
MOTOROLA M68020 USER’S MANUAL 9-1

SECTION 9
APPLICATIONS INFORMATION

This section, which provides guidelines for using the MC68020/EC020, contains
information on floating-point units, byte select logic, power and ground considerations,
clock driver, memory interface, access time calculations, module support, and access
levels.

9.1 FLOATING-POINT UNITS

Floating-point support for the MC68020/EC020 is provided by the MC68881 floating-point
coprocessor or the MC68882 enhanced floating-point coprocessor. Both devices offer a
full implementation of the IEEE Standard for Binary Floating-Point Arithmetic (754). The
MC68882 is a pin- and software-compatible upgrade of the MC68881, with an optimized
MPU interface that provides over 1.5 times the performance of the MC68881 at the same
clock frequency.

Both coprocessors provide a logical extension to the integer data processing capabilities
of the main processor. They contain a high-performance floating-point arithmetic unit and
a set of floating-point data registers that are utilized in a manner that is analogous to the
use of the integer data registers of the processor. The MC68881/MC68882 instruction set,
a natural extension of all earlier members of the M68000 family, supports all addressing
modes and data types of the host MC68020/EC020. The programmer perceives the
MC68020/EC020 coprocessor execution model as if both devices are implemented on
one chip. In addition to supporting the full IEEE standard, the MC68881 and MC68882
provide a full set of trigonometric and transcendental functions, on-chip constants, and a
full 80-bit extended-precision real data format.

The interface of the MC68020/EC020 to the MC68881 or MC68882 is easily tailored to
system cost/performance needs. The MC68020/EC020 and the MC68881/MC68882
communicate via standard asynchronous M68000 bus cycles. All data transfers are
performed by the main processor at the request of the MC68881/MC68882; thus, memory
management, bus errors, address errors, and bus arbitration function as if the
MC68881/MC68882 instructions are executed by the main processor. The floating-point
unit and the processor can operate at different clock speeds, and up to seven floating-
point coprocessors can simultaneously reside in an MC68020/EC020 system.

Figure 9-1 illustrates the coprocessor interface connection of an MC68881/MC68882 to an
MC68020/EC020 (uses entire 32-bit data bus). The MC68881/MC68882 is configured to
operate with a 32-bit data bus when both its A0 and SIZE pins are connected to VCC.
Refer to the MC68881UM/AD, MC68881/MC68882 Floating-Point Coprocessor User's
Manual, for configuring the MC68881/MC68882 for smaller data bus widths.

Datasheet.Live

9-2 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020 MC68881/MC68882

CHIP
SELECT
DECODE

FC2–FC0

A31–A20
A19–A16
A15–A13

A12–A5
A4–A1

A0

 AS
DS

R/W

D31–D24
D23–D16

D15–D8
D7–D0

DSACK0
DSACK1

MAIN PROCESSOR
CLOCK

CS

SIZE
A4–A1
A0

AS
DS
R/W

D31–D24
D23–D16
D15–D8
D7–D0

DSACK0
DSACK1

COPROCESSOR
CLOCK

VCC

VCC

*

*For the MC68EC020, A23–A0.

Figure 9-1. 32-Bit Data Bus Coprocessor Connection

The chip select (CS) decode circuitry is asynchronous logic that detects when a particular
floating-point coprocessor is addressed. The MC68020/EC020 signals used by the logic
include FC2–FC0 and A19–A13. Refer to Section 7 Coprocessor Interface Description
for more information concerning the encoding of these signals. All or just a subset of these
lines may be decoded, depending on the number of coprocessors in the system and the
degree of redundant mapping allowed in the system.

For example, if a system has only one coprocessor, the full decoding of the ten signals
(FC2–FC0 and A19–A13), provided by the PAL equations in Figure 9-3, is not absolutely
necessary. It may be sufficient to use only FC1–FC0 and A17–A16. FC1–FC0 indicate
when a bus cycle is operating in either CPU space ($7) or user-defined space ($3), and
A17–A16 encode the CPU space type as coprocessor space ($2). A15–A13 can be
ignored in this case because they encode the coprocessor identification code (CpID) used
to differentiate between multiple coprocessors in a system. Motorola assemblers always
default to a CpID of $1 for floating-point instructions; this can be controlled with assembler
directives if a different CpID is desired or if multiple coprocessors exist in the system.

MOTOROLA M68020 USER’S MANUAL 9-3

The major concern of a system designer is to design a CS interface that meets the AC
electrical specifications for both the MC68020/EC020 (MPU) and the MC68881/MC68882
(FPCP) without adding unnecessary wait states to FPCP accesses. The following
maximum specifications (relative to CLK low) meet these objectives:

tCLK low to AS low ≤ (MPU Spec 1 – MPU Spec 47A – FPCP Spec 19) (9-1)

tCLK low to CS low ≤ (MPU Spec 1 – MPU Spec 47A – FPCP Spec 19) (9-2)

Even though requirement (9-1) is not met under worst-case conditions, if the MPU AS is
loaded within specifications and the AS input to the FPCP is unbuffered, the requirement
is met under typical conditions. Designing the CS generation circuit to meet requirement
(9-2) provides the highest probability that accesses to the FPCP occur without
unnecessary wait states. A PAL 16L8 (see Figure 9-2) with a maximum propagation delay
of 10 ns, programmed according to the equations in Figure 9-3, can be used to generate
CS. For a 25-MHz system, tCLK low to CS low is less than or equal to 10 ns when this
design is used. Should worst-case conditions cause tCLK low to AS low to exceed
requirement (1), one wait state is inserted in the access to the FPCP; no other adverse
effects occur. Figure 9-4 shows the bus cycle timing for this interface. Refer to
MC68881UM/AD, MC68881/MC68882 Floating-Point Coprocessor User's Manual, for
FPCP specifications.

The circuit that generates CS must meet another requirement. When a nonfloating-point
access immediately follows a floating-point access, CS (for the floating-point access) must
be negated before AS and DS (for the subsequent access) are asserted. The PAL circuit
previously described also meets this requirement.

PAL 16L8
10 ns

CLK
AS

FC2

FC1
FC0
A19
A18

A17
A16

GND

V
NC
NC

NC
NC
A13
A14

CLKD
CS
A15

CC

Figure 9-2. Chip Select Generation PAL

9-4 M68020 USER’S MANUAL MOTOROLA

PAL16L8

FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION

MOTOROLA INC., AUSTIN, TEXAS

INPUTS: CLK ~AS FC2 FC1 FC0 A19 A18 A17 A16 A15 A14 A13

OUTPUTS: ~CS CLKD

!~CS = FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!CLK ;qualified by MPU clock low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!~AS ;qualified by address strobe low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*CLKD ;qualified by CLKD (delayed CLK)

CLKD = CLK

Description: There are three terms to the CS generation. The first term denotes the earliest time CS can be asserted.
The second term is used to assert CS until the end of the FPCP access. The third term is to ensure that no race
condition occurs in case of a late AS.

Figure 9-3. Chip Select PAL Equations

9

CLK

AS

CS

8

DSACK1/DSACK0

47A

START

19

FPCP SPECIFICATION MPU SPECIFICATION

Figure 9-4. Bus Cycle Timing Diagram

MOTOROLA M68020 USER’S MANUAL 9-5

9.2 BYTE SELECT LOGIC FOR THE MC68020/EC020

The MC68020/EC020 architecture supports byte, word, and long-word operand transfers
to any 8-, 16-, or 32-bit data port, regardless of alignment. This feature allows the
programmer to write code that is not bus-width specific. When accessed, the peripheral or
memory subsystem reports its actual port size to the controller, and the MC68020/EC020
then dynamically sizes the data transfer accordingly, using multiple bus cycles when
necessary. The following paragraphs describe the generation of byte select control signals
that enable the dynamic bus sizing mechanism, the transfer of differently sized operands,
and the transfer of misaligned operands to operate correctly.

The following signals control the MC68020/EC020 operand transfer mechanism:

A1, A0 — Address signals. The most significant byte of the operand to be
transferred is addressed directly.

SIZ1, SIZ0 — Transfer size signals. Output of the MC68020/EC020. These
indicate the number of bytes of an operand remaining to be
transferred during a given bus cycle.

R/W — Read/Write signal. Output of the MC68020/EC020. For byte
select generation in MC68020/EC020 systems.

DSACK1, DSACK0 — Data transfer and size acknowledge signals. Driven by an
asynchronous port to indicate the actual bus width of
the port.

The MC68020/EC020 assumes that 16-bit ports are situated on data lines D31–D16, and
that 8-bit ports are situated on data lines D31–D24. This ensures that the following logic
works correctly with the MC68020/EC020's on-chip internal-to-external data bus
multiplexer. Refer to Section 5 Bus Operation for more details on the dynamic bus sizing
mechanism.

The need for byte select signals is best illustrated by an example. Consider a long-word
write cycle to an odd address in word-organized memory. The transfer requires three bus
cycles to complete. The first bus cycle transfers the most significant byte of the long word
on D23–D16. The second bus cycle transfers a word on D31–D16, and the last bus cycle
transfers the least significant byte of the original long word on D31–D24. To prevent
overwriting those bytes that are not used in these transfers, a unique byte data strobe
must be generated for each byte when using devices with 16- and 32-bit port widths.

For noncachable read cycles and all write cycles, the required active bytes of the data bus
for any given bus transfer are a function of the SIZ1, SIZ0 and A1, A0 outputs (see Table
9-1). Individual strobes or select signals can be generated by decoding these four signals
for every bus cycle. Devices residing on 8-bit ports can utilize DS or AS since there is only
one valid byte for any transfer.

9-6 M68020 USER’S MANUAL MOTOROLA

Table 9-1. Data Bus Activity for Byte, Word, and Long-Word Ports

Data Bus Active Sections
Byte (B), Word (W), Long-Word (L) Ports

Transfer Size SIZ1 SIZ0 A1 A0 D31–D24 D23–D16 D15–D8 D7–D0

Byte 0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

—
W L
—
W

—
—
L
—

—
—
—
L

Word 1
1
1
1

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

—
L
L
—

—
—
L
L

3 Bytes 1
1
1
1

1
1
1
1

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

—
L
L
L

Long Word 0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

B W L
B

B W
B

W L
W L
W
W

L
L
L
—

L
L
L
L

During cachable read cycles, the addressed device must provide valid data over its full
bus width as indicated by DSACK1/DSACK0. While instructions are always prefetched as
long-word-aligned accesses, data fetches can occur with any alignment and size.
Because the MC68020/EC020 assumes that the entire data bus port size contains valid
data, cachable data read bus cycles must provide as much data as signaled by the port
size during a bus cycle. To satisfy this requirement, the R/W signal must be included in
the byte select logic for the MC68020/EC020.

Figure 9-5 shows a block diagram of an MC68020/EC020 system with a single memory
bank. The PAL provides memory-mapped byte select signals for an asynchronous 32-bit
port and unmapped byte select signals for other memory banks or ports. Figure 9-6
provides sample equations for the PAL.

The PAL equations and circuits presented here cannot be the optimal implementation for
every system. Depending on the CPU clock frequency, memory access times, and system
architecture, different circuits may be required.

MOTOROLA M68020 USER’S MANUAL 9-7

SIZ0
SIZ1

A0
A1

FC0
FC1

A31–A2
AS

R/W

D31–D0

UUDA
UMDA
LMDA
LLDA

LLDB
LMDB
UMDB
UUDB

MC68020/EC020 PAL16L8

D7–D0 D15–D8 D23–D16 D31–D24

W E W E W E W E

A31–A2

32-BIT PORT

UUDA
UMDA
LMDA
LLDA

UNMAPPED BYTE
SELECTS FOR OTHER
32-BIT PORTS

CPU

MC74F32
MC74F32

MC74F32

MCM60256A MCM60256A MCM60256A MCM60256A

MC74F00

A21–A18
MC74F32

*

*For the MC68EC020, A23–A2.

*

Figure 9-5. Example MC68020/EC020 Byte Select PAL System Configuration

9-8 M68020 USER’S MANUAL MOTOROLA

PAL16L8

BYTE_SELECT

MC68020/EC020 BYTE DATA SELECT GENERATION FOR 32-BIT PORTS, MAPPED AND UNMAPPED.

MOTOROLA INC., AUSTIN, TEXAS

INPUTS: A0 A1 SIZ0 SIZ1 RW A18 A19 A20 A21 ~CPU

OUTPUTS: ~UUDA ~UMDA ~LMDA ~LLDA ~UUDA ~UMDB ~LMDB ~LLDB

!~UUDA = RW ;enable upper byte on read of 32-bit port

+!A0 *!A1 ;directly addressed, any size

!~UMDA = RW ;enable upper middle byte on read of 32-bit port

+A0 *!A1 ;directly addressed, any size

+!A1 *!SIZ0 ;even word aligned, size word or long word

+!A1 *SIZ1 ;even word aligned, size is word or three byte

!~LMDA = RW ;enable lower middle byte on read of 32-bit port +!A0 *A1
;directly addressed, any size

+!A1 *!SIZ0 *!SIZ1 ;even word aligned, size is long word

+!A1 *SIZ0 *SIZ1 ;even word aligned, size is three byte

+!A1 *A0 *!SIZ0 ;even word aligned, size is word or long word

!~LLDA = RW ;enable lower byte on read of 32-bit port

+A0 *A1 ;directly addressed, any size

+A0 *SIZ0 *SIZ1 ;odd byte alignment, three byte size

+!SIZ0 *!SIZ1 ;size is long word, any address

+A1 *SIZ1 ;odd word aligned, word or three byte size

!~UUDB = RW *!~CPU * (addressb) ;enable upper byte on read of 32-bit port

+!A0 *!A1 *!~CPU * (addressb) ;directly addressed, any size

!~UMDB = RW *!~CPU * (addressb) ;enable upper middle byte on read of 32-bit port

+ A0 *!A1 *!~CPU * (addressb) ;directly addressed, any size

+!A1 *!SIZ0 *!~CPU * (addressb) ;even word aligned, size word or long word

+!A1 *SIZ1 *!~CPU * (addressb) ;even word aligned, size is word or three byte

!~LMDB =RW *!~CPU * (addressb) ;enable lower middle byte on read of 32-bit port

+!A0 * A1 *!~CPU * (addressb) ;directly addressed, any size

+!A1 *!SIZ0 *!SIZ1 *!~CPU * (addressb) ;even word aligned, size is long word

+!A1 * SIZ0 * SIZ1 *!~CPU * (addressb) ;even word aligned, size is three byte

+!A1 * A0 *!SIZ0 *!~CPU * (addressb) ;even word aligned, size is word or long word

!~LLDB =RW *!~CPU * (addressb) ;enable lower byte on read of 32-bit port

+A0 * A1 *!~CPU * (addressb) ;directly addressed, any size

+ A0 * SIZ0 * SIZ1 *!~CPU * (addressb) ;odd byte alignment, three byte size

+!SIZ0 *!SIZ1 *!~CPU * (addressb) ;size is long word, any address

+A1 * SIZ1 *!~CPU * (addressb) ;odd word aligned, word or three byte size

DESCRIPTION: Byte select signals for writing. On reads, all byte selects are asserted if the respective memory block is addressed.
The input signal CPU prevents byte select assertion during CPU space cycles and is derived from NANDing FC1–FC0 or FC2–FC0.
The label (addressb) is a designer-selectable combination of address lines used to generate the proper address decode for the
system's memory bank. With the address lines given here, the decode block size is 256 Kbytes to 2 Mbytes. A similar address might
be included in the equations for UUDA, UMDA, etc. if the designer wishes them to be memory mapped also.

Figure 9-6. MC68020/EC020 Byte Select PAL Equations

MOTOROLA M68020 USER’S MANUAL 9-9

9.3 POWER AND GROUND CONSIDERATIONS

The MC68020/EC020 is fabricated in Motorola's advanced HCMOS process and is
capable of operating at clock frequencies of up to 25 MHz. While the use of CMOS for a
device containing such a large number of transistors allows significantly reduced power
consumption compared to an equivalent NMOS circuit, the high clock speed makes the
characteristics of power supplied to the device very important. The power supply must be
able to furnish large amounts of instantaneous current when the MC68020/EC020
performs certain operations, and it must remain within the rated specification at all times.
To meet these requirements, more detailed attention must be given to the power supply
connection to the MC68020/EC020 than is required for NMOS devices operating at slower
clock rates.

To reduce the amount of noise in the power supply connected to the MC68020/EC020
and to provide for the instantaneous current requirements, common capacitive decoupling
techniques should be observed. While there is no recommended layout for this capacitive
decoupling, it is essential that the inductance and distance between these devices and the
MC68020/EC020 be minimized to provide sufficiently fast response time to satisfy
momentary current demands and to maintain a constant supply voltage. It is suggested
that high-frequency, high-quality capacitors be placed as close to the MC68020/EC020 as
possible. Table 9-2 lists the VCC and GND pin assignments for the MC68EC020 PPGA
(RP suffix) package. Table 9-3 lists the VCC and GND pin assignments for the
MC68EC020 PQFP (FG suffix) package. Refer to Section 11 Ordering Information and
Mechanical Data for the VCC and GND pin assignments for the MC68020 packages.
When assigning capacitors to the VCC and GND pins, the noisier pins (address and data
buses) should be heavily decoupled from the internal logic pins. Typical decoupling
practices include a high-frequency, high-quality capacitor to decouple every device on the
printed circuit board; however, due to the power requirements and drive capability of the
MC68020/EC020, each VCC pin should be decoupled with an individual capacitor.
Motorola recommends using a capacitor in the range of 0.01 µF to 0.1 µF on each VCC
pin on each device to provide filtering for most frequencies prevalent in a digital system. In
addition to the individual decoupling, several bulk decoupling capacitors should be placed
onto the printed circuit board with typical values in the range of 33 µF to 330 µF. When
power and ground planes are used with an adequate number of high-frequency, high-
quality capacitors, the system noise will be reduced to the required levels, and the
MC68020/EC020 will function properly. Similar decoupling techniques should also be
observed for other VLSI devices in the system.

In addition to the capacitive decoupling of the power supply, care must be taken to ensure
a low-impedance connection between all MC68020/EC020 VCC and GND pins and the
system power supply. A solid power supply connection from the power and ground planes
to the MC68020/EC020 VCC and GND pins, respectively, will meet this requirement.
Failure to provide connections of sufficient quality between the MC68020/EC020 power
pins and the system power supplies will result in increased assertion delays for external
signals, decreased voltage noise margins, increased system noise, and possible errors in
MC68020/EC020 internal logic.

9-10 M68020 USER’S MANUAL MOTOROLA

Table 9-2. VCC and GND Pin Assignments—
MC68EC020 PPGA (RP Suffix)

Pin Group VCC GND

Address Bus B7, C7 A1, A7, C8, D13

Data Bus K12, M9, N9 J13, L8, M1, M8

Internal Logic D1, D2, E12, E13 F11, F12, J1, J2

Clock — B1

Table 9-3. VCC and GND Pin Assignments—
MC68EC020 PQFP (FG Suffix)

Pin Group VCC GND

Address Bus 90 72, 89, 100

Data Bus 44, 57 26, 43, 58, 59

Internal Logic 7, 8, 70, 71 3, 20, 21, 68, 69

Clock — 4

9.4 CLOCK DRIVER

The MC68020/EC020 is designed to sustain high performance while using low-cost
memory subsystems. The MC68020/EC020 requires a stable clock source that is free of
ringing and ground bounce, has sufficient rise and fall times, and meets the minimum and
maximum high and low cycle times. The individual system may require additional clocks
for peripherals with a minimum amount of clock skew. Two possible clock solutions are
provided with the MC88916 and MC74F803. Many other clock solutions can be used.
Some crystal clock drivers are capable of driving the MC68020/EC020 directly. For slower
speed designs, a simple 74F74 flip-flop meets the clocking needs of the MC68020/EC020.
Coupled with the MC88916 or MC74F803 clock generation and distribution circuit, the
MC68020/EC020 provides simple interface to lower speed memory subsystems. The
MC88916 (see Figure 9-7) and MC74F803 (see Figure 9-8) generate the clock signals
required to minimize the skew between different clocks to multiple devices such as
coprocessors, synchronous state machines, DRAM controllers, and memory subsystems.
The MC88916 clock driver can be used in doubling and synchronizing a low-frequency
clock source. The MC74F803 will provide a controlled skew output for clocking other
peripherals.

MOTOROLA M68020 USER’S MANUAL 9-11

MC68020/EC020
25 MHz

12.5-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC88916

CLOCK
(50 MHz)

12.5 MHz

2

CLOCK
(25 MHz)

Figure 9-7. High-Resolution Clock Controller

MC68020/EC020
25 MHz

50-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC74F803

CLOCK
(25 MHz)

2

Figure 9-8. Alternate Clock Solution

9.5 MEMORY INTERFACE

The MC68020/EC020 is capable of running an external bus cycle in a minimum of three
clocks (refer to Section 5 Bus Operation). The MC68020/EC020 runs an asynchronous
bus cycle, terminated by the DSACK1/DSACK0 signals, and has a minimum duration of
three controller clock periods in which up to four bytes (32 bits) are transferred.

During read operations, the MC68020/EC020 latches data on the last falling clock edge of
the bus cycle, one-half clock before the bus cycle ends. Latching data here, instead of the
next rising clock edge, helps to avoid data bus contention with the next bus cycle and
allows the MC68020/EC020 to receive the data into its execution unit sooner for a net
performance increase.

Write operations also use this data bus timing to allow data hold times from the negating
strobes and to avoid any bus contention with the following bus cycle. This
MC68020/EC020 characteristic allows the system to be designed with a minimum of bus
buffers and latches.

One benefit of the MC68020/EC020 on-chip instruction cache is that the effect of external
wait states on performance is lessened because the caches are always accessed in fewer
than “no wait states,” regardless of the external memory configuration.

9-12 M68020 USER’S MANUAL MOTOROLA

9.6 ACCESS TIME CALCULATIONS

The timing paths that are critical in any memory interface are illustrated and defined in
Figure 9-9.

The type of device that is interfaced to the MC68020/EC020 determines exactly which of
the paths is most critical. The address-to-data paths are typically the critical paths for
static devices since there is no penalty for initiating a cycle to these devices and later
validating that access with the appropriate bus control signal. Conversely, the address-
strobe-to-data-valid path is often most critical for dynamic devices since the cycle must be
validated before an access can be initiated. For devices that signal termination of a bus
cycle before data is validated (e.g., error detection and correction hardware and some
external caches), to improve performance, the critical path may be from the address or
strobes to the assertion of BERR (or BERR and HALT). Finally, the address-valid-to-
DSACK1/DSACK0-asserted path is most critical for very fast devices and external
caches, since the time available between the address becoming valid and the
DSACK1/DSACK0 assertion to terminate the bus cycle is minimal. Table 9-4 provides
the equations required to calculate the various memory access times assuming a 50-
percent duty cycle clock.

CLK

A31–A0

S0 S1 S2 S0

AS

DSACK1/DSACK0

a c e

b d f

BERR, HALT

D31–D0

NOTE: This diagram illustrates access time calculations only

*

*For the MC68EC020, A23–A0.

Parameter Description System Equation
a Address Valid to DSACK1/DSACK0 Asserted tAVDL 9-3

b AS Asserted to DSACK1/DSACK0 Asserted tSADL 9-4

c Address Valid to BERR/HALT Asserted tAVBHL 9-5

d AS Asserted to BERR/HALT Asserted tSABHL 9-6

e Address Valid to Data Valid tAVDV 9-7
f AS Asserted to Data Valid tSADV 9-8

MOTOROLA M68020 USER’S MANUAL 9-13

Figure 9-9. Access Time Computation Diagram

9-14 M68020 USER’S MANUAL MOTOROLA

Table 9-4. Memory Access Time Equations at 16.67 and 25 MHz

Equation 16.667 MHz N = 3 N = 4 N = 5 N = 6 N = 7 Unit

9-3 tAVDL = (N – 1) • t1 – t2 – t6 – t47A 61 121 181 241 301 ns

9-4 tSADL = (N – 1) • t1 – t9 – t60 25 85 145 205 265 ns

9-5 tAVBHL = N • t1 – t2 – t6 – t27A 22 46 70 94 118 ns

9-6 tSABHL = (N – 1) • t1 – t9 – t27A 40 70 100 130 160 ns

9-7 tAVDV = N • t1 – t2 – t6 – t27 121 181 241 301 361 ns

9-8 tSADV = (N – 1) • t1 – t9 – t27 85 145 205 265 325 ns

Equation 25 MHz N = 3 N = 4 N = 5 N = 6 N = 7 Unit

9-3 tAVDL = (N – 1) • t1 – t2 – t6 – t47A 31 71 111 151 191 ns

9-4 tSADL = (N – 1) • t1 – t9 – t60 17 57 97 137 177 ns

9-5 tAVBHL = N • t1 – t2 – t6 – t27A 22 41 60 79 98 ns

9-6 tSABHL = (N – 1) • t1 – t9 – t27A 26 44 62 80 98 ns

9-7 tAVDV = N • t1 – t2 – t6 – t27 71 111 151 191 231 ns

9-8 tSADV = (N – 1) • t1 – t9 – t27 57 97 137 177 217 ns

Where:
tX = Refers to AC Electrical Specification X
t1 = The Clock Period
t2 = The Clock Low Time
t3 = The Clock High Time
t6 = The Clock High to Address Valid Time
t9 = The Clock Low to AS Low Delay

t27 = The Data-In to Clock Low Setup Time
t27A = The BERR/HALT to Clock Low Setup Time
t47A = The Asynchronous Input Setup Time

N = The Total Number of Clock Periods in the Bus Cycle (N ≥ 3 Cycles)

During asynchronous bus cycles, DSACK1/DSACK0 are used to terminate the current
bus cycle. In true asynchronous operations, such as accesses to peripherals operating at
a different clock frequency, either or both signals may be asserted without regard to the
clock, and then data must be valid a certain amount of time later as defined by
specification 31. With a 25-MHz controller, this time is 32 ns after DSACK1/DSACK0
asserts; with a 16.67-MHz controller, this time is 50 ns after DSACK1/DSACK0 asserts
(both numbers vary with the actual clock frequency).

However, many local memory systems do not operate in a truly asynchronous manner
because either the memory control logic can be related to the MC68020/EC020 clock or
worst-case propagation delays are known; thus, asynchronous setup times for the
DSACK1/DSACK0 signals can be guaranteed. The timing requirements for this pseudo-
synchronous DSACK1/DSACK0 generation is governed by the equation for tAVDL.

MOTOROLA M68020 USER’S MANUAL 9-15

Another way to optimize the CPU-to-memory access times in a system is to use a clock
frequency less than the rated maximum of the specific MC68020/EC020 device. Table 9-5
provides calculated tAVDV (see Equation 9-7 of Table 9-4) results for a 16 MHz
MC68020/EC020 and a 25 MHz MC68020/EC020 operating at various clock frequencies.
If the system uses other clock frequencies, the above equations can be used to calculate
the exact access times.

Table 9-5. Calculated tAVDV Values for Operation at Frequencies
Less Than or Equal to the CPU Maximum Frequency Rating

Equation 9-7 tAVDV 16-MHz MC68020/EC020 25-MHz MC68020/EC020

Clocks Per (N) and Type
Bus Cycle

Wait
States

Clock at
12.5 MHz

Clock at
16.67 MHz

Clock at
16.67 MHz

Clock at
20 MHz

Clock at
25 MHz

3 Clock Asynchronous 0 181 121 131 101 71

4 Clock Asynchronous 1 261 181 191 151 111

5 Clock Asynchronous 2 341 241 251 201 151

6 Clock Asynchronous 3 421 301 311 251 191

9.7 MODULE SUPPORT

The MC68020/EC020 includes support for modules with the CALLM and RTM
instructions. The CALLM instruction references a module descriptor. This descriptor
contains control information for entry into the called module. The CALLM instruction
creates a module stack frame and stores the current module state in that frame and loads
a new module state from the referenced descriptor. The RTM instruction recovers the
previous module state from the stack frame and returns to the calling module.

The module interface facilitates finer resolution of access control by external hardware.
Although the MC68020/EC020 does not interpret the access control information, it
communicates with external hardware when the access control is to be changed and
relies on the external hardware to verify that the changes are legal.

9.7.1 Module Descriptor

Figure 9-10 illustrates the format of the module descriptor. The first long word contains
control information used during execution of the CALLM instruction. The remaining
locations contain data that can be loaded into processor registers by the CALLM
instruction.

9-16 M68020 USER’S MANUAL MOTOROLA

OPT TYPE ACCESS LEVEL (RESERVED, MUST BE ZERO)

31 28 23 15 0

BASE
+$04

MODULE ENTRY WORD POINTER

MODULE DATA AREA POINTER

ADDITIONAL USER-DEFINED INFORMATION

+$08

+$0C

+$10

29 24 16

Figure 9-10. Module Descriptor Format

The opt field specifies how arguments are to be passed to the called module; the
MC68020/EC020 recognizes only the options of 000 and 100; all others cause a format
exception. The 000 option indicates that the called module expects to find arguments from
the calling module on the stack just below the module stack frame. In cases where there is
a change of stack pointer during the call, the MC68020/EC020 will copy the arguments
from the old stack to the new stack. The 100 option indicates that the called module will
access the arguments from the calling module through an indirect pointer in the stack of
the calling module. Hence, the arguments are not copied, but the MC68020/EC020 puts
the value of the stack pointer from the calling module in the module stack frame.

The type field specifies the type of the descriptor; the MC68020/EC020 only recognizes
descriptors of type $00 and $01; all others cause a format exception. The $00 type
descriptor defines a module for which there is no change in access rights, and the called
module builds its stack frame on top of the stack used by the calling module. The $01 type
descriptor defines a module for which there may be a change in access rights; such a
called module may have a separate stack area from that of the calling module.

The access level field is used only with the type $01 descriptor and is passed to external
hardware to change the access control.

The module entry word pointer specifies the entry address of the called module. The first
word at the entry address (see Figure 9-11) specifies the register to be saved in the
module stack frame and then loaded with the module descriptor data area pointer; the first
instruction of the module starts with the next word. The module descriptor data area
pointer field contains the address of the called module data area.

If the access change requires a change of stack pointer, the old value is saved in the
module stack frame, and the new value is taken from the module descriptor stack pointer
field. Any further information in the module descriptor is user defined.

OPERATION WORD OF FIRST INSTRUCTION

D/A

15 14

REGISTER

12 11 9

0

8

0

7

0

6 5 0

0 0

4

0

3

0

2

0

1

000

10

0

Figure 9-11. Module Entry Word

MOTOROLA M68020 USER’S MANUAL 9-17

All module descriptor types $10–$1F are reserved for user definition and cause a format
error exception. This provides the user with a means of disabling any module by setting a
single bit in its descriptor without loss of any descriptor information.

If the called module does not wish the module data area pointer to be loaded into a
register, the module entry word can select register A7, and the loaded value will be
overwritten with the correction stack pointer value after the module stack frame is created
and filled.

9.7.2 Module Stack Frame

Figure 9-12 illustrates the format of the module stack frame. This frame is constructed by
the CALLM instruction and is removed by the RTM instruction. The first and second long
words contain control information passed by the CALLM instruction to the RTM instruction.
The module descriptor pointer contains the address of the descriptor used during the
module call. All other locations contain information to be restored on return to the calling
module.

The PC is the saved address of the instruction following the CALLM instruction. The opt
and type fields, which specify the argument options and type of module stack frame, are
copied to the frame from the module descriptor by the CALLM instruction; the RTM
instruction will cause a format error if the opt and type fields do not have recognizable
values. The access level is the saved access control information, which is saved from
external hardware by the CALLM instruction and restored by the RTM instruction. The
argument count field is set by the CALLM instruction and is used by the RTM instruction to
remove arguments from the stack of the calling module. The contents of the CCR are
saved by the CALLM instruction and restored by the RTM instruction. The saved stack
pointer field contains the value of the stack pointer when the CALLM instruction started
execution, and that value is restored by RTM. The saved module data area pointer field
contains the saved value of the module data area pointer register from the calling module.

TYPE SAVED ACCESS LEVEL

15 12 7 0

SP

+$08

SAVED PROGRAM COUNTER

SAVED MODULE DATA AREA POINTER

ARGUMENTS (OPTIONAL)

+$0C

+$10

MODULE DESCRIPTION POINTER

(RESERVED)

CONDITION CODES

ARGUMENT COUNT

OPT

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

+$18

13 8

Figure 9-12. Module Call Stack Frame

9-18 M68020 USER’S MANUAL MOTOROLA

9.8 ACCESS LEVELS

The MC68020/EC020 module mechanism supports a finer level of access control beyond
the distinction between user and supervisor privilege levels. The module mechanism
allows a module with limited access rights to call a module with greater access rights. With
the help of external hardware, the processor can verify that an increase in access rights is
allowable or can detect attempts by a module to gain access rights to which it is not
entitled.

Type $01 module descriptors and module stack frames indicate a request to change
access levels. While processing a type $01 descriptor or frame, the CALLM and RTM
instructions communicate with external access control hardware via accesses in the CPU
space. For these accesses, A19–A16 equal 0001. Figure 9-13 shows the address map for
these CPU space accesses. If the processor receives a bus error on any of these CPU
space accesses during the execution of a CALLM or RTM instruction, the processor will
take a format error exception.

31 0

CAL

23

DAL

24

ACCESS STATUS REGISTER

IAL

$00

$04

$08

$0C

$40

$44

$48

$4C

$50

$54

$58

$5C

(UNUSED, RESERVED)

(UNUSED, RESERVED)

(UNUSED, RESERVED)

(UNUSED, RESERVED)

FUNCTION CODE 5 DESCRIPTOR ADDRESS (SUPERVISOR PROGRAM)

FUNCTION CODE 6 DESCRIPTOR ADDRESS

FUNCTION CODE 7 DESCRIPTOR ADDRESS (CPU SPACE)

FUNCTION CODE 4 DESCRIPTOR ADDRESS (SUPERVISOR DATA)

FUNCTION CODE 3 DESCRIPTOR ADDRESS

FUNCTION CODE 2 DESCRIPTOR ADDRESS (USER PROGRAM)

FUNCTION CODE 1 DESCRIPTOR ADDRESS (USER DATA)

FUNCTION CODE 0 DESCRIPTOR ADDRESS

Figure 9-13. Access Level Control Bus Registers

The current access level register (CAL) contains the access level rights of the currently
executing module. The increase access level register (IAL) is the register through which
the processor requests increased access rights. The decrease access level register (DAL)
is the register through which the processor requests decreased access rights. The formats
of these three registers are undefined to the main processor, but the main processor
assumes that information read from the module descriptor stack frame or the CAL can be
meaningfully written to the IAL or the DAL. The access status register allows the
processor to query the external hardware as to the legality of intended access level
transitions. Table 9-6 lists the valid values of the access status register.

MOTOROLA M68020 USER’S MANUAL 9-19

Table 9-6. Access Status Register Codes

Value Validity Processor Action

$00 Invalid Format Error

$01 Valid No Change in Access Rights

$02–$03 Valid Change Access Rights with No Change of Stack Pointer

$04–$07 Valid Change Access Rights and Change Stack Pointer

Other Undefined Undefined (Take Format Error Exception)

The processor uses the descriptor address registers during the CALLM instruction to
communicate the address of the type $01 descriptor, allowing external hardware to verify
that the address is a valid address for a type $01 descriptor. This validation prevents a
module from creating a type $01 descriptor to increase its access rights.

9.8.1 Module Call

The CALLM instruction is used to make the module call. For the type $00 module
descriptor, the processor creates and fills the module stack frame at the top of the active
system stack. The condition codes of the calling module are saved in the CCR field of the
frame. If opt is equal to 000 (arguments passed on the stack) in the module descriptor, the
MC68020/EC020 does not save the stack pointer or load a new stack pointer value. The
processor uses the module entry word to save and load the module data area pointer
register and then begins execution of the called module.

For the type $01 module descriptor, the processor must first obtain the current access
level from external hardware. It also verifies that the calling module has the right to read
from the area pointed to by the current value of the stack pointer by reading from that
address. It passes the descriptor address and increase access level to external hardware
for validation and then reads the access status. If external hardware determines that the
change in access rights should not be granted, the access status is zero, and the
processor takes a format error exception. No visible processor registers are changed, nor
should the current access level enforced by external hardware be changed. If external
hardware determines that a change should be granted, the external hardware changes its
access level, and the processor proceeds. If the access status register indicates that a
change in the stack pointer is required, the stack pointer is saved internally, a new value is
loaded from the module descriptor, and arguments are copied from the calling stack to the
new stack. Finally, the module stack frame is created and filled on the top of the current
stack. The condition codes of the calling module are saved in the CCR field of the frame.
Execution of the called module then begins as with a type $00 descriptor.

9-20 M68020 USER’S MANUAL MOTOROLA

9.8.2 Module Return

The RTM instruction is used to return from a module. For the type $00 module stack
frame, the processor reloads the condition codes, the PC, and the module data area
pointer register from the frame. The frame is removed from the top of the stack, the
argument count is added to the stack pointer, and execution returns to the calling module.

For the type $01 module stack frame, the processor reads the access level, condition
codes, PC, saved module data area pointer, and saved stack pointer from the module
stack frame. The access level is written to the DAL for validation by external hardware; the
processor then reads the access status to check the validation. If the external hardware
determines that the change in access right should not be granted, the access status is
zero, and the processor takes a format error exception. No visible processor registers are
changed, nor should the current access level enforced by external hardware be changed.
If the external hardware determines that the change in access rights should be granted,
the external hardware changes its access level, the values read from the module stack
frame are loaded into the corresponding processor registers, the argument count is added
to the new stack pointer value, and execution returns to the calling module.

If the called module does not wish the saved module data pointer to be loaded into a
register, the RTM instruction word can select register A7, and the loaded value will be
overwritten with the correct stack pointer value after the module stack frame is
deallocated.

