

2N3700DCSM

MECHANICAL DATA

Dimensions in mm (inches)

HIGH VOLTAGE, MEDIUM POWER, NPN **DUAL TRANSISTOR IN A** HERMETICALLY SEALED **CERAMIC SURFACE MOUNT PACKAGE** FOR HIGH RELIABILITY APPLICATIONS

1.40 ± 0.15 (0.055 ± 0.006) 2.29 ± 0.20 (0.09 ± 0.008) 1.65 ± 0.13 (0.065 ± 0.005) 0.23 (0.009) rad

FEATURES

- DUAL SILICON PLANAR EPITAXIAL NPN **TRANSISTOR**
- HERMETIC CERAMIC SURFACE MOUNT **PACKAGE**
- CECC SCREENING OPTIONS
- SPACE QUALITY LEVELS OPTIONS
- HIGH VOLTAGE

LCC2 PACKAGE **Underside View**

PAD 1 - Collector 1 PAD 4 - Collector 2 PAD 2 - Base 1 PAD 5 - Emitter 2 PAD 3 - Base 2 PAD 6 - Emitter 1

APPLICATIONS:

Dual Hermetically sealed surface mount version of the popular 2N3700 for high reliability/ space applications requiring small size and low weight devices.

ABSOLUTE MAXIMUM RATINGS

	$(T_{case} = 25^{\circ}C \text{ unless otherwise stated})$	2N3700DCSM
$\overline{V_{CBO}}$	Collector – Base Voltage	140V
V_{CEO}	Collector – Emitter Voltage (I _B = 0)	80V
V_{EBO}	Emitter – Base Voltage (I _B = 0)	7V
$I_{\mathbb{C}}$	Collector Current	1A
P_{D}	Per Device Dissipation	350mW
P_{D}	Total Device Dissipation	525mW
P_{D}	Derate above 25°C (Per Device)	2mW / °C
	(Total)	3mW/°C
R _{ja}	Thermal Resistance Junction to Ambient	240°C/W
T _{stg}	Storage Temperature	–65 to 200°C

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

2N3700DCSM

ELECTRICAL CHARACTERISTICS (per Device) (T_{case} = 25°C unless otherwise stated)

	Parameter	Test Conditions	Min.	Тур.	Max.	Unit V
V _{CEO*}	Collector – Emitter Sustaining Voltage	I _C =30mA	80			
	$(I_B = 0)$					
I _{CBO*}	Collector – Base Cut-off Current	V _{CB} = 90V			10	nA
	$(I_E = 0)$	$V_{CB} = 90V$ $T_{amb} = 150^{\circ}$	С		10	μΑ
I _{EBO*}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 5V			10	nA
V _{CE(sat)*}	Collector – Emitter Saturation Voltage	$I_C = 150 \text{mA}$ $I_B = 15 \text{mA}$			0.2	V
		$I_C = 500$ mA $I_B = 50$ mA			0.5	V
V _{BE(sat)*}	Base – Emitter Saturation Voltage	$I_{C} = 150 \text{mA}$ $I_{B} = 15 \text{mA}$			1.1	V
h _{FE*}	DC Current Gain (V _{CE} = 10V)	$I_C = 0.1 \text{mA}$	50			-
		$I_C = 10mA$	90			-
		I _C = 150mA	100		300	-
		$I_C = 500 \text{mA}$	50			-
		I _C = 1A	15			-
		$I_C = 150 \text{mA}$ $T_{amb} = -55^\circ$	C 40			-
V _{(BR)CBO}	Collector-base Breakdown Voltage	I _C = 100μA	140			V
	$(I_E = 0)$					
V _{(BR)EBO}	Emitter-base BreakdownVoltage	I _E = 100μA	7			V
	$(I_{\mathbb{C}}=0)$					

^{*} Pulse test t_{D} = $300\mu s$, $\delta \leq 1\%$

DYNAMIC CHARACTERISTICS (T_{case} = 25°C unless otherwise stated)

Parameter		Test Conditions			Min.	Тур.	Max.	Unit
f _T	Transition Frequency	$I_C = 50mA$	V _{CE} = 10V	f = 20MHz		100		MHz
h _{fe}	Small Signal Current Gain	I _C = 1mA	V _{CE} = 5V	f = 1kHz	80		400	-
C _{EBO}	Emitter-base Capacitance	I _C = 0	$V_{EB} = 0.5V$	f = 1MHz		60		pF
C _{CBO}	Collector-base Capacitance	I _C = 0	V _{CB} = 10V	f = 1MHz		12		pF
_{rbb} 'C _{b'c}	Feedback time constant	I _C = 10mA	V _{CB} = 10V	f = 4MHz	25		400	ps

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. Document Number 5309

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk Issue 1