Boca Semiconductor Corp.□ **BSC** #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | | |--|----------------------|-------------|----------------|--| | Collector-Emitter Voltage | VCEO | 65 | Vdc | | | Collector-Emitter Voltage, RBE ≤ 10 Ohms | VCER | 80 | Vdc | | | Collector-Base Voltage | V _{СВО} | 120 | Vdc | | | Emitter-Base Voltage | VEBO | 7.0 | Vdc | | | Collector Current — Continuous | lc | 1.0 | Adc | | | Total Device Dissipation @ TA = 25°C Derate above 25°C | PD | 1.0
5.71 | Watt
mW/°C | | | Total Device Dissipation @ T _C = 25°C Derate above 25°C | PD | 5.0
28.6 | Watts
mW/°C | | | Operating and Storage Junction
Temperature Range | TJ, T _{stg} | -65 to +200 | °C | | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|----------------------|-----|------| | Thermal Resistance, Junction to Ambient | R _θ ЈД(1) | 175 | °C/W | | Thermal Resistance, Junction to Case | R_{θ} JC | 35 | °C/W | # 2N2102 CASE 79-04, STYLE 1 TO-39 (TO-205AD) ## **AMPLIFIER TRANSISTOR** NPN SILICON Refer to 2N3019 for graphs. ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) | Characteristic | Symbol | Min | Тур | Max | Unit | |---|----------------------|-----|-----|------------|--------------| | OFF CHARACTERISTICS | | | , | | , | | Collector-Emitter Breakdown Voltage (IC = 100 mAdc, RBE ≤ 10 ohms)(2) | VCER(sus) | 80 | | | Vdc | | Collector-Emitter Sustaining Voltage(2) (I _C = 100 mAdc, I _B = 0)(2) | VCEO(sus) | 65 | | <u> </u> | Vdc | | Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, V _{EB} = 1.5 Vdc) | V _{(BR)CEX} | 120 | | _ | Vdc | | Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0) | V(BR)CBO | 120 | _ | | Vdc | | Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0) | V(BR)EBO | 7.0 | | | Vdc | | Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0)
(V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C) | Ісво | | | 2.0
2.0 | nAdc
μAdc | | Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0) | IEBO | | _ | 2.0 | nAdc | #### ON CHARACTERISTICS | DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 10 Vdc)
(I _C = 10 mAdc, V _{CE} = 10 Vdc)(2)
(I _C = 10 mAdc, V _{CE} = 10 Vdc, T _A = -55°C)(2)
(I _C = 150 mAdc, V _{CE} = 10 Vdc)(2) | hFE | 20
35
20
40 | | _
_
_
120 | | |---|----------------------|----------------------|------|--------------------|-----| | (I _C = 500 mAdc, V _{CE} = 10 Vdc)(2)
(I _C = 1.0 Adc, V _{CE} = 10 Vdc)(2) | | 25
10 | _ | | | | Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2) | V _{CE(sat)} | _ | 0.15 | 0.5 | Vdc | | Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2) | V _{BE(sat)} | _ | 0.88 | 1.1 | Vdc | #### SMALL-SIGNAL CHARACTERISTICS | Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$) | fΤ | 60 | - | _ | MHz | |--|-----------------|--------------|-----|------------|--------| | Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz) | Cobo | | 6.0 | 15 | pF | | Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz) | Cibo | | 50 | 80 | pF | | Input Impedance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)
(I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) | hib | 24
4.0 | _ | 34
8.0 | Ohms | | Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz)
(I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz) | h _{rb} | _ | | 3.0
3.0 | X 10-4 | | Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz)
(I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) | h _{fe} | 30
35 | _ | 100
150 | _ | | Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) | h _{ob} | 0.01
0.01 | _ | 0.5
1.0 | μmho | | Noise Figure (I _C = 300 µAdc, V _{CE} = 10 Vdc, R _S = 1.0 k Ohm,
f = 1.0 kHz, Bandwidth = 1.0 Hz) | NF | _ | 4.0 | 6.0 | dB | ### SWITCHING CHARACTERISTICS (1) R_{BJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test Pulse Width ≤ 300 µs, Duty Cycle ≤ 20%.