Boca Semiconductor Corp.□ **BSC**

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	65	Vdc	
Collector-Emitter Voltage, RBE ≤ 10 Ohms	VCER	80	Vdc	
Collector-Base Voltage	V _{СВО}	120	Vdc	
Emitter-Base Voltage	VEBO	7.0	Vdc	
Collector Current — Continuous	lc	1.0	Adc	
Total Device Dissipation @ TA = 25°C Derate above 25°C	PD	1.0 5.71	Watt mW/°C	
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	5.0 28.6	Watts mW/°C	
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _θ ЈД(1)	175	°C/W
Thermal Resistance, Junction to Case	R_{θ} JC	35	°C/W

2N2102

CASE 79-04, STYLE 1 TO-39 (TO-205AD)

AMPLIFIER TRANSISTOR

NPN SILICON

Refer to 2N3019 for graphs.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			,		,
Collector-Emitter Breakdown Voltage (IC = 100 mAdc, RBE ≤ 10 ohms)(2)	VCER(sus)	80			Vdc
Collector-Emitter Sustaining Voltage(2) (I _C = 100 mAdc, I _B = 0)(2)	VCEO(sus)	65		<u> </u>	Vdc
Collector-Emitter Breakdown Voltage (I _C = 100 μAdc, V _{EB} = 1.5 Vdc)	V _{(BR)CEX}	120		_	Vdc
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	120	_		Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	V(BR)EBO	7.0			Vdc
Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0, T _A = 150°C)	Ісво			2.0 2.0	nAdc μAdc
Emitter Cutoff Current (VEB = 5.0 Vdc, IC = 0)	IEBO		_	2.0	nAdc

ON CHARACTERISTICS

DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc)(2) (I _C = 10 mAdc, V _{CE} = 10 Vdc, T _A = -55°C)(2) (I _C = 150 mAdc, V _{CE} = 10 Vdc)(2)	hFE	20 35 20 40		_ _ _ 120	
(I _C = 500 mAdc, V _{CE} = 10 Vdc)(2) (I _C = 1.0 Adc, V _{CE} = 10 Vdc)(2)		25 10	_		
Collector-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2)	V _{CE(sat)}	_	0.15	0.5	Vdc
Base-Emitter Saturation Voltage (I _C = 150 mAdc, I _B = 15 mAdc)(2)	V _{BE(sat)}	_	0.88	1.1	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product ($I_C = 50 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 20 \text{ MHz}$)	fΤ	60	-	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	Cobo		6.0	15	pF
Input Capacitance (VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)	Cibo		50	80	pF
Input Impedance (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	hib	24 4.0	_	34 8.0	Ohms
Voltage Feedback Ratio (I _C = 1.0 mAdc, V _{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{rb}	_		3.0 3.0	X 10-4
Small-Signal Current Gain (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	30 35	_	100 150	_
Output Admittance (I _C = 1.0 mAdc, V_{CE} = 5.0 Vdc, f = 1.0 kHz) (I _C = 5.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz)	h _{ob}	0.01 0.01	_	0.5 1.0	μmho
Noise Figure (I _C = 300 µAdc, V _{CE} = 10 Vdc, R _S = 1.0 k Ohm, f = 1.0 kHz, Bandwidth = 1.0 Hz)	NF	_	4.0	6.0	dB

SWITCHING CHARACTERISTICS

(1) R_{BJA} is measured with the device soldered into a typical printed circuit board. (2) Pulse Test Pulse Width ≤ 300 µs, Duty Cycle ≤ 20%.