

Absolute Maximum Ratings
 Above which the useful life may be impaired

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.		Operating Range		-5.7 V to -4.7 V	
		Lead Temperature (Soldering, 10 sec.$)$		$300^{\circ} \mathrm{C}$	
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Recommended	era		
Maximum Junction Temperature (T_{J})	$+150^{\circ} \mathrm{C}$	Conditions			
Supply Voltage Range	-7.0 V to GND		Min	Typ	Max
Input Voltage (DC)	V_{EE} to GND	Supply Voltage (V_{EE})	-5.7V	-5.2V	-4.7V
Output Current (DC Output HIGH)	-50 mA	Ambient Temperature (T_{A})	$0^{\circ} \mathrm{C}$		$+75^{\circ} \mathrm{C}$

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}$

Symbol	Parameter	Min	Typ	Max	Units	TA	Conditions
V_{OH}	Output Voltage HIGH	$\begin{gathered} -1000 \\ -960 \\ -900 \\ \hline \end{gathered}$		$\begin{array}{r} -840 \\ -810 \\ -720 \\ \hline \end{array}$	mV mV mV	$\begin{array}{r} \\ 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Max) or V_{IL} (Min) per Truth Table Loading 50Ω to -2 V
V_{OL}	Output Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1635 \\ & -1620 \\ & -1595 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\text {OHC }}$	Output Voltage HIGH	$\begin{gathered} -1020 \\ -980 \\ -920 \end{gathered}$			$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ (Min) or V_{IL} (Max) for D_{n} Inputs Loading 50Ω to -2 V
V OLC	Output Voltage LOW			-1615 -1600 -1575	mV mV mV	$\begin{array}{r} \\ 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \\ \hline \end{array}$	
V_{IH}	Input Voltage HIGH	$\begin{aligned} & -1135 \\ & -1095 \\ & -1035 \end{aligned}$		$\begin{aligned} & -840 \\ & -810 \\ & -720 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage HIGH for All Inputs
$\mathrm{V}_{\text {IL }}$	Input Voltage LOW	$\begin{aligned} & -1870 \\ & -1850 \\ & -1830 \end{aligned}$		$\begin{aligned} & -1500 \\ & -1485 \\ & -1460 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{gathered} 0^{\circ} \mathrm{C} \\ +25^{\circ} \mathrm{C} \\ +75^{\circ} \mathrm{C} \end{gathered}$	Guaranteed Input Voltage LOW for All Inputs
I_{H}	Input Current HIGH Clock Input Data Input			$\begin{aligned} & 250 \\ & 270 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & +25^{\circ} \mathrm{C} \\ & +25^{\circ} \mathrm{C} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})$
I_{IL}	Input Current LOW	0.5			$\mu \mathrm{A}$	$+25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}(\mathrm{Min})}$
I_{EE}	Power Supply Current	-59	-40		mA	$+25^{\circ} \mathrm{C}$	All Inputs Open

AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$t_{\text {PHL }}$	Propagation Delay (CP-Q)	0.7	1.0	1.2	ns	See Figure 1
$t_{\text {PLH }}$	Propagation Delay (CP-Q)	0.7	1.0	1.2	ns	
$\mathrm{t}_{\text {TLH }}$	Transition Time 20\% to 80\%	0.5	0.8	1.0	ns	
$\mathrm{t}_{\text {THL }}$	Transition Time 80\% to 20\%	0.5	0.8	1.0	ns	
ts	Set-up Time		0.2		ns	
t_{H}	Hold Time		0.2		ns	
$\left.\mathrm{f}_{\text {TOG (}} \mathrm{MAX}\right)$	Toggle Frequency (CP)	650	750		MHz	See Figure 2, Note

Note: The device is guaranteed for $\mathrm{f}_{\mathrm{TOG}}(\mathrm{CP}) \geq 600 \mathrm{MHz}, \mathrm{f}_{\mathrm{TOG}}(\mathrm{CE}) \geq 550 \mathrm{MHz}$ over the $0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$ temperature range.

Functional Description

While the clock is LOW, the slave is held steady and the information on the D input is permitted to enter the master. The next transition from LOW to HIGH locks the master in its present state making it insensitive to the D input. This transition simultaneously connects the slave to the master causing the new information to appear on the outputs. Master and slave clock thresholds are internally offset in opposite directions to avoid race conditions or simultaneous
master-slave changes when the clock has slow rise or fall times.
The CP and $\overline{\mathrm{CE}}$ inputs are logically identical, but physical constraints associated with the Dual-In-Line package make the $\overline{\mathrm{CE}}$ input slower at the upper end of the toggle range. To prevent new data from entering the master on the next CP LOW cycle, $\overline{\mathrm{CE}}$ should go HIGH while CP is still HIGH.

$L_{1}=50 \Omega$ impedance lines
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 1. Propagation Delay (CP to Q)

[^0]Adjust $\mathrm{V}_{\text {BIAS }}$ for +0.7 V baseline of
800 mV peak-to-peak sinewave input
All input transition times are $2.0 \mathrm{~ns} \pm 0.2 \mathrm{~ns}$
FIGURE 2. Toggle Frequency Test Circuit

Typical Waveforms

Ordering Information

The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows:

Physical Dimensions inches (millimeters) (Continued)

16 Lead Ceramic Flatpak (F)
NS Package Number W16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: $R_{T}=50 \Omega$ termination of scope
 $L_{1}=50 \Omega$ impedance lines

