-3	No	12	500	9.6	1.0	19	288	5
JWD-172-7	Yes	12	500	9.6	1.0	19	288	5
JWD-172-4	No	24	2,200	19.2	2.0	38	262	5
JWD-172-8	Yes	24	2,200	19.2	2.0	38	262	5
J WD-172-155	No	5/6	200	3.8	0.5	12	125/180	6
J WD-172-159	Yes	5/6	200	3.8	0.5	12	125/180	6
J WD-172-157	No	12	1,000	9.6	1.0	19	144	6
J WD-172-161	Yes	12	1,000	9.6	1.0	19	144	6
J WD-172-158	No	24	2,150	19.2	2.0	38	268	6
JWD-172-162	Yes	24	2,150	19.2	2.0	38	268	6

JWS (SIP units) with 1 Form A (SPST-NO) contacts rated 10W max.

JWS-117-1	No	5	500	3.8	0.5	16	50	7
J WS-117-6	Yes	5	500	3.8	0.5	16	50	7
JWS-117-3	No	12	530	9.6	1.0	19	272	7
J WS-117-8	Yes	12	530	9.6	1.0	19	272	7
J WS-117-13	No	12	1,850	9.6	1.0	30	78	7
J WS-117-18	Yes	12	1,850	9.6	1.0	30	78	7
J WS-117-5	No	24	2,150	19.2	2.0	36	268	7
J WS-117-10	Yes	24	2,150	19.2	2.0	36	268	7

Outline Dimensions

Note: Magnetic shielding may be required between relays when they are placed in very close proximity to one another.

0 L series
 Dry Reed Relay

Telecommunications, Office Machines.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Low cost, small package dry reed relay.
- 1 Form A and 2 Form A contact arrangements.
- Immersion cleanable, sealed version available. Consult factory.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), 2 Form A (DPST-NO).
Material: Rh, Ru.
Max. Switching Rate: $300 \mathrm{ops} . / \mathrm{min}$. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 100 million operations (no load).
Expected Electrical Life: 1,000,000 operations (rated load).
Minimum Load: 1mA @ 1VDC.
Initial Contact Resistance: 150 milliohms @ 100mA, 6VDC.

Contact Ratings

Ratings:
$100 \mu \mathrm{~A}$ @ 5VDC, 100,000,000 operations.
1mA @ 5VDC, 50,000,000 operations.
5mA @ 5VDC, 50,000,000 operations.
5mA @ 12VDC, 50,000,000 operations.
10mA @ 12VDC, 50,000,000 operations.
100mA @ 12VDC, 10,000,000 operations.
100mA @ 24VDC, 7,000,000 operations.
200mA @ 24VDC, 7,000,000 operations.
400mA @ 24VDC, 5,000,000 operations.

Max. Switched Voltage: AC: 120V.
DC: 60 V .
Max. Switched Current: 0.5A.
Max. Switched Power: 10VA, 10W.

Initial Dielectric Strength

Between Open Contacts: 200VDC. (1 second).
Between Coil and Contacts: 3,000VDC. (1 second).
Surge Voltage Between Coil and Contacts: 3,000V (10/160 s).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 100VDCM.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings): Snap-on dust cover.
Weight: 0.07 oz (2g) approximately.

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery. None at present.

Outline Dimensions

Wiring Diagrams (Bottom View)

1 Form A
2 Form A

PC Board Layouts (Bottom View)

1 Form A
2 Form A

Features

- Low cost, small package dry reed relay.
- 1 Form A contact and 2 Form A arrangements.

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), 2 Form A (DPST-NO).
Material: Rh, Ru.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 100 million operations (no load).
Expected Electrical Life: 1,000,000 operations (rated load).
Minimum Load: 1mA @ 1VDC.
Initial Contact Resistance: 150 milliohms @ 100mA, 6VDC.

Contact Ratings

Ratings:

$100 \mu \mathrm{~A} @ 5 \mathrm{VDC}, 100,000,000$ operations.
1mA @ 5VDC, 50,000,000 operations.
5mA @ 5VDC, 50,000,000 operations.
5mA @ 12VDC, 50,000,000 operations.
10mA @ 12VDC, 50,000,000 operations.
100mA @ 12VDC, 10,000,000 operations.
100mA @ 24VDC, 7,000,000 operations.
200mA @ 24VDC, 7,000,000 operations.
400mA @ 24VDC, 5,000,000 operations.
Max. Switched Voltage: AC: 120V.
DC: 60V.
Max. Switched Current: 0.5A
Max. Switched Power: 10VA, 10W.

Initial Dielectric Strength

Between Open Contacts: 200VDC. (1 second).
Between Coil and Contacts: 3,000VDC. (1 second).
Surge Voltage Between Coil and Contacts: 3,000V (10 / 160 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 100VDCM.

OM R series

Dry Reed Relay

Telecommunications, Office Machines.

미 File No. E82292

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Voltage: 6 to 24VDC
Nominal Power: 100 mW to 280mW.
Coil Temperature Rise: $30^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 160\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OMR				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
$5 / 6$	24.0	250	3.50	0.50
9	12.9	700	6.30	0.90
12	11.4	1,050	8.40	1.20
24	11.5	2,080	16.80	2.40

Operate Data

Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 1.0 ms max.
Release Time: 0.5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing)

[^12]| Ordering Information | Typical Part Number ${ }^{\text {P }}$ | OMR | -C | -1 | 12 | H | ,000, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 1. Basic Series: OMR = Dry Reed Relay. | | | | | | | |
| 2. Enclosure: Blank = Open, no cover. $\mathrm{C}=$ Snap-on dust cover. | | | | | | | |
| 3. Termination: 1 = 1 pole | $2=2$ pole | | | | | | |
| 4. Coil Voltage: $\begin{aligned} & 06=6 \mathrm{VDC} \\ & 09=9 \mathrm{VDC} \end{aligned}$ | $\begin{aligned} & 12=12 \mathrm{VDC} \\ & 24=24 \mathrm{VDC} \end{aligned}$ | | | | | | |
| 5. Contact Rating: $\mathrm{H}=0.5 \mathrm{~A} @ 120 \mathrm{VAC}$ | | | | | | | |
| 6. Suffix:
 ,000 = Standard model | Other Suffix = Custom model | | | | | | |

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Open Type, 1 Form A

Snap-on Dust Cover Type,
1 Form A

Wiring Diagrams (Bottom View)

1 Form A

2 Form A

Open Type, 2 Form A

Snap-on Dust Cover type,
2 Form A

PC Board Layout (Bottom View)

1 Form A

2 Form A

159/160 series

Mercury-Wetted Reed Relays

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

General Information

The mercury-wetted contact relay represents one of the more sophisticated types of relays made today. The early pioneer work in mercury-wetted contact switching dates back to the 1950's, as telephone laboratory scientists sought out the "perfect contact". Mercurywetted contacts represent the nearest thing to the perfect contact yet developed, being characterized by such parameters as: bounce-free operation; very low and stable contact resistance; hermetic protection; fast operating speeds; Form C or Form D contact, action contact life measured in billions of operations. The only major weakness of a mercurywetted contact relay is the necessity to mount the relay within 30° of a vertical position, due to its position sensitivity.
While there are several variations of the mercury-wetted contact relay on the market, the basic contact element has essential concepts in common. The mercury-wetted contact element consists of a glass-encapsulated nickel-iron reed with its base immersed in a pool of mercury. The free reed cantilever projects upward between sets of stationary contact electrodes, which have been glass-sealed in proper juxtaposition at the top of the glass chamber. The mercury is induced to flow up the cantilever by capillary action, wetting mercury on both the cantilever contact tip as well as the stationary contacts. Thus a mercury-to-mercury contact is maintained on both the normally-closed and normally-open contacts, and the system is self-replenishing. The 2-ampere mercury-wetted capsule is shown far left.

Along with the inherent fast actuation of the capsule and excellent load-handling capacity, the mercury-wetted contacts exhibit extremely long life, as the mercury films reestablish at each closure and contact erosion is eliminated. Contact interface resistance is very low and stable, and as the mercury films are elastic, contact bounce is eliminated. A dynamic sequence of the mercury-wetted contact action is shown below.
While the below sequence portrays a Form D (make-before-break) contact action, a true Form C (break-before-make) contact can be provided by proper control of the mercury film dynamics and the contact electrode spacing.
The mercury-wetted contact capsules generally are mounted within a coil assembly, and with appropriately mounted bias magnets, mounting base and magnetic shielded enclosures. The more popular assemblies contain one or two capsules in a convenient printed circuit mounting module.
Mercury-wetted relays can be adjusted to operate with very low levels of input power, in the order of 10-20 milliwatts. Thus, power gain switching of as great as 10,000 can be realized. For all but very light contact loads, contact protection is required to limit the current or voltage rise time across the contacts.

Form D Mercury-Wetted Contact Action As Seen In High-Speed Sequence

(1) Mercury (shown in black) covers armature and contact points; (2) and (3) as armature moves from open to closed position, mercury filament joins both contacts momentarily; (4) ruptured mercury surfaces accelerate away from each other, providing rapid breaking action; (5) as contact surfaces join, mercury wetting dampens rebound, eliminates electrical chatter, and provides contact reliability.

SPDT (Form C or Form D) Contact Specifications

Material	Rating (Switched Load)	(Carry Load)	Bridging and Transfer Time	Contact Resistance	Life Expectancy
Mercury-wetted platinum contacts hermetically	2 amperes	5 amperes	When operated by a single	14 milliohms typical;	
sealed in an inert atmosphere	maximum	maximum	DC pulse, the bridging or	20 milliohms maximum	
operations					
100 volts maximum	Not switched	transfer time will be greater	Stable within		
than 50 microseconds, but	± 2 milliohms				
at rated load					

Mercury-Wetted Relays Contact Protection

The essentially infinite life of mercury-wetted contact relays may only be realized if the requirements for suitable contact protection are observed
In that the goal is control of the rate of rise of voltage across the contacts when the circuit is opened (rather than peak transient limiting), the only suitable protection recognized is an RC network. Values of R and C may be calculated using the formula shown, or may be obtained from the direct reading nomograph.

Nomograph Explanation

$1=$ Steady state current at time of circuit opening $\mathrm{E}=$ Open circuit voltage
Find I on the ordinate scale. Read C on the scale adjacent to I . R is found at the intersection of I and E

To reduce voltage transient amplitudes, C may be increased up to 10 times calculated values. (R must be calculated value.)

For $1=0.5 \mathrm{amps}$ or less
and
$\mathrm{E}=50$ volts or less
R may be omitted
C must be calculated value

Resistor Tolerances

E	R
Less than 70 V	R up to 2 R
70 V to 100 V	$\pm 50 \%$
100 V to 150 V	$\pm 10 \%$
Greater than 150V	$\pm 5 \%$

159 series

Mercury-Wetted Reed Relays

Outline Dimensions

Note: Relay must be mounted within 30° of vertical and suitable contact protection must be used

Part Numbering System

Relay Series	Enclosure And Terminals	Contacts And Adjustment	Coils	Standard Or Special
160	$\begin{aligned} & 1-.625 \mathrm{Ht} ., . .125 \mathrm{Lg} . \\ & 2-.625 \mathrm{Ht} ., 156 \mathrm{Lg} . \\ & 3-.625 \mathrm{Ht} ., 187 \mathrm{Lg} . \\ & 4-.625 \mathrm{Ht} ., .250 \mathrm{Lg} . \end{aligned}$ 0-Special	$\begin{aligned} & \text { 1-1D Single-Side-Stable } \\ & \text { 2-1D Bistable } \\ & \text { 5-1C Single-Side-Stable } \\ & \text { 6-1C Bistable } \\ & \text { 7-1C Dynamic (1\%) } \\ & \text { Balanced Bistable } \\ & \text { 0-Special } \end{aligned}$	1A-1Z-Single Coil 2K-2V-Double Coil 7A-7T-Single Coil 8A-8Z-Bifilar Coil 9A-9Z-Double Coil (Concentric) 1S and 2S-Special	00-Standard A1-Z9-Special Customer Requirement

Example: 159-151NOO is a 159 series relay, enclosure height of 625 in., pin length of .125 in., Form C contact, single-side-stable adjustment, single coil 1 N , of completely standard construction.

Coil Characteristics and Part Numbers

One Winding Single-Side-Stable 40 Milliwatts

Coils	Coil Resistance (Ohms)	Must Operate Current (MA-DC)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Maximum Voltage (VDC)	Part Number	
						Form C	Form D
1A	2.2	116	. 28	. 06	2.1	159-151A00	159-111A00
1B	3.9	86	. 37	. 07	2.8	159-151800	159-111B00
1 C	6.4	67	. 47	. 09	3.6	159-151C00	159-111C00
1 D	9.0	60	. 60	. 12	4.3	159-151D00	159-111D00
1E	14	47	. 72	. 15	5.3	159-151E00	159-111E00
1F	24	35	93	. 19	6.9	159-151FO0	159-111FOO
1G	34	32	1.2	. 24	8.2	159-151G00	159-111G00
1 H	56	24	1.5	. 30	11	159-151H00	159-111HOO
1 J	86	20	1.9	. 39	13	159-151J00	159-111J00
1K	140	15	2.3	. 46	17	159-151K00	159-111K00
1 L	225	12	2.9	. 59	21	159-151L00	159-111LOO
1M	385	9.0	3.8	. 73	28	159-151M00	159-111MOO
1N	620	7.0	4.8	. 95	35	159-151NOO	159-111NOO
1 P	940	5.8	6.0	1.2	43	159-151P00	159-111P00
10	1,450	4.8	7.7	1.6	54	159-151000	159-111000
1R	2,430	3.6	9.7	2.0	70	159-151R00	159-111R00
1 T	3,620	2.9	12	2.3	85	159-151T00	159-111T00
1 U	5,500	2.5	15	3.0	105	159-151U00	159-111U00
1 V	8,600	2.0	19	3.8	130	159-151V00	159-111V00
Dimensions are shown for reference purposes only.		Dimensions are in inches over (millimeters) unless otherwise specified.			Specifications and availability subject to change.		www.tycoelectronics.com Technical support: Refer to inside back cover.

159 Series (continued) - Coil Characteristics and Part Numbers

Two Windings Single-Side-Stable 80 Milliwatts Per Winding

Coils	Coil Resistance (Ohms)	Must Operate Current (MA-DC) (Either Winding)	Must Operate Voltage (VDC) (Either Winding)	Must Release Voltage (VDC) (Either Winding)	Maximum Voltage (VDC) (Either Winding)	Dielectric Stand Off Between Coils (VDC)	Part Number	
							Form C	Form D
2K	70/70	30	2.3	. 47	12	500	159-152K00	159-112K00
2L	115/115	23	3.0	60	15	500	159-152LOO	159-112LOO
2M	190/190	18	3.8	. 79	19	400	159-152M00	159-112M00
2 N	325/325	14	5.0	1.0	26	400	159-152NOO	159-112NOO
2 P	490/490	12	6.2	1.3	31	400	159-152PO0	159-112PO0
20	730/730	9.6	7.7	1.6	38	400	159-152000	159-112000
2R	1250/1250	7.2	10	2.0	50	400	159-152ROO	159-112R00
2 T	1860/1860	5.8	12	2.5	61	200	159-152T00	159-112TOO
2 U	2760/2760	5.0	15	3.0	74	200	159-152U00	159-112U00
2 V	4275/4275	3.9	18	3.8	92	200	159-152V00	159-112V00

Two Windings Single-Side-Stable 40 Milliwatts Per Winding

2K	70/70	15	. 30	1.2	12	500	159-162K00	159-122K00
2L	115/115	12	. 37	1.5	15	500	159-162LOO	159-122LOO
2M	190/190	9.0	. 47	1.9	19	400	159-162M00	159-122M00
2 N	325/325	7.0	. 62	2.5	26	400	159-162NOO	159-122NOO
2 P	490/490	5.8	. 77	3.1	31	400	159-162P00	159-122P00
20	730/730	4.8	. 97	3.9	38	400	159-162000	159-122000
2R	1250/1250	3.6	1.2	5.0	50	400	159-162R00	159-122R00
2T	1860/1860	3.0	1.5	6.0	61	200	159-162T00	159-122TOO
2 U	2760/2760	2.5	1.8	7.5	74	200	159-162U00	159-122U00
2 V	4275/4275	2.0	2.3	9.2	92	200	159-162V00	159-122V00

Two Windings Bifilar Windings Bistable 40 Milliwatts Per Winding

8A	135/135	16	. 48	2.4	16.4	500	159-168A00	159-128A00
8B	170/170	15.5	. 58	2.9	18.5	400	159-168B00	159-128B00
8C	200/200	13.3	. 58	2.9	20.0	400	159-168C00	159-128COO
8D	310/310	11.9	. 82	4.1	24.9	400	159-168D00	159-128D00
8E	460/460	7.8	. 80	4.0	30.3	400	159-168E00	159-128E00
8F	675/675	6.5	. 96	4.8	36.7	400	159-168F00	159-128F00
8G	810/810	6.85	1.2	6.1	40.2	400	159-168G00	159-128G00
8H	1000/1000	6.75	1.5	7.4	44.7	400	159-168HOO	159-128HOO
8J	1240/1240	5.6	1.4	7.0	49.8	400	159-168J00	159-128J00
8K	2300/2300	3.82	1.9	9.7	67.8	200	159-168K00	159-128K00

Note: All values at $25^{\circ} \mathrm{C}$. Resistances specified are $\pm 10 \%$. Maximum voltages based on 2 watts continuous dissipation.

Winding	Single-Side-	table 115	vatts	Bistable	illiwatts						
Nominal Resistance (Ohms)	Single-Side-Stable						Bistable				
	Must Operate Current (MA-DC)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Maximum Voltage (VDC)	Part Number		Must Operate Current (MA-DC)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Part Number	
					Form C	Form D				Form C	Form D
18	66.6	1.3	. 18	6.0	159-157A00	159-117A00	31.2	. 12	. 62	159-167A00	159-127A00
65	37.4	2.7	. 36	11.4	159-157B00	159-117B00	17.8	. 26	1.3	159-167B00	159-127B00
85	33.3	3.1	. 42	13.0	159-157C00	159-117C00	15.6	. 30	1.5	159-167C00	159-127C00
90	37.7	3.8	. 51	13.4	159-157000	159-117D00	17.6	. 36	1.8	159-167D00	159-127D00
115	30.0	3.8	. 51	15.1	159-157E00	159-117E00	14.0	. 36	1.8	159-167E00	159-127E00
275	17.0	5.2	. 77	23.4	159-157F00	159-117F00	8.0	. 50	2.5	159-167F00	159-127F00
450	12.9	6.4	. 85	30.0	159-157G00	159-117G00	6.0	. 60	3.0	159-167G00	159-127G00
675	11.6	8.6	1.1	36.7	159-157H00	159-117H00	5.4	. 80	4.0	159-167H00	159-127H00
940	10.1	10.5	1.4	43.3	159-157J00	159-117J00	4.7	. 98	4.9	159-167J00	159-127J00
950	12.1	12.7	1.7	43.6	159-157K00	159-117K00	5.7	1.2	6.0	159-167K00	159-127K00
1250	9.4	12.9	1.8	50.0	159-157L00	159-117L00	4.4	1.2	6.1	159-167L00	159-127L00
1425	8.3	13	1.8	53.4	159-157M00	159-117M00	3.9	1.2	6.2	159-167M00	159-127M00
1800	9.4	18.6	2.6	60.0	159-157N00	159-117N00	4.4	1.7	8.8	159-167N00	159-127N00
1950	7.5	17.6	2.1	62.4	159-157P00	159-117P00	3.5	1.5	7.5	159-167P00	159-127P00
2400	7.35	20.6	2.6	69.2	159-157000	159-117000	3.4	1.8	9.0	159-167000	159-127000
4000	5.55	24.4	3.3	89.5	159-157R00	159-117R00	2.6	2.3		159-167R00	159-127R00
4000		17.6	2.4	89.5	159-157T00	159-117T00	1.9	1.6	8.3	159-167T00	159-127T00

160 series

Mercury-Wetted
 Reed Relays

9

Features

160 series relays are available in a single Form C or Form D two ampere contact arrangement, single or dual coil and printed circuit board terminals.
The part numbers shown on the adjacent page are for relays with $0.093^{\prime \prime}$ terminal spacing. The part number designator for the $0.100^{\prime \prime}$ grid is a 160$3 X X X X X$ for a pin of $0.09^{\prime \prime}$ length, and $160-4 X X X X X$ for a pin of $0.125^{\prime \prime}$ length.
Positive potential applied to the start of the winding indicated by the symbol will close the contacts shown open on the electrical schematics. For reset of bistable relays, reversed polarity must be applied. Weight 0.5 ounces. UL File E55708
Note: Relay must be mounted within 30° of vertical and suitable contact protection must be used.

Wiring Diagrams

Single Coil Double Coil

Outline Dimensions

Part Numbering System

Relay Series	Enclosures And Terminals	Contacts and Adjustments	Coil	Standard or Special
160	$\begin{aligned} & \text { 1-.. } 090 \text { Lg.,. } 093 \text { Grid } \\ & \text { 2-. } 125 \text { Lg.,. } 093 \text { Grid } \\ & \text { 3-. } 090 \text { Lg.,. } 100 \text { Grid } \\ & \text { 4-. } 125 \text { Lg.,. } 100 \text { Grid } \\ & \text { 0-Special } \end{aligned}$	$\begin{aligned} & \text { 1-1D Single-Side-Stable } \\ & 2-1 \text { D Bistable } \\ & \text { 5-1C Single-Side-Stable } \\ & \text { 6-1C Bistable } \\ & \text { 7-1C Dynamic (} 1 \% \text {) } \\ & \text { Balanced Bistable } \\ & 0-\text { Special } \end{aligned}$	1A-1Z-Single Coil 2A-2Z-Double Coil 1S-Special Single Coil 2S-Special Double Coil	00-Standard A1-Z9-Special Customer Requirement

Example: $160-151 \mathrm{KOO}$ is a 160 series relay, enclosure height of 400 in ., pin length of .090 in ., Form C contact, single-side-stable adjustment, single coil 1 K , of completely standard construction.

Coil Characteristics and Part Numbers
Two Windings Bistable 20 Milliwatts Per Winding

Coil	Coil Resistance (Ohms)	Must Operate Current (MA-DC) (Either Winding)	Must Not Operate Voltage (VDC) (Either Winding)	Must Operate Voltage (VDC) (Either Winding)	MaximumVoltage (VDC)(One Winding Only)	Dielectric Standoff Between Coils (VDC)	Part Number	
							Form C	Form D
2K	60/60	17	. 29	1.1	10	500	160-162K00	160-122K00
2L	90/90	15	. 38	1.5	13	400	160-162LOO	160-122L00
2 M	155/155	11	. 49	1.9	16	400	160-162MOO	160-122M00
2 N	205/205	10	. 61	2.3	19	400	160-162NOO	160-122NOO
2 P	340/340	7.5	. 73	2.8	24	400	160-162P00	160-122PO0
20	560/560	6.0	. 98	3.6	31	400	160-162000	160-122000
2R	870/870	4.7	1.2	4.5	39	200	160-162R00	160-122R00
2 T	1320/1320	3.8	1.4	5.5	48	200	160-162T00	160-122T00
2 U	1980/1980	3.2	1.8	7.0	59	200	160-162U00	160-122U00
2 V	3000/3000	2.7	2.3	9.0	73	200	160-162VOO	160-122V00
2W	4500/4500	2.1	2.8	11.0	89	200	160-162WOO	160-122W00

Note: All values at $25^{\circ} \mathrm{C}$. Resistances specified are $\pm 10 \%$. Maximum voltages based on 1.75 watts continuous dissipation.

160 Series (continued) - Coil Characteristics and Part Numbers

One Winding Single-Side-Stable 40 Milliwatts

Coil Resistance (Ohms)	Must Operate Current (MA-DC)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Maximum Voltage (VDC)	Part Number	
					Form C	Form D
2.2	113	. 27	. 05	2.0	160-151A00	160-111A00
3.1	103	. 35	. 07	2.3	160-151B00	160-111B00
4.4	90	. 43	. 08	2.8	160-151C00	160-111C00
5.9	80	. 52	. 10	3.2	160-151D00	160-111D00
13.0	49	. 71	. 14	4.8	160-151E00	160-111E00
18.7	43	. 87	. 18	5.7	160-151F00	160-111FO0
27.7	36	1.1	. 22	7.0	160-151G00	160-111G00
50	25	1.4	. 28	9.4	160-151H00	160-111H00
70	23	1.8	. 35	11	160-151J00	160-111J00
125	16	2.3	. 46	15	160-151K00	160-111K00
185	14	2.9	. 60	18	160-151L00	160-111LOO
325	11	3.8	. 77	24	160-151M00	160-111M00
435	10	4.6	. 94	28	160-151N00	160-111NOO
680	7.5	5.7	1.1	35	160-151P00	160-111P00
1.120	5.9	7.2	1.4	44	160-151000	160-111000
1.750	4.6	8.8	1.7	55	160-151R00	160-111R00
2,650	3.8	11	2.2	68	160-151T00	160-111TO0
3,900	3.2	14	2.7	83	160-151U00	160-111U00
6,100	2.6	17	3.5	103	160-151V00	160-111V00
9,000	2.1	21	4.2	125	160-151W00	160-111WOO

Two Windings Single-Side-Stable 80 Milliwatts Per Winding

Coil Resistance (Ohms)	Must Operate Current (MA-DC) (Either Winding)	Must Not Operate Voltage (VDC) (Either Winding)	Must Operate Voltage (VDC) (Either Winding)	Maximum Voltage (VDC) (One Winding Only)	Dielectric Standoff Between Coils (VDC)	Part Number	
						Form C	Form D
60/60	33	2.2	. 44	10	500	160-152K00	160-112K00
90/90	29	2.9	. 58	13	400	160-152LOO	160-112LOO
155/155	22	3.7	. 74	16	400	160-152M00	160-112MOO
205/205	20	4.5	. 92	19	400	160-152NOO	160-112NOO
340/340	15	5.6	1.1	24	400	160-152P00	160-112POO
560/560	10.8	7.9	1.3	31	400	160-152000	160-112000
870/870	9.3	9.0	1.8	39	200	160-152R00	160-112ROO
1,320/1,320	7.5	11.0	2.2	48	200	160-152T00	160-112T00
1,980/1,980	6.4	14.0	2.8	59	200	160-152U00	160-112U00
3,000/3,000	5.3	18.0	3.5	73	200	160-152V00	160-112V00
4,500/4,500	4.2	21.0	4.2	89	200	160-152W00	160-112W00

Features

- Surface and through-hole mounting types.
- 1 Form C contact arrangement.
- Latching or non-latching versions available.
- Switches loads from dry circuit to 1 amp.
- Washable - meets IEC protection class IP67.
- Low coil power requirement for IC compatibility.
- Terminals arranged on 0.1" grid.
- Designed for compact, high density mounting, $106.6 \mathrm{~mm}^{2}$ surface area.
- Ideal for data and communication systems.

Contact Data @ 23 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form C (SPDT) bifurcated contacts.
Material \& Style:Palladium-Nickel with Gold-Rhodium overlay.
Expected Mechanical Life: 1 billion operations.
Expected Electrical Life: 50 million ops. at 10mA, 12VDC;
10 million ops. at $100 \mathrm{~mA}, 6 \mathrm{VDC}$;
100,000 ops. at 1A, 30VDC.
Contact Ratings:
Maximum Switched Voltage: 125VDC, 150VAC.
Maximum Switched Current: 1A.
Maximum Carrying Current: 1A.
Maximum Switched Power: 30W (DC), 60VA (AC).
Minimum Switched Capability: $100 \mu \mathrm{~V}$.
UL/CSA Contact Ratings: 1A @ 30VDC;
460mA @ 65VDC;
460mA @ 150VAC.
Initial Contact Resistance: 50 milliohms max. @ $10 \mathrm{~mA}, 20 \mathrm{mV}$.

High Frequency Data

Capacitance: Between Open Contacts: 5pF, max.
Between Coil and Contacts: 6 pF , max.
RF Characteristics: Isolation at $100 / 900 \mathrm{MHz}:-30.9 \mathrm{db} /-18.0 \mathrm{db}$. Insertion loss at 100 / $900 \mathrm{MHz}:-0.12 \mathrm{db} /-1.9 \mathrm{db}$. V. S. W. R. at 100 / $900 \mathrm{MHz}: 1.06 \mathrm{db} / 1.75 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: 500V rms for 1 minute.
Between Contacts and Coil: $1,500 \mathrm{~V}$ rms for 1 minute.
Surge Voltage Resistance per Bellcore TR-NWT-001089 (2/10 $\mu \mathrm{s}$):
Between Open Contacts: $2,000 \mathrm{~V}$ on request. Between Coil and Contacts: $2,500 \mathrm{~V}$.
Surge Voltage Resistance per FCC 68 ($10 / 160 \mu \mathrm{~s}$): Between Open Contacts: $1,500 \mathrm{~V}$ on request. Between Coil and Contacts: $1,500 \mathrm{~V}$.

Note: Consult factory regarding availability of models meeting high surge resistance requirements between open contacts.

Initial Insulation Resistance

Between Mutually Insulated Conductors: 10^{9} ohms @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 1.5 to 24VDC.
Thermal Resistance at Continuous Thermal Load: $130^{\circ} \mathrm{K}$ per Watt.
Maximum Coil Temperature: $85^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

V23026 (P1) series

Miniature, Sealed PC Board Relay

T File E48393
(18) File LR45064-5

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nominal Voltage (VDC)	Maximum Operating Voltage (VDC)	Nominal Power (mW)	$\begin{aligned} & \text { Resistance } \\ & \text { (Ohms) } \\ & \pm 10 \% \end{aligned}$	Coil Number Order Designation (Step 4 in Ordering Information chart)
Non-Latching - Through-Hole versions (A1)				
1.5	4.5	63	36	7
3	8.8	66	137	6
5	14.5	67	370	1
9	25.5	69	1,165	5
12	35	64	2,250	2
15	42	72	3,100	3
24	50	128	4,500	4
Non-Latching - Surface-Mount versions (D1)				
1.5	4	80	28	7
3	8	80	113	6
5	13.3	80	313	1
9	24	80	1,013	5
12	32	80	1,800	2
15	40	80	2,813	3
24	50	128	4,500	4
$\begin{array}{\|l} \hline \text { Bistable, Dual Coils - Through-Hole and Surface-Mount versions (B1,E1) } \\ \text { (values are the same for each coil)(1) } \end{array}$				
1.5	4.25	70	32	7
3	8.55	69	130	6
5	14.75	64	390	1
9	14.75	68	1,200	5
12	29	96	1,500	2
15	29	150	1,500	3
Bistable, Single Coil - Through-Hole and Surface-Mount versions (C1,F1)				
1.5	6	37	61	5
3	13	30	300	6
5	20	34	740	1
9	35	38	2,160	7
12	50	32	4,500	2
15	50	50	4,500	3
24	50	128	4,500	4

(1) The specified voltages apply with only one coil energized.

Operate Data @ $23^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or less.
Max. Continuous Thermal Load : 500mW.
Operate Time (Excluding Bounce) t : 1 ms , typ.
Operate Bounce Timet: 1 ms , typ.
Release Time (Excluding Bounce)t: 0.4 ms , typ.
Set Time (Latching)t: 1 ms , typ.
Reset Time (Latching) t : 1 ms , typ.
Maximum Switching Rate: 200 operations/second.
\dagger At or from Nominal Coil Voltage

Environmental Data

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration, Operational: $40 \mathrm{~g}, 10-200 \mathrm{~Hz} ; 20 \mathrm{~g}, 200-2000 \mathrm{~Hz}$.
Shock, Operational: 50 g at $11 \mathrm{~ms} 1 / 2$ sinusoidal impulse.
Resistance to Soldering Heat: $260^{\circ} \mathrm{C}$ for 10 s . Internal relay temperature should not exceed $210^{\circ} \mathrm{C}$.
Needle Flame Test: Application time 20s, burning time <15 s.

Mechanical Data

Termination: Through-hole or surface mount printed circuit terminals.
Enclosure Type: Immersion cleanable, plastic sealed case.
Weight: 0.063 oz. (1.8 g) approximately.

	Typical Part Number \downarrow	V23026

1. Basic Series:

V23026 = P1 M iniature, printed circuit board relay.
2. Termination:

	Non-Latching	Dual Coil Latching	Single Coil Latching
Through-Hole	A1	B1	C1
Surface Mount	D1	E1	F1

3. Function Type:
$00=$ Single Coil Non-Latching, Through-Hole terminals $02=$ Single Coil Non-Latching, Surface-M ount terminals
$05=$ Single Coil Latching
$10=$ Dual Coil Latching
4. Coil Voltage:
$7=1.5 \mathrm{VDC}(1) \quad 6=3 \mathrm{VDC} \quad 1=5 \mathrm{VDC} \quad 5=9 \mathrm{VDC}(1) \quad 2=12 \mathrm{VDC} \quad 3=15 \mathrm{VDC} \quad 4=24 \mathrm{VDC}(2)$
(1) For single coil latching versions only (C1, F1), $5=1.5 \mathrm{VDC}$ and $7=9 \mathrm{VDC} \quad$ (2) 24 V coil not available on dual coil version
5. Contact Type:

B201 = Bifurcated, 1 Form C (SPDT).
*Consult factory for tape and reel packaging.

Our authorized distributors are more likely to stock the following items for immediate delivery.
$\begin{array}{ll}\text { V23026A1001B201 } & \text { V23026D1021B201 } \\ \text { V23026A1002B201 } & \text { V23026D1022B201 }\end{array}$
V23026A1004B201 V23026D1024B201

Outline Dimensions

Through-Hole

Surface Mount

Wiring Diagrams (Bottom Views)
Single Coil Non-Latching \& Single Coil Latching

For non-latching versions, coil polarity must be observed.
For single coil latching versions, polarity shown results in "set" condition. Reverse polarity results in "reset" condition.
Diagram indicates de-energized position for non-latching and "reset" position for single coil latching.

Dual Coil Latching

Diagram indicates relay in the "reset" position, with "reset" coil most recently energized as shown. Energizing "set" coil as shown will transfer the contacts.

PC Board Layouts (Bottom Views)

Through-Hole

Surface Mount

TSC series

Miniature, Sealed PC Board Relay

Telecommunications, Appliances, Office Machines

균 UL File No. E82292
(18) CSA File No. LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

TSC-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	30.0	166	3.75	0.25
6	25.0	240	4.50	0.30
9	16.7	540	6.75	0.45
12	12.5	960	9.00	0.60
24	6.3	3,840	18.00	1.20
TSC-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	60.0	83	3.75	0.25
6	50.0	120	4.50	0.30
9	33.4	270	6.75	0.45
12	25.0	480	9.00	0.60
24	12.5	1,920	18.00	1.20

Contact Ratings

Ratings: 1A @ 24VDC resistive.
1A @ 120VAC resistive.

Max. Switched Voltage: AC: 120V.
DC: 30V.
Max. Switched Current: 1A.
Max. Switched Power: 120VA, 24W.

Initial Dielectric Strength

Between Open Contacts: 400VAC, $50 / 60 \mathrm{~Hz}$. (1 min.).
Between Contacts and Coil: 1,000VAC, $50 / 60 \mathrm{~Hz}$. (1 min.).
Note: Consult factory for higher dielectric version: $1,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
(1 min.).
Surge Voltage Between Coil and Contacts: 1,500V FCC Part 68 (10/160 $\mathrm{\mu s}$).

Initial Insulation Resistance

Between Mutually Insulated Conductors: 1,000M ohm @ 500VDCM.

Coil Data

Voltage: 5 to 24VDC.
Duty Cycle: Continuous.
Nominal Power: TSC-L: 150 mW .
TSC-D: 300 mW .
Max. Coil Power: TSC-L: 140% of nominal at $70^{\circ} \mathrm{C}$.
TSC-D: 115% of nominal at $70^{\circ} \mathrm{C}$.

Ordering Information	Typical Part Number	TSC	-1	05	L	3	H	,000
1. Basic Series: TSC = M iniature relay								
2. Termination: 1 = 1 pole								
3. Coil Voltage: $\begin{array}{ll} 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} \\ 06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} \end{array}$	$24=24 \mathrm{VDC}$							
4. Coil Input: $\mathrm{L}=$ Sensitive $\quad \mathrm{D}=$ Standard								
5. Contact Material: 3 = Silver Nickel								
6. Enclosure: Blank = Vented (Flux-tight) cover	$\mathrm{H}=$ Sealed plastic case							
7. Suffix: ,000 = Standard model	Other Suffix = Custom model							

Our authorized distributors are more likely to stock the following items for immediate delivery.

TSC-105L3H,000 TSC-124L3H,000 TSC-112D3H,000

TSC-112L3H,000 TSC-105D3H,000 TSC-124D3H,000

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Coil Temperature Rise

Ambient Temp. \& Operate Voltage

Load Limit Curve

Features

- Gold clad contacts in a 1 Form C contact arrangement.
- Standard $0.1^{\prime \prime} \times 0.3^{\prime \prime}$ grid spacing in a DIP configuration.
- Standard or sensitive DC coils through 24 volts.
- High dielectric strength.
- Well suited for audio communications circuits, logic and process control, vending machines, thermostats and office automation applications.
- Immersion cleanable, plastic sealed case.
- Quiet operation for security applications.

Contact Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Arrangements: 1 Form C (SPDT).
Material: Gold overlay silver-palladium alloy.
Ratings: $1 \mathrm{amp} @ 24 \mathrm{VDC}$, resistive; $0.5 \mathrm{amp} @ 120 \mathrm{VAC}$, resistive.
Max. Switching Current: 2A
Max. Switching Power: 60VA/24W.
Max. Switching Voltage: 120VAC/60VDC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 150,000 ops. @ 1A, 24VDC, resistive.
100,000 ops. @1A, 120VAC, resistive.
Initial Contact Resistance: 50 milliohms, max., @ 100mA, 6VDC.
Surge Voltage:
Between Coil and Contacts ($10 \times 160 \mu \mathrm{~s}$): 1,500V: (FCC Part 68).

Initial Dielectric Strength

Between Open Contacts: 500 V ms, $50 / 60 \mathrm{~Hz}$., for 1 minute.
Contact to Coil: $1,000 \mathrm{~V}$ rms, $50 / 60 \mathrm{~Hz}$., for 1 minute.

Initial Insulation Resistance

Between Mutually Insulated Conductors: 10^{8} ohms @ $500 \mathrm{VDC}, 20^{\circ} \mathrm{C}$ and 65\% relative humidity.

Coil Data @ $20^{\circ} \mathrm{C}$

Voltage: 3 through 24VDC.
Nom. Power (Approx.): Std. Coil: 450 mW; Sensitive Coil: 200 mW.
Maximum Power: Std. Coil: 800 mW .;Sensitive Coil: 640 mW .
Temperature Rise: Std. Coil: $105^{\circ} \mathrm{C}$ per watt, typ.
Sensitive Coil: $125^{\circ} \mathrm{C}$ per watt, typ.
Maximum Coil Temperature: $105^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

T81N/T81H series

Ultraminiature, High Density PC Board Relay
 吹 File E29244
 (18 File LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Standard Coils		Sensitive Coils	
Nominal Voltage (VDC)	Resistance $\pm \mathbf{1 0 \%}$ (Ohms)	Nominal Voltage (VDC)	Resistance $\pm \mathbf{1 0 \%}$ (Ohms)
3	20	3	45
5	55	5	125
6	80	6	180
9	180	9	400
12	320	12	700
24	1,280	24	2,800

Operate Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time (Excluding Bounce)t: Standard Coil : 5 ms , approx. Sensitive Coil : 5 ms , approx.
Release Time (Excluding Bounce)t: All Models: 2 ms , approx.
† At or from Nominal Coil Voltage.

Environmental Data

Temperature Range: Standard Coil: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Sensitive Coil: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Vibration: 0.059" (1.5mm) max. excursions for $10-40 \mathrm{~Hz}$.
Shock: Standard Coil: 10 g for 11 ms .
Sensitive Coil: 6 g for 11 ms .

Mechanical Data

Termination: Printed circuit terminals on 0.1 " (2.54 mm) centers.
Enclosure: Sealed PBT plastic case.
Weight: 0.14 oz . (4 g) approximately.

Our authorized distributors are more likely to stock these items.

T81H5D312-05	T81H5D312-12	T81N5D312-05	T81N5D312-24
T81H5D312-06	T81H5D312-24	T81N5D312-12	

T81N5D312-12

Outline Dimensions

Wiring Diagram (Bottom View)

Terminals - \#1 \& 2 $.023(0.6) \times .018$ (0.45)
Terminals - \#11 \& 12
.023 (0.6) X . 016 (0.40)
Terminal - \#7 .008 (0.20) X . 023 (0.6)

PC Board Layout (Bottom View)

Features

- Gold overlay silver palladium alloy contact suitable for low loads.
- High density available on PC board due to small size.
- 2.54 mm terminal pitch same as I.C. socket terminal pitch.
- Sensitive and standard coils available.
- Immersion cleanable, sealed version available.

Contact Data @ 20응

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Gold overlay silver palladium.
Max. Switching Rate: $300 \mathrm{ops} . / \mathrm{min}$. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 1mA @1VDC.
Initial Contact Resistance: 50 milliohms @ 100mA,6VDC.

Contact Ratings

Ratings: 1A @ 24VDC resistive, 1A @ 120VAC resistive.
Max. Switched Voltage: AC: 120V.
DC: 60V.
Max. Switched Current: 1A.
Max. Switched Power: 120VA, 30W.

Initial Dielectric Strength

Between Open Contacts: $500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $1,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 1,500V FCC Part 68
($10 / 160 \mu \mathrm{~s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 24VDC.
Nominal Power: OUAZ-D: 450 mW .
OUAZ-L: 200 mW .
Coil Temperature Rise: OUAZ-D: $60^{\circ} \mathrm{C}$ max., at rated coil voltage. OUAZ-L: $25^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

OUAZ series

Miniature, Sealed PC Board Relay

Telecommunications, Appliances, Office Machines, Audio Equipment.

吹 UL File No. E82292
(18) CSA File No. LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $20^{\circ} \mathrm{C}$

OUAZ-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	90.9	55	3.50	0.25
6	75.0	80	4.20	0.30
9	50.0	180	6.30	0.45
12	37.5	320	8.40	0.60
24	18.8	1,280	16.80	1.20
OUAZ-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	40.0	125	3.75	0.50
6	33.3	180	4.50	0.60
9	22.5	400	6.75	0.90
12	17.0	700	9.00	1.20
24	8.6	2,800	18.00	2.40

Operate Data

Must Operate Voltage: OUAZ-D: 70\% of nominal voltage or less.
OUAZ-L: 75\% of nominal voltage or less.
Must Release Voltage: OUAZ-D: 5\% of nominal voltage or more.
OUAZ-L: 10\% of nominal voltage or more.
Operate Time: OUAZ-D: 5 ms max.
OUAZ-L: 10 ms max.
Release Time: 7 ms max.

Environmental Data

Temperature Range:
Operating: OUAZ-D: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
OUAZ-L: $-30^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $500 \mathrm{~m} / \mathrm{s}^{2}$ (50G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing)

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OUAZ-SS: Vented (Flux-tight), plastic cover.
OUAZ-SH: Sealed, plastic case.
Weight: 0.12 oz. (3.5 g) approximately.

Ordering Information

Typical Part Number	OUAZ	-SS	-1	12	L	M	,900
1. Basic Series: OUAZ = M iniature, sealed PC board relay.							
2. Enclosure: SS = Vented (Flux-tight)*, plastic cover. SH = Sealed, plastic case.							
3. Termination: 1 = 1 pole							
4. Coil Voltage: $\begin{array}{lll} 03=3 \mathrm{VDC} & 06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} \\ 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} & 24=24 \mathrm{VDC} \end{array}$							
5. Coil Input: $\mathrm{L}=$ Sensitive $\quad \mathrm{D}=$ Standard							
6. Contact Arrangement: Blank = 1 Form C, SPDT $\text { M = } 1 \text { Form A, SPST-NO }$							
7. Suffix: ,900 = Standard model Other Suffix = Custom model							

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Coil Temperature Rise

Operate Time

Life Expectancy

Features

- Through hole or surface mount terminals.
- Meets Bellcore GR 1089, FCC Part 68 and ITU-T K20.
- For applications in telecommunications, office automation, consumer electronics, medical equipment, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- 100 mW coil for latching models, 140 mW coil for non-latching.
- Ultrasonic cleaning not recommended.

Contact Data @ $23^{\circ} \mathbf{C}$ (except as noted)

Arrangement: 2 Form C (DPDT) bifurcated contacts.
Material: Stationary: Palladium-Ruthenium, gold covered.
Ratings: Max. Switched Current: 2A.
Max. Carry Current: 2A (at max ambient temperature.
Max. Switched Voltage: 220VDC, 250VAC.
Max. Switched Power: 60W DC or 62.5VA AC.
ULCSA Ratings: 250 mA @ $250 \mathrm{VAC} ; 2 \mathrm{~A} @ 30 \mathrm{VDC} ;$ 500 mA @ $120 \mathrm{VDC} ; 270 \mathrm{~mA}$ @ 220 VDC.
Initial Contact Resistance: <70 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 100 million operations.
Expected Electrical Life: 2.5 million operations @ $10 \mathrm{~mA} / 30 \mathrm{mVDC}$.
2 million operations @ cable load open end.
500,000 operations @ 240mA / 125VDC, res.
500,000 operations @ 1A / 30VDC, res.
100,000 operations @ 270 mA / 220VDC, res.
100,000 operations @ 2A / 30VDC, res.
100,000 operations @ 250mA / 250VDC, res.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: 1pF, max.
Between Coil and Contacts: 2 pF , max.
Between Poles: 2pF, max.
RF Characteristics: Isolation at 100 / $900 \mathrm{MHz}:-37.0 \mathrm{db} /-18.8 \mathrm{db}$. Insertion loss at $100 / 900 \mathrm{MHz}:-0.03 \mathrm{db} /-0.33 \mathrm{db}$. V. S. W. R. at 100 / 900 MHz : $1.06 \mathrm{db} / 1.49 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms for 1 minute.
Between Coil and Contacts: $1,800 \mathrm{~V}$ rms for 1 minute.
Between Poles: $1,000 \mathrm{Vrms}$ for 1 minute.
Surge Voltage Resistance per Bellcore 1089 ($2 / 10 \mu \mathrm{~s}$),
FCC 68 ($10 / 160 \mu \mathrm{~s}$) and IEC ($10 / 700 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: $2,500 \mathrm{~V}$.
Between Poles: 1,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

$\mid M$ series

DPDT Slimline and Low Profile Telecom/Signal PC Board Relays

吹 File E111441
(18) File 169679-1079886

16501-003
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 1.5 to 24VDC.
Nominal Power: 100mW for 1.5-12VDC latching models; 140mW for 1.5-12VDC non-latching models; 200 mW for all 24VDC models.
Duty Cycle: Continuous.

Coil Data @ $23^{\circ} \mathrm{C}$

Nominal Voltage (VDC)	Operate/Set Range		Minimum Release/ Reset Voltage (VDC)	$\begin{gathered} \text { Resistance } \\ \pm 10 \% \\ \text { (Ohms) } \end{gathered}$	Part Number
	Minimum Voltage (VDC)	$\begin{aligned} & \text { Maximum } \\ & \text { Voltage } \\ & \text { (VDC) } \\ & \hline \end{aligned}$			
Non-latching 1 coil versions					
1.5	1.13	3.4	0.15	16	IMOO
3	2.1	6.8	0.3	64	IM01
4.5	3.15	10.3	0.45	145	IM02
5	3.5	11.4	0.5	178	IM03
6	4.2	13.7	0.6	257	IM04
9	6.3	20.4	0.9	574	IM05
12	8.4	27.3	1.2	1,028	IM06
24	16.8	45.6	2.4	2,880	IM07
Latching 1 coil versions					
1.5	1.13	4.1	-1.13	23	IM40
3	2.25	8.1	-2.25	90	IM 41
4.5	3.38	12.1	-3.38	203	IM 42
5	3.75	13.5	-3.75	250	IM43
6	4.5	16.2	-4.5	360	IM44
9	6.75	24.2	-6.75	810	IM 45
12	9.0	32.3	-9.0	1,440	IM46
24	18.0	41.9	-18.0	2,880	IM47

Operate Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 1 ms , typ.; 3 ms , max.
Reset Time [latching](at nominal voltage): 1 ms , typ.; 3 ms , max.
Release Time [non-latching](without diode in parallel): 1 ms , typ.; 3 ms ,
max.
Release Time [non-latching](with diode in parallel): 3 ms , typ.; 5 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $125^{\circ} \mathrm{C}$.
Thermal Resistance: <150KW.
Shock, half sinus, 11 ms : Functional: 50 g .
Shock, half sinus, 0.5 ms : Destructive: 500 g .
Vibration, $\mathbf{1 0 - 1 0 0 0} \mathrm{Hz}$.: Functional: 20 g .
Needle Flame Test: Application Time 20s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: Through-hole printed circuit terminals or gull-wing or J -leg surface mount printed circuit terminals.

Mounting Position: Any.

Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: $0.03 \mathrm{oz} .(75 \mathrm{~g})$ approximately.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\mathrm{II}}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{\| 1}$ depend on
the temperature according to the formula:
$U_{1 \text { tamb }}=K_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and
$U_{11 \text { tamb }}=K_{11} \cdot U_{\| 23^{\circ} \mathrm{C}}$
$t_{\mathrm{amb}} \quad=$ Ambient temperature
$U_{\text {Itamb }} \quad=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
U_{11} tamb $\quad=$ Maximum voltage at ambient temperature, $t_{\text {amb }}$
$k_{1}, k_{\|} \quad=$ Factors (dependent on temperature), see diagram

Packaging Information

THT IM series relays are shipped in tubes of 50 . There are 1,000 relays in a full carton. SMT IM series relays are shipped in reels of 1,000 . There are 1,000 or 5,000 relays in a full carton.

Ordering Information

See "Part Number" column in Coil Data chart on previous page for available base part numbers in the IM series.
For THT versions, add the suffix "TS" to the base part number.
For gull-wing SMT versions, add the suffix "GR" to the base part number.
For J -leg SMT versions, add the suffix 'J R" to the base part number.

Our authorized distributors are more likely to stock the following items for immediate delivery.

None at present.

Outline Dimensions

THT Version

SMT Version w/ Gull Wings

SMT Version w/ J Legs

$\overline{\text { PC Board Layout (Bottom View) }}$

Solder Pad Layout (Bottom Views)
Wiring Diagram SMT Version w/ Gull Wings

SMT Version w/ J Legs

Recommended Soldering Conditions (according to CECC 00802)

Vapor Phase Soldering: Temperature/Time Profile
(Lead Temperature)

Infrared Soldering: Temperature/Time Profile (Lead Temperature)

Features

- Through hole PC board terminals.
- Meets FCC Part 68 and ITU-T K20.
- For applications in telecommunications, office automation, consumer electronics, medical equipment, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- 80 mW coil for high sensitivity models, 140 mW coil for sensitive types.
- Ultrasonic cleaning not recommended.

Contact Data @ $\mathbf{2 3}^{\circ} \mathbf{C}$ (except as noted)

Arrangement: 2 Form C (DPDT) bifurcated contacts.
Material: Stationary: Silver-nickel, gold covered.
Ratings: Max. Switched Current: 2A.
Max. Carry Current: 2A (at max ambient temperature.
Max. Switched Voltage: 125VDC, 250VAC.
Max. Switched Power: 30W DC or 62.5VA AC.
ULCSA Ratings: 500mA @ 50VDC; 1.25A @ 30VDC; 500mA @ 50VAC.
Initial Contact Resistance: <70 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 100 million operations.
Expected Electrical Life: 2.5 million operations @ 10mA / 30mVDC.
2 million operations @ cable load open end.
100,000 operations @ 240mA / 125VDC.
100,000 operations @ 250mA / 250VDC.
100,000 operations @ 1.25A / 24VDC.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: 1pF, max. Between Coil and Contacts: 4 pF , max. Between Poles: 1pF, max.
RF Characteristics: Isolation at $\mathbf{1 0 0} / \mathbf{9 0 0} \mathbf{~ M H z : ~}-40.2 \mathrm{db} /-22.3 \mathrm{db}$. Insertion loss at 100 / $900 \mathbf{~ M H z : ~}-0.03 \mathrm{db} /-0.25 \mathrm{db}$. V. S. W. R. at 100 / $900 \mathrm{MHz}: 1.01 \mathrm{db} / 1.07 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: 700Vrms for 1 minute.
Between Coil and Contacts: $1,000 \mathrm{Vrms}$ for 1 minute.
Between Poles: 1,000Vrms for 1 minute.
Surge Voltage Resistance per FCC 68 ($10 / 160 \mu \mathrm{~s}$) and
IEC ($10 / 700 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: $1,500 \mathrm{~V}$.
Between Poles: 1,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.
Nominal Power: $80-300 \mathrm{~mW}$ depending on models. See coil data tables. Duty Cycle: Continuous.

FP2 series

DPDT Low Profile
 Telecom/Signal PC Board Relays

吹 File E111441
(18) File 169679-1079886

16501-003
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nom. Voltage (VDC)	Operate/Set Range		Minimum Release/Reset Voltage (VDC)	Nom. Power (mW)	Resistance $\pm 10 \%$ (Ohms)	Part Number
		Max. Voltage (VDC)				
Non-latching 1 coil versions						
3	2.1	6.8	0.3	140	64	D3006
4.5	3.15	10.3	0.45	140	145	D3004
5	3.5	11.4	0.5	140	178	D3009
6	4.2	13.7	0.6	140	257	D3005
9	6.3	20.4	0.9	140	574	D3010
12	8.4	27.3	1.2	140	1,028	D3002
24	16.8	45.7	2.4	200	2,880	D3012
48	33.6	67.5	4.8	300	7,680	D3013
Non-latching, sensitive 1 coil versions						
3	2.25	9.0	0.3	80	113	D3021
4.5	3.38	13.5	0.45	80	253	D3022
5	3.75	15.0	0.5	80	313	D3023
6	4.5	18.0	0.6	80	450	D3024
9	6.75	27.1	0.9	80	1,013	D3025
12	9.0	36.1	1.2	80	1,800	D3026
24	18.0	54.7	2.4	140	4,114	D3027
48	36.0	72.5	4.8	260	8,882	D3028
Latching 1 coil versions						
3	2.25	8.1	-2.25	100	90	D3041
4.5	3.375	12.1	-3.375	100	203	D3042
5	3.75	13.5	-3.75	100	250	D3043
6	4.5	16.2	-4.5	100	360	D3044
9	6.75	24.2	-6.75	100	810	D3045
12	9.0	29.0	-9.0	100	1,440	D3046
24	18.0	47.5	-18.0	150	3,840	D3047
Latching 2 coil versions						
3	2.1	5.7	2.1	200	45	D3061
4.5	3.15	8.6	3.15	200	101	D3062
5	3.5	9.5	3.5	200	125	D3063
6	4.2	11.4	4.2	200	180	D3064
9	6.3	17.1	6.3	200	405	D3065
12	8.4	22.6	8.4	200	720	D3066
24	16.8	33.7	16.8	200	1,920	D3067

Operate Data @ 23${ }^{\circ} \mathrm{C}$

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 3 ms , typ.; 4 ms , max.
Reset Time [latching](at nominal voltage): 3 ms , typ.; 4 ms , max.
Release Time [non-latching](w/o diode in parallel): 1 ms , typ.; 3 ms , max.
Release Time [non-latching](with diode in parallel): 3 ms , typ.; 4 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $110^{\circ} \mathrm{C}$.
Thermal Resistance: <185K/W.
Shock, half sinus, 11 ms : Functional: 50g.
Shock, half sinus, 11 ms : Destructive: 1,500g.
Vibration, 10-500 Hz.: Functional: 20 g .
Needle Flame Test: Application Time 20s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: Through-hole printed circuit terminals.

Mounting Position: Any.

Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.08 oz . (2 g) approximately.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\mathrm{II}}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{\| \mid}$depend on the temperature according to the formula:

$U_{1 \text { tamb }}=$ and	$\mathrm{K}_{1} \cdot \mathrm{U}_{123^{\circ} \mathrm{C}}$
$U_{\text {II tamb }}=$	$\mathrm{K}_{11} \cdot \mathrm{U}_{1123^{\circ} \mathrm{C}}$
$t_{\text {amb }}$	= Ambient temperature
$U_{\text {I tamb }}$	$=\mathrm{M}$ inimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$U_{\text {II tamb }}$	$=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$k_{1}, k_{\text {l\| }}$	= Factors (dependent on temperature), see diagram

Ordering Information

See "Part Number" column in Coil Data chart on previous page for available part numbers in the FP2 series.

Packaging Information

FP2 series relays are shipped in tubes of 50 . There are 1,000 relays in a full carton.

Our authorized distributors are more likely to stock the following items for immediate delivery.

None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

Non-Latching and Latching, 1 Coil
Release or Reset Condition

Latching, 2 Coil Reset Condition

$\overline{\text { PC Board Layout (Bottom View) }}$

V23079 (P2) series

Features

- Surface and through hole mounting types.
- Breakdown voltage between contacts and coil: $1,500 \mathrm{Vrms}$.
- Surge withstand between contacts and coil: 2,500V (Bellcore).
- High capacity contact: 2A @ 30VDC.
- 2 Form C contact arrangement.
- Board space saving, vertical mount ($14.6 \times 7.2 \mathrm{~mm}$ surface area).
- Immersion cleanable, plastic sealed case.
- Single and dual coil latching versions available.
- Basic insulation (coil-to-contact) according to EN 60950 / UL 1950.
- Ultrasonic cleaning is not recommended.

Contact Data @ $23^{\circ} \mathrm{C}$

Arrangement: 2 Form C (DPDT) bifurcated contacts.
Material: Gold overlay on silver nickel.
Rating:
Max. Switching Voltage: 250VAC, 220VDC.
Max. Switching Current: 5A.
Max Carrying Current: 2A.
Max Switching Power: 60W, DC; 62.5VA, AC.
Min. Permissible Load: $100 \mu \mathrm{~V}$.
UL/CSA Rating: 1A @ 30VDC; 300mA @ 110VDC; 500 mA @ $120 \mathrm{VAC} ; 250 \mathrm{~mA}$ @ 240 VAC.
Expected Mechanical Life: Approx. 100 million ops.
Expected Electrical Life: 50 million ops. @ $10 \mathrm{~mA}, 12 \mathrm{~V}$, 10 million ops. @ $100 \mathrm{~mA}, 6 \mathrm{~V}$. 1 million ops. @1A, 30V, 500,000 ops. @ $500 \mathrm{~mA}, 60 \mathrm{~V}$. 200,000 ops. @ 2A, 30V.
Initial Contact Resistance: 50 milliohms @ $10 \mathrm{~mA}, 20 \mathrm{mV}$.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: 2pF, max.
Between Coil and Contacts: 1.5pF, max. Between Poles: 1pF, max.
RF Characteristics: Isolation at 100 / $900 \mathrm{MHz}:-39.0 \mathrm{db} /-20.7 \mathrm{db}$.
Insertion loss at $100 / 900 \mathrm{MHz}:-0.02 \mathrm{db} /-0.27 \mathrm{db}$.
V. S. W. R. at 100 / 900 MHz: $1.04 \mathrm{db} / 1.40 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{Vrms}$ for 1 minute. ($1,500 \mathrm{Vms}$ on request, consult factory for availability).
Between Coil and Contacts: $1,500 \mathrm{Vrms}$ for 1 minute. (single coil relay).
Between Poles: $1,000 \mathrm{Vrms}$ for 1 minute.
Surge Voltage Resistance per Bellcore TR-NWT-001089 ($2 / 10 \mu \mathrm{~s}$):
Between Open Contacts: $2,000 \mathrm{~V}$.
Between Coil and Contacts: $2,500 \mathrm{~V}$ (single coil relay). Between Poles: 2,500V.
Surge Voltage Resistance per FCC 68 ($10 / 160 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: 1,500V (single coil relay).
Between Poles: 1,500V.

Initial Insulation Resistance

Between Mutually Insulated Conductors: 10^{9} ohms @ 500VDC.

5 Amp Switching, High Dielectric DPDT Polarized
 FCC Part 68
 PC Board Relay

楊 File E48393
(518 File LR45064
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 3-24V.
Nominal Power: $70 \mathrm{~mW}-140 \mathrm{~mW}$, dependent on model. See chart below.

Nominal Voltage (VDC)	Operating Range @ $23^{\circ} \mathrm{C}$		@ $85{ }^{\circ} \mathrm{C}$	Coil Resistance @ $23^{\circ} \mathrm{C}$
	Must Operate Voltage (VDC)	Max. Voltage (VDC)	Max. Voltage (VDC)	
Non-Latching, 140mW Nominal Power				
3	2.25	6.5	3.4	64.3 ± 6
4.5	3.375	9.8	5.1	145 ± 15
5	3.75	10.9	5.7	178 ± 18
6	4.50	13.0	6.8	257 ± 26
9	6.75	19.6	10.3	578 ± 58
12	9.0	26.1	13.8	1,029 ± 103
24	18.0	52.3	27.7	$4,114 \pm 411$
Single Coil Latching, 70mW Nominal Power				
3	2.25	9.2	4.8	128 ± 13
4.5	3.375	13.8	7.3	289 ± 29
5	3.75	15.3	8.1	357 ± 36
6	4.5	18.5	9.8	514 ± 51
9	6.75	27.7	14.6	1,157 ± 116
12	9.0	37.0	19.6	2,057 ± 206
24	18.0	74.0	39.2	$8,228 \pm 823$
Dual Coil Latching, 140mW Nominal Power				
3	2.25	6.5	-	64.3 ± 6
4.5	3.375	9.8	-	145 ± 15
5	3.75	10.9	-	178 ± 18
6	4.5	13.0	-	257 ± 26
9	6.75	19.6	-	578 ± 58
12	9.0	26.1	-	1,029 ± 103
24	18.0	52.3	-	$4,114 \pm 411$

Operate Data @ $23^{\circ} \mathrm{C}$

Must Operate Voltage: 75% of nominal or less.
Must Release Voltage: 10% of nominal or more.
Operate Time (at nominal voltage): 3 ms , typ.; 5 ms , max.
Reset Time (at nominal voltage): 3 ms , typ.; 5 ms , max.
Release Time (non-latching w/o diode in parallel): 2 ms , typ.; 4 ms , max.
Release Time (non-latching with diode in parallel): 4 ms , typ.; 6 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 3 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $110^{\circ} \mathrm{C}$.
Thermal Resistance: <165KW.
Shock, half sinus, 11 ms: Functional: 50 g .
Shock, half sinus, 11 ms : Destructive: 150 g .
Vibration, $10-1, \mathbf{0 0 0} \mathrm{~Hz}$.: Functional: 35 g .
Needle Flame Test: Application time 20s, buming time <15s.
Resistance to Soldering Heat: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: Through hole or surface mount printed circuit terminals. Mounting Position: Any.
Enclosure: Immersion cleanable (IP67) plastic case.
Weight: . 084 oz ($(2.5 \mathrm{~g}$) approximately.

Ordering Information		Typical Part Number \downarrow	V23079	A10	01	B301
1. Basic Series: V23079 = P2 M iniature, pr	inted circuit board relay.					
2. Termination:						
	Non-Latching Normal Ht.	Non-Latching Reduced Ht.	Dual Coil Latching	Single Coil Latching		
Through-Hole	A10	A20 ${ }^{(1)}$	B12	C11		
SMT Extended Terminal	D10	D20 ${ }^{(1)}$	E12	F11		
SMT Short Terminal	G10	G20 ${ }^{(1)}$	H12	J11		
3. Coil Voltage: $08=3 \mathrm{VDC} \quad 11=4.5 \mathrm{VDC}$	$01=5 \mathrm{VDC} \quad 02=6 \mathrm{VD}$	C $06=9 \mathrm{VDC} \quad 03=12 \mathrm{~V}$	VDC $05=24 \mathrm{VDC}{ }^{(2)}$			
4. Contact Type: B301 = Bifurcated, 2 Form	C (DPDT), Silver Nickel.					

(1) Reduced mounting height of 10.0 mm , as opposed to 10.4 mm (SMT) or 9.6 mm as opposed to 9.9 (through-hole). Non-latching only, not available with 24 V coil.
(2) Not available with Termination A20, D20 or G20.

Our authorized distributors are more likely to stock the following items for immediate delivery.

| V23079A1001B301 | V23079A1011B301 | V23079A2011B301 | V23079D1005B301 | V23079D2003B301 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| V23079A1003B301 | V23079A2001B301 | V23079D1001B301 | V23079D1011B301 | V23079D2011B301 |
| V23079A1005B301 | V23079A2003B301 | V23079D1003B301 | V23079D2001B301 | |

Outline Dimensions

THT

Note: Mounting height varies dependent upon Termination type selected in step 2 of Ordering Information

Coil Limits

$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°
The operating voltage limits U_{1} and U_{11} depend on the temperature according to the formula:
$U_{1 \text { tamb }}=K_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and
$U_{11 \text { tamb }}=K_{11} \cdot U_{1123^{\circ} \mathrm{C}}$
$t_{\text {amb }}=$ Ambient temperature
$U_{\text {Itamb }}=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$U_{\text {It tamb }}=$ Maximum voltage at ambient temperature, $t_{\text {amb }}$
$k_{1}, k_{11}=$ Factors (dependent on temperature), see diagram

Packaging Information

THT P2 relays are shipped in tubes of 50 . There are 2,000 relays in a carton. SMT P2 relays with long terminals are shipped in reels of 400, with 2,000 relays in a carton. SMT P2 relays with short terminals are shipped in reels of 500 . There are 2,500 relays in a full carton.

Wiring Diagrams (Bottom Views)
Single Coil Latching* and Single Coil Non-latching**

Dual Coil Latching***

Note: All diagrams shown in de-energized or reset position. *Note: For non-latching versions, coil polarity must be observed.
**Note: For single coil latching versions, polarity shown results in "set" condition. Reverse polarity results in "reset"condition.
***Note: The contact position illustrated shows the reset condition. If a positve potential is applied to terminal 1 or 7 , the relay adopts the set position.

PC Board Layout (Bottom View)

Recommended Soldering Conditions (according to CECC 00802)

Vapor Phase Soldering: Temperature/Time Profile (Lead Temperature)

Infrared Soldering: Temperature/Time Profile (Lead Temperature)

Features

- Through hole PC board terminals.
- High-dielectric ($>5,000 \mathrm{~V}$ contact-to-coil surge) version available.
- Meets Bellcore GR 1089 and FCC Part 68 and ITU-T K20.
- For applications in telecommunications, office automation, consumer electronics, medical equipment, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- Standard or sensitive coils for 3-48 VDC.
- Ultrasonic cleaning not recommended.

Contact Data @ $23^{\circ} \mathbf{C}$ (except as noted)

Arrangement: 2 Form C (DPDT) bifurcated contacts.
Material: Stationary: Silver-nickel, gold-covered or palladium-ruthenium, gold-covered.
Contact Ratings: Silver-nickel Palladium-ruthenium
Max. Switched Current: 2A
1.25A 2A.
Max. Carry Current: (at max ambient temp.)
Max. Switched Voltage: 125VDC, 250VAC 220VDC, 250VAC.
Max. Switched Power: 30W DC, 62.5VA AC 60W DC, 62.5VA AC.
ULCSA Contact Ratings: 1.25A @ 125VDC; 1.25A @ 125VAC.
Initial Contact Resistance: <70 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 100 million operations.
Expected Electrical Life: 2.5 million operations @ 10mA / 12VDC.
2 million operations @ cable load open end.
100,000 operations @ 250mA / 125VDC, res.
100,000 operations @ 250mA / 250VDC, res. 100,000 operations @ 1.25A / 24VDC, res.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: 1pF, max.
Between Coil and Contacts: 4 pF , max.
Between Poles: 1pF, max.
RF Characteristics: Isolation at 100 / $\mathbf{9 0 0} \mathbf{~ M H z : ~}-30.6 \mathrm{db} /-13.7 \mathrm{db}$. Insertion loss at $100 / 900 \mathrm{MHz}:-0.02 \mathrm{db} /-0.50 \mathrm{db}$. V. S. W. R. at 100 / $900 \mathrm{MHz}: 1.02 \mathrm{db} / 1.27 \mathrm{db}$.

Initial Dielectric Strength

Standard Model

Between Open Contacts: 1,500Vrms for 1 minute.
Between Coil and Contacts: $1,500 \mathrm{Vrms}$ for 1 minute.
Between Poles: 1,500Vrms for 1 minute.
Surge Voltage Resistance per Bellcore TR-NWT-001089 (2/10 $\mu \mathrm{s}$) and FCC 68 ($10 / 160 \mu \mathrm{~s}$):

Between Open Contacts: 2,500V.
Between Coil and Contacts: $1,500 \mathrm{~V}$.
Between Poles: 1,500V.
High-Dielectric Model
Between Open Contacts: 3,500Vrms for 1 minute.
Between Coil and Contacts: $1,800 \mathrm{Vrms}$ for 1 minute.
Between Poles: 1,800Vrms for 1 minute.
Surge Voltage Resistance per Bellcore TR-NWT-001089 (2 / $10 \mu \mathrm{~s}$) and FCC 68 ($10 / 160 \mu \mathrm{~s}$):

Between Open Contacts: 5,000V.
Between Coil and Contacts: $2,500 \mathrm{~V}$.
Between Poles: 2,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathbf{C}$

Voltage: 3 to 48VDC.
Nominal Power: 200-300mW, depending on model. See coil data tables. Duty Cycle: Continuous.

FT2/FU2 series
 DPDT Slim Package Telecom/Signal PC Board Relays

吹 File E111441
(81) File 176679-1079886

16504-002
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nom. Voltage (VDC)	Operate/ Set Range		Minimum Release Voltage (VDC)	Nom. Power (mW)	Resistance $\pm 10 \%$ (Ohms)	Coil \&SensitivityCode
	Min. Voltage (VDC)	Max. Voltage (VDC)				
Sensitive versions						
3	2.25	4.2	0.3	200	45	21
4	3.0	5.7	0.4	200	114	29
4.5	3.38	6.4	0.45	200	101	22
5	3.75	7.1	0.5	200	125	23
6	4.5	8.5	0.6	200	180	24
9	6.75	12.7	0.9	200	405	25
12	9.0	17.0	1.2	200	720	26
24	18.0	33.9	2.4	240	2,400	27
48	36.0	67.9	4.8	240	9,600	28
Standard versions						
3	2.25	5.2	0.3	300	30	01
4.5	3.38	7.8	0.45	300	68	02
5	3.75	8.7	0.5	300	83	03
6	4.5	10.4	0.6	300	120	04
9	6.75	15.6	0.9	300	270	05
12	9.0	20.8	1.2	300	480	06
24	18.0	40.8	2.4	300	1,920	07
48	36.0	81.6	4.8	300	768	08
High dielectric versions						
3	2.25	4.2	0.3	200	45	91
5	3.75	7.1	0.5	200	125	93
12	9.0	17.0	1.2	200	720	96
24	18.0	33.9	2.4	240	2,400	97

Part Number Structure
D3

Operate Data @ $23^{\circ} \mathrm{C}$

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 3 ms , typ.; 5 ms , max.
Release Time (w / o diode in parallel): 2 ms , typ.; 5 ms , max.
Release Time (with diode in parallel): 4 ms , typ.; 5 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $125^{\circ} \mathrm{C}$.
Thermal Resistance: <165K/W.
Shock, half sinus, 11 ms : Functional: 15 g .
Shock, half sinus, 11 ms : Destructive: 500 g .
Vibration, $10-500 \mathrm{~Hz}$.: Functional: 10 g .
Needie Flame Test: Application Time 20s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .
Mechanical Data
Termination: Through-hole printed circuit terminals.

Mounting Position: Any.

Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.12 oz . (3 g) approximately.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\mathrm{II}}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{\| \mid}$depend on
the temperature according to the formula:
$U_{1 \text { tamb }}=K_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and
$U_{\text {II tamb }}=K_{1 \mid} \cdot U_{\| 123^{\circ} \mathrm{C}}$
$t_{\mathrm{amb}} \quad=$ Ambient temperature
$U_{\text {Itamb }} \quad=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$U_{\text {II tamb }} \quad=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$k_{1}, k_{\|} \quad=$ Factors (dependent on temperature), see diagram

Ordering Information

See "Part Number Structure" chart on previous page for available part numbers in the FT2/FU2 series.

Packaging Information
FT2 relays are shipped in tubes of 50 . There are 1,000 relays in a carton. FU2 relays with long terminals are shipped in reels of 400, with 2,000 relays in a carton. FU2 relays with short terminals are shipped in reels of 500 . There are 2,500 relays in a full carton.

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

THT Version

PC Board Layout (Bottom View) THT Version

SMT Version w/ Long Terminala

SMT Version w/ Short Terminals

Solder Pad Layout (Bottom Views)
SMT Version w/ Long Terminals

SMT Version w/ Short Terminals

Wiring Diagram (Bottom View)

Recommended Soldering Conditions (according to CECC 00802)

Vapor Phase Soldering: Temperature/Time Profile (Lead Temperature)

Infrared Soldering: Temperature/Time Profile (Lead Temperature)

Features

- Through hole PC board terminals.
- Meets Bellcore GR 1089 and FCC Part 68.
- For applications in telecommunications, office automation, consumer electronics, medical equipment, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- 80 mW coil for high sensitivity models, 140 mW coil for sensitive types.
- Ultrasonic cleaning not recommended.

Contact Data @ $\mathbf{2 3}^{\circ} \mathbf{C}$ (except as noted)

Arrangement: 2 Form C (DPDT) bifurcated contacts.
Material: Stationary: Palladium-ruthenium.
Ratings: Max. Switched Current: 2A.
Max. Carry Current: 2A (at max ambient temperature.)
Max. Switched Voltage: 220VDC, 250VAC.
Max. Switched Power: 60W DC or 62.5VA AC.
ULCSA Ratings: 300 mA @ 110VDC; 1A @ 30VDC; 500mA @ 120VAC; 250mA @ 240VAC.
Initial Contact Resistance: <70 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 100 million operations.
Expected Electrical Life: 2.5 million operations @ 10mA / 30mVDC.
2 million operations @ cable load open end.
500,000 operations @ 250mA / 125VDC.
500,000 operations @ 1.25A / 24VDC.
500,000 operations @ 2A / 30VDC.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: $2 p \mathrm{~F}$, max.
Between Coil and Contacts: 4 pF , max.
Between Poles: 2pF, max.
RF Characteristics: Isolation at 100 / $\mathbf{9 0 0} \mathbf{~ M H z : ~}-34.0 \mathrm{db} /-15.1 \mathrm{db}$.
Insertion loss at 100 / $900 \mathbf{~ M H z : ~}-0.03 \mathrm{db} /-0.60 \mathrm{db}$.
V. S. W. R. at 100 / $900 \mathrm{MHz}: 1.07 \mathrm{db} / 1.45 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: $1,800 \mathrm{Vrms}$ for 1 minute.
Between Coil and Contacts: $1,800 \mathrm{Vrms}$ for 1 minute.
Between Poles: 1,800Vrms for 1 minute.
Surge Voltage Resistance per Bellcore GR1089 (2/10 $\mu \mathrm{s}$) and FCC 68 ($10 / 160 \mu \mathrm{~s}$):

Between Open Contacts: 2,500V.
Between Coil and Contacts: $3,500 \mathrm{~V}$.
Between Poles: 2,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.
Nominal Power: $80-300 \mathrm{~mW}$, depending on model. See coil data tables. Duty Cycle: Continuous.

FX2 series

DPDT Slim Package Telecom/Signal PC Board Relays

吹 File E111441
(18) File 176679-1079886

16504-002
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nom. Voltage (VDC)	Operate/Set Range Min. Voltage (VDC)	Max. Voltage (VDC)	Minimum Release/ Reset Voltage (VDC)	Nom. Power (mW)	Resis- tance $\pm 10 \%$ (Ohms)	Part Number

Non-latching 1 coil versions						
3	2.1	6.8	0.3	140	64	D3206
4	2.8	7.6	0.4	140	114	D3207
4.5	3.15	10.3	0.45	140	145	D3204
5	3.5	11.4	0.5	140	178	D3209
6	4.2	13.7	0.6	140	257	D3205
9	6.3	20.4	0.9	140	574	D3210
12	8.4	27.3	1.2	140	1,028	D3202
24	16.8	45.7	2.4	200	2,880	D3212
48	33.6	67.5	4.8	300	7,680	D3213
Non-latching, sensitive 1 coil versions						
3	2.25	9.0	0.3	80	113	D3221
4.5	3.38	13.5	0.45	80	253	D3222
5	3.75	15.0	0.5	80	313	D3223
6	4.5	18.0	0.6	80	450	D3224
9	6.75	27.1	0.9	80	1,013	D3225
12	9.0	36.1	1.2	80	1,800	D3226
24	18.0	54.7	2.4	140	4,114	D3227
48	36.0	72.5	4.8	260	8,882	D3228
Latching 1 coil versions						
3	2.25	8.1	-2.25	100	90	D3241
4.5	3.375	12.1	-3.375	100	203	D3242
5	3.75	13.5	-3.75	100	250	D3243
6	4.5	16.2	-4.5	100	360	D3244
9	6.75	24.2	-6.75	100	810	D3245
12	9.0	29.0	-9.0	100	1,440	D3246
24	18.0	47.5	-18.0	150	3,840	D3247

Operate Data @ $23^{\circ} \mathrm{C}$

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 3 ms , typ.; 4 ms , max.
Reset Time [latching](at nominal voltage): 3 ms , typ.; 4 ms , max.
Release Time [non-latching](w/o diode in parallel): 1 ms , typ.; 3 ms , max.
Release Time [non-latching](with diode in parallel): 3 ms , typ.; 4 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $110^{\circ} \mathrm{C}$.
Thermal Resistance: < 185K/W.
Shock, half sinus, 11 ms: Functional: 50g.
Shock, half sinus, 11 ms : Destructive: 1,500g.
Vibration, 10-500 Hz.: Functional: 20g.
Needle Flame Test: Application Time 20s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: Through-hole printed circuit terminals.
Mounting Position: Any.
Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.10 oz . $(2.5 \mathrm{~g}$) approximately.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing with nominal voltage without contact current
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°
The operating voltage limits U_{1} and $U_{\| 1}$ depend on the temperature according to the formula:

$U_{\text {Itamb }}=$	$K_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and	
$U_{\text {It tamb }}=$	$\mathrm{K}_{11} \cdot U_{\text {II23 }} \mathrm{C}$
$t_{\text {amb }}$	$=$ Ambient temperature
$U_{\text {Itamb }}$	$=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$U_{\text {IIt tamb }}$	$=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\text {amb }}$
$K_{1} K_{11}$	$=$ Factors (dependent on temperature), see diagram

Ordering Information

See "Part Number" column in Coil Data chart on previous page for available part numbers in the FX2 series.

Packaging Information
FX2 series relays are shipped in tubes of 50 . There are 1,000 relays in a full carton.

Our authorized distributors are more likely to stock the following items for immediate delivery.

None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

Non-Latching and Latching, Release or Reset Condition

$\overline{\text { PC Board Layout (Bottom View) }}$

Features

- Standard DIP configuration mates with 16-pin socket.
- Meets FCC Part 68 (10/160 $\mu \mathrm{s}$).
- For applications in telecommunications, office automation, security
devices, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- Standard, high and ultra-sensitive coils.
- Ultrasonic cleaning not recommended.

Contact Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Arrangement: Bifurcated 2 Form C (DPDT) contacts.
Material: Stationary: Silver, gold clad.
Ratings: Max. Switched Current: 2A.
Max. Cary Current: 2A.
Max. Switched Voltage (at nom. voltage): 125VDC, 125VAC.
Max. Switched Power: 60W DC or 62.5VA AC.
Min. Switching Load: 10 AA, 10mVDC.
Rated Load: 500mA at 125VAC.
Initial Contact Resistance: 50 milliohms.
Expected Mechanical Life: 15,000,000 ops at 36,000 ops/hr.

Initial Dielectric Strength

Between Open Contacts: 750VAC 50/60 Hz. for 1 minute.
Between Coil and Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. for 1 minute.
Between Poles: 1,000VAC $50 / 60 \mathrm{~Hz}$. for 1 minute.
Surge Voltage Resistance per FCC 68 ($10 / 160 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: 1,500V.
Between Poles: 1,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.

Nominal Power: 150 mW to 580 mW . See Coil Data table for details. Duty Cycle: Continuous.

190 series

2 Amp, DPDT, High Sensitivity, DIP PC Board Relay

문 File E55708

(18) File LR73303

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nominal Voltage (VDC)	$\begin{aligned} & \text { Current } \\ & \pm 10 \% \\ & \text { (mA) } \end{aligned}$	Maximum Voltage (VDC)	$\begin{gathered} \text { Resistance } \\ \pm 10 \% \\ \text { (Ohms) } \end{gathered}$	Approx. Power (mW)
Standard sensitivity (Max. Voltage stated @ 65 ${ }^{\circ} \mathrm{C}$, except 48 V @ $60^{\circ} \mathrm{C}$)				
3	166.7	3.6	18	500
5	100.0	6.0	50	500
6	83.3	7.2	72	500
9	55.6	10.8	162	500
12	41.7	14.4	288	500
24	20.8	28.8	1,152	500
48	12.0	52.8	4,000	580
High sensitivity (Max. Voltage stated @ $70^{\circ} \mathrm{C}$)				
3	120.7	3.6	25	360
5	72.0	6.0	70	360
6	60.0	7.2	100	360
9	40.0	10.8	225	360
12	30.0	14.4	400	360
24	15.0	28.8	1,600	360
48	7.5	52.8	6,400	360
Ultra high sensitivity (Max. Voltage stated @ $70^{\circ} \mathrm{C}$)				
3	50.0	4.5	60	150
5	30.0	7.5	167	150
6	25.0	9.0	240	150
9	16.7	13.5	540	150
12	12.5	18.0	960	150
24	8.3	36.0	2,880	200
48	6.25	72.0	7,680	300Ap

Operate Data @ 23${ }^{\circ} \mathrm{C}$

Operate Voltage: 75% of nominal voltage.
Release Voltage: 5\% of nominal voltage.
Operate Time: 7 ms , max. (3.5 ms , mean).
Release Time: 3 ms , max. (0.8 ms , mean).
Bounce Time: Operate: 0.5 ms , approx. Release: 3.5 ms , approx.
Operating Frequency: Mechanical: $36,000 \mathrm{ops} / \mathrm{hr}$.
Electrical: $1,800 \mathrm{ops} / \mathrm{hr}$ at rated load.

Environmental Data

Temperature Range: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Relative Humidity Range: 35% to 85%.
Shock: Functional: $200 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10 g). Destructive: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 100 g).
Vibration: $10-55 \mathrm{~Hz} ., .059$ in (1.5 mm) double amplitude.

Mechanical Data

Termination: DIP compatible, printed circuit terminals.
Enclosure Type: Immersion cleanable plastic case.
Weight: 0.21 oz . (6 g) approximately.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability (millimeters) unless otherwise seference purposes only.

Operational Performance Curves

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
190-22B2UO
190-22C2UO
190-22E2UO

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Features

- Standard DIP configuration mates with 16-pin socket.
- Meets FCC Part 68 (10/160 1 s).
- For applications in telecommunications, office automation, security devices, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- $150 \mathrm{~mW}, 200 \mathrm{~mW}, 400 \mathrm{~mW}$ or 500 mW coil.
- Ultrasonic cleaning not recommended.

Contact Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Arrangement: 2 Form C (DPDT) single contacts.
Material: Stationary: Silver-nickel, gold overlaid.
Ratings: Max. Switched Current: 3A.
Max. Carry Current: 3A.
Max. Switched Voltage (at nom. voltage): 220VDC, 250VAC.
Max. Switched Power: 60W DC or 125VA AC.
Min. Switching Load: 10mVDC.
UL/CSA Ratings: 1A / 30VDC; 300mA / 100VDC;
1A / 125VAC ($400 \& 500 \mathrm{~mW}$ coils only);
500mA / 125VAC (150 \& 200mW coils only).
Initial Contact Resistance: 100 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 15,000,000 ops.
Expected Electrical Life: 2 million operations @ 100mA / 6VDC.
500,000 operations @ 1.0A / 30VDC.
100,000 operations @ 2.0A / 30VDC for 400 mW and 500 mW versions only. 300,000 operations @ 500mA / 230VAC.
Thermoelectric potential: $<15 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: $1 p F$, max. Between Coil and Contacts: 2pF, max. Between Poles: 1.5pF, max..
RF Characteristics: Isolation at $\mathbf{1 0 0 / 9 0 0 ~ M H z : ~}-39.0 \mathrm{db} /-20.7 \mathrm{db}$.
Insertion loss at 100 / $900 \mathrm{MHz}:-0.02 \mathrm{db} /-0.27 \mathrm{db}$. V. S. W. R. at 100 / $900 \mathrm{MHz}: 1.04 \mathrm{db} / 1.40 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: 750Vrms for 1 minute.
Between Coil and Contacts: $1,000 \mathrm{Vrms}$ for 1 minute.
Between Poles: 750Vrms for 1 minute.
Surge Voltage Resistance per FCC 68 ($10 / 160 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: 1,500V.
Between Poles: 1,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.
Nominal Power: See Coil Data table.
Duty Cycle: Continuous.

V23105 series
 3 Amp, DPDT, High Sensitivity, DIP PC Board Relay

贮 File E48393

(51) File LR45064-27

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $23^{\circ} \mathrm{C}$

Nominal Voltage (VDC)	Minimum Voltage (VDC)	Maximum Voltage (VDC)	$\begin{gathered} \text { Resistance } \\ \pm 10 \% \\ \text { (Ohms) } \end{gathered}$	Coil Version Voltage Code
150mW versions				
5	4.0	13.0	167	001
6	4.8	15.6	240	002
9	7.2	23.4	540	006
12	9.6	31.2	960	003
24	19.2	59.5	3,480	005
200mW versions				
3	2.1	6.7	45	308
5	3.5	11.2	125	301
6	4.2	13.5	180	302
9	6.3	20.3	405	306
12	8.4	27.0	720	303
24	16.8	54.1	2,880	305
48	33.6	108.3	11,520	307
400 mW versions				
5	3.5	7.9	62	401
6	4.2	9.5	90	402
9	6.3	14.3	203	406
12	8.4	19.1	360	403
24	16.8	37.9	1,440	405
48	33.6	75.8	5,760	407
500mW versions				
5	3.5	6.3	36	501
6	4.2	8.9	70	502
9	6.3	12.5	140	506
10	7.0	15.0	200	504
12	8.4	18.0	280	503
24	16.8	36.0	1,050	505
48	33.6	72.0	4,000	507

Operate Data @ $23^{\circ} \mathrm{C}$

Operate Voltage: 70\% of nominal voltage (80% for 150 mW coil).
Release Voltage: 5\% of nominal voltage.
Operate Time (Including Bounce): $<10 \mathrm{~ms}$.
Release Time (Including Bounce): <10 ms.

Environmental Data

Temperature Range: $\begin{array}{cl}150 / 200 \mathrm{~mW} \text { coil: } & -25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} . \\ 400 \mathrm{~mW} \text { coil: } & -25^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C} .\end{array}$

400 mW coil:	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
500 mW coil:	$-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

Maximum Allowable Coil Temperature: $105^{\circ} \mathrm{C}$.
Thermal Resistance: < 100K/W.
Shock: Functional: 10g. Destructive: 40 g .
Vibration, $10-55 \mathrm{~Hz}$.: Functional: 10 g .
Needle Flame Test: Application time 20s, burning time <15 s.
Resistance to Soldering Heat: $260^{\circ} \mathrm{C}$ for 10 S .

Mechanical Data

Termination: DIP compatible, printed circuit terminals.
Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.21 oz . 6 g) approximately.

Ordering Information

Typical Part Number \downarrow		V23105-A5	4	01	A201
1. Basic Series: V23105-A5 = M iniature PC board relay.					
2. Version: $0=150 \mathrm{~mW}$ coil. $3=200 \mathrm{~mW}$ coil. $4=400 \mathrm{~mW}$ coil. $5=500 \mathrm{~mW}$ coil.					
3. Coil Voltage: $\begin{aligned} & 08=3 \mathrm{VDC}(150 \mathrm{~mW} \text { and } 200 \mathrm{~mW} \text { coils only }) \\ & 01=5 \mathrm{VDC} \\ & 02=6 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 06=9 \text { VDC } \\ & 04=10 \mathrm{VDC}(500 \mathrm{~mW} \text { coil only }) \\ & 03=12 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 05= \\ & 07= \end{aligned}$		OmW coil)	
4. Contact Type and Material: A201 = DPDT, silver-nickel, gold overlaid.					

Our authorized distributors are more likely to stock the following items for immediate delivery.

V23105A5001A201
V23105A5003A201
V23105A5005A201

V23105A5401A201 V23105A5403A201 V23105A5405A201 V23105A5407A201

Outline Dimensions

$\overline{\text { Wiring Diagram (Bottom View) }}$

PC Board Layout (Bottom View)

MT2 series
 DPDT Telecom/Signal PC Board Relays

믹 File E111441
(®1) File 176679-1079886
16502-001
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Nominal Voltage (VDC)	Minimum Voltage (VDC)	Maximum Voltage (VDC)	Minimum Release Voltage (VDC)	$\begin{gathered} \text { Resistance } \\ \pm 10 \% \\ \text { (Ohms) } \end{gathered}$	Part Number
150 mW versions					
4.5	3.2	10.1	0.45	136	C 93406
5	3.6	11.3	0.50	168	C 93401
6	4.3	13.4	0.60	240	C 93427
9	6.4	20.3	0.90	544	C 93405
12	8.6	27.1	1.2	968	C 93402
24	174.1	54.1	2.4	3,872	C 93404
48	33.1	108.3	4.8	15,468	C 93404
200 mW versions					
4.5	2.9	8.7	0.45	101	C 93415
5	3.3	9.7	0.5	125	C 93416
6	3.9	11.6	0.6	180	C 93428
9	5.9	17.5	0.9	405	C 93417
12	7.8	23.3	1.2	720	C 93418
24	15.6	46.7	2.4	2,880	C 93419
48	31.2	93.4	4.8	11,520	C 93420
300 mW versions					
4.5	3.1	7.4	0.45	73	C 93433
5	3.4	8.2	0.5	90	C 93434
12	8.25	19.7	1.2	515	C 93412
24	16.5	39.5	2.4	2,060	C 93435
48	32.5	79.0	4.8	8,240	C 93436
400 mW versions					
4.5	2.9	6.1	0.45	50	C 93421
5	3.3	6.9	0.5	63	C 93422
6	3.9	8.2	0.6	90	C 93429
9	5.9	12.4	0.9	203	C 93423
12	7.8	16.5	1.2	360	C 93424
24	15.6	33.0	2.4	1,440	C 93425
48	31.2	66.0	4.8	5,760	C 93426
550 mW versions					
4.5	2.9	6.0	0.45	36	C 93438
5	3.3	6.8	0.5	45	C 93450
6	3.9	8.1	0.6	66	C 93437
12	7.8	16.7	1.2	280	C 93432
24	15.6	32.4	2.4	1,050	C 93431
48	31.2	64.1	4.8	4,100	C 93430

Operate Data @ 23${ }^{\circ}$ C

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 4 ms , typ.; 5 ms , max.
Release Time (without diode in parallel): 1 ms , typ.; 3 ms , max.
Release Time (with diode in parallel): 4 ms , typ.; 6 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $125^{\circ} \mathrm{C}$.
Thermal Resistance: < 125K/W.
Shock, half sinus, 11 ms: Functional: 50g.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

Coil Data @ $\mathbf{2 3}^{\circ} \mathbf{C}$

Voltage: 4.5 to 48VDC.
Nominal Power: See Coil Data table.
Duty Cycle: Continuous.

Destructive: 100 g .
unctional: 10 g .
Vibration, 10-500 Hz.: Functional: 10 g .
Needle Flame Test: Application Time 10 s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: DIP compatible, printed circuit terminals.
Mounting Position: Any.
Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.18 oz (5 g) approximately.
$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing
$U_{\text {II }}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{1 \mid}$ depend on the temperature according to the formula:
$U_{1 \text { tamb }}=K_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and
$U_{\| l \text { tamb }}=\quad K_{\| l} \cdot U_{\| 23^{\circ} \mathrm{C}}$
$t_{\text {amb }} \quad=$ Ambient temperature
$U_{\text {Itamb }} \quad=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$U_{\text {II tamb }} \quad=$ Maximum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$k_{1}, k_{\mathrm{l}} \quad=$ Factors (dependent on temperature), see diagram

Ordering Information

See "Part Number" column in Coil Data chart on previous page for available part numbers in the MT2 series.

Packaging Information

MT2 series relays are shipped in tubes of 25 . There are 500 relays in a full carton.

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Features

- Through hole type terminals.
- Meets Bellcore GR 1089, FCC Part 68 and ITU-T K20
- For applications in telecommunications, office automation, consumer electronics, medical equipment, measurement and control equipment.
- Immersion cleanable, plastic sealed case.
- 300 mW coil.
- Ultrasonic cleaning not recommended.

Contact Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$ (except as noted)

Arrangement: 4 Form C (DPDT) bifurcatedcontacts.
Material: Stationary: Silver-nickel, gold covered.
Ratings: Max. Switched Current: 1.25A.
Max. Carry Current: 1.25A (at max ambient temperature.
Max. Switched Voltage: 150VDC, 150VAC.
Max. Switched Power: 30W DC or 62.5VA AC.
UL/CSA Ratings: 400 mA @ 125VAC; 1.25A @24VDC.
Initial Contact Resistance: <70 milliohms @ $10 \mathrm{~mA} / 20 \mathrm{mV}$.
Expected Mechanical Life: 100,000,000 ops.
Expected Electrical Life: 10 million operations @ $10 \mathrm{~mA} / 30 \mathrm{mVDC}$.
5 million operations @ cable load open end.
200,000 operations @ 1.25A / 24VDC, res. 200,000 operations @ 200mA / 150VDC, res.
Thermoelectric potential: $<10 \mu \mathrm{~V}$.

High Frequency Data

Capacitance: Between Open Contacts: 2pF, max. Between Coil and Contacts: 4 pF , max. Between Poles: 2pF, max.
RF Characteristics: Isolation at 100 / $\mathbf{9 0 0} \mathbf{~ M H z : ~}-31.2 \mathrm{db} /-17.2 \mathrm{db}$. Insertion loss at 100 / $900 \mathrm{MHz}:-0.05 \mathrm{db} /-0.91 \mathrm{db}$. V. S. W. R. at $100 / 900 \mathrm{MHz}: 1.03 \mathrm{db} / 1.31 \mathrm{db}$.

Initial Dielectric Strength

Between Open Contacts: 700Vrms for 1 minute.
Between Coil and Contacts: $1,800 \mathrm{Vrms}$ for 1 minute.
Between Poles: 700Vrms for 1 minute.
Surge Voltage Resistance per Bellcore TR-NWT-001089 (2/10 $\mu \mathrm{s}$),
FCC $68(10 / 160 \mu \mathrm{~s})$ and IEC ($10 / 700 \mu \mathrm{~s}$):
Between Open Contacts: 1,500V.
Between Coil and Contacts: $2,500 \mathrm{~V}$.
Between Poles: 1,500V.

Initial Insulation Resistance

Between Contact and Coil: 10^{9} ohms or more @ 500VDC.

MT4 series

4PDT Telecom/Signal PC Board Relays

믹 File E111441
(18) File 176679-1079886

E 16501-001
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 4.5 to 48VDC.
Nominal Power: See Coil Data table.
Duty Cycle: Continuous.

Coil Data @ $23^{\circ} \mathrm{C}$

Nominal Voltage (VDC)	Minimum Voltage (VDC)	Maximum Voltage (VDC)	Minimum Release Voltage (VDC)	Resistance $\mathbf{\pm 1 0 \%}$ (Ohms)	Part Number
300 mW versions					
4		3.2	7.8	0.45	67
5	3.6	8.65	0.5	83	C 93807
9	6.4	15.6	0.9	270	C 93801
12	8.6	20.8	1.2	480	C 93802
24	17.1	41.6	2.4	1,920	C 93803
48	34.1	83.2	4.8	7,680	C 93804

Operate Data @ $23^{\circ} \mathrm{C}$

Operate and Release Voltage: See values in chart above.
Operate Time (at nominal voltage): 4 ms , typ.; 6 ms , max.
Release Time (without diode in parallel): 1 ms , typ.; 3 ms , max.
Release Time (with diode in parallel): 4 ms , typ.; 6 ms , max.
Bounce Time (at contact close): 1 ms , typ.; 5 ms , max.
Maximum Switching Rate (no load): 50 operations/s.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Maximum Allowable Coil Temperature: $100^{\circ} \mathrm{C}$.
Thermal Resistance: <105K/W.
Shock, half sinus, 11 ms: Functional: 10 g.
Destructive: 100 g.
Vibration, $\mathbf{1 0 - 5 0 0} \mathrm{Hz}$.: Functional: 10 g .
Needle Flame Test: Application Time 10s.
Resistance to Soldering: $260^{\circ} \mathrm{C}$ for 10 s .

Mechanical Data

Termination: DIP compatible, printed circuit terminals.
Mounting Position: Any.
Enclosure Type: Immersion cleanable (IP67) plastic case.
Weight: 0.25 oz . (7 g) approximately.

Dimensions are shown for	Dimensions are in inches over (millimeters) unless otherw ise seference purposes only.	Specifications and availability specified.

$U_{1}=\quad$ Minimum voltage at $23^{\circ} \mathrm{C}$ after pre-energizing
with nominal voltage without contact current
$U_{\|}=\quad$ Maximum continous voltage at 23°

The operating voltage limits U_{1} and $U_{\| 1}$ depend on the temperature according to the formula:
$U_{\text {Itamb }}=\quad \mathrm{K}_{1} \cdot U_{123^{\circ} \mathrm{C}}$
and
$U_{\| l \text { tamb }}=\quad K_{\| l} \cdot U_{\| 23^{\circ} \mathrm{C}}$
$t_{\text {amb }} \quad=$ Ambient temperature
$U_{\text {t tamb }} \quad=$ Minimum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$U_{\text {II tamb }} \quad=$ M aximum voltage at ambient temperature, $\mathrm{t}_{\mathrm{amb}}$
$k_{1}, k_{\mathrm{l}} \quad=$ Factors (dependent on temperature), see diagram

Ordering Information

See "Part Number" column in Coil Data chart on previous page for available part numbers in the MT4 series.

Packaging Information

MT4 series relays are shipped in tubes of 25 . There are 500 relays in a full carton.

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Alphanumeric Index

Series	Type	Page
0409 (10A, One-pole Relay.	488
0410	16A, One-pole Relay.	491
0429 (10A, One-pole Relay	457
0430	10-16A, One- or Two-pole Relay	495
600	. 3-15A, One-pole Relay	497
Card E	8A, One-pole Relay	480
IF (V2307	16A, One-pole Relay	489
OJ/OJ E	3-10A, One-pole Relay	422
OMI/O	16A, One-pole Relay.	458
OMI 2	5A, Two-pole Relay.	460
OMIF	20A, One-pole Relay.	466
OMIT	10A, One-pole Relay.	464
ORWH	10A, One-pole Relay.	438
OSA	3-5A, Two-pole Relay.	470
OSZ	.16A, One-pole Relay	472
OUDH	10A, One-pole Relay	432
OZ/OZF	.16A, One-pole Relay.	462
PB ...	10A, One-pole Relay.	426
PCD/PC	15A, One-pole Relay.	424
PCE	10A, One-pole Relay.	436
PCG	. 5A, Two-pole Relay.	493
PCH	5-10A, One-pole Relay.	418
PCI.	3A, Two-pole Relay.	468
PCJ	5A, One-pole Relay ..	416
PCK	16A, One-pole Relay.	478
PCN	.3A, One-pole Relay	407
PE	5A, One-pole Relay	403
RE	6A, One-pole Relay	405
RP II/1	8-16A, One-pole Relay.	484
RP II/2	. 8A, Two-pole Relay.	482
RP3SL	16A, One-pole Relay.	486
RT-AC	. 8-16A, One- or two-pole Relay	448
RT- DC	. 8-16A, One- or two-pole Relay	446
RT-S	10A, One-pole Relay.	451
RT- Hi	16A, One-pole Relay.	455
RT - Hi	10-16A, One-pole Relay	453
RY II..	... 8A, One-pole Relay .	412
SDT	.10A, One-pole Relay.	474
SDT-R	5-10A, One-pole Relay.	476
SNR (V	... 6A, One-pole Relay ..	409
SRUDH	. 12A, One-pole Relay.	442
SRUUH	15A, One-pole Relay.	444
T7C.	. 5-12A, One-pole Relay.	440
T7N..	. 10A, One-pole Relay.	434
T73	.10A, One-pole Relay.	430
T75	. 8-14A, One-pole Relay.	414
T77 .	. 3-10A, One-pole Relay.	420
U/UB	... 7A, One-pole Relay .	428
V23057	... 8A, One-pole Relay ..	480
V23077	... 16A, One-pole Relay..	489
V23092	... 6A, One-pole Relay ..	409
V23148	... 7A, One-pole Relay .	428

NOTE: A question tree that may help you in selecting an appropriate relay for your application can be found on the next page.

Mid-Range PC Board Relays.... 401-498

NOTE: In addition to the products listed in this section of the

 databook, 3-20A relays described in other sections are available with printed circuit board terminals. Following is a list:Relays with Forcibly Guided Contacts
SR4 D/M .. 606
SR6 D/M ... 607
SR6S ... 611
V23047 (SR2M) .. 603
V23050 (SR6) ... 609
Plug-in/Panel Mount Relays
K10 ... 720
KH ... 709
KU ... 723
PCL/PCLH ... 713
PT ... 717
R10 .. 703
RM .. 733
Power Relays \& Contactors
KUHP ... 803
Latching, Impulse, Rotary \&
Special Application Relays
KUL ... 908
PCKWK.. 904
PE - Latching .. 902
RT - Latching .. 906
Solid State Relays \& I/O Modules
OAC/ODC .. 1110
OACM/ODCM .. 1118
Products in our line of high performance relays (see overview in section 14 of this databook) are also offered with PC terminals.

Mid Range (3-20A) PC Board Relay Question Tree

This guide helps the user select one or more relay series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a relay for a particular application

Several relay product families are quite broad (i.e., RT), and only the basic family designator, not the actual product series designator (RT Sensitive) is listed in this guide

* Typical loads at 28VDC or 120VAC, resistive, for comparison purposes. See catalog pages for a given series for detailed rating specifications.

PE series

5 Amp Miniature
 Printed Circuit Board Relay

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information								
		Typical Part Number \downarrow	PE	0	1	4	024	
1. Basic Series: $\mathrm{PE}=\mathrm{M}$ iniature printed circuit board relay.								
2. Enclosure*: 0 = Flux-tight.								
3. Contact Arra 1 = 1 Form C	ment: T)							
4. Contact Mat 4 = Silver-nick								
5. Coil Voltage: $005=5$ VDC $006=6 \mathrm{VDC}$	$\begin{aligned} & 012=12 \mathrm{VDC} \\ & 024=24 \mathrm{VDC} \end{aligned}$	$048=48 \mathrm{VDC}$						

* Sealed version available on request.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
PE014005 PE014024
PE014012

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Features

- 1 Form A (SPST-NO).
- 6 amp rated current.
- Sensitive coil 200 mW .
- 10.6 mm height.
- Fully sealed with vent hole.
- Supplied in tubes.

Contact Data @ 70으․

Arrangements: 1 Form A (SPST-NO).
Material: Silver-cadmium oxide.
Silver-nickel 0.15 with gold plating.
Expected Mechanical Life: 30 million operations minimum.
Ratings:
6 amp 30 VDC resistive load 500,000 ops.
$0.3 \mathrm{amp} 50 \mathrm{VDC} \mathrm{L} / \mathrm{R}=40 \mathrm{~ms} 3,000,000 \mathrm{ops}$.
UL/CSA AgCdO @ $\mathbf{2 5}^{\circ} \mathrm{C}$
6 amp 250 VAC general purpose $30,000 \mathrm{ops}$.
10 amp 120VAC general purpose $\left(+70^{\circ} \mathrm{C}\right) 6,000$ ops.
1/4 HP 240VAC 30,000 ops.
1/6 HP 277VAC 30,000 ops.
1/8 HP 120VAC 30,000 ops.
B300 6,000 ops.
ULCSA AgNi 0.15 @ $70^{\circ} \mathrm{C}$
6 amp 250VAC general purpose 6,000 ops.
VDE 0435 @ $70^{\circ} \mathrm{C}$
6 amp 250VAC general purpose 100,000 ops.
10mA 5VDC 5,000,000 ops.
VDE 0660 AC 11 @ $35^{\circ} \mathrm{C}$
2 amp 400VAC 200,000 ops.

Initial Dielectric Strength
Between Open Contacts: 1,000VAC.
Between Coil and Contacts: 4,000VAC.
Creepage/Clearance Coil-Contact: $4 / 4 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 200mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Nominal Coil Current (mA)
05	$125 \pm 10 \%$	3.5	0.5	40
06	$180 \pm 10 \%$	4.2	0.6	33.3
12	$720 \pm 10 \%$	8.4	12	16.7
24	$2,880 \pm 15 \%$	16.8	2.4	8.3
48	$11,520 \pm 15 \%$	33.3	4.8	4.2

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time : 5 ms typical, at nom. voltage.
Release Time : 1 ms typical, at nom. voltage.
Bounce Time: 1 ms typical, at nom. voltage.
Switching Rate: 360 ops./hr. max. at rated load.

$$
12,000
$$

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} .\left(+85^{\circ} \mathrm{C} @ 4 \mathrm{amp}\right)$.
Vibration: 10 to 150 Hz . at 10 g N/O 20 g N/C.
Shock (destructive): $>100 \mathrm{~g}$.

$R E$ series
 6 Amp Miniature
 Printed Circuit Board Relay

c © $_{\text {us }}$ File E214025
\bigcirc NR 10071
(60) NR 8841-014-02
(t) NR 10308.ZA1A

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Sealed (RTIII) plastic case.
Weight: 0.18 oz . (5 g) approximately.

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

		Typical Part Number $>$	RE	0	3	0	006	
1. Basic Series: RE $=$ Miniature printed circuit board relay.								
2. Enclosure: $0=$ Sealed								
3. Contact Arra 3 = 1 Form A	nent: T-NO)							
4. Contact Mat 0 = Silver-cad 2 = Silver-nic	oxide. 15 with gold pla							
5. Coil Voltage: $\begin{aligned} & 005=5 \mathrm{VDC} \\ & 006=6 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 012=12 \mathrm{VDC} \\ & 024=24 \mathrm{VDC} \end{aligned}$	$048=48 \mathrm{VDC}$						

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. RE030005 RE030024
RE030012

Outline Dimensions

In case of full load on contacts and under
extreme operating conditions (switching rate,
ambient temperature) it is recommended to
open the sealed (washable) relays, by opening
the vent hole* provided for this purpose, after completion of the cleaning process.

PC Board Layout (Bottom View)

PCN series

Slim, 3 Amp
PC Board Relay

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Only 5 mm wide, permitting high density spacing.
- 1 Form A contact arrangement.
- Sensitive coil requires only 120 mW coil power.
- Well suited for HVAC controls, I/O panels, PLCs.

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A.
Type: Bifurcated.
Material: AgNi
Max. Switching Rate: 12,000 ops./min. (no load).
100 ops./min. (rated load).
Expected Mechanical Life: 20 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 1mA @ 5VDC.

Contact Ratings

Ratings: 3A @ 250VAC resistive.
3A @30VDC resistive.
Max. Switched Voltage: AC: 277V; DC: 125 V .
Rated Switched Voltage: AC: 250V.
Max. Switched Current: 3A.
Max. Switched Power: AC: 1250VA; DC: 150W.
Initial Contact Resistance: 50 milliohms @100mA, 6VDC (reference).

NOTE: A 5A rated version ot the PCN series is now in development. Consult factory regarding its availability.

Insulation Data

Insulation to IEC 664/VDE 0110
Voltage Rating: 277VAC.
Pollution Degree: 2.
Overvoltage Category: II.
Tracking Resistance of Relay Base: PTI 600.

Coil Data

Voltage: 5 to 24VDC.
Nominal Power: 120 mW .
Operate Power: 58.8 mW .
Coil Temperature Rise: $35^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Voltage: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $20^{\circ} \mathrm{C}$

PCN					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
5	24.0	208	3.5	0.5	
6	20.0	300	4.2	0.6	
9	13.3	675	6.3	0.9	
12	10.0	1,200	8.4	1.2	
24	5.0	4,800	16.8	2.4	

Operate Data

Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 5 ms typ.
Release Time: 2 ms typ.
Bounce Time: <1 ms typ.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 10 to 90% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings): Sealed (RT III / wash-tight) plastic case.
Weight: $0.1 \mathrm{oz}(3 \mathrm{~g})$ approximately.

Initial Dielectric Strength

Between Open Contacts: 750 V ms .
Between Coil and Contacts: $3,000 \mathrm{~V}$ ms .
Surge Voltage Between Coil and Contacts: 5,080V (1.2 / 50 $\mu \mathrm{s}$).

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram

PC Board Layout (Bottom View)

Reference Data

Features

- 1 Form A (SPST-NO) and 1 Form C (SPDT).
- 6 A rated current.
- Slim package : 5mm width.
- Sensitive coil 170 mW .
- 4kV coil-to-contact insulation.
- Applications: PLCs, timers, temperature controllers, I/O modules.

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver tin oxide, silver tin oxide with gold plating; and silver nickel 90/10.
Max. Switching Rate: 12,000 ops./min. (no load).

60 ops./min. (rated load).

Initial Contact Resistance:
AgSnO or AgNi 90/10: 100 milliohms @ 1A, 12VDC.
AgSnO, Au plated: 50 milliohms @ 100mA, 6VDC.
Max. Switched Voltage: AC: 400V; DC: 300V.
Rated Voltage: AC: 250V; DC: 24V.
Max. Switched Current: 6A.
Max. Switched Power: 1,500VA. (See curve for DC Power).
Minimum Load: AgSnO or AgNi 90/10: >500mA, 12VAC/NDC.
AgSnO, Au plated: $>10 \mathrm{~mA}$, 5VAC/VDC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: See curve.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC, (1 minute).
Between Contacts and Coil: 4,000VAC, (1 minute).
Surge Voltage Between Coil and Contacts: $6,000 \mathrm{~V}(1.2 / 50 \mu \mathrm{~s})$.
Creepage/Clearance Coil-to-Contact: Min. 6/8mm. Consult factory
regarding availability of 1 Form A model with $8 / 8 \mathrm{~mm}$.

Initial Insulation Resistance

Between Mutually Insulated Conductors: 100,000Mohm @ 500VDC.

Coil Data @ $20^{\circ} \mathrm{C}$
Voltage: 5 to 48VDC.
Nominal Power: 170 mW .

V23092				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	34.0	119	3.50	0.25
12	14.2	848	8.40	0.6
24	7.1	3,390	16.80	1.20
48	4.5	$10,600^{*}$	33.60	2.40

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 5 ms max. at nominal voltage.
Release Time: 2.5 ms max. at nominal voltage.
Bounce Time: $1.5 \mathrm{~ms}(\mathrm{~N} / \mathrm{O})$ typical at nominal voltage.
$5 \mathrm{~ms}(\mathrm{~N} / \mathrm{C})$ typical at nominal voltage.

V23092 (SNR) series

6 Amp Slim Miniature, PC Board Relay

cT us File E48393
(Were File 0631 / 0160 / 0435
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating Humidity: 20 to 85% RH.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings): Plastic sealed case (RT III wash tight).
Weight: $0.2 \mathrm{oz} .(6 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
V23092A1012A301
V23092A1024A301

Outline Dimensions

Vertical Version

Wiring Diagrams (Bottom Views)

1 Form C

1 Form A

Flat Pack Version

PC Board Layout (Bottom View)

DIN Rail Interface Module and Accessories for V23092 Series (SNR) Relay PC Board Relay

[^13]
Features

- Module width is 0.2 in (5.08 mm).
- Narrow width permits high density packing of modules on a DIN rail.
- Jumper bars available.
- Available as a set or as individual components.

Technical Information

Rated Current / Rated Voltage: 6A / 250VAC.
Dielectric Strength, Coil-to-Contact: $>4,000 \mathrm{Vrms}$.
Insulation Category (VDR 0110b): C / 250.
Operating Ambient Temperature: $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Protection Category: IP 20.
Protection Against Accidental Contact Meeting: VBG 4.
Wire Cross Section with/without Bootlace Crimp: 0.22 - $2.5 \mathrm{~mm}^{2}$
Terminal Torque (Nominal / Maximum): . 295 / . $442 \mathrm{ft} \mathrm{lb}(0.4 / 0.6 \mathrm{Nm}$).

Component Parts

ST 1F 000	Socket without LED
ST 1F L24	Socket with LED for 12-24VDC.
ST 16 016	Mounting frame for relay, without marking
ST 17002	J umper bar, 2 pole
ST 17 005	J umper bar, 5 pole
ST 17 010	J umper bar, 10 pole
ST 16 040	Marking plate, consiting of 100 marking tags

Sets - Relay in frame, mounted in socket

ST 1P3 024	24VDC, AgSnO $_{2}$ contacts
ST 1P3 L12	12VDC, with LED, AgSnO $_{2}$ contacts
ST 1P3 L24	24VDC, with LED, AgSnO_{2} contacts
ST 1P3 L48	48VDC, with LED, AgSnO contacts $^{\text {24VDC, with LED, Au plated AgSnO }}$ 2 contacts
ST 1P2 L24	24VC,

Features

- 1 Form A (SPST-NO) and1 Form C (SPDT).
- 8 amp rated current.
- Sensitive coil 220 mW .
- 12.3 mm height.
- 8 mm coil to contact spacing.
- Flux-tight and washable (sealed) versions.

Contact Data @ 70º

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT), single contact.
Material: Silver-cadmium oxide; Silver-tin oxide; and Silver-nickel 0.15 with or without gold plating.
Expected Mechanical Life: 30 million operations minimum.
Ratings:
Current: 8A
Voltage: 250VAC.
Power (breaking): 2,000 VA.
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): 30A.
UL508 @ 70${ }^{\circ} \mathrm{C}$ (RY610 type)
8 amp 28VDC 30,000 ops.
280mA 250VDC 30,000 ops.
1/2 HP 240VAC.
1/4 HP 277VAC.
B300 120 or 240VAC
VDE 0631 @ $85^{\circ} \mathrm{C}$ (RY531 type) 6 (4) amp, 250VAC 100,000 ops.

Initial Dielectric Strength
Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $5,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 220mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
5	113	3.5	0.5	118	44.0
6	164	4.2	0.6	14.1	36.7
12	620	8.4	12	28.2	19.3
24	2,350	16.8	2.4	56.4	10.2
48	9,600	33.6	4.8	112.8	5.0

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time : 7 ms , at nom. voltage.
Release Time: 3 ms , at nom. voltage.
Bounce Time (N/O contact) : 1 ms , at nom. voltage.
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range:

Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Vibration: (10 to 500 Hz.$) 5 \mathrm{~g}$.
Shock (destructive): $>100 \mathrm{~g}$.

RY II series
 8 Amp Miniature
 Printed Circuit Board Relay

c90s ${ }_{\text {us }}$ File E214025
\bigcirc NR 10071
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: Printed circuit terminals. Sockets available.
Enclosure (94 V-0 rated): Flux-tight (RT II) or sealed (RTIII) plastic case. Weight: 0.28 oz. $(8 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Typical Part Number \downarrow RY	6	1	0	012
1. Basic Series: RY = RY II miniature printed circuit board relay.				
2. Version: 2 = Flux-tight, pins on 3.2 mm spacing. Only available with contact arrangement 1 $5=$ Flux-tight, pins on 5 mm spacing. Only available with contact arrangement 3. $6=$ Sealed, pins on 3.2 mm spacing. Only available with contact arrangement 1 A $=$ Sealed, pins on 5 mm spacing. Only available with contact arrangement 3.				
3. Contact Arrangement: 1 = 1 Form C (SPDT) Only available with 3.2 mm pin spacing. 3 = 1 Form A (SPST-NO) Only available with 5 mm pin spacing.				
4. Contact Material: $0=$ Silver-cadmium oxide. 1 = Silver-nickel 0.15 $2=$ Silver-nickel 0.15 with gold plating 3 = Silver-tin oxide.				
5. Coil Voltage:				

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

1 Form C, 3.2mm pin spacing
1 Form $A, 5 m m$ pin spacing

PC Board Layouts \& Wiring Diagrams (Bottom Views)

1 Form C, 3.2mm pin spacing
1 Form A, 5mm pin spacing

Sensitive, Low Profile, Hi-Current
Relay Designed to Meet
International Standards

Features

- High sensitivity - nominal coil power requirement is as low as 212 mW .
- Low profile, .591 in . (15 mm) tall case uses only $.465 \mathrm{in}^{2}\left(3 \mathrm{~cm}^{2}\right)$ of area on the printed circuit board, permitting high density circuit design.
- Power switching capability - contacts rated 14 amps in 1 Form A (SPSTNO) or 1 Form C (SPDT) arrangements.
- Designed to meet UL, CSA, VDE, SEMKO and SEV requirements.
- Designed to meet VDE 8mm spacing, 4kV dielectric, coil to contacts.
- Designed to meet 3 mm creepage between contacts.
- Conforms to: VDE 0110 - Insulation Group C (250V)

VDE 435 Part 201 - High current applications
VDE 0804 - Telecommunications equipment
VDE 0631 - Temperature controllers and limiters
VDE 0700 - Household appliances
VDE 0805/5.90 - Office machines

- Immersion cleanable§, ultrasonically sealed case.
- Well suited for a broad range of applications e.g. HVAC, appliances, security and industrial control.
§ For more details, refer to application note 13C265, "Mounting, Termination and Cleaning of PC Board Relays."

Contact Ratings @ $25^{\circ} \mathrm{C}$ with relay properly vented.

Remove vent nib after soldering and cleaning.
Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Expected Mechanical Life: 20 million operations.
Expected Electrical Life:
100,000 operations at $8 \mathrm{mps}, 240 \mathrm{VAC}$.
50,000 operations at 14 amps NO $/ 5 \mathrm{amps}$ NC, 120VAC Res.
30,000 operations at 7.2 FLA, 45 LRA, 120VAC.
10,000 operations at 5 FLA, 30 LRA, 240VAC.
30,000 operations at B300 pilot duty ($360 \mathrm{VA}, 240 \mathrm{VAC}$;
$470 \mathrm{VA}, 120 \mathrm{VAC})$.
Contact Ratings (See Figure 1):
Maximum Switched Voltage: 380VAC.
Maximum Switched Current: 14/5 (N.O./N.C.) amps, AC
resistive; 8 amps DC (see Fig. 1)
Maximum Switched Power: 200W, DC; $2,000 \mathrm{VA}, \mathrm{AC}$.
Minimum Required Contact Load: 12V, 100 mA .
VDE Contact Ratings: 8 amps , 250 VAC .
UL/CSA Contact Ratings: 10 amps, 240VAC; 8 amps 24VDC;
1/3 HP, 120VAC; 1/2 HP, 240VAC.
Figure 1 - DC Switching Load Limit Curve

T75 series

14 Amp, PC Board Miniature Relay

汀 File E29244
(18) File LR45064
\bigcirc File No. 3919
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{~V}$ rms.
Between Contacts and Coil: $4,000 \mathrm{~V}$ rms, 8 mm .

Coil Data

Voltage: 3 to 60VDC.
Maximum Power @ $\mathbf{2 5}^{\circ} \mathrm{C}$: 1W.
Nominal Power @ $25^{\circ} \mathrm{C}$: 230 mW , typ.
Temperature Rise: $85 \mathrm{C}^{\circ}$ per Watt.
Duty Cycle: Continuous.

Coil Data

	Nominal Voltage	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage	Nominal Coil Current (mA)
	3	40	2.1	75.0
DC	5	118	3.6	42.4
Coils	6	165	4.3	36.4
	9	365	6.4	24.7
	12	650	8.5	18.5
	18	1,455	12.8	12.4
	34	2,270	17.2	10.6
	48	5,460	25.4	6.4
	60	8,790	34.5	5.5
		15,265	42.8	3.9

Operate Data @ $25^{\circ} \mathrm{C}$

Must Operate Voltage: 72\% of nom. voltage or less.
Must Release Voltage: 10\% of nom. voltage or more.
Operate Time (Excluding Bounce): 6 ms , typ., at nom. voltage.
Release Time (Excluding Bounce): 2.5 ms , typ., at nom. voltage.
Maximum Switching Rate: 20 operations/second.
Maximum Continuous Operating Voltage: 225\% of nom. voltage.

Temperature Range

Storage: $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosures: Immersion cleanable, plastic sealed case.
Weight: 0.65 oz . (18.5 g) approximately.

Typical Part Number					T75	S	5	D	1	1	2	-12
1. Basic Series: T75 = Low profile, printed circuit board relay.												
2. Enclosure: S = Immersion cleanable, plastic sealed case.												
3. Contact Arrangement: $1=1$ Form A (SPST-NO) 5 = 1 Form C (SPDT)												
4. Coil Input: $D=D C$ voltage												
5. Coil Configuration: 1 = Single coil, non-latching (monostable)												
6.	Mounting and Terminals: 1 = Printed circuit terminals											
7. Contact Material: 2 = Silver-cadmium oxide (AgCdO)												
8.	Coil Voltage: $03=3 \mathrm{VDC}$ $05=5 \mathrm{VDC}$	$\begin{aligned} & 06=6 \mathrm{VDC} \\ & 09=9 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 12=12 \mathrm{VDC} \\ & 18=18 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 24=24 V \\ & 36=36 V \end{aligned}$		$\begin{aligned} & 48=4 \\ & 60= \end{aligned}$						

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
T75S5D112-05
T75S5D112-12
T75S5D112-24

Outline Dimensions

CONTACT TERMINALS: $.023 \times .040(.58 \times 1.02)$ REF.
COIL TERMINALS: . 024 (.61) DIA. REF.

Wiring Diagram (Bottom View)

* on single throw models, ONLY NECESSARY TERMINALS ARE PRESENT.

PC Board Layouts (Bottom Views)

1 Form C

1 Form A

Dimensions are in inches over	Specifications and availability	ww w.tycoelectronics.com
(millimeters) unless otherwise	subject to change.	Technical support:
specified.		Refer to inside back cover.

PCJ series

Slim 5 Amp
 Miniature Power PC Board Relay

Air Conditioners, Refrigerators, Microwave Ovens
민 UL File No. E82292
(\$18) CSA File No. 1031444
VOE VDE File No. 122301
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Slim outline, L20.4 x W7 x H15 (mm).
- 1 Form A (SPST-NO) contact arrangement.
- High dielectric capacity of 4 kV .
- UL, CSA, VDE approvals.
- Immersion cleanable, sealed version available.
- Cadmium-free contacts.

Contact Data @ 20응

Arrangements: 1 Form A (SPST-NO).
Material: Ag Alloy.
Max. Switching Rate: 300 ops./ min. (no load).
20 ops./ min. (rated load).
Expected Mechanical Life: 5 million ops (no load).
Expected Electrical Life: 100,000 ops (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100M ohms @ 1A, 6VDC.

Contact Ratings

Ratings: 5A @ 250VAC resistive.
Max. Switched Voltage: AC: 275V.

> DC: 30V.

Max. Switched Current: 5A.
Max. Switched Power: 1,250VA, 150W.

Initial Dielectric Strength

Between Open Contacts: 750VAC, 50/60 Hz. (1 min.).
Between Contacts and Coil: $4,, 000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (1 min.).
Surge Voltage Between Coil and Contacts: 7,000V (1.2/50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Conductors: 1,000M ohm @ 500VDCM.

Coil Data

Voltage: 5 to 24VDC.
Duty Cycle: Continuous.
Nominal Power: 200mW.
Max. Coil Power: 130\% of nominal.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

PCJ				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	40.0	125	3.75	0.25
6	33.3	180	4.50	0.30
9	22.5	405	6.75	0.45
12	16.7	720	9.00	0.60
18	11.1	1,620	13.50	0.90
24	8.6	2,880	18.00	1.20

Operate Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 10ms max.
Release Time: 4ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude.
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G}$ approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Weight: $0.14 \mathrm{oz} .(4 \mathrm{~g})$ approximately.

Ordering Information

dering information	Typical Part Number	PCJ	-1	05	D	3	M	H	,000
1. Basic Series: PCJ = Miniature 1 Form A relay									
2. Termination: 1 = 1 pole									
3. Coil Voltage: $\begin{array}{ll} 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} \\ 06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} \end{array}$	$\begin{aligned} & 18=18 \mathrm{VDC} \\ & 24=24 \mathrm{VDC} \end{aligned}$								
4. Coil Input: D = Standard 200mW									
5. Contact Material: $3=\mathrm{AgNi}$									
6. Contact Arrangement: $\mathrm{M}=1$ Form A (NO)									
7. Enclosure: Blank = Vented (Flux-tight) cover	$\mathrm{H}=$ Sealed plastic case								
8. Suffix: ,000 = Standard model Othe	ffix $=$ Custom model								

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

PCJ -105D3M, 000
PCJ -112D3MH,000
PCJ -124D3MH,000

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Features

- 1 Form A (SPST-NO) or 1 Form C (SPDT) contact arrangements.
- 5 or 10A ratings.
- Compact size 20L x 10W x 15.2H (mm).
- High surge voltage of 8000 V .
- Cadmium-free contacts.
- Sensitive (200 mW) coil available on 1 Form A types.
- UL, CSA, VDE approval.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: AgSnO.
Max. Switching Rate: 300ops./ min. (no load).
20ops./ min. (rated load).
Expected Mechanical Life: 5 million ops (no load).
Expected Electrical Life: 100,000ops (rated load).
Minimum Load: 100mA @5VDC.
Initial Contact Resistance: 100 milliohms @1A, 6VDC.

Contact Ratings

Ratings: Models with 1 Form C Contacts, 400 mW Coil
5A (NO) /3A (NC) @ 30VDC resistive.
5A (NO) /3A (NC) @ 277VAC resistive.
10A (NO) @ 125VAC resistive. TV-3 (NO).
Models with 1 Form A Contacts, 400mW Coil
5A @ 277VAC/30VDC resistive.
10A @ 125VAC resistive. TV-3.
Models with 1 Form A Contacts, 200mW Coil 5A @ 277VAC/30VDC resistive. 10A @ 125VAC resistive.
Max. Switched Voltage: AC: 277V.
DC: 30V.

Max. Switched Current: 10A (NO) / 3A(NC).
Max. Switched Power: 1400VA, 150W (NO); 850VA, 90W (NC).

Initial Dielectric Strength

Between Open Contacts: 750VAC, 50/60 Hz. (1 min.).
Between Contacts and Coil: $4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (1 min.).
Surge Voltage Between Coil and Contacts: 8,000V (1.2/50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Conductors: 1000M ohm @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Duty Cycle: Continuous.
Nominal Power: 200 mW or 400 mW .
Max. Coil Power: 130\% of nominal.

PCH series

5-10 Amp Miniature 1 Form A or C Power PC Board Relay

Air Conditioners, Refrigerators, Microwave Ovens

긴UL File No. E82292
(18) CSA File No. LR48471

VOE VDE File No. 119568
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ 20응

200mW Coils (Only available with 1 Form A contact arrangements)				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	40.0	125	3.75	0.25
6	30.0	180	4.50	0.30
9	22.5	400	6.75	0.45
12	16.7	720	9.00	0.60
24	8.6	2,800	18.00	1.20

400mW Coils					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
	80.0	62.5	3.75	0.25	
5	66.7	90.0	4.50	0.30	
6	44.4	202.5	6.75	0.45	
9	33.3	360.0	9.00	0.60	
12	22.2	810.0	13.50	0.90	
18	11.1	$1,440.0$	18.00	1.20	
24	5.6	$5,760.0$	36.00	2.40	
48					

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 10 ms max.
Release Time: 5ms max.

Environmental Data

Temperature Range:
Operating: Models with Class F insulation: $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude.
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Weight: $0.25 \mathrm{oz}(7 \mathrm{~g})$ approximately.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
PCH-105D2H,001 PCH-124D2H,001
PCH-112D2H,001

Outline Dimensions

Wiring Diagram (Bottom View)

NOTE: Only necessary terminals are present on 1 Form A models.

PC Board Layout (Bottom View)

NOTE: Only necessary terminals are present on 1 Form A models.

Reference Data (Typical Values)
(Only applicable for 1 Form C, 400 mW coil model with 277VAC load on NO)

Dimensions are in inches over	Specifications and availability	www.tycoelectronics.com
(millimeters) unless otherw ise	subject to change.	Technical support:
specified.		Refer to inside back cover.

T77 series

10 Amp Miniature PC Board Relay

兄 File E29244
(18A File LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $20^{\circ} \mathrm{C}$

Voltage: 3 to 24VDC.
Nominal Coil Power: Contact rating $3=200 \mathrm{~mW}$.
Contact rating $10=450 \mathrm{~mW}$
Coil Temperature Rise: Contact rating $3=35^{\circ} \mathrm{C}$ max. Contact rating $10=40^{\circ} \mathrm{C}$ max.
Max. Coil Power: 120\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance (Ohms) $\pm 10 \%$		Must Operate Voltage (VDC)	Must Release Voltage (VDC)
	Contact Rating 3	Contact Rating 10		
3	45	20	2.25	0.15
5	125	55	3.75	0.25
12	720	320	9.00	0.60
24	2,800	1,280	18.00	1.20

Operate Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Operate Time: 10 ms , max. (excluding bounce).
Release Time: 4 ms , max. (excluding bounce).

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Contact Rating 3: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Contact Rating 10: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Vibration: Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock: Mechanical: 100 g min.
Operational: 10 g min .
Operating Humidity: 45 to 85% RH.

Mechanical Data

Termination: Printed circuit board
Enclosures ($94 \mathrm{~V}-0$ Flammability Ratings):
T77S: Immersion cleanable.
T77V: Vented, flux-tight, plastic cover.
Weight: $0.36 \mathrm{oz} .(9 \mathrm{~g})$.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{8} ohms, min. @ 500VDC.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $4,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).

Dimensions are shown for	Dimensions are in inches over	Specifications and availability

Operate Time

Note: Graphical data should not be used as a substitute for specific application verification. To be used for estimates only.

Ordering Information								
	Typical Part Number	T77	V	1	D	10	-24	
1. Basic Series: T77 = Miniature PCB relay.								
2. Enclosure: $\mathrm{V}=$ Vented (Flux-tight)* $\mathrm{S}=$ Immersion cleanable case								
3. Contact Arrangement: 1 = (SPST-NO)								
4. Coil Input: D = DC Voltage								
5. Contact Rating: $3=3 \mathrm{~A} \quad 10=10 \mathrm{~A}$								
6. Coil Voltage: $03=3 \mathrm{VDC} \quad 05=5 \mathrm{VDC} \quad 12=12 \mathrm{VDC}$								

*Not suitable for immersion cleaning processes

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

T77V1D3-12	T77V1D10-12	T77S1D3-12	T77S1D10-12
T77V1D3-24	T77V1D10-24	T77S1D3-24	T77S1D10-24

Outline Dimensions

Wiring Diagram (Bottom View)
1 Form A

Suggested PC Board Layout (Bottom View)

Features

- Miniature size $18.2 \times 10.2 \times 14.7 \mathrm{~h}$.
- 1 Form A (SPST-NO) contact arrangement.
- Designed to meet UL, CSA, VDE, TUV requirements.
- Designed to meet 4kV dielectric between coil and contacts (OJ).
- Sensitive and standard coils available.
- Immersion cleanable, sealed version available.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO).
Material: Ag, Ag Alloy.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @5VDC.
Initial Contact Resistance: 100 milliohms @ 1A,6VDC.

Contact Ratings

Ratings: OJ/OJE-LM: 3A @ 250VAC resistive,
3A @ 28VDC resistive.
OJ/OJE-LMH: 8A @ 250VAC resistive, 8A @ 28VDC resistive.
OJ/OJE-DM: 5A @ 250VAC resistive, 5A @ 28VDC resistive.
OJ/OJE-HM: 10A @ 250VAC resistive, 10A @ 28VDC resistive.
Max. Switched Voltage: AC: 265V.
DC: 30V.
Max. Switched Power:
OJ/OJE-LM: 720VA, 90W
OJ/OJE-LMH: 1,800VA, 200W
OJ/OJE-DM: 1,200VA, 150W
OJ/OJE-HM: 2,500VA, 280W
Note: Consult factory regarding TV-5 rated models.

Initial Dielectric Strength

Between Open Contacts:

OJ: $\quad 750 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
OJE: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts:
OJ: $\quad 4,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
OJE: 3,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts:
OJ: $10,000 \mathrm{~V}(1.2 / 50 \mu \mathrm{~s})$.
OJE: 5,000V (1.2/50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: OJ/OJE-LM and LMH: 200 mW . OJ/OJE-DMand HM: 450 mW .
Coil Temperature Rise:
OJ/OJE-LM and LMH : $30^{\circ} \mathrm{C}$ max., at rated coil voltage.
OJ/OJE-DM and HM: $40^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

OJ /OJ E series

3-10 Amp Miniature, PC Board Relay

Appliances, HVAC, Industrial Control.

군 UL File No. E82292
(18) CSA File No. LR48471
(VOEE VDE File No. 10080
\triangle TUV File No. R75081

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OJ/OJE-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	40.0	125	3.75	0.25
6	33.3	180	4.50	0.30
9	22.5	400	6.75	0.45
12	16.7	720	9.00	0.60
24	8.6	2,800	18.00	1.20
OJ/OJE-D and -H Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	91.0	55	3.50	0.25
6	75.0	80	4.20	0.30
9	50.0	180	6.30	0.45
12	37.5	320	8.40	0.60
24	18.8	1,280	16.80	1.20
48	9.4	5,100	33.60	2.40

Operate Data

Must Operate Voltage:
OJ/OJE -L: 75\% of nominal voltage or less.
OJ/OJE -D and -H: 70\% of nominal voltage or less.
Must Release Voltage:
OJ/OJE -L: 5\% of nominal voltage or more.
OJ/OJE -D and -H: 5% of nominal voltage or more.
Operate Time: OJ/OJE -L: 15 ms max.
OJ/OJE -D and -H: 10 ms max.
Release Time: 4 ms max.

Environmental Data

Temperature Range:
Operating: OJ/OJE-L: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
OJ/OJE-D and $-\mathrm{H}:-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OJ/OJE-SS: Vented (Flux-tight), plastic cover.
OJ/OJE-SH: Sealed, plastic case.
Weight: $0.32 \mathrm{oz}(9 \mathrm{~g})$ approximately.

Ordering Information

* Not suitable for immersion cleaning processes.
** For higher contact rating with sensitve coil, add suffix " H " to the end of the part number as indicated in step 7 of Ordering Information.

Our authorized distributors are more likely to stock the following items for immediate delivery.
OJ -SH-105HM ,095
OJ E-SH-105DM,095
OJ E-SH-112HM,095
OJ E-SH-124LMH,095
OJ -SH-112LMH,095
OJ E-SH-112DM,095
OJ E-SH-105LMH,095
OJ -SH-124LMH,095
OJ E-SH-124DM,095
OJ E-SH-112LMH,095

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Coil Temperature Rise

Operate Time

Life Expectancy

Dimensions are in inches over	Specifications and availability
(millimeters) unless otherw ise	subject to change.
specified.	

PCD/PCDF series

15 Amp Low Profile Power PC Board Relay

Appliances, HVAC, Office Machines

T UL File No. E82292
(18) CSA File No. LR48471

- TUV File No. R9751117

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Low profile (10mm), 15 Amp switching capacity.
- 1 Form A contact arrangement.
- Sensitive 200 mW coil (250 mW on 48 VDC coil).
- Immersion cleanable, sealed version available.
- Quick connect terminals available (PCDF).

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO).
Material: AgSnO.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 15A @ 125VAC resistive (PCDF only, load must be carried through QC terminals to achieve this rating),
10A @ 250VAC resistive,
10A @ 24VDC resistive.
5A @ 125VAC inductive ($\cos \varnothing=0.4, L / R=7 \mathrm{msec}$),
$5 \mathrm{~A} @ 24 \mathrm{VDC}$ inductive ($\cos \varnothing=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{msec}$).
Max. Switched Voltage: AC: 250V.

$$
\text { DC: } 24 \mathrm{~V} \text {. }
$$

Max. Switched Current: 15A.
Max. Switched Power: 1,800VA, 240W.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 2,500VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 5,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 200 mW except 48VDC coil (250 mW).
Coil Temperature Rise: $20^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

PCD \&PCDF					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
5	40.0	125	3.75	0.50	
6	33.3	180	4.50	0.60	
9	22.5	400	6.75	0.90	
12	17.0	720	9.00	1.20	
24	8.6	2,880	18.00	2.40	
48	5.2	9,200	36.00	4.80	

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: PCD: Printed circuit terminals.
PCDF: Printed circuit terminals and quick connect terminals.
Enclosure (94V-0 Flammability Ratings): Sealed plastic case.
Weight: PCD: $0.31 \mathrm{oz}(9 \mathrm{~g})$ approximately.
PCDF: 0.35 oz (10 g) approximately.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

PC Board Layouts (Bottom View)

Reference Data

Ambient Temp. $\left({ }^{\circ} \mathrm{C}\right)$

Life Expectancy

Note: This data is based on the max. allowabl
temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Features

- Small size for high density PC board mounting.
- 1 Form A and 1 Form C contact arrangements.
- Creepage/clearance to VDE 0435 and VDE 0700.
$\cdot 2,500 \mathrm{Vms}$ dielectric strength between contact and coil.
- UL Class F approved insulation system.
- Low-complexity design for enhanced reliability.
- High-temperature version available.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver nickel 90/10.
Max. Switching Rate: 6,000 ops./min. (minimum load). 600 ops./min. (rated load).
Expected Mechanical Life: 5 million operations.
Expected Electrical Life :
PB1 \&PB3 @85C: 100,000 operations @ 6A, 240VAC (NO). 25,000 operations @ 10A, 240VAC (NO). 25,000 operations @ 10A/3A, 240VAC (NO/NC). 1,000 operations @ 10A/10A, 240VAC (NO/NC)
PBH @ $105^{\circ} \mathrm{C}$: 250,000 operations @ 2A, 240VAC (NO). 150,000 operations @ 5A, 240VAC (NO). 100,000 operations @ 6A/6A, 240VAC (NO/NC).
Maximum Contact Rating: PB1 \&PB3: NO (Make) 10A / NC (Break) 3A.
PBH: 6A (mtg. space 3mm); 4A (dense pack).
Maximum Switching Voltage: PB1 \&PB3: 250VAC, 100 VDC.
PBH: 250VAC
Maximum Make Current (AII): 15A (max. 4 sec at 10\% duty cycle.) Maximum Breaking Capacity:
PB1 \&PB3: 750VA (NC contact)/2,500VA (NO contact).
PBH: 1,500VA.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $2,500 \mathrm{Vrms}$.
Surge Voltage Resistance Between Coil and Contacts: 4,000Vrms.
Clearance / Creeepage Distance: $3 \mathrm{~mm} / 4 \mathrm{~mm}$.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{8} ohms.
Tracking Resistance of Relay Base: PB1: CTI 250
PB3: CTI 300
Insulation to VDE 0110b (2/79): Category C / Reference Voltage 250.

Coil Data @ 20 ${ }^{\circ} \mathrm{C}$

Voltage: 5, 6, 9, 12, 24 and 36VDC.
Nominal Coil Power: 360 mW .
Operate Coil Power: 200 mW .

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance $\pm \mathbf{1 0 \%}$ (ohms)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Coil Current (mA)
5	70	3.75	0.5	72.0
6	100	4.5	0.6	60.0
9	225	6.75	0.9	40.0
12	400	9.0	1.2	30.0
24	1,600	18.0	2.4	15.0
36	3,600	27.0	3.6	60.0

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$
Operate/Release Time: 20 ms , max. (excluding bounce).
Bounce Time: 15 ms , max.
Operate Coil Power: 200 mW .

PB series

10 Amp, PC Board Miniature Relay

c Ts $_{\text {us }}$ File E214025

(WOE File 4570-4940-0042
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range (Operating): PB1 or PB3: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

PBH: $-20^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.

Vibration: 30 to $400 \mathrm{~Hz} ., 4 \mathrm{~g}$'s, min.
Shock: Mechanical (Destruction): 30g min.
Protection Category: IP 54

Mechanical Data

Termination: Printed circuit board
Enclosure: Splash-resistant (unsealed) plastic case (UL Flammability
Class V-0).
Weight: 0.2 oz . (5.4g).
Contact Life (PB1 \& PB3)

Max. DC Load Breaking Capacity (PB1 \& PB3)

Coil Operating Range (PB1 \& PB3)

Ordering Information

1. Basic Series:
$\mathrm{PB}=\mathrm{M}$ iniature, 10A PC board relay.
2. Version:

1 = Standard version, CTI $250 \quad 3$ = High CTI version, CTI $300 \quad H=$ High Temerature $\left(105^{\circ} \mathrm{C}\right)$ version, CTI 250
3. Contact Arrangement:
$1=1$ Form C (SPDT) $\quad 3=1$ Form A (SPST-NO)
4. Contact Material:
$4=A g N i$ 90/10

4. Coil Input:
$005=5 \mathrm{VDC}$

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

Outline Dimensions

Wiring Diagram (Bottom View)

Suggested PC Board Layout (Bottom View)

Features

- 1 Form A (SPST-NO), 1 Form B (SPST-NC) and1 Form C (SPDT).
- 8 amp rated current.
- Standard (non-latching) or latching types.
- Sensitive model requires 180 mW to pull-in.
- 2,000Vrms and 4,000Vrms contact-to-coil dielectric versions.
- Washable (sealed) plastic case.

Contact Data @ 70․

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT), single contact.
Material: Silvernickel 0.15 .
Expected Mechanical Life: 20 million operations.
Ratings:
Current: 7A, standard and latching types; 5A, sensitive type.
Voltage: 250VAC.
Power (breaking): 1,750 VA standard and latching; 1,250 VA, sensitive.
Voltage (breaking): 250VAC.
Current (making, max. 4s at 10\% duty cycle): 12A.
Standard Type
7 amp resistive, 24 VDC or $250 \mathrm{VAC}, 50,000$ ops
5 amp resistive, 250VAC, 150,000 ops.
Latching Type
7 amp resistive, 24 VDC or $250 \mathrm{VAC}, 50,000$ ops.
5 amp resistive, 250VAC, 100,000 ops.
Sensitive Type
5 amp resistive, 250VAC, 100,000 ops.
5 amp resistive, 24VDC, 30,000 ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $2,000 \mathrm{Vrms}$ for standard dielectric version. $4,000 \mathrm{Vrms}$ for high dielectric version.
Creepage/Clearance: $2.5 / 2.5 \mathrm{~mm}$ for standard dielectric version. $3.5 / 3.5 \mathrm{~mm}$ for high dielectric version.
Surge Resistance Between Coil and Contacts: 5,000Vrms.

Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Nominal Coil Power: 330-800mW, dependent upon model.

Nominal Voltage VDC	DC Resistance in Ohms $\pm 10 \%$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
Standard, non-latching models					
6	80	4.2	0.6	10.5	75.0
12	320	8.4	12	211	37.5
24	1,280	16.8	2.4	42.2	18.8
48	3,800	33.6	4.8	72.4	5.0
Sensitive, non-latching models					
6	110	4.4	0.6	12.6	54.6
12	440	8.8	12	25.3	27.3
24	1,780	17.5	2.4	50.6	13.5
48	4,000	35.0	4.8	76.3	12.0
Nominal Voltage VDC	DC Resistance in Ohms $\pm 10 \%$	Must Operate Voltage VDC	Reset Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
Latching models					
6	33	4.7	15	6.2	1818
12	119	9.4	3.0	12.4	100.8
24	475	18.7	6.0	24.7	50.5
48	1,750	37.4	12.0	49.4	27.4

V23148 (U/UB) series
 7 Amp, Latching or Non-latching, Miniature Printed Circuit Board Relay

c90s File E214025
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time: 6 ms , standard model; 7 ms , sensitive model; 5 ms , latching model.
Release (Reset) Time: 3 ms .
Bounce Time (N/O contact / N/C contact) : $2 \mathrm{~ms} / 10 \mathrm{~ms}$.
Switching Rate: 180,000 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration: (10 to 55 Hz.) 10g.
Shock (functional): 10 g at 11 ms , half-sine.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Sealed (RTIII) plastic case.
Weight: $0.34 \mathrm{oz} .(9.5 \mathrm{~g})$ approximately.

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Typical Part Number \downarrow V23148	-A	0	0	03	-C	101
1. Basic Series: V23148 = U/UB miniature printed circuit board relay.						
2. Version A = Non-latching. B = Latching.						
3. Dielectric Strength, Coil-to-Contacts: $0=2,000 \mathrm{Vms}$. $1=4,000 \mathrm{Vrms}$						
4. Coil Sensitivity: $0=$ Standard.						
$\begin{aligned} & \text { 5. Coil Voltage: } \\ & 03=6 \mathrm{VDC}\end{aligned} \quad 05=12 \mathrm{VDC} \quad 07=24 \mathrm{VDC} \quad 08=48 \mathrm{VDC}$						
6. Contact Arrangement: $A=1$ Form C (SPDT)						
7. Contact Material: 101 = Silver-nickel 0.15						

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagrams (Bottom Views)

1 Form C

1 Form A

1 Form B

T73 series

Features

- 10 amp switching capacity.
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ coil insulation system standard.
- 1 Form A and 1 Form C contact arrangements.
- Ideal for domestic appliances, HVAC and security.
- Resists high temperature and various chemical solutions.
- Immersion cleanable, plastic sealed case available.

Contact Data @ 20응

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Max. Switching Rate: 240 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations.
Minimum Load: 10mA @ 5VDC
Initial Contact Resistance: 100 milliohms max. @ 100mA, 6VDC.
Contact Ratings @ $20^{\circ} \mathrm{C}$ with relay properly vented. Remove vent nib after soldering and cleaning.

Contact Arrang.	Typical Ratings	Type	Operations
$1 \& 5$	$1 / 3 \mathrm{HP}$ NO @ 240VAC	Motor	30,000
	10A NO @ 120VAC	Resistive	100,000
	6A NO @ 120VAC	Resistive	100,000
	6A NO @ 24VDC	Resistive	100,000
	10A/5A @ 120VAC	Resistive	100,000
	1/4HP NO @ 120VAC	Motor	

Consult factory for other ratings.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $2,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{8} ohms min. @ 500VDC. Ag contact rating.

Low Profile, 10 Amp
 Printed Circuit Board Relay

미J File E29244

File LR48471
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.
Nominal Power: 450 milliwatts.
660 milliwatts for 48VDC coil.
Coil Temperature Rise: 35C max, at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.
Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance (Ohms) $+\mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
3	20	1.95	0.15
5	56	3.25	0.25
6	80	3.90	0.30
9	180	5.85	0.45
12	320	7.80	0.60
18	720	11.7	0.90
24	1,150	15.6	1.20
48	3,500	31.2	2.40

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

Operate Time: 10 ms (excluding bounce).
Release Time: 5 ms (excluding bounce).

Environmental Data

Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: 100 g min.
Operational: 10 g min .
Operating Humidity: 45 to 85% RH.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure ($94 \mathrm{~V}-0$ Flammability Ratings):
Weight: 0.42 oz . (12g).

Figure 1 - Coil Temperature Rise

Operate Time

Life Expectancy

Note: Graphical data should not be used as a substitute for specific application verification. To be used for estimates only.

Ordering Information

* Not suitable for immersion cleaning process.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

T73S5D15-05

T73S5D15-12
T73S5D15-24

Outline Dimensions

Wiring Diagrams (Bottom Views)
1 Form A

Suggested PC Board Layouts (Bottom Views) 1 Form A

1 Form C

Features

- Low profile miniature power relay
- High density available on PC board due to small size.
- 450 mW coil available.
- Meets 2 kV dielectric between coil and contacts.
- Meets 5 kV surge voltage.
- Immersion cleanable, sealed version available.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), 1 Form C (SPDT).
Material: Ag Alloy.
Max. Switching Rate: 300 ops./min. (no load).
$30 \mathrm{ops} . / \mathrm{min}$. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: $100 \mathrm{~mA} @ 5 \mathrm{VDC}$.
Initial Contact Resistance: 100 milliohms @1A, 6VDC.

Contact Ratings

Ratings: 10A @ 120VAC resistive,
10A @ 28 VDC resistive,
1/4 HP @ 120VAC.
3A @120VAC inductive ($\cos \varnothing=0.4$),
3A @ 28VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
Max. Switched Voltage: AC: 240V.
DC: 110 V .
Max. Switched Current: 10A.
Max. Switched Power: 1,200VA, 300W.

Initial Dielectric Strength

Between Open Contacts: $750 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $2,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: $5,000 \mathrm{~V}$ ($1.2 / 50 \mu \mathrm{H}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 450 mW except 48 VDC coil (660 mW)
Coil Temperature Rise: $60^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

OUDH series

10 Amp Miniature, Sealed PC Board Relay

Appliances, HVAC, Office Machines.

긴 UL File No. E58304

(\$18 CSA File No. LR48471

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $20^{\circ} \mathrm{C}$

OUDH				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	89.6	56	3.75	0.50
6	75.0	80	4.50	0.60
9	50.0	180	6.75	0.90
12	37.5	320	9.00	1.20
24	20.9	1,280	18.00	2.40
48	13.7	3,500	36.00	4.80

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10% of nominal voltage or more.
Operate Time: 10 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:

Operating: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure ($94 \mathrm{~V}-0$ Flammability Ratings):
OUDH-SS: Vented (Flux-tight), plastic cover.
OUDH-SH: Sealed, plastic case.
Weight: $0.35 \mathrm{oz}(10 \mathrm{~g})$ approximately.

Ordering Information

Typical Part Number	OUDH	-SH	-1	12	D	N	,000
1. Basic Series: OUDH $=$ Miniature, sealed PC board relay.							
2. Enclosure: SS = Vented (Flux-tight)* plastic cover. SH = Sealed, plastic case.							
3. Termination: 1 = 1 pole							
4. Coil Voltage: $\begin{aligned} & 05=5 \mathrm{VDC} \\ & 06=6 \mathrm{VDC} \end{aligned} \quad 12=12 \mathrm{VDC} \quad 09=9 \mathrm{VDC} \quad 48=48 \mathrm{VDC} \quad 24=24 \mathrm{VDC}$							
5. Coil Input: D = Standard							
6. Contact Arrangement: Blank $=1$ Form C, SPDT $\mathrm{M}=1$ Form $\mathrm{A}, \mathrm{SPST}-\mathrm{NO}$							
7. Suffix: ,000 = Standard model Other Suffix = Custom model							

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Features

- Low cost, reduced height, 10A relay.
- 1 Form A and 1 Form C contact arrangement.
- Plastic materials employ UL 94V-0 flammability.
- UL class F $\left(155^{\circ} \mathrm{C}\right)$ coil standard.
- Immersion cleanable, sealed package.
- Applications include appliance, HVAC, security system, garage opener light, emergency lighting.
- European "white goods" version available by special order.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Max. Switching Rate: Mechanical: 300 operations/min.
Electrical: 30 operations $/ \mathrm{min}$.
Expected Mechanical Life: 10 million operations min. (no load).
Expected Electrical Life: 100,000 operations min. (at rated coil voltage).
Minimum Contact Load: 10mA @ 5VDC.
Initial Contact Resistance: 100 milliohms, max. @ 1A, 6VDC.

UL Contact Ratings @ $\mathbf{2 0}^{\circ} \mathrm{C}$ with relay properly vented. Remove vent nib after soldering and cleaning.

Contact Arrang.	UL/CSA Ratings	Type	Operations
$1 \& 5$	$1 / 4 \mathrm{HP}$ @ 240VAC	Motor	$1,000^{*}$
	1/3HP @ 120VAC	Motor	6,000
	$1 / 3 \mathrm{HP}$ NO @ 120VAC	Motor	6,000
	$1 / 3 \mathrm{HP}$ NO @ 240VAC	Motor	$6,000^{* *}$
	5A/5A @ 240VAC	Resistive	$6,000^{*}$
	10A NO @ 240VAC	Resistive	6,000
	10A/5A @ 240VAC	Gen. Purpose	6,000
	1A NC @ 240VAC	Resistive	6,000
	$1 / 6 \mathrm{HP}$ NC @ 240VAC	Motor	$6,000^{* *}$
	$1 / 4 \mathrm{HP}$ NO @ 240VAC	Motor	$6,000^{* *}$
	1/10HP NO @ 120VAC	Motor	$6,000^{* *}$
	10A/5A @ 240VAC	Resistive	$6,000^{* *}$
	TV-3 NO @ 120VAC	Tungsten	25,000
	6A NC @ 240VAC	Resistive	$25,000^{* *}$
	10A/5A @ 240VAC	Resistive	30,000
	10A/5A @ 28VDC	Resistive	30,000
	10A NO @ 240VAC	Resistive	$30,000^{* *}$
	10A NO @ 240VAC	Gen. Purpose	$30,000^{* *}$
	34.8LRA/6FLA NO @ 120VAC	Motor	100,000
	10A/5A @ 120VAC	Resistive	100,000
	5A/5A @ 240VAC	Resistive	100,000
	10A/5A @ 28VDC	Resistive	100,000

*Denotes test at $70^{\circ} \mathrm{C}$ ambient temperature.
${ }^{* *}$ Denotes test at $85^{\circ} \mathrm{C}$ ambient temperature.

Initial Dielectric Strength

Between Open Contacts: 750VAC, $50 / 60 \mathrm{~Hz}$. (1 min .)
Between Coil and Contacts: $2,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (1 min.)

T7N series

10 Amp Miniature PC Board Relay

뮥 File E22575
(18) File LR48471

0

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{8} ohms, min. @ 500VDC.

Coil Data

Voltage: 3 through 48VDC.
Nom. Power: 360 mW .
Coil Temp. Rise: See Figure 1.
Max. Coil Power: 150\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $20^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance $\mathbf{1 0 \%}$ (Ohms)	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
3	25	2.1	.15
5	70	3.5	.25
6	100	4.2	.30
9	225	6.3	.45
12	400	8.4	.60
18	900	12.6	.90
24	1,600	16.8	1.20
36	3,600	25.2	1.80
48	6,400	33.6	2.40

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$
Operate Time: 10 ms , max. (excluding bounce).
Release Time: 5 ms , max. (excluding bounce).

Environmental Data

Temperature Range:

Storage: $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. (no water condensation and no water drop).
Vibration: $10-55 \mathrm{~Hz} ., .063 "$ (1.6 mm) double amplitude;
$10-55 \mathrm{~Hz} ., .079^{\prime \prime}(2.0 \mathrm{~mm})$ double amplitude.
Shock: Mechanical: 100 g minimum.
Operational: 10 g minimum.
Operating Humidity: 45 to 85% RH.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (UL 94V-O Flammability Ratings):
T7NS: Immersion cleanable case with knock-off nib for ventilation.
T7NV: Vented, flux-tight plastic cover.
Weight: 0.38 oz . (11g) approximately.

Figure 1 - Coil Temperature Rise

Operate Time

Life Expectancy

Note: Graphical data should not be used as a substitute for specific application verification. To be used for estimates only.

Ordering Information

* Not suitable for immersion cleaning.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
T7NS1D1-12 T7NS5D1-05 T7NS5D1-24
T7NS1D1-24 T7NS5D1-12 T7NS5D1-48

Outline Dimensions

Tolerance (unless otherwise noted): 3 decimal: $\pm .010$ ($\pm .254$); 2 decimal: $\pm .015$ ($\pm .381$).

Wiring Diagram (Bottom View)

Suggested PC Board Layout (Bottom View)

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

PCE series

Features

- Small, low profile package, 10 Amp switching capacity.
- 1 Form A and 1 Form C contact arrangements.
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ insulation system standard
- Immersion cleanable, sealed version available.
- Applications include appliance, HVAC, security system, garage opener control, emergency lighting.

Contact Data @ 20

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Ag Alloy, AgSnO.
Max. Switching Rate: $300 \mathrm{ops} . / \mathrm{min}$. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 10A @ 250VAC resistive, 10A @ 120VAC resistive, 10A @ 28VDC resistive.
$3 \mathrm{~A} @ 250 \mathrm{VAC}$ inductive $(\cos \varnothing=0.4)$,
3A @ 120VAC inductive ($\cos \varnothing=0.4$),
3A @ 28VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
Max. Switched Voltage: AC: 250V.
DC: 28 V .
Max. Switched Current: 10A.
Max. Switched Power: 2,500VA, 280W.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 2,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 4,000V (1.2 / 50 1 s).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

10 Amp Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines

只 UL File No. E82292
(6A CSA File No. LR48471
VOE VDE File No. 6175
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Voltage: 6 to 48VDC.
Nominal Power: 360 mW
Coil Temperature Rise: $35^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.
Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

PCE				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
6	60	100	4.50	0.30
9	40	225	6.75	0.45
12	30	400	9.00	0.60
24	15	1,600	18.00	1.20
48	7	6,400	36.00	2.40

Operate Data
Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 10 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately). Operational: 100m/s² (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
PCE: Sealed plastic case with knock-off nib for ventilation
Weight: $0.32 \mathrm{oz}(11 \mathrm{~g})$ approximately.

Reference Data

Coil Temperature Rise

Life Expectancy

Note: This data is based on the max. allowable
temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

```
PCE-112D1MH,000
PCE-124D1MH,000
\[
\begin{aligned}
& \text { PCE-112D1H,000 } \\
& \text { PCE-124D1H,000 }
\end{aligned}
\]
```


Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

Features

- Compact relay with 1 Form A and 1 Form C contact arrangements.
- 10 Amp switching capacity.
- Flux-tight or sealed version available.
- Applications include appliance, HVAC, security system, garage opener control, emergency lighting.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: AgCdO.
Max. Switching Rate: 300 ops./min. (no load).
20 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations at 10A @ 250VAC res. (NO). Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 10A/6A @ 250VAC resistive (NO/NC), 10A/6A @ 28VDC resistive (NO/NC),
15A @ 120VAC resistive (NO),
15A @ 28VDC resistive (NO),
10A @ 277VAC resistive (NO).
Max. Switched Voltage: AC: 277V.
DC: 30V.
Max. Switched Current: 15A.
Max. Switched Power: $2,770 \mathrm{VA}, 360 \mathrm{~W}$.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $1,500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 3,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data @ $20^{\circ} \mathrm{C}$

Voltage: 3 to 48VDC.

Nominal Power: 360 mW
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

ORWH series

10 Amp Miniature Power PC Board Relay

${ }_{c}$ Nins $_{\text {us }}$ File No. E82292

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

ORWH				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
3	120.0	25	2.1	0.3
5	71.4	70	3.5	0.5
6	60.0	100	4.2	0.6
9	44.4	225	6.3	0.9
12	40.0	400	8.4	1.2
24	15.0	1,600	16.8	2.4
48	7.5	6,400	33.6	4.8

Operate Data

Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 10 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately). Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
ORWH-SS: Vented (flux-tight) cover.
ORWH-SH: Sealed plastic case. Note: Vent nib should be removed after soldering and cleaning.
Weight: $0.33 \mathrm{oz}(9.5 \mathrm{~g})$ approximately.

Ordering Information

* Not suitable for immersion cleaning

Ourauthorized distributors aremorelikelyto maintainthefollowingitems instockforimmediatedelivery.

ORWH-SH-112DM,N000	ORWH-SH-109D,N000	ORWH-SS-112DM,N000	ORWH-SS-106D,N000	ORWH-SS-148D,N000
ORWH-SH-124DM,N000	ORWH-SH-112D,N000	ORWH-SS-124DM,N000	ORWH-SS-109D,N000	
ORWH-SH-105D,N000	ORWH-SH-124D,N000	ORWH-SS-148DM,N000	ORWH-SS-112D,N000	
ORWH-SH-106D,N000	ORWH-SH-148D,N000	ORWH-SS-105D,N000	ORWH-SS-124D,N000	

Outline Dimensions

TERMINAL DIMENSIONS:
COIL: 0.024 (0.6) DIA.
LOAD: $0.12 \times 0.35(0.3 \times 0.9)$

Note: Only necessary terminals are present on 1 Form A models.

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

T7C series

Features

- Up to 12 amp switching capacity.
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ coil insulation system.
- 1 Form A and 1 Form C contact arrangements.
- Ideal for domestic appliances, HVAC and security.
- Resists high temperature and various chemical solutions.

Contact Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver-cadmium oxide or silver.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations.
Minimum Load: 10mA @ 5VDC
Initial Contact Resistance: Ag: 100 milliohms max. @ 100mA, 6VDC. AgCdO: 100 milliohms max. @ 1A, 6VDC.

Silver Cadmium Oxide Contact Ratings @ $20^{\circ} \mathrm{C}$ with relay properly vented. Remove vent nib after soldering and cleaning.

Contact Arrang.	UL/CSA Ratings	Type	Operations
$1 \& 5$	1/3HP NO @ 120VAC	Motor	$6,000^{* *}$
	TV-2 NO @ 120VAC	Tungsten	$25,000^{* *}$
	5.4LRA/O.9FLA NO @ 240VAC	M otor	$30,000^{* * *}$
	10LRA/1.5FLA @ 120VAC	Motor	$30,000^{* * *}$
	12A NO @ 120VAC	Resistive/GP	$100,000^{*}$
	$34.8 L R A / 6 F L A ~ N O ~ @ ~ 120 V A C ~$	Motor	$100,000^{* *}$
	10A/5A @ 240VAC	Resistive/GP	$100,000^{* *}$
	10A/5A @ 28VDC	Resistive	$100,000^{* *}$
	240VA, 240VAC	Pilot Duty	$100,000^{* *}$
	4LRA/4FLA NO @ 120VAC	Motor	$100,000^{* * * *}$
	4LRA/2FLA NC @ 120VAC	Motor	$100,000^{* * * *}$
	6LRA/6FLA NO @ 120VAC	Motor	$100,000^{* * *}$
	7A @ 277VAC	Resistive/GP	100,000
	10LRA/2.5FLA NO @ 277VAC	Motor	100,000

Consult factory for other ratings.
*Denotes test at $60^{\circ} \mathrm{C}$ ambient temperature
${ }^{* *}$ Denotes test at $70^{\circ} \mathrm{C}$ ambient temperature.
***Denotes test at $85^{\circ} \mathrm{C}$ ambient temperature.
****Denotes test at $105^{\circ} \mathrm{C}$ ambient temperature.

Silver Contact Ratings @ $20^{\circ} \mathrm{C}$ with relay properly vented.
Remove vent nib after soldering and cleaning.

Contact Arrang.	Ratings	Type	Operations
1\& 5	5A @ 120VAC	Resistive	6,000
	5A @ 28VDC	Resistive	6,000

5-12 Amp Miniature Power PC Board Relay

听 File E22575

(6B) File LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength
Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 1,500VAC $50 / 60 \mathrm{~Hz}$. (1 minute)

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{8} ohms min. @ 500VDC.
Coil Data @ 20응
Voltage: 3 to 48VDC.
Nominal Power: 360 milliwatts. 510 milliwatts for 48VDC coil.
Coil Temperature Rise: 35C max, at rated coil voltage.
Max. Coil Voltage: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance (Ohms) +10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
3	25	2.25	0.15
5	70	3.50	0.25
6	100	4.50	0.30
9	225	6.75	0.45
12	400	9.00	0.60
24	1,600	18.00	1.20
48	4,500	36.00	2.40

Operate Data @ $20^{\circ} \mathrm{C}$

Operate Time: 10 ms (excluding bounce).
Release Time: 5 ms (excluding bounce).

Environmental Data

Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 100 g min.
Operational: 10 g min .
Operating Humidity: 45 to 85% RH.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
T7CS: Immersion cleanable with knock-off nib.
T7CV: Vented, flux-tight, plastic cover with knock-off nib.
Weight: 0.42 oz . (12g).

Figure 1 - Coil Temperature Rise

Operate Time

Life Expectancy

Note: Graphical data should not be used as a substitute for specific application verification. To be used for estimates only. Graphical data applicable to model with silver cadmium oxide contacts.

Ordering Information

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

T7CV5D-05	T7CV5D-12	T7CS5D-05	T7CS5D-12
T7CV5D-06	T7CV5D-24	T7CS5D-06	T7CS5D-24

Outline Dimensions

Wiring Diagrams (Bottom Views)

1 Form A

1 Form C

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

Suggested PC Board Layouts (Bottom Views)

1 Form A

1 Form C

Hold-Down Spring

$\mathbf{2 0 C 4 3 0}$ spring is designed to secure T7C relay in 27E1064 socket.

Dimensions are show n for reference purposes only.	Dimensions are in inches over (millimeters) unless otherw ise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover

Features

- Small package, 12 Amp switching capcity.
- 1 Form A and 1 Form C contact arrangements.
- Immersion cleanable, sealed version available.
- Applications include appliance, HVAC, security system, garage opener control, emergency lighting.

Contact Data @ 20ㅇ

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Ag Alloy.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100 mA @ 5 VDC .
Initial Contact Resistance: 100 milliohms @1A, 6VDC.

Contact Ratings

Ratings: 12A @120VAC resistive, 10A @ 240 VAC resistive, 10A @ 28VDC resistive.

4A @120VAC inductive $(\cos \varnothing=0.4)$,
4A @ 28VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$)
Max. Switched Voltage: AC: 240V.
DC: 28 V .
Max. Switched Current: 12A.
Max. Switched Power: 2,400VA, 300W.

Initial Dielectric Strength

Between Open Contacts: $750 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $1,500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 3,000V (1.2 / 50 $\mathrm{\mu s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

SRUDH series

12 Amp Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines

只 UL File No. E82292
(818 CSA File No. LR48471
\triangle TUV File No. R60271
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Voltage: 6 to 48VDC.
Nominal Power: 360 mW except 48VDC coil (510 mW)
Coil Temperature Rise: $35^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130% of nominal.
Duty Cycle: Continuous.
Coil Data @ $20^{\circ} \mathrm{C}$

SRUDH					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
	60	100	4.50	0.60	
6	40	225	6.75	0.90	
9	30	400	9.00	1.20	
12	15	1,600	18.00	2.40	
24	10	4,500	36.00	4.80	
48					

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately). Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure ($94 \mathrm{~V}-0$ Flammability Ratings):
SRUDH-SS: Vented (Flux-tight) plastic cover
SRUDH-SH: Sealed plastic case
Weight: $0.42 \mathrm{oz}(12 \mathrm{~g})$ approximately.

Reference Data

Note: Rise data is based on the max. allowable temp. for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Ordering Information

Typical Part Number ${ }^{\text {l }}$	SRUDH	-SS	-1	12	D	M	1	,000
1. Basic Series: SRUDH = M iniature Power PC board relay.								
2. Enclosure: SS = Vent (Flux-tight)* plastic cover. SH = Sealed, plastic case.								
3. Termination: 1 = 1 pole								
4. Coil Voltage: $\begin{array}{lll}06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} & 48=48 \mathrm{VDC} \\ 09=9 \mathrm{VDC} & 24=24 \mathrm{VDC} & \end{array}$								
5. Coil Input: D = Standard								
6. Contact Arrangement: Blank = 1 Form C, SPDT M $=1$ Form A, SPST-NO								
7. Contact Material: 1 = AgCdO								
8. Suffix: , $000=$ Standard model \quad Other Suffix = Custom model								

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
SRUDH-SH-112D1,000 SRUDH-SH-112DM 1,000

SRUDH-SH-124D1,000 SRUDH-SH-124DM 1,000

Outline Dimensions

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Hold-Down Spring

$\mathbf{2 0 C 4 3 0}$ spring is designed to secure SRUDH relay in 27E1064 socket.

\square

SRUUH series

15 Amp Miniature Power PC Board Relay

cTs us UL File No. E82292
 - TUV File No. R60271

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- 15 Amp switching capacity.
- 1 Form A and 1 Form C contact arrangements.
- Immersion cleanable, sealed version available.
- Applications include appliance, HVAC, security system, garage opener control, emergency lighting.

Contact Data @ 20응

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver cadmium oxide.
Max. Switching Rate: 300 ops./min. (no load).
20 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load, relay vented).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 15A @120VAC resistive, 10A @ 240VAC resistive, 10A @ 28VDC resistive.
Max. Switched Voltage: AC: 240V.
DC: 28V.

Max. Switched Current: 15A.
Max. Switched Power: 2,400VA, 300W.
Note: Sealed relays should be vented after soldering and cleaning in order to achieve listed ratings.

Initial Dielectric Strength

Between Open Contacts: 750VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $1,500 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 3,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 100M ohms min. @ 500VDC.

Coil Data

Voltage: 3 to 48VDC.
Nominal Power: 360 mW except 48VDC coil (510mW).
Coil Temperature Rise: $60^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

SRUUH					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
3	120	25	2.25	0.30	
6	60	100	4.50	0.60	
9	40	225	6.75	0.90	
12	30	400	9.00	1.20	
24	15	1,600	18.00	2.40	
48	10	4,500	36.00	4.80	

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: 100m/s² (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit temminals.
Enclosure (94V-0 Flammability Ratings):
SRUUH-SS: Vented (Flux-tight) plastic cover
SRUUH-SH: Sealed plastic case
Weight: $0.42 \mathrm{oz}(12 \mathrm{~g})$ approximately.

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

Outline Dimensions

Socket

27E1064 socket is rated 10A @ 300VAC. UL Recognized for US and Canada. Designed to fit same suggested board layout as relay.

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Note: Only necessary terminals are present on 1 Form A (SPST-NO) models.

Hold-Down Spring

$\mathbf{2 0 C 4 3 0}$ spring is designed to secure SRUUH relay in 27E1064 socket.

Features

- SPST through DPDT contact arrangements.
- Immersion cleanable and flux tight versions available.
- VDE 10mm spacing, 5 kV dielectric, coil to contacts.
- UL Class $\mathrm{F}\left(155^{\circ} \mathrm{C}\right)$ coil insulation system.
- Conforms to UL 508, 1873, 353 and 1950.
- Low profile; 15.7 mm height.
- Sensitive coil; 400 mW .
- Withstand surge voltage of $10,000 \mathrm{~V}$.
- Potter \& Brumfield or Schrack brand.

Contact Data

Arrangements: 1 Form A (SPST-NO) Wiring Diagram Code 1, 2,3.
2 Form A (DPST-NO) Wiring Diagram Code 5.
1 Form C (SPDT) Wiring Diagram Code 1, 2, 3. 2 Form C (DPDT) Wiring Diagram Code 5.
Material: Silver-nickel 90/10.
Minimum Load: 12V/100mA.
Expected Mechanical Life: 10 million operations.
Initial Contact Resistance: 100 milliohms max @ 1A 12VDC.
Designed to meet UL/CSA/VDE ratings with relay properly vented. Remove vent nib after soldering and cleaning.

UL/CSA/VDE Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Code	NO/NC Load	Type	Operations
1	10A/10A @ 277VAC	Resistive/GP	100K
	10A/10A @ 30VDC	Resistive	100K
	12A/12A @ 250VAC	Resistive/GP	30K
	12A/12A @ 30VDC	Resistive	30K
	3/4 HP @ 480VAC*	M otor	6K
	1/2 HP @ 240VAC*	M otor	6K
	1/3 HP @ 120VAC*	M otor	6K
	48 LRA/10 FLA @ 240VAC*	M otor	30K
	TV-3 @ 120VAC*	Tungsten	25K
	A300, 720VA @ 240VAC*	Pilot Duty	30K
3	16A/16A @ 250VAC	Resistive/GP	50K
	20A/20A @ 277VAC	Resistive/GP	30K
	20A/20A @ 24VDC	Resistive	30K
	16A/16A @ 30VDC	Resistive	30K
	1 HP @ 480VAC*	M otor	6K
	1 HP @ 240VAC*	M otor	6K
	1/2 HP @ 120VAC*	M otor	6K
	60 LRA/10 FLA @ 250VAC*	M otor	30K
	TV-5 @ 120VAC*	Tungsten	25K
	A300, 720VA @ 240VAC*	Pilot Duty	30K
	B300, 360VA @ 240VAC**	Pilot Duty	30K
5	8A/8A @ 277VAC	Resistive/GP	100K
	8A/8A @ 30VDC	Resistive	100K
	10A/10A @ 250VAC	Resistive/GP	30K
	10A/10A @ 30VDC	Resistive	30K
	1/2 HP @ 240VAC*	M otor	6K
	1/4 HP @ 120VAC*	M otor	6K
	34.8 LRA/6 FLA @ 120VAC*	M otor	30K
	17.4 LRA/5 FLA @ 240VAC*	Motor	30K
	B300, 360VA @ 240VAC*	Pilot Duty	30K
	TV-3 @120VAC*	Tungsten	25K

* Form A only
** Form B only

Initial Dielectric Strength

Between Open Contacts: $>1,000 \mathrm{VAC}$ (1 minute).
Between Poles (code 5): >2,500VAC (1 minute).
Between Coil and Contacts: $>5,000$ VAC (1 minute).
Surge Voltage (DC): $>10,000 \mathrm{VAC} \times(12 \times 50 \mu \mathrm{sec})$.

RT series (DC Coil)
 16 Amp PC Board
 Miniature Relay

${ }^{\text {c }} \mathbf{N H}_{\text {us }}$ File E22575
(18) File LR15734

ㄴor NR 6106
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 5 to 110 VDC .
Nominal Power @ $25^{\circ} \mathrm{C}$: 400 mW .
Duty Cycle: Continuous.
Initial Insulation Resistance: 10,000 megohms, min., at $25^{\circ} \mathrm{C}, 500 \mathrm{VDC}$ and 50% rel. humidity.
Coil Construction: UL Class F $\left(155^{\circ} \mathrm{C}\right)$.
Coil Data @ $25^{\circ} \mathrm{C}$

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Nominal Coil Current (mA) $-\mathbf{5 0 / 6 0 H z}$
005	62	3.5	80
006	90	4.2	66.7
009	202	6.3	44.4
012	360	8.4	33.3
018	810	12.6	22.2
024	1,440	16.8	16.7
048	5,760	33.6	8.3
060	9,000	42.0	8.0
110	30,250	77.0	4.3

Max. Ambient Temp. vs. Coil Voltage

A: Coil temperature $=$ Ambient temperature .
B: 110% of nominal coil voltage at rated contact load.

Operate Data @ $25^{\circ} \mathrm{C}$

Must Operate Voltage(DC): 70\% of nominal.
Must Release Voltage(DC): 10\% of nominal.
Operate Time (Excluding Bounce):
7 ms , typ., 15ms max. at nom. voltage.
Release Time (Excluding Bounce):
3 ms , typ., 6 ms max. at nom. voltage.

Environmental Data

Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ at rated current.
Vibration, Operational
N.O.:0.065" (165mm) max. excursions from $10-55 \mathrm{~Hz}$:
N.C.:0.032" (0.82mm) max. excursions from $10-55 \mathrm{~Hz}:$ with no contact opening $>10 \mu \mathrm{~s}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosures: RT 1, 2, 3, 4: Flux-tight, top vented, plastic case.
RT B, C, D, E: Immersion cleanable, plastic case.
Weight: 0.35 oz . (10 g) approximately.

Ordering Information (DC Coil Models)

Our authorized distributors are more likely to stock the following items for immediate delivery.						
RT114012F	RTB14012F	RTB34024F	RTD14005F	RTD34012F	RTE24005F	RTE44012F
RT114024F	RTB14024F	RT314012F	RTD14012F	RT424012F	RTE24012F	RTE44024F
RTB14005F	RTB34012F	RT314024F	RTD14024F	RT424024F	RTE24024F	

Outline Dimensions

PC Board Layouts (Bottom View)

Code 1

Code 2

Code 3 \& 5
Notes: 1 On single throw models, only necessary terminals are present.
2. With the recommended PCB hole sizes, a grid with a pattem from 0.0984 to 0.1 in (2.5-2.54 mm) can be used.

Wiring Diagrams (Bottom View)

1 Pole 12A
1 Pole 16A
2 Pole 8A

Codes 1 \& 2

Code 3

Code 5

Note: On single throw models, only necessary terminals are present.

Breaking Capacity

A: 16A Version.
B: 12A Version.

A: 1 Contact.
B: 2 Contacts in series.

Contact Life for Resistive AC Load (Typical)

Note: Data from 250 VAC @ $70^{\circ} \mathrm{C}$.

$R T$ series (AC Coil)
 16 Amp Miniature
 Printed Circuit Board Relay

${ }^{\text {c }} \mathbf{N u s}_{\text {us }}$ File E214025
\therefore NR 6106

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- SPST through DPDT contact arrangements.
- Immersion cleanable and flux tight versions available.
- M eets VDE 10 mm spacing, 5 kV dielectric, coil to contacts.
- Conforms to UL 508, 1873 and 353.
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ coil construction
- Schrack brand

Contact Data

Arrangements: 1 Form A (SPST-NO) Wiring Diagram Code 1, 2, 3.
2 Form A (DPST-NO) Wiring Diagram Code 5.
1 Form C (SPDT) Wiring Diagram Code 1, 2, 3.
2 Form C (DPDT) Wiring Diagram Code 5.
Material: Silver-nickel 90/10.
Minimum Load: 12V/100mA.
Expected Mechanical Life: 10 million operations.
Designed to meet UL/CSA/VDE ratings with relay properly vented. Remove vent nib after soldering and cleaning.

UL/CSA Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$:

Code	NO/NC Load	Type	Operations
1	12A NO @ 240VAC	GP	30 K
	10A/5A @ 240VAC	Resistive/GP	100 K
	8A @ 28VDC	Resistive	30 K
	1 HP @ 240VAC*	Motor	6 K
	1/2 HP @ 120VAC*	Motor	6 K
	8A @ 28VDC*	Resistive	30 K
	B300	Pilot Duty	6 K
3	16A/8A @ 240VAC	GP	6 K
	8A @ 28VDC	Resistive	30 K
	$1 / 2$ HP @ 120VAC*	Motor	6 K
	1HP @ 240VAC*	Motor	6 K
	48 LRA, 8 FLA @ 240VAC	Motor	30 K
	B300	Pilot Duty	6 K
5	8A @ 240VAC	Resistive	30 K
	8A @ 28VDC	Resistive/GP	30 K
	1/2 HP @ 240VAC	Motor	$6 K$
	$1 / 4$ HP @ 120VAC	Motor	6 K
	B300	Pilot Duty	6 K

* Form A only

VDE Ratings @ $25^{\circ} \mathrm{C}$:

Code	NO/NC Load	Type	Operations
1	12A @ 250VAC	Resistive	30K
	12A @ 250VAC	Resistive	100K
3	16A @ 250VAC	Resistive	10 K
	16A @ 250VAC	Resistive	50K
5	8A @ 250VAC	Resistive	30 K
	8A @ 250VAC	Resistive	50 K

Initial Dielectric Strength

Between Open Contacts: $>1,000 \mathrm{VAC}$ (1 minute).
Between Poles (code 5): >2,500VAC (1 minute).
Between Coil and Contacts: $>5,000 \mathrm{VAC}$ (1 minute).
Creepage/Clearance, Coil to Contact: $10 / 10 \mathrm{~mm}$.

Coil Data @ $20^{\circ} \mathrm{C}$

Voltage: 24, 115, 230VAC (consult factory for availability of other voltages).
Nominal Power @ $25^{\circ} \mathrm{C}$: .75VA.
Duty Cycle: Continuous.
Initial Insulation Resistance: 10,000 megohms, min., at $20^{\circ} \mathrm{C}, 500 \mathrm{VDC}$ and 50% rel. humidity.
Coil Construction: UL Class F $\left(155^{\circ} \mathrm{C}\right)$.

Coil Data

Nominal Voltage VAC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VAC	Drop-out Voltage VAC	Nominal Coil Current $(\mathbf{m A)}-\mathbf{5 0 H z}$.	Nominal Coil Current $(\mathbf{m A)}-\mathbf{6 0 H z}$
24	350	18.0	3.6	316	24.3
115	8,100	86.3	17.3	6.6	5.1
230	32,500	172.5	34.5	3.3	2.3

Max. Ambient Temp. vs. Coil Voltage

A: Coil temperature = Ambient temperature.
B: 110\% of nominal coil voltage at rated contact load.

Operate Data

Must Operate Voltage: See coil data.
Operate Time (Excluding Bounce): 8 ms , typ., at nom. voltage.
Release Time (Excluding Bounce): 11 ms , typ., at nom. voltage.

Environmental Data

Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ at rated current.
Vibration: 30-150 Hz: at 20 g with no contact opening $>10 \mu \mathrm{~s}$ on the N.O. contact; at 5 g with no contact opening $>10 \mu \mathrm{~s}$ on the N.C. contact.

Mechanical Data

Termination: Printed circuit terminals.
Enclosures: RT 1, 2, 3, 4: Flux-tight, top vented, plastic case.
RT B, C, D, E: Immersion cleanable, plastic case.
Weight: 0.42 oz. (12g) approximately.

	14	524
1. Basic Series: RT $=$ Miniature, printed circuit board relay.		
2. Enclosure: $\begin{array}{ll} 1=1 \text { pole } 12 \mathrm{~A}, \text { Pinning } 3.5 \mathrm{~mm} \text {, flux-tight (Code } 1 \text {). } & \mathrm{B}=1 \text { pole } 12 \mathrm{~A} \text {, Pinning } 3.5 \mathrm{~mm} \text {, sealed (Code } 1 \text {). } \\ 2=1 \text { pole } 12 \mathrm{~A}, \text { Pinning } 5 \mathrm{~mm} \text {, flux-tight (Code } 2) . & \mathrm{C}=1 \text { pole } 12 \mathrm{~A} \text {, Pinning } 5 \mathrm{~mm} \text {, sealed (Code 2). } \\ 3=1 \text { pole } 16 \mathrm{~A} \text {, Pinning } 5 \mathrm{~mm} \text {, flux-tight (Code } 3 \text {). } & \mathrm{D}=1 \text { pole } 16 \mathrm{~A} \text {, Pinning } 5 \mathrm{~mm} \text {, sealed (Code } 3 \text {). } \\ 4=2 \text { pole } 8 \mathrm{~A} \text {, Pinning } 5 \mathrm{~mm} \text {, flux-tight (Code } 5) . & E=2 \text { pole } 8 \mathrm{~A} \text {, Pinning } 5 \mathrm{~mm} \text {, sealed (Code } 5) . \\ \hline \end{array}$		
3. Contact Arrangement: $1=1$ Form C (SPDT) (Requires wiring diagram codes 1, 2 or 3.) $2=2$ Form C (DPDT) (Requires wiring diagram code 5.) 3 = 1 Form A (SPST-NO) (Requires wiring diagram codes 1, 2 or 3.) $4=2$ Form A (DPST-NO) (Requires wiring diagram code 5.)		
4. Contact Material: 4 = Silver-nickel 90/10.		
5. Coil Voltage: $524=24 \mathrm{VAC} \quad 615=115 \mathrm{VAC} \quad 730=230 \mathrm{VAC}$		

Note: All AC coil model RT part numbers are Schrack brand, are orange in color and have UL Class $\mathrm{F}\left(155^{\circ} \mathrm{C}\right)$ coil construction.
Our authorized distributors are more likely to stock the following items for immediate delivery.

RTB14524	RTD14524	RTE24524
RTB14615	RTD14615	RTE24615
RTB14730	RTD14730	RTE24730

Outline Dimensions

Notes: 1 On single throw models, only necessary terminals are present.

1. On single throw models, only necessary terminals are present.
2. With the recommended PCB hole sizes, a grid with a pattem from 0.0984 to 0.1
in $(2.5-2.54 \mathrm{~mm})$ can be used. in ($2.5-2.54 \mathrm{~mm}$) can be used.

Wiring Diagrams (Bottom View)

Code 3 \& 5
are present.
Breaking Capacity
1 Pole

A: 16A Version.
B: 12A Version.

Contact Life for Resistive AC Load (Typical)

A: 1 Contact.
B: 2 Contacts in series.

Note: Data from $250 \mathrm{VAC} @ 70^{\circ} \mathrm{C}$.

Codes 1 \& 2

Code 3

Code 5

Note: On single throw models, only necessary terminals are present.

RT series

Sockets and Accessories
이 File E135149
(61 File LR14385
(NR 5318

RT78625 ${ }^{1,2}$
1 Pole 10A, 250VAC
2 Pole 2x 10A, 250VAC
5mm Pinning

Hold-Down Spring RT16016

RP78601 ${ }^{1}$
10A, 250VAC
3.5mm Pinning

Hold-Down Spring RP16041

Hold-Down Spring RT16016

RT78626 ${ }^{1,2}$
1 Pole 12A, 300VAC
2 Pole $2 x$ 12A, 300VAC
5mm Pinning

Ejector/Hold-Down Spring RT16016 ${ }^{3}$

Socket and Accessory Selection Table

Stock items are boldfaced.

Socket	Socket Termination	Hold-Down Spring
RT78624 1,2	DIN Screw Terminal Socket	RT16016
RT78625 1,2	DIN Screw Terminal Socket	RT16016
RT78626 1	DIN Screw Terminal Socket	RT16016
RP78601 1	PCB Terminal Socket	RY16041
RP78602 1	PCB Terminal Socket	RY16041
RPMT00A0 $^{\text {RPM }}$	Protection Diode Module 1N40074	-
RPMU0548	RC Network M odule 24-48VAC	-
RPMU0730	RC Network Module 110-230VAC	-
RPML0024	LED Module 12-24VDC	-
RPML0524	LED Module 12-48VACNDC	-
RPML0110	LED Module 110VDC	-
RPML0730	LED Module 110-230VAC	-

RP78602 ${ }^{1}$
1 Pole 10A, 250VAC
2 Pole 2x 10A, 250VAC
5mm Pinning

Hold-Down Spring RP16041

* Note

1. Not suitable for bistable relay with two coils.
2. For a 16A 1 pole relay the following jumpers have to be connected; 11 to 21,12 to 22 and 14 to 24 .
3. Insertion of the relay.

First the ejector (and eventually the module) has to be mounted onto the socket. Then the relay has to be set in the correct position and pressed into the socket until the ejector snaps over the top of the relay.
4. Standard polarity: A1:+, A2:-

Features

- Sensitive coil requires only 250 mW .
- 10A contacts in 1 Form A (SPST-NO) or 1 Form C (SPDT) arrangement.
- UL Class F coil construction.
- $5 \mathrm{kV} / 10 \mathrm{~mm}$ contact-to-coil.

Contact Data

Arrangements: 1 Form A (SPST-NO) or 1 Form C (SPDT), single contact.

Material: Silver-nickel 90/10.

Expected Mechanical Life: 30 million operations.
Ratings:
Current: 10A.
Voltage: 250VAC.
Power (breaking): 2,500 VA.
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): 15A.
Load/Life
8A, 250VAC; 430,000 ops.
370W, 230VAC, compressor, NO contact; >330,000 ops.
$550 \mathrm{~W}, 250 \mathrm{VAC}$, incandescent, NO contact; 190,000 ops.
$0.8 \mathrm{~A}_{\text {peak }} / 0.08 \mathrm{~A}, 230 \mathrm{VAC}, \cos \varphi=0.23$,
contactor 190 / 90 VA, NO contact; >8.8 million ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms
Between Coil and Contacts: $5,000 \mathrm{Vrms}$.
Creepage/Clearance: $10 / 10 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 250mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
5	$100 \pm 10 \%$	3.7	0.5	15.0	50.0
6	$144 \pm 10 \%$	4.5	0.6	18.0	417
12	$576 \pm 10 \%$	9.0	12	36.0	20.8
24	$2,304 \pm 10 \%$	18.0	2.4	72.0	10.4
48	$9,216 \pm 10 \%$	36.0	4.8	144.0	5.4
60	$12,857 \pm 12 \%$	45.0	6.0	180.0	4.7

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 7 ms .
Release Time (typical): 3 ms .
Bounce Time (typical): NO: 2 ms ; NC: 4 ms .
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration (30-150 Hz.): 5g.
Shock (destructive): 100g.

RT series (Sensitive)

10 Amp, 1 Pole PC Board Relay with 250mW Coil

c91 ${ }_{\text {us File E2 }}$ E214025
\Leftrightarrow (5)
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 Rated): Flux-tight (RT II) or sealed (RT III) plastic case. Weight: . $49 \mathrm{oz} .(14 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

			Typical Part Number	7	4	012
1. Basic Series: RT = Printed circuit board relay.						
2. Version: $1=10 \mathrm{~A}, 3.5 \mathrm{~m}$	in spacing, flux		$B=10 \mathrm{~A}, 3.5 \mathrm{~mm}$ pin spacin			
3. Contact Conf 7 = 1 Form C	ation: DT)	1 For	SPST-NO)			
4. Contact Mate K = Silver-nick						
5. Coil Voltage: $005=5 \mathrm{VDC}$ $006=6 \mathrm{VDC}$	$\begin{aligned} & 012=12 \mathrm{VDC} \\ & 024=24 \mathrm{VDC} \end{aligned}$	048 060	VDC			

Stock Items - Authorized distributors are more likely to stock the following items.

None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

1 Form C

1 Form A

PC Board Layouts (Bottom Views)

1 Form C

* With the recommended hole size, a grid pattern from . $0984-.1$ in ($2.5-2.54 \mathrm{~mm}$) can be used.

1 Form A

* With the recommended hole size, a grid
pattern from . 0984-. 1 in (2.5-2.54 mm) can be used.

Features

- Sensitive (250 mW) version with 10A, 1 Form A (SPST-NO) contacts.
- 16A version with 1 Form A (SPST-NO) or 1 Form C (SPDT) contacts.
- UL Class F coil construction.
- $5 \mathrm{kV} / 10 \mathrm{~mm}$ contact-to-coil.
- DC coil.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT). 1 Form C not available with sensitive coil.
Material: Silver-nickel 90/10.
Expected Mechanical Life: 10 million operations.
Ratings:
Current: Standard Coil: 16A; Sensitive Coil: 10A.
Voltage: 250VAC.
Power (breaking): Standard Coil: 4,000 VA; Sensitive Coil: 2,500VA
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): Standard Coil: 30A; Sensitive Coil: 15A.
Load/Life - Standard Coil - Standard 1 Form A Contact $10 \mathrm{amp}, 250 \mathrm{VAC}, 105^{\circ} \mathrm{C}$; 150,000 ops. $16 \mathrm{amp}, 250 \mathrm{VAC}, 105^{\circ} \mathrm{C} ; 20,000$ ops.
Load/Life - Standard Coil - High Performance 1 Form A Contact $10 \mathrm{amp}, 250 \mathrm{VAC}, 105^{\circ} \mathrm{C} ; 300,000$ ops. 16 amp ON / 8 amp OFF, $250 \mathrm{VAC}, 105^{\circ} \mathrm{C} ; 250,000$ ops.
Load/Life - Sensitive Coil - 1 Form A Contact $12 \mathrm{amp}, 250 \mathrm{VAC}, 105^{\circ} \mathrm{C}$, dry switching; $>500,000$ ops. $10 \mathrm{amp}, 250 \mathrm{VAC}$, cyclical heat $105 / 40^{\circ} \mathrm{C} ; 200,000$ ops. $10 \mathrm{amp}, 250 \mathrm{VAC}, 105^{\circ} \mathrm{C} ; 150,000$ ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms
Between Coil and Contacts: 5,000Vrms.
Creepage/Clearance: $10 / 10 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: Sensitive Coil: 250 mW .; Standard Coil: $400 \mathrm{~mW} \dagger$
\dagger Standard coil continuous thermal load $>10 \mathrm{~A}$ at $105^{\circ} \mathrm{C}$ requires reduction of coil power to 64% of nominal after 100 ms .

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)	
Sensitive Coils (10A max. rating, 1 Form A only)						
12	576	9.0	12	36.0	20.8	
24	2,304	18.0	2.4	72.0	10.4	
Standard Coils (16A max. rating, 1 Form A or 1 Form C)						
9	203	6.3	0.9	22.9	44.3	
12	360	8.4	12	30.6	33.3	
24	1,440	16.8	2.4	612	16.7	

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): Standard Coil: 7 ms .
Sensitive Coil: 8 ms .
Release Time (typical): Standard or Sensitive Coil: 3 ms .
Bounce Time (typical): Standard Coil NO / NC: $1 / 3 \mathrm{~ms}$.
Sensitive Coil: 2 ms .
Switching Rate: 3,600 ops./hr. max. at rated load.

RTH series

10-16 Amp, 1 Pole

PC Board Relay for Operation to $105^{\circ} \mathrm{C}$
${ }^{\text {ch }}{ }_{\text {us }}$ File E214025
요

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Vibration (30-150 Hz.): Standard Coil NO / NC: $20 / 5 \mathrm{~g}$.
Sensitive Coil: 5 g .
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 Rated): Flux-tight (RT II) plastic case.
Weight: . $49 \mathrm{oz} .(14 \mathrm{~g})$ approximately.

Max. DC Load Breaking Capacity

Models with Standard Coil

Models with Sensitive Coil

Coil Operating Range

Models with Standard Coil

Models with Sensitive Coil

Ordering Information

	Typical Part N	r	RTH	4	012
1. Basic Series: RTH = Printed circuit board relay for high temperature $\left(105^{\circ} \mathrm{C}\right)$ applications.					
2. Coil Type and Contacts: 1 = Standard coil, standard 1 Form C (S 3 = Standard coil, standard 1 Form A (SP H = Standard coil, "high performance" 8 = Sensitive coil, standard 1 Form A (SP	cts, 16A rating ntacts, 16A rati PST-NO) contac ntacts, 10A rati	A rating			
3. Contact Material: 4 = Silver-nickel 90/10.					
4. Coil Voltage: 009 = 9VDC (standard version coil only)	$012=12 \mathrm{VDC}$	$024=$			

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

1 Form C, Standard Coil Only

1 Form A, Standard or Sensitive Coil

PC Board Layouts (Bottom Views)

1 Form C, Standard Coil Only

* With the recommended hole size, a grid pattern from . $0984-.1$ in (2.5-2.54 mm) can be used.

1 Form A, Standard or Sensitive Coil
$*$ With the recommended hole size, a grid
pattern from $.0984-.1$ in $(2.5-2.54 \mathrm{~mm})$ can be used.

Features

- Capable of handling 80A inrush currents.
- 16A, 1 Form A (SPST-NO) contacts.
- UL Class F coil construction.
- $5 \mathrm{kV} / 10 \mathrm{~mm}$ contact-to-coil.
- 400mW DC coil.

Contact Data

Arrangements: 1 Form A (SPST-NO), single contact.
Material: Silver-nickel 90/10 or Silver-tin oxide.
Expected Mechanical Life: 30 million operations.
Ratings:
Current: 16A.
Voltage: 250VAC.
Power (breaking): 4,000 VA.
Voltage (breaking): 440VAC
Current (making, max. 4s at 10\% duty cycle): 30A.
Peak Inrush Current (20ms): 80A.
Load/Life - Silver-nickel contacts
1000W, 250VAC, incandescent lamps; 90,000 ops.
Load/Life - Silver-tin oxide contacts
$1000 \mathrm{~W}, 250 \mathrm{VAC}$, incandescent lamps; 80,000 ops.
Compressor, $230 \mathrm{VAC}, \mathrm{I}_{\text {in }} \leq 21 \mathrm{~A}_{\text {peak }}, \mathrm{I}_{\text {off }}=3.5 \mathrm{~A}, \cos \varphi=0.5 ; 230,000 \mathrm{ops}$.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms
Between Coil and Contacts: $5,000 \mathrm{Vrms}$.
Creepage/Clearance: 10/10mm.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 400mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
12	$360 \pm 10 \%$	8.4	12	30.6	33.3
24	$1,440 \pm 10 \%$	16.8	2.4	612	16.7
48	$5,520 \pm 10 \%$	33.6	4.8	122.4	8.7
60	$7,340 \pm 12 \%$	42.0	6.0	153.0	8.1

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 8 ms .
Release Time (typical): 3 ms
Bounce Time (typical): 2 ms .
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range:

Operating: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration (30-500 Hz.): 20 g .
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 Rated): Flux-tight (RT II) plastic case.
Weight: . 49 oz. (14 g) approximately.

RT series (High Inrush)
 16 Amp, 1 Pole PC Board Relay for Inrush Currents to 80A
 c94 ${ }_{\text {us }}$ File E214025
 $\stackrel{1}{\infty}$

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

*With the recommended hole size, a grid pattern from . 0984-. 1 in (2.5-2.54 mm) can be used.

Features

- 1 Form A (SPST-NO).
- Tungsten prerun contact and silver-tin oxide contact.
- 10 amp rated current, $80 \mathrm{~A} / 20 \mathrm{~ms}$ inrush current.
- 4kV/8mm contact-to-coil, insulation to VDE 0631 and 0700.
- Sensitive coil (480 mW).
- Low-profile (. 59 in [15 mm]) flux-tight case.
- Well suited for lighting systems, motors, lamp loads.

Contact Data

Arrangements: 1 Form A (SPST-NO), single contact.
Material: Tungsten prerun contact and silver-tin oxide contact.
Expected Mechanical Life: 5 million operations.
Ratings:
Current: 10A.
Current (making, max. 4s at 10\% duty cycle): 16A.
Current (peak inrush 20ms): 80A.
Voltage: 250VAC.
Voltage (breaking): 400VAC.
Load/Life
10 amp resistive, $250 \mathrm{VAC}, 50,000 \mathrm{ops}$.
2,500W, incandescent lamps, 30,000 ops.
1,300W, fluorescent lamps (140 FF), 30,000 ops. 1,000W, Dulux lamps ($140 \mu \mathrm{~F}$), 30,000 ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.
Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 480mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current $(\mathbf{m A})$
6	80	4.2	0.4	12.0	75.0
12	300	8.4	0.9	24.0	40.0
24	1,200	16.8	18	48.0	20.0
48	4,825	33.6	3.6	96.0	10.0
60	7,500	42.0	4.5	120.0	8.0

0429 series

High Inrush (80A/20ms), Miniature Printed Circuit Board Relay

吹 File E214025

(0)

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 6 ms .
Release Time (typical): 4 ms .
Bounce Time (typical): 3 ms .
Switching Rate: 6,000 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Shock (destructive): 100g

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Flux-tight (RTII) plastic case.
Weight: 0.35 oz . $(10 \mathrm{~g})$ approximately.

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagram (Bottom View)

OM I/OM IH series

16A Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines.
? UL File No. E58304
(18A CSA File No. LR48471
(VOE) VDE File No. 6678
(S) SEMKO File No. 9517235 (OMI)

$$
9143112 \text { (OMIH) }
$$

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL 508, VDE0435 and SEMKO requirements.
- 1 Form A and 1 Form C contact arrangements.
- Immersion cleanable, sealed version available.
- Meet 5,000V dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts ($1.2 / 50 \mu \mathrm{~s}$).

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Ag Alloy (OMI), AgSnO (OMIH).
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: OMI: 10A @ 240VAC resistive,
10A @ 30VDC resistive,
3A @ 240VAC inductive ($\cos \varnothing=0.4$),
3A @ 30VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
OMIH:16A @ 240VAC resistive,
16A @ 30VDC resistive,
4A @ 240VAC inductive ($\cos \varnothing=0.4$),
4A @ 24VDC inductive (L/R=7msec).
Max. Switched Voltage: AC: 250V.
DC: 30V.
Max. Switched Current: 10A (OMI), 16A (OMIH).
Max. Switched Power: OMI: 2,400VA, 300W.
OMIH: $3,800 \mathrm{VA}, 480 \mathrm{~W}$.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC 50/60 Hz. (1 minute).
Between Coil and Contacts: 5,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 ss).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 720 mW (OMI-D), 540mW (OMI-L).
Coil Temperature Rise: $45^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

OMI/OMIH-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	$\begin{gathered} \text { Coil } \\ \text { Resistance } \\ (\text { ohms }) \pm \mathbf{1 0 \%} \end{gathered}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	3.75	0.50
6	88.0	68	4.50	0.60
9	58.0	155	6.75	0.90
12	44.4	270	9.00	1.20
24	21.8	1,100	18.00	2.40
48	10.9	4,400	36.00	4.80
OMI/OMIH-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	138.9	36	3.50	0.50
6	120.0	50	4.20	0.60
9	78.3	115	6.30	0.90
12	60.0	200	8.40	1.20
24	29.3	820	16.80	2.40
48	14.5	3,300	33.60	4.80

Operate Data

Must Operate Voltage:
OMI/OMIH-D: 70\% of nominal voltage or less.
OMI/OMIH-L: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: OMI/OMIH-D: 15 ms max.
OMI/OMIH-L: 20 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: OMI/OMIH-D:
$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
OMI/OMIH-L: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OMI/OMIH-SS: Vented (Flux-tight) plastic cover.
OMI/OMIH-SH: Sealed plastic case.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

Our authorized distributors are more likely to stock the following items for immediate delivery.

OMIH-SH-105D,394	OMIH-SH-105L,394
OMIH-SH-112D,394	OMIH-SH-112L,394
OMIH-SH-124D,394	OMIH-SH-124L,394

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Coil Temperature Rise

Dimensions are in inches over	Specifications and availability
(millimeters) unless otherw ise	subject to change.
specified.	

OM I 2 Pole series

2 Pole Miniature Power PC Board Relay

Appliances, HVAC, Office Machines.

呵 UL File No. E58304
(18) CSA File No. LR48471

VDE File No. 6678
(S) SEMKO File No. 9517235

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL 508, VDE0435 and SEMKO requirements.
- 2 Form A and 2 Form C contact arrangements.
- Immersion cleanable, sealed version available.
- Meet 5,000V dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts ($1.2 / 50 \mu \mathrm{~s}$).

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 2 Form A (DPST-NO) and 2 Form C (DPDT).
Material: Ag Alloy.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @1A, 6VDC.

Contact Ratings

Ratings: 5A @ 240VAC resistive,
5A @ 120VAC resistive,
5A @ 30VDC resistive,
1/8 HP @ 250VAC.
$1.5 \mathrm{~A} @ 240 \mathrm{VAC}$ inductive ($\cos \varnothing=0.4$),
$1.5 \mathrm{~A} @ 120 \mathrm{VAC}$ inductive ($\cos \varnothing=0.4$),
$1.5 \mathrm{~A} @ 24 \mathrm{VDC}$ inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
Max. Switched Voltage: AC: 240V.

> DC: 30V.

Max. Switched Current: 5A.
Max. Switched Power: OMI: 1,200VA, 150W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 5,000VAC 50/60 Hz. (1 minute)
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 s s).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 720 mW (OMI-D), 540 mW (OMI-L).
Coil Temperature Rise: $45^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

OMI-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	4.00	0.50
6	88.0	68	4.80	0.60
9	58.0	155	7.20	0.90
12	44.4	270	9.60	1.20
24	21.8	1,100	19.20	2.40
48	10.9	4,400	38.40	4.80
OMI-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	138.9	36	3.75	0.50
6	120.0	50	4.50	0.60
9	78.3	115	6.75	0.90
12	60.0	200	9.00	1.20
24	29.3	820	18.00	2.40
48	14.5	3,300	36.00	4.80

Operate Data

Must Operate Voltage:
OMI-D: 75\% of nominal voltage or less.
OMI-L: 80 \% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: OMI-D: 15 ms max.
OMI-L: 20 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: OMI-D:
$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
OMI-L:

$$
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: 100m/s² (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OMI-SS: Vented (Flux-tight) plastic cover.
OMI-SH: Sealed plastic case.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

	Typical Part Number	OMI	-SS	-2	12	L	M	,594
1. Basic Series: OMI = 2 Pole Miniature Power PC Board								
2. Enclosure: $\begin{aligned} & \text { SS }=\text { Vent (Flux-tight)* plastic cover. } \\ & \text { SH }=\text { Sealed, plastic case. } \end{aligned}$								
3. Termination: 2 = 2 pole								
4. Coil Voltage: $\begin{array}{ll} 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} \\ 06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} \end{array}$								
5. Coil Input: D = Standard (720 mW) $\quad \mathrm{L}=$ Sensitive								
6. Contact Arrangement: Blank $=2$ Form C, DPDT $\quad \mathrm{M}=2$ Form	-NO							
7. Suffix: ,500 = Standard model for 'SS" enclosure	,594 = Standard model for 'S	closure	O	Suff	Cust	mod		

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to stock the following items for immediate delivery.
OMI-SH-205D,594 OMI-SH-205L,594
OMI-SH-212D,594 OMI-SH-212L,594
OMI-SH-224D,594 OMI-SH-224L,594

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Coil Temperature Rise

Operate Time

Life Expectancy

Dimensions are in inches over	Specifications and availability (millimeters) unless otherw ise specified.

OZ/OZF series

16A Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines.

근 UL File No. E82292
(18 CSA File No. LR48471
\triangle TUV File No. R85447

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL 508, CSA and TUV requirements.
- 1 Form A and 1 Form C contact arrangements.
- Immersion cleanable, sealed version available.
- Meet 5,000V dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts ($1.2 / 50 \mu \mathrm{~s}$).
- Quick Connect Terminal type available (OZF).
- UL TV-8 rating available (OZT).

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Ag Alloy (1 Form C) and AgSnO (1 Form A).
Max. Switching Rate: 300 ops./min. (no load).

$$
30 \text { ops./min. (rated load). }
$$

Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: OZ/OZF: 20A @ 120VAC resistive,
16A @ 240VAC resistive,
5A @ 120VAC inductive ($\cos \varnothing=0.4$),
5A @ 24VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
OZT: 8A @ 240VAC resistive,
TV-8 @ 120VAC tungsten, 25,000ops.
Max. Switched Voltage: AC: 240V.
DC: 110V.
Max. Switched Current: 16A (OZ/OZF), 8A (OZT)
Max. Switched Power: 3,850VA, 600W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC 50/60 Hz. (1 minute).
Between Coil and Contacts: 5,000VAC 50/60 Hz. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 720 mW (OZ-D), 540mW (OZ-L).
Coil Temperature Rise: $45^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OZ-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	3.75	0.25
6	88.0	68	4.50	0.30
9	58.0	155	6.75	0.45
12	44.4	270	9.00	0.60
24	21.8	1,100	18.00	1.20
48	10.9	4,400	36.00	2.40
OZ-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	$\begin{gathered} \text { Coil } \\ \text { Resistance } \\ (\text { ohms }) \pm \mathbf{1 0 \%} \\ \hline \end{gathered}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	138.9	36	3.50	0.25
6	120.0	50	4.20	0.30
9	78.3	115	6.30	0.45
12	60.0	200	8.40	0.90
24	29.3	820	16.80	1.20
48	14.5	3,300	33.60	2.40

Operate Data

Must Operate Voltage:

OZ-D: 70\% of nominal voltage or less.
OZ-L: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: OZ-D: 15 ms max.
OZ-L: 20 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: OZ-D: $-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
OZ-L: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately). Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OZ-S: Vented (Flux-tight) plastic cover.
OZF-SS: Vented (Flux-tight) plastic cover.
OZ-SH: Sealed plastic case.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

Ordering Information

OZ $=16$ A PC Board Terminals \quad OZF $=$ Quick Connect Teminals
$\mathrm{OZT}=$ TV-8 Rating PC Board Terminals
2. Enclosure:
$\mathrm{S}=$ Vent (Flux-tight)* plastic cover (only available with OZF)
SS = Vent (Flux-tight)* plastic cover.
SH = Sealed, plastic case.
3. Termination:
1 = 1 pole
6. Contact Arrangement:
Blank = 1 Form C, SPDT $\quad \mathrm{M}=1$ Form A, SPST-NO
7. Contact Material:
Blank = AgCdO (1 Form C) $1=A g S n O$ (1 Form A, only available with OZ....LM 1 or DM 1)
. Mounting and Termination:
9. Suffix:
,200 = Standard model for 'SS" enclosure on OZ and OZT $\quad, 000=$ Standard model for coil input "D" on OZF \quad Other Suffix = Custom model
,294 = Standard model for "SH" enclosure on OZ and OZT ,300 = Standard model for coil input "L" on OZF
* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

| OZ-SH-105D,294
 OZ-SH-112D,294 | OZ-SH-124D,294 | OZ-SH-105LM1,294 | OZ-SH-112LM1,294 | OZ-SH-105L,294 |
| :--- | :--- | :--- | :--- | :--- |\quad OZ-SH-124L,294

PC Board Layouts (Bottom View)
OZ

Wiring Diagrams

* No electrical connection, for board attachment only.

[^14]temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Dimensions are shown for reference purposes only.	Dimensions are in inches over (millimeters) unless otherwise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover.

OM IT series

10A Miniature Power PC Board Relay

Appliances, HVAC, Office Machines.
只 UL File No. E58304
(818) CSA File No. LR48471
(VOE) VDE File No. 6678
(S) SEMKO File No. 8713114
($\stackrel{+}{\text { s }})$ SEV File No. 97550375

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL 508, VDE0435, SEMKO and SEV requirements.
- 1 Form A contact arrangements.
- UL TV-5 rating available.
- Immersion cleanable, sealed version available.
- Meet $5,000 \mathrm{~V}$ dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts (1.2 / 50 s).

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A.
Material: AgSnO
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 10A @ 240VAC resistive,
TV-5 @ 120VAC tungsten 25,000ops.
Max. Switched Voltage: AC: 240V.
DC: 30 V .
Max. Switched Current: 10A.
Max. Switched Power: 2,400VA, 300W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $5,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 720 mW (OMI-D), 540 mW (OMI-L).
Coil Temperature Rise: $45^{\circ} \mathrm{C}$ max., at rated coil voltage (OMI-D).
$35^{\circ} \mathrm{C}$ max., at rated coil voltage (OMI-L).
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$				
OMIT-L Sensitive				
Rated Coil Voltage (VDC)	Nominal Current (mA)	CoilResistance $($ ohms $) \pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	3.75	0.25
6	88.0	68	4.50	0.30
9	58.0	155	6.75	0.45
12	44.4	270	9.00	0.90
24	21.8	1,100	18.00	1.20
48	10.9	4,400	36.00	2.40
OMIT-D Standard				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance $($ ohms $) \pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	138.9	36	3.50	0.25
6	120.0	50	4.20	0.30
9	78.3	115	6.30	0.45
12	60.0	200	8.40	0.90
24	29.3	820	16.80	1.20
48	14.5	3,300	33.60	2.40

Operate Data

Must Operate Voltage:
OMIT-D: 70\% of nominal voltage or less.
OMIT-L: 75% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: OMIT-D: 15 ms max.
OMIT-L: 20 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: OMT-D:
$-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
OMT-L:

$$
-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}
$$

Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OMIT-SS: Vented (Flux-tight) plastic cover.
OMIT-SH: Sealed plastic case.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

Ordering Information								
	Typical Part Number \rightarrow OMIT		-SS	-1	12	L	M	,300
1. Basic Series: OMIT = Miniature Sealed PC Board Relay								
2. Enclosure: SS = Vent (Flux-tight)* plastic cover. SH = Sealed, plastic case.								
3. Termination: 1 = 1 pole								
4. Coil Voltage: $\begin{array}{ll} 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} \\ 06=6 \mathrm{VDC} & 12=12 \mathrm{VDC} \\ \hline \end{array}$								
5. Coil Input: D = Standard (720mW) L = Sensitive								
6. Contact Arrangement: Blank = 1 Form C, SPDT $\quad \mathrm{M}=1$ Form	T-NO							
7. Suffix: ,300 = Standard model for "SS" enclosure	,394 = Standard model for "SH" enclosure			Other Suffix = Custom model				

[^15]Our authorized distributors are more likely to maintain the following items in stock for imnmediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

OM IF series
20A Miniature
Power PC Board Relay
Appliances, HVAC, Office Machines.
吹 UL File No. E82292
(18) CSA File No. LR48471
(VoE) VDE File No. 6031
TUV File No. R85447

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Voltage: 12 to 24VDC.
Nominal Power: 540mW.
Coil Temperature Rise: $35^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OMIF				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
12	44.4	270	9.00	0.60
18	30.0	600	13.50	0.90
24	21.8	1,100	18.00	1.20

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 20 ms max
Release Time: 10 ms max.

Environmental Data

Temperature Range:
Operating: $\quad-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals with quick connect terminals.
Enclosure (94V-0 Flammability Ratings):
OMIF-S: Vented (Flux-tight) plastic cover.

Weight: $0.53 \mathrm{oz}(15 \mathrm{~g})$ approximately.

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC 50/60 Hz. (1 minute).
Between Coil and Contacts: 5,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 s s).

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A.
Material: AgSnO
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 20A @125VAC resistive.
16A @ 250VAC resistive,
16A @ 24VDC resistive.
Max. Switched Voltage: AC: 250V.

DC: 24 V .

Max. Switched Current: 20A.
Max. Switched Power: 4,000VA, 385W.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability

Ordering Information								
	Typical Part Number	OMIF	-S	-1	24	L	M	,300
1. Basic Series: OMIF $=20 \mathrm{~A}$ PC Board Terminals								
2. Enclosure: S = Vented (Flux-tight)* plastic cover								
3. Termination: 1 = 1 pole								
4. Coil Voltage: $12=12 \mathrm{VDC} \quad 18=18 \mathrm{VDC}$	$24=24 \mathrm{VDC}$							
5. Coil Input: L = Sensitive (540 mW)								
6. Contact Arrangement: M $=1$ Form A, SPST-NO								
7. Suffix: , $300=$ Standard model	Other Suffix = Custom model							

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Wiring Diagram

(Top View)

PC Board Layout (Bottom View)

Reference Data

Operating Voltage

Operate Time

Life Expectancy

Note: This data is based on the max. allowable temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Dimensions are shown for reference purposes only.	Dimensions are in inches over (millimeters) unless otherwise specified.	Specifications and availability subject to change.	w w w.tycoelectronics.com Technical support: Refer to inside back cover

Features

- Slim and simple architecture.
- 2 Form A (DPST-NO) contact arrangement.
- Cadmium-free contacts.
- UL, CSA, approvals.
- Immersion cleanable, sealed version available.
- Magnetic blow-out available for DC loads.

Contact Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Arrangements: 2 Form A (DPST-NO).
Material: Ag-GS Alloy.
Max. Switching Rate: 300ops./ min. (no load).
30ops./ min. (rated load).
Expected Mechanical Life: 1 million ops (no load).
Expected Electrical Life: 100,000 ops (rated load).
Minimum Load: 1mA @1VDC.
Initial Contact Resistance: 50 milliohms @ 1mA, 6VDC.

Contact Ratings

Ratings: $3 \mathrm{~A} @ 24 \mathrm{VDC}$ resistive.
3A @ 120VAC resistive.
Max. Switched Voltage: AC: 240V.
DC: 50V.

DC: 50 V .
Max. Switched Current: 5A.
Max. Switched Power: 300VA, 90W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC, $50 / 60 \mathrm{~Hz}$. (1 min.).
Between Adjacent Contacts: 2,000VAC, $50 / 60 \mathrm{~Hz}(1 \mathrm{~min})$.
Between Contacts and Coil: $4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (1 min.).
Surge Voltage Between Coil and Contacts: 7,000V (1.2/50 s).

Initial Insulation Resistance
Between Mutually Insulated Conductors: 1,000M ohm @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Duty Cycle: Continuous.
Nominal Power: 350mW.
Max. Coil Power: 130% of nominal at $20^{\circ} \mathrm{C}$.

PCl series

Slim 2 Form A

Miniature PC Board Relay

Appliances, Audio Equipment, Office Machines

听 UL File No. E82292
(18A CSA File No. LR48471
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $20^{\circ} \mathrm{C}$

PCI					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
	69.4	72	3.50	0.50	
5	58.8	102	4.20	0.60	
6	39.1	230	6.30	0.90	
9	29.1	413	8.40	1.20	
12	14.5	1,650	16.80	2.40	
24					

Operate Data @ $20^{\circ} \mathrm{C}$
Must Operate Voltage: 70\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time : 15ms max.
Release Time : 5ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude. Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Plastic sealed case with enclosure option " H ".
Otherwise, vented (flux-tight) cover.
Weight: $0.41 \mathrm{oz}(10.5 \mathrm{~g})$ approximately.

Typical Part Number \downarrow	PCI	-2	05	D	M	,000
1. Basic Series: $\mathrm{PCI}=$ Miniature relay						
2. Termination: 2 = 2 pole						
3. Coil Voltage:						
4. Coil Input: D = Standard						
5. Contact Arrangement: $M=2$ Form A						
6. Enclosure: Blank $=$ Vented (Flux-tight) cover $\quad \mathrm{H}=$ Sealed plastic case						
7. Optional: Blank = Standard $\mathrm{M}=$ with magnetic blow-out						
8. Suffix: ,000 = Standard model Other Suffix = Custom model						

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Note: This data is based on the max. allowable temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Dimensions are shown for reference purposes only.	Dimensions are in inches over (millimeters) unless otherw ise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover.

OSA series
 2 Pole Miniature Power PC Board Relay

Appliances, Audio Equipment, Office Machines

믄 UL File No. E82292
(18) CSA File No. LR48471
(S) SEMKO File No. 9452086 (available for DM5) TUV File No. R9551879 (available for DM5)

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OSA				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
	106.4	47	3.75	0.50
5	88.0	68	4.50	0.60
6	58.0	155	6.75	0.90
9	44.4	270	9.00	1.20
12	21.8	1,100	18.00	2.40
24	11.0	4,400	36.00	4.80
48				

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 20 ms max.
Release Time: 10 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure ($94 \mathrm{~V}-0$ Flammability Ratings):
OSA-SS: Vented (Flux-tight) plastic cover.
OSA-SH: Sealed plastic case.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Operate Time

Dimensions are in inches over	Specifications and availability
(millimeters) unless otherw ise	subject to change.
specified.	

OSZ series

1 Pole Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines

只 UL File No. E58304

(14) CSA File No. LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL Tungsten TV-8 rating.
- 1 Form A contact arrangements.
- Immersion cleanable, sealed version available.
- Meet $4,000 \mathrm{~V}$ dielectric voltage between coil and contacts.
- Meet 7,000V surge voltage between coil and contacts (1.2 / 50 μ s).

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO).
Material: AgSnO.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 16A @ 240VAC resistive,
16A @ 24VDC resistive,
TV-8 @ 120VAC Tungsten, 25,000ops.
Max. Switched Voltage: AC: 240V.
DC: 24 V .
Max. Switched Current: 16A.
Max. Switched Power: 2,400VA, 380W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $4,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 7,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 540 mW
Coil Temperature Rise: $55^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

OSZ				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	3.75	0.25
6	88.0	68	4.50	0.30
9	58.0	155	6.75	0.45
12	44.4	270	9.00	0.60
24	21.8	1,100	18.00	1.20
48	11.0	4,400	36.00	2.40

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 20 ms max.
Release Time: 10 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude
Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: 100m/s² (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
OSZ-SS: Vented (Flux-tight) plastic cover.
OSZ-SH: Sealed plastic case.
Weight: 0.45 (13 g) approximately.

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Operate Time

Life Expectancy

Note: This data is based on the max. allowable temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only.	(millimeters) unless otherw ise specified.	www.tycoelectronics.com subject to change.
Technical support:		

Features

- UL TV-5 rating relay.
- 1 Form A contact arrangement.
- Immersion cleanable, sealed version available.
- Applications include appliance, HVAC, CTV, monitor, emergency lighting.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO)
Material: AgSnO.
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 5A Tungsten @ 120VAC (TV-5) 25,000ops.
10A @ 250VAC resistive,
10A @ 120VAC resistive,
10A @ 30VDC resistive.
$3 A @ 250 V A C$ inductive ($\cos \varnothing=0.4$),
3A @ 30VDC inductive ($\mathrm{L} / \mathrm{R}=7 \mathrm{msec}$).
Max. Switched Voltage: AC: 250V.

$$
\text { DC: } 30 \mathrm{~V} \text {. }
$$

Max. Switched Current: 10A.
Max. Switched Power: 2,500VA, 300W.

Initial Dielectric Strength

Between Open Contacts: 900VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 4,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 540 mW
Coil Temperature Rise: $40^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

SDT series

10 Amp Miniature
 Power PC Board Relay

Appliances, HVAC, CTV, Monitor Display
T UL File No. E82292
(18. CSA File No. LR48471
(S) SEM KO File No. 9308008
© TUV File No. R9551731
(${ }^{+}$) SEV File No. 97550375

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

SDT					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
	106.4	47	3.75	0.50	
5	88.0	68	4.50	0.60	
6	58.0	155	6.75	0.90	
9	44.4	270	9.00	1.20	
12	21.8	1,100	18.00	2.40	
24	10.9	4,400	36.00	4.80	
48					

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 8 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
SDT-SS: Vented (Flux-tight) plastic cover
SDT-SH: Sealed plastic case
Weight: 0.39 oz (11g) approximately.

Ordering Information							
Typical Part Number	SDT	-SS	-1	12	D	M	,000
1. Basic Series: SDT = M iniature Power PC board relay.							
2. Enclosure: SS = Vented (Flux-tight) * plastic cover. SH = Sealed, plastic case.							
3. Termination: 1 = 1 pole							
4. Coil Voltage:							
5. Coil Input: D = Standard							
6. Contact Arrangement: M = 1 Form A, SPST-NO							
7. Suffix: ,000 = Standard model Other Suffix = Custom model							

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Note: This data is based on the max. allowable
temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

Operate Time

Life Expectancy

SDT-R series

Features

- UL TV-5 and TV-8 rating relay.
- 1 Form A contact arrangement.
- Sensitive and standard coils available.
- Applications include appliance, HVAC, CTV, M onitor, emergency lighting.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO)
Material: AgSnO
Max. Switching Rate: 300 ops./min. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings:

SDT-LMR: 5A Tungsten @ 120VAC (TV-5) 25,000ops.
5A @ 250VAC resistive,
5A @ 30VDC resistive.
SDT-DMR: 8A Tungsten @ 120VAC (TV-8) 25,000ops.
10A @ 250VAC resistive,
10A @ 30VDC resistive.
Max. Switched Voltage: AC: 250V.
DC: 30V.
Max. Switched Current: 5A (SDT-LMR), 10A (SDT-DMR)
Max. Switched Power: 1,250VA, 150W (SDT-LMR),
2,500VA, 300W (SDT-DMR).

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $4,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 s s).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power:

$$
\begin{aligned}
\text { SDT-LMR } & : 250 \mathrm{~mW} \\
\text { SDT-DMR } & : 540 \mathrm{~mW}
\end{aligned}
$$

Coil Temperature Rise: $40^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

10 Amp Miniature

 Power PC Board RelayAppliances, HVAC, CTV, Monitor Display.
미 UL File No. E58304
(181 CSA File No. LR48471
(s) SEMKO FileNo. 9722134,9803052
\triangle TUV File No. R9750487

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

SDT-LMR (250mW)					
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	
5	50.0	100	3.75	0.50	
6	41.7	144	4.50	0.60	
9	27.7	325	6.75	0.90	
12	20.7	580	9.00	1.20	
24	10.5	2,300	18.00	2.40	
SDT-DMR (400mW)					
Rated Coil	Nominal	Coil	Must Operate	Must Release	
Voltage	Current	Resistance	Voltage	Voltage	
(VDC)	(mA)	(ohms) $\pm \mathbf{1 0 \%}$	(VDC)	(VDC)	
5	106.4	47	3.75	0.50	
6	88.0	68	4.50	0.60	
9	58.0	155	6.75	0.90	
12	44.4	270	9.00	1.20	
24	21.8	1,100	18.00	2.40	
48	10.9	4,400	36.00	4.80	

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100 G approximately). Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings): SDT-S: Snap-on dust cover (Flux-tight).
Weight: 0.38 oz . (11 g) approximately.

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Operating Voltage (SDT-LMR)

Operate Time

Life Expectancy

Note: This data is based on the max. allowable
temperature for E type insulation coil $\left(115^{\circ} \mathrm{C}\right)$.

PCK series

Slim 16 Amp
 Miniature Power PC Board Relay

Appliances, HVAC, Office Machines.

T기 UL File No. E82292
(18) CSA File No. LR48471

Features

- Slim outline to save board space.
- 1 Form A contact arrangement.
- Quick connect terminal type.
- Meet 5,000V dielectric voltage between coil and contacts.
- Meet 10,000V surge voltage between coil and contacts.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) .
Material: AgSnO.
Max. Switching Rate: 300ops./ min. (no load).
20ops./ min. (rated load).
Expected Mechanical Life: 2 million ops (no load).
Expected Electrical Life: 100,000 ops (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @1A, 6VDC.

Contact Ratings

Ratings: 16A @ 250VAC resistive.
16A @ 24VDC resistive.
Max. Switched Voltage: AC: 277V.
DC: 24 V .
Max. Switched Current: 16A.
Max. Switched Power: 4,000VA, 385W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC, $50 / 60 \mathrm{~Hz}$. (1 min.).
Between Contacts and Coil: 5,000VAC, $50 / 60 \mathrm{~Hz}$. (1 min.).
Surge Voltage Between Coil and Contacts: 10,000V (1.2/50 1 s).

Initial Insulation Resistance

Between Mutually Insulated Conductors: 1,000M ohm @ 500VDC.

Coil Data

Voltage: 5 to 24VDC.
Duty Cycle: Continuous.
Nominal Power: 500 mW .
Max. Coil Power: 130% of nominal at $20^{\circ} \mathrm{C}$.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}{ }^{\circ} \mathrm{C}$

PCK				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	100.0	50.0	3.75	0.25
6	83.3	72.0	4.50	0.30
9	55.6	162.0	6.75	0.45
12	41.7	288.0	9.00	0.60
18	27.8	648.0	13.50	0.90
24	20.9	$1,150.0$	18.00	1.20

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 20 ms max.
Release Time: 10ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude.
Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals with quick connect terminals.
Enclosure: Vented (Flux-tight) plastic cover.
Weight: $0.46 \mathrm{oz}(13 \mathrm{~g})$ approximately.

Ordering Information

	Typical Part Number	PCK	-1	12	D	2	M	,000
1. Basic Series: PCK $=16 \mathrm{~A}$ PC board terminals								
2. Termination: 1 = 1 pole								
3. Coil Voltage: $\begin{array}{ll} 05=5 \mathrm{VDC} & 09=9 \mathrm{VDC} \\ 06=06 \mathrm{VDC} & 12=12 \mathrm{VDC} \end{array}$	$\begin{aligned} & 18=18 \mathrm{VDC} \\ & 24=24 \mathrm{VDC} \end{aligned}$							
4. Coil Input: D = Standard								
5. Contact Material: $2=\mathrm{AgSnO}$								
6. Contact Arrangement: $\mathrm{M}=1$ Form A (SPST-NO)								
7. Suffix: ,000 = Standard model	Other Suffix = Custom model							

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Features

- 1 Form A (SPST-NO) and 1 Form C (SPDT).
- 8 amp rated current.
- Vertical or horizontal version.
- Single or bifurcated contacts.
- 4,000Vrms contact-to-coil dielectric.
- Washable (sealed) plastic case.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT), single or bifurcated contact.
Material: Silver-nickel 0.15 , silver-nickel 20 or silver-cadmium oxide.
Expected Mechanical Life: 20 million operations.
Ratings:
Current: 8A; 5A with silver-nickel 0.15 contacts.
Voltage: 250VAC.
Power (breaking): 2,000 VA.
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): 15A.
Silver-nickel 0.15
4 amp resistive, 30VDC, 2 million ops
1 amp inductive L/R $=40 \mathrm{~ms}, 24 \mathrm{VDC}, 200,000 \mathrm{ops}$.
Silver-cadmium oxide
$1 \mathrm{amp} \operatorname{cosj}=0.4,230 \mathrm{VAC}, 500,000 \mathrm{ops}$.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: 4/4mm.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 450-500mW, dependent upon model.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
6	$80 \pm+10 \%$	4.0	0.6	10.6	75.0
12	$330 \pm 10 \%$	8.0	12	215	36.4
24	$1,200 \pm+15 \%$	16.0	2.4	40.0	20.0
48	$4,700 \pm+15 \%$	32.0	4.8	79.0	10.2
60	$7,200 \pm+15 \%$	40.0	6.0	98.0	8.3

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time: 7 ms .
Release Time: 3 ms .
Bounce Time (N/O contact / N/C contact) : $0.5 \mathrm{~ms} / 3 \mathrm{~ms}$.
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

V23057 (Card E) series

8 Amp, Miniature

Printed Circuit Board Relay
c ${ }^{\text {P4 }}{ }_{\text {us }}$ File E214025
$\stackrel{1}{6}$
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Sealed (RTIII) plastic case.
Weight: 0.28 oz . $(8 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Vertical Version

PC Board Layouts (Bottom Views)

Vertical Version

Horizontal Version

Features

- 2 Form A (DPST-NO) or 2 Form C (DPDT).
- 8 amp rating with terminals on 5 mm pin spacing.
- $4 \mathrm{kV} / 8 \mathrm{~mm}$ contact-to-coil.
- Sockets available.

Contact Data

Arrangements: 2 Form A (DPST-NO) and 2 Form C (DPDT), single contact.
Material: Silver-cadmium oxide or silver-nickel 0.15 .

Expected Mechanical Life: 20 million operations.

Ratings:
Current: 8A (UL: 10A)
Voltage: 250VAC
Power (breaking): 2,000VA
Voltage (breaking): 440VAC
Make Current (max. 4s at 10\% duty cycle): 14A
Load/Life

Type	Load	Life (Ops.)
RP440	64A ON, 2A OFF, 250VAC	10,000
RP421	2A, 50VDC, resistive	2 million
RP421	$1 / 10$ HP, 240VAC, per contact	UL 508
RP421	$3 A, 380 V A C$, AC11	30,000
RP421	$0.18 A, 110 V D C$, DC11	100,000
RP420	$0.6 A, 220 \mathrm{VAC}, \cos \varphi=0.8$, single phase motor	13 million

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms
Between Coil and Contacts: 4,000Vrms.
Between Contact Sets: $2,500 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Nominal Coil Power: 500mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
5	$54 \pm 10 \%$	3.5	0.5	9.0	92.6
6	$68 \pm 10 \%$	4.2	0.6	10.8	88.2
12	$270 \pm 10 \%$	8.4	12	216	44.4
24	$1,100 \pm 15 \%$	16.8	2.4	43.2	218
48	$4,400 \pm 15 \%$	33.6	4.8	86.4	10.9
60	$6,540 \pm 15 \%$	42.0	6.0	108.0	9.2
110	$23,100 \pm 15 \%$	77.0	110	198.0	4.8

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 9 ms .
Release Time (typical): 3 ms .
Bounce Time (typical): N/O: 2 ms ; N/C: 3 ms .
Switching Rate: 6.000 ops./hr. max. at rated load

RP II/2 series

8 Amp, 2 Pole
 PC Board Relay

c ${ }^{2} \mathbf{N}_{\text {us File }}$ E214025
\bigcirc (5) K터에
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (30-150 Hz.): N/O: 11g; N/C: 15 g .
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Flux-tight (RT II) plastic case or sealed (RT III) cover.
Weight: . $63 \mathrm{oz} .(18 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Typical Part Number $>$			RP	4	1	0	012
1. Basic Series: RP = Printed circuit board relay.							
2. Version: $4=8 A$, flux-tight. $\quad 8=8 A$, sealed.							
3. Contact Arrangement: 2 = 2 Form C (DPDT). $4=2 \text { Form } A$	DPST-NO).						
4. Contact Material and Pin Spacing: $0=$ Silver-cadmium oxide, 5 mm pin spacing. 1 = Silver-nickel $0.15,5 \mathrm{~mm}$ pin spacing.							
5. Coil Voltage: $\begin{array}{ll} 005=5 \mathrm{VDC} & 012=12 \mathrm{VDC} \\ 006=6 \mathrm{VDC} & 024=24 \mathrm{VDC} \end{array}$	$\begin{aligned} & 048=48 \mathrm{VDC} \\ & 060=60 \mathrm{VDC} \end{aligned}$	$110=110 \mathrm{VDC}$					

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagrams (Bottom Views)

2 Form C

2 Form A

Features

- 1 Form A (SPST-NO) or 1 Form C (SPDT).
- 8 and 12 amp models available with 3.5 or 5 mm pin spacing.
- 16 amp models available with 5 mm pin spacing.
- $4 \mathrm{kV} / 8 \mathrm{~mm}$ contact-to-coil.
- Sockets available.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT), single contact.
Material: Silver-cadmium oxide or silver-nickel 0.15 .
Expected Mechanical Life: 30 million operations.

Ratings:				
Curren		8A	12A	16A
Voltage		250VAC	250VAC	250VAC
Power	breaking):	2,000VA	3,000VA	4,000VA
Voltage	(breaking):	400VAC	400VAC	400VAC
Make C	urrent:	16A	20A	25A
Materia		AgNi 0.15	AgCdO	AgCdO
Load/Life				
Type	Load			Life (Ops.)
RP410	12A, 250VAC	$\cos \varphi=1,12$	40\% duty cycle	110,000
RP410	9.1A, 220VA	$\cos \varphi=1,36$	15\% duty cycle	200,000
RP418	3.4A ON, 0.4	A OFF, 220V	S $\varphi=0.6$	>11 million
RP411	8A, 250VAC,	OS $\varphi=1,50 \%$	cycle	100,000
RP412	8A, 250VAC,	$\operatorname{Sos} \varphi=1,50 \%$	cycle	100,000
RP330	18.2A, 250V	, $\cos \varphi=1$,	15\% duty cycle	110,000
RP330	96A ON, 16A	OFF, 250VAC	= 0.6, 450/h	>30,000

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{~V}$ ms
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 500mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
5	$54 \pm 10 \%$	3.5	0.5	9.0	92.6
6	$68 \pm 10 \%$	4.2	0.6	10.8	88.2
12	$270 \pm 10 \%$	8.4	12	216	44.4
24	$1,100 \pm 15 \%$	16.8	2.4	43.2	218
48	$4,400 \pm 15 \%$	33.6	4.8	86.4	10.9
60	$6,540 \pm 15 \%$	42.0	6.0	108.0	9.2
110	$23,100 \pm 15 \%$	77.0	110	198.0	4.8

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 8 ms .
Release Time (typical): 2 ms .
Bounce Time (typical): N/O: 2 ms ; N/C: 4 ms .
Switching Rate: 6.000 ops./hr. max. at rated load

RP II/1 series

8-16 Amp, 1 Pole PC Board Relay

© ${ }_{\text {us File E }}$ E214025

\Leftrightarrow (t)
Kㄸㅓㅄㅄㅇ 12 A Version Only
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (30-300 Hz.): N/O: >10g; N/C: 2 g .
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Flux-tight (RT II) plastic case or sealed (RT III) cover.
Weight: . $63 \mathrm{oz} .(18 \mathrm{~g})$ approximately.

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

PC Board Layouts (Bottom Views)

8/12A, 3.5 mm Pin Spacing

8/12A, 5 mm Pin Spacing

16A, 5 mm Pin Spacing

1 Form C, 16A, 5 mm

1 Form A, 16A, 5 mm

Features

- 1 Form A (SPST-NO).
- 16 amp models handles up to 120A peak inrush current.
- $4 \mathrm{kV} / 8 \mathrm{~mm}$ contact-to-coil
- Latching and non-latching types.

Contact Data

Arrangements: 1 Form A (SPST-NO), single contact.
Material: Silver-tim oxide.
Expected Mechanical Life: 30 million operations.
Ratings:
Current: 16A
Voltage: 250VAC
Power (breaking): 4,000VA
Voltage (breaking): 440VAC
Make Current (max 4s at 10\% duty cycle): 25A
Peak Inrush Current: 120A
Load/Life
12A, 250VAC, $\cos \varphi=1 ; 300,000 \mathrm{ops}$.
TV8; 25,000 ops.
2,500W, 230VAC, Halogen lamps; > 10,000 ops.
1,000W, 250VAC, Incandescent lamps; 230,000 ops.
3,000W, 250VAC, Incandescent lamps; 36,000 ops.
1,500VA, Fluorescent lamps, 163 F ; 10,000 ops.

Initial Dielectric Strength

Between Open Contacts: 2,000Vrms
Between Coil and Contacts: $4,000 \mathrm{Vms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.
Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Nominal Coil Power: Non-latching: 500mW.
Single-coil latching: 12-14W.
Dual-coil latching: 12-15W.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
Non-Latching Models					
12	$270 \pm 10 \%$	9.0	12	216	44.4
24	$1,100 \pm 15 \%$	18.0	2.4	43.2	218
48	$4,400 \pm 15 \%$	36.0	4.8	86.4	10.9
60	$6,540 \pm 15 \%$	45.0	6.0	108.0	9.2
Nominal	DC Resistance in	Must Operate Voltage Voltage VDC	Reset Voltage Ohms	Reset R1 Ohms /W	Nominal Coil Current (mA)

Single-coil Latching Models - Reset Voltage 70-110\% of Nom.

5	$21 \pm 10 \%$	3.7	3.6	$39 / 0.5$	238.1
12	$115 \pm 10 \%$	9.0	8.7	$220 / 0.5$	104.3
24	$460 \pm 10 \%$	18.0	16.7	$820 / 0.5$	52.2

Dual-coil Latching Models - Reset Voltage 75-120\% of Nom.					
12	$105 \pm 15 \%$	9.0	9.0	-	114.3
24	$460 \pm 15 \%$	18.0	18.0	-	52.2

Operate Data

Must Operate Voltage: See Coil Data table.
Operate / Release Time (Non-latching, typical): $8 \mathrm{~ms} / 2 \mathrm{~ms}$.
Operate / Reset Time (Latching, typical): $6 \mathrm{~ms} / 2 \mathrm{~ms}$.
Bounce Time (typical): 2 ms .
Switching Rate: 6.000 ops./hr. max. at rated load.

RP 3 SL series

16 Amp, 1 Pole
 PC Board Relay for High Inrush Loads
 ${ }^{\text {cTN }}$ us File E214025
 \Leftrightarrow K터엥

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (30-300 Hz.): 20 g .
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Flux-tight (RT II) plastic case or sealed (RT III) cover.
Weight: . $63 \mathrm{oz} .(18 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Non-Latching Models

Latching Models

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. TBD

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagram (Bottom View)

Terminal b) only present on two-coil latching models

Latching Versions:
Contact position shown results during or after Coil energization with reset voltage.

Two-Coil Versions:
Operate: A2, A3
Reset A1, A3

Circuit Diagram for Single-Coil Latching Model

Features

- 1 Form A (SPST-NO).
- Tungsten prerun contact and silver-cadmium oxide contact.
- 10 amp rated current, $500 \mathrm{~A} / 10 \mu \mathrm{sin}$ inush current.
- 4kV/8mm contact-to-coil, insulation to VDE 0631 and 0700.
- Non-latching and latching types.
- Well suited for lighting systems, motors, lamp loads.

Contact Data

Arrangements: 1 Form A (SPST-NO), single contact.
Material: Tungsten prenun contact and silver-cadmium oxide contact.
Expected Mechanical Life: 30 million operations.
Ratings:
Current: 10A.
Current (making, max. 4s at 10\% duty cycle): 16A.
Current (peak inrush 10 μ s): 500A.
Voltage: 250VAC.
Voltage (breaking): 400VAC.
Load/Life
10 amp resistive, 250VAC; 250,000 ops.
2,500W, incandescent lamps; 30,000 ops.
1,300W, fluorescent lamps (140 $\mu \mathrm{F}$); 30,000 ops.
1,000W, Dulux lamps ($140 \mu \mathrm{~F}$); 30,000 ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Non-Latching Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: Non-latching: 820mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current $(\mathbf{m A)}$
6	80	4.2	0.4	12.0	75.0
12	300	8.4	0.9	24.0	40.0
24	1,200	16.8	18	48.0	20.0
48	4,825	33.6	3.6	96.0	10.0
60	7,500	42.0	4.5	120.0	8.0

0409 series

High Inrush (500A/10us)
 Printed Circuit Board Relay

吹 File E214025

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Latching Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Nominal Coil Power: Latching: 0.8-1W.
Minimum Energization Time: 20 ms .

Nominal Voltage VDC	DC Resistance in Ohms $\pm 10 \%$	Must Operate Voltage VDC	Min. Reset Voltage VDC	Max. Reset Voltage VDC	Nominal Coil Current $(\mathbf{m A)}$
12	118	8.9	0.7	2.5	40.0
24	457	18.0	13	5.0	20.0

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time /Release Time (typical): $10 \mathrm{~ms} / 3 \mathrm{~ms}$.
Bounce Time (typical): 3 ms
Switching Rate: 9,000 ops./hr. max. at rated load.

Environmental Data

Temperature Range: Operating: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (30-300 Hz.): 20g.
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Flux-tight (RTII) plastic case.
Weight: 0.35 oz . $(10 \mathrm{~g})$ approximately.
Coil Operating Range

Ordering Information

Typical Part Number				0409	47	031	001
1. Basic Series: $0409=$ Miniature printed circuit board relay for high inrush currents.							
2. Type: 47 = Non-latching	67	hing					
3. Coil Voltage: Non latching Coil: Latching Coil:	$\begin{aligned} & 031=12 \mathrm{VDC} \\ & 032=12 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 027=24 \mathrm{VDC} \\ & 029=24 \mathrm{VDC} \end{aligned}$	024 = 48VDC	$023=60 \mathrm{VDC}$			

4. Contact Configuration:
$001=1$ Form A (SPST-NO)
Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagram (Bottom View)

Features

- 1 Form A (SPST-NO) and 1 Form B (SPST-NC).
- 16 amp rated current.
- Quick connect terminals for load.
- Ambient temperature up tp $125^{\circ} \mathrm{C}$.
- 4kV/8mm contact-to-coil, insulation to VDE 0631 and 0700.
- Flux-tight plastic case.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form B (SPST-NC), single contact.
Material: Silver-cadmium oxide.
Expected Mechanical Life: 30 million operations.

Ratings:

Current: 16A.
Voltage: 250VAC.
Power (breaking): 4,000 VA.
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): 25A.
1 Form A Contacts
10 amp resistive, $400 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 200,000$ ops.
16 amp resistive, $250 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 100,000$ ops.

1 Form B Contacts

10 amp resistive, $400 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 50,000$ ops.
16 amp resistive, $250 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 50,000$ ops.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 360mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
6	100	3.8	0.6	16.9	60.0
12	400	7.5	12	33.8	30.0
24	1,600	14.9	2.4	67.7	15.0
48	6,400	30.0	4.8	135.3	7.5

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time: 10 ms .
Release Time: 2 ms .
Bounce Time (N/O contact / N/C contact) : $1 \mathrm{~ms} / 2 \mathrm{~ms}$.
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

V23077 (IF) series
 16 Amp, Miniature
 Printed Circuit Board Relay

${ }^{\text {cTN }}$ us File E214025
© 0
Users should thoroughly review the technical data before selecting a product Users should thoroughly review the technical data before selecting a prod
part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: Printed circuit terminals, plus quick connects for load.
Enclosure (94 V-0 rated): Flux-tight (RTII) plastic case.
Weight: 0.92 oz . $(26 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Typical Part Number \downarrow V23077	-A	1	005	-A	4	03
1. Basic Series: V23077 $=$ IF $125^{\circ} \mathrm{C}$ miniature printed circuit board relay..						
2. Termination: A = PC temminals for coil, $.25^{\prime \prime}$ (6.35 mm) quick connects for load.						
3. Version: 1 = Standard.						
$\begin{aligned} & \text { 4. Coil Voltage: } \\ & 003=6 \mathrm{VDC}\end{aligned} \quad 005=12 \mathrm{VDC} \quad 007=24 \mathrm{VDC} ~ 009=48 \mathrm{VDC}$						
5. Contact Type: A = Single contact.						
6. Contact Material: 4 = Silver-cadmium oxide.						
7. Contact Arrangement: $02=1$ Form A (SPST-NO) $. \quad 03=1$ Form B (SPST-NC).						

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

1 Form A

1 Form C

PC Board Layout (Bottom View)

Features

- 1 Form A (SPST-NO), 1 Form B (SPST-NC) and 1 Form X (SPST-NO-DM).
- 16 amp rated current.
- Quick connect terminals for load.
- 41063 types operate in ambient temperature up to $125^{\circ} \mathrm{C}$.
- 4kV/8mm contact-to-coil, insulation to VDE 0631 and 0700.
- 41083 version provides 3 mm contact gap.
- Flux-tight plastic case.

Contact Data

Arrangements:
410 63: 1 Form A (SPST-NO) and 1 Form B (SPST-NC), single contact.
410 83: 1 Form X (SPST-NO-DM).
Material: 410 63: Silver-cadmium oxide.; 410 83: Silver-nickel.
Expected Mechanical Life: 10 million operations.
Ratings:
Current: 16A.
Voltage: 250VAC.
Power (breaking): 4,000 VA.
Voltage (breaking): 440VAC.
Current (making, max. 4s at 10\% duty cycle): 410 63: 25A.; 410 83: 20A.
41063-1 Form A Contacts
16 amp resistive, $250 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 100,000$ ops. 12 amp resistive, $250 \mathrm{VAC}, 70^{\circ} \mathrm{C}, 450,000$ ops. 10 amp resistive, $400 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 50,000$ ops. $12 \mathrm{amp} \cos \varphi=0.6,250 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 50,000$ ops
41063 - 1 Form B Contacts 16 amp resistive, $250 \mathrm{VAC}, 125^{\circ} \mathrm{C}, 150,000$ ops.
41083 - 1 Form X Contacts 16 amp resistive, $250 \mathrm{VAC}, 85^{\circ} \mathrm{C}, 30,000 \mathrm{ops}$. 10 amp resistive, $250 \mathrm{VAC}, 85^{\circ} \mathrm{C}, 100,000$ ops 10 amp resistive, $400 \mathrm{VAC}, 85^{\circ} \mathrm{C}, 10,000$ ops.

Initial Dielectric Strength

Between Open Contacts: 410 63: 1,000Vrms.; 410 83: 2,000Vms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 360mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current (mA)
$\mathbf{4 1 0 6 3}$ models (1 Form A or 1 Form B)					
6	100	3.8	0.6	16.9	60.0
12	400	7.5	12	33.8	30.0
24	1,600	14.9	2.4	67.7	15.0
48	6,400	30.0	4.8	135.3	7.5
$\mathbf{4 1 0 8 3}$ models (1 Form X with 3 mm contact gap)					
6	100	3.6	0.45	16.9	60.0
12	400	7.3	0.9	33.8	30.0
24	1,600	14.6	18	67.7	15.0
48	6,400	29.2	3.6	135.3	7.5
60	10,000	36.5	4.5	135.3	6.0

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 410 63: 10ms.; 410 83: 14 ms.
Release Time (typical): 5 ms .
Bounce Time (typical): 3 ms
Switching Rate: 6,000 ops./hr. max. at rated load.

0410 series

16 Amp, Miniature Printed Circuit Board Relay

믹 File E214025

(18) 요 (5)

NOTE: 041083 version is VDE only, not UL, CSA or SEMCO.
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:
Operating: $41063:-20^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} ; 41083:-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration: (10 to 500 Hz .) 10 g [410 83].
Shock (functional): 100g [410 83].

Mechanical Data

Termination: Printed circuit terminals, plus quick connects for load.
Enclosure ($94 \mathrm{~V}-0$ rated): Flux-tight (RTII) plastic case.
Weight: $0.85 \mathrm{oz} .(24 \mathrm{~g})$ approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

41063 Type
1 Form A or 1 Form C

41083 Type

1 Form X, 3 mm Contact Gap

Ordering Information

Typical Part Number $>$	0410	83	046	001
1. Basic Series: $0410=$ Miniature printed circuit board relay with quick connect terminals for load.				
2. Version: $63=$ M odel for ambient temperature up to $125^{\circ} \mathrm{C}$. 83 = M odel with 3 mm contact gap, for ambient temperature up to $85^{\circ} \mathrm{C}$				
3. Coil Voltage: $054=6 \mathrm{VDC} \quad 050=12 \mathrm{VDC} \quad 046=24 \mathrm{VDC} \quad 043=48 \mathrm{VDC}$ (Note: 60VDC coil is not available with version 63)	$042=60 \mathrm{VDC}$			
4. Contact Arrangement: $01=1$ Form A (SPST-NO) on version 63; 1 Form X (SPST-NO-DM) on version 83. $02=1$ Form B (SPST-NC), not available on version 83.				

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

410 63, 1 Form A

410 83, 1 Form X

PC Board Layout (Bottom View)

PCG series

Features

- Meet UL Tungsten TV-5 rating.
- 2 Form A contact arrangements.
- Meet UL, CSA, SEMKO and SEV requirements.
- Meet $4,000 \mathrm{~V}$ dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts (1.2 / $50 \mu \mathrm{~s}$).

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 2 Form A (DPST-NO).
Material: AgSnO.
Max. Switching Rate: $300 \mathrm{ops} . / \mathrm{min}$. (no load).
$30 \mathrm{ops} . / \mathrm{min}$. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 5A @ 250VAC resistive, 100,000ops.
8A @250VDC resistive, 50,000ops.
TV-5 @120VAC Tungsten, 25,000ops.
Max. Switched Voltage: AC: 277V.

DC: 30V.

Max. Switched Current: 10A
Max. Switched Power: 1,250VA, 380W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: 4,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 10,000V (1.2 / 50 $\mu \mathrm{s}$).
Surge Voltage Between Contact and other Pole: 6,000V (1.2 / 50 s s).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDCM.

Coil Data

Voltage: 5 to 48VDC.
Nominal Power: 540 mW
Coil Temperature Rise: $50^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

2 Pole Miniature

Power PC Board Relay

Appliances, Audio Equipment, Office Machines

PI UL File No. E82292
(18) CSA File No. LR48471
(S) SEMKO File No. 8744066
($\left.{ }_{\mathbf{S}}^{\mathbf{S}}\right)$ SEV File No. 98110096

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

PCG				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
5	106.4	47	4.00	0.25
6	88.0	68	4.80	0.30
9	58.0	155	7.20	0.45
12	44.4	270	9.60	0.60
24	21.8	1,100	19.20	1.20
48	11.0	4,400	38.40	2.40

Operate Data

Must Operate Voltage: 80\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 15 ms max.
Release Time: 5 ms max.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: $1,000 \mathrm{~m} / \mathrm{s}^{2}$ (100G approximately).
Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.

Enclosure ($94 \mathrm{~V}-0$ Flammability Ratings):

PCG-N: Vented (Flux-tight) snap-on cover.
Weight: $0.63 \mathrm{oz}(18 \mathrm{~g})$ approximately.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only.	(millimeters) unless otherwise specified.	www.tycoelectronics.com subject to change.
Technical support:		

Ordering Information

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Reference Data

Features

- 1 Form A (SPST-NO) through 2 Form C (DPDT).
- 16 amp rated current (1 pole) or 10 amp (2 pole).
- Printed circuit or quick connect terminals.
- $4 \mathrm{kV} / 8 \mathrm{~mm}$ contact-to-coil.
- 3 mm contact gap version available.
- Optional magnetic blowout on 3mm contact gap version.
- PC board, bracket or panel mount.

Contact Data

Arrangements: 1 Form A (SPST-NO), 1 Form B (SPST-NC), 1 Form C (SPDT), 2 Form A (DPST-NO), 2 Form B (DPST-NC), 2 Form C (DPDT).
Material: Silver-cadmium oxide or silver-copper 3.
Expected Mechanical Life: 250,000 operations
Ratings:
Current: One pole: 16A; Two pole: 10A.
Voltage: 250VAC.
Power (breaking): One pole: 4,000 VA; Two pole: $2,500 \mathrm{VA}$.
Voltage (breaking): 400VAC.
Current (making, max. 4s at 10\% duty cycle): One pole: 25A; Two pole: 15A.
Load/Life - One Pole - Model with Standard Contact Gap 16 amp resistive, 250VAC, 250,000 ops.
Load/Life - One Pole - Model with 3mm Contact Gap
16 amp resistive, $250 \mathrm{VAC}, 70^{\circ} \mathrm{C}, 150,000$ ops.
10 amp resistive, $250 \mathrm{VAC}, 105^{\circ} \mathrm{C}, 150,000$ ops.
Load/Life - Two Pole
10 amp resistive, 250VAC, 250,000 ops.

Initial Dielectric Strength

Between Open Contacts: Standard Contact Gap: 1,000Vrms 3mm Contact Gap: $2,000 \mathrm{Vms}$.
Between Coil and Contacts: 4,000Vrms.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: DC Coil : 1W.; AC Coil: 18VA

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC Coils	Nominal Coil Current (mA)
12	145	7.8	0.6	15.6	83.0
24	580	15.6	12	312	410
48	2,200	312	2.4	62.4	22.0
110	13,000	715	5.5	143.0	9.0
AC Coils - Models with Standard Contact Gap 24 60$\quad 200$					
110	1,250	45.0	3.6	27.0	75.0
230	17,500	83.0	9.0	69.0	30.0
AC Coils - Models with 3mm Contact Gap	16.0	127.0	16.0		
24	145	18.0	3.6	27.0	75.0
60	950	45.0	9.0	69.0	30.0
110	3,100	83.0	16.0	127.0	16.0
230	11,400	170.0	35.0	253.0	9.0

0430 series

10-16 Amp, 1 or 2 Pole PC Board or Panel Relay

TVile E214025

(vos)
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): Standard Contact Gap: 18 ms . 3mm Contact Gap: 15 ms .
Release Time (typical): Standard Contact Gap: 3 ms . 3mm Contact Gap: 8 ms .
Bounce Time (typical): Standard Contact Gap: 3 ms . 3mm Contact Gap: 4 ms .
Switching Rate: 9,000 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $41063:-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Shock (destructive): 100g.

Mechanical Data

Termination: Printed circuit or quick connect terminals.
Enclosure: Plastic dust cover.
Weight: 113 oz . (32 g) approximately.

Contact Life

Models with Std. Contact Gap

Models with 3mm Contact Gap

Max. DC Load Breaking Capacity

Models with Std. Contact Gap

Models with 3mm Contact Gap

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

PC Board Version, Std. Gap.

Wiring Diagrams (Bottom Views)

1 Form A, Standard Contact Gap

1 Form A, 3mm Contact Gap

2 Form A, Standard Contact Gap
 subject to change.

PC Board Layouts (Bottom Views)

1 Form A, 3mm Contact Gap
1 Form A, Standard Contact Gap

Features

- Low power sensitive coil.
- 1 Form A, 1 Form B and 1 Form C contact arrangements.
- Various contact materials and types for ratings to 15 amps.
- Coil assembly rated $130^{\circ} \mathrm{C}, 94 \mathrm{~V}-\mathrm{O}$.
- Applications include sensor and timer controls, emergency lighting, instrmentation, alarm systems, smoke and fire detectors, business equipment and vending machines.

Contact Data

Arrangements: 1 Form A (SPST-NO), 1 Form B (SPST-NC) and 1 Form C (SPDT).
Material and Type: Gold-silver crossbar, silver-cadmium crossbar, palladium crossbar, gold-flashed silver cadmium, silver sadmium oxide, find silver, gold-flashed coin silver.
Expected Mechanical Life: 10 million operations, minimum.
Expected Electrical Life: 100,000 operations, minimum, at rated load.
ULCSA Ratings @ $25^{\circ} \mathrm{C}$

Code	Contact Material	Rating
B	Au Flashed AgCd	75VA@24VAC Pilot Duty§
		1A@120VAC General Purpose
		1.5A@50VDC Resistive
		600w@277VAC Gen'l. Purpose SPST-NO Only
		240W@277VAC Gen'l. Purpose SPST-NC Only
		480VA277VAC Pilot Duty SPDT Only
		480VA@@allast SPDT Only
		$1 / 10$ HP@120VAC

§ Only when Code Y Electrical Spacing is specified.

600 series
 15 Amp Sensitive PC Board Relay

吹 File E39006 and E42149
(18) File LR48569

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application

Initial Dielectric Strength

Between Open Contacts: 500VAC, 60 Hz ., 2 seconds.
Between Coil and Contacts: 1,000VAC, $60 \mathrm{~Hz} ., 2$ seconds.

Coil Data @ $25^{\circ} \mathrm{C}$

Rated Voltage: 3 to 48VDC.
Maximum Voltage @ $85^{\circ} \mathrm{C}$: 120% of Rated Voltage.
Nominal Power @ $25^{\circ} \mathrm{C}$: 110mW for 3A and 5A rated models;
240 mW for 15 A rated models.
Maximum Power @ $\mathbf{2 5}^{\circ} \mathrm{C}$: 1W.
Duty Cycle: Continuous.
Initial Insulation Resistance: 10,000 megohms, min., at $25^{\circ} \mathrm{C}, 500 \mathrm{VDC}$ and 50% rel. humidity.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$		Must Operate Voltage VDC	Must Release Voltage VDC
	3 A \& 5A Types	15A Types	2.25	0.3
006	82	38	4.5	0.6
009	327	150	6.75	0.9
012	736	338	9.0	12
018	1,309	600	13.5	18
024	2,945	1,350	18.0	2.4
028	5,236	2,400	210	2.8
048	7,127	3,267	36.0	4.8

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal.
Must Release Voltage: 10\% of nominal.
Operate Time: 10 ms , typ.
Release Time: 10 ms , typ.

Environmental Data

Temperature Range:
Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosures: Unsealed dust cover or sealed plastic case.
Weight: 16 oz . (45 g) approximately.

Our authorized distributors are more likely to stock the following items for immediate delivery. None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagrams (Bottom Views)
1 Form A 1 Form B 1 Form C
(SPST-NO) (SPST-NC) (SPDT)

Note: On single throw models, only necessary terminals are present.

Alphanumeric Index

Series Type	Page
491 20A AC Coil PCB or Panel Mt. Relay 509	
PCF 25A DC Coil PCB Relay 502	
T9A 30A DC Coil PCB or Panel Mt. Relay 506	
T90 30A DC Coil PCB Relay 504	
T92 30A AC or DC Coil PCB or Panel Mt. Relay ... 511	

NOTE: Some of the relay series described in the Power Relays and Contactors section are also available with printed circuit board terminals as an option.
\qquad 501-512

Power (20-30A) PC Board Relay Question Tree

This guide helps the user select one or more relay series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a relay for a particular application.

PCF series

25A Miniature
 Power PC Board Relay

Appliances, HVAC, Office Machines.

TJ UL File No. E58304
(18) CSA File No. LR48471
\triangle TUV File No. R9551880

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Meet UL 508, CSA, TUV requirements.
- 1 Form A contact arrangements.
- Quick connect terminal type and PC board type.
- Meet 5,000V dielectric voltage between coil and contacts.
- Meet $10,000 \mathrm{~V}$ surge voltage between coil and contacts ($1.2 / 50 \mu \mathrm{~s}$).

Contact Data @ 20응

Arrangements: 1 Form A.

Material: AgSnO
Max. Switching Rate: $300 \mathrm{ops} . / \mathrm{min}$. (no load).
30 ops./min. (rated load).
Expected Mechanical Life: 10 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 25A @ 250VAC resistive.
23A @ 277VAC resistive.
20A @ 250VAC inductive ($\cos \varnothing=0.4$).
Max. Switched Voltage: AC: 250V.
Max. Switched Current: 25A.
Max. Switched Power: 6,370VA.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC $50 / 60 \mathrm{~Hz}$. (1 minute).
Between Coil and Contacts: $5,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$. (1 minute).
Surge Voltage Between Coil and Contacts: 8,000V (1.2 / 50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Elements: 1,000M ohms min. @ 500VDC.

Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$

PCF / PCFN				
Rated Coil Voltage (VDC)	Nominal Current (mA)	Coil Resistance (ohms) \pm 10\%	Must Operate Voltage (VDC)	Must Release Voltage (VDC)
		40	4.50	0.30
06	150.0	90	6.75	0.45
09	100.0	160	9.00	0.60
12	75.0	640	18.00	1.20
24	37.5			

Operate Data

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 5\% of nominal voltage or more.
Operate Time: 20 ms max.
Release Time: 10 ms max.

Environmental Data

Temperature Range:
Operating: $\quad-30^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Vibration, Mechanical: 10 to $55 \mathrm{~Hz} ., 1.5 \mathrm{~mm}$ double amplitude Operational: 10 to 55 Hz ., 1.5 mm double amplitude.
Shock, Mechanical: 1,000m/s² (100G approximately).
Operational: 100m/s² (10G approximately).
Operating Humidity: 20 to 85\% RH. (Non-condensing).

Mechanical Data

Termination PCF: Printed circuit terminals with quick connect terminals.
PCFN : Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings):
PCF / PCFN: Vented (Flux-tight) plastic cover.
Weight: $0.99 \mathrm{oz}(28 \mathrm{~g})$ approximately.

Coil Data

Voltage: 6 to 24VDC.
Nominal Power: 900 mW .
Coil Temperature Rise: $55^{\circ} \mathrm{C}$ max., at rated coil voltage.
Max. Coil Power: 130\% of nominal.
Duty Cycle: Continuous.

Ordering Information

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Features

- Up to 30A switching in SPST and 20A switching in SPDT arrangements.
- Silver cadmium oxide contacts.
- Available as an open-frame relay, with a snap-on dust cover or with an immersion cleanable(${ }^{(6)}$, plastic sealed case.
- Meets UL 508 \& UL 873 spacing - 1/8" through air, 1/8" over surface. (1/4" over surface with terminal code 4)
- UL class F insulation standard.
- Well suited for various industrial, commercial and residential applications, as well as many others.

Contact Ratings @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Mechanical Life: 10 million operations, typical.
Contact Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$ with relay properly vented. Remove vent nib after soldering and cleaning.
Typical Electrical Load \& Life (Open Style Relay)

Form \& Contact Material	Contact Load	Type of Load	Ops
(1) Silver-cadmium oxide	30A @ 240VAC	UL General Purpose	100,000
	20A @ 240VAC	Resistive Heater	100,000
(5) Silver-cadmium	20A/10A @ 240VAC	UL General Purpose	100,000
oxide	20A/10A @ 28VDC	Resistive	100,000

Minimum Contact Load:
Silver Contacts: 500mA @ 5VDC or 12VAC.
Silver Cadmium Oxide Contacts: 1A @ 5VDC or 12VAC.
Initial Contact Resistance: $75 \mathrm{~m} \Omega$, max., @ min. rated current (switched).

Initial Dielectric Strength

Between Open Contacts: $1,500 \mathrm{~V}$ rms.
Between Contacts and Coil: $1,500 \mathrm{~V}$ rms (terminal code 1).
$2,500 \mathrm{Vms}$ (UL 873 version terminal code 4).

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{9} ohms, min., @ 500VDC, $25^{\circ} \mathrm{C}$ and 50% R.H.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 5 to 110VDC.
Maximum Coil Power: 2.8 Watt
Maximum Coil Temperature ${ }^{(5)}$: Class F: $155^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

Coil Data

Nominal Voltage (VDC)	Resistance $\mathbf{\pm 1 0 \%}$ (Ohms)	Nominal Power $(\mathbf{m W})$	Nominal Current $(\mathbf{m A})$
5	27	930	185
6	40	900	150
9	97	840	93
12	155	930	77
15	256	880	59
18	380	850	47
24	660	870	36
48	2,560	900	19
110	13,450	900	8

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time (Including Bounce)t: 15 ms , max.
Release Time (Including Bounce) \dagger : 15 ms , max.
\dagger At or From Nominal Coil Voltage

T90 series

30 Amp Printed Circuit Board Relay
 只 File E22575
 (18) File LR15734® ${ }^{\text {® }}$ Patented

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Typical Coil Temperature Rise

Data below are average values and should be verified in application. Tests were conducted within a $2^{\prime}(.6 \mathrm{~m})$ cube (still air) with relay mounted to a 30A, single side P.C. board (6); at nominal coil power @ $25^{\circ} \mathrm{C}$; with normally open contact loaded; and with 4' (1.22 m) long, \#10 AWG load wires.

Environmental Data

Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(1)$.
Vibration, Operational: $0.065^{\prime \prime}(1.65 \mathrm{~mm})$ max. excursions from $10-55 \mathrm{~Hz}$. with no contact opening $>100 \mu \mathrm{~s}$.
Shock, Operational: 10 g for 11 ms with no contact opening $>100 \mu \mathrm{~s}$.
Shock, Mechanical: 100g.

Mechanical Data

Termination: Printed circuit terminals(4).
Enclosures (all have 94V-0 flammability rating, Class F temp. rating): Optional dust cover: Snap-on plastic dust cover is available for use on open style T90N.
Sealed case (T90S): Immersion cleanable, sealed plastic case ${ }^{(2)}$.
Weight: Open Model T90N: 0.7 oz . $(20 \mathrm{~g}$) approximately.
Sealed Model T90S: 0.9 oz. $(26 \mathrm{~g})$ approximately.

Notes

(1) Operating ambient temperature must consider " Must Operate Voltage Change Over Temperature," Contact Temperature Rise, Coil Temperature Rise (If coil is not allowed to cool) and Maximum Coil Temperature. Specification ambient considers nominal coil voltage, 20A load with coil cooled to ambient.
(2) Sealed relay terminals should not be bent.
(3) Knock-off nib should be removed after cleaning process for optimum life of sealed relays.
(4) Maximum soldering temperature is $500^{\circ} \mathrm{F}$ for 4 seconds.
(5) Class F coils are UL systems approved for maximum coil temperature of $155^{\circ} \mathrm{C}$ by change of resistance method.
(6) See application note 13C265 for proper relay mounting, termination, cleaning and PC board conductor width. Coil rise test performed with 30A PC board to maintain $20^{\circ} \mathrm{C}$ maximum rise @ 30 A .

1. Basic Series:

T90 = Printed circuit board power relay.
2. Enclosure:
$\mathrm{N}=$ Open, no cover (snap-on dust cover available as an option).
$\mathrm{S}=$ Immersion cleanable, sealed plastic case with knock-off nib for ventilation.
3. Contact Arrangement:
$1=1$ Form A (SPST-NO). $5=1$ Form C (SPDT).
4. Coil Input:
$\mathrm{D}=\mathrm{DC}$ Voltage.
5. Terminals:
$1=$ Printed circuit terminals.
4 = Printed circuit terminals, no common terminal between coil terminals (see wiring diagram).
Note: Terminal code 4 recommended for UL 873 applications. Consult factory for use of terminal code 1 for UL 873 applications.
6. Contact Material:

2 =Silver-cadmium oxide.

7. $\begin{array}{l}\text { Coil Voltage: } \\ 5=5 \mathrm{~V} \mathrm{DC}\end{array} 6=6 \mathrm{VDC} \quad 9=9 \mathrm{VDC} \quad 12=12 \mathrm{VDC} \quad 15=15 \mathrm{VDC} \quad 18=18 \mathrm{VDC} \quad 24=24 \mathrm{VDC} \quad 48=48 \mathrm{~V}$ DC $\quad 110=110 \mathrm{VDC}$

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

T90N1D12-12	T90N1D42-24	T90N5D42-24	T90S1D42-24	T90S5D42-24
T90N1D12-18	T90N5D12-12	T90S1D12-12	T90S5D12-12	
T90N1D12-24	T90N5D12-24	T90S1D12-24	T90S5D12-24	

Outline Dimensions

T90N

T90S

Wiring Diagram \& PC Board Layout (Bottom Views)

1 Form C

UL \& CSA Contact Ratings

Voltage	Load Type	N.O. Contact	N. C. Contact
Silver Contacts			
240VAC	General Purpose	10 A	5 A
240VAC	Resistive	10 A	5 A
28VDC	Resistive	10 A	5 A
Silver-Cadmium Oxide Contacts			
240VAC	General Purposet	30 A	15 A
240VAC	UL Resistivet	20 A	15 A
120VAC	Motor	1 HP	$1 / 4 \mathrm{HP}$
240VAC	Motor	2 HP	$1 / 2 \mathrm{HP}$
240VAC	LRA/FLAt	$8 / 30$	$30 / 10$
240VAC	Tungsten	TV5	TV3
277VAC	Ballast	6 A	3 A
28VDC	Resistive	20 A	10 A

\dagger For Form C application, derate current to 67%.

Features

- Up to 30 amp switching in SPST and 20 amp in SPDT arrangements.
- Immersion cleanable(6), plastic sealed case available.
- Meets UL 873 and UL 508 spacing - 1/8" through air, 1/4" over surface.
- Load connections made via 1/4" Q. C. terminals and safety wells accept insulated female Q. C. terminals (mounting codes $2 \& 5$).
- UL Class F insulation system standard.
- Well suited for various industrial, commercial and residential applications.

Contact Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Mechanical Life: 10 million operations, typical.
Minimum Contact Load: 1A @ 5VDC or 12VAC.
Initial Contact Resistance: 75 milliohms, max., @ min. rated current (switched).
Contact Ratings @ $25^{\circ} \mathrm{C}$ (unless otherwise noted) with relay properly vented. Remove vent nib after soldering and cleaning.
Typical Electrical Load \& Life - 1 Watt Coil

Contact Arrangement	Contact Load	Type of Load	Operations
1	30A @ 240VAC	UL General Purpose	100,000
	25A @ 240VAC	Resistive Heater	100,000
5	20A/10A @ 240VAC	UL General Purpose	100,000
	20A/10A @ 240VAC	UL Resistive	100,000
	20A/10A @28VDC	Resistive	100,000

UL 508/873 \& CSA Contact Ratings - 900mW Coil

Voltage	Load Type	N.O. Contact	N.C. Contact	Operations
240 VAC	General Purpose	30 A	-	100,000
240 VAC	Resistive	18 A	-	$100,000 @ 105^{\circ} \mathrm{C}$
240 VAC	Resistive	-	15 A	6,000
240 VAC	LRA/FLA	$30 \mathrm{~A} / 15 \mathrm{~A}$	-	100,000
120VAC	LRA/FLA	$50 \mathrm{~A} / 16 \mathrm{~A}$	-	100,000
120VAC	LRA/FLA	$30 \mathrm{~A} / 11 \mathrm{~A}$	-	200,000

Note: Consult factory for other 900 mW version contact ratings.
UL 508/873 \& CSA Contact Ratings - 1 Watt Coil

Voltage	Load Type	N.O. Contact	N.C. Contact
277 VAC	Tungsten $*$	5.4 A	-
277 VAC	Ballast	10 A	3 A
240 VAC	Motor	2 HP	$1 / 2 \mathrm{HP}$
240 VAC	Resistive $* \dagger$	25 A	20 A
240 VAC	General Purpose \dagger	30 A	15 A
240 VAC	LRA/FLA $* * \dagger \dagger$	$80 \mathrm{~A} / 30 \mathrm{~A}$	$30 \mathrm{~A} / 12 \mathrm{~A}$
240 VAC	Pilot Duty*	470 VA	275 VA
125 VAC	Motor	1 HP	$1 / 4 \mathrm{HP}$
120 VAC	LRA/FLA	$98 \mathrm{~A} / 22 \mathrm{~A}$	-
120 VAC	Tungsten $*$	8.3 A	-
120 VAC	Pilot Duty	470 VA	-
28 VDC	Resistive	20 A	10 A

* Rated 6,000 operations.

** Higher UL \& CSA ratings available.
\dagger For Form C application, derate current to 20A (N.O.), 10A (N.C.).
†† For Form C application, derate current to 67\%.

T9A series

DC Coil 30 Amp PC Board or Panel Mount Relay

只 File E22575
(18) File LR15734®

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Open Contacts: $1,500 \mathrm{~V}$ rms.
Between Contacts and Coil: $2,500 \mathrm{~V}$ ms.
6 kV surge using $1.2 \mu \mathrm{~s} / 50 \mu \mathrm{~s}$ Impulse Wave or $.5 \mu \mathrm{~s}-100 \mathrm{kHz}$ Ring Wave

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{9} ohms, min., @ 500VDC, $25^{\circ} \mathrm{C}$ and 50% R.H.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 5 to 110VDC.
Nominal Coil Power: 1.0W, (approx.) and 900mW (approx.) versions.
Maximum Coil Power: 2.8 Watt.
Maximum Coil Temperature ${ }^{(5)}$: Class $\mathrm{F}: 155^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

Coil Data - 1 Watt

Nominal Voltage	DC Resistance $\pm \mathbf{1 0 \%}$ (Ohms)	Nominal Current (mA)
5	25	200
9	81	111
12	144	83
18	324	56
24	576	42
48	2,304	21
110	12,100	9

Coil Data - 900mW

Nominal Voltage	DC Resistance $\pm \mathbf{1 0 \%}$ (Ohms)	Nominal Current (mA)
5	27	185
9	97	93
12	155	77
18	380	47
24	660	36
48	2,560	19
110	13,450	8

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage: 75\% of nominal voltage or less.
Must Release Voltage: 10\% of nominal voltage or more.
Operate Time (Including Bounce)§: 15 ms , max.
Release Time (Including Bounce)§: 15 ms , max.
§ At or From Nominal Coil Voltage

Note: Consult factory for other 900 mW version contact ratings.

Ambient Temperature vs. Coil Voltage - 1 Watt Coil

Data below are average values and should be verified in application. Tests were conducted within a $2^{\prime}(.6 \mathrm{~m})$ cube (still air); at nominal coil power @ $25^{\circ} \mathrm{C}$; with normally open contact loaded; and with $4^{\prime}(1.22 \mathrm{~m})$ long, \#10 AWG load wires. P.C. board relays were mounted to a 30A, single side P.C. board (6).

Environmental Data

Storage Temperature Range: $-55^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
Operating Temperature Range ${ }^{(1)}:-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration, Operational: $0.065^{\prime \prime}(1.65 \mathrm{~mm})$ max. excursions from $10-55 \mathrm{~Hz}$. with no contact opening $>100 \mu \mathrm{~s}$.
Shock, Operational: 10 g for 11 ms with no contact opening $>100 \mu \mathrm{~s}$.
Shock, Mechanical: 100g.

Mechanical Data

Termination: Printed circuit and quick connect terminals (4).
Enclosures (all have 94V-0 flammability rating):
T9AP: Unsealed, plastic dust cover.
T9AS: Immersion cleanable, sealed plastic case ($2 \& 3$).
T9AV: Vented, flux-tight, plastic cover.
Weight: Q.C. version: 1.2 oz. (33g) approx. (mounting code $2 \& 5$).
Sealed Model T9AS: 0.9 oz . (26 g) approx. (mounting code 1).

Notes

(1) Operating ambient temperature must consider " M ust Operate Voltage Change OverTemperature," Contact Temperature Rise, Coil Temperature Rise (If coil is not allowed to cool) and Maximum Coil Temperature. Specification ambient considers 20A load with coil cooled to ambient.
(2) Sealed relay terminals should not be bent.
(3) Remove knock-off nib after cleaning process for optimum life of sealed relays.
(4) M aximum soldering temperature is $500^{\circ} \mathrm{F}$ for 4 seconds.
(5) Class F coils are UL systems approved for maximum coil temperature of $140^{\circ} \mathrm{C}$, by change of resistance method.
(6) See application note 13C265 for proper relay mounting, termination, cleaning and PC board conductor width. Coil rise test performed with 30A PC board to maintain $20^{\circ} \mathrm{C}$ maximum rise @ 30A.

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

T9AP1D52-9	T9AS1D12-24	T9AS5D22-12		
T9AP1D52-12	T9AS1D12-48	T9AS5D22-24		
T9AP5D52-12	T9AS1D22-12	T9AV1L22-24		
T9AP5D52-24	T9AS1D22-24			
T9AS1D12-12	T9AS5D12-12			
T9AS1D12-18	T9AS5D12-24			
Dimensions are sho reference purposes		Dimensions are in inches over (millimeters) unless otherw ise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover.

Outline Dimensions

T9AS - Mounting \& Termination Code 2

T9AP - Mounting \& Termination Code 5

Note: Recommended mounting screw torque is 4.0-5.0 lbs.in when \# 6 screw is used.

T9ASN - Mounting \& Termination Code 1

PC Board Layouts (Bottom Views)
T9AP/S - Mounting \& Termination Code 2

T9AS/V - Mounting \& Termination Code 1

Features

- Up to 20 amp switching in SPST-NO and 13.3 amp in SPDT arrangements.
- Washable, plastic sealed case available.
- Meets UL 873 and UL 508 spacing - 1/8" through air, 1/4" over surface.
- Load connections made via $1 / 4$ " Q. C. terminals.
- Choice of UL Class B or F insulation system.
- Well suited for various industrial, commercial and residential applications.

Contact Ratings @ $23^{\circ} \mathrm{C}$
Arrangements: 1 Form A (SPST-NO), 1 Form B (SPST-NC) and 1 Form C (SPDT).
Material: Silver-cadmium oxide.
Mechanical Life: 10 million operations, at 300 ops/minute.
Electrical Life: 100,000 operations at factory rated load, $6 \mathrm{ops} /$ minute. Minimum Contact Load: 1A @ 5VDC or 12VAC.
Initial Contact Resistance: 50 milliohms @ 100mA, 6VDC).

Contact Ratings @ $\mathbf{2 3}^{\circ} \mathrm{C}$ with relay properly vented. Remove tape from vent hole after soldering and cleaning.

Factory Contact Ratings

Voltage	1 Form A	1 Form B	1 Form C	
			(NO)	(NC)
240 VAC	20 A	10 A	13.3 A	6.7 A
28 VDC	20 A	6.7 A	13.3 A	6.7 A

UL/CSA Contact Ratings

Voltage	Load Type	1 Form A	Form B	1 Form C	
				(NO)	(NC)
240VAC	General Purpose	30 A	15 A	20 A	10 A
240VAC	Resistive $*$	30 A	15 A	20 A	10 A
240 VAC	Motor	2 HP	$1 / 2 \mathrm{HP}$	2 HP	$1 / 2 \mathrm{HP}$
120VAC	Motor	1 HP	$1 / 4 \mathrm{HP}$	1 HP	$1 / 4 \mathrm{HP}$
240 VAC	LRA/FLA $* *$	$80 / 30$	$30 / 10$	$50 / 20$	$20 / 7$
120VAC	LRA/FLA	$98 / 22$	-	-	-
120VAC	Tungsten $*$	TV5	TV3	TV5	TV3
277 VAC	Ballast	10 A	3 A	10 A	3 A
28 VDC	Resistive	20 A	10 A	20 A	10 A

Initial Dielectric Strength

Between Open Contacts: $1,500 \mathrm{~V}$ ms, 1 minute.
Between Contacts and Coil: $1,500 \mathrm{~V}$ rms, 1 minute.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{9} ohms, min., @ 500VDC, $23^{\circ} \mathrm{C}$ and 50% R.H.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 12 to 220VAC.
Nominal Coil Power: 2.0VA, (approx.).
Maximum Coil Temperature ${ }^{(4)}$: Class B: $130^{\circ} \mathrm{C}$.

$$
\text { Class F: } 155^{\circ} \mathrm{C}
$$

Duty Cycle: Continuous.

491 series

AC Coil 20 Amp PC Board or Panel Mount Relay

귝 File E38802
(18) File LR75282

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Nominal Voltage	DC Resistance $\mathbf{1 0 \%}$ (Ohms)	Must Operate Voltage (Max.)	Must Release Voltage (Min.)
12	26	10.2	1.8
24	106	20.4	3.6
110	2,750	93.5	16
220	11,000	187	33

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage: 85\% of nominal voltage or less.
Must Release Voltage: 15\% of nominal voltage or more.
Operate Time (Including Bounce)§: 20 ms , max.
Release Time (Including Bounce)§: 15 ms , max.
§ At or From Nominal Coil Voltage

Environmental Data

Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$.
Operating Temperature Range ${ }^{(1)}:-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration, Operational: $0.065^{\prime \prime}(1.5 \mathrm{~mm})$ max. excursions from $10-55 \mathrm{~Hz}$.
Shock, Operational: 10 g for 11 ms .
Shock, Mechanical: 100g.

Mechanical Data

Termination: Printed circuit and quick connect terminals (4).
Enclosures (all have 94V-0 flammability rating):
Open, unsealed dust cover or sealed case.
Weight: 1.2 oz. (33g) approx.

Coil Temperature Rise

Notes

(1) Operating ambient temperature must consider must operate voltage change over temperature, contact temperature rise, coil temperature rise (If coil is not allowed to cool) and maximum coil temperature.
(2) Sealed relay terminals should not be bent.
(3) Remove tape after cleaning process for optimum life of sealed relays.
(4) Class B coils are UL systems approved for maximum coil temperature of $130^{\circ} \mathrm{C}$, by change of resistance method. Class F coils are UL systems approved formaximum coil temperature of $155^{\circ} \mathrm{C}$, by change of resistance method.

1. Basic Series:

491 =AC coil, printed circuit board/panel power relay.
2. Enclosure \& Terminals:
$1=$ Dust Cover, PC terminal. $7=$ Sealed Case, Panel Mount, .187 Coil Terminal.
$2=$ Sealed Case, PC terminal. 8 = Open Unit
$6=$ Sealed Case, Panel Mount, . 110 Coil Terminal.
3. Contact Arrangement:
$1=1$ Form C (SPDT) $\quad 4=1$ Form B (SPST-NC) $\quad 5=1$ Form A (SPST-NO)
4. Coil Input:

$$
P=12 \mathrm{VAC} \quad \mathrm{Q}=24 \mathrm{VAC} \quad \mathrm{~T}=120 \mathrm{VAC} \quad \mathrm{U}=220 \mathrm{VAC}
$$

5. Contacts:

2 = Silver-cadmium oxide
6. Coil Insulation and Special Features:
$00=$ Standard, UL Class B Coil Insulation System \quad M0 $=$ Magnetic Blowout (with enclosure 1 or 2 only, not UL or CSA)
F0 $=$ Special, UL Class F Coil Insulation System A1 - E9 = Special - Customer Specific Features

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

491-21T200	491-24T200	491-61T200	491-64T200
491-21Q200	491-24Q200	491-61Q200	491-64Q200

Outline Dimensions
Open Style

Sealed Case for PC Board Mounting

PC Board Layout (Bottom View)

Sealed Case for Panel Mounting

Wiring Diagrams (Bottom Views)

1 Form A 1 Form B 1 Form C

Features

- 30A DPST-NO and DPDT switching capabilities.
- Designed to control compressor loads to 3.5 tons, 25.3 FLA, 110 LRA
- Extended life $->300,000$ operations at 30A, 240VAC (DC coil). $>100,000$ operations at 30A, 240VAC (AC coil).
- Meets requirements of UL873 and UL508 spacings.
- .315" (8mm) through air, .375" (9.5mm) over surface.
- Meets requirements of VDE 8 mm spacing, 4 kV dielectric coil-to-contacts.
- Meets requirements of UL Class F construction.
- UL approved for 600VAC switching (1.5HP).
- Conforms to VDE 0435, 0631, and 0700.
- New screw terminal version (consult factory for availability, ratings).

Contact Ratings @ $25^{\circ} \mathbf{C}$ with relay properly vented.
Remove tape over vent hole after soldering and cleaning.
Arrangements: 2 Form A (DPST-NO) and 2 Form C (DPDT).
Materials: Silver cadmium oxide.
Max. Load Rating:
Normally Open Contacts:
30A @ 120/277VAC, resistive;
10A @600VAC, resistive;
1 HP @ 120VAC, 2.5 HP @ 240VAC;1.5 HP @ 480VAC, 1.5 HP @ 600VAC
110 LRA, 25.3 FLA, @ 240 VAC with DC coil(1);
60 LRA, 14 FLA @ 240 VAC with AC coil-
3A @ 240VAC pilot duty;
20A @ 28VDC;
TV10 @ 120VAC.
VDE Rating (Flange Mount): 25A @ 400VAC, 100K Ops. (30K Ops. for Form C Models).
VDE Rating (PC Mount): 30A @ 400VAC, 100K Ops. (30K Ops. for Form C Models).
Normally Closed Contacts:
3A @ 28VDC or 277VAC, 2A @ 480VAC, 1A @600VAC.
VDE Rating (Flange or PC Mount): 3A @ 400VAC, 30K Ops.
Min. Load Rating:
Normally Open Contacts: 500mA @ 12VACNDC.
Normally Closed Contacts: 100mA @ 6VACNDC.
Expected Mechanical Life: 5 million operations.
Expected Electrical Life: 100,000 operations at rated load.
ARI 780-86 Endurance Test (section 6.6):
HVAC Definite Purpose Contactor Standard
Normally Open Contacts
Single Phase/Two Pole (Both poles together switching a single load)
110 LRA, 25.3 FLA, 200K operations (DC Coil).

Single Phase Per Pole (Single load per pole) 110 LRA, 18 FLA, 200K operations (DC Coil). 60 LRA, 14 FLA, 200K operations (AC Coil).

Notes: Vent hole tape must be removed to achieve all listed ratings. Consult factory regarding ratings for screw terminal versions.

Initial Dielectric Strength

Between Contacts and Coil: $4,000 \mathrm{~V}$ rms, $50 / 60 \mathrm{~Hz}$.
Between Open Contacts: $1,500 \mathrm{~V} \mathrm{rms}, 50 / 60 \mathrm{~Hz}$.
Between Poles: $2,000 \mathrm{~V}$ rms, $50 / 60 \mathrm{~Hz}$.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{9} ohms, min. @ 500VDC.

Coil Data

Voltage: 12 through 110VDC and 12 through 277VAC.
Resistance: See Coil Data table.
Nom. Power: AC Coil: 4.0VA; DC Coil: 1.7W.
Coil Temp. Rise: $35^{\circ} \mathrm{C} / \mathrm{W}$.
Max. Coil Temp.: $155^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

T92 series

Two-Pole, 30 Amp

PC Board or Panel Mount Relay
믹 File E22575
(4L) File E22575 (type 2,3,4,5)
(18 File LR15734 『®

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.
Coil Data (@ $\mathbf{2 5}^{\circ} \mathrm{C}$ Coil Temperature)

DC Coils (1.7W)					
Nom. Voltage (VDC)	$\begin{gathered} \text { DC Resist. } \\ \pm 10 \% \text { (Ohms) } \end{gathered}$		Nom. Voltage (VDC)	DC Resist. $\pm 10 \%$ (Ohms)	
12		86	48		1,390
24		350	110		7,255
AC Coils (4.0VA)					
Nom. Voltage (VAC)	Freq.	$\begin{gathered} \text { DC Resist. } \\ \pm 10 \% \text { (Ohms) } \\ \hline \end{gathered}$	Nom. Voltage (VAC)	Freq.	$\begin{array}{c\|} \hline \text { DC Resist. } \\ \pm 10 \% \text { (Ohms) } \end{array}$
12	60	9.1	110/120	50/60	950
24	60	36.6	220/240	50/60	3800
			250/277	50/60	5485

Ambient Temperature vs. Coil Voltage

Assumptions:

1. Thermal resistance $=35^{\circ} \mathrm{C}$ per Watt (DC only.)
2. Still air.
3. Nominal coil resistance.
4. Max. mean coil temperature $=155^{\circ} \mathrm{C}$ (change of resistance method).
5. Coil temperature rise due to load $=6.3^{\circ} \mathrm{C} @ 30 \mathrm{amps}$.
6. Curves are based on 1.7 W at $25^{\circ} \mathrm{C}$ (DC only.)

Operate Data

Must Operate Voltage: AC Coil: 80\% of nominal voltage or less.
DC Coil: 75\% of nominal voltage or less.
Must Release Voltage: 10% of nominal voltage or more.
Initial Operate Time ${ }^{(2)}$: 15 ms typical, (25 ms max. w/bounce).
Initial Release Time ${ }^{(2): ~} 10 \mathrm{~ms}$ typical, (25 ms max. w/bounce).
Max Operating Frequency: 14 operations per minute.

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: AC Coil: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$. DC Coil: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Vibration: $0.065^{\prime \prime}$ (1.65 mm) double amplitude for $10-55 \mathrm{~Hz}$., functional.
Shock, Operational: 10 g for $11 \mathrm{~ms}, 1 / 2$ sine wave pulse with no contact opening $>100 \mu \mathrm{~s}$.
Shock, Mechanical: 100 g for $11 \mathrm{~ms}, 1 / 2$ sine wave pulse.
Flammability: UL 94V-0.

Mechanical Data

Termination: Printed circuit terminals; .250" (6.35mm) quick connects for coil and contacts; . 187 " (4.75 mm) quick connects for coil and .250 " (6.35 mm) quick connects for contacts; or M4 screws with captive pressure plates for coil and contacts.
Enclosure: Unsealed, plastic dust cover or immersion cleanable, tape sealed plastic cover.
Weight: 3 oz. (86g) approximately.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($25^{\circ} \mathrm{C}$ ambient, 20-50\% RH, 29.5 ± 1 " Hg.) unless otherwise noted.

Notes

(1) FLA, LRA ratings are compatible with 3.5 ton compressor applications.
(2) Nominal voltage, no coil suppression, excluding bounce.

\ddagger New option. Consult factory for detailed ratings, specifications and availability.

| Stock Items - We recommend that our authorized distributors stock the following items for immediate delivery. | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T92P7A22-24 T92P7A22-240 T92P7D12-24 T92P7D22-24 T92P11A22-120 T92P11D22-12 T92S7D12-12 T92S11D22-12 | | | | | | | |
| T92P7A22-120 | T92P7D12-12 | T92P7D22-12 | T92P11A22-24 | T92P11A22-240 | T92P11D22-24 | T92S7D12-24 | T92S11D22-24 |

Outline Dimensions

Mounting \& Termination Type 1

Mounting \& Termination Type 5

Mounting \& Termination Types 2, 3 \& 4

Suggested PC Board Layout (Bottom View)

Note: An altemate PC board layout utilizes $.076 \pm$.003 ($1.93 \pm .076$) diameter holes on the same center-to-center spacing shown above. Use of the rectangular holes is recommended for improved solderability.

Alphanumeric Index

Series	Type	Page
SR2M (V23047).	2 Pole Relay	603
SR4 D/M	4 Pole Relay.	606
SR6 (V23050)	6 Pole Relay ..	609
SR6 D/M	4 Pole Relay.	607
SR6S	Sensitive 6 Pole Relay	611
SR6Z..............	.. 6 Pole Relay Module...	613
V23047 (SR2M) .	. 2 Pole Relay .	603
V23050 (SR6)	6 Pole Relay .	609

Definitions - Relays with forcibly guided contacts ("safety relays")

General Information

Relays with forced guidance contacts play a decisive role in avoiding accidents on machines and in systems. Safety control circuits enable to switch into the fail safe state. Forcibly guided contacts monitor the function of the safety control circuits.
For this safety function, all the assumed faults that can occur must already have been taken into consideration and their effects examined. Standard EN 50205 "Relays with forcibly guided contacts" contains current internationally-defined design requirements. Relays with forcibly guided contacts that comply with EN 50205 are also referred as "safety" relays.

Function

Power relays with forcibly guided (linked) contacts:
Power relays with at least one break contact and at least one make contact designed that by mechanical means make and break contacts can never be simultaneously in the closed position.
Contact gaps shall never be less than 0.5 mm over the operating life, not only under normal operating conditions, but also when a fault occurs.
This requirement allows the respective exclusive-or contact to detect the fault of a contact to open. For example, the welding of a make contact is indicated by the non-closing of the break contact when the energization is switched off.

To fulfill the specifications of the standard, the assumed faults must be considered:

Assumed fault	Effect
Failure of the contact to open due to welding	The failure of any make contact to open has the effect that none of the break contacts close even when the relay is not energized. The failure of any break contact to open has the effect that none of the make contacts close when the relay is energized.
Failure of the contact to open	The drive has no effect on the forcibly guided contact operation.
due to failure of the drive	Simultaneous closing of the break and make contacts is not possible even as a result of breakage. Completely insulated contact chambers (SR2, SR4, SR6) or barriers (SR2M) guarantee a contact gap of 0.5 mm.
Breakage of the contact spring	

Dimensions are shown for	Dimensions are in inches over	Specifications and availability	w w w.tycoelectronics.com
reference purposes only.	(millimeters) unless otherwise	subject to change.	Technical support:
	specified.		Refer to inside back cover

Application Example - Relays with forcibly guided contacts ("safety relays")

The configuration of safety control circuits is basically only possible with specified fault conditions. Safety relays have the characteristic that make and break contacts can never both be closed at the same time.

The following circuit diagram shows an emergency stop control circuit consisting of three 4-pole safety relays.

Operation

- Closing the "ON" switch causes the K1 relay to be pulled in
- The K2 and K3 relays are energized via the make contacts K 1-1 and K 1-2 and hold themselves via K2-2 or K3-2
- The break contacts K2-1 and K3-1 cause the drop-out of K1 where the load circuit is released via the break contacts of K1-3 or K1-4.

The first fault to occur

- does not cause the safety function to fail because more components are used than required for the circuit to function (redundancy).
prevents an restart and can be detected as a result (self monitoring)

Fault analysis (examples):

Type of fault	Is there any danger arising from the fault?	Is a restart possible?
Failure of contact	No, K3-3 opens when the emergency	No, K2-1 and K2-3 cannot be closed at the
K2-3 to open	stop switch is actuated	same time (fault excluded by forcibly guidance).
		"ON" button does not cause K1 to close
Failure of contact	No, K2-3 and K3-3 open when the	No, K1-1 and K1-2 cannot close due to
K1-3 to open	emergency stop switch is actuated	closed K1-3. K2 and K3 are not energized

V23047 series
SR2M "Safety Relay" - PCB, neutral, monostable relay with two forcibly guided contacts.
${ }^{\text {chen }}$ us File E214024
(10e8) No. 116064
((TUV-Rheinland, No. 945/EZ 116/99
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{6} ohms.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 5 to 110VDC.
Nominal Power: 700mW.
Max. Coil Temperature: $105^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

Coil Data @ $23^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance (Ohms)	Must Operate Voltage (VDC)	Nominal Coil Current (mA)
5	35.7 ± 3.6	3.75	140
6	51 ± 5.1	4.5	118
9	116 ± 11.6	6.8	78
12	206 ± 20.6	9	60
21	630 ± 63.0	15.8	34
24	823 ± 82.3	18	30
36	$1,851 \pm 185$	27	19.5
48	$3,291 \pm 494$	36	14.6
60	$5,142 \pm 617$	45	11.7
80	$9,143 \pm 1,097$	60	8.8
110	$17,285 \pm 2,074$	83	6.4

Operate Data @ $23^{\circ} \mathrm{C}$

Operate Time: 10 ms (excluding bounce).
Release Time (w/o parallel diode, typ.): 4 ms (excluding bounce).
Bounce Time: 10 ms .
Must Release Voltage: 10\% of nominal voltage.
Max. Allowed Ambient Temp. vs. Applied Coil Voltage

Operating

Curve 1 - Must operate voltage when the coil is not pre-energized.
Curve 2 - Operate voltage raises due to a pre-energizing with $1.1 \times$ Vnom.
Curve 3 - Maximum allowable voltage.
Release
The must release voltage may fall to $\geq 5 \%$ of Vnom during operation life of the relay.
\square Denotes recommended operation area.

Max. Allowable Ambient Temperature (${ }^{\circ} \mathrm{C}$)

Environmental Data

Temperature Range: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Solder Bath Temp./Max. Duration: $260^{\circ} \mathrm{C} / 5 \mathrm{~s}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94V-0 Flammability Ratings): Sealed plastic case.
Weight: 0.6 oz . (18 g).

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{~V}$ rms.
Between Adjacent Contacts: $4,000 \mathrm{~V}$ rms.
Between Coil and Contacts: $4,000 \mathrm{~V}$ rms.

Specifications and availability	w ww.tycoelectronics.com
subject to change.	Technical support:
	Refer to inside back cover

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
V23047A1012A501 V23047A1012A511

Outline Dimensions

Wiring Diagrams (Bottom Views)
1 NO and 1 NC

2 Form C

Suggested PC Board Layouts (Bottom Views)

2 Form C

RP78602
Socket with PCB Terminals

RT78625
DIN Rail Mount Socket with Screw-Type Terminals

RP16104 Plastic Retaining Clip

RT78626
DIN Rail Mount Socket with Screw-Type Terminals

RP16104 Plastic Retaining Clip

RT16040 Marking Tags

- White
- Marking area . 610 (15.5) x . 236 (6.0).
- Snaps on socket in up to 4 positions.

Function and Protection Modules

- Easy insertion of module into the socket.
- Wiring in parallel to the coil.

Ordering Code	Type
RT16040	Marking Tags
RPMT00A0	Protection Diode 1N4007*
RPML0024	LED 12-24VDC*
RPML0524	LED 12-48VDC
RPML0110	LED 110VDC*

* Standard Polarity: A1:+, A2:-

Dimensions are shown for	Dimensions are in inches over	Specifications and availability	Ww w.tycoelectronics.com
reference purposes only.	(millimeters) unless otherwise	subject to change.	Technical support:
	specified.		Refer to inside back cover.

Features

- $2 \mathrm{NO}+2 \mathrm{NC}$ or $3 \mathrm{NO}+1 \mathrm{NC}$ contacts.
- $4 \mathrm{kV} / 10 \mathrm{~mm}$ contact-to-coil.
- Compact package.
- Well suited for emergency shut-off, machine control, elevator and escalator control, light barrier control.

Contact Data

Type: Single button contact, forcibly guided.
Arrangements: $2 \mathrm{NO}+2 \mathrm{NC}$ or $3 \mathrm{NO}+1 \mathrm{NC}$.
Material: Silver-tin oxide.
Expected Mechanical Life: 10 million operations.
Ratings:
Current: 8A.
Voltage: 250VAC.
Voltage (breaking): 440VAC
Power (breaking): 2,000VA.
Minimum Contact Load: $>50 \mathrm{~mW}$.
Initial Contact Resistance: ≤ 100 millohms/1A/24VDC;
≤ 20 millohms/10mA/5VDC.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Between Contact Sets: $2,500 \mathrm{Vrms}$.
Creepage/Clearance: Contact-to-coil: 10/10mm.

$$
\text { Between Contact Sets: } 3 / 3.5 \mathrm{~mm} \text {. }
$$

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{6} ohms.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time /Release Time (typical): $12 \mathrm{~ms} / 20 \mathrm{~ms}$.
Switching Rate: 3,600 ops./hr. max. at rated load.

SR4 D/M series

"Safety Relay" with four forcibly guided contacts.

c ${ }^{\text {Mis }}$ File E214024
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 800 mW .

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Nominal Coil Current (mA)
5	$31 \pm 10 \%$	3.8	0.5	1613
6	$45 \pm 10 \%$	4.5	0.6	133.3
9	$101 \pm 10 \%$	6.8	0.9	89.1
12	$180 \pm 10 \%$	9.0	12	66.7
15	$281 \pm 10 \%$	113	15	53.4
18	$405 \pm 10 \%$	13.5	18	44.4
21	$551 \pm 10 \%$	15.8	2.1	38.1
24	$720 \pm 10 \%$	18.0	2.4	33.3
36	$1,620 \pm 10 \%$	27.0	3.6	22.2
40	$2,000 \pm 10 \%$	30.0	4.0	20.0
48	$2,880 \pm 10 \%$	25.0	4.8	16.7
60	$4,500 \pm 10 \%$	45.0	6.0	13.3
85	$9,031 \pm 10 \%$	64.0	8.5	9.4
110	$15125 \pm 10 \%$	82.5	110	7.3

All values are given for coil without preenergization, at $20^{\circ} \mathrm{C}$ ambient. At $70^{\circ} \mathrm{C}$ after preenergization with $11 \times$ nominal voltage, the maximum operating voltage is 85% of nominal.
At $70^{\circ} \mathrm{C}$ maximum coil voltage is $11 \times$ nominal.

Environmental Data

Temperature Range: Operating: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (10-200 Hz.): NO: 8g; NC: 2.5 g .

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Sealed (RTIII) plastic case.
Weight: 0.56 oz. (16 g) approximately.

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

PC Board Layout (Bottom View)

Wiring Diagrams (Bottom Views)

Features

- $2 \mathrm{NO}+2 \mathrm{NC}$ or $3 \mathrm{NO}+1 \mathrm{NC}$ contacts.
- Large spacings for improved isolation.
- Well suited for emergency shut-off, machine control, elevator and escalator control, light barrier control

Contact Data

Type: Single button contact, forcibly guided.
Arrangements: $2 \mathrm{NO}+2 \mathrm{NC}$ or $3 \mathrm{NO}+1 \mathrm{NC}$.
Material: Silver-tin oxide.
Expected Mechanical Life: 10 million operations.

Ratings:

Current: 8A.
Voltage: 250VAC.
Voltage (breaking): 440VAC.
Power (breaking): 2,000VA.
Minimum Contact Load: $>50 \mathrm{~mW}$.
Initial Contact Resistance: ≤ 100 millohms/1A/24VDC;
≤ 20 millohms/10mA/5VDC.

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $3,000 \mathrm{Vrms}$.
Between Contact Sets: $3,000 \mathrm{Vrms} ; 4,000 \mathrm{Vrms}$, in longitudinal direction. Creepage/Clearance: Contact-to-coil: $5.5 / 5.5 \mathrm{~mm}$.

Between Contact Sets: $5.5 / 5.5 \mathrm{~mm}$; $12 / 12 \mathrm{~mm}$, in longitudinal direction.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 800mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Nominal Coil Current (mA)
5	$21 \pm 10 \%$	3.8	0.5	238.1
6	$30 \pm 10 \%$	4.5	0.6	200.0
9	$68 \pm 10 \%$	6.8	0.9	132.4
12	$120 \pm 10 \%$	9.0	12	100.0
18	$270 \pm 10 \%$	13.5	18	66.7
21	$368 \pm 10 \%$	15.8	2.1	57.1
24	$480 \pm 10 \%$	18.0	2.4	50.0
36	$1,080 \pm 10 \%$	27.0	3.6	33.3
40	$1,333 \pm 10 \%$	30.0	4.0	30.0
48	$1,920 \pm 10 \%$	25.0	4.8	25.0
60	$3,000 \pm 12 \%$	45.0	6.0	20.0
85	$6,021 \pm 12 \%$	64.0	8.5	14.1
110	$10,080 \pm 12 \%$	82.5	110	10.9

All values are given for coil without preenergization, at $20^{\circ} \mathrm{C}$ ambient. At $70^{\circ} \mathrm{C}$ after preenergization with $11 \times$ nominal voltage, the maximum operating voltage is 85% of nominal.
At $70^{\circ} \mathrm{C}$ maximum coil voltage is $11 \times$ nominal.

SR6 D/M series

"Safety Relay" with four forcibly guided contacts and large spacings, improved isolation

c ${ }^{\text {ch }}$ us File E214024
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Insulation Resistance
Between Mutually Insulated Elements: 10^{6} ohms.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time /Release Time (typical): $11 \mathrm{~ms} / 3 \mathrm{~ms}$.
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range: Operating: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (10-200 Hz.): NO: 8g; NC: 5g.
Shock (functional) 16ms, half-sine: NO: 8g; NC: 6 g .

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Sealed (RTIII) plastic case.
Weight: $106 \mathrm{oz} .(30 \mathrm{~g})$ approximately.

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

Typical Part Number $-\quad$ SR6

1. Basic Series:

SR6 $=4$ pole printed circuit board relay with forcibly guided contacts, increased spacing.
2. Contact Configuration:
$\mathrm{D}=2 \mathrm{NO}+2 \mathrm{NC}$ contacts $\quad \mathrm{M}=3 \mathrm{NO}+1 \mathrm{NC}$ contacts
3. Contact Material:

4 = Silver-tin oxide.
4. Coil Voltage:

$005=5 \mathrm{VDC}$	$009=9 \mathrm{VDC}$	$018=18 \mathrm{VDC}$	$024=24 \mathrm{VDC}$	$040=40 \mathrm{VDC}$	$060=60 \mathrm{VDC}$
$006=6 \mathrm{VDC}$	$012=12 \mathrm{VDC}$	$021=21 \mathrm{VDC}$	$036=36 \mathrm{VDC}$	$048=48 \mathrm{VDC}$	$085=85 \mathrm{VDC}$

Our authorized distributors are more likely to stock the following items for immediate delivery .
None at present.

Outline Dimensions

PC Board Layouts (Bottom Views)

Wiring Diagrams (Bottom Views)

3 NO + 1 NC

Features

- 4 NO and 2 NC or 3 NO and 3 NC or 5 NO and 1 NC contacts.
- Extremely compact.
- High insulation spacing for the safe separation of the contact circuits.
- Sealed case.
- Ideal for emergency shut-off, machine control, elevator and escalator control, light barrier control.

Contact Data @ $23^{\circ} \mathrm{C}$

Type: Single button contacts, forcibly guided.
Arrangements: 3 NO and 3 NC, 4 NO and 2 NC or 5 NO and 1 NC .
Material: Silver nickel alloy.
Max. Continuous Current at Max. Amb. Temp.: 8A, 1 contact loaded.
Max. Switched Voltage: 400VAC/VDC.
Max. Switched Power: 2,000VA.
Max. Switching Rate: 6 operations $/ \mathrm{min}$. at rated load. 600 operations $/ \mathrm{min}$. at minimum load.
Minimum Load: 50mW.
Initial Contact Resistance: $100 \mathrm{~m} \Omega-1 \mathrm{~A} / 24 \mathrm{VDC}$.
Expected Mechanical Life: 10^{7} operations.
Electrical Life: 250VAC, $70^{\circ} \mathrm{C}$ ambient, 1 NO loaded with 8 A and 1 NC loaded with 5A: 75,000 operations.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC rms.
Between Adjacent Contacts: 3,000VAC rms.
Between Coil and Contacts: 3,000VAC ms.

Coil Data @ $\mathbf{2 3}^{\circ} \mathrm{C}$

Voltage: 5 to 110VDC.
Nominal Power: 1.2W.
Max. Coil Temperature: $130^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.

Coil Data @ $23^{\circ} \mathrm{C}$

Rated Coil Voltage (VDC)	Coil Resistance (Ohms)	Must Operate Voltage (VDC)	Nominal Coil Current (mA)
5	21 ± 2	3.75	240
6	30 ± 3	4.5	200
9	68 ± 7	6.8	130
12	120 ± 12	9.0	100
18	270 ± 27	13.5	70
21	370 ± 40	15.8	60
24	480 ± 50	180	50
40	$1,330 \pm 130$	30.0	30
60	$3,000 \pm 300$	45.0	20
85	$6,020 \pm 600$	64.0	14
110	$10,000 \pm 1,000$	82.5	11

V23050 series

SR6 "Safety Relay" - PCB, neutral, monostable relay with six forcibly guided contacts.
${ }^{\text {ch }}{ }_{\text {us }}$ File E214024
VOEB No. 116064
(s) TUV-Rheinland, No. 945/EZ 116/99

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data @ $23^{\circ} \mathrm{C}$

Minimum Release Voltage: 10\% of nominal voltage.
Minimum Operating Voltage @ $70^{\circ} \mathrm{C}$: 85% of nominal voltage.

Environmental Data

Temperature Range: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Solder Bath Temp./Max. Duration: $260^{\circ} \mathrm{C} / 5 \mathrm{~s}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (UL94V-2 Flammability Ratings): Sealed (RTIII) plastic case. Weight: 1.01 oz. (30g).

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

	Typical Part Number		V23050	A1	012	A	5	33
1. Basic Series: V23050 = SR6 safety relay.								
2. Enclosure: A1 = Sealed.								
3. Coil Voltage: $\begin{array}{ll} 005=5 \mathrm{VDC} & 006=6 \mathrm{VDC} \\ 024=24 \mathrm{VDC} & 040=40 \mathrm{VDC} \end{array}$	$\begin{aligned} & 009=9 \mathrm{VDC} \\ & 060=60 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 012=12 \mathrm{VDC} \\ & 085=85 \mathrm{VDC} \end{aligned}$	$\begin{aligned} & 021=21 \mathrm{VDC} \\ & 110=110 \mathrm{VDC} \end{aligned}$					
4. Contact Type: A = Single contact.								
5. Contact Material: 5 = Silver nickel.								
6. Contact Arrangement: $33=3 \mathrm{NO}$ and 3 NC . $42=4 \mathrm{NO}$ and 2 NC . $51=5 \mathrm{NO}$ and 1 NC .								

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

Suggested PC Board Layouts (Bottom Views)

3 NO and 3 NC, 4 NO and 2 NC

5 NO and 1 NC

Features

- $4 \mathrm{NO}+2 \mathrm{NC}, 3 \mathrm{NO}+3 \mathrm{NC}$ or $5 \mathrm{NO}+1 \mathrm{NC}$ contacts.
- Polarized, 800 mW coil.
- 6 kV surge resistance between poles.
- Well suited for emergency shut-off, machine control, elevator and escalator control, light barrier control

Contact Data

Type: Single button contact, forcibly guided.
Arrangements: $4 \mathrm{NO}+2 \mathrm{NC}, 3 \mathrm{NO}+3 \mathrm{NC}$ or $5 \mathrm{NO}+1 \mathrm{NC}$.
Material: Silver-tin oxide.
Expected Mechanical Life: 10 million operations.
Ratings:
Current: 8A.
Voltage: 250VAC.
Voltage (breaking): 440VAC.
Power (breaking): 2,000VA.
Minimum Contact Load: $>50 \mathrm{~mW}$.
Initial Contact Resistance: ≤ 100 millohms/1A/24VDC;

$$
\leq 20 \text { millohms } / 10 \mathrm{~mA} / 5 \mathrm{VDC} \text {. }
$$

Initial Dielectric Strength

Between Open Contacts: 1,000Vrms.
Between Coil and Contacts: $3,000 \mathrm{Vrms}$.
Between Contact Sets: 3,000Vrms.
Creepage/Clearance: Contact-to-coil: $5.5 / 5.5 \mathrm{~mm}$.
Between Contact Sets: $5.5 / 5.5 \mathrm{~mm}$.

Coil Data DC @ $20^{\circ} \mathrm{C}$
Nominal Coil Power: 800mW.

Nominal Voltage VDC	DC Resistance in Ohms	Must Operate Voltage VDC	Drop-out Voltage VDC	Nominal Coil Current (mA)
5	$31 \pm 10 \%$	3.8	0.5	1613
6	$45 \pm 10 \%$	4.5	0.6	133.3
9	$101 \pm 10 \%$	6.8	0.9	89.1
12	$180 \pm 10 \%$	9.0	12	66.7
15	$281 \pm 10 \%$	113	15	53.4
18	$405 \pm 10 \%$	13.5	18	44.4
21	$551 \pm 10 \%$	15.8	2.1	38.1
24	$720 \pm 10 \%$	18.0	2.4	33.3
36	$1,620 \pm 10 \%$	27.0	3.6	22.2
40	$2,000 \pm 10 \%$	30.0	4.0	20.0
48	$2,880 \pm 10 \%$	25.0	4.8	16.7

[^16]
SR6 Sensitive series
 Sensitive "Safety Relay" with six forcibly guided contacts.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{6} ohms.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time /Release Time (typical): $11 \mathrm{~ms} / 3 \mathrm{~ms}$.
Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range: Operating: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration (10-200 Hz.): NO: 8g; NC: 5g.
Shock (functional) 16ms, half-sine: NO: 8g; NC: 6 g .

Mechanical Data

Termination: Printed circuit terminals.
Enclosure (94 V-0 rated): Sealed (RTIII) plastic case.
Weight: $106 \mathrm{oz} .(30 \mathrm{~g})$ approximately.

Max. DC Load Breaking Capacity

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions

PC Board Layouts (Bottom Views)

$3 \mathrm{NO}+3 \mathrm{NC}$
and
$4 \mathrm{NO}+2 \mathrm{NC}$
$5 \mathrm{NO}+1 \mathrm{NC}$

Wiring Diagrams (Bottom Views)

Features

- 6-pole SR6 relay mounted to PC board on DIN-rail module.
- AC/DC input.
- Spring connectors.
- Module is 181 in (46 mm) wide.
- Well suited for emergency shut-off, machine control, elevator and escalator control, light barrier control

Contact Data

Type: Single button contact, forcibly guided.
Arrangements: $4 \mathrm{NO}+2 \mathrm{NC}, 3 \mathrm{NO}+3 \mathrm{NC}$ or $5 \mathrm{NO}+1 \mathrm{NC}$.
Material: Silver-tin oxide.
Expected Mechanical Life: 10 million operations.

Ratings:

Current: 8A.
Voltage: 250VAC.
Voltage (breaking): 440VAC.
Power (breaking): 2,000VA.
Minimum Contact Load: $>50 \mathrm{~mW}$.
Initial Contact Resistance: ≤ 100 millohms/1A/24VDC;
≤ 20 millohms/10mA/5VDC.

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{Vrms}$.
Between Coil and Contacts: $3,000 \mathrm{Vrms}$.
Between Contact Sets: 2,000Vrms.
Creepage/Clearance: Contact-to-coil: $5.5 / 5.5 \mathrm{~mm}$.
Between Contact Sets: 3/3mm.

Outline Dimensions

Module width: 1.81 in (46 mm). Module length: 3.42 in (87 mm). Mounted height: 2.12-2.28 in. (54-58 mm) depending upon DIN rail.

Module fits mounting rails per DIN EN 50022 or DIN EN 50035.

SR6 Z series
 6-pole "Safety Relay" on DIN-rail module.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Nominal DC Voltage: 24VDC
Nominal AC/DC Voltage: 24, 115VACNDC.
Nominal AC Voltage: 230VAC.
Minimum Operating Voltage: 90\% of nominal
Minimum Release Voltage: $\leq 10 \%$ of nominal.
Maximum Operating Voltage: 110\% of nominal. Input Circuit: Bridge rectifier, series resistor.

Operate Data

Switching Rate: 3,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range: Operating: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Mechanical Data

Termination: Spring clamp connections.
Acceptable Wire Sizes: 14-18 AWG.
Weight: $3.17 \mathrm{oz} .(90 \mathrm{~g})$ approximately.
Ordering Information

SR6Z

SR6Z $=6$ pole relay with forcibly guided
contacts on DIN-rail module.
2. Contact Configuration:
$\mathrm{A}=3 \mathrm{NO}+3 \mathrm{NC}$ contacts
$\mathrm{B}=4 \mathrm{NO}+2 \mathrm{NC}$ contacts
$\mathrm{C}=5 \mathrm{NO}+1 \mathrm{NC}$ contacts
5. Coil Voltage:
$\begin{array}{ll}024=24 \mathrm{VDC} & 524=24 \mathrm{VACNDC} \\ 615=115 \mathrm{VACNDC} & 730=230 \mathrm{VAC}\end{array}$
$615=115 \mathrm{VACNDC} \quad 730=230 \mathrm{VAC}$

Distributors are more likely to stock the following items.
None at present.

Wiring Diagrams (Bottom Views)

DC Module, 3 NO + 3 NC

DC Module, 5 NO + 1 NC

AC/DC Module, 4 NO + 2 NC

AC/DC Module, 3 NO + 3 NC

AC/DC Module, 5 NO + 1 NC

Engineering Notes

Alphanumeric Index

Series Type Pag	Page
0419 Relay w/Dust Cover	745
K10 Relay w/Dust Cover.	720
KA Open Relay	737
KH/KHA Relay w/Dust Cover	709
KHSHermetically Sealed Relay	709
KRP-3-H Relay w/Dust Cover.	739
KR-E....................... Hermetically Sealed Relay	737
KRP/KRPA Relay w/Dust Cover	737
KU/KUP Open Relay or Relay w/Dust Cover .	723
KUE/KUEP Open Relay or Relay w/Dust Cover .	723
KUGP Relay w/Dust Cover	723
KUIP Relay w/Dust Cover	723
KUM/KUMP Open Relay or Relay w/Dust Cover.	723
KUP93 Relay w/Dust Cover	731
MT.......................... Relay w/Dust Cover.	742
PCL/PCLH Relay w/Dust Cover	713
PT Relay w/Dust Cover	717
R10-R Immersion-Cleanable Relay	703
R10Relay w/Dust Cover.	703
RM Relay w/Dust Cover	733
Socket Usage Guide.	749
Track Mount System.	747

Mature Products

Some mature product series are no longer described in the technical databook, as they no longer represent the most effective solution for many new design requirements. However, certain models within these series are currently available, in varying quantities, for retrofit applications. Some of these products are scheduled for obsolescence or discontinuance in the nearfuture. Contact technical support(see inside back cover)for suggestions regarding alternate products which may be appropriate for your application.

NOTE: A question tree that may help you in selecting an appropriate relay for your application can be found on the next page. also available with printed circuit board terminals as an option.
NOTE: Many of the relay products described in this section are

Dimensions are shown for	Dimensions are in inches over	Specifications and availability reference purposes only.	www.tycoelectronics.com (millimeters) unless otherwise
specified.			

Plug-in / Panel M ount General Purpose ($\leq 20 \mathrm{~A}$) Relay Question Tree

This guide helps the user select one or more relay series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a relay for a particular application.

Several relay product families are quite broad (i.e., R10, KU), and only the basic family designator, not the actual product series designator (i.e., R10S, KUIP) is listed in this guide.

[^17]

Features

- Broad range of coil options provide sensitivity ranging from 25 to 750 mW .
- Various contacts switch from dry circuit to 7.5 amps.
- Many mounting and termination options.

Contact Data @ 25 ${ }^{\circ}$ C

Arrangements: 1 Form C (SPDT) through 8 Form C (8PDT) See Ordering Information tables for more details regarding availability.

Contact Materials, Styles \& Ratings @ +25 ${ }^{\circ} \mathrm{C}$

Contact Code	Contact Material	Contact Style	Coil Codes Available	Contact Ratings		
				Min.	Typ.	Max.
W	Silver-Cadmium Oxide	Single Button	V, Q, S, J	500 mA	-	7.5A \ddagger
X	Silver-Cadmium Oxide	Single Button	V, Q, S, J	500 mA	-	5A§
Y	Fine Silver	Single Button	All	100 mA	2A	3A
Z	Fine Silver	Bifurcated	All	1 mA	100 mA	2A
P	Gold overlay on Silver	Bifurcated Crossbar	All	Dry Circuit	1 mA	3A

Ratings are at 28VDC or 155VAC unless otherwise specified. Total load must not exceed 30A per relay.
\ddagger Use ungrounded frame for AC loads of 5A or greater. Max.ratings are 7.5A at 115VAC and 4A at 28VDC for coil codes S and J
§ Use ungrounded frame for AC loads of 5A or greater. Max.ratings are 5A at 115VAC and 3A at 28 VDC for coil codes S and J.

UL Horsepower Contact Ratings (Coil Code V Only)

Contact Code	No. of Poles	At 110-120VAC	At 220-240VAC
W	$1,2,4$	$1 / 8 \mathrm{HP}(3.8 \mathrm{~A})$	$1 / 6 \mathrm{HP}(2.2 \mathrm{~A})$
X	$1,2,4,6$	$1 / 20 \mathrm{HP}(1.5 \mathrm{~A})$	$1 / 10 \mathrm{HP}(1.5 \mathrm{~A})$

Expected Mechanical Life: 100 million operations, typical. (Except contact Code W: 1,000,000 operations, typical.)

Typical Expected Life For Resistive Loads @ $25^{\circ} \mathrm{C}$

Type	Current	Voltage	Contact Style	Coil Code	Operationst†
R10	7.5A	120VAC, 60 Hz .	W	V,S,J	$7.5 \cdot 10^{4}$
R10	7.5A	28VDC	W	V	$7.5 \cdot 10^{4}$
R10	5.0A	120VAC, 60 Hz .	X	V,S,J	$5 \cdot 10^{4}$
R10	5.0A	28VDC	X	V	$5 \cdot 10^{4}$
R10	4.0A	28VDC	W	S, J	$2 \cdot 10^{4}$
R10	3.0A	28VDC	X	S, J	$2 \cdot 104$
R10	3.0A	28 VDC or 120VAC	P	V,S,J	$3 \cdot 10^{4}$
R10	2.0A	28VDC	P, Y, Z	V	$1.5 \cdot 10^{6}$
R10	2.0A	28VDC	P, Y, Z	S,J	$6 \cdot 10^{5}$
R10S	2.0A	28VDC	P, Y, Z	J	$5 \cdot 10^{5}$
R10	1.0A	28VDC	P, Y, Z	V,S,J	$12 \cdot 10^{6}$
R10	1.0A	28VDC	P, Y, Z	SS,J J	$5 \cdot 10^{5}$
R10S	1.0A	28VDC	P, Y, Z	J	$1 \cdot 10^{6}$
R10	500mA	28VDC	P, Y, Z	SS, J J	$5 \cdot 10^{6}$
R10	100mA	28 VDC or 120VAC	P,Y,Z	V,S,J	$1 \cdot 10^{8}$
R10	100 mA	48VDC	P, Z	SS, J J	$5 \cdot 10^{6}$
R10	100 mA	6VDC	P	SS,J J	$5 \cdot 10^{7}$
R10S	100 mA	28 VDC or 120VAC	P, Y, Z	J	$1 \cdot 10^{6}$
R10	50 mA	6VDC	P, Z	V,S,J	$5 \cdot 10^{7}$
R10S	30 mA	6VDC	P, Z	J	$5 \cdot 10^{6}$
R10	1 mA	6VDC	P	SS,J J	$5 \cdot 10^{7}$

$\dagger \dagger$ Relay operated at rated coil voltage or 133% of pick-up current or higher.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, for contact codes P and Z. $1,000 \mathrm{~V}$ ms for contact codes W, X and Y with coil code V.
Between All Other Conductors: $1,000 \mathrm{~V}$ rms.

R10 series

General Purpose

Dry Circuit to 7.5 Amp Multicontact AC or DC Relay

- R10-E - Clear Dust Cover Version
- R10-R - Sealed, Immersion Cleanable Type
- R10S - Super Sensitive, Logic Compatible

문 File E29244
File LR15734
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Capacitance

Between Contacts: 2 pf, typ.
Between Contacts and Coil: 2 pf, typ.
Between Coil and Frame: 30 pf, typ.

Initial Insulation Resistance

Between Mutually Insulated Elements: 10^{10} ohms @ $25^{\circ} \mathrm{C}, 50 \%$ RH. Consult factory for optional acetal resin material rated 10^{12} ohms.
Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$ (also see Coil Data tables)
Voltage: 3 to 115 VDC and 6 to 115 VAC .
Maximum Coil Power: 2.2 Watts.
Coil Temperature Rise: $30^{\circ} \mathrm{C}$ per Watt.
Maximum Coil Temperature: $105^{\circ} \mathrm{C}$.
Operate Data @ $25^{\circ} \mathrm{C}$
R10 Relays (DC Only) Typical Ranges of Operations
(Curves for reference only. If specific

R10 Ultra-Sensitive "SS" and "JJ" Typical Ranges of Operation (Curves for reference only. If specific

> Multiple of Max. Pull-In Voltage or Current

Environmental Data

Storage Temperature Range: $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating Temperature Range: $-55^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Mechanical Data

Terminal Finish: Tin plating standard.
Weight: 0.8 to 1.4 oz . (23 to 40 g) approximately.

Coil Data Tables @ $\mathbf{2 5}^{\circ} \mathrm{C}$

One of the boldface resistance or voltage values from a table below is to be inserted in step 6 of the ordering chart on the next page.

Standard DC Voltage Adjustment				
2.2 Watts Maximum Continuous Coil Dissipation @ $\mathbf{2 5}^{\circ} \mathrm{C}$				
VDC at $25^{\circ} \mathrm{C}$		Coil Resistance at $25^{\circ} \mathrm{C} \pm \mathbf{1 0 \%}$ (ohms)		
Nominal	Pick-up (Max.)	1, 2 \& 4 Form A, B, C or D Pick-up 500 mW	$\begin{aligned} & \hline 6 \text { Form A, } \\ & \text { B or C } \\ & \text { Pick-up } \\ & 850 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \hline 8 \text { Form A, } \\ & \text { B or C } \\ & \text { Pick-up } \\ & 1000 \mathrm{~mW} \end{aligned}$
3.0	2.25	10	6	5
5.0	3.75	28	16	14
6.0	4.5	52	25	20
12.0	9.0	185	90	72
24.0	18.0	700	430	350
48.0	36.0	2.5 K	1.5K	1.25K
72.0	54.0	5.8K	3.5K	2.8K
115.0	86.0	15.0K	9.0K	8.0K

0 Special DC Voltage Adjustment						
1 \& 2 Form A, B, C or D			3 \& 4 Form A, B, C or D			
$\begin{gathered} \text { Coil Res. } \\ \text { @ } 25^{\circ} \mathrm{C} \\ \pm 10 \% \\ \text { (ohms) } \end{gathered}$	Pick-up (Max.) @ $25^{\circ} \mathrm{C}$ (VDC)	Pick-up @ $25^{\circ} \mathrm{C}$ (mW)	$\begin{gathered} \text { Coil Res. } \\ @ 25^{\circ} \mathrm{C} \\ \pm 10 \% \\ \text { (ohms) } \end{gathered}$	Pick-Up (Max.) @ $25^{\circ} \mathrm{C}$ (VDC)	Pick-Up @ $25^{\circ} \mathrm{C}$ (mW)	Nominal Voltage @ $25^{\circ} \mathrm{C}$ (VDC)
52	3.1	180	32	3.8	450	5
110	4.5	185	52	4.2	340	6
450	9.2	190	185	8.4	380	12
1.8K	17.4	170	1.0K	17.2	295	24
7.5K	36.2	175	3.2K	31.1	300	48
15.0K	49.5	165	7.5K	49.3	325	72
30.0K	67.5	160	15.0K	67.5	300	115

S Sensitive DC Voltage Adjustment					
2.2 Watts Maximum Continuous Coil Dissipation @ $25^{\circ} \mathrm{C}$					
VDC at $25^{\circ} \mathrm{C}$		Coil Resistance at $25^{\circ} \mathrm{C} \pm \mathbf{1 0 \%}$ (ohms)			
Nominal	Pick-up (Max.)	1 \& 2 Form A, B, C or D Pick-up 100 mW	3 \& 4 Form A, B, C or D Pick-up 175mW	$\begin{aligned} & 6 \text { Form A, } \\ & \text { B or C } \\ & \text { Pick-up } \\ & 250 \mathrm{~mW} \end{aligned}$	8 Form A, B or C Pick-up 400mW
3.0	2.25	50	30	20	12
5.0	3.75	140	80	56	35
6.0	4.5	200	110	80	52
12.0	9.0	800	450	320	200
24.0	18.0	3.2K	1.8K	1.2 K	800
48.0	36.0	13.0K	7.5K	5.2K	3.2 K
72.0	54.0	28.0K	16.0	13.0K	7.5K
115.0	86.0	50.0K	40.0K	30.0K	16.0K

J Sensitive DC Current Adjustment					
Must Operate Current (mA)					
All Applicable Types Except R10S					
Coil Resistance $\pm 10 \%$ (ohms)	2 Form A, B, C or D Pick-up 85mW	4 Form A, B, C or D Pick-up 175 mW	6 Form A, B, C or D Pick-up 250mW	$\begin{aligned} & 8 \text { Form A, } \\ & \text { B or C } \\ & \text { Pick-up } \\ & 400 \mathrm{~mW} \end{aligned}$	Max. Coil Current (mA)
1.0K	8.5	13.0	16.0	20.0	45.0
2.5K	5.8	8.4	10.0	13.0	28.0
5.0K	4.1	6.2	7.2	9.0	20.0
10.0K	3.1	4.5	5.0	6.4	14.0
15.0K	2.6	3.5	4.2	5.3	11.5
30.0K	1.7	2.5	2.9	3.7	8.3
R10S Types Only					
Coil Resistance $\pm 10 \%$ (ohms)		$\stackrel{1}{\text { Form } \mathrm{C}}$ Pick-up 10 mW	$\begin{gathered} 2 \\ \text { Form C } \\ \text { Pick-up } \\ 20 \mathrm{~mW} \end{gathered}$		$\stackrel{4}{4}$ Pick-up 40 mW
500		4.5 (A)	6.3 (A)		9.0
1.0K		3.2 (A)	4.5		6.5
2.5K		2.0	2.9 (B)		4.1 (B)
5.0K		1.4 (B)	2.0		2.9 (C)
10.0K		1.0	1.4 (C)		2.0
16.0K		0.8	1.2		1.4
30.0K		0.6 (C)	0.8		1.2

(A) Suggested for 5VDC operation.
(B) Suggested for 12VDC operation.
(C) Suggested for 24VDC operation.

JJ	Ultra-Sensitive Current Adjustment (1-4 Pole Only)			
	Maximum Pick-Up Current (mA)			
Coil Resistance at $25^{\circ} \mathrm{C}$ $\pm 10 \%$	1 Form C Pick-Up Power 20 mW	2 Form C Pick-Up Power 40 mW	$\begin{gathered} \hline \text { \& } 4 \text { Form C } \\ \text { Pick-Up } \\ \text { Power } \\ \text { 80mW } \end{gathered}$	Maximum Continuous Coil Current (mA)
1.0K	4.5	6.5	9.0	45.0
2.5 K	2.9	4.1	5.8	28.0
5.0K	2.1	2.9	4.1	20.0
10.0K	1.5	2.0	3.0	14.0
15.0K	1.2	1.7	2.4	11.5
30.0K	0.85	1.2	1.7	8.3

Standard AC Operated Relays				
Coil Resistance @ $\mathbf{2 5}{ }^{\circ} \mathrm{C} \pm \mathbf{2 0 \%}$ (ohms)		Volts AC @ $25^{\circ} \mathrm{C}$		
2 \& 4 Form C	6 \& 8 Form C	Pick-Up (max.)	Nominal	Maximum Continuous
25	15	5.0	6	7.2
120	90	9.0	12	14.5
500	350	18.0	24	30.0
2.0K	1.4 K	36.0	48	60.0
9.0K	7.5K	86.0	115	130.0

Note: Dual coil diode rectified construction.

Typical Coil Inductance

Our authorized distributors are more likely to stock the following items for immediate delivery.

R10-E1P2-115V	R10-E1X2-24V	R10-E1Y2-J 1.0K	R10-E1Y4-V700	R10-E2P4-V185	
R10-E1P2-V700	R10-E1X2-S800	R10-E1Y2-J 2.5K	R10-E1Y6-V1.5K	R10-E2P4-V700	R10-E2Y4-V185
R10-E1P4-115V	R10-E1X2-V185	R10-E1Y2-V15.0K	R10-E1Z2-V185	R10-E2W2-V185	
R10-E1P4-V700	R10-E1X2-V700	R10-E1Y2-V185	R10-E1Z2-V700	R10S-E1Y2-J 5.0K	
R10-E1W2-V185	R10-E1X4--115V	R10-E1Y2-V2.5K	R10-E1Z4-V185	R10S-E2Y1-J 1.0K	
R10-E1W2-V700	R10-E1X4-V185	R10-E1Y2-V700	R10-E1Z4-V2.5K	R10-E2X2-V700	
R10-E1W4-V185	R10-E1X4-V2.5K	R10-E1Y4-J 10.0K	R10-E1Z4-V700	R10-E2X4-V700	
R10-E1W4-V700	R10-E1X4-V700	R10-E1Y4-V2.5K	R10-E1Z6-V1.5K	R10-E2Y2-V185	
R10-E1X2-115V	R10-E1X6-V430	R10-E1Y4-V52	R10-E1Z6-V430	R10-E2Y2-V700	

Outline Dimensions

Solder Terminal Dimensions

PC Terminal Dimensions

	A	B	C	D	Arrang.
Type 2	.131	.050	.064	1.251	Inline
Type 7	.131	.040	.013	1.20	Inline
Type 9	.170	.040	.000	1.187	Staggered
Thickness	.012	012	.012	.013	---

Wiring Diagrams (Bottom Views)

R10 Wiring Diagrams

R10-AC Wiring Diagram

Suggested PC Board Layouts (Component Side of Boards) Terminal Types E2 \& R2 Terminal Types E9 \& R9

Suggested Panel Cutout For Relay or Socket

$.543 \pm .020$
$(8.71 \pm .51)$
4 POLE - $562 \pm .020$
6 POLE - $781 \pm .020$
$(19.84 \pm .51)$
$1000 \pm .020$
(25.40 $\pm .51$)

Mounting Hole Layout For Terminal \& Mounting Style 6

Socket Specifications

Contact Material:
Spring brass, tin-plated.
Body Material: 2 and 4 pole: polyester.
6 and 8 pole: phenolic.
Voltage Drop: 30mV max. @10A.
Dielectric Strength: $1,000 \mathrm{~V} \mathrm{~ms}$.
Insulation Resistance: 10^{9} megohms.
Max. Current: 10A.

Solder or PC Terminal Sockets

Rugged, molded socket body retains floating terminals of either solder or printed circuit pin configuration. PC terminal sockets are offered with pins in either $0.1^{\prime \prime}(2.54 \mathrm{~mm})$ grid or in-line arrangement.

Grounding Provisions

Pre-installed on sockets
Not for use at 5A AC and above.
Grounding Strip: Mounting stud of relay contacts grounding strip. Grounding strip is grounded with screw or rivet through round hole in socket.
Grounding Terminal (PC sockets only):
Mounting stud of relay contacts ground terminal through square hole in socket.

Strip
Terminal

III	
III	
III	트
II	

Caution:
Printed circuit sockets are manufactured with "floating" (loose) terminals. This permits them to align with holes in the circuit board and with the relay terminals. During the mounting and soldering of the socket, vertical float should be eliminated and the terminals seated on the board. (This may be accomplished by inserting a dummy relay in the socket.) Failure to eliminate float may cause fracture of the solder joint or separation of the copper conductor from the printed circuit board when a relay is inserted in the socket after soldering.

Ordering Data - Stock items are boldfaced.

Socket Part No.	No. of Poles	Type of Terminal	Grounding Provision	All tolerances $\pm .010$ ($\pm .25$) unless otherwise noted.
$\begin{aligned} & \text { 27E125 } \\ & \text { 27E126 } \\ & \text { 27E127 } \\ & \text { 27E162 } \\ & \text { 27E163 } \\ & \text { 27E164 } \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 2 \\ & 4 \\ & 6 \end{aligned}$	Solder	Strip Strip Strip None None None	
$\begin{aligned} & \text { 27E128 } \\ & \text { 27E129 } \\ & \text { 27E130 } \\ & \text { 27E254 } \\ & \text { 27E212 } \\ & \text { 27E213 } \\ & \text { 27E271 } \\ & \text { 27E258 } \\ & \text { 27E193 } \\ & \text { 27E194 } \\ & \hline 27 E 636 \\ & 27 E 637 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 8 \\ & 2 \\ & 4 \\ & 6 \\ & 8 \\ & 2 \\ & 4 \\ & \hline 2 \\ & 4 \end{aligned}$	PC Stag. .180" long (4.57 mm) PC Stag. .210" long (5.33 mm)	Strip Strip Strip Strip None None None None Terminal Terminal Strip Strip	Suggested Board Layout (Component Side)
$\begin{aligned} & 27 \mathrm{E} 631 \\ & 27 \mathrm{E} 632 \\ & 27 \mathrm{E} 340 \\ & 27 \mathrm{E} 42 \\ & 27 \mathrm{E} 29 \\ & 27 \mathrm{E} 630 \\ & 27 \mathrm{E} 338 \\ & \hline 27 \mathrm{E} 633 \\ & 27 \mathrm{E} 334 \\ & 27 \mathrm{E} 635 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \\ & 6 \\ & 2 \\ & 4 \\ & 6 \\ & 4 \\ & \hline 2 \\ & 4 \\ & 6 \end{aligned}$	PC In-line .180" long (4.57 mm) PC In-line .210" long (5.33 mm)	Strip Strip Strip None None None Terminal Strip Strip Strip	Suggested Board Layout (Component Side)
Hold Downs For Use With R10 Sockets				
Part No.	No. of Poles	Description		
$20 C 249$ $20 C 250$ $20 C 251$ $20 C 266$ $20 C 259$ $20 C 300$ $20 C 301$	2 4 6 8 All 2 (R10S) 4 (R10S)	Wire Hold Down Spring Wire Hold Down Spring Wire Hold Down Spring Wire Hold Down Spring Wire Hold Down Strap (PC only) Hold Down Spring Hold Down Spring		

See following page for additional sockets \& accessories.

Solder \& PC Terminal Socket Outline Dimensions

37D645 - Mounting Strip
Strip of .060 " (1.52 mm) aluminum contains ten pre-punched, breakaway mounting plates. Each plate accomodates a 2, 4, 6 or 8 pole solder terminal R10 relay or socket to facilitate chassis- or rack mounting.

R10 Socket \& Accessory Information (Continued)

Bracket Mount Socket Allows solder terminal relay to mount flat on a chassis.

Ordering Data - Stock items are boldfaced.

4 Pole
Terminal Wiring Code

6 Pole
Terminal Wiring Code

Suggested Track Mounting

Suggested Chassis Mounting

SUGGESTED STANDOFF
(CUSTOMER SUPPLIED)
OR INSULATOR (40G432)
.375 (9.53) DIA. MIN; . 625 (15.88) DIA.

Track Mount Socket
Provides front wiring, screw terminal connections for R10 family relays. No grounding provision.

KHS

Features

- Miniature size from 2 pole to 4 pole.
- KHAU is produced on an automated line, while KHU is produced manually. Form, fit and function of the two versions are identical.
- KHS hermetically sealed version UL Approved for Class 1 Division 2 hazardous locations.
- Various applications include process control, photocopier, and data processing.
- Push-to-test and indicator options available.
- Various contact materials available for specific load requirements.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT), 4 Form C (4PDT).
Expected Life: 10 million operations, mechanical; 100,000 operations min. at rated loads. Ratings are based on tests of relays with ungrounded frames.
Initial Breakdown Voltage: 500 V rms, 60 Hz ., between open contacts. 1240 V rms, 60 Hz ., between all other elements.

Contact Ratings

Contact Code	Material	Resistive Rating	
		Minimum	Maximum
1	Silver	$\begin{gathered} \text { 100mA @ } \\ \text { 12VAC/12VDC } \end{gathered}$	$\begin{gathered} 3 A @ \\ \text { 120VAC/28VDC } \end{gathered}$
2*	Silver-cadmium oxide	$\begin{gathered} 500 \mathrm{~mA} @ \\ 12 \mathrm{VAC} / 12 \mathrm{VDC} \end{gathered}$	5A @ 120VAC/28VDC
3	Gold-silver-nickel	10mA @ 12VAC/12VDC	2A @ 120VAC/28VDC
6	Bifurcated cross bar, gold overlay silver	Dry circuit	1A @ 120VAC/28VDC
8	Gold diffused silver	50mA @ 12VAC/12VDC	3A @ 120VAC/28VDC

Note: Relays should only carry a maximum of 15 amps continuously for all poles combined.

KHS Contact Ratings

Class I Division II Hazardous Location:
5A@28VDC/120VAC
UL 508 (Industrial Control):
3A@28VDC/120VAC; 1/10 HP @ 120VAC.

KHA series

General Purpose

 Dry Circuit to 5A Multicontact AC or DC Relay
ㄱํ File E22575

(81) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: From 6 to 120VDC, and 6 to 240VAC, $50 / 60 \mathrm{~Hz}$.
Nom. Power: DC coils - 0.9 watt; 0.5 watt minimum operate @ $25^{\circ} \mathrm{C}$.
AC coils - 1.2 VA; 0.55 VA minimum operate @ $25^{\circ} \mathrm{C}$.
Max. Power: DC coils -2.0 watts @ $25^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.
Initial Breakdown Voltage: 500V rms, 60 Hz .

Coil Data

DC Coils				AC Coils	
Nominal Voltage	Resistance in Ohms $\mathbf{1 0 \%}$ @ $\mathbf{2 5}{ }^{\circ} \mathbf{C}$	Nominal Inductance in Henrys	Resistance in Ohms $\pm \mathbf{1 5 \%}$	Nominal AC Current in mA	
5	32	.072	-	-	
6	40	.08	10.5	200	
12	160	.28	43	100	
24	650	1.0	160	52	
48	2,600	4.5	668	25	
110^{*}	11,000	17.0	-	-	
120^{*}	-	-	3,900	11.0	
240	-	-	12,000	6.0	

*Note: For 220 and 240VDC, use series dropping 5 W resistor of $11,000 \Omega$.

Operate Data @ $25^{\circ} \mathrm{C}$

Must-Operate Voltage: DC: 75\% of nominal voltage.
AC: 85% of nominal voltage.
Operate Time: 13 milliseconds typical @ nominal voltage (excluding bounce).
Release Time: 6 milliseconds typical @ nominal voltage (excluding bounce).

Environmental Data

Temperature Range: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ operate.

$$
-60^{\circ} \mathrm{C} \text { to }+130^{\circ} \mathrm{C} \text { storage. }
$$

Mechanical Data

Mountings: \#3-48 stud, sockets with printed circuit or solder terminals, or bracket plate with \#6-32 threaded stud.
Termination: Printed circuit or solder/socket terminals. Printed circuit terminals are available for KHS on a special order basis.
Enclosures: See Ordering Information table.
Weight: 1.6 oz. approx. (45g).

Ordering Information

8. Coil Voltage:
$6,12,24,48,120,240^{* *}$ VAC
$6,12,24,48,110 \mathrm{VDC} \quad * * 240 \mathrm{VAC}$ coil is not available on KHS type relays.

Note 1: Some KHA models available in KH construction. Specify KH instead of KHA.

Stock Items - Our authorized distributors are likely to stock the following items.

KHAE-17D12-24
KHAU-11A11-120
KHAU-11D11-24
KHAU-17A11-12
KHAU-17A11-24
KHAU-17A11-120
KHAU-17A11N-120
KHAU-17A12-120
KHAU-17A13-120
KHAU-17A16-24
KHAU-17A16-120
KHAU-17A18-120
KHAU-17D11-6
KHAU-17D11-12

KHAU-17D11-24
KHAU-17D11-48
KHAU-17D11-110
KHAU-17D12-12
KHAU-17D12-24
KHAU-17D12-48
KHAU-17D12-110
KHAU-17D16-12
KHAU-17D16-24
KHS-17A11-24
KHS-17A11-120
KHS-17A12-120
KHS-17D11-12
KHS-17D11-24

KHS-17D11-48
KHS-17D11-110
KHS-17D12-12
KHS-17D12-24

Outline Dimensions

Mounting Code 1 - KHAU only.

PC terminal models have rivet, not stud. Max. seated height in 27E006 socket is 1.37 " (34.8 mm).

Mounting Code 1 - KHS only.
2 \& 4 Pole

Class 1 Div. 2 Group A, B, C \& D Hazards

Mounting Code 1 - Neon Indicator, Push-To-Test.

Printed Circuit

 Terminals

Printed circuit terminal thickness .022 (.558)

Wiring Diagrams (Bottom Views)

2 Pole

$+=$ Polarity for LED indicator.

PC Board Layout (Bottom View)

For KHAE Relays
with PC terminals
and sockets with
PC terminals

Boldface sockets are normally maintained in stock for immediate delivery.
For KHAU, KHAX, KHS, KHU Relays.
Relays with solder terminals are required for use with sockets.

Socket Description

Industrial Part No.	No. of Poles	Terminal and Length	Grounding Provision	Socket Material
27E006*	4	$\begin{aligned} & \text { Solder .375" } \\ & (9.53 \mathrm{~mm}) \end{aligned}$	Yes	Nylon
27E007*	4	$\begin{aligned} & \text { P.C. .218" } \\ & (5.54 \mathrm{~mm}) \end{aligned}$	Yes	Nylon
$\begin{aligned} & \text { 27E023* } \\ & \text { 27E220* } \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { P.C. .218" } \\ & \text { (5.54mm) } \end{aligned}$	No	Nylon
27E166**	4	Screw	Yes	Glass-filled Polyester
27E894**	4	Screw	No	Glass-filled Polyester
20 C 217		Relay Hold Down Spring Relay Hold Down Spring - use with 27E166 Relay Hold Down Spring - use with 27E894		
20 C 297				
$20 C 426$				

** UL Recognized, file E59244

Pierced Solder Terminals

Mounting Strip 37D633

37D633 will mount eight solder terminal sockets
in one length of aluminum strip measuring $10.97^{\prime \prime} \times 2.25^{\prime \prime} \times .062$
$(278.6 \times 57.15 \times 1.57)$

Screw Terminal DIN Rail,
Snap-Mount Socket 27E894
(Use with mounting track 24A110)

4-Pole Socket

Recommended Chassis Cutouts For Mounting Sockets

Printed Circuit Terminals With Grounding Lug

Without Grounding Lug

Caution: Printed circuit sockets are manufactured with "floating" (Loose) terminals. This permits them to align with holes in the circuit board and with the relay terminals. During the mounting and soldering of the socket, vertical During the mounting and soldering of the socket, vertical
float should be eliminated and the terminals seated on the float should be eliminated and the terminals seated on the board. (This may be accomplished by inserting a dummy
relay in the socket.) Failure to eliminate float may cause relay in the socket.) Failure to eliminate float may caus
fracture of the solder joint or separation of the copper fracture of the solder joint or separation of the copper inserted in the socket after soldering.

Hold Down
Spring 20C217

Features

- Small size, 3A, 5A, 10A and 15A switching capacity.
- Meets UL and CSA requirements.
- 1 pole, 2 poles and 4 poles contact arrangements.
- AC and DC coils with UL Class F $\left(155^{\circ} \mathrm{C}\right)$ coil insulation system standard.
- Optional flange mount case.
- Plug-in terminals or PCB terminals.

Contact Data @ 20 ${ }^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), 1 Form C (SPDT),
2 Form A (DPST-NO), 2 Form C (DPDT),
4 Form A (4PST-NO), 4 Form C (4PDT).
Material: Ag, Ag Alloy.
Max.Switching Rate: 300ops./min.(Mechanical). 30ops./min.(Electrical).
Expected Mechanical Life: 100 million operations (no load).
Expected Electrical Life: 100,000 operations (rated load).
Minimum Load: 100mA @5VDC.
Initial Contact Resistance: 50milliohms @ DC6V,1A.

Contact Ratings

Ratings: PCL-4 3A @AC250V/DC24V resistive.
PCL-2 5A @AC250V/DC24V resistive.
PCLH-2 15A @AC120V resistive.
10A @ AC250V/DC24V resistive.
PCLH-1 15A @AC250V/DC24V resistive.
Max. Switched Current: PCL-4 3A.

PCL-2	$5 A$.
PCLH-2	$15 A$.
PCLH-1	$15 A$.

Max. Switched Power: PCL-4 660VA, 72W.
PCL-2 1,100VA, 120W.
PCLH-2 3,168VA, 240W.
PCLH-1 3,300VA, 360W.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC 1minute.
Between Adjacent Contact Terminals: 1,500VAC 1minute.
Between Contacts and Coil: $2,000 \mathrm{VAC} 1$ minute.
Surge Voltage (Coil-Contact): 3,000V(1.2/50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Open Contacts: 1,000Mohms @ 500VDC.
Between Adjacent Contact Terminals: 1,000M ohms @ 500VDC.
Between Contacts and Coil: 1,000Mohms @ 500VDC.

Coil Data

Voltage: AC 6-240V.
DC 6-110V.
Nominal Power: AC abt. 1.4VA/1.2VA ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$). DC abt. 0.9 W .
Coil Temperature Rise: AC $60^{\circ} \mathrm{C}$ max.
$D C 50^{\circ} \mathrm{C}$ max.
Max. Coil Power: 110\% of nominal voltage.

PCL/PCLH series
 3A, 5A, 10A, 15A General Purpose Miniature Relay

Factory Automation, Process Controls, Electrical Panels, etc.

TJ UL File No. E58304
(18) CSA File No. LR48471

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data@ $20^{\circ} \mathrm{C}$

PCL AC Coil				
Rated Coil Voltage (VAC)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VAC)	Must Release Voltage (VAC)	Nominal Coil Power (VA)
6	10			
12	40			
24	160			
48	600	80\% max.	30\% min.	abt. 1.4
100	2,800			
110/120	3,400			
200	11,000			
220/240	13,600			
PCL DC Coil				
Rated Coil Voltage (VDC)	Coil Resistance (ohms) $\pm 10 \%$	Must Operate Voltage (VDC)	Must Release Voltage (VDC)	Nominal Coil Power (W)
6	40			
12	160			abt. 0.9
24	650	80\% max.	10\% min.	
48	2,600			
100/110	11,000			abt. 1.1

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

Must Operate Voltage: AC 80% of nominal voltage or less. DC 80% of nominal voltage or less.
Must Release Voltage: AC 30% of nominal voltage or more.
DC 10\% of nominal voltage or more.
Operate Time: AC 20 ms max.
DC 15ms max.
Release Time: AC 20 ms max. DC 8ms max.

Environmental Data

Temperature Range:
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity: 45 to 85%. (Non-condensing).
Vibration, Operational: 10 to 55 Hz 1.0mm double amplitude.
Mechanical: 10 to 55 Hz 1.0 mm double amplitude.
Shock, Operational: $100 \mathrm{~m} / \mathrm{s}^{2}$ (abt. 10G).
Mechanical: $\quad 1,000 \mathrm{~m} / \mathrm{s}^{2}$ (abt. 100G).

Mechanical Data

Termination: Plug-in, PCB.
Enclosure: Snap-on cover.
Weight: 1.26 oz (32g) approximately.

Our authorized distributors are more likely to stock the following items for immediate delivery.
PCLH-202A1S,000
PCLH-203A1S,000
PCLH-206A1S,000
PCLH-208A1S,000
PCLH-202D1S,000
PCLH-203D1S,000
PCLH-204D1S,000
PCLH-205D1S,000
PCLH-206A1SP,000
PCLH-202D1SP,000
PCLH-203D1SP,000
PCLH-205D1SP,000

Outline Dimsisions

PCL 2c, 2a type (PCB Terminal)

PCL 2c, 2a type (Plug-in Terminal)

Outline Dimensions (continued)

PCLH type (Flange Mount Case)

Wiring Diagrams (Bottom Views)

PCL 4c type

PCL 4a type

PCL 2c type

PCLH 2c type

PCLH 2a type

PCLH 1c type

PCLH 1a type

PC Board Layouts (Bottom Views)

Reference Data

Sockets

For PCL socket information refer to KH series sockets (page 712).
For PCLH socket information refer to K10 series sockets (page 722).

Features

- Low profile height of 29 mm .
- DPDT, 3PDT or 4PDT contact arrangements.
- Greater switching performance - up to 3,000VA.
- AC and DC coils.
- Mechanical indicator.
- Manual test tab with locking option available.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT), 3 Form C (3PDT) and 4 Form C (4PDT).
Material: Silver-nickel $90 / 10$ with optional gold plating.
Minimum Load: Silver-nickel 90/10: 10mA @ 12V.
Silver-nickel $90 / 10$ with gold plating: $1 \mathrm{~mA} @ 20 \mathrm{mV}$.
Expected Mechanical Life: DC coil 30 million operations minimum.
AC coil 20 million operations minimum.
Ratings:

Arrangement	2 Form C	3 Form C	4 Form C
Rated Current	12 A	10 A	6 A
Rated Voltage	250 VAC	250 VAC	250 VAC
Maximum Switching Voltage	440 VAC	440 VAC	440 VAC
Rated Breaking Capacity	$3,000 \mathrm{VA}$	$2,500 \mathrm{VA}$	$1,500 \mathrm{VA}$
Maximum Make Current	24 A	20 A	12 A

Initial Dielectric Strength

Between Open Contacts: 1,500VAC.
Between Coil and Contacts: 2,500VAC; 5,000V surge ($12 / 50 \mu \mathrm{~s}$).
Between Poles: 2 and 3 Pole:2,500VAC, 4 Pole: 2,000VAC.

DC Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Nominal Coil Power: 750mW

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Nominal Coil Current (mA)
06	48	4.5	0.6	125.0
12	192	9.0	12	62.5
24	777	18.0	2.4	30.8
48	3,072	36.0	4.8	15.6
60	4,845	45.0	6.0	12.4
110	16,133	82.5	110	6.8
220	64,533	165.0	22.0	3.4

AC Coil Data @ $\mathbf{2 0}^{\circ} \mathrm{C}$
Nominal Coil Power: 10VA @ $50 \mathrm{~Hz} . / 0.86 \mathrm{VA} @ 60 \mathrm{~Hz}$.

Nominal Voltage VAC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage (VAC) $\mathbf{5 0 ~ H z ~ / ~ 6 0 ~ H z ~}$	Drop-out Voltage VAC	Nominal Coil Current (mA) $\mathbf{5 0 ~ H z . ~ / ~ 6 0 ~ H z . ~}$
06	11	$4.8 / 5.4$	18	$166.5 / 141$
12	48	$9.6 / 10.8$	3.6	$83.3 / 70.5$
24	192	$19.2 / 216$	7.2	$416 / 33.0$
48	777	$38.4 / 43.2$	14.4	$213 / 18.2$
60	1,306	$48.0 / 54.0$	18.0	$16.7 / 14.5$
115	4,845	$92.0 / 103.5$	34.5	$8.8 / 7.5$
230	19,465	$184.0 / 207.0$	69.0	$4.3 / 3.9$

PT series

6 to 12 Amp Miniature Relay 2, 3 or 4 Pole, PCB or Plug-in
 c $\mathbf{T N}_{\text {us }}$ UL File E79990
 (- 아

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time : 15 ms typical, at nom. voltage.
Release Time : 10 ms typical, at nom. voltage.
Bounce Time: 5 ms typical, at nom. voltage.
Switching Rate: 6 ops./minute max. at rated load.

Environmental Data

Temperature Range:

$$
\text { Storage: }-45^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \text {. }
$$

Operating: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration: 55 to 150 Hz . at $7 \mathrm{~g} \mathrm{~N} / \mathrm{O}, 4 \mathrm{~g} \mathrm{~N} / \mathrm{C}$.
Operational Shock: $20 \mathrm{~g} \mathrm{~N} / \mathrm{O}, 5 \mathrm{~g} \mathrm{~N} / \mathrm{C}$.
Mechanical Shock: 50g.

Electrical Life

Max. DC Load Breaking Capacity (resistive Ioad)

Coil Operating Range

Our authorized distributors are more likely to stock the following items for immediate delivery.

PT220024	PT221024	PT270024	PT320024	PT321024	PT370024	PT520024	PT521024	PT570024	PT580024
PT220524	PT221524	PT270524	PT320524	PT321524	PT370524	PT520524	PT521524	PT570524	PT580524
PT220615	PT221615	PT270615	PT320615	PT321615	PT370615	PT520615	PT521615	PT570615	PT580615

Outline Dimensions

Socket Mount, Solder Terminals

Printed Circuit Board Terminals

Wiring Diagrams (Bottom Views)

PC Board Layout (Bottom Views)

27E894
DIN Rail Socket with Screw Terminals, 4 pole

PT78702, PT78703, PT78704 (2, 3 and 4 Pole) DIN Rail Socket with Screw Terminals

27E006

4 Pole Socket with Solder Terminals

Socket Selection Table

Stock items are boldfaced.

Socket Part No.	Socket Termination	Mounting Style	No. of Poles	Accepts Modules?
27E894	Screw Terminals	DIN-rail	4	No
PT78702	Screw Terminals	DIN-rail	2	Yes
PT78703	Screw Terminals	DIN-rail	3	Yes
PT78704	Screw Terminals	DIN-rail	4	Yes
27E006	.375 (9.53) SolderTerminals	Panel Cutout	4	No
27E220	.218 (5.54) SolderTerminals	PC Board	2	No
27E023	.218 (5.54) PCB Terminals	PC Board	4	No

27E023
4 Pole Socket with PCB Terminals

27E220
2 Pole Socket with PCB Terminals

LED and Protection Module Selection Table
Stock items are boldfaced.

Module Part No.	Type
RPM T0 0A0	Protection diode 1N4007 (Note 1)
RPM U0 548	RC network 24-48VAC
RPM U0 730	RC network 110-230VAC
RPM L0 024	LED 12-24VDC (Note 1)
RPM L0 524	LED 12-48VACNDC
RPM L0 110	LED 110VDC (Note 1)
RPM L0 730	LED 110-230VAC

Note 1: Standard polarity: A1: +, A2: -

Features

- K10 - DPDT contact arrangement standard.
- AC and DC coils.
- Mounting options include socket, PCB , top flange.
- UL Class B coil insulation system.

Contact Data @ $25^{\circ} \mathrm{C}$

Materials: Silver-cadmium oxide.
Expected Life: 10 million operations, mechanical; 100,000 operations minimum at rated loads.

Contact Ratings

Contact Code	Material	ULCSA Ratings	Type
$\mathbf{5}$	Silver-cadmium	15 A @ 30VDC	Resistive
	oxide	15 A @ 120VAC	Resistive
		10 A @ 277VAC	Resistive
		$1 / 3 \mathrm{HP}$ @ 120VAC	
		$1 / 2 \mathrm{HP}$ @ 250VAC	

Initial Dielectric Strength

Between Open Contacts: 1,000V rms.
Between Adjacent Contacts: $1,500 \mathrm{~V}$ rms.
Between Contacts and Coil: $1,500 \mathrm{~V}$ rms.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Nominal Power:

DC Coils: . 9 Watts.
AC Coils: 12VA.
Maximum Power: 2.0 Watts.
Duty Cycle: Continuous.
Insulation: Class B: $\left(130^{\circ} \mathrm{C}\right)$.

K10 series

15 Amp General Purpose Miniature Relay

미 File E22575
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

	DC Coils		AC Coils	
Nominal Voltage	Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Nominal Current in Milliamps	Resistance in Ohms $\mathbf{\pm 1 5 \%}$	Nominal Current in Milliamps
6	40	150	10.5	200
12	160	75	43	100
24	650	37	160	52
48	2,600	18.5	668	26
110	11,000	10	$3, \overline{900}$	-11
120^{*}	-	-	12,000	6
240^{*}	-	-		

*For 220/240VDC operation, use 11,000 Ohm, 5 Watt dropping resistor in series with the 110VDC coil.

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage:
DC Coils: 75% of nominal voltage.
AC Coils: 85% of nominal voltage.
Operate Time (Excluding Bounce): 13 milliseconds, typical, at nominal voltage.
Release Time (Excluding Bounce): 6 milliseconds, typical, at nominal voltage.

Environmental Data

Temperature Range:
Storage: $-60^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Socket mount, printed circuit board, top flange.
Termination: 187 " (4.75 mm) quick connect/solder terminals, or printed circuit terminals.
Enclosure: Smoke-color polycarbonate dust cover.
Weight: 18 oz . (51g) approximately.

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.

K10P-11A15-6	K10P-11D15-6	K10P-11D55-24
K10P-11A15-12	K10P-11D15-12	K10P-11D55-110
K10P-11A15-24	K10P-11D15-24	K10P-11DT5-12
K10P-11A15-120	K10P-11D15-110	K10P-11DT5-24
K10P-11AT5-120	K10P-11D55-12	

Outline Dimensions

Mounting Code 1
Socket Mount

Mounting Code 5 Printed Circuit Terminals

Mounting Code T

PC Board Layout

Wiring Diagram

Sockets and Accessories for K10 Relays

Sockets for K10 series relays are rated 10 amps, and are UL recongnized, File E59244, and CSA certified, File LR15734.

27E488
Pierced Solder Terminals

$20 C 217$
Hold Down
Spring For
27E488 \& 27E489

Chassis Cutout For 37D633
 Mounting 27E488 Mounting Strip
 Socket

Recommended chassis thickness $.039^{\prime \prime}(.99 \mathrm{~mm})$ to 079" (2.01mm).

Socket punch
Greenlee part
5015115.0, Type 731R
available from
Greenlee Tool Co.,
Rockford, Illinois.

Caution: Printed circuit sockets are manufactured with "floating" (loose) terminals. This permits them to align with holes in the circuit board and with the relay terminals. During the mounting and soldering of the socket, vertical float should be eliminated and the terminals seated on the board. (This may be accomplished by inserting a dummy relay in the socket.) Failure to eliminate float may cause fracture of the solder joint or separation of the copper conductor from the printed circuit board when a relay is inserted in the socket after soldering.

37D633 will mount eight 27E488 sockets in one length of aluminum strip measuring 10.97" $\times 2.25$ " x .062".
$(278.64 \times 57.15 \times 157)$

27E895

Screw Terminals, DIN Rail Snap-Mount (Use with mounting track 24A110)

27E487
Screw Terminals

$20 C 426$

Hold Down Spring For 27E487 \& 27E895

Note: P.C. terminal socket will also fit P.C. board layout for relay. However, in order to accomplish this, terminals must be formed accordingly.

27E489
Printed Circuit Terminals

P.C. Board Layout For Socket

Features

- AC coils: 6-240VAC, 50/60 Hz. DC: 6-110VDC.
- Contact arrangement up to 4PDT.
- Wide selection of termination and mounting styles.
- PC terminals available.
- Push to test button and indicator lamps.
- KUEP incorporates a blow out magnet for high voltage DC switching.
- KUIP/KUGP are VDE approved.
- Complete line of sockets and DIN rail.
- Class B coil insulation.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: See respective ordering information table.
Materials: Fine silver (5 amp) silver-cadmium oxide (10 amp).
Gold flash available as standard.
Gold diffused and gold alloy on special order.
Expected Mechanical Life:
Contact Ratings

Material	Arrangement	ULCSA Ratings	Expected Life
Fine Silver	All	5 amps @ 28VDC or 240VAC 80\% PF, 2.5 amp tungsten @120VAC, 1/2 amp @120VDC.	100,000
		1/6 HP @120VAC, 1/3 HP @ 240VAC, 5 FLA, 15 LRA @ 250VAC (FLA covered by 30,000 operations).	
SilverCadmium Oxide	1-2 Pole KUP KUIP KUGP KUEP All KUMP	10 amps @ 28 VDC or 240VAC, 80\% PF, 5 amp tungsten @ 120VAC, 3A 600VAC, $1 / 2 \mathrm{amp}$ @ 120VDC.	100,000
		1/3 HP @ 120VAC, 1/2 HP @ 240, 480, and 600VAC, 10 FLA 30 LRA @ 120VAC, 5 FLA, 15 LRA @ 250VAC.(FLA ratings covered by 30,000 operations)	
	KUMP	15 amp @ 277VAC, 80\% PF KUM KUMP	100,000
	3 Pole KUP KUIP	$10 \mathrm{amp} @ 28 \mathrm{VDC}$ or 120VAC, 80\% PF, 6 2/3 amp @ 240VAC, 80\% PF	100,000
	4 Pole	10 amp per pole not to exceed 30 amp total @ 28VDC, 120VAC, 80\% PF, 6 2/3 amp @ 240VAC, 80\% PF	100,000
	KUEP SPST-NO KUEP 2PST-NO KUEP 2PDT	10 amp @ 150VDC 5 amp @ 150VDC 3 amp @ 150VDC	100,000

(All other AC ratings apply KUEP.)

Initial Dielectric Strength

Between Open Contacts: 1,200V rms; KUGP, 3,500V rms.
Between Adjacent Contacts: 2,200V rms.
Between Contacts and Coil: $2,200 \mathrm{~V}$ ms; KUGP, KUIP, $3,750 \mathrm{~V}$ ms.

KU series

KUP Enclosed Relay

KUIP VDE 8mm Coil to Contacts
KUGP VDE 8mm 3mm Gap Coil to Contacts
KUEP 10 Amp 150VDC Load Switching
KUMP 15 Amp 277VAC
听 File E22575
(18) File LR15734

방 0435 Registration 1792 (KUGP)
License 8112102.01
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 6 to 110VDC and 6 to 240VAC.
Nominal Coil Power:
DC Coils: 12 Watts - KUP, KUIP, KUMP, 1 - 3 pole; KUEP, 1 pole.
DC Coils: 18 Watts - KUP, 4 pole; KUEP, 2 pole; KUGP.
AC Coils: 2.0VA - KUP, KUIP, 1 - 2 pole; KUEP, 1 pole.
AC Coils: 2.7 VA - KUP, KUIP, 3 pole; KUEP, 2 pole; KUGP, KUMP.

Coil Data

DC Volts	1.2 Watt		1.8 Watt	
	DC Ohms $\pm \mathbf{1 0 \%}$	Nom. I ma	DC Ohms $\pm \mathbf{1 0} \%$	Nom. I ma
5	21	238	14	360
6	32.1	187	20	300
12	120	100	80	150
24	472	51	320	75
48	1,800	26.7	1,260	38
110	10,000	11	6,720	16
AC Volts	2VA		2.7VA	
Nominal	DC Ohms $\pm \mathbf{1 5} \%$	Nom. I ma	DC Ohms $\mathbf{1 5} \%$	Nom. I ma
6	6	335	4.2	460
12	24	168	18	230
24	85	84	72	115
120	2,250	17.5	1,700	24
240	9,110	8.75	7,200	12

Operate Data @ $25^{\circ} \mathrm{C}$
Must Operate Voltage:
DC Coils: 75\% of nominal voltage or less.
AC Coils: 85\% of nominal voltage or less.
Operating Time (Excluding Bounce):
15 milliseconds, typical, at nominal voltage.
Release Time (Excluding Bounce):
10 milliseconds, typical, at nominal voltage.

Environmental Data

Temperature Range:
Operating: Enclosed Relays: $-45^{\circ} \mathrm{C}$ to maximum listed in table below.
Open Relays: Add $15^{\circ} \mathrm{C}$ to maximum listed.

Max C°	$+45^{\circ} \mathrm{C}$	+50 ${ }^{\circ} \mathrm{C}$	$+55^{\circ} \mathrm{C}$	+70 ${ }^{\circ} \mathrm{C}$	$+75^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$	+95 ${ }^{\circ} \mathrm{C}$
KUP	$\begin{gathered} \hline A C \\ 3-4 \text { pole } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { DC } \\ 4 \text { pole } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { AC } \\ 1-2 \text { pole } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { DC } \\ 1-3 \text { pole } \\ \hline \end{array}$			
KUIP				$\begin{gathered} \text { AC } \\ 3 \text { pole } \end{gathered}$		$\begin{gathered} \text { AC } \\ 1-2 \text { pole } \\ \hline \end{gathered}$	$\begin{gathered} \text { DC } \\ 1-3 \text { pole } \\ \hline \end{gathered}$
KUGP				$\begin{gathered} \text { AC } \\ 2 \text { pole } \end{gathered}$	$\begin{gathered} \text { DC } \\ 2 \text { pole } \\ \hline \end{gathered}$		
KUEP	$\begin{gathered} \text { AC } \\ 2 \text { pole } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{DC} \\ 2 \text { pole } \\ \hline \end{gathered}$	$\begin{gathered} \text { AC } \\ 1 \text { pole } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{DC} \\ 1 \text { pole } \\ \hline \end{gathered}$			
KUMP	$\begin{gathered} \text { AC } \\ 3 \text { pole } \end{gathered}$		$\begin{gathered} \text { AC } \\ 1-2 \text { pole } \end{gathered}$	$\begin{gathered} \text { DC } \\ \text { 1-3 pole } \end{gathered}$			

Environmental Data (Continued)

Maximum Allowable Ambient Temperature vs. Voltage (KUP enclosed)

Mechanical Data

Termination: Quick connect, solder and PC board.
Enclosure: Clear polycarbonate dust cover.
Weight: 3.0 oz. (85 g) approximately.

Ordering Information

Our authorized distributors are more likely to stock

KUP-5A15-24	KUP-11A15-12	KUP-11D15-5	KUP-11D55-110	KUP-14A55-24	KUP-14D25-24
KUP-5A15-120	KUP-11A15-24	KUP-11D15-12	KUP-14A11-120	KUP-14A55-120	KUP-14D35-24
KUP-5A15-240	KUP-11A15-120	KUP-11D15-24	KUP-14A15-12	KUP-14A55-240	KUP-14D55-12
KUP-5A55-120	KUP-11A15-240	KUP-11D15-110	KUP-14A15-24	KUP-14D11-24	KUP-14D55-24
KUP-5D15-12	KUP-11A35-120	KUP-11D35-24	KUP-14A15-120	KUP-14D15-6	KUP-17A19-120
KUP-5D15-24	KUP-11A55-24	KUP-11D55-6	KUP-14A15-240	KUP-14D15-12	KUP-17A55-24
KUP-5D55-12	KUP-11A55-120	KUP-11D55-12	KUP-14A25-120	KUP-14D15-24	KUP-17D19-24
KUP-5D55-24	KUP-11AT5-120	KUP-11D55-24	KUP-14A35-120	KUP-14D15-48	KUP-17D55-24
KUP-11A11-120	KUP-11D11-24	KUP-11D55-48	KUP-14A45-120	KUP-14D15-110	

Ordering Information

6. Coil Voltage:

To $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. or 110VDC. (For 277VAC, consult factory.)*
See coil data tables.

* Options included in VDE file.

Our authorized distributors are more likely to stock the following items for immediate delivery.

KUGP-7D55-24

KUIP-5A55-120
KUIP-11D55-12
KUIP-11D55-24

KUIP-14A15-120
KUIP-14D15-12
KUIP-14D15-24

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.

KUEP-3A15-120	KUEP-3D15-110	KUEP-11D15-12
KUEP-3D15-12	KUEP-7D15-24	KUEP-11D15-24
KUEP-3D15-24	KUEP-11A15-120	

Ordering Information

5. Terminal \& Contact Material:

Type	$\mathbf{1} \& \mathbf{2}$ Pole Models	$\mathbf{3}$ Pole Models
Codes Available	$6,8,9, \mathrm{G}$	$6,8,9$

$6=.205$ " (5.21 mm) quick connect/solder; silver-cadmium-oxide.
$8=.187^{\prime \prime}(4.75 \mathrm{~mm})$ quick connect/solder; silver-cadmium-oxide.
$9=.0477^{\prime \prime}(119 \mathrm{~mm})$ printed circuit; silver-cadmium-oxide.
$\mathrm{G}=.250$ " $(6.35 \mathrm{~mm})$ quick connect; silver-cadmium-oxide. (Not available on 3 pole models.)
6. Coil Voltage:

To $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. or 110VDC (For 277VAC, consult factory.)

Our authorized distributors are more likely to stock the following items for immediate delivery.			
KUMP-11A18-24 KUMP-11D18-12 KUMP-14A18-24			
KUMP-11A18-120 KUMP-11D18-24 KUMP-14A18-120			
KUMP-11A18-240	KUMP-11D18-110	KUMP-14D18-12	

Outline Dimensions

Open Relays

Bracket Type

Enclosed Relays
Plain Case

Top Flange Case

Bracket Mount Case

Seated Heights For Open Relays

1391" (35.33mm) for \#6-32 stud with .218 " (5.54 mm) locating tab.

152" (38.6 mm) for bracket
with 2-\#6 32 tapped holes.
1282" (32.56mm) for \#6-32 tapped core with $.125^{\prime \prime}(3.18 \mathrm{~mm})$ or $.218^{\prime \prime}$ (5.54 mm) locating tab.
2.046 " (5197mm) for relay
with printed circuit terminals

STUD TYPE also available with $.125^{\prime \prime}$ (3.18 mm) tab, as well as without stud and locating tab.
Models without stud have core tapped \#6-32
THREAD, $.25^{\prime \prime}(6.4 \mathrm{~mm})$ minimum depth.
*Dimensions with .250 " $(6.35 \mathrm{~mm})$ terminals.
**Dimensions with $.110^{\prime \prime}(2.79 \mathrm{~mm})$ or
.205"(5.21mm) terminals.
***Dimensions with .187 " (4.75 mm) terminals.

Core and Stud Mount Cases

\dagger Dimensions with $.250^{\prime \prime}$ (6.35 mm) terminals.
\ddagger Dimensions with .110 " (2.79 mm), .187"
(4.75 mm and $.205^{\prime \prime} 5.21 \mathrm{~mm}$) terminals.
*Dimensions with .250 " $(6.35 \mathrm{~mm})$ terminals.
**Dimensions with .110 " (2.79 mm) or .205" (5.21 mm) terminals
***Dimensions with .187" (4.75mm) terminals

Stud on End Case

Outline Dimensions (Continued)

Relay Front Diagrams

1-3 Pole Relays

Relays With

.250" (6.35mm) Terminals

4 Pole Relays

Terminal Dimensions

.110" (2.79mm)
Quick ConnectQuick Connect

205" (5.21 mm) Quick Connect

.187" (4.75mm)
Quick Connect

Note: All drawings shown oversize.

Wiring Diagrams

*1 Form X	1 Form C	*2 Form A	*2 Form C	3 Form C	4 Form C
$4 \square$	$7^{\stackrel{2}{4}}$	$\xrightarrow[-7]{+\stackrel{4}{7}} \xrightarrow{+} \xrightarrow{+\frac{6}{9}}$	$\begin{array}{ll} -\frac{1}{6} \\ -\frac{4}{7} \\ +\frac{7}{2} \end{array} \quad \begin{aligned} & -\frac{3}{6} \\ & -\frac{6}{4} \end{aligned}$		
A $\sim^{\text {B }}$	A $\sim^{\text {B }}$	$A \sim B$	$\mathrm{A}-\underbrace{\text { B }}$	A	$\mathrm{A}-\mathrm{C}^{\text {B }}$

*Recommended Load Polarity for Optimum Arc Suppression.

PC Board Layouts (Bottom Views)

1 Form X

3 Pole Models

4 Pole Models

Sockets For KU Series Relays Through 3 Poles

Socket Selection Table

Stock items are boldfaced
For KUP, KUEP, KUGP, KUIP, and KUMP relays, through 3 poles, with .187 " (4.75 mm) quick connect termination.

Socket	Socket Termination	Hold-Down Spring
27E043	Solder eyelet	20C228 or 20C254*
27E046	PC board, .144" (3.66mm) terminals	20 C 228 or 20C254
27E067	.187" (4.75mm) quick connect	20 C 228 or 20C254
27E121	Screw terminals	20C314 (2 per socket required)
27E305	PC board, .184" (4.67mm) terminals	20 C 228 or 20C254
27E396	.187" (4.75mm) quick connect*	20C254
27E893	Screw terminals \dagger	$20 C 318$
* 20C228 held ** Snap-in mou \dagger DIN rail mou	by socket hold-down screw where as 20C2	onto socket.

Hard Mount Sockets For Relays Through 3 Poles

Nylon sockets with $.187^{\prime \prime}(4.75 \mathrm{~mm})$ quick connect, solder or printed circuit terminals are available for KUEP, KUGP, KUIP, KUMP, and KUP relays, through 3 poles, with .187" $(4.75 \mathrm{~mm})$ quick connect terminals. All are rated 15 amps and UL recognized, File E59244 and CSA certified File LR15734
27E043-with solder eyelet terminals. 27E067-with .187" (4.75 mm) quick connect terminals.

The 27E043 and 27E067 use chassis cutout shown on this page.

Suggested Socket PC Board Layout

Recommended Chassis Cutout For Hard Mount Sockets

Recommeded Chassis Cutout For Snap-In Sockets

Recommended chassis thickness 031" (.79mm) to .062" (157mm).

Sockets For KU Series Relays Through 3 Poles (continued)

27E121

Screw Terminal Socket

The 27E121 socket offers screw termination for KUEP, KUGP, KUIP, KUL, KUMP and KUP relays, through 3 poles, with .187" (4.75mm) quick connect terminals. This socket stacks on 1700" (43.18mm) centers. When surface mounting, two \#6-32 screws of suitable length are required. When track mounting, two 24A071 retainer clips (not shown) are required. The 27E121 is rated 15 amps and is UL recognized, File E59244, CSA certified, File LR15734.

27E893

Screw Terminal, Din Rail Snap-Mount Socket
(use with mounting track 24A110)
The 27E893 DIN rail, snap-mount socket offers screw termination for KUEP, KUGP, KUIP, KUL, KUMP and KUP relays, through 3 poles, with 187 " (4.75 mm) quick connect terminals. This socket is constructed with a spring-loaded latch which allows it to be quickly snapped onto or removed from a "top hat" style mounting track. No special tools or extra hardware is required for installation. The 27E893 is UL rated 15 amps, 94V-0, File E59244 and CSA rated 10 amps , File LR15734.

Sockets For KU Series 4 Pole Relays

Socket Selection Table

Stock items are boldfaced.
For 4 pole KUP relays with . $110^{\prime \prime}$ (2.79 mm) quick connect termination.

Socket	Socket Termianation	Hold-Down Spring
$27 E 415$.187" (4.75mm) quick connect	20 C 228 or 20C254
27E419	PC board	20 C 228 or 20C254
27E867*	Screw terminals	20C254

* Use 40G432 insulator pad or customer supplied altemative.

Hard Mount Sockets For 4 Pole Relays

27E415-with . 187 " (4.75 mm) quick connect/solder terminals. 27E419-with printed circuit terminals. See PC board layout at right.
Note: Only 4 pole KUP relays with . 110 " (2.79 mm) quick connect terminals can be used with 4 pole hard mount sockets.

Suggested Socket

 PC Board Layout

27E415 uses same chassis cutout as 27E043.

Features

- AC coils 24, 120 \& 240V 50/60 Hz.; DC 12 \& 24VDC.
- Contact arrangement to 3PDT.
- Sockets available for all models.
- Accepted pin pattern for HVAC industry.
- Primarily designed for the HVAC industry.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Material: Fine silver or silver-cadmium oxide.

Contact Ratings

Material	ULCSA Ratings	Life Expected
Fine silver	5A @ 28VDC or 240VAC, 80\% PF, 1/10 HP @ 120VAC, 1/4 HP @ 240VAC	100,000
Silver cadmium oxide	10A @ 28VDC or 240VAC, 80\% PF, 1/4 HP @ 120VAC,1/3 HP @ 240VAC 10 FLA, 30 LRA @ 120VAC, 5 FLA,15 LRA @ 240VAC	100,000

Initial Dielectric Strength

Between Open Contacts: 500V rms.
Between Adjacent Contacts: $1,500 \mathrm{~V}$ ms .
Between Contacts and Coil: 1,500V rms.

KUP93 series

General Purpose
 3 to 10 Amp, Multicontact AC or DC Relay

行 File E22575
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

	Nominal Voltage	DC Resistance in Ohms $\pm \mathbf{1 0 \% *}$	Must Operate Voltage	Nominal Coil Current $(\mathbf{m A)}$
DC	12	120	9.0	100
Coils	24	472	18.0	51
AC	24	72	20.4	115
Coils	120	1,700	102.0	24
	240	7,200	204.0	12

*AC coils, $\pm 15 \%$

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage:
DC Coils: 75% of nominal voltage or less.
AC Coils: 85% of nominal voltage or less.
Operate Time (Excluding Bounce): 15 milliseconds, typical, at nominal voltage.
Release Time (Excluding Bounce):
DC Coils: 10 milliseconds, typical, at nominal voltage.
AC Coils: 10 milliseconds, typical, at nominal voltage.

Environmental Data

Temperature Range:

Storage:

All Coils: $-45^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating:
DC Coils: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
AC Coils: $-45^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$.

Coil Data @ $25^{\circ} \mathrm{C}$

Nominal Power:
DC Coils: 12 Watts.
AC Coils: 2.7VA
Initial Insulation Resistance: 100 megohms, min., at $25^{\circ} \mathrm{C}$.

Mechanical Data

Termination: .187"x .020 " quick connect.
Enclosures: Clear polycarbonate dust cover.
Weight: 3.0 oz . (86 g) approximately.

Typical Part No. ${ }^{\text {P }}$	KUP93	11	A	2	1	-24
1. Type: KUP93 = Enclosed general purpose relay.						
2. Contact Arrangement: 14 = 3 Form C (3PDT)						
3. Coil Input: $A=A C$ $D=D C$						
4. Mounting: $1 \text { = PLAIN CASE; }$						
5. Terminals, Contact Material \& Rating: $1=.187$ " (4.75 mm) quick connect, silver, 5 amps . $3=.187$ " $(4.75 \mathrm{~mm})$ quick connect, silver-cadmium oxide, 10 amps .						
6. Coil Voltage: To $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. or 110 VDC .						

Our authorized distributors are more likely to stock the following items for immediate delivery. No items in this series typically are stocked.

Outline Dimensions

KUP93 Sockets

Wiring Diagrams

3 Form C

Socket PC Board Layout (Component Side of Board)

KUP93 Socket Number

Socket Color	P C Socket With Terminals
Natural Nylon	$27 E 168^{* *}$

**UL Recognized, file E22575
Socket: Rated 10 amperes. Will accept .187" (4.75mm) quick-connect terminals of all KUP93 relays.

Features

- Contact arrangements to 3PDT.
- Plug-in or PC terminals.
- Push to test button and mechanical indicator.
- RM 5/6 VDE approved with 3mm contact gap.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements:

RM 2/3/7: 2 Form C (DPDT) and 3 Form C (3PDT).
RM 5/6: 2 Form A (DPST-NO) and 3 Form A (3PST-NO).
RM 8: 2 Form C (DPDT).
Material: Silver-cadmium oxide.
Expected Mechanical Life: 20 million operations minimum.
Contact Ratings:
ULCSA @ $25^{\circ} \mathrm{C}$
RM 2/5: 16A, 250VAC G.P., 30,000 Ops.
16A, 28VDC G.P., 30,000 Ops.
1 HP, 120VAC G.P., 30,000 Ops.
1HP, 240VAC G.P., 30,000 Ops.
RM 3/6: 10A, 250VAC G.P., 30,000 Ops.
10A, 28VDC G.P., 30,000 Ops.
RM 3/6/7: $\quad 1$ HP, 120VAC, 30,000 Ops.
1/2 HP, 240VAC, 480VAC, 600VAC, 30,000 Ops.
1.5 HP, 240VAC, 3 Phase, 30,000 Ops.

RM 7: 16A, 250VAC G.P., 30,000 Ops.
16A, 10VDC G.P., 30,000 Ops.
RM 8: 25A,. 240VAC, G.P., 30,000 Ops.
1.5 HP, 120VAC, G.P., 30,000 Ops.

2 HP, 240, G.P., 30,000 Ops.
VDE @ $35^{\circ} \mathrm{C}$
RM 2: 16A, 400VAC, 100,000 Ops.
RM 3/6: 10A, 400VAC, 100,000 Ops.
RM 5/7: 16A, 400VAC, 100,000 Ops.
RM 8: $\quad 25 \mathrm{~A}, 250 \mathrm{VAC}, 10,000$ Ops.

Initial Dielectric Strength

Between Open Contacts: 1,500VAC (RM 5/6 2,500VAC).
Between Coil and Contacts: $2,500 \mathrm{VAC}$.
Creepage/Clearance coil-contact: $6 / 3.5 \mathrm{~mm}$ (RM $84 / 2.8$).

DC Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Nominal Voltage VDC	Operate Voltage VDC	Drop-out Voltage VDC	DC Resistance in Ohms $\pm 10 \%$ RM 2 RM 3 RM 8	DC Resistance in Ohms $\pm 10 \%$ RM 5 RM 6 RM 7	Nominal Coil Current (mA) RM 2 RM 3 RM 8	Nominal Coil Current (mA) RM 5 RM 6 RM 7
06	4.5	0.9	32	24	187.5	250.0
12	9.0	1.8	110	86	109.1	139.5
24	18.0	3.6	475	345	50.5	69.6
48	36	7.2	2,000	1,340	24.0	35.8
60	45	9.0	2,850	2,200	21.1	27.3
110	82.5	16.5	10,000	7,300	11.0	15.1
221	165	33	40,000	30,000	5.5	7.3

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

AC Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Nomina Voltage VAC	Operate Voltage VAC	Drop-out Voltage VAC	DC Resistance in Ohms $\pm 10 \%$ RM 2 RM 3	DC Resistance in Ohms $\pm 10 \%$ RM 5 RM 6 RM 7 RM 8	Nominal Coil Current (mA) RM 2 RM 3	Nominal Coil Current (mA) RM 5 RM 6 RM 7 RM 8
06	4.8	2.4	5.3	4.7	381.7	476.7
12	9.6	4.8	24.0	19.5	182.5	225.8
24	19.2	9.6	86.0	80.0	94.2	109.2
48	38.4	19.2	345.0	320.0	47.5	54.2
60	48.0	24.0	544.0	500.0	37.8	43.7
115	92.0	46.0	2,000.0	1,850.0	20.6	23.0
230	184.0	92.0	8,300.0	7,500.0	10.1	11.7
400	320.0	160.0	27,500.0	23,500.0	5.8	6.5

Operate Data
Must Operate Voltage: see coil data.
Operate Time : Approximate ms

	RM	RM	RM
	$\mathbf{2 / 3 / 7}$	$\mathbf{5 / 6}$	$\mathbf{8}$
Pull-in	15	15	15
Drop Out	10	10	15
Bounce	3	4	3
Switching Rate:	1000	ops/hr max. at rated load.	

Environmental Data

Temperature Range:
Operating: $-45^{\circ} \mathrm{C}$ to maximum ${ }^{\circ} \mathrm{C}$ listed below.

	RM2	RM3	RM5	RM6	RM7
DC	RM8				
DC	$+70^{\circ} \mathrm{C}$	$+60^{\circ} \mathrm{C}$	$+60^{\circ} \mathrm{C}$	$+60^{\circ} \mathrm{C}$	$+60^{\circ} \mathrm{C}$
AC Coil	$+55^{\circ} \mathrm{C}$	$+55^{\circ} \mathrm{C}$			
C	$+55^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C}$	$+40^{\circ} \mathrm{C}$

Vibration:
RM2/3/7: 30 to 150 Hz at 5 g N/O, $2 \mathrm{~g} \mathrm{N/C}$
RM5/6: 30 to 150 Hz at 12 g N/O.
RM8: 30 to 150 Hz at $10 \mathrm{~g} \mathrm{~N} / \mathrm{O}, 5 \mathrm{~g} \mathrm{~N} / \mathrm{C}$

RM2/3/7
2/3 POLE 10/16A

Contact Life

DC Coil Operating Range

Max. DC Load Breaking Capacity

AC Coil Operating Range

RM5/6
2/3 POLE 10/16A
(Contact gap 3 mm)

Max. DC Load Breaking Capacity

Contact Life

DC Coil Operating Range

AC Coil Operating Range

Contact Life

DC Coil Operating Range

Max. DC Load Breaking Capacity

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.

RM202012	RM203012	RM205024	RM302024	RM502524	RM602615	RM 702615	RM 703615	RM805615	
RM202024	RM203024	RM205524	RM302524	RM502615	RM 702012	RM703012	RM805012		
RM202524	RM203524	RM205615	RM302615	RM602024	RM 702024	RM703024	RM 805024		
RM202615	RM203615	RM 302012	RM502024	RM602524	RM 702524	RM703524	RM805524		
Dimensions are reference purpo	wn for only.		Dimensions are in inches over (millimeters) unless otherwise specified.		Specifications and availability subject to change.				www.tycoelectronics.com Technical support: Refer to inside back cover.

Outline Dimensions

RM . 187 quick connect terminals

RM with PCB terminals

Wiring Diagrams (Bottom Views)

RM3/7 3 Pole

RM5 2 Pole

RM6 3 Pole

RM . 250 quick connect terminals, with brackets

RM with snap-on attachment

PC Board Layout (Bottom View)

RM78702
M78702

Hold-Down Spring RM28802
RM78705
16A, 250VAC, Socket with Screw Terminals

Features

- Industry standard octal-type termination for quick installation.
- Contact arrangements from 1 Form C (SPDT) to 3 Form C (3PDT).
- Indicator lamp and push-to-test options available on certain models.
- The KRPA is the automated manufactured version of the KRP.
- Hermetically sealed option available with KR UL recognized for Class I Div. 2 Hazardous locations, Groups A, B, C, D.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: See Ordering Information Table.
Materials: Silver or silver-cadmium oxide, with or without gold flashing.
Expected Life: 10 million operations min., mechanical; 100,000 operations min. @ rated loads.

KA, KRP, KRPA
UL/CSA Contact Ratings @ $25^{\circ} \mathrm{C}$
(Except KR)

Contact Code	Arrangement	Contact Rating
Y (Silver)	1, 2, 3 Poles	$\begin{aligned} & \text { 5A @ 120VAC } \\ & 3 \mathrm{~A} @ 240 \mathrm{VAC} \\ & 1 / 10 \mathrm{HP} @ 120 \mathrm{VAC} \\ & 1 / 6 \mathrm{HP} \text { @ } 240 \mathrm{VAC} \end{aligned}$
G\&N (Silver-Cad. Oxide)	1, 2, 3 Poles	$\begin{aligned} & 10 \mathrm{~A} @ 240 \mathrm{VAC} \\ & 1 / 2 \mathrm{HP} @ 240 \mathrm{VAC} \\ & 1 / 3 \mathrm{HP} @ 120 \mathrm{VAC} \end{aligned}$
KR-E (Herm. Sealed)	UL Contact Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}$ Class I, Div. 2, Hazardous Loc.	
Contact Code	Arrangement	Contact Rating
Y (Silver)	1, 2, 3 Poles	$\begin{aligned} & \text { 5A @ 120VAC } \\ & 3 \mathrm{~A} \text { @ 240VAC } \\ & \text { 1/10HP @ 120VAC } \\ & 1 / 6 \mathrm{HP} @ 240 \mathrm{VAC} \end{aligned}$
G\&N (Silver-Cad. O	1, 2, 3 Poles	$\begin{aligned} & \text { 10A @ 240VAC } \\ & 1 / 6 \mathrm{HP} @ 120 \mathrm{VAC} \end{aligned}$

KR-E (Herm. Sealed) UL Contact Ratings @ $25^{\circ} \mathrm{C}$
UL 508 Industrial Control

Contact Code	Arrangement	Contact Rating
Y, G	$1,2,3$ Poles	3 A @ 120VAC
(Silver)		3 A @ 28VDC
		$1 / 10 \mathrm{HP}$ @ 120VAC

KRP, KRPA Factory Ratings

Contact Code	Arrangement	Contact Rating
Y	$1,2,3$ Poles	5A @ 28VDC, 120VAC, 80\% PF
G\&N	$1,2,3$ Poles	10A @ 28VDC, 120VAC, 80\% PF
		6 A @ 250VAC

KA UL Contact Ratings

Contact Code	Series	Contact Ratings
Y	KA^{1}	5A @ 120VAC, 3A @ 240VAC, $1 / 10 \mathrm{HP}$ @ 120VAC, 1/6 HP @ 240VAC
G	KA^{2}	10 A @ 120VAC, 6A @ 240VAC $1 / 6 \mathrm{HP}$ @ 120VAC, 1/3 HP @ 240VAC

[^18]2Listed by C.S.A. for 10A @ 120VAC 80\% PF
Note: See KRPA, KRP, KA, KR-E Ordering Information table.

KRPA, KRP, KA, KR series

5 to 10 Amp
 General Purpose Relay

구 File E29244, E22575, E81558 (KR Hermetic)
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength
Between Open Contacts: 500 V rms.
Between All Elements: $1,500 \mathrm{~V}$ rms.

Coil Data @ $25^{\circ} \mathrm{C}$

		Nominal Power	Maximum Power
KRP KRPA	AC	2VA	Enclosed Models - 4VA
	DC	12W	Enclosed M odels - 3W
	AC	2VA	Open Models - 4VA
	DC	125mW per movable arm	Open Models - 4W

Duty Cycle: Continuous.
Initial Insulation Resistance: KRP, KRPA - 1000 Megohms, min. KA - 100 M egohms, min.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

	Nominal Voltage	DC Resistance (Ω) $\mathbf{\pm 1 0 \%}$	Nominal Coil Current (mA)
DC	6	32	188
	12	120	100
	24	472	51
	48	1,800	26.6
	220	10,000	115
	6	Use 110V relay with $10,000 \Omega$ 5W Resistor in series	
AC	12	6	335
Coils	24	24	168
	120	85	84
	240	2,250	17.5
		9,110	8.75

Operate Data @ $25^{\circ} \mathrm{C}$

Must-Operate Voltage:

DC: 75\% or less of nominal voltage.
AC: 85% or less of nominal voltage.
Operate Time (Excluding Bounce):
15 milliseconds typical @ nominal voltage.
Release Time (Excluding Bounce):
10 milliseconds typical @ nominal voltage.

Environmental Data

Temperature Range:
Open Models: AC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
DC: $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Enclosed Models: AC: $-45^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
DC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Mechanical Data

Open Models: Solder terminals.
Enclosed Models: Octal-type plug.
Enclosures: Transparent polycarbonate (except KR).
Hermetically sealed metal case available with KR only.
Weight: KA: $17 \mathrm{oz} .(48.2 \mathrm{~g})$ approximately.
KRPA, KRP: 3.0 oz. (85 g) approximately.

Ordering Information

1. Series:
KRPA (Newer version, enclosed)
KRP (Older version, enclosed)
KR (Hermetically sealed option 'E'only)
KA (Open style) 2. Cypical Part No.
*Indicator Lamp not available on $25-90 \mathrm{~V}$ coils. Only $120-240 \mathrm{VAC}$ and 110 VDC models are UL recognized and CSA certified.

Our authorized distributors are more likely to stock the following items for immediate delivery.				
KA-5AG-120	KR-11DGE-24	KRP-14AN-120	KRPA-11AN-24	KRPA-14AG-120
KA-5AY-120	KR-14AGE-120	KRP-14AY-120	KRPA-11AN-120	KRPA-14AG-240
KA-5DG-6	KR-14DGE-24	KRP-14DG-12	KRPA-11AN-240	KRPA-14AN-24
KA-5DG-12	KRP-5AG-120	KRP-14DG-24	KRPA-11AY-6	KRPA-14AN-120
KA-5DG-110	KRP-11AG-24	KRP-14DG-110	KRPA-11AY-12	KRPA-14AN-240
KA-11AG-120	KRP-11AG-120	KRP-14DN-24	KRPA-11AY-24	KRPA-14AY-24
KA-11AY-6	KRP-11AG-240	KRPA-5AG-24	KRPA-11AY-120	KRPA-14AY-120
KA-11AY-24	KRP-11AN-24	KRPA-5AG-120	KRPA-11AY-240	KRPA-14AY-240
KA-11AY-120	KRP-11AN-120	KRPA-5AY-120	KRPA-11DG-6	KRPA-14DG-12
KA-11DG-12	KRP-11AY-120	KRPA-5DG-6	KRPA-11DG-12	KRPA-14DG-24
KA-11DG-24	KRP-11DG-12	KRPA-5DG-12	KRPA-11DG-24	KRPA-14DG-48
KA-11DG-110	KRP-11DG-24	KRPA-5DG-24	KRPA-11DG-48	KRPA-14DG-110
KA-14AG-120	KRP-11DG-48	KRPA-5DY-12	KRPA-11DG-110	KRPA-14DN-24
KA-14AY-120	KRP-11DG-110	KRPA-5DY-24	KRPA-11DN-12	KRPA-14DY-24
KA-14DG-24	KRP-11DG-125	KRPA-11AG-6	KRPA-11DN-24	
KA-14DG-110	KRP-11DN-12	KRPA-11AGG-12	KRPA-11DN-110	
KR-11AE-120	KRP-11DN-24	KRPA-11AG-24	KRPA-11DY-12	
KR-11DE-24	KRP-11DY-24	KRPA-11AG-120	KRPA-11DY-24	
KR-11DGE-12	KRP-14AG-120	KRPA-11AG-240	KRPA-14AG-12	

KRP-3-H

Features

- 1 Form X (SPST - NO - DM) contact rating of 20A.
- Heavy copper alloy movable contact arms.
- Twin silver-cadmium oxide contacts.
- Many uses in automation controls and other applications requiring high current switching.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangement: 1 Form X (SPST - NO - DM).
Ratings: UL Rating: 20A @ 120VAC, 3/4 HP @ 120VAC. Factory Rating: 20A @ 120VAC, 80\% PF; 1 HP @ 120/240VAC.
Material: Twin, silver-cadmium oxide.
Expected Life: 2.5 million operations min., mechanical. 100,000 operations at rated contact load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz . between all elements.

KRP-3-H series

20 Amp
 Small AC or DC Relays

岲 File E22575

Coil Data @ $25^{\circ} \mathrm{C}$

See chart on page 105.
Nominal Power: DC Coils: 12W
AC Coils: 2.0VA
Initial Insulation Resistance: 1,000 megohms.

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must-Operate Voltage: DC: 75% of nominal voltage.
AC: 85% of nominal voltage.
Operate Time: 15 milliseconds approximate (Excluding Bounce).
Release Time: 10 milliseconds approximate (Excluding Bounce).

Environmental Data

Temperature Range: Enclosed Models: $\mathbf{A C}:-45^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
DC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Socket mounting.
Termination: Octal-type plug.
Enclosure: Polycarbonate enclosure with octal-type mounting. Weight: 2 oz . (57 g) approximately.

Ordering Information

Typical Part No. $-\quad$ KR	P	-3	D	H	-12
1. Basic Series: KR					
2. Type: P = Enclosed (20 amp models available only with Contact Arrangement 3 and Material H.)					
3. Contact Arrangement: 3 = 1 Form X (SPST - NO - DM)					
4. $\begin{aligned} & \text { Coil Input: } \\ & A=A C \\ & D=D C \end{aligned}$					
5. Contact Material \& Rating: $\mathrm{H}=$ Silvercadmium oxide, $1 / 4$ " (6.35 mm) dia., 20 amps .					
6. Coil Voltage: To $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. or 110VDC.					

Our authorized distributors are more likely to stock the following items for immediate delivery.

KRP-3AH-120
KRP-3DH-24
KRP-5AG-120

Outline Dimensions

KA Series

Tolerances on .XX Decimals $\pm .02(\pm .5)$ Unless Otherwise Specified
Tolerances on .XXX Decimals $\pm .005$ ($\pm .13$) Unless Otherwise Specified

KR Series Enclosures

Type "P" Clear Dust Cover

Hermetically Sealed Enclosure (KR only)

Octal Plug

For KRP3-H

Hold-Down Spring
$20 C 176$ KRPA \& KRP 20 C 206 KAP and KRP3

Height: 2.125" (53.98mm) max.

Sockets For KRP, KRPA Series Relays

The following sockets are normally maintained in stock for immediate delivery.
Screw Terminal, DIN Rail Snap-Mount Sockets (Use with mounting track 24A110)
 wires. Rated 10 amps @ 300VAC and meets UL $94 \mathrm{~V}-0$.

Screw Terminal Sockets

27E122
10A, 300VAC
8-pin

Terminal Location

Sockets have M3.5 screw terminals which accept up to two \#12 AWG

27E892
10A, 300VAC
Terminal Location

Top View

Features

- DPDT or 3PDT contact arrangements.
- 4 amp bifurcated contact available.
- AC and DC coils.
- Protection Diode available (DC coils).
- Mechanical indicator - all models.
- Electrical indicator available.
- Test actuator with front operated finger protected push to test button and integral locking test tab.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).

$$
3 \text { Form C (3PDT. }
$$

Material: 10 amp ; Silver-nickel 90/10 with or without gold plating.
4 amp ; Silver-nickel $90 / 10$ with gold plating.
Expected Mechanical Life: 20 million operations minimum.
Ratings:
ULCSA NO/NC @ $25^{\circ} \mathrm{C}$:
4 amp (Bifurcated) 250VAC Resistive 30,000 ops.
10 amp 240VAC Resistive 30,000 ops.
1/2 HP 240VAC 30,000 ops.
1/4 HP 120VAC 30,000 ops.
B300 Pilot duty 30,000 ops.
VDE @ $35^{\circ} \mathrm{C}$:
10 amp 250VAC Resistive 100,000 ops., DC Coil, AC Coil N/O. 20,000 ops., AC Coil N/C.

Initial Dielectric Strength

Between Open Contacts: 1,500VAC.
Between Coil and Contacts: $2,500 \mathrm{VAC}$.
Between Poles: $2,500 \mathrm{VAC}$.
Creepage/Clearance Coil-Contact: $4 / 2.8 \mathrm{~mm}$.

Coil Data @ $25^{\circ} \mathrm{C}$

Nominal Coil Power: 1.2W, 2.3VA.
DC Data

Nominal Voltage VDC	DC Resistance in Ohms $\pm \mathbf{1 0 \%}$	Must Operate Voltage VDC	Must Release Voltage VDC	Nominal Coil Current (mA)
06	32	4.5	0.6	187.5
12	110	9	1.2	109.1
24	475	18	2.4	50.5
48	2,000	36	4.8	24.0
60	2,850	45	6.0	21.1
110	10,000	82.5	11.5	11.0
220	40,000	165	22.0	5.5

AC Data

Nominal Voltage VAC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VAC	Must Release Voltage VAC	Nominal Coil Current (mA)
06	5.3	4.8	2.4	381.7
12	24	9.6	4.8	182.5
24	86	19.2	9.6	94.2
48	345	38.4	19.2	47.5
60	544	48	24	37.8
115	2,000	92	46	20.6
230	8,300	184	92	10.1

MT series
10 Amp General Purpose Relay
c ${ }^{\text {ch }}$ us File E214025
\Leftrightarrow NR 6182
C ϵ
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time: 12 ms typical, at nom. voltage.
Release Time: 5 ms typical, at nom. voltage.
Bounce Time: 4 ms typical, at nom. voltage.
Switching Rate: 1,200 ops./hr. max. at rated load.

Environmental Data

Temperature Range:
Operating: $-45^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ DC coil. $-45^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ AC coil.
Vibration: 30 to $1,500 \mathrm{~Hz}$. at $5 \mathrm{~g} \mathrm{~N} / \mathrm{O}, 2 \mathrm{~g} \mathrm{~N} / \mathrm{C}$.
Shock: 50 g N/O, 10 g N/C.

Electrical Life

Max. DC Load Breaking Capacity

A: 1 contact.
B: 2 contacts in series.
C: 3 contacts in series.

Coil Operating Range

A: DC coil.
B: AC coil.

Our authorized distributors are more likely to stock the following items for immediate delivery.

MT221012	MT226024	MT226230	MT321024	MT326115
MT221024	MT226115	MT321012	MT326024	MT326230

Outline Dimensions

Wiring Diagrams (Bottom Views)

MT Sockets and Accessories

MT78750

10A, 400VAC
11 Pin Socket

MT78755
10A, 400VAC 8 Pin Socket

Hold-Down Spring MT28800

Hold-Down Spring MT28800

MT Sockets and Accessories (continued)

Module-capable Sockets

MT78745
MT78740
10A, 400VAC
10A, 400VAC
8 Pin Socket
11 Pin Socket

Socket Selection Table

Stock items are boldfaced.

Socket	Socket Type and Termination	Hold-Down Spring
MT78750	11-pin, DIN Rail w/ Screw Terminals	MT28800
MT78755	8-pin, DIN Rail w/ Screw Terminals	MT28800
MT78740	11-pin, module-capable, DIN Rail w/ Screw Terminals	MT28800
MT78745	8-pin, module-capable, DIN Rail w/ Screw Terminals	MT28800

Timing Module Selection Table

Stock items are boldfaced.

Module	Type
MTMZOW00	Delay ON timing module
MTMFOW00	Multifunction timing module

LED and Protection Module Selection Table

Stock items are boldfaced.

Module	Type
MTM T00A0	Protection diode 1N4007
MTMU0524	RC-network 24 - 115 VAC
MTMU0730	RC-network 230 VAC
MTML0024	LED 24 VAC / VDC
MTML0615	LED 115 VAC

Timing Module Functional Data

Nominal Voltage: 24 - 240 VAC / VDC

Frequency: $48-63 \mathrm{~Hz}$.
Precision of Time Setting: $\pm 0.5 \%$.
Readiness for Repetition: $\leq 0.5 \%$ or 5 ms .
Influence of Temperature: $\leq 0.1 \% /{ }^{\circ} \mathrm{C}$.
Time Range Switchable: $0.05 \mathrm{~s}-240 \mathrm{~h}$ in 8 ranges.
Ambient Temperature: $-25^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Timing Function Diagrams Delay ON

Delay OFF

Single shot leading edge

Single shot trailing edge

Single shot

Delay ON triggered by signal contact

Flasher starting with pause

Flasher starting with pulse

Features

- 2 Form A (DPST-NO).
- 16 amp rated current.
- Compatible with RAST 5 connector.
- Contact gap exceeds 3 mm ; $4 \mathrm{kV} / 8 \mathrm{~mm}$ contact-to-coil spacing.
- Designed for European domestic appliances.
- Snap-in or screw mounting.
- Dust cover.

Contact Data

Arrangements: 2 Form A (DPST-NO).
Material: Silver-cadmium oxide or silver-nickel.
Expected Mechanical Life: 2 million operations.

Ratings:

Current: 16A.
Voltage: 250VAC.
Power (breaking): $4,000 \mathrm{VA}$.
Voltage (breaking): 400VAC.
Current (making, max. 4s at 10\% duty cycle): 25A.
AC Coil Models
16 amp resistive, $250 \mathrm{VAC}, 100,000$ ops.
12 amp resistive, 250VAC, 100,000 ops.
DC Coil Models
16 amp resistive, $250 \mathrm{VAC}, 250,000$ ops.
12 amp resistive, 250VAC, 250,000 ops.

Initial Dielectric Strength

Between Open Contacts: $2,000 \mathrm{Vms}$.
Between Coil and Contacts: $4,000 \mathrm{Vrms}$.
Creepage/Clearance: $8 / 8 \mathrm{~mm}$.

Coil Data DC @ $\mathbf{2 0}^{\circ} \mathrm{C}$

Nominal Coil Power: AC Coils: 2.0-2.5 VA; DC Coils: 13W.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage VDC	Drop-out Voltage VDC	Maximum Voltage VDC	Nominal Coil Current $(\mathbf{m A)}$
DC Coils					
12	118	7.7	0.9	19.5	102.0
24	470	15.5	18	39.0	510
AC Coils $\mathbf{5 0} \mathbf{~ H z}$)					
$110-120$	1,650	93.0	18.0	132.0	20.0
$220-240$	6,600	187.0	36.0	264.0	10.0
$380-400$	20,000	323.0	60.0	440.0	6.0

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time (typical): 15 ms .
Release Time (typical): 15 ms .
Bounce Time (typical): 4 ms .
Switching Rate: $9,000 \mathrm{ops}$./hr. max. at rated load.

0419 series
 16 Amp
 RAST 5 Relay

c ${ }^{\text {cNus }}$ File E214025
(1) (5) (D) (1) K뿐

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range:

Operating: $-20^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
Vibration: (5 to 500 Hz .) 2g.
Shock (destruction): 80g.

Mechanical Data

Termination: Rast 5.
Enclosure: Plastic dust cover.
Weight: 3.2 oz. $(90 \mathrm{~g})$ approximately.

Contact Life

Coil Operating Range

Ordering Information

Our authorized distributors are more likely to stock the following items for immediate delivery.
None at present.

Outline Dimensions and Wiring Diagrams

Snap Mount Version

Screw Mount Version

DIN Rail Mount
 Screw Terminal Socket Track Mounting System

只 File E59244
(18) File LR35144

Features

- Sockets mount on standard 35mm DIN track \& P\&B "top hat" track.
- Spring loaded integral clip holds sockets securely to the track.
- Small screwdriver can be used to release sockets from track.
- Any available hold-down springs must be ordered separately. See Relay \& Socket Usage Chart beginning on page 747.
- End clips can be used to further stabilize sockets on track.

Location of Socket Dimensions

Typical Relay	Base	Socket Part Number	Page
KRPA (DPDT)	8-pin octal-type	$27 E 891$	741
KRPA (3PDT)	11-pin octal-type	$27 E 892$	741
KUP	11-blade square	$27 E 893$	730
KH, PCL	14-blade square	$27 E 894$	712
K10, PCLH	8-blade square	$27 E 895$	722
RT (code 1)	5-blade square	RT78624	452
RT (codes 3 \& 5)	8-blade square	RT87625	452
MT (DPDT)	8-pin octal-type	MT78755	743
MT (3PDT)	11-pin octal-type	MT78750	743
RM	11-blade square	RM 78705	736
PT (DPDT)	8-blade square	PT78702	719
PT (3PDT)	11-blade square	PT78703	719
PT (4PDT)	14-blade square	PT78704	719

$24 A 110$ - DIN Rail Style Mounting Track

24A110 mounting track is designed to accept snap-mount sockets, as well as all other $\mathrm{P} \& B$ screw terminal sockets. Track is made of lightweight, sturdy extruded aluminum and is shipped in three-foot (914cm) lengths with mounting holes on six-inch (152 mm) centers. Track can be cut to shorter lengths or used end-to-end.

24A071 \& 40G432 - End Clip

24A071 steel mounting clip with one \#6-32 screw 7/16" (11.1mm) long is used with a 40G432 insulator to prevent sockets from moving sideways or sliding off the end of the track.

Our authorized distributors are more like to stock the items listed below in boldface.

Part Number	Description	
24A110	DIN rail style extruded aluminum mounting track for DIN or standard sockets.	
24A071	Steel mounting clip with one \#6-32 screw 7/16" (11.1mm) long. Use with 40G432 below to make end clip.	
40G432	Plastic insulator. Use with 24A071 above to make end clip.	
Dimensions are shown for reference purposes only.	Dimensions are in inches over Specifications and availability (millimeters) unless otherw ise subject to change. specified.	www.tycoelectronics.com Technical support: Refer to inside back cover.

Conventional
 Screw Terminal Socket Track Mounting Sytem

Track \& Mounting Accessories

Features

-P\&B DIN rail track accommodates a variety of sockets and relays. See
Relay \& Socket Usage Chart beginning on page 747.

- Various clips are available to secure components to track.

Location of Socket Dimensions

Typical Relay	Base	Socket Part Number	Page
K10	8-blade square	27E487	722
KH	14-blade square	$27 E 166$	712
KUP (3PDT)	11-blade square	$27 E 121$	730
KRPA (3PDT)	11-pin octal-type	$27 E 123$	741
KRPA (DPDT)	8-pin octal-type	$27 E 122$	741
R10 (DPDT)	10-blade square	$27 E 460$	708
R10 (4PDT)	16-blade square	$27 E 461$	708
R10 (6PDT)	22-blade square	$27 E 462$	708
KUP (4PDT)	14-blade square	$27 E 867$	730

Our authorized distributors are more like to stock the items listed below in boldface.

Part Number	Description
24A110	DIN rail style extruded aluminum mounting track 36" (914mm) long with holes on 6.0" (152.4mm) centers. Holes accept \#8 screws.
$\mathbf{2 4 A 0 7 1}$	Steel mounting clip with one \#6-32 screw 7/16" (11.1mm) long.
$\mathbf{2 4 A 0 7 2}$	Plastic twist mounting clip for 27E166, 27E122 and 27E123 sockets. Twist clip into track to hold socket in place, except when used on end of track. Use 24A071 on ends of track to lock first and last socket in place.
$\mathbf{4 0 G 4 3 2}$	Plastic insulator for track or surface mounting. Use with 27E460, 27E461, 27E462 and 27E867 sockets.

Track Mounting System - Chart below lists typical applications. See Relay \& Socket Usage Chart on following pages for more detail.

Socket	Typ. Relay	Component Hold Down Spring		24A110 Track Mounting Hardware		Chassis Mounting
27E121	KUP	20C314	Hooks into slots below mounting ears. Two hold downs required per socket.	24A071	36" (914cm) strip will mount 19 sockets.	Two suitable screws on 1.7" (43.2 mm) centers.
27E122	KRPA		See Socket Usage Chart.	$\begin{aligned} & \text { 24A071 } \\ & \text { 24A072 } \end{aligned}$	36 " (914cm) strip will mount 22 sockets.	Two suitable screws on 1.296" (32.92mm) centers.
27E123	KRPA		See Socket Usage Chart.	$\begin{aligned} & \text { 24A071 } \\ & \text { 24A072 } \end{aligned}$	36" (914cm) strip will mount 15 sockets.	Two suitable screw on 1.296 " (32.92mm) or 2.06" (52.3 mm) centers.
27E166	KHAU	$20 C 297$	Hooks into slots on side of socket body. One hold down required per socket.	24A071	36 " (914 cm) strip will mount 30 sockets.	Two suitable screws on .94" (23.9mm) centers.
27E460 27E461 27E462	R10	$\begin{aligned} & 20 C 249 \\ & 20 \mathrm{C} 250 \\ & 20 \mathrm{C} 251 \end{aligned}$	Hooks into slots on side of socket body. One hold down required per socket.	$\begin{aligned} & \text { 24A071 } \\ & \text { 40G432 } \end{aligned}$	36" (914cm) strip will mount 16 27E460, 12 27E461 or 9 27E462 sockets.	Two 40G432 insulators and two suitable screws on $1.8^{\prime \prime}(45.7 \mathrm{~mm}), 2.125^{\prime \prime}(53.98 \mathrm{~mm})$ or $2.812^{\prime \prime}$ (71.42 mm) centers.
27E487	K10	20 C 297	Hooks into slots on side of socket body. One hold down required per socket.	$\begin{aligned} & \text { 24A071 } \\ & \text { 24A072 } \end{aligned}$	36 " $(914 \mathrm{~cm})$ strip will mount 31 sockets. 24A072 can be used on small ear only.	Two suitable screws on 1.143" (29.03mm) centers.
27E867	$\begin{aligned} & \hline \text { KUP } \\ & \text { (4PDT) } \end{aligned}$	20C254	Hooks into slots on side of socket body. One hold down.	$\begin{aligned} & \text { 24A071 } \\ & \text { 40G432 } \end{aligned}$	36 " $(914 \mathrm{~cm})$ strip will mount 13 sockets.	Two 40G432 insulators and two suitable screws on 2.25 " $(57.15 \mathrm{~mm})$ centers.

Relay and Socket Usage Chart

Note 1:
Note 2:
Listed hold-down springs cannot be used for R10S.
Note 3:
Note 4:
On R10L series hold down spring fits to the side of light emitting diode.
Note 5:
Note 6:
Snap-mount relay sockets snap onto 24A110 mounting rail without extra hardware.
27E893 cannot be used with KUIP and KUGP series relays.

Dimensions are shown for reference purposes only.	Dimensions are in inches over (millimeters) unless otherwise specified.	Specifications and availability subject to change.

Relay and Socket Usage Chart

Relay	Socket	Terminal Type	Hold-Down Spring	Notes	Socket Page	Comments
CU-41 \& CU-44	27E043	Solder	20C228 or 20C254	-	729	20C228 held in place by socket hold down screw whereas 20C254
	27E046	PC	20C228 or 20C254	-	729	snaps onto socket. 20C228 held in place by socket hold down screw whereas 20C254
	27E067	QC \& Solder	20C228 or 20C254	-	729	snaps onto socket. 20C228 held in place by socket hold down screw whereas 20C254 snaps onto socket.
	27 E 396	QC \& Solder	20C254	-	729	
	27E400	Solder	20C254	-	729	
	27E121	Screw	20C314	-	730	Use 2 pieces 20C314 per socket.
	27E893	Screw	20 C 318	5	730	
CU-51	27E043	Solder	20 C 247	-	729	$20 C 247$ held in place by socket hold down screw.
	27E046	PC	20 C 247	-	729	20C247 held in place by socket hold down screw.
	27E067	QC \& Solder	20 C 247	-	729	20C247 held in place by socket hold down screw.
	27E121	Screw	20 C 314	-	730	Use 2 pieces 20C314 per socket.
	27E396	QC \& Solder		$\overline{5}$	729	
	27E893	Screw	20C318	5	730	
GP	CR0001	Screw	CR0111 or CR0133	-	920	
	CR0002	Screw	CR0111 or CR0133	-	920	
	CR0067	Screw	CR0069	-	920	
	CR0095	Screw	CR0070 or CR0155	-	920	
IAC \& IDC	-	-	-	-	-	Refer to page 1114 for I/O modules mounting board details.
IACM \& IDCM	-	-	-	-	-	Refer to page 1122 for Slim Line I/O modules mounting board details.
K10	27E487	Screw	20 C 426	-	722	
	27E488	Solder	$20 C 217$	-	722	
	27E489	PC	$20 C 217$	-	722	
	27E895	Screw	20 C 426	5	722	
KBP	27E123	Screw	-	-	741	
(11-pin octal)	27E892	Screw		5	741	
KH \& KHA (type-P,S,U,X)	27E006	Solder	$20 C 217$	-	712	
	27 E 007	PC	20 C 217	-	712	
	27E023	PC	20 C 217	-	712	
	27E166	Screw	$20 C 297$	$\overline{5}$	712	
	27E894	Screw	20 C 426	5	712	
KR Sealed	27E122	Screw	-	-	741	
(8-pin octal)	27E891	Screw	-	5	741	
KR Sealed (11-pin octal)	27E123	Screw	-	-	741	
	27E892	Screw	-	5	741	
KRP3-H (8-pin octal)	27E122	Screw	-	-	741	
	27E891	Screw	-	5	741	
KRP \& KRPA (8-pin octal)	27E122	Screw	-	-	741	
	27E891	Screw	-	5	741	
KRP \& KRPA (11-pin octal)	27E123	Screw	-	-	741	
	27E892	Screw	-	5	741	
KUEP, KUGP, KUIP, KUMP \& KUP [1-3 poles with .187" $(4.75 \mathrm{~mm}) \mathrm{OC}]$	27 E 043	Solder	20C228 or 20C254	-	729	$20 \mathrm{C228}$ held in place by socket hold down screw whereas 20C254
	27E046	PC	20C228 or 20C254	-	729	snaps onto socket. 20C228 held in place by socket hold down screw whereas 20C254
			$20 C 228$ or 20 C254	-	72	snaps onto socket.
	27 E 067	QC \& Solder	20C228 or 20C254	-	729	20C228 held in place by socket hold down screw whereas 20C254
	27E121	Screw	20C314	-	730	snaps onto socket. Use 2 pieces 20C314 per socket.
	27 E 396	QC \& Solder	20C254	-	729	Use 2 pieces 20 C314 per socket.
	27E400	Solder	20C254	-	729	
	27E893	Screw	20 C 318	5,6	730	
KUL with .187" (4.75mm) QC]	27E043	Solder	$20 C 247$	-	729	20 C 247 held in place by socket hold down screw.
	27E046	PC	20 C 247	-	729	20C247 held in place by socket hold down screw.
	27E067	QC \& Solder	20 C 247	-	729	20C247 held in place by socket hold down screw.
	27E121	Screw	20 C 314	-	730	Use 2 pieces 20C314 per socket.
	$27 E 396$	QC \& Solder		5	729	
	27E893	Screw	20 C 318	5	730	

[^19]
Relay and Socket Usage Chart

Relay	Socket	Terminal Type	Hold-Down Spring	Notes	Socket Page	Comments
KUP [4 pole with .110" (2.79 mm) QC]	27E415	QC \& Solder	20C228 or 20C254	-	101	20C228 held in place by socket hold down screw whereas 20C254
						snaps onto socket.
	27E419	PC	20C228 or 20C254	-	101	20C228 held in place by socket hold down screw whereas 20C254 snaps onto socket.
	27E867	Screw	20C254	4	101	
MDO	27E006	Solder	-	-	712	
	27E007	PC	-	-	712	
	27E023	PC	-	-	712	
	27E166	Screw	-	-	712	
	27E894	Screw	-	5	712	
MT	MT78750	Screw	MT28800	-	743	For relays with 11-pin bases.
	MT78755	Screw	MT28800	-	743	For relays with 8-pin bases.
	MT78740	Screw	MT28800	-	744	For relays with 11-pin bases. Will accommodate function modules.
	MT78745	Screw	MT28800	-	744	For relays with 8-pin bases. Will accommodate function modules.
ML	CR0001	Screw	CR0111 or CR0133	-	920	
	CR0002	Screw	CR0111 or CR0133	-	920	
	CR0067	Screw	CR0069	-	920	
	CR0095	Screw	CR0070 or CR0155	-	920	
OAC \& ODC	-	-	-	-	-	Refer to page 1114 for I/O module mounting board details.
OACM \& ODCM	-	-	-	-	-	Refer to page 1122 for Slim Line I/O modules mounting board details.
ORWH	27E1064	PC	-	-	439	
PCE	27E1064	PC	-	-	437	
PT	27E006	Solder	-	-	719	Will accommodate 2- or 4-pole models.
	27E220	PC	-	-	719	For use with 2-pole models.
	27E023	PC	-	-	719	For use with 4-pole models.
	$27 E 894$	Screw	-	5	719	Will accommodate 2- or 4-pole models.
	PT78700	Screw	-	5	719	Will accommodate 2- or 4-pole models.
	PT78702	Screw	-	5	719	For 2-pole relays. Will accommodate function modules.
	PT78703	Screw	-	5	719	For 3-pole relays. Will accommodate function modules.
	PT78704	Screw	-	5	719	For 4-pole relays. Will accommodate function modules.
R10, R10L \& R10S (2 pole)	27E125	Solder	20 C 249	2, 3	707	Tin plated terminals with grounding strip.
	27E162	Solder	20C249	2, 3	707	Tin plated terminals no grounding provision.
	27 E 128	PC Stag.	20C249 or 20C259	2, 3	707	Tin plated terminals with grounding strip.
	27E446	Solder	20C249	1, 2, 3	707	Tin plated terminals with grounding strip.
	27E193	PC Stag.	20C249 or 20C259	2, 3	707	Tin plated terminals with grounding terminals.
	27 E 212	PC Stag.	20C249 or 20C259	2, 3	707	Tin plated terminals no grounding provision.
	27 E 342	PC In-Line	20C249 or 20C259	2, 3	707	Tin plated terminals no grounding provision.
	27 E 317	Solder/Bkt. Mt.	20 C 249	2,3	708	Tin plated terminals with grounding strip.
	27E460	Screw	20C249 or 20C259	2, 3, 4	708	Tin plated terminals no grounding provision.
R10, R10L \& R10S (4 pole)	27E126	Solder	20 C 250	2, 3	707	Tin plated terminals with grounding strip.
	27E163	Solder	20 C 250	2, 3	707	Tin plated terminals no grounding provision.
	27E129	PC Stag.	20 C 250	2, 3	707	Tin plated terminals with grounding strip.
	27E194	PC Stag.	20C250 or 20C259	2, 3	707	Tin plated terminals with grounding terminal.
	27 E 213	PC Stag.	20C250 or 20C259	2, 3	707	Tin plated terminals no grounding provision.
	27E629	PC In-Line	20C250 or 20C259	2, 3	707	Tin plated terminals no grounding provision.
	27E461	Screw	20C250 or 20C259	2, 3, 4	708	Tin plated terminals no grounding provision.
R10 \& R10L (6 pole)	27E127	Solder	20C251	3	707	Tin plated terminals with grounding strip.
	27E130	PC Stag.	20C251 or 20C259	3	707	Tin plated terminals with grounding strip.
	27E630	PC In-Line	20C251 or 20C259	3	707	Tin plated terminals no ground provision.
	27E462	Screw	20C251 or 20C259	3,4	708	Tin plated terminals no grounding provision.
RM	RM 78700	QC	RM28802	-	736	
	RM 78701	Solder	RM28802	-	736	
	RM 78702	PC	RM28802	-	736	
	RM78705	Screw	-	5	736	
RT	RP78601	PC	RP16041	-	450	Use with Code 1.
	RP78602	PC	RP16041	-	450	Use with Codes 3\&5.
	RT78624	Screw	RT16016	5	450	Use with Code 1.
	RT78625	Screw	RT16016	5	450	Use with Codes 3 \& 5 .
	RT78626	Screw	RT16016	5	450	Use with Codes 3 \& 5 .

Note 1:	Flange mount sockets pre-assembled on steel mounting plates. Grounding is not recommended for currents of 5 amps AC \& above.		
Note 2:	Listed hold-down springs cannot be used for R10S.		
Note 3:	On R10L series hold down spring fits to the side of light emitting diode.		
Note 4:	Use 40G432 insulator or suitable insulator (2 per socket).		
Note 5:	Snap-mount relay sockets snap onto 24A110 mounting rail without extra hardware.		
Note 6:	27 E 893 cannot be used with KUIP and KUGP series relays.	Relay and Socket Usage Chart continued on next page.	
Dimension reference	are shown for purposes only. Dimensions are in inches over (millimeters) unless otherwise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover

Relay and Socket Usage Chart

		Terminal			
Relay	Socket	Type	Sold-Down Spring	Notes	Socket
Page					

[^20]
Alphanumeric Index

Series	Type	Page
	Power Relay	818
9100	Power Relay	816
9400	Power Relay	814
KUHP	. Power Relay	803
Model 2000.	. Definite Purpose Contactor	828
M odel 93-3100	. Definite Purpose Contactor	834
M odel 96-3100	. Definite Purpose Contactor	830
Model 96-3186.	. Definite Purpose Contactor	838
M odel 98-3100 .	. Definite Purpose Contactor	832
M odel A-3100.	. Definite Purpose Contactor	840
P25 Definite Purpose Contactor	820
P30/P40.	. Definite Purpose Contactor	823
P31/P41	. Definite Purpose Contactor	826
PM	. Power Relay	809
PRDPower Relay	811
RM C/DPower Relay	805
S86R/S87R Power Relay	807

NOTE: In addition to the products described in this section of the databook, more power relays and contactors are

 also described in other sections. Following is a list.
Power PC Board Relays

491 .. 509
PCF .. 502
T9A ... 506
T90 .. 504
T92 .. 511

Plug-in/Panel Mount Relays

KRP-3-H ... 739
RM8 .. 733

Special Application Relays
136 .. 916

136 .. 916
Solid State Relays \& I/O Modules
SSR .. 1104
SSRD ... 1102
SSRQ .. 1108
SSRD ... 1106
Automotive Relays
T72M ... 1005
V23086 ... 1002
V2R.. 1012
VF4 .. 1017
VF7 ... 1021
VFM ... 1014
VKP .. 1007
Power relays and contactors are also included in our line of high performance products (see overview of product line in section 14 of this databook).

NOTE: A question tree that may help you in selecting an appropriate power relay or definite purpose contactor for your application can be found on the next page.

Power Relay \& Definite Purpose Contactor Question Tree

This guide helps the user select one or more product series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a product for a particular application.

[^21]

Features

- AC coils 6-277VAC $50 / 60 \mathrm{~Hz} .$, DC 6-110VDC.
- Contact arrangement up to DPDT.
- .250" combination push-on/solder terminals or PC terminals.
- Side flange and top flange mounting.
- Designed to meet VDE space requirements.
- Class B coil insulation.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form C (SPDT) and 2 Form C (DPDT).
Material: Silver or silver-cadmium oxide.
Expected Mechanical Life: 10 million operations.

Contact Ratings

Contact Arrangement	ULCSA Ratings	Expected Life
1 Form C Single Pole Double Throw	$\begin{aligned} & \text { 30A 120/240VAC } \\ & 1 \mathrm{HP} \text { @ 120VAC, } \\ & 11 / 2 \mathrm{HP} \text { @ } 240 \mathrm{VAC} \\ & 25 \mathrm{~A} @ 28 \mathrm{VDC} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 100,000 } \\ & \text { ops. } \end{aligned}$
2 Form C Double Pole Double Throw	$\begin{aligned} & \text { 20A @ 120/240VAC } \\ & \text { 3/4 HP @ 120VAC } \\ & 1 \text { 1/2 HP @ 240VAC } \\ & \text { 20A @ 28VDC } \\ & \text { 7A @120VAC (Tungsten)* } \end{aligned}$	$\begin{aligned} & \text { 100,000 } \\ & \text { ops. } \end{aligned}$

*NO contacts only.

Initial Dielectric Strength

Between Open Contacts: 1,200V rms.
Between Adjacent Contacts: $3,750 \mathrm{~V}$ ms .
Between Contacts and Coil: $3,750 \mathrm{~V} \mathrm{~ms}$.
Between Coil and Frame: $2,000 \mathrm{~V}$ ms.

Coil Data @ $25^{\circ} \mathrm{C}$

Voltage: 6-110VDC and 6-277VAC.
Nominal Power:
DC Coils: 12 Watts.
AC Coils: 2.7VA.
Duty Cycle: Continuous.
Initial Insulation Resistance: 100 megohms, min.
Insulation: Class B, $130^{\circ} \mathrm{C}$.

KUHP series

30 Amp Power Relays

呮 File E22575

(11) File LR15734-123

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

	Nominal Voltage	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage	Nominal Coil Current $(\mathbf{m A})$
DC	6	32.1	4.5	187
Coils	12	120	9.0	100
	24	472	18.0	51
	110	1,800	360	26.7
	6	10,000	82.5	11
AC	12	4.2	5.1	460
Coils	24	18	10.2	230
	120	1,72	20.4	115
	240	7,200	102.0	24
	277	10,250	2045.0	12

* $\pm 15 \%$ for AC coils.

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must Operate Voltage:
DC Coils: 75% of nominal.
AC Coils: 85% of nominal.
Operate Time (Excluding Bounce): 20 milliseconds, typical, at nominal voltage.
Release Time (Excluding Bounce): 20 milliseconds, typical, at nominal voltage.

Environmental Data

Temperature Range: (Operating)
DC Coils: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
AC Coils: $-45^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$.
Shock: 15 g 's, 11 ms (non-operating).
Vibration: . 065 " double amplitude, $10-55 \mathrm{~Hz}$.

Mechanical Data

Termination: .250" quick connect/solder; and PC board.
Enclosure: Polycarbonate dust cover.
Weight: 3.2 oz. (92g) approximately.

Ordering Information							
	Typical Part No.	KUHP-	11	A	5	1	-120
1. Basic Series and Type: KUHP = Enclosed 20/30 amp relay.							
2. Contact Arrangement and Rating: $5=1 \mathrm{C}$ (SPDT); 30 amps . 11 = 2C (DPDT); 20 amps.							
3. Coil Input: $A=A C, 50 / 60 \mathrm{~Hz} . \quad D=D C$							
$\begin{aligned} & \text { 4. Mountings: } \\ & 1=\text { PLAIN CASE }\end{aligned} \quad 5=$ BRACKET MOUNT CASE	T = TOP FLANGE CASE						
5. Terminals and Contact Materials: $1=.250$ " (6.35 mm) quick connect/solder; silver-cadmium oxide. $7=.047^{\prime \prime}(119 \mathrm{~mm})$ printed circuit; silver-cadmium oxide.							
6. Coil Voltage: AC coils to $277 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. DC coils to 110 VDC .							

NOTE: No sockets are available for this relay.
Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

KUHP-5A51-24	KUHP-5AT1-120	KUHP-5D51-24	KUHP-5DT1-24	KUHP-11A51-120	KUHP-11D51-12	KUHP-11DT1-12
KUHP-5A51-120	KUHP-5D51-12	KUHP-5DT1-12	KUHP-11A51-24	KUHP-11AT1-120	KUHP-11D51-24	KUHP-11DT1-24

Outline Dimensions

Plain Case

Top Flange Enclosure

Bracket Mount Case

Terminal Dimensions
.250" (6.35mm) Quick Printed Circuit Connect/Solder

Wiring Diagrams
1 Form C
1 Form A (Delete 2)
1 Form B (Delete 5)

2 Form C

2 Form A (Delete 1 \& 3)
2 Form B (Delete 4 \& 6)

PC Board Layouts (Bottom Views)

2 Pole Model

Features

- SPST-NO-DM or SPDT-DB-DM arrangements.
- Flange-mount case.
- Optional push to test button.
- Available with LED indicator and protection diode.

Contact Data @ $20^{\circ} \mathrm{C}$

Arrangements:1 Form X (SPST-NO-DM) and 1 Form Z (SPDT-DB-DM).
Material: Silver-cadmium oxide.
Expected Mechanical Life: 10 million operations minimum.
Rated Current: 30A.
Rated Voltage: 250VAC.
Maximum Breaking Capacity (AC): 7,500VA.
Maximum Make Current (max. 4s at 10\% duty cycle: 60A.

Initial Dielectric Strength

Between Open Contacts: 1,500VAC (RM 5/6 2,500VAC).
Between Coil and Contacts: 2,500 VAC.
Creepage/Clearance: 2.8/4mm.

Coil Data @ $20^{\circ} \mathrm{C}$

Voltage: 6-220VDC and 24-400VAC.
Nominal Power: DC Coils: 1.2W; AC Coils: 2.8VA.
Coil Data @ 20응

Nominal Voltage VDC	Operate Voltage VDC	Drop-out Voltage VDC	DC Resistance in Ohms	Nominal Coil Current (mA)	
DC Coils					
6	4.5	0.6	$32 \pm 10 \%$	187.5	
12	9.0	1.2	$110 \pm 10 \%$	109.1	
24	18.0	2.4	$475 \pm 10 \%$	50.0	
48	36.0	4.8	$2,000 \pm 10 \%$	24.0	
60	45.0	6.0	$2,850 \pm 10 \%$	21.1	
110	82.5	11.0	$10,000 \pm 12 \%$	11.0	
220	165.0	22.0	$40,000 \pm 15 \%$	5.5	
AC Coils					
24	19.2	9.6	$80 \pm 10 \%$	109.2	
48	38.4	19.2	$320 \pm 10 \%$	54.2	
60	48.0	24.0	$500 \pm 10 \%$	43.7	
115	92.0	46.0	$1,850 \pm 10 \%$	23.0	
230	184.0	92.0	$7,500 \pm 10 \%$	11.7	
400	320.0	160.0	$23,500 \pm 15 \%$	6.5	

Operate Data

Must Operate Voltage: See Coil Data table.
Operate Time /Release Time (typical): $17 \mathrm{~ms} / 18 \mathrm{~ms}$.
Bounce Time (typical): 4 ms .
Switching Rate: 9,600 ops./hr. max. at rated load.

Environmental Data

Temperature Range (Operating):
DC Coil: $-45^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
AC Coil: $-45^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$.
Vibration: 30 to 150 Hz at $10 \mathrm{~g} \mathrm{~N} / \mathrm{O}, 5 \mathrm{~g} \mathrm{~N} / \mathrm{C}$

RM C/D series

30 Amp Power Relays

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Termination: .250" quick connects.
Enclosure: Plastic dust cover.
Weight: 2.86 oz. (81 g) approximately.

Contact Life

Maximum DC Load Breaking Capacity

DC Coil Operating Range

Ordering Information

* For models with protection diode, standard polarity is: terminal A1 is positive, terminal A2 is negative.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagrams (Bottom Views)

S86R/S87R series

Low Cost
20 Amp
Industrial Relays
미 File E22575
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Low cost.
- Contact forms to 2 Form C.
- Applications include spa controls, vending machines, HVAC, and machine tool controls.
- Variety of mounting styles.

Contact Data @ $25^{\circ} \mathrm{C}$

S86R and S87R: 20 amps @ 277VAC; 60 LRA, 12 FLA, 1 HP @ 125VAC;

48 LRA, 8 FLA @ 240VAC; 2 HP @ 250VAC; Pilot
Duty,
360VA @ 125/250VAC.
Materials: Silver and silver-cadmium oxide.
Expected Life: 1 million operations, mechanical; 50,000 operations at rated loads.

Initial Dielectric Strength

Initial Breakdown Voltage: 1,560V mss, 60 Hz.

Operate Data

Must Operate Voltage:
DC Coils: 75% of nominal voltage @ $+25^{\circ} \mathrm{C}$.
AC Coils: 85% of nominal voltage @ $+25^{\circ} \mathrm{C}$.
Operating Position: Relay is designed for operation with plunger either vertical or horizontal; however, the relay is not designed for operation in an upside-down position.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Nominal Power:

S86R: 4.0VA for AC models
S87R: 2.9 Watts for single pole DC models.
4.5 Watts for double pole DC models. 4.0VA for AC models

Insulation: Class $\mathrm{B}\left(130^{\circ} \mathrm{C}\right)$.

Environmental Data

Temperature Range: $-10^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

| Our authorized distributors are more likely | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| So maintain the following items in stock for immediate delivery. | | | | |
| S86R5A1B1D1-120 | S86R11D1B1D1-12 | S87R5A2B1D1-240 | S87R11A2B1D1-24 | S87R11A2B1D1240 |
| S86R11A1B1D1120 | S87R5A2B1D1-120 | S87R5D2B1D1-24 | S87R11A2B1D1120 | S87R11D2B1D1-110 |

Outline Dimensions

S86R (2 pole shown) Style 1

S87R (2 pole shown) Style 2

Switch Terminal Configuration

Style 1

PM series

Heavy Duty 25 Amp Multicontact AC or DC Power Relay

(4) File E22575 (PM)

(18) File 15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Contact ratings to 25 amps .
- 8 -32 screw or .250 Q.C. termination.
- AC and DC coils available.
- 4PDT contact arrangement.
- Plastic and metal covers available.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 4 Form C (4PDT).
Ratings: PM \& PMT: 25 amps @ 277VAC, max.; 10 amps @ 28VDC; 1 HP @ 120/240VAC, Single Phase.
Minimum Ratings: $1 \mathrm{amp} @ 12$ VACNDC.
Material: Silver-cadmium oxide.
Expected Life: 10 million operations, mechanical; 100,000 operations at rated loads @ $25^{\circ} \mathrm{C}$.

Initial Dielectric Strength

Initial Breakdown Voltage: $2,000 \mathrm{~V}$ ms minimum between all elements and ground.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: From 6 to 125 VDC and 12 to 240VAC, $50 / 60 \mathrm{~Hz}$.
Nom. Power: DC: 4.4 Watts @ $25^{\circ} \mathrm{C}$.
AC: $14 \mathrm{VA} @ 25^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.
Initial Insulation Resistance: 100 megohms, minimum.

DC Coils			AC Coils ($50 / 60 \mathrm{~Hz}$.)		
Nominal Voltage	DC Resis. In Ohms $\pm 10 \%$ @ $+25^{\circ} \mathrm{C}$	Nominal Current In Milliamps	Nominal Voltage	DC Resis. In Ohms $\pm 15 \%$ @ $+\mathbf{2 5}^{\circ} \mathrm{C}$	Nominal Current In Milliamps
6	8.2	732			
12	33	364	12	14	1070
24	132	182	24	5.0	540
48	526	91	120	120	128
110	2760	40	240	587	61
125	3570	35			
220	Use a 110 volt relay with 2700 to 3300 ohm 5 watt wire wound resistor in series.				

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Must-Operate Voltage: DC: 75% of nominal voltage $@+25^{\circ} \mathrm{C}$.
AC: 85% of nominal voltage @ $+25^{\circ} \mathrm{C}$.

Environmental Data

Temperature Range: AC: $-55^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ @ nominal coil power. DC: $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C} @$ nominal coil power $\left(+75^{\circ} \mathrm{C}\right.$ available on special order).

Mechanical Data

Mounting: Three holes; one front key-hole and two rear channel slots for \#8-32 screws.
Termination: PM: Heavy-duty screw type with \#8-32 BH screw. PMT: . 250 " (6.35 mm) quick connect terminals.
Insulating Material: Molded polyester alkyd.
Enclosure: PM \& PMT: Plastic dust cover or metal enclosure available. Order separately. See following page.
Weight: 14 oz. (397g) approximately.

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

PM-17AY-24	PM-17DY-12	PMT-17DY-24
PM-17AY-120	PM-17DY-24	
PM-17AY-240	PM-17DY-110	

Outline Dimensions

Tolerance: $\pm .010(\pm .25)$

PM Plastic Dust Cover 35D203

Overall Dimensions In Inches (mm)

Part No.	Length	Width	Height
35D203	3.394^{*}	2.657^{*}	2.719^{*}
	(86.21)	(67.49)	(69.06)
35D227	5.313	3.813	3.813
	(134.95)	(96.85)	(96.85)

*When M ounted On Relay

PM Metal Cover 35D227

PRD series

10 to 50 Amp Heavy Duty AC or DC Power Relay

(4L) File E22575 (M odels With All Screw Terminals) ㄱT File E22575 (All Others)

(18) File 15734

Toet File 1949 (Q. C. Terminal models only)

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Auxiliary Snap-Action Switch

Arrangements: 1 Form C (SPDT).
Rating: 5 amps at $120 \mathrm{VAC}, 60 \mathrm{~Hz} . @ 25^{\circ} \mathrm{C}$.
Material: Silver.

Initial Dielectric Strength

Initial Breakdown Voltage: $2,000 \mathrm{~V}$ ms minimum between all elements and ground. ($2,200 \mathrm{~V}$ rms on 600 V ratings.)

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: From 6 to 220VDC, and 6 to 480VAC.
Resistance: See coil data table.
Nom. Power: DC coils: -2.0 watts @ $25^{\circ} \mathrm{C}$.
AC coils: - $9.8 \mathrm{VA} @ 25^{\circ} \mathrm{C}$.
Max Power: DC coils: -8.0 watts @ $25^{\circ} \mathrm{C}$.
Duty Cycle: Continuous.
Initial Insulation Resistance: 100 megohms, minimum.

Coil Data

"DY" and "DG" DC Coils		"AY" and "AG" AC Coils (50-60Hz.)			
Nominal Volts	Resistance In Ohms $\mathbf{\pm 1 0 \% @ ~ 2 5}{ }^{\circ} \mathbf{C}$	Nominal DC Current In Milliamps	Nominal Volts	DC Resis. In Ohms $\mathbf{\pm 1 5 \% @ ~ 2 5}{ }^{\circ} \mathbf{C}$	Nominal AC Current In Milliamps
6	18	333	6	.86	1600
12	71	169	12	3.2	820
24	288	84	24	12.0	410
110	6050	18.2	120	290	85
220	Use 110V relay with	240	1200	43	
	approx. 6,000 ohm	480	4500	22	
	5W wire-wound				
	resistor in series.				

Operate Data @ +25º

Must-Operate Voltage: DC: 75% of nominal voltage @ $25^{\circ} \mathrm{C}$.

$$
\text { AC: } 85 \% \text { of nominal voltage @ } 25^{\circ} \mathrm{C} \text {. }
$$

Environmental Data

Temperature Range: $A C:-55^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$.
DC: $-55^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Two .187 " (4.75 mm) diameter holes on 1875" (47.63 mm) centers.
Termination: See ordering information tables for various options. Enclosure: Metal dust cover, 35D013, available. Order separately. Weight: 10 oz. (284g) approximately.

Ordering Information

1. Type:
PRD = Open relay.
PRDA = Open relay with aux. SPDT snap-action switch.

Stock Items - The following items are normally maintained in stock for immediate delivery.

PRD-3AG0-120	PRD-5AY0-240	PRD-7DG0-24	PRD-11AY0-120	PRD-11DJ 0-24
PRD-3AJ 3-24	PRD-5DY0-12	PRD-7DY0-12	PRD-11AY0-240	PRD-11DY0-12
PRD-3AY0-120	PRD-5DY0-24	PRD-7DY0-24	PRD-11AY0-480	PRD-11DY0-24
PRD-3DY0-12	PRD-7AGO-120	PRD-11AG0-24	PRD-11DG0-12	PRD-11DY0-110
PRD-3DY0-24	PRD-7AY0-24	PRD-11AG0-120	PRD-11DG0-24	PRDA-11AGA-120
PRD-5AY0-24	PRD-7AY0-120	PRD-11AG0-240	PRD-11DH0-12	PRDA-11AYA-120
PRD-5AY0-120	PRD-7AY0-240	PRD-11AHO-120	PRD-11DH0-24	
PRD-5AY1-120	PRD-7AY3-120	PRD-11AY0-24	PRD-11DH0-110	

Ordering Information

6. Coil Voltage:

12, 24, 48, 110, 125VDC
$24,120,240,277,480 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.

Stock Items - The following items are normally maintained in stock for immediate delivery.

No models in the PRD-3AP series are maintained in stock.

Outline Dimensions

PRD/PRDA Small Base - Top View

PRD/PRDA Large Base - Top View

50 Amp PRD

PRD Magnetic Blow-Out Drawings

PRD7 with Magnetic Blow-Out

PRD11 with Magnetic Blow-Out

9400 series

Power Relay
 1-pole, 8-12 FLA
 AC or DC Coil

c껜

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Single-pole relay used extensively in HVAC applications.
- Multi-positional mounting without affecting operation.
- Convenient 0.250 " (6.35 mm) quick connect terminals.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form X (SPST-NO-DM), 1 Form Y (SPST-NC-DB), 1 Form Z (SPDT-DM-DB) \& 1 Form Z (SPDT-DM-DB) jumpered to wire as 1 Form C (SPDT).
Materials: Silver Alloy and Fine Silver
Maximum Ratings:
Silver Alloy (Power) Contacts
All Forms: 12 FLA, 60 LRA @ 125VAC;
18A @ 125VAC, resistive;
8 FLA, 48 LRA @ 240/277VAC
18A @ 240/277VAC, resistive.
1 Form X only: 25A @ 240/277VAC, resistive.
Fine Silver (Pilot) Contacts
All Forms: 3A, 277VAC;
125VA @ 125VAC;
250VA @ 250VAC;
277VA @ 277VAC;
Expected Life: 1 million ops., mechanical
250,000 ops., at rated resistive load. 100,000 ops., at rated inductive load.

Initial Dielectric Strength

Initial Breakdown Voltage: 1,554 VAC between live parts and exposed non-current carying metal parts.

Coil Data @ $25^{\circ} \mathrm{C}$

Voltage: 12 \& 24 VDC; 6-277 VAC, 50/60 Hz
Max. Sealed Power: 4 VA (AC coils.); 3 W (DC coils).
Nominal Inrush Power: 5 VA (AC coils.); 3 W (DC coils).
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Coil Temperature Rise Above Ambient

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Must Operate Voltage: Approximately 85\% of AC nominal coil voltage. Approximately 75% of DC nominal coil voltage.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.

Mechanical Data

Termination: $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connects, standard. Consult factory for availability of optional 0.187 " (4.75 mm) quick connects.
Weight: 2.88 oz . (82 g) approximately

Ordering Information

Standard part numbers listed below are more likely to be available from stock.
9400-03Q1999 9400-03T1999 9400-03U1999 9400-04Q1999 9400-04T1999 9400-04U1999

Outline Dimensions

Contact Configurations

Features

- Single- or double-pole relay used extensively in HVAC applications.
- Multi-positional mounting without affecting operation.
- Convenient $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connect terminals.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form A (SPST-NO), 1 Form B (SPST-NC), 1 Form C (SPDT), 2 Form A (DPST-NO), 2 Form B (DPST-NC), 2 Form C (DPDT) or 1 Form A + 1 Form B (SPST-NO+SPST-NC).
Materials: Silver, Fine Silver and Gold Alloy.

Maximum Ratings:

Silver (Power) Contacts
All Forms: $\quad 3 / 4 \mathrm{HP} @ 125 / 250 \mathrm{VAC}$;
12 FLA, 60 LRA, 15A resistive @ 125VAC;
6 FLA, 35 LRA, 15A resistive @ 250/277VAC;
3 FLA, 18 LRA, 12.5A resistive @ 480VAC;
3 FLA, 14 LRA @ 600VAC;
Form A only: 25A @ 277VAC, resistive.
Fine Silver and Gold Alloy (Pilot) Contacts
All Forms: $\quad 1 / 10 \mathrm{HP} @ 125 / 250 \mathrm{VAC}$;
3A @ 277VAC;
125VA @ 125VAC.
Expected Life: 1 million ops., mechanical.
250,000 ops., at rated resistive loads.
100,000 ops., at rated inductive loads.

Initial Dielectric Strength

Initial Breakdown Voltage: 2,200 VAC @ 60 Hz. between live parts and exposed non-current carying metal parts.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 12 \& 24 VDC; 24-277 VAC, $50 / 60 \mathrm{~Hz}$.
Max. Sealed Power: 9.5 VA (AC coils.); 5.75 W (DC coils).
Nominal Inrush Power: 215 VA (AC coils.); 5.75 W (DC coils).
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

9100 series

Power Relay
 1- and 2-pole, 3-12 FLA
 AC or DC Coil

cTus File E75492

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Temperature Rise Above Ambient

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Must Operate Voltage: Approximately 85\% of AC nominal coil voltage. Approximately 75% of DC nominal coil voltage.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.

Mechanical Data

Termination: $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connects. Dual terminals on the coil are standard.
Weight: 6.08 oz . $(173 \mathrm{~g})$ approximately

Ordering Information

Standard part numbers listed below are more likely to be available from stock.

9100-233Q999 9100-233T999 9100-233U999

Outline Dimensions

Features

- Single-pole, normally closed relay used extensively in HVAC applications.
- Variety of mounting positions and brackets.
- Convenient 0.250 " (6.35 mm) quick connect terminals.
- Custom-built to meet customer requirements.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: Normally-Closed.
Materials: Silver cadmium oxide.
Maximum Rating: 35A inductive @ 277VAC, 0.5 power factor (Break only.) Expected Life: 750,000 ops, mechanical.

250,000 ops., breaking rated load.

Initial Dielectric Strength

Initial Breakdown Voltage: 1,554 VAC @ 60 Hz . between live parts and exposed non-current carrying metal parts.

38 series

Potential Motor Starting Relay 1-pole, 35A, Normally Closed AC Coil

${ }^{\text {cT }}{ }_{\text {us }}$ File E83865

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $25^{\circ} \mathrm{C}$

Voltage: 130, 170, 214, 256, 336, 395, 420 and 495 VAC, 60 Hz .
Nominal Sealed Power: 5 VA).
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Mechanical Data

Termination: $0.250^{\prime \prime}$ (6.35 mm) quick connects (single or dual, model dependent). Terminals \#4 \& \#6 are dummies for customer convenience.
Mounting Position: Each model is calibrated for its specified mounting position. Pick-up voltage may vary if relay is mounted in positions other than specified.
Weight: 5.76 oz. (163.8 g) approximately

Ordering Information

Standard part numbers listed below are more likely to be available from stock.
Custom parts only.

Coil Rating \& Calibration Table

Select proper continuous coil voltage from top of appropriate column, select pick - up (PU) and drop-out (DO) voltages and insert relay calibration (RC) number in part number.

	$\begin{gathered} \text { COIL } \neq \\ 130 \mathrm{~V} 60 \\ 117 \mathrm{~V} 50 \end{gathered}$	$0+10 \%$		$\begin{aligned} & \text { COIL \# } \\ & 170 \text { V } 601 \\ & 151 \mathrm{~V} 50 \text { 1 } \end{aligned}$	$\begin{aligned} & -\mathrm{Hz} \\ & 1 z^{*} \\ & 040 \pm 10 \% \end{aligned}$		$\begin{gathered} \text { COIL \# } \\ 256 \mathrm{~V} 60 \\ 228 \mathrm{~V} 501 \\ \mathrm{a} \end{gathered}$	$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{~Hz} z^{*} \\ & 100 \pm 10 \% \end{aligned}$		$\begin{gathered} \text { COIL \# } \\ 336 \mathrm{~V} 60 \\ 299 \mathrm{~V} 50 \end{gathered}$	
$\begin{aligned} & \text { RES.@ } \\ & 24^{\circ} \mathrm{C} \end{aligned}$		$\underline{+10 \%}$	$\begin{aligned} & \text { RES.@ } \\ & 24^{\circ} \mathrm{C} \end{aligned}$		20+10\%	$\begin{aligned} & \text { RES. } \\ & 24^{\circ} \mathrm{C} \end{aligned}$	@	100+10\%	$\begin{aligned} & \text { RES. } \\ & 24^{\circ} \mathrm{C} \end{aligned}$		$\text { 8000 } \pm 10 \%$
RC\#	PU	DO									
1			2	159-172	20-77	3	240-269	45-95	4	243-271	55-125
8			9			10	259-288	45-95	11	261-290	55-125
15			16			17	278-306	45-115	18	280-309	55-125
22			23			24	296-325	45-115	25	299-327	55-125
29			30			31	315-343	45-115	32	317-345	55-125
36			37			38	323-352	45-115	39	326-354	55-125
43			44			45	333-363	45-115	46	335-364	55-125
50			51			52	285-305	MAX. 77	53	340-370	55-125
57	111-125	20-50	58	111-124	30-65	59	240-269	35-77	60	171-184	40-90
64	121-134	20-50	65	120-134	30-65	66	123-134	25-77	67	168-182	MAX. 90
71	130-143	20-55	72	130-144	30-65	73			74	180-195	40-90
78	139-153	20-55	79	140-153	30-65	80	136-150	45-90	81	219-253	40-115
85	149-163	20-55	86	149-163	30-65	87	150-163	45-90	88	152-166	55-115
92			93	159-172	30-65	94	159-172	45-90	95	162-175	55-115
99			100	168-182	30-65	101	168-182	45-95	102	171-184	55-115
106			107	178-192	30-75	108	178-192	45-95	109	180-193	55-115
113			114	139-153	MAX. 55	115	185-213	45-95	116	188-214	55-115
120			121			122	203-231	45-95	123	205-234	55-115
127			128			129	221-250	45-95	130	224-252	55-125
134			135			136	140-152	33-77	137	186-215	40-90
141	80-110	20-55	142			143	285-305	45-115	144	162-175	40-90
148	62-76	20-45	149			150	159-172	35-77	151	162-175	70-100
156			157			158	150-162	MAX. 77	159	243-271	40-90
163			164			165	136-150	MAX. 50	166	205-234	40-90
170			171			172	166-182	35-77	173	180-195	MAX. 105
178			179			180			181	224-252	40-90
185			186			187			188	280-309	55-100
									194	205-234	40-90
									198	152-166	40-90

RES.@	$\begin{gathered} \text { COIL \#5 } \\ 395 \mathrm{~V} 60 \mathrm{~Hz} \\ 338 \mathrm{~V} 50 \mathrm{~Hz} \end{gathered}$		$\begin{gathered} \text { COIL \#6 } \\ 420 \mathrm{~V} 60 \mathrm{~Hz} \\ 378 \mathrm{~V} 50 \mathrm{~Hz} \end{gathered}$			$\begin{gathered} \text { COIL \#7 } \\ 495 \mathrm{~V} 60 \mathrm{~Hz} \\ 452 \mathrm{~V} 50 \mathrm{~Hz} \end{gathered}$				$\begin{gathered} \text { COIL \# } \\ 214 \mathrm{~V} 60 \\ 193 \mathrm{~V} 50 \end{gathered}$	
$24^{\circ} \mathrm{C}$	9600 $\pm 10 \%$		$\begin{aligned} & \text { RES. } \\ & 24^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	12700 $\pm 10 \%$		RES.@ $24^{\circ} \mathrm{C}$	15200 $\pm 10 \%$		RES.@		
RC\#	PU	DO									
5	245-275	60-140	6	242-272	75-150	7	239-268	75-170	193	158-171	25-57
12	262-290	60-140	13	262-290	75-150	14	258-287	75-170	196	120-134	25-56
19	280-310	60-140	20	280-310	75-160	21	277-305	75-170	197	129-142	25-57
26	305-335	60-140	27	300-328	75-160	28	295-324	75-170			
33	187-208	60-130	34	318-347	75-160	35	314-342	75-180			
40	326-354	60-140	41	328-356	75-150	42	323-352	75-180			
47	335-365	60-140	48	337-366	75-160	49	332-361	75-180			
54	340-370	60-140	55	340-370	75-160	56	258-287	60-135			
61	180-195	40-105	62	300-328	75-121	63					
68	215-225	MAX. 120	69	300-328	MAX. 125	70	323-352	MAX. 135			
75	334-363	50-110	76	212-232	MAX. 121	77	277-305	75-150			
82	298-326	50-110	83	195-224	60-121	84	295-324	60-135			
89	189-205	60-130	90	204-233	60-121	91	325-345	MAX. 135			
96	162-175	50-100	97	260-290	60-121	98					
103	180-195	50-100	104	242-272	60-121	105					
110	180-195	60-130	111	180-195	60-121	112	239-268	60-135			
117	190-215	60-130	118	190-215	60-121	119	325-345	75-170			
124	208-239	60-130	125	204-233	75-150	126	277-305	60-135			
131	223-254	60-140	132	223-252	75-150	133					
138	245-275	MAX. 120	139	195-224	75-150	140					
145	208-239	MAX. 120	146	320-340	60-121	147					
152	260-275	MAX. 120	153	295-315	MAX. 195	154					
160	260-275	60-140	161	218-243	60-121	162					
167	215-225	60-130	168	205-234	40-90	169					
174	239-270	50-110	175	223-252	60-121	176					
182	208-239	50-110	183	295-315	MAX. 125	184					
189	224-252	60-121	190	280-310	60-121	191					
195	190-215	40-105	192	180-195	40-105						
200	279-308	50-110									

*For 50 Hz , add 300 to RC\#- i.e. for 151 V 50 Hz , RC\#58 changes to 358 .

P25 with DC coil

P25 with AC coil

Features

- AC and DC coils.
- For controlling motors, power supplies, heating elements and lighting.
- Dust cover available.
- Auxiliary switch available.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: Up to 3 Form X (3PST-NO-DM).
Ratings: See contact rating table.
Material: Silver-cadmium oxide.
Expected Life: 500,000 operations at full load.
AC coil: 2 million operations, mechanical.
DC coil: 5 million operations, mechanical.
Minimum Contact Load: 3A @120VAC.

Main Contact Ratings @ +25 ${ }^{\circ} \mathrm{C}, \mathbf{6 0} \mathbf{~ H z}$.

Type	Motor Rating in Amps, 3Ø3P or 1Ø2P				Resistive Rating (Electric Heat) @ 600V
	Full Load @ 600V	Locked Rotor			
		@ 240V	@ 480V	@ 600V	
P25	25A	150A	125A	100A	30A

Motor Rating in Horsepower			
Type	@ 120V	@ 240V	$@$ 440-600V
$1 \varnothing 2 \mathrm{P}$	15 HP	3 HP	$-\overline{\mathrm{HP}}$
$3 \varnothing 3 \mathrm{P}$	3 HP	7.5 HP	10 HP

Notes: Models utilizing box lug terminals are restricted to the following ratings: 25 FLA, 150 LRA @ 250VAC; 30A @ 277VAC Resistive; Horsepower ratings shown in the table are valid up to 240VAC.
Tungsten Lamp Rating: 30A, 277VAC.
Electric Discharge Lamp Rating: 30A, 277VAC.
Heavy Duty Pilot Ratings @ 120V through 600V: 720VA max. (Box lug nut units limited to 277VAC.)

Auxiliary Snap-Action Switch

Arrangements: Up to 2 Form C (DPDT).
Rating: 10 amps at $120 \mathrm{VAC}, 60 \mathrm{~Hz} . @ 25^{\circ} \mathrm{C}$.
Material: Silver.

Initial Dielectric Strength

Initial Breakdown Voltage: 2,200V rms. minimum between all elements and between all elements and ground.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: From 6 to 240VDC and 24 to 600VAC, $50 / 60 \mathrm{~Hz}$.
Power: DC, 4-8W; AC, 40VA inrush; 10VA, sealed.
Duty Cycle: Continuous.
Insulation Class: Class A, standard. Class B available
Initial Insulation Resistance: 100 megohms, minimum.

P25 series

Definite Purpose Magnetic Contactor
 25 Ampere Full Load 30 Ampere Resistive AC \& DC Coils

财 File E22575
(81) File LR15734
(A) No. R 97069

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Nominal VDC	Resistance (Ohms $\mathbf{\pm 1 0 \%}$ @ 25	Must	Maximum Operate* Volts	Nominal Coil Operating Volts
12	34	9	15	Current (ma) @ Nominal Voltage
24	133	18	30	353

AC Voltage Rating	Nominal		Must Operate	
	$\mathbf{6 0 ~ H z}$.	$\mathbf{5 0} \mathbf{~ H z}$.	$\mathbf{6 0} \mathbf{~ H z}$.	$\mathbf{5 0} \mathbf{~ H z}$.
24	24	24	20.4	20.4
120	120	110	102	94
240	$208 / 240$	$208 / 220$	177	177

Consult factory for other voltages
*Must operate is 75% of nominal voltage for any mounting position, applicable for vertical or
horizontal mounting, but not for upside-down mounting.
**Units requiring less power can be provided for some applications.
Consult factory for details.
Note: Coil suppression is recommended for all DC coil units, particularly 120 and 240VDC coils.

Operate Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Must-Operate Voltage: See coil data tables.

Environmental Data

Temperature Range: AC: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
DC: $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Contact sales representative for higher temperature ratings.

Mechanical Data

Mounting: No. 10 screws on $2.125^{\prime \prime}$ (53.98 mm) centers or universal mounting bracket.
Termination:
Contacts: $8-32$ screw for No. 16 to No. 8 wire, dual .250 " (6.35 mm) quick connect, box lug or captive pressure plate.
Coil: Combination $8-32$ screw and .250 " (6.35 mm) or . $187^{\prime \prime}$ (4.75 mm) quick connect, combination captive pressure plate and .250 " (6.35 mm) quick connect, or .250" (6.35 mm) quick connect.
Aux. Switch: . 250 " $(6.35 \mathrm{~mm}$) quick connect, .187" (4.75 mm) quick connect.
Weight: 14 oz. (397g).

Ordering Information

[^22]
Outline Dimensions

P25 With AC Coil
P25 With DC Coil

Mounting Plate Footprint

Contact Terminal Options

Replacement Parts and Accessories

Contact Replacement Kit - 9P25X1

Contact replacement kit includes 3 contact pressure springs, 3 movable contact assemblies and 6 stationary contact assemblies. Contact replacement kits are for use only on those models with form X contact arrangements.

Mounting Plate Kit - 9P25X2
Mounting plate kit includes one mounting plate (37B918) and two mounting screws (15J 011).

Auxiliary Switch Kit for P25 AC Coil Units - 9P25X3
This auxiliary switch kit includes one plastic actuator and one auxiliary switch assembly. It contains no screw. One assembly screw must be removed from the P25 contactor and used to mount the auxiliary switch.

Auxiliary Switch Kit for P25 DC Coil Units - 9P25X4
This auxiliary switch kit includes one plastic actuator, one auxiliary switch assembly and one thread cutting screw.

Features

- AC and DC coils
- Available with auxiliary switch.
- Variety of main contact terminals.
- For control of motors, power supplies, heating elements and lighting.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: Up to 4 Form X (4PST-NO-DM)
Ratings: See contact rating table.
Material: Silver-cadmium oxide.
Expected Life: 200,000 operations at full load.
AC coil: 2 million operations, mechanical.
DC coil: 10 million operations, mechanical.
Minimum Contact Data: 3A @ 120VAC.

Main Contact Ratings

Type	Motor Rating in Amps, 303P or 1Ø2P				Resistive Rating @ 600V	Tungsten Rating @277V
	Full Load @ 600V	Locked Rotor				
		@ 240V	@480V	@ 600V		
P30	30A	180A	150A	120A	40A	40A
P40	40A	240A	200A	160A	50A	50A

P30 Electrical Discharge Lamp Control: 40A @ 240V (Delta), 40A @ 600V (Wye). P40 Electrical Discharge Lamp Control: 50A @ 600V (Wye).

Type	Motor Rating in Horsepower			
		@ 120V	@ 240V	@ 440-600V
P30	$1 \varnothing 2 \mathrm{P}$	15 HP	3 HP	-
	$3 Ø 3 \mathrm{P}$	3 HP	7.5 HP	7.5 HP
P40	$1 \varnothing 2 \mathrm{P}$	2 HP	5 HP	-
	$3 \varnothing 3 \mathrm{P}$	5 HP	10 HP	15 HP

Auxiliary Snap-Action Switch

Arrangements: Up to 2 Form C (DPDT).
Rating: 10 amps at $120-250 \mathrm{VAC} @ 25^{\circ} \mathrm{C}$.
Material: Silver.

Initial Dielectric Strength

Initial Breakdown Voltage: $2,200 \mathrm{~V}$ ms minimum between all elements and between all elements to ground.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: From 12 to 120 VDC , and 24 to $277 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
Power: DC, 7.5 W ; AC, 92VA, In rush; 12 VA Sealed.
Duty Cycle: Continuous.
Insulation Class: Class A, standard, Class B available. Initial Insulation Resistance: 100 megohms, minimum.

P30/P40 series

Definite Purpose Magnetic Contactor 30/40 Ampere Full Load 40/50 Ampere Resistive AC \& DC Coils

묵 File E22575
(81) File LR15734
P30 No. R 97070
P40 No. R 97071

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

Nominal VDC	Resistance (Ohms $\mathbf{\pm 1 0 \%}$ $\mathbf{@ 2 5} \mathbf{~} \mathbf{~ C)}$	Must Operate* Volts	Maximum Operating Volts	Nominal Coil Current (ma) @ Nominal Voltage
12	20.8	9	15	577
24	84	18	30	286
48	334	36	57	144
120	2,110	90	144	57

AC Voltage Rating	Nominal	Must Operate*
	$50 / 60 \mathrm{~Hz}$.	$50 / 60 \mathrm{~Hz}$.
24	24	20.4
120	110/120	94
240	208/240	177
277	277	236

*Applicable for vertical mounting, but not for upside-down mounting.
Note: Coil suppression is recommended for all DC coil units, particulary 120 and 240VDC coils.

Operate Data

Must-Operate Voltage: See coil data tables.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Universal mounting bracket. See outline drawings.

Termination

Contacts: Binder screw, box lug, captive pressure plate, combination screw and dual . 250 " (6.35 mm) quick connect, or combination box lug and dual . 250 " (6.35 mm) quick connect. See Main Contact Terminal Options photo.
Coil: Combination 8 -32 screw and .250" (6.35 mm) quick connect.
Aux. Switch: . 250 " (6.35 mm) quick connect, $.187^{\prime \prime}$ (4.75 mm) quick connect.
Weight: 3 Pole Models: 25 oz. (709g) approximately.
4 Pole Models: 28 oz. (794g) approximately.

Ordering Information

Our authorized distritburos are more likely to maintain the following items in stock for immediate delivery.

P30P42A12P1-120	P40C42A12D1-120
P30P42D12P1-24	P40P42A12P1-24
P30P47A12P1-120	P40P42A12P1-120
P30P47D12P1-24	P40P42A12P1-240
	P40P42D12P1-24

Outline Dimensions

3 Pole Models
AC Coil

DC Coil

4 Pole Models
AC Coil
DC Coil

Contact Terminal Options

Main Contact Ordering and Replacement Information

Contact Replacement Kits

Contact replacement kits for 3 pole models include 3 contact pressure springs, 3 movable contact assemblies and 6 stationary contact assemblies. Kits for 4 pole models include 4 contact pressure springs, 4 movable contact assemblies and 8 stationary contact assemblies. Contact replacement kits are for use only on those models with form X contact arrangements.

Kits for P30 contactors:

3 Form X models - Kit No. 9P30X1
4 Form X models - Kit No. 9P30X2

Kits for P40 contactors:

3 Form X models - Kit No. 9P40X1
4 Form X models - Kit No. 9P40X2

To Replace Contacts:

1. Remove screws holding dust cover in place, and remove cover.
2. Compress and remove contact pressure springs.
3. Lift movable contacts and remove.
4. Remove screws holding stationary contact in place, and remove contacts.
5. Reverse the above procedure to install new stationary and movable contacts.

Caution: Do not overtighten the screws, as it is possible to strip the threads.

P31

P41

Features

- 3 phase and single phase switching.
- Integral dual QC terminals.
- Class "B" coil insulation.
- Variety of main terminals.
- Applications include HVAC industrial control.
- Direct activated DC coils.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Main Contacts:
Arrangements: 3 Form X (3PST-NO-DM) and 4 Form X (4PST-NO-DM).
Ratings: See Main Contact Ratings Table.
Material: Silver-cadmium oxide.
Initial Breakdown Voltage: $2,200 \mathrm{Vms}$ minimum between all elements and between all elements to ground.
Expected Life: 200,000 operations at motor load.
500,000 operations, mechanical.
Minimum Contact Data: 3A @ 120VAC.

Initial Dielectric Strength

Initial Breakdown Voltage: $2,200 \mathrm{~V}$ ms minimum between all elements and between all elements and ground.

Main Contact Ratings @ $\mathbf{2 5}^{\circ} \mathrm{C}, \mathbf{6 0} \mathrm{Hz}$. AC (Per Pole)

	$@$ 240VAC		@ 480VAC		$@$ 600VAC		
	LRA	FLA	LRA	FLA	LRA	FLA	RES
P31C	150	25	125	25	100	25	35
P31E	240	40	200	40	160	40	50
P41B	120	20	100	20	80	20	25
P41C	150	25	125	25	100	25	35

P31/P41 series

Definite Purpose

Magnetic Contactor
16 to 40 Amp Full Load
20 to 50 Amp Resistive
T File E25575
P31 No. R 9071107
File LR15734
P41 No. R 9071106

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 12 and 24V DC. See Coil Data table.
Power: 8W.
Duty Cycle: Continuous.
Insulation: Class B.
Initial Insulation Resistance: 100 megohms minimum.
Coil Data @ + $\mathbf{2 5}^{\circ} \mathrm{C}$

Code	Nominal Voltage	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Must Operate Voltage	Nominal Coil Current $(\mathbf{m A})$
DFO	12DC	21	9	571
DHO	24DC	84	18	286

*Applicable for vertical or horizontal mounting, but not for upside-down mounting Note: Coil suppression is recommended for all units.

Operate Data @ $25^{\circ} \mathrm{C}$

Must-Operate Voltage: See Coil Data Table.

Environmental Data

Temperature Range: $-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Universal mounting bracket. See Outline Drawings. Termination:

Contacts: Dual .250 " $(6.35 \mathrm{~mm})$ quick connect with or without binder head screw or box lug.
Coil: Dual .250 " (6.35 mm) quick connect.
Weight: 18 oz (510 g) approximately.

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

None at present.

Outline Dimensions

Top View

P41
Top View

Contact Terminal Options

Features

- Next-generation contactor is smaller and lighter than previous models.
- Enclosed case affords contact and coil protection while working in conjunction with plastic mounting base to reduce operational noise level and electrically isolate unit.
- Snap-together assembly and reduced part count help to hold down cost.
- Design permits direct access to holes in mounting base.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 1 Form X (SPST-NO-DM) with or without shunt and 2 Form X (DPST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Minimum Ratings: 96VA.
Material: Silver Cadmium Oxide.
Expected Life (application dependent): 200,000 ops., at rated load. 500,000 ops., mechanical.

Contact Ratings

Model	Maximum Voltage VAC	Full Load Amps	Locked Rotor Amps	Resistive Load Amps
25 Amp Contactor	277	25	150	30
30 Amp Contactor	277	30	150	40

Initial Dielectric Strength

Initial Breakdown Voltage:
Between Contacts and Coil: 1,600 VAC
Between Poles: 1,600 VAC
Between Open Contacts: 1,600 VAC

Model 2000 series

Definite Purpose Contactor
 1- or 2-pole, 25-30 FLA
 AC Coil

${ }^{\text {che }}$ us File E75492

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Voltage: 24, 100, 120, 200, 208-240 and 277 VAC, $50 / 60 \mathrm{~Hz}$.
Nominal Power: 6 VA (60 Hz .); 8 VA (50 Hz .).
Nominal Inrush Power: 25 VA (60 Hz .); 30 VA (50 Hz.).
Coil Temperature Rise: $65^{\circ} \mathrm{C}$ Max.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Operate Data @ $25^{\circ} \mathrm{C}$

Must Operate Voltage: 85\% of nominal coil voltage or less.
Must Release Voltage: 10% of nominal coil voltage or more. Initial Operate Time: 20 ms , typical.
Initial Release Time: 10 ms , typical.
Max. Bounce Time: 0-10 ms, typical.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Mechanical Data
 Contact Termination:

Type: \#10-32 Screw with quad 0.250 " (6.35 mm) quick connects.
Wire Size: 16-8 AWG (Must use ring terminal for 8 AWG wire.)
Tightening Torque: 22 in.-lbs.
Coil Termination: Dual $0.250^{\prime \prime}(6.35 \mathrm{~mm}$) quick connects.
Weight: 4.93 oz (140 g) approximately

Ordering Information

Standard part numbers listed below are more likely to be available from stock.

$2000-15 Q 1999$	$2000-20 Q 5999$	$2000-15 T 1999$	$2000-20 T 5999$	$2000-15 U 1999$	$2000-20 U 5999$
2000-15Q2999	$2000-20 Q 6999$	$2000-15 T 2999$	$2000-20 T 6999$	$2000-15 U 2999$	$2000-20 U 6999$

Outline Dimensions

Model 2000-10 (one pole)
Model 2000-15 (one pole with shunt)

Model 2000-20 (two pole)

Termination Options

SPECIAL
\#10-32 Sems Screw with Pressure Plate

[^23]

Model 96-3100 series

Definite Purpose Contactor
 1- or 2-pole, 20-40 FLA
 AC Coil

c껜 ${ }_{\text {us }}$ File E75492
(© (5) File EN60947-4-1:1991
IEC 947-4-1

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 1 Form X (SPST-NO-DM) with or without shunt and 2 Form X (DPST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Coil Data @ $25^{\circ} \mathrm{C}$
Voltage: 24-277 VAC, $50 / 60 \mathrm{~Hz}$. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Features

- Robust 1- and 2-pole contactors.
- Shunt available on 1-pole models.
- Convenient mounting plate.

Contact Ratings

Full Load Amps	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Poles } \end{gathered}$	$\begin{gathered} \text { Line } \\ \text { Voltage } \end{gathered}$	Locked Rotor Amps	Resistive Amps Rating	Maximum Horsepower	
					Voltage	Single Phase
20	2	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{gathered} \hline 120 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
25	1	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{gathered} 150 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
25	2	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 150 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
30	1	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 75 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
30	2	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \\ \hline \end{gathered}$	$\begin{aligned} & 150 \\ & 125 \\ & 100 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
40	1	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 240 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
40	2	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 240 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 120 \\ & 240 \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$

Coil Data

	1-Pole Models				2-Pole Models			
Nominal Coil Voltage	24	120	208/240	277	24	120	208/240	277
M aximum Pickup Volts	18	88	177	221	18	88	177	221
Drop-Out Volts Range	6-15	20-70	40-140	50-165	6-15	20-70	40-140	50-165
Nominal Inrush VA @ 50 Hz	22.5	22.5	22.5	22.5	37	37	37	37
Nominal Inrush VA @ 60 Hz	20	20	20	20	35	35	35	35
Nominal Sealed VA @ 50 Hz	7	7	7	7	8	8	8	8
Nominal Sealed VA @ 60 Hz	5.25	5.25	5.25	5.25	7	7	7	7
Nominal DC Resistance - Ohms	16.5	420	1850	2650	11	250	1000	1600

Ordering Information

\section*{Standard part numbers listed below are more likely to be available from stock.
 | $3100-15 Q 2999$ | $3100-20 Q 6999$ | $3100-20 Q 18999 C L$ |
| :--- | :--- | :--- |
| $3100-15 T 2999$ | $3100-20 T 6999$ | $3100-20 T 18999 C L$ |
| $3100-15 U 2999$ | $3100-20 U 6999$ | $3100-20 U 18999 C L$ |}

Outline Dimensions

Termination Options

[^24]

Model 98-3100 series

Definite Purpose Contactor
 3-pole, 20-40 FLA
 AC Coil

c뎅 vile E75492
(© (5) File EN60947-4-1:1991
IEC 947-4-1

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- 3-pole contactors.
- Industry-standard mounting plate.
- Optional interlock/auxiliary switches available.
- Manual test button is standard.
- Coil dust cover helps keep dust and dirt away from magnet and coil area.
- Double E magnet system provides optimal performance.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 3 Form X (3PST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Coil Data @ $25^{\circ} \mathrm{C}$

Voltage: 24-480 VAC, $50 / 60 \mathrm{~Hz}$. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$
Flammability: UL 94-HB housing.

Mechanical Data

Contact Termination:

20, 25, 30 FLA Models

Type: \#10-32 Screw with quad 0.250 " (6.35 mm) quick connects. Wire Size: 16-8 AWG (Stranding must be split for 8 AWG wire.) Tightening Torque: 25 in.-lbs.
40 FLA Models
Type: Box Lug with dual $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connects.
Wire Size: 14-4 Cu/Al AWG
Tightening Torque: 40 in .-lbs.
Coil Termination: Dual $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connects, standard. A 0.250 " quick connect and a \# $\# 6$ - 32 screw, optional.
Arc Cover: Optional on 20-30 FLA models, standard on 40 FLA models. Weight: 16 oz . (455 g) approximately

Contact Ratings

Full Load Amps	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Poles } \end{aligned}$	$\begin{gathered} \text { Line } \\ \text { Voltage } \end{gathered}$	Locked Rotor Amps	Resistive Amps Rating	Maximum Horsepower		
					Voltage	Single Phase	Three Phase
20	3	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{gathered} 120 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 110 / 120 \\ & 200 / 240 \\ & 480 / 600 \end{aligned}$	$\begin{gathered} 1.5 \\ 3 \\ - \end{gathered}$	$\begin{gathered} - \\ 7.5 \\ 7.5 \end{gathered}$
25	3	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 150 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{gathered} 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \\ 600 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 10 \\ & 15 \\ & 70 \end{aligned}$
30	3	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 180 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \\ 600 \\ \hline \end{gathered}$	2	$\begin{aligned} & - \\ & 10 \\ & 10 \\ & 15 \\ & 20 \\ & \hline \end{aligned}$
40	3	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 240 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{gathered} 3 \\ - \\ 7.5 \end{gathered}$	$\begin{aligned} & - \\ & 10 \\ & 10 \\ & 20 \\ & 25 \end{aligned}$

Coil Data

Nominal Coil Voltage	24	120	208/240	277	480
Maximum Pickup Volts	18	88	177	220	384
Drop-Out Volts Range	6-15	20-70	40-140	65-185	150-270
Nominal Inrush VA @ 50 Hz	60	60	60	60	65
Nominal Inrush VA @ 60 Hz	53	53	53	53	53
Nominal Sealed VA @ 50 Hz	6.0	6.0	6.0	6.0	6.0
Nominal Sealed VA @ 60 Hz	5	5	5	5	5
Nominal DC Resistance - Ohms	7	180	720	950	3100

Ordering Information

Standard part numbers listed below are more likely to be available from stock.

$3100-30 \mathrm{Q} 999 \mathrm{CY}$	$3100-30 U 9999 \mathrm{CY}$	$3100-30 \mathrm{~T} 10999 \mathrm{CG}$
$3100-30 \mathrm{~T} 9999 \mathrm{CY}$	$3100-30 \mathrm{~L} 10999 \mathrm{CG}$	$3100-30 \mathrm{U} 10999 \mathrm{CG}$

Outline Dimensions

Termination Options

ORDERING NOTE: "Standard" terminals need not be specified in the "Ordering Information" chart above. "Special" terminals are offered on a special order basis. Special order items may be subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding items with these options.

Auxiliary Switches

Various interlock / auxiliary switches are available for the Model 98 contactor. All auxiliary switches for the Model 98 are snap-on design, no tools required.

Footnotes: Ratings of Auxiliary Interlocks / Switches (1) Contact Rating Single Circuit NO or NC and two circuit NO/NC:

	120 V		240 V	$\underline{480 \mathrm{~V}}$	$\frac{600 \mathrm{~V}}{}$
Amperes - Break	3.0		1.5	0.75	0.6
Amperes -Make	30	15	7.5	6	
Amperes - Continuous	10	10	10	10	

(2) Contact Rating SPDT (337):

10A, 1/3 HP, 125 or 250 VAC 1/2A, 125 VDC; 1/4A, $250 \mathrm{VDC}:$
4A 120 VAC on Lamp Load

Equipped with 0.250 " (6.35) Quick Connect Terminals

Description	dificat		Field Added Kits	
	Contact Config.		Kit Catalog	Number of
	NO	NC	Number	Kits Required
Single unit interlock	1	0	98220-303	1
configurations listed.	0	1	98220-331	1
Maximum of two.	1	1	98220-332	1
(One on each side.)	2	0	98220-303	2
	0	2	98220-331	2
See footnote (1) for ratings.	2	2	98220-332	2
SPDT Circuit	1	1	98220-337	1
(Either one or two	2	2	98220-338	1
switches per side.)	2	2	98220-337	2
See footnote (2) for ratings.	4	4	98220-338	2
SPDT Dry Circuit	1	1	98220-341	1
0.1 amp max.	2	2	98220-340	1
Gold Flashed Contacts	4	4	98220-340	2

Equipped with \#6-32 Screw Terminals \& Saddle Clamps

Description Factory M	difica		Field Added Kits	
	Contact Config.		Kit Catalog	Number of
	NO	NC	Number	Kits Required
Single unit interlock	1	0	98220-303	1
configurations listed.	0	1	98220-331	1
Maximum of two.	1	1	98220-332	1
(One on each side.)	2	0	98220-303	2
	0	2	98220-331	2
See footnote (1) for ratings.	2	2	98220-332	2

Features

- 3-pole contactors.
- Convenient "universal" mounting plate.
- Optional interlock/auxiliary switches available.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 3 Form X (3PST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Coil Data @ $25^{\circ} \mathrm{C}$

Voltage: 24-480 VAC, 50/60 Hz. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Model 93-3100 series

Definite Purpose Contactor
 3-pole, 50-60 FLA
 AC Coil

c께 ${ }_{\text {us }}$ File E75492
(© (5) File EN60947-4-1:1991
IEC 947-4-1

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Mechanical Data

Contact Termination:

Type: Box Lug with dual $0.250^{\prime \prime}(6.35 \mathrm{~mm}$) quick connects.
Wire Size: 14-2 Cu/Al AWG
Tightening Torque: 50 in .-lbs.
Coil Termination: Dual $0.250^{\prime \prime}(6.35 \mathrm{~mm}$) quick connects, standard. A 0.250 " quick connect and a \# $\#$ - 32 screw, optional.
Arc Cover: Standard.
Weight: 32 oz . $(910 \mathrm{~g}$) approximately

Contact Ratings

Full Load Amps	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Poles } \end{gathered}$	$\begin{gathered} \text { Line } \\ \text { Voltage } \end{gathered}$	Locked Rotor Amps	Resistive Amps Rating	Maximum Horsepower		
					Voltage	Single Phase	Three Phase
50	3				110/120	3	-
		240	300	65	200/208	7.5	15
		480	250	65	240/277	10	15
		600	200	65	480	-	25
					600	-	25
60	3				110/120	5	-
		240	360	75	200/208	7.5	25
		480	300	75	240/277	10	25
		600	240	75	480	-	30
					600		30

Coil Data

Nominal Coil Voltage	24	120	208/240	277	480
Maximum Pickup Volts	182	93	177	235	374
Drop-Out Volts Range	6-15	20-70	40-135	50-180	120-286
Nominal Inrush VA @ 50 Hz	140	140	140	140	140
Nominal Inrush VA @ 60 Hz	132	132	132	132	132
Nominal Sealed VA @ 50 Hz	20	20	20	20	20
Nominal Sealed VA @ 60 Hz	14	14	14	14	14
Nominal DC Resistance - Ohms	2.4	45	180	280	852

Ordering Information

Standard part numbers listed below are more likely to be available from stock.
None at present.

Outline Dimensions

Termination

Shown with Optional Auxiliary Switch

Auxiliary Switches

Various interlock / auxiliary switches are available for the Model 93 contactor.

W/ \#6-32 SCREW \& SADDLE CLAMP -344 STYLE

Equipped with $\mathbf{0 . 2 5 0 "}$ (6.35) Quick Connect Terminals

Factory Modifications		Field Added Kits		
Description	Contact Config.		Kit Catalog	$\begin{array}{c}\text { Number of } \\ \text { Number }\end{array}$
	Nits Required			

Equipped with \#6-32 Screw Terminals \& Saddle Clamps

Factory M odifications		Field Added Kits	
Description	Contact Config. NO NC	Kit Catalog Number	Number of Kits Required
Single unit interlock	10	34300-342	1
configurations listed.	$0 \quad 1$	34300-343	1
Maximum of two. Must be same polarity. (note 1)	$1 \quad 1$	34300-344	1

Footnotes: Ratings of Auxiliary Interlocks / Switches

Footnotes: Ratings of Auxiliary Interlocks / Switches					
(1) Contact Rating Single Circuit NO or NC and two circuit NO/NC:					(2) Contact Rating SPDT (337):
					10A, 1/3 HP, 125 or 250 VAC
	120 V	$\underline{240 V}$	480V	600 V	1/2A, $125 \mathrm{VDC} ; 1 / 4 \mathrm{~A}, 250 \mathrm{VDC}$
Break	3.0A	1.5A	0.75A	0.6A	4 A 120 VAC on Lamp Load
Make	30A	15A	7.5A	6A	
Continuous	10A	10A	10A	10A	

(2) Contact Rating SPDT (337): $10 \mathrm{~A}, 1 / 3 \mathrm{HP}, 125$ or 250 VAC 1/2A, $125 \mathrm{VDC} ; 1 / 4 \mathrm{~A}, 250 \mathrm{VDC}$: 4 A 120 VAC on Lamp Load

Model 93-3100 series

Definite Purpose Contactor
4-pole, 25-40 FLA
AC Coil
c7 ${ }_{\text {us }}$ File E75492
(\Subset (5) File EN60947-4-1:1991
IEC 947-4-1

Features

- 4-pole contactors.
- Convenient "universal" mounting plate.
- Optional interlock/auxiliary switches available.

> Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Mechanical Data

Contact Termination

25, 30 FLA Models
Type: \#10-32 Screw with quad 0.250" (6.35 mm) quick connects. Wire Size: 16-8 AWG (Stranding must be split for 8 AWG wire.) Tightening Torque: 25 in.-lbs.
40 FLA Models
Type: Box Lug with dual 0.250 " (6.35 mm) quick connects.
Wire Size: 14-4 Cu/AI AWG
Tightening Torque: 40 in.-lbs.
Coil Termination: Dual 0.250 " (6.35 mm) quick connects, standard. A 0.250 " quick connect and a \#6-32 screw, optional.
Arc Cover: Optional on 25-30 FLA models, standard on 40 FLA models.
Weight: 24 oz . 683 g) approximately

Voltage: 24 - 480 VAC, $50 / 60 \mathrm{~Hz}$. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 4 Form X (4PST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Coil Data @ $25^{\circ} \mathrm{C}$

Contact Ratings

Full Load Amps	Number of Poles	$\begin{gathered} \text { Line } \\ \text { Voltage } \end{gathered}$	Locked Rotor Amps	$\begin{gathered} \hline \text { Resistive } \\ \text { Amps } \\ \text { Rating } \\ \hline \end{gathered}$	Maximum Horsepower		
					Voltage	Single Phase	Three Phase
25	3	$\begin{gathered} 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 150 \\ & 125 \\ & 100 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 35 \end{aligned}$	$\begin{gathered} \hline 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \\ \hline \end{gathered}$	2	$\begin{aligned} & 7.5 \\ & 10 \\ & 15 \\ & \hline \end{aligned}$
30	3	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 180 \\ & 150 \\ & 120 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} \hline 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \\ \hline \end{gathered}$	$\begin{aligned} & 2 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 15 \end{aligned}$
40	3	$\begin{gathered} \hline 240 / 277 \\ 480 \\ 600 \end{gathered}$	$\begin{aligned} & 240 \\ & 200 \\ & 160 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 50 \end{aligned}$	$\begin{gathered} \hline 110 / 120 \\ 200 / 208 \\ 240 / 277 \\ 480 \end{gathered}$	$\begin{gathered} 3 \\ - \\ 7.5 \end{gathered}$	$\begin{gathered} - \\ 10 \\ 10 \\ 20 \end{gathered}$

Coil Data

Nominal Coil Voltage	24	120	208/240	277	480
M aximum Pickup Volts	19.2	93	177	220	384
Drop-Out Volts Range	6-15	20-70	40-140	50-185	150-270
Nominal Inrush VA @ 50 Hz	68	68	68	58	48
Nominal Inrush VA @ 60 Hz	60	60	60	52	52
Nominal Sealed VA @ 50 Hz	14	14	14	11	11
Nominal Sealed VA @ 60 Hz	9	9	9.5	9.5	9
Nominal DC Resistance - Ohms	5	148	520	750	2700

Ordering Information

Standard part numbers listed below are more likely to be available from stock.
None at present.

Outline Dimensions

Termination Options

ORDERING NOTE: "Standard" terminals need not be specified in the "Ordering Information" chart above. "Special" terminals are offered on a special order basis. Special order items may be subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding items with these options.

Shown with Optional Auxiliary Switch

Auxiliary Switches

Various interlock / auxiliary switches are available for the Model 93 contactor.

Equipped with $0.250^{\prime \prime}$ (6.35) Quick Connect Terminals

Factory Modifications		Field Added Kits		
Description	Contact Config.		Kit Catalog Number	
	Number of Kits Required			
Single unit interlock	1	0	$34220-303 \mathrm{~N}$	1
configurations listed.	0	1	$34220-331 \mathrm{~N}$	1
Maximum of two. Must	1	1	$34220-332 \mathrm{~N}$	1
be same polarity.	2	0	$34220-303 \mathrm{~N}$	2
See footnote (1) for ratings.	0	2	$34220-331 \mathrm{~N}$	2
	2	2	$34220-332 \mathrm{~N}$	2
SPDT Circuit	1	1	$34220-337 \mathrm{~N}$	1
See footnote (2) for ratings.	2	2	$34220-337 \mathrm{~N}$	2
SPDT Dry Circuit, 0.1 amp max.	1	1	$34220-341 \mathrm{~N}$	1
Gold Flashed Contacts	2	2	$34220-340 \mathrm{~N}$	1

Equipped with \#6-32 Screw Terminals \& Saddle Clamps

Factory Modifications		Field Added Kits									
Description	Contact Config.		Kit Catalog	Number of Number							
	Kits Required				$	$	Single unit interlock	1	0	$34220-342 N$	1
:---	:---:	:---:	:---:	:---:							
configurations listed.	0	1	$34220-343 N$	1							
Maximum of two. Must	1	1	$34220-344 N$	1							
be same polarity. (note 1)											

Footnotes: Ratings of Auxiliary Interlocks / Switches

Footnotes: Ra	ins	Aux	ary	erio	/ Switches
(1) Contact Ratin and two circu	g Sing it $\mathrm{NO} /$	Circu	O or		(2) Contact Rating SPDT (337): $10 \mathrm{~A}, 1 / 3 \mathrm{HP}, 125$ or 250 VAC
	120 V	240 V	480 V	600 V	1/2A, 125 VDC ; 1/4A, 250 VDC :
Break	3.0A	1.5A	0.75A	0.6A	4 A 120 VAC on Lamp Load
Make	30A	15A	7.5A	6A	
Continuous	10A	10A	10A	10A	

10A, 13HP 125 or 250 10A, 125 VDC 14A 250VDC 4A 120 VAC on Lamp Load

Features

- 3-pole contactors.
- Convenient "universal" mounting plate.
- Optional interlock/auxiliary switches available.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 3 Form X (3PST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Coil Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Voltage: 24-480 VAC, 50/60 Hz. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Model 96-3186 series

Definite Purpose Contactor
 3-pole, 75-90 FLA
 AC Coil

c께 ${ }_{\text {us }}$ File E75492
(© (5) File EN60947-4-1:1991
IEC 947-4-1

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Mechanical Data

Contact Termination:

Type: Box Lug with dual $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ quick connects.
Wire Size: 14-1/0 Cu/Al AWG
Tightening Torque: 50 in.-lbs.
Coil Termination: 0.250 " quick connect and a \#6-32 screw.
Arc Cover: Standard.
Weight: 64 oz . (1820 g) approximately

Contact Ratings

Full Load Amps	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Poles } \end{gathered}$	$\begin{aligned} & \text { Line } \\ & \text { Voltage } \end{aligned}$	Locked Rotor Amps	Resistive Amps Rating	Maximum Horsepower		
					Voltage	Single	Three Phase
75	3				110/120	5	-
		240	450	93	200/208	10	20
		480	375	93	240/277	15	25
		600	399	93	480	-	40
					600	-	25
90	3				110/120	7.5	-
		240	540	120	200/208	15	25
		480	450	120	240/277	20	30
		600	360	120	480	-	50
					600	-	50

Coil Data

Nominal Coil Voltage	24	120	208/240	277	480
Maximum Pickup Volts	18	88	177	220	384
Drop-Out Volts Range	6-15	20-70	40-110	65-185	150-270
Nominal Inrush VA @ 50 Hz	285	285	285	285	285
Nominal Inrush VA @ 60 Hz	240	240	240	240	240
Nominal Sealed VA @ 50 Hz	42	42	42	42	42
Nominal Sealed VA @ 60 Hz	27	27	27	27	27
Nominal DC Resistance - Ohms	. 63	15.6	63.5	84	255

Ordering Information

Standard part numbers listed below are more likely to be available from stock.

None at present.

Shown with Optional Auxiliary Switch

Auxiliary Switches

Various interlock / auxiliary switches are available for the Model 96 contactor.
 -303 STYLE

NORMALLY OPEN \& CLOSED -332 STYLE

NORMALLY CLOSED -331 STYLE

SPDT -337 \& -341 STYLE

W/ \#6-32 SCREW \& SADDLE CLAMP -344 STYLE

-

Equipped with 0.250 " (6.35) Quick Connect Terminals

Factory Modifications		Field Added Kits		
Description	Contact Config.		Kit Catalog	Number of Number
Kits Required				

Equipped with \#6-32 Screw Terminals \& Saddle Clamps

Factory M odifications		Field Added Kits	
Description	$\begin{aligned} & \text { Contact Config. } \\ & \text { NO NC } \end{aligned}$	Kit Catalog Number	Number of Kits Required
Single unit interlock	10	34300-342	1
configurations listed.	$0 \quad 1$	34300-343	1
Maximum of two. Must be same polarity. (note 1)	11	34300-344	1

Footnotes: Ratings of Auxiliary Interlocks / Switches
(1) Contact Rating Single Circuit NO or NC (2) Contact Rating SPDT (337):

and two circuit NO/NC:				
	120 V	240 V	480 V	
	$\frac{600 \mathrm{~V}}{}$			
Break	3.0 A	1.5 A	0.75 A	0.6 A
Make	30 A	15 A	7.5 A	6 A

Continuous 10A 10A 10A 10A

10A, 1/3 HP, 125 or 250 VAC 1/2A, 125 VDC; 1/4A, $250 \mathrm{VDC}:$ 4A 120 VAC on Lamp Load

Features

- 3-pole contactors.
- Convenient "universal" mounting plate.
- Optional interlock/auxiliary switches available.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 3 Form \times (3PST-NO-DM).
Maximum Ratings: See Contact Ratings Table.
Material: Silver Cadmium Oxide.

Model A-3100 series

Definite Purpose Contactor 3-pole, 120 FLA
 AC Coil

${ }^{c}{ }^{\text {PN }}$

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Temperature Range: Storage and Operating: $-40^{\circ} \mathrm{C}-+65^{\circ} \mathrm{C}$.
Flammability: UL 94-HB housing.

Mechanical Data

Contact Termination:

Type: Box Lug with dual 0.250 " (6.35 mm) quick connects.
Wire Size: 2 - 4-0 Cu/Al AWG
Tightening Torque: 100 in.-lbs.
Coil Termination: 0.250 " quick connect and a \#6-32 screw.
Arc Cover: Standard.
Weight: 128 oz. (3640 g) approximately

Coil Data @ $25^{\circ} \mathrm{C}$
Voltage: 24-480 VAC, 50/60 Hz. See Coil Data Table below.
Insulation Class: UL Class B $\left(130^{\circ} \mathrm{C}\right)$.
Duty Cycle: Continuous.

Contact Ratings

Full Load Amps	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Poles } \\ \hline \end{gathered}$	$\begin{gathered} \text { Line } \\ \text { Voltage } \end{gathered}$	Locked Rotor Amps	Resistive Amps Rating	Maximum Horsepower		
					Voltage	Single Phase	Three Phase
120	3				110/120	10	30
		240	720	150	200/208	20	30
		480	600	150	240	25	40
		600	480	150	480	-	75
					600	-	75

Coil Data

Nominal Coil Voltage	24	120	208/240	277	480
M aximum Pickup Volts	20.4	93	176	235	374
Drop-Out Volts Range	6-15.6	20-70	40-135	65-180	150-270
Nominal Inrush VA @ 50 Hz	470	600	600	600	-
Nominal Inrush VA @ 60 Hz	400	510	510	510	510
Nominal Sealed VA @ 50 Hz	43	50	50	50	-
Nominal Sealed VA @ 60 Hz	40	48	48	40	48
Nominal DC Resistance - Ohms	. 264	4.73	18.6	30.25	78

Ordering Information

Standard part numbers listed below are more likely to be available from stock.
3100Y30Q120999CJ 3100Y30T120999CJ 3100Y30U120999CJ

Auxiliary Switches

Various interlock / auxiliary switches are available for the Model A contactor.

W/ \#6-32 SCREW \& SADDLE CLAMP
-344 STYLE

Equipped with 0.250" (6.35) Quick Connect Terminals

Factory M odifications		Field Added Kits									
Description	Contact Config.		Kit Catalog	Number of NO							
	NC	Number	Kits Required		$	$	Single unit interlock	1	0	$34300-303$	1
:---	:---:	:---:	:---:	:---:							
configurations listed.	0	1	$34300-331$	1							
Maximum of two. Must	1	1	$34300-332$	1							
be same polarity.	2	0	$34300-303$	2							
See footnote (1) for ratings.	0	2	$34300-331$	2							
	2	2	$34300-332$	2							
SPDT Circuit	1	1	$34300-337$	1							
See footnote (2) for ratings.	2	2	$34300-337$	2							
SPDT Dry Circuit, 0.1 amp max.	1	1	$34300-341$	1							
Gold Flashed Contacts	2	2	$34300-340$	1							

Equipped with \#6-32 Screw Terminals \& Saddle Clamps

Factory M odifications		Field Added Kits	
Description	Contact Config. NO NC	Kit Catalog Number	Number of Kits Required
Single unit interlock	10	34300-342	1
configurations listed.	$0 \quad 1$	34300-343	1
Maximum of two. Must be same polarity. (note 1)	11	34300-344	1

Footnotes: Ratings of Auxiliary Interlocks / Switches
(1) Contact Rating Single Circuit NO or NC

and two circuit NON				
	120 V	240 V	480 V	600 V
Break	3.0 A	1.5 A	0.75 A	0.6 A
Make	30 A	15 A	7.5 A	6 A
Continuous	10 A	10 A	10 A	10 A

(2) Contact Rating SPDT (337): 10A, 1/3 HP, 125 or 250 VAC $1 / 2 \mathrm{~A}, 125 \mathrm{VDC} ; 1 / 4 \mathrm{~A}, 250 \mathrm{VDC}:$ 4A 120 VAC on Lamp Load

Engineering Notes

Alphanumeric Index

Series Type	Page
136 Traffic Light (Flash Transfer) Relay	916
GP Control Relay	917
KBP Mechanical Latching Relay	910
KUL Magnetic Latching Relay	908
M DR Rotary Relay (High Shock Resistance) .	914
ML Magnetic Latching Control Rela	917
TR Timing Control Relay	917
PE (latching) M agnetic Latching Relay.	902
PCKWK............... Magnetic Latching Relay.	904
RT (latching) Magnetic Latching Relay .	906
S89R/S90R Impulse Relay	912

PE Latching series

5 Amp, Miniature, Single Coil Printed Circuit Board Relay

cTus ${ }_{\text {us }}$ File E38891
凹O
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- 1 Form C (SPDT).
- 5 amp rated current.
- 10mm height.
- Flux-tight for wave soldering.
- Supplied in tubes.
- DIP configuration.
- 4kV coil-to-contact insulation.

Contact Data

Arrangement: 1 Form C (SPDT).
Material: Silver-nickel 90/10.
Expected Mechanical Life: 5 million operations.
Ratings: 5 amp 250VAC resistive 100,000 operations.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC.
Between Coil and Contacts: 4,000VAC.
Creepage/Clearance Coil-Contact: $>3.2 / 4 \mathrm{~mm}$.

Coil Data @ $20^{\circ} \mathrm{C}$

Nominal Coil Power: 360mW.

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Pull-in Voltage VDC	Reset Voltage VDC	Nominal Coil Current (mA)
03	25	2.25	2.25	120.0
05	69	3.75	3.75	72.0
06	100	4.5	0.6	60.0
12	400	9.0	12	30.0
24	1,600	18.0	2.4	15.0

Operate Data

Minimum Energization Time: 20 ms , at nom. voltage. (Consult factory on information on reduced pulse duration at higher voltages.)
Maximum Energization Time: 1 min. at 10\% duty cycle.
Maximum Reset Voltage: 120\% of nominal voltage at $-40^{\circ} \mathrm{C}$.
Switching Rate: 360 ops./hr. max. at rated load.

Coil Operation

Version	A..		C..	
Coil Terminals	A1	A2	A1	A2
Pull-In Polarity	+	-	-	+
Reset Polarity	-	+	+	-

Note: Contact position not defined at delivery.

Environmental Data

Temperature Range:

Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Shock (Destructive): $>100 \mathrm{~g}$.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure ($94 \mathrm{~V}-0$ rated): Flux-tight plastic case.
Weight: 0.18 oz. (5 g) approximately.

Contact Life

Max. DC Load Breaking Capacity

Coil Operating Range

Ordering Information

* Sealed version available on request.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

12 A2

PC Board Layout (Bottom View)

PCKW K series

Latching, Slim 16Amp
Miniature Power PC Board Relay
Appliances, HVAC, Office Machines.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Efficient, latching operation.
- Slim outline to save board space.
- 1 Form A contact arrangement.

Contact Data @ 20응

Arrangements: 1 Form A (SPST-NO).
Material: Ag Alloy.
Max. Switching Rate: 300 ops./ min. (no load).
20 ops./ min. (rated load).
Expected Mechanical Life: 5 million ops (no load).
Expected Electrical Life: 100,000 ops (16A @ 250VAC).
Minimum Load: 100mA @ 5VDC.
Initial Contact Resistance: 100 milliohms @ 1A, 6VDC.

Contact Ratings

Ratings: 16A @ 277VAC resistive.
Max. Switched Voltage: AC: 277V.
Max. Switched Current: 16A.
Max. Switched Power: 4,432VA.

Initial Dielectric Strength

Between Open Contacts: 1,000VAC, $50 / 60 \mathrm{~Hz}$. (1 min .);

$$
1,200 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} \text {. (1 sec.). }
$$

Between Contacts and Coil: $4,000 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. (1 min.); 4,800VAC, $50 / 60 \mathrm{~Hz}$ (1 sec.).
Surge Voltage Between Coil and Contacts: 10,000V (1.2/50 $\mu \mathrm{s}$).

Initial Insulation Resistance

Between Mutually Insulated Conductors: 1,000M ohm @ 500VDC.

Coil Data

Voltage: 12VDC (Consult factory for other coil voltage).
Nominal Power: 1.8W (SET).
800mW (RESET).
Max. Coil Power: 130% of nominal at $20^{\circ} \mathrm{C}$.

Coil Data @ $20^{\circ} \mathrm{C}$

PCKWK					
Rated Coil Voltage (VDC)	SET Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	RESET Coil Resistance (ohms) $\pm \mathbf{1 0 \%}$	SET Coil Voltage Range (VDC)	RESET Coil Voltage Range (VDC)	
12	80	180	$6.0-9.0$	$2.0-7.0$	

Operate Data @ 20 ${ }^{\circ} \mathrm{C}$

SET Time: 10 ms max. (including bounce) at rated voltage.
8 ms max. (including bounce) at 130% rated voltage.
RESET Time: 10 ms max. at rated voltage.
8 ms max. at 130\% rated voltage.
The pulse to either the set or reset coil of the PCKWK relay should be no less than 30 milliseconds duration, and no more than 1 second duration.

Observe coil polarity.
Do not apply voltage to both SET and RESET coils simultaneously.
Extemal magnetic fields may affect the operation of the relay.

Environmental Data

Temperature Range:
Operating: $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Vibration, Mechanical: 10 to 55 Hz ., 1.5 mm double amplitude for 2 hr .
Operational: 10 to 55 Hz ., 1.5 mm double amplitude for 5 min .

Shock, Mechanical: $980 \mathrm{~m} / \mathrm{s}^{2}$.

Operational (when SET): $98 \mathrm{~m} / \mathrm{s}^{2}$.
Operational (when RESET): $980 \mathrm{~m} / \mathrm{s}^{2}$.
Operating Humidity: 20 to 65\% RH. (Non-condensing).

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Vented (Flux-tight) plastic cover.
Weight: $0.49 \mathrm{oz}(14 \mathrm{~g})$ approximately.

Ordering Information							
Typical Part Number	PCKWK	-1	12	D	2	M	,000
1. Basic Series: PCKW $=16$ A double coil relay							
2. Termination: 1 = 1 pole							
3. Coil Voltage: $12=12 \mathrm{VDC}$ Consult factory for other voltages.							
4. Coil Input: D = Standard							
5. Contact Material: 2 =AgSnO							
6. Contact Arrangement: M = 1 Form A (SPST-NO)							
7. Suffix: ,000 = Standard model Other Suffix $=$ Custom model							

* Not suitable for immersion cleaning processes.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Wiring Diagram (Bottom View)

PC Board Layout (Bottom View)

Features

- Latching relay with 1 or 2 coils.
- SPDT (16A) and DPDT (8A) contact arrangements.
- Flux tight enclosure.
- Meets VDE 10 mm spacing, 5 kV dielectric, coil to contacts.
- Conforms to UL 508, 1873 and 353.
- UL Class F $\left(155^{\circ} \mathrm{C}\right)$ coil construction
- Schrack brand

Contact Data

Arrangements: 1 Form C (SPDT) Wiring Diagram Code 3.
2 Form C (DPDT) Wiring Diagram Code 5.
Material: Silver-nickel 90/10.
Minimum Load: $12 \mathrm{~V} / 100 \mathrm{~mA}$.
Expected Mechanical Life: 5 million operations, 1 pole.

$$
2 \text { million operations, } 2 \text { pole. }
$$

Designed to meet UL/CSA/VDE ratings with relay properly vented. Remove vent nib after soldering and cleaning.

ULCSA ratings @ $70^{\circ} \mathrm{C}$:

Code	NO/NC Load	Type	Operations
3	16A/8A @ 240VAC	GP	6 K
	8A @ 28VDC	Resistive	30 K
	$1 / 2$ HP @ 120VAC*	Motor	6 K
	1HP @ 240VAC*	Motor	6 K
	48 LRA, 8 FLA @ 240VAC	Motor	30 K
	B300	Pilot Duty	6 K
5	8A @ 240VAC	Resistive	30 K
	8A @ 28VDC	Resistive/GP	30 K
	$1 / 2$ HP @ 240VAC	M otor	6 K
	$1 / 4$ HP @ 120VAC	M otor	6 K
	B300	Pilot Duty	6 K

* Form A only

VDE Ratings @ $70^{\circ} \mathrm{C}$:

Code	NO/NC Load	Type	Operations
3	16A@ 250VAC	Resistive	10 K
	$8 \mathrm{~A} @ 250 \mathrm{VAC}$	Resistive	30 K
5	$8 \mathrm{~A} @ 250 \mathrm{VAC}$	Resistive	30 K
	$8 \mathrm{~A} @ 250 \mathrm{VAC}$	Resistive	100 K

RT series (Latching)
 16 Amp Miniature
 Printed Circuit Board Relay

${ }^{\text {cTus }}$. File E38891
\therefore NR 6106

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $20^{\circ} \mathrm{C}$
Voltage: 5 to 24VDC*, 1 coil.
3 to 24VDC*, 2 coil.
Nominal Power @ $\mathbf{2 5}^{\circ} \mathrm{C}$: 400mW, 1 coil. $600 \mathrm{~mW}, 2$ coil.
Duty Cycle: Continuous.
Initial Insulation Resistance: 10,000 megohms, min., at $20^{\circ} \mathrm{C}, 500 \mathrm{VDC}$ and 50% rel. humidity.
Coil Construction: UL Class F $\left(155^{\circ} \mathrm{C}\right)$.

* Other coil voltages upon request.

1 Coil Data

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Set Voltage VDC	Reset Voltage VDC	Nominal Coil Current (mA)
05	62	$3.5-6.0$	$2.75-6.0$	80.0
06	90	$4.2-7.2$	$3.30-7.2$	66.7
12	360	$8.4-14.4$	$6.60-14.4$	33.3
24	1,440	$16.8-28.8$	$13.20-28.8$	16.7

2 Coil Data

Nominal Voltage VDC	DC Resistance in Ohms $\mathbf{\pm 1 0 \%}$	Set Voltage VDC	Reset Voltage VDC	Nominal Coil Current (mA)
05	42	$3.5-7.5$	$2.75-4.5$	120.0
06	55	$4.2-9.0$	$3.30-9.0$	108.0
12	240	$8.4-18.0$	$6.60-18.0$	50.0
24	886	$16.8-36.0$	$13.20-36.0$	27.0

Operate Data @ $20^{\circ} \mathrm{C}$

Must Operate Voltage: See coil data.
Operate Time (Excluding Bounce): 5 ms , typ., at nom. voltage.
Release Time (Excluding Bounce): 4 ms , typ., at nom. voltage.
Max. Switching Rate: 360 ops. at rated load.

Environmental Data

Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ at rated current.
Vibration: $30-500 \mathrm{~Hz}$:
N / C opens at $>3 \mathrm{~g}$ and changes from reset to set at $>5 \mathrm{~g}$;
Shock: N / C opens at $>6 \mathrm{~g}$ and changes from reset to set at $>15 \mathrm{~g}$.;

Mechanical Data

Termination: Printed circuit terminals.
Enclosures: RT 3, 4: Flux-tight, top vented, plastic case.
Weight: 0.46 oz . (13 g) approximately.

Note: All latching model RT part numbers are Schrack brand, are orange in color and have UL Class $\mathrm{F}\left(155^{\circ} \mathrm{C}\right)$ coil construction.
Our authorized distributors are more likely to stock the following items for immediate delivery. None at present.

Outline Dimensions

$\overline{\text { Wiring Diagrams (Bottom View) }}$

Code $3 \quad$ Code 5

	1 Coil		2 Coils		
Coil Terminals	A1	A2	A1	A3	A2
Operate	+	-		+	-
Reset	-	+	-	+	

Contact position not defined at delivery.

$\overline{\text { PC Board Layout (Bottom View) }}$

Code 3 \& 5

Breaking Capacity

1 Pole

A: 16A Version.
B: 12A Version

A: 1 Contact.
B: 2 Contacts in series.

Features

- Single or dual-wound DC coils or single-wound AC coils.
- Contact arrangements to 3PDT.
- Reset occurs by reversing polarity in a single coil relay or by energizing
the reset winding in dual coil relays.
- Uses same sockets as other KU relays.
- Well suited for applications such as alarm systems, machine tools, battery chargers and process controls.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements:
DC Single Coil: 1 Form C (SPDT), 2 Form C (DPDT) and 3 Form C (3PDT).
DC Dual Coil: 1 Form C (SPDT) and 2 Form C (DPDT).
AC Single Coil: 1 Form C (SPDT), 2 Form C (DPDT) and 3 Form C (3PDT).
Materials: Siver-cadmium oxide.

Expected Life:

Mechanical: 10 million operations.
Electrical: 100,000 operations minimum at rated load.

Contact Ratings

Contact Code	Arrangement	Ratings
$\mathbf{5}$	$1,2,3$ poles	10A @ 28VDC or 240VAC, 80\%
		@F; 1/4 HP @ 120VAC, 1/3 HP

Initial Dielectric Strength

Between Open Contacts: 500V rms.
Between Adjacent Contacts: $1,500 \mathrm{~V}$ ms.
Between Contacts and Coil: $1,500 \mathrm{~V}$ rms.

Coil Data @ $25^{\circ} \mathrm{C}$

Duty Cycle: Continuous. (Latch and reset not to be energized simultaneously).
Initial Insulation Resistance: 100 megohms, minimum.
Initial Breakdown Voltage: 1500 V ms, 60 Hz . between all elements.

Note: On single coil AC models one terminal is common. Latch/Reset function is accomplished by input in series with a diode to provide the correct polarity to the coil. To perform either function, the terminal not being used (Latch or Reset) must be open or isolated with no other path to common or ground.

KUL series

10 Amp Magnetic Latching Relay

況 File E22575
(18) File 15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

	Nominal Voltage	DC Resistance in Ohms $\pm 10 \% \dagger$		Must Operate Voltage	$\begin{aligned} & \text { 0.5 W } \\ & \text { Resistor } \end{aligned}$
DC Coils	Single Coil				
	$\begin{aligned} & 12 \\ & 24 \\ & 48 \end{aligned}$	1,8	20	$\begin{array}{r} 9.0 \\ 18.0 \\ 36.0 \end{array}$	-
	Dual Coil*				
	12 24 48		90	$\begin{array}{r} 9.0 \\ 18.0 \\ 36.0 \end{array}$	-
$\begin{gathered} \text { AC } \\ \text { Coils } \\ 50 / 60 \mathrm{~Hz} . \end{gathered}$	Single Coil with Diodes**				
	$\begin{array}{r} 24 \\ 120 \\ 240 \end{array}$	3,7 17,9	76	$\begin{array}{r} 20.4 \\ 102.0 \\ 204.0 \end{array}$	$\begin{array}{r} 680 \Omega \\ 15,000 \Omega \\ 68,000 \Omega \end{array}$
	Dual Coil				
		Latch	Reset		
	$\begin{array}{r} 24 \\ 120 \end{array}$	$\begin{gathered} 100 \\ 2525 \end{gathered}$	$\begin{gathered} 250 \\ 7800 \end{gathered}$	$\begin{array}{r} 20.4 \\ 102.0 \end{array}$	-

* Dual coil available only with 1 or 2 Form C contacts. On standard dual coil relays, the latch and unlatch voltage must be the same. For unlike
voltages, please contact your sales representative.
** Diodes and resistors included inside relay with 1 and 2 Form C
contacts. For 3 Form C relays, the customer must furnish and wire
diodes and resistors extemally.
$\dagger \pm 15 \%$ for AC coils.

Operate Data @ $25^{\circ} \mathrm{C}$

Must Operate Voltage
DC Coils: 75% of nominal voltage.
AC Coils: 85\% of nominal voltage.
Operate Time : 25 milliseconds maximum at nominal voltage.
Release or Reset Time: 25 milliseconds maximum at nominal voltage.

Environmenal Data

Temperature Range:
Storage: $-45^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Operating:
Single Coil AC \& DC: $-45^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Dual Coil DC: $-45^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Mechanical Data

Termination: .187" (4.75mm) quick connect/solder terminals. Sockets are available.
Enclosure: Clear plastic polycarbonate heat and shock resistant case. Weight: $3.4 \mathrm{oz} .(96 \mathrm{~g})$ approximately.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery..

KUL-5A15S-120	KUL-11A15S-120	KUL-11D15D-24	KUL-11D15S-24
KUL-11A15S-24	KUL-11D15D-12	KUL-11D15S-12	

Outline Dimensions

See KU series drawings for bracket mount case.

Terminal Dimensions

.187" (4.75mm) Standard

Wiring Diagrams (Bottom Views)

Note 1 Contact positions shown in diagrams is with the "RESET" input having been energized last.

Note 2 Do not connect any low impedance loads from terminal B to A.
Note 3 Resistor and diodes connected by customer. See Coil Data Chart on KUL Series engineering data page for resistor value. Recommended using 1N4007 diode.

Features

- Dual coil latching relay accepts a momentary impulse to one coil to latch and a second impulse to the other coil to release.
- Enclosed in a clear polycarbonate dust cover.
- AC or DC coils.
- Contacts up to 5PDT.
- Mounts in 11 or 20-pin octal-type plugs.

Contact Data @ +25 ${ }^{\circ} \mathrm{C}$

Arrangements: From 2 Form C (DPDT) to 5 Form C (5PDT), (3PDT each coil).
Ratings: 10 amps @ 120VAC.
Materials: 10 amp models: Silver-cadmium oxide.
Expected Life: 500,000 operations, mechanical; 50,000 operations minimum at rated loads.

KBP series

10 Amp
 Dual Coil
 Latching Relay

기 File E29244
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data

	Nominal Voltage	Resistance in Ohms $\pm 10 \%$ @ $25^{\circ} \mathrm{C}$	Nominal Current Milliamperes
DC Coils (to 5 pole)	$\begin{array}{r} 12 \\ 24 \\ 48 \\ 110 \end{array}$	$\begin{gathered} 52.0 \\ 230 \\ 850 \\ 4560 \end{gathered}$	$\begin{gathered} 230 \\ 104 \\ 56.5 \\ 24 \end{gathered}$
	220	Use 110 volt relay with 5000 Ohms, 5 watt resistor in series.	
	Nominal Voltage	Resistance in Ohms $\pm 15 \%$ @ $25^{\circ} \mathrm{C}$	Nominal Current Milliamperes
AC Coils	Up to 4 Pole Relays		
	$\begin{array}{r} 24 \\ 120 \\ 240 \end{array}$	$\begin{array}{r} 42 \\ 1030 \\ 4100 \end{array}$	$\begin{array}{r} 210 \\ 44 \\ 22 \end{array}$
	For 5 Pole Relays		
	$\begin{array}{r} 24 \\ 120 \end{array}$	$\begin{array}{r} 27 \\ 700 \end{array}$	$\begin{array}{r} 325 \\ 68 \end{array}$

Operate Data @ +25 ${ }^{\circ} \mathrm{C}$

Must-Operate Voltage:

DC: 75\% of nominal voltage.
AC: 85% of nominal voltage.
Operate Time: 25 milliseconds excluding bounce.

Environmental Data

Temperature Range:
Storage: $105^{\circ} \mathrm{C}$.
Operating: $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Coil Data @ +25²

Nominal Power:

DC Coils: 2.7 W .
AC Coils: 5.3 VA to 4 pole; 7.8 VA to 5 pole.
Maximum Power: DC coils -4.0 W .
Duty Cycle: Intermittent.
Initial Insulation Resistance: 100 megohms.

Mechanical Data

Termination: See terminals table on next page.
Enclosures: Plastic dust cover standard. Hermetically sealed metal case available on special order.
Weight: 10.8 oz . (306 g) approximately.

Ordering Information

	Typical Part Number $>$	KBP	-11	A	G	-24
1. Type: KBP = Enclosed, dual coil latching relay.	$\mathrm{KB}=$ Open, dual coil latching relay.					
2. Contact Arrangement: $11=2$ Form C (DPDT) $17=4$ Form C (4PDT) $20=5$ Form C (5PDT)						
3. Coil Input: $\begin{aligned} & A=A C \\ & D=D C \end{aligned}$						
4. Contact Rating: G = $10 \mathrm{amps} @ 120 \mathrm{VAC}, 80 \%$ PF.						
5. Coil Voltage: $\begin{array}{ll} 12,24,48,110 \mathrm{VDC} & \text { Specify } \\ 24,120,240 \mathrm{VAC} & \text { relays. } \end{array}$	latch and release coil voltage for sta is available on special order.	d KBP				

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

KB-17AG-120	KBP-11AG-120	KBP-11DG-110
KB-17DG-12	KBP-11DG-24	KBP-20AG-120

Wiring Diagrams (Bottom Views)

Note: Shown with reset coil energized last.

S89R/S90R series

S89R

S90R

Bistable, Impulse Relay 15 and 20 Amp Industrial Rating Continuous Coil Rating

미 File E22575
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Low cost, bistable impulse relay.
- Operates on 75 ms min. pulse.
- Used in garage door controls, motor reversing and lighting controls.
- S89R available with plastic cover and octal plug-in base.

Contact Data @ $25^{\circ} \mathrm{C}$

Ratings: S89R: $15 \mathrm{amps}, 1 / 2 \mathrm{HP}, 125 / 250 \mathrm{VAC} ; 5 \mathrm{amps}, 125 \mathrm{VAC}$, tungsten filament lamp load; $1 / 2 \mathrm{amp}, 125 \mathrm{VDC} ; 1 / 4 \mathrm{amp}, 250 \mathrm{VDC}$.
Expected Life: 100,000 operations, mechanical; 50,000 operations at rated loads.
Ratings: S90R:

Load	Minimum Life
20A, 120VAC or 7.5A, 277VAC, Tungsten.	10,000 Cycles
15A, 125VAC or 7A, 277VAC, Fluorescent.	10,000 Cycles
20A, 277VAC, 75-80\% PF.	50,000 Cycles
1 HP, 125VAC, 50/60 Hz.	50,000 Cycles
2 HP, 250VAC, 50/60 Hz.	50,000 Cycles
12 FLA, 60 LRA, 120VAC.	50,000 Cycles
8 FLA, 48 LRA, 240VAC.	50,000 Cycles
Pilot Duty, 360VA, 125/250VAC.	50,000 Cycles

Coil Data @ $25^{\circ} \mathrm{C}$

Nominal Power:

DC Coils: 6.33 Watts @ $+25^{\circ} \mathrm{C}$.
AC Coils: 9VA @ $+25^{\circ} \mathrm{C}$.

Insulation: Class $\mathrm{B}\left(130^{\circ} \mathrm{C}\right)$.
Initial Breakdown Voltage: $1,500 \mathrm{~V}$ rms, 60 Hz .
Must-Operate Voltage:
DC Coils: 75% of nominal voltage @ $+25^{\circ} \mathrm{C}$.
AC Coils: 85% of nominal voltage @ $+25^{\circ} \mathrm{C}$.

Coil Data

Nominal Voltage	Resistance DC Ohms $\mathbf{\pm 1 5 \% ~ @ ~} \mathbf{2 5}^{\circ} \mathbf{C}$	Nominal Current $\mathbf{m A}$
24VAC	8.7	375
120VAC	260	75
240VAC	1084	38
6VDC	5.8	1035
12VDC	22.5	533
24VDC	92	260

Environmental Data

Temperature Range: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

Mechanical Data

Weight: 7.75 oz. (241g) approximately.

Ordering Information

	Typical Part No. \downarrow S89R	5	A	B	D	1	-24
1. Basic Series: $S 89 R=15 A$ $S 90 R=20 A$ $S 90 R=20 A$							
2. Contact Arrangement: $5=\text { SPDT } \quad 11=\text { DPDT }$	$17=4 \mathrm{PDT}$						
$\begin{aligned} & \text { 3. Coil Input: } \\ & \begin{array}{l} A=A C \\ D=D C \end{array} \end{aligned}$							
4. Coil Terminal Style: $\begin{aligned} & A=.187^{\prime \prime}(4.75 \mathrm{~mm}) \text { Quick connect/solder. } \\ & B=.250^{\prime \prime}(6.35 \mathrm{~mm}) \text { Quick connect/solder. } \end{aligned}$	$\mathrm{P}=$ Dust cover with octal plug-in base. (S89R only.)						
5. Switch Terminal Style: $\begin{aligned} & C=.187^{\prime \prime}(4.75 \mathrm{~mm}) \text { Quick connect.* } \\ & D=.250^{\prime \prime}(6.35 \mathrm{~mm}) \text { Quick connect. } \end{aligned}$	P = Dust cover with octal plug-in base.* * S89R only.						
6. Switch Terminal Configuration: 1 = Style 1 (See outline drawings.)							
7. Coil Voltage: 24, 120, 240VAC 6, 12, 24VDC							

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.				
S89R5ABD1-24	S89R11AAC1-24	S89R11ABD1-120	S89R11DAC1-24	S90R5ABD1-120
S89R5ABD1-120 S89R11AAC1-120 S89R11APP1-120 S89R11DBD1-12	S90R11ABD1-24			
S89R5DBD1-12	S89R11ABD1-24	S89R11DAC1-12	S89R11DBD1-24	S90R11ABD1-120

Outline Dimensions

Open Relays

Enclosed Relays

S89 Series

Wiring Diagram

Switch Terminal Configuration

Style 1

Switch Terminal Style

$\mathrm{C}=.187{ }^{2}(4.75 \mathrm{~mm})$ Quick-connect $D=.250$ " (6.35 mm) Quick-connect

$.187 "(4.75 \mathrm{~mm})$.250" (6.35mm)
Quick Connect	Quick Connect
S89R	S89R
	S90R

Small 4PDT

Medium 24PDT

Features

- AC and DC coils, latching and non-latching.
- 4PDT through 24PDT contact arrangements.
- Contacts will not chatter when relays are subjected to high-impact shock blows of 2000 ft .-lbs.

Contact Data

Arrangements: 4 Form C (4PDT) through 24 Form C (24PDT).

Contact Ratings

Single Contacts	Two Contacts in Series
$10 \mathrm{~A}, 115 \mathrm{VAC}$	$3 \mathrm{~A}, 440 \mathrm{VAC}$
$3 \mathrm{~A}, 28 \mathrm{VDC}$	$15 \mathrm{~A}, 115 \mathrm{VAC}$
$0.8 \mathrm{~A}, 125 \mathrm{VDC}$	$1.5 \mathrm{~A}, 125 \mathrm{VDC}$

The above AC contact ratings are based on contact loads having a 50% power factor. The DC contact ratings are based on resistive loads.

Contact Section

M DR series

10 Amp Rotary Relay
 For Demanding Shock \& Vibration Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data @ $25^{\circ} \mathrm{C}$

Type	Typ. Operate Time (ms)	Typ. Release Time (ms)
Small AC Non-Latching	5 to 12	5 to 18
Small DC Non-Latching	15 to 30	5 to 15
Small AC Latching	6 to 12	N/A
Small DC Latching	10 to 16	N/A
Medium AC Non-Latching	6 to 12	6 to 20
Medium DC Non-Latching	65 to 90	10 to 30
Medium AC Latching	8 to 14	N/A
Medium DC Latching	30 to 80	N/A

Latching Two-Position Types: Except for the latching feature, MDR latching relays utilize the same general construction as non-latching types. They have two sets of coils and provide a latching two-position operation.

Contacts Shown With Coil 1-2 De-Energized and Coil 3-4 Energized.

Coils Must be Energized Alternately, Not Simultaneously

Environmental Data

Temperature Range: Standard models: $0^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Special order models: $0^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.

Mechanical Data

Termination: \#5-40 screw terminals supplied.
Weight (Approx.):
Small - 4 \& 8PDT: 32 oz. (0.914 kg); 12PDT: $33 \mathrm{oz} .(0.943 \mathrm{~kg}$)
Medium - 16PDT: 72 oz. (2.04 kg); 24PDT: $74 \mathrm{oz} .(2.10 \mathrm{~kg}$).

Ordering Information and Coil Characteristics - No models in this series are maintained in stock.

Type	Part Number	Contacts	Coil Voltage (60 Hz . for AC)	Coil Current (Amps)	DC Coil Resistance (Ohms)	Coil Power* (Watts)	Breakdown (Volts RMS)
Small	MDR-131-1	4PDT	115VAC	0.215	66	6.5	1,230
Non-	M DR-131-2	4PDT	440VAC	0.045	1,256	5.1	1,880
Latching	MDR-135-1	4PDT	28VDC	0.362	76	10.0	1,308
	MDR-137-8	4PDT	125VDC	0.082	1,520	10.3	2,375
	MDR-134-1	8PDT	115VAC	0.215	66	6.5	1,230
	MDR-134-2	8PDT	440VAC	0.045	1,256	5.1	1,880
	M DR-136-1	8PDT	28VDC	0.362	76	10.0	1,308
	MDR-138-8	8PDT	125VDC	0.082	1,520	10.3	2,375
	MDR-163-1	12PDT	115VAC	0.230	62	6.9	1,230
	MDR-163-2	12PDT	440VAC	0.055	940	6.3	1,880
Medium	MDR-170-1	16PDT	115 VAC	0.620	8.4	17.0	1,230
Non -	MDR-170-2	16PDT	440VAC	0.160	107	17.0	1,880
Latching	MDR-172-1	16PDT	28VDC	0.667	42	18.7	1,308
	MDR-173-1	16PDT	125VDC	0.125	1,024	16.0	2,375
	MDR-141-1	24PDT	115VAC	0.620	8.4	17.0	1,230
	MDR-141-2	24PDT	440VAC	0.160	107	17.0	1,880
	MDR-167-1	24PDT	28VDC	0.667	42	18.7	1,308
Small	MDR-67-2	4PDT	115VAC	0.150	210	5.5	1,230
Latching	M DR-4091	4PDT	440VAC	0.020	4,500	3.0	1,880
	MDR-67-3	4PDT	28VDC	0.778	36	21.8	1,308
	MDR-5060	4PDT	125VDC	0.164	760	20.6	2,375
	M DR-4076	8PDT	115VAC	0.150	210	5.5	1,230
	MDR-4092	8PDT	440VAC	0.020	4,500	3.0	1,880
	MDR-5035	8PDT	28VDC	0.778	36	21.8	1,308
	MDR-5061	8PDT	125VDC	0.164	760	20.6	2,375
Medium	MDR-6064	12PDT	115VAC	0.380	24	12.0	1,230
Latching	MDR-7020	12PDT	28VDC	0.316	88.6	8.8	1,308
	MDR-66-4	16PDT	115VAC	0.380	24	12.0	1,230
	MDR-7036	16PDT	125VDC	0.083	1,500	10.4	2,375

* Actual Wattmeter readings

Outline Dimensions

Tolerances: Decimals $\pm .010(\pm .25)$ Unless Otherwise Specified

Small Models

Overall Height
4PDT 3.13" (79.5mm) Max.
8PDT 3.53" (89.7 mm) Max.
12PDT 3.88 " (98.6 mm) Max.
Coil and Contact Terminal Screws \#5-40 Supplied

Medium Models

Overall Height

12PDT 4.63" (117.6mm) Max.
16PDT 5.00" (127.0mm) Max. 24PDT 5.75" (146.1mm) Max.
Coil and Contact Terminal Screws \#5-40 Supplied

Features

- The Type 136 is a small power relay that will switch a 20 amp tungsten load at 120VAC
- Mechanical life in excess of 5 million operations is obtained by the use of a wide friction-free knife-edge frame design and armature assembly.
- The dust cover enclosure is fitted with an 8-position J ones plug
- All ratings are at $25^{\circ} \mathrm{C}$ ambient.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Materials: Silver-palladium, . 375 (9.52) diameter.
Rating: 20 amps , tungsten @ 120VAC.
Expected Life: 5 million operations, mechanical; 250,000 operations at rated load.

Initial Dielectric Strength

Between All Points: 1,500VAC.

136 series

DPDT, 20 Amp

 Traffic Control (flash transfer) Relay
CALTRANS approved
 NEMA approved

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Coil Data @ $25^{\circ} \mathrm{C}$

Nominal Voltage: 120VAC.
Resistance ($\mathbf{\pm 1 0 \%}$): 390 ohms.
Nominal Power: 10VA.
Duty Cycle: Continuous.
Temperature Rise: $45^{\circ} \mathrm{C}$.

Operate Data @ $25^{\circ} \mathrm{C}$
Must Operate Voltage: 85\% of nominal voltage.

Mechanical Data

Mounting: Socket mount.
Termination: 8-position J ones Plug compatible with CINCH 2400 series socket.
Enclosure: Clear polycarbonate dust cover.
Weight: 11 oz. (312g) approximately.

Ordering Information

Part Number	Description
136-62T3A1	Traffic Control (Flash Transfer Function) Relay (120VAC coil; contacts rated 20A tungsten @ 120VAC)

Our authorized distributors are likely to maintain the above-listed part number in stock for immediate delivery.

Outline Dimensions

SERIES GP

SERIES TR

GP/ML/TR Design Features

Among the advances AGASTAT control relays offer over existing designs is a unique contact operating mechanism. An articulated arm assembly amplifies the movement of the solenoid core, allowing the use of a short stroke coil to produce an extremely wide contact gap. The long support arms used in conventional relays are eliminated. Both current capacity and shock/vibration tolerance are greatly increased, as well as life expectancy.

Design/Construction

AGASTAT control relays are operated by a moving core electromagnet whose main gap is at the center of the coil. A shoe is fitted to the core which overlaps the yoke and further increases the magnetic attraction.

The coil itself is in the form of an elongated cylinder, which provides a low mean tum length and also assists heat dissipation. Since the maximum travel of the electromagnet does not provide optimum contacts movement, an ingenious amplifying device has been designed.

This consists of a W-shaped mechanism, shown in figure 1. When the center of the W is moved vertically the lower extremities move closer to each other as can be seen in the illustration. The center of the W mechanism is connected to the moving core of the electromagnet and the two lower points are connected to the moving contacts.

Two of these mechanisms are placed side-by-side to actuate the four contacts sets of the relay. The outer arms of the W mechanisms are leaf springs, manufactured from a flat piece of non-ferrous metal. These outer arms act as return springs for their corresponding contacts. This provides each contact with its own separate return spring, making the contacts independent.

The mechanical amplification of the motion of the electromagnet permits a greater distance between the contacts, while the high efficiency of the electromagnet provides a nominal contact force in excess of 100 grams on the normally open contacts.

All the contacts are positioned well away from the cover and are well ventilated and separated from each other by insulating walls.

The absence of metal-to-metal friction, the symmetrical design of the contact arrangement and the lack of heavy impacts provides a mechanical life of $100,000,000$ operations.

For use in AC circuits, the relay is supplied with a built-in rectification circuit, thus retaining the high DC efficiency of the electromagnet. The current peak on energizing is also eliminated and consequently the relay can operate with a resistance in series (e.g. for high voltages or for dropout by shorting the coil). The use of the rectification circuit offers still other advantages. The same model can operated at frequencies ranging from 40 to 400 cycles. Operation of the relay is crisp; even with a low AC voltage, there is a complete absence of hum and vibration.

The plastic dust cover has two windows through which the iron yoke protrudes to facilitate cooling and also to allow direct mounting arrangement of the relay irrespective of the terminals.

Figure 1 - Illustration of Amplification

NOTE: Seismic \& radiation tested EGP, EML and ETR models are available. Consult factory for detailed information.

GP/ML/TR series

10 Amp Control Relay Non-latching, Latching \& Timing Versions

(LL) File E15631

File LR29186
Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Occupies very small panel space
- May be mounted singly, in continuous rows or in groups.
- Available with screw terminal molded socket.
- 4 SPDT contacts.
- Magnetic blowout device option increases DC current carrying ability approximately ten times for both N.O. and N.C. contacts. In both AC and DC operation, the addition of the device will normally double the contact life, due to reduced arcing.

GP/ML Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 4 Form C (4PDT)
Material: Siver plated.
Ratings: See chart.
Expected Life: Mechanical: 100 million operations. Electrical: See chart and graph.

Contact Ratings and Expected Life

Voltage	Current (Amps)	Power Factor or Time Constant	Number of Electrical Operations	Remarks
540 VAC	3	COS $\varnothing=0.5$	15,000	2 contacts in series
380 VAC	15	Resistive	10,000	2 contacts in parallel
380 VAC	10	Resistive	200,000	
380 VAC	3×3.3	COS $\varnothing=0.8$	200,000	3hp motor
220 VAC	20	Resistive	20,000	2 contacts in parallel
220 VAC	15	COS $\varnothing=0.5$	20,000	2 contacts in parallel
220 VAC	10	Resistive	400,000	
220 VAC	3×6	COS $\varnothing=0.8$	200,000	3hp motor
220 VAC	5		$1,500,000$	Filament lamps
220 VAC	5	Resistive	$3,000,000$	
220 VAC	2.5	COS $\varnothing=0.25$	$2,000,000$	
220 VAC	2	Resistive	$15,000,000$	
220 VAC	1.25	Resistive	$30,000,000$	
120 VDC	1.5	Resistive	$20,000,000$	with blow-out device
48 VDC	10	Resistive	$1,000,000$	

Load Life Curve

Initial Dielectric Strength

Between non-connected terminals: $2,000 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}$.
Between non-connected terminals \& relay yoke: $2,000 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}$.

Initial Insulation Resistance

Between non-connected terminals: 10^{9} ohms at 500VDC.
Between non-connected terminals \& relay yoke: $10^{9} \mathrm{ohms}$ at 500VDC.

Coil Data

Voltage: 24, 120 \& 220VAC, 60 Hz . Add series resistor for 380-440VDC; 12, 24, 48, 125 \& 250VDC.

Duty Cycle: Continuous.
Nominal Coil Power: 6VA for AC coils; 6W for DC coils. There is no surge current during operation.
Coil Operating Voltage

	DC				AC, $\mathbf{5 0 / 6 0 H z}$			
Nominal Coil Voltage	12	24	48	125	250	24	120	220
Minimum Pick-up Voltage at 20C	9	18	36	94	187	19	92	175
Minimum Pick-up Voltage at 40ㅇ	9.5	19	38	100	200	20	102	188
Maximum voltage for continuous use	13.5	27	53	143	275	27	137	245

For 380VAC - Use 6800 ohms 4 watt resistor in series with 220VAC relay. For 440VAC - Use 8200 ohms 6 watt resistor in series with 220VAC relay.

Drop-out voltage is between 10% and 40% of the nomninal voltages for both DC and AC (For example: in a 120 VAC unit, drop-out will occur between 12 and 48 volts.) DC relays will function with unfiltered $D C$ from a full-wave bridge rectifier.

Operate Data @ 20응
Operate Time at Rated Voltage: Between energizing and opening of normally closed contacts, less than 18 milliseconds on AC and less than 15 milliseconds on DC.
Release Time: Between energizing and closing of normally open contacts, less than 35 milliseconds on AC and less than 30 milliseconds on DC. Between de-energizing and opening of normally open contacts, less than 70 milliseconds on AC and less than 8 milliseconds on DC. Between de-energizing and closing of normally closed contacts, less than 85 milliseconds on $A C$ and less than 25 milliseconds on $D C$.

Environmenal Data

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Vibration: Single axis fragility curve data are available on request at frequencies from 5 Hz . to 33 Hz .
Shock: The relay, when kept energized by means of one of its own contact sets, will withstand 40 g shock load when operating on DC, and 150 g shock load on AC.

Mechanical Data

Mounting Terminals: 16 flat base pins. Screw terminal sockets are available.
Wire Connection: The 16 flat pins are arranged in four symmetrical rows of four pins; the pitch in both directions being .394". Connection may be made to the relay by soldering. Sockets are available with screw terminals.

The internal wiring of the relay is also symmetrical as shown in the adjacent figure, allowing the relay to be inserted into the socket in either of two positions. Terminals B2 and B3 are provided as extra connections for special applications.
Weight: 10.9 oz (308 g) approximately.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery..
GPD
GPDN

Outline Dimensions

Wiring Diagrams (Bottom Views)

TR series

10 Amp Control Relay - Timing Version

TR Features

-8 timing ranges.

- 4 SPDT contacts.
- Magnetic blowout device option increases DC current carrying ability approximately ten times for both N.O. and N.C. contacts. In both AC and DC operation, the addition of the device will normally double the contact life, due to reduced arcing.

TR Design/Construction

Couples an advanced electromechanical design with a field-proven solidstate timing network, an adaptation of the circuit used in the AGASTAT premium grade SSC Timer.

This unique circuit also eliminates the need for supplementary temperature-compensation components, affording unusual stability over a realistically broad operating temperature range. It also provides transient protection and protection against premature switching of the output contacts due to power interuption during timing.

Timing Specifications

Operating Mode: On-Delay (Delay on energization).
Timing Adjustment: Internal fized or internal potentiometer. Timing Ranges:

$$
\begin{array}{ll}
.15 \text { to } 3 \mathrm{sec} . & 4 \text { to } 120 \mathrm{sec} . \\
.55 \text { to } 15 \mathrm{sec} . & 10 \text { to } 300 \mathrm{sec} . \\
1 \text { to } 30 \mathrm{sec} . & 1 \text { to } 30 \mathrm{~min} . \\
2 \text { to } 60 \mathrm{sec} . & 2 \text { to } 60 \mathrm{~min} .
\end{array}
$$

Accuracy:

Repeat: $\pm 2 \%$ as fixed temerature and voltage.
Overall: $\pm 5 \%$ over combined rated extremes of temerature and voltage.
Reset Time: 75 ms .

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 4 Form C (4PDT)
Nominal Rating: 10A @ 120VAC.
Contact Pressure:
Between movable and normally closed contacts: 30 g , typical.
Between movable and normally open contacts: 100 g , typical.
Expected Life: Mechanical: 100 million operations.
Electrical: See load/life graph.

Initial Dielectric Strength

Between terminals and case and between mutually-isolated contacts: $2,000 \mathrm{VAC}$.

Load Life Curve

Initial Insulation Resistance
Between non-connected terminals: 10^{9} ohms at 500 VDC .
Between non-connected terminals \& relay yoke: 10^{9} ohms at 500VDC.

Coil Data

Voltage: 120VAC, 50-60 Hz.; 24 \& 125VDC.

Transient Protection

1,500 volt transient of less than 100 microseconds, or 1,000 volts or less.

Environmenal Data

Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Mechanical Data

Mounting Terminals: 16 flat base pins. Screw terminal sockets are available.
Weight: 11 oz. (311g) approximately.

Ordering Information Typical Part No.		1	4	B	1	A	N
1. Basic Series: TR = Timing control relay							
2. Operation: 1 = On-delay							
3. Output: 4 = 4PDT (4 form C)							
4. Operating Voltage: $B=24 \mathrm{VDC}$	$\mathrm{D}=215 \mathrm{VDC}$	$\mathrm{I}=120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.					
5. Timing Adjustment: 1 = Internal fixed.	3 = Intemal potentiometer.						
6. Timing Range: $\mathrm{A}=.15$ to 3 sec . $B=.55$ to 15 sec .	$\begin{aligned} & C=1 \text { to } 30 \mathrm{sec} . \\ & D=2 \text { to } 60 \mathrm{sec} . \end{aligned}$	$\begin{aligned} & \mathrm{E}=4 \text { to } 120 \mathrm{sec} . \\ & \mathrm{G}=10 \text { to } 300 \mathrm{sec} . \end{aligned}$			$\begin{aligned} & I=2 \text { to } 60 \mathrm{~min} . \\ & \mathrm{N}=1 \text { to } 30 \mathrm{~min} . \end{aligned}$		
7. Options: $\mathrm{N}=\mathrm{M}$ agnetic blow-out	ut device.						

Outline Dimensions

Same as GP/MR. See previous page.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery..
None at present.

Accessories for GP/ML/TR series control relays

Front connected sockets

Cat. No. CR0001
With captive clamp terminals
Cat. No. CR0002
With (\#6) binding head screws

Cat. No. CR0095 With (\#6) screw terminals

Cat. No. CR0067
With (\#6) screw terminals

Hold down (locking) springs

Cat. No. CR0111
For sockets: CR0001\& CR0002

Heavy-duty hold down (locking) straps

*Cat. No. CR0133 For socket: CR0001 \& CR0002

*Cat. No. CR0155
For socket: CR0095

* Catalog number includes strap, strap plate and necessary brackets.

Magnetic blowout device

Cat. No. CR0190 Reduces arcing on the relay contacts when they make or break contact, either upon energizing or de-energizing, resulting in less contact degradation. Extends the life of the contact.

Extracting handle

Cat. No. CR0179
Used to remove GP, ML and TR units from mounting bases.

Alphanumeric Index

Series	Type	Page
T72M	Single 20A Relay	1005
V23086	Single or Dual 20A Relay	1002
V2R	20A Motor Reversing Module	1012
VF4	40A Relay	1017
VF7	70A Relay	1021
VFM	20A Relay ...	1014
VKP	40A Relay ...	1007
VTF.	Flasher Module	1024

Automotive Relay Question Tree

This guide helps the user select one or more relay series which may be appropriate for a given application. The user should then refer to detailed specifications elsewhere in this catalog to determine the actual part number to be specified. Of course, the user must assume ultimate responsibility for determining the suitability of a relay for a particular application.

[^25]NOTE: The "automotive" relays described in this section are DC coil relays designed to switch 14 VDC loads in automobiles. They may also be suitable for non-automotive applications such as electric wheelchairs and other battery powered equipment. They are not UL recognized.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability	www.tycoelectronics.com reference purposes only.		
	(millimeters) unless otherwise	specifiect to change.			Technical support:
:---					

V23086 series

20 Amp Micro K (Single \& Dual) PC Board Relay for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table.
Initial Operate Time: 3 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 15 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage.)

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
$40-70 \mathrm{~Hz} ., 5 \mathrm{~g}$'s constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Immersion cleanable, sealed plastic cover.
Weight: Sealed: 4 gm (0.14 oz .) approximately.

Abnormal Operation

Overload Current: 50A, 5 sec.(2)
87.5A, 0.5 sec .

150A, 0.1 sec .
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete in final enclosure.
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) Allowable overdrive is rated at ambient temperature of $23^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance with power applied for 30 sec . max. (20% max. duty cycle.)
(2) Current and times are compatible with circuit protection by a typical 25A fuse. Relay will make, camy and break the specified current.

Coil Data (@ $\mathbf{2 3}^{\circ} \mathrm{C}$ Coil Temperature)

Coil Designator	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (1) Overdrive (VDC)	
					@ $\mathbf{2 3}^{\circ} \mathrm{C}$	@ $105{ }^{\circ} \mathrm{C}$
001	12	254	6.9	15	27.2	16.5

Figure 1 - Operating Voltage Range

Ordering Information

Part Number	Contact Arrangement	Enclosure	Contact Materials
V23086-C1001-A303	1 Form C	Sealed, Plastic Cover	$\mathrm{AgNi} \mathrm{0.15}$
V23086-C1001-A402	1 Form A	Sealed, Plastic Cover	AgSnO
V23086-C1001-A403	1 Form C	Sealed, Plastic Cover	AgSnO
V23086-C2001-A303	Dual Form C	Sealed, Plastic Cover	AgNi 0.15
V23086-C2001-A403	Dual Form C	Sealed, Plastic Cover	AgSnO

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

Outline Dimensions - Single Relay

Suggested PC Board Layout - Single Relay (Bottom View)

(11 ± 0.05)

Outline Dimensions - Dual Relay

Wiring Diagrams - Dual Relay (Bottom Views)
1 Form A

1 Form C

Suggested PC Board Mtg. Holes - Dual Relay (Bottom View)

See bottom view of relay (above) for hole-to-hole spacing

T72M series

Features

- 20A, 16VDC switching rating.
- 60A inrush at 16VDC.
- 15A continuous contact rating @ $105^{\circ} \mathrm{C}$.
- Immersion cleanable plastic case with knock-off nib for ventilation.
- Low profile package has a seated height of only .67"' (17mm).
- 1 Form C arrangement.
- Choice of AgNi 0.15 or AgSnO contacts.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, 20-50\% RH, $29.5 \pm 10^{\prime \prime} \mathrm{Hg}$.) unless otherwise noted.

Contact Data

Arrangements: 1 Form C (SPDT).
Material: AgNi 0.15 - Recommended for inductive loads.
AgSnO - Recommended for high inrush, lamp and capacitive loads and applications prone to contact material transfer.
Max. Switching Rate: 20 operations per second with no contact load. 6 operations per minute for rated life at rated load.
Max. Switching Voltage: 75VDC(1).
Max. Load Current (@ 14VDC Load Voltage):

Load	Form C	
	NO	NC
Max. Continuous Current		
Max. Break Current (1)	20A	10A
Max. Make Current (2)	20A	20A
AgNi 0.15	60A	
AgSnO	80A	12A

Max. Switching Power: 35-320 watts DC (voltage dependent)(1).
Min. Recommended Current: $0.5 \mathrm{amp} @ 12 \mathrm{VDC}$.
Initial Voltage Drop: 200 millivolts, maximum, for normally open contacts @ 10 amp contact load. 250 millivolts, maximum, for normally closed contacts @ 5 amp contact load.
Expected Life: 10 million operations, mechanical; 100,000 operations at 20 amps, 14VDC, resistive load on normally open contact.

Initial Dielectric Strength

Between Contacts and Coil: 500 V rms.

Coil Data

Voltage: 12 and 24VDC.
Resistance: See Coil Data table.
Nom. Power: 0.80 watts @ $23^{\circ} \mathrm{C}$ coil temp. and rated coil voltage.
Thermal Resistance: $50^{\circ} \mathrm{C}$ per actual coil watt in still air with no contact load current.

20 Amp Miniature PC Board Relay for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table.
Initial Operate Time: 5 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 2 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage.)

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ (4).
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
40-70 Hz., 5g's constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Immersion cleanable, sealed plastic cover.
Weight: Sealed: 12 gm (0.4 oz .) approximately.
Audible Sound: 95dBA @ $10 \mathrm{~cm}, 14 \mathrm{VDC}$ coil voltage.
77dBA @1 M, 14VDC coil voltage.

Abnormal Operation

Overload Current: 40A, 36 sec.(5)
80A, 10 sec .
150A, 2.5 sec .
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete in final enclosure.
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) See Figure 1
(2) Inrush current for lamp load.
(3) Allowable overdrive is rated at ambient temperature of $23^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$ as stated with a 10A load current flowing through the relay contacts and minimum coil resistance with power applied for 30 sec . max. (20% max. duty cycle.) For continuous duty information, see Figure 2. (Ambient Termerature vs. Coil Voltage for Continuous Duty.)
(4) See Figure 2.
(5) Current and times are compatible with circuit protection by a typical 20A circuit breaker. Relay will make, carry and break the specified current.

Coil Data (@23${ }^{\circ} \mathrm{C}$ Coil Temperature)

Coil Designator	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref.)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (3) Overdrive (VDC)	
						@ 23 ${ }^{\circ} \mathrm{C}$	@ $105{ }^{\circ} \mathrm{C}$
12	12	180	0.9	6.3	12	24.6	14.3
24	24	720	3.2	12.6	2.4	49.3	28.7

Figure 1 - Limiting Curve for Power Load

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Duty

*Standard Coil Voltages: $12=12 \mathrm{VDC}$
$24=24 \mathrm{VDC}$ (Consult factory for availability).

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Outline Dimensions

Tolerance (unless otherwise noted): 3 decimal: $\pm .010$ ($\pm .254$); 2 decimal: $\pm .015$ ($\pm .381$).

Wiring Diagram (Bottom View)

Code 5

1 Form C

Suggested PC Board Layout (Bottom View)

VKP series

Compact, 40 Amp,
 Open or Sealed
 PC Board Relay
 For Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table. Initial Operate Time: 5 milliseconds, typical, with rated coil voltage applied. Initial Release Time: 3 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage).

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$. Operating: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (4).
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
$40-70 \mathrm{~Hz} ., 5 \mathrm{~g}$ s constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Sealed relay is suitable for immersion cleaning of PCB assembly or conformal coating. Relay may be vented after cleaning by cutting the vent projection from the comer of the relay after processing using a razor knife or equivalent.
Weight: 20 g (0.7 oz .) approximately.

Abnormal Operation

Overload Current: Consult factory.
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete in final enclosure.
Flammability: UL94-HB or better, internal parts (meets FMVSS 302).

Notes

(1) See Figure 1
(2) Inrush current for lamp load.
(3) Allowable overdrive is rated at ambient temperature for $23^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance. Also see Figure 2 for maximum ambient temperature versus applied coil voltage.
(4) See Figure 2.
(5) Current and times are compatible with circuit protection by a typical automotive circuit breaker. Relay will make, carry and break the specified current.

Coil Data (@ $23^{\circ} \mathrm{C}$ Coil Temperature)

| Coil
 Designator | Rated Coil
 Voltage
 (VDC) | Coil
 Resistance
 $\mathbf{\pm 1 0 \%}$ (Ohms) | Coil
 Inductance
 (H) (Ref.) | Must-Operate
 Voltage
 (VDC) | Must-Release
 Voltage
 (VDC) | Allowable(3)
 Overdrive
 (VDC) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F | | | | | | |
| H | 12 | 90 | 0.6 | $65^{\circ} \mathbf{C}$ | | |

Figure 1 - Limiting Curve for Power Load

Safe breaking, arc extinguished (normally open contact) for resistive loads.

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Duty

Assumptions:

1. Thermal resistance $=40^{\circ} \mathrm{C}$ per watt.
2. Still air.
3. Nominal coil resistance.
4. M aximum mean coil temperature $=180^{\circ} \mathrm{C}$.
5. Coil temperature rise due to load.

$$
\begin{aligned}
& =3.5^{\circ} \mathrm{C} @ 8 \mathrm{amps} . \\
& =10^{\circ} \mathrm{C} @ 16 \mathrm{amps} . \\
& =20^{\circ} \mathrm{C} @ 24 \mathrm{amps} . \\
& =36^{\circ} \mathrm{C} @ 32 \mathrm{amps} . \\
& =55^{\circ} \mathrm{C} @ 40 \mathrm{amps} .
\end{aligned}
$$

6. Thermal resistance and power dissipation based on coil resistance at $180^{\circ} \mathrm{C}$.
7. Curves are based on 16 watts at $23^{\circ} \mathrm{C}$.
8. When full lifetime is at high ambient and high load current, subtract $25^{\circ} \mathrm{C}$ from maximum allowable ambient temperature.
9. Data is for open relays.
10. Subtract $10^{\circ} \mathrm{C}$ from the maximum allowable ambient temperature for sealed version.

Ordering Information

Part Number	Contact Arrangement	Contact Material	Enclosure	Termination Footprint
VKP-11 ${ }^{*} 42$	1 Form A	AgNi 0.15	Open	U.S.A.
VKP-15* 42	1 Form C	AgNi 0.15	Open	U.S.A.
VKP-11 ${ }^{*} 52$	1 Form A	AgSnO	Open	U.S.A.
VKP-15* 52	1 Form C	AgSnO	Open	U.S.A.
VKP-31 ${ }_{*}^{*} 42$	1 Form A	AgNi 0.15	Immersion Cleanable Case	U.S.A.
VKP-35 42	1 Form C	AgNi 0.15	Immersion Cleanable Case	U.S.A.
VKP-31*52	1 Form A	AgSnO	Immersion Cleanable Case	U.S.A.
VKP-35 ${ }_{-} 52$	1 Form C	AgSnO	Immersion Cleanable Case	U.S.A.

*Standard Coil Voltages: $\mathrm{F}=12 \mathrm{VDC}$
$\mathrm{H}=24 \mathrm{VDC}$ (Consult factory for availability)

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

[^26]
New Relay for
 Flashing Lamp Applications

Features

- 30A flashing lamp rating up to $85^{\circ} \mathrm{C}$.
- Long life for flashing lamp load applications.
- 1 Form A and 1 Form C arrangements.
- Available as open frame or sealed relay.
- Choice of standard or high current model.

Conditions

All parametric, environmental and life tests are performed accourding to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, $20-50 \% \mathrm{RH}$, $29.5 \pm 10^{\prime \prime} \mathrm{Hg}$.) unless otherwise noted.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: PdCu/AgNi 0.15
Max. Switching Rate: 20 operations per second with no contact load. 90 operations per minute for rated life at rated load. 270 operations per minute for passenger car lamp outage indication.
Max. Switching Voltage: 28VDC.
Max. Load Current (@ 14VDC Load Voltage):

Standard Current Types				
Load		Form A	Form C	
		(NO)	NO	NC
Steady-State	Open Frame	15A	15A	5A
Flashing(1)	Sealed Cover	12A	12A	5A
Alternate	Open Frame	-	4A	4A
Flashing(2)	Sealed Cover	-	4A	4A
Max. Make Current(3)		120A	120A	30A
Max. Break Current		20A	20A	10A

High Current Types				
Load		Form A	Form C	
		(NO)	NO	NC
Steady-State Flashing	Open Frame	30A	30A	10A
	Sealed Cover	25A	25A	10A
Alternate Flashing	Open Frame	-	8A	8A
	Sealed Cover	-	8A	8A
Max. Make Current(3)		240A	240A	60A
Max. Break Current		30A	30A	20A

Min Recommended Current: 1 amp @ 12VDC.
Initial Voltage Drop: 100 millivolts, maximum, for normally open contacts @ 10A contact load.
200 millivolts, maximum, for normally closed contacts @ 10A contact load
Expected Life: Mechanical Life: 10 million operations.
Electrical Life: (See application information.)

Electrical Isolation

Dielectric Strength (coil to contacts): 500 Vrms.

VKP series

PC Board Relay

Coil Data

Voltage: 12 and 24VDC.
Resistance: See Coil Data table.
Nom. Power: 16 watts @ $23^{\circ} \mathrm{C}$ coil temp. and rated coil voltage.
Thermal Resistance: $45^{\circ} \mathrm{C}$ per actual coil watt in stil air with no contact load current.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table. Initial Operate Time: 5 milliseconds, typical, with rated coil voltage applied. Initial Release Time: 3 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage).

Environmental Data

Temperature Range: Storage:
Open Types: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Sealed Types: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}(4)$.
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.) $10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude. 40-70 Hz., 5g's constant. $70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude. $100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechancial Data

Termination: Printed circuit terminals. (U.S.A. footprint style only)
Enclosure: Sealed relay is suitable for immersion cleaning of PCB assembly or conformal coating. Relay may be vented cutting the vent projection from the comer of the relay after processing using razor knife or equivalent.
Weight: 20g (0.7 oz.) approximately.

Abnormal Operation

Overload Current: Consult factory.
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete in final enclosure.
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) Continuous On-Off cycling of a single set of lamps at 60 to 90 cycles per minute and approximately a 50\% duty cycle.
(2) Continuous cycling between two sets of lamps with one set switched by the N.O. contacts and the other by the N.C. contacts, at 60 to 90 cycles per minute and aproximately a 50\% duty cycle.
(3) Inrush current for lamp load.
(4) Allowable overdrive is rated at ambient temperature for $23^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance. Also see Figure 2 for maximum ambient temperature versus applied coil voltage.
(5) Current and times are compatible with circuit protection by a typical automotive circuit breaker. Relay will make, carry and break the specified current.

Coil Data (@ $23^{\circ} \mathrm{C}$ Coil Temperature)

Coil Designator	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref.)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (4) Overdrive (VDC)	
						@ $23^{\circ} \mathrm{C}$	@ $85^{\circ} \mathrm{C}$
$\begin{aligned} & \mathrm{F} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	$\begin{gathered} 90 \\ 362 \end{gathered}$	$\begin{aligned} & 0.6 \\ & 2.3 \end{aligned}$	$\begin{array}{r} 6.8 \\ 13.9 \end{array}$	$\begin{aligned} & 12 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 19.6 \\ & 39.3 \end{aligned}$	$\begin{aligned} & 14.3 \\ & 28.6 \end{aligned}$

Application Information

Load Polarity: VKP series relays for flashing lamp applications are constructed with Palladium-Copper movable contacts and fine grain silver stationary contacts. This causes the relay to be sensitive to the polarity of the load voltage. This type of VKP relay must be mechanized in the circuit such that the more positive connection is made to the movable contact (identified as terminal 4 in the wiring diagrams). Failure to do so will nullify the benefit of the Palladium Copper and will result in contact welding.

Typical Applications: VKP series relays for flashing lamp applications are typically used for turn signal, hazard warning, emergency vehicle, and security system applications. They may also be used for high in-rush current capacitive loads such as audio amplifiers. Use on inductive loads or loads with high continuous load currents should be avoided. The relay should also not be used for applications which do not have a significant make current as high contact voltage drop may result.

Standard Current Relays: VKP series relays for flashing lamp applications which are indicated as "standard current" units are generally suitable for passenger car and light truck applications for turn signal, hazard warning, or combination flashers (with or without normal trailering requirements) for 2 or 3 bulb turn signal systems. They are also generally suitable for security system applications for lamp flashing and for most audio amplifier applications.

High Current Relays: VKP series relays for flashing lamp applications which are designated as "high current" have larger contacts, a larger shunt connecting the movable contacts to the output terminals, and other performance enhancing characteristics to provide longer life and provide higher current carrying capacity. This type relay should be used for truck applications which have greater load current and in applications such as emergency vehicle lighting and service vehicle hazard waming lights which have very high cycle life requirements. The high current versions are also recommended for most alternating flasher applications, as this version has much improved performance of the normally closed contact. However, optimum life can be obtained for alternating applications by using two normally open relays and powering the coils alternately.

Electrical Life Test Information

Standard Current Relays: 3 bulb T/S (tum signal) system, combined turn signal and hazard waming with normal trailering (test requirements):

3 bulb	18 million operations
4 bulb	130 K operations
6 bulb	194 K operations
8 bulb	248 K operations
TOTAL	2.3 million operations

This application represent about the limit of the performance capability of the "standard current" types and is generally the limit of the industry requirement for passenger car applications.
Note: Bulb as used here is a 27 watt turn signal bulb, trade \#1156. Testing includes operations at $-40^{\circ} \mathrm{C}, 23^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.

High Current Relays: 3 bulb T/S system, combined turn signal and hazard warning with special trailering (test requirements):

3 bulb	2.1 million operations
6 bulb	194 K operations
7 bulb	259 K operations
14 bulb	497 K operations
TOTAL	3.0 million operations

This application represent about the limit of the performance capability of the "high current" types. It should be noted that the low current operations have very little affect on the total product life where as the 14 bulb (33 ampere) operations are extremely destructive. Units test on 14 bulb (only) loads can be expected to fail at less than 1 million operations.
Note: Bulb as used here is a 27 watt turn signal bulb, trade \#1156. Testing includes operations at $-40^{\circ} \mathrm{C}, 23^{\circ} \mathrm{C}$, and $85^{\circ} \mathrm{C}$.

Design Considerations: It should be noted that although the VKP series relays are capable of handling relatively high currents, when applying the product under high current and high ambient temperature conditions, providing adequate conductor volume is critical, as is the solder connection, particularly with respect to the normally open contact terminal. It may be necessary to use high temperature solder, a plated through hole PCB, or a copper lead frame type construction under these conditions to prevent failure of the solder joint.

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Flashing at 50\% Duty Cycle (Steady Current, Open Style) Consult factory.

Ordering Information

Part Number	Contact Arrangement	Contact Material	Enclosure	Load Ratings
VKP-11 ${ }^{*} 32$	1 Form A	PdCu/AgNi 0.15	Open	Standard Current
VKP-11 ${ }^{*} 62$	1 Form A	PdCu/AgNi 0.15	Open	High Current
VKP-15* 62	1 Form C	PdCu/AgNi 0.15	Open	High Current
VKP-31 ${ }_{\text { }} 32$	1 Form A	PdCu/AgNi 0.15	Immersion Cleanable Case	Standard Current
VKP-31 ${ }^{*} 62$	1 Form A	PdCu/AgNi 0.15	Immersion Cleanable Case	High Current
VKP-35* 62	1 Form C	PdCu/AgNi 0.15	Immersion Cleanable Case	High Current

[^27]Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

| Dimensions are shown for | Dimensions are in inches over | Specifications and availability
 (millimeters) unless otherwise
 specified. |
| :--- | :--- | :--- | | wwww.tycoelectronics.com |
| :--- |
| reference purposes only. |

Outline Dimensions

Open Model

Sealed Model

Wiring Diagrams (Bottom Views)

Suggested PC Board Layouts (Bottom Views)

Open Model
Hole Size

Center-To-Center

Sealed Model

Hole Size

Center-To-Center

Features

- 20A, 16VDC switching rating.
- 75A inrush at 16VDC.
- 20A continuous contact rating @ $85^{\circ} \mathrm{C}$.
- Operation to $105^{\circ} \mathrm{C}$ ambient.
- Immersion cleanable plastic case with knock-off nib for ventilation.
- Low profile package has a seated height of only .67" (17 mm).
- H-Bridge motor reversing arrangement.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, 20-50\% RH, $29.5 \pm 10^{\prime \prime} \mathrm{Hg}$.) unless otherwise noted.

Contact Data

Arrangements: 2×1 Form C (H-Bridge).
Material: AgNi 0.15 (consult factory for other contact materials).
Max. Switching Rate: 20 operations per second with no contact load.
6 operations per minute for rated life at rated load
Max. Switching Voltage: 24VDC.
Max. Load Current $23^{\circ} \mathrm{C}$ (@ 14VDC Load Voltage):
Continuous Carry: 20 Amperes
Intermittent Carry: 40 Amperes for 30 seconds.
Make: 75 Amperes
Break: 40 Amperes
Max. Switching Power: 320 watts DC (voltage dependent)(1)
Min. Recommended Current: $0.5 \mathrm{amp} @ 12 \mathrm{VDC}$.
Initial Voltage Drop: 400 millivolts, maximum (measured between load terminals) @ 10 amp contact load.
Nominal Circuit Resistance: 6 milliohms load terminal to load terminal @ 10 amp (this value is provided for circuit design purposes only and is not a specified parameter).
Expected Life:
Mechanical: 10 million operations
Electrical: 20A, 14VDC, 1mH > 100K operations.
$40 \mathrm{~A}, 14 \mathrm{VDC}, 0.5 \mathrm{mH}>10 \mathrm{~K}$ operations.

Initial Insulation Resistance @ 500VDC

Between Contacts and Coil: 10 megaohms.
Between Open Contacts: 10 megaohms.

Coil Data

Voltage: 12VDC.
Resistance: See Coil Data table.
Nom. Power: See Coil Data table.
Thermal Resistance: $55^{\circ} \mathrm{C}$ per actual coil watt in still air with no contact load current.

V2R series

20 Amp DC Motor Reversing PC Board Relay for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table.
Initial Operate Time: 5 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 2 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage.)

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. (2)
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
$40-70 \mathrm{~Hz} ., 5 \mathrm{~g}$'s constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: Printed circuit terminals.
Enclosure: Immersion cleanable, sealed plastic cover.
Weight: Sealed: 25 gm (0.9 oz .) approximately.
Audible Sound: $95 \mathrm{dBA} @ 10 \mathrm{~cm}$, 14VDC coil voltage.
77dBA @ $1 \mathrm{M}, 14 \mathrm{VDC}$ coil voltage.

Abnormal Operation

Overload Current: 40A, 36 sec . ${ }^{(3)}$
80A, 10 sec .
150A, 2.5 sec .
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete in final enclosure.
Flammability: UL94V-0 (meets FMVSS 302).

Notes

(1) See Figure 1
(2) See Figure 2.
(3) Current and times are compatable with circuit protection by a typical 20A circuit breaker. Relay will make, carry and break the specified current.
(4) Allowable overdrive is rated at ambient temperature of $23^{\circ} \mathrm{C}$ and $105^{\circ} \mathrm{C}$, as stated, with a 10 A load current flowing throuth the relay contacts and minimum coil resistance with power applied for 30 sec . max. (20\% max. duty cycle). For continuous duty information, see Figure 2 (AmbientTemperature vs. Coil Voltage for Continuous Duty.)

Coil Data (@ $23^{\circ} \mathrm{C}$ Coil Temperature)

Relay Part Number	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref.)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Nominal Power (Watts)	Allowable (4) Overdrive (VDC)	
							@ $\mathbf{2 3}^{\circ} \mathrm{C}$	@ $105^{\circ} \mathrm{C}$
V2R-1001	12	150	0.7	6.0	0.9	0.93	24V	16 V

Figure 1 - Limiting Curve for Power Load
At present, these data are still to be determined.

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Duty

Assumptions:

1. Thermal resistance $=55^{\circ} \mathrm{C}$ per watt
2. Still air
3. Nominal coil resistance (150Ω)
4. Maximum mean coil temperature $=180^{\circ} \mathrm{C}$
5. Coil temperature rise due to load $=3^{\circ} \mathrm{C} @ 4 \mathrm{amps}$

$$
=9^{\circ} \mathrm{C} @ 8 \mathrm{amps}
$$

$$
=19^{\circ} \mathrm{C} @ 12 \mathrm{amps}
$$

$$
=31^{\circ} \mathrm{C} @ 16 \mathrm{amps}
$$

$$
=51^{\circ} \mathrm{C} @ 20 \mathrm{amps}
$$

6. Thermal resistance and power dissipation based on coil resistance at $180^{\circ} \mathrm{C}$
7. Curves are based on 0.96 watts at $23^{\circ} \mathrm{C}$
8. When full lifetime is at high ambient and high load current, subtract $25^{\circ} \mathrm{C}$ from maximum allowable ambient temperature.

Ordering Information

Part Number	Coil Resistance
V2R-1001	150Ω

Typical Application Schematic

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. None at present.

Outline Dimensions

Tolerance (unless otherwise noted): 3 decimal: $\pm .010$ ($\pm .254$); 2 decimal: $\pm .015$ ($\pm .381$).

Wiring Diagram (Bottom View)
2×1 Form C (H-Bridge)

Suggested PC Board Layout

Features

- 20A continuous contact rating @ $85^{\circ} \mathrm{C}$.
- 1 Form A and 1 Form C arrangements.
- Plug-in terminals.
- Plastic enclosure.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, 20-50\% RH, $29.5 \pm 10^{\prime \prime} \mathrm{Hg}$.) unless otherwise noted.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: AgNi 0.15 and AgSnO (consult factory for other contact materials).
Max. Switching Rate: 20 operations per second with no contact load.
6 operations per minute for rated life at rated load.
Max. Switching Voltage: 75VDC(1).
Max. Load Current (@ 14VDC Load Voltage):

Load	Form A	Form C	
		NO	NC
Max. Continuous Current	$20 A$	$20 A$	10A
Max. Make Current	$120 A(2)$	$120 A(2)$	$40 A$
Max. Break Current(1)	$30 A$	$30 A$	15A

Max. Switching Power: 35-250 watts DC (voltage dependent(1).
Min. Recommended Current: 10 amp @ 12VDC.
Initial Voltage Drop: 200 millivolts, maximum, for normally open contacts @ 15 amp contact load.
250 millivolts, maximum, for normally closed contacts @ 10 amp contact load.
Expected Life: 10 million operations, mechanical; 100,000 operations at 20 amps, 14VDC, resistive load on normally open contact.

Initial Dielectric Strength

Between Contacts and Coil: 500V ms.

Coil Data

Voltage: 12VDC.
Resistance: See Coil Data table.
Nom. Power: (@ $23^{\circ} \mathrm{C}$ coil temp. and rated coil voltage.):
16W, unsuppressed.
181W, with 680 ohm resistor.
Thermal Resistance: $50^{\circ} \mathrm{C}$ per actual coil watt in still air with no contact load current.

VFM series

20 Amp Relay
 With Quick Connect Terminals for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table.
Initial Operate Time: 4 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 15 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage).

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+125^{\circ}(4)$
Shock: $10 \mathrm{~g}, 11$ milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
40-70 Hz., 5g's constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: Quick connect.
Enclosure: Plastic dust cover.
Weight: With QC terminals: 20g (0.7 oz.) approximately

Abnormal Operation

Overload Current: 40A, 36 sec.(5)
80A, 10 sec .
200A, 2.5 sec .
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 3.28 foot (10 meter) drop onto concrete in final enclosure.
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) See Figure 1
(2) Inrush current for lamp load.
(3) Allowable overdrive is rated at ambient temperature for $23^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance. Also see Figure 2 for maximum ambient temperature versus applied coil voltage.
(4) See Figure 2.
(5) Current and times are compatible with circuit protection by a typical 20A automotive circuit breaker. Relay will make, carry and break the specified current.

Coil Data (@ $\mathbf{2 3}^{\circ} \mathrm{C}$ Coil Temperature)

Coil Designator (VDC)	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref.)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (3) Overdrive	
						@ $23^{\circ} \mathrm{C}$	@ $85^{\circ} \mathrm{C}$
F	12	90	0.5	7.2	12	20.4	14.9

Figure 1 - Limiting Curve for Power Load

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Load

Assumptions:

1 Thermal resistance $=50^{\circ} \mathrm{C}$ per watt
2. Still air
3. Nominal coil resistance
4. Maximum mean coil temperature $=180^{\circ} \mathrm{C}$
5. Coil temperature rise due to load
$=1^{\circ} \mathrm{C} @ 4 \mathrm{amps}$
$=4.5^{\circ} \mathrm{C} @ 8 \mathrm{amps}$
$=9.5^{\circ} \mathrm{C} @ 12 \mathrm{amps}$
$=18^{\circ} \mathrm{C} @ 16 \mathrm{amps}$
$=26.5^{\circ} \mathrm{C} @ 20 \mathrm{amps}$
6. Thermal resistance and power dissipation based on coil resistance at $180^{\circ} \mathrm{C}$
7. Curves are based on 15 watts at $23^{\circ} \mathrm{C}$
8. When full lifetime is at high ambient and high load current, subtract $25^{\circ} \mathrm{C}$ from maximum allowable ambient temperature.

Ordering Information

Part Number	Contact Arrangement	Terminals	Contact Material
VFM-11F21	1 Form A	Quick connect	AgNi 0.15
VFM-11F41	1 Form A	Quick connect	AgSnO
VFM-15F21	1 Form C	Quick connect	AgNi 0.15
VFM-15F41	1 Form C	Quick connect	AgSnO

*Standard Coil Voltages: $\mathrm{F}=12 \mathrm{VDC}$
Optional Coil Suppression
Add suffix -S01 for 680 ohm resistor in parallel with 12VDC coil.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present..

Outline Dimensions

Wiring Diagrams (Bottom Views)

1 Form A

Connector

Connectors For Use With VFM Relays

PC Board Socket
VCFM- 1000

Wire Harness Style, Bracket Mount Socket (Order Terminals Separately) VCFM-1002

Connector/Terminal Usage Chart - Boldface items are stocked.

Connector	Terminal P/N	Required Crimp Terminals (Order Separately)					
		Alternate P/N	Wire AWG	Oty. Required		Use in Cavities	
				Form A	Form C	Form A	Form C
VCFM-1000	None	None	N/A	N/A	N/A	N/A	N/A
VCFM-1002	26A1349A	AMP 60249-1 AMP 42281-1	$\begin{aligned} & 12-16 \\ & 14-18 \end{aligned}$	2	2	$3 \& 5$	$3 \& 5$
	$\begin{aligned} & \text { 26A1492A } \\ & \text { 26A1492B } \end{aligned}$	G\&H K26313 G\&H K26312	$\begin{aligned} & 15-20 \\ & 14-16 \end{aligned}$	2	3	1 \& 2	1, 2 \& 4

Features

- 40A continuous contact rating @ $85^{\circ} \mathrm{C}$.
- 1 Form A and 1 Form C arrangements.
- Plug-in or PC board terminals.
- Optional mounting bracket.
- Various enclosure options.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, 20-50\% RH, 29.5 ± 10 " Hg .) unless otherwise noted.

Contact Data

Arrangements: 1 Form A (SPST-NO) and 1 Form C (SPDT).
Material: AgNi 0.15 (consult factory for other contact materials).
Max. Switching Rate: 20 operations per second with no contact load. 6 operations per minute for rated life at rated load.
Max. Switching Voltage: 75VDC(1).
Max. Load Current (@14VDC Load Voltage):

Load	Form A	Form C	
	(NO)	NO	NC
Max. Continuous Current	60A	60A	40A
Max. Make Current(2)	120A	120A	45A
Max. Break Current(1)	60A	60A	40A

Max. Switching Power: 50-500 watts DC (voltage dependent)(1)
Min. Recommended Current: $1 \mathrm{amp} @ 12 \mathrm{VDC}$.
Initial Voltage Drop: 200 millivolts, maximum, for normally open contacts @ 40 amp contact load.
250 millivolts, maximum, for normally closed contacts @ 30 amp contact load.
Expected Life: 10 million operations, mechanical; 100,000 operations at 40 amps, 14VDC, resistive load on normally open contact.

Initial Dielectric Strength

Between Contacts and Coil: 500V rms.

Coil Data

Voltage: 6, 12 and 24VDC
Resistance: See Coil Data table.
Nom. Power: (@ $23^{\circ} \mathrm{C}$ coil temp. and rated coil voltage.):
16W, unsuppressed.
181W, with 680 ohm resistor.
Thermal Resistance: $50^{\circ} \mathrm{C}$ per actual coil watt in still air with no contact load current.

VF4 series

40 Amp Relay
 With PC Board or
 Quick Connect Terminals for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table.
Initial Operate Time: 7 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 2 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage.)

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (4).
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.)
$10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude.
$40-70 \mathrm{~Hz} ., 5 \mathrm{~g}$'s constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: 0.250 " quick connect and printed circuit terminals.
Enclosures:
Dust Cover: Protects relay from dust. For use in passenger compartment or enclosures.
Shrouded Dust Cover: Protects relay and relay connector (order separately) from dust and splash.
Weatherproof Cover: Mates with a connector (order separately) to seal relay from salt spray etc. Recommended for under hood application.
Cover Retention: Dust cover will withstand a 33.7 pound (150 Newton) force (axially applied) without detachment. Ultrasonic cover: 50 pound (220 Newton).
Weight: 31g (11 oz.) approximately (dust cover model).

Abnormal Operation

Overload Current: Consult factory.
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 3.28 foot (10 meter) drop onto concrete.
Flammability: UL94V-0 extemal; UL94-HB or better, internal parts (meets FMVSS 302).

Notes

(1) See Figure 1
(2) Inrush current for lamp load.
(3) Allowable overdrive is rated at ambient temperature for $23^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance. Also see Figure 2 for maximum ambient temperature versus applied coil voltage.
(4) See Figure 2.
(5) Current and times are compatible with circuit protection by a typical automotive circuit breaker. Relay will make, carry and break the specified current.

Coil Data

Coil Designator	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref.)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (3) Overdrive (VDC)	
						@ $\mathbf{2 3}^{\circ} \mathrm{C}$	@ $85^{\circ} \mathrm{C}$
D	6	22.5	0.2	3.6	0.6	10.1	7.9
F	12	90	0.8	7.2	12	20.2	15.7
H	24	360	2.7	14.4	2.4	40.5	315

Figure 1 - Limiting Curve for Power Load

Safe breaking, arc extinguished (nomally open contact) for resistive loads.

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Duty

Assumptions:

1. Themal resistance $=50^{\circ} \mathrm{C}$ per watt
2. Still air
3. Nominal coil resistance
4. Maximum mean coil temperature $=180^{\circ} \mathrm{C}$
5. Coil temperature rise due to load

$$
\begin{aligned}
& =2^{\circ} \mathrm{C} @ 8 \mathrm{amps} \\
& =5^{\circ} \mathrm{C} @ 16 \mathrm{amps} \\
& =11^{\circ} \mathrm{C} @ 24 \mathrm{amps} \\
& =20^{\circ} \mathrm{C} @ 32 \mathrm{amps} \\
& =32^{\circ} \mathrm{C} @ 40 \mathrm{amps}
\end{aligned}
$$

6. Themmal resistance and power dissipation based on coil resistance at $180^{\circ} \mathrm{C}$
7. Curves are based on 16 watts at $23^{\circ} \mathrm{C}$
8. When full lifetime is at high ambient and high load current, subtract $25^{\circ} \mathrm{C}$ from maximum allowable ambient temperature.

Ordering Information

Part Number	Contact Arrangement	Contact Material	Enclosure	Terminals
VF4-11* 11	1 Form A	AgNi0.15	Dust cover	Quick connect
VF4-11* 13	1 Form A	AgNi0.15	Dust cover	Printed circuit
VF4-15* 11	1 Form C	AgNio. 15	Dust cover	Quick connect
VF4-15* 13	1 Form C	AgNi0.15	Dust cover	Printed circuit
VF4-25* 11	1 Form C	AgNi0. 15	Shrouded dust cover	Quick connect
VF435* 11	1 Form C	AgNio. 15	Weatherproof cover	Quick connect
VF4-41* 11	1 Form A	AgNio. 15	Dust cover with bracket	Quick connect
VF4-45* 11	1 Form C	AgNi0. 15	Dust cover with bracket	Quick connect
VF4-45* 21	1 Form C	AgSnO	Dust cover with bracket	Quick connect
VF4-51* 11	1 Form A	AgNio. 15	Shrouded dust cover with bracket	Quick connect
VF4-55* 11	1 Form C	AgNi0.15	Shrouded dust cover with bracket	Quick connect
VF4-61* 11	1 Form A	AgNi0. 15	Weatherproof cover with bracket	Quick connect
VF4-65* 11	1 Form C	AgNi0.15	Weatherproof cover with bracket	Quick connect
VF4-81* 11	1 Form A	AgNi0.15	Dust cover with molded bracket	Quick connect
VF4-85* 11	1 Form C	AgNio. 15	Dust cover with molded bracket	Quick connect

*Standard Coil Voltages: | | $\mathrm{D}=6 \mathrm{VDC}$ (Consult factory for availability). |
| :--- | :--- |
| | $\mathrm{F}=12 \mathrm{VDC}$ |
| | $\mathrm{H}=24 \mathrm{VDC}$ (Consult factory for availability). |

Optional Coil Suppression

Add suffix -S07 for 180 ohm resistor in parallel with 6VDC coil.
Add suffix -S01 for 680 ohm resistor in parallel with 12VDC coil. Add suffix -S08 for 2,700 ohm resistor in parallel with 24VDC coil.

Epoxy Sealed Construction
Add suffix -C01 for epoxy sealed unit.
Add suffix -C05 for epoxy sealed unit with resistor.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

VF4-15F11	VF4-15H11
VF4-15F13	VF4-15H13
VF4-45F11	VF4-65F11-S01

Outline Dimensions

Dust Cover With Quick Connect Terminals

VF4-1_ _ (Without Bracket) \& VF4-4_ _ (With Bracket)

Shrouded Dust Cover With Quick Connect Terminals VF4-2_ _ (Without Bracket) \& VF4-5_ _(With Bracket)

Wiring Diagrams (Bottom Views)

1 Form A

Plastic Bracket Cover With Quick Connect Terminals

VF4-8

Printed Circuit Board Terminals
Clinchable Power

Single Pin

Weatherproof Cover With Quick Connect Terminals VF4-3_ _ (Without Bracket) \& VF4-6_ _(With Bracket)

Suggested PC Board Layouts (Bottom Views)
VF4-XXX13

VF4-XXX12

Connectors

Connectors For Use With Quick Connect Terminal VF4-1 \qquad VF4-4 \qquad And VF4-8 \qquad Relays

PC Board Socket
VCF4-1000

Wiring Harness Style Connector (order terminals separately VCF4-1001

Wiring Harness Style, Bracket Mount Socket (order terminals separately) (Mount individually or can be interlocked)

Connector For Use With VF4-2
or VF4-5
Relays With Shrouded Dust Cover (order terminals separately) VCF4-1003

Connector For Use With VF4-3__ _ or VF4-6_ _ _ Relays With Weatherproof Cover
Connectors to mate with the weatherproof cover relays are available from Delphi Packard (1-800-PACKARD).
(Typical Delphi Packard part number: 12065685).

Connector/Terminal Usage Chart - Our authorized distributors are more likely to stock boldface items.

Connector	Terminal P/N	Required Crimp Terminals (Order Separately)			
		Alternate P/N	Wire AWG	Qty. Required	
				Form A	Form C
VCF4-1000	None	None	N/A	0	0
VCF4-1001	26A1349A	AMP 60249-1	$12-16$	4	5
	26A1349B	AMP 42281-1	$14-18$		
VCF4-1002	26A1348A	Packard 12015864	$18-20$	4	5
	26A1348B	Packard 12015865	$14-16$		
	26A1348C	Packard 12084588	$10-12$		

Features

- 70 A continuous contact rating $@ 85^{\circ} \mathrm{C}$.
- 1 Form A arrangements.
- Plug-in or PC board terminals.
- Optional mounting bracket.

Conditions

All parametric, environmental and life tests are performed according to EIA Standard RS-407-A at standard test conditions ($23^{\circ} \mathrm{C}$ Ambient, 20$50 \%$ RH, 29.5 ± 10 " Hg .) unless otherwise noted.

Contact Data

Arrangements: 1 Form A (SPST-NO).
Material: AgNi 0.15 (consult factory for other contact materials).
Max. Switching Rate: 20 operations per second with no contact load.
6 operations per minute for rated life at rated load.
Max. Switching Voltage: 75VDC(1).
Max. Load Current (@ 14VDC Load Voltage):
Max. Continuous Current: 70A.
Max. Make Current: 120A(2).
Max. Break Current ${ }^{(1)}$: 70A.
Max. Switching Power: 60-800 watts DC (voltage dependent)(1).
Min. Recommended Current: 1 amp @ 12VDC.
Initial Voltage Drop: 200 millivolts, max., @ 70 amp contact load.
Expected Life: 10 million operations, mechanical; 100,000 operations at 70 amps, 14VDC, resistive load.

Initial Dielectric Strength

Between Contacts and Coil: 500V rms.

Coil Data

Voltage: 12 and 24VDC.
Resistance: See Coil Data table.
Nom. Power: (@ $23^{\circ} \mathrm{C}$ coil temp. and rated coil voltage):
2.0W, unsuppressed.
2.21W, with 680 ohm resistor.

Thermal Resistance: $50^{\circ} \mathrm{C}$ per actual coil watt in still air with no contact load current.

VF7series

70 Amp Relay With PC Board or Quick Connect Terminals for Automotive Applications

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Operate Data

Must Operate and Must Release Voltage: See Coil Data table. Initial Operate Time: 7 milliseconds, typical, with rated coil voltage applied.
Initial Release Time: 2 milliseconds, typical, with zero volts applied (for unsuppressed relays after having been energized at rated coil voltage).

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}(4)$.
Shock: 20 g , 11 milliseconds, half sine wave pulse.
Vibration: (For NC contacts, NO contacts are significantly higher.) $10-40 \mathrm{~Hz} ., 127 \mathrm{~mm}$ double amplitude. $40-70 \mathrm{~Hz} ., 5 \mathrm{~g}$'s constant. $70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude. $100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: 0.250 " and $0.375^{\prime \prime}$ quick connect and printed circuit terminals. Enclosures: Plastic dust cover.
Cover Retention: Cover will withstand a 33.7 pound (150 Newton) force (axially applied) without detachment.
Weight: 31g (11 oz.) approximately.

Abnormal Operation

Overload Current: 140A, 60 sec.(5)
245A, 2 sec.
420A, 0.15 sec .
24V Jump Start: 24VDC for 5 minutes conducting rated contact current @ $23^{\circ} \mathrm{C}$.
Drop Test: Capable of meeting specifications after a 10 meter drop onto concrete, (Sealed model only.)
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) See Figure 1
(2) Inrush current for lamp load.
(3) Allowable overdrive is rated at ambient temperature for $23^{\circ} \mathrm{C}$ or $85^{\circ} \mathrm{C}$ as stated with no load current flowing through the relay contacts and minimum coil resistance. Also see Figure 2 for maximum ambient temperature versus applied coil voltage.
(4) See Figure 2.
(5) Current and times are compatible with circuit protection by a typical 70A automotive fuse. Relay will make, camy and break the specified current.

Coil Data (@ 23º Coil Temperature)

Coil Designator	Rated Coil Voltage (VDC)	Coil Resistance $\pm 10 \%$ (Ohms)	Coil Inductance (H) (Ref)	Must-Operate Voltage (VDC)	Must-Release Voltage (VDC)	Allowable (3) Overdrive (VDC)	
						@ $23{ }^{\circ} \mathrm{C}$	@ $85^{\circ} \mathrm{C}$
F	12	72	0.5	7.2	12	18.1	14.1
H	24	288	2.0	14.4	2.4	36.2	28.2

Figure 1 - Limiting Curve for Power Load

Safe breaking, arc extinguished (normally open contact) for resistive loads.

Figure 2 - Ambient Temperature vs. Coil Voltage for Continuous Duty

Assumptions:

1. Thermal resistance $=50^{\circ} \mathrm{C}$ per watt
2. Still air
3. Nominal coil resistance
4. Maximum mean coil temperature $=180^{\circ} \mathrm{C}$
5. Coil temperature rise due to load
$=2^{\circ} \mathrm{C} @ 14 \mathrm{amps}$
$=4^{\circ} \mathrm{C} @ 28 \mathrm{amps}$
$=7^{\circ} \mathrm{C} @ 42 \mathrm{amps}$
$=12^{\circ} \mathrm{C} @ 56 \mathrm{amps}$
$=22^{\circ} \mathrm{C} @ 70 \mathrm{mps}$
6. Thermal resistance and power dissipation based on coil resistance at $180^{\circ} \mathrm{C}$
7. Curves are based on 2.0 watts at $23^{\circ} \mathrm{C}$
8. When full lifetime is at high ambient and high load current, subtract $25^{\circ} \mathrm{C}$ from maximum allowable ambient temperature.

Ordering Information

Part Number	Contact Arrangement	Enclosure	Terminals
VF7-11* 11	1 Form A	Dust cover	Quick connect
VF7-11* 12	1 Form A	Dust cover	Printed circuit (clinch)
VF7-41* 11	1 Form A	Dust cover with bracket	Quick connect

[^28]Optional Coil Suppression
Add suffix -S01 for 680 ohm resistor in parallel with 12VDC coil.
Add suffix -S08 for 2700 ohm resistor
in parallel with 24VDC coil.
Epoxy Sealed Construction
Add suffix -C01 for epoxy sealed unit.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
VF7-11F11
VF7-11F12
VF7-41F11

Outline Dimensions

Dust Cover With Quick Connect Terminals

Printed Circuit Board Terminals

Suggested PC Board Layout (Bottom View)

Connector

Wiring Harness Style Connector For Use With Quick Connect VF7 Relays (order terminals separately)
VCF7-1000

Connector/Terminal Usage Chart - Our authorized distributors are more likely to stock boldface items.

		Required Crimp Terminals (Order Separately)		
Connector	Terminal P/N	Alternate P/N	Wire AWG	Oty. Required
VCF7-1000	26A 1350A	AMP 280756-4	$10-12$	2 (Contacts)
	26A 1350B	AMP 280755-4	$6-10$	2 (Contacts) and
	26A 1349B	AMP 42281-1	$14-18$	2 (Coil)

Note: For information on crimping tools, please consult local representative or factory.

VTF series

Flasher Modules
 for Automotive Applications

Safety Standards:
U.S.A.:

SAE J 590 (tum signal)
SAE J 945 (hazard waming)
SAE J 2068 (turn signal/hazard waming)
FMVSS 108 (all)
European:
Designed to meet ECO guideline 76/756 requirements.

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Environmental Data

Operating Ambient Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Storage Ambient Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
Shock: $20 \mathrm{~g}, 10$ millisecond, half sine wave pulse.
Vibration: $10-40 \mathrm{~Hz}$., 127 mm double amplitude.
40-70 Hz., 5g's constant.
$70-100 \mathrm{~Hz} ., 0.5 \mathrm{~mm}$ double amplitude.
$100-500 \mathrm{~Hz} ., 10 \mathrm{~g}$'s constant.

Mechanical Data

Termination: 0.250 " $(6.35 \mathrm{~mm})$ quick connect.
Enclosures:
Dust Cover: Protects relay from dust.
Cover Retention: 50 pound (220 Newton) minimum.
Weight: 13 oz . (37 g) approximately.

Abnormal Operation

Drop Test: Capable of meeting specifications after a 3.28 foot (10 meter) drop onto concrete in final enclosure.
Flammability: UL94-HB or better (meets FMVSS 302).

Notes

(1) Three lamp combination flashers with three terminals do not meet U.S. Federal motor vehicle safety requirements when lamp outage occurs during hazard mode operation. For more information consult factory.
(2) The actual sound pressure is highly dependent on mounting method used.

Operate Data

Nominal Voltage: 12VDC system.
Operating Voltage Range: 9 -16VDC.
Device Voltage Drop: Less than 0.400 VDC at rated turn signal load. Less than 0.450 VDC at rated hazard signal load.
Inital Turn-on Time: Less than or equal to 50 msec .
Start Time: Less than 10 sec per FMVSS 108.
Sound Pressure Level : Min. 72 dbA at 10 meters.(2)

Ordering Information

Part Number	Meets the Safety Standard of:	Flasher Type		Turn Signal Mode	Max. Number of Lamps	
	U.S.A.	Turn	Turn/Hazard Warning	5 Lamp System	Hazard	
	X	X	X	X	No	
VTF-14F11	X		X			

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
None at present.

Figure 1 - Electrical Contact Life vs. Load Power

Outline Dimensions

Wiring Diagram (Bottom View)

Connectors

Wiring Harness Style Connector (order terminals separately) VCF4-1001

Sockets

PC Board Socket VCF4-1000

Wiring Harness Style, Bracket Mount Socket (order terminals separately)

Connector/Terminal Usage Chart - Our authorized distributors are more likely to stock boldface items.

Connector	Required Crimp Terminals (Order Separately)			
	Terminal P/N	Alternate P/N	Wire AWG	Oty. Required
VCF4-1000	None	None	N/A	0
VCF4-1001	26A1349A	AMP 60249-1	$12-16$	3
	26A1349B	AMP 42281-1	$14-18$	
VCF4-1002	26A1348A	Packard 12015864	$18-20$	
	26A1348B	Packard 12015865	$14-16$	3
	26A1348C	Packard 12084588	$10-12$	

Engineering Notes

Alphanumeric Index

Series	Type	Page
210	M tg. Board for Standard I/O M odules ..	1114
2IOM	Mtg. Board for Slim Line I/O M odules	1122
	. Standard AC Input M odules	1110
IACM	. Slim Line AC Input M odules	1118
IDC	. Standard DC Input M odules	1110
IDCM	. Slim Line DC Input M odules	1118
OAC	. Standard AC Output M odule	1110
OACM	. Slim Line AC Output M odule	1118
ODC	Standard DC Output M odule	1110
ODCM	. Slim Line DC Output M odule	1118
SSR	. Solid State Relay, Paired SCR Output	1104
SSRD	. Dual Solid State Relay	1106
SSRQ.	. Quad Solid State Relay.	1108
	. Solid State Relay, Triac Output	1102

Additional solid state relays are included in our CII high performance relay product line. For an overview of the CII product line, see section 14 of this databook.

SSRT series

"Hockey Puck"
 Solid State Relay With
 Snubberless Triac Output

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Standard "hockey puck" package.
- Enhanced noise immunity (designed to meet level 3 requirements of

European EMC Directive).

- LED indicator.
- Floating terminal design.
- Low cost snubberless triac outputs.
- 10A \& 25A rms versions.
- AC \& DC input versions.
- 4000 V rms isolation.

Engineering Data

Form: 1 Form A (SPST-NO).
Duty: Continuous.
Isolation: 4000 V ms minimum, input - output.
Capacitance: 8.0 pf typical (input to output).
Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating Temperature: $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Case Material: Plastic, UL rated 94V-0.
Case and Mounting: Refer to outline dimension.
Termination: Refer to outline dimension.
Approximate Weight: 3.5 oz. (98g).

Ordering Information

	Sample Part Number	SSRT	-240	D	10
1. Basic Series: SSRT = "hockey puck" triac output solid state relay					
2. Line Voltage: $240=24-280$ VAC					
3. Input Type \& Voltage: $A=90-280$ VAC linear $D=3-32$ VDC constant current					
4. Maximum Switching Rating: $10=.1-10 \mathrm{~A}$ rms, mounted to heatsink $25=.1-25 A$ rms, mounted to heatsink					

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
SSRT-240A10 SSRT-240D10

SSRT-240A25 SSRT-240D25

Input Specifications

Parameter	AC Input/AC Output	DC Input/AC Output
Control Voltage Range V_{IN}	$90-280 \mathrm{VAC}$	$3-32 \mathrm{VDC}$
Must Operate Voltage $\mathrm{V}_{\mathrm{IN(OP)}}(\mathrm{Max})$.	90 VAC	3 VDC
Must Release Voltage $\mathrm{V}_{\mathrm{IN(REL)}}(\mathrm{Min)}$.	10 VAC	1VDC
Input Current (Max.)	8.5 mA	14 mA

Output Specification (@ $\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Conditions	Units	$\begin{aligned} & \text { SSRT-240A10 } \\ & \text { \& SSRT-240D10 } \end{aligned}$	$\begin{aligned} & \text { SSRT-240A25 } \\ & \text { \& SSRT-240D25 } \end{aligned}$
Load Voltage Range V L		V rms	24-280	
Repetitive Blocking Voltage (Min.)		\checkmark peak	± 600	
Load Current Range $\mathrm{I}_{\text {L }}{ }^{*}$	Resistive	A rms	. 1 -10	.1-25
Single Cycle Surge Current (Min.)		A peak	100	250
Leakage Current (Off-State) (Max.)	$\begin{gathered} \mathrm{f}=60 \mathrm{~Hz} . \mathrm{V}_{\mathrm{L}}=\mathrm{Nom} . \\ \text { (120 or } 240 \mathrm{~V} \mathrm{~ms} \text {) } \end{gathered}$	mA rms	. 1	
On-State Voltage Drop (Max.)	$\mathrm{I}_{\mathrm{L}}=$ Max.	\checkmark peak	1.5	1.3
Static dv/dt (Off-State) (Min.)		V/us	500	
Thermal Resistance, J unction to Case ($\mathrm{R}_{\text {өj-c }}$) (Max.)		${ }^{\circ} \mathrm{C} / \mathrm{W}$	2.2	1.7
Tum-On Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3 for DC input types, 20 for AC input types	
Tum-Off Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3 for DC input types, 30 for AC input types	
I^{2} t Rating	$\mathrm{t}=8.3 \mathrm{~ms}$	$\mathrm{A}^{2} \mathrm{Sec}$.	41	240
Load Power Factor Rating	$\mathrm{I}_{\mathrm{L}}=\mathrm{Max}$.		0.5-1.0	

*See Derating Curves

Electrical Characteristics (Thermal Derating Curves)

10A Units

25A Units

Heatsink Recommendations

- We recommend that solid state relay modules be mounted to a heatsink sufficient to maintain the module's base temperature at less than $85^{\circ} \mathrm{C}$ under worst case ambient temperature and load conditions.
- The heatsink mounting surface should be a smooth (30-40 micro-inch finish), flat (30-40 micro-inch flatness across mating area), un-painted surface which is clean and free of oxidation.
- An even coating of thermal compound (Dow Coming DC340 or equivalent) should be applied to both the heatsink and module mounting surfaces and spread to a uniform depth of .002 " to eliminate all air pockets.
- The module should be mounted to the heatsink using two\#10 screws.

Operating Diagrams

Outline Dimensions

SSR series

"Hockey Puck"
 Solid State Relay With Paired SCR Output

c ${ }^{(\$ 1} \mathbf{N u s}_{\text {us }}$ File E81606

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Engineering Data

Form: 1 Form A (SPST-NO).
Duty: Continuous.
Isolation: $4,000 \mathrm{~V}$ rms minimum.
Capacitance: 8 pf typical (input to output).
Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating: $-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Case Material: Plastic, UL rated 94V-0.
Case and Mounting: Refer to outline dimension.
Termination: Refer to outline dimension.
Approximate Weight: 3.5 oz. (98g).

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

SSR-240A25	SSR-240D25	SSR-240D50
SSR-240A50	SSR-240D25R	SSR-480D125

Input Specifications

Parameter	AC Input	DC Input
	Zero V Turn-on Units	Zero and Random V Turn-on Units
Control Voltage Range $\mathrm{V}_{\mathbb{I N}}$	$90-280 \mathrm{VAC}$	$3-32 \mathrm{VDC}$
Must Operate Voltage $\mathrm{V}_{\operatorname{IN(OP)}}(\mathrm{Min)}$.	90 VAC	3VDC
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}(\mathrm{Min)}$.	10 VAC	1VDC
Input Current (Max.)	15 mA	15 mA

Output Specifications (@ $\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Nom. Line Voltage	Conditions	Units	25A Models	50A Models	125A Models
Load Voltage Range V_{L}	120/240V M odel		$V \mathrm{mms}$	24-280		
	480V Model		V rms	48-660		
Repetitive Blocking Voltage (Min.)	120/240 Model		\checkmark peak	± 600		
	480V Model		\checkmark peak	± 1200		
Load Current Range $\mathrm{I}_{\text {L }}{ }^{*}$	120/240 \& 480V M odels	Resistive	A mis	. $05-25$.1-50	. 1 -125
Single Cycle Surge Current (Min.)	120/240 \& 480V M odels		A peak	250	750	1,700
Leakage Current (Off-State) (Max.)	120/240V Model	$\mathrm{f}=60 \mathrm{~Hz} . \mathrm{V}_{\mathrm{L}}=240 \mathrm{~V} \mathrm{~ms}$	mA ms	. 1		
	480 V Model	$\mathrm{f}=60 \mathrm{~Hz} . \mathrm{V}_{\mathrm{L}}=480 \mathrm{~V} \mathrm{~ms}$. 25		
On-State Voltage Drop (Max.)	120/240 \& 480V M odels	$\mathrm{I}_{\mathrm{L}}=$ Max.		1.35		
Static dv/dt (Off-State) (Min.)	120/240 \& 480V M odels		V/us	500		
Thermal Resistance, J unction to Case ($\mathrm{R}_{\theta \mathrm{J}-\mathrm{C}}$) (Max.)	120/240 \& 480V M odels		${ }^{\circ} \mathrm{C} / \mathrm{W}$	0.4	0.25	. 15
Turn-On Time (Max.)	120/240 \& 480V M odels	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3 for Zero Voltage Turn-On DC input types, 20 for Zero Voltage Tum-On AC input types, 0.02 for Random Voltage Tum-On M odels		
Turn-Off Time (Max.)	120/240 \& 480V M odels	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3 for DC input types, 30 for AC input types		
$I^{2} \mathrm{~T}$ Rating	120/240 \& 480V M odels	$\mathrm{t}=8.3 \mathrm{~ms}$	A^{2} Sec.	937	2,458	12,000
Load Power Factor Rating	120/240 \& 480V M odels	$\mathrm{I}_{\mathrm{L}}=$ Max.		0.5-1.0		

*See Derating Curves

Electrical Characteristics (Thermal Derating Curves)

25A Units

Operating Diagrams

50A Units

Heatsink Recommendations

- We recommend that solid state relay modules be mounted to a heatsink sufficient to maintain the module's base temperature at less than $85^{\circ} \mathrm{C}$ under worst case ambient temperature and load conditions.
- The heatsink mounting surface should be a smooth (30-40 micro-inch finish), flat ($30-40$ micro-inch flatness across mating area), un-painted surface which is clean and free of oxidation.
- An even coating of thermal compound (Dow Corning DC340 or equivalent) should be applied to both the heatsink and module mounting surfaces and spread to a uniform depth of .002" to eliminate all air pockets.
- The module should be mounted to the heatsink using two \#10 screws.

Outline Dimensions

SSRD series

Dual AC Output "Hockey Puck"
 Solid State Relay With Paired SCR Outputs

${ }^{\mathbf{c N}} \mathrm{Nus}_{\text {sile }} \mathrm{E} 81606$

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Two independent AC output solid state relays in one standard package.
- Enhanced noise immunity (designed to meet level 3 requirements of European EMC Directive).
- Inverse parallel SCR outputs.
- 25A rms \& 40A rms versions available.
- 4-15 VDC input control.
- Zero voltage and random voltage turn-on versions.
- 4000 V ms optical isolation.
- Quick connect style terminals.

Engineering Data

Form: 2 Form A (2 SPST-NO).
Duty: Continuous.
Isolation: 4000 V rms input-to-output;
2500 V rms input or output to ground.
Capacitance: 8.0 pf typical (input to output).
Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Operating: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Case Material: Plastic, UL rated 94V-0.
Case and Mounting: Refer to outline dimension.
Termination: Refer to outline dimension.
Approximate Weight: 3.5 oz . (98g).

Ordering Information

Sample Part Number $>$	SSRD	D	25
1. Basic Series: SSRD = Dual output SSR - 2 SPST - NO			
2. Line Voltage: $240=24-280$ VAC			
3. Input Type \& Voltage: $\mathrm{D}=4-15 \mathrm{VDC}$			
4. Maximum Switching Rating/Output: $25=.1-25 \mathrm{~A} \mathrm{rms} @ 25^{\circ} \mathrm{C}$, mounted to heatsink $40=.1-40 \mathrm{~A} \mathrm{~ms} @ 25^{\circ} \mathrm{C}$, mounted to heatsink			

5. Options: Blank = Zero voltage turn-on (both outputs)

R = Random voltage turn-on (both outputs)

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.
SSRD-240D25 SSRD-240D40

Input Specifications

Parameter	Units	Zero V Turn-on and Random V Turn-on Units
Control Voltage Range $\mathrm{V}_{\text {IN }}$	VDC	$4-15$
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$ (Min.)	VDC	3.75
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}($ Min.)	VDC	1
Input Current (Max.)	mA DC	34
Input Current (Min. for On-State)	mA DC	7.5
Input Resistance	Ohms	500

Output Specifications (@ $\mathbf{2 5}^{\circ} \mathbf{C}$, unless otherwise specified)

Parameter	Conditions	Units	25A Models	40A Models
Load Voltage Range V_{L}	$\mathrm{f}=47-63 \mathrm{~Hz}$.	V ms	24-280	
Peak Voltage (Min.)	$\mathrm{t}=1 \mathrm{Min}$.	\checkmark peak	550	
Load Current Range IL^{*}	Resistive	A rms	0.1-25	0.1-40
Single Cycle Surge Current (Max.)		A peak	500	780
One Second Surge Current (Max.)		A peak	150	234
Leakage Current (Off-State) (Max.)	$\mathrm{V}_{\mathrm{L}}=280 \mathrm{~V} \mathrm{~ms}$	mA rms	0.1	
On-State Voltage Drop (Max.)	$\mathrm{I}_{\mathrm{L}}=$ Max.	\checkmark peak	1.4	1.3
Static dv/dt (Off-State) (Min.)		V/us	500	
Thermal Resistance, J unction to Baseplate ($\mathrm{R}_{\text {өJ-B }}$) (Max.)	Both Sections On	${ }^{\circ} \mathrm{C} / \mathrm{W}$	0.6	0.6
Tum-On Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.33 for Zero Voltage Tum-On M odels <0.1 for Random Voltage Turn-On M odels	
Tum-Off Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.33	
$\mathrm{I}^{2} \mathrm{t}$ Rating	$\mathrm{t}=8.3 \mathrm{~ms}$	A^{2} Sec.	1,041	2,435
Load Power Factor Rating	$\mathrm{I}_{\mathrm{L}}=\mathrm{Max}$.		0.5-1.0	

*See Derating Curves

Electrical Characteristics (Thermal Derating Curves)

Operating Diagram

\dagger Random Turn-on Units have a Random Turn-on circuit instead of Zero Voltage Circuit

Heatsink Recommendations

- We recommend that solid state relay modules be mounted to a heatsink sufficient to maintain the module's base temperature at less than $85^{\circ} \mathrm{C}$ under worst case ambient temperature and load conditions.
- The heatsink mounting surface should be a smooth (30-40 micro-inch finish), flat (30-40 micro-inch flatness across mating area), un-painted surface which is clean and free of oxidation
- An even coating of thermal compound (Dow Coming DC340 or equivalent) should be applied to both the heatsink and module mounting surfaces and spread to a uniform depth of .002" to eliminate all air pockets.
- The module should be mounted to the heatsink using two \#10 screws.

Outline Dimensions

Input Terminal Connectors are available from several different manufacturers.

AMP P/N: 103976-3 or 640440-4
Methode P/N: 1300-004-422
Consult your local distributor for these or equivalent connectors

SSRO series

Quad AC Output "Hockey Puck"
 Solid State Relay With
 Triac Outputs

c94is File E29244

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Four independent AC output solid state relays in one standard package.
- 20A ms triac outputs.
- 4-15 VDC input control.
- Zero voltage and random voltage turn-on versions.
- 2500V rms optical isolation.
- Quick connect style terminals.

Engineering Data

Form: 4 Form A (4 SPST-NO).
Duty: Continuous.
Isolation: 2500 V rms input-to-output-to-ground.
Capacitance: 10.0 pf maximum (input to output).
Temperature Range:
Storage: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Case Material: Plastic, UL rated 94V-0.
Case and Mounting: Refer to outline dimension.
Termination: Refer to outline dimension.
Approximate Weight: 3.5 oz . (98g).

Ordering Information

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery. SSRQ-240D20

Input Specifications

Parameter	Conditions	Units	Zero V or Random V Turn-on Units
Control Voltage Range V_{IN}	$@ 25^{\circ} \mathrm{C}$	VDC	$4-15$
Must Operate Voltage $\mathrm{V}_{\operatorname{IN}(O P)}(\mathrm{Min})$.	$@ 25^{\circ} \mathrm{C}$	VDC	4
Must Release Voltage $\mathrm{V}_{\operatorname{IN}(\mathrm{REL})(\mathrm{Min} .)}$	$@ 25^{\circ} \mathrm{C}$	VDC	1
Input Current (Typ.)	$@ 25^{\circ} \mathrm{C}$	mA DC	12
Input Impedance (Nom.)	$@ 25^{\circ} \mathrm{C}$	ohms	330

Output Specifications (@ $\mathbf{2 5}^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Conditions	Units	
Load Voltage Range V_{L}		V rms	24-280
Repetitive Blocking Voltage (Min.)		\checkmark peak	± 600
Load Current Range $\mathrm{I}_{\text {* }}{ }^{*}$	Resistive	A rms	.15-20
Single Cycle Surge Current (Min.)		A peak	250
Leakage Current (Off-State) (Max.)	$\mathrm{f}=60 \mathrm{~Hz} . V_{L}=280 \mathrm{Vrms}$	mA rms	10
On-State Voltage Drop (Max.)	$\mathrm{I}_{\mathrm{L}}=$ Max.	V peak	1.6
Static dv/dt (Off-State) (Min.)	$\mathrm{V}_{\mathrm{L}}=280 \mathrm{Vrms}$	V/us	200
Thermal Resistance, J unction to Case ($\mathrm{R}_{\text {өJ-C }}$) (Max.)	All Sections On	${ }^{\circ} \mathrm{C} / \mathrm{W}$	1.2
Turn-On Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3 for Zero Voltage Tum-On M odels 0.1 for Random Voltage Tum-On Models
Turn-Off Time (Max.)	$\mathrm{f}=60 \mathrm{~Hz}$.	ms	8.3
I^{2} t Rating	$\mathrm{t}=8.3 \mathrm{~ms}$	$\mathrm{A}^{2} \mathrm{Sec}$.	260
Load Power Factor Rating	$\mathrm{I}_{\mathrm{L}}=\mathrm{Max}$.		0.5-1.0

*See Thermal Derating Curves. Note: While each output section is rated for a maximum of 20A, the maximum output per package is 60A.

Electrical Characteristics (Thermal Derating Curves)

How To Use These Curves

Knowing maximum load current and maximum ambient temperature, use derating curves to determine required heat sink and maximum allowable base plate temperature. On left hand power dissipation curve, locate the point corresponding to maximum load current. Extend a line to the right from that point to the intersection of vertical line on right hand chart corresponding to maximum ambient temperature. From heat sink curve, read directly or extrapolate required heat sink size. Extend the line farther to the right and read on the right hand scale the maximum allowable base plate temperature.

Operating Diagram

Example \#1:
Given: $I_{L}=$ Four 7.5 A loads $@ 60^{\circ} \mathrm{C}$
Find: Minimum heatsink required
Solution: From Thermal Dissipation Graph $4 \times 7.5 \mathrm{~A}=30 \mathrm{~A} 4$ sections ON Heatsink $=2^{\circ} \mathrm{C} / \mathrm{W}$ minimum

Example \#2:

Given: SSRQ24020
Find: Maximum rating mounting to $10^{\circ} \mathrm{C} / \mathrm{W} \mathrm{HS} @ 60^{\circ} \mathrm{C}$ All sections ON
Solution: From Thermal Dissipation Graph

$$
\text { Rating mounted to } 10^{\circ} \mathrm{C} / \mathrm{W} \text { HS @ } 60^{\circ} \mathrm{C}=36 \mathrm{~A} \text { total }
$$

9 A for 4 Sections ON $=36 \mathrm{~A}$ total
12A for 3 Sections ON =36A total

Heatsink Recommendations

- We recommend that solid state relay modules be mounted to a heatsink sufficient to maintain the module's base temperature at less than $85^{\circ} \mathrm{C}$ under worst case ambient temperature and load conditions.
- The heatsink mounting surface should be a smooth ($30-40$ micro-inch finish), flat ($30-40$ micro-inch flatness across mating area), un-painted surface which is clean and free of oxidation.
- An even coating of thermal compound (Dow Corning DC340 or equivalent) should be applied to both the heatsink and module mounting surfaces and spread to a uniform depth of .002" to eliminate all air pockets.
- The module should be mounted to the heatsink using two \#10 screws.

Outline Dimensions

Input Terminals mate with the following connectors or equivalent:

AMP P/N: 103976-4
Consult your local distributor for connectors.

IAC/OAC IDC/ODC

Input/Output Modules

听 File E81606 \& E29244
(14) File LR38595M77

Abstract

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Features

- Industry standard package and pin-out.
- Color coded by function.
$\cdot 4,000 \mathrm{~V} \mathrm{~ms}$ optical isolation.
- High immunity to false operation.
- Series compatible.
- Output modules can be controlled from sinking or sourcing logic.
- Compatible with 210 series mounting boards.

Engineering Data (all I/O modules)

Switch Form: 1 Form A (SPST-NO)
Duty: Continuous.
Isolation: $4,000 \mathrm{~V}$ rms, 60 Hz .
Capacitance: 8 pF Typical (input to output).
Operating Temperature: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Storage Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Potting Compound Flammability: UL94V-0.
Approximate Weight: 138 oz. (35g).

Ordering Information

	Typical Part Number	OAC	-5	H
1. Basic Series: IAC = AC input module - yellow case IDC = DC input module - white case OAC =AC output module - black case ODC = DC output module - red case				
2. Input or Logic Voltage: $\begin{aligned} & 5=5 \mathrm{VDC} \\ & 15=15 \mathrm{VDC} \\ & 24=24 \mathrm{VDC} \end{aligned}$				
3. Options: $\begin{aligned} \text { Blank }= & \text { IAC Type }-120 \mathrm{VACNDC} \text { input (} 90-140 \mathrm{VACNDC}) * * \\ & \text { IDC Type }-3.3-32 \mathrm{VDC} \text { input * } * \\ & \text { OAC Type - 3A, 24-280VAC, zero voltage turn-on output } \\ & \text { ODC Type }-3 \text {, 3-60VDC output } \end{aligned}$				
A $\quad=$ IAC Type -240 VACNDC input (180-280VACNDC)** OAC Type $-3 \mathrm{~A}, 24-280 \mathrm{VAC}$, zero voltage turn-on output ODC Type $-1 \mathrm{~A}, 3-250 \mathrm{VDC}$ output IDC Type $-10-60 \mathrm{VDC}$ input * *				
$\mathrm{E} \quad=\mathrm{IAC}$ Type $-18-36 \mathrm{VACNDC}$ input **				
$\mathrm{F} \quad=\mathrm{IDC}$ Type - 4-32VDC input \& fast turn-on \& turn-off times **				
H = OAC Type - 5A, 24-280VAC, zero voltage turn-on output				
$\mathrm{R}=$ OAC Type $-5 \mathrm{~A}, 12-280 \mathrm{VAC}$, random voltage turn-on output				

* * Is not polarity sensitive.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

IAC-5	IDC-24	OAC-24A
IAC-5A	OAC-5	ODC-5
IAC-5E	OAC-5A	ODC-5A
IAC-15	OAC-5H	ODC-15
IAC-24	OAC-15	ODC-15A
IDC-5	OAC-24	ODC-24

IAC

AC Input Modules

Input Specifications

Parameter	Conditions	Units	IAC-5 IAC-15 IAC-24			IAC-5A IAC-15A IAC-24A			IAC-5E IAC-15E IAC-24E		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VACNDC	90	120	140	180	240	280	18	24	36
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VACNDC			90			180			18
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VACNDC	20			20			3		
Max. Input Current	@ $\mathrm{V}_{\text {IN }}=$ Max.	mA			6			6			18
Input Resistance		Ohms		28K			75K			2K	

Output Specifications (@+25 \mathbf{C} unless otherwise specified)

Parameter	Conditions	Units	IAC-5 IAC-5A IAC-5E		IAC-15 IAC-15A IAC-15E		IAC-24 IAC-24A IAC-24E		
			Min.	Typ. Max.	Min.	Typ. Max.	Min.	Typ.	Max.
Maximum Output Voltage		VDC		30		30			30
Maximum Output Current		mADC		50		50			50
Maximum Output Leakage Current	Vout $=$ Max.	μ ADC		10		10			10
Maximum Output Voltage Drop	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$	VDC		. 2		. 2			. 2
Logic Supply Voltage $\mathrm{V}_{\text {CC }}$		VDC	3	56	12	1518	20	24	30
Logic Supply Current	$\mathrm{V}_{\text {CC }}=$ Max.	mADC		18		18			18
Turn-On Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms		20		20			20
Turn-Off Time (Nominal)	$\mathrm{I}_{\mathrm{SINK}}=25 \mathrm{~mA}$	ms		30		30			30
Output Type (Open Collector)			Norm	Open(SINKING) $^{\text {(}}$	Norm	Open $_{\text {(SINKING) }}$	Norm	Ope	KKING)

OAC

AC Output Modules

Input Specifications

Parameter	Conditions	Units	OAC-5 OAC-5A OAC-5H OAC-5R			OAC-15 OAC-15A OAC-15H OAC-15R			OAC-24 OAC-24A OAC-24H OAC-24R		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VDC	3	5	8	9	15	18	18	24	32
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VDC			3			9			18
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VDC	1			1			1		
Maximum Input Current	$@ V_{\text {IN }}=$ Nominal	mADC			20			16			13
Input Resistance RIN		Ohms		220			1000			2000	

PIN-3 must be positive with respect to PIN-4 for correct operation.

Output Specifications (47 to $\mathbf{6 3 ~ H z} ., @+25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	Units	OAC-5 OAC-5A OAC-15 OAC-15A OAC-24 OAC-24A		OAC-5H IAC-15H OAC-24H		OAC-5R OAC-15R OAC-24R		
			Min.	Max.	Min.	Typ. Max.	Min.	Typ.	Max.
Load Voltage V_{L}		V rms	24	280	24	120/240 280	24	120/240	280
Repetitive Blocking Voltage		\checkmark peak		± 600		± 600			± 600
Load Current l^{*} *		A rms	. 05	3	. 05	5	. 05		5
Ouput Current		$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$58 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$		$66 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$		$66 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$		
Derating			$40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		
Single Cycle surge Current		A peak	100		250		250		
Leakage Current (Off-State) @ 60 Hz .	$\mathrm{V}_{\mathrm{L}}=120 \mathrm{VAC}$	mA rms		1	1		1		
	$\mathrm{V}_{\mathrm{L}}=240 \mathrm{VAC}$	mA rms		2	2		2		
On-State Voltage Drop	$\mathrm{L}=\mathrm{Max}$.	\checkmark peak		16	16		16		
Static dv.dt (Off-State)		V/ $/ \mathrm{s}$		200	200		200		
Turn-On Time	$@ f=60 \mathrm{~Hz}$.	ms		8.3	8.3		. 1		
Turn-Off Time		ms		8.3	8.3		8.3		
Output Type (Form)			Normally Open 1A		Normally Open 1A		Normally Open 1A		
H/P/ Rating @ 240VAC			1/4HP		1/2HP		1/2HP		

DC Input Modules

Input Specifications

Parameter	Conditions	Units	IDC-5 IDC-15 IDC-24			IDC-5A IDC-15A IDC-24A			IDC-5F IDC-15F IDC-24F		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range V_{IN}		VDC	± 3.3	± 24	± 32	± 10		± 60	± 4		± 32
Must Operate Voltage VIN(OP)		VDC			± 3.3			± 10			± 4
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VDC	± 2			± 3			± 1		
Maximum Input Current	@ $\mathrm{V}_{\text {IN }}=\mathrm{Max}$.	mA		34			34			68	
Input Resistance		Ohms		1K			2K			500	

Output Specifications (@+25 \mathbf{C} unless otherwise specified)

Parameter	Conditions	Units	IDC-5 IDC-5A	IDC-15 IDC-15A IDC-24 IDC-24A		IDC-5F	IDC-15F	IDC-24F
			Min Typ Max					
Maximum Output Voltage		VDC	30	30	30	30	30	30
Maximum Output Current		mADC	50	50	50	50	50	50
Maximum Output Leakage Current	Vour=Max.	$\mu \mathrm{ADC}$	10	10	10	10	10	10
Maximum Output Voltage Drop	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$	VDC	. 2	. 2	. 2	. 2	. 2	. 2
Logic Supply Voltage V_{CC}		VDC	356	$\begin{array}{lll}12 & 15 & 18\end{array}$	$\begin{array}{lll}20 & 24 & 30\end{array}$	356	$\begin{array}{lll}12 & 15 & 18\end{array}$	$\begin{array}{lll}20 & 24 & 30\end{array}$
Logic Supply Current	$\mathrm{V}_{\text {CC }}=$ Max.	mADC	18	18	18	18	18	18
Turn-On Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms	1*	1*	1*	. 05	. 05	. 05
Tum-Off Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms	1*	1*	1*	. 10	. 10	. 10
Output Type (Open Collector)			Normally Open (SINKING)	Normally Open (SINKING)	Normally Open (SINKING)	Normally Open (SINKING	Normally Open	Normally Open (SINKING)

* Nominal Turn-On and Turn-Off times for IDC5A, IDC15A \& IDC24A are 5 ms .

ODC

DC Output Modules

Input Specifications

Parameter	Conditions	Units	ODC-5 ODC-5A			ODC-15 ODC-15A			ODC-24 ODC-24A		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VDC	3	5	8	9	15	18	18	24	32
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VDC			3			9			18
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VDC	1			1			1		
M aximum Input Current	@ $\mathrm{V}_{\text {IN }}=$ Nominal	mADC			18			16			13
Input Resistance R ${ }_{\text {IN }}$		Ohms		250			1000			2000	

PIN-3 must be positive with respect to PIN-4 for correct operation.

Output Specifications (@+25º unless otherwise specified)

Parameter	Conditions	Units	ODC-5 ODC-24 ODC-15			ODC-5A ODC-24A ODC-15A		
			Min.	Typ.	Max.	Min.	Typ.	Max.
Load Voltage V ${ }_{\text {L }}$		VDC	3		60	3		250
Load Current I_{L}		ADC	. 01		3	. 01		1
Maximum Surge Current for 1 Second		ADC			5			5
Maximum Leakage Current (Off-State)	$\mathrm{V}_{\mathrm{L}}=\mathrm{MAX}$	μ ADC			500			2000
Maximum On-State Voltage Drop	$\mathrm{L}_{\mathrm{L}}=\mathrm{MAX}$	VDC			15			15
MaximumTurn-On Time		ms			. 1			. 1
MaximumTurn-Off Time		ms			. 75			. 75

At $40^{\circ} \mathrm{C}$, derate by $50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$.
PIN-1 must be positive with respect to PIN-2 for correct operation.

IAC Operating Diagram

IDC Operating Diagram

ODC Operating Diagram

Outline Dimensions

Note: Pin 5 is not present on Output Modules.

210 series

Mounting Boards for

Input/Output Modules

- LED status indicators, plug-in fuses \& pull-up resistors
- Card edge logic connections (2IO8, 21016 \& 2IO24)
- Screw terminal logic connections (2104A, 2IO4B, 2IO4C, 21016A, 2IO16B \& 2IO16C)
- Screw terminals for field wiring
- UL recognized/CSA certified for 125 V max. with 5A fuses; 250V max. with \#22 solid copper jumper wire instead of fuses

? ${ }^{2}$ File E61482

© ${ }^{\text {®Hile }}$ LR15734-93
Users shouldthoroughlyreview thetechnical databeforeselecting aproduct part number. It is recommendedthatusers also seek outthepertinentapprovals files of the agencies/laboratories andreview themtoensurethe productmeets the requirements foragivenapplication.

Ordering Information - Boldface items listed below are more likely to be maintained in stock by authorized distributors.

Part Number	2104A	2104B	2IO4C	2108	21016	21016A	21016B	2IO16C	21024
Number of I/O Channels	4	4	4	8	16	16	16	16	24
Number of Module Positions	4	4	4	8	16	16	16	16	24
Field Terminals: Screw Terminals	X	X	X	X	X	X	X	X	X
Logic Terminals: Screw Terminals	X	X	X			X	X	X	
Logic Terminals: 26-pin card edge connector				X					
Logic Terminals: 50-pin card edge connector				X	X				X
Designed for neg. true logic; one logic voltage	X			X	X	X			X
Designed for neg. or pos. true logic; mult. logic voltages		X					X		
Designed for neg. true logic; mult. logic voltages			X					X	

2IO4A, 2IO4B \& 2IO4C Outline Dimensions

2IO4A Schematic
Designed to operate with neg. true logic (active low) systems \& one logic voltage.

Mating Connectors and Fuses

26-pin card edge connector	Thomas \& Betts 622-2615*
50-pin card edge connector	Thomas \& Betts 622-5015*
5 amp fuse	Littelfuse 251-005*
1 amp fuse**	Littelfuse 251-001*

* Or equivalent
** Used on 2 IO 24 only.

2IO4B Schematic

Designed to operate with either neg. or pos. true logic (active low or high) systems \& different logic voltages. (output modules only - input modules must be used in negative logic systems only.)

FIELD INPUT/OUTPUT SIDE IS IDENTICAL TO 2104A

2IO4C Schematic

Designed to operate with neg. true logic (active low) systems \& different logic voltages.

FIELD INPUT/OUTPUT SIDE IS IDENTICAL TO 2104A

2108 Outline Dimensions

2108 Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

21016 Outline Dimensions

21016 Schematic
Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IO16A Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IO16B Schematic

Designed to operate with either neg. or pos. true logic (active low or high) systems \& different logic voltages.
(Note above applies to output modules only. Input modules must be use in negative logic systems only.)

	Dimensions are shown for	Dimensions are in inches over
(millimeters) unless otherw ise	Specifications and availability	subject to change.

2IO16C Schematic

Designed to operate with neg. true logic (active low) systems \& different logic voltages.

21024 Outline Dimensions

21024 Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

Features

- Slim line .4" (10.16mm) thick package.
- Foot print same as .6 " (15.24 mm) thick package.
- 4,000V rms optical isolation.
- Color coded by function.
- High immunity to false operation.
- Series compatible.
- Output modules can be controlled from sinking or sourcing logic.
- Compatible with 2IOM series mounting boards.

IACM/OACM IDCM/ODCM

Slim Line
Input/Output Modules

귿 File E81606 \& E29244
(18. File LR38595M 77

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Engineering Data (all I/O modules)

Switch Form: 1 Form A (SPST-NO)
Duty: Continuous.
Capacitance: 8 pF Typical (input to output).
Operating Temperature: $-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Storage Temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Potting Compound Flammability: UL94V-0.
Solderability: $260^{\circ} \mathrm{C}$ for 5 seconds, maximum.
Approximate Weight: .87 oz . $(22.1 \mathrm{~g})$.

Ordering Information

	Typical Part Number
1. Basic Series:	
IACM = Slim line AC input module - yellow case	
IDCM = Slim line DC input module - white case	
OACM $=$ Slim line AC output module - black case	
ODCM = Slim line DC output module - red case	

2. Input or Logic Voltage:
$5=5 \mathrm{VDC}$
$15=15 \mathrm{VDC}$
$24=24 \mathrm{VDC}$
$\mathrm{U}=\mathrm{OACM} \&$ ODCM Types 3-15VDC input voltage
3. Options:

Blank $=$ IACM Type -120 VACNDC input (90-140VACNDC) $* *<$ None $>$ IDCM Type - 3.3-32VDC input **
OACM Type - 3A, 24-280VAC, zero voltage turn-on output
ODCM Type - 3A, 3-60VDC output
A $=$ IACM Type -240 VACNDC input (180-280VACNDC) $* *$
IDCM Type - 10-60VDC input **
OACM Type - 3A, 24-280VAC
ODCM Type - 1A, 5-250VDC output
$\mathrm{E} \quad=\mathrm{IACM}$ Type $-18-36 \mathrm{VACNDC}$ input $* *$
$\mathrm{F} \quad=\mathrm{IDCM}$ Type $-4-32 \mathrm{VDC}$ input \& fast turn-on \& turn-off times $* *$
H $\quad=$ OACM Type $-5 A, 24-280 V A C$, zero voltage turn-on output
** Is not polarity sensitive.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

IACM-5	OACM-5H
IACM-5A	OACM-U
IDCM-5	OACM-UH
OACM-5	ODCM-5

IACM

AC Input Modules

Input Specifications

Parameter	Conditions	Units	IACM-5 IACM-15 IACM-24			IACM-5A IACM-15A IACM-24A			IACM-5E IACM-15E IACM-24E		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VACNDC	90	120	140	180	240	280	18	24	36
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VACNDC			90			180			18
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VACNDC	20			20			3		
Max. Input Current	@ $\mathrm{V}_{\text {IN }}=\mathrm{Max}$.	mA			6			6			18
Input Resistance RIN		Ohms		28K			75K			2K	

Output Specifications (@ +25 ${ }^{\circ} \mathrm{C}$ unless otherwise specified)

								$V-15 A$		$\begin{aligned} & 1-241 \\ & 1-24 E \end{aligned}$	$1-24 A$
Parameter	Conditions	Units	Min.	Typ	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
M aximum Output Voltage		VDC			30			30			30
Maximum Output Current $\mathrm{I}_{\text {SINK }}$		mADC			50			50			50
M aximum Output Leakage Current	$V_{\text {Out }}=$ Max.	$\mu \mathrm{ADC}$			10			10			10
Maximum Output Voltage Drop	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$	VDC			. 2			. 2			. 2
Logic Supply Voltage $\mathrm{V}_{\text {CC }}$		VDC	3	5	6	12	15	18	20	24	30
Maximum Logic Supply Current	$\mathrm{V}_{\text {cc }}=$ Max.	mADC			18			18			18
Turn-On Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms			20			20			20
Turn-Off Time (Nominal)	$\mathrm{ISINK}=25 \mathrm{~mA}$	ms			30			30			30
Output Type (Open Collector)			$\underset{(\text { Sinking })}{N o r m a l l y ~ O p e n ~}$			Normally Open			Normally Open (Sinking)		

OACM

AC Output Modules

Input Specifications

Parameter	Conditions	Units	OACM-5 OACM-5H OACM-5R			OACM-15 OACM-15H OACM-15R			OACM-24 OACM-24H OACM-24R			OACM-U OACM-UH OACM-UH		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max	. Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VDC	3	5	8	9	15	18	18	24	32	3	5	15
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VDC			3			9			18			3
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VDC	1			1			1			1		
Input Current	$@ \mathrm{~V}_{1 \mathrm{~N}}=$ Nominal	mADC			20			16			13			44
Input Resistance Rin		Ohms		220			1000			2000			360	

PIN-3 must be positive with respect to PIN-4 for correct operation.

Output Specifications ($\mathbf{4 7}$ to $\mathbf{6 3} \mathbf{~ H z}$.,@ $\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$ unless otherwise specified)

Parameter	Conditions	Units	OACM-5 OACM-15 OACM-24 OACM-U		OACM-5H IAC-15H OAC-24H OACM-UH		OACM-5R OACM-15R OACM-24R OACM-UR	
			Min.	Typ. Max.	Min.	Typ. Max.	Min.	Typ. Max.
Load Voltage V_{L}		V rms	24	120/240 280	24	120/240 280	24	120/240 280
Repetitive Blocking Voltage		V peak		± 600		± 600		± 600
Load Current IL*		A mis	. 05	3	. 05	5	. 05	5
Output Current		$\mathrm{mA} /{ }^{\circ} \mathrm{C}$	$58 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$		$66 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$		$66 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$	
Derating			$40^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$		$30^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$	
Single Cycle Surge Current		A peak		100		250		250
Leakage Current (Off-State)	$\mathrm{V}_{\mathrm{L}}=120 \mathrm{VAC}$	mA rms		1		1		1
	$\mathrm{V}_{\mathrm{L}}=240 \mathrm{VAC}$	mA rms		2		2		2
On-State Voltage Drop	$\mathrm{I}_{\mathrm{L}}=\mathrm{Max}$.	\checkmark peak		16		16		16
Static dv.dt (Off-State)		V/ $/$ s		200		200		200
Tum-On Time	@f=60 Hz.	ms		8.3		8.3		. 1
Tum-Off Time		ms		8.3		8.3		8.3
H/P/ Rating	@ 240VAC	HP		1/4		1/2		1/2

DC Input Modules

Input Specifications

Parameter	Conditions	Units	IDCM-5 IDCM-15 IDCM-24			IDCM-5A IDCM-15A IDCM-24A			IDCM-5F IDCM-15F IDCM-24F		
			Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VDC	± 3.3	± 24	± 32	± 10		± 60	± 4		± 32
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VDC			± 3.3			± 10			± 4
Must Release Voltage $\mathrm{V}_{\text {IN(REL) }}$		VDC	± 2			± 3			± 1		
Maximum Input Current	$@ V_{\text {IN }}=$ Max.	mA		34			34			68	
Input Resistance $\mathrm{R}_{\text {IN }}$		Ohms		1000			2000			500	

Output Specifications (@ +25 ${ }^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	Units	IDCM-5 IDCM-5A		$\begin{aligned} & \text { IDCM-15 } \\ & \text { IDCM-15A } \end{aligned}$		$\begin{aligned} & \text { IDCM-24 } \\ & \text { IDCM-24A } \end{aligned}$		IDCM-5F		IDCM-15F		$\begin{aligned} & \text { IDCM-24 } \\ & \text { IDCM-24F } \end{aligned}$		
			Min	Typ Max	Min	Typ	Max								
Maximum Output Voltage		VDC		30		30		30		30		30			30
Maximum Output Current		mADC		50		50		50		50		50			50
Maximum Output Leakage Current	Vout=Max.	μ ADC		10		10		10		10		10			10
Maximum Output Voltage Drop	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$	VDC		. 2		. 2		. 2		. 2		. 2			. 2
Logic Supply Voltage $\mathrm{V}_{\text {CC }}$		VDC	3	56	12	$15 \quad 18$	20	$24 \quad 30$	3	56	12	$15 \quad 18$	20	24	30
Logic Supply Current	$\mathrm{V}_{\text {CC }}=$ Max.	mADC		18		18		18		18		18			18
Turn-On Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms		1*		1*		1*		. 05		. 05		. 05	
Turn-Off Time (Nominal)	$\mathrm{I}_{\text {SINK }}=25 \mathrm{~mA}$	ms		1*		1*		1*		. 10		. 10		. 10	
Output Type (Open Collector)			Norm	$\begin{aligned} & \text { ally Open } \\ & \text { inking) } \end{aligned}$		nally Open sinking)	Norm	nally Open SINKING)		mally Open SINKING)		nally Open SINKING)		mally SINKING	Open

* Nominal Turn-On and Turn-Off times for IDCM 5A, IDCM 15A \& IDCM24A are 5 ms.

ODCM

DC Output Modules

Input Specifications

Parameter	Conditions	Units	ODCM-5 ODCM-5A			ODCM-15 ODCM-15A			ODCM-24 ODCM-24A			ODCM-U ODCM-UA		
			Min.	Typ.	Max.									
Control Voltage Range $\mathrm{V}_{\text {IN }}$		VDC	3	5	8	9	15	18	18	24	32	3	5	15
Must Operate Voltage $\mathrm{V}_{\text {IN(OP) }}$		VDC			3			9			18			3
Must Release Voltage Vin(REL)		VDC	1			1			1			1		
M aximum Input Current	$@ V_{1 N}=$ Nominal	mADC			18			16			13			44
Input Resistance $\mathrm{R}_{\text {IN }}$		Ohms		250			1000			2000			360	

PIN-3 must be positive with respect to PIN-4 for correct operation.

Output Specifications (@ +25 ${ }^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Conditions	Units	ODCM-5 ODCM-15 ODCM-24 ODCM-U		ODCM-5A ODCM-15A ODCM-24A ODCM-UA		
			Min.	Typ. Max.	Min.	Typ.	Max.
Load Voltage V ${ }_{\text {L }}$		VDC	3	60	3		250
Load Current IL*		ADC	. 01	3	. 01		1
Maximum Surge Current for 1 Second		ADC		5			5
M aximum Leakage Current (Off-State)	$\mathrm{V}_{\mathrm{L}}=\mathrm{MAX}$	μ ADC		500			2000
Maximum On-State Voltage Drop	$\mathrm{I}_{\mathrm{L}}=\mathrm{MAX}$	VDC		15			15
MaximumTurn-On Time		ms		. 1			. 1
MaximumTurn-Off Time		ms		. 75			. 75

* Above $40^{\circ} \mathrm{C}$, derate by $50 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$.

PIN-1 must be positive with respect to PIN-2 for correct operation.

IDCM Operating Diagram

ODCM Operating Diagram

Outline Dimensions

Note: Pin 5 is not present on Output Modules.

210 M series

Space Saving Mounting Boards for Slim Line Input/Output Modules

- LED status indicators, plug-in fuses \& pull-up resistors
- Card edge, straight header, right-angle header and screw terminal logic connections
- Screw terminals for field wiring
- UL recognized/CSA certified for 125 V max. with 5A fuses; 250 V max. with \#22 solid copper jumper wire instead of fuses
況 File E61482
© ${ }^{\text {® }}$ File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Ordering Information - Boldface items listed below are more likely to be maintained in stock by authorized distributors.

Part Number	210M4A	210 M 16	2IOM16A	2IOM16E	210M24	2IOM24D	2IOM32D
Number of I/O Channels	4	16	16	16	24	24	32
Number of M odule Positions	4	16	16	16	24	24	32
Field Terminals: Screw Terminals	X	X	X	X	X	X	X
Logic Terminals: Screw Terminals	X		X				
Logic Terminals: 50-pin card edge connector		X			X	X	
Logic Terminals: 50-pin straight header						X	X
Logic Teminals: 50-pin right angle header				X			
Will accept 50-pin dual row header		X			X		
Designed for neg. true logic; one logic voltage	X	X	X	X	X	X	X

Mating Connectors and Fuses

50-pin card edge connector	Thomas \& Betts 622-5015 1
50-pin header connector	Thomas \& Betts 609-5030
5 amp fuse	Littelfuse 251-005 1
$7 \mathrm{amp}^{1}$ fuse ${ }^{3}$	Littelfuse 251-007 1
$1 \mathrm{amp}^{2}$ fuse 2	Littelfuse 251-001 1

Notes: 1 Or equivalent.
2. Used only on 24 and 32 position models.
3. Used only on 2IOM4A and 2IOM 16A.

2IOM4A Outline Dimensions

2IOM4A Schematic
Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IOM16 \& 2IOM16E Outline Dimensions

2IOM16 \& 2IOM16E Schematic
Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IOM16A Outline Dimensions

2IOM16A Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IOM24 \& 2IOM24D Outline Dimensions

2IOM24 \& 2IOM24D Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

2IOM32D Outline Dimensions

2IOM32D Schematic

Designed to operate with neg. true logic (active low) systems \& one logic voltage.

Engineering Notes

Alphanumeric Index

Series	Type	Page
AGAST	ccessories	1206
AGAST	ms and Definitions	1204
AGAS	ing Modes	1205
2100	Miniature Electropneumatic Timer	1254
7000	Electropneumatic Timer	1248
3RP15	Programmable Time Delay R	1207
48K	Programmable Time Delay Relay	1210
	Discrete Function Time Delay Relay ..	1228
	Discrete Function Time Delay Relay ..	1222
CG	Discrete Function Time Delay Relay ..	1220
	Discrete Function Time Delay Relay ..	1226
	Discrete Function Time Delay Relay ..	1224
	Discrete Function Time Delay Relay ..	1231
CN1	Discrete Function Time Delay Relay ..	1219
CNM5	Programmable Time Delay Relay	1215
CNS	Programmable Time Delay Relay	121
CNT	rogrammable Time Delay Relay	1211
CR	Discrete Function Time Delay Relay ..	1230
CU	Discrete Function Time Delay Relay ..	1231
MDO	screte Function Time Delay Relay ...	1233
P\&B T	y Terms \& Definitions	1202
P\&B T	lay Extemal Resistor Guide	1203
SCB	Discrete Function Time Delay Relay ..	1235
SCE	Discrete Function Time Delay Relay ..	1239
SCF	Programmable Time Delay Relay	1218
SRC	Discrete Function Time Delay Relay ...	1237
SSC	Discrete Function Time Delay Relay	1234
SSF	Programmable Time Delay Relay	1217
SST.	Discrete Function Time Delay Relay ..	1238
STA.	Discrete Function Time Delay Relay ..	1236
VTM-1	Discrete Function Timing M odule	1240
VTM 1	Discrete Function Timing Module	1241
VTM2	Discrete Function Timing M odule	1244
VTM3	Discrete Function Timing M odule	1245
VTM4	Discrete Function Timing Module	1246
VTM7..	Discrete Function Timing Module	1247
VTMA1	Discrete Function Timing M odule	1242
VTMR1	Discrete Function Timing Mod	1243

NOTE: In addition to the products listed in this section of the databook, time delay relays are also described in other sections are available with printed circuit board terminals. Following is a list:

Plug-in/Panel Mount Relays

 MT**Relay, socket and module combination.
Latching, Impulse, Rotary \& Special Application Relays
TR

Time delay relays are also included in our line of high performance relays (see overview in section 14 of this databook).

Time Delay Relays \& Modules
 1201-1256

P\&B Solid State Time Delay Terms and Definitions

A wide selection of various types of solid state time delay controls are presented by Potter \& Brumfield to meet the demands of commerce and industry. Typical applications for P\&B time delay relays include data processing operations, machine tool, safety device control and alarm circuit actuating. These diverse applications require a wide variety of time delays such as: fixed time delay on "operate" or "release" which is factory set and cannot be adjusted; resistor-adjustable time delay on "operate" which is adjustable with an external resistor; knob-adjustable time delay on "operate" which has a calibrated knob built into the assembly for ease of adjusting the time period. Each of the series of solid state time delays presented here varies in its degree of accuracy, variety available and cost to meet the requirements of every application.

Timing Variations - Any difference between the actual time delay of a particular device and the nominal value specified for that device.

These variations are due to:
(1) M anufacturing tolerances (component selections and tolerances, adjustments, etc.).
(2) Input voltage variation.

Includes DC or rms voltage variations, plus instantaneous voltage variations at time the control voltage is applied (AC only).
(3) Temperature (ambient plus self heating).
(4) Input cycling conditions:
a. duration of "off" time
b. duration of "on" time after actual time out

The terms used to define and specify time delay relay performance must reflect one or more of these time variation factors with sufficient clarity that both the manufacturer and the usermay arrive at essentially the same evaluation of device performance. To this end, the following terms and definitions are used.

Specified Delay Time - The advertised (or print specified) time of the delay function.

Actual Time, Standard Conditions (ATSC) - The actual delay time of a given device operated at $25^{\circ} \mathrm{C}$ and nominal input voltage, with sufficient "off" time of input voltage to permit full "short term" recovery of the timing interval. For purposes of establishing a reference ATSC it is recommended that the device be cycled @ $25^{\circ} \mathrm{C}$, nominal voltage, with input pulses of 1.3 X specified delay time, with 1 sec . off times. The resulting average of a group of consecutive time delay readings (excluding the 1st, which had an unknown off time) may be used to determine ATSC. Five cycles should be considered adequate for this determination.

The off time required for full "short term" recovery of the timing interval will vary to some extent, depending on relay type, timing circuit impedance (normally related to length of timing period), whether capacitor shorting contacts are used, whether the previous timing cycle was completed or interrupted during time out, and, if completed, the degree to which the input control "on" time extended beyond actual time out.

In practice, off times used may vary from a minimum approaching the release time of the output (50 to 200 ms typical, depending on the particular design) to a second or more, with as much as 15% difference in the resulting delay times. The greatest rate of change occurs as off times become increasingly short, while the rate of change becomes relatively negligible as increasingly long off times approach 1 second. However, for very long off times (measured in hours), and additional change in the first subsequent operation delay time may be experienced.

This additional change may be as much as 1-4\% (depending again on time delay type and design) and is usually obtained with off periods from 1-24 hours or more.

Repeatability - The percent variance of time within a group of consecutive timing cycles, starting with the second operation, when the timing device is operated under constant conditions (constant on-off times, input voltage and temperature). The average of a series of five consecutive operations, at any given set of conditions within specifications, will serve as the reference for determining the variation of individual readings within the group from the average. The maximum variation under such conditions should not exceed the repeatability value specified. For convenience, repeatability understandard conditions could be determined from the test used to measure ATSC (see below, left).

Tolerance - The variation between the specified delay time and the ATSC value, given in percent of the former.

Delta-Time - The percent timing change (from the ATSC value) for any variation of voltage and/or temperature within specified limits. Tests for this parameter would be essentially the same as described for ATSC, except that any constant combination of specified voltage and temperature extremes may be used.

Recycle Time - The length of time the control voltage must be interrupted, immediately following a timing interval, to produce a subsequent delay of at least 95\% of the reference delay under constant conditions of input voltage and ambient temperature. The reference delay may be the ATSC value determined under standard conditions (nominal voltage and $25^{\circ} \mathrm{C}$); however, any constant voltage-temperature combination within specifications may be used (must be the same voltage-temperature combination as used for recycle checks).

Note: If control voltage is interrupted prior to completion of a timing period, or at a time other than immediately following time out, the recycle time value (off time) may produce a subsequently shorter timing period, depending upon the particular design and when the interruption occurs within the internal RC charging cycle.

Correspondingly, this subsequent time delay may be from 85\% to 95\% of the reference actual delay as defined above.

Timing Cycle Interrupt "Transfer" - A momentary transfer (pickup and dropout) of the switching relay contacts which may occur if the timing cycle is interrupted. This phenomenon is inherent in CU series time delays; and, depending on when the timing interval is interrupted, the transfer duration may vary from zero to the release time value for that device.

Release Time - The time required, after time out, for the output switch to return to its normal, de-energized state when the control voltage is removed. This will vary to some extent with the duration of "on" time after actual time out and with temperature and voltage; the shortest release time being obtained when control voltage is removed immediately following completion of a timing period under conditions of minimum temperature and input voltage.

Transient Protection is provided so that the time delay will not be damaged by a transient input.

Polarity Protection is provided internally to protect the time delay of DC units from reversal of input voltage.

External Resistor Selection Guide for P\&B Time Delay Relays

For CL, CK \& CU Series

The "minimum" time setting on an extemal resistor adjustable model in any of these series is obtained by shorting together the extemal resistor terminals of the relay. The "maximum" time setting (within tolerance limits) is obtained by using the resistance value listed across from the maximum time for that unit in the tables below. Timing values between the minimum and maximum limits are linear with resistance within 10%. It is recommended that a $1 / 4$ watt, mimimum, resistor be used. External timing resistor should have less than 500 PPM temperature coefficient.

The external resistor value R_{0} required to obtain any time T_{0} can be calculated using the following formula:
$R_{0}=R_{1}\left(\frac{T_{0}-T_{s}}{T_{1}-T_{s}}\right)$
$\mathrm{T}_{0}=$ Desired Time
$\mathrm{T}_{\mathrm{S}}=$ Short Time (see relay type)
$\mathrm{T}_{1}=$ Long Time (see relay type)
$\mathrm{R}_{1}=$ Extremal Resistor Value required to obtain T_{1}
$\mathrm{R}_{0}=$ External Resistor Value required to obtain T_{0}
Example: Given a CUH-41-30060, find an external resistor value that will give a 30 second delay.

$$
\begin{aligned}
\text { Known: } \begin{aligned}
& \mathrm{T}_{1}=60 \text { seconds } \\
& \mathrm{T}_{\mathrm{S}}=1 \mathrm{~second} \\
& \mathrm{R}_{1}=1 \mathrm{meg} \\
& \mathrm{R}_{0}=1 \times 10^{6}(29) \\
& 59
\end{aligned}
\end{aligned}
$$

$$
\mathrm{R}_{0}=492 \mathrm{~K}
$$

Note: The actual time obtained will normally be within 5% of the desired time. This is due to construction tolerance.

CL \& CU Delay On Operate Resistor Values

Time (Sec.)		Approximate Resistance	
CU	CL	AC	DC
1.0	0.1	Short	Short
10.0	10.0	200 K	160 K
1.0	0.3	Short	Short
30.0	30.0	600 K	500 K
1.0	0.6	Short	Short
60.0	60.0	1.2 Meg	1.0 Meg
1.0	1.2	Short	Short
120.0	120.0	2.4 Meg	2.0 Meg

CK Delay On Operate Resistor Values

Time (Sec.)	Approximate Resistance	
	AC	DC
0.1	Short	Short
10.0	750 K	750 K
1.8	Short	Short
180.0	1.0 Meg	910 K

CK Delay On Release Resistor Values

Time (Sec.)	Approximate Resistance
	AC \& DC
0.1	Short
10.0	820 K
0.6	Short
60.0	910 K

For CD Series

The "minimum" time setting on an extemal resistor adjustable model in the CD series is obtained by shorting together the external resistor terminals of the relay. The "maximum" time setting (within tolerance limits) is pre-set at the factory, and no external resistor is necessary. Approximate resistance values required to obtain times between the minimum and maximum limits can be determined using the table and graph below. It is recommended that a $1 / 4$ watt, mimimum, resistor be used. External timing resistor should have less than 500 PPM temperature coefficient.

CD Resistor Values (AC \& DC Models)

Factory-set Time Delay. No Resistor (seconds)	Approximate Resistance* to Reduce Delay by 1/2	Short Circuit Time Delay (seconds)
1.0	$33 K$ ohms	0.1
5.0	200 K ohms	0.1
10.0	400 K ohms	0.1

* Resistor values shown correspond to a 1.0 multiplying factor. Use the graph below to determine other resistor values required to obtain time periods between the limits stated in the chart.

CD Timing Resistor Curve

To obtain CD series time delay relays having a linear resistance with time, please consult the factory.

AGASTAT Solid State Time Delay Terms and Definitions

Accuracy, absolute (or calibration accuracy) - the deviation of a selected time delay from the actual delay, measured with reference to a time standard, under standard conditions.

Accuracy, "attainable" - the "worst case" deviation in time delay, from a selected value, including all factors that contribute to its "error budget," including long-term drift, temperature drift, resolution, calibration accuracy, line-voltage and line-frequency effects, etc.
Accuracy, overall - the maximum deviation from the average of 100 consecutive time delays at any given time setting throughout the operating temperature, voltage, and frequency ranges.
Accuracy, repeat - the maximum deviation from the average of 100 consecutive time delays at any given time setting and any fixed combination of temperature and operating voltage.
Breakdown, circuit-to-case - the voltage insulation between any part of a TDR's circuitry and the frame or any other conductive part in the structure, including the case.
breakdown, control-to-load - the voltage insulation between control and load circuits.

Calibration linearity - in the mechanical calibration of a TDR delay-setting scale, the largest deviation of the actual delay-vs-rotation curve from a straight line drawn from minimum to maximum delay.
Counting TDR - a TDR in which a stable source generates precisely timed voltage pulses, and a digital counter registers a different voltage pattem or code on its output terminals for each pulse counted. The counter is connected to a digital decoder, preset to recognize a given code, which then operates the load-switching device.
Current drain - the current drawn by the delay and switching circuits in the TDR, not including the current drawn by the load.
delay - an interval of time generated before some planned event is caused to occur.
Delay adjustability - the capability of setting the duration of a time delay generated by a TDR; the
Delay range and resolution - taken together, describe the adjustability.
Delay adjustment - means of setting the duration of a time delay: pointer-knob-and scale, thumbwheel switch, extemal or internal potentiometer, etc. delay range - the span of time within which a TDR can generate time delays.
Dielectric withstand - the ability of insulating materials and spacings to withstand specified overvoltages for a specified time without flashover or puncture.
Electromechanical relay (EMR) - a controlled switch operated by causing sufficient current to flow through an electromagnetic coil; the resultant magnetic field, when strong enough, overcomes aspring force and closes and/ or opens the switch contacts.
Interface- in a TDR, one of the following: the nature of the means of adjusting time delay; of indicating status of delay and load; of powering control and load circuits, or of switching control and load circuits.
Isolation, control-to-load - the degree to which interaction has been prevented between control and load circuits in a TDR usually expressed as the effective impedance between them.
Leakage current - the current conducted by a solid state switching device in an "off" state.
LED readout - a numerical display made up of light-emitting diodes (solid state devices that glow when current is passed through them).
linearity - the regularity of calibration of a delay scale-i.e., the uniformity of the spacing equal delay increments. In aTDR with externally controlled delay, the constancy of the delay-to-resistance ration.
Line-frequency sensitivity - the deviation in delay, at any setting within specifications, per hertz or percent of line-frequency change from the nominal value, measured at specified line voltage and ambient temperature.
Line-voltage sensitivity - the deviation in delay, at any setting within specification, pervolt or percent of line-voltage change from the nominal value, measured at specified line voltage and ambient temperature.
Load-dependent delay - the characteristic of certain TDR's in which there is a significant change, due to internal heating, of a preset delay interval, following a long "load-ON" period.

Load rating - the maximum current, voltage, and frequency (if AC) of the loadcircuit energy that may be switched by a TDR, for normal life expectancy.
Load gates - solid state circuits that perform logic "switching functions."
Mode - see operating mode.
Noise - any unwanted signal impinging on a circuit or its environment.
Operate time - the longest interval between energization of an output relay and the completion of contact transfer under any combination of operating temperature and voltage.
Operating life-a measure of the number of operations a TDR can be expected to perform within specifications; forTDRs with electromechanical (EMR) loadswitching means, there are two ratings - mechanical and electrical operations at full rated load.
Operating mode - the relationship between control signal input, generation of delay or count, and transfer of load-switching contacts.
operating voltage range - the range of voltages over which a TDR will perform to specification. May be applied to either delay generating circuits, loadswitching circuits or both.
Peak current - the maximum short-duration load-circuit rating of the loadswitching circuit; also called "in-rush" or "surge" current.
R-C timer - an electronic time-delay relay in which the charging of a capacitor (C) through a resistor (R) generated the delay and an electronic circuit establishes a threshold, or critical value, for the capacitor voltage; when this value is reached, a load-switching device is operated.
Release time-the longest time interval between de-energization of an output relay and the complete transfer of its contacts under any combination of operating temperature and voltage.
Resettability - the precision with which a delay adjustment, once changed, can be reset.
Reset time-the shortest allowable interval between complete or interrupted timing cycles without risk of delay error or malfunction.
Resolution-the precision with which delay adjustment may be set; it depends on the type of adjustment means; for example, in a switch-settable design, the smallest change that can be made by moving one unit in the least-significant decade in a selector switch array.
solid-state relay (SSR) - a relay in which a semiconductor device (e.g., an SCR or TRIAC), switches the load.
Stability, long-term - the measure of the effect of time along on the delay generated by a TDR under specific operating conditions - e.g., the difference in the repeat accuracy between that measured when the TDR is new, and that measured one year later.
Stability, temperature - the effect of ambient temperature on the delay of a TDR, expressed in terms of the percent deviation in a preset delay per degree of temperature change from some nominal value.
TDR - time-delay relay.
Time-delay relay (TDR) - a device that upon energization or operation of a control circuit, generates a delay, at the end of which some planned event (e.g., load switching, or secondary control function) is caused to occur.
Timing diagram or timing ladder - a graphic representation of two or more sequences of events, all drawn to the same horizontal time scale, so that any point in one sequence occurs at the same time as any point directly above or below it in another sequence.
Timing range - the range of time intervals over which a particular TDR will generate delays.
Transfer - the switching of a relay's contacts from one state to the other, but in the past tense commonly used to denote the position of the contacts in the relay's energized or "transferred" state as opposed to its de-energized or "normal" state.
Transient protection or transient suppression - the prevention of malfunction of a TDR due to power-line transients, or the means of doing so. Usually effective only over a stated range or up to a stated maximum transient amplitude and duration.
Transient voltage tolerance - the largest momentary overvoltage peak that a TDR will withstand without damage or catastrophic malfunction.

AGASTAT Time Delay Relay Timing M odes

On-Delay: Time delay is initiated upon application of a control signal (i.e., operating voltage or on 11-pin model closure of the control switch). The output contacts energize at the end of the delay. Output contacts and the time delay circuit reset upon removal of the control signal regardless of state.

Off-Delay: The output contacts energize when the control switch is closed. The time delay is initiated upon opening of the control switch (operating voltage is applied continuously). De-energization occurs at the end of the delay. Output contacts energize and the time delay circuit resets upon closure of the control switch.

Interval: Time delay is initiated upon application of a control signal (i.e., operating voltage or closure of the control switch on 11-pin models). The output contacts energize when the control signal is applied. At the end of the delay, the output contacts de-energize. Output contacts and the time delay circuit reset upon removal of the control signal regardless of state.

On/ Interval : Time delay 1 is initiated upon application of a control signal (i.e., operating voltage or closure of the control switch on 11-pin models). The output contacts energize at the end of time delay 1 and de-energize at the end of time delay 2. Output contacts and the time delay circuit reset upon removal of the control signal regardless of state. Note: For the 48 K series, delay 2 is fixed at 0.5 seconds.

Note: When an extemal control switch is used, it must be closed before the unit is energized. If external control switch is open, the unit will not time out.

On-Delay / Off-Delay: Time delay is initiated for delay 1 upon closure of the control switch, for delay 2 upon opening of the control switch. (Operating voltage is applied continuously.) Output contacts energize at the end of time delay 1 , and de-energize at the end of time delay 2 . If the control state is reversed during the time delay, the time delay circuit automatically resets to zero. Note: For the 48 K series, time delays 1 and 2 are identical.

Repeat Cycle: Application of the operating voltage starts time delay 1. Upon expiration of this delay, the output contacts energize. Time delay 2 begins simultaneously. At the end of time delay 2 , the output contacts de-energize, and a new cycle begins. The cycles continue until power is removed. To reset the timer, input voltage must be removed. The state of the output contacts may be reversed on the 11 -pin 48 K by closing the control switch. Note: For the 48 K series, the time delays are identical.

Accumulating On-Delay: Time delay is initiated upon closure of the control switch. (Operating voltage is applied continuously.) Energization of the output contacts occurs at the end of the delay. If the control switch is opened during the time delay, the time delay pauses, and the relay holds (remembers) the delay accumulated so far. The time delay resumes when the control switch is re-closed. After energization, reset by opening the control switch. Regardless of state, reset by removing the operating voltage.

One Shot (Latching Interval): Operating voltage must be applied continuously. Output contacts energize and time delay is initiated upon closure of the control switch. Once closed, state of control switch has no further influence until time delay has expired. Upon expiration of time delay, output contacts deenergize and timer is reset by opening the control switch.

Accessories for AGASTAT Solid State Time Delay Relays

Sockets

BDS08SS Socket

- 8-pin octal socket
- DIN rail or panel mount
- Rated 10A @ 300VAC
- \#6-32 screws w/captive clamp plates
- 吅 File E140494
- (\$1) File LR29523M 37

BDS11SS Socket

- 11-pin octal-type socket
- DIN rail or panel mount
- Rated 10A @ 300VAC
- \#6-32 screws w/captive clamp plates
- PJ File E140494
- (1A) File LR29523M 37

BCSF11SC Socket

- Use with SCF series timer
- 11-pin octal-type socket
- DIN rail or panel mount
- Rated 10A @ 380VAC
- M3 screws w/captive clamp plates
- PJ File E140494
- (4A) File LR29523M37

BDT11SS Socket

- 11-pin tab socket
- DIN rail or panel mount
- Rated 10A @ 300VAC
- \#6-32 screws w/captive clamp plates
- 기 File E140494
- (\$1A File LR29523M37

Tr

3RP1 series

Standards and Specifications

- IEC 721-3-3 "Ambient conditions"
- IEC 61812-1/DIN VDE 0435 Part 2021 "Solid State Relays, Time Relays"
- IEC 1000 "electromagnetic compatibility"
- IEC 947-5-1: DIN VDE 0660 Part 200 'Low-voltage control circuit devices"

Timing Specifications

Timing Ranges: 0.05 to $1 / 0.15$ to $3 / 0.5$ to $10 / 1.5$ to $30 / 5$ to 100 sec .; 0.05 to $1 / 0.15$ to $3 / 0.5$ to $10 / 1.5$ to $30 / 5$ to 100 min .; 0.05 to 1 / 0.15 to $3 / 0.5$ to 10 / 1.5 to $30 / 5$ to 100 hr .

Timing Adjustment: Potentiometer adjustable within selected range.
Tolerance: $\pm 5 \%$ of full scale value.
Reset Time: 150 ms .
Minimum On Period: 35 msec .
Repeatability: $\pm 1 \%$.

Multifunction Solid State DIN Mount Time Delay Relay

- Available as SPDT or DPDT
- 15 time setting ranges
- .05s - 100hr programmable timing range
- Universal 24-240 VACNDC or fixed input types.
- 3A switching current rating
- Fits 35 mm DIN track
- Single function, Delay-On available

影

 $\stackrel{18}{81}$Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 1 Form C (SPDT).
2 Form C (DPDT)
Material: Silver tin oxide.
Rating: 3A @ 250VAC.
Switching Frequency: 2,500 ops./hour.
Electrical Life: 200,000 operations min. at rated load.
Mechanical Life: 30×10^{6} operations.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: Universal Input Type: 24-240V, $50 / 60 \mathrm{~Hz}$. AC or DC. Fixed Input Type: 24, 100-127, 200-240AC; 24VDC.
Operating Range: AC: 85 to 110%.

DC: 80 to 125%.

Power Requirement:
Universal Input Type: AC: 6VA.
DC: 2W.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$.
Operating: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Protection Category: IP 20 according to EN 60529.

Mechanical Data

Termination: Screw terminal.
Enclosure: Plastic DIN case.
Mounting: 35mm DIN track.
Weight: (3RP1505) 5.29 oz . (150g) approximately.
(3RP1525) 3.88 oz. (110g) approximately.

Configuring

- Changing the timer range and their functions will only be effective when they are carried out in a voltage-free state.
- Trigger input B1 or B3 must only be started when the supply voltage is applied.
- The same potential must be applied to A1 and B1, or A3 and B3. With the two-voltage design, only one voltage range must be connected.
- The triggering of the load paralleled to the start input is not permissible when using AC (see adjacent diagrams).

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Input Voltage		Input Type	Contact Arrang.	Wiring Diagram	Functions	Part Number
DC	AC					
3RP1505 Multifunction						
24	24, 100-127	Fixed	SPDT	1 to 8	1 to 8	3RP15 05-1AQ30
24	24, 200-240	Fixed	SPDT	1 to 8	1 to 8	3RP15 05-1AP30
24	24, 100-127	Fixed	DPDT	9 to 24	9 to 24	3RP15 05-1BQ30
24-240	24-240	Universal	DPDT	9 to 24	9 to 24	3RP15 05-1BW30
3RP1525 Delay On						
24	24, 100-127	Fixed	SPDT	1	1	3RP15 25-1AQ30
24	24, 200-240	Fixed	SPDT	1	1	3RP15 25-1AP30
24	24, 100-127	Fixed	DPDT	9	9	3RP15 25-1BQ30
24	24, 200-240	Fixed	DPDT	9	9	3RP15 25-1BP30

Outline Dimensions

3RP1505-1B, 3RP1525-1B

Wiring Diagram

5. Making-Pulse Contact

3RP1505-1A
3RP1525-1A

9. On-Delay

13. Making-Pulse Contact

3RP1505-1B

2. Off-Delay

With Auxiliary Voltage 3RP1505-1A

6. Breaking-Pulse Contact With Auxiliary Voltage 3RP1505-1A

10. Off-Delay

With Auxiliary Voltage 3RP1505-1B

14. Breaking-Pulse Contact With Auxiliary Voltage 3RP1505-1B

3. On and Off Delay With Auxiliary Voltage 3RP1505-1A

7. Pulse Forming With Auxiliary Voltage 3RP1505-1A

11. On-and Off-Delay With Auxiliary Voltage 3RP1505-1B

15. Pulse Forming With Auxiliary Voltage 3RP1505-1B

4. Flashing

3RP1505-1A

8. Additive On-Delay With Auxiliary Voltage and Instantaneous Contact 3RP1505-1A

12. Flashing

3RP1505-1B

16. Additive On-Delay With Auxiliary Voltage and Instantaneous Contact 3RP1505-1B

Wiring Diagrams (continued)

21. Making-Pulse Contact and Instantaneous Contact

3RP1505-1B

18. Off-Delay

With Auxiliary Voltage and Instantaneous Contact 3RP1505-1B

22. Breaking-Pulse Contact With Auxiliary Voltage and Instantaneous Contact 3RP1505-1B

19. On and Off Delay With Auxiliary Voltage and Instantaneous Contact 3RP1505-1B

23. Pulse Forming With Auxiliary Voltage and Instantaneous Contact 3RP1505-1B

20.Flashing and Instantaneous Contact

3RP1505-1B

24.Star-Delta Function

3RP1505-1B

Timing Function Descriptions and Settings 3RP1505-1A

3. On/Off Delay

4. Flasher

5. Impulse On

6. Impulse Off

8. Cumulative On Delay

3RP1505-1B

10. Off Delay

11. On/Off Delay

12. Flasher

14. Impulse Off

15. Pulse Shaping

16. Cumulative On Delay

18. Off Delay

19. On/Off Delay

20. Flasher

22. Impulse Off

23. Pulse Shaping

24. Star/Delta

NOTE: This product is scheduled to soon be discontinued. Suggested altematives are the P\&B CNT, CNS and CNM5 series time delay relays.

Timing Modes

Modes are user selectable via rotary selector switch (shown above) or screwdriver adjustment on optional recessed knob equipped models that are available on a special order basis for tamper-resistant requirements. Modes offered on specific models are:
48K91U: On-Delay, Off-Delay, Interval, On/Interval, One Shot, Repeat
Cycle, On-Delay/Off-Delay, Accumulating On.
48K90U: On-Delay, Interval, On/Interval, Repeat Cycle.
48K01A: On-Delay.

Timing Specifications

Timing Ranges: 0.1 to 1 / 1 to 10 / 10 to 100 sec.; 1 to 10 / 10 to 100 min.; 1 to 10 hr .
Timing Adjustment: Potentiometer adjustment with linear reference calibrations. Recessed dial option is available on a special order basis for tamper-resistant requirements.
Accuracy: Repeat Accuracy: $\pm 0.5 \% \pm 0.02 \mathrm{sec}$.
Overall Accuracy: $\pm 1 \% \pm 0.02 \mathrm{sec}$.
Reset Time: 25 ms .
Relay Operate Time: 50 ms .
Relay Release Time: 50 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Rating: 10A @ 30VDC or 120/240VAC, resistive.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

48K series

Programmable Time Delay Relay

- Up to 8 user-programmable timing modes
- 0.1 sec . to 10 hr . programmable timing range
- Socket or panel mount (1/16 DIN enclosure)
- Universal (24-240VAC/24-125VDC) and fixed input types
- 10A output relay with DPDT contacts
- Two LED indicators on universal input types
- ANSI C37.90 transient protection on universal input types

叫 File E60363
(18) File LR29186

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Coil, Contacts and Case: 1,500VAC.
Input Data @ 25º
Voltage: 48K90U \& 48K91U: $24-240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. and 24-125VDC.
48K01A: $120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
Power Requirement: 2 W , max.
Transient Protection: 48K90U \& 48K91U: Meets ANSI C37.90 Transient
Specification.
48K01A: 2,500V for 1ms.

Environmental Data

Temperature Range: Storage: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Operating: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Mechanical Data
Termination: 8 or 11-pin octal style plug.
Enclosure: Grey plastic 1/16 DIN case for socket or panel mounting.

Indicating LEDs:

48K90U \& 48K91U:

\quad| Power On LED \& Output Contacts LED (Typically |
| :--- |
| flashes when timing, stays on when output relay is |
| \quad energized.) |

48K01A: Output Contacts LED

Sockets: Fits either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 5 oz. (142g) approximately.

Ordering Information - Authorized distributors are likely to stock boldface part numbers listed below.

Part Number	Timing Modes	Operating Voltage	Termination Pins
48K01AS	One - On-Delay	$120 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$.	8
48K90US	Four - On-Delay, Interval, On/Interval, Repeat Cycle	Universal (24-240VAC, 50/60 Hz. or 24-125VDC)	8
48K91US	Eight - On-Delay, Off-Delay, Interval, On/Interval, One Shot, Repeat Cycle, On-Delay/Off-Delay, Accumulating On	Universal (24-240VAC, 50/60 Hz. or 24-125VDC)	

Ordering Note: The part numbers listed above are standard products with knobs for adjustment of mode, range and timing. On a special order basis other models are available with recessed dials requiring a screwdriver for adjustment. On the special order versions, the "S" part number suffix is replaced by an "R" suffix. Consult factory for availability of special order models.

Outline Dimensions

Wiring Diagrams (Bottom Views)

(pins numbered clockwise from keyway)

48K91US
(dotted line represents
internal connection)

48K90US
48K01AS

CNT series

Timing and Counting Modes

See the following page for a complete description of all programmable timing and counting modes.

Timing Specifications

Timing Ranges: 0.1 to 99.9 / 1 to $999 \mathrm{sec} . ; 0.1$ to 99.9 / 1 to 999 min.; 0.1 to 99.9 / 1 to 999 / 10 to $9,990 \mathrm{hr}$.

Timing Adjustment: Digital adjustment via thumbwheel switches.
Tolerance: $\pm 0.5 \% \pm 0.05 \mathrm{sec}$.
Delta Time (for AC units add $\pm \mathbf{1}$ cycle 60 Hz.): $\pm 0.1 \% \pm 0.05 \mathrm{sec}$.
Repeatability (Including first cycle of operation.): $\pm 0.1 \% \pm 0.05 \mathrm{sec}$.
Reset Time (power interruption): 45 ms , typ.; 60 ms , max.
Minimum Pulse Width, Control: 50 ms .
Recycle Time: 45 ms , typ.; 60 ms , max.

Counting Specifications

Maximum Count: 1 to 999; 10 to 9,990 ($\div 10$); 100 to 99,900 ($\div 100$).
Maximum Count Rate: 100 counts per second.
Mimumum Pulse Width:Count (Control): $3 \mathrm{~ms} . ;$ Reset: 3 ms .
Available Counting Functions: Operate at preset count and release at preset count.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.
Initial Dielectric Strength
Between Open Contacts: $1,000 \mathrm{~V}$ rms, 60 Hz .
Between All Other Conductors: $1,500 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}$.
Ordering Information - Authorized distributors are more likely to
Universal Input Model

Input Voltage	Part Number
$24-240$ VACNDC	CNT-35-96

Fixed Input Models

Input Voltage	Part Number
12VDC	CNT-35-26
120VAC	CNT-35-76

Outline Dimensions

Fits $1.77 \times 1.77(45 \times 45)$
Panel cutout

Multifunction, Digital Time Delay Relay/ Counter

- 10 programmable timing modes +2 counting modes
- 0.1 sec . to 9,990 hr. programmable timing range
- 1 to 99,900 counting range
- LCD digital display
- Universal (24-240VACNDC) and fixed input types
- 10A output relay with DPDT contacts
- Thumbwheel switches for programming

미 File E22575

(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: Universal Input Type: $24-240 \mathrm{~V} \pm 15 \%, 50 / 60 \mathrm{~Hz}$. AC or DC. Fixed Input Types: $120 \mathrm{VAC} \pm 15 \%, 50 / 60 \mathrm{~Hz}$ and 12VDC.
Power Requirement:
Universal Input Type: 10VA @ 240VAC; 5VA @ 120VAC; 1VA @ 24VAC.
10W @ 240VDC; 5W @120VDC; 1W @ 24VDC.
Fixed Input Types: 3VA @ 120VAC; 3W @ 12VDC.
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Input Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
Universal	$24-240 \mathrm{VACNDC}$	20.4 VACNDC	276 VACNDC
Fixed	120 VAC	102 VAC	138 VAC
	12 VDC	10.2 VDC	13.8 VDC

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity: 85\% relative humidity, non-condensing.

Mechanical Data

Termination: 11-pin octal style plug.
Enclosure: Beige plastic 1/16 DIN case.
Sockets: Fits either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 4.3 oz . (122g) approximately.
External Control: CONTROL, RESET: Active on contact closure or solid state switch closure to RETURN, 0-1.0VDC maximum voltage level (see wiring diagrams for interface circuits.
O stock boldface items listed below.
Accessories

Part Number	Name	Description
SSA-24C667	Mounting Clip	Ratchet-fit clip slides onto CNT from behind to secure CNT in panel mount applications.
SSA-24C668	Protective Cover	Clear, flexible cover slips snugly over bezel of CNT to help protect against dust and moisture. Durable cover also helps prevent inadvertant changes of programming switch settings.

Wiring Diagrams (Bottom Views)

(pins numbered clockwise from keyway)
EXTERNAL CONTROL SWITCHES**

* Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to "-".
** Important: A dry circuit switch is recommended. A "dry circuit" switch is one rated to reliably switch currents of less than 50 mA . Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.

Protective Cover \& Mounting Clip Dimensions

SSA-24C668

Protective Cover

SSA-24C667
Mounting Clip

Programming Switch Diagram

With this setting, the relay would operate after a delay period of 214 seconds.

Time/Counter Setting: 001 to 999

Timer Function Descriptions

A . Delay On Operate

Output relay turned on at end of programmed time interval which is started by CONTROL input or power-on with CONTROL on. Relay turned off by RESET input until next cycle is started. With CONTROL on, turning RESET off restarts timing

B. Delay On Release

Output relay turned on with CONTROL input and remains on for programmed time interval following removal of CONTROL. During time interval after release of CONTROL, RESET tums relay off until cycle restarted with reapplication of CONTROL. With CONTROL on, relay is held off while RESET is activated.

C. Interval On

Output relay turned on for programmed time interval by CONTROL or poweron with CONTROL on. RESET tums relay off until next cycle is started, and does not restart timing when RESET is removed.

D. Control-Off Interval On

Output relay turned on for programmed time interval by tum-off of CON-
TROL. RESET turns relay off until next cycle is started, and does not restart timing when RESET is removed.

E. Recycle

Output relay turned on at end of programmed time interval which is started by momentary CONTROL input or power-on with CONTROL on. Relay stays on for equal time interval, then turns off and cycle is repeated on a freerunning basis until terminated by momentary RESET, turning relay off. With CONTROL on, turning RESET off restarts cycle.

F. Single Cycle

Output relay turned on at end of programmed time interval which is
started by momentary CONTROL input or power-on with CONTROL on. Relay stays on for equal time interval, then turns off. RESET terminates timing and turns relay off. Turning RESET off does not restart timing.

G. Control On-Off Interval On (Watch Dog Timer)

Output relay turned on and programmed time interval started or restarted by change of CONTROL input. RESET turns relay off and stops timing. Turning RESET off does not restart timing.

H. Control On-Off Delay

Output relay turned on at end of programmed timing interval which is started or restarted by change of CONTROL input. If relay is on, turn-off of relay occurs at end of programmed time interval which is started or restarted by change of CONTROL input. RESET turns relay off and stops timing. Turning RESET off does not restart timing.

I. Pulse

Output relay turned on at end of programmed time interval, which is started by CONTROL input, for 0.5 second duration, and continues in pulsed mode at programmed time interval with fixed 0.5 second on-time. Turning CONTROL off tums relay off and stops timing. RESET turns relay off and inhibits operation. With CONTROL on, removal of RESET restarts timing.

J. Cumulative Delay On Operate

Output relay turned on at completion of total accumulate CONTROL input duration equal to programmed time. Turning CONTROL off before accumulation of programmed time results in measured time total being held until CONTROL is again turned on and total programmed time value is reached. RESET input resets time value to zero and turns relay off if energized. Turning RESET off restarts timing if CONTROL is on.

Counter Function Descriptions

CO - Operate at Preset Count - Normal Mode

After initializing by momentary activation of RESET input, each on/off signal at COUNT (CONTROL) input increments displayed count in upcounting manner from initial 000 value until preset count, set by thumbwheel switches, is reached and output relay tums on. Additional inputs continue to increment displayed count. Continued counting past maximum count (999) results in a "wrap-around" effect to 000, followed by contrinued up-counting. Activation of RESET input turns relay off and resets count to zero.

CR - Release at Preset Count - Normal Mode

Initializing by momentary activation of RESET input tums relay on. Operation is similar to CO (Operate at Preset Count) except relay turns off at a preset count.

CO or CR - Divide-by-10 Mode

Operation is as described previously, except count is incremented for every 10 on/off input signals for a maximum presettable count of 9,990.

CO or CR - Divide-by-100 Mode

Operation is as described previously, except count is incremented for every 100 on/off input signals for a maximum presettable count of 99,900.

Timing Modes

See the following page for a complete description of timing modes.

Timing Specifications

Timing Ranges: 0.1 to 1.0 / 1.0 to $10 / 10$ to 100 sec .; 0.1 to 1.0 / 1.0 to 10 / 10 to 100 min .

Timing Adjustment: Knob adjustable within selected range.
Tolerance: $-0,+20 \%$ of \max. specified at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add ± 1 cycle 60 Hz .): $\pm 10 \%$.
Repeatability (Including first cycle of operation.): $\pm 2 \%$ (for AC units add ± 1 cycle 60 Hz .).
Reset Time (power interruption): 45 ms , typ.; 60 ms , max.
Minimum Pulse Width, Control: 50 ms .
Recycle Time: 45 ms , typ.; 60 ms , max.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10 A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: $1,000 \mathrm{~V}$ rms, 60 Hz .
Between All Other Conductors: 1,500V rms, 60 Hz .

CNS series

Multifunction Time Delay Relay

- 8 programmable timing modes (4 on 8 -pin models)
- 0.1 sec . to 100 min . programmable timing range
- Universal (24-240VAC/VDC) and fixed input types
- 10A output relay with DPDT contacts
- DIP switch selection of timing mode and range
- Knob and dial scale for setting actual delay time

극 File E22575

(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathbf{C}$

Voltage: Universal Input Type: $24-240 \mathrm{~V} \pm 15 \%, 50 / 60 \mathrm{~Hz}$. AC or DC. Fixed Input Type: $120 \mathrm{VAC} \pm 15 \%, 50 / 60 \mathrm{~Hz}$.
Power Requirement:
Universal Input Type: 10VA @ 240VAC; 5VA @ 120VAC; 1VA @ 24VAC.
10W @ 240VDC; 5W @ 120VDC; 1W @ 24VDC.
Fixed Input Type: 3VA @ 120VAC.
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages and Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Input Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
Universal	$24-240$ VACNDC	20.4 VACNDC	276 VACNDC
Fixed	120 VAC	102 VAC	138 VAC

Note: DC voltage must be filtered (5% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity: 85% relative humidity, non-condensing.

Mechanical Data

Termination: 8- or 11-pin octal style plug.
Enclosure: Beige plastic 1/16 DIN case. Dial scale provided for knob adjustment reference.
Sockets: Models with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 4.3 oz . (122g) approximately.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Universal Input Models

Input Voltage	Timing Functions	No. of Pins	Wiring Dia.	Part Number
24-240VACNDC	4	8	1	CNS-35-92
24-240VACNDC	8	11	2	CNS-35-96

Fixed Input Models

Input Voltage	Timing Functions	No. of Pins	Wiring Dia.	Part Number
120VAC	4	8	1	CNS-35-72
120VAC	8	11	2	CNS-35-76

Outline Dimensions

Wiring Diagrams (Bottom Views) (pins numbered clockwise from keyway)

Accessory

Part Number	Name	Description
SSA-24C667	Mounting Clip	Ratchet-fit clip slides onto CNS from behind to secure CNS in panel mount applications.

Mounting Clip Dimensions

SSA-24C667

Mouting Clip

DIP Switch Layout

Note: The solid black blocks in the DIP switch diagrams indicate the switch positions. For example, all the switches are "off" in the diagram above.

Timing Function Descriptions and Switch Settings

8 Or 11 Pin

$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
$72 \& 92$ - Output relay is energized at the completion of the time interval which is initiated by the application of input voltage.

76 \& 96 - Same as the above except, closing the control switch after time out will deenergize the relay and reset the timer. Opening the switch will initiate another time interval. Closing the control switch during timing will reset the time to zero and inhibit timing until opened again.

Interval On (Input Controlled)

72 \& 92 - Output relay is energized by the application of input voltage. The time interval is initiated at the same time with the relay de-energizing at the completion of the time interval. $76 \& 96$ - Same as above. Closing the control switch will have no effect on timing or the state of the relay.

72 \& 92 - Output relay will begin cycling at a 50% duty cycle with the application of input power. The initial state of the relay will be de-energized.
$76 \& 96$ - Same as the above except, closing the control switch will de-energize the relay and inhibit timing until it is once again opened, at which time it will start from zero time.

Recycler (Initially On)

72 \& 92 - Output relay will begin cycling at a 50% duty cycle with the application of input power. The initial state of the relay will be energized.
76 \& 96 - Same as the above except, closing the control switch will energize the relay and inhibit timing until it is once again opened, at which time it will start from zero time. Dimensions are shown for Dimensions are in inches over 214 reference purposes only.

11 Pin Only

Delay on Release

76 \& 96 - Output relay is energized by the closing of the control switch with the input applied or the application of input voltage with the control switch already closed. The time interval will be initiated by the opening of the control switch with the relay de-energizing at the completion of the time interval. Closing the control switch after time out will energize the relay in preparation for another time interval. Closing the control switch during timing will reset the time to zero and inhibit timing until opened again.

Inverted Delay on Release

72 \& 92 - No Time Delay - Instantly On
76 \& 96 - Output relay will energize with the application of the input voltage when the control switch is open. Control switch closing will de-energize the relay. A timing interval will be initiated with the opening of the control switch, at the completion of which the relay willenergize. With the control switch closed upon application of input voltage, the relay will wait until the control switch is opened to initiate a time interval after which the relay will energize. Closing of the control switch during timing will reset the time to zero and inhibit timing until opened again.

Interval On (Switch Controlled)

$76 \& 96$ - Output relay is energized by the application of input voltage with the control switch closed or the closing of the control switch with the input applied. Immediately upon either, timing is initiated with the relay de-energizing at the completion of the time interval. Closing the control switch after time out will reset the timer, energize the relay, and initiate another time interval. Closing the control switch during timing will have no effect on timing or the state of the relay.

Interval Off

$76 \& 96$ - Output relay will initially be energized with the application of the input voltage when the control switch is open. Control switch closing will de-energize the relay and start a time interval. At the completion of the time interval, the relay will energize. With the control switch closed upon application of input voltage, a time interval will be initiated after which the relay will energize. Closing of the control switch during timing will have no effect on timing or the state of the relay.

Specifications and availability subject to change.

CNM 5 series

Timing Functions

See the following page for a complete description of timing functions.

Timing Specifications

Timing Ranges: 0.1 to 99.9 / 1 to 999 sec .;
0.1 to 99.9 / 1 to 999 min.;
0.1 to 99.9 / 1 to 999 / 10 to $9,990 \mathrm{hr}$.

Timing Adjustment: Digital adjustment via thumbwheel switches.
Tolerance: $\pm 0.05 \% \pm 0.04 \mathrm{sec}$.*
Repeatability (Including first cycle of operation.): $< \pm 0.05 \% \pm 0.04 \mathrm{sec}$.*
Reset Time (power interruption): 45 ms , typ.; 60 ms , max.
Minimum Pulse Width, Control: 50 ms .

* Timing is synchronized with input voltage frequency. Accuracy is dependent on input voltage frequency. Tolerance shows maximum variation from utility companies.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangement: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive;
1/2 HP @ 250VAC; 1/3 HP @120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Multifunction Time Delay Relay For Plug-In or Panel Mounting

- Five timing functions selectable via rotary switch
- 0.1 sec . to 9,990 hr. timing range
- Fixed input type (120VAC $\pm 15 \%$)
- 10A output relay with DPDT contacts
- 1/16 DIN style enclosure with 11-pin plug-in base
- Thumbwheel switches for programming delay time

미 File E22575
(\$1 1 File LR15734
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Output Poles: $1,500 \mathrm{~V}$ ms, 60 Hz .
Between Input and Output: 1,500V rms, 60 Hz .

Input Data @ $\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Voltage: 120VAC $\pm 15 \%, 60 \mathrm{~Hz}$.
Power Requirement: 3VA @ 120VAC.
Transient Protection: 13 J oule MOV.
Input Voltage \& Limits

Nominal Voltage	Minimum Voltage	Maximum Voltage
120VAC	102VAC	138VAC

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humidity: 85\% relative humidity, non-condensing.

Mechanical Data

Termination: 11-pin octal style plug.
Enclosure: Black plastic $1 / 16$ DIN ($48 \mathrm{~mm} \times 48 \mathrm{~mm}$) case.
Sockets: Fits either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 4.3 oz . (122g) approximate.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.
Time Delay Relay

Input Voltage	Part Number
120VAC	CNM5

Fits $1.77 \times 1.77(45 \times 45)$ panel cutout.

Wiring Diagrams (Bottom Views)

(pins numbered clockwise from keyway)
EXTERNAL CONTROL SWITCH** Optional Solid State Input Interface

**Important: A dry circuit switch is recommended. A "dry circuit" switch is one rated to reliably switch currents of less than 50 mA . Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.
Accessory

Part Number	Name	Description
SSA-24C667	Mounting Clip	Ratchet-fit clip slides onto CNM5 from behind to secure CNM5 in panel mount applications.

Mounting Clip Dimensions

SSA-24C667
Mounting Clip

Timer Function Descriptions

LED to show time status. See functional explanation for details.

Time Base:
$\begin{aligned} .1 \mathrm{~S}=1 / 10 \text { Seconds } & \text { Timing Range } 0.1 \text { to } 99.9 \text { Seconds } \\ \mathrm{S}=\text { Seconds } & \text { Timing Range } 1 \text { to } 999 \text { Seconds }\end{aligned}$
$1 \mathrm{M}=1 / 10$ Minutes
$M=$ Minutes
. $1 \mathrm{H}=1 / 10$ Hours
$\mathrm{H}=$ Hours
$10 \mathrm{H}=10$ Hours

Timing Range 0.1 to 99.9 Minutes Timing Range 1 to 999 Minutes Timing Range 0.1 to 99.9 Hours Timing Range 1 to 999 Hours Timing Range 10 to 9990 Hours

Repeat: Output relay is turned on at end of programmed time interval which is started by application of input power. Relay stays on for equal time interval, then turns off and cycle is repeated on a free-running basis with equal on and off times until terminated by removal of input power. LED is flashing when output relay is off and on continuously when the relay is on. Applying CONTROL input during timing will have no effect on timing or the state of the relay.

One Shot: Output relay is tumed on by applying CONTROL input with input voltage present or application of input voltage with the CONTROL input on. Immediately upon either, timing is initiated with the output relay turning off at the completion of the selected time interval. Applying CONTROL input after time out will reset the timer, turn on the output relay and initiate another time interval. LED is on continuously when output relay is off and flashes when the relay is on. Applying CONTROL input during timing will have no effect on timing or the state of the relay.

Off Delay: Output relay is turned on by applying CONTROL input with input voltage present or application of input voltage with the CONTROL input on. The time interval will be started by removing the CONTROL input with the output relay turning off at completion of the time interval. Reapplying the CONTROL during timing will reset the time to zero and inhibit timing until removed. LED is off when CONTROL input is on, flashing during timing and on continuously when the output relay is off.

Interval: Output relay is turned on for a programmed time interval by applying input voltage. LED flashes when output relay is on and is on continuously when the output relay is off. Applying CONTROL input will have no effect on timing or the state of the relay.

On Delay: Output relay is off for a programmed time interval which is started by applying input voltage. LED flashes when output relay is off and is on continuously when the output relay is on. Applying CONTROL input will have no effect on timing or the state of the relay.

Timing Modes

M odes are user selectable via screwdriver adjustment of recessed 4position selector dial.
Modes offered are: On-Delay, Off-Delay, Interval and Latching Interval.

Timing Specifications

Timing Ranges: 0.1 to $3 / 0.33$ to $10 / 1$ to $30 / 4$ to 120 sec.; 0.33 to 10 /
1 to 30 / 2 to 60 min.; 0.33 to 10 hr .
Timing Range Selection: Screwdriver select via recessed 8-position selector dial.
Timing Adjustment: Recessed potentiometer adjustment with reference calibrations.
Accuracy: Repeat Accuracy: $\pm 1 \% \pm 0.01 \mathrm{sec}$.
Overall Accuracy: $\pm 3 \% \pm 0.01 \mathrm{sec}$.
Reset Time: 30 ms .
Relay Operate Time: On-Delay and Interval mode: 30 ms .
Relay Release Time: Off-Delay, Interval and Latching Interval: 30 ms . (with factory-installed relay).
Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Arrangements: 2 Form C (DPDT).
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC 345VA.
Expected Mechanical Life: 10 million operations (with factory-installed relay).
Expected Electrical Life: 500,000 operations, min., at rated resistive load(with factory-installed relay).

Outline Dimensions
0.188 (5) WIDE SLOT FOR \#8 OR M4 MACHINE SCREW -

Wiring Diagram (Top View)

SSF series

Programmable
 Time Delay Relay

- 4 user-programmable timing modes
- 0.1 sec . to 10 hr . programmable timing range
- Parameters set with recessed screwdriver dials
- Universal voltage (plug-in relay dependent)
- 10A DPDT replaceable output relay minimizes downtime
- Front screw terminals
- DIN-rail, panel or machine tool track mount

T File E15631

(18) File LR29186

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Coil/Control Switch and Contacts: 1,500VAC for one minute.

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.
Power Requirement: 2W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$24,48 \mathrm{VACNDC}$	$1,000 \mathrm{~V}$	480 V
$120,240 \mathrm{VAC} / \mathrm{NDC}$	$3,000 \mathrm{~V}$	$2500 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohm@120/240VAC, 3000V <0.1 , sec.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: Panel, DIN-rail, Machine Tool mounting track mounting case with screw terminals.
Weight: 5.5 oz. (156 g) approximately.

Ordering Information

SSF	R	90	A
Series SSF	$\mathbf{R}=\mathrm{UL}$	Operating Mode 90	Operating Voltage
Universal	Recognized	Multiple modes -	(+10\%, -15\%)
Timer	Component	On-Delay	A $=120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
		Off-Delay	$\mathrm{B}=240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
		Interval	$\mathrm{E}=24 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
		Latching Interval	$\mathrm{F}=48 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.
			$\mathrm{N}=48 \mathrm{VDC}$
			$\mathrm{O}=24 \mathrm{VDC}$
			$\mathrm{P}=125 \mathrm{VDC}$
			X $=$ No factory -
			installed relay. \dagger

\dagger Voltage determined by customer-supplied relay. Only relays that operate on the above-listed voltages should be used. Timer operation using other relay voltages is not recommended.

Authorized distributors are likely to stock the following: SSFR90A SSFR90X

Timing Modes

Modes are user selectable via screwdriver adjustment of recessed 4position selector dial.
M odes offered are: On-Delay, Off-Delay, Interval and Latching Interval.

Timing Specifications

Timing Ranges: 0.1 to $3 / 0.33$ to $10 / 1$ to $30 / 4$ to 120 sec.; 0.33 to 10 /

$$
1 \text { to } 30 / 2 \text { to } 60 \text { min.; } 0.33 \text { to } 10 \mathrm{hr} \text {. }
$$

Timing Range Selection: Screwdriver select via recessed 8-position selector dial.
Timing Adjustment: Extemal knob potentiometer adjustment with reference calibrations.
Accuracy: Repeat Accuracy: $\pm 1 \% \pm 0.01 \mathrm{sec}$.
Overall Accuracy: $\pm 3 \% \pm 0.01 \mathrm{sec}$.
Reset Time: 30 ms .
Relay Operate Time: On-Delay and Interval mode: 55 ms . Relay Release Time: Off-Delay, Interval and Latching Interval: 40 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT)
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC; 345VA. Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.

Initial Dielectric Strength

Between Terminals and Case: 1,000VAC plus twice the nominal voltage for one minute.

Outline Dimensions

SCF TIMER

BCSF11SC SOCKET

Wiring Diagram (Bottom View)

NOTE: External wiring illustrated by broken lines

SCF series

Programmable
 Time Delay Relay

- 4 user-programmable timing modes
- 0.1 sec . to 10 hr . programmable timing range
- Parameters set with recessed dials
- Narrow width saves panel space
- 10A DPDT output relay
- Socket can be DIN-rail or back panel mounted

뮥 File E15631(relay) and E140494 (socket)
(818 File LR29186 (relay) and LR29513M7 (socket)
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.
Power Requirement: 2W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<1 \mathbf{~ m s}$
12 VDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
24 VACNDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
48 VACNDC	$1,000 \mathrm{~V}$	$480 \mathrm{~V}^{*}$
$120 \mathrm{VAC}, 125 \mathrm{VDC}$	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$
240 VACNDC	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$

* Minimum source impedance of 100 ohm.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: 11-pin octal-type plug for use with mating socket.
Mount relay in horizontal position (pins horizontal, knob down, LEDs up).
Status Indication: Power On LED and Output Contacts LED.
Weight: Relay: 3.5 oz. (156g) approx.; Socket: 1.7 oz. (48.3g) approx.

Ordering Information

Authorized distributors are likely to stock the following: None at present.

CN 1 series

On Delay, Time Delay Relay For Plug-In or Panel Mounting

- 0.1 sec. to $9,990 \mathrm{hr}$. timing range
- Fixed input type ($120 \mathrm{VAC} \pm 15 \%$)
- 10A output relay with DPDT contacts
- 1/16 DIN style enclosure with 8-pin plug-in base
- Thumbwheel switches for programming delay time

기 File E22575

(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Output Poles: $1,500 \mathrm{~V}$ ms, 60 Hz .
Between Input and Output: 1,500V rms, 60 Hz .
On Delay - Output relay turns on at the end of a programmed time interva which is started by applying input voltage. LED flashes when output relay is off and is on continuously when the output relay is on. Removal of input voltage turns off output relay. Reapplying input voltage resets the unit.

Timing Specifications

Timing Ranges: 0.1 to 99.9 / 1 to 999 sec.;
0.1 to 99.9 / 1 to 999 min .;
0.1 to 99.9 / 1 to 999 / 10 to $9,990 \mathrm{hr}$.

Timing Adjustment: Digital adjustment via thumbwheel switches.
Tolerance: $\pm 0.05 \% \pm 0.04 \mathrm{sec}$.*
Repeatability (Including first cycle of operation.): $< \pm .05 \% \pm 0.04 \mathrm{sec}$.* Reset Time (power interruption): 45 ms , typ.; 60 ms , max.

* Timing is synchronized with input voltage frequency. Accuracy is dependent on input voltage frequency. Tolerance shows maximum variation from utility companies.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangement: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive;
1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 120VAC $\pm 15 \%, 60 \mathrm{~Hz}$.
Power Requirement: 3VA @120VAC.
Transient Protection: 13 J oule MOV.
Input Voltage \& Limits

Nominal Voltage	Minimum Voltage	Maximum Voltage
120VAC	102VAC	138VAC

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humidity: 85\% relative humidity, non-condensing.

Mechanical Data

Termination: 8-pin octal style plug.
Enclosure: Black plastic $1 / 16$ DIN ($48 \mathrm{~mm} \times 48 \mathrm{~mm}$) case.
Sockets: Fits either 27E122 or 27E891 (snap-on) screw terminal sockets.
Weight: 4.3 oz . (122 g) approximate.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.
Time Delay Relay

Input Voltage	Part Number
120VAC	CN1

Fits $1.77 \times 1.77(45 \times 45)$ panel cutout.

Wiring Diagram (Bottom View)

(pins numbered clockwise from keyway)

Accessory

Part Number	Name	Description
SSA-24C667	Mounting Clip	Ratchet-fit clip slides onto CN1 from behind to secure CN1 in panel mount applications.

Mounting Clip Dimensions

SSA-24C667

Mounting Clip

Time Base

.1 S	$=1 / 10$ Seconds	
Timing Range 0.1 to 99.9 Seconds		
S	$=$ Seconds	Timing Range 1 to 999 Seconds
.1 M	$=1 / 10$ Minutes	Timing Range 0.1 to 99.9 Minutes
M	$=$ Minutes	Timing Range 1 to 999 Minutes
.1 H	$=1 / 10$ Hours	Timing Range 0.1 to 99.9 Hours
H	$=$ Hours	Timing Range 1 to 999 Hours
10 H	$=10$ Hours	Timing Range 10 to 9990 Hours

CG series

CMOS IC Time Delay Relay

- Repeatability to .05\%
- Choice of timing modes
- Delay on operate
- Delay on release
- Interval on
- Knob adjustable
- 10A output relay with DPDT contacts
- Various models time from 0.5 sec . to 100 min .

T File E22575

(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V rms, 60 Hz .

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 120VAC and 24VDC.
Power Requirement: AC Types: Typically less than 3 VA.
DC Types: Typically less than 3 W .
Transient Protection: Yes.
Reverse Voltage Protection: Yes.

Input Voltages \& Limits @ $25^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	120	105	130
DC	24	20	32

Note: DC voltage must be filtered (5% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 8- or 11-pin octal style plug.

Enclosure: Yellow plastic case. Knob adjustable types have dial scale for reference only.
Sockets: Models with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 8 oz . $(227 \mathrm{~g})$ approximately.

Timing Specifications

Timing Ranges: From 0.5 to 5.0 sec . through 10 to 100 min .
Timing Adjustment: Knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z}$.):
Knob Adj. Types:-0, $+10 \%$ of max. specified at high end of timing range; $+0,-10 \%$ of \min. specified at low end.
Delta Time (for AC units add ± 1 cycle 60 Hz.): $\pm 2 \%$, typ.; $\pm 5 \%$, max.
Repeatability (including first cycle of operation):
AC: $\pm 0.1 \%$, typ.; $\pm 0.5 \%$, max.; but not less than $\pm 16 \mathrm{~ms}$.
DC: $\pm 0.05 \%$ typ.; $\pm 0.1 \%$ max.; but not less than $\pm 3 \mathrm{~ms}$.
Release Time: 30 ms , typ.; 45 ms , max.
Recycle Time: AC: 40 ms , typ.; 60 ms , max.
DC: 30 ms , typ.; 45 ms , max.

Specifications and availability subject to change.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Delay on Operate Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120 VAC	0.5 to 5 Min.			
	1 to 10 Min.	Knob	1	CGB-38-70005M
	5 to 50 Min.			CGB-38-70010M
	10 to 100 Min.			CGB-38-70050M
$24 V D C$	5 to 50 Min.	Knob	1	CGB-38-70100M

Delay on Release Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	1 to 10 Min. 5 to 50 Min.	Knob	2	CGB-38-78010M CGB-38-78050M

Interval on Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	0.5 to 5 Sec. 1 to 10 Min.	Knob	1	CGB-38-79005S CGB-38-79010M
24VDC	1 to 10 Min.	Knob	1	CGD-38-39010M

Outline Dimensions

Wiring Diagrams - Bottom Views (pins numbered clockwise from keyway)

(DC POLARITY INDICATED)
Fig. 1
8 Pin

* If control switch is closed when power is applied, relay will immediately energize. A 50 millisecond minimum switch closure is required. IM PORTANT: a dry circuit switch is recommemded. A "dry circuit" switch is one rated to reliably switch currents of less than 50 mA . Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.
** Note: input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to " - "

Timing Modes

Delay on operate - Delay period begins when input voltage is applied. At the end of the delay period, the relay will operate and will not release until input voltage is removed. Reset occurs when input voltage is reapplied.

Delay on release - Input voltage must be applied continuously to operate the internal relay. When control Input is applied, the relay energizes. When control input is removed, timing begins. When timing is complete, the relay will de-energize. Time may be reset to zero during timing by reapplying control input.

Timing Specifications

Timing Ranges: From 0.1 to 180 sec.
Timing Adjustment: Fixed, extemal resistor and knob adjustable.
Tolerance (for AC units add $\pm 1 / 2$ cycle 60 Hz .):
Knob Adj. Types: $\pm 5 \%$ of max. specified at high end of timing range; min. specified, or less, at low end; $\pm 10 \%$ full scale.
Fixed Types: $\quad \pm 5 \%$.
Res. Adj. Types: $\pm 5 \%$ at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add $\pm \mathbf{1}$ cycle $\mathbf{6 0 ~ H z}$.): $\pm 5 \%$.
Repeatability (for AC units add ± 1 cycle 60 Hz .): $\pm 1 \%$.
Release Time: 45 ms , typ.; 60 ms , max.
Recycle Time: 45 ms , typ.; 60 ms , max.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

$C D$ series

CMOS IC Time Delay Relay

-1\% Repeatability

- Operates from $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
- Delay on operate or delay on release timing modes
- Fixed, knob or resistor adjustable types
- Calibrated dial on knob adjustable types
- 10A output relay with SPDT or DPDT contacts
- Various models time from 0.1 to 180 sec .

믹 File E22575
(18) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V rms, 60 Hz .

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: 24 \& 120VAC and 12 through 110VDC.
Power Requirement: AC Types: Typically less than 3 VA. DC Types: Typically less than 3 W .
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	24	20	28
	120	105	130
DC	12	11	13
	24	20	32
	48	41	55
	110	95	125

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 8- or 11-pin octal style plug.
Enclosure: Yellow plastic case. Knob adjustable types have dial scale calibrated in seconds $\pm 5 \%$.
Sockets: Models with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: $8 \mathrm{oz} .(227 \mathrm{~g})$ approximately.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Delay on Operate Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	0.1 to 1 Sec . 0.1 to 5 Sec . 0.1 to 10 Sec . 0.3 to 30 Sec . 0.6 to 60 Sec . 1.8 to 180 Sec .	Knob	1	CDB-38-70001 CDB-38-70002 CDB-38-70003 CDB-38-70006 CDB-38-70004 CDB-38-70005
120VAC	1 Sec .	Fixed		CDA-38-70012
120VAC	0.1 to 1 Sec . 0.1 to 5 Sec . 0.1 to 10 Sec .	Resistor	2	$\begin{aligned} & \text { CDF-38-70001 } \\ & \text { CDF-38-70002 } \\ & \text { CDF-38-70003 } \end{aligned}$
24VDC	0.1 to 10 Sec . 0.6 to 60 Sec . 1.8 to 180 Sec .	Knob	1	CDD-38-30003 CDD-38-30004 CDD-38-30005
48VDC	0.6 to 60 Sec .	Knob	1	CDD-38-40002
110VDC	0.1 to 1 Sec. 0.1 to 10 Sec . 0.6 to 60 Sec . 1.8 to 180 Sec .	Knob	1	CDD-38-60004 CDD- $38-60001$ CDD- $38-60002$ CDD-38-60003

Delay on Release Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	0.1 to 1 Sec .	Knob	3	CDB-38-70016
	0.1 to 5 Sec .			CDB-38-70091
	0.1 to 10 Sec .			CDB-38-70014
	0.3 to 30 Sec .			CDB-38-70092
	0.6 to 60 Sec .			CDB-38-70012
	1.8 to 180 Sec .			CDB-38-70015
120VAC	1 Sec .	Fixed	3	CDA-38-70025
12VDC	180 Sec .	Fixed	3	CDC-38-20026
24VDC	0.1 to 10 Sec .	Knob	3	CDD-38-30014
	0.6 to 60 Sec .			CDD-38-30012
	1.8 to 180 Sec .			CDD-38-30008

Outline Dimensions

Wiring Diagrams - Bottom Views (pins numbered clockwise from keyway)

EXTERNAL RESISTOR

(DC POLARITY INDICATED)**

(DC POLARITY INDICATED)**

Fig. 1
8 Pin

Fig. 2
11 Pin

Fig. 3
11 Pin

* If control input is applied when supply input is applied, relay will immediately energize. A 50 millisecond minimum control pulse is required
** Note Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to "-".

External Resistor Selection Chart

See External Resistor Selection Charts at beginning of Time Delay Relay section of this Databook.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only.	(millimeters) unless otherw ise	subject to change.

CK series

Mid-Priced CMOS IC Time Delay Relay

- Choice of timing modes
- Delay on operate
- Delay on release
- Delay on dropout (no input required during timing)
- Interval on
- Knob or resistor adjustable types
- 10A output relay with DPDT contacts
- Various models time from 0.1 to 180 sec.

? ${ }^{\text {o }}$ File E22575

(14B File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V rms, 60 Hz .

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: 24 \& 120VAC and 12 \& 24VDC.
Power Requirement: AC Types: Typically less than 3 VA.
DC Types: Typically less than 3 W .
Initiate Time: Delay on dropout timers must have input voltage applied for a minimum of three seconds for dropout function to be guaranteed.
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	24	20	28
DC	120	105	130
24	11	13	

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 8- or 11-pin octal style plug.
Enclosure: White plastic case. Knob adjustable types have dial scale for reference only.
Sockets: Models with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: $6 \mathrm{oz} .(170 \mathrm{~g})$ approximately.

Timing Specifications

Timing Ranges: From 0.1 to 180 sec .
Timing Adjustment: External resistor and knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z}$.):
Knob Adj. Types:-0, +20\% of max. specified at high end of timing range; min. specified, or less, at low end.
Fixed Types: $\pm 5 \%$.
Res. Adj. Types: $\pm 5 \%$ at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add ± 1 cycle 60 Hz .): $\pm 10 \%$.
Repeatability (for AC units add $\pm \mathbf{1}$ cycle 60 Hz.): $\pm 2 \%$.
Release Time: 60 ms , typ.; 100 ms , max.
Recycle Time: 60 ms , typ.; 100 ms , max.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Delay On Operate Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec .	Knob	1	CKB-38-30010
120VAC	0.1 to 10 Sec . 0.6 to 60 Sec . 1.2 to 120 Sec . 1.8 to 180 Sec .	Knob	1	$\begin{aligned} & \text { CKB-38-70010 } \\ & \text { CKB-38-70060 } \\ & \text { CKB-38-70120 } \\ & \text { CKB-38-70180 } \end{aligned}$
120VAC	0.1 to 10 Sec .	Resistor	2	CKF-38-70010
12VDC	0.1 to 10 Sec .	Knob	1	CKD-38-20010

Delay On Release Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
	0.1 to 10 Sec.			CKB-38-78010
120VAC	0.6 to 60 Sec.	Knob	3	CKB-38-78060 1.8 to 180 Sec.
			CKB-38-78180	

Delay On Dropout Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec .	Knob	1	CKB-38-37010
	0.6 to 60 Sec .			CKB-38-37060
120VAC	0.1 to 10 Sec .			CKB-38-77010
	0.6 to 60 Sec .	Knob	1	CKB-38-77060
	1.2 to 120 Sec .			CKB-38-77120

Interval On Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	0.1 to 10 Sec.	Knob	3	CKB-38-79010

Outline Dimensions

Wiring Diagrams - Bottom Views (pins numbered clockwise from keyway)

INPUT (DC POLARITY INDICATED)** Fig. 1
8 Pin

INPUT
(DC POLARITY INDICATED)**
Fig. 2
11 Pin

CONTINUOUS SUPPLY INPUT
(DC POLARITY INDICATED)**
Fig. 3
11 Pin

Fig. 3

EXTERNAL SWITCH*
-

EXTERNAL CONTROL

CONTINUOUS SUPPLY
INPUT
(DC POLARITY INDICATED)**
Fig. 4
11 Pin

circuit" switch is one rated to reliably switch currents of less than 50 mA . Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.
** Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to " - ".

External Resistor Chart

See External Resistor Selection Charts at beginning of Time Delay Relay section of this Databook.

Dimensions are shown for	Dimensions are in inches over	Specifications and availability
reference purposes only.	(millimeters) unless otherwise	subject to change.

Timing Modes

Delay on operate - Delay period begins when input voltage is applied. At the end of the delay period, the relay will operate and will not release until input voltage is removed. Reset occurs when input voltage is reapplied.

Delay on release - Input voltage must be applied continuously to operate the intemal relay. When the control switch is closed, the relay energizes. When the control switch is opened, timing begins. When timing is complete, the relay will de-energize. Time may be reset to zero during timing by closing the control switch.

Interval on - The relay energizes and timing begins when input voltage is applied. At the end of the time delay period the relay will de-energize. Reset is accomplished by removing, then reapplying, the input voltage.

Timing Specifications

Timing Ranges: From 1 to 180 sec .
Timing Adjustment: Fixed and knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z .}$.):
Knob Adj. Types:-0, $+20 \%$ of max. specified at high end of timing range; min. specified, or less, at low end.
Fixed Types: $\quad \pm 5 \%$.
Res. Adj. Types: $\pm 5 \%$ at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add ± 1 cycle $\mathbf{6 0 ~ H z}$.): $\pm 10 \%$.
Repeatability (for AC units add ± 1 cycle $\mathbf{6 0 ~ H z}$.): $\pm 2 \%$.
Release Time: 125 ms , typ.; 200 ms , max.
Recycle Time: 125 ms , typ.; 200 ms , max.

CH series

Mid- To Low-Priced CMOS IC Time Delay Relay

- Choice of timing modes

- Delay on operate
- Delay on release
- Interval on
- Fixed or knob adjustable types
- 10A output relay with DPDT contacts
- Various models time from 1 to 180 sec .

吹 File E22575
 (18 File LR15734

> Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V rms, 60 Hz .

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: 24 through 240VAC and 24VDC.
Power Requirement: AC Types: Typically less than 3 VA.
DC Types: Typically less than 3 W .
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	24	20	28
DC	240	105	130
24	20	260	

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 8- or 11-pin octal style plug.
Enclosure: White plastic case. Knob adjustable types have dial scale for reference only.
Sockets: M odels with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: $6 \mathrm{oz} .(170 \mathrm{~g})$ approximately.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Delay on Operate Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24 VAC	1 to 10 Sec. 1 to 180 Sec.	Knob	1	CHB-38-30001 CHB-38-30003
120VAC	1 to 10 Sec. 1 to 60 Sec. 1 to 180 Sec.	Knob	1	CHB-38-70001 CHB-38-70002 CHB-38-70003
120VAC	10 Sec.	Fixed	1	CHA-38-70001
240 VAC	1 to 10 Sec.	Knob	1	CHB-38-80001
24 VDC	1 to 10 Sec. 1 1 to $60 ~ S e c$. 1 to 180 Sec.	Knob	1	CHD-38-30001 CHD-38-30002 CHD-38-30003

Delay on Release Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	1 to 10 Sec.	Knob	3	CHB-38-30011
120VAC	1 to 10 Sec. 1 to $60 ~ S e c . ~$ 1 to 180 Sec.	Knob	3	CHB-38-70011 CHB-38-70012 CHB-38-70013
24 VDC	1 to 10 Sec. 1 to 180 Sec.	Knob	3	CHD-38-30011 CHD-38-30013

Interval on Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
	1 to 10 Sec.			CHB-38-70021 CHB-38-70022 120VAC
	1 to 60 Sec. 1 to 180 Sec.	Knob	1	CHB-38-70023
24 VDC	1 to 10 Sec.	Knob	1	CHD-38-30021

Outline Dimensions

Wiring Diagrams - Bottom Views (pins numbered clockwise from keyway)

(DC POLARITY INDICATED)
Fig. 2
11 Pin

AC INPUT
Fig. 3
11 Pin

[^29]** Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to " - ".

Dimensions are shown for reference purposes only.	Dimensions are in inches over (millimeters) unless otherw ise specified.	Specifications and availability subject to change.	www.tycoelectronics.com Technical support: Refer to inside back cover.

Timing Modes

Delay on operate - Delay period begins when input voltage is applied. At the end of the delay period, the relay will operate and will not release until input voltage is removed. Reset occurs when input voltage is reapplied.

Delay on release - Input voltage must be applied continuously to operate the internal relay. When the control switch is closed, the relay energizes. When the control switch is opened, timing begins. When timing is complete, the relay will de-energize. Time may be reset to zero during timing by closing the control switch.

Interval on (without control switch) - The relay energizes and timing begins when input voltage is applied. At the end of the time delay period the relay will de-energize. Reset is accomplished by removing, then reapplying, the input voltage.

Interval on (with control switch) - Input voltage must be applied continuously to operate the internal relay. The relay energizes and timing begins when the external switch is closed. At the end of the time delay period the relay will de-energize. Reset is accomplished by opening and reclosing the control switch.

N.O. RELAY ON

CONTACTS OF

Timing Specifications

Timing Ranges: From 0.1 to 1.0 sec . through 10 to 100 min .
Timing Adjustment: Knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z}$.):
Knob Adj. Types: $-0,+30 \%$ of max. specified at high end of timing range; min. specified, or less, at low end.
Fixed Types: $\pm 10 \%$.
Res. Adj. Types: $\pm 10 \%$ at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add ± 1 cycle 60 Hz .): $\pm 10 \%$.
Repeatability (for AC units add $\pm \mathbf{1}$ cycle $\mathbf{6 0 ~ H z}$.): $\pm 2 \%$.
Release Time: 60 ms , typ.; 100 ms , max.
Recycle Time: 60 ms , typ.; 100 ms , max.

CB series

CMOS IC Time Delay Relay

- Choice of timing modes
- Delay on operate
- Delay on release
- Interval on with or without control switch
- Knob adjustable
- 10A output relay with SPDT or DPDT contacts
- Various models time from 0.1 sec . to 100 min .
rat File E22575
(15 File LR15734
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT), except 8-pin delay on release model has 1 Form C (SPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC; 1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V rms, 60 Hz .

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 24 and 120VAC, and 12 and 24VDC.
Power Requirement: AC Types: Typically less than 3 VA.
DC Types: Typically less than 3 W .
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	24	20	28
DC	120	105	130
24	11	13	
	20	32	

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 8- or 11-pin octal style plug.
Enclosure: White plastic case. Knob adjustable types have dial scale for reference only.
Sockets: Models with 8-pin base fit either 27E122 or 27E891 (snap-on) screw terminal sockets. 11-pin types fit either 27E123 or 27E892 (snap-on) screw terminal sockets.
Weight: 6 oz. (170 g) approximately.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Delay on Operate Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec . 1.8 to 180 Sec	Knob	1	$\begin{aligned} & \text { CB-1041B-30 } \\ & \text { CB-1042B-30 } \end{aligned}$
120VAC	0.1 to 1 Sec . 0.1 to 5 Sec . 0.1 to 10 Sec . 0.6 to 60 Sec . 1.8 to 180 Sec 1 to 10 Min . 10 to 100 Min .	Knob	1	CB-1001B-70 CB-1002B-70 CB-1003B-70 CB-1004B-70 CB-1005B-70 CB-1006B-70 CB-1007B-70
12VDC	0.1 to 10 Sec .	Knob	1	CB-1047D-20
24VDC	0.1 to 1 Sec. 0.1 to 10 Sec . 0.6 to 60 Sec . 1.8 to 180 Sec .	Knob	1	$\begin{aligned} & \text { CB-1026D-30 } \\ & \text { CB-1028D-30 } \\ & \text { CB-1029D-30 } \\ & \text { CB-1030D-30 } \end{aligned}$

Delay on Release Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec .	Knob	3	CB-1045B-38
	1.8 to 180 Sec			CB-1046B-38
120VAC	0.1 to 10 Sec .	Knob	3	CB-1021B-78
	0.1 to 10 Sec .		5	CB-1022B-78
	0.6 to 60 Sec .		3	CB-1023B-78
	1.8 to 180 Sec .		3	CB-1024B-78
24VDC	0.1 to 10 Sec .	Knob	3	CB-1038D-38
	1.8 to 180 Sec .			CB-1039D-38

Interval on Models

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec.	Knob	1	CB-1043B-39
120VAC	0.1 to 5 Sec.		1	CB-1011B-79
	0.1 to 10 Sec.	Knob	1	CB-1014B-79
	1 to 10 Min.		1	CB-1018B-79
24 VDC	0.1 to 5 Sec.	Knob	1	CB-1034D-39
	1.8 to 180 Sec.			CB-1036D-39

Outline Dimensions

Wiring Diagrams - Bottom Views (pins numbered clockwise from keyway)

	EXTERNAL CONTROL SWITCH*	EXTERNA CONTRO SWITCH*
+ -	CONTINUOUS SUPPLY	CONTINUOUS SUPPLY
INPUT (DC POLARITY INDICATED)**	INPUT (DC POLARITY INDICATED)**	INPUT (DC POLARITY INDICATED)**
Fig. 1 8 Pin	Fig. 3 11 Pin	Fig. 5 8 Pin

[^30]

Timing Mode

Recycle timing - First delay period begins when input voltage is applied. At the end of the first delay, or " off" period, the relay will operate and the second delay, or "on" period, begins. When the second delay period ends, the relay de-energizes. This recycling sequence will continue until input voltage is removed. When input voltage is removed, the relay will deenergize.

NPUT
VOLTAGE

Timing Specifications

Timing Ranges: From 0.1 to 180 sec .
Timing Adjustment: Knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle 60 Hz.): -0%, +20\% of max. specified at high end of timing range; min. specified, or less, at low end.
Delta Time (for AC units add ± 1 cycle 60 Hz .): $\pm 10 \%$.
Repeatability (for AC units add $\pm \mathbf{1}$ cycle $\mathbf{6 0 ~ H z}$.): $\pm 2 \%$.
Release Time: 60ms, typ.; 100 ms , max.

CR series

Recycle Time Delay Relay

- Individual ON and OFF time adjustment knobs
- 10A output relay with DPDT contacts
- Various models time from 0.1 to 180 sec.

只 File E22575

(181) File LR15734

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: 500 V ms, 60 Hz .

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 120VAC and 24VDC.
Power Requirement: AC Types: Typically less than 3 VA.
DC Types: Typically less than 3 W.
Transient Protection: Yes
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $25^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	120	105	130
DC	24	20	32

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage)
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

$$
\text { Operating: }-10^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \text {. }
$$

Mechanical Data

Termination: Octal plug.
Enclosure: White plastic case with dial scales for reference only.
Sockets: Fits either 27E122 or 27E891 (snap-on) 8-pin screw terminal sockets.
Weight: 6 oz. (170g) approximately.

Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

	Voltage	Time	Part Number
AC	0.1 to 10 Sec	CRB-48-70010	
Types	120VAC	0.3 to 30 Sec.	CRB-48-70030
	0.6 to 60 Sec.	CRB-48-70060	
	1.8 to 180 Sec.	CRB-48-70180	

DC	Voltage	Time	Part Number
Type	24 VDC	1.8 to 180 Sec.	CRD-48-30180

Outline Dimensions

Wiring Diagram - Bottom View (pins numbered clockwise form keyway)

(DC POLARITY INDICATED)
Fig. 1
8 Pin
** Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to " - ".

CL-CU series

Timing Mode

Delay on operate - Delay period begins when input voltage is applied. At the end of the delay period, the relay will operate and will not release until input voltage is removed. Reset occurs when input voltage is reapplied.

CL Timing Specifications

Timing Ranges: From 0.1 to 1.0 sec . through 1.2 to 120 sec .
Timing Adjustment: Fixed, external resistor and knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z}$.):
Knob Adj. Types:-0, +20\% of max. specified at high end of timing range; min. specified, or less, at low end.
Fixed Types: $\pm 5 \%$.
Res. Adj. Types: $\pm 10 \%$ at high end of timing range; min. specified, or less, at low end.
Repeatability (for AC units add $\pm \mathbf{1}$ cycle $\mathbf{6 0 ~ H z}$.): $\pm 3 \%$.
Release Time: 100 ms , typ.; 150 ms , max.
Recycle Time: 100 ms , typ.; 150 ms , max.

CU Timing Specifications

Timing Ranges: From 1.0 to 10 sec . through 1.0 to 120 sec .
Timing Adjustment: Fixed, external resistor and knob adjustable.
Tolerance (for AC units add $\pm \mathbf{1 / 2}$ cycle $\mathbf{6 0 ~ H z}$.):
Knob Adj. Types:-0, $+20 \%$ of max. specified at high end of timing range; min. specified, or less, at low end.
Fixed Types: $\pm 5 \%$.
Res. Adj. Types: $\pm 10 \%$ at high end of timing range; min. specified, or less, at low end.
Repeatability (for AC units add ± 1 cycle $\mathbf{6 0 ~ H z}$.): $\pm 3 \%$.
Release Time: 150 ms , typ.; 225 ms , max.
Recycle Time: 150 ms, typ.; 225 ms, max.

Note: On CU types the switching contact may momentarily transfer if the timing interval is interupted. CL types have no timing cycle interrupt transfer.

Compact Time Delay Relay

- Delay on operate timing mode
- Fixed, knob or resistor adjustable types
- 10A output relay with DPDT contacts
- Variety of mounting options
- Various models time from 0.1 to 120 sec.
- No timing cycle interrupt transfer (CL only)

只 File E22575
(6A) File LR15734
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Material: Silver-cadmium oxide alloy.
Rating: 10A @ 30VDC or 277VAC, resistive; 1/2 HP @ 250VAC;
1/3 HP @ 120VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 100,000 operations, min., at rated load.

Initial Dielectric Strength

Between Open Contacts: 500 V rms, 60 Hz .
Between All Other Conductors: $500 \mathrm{~V} \mathrm{rms}, 60 \mathrm{~Hz}$.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: 24 \& 120VAC and 12 \& 24VDC.
Power Requirement: AC Types: Typically less than 3 VA. DC Types: Typically less than 3 W.
Transient Protection: Yes.
Reverse Voltage Protection: Yes.
Input Voltages \& Limits @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage Type	Nominal Voltage	Minimum Voltage	Maximum Voltage
AC	24	20	28
DC	120	105	130
24	11	13	

Note: DC voltage must be filtered (5\% p-p ripple max. at nom. voltage).
AC models will operate on 50 or 60 Hz .

Environmental Data

Temperature Range: Storage: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Termination: 0.187 in . (4.75 mm) quick-connect.
Enclosure: Yellow plastic case (see outline drawings for various options). Knob adjustable types have dial scale for reference only.
Sockets: Solder, printed circuit and screw terminal sockets available.
Weight: 3.5 oz . 99 g) approximately.

CL Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	0.1 to 10 Sec .	Knob	1	CLB-51-30010
24VAC	0.1 to 10 Sec .	Resistor	2	CLF-42-30010
120VAC	0.1 to 10 Sec . 0.3 to 30 Sec . 1.2 to 120 Sec .	Knob	1	$\begin{aligned} & \text { CLB-51-70010 } \\ & \text { CLB-51-70030 } \\ & \text { CLB-51-70120 } \end{aligned}$
120VAC	$\begin{aligned} & 3 \mathrm{Sec} . \\ & 30 \mathrm{Sec} . \end{aligned}$	Fixed	1	$\begin{aligned} & \text { CLA-41-70003 } \\ & \text { CLA-41-70030 } \end{aligned}$
120VAC	0.1 to 10 Sec . 0.1 to 10 Sec . 1.2 to 120 Sec .	Resistor	2	$\begin{aligned} & \text { CLF-41-70010 } \\ & \text { CLF-42-70010 } \\ & \text { CLF-41-70120 } \end{aligned}$

Voltage	Time	Adjustment	Wiring Dia.	Part Number
12VDC	0.1 to 10 Sec.	Knob	1	CLD-51-20010
12VDC	10 Sec.	Fixed	1	CLC-41-20010
12VDC	1.2 to 120 Sec.	Resistor	2	CLH-41-20120
24 VDC	5 Sec.	Fixed	1	CLC-41-30005
	0.1 to 10 Sec.			CLH-41-30010 $24 V D C$
	0.3 to 30 Sec. 0.1 to 10 Sec.	Resistor	2	CLH-41-30030 CLH-45-30010

41 style models (e.g. CLA-41-70010) have plain case.
42 style models (e.g. CLF-42-70010) have bracket mount case.
45 style models (e.g. CLH-45-30010) have bracket mount case with test button.
51 style models (e.g. CLB-51-30010) have plain case with knob.

CU Ordering Information - Authorized distributors are more likely to stock boldface items listed below.

Voltage	Time	Adjustment	Wiring Dia.	Part Number
24VAC	10 Sec .	Fixed	1	CUA-41-30010
24VAC	1 to 10 Sec . 1 to 10 Sec .	Resistor	2	CUF-41-30010 CUF-42-30010
120VAC	1 to 10 Sec . 1 to 30 Sec . 1 to 60 Sec . 1 to 120 Sec .	Knob	1	CUB-51-70010 CUB-51-70030 CUB-51-70060 CUB-51-70120
120VAC	1 Sec . 3 Sec . 3 Sec . 5 Sec . 10 Sec . 10 Sec . 30 Sec . 120 Sec .	Fixed	1	CUA-41-70001 CUA-41-70003 CUA-42-70003 CUA-41-70005 CUA-41-70010 CUA-42-70010 CUA-42-70030 CUA-41-70120

Voltage	Time	Adjustment	Wiring Dia.	Part Number
120VAC	1 to 10 Sec .	Resistor	2	CUF-41-70010
	1 to 10 Sec .			CUF-42-70010
	1 to 30 Sec .			CUF-41-70030
	1 to 120 Sec .			CUF-41-70120
	1 to 120 Sec .			CUF-42-70120
24VDC	1 to 10 Sec .	Resistor	2	CUH-41-30010
	1 to 10 Sec .			CUH-42-30010
	1 to 120 Sec .			CUH-41-30120
	1 to 120 Sec .			CUH-42-30120

41 style models (e.g. CUA-41-70010) have plain case.
42 style models (e.g. CUA-42-70010) have bracket mount case.
51 style models (e.g. CUB-51-70010) have plain case with knob.

Outline Dimensions
41 Style

Wiring Diagrams - Bottom Views

(DC DC POLARITY INDICATED) **
Fig. 1

(DC POLARITY INDICATED) **

Fig. 2
** Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to " - ".

External Resistor Selection Chart

See External Resistor Selection Charts at beginning of Time Delay Relay section of this Databook.

Timing Mode

On-Delay.

Timing Specifications

Timing Ranges: Instantaneous; 0.1 to 1 / 1 to 10 / 10 to 100 sec.; 1 to 10 / 10 to 100 min.; 1 to 10 hr .
Timing Range Selection: Screwdriver select via recessed dial on side.
Timing Adjustment: Screwdriver adjust via recessed dial with reference calibrations on top.
Accuracy: Repeat Accuracy: $\pm 0.5 \%$
Overall Accuracy: $\pm 1 \% \pm 0.02 \mathrm{sec}$.
Reset Time: 25 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT) or 4 Form C (4PDT).
Rating: 5A @ 30VDC or 240VAC, resistive.
Expected Electrical Life: 100,000 operations, min., at rated resistive load.

Outline Dimensions

Terminal Base Diagram

NOTE: Only necessary terminals are present on DPDT models.

M D0 series

Subminiature, On-Delay Time Delay Relay

- On-delay timing mode
- Seven user-selectable timing ranges (0.1 sec . to 10 hr .)
- High accuracy and reliability
- Exceptional transient protection (ANSI C37.90)
- 5A DPDT or 4PDT output contacts
- Universal voltage

미 File E60363

(81) File LR51332

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: Universal: 24-240VAC, 50/60 Hz. or 24-125VDC.
Power Requirement: 2W, max.
Transient Protection: Meets ANSI C37.90 Transient Specification.

Environmental Data

Temperature Range: Storage: $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-25^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: MDO series time delay relays can be socket mounted horizontally or vertically and will operate within repeat accuracy of $\pm 0.5 \%$.
Sockets: Fits either 27E166 or 27E894 (snap-on) screw terminal sockets.
Status Indication: Power On LED and Output Contacts LED.
Weight: $4 \mathrm{oz} .(96 \mathrm{~g})$ approximately.

Ordering Information

Part Number	Contacts	Input Voltage
MD012AU	DPDT	Universal
MD014AU	4PDT	$24-240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$. or 24-125VDC

Authorized distributors are likely to stock the following: MD014AU

Wiring Diagrams (Bottom Views)

DPDT

4PDT

Timing Modes

On-Delay, Off-Delay and Interval.

Timing Specifications

Timing Ranges: 6 to 180 cycles; 0.1 to 3 / 0.1 to 10 / 0.33 to 10 / 1 to 30 / 4 to 120 sec.; 0.33 to $10 / 1$ to $30 / 2$ to 60 min.; 0.33 to 10 hr. (All are $+10 \%,-1 \%$ of maximum values).
Timing Adjustment: Knob or fixed time (intemal fixed resistor) - all models; customer supplied extemal potentiometer or resistor - On-Delay and Interval models only.

Accuracy: Repeat Accuracy: $\pm 1 \% \pm 0.004 \mathrm{sec}$. at any combination of operating temperature and voltage.
Overall Accuracy: $\pm 5.25 \%$ throughout operating temperature and voltage ranges.
Reset Time: 25 ms . (minimum deenergized interval for on-delay or off-delay models, or minimum required closure interval for interval models without affecting accuracy.)
Relay Operate Time: Off-Delay mode only: 35 ms .
Relay Release Time: On-Delay mode only: 20 ms .

Contact Data @ $25^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT),
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.

Initial Dielectric Strength

Between Terminals and Case: 1,000VAC plus twice the nominal voltage for one minute.

Outline Dimensions

Wiring Diagrams (Bottom Views)

Off-Delay
Fixed or Knob Adjust
 Adjust

SSC series

Specification Grade Discrete Plug-in Time Delay Relay

- On-Delay, Off-Delay and Interval timing modes
- 13 timing ranges from 0.1 sec . to 60 min .
- 10A DPDT output contacts
- Escellent repeatability of $\pm 1 \%$ or better.
- Exceptional immunity to transients and noise.
- Wide operating temperature range.
<n> File 3520
C
File LR29186
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.
Power Requirement: 3W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
12 VDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
24 VACNDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
48 VACNDC	$1,000 \mathrm{~V}$	$480 \mathrm{~V}^{*}$
120 VACNDC	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$
240 VAC	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$

* Minimum source impedance of 100 ohm.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: 8- or 11-pin octal type plug. 8-pin types fit either 27E122 or 27E891, while 11-pin types fit 27E123 or 27E892. Weight: 4 oz. (112g) approximately.

Ordering Information

Operating Voltage Timing Adjustment
($+10 \%,-15 \%$) $\quad A=$ Knob Adjust
$A=120 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} . \quad \mathrm{B}=$ External
/ 120VDC
Potentiometer or
$B=240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} . \quad$ resistor (Operating
$\mathrm{E}=24 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} . / \quad$ modes 1 and 3 only $)$.
24VDC
$\mathrm{F}=48 \mathrm{VAC}, 50 / 60 \mathrm{~Hz} . /$
48VDC
$\mathrm{Q}=12 \mathrm{VDC}(\pm 10 \%)$
$\mathrm{F}=$ Fixed Times
Specify time delay
in seconds per the
following examples:
F9.000 $=9 \mathrm{sec}$.
F99.00 $=99 \mathrm{sec}$.
F999.0 = 9999 sec .
F1000 = 1000 sec .

Authorized distributors are likely to stock the following:

SSC12AAA	SSC12ACA	SSC12AGA
SSC12ABA	SSC12ADA	SSC12ALA.

Timing Modes

On-Delay, Off-Delay and Interval.

Timing Specifications

Timing Ranges: 6 to 180 cycles; 0.1 to 3 / 0.1 to 10 / 0.33 to 10 / 1 to 30 / 4 to 120 sec.; 0.33 to $10 / 1$ to $30 / 2$ to 60 min.; 0.33 to 10 hr. (All are $+5 \%,-0 \%$ of maximum values).
Timing Adjustment: Knob or fixed time (internal fixed resistor) - all models; customer supplied external potentiometer or resistor - On-Delay and Interval models only.

Accuracy: Repeat Accuracy: $\pm 0.5 \% \pm 0.004 \mathrm{sec}$. Overall Accuracy: $\pm 2 \%$ max.

Reset Time: 25 ms .

Relay Operate Time: Off-Delay mode: 30 ms ; Interval mode: 20 ms ..
Relay Release Time: On-Delay mode only: 15 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC; 345VA. Same polarity.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.

Initial Dielectric Strength

Between Terminals and Case: 1,000VAC plus twice the nominal voltage for one minute.

Outline Dimensions

Wiring Diagrams (Bottom Views)

Off-Delay
Fixed or Knob Adjust

SCB/SCC series

Specification Grade Discrete Plug-in Time Delay Relay

- On-Delay, Off-Delay and Interval timing modes
- 13 timing ranges from 0.1 sec . to 60 min .
- 10A DPDT output contacts
- Knob, fixed or external timing adjustment.
- Rated for pilot duty
- Premium components
File 3520

7. File E60363
C
File LR51332
(IL) File E60363 (SCC only)

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.
Power Requirement: 3W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
All except 12 \& 24	$3,000 \mathrm{~V}$	2,500
$12 \& 24$	Consult Factory	

Environmental Data

Temperature Range:
Storage: SCB and SCC: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: SCB: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$; SCC: $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination:
SCB: UL recognized. Optional 8- or 11-pin octal-type sockets may be ordered separately.
SCC: 8- or 11-pin octal type sockets supplied with timer. (Must be used to qualify as "UL Listed" device.)
Weight: SCB: 5.3 oz . (149 g) approx.; SCC: 7.5 oz (210 g) approx.
Ordering Information (All "X's" must be included to complete part number)

Authorized distributors are likely to stock the following:

None at present.

Timing Modes

On-Delay, Off-Delay, Interval and Accumulating On-Delay.

Timing Specifications

Timing Ranges: 6 to 180 cycles; 0.1 to 3 / 0.5 to 15 / 1 to 30 / 2 to 60 / 4 to 120 / 6 to 180 / 10 to 300 sec.; 0.33 to $10 / 0.5$ to 15 / 1 to 30 min .; 1 to $6 / 2$ to 48 hr . (All are $+5 \%,-0 \%$ of maximum values).
Timing Adjustment: Knob or fixed time (intemal fixed resistor) - all models; customer supplied external potentiometer or resistor - On-Delay and Interval models only.

Accuracy: Repeat Accuracy: $\pm .5 \% \pm 0.004 \mathrm{sec}$..
Overall Accuracy: $\pm 2 \%$ throughout operating temperature and voltage ranges.
Reset Time: 30 ms . min. (between deenergization and reenergization without affecting accuracy.)
Relay Operate Time: Off-Delay mode: 35 ms .; Interval mode: 20 ms .
Relay Release Time: On-Delay and Accumulating On-Delay modes: 20 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC; 345VA. Same polarity.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.

Initial Dielectric Strength

Between Terminals and Case: $1,000 \mathrm{VAC}$ plus twice the nominal voltage for one minute.

Outline Dimensions

Wiring Diagrams (Bottom Views)

Off-Delay \& Accumulating On-Delay Fixed or Knob Adjust
 Adjust

STA series

Specification Grade Discrete Plug-in Time Delay Relay With QC Terminals

- On-Delay, Off-Delay, Interval and Accumulating On-Delay timing modes
- 13 timing ranges from 0.1 sec . to 48 hr .
- 10A DPDT output contacts
- Knob, fixed or external timing adjustment.
- QC plug-in terminals save space, two LEDs show status
© $\stackrel{\text { Qile }}{ } 3520$
7I File E60363
File LR51332

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details. Power Requirement: 3W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<1 \mathbf{~ m s}$
All except 12 \& 24	$3,000 \mathrm{~V}$	2,500
$12 \& 24$	Consult Factory	

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: Quick connect terminals fit either 27E121 or 27E893 (snap-on) socket (order separately).
Status Indication: Power On LED and Output Contacts LED (optional).
Weight: 4.2 oz . (119 g) approximately.
Ordering Information (All "X's" must be included to complete part number)

Operating Voltage Timing Adjustment
($+10 \%,-15 \%$) XA $=$ Knob Adjust
$\mathrm{A}=120 \mathrm{VAC}, 50 / 60 \quad \mathrm{XB}=$ External
Hz. / 120VDC
Potentiometer or
resistor (Operating
$F=48 \mathrm{VAC}, 50 / 60$
Hz. / 48VDC
$\mathrm{Q}=12 \mathrm{VDC}$ modes 1 and 3
only).
XF =Fixed Times Specify time delay in seconds per the following examples: XF9.000 $=9 \mathrm{sec}$.
XF99.00 $=99 \mathrm{sec}$.
XF999.0 $=9999 \mathrm{sec}$.
$X F 1000=1000 \mathrm{sec}$.
Authorized distributors are likely to stock the following: None at present.

Timing Modes

Repeat Cycle: Application of line voltage starts the pre-set OFF-time period Upon expiration of the period, the output relay is energized, its contacts transfer, and the pre-set ON-time period begins. At the end of this period the output relay is deenergized, and a new cycle begins. The OFF and ON cycles continue until power is removed. To reset the timer, input voltage must be removed for at least 25 ms .

Timing Specifications

Timing Ranges: OFF time and ON time ranges need not be the same. 6 to 180 cycles; 0.1 to 3 / 1 to 10 / 0.5 to 15 / 1 to 30 / 2 to $60 / 4$ to $120 / 6$ to $180 / 10$ to 300 sec.; 0.33 to $10 / 0.5$ to 15 / 1 to $30 / 2$ to 60 min . (All are $+10 \%,-1 \%$ of maximum values).
Timing Adjustment: Two intemal potentiometers with external knobs.
Accuracy: Repeat Accuracy: $\pm 1 \% \pm 0.004 \mathrm{sec}$.
Overall Accuracy: $\pm 2.25 \%$ max.
Reset Time: 25 ms . max. (between deenergization and reenergization without affecting accuracy.)
Relay Operate Time: 20 ms .
Relay Release Time: 15 ms .

Contact Data @ $25^{\circ} \mathbf{C}$

Arrangements: 2 Form C (DPDT).
Rating: 10A @ 28VDC or 120VAC, resistive; 1/3 HP @ 120/240VAC.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.
Initial Dielectric Strength
Between Terminals \& Case and Mutually Isolated Contacts: 1,480VAC.
Outline Dimensions

Wiring Diagram (Bottom View)

SRC series

Specification Grade Repeat Cycle Plug-in Time Delay Relay

- Repeat Cycle timing mode
- Dual knobs for user adjustment of on and off times.
- 13 timing ranges from 0.1 sec . to 60 min .
- 10A DPDT output contacts
- Exceptional immunity to line transients and noise
- Premium components enhance reliability
- Superior reset time of 24 msec .

C

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details. Power Requirement: 3W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$\boldsymbol{< 1} \mathbf{~ m s}$
12 VDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
24 VACNDC	$1,000 \mathrm{~V}$	$240 \mathrm{~V}^{*}$
48 VACNDC	$1,000 \mathrm{~V}$	$480 \mathrm{~V}^{*}$
120 VACNDC	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$
240 VAC	$3,000 \mathrm{~V}$	$2,500 \mathrm{~V}^{*}$

* Minimum source impedance of 100 ohm.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: Quick connect terminals fit either 27E121 or 27E893 (snap-on) socket (order separately).
Weight: 5.3 oz . (149g) approximately.

Authorized distributors are likely to stock the following: None at present.

Timing Modes

On-Delay, Off-Delay, Interval, One Shot (Latching Interval) or Repeat Cycle.

Timing Specifications

Timing Ranges: Nine ranges spanning 0.1 sec . to 120 min .
Timing Adjustment: Knob adjust.
Accuracy: Repeat Accuracy: $\pm 1 \%$.
Overall Accuracy: $\pm 5 \%$.
Reset Time: $50 \mathrm{~ms} .$, max., (25 ms typ.) for on-delay and interval; 300 ms , max., for off-delay and one shot; 500 ms , max., for repeat type.
Relay Operate Time: 50 ms .
Relay Release Time: 30 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 2 Form C (DPDT).
Rating: 10A @ 120/240VAC, resistive; 1/3 HP @ 120/240VAC, 50/60 Hz.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 500,000 operations, min., at rated resistive load.

Initial Dielectric Strength

Between Contacts, Line Inputs and Control Circuits:
$1,500 \mathrm{~V}$ RMS, minimum, at 60 Hz .

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.

Power Requirement: 3W, max.

Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$12 \& 24 \mathrm{VACNDC}$	860 V	$208 \mathrm{~V}^{*}$
120 VAC	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* M inimum source impedance of 100 ohm.

Environmental Data

Temperature Range: Storage: $-23^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$. Operating: $-23^{\circ} \mathrm{C}$ to $+54^{\circ} \mathrm{C}$.
Outline Dimensions

Wiring Diagrams (Bottom Views)

Dimensions are shown for	Dimensions are in inches over
reference purposes only.	(millimeters) unless otherw ise

(millimeters) unless otherw ise specified.

SST series

Industrial Grade Discrete Plug-in Time Delay Relay

- On-Delay, Off-Delay, Interval, One Shot \& Repeat modes
- Time delays to 120 min .
- Fast setting with time calibrated knobs.
- Superior transient protection.
- Rugged construction with 8- or 11-pin plug.
- Flame retardant housing.

TJ File E15631
(818) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Mechanical Data

Mounting/Termination: On-Delay, Interval and Repeat types have 8- pin octal plug that fits either 27E122 or 27E891 socket. Off-Delay and One Shot types have 11-pin octal-type plug that fits 27E123 or 27E892. Sockets must be orderd separately.
Weight: 4 oz. (112g) approximately.
Ordering Information

SST1 - On Delay Types

Input	Time Range	Part No.
120	$0.1-10 \mathrm{sec}$.	SST12AAA
VAC	$0.6-60 \mathrm{sec}$.	SST12ACA
	$1.8-180 \mathrm{sec}$.	SST12ADA
	$3-300 \mathrm{sec}$.	SST12AEA
	$18 \mathrm{sec} .-30 \mathrm{~min}$.	SST12AGA
	$36 \mathrm{sec} .-60 \mathrm{~min}$.	SST12AHA
24	$0.1-10 \mathrm{sec}$.	SST12EAA
VAC	$1.8-180 \mathrm{sec}$.	SST12EDA
	$3-300 \mathrm{sec}$.	SST12EEA
24	$0.1-10 \mathrm{sec}$.	SST12OAA
VDC	$1.8-180 \mathrm{sec}$.	SST12ODA
	$3-300 \mathrm{sec}$.	SST12OEA
12	$0.1-10 \mathrm{sec}$.	SST12QAA
VDC	$1.8-180 \mathrm{sec}$.	SST12QDA
	$3-300 \mathrm{sec}$.	SST12QEA

SST3 - Interval Types

Input	Time Range	Part No.
120	$0.1-10 \mathrm{sec}$.	SST32AAA
VAC	$1.8-180 \mathrm{sec}$.	SST32ADA
	$3-300 \mathrm{sec}$.	SST32AEA
	$36 \mathrm{sec} .-60 \mathrm{~min}$.	SST32AHA
24	$0.1-10 \mathrm{sec}$.	SST32EAA
VAC	$1.8-180 \mathrm{sec}$.	SST32EDA
24	$0.1-10 \mathrm{sec}$.	SST32OAA
VDC	$1.8-180 \mathrm{sec}$.	SST32ODA
12	$0.1-10 \mathrm{sec}$.	SST32QAA
VDC	$1.8-180 \mathrm{sec}$.	SST32QDA

SST7 - Repeat Cycle Types

Input	Time Range	Part No.
120	$0.1-10 \mathrm{sec}$.	SST72AAA
VDC	$1.8-180 \mathrm{sec}$.	SST72ADA
	$3-300 \mathrm{sec}$.	SST72AEA
	$18 \mathrm{sec} .-30 \mathrm{~min}$.	SST72AGA
	$36 \mathrm{sec} .-60 \mathrm{~min}$.	SST72AHA
24	$0.1-10 \mathrm{sec}$.	SST72EAA
VDC	$1.8-180 \mathrm{sec}$.	SST72EDA
24	$0.1-10 \mathrm{sec}$.	SST72OAA
VDC	$1.8-180 \mathrm{sec}$.	SST72ODA
12	$0.1-10 \mathrm{sec}$.	SST72QAA
VDC	$1.8-180 \mathrm{sec}$.	SST72QDA

Authorized distributors are likely to stock the following: None at present.

SST4 - One Shot* Types

Input	Time Range	Part No.
120	$0.1-10 \mathrm{sec}$.	SST42AAAA
VDC	$1.8-180 \mathrm{sec}$.	SST42ADA
	$3-300 \mathrm{sec}$.	SST42AEA
	$18 \mathrm{sec} .-30 \mathrm{~min}$.	SST42AGA
	$36 \mathrm{sec} .-60 \mathrm{~min}$.	SST42AHA
24	$0.1-10 \mathrm{sec}$.	SST42EAA
VDC	$1.8-180 \mathrm{sec}$.	SST42EDA
24	$0.1-10 \mathrm{sec}$.	SST42OAA
VDC	$1.8-180 \mathrm{sec}$.	SST42ODA
12	$0.1-10 \mathrm{sec}$.	SST42QAA
VDC	$1.8-180 \mathrm{sec}$.	SST42QDA

* Also known as Latching Interval

SST2 - Off Delay Types

Input	Time Range	Part No.
120	$0.1-10 \mathrm{sec}$.	SST22AAA
VDC	$1.8-180 \mathrm{sec}$.	SST22ADA
	$3-300 \mathrm{sec}$.	SST22AEA
	$18 \mathrm{sec} .-30 \mathrm{~min}$.	SST22AGA
	$36 \mathrm{sec} .-60 \mathrm{~min}$.	SST22AHA
24	$0.1-10 \mathrm{sec}$.	SST22EAA
VDC	$1.8-180 \mathrm{sec}$.	SST22EDA
24	$0.1-10 \mathrm{sec}$.	SST22OAA
VDC	$1.8-180 \mathrm{sec}$.	SST22ODA
12	$0.1-10 \mathrm{sec}$.	SST22QAA
VDC	$1.8-180 \mathrm{sec}$.	SST22QDA

CAUTION:

If unit has not been energized for several months, apply operating voltage for $\mathbf{2 0}$ minutes prior to initial time delay.

Timing Modes

True Off-Delay - Upon application of operating voltage (min. 100ms), output relay contacts transfer. When operating voltage is removed, the time delay period is initiated. At the end of the delay period, output relay contacts release. If operating voltage is reapplied prior to expiration of the delay period, the delay will be cancelled and output relay contacts will remain transferred.

Timing Specifications

Timing Ranges: 0.1 to 3 / 0.5 to 15 / 1 to $30 / 4$ to $120 / 10$ to 300 sec.; 0.33 to 10 min .

Timing Adjustment: Knob adjustment - Intemal potentiometer with extemal knob adjustment. Maximum time calibrated with $+10 \%,-0 \%$ of values shown below at rated voltage, at $68^{\circ} \mathrm{F}$. Fixed time - internal fixed resistor.
Accuracy: Repeat Accuracy: ± 1.
Overall Accuracy: $\pm 5 \%$.
Reset Time: 30 ms . min.
Relay Operate Time: 30 ms .

Contact Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Arrangements: 1 Form C (SPDT) and 2 Form C (DPDT).
Rating: 1 Form C: 10A @ 120/240VAC, resistive; 1/3 HP @ 120VAC; 345VA @ 120VAC; 1/4 HP @ 240VAC; 275VA @ 240VAC. Same polarity. 2 Form C: 5A @ 28VDC or 120/240VAC, resistive; 1/6 HP @ 120/ 240VAC; 200VA @ 120/240VAC. Same polarity.
Expected Mechanical Life: 10 million operations.
Expected Electrical Life: 200,000 operations, min., at rated resistive load.

Outline Dimensions

Wiring Diagrams (Bottom Views)

Fixed Time Or Knob Adjust

Fixed Time Or Knob Adjust

SCE series

Specification Grade Discrete Plug-in True Off-Delay Time Delay Relay

- True Off-Delay timing modes
- Six time delays from 0.1 sec . to 10 min .
- 10A SPDT or 5A DPDT output contacts.
- Excellent repeat accuracy - typically better than $\pm 1 \%$.
- 8--pin octal plug.

71 File E15631
(18) File LR51332

C

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Initial Dielectric Strength

Between Terminals and Case and relay contacts and active circuitry: $1,480 \mathrm{VAC}$ for one minute.

Input Data @ $25^{\circ} \mathrm{C}$

Voltage: See Ordering Information section for details.
Power Requirement: 750mw.
Transient Protection: 1,000V plus twice rated voltage for 0.1 ms .

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting/Termination: 8-pin octal plug fits either 27E122 or 27E891
(snap-on) socket (order separately).
Weight: 4 oz. (112 g) approximately.

Authorized distributors are likely to stock the following: None at present.

Timing Mode

On-Delay - VTM-1 in-line timing module is wired in series with the load circuit. Time delay is initiated when power is applied to the series network. Connecting a resistor across the center terminals provides tamper-proof setting of time delay from 1-1000 sec.

Timing Specifications

Timing Ranges: 1 to $1,000 \mathrm{sec}$.
Timing Adjustment: Time delay is set by connecting an appropriately rated resistor or potentiometer between the center two terminals. As supplied, the unit provides a nominal 1 second delay. Add 10k ohm of resistance for every additional second of delay required. For example: 5 seconds $=40 \mathrm{k}$ ohms; 10 seconds $=90 \mathrm{k}$ ohms.
Accuracy: Repeat Accuracy: $\pm 2 \%$
Reset Time: 100 ms , max., in the timing or time-out condition.

Output Switch Data

Arrangement: 1 Form A (SPST-NO).
Rating: 5A, inductive, at nominal operating voltage.
Inrush: Not to exceed 10A for one cycle.
Max. Leakage Current: 4mA rms.
Expected Electrical Life: 10,000,000 operations at rated load.

Initial Dielectric Strength

Between Active Terminals and Outside of Case: 1,480VAC for one min.

Outline Dimensions

VTM - 1 series

Specification Grade, On-Delay Timing Module

- On-delay timing mode
- Timing from 1 to 1000 sec .
- 1A solid state SPST-NO output
- $0.25^{\prime \prime}$ (6.35) quick connect terminals
- Universal voltage: 24 to 240VACNDC
- Rated to 10 million operations

吹 File E60363

(18) File LR51332

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $25^{\circ} \mathrm{C}$

Operating Voltage: Universal: 24-240VACNDC (19-288VACNDC).
Current: 2mA (max.) required to operate timer regardless of output state. Power Requirement: 3W, max.
Transient Protection: MOV across input 2,000V for 11μ s on line side of load.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-30^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Screw mount in horizontal or vertical position through built-in mounting ears.
Termination: 0.250 in (6.35) quick connect terminals for input line, load output and timing resistor connection.
Weight: $3 \mathrm{oz} .(84 \mathrm{~g})$ approximately.

Ordering Information

Part Number	Mode	Input Voltage
VTM-1	On-Delay	24-240VAC or VDC

Authorized distributors are likely to stock the following: VTM-1

Wiring Diagram

Notes:

1. Do not operate timer without connecting load in series with line voltage.
2. For a time delay of 1 second, connect a jumper across the center two terminals.

VTM 1 series

On-Delay Timing Module

- On-delay timing mode
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Compact design.
- Flame retardant, solvent resistant housing.

9 File E60363

(81) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathbf{C}$

Voltage: 12 VACNDC, 24VACNDC, 120 VACNDC.
Power Requirement: 3W, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$12,24 \mathrm{VAC} / \mathrm{NDC}$	$860 \mathrm{~V}^{*}$	$208 \mathrm{~V}^{*}$
$120 \mathrm{VAC} / \mathrm{NDC}$	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohm.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect teminals.
Weight: 3 oz . $(84 \mathrm{~g})$ approximately.

Ordering Information

On-Delay Timing Module

Input Voltage
A $=120 \mathrm{VAC}$ NDC
$\mathrm{E}=24 \mathrm{VAC} N D C$
$\mathrm{Q}=12 \mathrm{VAC} / \mathrm{NDC}$

Authorized distributors are likely to stock the following: VTM1ECD
VTM 1EDD

VTM A 1 series

Timing Mode

On-Delay.

Timing Specifications

Timing Ranges: VMTA1ULA only: 24 to 480 sec .
All others: 0.5 to $10 / 3$ to $60 / 15$ to 300 sec .; 3 to 60 min .
Timing Adjustment: Intemal potentiometer.
Accuracy: Repeat Accuracy: $\pm 5 \%$
Overall Accuracy: Max. Time: $-0 \%,+10 \%$.
Min. Time: $-30 \%,+10 \%$.
Reset Time: 250 ms , max., before time-out; 10 ms , max., after time-out.

Output Switch Data

Arrangement: Solid state 1 Form A (SPST-NO).
Rating: 1A, inductive, at nominal operating voltage.
Expected Electrical Life: 10,000,000 operations at rated load.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC ms.
Between Input and Output: 1,500VAC rms.
Outline Dimensions amd Wiring Diagram

On-Delay Timing Module With Intemal Potentiometer

- On-delay timing mode
- Discrete voltage or universal type.
- Internal potentiometer for timing adjustment.
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Flame retardant, solvent resistant housing.

听 File E60363

(18) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$
Voltage: $\pm 10 \% 120 \mathrm{VAC}$ NDC (unfiltered DC must be full-wave rectified) or 24 to 240 VACNDC.
Power Requirement: 250 mW during timing; 3W, max. after time out.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$24 \mathrm{VAC} N D C$	$860 \mathrm{~V}^{*}$	$208 \mathrm{~V}^{*}$
$120 / 240 \mathrm{VAC} / \mathrm{VDC}$	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: 2mA, Max.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz . (112g) approximately.

Ordering Information

Part Number	Time Range	Input Voltage
VTMA1ACA	0.5 to 10 sec.	120VAC or VDC
VTMA1ADA	3 to 60 sec.	
VTMA1ACA	24 to 480 sec.	$24-240 \mathrm{VAC}$ or VDC

Authorized distributors are likely to stock the following: None at present.

Timing Mode

On-Delay.

Timing Specifications

Timing Ranges: 15 to 300 sec .
Timing Adjustment: Intemal potentiometer.
Accuracy: Repeat Accuracy: $\pm 5 \%$ max. (0.25% typ.)
Overall Accuracy: Max. Time: $-0 \%,+10 \%$. Min. Time: $-30 \%,+10 \%$.
Reset Time: 250 ms , max.

Output Contact Data

Arrangement: 1 Form C (SPDT).
Rating: 8A, resistive, at nominal operating voltage.
Expected Mechanical Life: 10,000,000 operations.
Expected Electrical Life: 100,000 operations.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC ms.
Between Input and Output: 1,500VAC rms.
Outline Dimensions and Wiring Diagram

VTM R1 series

On-Delay Timing Module
 With Internal Potentiometer, Relay Output

- On-delay timing mode
- 8A SPDT relay output.
- Internal potentiometer for timing adjustment.
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Flame retardant, solvent resistant housing.

9 File E60363

(81) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage: $\pm 10 \%$ 120VACNDC.
Power Requirement: 3.5VA, max.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
120 VACNDC	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: 30mA, Max.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz . (112g) approximately.

Ordering Information

Part Number	Time Range	Input Voltage
VTMR1AEA	15 to 300 sec.	120VAC

Authorized distributors are likely to stock the following: None at present.

Timing Mode

Off-Delay.

Timing Specifications

Timing Ranges: 0.5 to $10 / 3$ to 60 sec .; 3 to 60 min .
Timing Adjustment: Extemal resistor or potentiometer. An external resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
\mathrm{R}_{\mathrm{t}}=\left(\frac{T_{\text {req }}-T_{\text {min }}}{T_{\text {max }}-T_{\text {min }}}\right) \times 1,000,000 \text { ohms }
$$

Accuracy: Repeat Accuracy: $\pm 1 \%$

Overall Accuracy: $\pm 2 \%$ at $\mathrm{R}=1$ megohm.
Reset Time: 50 ms , max.

Output Switch Data

Arrangement: Solid state 1 Form A (SPST-NO).
Rating: 1A, inductive, at nominal operating voltage.
Expected Electrical Life: 10,000,000 operations at rated load.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC rms. Between Input and Output: 1,500VAC rms.

Outline Dimensions

Wiring Diagram

An extemal resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
\mathrm{R}_{\mathrm{t}}=\left(\frac{T_{\text {req }}-T_{\min }}{T_{\text {max }}-T_{\text {min }}}\right) \times 1,000,000 \text { ohms }
$$

VTM 2 series

Off-Delay

Timing Module

- Off-delay timing mode
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Compact design.
- Flame retardant, solvent resistant housing.

ㄱTㄱ File E60363

(18) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathbf{C}$

Voltage:($\pm \mathbf{1 0 \%} \mathbf{\%}): 12$ VACNDC, $24 \mathrm{VACNDC}, 120$ VACNDC.
Power Requirement: 4W, with rated load.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
12,24 VACNDC	$860 \mathrm{~V}^{*}$	$208 \mathrm{~V}^{*}$
$120 \mathrm{VAC} / \mathrm{VDC}$	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: Less than 5mA.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz . (112g) approximately.

Ordering Information

VTM2	A	CD
\|	\|	\|
Series VTM2	Input Voltage	Time Range
Off-Delay	$\mathrm{A}=120 \mathrm{VACNDC}$	$\mathrm{CD}=0.5-10 \mathrm{sec}$.
Timing Module	$\mathrm{E}=24 \mathrm{VACNDCC}$	$\mathrm{DD}=3-60 \mathrm{sec}$.
	$\mathrm{Q}=12 \mathrm{VACNDCD}$	$\mathrm{GD}=3-60 \mathrm{~min}$.

Authorized distributors are likely to stock the following: None at present.

Timing Mode

Interval.

Timing Specifications

Timing Ranges: 0.5 to $10 / 3$ to 60 sec .; 3 to 60 min .
Timing Adjustment: External resistor or potentiometer. An extemal resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
R_{t}=\left(\frac{T_{\text {req }}-T_{\text {min }}}{T_{\text {max }}-T_{\text {min }}}\right) \times 1,000,000 \text { ohms }
$$

Accuracy: Repeat Accuracy: $\pm 1 \%$
Overall Accuracy: $\pm 2 \%$ at $\mathrm{R}=1$ megohm.
Reset Time: 50 ms , max.

Output Switch Data

Arrangement: Solid state 1 Form A (SPST-NO).
Rating: 1A, inductive, at nominal operating voltage.
Expected Electrical Life: 100,000,000 operations at rated load.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC ms. Between Input and Output: 1,500VAC rms.

Outline Dimensions

Wiring Diagram

An extemal resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
R_{t}=\left(\frac{T_{\text {req }}-T_{\text {min }}}{T_{\text {max }}-T_{\text {min }}}\right) \times 1,000,000 \text { ohms }
$$

VTM 3 series

Interval

Timing Module

- Interval timing mode
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Compact design.
- Flame retardant, solvent resistant housing.

긱 File E60363

(81) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathbf{C}$

Voltage:($\mathbf{1 0 \%}$): 12 VACNDC, 24VACNDC, 120 VAC/NDC.
Power Requirement: 4W, with rated load.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$\mathbf{0 . 1 ~ m s}$	
$12,24 \mathrm{VACNDC}$	$\mathbf{8} \mathbf{~ m s}$	
120 VACNDC	$2,580 \mathrm{~V}$	$208 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: Less than 5mA.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz . (112g) approximately.

Ordering Information

VTM3	A	CD
\|	\|	\|
Series VTM3	Input Voltage	Time Range
Interval	$\mathrm{A}=120 \mathrm{VACNDC}$	$\mathrm{CD}=0.5-10 \mathrm{sec}$.
Timing Module	$\mathrm{E}=24 \mathrm{VACNDC}$	$\mathrm{DD}=3-60 \mathrm{sec}$.
	$\mathrm{Q}=12 \mathrm{VACNDC}$	$\mathrm{GD}=3-60 \mathrm{~min}$.

Authorized distributors are likely to stock the following:

 None at present.

Timing Mode

One Shot (Latching Interval).

Timing Specifications

Timing Ranges: 0.5 to $10 / 3$ to 60 sec .; 0.5 to $10 / 3$ to 60 min . Timing Adjustment: Extemal resistor or potentiometer. An extemal resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
\mathrm{R}_{\mathrm{t}}=\left(\frac{T_{\mathrm{req}}-T_{\min }}{T_{\max }-T_{\min }}\right) \times 1,000,000 \text { ohms }
$$

Accuracy: Repeat Accuracy: $\pm 1 \%$

Overall Accuracy: $\pm 2 \%$ at $\mathrm{R}=1$ megohm.

Reset Time: 50 ms , max.

Output Switch Data

Arrangement: Solid state 1 Form A (SPST-NO).
Rating: 1A, inductive, at nominal operating voltage.
Expected Electrical Life: 100,000,000 operations at rated load.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC rms. Between Input and Output: 1,500VAC rms.

Outline Dimensions

Wiring Diagram

VTM 4 series

One Shot (Latching Interval) Timing Module

- One shot (latching interval) timing mode
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Compact design.
- Flame retardant, solvent resistant housing.

ㄱTㄱ File E60363

© File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $\mathbf{2 5}^{\circ} \mathrm{C}$

Voltage:($\mathbf{\pm 1 0 \%}$): 12 VACNDC, 24VACNDC, 120 VACNDC.
Power Requirement: 4W, with rated load.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$<\mathbf{0 . 1} \mathbf{~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$12,24 \mathrm{VACNDC}$	$860 \mathrm{~V}^{*}$	$208 \mathrm{~V}^{*}$
120 VACNDC	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: Less than 5mA.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz. (112g) approximately.

Ordering Information

VTM4	A	CD
\|	\|	\|
Series VTM4	Input Voltage	Time Range
One Shot	$\mathrm{A}=120 \mathrm{VACNDC}$	$\mathrm{CD}=0.5-10 \mathrm{sec}$.
(Latching Interval)	$\mathrm{E}=24 \mathrm{VACNDCD}$	$\mathrm{DD}=3-60 \mathrm{sec}$.
Timing Module	$\mathrm{Q}=12 \mathrm{VACNDC}$	$\mathrm{FD}=0.5-10 \mathrm{~min}$.
		$\mathrm{GD}=3-60 \mathrm{~min}$.

Authorized distributors are likely to stock the following: None at present.

Timing Mode

Repeat Cycle.

Timing Specifications

Timing Ranges: 0.5 to $10 / 3$ to 60 sec .; 3 to 60 min .
Timing Adjustment: External resistor or potentiometer. An external resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
R_{t}=\left(\frac{T_{\text {req }}-T_{\text {min }}}{T_{\text {max }}-T_{\text {min }}}\right) \times 1,000,000 \text { ohms }
$$

Accuracy: Repeat Accuracy: $\pm 1 \%$
Overall Accuracy: $\pm 2 \%$ at $\mathrm{R}=1$ megohm.
Reset Time: 500 ms .

Output Switch Data

Arrangement: Solid state 1 Form A (SPST-NO).
Rating: 1A, inductive, at nominal operating voltage.
Expected Electrical Life: 100,000,000 operations at rated load.

Initial Dielectric Strength

Between Terminals and Mounting: 3,000VAC ms. Between Input and Output: 1,500VAC rms.

Outline Dimensions

Wiring Diagram

An extemal resistance of 1 megohm is required to obtain the maximum time for all ranges. To determine the actual resistance needed to obtain the required time delay, use the following formula:

$$
\mathrm{R}_{\mathrm{t}}=\left(\frac{T_{\text {req }}-T_{\min }}{T_{\max }-T_{\min }}\right) \times 1,000,000 \mathrm{ohms}
$$

VTM 7 series
 Repeat Cycle
 Timing Module

- Repeat cycle timing mode
- Independently adjustable On and Off times.
- Reliable solid state timing circuitry.
- Excellent transient protection.
- Compact design.
- Flame retardant, solvent resistant housing.

T File E60363

(81) File LR33434

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data @ $25^{\circ} \mathrm{C}$

Voltage:($\pm \mathbf{1 0 \%}$): 12 VACNDC, 24VACNDC, 120 VACNDC.
Power Requirement: 4W, with rated load.
Transient Protection: Non-repetitive transients of the following magnitudes will not cause spurious operation of affect function and accuracy.

Operating Voltage	$\boldsymbol{< 0 . 1 ~ m s}$	$<\mathbf{1} \mathbf{~ m s}$
$12,24 \mathrm{VACNDC}$	$860 \mathrm{~V}^{*}$	$208 \mathrm{~V}^{*}$
120 VACNDC	$2,580 \mathrm{~V}$	$2,150 \mathrm{~V}^{*}$

* Min. source impedance of 100 ohms.

Current Drain: Less than 5mA.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Weight: 4 oz . (112g) approximately.

Ordering Information

VTM7	A	CD
\|	\|	\|
Series VTM7	Input Voltage	Time Range
Repat Cycle	$\mathrm{A}=120 \mathrm{VACNDC}$	$\mathrm{CD}=0.5-10 \mathrm{sec}$.
Timing Module	$\mathrm{E}=24 \mathrm{VACNDC}$	$\mathrm{DD}=3-60 \mathrm{sec}$.
	$\mathrm{Q}=12 \mathrm{VACNDC}$	$\mathrm{GD}=3-60 \mathrm{~min}$.

Authorized distributors are likely to stock the following: None at present.

Design Features

- Available in on-delay, true off-delay, and on/off-delay.
- Timing from 0.1 seconds to 60 minutes, fully calibrated in linear increments.
- Oversize time-calibrated adjustment knobs, semated with high-resolution markings visible from all angles makes the timer easy to set timers.
- Inherent transient immunity.
- Standard voltages from 6-550VAC and 12-550VDC (special voltages available.)
- Available in 2-pole or 4-pole models.
- Numerous enclosure options: explosion proof, dust tight, watertight, hemmetically-sealed, NEMA 1.
- Auxiliary timed and instantaneous switches can be added for greater switching flexibility.
- Many mounting options: Surface mount, Panel mount, Octal plug-in mounting.
- Options: quick-connect teminals, dial stops, and transient protection module.
- Easy-to-reach screw teminals, all on the face of the unit, clearly identified.
- Modular assembly - timing head, coil assembly and switchblock are all individual modules, with switches field-replaceable.

Design \& Construction

There are three main components of Series 7000 Timing Relays:
Calibrated Timing Head uses no needle valve, recirculates air under controlled pressure through a variable orifice to provide linearly adjustable timing. Patented design provides instant recycling, easy adjustment and long service life under severe operating conditions.

Precision-Wound Potted Coil module supplies the initial motive force with minimum current drain. Total sealing without external leads eliminates moisture problems, gives maximum insulation value.

Snap-Action Switch Assembly - custom-designed over-center mechanism provides greater contact pressure up to transfer time for positive, no flutter action. Standard switches are DPDT arrangement, with flexible beryllium copper blades and silver-cadmium oxide contacts. Special "timing-duty" design assures positive wiping action, sustained contact pressure and greater heat dissipation during long delay periods.

Each of these subassemblies forms a self-contained module which is then assembled at the factory with the other two to afford a wide choice of operating types, coil voltages, and timing ranges.

The squared design with front terminals and rear mounting permits the grouping of Series 7000 units side-by-side in minimum panel space. Auxiliary switches may be added in the base of the unit, without affecting the overall width or depth.

Operation

Two basic operating types are available.
"On-Delay" models provide a delay period on energization, at the end of which the switch transfers the load from one set of contacts to another. Deenergizing the unit during the delay period immediately recycles the unit, readying it for another full delay period on re-energization.

In "Off-Delay" models the switch transfers the load immediately upon energization, and the delay period does not begin until the unit is deenergized. At the end of the delay period the switch returns to its original position. Re-energizing the unit during the delay period immediately resets the timing, readying it for another full delay period on de-energization. No power is required during the timing period

In addition to these basic operating types, "Double-Head" models offer sequential delays on pull-in and drop-out in one unit. With the addition of auxiliary switches the basic models provide two-step timing, pulse actuation for interlock circuits, or added circuit capacity.

NOTE: Seismic \& radiation tested E7000 models are available. Consult factory for detailed information.

7000 series

Industrial Electropneumatic Timing Relay

(1L) File E15631
(1). File LR29186
C

Series 7000 Timing Relays are also manufactured to MIL-SPEC requirements, conforming to requirements of MIL-C-2212F (SHIPS) with the exception of MIL S-901. Consult factory for ordering information.
Note:7032 types and certain models with accessories are not agency approved. Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application

On-delay model 7012 (delay on pickup)

Applying continuous voltage to the coil (L1-L2) starts a time delay lasting for the preset time. During this period the normally closed contacts (3-5 and 4-6) remain closed. At the end of the delay period the nomally closed contacts break and the nomally open contacts (1-5 and 2-6) make. The contacts remain in this transferred position until the coil is deenergized, at which time the switch instantaneously retums to its original position

De-energizing the coil, either during or after the delay period, will recycle the unit within 50 msec . It will then provide a full delay period upon re-energization, regardless of how often the coil voltage is intemupted before the unit has been pemitted to "time-out" to its full delay setting.

Off-delay model 7022 (delay on dropout)

Applying voltage to the coil (for at least 50 msec) will instantaneously transfer the switch, breaking the normally closed contacts (1-5 and 2-6), and making the normally open contacts (3-5 and 4-6). Contacts remain in this transferred position as long as the coil is energized. The time delay begins immediately upon de-energization. At the end of the delay period the switch returns to its normal position.

Re-energizing the coil during the delay period will immediately return the timing mechanism to a point where it will provide a full delay period upon subsequent de energization. The switch remains in the transferred position.

To increase the versatility of the basic timer models, auxiliary switches may be added to either on-delay or off-delay types. They switch additional circuits, provide two-step timing action, or fumish electrical interlock for sustained coil energization from a momentary impulse, depending on the type selected and its adjustment. Because of their simple attachment and adjustment features, they can be installed at the factory or in the field, by any competent mechanic. All auxiliary switches are SPDT with UL listings of 10A @ 125,250 , or 480 VAC. A maximum of one Code T or two Code L auxiliary switches may be added to each relay. The L or LL switch is available with on-delay relays only. The T switch is available with both the on-delay and off-delay relays.
Auxiliary Switch Options for On-Delay
Instant Transfer (Auxiliary Switch Code L, maximum of 2 per relay.)

1. Energizing coil begins time delay and transfers auxiliary switch.
2. Main switch transfers after total preset delay.
3. Deenergizing coil resets both switches instantly. Auxiliary switch is nonadjustable.
Two-Step Timing (Auxiliary Switch Code T, maximum of 1 per relay.)

Auxiliary switch options
To increase the versatility of the basic timer models, auxiliary switches may be added to either on-delay or off-delay types. They switch additional circuits, provide two-step timing action, or fumish electrical interlock for sustained coil energization from a momentary impulse, depending on the type selected and its adjustment. Because of their simple attachment and adjustment features, they can be installed at the factory or in the field, by any competent mechanic. All auxiliary switches are SPDT with UL listings of 10A @ 125, 250, or 480 VAC. A maximum of one Code T or two Code L auxiliary switches may be added to each relay. The L or $L L$ switch is available with on-delay relays only. The T switch is available with both the on-delay and off-delay relays.

Auxiliary Switch Options for On-Delay

Instant Transfer (Auxiliary Switch Code L, maximum of 2 per relay.)

1. Energizing coil begins time delay and transfers auxiliary switch.
2. Main switch transfers after total preset delay.
3. De-energizing coil resets both switches instantly. Auxiliary switch is nonadjustable.
Two-Step Timing (Auxiliary Switch Code T, maximum of 1 per relay.)
4. Energizing coil begins time delay.
5. After first delay auxiliary switch transfers.
6. Main switch transfers after total preset delay.
7. De-energizing coil resets both switches instantly. First delay is independently adjustable, up to 30% of overall delay. (Recommended maximum 100 seconds.)

Auxiliary Switch Options for Off-Delay

In these models the same auxiliary switch provides either two-step timing or instant transfer action, depending on the adjustment of the actuator.
Two-Step Timing (Auxiliary Switch Code T, maximum of 1 per relay.)

1. Energizing coil transfers main and auxiliary switches instantly.
2. De-energizing coil begins time delay.
3. After first delay auxiliary switch transfers.
4. Main switch transfers after total preset delay. First delay is independently adjustable, up to 30% of overall delay. (Recommended maximum 100 seconds.)
Instant Transfer (Auxiliary Switch Code L, maximum of 1 per relay.)
5. Energizing coil transfers main and auxiliary switches instantly.
6. De-energizing coil resets auxiliary switch and begins time delay.
7. Main switch transfers after total preset delay.

Auxiliary switch is factory adjusted to give instant transfer operation, but may be easily adjusted in the field to provide two-step timing.

On-delay, off-delay model 7032 (double head)

The Double Head model provides delayed switch transfer on energization of its coil, followed by delayed resetting upon coil deenergization. Each delay period is independently adjustable.

In new circuit designs or the improvement of existing controls now using two or more conventional timers, the Double Head unit offers distinct advantages.

Its compact design saves precious panel space, while the simplified wiring reduces costly interconnection.

On-delay, off-delay model 7032 (double head)

With the addition of an extra switch block at the bottom of the basic unit, this version of the Series 7000 offers four pole switch capacity with simultaneous timing or two-step timing. The two-step operation is achieved by factory adjustment to your specifications.

For two-step operation, a maximum timing ratio between upper and lower switches of $3: 2$ is recommended. Once adjusted at the factory, this ratio remains constant regardless of changes in dial settings. (Ex: If upper switch transfer is set on dial at 60 sec., minimum time on lower switch should be 40 sec .)

This Series 7000 unit offers many of the performance features found in basic models - voltage ranges, timing and switch capacities are virtually identical.

Four pole models add approximately $1-1 / 4$ "to the maximum height of the basic model, approximately $1 / 8$ "to the depth. They are designed for vertical operation only.

Surge/transient protection option

Features

- Protect electronic control circuits from voltage transients generated by the timer coil.
- Fast response to the rapidly rising back E.M.F.
- High performance clamping voltage characteristics.
- UL recognized, (except varistor and coil together).
- Timer NOT polarity sensitive.

The Surge/Transient Protection Option protects electronic control circuits from transients and surges which are generated when the timer coil is activated. Built with a minimum of moving parts, the unit provides a fast response to rapidly rising voltage transients. The accurate, precision-made device is not polarity sensitive and permits the user to initiate, delay, sequence and program equipment actions over a wide range of applications under the most severe operating conditions.

It consists of a specially modified coil case, varistor, varistor cover, terminal extensions and cup washers so that normal terminations can be used. The varistor will not affect the operating characteristics of the 7000 Timer. The varistor has bilateral and symmetrical voltage and current characteristics and therefore can be used in place of the back-to-back zener diodes. This characteristic also means that the coil will not be polarity sensitive.

Transient Suppressor

 Option "V"Timing Specifications (All values shown are at nominal voltage and $25^{\circ} \mathrm{C}$ unless otherwise specified).

Operating Modes:
Model 7012/7014: On-delay (delay on pick-up).
Model 7022/7024: Off-delay (delay on drop-out).
Model 7032: On-delay, off-delay (double head).
Timing Adjustment: Timing is set by simply turning the calibrated dial to the desired time value. In the zone of approximately 25° separating the high and low end of timing ranges A, D, E, and K, instantaneous operation (no time delay) will occur. All other ranges produce an infinite time delay when the dial is set in this zone.

Models 7014 and 7032 are available with letter-calibrated dials only. The upper end of the time ranges in these models may be twice the values shown.

* The first time delay afforded by Model 7012 with H (3 to 30 min .) and I (6 to 60 min .) time ranges or Model 7014 with H time range will be approx. 15% longer than subsequent delays due to coil temperature rise.
Reset Time: 50 msec . (except model 7032)
Relay Release Time: 50 msec . for on-delay models (7012/7014)
Relay Operate Time: 50 msec . for off-delay models (7022/7024)

Operating Voltage Coil Data (for DPDT)

Coil Part \#	Code Letter	Rated Voltage	Operating* Voltage Range @ 60Hz	Rated Voltage	Operating Voltage Range @ 50 Hz
7000	A	120	102-132	110	93.5-121
	B	240	204-264	220	187-242
	C	480	408-528		
	D	550	468-605		
	E	24	20.5-26.5		
AC	F			127	108-140
	G			240	204-264
	H	12	10.2-13.2		
	I	6	5.1-6.6		
	J	208	178-229		
	K		Dual Voltage Coil		
			(Combines A\&B)		
	L		Special AC Coils (L1, L2, etc.)		
7010	M	28	22.4-30.8		
	N	48	38.4-52.8		
	0	24	19.2-26.4		
	P	125	100-137.5		
	Q	12	9.6-13.2		
	R	60	48-66		
DC	S	250	200-275		
	T	550	440-605		
	U	16	12.8-17.6		
	V	32	25.8-35.2		
	W	96	76.8-105.6		
	Y	6	4.8-6.6		
	Z	220	176-242		
	X		Special DC Coils (X1, X2, etc.)		

*Four pole Models: Operational voltage range 90% to 110% for AC units; 85\% to 110\% for DC units.

See next column for more coil data.

Minimum operating voltages are based on vertically mounted 7012 units.
7012 horizontally mounted or 7022 vertically or horizontally mounted units will operate satisfactorily at minimum voltages approximately 5% lower than those listed.
AC units drop out at approximately 50\% of rated voltage. DC units drop out at approximately 10% of rated voltage.
All units may be operated on intermittent duty cycles at voltages 10\% above the listed maximums (intermittent duty - maximum 50% duty cycle and 30 minutes "on" time.)

Surge/Transient Protection Option Characteristics (DC Timers Only)		
Coil Voltage		Max Excess
Nominal (DC)	Energy Capacity (Joule)	Max De-energization Transient Voltage
12 V	0.4 J	48 V
24 V	1.8 J	93 V
28 V	1.8 J	93 V
32 V	2.5 J	135 V
48 V	3.57 J	145 V
60 V	6 J	250 V
96 V	10 J	340 V
110 V	10 J	340 V
125 V	10 J	340 V
220 V	17 J	366 V
250 V	17 J	366 V

Surge Life
Applied 100,000 times continuously with the interval of 10 seconds at room temperature. Below 68 VAC: 12A; Above 68 VAC: 35A
Temperature Range
Operating: $-22^{\circ} \mathrm{F}$ to $+167^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$
Storage: $\quad-40^{\circ} \mathrm{F}$ to $+167^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+75^{\circ} \mathrm{C}\right)$
Output/Life Contact Ratings: Contact Capacity in Amps (Resistive Load) Contact Min. 100,000 Min. 1,000,000
Voltage Operations Operations
30 VDC $\quad 15.0 \quad 7.0$
110 VDC $1.0 \quad 0.5$
$120 \mathrm{~V} 60 \mathrm{~Hz} \quad 20.0 \quad 15.0$
$240 \mathrm{~V} 60 \mathrm{~Hz} \quad 20.0 \quad 15.0$
$480 \mathrm{~V} \mathrm{60Hz} \quad 12.0 \quad 10.0$
10 Amps Resistive, 240 VAC
1/4 Horsepower, 120 VAC/240VAC (per pole)
15 Amps 30 VDC (per pole)
5 Amps , General Purpose, 600VAC (per pole)
Dielectric: Withstands 1500 volts RMS 60 Hz between terminals and ground. 1,000 volts RMS 60 Hz between non-connected terminals. For dielectric specification on hermetically sealed models consult factory. Insulation Resistance: 500 Megohms with 500VDC applied.
Temperature Range: Operating: $-20^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right.$ to $\left.74^{\circ} \mathrm{C}\right)$
Storage: $-67^{\circ} \mathrm{F}$ to $+165^{\circ} \mathrm{F}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.74^{\circ} \mathrm{C}\right)$
Temperature Variation: Using a fixed time delay which was set and measured when the ambient temperature was $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$, the maximum observed shift in the average of three consecutive time delays was -20\% at $-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$ and $+20 \%$ at $165^{\circ} \mathrm{F}\left(74^{\circ} \mathrm{C}\right)$.
Mounting/Terminals: Normal mounting of the basic unit is in a vertical position, from the back of the panel. A front mounting bracket is also supplied with each basic unit, for installation from the front of the panel. All units are calibrated for vertical operation. Basic models (7012, 7022) may also be horizontally mounted, and will be adjusted accordingly when Accessory Y1 is specified in your order.

Standard screw terminals (8-32 truss head screws supplied) are located on the front of the unit, with permanent schematic markings. Barrier isolation is designed to accommodate spade or ring tongue terminals, with spacing to meet all industrial control specifications.

The basic Series 7000 may also be panel mounted with the addition of a panelmount kit that includes all necessary hardware and faceplate. This offers the convenience of "out-front" adjustment, with large calibrated dial skirt knob. The faceplate and knob blend with advanced equipment and console designs, while the body of the unit and its wiring are protected behind the panel.

Other mounting options include plug-in styles and special configurations to meet unusual installation requirements. Contact factory for details.
Power Consumption: Approximately 8 watts power at rated voltage .
Approximate Weights:

```
Models 7012, 7022 . . . . . . . 2 lbs. }4\mathrm{ ozs.
    7014, 7024 . . . . . . . 2 lbs. }10\mathrm{ ozs.
    7032 . . . . . . . . . . . }3\mathrm{ lbs. }5\mathrm{ ozs.
```

Weight may vary slightly with coil voltage.

Outline Dimensions (Dimensions in inches).

Models 7012, 7022

Models 7014, 7024

Model 7032

Panel mount Option "X"

Notes:

1. Cannot be combined with B, P or X Options
2. Cannot be combined with B, P or Y2 Options
3. Cannot be combined with GZ, H, I1, I2, K, W or Y1 Options
4. Not Avail. on 4-Pole Models
5. Not Available with L, T or LL options.
6. Not Available on hermetically sealed units.

* Sized to accommodate one L or T Auxiliary Switch
** Not available on On-Delay, Off-Delay (Double Head) model.
\dagger Available with letter calibrated dials only. Upper end of time range may be twice the value shown
$\dagger \dagger 120$ cycles $=2 \mathrm{sec}$.

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery..

7012AA	7012BC	7012PKX	7022AI
7012AB	7012NC	7012PJX	7022AJ
7012AC	7012PA	7022AA	7022AKT
7012AD	7012PB	7022AB	7022BC
7012AE	7012PC	7022AC	7022BK
7012AF	$7012 P D$	$7022 A D$	$7022 P A$
7012AH	$7012 P F$	$7022 A E$	$7022 P B$
7012AK	$7012 P J$	$7022 A F$	$7022 P C$
7012ACL	$7012 P K$	$7022 A H$	$7022 P K$

Electronics
Ordering options - can only be orderd as factory installed options (Dimensions, where shown, are in inches.)

With knockouts for bottom connection.
$3.16^{\prime \prime} \mathrm{W} \times 3.84$ " $\mathrm{D} \times 7.63^{\prime \prime} \mathrm{H}$

K - Explosion proof Enclosure

(Meets requirements for Class I, Groups C\&D locations).
7.50'W x 6.00" D x $10.38^{\prime \prime} \mathrm{H}$

> T - Auxiliary Switch

Accessories (Not available for 7032 models)
Plug-In Receptacle (Accessory C)
Screw Terminals Catalog No. 700137. For use with "B" Option

H - Hermetically Sealed Enclosure

L - Auxiliary Switch

V - Transient/Surge Protection

I-Tamper-Proof Cover

LL - Auxiliary Switch

W - Watertight Enclosure (NEMA-4)

Plug-In Receptacle (Accessory D)

Ordering options can only be ordered as factory installed options.

Design Features

- High Repeat Accuracy over voltage and temperature extremes
- Hermetically sealed units are designed for high shock and vibration applications
- Instant recycling - easy linear adjustment
- Exclusive Dial Head adjustment - no needle valves
- Delay ranges from milliseconds to 3 minutes
- DPDT contacts

Design \& Construction

Sealed patented timing head circulates air under controlled pressure through a variable orifice to provide adjustable timing. Circular-path Dial Head principle replaces traditional needle valve.
Snap-action switch assembly provides sustained contact pressure during timing cycles. Specially designed over center mechanism assures flutterfree load transfer after extended delay periods.
Precision-wound solenoid assembly supplies the basic motive force when the control circuit is closed.
These assemblies are mounted in a rigid self-supporting framework within a steel enclosure. This rugged construction assures permanent alignment of all operating members, the key to this unit's long trouble-free operation.

Operation

Series 2112 (On-Delay) - Applying rated voltage to the solenoid coil starts the preset time delay. At the end of the delay period the NC contacts break and the NO contacts make. Contacts remain in this position until the coil is deenergized, when the switch instantaneously returns to its original position. De-energizing the coil, either during or after the delay period, will immediately (within 25 msec.) recycle the unit. It will then provide another full delay period on re-energization.
Series 2122 (Off-Delay) - Applying rated voltage to the coil for at least 75 msec . (for accurate timing) will instantaneously transfer the switch, breaking the NC contacts and making the NO contacts. Contacts remain in this position as long as the coil is energized. The preset time delay period begins as soon as the coil is de-energized, at the end of which the switch returns to its original position.
 No power is required during the timing period. Reenergizing the coil, either during or after the delay period, will immediately start a new cycle with full delay period.

Operation (Listed values at nom. voltage, $25^{\circ} \mathrm{C}$ unless noted).

Operating Mode:

2112: On-delay (delay on pull-in); 2122: Off-delay (delay on drop-out) Timing Adjustment: All standard models offer easy linear adjustment over one of nine timing ranges listed below. For applications requiring frequent readjustment, the extemal knob model with calibrated dial is recommended. For tamper-proof installation or where readjustment is infrequent, the internal key model may be preferred. This model requires removal of the cover plate for timing adjustment. Hemetically sealed models provide a slotted adjusting screw under the cap nut on the top cover.
Timing Ranges:

Code	Range	Code	Range
A	.03 to .1 sec.	G	2.0 to 60.0 sec.
B	.1 to .3 sec.	H	5.0 to 120.0 sec.
C	.15 to 1.0 sec.	J	5.0 to 180.0 sec.
D	.375 to 3.0 sec.	L	1.5 to 30.0 cycles
E	.75 to 10.0 sec.		
F	1.0 to 30.0 sec.		

2100 series

Miniature Electropneumatic Timing Relay

C ϵ

Users should thoroughly review the technical data before selecting a product part number. It is recommended that users also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Repeat Accuracy: NORMAL VERTICAL POSITION
$\pm 5 \%$ at $25^{\circ} \mathrm{C} ; \pm 7 \%$ at $85^{\circ} \mathrm{C} ; \pm 8 \%$ at $-55^{\circ} \mathrm{C}$.
The average time between $-55^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$ will be within $\pm 20 \%$ of the average @ $25^{\circ} \mathrm{C}$ with a proportionally reduced effect at lesser extremes.
In extremely short delay settings an additional 8 msec . variation may result on AC models due to "half cycle" altemating current effect.
Setting Tolerance: Factory time setting, when specified, subject to additional +5\% tolerance.
Position Sensitivity:
HORIZONTAL POSITION: Approximately 5\% increase from the initial time in the vertical position.
INVERTED POSITION: Approximately 10\% increase from the initial time in the vertical position.
Reset Time: 2112 Series: 25 msec.; 2122 Series: 75 msec
Relay Release Time: 25 msec . (2112 Series)
Relay Operate Time: 75 msec . (2122 Series)
Operating Voltage: Coil Data

	Nominal Operating Coltage	Resistance Ohms $\mathbf{\pm 1 0 \%}$	Code	Nominal Operating Voltage	Resistance Ohms $\mathbf{\pm 1 0 \%}$
M	12VDC	30	S	120 V 60 Hz	190 (2112 Series)
N	28VDC	131	S	120 V 60 Hz	285 (2122 Series)
P	48VDC	500	T	240 V 60 Hz	765
R	110VDC	3200	U	115 V 400 Hz	2600
Y	125VDC	3380			

Transients: Insensitive to transients of ± 1500 VAC for 10 milliseconds Dielectric: 1000 V RMS @ 60Hz between non-connected terminals.
Contact Rating (DPDT Contacts):

	30V DC	$\mathbf{1 1 0 V}$ DC	$\mathbf{1 2 0 V}$ $\mathbf{6 0 H z}$	$\mathbf{1 2 0 V}$ $\mathbf{4 0 0 H z}$	$\mathbf{2 4 0 V}$
	$\mathbf{6 0 H z}$				
Inductive (Amps)	2	.75	3	2	1.5
Resistive (Amps)	10	1	10	10	5

Based on 100,000 operations electrical, 1,000,000 mechanical. Inductive and capacitive load should not have inrush currents that exceed five times nomal operating load.
Ambient Temperature Range: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Weight: Maximum, any unit - 17 ozs.
Mounting/Terminals: Chassis mounting tabs, octal plugs and extemal (-4) or intemal (-5) adjustment. Panel mounting back plate, intemal adjustment, and solder hook terminals (-9).

--4

These are minimum standards; where more severe environmental conditions must be met, please consult the factory.

Outline Dimensions for Industrial Models (Dimensions in inches. Multiply by $\mathbf{2 5 . 4}$ to obtain millimeters.)

Ordering Information for Industrial Models

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.. None at present.

Specifications for MIL-Spec and Hermetically Sealed Models

Dielectric: In accordance with specification MIL-R6106E (ASG). Also withstands 1,000 Volts RMS at 60 Hz between non-connected terminals.

Other: Agastat Miniature Timing Relays also conform to applicable Mil-Spec. requirements covering: Moisture Humidity Sand/Dust Ozone Sunshine Sand/Dust

Agastat timing relays perform to military specifications in Patriot missiles.

Outline Dimensions for MIL-Spec and Hermetically Sealed Models (In inches. Multiply by 25.4 for millimeters).

Ordering Information for MIL-Spec and Hermetically Sealed Models

Our authorized distributors are more likely to maintain the following items in stock for immediate delivery..
None at present.

Alphanumeric Index

Series Type	Page
CS...................... Voltage Sens	1302
PMA/PMB Three Phase Power Quality M onitor ..	1305
SDAS-01.............. Current Monitor	1307
VCA Single Phase Undervoltage Relay	1303
VMA Single Phase Undervoltage Relay	1304
WD25 Paralleling (Synch Check) Relay	1308
WD2759 Over/Undervoltage Relay	1308
WD32 Reverse Power Relay	1308
WD47 Phase Sequence Relay	1308
WD5051 1 or 3-Phase Overcurrent Relay	1308
WD810U Over/Underfrequency Relay	1308

Steel-Cased Protective Relays

Our KILOVAC steel-cased protective relays (listed below) are not described in this technical databook, as they do not represent the most cost effective solution for many new design requirements. M ost customers find our plastic-cased KILOVAC WD... series products are more appropriate for many new industrial applications. However, we still offer our steelcased protective relays. For details on KILOVAC steel-cased protective relays consult your Tyco Electronics sales engineer or visit our website at www.tycoelectronics.com.

1000 \qquad Loss of Phase, Undervoltage Relay
1800 \qquad Paralleling (volt) Relay
20-000 \qquad Frequency, $56-66 \mathrm{~Hz}$ Relay
20-050-19 .. Voltage/Frequency Relay
25-000 .. Over/Underfrequency Relay
250 ... Over/Undervoltage Relay
700 1 \& 3 Phase
700 1 \& 3 Phase, Adjustable Time Delay Relay
900 \qquad
\qquad Phase Sequence Relay
D100X Close Differential, 1 Phase Relay
D101X Series Close Differential, 3 Phase
WC1 \& WCT1 Overcurrent, Time Delay, 1 Phase Relay
WC1G. \qquad Power Factor \& Ground Fault Detector
WC3 \& WCT3............. Overcurrent, Time Delay, 3 Phase Relay
WCB \qquad Current Balance Relay
WCD \qquad Current Differential Relay
WGD \qquad Power Factor \& Ground Fault Detector
WOF \& WUF \qquad Overfrequency \& Underfrequency Relay WOUF Over/Underfrequency, Time Delay Option Relay WOUV DC Over/Undervoltage DC Relay WOUVT Over/Undervoltage, Time Delay Relay WUV/WOV \qquad Under- \& Overvoltage Relay
WUV/WOV DC Under- \& Overvoltage DC Relay WUVT/WOVT Under- \& Overvoltage with Time Delay Relay WSYN \qquad Voltage Frequency, Phase Angle Relay

NOTE: KILOVAC protective relays were previously sold under the WILMAR brand name.

Fixed Pick-up and Adjustable Drop-out

Adjustable Pick-up and Drop-out

Sensing Modes

The CS can be used as an over or undervoltage sensor, depending upon whether the load is connected to the normally closed (NC) or normally open (NO) contacts of the sensor's output relay.

Overvoltage sensor - The NC contacts are used. The relay remains deenergized until an overvoltage is sensed.

Undervoltage sensor - The NO contacts are used. The relay remains energized until the voltage decreases to the preset level, where the sensor de-energizes the relay.

Adjustable Voltage Sensor Operation

Note 1 - As voltage increases, the relay will pick-up at its selected point and remain energized while voltage is maintained at that level or higher.

Note 2 - As voltage decreases, after pick-up, the relay will drop-out at its selected point.

Note 3 - Minimum hysterisis, the voltage differential between pick-up and drop-out, is typically 2% of pick-up.

Outline Dimensions

CS series

Solid State Hybrid Voltage Sensor

- Close differential
- Choice of two types
- Fixed pick-up and knob adjustable drop-out
- Knob adjustable pick-up and drop-out
- Internal 2 Form C (DPDT) output relay

楊 File E22575

(18 File LR15734
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Engineering Data

Power Requirement: Typically less than 3VA or 3W.
Duty Cycle: Continuous.
Repeatability: $\pm 1 \%$, max.
Response Time: 10-25 ms, typ.
Internal Relay Contact Arrangement: 2 Form C (DPDT).
Internal Relay Contact Rating: 10A @ 28 VDC , res., or 120VAC, 80% p.f.
Reverse Polarity Protection: On DC types.
Temperature Range: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Temperature Coefficient: $0.2 \% /{ }^{\circ} \mathrm{C}$, max.
Enclosure: Plastic dust cover.
Mounting: 8-pin octal style plug. Fits either 27E122 or 27E891 (snap-on) screw terminal sockets.
Weight: 8 oz . $(227 \mathrm{~g})$ approximately.

Ordering Information -

Distributors are more likely to stock boldface items.
Fixed Pick-Up and Adjustable Drop-Out

Part Number	Pick-Up (Volts)	Drop-Out Range (Volts)	Maximum Voltage
CSJ-38-71010	105	$90-103$	$140 \mathrm{VAC}(50 / 60 \mathrm{~Hz}$.)
CSL-38-31010	22	$16-21$	32 VDC

Adjustable Pick-Up and Adjustable Drop-Out

Part Number	Pick-Up Range (Volts)	Drop-Out Range* (Volts)	Maximum Voltage
CSJ-38-70010	$92-140$	$90-138$	150VAC (50/60 Hz.)
CSL-38-30010	$20-30$	$18-28$	32 VDC
CSL-38-40010	$40-58$	$38-56$	60 VDC
CSL-38-60010	$92-140$	$90-138$	150 VDC

* Actual maximum drop-out voltage is the selected pick-up voltage less the hysterisis voltage.

Wiring Diagrams - Bottom Views

 (pins numbered clockwise from keyway)

VCA series

Function

Single phase undervoltage relay.

Sensing Specifications

Voltage Set-Point Adjustment: Internal potentiometer (screwdriver adjustable) with linear calibrated dial.
Response Time: Depending on severity of undervoltage: 0.1-1 sec.
Accuracy: Repeat Accuracy: $\pm 0.2 \%$
Overall Accuracy: $\pm 1 \%$.

Output Data

Arrangement: 1 Form C (SPDT).
Rating: 7A @ 250VAC; 1/6 HP @ 250VAC; 300VA @ 120/240VAC; 3A @ 30VDC.
Expected Mechcanical Life: 10,000,000 operations.
Expected Electrical Life: 100,000 operations at rated resistive load.

Initial Dielectric Strength

Between Terminals and Case: $1,480 \mathrm{~V}$.
Between Relay Contacts and Active Circuitry: 1,480V.

Outline Dimensions and Wiring Diagram

Single Phase Undervoltage Relay

- Automatic reset minimizes equipment downtime.
- Fixed pickup point prevents low voltage start-up.
- Adjustable dropout point protects against undervoltage operation.
- Delayed dropout prevents nuisance tripping.
- Compact, inexpensive design saves space, reduces cost.
- Solid state circuitry for enhanced accuracy and long life.
- LED indicates normal voltage condition.

기 File E60363

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data

Voltage: 120VAC, 240VAC.
Power Requirement: 4W, max.
Transient Protection: 120VAC
240VDC 30 joules
120VAC 10 joules
120VDC 10 joules

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-23^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Panel mount with one \#8 screw.
Termination: 0.250 in (6.35) quick connect terminals.
Status Indication: LED indicates normal voltage condition.
Weight: 3.2 oz. (90.7 g) approximately.

Ordering Information

Part Number	Operating Voltage
VCAA	120VAC
VCAB	240 VAC

Authorized distributors are likely to stock the following: None at present.

VM A series

Single Phase, Plug-in
 Undervoltage Relay

- Automatic reset minimizes equipment downtime.
- Fixed pickup point prevents low voltage start-up.
- Adjustable dropout point protects against undervoltage operation.
- Locking potentiometer maintains selected set point.
- Delayed dropout prevents nuisance tripping.
- Plug-in mounting for easier installation.
- Built-in protection against polarity reversal.
- LED indicates normal voltage condition.

기 File E60363
Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Input Data

Voltage: See ordering information.
Power Requirement: 4W, max.
Transient Protection: 24VAC 1.5 joules
24VDC 1.5 joules
48VDC 10 joules
120VAC 10 joules
125VDC 10 joules
240VDC 20 joules

Reverse Polarity Protection: On DC models.
Duty Cycle: Continuous.

Environmental Data

Temperature Range: Storage: $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Octal plug. Fits 27E122 or 27E891 (snap-on) screw terminal socket. Order socket separately.
Enclosure: Nylon cover protects against particles.
Status Indication: LED indicates normal voltage condition.
Weight: 6 oz . (168g) approximately.

Ordering Information

Part Number	Nominal Voltage	Pick-Up (V)	Drop-Out Range (V)
VMAXEA	24VAC	21	15 to 20
VMAXAA	120VAC	104	78 to 99
VMAXBA	240VAC	209	156 to 199
VMAXOA	$24 V D C$	21	15 to 20
VMAXEA	48VDC	42	31 to 40
VMAXEA	125VDC	109	81 to 103

[^31]

PMA

PMB

Function

Three phase power quality monitor.

Monitoring Specifications

Threshold Accuracy: $\pm 0.2 \%$ of the average of 10 consecutive measurements of the threshold point at any fixed temperature within the operating temperature range. $\pm 2 \%$ of the average of 10 consecutive measurements of the threshold point over the operating temperature range.
Response Time: Phase loss and phase reversal: 2 line cycles +5 ms . Undervoltage and phase imbalance: See Figures 1 and 2 on the following page.

Input Data

Nominal Voltage: 110 to 120VAC; 208 to 240VAC; 380 to 440VAC; 440 to $480 \mathrm{VAC} ; 550$ to 600VAC.
Maximum Voltage: 132VAC for the 110 to 120VAC model; 264VAC for the 208 to 240VAC model; 484 VAC for the 380 to 440VAC model; 528VAC for the 440 to 480VAC model; 650 VAC for the 550 to 600VAC model.
Frequency: $50 / 60 \mathrm{~Hz}$.
Power Requirement: 750mW.
Transient Noise Immunity: ICS 2-230, ANSI C37.40.

Output Data

Arrangement: 1 Form A (SPST-NO) + 1 Form B (SPST-NC).
Rating: 8A @ 250VAC, resistive; 3A @ 30VDC, resistive;
1/4 HP @ 125/250VAC; 275VAC pilot duty.
Expected Mechcanical Life: 10,000,000 operations.
Expected Electrical Life: 100,000 operations at rated resistive load.

Initial Dielectric Strength

Between Input Terminals and Case or Active Circuitry: 2,200V.
Between Relay Contacts and Active Circuitry: 1,500V.

Environmental Data

Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Operating: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.

Mechanical Data

Mounting: Can be mounted on a flat surface with two screws or snapped on/off a furnished adapter plate which has been pre-mounted on a flat surface. Can also be mounted on a 300-volt machine tool relay channel using the adapter plate. Direct mounting (no adapter plate used) on a symmetrical DIN track is also possible.
Termination: Screw terminals.
Connections: 3 wire wye or delta.
Vibration: Chatterless operation 5 to $60 \mathrm{~Hz} ., 0.030 \mathrm{in} .(0.762 \mathrm{~mm})$ amplitude, 1 minute sweep.
Status Indication: "Contacts Transferred" LED plus four additional LEDs to designate the specific fault that released the relay.
Weight: 24 oz (625 g) approximately.

PM A/PM B series

Three Phase
 Power Quality Monitor

- Monitors deviation from nominal system voltage, phase imbalance, phase sequence and phase loss.
- Locking potentiometer prevents tampering (PMA only).
- Start-up delay permits staggered restarting (PMB only).
- Four LEDs show nature of temporary/sustained faults.
- 3-wire wye or delta connections for simple installation.
- Calibrated nominal voltage potentiometer assures precise monitoring.
- Superior transient immunity per ANSI C37.40.
- Not fooled by back EMF.
- 8 user-selectable thresholds - 4 undervoltage and 4 phase imbalance - match protection to load.
- Manual or automatic reset for application flexibility.
- Suitable for commonly used grounded or ungrounded three-phase systems.

況 File E60363

(181) File LR29186 CE

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Outline Dimensions

Ordering Information

PMA	LB	S
Series	Nominal Operating Voltage	Phas
PMA = Power	LA $=110$ to 120VAC, $50 / 60 \mathrm{~Hz}$.	
Quality M onitor	LB $=208$ to 240VAC, $50 / 60 \mathrm{~Hz}$.	L = Low
with Locking	LG $=380$ to 440VAC, $50 / 60 \mathrm{~Hz}$.	退 $\quad \mathrm{H}=\mathrm{H}$
Potentiometer	LC = 440 to 480VAC, $50 / 60 \mathrm{~Hz}$.	
	LD $=550$ to $600 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$.	
PM B = Power		
Quality M onitor		Status Indicators
with Start-Up		S = "Contacts
Delay		Transferred"and
		four fault status
		indicators

Authorized distributors are likely to stock the following: None at present.

Operation

Monitor Operation: When the input voltage parameters are normal, the "Contacts Transferred" LED will be on and relay is energized. Once the unit has responded to a fault by releasing the output relay and simultaneously extinguishing the "Contacts Transferred" LED, the nature of the fault that caused the release will be identified by one of the four fault status indicators. In the automatic reset mode, the status indicator will extinguish and the "Contacts Transferred" LED will re-light once all faults are corrected and restart delay period has expired. In the manual reset mode, the fault indicator will flash when all faults have been corrected, thus indicating that the unit is ready for manual reset. When manually reset, the flashing fault status indicator will extinguish and the "Contacts Transferred" LED will relight. Series PMA has a fixed start-up delay of approximately 375 milliseconds. Series PMB has a start-up delay, adjustable from 0 to 5 minutes, which permits staggered restarting of motors, etc., affected by a common power outage. If the unit is wired for manual reset, the external reset switch must also be opened.

The output relay will remain in the transferred state until one of the fault conditions occur. (See Figures 1 and 2)

Phase Loss Condition: If the voltage of any phase drops below 68\% of the nominal voltage setting for more than two line cycles, the output relay will release. If back EMF accompanies the loss of a phase, the unit will sense the loss as a phase imbalance and the relay will drop out.

Phase Reversal Condition: If any two phases become reversed for more than two line cycles, the output relay will release.

Undervoltage Condition: By strapping, the user can select one of four undervoltage thresholds: $10 \%, 14 \%, 17 \%$ or 20% below the nominal voltage, which is entered by means of a calibrated potentiometer located on the front panel. When the average voltage drops below the selected threshold, a time delay shown in Fig. 1 is initiated. The unit then continues to monitor the severity of the fault and modifies the time delay accordingly. If the undervoltage condition persists, the time delay will expire and the output relay will release.

Phase Imbalance Condition: The unit continuously averages the three phase voltages and recognizes individual deviations from the average. By strapping, the user can select one of four imbalance thresholds: Either $2.0 \%, 3.0 \%, 3.5 \%, 4.0 \%$, or $5.0 \%, 7.0 \%, 8.5 \%, 10.0 \%$ depending on model. When any phase voltage deviates more than the selected percentage from the three phase average, a time delay as shown in Fig. 2 is initiated. The unit then continues to monitor the severity of the fault and modifies the time delay accordingly. If the phase imbalance condition persists, the time delay will expire and the output relay will release.

Typical Connection Diagram

Figure 2

Strapping Diagrams

 Undervoltage Threshold| 10.0\% | $\stackrel{6}{\mathscr{D}}$ | $\stackrel{7}{\mathscr{D}}$ | $\stackrel{8}{\varnothing}$ | $\stackrel{9}{\varnothing}$ | $\begin{aligned} & 10 \\ & \bigotimes \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 14.0\% | \oslash | \square | \oslash | \oslash | \varnothing |
| 17.0\% | \square | \oslash | \oslash | \oslash | \varnothing |
| 20.0\% | \bigcirc | \square | Ø | \oslash | \varnothing |

Low Phase Imbalance Threshold
Model PMAL*SL or PMBL*SL

2.0\%	$\stackrel{6}{\varnothing}$	$\stackrel{7}{\varnothing}$	$\stackrel{8}{\varnothing}$	$\stackrel{9}{\varnothing}$	$\begin{aligned} & 10 \\ & \varnothing \end{aligned}$
3.0\%	\varnothing	\oslash	\oslash	0	\square
3.5\%	\varnothing	®	0	\varnothing	\square
4.0\%	\oslash	\oslash	\square	ठ	\varnothing

High Phase Imbalance Threshold

Model PMAL*SH or PMBL*SH

Sensing Modes

Overcurrent sensor - Detects a current in excess of the value determined by the potentiometer setting. A built-in time delay, 200 ms , minimum, allows for normal starting and surge currents. Actual time delay is dependent upon potentiometer setting and magnitude of overcurrent. Any overcurrent lasting longer than this causes the internal relay of the SDAS01 to energize. The relay will remain energized until sensor control voltage is removed, even if the overcurrent ceases to exist.

Undercurrent sensor - Reacts to a complete loss of sense current, or any current of less than the potentiometer setting. Upon application of sensor control voltage, there is a nominal 350ms delay during which time power line current must begin. This delay gives line components time to turn on. If, at the end of the delay, sense current should decrease to less than the potentiometer setting of the SDAS-01 and remain there for approximately 350 ms , the intemal relay of the SDAS-01 will energize. It will remain energized until either sense control current again exceeds the potentiometer setting, or until sensor control voltage is removed.

Engineering Data

Control Voltage: 24VAC $50 / 60 \mathrm{~Hz} . / \mathrm{DC} \pm 10 \%$.
Sense-Current Range: 1.5 to $15 \mathrm{amps} A C$.
Internal Relay Contact Data:
1 Form C (SPDT) type (code X1): 5A @ 28VDC or 2.5A @ 120VAC, res.
2 Form C (DPDT) type (code Y2): 2A @ 28VDC or 1A @ 120VAC, res.
Set Point Variation: $\pm 25 \%$ over operating temperature range.

Time Delay:

Overcurrent sensor: 200 ms , min., after beginning of overcurrent. Actual delay is dependent upon potentiometer setting and magnitude of overcurrent (see Figure 1).
Undercurrent sensor: 350 ms , typ.; 200 ms , min., from beginning of undercurrent after control voltage is applied.
Power Requirement: 1.7W or 1.7VA @ 24VAC.
Temperature Range: Storage: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
Operating: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Enclosure: Plastic dust cover.
Mounting: Socket. For sockets see KUP 3 pole sockets.
Weight: 3.17 oz (90 g) approximately.

Outline Dimensions

Wiring Diagrams - Bottom Views

1 Form C

2 Form C

W D series

DIN Rail or Screw Mounted Protective Relays

- WD25 Paralleling (Synch Check) Relays
- WD2759 Over/undervoltage Relays
- WD32 Reverse Power Relays
- WD47 Phase Sequence Relays
- WD5051 Single- or Three-Phase Overcurrent Relays
- WD810U Over/Underfrequency Relays

미 File E58048
 DIN EN50022-35

Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

Specifications common to all models

Power Consumption: 2.5 VA , maximum.
Contact Ratings: 5 amps , resistive, at 120VAC.

$$
5 \mathrm{amps} \text {, resistive, at } 30 \mathrm{VDC} \text {. }
$$

Isolation from Control to Sense Inputs: 2,500VAC.
Mechanical Life: 10 million operations.
Shock: 10g.
Vibration: 0.062 (1.57) double amplitude at $10-55 \mathrm{~Hz}$.
Terminals: M 3.5 screws.
Maximum Wire Size: 2×24 AWG ($2.5 \mathrm{~mm}^{2}$) solid to DIN 46288 or 2×16 AWG ($1.5 \mathrm{~mm}^{2}$) stranded w/end sleeves.
Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$.
Enclosure: Plastic case (not sealed).
Mounting Options: Snap mounts on standard DIN rail (DIN-EN 50022-35) or panel mounts with M4, M5, \#8 or \#10 screws.
Weight: 14.4 oz (400 g) approximately.

Installation and Maintenance Information

Installation: To mount the WD series protective relay on a DIN rail, hook the top edge of the cutout on the base of the case over one edge of the DIN rail, then press the opposite side of the cutout containing the release clip over the opposite side of the DIN rail. To remove or reposition the relay, lever the release clip and move the relay as required. WD series relays should be installed in a dry location where the ambient temperature will be within the operating temperature range.
Maintenance: WD series protective relays are solid state devices that require no maintenance. They are not designed to be serviced by the user. Consult KILOVAC customer service at 805-220-2023 if repairs should be necessary.

Overview

The WD series offers several different models of protective relays in a common package that is suitable for either DIN rail or screw mounting. These flexible, multifunction devices offer user selectable voltages, sense currents and frequencies. Adjustable time delays are standard. This allows a single part number to be suitable for multiple applications, thereby reducing inventory costs.

Outline Dimensions

WD25 Paralleling Relays

- Function 25
- ANSI/IEEE C37.90-1978

WD25 Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate voltmeter. Use the following procedure to calibrate the WD25:

1. Remove the cover.
2. Adjust the SYNC VOLTAGE control fully counterclockwise (CCW). Apply nominal voltage to the LINE B (bus) sensing terminals.
3. Apply the maximum desired synchronization voltage to the LINE A (generator) terminals. This voltage should be in phase with LINE B (bus) voltage and have the same frequency.
4. Slowly adjust the SYNC VOLTAGE control clockwise (CW) until the relay energizes.

WD25 Controls

WD25 Connections

Our authorized distributor is more likely to stock these items.
WD25-001
WD25-013

WD25 Typical Hookup

NOTE:
For single dead bus option, connect the generator to $1 \& 2$ and the bus to $4 \& 5$.

CONTROL
BI-DIRECTIONAL AC OR DC INPUT

WD2759 Over/Undervoltage Relays

- Function 27/59
- ANSI/IEEE C37.90-1978

WD2759 Operation

WD2759 AC voltage sensing relays provide voltage monitoring and protection in AC systems from 50 to 400 Hz . Sensing voltages, number of phases, over and undervoltage setpoint, and time delays are user configured. WD2759 voltage relays operate when the externally adjustable trip point is reached. An external time delay control is provided with an adjustment of .5 to 10 seconds. This time delay may be used to prevent false tripping when there are slight variations in the voltage supply. On overvoltage (OV) the output relay energizes when the input signal exceeds the trip point. On undervoltage (UV) the output relay de-energizes when the input signal goes below the trip point. A green LED indicates power to the relay. Red LED lights indicate the state of the undervoltage and overvoltage trips.

WD2759 Specifications

Nominal Operating Range: 120, 208, 277 or 480 VAC, selectable.
Maximum Sensing Range: 700VAC.
Nominal Frequency Range: $50-400 \mathrm{~Hz}$.
Contact Form: 1 form C (SPDT) for undervoltage and 1 form C (SPDT) for overvoltage.
Time Delay Adjustment: 0.5 to 10 sec .
Sense Voltage:

Voltage (nominal)	120	208	277	480
UV Adjustment Range	$72-120$	$125-208$	$166-277$	$288-480$
OV Adjustment Range	$120-168$	$208-291$	$277-388$	$480-672$
Control Voltage:				
Model WD2759	-001	-002	-003	
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200	
Input Voltage (VAC)	-	-	100 to 140	

Ordering Information			
Typical Part Number $>$	WD	2759	-002
1. Basic Series: WD = DIN mount Protective Relay.			
2. Type: 2759 = Over/Undervoltage Relay.			
3. Control Voltage: $\begin{aligned} & 001=18 \text { to } 54 \mathrm{VDC} \\ & 002=13.5 \text { to } 32 \mathrm{VDC} \\ & 003=100-200 \mathrm{VDC} \text { or } 100-140 \mathrm{VAC} . \end{aligned}$			

Our authorized distributor is more likely to stock these items. WD2759-003.

WD2759 Calibration

The calibration marks on the faceplate have a maximum error of 10\% and are provided only as guides. Proper calibration requires using an accurate voltmeter in parallel with the input signal. Use the following procedure to calibrate your relay.

OVER VOLTAGE

1. Remove cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW).
3. Apply the desired trip voltage to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied voltage (do not change the voltage level) and set the TIME DELAY control to the desired time delay.
6. Apply the trip voltage to the relay and measure the time to trip.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until you have the desired time delay.

UNDER VOLTAGE

1. Remove cover.
2. Adjust the TRIP SET control fully CCW and the TIME DELAY control fully CCW.
3. Decrease the applied sensing voltage from the nominal value until the desired tripping voltage is reached.
4. Slowly adjust the TRIP SET control CW until the relay trips.
5. Set the TIME DELAY control to the desired time delay and apply nominal voltage to the relay.
6. Step down the applied voltage from nominal to a level jest below the trip level set in Step 3 and measure the time delay.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until the desired time delay is achieved.

WD2759 Controls

WD2759 Typical Hookup

WD2759 Connections

BI-DIRECTIONAL AC OR DC INPUT

WD32 Reverse Power Relays

- Function 32

WD32 Operation

WD32 reverse power relays are used to monitor the direction of power from AC generators. This is accomplished by measuring I cos q. If current from the generator is reversed and exceeds the adjustable setting, the relay will trip. A 0.5 to 20 second time delay is provided. A correct setting of the trip point and time delay will prevent motorizing the generator and prevent tripping during transients that occur while synchronizing. A POWER LED indicates the condition of the power supply and a REVERSE POWER TRIP LED indicates the output status of the relay.

WD32 Specifications

Nominal Operating Range: 120 to 480 VAC, 1 or 3 phase.
Maximum Sensing Range: 575VAC.
Nominal Sensing Current: 5A.
Nominal Frequency Range: WD32-00X: 40-400 Hz.; WD32-01X: 60 Hz.
Contact Form: 2 form C (DPDT).
Time Delay Adjustment: 0.5 to 20 sec .
Sense Current:
Reverse Power Trip: 0.2 to 1.0A (4-20\% of nominal sense current).
Control Voltage:

Model WD32	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

Ordering Information

Typical Part Number	WD	32	-00	2
1. Basic Series: WD = DIN mount Protective Relay.				
2. Type: 32 = Reverse Power Relay.				
3. Load: $00=$ Resistive (power) 01 = Inductive (Kvar, 60 Hz .)				
4. Control Voltage: $\begin{aligned} & 1=18 \text { to } 54 \mathrm{VDC} \\ & 2=13.5 \text { to } 32 \mathrm{VDC} \\ & 3=100-200 \mathrm{VDC} \text { or } 100-140 \mathrm{VAC} \end{aligned}$				

Our authorized distributor is more likely to stock these items.
WD32-003
WD32-011

WD32 Calibration

The calibration marks on the faceplate have a maximum error of 10% and are provided only as guides. Proper calibration requires using an accurate Current Meter in series with the input current. Use the following procedure to calibrate your relay.
REVERSE POWER

1. Remove cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW).
3. Apply the desired trip current to the relay. NOTE: for the Reverse Power (WD32-00X) a resistive load must be used and for the Reverse KVAR (WD32-01X) an inductive load must be used
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied Current and set the TIME DELAY control to the desired time delay.
6. Re-apply the Current (10% more than the trip current) to the relay and measure the time to trip.
7. Adjust the TIME DELAY and repeat steps 4 and 5 until you have the desired time delay.

WD32 Controls

WD32 Connections

WD32 Typical Hookup

SINGLE PHASE INPUT

CONTROL BI-DIRECTIONAL AC OR DC INPUT

CONTROL

CONTROL BI-DIRECTIONAL AC OR DC INPUT

WD47 Phase Sequence Relays

- Function 47
- ANSI/IEEE C37.90-1978

WD47 Calibration

The WD47 has no adjustments and no calibration is necessary. Proper operation may be verified as follows:

1. Apply a nominal, three-phase input with the correct phase sequence. The output relay should dropout and the green LED should light.
2. Apply a nominal, three-phase input with an incorrect phase sequence. The output relay should pickup and the red LED should light.
3. Apply only one or two phases with the correct phase sequence. The output relay should pickup and the red LED should light.

WD47 Specifications

Nominal Operating Range: 120 to 480 VAC .
Maximum Sensing Range: 575 VAC .
Nominal Frequency Range: $40-400 \mathrm{~Hz}$.
Contact Form: $\quad 2$ form C (DPDT).

Control Voltage:
Model WD47

Ordering Information

Typical Part Number	WD	47
1. Basic Series: WD $=$ DIN mount Protective Relay.		
2. Type: 47 $=$ Phase Sequence Relay.		
3. Control Voltage:		
$001=18$ to 54VDC		
$002=13.5$ to 32 VDC		
$003=100-200$ VDC or 100-140VAC.		

Our authorized distributor is more likely to stock these items. WD47-001

WD47 Controls

WD47 Connections

WD47 Typical Hookup

WD5051 10 and 3Ø Overcurrent Relays

- Function 5051

WD5051 Operation

WD5051 AC current sensing relays provide current monitoring and protection in AC systems from 50 to 400 Hz . Nominal Sensing Current, Instantaneous Over Current setpoint, Time Over Current setpoint, and Time Over Current time delay are user configured. WD5051 current relays operate when the externally adjustable trip point is reached. An external time over current time delay control is provided with an adjustment of .5 to 20 seconds. This time delay may be used to prevent false tripping when there are slight variations in the sensed current. With control power applied, the Instantaneous Over Current (IOC) contacts pick-up when the input signal exceeds the IOC trip setpoint. Similarly, with control power applied, the Time Over Current (TOC) contacts pick-up after the preset time delay when the Sense Current rises above the TOC trip setpoint. The IOC contacts may also be configured to function as an under current relay. A green LED indicates power to the relay. Red LED lights indicate the state of the IOC and TOC trips.

WD5051 Specifications

Sense Current Full Scale: 1, 3, 6 or 8A, selectable.
Maximum Sensing Current: 10A continuous; 30A for 10 sec.;
60A for 2.5 sec .; 100A for 0.9 sec .
Nominal Frequency Range: $50-400 \mathrm{~Hz}$.
Contact Form: 1 form C (SPDT) for IOC and 1 form C (SPDT) for TOC.
TOC Time Delay Adjustment: 0.5 to 20 sec .
IOC Operate Time (max.): 0.2 sec .
Sense Current:

Current (nominal)	1	3	6	8
IOC	0.2 to 1.2	0.6 to 3.6	1.2 to 7.2	1.6 to 9.6
TOC	0.2 to 1.2	0.6 to 3.6	1.2 to 7.2	1.6 to 9.6

Control Voltage:			
Model WD5051	-001	-002	-003
Input Voltage (VDC)	18 to 54	13.5 to 32	100 to 200
Input Voltage (VAC)	-	-	100 to 140

Ordering Information			
Typical Part Number	WD	5051	-002
1. Basic Series: WD = DIN mount Protective Relay.			
2. Type: 5051 = Single Phase Overcurrent Relay. 5051-3 = Three Phase Overcurrent Relay.			
3. Control Voltage: $\begin{aligned} & 001=18 \text { to } 54 \mathrm{VDC} \\ & 002=13.5 \text { to } 32 \mathrm{VDC} \\ & 003=100-200 \mathrm{VDC} \text { Or } 100-140 \mathrm{VAC} . \end{aligned}$			

Our authorized distributors are more likely to stock these items.
WD5051-001
WD5051-003
WD5051-3-001

WD5051 Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate ammeter in series with the current source. Use the following procedure to calibrate your relay:
OVERCURRENT

1. Remover the cover.
2. Adjust the TRIP SET control fully clockwise (CW) and the TIME DELAY control (TOC only) fully counterclockwise (CCW).
3. Apply the desired trip current to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Remove the applied current (do not change the current level). Set the TIME DELAY (TOC only) control to the desired time delay.

WD5051 Controls

WD5051 Connections

WD5051

Single Phase Model

WD5051-3
Three Phase Model

WD5051-3
Three Phase Model

WD5051
Single Phase Model

CONTROL
BI-DIRECTIONAL AC OR DC INPUT

WD810U Over/Underfrequency Relays

- Function 81 OU
- ANSI/IEEE C37.90-1978

WD810U Calibration

The calibration marks on the faceplate are provided only as guides. Proper calibration requires using an accurate frequency meter in parallel with the input signal.

UNDER FREQUENCY

1. Remove the cover.
2. Set the SENSE FREQUENCY to the nominal system frequency. Adjust the Under Frequency TRIP SET fully clockwise (CW) and the TIME DELAY control fully counterclockwise (CCW).
3. Apply the desired trip frequency to the relay.
4. Slowly adjust the TRIP SET control CCW until the relay trips.
5. Set the TIME DELAY control to the desired time delay and apply nominal frequency to the relay.
6. Step down the applied frequency from nominal to just below the trip level set in Step 4 and measure the time delay.
7. Adjust the TIME DELAY and repeat steps 5 and 6 until the desired time delay is set.
OVER FREQUENCY
8. Remove the cover.
9. Set the SENSE FREQUENCY to the nominal system frequency. Adjust the OF TRIP SET and TIME DELAY controls fully counterclockwise (CCW).
10. Apply the desired trip frequency to the relay.
11. Slowly adjust the TRIP SET control clockwise (CW) until the relay trips.
12. Set the TIME DELAY control to the desired time delay and apply nominal frequency to the relay.
13. Step down the applied frequency from nominal to just below the trip level set in Step 4 and measure the time delay.
14. Adjust the TIME DELAY and repeat steps 5 and 6 until the desired time delay is set.

WD810U Controls

Our authorized distributors are more likely to stock these items.
None at present.
WD810U Typical Hookup

CONTROL
BI-DIRECTIONAL AC OR DC INPUT

Specifications and availability

Alphanumeric Index

Series Type	Page
0.100 Grid Relays	1403
1/5 Size Relays	. 1404
AC Contactors	. 1407
AC/DC Contactors	1408
AC and DC High Voltage Contactors	1409
DC Automatic Dropout Contactors	1409
DC Contactors	1407
DC Reverse Current Contactors	1408
Full Size Relays	1404
Half Size Relays	1404
High-Frequency Relays	1403
High Voltage DC Contactors	1410
High Voltage Relays to 9kV	1410
High Voltage Relays to 70kV	1411
M onitors	1408
Over/Under Frequency Relays	1412
Over/Under Voltage Relays	1412
Paralleling Relay	1412
Phase Sequence Relay	1412
Plug-In Contactors	. 1408
Power Distribution Systems	1409
Protective Relays	1412
Sensors ..1405,	1408
Single Phase Overcurrent Relay.	1412
Solenoids	1406
Solid State Relays	. 1405
Space Contactors	1409
T0-5 Relays	1402
Three Phase Overcurrent Relay .	1412
Timers	1405

NOTE: This section of the databook provides only a brief overview of our CII, HARTM AN and KILOVAC high performance relay products. For more detailed specifications on these products, visit our website at www.tycoelectronics.com.

High Performance Signal Level Relays

T0-5 Relays - Hermetically Sealed - Standard or Sensitive Coils - Optional Diodes/Transistors			Sensitive Version		dard sion		Standard Version			
P/N Series	Contact Form	Contact Rating	Coil Voltage	Temperature Rating	Vibration	Shock	Mil-Spec	Features/Options		
HM	2 Form C	Up to 1A	5 to 30 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial	-		
HMD	2 Form C	Up to 1A	5 to 30 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-	-
HS	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial			-
HSD	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-	- 1
MA	2 Form C	Up to 1A	5 to 30 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/9	\bullet		- 1.5
1MA	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/7	-		- 1.5
MAD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G '	75 G 's	M39016/15	-	-	- 1.5
1MAD	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G '	75 G 's	M39016/23	-	-	- 1.5
MADD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/20	-	-	- 1.5
1MADD	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/24	-	-	- 1.5
MAT	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M28776/1	-		- 1.5
1MAT	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M28776/5	-		-1.5
MAV	2 Form C	Up to 1A	5 to 30 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/9 Design	\bullet		\bullet
MAVD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/15 Design	-	-	-
MAVDD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/20 Design	-	\bullet	-
MS	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M39016/11			- 1.5
1MS	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/10			- 1.5
MSD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/16		-	- 1.5
1MSD	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/25		-	- 1.5
MSDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/21		-	- 1.5
1MSDD	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M39016/26		-	- 1.5
MST	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M28776/3		-	- 1.5
1MST	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G '	75 G 's	M28776/4			- 1.5
MSV	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/11 Design			-
MSVD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/16 Design		-	\bullet
MSVDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	380 G 's	150 G's	M39016/21 Design		-	-
PRMA	2 Form C	Up to 1A	5 to 30 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-		- 1.5
PR1MA	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-		- 1.5
PRMAD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*	\bullet	\bullet	- 1.5
PR1MAD	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-	-	- 1.5
PRMADD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*	-	-	- 1.5
PR1MADD	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*	-	-	- 1.5
PRMAT	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*	-		- 1.5
PR1MAT	1 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*	-	-	- 1.5
PRMS	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*			- 1.5
PR1MS	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*			- 1.5
PRMSD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*		-	- 1.5
PR1MSD	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*		-	- 1.5
PRMSDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*		-	- 1.5
PR1MSDD	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*		-	- 1.5
PRMST	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*			- 1.5
PR1MST	1 Form C	Up to 1A	5 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*		-	- 1.5

High Performance Signal Level Relays

. 100 Grid Relays - Hermetically Sealed - Standard or Sensitive Co - Optional Diodes/MOSFET					MOSFET Version	Surface Mount Version						
P/N Series	Contact Form	Contact Rating	Coil Voltage	Temperature Rating	Vibration	Shock	Mil-Spec		Featu	ur	tions	
HC	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial	\bullet				- 1
HCD	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-			
HCS	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial					1
HCSD	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial					- 1
SHC	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial	\bullet			\bullet	1
SHCD	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-		-	1
SHCS	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial				-	1
SHCSD	2 Form C	Up to 1A	5 to 48 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial				-	1
MGA	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/17	\bullet				1.5
MGAD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/18	-	-			1.5
MGADD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/19	\bullet		\bullet		1.5
MGAT	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M28776/6	-				1.5
SMGA	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M39016/17 Design	\bullet			\bullet	1.5
SMGAD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/18 Design	-	-		-	
SMGADD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M39016/19 Design	\bullet		-	-	1.5
MGS	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/41					1.5
MGSD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/42					1.5
MGSDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/43			-		1.5
MGST	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M28776/7					1.5
SMGS	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/41 Design				-	
SMGSD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	M39016/42 Design				\bullet	1.5
SMGSDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	M39016/43 Design			-	-	1.5
PRMGA	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	\bullet				- 1.5
PRMGAD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-	-			- 1.5
PRMGADD	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-		-		1.5
PRMGAT	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*	-				1.5
PRMGS	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*					- 1.5
PRMGSD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*					1.5
PRMGSDD	2 Form C	Up to 1A	5 to 48 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G's	COTS Version*			-		1.5
PRMGST	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	75 G 's	COTS Version*					1.5
* Commercial-Off-The-Shelf												
High Frequency Relays - Hermetically Sealed - Standard or Sensitive Coils - Standard or High Performance Versions - Excellent RF Performance				Standard T0-5 Package			Sensitive Grid Package					
P/N Series	Contact Form	Contact Rating	Coil Voltage	Temperature Rating	Vibration	Shock	Mil-Spec	Features/Options				
MW3	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-		-	3
MW3S	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial				-	3
MW4	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		\bullet			- 4
MW4S	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial			-		4
MW6	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial		-			6
MW6S	2 Form C	Up to 1A	5 to 26.5 Vdc	-55° to $+85^{\circ} \mathrm{C}$	10 G 's	30 G 's	Commercial			-		6
MW3HP	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial		\bullet		-	3
MW3HPS	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial			-	-	3
MW4HP	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial		\bullet			- 4
MW4HPS	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial			-		4
MW6	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial		\bullet			6
MW6HPS	2 Form C	Up to 1A	5 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$	30 G 's	100 G 's	Commercial			-		- 6

RF Performance Excellence - MW series high frequency relays are designed to provide excellent insertion loss repeatability over the frequency range from DC to 6 GHz . Exceptional isolation performance makes the MW series relays the logical choices for high performance RF applications.

High Performance Subminiature Relays

Full Size Relays

- Hermetically Sealed
- Optional Terminals
- Optional Mounting Styles

P/N Series	Contact Form	Contact Rating	Coil Voltage	Temperature Rating
02	2 Form C	Up to 2A	6 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$
07	2 Form C	Up to 10A	6-120 Vdc, 115 Vac	-65° to $+125^{\circ} \mathrm{C}$
3SAM	2 Form C	Up to 2A	6 to 24 Vdc	-65° to $+125^{\circ} \mathrm{C}$
3SDM	2 Form C	Up to 2A	6 to 24 Vdc	-65° to $+125^{\circ} \mathrm{C}$
FW	2 Form C	Up to 3A	6.3 to 110 Vdc	-65° to $+125^{\circ} \mathrm{C}$
FW5A	2 Form C	Up to 5A	6.3 to 110 Vdc	-65° to $+125^{\circ} \mathrm{C}$
RD4	4 Form C	Up to 2A	6 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$
RD6	6 Form C	Up to 2A	6 to 26.5 Vdc	-65° to $+125^{\circ} \mathrm{C}$
RFB	1 or 2 Form C	Up to 2A	6 to 26.5 Vdc	-65° to $+85^{\circ} \mathrm{C}$
SF	2 Form C	Up to 2A	1.8 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$
SF5A	2 Form C	Up to 5A	1.8 to 40 Vdc	-65° to $+125^{\circ} \mathrm{C}$

High Reliability Space Relays

Products	Services	Features
Half Size Non-Latching 1, 2, 4, 6 Form C configurations, low level to 10 amps switching Half Size Latching 2 and 4 Form C configurations, low level to 2 amps switching	CII Hi -Rel products from Tyco Electronics are extensively tested to assure that your reliability standards and requirements are met or exceeded. Our services include: - Precision cleaning	- High shock ratings - High vibration ratings - Latching versions - Class 100 cleanroom - Welded assemblies
1/5 Size Non-Latching 2 and 4 Form C configurations, low level to 2 amps switching 1/5 Size Latching 4 Form C, low level to 2 amps switching T0-5/.100 Grid 2 Form C, round and square outlines, low level to 1 amp switching	- Particle impact noise detection - Serialized test data - High shock testing - Test profiles can be - High vibration testing tailored to individual - X-ray testing customer requirements. - Qualification testing	Applications - Space satellites (telecommunications) - Weather tracking - Surveillance - Infrared observation instrumentation - Missile systems - Torpedo guidance circuits

High Performance Solid State Relays

High Performance DC Tubular Solenoids - Series 3000

Pull-Type Solenoid
Custom configurations available
DC tubular pull-type solenoids are designed to provide up to 90 lbs of force with a maximum stroke of .500 inches.

Actual usable force will depend on the stroke and power level.

Coils are available from 6 to 115 Vdc with a continuous duty power level of 2.2 to 54 watts and an intermittent duty power level of 12 to 585 watts.

Push-Type Solenoid
Custom configurations available
DC tubular push-type solenoids provide up to 50 lbs of force with a maximum stroke of . 562 inches.

Actual usable force will depend on the stroke and power level.

Coils are available from 6 to 115 Vdc with a continuous duty power level of 3 to 36 watts and an intermittent duty power level of 9 to 240 watts.

Switch-Type Solenoid Custom configurations available

DC tubular switch-type solenoids provide up to 120 lbs of force with a maximum stroke of 1 inch.

Actual usable force will depend on the stroke and power level.

Coils are available from 12 to 115 Vdc. Two coils are utilized, one energized at pull-in for extra force and a holding coil for continuous operation. Intermittent duty power level of 112 to 700 watts and a continuous power level of 3 to 14 watts.

High Performance Custom Solenoids - Series 7000

Tyco Electronics can provide customized solenoids with many of the following features :

Solenoid Styles	Connector Styles	Mounting Styles	Plunger Styles
High Temperature	Flexible Leads	Round Flanges	Internal Threads
$400 H z$ AC	Connector Assemblies	Square Flanges	External Threads
Commercial AC	Right Angle AN Connectors	Threaded Flanges	Clevice Plungers
Airframe	Square Flange AN Connectors	Shaped Flanges	Extension Plungers
Heavy Duty	Quick-Connects		Captive Plungers
Two Coil Designs	Screw, Solder \& Stud Terminals		
Pressure Sealed			

High Performance AC Contactors

Side Stable Contactors Latching Contactors Center Off Contactors

FEATURES:

- High reliability
- Meets requirements of Mil-R-6106
- Hermetic or gasket seal available
- Repairable
- Easily tailored to customer requirements

P/N	Current Rating	Description	P/N	Current Rating	Description
DH-7YC	25 Amps	4PST N.O., 115/208 VAC, 400 Hz	D-31TFA	100 Amps	3PDT, Center Off, 115/208 VAC, 400 Hz
B-347A	25 Amps	3PDT, Double Break, 115/220 VAC, 400 Hz	B-233R	120 Amps	3 PDT, 115/200 VAC, 400 Hz
DH-14B-3	25 Amps	$3 P D T, 115 / 200$ VAC, 400 Hz	BH-201B	120 Amps	3PST N.0., 115/200 VAC, 400 Hz
B-252	30 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz	D-100A	120 Amps	3PST N.0., 115/200 VAC, 400 Hz
B-140C	30 Amps	3PDT, Center Off, 120 VAC, 60 Hz	B-435K-3	140 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz
N-415A-1	30 Amps	3PDT, Double Break, 115/200 VAC, 400 Hz	B-233T	160 Amps	3 PDT, 115/200 VAC, 400 Hz
SA106E	30 Amps	3PDT, 115 VAC, 400/60 Hz	B-451	175 Amps	3PST, Magnetic Latch, 115/200 VAC, 400 Hz
DH-7ZAB	50 Amps	3 3PD, $115 / 200$ VAC, 400 Hz	B-312D-1	175 Amps	3 3PST N.O., 120/208 VAC, $50 / 60 \mathrm{~Hz}$
D-7GRZ	50 Amps	3 PDT, 115/200 VAC, 400 Hz	B-499	35/200A	3PDT, Double Break, 115 VAC, $400 \mathrm{~Hz} / 28$ VDC
NN-301	50 Amps	SPDT w/Time Delay on Pickup, 115 VAC, 400 Hz	BR-301AY	200 Amps	3PST N.0., 115/200 VAC, 400 Hz
D-7GR	50 Amps	3PDT, 115/200 VAC, 400 Hz	B-393P	200 Amps	3PDT, Center Off, 120/208 VAC, 50/60/400 Hz
N-421A	50 Amps	3PST N.C., 115/200 VAC, 400 Hz	B-345LS	225 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz
D-18F	50 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz	B-394	250 Amps	$3 P D T, 115 / 200$ VAC, 400 Hz
DR-18E-5	50 Amps	2SPST, Center Off, 115/208 VAC, 400 Hz	BH-124AA	250 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz
B-227	60 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz	BH-360A	250 Amps	$3 P D T, 115 / 200$ VAC, 400 Hz
B-138S	60 Amps	3PST N.O., 115/200 VAC, 300-600 Hz	B-430-1	275 Amps	3PST, Magnetic Latch, 115/200 VAC, 400 Hz
DH-7BC	60 Amps	3 3PD, 115/208 VAC, 400 Hz	B-429A-1	300 Amps	3PST N.O., 115/200 VAC, 400 Hz
BR-329BC	60 Amps	2PST N.0., $115 \mathrm{VAC}, 60 \mathrm{~Hz}$	B-874L	335 Amps	3 PST, $200 \mathrm{VAC}, 400 \mathrm{~Hz}$
SA120B	60 Amps	3PDT, Side Stable, 115/200 VAC, 400 Hz	B-429CA	350 Amps	3PST N.O., 120/208 VAC, 400 Hz
NH-505	90 Amps	3PDT, Center Off, 115/200 VAC, 400 Hz	B-479A-1	350 Amps	3PST, Magnetic Latch, 120/208 VAC, 400 Hz
D-25BD	100 Amps	3 3PD, 115/200 VAC, 400 Hz	B-484	500 Amps	3PST, Magnetic Latch, 115/200 VAC, 400 Hz

High Performance DC Contactors

FEATURES:

- High reliability
- Meets requirements of Mil-R-6106
- Hermetic or gasket seal available
- Repairable
- Easily tailored to customer requirements

P/N	Current Rating	Description		P/N	Current Rating

High Performance AC/DC Contactors

Side Stable Contactors			
P/N	Current Rating	2PDT N.C., $28 \mathrm{VDC}, 60$ or 400 Hz	

Sensors \& Monitors

Voltage \& Current Sensors Phase Rotation Sensors Ground Power Monitors Frequency Sensors

FEATURES:

- High reliability
- Meets requirements of Mil-R-6106
- Hermetic or gasket seal available
- Lightweight construction units available
- Epoxy encapsulated units available

P/N	Current Rating	Description	P/N	Current Rating	Description
AVR-869C		SPDT, 28 VDC, $3 \varnothing$ Sequence Relay	Q-50AC	0.3 Amp	SPDT, 28 VDC, Encapsulated Current Indicator
E-312P	5 Amps	SPDT, 28 VDC, 400 Hz, Overvoltage Sensor	CH-27	0.75 Amp	2PDT, 28 VDC, Current Sensor
E-381	5 Amps	SPDT, $130 \mathrm{VAC}, 400 \mathrm{~Hz}$, Undervoltage Sensor	CH-26	1 Amp	SPST, 28 VDC, Current Sensor
E-308AA	7.5 Amps	SPDT, $120 \mathrm{VDC}, 60 \mathrm{~Hz}, 3 \varnothing$ Undervoltage Sensor	A-848KK	75 Amps	2PST, 28 VDC, Automatic Drop Out
E-329E	10 Amps	3PDT, 115 VAC, Drop Out Time Delay	A-772XTB	200 Amps	SPST N.O., 28 VDC, Delayed Drop Out
E-308AH	10 Amps	3PDT, 115 VAC, Drop Out Time Delay	A-701P-1	400 Amps	SPST N.O., 28 VDC , Remote Reset
E-312A-1	10 Amps	$2 P D T, 440$ VAC, $400 \mathrm{~Hz}, 3 \varnothing$ Voltage Sensor	A-701P-3	500 Amps	SPST N.O., 28 VDC, Remote Reset
E-348	0.25 Amp	SPST N.O., 28 VDC, Overload Relay	A-792CA	600 Amps	2 PST N.O., 28 VDC, Automatic Drop Out
E-308	3 Amps	SPDT, 28 VDC, Adjustment Pick-Up Voltage	E-326	1 Amp	115 VAC, $400 \mathrm{~Hz}, 3 \varnothing$ Rotation Sensor
AVR-834	3 Amps	SPDT, 28 VDC, DC Voltage Sensor	E-326A	1 Amp	$115 \mathrm{VAC}, 60 \mathrm{~Hz}, 3 \varnothing$ Rotation Sensor
E-311P	10 Amps	2PDT, 28 VDC, Drop Out Time Delay	E-341	2 Amps	SPDT, 208 VAC, $400 \mathrm{~Hz}, 3 \varnothing$ Rotation Sensor
QR-50AF	0.25 Amp	SPST, 115 VAC, Encapsulated Current Indicator	E-326E	5 Amps	SPDT, 460 VAC, $60 \mathrm{~Hz}, 3 \varnothing$ Rotation Sensor
QR-50DA	0.25 Amp	SPST, 115 VAC, Encapsulated Current Indicator	E-145Z	25 Amps	2PST, 120/208 VAC, 400 Hz , Phase Loss Relay
E-387	1 Amp	SPDT, 115 VAC, 400 Hz, Current Sensor	E-145Y	60 Amps	2PST, 120/208 VAC, 400 Hz , Phase Loss Relay
E-145AK-4	5 Amps	SPST, 115 VAC, $3 \varnothing$ Current Sensor	E-327AD	1 Amp	2PST, 115 VAC, Ground Power Monitor
BE-500G-1	50 Amps	3PST N.O., 120 VAC, Overload Current Sensor	E-384	3 Amps	SPDT, 28 VDC, Under Frequency Sensor
Q-50B	0.25 Amps	SPDT, 28 VDC, Encapsulated Current Indicator			

Plug-In Contactors
Side Stable Contactors Latching Contactors Center Off Contactors

P/N	Current Rating	Description	
BP-353	50 Amps	3PST N.O., $115 / 200 \mathrm{VAC}, 400 \mathrm{~Hz}$	BP
DP-25BD	100 Amps	3PDT, $115 / 200 \mathrm{VAC}, 400 \mathrm{~Hz}$	B
DP-31C	100 Amps	3PDT, Center $0 \mathrm{ff}, 115 / 200 \mathrm{VAC}, 400 \mathrm{~Hz}$	BP

FEATURES:

- Fast installation/removal time
- Improved maintenance safety
- High reliability
- Meets requirements of Mil-R-6106
- Lightweight construction

Description

3PST N.O., ELCU, 115/200 VAC, 400 Hz 3PST N.0., 115/200 VAC, 400 Hz
3PST, Magnetic Latch, 115/200 VAC, 400 Hz

DC Automatic Dropout Contactors

DC Automatic Drop Out

Time Delay Relays
Phase Imbalance Sensors
Automatic Drop Out Contactors

P/N	Current Rating	Description
E-55	2 Amps	4PDT, 28 VDC, Time Delay
B-178	60 Amps	3PST, 120/208 VAC, 400 Hz, Phase Sensor

P/N Current Rating Description
A-757D 600 Amps SPST, 28 VDC, Automatic Dropout @ 180 Amps

AC \& DC High Voltage Contactors

| High Voltage
 AC Contactors
 DC Contactors
 Center Off Contactors
 Latching Contactors | |
| :--- | :--- | :--- | :--- |
| P/N | Current Rating |

Space Contactors

Power Distribution Panels Modular Units Standard Panels	FEATURES: - Primary and secondary power distribution - Main power contactors - Secondary power contactors/relays - Current and voltage sensing - Logic/control signals	- Contactors/circuit breaker plug-in units - Power management capabilities - Value added - Space saving/weight saving designs - Custom designs for specific applications
Modular Units		Standard Panels
- Utilizes plug-in line replaceable modules installed on a panel mounting system, or back-plane. LRMs may be contactors, circuit breakers, sensing units, ELCUs, etc. - Designed as a fault-free zone with no moving parts. Intended as a permanent installation on mother vehicle. FEATURES: - Weight savings over standard discrete components - Value added - Ease of maintenance - Reduced OEM labor	ounting system, or - Utilizes actuator and conta together and packaged in control connections.	assemblies from discrete contactors, bussed e or more enclosures with external power and sing, fuses, circuit breakers, power monitors, etc distribution approach ance abor
These are just some of the HARTMAN products capabilities from Tyco Electronics:		
- Voltage, Current \& Power Sensing - Over \& Reverse Current - Over \& Under Voltage - Over \& Under Frequency - Ground Fault \& Detection - Time Delay	- Phase Sequence, Unbalance \& Failure - Impedance Relays - Ripple Detection - Positive, Negative \& Zero Sequence Voltage - Signal Amplification	- Turbine Starting - Trip-Free, Electrical \& Mechanical Interlocking - Electrical \& Magnetic Latching - Polarization - Power Switching

High Voltage DC Relays \& Contactors

High Voltage DC Relays \& Contactors

8 kV High Volt Vacuum Gas Filled	Reed Relays ays elays				$20 \mathrm{kV}$ Vacuum Relay				
P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form	P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form
S06JNB	6 amps	Carry Only	Yes	SPST-NC	H-19	30 amps	Special	Yes	DPDT
HC-6	8 amps	Make Only	No	SPDT	25 kV Vacuum Relays Gas Filled Relays		-		-
H-18	10 amps	Yes	Yes	SPDT			4		W
K47A	12 amps	Yes	Yes	SPST-NO					
K47B	12 amps	Yes	Yes	SPST-NC					
HC-4	15 amps	Yes	No	SPDT					
HC-2	25 amps	No	No	SPDT			Power Switching*	RF Ratings	Contact Form
K44P	50 amps	Yes	Yes	SPST-Latch	KC-38	15 amps	Make Only	No	SPST-NC
10 kV					K62A	18 amps	Special	No	SPST-NO
High Vo	Reed Relays	novae			K62B	18 amps	Special	No	SPST-NC
Vacuum	lays	SO5LTA135		Klowe sigy	K62C	18 amps	Special	No	SPDT
					H-17	30 amps	Special	Yes	SPDT
			1		KC-28	30 amps	Make Only	No	SPST-NO
P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form	KC-32	45 amps	Special	No	SPST-NC
S05LTA	5 amps	Yes	No	SPST-NO	KC-30	55 amps	Carry Only	Yes	SPST-NC
S05LTB	5 amps	Yes	No	SPST-NC	KC-22	65 amps	Special	No	SPST-NO
K81A	10 amps	Special	No	SPST-NO	KC-20	110 amps	Carry Only	Yes	SPST-NO
K81B	10 amps	Special	No	SPST-NC	30 kV				
K81C	10 amps	Special	No	SPDT	Vacuum				
K43A	25 amps	Special	Yes	SPST-NO					
K43B	25 amps	Special	Yes	SPST-NC					
K43C	25 amps	Special	Yes	SPDT					
K43R	24 amps	Carry Only	Yes	SPDT-Latch	P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form
K43P	24 amps	Carry Only	Yes	SPST-Latch		30 amps	Carry Only	Yes	SPST-NC
					H-24	30 amps	Carry Only	Yes	SPST-NO
12 kV Vacuum					$35 \text { kV }$ Gas Fille				
P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form	P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form
H-14	30 mps	Carry Only	Yes	DPDT	K61A	10 amps	Make Only	No	SPST-NO
H-16	30 mps	Carry Only	Yes	DPDT	K61B	10 amps	Make Only	No	SPST-NC
15 kV		\%			K61C	10 amps	Make Only	No	SPDT
High Volt	Reed Relays				K60C	10 amps	Make Only	No	SPDT
Vacuum Gas Filled	lays elays				50 kV Vacuum Gas Fille	lays elays			
P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form				\cdots	
S05MTA	5 mps	Carry Only	No	SPST-NO					
KC-15	12 amps	Make Only	No	SPDT	P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form
KC-16	12 amps	Make Only	No	SPDT	K64C	10 amps	Make Only	No	SPDT
KC-14	15 amps	Yes	No	SPDT	H-25	30 mps	Special	No	SPDT
KC-18	15 amps	Yes	No	SPDT	70 kV				
H-8	15 amps	Yes	No	SPDT	Gas Filled				
KC-12	30 amps	Yes	Yes	SPDT					
H-26	30 amps	Carry Only	Yes	4PDT					
KC-8	30 amps	Yes	Yes	SPDT					
KC-2	50 amps	Carry Only	Yes	SPDT	P/N Series	Carry Current	Power Switching*	RF Ratings	Contact Form
KC-11	50 amps	Carry Only	Yes	SPDT	K70A	10 amps	Make Only Make Only	No	SPST-NO SPST-NC
Consult	for Power	ching Level			K70C	10 amps	Make Only	No	SPDT

* Consult Factory for Power Switching Level

Protective Relays

We offer a broad range of protective relays for use in portable generators, automatic transfer switches, irrigation pumps, industrial facilities, utilities, refineries, oil field, urban rapid transit systems, aircraft, ships and submarines. Some models are qualified by the military for use in ground support equipment, aircraft and Navy ships' high shock applications. These are managed in the DOD supply system under NSN classes 5945 and 6110. KILOVAC protective relays were previously marketed under the WILMAR brand.

Following is a just a partial listing of our protective relay offering:

NOTE

WD.. Series protective relays are described in section 13 of this databook. For details on other models, please visit our website at www.tycoelectronics.com.

Americas

Argentina - Buenos Aires	
Phone: $\quad+54-11-4733-2200$	
Fax:	$+54-11-4733-2250$
Brasil - São Paulo	
Phone: $\quad+55-11-3611-1311$	
Fax: $\quad+55-11-3611-0397$	

Canada - Markham
Phone: $\quad+905-475-6222$
Fax: $\quad+905-474-5520$
Product Information Center:

(Technical
Support)

Phone: $\quad+905-470-4425$
Fax: $\quad+905-474-5525$
Colombia - Bogota
Phone: $\quad+57-1-240-9396$
Fax: $\quad+57-1-660-0206$
Mexico - Mexico City
Phone: $\quad+52-55-5-729-0425$
Fax: $\quad+52-55-5-398-1430$

United States-Harrisburg, PA
Phone: $\quad+717-564-0100$
Fax: $\quad+717-986-7575$
Product Information Center:
(Technical Support)
Phone: +800-522-6752
Fax: $\quad+717-986-7575$

For Latin/South American
Countries not shown
Phone: +57-1-240-9396
Fax: +57-1-660-0206
+55-11-3611-0397

Japan - Kawasaki, Kanagawa	New Zealand - Auckland
Phone: +81-44-844-8079	Phone: +64-9-634-4580
Fax: $\quad+81-44-844-8733$	Fax: $\quad+64-9-634-4586$
Product Information Center:	
(Technical Support)	Philippines - Makati City
Phone: +81-44-844-8013	Phone: +632-867-8641
Fax: +81-44-812-3200	Fax: +632-867-8661
Raychem Products	
Phone: +81-44-900-5102	People's Republic of China
Fax: $\quad+81-44-5025-5027$	Hong Kong
	Phone: +852-2735-1628
Korea - Seoul	Fax: +852-2735-0243
Phone: +82-2-3274-0535	
Fax: $\quad+82-2-3274-0524 / 0531$	Shanghai
	Phone: +86-21-6485-0602
Malaysia - Selangor	Fax: $\quad+86-21-6485-0728$
Phone: +60-3-7053055	
Fax: +60-3-7053066	Shunde
	Phone: +86-765-775-1368
	Fax: $\quad+86-765-775-2823$

Singapore - Singapore	
Phone:	+65-4820-311
Fax:	+65-4821-012
Raychem P	Products
Phone:	+65-4866-151
Fax:	+65-6545-514
Taiwan - Taipei	
Phone:	+886-2-2664-9977
Fax:	+886-2-2664-9900
Thailand - Bangkok	
Phone:	+66-2-955-0500
Fax:	+66-2-955-0505
Vietnam - Ho Chi Minh City	
Phone:	+84-8-8232-546/7
Fax:	+84-8-8221-443

Asia/Pacific

Australia - Sydney	
Phone:	+61-2-9840-8200
Fax:	+61-2-9899-5649
Product Information Center:	
(Technical Support)	
Phone:	+61-2-9554-2600
Fax:	+61-2-9502-2556
India - Bangalore	
Phone:	+91-80-841-0200
Fax:	+91-80-841-0210
Indonesia - Jakarta	
Phone:	+6221-526-7852
Fax:	+6221-526-7856

Europe/Middle East/Africa

Austria - Vienna		Germany - Bensheim	
Phone:	+43-190-560-0	Phone:	+49-6251-133-0
Fax:	+43-190-560-1333	Fax:	+49-6251-133-1600
		Produc (Techn	nformation Center:
Belgium - Kessel-Lo		(Technical Support)	
Phone:	+32-16-352-300	Phone:	+49-6251-133-1999
Fax:	+32-16-352-352	Fax:	+49-6251-133-1988
Bulgaria - Sofia		Germany - Langen	
Phone:	+359-2-971-2152	Phone:	+49-6103-709-0
Fax:	+359-2-971-2153	Fax:	+49-6103-709-1223
Czech Republic - Kurim		Germany - Speyer	
Phone:	+420-5-41-162-111	Phone:	+49-6232-30-0
Fax:	+420-5-41-162-223	Fax:	+49-6232-30-2243
Denmark - Viby J		Germany	
Phone:	+45-70-15-52-00	HTS Di	sion - Neunkirchen
Fax:	+45-86-29-51-33	Phone:	+49-2247-305-0
		Fax:	+49-2247-305-122
Egypt - Cairo		Great Britain -	
Phone:	+20-2-417-76-47		
	+20-2-419-23-34	Stanmore Middlesex	
		Phone:	+44-181-954-2356
Estonia - Tallinn		Fax:	+44-181-954-6234
Phone:	$+372-65-05-474$	Product Information Center: (Technical Support)	
	+372-65-05-470	Freeph	GB: 0800-267-666
		Phone:	+44-141 $8108967 \ldots 69$
Finland - Helsinki		Fax:	+44-141810 8971
Phone:	+358-95-12-34-20	Great Britain - Dorcan, Swindon	
	+358-95-12-34-250	Raychem Products	
		Phone:	+44-1793-528171
France -		Fax:	+44-1793-572516
Cergy-Pontoise			
Phone:	+33-1-3420-8888	Greece - Athens	
Fax:	+33-1-3420-8600	Phone:	+30-1-9370-396/397
Product Information Center: (Technical Support)		Fax:	+30-1-9370-655
Phone:Fax:	$\begin{aligned} & +33-1-3420-8943 \\ & +33-1-3420-8623 \end{aligned}$	Hungary - Budapest	
		Phone:	+36-1-289-1000
		Fax:	+36-1-289-1010
France			
Tyco Electronics Export -St Ouen L'Aumone		Ireland - Dublin	
		Phone:	+353-1-820-3000
Phone:Fax:	$\begin{aligned} & +33-1-3440-7200 \\ & +33-1-3440-7220 \text { or } \\ & +33-1-3440-7230 \end{aligned}$		+353-1-820-9790
		Israel	okneam
		Phone:	+972-4-959-0508
		Fax:	+972-4-959-0506

[^0]: | Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others. |
 | :--- |
 | Dimensions are shown for |
 | Dimensions are in inches over | reference purposes only. (millimeters) unless otherwise specified.

[^1]: Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．
 $\begin{array}{ll}\text { Dimensions are shown for } & \text { Dimensions are in inches over } \\ \text {（millimeters）unless otherwise }\end{array}$ （millimeters）unless otherw ise specified．

[^2]: | Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others. |
 | :--- |
 | Dimensions are shown for \quad Dimensions are in inches over | reference purposes only.

[^3]: | Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others. |
 | :--- |
 | Dimensions are shown for \quad Dimensions are in inches over | reference purposes only. (millimeters) unless otherwis subject to change.

[^4]: Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.

[^5]: Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.

[^6]: | Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others. |
 | :--- |
 | Dimensions are shown for \quad Dimensions are in inches over | reference purposes only. (millimeters) unless otherwise subject to change.

[^7]: Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others.

[^8]: Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others．
 Dimensions are shown for Dimensions are in inches over Specifications and availability www．tycoelectronics．com reference purposes only．

[^9]: $\frac{\text { Specifications and/or agency recognitions do not necessarily apply to all models within a particular series. When multiple ratings are listed, no individual rating may be exceeded by the combination of others. }}{\text { Dimensions are shown for }}$.

[^10]: | Specifications and／or agency recognitions do not necessarily apply to all models within a particular series．When multiple ratings are listed，no individual rating may be exceeded by the combination of others． |
 | :--- |
 | Dimensions are shown for \quad Dimensions are in inches over |

[^11]: NOTE: A question tree that may help you in selecting an appropriate low-signal relay for your application can be found on the next page.

[^12]: Mechanical Data
 Termination: Printed circuit terminals.
 Enclosure ($94 \mathrm{~V}-\mathbf{0}$ Flammability Ratings): OMR: Open, no cover.
 OMR-C: Snap-on dust cover.
 Weight: $0.16 \mathrm{oz}(4.5 \mathrm{~g})$ approximately.

[^13]: Users should thoroughly review the technical data before selecting a product part number. It is recommended that user also seek out the pertinent approvals files of the agencies/laboratories and review them to ensure the product meets the requirements for a given application.

[^14]: Note: This data is based on the max. allowable

[^15]: * Not suitable for immersion cleaning processes.

[^16]: All values are given for coil without preenergization, at $20^{\circ} \mathrm{C}$ ambient. At $70^{\circ} \mathrm{C}$ after preenergization with $11 \times$ nominal voltage, the maximum operating voltage is 85% of nominal.
 At $70^{\circ} \mathrm{C}$ maximum coil voltage is $11 \times$ nominal

[^17]: * Typical loads at 28VDC or 120VAC, resistive, for comparison purposes. See catalog pages for a given series for detailed rating specifications.

[^18]: $1_{\text {Listed by C.S.A. for } 5 \text { A @ 120VAC }} 80 \%$ PF

[^19]: Note 1: Flange mount sockets pre-assembled on steel mounting plates. Grounding is not recommended for currents of 5 amps $A C \&$ above.
 Note 2: Listed hold-down springs cannot be used for R10S.
 Note 3: On R10L series hold down spring fits to the side of light emitting diode.
 Note 4: Use 40G432 insulator or suitable insulator (2 per socket).
 Note 5: Snap-mount relay sockets snap onto 24A110 mounting rail without extra hardware.
 Note 6: $27 E 893$ cannot be used with KUIP and KUGP series relays.
 Relay and Socket Usage Chart continued on next page.

[^20]: Note 1: Flange mount sockets pre-assembled on steel mounting plates. Grounding is not recommended for currents of $5 \mathrm{amps} A C \&$ above
 Note 2: Listed hold-down springs cannot be used for R10S.
 Note 3: On R10L series hold down spring fits to the side of light emitting diode.
 Note 4: Use 40G432 insulator or suitable insulator (2 per socket).
 Note 5: Snap-mount relay sockets snap onto 24A110 mounting rail without extra hardware.
 Note 6: $27 E 893$ cannot be used with KUIP and KUGP series relays.

[^21]: * Typical loads for comparison purposes. See catalog pages for a given series for detailed rating specifications

[^22]: Our authorized distributors are more likely to maintain the following items in stock for immediate delivery.

[^23]: ORDERING NOTE: "Standard" terminals need not be specified in the "Ordering Information" chart above. "Special" terminals are offered on a special order basis. Special order items may be subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding items with these options.

[^24]: ORDERING NOTE: "Standard" terminals need not be specified in the "Ordering Information" chart above. "Special" terminals are offered on a special order basis. Special order items may be subject to extended leadtimes and significant minimum order quantities. Your Tyco Electronics sales engineer must consult with the factory before providing price and availability information regarding items with these options.

[^25]: * Typical loads at 14VDC, resistive, for comparison purposes. See catalog pages for a given series for detailed rating specifications.

[^26]: Note: See page 1011 for Wiring Diagrams, Suggested PC Board Layouts and Outline Dimensions.

[^27]: *Standard Coil Voltages: F = 12VDC
 $\mathrm{H}=24 \mathrm{VDC}$ (Consult factory for availability)

[^28]: *Standard Coil Voltages: $\mathrm{F}=12 \mathrm{VDC}$
 $\mathrm{H}=24 \mathrm{VDC}$ (Consult factory for availability)

[^29]: * If control switch is closed when power is applied, relay will immediately energize. A 50 millisecond minimum switch closure is required. IMPORTANT: A dry circuit switch is recommended. A "dry circuit" switch is one rated to reliably switch currents of less than 50mA. Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.

[^30]: * If control switch is closed when power is applied, relay will immediately energize. A 50 millisecond minimum switch closure is required. IMPORTANT: A dry circuit switch is recommended. A dry circuit" switch is one rated to reliably switch currents of less than 50mA. Use of a switch rated for other than dry circuit may result in failure of the time delay relay to function properly.
 ** Note: Input polarity for DC operation. For most reliable operation on AC, connect high side to " + " and low side to "-".

[^31]: Authorized distributors are likely to stock the following:
 None at present.

