SIEMENS

SINUMERIK

SINUMERIK 828D, SINAMICS S120 Machine data

Preface

Fundamental safety instructions

Explanation of the machine/ setting data 2

Display machine data

List Manual	NC setting data	5
Machine and setting data cycles	6	
		7
		SINAMICS parameters

Applies to:
SINUMERIK 828D
CNC software version 4.8 SP3

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

\triangle DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.
If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

> WARNING
> Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by ${ }^{\circledR}$ are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Preface

SINUMERIK documentation

The SINUMERIK documentation is organized into the following categories:

- General documentation/catalogs
- User documentation
- Manufacturer/service documentation

Additional information

You can find information on the following topics at the following address (https:// support.industry.siemens.com/cs/de/en/view/108464614):

- Ordering documentation/overview of documentation
- Additional links to download documents
- Using documentation online (find and search in manuals/information)

If you have any questions regarding the technical documentation (e.g. suggestions, corrections), please send an e-mail to the following address
(mailto:docu.motioncontrol@siemens.com).

mySupport/Documentation

At the following address (https://support.industry.siemens.com/My/ww/en/documentation), you can find information on how to create your own individual documentation based on Siemens' content, and adapt it for your own machine documentation.

Training
At the following address (http://www.siemens.com/sitrain), you can find information about SITRAIN (Siemens training on products, systems and solutions for automation and drives).

FAQs
You can find Frequently Asked Questions in the Service\&Support pages under Product Support (https://support.industry.siemens.com/cs/de/en/ps/faq).

SINUMERIK

You can find information about SINUMERIK at the following address (http://www.siemens.com/ sinumerik).

Target group

This documentation is intended for project engineers, commissioning engineers, machine operators and service and maintenance personnel.

Benefits

The intended target group can use the Parameter Manual to test and commission the system or the plant professionally and safely.
Utilization phase: Installation and commissioning phase

Standard scope

This documentation only describes the functionality of the standard version. Additions or revisions made by the machine manufacturer are documented by the machine manufacturer.

Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing.

For the sake of simplicity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation, or maintenance.

Note regarding the General Data Protection Regulation

Siemens observes standard data protection principles, in particular the principle of privacy by design. That means that
this product does not process / store any personal data, only technical functional data (e.g. time stamps). If a user links this data with other data (e.g. a shift schedule) or stores personal data on the same storage medium (e.g. hard drive) and thus establishes a link to a person or persons, then the user is responsible for ensuring compliance with the relevant data protection regulations.

Technical Support

Country-specific telephone numbers for technical support are provided in the Internet at the following address (https://support.industry.siemens.com/sc/ww/en/sc/2090) in the "Contact" area.

Table of contents

Preface 3
1 Fundamental safety instructions. 7
$1.1 \quad$ General safety instructions 7
1.2 Warranty and liability for application examples 8
1.3 Industrial security. 9
2 Explanation of the machine/setting data 11
2.1 Structure of the data tables 11
2.2 Meaning of table fields 13
2.3 Overview of the data 20
3 Display machine data 23
4 NC machine data 27
4.1 General NC machine data. 27
4.2 Channel-specific NC machine data 231
4.3 Axis-specific NC machine data 424
5 NC setting data. 583
6 Machine and setting data cycles 639
7 SINAMICS parameters 723
A Appendix A 725
A. 1 List of abbreviations 725
A. 2 Documentation overview. 731
Index 733

Fundamental safety instructions

1.1 General safety instructions

1. WARNING

Danger to life if the safety instructions and residual risks are not observed
If the safety instructions and residual risks in the associated hardware documentation are not observed, accidents involving severe injuries or death can occur.

- Observe the safety instructions given in the hardware documentation.
- Consider the residual risks for the risk evaluation.

WARNING

Malfunctions of the machine as a result of incorrect or changed parameter settings
As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization (parameter assignments) against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

1.2 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

1.3 Industrial security

Note

Industrial security

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement - and continuously maintain - a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.
Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the Internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit:

Industrial security (http://www.siemens.com/industrialsecurity)
Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed at:

Industrial security (http://www.siemens.com/industrialsecurity)

Further information is provided on the Internet:
Industrial Security Configuration Manual (https://support.industry.siemens.com/cs/ww/en/ view/108862708)

WARNING

Unsafe operating states resulting from software manipulation

Software manipulations (e.g. viruses, trojans, malware or worms) can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- Protect the drive against unauthorized changes by activating the "know-how protection" drive function.

Explanation of the machine/setting data

2.1 Structure of the data tables

Standard table

The standard table contains all the important information about the data.

MD number	Identifier			Display filter	Reference	
Units	Name		Data type	Activation		
Attributes						
System	Dimension	Default value (LIN/RED)	Minimum value (LIN/RED)	Maximum value (LIN/RED)	Protection	Class

Expanded table

The expanded table includes data from the standard table plus additional rows with systemspecific values.

MD number	Identifier			Display filter	Reference	
Units	Name			Data type	Activation	
Attributes						
-	Dimension	Default value (LIN/RED)	Minimum value (LIN/RED)	Maximum value (LIN/RED)	Protection	Class
<System 1>	-	Default value	-	-	-/-	
<System 2>	-	-	-	-	-1/-	

A minus sign "-" in a field means that the same value as for <System $1>$ applies for the specified system.
Example:

2.1 Structure of the data tables

828d-gce62		1.0	0.5	3.0	$3 / 0$	M
828d-gce82	1.0	0.5	3.0	$3 / 0$	M	
828d-gse42		1.0	0.5	3.0	$0 / 0$	S
828d-gse62	1.0	0.5	3.0	$3 / 0$	M	
828d-gse82	1.0	0.5	3.0	$3 / 0$	M	

2.2 Meaning of table fields

MD number
The "MD number" field contains the machine data number. This number is displayed in the data lists on the user interface of the control.

Identifier

The "Identifier" field contains the unique alphanumeric identifier of the machine data. The machine data is, for example, addressed by means of this identifier (with an additional label) for programming in the part program.

This identifier is displayed in the data lists on the user interface of the control.

Reference

As a cross reference to the functional description of the data, the "Reference" field contains the short designation of the corresponding submanual of a function manual.

Reference is made to the following submanuals:

- Function Manual Basic Functions, submanuals: A2, A3, B1, B2, F1, G2, H2, K1, K2, N2, P1, P3, P4, R1, S1, V1, W1, Z1
- Function Manual Extended Functions, submanuals: A4, B3, H1, K3, K5, M1, M5, N3, N4, P2, R2, S3, S7, T1, W3, W4, Z2
- Function Manual Special Functions, submanuals: F2, G1, K6, K7, K8, K9, M3, R3, S9, T3, T4, TE01, TE02, TE1, TE3, TE4, TE6, TE7, TE8, TE9, V2, W5, W6, Z3
- Function Manual Safety Integrated, FBSI
- Function Manual Tool Management, FBWsI
- Function Manual Synchronous Actions, FBSY
- Function description, ISO Dialects for SINUMERIK, FBFA
- Programming Manual, PG
- Programming Manual Job Planning, PGA

Units/system of units

Depending on MD10240 \$MN_SCALING_SYSTEM_IS_METRIC, the physical units differ as follows:

MD10240 $=\mathbf{1}$	MD10240 $=0$
mm	inch
$\mathrm{mm} / \mathrm{min}$	inch $/ \mathrm{min}$
$\mathrm{m} / \mathrm{sec}^{2}$	inch $/ \mathrm{sec}^{2}$
$\mathrm{~m} / \mathrm{sec}^{3}$	Inch $/ \mathrm{sec}^{3}$
$\mathrm{~mm} / \mathrm{rev}$.	inch $/ \mathrm{rev}$.

If the MD is not based on any physical unit, the field is marked with "-".

Note

The default setting is MD10240 \$MN_SCALING_SYSTEM_IS_METRIC = 1 (metric).

Name

The "Name" field contains the name of the data in plain text.

Activation

The "Activation" field contains the action that must be performed by the user in order for a change in the data to be activated.

Activation User action		User action
po	POWER ON	Otherwise: - "Reset(po)" softkey - Switch voltage off/on
cf	NEW_CONF	Alternative: - Softkey: "Activate MD" Note: Axis-specific machine data A changed value will not be activated until all the channels of the mode group to which the axis belongs to are in the "Reset" state. - Command: NEWCONF Note: Axes/spindles On axes and position-controlled spindles, a changed value is not activated until the respective axis/spindle is stopped. On spindles that are not position-controlled a changed value is activated immediately.
re	RESET	Otherwise: - "Reset(po)" softkey - Program end reset (M02/M30) - <RESET> key
<so	IMMEDIATELY	After entering the value

The activation levels are listed according to their priority.

- po = highest priority
- so = lowest priority

Protection

The "Protection" field contains the access levels for reading or writing a date:
Reading/writing.

The first parameter specifies the access level for reading.
The second parameter specifies the access level for writing.

Example:

"ReadOnly" in the table field means:
Reading with access level "Manufacturer" is possible/ writing with access level "Manufacturer" is not possible.

Access level	Type
ReadOnly	Read-only access
0	Siemens (System)
1	Manufacturer
2	Service
3	User
4	Key-operated switch position 3
5	Key-operated switch position 2
6	Key-operated switch position 1
7	Key-operated switch position 0

Class

The "Class" field contains the data class to which the control-relevant data is assigned.
The data class attributes of machine, setting and option data are normally derived from the write rights of the corresponding data.

The data are divided into the following four data classes:

Data class	Write rights	Access right
S (System)	System	Access level 0 (Password: System)
M (Manufacturer)	Manufacturer/ Service	Access levels 1 and 2 and ReadOn- ly (Password: Service)
I (Individual) Note: Individual machine data are grouped in this data class, e.g. the leadscrew error compensation values. Depending on the contents, these are accessi- ble via different access levels.	Manufacturer/ Service or	Access level 1 and 2 (Password: Service) or Access level 3 (Password: User)
U (User)	User	Access level 3 (Password: User) Access level 4 and 7 (Keyswitch)

Display filter

The "Display filter" field contains the identifier of the data filter setting that enables the data to be seen. Using the filter setting, the exact data areas required at a given time can be selected for display.

ID	Data area
EXP	Expert mode
Drive machine data	
D00	Display signals
D01	Controller data
D02	Monitoring/limiting functions
D03	Message data
D04	Status data
D05	Motor/power unit
D06	Measuring system
D07	Safety Integrated
D08	Standard machine
General machine data	
N01	Configuration/scaling
N02	Memory configuration
N03	PLC machine data
N04	Drive control
N05	Status data/diagnostics
N06	Monitoring/limiting functions
N07	Auxiliary functions
N08	Corrections/compensations
N09	Technological functions
N10	I/O configuration
N11	Standard machine
N12	NC language, ISO dialect
Channel-specific machine data	
C01	Configuration
C02	Memory configuration
C03	Initial states
C04	Auxiliary functions
C05	Velocities
C06	Monitoring/limiting functions
C07	Transformations
C08	Corrections/compensations
C09	Technological functions
C10	Standard machine
C11	NC language, ISO dialect
Axis-specific machine data	
A01	Configuration (including memory)

ID	Data area
A02	Measuring system
A03	Machine geometry
A04	Velocities / accelerations
A05	Monitoring/limiting functions
A06	Spindle
A07	Controller data
A08	Status data
A09	Corrections/compensations
A10	Technological functions
A11	Standard machine
A12	NC language, ISO dialect
Displaying machine data	
H01	ShopMill
H02	ShopTurn
H03	ManualTurn
H04	Access levels
H05	Standard machine

System

In the "System" field, the control system is specified for which the data with the correspondingly entered values applies.

The following entries are possible:

- If the system is not listed, the entered default values apply.
- If the system is listed, the deviations are entered in the following table cells.

Milling technology (milling export)

828d-me42 PPU 24x
828d-me62 PPU 26x
828d-me821 PPU 28x
828d-me822 PPU 28x adv.

Turning technology (turning export)

828d-te42 PPU 24x
828d-te62 PPU 26x
828d-te821 PPU 28x
828D-te822 PPU 28x adv.

Cylindrical grinding technology (cylindrical grinding export)

828d-gce42 PPU 24x
828d-gce62 PPU 26x
828d-gce82 PPU 28x adv.

Surface grinding technology (surface grinding export)

828d-gse42 PPU 24x
828d-gse62 PPU 26x
828d-gse82 PPU 28x adv.

Dimension

The "Dimension" field contains the number of elements of a data field.

Default value

The "Default value" field contains the value that is used to preset the machine data. If default values for the channels differ, this is indicated by a forward slash " / ".
Some machine data is preset with different default values, depending on the NCU that is used.

Note

When input via the user interface, the limitation is 10 digits plus comma and sign.

In the bracket "LIN/RED" the linear axis or rotary axis value is specified.

Minimum/maximum value

The "Minimum value" and "Maximum value" fields contain the lower limit and upper limit, respectively, of the permissible range of the data.

If the "Minimum value" and "Maximum value" fields contain the string "**", an explicit range is not defined for this data. In this case, the range is determined by the specified data type.

In the bracket "LIN/RED" the linear axis or rotary axis value is specified.

Data type

The "Data type" field contains the following data types:

Data type	Range of values
BOOLEAN	false, true
BYTE	-128 to +127
UBYTE	0 to +255
DWORD	$-2,147,483,648$ to $+2,147,483,647$
UDWORD	0 to $+4,294,967,295$

Data type	Range of values
DOUBLE	$-1.7^{* 1} 10^{308}$ to $+1.7^{* 1} 10^{308}$
STRING	Sequence of characters (\rightarrow UBYTE) with any arbitrary/specified length.

Attributes

The "Attributes" field contains additional attributes of the data:

Attribute	Meaning
NBUP	No Back UP: The data is not backed up as part of the data backup.
ODLD	Only DownLoaD: The data can only be written via an INI file to an archive, or from the part program.
NDLD	No DownLoaD: The data can only be written to via the user interface.
SFCO	SaFety COnfiguration: Component of the "Safety Integrated" function.
SCAL	SCaling ALarm: Scaling data; when changed, alarm 4070 is displayed.
LINK	LINK description: The data describes a link cluster. Component of the "NCU Link" function.
CTEQ	ConTainer EQual: The data must be the same for all the axes of an axis con- tainer. Component of the "Axis container" function.
CTDE	ConTainer description: The data describes an axis container. Component of the "Axis container" function.

2.3 Overview of the data

Machine and setting data (SINUMERIK)

The machine and setting data are divided into the following areas:

Range	Designation
from 9000 to 9999	Displaying machine data
from 10000 to 18999	General NC machine data
from 19000 to 19999	Reserved
from 20000 to 28999	Channel-specific machine data
from 29000 to 29999	Reserved
from 30000 to 38999	Axis-specific machine data
from 39000 to 39999	Reserved
from 41000 to 41999	General setting data
from 42000 to 42999	Channel-specific setting data
from 43000 to 43999	Axis-specific setting data
from 51000 to 51299	General configuration machine data
from 51300 to 51999	General cycle machine data
from 52000 to 52299	Channel-specific configuration machine data
from 52300 to 52999	Channel-specific cycle machine data
from 53000 to 53299	Axis-specific configuration machine data
from 53300 to 53999	Axis-specific cycle machine data

Data Identifiers

The identifier specified in the data description is displayed on the user interface. However, if the data is addressed in the part program, for example, the identifier of the relevant data area must precede the data identifier.

Identifier	Data area
\$MM_	Displaying machine data
\$MN_/ \$SN_	
\$MNS_/ \$SNS_	General machine/setting data
\$MC_/ \$SC_ \$MCS_/ \$SCS__	
\$MA_/ \$SA_ \$MAS_/ \$SAS_	Channel-specific machine/setting data

Characters	Meanings
$\$$	System variables
M	Machine data (first letter)
S	Setting data (first letter)

Characters	Meanings
M, N, C, A, D	Subarea (second letter)
S	Siemens data (third letter)

Note

Axis-specific data can also be addressed with the axis name as an index. The internal axis identifier (AX1, AX2, AX3, ...) or the identifier specified in MD10000 \$MA_AXCONF_MACHAX_NAME_TAB can be used as the axis name.

Example: \$MA_JOG_VELO[Y1]=2000

The JOG velocity of axis Y 1 is $2000 \mathrm{~mm} / \mathrm{min}$.

Example: \$MA_FIX_POINT_POS[0,X1]=500.000

The value 500 is assigned to the first fixed point position on axis 1.

Examples:

\$MN_AUXFU_GROUP_SPEC[2]='H41'
If the contents of a machine data is a STRING (e.g. X1) or a hexadecimal value (e.g. H41), the contents must lie between " ' " (e.g. 'X1' or 'H41').

Output instant in time of the auxiliary functions of the 3rd auxiliary function group.
\$MN_AXCONF_MACHAX_NAME_TAB[0]='X1'
String $X 1$ is assigned as the name for the first machine axis.
\$MA_REFP_SET_POS[0,X1]=100.00000
A value of 100 mm is assigned to the first reference point of axis X1.

Examples:

Assignment to channel-specific machine data:

```
CHANDATA(1) ; Selection of the first channel
$MC CHAN NAME='CHAN1' ; Name of the first channel
$MC_AXCONF_GEOAX_NAME_TAB[1]='Y' ; Name of the 2nd geometry axis
    ; of the first channel 'Y'
R10=33,75 ; R10 of the first channel
```


Display machine data

9006	DISPLAY_SWITCH_OFF_INTERVAL	-	-			
-						
-	Time for screen saver	DWORD	PowerOn			
-	-	15	0	30	$7 / 3$	

Description:
This machine data specifies the duration in minutes after which the screen automatically switches to dark if no key has been pressed on the keyboard in the meantime.
The value 0 disables automatic light/dark switching.
Note:
The screen is only switched light/dark automatically if the NC/PLC interface signal DB1900 DBX5000.1 (screen dark) $=0$.

9009	KEYBOARD_STATE		-	-	
-	Keyboard shift behavior at booting		BYTE	PowerOn	
-					
-	2	0	2	7/3	M
Description:	This machine date define Basic configuration of 0: SW-CAPSLOCK OFF 2: SW-CAPSLOCK ON	if	$\overline{S W-C A F}$ he key	$f \text { th }$	

9032	HMI_MONITOR		-	-	
-	Define PLC data for HMI screen info		STRING	PowerOn	
-					
-	- -	-	-	$7 / 1$	M

Description: Pointer, with offset, to a PLC data block. This is required to report HMI monitor information to the PLC, e.g active HMI task.
Format: PLC-specific format for specifying a data block with byte offset, e.g. DB60. DBB10 for data block 60, byte 10 .

The monitor information reported by the HMI has a maximum length of 8 bytes.

Description:

Rotation cycle time in the alarm display:
<500: no rotation in the alarm line
500 - 10000: cycle duration of alarm rotation in milliseconds
If a valid cycle time has been set, all alarms are displayed in the alarm line one after the other.
Each alarm is displayed for the specified time until it is replaced by the next alarm. If no alarm is present, cycle alarms or program messages are displayed, if required. However, these do not rotate.

9057	ENABLE_CHANNEL_MSG_FILTER		-	-	
-	Filter program messages channel specifically		BOOLEAN	PowerOn	
-					
-	1	-	-	7/3	M
Description:	$0:$ The program messages of all channels are displayed in the alarm/message line. With multiple NCUs, the alarms and messages of all NCUs are displayed by default. The display can be restricted to the current NCU by the setting ServerMode Enabled=false in slaesvcconf.xml.				

9100	CHANGE_LANGUAGE_MODE	-	-				
-	Language selection mode	BYTE	Immediately				
-							
-	-	1	1	2	$7 / 3$		

Description: Language selection mode is defined:
$1=$ directly via selection list
2 = via setting of the 1st and 2nd language

9102	SHOW_TOOLTIP	-	-			
-	Display tooltip	BYTE	Immediately			
-						
-	-	1	0	1	$7 / 3$	

Description: If the MD has been set to 1, tooltips will be displayed.

9103	TOOLTIP_TIME_DELAY	-	-			
s						
-	Time delay tooltip display	BYTE	Immediately			
-	-	1	0	60	$7 / 3$	

Description: Time delay for display of the tooltips in seconds.

9104	ANIMATION_TIME_DELAY	-	-			
s						
-	Time delay before animation of help screens	BYTE	Immediately			
-	-	10	5	60	$7 / 3$	

$\begin{array}{ll}\text { Description: } & \text { Time delay until the start of animation of help screens in seconds. } \\ & \text { The setting is not active for help screens that are exclusively animated. }\end{array}$

9105	HMI_WIDE_SCREEN	-	-		
-	Display of the HMI as wide screen with OEM area always visible	BYTE	PowerOn		
-	-	0	1	$7 / 2$	M
-	-	0	1		

Description: Display of the HMI as wide screen. Above the HMI there is a separate application field that is designed by the machine manufacturer.

9106	SERVE_EXTCALL_PROGRAMS	-	-				
-	Process EXTCALL calls	BYTE	PowerOn				
-							
-	-	1	0	3	$7 / 3$		

```
Description: 0-3: Type of processing of external programs
0: HMI ignores EXTCALL instructions and selection via PLC.
1: HMI processes EXTCALL instructions and selection via PLC.
2: HMI processes EXTCALL instructions and ignores selection via PLC.
3: HMI ignores EXTCALL instructions and processes selection via PLC.
```

9107	DRV_DIAG_DO_AND_COMP_NAMES						-	-
-	Expanded drive diagnostics: DO and components						BYTE	Immediately
-	-	3	0	3	$7 / 3$			
-	-							

Description: 0: DO and component type names
1: Real DO names and component type names
2: DO type names and real component names
3: Reale DO names and real component names

Description: If the machine data has been set to 1, the SINUMERIK Integrate softkey appears as the operating area.

9112	HMI_SKIN	-	-			
-	Design of the operator panel (skin)	DWORD	PowerOn			
-						
-	-	1	0	10000	$7 / 1$	

Description:
Design of the operator panel. The number of the skin is stated.
0 = Skin 0 (traditional)
1 = Skin 1 (new)

Description: Diagnostics and correction support for easyXML scripts
0 = No diagnostics active
1 = Syntax check active

9114	SIDESCREEN			-	-	
-	SINUMERIK Operate Sidescreen			BYTE	PowerOn	
-						
-	-	1	0	1	7/1	M
Description:	$\begin{aligned} & \text { Activatic } \\ & 0=\text { Sides } \\ & 1=\text { Sides } \\ & 2=\text { SINUM } \end{aligned}$	SINUMERI deactiv activat Operate	Si			

9115	SAVE_CREDENTIALS	-	-			
-	Back up access authorizations for network drives	BYTE	Immediately			
-						
-	-	0	0	2	$7 / 1$	

Description:

Back up access authorizations for network drives when archiving
0 = Dialog hidden
1 = No dialog, access authorizations are not backed up
2 = No dialog, access authorizations are always backed up

9900	MD_TEXT_SWITCH							-	-
-	Plaintexts instead of MD identifier	BOOLEAN	Immediately						
-									
-	-	0	-	-	U				

Description: If the MD has been set to 1, clear text is displayed on the operator panel instead of the machine data identifiers.

9990	SW_OPTIONS	-	-			
-	Enable HMI software options	DWORD	Immediately			
-						
-	-	0	-	-		

Description:
Here you can enable the HMI software options

4.1 General NC machine data

10000	AXCONF_MACHAX_NAME_TAB	N01, N11	K2, F1, G2, F2, K5, M1			
-						
-	Machine axis name	STRING	PowerOn			
-	31	X1, Y1, Z1, A1, B1, C1, U1, V1	-	-	M	

Description:
List of the machine axis identifiers
The name of the machine axis is entered in this MD.
In addition to the fixed, defined machine axis identifiers "AX1", "AX2" ..., userdefined identifiers for the machine axes can also be assigned in this data.
The identifiers defined here can be used parallel to the fixed, defined identifiers for addressing axial data (e.g. MD) and machine axis-related NC functions (reference point approach, axial measurement, travel to fixed stop).

Special cases:

- The input machine axis name must not conflict with the names and assignments of the geometry axes (MD20060 \$MC_AXCONF_GEOAX_NAME_TAB, MD20050
\$MC_AXCONF_GEOAX_ASSIGN_TAB) and channel axes (MD20080 \$MC_AXCONF_CHANAX_NAME_TAB, MD20070 \$MC_AXCONF_MACHAX_USED).
The input machine axis name must not conflict with
Names for Euler angles (MD10620 \$MN_EULER_ANGLE_NAME_TAB)
Names for path-relevant orientations (MD10624 \$MN_ORIPATH_LIFT_VECTOR_TAB)
Names for normal vectors (MD10630 \$MN_NORMAL_VECTOR_NAME_TAB)
Names for direction vectors (MD10640 \$MN_DIR_VECTOR_NAME_TAB)
Names for rotation vectors (MD10642 \$MN_ROT_VECTOR_NAME_TAB)
Names for intermediate vector components (MD10644 \$MN_INTER_VECTOR_NAME_TAB)
Names for intermediate circle point coordinates for CIP (MD10660 \$MN_INTERMEDIATE_POINT_NAME_TAB)
Names for interpolation parameters (MD10650 \$MN_IPO_PARAM_NAME_TAB).
- The input machine axis name must not include any of the following reserved address letters:
D Tool offset
(D function)
E Reserved
F V Feedrate
(F function)
G Path condition

H Auxiliary function (H function)
L Subroutine call
M Miscellaneous function (M function)
N Subblock
P Subroutine number of passes
R Arithmetic parameters
S Spindle speed \quad T function) Tool (T function)
The name must not include any keywords (e.g. DEF, SPOS etc.) or pre-defined identifiers (e.g. ASPLINE, SOFT).
The use of an axis identifier consisting of a valid address letter (A, B, C, I, J, K, Q, U, V, W, X, Y, Z), followed by an optional numerical extension (1-99) gives slightly better block change times than a general identifier.
If no identifier is assigned to a machine axis, the predefined name ("AXn") applies to the nth machine axis).
Related to....

MD20060 \$MC_AXCONF_GEOAX_NAME_TAB (geometry axis name in the channel [GEOAxisno.]
MD20080 \$MC_AXCONF_CHANAX_NAME_TAB (channel axis name in the channel [Channelaxisno.]

10002	AXCONF_LOGIC_MACHAX_TAB	N01	B3, K2			
-	Logical NCK machine axis image	STRING	PowerOn			
-						
-	31	AX1, AX2, AX3, AX4, AX5, AX6, AX7, AX8...	-	-	M	

Description:

List of machine axes available on an NCU. (Logical NCK machine axis image)
MD10002 \$MN_AXCONF LOGIC_MACHAX_TAB creates another NCK global, logical layer between the channel axis layer and the machine axes in an NCU or NCU grouping. This layer is called the "Logic NckMachineAxImage", abbreviation: LAI).

Axes can only be assigned between different NCUs via this new intermediate layer! The entry MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[n] = NCj_AXi assigns the machine axis i on the NCU j to the axis index " \bar{n} " in the LAI.
This makes the following assignments possible:

1. Local axes (default setting: AX1, AX2 ... AX31)

The entry MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[n] = AX3 assigns the local axis AX3 to axis index n. (Default setting $A x 3$ is present for $n=3$. Thus there is compatibility in software version 5 for MD blocks for software versions up to 4).
2. Link axes (axes that are physically connected to another NCU). The entry MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[n] = NCj_AXi assigns axis AXi (link axis) on NCU j to axis index n.

Limits:
n Machine axis address (of the local NCU) 1 ... 31
j NCU number 1 ... 16
i Machine axis address (of the local/remote NCU) 1 ... 31
3. Axis container in which there are once again either local or link axes. The entry MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[n] = CTr_SLs assigns container r and slot s to axis index n.

Limits:
n Machine axis address (of the local NCU) 1 ... 31
r Container number 1 ... 16
s Slot number (location) in the container 1 ... 32
The channel layer is formed via the related machine data \$MD20070
\$MC_AXCONF_MACHAX_USED and no longer points (small P5) directly to the machine axes but to the new LAI layer.
MD20070 \$MC_AXCONF_MACHAX_USED [k]=n assigns the LAI axis number "n" to the axis index "k" in the channel layer.
The machine axis and the corresponding NCK can then be determined from the LAI axis number.

If a number of NCUs point to the same machine axis in the cluster as a result of MD10002 \$MN AXCONF LOGIC MACHAX TAB, then the axial machine data MD30554
\$MA_AXCONF_ASSIGN_MASTER_NCU must define which NCU generates the master NCU and the setpoint values for the position controller after startup.

Related to:
MD12... \$MN_AXCT_AXCONF_ASSIGN_TABi (make entries in containers i)

10010	ASSIGN_CHAN_TO_MODE_GROUP	N01, N02, N11	K1, K5			
-	Channel valid in mode group	DWORD	PowerOn			
-						
-	10	$1,0,0,0,0,0,0,0 \ldots$	0	10		
$7 / 2$	M					

Description:
This MD assigns the channel to a mode group

Entry value 1 => Assigned to 1st mode group
Entry value 2 => Assigned to 2nd mode group
etc.
From software version 4, it is permissible not to assign a mode group number to individual channels.
Channel gaps are allowed, in order to favor uniform configuration in similar types of machines. In this case, the number 0 is assigned to the channel instead of assigning a mode group number equal to or greater than 1 . The channel is not activated, however it is handled like an active channel when counting the channels.
E. 9 .

ASSIGN_CHAN_TO_MODE_GROUP[0] = 1
ASSIGN_CHAN_TO_MODE_GROUP[1] = 1
ASSIGN_CHAN_TO_MODE_GROUP[2] = 0 ; gap
ASSIGN_CHAN_TO_MODE_GROUP[3] = 1
Application example:
Select desired channel via HMI and enter with MD10010 \$MN_ASSIGN_CHAN_TO_MODE_GROUP = 1 .

Note:
This MD must still be entered even when only one mode group is present.

10061	POSCTRL_CYCLE_TIME	N01, N05	G3			
s	Position control cycle	DOUBLE	PowerOn			
-						
-	-	0.0	- MD_DBLMAX	$1.0 \mathrm{E}+301$		

Description: Position controller cycle time:
Display of the position controller cycle time

10062	POSCTRL_CYCLE_DELAY	N01, N05	G3					
s	Position control cycle offset						DOUBLE	PowerOn
-								
-	-	0.0	0.000	0.008				

Description:
For PROFIdrive only:
Only relevant to operation with PROFIBUS drives.
Position controller cycle offset in relation to the PROFIBUS DP cycle.
Offsets that exceed the set DP cycle or are smaller than the maximum Tdx, are automatically corrected to a substitute value half the size of the DP cycle. MD10062 \$MN_POSCTRL_CYCLE_DELAY > 0: Default for position controller offset MD10062 \$MN_POSCTRL_CYCLE_DELAY = 0: Automatic determination of the position controller offset with max. Tdx from STEP7 project
Tdx_max is determined through all equidistant buses.
The actually active offset value is displayed in MD 10063[1]
\$MN_POSCTRL_CYCLE_DIAGNOSIS.
Note:
MD10062 \$MN_POSCTRL_CYCLE_DELAY > 0 can reduce MD10050 \$MN_SYSCLOCK_CYCLE_TIME to the automatic correction of this $M D$ that cannot be undone by a subsequent increase.
Recommendation:
In this case set the original value or default value once again.

Description:

Diagnostic data related to the PROFIBUS/PROFINET cycle.
[0]: Latest time at which the actual values should be available (Tdx)
[1]: Actually active position controller cycle offset (Tm)
[2]: Latest time at which the setpoints were output by the position controller
[3]: Time at which the setpoint transfer to the drive via DMA was started for Soc-based modules
[4]: Time at which the setpoint transfer to the drive via DMA was finished for SOCbased modules.
[5]: 'Worst case' time since voltage on, at which the setpoint transfer to the drive via DMA was finished for SOC-based modules.

Diagnostic data are initialized with ZERO with each NCK power up

10064	POSCTRL_CYCLE_DESVAL_DELAY	N01, N05	G3					
s	Clock skew of the DMA for the setpoints						DOUBLE	PowerOn
-								
-	-	0.0	0.000	0.008				

Description:
For SINAMICS-Integrated only:

Only relevant to operation with SINAMICS-Integrated drives on SOC modules.
Offset of the output of the setpoints via DMA in relation to the PROFIBUS DP cycle. Modification of MD10064 POSCTRL_CYCLE_DESVAL_DELAY requires a warm restart of the NCK and drive.

Offsets that exceed the set DP cycle are automatically corrected to a substitute value. MD10062 \$MN_POSCTRL_CYCLE_DESVAL_DELAY > 0: Default setpoint offset
MD10062 \$MN_POSCTRL_CYCLE_DESVAL_DELAY = 0: Automatic determination of the setpoint offset on the basis of the hardware transfer rates

The actually active offset value is displayed in MD10063
\$MN_POSCTRL_CYCLE_DIAGNOSIS[4].
Note:
MD10064 \$MN POSCTRL CYCLE DESVAL DELAY > 0 can reduce MD10050 \$MN SYSCLOCK CYCLE TIME to the automatic correction of this MD, which cannot be undone by a subsequent increase.

Recommendation:
In this case, set the original value or default value again.

10070	IPO_SYSCLOCK_TIME_RATIO	N01, N05, N11	G3, R1			
-	Factor for interpolation cycle	DWORD	PowerOn			
SFCO						
-	-	4	1	100	$7 / 2$	

Description: The interpolator cycle is stated as a multiple of the time units of the system basic cycle MD10050 \$MN_SYSCLOCK_CYCLE_TIME.
Only integer multiples of the position control cycle can be set. Values that are not an integer multiple of the position control cycle are automatically increased to the next integer multiple of the position control cycle before they become active (on next power up).
This is accompanied by alarm 4110 "IPO cycle changed to [] ms".

10071	IPO_CYCLE_TIME						N01, N05, N11	G3
s	Interpolator cycle	DOUBLE	PowerOn					
-								
-	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	ReadOnly			

Description:
Interpolation time
Display of the interpolator cycle time

10072	COM_IPO_TIME_RATIO						N01, N05	-
-	Division ratio between IPO and communication task	DOUBLE	PowerOn					
-								
-	-	1.0	0.0	100.0				

Division ratio between IPO and communication tasks. A value of 2 means, e.g., that the communication task is only processed in every second IPO cycle. This makes more time available for the other tasks. Overlarge values slow down the communication between the HMI and NCK.

Numerical values less than 1 downscale the IPO cycle. This value is adjusted so that only runtimes that are a multiple of the position controller time are possible for the communication task. A call period of about 10 ms is practical for the communication task.

10088	REBOOT_DELAY_TIME	EXP	K3			
s	Reboot delay	DOUBLE	Immediately			
-						
-	-	0.2	0.0	1.0		
$2 / 2$	M					

Description:
The reboot following PI "_N_IBN_SS" is delayed by the time MD10088 \$MN_REBOOT_DELAY_TIME.
The suppressable NOREADY alarm 2900 is triggered immediately by PI "_N_IBN_SS". If MD10088 \$MN_REBOOT_DELAY_TIME falls below the MD36620 \$MA_SERVO_DISABLE_DELAY_TIME value of an axis, the axis is decelerated during MD10088 \$MN_REBOOT_DELAY_TIME. The servo enable is then disabled. That is, the full MD36620 \$MA_SERVO_DISABLE_DELAY_TIME is NOT waited.

Alarm 2900 does not become active if MD10088 \$MN_REBOOT_DELAY_TIME $=0.0$, and there is no reboot delay.
The NCK waits beyond the stated delay time until the PI has been able to be acknowledged to the HMI. The total delay time may be as much as 2 s .

10089	SAFE_PULSE_DIS_TIME_BUSFAIL	N01, N06	FBSI			
s	Delay time pulse suppr. for bus failure	DOUBLE	PowerOn			
-						
-	-	0.0	0	0.8		

Description:

Time after a communication failure with the drive at which safe pulse disable takes place. The drive can still respond autonomously to the bus failure during this time (see extended stop and retract)
In the following cases, this time is not allowed to elapse before disabling pulses:

- On selection of an external Stop A or a test stop
- If SBH is active or on selection of SBH
- If an $S G$ level is active or on selection of an $S G$ level for which an immediate pulse disable is parameterized in MD36961 \$MA_SAFE_VELO_STOP_MODE or MD36963 \$MA_SAFE_VELO_STOP_REACTION.
Note:
This value is transferred to the drive parameter p9580 with the copy function of the SI-MD and compared in the data cross-check. This general machine data is contained in the axis-specific checksum calculation of the safety-related machine data (MD36998 \$MA_SAFE_ACT_CHECKSUM, MD36999 \$MA_SAFE_DES_CHECKSUM).

10090	SAFETY_SYSCLOCK_TIME_RATIO			N01, N06	FBS	
-	Factor for monitoring cycle			DWORD	Pow	
SFCO						
-	3		1	50	7/1	M

Description:

Ratio between the monitoring cycle and the system clock cycle. The monitoring cycle is the product of this data and MD10050 \$MN_SYSCLOCK_CYCLE_TIME.

The monitoring cycle is checked during power on:

- It must be an integer multiple of the position-control cycle
- It must be $<25 \mathrm{~ms}$

The factor is rounded down to the next possible value if the conditions are not fulfilled. The actual set monitoring cycle is displayed by MD10091 \$MN_INFO_SAFETY_CYCLE_TIME.
A new value is also generated for the cross-check cycle, which is displayed by data MD10092 \$MN_INFO_CROSSCHECK_CYCLE_TIME.
Note:
The monitoring cycle defines the monitoring response time. It must be noted that the CPU load increases as the monitoring cycle becomes shorter.

```
Related to:
MD10050: $MN_SYSCLOCK_CYCLE_TIME
MD10091: $MN_INFO_SAFETY_CYCLE_TIME
MD10092: $MN_INFO_CROSSCHECK_CYCLE_TIME
```


10092	INFO_CROSSCHECK_CYCLE_TIME		N01, N06, N05	FBSI	
S	Display of cycle time for cross-checking		DOUBLE	PowerOn	
-					
-	- 0.0	-	-	ReadOnly	S

Description: Display data:

Maximum cross-check cycle in seconds.
Derived from MD10091 \$MN_INFO_SAFETY_CYCLE_TIME and the number of data to be crosschecked. (This may vary depending on the enabled functionality of the individual axes.) The data value is recalculated as soon as one of the following data are changed:
MD10090 \$MN_SAFETY_SYSCLOCK_TIME_RATIO,
MD10060 \$MN_POSCTRL_SYSCLOCK_TIME_RATIO,
MD10050 \$MN_SYSCLOCK_CYCLE_TIME
The new value does not become active until after the next power-on.
Related to:
MD10090: \$MN_SAFETY_SYSCLOCK_TIME_RATIO
MD36992: \$MA_SAFE_CROSSCHECK_CYCLE

10094	SAFE_ALARM_SUPPRESS_LEVEL						EXP, N06, N05	FBSI
-	Alarm suppress level						BYTE	PowerOn
-	-	2	0	113	$7 / 2$			
-	-	M						

Description: Affects the display of safety alarms. The monitoring channels NCK and drive or NCK and PLC display alarms with the same meaning in several situations.
To reduce the volume of the alarm display, this MD is set to define whether safety alarms with the same meaning are to be hidden or not. This does not affect the dualchannel stop response.
0 = Dual-channel triggered alarms are displayed in full

- Dual-channel display of all axis-specific safety alarms
- Alarm 27001, error code 0 is displayed
- Alarms 27090, 27091, 27092, 27093, and 27095 are dual-channel and are displayed several times.

1 = Alarms with the same meaning are only displayed once.
The following alarms can be affected by this:
$27010=C 01707$
$27011=\mathrm{C} 01714$
$27012=\mathrm{C} 01715$
$27013=C 01706$
$27020=C 01710$
$27021=C 01709$
$27022=C 01708$
$27023=C 01701$
$27024=C 01700$
In the case of these alarms, only one of the alarms listed (270xx or C01xxx) is triggered.
The alarm of the monitoring channel that triggers the alarm with the same meaning at a later time is no longer displayed.

Furthermore, alarm 27001 with error code 0 is suppressed. This alarm is triggered as a result of drive alarm c01711. In this case, drive parameters r9710[0,1], r9711[0,1], r9735[0,1], r9736[0,1], r9737[0,1], r9738[0,1], r9739[0,1] provide further information about the cause of the error.

2 = Default setting
In addition to the functionality with MD value = 1, the alarms from SPL processing (27090, 27091, 27092, 27093, and 27095) are displayed in one channel and only once. This also applies to the alarms for PROFIsafe communication (27250 and following).
3 = Axis-specific alarms 27000 and A01797 are replaced by alarm message 27100 for all axes / drives. Alarm 27040 is replaced by alarm 27140 for all axes/ drives.
12 = The alarms are prioritized beyond the functionality with MD value $=2$. Obvious subsequent alarms are no longer displayed or are automatically cleared from the display.
The following alarms can be affected by this:
27001, 27004, 27020, 27021, 27022, 27023, 27024, 27091,
27101, 27102, 27103, 27104, 27105, 27106, 27107
13 = The alarms are prioritized beyond the functionality with MD value = 3 (as with MD value 12).
1 xx (100 digit set) = Axis-specific checksum alarms of the NCK (27032, 27035, and 27060) are displayed in SPL setup mode (MD11500 \$MN_PREVENT_SYNACT_LOCK[0,1] = 0) by alarm 27135 for all axes.
This machine data must be set to 0 to create an acceptance log, so that the triggering of all alarms can be logged.

10095	SAFE_MODE_MASK						EXP, N06	FBSI
-	'Safety Integrated' operating modes	UDWORD	PowerOn					
-								
-	-	0	0×00000000	$0 \times 0000001 \mathrm{E}$	$7 / 2$			

Description:
Bit $1=0$: The "Modular PROFIsafe I/O connection" function is not active.
Bit $1=1:$ The "Modular PROFIsafe I/O connection" function is active.
Bit $2=0$: The reduced language scope for SAFE.SPF is only activated during run-up in the case of automatic startup (MD20108 \$MC_PROG_EVENT_MASK bit 5)
Bit 2 = 1: The reduced language scope for SAFE.SPF is also activated if the CALL command is used to call SAFE.SPF.

Bit 3 = 0: All PROFIsafe drivers in one IPO cycle
Bit 3 = 1: PROFIsafe drivers distributed over a number of IPO cycles
Bit 4 = 0: In "SINUMERIK Safety Integrated (SPL)" safety mode, NC axes cannot be linked to the drive monitoring functions via SIC/SCC
Bit 4 = 1: In "SINUMERIK Safety Integrated (SPL)" safety mode, NC axes can be linked to the drive monitoring functions via SIC/SCC

Related to:
Bit 1:
MD13302: \$MN_PROFISAFE_IN_ENABLE_MASK
MD13303: \$MN_PROFISAFE_OUT_ENABLE_MASK
Bit 2:
MD20108: \$MC_PROG_EVENT_MASK, Bit 5

10096	SAFE_DIAGNOSIS_MASK	EXP, N06, N05	FBSI			
-	'Safety Integrated' diagnostics functions	UDWORD	NEW CONF			
-						
-	-	1	0	$0 \times 000 \mathrm{~F}$	$7 / 2$	

SGE differences between NCK and drive monitoring channels are not displayed
Bit $0=1$:
Default setting: SGE differences between NCK and drive monitoring channels are displayed. Differences between the following SGEs are displayed (the bit numbers stated refer to the axis-specific map of the SGEs; they correspond to the assignment of the axis-specific VDI interface:
Bit 0: DB31, ... DBX22.0 (SBH/SG deselection)
Bit 1: DB31, ... DBX22.1 (SBH deselection)
Bit 3: DB31, ... DBX22.3 (SG selection: Bit 0)
Bit 4: DB31, ... DBX22.4 (SG selection: bit 1)
Bit 12: DB31, ... DBX23.4 (activate SE 2)
Bit 28: DB31, ... DBX33.4 (SG correction: bit 0)
Bit 29: DB31, ... DBX33.5 (SG correction: bit 1)
Bit 30: DB31, ... DBX33.6 (SG correction: bit 2)
Bit 31: DB31, ... DBX33.7 (SG correction: bit 3)
The differences are displayed by message alarm 27004.
Bit $1=0$: Default setting: Display of a non-executed SPL start after expiration of the time set in MD13310 \$MN_SAFE_SPL_START_TIMEOUT with alarm 27097
Bit 1 = 1: Display of alarm 27097 is suppressed
Alarm 27097 indicates that despite the SPL configuration an SPL start has not been executed after expiration of the time set in MD13310 \$MN_SAFE_SPL_START_TIMEOUT. Alarm description 27097 explains why.
Bit 2 = 0: Default setting: Communication errors are displayed with SFC error codes in alarm 27354
Bit 2 = 1: Display of alarm 27354 is suppressed
Bit 3 = 0: Default setting: alarm 27038 is displayed if an unknown bit is set in drive parameter r474.
Bit 3 = 1: Display of alarm 27038 is suppressed

10097	SAFE_SPL_STOP_MODE		N01, N06	FBS	
-	Stop reaction for SPL errors		BYTE	Pow	
-					
-	3	3	4	7/2	M

4.1 General NC machine data

Description: Selection of the stop response when errors are detected in the NCK / PLC SPL crosscheck.

3: Stop D
4: Stop E
Entering the value 4 in this MD (Stop E), without external Stop E being enabled in all axes with SI function enable (MD36901 \$MA_SAFE_FUNCTION_ENABLE not equal to 0), results in alarm 27033 with a reference to this MD.
As a remedy, either Stop D must be parameterized again, or bits 4 and 6 must be set in MD36901 \$MA_SAFE_FUNCTION_ENABLE for all affected axes.
If this MD is set to 4, the PLC signal DB18 DBX36.1 (Stop E) must also be set to 1 to make this parameterization known to the PLC. Different parameterization results in alarm 27090.

10098	PROFISAFE_IPO_TIME_RATIO	N01, N10	FBSI			
-	Factor for PROFIsafe communication	DWORD	PowerOn			
SFCO						
-	-	1	1	25	$7 / 1$	

Description:
Ratio between PROFIsafe communication and interpolator cycle. The actual PROFIsafe communication cycle is the product of this data and MD10071 \$MN_IPO_CYCLE_TIME, and is displayed in MD10099 \$\$MN_INFO_PROFISAFE_CYCLE_TIME. The OB40 on the PLC side is triggered from the NCK sī̄${ }^{\text {d }}{ }^{-}$this cycle to run the communication between F master and F slaves.
The PROFIsafe communication must not exceed 25 ms .

10099	INFO_PROFISAFE_CYCLE_TIME		N01, N10, N05	FBSI	
s	PROFIsafe communication cycle time		DOUBLE	PowerOn	
-					
-	0.0	-	-	ReadOnly	S

Description: Display data:

Displays the maximum time frame within which communication is performed between the F master and F slave. In this time frame, PROFIsafe communication is operated on the PLC via OB40.
The value is derived from the interpolator cycle and MD10098
\$MN_PROFISAFE_IPO_TIME_RATIO.
If the selected communication cycle is exceeded in cyclic operation, this is also displayed here.
In the case of a parameterization error (communication cycle exceeds the maximum value of 25.0 ms), the maximum value that can be set is displayed.

10100	PLC_CYCLIC_TIMEOUT		EXP, N01, N06	P3	
s	Maximum PLC cycle time		DOUBLE	PowerOn	
-					
-	0.1	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description:
Cyclical PLC monitoring time.
This machine data specifies the maximum monitoring time after which the PLC must have
incremented its sign of life. Incrementing takes place within the interpolation cycles.

10110	PLC_CYCLE_TIME_AVERAGE		N01, N07	B1	
s	Average PLC acknowledgment time		DOUBLE	Pow	
-					
-	0.05	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description: Time information for the CNC about the OB1 cycle time. During this cycle time, it is guaranteed that the auxiliary functions will be acknowledged.

By means of the MD, the status transitions:
"channel operates/ channel in RESET/ channel failure --> channel interrupted" can be delayed for the PLC in case of a RESET. With the output "channel interrupted", the NCK waits at least the time indicated in the MD +1 IPO cycle.
With the time indication, the path feedrate during path control operation in case of an auxiliary function output during motion is controlled in a way to ensure that the minimum travel time corresponds to the time information. This ensures a uniform velocity behavior which is not disturbed by waiting for the PLC acknowledgment. The internal incrementation is performed in the interpolation cycle.
For the auxiliary function output in the continuous-path mode, the MD is also relevant for the FM357 and 802/802s systems. With SW 5.1 and higher, the other systems are parameterized directly via the PLC.

10120	PLC_RUNNINGUP_TIMEOUT						EXP, N01, N06	H2
s	Monitoring time for PLC power up						DOUBLE	PowerOn
-	-	50.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$			
-	-	M						

Power up PLC monitoring time
This machine data specifies the maximum monitoring time within which the PLC must report its first sign of life to the NCK. During the power up routine, the monitoring function has the task of verifying that the PLC has properly assumed cyclic operation. If the PLC does not issue a message within this time, the NC issues an alarm message when it powers up; NC-READY is not set. The incrementing takes place within the interpolation cycles.

10125	EES_NC_NAME							EXP	-
-	NCU name for the generation of unique NC program names in EES mode	STRING	PowerOn						
-									
-	-	-	-	$7 / 2$	M				

Description: The user can assign a unique NCU name to each NCU with MD10125 \$MN_EES_NC_NAME. Similarly to \$P_CHANNO, this can then be used to generate unique NCU program names in EES mode.
Example: \$MN_EES_NC_NAME="NC1"
DEF STRING[31] FILENAME
FILENAME = "MYFILE_" << \$MN_EES_NC_NAME << "_" << \$P_CHANNO << ".SPF"
The variable FILENAME is then given the value "MYFILE_NC1_1.SPF" in the first channel on the NCU "NC1".
Background:
In EES mode, the part program memory can be located on a network drive which is accessed by multiple NCUs. Conflicts could be generated with the part program commands WRITE and DELETE if unique file names are not used. The generation of unique NCU program names in the user program is supported by MD10125 \$MN_EES_NC_NAME.

10127	EES_MOUNT_FILE	EXP	-		
-					
-	Path and name of the file with the mounted drives	STRING	PowerOn		
-	-	/user/sinumerik/mnt/ devices.Ist	-	ReadOnly	S

[^0]

10131	SUPPRESS_SCREEN_REFRESH	EXP	A2			
-	Screen refresh response under overload	BYTE	PowerOn			
-						
-	-	0	0	2	$7 / 2$	

Description: There are part programs in which the main run (HL) has to wait until the pre-processing (VL) makes new blocks available.

The pre-processing and display update compete for NC computing time. The MD defines how the $N C$ is to respond when the pre-processing is too slow.
0 : When the VL of a channel is too slow, the updating of the display is suppressed in all channels.

1: When the VL of a channel is too slow, the updating of the display is suppressed only in the time-critical channels in order to gain time for the pre-processing. 2: The updating of the display is never suppressed.

10132	MMC_CMD_TIMEOUT	EXP, N01, N06	PA, M4					
s	Monitoring time for HMI command in the part program						DOUBLE	PowerOn
-								
-	-	0.0	100.0	$7 / 2$	M			

Description:

Monitoring time in seconds until the HMI acknowledges a command from the part program.
The following times are monitored:

- In the case of an HMI command without acknowledgment: time from triggering the transfer of the command string until successful transmission to the HMI
- In the case of an HMI command with synchronous and asynchronous acknowledgment: time from triggering the transfer of the command strings until receipt of the acceptance acknowledgment from the HMI
- For EXTCALL command and execution from external drives: time between the transmission triggering of the command string and the successful sending to the HMI.

10133	START_LOCK_TIMEOUT						EXP	-
s	Monitoring time for channel-specific start disable and WRITE lock							
DOUBLE								
-		PowerOn						
-	-	0.0	3.0	ReadOnly	S			

Description: MD10133 \$MN_START_LOCK_TIMEOUT is evaluated in two situations:

1. If an NC channel is started in AUTO mode (NC Start key) with channel-specific start disable set (not program-specific start disable), then the start is executed if the start disable is reset within the waiting time configured in MD10133 \$MN_START_LOCK_TIMEOUT.
2. If an NC program, for which a Write lock has been set (e.g. by the HMI Editor), is to be processed in EES mode (Execution from External Storage), then the processing is stopped with alarm 14007 after expiry of the waiting time configured by MD10133 \$MN_START_LOCK_TIMEOUT.

Description:
Possible number of simultaneous HMI communication partners with which the NCU can exchange data.
This value affects then number of communication orders that the NCK can manage. The higher the value, the more HMIs that can be simultaneously connected to the NCK without leading to communication problems.
DRAM is made available for this function in the NCU corresponding to the input in the machine data. The inputs for changing the memory areas have to be taken into account. The unit of MD10134 \$MN_MM_NUM_MMC_UNITS is a "resource unit".
A standard HMI needs 1 resource unit, an HMIIO0/103 needs 2 . OEM variants may need more or less resources.

- If the value is set lower than would be needed for the number of connected HMIs, this is not inevitably problematical. Actions may not function sporadically during multiple, simultaneous, communication-intensive operations (e.g. loading a program): Alarm 5000 is displayed. The operation then has to be repeated.
- If the value is et higher, more dynamic memory is occupied than necessary. The value should be reduced appropriately if the memory is required for other purposes.
References: /FB/, S7, "Memory Configuration"

10136	DISPLAY_MODE_POSITION	N01	-			
-	Display mode for actual position in the Work	DWORD	Reset			
-						
-	-	0	0	1	$7 / 1$	

Description:

Defines how the position and the distance to go are displayed in the Work.
0: Display as in software version 5 and earlier
1: At end of block, the actual value display is in principle the same as the programmed end point, irrespective of where the machine actually is (e.g. as a result of the tool radius compensation). The distance to go is the same as the actual distance to be traversed. This means that the displayed actual postion has to be the same as the displayed end position minus the distance to go, irrespective of the actual machine position. If the block end points are changed by chamfers, radii, contour definitions, splines or SAR in comparison to the NC programm, then these changes are reflected in the display as if thay had been programmed. This does not apply to changes resulting from tool radius compensation or smoothing.

10156	TASK_SLEEP_TIME				
-	Average time transfer per cycle	EXP	-		
NBUP					
-	-	0	DWORD	Immediately	
Description:	Only relevant to simulation systems The unit of the machine data is the microsecond.				

In the simulation environment, a machining run designates execution of the tasks Server, IPO, and PREP, which are not interrupted
This machine data now specifies the average time that is allocated to the operating system of the simulation host system per machining run.
As it is not usually possible to allocate times in the microsecond range in the operating system of the simulation host system, the times are calculated over multiple cycles, and then the default time set by the operating system (typically between 10 15 milliseconds) is allocated. A number of cycles are therefore run without delay, and there is correspondingly longer wait later, so that the time set in the MD is allocated as an overall average. The value 0 deactivates the time allocation.
E.g.: If MD10156 \$MN_TASK_SLEEP_TIME is set to the value 50 (microseconds), and the minimum allocated time defined $\bar{b} y$ the operating system is 10 milliseconds ($=10000$ microseconds), there will be a delay of 10 milliseconds every 200 cycles (10000/50).

10160	PREP_COM_TASK_CYCLE_RATIO	EXP, N01	ECO					
-	Factor for communication with HMI	DWORD	PowerOn					
-								
-	-	3	1	50	M			

Description:

This machine data specifies the division ratio used for activating the communication task in the non-cyclic time level. This allows the time share of preparation in the non-cyclic time level to be increased, which reduces block change times. This slows down external communication (file transfer), especially during program execution (group-by-group reload).

10185	NCK_PCOS_TIME_RATIO	EXP, N01	-				
$\%$	Processing time share NCK	DOUBLE	PowerOn				
-							
-	-	90.0	90.0	95.0	$7 / 2$		

Description:

This machine data defines the maximum proportion of CPU time given to the NC kernel in the entire system. The division specified by the user is implemented as well as possible.
When implementing the specification, the system takes into account limiting values for the absolute proportion of CPU time that must not be exceeded or undershot.
Adaptations are made without generating an alarm.

10190	TOOL_CHANGE_TIME	N01	BA				
s	Tool changing time for simulation	DOUBLE	PowerOn				
-							
-	-	0.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 2$		

Description: This data defines how much time is estimated for a tool change (only relevant for a simulation).

10192	GEAR_CHANGE_WAIT_TIME	N01	S1				
s	Gear stage change waiting time	DOUBLE	PowerOn				
-							
-	-	10.0	0.0	$1.0 e 5$	7/2		

Description:
External events which trigger reorganization, wait for the end of a gear stage change. GEAR_CHANGE_WAIT_TIME now determines the waiting time for the gear stage change. Time unit in seconds.
When this time expires without the gear stage change having been terminated, the NCK reacts with an alarm.

Among others, the following events will cause reorganization:
User ASUB

Mode change
Delete distance-to-go
Axis replacement
Activate user data

Description: This MD defines the number of internal increments per millimeter.
The accuracy of the input of linear positions is limited to the calculation accuracy by rounding the product of the programmed value and the calculation accuracy to an integer.
In order to keep the executed rounding easily understandable it is useful to use powers of 10 for the calculation accuracy.

10210	INT_INCR_PER_DEG		N01	G2,	
-	Calculation resolution for angular positions		DOUBLE	Pow	
LINK					
-	- $\quad 1000.0$	1.0	1.0e9	7/2	M

Description:

This MD defines the number of internal increments per degree.
The accuracy of the input of angular positions is limited to the calculation accuracy by rounding the product of the programmed value and the calculation accuracy to an integer.
In order to keep the executed rounding easily understandable it is useful to use powers of 10 for the calculation accuracy.

Machine data

4 Linear acceleration	$1 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{inch} / \mathrm{s}^{2}$
5 Angular acceleration	$1 \mathrm{rev} / \mathrm{s}^{2}$	$1 \mathrm{rev} / \mathrm{s}^{2}$
6 Linear jerk	$1 \mathrm{~m} / \mathrm{s}^{3}$	1 inch $/ \mathrm{s}^{3}$
7 Angular jerk	$1 \mathrm{rev} / \mathrm{s}^{3}$	$1 \mathrm{rev} / \mathrm{s}^{3}$
8 Time	1 s	1 s
9 Position-controller servo gain	$1 / \mathrm{s}$	$1 / \mathrm{s}$
10 Revolutional feedrate	$1 \mathrm{~mm} / \mathrm{rev}$	$1 \mathrm{~mm} / \mathrm{rev}$
11 Compensation value linear pos.	1 mm	1 mm
12 Compensation value angular pos.	1 degree	1 degree
13 Cutting speed	$1 \mathrm{~m} / \mathrm{min}$	1 feet $/ \mathrm{min}$

Example:
SCALING_USER_DEF_MASK =?H3?; (Bit nos. 0 and 1 as hex values)
The scale factor defined in the associated MD10230 \$MN_SCALING_FACTORS_USER_DEF[n] is activated for linear and angular positions.

If this machine data is changed, a power on is required as otherwise the associated machine data that have physical units would be incorrectly scaled.
Proceed as follows:

- MD changed manually

First start up and then enter the associated machine data with physical units.

- MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.
If the machine data are altered, alarm 4070 "Scaling machine data altered" is output. Application example: Input/output of linear velocities is to be in $\mathrm{cm} / \mathrm{min}$:

SCALING_USER_DEF_MASK $=0 \times 4$ (bit no. 2 as hex value)
SCALING FACTORS USER DEF[2] = 0.166666667 (10/60)
[Related to:
MD10230 \$MN_SCALING_FACTORS_USER_DEF[n] (scaling factors of the physical variables)

The scaling factor of a physical variable that has a unit other than the default unit setting (set bit in MD10220 \$MN_SCALING_USER_DEF_MASK) is entered in this MD. The factor must refer to the unit used internally for the physical variable in question. The scaling factor is assigned to the physical variable using the index [0...12]. If this machine data is changed, a startup is required because otherwise the associated machine data that have physical units would be incorrectly scaled.

Proceed as follows:

- MD changed manually

First start up and then enter the associated machine data with physical units.

- MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.

If the machine data are altered, alarm 4070 "Scaling machine data altered" is output. Application example(s):
Input/output of angular speeds is to be in new degree/min: MD10220 \$MN_SCALING_USER_DEF MASK = 'H8'; (bit no. 3 as hex value) MD10230 \$MN_SCALING_FACTORS_USER_DEF[3] = 0.01851852; (400/360/60)
[3]: Index for angular speed.
Related to:
MD10220 \$MN_SCALING_USER_DEF_MASK (activation of scaling factors).

10240	SCALING_SYSTEM_IS_METRIC		N01	G2,	
-	Basic system metric		BOOLEAN	Pow	
SCAL					
-	TRUE	FALSE	TRUE	7/2	M

Description:

The MD defines the basic system used by the control for scaling length-dependent physical variables for data input/output.

All corresponding data are stored internally in the basic units of 1 mm , 1 degree and 1 sec .
In the case of access from the interpreter (part program and download), from the operator panel (variable service) or through external communication, scaling takes place in the following units:
MD10240 \$MN_SCALING_SYSTEM_IS_METRIC = 1: scaled in:
$\mathrm{mm}, \mathrm{mm} / \mathrm{min}, \mathrm{m} / \mathrm{s} 2$, $\mathrm{m} / \mathrm{s} 3, \mathrm{~mm} /$ rev.
MD10240 \$MN_SCALING_SYSTEM_IS_METRIC = 0: scaled in:
inch, inch/min, inch/s2, inch/s3, inch/rev.
The selection of the basic system also defines the interpretation of the programmed F value for linear axes:

	metric	inch
G94	mm/min	inch $/ \mathrm{min}$
G95	$\mathrm{mm} / \mathrm{rev}$.	inch/rev.

If this machine data is changed, a startup is required because otherwise the associated machine data that have physical units would be incorrectly scaled.
Proceed as follows:

- MD changed manually

First start up and then enter the associated machine data with physical units.

- MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.
If the machine data are altered, alarm 4070 "Scaling machine data altered" is output.
Application example(s):
Setup is in the metric system and then changed over to the inch system.

Special cases:

10260	CONVERT_SCALING_SYSTEM	EXP	,- G2, B3, K3, N3			
-	Enable basic system conversion	BOOLEAN	PowerOn			
LINK						
-	-	FALSE	FALSE	TRUE		

Description: Determines the handling of MD10240 \$MN_SCALING_SYSTEM_IS_METRIC.
0: Inch/metric behavior conforms to SW1-SW4
1: Inch/metric behavior from SW5
Inch/metric functionality of SW5:

1. Switch over the systems of units with HMI softkey
2. New G codes G700/G710
3. Data backup with system of unit recognition INCH/METRIC
4. Automatic data conversion on change of system of units

- All zero point offsets
- Compensation data (EEC, QEC)
- Tool offsets
- etc.

The change from MD10260 \$MN_CONVERT_SCALING_SYSTEM leads to alarm 4070!
This alarm is designed to indicate that data which remain active after a POWERON are not subjected to automatic conversion from SW1-SW4 and SW5 formats.

10270	POS_TAB_SCALING_SYSTEM	N01, N09	T1, N3, G2				
-	System of units of position tables	BYTE	Reset				
-							
-	-	0	0	1	$7 / 2$		

Description: Defines the measuring system for the positional data for the following machine data
MD10910 \$MN_INDEX_AX_POS_TAB_1
MD10930 \$MN_INDEX_AX_POS_TAB_2
SD41500 \$SN_SW_CAM_MINUS_POS_TAB_1
SD41501 \$SN_SW_CAM_PLUS_POS_TAB_1
SD41502 \$SN_SW_CAM_MINUS_POS_TAB_2
SD41503 \$SN_SW_CAM_PLUS_POS_TAB_2
SD41504 \$SN_SW_CAM_MINUS_POS_TAB_3
SD41505 \$SN_SW_CAM_PLUS_POS_TAB_3
SD41506 \$SN_SW_CAM_MINUS_POS_TAB_4
SD41507 \$SN_SW_CAM_PLUS_POS_TAB_4

0: metric
1: inch
This machine data is only evaluated for MD10260 \$MN_CONVERT_SCALING_SYSTEM = 1 .
Related to:
MD10260 \$MN_CONVERT_SCALING_SYSTEM
MD10910 \$MN_INDEX_AX_POS_TAB_1
MD10930 \$MN_INDEX_AX_POS_TAB_2
SD41500 \$SN_SW_CAM_MINUS_POS_TAB_1
SD41501 \$SN_SW_CAM_PLUS_POS_TAB_1
SD41502 \$SN_SW_CAM_MINUS_POS_TAB_2
SD41503 \$SN_SW_CAM_PLUS_POS_TAB_2

```
SD41504 $SN_SW_CAM_MINUS_POS_TAB_3
SD41505 $SN_SW_CAM_PLUS_POS_TAB_3
SD41506 $SN_SW_CAM_MINUS_POS_TAB_4
SD41507 $SN_SW_CAM_PLUS_POS_TAB_4
```

10280	PROG_FUNCTION_MASK		EXP, N01	K1	
-	Bit mask to parameterize various part program commands		UDWORD	Pow	
-					
-	0x0	0	0x1F	7/2	M

Description:
Bit mask to parameterize various part program commands
Bit Hexadec. Meaning with bit set
Value
0: 0x1 Comparison commands ">" and "<" are processed as with SINUMERIK 840D:
Part program data of the type REAL are mapped internally in the IEEE 64 bit
format. This mode maps decimal numbers inaccurately if this format's 52-bit wide mantissa is inadequate to map the number in binary notation. To solve this problem, all comparison commands ($==,\langle>,>=,<=,>$ and $<$) are checked for relative equality of 1E-12.

This procedure is deactivated for greater than (>) and less than (<) comparisons by setting bit 0. (Compatibility setting for SINUMERIK 840D) 1: $0 x 2$ Programming the channel names from machine data MD20000 \$MC_CHAN_NAME By setting bit 1, the channel name stored in machine data MD20000 \$MC_CHAN_NAME can be programmed in the part program. The channel name can thus also be programmed instead of a numerical value for the channel number in programming coordination commands such as (START(), INIT(), WAIT() etc.)

2:	0×4	Reserved
3:	0×8	Convert illegal ASCII characters into blanks

By setting bit3, the previous behavior is activated when interpreting a part program block. This means that all invalid ASCII characters in a part program block are handled internally as blank.

4: 0x10 The wait time G4 F<wait time> is rounded off as a multiple integer of an IPO cycle.

This means that a G4 F0.001 only takes one cycle, for an IPO cycle of 1 msec .

10284	DISPLAY_FUNCTION_MASK		EXP, N01	-	
-	Behavior of various display variables		UDWORD	Pow	
-					
-	0x0	0	0x7FFFFFFF	7/2	M

Description: Bit mask for parameterizing various display variables:
BitNo. Hexadec. Meaning with bit set
value
Bit0: 0x1
Parameters are assigned to the OPI variable lastBlockNoStr in the SPARP and SPARPP blocks.

Bit1: 0x2
Concerns the OPI variable cmdSpeed in the SPARPP block. If the bit is set, the variable returns the programmed speed even if the spindle is at a standstill or in another mode (positioning mode, axis mode).
Bit2 0x4
Concerns the OPI variable cmdSpeed in the SPARPP block. (reserved for constant cutting speed)
Bit8: 0x100

Servotrace manages larger numerical values internally. Overruns in data format are avoided. The accuracy may be reduced with large numerical values.

10285	TASK_TIME_AVERAGE_CONFIG		EXP, N01	-	
-	Period for task runtime mean value generation		DOUBLE	Pow	
-					
-	- 1.0	0	86400	$7 / 2$	M

Description: Period in seconds for which the respective mean value of the task runtimes is generated.

For the value 0, the current actual value is provided as mean value.
This mean value can be read via the OPI variable aveCycleTimeNet.

10290	CC_TDA_PARAM_UNIT	N09	G2			
-	Physical units of tool data for compile cycles	DWORD	PowerOn			
-						
-	64	$0,0,0,0,0,0,0,0 \ldots$	0	9	$2 / 2$	

Description:
 Physical units for the user-defined tool-specific data:

0 ; No unit
1 ;Linear position [mm ; inch]
2 ;Angular position [degree ; degree]
3 ; Linear velocity [mm/min ; inch/min]
4 ;Angular speed [rpm ; rpm]
5 ; Linear acceleration [m/s ${ }^{2}$; inch/s ${ }^{2}$]
6 ;Angular acceleration. [rev/s 2 ; rev/s 2]
7 ;Linear jerk [m/s ${ }^{3}$; inch/s ${ }^{3}$]
8 ;Angular jerk [rev/s ${ }^{3}$; rev/s ${ }^{3}$]
9 ;Revolutional feedrate [mm/rev ; inch/rev]
Only available if bit $2(0 x 4)$ is set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK

10291	CCS_TDA_PARAM_UNIT			N09	-	
-	Physical units of SIEMENS-OEM tool data			DWORD	Pow	
-						
-				9	2/2	M

Description: Physical units for application-specific tool-specific data:
0: No unit
1: Linear position [mm; inch]
2: Angular position [degree ; degree]
3: Linear velocity [mm/min ; inch/min]
4: Angular speed [rpm ; rpm]
5: Linear acceleration [m/s ${ }^{2}$; inch/s $\left.{ }^{2}\right]$
6: Angular acceleration [rev/s ${ }^{2}$; rev/s ${ }^{2}$]
7: Linear jerk [m/s ${ }^{3}$; inch/s ${ }^{3}$]
8: Angular jerk [rev/s ${ }^{3}$; rev/s ${ }^{3}$]
9: Feedrate per revolution [mm/rev; inch/rev]
Only available if Bit $2(0 \times 4)$ is set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK.
Related to:
MD18204 \$MN_MM_NUM_CCS_TDA_PARAM

10292	CC_TOA_PARAM_UNIT	N09	G2			
-	Physical units of cutting edge data for compile cycles	DWORD	PowerOn			
-						
-	64	$0,0,0,0,0,0,0,0 \ldots$	0	9	$2 / 2$	

Description: Physical units for the user-defined cutting edge data:
0 ; No unit
1 ;Linear position [mm ; inch]
2 ;Angular position [degree ; degree]
3 ;Linear velocity [mm/min ; inch/min]
4 ;Angular speed [rpm ; rpm]
5 ; Linear acceleration [$\mathrm{m} / \mathrm{s}^{2}$; inch $\left./ \mathrm{s}^{2}\right]$
6 ;Angular acceleration. [rev/s 2 ; rev/s ${ }^{2}$]
7 ; Linear jerk [m/s ${ }^{3}$; inch/s ${ }^{3}$]
8 ; Angular jerk [rev/s ${ }^{3}$; rev/s ${ }^{3}$]
9 ;Revolutional feedrate [mm/rev ; inch/rev]
Only available if bit $2(0 \times 4)$ is set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK

10293	CCS_TOA_PARAM_UNIT	N09	-			
-	Physical units of SIEMENS-OEM cutting edge data	DWORD	PowerOn			
-						
-	10	$0,0,0,0,0,0,0,0 \ldots$	0	9	$2 / 2$	

Description: Physical units for application-specific cutting data:
0 : No unit
1 : Linear position [mm ; inch]
2 : Angular position [degree ; degree]
3 : Linear velocity [mm/min ; inch/min]
4 : Angular speed [rpm ; rpm]
5 : Linear acceleration $\quad\left[\mathrm{m} / \mathrm{s}^{2}\right.$; inch $\left./ \mathrm{s}^{2}\right]$
6 : Angular acceleration [rev/s ${ }^{2}$; rev/s ${ }^{2}$]
7 : Linear jerk [m/s ${ }^{3}$; inch $\left./ \mathrm{s}^{3}\right]$
8 : Angular jerk [rev/s ${ }^{3}$; rev/s ${ }^{3}$]
9 : Feedrate per revolution [mm/rev; inch/rev]
Only available if Bit $2(0 \times 4)$ is set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK. Related to:
MD18206 \$MN_MM_NUM_CCS_TOA_PARAM

10300	FASTIO_ANA_NUM_INPUTS		N10	A4,	
-	Number of active analog NC inputs		BYTE	Pow	
-					
-	0	0	8	7/2	M

Description:
This machine data defines the number of usable analog NC inputs on the control.
Only these analog NC inputs can be addressed by the NC part program or assigned by NC functions.

If more analog $N C$ inputs are defined with the machine data than are available in the hardware of the control, the binary analog actual value is set to zero in the control for the inputs that do not exist in the hardware. The NCK value can be altered by the PLC.
Note:

CPU computing time on the interpolation level is required for processing the digital and analog NC I/Os. The number of active NC I/Os should therefore be limited to the demands of the machine so that the interpolation cycle time is not unnecessarily loaded.

10310	FASTIO_ANA_NUM_OUTPUTS	N10	A4			
-	Number of active analog NC outputs	BYTE	PowerOn			
-						
-	-	0	0	8	$7 / 2$	

Description:
This machine data defines the number of usable analog $N C$ outputs on the control.
Only these analog NC outputs can be addressed by the NC part program or assigned by NC functions.
If more analog $N C$ outputs are defined with the machine data than are available in the hardware of the control, no alarm is triggered. The analog values specified by the part program can be read by the PLC.
Note:
CPU computing time on the interpolation level is required for processing the digital and analog NC I/Os. The number of active NC I/Os should therefore be limited to the demands of the machine so that the interpolation cycle time is not unnecessarily loaded.

10320	FASTIO_ANA_INPUT_WEIGHT	N10	A4				
-	Weighting factor for analog NC inputs	DWORD	PowerOn				
-	8	$\begin{array}{l}10000,10000,10000, \\ 10000,10000,10000, \\ 10000,10000\end{array}$	1	10000000	$7 / 2$	$]$	M
:---							
-							

Description:

A weighting factor can be defined with this MD for each analog NC input [n] to enable adaptation to the various analog-to-digital converters (depending on the I/O module).

The value to be entered in this machine data is the value that is to be read in the part program with the command $x=\$ A _I N A[n]$ if the associated analog input [n] is set to the maximum value or the value +32767 is defined for this input via the PLC interface.

The value read from the analog-to-digital converter or the PLC interface is multiplied by the factor (FASTIO_ANA_INPUT_WEIGHT / 32767) before it can be read in the part program with the system variable \$A_INA[n].
Use of the weighting factor for "Analog NC inputs without hardware": with a weighting factor of 32767 , the values defined by the part program and the PLC are numerically identical (1:1 communication between part program and PLC). This is advantageous when the analog NC inputs/outputs are used purely as PLC inputs/outputs without analog hardware.
Note:
The comparator threshold values SD41600 \$SN_COMPAR_THRESHOLD_1 and SD41601
\$SN_COMPAR_THRESHOLD_2 are also normalized to MD10 $\overline{3} 20$ \$MN_FASTIO_ANA_INPUT_WEIGHT corresponding to their assignment to an analog input.
The CC access to analog values is not affected by FASTIO_ANA_INPUT_WEIGHT.
Related to:
NC/PLC interface signal DB10, DBB148-163 (PLC setting value for analog NC inputs)

Description:
A weighting factor can be defined with this MD for each analog NC output [n] to enable adaptation to the various digital-to-analog converters (depending on the I/O module used).
[hw] = Index (0 to 7) for addressing the external analog outputs
The value x to be entered in this machine data is the value that is to effect the maximum set value of the associated analog output [n] when programming \$A_OUTA[n] $=x$ in the part program or is to generate the value +32767 in the PLC interface for this output.
Use of the weighting factor for "Analog NC outputs without hardware": With a weighting factor of 32767, the values defined by the part program and the PLC are numerically identical (1:1 communication between part program and PLC). This is advantageous when the analog NC outputs are used purely as PLC outputs without analog hardware.
Related to:
NC/PLC interface signal DB10, DBB170-185 (PLC setting value for analog NC outputs) NC/PLC interface signal DB10, DBB210-225 (Setpoint for analog NC outputs)

Description:

The number of bytes of the digital NC inputs that can be used on the control are defined in this machine data.
These digital NC inputs can be read directly by the part program. Moreover, the signal state at the HW inputs can also be changed by the PLC.
If more digital NC inputs are defined in the machine data than are available in the control hardware, a signal status of 0 is set in the control for the inputs that do not exist in the hardware. The NCK value can be altered by the PLC.
Related to:
NC/PLC interface signal DB10 DBBO (Disable the digital NC inputs 1-8);
NC/PLC interface signal DB10 DBB122,124,126,128 (Disable the external digital inputs 9-40)
NC/PLC interface signal DB10 DBB1 (PLC setting for digital NC inputs 1-9)
NC/PLC interface signal DB10 DBB123,125,127,129 (PLC values for external digital inputs 9-40)
NC/PLC interface signal DB10, DBB60, DBB186 (Actual value for digital NC inputs)

10360	FASTIO_DIG_NUM_OUTPUTS	N10	A4, TE8			
-	Number of active digital NC output bytes	BYTE	PowerOn			
-						
-	-	0	0	5	$7 / 2$	

Description: The number of bytes for digital NC outputs that can be used on the control are defined in this machine data.
These digital NC outputs can be set directly by the part program. The PLC is able to

- set the digital outputs to "0" in a defined way with NC/PLC interface signal DB10, DBB4, DBB130 (Disable the digital NC outputs).
- alter the NCK value with NC/PLC interface signal DB10, DBB5, DBB131 (Overwrite mask for digital NC outputs).
- specify a PLC value with NC/PLC interface signal DB10, DBB7, DBB133 (Setting mask for digital NC outputs).
If more digital NC outputs are defined in the machine data than are available in the control hardware, no alarm is triggered. The signal states specified by the part program can be read by the PLC.
Special cases:
Digital NC outputs 5 to 8 can be processed only by the PLC (no hardware outputs). Related to:

NC/PLC interface signal DB10, DBB4, DBB130 (Disable the digital NC outputs)
NC/PLC interface signal DB10, DBB5, DBB131 (Overwrite mask for digital NC outputs) NC/PLC interface signal DB10, DBB6, DBB132 (PLC setting value for digital NC outputs)

NC/PLC interface signal DB10, DBB7, DBB133 (Setting mask for digital NC outputs)
NC/PLC interface signal DB10, DBB64, DBB190 (Setpoint for digital NC outputs)

10361	FASTIO_DIG_SHORT_CIRCUIT	N10	A4			
-						
-	Short circuit of digital inputs and outputs	UDWORD	PowerOn			
-	10	$0,0,0,0,0,0,0,0 \ldots$	0	0×7 FFFFFFF		

Description: Defined short circuits between digital output and input signals of the high-speed NC I/Os are realized by linking the signals read in from the high-speed NC I/Os or the PLC interface to defined output signals.

The output signals always remain unchanged by the link, the inputs that have to be taken into account internally arise from the read inputs and the link. If a plurality of output bits are specified for one input bit in overwrite mode, the last defined assignment in the list determines the result.

The definition of non-existent or non-activated inputs/outputs is ignored without an alarm.

Bits 0-7: Number of the input byte to be written (1 - 5)
Bits 8-15: Bit number within the input byte (1 - 8)
Link:
The type of link is selected by adding a hexadecimal number to the input bit number:
00 Overwrite input identically to output
A0 Input is AND-gated to the read input with the status of the stated output
B0 Input is OR-gated to the read input with the status of the stated output
Bits 16-23: Number of the output byte to be used (1 - 5)
Bits 24-31: Bit number within the output byte (1 - 8)
Example:
MD10361 \$MN_FASTIO_DIG_SHORT_CIRCUIT[0] = 0x04010302
Input: 3rd bit of the 2 nd byte
Output: 4th bit of the 1st byte (= 4th onboard NCU output)
The input status is overwritten by the specified output
MD10361 \$MN_FASTIO_DIG_SHORT_CIRCUIT[1] = 0x0705A201
Input: 2nd bit of the 1st byte (= 2nd onboard NCU input)
Output: 7th bit of the 5th byte
The input status is AND-gated with the specified output
MD10361 \$MN_FASTIO_DIG_SHORT_CIRCUIT[2] = 0x0103B502
Input: 5th bit of the 2nd byte

Output: 1st bit of the 3rd byte
The input status is OR-gated with the specified output
Related to:
MD10350 \$MN_FASTIO_DIG_NUM_INPUTS,
MD10360 \$MN_FASTIO_DIG_NUM_OUTPUTS.
References: /FB/, A4, "Digital and Analog NC I/Os"

Description:
For PROFIBUS/PROFINET:
1st +2 nd byte indicate the logical start address of the I/O slot on the PROFIBUS/ PROFINET:

Value 0000 means NO active slot
Values 0001.. 0100 are reserved for the PLC process image (the value of input slots can be read by the NCK without errors; however, output slots are forbidden in this range, and cause an alarm on power up)

1st byte $=$ LowByte of the logical start address
2nd byte $=$ HighByte of the logical start address
3rd byte $=0=$ without meaning
4 th byte $=5=$ segment no. for PROFIBUS/PROFINET

```
The individual bytes are explained in MD10366 $MN_HW_ASSIGN_DIG_FASTIN.
Related to:
MD10366 $MN_HW_ASSIGN_DIG_FASTIN
MD10368 $MN_HW_ASSIGN_DIG_FASTOUT
MD10362 $MN_HW_ASSIGN_ANA_FASTIN
```

10366	HW_ASSIGN_DIG_FASTIN		N10	A4, TE1	
-	Hardware assignment of external digital NC inputs		UDWORD	PowerOn	
-					
-	$10 \quad$$0 \times 01000000$, 0×01000000, 0×01000000, 0×01000000, $0 \times 01000000,0 \times 01 \ldots$	0x01000000	0x060003FF	7/2	M

Description: For PROFIBUS/PROFINET:

1st +2 nd bytes indicate the logical basis address of the I/O slot on the PROFIBUS/ PROFINET:
Value 0000 means NO active slot
Values $0001 . .0100$ are reserved for the PLC process image (the value of input slots can be read by the NCK without errors; however, output slots are forbidden in this range, and cause an alarm when powering up)

1st byte $=$ LowByte of the logical basis address
2nd byte $=$ HighByte of the logical basis address
3rd byte $=0=$ without meaning
4 th byte $=5=$ segment no. for PROFIBUS/PROFINET
Module no.: 1 ... MD_MAXNUM_SIMO611D_AXES:
Number of the logical slot in which the terminal block with the external I/Os is inserted.
1st +2 nd bytes give the logical basis address of the I/O slot on the PROFIBUS
1st byte $=$ low byte
2nd byte = high byte
Value 0000 means NO active slots
Values 0001..007F are reserved for the PLC (NCK can also read the value for input slots without error, but output slots are forbidden in this range and lead to an alarm when powering up)
Values 0080..02FF are valid
Values > 02FF are invalid
Example:
HW_ASSIGN_DIGITAL_FASTIN[3] = '05000302'
1st + 2nd byte: 0302 (hex) = logical basis address 770 (decimal)
3rd byte: $00=$ no significance
4th byte: $05=$ ID for PROFIBUS/PROFINET
Corresponds with:
MD10368 \$MN_HW_ASSIGN_DIG_FASTOUT
MD10362 \$MN_HW_ASSIGN_ANA_FASTIN
MD10364 \$MN_HW_ASSIGN_ANA_FASTOUT

Description: Definition of the PROFIsafe address of the F master NCK/PLC. Used for unique assignment between F master and F slave. This parameter must be entered in accordance with the parameter "F_source_address" set in S7-ES for the F slaves. An attempt to establish communication is only made with F slaves for which this address has been entered.
Format: 0s 00 aaaa
s: Bus segment ($5=I / O$ connection on the PLC side)
aaaa: Hexadecimal PROFIsafe address of the F master

10386	PROFISAFE_IN_ADDRESS			N01, N10	FBS	
-	PROFIsafe address input module			UDWORD	PowerOn	
-						
-	48	$0,0,0,0,0,0,0,0 \ldots$	0	0x0502FFFF	7/2	M
Description:		ination address aaaa (5 = I/O connec ddress e: 0... 2 s the F user dat the F user data	an on sig ig	side)		

$\mathrm{x}=2$ adresses the F user data signals 65...96
aaaa: Hexadecimal PROFIsafe address of the F module

10387	PROFISAFE_OUT_ADDRESS			N01, N10	FBS	
-	PROFIsafe-address output module			UDWORD	Pow	
-						
-	48	$0,0,0,0,0,0,0,0 \ldots$	0	0x0502FFFF	7/2	M

Description: PROFIsafe destination address of an output module Format: 0s 0x aaaa
s: Bus segment ($5=I / O$ connection on the PLC side)
x : Sub-slot address
Value range: 0... 2
$\mathrm{x}=0$ addresses the F user data signals 1...32
$\mathrm{x}=1$ addresses the F user data signals $33 . .64$
$\mathrm{x}=2$ addresses the F user data signals $65 . .96$
aaaa: Hexadecimal PROFIsafe address of the F module

10388	PROFISAFE_IN_ASSIGN	N01, N10	FBSI					
-	Input.assignment \$A_INSE to PROFIsafe module						DWORD	PowerOn
-								
-	48	$0,0,0,0,0,0,0,0 \ldots$	0	192192				
$7 / 2$	M							

Description: Assignment between external SPL interface \$A_INSE and PROFIsafe input module
The PLC area is specified in decimals in aaa bbb format
where aaa $=$ area limit 1, SPL signal \$A_INSE[aaa]
bbb = area limit 2. SPL signal \$A_INSE[bbb]
Example:
\$MN_PROFISAFE_IN_ASSIGN[0] = 001004 or alternatively 004 001:
The system variables \$A_INSE[1...4] are assigned the state of the input terminals of the PROFIsafe module that was parameterized in MD10386 \$MN_PROFISAFE_IN_ADDRESS[0] and selected in MD13300 \$MN_PROFISAFE_IN_FILTER[0].

10389	PROFISAFE_OUT_ASSIGN	N01, N10	FBSI				
-	Outp.assignment \$A_OUTSE to PROFIsafe module	DWORD	PowerOn				
-	$7 / 2$						M
-	48	$0,0,0,0,0,0,0,0 \ldots$	0	192192	$7 / 2$		

Description: Assignment between external SPL interface \$A_OUTSE and PROFIsafe output module
The SPL area is specified in decimals in aaa bbb format
where aaa $=$ area limit 1. SPL signal \$A_OUTSE[aaa]
b.bb $=$ area limit 2. SPL signal \$A_OUTSE[bbb]

Example:
PROFISAFE_OUT_ASSIGN[0] = 064061 or alternatively 061 064:
The states of the system variables \$A_OUTSE[61...64] are assigned to the output terminals selected in MD13301 \$MN_PROFISAFE_OUT_FILTER[0] of the PROFIsafe module specified in MD10387 \$MN_PROFISAFE_OUT_ADDRESS[0].

10395	PLCIO_LOGIC_ADDRESS_IN	N10	A4			
-						
-	Start addr. of the directly readable input bytes of the PLC I/Os	DWORD	PowerOn			
-	-	0	0	16383	$7 / 2$	

Description:

Starting from this address, the PLC hardware must configure a number of bytes in MD10394 \$MN_PLCIO_NUM_BYTES_IN for direct use by the NC. These bytes are not transmitted by the PLC \bar{C} user \bar{p} rogram, but directly via an interrupt of the PLC operating system. The access delay is less than 0.5 ms . The bytes can be read by the part program and from synchronized actions with the system variables:
\$A_PBB_IN,
\$A_PBW_IN,
\$A_PBD_IN,
\$A_PBR_IN
.
Notice:
The machine data MD10394 \$MN_PLCIO_NUM_BYTES_IN and MD10395
\$MN_PLCIO_LOGIC_ADDRESS_IN must be consistent with the PLC-side configuration.
Related to:
MD10394 \$MN_PLCIO_NUM_BYTES_IN

10396	PLCIO_NUM_BYTES_OUT				N10	A4	
-	Number of directly writable output bytes of the PLC I/Os				BYTE		
-							
-	-		0	0	32	7/2	M
Description:	The number of PLC I/O output bytes that can be written directly by the NC. These bytes are not transmitted by the PLC user program but via an interrupt of the PLC operating system. The access delay is less than 0.5 ms . The bytes can be written by the part program and from synchronized actions with the system variables: \$A_PBB_OUT, \$A_PBW_OUT, \$A_PBD_OUT, \$A_PBR_OUT on the NC side. Attention: The machine data MD10396 \$MN_PLCIO_NUM_BYTES_OUT and MD10397 \$MN_PLCIO_LOGIC_ADDRESS_OUT must be consistent with the configuration by the PLC, otherwise other PLC output signals will be overwritten.						

10397	PLCIO_LOGIC_ADDRESS_OUT	N10	A4			
-	Start addr. of the directly writable output bytes of PLC I/O	DWORD	PowerOn			
-						
-	-	0	16383	$7 / 2$		

Description:
Starting from this address, the PLC hardware must configure a number of MD10396 \$MN_PLCIO_NUM_BYTES_OUT for direct use by the NC.
These bytes are not transmitted by the PLC user program, but directly via an interrupt of the PLC operating system.
The access delay is less than 0.5 ms .
The bytes can be written by the part program and from synchronized actions with the system variables:
\$A_PBB_OUT,
\$A_PBW_OUT,
\$A_PBD_OUT,
\$A_PBR_OUT
.
Notice:
The machine data MD10396 \$MN_PLCIO_NUM_BYTES_OUT and MD10397
\$MN_PLCIO_LOGIC_ADDRESS_OUT must be consistent with the PLC-side configuration.
Related to:
MD10396 \$MN_PLClO_NUM_BYTES_OUT

Description: Specification of the time span during which the data of the PLC I/Os directly readable via \$A_PBx_IN system variables are updated.
This time span is rounded up internally to the next-higher multiple of the time predefined by the IPO cycle.

10399	PLCIO_TYPE_REPRESENTATION		N10	A4	
-	Little/Big Endian for PLCIO		BYTE	PowerOn	
-					
-	0	0	1	7/2	M
Description:	Little/big-Endian format for PLC I/Os directly co Value $=0$; the system Value = 1 ; the system As a rule, the PLC I/Os 1). For compatibility re format (value $=0$).		\$A_PBx d in d in led in fault	A_PBx e-En ndia -End is	em variable at t (value = -Endian

10400	CC_VDI_IN_DATA						EXP, N02	OEM
-	Number of input bytes for compile cycles	DWORD	PowerOn					
-								
-	-	0	0	1024	$7 / 1$			

Description:
The compile cycle user can freely define data within a data block on the PLC user interface. As the user, he determines the size of the interface from PLC to NCK. This machine data describes the length of the area on the VDI interface in bytes which defines the NCK input interface. The sum of this and MD10410 \$MN_CC_VDI_OUT_DATA must not exceed 400 for software version 1.

10410	CC_VDI_OUT_DATA						EXP, N02	OEM
-	Number of output bytes for compile cycles	DWORD	PowerOn					
-								
-	-	0	0	1024				

Description:
The compile cycle user can freely define data within a data block on the PLC user interface. As the user, he determines the size of the interface from PLC to NCK. This machine data describes the length of the area on the VDI interface in bytes which defines the NCK output interface. The sum of this and MD10400 \$MN_CC_VDI_IN_DATA must not exceed 400 .

10420	CC_ASSIGN_FASTOUT_MASK		EXP, N10	OEM	
-	Reservation of external outputs for compile cycles		UDWORD	PowerOn	
-					
-	0	0	0x7FFFFFFF	7/2	M

Description: Reservation of high-speed hardware outputs for CC applications
Bit $0(L S B)-14:$ Mask of the digital output bytes reserved for the CC application
Bits 16-30: Mask of the analog outputs reserved for the CC application
The hardware outputs reserved here are included in the multiple assignment monitoring routine when the system is powered up. We recommend that you register all the hardware outputs used by CC applications here.
Bit 15: Suppresses power-up alarm 4275 (multiple assignment of digital output)
Bit 31: Suppresses power-up alarm 4275 (multiple assignment of analog output)

10430	CC_HW_DEBUG_MASK		EXP	OEM	
-	Hardware debug mask for compile cycles		UDWORD	Pow	
NBUP, NDLD					
-	0	0	0x7FFFFFFF	7/1	M

Description: Setting of special responses to peripheral HW interfaces for NCK debug

For practical debugging of NCK software, among other things, the response of peripheral units to the loss of the NCK sign of life must be suppressed when the NCK software has run to a breakpoint.
Bit 0 (LSB) - 3 :
For practical debugging of NCK software, among other things, the response of peripheral units to the loss of the NCK sign of life must be suppressed when the NCK software has run to a breakpoint.
Meaning of set bits:
Bit 0:
Drive modules ignore the loss of the NCK sign of life
Bit 1:
Terminal blocks ignore the loss of the NCK sign of life
Bit 3:
PLC ignores the loss of the NCK sign of life
Bit 4:
Recording of internal and external control commands. Recording the control sequences and storing them in a file in the passive file system. One can trace the exact sequence between the incoming hardware signals of the PLC interface and the internal sequences with the aid of the recording file.
Bit 5:
Servotrace: Enable physical addresses without access control
Bit10:
Test for measuring function. If this bit is set, one can use the GUD variables CHAN INT MEA_TASK and CHAN INT MEA_COUNTER to transfer the inverse transformation of the measured values into cyclical and non-cyclical tasks.

Bit11:
No EMERGENCY STOP alarm on loss of PLC sign of life. If the PLC sign of life is not obtained within the time defined in MD10100 \$MN_PLC_CYCLIC_TIMEOUT, an alarm is not issued, merely the axis releases are withdrawn. (Application case: debugging the PLC user program)
Bit15:
Reserved for gantry setup help.

10450	SW_CAM_ASSIGN_TAB	N09	N3				
-	Assignment of software cams to machine axes	BYTE	PowerOn				
-							
-	32	$0,0,0,0,0,0,0,0 \ldots$	0	31	$7 / 2$		

Description: This machine data allows one machine axis to be assigned to each of the 16 possible cam pairs (each is comprised of one minus and one plus cam).
If a "O" is entered, the corresponding cam is not processed.
The cam signal output is activated via the axial NC/PLC interface signal DB31, ... DBX2.0 (Cam activation)

Index [n] of the machine data addresses the cam pair: $\mathrm{n}=0,1, \ldots, 15$ correspond to cam pairs 1, 2, ... , 16
Related to:
NC/PLC interface signal DB31, ... DBX2.0 (Cam activation)
Example:
Cam pair 1 is to be assigned to machine axis 3, and cam pair 3 to machine axis 4 . Cam pair 2 is not to be assigned to an axis.
MD10450 \$MN_SW_CAM_ASSIGN_TAB[0]= 3
MD10450 \$MN_SW_CAM_ASSIGN_TAB[1]=0
MD10450 \$MN_SW_CAM_ASSIGN_TAB[2]= 4

10460	SW_CAM_MINUS_LEAD_TIME	N09	N3			
s	Lead or delay time at minus cams 1-16	DOUBLE	PowerOn			
-						
-	32	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 2$	

Description:

A lead or delay time can be assigned in this machine data to each minus cam 1-16 to compensate for delay times.
The switching edge of the associated cam signal is advanced or delayed by the time value entered.
Positive value: --> Lead time Negative value: --> Delay time
Serves to compensate for the constant proportion of the internal delay time between actual value acquisition and signal output.

Index [n] of the machine data addresses the cam pair:
$\mathrm{n}=0,1, \ldots, 15$ correspond to cam pairs $1,2, \ldots, 16$
This machine data is added to the setting data SD41520 \$SN_SW_CAM_MINUS_TIME_TAB_1[n] and SD41522 \$SN_SW_CAM_MINUS_TIME_TAB_2[n].
Related to:
SD41520 \$SN_SW_CAM_MINUS_TIME_TAB_1[n] (lead or delay time on minus cams 1-8)
SD41522 \$SN_SW_CAM_MINUS_TIME_TAB_2[n] (lead or delay time on minus cams 9-16)

Description: A lead or delay time can be assigned in this machine data to each plus cam $1-16$ to compensate for delay times.
The switching edge of the associated cam signal is advanced or delayed by the time value entered.
Positive value: --> Lead time
Negative value: --> Delay time
Serves to compensate for the constant proportion of the internal delay time
between actual value acquisition and signal output.
Index [n] of the machine data addresses the cam pair:
$\mathrm{n}=0,1, \ldots, 15$ correspond to cam pairs $1,2, \ldots, 16$
This machine data is added to the setting data SD41521 \$SN_SW_CAM_PLUS_TIME_TAB_1[n] and SD41523 \$SN_SW_CAM_PLUS_TIME_TAB_2[n].
Related to:
SD41521 \$SN_SW_CAM_PLUS_TIME_TAB_1[n] (lead or delay time on plus cams 1-8)
SD41523 \$SN_SW_CAM_PLUS_TIME_TAB_2[n] (lead or delay time on plus cams 9-16)

10470	SW_CAM_ASSIGN_FASTOUT_1						N09	N3
-								
-	Hardware assignment for output of cams 1-8 to NC I/Os	UDWORD	PowerOn					
-	-	0	0	0×7 FFFFFFFF	$7 / 2$			

Description: The cam signal status can be output to the NC I/Os as well as to the PLC.
The hardware assignment of the minus and plus cam signals to the digital output bytes used for the $N C$ I/Os is made in this machine data for cam pairs 1 - 8.
The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:

Bits 0-7:	No. of 1st HW byte used with digital outputs
Bits 8-15:	No. of 2nd HW byte used with digital outputs
Bits 16-23:	Inversion mask for writing 1st HW byte used
Bits 24-31:	Inversion mask for writing 2nd HW byte used
	Bit=0:
	Bit=1:

If both HW bytes are specified, the 1st byte contains the minus cam signals and the 2nd byte the plus cam signals.
If the 2 nd byte is not specified ($=\|0\|$), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.

The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:
"1" between minus and plus cams "O" outside this range

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:
"O" between minus and plus cams "1" outside this range
The following must be specified as the byte address for the digital outputs: 1: for on-board byte 2 - 5: for external bytes

Description:
The cam signal status can be output to the NC I/Os as well as to the PLC.
The hardware assignment of the minus and plus cam signals to the digital output bytes used for the NC I/Os can be made in this machine data for cam pairs 9 - 16. The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:
Bits 0-7: No. of 1st HW byte used with digital outputs
Bits 8-15: No. of 2nd HW byte used with digital outputs
Bits 16-23: Inversion mask for writing 1st HW byte used
Bits 24-31: Inversion mask for writing 2nd HW byte used

Bit=0:	Do not invert
Bit=1:	Invert

If both HW bytes are specified, the 1 st byte contains the minus cam signals and the 2nd byte the plus cam signals.

If the 2nd byte is not specified (= "O"), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.
The status of the non-inverted output signal for linear axes and for rotary axes with
"plus cam - minus cam < 180 degrees" is:
"1" between minus and plus cams
"0" outside this range
The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:
"0" between minus and plus cams

```
"1" outside this range
The following must be specified as the byte address for the digital outputs:
1: for on-board byte
2 - 5: for external bytes
```

10472	SW_CAM_ASSIGN_FASTOUT_3	N09	N3			
-						
-	Hardware assignment for output of cams 17-24 to NC I/Os	UDWORD	PowerOn			
-	-	0	0	0×7 FFFFFFF		

Description: The cam signal status can be output to the NC I/Os as well as to the PLC.
The hardware assignment of the minus and plus cam signals to the digital output bytes of the NC I/Os used can be made in this machine data for cam pairs 17 - 24. The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:
Bits 0-7: Number of 1 st $H W$ byte used with digital outputs
Bits 8-15: Number of 2nd HW byte used with digital outputs
Bits 16-23: Inversion mask for writing 1st HW byte used
Bits 24-31: Inversion mask for writing 2nd HW byte used
Bit=0: Do not invert

Bit=1: Invert
If both HW bytes are specified, the lst byte contains the minus cam signals and the 2nd byte the plus cam signals.
If the 2nd byte is not specified ($=$ " 0 "), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.
The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

$$
\begin{aligned}
& \text { "1" between minus and plus cams } \\
& \text { "0" outside this range }
\end{aligned}
$$

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

```
"0" between minus and plus cams
"1" outside this range
```

The following must be specified as the byte address for the digital outputs:
1: for on-board byte
2 - 5: for external bytes

$$
\begin{array}{ll}
\text { Bit }=0: & \text { Do not invert } \\
\text { Bit=1: } & \text { Invert }
\end{array}
$$

If both HW bytes are specified, the 1 st byte contains the minus cam signals and the 2nd byte the plus cam signals.
If the 2 nd byte is not specified ($=$ " 0 "), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.
The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

$$
\begin{aligned}
& \text { "1" between minus and plus cams } \\
& \text { "0" outside this range }
\end{aligned}
$$

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

> "0" between minus and plus cams
> "1" outside this range

The following must be specified as the byte address for the digital outputs:
1: for on-board byte
2-5: for external bytes

Description:

A timer-controlled output to the 4 on-board outputs of the NC I/Os can be selected in this machine data for 4 cam pairs.
In this case, the minus and plus signals of a cam pair are "EXCLUSIVE OR'd" for output as one signal.

Meaning for set bit:
Associated cam (minus and plus cam signals "EXCLUSIVE OR'd") is output via a timer interrupt at one of the 4 on-board outputs of the NCU.

The on-board outputs are assigned in order of increasing machine axis numbers (with assigned cam pairs).
Example:
Machine axis 3 = cam pair 1 --> on-board output 3
Machine axis 1 = cam pair 2 --> on-board output 1
Machine axis 7 = cam pair 3 --> on-board output 4
Machine axis 2 = cam pair 4 --> on-board output 2
If a plurality of cam pairs are set for one machine axis, then this axis is assigned
in ascending order of the cam pairs.
Example:
Machine axis 3 = cam pair 1 --> on-board output 2
Machine axis 3 = cam pair 2 --> on-board output 3
Machine axis 7 = cam pair 3 --> on-board output 4
Machine axis 2 = cam pair 4 --> on-board output 1
This function works independently of the assignment set in MD10470
\$MN_SW_CAM_ASSIGN_FASTOUT_1 or MD10471 \$MN_SW_CAM_ASSIGN_FASTOUT_2.
Note:
The on-board byte must not be used more than once.
If there is more than one signal change in the IPO cycle for the cam pairs specified in the MD, then the cam pair with the lowest number determines the instant of output. The other signals change at the same time.

10490	SW_CAM_COMP_NCK_JITTER		N09	-	
s	Cam jitter compensation		DOUBLE	NEW CONF	
-					
-	- $\quad 0$	0.0	0.0001	7/2	M

Description: The compensation value reduces system-related time inaccuracies during output of highly precise cam signals. The default time encumbers the cyclic time level of the control, and should therefore be selected as short as possible. We recommend that you return a cam signal to a measuring input of the control and increase the compensation value until the scatter of the measured positions cannot be reduced any further. Currently only active when MD10485 \$MN_SW_CAM_MODE Bit0 = 0 .

10500	DPIO_LOGIC_ADDRESS_IN					N10	A4
-	Logical slot address of the PROFIBUS/PROFINET I/Os	DWORD	PowerOn				
-							
-	32	$0,0,0,0,0,0,0,0 \ldots$	0	16383			
$7 / 2$	M						

Description: Logical slot address of the PROFIBUS/PROFINET I/Os usable by the NCK.

10501	DPIO_RANGE_LENGTH_IN	N10	A4		
-	Length of the PROFIBUS/PROFINET I/O range	DWORD	PowerOn		
-					
-	32	$0,0,0,0,0,0,0,0 \ldots$	0	128	
$7 / 2$	M				

Description: Length of the PROFIBUS/PROFINET I/O range in bytes consistently usable for the NCK. This range must be defined in STEP 7, hardware configuration.
0 : only the first data slot is used.
x : length of the consistent PROFIBUS/PROFINET I/O range in bytes
Note: in PROFINET, it is not possible to combine several slots in one area.

Description:

Attributes of the PROFIBUS/PROFINET I/Os
Bit 0: Little/Big Endian format of the system variable \$A_DPx_IN[n,m]
0 : Little Endian format
1: Big Endian format
Bit 1: (reserved)
Bit 2: Read input data
0 : Read possible through system variable and CC binding (increased performance requirements)

1: Read only possible for CC binding (low performance requirements)
Bit 3: Slot sign-of-life alarms
0: Slot sign-of-life alarms are output
1: Slot sign-of-life alarms are suppressed
Bit 4...7: (Reserved for expansions)
Bit 8...31: Reserved for the assignment to compile cycle functions (see documentation of the CC function)

10510	DPIO_LOGIC_ADDRESS_OUT	N10	A4			
-	Logical slot address of the PROFIBUS/PROFINET I/Os	DWORD	PowerOn			
-						
-	32	$0,0,0,0,0,0,0,0 \ldots$	0	16383		
$7 / 2$	M					

Description: Logical slot address of the PROFIBUS/PROFINET I/Os usable by the NCK.
Note: the logical slot address must lie outside the PLC process image.

10511	DPIO_RANGE_LENGTH_OUT	N10	A4		
-	Length of the PROFIBUS I/O range	DWORD	PowerOn		
-					
-	32	$0,0,0,0,0,0,0,0 \ldots$	0	128	$7 / 2$

Description: Length of the PROFIBUS I/O range consistently usable for the NCK in bytes. This range must be defined in STEP 7, hardware configuration.
0 : only the first data slot is used.
x : length of the consistent PROFIBUS I/O range in bytes
Note: in PROFINET it is not possible to combine several slots to form one area.

10520	PLCINTERN_LOGIC_ADDRESS_IN			N10	-	
-	Logical basis address for HW-PLC access to input slots internal PROFIBUS			DWORD	Pow	
-						
-	64	$0,0,0,0,0,0,0,0 \ldots$	0	16383	$7 / 2$	M

Description: Logical basis address of the PROFIBUS I/O available with the PLC hardware at the internal PROFIBUS. Only relevant for HW-PLC.

10525	PLCINTERN_LOGIC_ADDRESS_OUT	N10	-		
-	Logical basis address for HW-PLC access to output slots internal PROFIBUS	DWORD	PowerOn		
-	64	$0,0,0,0,0,0,0,0 \ldots$	0	16383	$7 / 2$

Description: Logical basis address of the PROFIBUS I/O available with the PLC hardware at the internal PROFIBUS. Only relevant for HW-PLC.

Description: This MD assigns analog inputs 1 to 8 to a bit number of comparator byte 1. This input bit of the comparator is set to "1" if the comparison between the applied analog value and the associated threshold value (SD41600 \$SN COMPAR THRESHOLD 1 fulfills the condition parameterized in (MD10540 \$MN COMPAR TYPE 1).

An analog input can be assigned to a plurality of comparator input bits.
The following generally applies to comparator byte 1:
COMPAR ASSIGN ANA INPUT 1 [b] = n
with index: $\mathrm{b}=$ number of comparator input bit (0 to 7) $\mathrm{n}=$ number of analog input (1 to 8)

Example:

$$
\begin{aligned}
& \text { COMPAR_ASSIGN_ANA_INPUT_1[0] }=1 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[1] }=2 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[2] }=1 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[3] }=3 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[4] }=3 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[5] }=1 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[6] }=1 \\
& \text { COMPAR_ASSIGN_ANA_INPUT_1[7] }=1
\end{aligned}
$$

Analog input 1 affects input bits 0,2 , 5, 6 and 7 of comparator byte 1
Analog input 2 affects input bit 1 of comparator byte 1
Analog input 3 affects input bits 3 and 4 of comparator byte 1
Related to:
MD10540 \$MN COMPAR TYPE 1
MD10541 \$MN_COMPAR_TYPE_2

10531	COMPAR_ASSIGN_ANA_INPUT_2	N10	A4			
-						
-	Hardware assignment of analog inputs for comparator byte 2	BYTE	PowerOn			
-	8	$0,0,0,0,0,0,0,0$	-	-		
$7 / 2$	M					

Description:
This MD assigns analog inputs 1 to 8 to a bit number of comparator byte 2 . This input bit of the comparator is set to "1" if the comparison between the applied analog value and the associated threshold value (SD41601 \$SN COMPAR THRESHOLD 2 fulfills the condition parameterized in (MD10541 \$MN_COMPAR_TYPE_2).
An analog input can be assigned to a plurality of comparator input bits.
The following generally applies to comparator byte 2:

> COMPAR_ASSIGN_ANA_INPUT_2 $[\mathrm{b}]=\mathrm{n}$ with index:b $\begin{aligned} & =\text { number of comparator input bit }(0 \text { to } 7) \\ \mathrm{n} & =\text { number of analog input }(1 \text { to } 8)\end{aligned}$

Example:
COMPAR ASSIGN ANA INPUT 2[0] = 1
COMPAR_ASSIGN_ANA_INPUT_2[1] = 2
COMPAR ASSIGN ANA INPUT 2[2] = 1
COMPAR ASSIGN ANA INPUT 2[3] = 3
COMPAR_ASSIGN_ANA_INPUT_2[4] = 3
COMPAR_ASSIGN_ANA_INPUT_2[5] = 1

```
COMPAR_ASSIGN_ANA_INPUT_2[6] = 1
COMPAR_ASSIGN_ANA_INPUT_2[7] = 1
Analog input 1 affects input bits 0, 2 , 5, 6 and 7 of comparator byte 2
Analog input 2 affects input bit 1 of comparator byte 2
Analog input 3 affects input bits 3 and 4 of comparator byte 2
Related to:
MD10540 $MN_COMPAR_TYPE_1
MD10541 $MN_COMPAR_TYPE_2
```


Description:

This MD can be used to make the following settings for the individual output bits (0 to 7) of comparator byte 1:

- Bits 0 to 7: Comparison type mask (for comparator output bits 0 to 7)

Bit $=1$: output bit $=1$ if analog value $>=$ threshold value Bit $=0$: output bit $=1$ if analog value < threshold value (Threshold value defined by SD41600 \$SN_COMPAR_THRESHOLD_1)

- Bits 8 to 15: Not used (defined to be set to 0)
- Bits 16 to 23: Assignment of a HW output byte for outputting the comparator states (statement of the byte address) Byte $=0$: No output via digital NC outputs Byte = 1: Output via digital onboard NC outputs (1 to 4) Byte $=2$: Output via external digital NC outputs 9 to 16 Byte = 3: Output via external digital NC outputs 17 to 24 Byte $=4:$ Output via external digital NC outputs 25 to 32 Byte $=5$: Output via external digital NC outputs 33 to 40
- Bits 24 to 31: Inversion mask for the output of the comparator states (bits 0 to 7)

$$
\begin{array}{ll}
\text { Bit }=0: & \text { Output bit is not inverted } \\
\text { Bit }=1: & \text { Output bit is inverted }
\end{array}
$$

Related to:
MD10530 \$MN_COMPAR_ASSIGN_ANA_INPUT_1
MD10531 \$MN_COMPAR_ASSIGN_ANA_INPUT_2
SD41600 \$SN_COMPAR_THRESHOLD_1
SD41601 \$SN_COMPAR_THRESHOLD_2
MD10360 \$MN_FASTIO_DIG_NUM_OUTPUTS

Description: This MD can be used to make the following settings for the individual output bits (0 to 7) of comparator byte 2:

- Bits 0 to 7: Comparison type mask (for comparator output bits 0 to 7)

Bit = 1: output bit = 1 if analog value >= threshold value Bit $=0$: output bit $=1$ if analog value $<$ threshold value (Threshold value defined by SD41601 \$SN_COMPAR_THRESHOLD_2)

- Bits 8 to 15: not used (defined to be set to 0)
- Bits 16 to 23: Assignment of a HW output byte for outputting the comparator states (statement of the byte address)
- Byte $=0:$ no output via digital NC outputs

| Byte $=1:$ | output via digital onboard NC outputs (1 to 4$)$ |
| :--- | :--- | :--- |
| Byte $=2:$ | output via external digital NC outputs 9 to 16 |
| Byte $=3:$ | output via external digital NC outputs 17 to 24 |
| Byte $=4:$ output via external digital NC outputs 25 to 32 | |
| Byte $=5:$ output via external digital NC outputs 33 to 40 | |

- Bits 24 to 31: Inversion mask for the output of the comparator states (bits 0 to 7)

Bit $=0: \quad$ Output bit is not inverted
Bit $=1: \quad$ Output bit is inverted
Related to:
MD10530 \$MN_COMPAR_ASSIGN_ANA_INPUT_1
MD10531 \$MN_COMPAR_ASSIGN_ANA_INPUT_2
SD41600 \$SN_COMPAR_THRESHOLD_1
SD41601 \$SN_COMPAR_THRESHOLD_2
MD10360 \$MN_FASTIO_DIG_NUM_OUTPUTS

10600	FRAME_ANGLE_INPUT_MODE		EXP, N01, N09	K2	
-	Sequence of rotation in FRAME		BYTE	Pow	
-					
-	1	1	2	7/2	M

FRAME ANGLE INPUT MODE sets how the rotations (ROT and AROT) around the three geometry axes āre defined íf more than one rotation is programmed in a block. The order in which these rotations are programmed within the block is irrelevant.
The rotations can be set to be calculated according to:

- Euler angle with FRAME_ANGLE_INPUT_MODE $=2$

The rotations are calculated according to the Euler angle in the following order:

1. Rotation around Z
2. Rotation around X
3. Rotation around Y

- RPY with FRAME_ANGLE_INPUT_MODE = 1

The rotations are calculated according to the Euler angle in the following order:

1. Rotation around Z
2. Rotation around Y
3. Rotation around X

10602	FRAME_GEOAX_CHANGE_MODE		EXP, N01, N09	K2	
-	Frames when changing geometry axes		BYTE	Pow	
-					
-	0	0	5	7/2	M

Description: Geometry axes can be switched over in the following states:

- Selection and deselection of transformations
- Switchable geometry axes GEOAX()

The current total frame is then defined as follows:
0: The current total frame is canceled.
1: The current total frame is recalculated when geometry axes are switched over. Translations, scaling and mirroring for the new geometry axes become active. The rotations of the old geometry axes still apply.

2: The current total frame is recalculated when geometry axes are switched over. Translations, scaling and mirroring for the new geometry axes become active. If rotations were active before switching over to the current base frames, current settable frame or programmable frame, switchover is canceled with an alarm.
3: The current total frame is deleted when selecting and deselecting transformations. When the GEOAX() command is entered, the frame is recalculated and transaction, scaling and mirroring for the new geometry axes become active. The rotations of the old geometry axes still apply.

10604	WALIM_GEOAX_CHANGE_MODE		EXP, N01, N09	A3	
-	Working area limitation by changing geometry axes		BYTE	PowerOn	
-					
-	0	0 0	1	$7 / 2$	M
Description:	This machine dat remain active af Meaning of the = 0 Working are = 1 Working area	ata specifies whether after geo axis replace MD values: rea limitation will be ea limitation will rema	ly active wo hether it wil ed when repla ted when repl	king be ing	itation will ed.

10610	MIRROR_REF_AX						EXP, N01, N09	K2
-	Reference axis for mirroring	BYTE	PowerOn					
-								
-	-	0	0	3	M			

0: Mirroring always takes place in the stated axis, without scaling.
The mirroring of a geometry axis can always be related to a defined
reference axis.
1: x is the reference axis
Mirroring of the x axis is unique.
Mirroring of the y axis is mapped on:
a mirroring of the x axis and
a rotation of the z axis through 180 degrees.
Mirroring of the z axis is mapped on:
a mirroring of the x axis and
a rotation of the x axis through 180 degrees and
a rotation of the z axis through 180 degrees
2: y is the reference axis
Mirroring of the x axis is mapped on:
a mirroring of the y axis and
a rotation of the z axis through 180 degrees.
Mirroring of the y axis is unique.
Mirroring of the z axis is mapped on:
a mirroring of the y axis and
a rotation of the x axis through 180 degrees
3: z is the reference axis
Mirroring of the x axis is mapped on:
a mirroring of the z axis and
a rotation of the z axis through 180 degrees and
a rotation of the x axis through 180 degrees
Mirroring of the y axis is mapped on:
a mirroring of the z axis and

```
a rotation of the x axis through 180 degrees.
Mirroring of the z axis is unique.
```


Description:

Mirror toggle function.
1: Programmed axis values are not evaluated. Toggle switching behavior.
0: Programmed axis values are evaluated.
The axes are mirrored in the case of values not equal to 0 if they are not already mirrored. Mirroring is disabled if the value is 0.

10613	NCBFRAME_RESET_MASK	EXP	K2			
-	Active NCU global base frames after reset	UDWORD	Reset			
-						
-	-	0xFFFF	0	$0 x F F F F$		

Description: Bit mask for the reset setting of the NCU global base frames which are included in the channel.

The following applies:
When MD20110 \$MC_RESET_MODE_MASK bit0 = 1 and bit14 = 1
The entire base frame is derived on reset from the linking of the NCU global base frame field elements whose bit in the bit mask is 1.
When MD20110 \$MC_RESET_MODE_MASK bit0 = 1 and bit14 = 0
The entire base frame is deselected on reset.

10615	NCBFRAME_POWERON_MASK						EXP, N12	K2
-	Reset global base frames after power on	UDWORD	PowerOn					
-								
-	-	0	0	$0 x F F F F$				

Description: This machine data defines whether global base frames are reset in the data management on Power On.

That is

- Offsets are set to 0,
- Scalings are set to 1 .
- Mirroring is disabled.

The individual base frames can be selected separately.
Bit 0 means base frame 0, bit 1 base frame 1 etc.
Value=0: Base frame is retained on Power On
Value=1: Base frame is reset in the data management on Power On.
Related to:
MD24004 \$MC_CHBFRAME_POWERON_MASK

10616	MAPPED_FRAME_MASK	N01	-			
-	Enable frame mapping	UDWORD	PowerOn			
-						
-	-	0×3001	0	0×00007 FFF	$7 / 2$	

[^1]| Bit $0:$ | \$P_SETFR | System frame for actual value setting and scratching |
| :--- | :--- | :--- |
| Bit 1: | \$P_EXTFR | System frame for external work offset |
| Bit 2: | \$P_PARTFR | System frame for TCARR and PAROT |
| Bit 3: | \$P_TOOLFR | System frame for TOROT and TOFRAME |
| Bit 4: | \$P_WPFR | System frame for workpiece reference points |
| Bit 5: | \$P_CYCFR | System frame for cycles |
| Bit 6: | \$P_TRAFR | System frame for transformations |
| Bit 7: | \$P_ISO1FR | System frame for ISO G51.1 Mirror |
| Bit 8: | \$P_ISO2FR | System frame for ISO G68 2DROT |
| Bit 9: | \$P_ISO3FR | System frame for ISO G68 3DROT |
| Bit 10: | \$P_ISO4FR | System frame for ISO G51 Scale |
| Bit 11: | \$P_RELFR | System frame for relative coordinate systems |
| Bit12: | \$P_CHBFR | Channel-specific basic frames |
| Bit13: | \$P_UIFR | Settable frames |
| Bit14: | \$P_GFR | Grinding frames |

10617	FRAME_SAVE_MASK	EXP	K2			
-	Behavior of frames in SAVE subroutines	UDWORD	PowerOn			
-						
-	-	0	0	0×7	$7 / 2$	

Description: This machine data is used to define which frames are restored with SAVE attribute at return from a subprogram.
Bit 0: Settable frames G54 through G599
Value = 0 :
If the same G code is active at subprogram return and subprogram call, the active settable frame is maintained. If not, the settable frame is reactivated when the subprogram is called.

Value = 1:
At subprogram return, the settable frame is reactivated when the subprogram is called.
Bit 1: Basic frame
Value = 0:
The active basic frame is not changed at subprogram return. This is also the case if a basic frame change is carried out in the subprogram by an operation or by an implicit frame deselection (possibly through TRAFOOF).
Value = 1:
At subprogram return, the basic frame is reactivated when the subprogram is called. Bit 2: Grinding frames GFRAMEO through GFRAME100
Value = 0:
If the same G code is active at subprogram return and subprogram call, the active grinding frame is retained. If not, the grinding frame is reactivated when the subprogram is called.
Value = 1:
At subprogram return, the grinding frame is reactivated when the subprogram is called.

10618	PROTAREA_GEOAX_CHANGE_MODE	EXP, N01, N09	A3			
-						
-	Protection range on change of geometry axes	UBYTE	PowerOn			
-	-	0×0	0×0	0×3	$7 / 2$	

Description:
This machine data is used to define whether any active protection zones will remain active after a transformation change or geo axis replacement, or whether they will be deactivated.

The machine data is bit-coded with the following meanings:
Bit $0=0$
Protection zones deactivated on transformation change.
Bit $0=1$
Active protection zones remain active after transformation change.
Bit $1=0$
Protection zones deactivated on geo axis replacement.
Bit $1=1$
Active protection zones remain active after geo axis replacement.

10619	COLLISION_TOLERANCE						EXP	-
mm	Tolerance for collision check						DOUBLE	NEW CONF
-								
-	-	1	0.001	1000.0				

Description:

This parameter is used to set the required collision check accuracy. This means: If the distance between two protection zones is smaller than this value, a collision of those two protection zones may be signalled. But: Two protection zones that overlap by less than this value cannot be classified as colliding.

10620	EULER_ANGLE_NAME_TAB						N01, N09	F2, TE4
-	Name of Euler angle	STRING	PowerOn					
-								
-	3	A2, B2, C2	-	-	7/2			

Description:

- The name entered must not conflict with the designation and assignment of machine and geometry axis names.
- The name entered must not conflict with channel axis names in the channel (MD20080 \$MC_AXCONF CHANAX_NAME TAB), names for directional vectors (MD10640 \$MN_DIR VECTOR NAME TAB), names for intermediate point coordinates for CIP (MD10660 \$MN_INTERMEDIATE_POINT_NAME_TAB) or the names for interpolation parameters (MD10650 \$MN_IPO_PARAM_NAME_TAB).
- The name entered must not contain the following reserved address letters:
- D Tool offset (D function)
- E Reserved
- F Feedrate (F function)
- G Preparatory function
- H Auxiliary function (H function)
- L Subprogram call
- M Special function (M function)
- N Subblock
- P Number of subroutine repetitions
- R Arithmetic parameter
- S Spindle speed (S function)
- T Tool (T function)
- Nor are keywords (e.g. DEF, SPOS etc.) or predefined identifiers (e.g. ASPLINE, SOFT) allowed.
- An angle identifier consists of a valid address letter (A, B, C, I, J, K, Q, U, V, $W, X, Y, Z)$ followed by an optional numerical extension (1-99).

10621	COLLISION_PREP_CALC_TIME	EXP	-				
s	Maximum computation time of the preparative collision check.					DOUBLE	NEW CONF
-	-	0.0	10.0	$1 / 1$			
-	-	0.0	M				

Description:
The maximum computing time of the preparatory collision check is set with this machine data.
>0 : After the set time, the preparatory collision check of the current block is interrupted. That makes computing time available to the external communication.

0 : The preparatory collision check is not interrupted. That does not make any computing time available to the external communication during the collision check. A communication failure may occur between $H M I$ and NCK in extreme cases.

A value of 0.5 s is recommended.

10622	COLLISION_SAFETY_DIST	EXP	-	
mm	Safety distance for collision check - - Description:If the distance between two protection zones becomes smaller than this safety distance, this is regarded as a collision. This machine data is globally effective for protective zone pairs for which no special safety distance was specified (s. function COLLCHECK).			

10624	ORIPATH_LIFT_VECTOR_TAB	N01, N09	-			
-	Name of retraction vector for path-relative orientation.	STRING	PowerOn			
-						
-	3	A8, B8, C8	-	-	7/2	

Description:

List of identifiers for components of the retraction vector during reorientations for path relative interpolation of the tool orientation.
The rules for axis identifiers as described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers. The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, normal vectors, direction vectors, conical interpolation vectors, interpolation parameters, intermediate point coordinates).

10626	ORIPATH_LIFT_FACTOR_NAME		N01, N09	-	
-	Name of relative safety clearance with ORIPATH		STRING	Pow	
-					
-	ORIPLF	-	-	7/2	M

Description: Identifier for relative factor for determining a safety clearance for the retracting movement during reorientations for path relative interpolation of the tool orientation.

The rules for axis identifiers as described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers. The identifiers must be selected so thāt they do not cause any conflicts with other identifiers (axes, normal vectors, direction vectors, conical interpolation vectors, interpolation parameters, intermediate point coordinates).

10630	NORMAL_VECTOR_NAME_TAB	N01, N09	F2			
-	Name of normal vectors	STRING	PowerOn			
-						
-	6	A4, B4, C4, A5, B5, C5	-	-	7/2	

[^2]
4.1 General NC machine data

List of identifiers for the normal vector components at the beginning and end of the block.

The rules for axis identifiers described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.

The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, direction vectors, interpolation parameters, intermediate point coordinates).

10640	DIR_VECTOR_NAME_TAB	N01, N09	F2, TE4			
-	Name of direction vectors	STRING	PowerOn			
-						
-	6	A3, B3, C3, AN3, BN3, CN3	-	-		

Description:
List of identifiers for the direction vector components. (A3 to C3)
List of identifiers for the vector components perpendicular to the direction vector (AN3 to CN3)
The rules for axis identifiers described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.
The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, interpolation parameters, intermediate point coordinates).

10642	ROT_VECTOR_NAME_TAB	N01, N09	F2			
-	Name of rotation vectors	STRING	PowerOn			
-						
-	3	A6, B6, C6	-	-		

Description: List of identifiers for the rotation vector components in taper direction
The rules for axis identifiers as described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.

The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, interpolation parameters, intermediate point coordinates).

10644	INTER_VECTOR_NAME_TAB		N01, N09	F2	
-	Name of intermediate vector components		STRING	Pow	
-					
-	3 A7, B7, C7	-	-	7/2	M

Description:

List of identifiers for the intermediate vector components
The rules for axis identifiers described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.
The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, interpolation parameters, intermediate point coordinates).

10646	ORIENTATION_NAME_TAB	N01, N09	F2					
-	Identifiers for programming a 2nd orientation path						STRING	PowerOn
-								
-	3	XH, YH, ZH	-	-				

Description: List of identifiers for programming of the 2 nd space curve for tool orientation The rules for axis identifiers as described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.

The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, interpolation parameters, intermediate point coordinates).

Description: Identifier for the opening angle for orientation interpolation
The rules for axis identifiers as described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.
The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

Description: Identifier list of interpolation parameters for convex threads
When selecting identifiers, the rules for axis identifiers described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply.
The identifiers must be selected so that there is no conflict with other identifiers (axes, Euler angle, normal vector, direction vector, intermediate point coordinate).
Corresponds with:
MD10650 \$MN_IPO_PARAM_NAME_TAB
MD10660 \$MN_INTERMEDIATE_POINT_NAME_TAB

Description:
List of identifiers for the intermediate point coordinates
The rules for axis identifiers described in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers. The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

4.1 General NC machine data

```
Related to:
MD10650 $MN_IPO_PARAM_NAME_TAB
MD10651 $MN_IPO_PARAM_THREAD_NAME_TAB
References: /PG/, Programming Guide: Fundamentals
```

10670	STAT_NAME							N01, N09	F2
-	Name of state information	STRING	PowerOn						
-									
-	-	STAT	-	-					

Description: Identifier for position information for solving ambiguities in
Cartesian PTP travel.
An identifier must be chosen that does not conflict with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

Description: Identifier for position information of axes for solving ambiguities in
Cartesian PTP travel.
An identifier must be chosen that does not conflict with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

10674	PO_WITHOUT_POLY	N01	F2				
-	Polynomial programming programmable without G function POLY BOOLEAN						PowerOn
-							
-	-	FALSE	FALSE	TRUE			

Description:

Until now, the G function POLY has always had to be active during polynomial programming with $P O[x x]=(x x)$,
otherwise an alarm was output.
If MD10674 \$MN_PO_WITHOUT_POLY is set to TRUE, no alarm is output with POLY inactive during polynomial programming. The end point of the polynomial is then approached with the linear interpolation G1.
There is no polynomial interpolation if POLY is inactive.

10682	CONTOUR_SAMPLING_FACTOR	N01, EXP	-				
-	Contour sampling factor	DOUBLE	Reset				
-							
-	-	1.0	0.0	$1.0 \mathrm{E}+301$	$1 / 1$		

Description:
This factor defines the maximum time interval in which a curved contour is sampled in the interpolator.
The maximum sampling time results from the set interpolation cycle
(see MD10071 \$MN_IPO_CYCLE_TIME),
the factor set with this data, and the tolerance set for the geometry axes in MD33100 \$MA_COMPRESS_POS_TOL[].

10700	PREPROCESSING_LEVEL	N01, N02	V2, K1			
-	Program preprocessing level	UBYTE	PowerOn			
-						
-	-	0×25	0	$0 \times 7 F$	$2 / 2$	

```
Description: Bit 0= 0:
    No preprocessing
    Bit 0= 1:
    The call description of the cycles is formed during control power on. All the programs
    in the directories _N_CUS_DIR, _N_CMA_DIR and _N_CST_DIR can be called in the part
    program without EXTERNAL declaration. If the parameter interface of a cycle is changed
    in the control, then this change does not become active until after Power On.
    Bit 1=1:
    During control power on, all cycles in the directories _N_CUS_DIR, _N_CMA_DIR and
    _N_CST_DIR are preprocessed to form a process-optimizing compilation. These cycles are
    then processed more quickly. Changes to the cycle programs do not become active until
    after the next Power On.
    Bit 2=1:
    During control power on, the Siemens cycles in the directory _N_CST_DIR are
    preprocessed to form a process-optimizing compilation (from SW }\overline{3}.5)\mathrm{ ..
    Bit 3=1:
    During control power on, the user cycles in the directory _N_CUS_DIR are preprocessed
    to form a process-optimizing compilation (from SW 3.5).
Bit 4=1:
Preprocessing the user cycles in the directory _N_CMA_DIR
Bit 5=1:
All files marked with PREPRO in the PROG statement line are preprocessed (from SW 6.4)
Bit 5=0:
During control power on, all cycles in the directories activated by bits 1 to 4 are
preprocessed. This also applies to programs that are not marked with PREPRO.
Bit 6=1:
The compilation is stored in SRAM if there is inadequate space in DRAM (from SW 7.1).
    Memory space is required for preprocessing cycles. Better utilization of memory can
be achieved by selective setting of the preprocessing:
The runtime-critical cycles are brought together in one directory. The remaining cycles are in the other directory.
References:
/PG/, "Programming Guide Fundamentals" (EXTERNAL declaration)
```

10702	IGNORE_SINGLEBLOCK_MASK	N01	K1, Z1			
-						
-	Prevents stopping at specific blocks in single block mode	UDWORD	PowerOn			
-	-	0	0	$0 x 1$ FFFF	$7 / 2$	

This machine data prevents stopping at certain blocks with
single block.
Single block stop can be prevented with the following bits of the mask:
Bit0 $=1$
Means that there is no stop in any internal ASUB block. Exception: The single block stop has been explicitly activated by the SBLON command.
There are three different internal ASUBs that are triggered by different events.

- Repos: In the case of the events: change of operating mode to a manual mode (JOG,

JOGREF, etc.) unless MODESWITCH_MASK is not set, switch skip block on and off,
activate machine data, switch-on overstore, axis replacement, subroutine level cancelation, switch-on single block, switch dry run feedrate on and off, alarm with compensation block.

- Return: Delete distance-to-go, switchover after TEACH-IN (if available), or deselection of MDI with corresponding MODESWITCH_MASK.
- _N_PROG_EVENT_SPF: Parameterizing MD 20108 \$MC_PROG_EVENT_MASK parameterizes the events whereby _N_PROG_EVENT_SPF is executed.
Bit1 = 1
Means that there is no stop in any user ASUB block. Exception: The single block stop has been explicitly activated via the SBLON command.

User ASUBs are linked to an interrupt by the part program command SETINT or via the PI- _N_ASUP__. The interrupt is then activated via PLC or the high-speed inputs, and the user ASUBs are retracted.

This disables machine data MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP. The NCK behavior corresponds to the machine data assignment MD20117 \$MC_IGNORE SINGLEBLOCK_ASUP= FFFFFFFF.

Bit2 = 1
Means that there is no stop in any intermediate block. Intermediate blocks are generated at, among other events, tool change, ADIS and complicated geometry. Bit3 = 1

Means that there is no stop in the block search pickup block. The block search pickup block is the 1st block that is loaded into the main run at the start after the search target has been found in the program.
Bit4 = 1
Means that there is no stop in the INIT blocks. INIT blocks are generated from reset immediately after a part program start.
Bit5 = 1
Means that there is no stop in any subprogram block with the parameter DISPLOF. Bit6 = 1
Means that there is no stop in any block in which the NCK cannot reorganize.
Reorganize is an internal procedure that is needed for mode change after JOG/ JOGREF..., switch skip block on and off, activate machine data, axis replacement, switch on overstore, switch on single block, switch dry run feedrate on and off, subroutine level cancelation, user ASUBs delete distance-to-go, switchover after TEACHIN (if available). Reorganize is never needed in Reset state.

Example blocks in which reorganize is impossible:

- Tool change
- 1st block after the Repos procedure
- Block after an ASUB from JOG/canceled

Bit7 = 1
Means that there cannot be a stop in any block in which repositioning is impossible.
Reposition is an internal procedure that is needed for mode change after JOG/ JOGREF..., switch skip block on and off, activate machine data, axis replacement, switch on overstore, switch on single block, switch dry run feedrate on and off, subroutine level cancelation, and possibly user ASUBs. Reposition is never needed in Reset state.

Example blocks in which reposition is impossible:

- G33 + blocks in which reorganize is impossible.

Bit8 = 1
Means that there is no stop in a residual block that does not contain traversing information.
Bit9 $=1$
Means that there is no stop in a run in/main run synchronization block (e.g.STOPRE, \$Variable) that is repeated because of an interruption with Reorg (e.g. mode change). Bit10=1
Means that there is no stop in a "tool selection block". "Tool selection block" only occurs with tool management (magazine management or TMMG) active. This block gives the corresponding tool change command to the PLC.

This block is generally generated by T programming from the part program.

Example block "N1010 T="Drill" M6 D1"
Depending on machine data, the "tool selection block" can be held in the interpolator until the PLC has acknowledged the corresponding tool change (see MD20310 \$MC_TOOL_MANAGEMENT_MASK). However the program status remains in "run".
Bit11= 1
The control has to automatically generate implicit GET blocks for the axis replacement function (axis replacement: 2 or more channels control one axis alternately) if no explicit GET(D) has been programmed and the following block wants to traverse the axis. (The other channel had previously used this axis).
An explicitly programmed GET may appear as follows "getd(x1,y1,z1) or get(x1,y1,z1)". There is no stop at explicit or implicit GET blocks in the single block with this bit 11.

Bit12= 1
There is no stop in the single block type 2 in the SBLON block.
Bit13= 1
If an axis is pulled out in the middle of a block and possibly assigned to another channel, then there is no stop at the PREMATURE end of this block. This block follows a REPOSA in order to traverse it to the end, there is no stop until this end has been reached.
Bit14=1
In a part program line, in which a substitution subroutine is called due to NC language replacement, only one stop is performed under the condition that the subroutine includes PROC attribute SBLOF. It is irrelevant whether the subroutine is called at block start and/or end or whether it is exited with M17 or RET.
Bit15=1
Means that there is no stop in any user ASUB block. Exception: The single block stop has been explicitly activated via the SBLON command.
There are three different internal ASUBs that are triggered by different events.

- Repos: In the case of the events: change of operating mode to a manual mode (JOG, JOGREF,...) unless MODESWITCH_MASK is not set, switch skip block on and off, activate machine data, switch-on overstore, axis replacement, subroutine level cancelation, switch-on single block, switch dry run feedrate on and off, alarm with compensation block.
- Return: Delete distance-to-go, switchover after TEACH-IN (if available), or deselection of MDI with corresponding MODESWITCH_MASK.
Bit16=1
Activating SERUPRO (search run via prog test) prevents stopping at single blocks. Related to:
MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP

Machine data

NOTICE:

However, the function does not become active until a "later" block in the program execution and this is with the next (implicit) StopRe block.
Related to:
SD42100 \$SC_DRY_RUN_FEED

Description:
If SLASH_MASK $=0$, skip block can only be activated when stopped at the end of the block
If SLASH_MASK = 1, skip block can also be activated during program execution.
NOTICE!
After activating skip block, the axes are stopped for the duration of the reorganization process.
If SLASH_MASK = 2 , skip block can be activated in every phase.
Notice!
However, the function does not become active until a "later" block in the program execution, and this is with the next (implicit) StopRe block.

10707	PROG_TEST_MASK	N01	K1			
-	Program test mode	UDWORD	PowerOn			
-						
-	-	0×11	0	$0 \times 1 F$	$7 / 2$	

Description:

Bit-coded mask for program test
Bit $0=1 \quad$ Program test cannot be deselected in 'Stopped' program status.
Bit 1 == 1 Enable to activate the program test using the PI command _N_NCKMOD
Bit $2=1$ Activation of program test with accelerated feed in normal program processing. If the bit is set, the program test is active in all channels with accelerated feed via the VDI signal in the first channel. The VDI signal has no effect in all other channels as long as the bit is set. The value in \$MC_SERUPRO_SPEED_FACTOR of the first channel is used as the feed. Only released for test purposes.
Bit $3=1$ Activation of program test with accelerated feed in the simulation. Bit 4 == 1 Activation of accelerated program test takes place in synchronized multichannel mode.
Bit 5..31 As yet unused.
Program test with normal processing is always activated via the VDI interface.
Program test in simulation is always activated via the NCKMode PI.
Program test block search is always activated via the Find-Pi.

10708	SERUPRO_MASK		N01	K1	
-	Block search modes		UDWORD	PowerOn	
-					
-	0	0 0	0x3f	7/2	M

Description:

Bit-coded mask for block search via program test (abbr. SERUPRO).
SERUPRO block search is activated with the PI service _N_FINDBL mode parameter == 5 .
SERUPRO means SEarchRUn by PROgram test; in other words, proceed under program test
from start of program to search target. Note: Program test does not move any axes.
Bit $0=0$
There is a stop at M0 during the search phase.
Bit $0==1$

There is no stop at M0 during the search phase.
Bit $1=0$
Alarm 16942 cancels the search phase on part program command START.
Bit $1==1$
Alarm 16942 is switched off.
NOTICE:
A start program command might actually start the other channel!
Bit $2=0$
Switches the function "Group SERUPRO" off
Bit 2 == 1
Switches the function "Group SERUPRO" on.
"Group SERUPRO" enables a search routine in which the start part program command is changed into a search routine for the other channel.
Bit $3=0$
Forces all channels that have started SERUPRO to end SERUPRO simultaneously unless they are canceled via Reset or the channel reaches M30 without finding the search target. In other words, all channels that find the search target (including selfacting SERUPRO) terminate SERUPRO simultaneously.
Bit $3=1$
Switches this function off
Bit $4=0$
Take external override into account in SERUPRO.
Bit 4 == 1
An external override (sent via PLC signal or MCP) is ignored during SERUPRO.
Bit $5=0$
With SERUPRO, complex path calculations are made.
Bit $5=1$
With SERUPRO, calculation is made with simple, computing-time-optimized algorithms.
Bit 6 .. 31
As yet unused.

10709	PROG_SD_POWERON_INIT_TAB	EXP, N01	K1			
-	Setting data to be initialized	DWORD	PowerOn			
-						
-	30	$43200,43202,0,0,0$, $0,0,0 \ldots$	-	-	M	

Description:
Setting data to be initialized:
The values of the programmable $S D$ indicated in this MD are set to their initial values on control power up.
Only the setting data listed in the table below, however, can be initialized. If invalid setting data numbers are configured, then the alarm 4009 is output at the next run-up of the control. The alarm shows the index used for configuring the invalid setting data. The alarm can only be eliminated by changing the invalid setting data, i.e. by entering either a valid number or zero!

SD42000 \$SC_THREAD_START_ANGLE	(GCODE)
SD42010 \$SC_THREAD_RAMP_DISP	SF
SD42125 \$SC_SERUPRO_SYNC_MASK	
SD42400 \$SC_PUNCH_DWELLTIME	PDELAYON
SD42402 \$SC_NIBPUNCH_PRE_START_TIME	
SD42404 \$SC_MINTIME_BETWEEN_STROKES	

SD42800	\$SC_SPIND_ASSIGN_TAB	SETMS
SD43200	\$SA_SPIND_S	S wih G94,G95,G97,G971,G972
SD43202	\$SA_SPIND_CONSTCUT_S	S with G96,G961,G962
SD43210	\$SA_SPIND_MIN_VELO_G25	G25 S
SD43220	\$SA_SPIND_MAX_VELO_G26	G26 S
SD43230	\$SA_SPIND_MAX_VELO_LIMS	LIMS
SD43235	\$SA_SPIND_USER_VELO_LIMIT	
SD43300	\$SA_ASSIGN_FEED_PER_REV_SOURCE	FPRAON
SD43350	\$SA_AA_OFF_LIMIT	
SD43420	\$SA_WORKAREA_LIMIT_PLUS	G26
SD43430	\$SA_WORKAREA_LIMIT_MINUS	G25
SD43600	\$SA_IPOBRAKE_BLOCK_EXCHANGE	
SD43610	\$SA_ADISPOSA_VALUE	
SD43700	\$SA_OSCILL_REVERSE_POS1	OSP1
SD43710	\$SA_OSCILL_REVERSE_POS2	OSP2
SD43720	\$SA_OSCILL_DWELL_TIME1	OST1
SD43730	\$SA_OSCILL_DWELL_TIME2	OST2
SD43740	\$SA_OSCILL_VELO	FA
SD43750	\$SA_OSCILL_NUM_SPARK_CYCLES	OSNSC
SD43760	\$SA_OSCILL_END_POS	OSE
SD43770	\$SA_OSCILL_CTRL_MASK	OSCTRL
SD43780	\$SA_OSCILL_IS_ACTIVE	OS
SD43790	\$SA_OSCILL_START_POS	

10710	PROG_SD_RESET_SAVE_TAB	EXP, N01	A3, V1		
-	Setting data to be updated	DWORD	PowerOn		
-					
-	30	$0,0,0,0,0,0,0,0 \ldots$	-	-	

Description:
Setting data to be backed up
The values of the SDs listed in this table are stored in non-volatile memory, i.e. they remain valid after power ON. The setting data whose HMI numbers were entered in the backup list are written into the (buffered) active file system after the description of the part program on reset.
Programmable setting data are:
(GCODE)
SD 42000 \$SC THREAD START ANGLE
SF
SD 42010: \$SC_THREAD_RAMP_DISP
DITS/DITE
SD 42400 \$SC_PUNCH_DWELLTIME
SD 42800 \$SC_SPIND_ASSIGN_TAB
SD 43200: \$SA_SPIND_S
SD 43202: \$SA_SPIND_CONSTCUT_S
SD 43210 \$SA_SPIND MIN_VELO G25
SD 43220 SSA_SPIND_MAX VELO G26 G26 S
SD 43230 \$SA_SPIND_MAX_VELO_LIMS LIMS
SD 43300 \$SA_ASSIGN_FEED_PER_REV_SOURCE FPRAON
SD 43420 \$SA_WORKAREA_LIMIT_PLUS G26
SD 43430 \$SA_WORKAREA_LIMIT_MINUS G25
SD 43700 \$SA_OSCILL_REVERSE_POS1 OSP1
SD 43710 \$SA_OSCILL_REVERSE_POS2 OSP2

SD 43720	\$SA_OSCILL_DWELL_TIME1	OST1
SD 43730	\$SA_OSCILL_DWELL_TIME2	OST2
SD 43740	\$SA_OSCILL_VELO	FA
SD 43750	\$SA_OSCILL_NUM_SPARK_CYCLES	OSNSC
SD 43760	\$SA_OSCILL_END_POS	OSE
SD 43770	\$SA_OSCILL_CTRL_MASK	OSCTRL
SD 43780	\$SA_OSCILL_IS_ACTIVE	OS
The values of D43420 \$SA_WORKAREA_LIMIT_PLUS (working area limitation plus) and SD43430 \$SA_WORKAREA_LIMIT_MINUS (working area limitation minus) are to be stored in the buffered RAM after every RESET, M02, M30 or M17. $\begin{array}{ll} --> & \text { PROG_SD_RESET_SAVE_TAB[0] }=43420 \\ --> & \text { PROG_SD_RESET_SAVE_TAB[1] }=43430 \end{array}$ See also: 'REDEF: change attributes of NC language elements', setting data/PRLOC		

10712	NC_USER_CODE_CONF_NAME_TAB	EXP, N01, N12	TE1, B1			
-	List of reconfigured NC codes	STRING	PowerOn			
-						
-	200	-	-	-	$2 / 2$	

Description: List of identifiers of the NC codes reconfigured by the user.
The list is to be structured as follows:
Even address: Identifier to be changed
Subsequent odd address: New identifier
The following three types of $N C$ codes can reconfigured:

1. G codes e.g.: G02, G64, ASPLINE...
2. NC addresses e.g.: RND, CHF, ...
3. Pre-defined subprograms e.g.: CONTPRON, ...

Description:
The M functions defined by MD10713 \$MN_M_NO_FCT_STOPRE perform an implicit preprocessing stop.

That is, the interpretation of the next part program line will be stopped until the block with the M function defined in that way has been processed completely (PLC acknowledgment, motion, etc.).


```
MD10715 $MN_M_NO_FCT_CYCLE,
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR,
MD22254 $MC_AUXFU_ASSOC_M0_VALUE
MD10814 $MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 $MN_EXTERN_M_NO_SET_INT
MD10806 $MN_EXTERN_M_NO_DISABLE_INT,
MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 $MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR
MD26008 $MC_NIBBLE_PUNCH_CODE
```

10715	M_NO_FCT_CYCLE							EXP, N12, N07	H2, K1
-	M function to be replaced by a subroutine	DWORD	PowerOn						
-									
-	30	$-1,-1,-1,-1,-1,-1,-1$, $-1 .$.	-	-					

Description:
M number with which a subprogram is called.
The name of the subprogram is stated in MD10716 \$MN_M_NO_FCT_CYCLE_NAME[n]. If the M function defined in MD10715 \$MN_M_NO_FCT_CYCLE[n] is programmed in a part program block, the subprogram defined in $\bar{M} D 1 \overline{0} 716$ \$MN_NO_FCT_CYCLE_NAME[n] will be started at the end of the block. If the M function is programmed again in the subprogram, no further substitution is performed by a subprogram call. Other substitutions configured in MD10715 \$MN_M_NO_FCT_CYCLE are not performed in the subprogram either. MD10715 \$MN_M_NO_FCT_CYCLE[n] is effective both in Siemens mode G290 and in external language mode G291.
The subprograms configured with MD10716 \$MN_M_NO_FCT_CYCLE_NAME[n] and MD10717 \$MN_T_NO_FCT_CYCLE_NAME must not be active simultaneously in one block (line of a part program). This means that no more than one M / T function replacement can be active in any one block. Neither an M98 nor a modal subprogram call may be programmed in a block with the M function replacement.
Subprogram return and end of part program are also not permitted. Alarm 14016 is output in the event of a conflict.
Restrictions:
M functions with a fixed meaning and configurable M functions are checked for conflicting settings. A conflict is reported with an alarm.
The following M functions are checked:

- M0 to M5,
- M17, M30,
- M19,
- M40 to M45,
- M function for spindle/axis mode switchover according to MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR (default: M70),
- M functions for nibbling/punching as configured in MD26008 \$MC_NIBBLE_PUNCH_CODE if activated by MD26012 \$MC_PUNCHNIB_ACTIVATION.
- M19, M96-M99 for applied external language (MD18800 \$MN_MM_EXTERN_LANGUAGE).

Exception: The M functions for the tool change defined by MD22560
\$MC_TOOL_CHANGE_M_CODE.

10716	M_NO_FCT_CYCLE_NAME	EXP, N12, N07	K1				
-	Subroutine name for M function replacement	STRING	PowerOn				
-							
-	30	-	-	-	$7 / 2$		

Description:

The machine data contains the name of the cycle. This cycle is called if the M function has been programmed from MD10715 \$MN_M_NO_FCT_CYCLE.
If the M function is programmed in a motion block, the cycle is executed after the motion.

MD10715 \$MN M NO FCT CYCLE is active in both Siemens mode G290 and in external language mode G2 $\overline{9} 1$.
If a T number is programmed in the call block, then the programmed T number can be polled in the cycle under the variable \$P_TOOL.
M and T function replacements must not be programmed simultaneously in one block. This means that not more than one M or T function replacement may be active in any one block. Neither an M98 nor a modal subprogram call may be programmed in a block with M function replacement.
Moreover, neither subprogram return nor part program end are allowed.
Alarm 14016 is issued if there is a conflict.
Related to:
MD10715 \$MN_M_NO_FCT_CYCLE,
MD10717 \$MN_T_NO_FCT_CYCLE_NAME

10717	T_NO_FCT_CYCLE_NAME						EXP, N12, N07	K1
-	Name of tool-changing cycle for T function replacement	STRING	PowerOn					
-								
-	-	-	-	$7 / 2$	M			

Description:
Cycle name for tool change routine on call-up with a T function.
If a T function is programmed in a part program block, the subprogram defined in T_NO_FCT_CYCLE_NAME is called at the end of the block.

The T number programmed can be polled in the cycle via system variables \$C_T / \$C_T_PROG as a decimal value and via \$C_TS / \$C_TS_PROG as a string (only with tool management). MD10717 \$MN_T_NO_FCT_CYCLE_NAME is active both in Siemens mode G290 and in external language mode G291.

MD10716 \$MN_M_NO_FCT_CYCLE_NAME and MD10717 \$MN_T_NO_FCT_CYCLE_NAME must not be active in one block à the same time, i.e. no more than one M / \bar{T} function replacement can be active per block. Neither an M98 nor a modal subprogram call can be programmed in a block with a T function replacement. Furthermore, neither subprogram return nor part program end are allowed.
Alarm 14016 is output in the event of a conflict.
Related to:
MD10715 \$MN_M_NO_FCT_CYCLE,
MD10716 \$MN_M_NO_FCT_CYCLE_NAME

Description: If an M function replacement was configured with MD10715 \$MN_M_NO_FCT_CYCLE[n] /
MD10716 \$MN M NO FCT CYCLE NAME [n], a parameter transfer via system variable can be specified for one of these M functions using MD10718 \$MN_M_NO_FCT_CYCLE_PAR, in the same way as T function replacement. The parameters stored in the system variables always refer to the part program line where the M function to be replaced was programmed.
The following system variables are available:
\$C_ME : Address extension of the replaced M function
\$C_T_PROG : TRUE if address T was programmed
\$C_T : Value of address T (Integer)

```
$C_TE : Address extension of address T
$C_TS_PROG : TRUE if address TS was programmed
$C_TS : Value of address TS (string, only with tool management )
$C_D_PROG : TRUE if address D was programmed
$C_D : Value of address D
$C DL PROG : TRUE if address DL was programmed
$C DL : Value of address DL
```

10719	T_NO_FCT_CYCLE_MODE							EXP, N12, N07	K1
-	Setting of T function substitution						UDWORD	PowerOn	
-									
-	-	0	0	0×7					

Description:
This machine data parameterizes the execution of the replacement subprogram for the tool and tool offset selection.

Bit $0=0$:
D or DL number is transferred to the replacement subprogram (default value)
Bit $0=1$:
The D or DL number is not transferred to the replacement subprogram if the following conditions are fulfilled: MD22550 \$MC TOOL CHANGE MODE = 1 Programming D/DL with T or M function with which the tool change cycle is called, in a part program line.
Bit $1=0$
Execution of the replacement subprogram at end of block (default value)
Bit $1=1$
Execution of the replacement subprogram at block start
Bit $2=0$:
Execution of the replacement subprogram according to the settin of bit 1
Bit 2 = 1 :
Execution of the replacement subprogram at block start and at end of block.

10720	OPERATING_MODE_DEFAULT	N01	H2		
-	Setting of mode after power ON	BYTE	PowerOn		
-					
-	10	$7,7,7,7,7,7,7,7 \ldots$	0	12	

Description: Default modes of the mode groups after power ON.
If no mode is selected by the PLC, all the channels associated with mode group n are
in the mode preset by OPERATING_MODE_DEFAULT[n -1] after power ON:
$0=$ Automatic mode
1 = Automatic mode, submode REPOS
2 = MDI mode
3 = MDI mode, submode REPOS
4 = MDI mode, submode Teach In
5 = MDI mode, submode Reference point approach
6 = JOG mode
7 = JOG mode, submode Reference point approach
8 = AUTO mode, submode Teach In
9 = AUTO mode, submode Teach In, submode Reference point approach
10 = AUTO mode, submode Teach In, submode Repos
11 = MDI mode, submode Teach In, submode Reference point approach
12 = MDI mode, submode Teach In, submode Repos

NOTICE! Depending on the machine data MD10721 \$MN_OPERATING_MODE_EXTENDED, the mode set here might not be adopted after power ON

10721	OPERATING_MODE_EXTENDED			N01	H2	
-	Extended setting of mode after power ON			BYTE	Pow	
-						
-	10	$0,0,0,0,0,0,0,0 \ldots$	0	1	7/2	M

Description: Extended setting of an operating mode of the operating mode groups after power on: $0=$ Selection of the operating mode according to MD10720 \$MN_OPERATING_MODE_DEFAULT $1=$ Selection of the JOG mode if the PLC signal "Retract data available" (DB21-30 DBX377.5) is set in at least one channel of the operating mode group

10722	AXCHANGE_MASK						EXP, N01	K5
-								
-	Parameterization for axis replacement behavior	UDWORD	PowerOn					
-	-	0	0	0xFFFF	$7 / 2$			

Description:
The axis replacement behavior can be changed with this
machine data.
Bit0 $=1$
Means that there is an automatic axis replacement via channels even if the axis has been brought into a neutral state by Waitp.
Bit1 = 1
Means that an AXCTSWE fetches all the axis container axes that can be assigned to the channel by means of implicit GET or GETD, and an axis replacement is not permitted again until after the axis container rotation.
Bit2 $=1$
Means that, in the case of a GET, an intermediate block without preprocessing stop is generated, and whether a reorganization is needed is not checked until main run. Bit3 $=1$ means, that the $N C$ carries out an axis replacement request for the VDI interface only for:

- an axis exclusively controlled by the PLC (MD30460 \$MA_BASE_FUNCTION_MASK

Bit 4 == 1)

- a permanently assigned PLC axis (MD30460 \$MA_BASE_FUNCTION_MASK Bit 5 == 1)

For such axes, the VDI interface signal 'Axis replacement possible' is always
1.

For all other axes, the VDI interface signal 'Axis replacement possible' is
always 0.
For permanently assigned PLC axes, an axis replacement is possible only from neutral axis to PLC axis
or from PLC axis to neutral axis.
Bit3 $=0$ means that an axis replacement can be requested by the PLC for each axis.
For permanently assigned PLC axes, an axis replacement is only possible from neutral axis to PLC axis
or from PLC axis to neutral axis.

Enables JOG in automatic.
JOG is enabled in automatic when all channels in the mode group are in the RESET state and no channel of the DRF mode group has been selected. The mode group changes internally to JOG with the +/- key and the handwheel, and the axis moves. After the JOG motion has ended, a change back to AUTO is also made internally.

Bit 1:
Position with AxFrame.
The function 'JOG to position' considers all axial frames and, in the case of an axis configured as geometry axis, the tool length offset.

Bit 2:
Travel in opposite direction.
The functions 'JOG to position' and 'Approach machine fixed point manually' allow travel in opposite direction, i.e. away from the specified position.
Bit 3:
Tool radius offset.
MD21020 \$MC_WORKAREA_WITH_TOOL_RADIUS is active with JOG motions of the geometry axes. Bit 4:

Alarm suppression operating range limit in the basic coordinate system in JoG.
Alarms that would be output in JOG when an operating range limit is reached in the basic coordinate system, are suppressed.
Bit 5:
Alarm suppression operating range limit in the workpiece coordinate system in JoG. Alarms that would be output in JOG when an operating range limit is reached in the workpiece coordinate system, are suppressed.

Bit 6, 7:
JOG of circles:
Bit 7 and bit $6=0$ traversing the 2 nd geometry axis of the active plane to PLUS for radius increase, traversing to MINUS for radius decrease independently of inner or outer machining being active.

Bit $7=1$ and bit $6=0$: traversing the 2nd geometry axis of the active plane to PLUS always travels in the direction of the limiting circle. This means that the radius is increased on inner machining and decreased on outer machining.

Bit $7=1$ and bit $6=1$: traversing the 2nd geometry axis of the active plane to MINUS always travels in the direction of the limiting circle. This means that the radius is increased on inner machining and decreased on outer machining.
Bit 8 :
Bit $8=0$ If there is a JOG retract movement, the retraction axis can only be jogged in the plus direction.

Bit $8=1$ If there is a JOG retract movement, the retraction axis can only be jogged in the plus and minus direction.

Bits 9-31:
Currently unassigned.

10750	SPRINT_FORMAT_P_CODE						N12	PGA
-	String coding of the SPRINT format \%P	DWORD	PowerOn					
-								
-	-	0	0	2	$7 / 2$			

Description:

Description:
Specification of the character or punched tape code used to code the string which the SPRINT command generates with format control character \%P:
0 : ASCII
1: ISO (DIN66024)
2. EIA (RS-244)

10751	SPRINT_FORMAT_P_DECIMAL						N12	PGA
-								
-	Parameterization of the SPRINT format \%P	DWORD	PowerOn					
-	-	0	0	1	$7 / 2$			

Description: Description:
Parameterization of the format description $\%$ n.mP of the SPRINT command
Value range:
0 : The format specification \%n.mP generates a string from a transfer parameter of type REAL or INT consisting of an integer with $n+m$ places. The first n places represent the integer places and the following m places the decimal places of the transfer parameter. Missing decimal places are filled with 0 . If there are more than m decimal places, the number is rounded. Missing integer places are filled with spaces.
1: The format specification on.mP generates a string from a transfer parameter of type REAL or INT that consists of a decimal number with up to n integer places, the decimal point and m decimal places, which are filled with 0 or rounded as necessary.

10760	G53_TOOLCORR	N12	FBFA					
-	Method of operation of G53, G153 and SUPA						UDWORD	NEW CONF
-								
-	-	0	0	0×3				

Description:

With this MD you define whether tool length offset and tool radius offset are also to be suppressed with language commands G53, G153 and SUPA
The machine data is bit-coded.
Bit $0=0$: G53, G153 and SUPA cause block-by-block suppression of work offsets. The active tool length offset and tool radius offset remain active.
Bit $0=1:$ G53, G153 and SUPA cause block-by-block suppression of work offsets, active tool length offset and tool radius offset. The tool length behavior can be modified with bit 1 .
Bit 1 is only evaluated, if the value of bit 0 is 1.
Bit1 $=0$: with bit 0 set, the tool length is always suppressed with G53, G153 and SUPA.
Bit1 = 1: with bit 0 set the tool length is only suppressed with G53, G153 and SUPA, if a cutting edge is not selected in the same block (this can also be the cutting edge that is already active).

10800	EXTERN_CHAN_SYNC_M_NO_MIN		EXP, N12	H2	
-	1st M function for channel synchronization		DWORD	PowerOn	
-					
-	-1	-	-	7/2	M

To avoid conflicts with standard M functions the lowest permissible value is 100 . If you enter a value between 0 and 99, alarm 4170 will be issued.

10802	EXTERN_CHAN_SYNC_M_NO_MAX	EXP, N12	H2	
-	Last M function for channel synchronization	DWORD	Pow	
-				
-	-1	-	$7 / 2$	M

Description: M number of the last M function which can be used to perform a channel (program) synchronization in ISO2/3 mode.
In combination with MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN, the machine data defines an M number range reserved for channel synchronization. This range may be a maximum of 10 times the number of channels as only 10 WAIT marks may be set for each channel. Alarm 4170 is output if a value is entered between 0 and 99 or less than MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN.

10804	EXTERN_M_NO_SET_INT		EXP, N12	H2,	
-	M function to activate ASUB		DWORD	PowerOn	
-					
-	96	-	-	7/2	M

Description: M function number used to activate an interrupt program (ASUB) in ISO2/3 mode. The interrupt program is always started by the lst high-speed input of the numerical control.
The M number defined in the machine data replaces M96 in external language mode. Restrictions: Refer to MD10715 \$MN_M_NO_FCT_CYCLE
Related to:
MD10714 \$MN_M_NO_FCT_EOP,
MD10715 \$MN_M_NO_FCT_CYCLE,
MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,
MD22254 \$MC_AUXFU_ASSOC_M0_VALUE
MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 \$MN_EXTERN_M_NO_SET_INT
MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,
MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR
MD26008 \$MC_NIBBLE_PUNCH_CODE

10806	EXTERN_M_NO_DISABLE_INT	EXP, N12	H2, K1			
-	M function to deactivate ASUB	DWORD	PowerOn			
-						
-	-	97	-	-		

Description: M function number used to deactivate an interrupt program (ASUB) in ISO2/3 mode.
The M number defined in the machine data replaces M97 in external language mode.
Restrictions: refer to MD10715 \$MN_M_NO_FCT_CYCLE
MD10714 \$MN_M_NO_FCT_EOP,
MD10715 \$MN_M_NO_FCT_CYCLE,
MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,
MD22254 \$MC_AUXFU_ASSOC_MO_VALUE
MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 \$MN_EXTERN_M_NO_SET_INT

```
MD10806 $MN_EXTERN_M_NO_DISABLE_INT,
MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 $MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR
MD26008 $MC_NIBBLE_PUNCH_CODE
```


Description:

This machine data defines the assignment of measurement inputs 1 and 2 to the P numbers programmed with G31 P1 (- P4). The machine data is bit-coded. Only bits 0 and 1 are evaluated. For example, if bit $0=1$ in MD10810 \$MN_EXTERN_MEAS_G31_P_SIGNAL[1], the 1st measurement input is activated with G31 P2. If MD10810 \$MN_EXTERN_MEAS_G31_P_SIGNAL[3]=2, the 2nd measurement input is activated with G31 P4. Bit 0: $=0$, Do not evaluate measurement input 1 with G31 P1 (- P4) Bit 0: $=1$, Activate measurement input 1 with G31 P1 (- P4)
Bit 1: $=0$, Do not evaluate measurement input 2 with G31 P1 (- P4)
Bit 1: = 1, Activate measurement input 2 with G31 P1 (- P4)

10812	EXTERN_DOUBLE_TURRET_ON		EXP, N12	FBFA	
-	Double turret with G68		BOOLEAN	PowerOn	
-					
-	FALSE	FALSE	TRUE	7/2	M

Description: \quad| This machine data is used to determine whether double-slide machining (channel |
| :--- |
| synchronization for lst and 2nd channel) is to be started using G68 or whether the |
| second tool of a double turret (= two closely-linked tools at a distance defined in |
| the MD42162 SC_EXTERN_DOUBLE_TURRET_DIST) is to be activated. |
| FALSE: |
| Channel synchronization for double-slide machining |
| TRUE: |
| Load 2nd tool of a double turret (that is, activate \$SC_EXTERN_DOUBLE_TURRET_DISTANCE |
| |
| as additive work offset and mirroring around Z axis) |

10814	EXTERN_M_NO_MAC_CYCLE			EXP, N12	H2,	
-	Macro call via M function			DWORD	PowerOn	
-						
-	30	$\begin{aligned} & -1,-1,-1,-1,-1,-1,-1, \\ & -1 \ldots \end{aligned}$	-	-	7/2	M

A macro is called with this M number.
The name of the subprogram is stated in MD10815 \$MN_EXTERN_M_NO_MAC_CYCLE_NAME[n]. If the M function specified with MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE[n] is programmed in a part program block, the subprogram defined in MD10815 \$MN_EXTERN_M_NO_MAC_CYCLE_NAME[n] is started. All addresses programmed in the block are written into the corresponding variables.
If the M function is programmed again in the subprogram, there is no longer a replacement by a subprogram call.

MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE[n] is only active in the external language mode G291. The subprograms configured with MD10815 \$MN_EXTERN_M_NO_MAC_CYCLE_NAME[n] must not be active simultaneously in a block (part program line), i.e. only one M function replacement can become active in any one block. Neither an M98 nor a modal subprogram call may be programmed in the block with the M function replacement.

Subprogram return and the part program end are also not permitted. Alarm 14016 is issued in case of a conflict. Restrictions: see MD10715 \$MN_M_NO_FCT_CYCLE
Related to:
MD10714 \$MN_M_NO_FCT_EOP,
MD10715 \$MN_M_NO_FCT_CYCLE,
MD20094 \$MC SPIND RIGID TAPPING M NR,
MD22254 \$MC_AUXFU_ASSOC_M0_VALUE
MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 \$MN_EXTERN_M_NO_SET_INT
MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,
MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR
MD26008 \$MC_NIBBLE_PUNCH_CODE

10815	EXTERN_M_NO_MAC_CYCLE_NAME							EXP, N12	H2
-	Name of subroutine for M function macro call	STRING	PowerOn						
-									
-	30	-	-	-	M				

Description: Name of the subprogram started by a call via the M function defined by MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE[n].

10817	EXTERN_G_NO_MAC_CYCLE_NAME			EXP, N12	FBF	
-	Name of subroutine for G function macro call			STRING	Pow	
-						
-	50	-	-	-	7/2	M

Description:
Name of the subprogram started by call via the G function defined by MD10816 \$MN_EXTERN_G_NO_MAC_CYCLE[n].

10818	EXTERN_INTERRUPT_NUM_ASUP			EXP, N12	FBF	
-	Interrupt number for ASUB start (M96)			BYTE	Pow	
-						
-	1	1	1	8	7/2	M

Description:
Number of the interrupt input starting an asynchronous subprogram activated in ISO mode. (M96 <program number>)

10820	EXTERN_INTERRUPT_NUM_RETRAC						EXP, N12	FBFA
-	Interrupt number for rapid retraction (G10.6)						BYTE	PowerOn
-	-	1	8	$7 / 2$	M			
-	-	2						

Description: Number of the interrupt input triggering rapid retraction to the position programmed with G10.6 in ISO mode.

10830	EXTERN_PRINT_DEVICE						EXP, N12	FBFA
-	Output device for ISOPRINT	STRING	PowerOn					
-								
-	-	-	-	-	$7 / 2$			

[^3]

10850	MM_EXTERN_MAXNUM_OEM_GCODES	EXP, N01, N12	-					
-	Maximum number of OEM G codes						DWORD	PowerOn
-	-	0	0	1000	$1 / 1$			
-	-	M						

Description: This machine data is used to define the number of G codes implemented for an external language via an OEM application.

Description: Definition of the external CNC system whose part programs are to be executed on the SINUMERIK control in addition to SINUMERIK code (ISO_1):
1: ISO_21: System Fanuc0 milling (5.1 and higher)
2: ISO_31: System Fanuc0 turning (P5.2 and higher)
3: External language via OEM application (P6.2 and higher)
4: ISO_22: System Fanuc0 Milling (P7 and higher)
5: ISO_32: System Fanuc0 Turning (P7 and higher)

10881	MM_EXTERN_GCODE_SYSTEM	N01, N12	FBFA			
-	ISO_3 Mode: GCodeSystem	DWORD	PowerOn			
-						
-	-	0	0	2	$7 / 2$	

Description: Definition of the GCodeSystem to be actively executed in ISO_3 Mod (turning):
Value $=0$: ISO_3: Code system B
Value = 1 : ISO_3: Code system A
Value $=2$: ISO_3: Code system C

Description: List of G commands of external NC languages which have been reconfigured by the user.

The implemented G commands are to be taken from the current Siemens documentation for this programming language.
The list is structured as follows:
Even address: G command to be changed
Subsequent odd address: New G command
Only G codes can be reconfigured, e.g.: G20, G71.

10886	EXTERN_INCREMENT_SYSTEM						N12	FBFA
-	Incremental system in external language mode						BOOLEAN	PowerOn
-	-	FALSE	FALSE	TRUE	7/2			
-	-	M						

Description:
This machine data is active for external programming languages,
that is if MD18800 \$MN_MM_EXTERN_LANGUAGE = 1 .
This machine data specifies which incremental system is active:
0 : Incremental system $I S-B=0.001 \mathrm{~mm} /$ degree

$$
=0.0001 \text { inch }
$$

1: Incremental system $I S-C=0.0001 \mathrm{~mm} /$ degree

$$
=0.00001 \text { inch }
$$

Related to:
MD10884 \$MN_EXTERN_FLOATINGPOINT_PROG

10889	EXTERN_DIGITS_OFFSET_NO	N12	FBFA			
-	Digits for offset number in ISO mode	BYTE	PowerOn			
-						
-	-	0	0	8	$7 / 2$	

Description:

This machine data is only active when MD10880 \$MN MM EXTERN CNC SYSTEM == 2.
Number of digits of the offset number in the programmed T word.
From the programmed T word, the number of leading digits specified in MD10889
\$MN_EXTERN_DIGITS_OFFSET_NO are interpreted as the offset number.
The following digits address the tool number.

10890	EXTERN_TOOLPROG_MODE	N12	FBFA			
-	Tool change programming for external language	UDWORD	PowerOn			
-						
-	-	0×0	0	$0 x 7 F F F F F F F$	$7 / 2$	

Description: Configuration for programming the tool change in an external programming language: Bit0=0:

Only active for the ISO mode turning: The tool number and offset number are programmed in the T word. \$MN_DIGITS_TOOLNO defines the number of leading digits, which form the tool number.
Example:
\$MN_DIGITS_TOOLNO = 2
$\mathrm{T}=1234$; tool number 12, ; offset number 34
Bit0=1:
Only active in the ISO mode turning: Only the tool number is programmed in the T word. Offset number == tool number. \$MN_DIGITS_TOOLNO is irrelevant.
Example:
$\mathrm{T}=12$; tool number 12
; offset number 12
Bit1=0:
Only active in the ISO mode turning:
If the number of digits programmed in the T word is the same as the number defined in MD10888 \$MN_EXTERN_DIGITS_TOOL_NO, then leading 0 s are added
Bit1=1:
Is only active for the ISO mode turning:
If the number of digits programmed in the T word is the same as the number of digits specified in MD10888 \$MN_EXTERN_DIGITS_TOOL_NO, the programmed number is the offset number and tool number
Bit2=0:

Is only active for the ISO mode turning: ISO T offset selection only with D (Siemens cutting edge number)

Bit2=1:
Is only active for the ISO mode turning: ISO T offset selection only with H (\$TC_DPH[t,d])
Bit6=0:
The offset memories for the tool length and tool radius are linked so
that tool length and tool radius are always selected when either H or D is programmed. Bit6=1:

The offset memories for the tool length and tool radius are not linked, so that the number of the tool length value is selected when H is programmed, and the number of the tool radius value is selected when D is programmed.
Bit7=0:
Is only active for the ISO mode turning. If T substitution (MD10717
\$MN_T_NO_FCT_CYCLE_NAME) is active, the H number programmed in the T word is transferred to the cycle in the variable \$C_D.
Bit7=1:
Is only active in the ISO mode turning. If T substitution (MD10717 \$MN T NO FCT CYCLE NAME) is active, the Siemens cutting edge number D corresponding to the H number programmed in the T word is transferred to the cycle in the variable \$C_D.

Description: The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis. The number of indexing positions used in table 1 is defined by MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1.
These indexing positions must be assigned valid values in table 1. Any indexing positions in the table above the number specified in the machine data are ignored. Up to 60 indexing positions (0 to 59) can be entered in the table.
Table length $=0$ means that the table is not evaluated. If the length is not equal to 0 , then the table must be assigned to an axis with MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB. If the indexing axis is defined as a rotary axis (MD30300 \$MA_IS_ROT_AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO = "1"), the machine data defines the last indexing position after which, with a further traversing movement in the positive direction, the indexing positions begin again at 1.
Special cases:
Alarm 17090 "Value violates upper limit" if values over 60 are entered in MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1.
Related to:
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis)
MD10910 \$MN_INDEX_AX_POS_TAB_1 (indexing position table 1)
MD30300 \$MA_IS_ROT_AX(rotary axis)
MD30310 \$MA_ROT_IS_MODULO (modulo conversion for rotary axis)

10910	INDEX_AX_POS_TAB_1			N09	T1	
mm/inch, degrees	Indexing position table 1			DOUBLE	Rese	
-						
-	60	$\begin{aligned} & 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., \\ & 0 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M

$[n]=$ indexing for the entry of the indexing positions in the indexing position table.
Range: 0 y n x 59, where 0 corresponds to the 1 st indexing position and 59 to the 60 th indexing position.
Note.
Programming with the absolute indexing position (e.g. CAC) starts with indexing position 1. This corresponds to the indexing position with indexing $n=0$ in the indexing position table.

The following should be noted when entering the indexing positions:

- Up to 60 different indexing positions can be stored in the table.
- The 1st entry in the table corresponds to indexing position 1; the nth entry corresponds to indexing position n.
- The indexing positions must be entered in the table in ascending order (starting with the negative and going to the positive traversing range) with no gaps between the entries. Consecutive position values must not be identical.
- If the indexing axis is defined as a rotary axis (MD30300 \$MA_IS_ROT_AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO = "1"), then the position values are limited to a range of $0^{\circ} \mathrm{x}$ pos. $<360^{\circ}$.
The number of indexing positions used in the table is defined by MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1.
Entering the value 1 in axial MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB assigns indexing position table 1 to the current axis.

Special cases:
Alarm 17020 "Illegal array index" if over 60 positions are entered in the table. Related to:

MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis)
MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1 (number of indexing positions used in table 1)
MD30300 \$MA_IS_ROT_AX(rotary axis)
MD30310 \$MA_ROT_IS_MODULO (modulo conversion for rotary axis)

10920	INDEX_AX_LENGTH_POS_TAB_2						N09	T1
-	Number of positions for indexing axis table 2	DWORD	Reset					
-								
-	-	0	0	60	$7 / 2$			

Description:

The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis. The number of indexing positions used in table 2 is defined by MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2.
These indexing positions in table 2 must be assigned valid values. Any indexing positions in the table above the number specified in the machine data are ignored.
Up to 60 indexing positions (0 to 59) can be entered in the table.
Table length $=0$ means that the table is not evaluated. If the length is not equal to 0 , the table must be assigned to an axis with MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB.

If the indexing axis is defined as a rotary axis (MD30300 \$MA IS ROT AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO $=" 1 "$), the machine dā̄a $\bar{d} e f i \bar{n} e s ~ t h e ~ l a s t ~$ indexing position after which, with a further traversing movement in the positive direction, the indexing positions begin again at 1.

Not relevant for tool magazines (turrets, chain magazines)
Special cases:
Alarm 17090 "Value violates upper limit" if a value over 60 is entered in MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2.

Related to:
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis)
MD10930 \$MN_INDEX_AX_POS_TAB_2 (indexing position table 2)
MD30300 \$MA_IS_ROT_AX(rotary axis)
MD30310 \$MA_ROT_IS_MODULO (modulo conversion for rotary axis)

10930	INDEX_AX_POS_TAB_2			N09	T1	
mm/inch, degrees	Indexing position table 2			DOUBLE	Reset	
-						
-	60	$\begin{aligned} & 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., \\ & 0 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M

$[n]=$ indexing for the entry of the indexing positions in the indexing position table.
Range: 0 y $n \times 59$, where 0 corresponds to the 1st indexing position and 59 to the 60 th indexing position.

Note:
Programming with the absolute indexing position (e.g. CAC) starts with indexing position 1. This corresponds to the indexing position with indexing $n=0$ in the table. The following should be noted when entering the indexing positions:

- Up to 60 different indexing positions can be stored in the table.
- The 1st entry in the table corresponds to indexing position 1; the nth entry corresponds to indexing position n.
- The indexing positions should be entered in the table in ascending order (starting with the negative and going to the positive traversing range) with no gaps between the entries. Consecutive position values must not be identical.
- If the indexing axis is defined as a rotary axis (MD30300 \$MA_IS_ROT_AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO = "1"), then the position values are limited to a range of $0^{\circ} \mathrm{x}$ pos. $<360^{\circ}$.

The number of indexing positions used in the table is defined by MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2.
Entering the value 1 in axial MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB assigns indexing position table 1 to the current axis.
Special cases:
Alarm 17020 "Illegal array index" if over 60 positions are entered in the table.
Related to:
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis)
MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2 (num ber of indexing positions used in table 2) MD30300 \$MA_IS_ROT_AX(rotary axis)
MD30310 \$MA_ROT_IS_MODULO (modulo conversion for rotary axis)

11100	AUXFU_MAXNUM_GROUP_ASSIGN	N01, N07, N02	H2				
-	Number of auxiliary functions distr. amongst aux. fct. groups	DWORD	PowerOn				
-	$7 / 2$						M
-	-	1	1	255	$7 / 2$		

Description:

The maximum number of auxiliary functions that can be assigned to a group by AUXFU_ASSIGN_TYPE, AUXFU_ASSIGN_EXTENTION, AUXFU_ASSIGN_VALUE and AUXFU_ASSIGN_GROUP.
This number includes only the user-defined auxiliary functions, not the predefined auxiliary functions.
Related to:
MD22010 \$MC_AUXFU_ASSIGN_TYPE[n].

11110	AUXFU_GROUP_SPEC	N07	H2		
-	Auxiliary function group specification	UDWORD	PowerOn		
-					
-	168	$\begin{array}{l}0 \times 81,0 \times 21,0 \times 41, \\ 0 \times 41,0 \times 41,0 \times 41, \\ 0 \times 41,0 \times 41 \ldots\end{array}$	0	$0 \times 7 F F F F F F F$	$7 / 2$

Description:

Defines the output options for the auxiliary functions belonging to a group.
However, the output option of an auxiliary function configured by MD22080
\$MC_AUXFU_PREDEF_SPEC[preIndex] or MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.
Bit $0=1 \quad$ "Normal" acknowledgment after an OB1 cycle
Bit $1=1$ "Quick" acknowledgment with OB40
Bit $2=1 \quad$ No predefined auxiliary function
Bit $3=1 \quad$ No output to PLC
Bit $4=1$ Spindle response after acknowledgment by the PLC
Bit $5=1$ Output prior to motion
Bit $6=1$ Output during motion
Bit $7=1$ Output at end of block
Bit $8=1 \quad$ No output after block search types 1, 2, 4
Bit $9=1$ Collection during block search type 5 (SERUPRO)
Bit $10=1$ No output during block search type 5 (SERUPRO)
Bit 11 = Cross-channel auxiliary function during block search type 5 (SERUPRO)
Bit $12=1$ Output via synchronized action
Bit 13 = 1 Implicit auxiliary function
Bit $14=1$ Active M01
Bit $15=1$ No output during running-in test
Bit $16=1$ Nibbling off
Bit $17=1$ Nibbling on
Bit $18=1$ Nibbling
The MD must be defined for each existing auxiliary function group.
The index [n] corresponds to the auxiliary function group index: 0...63
The assignment of individual auxiliary functions to specific groups is defined in channel-specific machine data (AUXFU_PREDEF_TYPE, AUXFU_PREDEF_EXTENTION, AUXFU_PREDEF_VALUE, AUXFU_PREDEF_GROUP, AUXFU_ASSIGN_TYPE, AUXFU_ASSIGN_EXTENTION, AUXFU_ASSIGN_VALUE, AUXFU_ASSIGN_GROUP).
M0, M1, M2, M17 and M30 are assigned to group 1 by default.

```
The specification of this group ( 0x81: output duration 1 OB1 pass, output at end of
block ) must not be changed.
All spindle-specific auxiliary functions ( M3, M4, M5, M19, M70 ) are assigned to group
2 by default.
If several auxiliary functions with different output types ( before / during / at end
of motion ) are programmed in one motion block, then the output of the individual
auxiliary functions corresponds to their output types.
All auxiliary functions are output simultaneously in a block without motion.
Default setting:
AUXFU_GROUP_SPEC[0]=81H
AUXFU_GROUP_SPEC[1]=21H
AUXFU_GROUP_SPEC[2]=41H
AUXFU_GROUP_SPEC[n]=41H
```


11140	GUD_AREA_SAVE_TAB	N01	-			
-	Additional saving for GUD modules	UDWORD	Immediately			
-						
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	0×1	$7 / 2$	

Description:

This data indicates in which area the contents of the GUD module are also saved.
MD11140 \$MN_GUD_AREA_SAVE_TAB[0] : SGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[1] : MGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[2] : UGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[3] : GUD4_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[4] : GUD5_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[5] : GUD6_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[6] : GUD7_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[7] : GUD8_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[8] : GUD9_DEF
BitNo. Hexadec. Meaning when bit is set
Value
0 (LSB) 0x00000001 TOA area

11160	ACCESS_EXEC_CST					N01	-	
-	Execution right for /_N_CST_DIR					BYTE	PowerOn	
-	-							
-	-		7	7	0	7	7/2	M
Description:		Execut Value Value Value Value	on righ 0: Siem 1: Mach 2: Pass 3: End	ht assign mens pass hine OEM sword of user pas	p	d in	/ ${ }^{1}$	

```
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
Machine data can only be written with values 0 and 1, and with the corresponding
password also active.
```

11161	ACCESS_EXEC_CMA	N01	-			
-	Execution right for /_N_CMA_DIR	BYTE	PowerOn			
-						
-	-	7	0	7		

Description: Execution right assigned to the programs stored in directory /_N_CMA_DIR :
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
Machine data can only be written with values 0 and 1 , and with the corresponding password also active.

11162	ACCESS_EXEC_CUS		N01	-	
-	Execution right for /_N_CUS_DIR		BYTE	Pow	
-					
-	7	0	7	7/3	U

Description: Execution right assigned to the programs stored in directory /_N_CUS_DIR :
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
Machine data can only be written with values 0,1 and 2 , and with the corresponding password also active.

11165	ACCESS_WRITE_CST			N01	-	
-	Write protection for directory /_N_CST_DIR			DWORD	Pow	
-						
-	-	-1	-1	7	7/2	M

Description: Set write protection for cycle directory /_N_CST_DIR:
Assigned to the programs:
Value -1: Keep the value currently set
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0

The machine data can only be written with values 0 and 1, and with the corresponding password also active.

11167	ACCESS_WRITE_CUS	N01	-					
-	Write protection for directory /_N_CUS_DIR						DWORD	PowerOn
-								
-	-	-1	-1	7	U			

Description:
Set write protection for cycle directory /_N_CUS_DIR:
Assigned to the programs:
Value -1: Keep the value currently set
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
The machine data can only be written with values 0,1 and 2 , and with the corresponding password also active.

11170	ACCESS_WRITE_SACCESS	N01	-		
-	Write protection for_N_SACCESS_DEF				
-					
-	BYTE	PowerOn			

```
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
The machine data can only be written with values 0 and 1, and with the corresponding
password also active.
```

11171	ACCESS_WRITE_MACCESS			N01	-	
-	Write protection for _N_MACCESS_DEF			BYTE	PowerOn	
-						
-	-	7	0	7	7/2	M
Description:	Set write protection for definition file /_N_DEF_DIR/_N_MACCESS_DEF:					
	Value 0: Siemens password					
	Value 1: Machine OEM password					
	Value 2: Password of setup engineer, service					
	Value 3: End user password					
	Value 4: Keyswitch position 3					
	Value 5: Keyswitch position 2					
	Value 6: Keyswitch position 1					
	Value 7: Keyswitch position 0					

The machine data can only be written with values 0 and 1 , and with the corresponding password also active.

11172	ACCESS_WRITE_UACCESS	N01	-					
-	Write protection for_N_UACCESS_DEF						BYTE	PowerOn
-								
-	-	7	0	7	$7 / 3$			

Description:

Set write protection for definition file /_N_DEF_DIR/_N_UACCESS_DEF:
Value 0: Siemens password
Value 1: Machine OEM password
Value 2: Password of setup engineer, service
Value 3: End user password
Value 4: Keyswitch position 3
Value 5: Keyswitch position 2
Value 6: Keyswitch position 1
Value 7: Keyswitch position 0
The machine data can only be written with values 0,1 and 2 , and with the corresponding password also active.

Description:

A power on must be triggered after setting MD11200 \$MN_INIT_MD. The function is executed and the MD reset to "0" at power on.

Meaning of the input:

Bit 0 set:
All machine data (with the exception of the memory-configuring data) will be overwritten with the compiled values at the next NCK power on.

Bit 1 set:
All memory-configuring machine data will be overwritten with the compiled values at the next NCK power on.

Bit 2 set:
The OEM machine data and the SIEMENS cycle machine data brought in by compile cycles will be deleted from the buffered memory at the next power on.
Bit 3 set:
All setting data will be overwritten with the compiled values at the next power on. Bit 4 set:

All option data will be overwritten with the compiled values at the next power on.
Bit 5 set:
The passive file system (including PowerFail log file) will be deleted at the next power on of the NCK.
INIT_MD is automatically set to 0 at power on.
Memory configuring MDs are:

- MD10010 \$MN_ASSIGN_CHAN_TO_MODE_GROUP
- All machine data starting with "MM_"

MD 18000 - 18999 (general MD)
MD 28000-28999 (channel-specific MD)
MD 38000 - 38999 (axis-specific MD)

11202	MD_MODE_MASK			EXP, N01	IA	
-	Behavior of machine data changes			UBYTE	Pow	
-						
-	-	0	0	-	7/2	M

Description:
Behavior of machine data changes
Bit 0 (LSB): When configuring linear/rotary axes, do not load initial values for axis type-dependent MDs
Due to the existence of one plausible default value each for a linear axis or rotary axis, axial machine data can facilitate setup for the user. With the switchover process (Lin $->$ Rot, or Rot $->$ Lin), the respectively configured default values become active as actual values at the next warm restart of the controller.

11210	UPLOAD_MD_CHANGES_ONLY			N01, N05	-	
-	Machine data backup of changed machine data only			UBYTE	Imm	
-						
-	-	0xFF	0	-	7/3	M

Description: Either all data or only those data which differ from the default setting can be set to be output when creating standard archives (ARC) and copying 'NC active data'.
Bit0(LSB) Effectiveness of the differential upload with INI/TEA files
0: All data are output
1: Only those MDs that have changed in comparison to the compiled values are output
Bit1 is reserved and acts like bit 0
Bit2 Change to an array element
0: Complete arrays are output
1: Only those elements of an array that have changed are output
Bit3 R variables (only for INI files)
0: All R variables are output
1: Only R variables not equal to '0' are output

Bit4 Frames (only for INI files)
0: All frames are output
1: Only those frames that are not zero frames are output.
Bit5 Tool data (cutting edge parameters) (only for INI files)
0: All tool data are output
1: Only those tool data not equal to '0' are output.
Bit6 Buffered system variables (\$AC_MARKER[], \$AC_PARAM[] only for INI files)
0: All system variables are output
1: Only those system variables not equal to '0' are output
Bit7 Synchronized actions GUD (for INI files only)
0: All Syna GUD are output
1: Only those Syna GUD not equal to '0' are output
Active: The change in the data becomes active on the start of the upload for the next range.
The settings are only active, if MD11212 \$MN_UPLOAD_CHANGES_ONLY=FALSE.

11212	UPLOAD_CHANGES_ONLY		N01, N05	-	
-	Data backup type for an active file system.		BOOLEAN	Imm	
-					
-	TRUE	-	-	7/3	M

Description:

Only values of the selected file of the active file system
that deviate from the default setting are backed up.
TRUE = only the values of the selected file of the active file system that deviate from the standard setting are backed up (a differential data backup)

The value of MD11210 \$MN_UPLOAD_MD_CHANGES_ONLY than has no effect.
FALSE = all values of the selected file of the active file system are backed up.
Same significance as MD11210 \$MN_UPLOAD_MD_CHANGES_ONLY=0.
However, if MD11210 \$MN_UPLOAD_MD_CHANGES_ONLY is not equal to 0, then this setting is active.

11220	INI_FILE_MODE		N01, N05	G2	
-	Error response to INI file errors		BYTE	Reset	
-					
-	- 1	0	2	7/2	M

Description: If, while reading machine data files (INI files) into controls, data are read in

- that are faulty or
- do not agree with the check sum
then alarms are generated and the reading in may be canceled. The following control behaviors can be selected via machine data
settings:
0 : Output of an alarm, cancelation on detection of 1 st error. (As $S W$ versions 1 and 2).
1: Output of an alarm, continuation of execution. An alarm with the number of errors
is output at the end of execution.
2: Execution continues despite possible errors. An alarm with the number of errors is output at the end of execution.

11230	MD_FILE_STYLE		N01, N05	-	
-	Structure of machine data backup files		UBYTE	Immediately	
LINK, -					
-	0x3	0	-	7/3	M

11285	MACH_MODEL_MODE	EXP	-			
-	Type of file with machine model	BYTE	Immediately			
-						
-	-	0	0	1		

Description:
If 3 D protection zones have been defined, creation of a machine model can be requested with this machine data.
Value 0: No model is created.
Value 1: After each change (including activation) of the 3D protection zones, a machine model is created in user directory /_N_VRML_DIR with the name _N_VRMLMODEL_WRL.

11294	SIEM_TRACEFILES_CONFIG						EXP	-
-	Configuration of the SIEM* trace file	UDWORD	PowerOn					
-								
-	-	0	0	$0 \times 7 F F F F F F F$	$2 / 2$			

Description: Configuration of the SIEM* trace files Bit0:

Additional information about the PDUs sent will be entered in _N_SIEMDOMAINSEQ_MPF during download
Bit1:

Additional information about the PDUs received will be entered in _N_SIEMDOMAINSEQ_MPF during download

Bit2:
Trace of warm start and connection cancelation in _N_SIEMDOMAINSEQ_MPF

Bit4:

Additional information about the PDUs sent will be entered in _N_SIEMDOMAINSEQ_MPF during upload

Bit5:
Additional information about the PDUs received will be entered in _N_SIEMDOMAINSEQ_MPF during upload

11297	PROTOC_IPOCYCLE_CONTROL	N01	-			
-	Prevent overrun of IPO time level	BYTE	PowerOn			
-						
-	10	$1,1,1,1,1,1,1,1 \ldots$	0	1	$1 / 1$	

Description: Setting whether an overflow of the time level is to be prevented during the recording of data in the time level of the IPO.

If applicable, data sets are discarded when the function is active, and are not entered in the log file in order to prevent an impending overflow of the IPO time level.
This may mean that data sets are also then lost if a level overflow would not yet have occurred with the function inactive.
The individual values apply to the users of the logging function, which are assigned the following functions:
0: Reserved for system functions: simultaneous recording, simulation, synchronized action analysis

1: Reserved for system functions: determining program runtimes, multi-step editor
2: Reserved for OEM applications
3: Reserved for OEM applications

```
4: Reserved for OEM applications
5: Reserved for system functions: trace
6: Reserved for system functions: trace
7: Reserved for system functions: trace
8: Reserved for system functions: trace
9: Reserved for system functions: action log
```

11298	PROTOC_PREPTIME_CONTROL		N01	-	
-	Interruption time prep time level in seconds.		DOUBLE	PowerOn	
-					
-	10 $1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0 \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	1/1	M
Description:	Time in seconds, for which the manage to pass through within thus ensured that operation can The individual values apply to the following functions: 0 : Reserved for system functions action analysis 1: Reserved for system functions 2: Reserved for OEM applications 3: Reserved for OEM applications 4: Reserved for OEM applications 5: Reserved for system function 6: Reserved for system functions 7: Reserved for system functions 8: Reserved for system function 9: Reserved for system function	rep time lev e set time, ot be comple he users of : simultaneo : determinin : trace : trace : trace : trace : action log	may be e cyclic ly block e logging recordin program	. I ar data ion mula s,	P does not ged. It is g. re assigned chronized p editor

Description:

1: Jog mode for JOG-INC and reference point approach
JOG-INC:
When the traversing key is pressed in the required direction (e.g. +), the axis begins to traverse the set increment. If the key is released before the increment has been completely the traversed, the movement is interrupted and the axis stops. If the same key is pressed again, the axis completes the remaining distance-to-go until this is 0 .
0: Continuous operation for JOG-INC and reference point approach
JOG-INC:
When the traversing key is pressed (first rising edge) the axis travels the whole set increment. If the same key is pressed again (second rising edge) before the axis has completed traversing the increment, the movement is canceled, i.e. not completed.

The differences in axis travel behavior between the jog mode and continuous operation in incremental traversing are described in detail in the relevant chapters.
For travel behavior in reference point approach see
References: /FB/, R1, "Reference Point Approach"
MD irrelevant for:
Continuous traversing (JOG continuous)

11310	HANDWH_REVERSE	N09	H1					
-	Threshold for direction change handwheel	BYTE	PowerOn					
-								
-	-	2	0	-	7/2			

Description: Handwheel travel:
Value = 0:
No immediate travel in the opposite direction
Value > 0:
Immediate travel in the opposite direction if the handwheel is turned at least the stated number of pulses in the opposite direction.
Whether this machine data is also active for handwheel travel with DRF depends on bit10 of MD20624 \$MC_HANDWH_CHAN_STOP_COND.

Description: The connected handwheels are adapted to the control in MD11320
\$MN_HANDWH_IMP_PER_LATCH.
The number of pulses generated by the handwheel for each handwheel detent position has to be entered. The handwheel pulse weighting must be defined separately for each connected handwheel (1 to 3). With this adaptation, each handwheel detent position has the same effect as one press of the traversing key in incremental traversal. Entering a negative value reverses the direction of rotation of the handwheel.
Related to:

$$
\begin{aligned}
& \text { MD31090 \$MA_JOG_INCR_WEIGHT } \\
& \text { (weighting of an increment of a machine axis for } \\
& \text { INC/manual). }
\end{aligned}
$$

Description: Adaptation factor to the hardware of the contour handwheel: Enter the number of pulses issued per detent position by the contour handwheel.
Because of this normalization, a detent position of the contour handwheel
corresponds to one press of a key with incremental jog processes.
Sign reversal reverses the direction of evaluation.

11324	HANDWH_VDI_REPRESENTATION		N01	OEM	
-	Display of handwheel number in VDI Interface		DWORD	PowerOn	
-					
-	- 0	0 0	1	7/2	M

Description: The number of the handwheel is displayed in the channel/axis-specific signals of the VDI interface:
Value = 0 :
Bit coded (1 of 3, only 3 handwheels can be displayed)
Value = 1 :

Binary coded (6 handwheels can be displayed)

11330	JOG_INCR_SIZE_TAB	EXP, N09	H1					
-	Increment size for INC/handwheel						DOUBLE	PowerOn
-								
-	5	$1 ., 10 ., 100 ., 1000 .$, 10000.	0.0	$1.0 \mathrm{E}+301$	M			

Description: In incremental traversal or handwheel travel, the number of increments to be traversed by the axis can be defined by the user, e.g. via the machine control panel.
In addition to the variable increment size (INCvar), 5 fixed increment sizes (INC...) can also be set.
The increment size for each of these 5 fixed increments is defined collectively for all axes by entering values in JOG_INCR_SIZE_TAB [n]. The default setting is INC1, INC10, INC100, INC1000 and INC1000 ${ }^{-}$.
The entered increment sizes are also active for DRF.
The size of the variable increment is defined in SD41010 \$SN_JOG_VAR_INCR_SIZE. Related to:

MD31090 \$MA_JOG_INCR_WEIGHT (weighting of an increment for INC/manual) NC/PLC interface signal DB21-30 DBX41.0-.4, DBX47.0-.4, DBX53.0-. 4
(Geometry axis 1-3 active machine function: INC1; ...; INC10000) NC/PLC interface signal DB31, ... DBB65.0 - . 5
(active machine function: INC1; ...; INC10000).

11342	ENC_HANDWHEEL_MODULE_NR						N01	H1
-	3rd handwheel: drive number / measuring circuit number	BYTE	PowerOn					
-								
-	-	0	0	31	$7 / 2$			

Description:
Only for test purposes for PROFIBUS/PROFINET:
Number of the module within a segment (MD11340 \$MN_ENC_HANDWHEEL_SEGMENT_NR), used to address the 3rd handwheel.
$=0$: The configuration of a 3rd handwheel is deactivated, in this case
the setting of MD11340 \$MN_ENC_HANDWHEEL_SEGMENT_NR and
MD11344 \$MN_ENC_HANDWHEEL_INPUT_NR are irrelevant.
Corresponds with MD11340 \$MN_ENC_HANDWHEEL_SEGMENT_NR
MD11344 \$MN_ENC_HANDWHEEL_INPUT_NR

11344	ENC_HANDWHEEL_INPUT_NR						N01	H1
-	3rd handwheel: Input to module/meas. circ. Board	BYTE	PowerOn					
-								
-	-	1	2	$7 / 2$	M			

Description:

Only for test purposes for PROFIBUS/PROFINET:
Number of the input on a module used to address the 3rd handwheel.
840D: $1 / 2$ = upper/lower actual value input
Corresponds with MD11340 \$MN_ENC_HANDWHEEL_SEGMENT_NR
MD11342 \$MN_ENC_HANDWHEEL_MODULE_NR

11346	HANDWH_TRUE_DISTANCE		N01	H1,	
-	Handwheel default path or velocity		BYTE	Pow	
-					
-	1	0	7	$7 / 2$	M

Description:

Setting the behavior for traversing with the handwheel, contour handwheel and with FDA=0:

Value = 1: (default value)
The default settings of the handwheel are path inputs. No pulses are lost. Residual axis motions occur as a result of the limitation to a maximal permissible velocity. Value = 0 :

The default settings of the handwheel are velocity inputs. The axes stop as soon as the handwheel stops. The motion is immediately braked if no pulses come from the handwheel in an interpolation cycle. Therefore, only a short residual motion of the axes can occur as a result of the braking ramp. The handwheel pulses do not supply a path default.
Value = 2 :
The default settings of the handwheel are velocity inputs. The axes are intended to stop as soon as the handwheel stops. The motion is immediately braked if no pulses come from the handwheel in an interpolation cycle. However, in contrast to value $=0$ braking is not along the shortest possible path but to the next possible point in an intended grid.

Each increment in the grid corresponds to a displacement which the selected axis travels per handwheel grid position (see MD31090 \$MA_JOG_INCR_WEIGHT and see MD31090 \$MA JOG INCR WEIGHT and,

MD11330 \$MN_JOG_INCR_SIZE_TAB,
MD20620 \$MC_HANDWH_GEOAX_MAX_INCR_SIZE).
MD32080\$MA_HANDWH_MAX_INCR_SIZE
The start of the traversing is taken as the zero point of the grid.
Value = 3:
The default settings of the handwheel are path inputs. If premature braking is required on account of settings in other machine data

MD11310 \$MN HANDWH REVERSE ! = 0
MD20624 \$MC_HANDWH_CHAN_STOP_COND
MD32084 \$MA_HANDWH_STOP_COND
then in contrast to value $=1$ braking is not along the shortest possible path, but to the next possible point in an intentional grid (see value $=2$).

Value = 6:
Same as value = 2, but travel does not stop at the last possible grid position in front of a limit, but at the limit.
Value = 7:
Same as value = 3, but travel does not stop at the last possible grid position in front of a limit, but at the limit.

11350	HANDWHEEL_SEGMENT	N09	H1			
-	Handwheel segment	DWORD	PowerOn			
-						
-	6	$0,0,0,0,0,0$	0	255	$7 / 2$	

Description:
Machine data defines which
hardware segment the handwheel is connected to:
$0=$ SEGMENT_EMPTY ; no handwheel
$1=$ SEGMENT_840D_HW ;handwheel at 840D HW
$2=$ SEGMENT_8xXD_HW ; handwheel at 828D sl, 808D -HW
$5=$ SEGMENT_PROFIBUS ;handwheel at PROFIBUS
$7=$ SEGMENT_ETHERNET ;handwheel at Ethernet

11352	HANDWHEEL_INPUT		N09	H1	
-	Handwheel connection		BYTE	PowerOn	
-					
-	$6 \quad 0,0,0,0,0,0$	0	6	7/2	M

Description:
 Machine data which is intended to select

the handwheels connected to
a hardware module:
$0=$ No handwheel configured
$1 . .6 \quad=$ Handwheel connection to HW module/Ethernet interface

11353	HANDWHEEL_LOGIC_ADDRESS			N04, N10	H1	
-	Logical handwheel slot addresses			DWORD	Pow	
-						
-	6	0, 0, 0, 0, 0, 0	0	16383	7/2	M

Description: For PROFIBUS/PROFINET only:
Logical start address of the hand wheel slots if handwheels are connected by PROFIBUS/ PROFINET (MD11340 \$MN_HANDWHEEL_SEGMENT = 5)
\(\left.\begin{array}{|l|l|l|l|l|l|}\hline 11354 \& HANDWHEEL_FILTER_TIME \& N09 \& -

\hline \mathrm{s} \& Filter time for handwheel pulses \& DOUBLE \& PowerOn

\hline- \& 6 \& \begin{array}{l}0.0,0.0,0.0,0.0,0.0,

0.0\end{array} \& 0.0 \& 2.0 \& 7 / 2\end{array}\right]\)| M |
:---

Description:
The filter time indicates the time during which the pulses from the handwheel are output to the interpolator. The values are incremented internally in interpolation cycles.
In the case of a filter time setting $=0.0$, the pulses from the handwheel are output to the interpolator within a single interpolation cycle. This can cause the controlled axis to exhibit jerk during traversing.
Machine data is valid for the following types of handwheel (see 11350 \$MN_HANDWHEEL_SEGMENT) :
SEGMENT_ETHERNET:

- Recommended filter time: 0.2-0.5 s

11398	AXIS_VAR_SERVER_SENSITIVE		EXP	B3	
-	Axis-Var server response		UBYTE	PowerOn	
-					
-	0	0	-	7/2	M
Description:	The axis-variable serve SSP. If no value can be supp default value (usually For debugging purposes, sensitive so that an er 0 : default value 1: error message	s an ur hi ge	the OP because be used instead	SM s is the defa	GA/SEGA and axis) then a -server to

11410	SUPPRESS_ALARM_MASK	EXP, N06	D1, M3, K3, S1, V1, W1				
-	Mask for support of special alarm outputs					UDWORD	PowerOn
-							
-	-	0×100000	0	$0 x F F F F F F F F$			

Description:
Mask for suppressing special alarm outputs
Bit set: The corresponding alarm (warning) is NOT triggered.
Bit 0:
Alarm 15110 "Channel \%1 block \%2 REORG not possible"
Bit 1:
Alarm 10763 "Channel \%1 block \%2. The path component of the block in the contour plane is zero"

Bit 2:
Alarm 16924 "Channel \%1 Caution: Program testing can modify tool/magazine data"
--> Note: The alarm is only a message alarm
Bit 3:
Alarm 22010 "Channel \%1 spindle \%2 block \%3. Actual gear stage does not correspond to set gear stage"
Bit 4:
Alarm 17188 "Channel \%1 D number \%2 with tool T nos. $\% 3$ and $\% 4$ defined"
Alarm 17189 "Channel \%1 D number \%2 of the tools in magazines/magazine locations \%3 and $\% 4$ defined". The two alarms are of equal status and are only message alarms.

Bit 5:
Alarm 22071 "TO unit \%1 tool \%2 duplo no. \%3 is active but not in the active wear grouping." The alarm is only a message alarm.

Bit 6:
Alarm 4027 "NOTICE! MD \%1 was also changed for the other axes in the axis container \%2 "

Alarm 4028 "NOTICE! The axial MDs in the axis container will be aligned on the next runup "
Bit 7:
Alarm 22070 "TO unit \%1 please change tool $T=\% 2$ to magazine. Repeat data backup". The alarm is only a message alarm.

Bit 8:
Alarm 6411 "Channel \%1 tool \%2 with duplo no. \%3 has reached tool prewarning limit" Alarm 6413 "Channel \%1 tool \%2 with duplo no. \%3 has reached tool monitoring limit." The two alarms are only message alarms. They occur during program execution.
Bit 9:

Alarm 6410 "TO unit \%1 tool \%2 with duplo no. \%3 has reached tool prewarning limit ." Alarm 6412 "TO unit $\% 1$ tool $\% 2$ with duplo no. $\% 3$ has reached tool monitoring limit ". The two alarms are only message alarms. They occur as a result of an operator action. Bit10:
Alarm 10604 "channel \%1 block \%2 "Thread lead increase too high"
Alarm 10605 "channel \%1 block \%2 "Thread lead decrease too high"
Bit 11:
Alarm 14088 "Channel 51 block $\% 2$ axis $\% 3$ doubtful position".
Bit 12:
obsolete (Alarm 10607)"
Bit13:
Alarm 10704 " channel \%1 block \%2 Protection area monitoring is not guaranteed."
Bit14:
Alarm 21701 "Measuring reactivated too soon (<2 IPO cycles)"
Bit15:
Alarm 5000 "Communication order cannot be executed"
Bit16:
Alarm 21600 "Monitoring active for ESR"
Bit17:
Alarm 16945 "Channel \%1 action $\% 2<A L N X>$ is delayed until block end"
Note: The alarm is only a message alarm.
Bit18:
Alarm 10750 "Channel \%1 block \%2 Activation of the tool radius compensation without tool number"
Bit19: Alarm 17193 "Channel \%1 block \%2 The active tool ist no longer at tool holder no./spindle no. \%3, program \%4"
Bit20:
Alarm 2900 "Reboot is delayed"
Bit21:
Alarm 22012 "Channel \%1 block \%2. Leading axis \%3 is in simulation mode"
Alarm 22013 "Channel \%1 block \%2. Following axis \%3 is in simulation mode"
Alarm 22014 "Channel \%1 block \%2. The dynamics of leading axis \%3 and following axis \%4 are very different"
Alarm 22040 "Channel\%1 Block \%3 Spindle \%2 not referenced with zero mark" is no longer checked (cyclically) with

Bit21 set after power ON of the closed loop position control.
Bit22:
Alarm 26080 "Channel \%1 retraction position of axis \%2 not programmed or invalid"
Alarm 26081 "Channel \%1 single axis trigger axis \%2 is triggered, but axis is not PLC controlled"
Bit23:
Alarm 16949 "Correspondence between marks of channel \%1 and channel \%2
is invalid"

Bit24:
Alarm 16950 "Channel \%1 search run with holding block"
Bit25:
Alarm 22016 "Channel \%1 block \%2 following spindle \%3 in range of reduced acceleration capacity"
Bit26:

```
Alarm 22015 "Channel %1 block %2 following spindle %3 no dynamic response for
additional motion"
Bit27:
Alarms 16112 and 22030 "Channel %1 block %2 following spindle %3 impermissible
programming"
Bit28:
Alarm 26083 "Channel %1 ESR for PLC controlled axis %2 was triggered"
Bit29:
Alarm 16772 "Channel %1 block %2 axis %3 is following axis, coupling is opened"
Bit30:
Alarm 16600 "Channel %1 block %2 spindle %3 gear stage change not possible"
Bit31:
Alarm 16774 "Channel %1 axis %2 synchronization canceled"
```

11411	ENABLE_ALARM_MASK		EXP	D1, K1	
-	Activation of warnings		UDWORD	Reset	
-					
-	0x0	0	0x7FFFFFFF	7/2	M

Description:

Mask for generating alarms that are normally suppressed.
Bit set: Alarms of this alarm group are output.
Bit not set: Alarms of this alarm group are not output.
Bit Hex. Meaning
value

0: 0x1 Alarms that have SHOWALARMAUTO as the alarm response are output.
1: 0×2 Alarms that have SHOWWARNING as the alarm response are output.
2: $0 x 4$ Alarm 22280 "Thread power up path too short" is output.
3: 0x8 Alarms that are triggered by the NCU LINK MODULE are switched on.
4: 0x10 Alarm 10883 "Chamfer or rounding must be shortened" allowed.
5: 0x20 Alarm 20096 "Brake test canceled" is output.
6: 0x40 Alarm 16956 "Program cannot be started because of global start disable" is output.

Alarm14005 "Program cannot be started because of program-specific start disable" is output. Alarm can only be switched on in channel status RESET, in all other channel states it is output without conditions.
7: 0x80 Alarm 16957 "Stop delay range is suppressed" is output.
8: 0×100 Alarm 1011 fine coding150019 or 150020 "Incorrect axis number in the LINK".
9: 0x200 Alarm 22033 Diagnostics 1 to 6 for "Track synchronism" (linkages).
10: 0x400 Alarm 15122 "PowerOn after Powerfail: \%1 data were restored, thereof \%2 machine data, $\% 3$ errors" is output.
11: 0×800 Alarms 10722, 10723, 10732 or 10733 are output instead of alarms 10720, 10721, 10730 or 10731.
12: 0x1000 Alarm 22033 diagnostics greater than or equal to 7 for "Track synchronism" (linkages)
13: 0×2000 All alarms that refer to the rejection of an ASUB start are also output. 14: 0×4000 All alarms that refer to the rejection of a PI service are also output. 15: 0x8000 Alarm 14004 "channel-specific start disable is set" is output on an NC start. The alarm always appears with block search, irrespective of bit 15 .

11412	ALARM_REACTION_CHAN_NOREADY	EXP, N01	D1					
-	Alarm response CHAN_NOREADY permitted						BOOLEAN	PowerOn
-								
-	-	FALSE	0	-	M			

Description:

This MD is used for compatibility with the PLC systems older than SW4.1.
If this MD is not set, the behavior implemented before SW4.1 (configured alarm reaction) is set
With SW 4.1 and higher, it is possible to set signal CHANNEL_NOREADY on the PLC in response to alarms.
If this MD is not set, then the alarm handler internally re-configures BAG_NOREADY into CHAN_NOREADY.

11414	ALARM_CLR_NCSTART_W_CANCEL	EXP, N01	D1					
-	Clear NCSTART alarms with CANCEL						BOOLEAN	PowerOn
-								
-	-	FALSE	0	-	M			

Description: If this MD is set, then alarms that have ClearInfo=NCSTART are cleared by the Alarm Cancel button as well as by NC-Start.

If this MD is not set, then NCSTART alarms are not cleared by Cancel.
The purpose of this MD is to provide compatibility with system behavior.

Description:

Mask for suppressing special alarm outputs
Bit set: Corresponding alarm (warning) is NOT triggered.
Bit Hex. Meaning
Value

0: 0x1 16773 "Channel $\% 1$ axis $\% 3$ is slave axis. The axis/spindle disables for the master axes differ."
1: $0 x 2 \quad 2100$ "NCK battery warning level reached"
2101 "NCK battery alarm"
2102 "NCK battery alarm"
2: $0 x 4 \quad 2120$ "NCK fan alarm" (ineffective on modules that require a fan due to their design)
3: $0 x 815120$ "PowerFail: Show buffer overflow"
4: $0 \times 10 \quad 15187$ "Error during execution of PROGEVENT file"
5: $0 \times 20 \quad 15188$ "Error during execution of ASUB file"
6: 0×4026120 "\$AA_ESR_ENABLE $=1$ and axis is to become neutral"
26121 "Axis is neutral and \$AA_ESR_ENABLE =1 is to be set"
26123 "\$AA_ESR_ENABLE = 1 is to be set, but MD37500 \$MA_ESR_REACTION is not set"
26124 "\$AC TRIGGER triggered, but axis is neutral, ESR ignores this axis"
7: 0x80: 10724 "Software limit violated at start of block" 10734 "Operating range limit violated at start of block" 10737 "Work (WCS) operating range limit violated at start of block"
8: 0x100: 14008 "WRITE command in /_N_EXT_DIR" 10734 "Operating range limit violated at start of block"

```
    10737 "Work (WCS) operating range limit violated at start of block"
9: 0x200 14006 "Invalid program name"
10: 0x400: 4006 "Maximum number of axes that can be activated exceeded"
11: 0x800 16017 "LIFTFAST ignores this axis, as it cannot be used for the current
axis type"
12: 0x1000 22025 "Channel %1 Block %2 Following axis/spindle %3 Synchronism (2):
Fine tolerance exceeded"
- Exception: Alarm is generated if CPMALARM[FAx] bit \(8=0\) is programmed for the corresponding slave axis/spindle.
22026 "Channel \%1 Block \%2 Following axis/spindle \%3 Synchronism (2): Coarse tolerance exceeded"
- Exception: Alarm is generated if CPMALARM[FAx] bit \(9=0\) is programmed for the corresponding slave axis/spindle.
13: 0x2000 22001 "Braking ramp longer than Stop D time." 22002 "Braking ramp longer than Stop D time with gear stage \%3 reason \% 4 "
14: 0x4000 16963 "ASUB start refused."
15: 0x8000 21751,"Limit velocity %2 deg/min on modulo axis %1 exceeded (defective
cam output)"
    21752,"Axis %1 minimum cam width cam %3 undershot at curr. velocity %2 "
16: 0x10000 17212 "Channel %1 Tool management: Load manual tool %3, Duplo no. %2
to spindle/toolholder"
```

17214 "Channel \%1 Tool management: Unload manual tool \%3 from spindle/
toolholder \%2"

17215 "Channel \%1 Tool management: Unload manual tool \%3 from buffer
location \%2"
17216 "Channel \%1 Unload manual tool from toolholder \%4 and load manual
tool \%3 \%2"
17: 0x20000 16771 "Channel \%1 Block \%3 Following axis \%2 Overlaid movement not enabled"

18: 0x40000 4039 "Channel \%1 Axis container \%2 Advance not allowed: Channel has no container axes"

19: 0x80000 7204 "The compile cycle \%1 is a preliminary version
20: 0x100000 This bit is effective at RESET. This means that the SHOWALARM and SETVDI responses of the following alarms can be suppressed:

10700 "Channel \%1 block \%2 NCK protection area \%3 in automatic or MDI
violated"
10701 "Channel \%1 block \%2 channel-specific protection area \%3 in automatic
or MDI violated"
21: 0x200000 26295 "Protection area \%1 was only roughly approximated."
22: 0x400000 6030 "Information alarm: Channel/axis activation or storage option (MD19240, 19250) requires more memory than is available"
23: 0x800000 6035 "Information alarm: Less free memory detected during cold start than is defined in MD18050, 18060"

24: 0x1000000 380040 "PROFIBUS/PROFINET: Bus \%3, configuration error \%1, parameter \%2"
PROFINET-device-specific consistency checks for Ti/To are disabled.
The setup engineer or user is thus responsible for ensuring that axes
and distributed I/Os work synchronously with one another on the PROFINET, e.g. they
can interpolate with one another.
25: 0x2000000 16736/22282 "Informational alarms channel \%1 Block \%2: Prog. thread block is too short $\% 3$ to maintain dynamic limit values, $\% 4$ is required

Alarms relating to short smoothing blocks and the associated exceeding of the dynamic limit values between thread blocks are disabled.

11416	LINK_DYNMSG_ALARM_MASK						EXP, N06	-
-	Mask for activating special alarm outputs with NCU-Link						UDWORD	Immediately
-								
-	-	0×000001	0	$0 x 1 F F$	M			

Description:

This mask is used by developers for diagnostics.
Mask for activating special alarm outputs with NCU-Link if non-cyclic messages cannot be transferred immediately.
Alarm 14764 (NCU-Link cannot immediately transfer all non-cyclic link messages of the stated type) is issued if, for the set type (corresponds to the bits of this MD), the affected message type could not be transferred immediately).

11420	LEN_PROTOCOL_FILE		N01	PGA	
-	Size of protocol files (kB)		DWORD	Pow	
-					
-	1	1	1000000	7/2	M

Description: Blocks from the part program can be stored in a file in the passive file system with the WRITE command. The length of the log file is limited. If this maximum length is exceeded, the WRITE command returns an error (error code 10).

Description:
Setting the behavior of the WRITE command for writing to the passive file system Bit $0=0$:

The file created with WRITE is stored persistently in the USR area (see \$MM_U_FILE_MEM_SIZE).

The block written with WRITE becomes persistent immediately, i.e. it is stored power failsafe.

WRITE is slowed down by the backup with this setting.
Bit $0=1$:
The file created with WRITE is stored persistently in the USR area (see
\$MM_U_FILE_MEM_SIZE).
The block written with WRITE becomes persistent after a time delay.
WRITEs less than one second old may be lost in the event of a power failure.
WRITE runs faster with this setting.
Bit 1: Reserved

11450	SEARCH_RUN_MODE	EXP, N01	K1, TE3, N4, H2, Z1			
-	Parameterization for search run	UDWORD	PowerOn			
-						
-	-	0×40	0	0xFF		

Description:

The behavior during the action blocks after block search can be affected by the following bits:
Bit $0=0$:
Machining is stopped after loading of the last action block after block search, the NC/ PLC interface signal DB21-30 DBX32.6 (last action block active) is set and alarm 10208 is output.

Bit 0 = 1:

Machining is stopped with the loading of the last action block after block search, and the NC/PLC interface signal DB21-30 DBX32.6 (last action block active) is set. Alarm 10208 is not output until the PLC requests it by setting the NC/PLC interface signal DB21-30 DBX1.6 (PLC action finished).
Application:
Starting an ASUB from the PLC after block search.
The message to the operator that another NC start is required in order to continue with the program is not to be displayed until after the end of the ASUB.

Bit $1=1$

Automatic ASUB start after output of the action blocks. Alarm 10208 is not output until the ASUB has finished.
See also MD11620 \$MN_PROG_EVENT_NAME.
Bit $2=0$:
Spindle: auxiliary functions are output in the action blocks.
Bit 2 = 1 :
The output of the auxiliary functions in the action blocks is suppressed. The spindle programming collected by block search can be output at a later point in time (e.g. in an ASUB).
The program data for this are stored in the following system variables:

- \$P_SEARCH_S,
- \$P_SEARCH_SDIR,
- \$P_SEARCH_SGEAR,
- \$P_SEARCH_SPOS,
- \$P_SEARCH_SPOSMODE

Bit 3 = 1:
The cascaded search run is disabled (default setting: release).
Cascaded search run means that the search run is restarted immediately after finding a search target.
Bit 4: Reserved
Bit $5=0$:
During block search tp a nibbling block, the 1st nibbling stroke is not executed.
Bit $5=1$:
During block search to a nibbling block, a punching stroke is triggered at block start (1st nibbling stroke).
Bit $6=0$:
With block search, complex path calculations are made.
Bit $6=1$:
With block search, calculation is made with simple, computing-time-optimized algorithms.
Bit $7=0$:
Any adjustment movements that may be necessary on activation of a tangential axis coupling, during or after an SSL, are performed with the feed conditions active in the activation block (G0 or G1 with feedrate). In the case of G1, the feedrate can additionally be set in SD 42121: \$SC_AX_ADJUST_FEED.
Bit $7=1$:
The adjustment movements necessary on activation of a tangential axis coupling, during or after an SSL, are always performed with rapid traverse feedrate (GO). In this case, the feedrate value in SD 42121: \$SC_AX_ADJUST_FEED is ignored.

Description:
This bit mask can be used to set the behavior of the control during repositioning.
Bit no. Meaning when bit set

0 (LSB)
The dwell time is continued in the residual repositioning block from where it was interrupted. (If the bit is not set, the dwell time is repeated completely).
1 Reserved
2 When the bit is set, repositioning of individual axes can be prevented or delayed via the VDI interface.
3 When the bit is set, positioning axes are repositioned in the approach block during search run via program test.
4 As 3, but after every Repos, not only during search run.
5 When the bit is set, changed feeds and spindle speeds already become valid in the residual block, otherwise not until the following block.
6 When the bit is set, neutral axes and positioning spindles are repositioned after SERUPRO as command axes in the approach block.
7 The bit changes the behavior of the VDI-AXIN interface signal DB31,DBX10. 0 (Repos Delay). The level of DB31,DBX10.0 (Repos Delay) is read if REPOSA is interpreted.

Axes that are neither geo nor orientation axes are then excluded from the REPOS,
that is REPOS does NOT move these axes.
Note: This bit completely switches off the channel-specific VDI signal
DB21,DBX31.0..2 (ReposPathMode).

Description:
Buffer depth of PLC trace data at OB1.
Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB1" are collected once per complete PLC scan, but can only be inspected once per IPO cycle.

The buffer size must accomodate at least one more value than the total number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

A good value to start with is one more than MD10074 \$MN_PLC_IPO_TIME RATIO.
The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.
This single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from one another). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

11481	PLC_OB35_TRACE_DEPTH							EXP, N03, N09	-
-	Buffer depth of PLC trace data at OB35	DWORD	PowerOn						
-									
-	-	2	2	8					

Description:

Buffer depth of PLC trace data at OB35.
Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB35" are collected every time the PLC timer interrupts, but can only be inspected once per IPO cycle.
The buffer size must accomodate at least one more value than the number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

A good value to start with is one more than the number of PLC timer interrupts expected to occur every IPO cycle.
The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.
The single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from each other). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

11482	PLC_OB40_TRACE_DEPTH	EXP, N03, N09	-			
-	Buffer depth of PLC trace data at OB40	DWORD	PowerOn			
-						
-	-	2	2	8	$2 / 2$	

Description:

Buffer depth of PLC trace data at OB40.
Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB40" are collected just when the PLC receives the special, programmably initiated OB40 interrupt from NCK, but can only be inspected once per IPO cycle.
The buffer size must accomodate at least one more value than the number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

If the OB40 interrupt is issued less frequently than once per IPO cycle, then the OB40 buffer depth should be 2. Otherwise it should be one more than the largest number of interrupts expected during any one IPO cycle.

The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.

The single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from each other). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

11500	PREVENT_SYNACT_LOCK	N01, N09	S5, FBSY			
-	Protected synchronized actions	DWORD	PowerOn			
-						
-	2	0,0	0	1399	$7 / 2$	

Description:
First and last IDs of a protected synchronized action area.
Synchronized actions with ID numbers in the protected area can no longer be

- overwritten
- disabled (CANCEL)
- locked (LOCK)
once they have been defined. Furthermore, protected synchronized actions cannot be locked by the PLC (LOCK). They are shown at the interface to the PLC as non-lockable. Note:
The protection should be suspended while creating the synchronized actions to be protected, as otherwise a Power On will be necessary after every change in order to be able to redefine the logic. There is no area of protected synchronized actions with 0.0 . The function is disabled. The values are read as absolute values, and over and under values can be given in any order.

Description: Enable utilization analysis via synchronized actions.

This MD11510 \$MN_IPO_MAX_LOAD sets the IPO computing time (in of the IPO cycle) after which the variable \$AN_IPO_LOAD_LIMIT is to be set to TRUE. The variable is reset to FALSE if the value falls below this after having once exceeded it. This diagnostics function is disabled if the machine data is 0.

11550	STOP_MODE_MASK		N01	V1	
-	Defines the stop behavior.		UDWORD	PowerOn	
-					
-	0	0	0x1	7/2	M

Description:
This MD describes the stop behavior of the NCK under certain conditions:
Bit no. Meaning
Bit $0==0$:=
No stop if G codes $G 331 / G 332$ are active and a path motion or $G 4$ has also been programmed.
Bit 0 == 1 :=
A stop is possible during G331/G332 with interruption of the continuous-path mode (G60 or G4 between G331/G332 blocks interrupt the continuous-path mode).

Bits 1..... 15
Not assigned

11600	BAG_MASK						N01	K1, Z1
-	Defines the mode group behavior	UDWORD	PowerOn					
-								
-	-	0	0	3	$7 / 2$			

Description:

The MD describes the effect of the VDI signals on all channels of a mode group (BAG) and the behavior of the internal mode changeover in relation to ASUBs and interrupt routines.

Value = 0: When an interrupt is started in a channel of the mode group, all channels of the mode group respond normally to mode group VDI signals (such as BAG-RESET und BAG-STOP). If the interrupt is started from JOG, all channels of the mode group change internally into AUTO mode. Similarly, the mode group automatically switches back to JOG when the interrupt ends.

Value = 1: If an interrupt is started in a channel of the mode group, this channel no longer responds to mode group VDI signals (such as BAG-RESET and BAG-STOP). If, for example, BAG-STOP is triggered, all channels of the mode group are stopped, but the interrupt continues to run. A channel STOP remains active as before. Furthermore, if an interrupt is started from JOG in a channel of the mode group, only this channel automatically changes the mode to AUTO internally, all other channels of the mode group remain in JOG mode. The automatic switch back of the mode at the end of the interrupt only relates correspondingly to the channel in which the interrupt ran.
Value = 2: If an interrupt is started in a channel of the mode group, all channels of the mode group respond normally to mode group VDI signals (such as BAG-RESET and BAGSTOP). If an interrupt is started from JOG in a channel of the mode group, only this channel automatically changes the mode to AUTO internally. All other channels of the mode group remain in JOG mode. The automatic switch back of the mode at the end of the interrupt naturally only relates to the channel in which the interrupt ran. This behavior is not supported until V4.7 SP4 HF1. This setting was not defined in earlier versions. Furthermore, the functionality "JOG in ASUB" is permitted with this setting (see MD11602 \$MN_ASUP_START_MASK, bit3).
Value = 3: As value = 1. But the functionality "JOG in ASUB" is also permitted (see MD11602 \$MN_ASUP_START_MASK, bit3).

11602	ASUP_START_MASK		N01	K1,	
-	Ignore stop conditions for ASUB		UDWORD	Pow	
-					
-	0	0	0xf	7/2	M

Description:
This machine data defines which stop reasons are to be ignored on an ASUB start. The ASUB is started or the following stop reasons are ignored:
Bit 0 :
STOP reason: STOP key, MO or MO1
An ASUB is started immediately if NCK is in RESET status (or JOG mode) (no ASUB can be started in RESET/JOG without this bit).

Bit 1:
Reserved! This bit was replaced by MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK and MD20115 \$MC_IGNORE_REFP_LOCK_ASUP.

Bit 2:
Start allowed even if a read-in disable is active; in other words, the blocks of the ASUB program are loaded and executed immediately. This therefore disables machine data MD20107 \$MC_PROG_EVENT_IGN_INHIBIT and MD20116 \$MC_IGNORE_INHIBIT_ASUP. The NCK behavior corresponds to the machine data assignment \$MC PROG EVENT IGN INHIBIT=H3F \$MC_IGNORE_INHIBIT_ASUP=HFFFFFFFF.
If the bit is not set:
The assignment of machine data MD20107 \$MC_PROG_EVENT_IGN_INHIBIT and MD20116
\$MC_IGNORE_INHIBIT_ASUP are evaluated.
If the particular bit in \$MC_PROG_EVENT_IGN_INHIBIT or \$MC_IGNORE_INHIBIT_ASUP is 0, then although an ASUB or prog event are immediately internally initiated, the blocks of the ASUB program are only loaded when the read-in inhibit is withdrawn.
The path is decelerated immediately when the ASUB is triggered (except with option BLSYNC).

The read-in disable is set once more in the ASUB program.

Bit 3:
Notice:
The following function can always be activated in single-channel systems. Multichannel systems require bit1 in MD11600 \$MN_BAG_MASK in addition. The function is active o_n_l_y for those ASUBs that were activated from the cancelation program status (Reset channel status). The function is not active in multi-channel systems without MD11600 \$MN_BAG_MASK bit1.
If an ASUB is started automatically from JOG, the user may stop in the middle of the ASUB program. JOG mode is displayed continuously for the user. With bit 3 set, the user may jog in this situation. This is not possible without bit 3 . In this case, mode change is locked with alarm 16927. By pressing the Start key, the user can continue the ASUB program. As long as the ASUB program is running, the user is naturally not able to jog. At the end of the ASUB program, the user may jog again.
Bit 4...15: Reserved
Corresponds with:
MD11604 \$MN_ASUP_START_PRIO_LEVEL
MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK
MD20107 \$MC_PROG_EVENT_IGN_INHIBIT
MD20115 \$MC_IGNORE_REFP_LOCK_ASUP
MD20116 \$MC_IGNORE_INHIBIT_ASUP

11604	ASUP_START_PRIO_LEVEL					N01	K1,	
-	Priorities from which 'ASUP_START_MASK' is effective					DWORD	PowerOn	
-								
-	-		0		0	128	7/2	M
Description:	This machine data defines the ASUB priority from which MD11602 \$MN_ASUP_START_MASK is to be applied. MD11602 \$MN_ASUP_START_MASK is applied from the level specified here up to the highest ASUB priority level 1. Related to: MD11602 \$MN_ASUP_START_MASK							

11610	ASUP_EDITABLE			N01	K1	
-	Activation of a user-specific ASUB program			UDWORD	Pow	
-						
-	0	0	0	0x7	7/2	M

Description:
This MD determines whether user-specific routine: _N_ASUP_SPF stored in directory _N_CUS_DIR/ _N_CMA_DIR is to be used to process RET $\overline{\text { and }}$ REPOS. The user ASUB is searched for first in _N_CUS_DIR.
Value: Meaning:
0 Routine _N_ASUP_SPF is not activated for either RET or REPOS.
Bit0 = 1 User-specific routine _N_ASUP_SPF is executed for RET, the routine supplied by the system is executed for REPOS.
Bit1 = 1 User-specific routine _N_ASUP_SPF is executed for REPOS, the routine supplied by the system is executed for RET
Bit0 $=+$ bit1 $=3$ User-specific routine _N_ASUP_SPF is executed for both RET and REPOS
Bit2 = 1 User ASUB _N_ASUP_SPF is searched for first in _N_CMA_DIR
Related to:
MD11612 \$MN_ASUP_EDIT_PROTECTION_LEVEL

11620	PROG_EVENT_NAME							EXP, N12	K1
-	Program name for PROG_EVENT	STRING	PowerOn						
-									
-	-	-	-	-	M				

Description:

Name of the user program called by the "event-driven program calls" and "automatic ASUB start after block search" functions (MD11450 \$MN_SEARCH_RUN_MODE, bit 1). _N_PROG_EVENT_SPF is the default setting.
The default setting is activated if MD11620 \$MN_PROG_EVENT_NAME includes a blank string.
If the machine data does not contain a blank string, then the syntax of the string is checked as in the case of a subprogram identifier. This means that the first two characters must be letters (not numbers) or underscores. If this is not the case, alarm 4010 is output during ramp-up.
The program must be located in a cycle directory. When it is called, the search runs through the cycle directories in accordance with the setting of MD11622 \$MN_PROG_EVENT_PATH.
The prefix (_N_) and the suffix (_SPF) of the program name are added automatically if they have not been specified.

Description: Path on which the user program set with MD11620 \$MN_PROG_EVENT_NAME is called in response to an event-driven program call configured with ${ }^{-}$MD2010 8 \$MC_PROG_EVENT_MASK:
0: /_N_CMA_DIR
1: /_N_CUS_DIR
2: /_N_CST_DIR
3: Search path in the sequence /_N_CUS_DIR, /_N_CMA_DIR, and /_N_CST_DIR

11625	FILE_ONLY_WITH_EXTENSION	N01	-				
-	On program call, only search for files with an extension	BYTE	Reset				
-							
-	-	0	0	1	$7 / 3$		

Description: This machine data can be used to set whether the file system is to be searched for files without an extension on a subprogram call. The search for files without an extension can be disabled to speed up the search for a program in the various paths in the file system, e.g. when using EES.
0: On subprogram calls, the search also includes files without an extension

1: On subprogram calls, the search is restricted to files with an extension (e.g. SPF, MPF etc.)

11626	CYCLES_ONLY_IN_CYCDIR							N01	-
-	Search for subprograms with PROC instruction in the cycle directories only	BYTE	Reset						
-	-	0	0	2	$7 / 3$				
-	-								

Description:
This machine data can be set to limit the search for subprograms that have a PROC instruction and have been stored in the cycle directories (CUS, CMA, CST), to just these directories. The PROC instructions are read in during a warm restart. The function therefore only applies to subprograms that were in the cycle directories at the time of the warm restart.
Use: this setting prevents unnecessary accesses to the external storage during program execution by the function "Execution from External Storage EES" and therefore speeds up calling SIEMENS cycles, for example.

0: On subprogram calls, the NC program is searched for in all program directories in the search path
1: On subprogram calls, the $N C$ program is searched for only in the cycle directories CUS, CMA, and CST
2: On subprogram calls, the $N C$ program is searched for in the directory defined by the CALLPATH instruction, and then in the cycle directories CUS, CMA and CST

11640	ENABLE_CHAN_AX_GAP	N01, N11	K2			
-	Allow channel axis gaps in AXCONF_MACHAX_USED	UDWORD	PowerOn			
-						
-	-	0×0	0	0×1	$2 / 2$	

Description:
Bit0 $=1$
Machine data allows configuration of channel axis gaps in the MD20070
\$MC_AXCONF_MACHAX_USED.
Permits following MD assignment:
\$AXCONF_MACHAX_USED[0] = 1 ; 1st MA is 1st axis in channel
\$AXCONF_MACHAX_USED[1] = $2 \quad ; 2 n d$ MA is 2nd axis in channel
\$AXCONF_MACHAX_USED[2] = 0 ; Channel axis gap
\$AXCONF_MACHAX_USED[3] = 3 ; 3rd MA is 3rd axis in channel
\$AXCONF_MACHAX_USED[4] = 0
C A U T I O N:
(BITO set with MD20070 \$MC_AXCONF_MACHAX_USED):
If a geo axis is placed in a channel axis gap with MD20050
\$MC_AXCONF_GEOAX_ASSIGN_TAB[1]= 3, the control responds as with MD20050
\$MC_AXCONF_GEOAX_ASSIGN_TAB[1]= 0. This eliminates the geo axis!
Transformation machine data must not be assigned a channel axis number specified as a gap.
BIT1 - BIT31: not used.
Related to:
MD20080 \$MC_AXCONF_CHANAX_NAME_TAB,
MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB,
MD20060 \$MC_AXCONF_GEOAX_NAME_TAB
MD20070 \$MC_AXCONF_MACHAX_USED
MD2 4... \$MC_TRAFO_AXES_IN_...
MD2 4... \$MC_TRAFO_GEOAX_ASSIGN_TAB_...

11717	D_NO_FCT_CYCLE_NAME	EXP, N12, N07	K1				
-	Subroutine name for D function replacement	STRING	PowerOn				
-							
-	-	-	-	-	7/2		

Description:

Cycle name for replacement routine of the D function.
If a D function is programmed in a part program block, then, depending on machine data MD10717 \$MN_T_NO_FCT_CYCLE_NAME, MD10719 \$MN_T_NO_FCT_CYCLE_MODE and MD10718 \$MN_M_NO_FCT_CYCLE_PAR, the MD subprogram defined in MD11717 \$MN_D_NO_FCT_CYCLE_NAME is called.
The programmed D number can be polled in the cycle via system variable \$C_D / \$C_D_PROG.
MD11717 \$MN_D_NO_FCT_CYCLE_NAME is only active in Siemens mode (G290).
No more than one M/T/D function replacement can be active per part program line. A modal subprogram call must not be programmed in the block with the D function replacement. Furthermore, neither subprogram return nor part program end are allowed.
In the event of a conflict alarm 14016 is output.

11750	NCK_LEAD_FUNCTION_MASK							N09	-
-	Functions for master value coupling	UDWORD	NEW CONF						
-									
-	-	0×00	0	0×10					

Description:
Special functions of the master value coupling are set with this MD.
The MD is bit-coded, the following bits are assigned:
Bits 0-3:
reserved
Bit $4=0$:
the following axis of a master value coupling decelerates independently on $N C$ or mode group stop or channel-specific feed disable
Bit 4 == 1:
the following axis of a master value coupling does not decelerate independently on NC or mode group stop or channel-specific feed disable
Bits 5-31:
reserved

11752	NCK_TRAIL_FUNCTION_MASK	N09	-			
-	Functions for coupled motion	UDWORD	NEW CONF			
-						
-	-	0×0	0	0×10	$1 / 1$	

Description:
Special functions for coupled motions are set with this MD.
The MD is bit-coded; the following bits are assigned:
Bits 0-3:
reserved
Bit $4=0$:
the following axis of a coupled axis grouping activated by a synchronized action decelerates independently on $N C$ or mode group stop or channel-specific feed disable Bit 4 = 1 :
the following axis of a coupled axis grouping activated by a synchronized action does not decelerate independently on $N C$ or mode group stop or channel-specific feed disable Bit 5-31:
reserved

Description:
Evaluation of the axis velocity override switch with gray-coded interface. Not relevant with:
MD12000 \$MN_OVR_AX_IS_GRAY_CODE = 0
Related to:
NC/PLC interface signal DB31, ... DBBO (Feed override A-H), (axis-specific)

12020	OVR_FEED_IS_GRAY_CODE		EXP, N10	V1, Z 1	
-	Path feedrate override switch Gray-coded		BOOLEAN	PowerOn	
-					
-	TRUE	0	-	7/2	M

Description:
This machine data is used to adapt the path feed override switch to the interface coding of the PLC interface.

1: The 5 low-order bits of the NC/PLC interface signal DB31, ... DBB0 (Feed override A-H) are interpreted as a Gray code. The value which is read corresponds to a switch setting. It is used as an index for selecting the correct override factor from the table of MD12030 \$MN_OVR_FACTOR_FEEDRATE [n].
0: The feed override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).
Related to:
NC/PLC interface signal DB31, ... DBBO (Feed override A-H)
MD12030 \$MN_OVR_FACTOR_FEEDRATE [n]
(Evaluation of the path feed override switch)

Description:

Evaluation of the feedrate override switch with gray-coded interface.
Special function of the 31st value for the velocity control:
The setting of the 31 st override value defines the dynamic reserves which take the velocity control to be an excessive increase in the path feed. The setting should correspond to the highest override factor actually used.
The function of the 31 st value is thus identical to the effect of MD12100 \$MN_OVR_FACTOR_LIMIT_BIN when using the binary-coded interface.
Not relevant with:
MD12020 \$MN_OVR_FEED_IS_GRAY_CODE = 0
Related to:
NC/PLC interface signal DB31, ... DBB0 (Feed override A-H)

12040	OVR_RAPID_IS_GRAY_CODE						EXP, N10	V1, Z1
-	Rapid traverse override switch Gray-coded	BOOLEAN	PowerOn					
-								
-	-	TRUE	0	-				

Description:
This machine data is used to adapt the rapid traverse override switch to the interface coding of the PLC interface.
1: The 5 low-order bits of the PLC interface signal DB21-30 DBB5 (Rapid traverse override A-H) are interpreted as a Gray code. The value which is read corresponds to a switch setting.

It is used as an index for selecting the correct override factor from the table of MD12050 \$MN_OVR_FACTOR_RAPID_TRA[n].
$0: \quad$ The rapid traverse override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).
Related to:
NC/PLC interface signal DB21-30 DBB5 (Rapid traverse override A-H)
MD12050 \$MN_OVR_FACTOR_RAPID_TRA[n]
(Evaluation of the rapid traverse override switch)

12050	OVR_FACTOR_RAPID_TRA	EXP, N10	V1, Z1					
-	Evaluation of rapid traverse override switch	DOUBLE	PowerOn					
-								
-	31	$\begin{array}{l}0.00,0.01,0.02,0.04, \\ 0.06,0.08,0.10,0.20 \ldots\end{array}$	0.00	1.00	$7 / 2$		$]$	M
:---								

Description:
Evaluation of the rapid traverse override switch with gray-coded interface.

Not relevant with:
MD12040 \$MN_OVR_RAPID_IS_GRAY_CODE = 0
Related to:
NC/PLC interface signal DB21-30 DBB5 (Rapid traverse override A-H)

12060	OVR_SPIND_IS_GRAY_CODE		EXP, N10	V1,	
-	Spindle override switch Gray-coded		BOOLEAN	Pow	
-					
-	TRUE	0	-	7/2	M

This machine data is used to adapt the spindle speed override switch to the interface coding of the PLC interface.

1: The 5 low-order bits of the "spindle speed override" PLC interface signal are interpreted as a Gray code. The value which is read corresponds to a switch setting. It is used as an index for selecting the correct override factor from the table of MD12070 \$MN_OVR_FACTOR_SPIND_SPEED [n].
$0: \quad$ The spindle speed override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).
Related to:
NC/PLC interface signal DB31, ... DBB19 (Spindle speed override)
MD12070 \$MN_OVR_FACTOR_SPIND_SPEED[n]
(Evaluation of the spindle speed override switch)

12070	OVR_FACTOR_SPIND_SPEED	EXP, N10	V1, Z1					
-	Evaluation of spindle override switch						DOUBLE	PowerOn
-	31	$\begin{array}{l}0.5,0.55,0.60,0.65, \\ 0.70,0.75,0.80,0.85 \ldots . .\end{array}$	0.00	2.00	$7 / 2$			

Description:
Evaluation of the spindle-specific override switch with Gray-coded interface.
Special function of the 31st value for the velocity control:
The setting of the 31 st override value defines the dynamic reserves which take the velocity control to be an excessive increase in the spindle feed. The setting should correspond to the highest override factor actually used.

The function of the 31st value is thus identical to the effect of MD12100 \$MN_OVR_FACTOR_LIMIT_BIN when using the binary-coded interface.

Not relevant for:
MD12060 \$MN_OVR_SPIND_IS_GRAY_CODE = 0
Related to:
NC/PLC interface signal DB31, ... DBB19 (Spindle speed override)

12080	OVR_REFERENCE_IS_PROG_FEED		N10, N09	V1	
-	Override reference speed		BOOLEAN	PowerOn	
-					
-	TRUE	0	-	7/2	M
Description:	The entry in this MD speci the speed limited by MD/SD 1: Spindle override act (programmed speed _ spindl 0: Spindle override act (speed limited by MD/SD _ Related machine data: A speed limitation is effe	t	ndle overr d speed. the progra by MD \%) g MDs or	give spe	IS refers to

```
MD35100 $MA_SPIND_VELO_LIMIT
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT
MD35160 $MA_SPIND_EXTERN_VELO_LIMIT
SD43220 $SA_SPIND_MAX_VELO_G26
```

SD43230 \$SA_SPIND_MAX_VELO_LIMS Spindle speed limitation with G96

Maximum spindle speed
Maximum speed of gear stage
Spindle speed limitation by PLC
Maximum spindle speed
Spindle speed limitation with G96

12082	OVR_REFERENCE_IS_MIN_FEED						N10, N09	V1
-	Specification of the reference of the path override	BOOLEAN	PowerOn					
-								
-	-	FALSE	0	-				
M								

Description: The reference speed for the path feed override specified via the machine control panel can be set differently from the standard.
0 : Standard:
The override is relative to the programmed feed.
1: Special case:
The override is relative to the programmed feed or to the path feed limit, depending on which resulting value is lower. In this way, even for a great feed reduction (due to the permissible axis dynamics), the effect of the override value (in the range 0 to 100\%) is always visible.

12090	OVR_FUNCTION_MASK	N01, N10, N09	-					
-	Selection of override specifications	UDWORD	Reset					
-							$7 / 2$	M
-	-	0	0	0×01				

Description:

The functionality of the override switches can be affected by the bits.
Bit 0: $=0$,
Standard: Spindle override active with G331/G332
$=1$,
Path override is active instead of spindle override with G331/G332
(Tapping without compensating chuck)

12100	OVR_FACTOR_LIMIT_BIN						EXP, N10	V1, B1, Z1
-	Limitation for binary-coded override switch						DOUBLE	PowerOn
-								
-	-	1.2	0.0	2.0	M			

Description: This machine data can be used as an additional limit for the override factor when using the binary-coded interface for path, axis and spindle feeds.
In this case, the maximum values

- 200\% for channel-specific feed override
- 100% for channel-specific rapid traverse override
- 200% for axis-specific feed override
- 200% for spindle override
are replaced with the limit value entered in MD: OVR_FACTOR_LIMIT_BIN when this value is lower.
Example: OVR_FACTOR_LIMIT_BIN = 1.20
--> maximum override factor for
- channel-specific feed override $=120 \%$
- channel-specific rapid traverse override $=100 \%$
- axis-specific feed override $=120 \%$
- spindle override $=120 \%$

This value also defines the dynamic reserves maintained by the speed control for increasing the path and spindle feedrates.
References:
/FB/, B1, "Continuous Path Mode, Exact Stop and Look Ahead"

12202	PERMANENT_FEED	N01, N09	Z1, V1						
$\mathrm{mm} / \mathrm{min}$	Fixed feedrates for linear axes - $\operatorname{4}$						$0 ., 0 ., 0 ., 0$.	DOUBLE	Reset

Description:

In AUTOMATIC mode:
After activating a fixed feedrate via an interface signal, traversing is done with a fixed feedrate instead of the programmed feedrate.

Note:
The fixed feedrate is also evaluated in continuous-path mode in order to optimize the overhead for the Look Ahead calculation. Unnecessarily high values should therefore be avoided. Enter zero if a fixed feedrate is not wanted
In JOG mode:
After activating a fixed feedrate via an interface signal, and traversing the linear axis with a traversing key, traversing proceeds in the selected direction with the fixed feedrate.
$\mathrm{n}=0,1,2,3$ mean fixed feedrates 1, 2, 3, 4. The values must be entered in ascending order.
Special cases, errors,
The maximum velocity defined by MD32000 \$MA_MAX_AX_VELO is active. An override setting of 100% is assumed. MD12200 \$MN_RUN_OVERRIDE_0 is active if the override is 0.
Related to:
MD12200 \$MN_RUN_OVERRIDE_0

12204	PERMANENT_ROT_AX_FEED	N01, N09	V1			
rev/min	Fixed feedrates for rotary axes	DOUBLE	Reset			
-						
-	4	$0 ., 0 ., 0 ., 0$.	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description: Fixed feedrate values:
In AUTOMATIC mode:

After activating a fixed feedrate via an interface signal, traversing is done with a fixed feedrate instead of the programmed feedrate.
Note: PERMANENT_ROT_AX_FEED is used instead of PERMANENT_FEED for the path motion if all synchronously traversed axes in the current block are rotary axes. PERMANENT_FEED applies if linear and rotary axes are to be synchronously traversed together.
The fixed feedrate is also evaluated in continuous-path mode in order to optimize the overhead for the Look Ahead calculation. Unnecessarily high values should therefore be avoided. Enter zero if a fixed feedrate is not wanted
In JOG mode:
After activating a fixed feedrate via an interface signal, and traversing the rotary axis with a traversing key, traversing proceeds in the selected direction with the fixed feedrate.
$\mathrm{n}=0,1,2,3$ mean fixed feedrates $1,2,3,4$.
Special cases, errors,
The maximum velocity defined by MD32000 \$MA_MAX_AX_VELO is active.
An override setting of 100% is assumed. MD12200 \$MN_RUN_OVERRIDE_0 is active if the override is 0.
Related to:
MD12200 \$MN_RUN_OVERRIDE_0

12205	PERMANENT_SPINDLE_FEED	N01, N09	FBMA			
rev/min	Fixed feedrates for spindles	DOUBLE	Reset			
-						
-	4	$0 ., 0 ., 0 ., 0$.	0.0	$1.0 \mathrm{E}+301$		

Description:

Fixed feedrate values:
JOG: A spindle is traversed with a fixed feedrate by activating the traversing keys and activating the appropriate signals in the PLC interface.
The override is not active.
Depending upon MD12200 \$MN_RUN_OVERRIDE_0, traversing also takes place with override 0 .
The value defined by MD32000 \$MA_MAX_AX_VELO is taken as the upper limit. If the fixed feedrate has a larger value, the aforementioned limiting value applies.

12300	CENTRAL_LUBRICATION	N01, N09	-				
-	Central lubrication active	BOOLEAN	PowerOn				
-							
-	-	FALSE	0	-	M		

Description: When a settable axial path has been exceeded, the axial VDI signals request a lubrication pulse from the PLC (compare MD33050 \$MA_LUBRICATION_DIST). These axial pulses act (by default) independently of each other.
If the machine construction requires a central lubrication, i.e. the lubrication pulse of any axis is acting on all axes, the corresponding path monitoring of all axes must be restarted after lubrication pulse output. This start synchronization of the monitoring is executed via MD12300 \$MN_CENTRAL_LUBRICATION=TRUE.

12510	NCU_LINKNO	N01	B3					
-	NCU number in an NCU cluster	UDWORD	PowerOn					
-								
-	-	1	1	16	$7 / 2$			

Description:

Number or name for identifying an NCU within an NCU grouping.
In an NCU grouping (NCU cluster), the NCUs are connected to one another by a link bus. Related to:

MD18780 \$MN_MM_NCU_LINK_MASK

12520	LINK_TERMINATION			N01	B3	
-	NCU numbers for which bus termination resistances are activated			BYTE	Pow	
LINK, -						
-	2	0, 1	0	15	3/2	M

Description: LINK_TERMINATION defines with which NCUs the bus termination resistances for the timing circuit must be switched in through the link module.
Related to:
MD18780 \$MN_MM_NCU_LINK_MASK

12550	LINK_RETRY_CTR	N01	B3			
-	Maximum number of message frame transmission retries					
LINK, -						
-	-	4	1	DWORD	PowerOn	

Description:

Maximum retry limit in cases of error.
Not relevant for:
Systems without link modules
Related to:
MD18780 \$MN_MM_NCU_LINK_MASK

12701	AXCT_AXCONF_ASSIGN_TAB1			N01	B3	
-	Assignment of an axis container location			STRING	Pow	
CTDE						
-	32	-	-	-	3/2	M

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.

Structure of entries:

NCm_AXn

Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there.
AX5 ; local axis 5 only with one NCU
; the axis container mechanism is only used by
; several channels of one NCU.
The reference to an axis container location of a channel is defined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.
The actually assigned axis at a specific time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels of various NCUs access this container, then inter-NCU consistency must be ensured.
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1 [1]="NC2_AX1"
This machine data is distributed via NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12702	AXCT_AXCONF_ASSIGN_TAB2			N01	B3	
-	Assignment of an axis container location			STRING	Pow	
CTDE						
-	32	-	-	-	3/2	M

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.
Structure of entries:
NCm_AXn with NCU number m: 1..16 and machine axis address $n: 1 \ldots 31$

Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there.
AX5 ; local axis 5 only with one NCU
; the axis container mechanism is only used by
; several channels of one NCU.
The reference to an axis container location of a channel is defined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.
The actually assigned axis at a specific time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels of various NCUs access this container, then inter-NCU consistency must be ensured.
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1"
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed via NCU-link.

Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12704	AXCT_AXCONF_ASSIGN_TAB4			N01	B3	
-	Assignment of an axis container location			STRING	Pow	
CTDE						
-	32	-	-	-	3/2	M

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container. Method of writing entries:
NCm_AXn with NCU number m: 1..16
and machine axis address $\mathrm{n}: 1 . .31$
Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there
AX5 ; local axis 5, with only one NCU
; the axis container mechanism is only used by
; several channels from one NCU.
The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.

The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1 MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12705	AXCT_AXCONF_ASSIGN_TAB5			N01	B3	
-	Assignment of an axis container location			STRING	Pow	
CTDE						
-	32	-	-	-	3/2	M

Description:
Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.

Method of writing entries:
NCm_AXn with NCU number m: $1 . .16$
and machine axis address n: 1... 31
Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there
AX5 ; local axis 5, with only one NCU
; the axis container mechanism is only used by
; several channels of one NCU.
The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.
The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1 MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1"
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12706	AXCT_AXCONF_ASSIGN_TAB6	N01	B3				
-	Assignment of an axis container location	STRING	PowerOn				
CTDE							
-	32	-	-	-	$3 / 2$		

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.
Method of writing entries:

```
NCm_AXn with NCU number m: 1..16
    and machine axis address n: 1... 31
Example:
NC2_AX1 ; The axis is on the NCU2 and is the
    ; 1st machine axis there
AX5 ; local axis 5, with only one NCU
    ; the axis container mechanism is only used by
    ; several channels from one NCU.
The reference to an axis container location of a channel is determined by the
definitions in MD20070 $MC_AXCONF_MACHAX_USED and MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB.
The axis actually assigned at a given time is dependent upon the container rotation
status. All channels that access an axis container use the same axis entries stored
there. If channels from various NCUs access this container, ensure that there is
consistency between the NCUs!
Example:
CHANDATA(1)
$MC_MACHAX_USED[4]=9 MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1 MD12701
$MN_AXCT_AXXCONF_ASSIGN_TAB1[0]="NC1_AX1" - MD12\overline{7}01
$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB
```


12709	AXCT_AXCONF_ASSIGN_TAB9	N01	B3					
-	Assignment of an axis container location						STRING	PowerOn
CTDE								
-	32	-	-	-	$3 / 2$			

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.

Method of writing entries:
NCm_AXn with NCU number m: 1..16 and machine axis address $\mathrm{n}: 1 . . .31$

Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there
AX5 ; local axis 5, with only one NCU
; the axis container mechanism is only used by
; several channels from one NCU.
The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.

The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA(1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1 MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12710	AXCT_AXCONF_ASSIGN_TAB10			N01	B3	
-	Assignment of an axis container location			STRING	Pow	
CTDE						
-	32	-	-	-	3/2	M

Description: Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.

Method of writing entries:
NCm_AXn with NCU number m: 1..16 and machine axis address n: 1... 31
Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there
AX5 ; local axis 5, with only one NCU
; the axis container mechanism is only used by
; several channels from one NCU.
The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.
The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA(1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1
MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB

12715	AXCT_AXCONF_ASSIGN_TAB15	N01	B3				
-	Assignment of an axis container location	STRING	PowerOn				
CTDE							
-	32	-	-	-	M		

Description:
Assignment of an axis container location (slot s) to a machine axis or link axis. A maximum of 32 locations can be assigned axes in an axis container.
Method of writing entries:
NCm_AXn with NCU number m: 1..16
and machine axis address $\mathrm{n}: 1 . . .31$
Example:
NC2_AX1 ; The axis is on the NCU2 and is the ; 1st machine axis there

AX5 ; local axis 5, with only one NCU ; the axis container mechanism is only used by ; several channels from one NCU.

The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB.

The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!

Example:
CHANDATA (1)
\$MC MACHAX USED[4]=9 MD10002 \$MN AXCONF LOGIC MACHAX TAB[8]=CL1 SL1 MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701
\$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB


```
and machine axis address n: 1... 31
Example:
NC2_AX1 ; The axis is on the NCU2 and is the
; 1st machine axis there
AX5 ; local axis 5, with only one NCU
; the axis container mechanism is only used by
; several channels from one NCU.
The reference to an axis container location of a channel is determined by the definitions in MD20070 \$MC_AXCONF_MACHAX_USED and MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB. The axis actually assigned at a given time is dependent upon the container rotation status. All channels that access an axis container use the same axis entries stored there. If channels from various NCUs access this container, ensure that there is consistency between the NCUs!
Example:
CHANDATA (1)
\$MC_MACHAX_USED[4]=9 MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB[8]=CL1_SL1 MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[0]="NC1_AX1" MD12701 \$MN_AXCT_AXCONF_ASSIGN_TAB1[1]="NC2_AX1"
This machine data is distributed over the NCU-link.
Related to:
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB
```


Description:
List of axis container identifiers
In addition to the channel identifier of an axis, the axis container identifier, which can be defined by the user here, can also be used as an axis container name for e.g. a rotation of an axis container (AXCTSWE (CT1)).

12760	AXCT_FUNCTION_MASK						N09	-
-	Functions for the axis container	UDWORD	NEW CONF					
-								
-	-	0×0	0	0×1				

Description:
This MD is used to set the specific functions for the axis container. The MD is bit-coded, the following bits are assigned:

Bit 0 = 0 : For a direct axis container switch (AXCTSWED), all other channels must be in RESET status.

Bit 0 = 1: For a direct axis container switch (AXCTSWED), only those other channels which have interpolation right on axes of the axis container must be in RESET status.

13050	DRIVE_LOGIC_ADDRESS	N04, N10	G2					
-	Logical drive addresses	DWORD	PowerOn					
-								
-	31	$\begin{array}{l}4100,4140,4180, \\ 4220,4260,4300, \\ 4340,4380 \ldots\end{array}$	258	16383	$7 / 2$		$]$	M
:---								

Description:
For PROFIdrive only:
Logical I/O addresses of the PROFIdrive drives on the PROFIBUS/PROFINET that can be assigned to an axis.

The MD value is the logical I/O address of the drive assigned with HW-Config (SIMATIC Manager S7).
The index n from $\$ M N _D R I V E _L O G I C _A D D R E S S[n]$ is used for actual value and setpoint assignment:
MD30220 \$MA_ENC_MODULE_NR=n+1, MD30110 \$MA_CTRLOUT_MODULE_NR=n+1.

13060	DRIVE_TELEGRAM_TYPE	N04, N10	G2					
-	Standard message frame type for PROFIdrive	DWORD	PowerOn					
-								
-	31	$\begin{array}{l}116,116,116,116, \\ 116,116,116,116 \ldots\end{array}$	0	-	$7 / 2$		$]$ M	
:---								

Description:
For PROFIdrive only:
Standard telegram type for PROFIdrive axes:
0 = No standard type, user-defined
(telegram type 103 is then used internally in the NCK, whereby other process data can be added.)
1... $6=$ PROFIdrive type
101...107 = SIEMENS type
$116=$ SIEMENS type as 106 plus trace data
$118=$ SIEMENS type as 116 , but use of encoders $2+3$
$136=$ SIEMENS type as 116 plus torque feedforward control
$138=$ SIEMENS type as 136 , but use of encoders $2+3$
139 = SIEMENS type telegram specifically for Weiss spindle functionality
Notes:
The descriptions of the SIEMENS telegram type can be found in the SINAMICS function plan.
Alarm 26015 is issued with reference to this machine data if the telegram
configuration exhibits inconsistencies, i.e. if the telegram type selected on the NCK does not match the telegram type set on the drive (see drive parameter p922) and the process data configuration does not match (see drive parameters p923, p915, p916). The check for telegram configuration errors can be disabled using MD DRIVE_FUNCTION_MASK bit 15.
The SIEMENS telegram types 1 xx must be operated in the SINUMERIK context in 611U interface mode.

13070	DRIVE_FUNCTION_MASK	N04, N10	G2				
-	PROFIdrive expansion functions	UDWORD	PowerOn				
-							
-	31	$2,2,2,2,2,2,2,2 \ldots$	0	$0 x 7 F F F F F F F$	$7 / 2$		

Description:
For PROFIdrive only:
Bit-coded mask for skipping the scope of available functions for PROFIdrive axes
expected by the NCK.
Meaning of set bits:
Bit 0: Deactivation of axial drive alarm display
Note: the effect of this bit may be hidden, depending on the value in MD13140 \$MN_PROFIBUS_ALARM_ACCESS.
Bit 1: Reserved, free (previous deactivation of 611U description file intermediate storage in the NCK)
Bit 2: Deactivation of axial encoder driver parameter accesses
Bit 3: Deactivation of axial output driver parameter accesses
Bit 4: Reserved, free (previous activation of DSC bits)

```
Bit 5: Deactivation of the 611U-specific drive parking (STW2.7/STA2.7)
Bit 6: Deactivation of the 611U-specific travel to fixed stop (STW2.8/STA2.8
Bit 7: Deactivation of the 611U-specific motor switching int. (STW2.9 to 2.11)
Bit 8: Deactivation of the 611U-specific ramp block (STW1.11+13)
Bit 9: Deactivation of the 611U-specific function generator bits (STW1.8/STA1.13)
Bit 10: Deactivation of the control of the holding brake (STW1.12 / STA2.5)
Bit 11: Deactivation of the effect of OFF2/OFF3 on DB31, ... DBX93.5 (Drive Ready)
Bit 12: Deactivation of the error/alarm class SINAMICS (STA1.11 to STA1.12)
Bit 13: Drive parking simulation (STA2.7 = STW2.7)
Bit 14: Selection of non-cyclical communication 0 = DPT 1 = DPV1
Bit 15: Deactivation of the consistency check of the PROFIdrive message frame
configuration
Configuration of bits 5 - 10 allows adaptation of certain control or status bits that
are not standardized in the PROFIdrive profile. The bits may have a different
significance and effect in the default setting of third-party drives.
```

13080	DRIVE_TYPE_DP	EXP	G2		
-	PROFIBUS/PROFINET drive type	BYTE	PowerOn		
-					
-	31	$0,0,0,0,0,0,0,0 \ldots$	0	5	$7 / 2$

Description:

MD is relevant to PROFIdrive drives at the PROFIBUS/PROFINET: Drive type:
0: No drive or drive type unknown (default), software-internally treated as:
1: FDD drive (SRM: Synchronous rotary drive)
2: MSD drive (ARM: Asynchronous rotary drive)
3: Linear drive
4: Analog drive (no automatic entry)
5: Hydraulic drive
Note:
In general, the drive type is entered automatically with Siemens drives as soon as the drives start operating.

With non-Siemens drives (at least with linear drives), the value must be entered manually if automatic drive recognition is not possible.

13100	DRIVE_DIAGNOSIS	EXP, N05	-			
-	Diagnostics drive link	UDWORD	PowerOn			
-						
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 7 F F F F F F F$		

Description: reserved

13110	PROFIBUS_TRACE_ADDRESS	EXP	-		
-	PROFIBUS/PROFINET trace of I/O slots	DWORD	NEW CONF		
-					
-	14	$0,0,0,0,0,0,0,0 \ldots$	0	-	$2 / 2$

[^4]| 13111 | PROFIBUS_TRACE_TYPE | EXP | - | | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | PROFIBUS/PROFINET trace settings | DWORD | NEW CONF | | | |
| - | | | | | | |
| - | - | 0 | 0 | 3 | | |

Description: For PROFIBUS/PROFINET only:
0: Recording to the part program memory /_N_MPF_DIR/_N_SIEMDPTRC_MPF
1: Recording to mass storage /user/sinumerik/data/temp/siemdptrc.trc
2: Recording to the part program memory with runtime measurement
3: Recording of cyclic PN-NCULINK communication

13112	PROFIBUS_TRACE_FILE_SIZE	EXP	-					
-	Maximum trace file size in kbytes						DWORD	NEW CONF
-								
-	-	40	-	-	$2 / 2$			

Description: For PROFIBUS/PROFINET only:
 0: Trace without file size limitation
 >0: Trace with file size limitation

13113	PROFIBUS_TRACE_START	EXP	-			
-	Activation of PROFIBUS/PROFINET trace	DWORD	Immediately			
-						
-	-	0	0	1	$2 / 2$	

Description: For PROFIBUS/PROFINET only:
0 : Trace off
1: Trace on
MD13112 \$MN_PROFIBUS_TRACE_FILE_SIZE > 0: Trace is automatically disabled when the file size is

13114	PROFIBUS_TRACE_START_EVENT						EXP	-	
-	Trigger conditions for PROFIBUS/PROFINET trace						UDWORD	NEW CONF	
-	14	$0,0,0,0,0,0,0,0 \ldots$	0×00000000	0×1111 fffff	$2 / 2$				
-			M						

Description:

For PROFIBUS/PROFINET only:
The trigger frequency is configured bit-by-bit
Bits 0-15: 0x0001-0xffff: bit mask
Bits 16-23: 0x01-0x14: process data number (a maximum of 20 words are permissible)
Bits 24-27:0x01: status change $0->1$
0×00 : status change $1->0$
Bits 28-31:0×10: send slot
0x00: receive slot
When MD13113 \$MN_PROFIBUS_TRACE_START=1 and MD13114
\$MN_PROFIBUS_TRACE_START_EVENT= 0×0 Recording starts immediately
When MD13113 \$MN_PROFIBUS_TRACE_START=1 and MD13114
\$MN_PROFIBUS_TRACE_START_EVENT= $\overline{0} \times 1$ Recording starts on control power on
When MD13113 \$MN_PROFIBUS_TRACE_START=1 and MD13114
\$MN_PROFIBUS_TRACE_START_EVENT= $\overline{0} \times 2$ Recording starts on loss of the sign of life

13120	CONTROL_UNIT_LOGIC_ADDRESS	N04, N10	-			
-	Logical address of SINAMICS CU	DWORD	PowerOn			
-						
840dsl-71	9	$6500,0,0,0,0,0,0,0 \ldots$	0	16383	$7 / 2$	M
$840 \mathrm{dsl}-72$	13	$6500,0,0,0,0,0,0,0 \ldots$	0	16383	$7 / 2$	M
840 dsI-73	15	$6500,0,0,0,0,0,0,0 \ldots$	0	16383	$7 / 2$	M

Description: For PROFIBUS/PROFINET, SINAMICS:
Logical I/O address of a SINAMICS-CU (Control Unit) on the PROFIBUS/PROFINET.
The cyclic DP communication with SINAMICS-CU is activated by taking over the associated slot address from the STEP7 project. The onboard I/Os cannot be accessed until after configuration.

13150	SINAMICS_ALARM_MASK		N04, N05	-	
-	Activate fault and warning buffer output for Sinamics		UDWORD	Imm	
-					
-	0x0909	0	0x7FFFFFFFF	7/2	M

Description:

For PROFIBUS/PROFINET only, especially SINAMICS:
Relevant to SINAMICS diagnostics:
Note: the effect of this MD may be hidden independently of
the value of MD13140 \$MN_PROFIBUS_ALARM_ACCESS.

```
Mask for displaying the SINAMICS DOS fault and warning buffers
Bit set: Alarms in this DO group are output
Bit not set: Alarms in this DO group are not output
Bit Hex. Meaning
value
```


$0:$	$0 x 1$	Output faults of the Control Units
1:	0×2	Reserved
$2:$	0×4	Output faults of the Drive Controls
$3:$	0×8	Output faults of the Line Modules
4:	0×10	Output faults of the Terminal Boards
$5:$	0×20	Output faults of the Terminal Modules
8:	0×100	Output warnings of the Control Units
9:	0×200	Output warnings of the Communication Objects
10:	0×400	Output warnings of the Drive Controls
$11:$	0×800	Output warnings of the Line Modules
$12:$	0×1000	Ouptut warnings of the Terminal Boards
$13:$	0×2000	Output warnings of the Terminal Modules

13160	SINAMICS_MAX_SLAVE_ADDRESS			N04, N10	-	
-	Highest SINAMICS slave address			DWORD	Pow	
-						
-	4	0, 0, 0, 0	0	-	7/2	M

Description: Highest slave/device address supported per bus
All slaves/devices with an address higher than the address set here are ignored by the NCK

Value 0: No limitation

Description:
This MD defines the electrical polarity of each connected sensor.
Value 0:
(Default setting)
Non-deflected state 0 V
Deflected state 24 V
Value 1:
Non-deflected state 24 V
Deflected state 0 V
The programmed edges of the sensor are independent of the electrical polarity, and are to be regarded as purely mechanical. The programming of a positive edge always means the transition from the non-deflected into the deflected state. The programming of a negative edge always means the transition from the deflected into the non-deflected state.

13210	MEAS_TYPE	N10, N09	M5			
-	Meas. type with decentralized drives	BYTE	PowerOn			
-						
-	-	0	0	1	$7 / 2$	

```
Description: For PROFIdrive only:
This MD sets the measuring function of decentralized drives.
The MD currently only functions for PROFIdrive drives.
MEAS_TYPE = 0 defines:
A probe is used that is connected centrally to the NC.
However, as the encoders only provide actual position values in cycles, the actual
measuring position is found by interpolation.
MEAS_TYPE = 1 defines:
The probe must be wired decentralized to ALL drives.
The measuring functionality of the drive is then used,
saving the actual encoder values in the hardware at the time of the measuring edge.
This method is more accurate than that with MEAS TYPE = 0, but it requires a more
complex wiring and drives that support this measuring functionality (e.g. 611U).
```

13211	MEAS_CENTRAL_SOURCE	N10, N09	-			
-	Data source central measurement with PROFIBUS/PROFINET drives	BYTE	PowerOn			
-						
-	-	3	1	3	$7 / 2$	

Description:

For PROFIBUS/PROFINET only:
Sets the method used to obtain the time stamps for central measurement with PROFIdrive drives.

For MEAS_CENTRAL_SOURCE = 1, the following applies:
NRK access operations are used in order to access the onboard measuring register. For this purpose, the appropriate hardware, which permits this, must be available, e.g. for 840Di with MCI-Extension Board.

For MEAS_CENTRAL_SOURCE $=2$, the following applies:
The SINAMICS DO1 telegram is used (telegram types 391 and 395), and more specifically in the "Cyclic measurement" version without handshake.

For this purpose, an integrated SINAMICS must be available, e.g. NCU 710.
For measurement without handshake, two probes must be available in drive parameters p0680 index 0 and 1.
For MEAS_CENTRAL_SOURCE = 3, the following applies:
The SINAMICS DO1 telegram is used (telegram type 391), and more specifically in a version with handshake. This technique is fault-tolerant, however, it only permits a measurement edge every 4 PROFIBUS/PROFINET cycles, i.e. it is therefore significantly slower.

For this purpose, an integrated SINAMICS must be available, e.g. NCU 710.
This MD is only relevant, if MD13210 \$MN_MEAS_TYPE == 0 .

13220	MEAS_PROBE_DELAY_TIME	N10, N09	FBA			
s	Delay time between probe deflection and recognition	DOUBLE	NEW CONF			
-						
-	2	$0.0,0.0$	0	0.1	$7 / 2$	

Description: For probes with, for example, radio transmission, the probe deflection can be detected in the NC only with delay.
With this MD, the transmission link delay between the probe deflection and its detection is set in the control.

The measured value is corrected internally by the control by the distance that corresponds to the traversing motion during this time before measuring (modeling).

As the modeling does not work with the expected accuracy at higher position control cycles, the delay time is limited independently of the input value to 31 position control cycles).

13230	MEAS_PROBE_SOURCE		N10, N09	-	
-	Probe simulation		BYTE	PowerOn	
-					
-	0	0	9	7/2	M

Description: Simulation of the probe only works when all axes are simulated.
Value $=0:$ the probe is triggered on the programmed end position.
Value $=1-8:$ the probe is triggered via digital output with the number=value.
Value = 9: reserved

Description: The switching position of the probe is offset by the value.
The offset is only active with the simulated probes and MD 13230
\$MN_MEAS_PROBE_SOURCE=0.

Description:
Filter between F user data and \$A_INSE variables
This machine data defines which bits are transferred from the F user data interface of the PROFIsafe module to the NCK for further processing.

The filtered F user data bits are compressed internally in the NCK to form a contiguous bit field.
Machine data MD10388 \$MN_PROFISAFE_IN_ASSIGN then also defines the \$A_INSE variables to which the filtered F user data bits are transferred.

Example:
Note:
Only 16 bits are shown for the sake of simplicity.
Parameterization:
\$MN_PROFISAFE_IN_FILTER = 1010100101000100
\$MN_PROFISAFE_IN_ASSIGN = 011006
$\begin{array}{llll}\mathrm{n}=16 & 11 & 6 & 1\end{array}$
$|x| x|x| x|x| 1|1| 1|0| 0|1| x|x| x|x| x \mid$
\$A_INSE[n], $x=$ irrelevant |0|0|0|0|0|0|0|0|0|0|1|1|1|0|0|1|

NCK-internal image of F user data | 1 | 0| 1|0|1|0|0|1|0|1|0|0|0|1|0|0|
\$MN_PROFISAFE_IN_FILTER
| 1|0|1|0|1|0|0|0|0|0|0|0|0|1|0|0|

Example value present at F user data interface of the PROFIsafe module

13302	PROFISAFE_IN_ENABLE_MASK	N01, N10	-			
-						
-	Enable mask for connections to PROFIsafe input modules.	UDWORD	PowerOn			
-	2	$0 \times 0,0 \times 0$	0xFFFFFFFF, $0 \times 0000 F F F F$	$7 / 2$	M	

The enable mask is used to enable the machine data blocks for the connections to PROFIsafe input modules.
A machine data block comprises the following data:

- MD10386 \$MN_PROFISAFE_IN_ADDRESS[n]
- MD10388 \$MN_PROFISAFE_IN_ASSIGN[n]
- MD13300 \$MN_PROFISAFE_IN_FILTER[n]
- MD13305 \$MN_PROFISAFE_IN_SUBS[n]

Bit $\mathrm{n}=0$
The machine data block [n] is checked for consistency but not activated.
The PROFIsafe connection [n] or the slot [n] is not active.
Bit $\mathrm{n}=1$
The machine data block [n] is active.
The PROFIsafe connection [n] or the slot [n] is active.
Related to:
MD10095: \$MN_SAFE_MODE_MASK, Bit 1

4.1 General NC machine data

MD13304: \$MN_PROFISAFE_IN_SUBS_ENAB_MASK

13303	PROFISAFE_OUT_ENABLE_MASK	N01, N10	-							
-	Enable mask for connections to PROFIsafe output modules.						UDWORD	PowerOn		
-	2	$0 \times 0,0 \times 0$	$0 \times 0,0 \times 0$	$\begin{array}{l}\text { 0xFFFFFFFF, } \\ 0 \times 0000 F F F F\end{array}$	$7 / 2$				$]$	M
:---										
-										

Description:
The enable mask is used to enable the machine data blocks for the connections to
PROFIsafe output modules.
A machine data block comprises the following data:

- MD10387 \$MN_PROFISAFE_OUT_ADDRESS[n]
- MD10389 \$MN_PROFISAFE_OUT_ASSIGN[n]
- MD13301 \$MN_PROFISAFE_OUT_FILTER[n]

Bit $\mathrm{n}=0$
The machine data block [n] is checked for consistency but not activated.
The PROFIsafe connection [n] or the slot [n] is not active.
Bit $\mathrm{n}=1$
The machine data block [n] is active.
The PROFIsafe connection [n] or the slot [n] is active.
Related to:
MD10095: \$MN_SAFE_MODE_MASK, Bit 1

13304	PROFISAFE_IN_SUBS_ENAB_MASK	N01, N10	-					
-	Activation of substitute value output for PROFIsafe input modules						UDWORD	PowerOn
-								
-	2	$0 \times 0,0 \times 0$	$0 \times 0,0 \times 0$	$\begin{array}{l}0 \times F F F F F F F F, \\ 0 \times 0000 F F F F\end{array}$	$7 / 2$			

Description:
The enable mask is used to enable subsitute value output for connections to PROFIsafe input modules.
Bit $\mathrm{n}=0$
The PROFIsafe input module's process data is transferred to the SPL input data for the connection parameterized in machine data block [n].
The PROFIsafe connection [n] or the slot [n] is active.
Bit $\mathrm{n}=1$
The substitute values from MD13305 \$MN_PROFISAFE_IN_SUBS are transferred to the SPL input data for the connection parameterized in machine data block [n].
The PROFIsafe connection [n] or the slot [n] is passive.
Related to:
MD10095: \$MN_SAFE_MODE_MASK, Bit 1
MD13305: \$MN_PROFISAFE_IN_SUBS

13305	PROFISAFE_IN_SUBS	N01, N10	-					
-	$\begin{array}{l}\text { Substitute values for passive connections to PROFIsafe input } \\ \text { modules }\end{array}$	UDWORD	PowerOn					
-								
-	48	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0×0	$0 \times F F F F F F F F$	$7 / 2$		$]$ M	
:---								

Description:
For passive connections to PROFIsafe input modules, the substitute values parameterized in the machine data are transferred to the SPL inputs (\$A_INSE) parameterized in MD10388 \$MN_PROFISAFE_IN_ASSIGN[n].

If the SPL inputs parameterized in MD10388 \$MN_PROFISAFE_IN_ASSIGN[n] overlap the SPL inputs of an active slot, the control will modify the passive slot's substitute values in order to prevent duplicate assignment of the SPL inputs. Here, the states of the signals from the active slots have priority.
Related to:
MD10095: \$MN_SAFE_MODE_MASK, bit 1
MD13304: \$MN_PROFISAFE_IN_SUBS_ENAB_MASK

13307	PROFISAFE_IPO_RESERVE		N01, N10	FBS	
-	Number of IPO cycles without PROFIsafe calculations		DWORD	Pow	
SFCO					
-	0	0 0	50	7/1	M

Description:
The value specifies the number of IPO cycles for each PROFIsafe cycle, in which no PROFIsafe calculations should be made.
This machine data is only active, if machine data MD10095 \$MN_SAFE_MODE_MASK, bit 3 is set.

The number of $I P O$ cycles must be selected less than the value in machine data MD10098 \$MN_PROFISAFE_IPO_TIME_RATIO.

13308	PROFISAFE_IN_NAME						N01, N10	-
-	Name of the PROFIsafe input module	STRING	PowerOn					
-								
-	48	-	-	-	$7 / 2$			

Description: A symbolic name can be assigned to each PROFIsafe input module.
If a name has been assigned, this will be displayed in the alarm text instead of the PROFIsafe address.

13309	PROFISAFE_OUT_NAME	N01, N10	-			
-	Name of the PROFIsafe output module	STRING	PowerOn			
-						
-	48	-	-	-	$7 / 2$	

Description: A symbolic name can be assigned to each PROFIsafe output module.
If a name has been assigned, this will be displayed in the alarm text instead of the PROFIsafe address.

13310	SAFE_SPL_START_TIMEOUT		N01, N06	FBS	
s	Delay in display of alarm 27097		DOUBLE	Pow	
-					
-	20.	1.	60.	$7 / 2$	M

Description: After powerup of the control, alarm 27097 is displayed after the time if the SPL start is not carried out.

13312	SAFE_SPL_USER_DATA						N01	FBSI
-	User data	UDWORD	PowerOn					
SFCO								
-	4	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$	0×0	$0 \times F F F F F F F F$	$7 / 2$			

Description:

User data for storing user-specific information.
These data are monitored for changes by the data cross-check between NCK and PLC. Changes to these data are detected when included in the checksums, and reported by alarm 27071.

The data must agree with the corresponding PLC data (DB18 DBD256,260,264,268). Deviations between NCK and PLC trigger the programmed stop (Stop D or Stop E) and are displayed via alarm 27090.

13316	SAFE_GLOB_CFG_CHANGE_DATE			N01, N05	FBSI	
-	Date/time of last change of SI-NCK MD			STRING	PowerOn	
-						
-	7	-	-	-	ReadOnly	S

Description: Display data for safety functions:
Date and time of the last configuration change to safety-related NCK machine data. Changes to the machine data included in the calculation of the checksums MD13318 \$MN_SAFE_GLOB_ACT_CHECKSUM are recorded.

13318	SAFE_GLOB_ACT_CHECKSUM						N01, N05	FBSI
-	Actual checksum NCK	UDWORD	PowerOn					
-								
-	4	$0,0,0,0$	0	$0 x F F F F F F F F$				

Description:
Display data:
This data contains the actual checksum calculated across the current values of the safety-related machine data after power-on or on RESET.
Assignment of the field indices:
Index 0: General safety parameterization, parameterization of the SPL-I/O link
Index 1: SPL user data
Index 2: Enable for I/O link (PROFIsafe and F_SEND/F_RECV)
Index 3: PROFIsafe parameter from the 57 configuration

13319	SAFE_GLOB_DES_CHECKSUM	N01, N05	FBSI				
-	Desired (expected) checksum	UDWORD	PowerOn				
-							
-	4	$0,0,0,0$	0	$0 x F F F F F F F F$	$7 / 1$		

Description:

In this data, the set checksum stored at the time of the last machine acceptance overwrites the current values of the safety relevant machine data.
Assignment of the field indices:
Index 0: General safety parameterization, parameterization of the SPL-I/O link
Index 1: SPL user data
Index 2: Enable for I/O link (PROFIsafe and F_SEND/F_RECV)
Index 3: PROFIsafe parameter from the S7 configuration

13320	SAFE_SRDP_IPO_TIME_RATIO	N01, N10	FBSI			
-	Factor F_DP communication cycle	DWORD	PowerOn			
SFCO						
-	-	10	1	65535	$7 / 2$	

Description:

Ratio between interpolator cycle and F_DP cycle, in which the F_DP communication is performed. In the resulting time interval the NCK triggers OB40 on the PLC in order to perform the F_{-}DP communication.
The value for the communication cycle resulting from this MD and the set IPO cycle must not exceed 250 ms .

13322	INFO_SAFE_SRDP_CYCLE_TIME						N01, N10, N05	FBSI
s	Maximum F_DP communication cycle						DOUBLE	PowerOn
-								
-	-	0.0	-	-				

Description:

Display data:
Displays the maximum time frame in which F_DP communication with the system coupling is performed that is operated on the PLC via OB40.
The value is obtained from the interpolation cycle and MD13320
\$MN_SAFE_SRDP_IPO_TIME_RATIO.
If the set communication cycle in cyclic operation is exceeded, this is also displayed here.

In the case of a parameterization error (communication cycle exceeds the maximum value of 250.0 ms), the maximum value that can be set is displayed.

13330	SAFE_SDP_ENABLE_MASK			N01, N10	FBS	
-	Enable screen F_SENDDP communication relationships			UDWORD	Pow	
-						
-	-	0x0	0x0	0xFFFF	$7 / 2$	M

Description:	Any network unique value as ID for F_SENDDP communication relationship.
	SIMATIC module parameter: DP_DP_ID

Description: A name can be assigned to each F_SENDDP communication link.
If a name was assigned, this name will be displayed in the alarm text instead of DP_DP_ID.

13333	SAFE_SDP_CONNECTION_NR			N01, N10	FBSI	
-	Number of the F_SENDDP SPL connection			BYTE	PowerOn	
-						
-	16	$0,0,0,0,0,0,0,0 \ldots$	0	16	7/2	M
Description:	```This machine data is used to set the number of the F_SENDDP SPL connection that is parameterized with this data record. The number of the F_SENDDP SPL connection is also the index for access to the system variables of the user interface of this F_SENDDP SPL connection. This applies to the following system variables: \\ - \$A_FSDP_ERR_REAC \\ - \$A_FSDP_ERROR \\ - \$A_FSDP_SUBS_ON \\ - \$A_FSDP_DIAG``` Example:					

Machine data

MD13333 \$MN_SAFE_SDP_CONNECTION_NR[2] = 3 means that the control and status information of the $\mathrm{F}_{\text {_SENDDP }}$ SPL connection that is parameterized via data record 2 can be found in the system variables with field index 3.

13334	SAFE_SDP_LADDR	N01, N10	FBSI				
-	Log. base address of the input/output data range F_SENDDP					DWORD	PowerOn
-							
-	16	$288,288,288,288$, $288,288,288,288 \ldots$	288	32767			

Description:
The logical base address of the input and output data range - parameterized in SIMATIC STEP 7 - through which this F_SENDDP connection communicates.
SIMATIC block parameter: LADDR

13335	SAFE_SDP_TIMEOUT	N01, N10	FBSI					
s	Monitoring time F_SENDDP	DOUBLE	PowerOn					
-								
-	16	$\begin{array}{l}0.5,0.5,0.5,0.5,0.5, \\ 0.5,0.5,0.5 \ldots\end{array}$	0.0	60.0	$7 / 2$		$]$	M
:---								

Description:
The monitoring time is the time in which F_{n} SENDDP must have sent a new F telegram to F_RECVDP or in which F_RECVDP must have acknowledged a new F telegram. When the monitoring time is exceeded, F_RECVDP outputs replacement values to the SPL. SIMATIC module parameter: TIMEOUT

13336	SAFE_SDP_ASSIGN	N01, N10	FBSI			
-	Output assignment \$A_OUTSE to F_SENDDP user data	DWORD	PowerOn			
-						
-	16	$0,0,0,0,0,0,0,0 \ldots$	0	192192		
$7 / 2$	M					

Description: The SPL signals \$A_OUTSE to be transmitted into the F_SENDDP useful data can only be selected area by area.

The SPL area is specified in decimals in aaa bbb format
aaa $=$ area limit 1, SPL signal \$A_OUTSE[aaa]
bbb = area limit 2, SPL signal \$A_OUTSE[bbb]
Example:
\$MN_SAFE_SDP_ASSIGN[0] = 001004 or alternatively 004001
The SPL signals \$A_OUTSE[1] to \$A_OUTSE[4] are transferred to the F_SENDDP user data selected in MD13337 \$MN_SAFE_SDP_FILTER[0].

Description:
The SPL signals selected via MD13336 \$MN_SAFE_SDP_ASSIGN are transmitted to the F_SENDDP user data signals in the order of the FILTER bits set to 1 . The lowest-value SPL signal to the bit position of the F_SENDDP user data of the lowest-value filter bit set to 1, etc. for all SPL signals selected.

Bit $\mathrm{x}=1:$ an SPL signal is transmitted to bit position x of the F_SENDDP user data.
Bit $x=0$: no SPL signal is transmitted to bit position x of the F_{S} SENDDP user data.

13338	SAFE_SDP_ERR_REAC	N01, N10	FBSI			
-	Fault reaction F_SENDDP	DWORD	PowerOn			
-						
-	16	$0,0,0,0,0,0,0,0 \ldots$	0	3		

Description: In the case of a communication error the fault reaction defined here is triggered. This value is valid as long as no other value is specified from the SPL via system variable
\$A_FSDP_ERR_REAC.
Meaning of the values:

- $0=$ alarm 27350 + stop D/E
- 1 = alarm 27350
- 2 = alarm 27351 (displayed only; self-extinguishing)
- 3 = no system reaction

13340	SAFE_RDP_ENABLE_MASK	N01, N10	FBSI					
-	Enable screen F_RECVDP communication relationships						UDWORD	PowerOn
-	-	0×0	0×0	$0 x F F F F$				
-	-	$7 / 2$	M					

Description:
Enable screen for the individual F_RECVDP communication links and their SPL connections

13341	SAFE_RDP_ID			N01, N10	FBS	
-	ID for F_RECVDP communication relationships			DWORD	Pow	
-						
-	16	$0,0,0,0,0,0,0,0 \ldots$	-32768	32767	7/2	M

Description: Any network unique value as ID for F_RECVDP communication relationships. SIMATIC module parameter: DP_DP_ID

13342	SAFE_RDP_NAME							N01, N10	FBSI
-	Name of the F_RECVDP communication link	STRING	PowerOn						
-									
-	16	-	-	-	7/2				

Description: A name can be assigned to each F_RECVDP communication link.
If a name was assigned, this name will be displayed in the alarm text instead of DP_DP_ID.

13343	SAFE_RDP_CONNECTION_NR		N01, N10	FBSI	
-	Number of the F_RECVDP-SPL connection		BYTE	PowerOn	
-					
-	16 \| $0,0,0,0,0,0,0,0 \ldots$	0	16	$7 / 2$	M
Description:	This machine data is used to parameterized with this data The number of the F_RECVDP SP variables of the user interfa This applies to the followin - \$A_FRDP_SUBS - \$A_FRDP_ERR_REAC - \$A_FRDP_ERROR - \$A_FRDP_SUBS_ON - \$A_FRDP_ACK_REQ - \$A FRDP DIAG		the $F_{-} R$ lso the DP SPL C s:	SPL for ion.	n that is the system

Machine data

- \$A_FRDP_SENDMODE

Example:
MD13343 \$MN_SAFE_RDP_CONNECTION_NR[2] = 3 means that the control and status information of the $F_{\text {_RECVDP }}$ SPL connection that is parameterized in data record 2 can be found in the system variables with field index 3.

Description:
The logical base address of the input and output data range - parameterized in SIMATIC STEP 7 - through which this F_RECVDP connection communicates.
SIMATIC block parameter: LADDR

Description:
The monitoring time is the time in which F_{n} SENDDP must have sent a new F telegram to F_RECVDP or in which F_RECVDP must have acknowledged a new F telegram. When the monitoring time is exceeded, F_RECVDP outputs replacement values to the SPL. SIMATIC module parameter: TIMEOUT

13346	SAFE_RDP_ASSIGN	N01, N10	FBSI					
-	Input assignment F_RECVDP user data to \$A_INSE						DWORD	PowerOn
-								
-	16	$0,0,0,0,0,0,0,0 \ldots$	0	192192				
$7 / 2$	M							

Description: The SPL signals \$A_INSE to be supplied from the F_RECVDP useful data can only be selected area by area.

The SPL area is specified in decimals in aaa bbb format
aaa $=$ area limit 1, SPL signal \$A_INSE[aaa]
bbb = area limit 2, SPL signal \$A_INSE[bbb]
Example:
\$MN_SAFE_RDP_ASSIGN[0] = 001004 or alternatively 004001
The F_RECVDP user data selected in MD13347 \$MN_SAFE_RDP_FILTER[0] are transferred to the SPL signals \$A_INSE[1] to \$A_INSE[4].

Description:

The F_RECVDP user data signals the filter bits of which are set to 1 are transmitted to the SPL signals via MD13346 \$MN SAFE RDP ASSIGN. The lowest-value F RECVDP user data signal to the lowest-value selected $S P L$ signal etc. for all F_RECVDP user data selected.

Bit $\mathrm{x}=1$: the $\mathrm{F}_{\text {_RECVDP }}$ user data signal of bit position x is transmitted as SPL signal.

Bit $x=0$: the F_{-}RECVDP user data signal of bit position x is not transmitted as SPL signal.

13348	SAFE_RDP_ERR_REAC		N01, N10	FBSI	
-	Fault reaction F_RECVDP		DWORD	PowerOn	
-					
-	16 \| $0,0,0,0,0,0,0,0 \ldots$	0	3	7/2	M
Description:	In the case of a communication error, the fault reaction defined here is triggered. This value is valid as long as no other value is specified from the SPL via system variable \$A_FRDP_ERR_REAC. Meaning of the values: - $0=$ alarm 27350 + stop D/E - 1 = alarm 27350 - 2 = alarm 27351 (displayed only; self-clearing) - 3 = no system reaction				

Description: In the case of a communication error, the replacement values defined here are activated in the system variables \$A_INSE assigned to this F_RECVDP-SPL connection. This value is valid as long as no other value is specified from the SPL via system variable \$A_FRDP_SUBS.

13370	SAFE_MODE	N01	FBSI		
-	Safety operating mode	UBYTE	PowerOn		
-					
-	-	0	0×00	0×03	$7 / 2$

Description:

MD to make a distinction between the safety operating modes:
$0=$ Safety operating mode "SINUMERIK Safety Integrated (SPL)"
1 = Safety operating mode "SINUMERIK Safety Integrated (Drive Based)"
2 = Reserved
3 = Safety operating mode "SINUMERIK Safety Integrated plus (F-PLC)"

Description: Logical basis addresses for PROFIsafe communication between the F-PLC and drive.

13374	SAFE_INFO_DRIVE_LOGIC_ADDR			N01, N04	-	
-	Logical basis addresses, SIC/SCC			DWORD	PowerOn	
-						
-	31	5800, 5816, 5832, 5848, 5864, 5880, 5896, 5912...	0	16383	7/2	M
Description:	Logical base addresses for SIC/SCC communication between NCK and drive. The standard values of the logical base addresses correspond to the values from the S7 default configuration.					

4.1 General NC machine data

13376	SAFE_INFO_TELEGRAM_TYPE	N01, N04	-				
-	SIC/SCC telegram type	DWORD	PowerOn				
-							
-	31	$701,701,701,701$, $701,701,701,701 \ldots$	0	999	$7 / 2$		

Description: Number of the SIC/SCC telegram type

14504	MAXNUM_USER_DATA_INT	N03	P3			
-	Number of user data (INT)	DWORD	PowerOn			
-						
-	-	0	0	256	$7 / 2$	

Description: Number of NC/PLC user data of type INT

14506	MAXNUM_USER_DATA_HEX	N03	P3			
-	Number of user data (HEX)	DWORD	PowerOn			
-						
-	-	0	0	256		

Description: Number of NC/PLC user data (HEX)

14508	MAXNUM_USER_DATA_FLOAT	N03	P3			
-	Number of user data (FLOAT)	DWORD	PowerOn			
-						
-	-	0	0	64		

Description: Number of NC/PLC user data of type FLOAT

14510	USER_DATA_INT	N03	P3, "PLC-Maschinendaten", P4, "PLC-Maschinendaten"				
-	User data (INT)	DWORD	PowerOn				
-							
-	256	$0,0,0,0,0,0,0,0 \ldots$	-32768	32767	$7 / 2$		

Description: User data can be read from the DB20 (user data block) in the PLC user program.

14512	USER_DATA_HEX	N03	P3, "PLC-Maschinendaten", P4, "PLC-Maschinendaten"				
-	User data (HEX)	UDWORD	PowerOn				
-							
-	256	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 0 F F$	$7 / 2$		

Description: User data can be read from the DB20 (user data block) in the PLC user program.

Description: User data can be read from the DB20 (user data block) in the PLC user program.

15700	LANG_SUB_NAME		N01	K1	
-	Name for substitution subroutine		STRING	PowerOn	
-					
-	- -	-	-	7/2	M

Description:

Name of the user program called on the basis of a substitution configured by MD30465 \$MA_AXIS_LANG_SUB_MASK.
The user program is called with the path configured by MD15702 \$MN_LANG_SUB_PATH.

15702	LANG_SUB_PATH			N01	K1	
-	Call path for substitution subroutine			BYTE	Pow	
-						
-	-	0	0	2	7/2	M

Description: Path with which the user program set by MD15700 \$MN_LANG_SUB_NAME is called on the
basis of a substitution configured by MD30465 \$MA_AXIIS_LĀNG_S SUB_MASK:
0: /_N_CMA_DIR (default)
1: /_N_CUS_DIR
2: /_N_CST_DIR

15710	TCA_CYCLE_NAME	N09	K1, FBWsI			
-	Program name for replacement of the TCA command	STRING	PowerOn			
-						
-	-	-	-	-	7/2	

Description: Program name for the replacement program when calling the TCA command.
If the TCA command is programmed in a part program block, then the subprogram defined in MD15710 \$MN_TCA_CYCLE_NAME is called at the end of the block. The programmed tool can be requestēd in the replacement program via the system variables \$C_TS_PROG / \$C_TS, the Duplo number via \$C_DUPLO_PROG / \$C_DUPLO and the toolholder/spindle number via \$C_THNO_PROG / \$C_THNO. The system variable \$C_TCA returns the value TRUE in the replacement program. Since the replacement takes place at the end of the block, the system variable \$P_SUB_STAT in the replacement program provides the value 2
If MD15710 \$MN_TCA_CYCLE_NAME contains an empty string, the replacement is deactivated (default).

16800	ROOT_KIN_ELEM_NAME		EXP, N01	K1	
-	Name of the root chain element		STRING	Res	
-					
-	ROOT	-	-	7/2	M

Description: Specifies the name of the chain element, which, for a machine description using kinematic chains, is the only one that extends from the zero point of the global coordinate system (root chain element).

16900	COLLISION_EXT_FUNCTION_MASK	EXP	-			
-	Parameterization of external collision check	UDWORD	PowerOn			
-						
-	-	0	0	0×7	$7 / 2$	

Description: Bit mask for parameterization of external collision check

16901	COLLISION_EXT_PREVIEW_TIME	EXP	-					
s	Preview time for external collision check						DOUBLE	PowerOn
-								
-	-	0.0	0.000	100.0				

Description:

The time applies during operation provided that enough data is available for a prediction. When a movement is started, the movement preview starts at the current position, and returns predictions in the largest possible increments until the preview time is reached.

16902	COLLISION_EXT_PREVIEW_STEP			EXP	-	
s	Preview time step for external collision check			DOUBLE	Pow	
-						
-	-	0.0	0.000	100.0	7/2	M

Description: When a movement is started, the movement preview starts at the current position, and returns predictions in the configured increment until the preview time COLLISION_EXT_PREVIEW_TIME is reached.

16903	COLLISION_EXT_TIMEOUT	EXP	-					
s	Timeout for external collision check						DOUBLE	PowerOn
-								
-	-	0.0	0.000	100.0				

Description: Timeout for communication with an external system to avoid collisions.

16904	COLLISION_EXT_STOP_TIME	EXP	-					
s	Maximum braking time for external collision avoidance						DOUBLE	PowerOn
-								
-	-	0.0	0.000	100.0				

Description: If the external collision avoidance triggers a stop, the machine must come to a
standstill within the set time (identical to response to STOP D).

Description: For each Ipo cycle, a package with current positions and the configured number of preview packages is created.

16906	COLLISION_EXT_CFG_MASK	EXP	-				
-	Parameterization of external collision check	UDWORD	Reset				
-							
-	-	0×1	0	0×1	$7 / 2$		

Description:

Bit mask for parameterization of external collision check

17000	EXTENSIONS_OF_BIN_FILES	EXP	-					
-	Extensions of binary files	STRING	PowerOn					
-								
-	20	$\begin{array}{l}\text { JPG, GIF, PNG, BMP, } \\ \text { PDF, ICO, HTM, CLC }\end{array}$	-	-	$2 / 2$		$]$	M
:---								

Description:
Extensions of files which are saved in the binary format in the passive NCKs file system.

For these files, there are no restrictions regarding the content.
For ASCII content (e.g. HTM) any line length is possible; this is not permissible for NC programs (e.g. MPF, SPF and DEF).
Each extension must comprise precisely three uppercase letters.

17400	OEM_GLOBAL_INFO	A01, A11	-			
-						
-	OEM version information	STRING	PowerOn			
-	5	-	-	-	$7 / 2$	

Description:
A version information freely available to the user
(is indicated in the version screen)
Note: MD17400 \$MN_OEM_GLOBAL_INFO[0] is used with functions such as logbook, licensing, etc. to store the machine identity.

17504	MAX_TOOLS_PER_MULTITOOL						N02, N09	-
-	Multitool function. Maximum number of tool locations per multitool.					DWORD	PowerOn	
-	-	6	2	72				
-	-	$1 / 1$	M					

Description: "Multiple tools in one magazine location" function (multitool). Maximum number of locations / tools per multitool.

17510	TOOL_UNLOAD_MASK		N09	FBW	
-	Behavior of tool data when unloading		UDWORD	Pow	
-					
-	0	0	0xF	$7 / 2$	M

Description:
When unloading a tool, certain tool data can be set to store fixed values.
Bit no. Bit value HEX Meaning

00 Tool status 'active' remains unchanged.
1 0x1 Tool status 'active' is deleted (\$TC_TP8, Bit 0).
10 Tool status 'was in use' remains unchanged.
1 0x2 Tool status 'was in use' is deleted (\$TC_TP8, Bit 7).
20 Tool parameter \$TC_TP10 remains unchanged.

1 0x4 Tool parameter \$TC_TP10 is set to zero. That is, the tool replacement change strategy is reset.

30 Tool parameter \$TC_TP11 remains unchanged.
10×8 Tool parameter $\$ T C _T P 11$ is set to zero. That is, the assignment to the tool subgroup is resolved.

17515	TOOL_RESETMON_MASK						N09	-
-	Tool data behavior with RESETMON						UDWORD	PowerOn
-								
-	-	0×14	0	$0 \times 49 F$				

Description:
The 5th parameter of the RESETMON command defines which tool status is to be reset. If the 5th parameter is omitted, it is replaced by the value in this MD. With the PI service "_N_TRESMON", work is always done with this value.
In that case, the bits are always assigned as the bits in the tool status \$TC_TP8[x].
Bit no.: 0 Bit value: 0 hex value: -
Meaning: Tool status "active" remains unchanged
Bit no.: O Bit value: 1 hex value: 'H1'
Meaning: Tool status "active" is deleted
Bit no.: 1 Bit value: 0 hex value: -
Meaning: Tool status "released" remains unchanged
Bit no.: 1 Bit value: 1 hex value: 'H2'
Meaning: Tool status "released" is set
Bit no.: 2 Bit value: 0 hex value: -
Meaning: Tool status "locked" remains unchanged
Bit no.: 2 Bit value: 1 hex value: 'H4'
Meaning: Tool status "locked" is deleted, if this is permitted by the monitoring data and the 4 th parameter is set correspondingly.

Bit no.: 3 Bit value: 0 hex value: -
Meaning: Tool status "measure" remains unchanged
Bit no.: 3 Bit value: 1 hex value: 'H8'
Meaning: Tool status "measure" is set.
Bit no.: 4 Bit value: 0 hex value: -
Meaning: Tool status "prewarning limit" remains unchanged
Bit no.: 4 Bit value: 1 hex value: 'H10'
Meaning: Tool status "prewarning limit" is deleted, if this is permitted by the monitoring data and the 4 th parameter is set.

Bit no.: 5 Not permitted (tool status "tool is being changed")
Bit no.: 6 Not permitted (tool status "tool is fixed-location-coded")
Bit no.: 7 Bit value: 0 hex value: -
Meaning: Tool status "was in use" remains unchanged
Bit no.: 7 Bit value: 1 hex value: 'H80'
Meaning: Tool status "was in use" is deleted
Bit no.: 8 Bit value: 0 Not permitted (tool status "is in retract")
Bit no.: 9 Bit value: 0 hex value: -
Meaning: Tool status "locked is ignored" remains unchanged
Bit no.: 9 Bit value: 1 hex value: 'H200'
Meaning: Tool status "locked is ignored" is deleted
Bit no.: 10 Bit value: 0 hex value: -
Meaning: Tool status "to unload" remains unchanged
Bit no.: 10 Bit value: 1 hex value: 'H400'

Meaning: Tool status "to unload" is deleted
Bit no.: 11 Not permitted (tool status "to load")
Bit no.: 12 Bit value: 0 Not permitted (tool status "master tool")
Bit no.: 13 Not permitted (reserved)
The default setting corresponds to the previous behavior.
Impermissible bits are filtered and not displayed in the limit mask. Bits not defined here are ignored when writing the machine data.

17520	TOOL_DEFAULT_DATA_MASK						N09	FBWsI
-	Create new tool: default settings						UDWORD	PowerOn
-								
-	-	0	0	$0 \times 1 \mathrm{~F}$	M			

Description:
When defining a tool for the first time (bits 0, 1, 2) or the magazine locations (bit 3) for the first time, certain data of the tool can be set to fixed default values. Bit 4 can couple the magazine location status 'Overlapping allowed' ('H2000') to the value of the magazine location status 'disabled' ('H1'). This can prevent simple applications from dealing with data which do not necessarily have to be assigned individual values.
Bit no.: 0 Bit value: 0 Hex value: -
Meaning: Default value of tool status (\$TC_TP8), bit1=0 ='not released'
Bit no.: 0 Bit value: 1 Hex value: 'H1'
Meaning: Default value of tool status (\$TC_TP8), bit1=1 ='released'
Bit no.: 1 Bit value: 0 Hex value: -
Meaning: Default value of tool status (\$TC_TP8), bit6=0 ='not fixed-location-coded' Bit no.: 1 Bit value: 1 Hex value: 'H2'
Meaning: Default value of tool status (\$TC_TP8), bit6=1 ='fixed-location-coded' Bit no.: 2 Bit value: 0 Hex value: -

Meaning: The tool is only accepted in the tool group when the explicit write command is used for the tool name. Only then can it be loaded via programming.
Bit no.: 2 Bit value: 1 Hex value: 'H4'
Meaning: The tool is automatically accepted in the tool group corresponding to the tool name when it is defined for the first time. The tool can then be changed using the default name ("t" = t-No.).
The term 'tool name' (\$TC_TP2) can be hidden from the user. (This only makes sense if you do not use replacement tools or if the tool name is not written explicitly, as this may give rise to data consistency problems.)
Bit no.: 3 Bit value: O Only with TMMG: Default value of location type (\$TC_TP7) $=9999=$ not defined
Bit no.: 3 Bit value: 1 Hex value: 'H8'
Meaning: Only with TMMG: Default value of location type (\$TC_TP7) = 1 and consequently the default value of magazine location type $\left(\$ T C _M P P 2\right)=1$. This means that all magazine locations can accept all tools.
Bit no.: 4 Bit value: 0 Hex value: -
Meaning: Only with TMMG + active consider adjacent location: With SET/RESET of the magazine location status 'disabled', the magazine location status 'Overlapping allowed' remains unchanged.
Bit no.: 4 Bit value: 1 Hex value: 'H10'
Meaning: Only with TMMG + active consider adjacent location: With SET/RESET of the magazine location status 'disabled', the magazine location status 'Overlapping allowed' is automatically SET/RESET.

17530	TOOL_DATA_CHANGE_COUNTER		EXP, N01	-	
-	Mark tool data change for HMI		UDWORD	Pow	
-					
-	0x1F	0	0x1F	7/2	M

Description:
HMI display support. This data enables individual data to be explicitly taken into account or not taken into account in the OPI variables (block C/S) toolcounter, toolCounterC, toolCounterM.

Bit no. : 0 Bit value: 0 Hex value: -
Meaning: Changes to the values of the tool status (\$TC_TP8) are not taken into account in toolCounterC

Bit no. : 0 Bit value: 1 Hex value: 'H1'
Meaning: Changes to the values of the tool status (\$TC_TP8) are taken into account in toolCounterc
Bit no. : 1 Bit value: 0 Hex value: -
Meaning: Changes to the values of the remaining number of tools (\$TC_MOP4) are not taken into account in toolcounterc
Bit no. : 1 Bit value: 1 Hex value: 'H2'
Meaning: Changes to the values of the remaining number of tools (\$TC_MOP4) are taken into account in toolCounterC

Bit no. : 2 Bit value: 0 Hex value: -
Meaning: Changes to the values of the tool data are not taken into account in the tool data update service

Bit no. : 2 Bit value: 1 Hex value: 'H4'
Meaning: Changes to the values of the tool data are taken into account in the tool data update service
Bit no. : 3 Bit value: 0 Hex value: -
Meaning: Changes to the values of the magazine data are not taken into account in the tool data update service
Bit no. : 3 Bit value: 1 Hex value: 'H8'
Meaning: Changes to the values of the magazine data are taken into account in the tool data update service.

Bit no. : 4 Bit value: 0 Hex value: -
Meaning: Changes to the values of the ISO tool offset data are not taken into account in the tool data update service

Bit no. : 4 Bit value: 1 Hex value: 'H10' Meaning: Changes to the values of the ISO tool offset data are taken into account in the tool data update service The statements "Changes to the values of the tool status" and "Changes to the values of the remaining number of tools" refer not only to value changes effected by internal processes in the NC but also to value changes produced by writing the corresponding system variables.

Description:
Definition of the tool types permitted in NCK (see \$TC DP1) with the tool offset selection. That is, tools of any type may be loaded in the NCK; but only the tools types defined here may be defined in the offset defining tool. A bit value $=1$ means that the named tool type range is permitted for the offset selection. A bit value $=0$ means that the named tool type range is rejected with an offset-capable alarm in the case of an attempted offset selection of a cutting edge of this type. The special value $=0$, 9999 for the tool type means "undefined". Tool offsets with this tool type value generally cannot be selected.

Bit no.: 0 value $0 x 1$ means: Tool types 1 to 99 permitted
Bit no.: 1 value 0×2 means: Tool types 100 to 199 permitted (milling tools)
Bit no.: 2 value $0 x 4$ means: Tool types 200 to 299 permitted (drilling tools)
Bit no.: 3 value 0×8 means: Tool types 300 to 399 permitted
Bit no.: 4 value 0×10 means: Tool types 400 to 499 permitted (grinding tools)
Bit no.: 5 value 0×20 means: Tool types 500 to 599 permitted (turning tools)
Bit no.: 6 value 0×40 means: Tool types 600 to 699 permitted
Bit no.: 7 value 0×80 means: Tool types 700 to 799 permitte
Bit no.: 8 value 0×100 means: Tool types 800 to 899 permitted
Bit no.: 9 value 0×200 means: Tool types 900 to 999 permitted
Related to:
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

17600	DEPTH_OF_LOGFILE_OPT				
-	Depth of log memory optimization in REORG	EXP, N01	-		
-					
-	-	5	0	DWORD	Reset

Description:
The depth of memory optimization in the REORG log file
(=search depth to determine if a parameter to be written is already included in the REORG log file).
The value of the machine data can be increased if alarm 15110 occurs during program execution and if this alarm is to be avoided.
(Alternatively, the size of the REORG log file can be increased with MD28000 \$MC_MM_REORG_LOG_FILE_MEM, provided that the operator has the access rights required. This procedure should generally be preferred.)
Value
0 = No optimization,
That is each write operation creates an input into the REORG log file. Writing a variable value is therefore very time-efficient, but requires more memory.

$0<\mathrm{n}<=$ Maximum value

When a new variable value is written, the n previously entered write operations (but maximally up to the previous indicatable block) are checked to determine if the parameter now to be written has already been written in the past. If this is the case, a new entry is not made in the REORG log file.
If this is not the case, an entry is made. A variable value can therefore be written in a very memory-efficient way, but requires more time.
Example:
MD17600 \$MN_DEPTH_OF_LOGFILE_OPT is assumed to be 5 and the following would be a typical proğram sequēnce:
$x 10$; Executable NC block
r1=1 ; The first write command since x10
; -> Save old value in log file. 1st entry
r2=1 ; Determine that $r 2$ is not yet included
; -> Save old value in log file. 2nd entry
r3=1 ; Determine that $r 3$ is not yet included
; -> Save old value in log file. 3rd entry
r4=1 ; Determine that $r 4$ is not yet included
; -> Save old value in log file. 4th entry
r5=1 ; Determine that r 5 is not yet included
; -> Save old value in log file. 5th entry
r6=1 ; Determine that $r 6$ is not yet included

```
    ; -> Save old value in log file. 6th entry
r2=1 ; Determine that r2 is already included
    ; (5th oldest entry) -> no renewed saving
r3=1 ; Determine that r3 is already included
    ; (4th oldest entry) -> no renewed saving
r1=2 ; As MD17600 $MN_DEPTH_OF_LOGFILE_OPT = 5 it is not detected that
        ; r1 is already included
        ; (6th oldest entry) -> save old value in log file.
        ; 7th entry
x20 ; Executable NC block
r1=3 ; The first write command since x20
    ; -> Save old value in log file. 1st entry
r1=4 ; Determine that r1 is already included
    ; (Only one entry) -> no renewed saving
```

The setting of the $M D$ is particularly useful if a small number of verious parameters are written frequently (e.g. in a loop) and if alarm 15110 occurs for this reason.

17610	DEPTH_OF_LOGFILE_OPT_PF	EXP, N01	-			
-	Depth of the PowerFail log memory optimization	DWORD	Reset			
-						
-	3	$100,10,30$	0	1000	$1 / 1$	

Description:
Depth of the memory optimization in the PowerFail log file (=search depth, to find out whether a parameter to be written is already included in the PowerFail log file).

It is possible to increase the value of the machine data if
alarm 15120 occurs during program processing and if you wish to avoid it.
(Alternatively, you can increase the size of the PowerFail log file itself by means of MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM, if you have the necessary access right
and if the required memory is available.
Value
$0 \quad=$ same effect as value 1.
Writing of a variable value is therefore very time-efficient at the cost of the required memory.
$0<\mathrm{n}<=$ Maximum value
= Writing of a new variable value leads, prior to saving of the new variable value in the PowerFail log file, to the last n write operations which have been being checked to see whether the new parameter to be written has already been written once. If yes, the new value is not entered again in the PowerFail log file, but the old value is overwritten with the new one. If no, the new value is entered. At the cost of the required time, writing of a variable value can therefore be designed very memory-efficiently.

Changing of the data can shorten/increase the time requirement of the present application.

Changing of the data can fill the available log buffers faster/more slowly.
Frequent occuring of alarm 15120 -> Increase values for index=0,1,2.
The value indicating the index to be changed can be deducted from the parameter of alarm 15120:
if it is the value for MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM[0], then increase the value for index 0;
or increase MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM[0] itself.
Index Meaning
0 Search depth in preprocessing buffer
1 Search depth in buffer for data changes within the range of tool change
2 Search depth in buffer for data changes of main processing (especially synchronized actions)

17900	VDI_FUNCTION_MASK		EXP, N09	H1	
-	Setting to VDI signals		UDWORD	Pow	
-					
-	0x0	0	0x1	7/2	M

Description:

Settings for VDI signals:
Bit $0=0$:
The VDI signals motion command $+/$ motion command - are already issued if there is a travel request (default).

Bit $0=1$:
The VDI signals motion command $+/$ motion command - are issued only if the axis actually moves.

17950	IS_AUTOMATIC_MEM_RECONFIG		EXP, N02	-	
-	System: automatic memory reconfiguration		BOOLEAN	Pow	
-					
-	TRUE	-	-	3/1	M

Description:
Value $=0$: If machine data that redefines the buffered memory is modified, then generally the alarm 4400 is output which indicates that the user data will be deleted the next the software is started.
Value = 1 : If machine data that redefines the buffered memory is modified, then generally the alarm 4400 is not output. This means the data is retained the next time the software is started.

The preassigned value is selected model-specifically and generally it must not be changed.

17951	AUTOMATIC_MEM_RECONFIG_FILE	EXP	-			
-						
-	Path and file name for internal data backup	STRING	PowerOn			
-	-	lsiemens/sinumerik/ sys_cache/nck/ content.reconfig	-	ReadOnly	S	

Description: File name with file path where the data backup file is stored if the persistent memory is reconfigured.

18030	HW_SERIAL_NUMBER		N05	-	
-	Hardware series number		STRING	PowerOn	
-					
-	1	-	-	ReadOnly	M

Description: During power on of the control, a unique hardware serial number is stored in this MD:

- For Powerline series modules this is the serial number of the NCU module
- For Solutionline series modules this is the serial number of the CF card, or the unique number of the MCI module in the case of PC-based systems

This data cannot be written.

18040	VERSION_INFO	N05	-				
-	Version and product information	STRING	PowerOn				
-							
-	9	-	-	-	ReadOnly		

Description: Version and model information for the system software component NCK
[O]:'Software component name[SI version]' - value: "Numeric Control NCK" (can be overwritten as from "trol NCK" with 'SIxxx'. 'SI' stands for Safety Integrated, 'xxx' for the SI version)
[1]:'Version (and date of the NCK installation on the target system)'
[2]:'Date and time of the NCK program generation'
[3]: 'Name of the model and submodel' - values: 808d-me42, ... 828d-me42, ... 840DSL731,... 840D732, ...
[4]:'Hardware type' - values for NCK
in NCU: IDC, SOC2, ... simulations NCK: PC (Windows), PC (Linux), ... HOST development NCK: HOST development
[5]:'Product type' - values: machine tool, simulation, simulation development
[6]:'Subscaling 1' - values: file name. different variants of a model can have data (properties) deviating from those of the model.
[7]:'Subscaling 2' - values: file name. different variants of a model can have data (properties) deviating from those of the model.
[8]:'Subscaling 3' - values: file name. different variants of a model can have data (properties) deviating from those of the model.

Applies to indices 6,7,8: Prerequisite for a value input is that the file exists when the NCK starts.

Example for 840dsl on NCU hardware:
[0]:"Numeric Control NCK" (without NC-based Safety Integrated)
[0]:"Numeric ControSI112" (with NC-based Safety Integrated)
[1]:"112.00.00 "
[2]:"22/02/16 09:28:03"
[3]:"840DSL731"
[4]:"SOC2"
[5]:"machine tool"
[6]:""
[7]:""
[8]:""
Example for '840d virtual commissioning' (a simulation product) on a Windows computer:
[0]:"Numeric Control NCK" (without Safety Integrated)
[1]:"112.00.00"
[2]:"31/01/16 08:58:43"
[3]:"840D732"
[4]:"PC (Windows)"
[5]:"simulation"
[6]:"840evoVC_addon"
[7]:""
[8]:""

18042	CC_VERSION_INFO	N05	-				
-	Compile cycle version	STRING	PowerOn				
-							
-	10	-	-	-	$7 / 2$	M	

Description: Version identifiers of the compile cycles

18045	EES_MODE_INFO						N05	-
-	Mode in which the EES function works.						BYTE	Immediately
-								
-	-	0	-	-	ReadOnly			

Description:
Mode in which the function "Execution from External Storage" works.
Bit0 (LSB) $=1$
CNC user memory expanded (local EES active)
Bit1 $=1$
Execution from external memory (global EES is active)
Bit2 = 1
A global part program memory has been set up on an external memory. See also:

OD19730 \$ON_HMI_FUNCTION_MASK[0] bit 5 "CNC user memory expanded"
OD19334 \$ON_SYSTEM_FUNCTION_MASK bit 9 "Execute from external memory"
OD19334 \$ON_SYSTEM_FUNCTION_MASK bit 12 "Additional HMI user memory on CF card of the NCU"

18050	INFO_FREE_MEM_DYNAMIC	N01, N02, N05	S7			
-	Display data of the free volatile memory	DWORD	PowerOn			
-						
-	-	6291456	0	268435456	ReadOnly	

Description:

The data is used for
a) the manufacturer's presetting of the memory size [bytes] available to the user for each channel after cold restart.
b) displaying the available volatile memory [bytes]

The data cannot be written.
The contents of the data state how much volatile memory is available per channel for increasing the volatile user data storage area via MD.
It is advisable to check whether the available memory is sufficient before increasing, for example, the number of LUDs, number of functional parameters, or the size of the IPO buffer.
If necessary, proceed step by step:

- increase by 1 , note (old) value
- NCK startup (= 'warm start' or NCK reset), read off new value
- memory requirement $=$ new value - old value

On the first NCK startup or cold restart of the control (=deletion of user data), MD18210 \$MN_MM_USER_MEM_DYNAMIC is set by the NCK software so that at least the preset value results for MD18050 \$MN_INFO_FREE_MEM_DYNAMIC.
That is, the value is automatically increased if the initial value of MD18210 \$MN_MM_USER_MEM_DYNAMIC is too low.
The following also applies to multichannel systems:

- The preset value applies to each possible channel. That is, if there are ten possible channels, MD18210 \$MN_MM_USER_MEM_DYNAMIC is set by the NCK SW so that at least the 'preset value* ten' results for MD18050 \$MN_INFO_FREE_MEM_DYNAMIC.
- On activation of a channel, MD18210 \$MN_MM_USER_MEM_DYNAMIC is increased if necessary so that the memory free at the time of activation continues to be free (provided that the memory structure permits this) after the channel has become active.
- The activation of the maximum possible number of axes is ensured by increasing the data MD18210 \$MN_MM_USER_MEM_DYNAMIC if necessary so that memory free at the time of activation continues to be free (provided that the memory structure permits this) after the axis has become active.
'If necessary' in the previous sentences means that the adjustment is automatic if the channel/axis could not be activated with the current values of MD18210 \$MN_MM_USER_MEM_DYNAMIC/\$MN_INFO_FREE_MEM_DYNAMIC.

18060	INFO_FREE_MEM_STATIC	N01, N02, N05	S7			
-	Display data of the free nonvolatile memory	DWORD	PowerOn			
-						
-	-	7340032	0	48234496	ReadOnly	

Description:

The preassigned value specifies how many bytes, as a minimum, are free for the user when the NCK runs up with a 'cold restart'.
The contents of the data state how much nonvolatile memory is available during startup for configuration of the active and passive file system and other functions.
e.g. MD18082 \$MN_MM_NUM_TOOL
e.g. MD18150 \$MN_MM_GUD_VALUES_MEM
e.g. MD18352 \$MN_MM_U_FILE_MEM_SIZE
e.g. MD38000 \$MA_MM_ENC_COMP_MAX_POINTS)

On the first NCK power-up or cold restart of the control (=deletion of user data) MD18230 \$MN_MM_USER_MEM_BUFFERED is set by the NCK software so that at least the default value results for MD18060 \$MN_INFO_FREE_MEM_STATIC.

Machine data for configuration of functions that require nonvolatile memory (tools, GUDs, compensations, ...) can be increased until this memory has all been allocated.

18070	INFO_FREE_MEM_DPR							EXP, N01, N02, N05	S7
-	Display data of free memory in DUAL PORT RAM	DWORD	PowerOn						
-									
-	-	0	-	-					

Description: Output of the available memory in the Dual Port RAM (Bytes).
The data cannot be written.

18074	MM_TOOL_MANAGEMENT_TRACE_SZ						N02, N09	/FBWsI/, "Description of Functions, Tool Management"
-	Max. size of the tool management diagnostic ring buffers						DWORD	PowerOn
-	2	4	500	$7 / 2$	M			
-	25,25	4						

Description:

The number of entries in the tool management diagnostic ring buffers.
Index $0=$ IPO trace buffer size.
Index 1 = Prep trace buffer size.
There are separate IPO trace buffers in each channel, and a Prep trace buffer in channel 1 only.
The buffers are allocated only if bit 0 (0×0001) is ON at warm start, in both MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK and per-channel MD20310 \$MC_TOOL_MANAGEMENT_MASK.

Trace data is written to the buffers when bit $13(0 \times 2000)$ is ON in per-channel MD20310 \$MC_TOOL_MANAGEMENT_MASK.

18075	MM_NUM_TOOLHOLDERS		N02, N09		ption of Management"
-	Max. number of tool holders per TOA		DWORD	Pow	
-					
-	16	1	20	7/2	M

Description:
Max. number of definable tool holders per $T O$ range.
The address extension e of commands $T e=t$, $M e=6$ (*) is the number of the tool holder.
$t=T$ number/tool name - depending on the function activated in the NCK.
(*) if: MD22550 \$MC_TOOL_CHANGE_MODE=1 and MD22560 \$MC_TOOL_CHANGE_M_CODE=6 applies Normally the tool holder of milling machines is a spindle.
Also see MD20090 \$MC_SPIND_DEF_MASTER_SPIND.
For turning machines the tool holder normally is not a spindle axis.
Also see MD20124 \$MC_TOOL_MANAGEMENT_TOOLHOLDER.
In this case it should reasonably apply that MD18075 \$MN_MM_NUM_TOOLHOLDERS is larger or equal to MD20090 \$MC_SPIND_DEF_MASTER_SPIND/MD20124 \$MC_TOOL_MANAGEMENT_TOOLHOLDER.
If bit $0=1$ in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK and MD20310
\$MC_TOOL_MANAGEMENT_MASK is set (=magazine management (TOOLMAN))
it will apply for reasonable values that MD18075 \$MN_MM_NUM_TOOLHOLDERS is smaller or equal to MD18076 \$MN_MM_NUM_LOCS_WITH_DISTANCE.
A maximum of MD18075 \$MN_MM_NUM_TOOLHOLDERS intermediate memory locations of the type spindle
(\$TC_MPP1[9998,x]=2) can then be defined.
Example: TOOLMAN inactive
MD20090 \$MC_SPIND_DEF_MASTER_SPIND shall be =3, MD18075 \$MN_MM_NUM_TOOLHOLDERS shall be $=3$.

Then $T 1=t, T 2=t, T 3=t, T=t$ can be programmed.
Example: TOOLMAN active, milling machine with Me=6 as tool change command
MD18075 \$MN_MM_NUM_TOOLHOLDERS shall be = 14, MD18076
\$MN_MM_NUM_LOCS_WITH_DISTANCE=20,
10 channels shall be active, all channels have TOOLMAN active and have the same tool and magazine data
(=one TO range for all channels). MD20090 \$MC_SPIND_DEF_MASTER_SPIND=1,..... 10 for the channels.
Then up to 14 locations of the kind 'tool holder'/'spindle' can be defined in the intermediate magazine memory.

Additional 6 grippers or others can be defined.
These 20 locations max. can be linked to magazines.
In the channels $T 1=t$, T14 $=t$ and $T t$, or $M 1=6, \ldots$ M14 $=6$ and M6 can be programmed.
The PLC version used can limit the maximum number of tool holders.

- See MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, MD20310 \$MC_TOOL_MANAGEMENT_MASK; for each bit $0=1$.

Max. number of magazine locations (spindles, load locations,...) per TOA, that can have a remote connection to a magazine, defined by \$TC_MDPx[n,m].
Example: TOOLMAN shall be active: MD18076 \$MN_MM_NUM_LOCS_WITH_DISTANCE shall be = 5 and MD18077 \$MN MM NUM DIST REL PER MAGLOC $=2$.

Two TO units shall be defined with three tool holders/spindles and two load locations each.

Furthermore, two grippers each shall be defined in each TO unit.
This means that a total of 14 locations shall be defined in the intermediate memory magazine/load magazine for the distances and assignments.
4 magazines shall be defined for TO unit 1,6 magazines for TO unit 2.
With the value set to MD18076 \$MN_MM_NUM_LOCS_WITH_DISTANCE = 5 each tool holder and each load location
of the two TO units with up to two magazines (MD18077 \$MN_MM_NUM_DIST_REL_PER_MAGLOC = 2) per remote relationship
can be connected; (see \$TC MDP1 and \$TC MDP2) and for each tool holder max. two more grippers
(MD18077 \$MN_MM_NUM_DIST_REL_PER_MAGLOC = 2) can be assigned; (see \$TC_MLSR).
One tool holder / one spindle location can subsequently have two tables - one distance table for magazines and
one assignment table for grippers and similar locations.

18077	MM_NUM_DIST_REL_PER_MAGLOC		N02, N09	/FBWsI/, "Description of Functions, Tool Management"
-	Max. no. of magazines in the distance table of a magazine loc.		DWORD	PowerOn
-				
-	64	64 0	64	7/2 M

Description:

This machine data will only be active, if the magazine management, TOOLMAN function is active.

- See MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, MD20310 \$MC_TOOL_MANAGEMENT_MASK.

Two sizes are defined with this magazine data:
1.) Max. number of magazines in the distance table of a magazine location (spindle, load location, ...)
2.) Max. number of locations (gripper, ...) in the connection table of a spindle/tool holder location.
Example: MD18077 \$MN_MM_NUM_DIST_REL_PER_MAGLOC shall be $=3$.
Two TO units shall be defined with two tool holder/spindles each and one load location each.

Furthermore four grippers shall be defined in each TO unit.
4 magazines shall be defined for $T O$ unit 1; 6 magazines shall be defined for to unit 2.

Then, each tool holder can define max. three distances for the magazines (see \$TC_MDP2) and additionally a max. of three relationships to the grippers (\$TC_MLSR).

Description: The machine data only has effect if the function 'tool magazine management', TMMG, is activated - see MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, MD20310 \$MC_TOOL_MANAGEMENT_MASK.

The maximum number of hierarchies for magazine location types.
In variable \$TC_MPTH[n,m], the allowed range of n is from 0 to MD18078 '\$MN_MM_MAX_NUM_OF_HIERARCHIES - 1'.
(The maximum of index m is given by MD18079 \$MN_MM_MAX_HIERARCHY_ENTRIES.)
Value $=0$ means that the function 'magazine location type hierchies' is not available.

18079	MM_MAX_HIERARCHY_ENTRIES							N02, N09	/FBWsI/, "Description of Functions, Tool Management"
-	The max. number of entries in a mag. location type hierarchy.						DWORD	PowerOn	
-									
-	-	1	32	$7 / 2$	M				

Description:
The machine data is only effective if the function 'tool magazine management', TMMG, is activated - see MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, MD20310 \$MC_TOOL_MANAGEMENT_MASK - and $\bar{i} f ~ \overline{M D 18078 ~ \$ M N _M M _M A X _N U M _O F _H I E R A R C H I E S ~ i s ~ g r e a t e r ~}$ than zero.
The maximum number of entries in a magazine location type hierarchy.
The permissible range of the index m of system parameter $\$ T C$ _MPTH [n,m] is from 0 to 'MD18079 \$MN_MM_MAX_HIERARCHY_ENTRIES - 1'.
(The maximum of index n is given by MD18078 \$MN_MM_MAX_NUM_OF_HIERARCHIES.)

18080	MM_TOOL_MANAGEMENT_MASK		N02, N09	K1, W1	
-	Step-by-step memory reservation for tool management (SRAM)		UDWORD	PowerOn	
-					
-	0x2	0	0xFFFF	7/1	M

The set TM data does not take up any memory space, TM is not available.
 have to be set accordingly (MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION, MD18084 \$MN_MM_NUM_MAGAZINE)
Bit 1=1: Memory for monitoring data (WZMO) is provided
Bit 2=1: Memory for user data (CC data) is provided
Bit 3=1: Memory to consider adjacent location is provided
Bit 4=1: Memory and function enable for PI service _N_TSEARC = "Complex search for tools in magazines" is provided.
Bit 5=1: Wear monitoring active
Bit 6=1: Wear grouping available
Bit 7=1: Reserve memory for adapters for magazine locations
Bit 8=1: Memory for application and/or setup offsets
Bit 9=1: Tools associated with a turret no longer leave their turret location on tool change (display).
Bit $10=1$:The multitool function is available
(other MDs can be used to modify the configuration).
Bit $10=0$:The multitool function is not available
(the functional scope configured with other MDs is ineffective).
This broken down approach to memory reservation means that memory usage can be optimized in line with the functions used.
Example:
Default memory reservation for TM:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK = 3 (bit $0+1=1$) means that $T M$ and tool
monitoring data are provided
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK = 1 means tool management without tool monitoring function data

18082	MM_NUM_TOOL	N02, N09	FBWsl, S7				
-	Number of tools the NCK can manage (SRAM)	DWORD	PowerOn				
-							
-	-	30	0	1500			

Description: The NC cannot manage more tools than the number entered in the MD. A tool has at least one cutting edge.
Buffered user memory is used.
The maximum possible number of tools is equal to the number of cutting edges. The MD must also be set when TOOLMAN is not used.
The buffered data are lost when the machine data is changed.
Related to:
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

18083	MM_NUM_MULTITOOL	N02, N09	-					
-	Multitool function. Number of tools the NCK can manage.						DWORD	PowerOn
-								
-	-	15	0	750	$1 / 1$			

Description: "Multiple tools in one magazine location" function (multitool). Number of multitools the NCK can manage.

18084	MM_NUM_MAGAZINE							N02, N09	FBWsI
-	Number of magazines the NCK can manage (SRAM)	DWORD	PowerOn						
-									
-	-	4	0	64	M				

Description: Tool management (TOOLMAN and TMMG) - only when MD TOOLMAN and option TOOLMAN are set: Number of magazines which the NCK can manage (active and background magazines).
This MD reserves the buffered memory for the magazines.
Important: One loading and one buffer magazine are set up in in the tool management for each TOA unit. These magazines have to be taken into account here.
Value $=0$-The tool management cannot be activated because no data can be created.
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD20310 \$MC_TOOL_MANAGEMENT_MASK

18085	MM_NUM_MULTITOOL_LOCATIONS						N02, N09	-		
-	Multitool function: Number of multitool locations the NCK can manage.	DWORD	PowerOn							
-										
-	-	30	0	1500	$1 / 1$				$⿻$	M
:---										

Description: "Multiple tools in one magazine location" function (multitool). Number of multitool
locations the NCK can manage.

Description: TMMG - only when MD TOOLMAN and TOOLMAN option are set:

Number of magazine locations which the NCK can manage.
This machine data reserves the buffered memory for the magazine lcations.
Important: The number of all buffers and loading points also has to be included in the calculation here.
Value = 0: Tool management cannot be activated because no data can be created.
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD20310 \$MC_TOOL_MANAGEMENT_MASK

18090	MM_NUM_CC_MAGAZINE_PARAM	N02, N09	FBWsI			
-	Number of OEM magazine data (SRAM)	DWORD	PowerOn			
-						
-	-	0	0	64	$2 / 2$	

Description: Number of magazine data (of type Integer) which are available to the user or the compile cycle.
This machine data increases the buffered memory requirement by sizeof(int)*max. number of magazines.
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18084 \$MN_MM_NUM_MAGAZINE

18091	MM_TYPE_CC_MAGAZINE_PARAM	N02, N09	-					
-	Type of OEM magazine data (SRAM)						DWORD	PowerOn
-								
-	64	$3,3,3,3,3,3,3,3 \ldots$	1	6	$2 / 2$			

Description: Individual types can be assigned to the parameters in this way. Array index n can take values from 0 to that of MD18090 \$MN_MM_NUM_CC_MAGAZINE_PARAM.
Type of magazine-specific user data configured by MD18090
\$MN_MM_NUM_CC_MAGAZINE_PARAM.
Each parameter can be assigned its own type. Permissible types are:
Type Value of machine data
(See types of the NC language)
BOOL 1
CHAR 2
INT 3
REAL 4
STRING 5 (is not allowed, is not supported by the MCP.)
AXIS 6

Machine data

```
FRAME
Not defined
Example:
MD18090 $MN_MM_NUM_CC_MAGAZINE_PARAM=1
MD18091 $MN_MM_TYPE_CC_MAGAZINE_PARAM=2
Parameter $TC_MAPC1 = "A" can then be programmed.
Buffered user memory is used. A value change leads to a reconfiguration of the buffered
memory.
Related to:
MD18090 $MN_MM_NUM_CC_MAGAZINE_PARAM
MD18084 $MN_MM_NUM_MAGAZINE
```

18092	MM_NUM_CC_MAGLOC_PARAM						N02, N09	FBWsI
-	Number of OEM magazine location data	DWORD	PowerOn					
-								
-	-	0	0	64				

Number of magazine location data parameters (of type Integer) which are available to the user or the compile cycle.
This machine data increases the buffered memory requirement by sizeof(int)*max. number of magazines.
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION

18093	MM_TYPE_CC_MAGLOC_PARAM	N02, N09	-			
-	Type of OEM magazine location data (SRAM)	DWORD	PowerOn			
-						
-	64	$3,3,3,3,3,3,3,3 \ldots$	1	6		

Description: Individual types can be assigned to the parameters in this way. Array index n can take values from 0 to that of MD18092 \$MN_MM_NUM_CC_MAGLOC_PARAM.

Type of magazine location-specific user data configured by MD18092 \$MN_MM_NUM_CC_MAGLOC_PARAM.
Each parameter can be assigned its own type. Permissible types are:
Type Value of machine data
(See types of the NC language)
\qquad
BOOL 1
CHAR 2
INT 3
REAL 4
-(STRING is explicitly not possible here, the value 5 is treated as the value 2)
AXIS 6
FRAME Not defined
Example:
MD18092 \$MN_MM_NUM_CC_MAGLOC_PARAM=1
MD18093 \$MN_MM_TYPE_CC_MAGLOC_PARAM=2
Parameter $\$$ TC_MPPC1 = "A" can then be programmed.
Buffered user memory is used. A value change leads to a reconfiguration of the buffered memory.
Related to:
MD18092 \$MN_MM_NUM_CC_MAGLOC_PARAM

MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION

18094	MM_NUM_CC_TDA_PARAM	N02, N09	H2			
-	Number of OEM tool data (SRAM)	DWORD	PowerOn			
-						
-	-	0	0	64		

Description: Number of tool-specific data (of type Integer) which can be created per tool, and which are available to the user or the compile cycle.
This machine data increases the buffered memory requirement by sizeof(double)*max. number of tools.
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18082 \$MN_MM_NUM_TOOL

18095	MM_TYPE_CC_TDA_PARAM	N02, N09	-			
-	Type of OEM tool data (SRAM)	DWORD	PowerOn			
-						
-	64	$4,4,4,4,4,4,4,4 \ldots$	1	6	$2 / 2$	

Description: Individual types can be assigned to the parameters in this way. Array index n can take values from 0 to that of MD18094 \$MN_MM_NUM_CC_TDA_PARAM.
Type of tool-specific user data configured by MD18094 \$MN_MM_NUM_CC_TDA_PARAM.
Each parameter can be assigned its own type. Permissible types are:
Type Value of machine data
(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4
STRING 5 (Identifier allowed up to a maximum of 31 characters.)
AXIS 6
FRAME Not defined
Example:
MD18094 \$MN_MM_NUM_CC_TDA_PARAM=1
MD18095 \$MN_MM_TYPE_CC_TDA_PARAM=5
Parameter $\$ T C$ TPC1 = "UserTool" can then be programmed.
Buffered user memory is used. A value change leads to a reconfiguration of the buffered memory.
Related to:
MD18094 \$MN_MM_NUM_CC_TDA_PARAM
MD18082 \$MN_MM_NUM_TOOL

18096	MM_NUM_CC_TOA_PARAM						N02, N09	G2
-	Number of data per tool edge for compile cycles (SRAM)	DWORD	PowerOn					
-								
-	-	0	0	64	$2 / 2$			

Description:

Number of TOA data (of type Real) which can be created per tool, and which are available to the user or the compile cycle.
This MD increases the buffered memory requirement by sizeof(double)*max. number of cutting edges.

```
Related to:
MD18080 $MN_MM_TOOL_MANAGEMENT_MASK
MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA
```

18097	MM_TYPE_CC_TOA_PARAM	N02, N09	-				
-	Type of OEM data per cutting edge (SRAM)	DWORD	PowerOn				
-							
-	64	$4,4,4,4,4,4,4,4 \ldots$	1	6	$2 / 2$		

Description:
Individual types can be assigned to the parameters in this way.
Array index n can take values from 0 to that of MD18096 \$MN_MM_NUM_CC_TOA_PARAM.
Type of cutting edge-specific user data configured by MD18096 \$MN_MM_NUM_CC_TOA_PARAM.
Each parameter can be assigned its own type. Permissible types are:
Type Value of machine data
(See types of the NC language)
\qquad
BOOL 1
CHAR 2
INT 3
REAL 4
-(STRING is explicitly not possible here, the value 5 is treated as the value 2)
AXIS 6
FRAME Not defined
Example:
MD18096 \$MN_MM_NUM_CC_TOA_PARAM=1
MD18097 \$MN_MM_TYPE_CC_TOA_PARAM=2
Parameter $\$ T C$ DPC1 = "A" can then be programmed.
Buffered user memory is used. A value change leads to a reconfiguration of the buffered memory.

Related to:
MD18096 \$MN_MM_NUM_CC_TOA_PARAM
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

18098	MM_NUM_CC_MON_PARAM	N02, N09	FBWsI		
-	Number of monitoring data per tool for compile cycles	DWORD	PowerOn		
-	-	0	64	$2 / 2$	M
-	-	0	0		

Description:
Number of monitoring data (of type Integer) which can be created per tool, and which are available to the user or the compile cycle.
This MD increases the buffered memory requirement by sizeof(int)*max. number of cutting edges.

Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

18099	MM_TYPE_CC_MON_PARAM	N02, N09	FBWsI					
-	Type of OEM monitor data (SRAM)						DWORD	PowerOn
-								
-	64	$3,3,3,3,3,3,3,3 \ldots$	1	6				

Description: Individual types can be assigned to the parameters in this way. Array index n can take values from 0 to that of MD18098 \$MN_MM_NUM_CC_MON_PARAM.

Type of monitoring-specific user data configured by MD18098 \$MN_MM_NUM_CC_MON_PARAM.
Each parameter can be assigned its own type. Permissible types are:
Type Value of machine data
(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4
-(STRING is explicitly not possible here, the value 5 is treated as the value 2)
AXIS 6
FRAME Not defined
Example:
MD18098 \$MN_MM_NUM_CC_MON_PARAM=1
MD18099 \$MN_MM_TYPE_CC_MON_PARAM=2
Parameter $\$ T C$ MOPC1 $=$ "A" can then be programmed.
Buffered user memory is used. A value change leads to a reconfiguration of the buffered memory.
Related to:
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA
MD18098 \$MN_MM_NUM_CC_MON_PARAM

18100	MM_NUM_CUTTING_EDGES_IN_TOA				
					N02, N09
W1					
-	Number of tool offsets that the NCK can manage (SRAM)	DWORD	PowerOn		
-	-	0	3000	$7 / 2$	M
-	-	0			

Description:
.Defines the number of tool cutting edges. This machine data reserves approximately 250 bytes of battery-buffered memory per TOA block for each tool cutting edge, irrespective of the tool type

Tools with cutting edges of type 400-499 (= grinding tools) also occupy the location of a cutting edge.

Example:
Defining 10 grinding tools each of which has one cutting edge. Then at least:
MD18082 \$MN MM NUM TOOL = 10
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA = 20
Also see MD18082 \$MN_MM_NUM_TOOL
Buffered user memory is used
Special cases:
The buffered data is lost if this machine data is altered!

18102	MM_TYPE_OF_CUTTING_EDGE				
-	Type of D No. programming (SRAM)				
NDLD					
-	-	0	0	DWORD	PowerOn

This MD activates the 'flat D number management'. This function is no longer supported.
The default value is zero. This means that the NCK manages the T and D numbers.
The NCK only accepts a value >0 if bit 0 and bit 1 are not set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK. That means neither the magazine management function nor tool monitoring may be active.

Value: Meaning

0: No 'flat D number management' active
1: 'Flat D number' function is active

18104	MM_NUM_TOOL_ADAPTER	N02, N09	W1				
-	Tool adapters in TO area (SRAM)	DWORD	PowerOn				
-							
-	-	-1	-1	1500	M		

Description:
Number of tool adapters in the $T O$ area.
The function can only be used if there are magazine locations in the NCK.
The tool management function must be active.
Bit 7 ($=0 \times 80$) also has be set in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK for the setting to become active.

Adapter data blocks and the cutting edge-specific basic/adapter dimensions are mutually exclusive. This means that if adapter data are defined, then the parameters \$TC_DP21, \$TC_DP22, \$TC_DP23 and their values are available in the NCK.
-1:
An adapter is automatically assigned to each magazine location.
This means that internally the same number of adapters are provided as magazine locations are provided by MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION.
0 :
No adapter data definitions possible. The cutting edge-specific parameters \$TC_DP21, \$TC_DP22, \$TC_DP23 are available provided that adapters are used outside the active TMMG.
>0 :
-
Note: The setting >0 is currently not supported by HMI Operate.
See the machine data:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK,
MD20310 \$MC_TOOL_MANAGEMENT_MASK,
MD18084 \$MN_MM_NUM_MAGAZINE,
MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION

18105	MM_MAX_CUTTING_EDGE_NO	N02, N09	W1					
-	Maximum value of D number						DWORD	PowerOn
-								
-	-	9	1	32000				

Description:
Maximum value of the D number.
This does not affect the maximum number of D numbers per cutting edge.
The monitoring of the D number assignment associated with this value is only active when the D numbers are redefined. This means that existing data sets are not subsequently checked if the MD is changed.
The following settings are advantageus:
MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO is equal to
MD18106 \$MN_MM_MAX_CUTTING_EDGE_PER_TOOL.
If MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO is selected > MD18106
\$MN_MM_MAX_CUTTING_ED $\bar{G} E _P E R _T O \bar{L}, \bar{t}$, cutting-edge number CE should be known.
See also language commands CHKDNO, CHKDM, GETDNO, SETDNO, DZERO.
The machine data is not evaluated with the function "flat D number", and therefore has no significance there.

The MD can affect the memory requirement:
If the relation between the two, above-mentioned MDs changes from "less than or equal to" to "greater than" or vice versa, then this affects the non-buffered memory requirement.

Related to:
MD18106 \$MN_MM_MAX_CUTTING_EDGE_PER_TOOL

18106	MM_MAX_CUTTING_EDGE_PERTOOL			N02, N09	W1	
-	Maximum number of D numbers per tool			DWORD	Pow	
-						
-	9	9	1	12	$7 / 2$	M

Description:
Maximum number of cutting edges (D offsets) per tool (per T number).
This enables more safety to be achieved in the data definition. The value can be set to 1 if only tools with one cutting edge are used. This prevents more than one cutting edge being assigned to a tool in the data definition.

The following settings are advantageus: MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO is equal to MD18106 \$MN_MM_MAX_CUTTING_EDGE_PER_TOOL. If MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO is selected > MD18106 \$MN_MM_MAX_CUTTING_EDGE_PER_TOOL, then the difference between offset number D and cutting-edge number $C E$ should be known.
See also language commands CHKDNO, CHKDM, GETDNO, SETDNO, DZERO.
The machine data is not evaluated with the function "flat D number", and therefore has no significance there.
The data can affect the memory requirement.
The MD can affect the memory requirement.
If the relation between the two, above-mentioned MDs changes from "less than or equal to" to "greater than" or vice versa, then this affects the non-buffered memory requirement.

Related to:
MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO

18108	MM_NUM_SUMCORR	N02, N09	W1			
-	Resulting offsets in TO area (SRAM)	DWORD	PowerOn			
-						
-	-	-1	-1	9000		

Description:
Total number of resulting offsets in the NCK.
The value $=-1$ means that the number of resulting offsets is equal to the number of cutting edges multiplied by the number of resulting offsets per cutting edge.

A value > 0 and < "number of cutting edges multiplied by the number of resulting offsets per cutting edge" means that a maximum "number of resulting offsets per cutting edge" can be defined per cutting edge but do not have to be. This means that buffered memory can be used economically. Only those cutting edges for which expliicit data have been defined have a resulting offset data block.
Buffered memory is reserved. The memory requirement for a resulting offset doubles if "setup offset active" has also been configured, see MD18112 \$MN_MM_KIND_OF_SUMCORR. See also:
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA,
MD18110 \$MN_MM_MAX_SUMCORR_PER_CUTTEDGE

18110	MM_MAX_SUMCORR_PER_CUTTEDGE						N02, N09	S7
-	Max. number of additive offsets per edge (SRAM)						DWORD	PowerOn
-	-	1	6	$7 / 2$	M			
-								

```
Description: Maximum number of resulting offsets per cutting edge.
If MD18108 $MN_MM_NUM_SUMCORR > 0 then:
The data is not memory defining, but is only used for monitoring.
If MD18108 $MN_MM_NUM_SUMCORR = -1 then:
The data is memory defining.
See also
MD18108 $MN_MM_NUM_SUMCORR,
MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA.
```

18112	MM_KIND_OF_SUMCORR	N02, N09	W1			
-						
-	Properties of resulting offsets in TO area (SRAM)	UDWORD	PowerOn			
-	-	0	0	$0 \times 1 \mathrm{~F}$		

Description: Properties of the resulting offsets in NCK.
Bit $0=0$ "Resulting offsets fine" are backed up when the tool data are backed up.
Bit $0=1$ "Resulting offsets fine" are backed up when the tool data are backed up.
Bit $1=0$ Set-up offsets are backed up when the tool data are backed up.
Bit $1=1$ Set-up offsets are not backed up when the tool data are backed up.
Bit $2=0$ If work is done with the function tool management (TOOLMAN) and/or tool
monitoring (TMMO), existing "resulting offsets fine/setup offsets" are not affected when the tool status is set to "active".

Bit 2 =1 Existing resulting offsets are set to zero when the tool status is set to "active".
Bit $3=0$ If work is done with the function "TOOLMAN" +"adapter", the "resulting offsets fine"/setup offsets are transformed.
Bit $3=1$ No transformation of the "resulting offsets fine"/setup offsets
Bit $4=0$ No set-up offset data sets
Bit $4=1$ Set-up offset data sets are additionally created. Whereby the resulting offset is composed of the sum of the set-up offset + "resulting offset fine"
Changing the status of bits $0,1,2,3$ does not change the memory structure.
Changing the status of bit 4 triggers restructuring of the buffered memory after the next PowerOn.

See also
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA
MD18108 \$MN_MM_NUM_SUMCORR
MD18110 \$MN_MM_MAX_SUMCORR_PER_CUTTEDGE
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK,
MD20310 \$MC_TOOL_MANAGEMENT_MASK,
MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION,
MD18104 \$MN_MM_NUM_TOOL_ADAPTER

18113	MM_NUM_DRS_GRINDING_PATHS		N02, N09	-	
-	Number of different path names for grinding tool dressing programs.		DWORD	Pow	
-					
-	10	0	1500	2/2	M

Description:

The number of different path names in the NCK that can be defined for the storage of the dressing programs of the grinding tools. See system parameter \$TC_TPG_DRSPATH. Grinding tools can only be defined if MD17540 \$MN_TOOLTYPES_ALLOWED has the bit value 'H90' set.
Buffered memory is reserved if MD17540 \$MN_TOOLTYPES_ALLOWED has enabled the function.

18116	MM_NUM_TOOL_ENV				
-	Number of tool environments in the TO area (SRAM)	N02, N09	W1		
-					
-	-	0	0	DWORD	PowerOn

UGUD
MGUD
GUD5
GUD8
then the machine data must be set to a value of 8 , signifying a memory requirement of 8×120 bytes $=960$ bytes.
It is therefore advisable to selected the "lowest" possible GUD module. If GUD modules UGUD and MGUD have not been assigned elsewhere, then they may be used for this purpose. Related to:

MD18150 \$MN_MM_GUD_VALUES_MEM
(Memory space for user variables)

18120	MM_NUM_GUD_NAMES_NCK							N02	S7
-									
-	Number of global user variable names (SRAM)	DWORD	PowerOn						
-	-	60	60	32000	$7 / 2$				

Description:
Defines the number of user variables for NCK global user data (GUD). Approximately 80 bytes of memory per variable are reserved in the SRAM for the names of the variables. The additional memory required for the value of the variable depends on the data type of the variable. The number of available NCK global user data is exhausted on reaching the limit value set in MD18120 \$MN_MM_NUM_GUD_NAMES_NCK or MD18150 \$MN_MM_GUD_VALUES_MEM (memory space fō user variables).

Buffered user memory is used.
Special cases:
The battery-backed data are lost if this machine data is altered.
Related to:
MD18150 \$MN_MM_GUD_VALUES_MEM
(Memory space for user variables)

18130	MM_NUM_GUD_NAMES_CHAN		N02	S7	
-	Number of channel-specific user variable names (SRAM)		DWORD	Pow	
-					
-	450	450	32000	7/2	M

Description:

Defines the number of user variable names for channel-specific global user data (GUD). Approximately 80 bytes of memory are reserved in the SRAM for each variable name. The additional memory required for the value of the variable is equal to the size of the data type of the variable multiplied by the number of channels. This means that each channel has its own memory available for the variable values. The number of available channel-specific global user data is exhausted on reaching the limit value set in MD18130 \$MN_MM_NUM_GUD_NAMES_CHAN or MD18150 \$MN_MM_GUD_VALUES_MEM (memory space for user variables).

The name created with the DEF statement is valid for all channels.
The memory requirement for the variable value is equal to the size of the data type multiplied by the number of channels.
Buffered user memory is used.
Special cases:
The battery-backed data are lost if this machine data is altered.
Related to:
MD18150 \$MN_MM_GUD_VALUES_MEM
(Memory space for user variables)

Description: Defines the number of available global R-parameters in the NCK.

18160	MM_NUM_USER_MACROS	N02	S7			
-	Number of macros (DRAM)	DWORD	PowerOn			
-						
-	-	82	82	32000	$7 / 2$	

Description: Defines the number of macros that can be stored in the files _N_SMAC_DEF, _N_MMAC_DEF und _N_UMAC_DEF. Each of these files which is opened occupies at least one kbyte memory space for the file code in the part program memory. Another kbyte of memory is reserved for the file when the one kbyte file code limit is exceeded.
The dynamic user memory is used. For the stated number of macros, approximately 375 bytes are reserved per macro for management tasks.

18170	MM_NUM_MAX_FUNC_NAMES	N02	V2, A2			
-	Number of miscellaneous functions (cycles, DRAM)	DWORD	PowerOn			
-						
-	-	450	450	32000	$7 / 2$	

Description: The data limits the maximum number of special functions over and above the predefined functions (such as sine, cosine, etc.) which can be used in

- cycle programs
- compile cycle software.

The function names are entered in the global NCK dictionary and must not conflict with the names that already exist.
The SIEMENS cycle package contains special functions that are taken into account by the default setting of the MD.

The data are stored in unbuffered memory. Approximately 150 bytes are required for each special function for management purposes.
Related to:
MD18180 \$MN_MM_NUM_MAX_FUNC_PARAM
(Number. of additional parameters)

Description: Defines the maximum number of parameters required for the special functions in

- cycle programs
- compile cycle software.

50 parameters are required for the special functions of the SIEMENS cycle package, software version 1.

The data are stored in unbuffered memory. 72 bytes of memory are reserved for each parameter.
Related to:
MD18170 \$MN_MM_NUM_MAX_FUNC_NAMES
(Number of special functions)

18190	MM_NUM_PROTECT_AREA_NCK				N12, N02, N06, N09
-	A3				
-	Number of control-specific protection areas (SRAM)	DWORD	PowerOn		
-	-	0	10	$7 / 2$	M

Description:

This machine data defines how many control-specific protection areas have been created.
Related to:
MD28200 \$MC_MM_NUM_PROTECT_AREA_CHAN (number of channel-specific protection areas)
MD28210 \$MC_MM_NUM_PROTECT_AREA_ACTIVE (number of simultaneously active protection
areas)
References:
/FB/, A3, "Axis Monitoring, Protection Areas"

Description: Number of multitool-specific parameters \$TC_MTPCn which can be created per multitool and are available to the user or compile cycle.

18193	MM_TYPE_CC_MULTITOOL_PARAM	N02, N09	-					
-	Type of OEM multitool data						DWORD	PowerOn
-	64	$4,4,4,4,4,4,4,4 \ldots$	1	6	$1 / 1$			
-								

Description:

User or OEM data in tool management.
Type of multitool-specific user data \$TC_MTPCn configured with MD18192 \$MN_MM_NUM_CC_MULTITOOL_PARAM.
Each parameter can be assigned its own type. The permissible types are:
Type Value of the machine data
(See types of the NC language)
\qquad
BOOL 1
CHAR 2
INT 3
REAL 4
STRING 5 (is not allowed, is not supported by the MCP.)
AXIS 6
FRAME not defined
Buffered user memory is used. A value change leads to reconfiguration of the buffered memory.
Related to:
MD18192 \$MN_MM_NUM_CC_MULTITOOL_PARAM
MD18083 \$MN_MM_NUM_MULTITOOL

18194	MM_NUM_CC_MTLOC_PARAM						N02, N09	-
-	Number of multitool-loc.-spec. parameters \$TC_MTPPCn per multitool location	DWORD	PowerOn					
-								
-	-	0	0	64				

Description:

Number of multitool-location-specific parameters \$TC_MTPPCn which can be created per multitool location and are available to the user or compile cycle.

18195	MM_TYPE_CC_MTLOC_PARAM			N02, N09	-	
-	Type of OEM multitool location data			DWORD	PowerOn	
-						
-	64	4, 4, 4, 4, 4, 4, 4, 4...	1	6	1/1	M
Description:	User or OEM data in tool management. Type of multitool-location-specific user data \$TC_MTPPCn configured with MD18194 \$MN_MM_NUM_CC_MTLOC_PARAM. Each parameter can be assigned its own type. The permissible types are: Type Value of the machine data					

(See types of the NC language)

18200	MM_NUM_CCS_MAGAZINE_PARAM				
-	Number of Siemens OEM magazine data (SRAM)	N02, N09	FBWsI		
-	-	0	0	10	PowerOn
-	-		$2 / 2$	M	

Description: Only when MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, bit 0=1 ('H1') and bit 2=1 ('H4'), is set for TMMG (and option is set):

User or OEM data in the tool management (TMMG).
Number of Siemens OEM magazine data (standard format IN_Int).
See also: MD18090 \$MN_MM_NUM_CC_MAGAZINE_PARAM, MD18084 \$MN_MM_NUM_MAGAZINE
Buffered user memory is used

18201	MM_TYPE_CCS_MAGAZINE_PARAM	N02, N09	FBWsI			
-	Type of Siemens OEM magazine data (SRAM)	DWORD	PowerOn			
-						
-	10	$3,3,3,3,3,3,3,3 \ldots$	1	6	$2 / 2$	

Description:

User or OEM data in tool management.
Type of magazine-specific Siemens user data configured with MD18200 \$MN_MM_NUM_CCS_MAGAZINE_PARAM.
Each parameter can be assigned its own type. The permissible types are:
Type Value of the machine data
(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4
STRING 5 (is not allowed, is not supported by the MCP.)
AXIS 6
FRAME not defined
Buffered user memory is used. A value change leads to reconfiguration of the buffered memory.

Related to:
MD18200 \$MN_MM_NUM_CCS_MAGAZINE_PARAM
MD18084 \$MN_MM NUM MAGAZINE

18204	MM_NUM_CCS_TDA_PARAM					
-	Number of Siemens OEM tool data (SRAM)	N02, N09	FBWsI			
-						
-	-	0	0	DWORD	PowerOn	

Description:
Only when MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, bit $2=1$ ('H4'), is set:
User or OEM data of the tools.
Number of Siemens OEM TDA (=tool-specific) data (standard format Int). See also: MD18094 \$MN_MM_NUM_CC_TDA_PARAM, MD18082 \$MN_MM_NUM_TOOL
Buffered user memory is used

18205	MM_TYPE_CCS_TDA_PARAM	N02, N09	FBWsI			
-	Type of Siemens OEM tool data (SRAM)	DWORD	PowerOn			
-						
-	10	$4,4,4,4,4,4,4,4 \ldots$	1	6	$2 / 2$	

Description: User or OEM data in tool management.
Type of tool-specific Siemens user data configured with MD18204
\$MN_MM_NUM_CCS_TDA_PARAM.
Each parameter can be assigned its own type. The permissible types are:
Type Value of the machine data
(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4
STRING 5 (is not allowed, is not supported by the MCP.)
AXIS 6
FRAME not defined
Buffered user memory is used. A change in value leads to reconfiguration of the buffered memory.

Related to:
MD18204 \$MN_MM_NUM_CCS_TDA_PARAM
MD18082 \$MN_MM_NUM_TOOL

18206	MM_NUM_CCS_TOA_PARAM	N02, N09	FBWsI			
-	No. of Siemens OEM data per cutting edge (SRAM)	DWORD	PowerOn			
-						
-	-	0	0	10	$2 / 2$	

Description: Only when MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, bit 2=1 ('H4'), is set:
User or OEM data of the tools.
Number of Siemens OEM TOA data (standard format IN_Real).
See also: MD18096 \$MN_MM_NUM_CC_TOA_PARAM, MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA
Buffered user memory is used

18207	MM_TYPE_CCS_TOA_PARAM	N02, N09	FBWsI			
-	Type of Siemens OEM data per cutting edge (SRAM)	DWORD	PowerOn			
-						
-	10	$4,4,4,4,4,4,4,4 \ldots$	1	6	$2 / 2$	

Description:
User or OEM data in tool management.
Type of cutting-edge-specific Siemens user data configured with MD18206 \$MN_MM_NUM_CCS_TOA_PARAM.
Each parameter can be assigned its own type. The permissible types are:
Type Value of the machine data
(See types of the NC language)
\qquad
BOOL 1
CHAR 2
INT 3

```
REAL 4
-(STRING is explicitly not possible here; the value 5 is treated as the value 2)
AXIS 6
FRAME not defined
Buffered user memory is used. A change in value leads to reconfiguration of the buffered memory.
Related to:
MD18206 \$MN_MM_NUM_CCS_TOA_PARAM
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA
```

18208	MM_NUM_CCS_MON_PARAM		N02, N09	FBW	
-	No. of Siemens OEM monitor data (SRAM)		DWORD	PowerOn	
-					
-	0	0	10	2/2	M
Description:	```Only when MD18080 $MN_MM_TOOL_MANAGEMENT_MASK, bit 0 = 1 or bit 1 = 1 and bit 2=1 ('H4'), is set: User or OEM data in the tool management. Number of Siemens OEM monitoring data; standard format IN_Int). See also: MD18098 $MN_MM_NUM_CC_MON_PARAM, MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA Buffered user memory is used```				
18209	MM_TYPE_CCS_MON_PARAM		N02, N09	FBWsI	
-	Type of Siemens OEM monitor data (SRAM)		DWORD	PowerOn	
-					
-	10 年 $3,3,3,3,3,3,3,3 \ldots$	1	6	2/2	M

Description:
User or OEM data in tool management.
Type of monitoring-specific Siemens user data configured with MD18208 \$MN_MM_NUM_CCS_MON_PARAM.
Each parameter can be assigned its own type. The permissible types are:
Type Value of the machine data
(See types of the NC language)
\qquad
BOOL 1
CHAR 2
INT 3
REAL 4
-(STRING is explicitly not possible here; the value 5 is treated as the value 2)
AXIS 6
FRAME not defined
Buffered user memory is used. A change in value leads to reconfiguration of the
buffered memory.
Related to:
MD18208 \$MN_MM_NUM_CCS_MON_PARAM
MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

18210	MM_USER_MEM_DYNAMIC		EXP, N02	S7	
-	Volatile user memory [kB]		DWORD	PowerOn	
NDLD					
-	- -	0	135072	ReadOnly	M

Description: The volatile memory in the NCK.

MD18210 \$MN_MM_USER_MEM_DYNAMIC makes the size of the volatile memory available to the user visible.

There are various types of user data in this memory area, for example.

- Local user data
- Ipo block buffers
- User macros
- Diagnostics functions such as trace recording of times,.....
- Tool management trace
- Communication with 1-n HMIs; Value of n: See MD10134 \$MN_MM_NUM_MMC_UNITS.
- Reorg Log file (required for internal purposes of the NC program sequence)
- ...

Each additionally active channel occupies a substantial amount of memory. With channel activation, the value of the MD is automatically increased accordingly and the value of MD18050 \$MN_INFO_FREE_MEM_DYNAMIC is retained if possible.
Each activated axis requires part of this memory. With axis activation, the value of the MD is automatically increased accordingly and the value of MD18050 \$MN_INFO_FREE_MEM_DYNAMIC is retained if possible.
The possible values of MD18050 depend on the hardware and software configurations. Information alarms 6030, 6035 can indicate that the desired total memory may not be available on the model or on the hardware. See also MD11415 \$MN_SUPPRESS_ALARM_MASK_2, bit 22

The value of NCK is automatically set after startup of the NCK without memory retention (cold restart). The value is then such that the free memory defined in MD18050 \$MN_INFO_FREE MEM DYNAMIC is available to the user. To enlarge this user memory further, ${ }^{-}$MD19 $\overline{2} 40$ \$ON_USER_MEM_DYNAMIC must be increased.
(See the description of MD18050 \$MN_INFO_FREE_MEM_DYNAMIC).
The data in the volatile memory are lost when the NCK is switched off.
Related to:
The available dynamic memory can be taken from MD18050 \$MN_INFO_FREE_MEM_DYNAMIC (display data of the free dynamic memory).

18230	MM_USER_MEM_BUFFERED	N02	S7					
-	Buffered user memory						DWORD	PowerOn
NDLD								
-	-	-	0	36864				

Description: Nonvolatile user memory (in kB).
Various types of user data are stored in this memory area.
For example:

- NC part programs
- R variables
- Global user data (GUD)
- Definitions of the protection zones
- Correction tables EEC, CEC, QEC
- Tool / magazine data
.

This data is retained after control power-off.
(Provided the data backup (battery,...) is in good working order, i.e. the Init switch is correctly set on the control).
This means that they are available unchanged after restart.
Each additional active channel occupies some nonvolatile memory. With channel activation, the value of the $M D$ is automatically increased accordingly; the value of MD18060 \$MN_INFO_FREE_MEM_STATIC is retained if possible.
To enlarge this user memory further, MD19250 \$ON_USER_MEM_BUFFERED must be increased.

The available values depend on the hardware and software configurations.
Information alarms 6030, 6035 can indicate that the desired total memory may not be available on the model or on the hardware. See also MD11415 \$MN_SUPPRESS_ALARM_MASK_2, bit 22

See also the meaning of MD18060 \$MN_INFO_FREE_MEM_STATIC

18232	MM_ACTFILESYS_LOG_FILE_MEM			N02	-	
-	System: logfile size in SRAM [KB]			DWORD	Pow	
-						
-	3	400, 50, 30	0	32000	2/2	M

Description:
Buffered log file for buffered data of the active file system (in kbytes)
Systems with slow data buffering media store changed buffered data in the internal system SRAM. When the buffer is full, all data of the active file system are made persistent. The buffer backs up the data persistence of the last persistence operation until the next power fail. After a power fail (power failure or power OFF), data that had not yet been made persistent at the time of the power fail can be restored from this buffer.
The log file serves to minimize or totally avoid data loss in the event of power fail. 1000 entries require approximately 70 kB .
A value greater than 0 is only practicable if MD18231
\$MN_MM_USER_MEM_BUFFERED_TYPEOF[1] = 1 .
A value equal to 0 means that the buffered data are not voltage loss safe if MD18231 \$MN_MM_USER_MEM_BUFFERED_TYPEOF[1] = 1 (typical for SINUMERIK solution line) Example:
With MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM[2] = 0, data changes from synchronized actions can be exclūded from the power fail data backup.
An improved time response of the synchronized actions would be advantageous. This should only be set if the buffered data that are changed by the synchronized action are not safety-related.
Index Meaning
$0 \quad$ Preprocessing buffer
1 Buffer for data changes within the range of the tool change and retract 2 Buffer for data changes of the main processing (synchronized actions) See also MD17610 \$MN_DEPTH_OF_LOGFILE_OPT_PF, which can be used to optimize the behavior.

18233	IS_CONTINOUS_DATA_SAVE_ON			EXP, N02	-	
-	System: Automatic saving of persistent data			BOOLEAN	Pow	
-						
-	3	TRUE, TRUE, TRUE	FALSE	TRUE	7/2	M

Description: The machine data is relevant only if MD18231 \$MN_MM_USER_MEM_BUFFERED_TYPEOF = 1 .
Value $=0$: Continuous saving of persistent data on disk/flash/etc. is deactivated.
The dynamic response of the software on systems of the SolutionLine range
can thus be improved.
Value = 1 : Continuous automatic saving of persistent data on disk/flash/etc. is active.
Index 0 Reserved
Index 1 = Definition for the buffered data of the active file system (incl. machine data).

Index 2 = Definition for the buffered data of the passive file system (part programs, cycles,).
The default value should be changed only for diagnostic purposes or for optimizing the dynamic response.

4.1 General NC machine data

The default value should be changed only if the system is operated in an environment, where no spontaneous shutdown of the system / spontaneous power failure occurs. Otherwise, persistent data can be lost.

18234	MM_MEMORY_CONFIG_MASK						EXP, N02	-
-	Setting of backup of persistant data of the current file system	UDWORD	PowerOn					
-								
-	-	0×00	0×00	0×01	$2 / 2$			

Description: Bit 0 is defined for MD18231 \$MN_USER_MEM_BUFFERED_TYPEOF[1]=1. If the buffer size defined by MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM Contains many data in the respective buffer, they are made persistent by the NCK software as follows:
Value $=0$: synchronous data backup
Value = 1: asynchronous data backup
Asynchronous means not synchronized with the NCK sequence. Synchronous means that the preprocessing task in NCK is stopped for the time required for making the data persistent. Which setting is preferable depends on the hardware used and/or on the actual NCK application.

18235	MM_INCOA_MEM_SIZE							EXP	-
-	Size of the DRAM memory for INCOA applications [Kbyte]	DWORD	PowerOn						
-									
-	-	20480	0	25600					
$7 / 2$	M								

Description: On cold restart of the control system, the default value of MD18235 \$MN_MM_INCOA_MEM_SIZE specifies
the DRAM memory range that is available for INCOA applications in total.
This MD can only be read. With the diagnostics function "Read current actual value" the memory space actually occupied by the INCOA applications can be determined.

18237	MM_CYC_DATA_MEM_SIZE	EXP, N02	-					
-	Cycle/display setting data in SRAM [kB]						DWORD	PowerOn
-								
-	-	0	0	128				

Description: Size of the buffered memory for 'Setting data for cycles and display' [kB]

18270	MM_NUM_SUBDIR_PER_DIR	N02	S7					
-	Number of subdirectories (DRAM)	DWORD	PowerOn					
-								
-	-	256	0	-	ReadOnly			

Description: Defines the maximum number of subdirectories that can be created in a directory or subdirectory of the passive file system.
This value is for information only, and cannot be changed.
See also MD18280 \$MN_MM_NUM_FILES_PER_DIR (number of files per directory).

18280	MM_NUM_FILES_PER_DIR						N02	S7
-	Number of files per directory (DRAM)	DWORD	PowerOn					
-								
-	-	512	0	-	ReadOnly			

Description:

Defines the maximum number of files that can be created in a directory or subdirectory of the passive file system.
This value is for information only, and cannot be changed.
See also MMD18270 \$MN_MM_NUM_SUBDIR_PER_DIR (number of subdirectories per directory).

18310	MM_NUM_DIR_IN_FILESYSTEM	N02	S7		
-	Number of directories in passive file system (SRAM)				
-	DWORD	PowerOn			
-	-	30	30	$7 / 2$	M

Description:
The machine data limits the number of directories in the passive file system.
It can be used to reserve memory in the buffered user memory for the management of the directories. The directories and subdirectories of the passive file system set up by the system are included in this machine data. The memory required for the management of the directories can be calculated as follows:
Corresponds with:
MD18270 \$MN_MM_NUM_SUBDIR_PER_DIR

18320	MM_NUM_FILES_IN_FILESYSTEM						N02	S7
-	Number of files in passive file system (persistent)	DWORD	PowerOn					
-								
-	-	750	64	1000	$7 / 2$			

Description:
Defines the number of files available in the part program memory. This machine data is used to reserve memory in persistent memory - approximately 320 bytes per file - for managing the file memory. Each file created requires a minimum of one kbyte of memory for the file code. If the one kbyte limit for the file code is exceeded another kbyte is reserved for the file.

Nonvolatile user memory is used.
Special cases:
The backed-up data are lost if this machine data is altered.
Related to:
MD18280 \$MN_MM_NUM_FILES_PER_DIR
(Number of files in directories)

18321	MM_NUM_SYSTEM_FILES_IN_FS						NO2	-
-	Number of system files	DWORD	PowerOn					
-	1	500	500	1000	$1 / 1$			
-	1							

Description:
Index 0: Number of temporary system files in the passive file system (see also MD18355 \$MN_MM_T_FILE_MEM_SIZE);
e.g.: system traces

Description:
The MD defines the memory space available for the compensation tables.
When MD18342 \$MN_MM_CEC_MAX_POINTS = 0, no memory is set up for the table. The sag compensation function cannot then be used.
Caution!
If MD18342 \$MN_MM_CEC_MAX_POINTS[t] is changed, when the system is powered up, the buffered $N C$ user memory is automatically reset. This deletes all user data in the buffered user memory (e.g. drive and HMI machine data, tool offsets, part programs etc.).

Related to:
SD41300 \$SN_CEC_TABLE_ENABLE[t]

Evaluation of the sag compensation table (t) enabled.
References:
/FB/, S7, "Memory Configuration"

18352	MM_U_FILE_MEM_SIZE	EXP, N02	S7			
-	End user memory for part programs/cycles/files	DWORD	PowerOn			
-						
-	3	$2560,0,0$	0	15360	$2 / 2$	

Description: The machine data is not available or not defined for PowerLine control models.
End user memory for files in the passive file system (in kbyte).
There are various types of user data in this memory area.
E.g.: NC part programs, cycle programs of the end user, diagnostic files,

The settable values depend on the hardware and software configurations.
The settable size of the part program memory is, apart from the upper limit value, determined by the MD18230 \$MN_MM_USER_MEM_BUFFERED and can also
be determined by a software option.
Index $0=$ Size of the battery-backed part program / cycle program memory
Index 1 = Reserved
Index 2 = Reserved

18353	MM_M_FILE_MEM_SIZE						EXP, N02	S7
-	Memory capacity for machine manufacturer's cycles/files						DWORD	PowerOn
-								
-	3	$512,0,0$	0	15360				

Description: The machine data is not available or not defined for PowerLine control models.
Memory for machine manufacturer files in the passive file system (in kbyte).
The machine manufacturer's files are in this memory area of the passive file system.
E.g.: cycle programs

The settable values depend on the hardware and software configurations.
The settable size of the memory is, apart from the upper limit value, determined by the MD18230 \$MN_MM_USER_MEM_BUFFERED.
Index 0 = Minimum size of the battery-backed (persistent) part program / cycle program memory
Index 1 = Reserved
Index 2 = Reserved

18354	MM_S_FILE_MEM_SIZE	EXP, N02	-					
-	$\begin{array}{l}\text { Size of the Siemens cycle program memory } \\ \text { [0] Size of the volatile cycle program memory } \\ \text { [1] Reserved } \\ \text { [2] Size of the volatile memory for system files (NRK fault file, etc.) }\end{array}$	DWORD	PowerOn					
-								
-	3	$3072,0,30$	0	3072			$]$	M
:---								

Description: Memory for the control manufacturer's files in the passive file system (in $K B$) The control manufacturer's files are in this memory area of the passive file system, e.g: cycle programs, system files

The settable values depend on the hardware and software configurations.
The settable size of the memory, apart from the upper limit value
for index $=0$ is limited by the size of the available nonvolatile memory (see siehe MD18230\$MN_MM_USER_MEM_BUFFERED),
for Index $=2$, is limited by the wize of the internally available buffered (SRAM) memory.

Index 0 = Size of the nonvolatile cycle program memory
Index 2 = Size of the non-volatile memory for system files in the SRAM. E.g. storage location of the NRK fault file.

18355	MM_T_FILE_MEM_SIZE		EXP, N02	-	
-	Memory size for temporary files		DWORD	Pow	
-					
-	4608	4608	1048576	7/2	M

Memory for temporary files in the passive file system (in $K B$), e.g. compilations of cycles (preprocessing), cycles on CF, system traces

18360	MM_EXT_PROG_BUFFER_SIZE						N01	B1, K1
-	FIFO buffer size for processing from external source (DRAM)	DWORD	PowerOn					
-								
-	-	30	1000000	$7 / 2$	M			

Description: A FIFO buffer is needed on the NCK for each program level (main program or subprogram) that is processed externally (reload mode).

The size of the FIFO buffer is defined in kbyte by MD18360 \$MN_MM_EXT_PROG_BUFFER_SIZE. MD18360 \$MN_MM_EXT_PROG_NUM sets the number of FIFO buffers which are simultaneously available.
During startup, the memory size determined by multiplying MD18360
\$MN_MM_EXT_PROG_BUFFER_SIZE by MD18362 \$MN_MM_EXT_PROG_NUM is reserved in the DRAM.
If the stated value exceeds the available memory space, alarm 4077 is output when writing the machine data.

References:
/PGA/Programming Guide Advanced, Section 2

18362	MM_EXT_PROG_NUM		N01	K1	
-	Number of program levels which can be simultaneously processed		BYTE	PowerOn	
-					
-	1	1 0	13	7/2	M

Description:
Number of program levels that can simultaneously be in "Processing from external source" mode NCK-wide.

System resources are reserved for the HMI <-> NCK communication during "Processing from external source". Machine data MD18362\$MN_EXT_PROG_NUM defines the number of possible program levels.
The memory space is reserved during power on by MD18360 \$MN_MM_EXT_PROG_BUFFER_SIZE * MD18362 \$MN_MM_EXT_PROG_NUM. If it is found during program execution that all system resources are ōccupied, this is reported by alarm 14600.

18370	MM_PROTOC_NUM_FILES							
Max.no. of log files in passive file system								
-							N02	D1, OEM
-	10	$2,2,0,0,0,2,2,2 \ldots$	DWORD	PowerOn				
-	$2,2,0,0,0,2,2$,	$10,10,10,10$, $2 \ldots$	$1 / 1$	M				

Description:

Maximum number of \log files in the passive file system.
The individual values involve the users of the logging function, which are assigned the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized actions analysis
1: Reserved for system functions: determining program runtimes, multi-step editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: trace
6: Reserved for system functions: trace
7: Reserved for system functions: trace
8: Reserved for system functions: trace
9: Reserved for system functions: action log

18371	MM_PROTOC_NUM_ETPD_STD_LIST			N02	D1,	
-	Number of standard data lists ETPD.			DWORD	PowerOn	
-						
-	10	$\begin{aligned} & 25,6,0,0,0,25,25, \\ & 25 \ldots \end{aligned}$	$\begin{aligned} & 25,6,0,0,0,25, \\ & 25,25 \ldots \end{aligned}$	$\begin{aligned} & 25,25,25,25, \\ & 25,25,25,25 \ldots \end{aligned}$	1/1	M

Description:

Number of standard data lists in the OPI module ETPD (user-specific).
The individual values involve the users of the logging function, which are assigned the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis

1: Reserved for system functions: determining program runtimes, multi-step editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: trace
6: Reserved for system functions: trace
7: Reserved for system functions: trace
8: Reserved for system functions: trace
9: Reserved for system functions: action log

18372	MM_PROTOC_NUM_ETPD_OEM_LIST							N02	D1, OEM
-	Number of OEM data lists ETPD.	DWORD	PowerOn						
-									
-	10	$0,0,0,0,0,0,0,0 \ldots$	0	20	$1 / 1$				

Description: Number of OEM data lists in the OPI module ETPD (user-specific).
The individual values involve the users of the logging function, which are assigned the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis
1: Reserved for system functions: determining program runtimes, multi-step editor

18375	MM_PROTOC_SESS_ENAB_USER						N02	-
-	Users enabled for sessions	BYTE	PowerOn					
-								
-	10	$0,0,0,0,0,1,1,1 \ldots$	0	1	$1 / 1$			

Description: Users that are available for session management
The individual values involve the users of the logging function, which are assigned
the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis
1: Reserved for system functions: determining program runtimes, multi-step editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: trace
6: Reserved for system functions: trace
7: Reserved for system functions: trace
8: Reserved for system functions: trace
9: Reserved for system functions, action log

18390	MM_COM_COMPRESS_METHOD	EXP, N01, N02	-				
-	Supported compression methods.	UDWORD	PowerOn				
-							
-	-	0×01	0	$0 \times 7 F F F F F F F$	$2 / 2$		

Description:
Setting for the compression methods to be supported.

18391	TRACE_PATHNAME							EXP	-
-									
NBUP	Path for trace generation	STRING	PowerOn						
-	-	-	-	-	$1 / 1$				

Description: Path on which traces are saved.
The trace files are used for problem analysis by NCK development.

18392	TRACE_SAVE_OLD_FILE						EXP	-
-	Old trace files are retained	BOOLEAN	PowerOn					
NBUP								
-	-	FALSE	0	-	$1 / 1$			

Description: The old traces are no longer overwritten when new traces are created; instead, a version extension is added to the trace file name.
At the current time this function is executed only if files are saved on the host file system (see TRACE_PATHNAME).
The trace files are used for problem analysis by NCK development.

18400	MM_NUM_CURVE_TABS	N02, N09	M3			
-	Number of curve tables (SRAM)	DWORD	PowerOn			
-						
-	-	0	0	-	$1 / 1$	

Description: Defines the maximum number of curve tables that can be stored in the SRAM of the entire system. A curve table consists of a number of curve segments.
Related to:

MD18402 \$MN_MM_NUM_CURVE_SEGMENTS

18402	MM_NUM_CURVE_SEGMENTS	N02, N09	M3, B3			
-	Number of curve segments (SRAM)	DWORD	PowerOn			
-						
-	-	0	0	-		

Description:
Defines the maximum number of curve segments that can be stored in the SRAM of the entire system. The curve segments are a component of a curve table.
Related to
MD18400 \$MN_MM_NUM_CURVE_TABS

18403	MM_NUM_CURVE_SEG_LIN						N02, N09	M3
-	Number of linear curve segments (SRAM)	DWORD	PowerOn					
-								
-	-	0	0	-	$1 / 1$			

Description: Number of linear curve segments in the SRAM available throughout the NCK.
A curve table may consist of "normal" curve segments and linear segments. The number of "normal" curve segments in the SRAM is defined by MD18402
\$MN_MM_NUM_CURVE_SEGMENTS, these curve segments can accommodate polynomials.
Linear curve segments can only accommodate straight lines.
These linear curve segments are stored in battery-backed memory.

18406	MM_NUM_CURVE_TABS_DRAM	N02, N09	M3			
-	Number of curve tables (DRAM)	DWORD	PowerOn			
-						
-	-	0	0	-	$1 / 1$	

Description: Number of curve tables in the DRAM available throughout the NCK.
The curve tables are stored either in the buffer memory or in the dynamic memory. This MD is used to set the number of curve tables in the dynamic memory (DRAM).

18408	MM_NUM_CURVE_SEGMENTS_DRAM	N02, N09	M3			
-	Number of curve segments (DRAM)	DWORD	PowerOn			
-						
-	-	0	0	-	$1 / 1$	

Description: Number of polynomial curve segments in the DRAM available throughout the NCK.
The curve segments are stored either in the buffer memory or in the dynamic memory.
This MD is used to set the number of segments in the dynamic memory (DRAM).

4.1 General NC machine data

18409	MM_NUM_CURVE_SEG_LIN_DRAM							N02, N09	M3
-	Number of linear curve segments (DRAM)	DWORD	PowerOn						
-									
-	-	0	0	-	$1 / 1$				

Description: Number of linear curve segments in the DRAM available throughout the NCK. A curve table may consist of "normal" curve segments and linear segments. The number of "normal" curve segments in the DRAM is defined by MD18408
\$MN_MM_NUM_CURVE_SEGMENTS_DRAM, these curve segments can accommodate polynomials. Linear curve segments can only accommodate straight lines.
The curve segments are stored either in the buffer memory or in the dynamic memory. This MD defines the number of curve segments in the dynamic memory (DRAM).

18410	MM_NUM_CURVE_POLYNOMS_DRAM						N02, N09	M3
-	Number of curve table polynomials (DRAM)	DWORD	PowerOn					
-								
-	-	0	0	-	$1 / 1$			

Description:

Number of polynomials for curve tables in the DRAM available throughout the NCK. The polynomials for curve tables are stored in the buffer memory or in the dynamic memory.
This MD is used to set the number of polynomials for curve tables in the dynamic memory (DRAM).

18450	MM_NUM_CP_MODULES	N02, N09	-					
-	Max. number of CP modules						DWORD	PowerOn
-	-	4	0	48	$1 / 1$			
-	-							

Description:

Number of CP coupling modules available within the NCK
The MD defines the max. permissible number of $C P$ couplings and reserves the required dynamic memory (DRAM).

18452	MM_NUM_CP_MODUL_LEAD							N02, N09	-
-	Maximum number of CP master values						DWORD	PowerOn	
-									
-	-	4	0	99	$1 / 1$				

Description:

Number of NCK-wide available CP master values.
This MD defines the max. permissible number of $C P$ master values and reserves the required dynamic memory (DRAM).

18600	MM_FRAME_FINE_TRANS	N02	K2, M5					
-	Fine offset with FRAME (SRAM)	DWORD	PowerOn					
-							$7 / 2$	M
-	-	1	0	1				

Description: 0: The fine offset cannot be entered or programmed.
Disabling fine offset saves a maximum of 10KB SRAM, (depending on MD28080 \$MC_MM_NUM_USER_FRAMES).
1: The fine offset is possible for settable frames, the basic frame and the programmable frame by operator input or via program.

18601	MM_NUM_GLOBAL_USER_FRAMES	N02	K2, M5				
-	Number of global predefined user frames (SRAM).	DWORD	PowerOn				
-	$7 / 2$						M
-	-	0	0	100	$7 / 2$		

Description:

Number of global predefined user frames.
The value corresponds to the number of field elements for the predefined field \$P_UIFR[].
If the value of the data is greater than 0 , then all settable fields are only global. The MD28080 \$MC_MM_NUM_USER_FRAMES is then ignored.

18602	MM_NUM_GLOBAL_BASE_FRAMES	N02	K2, M5			
-	Number of global base frames (SRAM).	DWORD	PowerOn			
-						
-	-	0	0	16	$7 / 2$	

Description:

Number of NCU basic frames.
The value corresponds to the number for the predefined field \$P_NCBFR[].

18603	MM_NUM_GLOBAL_G_FRAMES			N02	K2,	
-	Number of global grinding frames (SRAM)			DWORD	Pow	
-						
-	0	0	0	100	7/2	M

Description:
Number of global grinding frames.
The value corresponds to the number of field elements for the predefined field \$P_GFR[].
If the value of the data is greater than 0 , all settable frames are only global. MD28079 \$MC_MM_NUM_G_FRAMES is then ignored.

18660	MM_NUM_SYNACT_GUD_REAL	N02	-		
-	Number of configurable GUD variables of type REAL	DWORD	PowerOn		
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	32767	$7 / 2$
-	9				

Description: The MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type REAL. The GUD blocks are differentiated by the field index:
MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[0] = <value> -> extension of the SGUD block
MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[1] = <value> -> extension of the MGUD block
MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[2] = <value> -> extension of the UGUD block
MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[3] = <value> -> extension of the GUD4 block
MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type REAL
Field size corresponding to <value> of the relevant machine data
Predefined names:
SYG_RS[] -> Synact parameter of type REAL in the SGUD block
SYG_RM[] -> Synact parameter of type REAL in the MGUD block
SYG_RU[] -> Synact parameter of type REAL in the UGUD block
SYG_R4[] -> Synact parameter of type REAL in the GUD4 block

SYG_R9[] -> Synact parameter of type REAL in the GUD9 block

The parameters can be read and written both by the part program and also via synchronous actions.

Description: The MD18661 \$MN MM NUM SYNACT GUD INT[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type INTEGER. The GUD blocks are differentiated by the field index:
MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[0] = <value> -> extension of the SGUD block
MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[1] = <value> -> extension of the MGUD block
MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[2] = <value> -> extension of the UGUD block
MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[3] = <value> -> extension of the GUD4 block
MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type BOOL
Field size corresponding to <value> of the relevant machine data
Predefined names:
SYG_IS[] -> Synact parameter of type INT in the SGUD block
SYG_IM[] -> Synact parameter of type INT in the MGUD block
SYG_IU [] -> Synact parameter of type INT in the UGUD block
SYG_I4[] -> Synact parameter of type INT in the GUD4 block
....
SYG_I9[] -> Synact parameter of type INT in the GUD9 block
The parameters can be read and written both by the part program and also via synchronous actions.

18662	MM_NUM_SYNACT_GUD_BOOL	N02	-				
-	Number of configurable GUD variables of type Boolean	DWORD	PowerOn				
-	$7 / 2$						M
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	32767	$7 / 2$		

Description:
The MD18662 \$MN MM NUM SYNACT GUD BOOL[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type Boolean. The GUD blocks are differentiated by the field index:
MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[0] = <value> -> extension of the SGUD block
MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[1] = <value> -> extension of the MGUD block
MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[2] = <value> -> extension of the UGUD block
MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[3] = <value> -> extension of the GUD4 block
MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type BOOL
Field size corresponding to <value> of the relevant machine data
Predefined names:
SYG_BS[] -> Synact parameter of type Boolean in the SGUD block
SYG_BM[] -> Synact parameter of type Boolean in the MGUD block
SYG_BU[] -> Synact parameter of type Boolean in the UGUD block
SYG_B4[] -> Synact parameter of type Boolean in the GUD4 block

SYG_B9[] -> Synact parameter of type Boolean in the GUD9 block

The parameters can be read and written both by the part program and also via synchronous actions.

18663	MM_NUM_SYNACT_GUD_AXIS	N02	-				
-	Number of configurable GUD variables of type Axis	DWORD	PowerOn				
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	32767	$7 / 2$		
-	9						

Description:

The MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type AXIS. The GUD blocks are differentiated by the field index:
MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[0] = <value> -> extension of the SGUD block
MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[1] = <value> -> extension of the MGUD block
MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[2] = <value> -> extension of the UGUD block
MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[3] = <value> -> extension of the GUD4 block
MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type AXIS
Field size corresponding to <value> of the relevant machine data
Predefined names:
SYG_AS[] -> Synact parameter of type AXIS in the SGUD block
SYG_AM[] -> Synact parameter of type AXIS in the MGUD block
SYG_AU [] -> Synact parameter of type AXIS in the UGUD block
SYG_A4[] -> Synact parameter of type AXIS in the GUD4 block
..
SYG_A9[] -> Synact parameter of type AXIS in the GUD9 block
The parameters can be read and written both by the part program and also via synchronous actions.

18664	MM_NUM_SYNACT_GUD_CHAR	N02	-			
-						
-	Configurable GUD variable of type Char	DWORD	PowerOn			
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	32767		

Description:
The MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[]
can be used to extend individual GUD blocks by additional
channel-specific parameter areas of type CHAR.
The GUD blocks are differentiated by the field index:
MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[0] = <value> -> extension of the SGUD block
MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[1] = <value> -> extension of the MGUD block
MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[2] = <value> -> extension of the UGUD block
MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[3] = <value> -> extension of the GUD4 block
MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type CHAR
Field size corresponding to <value> of the relevant machine data
Predefined names:
SYG_CS[] -> Synact parameter of type CHAR in the SGUD block
SYG_CM[] -> Synact parameter of type CHAR in the MGUD block
SYG_CU[] -> Synact parameter of type CHAR in the UGUD block
SYG_C4[] -> Synact parameter of type CHAR in the GUD4 block

Machine data

SYG_C9[] -> Synact parameter of type CHAR in the GUD9 block
The parameters can be read and written both by the part program and also via synchronous actions.

18665	MM_NUM_SYNACT_GUD_STRING	N02	-				
-	Configurable GUD variable of type STRING	DWORD	PowerOn				
-							
-	9	$0,0,0,0,0,0,0,0 \ldots$	0	25			

Description: The MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type STRING.
The GUD blocks are differentiated by the field index:
MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[0] = <value> -> extension of the SGUD block
MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[1] = <value> -> extension of the MGUD block
MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[2] = <value> -> extension of the UGUD block
MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[3] = <value> -> extension of the GUD4 block
MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[8] = <value> -> extension of the GUD9 block
In each case, fields with the following properties are created:
Data type STRING
Field size corresponding to <value> of the relevant machine data The maximum length of a string is 31 characters.

Predefined names:
SYG SS[] -> Synact parameter of type STRING in the SGUD block
SYG_SM[] -> Synact parameter of type STRING in the MGUD block
SYG_SU[] -> Synact parameter of type STRING in the UGUD block
SYG_S4[] -> Synact parameter of type STRING in the GUD4 block

SYG_S9[] -> Synact parameter of type STRING in the GUD9 block
The parameters can be read and written both by the part program
and also via synchronous actions.

18700	MM_SIZEOF_LINKVAR_DATA		N02	B3	
-	Size of NCU-link variable memory		DWORD	Pow	
LINK, -					
-	0	0	1073741824	7/2	M

Description: Number of bytes of the NCK link memory for the variables \$A_DLx.

18710	MM_NUM_AN_TIMER	N02	-				
-	Number of global time variable for synchronized actions	DWORD	PowerOn				
-							
-	-	0	0	10000			

Description: Number of global time variables for motion-synchronous actions (DRAM)

18720	MM_SERVO_FIFO_SIZE	EXP, N01	B3					
-	Setpoint value for buffer size between IPO and position control						DWORD	PowerOn
-	3							
-	-	2	35	M				

[^5] and position control, and has a direct effect on the dynamic user memory requirement.

That is normally 2. If several NCUs are connected via NCU link for e.g. rotary indexing machines, the value should be set to 3 on all NCUs. This will balance the transmission rates of the setpoint values via the link.
In a master value application (e.g. line shaft), the value should be set to 4 , but only on the NCU that generates the master value. For all the other NCUs, the preset value should be maintained at 2 .

Note:
In control loops that are connected via interpolator, every increase of the value generates a further dead-time.
When the IPO cycles of the NCUs within an NCU group are set to different values, the link communication will only run in the slowest IPO cycle. The MD must be increased in the ratio of the NCU IPO cycle to the slowest IPO cycle in the NCU group, in order to achieve a synchronized output of the setpoint values on the drive interface. The formula for this is as follows:
MM_SERVO_FIFO_SIZE $=2$ * IPO cycle ratio + 1
Example:
In an IPO cycle ratio of $4: 1$, the value on the fast $N C U$ should be set to 9 instead of 3. On the slow NCU, the value must be set to 3 .

18730	MM_MAXNUM_ALARM_ACTIONS					N02	-
-	Length of the alarm action list	DWORD	PowerOn				
-							
-	-	500	100	2000			

Description:

Activating NCU link communication
Bit-coded activation data. That is the NCU link communication can be activated in
various forms.
Bit-coded activation data:
Bit $0=0 x 1:$ Link communication is to be activated.
Bit $1=0 \times 2$: reserved
Bit $2=0 x 4$: Extended search for link SDBs
SDBs are additionally searched for in the following directories:
-/user/sinumerik/sdb/...
-/oem/sinumerik/sdb/...
-/addon/sinumerik/sdb/...
As usual it is first searched in the user, oem, addon directories and then in the siemens directory
(See description FAST_IPO_LINK)
Irrelevant for:
Systems without link modules
Related to:
MD30560 \$MA_IS_LOCAL_LINK_AXIS,
MD12510 \$MN_NCU_LINKNO,
MD12520 \$MN_LINK_TERMINATION,
MD18782 \$MN_MM_LINK_NUM_OF_MODULES,
MD12540 \$MN_LINK_BAUDRATE_SWITCH,

4.1 General NC machine data

MD12550 \$MN_LINK_RETRY_CTR

18781	NCU_LINK_CONNECTIONS	N01	B3		
-	Number of internal link connections	DWORD	PowerOn		
LINK, -					
-	-	0	0	32	

Description: Value $=0$
The software calculates the internal link connnections itself.
Value > 0
Number of internal link connnections from each NCU to each other NCU.
These link connnections do not accommodate the non-cyclic messages.
Each of these connections can transfer 240 bytes of raw data.
Non-cyclic messages occur with alarms, container switches and link variablen.

18782	MM_LINK_NUM_OF_MODULES		N01, N02	B3	
-	Number of NCU-link modules		UDWORD	PowerOn	
-					
-	2	2	16	3/2	M

Description:
LINK_NUM_OF_MODULES defines how many link modules can participate in the link communication.

18788	MM_CC_STATION_CHAN_MASK							N01	-
-	Channel bit mask for allocating CC stations						UDWORD	PowerOn	
-									
-	3	$1,0,0$	0	$0 x 7 F F F F F F F$					

Description: Machine data for channel-specific creation of special additional software stations for compile cycles.
Enter a bit mask with the bits set for the channels, in which a compile cycle shall use the relevant station.

Meaning of the individual array elements:
MD18788 \$MN_MM_CC_STATION_CHAN_MASK[0]:
Creates a CC station at the end of the geometry preparation and prior to velocity planning in the preparation task. A compile cycle application can buffer the blocks there and manipulate their contents.
MD18788 \$MN_MM_CC_STATION_CHAN_MASK[1]:
Creates another CC-Station that is called directly after the first CC station (see above) and permits the internal block contents independently of this manipulation. MD18788 \$MN_MM_CC_STATION_CHAN_MASK[2]:
Creates an additional CC station in the preparation task that is called directly prior to tool radius offset and allows manipulation of the internal block contents.

18790	MM_MAX_TRACE_LINK_POINTS						EXP, N02, N06	B3
-	Trace data buffer size for NCU-Link						DWORD	PowerOn
NBUP								
-	-	8	0	20000				

Description: MM_MAX_TRACE_LINK_DATAPOINTS defines the size of an internal data buffer which

 contains the trace recordings for the NCU-link functionality.The MD is only evaluated if bit 0 is set in MD18792 \$MN_MM_TRACE_LINK_DATA_FUNCTION.
Related to:
MD22708 \$MC_TRACE_SCOPE_MASK,
MD22714 \$MC_MM_TRACE_DATA_FUNCTION,

```
MD28180 $MC_MM_MAX_TRACE_DATAPOINTS
MD22700 $MC_TRACE_STARTTRACE_EVENT,
MD22702 $MC_TRACE_STARTTRACE_STEP,
MD22704 $MC_TRACE_STOPTRACE_EVENT,
MD22706 $MC_TRACE_STOPTRACE_STEP,
MD22710 $MC_TRACE_VARIABLE_NAME,
MD22712 $MC_TRACE_VARIABLE_INDEX,
MD18792 $MN_MM_TRACE_LINK_DATA_FUNCTION
```

18792	MM_TRACE_LINK_DATA_FUNCTION						EXP, N02, N06	B3
-	Specifies the contents of the NCU-link-trace files						UDWORD	PowerOn
NBUP								
-	-	0	0	$0 x 7 F F F F F F F$	$2 / 2$			

Description: The NCK link sends and receives 32 buffers with a length of 240 bytes in each interpolation cycle.
These buffers are saved in a FIFO (first in-first out) memory of length MD18790 \$MN_MM_MAX_TRACE_LINK_POINTS and written to a file (ncsctr01.mpf for the 1st channel) if a "trigger event" occurs (e.g. Cancel Alarm button, see MD22704 \$MC_TRACE_STOPTRACE_EVENT and MD22700 \$MC_TRACE_STARTTRACE_EVENT).
The machine data should be interpreted as a bit mask and has the following meaning: $\mathrm{BITO}=1$
Enables the NCU link trace file.
The others are only evaluated if this bit is set!
MD18790 \$MN_MM_MAX_TRACE_LINK_POINTS is only evaluated with this bit.
BIT1 = 1
The stored buffer content is analyzed according to its meaning and written to the file in plain text. This means setpoint transfer can be detected, for example, from the text items "desVal", actual value transfer from the identifiers "actVal" etc.
BIT1 $=0$
The buffer content is displayed in HEX and is not analyzed.
BIT2 = 1
Only buffers that contain a sporadically occuring communication message (dynamic message) between the NCUs are recorded.
These include, for example, the following events:

- Set machine data
- Set link variables
- Alarms spanning NCUs
- Axis container rotation

BIT3 $=1$
Every addition and deletion of a CLEARHIMSELF alarm transferred via LINK triggers the following action:

The internal receive tree is recorded before and after the action and the most recent values can be
found again in trace.
NOTICE: Very very time-consuming; please only use in an emergency.

Description: The NCK sends and receives PLC VDI signals. The Trace function stores the signals which have changed in each interpolation cycle in an FIFO memory (first in-first out) having a size of MM_MAX_TRACE_POINTS.
The FIFO is written to a file (for the lst channel: ncsctr01.mpf) when a "trigger event" occurs (e.g. Cancel Alarm key, see MD22704 \$MC_TRACE_STOPTRACE_EVENT and MD22700 \$MC_TRACE_STARTTRACE_EVENT).
The machine data should be interpreted as bit mask. The corresponding VDI signals are recorded depending on which bit is set.
Bits 1.. 6 describe which axial VDI input signals are recorded in the trace
(see .. TRACE_DATA_FUNCTION).

18800	MM_EXTERN_LANGUAGE	N01, N12	K1				
-	Activation of external NC languages	UDWORD	PowerOn				
-							
-	-	0×0000	0×0000	0×0001			

Description:

The corresponding NC language must be activated to execute part programs of other control manufacturers. Only one external NC language can be selected. The range of instructions which is made available in each case is to be taken from the current documentation.
Bit 0 (LSB):
Execution of part programs ISO_2 or ISO_3.
See MD10880 \$MN_MM_EXTERN_CNC_SYSTEM for coding.

18860	MM_MAINTENANCE_MON		EXP, N01	W6	
-	Activation of maintenance data recording		BOOLEAN	Pow	
-					
-	FALSE	0	-	7/2	M

Description: Maintenance data is recorded when this MD has the value TRUE.
The axial MD33060 \$MA_MAINTENANCE_DATA sets which data are to be recorded.
Details are to be found in the service documentation.

18866	MM_NUM_KIN_TRAFOS						N02, N09	W1
-	Maximum number of transformations that can be defined by kinematic chains.	DWORD	PowerOn					
-								
-	-	0	0	200				

Description: This machine data defines the maximum number of transformations in the NCK that can be defined by kinematic chains.
It also defines the number of data sets (\$NT_...[1] to \$NT_...[\$MN_MM_NUM_KIN_TRAFOS] available for parameterizing these transformations. The data record with index 0 is locked.)
The kinematic transformations conventionally parameterized in machine data can exist irrespective of this.

18880	MM_MAXNUM_KIN_CHAIN_ELEM						EXP, N01	-
-	Maximum number of elements in kinematic chains						DWORD	PowerOn
-								
-	-	0	0	1000	I			

Description: Maximum number of links in kinematic chains. If this MD has the value 0 (default value) then no kinematic chains at all are possible.

18890	MM_MAXNUM_3D_PROT_AREAS						EXP, N01	-
-	Maximum number of 3D protection areas						DWORD	PowerOn
-	-	0	0	200				
-	-	$7 / 2$	M					

Description: Maximum number of protection areas. This MD must not be equal to 0 in order to activate the function "collision avoidance".

Description: Maximum number of protection area elements for the automatic generation of protection areas with the language commands WORKPIECE and FIXTURE.

18892	MM_MAXNUM_3D_PROT_AREA_ELEM						EXP, N01	-
-	Max. number of protection zone elements						DWORD	PowerOn
-	-	0	0	1000	$7 / 2$			
-	-	M						

Description: Maximum number of protection zone elements. If this MD is 0 (default value), no protection zones are possible.

18894	MM_MAXNUM_3D_FACETS_INTERN						EXP, N01	-
-	Max. number of protection zone facets ro variable protection zones						DWORD	PowerOn
-	-	0	0	5000				
-	-	$7 / 2$	M					

[^6]| 18895 | MM_MAXNUM_3D_FACETS | EXP, N01 | - | | | | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Max. number of protection area facets/primitives | | | | | | DWORD | PowerOn |
| - | | | | | | | | |
| - | - | 0 | 0 | 5000 | | | | |
| $7 / 2$ | M | | | | | | | |

Description: Maximum number of primitives and facets allowed for all protection areas. Only applies if MAXNUM_3D_PROT_AREAS is greater than zero.

18896	MM_MAXNUM_3D_COLLISION	EXP, N01	-					
-	Max. number of the memory location for collision check						DWORD	PowerOn
-	7							
-	-	-	0	50000	M			

Description: Maximum size of a temporary memory area (in KB), which is required for the collision check of two protection zones.
If the contents of this machine data is 0 , the required memory space is determined automatically from machine data MD18892 \$MN MM MAXNUM 3D_PROT AREA ELEM, MD18890 \$MN_MM_MAXNUM_3D_PROT_AREAS and MD18895 \$MN_MM_MAXNUM_3D_FACETS.
If the determined memory space is insufficient, it can be explicitely determined using this machine data.

18897	MM_MAXNUM_3D_INTERFACE_IN	EXP, N01	-					
-	Max. no. of interf. bits for pre-activation of protection zones						DWORD	PowerOn
-	-	16	0	64	$7 / 2$			

Description: Defines how many input bits are available on the VDI interface for pre-activation of 3D protection zones.
It will influence the size of the memory space required for each NC block.
If this machine data has value n, a memory size of approximately n * ($n+1$) / 16 bytes will be required per block.
This machine data will be evaluated and will cause reservation of memory space, only if MD18890 \$MN_MM_MAXNUM_3D_PROT_AREAS is inequal to 0 .

18898	MM_MAXNUM_3D_COLL_PAIRS	EXP, N01	-					
-	Maximum number of 3D collision pairs						DWORD	PowerOn
-	-	0	0	100	$7 / 2$			

Description: Maximum number of 3D collision pairs.
This machine data is only evaluated if MD18890 \$MN_MAX_NUM_3D_PROT_AREAS is not equal
to zero.
If this machine data is zero and MD18890 \$MN_MAX_NUM_3D_PROT_AREAS is not equal to zero, memory space is automatically reserved for the maximum possible number of different 3D collision pairs (\$MN_MAX_NUM_3D_PROT_AREAS * (\$MN_MAX_NUM_3D_PROT_AREAS - 1) / 2).

If the content of this machine data is greater than the specified maximum value, then it is limited to this maximum value internally without an error message.

18899	PROT_AREA_TOOL_MASK	EXP	-					
-	Controls the creation of automatically created tool protection areas						DWORD	NEW CONF
-								
-	-	0	-	-	U			

Description: Controls the way tool protection areas are automatically created with collision detection active.

If bit $0=1$, then in MD 18894 \$MN_MM_MAXNUM_3D_FACETS_INTERN memory space must be reserved.

This machine data is bit-coded.
Bit 0 (0×1) If no other data are available, create the tool protection area from the tool data (tool length and radius).

18960	POS_DYN_MODE						N01	K1
-	Type of positioning axis dynamic response						BYTE	Reset
-								
-	-	0	1	M				

Description: The machine data deterrmines the accelerations and jerks which are applied in the case of positioning axis motion.
Value 0:
The acceleration is taken from the first field entry in MD32300 \$MA_MAX_AX_ACCEL (value for DYNNORM).

With G75 and active jerk limitation (SOFT), the jerk is taken from the first field entry in MD32431 \$MA_MAX_AX_JERK (value for DYNNORM) ; without jerk limitation (BRISK) it is infinite.

The following applies for all other positioning axis movements:
If MD32420 \$MA_JOG_AND_POS_JERK_ENABLE is true, the jerk is taken from MD32430 \$MA_JOG_AND_POS_MAX_JERK; otherwise it is infinite (BRISK behavior).
Value 1:
The acceleration is taken from the second field entry in MD32300 \$MA_MAX_AX_ACCEL (value for DYNPOS).
The jerk is taken from the second field entry in MD32431 \$MA_MAX_AX_JERK (value for DYNPOS).
For BRISK behavior, enter very high values here.

19010	SYSTEM_INFO			N01	-	
-	System information			UBYTE	PowerOn	
-						
-	4	0x6, 0xA4	0	-	ReadOnly	S

Description:

System information
Current software identifiers
[0]: Class ID
[1]: Subsystem ID
[2]: Possibly export ID
[3]: Reserved
Class ID:
===========
$5(0 \times 5) 828 D$
6 (0x6) 840D sl SW 4.4 and higher

```
7(0x7) 808D
8 (0x8) 840evo
15 (0xF) Simulation
Subsystem ID:
============
The following applies to 808D:
    1 (0x01) PPU14*.* M
    2 (0x02) PPU14*.* T
    3 (0x03) Reserved
    4 (0x04) PPU16*.* M
    5 (0x05) PPU16*.* T
    6 (0x06) Reserved
    7 (0x07) PPU15*.* M
    8 (0x08) PPU15*.* T
The following applies to 828D:
    1 (0x01) SW26*.* T
    2 (0x02) SW26*.* M
    3 (0x03) Reserved
    4 (0x04) Reserved from 4.8 SP3: was SW28*.* T
    5 (0x05) Reserved from 4.8 SP3: was SW28*.* M
    6 (0x06) Reserved
    7 (0x07) SW24*.* T
    8 (0x08) SW24*.* M
    9 (0x09) Reserved
10 (0x0A) From 4.8 SP3 : SW28*.* T, was SW28*.* T Adv
11 (0x0B) From 4.8 SP3 : SW28*.* M, was SW28*.* M Adv.
81/1 (0x51) SW24*.* GC
81/2 (0x51) SW24*.* GS
83/1 (0x53) SW26*.* GC
83/2 (0x53) SW26*.* GS
85/1 (0x55) SW28*.* GC Adv.
85/2 (0x55) SW28*.* GS Adv.
```

The following applies to 840Dsl:
4 (0xA4) 31-3
5 (0xA5) 31-3e
The following applies to 840evo:
4 (0xB4) 31-3
5 (0xB5) 31-3e
Export ID:
$============$
14 (0x0E) non-export-restricted system software
This data cannot be written.

19100	NUM_AXES_IN_SYSTEM	N01	-			
-	Additionally 1 axis/spindle	BYTE	PowerOn			
-						
-	-	3	0	8	$3 / 3$	

If more axes are activated by the channel-specific MD20070 \$MC_AXCONF_MACHAX_USED than are permitted in OD19100 \$ON_NUM_AXES_IN_SYSTEM and/or OD19102 \$ON_NUM_ADD_AXES_IN_SYSTEM, then a power-up alarm is triggered and the NC start is prevented.
Note:
Virtual and simulated axes (actual value sensing and setpoint output are simulated) are not taken into account when calculating the number of axes.

Corresponds with:
MD30132 \$MA_IS_VIRTUAL_AX
MD30130 \$MA_CTRLOUT_TYPE
MD30240 \$MA_ENC_TYPE

19102	NUM_ADD_AXES_IN_SYSTEM	N01	-				
-	Additional 1 positioning axis/auxiliary spindle	BYTE	PowerOn				
-							
840 dsl-71	-	-	0	8	$3 / 3$	I	
840dsl-72	-	0	0	31	$3 / 3$	1	
840 dsl-73	-	0	0	31	$3 / 3$	1	

Description: Number of available positioning/auxiliary axes
If more axes are activated by channel-specific MD \$MC_AXCONF_MACHAX_USED than permitted in OD19100 \$ON_NUM_AXES_IN_SYSTEM and/or OD19102
\$ON_NUM_ADD_AXES_IN_SYSTEM, a power-up alarm is triggered and the NC start is prevented.

19110	NUM_IPO_AXES	N01	-			
-						
-	Multiple-axis interpolation (more than 4 axes)	BYTE	PowerOn			
840 dsl-71	-	-	0	8	$3 / 3$	I
840 dsl-72	-	4	0	31	$3 / 3$	I
840 dsl-73	-	4	0	31	$3 / 3$	I

Description:
Number of simultaneously interpolating path axes
If more interpolating axes are programmed than are permitted in OD19110 \$ON_NUM_IPO_AXES,
a power-up alarm is output and the corresponding block is
not executed.

19120	NUM_SAFE_AXES	N01, N06	-		
-	SI axis/spindle, add. 1 axis/spindle	BYTE	PowerOn		
-					
-	-	1	0	31	$3 / 3$

Description: Number of axes in which drive-based safety functions can be activated.

19142	NUM_LEAD_LINK_AXES	N01	-			
-	Number of supported lead-link axes	BYTE	PowerOn			
-						
-	-	0	0	32	$3 / 3$	

Description: Number of lead link axes supported by the software

Description: Number of activatable channels

If more channels are activated by the global MD \$MN_ASSIGN_CHAN_TO_MODE_GROUP than are permitted in OD19200 \$ON_NUM_CHANNELS, then a power-up alarm is triggered which prevents the NC start.

19220	NUM_MODE_GROUPS	N01	-				
-	Additional 1 operation mode modul (BAG)	BYTE	PowerOn				
-	3						
-	-	1	1	10	3		

Description:

Number of mode groups
If more mode groups are activated by the global MD \$MN_ASSIGN_CHAN_TO_MODE_GROUP than
 the NC start.

19240	USER_MEM_DYNAMIC	N01, N02	-				
-	Add. 4 Mbyte CNC user memory	BYTE	Immediately				
-							
-	-	4	0	6	$3 / 3$		

Description: Option data for enabling the expansion levels of the volatile user memory on the $N C$ CPU.
The following applies:
Available memory = basic configuration + OD19240 \$ON_USER_MEM_DYNAMIC * 4MB
E.g. OD19240 \$ON_USER_MEM_DYNAMIC = 10: The memory size \$MN_MM_USER_MEM_DYNAMIC is increased by 10 * $4 \mathrm{MB}=40 \mathrm{MB}$.
OD19240 \$ON_USER_MEM_DYNAMIC therefore indicates the added part of the volatile user memory relative to the basic configuration.

19250	USER_MEM_BUFFERED		N01, N02	-	
-	Add. 2 Mbyte CNC user memory		BYTE	Immediately	
-					
-	- -	0	3	3/3	1
Description:	Option data for enabling the expansion levels of the nonvolatile user memory on the NC CPU. Available memory = basic configuration + OD19250 \$ON_USER_MEM_BUFFERED * 2MB OD19250 \$ON_USER_MEM_BUFFERED thus always indicates the part of the memory relative to the basic configuration.				
19270	PLC_USER_MEM_SIZE		N01, N02, N03	-	
-	Add. 128 KB PLC user memory		BYTE	PowerOn	
-					
-	4	1	12	3/3	I
Description:	Option data for enabli 1 Minimal configuration $\begin{array}{ll} 4 & \text { Basic configuration } \\ 5 & \text { GA }+128 \mathrm{kB} \\ 6 & \text { GA }+256 \mathrm{kB} \\ 7 & \text { GA }+384 \mathrm{kB} \\ \ldots & \text { etc. } \\ 12 & \text { GA }+1 \mathrm{MB} \text { (maximal cd } \end{array}$	P on	on the PLC	$\text { n } \quad 12$	

19280	PLC_C_USER_MEM_SIZE							N01, N02, N03	-
-	Additional 64 KB for PLC C programming						BYTE	PowerOn	
-	-	0	0	14	$3 / 3$				
-	-								

Description:
Option data for enabling the memory configuration stages for C programming
on the PLC. (Incrementation: 64KB)
$0=$ No memory
$1=64 \mathrm{~KB}$
. .
$14=896 \mathrm{~KB}$

19308	SINAMICS_FUNCTION_MASK		N01	-	
-	Drive options		UDWORD	PowerOn	
-					
-	0	0	0x7FFFFFFF	3/3	I

Description:

Option data for enabling SINAMICS drive functions:
Bit 0 (LSB): Enable "'Advanced Position Control' (APC)" (drive parameter r108 bit 7)
Bit 1: Enable "'Advanced Positioning Control ECO' (APCeco)" (drive parameter
r108 bit 19)

19310	AXIS_FUNCTION_MASK	N01, N09	-			
-	Axial options	UDWORD	PowerOn			
-						
-	-	0	0×0	$0 x 7 F F F F F F F$	$3 / 3$	

Description: Option data for enabling axial functions:
Bit 0 (LSB): Enable "Gantry axes" (MD37100 \$MA_GANTRY_AXIS_TYPE)
Bit 1: Enable "Force Control" (MD37080 \$MA_FOC_ACTIVATION_MODE)
Bit 2: Enable "Position switching signals" (MD10450 \$MN_SW_CAM_ASSIGN_TAB)
-----: Reserved "Prog. acceleration" not an option since 10/2000
Bit 4: Enable "Master-Slave" (MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD MD37252
\$MA_MS_ASSIGN_MASTER_TORQUE_CTR)
Bit 5: Enable "Digital setpoint exchange"
The listed machine data are reset during power on and
alarm 8040 is output if the corresponding bit of the option data
is not set.

19320	TECHNO_FUNCTION_MASK		N01, N09	-	
-	Technological options		UDWORD	Pow	
-					
-	- -	0x0	0x7FFFFFFF	3/3	I

Description:
Option data for enabling technology-related functions
-----: (LSB): Reserved "Caliper function" (MD21220 \$MC_MULTFEED_ASSIGN_FASTIN) not an
option since 10/2000
Bit 1: Enable "Adaptive Control (evaluation of internal drive variables)"
Bit 2: Enable "SINUMERIK HMI OA copy license WinCC flexible CE" (OP)
Bit 3: Enable "Oscillation functions" (MD43780 \$SA_OSCILL_IS_ACTIVE)
-----: Reserved "Tool management" (MD20310 \$MC_TOOL_MANAGEMENT_MASK)
Bit 5: Enable "Nibbling/punching" (MD26012 \$MC_PUNCHNIB_ACTIVATION)
Bit 6: Enable "Contour tunnel monitoring" (MD21050 \$MC_CONTOUR_TUNNEL_TOL)
-----: Reserved "F word interpolation" (FLIN/FCUB/FPO) not an option since
10/2000
-----: Reserved "Continuous Dressing" (FTOCON/FTOCOF) not an option since
10/2000
Bit 9: Enable "Tangential control" (TANON/TANGOF)
------: Reserved "Synchronous spindle/Multi-edge turning" (COUPON/COUPOF)
Bit 11: Enable "Path velocity-dependent analog value output (\$AC_VACTB/\$AC_VACTW)"
------: Reserved "Position offset as output of a synchronized action (2D)" (\$AA_OFF), not an option since 10/2000
------: Reserved "Free contour input with stock removal against the contour"
(ShopMill)

19321	TECHNO_FUNCTION_MASK_1						N01, N09	-
-	Technological options						UDWORD	PowerOn
-								
-	-	0×00003040	0×00003040	$0 \times 7 F F F F F F F$	$3 / 3$			

Description:
Option data for enabling functions relating to technologies.
Bit 0:(LSB): Enable "Measuring cycles (MEACALC)"
Bit 1: Enable "Contour handwheel"
Bit 2: Enable "Generic coupling 'CP-BASIC'"
Bit 3: Enable "Generic coupling 'CP-COMFORT'"
Bit 4: Enable "Generic coupling 'CP-EXPERT'"
Bit 5: Enable "Generic coupling 'CP-STATIC'"
Bit 6: Enable "Replacement tools for TM"
Bit 7: Enable "TM with multiple magazines"
Bit 8: Enable "Monitoring for max. tool speed / acceleration"
Bit 9: Enable "Advanced Surface"
Bit 10: Enable "Machining package milling 3 axes ($\mathrm{pkg} / o n l y$ placeholder
for group option)"
Bit 11: Enable "Machining package milling 5 axes (pkg/only placeholder
for group option)"
Bit 12: Enable "Siemens Cycles Base Technology"
Bit 13: Freigabe "Siemens Cycles Advanced Technology"
Bit 14: Enable "Balance cutting"
Bit 15: Enable "SINUMERIK Grinding Advanced"
Bit 16: Free
Bit 17: Enable "Top Surface"
Bit 18: Enable "Orientation offset static/dynamic"

Bit 19:	Free
Bit 31:	Reserved ""

19330	IPO_FUNCTION_MASK							N01, N09	-
-	Interpolation							UDWORD	PowerOn
-									
-	-	0	0×0	$0 x 7 F F F F F F F$	$1 / 1$				

Description: Option data for enabling interpolation-related functions
-----: (LSB): Reserved "REPOS per program (REPOSx without REPOSA)" not an option since 10/2000
Bit 1: Enable "Spline interpolation (xSPLINE)"
Bit 2: Enable "Compressor 5-axis machining (COMPON/COMPCAD/COMPCURV) (solution line: incl. xSPLINE; as from NCK75 only xSPLINE because COMPx is GA)"
Bit 3: Enable "Polynomial interpolation (POLY)"
Bit 4: Enable "3D tool offset (CUT3Dx)"
Bit 5: Reserved "Master value coupling and curve table interpolation (LEADON,
CTAB)"
-----: Reserved "Command axes and spindles"
Bit 7: Enable "Involute interpolation"
Bit 8: Enable "Compressor 3-axis machining (COMPON/COMPCAD/COMPCURV) (solution line: incl. xSPLINE); as from NCK75 only xSPLINE because COMPx is GA)"

Bit 31: Reserved ""

19500	SAFE_PLC_LOGIC		N01	-	
-	Safety Integrated plus /SI Logic		BOOLEAN	PowerOn	
-					
-	FALSE	-	-	3/3	1

Description: Basic option to operate an F-PLC.

19510	SAFE_FUNCTION_MASK	N01	-			
-	Safety Integrated functions	UDWORD	PowerOn			
-						
-	-	0	0×00	0×01	$3 / 3$	

Description:
Option data for enabling Safety Integrated functions
Bit $0=0$: Maximum of 3 FSEND and 3 FRECV connections available
Bit 0 = 1: More than 3 FSEND and 3 FRECV connections available

Description:
Option data for activating technology functions that have been
brought in for the first time as reloadable compile cycles.
\$ON_TECHNO_EXTENTION_MASK[0]
Bit 0: = O Only those ELF files can be loaded which are licensed by a bit in ON_TECHNO_EXTENTION_MASK[1].

1 All ELF files can be loaded
Bit 16-32: reserved for use by OEM customers
\$ON_TECHNO_EXTENTION_MASK[1]
(ELF files marketed by Siemens)

19700	ELEC_TRANSFER	N01	-			
-	Electronic transfer	BOOLEAN	PowerOn			
-						
-	-	FALSE	0	-	$3 / 3$	

Description:
Option data for enabling "electronic transfer" functionality
The 'individual options' required for this functionality are set,

+ One additional positioning axis
+ Gantry
+ Synchronized actions level 2
+ Position switching signals/cams
+ Polynomial interpolation
+ Master value coupling
+ Cross-mode actions (ASUB and SYNACT)
+ PROFIBUS
and the function normally present as a basic function
- Spindle (assignments are not possible in MD35000 \$MA_SPIND_ASSIGN_TO_MACHAX)
- Tool offsets (G40/G41/G42 are not possible)
is disabled.

19701	ELEC_TRANSFER_CP	N01	-			
-	Electronic transfer (CP)	BOOLEAN	PowerOn			
-						
-	-	FALSE	0	-	$3 / 3$	

Description: Option data for enabling "electronic transfer with CP" functionality The 'individual options' required for this functionality are set,

+ One additional positioning axis
+ Gantry
+ Synchronized actions level 2
+ Position switching signals/cams
+ Polynomial interpolation

```
    + Generic coupling CP-Comfort
    + Cross-mode actions (ASUB and SYNACT)
    + PROFIBUS
and the function normally present as a basic function
    - Spindle (assignments are not possible in MD35000 $MA_SPIND_ASSIGN_TO_MACHAX)
    - Tool offsets (G40/G41/G42 are not possible)
is disabled.
```


19710	HANDLING	N01	-			
-	Handling package	BOOLEAN	PowerOn			
-						
-	-	FALSE	0	-	$3 / 3$	

Description:
Option data for enabling "handling" functionality
The 'individual options' required for this functionality are set,

+ 3 additional positioning axis
+ 3 additional channels
+ Synchronized actions level 2
+ Handling transformation package
+ Cross-mode actions (ASUB and SYNACT)
and the function normally present as a basic function
- Spindle (assignments are not possible in MD35000 \$MA_SPIND_ASSIGN_TO_MACHAX)
- Tool offsets (G40/G41/G42 are not possible)
is disabled.

19730	HMI_FUNCTION_MASK						N01, N09	-
-	Operating options						UDWORD	PowerOn
-	2	0x00000804, 0x000EFFFC	0x00000804, 0x000EFFFC	0x7FFFFFFF, 0x7FFFFFFF	$3 / 3$			

Description:
Option data for enabling HMI functions:

```
Bit 0 (LSB): Enable "Additional languages"
OD19730 $ON_HMI_FUNCTION_MASK[0].0
-----: Reserved "External HMI"
OD19730 $ON_HMI_FUNCTION_MASK[0].1
Bit 2: Enable "Network drive
management" OD19730 $ON_HMI_FUNCTION_MASK[O].
2
Bit 3: Enable "Multi-channel step sequence
programming" OD19730 $ON_HMI_FUNCTION_MASK[0].3
Bit 4: Enable "Manual machine"
OD19730 $ON_HMI_FUNCTION_MASK[0].4
Bit 5: Enable "Add. 256 MB HMI user memory on NCU CF card"
OD19730 $ON_HMI_FUNCTION_MASK[0].5
Bit 6: Enable "Simulation milling (2D dynamic, 3D
static)" OD19730 $ON_HMI_FUNCTION_MASK[0].6
-----: Reserved "Measuring
cycles" OD19730
$ON_HMI_FUNCTION_MASK[0].7
Bit 8: Enable "SINUMERIK HMI copy license OA"
OD19730 $ON_HMI_FUNCTION_MASK[0].8
Bit 9: Reserved "was Ethernet 802Dsl
pro" OD19730 $ON_HMI_FUNCTION_MASK[O].
9
Bit 10: Enable "ShopTurn/Mill HMI for 840Di sl incl. HMI
Advanced" OD19730 $ON_HMI_FUNCTION_MASK[0].10
Bit 11: Enable "Advanced operator
functions" OD19730 $ON_HMI_FUNCTION_MASK[O].
11
Bit 12: Enable "ShopMill/ShopTurn
StepGuide" OD19730 $ON_HMI_FUNCTION_MASK[0].
12
Bit 13: Enable "Measure kinematics"
OD19730 $ON_HMI_FUNCTION_MASK[0].13
Bit 14: Enable "Trace (real-time simulation of curr. machining) MigA; for
ShopMill" OD19730 $ON_HMI_FUNCTION_MASK[0].14
Bit 15: Enable "Trace (real-time simulation of curr. machining) MigA; for
ShopTurn" OD19730 $ON_HMI_FUNCTION_MASK[0].15
Bit 16: Enable "3D simulation 1 (finished
part)" OD19730 $ON_HMI_FUNCTION_MASK[0].16
Bit 17: Free
OD19730 $ON_HMI_FUNCTION_MASK[0].17
Bit 18: Enable "Manual machine plus"
OD19730 $ON_HMI_FUNCTION_MASK[0].18
------: Reserved "was AP60 Run MyHMI /3GL -> }1973
$ON_HMI_MASK" OD19730 $ON_HMI_FUNCTION_MASK[0].19
------: Reserved AP61 "SINUMERIK HMI sl copy license OA
project" OD19730 $ON_HMI_FUNCTION_MASK[0].20
------: Reserved AP62 "SINUMERIK HMI sl copy license OA upgrade
programming" OD19730 $ON_HMI_FUNCTION_MASK[0].21
------: Reserved AP63 "SINUMERIK HMI sl copy license OA upgrade
configuration" OD19730 $ON_HMI_FUNCTION_MASK[0].22
Bit 23: Enable "SINUMERIK HMI sl Runtime OA Easy
Screen" OD19730 $ON_HMI_FUNCTION_MASK[0].23
Bit 24: Enable "Operation without SINUMERIK
OP" OD19730 $ON_HMI_FUNCTION_MASK[0].24
```


4.1 General NC machine data

```
Bit 21: Enable "Electronic key system (EKS)"
OD19730 $ON_HMI_FUNCTION_MASK[1].21
------: Reserved
OD19730 $ON_HMI_FUNCTION_MASK[1]. 22
Bit 23: Enable "Integrated spindle monitor (S-
Monitor)" OD19730 $ON_HMI_FUNCTION_MASK[1].23
Bit 24: Enable "DXF reader"
OD19730 $ON_HMI_FUNCTION_MASK[1].24
Bit 25: Unused (was "SINUMERIK 828 Ladder
Editor") OD19730 $ON_HMI_FUNCTION_MASK[1].
25
Bit 26: Enable "SINUMERIK extended touch"
OD19730 $ON_HMI_FUNCTION_MASK[1].26
Bit 27: Enable "Run MyRobot /Handling" OD19730
$ON HMI FUNCTION MASK[1]. 27
```

19732	HMI_MASK	N01	-			
-	Operating options	UBYTE	PowerOn			
-						
-	-	0	0×0	$0 x 7 F$	ReadOnly	

Description:
Option data for enabling HMI functions:
Bit 0 (LSB): SINUMERIK Operate /NCU.
Bit 1: SINUMERIK Operate /PCU
Bit 2: SINUMERIK Operate /PC
Bit 3: SINUMERIK basic PCU software /IPC
Bit 4: SINUMERIK Operate /universal client
Bit 5: Run MyHMI /3GL
Bit 6: SINUMERIK Operate Display Manager

19742	DRIVE_CNT	N01, N06	-						
-	$\begin{array}{l}\text { Drive count licenses } \\ \text { [1] Cogging torque compensation for } 1 \text { axis/spindle }\end{array}$	UBYTE	PowerOn						
-									
-	18	$0,0,0,0,0,0,0,0 \ldots$	$\begin{array}{l}0,0,0,0,0,0,0, \\ 0 \ldots\end{array}$	-	$3 / 3$			$]$	
:---									

Description: Option data

19750	DRIVE_EXTENSION_MASK	N01	-			
-	Drive OA license bits	UDWORD	PowerOn			
-						
-	3	$0 \times 0,0 \times 0,0 \times 0$	0×0	$0 \times F F F F F F F F$		

Description: Option data

19830	COLLISION_MASK							N01	-
-	Functional scope of collision avoidance	UDWORD	PowerOn						
-		0×0	0×0	0×7	$3 / 3$	1			
-	-								

Description: Functional scope of collision avoidance
Bit 0 (LSB): collision avoidance
Bit 1: Basic collision avoidance
Bit 2: Advanced collision avoidance

4.2 Channel-specific NC machine data

\(\left.\begin{array}{|l|l|l|l|l|l|}\hline 20000 \& CHAN_NAME \& C01, C10 \& B3, K1

\hline- \& Channel name \& STRING \& PowerOn

\hline- \& - \& \begin{array}{l}CHAN1, CHAN2,

CHAN3, CHAN4,

CHAN5, CHAN6,

CHAN7, CHAN8...\end{array} \& - \& - \& 7 / 2\end{array}\right]\)| M |
:---

Description: The channel name can be defined in this MD. The channel name is only used for the display on the HMI.

20050	AXCONF_GEOAX_ASSIGN_TAB			C01, C10	TE7	2, K1, K2
-	Assignment of geometry axis to channel axis			BYTE	Pow	
-						
-	3	$\begin{aligned} & 1,2,3,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0 \\ & 0,0,0,0 \ldots \end{aligned}$	0	20	7/2	M

Description:
This MD is used to specify which channel axis the geometry axis is assiged to. Each geometry axis must be assigned to a specific channel. If a geometry axis is not assigned to a channel axis, then this geometry axis is not available, and cannot be programmed (with the name defined under MD20060 \$MC_AXCONF_GEOAX_NAME_TAB).
For example: Turning machine without transformation:
MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1 ; 1st geometry axis = 1st channel axis MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 0 ; 2nd geometry axis not defined MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 2 ; 3rd geometry axis = 2nd channel axis The assignment made here is valid if no transformation is active. With active transformation n, the transformation-specific assignment table MD24... \$MC_TRAFO_GEOAX_ASSIGN_TAB_... becomes active.

Description: This MD is used to enter the names of the geometry axes separately for each channel. Geometry axes can be programmed in the part program using the names specified here. Special cases:

- The geometry axis name entered must not conflict with the designations and assignments of the machine and channel axis names or other identifiers.
Names for Euler angles (MD10620 \$MN_EULER_ANGLE_NAME_TAB),
Names for direction vectors (MD10640 \$MN_DIR_VECTOR_NAME_TAB),
Names for intermediate circle point coordinates for CIP (MD10660
\$MN_INTERMEDIATE_POINT_NAME_TAB) and the
Names for interpolation parameters (MD10650 \$MN_IPO_PARAM_NAME_TAB) coincide.
- The geometry axis name entered must not include any of the following reserved address letters:
- D Tool offset (D function) - E Reserved
- F Feedrate (F function) - G Path condition
- H Auxiliary function (H function) - L Subroutine call
- M Miscellaneous function (M function) - N Subblock
- P Subroutine number of passes - R Arithmetic parameters
- S Spindle speed (S function)
- T Tool (T function)
- The name must not include any keywords (e.g. DEF, SPOS etc.) or pre-defined identifiers (e.g. ASPLINE, SOFT).
- The use of an axis identifier consisting of a valid address letter (A, B, C, I, J, $K, ~ Q, ~ U, ~ V, ~ W, ~ X, ~ Y, ~ Z) ~ f o l l o w e d ~ b y ~ a n ~ o p t i o n a l ~ n u m e r i c a l ~ e x t e n s i o n ~(1-99) ~ g i v e s ~$ slightly better block change times than a general identifier.
- Identical names may be given to geometry axes assigned to different channels.

Related to:
MD10000 \$MN_AXCONF_MACHAX_NAME_TAB
(machine axis name [axis no.])
MD20080 \$MC_AXCONF_CHANAX_NAME_TAB
(channel axis name in the channel [channel axis no.])

Description:

This MD is used to specify the machine axis which the channel axis/special axis is assigned to. Each channel axis has to be assigned to a specific channel. A machine axis that has not been assigned to a channel is inactive, i.e. the axis control is not computed, the axis is not shown on the screen, and it cannot be programmed in any channel.

From software version 5, a machine axis need not be assigned to a channel axis for reasons of uniform configuration. The MD for the machine axis is set to 0 in this case. At the same time, MD11640 \$MN_ENABLE_CHAN_AX_GAP must be set to 1 (channel axis gaps are permitted).
From software version 5, the machine data MD20070 \$MC_AXCONF_MACHAX_USED does not directly refer to the machine axes created with MD100 00 \$MN_ $\bar{A} X C O N F \quad \bar{M} A C H A X _N A M E _T A B$, but to the logical machine axis map which is defined with MD10002
\$MN_AXCONF_LOGIC_MACHAX_TAB.
MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB refers:

- directly to a local machine axis on the NCU,
- to a machine axis of another NCU in the NCU grouping or
- indirectly to an axis container with local or remote machine axes.

If the default values AX1, AX2, ..., AX31 are entered with MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB, then the NCK behaves in the same way as up to software version 4, this means that machine data MD20070 \$MC_AXCONF_MACHAX_USED refers to the corresponding local machine axis.

Special cases:

- Each geometry axis must be assigned to a channel axis and a machine axis so that it can be programmed.
- If a machine axis is assigned to several channels by means of MD20070 \$MC_AXCONF_MACHAX_USED, then the number of the channel from which the axis is to be programmed must be entered in MD30550 \$MA_AXCONF_ASSIGN_MASTER_CHAN.
- Up to software version 4, the list of entries must not contain any gaps (as from software version 5 - see above). In contrast, the assignment of the machine axes used may contain gaps.

For example:

```
Permissible:
AXCONF_MACHAX_USED [0] = 3; 3rd MA is the 1st axis in the channel
AXCONF_MACHAX_USED [1] = 1; 1st MA is the 2nd axis in the channel
AXCONF_MACHAX_USED [2] = 5; 5th MA is the 3rd axis in the channel
AXCONF_MACHAX_USED [3] = 0
Error for software version 4, permissible for version 5:
AXCONF_MACHAX_USED [0] = 1; 1st MA is the 1st axis in the channel
AXCONF_MACHAX_USED [1] = 2; 2nd MA is the 2nd axis in the channel
AXCONF_MACHAX_USED [2] = 0; gap in the list ...
AXCONF_MACHAX_USED [3] = 3; ... of the channel axes
Axis identifiers must be defined in the corresponding list places of
AXCONF CHANAX NAME TAB for the axes activated in the channel.
Related to:
MD30550 $MA_AXCONF_ASSIGN_MASTER_CHAN
MD20080 $MC_AXCONF_CHANAX_NAME_TAB
MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB
MD11640 $MN_ENABLE_CHAN_AX_GAP
Reference:
Description of Functions B3.
```

20080	AXCONF_CHANAX_NAME_TAB	C01, C11, C10	F2, V2, M1, K2, V1		
-	Channel axis name in channel	STRING	PowerOn		
-					
-	20	X, Y, Z, A, B, C, U, V, X11, Y11, X, Y, Z, A, B, ...	-	7/2	M

The name of the channel axis/special axis is entered in this MD. Normally the first three channel axes are assigned by the three assigned geometry axes
(see also MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB)
The remaining channel axes are also called special axes. The channel axis/special axis on the screen in the $W C S$ (workpiece coordinate system) is always displayed with the name entered in this MD.

Special cases:

- The specified channel axis name/special axis name must not conflict with the designation and assignment of the machine and geometry axis names or other identifiers.
Names for Euler angles (MD10620 \$MN_EULER_ANGLE_NAME_TAB),
Names for direction vectors (MD10640 \$MN_DIR_VECTOR_NAME_TAB),
Names for intermediate circle point coordinates for CIP (MD10660
\$MN_INTERMEDIATE_POINT_NAME_TAB)
and the names for interpolation parameters (MD10650 \$MN_IPO_PARAM_NAME_TAB) overlap.
- The channel axis name entered must not include any of the following reserved address letters:
- D Tool offset (D function)
- E Reserved
- F Feedrate (F function)
- G Path condition
- H Auxiliary function (H function)
- L Subroutine call
- M Miscellaneous function (M function)
- N Subblock
- P Subroutine number of passes
- R Arithmetic parameters
- S Spindle speed (S function)
- T Tool (T function)
- The name must not include any keywords (e.g. DEF, SPOS etc.) or pre-defined identifiers (e.g. ASPLINE, SOFT).
- The use of an axis identifier consisting of a valid address letter (A, B, C, I, J, $K, ~ Q, ~ U, ~ V, ~ W, ~ X, ~ Y, ~ Z) ~ f o l l o w e d ~ b y ~ a n ~ o p t i o n a l ~ n u m e r i c a l ~ e x t e n s i o n ~(1-99) ~ g i v e s ~$ slightly better block change times than a general identifier.
- No special names need be entered in this MD for channel axes to which geometry axes are assigned (normally the first three channel axes).

Axis identifiers that are not allowed are rejected with an alarm during runup.

20082	AXCONF_CHANAX_DEFAULT_NAME		C01, C11, C10	-	
-	Default axis name for axis variables in the channel		STRING	PowerOn	
-					
-	- -	-	-	7/2	M

Description:

Variables or parameters of type Axis which have not been initialized are initialized with a default axis identifier. The identifier can be configured via the machine data MD20082 \$MC_AXCONF_CHANAX_DEFAULT_NAME. If this machine data is set with an empty string, the lst geometry axis is used, as previously.
MD20082 \$MC_AXCONF_CHANAX_DEFAULT_NAME can be set by default with all available, valid axis identifiers. The value of this machine data should generally always correspond to a value of $\$ M D 20060$ \$MC_AXCONF_GEOAX_NAME_TAB, MD20080 \$MC_AXCONF_CHANAX_NAME_TAB or MD10000 \$MN_AXCONF_MACHAX_NAME_TAB.
If an invalid axis name is entered as a value or if this name has been changed, for example, in MD20080 \$MC_AXCONF_CHANAX_NAME_TAB but not in MD20082
\$MC_AXCONF_CHANAX_DEFAULT_NAME, then this is indicated with alarm 4041 channel \%1 block \%2 axis identifier \%3 is invalid".
Only valid axis identifiers, empty string and "NO_AXIS" may be entered in MD20082 \$MC_AXCONF_CHANAX_DEFAULT_NAME. "NO_AXIS" is used to indicate a non-initialized axis varíable, empty string means previous behavior, i.e. each variable is initialized with the 1st geometry axis.

20090	SPIND_DEF_MASTER_SPIND						C01, C03	H2, K1, K2, P3 pl, P3 sl, S1, W1
-	Initial setting of master spindle in channel						BYTE	PowerOn
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	1	20	M			

Description: Definition of the default setting for the master spindle (in the channel).
The number of the spindle is entered.
A number of functions are linked to the master spindle, which are not possible with any other spindle.
Note:
The language command SETMS(n) can declare the spindle number as the master spindle. The spindle defined in this MD is declared once again as the master spindle with SETMS. The spindle defined in this MD is also declared as the master spindle at program end and program cancelation.

\(\left.\begin{array}{|l|l|l|l|l|l|}\hline 20094 \& SPIND_RIGID_TAPPING_M_NR \& C01, C03, C10 \& H2, K1, S1

\hline- \& M function for switching into controlled axis mode \& DWORD \& PowerOn

\hline- \& - \& \begin{array}{l}70,70,70,70,70,70,

70,70 ···\end{array} \& - \& - \& 7 / 2\end{array}\right]\)| M |
:---

Description: This machine data defines the M auxiliary function number with which the spindle is switched into axis mode.

The M number defined in the machine data replaces M70 in Siemens mode.
Note:
On the VDI interface, M70 is always output with the corresponding address extension to indicate the switch to axis mode.
Restrictions: Refer to machine data MD10715 \$MN_M_NO_FCT_CYCLE
Related to:
MD10714 \$MN_M_NO_FCT_EOP,
MD10715 \$MN_M_NO_FCT_CYCLE,
MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,
MD22254 \$MC_AUXFU_ASSOC_M0_VALUE
MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 \$MN_EXTERN_M_NO_SET_INT
MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,
MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR
\$MD26008 \$MC_NIBBLE_PUNCH_CODE

20095	EXTERN_RIGID_TAPPING_M_NR		$\begin{aligned} & \text { C01, C11, C03, } \\ & \text { C10 } \end{aligned}$	H2, K1	
-	M function for switching to controlled axis mode(external mode)		DWORD	PowerOn	
-					
-	$\begin{aligned} & 29,29,29,29,29,29, \\ & 29,29 \ldots \end{aligned}$	-	-	$7 / 2$	M
Description:	This machine data defines the M function number with which the switchover to controlled spindle/axis mode is to be carried out. The M number defined in the machine data replaces M29 in external language mod				

```
Pre-defined M numbers, such as M00,M1,M2,M3, etc., are not allowed as M numbers.
Restrictions: See machine data MD10715 $MN_M_NO_FCT_CYCLE
Related to:
MD10714 $MN_M_NO_FCT_EOP,
MD10715 $MN_M_NO_FCT_CYCLE,
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR,
MD22254 $MC_AUXFU_ASSOC_MO_VALUE
MD10814 $MN_EXTERN_M_NO_MAC_CYCLE,
MD10804 $MN_EXTERN_M_NO_SET_INT
MD10806 $MN_EXTERN_M_NO_DISABLE_INT,
MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN,
MD10802 $MN_EXTERN_CHAN_SYNC_M_NO_MAX
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR
MD26008 $MC_NIBBLE_PUNCH_CODE
```


Description:

This MD is only significant if the functions 'Tool management'/'flat D numbers' are inactive.
FALSE
The contents of the address extensions of the $N C$ addresses T and M 'tool change command number' are not evaluated by the NCK. The PLC decides on the significance of the programmed extension.
TRUE
The address extensions of the $N C$ addresses T and M 'tool change command number' - 'tool change command number'=TOOL_CHANGE_M_CODE with 6 as the default value - are interpreted as spindle numbers.

NCK treats the extension in the same way as the active functions 'tool management' and 'flat D number management'.
That is, the programmed D number always refers to the T number of the programmed main spindle number.
See also:
MD20090 \$MC_SPIND_DEF_MASTER_SPIND,
MD22550 \$MC_TOOL_CHANGE_MODE,
MD22560 \$MC_TOOL_CHANGE_M_CODE

20098	DISPLAY_AXIS			EXP, C01	-	
-	Display axis on HMI			UDWORD	Imm	
-						
-	20	0x7FFFFFFF, 0×7 FFFFFFF, 0x7FFFFFFF, 0×7 FFFFFFF, 0x7FFFFFFFF, 0x7...	0	0x7FFFFFFF	7/2	M

Description:

Identifies whether the axis will be displayed by the HMI as a machine, geometry, or auxiliary axis.
This data is only evaluated by the HMI.

Bit 0 to 15: Machine (MCS)
Bit $0=1$ Machine - display machine axis in the actual value windows
0 Machine - hide machine axis in the actual value windows
Bit $1=1$ Machine - display machine axis in the reference point window
0 Machine - hide machine axis in the reference point window
Bit 2= 1 Machine - display machine axis in preset/scratch/parameter work offset windows
0 Machine - hide machine axis in preset/scratch/parameter work offset windows
Bit 3= 1 Machine - display machine axis in the handwheel selection window 0 Machine - hide machine axis in the handwheel selection window
(Bit 4) Not assigned
Bit 5= 1 Display spindle in the T, F, S window
0 Hide spindle in the T, F, S window
Bit 16 to 31: Work (WCS)
Bit $16=1$ Work - display geometry axis in the actual value windows 0 Work - hide geometry axis in the actual value windows
(Bit 17) Not assigned
Bit $18=1$ Work - display geometry axis in parameter work offset window
0 Work - hide geometry axis in parameter work offset window
Bit $19=1$ Work - display geometry axis in the handwheel selection window 0 Work - hide geometry axis in the handwheel selection window
Bit 20= 1 Work - display position axis in the position/straight line windows 0 Work - hide position axis in the position/straight line windows
(Bit 21) Not assigned

20100	DIAMETER_AX_DEF	C01, C10	H1, M5, P1, V1, W1					
-	Geometry axis with transverse axis function						STRING	PowerOn
-								
-	-	-	-	$7 / 2$	M			

Description:

This MD is used to define a geometry axis as a transverse axis. Only one transverse axis can be defined here for each channel.

Further transverse axes for axis-specific diameter programming can be activated via MD30460 \$MA_BASE_FUNCTION_MASK, bit 2.
The axis identifier of an active geometry axis that has been defined in the channelspecific MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[n]
or MD24120 \$MC_TRAFO_AX_GEOAX_ASSIGN_TAB_1[n] (from SW 4) and
MD20060 \$MC_AXCONF_GEOAX_NAME_TAB[n] must be specified.
If space characters are entered or if an axis identifier is specified for an axis which is not defined as a geometry axis, this leads to the following alarms:

- during runup, to alarm 4032 "Channel \%1 wrong identifier for transverse axis in \%2", if the "Diameter programming" function (DIAMON) or constant cutting speed G96/G961/ G962 is the switch-on setting.
- when the "Diameter programming (DIAMON)" function is activated, to alarm 16510 "Channel \%1 block \%2 No transverse axis available for diameter programming", if no axis has been permitted via DIAMCHANA[AX] for channel-specific diameter programming.
- when G96/G961/G962 has been programmed, to alarm 10870 "Channel \%1 block \%2 No transverse axis defined as reference axis for $G 96 / G 961 / G 962 "$, if no geometry axis has been defined as the reference axis for G96/G961/G962 by the instruction SCC[ax]. Related to:
MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB[n]
MD20060 \$MC_AXCONF_GEOAX_NAME_TAB[n]
MD2 4120 \$MC_TRAFO_AX_GEOAX_ASSIGN_TAB_1[n]

MD30460 \$MA_BASE_FUNCTION_MASK

20105	PROG_EVENT_IGN_REFP_LOCK	N01	K1, Z1				
-	Start Prog-Events despite non-referenced axes.	UDWORD	PowerOn				
-							
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0	$0 \times 3 F$	$7 / 2$	$]$	M
:---							

Description:

The behavior of event-driven program calls (prog-events) regarding non-referenced axes can be set.
Bit $0=1$:
Prog-event ignores non-referenced axes after part program start
Bit $1=1$:
Prog-event after part program end ignores non-referenced axes
Bit 2 = 1 :
Prog-event after operator panel reset ignores non-referenced axes
Bit $3=1$:
Prog-event after power-up ignores non-referenced axes
Bit $4=1$:
Prog-event after lst start after search ignores non-referenced axes
Bit $5=1$:
Reserved
Corresponds with:
MD20106 \$MC_PROG_EVENT_IGN_SINGLEBLOCK
MD20107 \$MC_PROG_EVENT_IGN_INHIBIT
MD20108 \$MC_PROG_EVENT_MASK
MD20192 \$MC_PROG_EVENT_IGN_PROG_STATE
MD20193 \$MC_PROG_EVENT_IGN_STOP
The machine data MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK and MD20115
\$MC_IGNORE_REFP_LOCK_ASUP replace bit 1 from MD11602 \$MN_ASUP_START_MASK.
If MD20700 \$MC_REFP_NC_START_LOCK is equal to 0, the setting in MD20105
\$MC_PROG_EVENT_IGN_REFP_LOCK ${ }^{-}$is ignored, and non-referenced axes are always ignored.

20106	PROG_EVENT_IGN_SINGLEBLOCK	N01	K1, Z1		
-	Prog-Events ignore single block	UDWORD	PowerOn		
-					
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	$0 \times 3 F$	

Description:

Event-driven program calls (Prog-Events) can be set regarding their single-block response.
Bit $0=1$:
Prog-Event after start-of-part-program causes block change without restart
Bit $1=1$:
Prog-Event after end-of-part-program causes block change without restart
Bit $2=1$:
Prog-Event after OP reset causes block change without restart
Bit $3=1$:
Prog-Event after ramp-up causes block change without restart
Bit $4=1$:
Prog-Event after lst start after search causes block change without restart Bit $5=1$:

```
Safety Prog-Event during ramp-up causes block change without restart
Corresponds to:
MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK
MD20107 $MC_PROG_EVENT_IGN_INHIBIT
MD20108 $MC_PROG_EVENT_MASK
MD20192 $MC_PROG_EVENT_IGN_PROG_STATE
MD20193 $MC_PROG_EVENT_IGN_STOP
```


20108	PROG_EVENT_MASK	N01	TE3, K1		
-					
-	Setting of event-driven programm calls	UDWORD	PowerOn		
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	$0 \times 3 F$	$7 / 2$

Parameterization of the events with which the user program set with MD11620 \$MN_PROG_EVENT_NAME (default: _N_PROG_EVENT_SPF) is implicitly called.
Parameterization of the events causing the safety program _N_SAFE_SPF to be called implicitly:
Bit $0=1$: Start of part program
Bit $1=1$: End of part program
Bit 2 = 1 : Operator panel reset
Bit $3=1$: Ramp-up
Bit 4 = 1 : Reserved
Bit 5 = 1 : Safety program booting
The user program is called via the following search path:

1. /_N_CUS_DIR/_N_PROG_EVENT_SPF
2. /_N_CMA_DIR/_N_PROG_EVENT_SPF
3. /_N_CST_DIR/_N_PROG_EVENT_SPF

The safety program has to be available in the following location:

1. /_N_CST_DIR/_N_SAFE_SPF

Furthermore, MD11450 \$MN_SEARCH_RUN_MODE bit 1 also causes the user program set with MD11620 \$MN_PROG_EVENT_NAME to be started up automatically after the action blocks, regardless of the settings in this machine data.
Related to:
MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK
MD20106 \$MC_PROG_EVENT_IGN_SINGLEBLOCK
MD20107 \$MC_PROG_EVENT_IGN_INHIBIT
MD20192 \$MC_PROG_EVENT_IGN_PROG_STATE
MD20193 \$MC_PROG_EVENT_IGN_STOP
Note:
The Siemens cycle package includes the cycle /_N_CST_DIR/_N_PROG_EVENT_SPF, that should be used by default to process the event-driven program calls. It contains subroutine calls for the particular manufacturer and end user applications (For details see the documentation "Standard cycle PROG-EVENT.SPF").

20109	PROG_EVENT_MASK_PROPERTIES	N01	K1					
-	Properties of Prog-Events	UDWORD	PowerOn					
-								
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0	0×1	$7 / 2$		$]$	M
:---								

Description: Parameterization of additional properties of the event-controlled program calls (in short, Prog-Event), that is, the MD20108 \$MC_PROG_EVENT_MASK is further parameterized. Bit $0=1$:

An ASUB started from channel status RESET does not result in a Prog-Event.

20110	RESET_MODE_MASK	C11, C03	F2, K6, M3, TE4, W5, B3, K5, M1, G2, K1, K2, P1, S1, W1, 2.4, 2.7			
-	Definition of basic control settings after reset/PP end	UDWORD	Reset			
-						
-	-	$0 \times 1,0 \times 1,0 \times 1,0 \times 1$, $0 \times 1,0 \times 1,0 \times 1,0 \times 1 \ldots$	0	$0 \times 17 F F F F$		

Description:

Definition of the initial setting of the control after ramp-up and at reset/end-of-part-program with regard to the G codes (in particular the active plane and the settable work offset), tool length offset and transformation by setting the following bits:
Bit 0: Reset mode
Bit 1: Suppress aux. funct. output on tool selection
Bit 2: Select reset response after power-on (e.g. tool offset)
Bit 3: Select reset response after end of test mode with regard to active tool offsets.
Bit 4: Reserved
Bit 5: Reserved
Bit 6: Reset response "Active tool length offset"
Bit 7: Reset response "Active kinematic transformation"
Bit 8: Reset response "Coupled-motion axes"
Bit 9: Reset response "Tangential correction"
Bit 10: Reset response "Synchronous spindle"

Bit 11: Reset response "Revolutional feedrate"
Bit 12: Reset response "Geo axis replacement"
Bit 13: Reset response "Master value coupling"
Bit 14: Reset response "Basis frame"
Bit 15: Reset response "Electronic gearbox"
Bit 16: Reset response "Master spindle"
Bit 17: Reset response "Master toolholder"
Bit 18: Reset response "Reference axis for G96/G961/G962"
Bit 19: Reserved "Adjustable software limit switch ineffective"
Bit 20: Reset response "\$P_USEKT"
Bits 4 to 11,16 and 17 are only evaluated for bit $0=1$.
Meaning of the individual bits:
Bit $0(L S B)=0$: corresponds to the behavior of $S W$ release 1 , is only recommended for test mode

Initial setting after ramp-up:

- G codes according to MD20150 \$MC_GCODE_RESET_VALUES
- Tool length offset not active
- Transformation not active
- No coupled-motion axis groupings active
- No tangential correction active
- No axial revolutional feedrate active
- Path revolutional feedrate with master spindle (default))

Initial setting after reset or end of part program:
The current settings are retained.
When next part program is started, the following initial setting is effective:

- G codes according to MD20150 \$MC_GCODE_RESET_VALUES
- Tool length offset not active
- Transformation not active
- No coupled-motion axis groupings active
- No tangential correction active
- No master value coupling active
- No axial revolutional feedrate active
- Path revolutional feedrate with master spindle (default)

Bit $0(L S B)=1:$ Standard value for Powerline and Solutionline systems Initial setting after startup:

- G codes acc. to MD20150 \$MC_GCODE_RESET_VALUES
- Tool length offset active acc. to MD20120 \$MC_TOOL_RESET_VALUE, MD20130
\$MC_CUTTING_EDGE_RESET_VALUE, and MD20132 \$MC_SUMCORR_RESET_VALUE
- Transformation active acc. to MD20140 \$MC_TRAFO_RESET_VALUE
- Geometry axis replacement acc. to MD20118 \$MC_GEOAX_CHANGE_RESET
- No coupled-motion axis groupings active
- No tangential correction active

Initial setting after reset or end of part program:
Depending on MD20152 \$MC_GCODE_RESET_MODE, the current settings are retained for the G groups or the initial settings stored in MD20150\$MC_GCODE_RESET_VALUES are set.
Initial setting after reset or end of part program
Depending on MD20110 \$MC_RESET_MODE_MASK bits 6 to 7, for

- Tool length offset
- Transformation
either the current settings are retained or the initial settings saved in the MDs are set.

Depending on bits 8 and 9, the current settings of coupled-motion axes or tangentially corrected axes are either deactivated or retained.

Configured synchronous spindle coupling:
The coupling is deselected depending on the setting in MD21330 \$MC COUPLE RESET MODE 1. Non-configured synchronous spindle coupling:

Depending on bit 10, the coupling is either deactivated or retained.
Depending on bit 14, the basic frame is either retained or deselected.
Bit $1=0$:
Auxiliary function output (D,T,M) at the PLC for tool selection corresponding to machine data

MD20120 \$MC_TOOL_RESET_VALUE
MD20130 \$MC_CUTTING_EDGE_RESET_VALUE
MD20121 \$MC_TOOL_PRESEL_RESET_VALUE
MD22550 \$MC_TOOL_CHANGE_MODE
When magazine management is active, T, M are not output as auxiliary functions.
The function uses its own communication to output T, M to the PLC, for example.
Bit $1=1$:
Suppress aux. funct. output to PLC on tool selection.
If tool management or magazine management is active, T, M are never output as auxiliary functions.
Bit $2=0$:
If tool or magazine management is not active:

- No tool offset active after power-on. Active and programmed T depend on the subsequent settings of the machine data (bits 0, 6).

If tool or magazine management is active:

- No meaning.

Bit $2=1$:
If tool or magazine management is not active:

- If bits 0 and 6 both $=1$ (0×41), the tool offset of the last tool active in the NCK is active after the first reset after power-on.
(The value of the programmed tool depends on the value of machine data MD20121
\$MC_TOOL_PRESEL_RESET_VALUE.)
Notice: The NCK does not know the conditions at the machine.
For active tool or magazine management:
- No meaning

Bit $3=0$:
With and without active tool management:

- End of test mode: "Retain current setting for active tool length offset" (bits 0 and 6 set) refers to the program that was active before test mode was activated.
Bit 3 = 1:
Relevant only if tool management is not active:
- End of test mode: "Retain current setting for active tool length offset" (bits 0 and 6 set) refers to the program that was active when test mode ended. (If tool management is active, the tool on the spindle is generally the active tool. Exception only for MD20270 \$MC_CUTTING_EDGE_DEFAULT = -2.)
Bit $4=0: \quad$ Reserved
Bit 4 = 1: Reserved
Bit $5=0: \quad$ Reserved
Bit 5 = 1: Reserved

Bit $6=0$:
Initial setting for active tool length offset after reset/end of part program acc. to MD20120 \$MC_TOOL_RESET_VALUE, MD20130 \$MC_CUTTING_EDGE_RESET_VALUE, MD20123\$MC_USEKT_RESET_VALUE and MD20132 \$MC_SUMCORR_RESET_VALUE.
If MD22550 \$MC_TOOL_CHANGE_MODE = 1, the tool specified in MD20121
\$MC_TOOL_PRESEL_RESET_VALUE is additionally preselected.
If tool or magazine management is active, MD20122 \$MC_TOOL_RESET_NAME is used instead of data MD20120 \$MC_TOOL_RESET_VALUE.
Bit 6 = 1:
The current setting for active tool length offset is retained after reset/end of part program.
If tool or magazine management is active, the tool currently on the master spindle (generally $=$ master toolholder) is selected.
If the tool on the master spindle is disabled, the "disabled" status is ignored. Please note that after a program ends or is terminated, either the most recent value for master spindle or master toolholder programmed in the program, or the value set in MD20090 \$MC_SPIND_DEF_MASTER_SPIND or MD20124 \$MC_TOOL_MANAGEMENT_TOOLHOLDER defines the master spindle or master toolholder.
(The selection is made in bit 16 or bit 17.)
For MD20270 \$MC_CUTTING_EDGE_DEFAULT = -2, the following applies specifically:
If a tool has been loaded into the spindle, but a new offset D has not yet been programmed, the previous tool is still active in the NCK.
If machining is canceled in this status (e.g. with the Reset key), the offset is defined with the smallest D number of the master spindle tool.
Bit $7=0$:
Initial setting for active transformation after reset/end of part program according to MD20140 \$MC_TRAFO_RESET_VALUE.
Bit $7=1$:
The current setting for active transformation is retained after reset/end of part program.
Bit $8=0$:
Coupled-motion axis groups are ungrouped at reset/end of part program.
Bit $8=1$:
Coupled-motion axis groups remain active after reset/end of part program.
Bit $9=0$:
Tangential correction is deactivated at reset/end of part program.
Bit 9 = 1 :
Tangential correction remains active after reset/end of part program.
Bit $10=0$:
Non-configured synchronous spindle coupling is deactivated at reset/end of part program.
Bit $10=1$:
Non-configured synchronous spindle coupling remains active after reset/end of part program.
Bit $11=0$:
At reset/end of part program, the setting data SD43300 \$SA_ASSIGN_FEED_PER_REV_SOURCE is reset to 0 for all non-active axes/spindles, i.e. traversing at revolutional feedrate is canceled and the setting for path and synchronous axes is reset to the master spindle (default).
Bit $11=1$:

The current setting for revolutional feedrate is retained after reset/end of part program. At the start of the part program, the setting data SD43300 \$SA_ASSIGN_FEED_PER_REV_SOURCE is reset to 0 for all non-active axes/spindles, i.e. traversing at revolutional feedrate is canceled and the setting for path and synchronous axes is reset to the master spindle (default).
Bit $12=0$:
If machine data MD20118 \$MC_GEOAX_CHANGE_RESET is set, a changed geometry axis assignment is canceled at reset/end of part program. The initial setting for the geometry axis assignment defined in the machine data becomes active.
Bit 12 = 1:
A changed geometry axis assignment remains active after reset/end of part program.
Bit $13=0$:
Master value couplings are canceled at reset/end of part program.
Bit 13 = 1:
Master value couplings remain active after reset/end of part program.
Bit $14=0$:
The basic frame is deselected.
Bit 14 = 1:
The current setting of the basic frame is retained.
Bit $15=0$:
Active electronic gearboxes remain active at reset/end of part program.
Bit 15 = 1:
Active electronic gearboxes are canceled at reset/end of part program.
Bit $16=0$:
Initial setting for the master spindle according to MD20090 \$MC_SPIND_DEF_MASTER_SPIND.
Bit $16=1$:
The current setting of the master spindle (SETMS) is retained.
For MD20124 \$MC_TOOL_MANAGEMENT_TOOLHOLDER = 0, this bit also influences the behavior of bit 6.

Bit $17=0$:
Initial setting for the master toolholder according to MD20124
\$MC_TOOL_MANAGEMENT_TOOLHOLDER.
Bit 17 = 1:
The current setting of the master toolholder (SETMTH) is retained.
(Bit17 is only relevant for active tool or magazine management MD20124
\$MC TOOL MANAGEMENT TOOLHOLDER >0. Otherwise, the setting is valid for master spindle bit 16, for active tool or magazine management. This bit also influences the behavior of bit6.)

Bit $18=0$:
Reference axis for G96/G961/G962 acc. to MD 20100: \$MC_DIAMETER_AX_DEF.
When using SCC for your own spindle reset, bit 18 = 1 is recommended (see also MD 20112 \$MC_START_MODE_MASK, bit 18).
Bit $18=1$:
Reference axis for G96/G961/G962 is retained.
Bit 19: Reserved!
Bit 19= 0:
The two adjustable software limit switches are deleted after reset and are no longer effective.

Bit 19 = 1 :
The two adjustable software limit switches remain active after reset.
Bit 20: Reset response for \$P_USEKT (use kind of tool)
Bit 20=0:

```
    After the RESET, $P_USEKT is set to $MC_USEKT_RESET_VALUE (default=0).
Bit 20 = 1:
    On RESET, $P_USEKT is retained.
Related to:
MD20120 $MC TOOL RESET VALUE
MD20130 $MC CUTTING EDGE RESET VALUE
MD20150 $MC GCODE RESET VALUES
MD20152 $MC_GCODE_RESET_MODE
MD20140 $MC_TRAFO_RESET_VALUE
MD20112 $MC_START_MODE_MASK
MD20121 $MC_TOOL_PRESEL_RESET_VALUE
MD20118 $MC_GEOAX_CHANGE_RESET
MD20123 $MC_USEKT_RESET_VALUE
```


Description:

The bits 8 (TRAIL), 10 (COUP), bit 13 (LEAD) and bit 15 EG) are evaluated only on part program start

Bit $1=0$:
Auxiliary function output ($D, T, M, D L$) to PLC on tool selection according to the following MDs: MD20120 \$MC TOOL RESET VALUE, MD20130 \$MC CUTTING EDGE RESET VALUE, MD20121 \$MC_TOOL_PRESEL_RESET_VALUE, and MD22550 \$MC_TOOL_CHANGE_MODE.
Note:
If tool or magazine management is active, only auxiliary functions D and DL are output.

Bit 1 = 1:
Suppress auxiliary function output to PLC on tool selection.
Bit 1 is not relevant if tool or magazine management is active.
Bit 2 : Reserved (reset response after power-on)
Bit 3 : Reserved (end of test mode)
Bit $4=0$:
The current setting for G code "current plane" is retained.
Bit 4 = 1:
Initial setting for G code "current plane" according to MD20150 \$MC GCODE RESET VALUES
Bit $5=0$:
The current setting for G code "settable work offset" is retained.
Bit 5 = 1:
Initial setting for G code "settable work offset" according to MD20150 \$MC_GCODE_RESET_VALUES

Bit $6=0$:
The current setting for active tool length offset is retained.
If tool or magazine management is active, the tool currently on the active toolholder (spindle) is always selected.
If the tool that is currently on the spindle is disabled, it is automatically replaced by a suitable replacement tool.
If such a replacement tool does not exist, an alarm is output.
Bit $6=1$:
Initial setting for active tool length offset according to MD20120
\$MC TOOL RESET VALUE, MD20130 \$MC CUTTING EDGE RESET VALUE, MD20123
\$MC_USEKT_RESET_VALUE, and MD2013 $\overline{2}$ \$MC_SUMCORR_RESET_VALUE.
If MD22550 \$MC_TOOL_CHANGE_MODE = 1, the tool selected via MD20121
\$MC_TOOL_PRESEL_RESET_VALUE is preselected in addition.
If tool or magazine management is active, MD20120 \$MC_TOOL_RESET_NAME is used instead of MD20122 \$MC_TOOL_RESET_VALUE.

Bit $7=0$:
The current setting for the active transformation is retained.
Bit 7 = 1 :
Initial setting for active transformation after reset/end of part program according to MD20140 \$MC_TRAFO_RESET_VALUE

Bit $8=0$:
Coupled-motion axis groupings remain active.
Bit 8 = 1:
Coupled-motion axis groupings are deactivated.
Bit 9 = 0 :
Tangential correction remains active.
Bit $9=1$:
Tangential correction is deactivated.

```
Bit 10 = 0:
Non-configured synchronous spindle coupling remains active.
Bit 10 = 1:
Non-configured synchronous spindle coupling is deactivated.
Bit 11 : Reserved (revolutional feedrate)
Bit 12 = 0:
A changed geometry axis assignment remains active when the part program starts.
Bit 12 = 1:
If machine data MD20118 $MC_GEOAX_CHANGE_RESET is set, a changed geometry axis
assignment is deleted when the parrt program starts.
Bit 13 = 0:
Master value couplings remain active.
Bit 13 = 1:
Master value couplings are deactivated.
Bit 14 : Reserved (basic frame)
Bit 15 = 0:
Active electronic gearboxes remain active.
Bit 15 = 1:
Active electronic gearboxes are deactivated.
Bit 16 = 0:
The current setting of the master spindle (SETMS) is retained.
Bit 16 = 1:
Initial setting for the master spindle according to MD20090 $MC_SPIND_DEF_MASTER_SPIND
Bit 17 = 0:
The current setting of the master toolholder (SETMTH) is retained (relevant only if
tool or magazine management is active)
Bit 17 = 1:
Only if MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER> 0: Initial setting for the master
toolholder according to MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER.
Otherwise, the setting for the master spindle applies.
Bit 18 = 0:
Reference axis for G96/G961/G962 according to MD20100 $MC_DIAMETER_AX_DEF.
When using SCC with its own spindle reset, setting bit 18 = 1 is recommended (see also
MD20110: $MC_RESET_MODE_MASK, bit 18).
Bit 18 = 1:
Reference axis for G96/G961/G962 is retained.
Related to:
MD20120 $MC_TOOL_RESET_VALUE
MD20130 $MC_CUTTING_EDGE_RESET_VALUE
MD20150 $MC_GCODE_RESET_VALUES
MD20152 $MC_GCODE_RESET_MODE
MD20140 $MC_TRAFO_RESET_VALUE
MD20110 $MC_RESET_MODE_MASK
MD20121 $MC_TOOL_PRESEL_RESET_VALUE
MD20118 $MC_GEOAX_CHANGE_RESET
```

20114	MODESWITCH_MASK				C03	
-	K1					
-	-	UDWORD	Reset			
-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	$0 \times F F F F$	$7 / 2$	M	

Description:
After program interruption in MDI mode (e.g. in order to carry out a measurement on the workpiece and to correct the tool wear values or after tool breakage) the tool can be manually withdrawn from the contour by changing into JOG mode.
In this case, the control stores the coordinates of the position of the interruption and indicates the path differences traversed by the axes in JOG mode as "Repos offset". When MDI mode is selected again, the axis is repositioned on the contour. This response can be canceled by means of this machine data.
Bit $0(L S B)=0$:
When MDI (JOG, JOGREF, JOGREPOS, MDIREF and MDIREPOS) are deselected in stopped status, the system ASUB Repos is selected.
Bit $0(L S B)=1$:
When MDI (JOG, JOGREF, JOGREPOS, MDIREF and MDIREPOS) are deselected in stopped status, the system ASUB Repos is not selected.
Bit 1 (LSB) $=0$:
If the NCK stops at a part program block in the program execution in which repositioning is not possible, alarm 16916 is generated if an attempt is made to switch to manual mode.
Bit 1 (LSB) $=1$:
If the NCK stops at a part program block in the program execution in which repositioning is not possible, no alarm is generated if an attempt is made to switch to manual mode.

20115	IGNORE_REFP_LOCK_ASUP	C01	K1, Z1			
-	Process interrupt program despite non-referenced axes	UDWORD	NEW CONF			
-						
-	-	$0 \times 200,0 \times 200,0 \times 200$, $0 \times 200,0 \times 200,0 \times 200$, $0 \times 200,0 \times 200 .$.	0	$0 \times 7 F F F F F F F$		

Description:
Despite non-referenced axes, the assigned ASUB with the set bit is processed for the interrupt.
Bit $0=1$: Enable interrupt 1 (user interrupt)
Bit 1 = 1: Enable interrupt 2 (user interrupt)

Bit 7 = 1: Enable interrupt 8 (user interrupt)
Bit 8 = 1: Enable interrupt 9 (system interrupt, reserved)
Bit 9 = 1: Enable interrupt 10 (system interrupt, reserved)
Bit $10=1$: Enable interrupt 11 (system interrupt, reserved)

Bit 31 = 1: Enable interrupt 32 (system interrupt, reserved)
Notice
System interrupts can start system ASUBs with traversing motions
Notes

1. Replace following machine data MD11602 \$MN_ASUP_START_MASK, bit1.

- MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK
- MD20115 \$MC_IGNORE_REFP_LOCK_ASUP

```
2. If MD20700 $MC_REFP_NC_START_LOCK == 0, the setting in MD20105
$MC_PROG_EVENT_IGN_REFP_LOCK will be ignored, and non-referenced axes will be ignored.
Related to:
MD11602 $MN_ASUP_START_MASK
MD20116 $MC_IGNORE_INHIBIT_ASUP
MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP
MD20191 $MC_IGN_PROG_STATE_ASUP
MD20194 $MC_IGNORE_NONCSTART_ASUP
```

20116	IGNORE_INHIBIT_ASUP	C01	K1, Z1			
-						
-	Execute interrupt program despite read-in disable	UDWORD	NEW CONF			
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 7 F F F F F F F$		

Description:
The assigned ASUB with the set bit is executed in spite of read-in disable being set.
Bit 0 = 1: Enable interrupt 1 (user interrupt)
Bit 1 = 1: Enable interrupt 2 (user interrupt)
..
Bit 7 = 1: Enable interrupt 8 (user interrupt)
Bit 8 = 1: Enable interrupt 9 (system interrupt, reserved)
Bit 9 = 1: Enable interrupt 10 (system interrupt, reserved)
Bit 10 = 1: Enable interrupt 11 (system interrupt, reserved)
..
Bit 31 = 1: Enable interrupt 32 (system interrupt, reserved)
NOTICE:
System ASUBs started by system interrupts may contain traversing motions.
Related to:
MD11602 \$MN_ASUP_START_MASK
MD20115 \$MC_IGNORE_REFP_LOCK_ASUP
MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP
MD20191 \$MC_IGN_PROG_STATE_ASUP
MD20194 \$MC_IGNORE_NONCSTART_ASUP


```
Note:
The machine data is only active with single block SBL1.
Related to:
MD11602 $MN_ASUP_START_MASK
MD20115 $MC_IGNORE_REFP_LOCK_ASUP
MD20116 $MC_IGNORE_INHIBIT_ASUP
MD20191 $MC_IGN_PROG_STATE_ASUP
MD20194 $MC_IGNORE_NONCSTART_ASUP
```

20118	GEOAX_CHANGE_RESET							C03	M1, K1, Z1		
-	Enable automatic geometry axis change	BOOLEAN	Reset								
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 2$					$]$	M
:---											
-											

Description:
0: The current configuration of the geometry axes remains unchanged on reset and part program start. With this setting, the response is identical to that with older software versions without geometry axis replacement.
1: The configuration of the geometry axes remains unchanged on reset or part program end, depending on MD20110 \$MC_RESET_MODE_MASK and, on part program start, depending on MD20112 \$MC_START_MODE_MASK, or is switched to the initial state defined by MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB.
Related to:
MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

Description: Definition of the tool for which tool length compensation is selected during runup or on reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK, and on part program start as a function of MD20112 \$MC_START_MODE_MASK
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20121	TOOL_PRESEL_RESET_VALUE	C03	K1, W1			
-	Preselected tool on RESET	DWORD	Reset			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	32000	$7 / 2$	

Description: Definition of the preselected tool in MD20310 \$MC_TOOL_MANAGEMENT_MASK=1.
A tool is selected after runup, or on reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK, and on part program start as a function of MD20112
\$MC_START_MODE_MASK.
This MD is valid only without tool management.
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20123	USEKT_RESET_VALUE	C03	-			
-	Preselected value of \$P_USEKT on RESET	DWORD	Reset			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 x F$	$7 / 2$	

Description: The system variable \$P_USEKT is set with the value of this MD:

- after run-up:

As a function of MD20112 \$MC_START_MODE_MASK

- after RESET or part program end:

As a function of MD20110 \$MC_RESET_MODE_MASK
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20124	TOOL_MANAGEMENT_TOOLHOLDER			C03	H2,	
-	Tool holder number			DWORD	Pow	
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	20	7/2	M

Description:
This MD is only relevant with tool management active.
The TM must know on which tool holder a tool has to be loaded.
The data is only evaluated if the value is greater than zero.
Then, the numbers \$TC_MPP5 are no longer regarded as spindle numbers but as tool holder numbers.
The automatic address extension of T and $M=6$ is then the value of this machine data, and no longer the value of MD20090 \$MC_SPIND_DEF_MASTER_SPIND.
The MD defines the master tool holder number to which a tool preparation or a tool change refers.

Reference is also made to this value for the determination of the tool on the tool holder for the setting 'retain old offset' of MD20110 \$MC_RESET_MODE_MASK.
If a machine has several tool holders but no defined master spindle, then the MD serves as a default value for determining the tool holder on which the tool is to be loaded during a tool change (reset, start, T='identifier', M6).
When defining the magazine locations of internal magazines (see documentation for $T M$), locations of the type 'SPINDLE' - \$TC_MPP1=2 = spindle location can be given a 'location kind index' (\$TC_MPP5). This assigns the location to a specific tool holder.

The tool holder with the number n can be declared the master tool holder with the language command SETMTH(n). That is, the offsets of a tool, which is loaded in a provisional buffer storage location of the type 'SPINDLE', correct the tool path with the value \$TC_MPP5=n.
Tool changes on 'SPINDLE' locations with \$TC_MPP5 unequal to the number of the master tool holder do not influence the path.

The tool holder defined in the $M D$ is again declared as the master tool holder with SETMTH.

```
Related to:
MD20110 $MC_RESET_MODE_MASK,
MD20112 $MC_START_MODE_MASK
MD20122 $MC_TOOL_RESET_NAME
MD20130 $MC_CUTTING_EDGE_RESET_VALUE
References:
Description of Functions: Coordinate Systems (K2)
```

20125	CUTMOD_ERR						C08	-
-	Error handling for function CUTMOD	UDWORD	Immediately					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 7 F F F F F F F$	$7 / 7$			

Description:

When function CUTMOD becomes active (through explicit call or tool selection), various error conditions may occur. For any of these error conditions it is possible to use this machine data to set whether the error shall trigger an alarm and, if so, whether such an alarm shall only be displayed (warning) or whether the interpretation of the part program shall be canceled.
Two machine data bits are assigned to each error condition (also see the description of alarm 14162).

The 2nd bit, which can be used in the case of an error to set that the part program interpretation should be interrupted, is only effective, if the associated lst bit (display) of an alarm is also set.

Bit Hex. Meaning
Value

20126	TOOL_CARRIER_RESET_VALUE					
-	Active tool holder on RESET	C03	W1			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	-	Reset	

Description: Definition of the tool holder for which tool length compensation is selected during runup or on reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK and as a function of MD20112 \$MC_START_MODE_MASK on part program start.
This data is valid without tool management.
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20127	CUTMOD_INIT					C08	K1, W1
-	Initialize CUTMOD after power ON	DWORD	PowerOn				
-							
-	-	$0,0,0,0,0,0,0,0 \ldots$	-2	999999999			

Description:

The value programmable with NC command CUTMOD is initialized automatically on power ON with the value stored in this machine data. If the value of the machine data equals -2, CUTMOD will be set to the value included in MD20126 \$MC_TOOL_CARRIER_VALUE.

20128	COLLECT_TOOL_CHANGE						C04	-
-	Tool change commands to PLC after search run						DWORD	PowerOn
-	-	$1,1,1,1,1,1,1,1 \ldots$	-	-	$1 / 1$			
-	-	M						

Description:

This MD is only relevant with active magazine management (MD18080
\$MN_MM_TOOL_MANAGEMENT_MASK, MD20310 \$MC_TOOL_MANAGEMENT_MASK).
It defines whether or not tool change commands, tool preparation commands (tool change commands in general) are output to the PLC after block search with calculation.

1: Tool change commands, tool preparation commands are collected and, after reaching the search target, output to the PLC with program start.
0: All tool/magazine-specific commands that have been collected during the block search are not output to the PLC with the subsequent program start! This means that programmed POSM, TCI, TCA commands are not output either.
Note 1:
Without active magazine management, the tool change M code is not collected if it is not assigned to an auxiliary function group. With active magazine management, this corresponds to MD value $=0$.

Note 2:
Value $=0$ is appropriate if, for example, after reaching of the search target, the collected tool change commands are output to the PLC in an ASUB by means of the GETSELT, GETEXET commands.
Related to:
MD22560 \$MC_TOOL_CHANGE_M_CODE

With active tool management and with bit 0 and bit 6 set in MD20110 \$MC_RESET_MODE_MASK at selection, the last offset of the tool active at power OFF - as a rule the tool on the spindle - is effective after runup.
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20132	SUMCORR_RESET_VALUE						C03	-
-	Effective resulting offset on RESET	DWORD	Reset					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	6	$7 / 2$			

Description: Definition of the total offset with which the tool length compensation is selected in the runup and on reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK and as a function of MD20112 \$MC_START_MODE_MASK on part program start.
MD18110 \$MN_MM_MAX_SUMCORR_PER_CUTTEDGE determines the maximum useful value which can be entered.

20140	TRAFO_RESET_VALUE	C03	F2, TE4, M1			
-	Transformation data block selected during runup (reset/pp end)	BYTE	Reset			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	20		

Description: Definition of the transformation data block which is selected during runup and on
reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK, and as a
function of MD20112 \$MC_START_MODE_MASK on part program start.
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

20142	TRAFO_RESET_NAME	C03	K1					
-	Transformation during power up (reset/part program end)						STRING	Reset
-								
-	-	-	-	-	M			

Description:

Specifies the name of a transformation (\$NT_NAME[n]) defined with the aid of kinematic chains, which is selected during power on or on reset/part program end as a function of MD 20110: \$MC_RESET_MODE_MASK and, on part program start, as a function of MD 20112: \$MC_START_MODE_MASK.
If this machine data is not empty, machine data MD20140 \$MC_TRAFO_RESET_VALUE is
ignored. This means that MD20142 \$MC_TRAFO_RESET_NAME has priority over MD20140
\$MC_TRAFO_RESET_VALUE.
Not relevant:
MD20110 \$MC_RESET_MODE_MASK, bit $0=0$

20144	TRAFO_MODE_MASK						C07	M1		
-	Function selection of kinematic transformation	UBYTE	Reset							
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0	0×03	$7 / 2$				$]$	M
:---										
-										

Description:
The specific functionality of the kinematic transformation is selected by setting the following bits:
Bit $0=0$:
Default behavior.
Bit $0=1$:

The transformation as defined in MD20140 \$MC_TRAFO_RESET_VALUE is persistent. That is, it is also selected with TRAFOOF and not shown in the display. This requires that the transformation defined in MD20140 \$MC_TRAFO_RESET_VALUE is selected automatically after RESET and START via MD20110 \$MC_RESET_MODE_MASK and MD20112 \$MC_START_MODE_MASK. This means that:

```
MD20110 $MC_RESET_MODE_MASK bit 0 = 1 and bit 7 = 0,
```

MD20112 \$MC_START_MODE_MASK bit $7=1$
MD20118 \$MC_GEOAX_CHANGE_RESET = TRUE
Bit $1=0$:
Default behavior.
Bit $1=1$:

The last active transformation is selected again after control power on. MD20110 \$MC_RESET_MODE_MASK Bit $0=1$ and Bit $7=1$ also have to be set.

20147	ZERO_CHAIN_ELEM_NAME							EXP, N01	K1
-	Name of the kinematic chain element for defining the machine zero point	STRING	Reset						
-									
-	-	-	-	-	M				

Description:
Specifies the name of a kinematic chain element that defines the machine zero point. This zero point is required, for example, to specify the position of a workpiece defined by the language command WORKPIECE, if its position is not specified relative to a kinematic chain in the language command itself.

20150	GCODE_RESET_VALUES			C11, C03		M5, K1, K2, P1,
-	Initial setting of G groups			BYTE	Reset	
-						
-	70	$\begin{aligned} & 2,0,0,1,0,1,1,1,0, \\ & 1,0,1,2,1,2,1,1,1, \\ & 1,1,1,, \ldots \end{aligned}$	0	-	7/2	M

Description:
Definition of the G codes, which are active when powering up and reset and/or end of
part program depending on MD20152 \$MC_GCODE_RESET_MODE and for the start of part program depending on MD20112 \$MC_START_MODE_MASK.
The index of the G codes in the respective groups must be programmed as the default value.

For a list of the G groups and their G functions, please refer to References:
Programming Manual, Fundamentals
Designation Group Standard value for 840D

GCODE_RESET_VALUES[0] $1 \quad 2$ (G1)
GCODE_RESET_VALUES[1] 20 (inactive)
GCODE_RESET_VALUES[2] 30 (inactive)
GCODE_RESET_VALUES[3] 4 (STARTFIFO)
GCODE_RESET_VALUES[4] 5 (inactive)
GCODE_RESET_VALUES[5] $6 \quad 1$ (G17)
GCODE_RESET_VALUES[6] 7 (G40)
GCODE_RESET_VALUES [7] $8 \quad 1$ (G500)
GCODE_RESET_VALUES[8] 9 (inactive)
GCODE_RESET_VALUES[9] 10 (G60)
GCODE_RESET_VALUES[10] 110 (inactive)
GCODE_RESET_VALUES[11] 121 (G601)
GCODE_RESET_VALUES[12] 13 (G71)

GCODE_RESET_VALUES [13]	14	1	(G90)
GCODE_RESET_VALUES[14]	15	1	(G94)
GCODE_RESET_VALUES [15]	16	1	(CFC)
GCODE_RESET_VALUES[16]	17	1	(NORM)
GCODE_RESET_VALUES[17]	18	1	(G450)
GCODE_RESET_VALUES[18]	19	1	(BNAT)
GCODE_RESET_VALUES [19]	20	1	(ENAT)
GCODE_RESET_VALUES [20]	21	1	(BRISK)
GCODE_RESET_VALUES [21]	22	1	(CUT2D)
GCODE_RESET_VALUES [22]	23	1	(CDOF)
GCODE_RESET_VALUES [23]	24	1	(FFWOF)
GCODE_RESET_VALUES[24]	25	1	(ORIWKS)
GCODE_RESET_VALUES [25]	26	2	(RMI)
GCODE_RESET_VALUES [26]	27	1	(ORIC)
GCODE_RESET_VALUES [27]	28	1	(WALIMON)
GCODE_RESET_VALUES [28]	29	1	(DIAMOF)
GCODE_RESET_VALUES [29]	30	1	(COMPOF)
GCODE_RESET_VALUES [30]	31	1	(inaktiv)
GCODE_RESET_VALUES [31]	32	1	(inactive)
GCODE_RESET_VALUES [32]	33	1	(FTOCOF)
GCODE_RESET_VALUES [33]	34	1	(OSOF)
GCODE_RESET_VALUES [34]	35	1	(SPOF)
GCODE_RESET_VALUES [35]	36	1	(PDELAYON)
GCODE_RESET_VALUES [36]	37	1	(FNORM)
GCODE_RESET_VALUES [37]	38	1	(SPIF1)
GCODE_RESET_VALUES [38]	39	1	(CPRECOF)
GCODE_RESET_VALUES [39]	40	1	(CUTCONOF)
GCODE_RESET_VALUES [40]	41	1	(LFOF)
GCODE_RESET_VALUES [41]	42	1	(TCOABS)
GCODE_RESET_VALUES [42]	43	1	(G140)
GCODE_RESET_VALUES [43]	44	1	(G340)
GCODE_RESET_VALUES[44]	45	1	(SPATH)
GCODE_RESET_VALUES[45]	46	1	(LFTXT)
GCODE_RESET_VALUES [46]	47	1	(G290 SINUMERIK
GCODE_RESET_VALUES [47]	48	3	(G462)
GCODE_RESET_VALUES [48]	49	1	(CP)
GCODE_RESET_VALUES [49]	50	1	(ORIEULER)
GCODE_RESET_VALUES [50]	51	1	(ORIVECT)
GCODE_RESET_VALUES[51]	52	1	(PAROTOF)
GCODE_RESET_VALUES [52]	53	1	(TOROTOF)
GCODE_RESET_VALUES [53]	54	1	(ORIROTA)
GCODE_RESET_VALUES [54]	55	1	(RTLION)
GCODE_RESET_VALUES [55]	56	1	(TOWSTD)
GCODE_RESET_VALUES [56]	57	1	(FENDNORM)
GCODE_RESET_VALUES [57]	58	1	(RELIEVEON)
GCODE_RESET_VALUES [58]	59	1	(DYNNORM)
GCODE_RESET_VALUES [59]	60	1	(WALCSO)
GCODE_RESET_VALUES [60]	61	1	(ORISOF)
GCODE_RESET_VALUES [61]	62		(inactive)

GCODE_RESET_VALUES [62]	63	1 (inactive)	
GCODE_RESET_VALUES [63]	64	1 (GS0)	
$:$	$:$		1 (not defined)
GCODE_RESET_VALUES[69]	70	1	

20152	GCODE_RESET_MODE	C03	M1, K1, K2, P1		
-	Reset response of G groups	BYTE	Reset		
-					
-	70	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	0	1	M

Description:
This MD is only evaluated if bit 0 is set in MD20110 \$MC_RESET_MODE_MASK.
For each entry in MD20150 \$MC_GCODE_RESET_VALUES (that is for each G group), this MD is used to determine whether, on reset/part program end, the setting in MD20150 \$MC_GCODE_RESET_VALUES is used again ($M D=0$) or the current setting is retained (MD = 1) .
Example 1:
Here, the basic setting for the 6th G group (current plane) is read from MD20150 \$MC_GCODE_RESET_VALUES at each reset / part program end:
MD20150 \$MC_GCODE_RESET_VALUES[5]=1 ; reset value of the 6th G group is G17 MD20152\$MC_GCODE_RESET_MODE[5]=0 ; after reset / part program end, the basic setting for 6th G group corresponds to MD20150 \$MC_GCODE_RESET_VALUES[5]
However, if the current setting for the 6 th G group (current plane) is to be retained after reset / part program end, then the following setting results: MD20150 \$MC_GCODE_RESET_VALUES[5]=1 ; reset value of the 6th G group is G17 MD20152 \$MC_GCODE_RESET_MODE[5]=1 ; current setting for the 6th G group ;is retained even after reset / part program end.
Example 2:
Here, the basic setting for the 8th G group (work offset) is read from MD20150 \$MC_GCODE_RESET_VALUES at each reset / part program end
MD20150 \$MC_GCODE_RESET_VALUES[7]=2 ; Reset value of the 8th G group is G54
MD20152 \$MC_GCODE_RESET_MODE[7]=0 after reset / part program end, the basic setting for the 8th G group corresponds to MD20150 \$MC_GCODE_RESET_VALUES[7]
If G54 was already active, especially at the time of reset, the values of the corresponding data handling frame at the time of reset are activated.
However, if the current setting for the 8 th G group (work offset) is to be retained after reset / part program end, then the following setting results:
MD20152 \$MC_GCODE_RESET_MODE[7]=1 ; if a work offset (e.g. G54) was active at the time of reset, then the values of the corresponding data handling frame at the time of reset are activated (that is UIFR[1] with G54)
Changing the initial setting of individual G groups can be disabled for specific systems.
Related to:
MD20110 \$MC_RESET_MODE_MASK
MD20112 \$MC_START_MODE_MASK

Description:
When an external NC programming language is used, the G codes which become active on runup and reset or at part program end are defined as a function of MD20110 \$MC_RESET_MODE_MASK and at part program start as a function of MD20112
\$MC_START_MODE_MASK.
The following external programming languages are possible:
ISO mode Milling
ISO mode Turning
The G group division that is to be used is stated in the current SINUMERIK documentation.

The following groups within MD20154 \$MC_EXTERN_GCODE_RESET_VALUES can be written:
ISO mode M:
G group 2: G17/G18/G19
G group 3: G90/G91
G group 5: G94/G95
G group 6: G20/G21
G group 13: G96/G97
G group 14: G54-G59
ISO mode T :
G group 2: G96/G97
G group 3: G90/G91
G group 5: G94/G95
G group 6: G20/G21
G group 16: G17/G18/G19

20156	EXTERN_GCODE_RESET_MODE	C03	-				
-	Reset response of external G groups	BYTE	Reset				
-							
-	31	$\begin{array}{l}0,0,0,0,0,0,0,0,0, \\ 0,0,0,0,0,0,0,0,0, \\ 0,0,0, \ldots\end{array}$	0	1	$7 / 2$	$]$	M
:---							

This MD is evaluated only if bit0 is set in MD20110 \$MC_RESET_MODE_MASK (see there). For each entry in MD20154 \$MC_EXTERN_GCODE_RESET_VALUES (that is for each G group), this MD is used to determine whether, on reset/part program end, the setting in MD20154 \$MC_EXTERN_GCODE_RESET_VALUES is used again (MD = 0) or the current setting is retāined ($\overline{\mathrm{M}} \mathrm{D}=1$).

Example for ISO mode M:
Here, the basic setting for the 14 th G group (settable work offset) is read from MD20154 \$MC_EXTERN_GCODE_RESET_VALUES at each reset / part program end: MD20154 \$MC_EXTERN_GCODE_RESET_VALUES[13]=1 ; the reset value for the 14 th G group ;is G54
MD20156 \$MC_EXTERN_GCODE_RESET_MODE[13]=0 ; the basic setting for the 14th G group ;after reset / part program end is defined by
; MD20154 \$MC_EXTERN_GCODE_RESET_VALUES [13]

However, if the current setting for the 14 th G group is to be retained beyond reset / part program end, this results in the following setting:
MD20154 \$MC_EXTERN_GCODE_RESET_VALUES[13]=1 ; reset value for the 14 th G group
;is G54
MD20156 \$MC_EXTERN_GCODE_RESET_MODE[13]=1 ; current setting for the 14th
; G group is retained even after

;reset / part program end

Description:

The machine data defines the maximum traversing length of a block that can be compressed. Longer blocks interrupt the compression and are traversed in the normal way.
Related to:
MD33100 \$MA_COMPRESS_POS_TOL (maximum deviation with compression)
References:
/PA/, Programming Guide: Fundamentals

20171	SURF_BLOCK_PATH_LIMIT	C09	-			
mm	Maximum traverse length of an NC block for the COMPSURF function	DOUBLE	NEW CONF			
-						
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description:

The machine data defines the maximum traverse length of a block that is still regarded as compressible. Longer blocks interrupt the smoothing and are traversed normally.
If the value 0 is entered, then the maximum traverse length in the control is determined by the specified tolerance.

20172	COMPRESS_VELO_TOL	C09	B1, V1		
$\mathrm{mm} / \mathrm{min}$	Max. permissible deviation of path feedrate with compression				
-	DOUBLE	PowerOn			
-	-	$60000.0,60000.0$, $60000.0,60000.0$, $60000.0,60000.0$, $60000.0,6 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$

Description: The value indicates the maximum permissible deviation for the compression for the path feedrate. The larger the value, the more short blocks can be compressed into one long block. The maximum number of compressible blocks is limited by the size of the spline buffer.
In this way, the the compressors COMPON and COMPCURV may limit the compression of the path axes.

Compressor COMPCAD acts differently: It ignores changes to the F word as long as they lie below the threshold defined by COMPRESS_VELO_TOL. If the feed programmed in a block changes more than COMPRESS_VELO_TOL, $\bar{C} O M P C \bar{A} D$ interrupts the compression at this block transition so that the feed change takes place at exactly the desired position. Related to:
MD33100 \$MA_COMPRESS_POS_TOL[AXn]
MD20170 \$MC_COMPRESS_BLOCK_PATH_LIMIT
References:
/PGA/, Programming Guide, Advanced

20173	SURF_VELO_TOL	C09	-			
$\mathrm{mm} / \mathrm{min}$	Maximum permitted deviation of the path feed on compression with COMPSURF	DOUBLE	PowerOn			
-						
-	-	$1000.0,1000.0$, $1000.0,1000.0$, $1000.0,1000.0$, $1000.0,1000.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description:
 The value specifies the maximum permitted deviation for compression for the path feed.

 The larger the value, the more short blocks can be compressed into one long block.| 20180 | TOCARR_ROT_ANGLE_INCR | C08 | W1 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Rotary axis increment of orientable tool holder | DOUBLE | NEW CONF | | | |
| - | | | | | | |
| - | 2 | $0.0,0.0,0.0,0.0,0.0$,
 $0.0,0.0,0.0,0.0,0.0$,
 $0.0,0.0,0.0, \ldots$ | - MD_DBLMAX | $1.0 \mathrm{E}+301$ | $7 / 3$ | |

Description:

For orientable tool carriers, this machine data defines the size of the minimum increment (in degrees) by which the first or second orientation axis can be changed (e.g. for Hirth tooth systems).

A programmed or calculated angle is rounded to the nearest value resulting from
phi $=s+n * d$
with integer n.
In which:
s = MD20180 \$MC_TOCARR_ROT_ANGLE_INCR[i]
$\mathrm{d}=\mathrm{MD} 20182$ \$MC_TOCARR_ROT_ANGLE_OFFSET[i]
and i is 0 for the 1 st and 1 for the 2 nd axis.
There is no rounding if this machine data is equal to zero.

Description:

This machine data defines the offset of the rotary axis for an orientable tool holder if its position cannot be continuously changed.
It is only evaluated if MD20180 \$MC_TOCARR_ROT_ANGLE_INCR is not equal to zero.
For the precise meaning of this machine data, see the description of MD20180
\$MC_TOCARR_ROT_ANGLE_INCR.

20184	TOCARR_BASE_FRAME_NUMBER						C08	K2, W1
-	Base frame number for holding machine table offset	DWORD	NEW CONF					
-								
-	-	$-1,-1,-1,-1,-1,-1,-1$, $-1 \ldots$	-1	15	M			

Description: This machine data indicates into which channel-specific base frame the table offset of an orientable tool holder with a rotary table is written.
This machine data must refer to a valid base frame.
If its content is less than 0 or greater than or equal to the maximum number of base frames set in MD28081 \$MC_MM_NUM_BASE_FRAMES, selection of a corresponding tool holder causes an alarm.

20188	TOCARR_FINE_LIM_LIN						C07	W1
mm	Limit of linear fine offset TCARR	DOUBLE	Immediately					
-								
-	-	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0 .$.	0.0	$1.0 \mathrm{E}+301$	$7 / 3$			

Description: Indicates for each channel the input limit for the linear fine offset values of an orientable tool holder.

| 20190 | TOCARR_FINE_LIM_ROT | C07 | W1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| degrees | Limit of rotary fine offset TCARR | DOUBLE | Immediately | |
| - | - | $1.0,1.0,1.0,1.0,1.0$,
 $1.0,1.0,1.0 \ldots$ | 0.0 | $7 / 3$ |
| - | Indicates for each channel the input limit for the rotary fine offset values of an
 orientable tool holder. | | | |

Description:

20191	IGN_PROG_STATE_ASUP	EXP	K1			
-	Do not display interrupt program execution on OPI	UDWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 7 F F F F F F F$	$7 / 2$	

Description: The execution of the ASUB assigned to the interrupt is NOT displayed by the OPI variables "progStatus" and "chanStatus".
Bit $0=1$: Enable interrupt 1 (user interrupt)
Bit $1=1$: Enable interrupt 2 (user interrupt)
...
Bit 7 = 1: Enable interrupt 8 (user interrupt)
Bit 8 = 1: Enable interrupt 9 (system interrupt, reserved)
Bit 9 = 1: Enable interrupt 10 (system interrupt, reserved)
Bit 10 = 1: Enable interrupt 11 (system interrupt, reserved)
...
Bit 31 = 1: Enable interrupt 32 (system interrupt, reserved)
NOTICE:
System ASUBs started by system interrupts may contain traversing motions.
Related to:
MD11602 \$MN_ASUP_START_MASK
MD20115 \$MC_IGNORE_REFP_LOCK_ASUP
MD20116 \$MC_IGNORE_INHIBIT_ASUP
MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP

MD20194 \$MC_IGNORE_NONCSTART_ASUP

20192	PROG_EVENT_IGN_PROG_STATE	EXP	-		
-	Do not display the Prog-Event on OPI	UDWORD	NEW CONF		
-					
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	$0 \times 3 F$	

Description:

```
Event-driven program calls (Prog-Events) can be set regarding their response on the OPI.
The progStatus and chanStatus variables remain unaffected despite Prog-Event processing being active and retain the old value. This provides a means of concealing Prog-Event processing from the HMI.
Bit \(0=1\) :
Reserved bit, ineffective
Bit \(1=1\) :
Prog-Event after end-of-part-program does not change progStatus and chanStatus
Bit \(2=1\) :
Prog-Event after OP reset does not change progStatus and chanStatus
Bit \(3=1\) :
Prog-Event after ramp-up does not change progStatus and chanStatus
Bit \(4=1\) :
Reserved
Bit \(5=1\) :
Safety-Prog-Event during ramp-up does not change progStatus and chanStatus
Corresponds to:
MD20105 \$MC_PROG_EVENT_IGN_REFP_LOCK
MD20106 \$MC_PROG_EVENT_IGN_SINGLEBLOCK
MD20107 \$MC_PROG_EVENT_IGN_INHIBIT
MD20108 \$MC_PROG_EVENT_MASK
MD20193 \$MC_PROG_EVENT_IGN_STOP
```



```
Corresponds to:
MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK
MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK
MD20107 $MC_PROG_EVENT_IGN_INHIBIT
MD20108 $MC_PROG_EVENT_MASK
MD20192 $MC_PROG_EVENT_IGN_PROG_STATE
```

20194	IGNORE_NONCSTART_ASUP		EXP	K1	
-	Permit ASUB in spite of "Interlock NC-START" if user alarms present.		UDWORD	NEW	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	0x7FFFFFFF	7/2	M

Description:
A user alarm from the number range $65500-65999$ sets the signal "NC start interlock". By default, an ASUB is not executed on account of interrupts.
Despite the presence of signal "NC start interlock", the assigned ASUB with the set bit is executed for the interrupt:
Bit $0=1$: Enable interrupt 1 (user interrupt)
Bit $1=1$: Enable interrupt 2 (user interrupt)
...
Bit 7 = 1: Enable interrupt 8 (user interrupt)
Bit 8 = 1: Enable interrupt 9 (system interrupt, reserved)
Bit 9 = 1: Enable interrupt 10 (system interrupt, reserved)
Bit 10 = 1 : Enable interrupt 11 (system interrupt, reserved)
...
Bit 31 = 1: Enable interrupt 32 (system interrupt, reserved) NOTICE:

System ASUBs started by system interrupts may contain traversing motions.
Related to:
MD11602 \$MN_ASUP_START_MASK
MD20115 \$MC_IGNORE_REFP_LOCK_ASUP
MD20116 \$MC_IGNORE_INHIBIT_ASUP
MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP
MD20191 \$MC_IGN_PROG_STATE_ASUP

20196	TOCARR_ROTAX_MODE		C07	W1 Immediately	
-	ToolCarrier: rotary axis setting with axis positions not defined		UDWORD		
-			0x7		
-	2, 2, 2, 2, 2, 2, 2, 2...	0		7/3	U

The MD is bit-coded. Bit 0 applies to orientable tool holders with one axis, bit 1 for those with 2 axes.
When the axis positions of an orientable tool holder are determined from a specified frame, it may happen that the required orientation is achieved at any position of a rotary axis.
This MD specifies how the rotary axis position is defined in these cases:
If the relevant bit is 0 , the position of the rotary axis will be 0 ; a possibly necessary rotation is performed through the specified frame.
If the relevant bit is 1 , the rotation is performed by means of the rotary axis of the orientable tool holder. The resulting frame will no longer include a rotation. Example:

A tool in its basic position points into the Z direction, and an axis of the orientable tool holder rotates the workpiece around Z (C_Axis). If the tool is to be oriented parallel to the Z axis of a rotating frame, $\bar{n} d$ if the frame only rotates around the Z axis, the tool orientation will not be changed if the C axis is rotated. The condition stating that the tool is to point in the direction of the Z axis defined by the frame is therefore fulfilled for any position of the Z axis.
Bit 2: If this bit is set, the value 1 is output in the system variable \$P_TCSOL as the number of solutions in a singular position for which there is one unique solution because of the alignment with the vertical coordinate axes perpendicular to the orientation. If this bit is not set, two solutions are output (the angles around the orientation axis differ by 180 degrees). This variant is required for compatibility with older software versions.

20200	CHFRND_MAXNUM_DUMMY_BLOCKS		$\begin{aligned} & \text { EXP, C02, C06, } \\ & \text { C09 } \end{aligned}$	V1	
-	Empty blocks with chamfer/radii		BYTE	PowerOn	
-					
-	- $\quad 3,3,3,3,3,3,3,3 \ldots$	0	15	$7 / 2$	M

Description: Indicates the maximum number of blocks without traversing information in the compensation plane (dummy blocks) that can be programmed between two blocks with traversing information when chamfer/rounding are active.

20201	CHFRND_MODE_MASK	C09	V1		
-	Chamfer/rounding behavior				
-					
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	UDWORD	Reset

Description:
Determination of the chamfer/rounding behavior
Bit 0 : (LSB) Assignment of the chamfer/rounding to the preceding or following block.
This influences:

- The technology of the chamfer/rounding (feed, type of feed, M commands ...)
- The execution of the blocks without movement in the active plane (e.g. M commands, movement in the applicate) before or after a modal rounding (RNDM)
Bit 1: free
Meaning of the individual bits:
Bit $0=0$
Chamfer/rounding is derived from the following block (default value).
The technology of the chamfer/rounding is determined by the following block. Blocks without movement (M commands) or movement only in the applicate between two motion blocks in the plane are executed before the modal rounding.
Bit $0=1$:
Chamfer/rounding is derived from the preceding block.
The technology of the chamfer/rounding is determined by the preceding block. Blocks without movement (M commands) or movement only in the applicate between two motion blocks in the plane are executed after the modal rounding.

20202	WAB_MAXNUM_DUMMY_BLOCKS				
Maximum number of blocks w/o traversing movement with SAR					
BYTE					
-	-	$5,5,5,5,5,5,5,5 \ldots$	0	10	Reset
-	-	$7 / 2$	M		

Description:

Maximum number of blocks which can appear between the SAR (soft approach and retraction) block and the traversing block which determines the direction of the approach or retraction tangent.

20204	WAB_CLEARANCE_TOLERANCE	C06	W1		
mm	Change of direction with SAR				
-					
-	-	$0.01,0.01,0.01,0.01$, $0.01,0.01,0.01,0.01 \ldots$	0.0	DOUBLE	PowerOn

Description:
In the case of smooth approach and retraction, the point defined with DISCL, from which, in the case of infeed from the initial plane, traversing is carried out at lower speed (G341) or the point in which the actual approach movement begins (G 340), must lie between the initial plane and the approach plane.
If this point lies outside this interval and the deviation is less than or equal to this machine data, it is assumed that the point lies in the approach or retraction plane.

If the deviation is greater, then alarm 10741 is output.
Example:
An approach is made from position $Z=20$. The SAR plane is at $Z=0$. The point defined by DISCL must therefore lie between these two values. If it lies between 20.000 and 20.010 or between 0 and -0.010 , it is assumed that the value 20.0 or 0.0 was programmed (under the condition that the MD has the value 0.010). The alarm is output if the position is greater than 20.010 or less than -0.010 .

Description: Where outer corners are very pointed, G451 can result in long idle paths. The system therefore switches automatically from $G 451$ (intersection) to G450 (transition circle, with DISC where appropriate) when the outer corners are very pointed. The contour angle which can be traversed following this automatic switchover (intersection ---> transition circle) can be defined in CUTCOM_CORNER_LIMIT.

20212	CUTCOM_CUSP_LIMIT	C08, C06	W1								
degrees	Maximum angle for path overlap with tool radius compensation						DOUBLE	Reset			
-	-	$\begin{array}{l}0.3,0.3,0.3,0.3,0.3, \\ 0.3,0.3,0.3 \ldots\end{array}$	0.0	2.	$7 / 2$				$]$ M \quad	-	
:---	:---										

Description:
Owing to rounding errors (limited resolution of the positions in the NC program), very sharp outside corners (near 180 degrees) may lead to overlapping at the reversal point of the path. This means that block transitions that should actually be outside corners are regarded mathematically as inside corners.
This machine data can be used to set the deviation from 180 degrees at which an inside corner is to be treated as an outside corner.

20220	CUTCOM_MAX_DISC		C08, C06	W1	
-	Maximum value for DISC		DOUBLE	Reset	
-					
-	$\begin{aligned} & \text { 50.0, 50.0, 50.0, 50.0, } \\ & 50.0,50.0,50.0,50.0 \ldots \end{aligned}$	0.0	75.0	7/2	M
Description:	The G450 transition circle canno path of the tool center point th cutting edge stops at the outer		outer ition c med pos	$\begin{aligned} & \text { r co } \\ & \text { is } \mathrm{c} \end{aligned}$	

Where sharp outer corners are to be machined with G450, the DISC instruction can be used in the program to program an overshoot. This transforms the transition circle into a conic section and the cutting edge lifts off from the outer corner.
The value range of the DISC instruction extends from 0 to theoretically 100 in steps of 1 .
DISC $=0 \quad$..Overshoot disabled, transition circle active
DISC $=100$...Overshoot large enough to theoretically produce a
response similar to intersection (G451).
Programmed values of DISC which are higher than those stored in CUTCOM_MAX_DISC are limited to this maximum value without output of a message. A severely non-linear alteration in the path velocity can thus be avoided.
Special cases:
It is not generally meaningful to enter values higher than 50 in DISC.
It is therefore not possible to enter values > 75.

20230	CUTCOM_CURVE_INSERT_LIMIT		C08, C06	W1	
-	Maximum angle for calculation of intersection with TRC		DOUBLE	Rese	
-					
-	$\begin{aligned} & \text { 10., 10., 10., 10., 10., } \\ & \text { 10., 10., 10.... } \end{aligned}$	0.0	150.	7/2	M

Description:
Where outer corners are very flat, G450 (transition circle) and G451 (intersection) approximate each other more and more. In such a case, it is no longer useful to insert a transition circle. Especially with 5-axis machining, it is not allowed to insert a transition circle at these outer corners, as this might lead to losses in velocity during continuous-path mode (G64).
That is why the system switches automatically from $G 450$ (transition circle, possibly with DISC) to G451 (intersection) in the case of very flat outer corners. The contour angle (in degrees), as of which the automatic switchover (transition circle ---> intersection) is to be carried out, can be specified in CUTCOM_CURVE_INSERT_LIMIT.

20240	CUTCOM_MAXNUM_CHECK_BLOCKS		C08, C02	W1	
-	Blocks for look-ahead contour calculation with TRC		DWORD	Pow	
-					
-	4, 4, 4, 4, 4, 4, 4, 4...	2	10000	7/2	M

Description:

Indicates the maximum number of blocks with traversing information at the offset plane that are considered simultaneously for collision detection with active radius compensation.

20250	CUTCOM_MAXNUM_DUMMY_BLOCKS	C08, C02	W1							
-	Maximum number of blocks without traversing motion in TRC						DWORD	PowerOn		
-	-	$3,3,3,3,3,3,3,3 \ldots$	0	1000	$7 / 2$				$]$ M \quad	-
:---										

Description:

During active TRC only program blocks with movements of geometry axes perpendicular to the current tool orientation are normally programmed. Nevertheless, individual intermediate blocks that do not contain such path information may also be programmed during active TRC. For example:

- Movements in the direction of tool orientation
- Movements in axes that are not geometry axes
- Auxiliary functions
- In general: Blocks that are taken over into the main run and executed there The maximum number of intermediate blocks is defined with this MD. If the value is exceeded, alarm 10762 "Too many empty blocks between 2 traversing blocks during active tool radius compensation" is output.

Note:
Comment blocks, arithmetic blocks and empty blocks are not intermediate blocks in the sense of this MD and can therefore be programmed in any number (without an alarm being triggered).

20252	CUTCOM_MAXNUM_SUPPR_BLOCKS		$\begin{aligned} & \text { EXP, C01, C08, } \\ & \text { C02 } \end{aligned}$	W1	
-	Maximum number of blocks with compensation suppression		DWORD	PowerOn	
-					
-	$5,5,5,5,5,5,5,5 \ldots$	0	1000	7/2	M

Description: Indicates the maximum number of blocks for active tool radius compensation, in which the function "Keep radius offset constant" (CUTCONON or reprogramming of G41 / G42 during active TRC) may be active.
Note:
The restriction of the number of blocks with active CUTONON is necessary in order to carry out repositioning in this situation too. Increasing this value for the machine data can lead to an increased memory requirement for NC blocks.

20254	ONLINE_CUTCOM_ENABLE	EXP, C01, C08	-		
-	Real-time tool radius compensation enabled	BOOLEAN	PowerOn		
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 2$

Description: This data enables online tool radius compensation. When the function is enabled, the control reserves the necessary memory space required for online tool radius compensation after POWER ON.
ONLINE_CUTCOM_ENABLE $=0$:
Online tool radius compensation can be used
ONLINE_CUTCOM_ENABLE = 1:
Online tool radius compensation cannot be used

20256	CUTCOM_INTERS_POLY_ENABLE		C09	W1	
-	Intersection procedure for polynomials is possible		BOOLEAN	PowerOn	
-					
-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	7/2	M

Description: If this machine data is TRUE and tool radius compensation active, the transitions at outer corners where polynomes (splines) are involved can be treated with the
intersection mode. If the machine data is FALSE, conic sections (circles) are always inserted in this case.
If the machine data is FALSE, the response is identical to that of software releases older than 4.0.

20262	SPLINE_FEED_PRECISION	EXP, C09, C05	-			
-						
-	Permissible rel. error of path velocity for spline	DOUBLE	PowerOn			
-	-	$0.001,0.001,0.001$, $0.001,0.001,0.001$, $0.001,0.001 \ldots$	0.000001	1.0	$7 / 2$	

20270	CUTTING_EDGE_DEFAULT						C11, C03	H2, W1
-	Initial position of tool cutting edge without programming						DWORD	PowerOn
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	-2	32000				

Description:
Default cutting edge after tool change
If no cutting edge has been programmed after a tool change, the default cutting edge number set in MD20270 \$MC_CUTTING_EDGE_DEFAULT is used.

Value
:= 0
Initially, no cutting edge is active after a tool change.
The cutting edge is not selected until D programming.
:= 1
MD_SLMAXCUTTINGEDGENUMBER
No. of cutting edge (MD_SLMAXCUTTINGEDGENUMBER=9 is valid up to P4)
:= -1
Cutting edge number of old tool also applies to new tool.
:= -2
Cutting edge (correction) of old tool remains active until D is programmed. This means that the old tool remains the active tool until D is programmed. In other words, the tool on the spindle remains the programmed tool until D is programmed.

Example:
MD20270 \$MC_CUTTING_EDGE_DEFAULT = 1;
After a tool change, the first cutting edge is active if no other cutting edge has been programmed.

20272	SUMCORR_DEFAULT		C03	H2,	
-	Initial position resulting offset without program		DWORD	Pow	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	-1	6	7/2	M

Description: The number of the total offset of the cutting edge which becomes active when a new cutting edge compensation is activated without a programmed DL value being available.
MD18110 \$MN_MM_MAX_SUMCORR_PER_CUTTEDGE
defines the maximum useful value which can be entered.
Value Meaning
> 0 Number of the total offset
$=0 \quad$ No total offset active with D programming
$=1$ The total offset number for the previously programmed D is used.
Related to:
MD20270 \$MC_CUTTING_EDGE_DEFAULT.

20274	MULTITOOLLOC_DEFAULT	N09	-			
-	Number of the multitool location, whose tool is selected for T= location.	DWORD	Immediately			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	72	$7 / 3$	

Description:
Only of significance when the 'Multitool' function is active plus 'T= location' programming: Multitool location number of the location in the multitool, whose tool is selected for a tool change programmed with 'T= location'. If the tool is not ready for use, with the appropriate configuration, an attempt is made to select a replacement tool.

If the tool at the magazine location programmed with 'T= location' is not a multitool, then MD20274 has no effect.
The value zero signifies that when programming 'T= location' the multitool location number is used, which corresponds to the multitool position.
Entering the MD can be suppressed by explicitly programming the multitool location number with the MTL command.

The value entered in MD20274 must correspond at the time of programming to the location of the multitool, located in the magazine location, which was programmed with 'T= location'.

Example:
MD20274 \$MC_MULTITOOLLOC_DEFAULT = 2 ;
$\mathrm{T}=5$; 5 is a magazine location with a multitool. Select the tool that is located at location 2 of this multitool.
$\mathrm{T}=5 \mathrm{MTL}=1$; 5 is a magazine location with a multitool. Select the tool that is located at location 1 of this multitool. Programming MTL suppresses the setting of this MD

20280	LIMIT_CHECK_MODE						EXP	-
-	Type of limit position check						DWORD	Reset
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	1	$1 / 1$			

Description:
This MD can be used to set the mode of operation for the software limit position check. The following options are available:
0: The limit positions are checked in real time on active transformation
1: The limit positions are checked in a preparative manner on active transformation

20310	TOOL_MANAGEMENT_MASK				
-	Activation of tool management functions				
-	-	$0 \times 2,0 \times 2,0 \times 2,0 \times 2$, $0 \times 2,0 \times 2,0 \times 2,0 \times 2 \ldots$	0	UDWORD	PowerOn
-	-	$0 \times F F F F F F F$	$7 / 2$	M	

Description:

MD $=0$: Tool management inactive
Bit 0 to bit4
Bit $0=1$: Tool management active
Tool management functions are enabled for the current channel.
Bit 1=1: Tool monitoring function active
The functions for monitoring the tools (tool life and quantity) are enabled.
Bit 2=1: OEM functions active
The memory for user data can be used (see also MD18090 \$MN_MM_NUM_CC_MAGAZINE_PARAM
to MD18098 \$MN_MM_NUM_CC_MON_PARAM)
Bit 3=1: Consider adjacent location active
Bit 0 to bit 3 must be set as in MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK.

Bit 4=1: The PLC has the option of requesting a T preparation again with changed parameters.
The acknowledgment states "2", "7" und "103" are enabled with this bit. The tool selection is then recalculated in the NCK.

Note: Bit4=1 (PLC can reject tool) and Bit23=1 (interpreter selects tool) are mutually exclusive.
Bit 5 to bit 8
Bit 5 and bit 7 refer to the main spindle
Bit 6 und bit 8 refer to secondary spindles
Bit 5 = 1: The command is regarded as output when the internal transport acknowledgment + the transport acknowledgment are present, that is, when the command has been accepted by the basic PLC program.
(Bit $19=1$ also allows the block change to be prevented (main run) until the required acknowledgments have been received.)

Bit 7 = 1: The output of the command is not regarded as being completed until the end acknowledgment has been received from the PLC. That is, the command has been acknowledged by the PLC user program with status "1".
(Bit $19=1$ also allows the block change to be prevented (main run) until the required acknowledgments have been received.)
Bit 5 and bit 7 (alternatively bit 6 and bit 8) are mutually exclusive.
Only the following combinations are permissible:
Bit 5: ...0...1... 0
Bit 7: ...0...0... 1
With the default setting, that is bits 5 to $8=0$, synchronization takes place in the block in which a cutting edge is selected for the first time.
Setting these bits delays the block processing.
Bit 9 to bit 11
Bit 9: Reserved for test purposes
It can also be used by machine manufacturers during the test phase, provided that the PLC program does not yet control the tool change.
Bit $10=1$: M06 is delayed until the preparation has been accepted by the PLC user program.
The change command is not output until the preparation acknowledgment has been received. That can be, for example, status "1" or "105".

Bit 10=0: The change command is output without delay, directly after the preparation command.
Bit 11=1: The tool preparation command (PLC command numbers=2, 4, 5) is also executed if the same tool preparation command has already been executed. (Commands 4, 5 contain the tool preparation)

Example: (Tool changed with M6 (PLC command no.= 3):
T="Tooll"; tool preparation
M6; tool change
T="Tool2" ; 1st tool preparation after M6 (for same tool holder)
; is always output to PLC.
T="Tool2"; 2nd tool preparation is only output as a command to the PLC if bit $11=1$.
; This tool preparation counts as the first if the state of the tool has changed since the previous tool preparation such that it would no longer be serviceable.

That might be, for example, an asynchronous unloading of the tool. This tool preparation then attempts to select a replacement tool.

Bit 11=0: The preparation command can only be output once for any one tool.
Bit 12 to bit 14
Bit 12=1: The preparation command (PLC command numbers $=2,4,5$) is also executed when the tool is already in the spindle/tool holder.

T="Tooll" ; tool preparation
M6; tool change
$\mathrm{T}=$ "Tooll"; tool is already in the tool holder
; 1st tool preparation after M6 (for the same tool holder)
; is only output to the PLC if bit $12=1$.
; An unserviceable tool (e.g. disabled because of tool monitoring.) on the tool holder does not count as being on the tool holder. This tool preparation then attempts to select a replacement tool.
T="Tool2" ; 2nd tool preparation - the rules of bit 11 apply to the output.
Bit 12=0: The preparation command is not executed if the tool is already in the spindle.
Bit 13=1: On reset, the commands are retrieved from the diagnostics buffer and stored in the passive file system (TCTRAxx.MPF under part program) This file is required by the Hotline.
The tool sequences are only recorded in the diagnostics buffers of systems that have adequate memory (NCU572, NCU573)).
Bit 14=1: Reset mode
Tool and offset selection correspond to the settings in MD20110 \$MC_RESET_MODE_MASK and MD20112 \$MC_START_MODE_MASK.
Bit 14=0: No reset mode
Bit 15 to bit 19
Bit 15=1: No return transport of the tool if there are multiple preparation commands (Tx->Tx).
Bit 15=0: Return transport of the tool from any defined buffers.
Bit 16=1: T = location number is active
Bit 16=0: T="Tool name"
Bit 17=1: Tool life decrementation can be started and stopped via the PLC in channel DB 2.1...DBx 1.3.
Bit 18=1: Activation of monitoring of "Last tool in the tool group"
Bit 18 Lengthens the search for a suitable tool, above all, when there are a large number of disabled replacement tools.
Bit 18=0: No monitoring of "Last tool in the tool group"
Bit 19=1: The synchronizations determined by bits 5...8 refer to the main run block. This means that the block change is delayed until the required acknowledgments have been received.
Bit 19, in conjunction with set bits 5, 6, 7, 8, delays block processing.
Bit 19=0: The synchronizations determined by bits 5...8 refer to the tool command output. This means that the block change is not delayed.
Bit 20 to bit 24
Bit 20=0: If the PLC signal "Program test active" is present, then the commands generated are not output to the PLC. The NCK acknowledges the commands itself. The magazine and tool data are not changed.
Bit 20=1: If the PLC signal "Program test active" is present, then the commands generated are output to the PLC. Depending upon the type of acknowledgment, tool/ magazine data can be changed in the NCK. If the acknowledgment parameters for the "target magazine" are given the values of the "source magazine", then there is no tool transport, and thus also no data change in the NCK.
Bit 21=0: Default setting: Ignore the tool state "W" during tool selection.
Bit 21=1: Tools in the state "W" cannot be selected by another tool change/tool preparation command.
Bit 22=1: Function "Tool subgroups"
\$TC_TP11[x] is the grouping or selection parameter
Bit 23=0: Default setting

The tool management selects the tool optimally and safely in the main run. This means that the interpreter may have to wait until the end of the tool selection for the offset selection.
Bit 23=1: For simple applications
The interpreter selects the tool itself. This means synchronization with the main run is not required for the offset selection. (However, an uncorrectable alarm may be issued if a tool becomes unserviceable after selection but before loading.)
Note: Bit4=1 (PLC can reject tool) and Bit23=1 (interpreter selects tool) are mutually exclusive.
Bit 24=0: Default setting
If the PLC commands 8 and 9 (asynchronous transfer) want to move a tool to a location reserved for another tool, then this is rejected with an alarm.
Bit 24=1: If the PLC commands 8 and 9 want to move a tool to a location reserved for
another tool with "Reserved for tool from buffer" (bit value= "H4"), then this is possible. This location reservation is removed before execution of the motion
("Reserved for new tool to be loaded" (bit value= "H8") remains effective).
Related to:
MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD20320 \$MC_TOOL_TIME_MONITOR_MASK
MD20122 \$MC_TOOL_RESET_NAME
MD20110 \$MC_RESET_MODE_MASK
MD20124 \$MC_TOOL_MANAGEMENT_TOOLHOLDER
MD22560 \$MC_TOOL_CHANGE_M_CODE

20320	TOOL_TIME_MONITOR_MASK		C06, C09	-	
-	Time monitoring for tool in tool holder		UDWORD	Pow	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0	0x7FFFFFFF	7/2	M

Description:
Activation of the tool time monitoring for the tool holders and spindles 1..x.
As soon as the path axes have been traversed (not with G00, always with G63), the tool time monitoring data of the active D compensation are updated for the tool in the selected tool holder, which is also the master tool holder.
Bit $0 . . . x-1$: Monitoring of the tool in tool holder 1...x

20350	TOOL_GRIND_AUTO_TMON	C06, C09	-			
-	Activation of tool monitoring. 0/1: Monitoring off/on	BYTE	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$7 / 2$	

Description: This MD is used to define whether tool monitoring is switched on automatically if tool length compensation for a grinding tool with monitoring is selected (odd type number types 401 - 499).
TOOL_GRIND_AUTO_TMON = 1 : Automatic monitoring switched on
TOOL_GRIND_AUTO_TMON = 0 : Automatic monitoring switched off

20360	TOOL_PARAMETER_DEF_MASK	C09	M5, P1, W1					
-	Definition of tool parameters	UDWORD	PowerOn					
-								
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0	$0 \times 7 F F F F F$	$7 / 2$		$]$ M	(
:---								

Description:
Definition of the effects of tool parameters.
Bit no. meaning when bit is set

```
Bit 0: (LSB):
For turning and grinding tools, the wear parameter of the transverse axis is included
in the calculation as a diameter value.
Bit 1:
For turning and grinding tools, the tool length component of the transverse axis is
included in the calculation as a diameter value.
Bit 2:
If a tool length correction is included in the calculation as a diameter value, the
tool may only be used in the plane that was active when the tool was selected. If this
bit is set, a plane change leads to an alarm.
Bit 3:
Work offsets in frames in the transverse axis are included in the calculation as
diameter values.
Bit 4:
PRESET value is included in the calculation as a diameter value
Bit 5:
Include the external work offset in the transverse axis in the calculation as a
diameter value
Bit 6:
Read actual values of the transverse axis as diameter values (AA_IW, AA_IEN, AA_IBN,
AA_IB. Notice: Not AA_IM.)
Bit 7:
Display all actual values of the transverse axis as diameter values, irrespective of
the G code of group 29 (DIAMON / DIAMOF)
Bit 8:
Always display the distance-to-go as a radius in the Work (WCS)
Bit 9:
During DRF handwheel travel of a transverse axis, only half the distance of the
specified increment is traveled (on condition that MD11346 $MN_HANDWH_TRUE_DISTANCE =
1).
Bit10:
Activate the tool component of an active, orientable tool holder even if no tool is
active.
Bit11:
The tool parameter $TC_DP6 is not interpreted as a tool radius but as a tool diameter.
Bit12:
The tool parameter $TC_DP15 is not interpreted as wear of the tool radius but as wear
of the tool diameter.
Bit13:
During JOG of circles, the circle center coordinate is always a radius value, see
D42690 $SC_JOG_CIRCLE_CENTRE.
Bit14:
    Absolute values of the transverse axis with cycle screenforms in the radius
Bit15:
    Incremental values of the transverse axis with cycle screenforms as diameter
Bit16:
For GWPS (GWPSON/TMON), the tool parameters, tool length, wear and base dimension, are
interpreted as diameter values
Bit17:
```

With cutting edge position compensation (CUTMOD) for turning and grinding tools, the cutting plane for calculating the compensation values is rotated into the machining plane. If this bit is not set, the cutting edge is projected into the machining plane instead.
Bit18:
With cutting edge position compensation (CUTMOD) for turning and grinding tools, always use the active plane (G17 - G19). If this bit is not set, the plane specified by setting data SD42940 \$SC_TOOL_LENGTH_CONST has priority over the plane specified by the G code group 6 (plane selection, G17 - G19).
Bit19:
The tool orientation change caused by an orientable tool holder becomes effective even if no tool is active. This bit is only effective if bit 10 is also set.
Bit20:
If this bit is zero, and if the tool parameter \$TC_DP10 (holder angle) and/or \$TC_DP24 (clearance angle) contain the value 0, the following default values are used as the basis for the function CUTMOD to calculate the modified cutting-edge position and the modified cutting-edge direction:
Holder angle 112.5 degrees for cutting-edge positions 1 - 4
Holder angle 67.5 degrees for cutting-edge positions 5 - 8
Clearance angle 22.5 degrees for cutting edge positions 1 - 4
Clearance angle 67.5 degrees for cutting-edge positions 5 - 8
If this bit is set, an alarm is output in the cases mentioned. This bit is used to establish compatibility with older software releases.
Bit21:
If this bit is zero, any existing rotation in the part proportion of the tool carrier is taken into account for CUTMOD with tool carrier when modifying the cutting edge position. Frames are ignored.

If this bit is 1 , in the place of the part proportion of the tool carrier, the active total frame is taken into account with CUTMOD with tool carrier with modification of the cutting edge position. The total frame can also contain a part proportion of the tool carrier.

Bit22:

If this bit is zero, with an active kinematic transformation, a wear component of the tool that cannot be transformed (see SD42935 \$SC_WEAR_TRANSFORM) is taken into account statically with the position of the transformation that was valid at the time of the tool selection.
If this bit is 1, with an active kinematic transformation, a wear component of the tool that cannot be transformed (see SD42935 \$SC_WEAR_TRANSFORM) is taken into account in real-time with the relevant current position of $\overline{\text { the }}$ transformation.

20370	SHAPED_TOOL_TYPE_NO	C01, C08	-			
-	Tool type number for contour tools	DWORD	Immediately			
-						
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	-	-	M	

Description:

Indicates for each channel max. two number ranges for tool types that are treated as forming tools. Therefore individual ranges are possible both for grinding and for turning tools.
The first range is specified by the first and the second number, the second range by the third and fourth number.
If the first number is not smaller than the second one (the same applies for the third and fourth number), no range will be defined, but two individual numbers will be specified instead.

The numbers 400 through 599 are permissible (tool type numbers for turning and grinding tools), and also value 0 (no tool type number defined).
Examples:

400	405
410	400
490	596
496	: Tool types $400-405$ and 590-596 are contour tools
450	0

20372	SHAPED_TOOL_CHECKSUM	C01, C08	-			
-						
-	Checksum test for contour tools	BOOLEAN	Immediately			
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 5$	

Description:

Indicates for each channel whether for completion of the contour tool definition an edge must be available that includes the negative sums of tool length components and tool radius of the previous edges.

20380	TOOL_CORR_MODE_G43G44						C01, C08, C11	-
-	Treatment of tool length compensation with G43/G44						BYTE	Reset
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 2$			
-	-							

Description:
This machine data determines in ISO mode M (G43 / G44) the way in which length compensations programmed with H are processed.

0: Mode A
Tool length H always acts on the third geometry axis (usually Z)
1: Mode B
Tool length H acts, depending on the active plane, on one of the three geometry axes.
This means with
G17 on the 3rd geometry axis (usually Z)
G18 on the 2nd geometry axis (usually Y)
G19 on the 1st geometry axis (usually X)
In this mode, compensations in all three geometry axes can be configured through multiple programming, i.e. through the activation of one component, the length compensation possibly active in another axis is not deleted.
2: Mode C
The tool length acts, independent of the active plane, on the axis that has simultaneously been programmed with H. Otherwise, the response is the same as with mode B.

4.2 Channel-specific NC machine data

20392	TOOL_TEMP_COMP_LIMIT	C01, C08	W1		
mm	Max. temperature compensation for tool length				
-	DOUBLE	Reset			
-	3	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0,1.0,1.0$, 0.0 $1.0,1.0, \ldots$	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description: With temperature compensation, this machine data indicates the maximum permissible value for the tool length for each geometry axis.
If a temperature compensation value larger than this limit value is entered, it will be limited without an alarm.

20400	LOOKAH_USE_VELO_NEXT_BLOCK	EXP, C05	B1					
-								
-	LookAhead following block velocity	BOOLEAN	PowerOn					
-	-	$\begin{array}{l}\text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE... }\end{array}$	0	-	$7 / 2$		$]$	M
:---								

Description: For SW-internal function optimization.

20430	LOOKAH_NUM_OVR_POINTS	EXP, C02, C05	B1				
-	Number of override characteristics for LookAhead	DWORD	PowerOn				
-							
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	2			

[^7]| 20440 | LOOKAH_OVR_POINTS | EXP, C05 | B1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - | | | | | |
| - | Override switch points for Look Ahead | DOUBLE | PowerOn | | |
| - | 2 | $1.0,0.2,1.0,0.2,1.0$,
 $0.2,1.0,0.2,1.0,0.2$,
 $1.0,0.2,1.0, \ldots$ | 0.2 | $7 / 2$ | M |
| | | | | | |

Description: For SW-internal function optimization.

20443	LOOKAH_FFORM			EXP, C05	-	
-	Activate extended LookAhead			BYTE	NEW CONF	
-						
-	5	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0 \ldots \end{aligned}$	0	2	7/2	M

Description:
The MD specifies for which technology groups the extended LookAhead is active.
Value 0: Default LookAhead
Value 1: Extended LookAhead
Value 2: reserved
E.g. MD20443 \$MC_LOOKAH_FFORM[4]=1; i.e. activation for DYNFINISH.

Entry for all dynamic G code groups.
When changing between default LookAhead and extended LookAhead or vice versa, the continuous-path mode is interrupted by an interpolatory stop.

20450	LOOKAH_RELIEVE_BLOCK_CYCLE	EXP, C05	B1					
-	Relief factor for the block change time	DOUBLE	PowerOn					
-								
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	0.0	$1.0 \mathrm{E}+301$	$7 / 2$		M	
:---								

Description:
Block change problems occur for the following reason:
The traversing length of the $N C$ blocks to be processed is so short that the Look Ahead function has to reduce the machine velocity to provide enough time for block preparation. In this situation, constant decelerations and accelerations of the path motion can occur.
This machine data defines the extent to which such velocity fluctuations are to be smoothed.
Special cases:
Values up to approx. 1.0 are appropriate.
The value 0.0 means that the function is deactivated.

20455	LOOKAH_FUNCTION_MASK	EXP, C05	-			
-						
-	Look Ahead special functions	UBYTE	NEW CONF			
-	-	$\begin{array}{l}0 \times 1,0 \times 1,0 \times 1,0 \times 1, \\ 0 \times 1,0 \times 1,0 \times 1,0 \times 1 \ldots\end{array}$	0	0×3	$7 / 2$	

[^8]4.2 Channel-specific NC machine data

20460	LOOKAH_SMOOTH_FACTOR	EXP, C05	B1					
$\%$	Smoothing factor for Look Ahead						DOUBLE	NEW CONF
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	0.	0.	$7 / 2$			

Description: Notice: This function is obsolete and is no longer supported!
A smoothing factor could be defined to give a more stable path velocity control.
It defined the maximum permitted productivity loss.
Acceleration procedures which contribute less than this factor to a shorter program run time have not been executed.
In this case, only those acceleration procedures whose frequency lies above the frequency parameterized in MD32440 \$MA_LOOKAH_FREQUENCY have been taken into account. The entry of 0.0 deactivates the function.

20462	LOOKAH_SMOOTH_WITH_FEED	EXP, C05	B1		
-	Path velocity smoothing with programmed feed	BOOLEAN	NEW CONF		
-					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	M

Description:

The MD defines whether the programmed feed is also taken into account for smoothing the path velocity. In these cases, the factor defined in MD20460
\$MC_LOOKAH_SMOOTH_FACTOR can be better maintained when the override is set to 100%.
Related to:
MD32440 \$MA_LOOKAH_FREQUENCY,
MD20460 \$MC_LOOKAH_SMOOTH_FACTOR

20463	FIFOCTRL_ADAPTION	EXP, C05	-					
-	Adaptation of the IPO buffer control						DOUBLE	NEW CONF
-								
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	0.0	1.0				

Description:
The MD defines how significantly the IPO buffer control (FIFOCTRL) should influence the path feedrate with the buffer full.
0.0 means that the IPO buffer control, for a full IPO buffer stops limiting the path feedrate. This shortens the machining time, but it can increase the risk of the IPO buffer running empty.
1.0 means that the IPO buffer control, with full IPO buffer continues to control the path feedrate, and therefore avoids the IPO buffer becoming empty faster. This results in minor fluctuations of the IPO buffer fill level. However, a longer machining time must be expected.
Values between 0.0 and 1.0 permit a smooth, seamless transition from the old to the new response.
Corresponds with:
FIFOCTRL

Description:
This machine data is used to influence the path action

Bit0:
If only rotary axes are traversed in the block as path axes with active G700, the programmed rotary axis velocity corresponds to
0: [degrees/min]
1: [25.4*degrees/min]

Description:

Notice: This function is obsolete and is no longer supported!
This adaptation factor could be used to reduce the dynamics of changes in the path velocity.
ADAPT_PATH_DYNAMIC[0] was effective with Brisk and reduced the permissible acceleration ADAPT_PATH_DYNAMIC[1] was effective with Soft and reduced the permissible jerk

Only acceleration processes using a frequency above the frequency parameterized in MD32440 \$MA_LOOKAH_FREQUENCY were considered.
To disable this function, enter 1.0 .

20470	CPREC_WITH_FFW						EXP, C06, C05	K6
-	Programmable contour accuracy	BYTE	NEW CONF					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	5				

Description:

This machine data defines the behaviour of the programmable function CPRECON.
0 : The CPRECON function is inactive when feedforward control is activated simultaneously.
1: CPRECON is also active with feedforward control.
2: As 1, but the function is parameterised with MD32415 \$MA_EQUIV_CPREC_TIME.
3: As 2, but any contour accuracy programmed with CTOL has priority over SD42450 \$SC_CONTPREC.
4: CPRECON is active independently of the feedforward control and jerk filter. Only MD32415 \$MA_EQUIV_CPREC_TIME is taken into account in the calculation of the contour error. All time constants that have effects on the contour error must be summated and entered MD32415 \$MA_EQUIV_CPREC_TIME.
5: As 4, but a contour accuracy that may have been programmed with CTOL has priority over SD42450 \$SC_CONTPREC.
The values 0 and 1 are no longer recommended. They only provide compatibility with older software versions.
Related to:
SD42450 \$SC_CONTPREC
SD42460 \$SC_MINFEED
MD32415 \$MA_EQUIV_CPREC_TIME

20476	ORISON_STEP_LENGTH		EXP	F2	
mm	Path length for block division with ORISON		DOUBLE	NEW CONF	
-					
-	$\begin{aligned} & 0.5,0.5,0.5,0.5,0.5, \\ & 0.5,0.5,0.5 \ldots \end{aligned}$	0.001	$1.0 \mathrm{E}+301$	1/1	M

Description:
The path lengths of the part blocks are set with this MD as they are formed with orientation smoothing with ORISON.

For this data to be active, the division of blocks with ORISON must be enabled with MD20478 \$MC_ORISON_MODE
(Value 100).
If a length is set for this $M D$ that is significantly shorter than the default length of 0.5 mm , problems may occur with the performance and effectiveness of the orientation smoothing with large tolerances. If this length is reduced, the block buffer for the orientation smoothing (MD28590 \$MC_MM_ORISON_BLOCKS) usually also has to be increased, so that the orientation smoothing can still act over an adequately long path length.

Description:

The mode of operation of orientation smoothing with ORISON can be set with this MD. The units, tens, hundreds and thousands digits have different meanings.
The following possibilities are available:
The units digits of this data define the type of smoothing: rotary axis or vector smoothing.
$x x 0$: The type of smoothing is defined by the active G code of the 51st G code group:
ORIAXES active: rotary axis smoothing, ORIAXES inactive (e.g. ORIVECT): vector smoothing.
xx1: Vector smoothing irrespective of the active G code of the 51st G code group
xx2: Rotary axis smoothing irrespective of the active G code of the 51st G code group The tens digits can change the effect of the smoothing:
x0x: Smoothing takes place along the entire path length.
x1x: Smoothing takes place homogeneously along the traversing length of the orientation axes.
x2x: Tolerance changes become active block-synchronously. In the other case, a change of tolerance becomes active incrementally over a defined path length. As a rule, this leads to a more homogeneous progression of the orientation. This setting option only plays a role if the blocks are subdivided (hundreds digit of this machine data 1 xx). If the blocks are not subdivided, any tolerance change always becomes active blocksynchronously.
The hundreds digits can be used to set whether the smoothing works on the programmed original blocks or on suitably split blocks:
0xx: The programmed blocks are not subdivided. The effect of the orientation smoothing is very dependent on the programmed block structure.
1xx: The programmed blocks are subdivided so that the orientation smoothing can generate a homogeneous progression of the orientation.

Only those blocks are subdivided, in which a compressor (COMPCAD, COMPCURV, COMPON) is active.
2xx: The programmed blocks are subdivided so that the orientation smoothing can generate a homogeneous progression of the orientation.

All program blocks are subdivided, irrespective of whether a compressor (COMPCAD, COMPCURV, COMPON) is active in it or not.
The thousands digit can be used to set how the tolerance is specified for the orientation smoothing:
0xxx: The tolerance is specified according to the usual rules. This means that when OTOL $=<\ldots$.$\rangle is programmed, the value thus programmed becomes active, otherwise the$ value of SD \$SC_ORISON_TOL becomes active. The GO tolerance factor is always calculated in (value of MD20560 \$MC_GO_TOLERANCE_FACTOR or the value programmed with STOLF $=<\ldots$. .

1xxx: The tolerance is always specified with SD42678 \$SC_ORISON_TOL, irrespective of whether OTOL $=<. . .>$ was programmed.
2xxx: The GO tolerance factor is not included in the calculation. This is the case both for the tolerance specified with OTOL $=<\ldots$ as well as with SD42678 \$SC_ORISON_TOL. The two numerical values can be combined with one another.

20480	SMOOTHING_MODE						EXP	B1
-								
-	Behavior of smoothing with G64x	DWORD	NEW CONF					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	75744	$7 / 7$			

Configuration of smoothing with G641 and G642 or G643.
The MD is decimal-coded. The units digits define the response with G643, and the tens digits the response with G642. The hundreds digit can define whether, with G641 or G642, the axes may be accelerated within the smoothing range or traversed at constant velocity. The thousands and ten-thousands digits are used to configure smoothing with G644.
x0: G643 uses axis-specific tolerances; these are set with the axis-specific MD33100 \$MA_COMPRESS_POS_TOL.
x1: G643 uses the contour tolerance SD42465 \$SC_SMOOTH_CONTUR_TOL for smoothing the geometry axes. The axis-specific tolerances in MD33100 \$MA_COMPRESS_POS_TOL are used for smoothing all other axes.
x2: The angular tolerance SD42466 \$SC_SMOOTH_ORI_TOL is used for smoothing the orientation movement. The axis-specific tolerances in MD33100 \$MA_COMPRESS_POS_TOL are used for all other axes.
x3: Combination of the two options 01 and 02 . This means that $G 643$ uses the tolerances SD42465 \$SC_SMOOTH_CONTUR_TOL and SD42466 \$SC_SMOOTH_ORI_TOL. All other axes are smoothed with an axis-specific tolerance.
x4: G643 uses the smoothing length programmed with ADIS= or ADISPOS=. The specification of possible axis-specific tolerances or contour and orientation tolerances is ignored.
0x: G642 uses axis-specific tolerances; these are set with the axis-specific MD33100 \$MA_COMPRESS_POS_TOL.
1x: G642 uses the contour tolerance for smoothing the geometry axes. The axisspecific tolerances in MD33100 \$MA_COMPRESS_POS_TOL are used for smoothing all other axes.
2x: The orientation movement with G642 is smoothed using the angular tolerance SD42466 \$SC_SMOOTH_ORI_TOL. The axis-specific tolerances in MD33100 \$MA_COMPRESS_POS_TOL are used for smoothing all other axes.
3x: Combination of both options 10 and 20. This means that $G 642$ uses the tolerances SD42465 \$SC_SMOOTH_CONTUR_TOL and SD42466 \$SC_SMOOTH_ORI_TOL. Other axes are smoothed with an axis-specific tolērance.
4x: G642 uses the smoothing length programmed with ADIS= or ADISPOS=. The specification of possible axis-specific tolerances or contour and orientation tolerances is ignored.
Possible values of the hundreds digit (specification of path velocity for smoothing): 0xx: A profile of the limit velocity is calculated within the smoothing range from the specified maximum values for acceleration and jerk of the axes or path involved. This can lead to an increase in
path velocity in the smoothing range and consequently to an acceleration of the axes involved.
1xx: A profile of the limit velocity is not calculated for smoothing blocks with G641. Only a constant limit velocity is specified. In the case of smoothing with G641/ G642, this prevents the axes involved accelerating in the
smoothing range. However, this setting may lead to smoothing blocks
being traversed at a velocity that is too low, especially in the case of long smoothing ranges.

2xx: No velocity profile for G642 and G645 (see the above scenario for description).
4xx: The "effective" path velocity in a smoothing block will remain constant, if possible, as long as the dynamic response of the axes permits this. Unlike the default setting, the smoothing blocks are also interpolated as a path with this setting.

Possible values for the thousands digit (configuration of G644):
0xxx:
When smoothing with G644, the maximum deviations of each axis specified in MD COMPRESS POS TOL are adhered to. If the dynamic response of the axis allows, the specified tolerance may not be fully utilized.
1xxx:
When smoothing with G644, the smoothing distance is specified.
2xxx:
When smoothing with G644, the maximum frequency at which the smoothing movement of each axis occurs is limited. The maximum frequency is specified in MD32440 \$MA_LOOKAH_FREQUENCY.

3xxx:
When smoothing with G644, neither the tolerance nor the smoothing distance is monitored. Each axis traverses around a corner with the maximum possible dynamic response. With SOFT, both the maximum acceleration and the maximum jerk of each axis are observed. With BRISK, the jerk is not limited; instead, each axis traverses with the maximum possible acceleration.
4xxx:
When smoothing with G644, the maximum deviations of each axis specified in MD COMPRESS_POS_TOL are adhered to. In contrast to the value 0xxx, the specified tolerance is fully utilized where possible. The axis then does not reach its maximum possible dynamic response.
5xxx:
When smoothing with G644, the smoothing distance is specified (ADIS or ADISPOS). In contrast to the value lxxx, the specified smoothing distance is also fully utilized where possible. The axes involved then might not reach their maximum dynamic response. Possible values for the ten-thousands digit (various special setting options for G641/ G642/G645) :
0xxxx:
The velocity profiles of the axes in the smoothing range are defined without jerk limitation when BRISK is active, and with jerk limitation when SOFT is active.
1xxxx:
The velocity profiles of the axes in the smoothing range are always defined with jerk limitation no matter whether BRISK or SOFT is active.

2xxxx: When smoothing tangential block transitions with G645, "counter motion" may occur when moving along the contour. This can be avoided if circles are involved. If this function is activated, the circles involved are reduced by the set tolerance. As a consequence, the smoothed contour runs on the inner side of the tolerance band and "counter motion" is avoided.
4xxxx: When smoothing with G641/G642 and G645, the smoothing movements of the orientation axes are made with vector interpolation if possible, this is conditional upon vector interpolation being active in both the blocks involved and the active orientation transformation permitting this (e.g. by pole handling).

By default, the orientation axes are always smoothed by means of rotary axis interpolation.
The values of the units, tens, hundreds and ten-thousands digits are added.
The values of the thousands digit are interpreted individually.
Related to:
MD33100 \$MA_COMPRESS_POS_TOL,

SD42465 \$SC_SMOOTH_CONTUR_TOL, SD42466 \$SC_SMOOTH_ORI_TOL

20481	ORISMOOTHING_MODE				
-	Behavior of smoothing of orientations with OST/OSD	DWORD	NEW CONF		
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	12	$7 / 7$
-	-	U			

Description:
Settings for the behavior of smoothing of orientation motions with OST/OSD.
It can be set how block transitions are smoothed if addition rotary axes are participating in a path motion which do not act as orientation axes in a transformation. If the value of this MD is zero, for OST/OSD at a block transition, only rotary axes that act as orientation axes in a transformation are smoothed. For values <> 0, any existing additional rotary axes are also smoothed, depending on the situation.
Meaning of the unit position:
x0: Additional rotary axes are not smoothed.
x1: Additional rotary axes are only smoothed if rotary axis interpolation is active for orientation.
x2: Additional rotary axes are smoothed even if vector interpolation is active. In this case, in both blocks it is switched to rotary axis interpolation. Depending on machine kinematics and situation, the switchover can cause undesired rotary axis movements (orientation changes).
Meaning of the decade:
0x: If no orientation transformation is active, rotary axis motions with OST/OSD are not smoothed.
1x: Even without active transformation, rotary axis motions are smoothed. This permits the active smoothing of rotary axes with OST/OSD even without active orientation transformation.

20482	COMPRESSOR_MODE	EXP	F2			
-						
-	Mode of compressor	DWORD	NEW CONF			
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1333	$7 / 7$	

Description:
This MD is used to set the compressor operating mode.
The units digits, the tens digits and the hundreds digits have different meanings.
The following options are available:
Units digits:
0 : With the compressor, the tolerances specified with MD33100 \$MA_COMPRESS_POS_TOL are met for all axes (geometry and orientation axes).
1: With the compressor, the contour tolerances specified with SD42475
\$SC_COMPRESS_CONTUR_TOL are active for the geometry axes.
For the orientation axes, the axis-specific tolerances MD33100 \$MA_COMPRESS_POS_TOL are active.
2: With the compressor, the axis-specific tolerances MD33100 \$MA_COMPRESS_POS_TOL become active for the geometry axes. The orientation movement is compressed in compliance with the maximum angular deviations specified with SD42476 \$SC_COMPRESS_ORI_TOL or SD42477 \$SC_COMPRESS_ORI_ROT_TOL.
3: With the compressor, the contour tolerance SD42475 \$SC_COMPRESS_CONTUR_TOL becomes active for the geometry axes and the maximum angular deviation SD42476 \$SC_COMPRESS_ORI_TOL or SD42477 \$SC_COMPRESS_ORI_ROT_TOL becomes active for the oriēntation āxes.
Tens digits:
The tens digits of this $M D$ can be used to set a compressor response that is compatible with previous software releases (< SW 6.3).

0x: All blocks with orientations and value assignments are compressed.
This is the default setting.
Notice: This response is incompatible with previous software releases!
1x: Blocks with value assignments are not compressed (e.g. X=100 ..., etc.)
2x: Blocks with a programmed tool orientation are not compressed.
(e.g. A3 = B3 = C3 =) .

3x: All blocks with value assignments and/or programmed tool orientation are not compressed. With this setting, the response is fully compatible with previous software releases (< 6.3).
Hundreds digits:
The hundreds digit can be used to set which blocks in addition to G01 blocks are to be compressed or not:

0xx: Circular blocks and GOO blocks are not compressed. Is compatible with previous releases.
1xx: Circular blocks are linearized and compressed by COMPCAD.
2xx: G00 blocks are compressed; a different tolerance may be applied here (see MD 20560 \$MC_GO_TOLERANCE_FACTOR).
3xx: Combination of the two previous options: Both circular blocks and G00 blocks are compressed.
The thousands digits optimize the compressor for different machine types:
0xxx: Optimization for a good surface quality in tool and mold building.
1xxx: Optimization for soft and fast traversing in special applications.

Description: Smoothing of the programmed block end points with compressor type COMPCAD. Value 0: no smoothing. Value 1: maximum smoothing.
Entry for all dynamic G code groups.

20486	COMPRESS_SPLINE_DEGREE	EXP, C05	B1			
-	Compressor spline degree	BYTE	NEW CONF			
-						
-	5	$3,3,3,3,3,3,3,3,3$, $3,3,3,3,3,3,3,3,3$, $3,3,3,3 \ldots$	3	5	M	

Description:
Spline degree for compressor type COMPCAD. Value 3 is recommended; value 5 may be possible for roughing, if soft and rapid movements are more important than accuracy Entry for all dynamic G code groups.

Description:

Extent to which the programmed block end points are smoothed in the case of compressor type COMPCAD for non-geometry axes. Value 0: No smoothing. Value 1: Maximum smoothing. Entry for each dynamic G code group.

20488	SPLINE_MODE						EXP	B1
-								
-	Setting for spline interpolation	UBYTE	NEW CONF					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	0×7				

Description: This MD is used to determine the settings for spline interpolation. The allocation of the spline segments to the NC blocks can thus be influenced. With spline interpolation, the spline blocks are combined, if possible, in such a way, that there are no blocks that are too short and could lead to a reduction in the possible path velocity.
Bit 0: With BSPLINE, blocks that are too short are avoided.
Bit 1: With BSPLINE/ORICURVE, blocks that are too short are avoided.
Bit 2: With CSPLINE, blocks that are too short are avoided.

20490	IGNORE_OVL_FACTOR_FOR_ADIS	EXP	B1			
-						
-	G64x independent of overload factor	BOOLEAN	NEW CONF			
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	U	

Description:
A block transition is normally only smoothed with $G 64 x$ when the path velocity at block transition is reduced by the overload factor set in MD32310 \$MA_MAX_ACCEL_OVL_FACTOR. When SOFT is active, the maximum jerk occurring at block transitions is also $\bar{l} i m i t e d$ by MD32432 \$MA_PATH_TRANS_JERK_LIM. This means that the effect of smoothing with G64x depends on the values set for the overload factor and possibly for the maximum jerk. By setting MD20490 \$MC_IGNORE_OVL_FACTOR_FOR_ADIS = TRUE, a block transition can be smoothed with G64x, irrespectively of the values set for the overload factor.

20500	CONST_VELO_MIN_TIME						EXP, C05	B2
s	Minimum time with constant velocity	DOUBLE	PowerOn					
-								
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	0.1	M			

Defines the minimum time for constant velocity during transition from acceleration to deceleration in short blocks in which the set velocity cannot be reached. Entering a time of at least several IPO cycles prevents a direct transition from the acceleration to the deceleration phase and thus reduces the acceleration jump to half. This acceleration limitation is only active with the acceleration profile BRISK.
MD irrelevant for:
Look Ahead does not take account of this function.

20550	EXACT_POS_MODE	EXP	B1			
-						
-	Exact stop conditions on G00/G01.	BYTE	NEW CONF			
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	33	$7 / 2$	

Configuration of the exact stop conditions for $G 00$ and other G codes of the 1 st G code group.
The MD is decimal-coded. The units digits define the behavior at G00 (infeed motion) and the tens digits the behavior of all the other G codes of the 1st group ("machining G codes").
x0: At G00, the relevant programmed exact stop conditions become active.
x1: At G00, G601 (fine positioning window) becomes active independent of the programmed exact stop condition.
x2: At G00, G602 (coarse positioning window) becomes active independent of the programmed exact stop condition.
x3: At G00, G603 (setpoint value reached) becomes active independent of the programmed exact stop condition.
0x: At the machining G codes, the relevant programmed exact stop conditions become active.

1x: At the machining G codes, G601 (fine positioning window) becomes active independent of the programmed exact stop condition.

2x: At the machining G codes, G602 (coarse positioning window) becomes active independent of the programmed exact stop condition.
3x: At the machining G codes, G603 (setpoint value reached) becomes active independent of the programmed exact stop condition.
The values of the units digits and tens digits are added.
For example, the value of EXACT_POS_MODE $=2$ means that the exact stop condition G602 is always activated automatically $\bar{l} \bar{t} G 00$, independently of which exact stop condition was programmed. At all other G codes of group 1, the programmed exact stop condition becomes active.

20552	EXACT_POS_MODE_G0_TO_G1	EXP	B1			
-	Exact stop condition at G00-G01 transition	BYTE	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	5		

Description:

Configuration of a stop at transition from GOO to a different G code of the lst G code group, and also vice versa, at transition from non-G00 to G00 in continuous-path mode. In exact-stop mode, the positioning window programmed or set in MD20550 \$MC_EXACT_POS_MODE is used.
The following applies:
0: No additional stop, no control of exact stop
1: Behavior active as with G601 (positioning window, fine).
2: Behavior active as with G602 (positioning window, coarse).
3: Behavior active as with G603 (setpoint reached).
4: As 0, no stop at block transition.
At block change from G0 to non-G0 in the G0 block in continuous-path mode, LookAhead takes account of the current value of the feedrate override of the following non-G0 block. Depending on the axis dynamics and the path length of the current block, the block change takes place with the exact or best possibly adapted velocity of the following block.

5: As 0, no stop at block transition.
At block change from G0 to non-G0 and non-G0 to GO in continuous path mode, LookAhead takes account of the current value of the feedrate override (GO to non-G0) or rapid traverse override (non-G0 to GO) of the following block. Depending on the axis dynamics and the path length of the current block, the block change takes place with the exact or best possibly adapted velocity of the following block.

20560	G0_TOLERANCE_FACTOR	EXP	B1		
-	Tolerance factor for G00	DOUBLE	NEW CONF		
-	-	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0 \ldots$	$1 . e-9$	$1.0 E+301$	$1 / 1$

This tolerance factor is relevant for the following control functions:

1. Compressor (COMPCAD, COMPCURV, and COMPON)
2. Smoothing with G64x
3. Smoothing of orientation with OST
4. Smoothing of orientation response with ORISON

This factor can be both greater than 1 and less than 1. However, higher tolerance settings are usual for infeed motion.
If the factor is equal to 1 , the tolerances applied for $G 00$ motion are the same as those for non-G00 motion.

20602	CURV_EFFECT_ON_PATH_ACCEL	EXP, C05	B1, B2		
-	Effect of path curvature on path dynamic	DOUBLE	NEW CONF		
-					
-	5	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 ., 0 ., \ldots$	0.	0.95	M

Description:
This MD is used to determine whether the reaction of path curvature on path acceleration and path velocity is taken into account.

0 :
Not taken into account
>0 :
If required, the path velocity and path acceleration are reduced in order to keep a sufficient reserve on the machine axes for centripetal acceleration.
0.75: Recommended setting.

MD20602 \$MC_CURV_EFFECT_ON_PATH_ACCEL defines the proportion of the axis accelerations (see MD3230 ${ }^{-}$\$MA_MAX_AX_ACCEL[.-]) that can be used for centripetal acceleration. The remainder is used for changing the path velocity.
Centripetal acceleration is not required for linear blocks; the full axis acceleration is therefore available for the path acceleration. On slightly curved contours or with a sufficiently low maximum path feedrate \$MC_CURV_EFFECT_ON_PATH_ACCEL has only a partial or no effect. Accordingly, the path acceleration $\bar{i} \overline{\text { h }} \overline{\mathrm{h}} \mathrm{ighe} \bar{r}$ than that specified by (1. - MD20602 \$MC_CURV_EFFECT_ON_PATH_ACCEL) * MD32300 \$MA_MAX_AX_ACCEL[..].
There is an entry for each dynamic G code group.

20603	CURV_EFFECT_ON_PATH_JERK			EXP, C05	B1	
-	Effect of path curvature on path jerk			DOUBLE	NEW	
-						
-	5	$\begin{aligned} & \text { 0., 0., 0., 0., 0., 0., 0., } \\ & \text { 0., 0., 0., 0., 0., 0., 0., } \\ & 0 ., 0 ., \text {.., } \end{aligned}$	0.	1000.	7/2	M

Description:
Allows the reaction of the path curvature on the path jerk to be taken into account on especially jerk-sensitive machines.

Entry for each dynamic G code group.

Description: Factor to determine the degree of smoothing and torsion.
A larger value of this MD causes a stronger smoothing and thus a more homogenous curvature/torsion and resulting path velocity.
With this factor being zero no smoothing is performed.
There is an entry for all dynamic G code groups.

Description:
Switch on of curve and torsion smoothing.
Smoothing of the curve or torsion causes a homogenous path velocity.
Smoothing is only performed, when the relevant factor is MD 20605
\$MC_PREPDYN_SMOOTHING_FACTOR > 0 .
Meaning:
0: Curve smoothing off.
1: Curve smoothing on.
2: Curve smoothing also on for axis couplings.
There is an entry for all dynamic G code groups.

20610	ADD_MOVE_ACCEL_RESERVE		C05	F2, B2, K1	
-	Acceleration margin for overlaid movements		DOUBLE	PowerOn	
-					
-	$.2, .2, .2, .2, .2, .2, .2,$ 2...	0.	0.9	7/2	M

Description:
This machine data contains the factor that defines the acceleration and velocity margins which are not used by the path movements on the machine axes in order to provide sufficient acceleration and velocity margins for an overlaid movement for the velocity control.

A factor of 0.2 means that the path axes utilize 80% of the path acceleration and of the maximum velocity in normal operation. Only when a request for overlaid movement is made, can 100% of the path acceleration and velocity be utilized.
MD irrelevant for:

```
Error states that lead to a rapid stop. In addition, the limitation is also ineffective
for positioning axes.
Special cases:
At the moment the machine data is only taken into account:
    If the function "Fast retraction" is already activated
    If the function "Online tool length compensation" is activated by the program
command TOFFON
Related to:
MD32000 $MA_MAX_AX_VELO (maximum axis velocity)
MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)
```

20620	HANDWH_GEOAX_MAX_INCR_SIZE		C08, C06	H1	
mm	Limitation handwheel increment for geometry axes		DOUBLE	PowerOn	
-					
-	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
Description:	> 0: Limitation of the size of MD 11330 \$MN_JOG_INCR_SIZEO[<in SD41010 \$SN_JOG_VAR_INCR_SIZE f 0: No limitation on geometry a	he rem r g es	crement nal>] or s	met	

20621	HANDWH_ORIAX_MAX_INCR_SIZE	C08, C06	-			
degrees						
-	Limiting of handwheel increment for orientation axes	DOUBLE	PowerOn			
-	-	$\begin{array}{l}0.0,0.0,0.0,0.0,0.0, \\ 0.0,0.0,0.0 \ldots\end{array}$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description:
> 0: Limitation of the size of the selected increment for orientation axes
MD11330 \$MN_JOG_INCR_SIZE[<increment/VDI signal>] or
SD41010 \$SN_JOG_VAR_INCR_SIZE for orientation axes
= 0: No limitation on orientation axes

20622	HANDWH_GEOAX_MAX_INCR_VSIZE				
$\mathrm{mm} / \mathrm{min}$	Path velocity override	C08, C06, C05	-		
-					
-	-	$500 ., 500 ., 500 ., 500 .$, $500 ., 500 ., 500 ., 500 . . .$.	0.0	DOUBLE	PowerOn

Description:
The following applies to the velocity override of the path:
> 0: Limitation of the size of the selected increment
(MD11330 \$MN_JOG_INCR_SIZE_[<increment/VDI signal>] or SD41010 \$SN_JOG_VAR_INCR_SIZE) / 1000*IPO sampling time = 0: No limitation

20623	HANDWH_ORIAX_MAX_INCR_VSIZE						C08, C06, C05	-
rev/min	Orientation velocity overlay	DOUBLE	PowerOn					
-								
-	-	$0.1,0.1,0.1,0.1,0.1$, $0.1,0.1,0.1 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$			

Description:
For the orientation velocity overlay:
> 0: Limitation of the size of the selected increment (MD11330 \$MN_JOG_INCR_SIZE[< increment/VDI signal>] or

SD41010 \$SN_JOG_VAR_INCR_SIZE) / 1000 * IPO sampling time
= 0: No limitation

Description:
Definition of the response for handwheel travel to channel-specific VDI interface signals (bit 0 to bit 7) or CP-SW limit stop or stop by an OEM application (bit 7): Bit $=0$:
Interruption or collection of the displacements entered via the handwheel.
Bit = 1:
Traversing canceled and no collecting.
Bit assignment:
Bit 0: Mode group stop
Bit 1: Mode group stop, axes plus spindle
Bit 2: NC stop
Bit 3: NC stop, axes plus spindles
Bit 4: Feedrate disable (exception for MD30460 \$MA_BASE_FUNCTION_MASK bit6)
For bit 4 feed disable, it must be taken into account that a PLC-controlled axis, for which MD30460 \$MA_BASE_FUNCTION_MASK bit $6=1$, is not stopped by the feed disable, and that no interruption and no cancellation are triggered here.
Bit 5: Feedrate override
Bit 6: Rapid traverse override
Bit 7: Feedrate stop, geometry axis or CP-SW limit stop or stop by an OEM application
Bit $8=0$:
The maximum feedrate for handwheel travel of geometry axes is that specified in machine data JOG_AX_VELO for the corresponding machine axis/axes.
Bit 8 = 1 :
The maximum feedrate for handwheel travel of geometry axes is that specified in machine data MAX_AX_VELO for the corresponding machine axis/axes.
Bit $9=0$:
The override is active during handwheel travel of geometry axes.
Bit 9 = 1 :
During handwheel travel of geometry axes, the override is assumed to be 100%
irrespective of the position of the override switch.
Exception: override 0, which is always active.
Bit $10=0$:
MD11310 \$MN_HANDWH_REVERSE is not active for DRF, i.e. handwheel travel with DRF is carried out as if MD11310 \$MN_HANDWH_REVERSE $=0$.
Bit $10=1$:
MD11310 \$MN_HANDWH_REVERSE is active for DRF.
Bit $11=0$:
When the contour handwheel is deselected, program processing is continued automatically.
Bit $11=1$:
When the contour handwheel is deselected, an NCSTOP is triggered automatically. Program processing is not continued until NCSTART is entered.

Bit $12=0$:
NC start has no effect on handwheel travel.
Bit $12=1$:
The previously collected paths are rejected at NC start.
Bit $13=0$:
For DRF, bits $0-3$ and bit 12: bit $=0 /$ bit $=1$ are active (see above).
Bit 13 = 1:
For DRF, bits $0-3$ and bit 12 are NOT active: the DRF motion is not interrupted by a stop, and a DRF motion can take place even in "Automatic interrupted" state (achieved by NC Stop).
Note:
If an alarm leads to an axis stop and if such an alarm is pending, no DRF motion can take place.
Bit $14=0$:
The maximum feedrate for handwheel travel of geometry axes is that specified in SD41120 \$SN_JOG_REV_SET_VELO or in MD32050 \$MA_JOG_REV_VELO (for revolutional feedrate) or in MD32040 \$MA_JOG_REV_VELO_RAPID (for rapid traverse) for the corresponding machine axis, the spindle or rotary axis feedrate is included in the calculation.
Bit $14=1$:
The maximum rotational feedrate for handwheel travel of geometry axes is the feedrate specified in MD32000 \$MA_MAX_AX_VELO for the corresponding machine axis (see also bit 6).

Bit $15=0$:
If an axis with active diameter programming is traversed in the channel, only half the distance of the specified increment is traveled during handwheel travel (MD11346 \$MN_HANDWH_TRUE_DISTANCE $=1$ or 3
Bit $15=1$:
If an axis with active diameter programming is traversed in the channel, the specified increment is fully traveled during handwheel travel (MD11346 \$MN_HANDWH_TRUE_DISTANCE $=1$ or 3).
Bit $16=0$:
Return traveling is possible to the start of the block.
Bit $16=1$:
Return traveling is not possible (response as at start of block, i.e. pulses are ignored).

20700	REFP_NC_START_LOCK	C01, C03	D1, R1, Z1			
-	NC start disable without reference point	BYTE	Reset			
-						
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	2	$7 / 2$	

0: The NC/PLC interface signal DB21-30 DBX7.1 (NC start) for starting part programs or part program blocks (MDI and overstore) is active even if one or all axes of the channel have not yet been referenced.
To ensure that the axes nevertheless reach the correct position after NC startup, the work (workpiece coordinate system = work) must be set to the correct value by means of other methods (scratch method, automatic work offset determination etc.).
1: Axes for which the axial MD34110 \$MA_REFP_CYCLE_NR specifies that a reference point is mandatory (value > -1), must be referenced for NC startup to be enabled.
2: Advanced form of setting 1 in that the axis state "Position restored" (instead of "referenced") is sufficient for $N C$ startup in MDI or overstore.

20730	G0_LINEAR_MODE	C09	P2		
-	G0 interpolation mode	BOOLEAN	PowerOn		
-					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	M

Description:

This machine data defines the interpolation behavior of GO :
0: Non-linear interpolation (RTLIOF): Each path axis interpolates as an individual axis (positioning axis), independently of the other axes, at the rapid traverse velocity of the axis (MD32000 \$MA_MAX_AX_VELO).

However, this is possible only in simple cases:

- No transformation active (TRAORI, TRANSMIT etc.).
- G60 active (stop at end of block).
- No compressor active (COMPOF).
- No tool radius compensation active (G40).
- No contour handwheel selected.
- No nibbling active.

If one of these conditions is not fulfilled, linear interpolation takes place with the value 1 (RTLION).
1: Linear interpolation (RTLION): The path axes are interpolated jointly.

20734	EXTERN_FUNCTION_MASK	N12	-			
-	Function mask for external language	UDWORD	Reset			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 x 7 F F F F F F F$	$7 / 2$	

Description:
This machine data is used to influence functions in ISO mode.
Bit0: 0:
ISO mode T: "A" and "C" are interpreted as axes. If contour definition has been programmed, "A" or "C" must be preceded by a comma.

1:
"A" and "C" in the part program are always interpreted as a contour definition. An axis "A" or "C" is not allowed.
Bit1: 0:
ISO mode $T: G 10 P<100$ tool geometry P > 100 tool wear
1:
G10 P < 10000 tool geometry P > 10000 tool wear

Bit2: 0:
G04 dwell time: always [s] or [ms]
1:
If G95 is active, in spindle revolutions
Bit3: 0:
Errors in ISO mode lead to an alarm
1:
Errors in ISO mode are not output, the block is translated in Siemens mode.
Bit4: 0:
G00 is traversed with the current exact stop - continuous-path mode G code 1:

G00 is always traversed with G09
Bit5: 0:
Modulo rotary axis is positioned at the shortest possible distance 1:
Direction of rotation of modulo rotary axis depends on sign
Bit6: 0:
Only 4-digit program number allowed.
1:
8-digit program number allowed. If the program number has less than 4 digits, it is expanded to 4 digits with 0 .
Bit7: 0:
Axis programming for geometry axis exchange/parallel axes is compatible with ISO mode. 1:

Axis programming for geometry axis exchange/parallel axes in ISO mode is compatible with Siemens mode.
Bit8: 0:
With cycles, the F value transferred is always interpreted as a feedrate. 1:
With threading cycles, the F value transferred is interpreted as a pitch.
Bit9: 0:
Multiplication with $0.01 \mathrm{~mm} / 0.0001$ inch is carried out in $I S O$ mode T for $G 84$, G88 and in standard mode F for $G 95$.

1:
Multiplication with $0.001 \mathrm{~mm} / 0.00001$ inch is carried out in ISO mode T for $G 84$, G88 and in standard mode F for $G 95$.
Bit10: 0:
With M96 Pxx, the program programmed with Pxx is always called in the case of an interrupt

1:
With M96 Pxx, CYCLE396.spf is always called in the case of an interrupt
Bit11: 0:
With G54 Pxx, only G54.1 is displayed
1:
With G54 Pxx, the programmed program is displayed after the point, e.g. G54.48
Bit12: 0:
When the subroutine defined with M96 Pxx is called, \$P_ISO_STACK is not modified 1:
When the subroutine defined with M96 Pxx is called, \$P_ISO_STACK is incremented Bit13: 0:
G10 is executed without internal STOPRE
1:
G10 is executed with internal STOPRE
Bit14: 0:
ISO mode T : No alarm if a cutting edge has been programmed in the T command. 1:
ISO mode T : Alarm 14185 if a cutting edge has not been programmed in the T command.
Bit 15: 0:
ISO mode M: G51 Scale, the axial scale factors I, J, K work with 'pocket calculator notation' as programmed.

$$
1:
$$

ISO mode M: G51 Scale, the axial scale factors I, J, K with 'pocket calculator notation', are multiplied by the value in MD22910 \$MC_WEIGHTING_FACTOR_FOR_SCALE. Bit 16: 0: In circular-path programming with radius R, there is no replacement of missing geometry axes of the selected plane. This corresponds to the behavior in Siemens mode 1:

In circular-path programming with radius R, missing geometry axes of the selected plane are supplemented by incremental distance 0

20750	ALLOW_G0_IN_G96	C09, C05	P2, V1				
-	G0 logic with G96, G961	BOOLEAN	PowerOn				
-							
-	-	$\begin{array}{l}\text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE... }\end{array}$	0	-	$7 / 2$	$]$	M
:---							

Description:
This machine data defines the speed regulation characteristic of the spindle in G0 blocks with constant cutting speed (G96, G961) selected.
1: In a GO block, the spindle speed is kept constant at the last value of the previous block that was unequal GO.
Prior to a subsequent block that does not contain $G 0$, the spindle speed is increased to a value that belongs to the transverse axis position of the subsequent block.
0: In a GO block, the spindle speed changes against the transverse axis position.

20800	SPF_END_TO_VDI		C04, C03	H2,	
-	End of subroutine to PLC		BYTE	Pow	
-					
-			-	7/2	M

Description:

Bit $0=1$:
The M functions for subroutine end (M17 and/or M2/M30) are transferred to the PLC interface.
Bit $0=0$:
The M functions for subroutine end (M17 and/or M2/M30) are not transferred to the PLC interface.
Note:
To prevent stopping in continuous-path mode, M17 must not be programmed alone in a block.
Example of a subroutine: G64 F2000 G91 Y10 X10 X10 Z10 M17

Bit $1=0$:
M01:
conditional program stop is always output to PLC, irrespective of whether the M01 signal is active or not.
Fast auxiliary function output $M=Q U(1)$ is inactive because $M 01$ is assigned to the 1 st M function group and thus is always output at block end.
Bit $1=1$:
M01:
conditional program stop is only output to PLC, if M01 is also active.
This thus enables optimal run-time processing of the part program.
With fast auxiliary function output $M=Q U(1)$, $M 1$ is output during the movement; thus it is possible to traverse blocks in continuous-path mode with programmed M01 as long as M01 is not active.

The request of the M01 signal with $M=Q U(1)$ no longer occurs at block end but during the movement.

20900	CTAB_ENABLE_NO_LEADMOTION	EXP	M3			
-	Curve tables with jump of slave axis	BYTE	Reset			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 2$	

This MD is used to configure the way jumps of the slave axis are processed in curve tables. A jump of the slave axis results from the presence of a movement of the slave axis in a segment of the curve table with no corresponding movement of the master axis. The jumps of the slave axis may be programmed directly, or they are created internally in the control.

These segments may be created especially if a curve table with active tool radius compensation is generated.
The following configurations are possible:
0: No curve tables are created that contain a jump of the slave axis. If a jump of the slave axis occurs, alarm 10949 (CTAB_NO_LEADMOTION) is issued and program processing is terminated. This setting is compatible with previous software versions.

1: Curve tables containing a jump of the slave axis may be implemented. If a jump of the slave axis occurs, alarm 10955 (CTAB_NO_LEADMOTIONWARNING) is issued without terminating program processing.

2: Curve tables with jumps of the slave axis are implemented without issuing an alarm or a note.

20905	CTAB_DEFAULT_MEMORY_TYPE						EXP	M3
-	Default memory type for curve tables	BYTE	Reset					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$7 / 2$			
-	-	M						

Description: This machine data defines the memory (SRAM or DRAM) in which the curve tables are created by default.

This MD is only relevant if no memory type was specified when defining a curve table using CTABDEF().
The following settings can be selected:
0 : By default, curve tables are created in the SRAM.
1: By default, curve tables are created in the DRAM.

21000	CIRCLE_ERROR_CONST	C06	-			
mm	Circle end point monitoring constant	DOUBLE	NEW CONF			
-						
-	-	$0.01,0.01,0.01,0.01$, $0.01,0.01,0.01,0.01 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description:

This machine data is used to specify the permissible absolute circle error [mm].
When a circle is programmed, both conditions (that the distances from the programmed center point to the start and end points (circle radius) must be the same and that the center point of the circle must be located on the perpendicular bisector of the straight line connecting the start and end points (perpendicular bisector of the circular plane)) apply.
The fact that the circular parameters can be freely programmed means that these conditions are not usually met exactly in the case of circle programming with I, J, and K (the circle is "overdefined").
The maximum permissible difference between the two radii that is accepted without an alarm, as well as the distance between the programmied center point of the circle and the perpendicular bisector described above, is defined by the larger value in the following data:

- MD21000 \$MC_CIRCLE_ERROR_CONST
- Start radius multiplied by MD21010 \$MC_CIRCLE_ERROR_FACTOR

This means that for small circles the tolerance is a fixed value (MD21000 \$MC_CIRCLE_ERROR_CONST), and for large circles it is proportional to the start radius. Related to:
MD21010 \$MC_CIRCLE_ERROR_FACTOR
(circle end point monitoring factor)
In the context of the predefined tolerances, conflicting circle data is compensated essentially by moving the center point of the circle. Please note that the deviation between the programmed center point and the actual center point can reach the order of magnitude set with machine data MD21000 \$MC_CIRCLE_ERROR_CONST and/or MD21010 \$MC_CIRCLE_ERROR_FACTOR. In the case of circles which are almost full circles in particular, this can also lead to contour deviations of the same order of magnitude.

21010	CIRCLE_ERROR_FACTOR	C06	-			
-						
-	Circle end point monitoring factor	DOUBLE	NEW CONF			
-	-	$0.001,0.001,0.001$, $0.001,0.001,0.001$, $0.001,0.001 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Factor for permissible radius difference.
Defines the factor for large circles by which the starting radius and end radius may deviate from each other
(see also MD21000 \$MC_CIRCLE_ERROR_CONST (circle end point monitoring constant).
When a circle is programmed, both conditions (that the distances from the programmed center point to the start and end points (circle radius) must be the same and that the center point of the circle must be located on the perpendicular bisector of the straight line connecting the start and end points (perpendicular bisector of the circular plane)) apply.
The fact that the circular parameters can be freely programmed means that these conditions are not usually met exactly in the case of circle programming with I, J, and K (the circle is "overdefined").
The maximum permissible difference between the two radii that is accepted without an alarm, as well as the distance between the programmied center point of the circle and the perpendicular bisector described above, is defined by the larger value in the following data:

- MD21000 \$MC_CIRCLE_ERROR_CONST
- Start radius multiplied by MD21010 \$MC_CIRCLE_ERROR_FACTOR

This means that for small circles the tolerance is a fixed value (MD21000 \$MC_CIRCLE_ERROR_CONST), and for large circles it is proportional to the start radius. Related to:
MD21000 \$MC_CIRCLE_ERROR_CO'NST
(circle end point monitoring factor)
In the context of the predefined tolerances, conflicting circle data is compensated essentially by moving the center point of the circle. Please note that the deviation between the programmed center point and the actual center point can reach the order of magnitude set with machine data MD21000 \$MC_CIRCLE_ERROR_CONST and/or MD21010 \$MC_CIRCLE_ERROR_FACTOR. In the case of circles which are almost full circles in particular, this can also lead to contour deviations of the same order of magnitude.

21015	INVOLUTE_RADIUS_DELTA	C06	A2		
mm	Involute end point monitoring	DOUBLE	PowerOn		
-					
-	-	$0.01,0.01,0.01,0.01$, $0.01,0.01,0.01,0.01 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$
M					

Description:
Permissible absolute difference of radius at involute interpolation [mm].
At involute interpolation, the radius of the basic circle determined by the end point may differ from the programmed radius.
This data is used to limit the permissible maximum difference between start radius and end radius.

Description: If the angle of rotation is programmed for an involute (AR=angle), the maximum angle of rotation is limited in case the involute is travelling towards the basic circle (AR $<0)$. The maximum angle of rotation is reached when the involute touches the basic circle.

Normally, if an angle larger than the maximum angle is programmed, an alarm is issued and the $N C$ program canceled.
If this MD is set to TRUE any angle is accepted without an alarm for programming. If required, this angle is limited automatically.

21050	CONTOUR_TUNNEL_TOL		C06	K6	
mm	Response threshold for contour tunnel monitoring		DOUBLE	NEW	
-					
-	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description:
Response threshold for contour tunnel monitoring. Defines the radius of the "tunnel" around the path of the tool tip.

If three geometry axes are defined, the tunnel can be regarded as a tube through the center of which the path of the tool tip travels.
If only two geometry axes are defined, this tube can be regarded as squashed flat in the plane of the two geometry axes.
Monitoring is only active if:

- option contour tunnel monitoring is present and
- MD21050 \$MC_CONTOUR_TUNNEL_TOL is larger than 0.0 and
- at least two and at most three geometry axes are defined.

Related to:
MD21060 \$MC_CONTOUR_TUNNEL_REACTION,
MD21070 \$MC_CONTOUR_ASSIGN_FASTOUT,
MD36500 \$MA_ENC_CHANGE_TOL

21060	CONTOUR_TUNNEL_REACTION	C06	K6				
-	Reaction when contour tunnel monitoring responds	BYTE	PowerOn				
-							
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	2	$7 / 2$		

Description: Reaction to response of the alarm
0: Only display alarm, continue machining
1: Ramp stop
2: Rapid stop
MD irrelevant:
If the contour tunnel monitoring option is not available
Related to:
MD21050 \$MC_CONTOUR_TUNNEL_TOL, MD21070 \$MC_CONTOUR_ASSIGN_FASTOUT

21070	CONTOUR_ASSIGN_FASTOUT		C01, C06	K6	
-	Assignment of an analog output for the output of contour error		BYTE	PowerOn	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	8	7/2	M

Description: Assignment of an analog output on which the calculated contour error can be output.
0: No output
1: Output on output 1
2: Output on output 2
etc.
8: Output on output 8
An error as large as the response threshold MD21050 \$MC_CONTOUR_TUNNEL_TOL appears on the output as a voltage of 10 V .
Multiple assignment of the same output by other signals is checked automatically.
MD irrelevant:
If the contour tunnel monitoring option is available
Related to:

MD21050 \$MC_CONTOUR_TUNNEL_TOL, MD21060 \$MC_CONTOUR_TUNNEL_REACTION

21080	CUTCOM_PARALLEL_ORI_LIMIT	C08, C06	-					
degrees	Minimum angle (path tangent / tool orientation) in 3D TRC						DOUBLE	Reset
-	-	3., 3., 3., 3., 3., 3., 3., 3....	0.1	89.	M			
-	-							

Description:

With 3 D tool radius compensation, the angle between the path tangent and the tool orientation may not drop below a certain limit angle. This machine data specifies this angle (in degrees).
Generally speaking, the lower the value entered in this machine data, the greater the computing capacity required to check that the above conditions are fulfilled.
Linear blocks with constant orientation are an exception.

21082	CUTCOM_PLANE_ORI_LIMIT	C08, C06	-			
degrees						
-	Minimum angle between surface normal vector and tool orientation	DOUBLE	Reset			
-	-	3., 3., 3., 3., 3., 3., 3., $3 . \ldots .2$	1.0	89.	$7 / 2$	

Description:

This machine data applies to 3D face milling operations and specifies the minimum angle that must exist between the surface normal vector and the tool orientation on every point of the path if the applied lateral angle is not equal to zero and the tool is not a ball mill. Otherwise, machining is canceled with an alarm if the angle is smaller than the value set here.
Generally speaking, the lower the value entered in this machine data, the greater the computing capacity required to check that the above conditions are fulfilled. This data has no effect in linear blocks with constant orientation. The angle between the surface normal vector and tool orientation may be as small as desired in such cases, even if the lateral angle is not equal to zero.

21084	CUTCOM_PLANE_PATH_LIMIT	C08, C06	W5			
degrees						
-	Min. angle betw. surface normal vector and path tangent vector	DOUBLE	Reset			
-	-	3., 3., 3., 3., 3., 3., 3., $3 . \ldots .2$	1.0	89.	M	

Description:

This machine data applies to 3D face milling operations and specifies the minimum angle that must exist between the surface normal vector and the path tangent vector on every point of the path. Otherwise machining is canceled with an alarm if the angle is smaller than the value set here.
Generally speaking, the lower the value entered in this machine data, the greater the computing capacity required to check that the above conditions are fulfilled.

21090	MAX_LEAD_ANGLE	C08, C09	M1					
degrees	Maximum value of permitted lead angle for orientation progr.						DOUBLE	NEW CONF
-								
-	-	$80 ., 80 ., 80 ., 80 ., 80 .$, $80 ., 80 ., 80 \ldots .$,	0.	80.	$7 / 7$			

Description: Maximum permissible value of the lead angle in degrees.
4.2 Channel-specific NC machine data

Description: Maximum permissible value of the tilt angle in degrees.

21094	ORIPATH_MODE	C02	F2			
-	Setting for ORIPATH path-relative orientation	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1241	$7 / 7$	

Description:
This MD is used to set the response for ORIPATH, i.e. path-relative interpolation of tool orientation.
The various digits of this machine data are used to activate different functions for ORIPATH.

The tens digit of this MD enables the specification of the way in which the programmed LEAD and TILT angles are to be interpreted.

This setting option is also significant without active ORIPATH if offsets have been programmed for the LEAD and TILT angles
(with \$P_OFF_LEAD and \$P_OFF_TILT or \$AC_OFF_LEAD and \$AC_OFF_TILT).
Meaning of the units digit: Activation of "true" path-relative orientation
interpolation
xxx0:
The tool orientation has the relation to the path tangent and the normal vector programmed with LEAD and TILT only at the end of the block; within the block, the orientation does not follow the path tangent. This corresponds to the response in SW release $6 . x x$.
xxx1:
The tool orientation relation to the path tangent and the surface normal vector programmed with LEAD/TILT is retained throughout the block. Meaning of the tens digit: Interpretation of the TILT angle.
Meaning of the tens digit: Interpretation of the LEAD and TILT angles. This applies both to the angles programmed with LEAD and TILT with path-relative orientation interpolation (ORIPATH),
as well as to offsets of the LEAD and TILT angles, which can also be programmed without ORIPATH by means of \$P_OFF_LEAD and \$P_OFF_TILT or \$AC_OFF_LEAD and \$AC_OFF_TILT.
With path-relative orientation, the coordinate system is formed by the two vectors path tangent and normal vector. If an offset is applied to a programmed orientation, the current orientation itself takes over the role of the normal vector. A plane is then formed by the current orientation and the path tangent, in which the rotation is made perpendicularly with the LEAD angle or
the TILT angle.
xx 0 x :
The angles programmed with LEAD and TILT are evaluated in the following rotation sequence:

1. LEAD = Rotation around direction vertical to tangent and normal vector/orientation vector (forward angle)
2. TILT $=$ Rotation of orientation around normal vector

This is the interpretation of the LEAD/TILT angles in SW releases < 7.2 xx1x:

The angles programmed with LEAD and TILT are evaluated in the following rotation sequence:

1. LEAD = Rotation around direction vertical to tangent and normal vector/ orientation vector (forward angle) 2. TILT $=$ Rotation of orientation around vector in direction of tangent (tilt angle) $x \times 2 x:$

The angles programmed with LEAD and TILT are evaluated in the following rotation sequence:

1. LEAD = Rotation around direction vertical to tangent and normal vector/ orientation vector (forward angle)
2. TILT = Rotation of orientation around vector in direction of rotated (new) tangent (tilt angle) xx3x:

The angles programmed with LEAD and TILT are evaluated in the following rotation sequence:

1. TILT $=$ Rotation of orientation around vector in direction of tangent (tilt angle)
2. LEAD = Rotation around direction vertical to tangent and normal vector/ orientation vector (forward angle)
xx4x:
The angles programmed with LEAD and TILT are evaluated in the following rotation sequence:
3. TILT $=$ Rotation of orientation around vector in direction of tangent (tilt angle)
4. LEAD = Rotation around direction vertical to tangent and rotated (new) normal vector/orientation vector (forward angle)
Meaning of hundreds digit: Activation of a retract movement in the case of reorientation.

0 xx :
In the case of reorientation with ORIPATH, a retract movement is not executed.
1xx:
In the case of reorientation with active ORIPATH, a retract movement in the direction of the programmed vector is executed. The programmed vector for the direction of the retract movement refers to the coordinate system defined by the current tool direction (z coordinate) and the change in orientation (x coordinate).

2xx:
In the case of reorientation with active ORIPATH, a retract movement in the direction of the programmed vector is executed. The programmed vector for the direction of the retract movement refers to the coordinate system defined by the current surface normal vector (z coordinate) and the change in orientation (x coordinate).

A retract movement is possible only with a "true" path-relative orientation interpolation, i.e. if the units digit of this MD has a value of one.

Meaning of the thousands digit: Response of path-relative orientation on activation / deactivation of tool offset.
$0 x x x:$
The path-relative orientation is also retained in activation / deactivation blocks associated with tool offset.

1xxx:
The path-relative orientation is not retained in activation / deactivation blocks associated with tool offset. In these blocks, the tool orientation usually remains constant. However, tool orientation can be programmed in these blocks and then traversed there, although any orientation has to be programmed with vectors (the programming of rotary axis positions is not permitted).

Description:

```
With this machine data, the effect of the override of the tool orientation is set with
the system variables (bit 0-15)
$AC_OFF_O[i], $AC_OFF_R[i], $AC_OFF_LEAD, $AC_OFF_TILT, $AC_OFF_THETA,
$AC_OFF_O_ANGLE and $AC_OFF_R_ANGLE
and the program variables (bit 16-31)
$P_OFF_O[i], $P_OFF_R[i], $P_OFF_LEAD, $P_OFF_TILT, $P_OFF_THETA, $P_OFF_O_ANGLE and
$P_OFF_R_ANGLE.
Bit 0-15: Effect of the overrides in the interpolator
```

Bit 0: Behavior of the system variables on RESET
0: Offset is deselected on RESET
1: Offset is retained after RESET
Bit 1: Behavior of the system variables in JOG mode
$0:$ No offset of the tool orientation on account of the system variables for offsetting
the tool orientation
1: An overlaid motion is interpolated on account of the system variables for
offsetting the tool orientation.
Bit 2: Effect of the value assignment to the components of the system variable
\$AC_OFF_O[i]
0: Absolute value
1: Incremental value (integrator)
Bit 3: Effect of the value assignment to the components of the system variable
\$AC_OFF_R[i]
0: Absolute value
1: Incremental value (integrator)
Bit 4: Effect of the value assignment to the system variable \$AC_OFF_LEAD
0: Absolute value
1: Incremental value (integrator)
Bit 5: Effect of the value assignment to the system variable \$AC_OFF_TILT
0 : Absolute value
1: Incremental value (integrator)
Bit 6: Effect of the value assignment to the system variable \$AC_OFF_THETA
0: Absolute value
1: Incremental value (integrator)
Bit 7: Effect of the value assignment on the system variable \$AC_OFF_O_ANGLE
0: Absolute value
1: Incremental value (integrator)
Bit 8: Effect of the value assignment on the system variable \$AC_OFF_R_ANGLE
0: Absolute value
1: Incremental value (integrator)
Bit 9: Suppression of the alarm 20301
0: Alarm is output
1: Alarm is suppressed
Bit 16-31: Effect of the overrides in the NC program
Bit 16: Effect of the value assignment to the components of the system variable
\$P_OFF_O[i]
0: Absolute value
1: Incremental value (integrator)

```
Bit 17: Effect of the value assignment to the components of the system variable
$P_OFF_R[i]
0: Absolute value
1: Incremental value (integrator)
Bit 18: Effect of the value assignment on the system variable $P_OFF_LEAD
0: Absolute value
1: Incremental value (integrator)
Bit 19: Effect of the value assignment on the system variable $P_OFF_TILT
0: Absolute value
1: Incremental value (integrator)
Bit 20: Effect of the value assignment on the system variable $P_OFF_THETA
0: Absolute value
1: Incremental value (integrator)
Bit 21: Effect of the value assignment on the system variable $P_OFF_O_ANGLE
0: Absolute value
1: Incremental value (integrator)
Bit 22: Effect of the value assignment on the system variable $P_OFF_R_ANGLE
0: Absolute value
1: Incremental value (integrator)
```


Description:
This data is only active for MD21102 \$MC_ORI_DEF_WITH_G_CODE = 0 $\mathrm{MD}=0$ (FALSE):

The values programmed with A2, B2, C2 during orientation programming are interpreted as an RPY angle (in degrees).
The orientation vector is produced by rotating a vector in direction Z first by $C 2$ around the Z axis, then by $B 2$ around the new Y axis and finally by $A 2$ around the new X axis. In contrast to Euler angle programming, all three values influence the orientation vector in this case.
MD = 1 (TRUE):
The values programmed with A2, B2, C2 during orientation programming are interpreted as Euler angles (in degrees).
The orientation vector is produced by rotating a vector in direction Z first by A2 around the Z axis, then by $B 2$ around the new X axis and finally by $C 2$ around the new Z axis. This means that the value of $C 2$ is meaningless.

Description:

Definition of the orientation angles A2, B2, C2:
FALSE: Definition as per MD21100 \$MC_ORIENTATION_IS_EULER
TRUE : Definition as per G code (ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2)
Only programming of angles with A2, B2, C2 is interpreted in accordance with G codes ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2 and not programming of angles by means of the orientation axes, as is the case with MD21102 \$MC_ORI_DEF_WITH_G_CODE $=1$.

21104	ORI_IPO_WITH_G_CODE	C01, C07	F2			
-	G code for orientation interpolation	BOOLEAN	NEW CONF			
-						
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 2$	

Description:

Definition of the type of interpolation for the orientation
FALSE: Referred to G codes ORIWKS and ORIMKS
TRUE : Referred to G codes ORIAXES, ORIVECT, ORIPLANE, ORICONxx and ORICURVE of the 51st G code group

21106	CART_JOG_SYSTEM						C01, C07	F2, M1
-	Coordinate systems for Cartesian JOG						UDWORD	PowerOn
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	7	M			

Description: This machine data has two meanings. First, it is used to activate the "Cartesian manual traverse" function. Second, it is used to determine the reference systems between which a switchover can be performed.
The meaning of the individual bits is determined as follows:
Bit 0 : Basic coordinate system
Bit 1 : Workpiece coordinate system
Bit 2 : Tool coordinate system

21108	POLE_ORI_MODE	C07	F2			
-	Response with vector interpolation in pole position	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	11122		
$7 / 7$	U					

Description:

This MD defines how the change in orientation in the case of vector interpolation is treated if the orientation runs through the pole taper, which is defined by MD2 4540, 24640, 25240, 35340 \$MC_TRAFO5_POLE_LIMIT_1,2,3,4.
Vector interpolation is present, if tool orientation is interpolated independent of the kinematics, e.g. by means of large circle interpolation (orientation is swiveled in a plane), taper interpolation or through interpolation of a 2 nd reference point on the tool (ORICURVE), and not directly the orientation axes.
In the pole, the pole axis can have any position. For large circle interpolation, however, this axis requires a certain orientation.

4.2 Channel-specific NC machine data

If the start orientation is equal or close to the pole orientation and the end orientation of the block lies outside the tolerance circle defined by machine data TRAFO5_POLE_LIMIT_n, the pole axis can be moved to a position suitable to ensure that the subsequent vector interpolation can be carried out. This is set via the units and tens digits of this machine data.

The units digits can have the following values (active if start orientation is equal to pole orientation):
0 : The interpolation is carried out as an axis interpolation. The specified orientation path (large circle) is followed only if the pole axis (coincidentally) has the right position and the basic orientation is perpendicular to the 2 nd rotary axis.

1: A block, that positions the pole axis such that large circle interpolation can be carried out in the subsequent block, is inserted before the block where the described situation occurs.

2: If the block preceding the block, in which the described situation occurs, contains a geometry axis movement but no orientation movement, the required positioning movement of the pole axis is additionally carried out in this previous block.

If one of the two conditions is not fulfilled (block does not contain a geometry axis movement or block contains an orientation movement), the pole axis movement is carried out in a separate block (same behavior as under 1.)
The tens digits can have the following values (active if the start orientation differs from the pole orientation, but lies within the tolerance circle defined by TRAFO5_POLE_LIMIT_n):
00: The interpolation is carried out as an axis interpolation. The specified orientation path (large circle) is followed only if the pole axis (coincidentally) has the right position and the basic orientation is perpendicular to the 2 nd rotary axis.
10: A block that positions the two rotary axes to the point where the programmed large circle interpolation intersects with the tolerance circle defined by TRAFO5_POLE_LIMIT_n is inserted before the block where the described situation occurs. In the original block, large circle interpolation is applied as of this point.

20: If the block preceding the block in which the described situation occurs contains a geometry axis movement but no orientation movement, the necessary positioning movements of the two rotary axes are additionally carried out in this previous block. The residual movement in the original block is the same as that of value 10 of this machine data.
If one of the two conditions is not fulfilled (block does not contain a geometry axis movement or block contains an orientation movement), the pole axis movement is carried out in a separate block (same behavior as under 10.)
The hundreds digit of this MD is used to set the behavior in case the orientation runs through the pole taper or ends within the pole taper.
The hundreds digit can have the following values:
000: A block with the orientation running within the pole taper is subdivided only if the start orientation is equal to the pole orientation (with POLE_ORI_MODE = 1) or is close to the pole orientation (with POLE_ORI_MODE = 10). If the pole orientation occurs at an arbitrary point in the block, the whole change in orientation is traversed by means of rotary axis interpolation. In general, this leads to a more or less significant deviation from the programmed orientation path.
100: If the programmed orientation path runs through the pole taper, the block is subdivided in up to 3 parts, so that there is a deviation from the orientation path only within the pole taper. Outside the pole taper, the orientation is interpolated exactly on the programmed orientation path.
The pole handling behavior with active ORIANGLE (interpolation of orientation in virtual axis angles) is set with the thousands digit of the MD.

Oxxx: With this setting, the normal pole behavior is active even if ORIANGLE is active. If the transformation causes a switchover to axis interpolation due to a pole, orientation is interpolated by means of the real rotary axes. This can result in considerable deviations from the programmed orientation path. Any different settings of the MD \$MC POLE ORI MODE are also effective. This means, for example, that by means of the setting MD21108 \$MC_POLE_ORI_MODE = 100 , this behavior can be changed such that deviations from the programmed orientation path only occur within the pole taper.
1xxx: If ORIANGLE is active, there is never a switchover to the interpolation of the orientation by means of real rotary axes. The orientation is always interpolated with virtual axis angles (e.g. Euler angle or RPY angle). Different settings of the MD21108 \$MC_POLE_ORI_MODE do not become effective. For example, with MD21108 \$MC_POLE_ORI_MODE = $\overline{1} 100$ the division of the orientation movement, which was activated by the value 100, does not become effective. Therefore, if MD21108 \$MC_POLE_ORI_MODE = 1xxx, the units, tens and hundreds digits are ignored.

Using the ten thousands digit, it is possible to set whether for the generic 5/6 axis transformation, alarm 14112 should be output, if the intermediate orientations do not lie in the orientation range of the kinematics but final orientation of the block is possible:

0xxxx: The intermediate orientations are checked, as to whether these can be reached. If an orientation characteristic is programmed which goes through the range that cannot be reached, alarm 14112 (program orientation path not possible) is output.
1xxxx: The intermediate orientations are checked as to whether these can be reached. However, no alarm is output if the orientation runs through the range that cannot be reached, instead, the orientation change is performed using the rotary axis interpolation. This can result in significant deviations in orientation from the programmed orientation characteristic.
The values of the units, tens, hundreds and thousands digits are added. If the thousands digit $=1$, the remaining decimals of the MD are not evaluated (with the exception of the ten thousands digit).

21110	X_AXIS_IN_OLD_X_Z_PLANE							EXP, C01, C09	M1, K2
-	Coordinate system for automatic frame definition	BOOLEAN	NEW CONF						
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	$7 / 7$				

Description:

$1=$ With automatic definition of a frame (TOFRAME), the Z direction of which equals the current tool orientation, the new coordinate system is additionally rotated around the new Z axis so that the new X axis is in the old $Z-X$ plane.
$0=$ With automatic definition of a frame (TOFRAME), the Z direction of which equals the current tool orientation, the new coordinate system is maintained as it results from the kinematics of the machine, i.e. it is assumed that the coordinate system is fixed to the tool and rotates with the tool (orientation).
From SW 5.3:
This machine data is only effective when the three lowest value decimal positions
(units, tens, hundreds) of SD42980 \$SC_TOFRAME_MODE) equal zero. Otherwise the frame
definition is specified by SD42980 \$SC_TOFRAME_MODE.
MD irrelevant for:
No orientation programming
Related to:
MD21100 \$MC_ORIENTATION_IS_EULER
Further references:
/PG/, Programming Guide, Fundamentals

21130	ORIAX_TURN_TAB_2	C07	F2		
-	Definition of reference axes for orientation axes	BYTE	NEW CONF		
-					
-	3	$1,2,3,1,2,3,1,2,3$, $1,2,3,1,2,3,1,2,3$, $1,2,3,1 \ldots$	3	$7 / 2$	M

Description:
Defines the assignment of the rotations of the orientation axes around the reference axes for each channel (definition 2).
This orientation description is activated with the G code ORIVIRT2
0: No rotation
1: Rotation around reference axis X
2: Rotation around reference axis Y
3: Rotation around reference axis Z
Example :
MD21120 \$MC_ORIAX_TURN_TAB_1[0] = 3 ; 1st ORI axis rotates around reference axis Z MD21120 \$MC_ORIAX_TURN_TAB_1[1] = 2 ; 2nd ORI axis rotates around reference axis Y MD21120 \$MC_ORIAX_TURN_TAB_1[2] = 1 ; 3rd ORI axis rotates around reference axis X

Description:
This MD is used to activate the modulo display of orientation axes.
This only impairs the displayed positions and not the possible programming or traversing range of these axes.
The modulo range is set using MD21134 \$MC_ORI_DISP_MODULO_RANGE and MD21136 \$MC_ORI_DISP_MODULO_RANGE_START.

21134	ORI_DISP_MODULO_RANGE			C07	-	
degrees	Size of the modulo range for orientation axis display.			DOUBLE	NEW	
-						
-	3	360.0, 360.0, 360.0, 360.0, 360.0, 360.0, 360.0, 360.0, 360.0, 3 ..	1.0	360000000.0	$7 / 7$	U

Description: Defines the size of the modulo range for the display of orientation axis positions. This modulo range does not impair the programmable values of the positions nor the possible traversing range of orientation axes.

21136	ORI_DISP_MODULO_RANGE_START			C07	-	
degrees	Starting position of the modulo range for orientation axis display.			DOUBLE	NEW CONF	
-						
-	3	$\begin{aligned} & -180.0,-180.0,-180.0, \\ & -180.0,-180.0,-180.0, \\ & -180.0,-180.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
Description:	Defines the s orientation ax This only impa traversing ran Example: Start = 0 Start $=180$ Start $=-180$	tart position for as. irs the displayed ge of these axes. degree -> modulo r degrees -> modulo degrees -> modulo	he modulo ran positions, bu nge $0<->3$ range $180<->$ range -180 <->	e used to not the 0 degrees 40 degree 80 degree	lay ble	ions of ng or

Description:

The dynamic override of the tool orientation is activated with this MD. The current
orientation is then corrected according to the current path velocity. This enables,
for example, the jet of water jet machines to be corrected as a function of the
velocity. See also the MDs
MD21142 \$MC_DYN_ORI_OFF_VEL
MD21144 \$MC_DYN_ORI_OFF_ANGLE

Description:
For the dynamic override of the tool orientation. The outflow speed of the water jet is specified with this data.

21155	JOG_VELO_ORI	C07	F2			
rev/min	Jog feedrate for orientation axes	DOUBLE	Reset			
-						
-	3	$2.0,2.0,2.0,2.0,2.0$, $2.0,2.0,2.0,2.0,2.0$, $2.0,2.0,2.0, \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description: Velocity in JOG mode for orientation axes in the channel

21159	JOG_JERK_ORI_ENABLE			C07	F2	
-	Jogging of orientation axes with SOFT			BOOLEAN	Rese	
-						
-	3	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, F...	0	-	7/2	M

21160	JOG_VELO_RAPID_GEO	C07	F2			
$\mathrm{mm} / \mathrm{min}$	JOG rapid traverse for geometry axes	DOUBLE	Reset			
-						
-	3	$10000 ., 10000.0$, $10000 ., 10000 .$, $10000.0,10000 .$, $10000 ., 10000 . \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

Description: Velocity in JOG mode with rapid traverse override for geometry axes in the channel (mm/ min)

Description: JOG velocity for geometry axes in the channel ($\mathrm{mm} / \mathrm{min}$)

21166	JOG_ACCEL_GEO	C07, A04	F2					
$\mathrm{m} / \mathrm{s}^{2}$	Acceleration for geometry axes						DOUBLE	Reset
-								
-	3	$.0, .0, .0, .0, .0, .0, .0,$. $0, .0, .0, .0, .0, .0, .0,$. $0, .0, \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$			

Description: Acceleration of the geometry axes when traversing in Jog mode.
If the machine data has the value zero, the value of the machine data MD32301 \$MA_JOG_MAX_ACCEL[<axis>] is used.

Description:
The jerk limit value limits the change in acceleration of the geometry axes in SOFT mode when jogging. The acceleration divided by the jerk limit value results in a time period during which the acceleration is changed.
If the machine data has the value zero, the value of the machine data MD32436 \$MA_JOG_MAX_JERK[<axis>] is used.
Jerk limitation during jogging of geometry axes is activated by the machine data \$JOG_AND_POS JERK_ENABLED[<axis> = 1 (SOFTA) of the underlying machine axes, and it is deactivā̄ed b̄y \$JOGG_AND_POS_JERK_ENABLED[<axis>] = 0 (BRISKA), or by means of the NC commands SOFTA, DRIVEA or BRISKA.
Not relevant for:
Fault conditions that cause a rapid stop.

Description: Acceleration for orientation axes in the channel

21180	ROT_AX_SWL_CHECK_MODE	C07	F2			
-						
-	Check of software limits for orientation axes	DWORD	NEW CONF			
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	112	$7 / 7$	

Description:

This machine data is evaluated only with the generic 5-axis transformation.
If the block preparation shows that the path programmed in the direction programming would lead to a violation of the software limits of the orientation axes, this machine data determines how the motions of the rotary axes have to be modified.

The units digit of the $M D$ is used to determine how alternative end positions of the rotary axes are created if the software limits would be violated. The tens digit is used to determine how the axes approach these end positions. The hundreds digit is used to activate an automatic limitation of the axis that swivels through the pole (nonpole axis).
Meaning of the units digit:
0: The path is not modified. Alarm 10720 (SW_LIMITSWITCH) is output if it is not possible to travel along the shortest path.
1: If the initially determined orientation path would violate the limits of the orientation axes, an attempt is made to modify the end points so that a motion becomes possible.
The first attempt uses the second solution. (There are usually two solutions to the conversion: orientation $==>$ angle of axis). If this solution would also violate the axis limits, an attempt is made to find a permissible solution by modifying both rotary axes by multiples of 360 degrees in both solutions.
The modifications of end positions described will only be performed if axis interpolation of rotary axes is active.

2: Monitoring and possibly modifications of the rotary-axis positions are the same as those when the machine data has the value 1.

However, modifications are also permissible if vector interpolation (large-circle interpolation, taper circumference interpolation, etc.) is active. If, in such a case, the rotary-axes positions would have to be modified, there is a switch to axis interpolation. The originally programmed orientation path will then usually not be followed.

Meaning of the tens digit:
0x: The orientation axes travel simultaneously to their possible end positions. There may be larger or smaller deviations from the original orientation path.

1x: If possible, the orientation is first rotated in the pole direction. In the pole position, the pole axis is then positioned so that the final orientation can be approached by rotating the orientation from the pole position into the programmed direction. The originally programmed orientation path is then followed.
Meaning of the hundreds digit:
0xx: The range of the non-pole axis is determined by its software limits or working area limitations.
lxx: The range of the non-pole axis is limited either in the positive or negative travel range. The possible range is limited by the larger of the absolute positive and negative values.

Examples:

1. MD36100 \$MA_POS_LIMIT_MINUS[AX5] = -5.0 and MD36110 \$MA_POS_LIMIT_PLUS[AX5] = 135.0, the possible range of axis AX5 is 0 ... 135.0
2. MD36100 \$MA_POS_LIMIT_MINUS[AX5] = -100.0 and MD36110 \$MA_POS_LIMIT_PLUS [AX5] = 10.0, the possible range of axis AX5 is $-100.0 \ldots 0.0$
3. MD36100 \$MA_POS_LIMIT_MINUS[AX5] = 5.0 und MD36110 \$MA_POS_LIMIT_PLUS[AX5] = 120.0, the possible range is 5.0 ... 120.0, there is no automatic limitation of the travel range.

Description:
Rotary axes offset for the orientable tool holder is automatically accepted from the work offset activated on activation of the orientable tool holder for the rotary axes.

21190	TOFF_MODE		C08	F2, 2.4	
-	Mode of correction in tool direction		UDWORD	Reset	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	0x7FF	7/2	M

Description:

1: Abortion of the traversing movement, that means no collection
Bit 9: \$AA_TOFF handwheel override possible without activation by TOFFON.
0 : \$AA_TOFF handwheel override possible only after activation of the \$AA_TOFF function by TOFFON.
1: \$AA_TOFF handwheel override possible without activation of the \$AA_TOFF function by TOFFON.

Bit 10: Axis assignment of the TOFF components on plane change.
0 : The axis components are exchanged cyclically on plane change from G17 to G18 or G19. This means that all three axes of the rotated coordinate system point in the positive axis directions of the initial coordinate system.
1: The coordinate system is rotated -90 degrees around the X axis on plane change from G17 to G18, and 90 degrees around the Y axis on plane change from G17 to G18.

In both cases, the rotated Z axis points in the same direction as when bit 10 is not set.

The other two axes are exchanged in comparison to the setting with bit 10 not set, and one of the two axes points in the negative direction.

This setting should only be used if compatibility with older software versions is required (SW 4.5 and older). This setting is not recommended for new developments.

Description: Feedrate for online correction in tool direction [mm/min] via \$AA_TOFF[]

Description: Acceleration for online correction in tool direction [m/s**2] via \$AA_TOFF[]

Description:
If, in the case of an orientation transformation, the effective BCS position or the effective tool length deviates from the values applied in preprocessing by more than the value defined in this machine data (e.g. due to superimposed movement or the activation of online tool length offset), real-time limiting of the dynamic response is activated.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline 21199 & \text { ORI_TRAFO_ONLINE_CHECK_LIMR } & \text { C07 } & \text { F2 } \\ \hline \text { degrees } & \begin{array}{l}\text { Activation limit for real-time monitoring of dynamic response, } \\ \text { rotary axes }\end{array} & \text { DOUBLE } & \text { NEW CONF } \\ \hline- & - & \begin{array}{l}1.0,1.0,1.0,1.0,1.0, \\ 1.0,1.0,1.0 \ldots\end{array} & 0.0 & 1.0 \mathrm{E}+301 & 7 / 2\end{array}\right] \mathrm{M} 9$

Description: If, in the case of an orientation transformation, the effective BCS position of one of the rotary axes involved in the transformation deviates from the values applied in preprocessing by more than the value defined in this machine data (e.g. due to superimposed movement), real-time limiting of the dynamic response is activated.

Description:
The machine data determines the absolute value of the traverse movement for rapid lift. The direction of the traverse movement is defined in the part program by the command ALF.
References:
/PA/, Programming Guide: Fundamentals

Description:
1: When determining the retraction direction, if mirroring of the contour is active then the retraction direction is also mirrored. Mirroring of the retraction direction only refers to the directional components vertical to the tool direction.
0: Mirroring of the contour is NOT taken into account when determining the retraction direction.

Description:

Bit0: Behavior of LFWP with active frame
$=0$ If the retraction direction is defined with LFWP, the active frame is not effective.
$=1$ If the retraction direction is defined with LFWP, the active frame is effective. In
this case MD21202 \$MC_LIFTFAST_WITH_MIRROR has no effect.

21204	LIFTFAST_STOP_COND	C09	M3			
-	Stop behavior with fast retraction	UDWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 .$.	0	$0 x 7 F F F F F F F$	$7 / 2$	

Description: Specifies the stop behavior of the liftfast motion under different stop conditions Bit0: Axial NC/PLC interface signal DB31, ... DBX4.3 (Axial feed stop / Spindle stop) or CP-SW limit stop or a stop by an OEM application
$=0$ Stop of the retraction motion in case of an axial feed stop or CP-SW limit stop or stop by an OEM application
$=1$ No stop of the retraction motion in case of an axial feedstop or CP-SW limit stop
or stop by an OEM application
Bit1: Feed disable in channel NC/PLC interface signal DB21-30 DBX6.0 (Feed stop)
$=0$ Stop of the retraction motion in case of a feed stop in the channel
$=1$ No stop of the retraction motion in case of a feed stop in the channel

21220	MULTFEED_ASSIGN_FASTIN	C01, C09	A4, V1		
-					
-	Assignment of the NC I/Os for 'several feedrates in the block'	UDWORD	PowerOn		
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 \times 7 F F F F F F F$	

Description: In MD21220 \$MC_MULTFEED_ASSIGN_FASTIN (assignment of the input bytes of the NC I/Os for "Multiple feeds in one block"), at most two digital input bytes or comparator input bytes of the NC I/Os can be assigned to the input byte for the "Multiple feeds in one block" function.

Furthermore, the assigned input signals can be inverted with the machine data.
The MD is coded as follows:
Bit 0-7
No. of lst digital input byte or comparator input byte used
Bit 8 - 15:
No. of 2 nd digital input byte or comparator input byte used
Bit 16 - 23 :
Inversion mask for describing the lst byte
Bit 24 - 31 :
Inversion mask for describing the 2 nd byte
Bit=0: do not invert
Bit=1: invert
The number for the digital inputs should be specified as follows:
1: for the on-board byte

2 - 5: for external bytes
The number for a comparator input byte should be specified as follows:
128: for comparator 1 (corresponds to 80Hex)
129: for comparator 2 (corresponds to 81Hex)

21230	MULTFEED_STORE_MASK	C01, C09	V1			
-	Memory response for 'several feedrates in the block'	UBYTE	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	-	$7 / 2$	

Description:	```The priority of the signals for feeds F2 - F7 of the "Multiple feeds in one block" function decreases as the bit number increases in the input byte. The highest priority signal determines the current feed.```
	The MD21230 \$MC_MULTFEED_STORE_MASK (store input signals of the "Multiple feeds in one block" function) can be used to specify the response when the highest priority input drops out:
	Set bit $2-7$ has the effect that the associated feed (F2 to F7) that has been selected by the highest priority input signal in each case is retained, even if the input signal drops out and a lower priority is present.
	The MD is coded as follows:
	Bit 0-1: No significance
	Bit $2-7:$ Storage response of the feed signals

21240	PREVENT_SYNACT_LOCK_CHAN	C01, C09	-			
-	Protected synchronized actions	DWORD	PowerOn			
-						
-	2	$-1,-1,-1,-1,-1,-1,-1$, $-1,-1,-1,-1,-1,-1,-1$, $-1,-1 \ldots$	1399	$7 / 2$	M	

Description:
The machine data specifies a range of synchronized action IDs.
Synchronized actions with IDs in this range cannot be overwritten, canceled or locked via synchronized actions.

With 0.0, there is no range of protected synchronized actions. The values are read as absolute values; the upper value and the lower value can be indicated in any order. If a value is configured with -1, the configuration of the general machine data becomes active.

Note:
During the creation of protected static synchronized actions, the protection should be canceled; otherwise, a power ON would be necessary for each change in order to be able to redefine the logic.

21300	COUPLE_AXIS_1	C09	S3					
-	$\begin{array}{l}\text { Synchron. spindle pair def, mach. axis no: follow. spindle [0], } \\ \text { lead.sp [1] }\end{array}$	BYTE	PowerOn					
-								
-	2	$\begin{array}{l}0,0,0,0,0,0,0,0,0, \\ 0,0,0,0,0,0,0 \ldots\end{array}$	0	31	$7 / 2$		$]$	M
:---								

Description:
One pair of synchronous spindles per NC channel can be defined in a fixed configuration with this machine data.

The machine axis numbers (channel-specific MD20070 \$MC_AXCONF_MACHAX_USED) applicable in the $N C$ channel must be entered for the following spindle [$n=0$] and the leading spindle [n=1].
The coupling is not regarded as configured if values of "0" are entered, thus leaving 2 couplings to be configured freely via the NC part program.

MD irrelevant for:
User-defined coupling
Related to:
Channel-specific MD21310 \$MC_COUPLING_MODE_1
(type of coupling in synchronous spindle mode)
Channel-specific MD21340 \$MC_COUPLE_IS_WRITE_PROT_1
(coupling parameters cannot be changed)
Channel-specific MD21330 \$MC_COUPLE_RESET_MODE_1
(coupling cancelation response)

Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1
(block change response in synchronous spindle mode)
SD42300 \$SC_COUPLE_RATIO_1
(speed ratio parameters for synchronous spindle mode)

21310	COUPLING_MODE_1		C03, C09	S3	
-	Type of coupling in synchronous spindle operation		BYTE	Pow	
-					
-	1, 1, 1, 1, 1, 1, 1, 1...	0	2	7/2	M

Description:
This machine data determines the type of coupling for the fixed coupling configuration defined with machine data COUPLE_AXIS_1[n].
1: Setpoint coupling activated.
With a setpoint coupling, the reference variable for the following spindle is calculated from the position setpoint of the leading spindle, thus allowing the setpoints for the FS and LS to be input simultaneously. This has a particularly positive effect on the spindle synchronism during acceleration and deceleration processes.
A setpoint coupling thus achieves better command behavior than an actual-value coupling.
When a setpoint coupling is used, the following conditions must be fulfilled before synchronous mode is activated:

- The LS must be assigned to the same NC channel as the FS
- The FS and LS must be in position control mode (SPCON)
- The FS and LS must have the same dynamic control response

0: Actual-value coupling activated.
With an actual-value coupling, the command variable for the following spindle is calculated from the actual position value of the leading spindle. With this type of coupling, the following drive must be significantly more dynamic than the leading drive, but never vice versa.
The actual-value coupling can be used, for example, in the following cases:

- The LS must be assigned to a different NC channel than the FS.
- For leading spindles which are not suitable for position control.
- In cases where the dynamic control response of the leading spindle is considerably slower than that of the following spindle. As soon as the actual-value coupling is active, the NC/PLC interface signal DB31, ... DBX98.2 (Actual-value coupling) for the FS is set to "1-signal".
2: Speed coupling activated.
Internally, the speed coupling is a setpoint coupling. Lower dynamic requirements are placed on the FS and LS. A defined relation between the positions of the FS and LS cannot be established.
A speed coupling is used in the following cases:
- LS and/or FS are not in position control.
- There are no measuring systems present.

The coupling type can be altered in the $N C$ part program when the coupling is deactivated by means of language instruction COUPDEF provided this option has not been inhibited by the channel-specific MD21340 \$MC_COUPLE_IS_WRITE_PROT_1. However, the parameterized value of channel-specific MD21310 \$MC_COUPLING_MODE_MD irrelevant to:
User-defined coupling
Related to:
Channel-specific MD21300 \$MC_COUPLE_AXIS_1
(definition of pair of synchronous spindles)
Channel-specific MD21340 \$MC_COUPLE_IS_WRITE_PROT_1
(write-protection for configured coupling parameters)
NC/PLC interface signal DB31, ... DBX98.2 (Actual-value coupling)

21320	COUPLE_BLOCK_CHANGE_CTRL_1	C09	S3			
-						
-	Block change behavior in synchronous spindle operation	BYTE	PowerOn			
-	-	$3,3,3,3,3,3,3,3 \ldots$	0	3	$7 / 2$	

Description:
This machine data determines the condition under which a block change has to be executed when synchronous mode is activated for the fixed coupling configuration defined in the channel-specific machine data COUPLE_AXIS_ [n].
The following options are available:
0: Block change is enabled immediately
1: Block change in response to "Fine synchronization"
2: Block change in response to "Coarse synchronization"
3: Block change in response to IPOSTOP (i.e. after setpoint-based synchronization)
The block change response can be altered in the NC part program with language
instruction COUPDEF provided this option is not inhibited by the channel-specific
MD21340 \$MC_COUPLE_IS_WRITE_PROT_1. However, the parameterized value of the channel-

The selected block change response remains valid even when the velocity ratio is changed or a defined angular offset is programmed while the coupling is active.
MD irrelevant for:
User-defined coupling
Related to:
Channel-specific MD21300 \$MC_COUPLE_AXIS_1
(definition of pair of synchronous spindles)
Channel-specific MD21340 \$MC_COUPLE_IS_WRITE_PROT_1
(coupling parameters cannot be changed)
Channel-specific MD37200 \$MA_COUPLE_POS_TOL_COARSE or MD37220
\$MA_COUPLE_VELO_TOL_COARSE
(threshold value for coarse synchronization)
Channel-specific MD37210 \$MA_COUPLE_POS_TOL_FINE or MD37230 \$MA_COUPLE_VELO_TOL_FINE
(threshold value for fine synchronization)

21330	COUPLE_RESET_MODE_1	C03, C09	S3, K1					
-	Coupling cancelation behavior						UDWORD	PowerOn
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	$0 \times 3 F F$	7/2			

Description:

This machine data defines the behavior of the synchronous mode for the pair of synchronous spindles configured with machine data COUPLE_AXIS_1[n].
Bit $0=0$:
Synchronous mode remains active with a new program start and, as long as the control remains switched on, can be canceled only with COUPOF.
Bit $0=1$:
Synchronous mode is canceled with program start (from the reset condition).
Bit 1=0:
Synchronous mode remains active even with program end and reset and, as long as the control remains switched on, can be canceled only with COUPOF.
Bit 1=1:
Synchronous mode is canceled with program end or RESET.
Bit 5=1:

The configured data are activated with program start.
Bit 6=1:
The configured data are activated with program end or RESET.
Bit 9=1:
Synchronous mode is switched on with program start.
Note:
Synchronous mode is not deselected with NC Start after NC Stop.
MD irrelevant to:
User-defined coupling
Related to:
Channel-specific MD21300 \$MC_COUPLE_AXIS_1 (definition of pair of synchronous spindles)

NC/PLC interface signal DB31, ... DBX84.4 (Active spindle mode - synchronous mode)

21340	COUPLE_IS_WRITE_PROT_1		C09	S3	
	Coupling parameters cannot be altered		BOOLEAN	PowerOn	
	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE..			7/2	M
Description:	This machine data defines whether or not the coupling parameters (speed ratio, block change response, coupling type) for the pair of synchronous spindles configured with channel-specific machine data COUPLE_AXIS_1[n] may be altered by the NC part program. 1: Coupling parameters may not be altered by the NC program (write-protection active) An alarm message is generated if an attempt is made to change the parameters. 0: NC part program may alter coupling parameters using language instruction COUPDEF. MD irrelevant for: User-defined coupling Related to: Channel-specific MD21300 \$MC_COUPLE_AXIS_1 (definition of pair of synchronous spindles) Channel-specific MD21310 \$MC_COUPLING_MODE_1 (type of coupling in synchronous spindle mode) Channel-specific MD21330 \$MC_COUPLE_RESET_MODE_1 (coupling cancelation response) Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1 (block change response in synchronous spindle mode) SD42300 \$SC_COUPLE_RATIO_1 (speed ratio parameters for synchronous spindle mode)				

21380	ESR_DELAY_TIME1	EXP, N09	M3			
s	Delay time ESR axes	DOUBLE	NEW CONF			
-						
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	

[^9] for example, to enable a retraction from the tooth gap (ESR) in gear wheel machining.

4.2 Channel-specific NC machine data

21381	ESR_DELAY_TIME2		EXP, N09	M3	
s	ESR time for IPO controlled braking		DOUBLE	NEW CONF	
-					
-	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description: When time MD21380 \$MC_ESR_DELAY_TIME1 has expired, the time (MD21381 \$MC_ESR_DELAY_TIME2) specified for interpolatory braking is still available.
When time MD21381 \$MC_ESR_DELAY_TIME2 has expired, rapid deceleration with following tracking is initiated.

Description:

The vertical offset of the grinding axis is specified in this MD.

21501	TRACLG_GRINDSPI_HOR_OFFSET		C07	-	
mm	Horiz. position offset of grinding axis in centerless grinding		DOUBLE	Pow	
-					
-	$\begin{aligned} & \text { 0., 0., 0., 0., 0., 0., 0., } \\ & 0 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 2$	M

Description: Horizontal position offset of the grinding axis in centerless grinding.
The setting in this MD is significant only when MD: TRAFO_AXES_IN_n[0] = 0, i.e. no axis is programmed for the grinding wheel.

21502	TRACLG_CTRLSPI_VERT_OFFSET	C07	-					
mm	Vert. position offset of regulating axis in centerless grinding						DOUBLE	PowerOn
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . . .$.	-MD_DBLMAX	$1.0 \mathrm{E}+301$				

Description: The vertical offset for the regulating axis is specified in this MD.

Description:

X offset for work blade
Rule: $X(0)=X(o f f s e t)+Q 1<X(d i r e c t i o n ~ v e c t o r ~ Q 1)+Q 2<X(d i r e c t i o n ~ v e c t o r ~ Q 2) ~$

21516	TRACLG_SUPPORT_LEAD_ANGLE	C07	-		
degrees	Lead angle of work blade in centerless grinding	DOUBLE	PowerOn		
-	-	0., 0., 0., 0., 0., 0., 0., $0 . \ldots .$.	-90.	90.	$7 / 2$
-	O.				

21518	TRACLG_CONTACT_UPPER_LIMIT		C07	-	
mm	Upper contact limit of work blade with work in centerl. grinding		DOUBLE	PowerOn	
-					
-	$\begin{aligned} & 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., \\ & 0 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M
Description:	It is necessary to specify the upper contact limit of the blade with the part to be ground (d1) for the purpose of monitoring the support range limits.				

21520	TRACLG_CONTACT_LOWER_LIMIT		C07	-	
mm	Lower contact limit of work blade with work in centerl. grinding		DOUBLE	PowerOn	
-					
-	$\begin{aligned} & 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., \\ & 0 . . . \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M

Description: It is necessary to specify the lower contact limit of the blade with the part to be ground (d2) for the purpose of monitoring the support range limits.
Related to:
MD: TRACLG_CONTACT_UPPER_LIMIT

Description: The number of the grinding spindle is specified in this MD.

21524	TRACLG_CTRLSPI_NR		C07	-	
-	Definition of regulating spindle for centerless grinding		BYTE	Pow	
-					
-	1, 1, 1, 1, 1, 1, 1, 1...	1	20	7/2	M

Description: The number of the regulating spindle is specified in this MD.

Description:
This MD can be used to define how the speed of the regulating wheel must respond in the case of transitions from motion blocks with GO and without G0 (see table).
TRACLG_GO_IS_SPECIAL = 1 :
On transition from a motion block with GO to one without GO, the speed of the regulating wheel is increased during the GO block to the desired initial speed in the block without GO.
TRACLG_GO_IS_SPECIAL = 0 :
The speed of the regulating wheel is controlled only for motion blocks without G0 (the transitions from a motion block with GO to one without GO are not taken into account).

22000	AUXFU_ASSIGN_GROUP	C04	H2, S1		
-	Auxiliary function group	DWORD	PowerOn		
-					
-	255	$1,1,1,1,1,1,1,1,1$, $1,1,1,1,1,1,1,1,1$, $1,1,1,1, \ldots$	1	168	M

| Description: |
| :--- | :--- | :--- |

Description:
See MD22010 \$MC_AUXFU_ASSIGN_TYPE [n] (auxiliary function type)

22030	AUXFU_ASSIGN_VALUE	C04	H2, S1		
-	Auxiliary function value	DWORD	PowerOn		
-					
-	255	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,, \ldots$	-	-	M

Description:
See MD22010 \$MC_AUXFU_ASSIGN_TYPE[n] (auxiliary function type)

Description:
Specification of the output behavior of the user-defined auxiliary functions. Bit $0=1 \quad$ Acknowledgment "normal" after an OB1 cycle
Bit $1=1 \quad$ Acknowledgment "quick" with OB40
Bit $2=1 \quad$ No predefined auxiliary function
Bit $3=1 \quad$ No output to the PLC
Bit $4=1$ Spindle reaction after acknowledgment by the PLC
Bit $5=1$ Output before the motion
Bit $6=1 \quad$ Output during the motion
Bit $7=1 \quad$ Output at block end
Bit $8=1 \quad$ No output after block search types $1,2,4$
Bit $9=1$ Collection during block search type 5 (SERUPRO)
Bit $10=1$ No output during block search type 5 (SERUPRO)
Bit $11=1$ Cross-channel auxiliary function during block search type 5 (SERUPRO)
Bit $12=1$ Output via synchronized action
Bit $13=1$ Implicit auxiliary function
Bit $14=1$ Active M01
Bit $15=1$ No output during running-in test
Bit $16=1$ Nibbling off
Bit $17=1$ Nibbling on
Bit $18=1$ Nibbling

Description:
Acknowledgment time for auxiliary functions in ms. See MD22010 \$MC_AUXFU_ASSIGN_TYPE[n] (auxiliary function type)

22040	AUXFU_PREDEF_GROUP	C04	H2		
-	Predefined auxiliary function groups	DWORD	PowerOn		
-					
-	301	$1,1,1,1,1,1,2,2,2$, $2,2,4,4,4,4,4,4,3$, $1,1,1, \ldots$	168	$7 / 2$	M

```
Description: Group assignment of predefined auxiliary functions.
The predefined groups cannot be changed for indices 0, 1, 2, 3, 4, 22, 23, 24.
```


22060	AUXFU_PREDEF_EXTENSION	C04	H2		
-					
-	Predefined auxiliary function extension	DWORD	PowerOn		
-	301	$0,0,0,0,0,0,1,1,1$, $1,1,1,1,1,1,1,1,1$, $0,0,0,, \ldots$	99	M	

Description: Address extension for predefined auxiliary functions:
 This setting can be changed only for indices 5 to 17 and 21!

22070	AUXFU_PREDEF_VALUE	C04	H2		
-	Predefined auxiliary function value	DWORD	PowerOn		
-					
-	301	$0,1,2,17,30,6,3,4$, $5,19,70,40,41,42$, $43,44,45,-1, \ldots$	-	-	M

Description:
Value of predefined auxiliary functions.
This setting cannot be changed!

22080	AUXFU_PREDEF_SPEC			C04	H2,	
-	Output specification			UDWORD	PowerOn	
-						
-	301	$0 \times 81,0 \times 81,0 \times 81$, 0x81, 0x81, 0x21, $0 \times 21,0 \times 21,0 \times 21$, 0×21,, $0 \times 8 \ldots$	$\begin{array}{\|l} \hline 0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0 \ldots \end{array}$	0x7FFFF, 0x7FFFF, 0x7FFFF, 0x7FFFF, 0x7FFFF, 0x7FFFF, 0x7FFFF, 0...	7/2	M

Description:

Specification of the output behavior of the predefined auxiliary functions.
Bit $0=1$ Acknowledgment "normal" after an OB1 cycle
Bit $1=1 \quad$ Acknowledgment "quick" with OB40
Bit $2=1$ No predefined auxiliary function
Bit $3=1$ No output to the PLC
Bit $4=1$ Spindle reaction after acknowledgment by the PLC
Bit $5=1$ Output before the motion
Bit $6=1$ Output during the motion
Bit $7=1$ Output at block end
Bit $8=1 \quad$ No output after block search types 1, 2, 4
Bit $9=1$ Collection during block search type 5 (SERUPRO)

```
Bit 10 = 1 No output during block search type 5 (SERUPRO)
Bit 11 = 1 Cross-channel auxiliary function during block search type 5 (SERUPRO)
Bit 12 = 1 Output via synchronized action
Bit 13 = 1 Implicit auxiliary function
Bit 14 = 1 Active M01
Bit 15 = 1 No output during running-in test
Bit 16 = 1 Nibbling off
Bit 17 = 1 Nibbling on
Bit 18 = 1 Nibbling
```


Description:
Acknowledgment time for auxiliary functions in ms.
See MD22010 \$MC_AUXFU_PREDEF_TYPE[n] (auxiliary function type)

22100	AUXFU_QUICK_BLOCKCHANGE	C04	H2			
-	Block change delay with quick auxiliary functions.	DWORD	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$7 / 2$	

Description: Block change is not delayed with quick auxiliary functions.
0: With the quick auxiliary function output the block change is delayed until acknowledgment by the PLC (OB40).
1: With the quick auxiliary function output to the PLC the block change is not delayed.
MD irrelevant for:
Auxiliary functions with normal acknowledgment
References:
/FBSY/, Synchronized Actions

22110	AUXFU_H_TYPE_INT	C11, C04	H2, K1			
-	Data format of H auxiliary functions (integer/real)	DWORD	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1		

Description: 0: The values of H auxiliary functions are present in floating point format. The maximum value range is $+/-3.4028$ ex 38 .
1: The value of H auxiliary functions is rounded and changed to an integer.
The basic program in the PLC must interpret the value as an integer.
The maximum value range is -2147483648 to 2147483647.

Description:
Synchronization of the M auxiliary functions with regard to a simultaneously programmed axis motion.
$0=$ Output before motion

1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
Notice:
An auxiliary function output specification configured by MD22080 \$MC_AUXFU_PREDEF_SPEC[preIndex], MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] or
A group output specification configured by MD11110 \$MN_AUXFU_GROUP_SPEC[groupIndex] has a higher priority.

22210	AUXFU_S_SYNC_TYPE	C04	H2, 2.4		
-	Output time of S functions	BYTE	PowerOn		
-					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	4	$7 / 2$

Description:

Synchronization of the S auxiliary functions with regard to a simultaneously programmed axis motion.
$0=$ Output before motion
1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
4 = Output in accordance with the predefined output specification
Notice:
An auxiliary function output specification configured by MD22035
\$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.

22220	AUXFU_T_SYNC_TYPE		C11, C04	H2, 2.4	
-	Output time for T functions		BYTE	PowerOn	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	4	7/2	M

Description:

Synchronization of the T auxiliary functions with regard to a simultaneously programmed axis motion.
$0=$ Output before motion
1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
4 = Output in accordance with the predefined output specification
Notice:
An auxiliary function output specification configured by MD22035
\$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.

An auxiliary function output specification configured by MD22080 \$MC_AUXFU_PREDEF_SPEC[preIndex], MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] or A group output specification configured by MD11110 \$MN_AUXFU_GROUP_SPEC[groupIndex], which has a higher priority.

22240	AUXFU_F_SYNC_TYPE	C04	H2, K1, V1, Z1			
-	Output time for F functions	BYTE	PowerOn			
-						
-	-	$3,3,3,3,3,3,3,3 \ldots$	0	4	$7 / 2$	

Description:

Synchronization of the F auxiliary functions with regard to a simultaneously programmed axis motion.
$0=$ Output before motion
1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
4 = Output in accordance with the predefined output specification
Notice:
An auxiliary function output specification configured by MD22035
\$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.

22250	AUXFU_D_SYNC_TYPE	C04	H2			
-	Output time for D functions	BYTE	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	4	$7 / 2$	

Description:
Synchronization of the D auxiliary functions with regard to a simultaneously programmed axis motion.
$0=$ Output before motion
1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
4 = Output in accordance with the predefined output specification
Notice:
An auxiliary function output specification configured by MD22035
\$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.

22252	AUXFU_DL_SYNC_TYPE	C04	H2			
-	Output time of DL functions	BYTE	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	4	$7 / 2$	

Description: Synchronization of the auxiliary function with regard to a simultaneously programmed motion.
0 = Output before motion
1 = Output during motion
2 = Output at block end
3 = No output to the PLC (therefore no block change delay)
4 = Output in accordance with the predefined output specification
Notice:
An auxiliary function output specification configured by MD22035
\$MC_AUXFU_ASSIGN_SPEC[auxIndex] has a higher priority.

Description:
4.2 Channel-specific NC machine data
$\left.\begin{array}{|l|l|l|l|l|l|}\hline 22400 & \text { S_VALUES_ACTIVE_AFTER_RESET } & \text { C04, C03, C05 } & - \\ \hline- & \text { S function active beyond RESET } & \text { BOOLEAN } & \text { PowerOn } \\ \hline- & - & \begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array} & 0 & - & 7 / 2\end{array}\right]$ M

Description:

1: The last S values set in the main run are still active after a RESET. This also applies to the dynamic correction values ACC, VELOLIM in spindle mode. 0 0: The various S values are equal to 0 after a RESET, and must therefore be reprogrammed.
The dynamic correction values $A C C$ and VELOLIM are reset to 100% for spindle mode if the axis-specific MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET and MD32320 \$MA_DYN_LIMIT_RESET_MASK do not specify anything else.
Note:
The values for ACC and VELOLIM are also retained for spindle mode if MD35040
\$MA_SPIND_ACTIVE_AFTER_RESET is not equal to zero or the axis-specific MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET is not equal to zero.

22410	F_VALUES_ACTIVE_AFTER_RESET	C04, C03, C05	M3, V1			
-	F function active beyond RESET	BOOLEAN	PowerOn			
-						
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 2$	

Description:

1: The last programmed F, FA, OVR and OVRA values are still active after RESET.
This also applies to the dynamic correction values (ACC, VELOLIM, JERKLIM, ACCLIMA, VELOLIMA, JERKLIMA).
0: The various values are set to their default values after reset.
This does not apply to the dynamic correction values if the axis-specific MD32320 \$MA_DYN_LIMIT_RESET_MASK specifies anything else.
Note:
The dynamic correction values are also retained if the axis-specific MD32320 \$MA_DYN_LIMIT_RESET_MASK is not equal to zero.
Related to:
MD22240 \$MC_AUXFU_F_SYNC_TYPE Output time of the F functions

22420	FGROUP_DEFAULT_AXES	C11	-			
-	Default setting for FGROUP command	BYTE	PowerOn			
-						
-	8	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	-	$7 / 7$	U	

Description:

Default setting for $F G R O U P$ command. You can specify up to 8 channel axes whose resulting velocity is equivalent to the programmed path feed.

If all eight values are zero (default), the geo axis entered in MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB are active as the default setting for the FGROUP command as previously.

22440	FGROUP_PATH_RATIO	EXP	-					
-								
-	Path ratio when using the FGROUP singularity strategy	DOUBLE	Immediately					
-	-	$\begin{array}{l}1.0,1.0,1.0,1.0,1.0, \\ 1.0,1.0,1.0 \ldots\end{array}$	0.	$1 . e 6$	$3 / 3$		$]$	U
:---								

Description: Ratio of the path of non-FGROUP axes to the FGROUP axes, from which also the path of the first is taken into account for the reference of the path velocity.
Is only of significance for MD22430 \$MC_FGROUP_PATH_MODE > 0 . A value of 0 has the same effect as if all axes were in the FGROUP. For larger values, this approaches the behavior of that of MDMD22430 \$MC_FGROUP_PATH_MODE $=0$.
Corresponds with:
MD22420 \$MC_FGROUP_DEFAULT_AXES, MD22430 \$MC_FGROUP_PATH_MODE

22510	GCODE_GROUPS_TO_PLC	C04	K1, P3 pl, P3 sl			
-						
-	G codes output at NCK-PLC interface on block change/RESET	BYTE	PowerOn			
-	8	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	-	$7 / 2$	M	

Description:

Specification of the G code group, the G codes of which are output to the NCK/PLC interface in case of block change/ reset.
The interface is updated after each block change and reset.
Notice:
It is not guaranteed that a PLC user program has at all times a block-synchronous relation between the active NC block and the G codes present.
Example: Path mode with very short blocks

Description:
Specification of the G code group of external languages, the G codes of which are output at the NCK interface on block change/reset.
The interface is updated at each block change and after RESET.
Notice:
It is not guaranteed that a PLC user program has at all times a block-synchronous relation between the active $N C$ block and the G codes present. (Example: Path mode with very short blocks).

22515	GCODE_GROUPS_TO_PLC_MODE						C04	-
-	Behavior of G group transfer to PLC	UDWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	0×1	$7 / 2$			

Description:

For setting the behavior, i.e. how the G groups are to be interpreted in the PLC with regard to data.
With the current behavior (bit $0=0$), the G group is the array index of a 64 -byte field (DBB 208 - DBB 271).

Maximally the 64 th G group can be reached in this way.
With the new behavior (bit $0=1$), the data storage in the PLC consists of max. 8 bytes (DBB 208 - DBB 215).
With this procedure, the array index of this byte array is identical with the index of the MD22510 \$MC_GCODE_GROUPS_TO_PLC[Index] and MD22512
\$MC_EXTERN_GCODE_GROUPS_TO_PLC[Index].
Each index (0 - 7) may only be set for one of the two machine data; the value 0 must be entered for the other MD.
Bit $0(\mathrm{LSB})=0$:
Behavior as before, the 64-byte field is used for displaying the G codes
Bit $0(\mathrm{LSB})=1$:
The user specifies for which G groups the first 8 bytes are to be used

22530	TOCARR_CHANGE_M_CODE						C04	H2, W1
-	M code at change of tool holder	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	-99999999	99999999	$7 / 2$			

Description: The absolute value of this machine data indicates the number of the M code, which is output at the VDI interface when a tool holder is activated.

- If the MD is positive, the unchanged M code is always output.
- If the MD is negative, the number of the tool holder is added to the absolute value of the machine data and the number is output.
Special cases:
N M code is output, if the number of the M code to be output or the absolute value of this MD is set to one of the values 0 to 6,17 or 30 . It is not monitored whether an M code created in this way will conflict with other functions.
References:
/FB/, H2, Auxiliary Function Output to PLC

22532	GEOAX_CHANGE_M_CODE	C04	H2, K2		
-	M code at change of geo axes	DWORD	PowerOn		
-					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	99999999	

Description: Number of the M code, which is output at the VDI interface in the case of a switchover of the geometry axes.
No M code is output if this MD is set to one of the values 0 to 6, 17 or 30 .
It is not monitored whether an M code created in this way will conflict with other functions.

22534	TRAFO_CHANGE_M_CODE						C04	M1, H2
-	M code at change of transformation	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	99999999	$7 / 2$			

Description: Number of the M code that is output at the VDI interface in the case of a transformation changeover of the geometry axes.
No M code is output if this MD is set to one of the values 0 to 6,17 or 30 . It is not monitored whether an M code created in this way will conflict with other functions.

22550	TOOL_CHANGE_MODE		$\begin{aligned} & \text { C01, C11, C04, } \\ & \text { C09 } \end{aligned}$	W3, K1, W1	
-	New tool compensation for M function		BYTE	PowerOn	
-					
-			1	7/2	M

Description: The T function is used to select a tool in the program. The setting in this machine data determines whether the new tool is loaded immediately on execution of the T function:
MD22550 \$MC_TOOL_CHANGE_MODE = 0
The new tool is loaded directly with the programming of T or D. This setting is mainly used on turning machines. If a D is not programmed in the block by T, then the tool offset defined in MD20270 \$MC_CUTTING_EDGE_DEFAULT is active.
In this case, the function "Manual tools" is not enabled.
MD22550 \$MC_TOOL_CHANGE_MODE = 1
The new tool is prepared for loading on execution of the T function. This setting is used mainly on milling machines with a tool magazine in order to bring the new tool into the tool change position without interrupting the machining process. The M function entered in MD22560 \$MC_TOOL_CHANGE_M_CODE is used to remove the old tool from the spindle and load the new tool onto the spindle. According to DIN 66025, this tool change has to be programmed with M function M06.
Related to:
MD22560 \$MC_TOOL_CHANGE_M_CODE

22560	TOOL_CHANGE_M_CODE			C01, C04, C09		
-	M function for tool change			DWORD	Pow	
-						
-	-	$6,6,6,6,6,6,6,6 \ldots$	6	99999999	7/2	M

Description: If the T function is only used to prepare a new tool for a tool change (this setting is used mainly on milling machines with a tool magazine, in order to bring the new tool into the tool change position without interrupting the machining process), another M function must be used to trigger the tool change.

The M function entered in TOOL_CHANGE_M_CODE triggers the tool change (remove old tool from the spindle and load new tool into the spindle). This tool change is required to be programmed with M function M06, in accordance with DIN 66025.
Related to:
MD22550 \$MC_TOOL_CHANGE_MODE

22562	TOOL_CHANGE_ERROR_MODE				
-	Response to tool change errors	C09	W1		
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	UDWORD	PowerOn
-	-	$7 / 2$	M		

Description:
Behavior if faults/problems occur during programmed tool change.
Bit $0=0$: Standard behavior: Stop at the faulty NC block
Bit $0=1:$ If a fault is detected in the block with the tool change preparation, the alarm relevant to the preparation command T is delayed until the corresponding tool change command (M06) has been interpreted in the program sequence. Until then, the alarm triggered by the preparation command is not output. The operator can take corrective actions in this block. When the program continues, the faulty NC block is re-interpreted, and the preparation command is automatically executed again internally.
The value = 1 is relevant only if the setting MD22550 \$MC_TOOL_CHANGE_MODE $=1$ is used. Bit 1 Only relevant with active tool management.
Bit 1=0: Standard behavior: Only tools with data assigned to a magazine are detected during tool change preparation.
Bit $1=1$: Manual tools can be loaded.
A tool will also be loaded if its data is known in the NCK but has not been assigned to a magazine. In this case, the tool data is automatically assigned to the programmed toolholder.
The user is prompted to insert tools into or remove tools from the toolholder.
Bit 2 qualifies the offset programming
Bit 2=0: active D no. > 0 and active T no. $=0$ gives offset 0
Active D no. > 0 and active D no. $=0$ gives total offset 0
Bit 2=1: active D no. > 0 and active T no. $=0$ lead to an alarm message
Active D no. > 0 and active D no. $=0$ lead to an alarm message
Bits 3 and 4 are only relevant with active tool management.
Function:
Control of the behavior of the init. block generation on program start if a disabled tool is on the spindle and this tool is to be activated.
See also: MD20112 \$MC_START_MODE_MASK, MD20110 \$MC_RESET_MODE_MASK
On RESET, this does not affect the behavior "Keep disabled tool on the spindle active". Bit $3=0$: Standard: If the tool on the spindle is disabled, generate a tool change command requesting a replacement tool. An alarm will be generated if there is no such replacement tool.
Bit $3=1$: The disabled status of the spindle tool is ignored. The tool becomes active. The subsequent part program should be formulated so that no parts are machined with the disabled tool.
Bit 4=0: Standard: The system tries to activate the spindle tool or its replacement tool
Bit 4=1: If the tool on the spindle is disabled, $T 0$ is programmed in the start init block.
The combination of bits 3 and 4 produces the following statements:
$0 / 0$: Behavior as before, automatic change on NC start if a disabled tool is in the spindle
1 / 0: No automatic change

0 / 1: A T0 is automatically generated if a disabled tool is in the spindle at NC start
1 / 1: No statement
Bit 5: Reserved
Bit 6=0: Standard: If $T 0$ or $D 0$, only $T 0$ or $D 0$ is exactly programmed.
This means that MD20270 \$MC_CUTTING_EDGE_DEFAULT and MD20272 \$MC_SUMCORR_DEFAULT
define, with the programming of $T 0$ the value of $D, D L$.
For example, MD20270 \$MC_CUTTING_EDGE_DEFAULT=1
MD20272 \$MC_SUMCORR_DEFAULT=2
MD22550 \$MC_TOOL_CHANGE_MODE=0 (tool change with T programming)
N10 T0; T no. 0 has active number $D 1$ and $D L=2$ which results in offset zero. If bit 2 is also set:

Programming of
a) TO; for tool deselection
b) DO; for offset deselection
generates an alarm, if at least one of the machine data
MD20270 \$MC_CUTTING_EDGE_DEFAULT
MD20272 \$MC_SUMCORR_DEFAULT
is not equal to zero (T0 DO DL=0 is the correct programming).
or MD20272 \$MC_SUMCORR_DEFAULT is not equal to zero (DO DL=0 is the correct programming).
Bit 6=1: controls the NCK response when programming (x, y, z all greater than zero),
if at least one of
MD20270 \$MC_CUTTING_EDGE_DEFAULT
MD20272 \$MC_SUMCORR_DEFAULT
is not equal to zero.
a) Tx Dy -> T0

TO is automatically programmed in NCK DO or DO DL=0; i.e. values not equal to zero of MD20270 \$MC_CUTTING_EDGE_DEFAULT, MD20272 \$MC_SUMCORR_DEFAULT are treated as value equal to zero.
b) Tx Dy -> TO Dy, or TO DL =z, or TO Dy DL=z, or TO DO DL=z explicitly programmed values of $D, D L$ are not influenced.
c) Dy DL=z -> DO

With DO, DL=0 is automatically programmed in the NCK; i.e. values in MD20272
\$MC_SUMCORR_DEFAULT unequal to zero are treated as values equal to zero.
d) Dy $\mathrm{DL}=\mathrm{z}$-> DO DL=z

Explicitly programmed values of DL are not influenced.
If bit 2 is also set:
Only T0 / DO have to be programmed for tool/offset deselection, and this does not generate an alarm.
The statements relating to MD20272 \$MC_SUMCORR_DEFAULT or DL are only valid if the total offset function is active
(see MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK, bit 8).
Bit 7=0: When Tx is programmed, a check is made to see whether a tool with T number x is known in the $T O$ unit of the channel. If not, the program is stopped in this block with alarm 17190.

Bit 7=1: only if the tool basic functionality is active
(MD20310 \$MC_TOOL_MANAGEMENT_MASK, bit 0,1=0)
and (MD18102 \$MN_MM_TYPE_OF_CUTTING_EDGE=0):

When Tx is programmed, an unknown $T x$ is intially ignored, and the alarm relating to the preparation command (Tx) is also ignored until the D selection is interpreted in the program sequence. Only then is alarm 17191, which has been triggered by the preparation command, output. This means that the operator can take corrective actions with the D selection in this block. When the program is continued, the incorrect NC block is re-interpreted, and the preparation command is automatically executed again internally.
(This is of interest for Cutting-Edge-Default=0 or $=-2$ and D0 programming, otherwise the D of Cutting-Edge-Default is deselected on tool change.).)
This variant is justified for programming "Tool number=Location" (turret as toolholder) without tool management. The turret can now be positioned on a location for which a tool has not (yet) been defined.
This bit has no meaning if bit $0=1$ is set.
Bit $8=0$: A tool that is located at a blocked magazine location is not taken into account when selecting a tool. (default setting)
Bit 8=1: Even a tool that is located at a blocked magazine location is taken into account when selecting a tool (this corresponds to the previous behavior.)

22600	SERUPRO_SPEED_MODE	EXP	K1			
-						
-	Speed for block search run type 5	DWORD	Immediately			
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	3		

Description:

This machine data specifies the search run mode: SERUPRO in more detail. SERUPRO search run is activated with PI service _N_FINDBL mode parameter $=5$. SERUPRO means Search Run by Program test, i.e. traversing under program test from beginning of program to search target.
Note:
Program test does not move any axes/spindles.
MD22600 \$MC_SERUPRO_SPEED_MODE= 0
Program test with the search run/dry run speed
Under program test, the axes/spindles are traversed at the following velocity/speed:
Axes: MD22601 \$MC_SERUPRO_SPEED_FACTOR*dry run feed
Spindles: MD22601 \$MC_SERUPRO_SPEED_FACTOR*programmed speed
Dynamic axis / spindle limitations are not taken into account.
MD22600 \$MC_SERUPRO_SPEED_MODE= 1
Program test at programmed speed
Under program test, the axes/spindles are traversed at the following velocity/speed:
Axes: at the same velocity as dry run feed.
Spindles: at the programmed speed.
Dynamic axis / spindle limitations are taken into account.
MD22600 \$MC_SERUPRO_SPEED_MODE= 2
Program test at dry run speed
Under program test, the axes/spindles are traversed at the programmed velocity/speed.
Dynamic axis /spindle limitations are taken into account.
MD22600 \$MC_SERUPRO_SPEED_MODE= 3
Program test at search run speed
Under program test, the axes/spindles are traversed at the following velocity/speed:
Axes: MD22601 \$MC_SERUPRO_SPEED_FACTOR*programmed feed
Spindles: MD22601 \$MC_SERUPRO_SPEED_FACTOR*programmed speed.
Dynamic axis / spindle limitations are not taken into account.
Note:

With active revolutional feedrate (e.g. G95), the programmed F value is not multiplied by the factor MD22601 \$MC_SERUPRO_SPEED_FACTOR but only by the programmed spindle speed. Here again, this increases the effective path velocity by the MD22601 \$MC_SERUPRO_SPEED_FACTOR.

Related to:
SD42100 \$SC_DRY_RUN_FEED, MD22601 \$MC_SERUPRO_SPEED_FACTOR

Description:
This machine data is activated via MD22621 \$MC_ENABLE_START_MODE_MASK_PRT.
If MD22621 \$MC_ENABLE_START_MODE_MASK_PRT is in its initial setting, MD22620 \$MC_START_MODE_MASK_PRT is inactive.
If MD22620 \$MC_START_MODE_MASK_PRT is activated for "search via program test" (abbr. SERUPRO), then $\operatorname{MD2} 26 \overline{2} 0$ \$MC_START_MODE_MASK_PRT replaces MD20112 \$MC_START_MODE_MASK when "search via program test" is started.
This enables a behavior deviating from PLC start to be set at the start of the search. The meaning of the bit-by-bit assignment of MD22620 \$MC_START_MODE_MASK_PRT is the same as that in MD20112 \$MC_START_MODE_MASK.

22621	ENABLE_START_MODE_MASK_PRT		EXP, C03	M3, K1	
-	Enables MD22620 \$MC_START_MODE_MASK_PRT		UDWORD	Reset	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0	0x1	7/2	M

Description:

MD22620 \$MC_START_MODE_MASK_PRT is activated via MD22621
\$MC_ENABLE_START_MODE_MASK_DPRT.
If MD22621 \$MC_ENABLE_START_MODE_MASK_PRT is in its initial setting, MD22620
\$MC_START_MODE_MASK_PRT is inactive.
Bit0 $=1:$

4.2 Channel-specific NC machine data

If a "search via program test" (English abbr. SERUPRO) is started from RESET (PI service _N_FINDBL mode paramter == 5), MD22620 \$MC_START_MODE_MASK_PRT replaces MD20112 \$MC_START_MODE_MASK.
This method can be used to set a start behavior differing from PLC start when the search is started.

22622	DISABLE_PLC_START		EXP	-	
-	Enable part program start via PLC		UDWORD	Pow	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0	0x7FFFFFFFF	2/2	M

Description:

Allow part program start via PLC.
This machine data will ONLY be evaluated, if "Group-Serupro" mode is switched on.
"Group-Serupro" is switched on by means of "\$MC_SERUPRO_MODE BIT2".
BITO $=0$
A part program can be started in this channel only via the PLC. Starting via the part program command "START" is interlocked.
BITO = 1
A part program can be started in this channel only by means of the part program command "START" from another channel. Starting via the PLC is interlocked.

22680	AUTO_IPTR_LOCK	EXP, C03	K1		
-	Disable interrupt pointer	UDWORD	Reset		
-					
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	0×3	
$7 / 2$	M				

Description:
With MD22680 \$MC_AUTO_IPTR_LOCK program areas are defined in which the individually indicated coupling types are active. If a program cancelation is executed in a program range that is defined as such, it will not be the currently executed part program block that is stored in the interrupt pointer (OPI module InterruptionSearch), but the last block prior to activation of the coupling.

22700	TRACE_STARTTRACE_EVENT							EXP, C06	-
-	Diagnostic data rec. starts with event TRACE_STARTTRACE_EVENT.	STRING	PowerOn						
NBUP									
-	-	-	-	-	$2 / 2$				

Description:

The machine data is intended for diagnostics.
The recording of the diagnostic data does not start until the event
(TRACE_STARTTRACE_EVENT) has occurred at the trace point
(TRACE_STARTTRACE_TRACEPOINT) and in the correct step (TRACE_STARTTRACE_STEP)!
The machine data is additionally activated using the Cancel alarm key.

22702	TRACE_STARTTRACE_STEP						EXP, C06	-
-	Conditions for start of trace recording	STRING	PowerOn					
NBUP								
-	2	,,,,,,,,,,,,,,,\ldots	-	-	$2 / 2$			

Description:

The machine data is only intended for diagnostic use.
See TRACE_STARTTRACE_EVENT
For TRACE_STARTTRACE_EVENT BLOCK_CHANGE the string TRACE_STARTTRACE_STEP is
interpreted as a file name and block number!
For BSEVENTTYPE_SETALARM the string is interpreted as an alarm number.

The machine data can be additionally activated using the Cancel alarm key.

22706	TRACE_STOPTRACE_STEP	EXP, C06	-			
-	CommandSequenzStep with which the recording ends	STRING	PowerOn			
NBUP						
-	2	,,,,,,,,,,,,,,,\ldots	-	-	$2 / 2$	

$\begin{array}{ll}\text { Description: } & \text { The machine data is only intended for diagnostics. } \\ & \text { The machine data can be additionally activated using the cancel alarm key. }\end{array}$

22708	TRACE_SCOPE_MASK		EXP, C06	-	
-	Selects the contents of the trace file		STRING	PowerOn	
NBUP					
-	- -	-	-	2/2	M

Description:
The machine data is only intended for diagnostics purposes. Specific trace contents are selected with the MD data.
The entry SETALARM records the alarm environment and the block change in the main run is also logged by means of BLOCK_CHANGE.
The machine data is additionally activated using the Cancel alarm key.

Description:
The machine data is only intended for diagnostic purposes. The MD datum defines which data are recorded in the trace file.

22712	TRACE_VARIABLE_INDEX			EXP, C06	-	
-	Index for trace recording data			DWORD	PowerOn	
NBUP						
-	10	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0, \ldots \end{aligned}$	0	0xFFFF	2/2	M

Description:

The machine data is only intended for diagnostic use.
The MD data, together with TRACE_VARIABLE_NAME, determines which data are recorded in the trace file.
It enables access to an array element.
E.g. use as an axis index when accessing axis data.

22714	MM_TRACE_DATA_FUNCTION		EXP, C02, C06	-	
-	Activating diagnostics		UDWORD	Pow	
NBUP					
-	$\begin{array}{\|l} \hline 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{array}$	0	0xFFFFFFF	2/2	M

Description:


```
    Only in conjunction with MD18794 $MN_MM_TRACE_VDI_SIGNAL
OEM traces are activated. Dynamic data.
13 Synchronized actions are recorded. Dynamic data.
NOTICE: Filled in applications with intensive use of
these trace points, other events are ignored!
That is why this bit should remain at 0 in these cases.
14 Reserved.
15 Recording of station commands. Dynamic data.
    Note: Most important output of the NCK module NCSC!
16 Recording of gantry commands
17 Recording of changes in the drive's status
18 Recording of the processing of the Event-Queue and generation of command sequences
19 Recording of time of event destructor calls
20 Recording of the dynamic limitations per block (only active when bit 0 is set).
21 Recording of the Look Ahead data (only active when bit 0 is set).
22 Recording of all Functions Config data.
Both a static part as well as a block-related part with the dynamic block data
are output at the time of trace generation.
22 Config data output (static)
23 Recording if computing time is given away during preprocessing (only active when
bit 0 is set).
24 Recording of multi-threading sequences (Multicore).
25 Recording of the external communication.
26 Recording of geometry data: positions, vLim, vLimSafety, OVR, clamping, etc.
27 Program trace: Extension of bit 10 to include recording of NC blocks in a
representation based on the basic block display with preceding identifier ":PT:"
```

22900	STROKE_CHECK_INSIDE	EXP, C01, C11	-		
-	Direction (inside/outside) in which prot. zone 3 is effective	BOOLEAN	PowerOn		
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 2$

Description:
This MD defines whether protection zone 3 is a protection zone inside or outside.
Meaning:
0: Protection zone 3 is a protection zone inside, i.e. the protection zone must not entered inwardly.

1: Protection zone 3 is a protection zone outside

22910	WEIGHTING_FACTOR_FOR_SCALE	EXP, C01, C11	-		
-	Input resolution for scaling factor	BOOLEAN	PowerOn		
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	M
-	Definition of the unit for the scaling factor P J, K. and for the axial scaling factors I, Meaning: $0 \quad$ Scale factor in 0.001				

```
1 Scale factor in 0.00001
Related to:
SD43120 $SA_DEFAULT_SCALE_FACTOR_AXIS,
SD42140 $SC_DEFAULT_SCALE_FACTOR_P
```


Description:

This MD enables axial scaling.
Meaning:
0: Axial scaling not possible
1: Axial scaling possible -> MD DEFAULT_SCALE_FACTOR_AXIS is active
Related to:
SD43120 \$SA_DEFAULT_SCALE_FACTOR_AXIS

Description:

This MD is used to activate the fixed feedrates set in SD42160 \$SC_EXTERN_FIXED_FEEDRATE_F1_F9[].
Meaning:
0: no fixed feedrates with F1 - F9
1: the feedrates set in SD42160 \$SC_EXTERN_FIXED_FEEDRATE_F1_F9[] become active when F1 - F9 are programmed.

22930	EXTERN_PARALLEL_GEOAX	EXP, C01, C11	-		
-	Assignment of a parallel channel axis to the geometry axis	BYTE	PowerOn		
-					
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	

Description:

Assignment table of the axes positioned parallel to the geometry axes.
This table can be used to assign channel axes positioned parallel to the geometry axes.
The parallel axes can then be activated as geometry axes in ISO mode using the G functions of plane selection (G17 - G19) and the axis name of the parallel axis.

The axis is then replaced by the axis defined via MD20050
\$MC_AXCONF_GEOAX_ASSIGN_TAB[].
Prerequisite:
The channel axes used must be active. (list position assigned in AXCONF_MACHAX_USED). Entering zero deactivates the corresponding parallel geometry axis:

24000	FRAME_ADD_COMPONENTS	C03	K2			
-						
-	Frame components for G58 and G59	BOOLEAN	PowerOn			
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$	

Description:

Additive programmable frame components can be separately programmed and modified. 0: Additive translations which have been programmed with ATRANS are stored in the frame together with the absolute translation (prog. with TRANS).
G58 and G59 are not possible.
1: The sum of the additive translations are stored in the fine offset of the programmable frame. The absolute and the additive translations can be changed independently of one another.
G58 and G59 are possible.

24002	CHBFRAME_RESET_MASK		C03	K2	
-	Active channel-specific base frames after reset		UDWORD	Reset	
-					
-	0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF...	0	0xFFFF	7/2	M
Description:	Bit mask for the reset setting of the channel-specific base frames which are included in the channel. The following apply: If MD20110 \$MC_RESET_MODE_MASK bit0 = 1 and BIT14 = 1 the entire base frame is determined on reset by chaining the base frame field elements, whose bit is 1 in the bit mask. If MD20110 \$MC_RESET_MODE_MASK bit0 = 1 and BIT14 = 0 the entire base frame is deselected on reset.				

4.2 Channel-specific NC machine data

24006	CHSFRAME_RESET_MASK		C03	K2	
-	Active system frames after reset		UDWORD	Reset	
-					
-	$\begin{aligned} & 0 \times 1,0 \times 1,0 \times 1,0 \times 1, \\ & 0 \times 1,0 \times 1,0 \times 1,0 \times 1 \ldots \end{aligned}$	0	0x00000FFF	7/2	M

Description:

Bit mask used for the reset setting of the channel-specific system frames included in the channel.

Bit 0: System frame for actual value setting and scratching is active after reset.
Bit 1: System frame for external work offset is active after reset.
Bit 2: Reserved, for TCARR and PAROT see MD20150 \$MC_GCODE_RESET_VALUES[].
Bit 3: Reserved, for TOROT and TOFRAME see MD20150 \$MC_GCODE_RESET_VALUES[].
Bit 4: System frame for workpiece reference points is active after reset.
Bit 5: System frame for cycles is active after reset.
Bit 6: Reserved; reset behavior dependent on MD20110 \$MC_RESET_MODE_MASK.
Bit 7: System frame \$P_ISO1FR (ISO G51.1 Mirror) is active after reset.
Bit 8: System frame \$P_ISO2FR (ISO G68 2DROT) is active after reset.
Bit 9: System frame \$P_ISO3FR (ISO G68 3DROT) is active after reset.
Bit 10: System frame \$P_ISO4FR (ISO G51 Scale) is active after reset.
Bit 11: System frame \$P_RELFR is active after reset.
Related to:
MD28082 \$MC_MM_SYSTEM_FRAME_MASK

24007	CHSFRAME_RESET_CLEAR_MASK						C03	K2
-	Deletion of system frames after reset	UDWORD	Reset					
-								
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	$0 \times 00000 F F F$				

Description:
Bit mask used to delete channel-specific system frames from the data management on reset.

Bit 0: System frame for actual value setting and scratching is deleted on reset.
Bit 1: System frame for exernal work offset is deleted on reset.
Bit 2: Reserved, for TCARR and PAROT, see MD20150 \$MC_GCODE_RESET_VALUES[].
Bit 3: Reserved, for TOROT and TOFRAME, see MD20150 \$MC_GCODE_RESET_VALUES[].
Bit 4: System frame for workpiece reference points is deleted on reset.
Bit 5: System frame for cycles is deleted on reset.
Bit 6: Reserved; reset behavior depends on MD20110 \$MC_RESET_MODE_MASK.
Bit 7: System frame \$P_ISO1FR (ISO G51.1 Mirror) is deleted on reset.
Bit 8: System frame \$P_ISO2FR (ISO G68 2DROT) is deleted on reset.
Bit 9: System frame \$P_ISO3FR (ISO G68 3DROT) is deleted on reset.
Bit 10: System frame \$P_ISO4FR (ISO G51 Scale) is deleted on reset.
Bit 11: System frame $\$ P$ RELFR is deleted on reset.


```
Description:
This machine data defines whether channel-specific system frames are reset in the data
management on Power On. That is offsets and rotations are set to 0, scalings to 1.
Mirroring is disabled.
The selection can be made separately for individual system frames.
Bit 0: System frame for set actual value and scratching is deleted after Power On.
Bit 1: System frame for external work offset is deleted after Power On.
Bit 2: System frame for TCARR and PAROT is deleted after Power On.
Bit 3: System frame for TOROT and TOFRAME is deleted after Power On.
Bit 4: System frame for work piece reference points deleted after Power On.
Bit 5: System frame for cycles retained after Power On.
Bit 6: System frame for transformations deleted after Power On.
Bit 7: System frame $P_ISO1FR (ISO G51.1 Mirror) is deleted after power ON.
Bit 8: System frame $P_ISO2FR (ISO G68 2DROT) is deleted after power ON.
Bit 9: System frame $P_ISO3FR (ISO G68 3DROT) is deleted after power ON.
Bit 10: System frame $P_ISO4FR (ISO G51 Scale) is deleted after power ON.
Bit 11: System frame $P_RELFR is deleted after power ON.
Related to:
MD28082 $MC_MM_SYSTEM_FRAME_MASK
```


Description: 0: Programmable frame is deleted at reset.
1: Programmable frame remains active at reset.

Description:
Bit mask for configuring the positions for frame suppressions (SUPA, G153, G53).
The following rule applies:
Bit 0: Positions for display (OPI) without frame suppression
Bit 1: Position variables without frame suppression

24030	FRAME_ACS_SET			C03	K2	
-	Adjustment of SZS coordinate system			DWORD	Pow	
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	7/2	M
Description:	$0:$ SZS r 1: SZS r	ults from the Work ults from the Work	tr	th \$P_CY th the \$	and	

24040	FRAME_ADAPT_MODE	C03	K2			
-	Adaptation of active frames	UDWORD	PowerOn			
-						
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots\end{array}$	0	0×0000007	$7 / 2$	

Description:
Bit mask for adapting the active frames or axis configuration
The following applies:

Bit 0 :
Rotations in active frames that rotate coordinate axes for which there are no geometry axes are deleted from the active frames.

Bit 1:
Shear angles in active frames are orthogonalized.
Bit 2:
Scalings of all geometry axes in the active frames are set to value 1.

Description:

Bit mask for saving and activating data management frames.
The following applies:
Bit 0 :
Data management frames are only activated by programming the bit masks \$P_CHBFRMASK, \$P_NCBFRMASK and \$P_CHSFRMASK. G500..G599 only activate the relevant settable frame, GFRAMEO..GFRAME100 only activate the corresponding grinding frame. The reset behavior is independent of this.
Bit 1:
Data handling frames are not written implicitly by system functions such as TOROT, PAROT, ext. work offset, transformations.

24080	USER_FRAME_POWERON_MASK	N01	-			
-	Parameterize properties for settable frame	UDWORD	PowerOn			
-						
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0	0×1	$7 / 2$	

Description:
Setting the following bits activates certain properties of the settable frame:
Bit $0=0$: default behavior.
Bit $0=1:$ if MD20152 \$MC_GCODE_RESET_MODE[7] = 1, the last active settable frame is selected again according to G code group 8 after power up of the control.

24100	TRAFO_TYPE_1	C07	F2, TE4, M1, K1, W1			
-	Definition of transformation 1 in channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description:

This MD specifies the first available transformation in each channel.
The 4 low-value bits identify the specific transformation of a specific transformation group. The transformation group is identified by a number starting with the 5 th bit.
Meaning:
0 No transformation
ab 16
5-axis transformation with turnable tool
ab 32
5-axis transformation with turnable workpiece
ab 48
5-axis transformation with turnable tool and turnable workpiece
72

Generic 5-axis transformation. Type and kinematic data are determined by an associated, orientable toolholder.
see:
MD24582 \$MC_TRAFO5_TCARR_NO_1
MD24682 \$MC_TRAFO5_TCARR_NO_2
The 4 low-value bits have the following meaning for a 5-axis transformation:
0 axis sequence $A B$
1 axis sequence $A C$
2 axis sequence BA
3 axis sequence $B C$
4 axis sequence CA
5 axis sequence CB
8 Generic orientation transformation (3-5 axes)
ab 256
TRANSMIT transformation
ab 512
TRACYL transformation
ab 1024
TRAANG transformation
2048
TRACLG: centerless transformation
ab 4096 bis 4098
OEM transformation
ab 8192
TRACON: cascaded transformations
Example:
A 5-axis transformation with turnable tool and axis sequence CA (i.e. C axis turns A axis) has number $20(=16+4)$
Notice:
Not all combinations of group numbers and axis sequence numbers are allowed. An error message is output if a number for a non-existent transformation is entered.
Corresponds with:
MD2 4200 \$MC_TRAFO_TYPE_2, MD24300 \$MC_TRAFO_TYPE_3, ... MD24460 \$MC_TRAFO_TYPE_8
References:
/FB/, F2, "5-Axis Transformation"

References:
/FB/, F2, "5-Axis Transformation"

24120	TRAFO_GEOAX_ASSIGN_TAB_1	C07	F2, TE4, TE4, M1, K1, W1			
-	Assignment of the geometry axes to channel axes for transformation 1	BYTE	NEW CONF			
-						
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	U	

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 1.
Not relevant:
No transformation
Related to:
MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB, if no transformation is active.
References:
/FB/, K2, "Coordinate Systems, Axis Types, Axis Configurations, Workpiece-Related
Actual Value System, External Work Offset"

24130	TRAFO_INCLUDES_TOOL_1	C07	-		
-	Tool handling with active 1st transformation				
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	NEW CONF
-	-	U			

Description: This machine data states for each channel whether the tool is handled during the lst transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only the "inclined-axis transformation" fulfills this condition.
If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24200	TRAFO_TYPE_2						C07	F2, M1
-	Definition of the 2nd transformation in the channel	DWORD	NEW CONF					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$			

Description:

This MD states the second available transformation in each channel.
Same as TRAFO_TYPE_1, but for the second available transformation in the channel.
References:
/FB/, F2, "5-Axis Transformation"

24210	TRAFO_AXES_IN_2			C07	F2, M1	
-	Axis assignment for transformation 2			BYTE	NEW	
-						
-	20	$\begin{aligned} & 1,2,3,4,5,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,, \ldots \end{aligned}$	0	20	7/7	U
Description: TRAFO_AXES_IN_2(n) Axis assignment at input of 2nd to 8th transformation. Same meaning as for TRAFO_AXES_IN_1.						

24220	TRAFO_GEOAX_ASSIGN_TAB_2				
-	2				

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 2.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24230	TRAFO_INCLUDES_TOOL_2		C07	-	
-	Tool handling with active 2nd transformation		BOOLEAN	NEW CONF	
-					
-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	$7 / 7$	U

Description:

This machine data states for each channel whether the tool is handled during the 2nd transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24300	TRAFO_TYPE_3						C07	M1
-	Definition of the 3rd transformation in the channel	DWORD	NEW CONF					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	U			

Description: This MD states the third available transformation in each channel.
Same as TRAFO_TYPE_1, but for the third available transformation in the channel.
References:
/FB/, F2, "5-Axis Transformation"
4.2 Channel-specific NC machine data

24310	TRAFO_AXES_IN_3	C07	M1		
-	Axis assignment for transformation 3				
-	BYTE				
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	NEW CONF		

Description:
Axis assignment at the input point of the 3rd transformation in the channel.
Meaning is the same as TRAFO_AXES_IN_1, but for the third available transformation in the channel.

24320	TRAFO_GEOAX_ASSIGN_TAB_3				
-	Assignment of geometry axes to channel axes for transformation 3	C07	MYTE	NEW CONF	
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U
-		20			

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 3.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24330	TRAFO_INCLUDES_TOOL_3	C07	-					
-								
-	Tool handling with active 3rd transformation	BOOLEAN	NEW CONF					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	$7 / 7$		$⿻$	U
:---								

Description: This machine data states for each channel whether the tool is handled during the 3 rd transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24400	TRAFO_TYPE_4	C07	M1			
-	Definition of the 4th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description:

This MD states the fourth available transformation in each channel.
Same as TRAFO_TYPE_1, but for the fourth available transformation in the channel.
References:
/FB/, F2, "5-Axis Transformation"

24410	TRAFO_AXES_IN_4						C07	F2, M1
-								
-	Axis assignment for the 4th transformation in the channel	BYTE	NEW CONF					
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,, \ldots$	0	20	U			

Description:
Axis assignment at the input point of the 4 th transformation in the channel.
Meaning is the same as TRAFO_AXES_IN_1, but for the fourth available transformation in the channel.

24420	TRAFO_GEOAX_ASSIGN_TAB_4			C07	M1	
-	Assignment of geometry axes to channel axes for transformation 4			BYTE	NEW CONF	
-						
-	3	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0 \\ & 0,0,0,0 \ldots \end{aligned}$	0	20	$7 / 7$	U

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 4.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24426	TRAFO_INCLUDES_TOOL_4	C07	-				
-							
-	Tool handling with active 4th transformation	BOOLEAN	NEW CONF				
-	-	$\begin{array}{l}\text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE... }\end{array}$	0	-	$7 / 7$	$]$	U
:---							

Description: This machine data states for each channel whether the tool is handled during the 4 th transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24430	TRAFO_TYPE_5						C07	M1
-								
-	Type of transformation 5 in the channel	DWORD	NEW CONF					
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$			

Description:
Type of transformation available as the fifth in the channel. See MD24100 \$MC_TRAFO_TYPE_1 for explanation.

Description: Axis assignment at the input point of the 5th transformation. See TRAFO_AXES_IN_1 for explanation.

24434	TRAFO_GEOAX_ASSIGN_TAB_5							Assignment of geometry axes to channel axes for transformation 5	C07	M1
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	NEW CONF						
-		20	U							

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 5.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24436	TRAFO_INCLUDES_TOOL_5						C07	-
-	Tool handling with active 5th transformation						BOOLEAN	NEW CONF
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U			
-	-	$7 / 7$						

Description:

This machine data states for each channel whether the tool is handled during the 5th transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.
If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24440	TRAFO_TYPE_6							C07	-
-	Type of transformation 6 in the channel						DWORD	NEW CONF	
-									
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-					

Description: Type of transformation available as the sixth in the channel. See MD24100 \$MC_TRAFO_TYPE_1 for explanation.

24444	TRAFO_GEOAX_ASSIGN_TAB_6			C07	-	
-	Assignment of geometry axes to channel axes for transformation 6			BYTE	NEW CONF	
-						
-	3	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0 \ldots \end{aligned}$	0	20	$7 / 7$	U

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 6.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24446	TRAFO_INCLUDES_TOOL_6						C07	-
-								
-	Tool handling with active 6th transformation	BOOLEAN	NEW CONF					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U			

Description: This machine data states for each channel whether the tool is handled during the 6th transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24450	TRAFO_TYPE_7							C07	-
-									
-	Type of transformation 7 in the channel	DWORD	NEW CONF						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$				

Description: Type of transformation available as the seventh in the channel. See MD24100 \$MC_TRAFO_TYPE_1 for explanation.

24452	TRAFO_AXES_IN_7						C07	-
-	Axis assignment for transformation 7							
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,, \ldots$	0	BYTE	NEW CONF			
-	$7 / 7$	U						

Description: Axis assignment at the input point of the 7th transformation. See TRAFO_AXES_IN_1 for explanation.

24454	TRAFO_GEOAX_ASSIGN_TAB_7							C07	-
-	Assignment of geometry axes to channel axes for transformation 7	BYTE	NEW CONF						
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 .$.	0	20	U				
-									

```
Description: This MD states the channel axes on which the axes of the cartesian coordinate system
are mapped for active transformation 7.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.
```

24456	TRAFO_INCLUDES_TOOL_7	C07	-		
-	Tool handling with active 7th transformation	BOOLEAN	NEW CONF		
-					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	$7 / 7$

Description:
This machine data states for each channel whether the tool is handled during the 7 th transformation or externally.
This machine data is evaluated only with specific transformations.
It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).
The method of operation of protection zones and working area limitations varies correspondingly.

24460	TRAFO_TYPE_8							C07	F2, TE4, M1
-									
-	Type of transformation 8 in the channel	DWORD	NEW CONF						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-					

Description: Type of transformation available as the eighth in the channel. See MD24100 \$MC_TRAFO_TYPE_1 for explanation.

24462	TRAFO_AXES_IN_8	C07	F2			
-						
-	Axis assignment for transformation 8	BYTE	NEW CONF			
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,, \ldots$	0	20	U	

Description: Axis assignment at the input point of the 8th transformation. See TRAFO_AXES_IN_1 for explanation.

24464	TRAFO_GEOAX_ASSIGN_TAB_8							Assignment of geometry axes to channel axes for transformation 8	BYTE	NEW CONF	
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	U						
-											

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 8.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24470	TRAFO_TYPE_9						C07	M1
-	Type of transformation 9 in the channel						DWORD	NEW CONF
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	U			

Description: Type of transformation available as the ninth in the channel. See MD24100 \$MC_TRAFO_TYPE_1 for explanation.

24472	TRAFO_AXES_IN_9			C07	-	
-	Axis assignment for transformation 9			BYTE	NEW CONF	
-						
-	20	$\begin{aligned} & 1,2,3,4,5,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,, \ldots \end{aligned}$	0	20	7/7	U

Description: Axis assignment at the input point of the 9th transformation. See TRAFO_AXES_IN_1 for explanation.

24474	TRAFO_GEOAX_ASSIGN_TAB_9			C07	-	
-	Assignment of geometry axes to channel axes for transformation 9			BYTE	NEW	
-						
-	3	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0 \ldots \end{aligned}$	0	20	$7 / 7$	U

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 9.

4.2 Channel-specific NC machine data

24480	TRAFO_TYPE_10	C07	F2, M1			
-						
-	Transformation 10 in channel	DWORD	NEW CONF			
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-		

Description: Same as TRAFO_TYPE_1, but for the tenth available transformation in the channel.

Description: Axis assignment at the input of the 10 th transformation. See TRAFO_AXES_IN_1 for explanation.

24484	TRAFO_GEOAX_ASSIGN_TAB_10			C07	M1	
-	Assignment of geometry axes to channel axes for transformation 10			BYTE	NEW CONF	
-						
-	3	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0 \\ & 0,0,0,0 \ldots \end{aligned}$	0	20	$7 / 7$	U

Description:

Assignment table of geometry axes with transformation 10
Same as AXCONF_GEOAX_ASSIGN_TAB, but only effective when transformation 10 is active.

24486	TRAFO_INCLUDES_TOOL_10	C07	-		
-					
-	Treatment of tool with active 10th transformation	BOOLEAN	NEW CONF		
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U

Description: Same as TRAFO_INCLUDES_TOOL_1, but for the 10 th transformation.

24500	TRAFO5_PART_OFFSET_1	C07	F2, M1		
mm					
-	Offset vector of 5-axis transformation 1	DOUBLE	NEW CONF		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

[^10]MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24510	TRAFO5_ROT_AX_OFFSET_1						C07	F2, M1
degrees								
-	Position offset of rotary axes $1 / 2 / 3$ for 5-axis transformation 1	DOUBLE	NEW CONF					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: This machine data designates the angular offset of the first or second rotary axis in degrees for the first 5-axis transformation of a channel.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24520	TRAFO5_ROT_SIGN_IS_PLUS_1	C07	F2, M1		
-	Sign of rotary axis $1 / 2 / 3$ for 5-axis transformation 1				
-	3	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	NEW CONF
-	$7 / 7$	U			

Description: This machine data designates the sign with which the two rotary axes are included in the first 5-axis transformation of a channel.
$\mathrm{MD}=0$ (FALSE):
Sign is reversed.
MD = 1 (TRUE) :
Sign is not reversed and the traversing direction is defined according to MD32100 \$MA_AX_MOTION_DIR.
This machine data does not mean that the rotational direction of the rotary axis concerned is to be reversed, but specifies whether its motion is in the mathematically positive or negative direction when the axis is moving in the positive direction.
The result of a change to this machine data is not therefore a change in the rotational direction, but a change in the compensatory motion of the linear axes.
However, if a directional vector and thus, implicitly, a compensatory motion is specified, the result is a change in the rotational direction of the rotary axis concerned.
On a real machine, therefore, the machine data may be set to FALSE (or zero) only if the rotary axis is turning in an anti-clockwise direction when moving in a positive direction.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24530	TRAFO5_NON_POLE_LIMIT_1	C07	F2			
degrees	Definition of pole range for 5-axis transformation 1	DOUBLE	NEW CONF			
-						
-	-	$2.0,2.0,2.0,2.0,2.0$, $2.0,2.0,2.0 \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
This MD designates a limit angle for the fifth axis of the first 5-axis transformation with the following properties: if the path runs below this angle past the pole, the traverse will pass through the pole.

For the 5-axis transformation, the two orientation axes of the tool form a coordinate system of length and width circles on a spherical surface. If orientation programming (that is the orientation vector lies in a plane) leads the path so close past the pole that the angle defined by the MD is undershot then there is a deviation from the defined interpolation such that the interpolation runs through the pole.

Alarm 14112 is output if this modification of the path gives a deviation greater than a tolerance defined by MD24540 TRAFO5\$MC_TRAFO5_POLE_LIMIT_1.
MD irrelevant:
If the "5-Axis Transformation" option is not installed.
Also irrelevant with programming in the machine coordinate system ORIMKS.
Related to:
MD: TRAFO5_POLE_LIMIT_n

Description:

This MD designates an end angle tolerance for the fifth axis of the first 5-axis transformation with the following properties:
With the interpolation through the pole point, only the fifth axis moves, the fourth axis retains its starting position. If a motion is programmed that does not run exactly through the pole point but will run near the pole within the area given by MD: TRAFO5_NON_POLE_LIMIT_n, there is a deviation from the defined path as the interpolation runs exactly through the pole point. This results in a deviation in the position of the end point of the fourth axis (the polar axis) from the programmed value.
This MD defines the angle by which the polar axis may deviate from the programmed value with 5-axis transformation when switching from the programmed interpolation to the interpolation through the pole point.
Alarm 14112 is output if there is a greater deviation and the interpolation is not executed.
MD irrelevant:
If the "5-Axis Transformation" option is not installed.
Also irrelevant with programming in the machine coordinate system ORIMKS.
Related to:
MD2 . . . \$MC_TRAFO5_NON_POLE_LIMIT_...

24542	TRAFO5_POLE_TOL_1	C07	-					
degrees	End angle tolerance for tool orientation						DOUBLE	NEW CONF
-								
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:

End angle tolerance for interpolation through the pole for the 1st 5/6-axis transformation.
This MD is evaluated only by the generic 5/6-axis
transformation.
If the programmed end orientation lies within the body cone and within the tolerance cone specified by this MD, the pole axis does not move
and retains it starting positions. The other rotary axis, however,
moves to the programmed angle.
This results in the end orientation deviating
from the programmed orientation.

Another function of this $M D$ is the handling of the programmed end orientation with non-orthogonal kinematics. As a rule, not all tool orientations can be set with these machine kinematics.
Alarm 14112 is output if an orientation is programmed that lies outside the settable range of the orientation cone (the programmed orientation path is not possible).
However, if the programmed orientation still lies within the range defined by MD2 4542 \$MC_TRAFO5_POLE_TOL,
an alarm is not output, and the programmed orientation is accepted.
However, the programmed orientation is corrected so that the orientation remains stationary at the edge of the settable range.
The maximum active value of this MD is the value of MD TRAFO5_POLE_LIMIT_1, which is used to define the body cone.

Description:
This MD specifies the vector of the base tool which takes effect when the first transformation is activated without a length compensation being selected. Programmed length compensations have an additive effect with respect to the base tool.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24558	TRAFO5_JOINT_OFFSET_PART_1				
mm	Vector of kinematic table offset	C07	F2, M1, W1		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $-M D _D B L M A X ~$ $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	$1.0 \mathrm{E}+301$	NOUBLE	NEW CONF

Description:

This machine data is only evaluated for generic 5-axis transformations with rotatable workpiece and rotatable tool (TRAFO_TYPE $=56$, mixed kinematics).
It indicates the part of the vector between table and turning head assigned to the table.
Only the sum of this MD and MD TRAFO5_JOINT_OFFSET is entered in the transformation equations.
A difference results only when reading the whole tool length using the function GETTCOR. In this case, only the MD TRAFO5_JOINT_OFFSET is considered.
On a machine with mixed kinematics, this machine data can be used to assign the machine data of the 5-axis transformation and the parameters of the orientable tool holder uniquely to one another as follows:
Orientable tool holder 5-axis transformation (1st transformation)
1 TRAFO5_JOINT_OFFSET_1
2 TRAFO5_BASE_TOOL_1
3 TRAFO5_JOINT_OFFSET_PART_1
4 TRAFO5_PART_OFFSET_1
4.2 Channel-specific NC machine data

24560	TRAFO5_JOINT_OFFSET_1	C07	F2, W1		
mm	Vector of the kinem.offset of the 1st 5-axis transf. in channel				
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:
This machine data designates the vector between first and second rotary joint for the first transformation of a channel and has a specific meaning for the various machine types:
Machine type 1 (two-axis swivel head for tool) and:
Machine type 2 (two-axis rotary table for workpiece):
Vector between first and second rotary joint of tool rotary head or workpiece rotary table.
Machine type 3 (single-axis rotary table for workpiece and single-axis swivel head for tool):
Vector from machine reference point to joint of workpiece table.
MD irrelevant:
if the "5-Axis Transformation" option is not installed. The same applies for 3-axis and 4-axis transformations.

24561	TRAFO6_JOINT_OFFSET_2_3_1			C07	F2	
mm	Vector of kinematic offset			DOUBLE	NEW	NEW CON
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: In the case of 6-axis transformations, defines the offset between the 2nd and third rotary axes for the 1 st transformation of each channel.

24562	TRAFO5_TOOL_ROT_AX_OFFSET_1	C07	M1					
mm	Offset of swivel point of 1st rotary axis on 5 -axis transform. 1						DOUBLE	NEW CONF
-								
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:

In the case of a 5-axis transformation with a swiveling linear axis, the value indicates the offset of the rotary axis which swivels the linear axis with reference to machine zero for the 1 st transformation.
MD irrelevant for:
other 5-axis transformations
Related to:
MD2 4662 \$MC_TRAFO5_TOOL_ROT_AX_OFFSET_2

24564	TRAFO5_NUTATOR_AX_ANGLE_1	C07	M1		
degrees	Nutating head angle in 5-axis transformation	DOUBLE	NEW CONF		
-	-	$45.0,45.0,45.0,45.0$, $45.0,45.0,45.0,45.0 \ldots$	-89.	89.	$7 / 7$

Description:

Angle between the second rotary axis and the axis corresponding to it in the rectangular coordinate system
MD irrelevant for a transformation type other than "universal milling head".

Related to:
MD2 . . . \$ \$MC_TRAFO_TYPE_..

24566	TRAFO5_NUTATOR_VIRT_ORIAX_1		C07	M1	
-	Virtual orientation axes		BOOLEAN	NEW CONF	
-					
-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE..	0	-	7/7	U

Description:
The MD has the following values:
0: The axis angles of the orientation axes are machine axis angles.
1: Virtual orientation axes are defined that form a rectangular coordinate system and the axis angles are rotations around these virtual axes.

24570	TRAFO5_AXIS1_1	C07	F2, M1, W1		
-	Direction of 1st rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description: The MD indicates the vector that describes the direction of the first rotary axis in the general 5-axis transformation (TRAFO_TYPE_* = 24).
The vector can have any magnitude.
Example:
Both with $(0,1,0)$ and with $(0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).
Valid for the first transformation of a channel.

24572	TRAFO5_AXIS2_1	C07	F2, M1, W1		
-	Direction of 2nd rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:
Indicates the vector that describes the direction of the second rotary axis in the general 5-axis transformation (TRAFO_TYPE_* $=24,40,56)$.
The vector can have any magnitude except zero.
Example:
Both with $(0,1,0)$ and with $(0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).
Valid for the first transformation of a channel.

24573	TRAFO5_AXIS3_1	C07	F2		
-	Direction of the 3rd rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description: Indicates the vector which defines the direction of the third rotary axis in the case of the general 6-axis transformation (TRAFO_TYPE_* $=24,40,56,57$).
The vector may have any value except zero.

4.2 Channel-specific NC machine data

Example:
The same axis is defined with both $(0,1,0)$ and $(0,7.21,0)$ (in the direction of the 2nd geometry axis, that is as a rule Y).
Valid for the first orientation transformation of a channel.

24576	TRAFO6_BASE_ORIENT_NORMAL_1			C07	F2	
-	Normal tool vector in 6-axis transformation			DOUBLE		NEW C
-						
-	3	$\begin{aligned} & 0.0,1.0,0.0,0.0,1.0, \\ & 0.0,0.0,1.0,0.0,0.0, \\ & 1.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: Indicates a vector that is perpendicular to the tool orientation
(TRAFO5_BASE_ORIENTATION_1) in the case of the general 6-axis transformation (TRAFO_TYPE_* $=24,40,56,57)$.
If TRAFO6_BASE_ORIENT_NORMAL_1 and TRAFO5_BASE_ORIENTATION_1 are neither orthogonal nor parallel, then the two vectors are orthogonalized by modifying the normal vector. The two vectors must not be parallel.
The vector may have any value other than zero.
Valid for the first orientation transformation of a channel.

24580	TRAFO5_TOOL_VECTOR_1	C07	F2					
-	Direction of orientation vector for the first 5-axis transf.	BYTE	NEW CONF					
-								
-	-	$2,2,2,2,2,2,2,2 \ldots$	0	2			$]$	M
:---								

Description: Indicates the direction of the orientation vector for the first 5-axis transformation for each channel.
0: Tool vector in x direction
1: Tool vector in y direction
2: Tool vector in z direction

24582	TRAFO5_TCARR_NO_1						C07	F2
-								
-	TCARR number for the 1st 5-axis transformation	DWORD	NEW CONF					
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-				

Description: If the value of this machine data is not zero and if MD2.... \$MC_TRAFO_TYPE_..., which points to the first orientation transformation, has the value $7 \overline{2}$, then the kinematics data (offsets etc.) that parameterize the first 5-axis transformation, will not be read from the machine data, but from the data of the orientable tool carrier to which this machine data refers.

Description: The positions (angles) of the rotary axes are defined by the offset for the orientation axes of the 5/6-axis transformation, whereby the tool orientation is in the basic position. This offset has 2 components. The first one is the value of MD24510 \$MC_TRAFO5_ROT_AX_OFFSET_1 for the 1st orientation transformation. For the other orientation transformations, these are the values of MD24610/25210/25310 \$MC_TRAFO5_ROT_AX_OFFSET_2/3/4/. The 2nd component is defined when the transformation is activated. Either directly as an optional parameter with the language command TRAORI(), or it can be taken from an active work offset of the rotary axes that are active when the transformation is activated. This is only taken into the offset of the orientation axes if this MD has the value TRUE, and if the work offsets are retained when the transformation is activated, this means that MD10602: \$MN_FRAME_GEOAX_CHANGE_MODE > 0 .
Note: In the normal case, the automatic acceptance of active work offsets into the offset is only useful for the polar axis with table kinematics. This means, for example, with AC kinematics for the C-axis. If the offset is changed in another orientation axis, especially in the non-polar axis, this changes the kinematic behavior of the transformation, and may lead to the compensatory motions of the linear axes no longer being correct.

24594	TRAFO7_EXT_ROT_AX_OFFSET_1	C07	F2			
degrees	Position offset of the external rotary axes for 7 -axis transformation 1	DOUBLE	NEW CONF			
-						
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:

This machine data designates the angular offset of the external rotary axis in degrees for the first 7 -axis transformation of a channel.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

Description: The MD indicates the vector that describes the direction of the first external rotary axis in the general 5/6-axis transformation (TRAFO_TYPE_* $=24$). The vector can have any magnitude.
Example:
Both with $(0,1,0)$ and with $(0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).

Valid for the first transformation of a channel.

24600	TRAFO5_PART_OFFSET_2	C07	M1		
mm					
-	Offset vector of the 2nd 5-axis transformation in the channel	DOUBLE	NEW CONF		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:

This machine data designates an offset of the workpiece carrier for the first (MD24500 \$MC_TRAFO5_PART_OFFSET_1) or second (MD24600 \$MC_TRAFO5_PART_OFFSET_2) 5-axis transformation of a chānnel, and has a specific meaning for the different machine types:
Machine type 1 (two-axis swivel head for tool):
Vector from machine reference point to zero point of workpiece table. This will generally be a zero vector if both coincide.
Machine type 2 (two-axis rotary table for workpiece):
Vector from second joint of workpiece rotary table to zero point of table.
Machine type 3 (single-axis rotary table for workpiece and single-axis swivel head for tool):
Vector from joint of workpiece table to zero point of table.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24610	TRAFO5_ROT_AX_OFFSET_2						C07	M1
degrees	Position offset of rotary axes $1 / 2 / 3$	DOUBLE	NEW CONF					
-								
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
Indicates the offset for each channel of the rotary axes in degrees for the second orientation transformation.

24620	TRAFO5_ROT_SIGN_IS_PLUS_2	C07	F2, M1		
-					
-	Sign of rotary axis 1/2/3 for 5-axis transformation 2	BOOLEAN	NEW CONF		
-	3	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	$7 / 7$	U

Description:
This machine data designates the sign with which the two rotary axes are included in the second 5-axis transformation of a channel.
$\mathrm{MD}=0$ (FALSE):
Sign is reversed.
MD = 1 (TRUE) :
Sign is not reversed and the traversing direction is defined according to MD32100 \$MA_AX_MOTION_DIR.

This machine data does not mean that the rotational direction of the rotary axis concerned is to be reversed, but specifies whether its motion is in the mathematically positive or negative direction when the axis is moving in the positive direction. The result of a change to this data is not therefore a change in the rotational direction, but a change in the compensatory motion of the linear axes.
However, if a directional vector and thus, implicitly, a compensatory motion is specified, the result is a change in the rotational direction of the rotary axis concerned.

On a real machine, therefore, the machine data may be set to FALSE (or zero) only if the rotary axis is turning in an anti-clockwise direction when moving in a positive direction.

MD irrelevant:
if the "5-Axis Transformation" option is not installed.

Description: This MD designates a limit angle for the fifth axis of the second 5-axis transformation with the following properties: if the path runs past the pole below this angle, the traverse passes through the pole.
In a 5-axis transformation, the two orientation axes of the tool form a coordinate system of length and width circles on a spherical surface. If orientation programming (that is the orientation vector lies in a plane) leads the path so closely past the pole that the angle defined by this MD is undershot, then there is a deviation from the defined interpolation such that the interpolation runs through the pole.

Alarm 14112 is output if this modification of the path results in a deviation greater than a tolerance defined by MD24640 \$MC_TRAFO5_POLE_LIMIT_2.
MD irrelevant:
If the "5-Axis Transformation" option is not installed.
Also irrelevant with programming in the machine coordinate system ORIMKS.
Related to:
MD2 \$MC_TRAFO5_POLE_LIMIT_...

24640	TRAFO5_POLE_LIMIT_2		C07	F2, M1	
degrees	End angle tolerance for tool orientation		DOUBLE	NEW CONF	
-					
-	$\begin{aligned} & 2.0,2.0,2.0,2.0,2.0, \\ & 2.0,2.0,2.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

This MD designates an end angle tolerance for the fifth axis of the second 5-axis transformation with the following properties:

With the interpolation through the pole point, only the fifth axis moves, the fourth axis retains its starting position. If a motion is programmed that does not run exactly through the pole point but is to run near the pole within the area given by MD: TRAFO5_NON_POLE_LIMIT_n then there is a deviation from the defined path as the interpolation runs exactly through the pole point. This results in a deviation in the position of the end point of the fourth axis (the polar axis) from the programmed value. This MD defines the angle by which the polar axis may deviate from the programmed value with 5-axis transformation when switching from the programmed interpolation to the interpolation through the pole point.

An error message (alarm 14112) is output if there is a greater deviation and the interpolation is not executed.

MD irrelevant:

If the "5-Axis Transformation" option is not installed.
Also irrelevant with programming in the machine coordinate system ORIMKS.
Related to:
MD24530 \$MC_TRAFO5_NON_POLE_LIMIT_1

24642	TRAFO5_POLE_TOL_2					
degrees	End angle tolerance for pole interpolation	C07	-			
-						
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:

End angle tolerance for interpolation through the pole for the 2 nd 5/6-axis transformation.
This MD is evaluated only by the generic 5/6-axis
transformation.
If the programmed end orientation lies within the body cone and within the tolerance cone
specified by this MD, the pole axis does not move and retains its starting positions.
However, the other rotary axis moves to the programmed angle.
This results in the end orientation deviating
from the programmed orientation.
Another function of this MD is the handling of the programmmed end orientation with non-orthogonal kinematics. As a rule, not all tool orientations can be set with
these machine kinematics.
Alarm 14112 is output if an orientation is programmed that lies outside the settable range of the orientation cone (the programmed orientation path is not possible).
However, if the programmed orientation still lies within the range defined by MD24542 \$MC_TRAFO5_POLE_TOL,
an alarm is not output, and the programmed orientation is accepted.
However, the programmed orientation is corrected so that the orientation remains stationary at the edge of the settable range.
The maximum active value of this MD is the value of MD TRAFO5_POLE_LIMIT_1, which is used to define the body cone.

Description:

This MD indicates the vector of the base tool which takes effect when the second transformation is activated without a length compensation being selected. Programmed length compensations have an additive effect with respect to the base tool.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

Description: Same as MD24558 \$MC_TRAFO5_JOINT_OFFSET_PART_1, but for the second transformation.

24660	TRAFO5_JOINT_OFFSET_2				
mm	Vector of the kinem.offset of the 2nd 5-axis transformation				
-	DOUBLE	NEW CONF			
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:
This machine data designates the vector between first and second rotary joint for the first transformation of a channel and has a specific meaning for the various machine types:
Machine type 1 (two-axis swivel head for tool) and:
Machine type 2 (two-axis rotary table for workpiece):
Vector between first and second rotary joint of tool rotary head or workpiece rotary table.
Machine type 3 (single-axis rotary table for workpiece and single-axis swivel head for tool):
Vector from machine reference point to joint of workpiece table.
MD irrelevant:
if the "5-Axis Transformation" option is not installed. The same applies for 3-axis and 4-axis transformations.

24661	TRAFO6_JOINT_OFFSET_2_3_2			C07	-	
mm	Vector of kinematic offset			DOUBLE	NEW CONF	
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: As TRAFO6_JOINT_OFFSET_2_3_1 but for the second transformation.

24662	TRAFO5_TOOL_ROT_AX_OFFSET_2				
mm	Offset swivel point of 2nd 5-axis transformation (swivelled linear axis)	C07	M1		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$
-	NEW CONF				

Description: In the case of 5-axis transformation with swiveled linear axis, the value indicates the offset of the rotary axis which swivels the linear axis with reference to machine zero for the 2nd transformation.
MD irrelevant for:
other 5-axis transformations
Related to:
MD2 4562 \$MC_TRAFO5_TOOL_ROT_AX_OFFSET_1

24664	TRAFO5_NUTATOR_AX_ANGLE_2	C07	M1		
degrees	Nutating head angle	DOUBLE	NEW CONF		
-					
-	-	$45.0,45.0,45.0,45.0$, $45.0,45.0,45.0,45.0 \ldots$	-89.	89.	$7 / 7$

Description: Angle between the second rotary axis and the axis corresponding to it in the rectangular coordinate system
MD irrelevant for:
Transformation type other than "universal milling head"
Related to:
MD2 4564 \$MC_TRAFO5_NUTATOR_AX_ANGLE_1

24666	TRAFO5_NUTATOR_VIRT_ORIAX_2							C07	M1
-	Virtual orientation axes	BOOLEAN	NEW CONF						
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$				

Description:

The MD has the following values:
0: The axis angles of the orientation axes are machine axis angles.
1: Virtual orientation axes are defined that form a rectangular coordinate system and the axis angles are rotations around these virtual axes.

24670	TRAFO5_AXIS1_2	C07	F2, M1		
-	Direction of 1st rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description: As for TRAFO5_AXIS1_1 but for the second orientation transformation of a channel.

Description: As for TRAFO5_AXIS2_1 but for the second transformation of a channel.

24673	TRAFO5_AXIS3_2			C07	-	
-	Direction of the 3rd rotary axis			DOUBLE	NEW CO	
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description:
As TRAFO5_AXIS3_1 but for the second orientation transformation of a channel.

24676	TRAFO6_BASE_ORIENT_NORMAL_2						C07	-
-	Normal tool vector						DOUBLE	NEW CONF
-	3	$0.0,1.0,0.0,0.0,1.0$, $0.0,0.0,1.0,0.0,0.0$, $1.0,0.0, \ldots$	- MD_DBLMAX	$1.0 E+301$	$7 / 7$			
-								

Description: As TRAFO6_BASE_ORIENT_NORMAL_1 but for the second orientation transformation

24680	TRAFO5_TOOL_VECTOR_2						C07	F2
-	Direction of orientation vector	BYTE	NEW CONF					
-								
-	-	$2,2,2,2,2,2,2,2 \ldots$	0	2	M			

Description: Indicates the direction of the orientation vector for the second 5-axis transformation for each channel.
0: Tool vector in x direction
1: Tool vector in y direction
2: Tool vector in z direction

24682	TRAFO5_TCARR_NO_2						C07	F2
-	TCARR number for the 2nd 5-axis transformation						DWORD	NEW CONF
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$			
-	-	U						

Description: Same as TRAFO5_TCARR_NO_1, but for the second orientation transformation.

24694	TRAFO7_EXT_ROT_AX_OFFSET_2	C07	F2			
degrees	Position offset of the external rotary axes for 7-axis transformation 2	DOUBLE	NEW CONF			
-						
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:

This machine data designates the angular offset of the external rotary axis in degrees for the second 7-axis transformation of a channel.

MD irrelevant:
if the "5-Axis Transformation" option is not installed.

24695	TRAFO7_EXT_AXIS1_2	C07	F2		
-	Direction of the 1st external rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:
The MD indicates the vector that describes the direction of the second external rotary axis in the general 5/6-axis transformation (TRAFO_TYPE_* $=24$).

The vector can have any magnitude.
Example:
Both with ($0,1,0$) and with ($0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).
Valid for the first transformation of a channel.

Description:

Indicates for the first agreed TRAANG transformation of the channel the angle of the inclined axis in degrees between the 1st machine axis and the 1st basic axis while TRAANG is active. The angle is measured positively clockwise.

Related to:
MD2 4750 \$MC_TRAANG_ANGLE_2

Description:

Indicates a basic offset of the tools zero for the 1st TRAANG transformation. The offset is referenced to the geometry axes valid when TRAANG is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.
The index i takes the values $0,1,2$ for the 1 st to 3rd geometry axes.
Related to:
MD24760 \$MC_TRAANG_BASE_TOOL_2

24720	TRAANG_PARALLEL_VELO_RES_1				
-	Velocity margin for 1st TRAANG transformation	C07	M1		
-					
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	DOUBLE	NEW CONF
-	1.0	$7 / 7$	U		

Description:

Indicates the axis velocity reserve for jog, positioning and oscillating movements for each channel for the first TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement.
Velocity reserve to be provided for jog, positioning and oscillating movements on the parallel axis to handle the compensating movement as a consequence of the inclined axis.
0.0 means that the control or the transformation itself determines the reserve according to the angle of the inclined axis and the velocity capacity of the inclined and parallel axes. - The criterion for this is that the same velocity limit has to be maintained in the direction of the parallel axis and the (virtual) axis at rightangles to it.
>0.0 means that a fixed reserve has been set (MD24720 \$MC_TRAANG_PARALLEL_VELO_RES_1 * MD32000 \$MA_MAX_AX_VELO of the parallel axis). The velocity capacity in the virtual axis is determined by this. The lower MD24720 \$MC_TRAANG_PARALLEL_VELO_RES_1 has been set, the lower it is
Related to:
MD24771 \$MC_TRAANG_PARALLEL_ACCEL_RES_2

Description:

Indicates the acceleration margin for jog, positioning and oscillating movements for each channel for the first TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement.
Related to:
MD2 4720 \$MC_TRAANG_PARALLEL_VELO_RES_1

24750	TRAANG_ANGLE_2			C07	M1	
degrees	Angle between Cartesian axis and real (inclined) axis			DOUBLE	NEW CONF	
-						
-	-	$\begin{array}{\|l} \hline 0.0,0.0,0.0,0.0,0.0, \\ 0.0,0.0,0.0 \ldots \\ \hline \end{array}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
Description:	Indicates for the second agreed TRAANG transformation of the channel the angle of the inclined axis in degrees between the 1st machine axis and the 1st basic axis while TRAANG is active. The angle is measured positively clockwise.					

Description:	Indicates a basic offset of the tools zero for the 2nd TRAANG transformation. The
offset is referenced to the geometry axes valid when TRAANG is active. The basic offset	
is included with and without selection of the tool length compensation. Programmed	
	length corrections have an additive effect with respect to the basic tool.
	The index i takes the values $0,1,2$ for the lst to 3rd geometry axes.
	Related to:
	$M D 24710 \$ M C _T R A A N G _B A S E _T O O L _1 ~$

24770	TRAANG_PARALLEL_VELO_RES_2	C07	M1					
-	Velocity margin for 2nd TRAANG transformation						DOUBLE	NEW CONF
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	0.0	1.0	U			
-	-	$7 / 7$						

Description:

Indicates the axis velocity reserve for jog, positioning and oscillating movements for each channel for the second TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement.
Related to:
MD2 4771 \$MC_TRAANG_PARALLEL_ACCEL_RES_2

Description:
Indicates the axis acceleration margin for jog, positioning and oscillating movements which is held ready on the parallel axis (see MD2... \$MC_TRAFO_AXES_IN_...[1]) for the compensatory movement; MD setting applies to the second TRAANG transformation for each channel.
Related to:
\$MC_TRAANG_PARALLEL_RES_1

Description:
Indicates the offset of the rotary axis for the first agreed TRACYL transformation in degrees in relation to the neutral position while TRACYL is active.
Related to:
MD24850 \$MC_TRACYL_ROT_AX_OFFSET_2

24805	TRACYL_ROT_AX_FRAME_1		C07	M1	
-	Rotary axis offset TRACYL 1		BYTE	NEW CONF	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	2	7/7	U

Description: 0: axial rotary axis offset is not considered.
1: axial rotary axis offset is considered.
2: axial rotary axis offset is considered until SZS.
SZS frames include transformed axial rotary axis offsets.

24806	TRACYL_BASE_TOOL_COMP_1		C07	M1,	
-	Compensation of the BASE_TOOL in the TRACYL frame 1		UBYTE	NEW CONF	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0x0	0x7	$7 / 7$	
Description:	Components of the base tool can via the transformation frame so in the Work component. Bit0: MD24820 \$MC_TRACYL_BAS Bit1: MD24820 \$MC_TRACYL_BAS Bit2: MD24820 \$MC_TRACYL_BAS This function is only availabl using MD28082 \$MC_MM_SYSTEM_FR	be compen that for TOOL_1[0] TOOL_1[1] TOOL_1[2] if the sy E_MASK bi	by usi formati ompensa ompensa ompensa frame \$	bit ctio ng \$ ng \$ ng \$ AME	Components of the base tool can be compensated by using this bit-coded machine data via the transformation frame so that for transformation selection, no change is made in the Work component.

24808	TRACYL_DEFAULT_MODE_1						C07	M1
-	TRACYL mode selection						BYTE	NEW CONF
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$7 / 7$			
-	-							

Description:

Default setting of TRACYL type 514:
0: without groove side offset (i.e. TRACYL type 514 - equals 512)
1: with groove side offset (i.e. TRACYL type 514 - equals 513)
MD2... \$MC_TRAFO_TYPE_... = 514 can be used to decide, via the selection parameters, whether calculation is made with or without groove side offset. The parameter defines the variable to be selected if no selection is made in the call parameters.
If MD24808 \$MC_TRACYL_DEFAULT_MODE_1 = 1, it is sufficient to program TRACYL(30) in the part progrām instēad of $\operatorname{TRACYL} \overline{\operatorname{T}}(30,1,1)$.

24810	TRACYL_ROT_SIGN_IS_PLUS_1							C07	M1
-									
-	Sign of rotary axis for 1st TRACYL transformation	BOOLEAN	NEW CONF						
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U				

Description: Indicates the sign with which the rotary axis is taken into account in the TRACYL transformation for the first agreed TRACYL transformation.
Related to:
MD24860 \$MC_TRACYL_ROT_SIGN_IS_PLUS_2

24820	TRACYL_BASE_TOOL_1			C07	M1	
mm	Vector of base tool for 1st TRACYL transformation			DOUBLE	NEW CONF	
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description:
Indicates a basic offset of the tools zero for the 1st TRACYL transformation. The offset is referenced to the geometry axes valid when TRACYL is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.
The index i takes the values $0,1,2$ for the 1 st to 3 rd geometry axes.
Related to:

4.2 Channel-specific NC machine data

MD24870 \$MC_TRACYL_BASE_TOOL_2

24850	TRACYL_ROT_AX_OFFSET_2	C07	M1			
degrees	Offset of rotary axis for the 2nd TRACYL transformation	DOUBLE	NEW CONF			
-						
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 . .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description: Indicates the offset of the rotary axis in degrees in relation to the neutral position for the 2nd agreed TRACYL transformation for each channel.
MD irrelevant:
If no TRACYL is active
Related to:
MD24800 \$MC_TRACYL_ROT_AX_OFFSET_1

24855	TRACYL_ROT_AX_FRAME_2			C07	M1,	
-	Rotary axis offset TRACYL 2			BYTE	NEW	
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 7$	U

Description: 0: axial rotary axis offset is not considered.
1: axial rotary axis offset is considered.
2: axial rotary axis offset is considered until SZS.
SZS frames include transformed axial rotary axis offsets.

24856	TRACYL_BASE_TOOL_COMP_2					C07	M1, K2
-	Compensation of the BASE_TOOL in the TRACYL frame 2	UBYTE	NEW CONF				
-							
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots$	0×0	0×7			

Description: Components of the base tool can be compensated by using this bit-coded machine data via the transformation frame so that for transformation selection, no change is made in the Work
component.
Bit0: MD24870 \$MC_TRACYL_BASE_TOOL_2[0] is compensated using \$P_TRAFRAME.
Bit1: MD24870 \$MC_TRACYL_BASE_TOOL_2[1] is compensated using \$P_TRAFRAME.
Bit2: MD24870 \$MC_TRACYL_BASE_TOOL_2[2] is compensated using \$P_TRAFRAME.
This function is only available if the system frame \$P_TRAFRAME has been configured using MD28082 \$MC_MM_SYSTEM_FRAME_MASK bit6.

24858	TRACYL_DEFAULT_MODE_2	C07	M1					
-	TRACYL mode selection						BYTE	NEW CONF
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1				

Description:

Default setting of TRACYL type 514 for the 2nd TRACYL:
0: without groove side offset (i.e. TRACYL type 514 - equals 512)
1: with groove side offset (i.e. TRACYL type 514 - equals 513)
MD2.... \$MC_TRAFO_TYPE_... = 514 can be used to decide, via the selection parameters, whether calculation is made with or without groove side offset. The parameter defines the variable to be selected if no selection is made in the call parameters.
If MD24858 \$MC_TRACYL_DEFAULT_MODE_2 = 1, it is sufficient to program TRACYL (30,2) in the part program instead of $\operatorname{TRACYL} \overline{\operatorname{R}}(30,2,1)$.

24870	TRACYL_BASE_TOOL_2			C07	M1	
mm	Vector of base tool for 2nd TRACYL transformation			DOUBLE	NEW	
-						
-	3	$\begin{aligned} & \hline 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description:
Indicates a basic offset of the tools zero for the 2ndTRACYL transformation. The offset is referenced to the geometry axes valid when TRACYL is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool. The index i takes the values $0,1,2$ for the 1 st to 3 rd geometry axes. Related to:
MD24820 \$MC_TRACYL_BASE_TOOL_1

24900	TRANSMIT_ROT_AX_OFFSET_1	C07	M1			
degrees	Offset of rotary axis for the 1st TRANSMIT transformation	DOUBLE	NEW CONF			
-						
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description: Indicates the offset of the rotary axis for the first agreed TRANSMIT transformation in degrees in relation to the neutral position while TRANSMIT is active.
Related to:
MD24950 \$MC_TRANSMIT_ROT_AX_OFFSET_2

24905	TRANSMIT_ROT_AX_FRAME_1						C07	M1, K2
-	Rotary axis offset TRANSMIT 1	BYTE	NEW CONF					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 7$			

Description:

0 : axial rotary axis offset is not considered.
1: axial rotary axis offset is considered.
2: axial rotary axis offset is considered until SZS.
SZS frames include transformed rotations around the rotary axis.

24906	TRANSMIT_BASE_TOOL_COMP_1		C07	M1, K2	
-	Compensation of the BASE_TOOL in the TRANSMIT frame 1		UBYTE	NEW CONF	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0x0	0x7	7/7	U

Machine data

```
via the transformation frame so that for transformation selection, no change is made
in the Work
component.
Bit0: MD24920 $MC_TRANSMIT_BASE_TOOL_1[0] is compensated using $P_TRAFRAME.
Bit1: MD24920 $MC_TRANSMIT_BASE_TOOL_1[1] is compensated using $P_TRAFRAME.
Bit2: MD24920 $MC_TRANSMIT_BASE_TOOL_1[2] is compensated using $P_TRAFRAME.
This function is only available if the system frame $P_TRAFRAME has been configured
using MD28082 $MC_MM_SYSTEM_FRAME_MASK bit6.
```

24910	TRANSMIT_ROT_SIGN_IS_PLUS_1				C07
-	Sign of rotary axis for 1st TRANSMIT transformation	M1			
-					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	NEW CONF

Description:

Indicates the sign with which the rotary axis is taken into account in the TRANSMIT transformation for the first agreed TRANSMIT transformation for each channel.
Related to:
MD24960 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_2

24911	TRANSMIT_POLE_SIDE_FIX_1	C07	M1				
-	Restriction of working range in front of / behind the pole, 1. TRANSMIT	BYTE	NEW CONF				
-							
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 7$		

Description:

Restriction of the working area in front of/behind pole or no restriction, i.e. traversal through the pole.
The assigned values have the following meanings:
1: Working area of linear axis for positions >=0,
(if tool length compensation parallel to linear axis equals 0)
2: Working area of linear axis for positions <=0,
(if tool length compensation parallel to linear axis equals 0)
0: No restriction of working area. Traversal through pole.

Description:

Indicates a basic offset of the tools zero for the 1st TRANSMIT transformation. The offset is referenced to the geometry axes valid when TRANSMIT is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool. The index i takes the values 0, 1, 2 for the 1 st to 3rd geometry axes.
Related to:
MD2 4970 \$MC_TRANSMIT_BASE_TOOL_2

24950	TRANSMIT_ROT_AX_OFFSET_2						C07	M1
degrees								
-	Offset of rotary axis for the 2nd TRANSMIT transformation	DOUBLE	NEW CONF					
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	-MD_DBLMAX	$1.0 E+301$	$7 / 7$			

Description: Indicates the offset of the rotary axis for the second agreed TRANSMIT transformation in degrees in relation to the neutral position while TRANSMIT is active.
Related to:
MD24900 \$MC_TRANSMIT_ROT_AX_OFFSET_1

24955	TRANSMIT_ROT_AX_FRAME_2	C07	M1			
-	Rotary axis offset TRANSMIT 2	BYTE	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	2	$7 / 7$	

Description:
0 : axial rotary axis offset is not considered.
1: axial rotary axis offset is considered.
2: axial rotary axis offset is considered until SZS.
SZS frames include transformed rotations around the rotary axis.

24956	TRANSMIT_BASE_TOOL_COMP_2		C07	M1,	
-	Compensation of the BASE_TOOL in the TRANSMIT frame 2		UBYTE	NEW CONF	
-					
-	$\begin{aligned} & 0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ & 0 \times 0,0 \times 0,0 \times 0,0 \times 0 \ldots \end{aligned}$	0x0	0x7	7/7	U

Description: Components of the base tool can be compensated by using this bit-coded machine data via the transformation frame so that for transformation selection, no change is made in the Work
component.
Bit0: MD24970 \$MC_TRANSMIT_BASE_TOOL_2[0] is compensated using \$P_TRAFRAME.
Bit1: MD24970 \$MC_TRANSMIT_BASE_TOOL_2[1] is compensated using \$P_TRAFRAME.
Bit2: MD24970 \$MC_TRANSMIT_BASE_TOOL_2[2] is compensated using \$P_TRAFRAME.
This function is only available if the system frame \$P_TRAFRAME has been configured using MD28082 \$MC_MM_SYSTEM_FRAME_MASK bit6.

24960	TRANSMIT_ROT_SIGN_IS_PLUS_2						
-	Sign of rotary axis for 2nd TRANSMIT transformation	C07	M1				
-	-	$\begin{array}{l}\text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE, TRUE, } \\ \text { TRUE, TRUE... }\end{array}$	0	-	BOOLEAN	$]$	NEW CONF
:---							
-							

Description: Indicates the sign with which the rotary axis is taken into account in the TRANSMIT transformation for the second agreed TRANSMIT transformation for each channel.
Related to:
MD24910 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1

24961	TRANSMIT_POLE_SIDE_FIX_2		C07	M1	
-	Restriction of working range before/behind the pole, 2. TRANSMIT		BYTE	NEW CONF	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	2	7/7	U

Description: Restriction of working area in front of/behind pole or no restriction, i.e. traversal through pole.
The assigned values have the following meanings:
1: Working area of linear axis for positions >=0,
(if tool length compensation parallel to linear axis equals 0)
2: Working area of linear axis for positions <=0,
(if tool length compensation parallel to linear axis equals 0)
0: No restriction of working area. Traversal through pole.

Description:

Indicates a basic offset of the tools zero for the 2nd TRANSMIT transformation. The offset is referenced to the geometry axes valid when TRANSMIT is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool. The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes. Related to:

MD24920 \$MC_TRANSMIT_BASE_TOOL_1

24995	TRACON_CHAIN_1	C07	M1		
-	Transformation grouping				
-	4	DWORD	NEW CONF		
-	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	U	

Transformation chain of the first concatenated transformation.
In the table, the numbers of the transformations which are to be concatenated are given in the order in which the transformation has to be executed from BCS into MCS.
Example:
A machine can be operated optionally either as a 5-axis machine or as a transmit
machine. A linear axis is not arranged at a right-angles to the other linear axes
(inclined axis).
5 transformations must be set via the machine data, e.g.
TRAFO_TYPE_1 = 16 (5-axis transformation)
TRAFO_TYPE_2 = 256 (Transmit)
TRAFO_TYPE_3 = 1024 (Inclined axis)
TRAFO_TYPE_4 = 8192 (Concatenated transformation)
TRAFO_TYPE_5 = 8192 (Concatenated transformation)
If the 4th transformation concatenates the 5-axis transformation / inclined axis and the 5th transformation concatenates the transmit / inclined axis, then (1, 3, 0, 0) is entered in the first table TRACON_CHAIN_1, and (2, 3, 0, 0) in the table TRACON_CHAIN_2. The entry 0 means no transformation.
The order in which the transformations are assigned (TRAFO_TYPE_1 to TRAFO_TYPE_20) is arbitrary. The linked transformations do not have to be the last. However, they must always stand behind all the transformations which occur in a transformation chain. In the previous example, this means that, e.g. the third and fourth transformations must not be switched.

However, it would be possible to define a further, sixth transformation, if this does not go into a linked transformation.

Transformations cannot be linked with one another at will.
The following limitations apply in SW version 5:
The first transformation in the chain must be an orientation transformation (3- , 4- , 5-axis transformation, nutator) transmit or peripheral curve transformation. The second transformation must be an inclined axis transformation.

No more than two transformations may be linked.

24996	TRACON_CHAIN_2				C07
-	Transformation grouping				
-					
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	DWORD	NEW CONF	

Description:
Transformation chain of the first concatenated transformation.
In the table, the numbers of the transformations which are to be concatenated are given in the order in which the transformation has to be executed from BCS into MCS.

Example:
A machine can be operated optionally either as a 5-axis machine or as a transmit machine. A linear axis is not arranged at a right-angles to the other linear axes (inclined axis).
Transformation chain of the second concatenated transformation.
Example: 5 transformations must be set via the machine data
TRAFO_TYPE_1 = 16 (5-axis transformation)
TRAFO_TYPE_2 = 256 (Transmit)
TRAFO_TYPE_3 = 1024 (Inclined axis)
TRAFO_TYPE_4 = 8192 (Concatenated transformation)
TRAFO_TYPE_5 = 8192 (Concatenated transformation)
If the 4th transformation concatenates the 5-axis transformation / inclined axis and the 5th transformation concatenates the transmit / inclined axis, then (1, 3, 0, 0) is entered in the first table TRACON_CHAIN_1, and (2, 3, 0, 0) in the table TRACON_CHAIN_2. The entry 0 means no transformation.

The order in which the transformations are assigned (TRAFO_TYPE_1 to TRAFO_TYPE_20) is arbitrary. The cocatenated transformations do not have to be the last. However, they must always follow all the transformations which occur in a transformation chain. In the previous example, this means that, e.g. the third and fourth transformations must not be switched.
However, it would be possible to define a further, sixth transformation, if this does not go into a concatenated transformation.
Transformations cannot be concatenated with one another at will.
The following limitations apply in SW version 5:
The first transformation in the chain must be an orientation transformation (3- , 4- , 5-axis transformation, nutator) transmit or peripheral curve transformation.

The second transformation must be an inclined axis transformation.
No more than two transformations may be concatenated.

24997	TRACON_CHAIN_3	C07	M1		
-	Transformation grouping	DWORD	NEW CONF		
-					
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 . .$.	0	U	

4.2 Channel-specific NC machine data

24998	TRACON_CHAIN_4	C07	M1		
-	Transformation grouping				
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	DWORD	NEW CONF	
-	4	20	$7 / 7$	U	

Description:

Transformation chain of the fourth concatenated transformation. See TRACON_CHAIN_1 for documentation.

25100	TRAFO_TYPE_11	C07	F2			
-	Definition of the 11th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-		

Description: This MD defines for each channel, which transformation is available as l1th transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25102	TRAFO_AXES_IN_11	C07	F2		
-					
-	Axis assignment for transformation 11	BYTE	NEW CONF		
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	0	20	U

Description:
Axis assignment at the input of the 11th transformation.
See TRAFO_AXES_IN_1 for explanation.

25104	TRAFO_GEOAX_ASSIGN_TAB_11	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 11	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U
-					

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 11.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25106	TRAFO_INCLUDES_TOOL_11	C07	M1, F2		
-	Tool handling with active 11th transformation				BOOLEAN
-					
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U

Description:
This MD defines for each channel, whether the tool is treated in the 11 th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25110	TRAFO_TYPE_12	C07	F2			
-	Definition of the 12th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description:

This MD defines for each channel, which transformation is available as 12 th transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25112	TRAFO_AXES_IN_12	C07	F2		
-					
-	Axis assignment for transformation 12	BYTE	NEW CONF		
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,, \ldots$	0	20	U

Description: Axis assignment at the input of the 12 th transformation.
See TRAFO_AXES_IN_1 for explanation.

25114	TRAFO_GEOAX_ASSIGN_TAB_12				
-	Assignment of geometry axes to channel axes for transformation 12	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 .$.	0	20	U
-					

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 12.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25116	TRAFO_INCLUDES_TOOL_12	C07	M1, F2		
-	Tool handling with active 12th transformation	BOOLEAN	NEW CONF		
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	$7 / 7$	U
-	-	-			

Description:
This MD defines for each channel, whether the tool is treated in the 12 th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

4.2 Channel-specific NC machine data

25122	TRAFO_AXES_IN_13	C07	F2		
-	Axis assignment for transformation 13				
-	BYTE				
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	NEW CONF		

Description:

Axis assignment at the input of the 13th transformation. See TRAFO_AXES_IN_1 for explanation.

25124	TRAFO_GEOAX_ASSIGN_TAB_13	C07	F2			
-	Assignment of geometry axes to channel axes for transformation 13	BYTE	NEW CONF			
-						
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U	

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 13.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25126	TRAFO_INCLUDES_TOOL_13	C07	M1, F2			
-						
-	Tool handling with active 13th transformation	BOOLEAN	NEW CONF			
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	$7 / 7$	

Description:
This MD defines for each channel, whether the tool is treated in the 13th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25130	TRAFO_TYPE_14	C07	F2			
-	Definition of the 14th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description:

This MD defines for each channel, which transformation is available as 14th transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25132	TRAFO_AXES_IN_14	C07	F2		
-					
-	Axis assignment for transformation 14	BYTE	NEW CONF		
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	0	20	U

Description:

Axis assignment at the input of the 14 th transformation.
See TRAFO_AXES_IN_1 for explanation.

25134	TRAFO_GEOAX_ASSIGN_TAB_14	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 14	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U
-					

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 14.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25136	TRAFO_INCLUDES_TOOL_14	C07	M1, F2		
-					
-	Tool handling with active 14th transformation	BOOLEAN	NEW CONF		
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U

Description:
This MD defines for each channel, whether the tool is treated in the 14 th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25140	TRAFO_TYPE_15	C07	F2			
-	Definition of the 15th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description: This MD defines for each channel, which transformation is available as 15 th
transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25144	TRAFO_GEOAX_ASSIGN_TAB_15		C07	F2	
-	Assignment of geometry axes to channel axes for transformation 15		BYTE	NEW CONF	
-					
-	3$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$,	0	20	7/7	U
Description:	This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 15. Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.				

Machine data

25146	TRAFO_INCLUDES_TOOL_15	C07	M1, F2		
-	Tool handling with active 15th transformation				
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	NEW CONF
-	-	$7 / 7$	U		

Description:

This MD defines for each channel, whether the tool is treated in the 15th transformation or externally. Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25150	TRAFO_TYPE_16	C07	F2			
-	Definition of the 16th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-		

Description: This MD defines for each channel, which transformation is available as 16th transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

Description:

Axis assignment at the input of the 16 th transformation.
See TRAFO_AXES_IN_1 for explanation.

25154	TRAFO_GEOAX_ASSIGN_TAB_16	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 16	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U
-					

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 16.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

Description:

This MD defines for each channel, whether the tool is treated in the 16 th transformation or externally.

Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25160	TRAFO_TYPE_17	C07	F2				
-	Definition of the 17th transformation in the channel	DWORD	NEW CONF				
-							
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-			Description:This MD defines for each channel, which transformation is available as 17th transformation in the channel. Other than that it has the same meaning as TRAFO_TYPE_1.
:---							

Description: Axis assignment at the input of the 17 th transformation.
See TRAFO_AXES_IN_1 for explanation.

25164	TRAFO_GEOAX_ASSIGN_TAB_17	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 17	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 . \ldots$	0	20	U
-					

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 17.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25166	TRAFO_INCLUDES_TOOL_17		C07	M1,	
-	Tool handling with active 17th transformation		BOOLEAN	NEW	
-					
-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	7/7	U
Description:	This MD defines for each channel, whether the tool is treated in the 17th transformation or externally. Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.				

25170	TRAFO_TYPE_18	C07	F2		
-	Definition of the 18th transformation in the channel	DWORD	NEW CONF		
-					
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	
Description:	This MD defines for each channel, which transformation is available as 18th transformation in the channel. Other than that it has the same meaning as TRAFO_TYPE_1.				

4.2 Channel-specific NC machine data

25172	TRAFO_AXES_IN_18	C07	F2		
-	Axis assignment for transformation 18				
-					
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	BYTE	NEW CONF	

Description:

Axis assignment at the input of the 18th transformation. See TRAFO_AXES_IN_1 for explanation.

25174	TRAFO_GEOAX_ASSIGN_TAB_18	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 18	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	U
-					

Description:
This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 18.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25176	TRAFO_INCLUDES_TOOL_18	C07	M1, F2			
-	Tool handling with active 18th transformation	BOOLEAN	NEW CONF			
-						
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U	

Description:
This MD defines for each channel, whether the tool is treated in the 18th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25180	TRAFO_TYPE_19						C07	F2
-	Definition of the 19th transformation in the channel	DWORD	NEW CONF					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-				

Description:

This MD defines for each channel, which transformation is available as 19th transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25182	TRAFO_AXES_IN_19	C07	F2		
-					
-	Axis assignment for transformation 19	BYTE	NEW CONF		
-	20	$1,2,3,4,5,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0, \ldots$	0	$7 / 7$	U

Description:

Axis assignment at the input of the 19 th transformation. See TRAFO_AXES_IN_1 for explanation.

25184	TRAFO_GEOAX_ASSIGN_TAB_19	C07	F2		
-	Assignment of geometry axes to channel axes for transformation 19	BYTE	NEW CONF		
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	$7 / 7$	U
-					

Description: This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 19.
Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25186	TRAFO_INCLUDES_TOOL_19		C07	M1,	
-	Tool handling with active 19th transformation		BOOLEAN	NEW CONF	
-					
-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	7/7	U

Description:
This MD defines for each channel, whether the tool is treated in the 19th transformation or externally.
Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25190	TRAFO_TYPE_20	C07	F2			
-	Definition of the 20th transformation in the channel	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$	

Description: This MD defines for each channel, which transformation is available as $20 t h$
transformation in the channel.
Other than that it has the same meaning as TRAFO_TYPE_1.

25194	TRAFO_GEOAX_ASSIGN_TAB_20		C07	F2	
-	Assignment of geometry axes to channel axes for transformation 20		BYTE	NEW CONF	
-					
-	3$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$,	0	20	7/7	U
Description:	This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 20. Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.				

Machine data
4.2 Channel-specific NC machine data

25196	TRAFO_INCLUDES_TOOL_20	C07	M1, F2		
-	Tool handling with active 20th transformation				
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	NEW CONF
-	-	$7 / 7$	U		

Description:

This MD defines for each channel, whether the tool is treated in the 20 th transformation or externally. Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

Description:

This machine data designates an offset of the workpiece holder for the 3rd 5-axis transformation of a channel and has a special meaning for each of the various machine types:
Other than that it has the same meaning as TRAFO5_PART OFFSET_1.

25210	TRAFO5_ROT_AX_OFFSET_3	C07	F2			
degrees						
-	Position offset of rotary axes $1 / 2 / 3$ for 5-axis transformation 3	DOUBLE	NEW CONF			
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description: This machine data designates the angular offset of the first or second rotary axis in degrees for the 3rd 5-axis transformation of a channel.
Other than that it has the same meaning as TRAFO5_ROT_AX_OFFSET_1.

25220	TRAFO5_ROT_SIGN_IS_PLUS_3			C07	F2	
-	Sign of rotary axis 1/2/3 for 5-axis transformation 3			BOOLEAN	NE	
-						
-	3	TRUE, TRUE...	0	-	7/7	U

Description: This machine data designates the sign with which the two rotary axes enter the $3 r d$ -
axis transformation of a channel.
Other than that it has the same meaning as TRAFO5_ROT_SIGN_IS_PLUS_1.

Description:
This machine data designates a limit angle for the fifth axis of the 3rd 5-axis transformation.
Other than that it has the same meaning as TRAFO5_NON_POLE_LIMIT_1.

25240	TRAFO5_POLE_LIMIT_3		C07	F2	
degrees	End angle tolerance with interpolation through pole for 5-axis transf.		DOUBLE	NEW CONF	
-					
-	- $2.0,2.0,2.0,2.0,2.0$, $2.0,2.0,2.0 \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
Description:	This machine data designates an end angle tolerance for the fifth axis of the 3rd 5axis transformation with the following properties: Other than that it has the same meaning as TRAFO5_POLE_LIMIT_1.				

25242	TRAFO5_POLE_TOL_3						C07	-
degrees	End angle tolerance for tool orientation						DOUBLE	NEW CONF
-								
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: End angle tolerance for interpolation through the pole for 5/6-axis transformation 3 . Other than that it has the same meaning as TRAFO5_POLE_TOL_1.

25250	TRAFO5_BASE_TOOL_3	C07	F2		
mm	Vector of base tool on activation of 5-axis transformation 3				
-	DOUBLE	NEW CONF			
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:

This MD indicates the vector of the base tool which takes effect when the third transformation is activated without a length compensation being selected. Programmed length compensations have an additive effect with respect to the base tool.
MD irrelevant:
if the "5-axis transformation" option is not installed.

25258	TRAFO5_JOINT_OFFSET_PART_3			C07	F2	
mm	Vector of kinematic table offset			DOUBLE		NEW CON
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0 \\ & 0.0,0.0,0.0,0.0,0.0 \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: This machine data is only evaluated in generic 5-axis tranformations with rotatable workpiece and rotatable tool (TRAFO_TYPE = 56, mixed kinematics).
Other than that it has the same meaning as TRAFO5_JOINT_OFFSET_PART_1.

25261 TRAFO6_JOINT_OFFSET_2_3_3 C07 - mm Vector of kinematic offset DOUBLE NEW CONF - 3 $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$ $-M D _D B L M A X$
-

Description: In the case of a 5-axis transformation with a swiveling linear axis, the value indicates the offset of the rotary axis which swivels the linear axis with reference to machine zero for the 3th transformation.
Other than that it has the same meaning as >TRAFO5_TOOL_ROT_AX_OFFSET_1.

25264	TRAFO5_NUTATOR_AX_ANGLE_3	C07	F2			
degrees	Nutating head angle in 5-axis transformation	DOUBLE	NEW CONF			
-						
-	-	$45.0,45.0,45.0,45.0$, $45.0,45.0,45.0,45.0 \ldots$	-89.	89.	$7 / 7$	

Description: $\begin{aligned} & \text { Angle between the second rotary axis and the axis corresponding to it in the } \\ & \text { rectangular coordinate system }\end{aligned}$
Other than that it has the same meaning as TRAFO5_NUTATOR_AX_ANGLE_1.

25266	TRAFO5_NUTATOR_VIRT_ORIAX_3						C07	-
-	Virtual orientation axes						BOOLEAN	NEW CONF
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$			

Description: It has the same meaning as TRAFO5_NUTATOR_VIRT_ORIAX_1.

Description:
The MD designates the vector that describes the direction of the first rotary axis with the general 5-axis transformation (TRAFO_TYPE_* = 24).
Other than that it has the same meaning as TRAFO5_AXIS1_1.

25272	TRAFO5_AXIS2_3			C07	F2	
-	Direction of 2nd rotary axis			DOUBLE	NEW CONF	
-						
-	3	$\begin{aligned} & \text { 0.0, 0.0, 0.0, 0.0, 0.0, } \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
Description:	```The MD designates the vector that describes the direction of the second rotary axis with the general 5-axis transformation (TRAFO_TYPE_* = 24, 40, 56). Other than that it has the same meaning as TRAFO5 AXIS2 1.```					

25273	TRAFO5_AXIS3_3						C07	-
-	Direction of the 3rd rotary axis	DOUBLE	NEW CONF					
-								
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: The MD designates the vector that describes the direction of the third rotary axis with the general 6-axis transformation (TRAFO_TYPE_* $=24,40,56,57$). Other than that it has the same meaning as TRAFO5_AXIS3_1.

25274	TRAFO5_BASE_ORIENT_3	C07	-		
-					
-	Vector of the tool base orientation for 5-axis transformation	DOUBLE	NEW CONF		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description: Indicates the vector of the tool orientation in the general 5-axis transformation (TRAFO_TYPE_* $=24,40,56$) if this is not defined on the transformation call or not read from a programmed tool.
Other than that it has the same meaning as TRAFO5_BASE_ORIENT_1.

25276	TRAFO6_BASE_ORIENT_NORMAL_3			C07	-	
-	Normal tool vector in 6-axis transformation			DOUBLE	NEW	
-						
-	3	$\begin{aligned} & 0.0,1.0,0.0,0.0,1.0, \\ & 0.0,0.0,1.0,0.0,0.0, \\ & 1.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description:
Indicates the vector that stands vertically on the tool orientation
(TRAFO5_BASE_ORIENTATION_1) in general 6-axis transformation (TRAFO_TYPE_* = 24, 40, 56, 57).
Other than that it has the same meaning as TRAFO6_BASE_ORIENT_NORMAL_1.

25280	TRAFO5_TOOL_VECTOR_3	C07	F2			
-	Direction of orientation vector for the first 5-axis transf.	BYTE	NEW CONF			
-						
-	-	$2,2,2,2,2,2,2,2 \ldots$	0	2	$7 / 2$	

Description: Indicates the direction of the orientation vector for the first 5-axis transformation
for each channel.
Other than that it has the same meaning as TRAFO5_TOOL_VECTOR_1.1.

25282	TRAFO5_TCARR_NO_3	C07	-		
-					
-	TCARR number for the 3rd 5-axis transformation	DWORD	NEW CONF		
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	

Description: It has the same meaning as TRAFO5_TCARR_NO_1.

25285	TRAFO5_ORIAX_ASSIGN_TAB_3	C07	F2, M1		
-	Orientation axis / channel axis assignment transformation 3	BYTE	NEW CONF		
-					
-	3	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	M

Description: Assignment table of the orientation axes for 5-axis transformation 3
Only active with active 5-axis transformation 3 .
Otherwise the meaning is the same as TRAFO5_ORIAX_ASSIGN_TAB_1.

25290	$\begin{array}{l}\text { TRAFO5_ROT_OFFSET_FROM_FR_3 }\end{array}$							C01, C07	-
-	Offset of transformation rotary axes from WO.	BOOLEAN	NEW CONF						
-	-	$\begin{array}{l}\text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { FALSE, FALSE... }\end{array}$	0	-	$7 / 2$				

Description: It has the same meaning as TRAFO5_ROT_OFFSET_FROM_FR_1.

25294	TRAFO7_EXT_ROT_AX_OFFSET_3		C07	F2	
degrees	Position offset of the external rotary axes for 7 -axis transformation 3		DOUBLE	NEW CONF	
-					
-	3 $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description:
This machine data designates the angular offset of the external rotary axis in degrees for the third 7-axis transformation of a channel.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

Description:

The MD indicates the vector that describes the direction of the first external rotary axis in the third general 5/6-axis transformation (TRAFO_TYPE_* = 24).
The vector can have any magnitude.
Example:
Both with $(0,1,0)$ and with $(0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).
Valid for the first transformation of a channel.

25320	TRAFO5_ROT_SIGN_IS_PLUS_4	C07	F2		
-					
-	Sign of rotary axis 1/2/3 for 5-axis transformation 4	BOOLEAN	NEW CONF		
-	3	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U/7

Description: This machine data designates the sign with which the two rotary axes enter the 4th 5axis transformation of a channel.
Other than that it has the same meaning as TRAFO5_ROT_SIGN_IS_PLUS_1.

25330	TRAFO5_NON_POLE_LIMIT_4	C07	F2			
degrees	Definition of pole range for 5-axis transformation 4	DOUBLE	NEW CONF			
-						
-	-	$2.0,2.0,2.0,2.0,2.0$, $2.0,2.0,2.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
This machine data designates a limit angle for the fifth axis of the 4th 5-axis transformation.
Other than that it has the same meaning as TRAFO5_NON_POLE_LIMIT_1.

25340	TRAFO5_POLE_LIMIT_4	C07	F2		
degrees	End angle tolerance with interpolation through pole for 5-axis transf.	DOUBLE	NEW CONF		
-	-	2.0, 2.0, 2.0, 2.0, 2.0, $2.0,2.0,2.0 .$.	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$
-	This machine data designates an end angle tolerance for the fifth axis of the 4th 5- axis transformation with the following properties: Other than that it has the same meaning as TRAFO5_POLE_LIMIT_1.				

4.2 Channel-specific NC machine data

25342	TRAFO5_POLE_TOL_4						C07	-
degrees	End angle tolerance for tool orientation						DOUBLE	NEW CONF
-	-	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			
-	-							

Description:
End angle tolerance for interpolation through the pole for $5 / 6$-axis transformation 4. Other than that it has the same meaning as TRAFO5_POLE_TOL_1.

Description:
This MD indicates the vector of the base tool which takes effect when the first transformation is activated without a length compensation being selected. Programmed length compensations have an additive effect with respect to the base tool.
MD irrelevant:
if the "5-axis transformation" option is not installed.

25358	TRAFO5_JOINT_OFFSET_PART_4			C07	F2	
mm	Vector of kinematic table offset			DOUBLE		NEW CONF
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: This machine data is only evaluated in generic 5-axis tranformations with rotatable workpiece and rotatable tool (TRAFO_TYPE $=56$, mixed kinematics).
Other than that it has the same meaning as TRAFO5_JOINT_OFFSET_PART_1.

25360	TRAFO5_JOINT_OFFSET_4	C07	F2		
mm	Vector of the kinem.offset of the 4th 5-axis transf. in channel				
-	DOUBLE	NEW CONF			
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description: This machine data designates the vector from the first to the second rotary joint for the 4 th transformation of a channel.
Other than that it has the same meaning as TRAFO5_JOINT_OFFSET_1.

Description: In the case of 6-axis transformations, defines the offset between the 2 nd and third rotary axes for the 4 th transformation of each channel.

25362	TRAFO5_TOOL_ROT_AX_OFFSET_4	C07	F2		
mm	Offset of swivel point of the rotary axis on the 4th 5-axis transformation	DOUBLE	NEW CONF		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	$-M D _$DBLMAX	$1.0 E+301$	$7 / 7$
-	In the case of a 5-axis transformation with a swiveling linear axis, the value indicates the offset of the rotary axis which swivels the linear axis with reference to machine zero for the 4th transformation. Other than that it has the same meaning as >TRAFO5_TOOL_ROT_AX_OFFSET_1.				

25364	TRAFO5_NUTATOR_AX_ANGLE_4					C07	F2
degrees	Nutating head angle in 5-axis transformation	DOUBLE	NEW CONF				
-							
-	-	$45.0,45.0,45.0,45.0$, $45.0,45.0,45.0,45.0 \ldots$	-89.	89.			

Description: Angle between the second rotary axis and the axis corresponding to it in the rectangular coordinate system
Other than that it has the same meaning as TRAFO5_NUTATOR_AX_ANGLE_1.

25366	TRAFO5_NUTATOR_VIRT_ORIAX_4			C07	-	
-	Virtual orientation axes			BOOLEAN		NEW CONF
-						
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE.	0	-	7/7	U

Description: The MD designates the vector that describes the direction of the first rotary axis with the general 5-axis transformation (TRAFO_TYPE_* = 24).
Other than that it has the same meaning as TRAFO5_AXIS1_1.

25372	TRAFO5_AXIS2_4			C07	F2	
-	Direction of 2nd rotary axis			DOUBLE	NEW CONF	
-						
-	3	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0, \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
Description:	The MD designates the vector that describes the direction of the second rotary axis with the general 5-axis transformation (TRAFO_TYPE_* $=24,40,56$). Other than that it has the same meaning as TRAFO5_AXIS2_1.					

4.2 Channel-specific NC machine data

25373	TRAFO5_AXIS3_4	C07	-		
-	Direction of the 3rd rotary axis	DOUBLE	NEW CONF		
-					
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:
The MD designates the vector that describes the direction of the third rotary axis with the general 6-axis transformation (TRAFO_TYPE_* $=24,40,56,57$).
Other than that it has the same meaning as TRAFO5_AXIS3_1.

25374	TRAFO5_BASE_ORIENT_4	C07	-		
-					
-	Vector of the tool base orientation for 5-axis transformation	DOUBLE	NEW CONF		
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$

Description:

Indicates the vector of the tool orientation in the general 5-axis transformation (TRAFO_TYPE_* $=24,40,56$) if this is not defined on the transformation call or not read from a programmed tool.
Other than that it has the same meaning as TRAFO5_BASE_ORIENT_1.

25376	TRAFO6_BASE_ORIENT_NORMAL_4	C07	-			
-	Normal tool vector in 6-axis transformation	DOUBLE	NEW CONF			
-						
-	3	$0.0,1.0,0.0,0.0,1.0$, $0.0,0.0,1.0,0.0,0.0$, $1.0,0.0, \ldots$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:

Indicates the vector that stands vertically on the tool orientation
(TRAFO5_BASE_ORIENTATION_1) in general 6-axis transformation (TRAFO_TYPE_* = 24, 40, 56, 57).
Other than that it has the same meaning as TRAFO6_BASE_ORIENT_NORMAL_1.

25380	TRAFO5_TOOL_VECTOR_4	C07	F2			
-	Direction of orientation vector for the first 5-axis transf.	BYTE	NEW CONF			
-						
-	-	$2,2,2,2,2,2,2,2 \ldots$	0	2	$7 / 2$	

Description: Indicates the direction of the orientation vector for the first 5-axis transformation for each channel.
Other than that it has the same meaning as TRAFO5_TOOL_VECTOR_1.1.

25382	TRAFO5_TCARR_NO_4	C07	-			
-	TCARR number for the 4th 5-axis transformation	DWORD	NEW CONF			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-		

Description: It has the same meaning as TRAFO5_TCARR_NO_1.

Description: This machine data designates the angular offset of the external rotary axis in degrees for the fourth 7-axis transformation of a channel.
MD irrelevant:
if the "5-Axis Transformation" option is not installed.

Description: The MD indicates the vector that describes the direction of the first external rotary axis in the fourth general 5/6-axis transformation (TRAFO_TYPE_* $=24$).
The vector can have any magnitude.
Example:
Both with $(0,1,0)$ and with $(0,7.21,0)$, the same axis is described (in the direction of the 2nd geometry axis, i.e. usually Y).
Valid for the first transformation of a channel.

25495	TRACON_CHAIN_5				C07
-	Transformation grouping	M1			
-					
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	DWORD	NEW CONF

Description: Transformation chain of the 5th concatenated transformation.

 See TRACON_CHAIN_1 for documentation.| 25496 | TRACON_CHAIN_6 | C07 | M1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| - | | | | | |
| - | Transformation grouping | DWORD | NEW CONF | | |
| - | 4 | $0,0,0,0,0,0,0,0,0$,
 $0,0,0,0,0,0,0,0,0$,
 $0,0,0,0 \ldots$ | 0 | 20 | U |

Description: \quad Transformation chain of the 6th concatenated transformation.

25497	TRACON_CHAIN_7				C07
-	M1				
-	Transformation grouping	DWORD	NEW CONF		
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	U

Description:
Transformation chain of the 7th concatenated transformation. See TRACON_CHAIN_1 for documentation.

25498	TRACON_CHAIN_8				C07
-	Transformation grouping				M1
-					
-	4	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	NEW CONF

Description:
Transformation chain of the 8th concatenated transformation.
See TRACON_CHAIN_1 for documentation.

26000	PUNCHNIB_ASSIGN_FASTIN		C01, C09	N4	
-	Hardware assignment for input byte for stroke control		UDWORD	Pow	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	0x7FFFFFFF	7/2	M

Description: Assignment of the high-speed input byte for "punching and nibbling"
Bit 0-7: Number of the input byte used
Bit 8-15: Free
Bit 16-23: Inversion mask for writing the hardware byte
Bit 24-30: Free
This data defines which input byte is to be used for the signal "travel active".
= 1 :
On-board inputs (4 high-speed NC inputs) are used.
2, 3, 4, 5
The external digital NC inputs are used
128-129:
Comparator byte (results from high-speed analog inputs or VDI specification)
Related to:
MD26006 \$MC_NIBBLE_PUNCH_INMASK[n]
References:
/FB/, A4, Digital and Analog NC I/Os

The signal is high active as default from software 3.2. That is there is wire break monitoring. If the signal is low active then, e.g., the MD must be set to the value MD $=" H 00010001$ " for the outboard inputs.

26004	NIBBLE_PUNCH_OUTMASK				C01, C09	N4	
-	Mask for fast output bits				UBYTE	PowerOn	
-							
-	8		$\begin{aligned} & 1,0,0,0,0,0,0,0,0 \\ & 0,0,0,0,0,0,0,0,0 \\ & 0,0,0,0 \ldots \end{aligned}$	0	-	7/2	M
Description:		Mask for hig Byte 1: Bytes 2-8: Special case Only NIBBLE This is used Related to: MD26002 \$MC	-speed output bits ntains the bit for rrently free UNCH_OUTMASK[O] is define the outp UNCHNIB ASSIGN FAS	for	signal	st	


```
Second punch interface (SPIF2), not available as standard
```

NIBBLE_PUNCH_INMASK[2]=0
NIBBLE_PUNCH_INMASK[7]=0
Note:
-
Special cases:
Only NIBBLE_PUNCH_INMASK[0] is relevant. This is used to define the input bit for the
signal "Stroke active".
Related to:
MD26000 \$MC_PUNCHNIB_ASSIGN_FASTIN

26008	NIBBLE_PUNCH_CODE	C09	H2, K1		
-	Definition of M functions	DWORD	PowerOn		
-					
-	8	$0,23,22,25,26,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0, \ldots$	-	$7 / 2$	M

Description:

	Standard value	Example
NIBBLE_PUNCH_CODE [0] = 0	20	End punching, nibbling with M20
NIBBLE_PUNCH_CODE[1] = 23	23	End punching, nibbling with M23
NIBBLE_PUNCH_CODE[2] = 22	22	Start nibbling
NIBBLE_PUNCH_CODE[3] = 25	25	Start punching
NIBBLE_PUNCH_CODE[4] = 26	26	Activate dwell time
NIBBLE_PUNCH_CODE [5] =122	122	Start nibbling with pretension, stroke control at servo level
NIBBLE_PUNCH_CODE [6] =125	125	Start punching with pretension, stroke control at servo level
NIBBLE_PUNCH_CODE[7] = 0	0	Not used (in preparation)

Special cases:
If MD26012 \$MC_PUNCHNIB_ACTIVATION = 2 (M functions are interpreted directly by the software), then MD26008 \$MC_NIBBLE_PUNCH_CODE[0] =20 has to be set.
Related to:
MD26012 \$MC_PUNCHNIB_ACTIVATION

26010	PUNCHNIB_AXIS_MASK	C09	N4				
-	Definition of punching and nibbling axes	UDWORD	PowerOn				
-							
-	-	$7,0,0,0,0,0,0,0 \ldots$	0	$0 x 7 F F F F F F F$	$7 / 2$		

Description: Defines the axes involved in punching and nibbling. That is all the axes defined here must be at rest during punching and nibbling.
Related to:
MD26016 \$MC_PUNCH_PARTITION_TYPE

26012	PUNCHNIB_ACTIVATION							C09	K1
-	Activation of punching and nibbling functions	DWORD	PowerOn						
-									
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 2$				

```
Description:
    This MD defines the ways in which punching and nibbling functions can be activated:
    PUNCHNIB_ACTIVATION = 0
    None of the punching or nibbling functions can be activated. The automatic path
    segmentation is the only exception - if it is enabled via MD26014
    $MC_PUNCH_PATH_SPLITTING.
PUNCHNIB_ACTIVATION = 1
The functions are activated via language commands. If M functions are to be used, then
they must be programmed using macros.
PUNCHNIB_ACTIVATION = 2
The M functions are interpreted directly by the software. Language commands can still
be used.
Note:
This option is intended only as a temporary solution.
Related to:
MD26014 $MC_PUNCH_PATH_SPLITTING
MD26008 $MC_NIBBLE_PUNCH_CODE[n]
```


Description:
Activation data for automatic path segmentation.
Value Significance
\qquad
$0=$
Automatic path segmentation only active with punching and nibbling.
1 =
Automatic path segmentation can also be activated without punching and nibbling functions;
that is, it is programmable and be used NC internally
2 =
Automatic path segmentation can only be used NC internally;
that is it cannot be programmed.

This machine data defines how single axes that are also nibbling axes within the meaning of MD26010 \$MC_PUNCHNIB_AXIS_MASK are to behave.
In this case, there are the following options for the behavior of the single axes during automatic path segmentation and stroke control:
PUNCH_PARTITION_TYPE = 0
No special behavior during automatic path segmentation. If the single axes are programmed together with path axes in one block, then their total traversing path is split up corresponding to the path axes. That is the pure geometric relationship between the single axes and path axes is identical to the undivided motion. If the single axes are programmed without the path axes but with SPN=<value>, then the path is divided accordng to the programmed SPN value.
PUNCH_PARTITION_TYPE = 1

In this case, the path of the single axes, if they are programmed together with path axes, are generally traversed in the first section (that is independently of the currently active type of interpolation).
PUNCH_PARTITION_TYPE = 2
In this case, the single axes behave with linear interpolation in the same way as with PUNCH_PARTITION_TYPE = 1, and with all other types of interpolation in the same way as with PUNCH_PARTITION_TYPE $=0$.
Related to:
MD26010 \$MC_PUNCHNIB_AXIS_MASK

Description:
To minimize any dead times due to the reaction time of the punching unit, it is possible to release the stroke before reaching the in-position window of the axes. The reference time for this is the interpolation end. Since there is normally a delay of some interpolation cycles after reaching the interpolation end (depending on the machine dynamics) until the axes actually come into position, the prestart time is a delay time with respect to reaching the interpolation end.
The function is therefore coupled to $G 603$ (block change at the end of interpolation). The time can be set via the machine data NIBBLE_PRE_START_TIME).
Example:
With an interpolation cycle of 5 ms , a stroke shall be released 2 cycles after reaching the interpolation end. In this case, the value 0.010 s must be selected for NIBBLE_PRE_START_TIME. If a value that is not integrally divisible by the set interpolation time is selected, then the stroke is initiated in the interpolation cycle following the set time.

26020	NIBBLE_SIGNAL_CHECK	C09	N4			
-	Alarm on chattering punching signal	DWORD	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 2$	

Description: When stroke active signal is set, for example by punch overshoots between the strokes, then the interpolation is stopped. It is also possible to generate the message
"unclean punch signal" as a function of machine data NIBBLE_SIGNAL_CHECK.
0: No error message when the punching signal is irregular
1: Alarm, when the punching signal is irregular between strokes

27100	ABSBLOCK_FUNCTION_MASK	N01	K1, P1		
-	Parameterize basic blocks with absolute values	UDWORD	PowerOn		
-					
-	-	$0 \times 0,0 \times 0,0 \times 0,0 \times 0$, $0 \times 0,0 \times 0,0 \times 0,0 \times 0 .$.	0	0×1	

Description:

Parameterization of the "basic blocks with absolute values" function Bit $0=1$:
The position values of the transverse axis are always displayed as diameter values. Transverse axes can be applied using MD20100 \$MC_DIAMETER_AX_DEF or MD30460 \$MA_BASE_FUNCTION_MASK, bit 2.

Description: A version information freely available to the user
(is indicated in the version screen)

27850	PROG_NET_TIMER_MODE	C09	-				
-							
-	Impact of the program runtime net counter	UDWORD	Reset				
-	-	$\begin{array}{l}0 \times 00,0 \times 00,0 \times 00, \\ 0 \times 00,0 \times 00,0 \times 00, \\ 0 \times 00,0 \times 00 . .\end{array}$	0×00	0×03	$7 / 2$	$]$	M
:---							

Description:
The program run time is measured using system variables and can be read out. It provides a means of outputting the current progress of the processing of a part program. This MD can be used to make the following settings on a channel-specific basis:
Bit $0=0$
\$AC_ACT_PROG_NET_TIME is not deleted on a jump to the start of the program with GOTOS
Bit $0=1$
\$AC_ACT_PROG_NET_TIME is deleted on a jump to the start of the program with GOTOS, the valūe is savè in \$AC_OLD_PROG_NET_TIMES, and the program counter
\$AC_OLD_PROG_NET_TIME_COUNT is incremented.
Bit $1=0$
\$AC_ACT_PROG_NET_TIME ceases to be increased if override $=0$ is set; in other words, the program run time is measured without the time for which the override was set to 0 .
Bit $1=1$
\$AC_ACT_PROG_NET_TIME is increased if override $=0$; in other words, the program run time \bar{i} measured with the time for which the override was set to 0 .
Bits 2 to 31
Reserved

27860	PROCESSTIMER_MODE	C09	K1				
-							
-	Activation and impact of program runtime measurement	UDWORD	Reset				
-	-	$\begin{array}{l}0 \times 00,0 \times 00,0 \times 00, \\ 0 \times 00,0 \times 00,0 \times 00, \\ 0 \times 00,0 \times 00 \ldots\end{array}$	0	$0 \times 7 F F$	$7 / 2$	$]$	M
:---							

Description:
Timers are provided as system variables under the function program runtime. While the NCK-specific timers are always activated (for time measurements since the last control power on), the channel-specific timers have to be started via this machine data.
Meaning:
Bit $0=0$
No measurement of total operating time for any part program
Bit $0=1$
Measurement of total operating time is active for all part programs
(\$AC_OPERATING_TIME)
Bit $1=0$
No measurement of current program runtime

```
Bit 1 = 1
Measurement of current program runtime is active ($AC_CYCLE_TIME)
Bit 2 = 0
No measurement of tool operating time
Bit 2 = 1
Measurement of tool operating time is active ($AC_CUTTING_TIME)
Bit 3
Reserved
Bits 4,5 only when bit 0, 1, 2 = 1:
Bit 4 = 0 No measurement with active dry run feed
Bit 4 = 1 Measurement also with active dry run feed
Bit 5 = 0 No measurement with program test
Bit 5 = 1 Measurement also with program test
Bit 6 only when Bit 1 = 1:
Bit 6 = 0
Delete $AC_CYCLE_TIME also with start by ASUB and PROG_EVENTs
Bit 6 = 1
$AC_CYCLE_TIME is not deleted on start by ASUB and PROG_EVENTs.
Bit 7 only when bit 2 = 1:
Bit 7 = 0 $AC_CUTTING_TIME counts only with active tool
Bit 7 = 1 $AC_CUTTING_TIME counts irrespective of tool
Bits 8 only when bit 1 = 1
Bit 8 = 0
    $AC_CYCLE_TIME is not deleted on jumping to program start with GOTOS
Bit 8 = 1
$AC_CYCLE_TIME is deleted on jumping to program start with GOTOS.
Bit 9 only when bits 0, 1 = 1:
Bit 9 = 0
    $AC_OPERATING_TIME, $AC_CYCLE_TIME: No measurement with override = 0.
Bit 9 = 1
$AC_OPERATING_TIME, $AC_CYCLE_TIME: Measurement also with override = 0.
Bits 10 to 31
Reserved
```


Description:

```
The part counters can be configured with this machine data.
Note: with bit 0 = 1 and $AC REQUIRED_PARTS less than 0, all workpiece counts
activated in this MD are frozen at the status reached.
Meaning of the individual bits:
Bits 0 - 3: Activating $AC_REQUIRED_PARTS
------------------------------------------------------------------------------
Bit 0 = 1: Counter $AC_REQUIRED_PARTS is activated
Further meaning of bits 1-3 only when bit 0 =1 and $AC_REQUIRED_PARTS > 0:
Bit 1 = 0: Alarm/VDI output if $AC_ACTUAL_PARTS corresponds to $AC_REQUIRED_PARTS
Bit 1 = 1: Alarm/VDI output if $AC_SPECIAL_PARTS corresponds to $AC_REQUIRED_PARTS
```

```
Bit 2 Reserved!
Bit 3 Reserved!
Bits 4 - 7: Activating $AC_TOTAL_PARTS
Bit 4 = 1: Counter $AC_TOTAL_PARTS is active
Further meaning of bits 5-7 only when bit 4 =1 and $AC_REQUIRED_PARTS > 0:
Bit 5 = 0: Counter $AC_TOTAL_PARTS is incremented by 1 with a VDI output of M02/M30
Bit 5 = 1: Counter $AC_TOTAL_PARTS is incremented by 1 with output of the M command
from MD PART_COUNTER_MCODE[0]
Bit 6 = 0: $AC_TOTAL_PARTS also active with program test/block search
Bit 6 = 1: No machining $AC_TOTAL_PARTS with program test/block search
Bit 7 = 1: Counter $AC_TOTAL_PARTS is incremented by 1 on a return with GOTOS
Bits 8 - 11: Activating $AC_ACTUAL_PARTS
Bit 8 = 1: Counter $AC_ACTUAL_PARTS is active
Further significance of bits 9-11 only when bit 8 =1 and $AC_REQUIRED_PARTS > 0:
Bit 9 = 0: Counter $AC_ACTUAL_PARTS is incremented by 1 with a VDI output of M02/M30
Bit 9 = 1: Counter $AC_ACTUAL_PARTS is incremented by 1 with output of the M command
from MD PART_COUNTER_MCODE[1]
Bit 10 = 0: $AC_ACTUAL_PARTS also active with program test/block search
Bit 10 = 1: No machining $AC_ACTUAL_PARTS with program test/block search
Bit 11 = 1: Counter $AC_ACTUAL_PARTS is incremented by 1 on a return with GOTOS
Bit 12 - 15: Activating $AC_SPECIAL_PARTS
-------------------------------------------------------------------------------
Bit 12 = 1: Counter $AC_SPECIAL_PARTS is active
Further significance of bits 13-15 only when bit 12 =1 and $AC_REQUIRED_PARTS > 0:
Bit 13 = 0: Counter $AC_SPECIAL_PARTS is incremented by 1 with a VDI output of M02/
M30
Bit 13 = 1: Counter $AC_SPECIAL_PARTS is incremented by 1 with output of the M
command from MD PART_COUNTER_MCODE[2]
Bit 14 = 0: $AC_SPECIAL_PARTS also active with program test/block search
Bit 14 = 1: No machining $AC_SPECIAL_PARTS with program test/block search
Bit 15 = 1: Counter $AC_SPECIAL_PARTS is incremented by 1 on a return with GOTOS
Bit 16 - 19: Extension $AC_TOTAL_PARTS
Meaning of the bits 16-19 applies only if Bit4 =1 and $AC_REQUIRED_PARTS > 0:
Bit 16 = 0: $AC_TOTAL_PARTS is active in MDI mode
Bit 16 = 1: No machining $AC_TOTAL_PARTS in MDI mode
Bit 17 Reserved!
Bit 18 Reserved!
Bit 19 Reserved!
Bit 20-23: Extension $AC_ACTUAL_PARTS
---------------------------------------------------------------------------------
Meaning of bits 20-23 only if bit8 =1 and $AC_REQUIRED_PARTS > 0:
Bit 20 = 0: $AC_ACTUAL_PARTS is active in MDI mode
Bit 20 = 1: No machining $AC_ACTUAL_PARTS in MDI mode
Bit 21 Reserved!
Bit 22 Reserved!
Bit 23 Reserved!
Bit 24 - 27: Extension $AC_SPECIAL_PARTS
```

```
Meaning of bits 24-27 only if bit12 =1 and $AC_REQUIRED_PARTS > 0:
Bit 24 = 0: $AC_SPECIAL_PARTS is active in MDI mode
Bit 24 = 1: No machining $AC_SPECIAL_PARTS in MDI mode
Bit 25 Reserved!
Bit 26 Reserved!
Bit 27 Reserved!
Related to:
MD27882 $MC_PART_COUNTER_MCODE
```


Description:

If part counting is activated via MD27880 \$MC_PART_COUNTER, the count pulse can be triggered by a special M command.
Only then are the values defined here taken into account:
Meaning:
The part counters are incremented by 1 in the NST signal output of the M command described, where:
MD27882 \$MC_PART_COUNTER_MCODE[0] for \$AC_TOTAL_PARTS
MD27882 \$MC_PART_COUNTER_MCODE[1] for \$AC_ACTUAL_PARTS
MD27882 \$MC_PART_COUNTER_MCODE[2] for \$AC_SPECIAL_PARTS

27920	TIME_LIMIT_NETTO_INT_TASK	EXP, C01	-			
s	Runtime limit of interpreter subtask	DOUBLE	PowerOn			
-						
-	-	$0.005,0.005,0.005$,	0.001	0.100	ReadOnly	
		$0.005,0.005,0.005$,		S		
	$0.005,0.005 \ldots$					

Description:
With MD27920 \$MC_TIME_LIMIT_NETTO_INT_TASK, the maximum runtime of the interpreter subtask is set. The interpreter subtask is started from the preprocessing task. If the interpreter task does not end on its own within the time set with MD27920 \$MC_TIME_LIMIT_NETTO_INT_TASK, it will be stopped and continued after a preprocessing cycle.

27930	TIME_LIMIT_NETTO_EES_TASK	EXP, C01	-			
s	Runtime limit of the EES async. subtask	DOUBLE	PowerOn			
-						
-	-	$0.008,0.008,0.008$, 	$0.008,0.008,0.008$,			
$0.008,0.008 \ldots$	0.01	ReadOnly	S			

Description:
The maximum runtime of the EES async. subtask is set with this machine data. The EES async. subtask is started from the preprocessing task. If the EES async. subtask does not end automatically within the time set in this machine data, it will be stopped and resumed after a preprocessing cycle.

28000	MM_REORG_LOG_FILE_MEM	EXP, C02	V2, K1		
-	Memory space for REORG (DRAM)	DWORD	PowerOn		
-					
-	-	$50,50,50,50,50,50$, $50,50 \ldots$	1	500	$7 / 2$

Description:
Definition of the size (in kbyte) of the dynamic memory for the REORG-LOG data. The size of the memory determines the quantity of the data available for the function REORG.
References:
/FB/, K1, "Mode Groups, Channel, Program Operation"

Description:

Defines the number of additional LUD data blocks available for the function REORG (see Description of Functions, Channels, Mode Groups, Program Operation (K1)).
This value can be 0 if the function REORG is not used. The CNC always opens 12 LUD data blocks, of which 8 are used for NC programs and 4 for the ASUBs.
An LUD data block is needed for each $N C$ program and ASUB in which a local user variable is defined. This value may have to be increased for the function REORG if a large IPO buffer is present and a large number of short NC programs in which LUD variables are defined are active (prepared NC blocks of the programs are located in the IPO buffer).
An LUD data block is needed for each of these programs. The size of the reserved memory is affected by the number of LUDs per NC program and their individual memory requirements. The LUD data blocks are stored in the dynamic memory.
The memory requirement for managing the blocks for local user variables with REORG can be determined as follows:
The size of the LUD blocks depends on the number of active LUDs and their data type. The memory for the LUD blocks is limited by the MD28000 \$MC_MM_REORG_LOG_FILE_MEM (memory size for REORG).

28020	MM_NUM_LUD_NAMES_TOTAL	C02	V2, K1		
-	Number of local user variables (DRAM)				
-	-	$4000,4000,4000$, $4000,4000,4000$, $4000,4000 \ldots$	4000	32000	$7 / 3$

Description:

Defines the number of variables for the local user data (LUD) which are permitted to exist in the active sections of the program. Approximately 150 bytes of memory per variable are reserved for the names of the variables and the variable values. The memory required for the variable value is equal to the size of the data type. If the total of the local user variables from the active main program and the related subprograms is larger than the defined limit, the variables which are over the limit are not accepted during execution of the program. Dynamic memory is used for the variable names and variable values.
Overview of the memory used by the data types:
Data type Memory used
REAL 8 bytes
INT 4 bytes
BOOL 1 byte

4.2 Channel-specific NC machine data

CHAR	1 byte
STRING	1 byte per character, 200 characters per string are possible
AXIS	4 bytes
FRAME	400 bytes

Description:
This MD defines the amount of memory space available for LUD variables.
The maximum number of available LUDs is given by one of the limit values of MD28020 \$MC_MM_NUM_LUD_NAMES_TOTAL or MD28040 \$MC_MM_LUD_VALUES_MEM.
It should be remembered that several part programs requiring memory can be open simultaneously in the NCK. The number depends on the type of programming, the program length, and the size of the internal NCK block memory upwards of (MD28060 \$MC_MM_IPO_BUFFER_SIZE, MD28070 \$MC_MM_NUM_BLOCKS_IN_PREP).
Related to:
MD28020 \$MC_MM_NUM_LUD_NAMES_TOTAL
(number of local user variables (DRAM))
\(\left.\begin{array}{|l|l|l|l|l|}\hline 28050 \& MM_NUM_R_PARAM \& C02 \& K1

\hline- \& Number of channel-specific R variables (SRAM) \& DWORD \& PowerOn

\hline- \& - \& \begin{array}{l}100,100,100,100,

100,100,100,100 ···\end{array} \& 0 \& 32535\end{array}\right]\)| M |
:---

Description: Defines the number of R variables available in the channel. This machine data reserves 8 bytes of buffered user memory per R variable.

28060	MM_IPO_BUFFER_SIZE	C02	B1, K1		
-	Number of NC blocks in IPO buffer (DRAM)	DWORD	PowerOn		
-	-	$10,10,10,10,10,10$, $10,10 \ldots$	2	1000	M
-	-				

Description:

Defines the number of blocks for the interpolation buffer. This buffer contains prepared NC blocks available for the interpolation. A number of kbytes of the dynamic user memory are reserved for each NC block. The data also limits the number of blocks for look ahead consideration of speed limitation for the LookAhead function.
MD28060 \$MC_MM_IPO_BUFFER_SIZE is set by the system.
Related to:
MD28070 \$MC_MM_NUM_BLOCKS_IN_PREP
(number of blocks for block preparation)

28070	MM_NUM_BLOCKS_IN_PREP	EXP, C02	B1, K1			
-	Number of blocks for block preparation (DRAM)	DWORD	PowerOn			
-						
-	-	$50,50,50,50,50,50$, $50,50 \ldots$	20	1000	$7 / 2$	

Description:
Defines the number of $N C$ blocks available for $N C$ block preparation. This figure is determined mainly by the system software and is used largely for optimization. Approximately 10 Kbytes of dynamic memory is reserved per NC block.
Related to:

MD28060 \$MC_MM_IPO_BUFFER_SIZE
(number of $N C$ blocks with IPO buffer)

28072	MM_MAXNUM_SURF_GROUPS				EXP, C02	-		
-	Dimensioning of the COMPSURF function in respect of axis groups (DRAM)				DWORD	PowerOn		
-								
-	Defines the size of the internal data structures of the COMPSURF function in respect of various axis groups, such as geometry, orientation, and other axis types. Larger values mean better quality smoothing, but also more use of CPU time and memory space. The machine data only has an effect if the Top Surface option is used. Related to: SD42473 \$SC_ACTNUM_SURF_GROUPS							
Description:	Defines the size of the internal data structures of the COMPSURF function in respect of various axis groups, such as geometry, orientation, and other axis types. Larger values mean better quality smoothing, but also more use of CPU time and memory space. The machine data only has an effect if the Top Surface option is used. Related to: SD42473 \$SC_ACTNUM_SURF_GROUPS							

28079	MM_NUM_G_FRAMES			C11, C02	K1,	
-	Number of grinding frames (SRAM)			DWORD	Pow	
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	100	7/2	M

Description:

Specifies the number of predefined grinding frames.
The buffered data are lost when this machine data is changed!

28080	MM_NUM_USER_FRAMES						C11, C02	K1, K2
-	Number of settable frames (SRAM)	DWORD	PowerOn					
-								
-	-	$5,5,5,5,5,5,5,5 \ldots$	5	100				

Description:
Defines the number of predefined user frames. The standard system configuration provides four frames for G54 to G57 and one frame for G500.
The backup data are lost if this machine data is altered!

28081	MM_NUM_BASE_FRAMES	C02	M5, K2		
-	Number of base frames (SRAM)	DWORD	PowerOn		
-					
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	16	
Description:	Number of channel-specific base frames per channel. The value corresponds to the number of field elements for the predefined field Buffered memory is reserved for this.				

28085	MM_LINK_TOA_UNIT	C02, C09	FBWsI, S7				
-	Assignment of a TO unit to a channel (SRAM)	DWORD	PowerOn				
-							
-	-	$1,2,3,4,5,6,7,8 \ldots$	1	10	$7 / 2$		

Description:
The TO area covers all tool, magazine, ... data blocks known to the NCK. The maximum nujmber of units in the $T O$ area is equal to the number of channels.
If MD28085 \$MC_MM_LINK_TOA_UNIT = default setting, then each channel is assigned a TO unit individually.

If MD28085 \$MC_MM_LINK_TOA_UNIT = i, the channel is assigned TO unit i. This enables one $T O$ unit to be assigned to multiple channels.

Notice
The uppper limit does not indicate that this value is always practical or free of conflicts. If one channel (the first) is active in a system with a maximum of 2 channels, and the other is not, the MD on channel 1 can formally be given the value 2 , but the NCK cannot work with it. This setting would mean that channel 1 did not have any blocks for tool offsets, as the channel with ID=2 did not exist.

The NCK detects this conflict at Power On and restart, and responds by autonomouslöy changing the (incorrect) value to the default value of the MD.

28090	MM_NUM_CC_BLOCK_ELEMENTS						EXP, C02	TE1, TE7, TE8, K1
-	Number of block elements for compile cycles (DRAM)	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	130	$7 / 1$			

Description:

The input value defines the number of block elements that can be used for compile cycles.
In the case of software version 2, approximately 1.2 KB of dynamic memory is required per block element.

28100	MM_NUM_CC_BLOCK_USER_MEM	EXP, C02	TE1, TE7, TE8, K1				
-	Size of block memory for compile cycles (DRAM), in KB					DWORD	PowerOn
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	64000			
-	-	$7 / 1$	M				

Description: The value defines the total capacity of block memory available to the user in the

 dynamic memory area for the compile cycles. The memory is allocated in staggered blocks of 128 bytes.

Description: Size of the heap memory in kbytes which can be used by the compile cycle user.
Dynamic memory is reserved.
The memory is allocated in subdivisions of 128 byte groups.
The start address and the size of the reserved memory is made available via a binding, the management lies in the hands of the CC user.

28150	MM_NUM_VDIVAR_ELEMENTS	C02	A2, P3 pl, P3 sI		
-	Number of elements for writing PLC variables				
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	32000	$7 / 2$
-	-	PWORD			

Description: The MD defines the number of elements which the user has available for writing PLC variables (\$A_DBx=...). This number also applies to block search, but not to synchronized actions.
The memory requirement is ca. 24 bytes per element.
One element is needed for each write action when writing PLC variables in quick succession.
If more writing actions are to be performed than elements are available, block transport must be guaranteed (trigger preprocessing stop, if required)
However, the number of elements can be reduced if the accessing actions are made separately (block transport has already been accomplished). Writing accesses (var= \$A_DBx) are unlimited.
4.2 Channel-specific NC machine data

28160	MM_NUM_LINKVAR_ELEMENTS					C02	B3
-	Number of elements for writing NCU-link variables	DWORD	PowerOn				
-							
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	32000			

Description:

Defines the number of elements which the user has available for programming link variables (\$A_DLx=...). This number also applies to block search, but not to synchronized actions.

The memory requirement is approx. 24 bytes per element.
One element is needed for each write action when writing NCU-link variables in quick succession.
However, the number of elements can be reduced if the accessing actions are made separately (block transport has already been accomplished).
If more writing actions are to be performed than elements are available, block transport must be guaranteed (trigger preprocessing stop, if required).

28180	MM_MAX_TRACE_DATAPOINTS						EXP, C02, C06	-
-								
NBUP	Length of the trace data buffer	DWORD	PowerOn					
-	-	$100,100,100,100$, $100,100,100,100 \ldots$	0	20000				

Description: MM_MAX_TRACE_DATAPOINTS defines the size of an internal data buffer which contains the trace recordings.

28200	MM_NUM_PROTECT_AREA_CHAN	C02, C06, C09	A3			
-	Number of channel-specific protection zones (SRAM)	DWORD	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	10		
$7 / 2$	M					

Description:
This machine data defines how many channel-specific protection areas are set up.
Related to:
MD28210 \$MC_MM_NUM_PROTECT_AREA_ACTIVE (number of simultaneously active protection areas)
MD18190 \$MN_MM_NUM_PROTECT_AREA_NCK (number of control-specific protection areas (SRAM))
References:
/FB/, A3, "Axis/Contour Tunnel Monitoring, Protection Areas"

28210	MM_NUM_PROTECT_AREA_ACTIVE						C11, C02, C06, C09	A3
-	Number of simultaneously active protection zones in one channel	DWORD	PowerOn					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	20				
$7 / 2$	M							
-	-							

Description:
This machine data defines the number of protection areas that may be activated simultaneously for each channel.
It is not practical to enter a numerical value greater than MD18190
\$MN_MM_NUM_PROTECT_AREA_NCK + MD28200 \$MC_MM_NUM_PROTECT_AREA_CHAN.
Related to:
MD28200 \$MC_MM_NUM_PROTECT_AREA_CHAN (Number of blocks for channel-specific
protection areas)
MD18190 \$MN_MM_NUM_PROTECT_AREA_NCK (Number of control-specific protection areas (SRAM))
References:
/FB1/ Function Manual Basic Functions; Axis Monitoring, Protection Areas (A3)

28212	MM_NUM_PROTECT_AREA_CONTOUR						C11, C02, C06, C09	A3
-	Elements for active protection zones (DRAM)	DWORD	PowerOn					
-	-	$30,30,30,30,30,30, ~$ $30,30 \ldots$	0	50	M			
-	-	$7 / 2$						

Description: This machine data defines for each channel how many internal contour elements in total are held available for active protection zones.

Dynamic memory is used.
The MD affects the memory requirements for the activated protection zones.
This machine data is active only if MD28210 \$MC_MM_NUM_PROTECT_AREA_ACTIVE is not equal to 0 .

Description:

The values of the variables and machine data during diagnostics of the motionsynchronous actions are saved to memory elements for storage in the control. A motionsynchronous action uses up to the number of elements for as many variables as are set with MD28241 \$MC_MAXNUM_SYNC_DIAG_VAR.
The following are assigned:

- 1 element for each variable
- 1 element for each index

Example:
WHEN \$R1 == 1 DO $\$ R 2=\$ R\left[A C _M A R K E R[1]\right]$
R1 = 2 elements, variable with written value 1 element, index "1" an element
R2 = 2 elements, variable with written value 1 Element, index "2" an element
AC_MARKER = 2 elements, variable with read value 1 element, index "1" an element $R=2$ elements, variable with written value 1 element, index "1" an element Total 8 elements.

28241	MAXNUM_SYNC_DIAG_VAR				
N05					-
-					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	10000	$7 / 2$
-					

Description: Maximum number of diagnostics variables per synchronized action.

28250	MM_NUM_SYNC_ELEMENTS	C02	$2.8,6.1$				
-	Number of elements for expressions in synchronized actions	DWORD	PowerOn				
-	-	$\begin{array}{l}159,159,159,159, \\ 159,159,159,159 \ldots\end{array}$	0	32000	$7 / 2$	$]$	M
:---							
-							

Description:
 The expressions of the motion-synchronous actions are stored in memory elements in the

 control. A motion-synchronous action occupies at least 4 elements.It occupies:

4.2 Channel-specific NC machine data

- 1 element for each operand in the condition
- $>=1$ element for each action
- 2 elements for each assignment
- 1 element for each further operand in complex expressions.

One element occupies approx. 64 bytes.
The option "Synchronous actions stage 2 " is required if the MD can be written to.

Description:

The expressions of motion-synchronous actions are stored in memory elements of the control. A motion-synchronous action assigns at least 4 elements.
Assignments:
Each operand in the condition: 1 element
Each action: >= 1 element
Each assignment: 2 elements
Each additional operand in complex expressions: 1 element
Also see:
MD28250 \$MC_MM_NUM_SYNC_ELEMENTS

28252	MM_NUM_FCTDEF_ELEMENTS		C02	2.4, 2.8, 6.1	
-	Number of FCTDEF elements		DWORD	PowerOn	
-					
-	3, 3, 3, 3, 3, 3, 3, 3...	0	100	7/2	M

Description: Defines the number of FCTDEF elements.

28253	MM_NUM_SYNC_STRINGS	C02	-						
-	Number of strings for expressions in synchronized actions	DWORD	PowerOn						
-									
-	-	$\begin{array}{l}200,200,200,200, \\ 200,200,200,200 \ldots\end{array}$	0	32000	$7 / 2$			$]$	M
:---									

Description: The expressions of motion-synchronous actions are saved in memory elements for storage in the control. Elements have to be reserved specifically for strings within expressions.

28254	MM_NUM_AC_PARAM	C02	-					
-	Dimension of \$AC_PARAM.	DWORD	PowerOn					
-								
-	-	$\begin{array}{l}50,50,50,50,50,50, \\ 50,50 \ldots\end{array}$	0	20000	$7 / 2$		$]$	M
:---								

Description: Panel size of \$AC_PARAM.

Description: \$AC_PARAM[] is stored in SRAM.

28256	MM_NUM_AC_MARKER	C02	$2.3,6.1$		
-	Dimension of \$AC_MARKER	DWORD	PowerOn		
-					
-	-	$8,8,8,8,8,8,8,8 \ldots$	0	20000	$7 / 2$

Description:

Number of channel-specific markers \$AC_MARKER for motion-synchronous actions. DRAM or SRAM is required depending on MD28257 \$MC_MM_BUFFERED_AC_MARKER.

28257	MM_BUFFERED_AC_MARKER						C02	$2.3,6.1$
-	\$AC_MARKER[] is stored in SRAM.	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$7 / 2$			

Description: \$AC_MARKER[] is stored in SRAM.

28258	MM_NUM_AC_TIMER	C02	$2.3,2.4,6.1$	
-	Number of time variables \$AC_TIMER (DRAM)	DWORD	PowerOn	
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	10000
-	-	$7 / 2$	M	

Description: Number of channel-specific time variables \$AC_TIMER for motion-synchronous actions (DRAM)

28260	NUM_AC_FIFO	C01	$2.3,2.4,6.1$			
-	Number of FIFO variable for synchronized actions	DWORD	PowerOn			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	10	$7 / 2$	

Description:

Number of FIFO variables \$AC_FIFO1 - \$AC_FIFO10 for motion-synchronous actions.
FIFO variables are used for product tracking. A piece of information (e.g. the product
length) for each part on a conveyor belt can be temporarily stored in each FIFO variable.

FIFO variables are stored in R variables.
MD28262 \$MC_START_AC_FIFO defines the number of the R variable as from which the FIFO variables can be stored. All R variables with lower numbers can be used freely in the part program.
R variables above the $F I F O$ range cannot be written from the part program.
The number of R variables must set via MD28050 \$MC_MM_NUM_R_PARAM so that all FIFI variables can be accommodated from the start of the R variables:
MD28050 \$MC_MM_NUM_R_PARAM = MD28262 \$MC_START_AC_FIFO + MD28260 \$MC_NUM_AC_FIFO * (MD28264 \$MC_LEN_AC_FIFO + 6)

The FIFO variables bear the names \$AC FIFO1 to \$AC FIFOn.
They are stored as arrays.
The indices 0 - 5 have special meanings:
$\mathrm{n}=0$:
A new value is stored in the FIFO when writing with index 0 .
The oldest element is read and removed from the FIFO when writing with index 0 .
$n=1$: Access to the first element read in
$\mathrm{n}=2$: Access to the last element 1 read in
n=3: Sum of all FIFO elements
$n=4:$ Number of elements available in the FIFO
n=5: Current write index relative to FIFO start
$\mathrm{n}=6$: 1 st element read in
4.2 Channel-specific NC machine data

28262	START_AC_FIFO						C01	$2.3,2.4,6.1$
-	FIFO variables store from R variable						DWORD	PowerOn
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	32535				
$7 / 2$	M							

Description:

Number of the R variable as from which FIFO variables are stored. All R variables with lower numbers can be used freely in the part program. R variables above the FIFO range cannot be written from the part program.
The number of R variables must set via MD28050 \$MC_MM_NUM_R_PARAM so that all FIFI variables can be accommodated from the start of the R variables:
MD28050 \$MC_MM_NUM_R_PARAM = MD28262 \$MC_START_AC_FIFO + MD28260 \$MC_NUM_AC_FIFO

* (MD28264 \$MC_LEN_AC_FIFO + 6)

The FIFO variables bear the names \$AC_FIFO1 to \$AC_FIFOn. They are stored as arrays.
The indices $0-5$ have special meanings:
$\mathrm{n}=0$:
A new value is stored in the FIFO when writing with index 0 .
The oldest element is read and removed from the FIFO when reading with index 0 .
$\mathrm{n}=1$: Access to the first element read in
$\mathrm{n}=2$: Access to the last element read in
n=3: Sum of all FIFO elements
$\mathrm{n}=4$: Number of elements available in the FIFO
$\mathrm{n}=5$: Current write index relative to FIFO start
Related to:
MD28260 \$MC_NUM_AC_FIFO

28264	LEN_AC_FIFO	C01	$2.3,2.4,6.1$, M5		
-	Length of FIFO variables \$AC_FIFO1-\$AC_FIFO10	DWORD	PowerOn		
-					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	32535	

Description:
Length of the FIFO variables \$AC_FIFO1 to \$AC_FIFO10.
All FIFO variables are the same length.

28266	MODE_AC_FIFO	C01	$2.3,2.4,6.1$					
-	Mode of FIFO processing						BYTE	PowerOn
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	-				

Description:

Mode of FIFO processing:
Bit $0=1$:
The sum of all FIFO contents is updated at each write access.
Bit $0=0$:
No summation
Related to:
MD28260 \$MC_NUM_AC_FIFO

28274	MM_NUM_AC_SYSTEM_PARAM						EXP, C02	-
-	Number of \$AC_SYSTEM_PARAM for motion-synchronous actions	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	20000				

Description:
Number of \$AC_SYSTEM_ PARAM parameters for motion-synchronous actions.

Depending on MD28255 \$MC_MM_BUFFERED_AC_PARAM, DRAM or SRAM is required.
Reserved for SIEMENS applications.

28276	MM_NUM_AC_SYSTEM_MARKER		EXP, C02	-	
-	Number of \$AC_SYSTEM_MARKER for motion-synchronous actions		DWORD	Pow	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	20000	7/2	M

Description:

Number of \$AC_SYSTEM_MARKER markers for motion-synchronous actions.
Depending on MD28257 \$MC_MM_BUFFERED_AC_MARKER, DRAM or SRAM is required.
Reserved for SIEMENS applications.

Description: This machine data enables the handling of surface normals with polynomials. It is needed, among other things, for smoothing the surface normals with the COMPSURF function.

28300	MM_PROTOC_USER_ACTIVE	C02	-							
-	$\begin{array}{l}\text { Activation of logging for a user }\end{array}$						BOOLEAN	PowerOn		
-	10	$\begin{array}{l}\text { TRUE, TRUE, FALSE, } \\ \text { FALSE, FALSE, } \\ \text { TRUE, TRUE, TRUE, } \\ \text { FALSE,, T... }\end{array}$	0	-	$1 / 1$				$]$	M
:---										
-										

Description:
Activation of recording for a user.
Users 0 and 1, and 5 to 9 are reserved for system functions.
Users 2, 3 and 4 can be used by OEM.
The individual values concern the users of the log function, the values are assigned
to the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis
1: Reserved for system functions: determining program runtimes, multistep editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: Trace
6: Reserved for system functions: Trace

Machine data

```
7: Reserved for system functions: Trace
8: Reserved for system functions: Trace
9: Reserved for system functions: Action log
```

28301	MM_PROTOC_NUM_ETP_OEM_TYP	C02	-		
-	Number of OEM event types ETP.	DWORD	PowerOn		
-					
-	10	$0,0,0,0,0,0,0,0,0$, $0,0,0,0,0,0,0,0,0$, $0,0,0,0 \ldots$	0	20	$1 / 1$

Description:

Number of OEM event types in OPI module ETP.
The individual values concern the users of the log function, which are assigned to the following functions:

0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis
1: Reserved for system functions: determining program runtimes, multistep editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: Trace
6: Reserved for system functions: Trace
7: Reserved for system functions: Trace
8: Reserved for system functions: Trace
9: Reserved for system functions: Action log

28302	MM_PROTOC_NUM_ETP_STD_TYP						C02	-
-	Number of standard event types ETP	DWORD	PowerOn					
-								
-	10	$28,6,0,0,0,20,20$,	$28,6,0,0,0,20$,	$66,66,66,66$,	$1 / 1$			

Description:

Number of standard event types required in the ETP OPI block.
The individual values concern the users of the log function, which are assigned to the following functions:
0 : Reserved for system functions: simultaneous recording, simulation, synchronized action analysis
1: Reserved for system functions: determining program runtimes, multistep editor
2: Reserved for OEM applications
3: Reserved for OEM applications
4: Reserved for OEM applications
5: Reserved for system functions: Trace
6: Reserved for system functions: Trace
7: Reserved for system functions: Trace
8: Reserved for system functions: Trace
9: Reserved for system functions: Action log

28400	MM_ABSBLOCK						EXP, C02	K1
-	Activate basic blocks with absolute values	DWORD	PowerOn					
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	512				
$7 / 2$	M							

Description:

Value:

```
0: Basic blocks with absolute values deactivated.
1: Basic blocks with absolute values activated;
A display buffer of the following size is created:
(MD28257 $MC_MM_BUFFERED_AC_MARKER + MD28070 $MC_MM_NUM_BLOCKS_IN_PREP) * 256 bytes
>= 128: Basic blocks with absolute values activated.
A display buffer of the following size is created:
(MD28060 $MC_MM_IPO_BUFFER_SIZE + MD28070 $MC_MM_NUM_BLOCKS_IN_PREP) * <value>
```

28402	MM_ABSBLOCK_BUFFER_CONF	EXP, C02	K1					
-	Setting of upload buffer size	DWORD	PowerOn					
-								
-	2	$\begin{array}{l}2,4,2,4,2,4,2,4,2, \\ 4,2,4,2,4,2,4 \ldots\end{array}$	0	32000	$7 / 2$		$]$	M
:---								

Description:

Dimensioning the size of the upload buffer:
MD28402 \$MC_MM_ABSBLOCK_BUFFER_CONF[0] : Number of blocks before the current block MD28402 \$MC_MM_ABSBLOCK_BUFFER_CONF[1] : Number of blocks after the current block The machine data is tested for the following upper / lower limits during startup: $0<=$ MD28402 \$MC_MM_ABSBLOCK_BUFFER_CONF[0] <= 8 $0<=$ MD28402 \$MC_MM_ABSBLOCK_BUFFER_CONF[1] <= (MD28060 \$MC_MM_IPO_BUFFER_SIZE + MD28070 \$MC_MM_NUM_BLOCKS_IN_PREP)
Alarm 4152 is issued when the limits are violated.

28450	MM_TOOL_DATA_CHG_BUFF_SIZE						, C02, C06	-		
-	Buffer for tool data changes (DRAM)	DWORD	PowerOn							
-										
-	-	$\begin{array}{l}400,400,400,400, \\ 400,400,400,400 \ldots\end{array}$	0	2500	$7 / 2$				$]$	M
:---										

Description:
Number of entries in the buffer for the OPI change service for tool data. Dynamic memory is used.
This buffer is created only if bit 2 or bit 3 is set in MD17530 \$MN_TOOL_DATA_CHANGE_COUNTER.

28520	MM_MAX_AXISPOLY_PER_BLOCK	C02	B1		
-	Maximal number of axial polynomials per block				
-	-	$3,3,3,3,3,3,3,3 \ldots$	1	15	DWORD
-	-	$7 / 2$	M		

Description:
Maximum number of axis polynomials which can be contained in a block.
In the standard case, each block contains only one polynomial per axis, i.e. this data can be set to 1 immediately.

More polynomials are required in the following cases:
This data must have a value of at least 3 for smoothing with G642 to G645.
A value of 5 is recommended if COMPCAD (Advanced Surface) is used.
A value of 15 is recommended if COMPSURF is used.

28530	MM_PATH_VELO_SEGMENTS						C02	A2, B1
-	Number of memory elements for path velocity limitation	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	100	$7 / 2$			

Description: Number of memory elements available for limiting the path velocity and changing it in the block.

```
0 : Each block is limited by a maximum path velocity.
> 0 : If required, a profile of the permissible path velocity
    ; and its modification options is generated and monitored
    ; in the block.
    ; This results in a smoother axis velocity progression and
    ; a shorter travel time.
    ; MD28530 $MC_MM_PATH_VELO_SEGMENTS defines the average
    ; number of segments available in the block.
    ; The necessary setting essentially depends
    ; on the requirements.
The following values are recommended:
3: for G643 and G644, if only geometry axes are traversed
5: for G643 and G644, if geometry and rotary axes are traversed
5: for COMPCAD
5: for dyn. transformation
8: for COMPSURF
A value that is too low may lead to additional velocity limitations if a sufficient
number of blocks cannot be made available for interpolation.
MD28530 $MC_MM_PATH_VELO_SEGMENTS additionally increases the memory requirement of
dyn. Look Ahead. Values higher than 8 are only practical in exceptional cases.
3 ... 8 :
Recommended setting.
```

28533	MM_LOOKAH_FFORM_UNITS						C02	-
-	Memory for extended LookAhead	DWORD	PowerOn					
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	100000				
$7 / 2$	M							

Description:

The machine data is used to configure the work memory for extended LookAhead. The MD scales the value defined internally through MD28060 \$MC MM IPO BUFFER SIZE, MD28520 \$MC_MM_MAX_AXISPOLY_PER_BLOCK, MD28530 \$MC_MM_PATH_VELO_SEGMENTS, MD28535 \$MC_MM_FEED_PROFILE_SEGMENT $\bar{S}, ~ M \bar{D} 28540$ \$MC_MM_ARCLENGTM_SEGMENTS $\overline{)}$.
Its practical size depends on the part program, the block lengths, the axis dynamics, and an active kinematic transformation.
The MD should only be set for those channels in which free-form surfaces are also machined.

0 : default LookAhead is active.
>0 : extended LookAhead is active if switched on by MD20443 \$MC_LOOKAH_FFORM.
The set value for free-form surface applications is: 18.

28535	MM_FEED_PROFILE_SEGMENTS						C02	-
-	Number of memory element for feed profiles	DWORD	PowerOn					
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	1	10	$7 / 2$			

Description:

Number of memory elements available for feed profile per block.
The default value 1 is adequate for a programmable feed profile (FLIN, FCUB, FPO()).
If compile cycle applications require more segments per block, this machine data must
be increased accordingly.
If, for example, a feed profile is to be activated in which there is deceleration at both the beginning and the end of the block, 3 segments will be required for the feed profile in the block, i.e. this MD must have value 3.

28540	MM_ARCLENGTH_SEGMENTS		C02	B1	
-	Number of memory elements for arc length function representation		DWORD	Pow	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	100	7/2	M

Description:
Number of memory elements available for the arc length function for parameterizing polynomials.
If this machine data is equal to zero, a fixed interval division is used to represent the arc length function. In this case, the calculated function is only tangentcontinuous. This can lead to discontinuities in the axis accelerations.
If the function G643 or G644 is used for smoothing and/or COMPCAD or COMPSURF, this MD should be assigned a value of at least 10. In this case, the function also has a constant curvature which results in a smoother progression of the path velocity, as well as the axis velocities and accelerations.
A value of 10 is sufficient when using COMPSURF and 3-axis applications.
Up to 20 may be useful for COMPSURF and 5-axis applications.
Not only the value of MD28540 \$MC_MM_ARCLENGTH_SEGMENTS but also that of MD20262 \$MC_SPLINE_FEED_PRECISION are crucial for accuracy.

28560	MM_SEARCH_RUN_RESTORE_MODE	C02	K2				
-	Data restore after simulation	UDWORD	PowerOn				
-							
-	-	$\begin{array}{l}0 \times 0,0 \times 0,0 \times 0,0 \times 0, \\ 0 \times 0,0 \times 0,0 \times 0,0 \times 0 . . .\end{array}$	0	0×00000001		$] 7 / 2$	M
:---							

Description:
Bit mask to restore data after cancelation of a simulated program execution. The following applies:
Bit 0: All frames in the data storage are restored.

28580	MM_ORIPATH_CONFIG						C02	-
-								
-	Setting for ORIPATH path-relative orientation	BYTE	PowerOn					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	1	$1 / 1$			

Description:
This MD is used to configure the behavior with ORIPATH, that is path-relative interpolation of the tool orientation. Furthermore, orientation smoothing is enabled with the G codes OSD or OST.

The following options are available:
0: MD21094 \$MC_ORIPATH_MODE has no effect. G codes OSD and OST have no effect.
1: The "genuine" path-relative orientation interpolation can be activated with MD21094 \$MC_ORIPATH_MODE = 1. The reference of the tool orientation to the path tangent and to the vector normal to the surface programmed with LEAD/TILT is retained throughout the block.
Note:
Alarm 10980 is output if ORIPATH is programmed with MD21094 \$MC_ORIPATH_MODE = 1 or OSD or OST without MD28580 \$MC_MM_ORIPATH_CONFIG $=1$.

28590	MM_ORISON_BLOCKS						C02	-
-	Setting for orientation smoothing							
-								
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	DWORD	PowerOn			

Description: This MD is used to activate and reserve memory for the function "orientation smoothing with ORISON". If this data has a value of "zero", no orientation smoothing will be possible.

4.2 Channel-specific NC machine data

The value of this machine data indicates the maximum number of blocks over which the orientation is smoothed. The value of this MD should be at least high enough that the blocks to be averaged fit in the buffer. This is dependent upon the maximum set tolerance and the average distance traversed by the programmed blocks or the length of the part blocks generated (see MD20476 \$MC_ORISON_STEP_LENGTH).
. Setting this MD to higher values will significantly increase the memory requirement in the DRAM.
A value of 4 should be entered as a minimum.
If this MD is <4 and if G code ORISON is programmed, alarm 10982 will be displayed.

Description: Number of data sets in the channel that are created for coordinate system-specific operating range limits.
It indicates the maximum value of the 1 st index of system variable \$P_WORKAREA_CS... [WALimNo, Ax]. It furthermore defines the number of the programmable \bar{G} functions "WALCS1, WALCS2, ... WALCS10" as well as the maximum value of the system variable \$AC_WORKAREA_CS_GROUP".
= 0: Function "Monitoring of coordinate system-specific operating range limits" cannot be activated.

28610	MM_PREPDYN_BLOCKS	C02	-				
-	Number of blocks for velocity preparation	BYTE	PowerOn				
-	$1 / 1$						M
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	30	1		

Description:

This MD is used to define the number of blocks that are considered when defining the path velocity (velocity preparation). If the value of this MD is zero, only the relevant axis motions are considered in this block in order to define the maximum path velocity of a block. If the geometry in adjacent blocks is also considered when defining the path velocity, the path velocity will be more homogenous.

28620	MM_NUM_FEATURE_BLOCKS		C02	W1	
-	No. blocks for look-ahead characteristic recognition e.g. slot recognition.		DWORD	Pow	
-					
-	$0,0,0,0,0,0,0,0 \ldots$	0	20	$7 / 2$	M

Description: Indicates the minimum number of blocks that are considered simultaneously for characteristic recognition.

29000	LOOKAH_NUM_CHECKED_BLOCKS						C01, C02, C09, C05	-
-	Option data	DWORD	PowerOn					
-								
-	-	$1,1,1,1,1,1,1,1 \ldots$	0	$0 x 7 F F F F F F F$				
$7 / 1$	M							

Description:

Data for path-related dynamic LookAhead:
(Maximum) number of blocks surveyed beyond the current block for
look ahead consideration of speed limits.
The value defines an upper limit. The value should not be set too low
in order to avoid unnecessary speed reductions.
Increasing the value above the maximum number of blocks in the IPO buffer
(MM_IPO_BUFFER_SIZE) has no effect.

A LookAhead buffer is not set up for 0 (working memory is relieved).
If in this case LookAhead is activated by part program,
then the speed is reduced to zero at the end of each block.
Unbuffered memory is needed.
Option data

4.3 Axis-specific NC machine data

30100	CTRLOUT_SEGMENT_NR	EXP, A01	G2, S9				
-	Setpoint assignment: bus segment number	BYTE	PowerOn				
-							
-	1	5	0	5	$2 / 2$		

Description: In this MD, enter the number of the bus segment through which the output is addressed.
0: Local bus (808d, 828d analog spindle)
1: reserved (previously SIMODRIVE611D bus, 1st DCM)
2: reserved (previously local P bus)
3: reserved (previously SIMODRIVE611D-Bus, 2. DCM)
4: reserved (virtual buses)
5: PROFIBUS/PROFINET (e.g. SINUMERIK 840Di)
6: reserved (same effect as 5)

Description: In this MD, enter the number of the module within a bus segment through which the output is addressed.
For an axis on the PROFIBUS/PROFINET, the logical I/O address from MD13050 \$MN_DRIVE_LOGIC_ADDRESS[index] is assigned by entering index+1 in MD30110 \$MA_CTRLOUT_MODULE_NR.

30120	CTRLOUT_NR	EXP, A01	G2			
-	Setpoint assignment: Setpoint output on drive submodule/module	BYTE	PowerOn			
-						
-	1	$1,1,1,1,1,1,1,1 \ldots$	1	3		

Description: Number of the output on a module which is used to address the setpoint output. The value is always 1 for modular drives.

30130	CTRLOUT_TYPE	A01, A11	G2, M3, S9			
-	Output type of setpoint	BYTE	PowerOn			
-						
-	1	0	0	3	$2 / 2$	

[^11]```
0: Simulation (no HW required)
1: Setpoint output active (differentiation via hardware configuration)
2: Semi servo -only when the hardware is available onboard
3: Reserved
4: Reserved
Note: instead of value 4, MD30132 $MA_IS_VIRTUAL_AX should now be used.
```

| 30132 | IS_VIRTUAL_AX |  |  | A01 | M3, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Axis is a virtual axis |  |  | BOOLEAN | Pow |  |
| CTEQ |  |  |  |  |  |  |
| - | 1 | FALSE | 0 | - | 1/1 | M |

Description: Virtual axis. An axis that is also interpolated in follow-up mode. (Electronic transfer technology; virtual and real master values.)

This MD is the successor to MD30130 \$MA_CTRLOUT_TYPE=4. MD30130 \$MA_CTRLOUT_TYPE=0 and MD30132 \$MA_IS_VIRTUAL_AX=1 must now be used instead of MD30130 \$MA_CTRLOUT_TYPE=4. Related to:
MD30130 \$MA_CTRLOUT_TYPE

| 30134 | IS_UNIPOLAR_OUTPUT | A01 | G2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Setpoint output is unipolar |  |  |  |  |  | BYTE | PowerOn |
| - | 1 | 0 | 0 | 2 | $2 / 2$ |  |  |  |
| - | 1 |  |  |  |  |  |  |  |

Description: Only for PROFIdrive, special application of analog additional drives:
Unipolar output driver (for unipolar analog drive actuator):
Only positive set speeds are supplied to the drive, the sign of the set speed is separately output in its own digital control signal.
Input value "0":
Bipolar output with pos./neg. set speed (this is the normal case)
Input value "1":
O. Digital bit = servo enable

1. Digital bit $=$ neg. direction of travel

Input value "2": (linking of enable and direction of travel signals):
0 . Digital bit $=$ servo enable pos. direction of travel

1. Digital bit $=$ servo enable neg. direction of travel


Description: The number of encoders of the axis or spindle is to be entered in the MD for actual position value sensing (the differentiation between direct and indirect measuring systems, i.e. the locations at which these encoders are installed, is then specified, for example, in MD31040 \$MA_ENC_IS_DIRECT).
For simulation axes/spindles, MD30200 \$MA_NUM_ENCS > 0 must be specified for referencing.

| 30220 | ENC_MODULE_NR | A01, A02, A11 | G2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Actual value assignment: Drive number/measuring circuit number |  |  |  |  |  | BYTE | PowerOn |
| - | 2 | $2,2,3,3,4,4,1,1,5,5$ | 1 | 31 | $2 / 2$ |  |  |  |

4.3 Axis-specific NC machine data

| 828d-te42 | 2 | 2, 2, 3, 3, 1, 1, 5, 5, 4, 4 | 1 | 31 | 2/2 | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 828d-gce42 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots . \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-gse42 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-me62 | 2 | 2, 2, 3, 3, 4, 4, 1, 1, 5, 5 | 1 | 31 | 2/2 | M |
| 828d-te62 | 2 | $\begin{aligned} & 2,2,3,3,1,1,5,5,4, \\ & 4,6,6 \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-gce62 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots \\ & \hline \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-gse62 | 2 | $\begin{array}{\|l} \hline 1,1,2,2,3,3,4,4,5, \\ 5,6,6,7,7,8,8 \ldots \\ \hline \end{array}$ | 1 | 31 | 2/2 | M |
| 828d-te82 | 2 | $\begin{aligned} & 2,2,3,3,1,1,5,5,4, \\ & 4,6,6,8,8,7,7 \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-me82 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-gce82 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots \end{aligned}$ | 1 | 31 | 2/2 | M |
| 828d-gse82 | 2 | $\begin{aligned} & 1,1,2,2,3,3,4,4,5, \\ & 5,6,6,7,7,8,8 \ldots \end{aligned}$ | 1 | 31 | 2/2 | M |

## Description:

For an axis on the PROFIBUS/PROFINET, the logical I/O address from MD13050
\$MN_DRIVE_LOGIC_ADDRESS[index] is assigned by entering index+1 in MD30220
\$MA_ENC_MODULE_NR.
The index[n] of the machine data has the following coding:
[Encoder no.]: 0 or 1
Related to:
MD30110 \$MA_CTRLOUT_MODULE_NR (setpoint assignment)


## Description:

For PROFIdrive:
Number of the encoder within the PROFIdrive message frame through which the encoder is addressed.

For example telegram 103: 1 (=G1_ZSW etc.) or 2 (=G2_ZSW etc.).
The index[n] of the machine data has the following coding:
[Encoder no.]: 0 or 1
If an input is selected, to which no encoder is connected, alarm 300008 "Measuring circuit not available on drive" is output.

| 30240 | ENC_TYPE | A01, A02, A11 | A3,, G2, R1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | Encoder type of actual value acquisition (actual position value). | BYTE | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | 0,0 | 0 | 5 |  |  |

## Description:

Encoder type:
0: Simulation
1: Raw signal encoder (high resolution)
2: Square-wave encoder - only when the onboard hardware is available
3: Encoder for semi servo - only when the onboard hardware is available

```
4: General absolute encoders (e.g. EnDat interface)
5: Reserved
Corresponds with
PROFIdrive parameter P979 (refer there)
```

| 30242 | ENC_IS_INDEPENDENT | A02, A11 | G2, R1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Encoder is independent | BYTE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | 0,0 | 0 | 3 | $1 / 1$ |  |

Description: If actual value corrections performed by the NC on the encoder selected for position control are not to influence the actual value of any other encoder defined in the same axis, then the position control encoder must be declared to be "independent".
Actual value corrections include the following:

- Modulo treatment,
- Reference point approach,
- Measuring system calibration,
- PRESET

Example:
MD30200 \$MA_NUM_ENCS [ AX1 ] = 2
MD30242 \$MA_ENC_IS_INDEPENDENT[ 0, AX1 ] = 0
MD30242 \$MA_ENC_IS_INDEPENDENT [ 1, AX1 ] = 1
When the VDI interface has selected the first encoder for position control, the above mentioned actual value corrections will be executed on this encoder only.
When the VDI interface has selected the second encoder for position control, the above mentioned actual value corrections will be executed on both encoders.

The machine data is therefore only valid for encoders that have not been selected by the VDI interface for positon control (passive encoders).
As from SW5, the scope of functions has been extended:
MD30242 \$MA_ENC_IS_INDEPENDENT = 2
The passive encoder is dependent. The active encoder changes the actual encoder value. In combination with MD34102 \$MA_REFP_SYNC_ENCS = 1, the passive encoder is adjusted to the active encoder during reference point approach, but is NOT referenced.
In reference mode MD34200 \$MA_ENC_REFP_MODE = 3 (distance-coded reference marks), the passive encoder is automatically referenced with the next traversing movement after zero mark distance overtravel. This is done independently of the current mode setting. MD30242 \$MA_ENC_IS_INDEPENDENT = 3
In contrast to MD30242 \$MA_ENC_IS_INDEPENDENT = 1, modulo actual value corrections are executed in the passive encoder of modulo rotary axes.

| 30244 | ENC_MEAS_TYPE |  |  | A01, A02, A11 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Encoder measurement type |  |  | BYTE | PowerOn |  |
| - |  |  |  |  |  |  |
| 828d-me42 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-te42 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-gce42 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-gse42 | 2 | 1,1 | 0 | 1 | 7/2 | M |
| 828d-me62 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-te62 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-gce62 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-gse62 | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| 828d-te82 | 2 | 1,1 | 0 | 1 | 7/2 | M |


| $828 \mathrm{~d}-\mathrm{me} 82$ | 2 | 1,1 | 0 | 1 | $7 / 2$ | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 828d-gce82 | 2 | 1,1 | 0 | 1 | ReadOnly | S |
| 828d-gse82 | 2 | 1,1 | 0 | 1 | ReadOnly | S |

Description: For PROFIdrive only:
In combination with the MD13210 \$MN MEAS TYPE = 1 (decentralized measurement), this MD can be used to set the type of axial measuring function for drives.

Encoder measurement type:
0: encoder measurement type central (global) measurement
1: encoder measurement type decentral (local) measurement
MEAS_TYPE ENC_MEAS_TYPE measuring sensor input used
00 central
01 central
10 central
1 1 decentralized

| 30250 | ACT_POS_ABS |  |  |  |  |  | EXP, A02, A08 | R1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Internal encoder position |  |  |  |  |  |  | DOUBLE | PowerOn |
| ODLD,,-- |  |  |  |  |  |  |  |  |  |
| - | 2 | $0.0,0.0$ | - MD_DBLMAX | $1.0 \mathrm{E}+301$ | $1 / 1$ |  |  |  |  |

## Description:

The actual position (hardware counter status only without machine reference) is stored (in internal format display) in this MD.
At power ON (or encoder activation), it acts with:

- Absolute encoders:

To restore the current position (in combination with the position, possibly with several meanings, buffered in the encoder).

- Incremental encoders:

To buffer the actual value beyond power OFF when the functionality is activated MD34210 \$MA_ENC_REFP_STATE = 1 or. 2 (i.e. as a reference point replacement). To buffer the actual value beyond power OFF when the functionality is activated MD34210 \$MA_ENC_REFP_STATE = 3 (i.e. as a restored position value).

Note:
This MD is changed internally by the control during traversing movements. Loading a previously saved MD data block can therefore destroy the encoder calibration (machine position reference) of absolute encoders.
For software conversions, we recommend removing the MD data block from the old software release prior to conversion and reloading it into the new software release without moving any axis in the meantime. Protection level 1 should be set for SW 3.6 ; protection level 2 suffices for SW 4 and higher. The encoder calibration must be explicitly verified (controlled, calibrated) after the software conversion.

| 30260 | ABS_INC_RATIO |  |  | EXP, A01, A02 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Absolute encoder: Ratio of absolute to incremental resolution |  |  | DWORD | PowerOn |  |
| - |  |  |  |  |  |  |
| - | 2 | 4, 4 | 0 | - | 1/1 | M |

Description:
Absolute track resolution in relation to the incremental track resolution.
This MD only applies for absolute encoders:

- PROFIBUS drives:

Absolute information XIST2 related to incremental information XIST1.
In the case of plausible drive parameters (e.g. in PROFIdrive parameter P979) the value of this MD is automatically calculated and updated from drive parameters (if parameter read-out has not been deactivated with MD13070 \$MN_DRIVE_FUNCTION_MASK, bit2)

Implausible drive parameters (e.g. multiplication of absolute track higher than that of the incremental track) are rejected and replaced by the value entered in the current MD.

Implausible input values in the current MD (e.g. value=0) are reset to the default value. In addition, alarm 26025 or 26002 is output to inform the user accordingly.
If MD31700 \$MA_ENC_EDS_ACTIVE = 1, this machine data has no function and is replaced by MD31730 \$MA_ABS_INC_RATIO_EDS.
Related to:
MD31700 \$MA_ENC_EDS_ACTIVE
MD31730 \$MA_ABS_INC_RATIO_EDS

| 30270 | ENC_ABS_BUFFERING | EXP, A01, A02 | R1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Absolute encoder: Traversing range extension | BYTE | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | 0,0 | 0 | 1 | $2 / 2$ |  |$]$ M

Description:
This MD defines the way in which the absolute encoder position is buffered, and whether a traversing range extension is active in the software (exceeding the limits of the absolute encoder range that can be displayed on the hardware).
" $0 "$ " standard = traversing range extension (compare ACT_POS_ABS) is active.
"1" = traversing range extension in the software is inactive.
When using an absolute linear scale, there will not be a traversing range overflow for mechanical reasons. This MD is therefore only valid for rotary absolute encoders. For rotary absolute encoders, the traversing range that can be clearly displayed on the encoder side is stored in MD34220 \$MA_ENC_ABS_TURNS_MODULO. You can do without a traversing range extension without any problems (a hardware counter overflow that might be within the traversing range is concealed in the software via shortest-path decision):
a. in linear axes or limited rotary axes, if the actual traversing range on the load side is smaller than the traversing range on the load side that corresponds to MD34220 \$MA_ENC_ABS_TURNS_MODULO.
b. in endlessly turning rotary axes (ROT_IS_MODULO = TRUE), if the absolute encoder is connected on the load side (no gear to be considered) or if "without remainder" can be calculated:

Number of rotations on the load side $=$ ENC_ABS_TURNS_MODULO * gear ratio
(Example: ENC_ABS_TURNS_MODULO = 4096 encoder rotations, gear 25:32, i.e. number of rotations on load side $\left.=4096^{*}(25 / 32)=3200\right)$.
Notice:
If the conditions under $a$. or $b$. are not met, there is a risk of getting a wrong absolute encoder position at next Power ON or encoder activation after parking without prewarning if the traversing range extension is not working. Therefore, the traversing range extension remains active in the standard version.
If MD31700 \$MA_ENC_EDS_ACTIVE = 1, a traversing range extension is not possible. Alarm 26017 therefore requests the traversing range extension to be switched off with a rotary absolute encoder with reference to this machine data.

If the traversing range extension is essential (because for example the conditions stated under b. for deactivation are not fulfilled), MD31700 \$MA_ENC_EDS_ACTIVE must not be activated.
Related to:
MD30240 \$MA_ENC_TYPE
MD30300 \$MA_IS_ROT_AX
MD30310 \$MA_ROT_IS_MODULO
MD30250 \$MA_ACT_POS_ABS
MD34220 \$MA_ENC_ABS_TURNS_MODULO
MD34090 \$MA_REFP_MOVE_DIST_CORR

MD31700 \$MA_ENC_EDS_ACTIVE

| 30300 | IS_ROT_AX |  |  | A01, A06, A11 | $\begin{aligned} & \text { G1, K3, R2, T1, G2, K2, R1, S1, } \\ & \text { V1 } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Rotary axis / spindle |  |  | BOOLEAN | PowerOn |  |
| SCAL, CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | FALSE, FALSE, <br> FALSE, TRUE, TRUE | FALSE | TRUE | $2 / 2$ | M |
| 828d-te42 | - | FALSE, FALSE, TRUE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gce42 | - | FALSE, FALSE, TRUE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gse42 | - | FALSE, FALSE, <br> FALSE, TRUE, FALSE | FALSE | TRUE | 2/2 | M |
| 828d-me62 | - | FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-te62 | - | FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gce62 | - | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE... | FALSE | TRUE | 2/2 | M |
| 828d-gse62 | - | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE... | FALSE | TRUE | 2/2 | M |
| 828d-te82 | - | FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE... | FALSE | TRUE | 2/2 | M |
| 828d-me82 | - | FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE... | FALSE | TRUE | $2 / 2$ | M |
| 828d-gce82 | - | FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gse82 | - | FALSE, FALSE, <br> FALSE, TRUE, <br> FALSE, TRUE, TRUE, <br> TRUE | FALSE | TRUE | 2/2 | M |

## Description:

: Axis: The axis is defined as a "rotary axis".

- The special functions of the rotary axis are active or can be activated by means of additional machine data according to the type of machine required (see below).
- The unit of measurement is degrees.
- The units of the axis-specific machine and setting data are interpreted as follows with the standard control setting:
- Positions in "degrees"
- Speeds in "rev/minute"
- Acceleration in "rev/second²"
- Jerk limitation in "rev/second3"

Spindle:
The machine data should always be set to "1" for a spindle, otherwise alarm 4210
"Rotary axis declaration missing" is output.
0 : The axis is defined as a "linear axis".

Special cases:

- For an axis: Alarm 4200 if the axis is already defined as a geometry axis.
- For a spindle: Alarm 4210

Related to:
The following machine data are active only after activation of MD30300 \$MA_IS_ROT_AX
= "1":

- MD30310 \$MA_ROT_IS_MODULO "Modulo conversion for rotary axis"
- MD30320 \$MA_DISPLAY_IS_MODULO "Position display is modulo"
- MD10210 \$MN_INT_INCR_PER_DEG "Calculation precision for angular positions"

| 30310 | ROT_IS_MODULO |  |  |  | A01, A06, A11 | TE3, K3, R2, T1, A3, R1, R2, S1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Modulo conversion for rotary axis / spindle |  |  |  | BOOLEAN | PowerOn |  |
| CTEQ |  |  |  |  |  |  |  |
| 828d-me42 | - |  | FALSE, FALSE, FALSE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-te42 | - |  | FALSE, FALSE, TRUE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gce42 | - |  | FALSE, FALSE, TRUE, TRUE, FALSE | FALSE | TRUE | 2/2 | M |
| 828d-gse42 | FALSE, FALSE, <br> FALSE, TRUE, FALSE |  |  | FALSE | TRUE | $2 / 2$ | M |
| 828d-me62 | -- FALSE, FALSE, <br> FALSE, TRUE, TRUE, <br> TRUE, TRUE, TRUE |  |  | FALSE | TRUE | 2/2 | M |
| 828d-te62 | -- FALSE, FALSE, <br> TRUE, TRUE, TRUE, <br> FALSE, TRUE, TRUE |  |  | FALSE | TRUE | 2/2 | M |
| 828d-gce62 | - FALSE, FALSE, <br> FALSE, FALSE, <br>  <br>  <br>  <br> FALSE, FALSE, <br> FALSE, FALSE... |  |  | FALSE | TRUE | $2 / 2$ | M |
| 828d-gse62 |  | - | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE.. | FALSE | TRUE | 2/2 | M |
| 828d-te82 | - |  | FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE... | FALSE | TRUE | $2 / 2$ | M |
| 828d-me82 |  | - FALSE, FALSE, <br>  FALSE, TRUE, TRUE, <br>  TRUE, TRUE, TRUE... |  | FALSE | TRUE | 2/2 | M |
| 828d-gce82 | - |  | FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE | FALSE | TRUE | 2/2 | M |
| 828d-gse82 | - |  | FALSE, FALSE, <br> FALSE, TRUE, <br> FALSE, TRUE, TRUE, <br> TRUE | FALSE | TRUE | 2/2 | M |
| Description: | 1: A modulo conversion is performed on the setpoints for the rotary axis. The software limit switches and the working area limitations are inactive; the traversing range is therefore unlimited in both directions. MD30300 \$MA_IS_ROT_AX must be set to "1" |  |  |  |  |  |  |

Machine data

```
Related to:
MD30320 $MA_DISPLAY_IS_MODULO "Position display is modulo 360"
MD30300 $MA_IS_ROT_AX = 1
MD36100 $MA_POS_LIMIT_MINUS
MD36110 $MA_POS_LIMIT_PLUS
SD43430 $SA_WORKAREA_LIMIT_MINUS
SD43420 $SA_WORKAREA_LIMIT_PLUS
```

```
 "Rotary axis"
```

    "Rotary axis"
    "Software limit switch minus"
    "Software limit switch minus"
    "Software limit switch plus"
    "Software limit switch plus"
    "Working area limitation minus"
"Working area limitation minus"
"Working area limitation plus"

```
 "Working area limitation plus"
```



## Description:

1: "Modulo 360 degrees" position display is active:
The position display of the rotary axis or spindle (for basic or machine coordinate system) is defined as "Modulo 360 degrees". In the case of a positive direction of rotation, the control resets the position display internally to 0.000 degrees following each cycle of 359.999 degrees. The display range is always positive and lies between 0 and 359.999 degrees.
0: Absolute position display is active:

In contrast to the modulo 360 degrees position display, absolute positions are indicated by the absolute position display, e.g. +360 degrees after 1 rotation, and +720 degrees after 2 rotations, etc in the positive direction. In this case, the display range is limited by the control in accordance with the linear axes.
MD irrelevant for:
Linear axes MD30300 \$MA_IS_ROT_AX = "O"
Related to:
MD30300 \$MA_IS_ROT_AX = 1 "Axis is rotary axis"

| 30330 | MODULO_RANGE |  |  |  | EXP, A01 | R2, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| degrees | Size of modulo range. |  |  |  | DOUBLE | Res |  |
| CTEQ |  |  |  |  |  |  |  |
| - | - |  | 360.0 | 1.0 | 360000000.0 | 1/1 | M |
| Description: |  | Defines the within this settings are useful rela Velocity de | ize of ange. <br> equall <br> onship <br> nition |  | positions <br> * 360 degre tention sho he NC and th ngs in this | acc <br> with be mech | displayed <br> n. Other <br> aving a <br> biguity). |


| 30340 | MODULO_RANGE_START |  | EXP, A01 | R1, R2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| degrees | Modulo range start position |  | DOUBLE | Reset |  |
| CTEQ |  |  |  |  |  |
| - | 0.0 | -MD_DBLMAX | $1.0 \mathrm{E}+301$ | 1/1 | M |

Description: Defines the start position for the modulo range.
Example:
Start = 0 degree -> modulo range 0 <->360 degrees
Start $=180$ degrees -> modulo range 180 <->540 degrees
Start = -180 degrees -> modulo range -180 <->180 degrees

| 30350 | SIMU_AX_VDI_OUTPUT |  | A01, A06 | A2, |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Axis signals output for simulation axes |  | BOOLEAN | Pow |  |
| CTEQ |  |  |  |  |  |
| - | FALSE | FALSE | TRUE | 2/2 | M |

## Description:

The machine data defines whether axis-specific interface signals are output to the PLC while an axis is being simulated.
1: The axis-specific NC/PLC interface signals for a simulated axis are output to the PLC.

This means that the user PLC program can be tested without the drives having to be available.

0 : The axis-specific NC/PLC interface signals for a simulated axis are not output to the PLC.

All axis-specific NC/PLC interface signals are set to "0".
Not relevant for:
MD30130 \$MA_CTRLOUT_TYPE (setpoint output type) = 1

| 30450 | IS_CONCURRENT_POS_AX |  | EXP, A01 | G1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Default for reset: neutral/channel axis |  | BOOLEAN | Rese |  |
| CTEQ |  |  |  |  |  |
| - | FALSE | FALSE | TRUE | 1/1 | M |

Description:
For SW4.3:
If FALSE: On RESET, a neutral axis is reassigned to the NC program.

If TRUE: On RESET, a neutral axis remains in the neutral axis state and an axis assigned to the NC program becomes a neutral axis

| 30455 | MISC_FUNCTION_MASK |  |  |  |  |  | A06, A10 | R2, S3, R1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Axis functions |  |  |  |  |  | UDWORD | Reset |
| CTEQ |  |  |  |  |  |  |  |  |
| - | - | $0 \times 00$ | 0 | $0 \times 7 F F F$ | $1 / 1$ |  |  |  |

## Description:

Bit $0=0$ :
Modulo rotary axis/spindle: programmed positions must be in the modulo range.
Otherwise an alarm is output.
Bit $0=1$ :
When programming positions outside the modulo range, an alarm is not signaled. The position is modulo-converted internally.
Example: B-5 has the same significance as B355, POS[A]=730 is identical to POS[A]=10 and SPOS=-360 behaves the same as SPOS=0 (modulo range 360 degrees)

Bit $1=0$ :
Determination of reference point position of rotary, distance-coded encoders analog (1:1) in relation to the mechanical absolute position.
Bit $1=1$ :
Determination of reference point position of rotary, distance-coded encoders within the configured modulo range.
For rotary axes with MD30310 \$MA_ROT_IS_MODULO=0, which use rotary, distance-coded encoder MD34200 \$MA_ENC_REFP_MODE=3, the reference point position is determined in response to MD30330 \$MA_MODULO_RANGE and MD30340 \$MA_MODULO_RANGE_START. This is automatically adapted to the traversing limits of the modulo range. For rotary axes with MD30310 \$MA_ROT_IS_MODULO=1, this bit has no significance, as the reference point position is always determined within the modulo range.
Bit $2=0$ :
Modulo rotary axis positioned at G90 with AC as default.
Bit 2 = 1 :
Modulo rotary axis positioned at G90 with DC as default (shortest path).
Bit $3=0$ :
For spindle/axis disable \$VA_IM, \$VA_IM1, \$VA_IM2 supply the setpoint value.
Bit $3=1$ :
For spindle/axis disable \$VA_IM, \$VA_IM1, \$VA_IM2 supply the actual value.
Bit $4=0$ :
Synchronous spindle coupling, slave spindle: cancellation of feedrate enable will brake the coupled group.
Bit $4=1$ :
Slave spindle: Feedrate enable only applies to the interpolation portion of the overlaid motion (SPOS, etc.) and has no impact on the coupling.
Bit $5=0$ :
Synchronous spindle coupling, slave spindle: Position control, feedforward control, and parameter block are set in response to the master spindle.
Bit 5 = 1:
Synchronous spindle coupling: The parameters of the slave spindle are set as they would be without coupling.
Bit $6=0$ :
Programming of FA, OVRA, ACC, and VELOLIM is applied separately to spindle and axis modes. The assignment is made by the programmed axis or spindle identifier.
Bit $6=1$ :
Programming of FA, OVRA, ACC, and VELOLIM is applied jointly to spindle and axis modes, irrespective of the programmed identifier.

Bit $7=0$ :
Synchronous spindle, correct synchronism error: Correction value \$AA_COUP_CORR[Sn] is continuously calculated as long as the NC/PLC interface signal DB380x DBX5007. 6 (Correct synchronism) is set and setpoint-related synchronism is present.
Bit $7=1$ :
Synchronous spindle, correct synchronism error: Correction value \$AA_COUP_CORR[Sn] is calculated only at the moment the NC/PLC interface signal DB380x DBX5007. $\overline{6}$ (Correct synchronism) is set from 0 to 1.
Bit $8=0$ :
Absolute encoders can only be readjusted in the enabled state MD34210
\$MA_ENC_REFP_STATE = 1 .
Bit $8=1$ :
Absolute encoders can also be readjusted in the adjusted state MD34210 \$MA_ENC_REFP_STATE = 2 .
Bit $9=0$ :
Coupled axes (e.g. gantry) jointly delete their pulse enable if an error occurs.
Bit $9=1$ :
Coupled axes (e.g. gantry) only delete their pulse enable for their own errors.
Bit $10=0$ :
The maximum dynamic performance of a TRAIL or TANGON axis limits the maximum dynamic path response.
Bit $10=1$ :
The maximum dynamic performance of a TRAIL or TANGON axis has no effect on the dynamic path response. This can result in a longer overtravel of the dependent axis.
Bit $11=0$ :
Deactivation of the CP software limit monitoring
Bit $11=1$ :
Activation of the $C P$ software limit monitoring for the following slave axes/spindles:

- coupling, type CP with CPSETTYPE[FAx] = "CP"
- coupling, type CP, TRAIL, EG, LEAD, or COUP with a maximum of one active master axis/ spindle
Bit $12=0$ :
When resetting the control enable of the stationary axis/spindle (in respect of this master axis/spindle), you must always switch over to actual value coupling, just as for a fast stop after resetting the control enable during motion (alarm 21612). This applies to generic couplings (with replacement cycles or for CP programming).
Bit $12=1$ :
When resetting the control enable of the stationary axis/spindle (in respect of this master axis/spindle), changeover to actual value coupling is inhibited. This applies to generic couplings (with replacement cycles or for CP programming).
Bit $13=0$ :
An axis-specific DRIVE setting by means of MD35240 \$MA_ACCEL_TYPE_DRIVE[] or by programming DRIVEA() of an axis is ignored by the path dynamic response if the relevant axis is interpolated with the path.
Bit 13 = 1 :
An acceleration characteristic of an axis activated by MD35240 \$MA_ACCEL_TYPE_DRIVE[] or by programming of DRIVEA() is taken into account when defining the path dynamic response if the relevant axis is interpolated with the path.
Bit $14=0$ :
During cartesian PTP traversing, the "shortest path" strategy for software limit crossing of a rotary axis is retained.
Bit $14=1$ :

The "long path" strategy for avoiding the software limit crossing is used if a rotary axis were to cross the software limit switch during cartesian PTP traversing with the "shortest path" strategy.


Bit $9=0$ :
The PRESETON is enabled. PRESETONS is inhibited.
Bit 9 = 1:
The PRESETON is inhibited. PRESETONS is enabled.

| 30465 | AXIS_LANG_SUB_MASK |  | N01 | K1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Substitution of NC language commands |  | UDWORD | Pow |  |
| - |  |  |  |  |  |
| - | 0x0 | 0x0 | 0xF | 2/2 | M |

Description:
MD30465 \$MA_AXIS_LANG_SUB_MASK defines for the leading spindle(s) of a coupling (synchronous spindle coupling, electronic gear, coupled motion, master value coupling, master-slave) which language constructs/functions are to be substituted by the user program set by MD15700 \$MN_LANG_SUB_NAME / MD15702 \$MN_LANG_SUB_PATH (default: / _N_CMA_DIR/_N_LANG_SUB_SPF).
The substitution is executed only if a coupling is active for the relevant spindle and, in the case of a gear stage change, only if a gear stage change is actually pending.
Bit 0 and bit 1 are relevant for the axis coupling types: synchronous spindle coupling, electronic gear, coupled motion and master value coupling.

Bit 2 and bit 3 are relevant for the master-slave coupling
Bit 0 = 1:
Axis coupling: Automatic (M40) and direct (M41-M45) gear stage change
Bit 1 = 1:
Axis coupling: Spindle positioning with SPOS/SPOSA/M19
Bit 2 = 1:
Master-slave coupling: Automatic (M40) and direct (M41-M45) gear stage change
Bit 3 = 1:
Master-slave coupling: Spindle positioning with SPOS/SPOSA/M19

| 30500 | INDEX_AX_ASSIGN_POS_TAB |  |  | A01, A10 | T1, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Axis is an indexing axis |  |  | BYTE | Res |  |
| - |  |  |  |  |  |  |
| - | - | 0 | 0 | 3 | 2/2 | M |

Description:

The axis is declared as an indexing axis by assignment of indexing position table 1 or 2.

0: The axis is not declared as an indexing axis
1: The axis is an indexing axis. The associated indexing positions are stored in table 1 (MD10910 \$MN_INDEX_AX_POS_TAB_1).
2: The axis is an indexing axis. The associated indexing positions are stored in table 2 (MD10930 \$MN_INDEX_AX_POS_TAB_2).
3: Equidistant indexing with SW 4.3 and higher (840D) and SW 2.3 and higher (810D)
>3: Alarm 17090 "Value violates upper limit"
Special cases:
Several axes can be assigned to an indexing position table on the condition that all these indexing axes are of the same type (linear axis, rotary axis, modulo $360^{\circ}$ function). If they are not, alarm 4000 is output during power-up.
Alarm 17500 "Axis is not an indexing axis"
Alarm 17090 "Value violates upper limit"
Related to:
MD10910 \$MN_INDEX_AX_POS_TAB_1 (indexing position table 1)
MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1
(no. of indexing positions used in table 1)

### 4.3 Axis-specific NC machine data

```
MD10930 $MN_INDEX_AX_POS_TAB_2 (indexing position table 2)
MD10920 $MN_INDEX_AX_LENGTH_POS_TAB_2
(no. of indexing positions used in table 2)
For equidistant indexings with value 3:
MD30501 $MA_INDEX_AX_NUMERATOR Numerator
MD30502 $MA_INDEX_AX_DENOMINATOR Denominator
MD30503 $MA_INDEX_AX_OFFSET First indexing position
MD30505 $MA_HIRTH_IS_ACTIVE Hirth tooth system
```

| 30501 | INDEX_AX_NUMERATOR |  |  |  |  |  | A01, A10 | T1 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| mm, degrees | Indexing axis equidistant positions numerator |  |  |  |  |  | DOUBLE | Reset |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ |  |  |  |  |

Description: Defines the value of the numerator for calculating the distances between two indexing positions when the positions are equidistant. Modulo axes ignore this value and use MD30330 \$MA_MODULO_RANGE instead.
MD irrelevant for non-equidistant indexes in accordance with tables.
Related to:
MD30502 \$MA_INDEX_AX_DENOMINATOR,
MD30503 \$MA INDEX AX OFFSET;
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

| 30502 | INDEX_AX_DENOMINATOR |  |  |  |  |  | A01, A10 | T1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - |  |  |  |  |  |  |  |  |
| - | Indexing axis equidistant positions denominator | DWORD | Reset |  |  |  |  |  |
| - | - | 1 | - | $2 / 2$ | M |  |  |  |

Description: Defines the value of the denominator for calculating the distances between two indexing positions when the positions are equidistant. For modulo axes it therefore specifies the number of indexing positions.
MD irrelevant for non-equidistant indexes in accordance with tables.
Related to:
MD30501 \$MA_INDEX_AX_NUMERATOR,
MD30503 \$MA_INDEX_AX_OFFSET,
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

| 30503 | INDEX_AX_OFFSET | A01, A10 | T1, R2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| mm, degrees | Indexing axis with equidistant positions first index position |  |  |  |  |  | DOUBLE | Reset |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.0 | $-M D \_D B L M A X$ | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description:
Defines the position of the first indexing position from zero for an indexing axis with equidistant positions.
MD irrelevant for non-equidistant indexes in accordance with tables.
Related to:
MD30501 \$MA_INDEX_AX_NUMERATOR
MD30502 \$MA_INDEX_AX_DENOMINATOR
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

| 30505 | HIRTH_IS_ACTIVE |  |  |  |  |  |  | A01, A10 | T1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Axis is an indexing axis with Hirth tooth system |  |  |  |  |  | BOOLEAN | Reset |  |
| CTEQ |  |  |  |  |  |  |  |  |  |
| - | - | FALSE | FALSE | TRUE | $1 / 1$ |  |  |  |  |

## Description:

Hirth tooth system is active when value 1 is set.
MD irrelevant if axis is not an indexing axis.
Related to:
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB, MD30501 \$MA_INDEX_AX_NUMERATOR, MD30502 \$MA INDEX AX DENOMINATOR, MD30503 \$MA INDEX AX OFFSET


| 30552 | AUTO_GET_TYPE |  | EXP, A06, A10 | K5, M3, TE6, P2, P5, 2.4 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Automatic GET for get axis |  | BYTE | PowerOn |  |
| - |  |  |  |  |  |
| 828d-me42 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-te42 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-gce42 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-gse42 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-me62 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-te62 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-gce62 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-gse62 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 0/0 | S |
| 828d-te82 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 1/1 | M |
| 828d-me82 | 1, 1, 1, 1, 1, 1, 1, 1... | 0 | 2 | 1/1 | M |
| 828d-gce82 | 1, 1, 2, 1, 1, 1, 1, 1 | 0 | 2 | 1/1 | M |
| 828d-gse82 | 1, 1, 2, 1, 1, 1, 1, 1 | 0 | 2 | 1/1 | M |
| Description: <br> $0=$ No automatically created GET -> Alarm in response to incorrect programming. <br> $1=$ GET is output when GET is generated automatically. <br> 2 = GETD is output when GET is generated automatically. | ```0 = No automatically created GET -> Alarm in response to incorrect programming. 1 = GET is output when GET is generated automatically. 2 = GETD is output when GET is generated automatically.``` |  |  |  |  |


| 30600 | FIX_POINT_POS | A03, A10 | K1, W3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| mm, degrees | Fixed-value positions of axis with G75 |  |  |  |  |  | DOUBLE | PowerOn |
| - | 4 | $0.0,0.0,0.0,0.0$ | - MD_DBLMAX | $1.0 \mathrm{E}+301$ |  |  |  |  |
| - | 4 | $2 / 2$ | I |  |  |  |  |  |

Description: The fixed-point positions (4 max.) for each axis which can be approached when G75 is programmed or via JOG are entered in these machine data.
References:
/PA/, "Programming Guide: Fundamentals"

| 30610 | NUM_FIX_POINT_POS | A03, A10 | K1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | Number of fixed-value positions of an axis | DWORD | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 0 | 0 | 4 |  |  |

Description: Number of fixed point positions set, i.e. the number of valid entries in MD30600 \$MA_FIX_POINT_POS.
For G75, two (2) fixed point positions are assumed in MD30600 \$MA_FIX_POINT_POS for reasons of compatibility, even if '0' has been entered in this machine data.

| 30800 | WORKAREA_CHECK_TYPE |  |  |  |  |  |  | - | A3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Type of check of working area limitations. |  |  |  |  |  | BOOLEAN | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |  |  |  |
| - | - | FALSE | 0 | - | $1 / 1$ |  |  |  |  |

## Description:

With this machine data you can specify whether only the working area limitations of traversing axes are to be checked (0)
or
whether the stationary axes in a traversing block are also to be checked (1).
The value 0 corresponds to the behavior up to SW5.

| 31000 | ENC_IS_LINEAR | A02, A11 | G2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Linear scale | BOOLEAN | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | FALSE, FALSE | 0 | - | $2 / 2$ |  |

Description: $\quad M D=1$ : Encoder for actual position value acquisition is linear (linear scale).
$M D=0:$ Encoder for actual position value acquisition is rotary.
The index [n] of the machine data has the following coding:
[encoder no.]: 0 or 1

| 31010 | ENC_GRID_POINT_DIST |  |  |  |  |  | A02, A11 | G2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| mm | Division period for linear scales | DOUBLE | PowerOn |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |
| - | 2 | $0.01,0.01$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

## Description:

For linear measuring system only:
The distance between the reference marks on the linear scale must be entered in this MD.

Index [n] of the machine data has the following coding:
[encoder no.]: 0 or 1


| 31025 | ENC_PULSE_MULT |  |  |  |  |  | EXP, A01, A02 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Encoder multiplication (high-resolution) | DWORD | PowerOn |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |
| - | 2 | $2048,2048,2048$, | 0 | - | $2 / 2$ |  |  |  |

Description:
For PROFIdrive only:
This MD describes the measuring system multiplication on PROFIBUS/PROFINET.
Default value 2048 means: changing by just one encoder line can be seen in bit11 of the actual PROFIdrive value XIST1, that is, the actual encoder value is multiplied by 2 to the power of $11=2048$.
If MD31700 \$MA_ENC_EDS_ACTIVE = 1, this machine data has no function, and is replaced by MD31720 \$MA_ENC_PULSE_MULT_EDS.
Related to:
MD31700 \$MA_ENC_EDS_ACTIVE
MD31720 \$MA_ENC_PULSE_MULT_EDS


Description:
The ball screw lead must be entered in the MD (see data sheet: mm/rev or inch/rev). Special meaning for hydraulic linear drives:
If a hydraulic linear drive (HLA) is configured as rotary axis, it must be specified in this MD, which drive feedrate in mm corresponds to a programmed revolution (360 degrees).


Description: MD = 1:

Encoder for actual position value acquisition is attached directly to the machine (without an intermediate gear unit).
$\mathrm{MD}=0$ :
Encoder for actual position value acquisition is attached to the motor (MD31060 \$MA_DRIVE_AX_RATIO_NUMERA and MD31050 \$MA_DRIVE_AX_RATIO_DENOM are included in the encōder vāluātion).
The index[n] of the machine data has the following coding:
[encoder no.]: 0 or 1
Special cases:
An incorrect entry may result in an incorrect encoder resolution, as, for example, the gear ratios would be calculated incorrectly.

| 31044 | ENC_IS_DIRECT2 |  |  |  |  |  | A02 | G2, S1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Encoder mounted on the additional gearbox | BOOLEAN | NEW CONF |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |
| - | 2 | FALSE, FALSE | 0 | - | $2 / 2$ |  |  |  |

## Description:

When using a load intermediate gearbox (for example for rotating tools, compare MD31066 \$MA_DRIVE_AX_RATIO2_NUMERA and MD31064 \$MA_DRIVE_AX_RATIO2_DENOM), the encoder installation location can be defined as "on the output" of this load intermediate gearbox:
Encoder installation "on the output of the load intermediate gearbox" is configured by MD31040 \$MA_ENC_IS_DIRECT=1 and MD31044 \$MA_ENC_IS_DIRECT2=1 at the same time.
Encoder installation "on the input of the load intermediate gearbox" is configured by MD31040 \$MA_ENC_IS_DIRECT=1 together with MD31044 \$MA_ENC_IS_DIRECT2=0.
A parameterization alarm will be output if MD31044 \$MA_ENC_IS_DIRECT2=1 is set without MD31040 \$MA_ENC_IS_DIRECT=1 (this combination has not been dēfined).

| 31046 | ENC_PASSIVE_PARKING | A02 | - |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Park passive measuring system | BOOLEAN | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | FALSE, FALSE | - | - | $7 / 2$ |  |

Description: The machine data can be used to configure the behavior for the passive measuring system:
$M D=0$ :
The passive measuring system is continuously monitored and updated.
$\mathrm{MD}=1$ :
The passive measuring system is automatically parked. It is no longer monitored or updated. The encoder cable can be disconnected without an alarm being issued.
Notes:

- A measuring system switchover to a parked measuring system takes longer than a switch to a passive measuring system.
- On account of the duration, an axis standstill is recommended for the switchover.
- It is only with incremental encoders that the position and the state "Measuring system is referenced" are applied from the previously active measuring system as a function of MD34210 \$MA_ENC_REFP_STATE. In this case, renewed referencing is not absolutely necessary.
The machine data is inactive if:
- MD30200 \$MA_NUM_ENCS is less than 2
- MD30240 \$MA_ENC_TYPE=0
- The measuring system is used on the drive side, for example as a motor measuring system for speed control. Recommendation: Do not change the default value of the machine data for a motor measuring system.
- MD32950 \$MA_POSCTRL_DAMPING>0
- MD32960 \$MA_POSCTRL_DUAL_FEEDBACK_TIME>0


$\begin{array}{ll}\text { Description: } & \text { The load gearbox numerator is entered in this MD. } \\ \text { The index }[\mathrm{n}] \text { of the machine data has the following coding: }\end{array}$
[control parameter set no.]: 0-5

| 31064 | DRIVE_AX_RATIO2_DENOM | A02 | G2, S1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Denominator additional gearbox | DWORD | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 1 | 1 | 2147000000 | $2 / 2$ |  |$]$ M

Description: Intermediate gearbox denominator
This MD together with MD31066 \$MA_DRIVE_AX_RATIO2_NUMERA defines an intermediate gearbox that acts as a multiplier to the motor/load gearbox (described by MD31060 \$MA_DRIVE_AX_RATIO_NUMERA and MD31050 \$MA_DRIVE_AX_RATIO_DENOM).
The load intermediate gearbox is inactive with the default values 1:1. Please consider MD31044 \$MA_ENC_IS_DIRECT2 for encoder installation.


| 31070 | DRIVE_ENC_RATIO_DENOM |  |  | A02, A11 | A3, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Denominator measuring gearbox |  |  | DWORD | Pow |  |
| - |  |  |  |  |  |  |
| - | 2 | 1,1 | 1 | 2147000000 | 2/2 | M |

```
Description: The measuring gearbox denominator is entered in this MD.
The index [n] of the machine data has the following coding:
[encoder no.]: 0 or 1
```

| 31080 | DRIVE_ENC_RATIO_NUMERA | A02, A11 | A3, G2, S1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Numerator measuring gearbox | DWORD | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | 1,1 | 1 | 2147000000 | $2 / 2$ |  |

Description: The measuring gearbox numerator is entered in this MD.
The index [n] of the machine data has the following coding:
[encoder no.]: 0 or 1

| 31090 | JOG_INCR_WEIGHT |  |  | A01, A12 | H1, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm, degrees | Evaluation of an increment with INC/handwheel |  |  | DOUBLE | Res |  |
| CTEQ |  |  |  |  |  |  |
| - | 2 | 0.001, 0.00254 | -MD_DBLMAX | $1.0 \mathrm{E}+301$ | 2/2 | M |

Description:
The value entered in this MD defines the path of an increment which applies when an axis is traversed with the JOG keys in incremental mode or with the handwheel.
The path traveled by the axis on each increment each time the traversing key is pressed or for each handwheel detent position is defined by the following parameters:

- MD31090 \$MA_JOG_INCR_WEIGHT
(Weighting of an increment of a machine axis for INC/handwheel)
- Selected increment size (INC1, ..., INCvar)

The possible increment stages are defined globally for all axes in MD11330
\$MN_JOG_INCR_SIZE_TAB [n] and in SD41010 \$SN_JOG_VAR_INCR_SIZE.
Entering a negative value reverses the direction of evaluation of the traverse keys and the handwheel rotation.

Related to:
MD11330 \$MN_JOG_INCR_SIZE_TAB
SD41010 \$SN_JOG_VAR_INCR_SIZE

| 31092 | JOG_INCR_WEIGHT_TRAFO |  | A01, A12 | H1, G2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| mm, degrees | Evaluation of an increment for $\mathrm{INC} /$ handwheel for active transformation |  | DOUBLE | Reset |  |
| CTEQ |  |  |  |  |  |
| - | $2 \quad 0.0,0.0$ | - | - | 2/2 | M |

Description: The input value is used to define the distance of an increment which, when traversing an axis during active transformation using the JOG keys, is valid for the incremental dimension or via handwheel.
The distance, through which the axis traverses when executing the incremental dimension with transformation active, depending on the traversing key actuated or handwheel grid position, is defined by the following parameters:

- MD31092 \$MA_JOG_INCR_WEIGHT_TRAFO
(Evaluating an increment of ${ }^{-}$a machine axis for INC/handwheel)
- selected increment size (INC1, ..., INCvar)

The possible increment steps are globally defined for all axes in MD11330 \$MN_JOG_INCR_SIZE_TAB [n] or in SD41010 \$SN_JOG_VAR_INCR_SIZE.

Entering a negative value reverses the direction evaluation of the traversing keys and/ or the handwheel direction of rotation.

The set value is only effective, if this is > 0 ist. For values of zero, then MD31090 \$MA_JOG_INCR_WEIGHT is effective
Corresponds with:

MD11330 \$MN_JOG_INCR_SIZE_TAB
MD31090 \$MA_JOG_INCR_WEIGHT
SD41010 \$SN_JOG_VAR_INCR_SIZE

| 31122 | BERO_DELAY_TIME_PLUS | A02, A06 | S1, R1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| s | BERO delay time Plus | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | $0.000110,0.000110$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |

Description: This machine data in combination with the setting in MD34200 \$MA_ENC_REFP_MODE (referencing mode) $=7$ causes a signal runtime compensation in the positive direction of movement at a position determined by a BERO (zero mark).
The typical total delay time of the BERO message path for overtravel in the positive direction of movement is entered.

This time includes:

- the BERO edge delay time
- the time for digitizing the signal
- the time for processing the measured value, etc.

The periods of time depend on the hardware used. The default value is typical for SIEMENS products. Adjustment by the customer is only required in exceptional cases. Input of the minimum value " 0.0 " deactivates the compensation (only active in combination with MD34200 \$MA_ENC_REFP_MODE = 7).
The machine data is available for all encoders.
Related to:
MD34200 \$MA_ENC_REFP_MODE (referencing mode)
MD34040 \$MA_REFP_VELO_SEARCH_MARKER[n]
(reference point shutdown velocity [Enc. no.])

| 31123 | BERO_DELAY_TIME_MINUS |  |  | A02, A06 | S1, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| s | BERO delay time minus |  |  | DOUBLE | NEW |  |
| - |  |  |  |  |  |  |
| - | 2 | 0.000078, 0.000078 | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | M |

Description: This machine data in combination with the setting in MD34200 \$MA_ENC_REFP_MODE (referencing mode) $=7$ causes a signal runtime compensation in the negative direction of movement at a position determined by a BERO (zero mark).
The typical total delay time of the BERO message path for overtravel in the negative direction of movement is entered.

The time includes:

- the BERO edge delay time
- the time for digitizing the signal
- the time for processing the measured value, etc.

The periods of time depend on the hardware used. The default value is typical for SIEMENS products. Adjustment by the customer is only required in exceptional cases.
Input of the minimum value " 0.0 " deactivates the compensation (only active in combination with MD34200 \$MA_ENC_REFP_MODE = 7).
The machine data is available for all encoders.
Related to:
MD34200 \$MA_ENC_REFP_MODE (referencing mode)
MD34040 \$MA_REFP_VELO_SEARCH_MARKER[n]
(shutdown velocity [Enc. no.])

| 31200 | SCALING_FACTOR_G70_G71 |  |  |  |  |  | EXP, A01 | G2 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Factor for converting values while G70/G71 is active | DOUBLE | PowerOn |  |  |  |  |  |
| CTEQ |  |  |  |  |  |  |  |  |
| - | - | 25.4 | $1 . e-9$ | $1.0 \mathrm{E}+301$ |  |  |  |  |

## Description:

The inch/metric conversion factor by which the programmed geometry of an axis (position, polynomial coefficients, radius for circle programming,...) is multiplied when the programmed value for $G$ code group $G 70 / G 71$ differs from the initial setting value (set in MD20150 \$MC_GCODE_RESET_VALUES[n]) is entered in this MD.
The factor can be set for each axis individually, so that pure positioning axes are not dependent on G70/G71. The factors within the three geometry axes should not be different.

The data influenced by G70/G71 are described in the Programming Guide.
Related to:
MD20150 \$MC_GCODE_RESET_VALUES[n] (G group initial setting).

| 31600 | TRACE_VDI_AX |  |  |  |  |  |  | EXP, N06 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Trace-specification for axial VDI signals |  |  |  |  |  | BOOLEAN | PowerOn |  |
| NBUP |  |  |  |  |  |  |  |  |  |
| - | - | FALSE | 0 | - | $1 / 1$ |  |  |  |  |

Description: This machine data determines whether the axial VDI signals for this axis are recorded in the NCSC trace (according to MD18794 \$MN_MM_TRACE_VDI_SIGNAL).

| 31700 | ENC_EDS_ACTIVE |  |  | A02, A11 | G2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Activate EDS use |  |  | BOOLEAN | PowerOn |  |
| - |  |  |  |  |  |  |
| - | 2 | FALSE, FALSE | 0 | - | 2/2 | M |

## Description:

For SINAMICS only:
$M D=0$ : encoder data set switchover, EDS is not used, POWERON-MDs \$MA_ENC_RESOL etc.
are active
MD = 1: encoder data set switchover, EDS is used, NEWCONF-MDs \$MA_ENC_RESOL_EDS etc.
are active
The index[n] of the machine data has the following coding:
[Encoder no.]: 0 or 1
Related to:
MD31020 \$MA_ENC_RESOL
MD31710 \$MA_ENC_RESOL_EDS
MD31025 \$MA_ENC_PULSE_MULT
MD31720 \$MA_ENC_PULSE_MULT_EDS
MD30260 \$MA_ABS_INC_RATIO
MD31730 \$MA_ABS_INC_RATIO_EDS


Description:
For SINAMICS only:

The machine data is only active if MD31700 \$MA_ENC_EDS_ACTIVE = 1 and replaces MD31020 \$MA_ENC_RESOL
Only with rotating measuring system:
The encoder marks per encoder revolution with EDS use are to be entered in the MD.
The index[n] of the machine data has the following coding:
[Encoder no.]: 0 or 1
Related to :
MD31700 \$MA_ENC_EDS_ACTIVE
MD31020 \$MA_ENC_RESOL


4.3 Axis-specific NC machine data

| 32000 | MAX_AX_VELO |  |  | A11, A04 | M3, TE1, TE3, W6, Z3, H1, K3, M1, P2, A3, B2, G2, H2, S1, V1, W1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{mm} / \mathrm{min}$, rev/min | Maximum axis velocity |  |  | DOUBLE | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | $\begin{aligned} & \hline \text { 10000., 10000., } \\ & \text { 10000., 36000., } 36000 . \end{aligned}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-te42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & 36000 ., 36000 ., 36000 . \end{aligned}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gce42 | - | $\begin{aligned} & \hline \text { 10000., 10000., } \\ & 36000 ., 36000 ., 36000 . \end{aligned}$ | $\begin{array}{\|l} \hline(1 \mathrm{e}-9 / 1 \mathrm{e}-9), \\ (1 \mathrm{e}-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gse42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 36000., } 10000 . \end{aligned}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-me62 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., } 36000 ., \\ & 36000 ., \text {, 36000., } \\ & 36000 ., \text {, } 36000 . \end{aligned}$ | $\begin{array}{\|l} (1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-te62 | - | $\begin{aligned} & \hline 10000 ., 10000 ., \\ & 36000 ., 36000 ., \\ & 36000 ., 10000 ., \\ & 36000 ., 36000 . \end{aligned}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gce62 | - | $\begin{array}{\|l\|} \hline(10000 . / 3000), \\ (10000 . / 3000), \\ (10000 . / 3000), \\ (10000 . / 3000),(100 \ldots . \end{array}$ | $\begin{array}{\|l} \hline(1 \mathrm{e}-9 / 1 \mathrm{e}-9), \\ (1 \mathrm{e}-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gse62 | - | $\begin{array}{\|l\|} \hline(10000 . / 3000), \\ (10000 . / 3000), \\ (10000 . / 3000), \\ (10000 . / 3000),(100 \ldots \end{array}$ | $\begin{array}{\|l} \hline(1 \mathrm{e}-9 / 1 \mathrm{e}-9), \\ (1 \mathrm{e}-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |


| 828d-te82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 36000 ., \text { 36000., } \\ 36000 ., 10000 ., \\ 10000 ., 36000 . . . \end{array}$ | (1e-9/1e-9), <br> (1e-9/1e-9), <br> (1e-9/1e-9), <br> (1e-9/1e-9), <br> (1e-9/1... | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 828d-me82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 10000 ., 36000 ., \\ 36000 ., 36000 ., \\ 36000 ., 36000 . . . \end{array}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gce82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 36000 ., \text { 36000., } \\ 36000 ., 10000 ., \\ 36000 ., \text { 36000. } \end{array}$ | $\begin{array}{\|l} (1 \mathrm{e}-9 / 1 \mathrm{e}-9), \\ (1 \mathrm{e}-9 / 1 \ldots \end{array}$ | (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |
| 828d-gse82 | - | $\begin{array}{\|l} \hline 10000 ., 10000 ., \\ 10000 ., 36000 ., \\ 10000 ., 36000 ., \\ 36000 ., 36000 . \end{array}$ | $\begin{array}{\|l} \hline(1 e-9 / 1 e-9), \\ (1 e-9 / 1 \ldots \end{array}$ | (MD_DBLMAXI MD_DBLMAX), (MD_DBLMAX MD_DBLMAX), (MD_DBLMAX/ MD_D... | 2/2 | M |

Description: Maximum velocity at which the axis can permanently travel. The value limits both the positive and the negative axis velocity. The axis traverses at this velocity, if rapid traverse has been programmed.
Depending on the MD30300 \$MA_IS_ROT_AX, the maximum rotary or linear axis velocity has to be entered.
In the machine data, the dynamic behavior of the machine and drive and the limit frequency of the actual value acquisition must be taken into account.

| 32010 | JOG_VELO_RAPID |  |  | A11, A04 | H1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm/min, rev/min | Rapid traverse in jog mode |  |  | DOUBLE | Reset |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | $\begin{aligned} & \hline \text { 10000., 10000., } \\ & \text { 10000., 36000., } 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-te42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & 36000 ., 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ <br> MD_DBLMAX) | 2/2 | M |
| 828d-gce42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 36000., 36000., } 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-gse42 | - | $\begin{array}{\|l\|} \hline \text { 10000., 10000., } \\ \text { 10000., 36000., } 10000 . \end{array}$ | (0./ 0.) | $\begin{array}{\|l} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$ | 2/2 | M |
| 828d-me62 | - | $\begin{aligned} & \hline 10000 ., 10000 ., \\ & \text { 10000., 36000., } \\ & 36000 ., 36000 ., \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ <br> MD_DBLMAX) | 2/2 | M |
| 828d-te62 | - | $\begin{aligned} & \hline 10000 ., 10000 ., \\ & 36000 ., 36000 ., \\ & 36000 ., 10000 ., \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-gce62 | - | $\begin{aligned} & \hline(10000 . / 100), \\ & (10000 . / 100), \\ & (10000 . / 100), \\ & (10000 . / 100), \\ & (10000 . / . . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |

### 4.3 Axis-specific NC machine data

$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { 828d-gse62 } & - & \begin{array}{l}(10000 . / 100), \\ (10000 . / 100), \\ (10000 . / 100), \\ (10000 . / 100),\end{array} & (0 . / 0 .) \\ (10000 . / . . .\end{array}\right)$

## Description:

The axis velocity entered applies when the rapid traverse override key is pressed in JOG mode and when the axial feedrate override is set to $100 \%$.
The value entered must not exceed the maximum permissible axis velocity (MD32000 \$MA_MAX_AX_VELO).
This machine data is not used for the programmed rapid traverse G0.
MD irrelevant to:
Operating modes AUTOMATIC and MDI
Related to:
MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)
MD32040 \$MA_JOG_REV_VELO_RAPID
(revolutional feedrate for JOG with rapid traverse override)
NC/PLC interface signal DB3200 DBX1000.5,1004.5,1008.5 (Rapid traverse override)
NC/PLC interface signal DB3200 DBX4 (Feedrate override A-H)

| 32020 | JOG_VELO |  |  | A11, A04 | H1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm/min, rev/min | Jog axis velocity |  |  | DOUBLE | Reset |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | $\begin{aligned} & \hline 2000 ., 2000 ., 2000 . \text {, } \\ & 36000 ., 36000 . \\ & \hline \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-te42 | - | $\begin{array}{\|l\|} \hline 2000 ., 2000 ., 36000 ., \\ 36000 ., 36000 . \\ \hline \end{array}$ | (0./ 0.) | $\begin{aligned} & \text { (MD_DBLMAXI } \\ & \text { MD_DBLMAX) } \end{aligned}$ | 2/2 | M |
| 828d-gce42 | - | $\begin{aligned} & \text { 2000., 2000., 36000., } \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | $\begin{aligned} & \text { (MD_DBLMAXI } \\ & \text { MD_DBLMAX) } \end{aligned}$ | 2/2 | M |
| 828d-gse42 | - | $\begin{aligned} & \text { 2000., 2000., 2000., } \\ & 36000 ., 2000 . \end{aligned}$ | (0./ 0.) | $\begin{aligned} & \text { (MD_DBLMAXI } \\ & \text { MD_DBLMAX) } \end{aligned}$ | 2/2 | M |
| 828d-me62 | - | $\begin{aligned} & \hline 2000 ., 2000 ., 2000 ., \\ & 36000 ., 36000 . \text {., } \\ & 36000 ., 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ <br> MD_DBLMAX) | 2/2 | M |
| 828d-te62 | - | $\begin{aligned} & \text { 2000., 2000., 36000., } \\ & 36000 ., 36000 . \text {., 2000., } \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAXI MD_DBLMAX) | 2/2 | M |
| 828d-gce62 | - | $\begin{aligned} & \hline(2000 . / 30),(2000 . / 30), \\ & (2000 . / 30),(2000 . / 30), \\ & (2000 . / 30),(200 \ldots \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |



4.3 Axis-specific NC machine data

| $828 \mathrm{~d}-\mathrm{me} 62$ | - | $2.5,2.5,2.5,1.0,1.0$, <br> $1.0,1.0,1.0$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $828 \mathrm{~d}-\mathrm{te} 62$ | - | $2.5,2.5,1.0,1.0,1.0$, <br> $2.5,1.0,1.0$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| 828 d -gce62 | - | $2.5,2.5,2.5,2.5,2.5$, <br> $2.5,2.5,2.5 .$. | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gse} 62$ | - | $2.5,2.5,2.5,2.5,2.5$, <br> $2.5,2.5,2.5 \ldots$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{te} 82$ | - | $2.5,2.5,1.0,1.0,1.0$, <br> $2.5,2.5,1.0 \ldots$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{me} 82$ | - | $2.5,2.5,2.5,1.0,1.0$, <br> $1.0,1.0,1.0 \ldots$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-$ gce82 | - | $2.5,2.5,1.0,1.0,1.0$, <br> $2.5,1.0,1.0$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-$ gse82 | - | $2.5,2.5,2.5,1.0,2.5$, <br> $1.0,1.0,1.0$ | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |

## Description:

The value entered defines the revolutional feedrate of the axis in JOG mode with rapid traverse override in relation to the revolutions of the master spindle. This feedrate is active when SD41100 \$SN_JOG_REV_IS_ACTIVE = 1. (Revolutional feedrate active with JOG)
MD irrelevant for:
SD41100 \$SN_JOG_REV_IS_ACTIVE = "0"
Related to:
SD41100 \$SN_JOG_REV_IS_ACTIVE (revolutional feedrate with JOG active)
MD32050 \$MA_JOG_REV_VELO (revolutional feedrate with JOG)


## Description:

The value entered defines the revolutional feedrate of the axis in JOG mode in relation to the revolutions of the master spindle.
This feedrate is active when SD41100 \$SN_JOG_REV_IS_ACTIVE= 1 (revolutional feedrate active with JOG).

```
MD irrelevant for:
Linear feedrate; i.e. SD41100 $SN_JOG_REV_IS_ACTIVE = 0
Related to:
SD41100 $SN_JOG_REV_IS_ACTIVE
(revolutional feedrate for JOG active)
MD32040 $MA_JOG_REV_VELO_RAPID
(JOG revolutional feedrate with rapid traverse override)
```

| 32060 | POS_AX_VELO |  |  | A12, A04 | H1, P2, K1, V1, 2.4, 6.2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm/min, rev/min | Initial setting for positioning axis velocity |  |  | DOUBLE | Reset |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 36000., } 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD DBLMAX) | 2/2 | M |
| 828d-te42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & 36000 ., 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAXI MD_DBLMAX) | 2/2 | M |
| 828d-gce42 | - | $\begin{array}{\|l\|} \hline \text { 10000., 10000., } \\ 36000 ., 36000 ., 36000 . \\ \hline \end{array}$ | (0./ 0.) | $\begin{array}{\|l} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$ | 2/2 | M |
| 828d-gse42 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 36000., } 10000 . \end{aligned}$ | (0./ 0.) | $\begin{array}{\|l} \hline \text { (MD_DBLMAXI } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$ | 2/2 | M |
| 828d-me62 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 36000., } \\ & 36000 ., 36000 ., \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAXI MD_DBLMAX) | 2/2 | M |
| 828d-te62 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 36000 ., \text {, } 36000 ., \\ 36000 ., 10000 ., \\ 36000 ., \text {, } 36000 . \\ \hline \end{array}$ | (0./ 0.) | (MD_DBLMAX/ <br> MD_DBLMAX) | 2/2 | M |
| 828d-gce62 | - | (10000./30), <br> (10000./30), <br> (10000./30), <br> (10000./30), <br> (10000./30),... | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-gse62 | - | $\begin{aligned} & (10000 . / 30), \\ & (10000 . / 30), \\ & (10000 . / 30), \\ & (10000 . / 30), \\ & (10000 . / 30), \ldots \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-te82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 36000 ., 36000 ., \\ 36000 ., 10000 ., \\ 10000 ., 36000 . \ldots . \end{array}$ | (0./ 0.) | (MD_DBLMAX/ <br> MD_DBLMAX) | 2/2 | M |
| 828d-me82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 10000 ., 36000 ., \\ 36000 ., 36000 ., \\ 36000 ., 36000 . . . \end{array}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-gce82 | - | $\begin{array}{\|l\|} \hline 10000 ., 10000 ., \\ 36000 ., \text { 36000., } \\ 36000 ., 10000 ., \\ 36000 ., \text { 36000.. } \end{array}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | 2/2 | M |
| 828d-gse82 | - | $\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 36000., } \\ & \text { 10000., 36000., } \\ & 36000 ., 36000 . \end{aligned}$ | (0./ 0.) | (MD_DBLMAX/ MD_DBLMAX) | $2 / 2$ | M |

Description: If a positioning axis is programmed in the part program without specifying the axisspecific feedrate, the feedrate entered in MD32060 \$MA_POS_AX_VELO is automatically used for this axis. The feedrate in MD32060 \$MA_POS_AX_VELO applies until an axisspecific feedrate is programmed in the part program for this positioning axis.
MD irrelevant for:
MD32060 \$MA_POS_AX_VELO is irrelevant for all axis types other than positioning axis.
Special cases:
If a ZERO velocity is entered in MD32060 \$MA_POS_AX_VELO, the positioning axis does not traverse if it is programmed without feed. If a velocity is entered in MD32060 \$MA_POS_AX_VELO that is higher than the maximum velocity of the axis (MD32000 \$MA_MAX_AX_VELO), the velocity is automatically restricted to the maximum rate.

| 32070 | CORR_VELO |  |  |  |  |  | A04 | $2.4,6.2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\%$ | Axis velocity for override |  |  |  |  |  | DOUBLE | Reset |
| CTEQ |  |  |  |  |  |  |  |  |
| - | - | 50.0 | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description: Limitation of axis velocity for handwheel override, external work offset, continuous dressing, distance control \$AA_OFF via synchronized actions related to the JOG velocity
MD32020 \$MA_JOG_VELO,
MD32010 \$MA_JOG_VELO_RAPID,
MD32050 \$MA_JOG_REV_VELO,
MD32040 \$MA_JOG_REV_VELO_RAPID.
The maximum permissible velocity is the maximum velocity in MD32000 \$MA_MAX_AX_VELO. Velocity is limited to this value.
The conversion into linear or rotary axis velocity is made according to MD30300 \$MA_IS_ROT_AX.

| 32074 | FRAME_OR_CORRPOS_NOTALLOWED | A01 | K5, K2, 2.4, 6.2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | Frame or tool length compensation are not permissible | UDWORD | PowerOn |  |  |  |
| CTEQ |  |  |  |  |  |  |
| - | - | 0 | 0 | $0 \times F F F$ |  |  |

Description: This machine data is used to define the effectiveness of the frames and tool length compensations for indexing axes, PLC axes and command axes started from synchronized actions.
Bit assignment:
Bit $0=0$ :
Programmable work offset (TRANS) allowed for indexing axis
Bit 0 = 1 :
Programmable work offset (TRANS) forbidden for indexing axis
Bit $1=0$ :
Scale modification (SCALE) allowed for indexing axis
Bit 1 = 1:
Scale modification (SCALE) forbidden for indexing axis
Bit $2=0$ :
Direction change (MIRROR) allowed for indexing axis
Bit 2 = 1 :
Direction change (MIRROR) forbidden for indexing axis
Bit $3=0$ :
DRF offset allowed for axis
Bit 3 = 1 :

DRF offset forbidden for axis
Bit $4=0$ :
External work offset allowed for axis
Bit $4=1$ :
External work offset forbidden for axis
Bit $5=0$ :
Online tool compensation allowed for axis
Bit $5=1$ :
Online tool compensation forbidden for axis
Bit $6=0$ :
Synchronized action offset allowed for axis
Bit 6 = 1:
Synchronized action offset forbidden for axis
Bit $7=0$ :
Compile cycles offset allowed for axis
Bit $7=1$ :
Compile cycles offset forbidden for axis
Bit $8=0$ :
Axial frames and tool length compensation are NOT considered for PLC axes (bit evaluation for compatibility reasons)
Bit 8 = 1 :
Axial frames are considered for PLC axes and tool length compensation is considered
for PLC axes which are geometry axes.
Bit $9=0$ :
Axial frames are considered for command axes, and tool length compensation is considered for command axes which are geometry axes.
Bit $9=1$ :
Axial frames and tool length compensation are NOT considered for command axes
If the tool is treated in an active transformation, the tool length compensation is taken into account for geometry axes (as for bit9=0, see also MD24130
\$MC_TRAFO_INCLUDES_TOOL_1).
Bit $10=0$ :
In JOG mode, too, traversing of a geometry axis as a PLC or command axis is NOT allowed with active rotation.
Bit $10=1$ :
In JOG mode, traversing of a geometry axis as a PLC axis or command axis (static synchronized action) is allowed with active rotation (ROT frame). Traversing must be terminated prior to returning to AUTOMATIC mode (neutral axis state), as otherwise alarm 16908 would be output when the mode is changed.
Bit $11=0$ :
In 'Program interrupted' status, repositioning to the interrupt position (AUTO - JOG) takes place when changing from JOG to AUTO.
Bit $11=1$ :
Prerequisite: Bit $10==1$ (PLC or command axis motion with active rotation in JOG mode). In 'Program interrupted' status, the end point of the PLC or command axis motion is taken over when changing from JOG to AUTOMATIC and the geometry axes are positioned according to the rotation


## Description:

Ths machine data can be used to map an axial frame onto an axial frame of another axis. This means that the description of a frame in the data management can simultaneously describe the frame of another axis with the same values. Selected data management frames can be enabled for the mapping in MD10616 \$MN_MAPPED_FRAME_MASK.



## Description:

For the velocity override of positioning axes:
>0: Limitation of size of selected increment \$MN_JOG_INCR_SIZEL<Increment/VDI
signal> 0 or SD41010 \$SN_JOG_VAR_INCR_SIZE for the associated machine axis
0: No limitation


Description:
Definition of the response of the handwheel travel to axis-specific VDI interface signals or the CP-SW limit stop or a stop from an OEM application:
Bit $=0$ :
Interruption or collection of the distances preset via the handwheel.
Bit = 1:
Cancelation of the traversing motion or no collection.
Bit assignment:
Bit 0: feedrate override
Bit 1: spindle speed override
Bit 2: feedrate stop/spindle stop or CP-SW limit stop or stop from an OEM
application
Bit 3: clamping procedure running (= 0 no effect)
Bit 4: servo enable
Bit 5: pulse enable
For machine axis:
Bit $6=0$
For handwheel travel, the maximum velocity at which the relevant machine axis can be traversed is the feedrate set in MD32020 \$MA_JOG_VELO.
Bit $6=1$
For handwheel travel, the maximum velocity at which the relevant machine axis can be traversed is the feedrate set in MD32000 \$MA_MAX_AX_VELO.
Bit $7=0$
The override is active in handwheel travel.
Bit $7=1$
The override is always assumed to be $100 \%$ for handwheel travel, regardless of how the override switch is set.
Exception: override 0\% is always active.
Bit $8=0$
The override is active with DRF
Bit $8=1$
The override is always assumed to be $100 \%$ for DRF, regardless of how the override switch is set.
Exception: override 0\% is always active.
Bit $9=0$
For handwheel travel, the maximum possible velocity with revolutional feedrate is

- with the feedrate in SD41120 \$SN_JOG_REV_SET_VELO or
- the feedrate in MD32050 \$MA_JOG_REV_VELO or
- in the case of rapid traverse with MD32040 \$MA_JOG_REV_VELO_RAPID
of the relevant machine axis calculated with the spindle or rotary axis feedrate. Bit $9=1$
For handwheel travel, the maximum possible velocity is with the revolutional feedrate in MD32000 \$MA_MAX_AX_VELO of the relevant machine axis. (see also bit 6)
Bit $10=0$
For overlaid motions, \$AA_OVR is not active.
Bit $10=1$

For overlaid motions (DRF, \$AA_OFF, external work offset, online tool offset), the override \$AA_OVR settable via synchronized actions is active.
Bit $11=0$
With the VDI interface signal DB390x DBX4001.5 (Drive Ready) missing, paths defined by the handwheel are not collected, but a traversing request is displayed. Start of a continuous JOG motion in continuous mode (MD41050 \$SN_JOG_CONT_MODE_LEVELTRIGGRD 41050 $=0$ ) or an incremental JOG motion in continuous mode (MS11300 \$MN JOG INC MODE LEVELTRIGGRD $11300=0$ ) is displayed as a traversing request. With "driveReady" = 1, however, the tool is not traversed, but the procedure is canceled and must be started again.

Bit $11=1$
With the VDI interface DB390x DBX4001.5 (Drive Ready) missing, the paths defined by the handwheel are collected. Start of a continuous JOG motion in continuous mode (MD41050 \$SN_JOG_CONT_MODE_LEVELTRIGGRD $41050=0$ ) or an incremental JOG motion in continuous mode (MS11300 \$MN JOG INC MODE LEVELTRIGGRD $11300=0$ ) is displayed and saved as a traversing request. With "driveReady" = 1 the traversing motion is started.
Bit $12=0$
Interruption or collection of the distances preset via the handwheel with safe operational stop.

Bit $12=1$
Cancelation of the traversing motion or no collection with safe operational stop.



## Description:

The direction of movement of the machine can be reversed with this MD.
The control direction is, however, not destroyed; i.e. closed-loop control remains stable.
-1: Direction reversal
$0,1:$ No direction reversal

| 32110 | ENC_FEEDBACK_POL | A07, A02, A11 | G2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Sign actual value (control direction) | DWORD | PowerOn |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | 1,1 | -1 | 1 | $2 / 2$ |  |$]$ M

Description: The evalution direction of the shaft encoder signals is entered in the $M D$.
-1: Actual value reversal
$0,1:$ No actual value reversal
The index[n] of the machine data is encoded as follows:
[Encoder no.]: 0 or 1
Special cases:
The axis can run off if an incorrect control direction is entered.
Depending on the setting of the corresponding limit values, one of the following alarms is displayed:
Alarm 25040 "Standstill monitoring"
Alarm 25050 "Contour monitoring"
Alarm 25060 "Speed setpoint limitation"
If an uncontrolled setpoint step change occurs on connection of a drive, the control direction might be incorrect.
Note:
In the case of SINAMICS drives, we recommend that the direction of motion is reversed
in the drive (see P410).
This is obligatory if you are using DSC (see also MD32640
\$MA_STIFFNESS_CONTROL_ENABLE).

| 32200 | POSCTRL_GAIN |  |  | A07, A11 | G1, TE1, TE9, K3, S3, A2, A3, D1, G2, S1, V1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000/min | Servo gain factor |  |  | DOUBLE | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-te42 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-gce42 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-gse42 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-me62 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |


| 828d-te62 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 828d-gce62 | 6 | $\begin{aligned} & \text { 16.66666667, } \\ & \text { 16.66666667, } \end{aligned}$ | 0 | 2000. | 7/2 | M |
| 828d-gse62 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-te82 | 6 | 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, <br> 16.66666667, | 0 | 2000. | 7/2 | M |
| 828d-me82 | 6 | 16.66666667, 16.6666667, 16.66666667, 16.6666666, 16.6666666, | 0 | 2000. | 7/2 | M |
| 828d-gce82 | 6 | $\begin{array}{\|l\|} \hline 33.33333334, \\ 33.33333334, \\ 33.33333334, \\ 33.33333334, \\ 33.33333334, \\ \hline \end{array}$ | 0 | 2000. | 7/2 | M |
| 828d-gse82 | 6 | $\begin{aligned} & 33.33333334, \\ & 33.33333334, \\ & 33.33333334, \\ & 33.33333334, \\ & 33.33333334, \end{aligned}$ | 0 | 2000. | 7/2 | M |

## Description:

Position controller gain, or servo gain factor.
The input/output unit for the user is [ ( $\mathrm{m} / \mathrm{min}$ )/mm].
I.e. MD32200 \$MA_POSCTRL_GAIN[n] = 1 corresponds to a 1 mm following error at $V=1 \mathrm{~m} /$ min.
The following machine data have default settings for adapting the standard selected input/output unit to the internal unit [rev/s].

- MD10230 \$MN_SCALING_FACTORS_USER_DEF[9] = 16.666667 S
- MD10220 \$MN_SCALING_USER_DEF_MASK = 0x200; (bit no 9 as hex value).

If the value "0" is entered the position controller is opened.
When entering the servo gain factor it is important to take into account that the gain factor of the whole position control loop is still dependent on other parameters of the controlled system. A distinction should be made between a "desired servo gain factor" (MD32200 \$MA_POSCTRL_GAIN) and an "actual servo gain factor" (produced by the machine). Only when $\bar{a} l l$ the parameters of the control loop are matched will these servo gain factors be the same.
Other factors are:

- Speed setpoint adjustment (MD32260 \$MA_RATED_VELO, MD32250 \$MA_RATED_OUTVAL)
or automatic speed setpoint interface adjustment (with MD32250 \$MA_RATED_OUTVAL = 0 etc.)


### 4.3 Axis-specific NC machine data

- Correct actual value recording of the position encoder (no. of encoder pulses, high resolution, encoder mounting location, gear etc.)
- Correct actual speed recording on the drive (standardization, possibly tacho compensation, tacho generator)
Note:
Axes which interpolate together and are to perform a machining operation, must either have the same gain setting (i.e. have the identical following error $=45^{\circ}$ slope at the same velocity) or they must be matched via MD32910 \$MA_DYN_MATCH_TIME.
The actual servo gain factor can be checked by means of the following error (in the service display).
In the case of analog axes, a drift compensation must be performed prior to the control. The index $[\mathrm{n}]$ of the machine data has the following coding: [control parameter set no.]: 0-5


Description:
Position controller integral action time for the integral component in s The MD is only active if MD32220 \$MA_POSCTRL_INTEGR_ENABLE = TRUE.
A value of the MD less than 0.001 disables the integral component of the PI controller. The controller is then a $P$ controller, which works with disabled manipulated variable clamping (see also MD32230 \$MA_POSCTRL_CONFIG, bit0 = 1).


## Description: Enable of the integral component position controller; the position controller is then

 a PI controller in which the manipulated variable clamping is disabled (s.a. MD32230 \$MA_POSCTRL_CONFIG, bit0 = 1)Position overshoots may occur if the integral component is used. For this reason, this functionality may only be used in special cases.


| 32250 | RATED_OUTVAL | A01, A11 | A3, D1, G2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $\%$ | Rated output voltage | DOUBLE | NEW CONF |  |  |  |
| CTEQ |  |  |  |  |  |  |
| - | 1 | 0.0 | 0.0 | 200 |  |  |

a.)

Scaling of the manipulated variable with analog drives:
The value of the speed setpoint in percent is to be entered in this MD, in relation to the maximum speed setpoint at which the motor speed specified in MD32260 \$MA_RATED_VELO[n] is reached.
Related to:
MD32250 \$MA_RATED_OUTVAL[n] only makes sense in combination with MD32260
\$MA_RATED_VELO[n].
Example:

1. At a voltage of 5 V , the drive reaches a speed of
$1875 \mathrm{rpm}==>$ RATED_OUTVAL $=50 \%$, RATED_VELO $=11250$ [degrees $/ \mathrm{s}$ ]
2. At a voltage of 8 V , the drive reaches a speed of
$3000 \mathrm{rpm}==>$ RATED_OUTVAL $=80 \%$, RATED_VELO $=18000$ [degrees $/ \mathrm{s}$ ]
3. At a voltage of 1.5 V , the drive reaches a speed of
$562.5 \mathrm{rpm}==>$ RATED_OUTVAL $=15 \%$, RATED_VELO $=3375$ [degrees $/ \mathrm{s}$ ]
All three examples are possible for one and the same drive/converter. The ratio of the two values is decisive; it is the same in all three examples.
MD32250 \$MA_RATED_OUTVAL and MD32260 \$MA_RATED_VELO describe physical properties of converter and drive; they can therefore only be determined by means of a measurement or commissioning instructions (converter, drive).
b.)

Scaling of the manipulated variable with digital PROFIdrive drives:
Default value "0" declares MD32250 \$MA_RATED_OUTVAL and MD32260 \$MA_RATED_VELO as invalid. Scaling of the manipulated variable is automatically determined and adjusted from the drive parameters instead.
Otherwise (MD32250 \$MA_RATED_OUTVAL unequal to zero), the scaling of the manipulated variable is not determined from the drive (for example non-Siemens PROFIdrive drives), but set with RATED_VELO and RATED_OUTVAL, even in the case of these, irrespective of the scaling active on the drive side. In this case, the following applies: Scaling of the manipulated variable on the drive = RATED_VELO / RATED_OUTVAL Further scalings from drive parameters, such as torque scaling, are not active if MD32250 \$MA_RATED_OUTVAL is not equal to zero, the values based on it remain zero. In the case of simultaneous operation of analog and PROFIdrive drives, the settings for the analog axes must be adjusted as described in a.).


## Description:

Only applies when:
MD32250 \$MA_RATED_OUTVAL is set greater than 0 .
The drive speed (scaled on the drive) that is reached with the percentual speed setpoint specified in MD32250 \$MA_RATED_OUTVAL[n] must be entered in the MD.
Related to:
MD32260 \$MA_RATED_VELO[n] only makes sense in combination with MD32250 \$MA_RATED_OUTVAL[n].

| 32300 | MAX_AX_ACCEL |  |  | A11, A04 | M3, TE6, Z3, H1, K3, M1, A3,$\text { B1, B2, K1, V1, } 2.4$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{2}, \mathrm{rev} / \mathrm{s}^{2}$ | Maximum axis acceleration |  |  | DOUBLE | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 2.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 2.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0,... } \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-te42 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 3.6, 3.6, 3.6,... } \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-gce42 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & 3.6,3.6,3.6, \ldots \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-gse42 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0,... } \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-me62 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 2.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 2.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0,... } \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-te62 | 5 | $\begin{aligned} & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 2.0, 2.0, 2.0, 1.0, 1.0, } \\ & \text { 3.6, 3.6, 3.6,... } \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-gce62 | 5 | $\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0, \ldots \end{aligned}$ | 1.0e-6 | $1.0 \mathrm{E}+301$ | 2/2 | M |


| $828 \mathrm{~d}-\mathrm{gse} 62$ | 5 | $1.0,1.0,1.0,1.0,1.0$, <br> $1.0,1.0,1.0,1.0,1.0$, <br> $1.0,1.0,1.0, \ldots$ | $1.0 \mathrm{e}-6$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $828 \mathrm{~d}-\mathrm{te} 82$ | 5 | $2.0,2.0,2.0,1.0,1.0$, <br> $2.0,2.0,2.0,1.0,1.0$, <br> $3.6,3.6,3.6, \ldots$ | $1.0 \mathrm{e}-6$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{me} 82$ | 5 | $2.0,2.0,2.0,2.0,1.0$, <br> $2.0,2.0,2.0,2.0,1.0$, <br> $2.0,2.0,2.0, \ldots$ | $1.0 \mathrm{e}-6$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gce} 82$ | 5 | $2.0,2.0,2.0,1.0,1.0$, <br> $2.0,2.0,2.0,1.0,1.0$, <br> $3.6,3.6,3.6, \ldots$ | $1.0 \mathrm{e}-6$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gse} 82$ | 5 | $2.0,2.0,2.0,1.0,1.0$, <br> $2.0,2.0,2.0,1.0,1.0$, <br> $2.0,2.0,2.0, \ldots$ | $1.0 \mathrm{e}-6$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |

Description: Maximum acceleration, i.e. change in setpoint velocity, which is to act upon the axis. The value limits both positive and negative axis acceleration.
The maximum angular or linear axis acceleration must be entered dependent upon machine data MD30300 \$MA_IS_ROT_AX.
In the case of linear interpolation of the axes in a grouping, the grouping is limited in such a way that no axis is overloaded. With regard to contour accuracy, the control dynamic behavior has to be taken into account.
Not relevant for error states that lead to quick stop.
Each field element corresponds to a $G$ code in the 59th $G$ code group.
Related to:

```
MD32310 $MA_MAX_ACCEL_OVL_FACTOR
MD32434 $MA_G00_ACCEL_FACTOR
MD32433 $MA_SOFT_ACCEL_FACTOR
MD20610 $MC_ADD_MOVE_ACCEL_RESERVE
MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL
```



## Description:

The overload factor limits the velocity jump of the machine axis on block transition.
The value entered is related to the value of MD32300 \$MA_MAX_AX_ACCEL (axis acceleration) and states by how much the maximum acceleration can be exceeded for one IPO cycle.
Related to:
MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)

### 4.3 Axis-specific NC machine data

MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator clock)
Each field element corresponds to a G code in the 59th G group.


## Description:

MD32320 \$MA_DYN_LIMIT_RESET_MASK is used to set the reset response of functions limiting dynamic response for specific axes and groups.
The MD is bit-coded, bit 0 (LSB) and bit 1 are currently allocated.
Bit $0=0$ :
Programmed ACC, VELOLIM and JERKLIM are reset to $100 \%$ with channel reset/M30 if the channel-specific MD22410 \$MC_F_VALUES_ACTIVE_AFTER_RESET is also zero.

For spindle mode, programmed ACC and VELOLIM are reset to 100\% with channel reset/M30 if MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET is zero and the channel-specific MD22400 \$MC_S_VALUES_ACTIVE_AFTER_RESET is also zero.
Bit $0=1$ :
Programmed ACC, VELOLIM and JERKLIM are retained beyond channel reset/M30.
Bit $1=0$ :
Programmed ACCLIMA, VELOLIMA and JERKLIMA are reset to $100 \%$ with channel reset/M30, if MD22410 \$MC_F_VALUES_ACTIVE_AFTER_RESET is also zero.
Bit 1 = 1:
Programmed ACCLIMA, VELOLIMA and JERKLIMA are retained beyond channel reset//M30.
Notes:
In MD22410 \$MC_F_VALUES_ACTIVE_AFTER_RESET, the reset responses of the dynamic
 specifically. If the MD is set, then the values are also retained.
For spindle mode, the values for ACC and VELOLIM are also retained if MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET is not equal to zero or the channel-specific MD22400 \$MC_S_VALUES_ACTIVE_AFTER_RESET is not equal to zero.


Description:
Enables the function of an axial jerk limitation.
The limitation is set via a time constant; it is always active.

The limitation works independently of the limitations "path-related maximum jerk", "knee-shaped acceleration characteristic" and the axial jerk limitation of the axes that are operated in JOG mode or positioning axis mode.
Related to:
MD32410 \$MA_AX_JERK_TIME (time constant for axial jerk limitation)


## Description:

Filter type for axial jerk limitation:
1: 2nd order filter (as in SW 1 through 4)
2: Moving averaging (SW 5 and higher)
3: Bandstop filter (SW 6 and higher)
Type 2 requires more computing time, but causes smaller contour errors for the same smoothing effect, or smoother movements at the same accuracy.

Type 2 is recommended; type 1 is set as a default value for reasons of compatibility. The maximum jerk is set in the time constant MD32410 \$MA_AX_JERK_TIME.

Recommended values for type 1:
Min. $0.03 \mathrm{~s} ; \max .0 .06 \mathrm{~s}$.
Recommended values for type 2:
Min. 1 position-control cycle; max. 16 position-control cycles
At a position-control cycle of 2 ms , this corresponds to 0.002 to 0.032 seconds.
Type 3 requires the setting of
MD32410 \$MA_AX_JERK_TIME
MD32412 \$MA_AX_JERK_FREQ
MD32414 \$MA_AX_JERK_DAMP.
To parameterize a simple bandstop filter, we recommend setting MD32410
\$MA_AX_JERK_TIME=0,
which automatically sets "denominator frequency = numerator frequency = blocking frequency $=$ MD32412 \$MA_AX_JERK_FREQ".
However, MD32410 \$MA_AX_JERK_TIME > 0 is used to set a specific denominator frequency, which makes it possible to implement a bandstop filter with amplitude increase for frequencies beyond the blocking frequency.
MD32402 \$MA_AX_JERK_MODE is only active if MD32400 \$MA_AX_JERK_ENABLE has been set to 1 .

Special cases, errors:
The machine data must be same for all axes of an axis container. Related to:

### 4.3 Axis-specific NC machine data

MD32400 \$MA_AX_JERK_ENABLE
MD32410 \$MA_AX_JERK_TIME
and for type 3:
MD32412 \$MA_AX_JERK_FREQ and
MD32414 \$MA_AX_JERK_DAMP

| 32410 | AX_JERK_TIME | A07, A04 | G1, TE1, S3, B2, G2 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| s | Time constant for axial jerk filter |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.001 | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description: Time constant of the axial jerk filter which causes a smoother axis setpoint characteristic. The jerk filter will only be active, if the time constant is higher than a position control cycle.
Not active in case of errors that cause a change in follow-up mode (for example EMERGENCY STOP)

Special cases:
Machine axes that are supposed to be interpolating with one another, must have the same effective jerk filtering (for example the same time constant for tapping without compensating chuck).
Related to:
MD32400 \$MA_AX_JERK_ENABLE (axial jerk limitation)


Description: Blocking frequency of axial jerk filter bandstop MD is only active if MD32402 \$MA_AX_JERK_MODE = 3

| 32414 | AX_JERK_DAMP |  | A07, A04 | - |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Damping of axial jerk filter |  | DOUBLE | NEW CONF |  |
| - |  |  |  |  |  |
| 828d-me42 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ | M |
| 828d-te42 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ | M |
| 828d-gce42 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ | M |
| 828d-gse42 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ | M |
| 828d-me62 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ | M |
| 828d-te62 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | 7/2 | M |



| 32415 | EQUIV_CPREC_TIME |  | A07, A04 | MD32410 <br> \$MA_AX_JERK_TIME, <br> \$MC_CPREC_WITH_FFW |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| s | Time constant for the programmable contour accuracy | DOUBLE | NEW CONF |  |  |
| - | - | -MD_DBLMAX | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| - | 0 |  |  |  |  |

Description: The data states the jerk filter time constant at which the contour error with active feedforward control is negligibly small.

| 32420 | JOG_AND_POS_JERK_ENABLE |  | A04 | G1, |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Default setting of axis jerk limitation |  | BOOLEAN | Res |  |
| CTEQ |  |  |  |  |  |
| - | FALSE | 0 | - | 2/2 | M |

## Description:

Enables the function of the axis-specific jerk limitation for the operating modes JOG, REF and positioning axis mode.
1: Axial jerk limitation for JOG mode and positioning axis mode
0: No jerk limitation for JOG mode and positioning axis mode
The maximum jerk occurring is defined in MD32430 \$MA_JOG_AND_POS_MAX_JERK.
Related to:
MD32430 \$MA_JOG_AND_POS_MAX_JERK (axial jerk)

| 32429 | MAX_JERK_STOP | A04 | B1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{m} / \mathrm{s}^{3}, \mathrm{rev} / \mathrm{s}^{3}$ | Reserved: Maximum axial EMERGENCY JERK | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 5 | $0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, <br> $0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, <br> $0 ., 0 ., \ldots$ | 0. | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |

Description:
Reserved for maximum axial jerk in emergency situations. A value of 0 has the same effect as MAX_AX_JERK.
Each field element corresponds to a G code in the 59th G code group.

| 32430 | JOG_AND_POS_MAX_JERK |  |  | A04 | G1, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{3}, \mathrm{rev} / \mathrm{s}^{3}$ | Axial jerk |  |  | DOUBLE | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | - | 100, 100, 100, 100, 100 | 1.e-9 | 1.0E+301 | 2/2 | M |
| 828d-te42 | - | 100, 100, 100, 100, 100 | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-gce42 | - | 100, 100, 100, 100, 100 | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | M |
| 828d-gse42 | - | 100, 100, 100, 100, 100 | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | M |

### 4.3 Axis-specific NC machine data

| $828 \mathrm{~d}-\mathrm{me} 62$ | - | $100,100,100,100$, <br> $100,100,100,100$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $828 \mathrm{~d}-\mathrm{te} 62$ | - | $100,100,100,100$, <br> $100,100,100,100$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gce} 62$ | - | $1000,0,1000.0$, <br> $1000.0,1000.0$, <br> $1000.0,1000.0$, <br> $1000.0,1000.0 .$. | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gse} 62$ | - | $1000.0,1000.0$, <br> $1000.0,1000.0$, <br> $1000.0,1000.0$, <br> $1000.0,1000.0 \ldots$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{te} 82$ | - | $100,100,100,100$, <br> $100,100,100,100 \ldots$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{me} 82$ | - | $100,100,100,100$, <br> $100,100,100,100 \ldots$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-\mathrm{gce} 82$ | - | $100,100,100,100$, <br> $100,100,100,100$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |
| $828 \mathrm{~d}-$ gse82 | - | $100,100,100,100$, <br> $100,100,100,100$ | $1 . \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $2 / 2$ | M |

Description:
The jerk limit value limits the rate of change of axis acceleration in JOG and REF modes as well as in positioning axis mode with MD18960 \$MN_POS_DYN_MODE=0.
The setting and time calculation are made as for MD20600 \$MC_MAX_PATH_JERK (pathrelated maximum jerk).
Not relevant for:

- Path interpolation
- Error states that lead to quick stop.

Related to:
MD32420 \$MA_JOG_AND_POS_JERK_ENABLE (initial setting of axial jerk limitation)
MD18960 \$MN_POS_DYN_MODE

| 32431 | MAX_AX_JERK |  |  | A04 | B1, B2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{3}, \mathrm{rev} / \mathrm{s}^{3}$ | Maximum axial jerk for path movement |  |  | DOUBLE | NEW CONF |  |
| - |  |  |  |  |  |  |
| 828d-me42 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-te42 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & \text { 40., 40., 40., 20., 20., } \\ & \text { 1.e6, 1.e6, 1.... } \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gce42 | 5 | $\begin{aligned} & \text { 40., } 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 1 . e 6,1 . e 6,1 . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-gse42 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-me62 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-te62 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 1 . e 6,1 . e 6,1 . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-gce62 | 5 | $\begin{aligned} & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6... } \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |


| 828d-gse62 | 5 | $\begin{array}{\|l} \hline \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ \text { 1.e6, 1.e6, 1.e6... } \\ \hline \end{array}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 828d-te82 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & \text { 1.e6, 1.e6, 1.... } \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-me82 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 . \text {., } \\ & 40 ., 40 ., 40 ., . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-gce82 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 1 . e 6,1 . e 6,1 . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gse82 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . . \end{aligned}$ | 1.e-9 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |

## Description:

Maximum axial jerk for path motion
Each field element corresponds to a G code in the 59th G code group.

| 32432 | PATH_TRANS_JERK_LIM |  |  | A04 | B1, B2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{3}, \mathrm{rev} / \mathrm{s}^{3}$ | Maximum axial jerk at block transition in continuous-path mode |  |  | DOUBLE | NEW CONF |  |
| CTEQ |  |  |  |  |  |  |
| 828d-me42 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-te42 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & \text { 1.e6, 1.e6, 1.... } \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gce42 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 1 . e 6,1 . e 6,1 . . . \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gse42 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . . \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-me62 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-te62 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & \text { 1.e6, 1.e6, 1.... } \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gce62 | 5 | $\begin{aligned} & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6... } \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-gse62 | 5 | $\begin{aligned} & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6, 1.e6, } \\ & \text { 1.e6, 1.e6, 1.e6... } \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-te82 | 5 | $\begin{aligned} & \text { 40., 40., 40., 20., 20., } \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & \text { 1.e6, 1.e6, 1.... } \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | I |
| 828d-me82 | 5 | $\begin{aligned} & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., 20 ., 20 ., \\ & 40 ., 40 ., 40 ., . . \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | I |

### 4.3 Axis-specific NC machine data

| $828 \mathrm{~d}-\mathrm{gce} 82$ | 5 | 40., 40., 40., 20., 20., <br> 40., 40., 40., 20., 20., <br> $1 . e 6,1 . e 6,1 . .$. | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $828 d-$ gse82 | 5 | $40 ., 40 ., 40 ., 20 ., 20 .$, <br> 40., 40., 40., 20., 20., <br> 40., 40., 40.,.. | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ | 1 |

Description: The control limits the jerk (acceleration jump) at a block transition between contour sections of different curvature to the value set with active jerk limitation. Not relevant for:

Exact stop
There is an entry for each $G$ code from the $59 t h \mathrm{G}$ code group (dynamic $G$ code group).
Related to:
Path control, SOFT type of acceleration

| 32433 | SOFT_ACCEL_FACTOR | A04 | TE9, B1, B2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Scaling of acceleration limitation with SOFT | DOUBLE | NEW CONF |  |  |  |
| - | 3 |  |  |  |  |  |
| - | 5 | $1 ., 1 ., 1 ., 1 ., 1$. | $1 \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $3 / 3$ |  |

Description: $\begin{array}{ll}\text { Scaling of acceleration limitation with SOFT. } \\ & \text { Relevant axial acceleration limitation for SOFT =: }\end{array}$
(MD32433 \$MA_SOFT_ACCEL_FACTOR[..] * MD32300 \$MA_MAX_AX_ACCEL[..])
Each field element corresponds to a G code in the 59th G code group.

| 32434 | G00_ACCEL_FACTOR | A04 | TE9, B1, B2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Scaling of acceleration limitation with G00. | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 1. | $1 \mathrm{e}-9$ | $1.0 \mathrm{E}+301$ | $3 / 3$ |  |

## Description:

Scaling of the acceleration limitation with GOO.
Relevant axial acceleration limitation for GOO =:
(MD32433 \$MA_G00_ACCEL_FACTOR[..] * MD32300 \$MA_MAX_AX_ACCEL[..])

| 32435 | G00_JERK_FACTOR | A04 | B1, B2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Scaling of jerk limitation with G00. | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 1. | 1 e-9 | $1.0 \mathrm{E}+301$ | $3 / 3$ |  |

Description: Scaling of the jerk limitation with G00.
Relevant axial jerk limitation for $G 00=$ :
(MD32435 \$MA_G00_JERK_FACTOR[..] * MD32431 \$MA_MAX_AX_JERK[..])


| $828 \mathrm{~d}-\mathrm{gce} 42$ | 5 | $3000,3000,3000$, <br> $3000,3000,300$, <br> $300,3000,3000$, | 0.0 | $1.0 \mathrm{E}+301$ | | |
|---|---|---|---|---|---|---|
| $3000,3000 \ldots$ |  |  |  |  |, | $2 / 2$ |
| :--- |

Description: $\begin{aligned} & \text { Velocity at and above which the permissible jerk of an axis in } \\ & \text { fashion. } \\ & \text { Jerk adjustment only becomes active if MD32439 \$MA_MAX_AX_JERK } \\ & \\ & \text { There is an entry for each dynamic G code group. } \\ & \text { See also MD32438 \$MA_AX_JERK_VEL1 and \$MA_MAX_AX_JERK_FACTOR. }\end{aligned}$

| 32438 | AX_JERK_VEL1 |  |  | A04 | B1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{mm} / \mathrm{min}$, rev/min | Velocity threshold for linear jerk adjustment |  |  | DOUBLE | NEW CONF |  |
| - |  |  |  |  |  |  |
| 828d-me42 | 5 | $\begin{aligned} & \text { 6000, 6000, 6000, } \\ & 6000,6000,6000 \\ & 6000,6000,6000 \\ & 6000,6000 \ldots \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |
| 828d-te42 | 5 | $\begin{aligned} & \text { 6000, 6000, 6000, } \\ & 6000,6000,6000 \\ & 6000,6000,6000 \\ & 6000,6000 \ldots \end{aligned}$ | 0.0 | $1.0 \mathrm{E}+301$ | 2/2 | 1 |

4.3 Axis-specific NC machine data

| 828d-gce42 | 5 | $6000,6000,6000$, <br> $600,6000,600$, <br> $600,6000,600$, | 0.0 | $1.0 \mathrm{E}+301$ | | |
|---|---|---|---|---|---|---|
| $6000,6000 \ldots$ |  |  |  |  |, | $2 / 2$ |
| :--- |

Description: Velocity at and above which the permissible jerk of an axis switches from increasing in a linear fashion
to the saturation defined in MD32439 \$MA_MAX_AX_JERK_FACTOR.
The value of this velocity must be greater than the value set with MD32437 \$MA_AX_JERK_VELO.
Jerk adjustment becomes active only if MD32439 \$MA_MAX_AX_JERK_FACTOR is > 1.0 .
There is an entry for each dynamic $G$ code group.
See also MD32437 \$MA_AX_JERK_VELO and MD32439 \$MA_MAX_AX_JERK_FACTOR

| 32439 | MAX_AX_JERK_FACTOR | A04 | B1 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | Factor for jerk adjustment at high velocities | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 5 | $1.0,1.0,1.0,1.0,1.0$ | 1.0 | $1.0 \mathrm{E}+301$ |  |  |

Description: Factor for setting adaptive jerk adjustment for an axis.
Jerk adjustment becomes active only if the value of this MD is greater than 1.

```
The speed-dependent axial jerk is only used for defining the maximum path velocity and does not affect the maximum path acceleration and maximum path jerk. Therefore, speeddependent jerk adaptation only affects traversing that includes geometric torsion (change of the curvature). Both the curvature and torsion of linear movements are zero, and jerk adaptation has no effect.
There is an entry for each dynamic G code group.
See also MD32437 \$MA_AX_JERK_VEL0 and MD32438 \$MA_AX_JERK_VEL1.
```

| 32440 | LOOKAH_FREQUENCY | EXP, A04 | B1 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Smoothing frequency for LookAhead |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | - | 10. | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description: Acceleration procedures in continuous-path mode with LookAhead which execute with a higher frequency than that parameterized in this MD are smoothed as a function of the parameterization in MD20460 \$MC_LOOKAH_SMOOTH_FACTOR.
It is always the minimum of all the axes participating in the path which is determined. If vibrations are aroused in the mechanics of this axis and if their frequency is known, then this MD should be set to a lower value than this frequency.

| 32450 | BACKLASH | A09 | K3, G2 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| mm, degrees | Backlash | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 2 | $0.0,0.0$ | - MD_DBLMAX | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |

Description: Backlash on reversal between positive and negative travel directions. Input of the compensation value is

- positive, if the encoder is leading the machine part (normal situation)
- negative, if the encoder is behind the machine part.

Backlash compensation is not active when 0 is entered.
Backlash compensation is always active after reference point approach in all operating modes.

Special cases:
A specific backlash on reversal must be entered for each measuring system.
Related to:
MD30200 \$MA_NUM_ENCS (number of measuring systems)
MD36500 \$MA_ENC_CHANGE_TOL
(Maximum tolerance at actual position value change)

| 32452 | BACKLASH_FACTOR |  |  | A09 | K3, |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | Evaluation factor for backlash |  |  | DOUBLE | NEW CONF |  |
| - |  |  |  |  |  |  |
| - | 6 | $\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0 \end{aligned}$ | 0.01 | 100.0 | 2/2 | I |

Description:
Evaluation factor for backlash.
The machine data enables the backlash defined in MD32450 \$MA_BACKLASH to be changed as a function of the parameter set, in order to take a gear stage dependent backlash into account, for example.
Related to:
MD32450 \$MA_BACKLASH[n]
4.3 Axis-specific NC machine data



| 32456 | BACKLASH_DYN | A09 | - |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| mm, degrees | Compensation value of dynamic backlash compensation |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | 2 | $0.0,0.0$ | - | - | $2 / 2$ |  |  |  |

## Description:

Compensation value for dynamic backlash compensation value
The entry of the compensation value is

- positive if the encoder leading the machine part (normal case)
- negative if the encoder is following the machine part.

Backlash compensation becomes ineffective if 0 is entered.
The dynamic backlash compensation can only be activated after the reference point approach. Activation takes place via PLC user interface signals.
Special cases:
A separate compensation value must be entered for each measuring system.
Corresponds to:
MD32457 \$MA_BACKLASH_DYN_MAX_VELO
(limitation of the compensation value change)
MD32000 \$MA_MAX_AX_VELO
(maximum axis velocity)
MD30200 \$MA_NUM_ENCS
(number of measuring systems)
MD30200 \$MA_NUM_ENCS (number of measuring systems)

| 32457 | BACKLASH_DYN_MAX_VELO | A09 | - |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\%$ | Limitation of dynamic backlash compensation value change |  |  |  |  |  | DOUBLE | NEW CONF |  |
| - | - | 1.0 | - | - | $2 / 2$ |  |  |  |  |
| - | - |  |  |  |  |  |  |  |  |



| 32490 | FRICT_COMP_MODE | A09 | K3 |  |
| :---: | :---: | :---: | :---: | :---: |
| - | Type of friction compensation | BYTE | PowerOn |  |
| - |  |  |  |  |
| - | 1 1 0 | 4 | 2/2 | I |
| Description: | 0: No friction compensation |  |  |  |
|  | 1: Friction compensation with constant injected value or adaptive characteristic |  |  |  |
|  | 2: Friction compensation with | teris | u |  |
|  | 3: Friction compensation with adaptive characteristics, injection time depends on velocity setpoint |  |  |  |
|  | 4: Friction compensation with adaptive characteristics, injection time depends on position controller output |  |  |  |
|  | Not relevant for: |  |  |  |
|  | MD32500 \$MA_FRICT_COMP_ENABLE = 0 |  |  |  |
|  | Modes 1 and 2 related to: |  |  |  |
|  | MD32490 \$MA_FRICT_COMP_MODE |  |  |  |
|  | MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE |  |  |  |
|  | MD32520 \$MA_FRICT_COMP_CONST_MAX |  |  |  |
|  | MD32540 \$MA_FRICT_COMP_TIME |  |  |  |
|  | MD38010 \$MA_MM_QEC_MAX_POINTS |  |  |  |
|  | Modes 3 and 4 related to: |  |  |  |
|  | MD32571 \$MA_FRICT_VELO_STEP |  |  |  |
|  | MD32572 \$MA_FRICT_V_PULSE_DELAY_TIME |  |  |  |
|  | MD32573 \$MA_FRICT_V_PULSE_CONST_TIME |  |  |  |
|  | MD32574 \$MA_FRICT_V_PULSE_DECAY_TIME |  |  |  |
|  | MD32575 \$MA_FRICT_V_PULSE_SMOOTH_TIME |  |  |  |
|  | MD32576 \$MA_FRICT_TORQUE_STEP |  |  |  |
|  | MD32577 \$MA_FRICT_T_PULSE_DELAY_TIME |  |  |  |
|  | MD32578 \$MA_FRICT_T_PULSE_SMOOTH_TIME |  |  |  |
|  | MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL |  |  |  |
|  | MD32582 \$MA_FRICT_ADAPT_V_STEP_PLUS |  |  |  |
|  | MD32583 \$MA_FRICT_ADAPT_V_STEP_MINUS |  |  |  |
|  | MD32584 \$MA_FRICT_ADAPT_V_CONST_PLUS |  |  |  |
|  | MD32585 \$MA_FRICT_ADAPT_V_CONST_MINUS |  |  |  |
|  | MD32586 \$MA_FRICT_ADAPT_V_DECAY_PLUS |  |  |  |
|  | MD32587 \$MA_FRICT_ADAPT_V_DECAY_MINUS |  |  |  |
|  | MD32588 \$MA_FRICT_ADAPT_T_STEP |  |  |  |


| 32500 | FRICT_COMP_ENABLE |  | A09 | K3, |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Friction compensation active |  | BOOLEAN | NEW |  |
| - |  |  |  |  |  |
| - | FALSE | 0 | - | 2/2 | I |



| 32520 | FRICT_COMP_CONST_MAX |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{mm} / \mathrm{min}$, rev/min | Maximum friction compensation value |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | 1 | 0.0 | -MD_DBLMAX | 1.0 E+301 | $2 / 2$ |  |  |  |

Description: If adaptation is inactive (MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE=0), the maximum friction compensation is applied throughout the entire acceleration range.

If adaptation is active (MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE=1), the maximum friction compensation is applied in accordance with the adaptation curve.

In the 1st acceleration range ( a < MD32550), the switching amplitude = MD32520 * (a/MD32550).
In the 2nd acceleration range (MD32550 <= a <= MD32560), the switching amplitude = MD32520.
In the 3rd acceleration range (MD32560 < a < MD32570), the switching amplitude = MD32520 + (MD32530-MD32520)/(MD32570-MD32560) * (a - MD32560).
In the 4 th acceleration range (MD32570 < , the switching amplitude = MD32530.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 2 (neural QEC)
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32530 \$MA_FRICT_COMP_CONST_MIN
Minimum friction compensation value
MD32550 \$MA_FRICT_COMP_ACCEL1
Adaptation acceleration value 1
MD32560 \$MA_FRICT_COMP_ACCEL2
Adaptation acceleration value 2
MD32570 \$MA_FRICT_COMP_ACCEL3
Adaptation acceleration value 3
MD32540 \$MA_FRICT_COMP_TIME
Friction compensation time constant

| 32530 | FRICT_COMP_CONST_MIN |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{mm} / \mathrm{min}, \mathrm{rev} / \mathrm{min}$ | Minimum friction compensation value |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | 1 | 0.0 | - MD_DBLMAX | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description: The minimum friction compensation value is active only if "Friction compensation with adaptation" (MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE=1) is active.
The amplitude of the friction compensation value is entered in the 4 th acceleration range (MD32570 \$MA_FRICT_COMP_ACCEL3 <= a).
MD irrelevant for:
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 2 (neural QEC)
Special cases:
In special cases, the value for $\operatorname{FRICT}$ _COMP_CONST_MIN may be even higher than for MD32520 \$MA_FRICT_COMP_CONST_MAX.
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value
MD32550 \$MA_FRICT_COMP_ACCEL1

### 4.3 Axis-specific NC machine data

```
Adaptation acceleration value 1
MD32560 $MA_FRICT_COMP_ACCEL2
Adaptation acceleration value 2
MD32570 $MA_FRICT_COMP_ACCEL3
Adaptation acceleration value 3
MD32540 $MA_FRICT_COMP_TIME
Friction compensation time constant
```

| 32540 | FRICT_COMP_TIME |  |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| s | Friction compensation time constant | DOUBLE | NEW CONF |  |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |  |
| - | 1 | 0.015 | 0.0 | $1.0 E+301$ |  |  |  |  |  |

Description:
The friction compensation value is entered via a DT1 filter.
The add-on amplitude decays in accordance with the time constant.
MD irrelevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value

| 32550 | FRICT_COMP_ACCEL1 |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{2}, \mathrm{rev} / \mathrm{s}^{2}$ | Adaptation acceleration value 1 | DOUBLE | NEW CONF |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |
| - | 1 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |  |  |

Description:
The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510=1) is active.

The adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.
For the 1st range ( $a<\operatorname{MD} 3255$ ), the add-on amplitude $=a * M D 32520 /$ MD32550
MD irrelevant for:
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value
MD32530 \$MA_FRICT_COMP_CONST_MIN
Minimum friction compensation value
MD32560 \$MA_FRICT_COMP_ACCEL2
Adaptation acceleration value 2
MD32570 \$MA_FRICT_COMP_ACCEL3
Adaptation acceleration value 3
MD32540 \$MA_FRICT_COMP_TIME

Friction compensation time constant

| 32560 | FRICT_COMP_ACCEL2 | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{m} / \mathrm{s}^{2}, \mathrm{rev}^{2} / \mathrm{s}^{2}$ | Adaptation acceleration value 2 | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 1 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $7 / 2$ |  |

Description:
The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE=1) is active.
Adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.
In the 1st acceleration range ( $\quad$ ( MD32550), the switching amplitude = MD32520 * (a/MD32550).
In the 2nd acceleration range (MD32550 <= a <= MD32560), the switching amplitude = MD32520.
In the 3rd acceleration range (MD32560 < a < MD32570), the switching amplitude = MD32520 + (MD32530-MD32520) /(MD32570-MD32560) * (a - MD32560).

In the 4th acceleration range (MD32570 <= a the switching amplitude = MD32530.
Not relevant for:
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value
MD32530 \$MA_FRICT_COMP_CONST_MIN
Minimum friction compensation value
MD32550 \$MA_FRICT_COMP_ACCEL1
Adaptation acceleration value 1
MD32570 \$MA_FRICT_COMP_ACCEL3
Adaptation acceleration value 3
MD32540 \$MA_FRICT_COMP_TIME
Friction compensation time constant

| 32570 | FRICT_COMP_ACCEL3 | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| $\mathrm{m} / \mathrm{s}^{2}, \mathrm{rev} / \mathrm{s}^{2}$ | Adaptation acceleration value 3 | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 1 | 0.0 | 0.0 | $1.0 \mathrm{E}+301$ | $2 / 2$ |  |

Description: The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510=1) is active.

Adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.
In the 1st acceleration range ( $\quad$ < MD32550), the switching amplitude = MD32520 * (a/MD32550).

In the 2nd acceleration range (MD32550 <= a <= MD32560), the switching amplitude = MD32520.

```
In the 3rd acceleration range (MD32560 < a < MD32570), the switching amplitude =
MD32520 + (MD32530-MD32520)/(MD32570-MD32560) * (a - MD32560).
In the 4th acceleration range (MD32570 <= a), the switching amplitude =
MD32530.
Not relevant for:
MD32510 $MA_FRICT_COMP_ADAPT_ENABLE = 0
MD32490 $MA_FRICT_COMP_MODE = 2
Related to:
MD32500 $MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 $MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32520 $MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value
MD32530 $MA_FRICT_COMP_CONST_MIN
Minimum friction compensation value
MD32550 $MA_FRICT_COMP_ACCEL1
Adaptation acceleration value 1
MD32560 $MA_FRICT_COMP_ACCEL2
Adaptation acceleration value 2
MD32540 $MA_FRICT_COMP_TIME
Friction compensation time constant
```

| 32571 | FRICT_VELO_STEP |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathrm{mm} / \mathrm{min}, \mathrm{rev} / \mathrm{min}$ | Amplitude of the velocity injection pulse of the friction <br> compensation | DOUBLE | NEW CONF |  |  |  |  |  |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.0 | 0.0 | $1.0 E+301$ |  |  |  |  |

The amplitude of the velocity injection pulse of the friction compensation is adapted as a function of the acceleration via weighting factors from the characteristics.

Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32582 \$MA_FRICT_ADAPT_V_STEP_PLUS
MD32583 \$MA_FRICT_ADAPT_V_STEP_MINUS


Description: The velocity injection pulse of the friction compensation is delayed by this time. The delay time is not adapted and is limited to 16 position controller cycles.

Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:

```
MD32500 $MA_FRICT_COMP_ENABLE = 1
MD32490 $MA_FRICT_COMP_MODE = 3/4
MD10050 $MN_SYSCLOCK_CYCLE_TIME
MD10060 $MN_POSCTRL_SYSCLOCK_TIME_RATIO
```

| 32573 | FRICT_V_PULSE_CONST_TIME | EXP, A09 | K3 |  |
| :---: | :---: | :---: | :---: | :---: |
| s | Active time of the velocity injection pulse of the friction compensation | DOUBLE | NEW CONF |  |
| - |  |  |  |  |
| - | 0.0 0 | 10.0 | 2/2 | 1 |
| Description: | The active time of the velocity injection pulse of the friction compensation is adapted as a function of the acceleration via weighting factors from the characteristics. |  |  |  |
|  | Not relevant for: |  |  |  |
|  | MD32500 \$MA_FRICT_COMP_ENABLE $=0$ |  |  |  |
|  | MD32490 \$MA_FRICT_COMP_MODE $=1 / 2$ |  |  |  |
|  | Related to: |  |  |  |
|  | MD32500 \$MA_FRICT_COMP_ENABLE $=1$ |  |  |  |
|  | MD32490 \$MA_FRICT_COMP_MODE $=3 / 4$ |  |  |  |
|  | MD32584 \$MA_FRICT_ADAPT_V_CONST_PLUS |  |  |  |
|  | MD32585 \$MA_FRICT_ADAPT_V_CONST_MINUS |  |  |  |


| 32574 | FRICT_V_PULSE_DECAY_TIME | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| s | Decay time of the velocity injection pulse of the friction <br> compensation | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 0.0 | 0 | 10.0 | $2 / 2$ |  |

Description: | The decay time of the velocity injection pulse of the friction compensation is |
| :--- |
| smoothed and adapted as a function of the acceleration via weighting factors from the |
|  |
| characteristics. |
|  |
| Not relevant for: |
|  |
|  |
|  |
|  |
|  |

| 32575 | FRICT_V_PULSE_SMOOTH_TIME | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| s | Rise time of the velocity injection pulse of the friction compensation | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 0.0 | 0 | 10.0 | $2 / 2$ |  |

Description: The rise time of the velocity injection pulse of the friction compensation. The rise time is smoothed and is not adapted.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE $=1 / 2$
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1

### 4.3 Axis-specific NC machine data

```
MD32490 $MA_FRICT_COMP_MODE = 3/4
MD32571 $MA_FRICT_VELO_STEP
MD32573 $MA_FRICT_V_PULSE_CONST_TIME
MD32574 $MA_FRICT_V_PULSE_DECAY_TIME
```

| 32576 | FRICT_TORQUE_STEP |  |  |  |  |  | EXP, A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Amplitude of the torque injection pulse of the friction compensation |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.0 | 0.0 | $1.0 E+301$ |  |  |  |  |

Description: The amplitude of the torque injection pulse of the friction compensation is adapted as a function of the acceleration via weighting factors from the characteristics.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32588 \$MA_FRICT_ADAPT_T_STEP

| 32577 | FRICT_T_PULSE_DELAY_TIME | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| s | Delay time of the torque injection pulse of the friction compensation | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | - | 0.0 | 0 | 0.1 | I |  |

Description:
The torque injection pulse of the friction compensation is delayed by this time. The delay time is not adapted and is limited to 16 position controller cycles.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD10050 \$MN_SYSCLOCK_CYCLE_TIME
MD10060 \$MN_POSCTRL_SYSCLOCK_TIME_RATIO

| 32578 | FRICT_T_PULSE_SMOOTH_TIME | EXP, A09 | K3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| s | Rise time of the torque injection pulse of the friction compensation |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | - | 0.0 | 0 | 10.0 |  |  |  |  |

Description: The rise time of the torque injection pulse of the friction compensation. The rise time is smoothed and is not adapted.

Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32576 \$MA_FRICT_TORQUE_STEP = 1


| 32580 | FRICT_COMP_INC_FACTOR |  |  |  |  |  | A09 | K3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| $\%$ | Weighting of friction compensation value with short travel motions. |  |  |  |  |  | DOUBLE | NEW CONF |
| - | 1 | 0.0 | 0 | 100.0 | $7 / 2$ |  |  |  |$]$ I

Description:
The optimum friction compensation value determined by the circularity test can cause overcompensation of this axis if compensation is activated and axial positioning movements are short.

In such cases, a better setting can be achieved by reducing the amplitude of the friction compensation value and acts on all positioning blocks that are made within an interpolation cycle of the control.
The factor that has to be entered can be determined empirically and can be different from axis to axis because of the different friction conditions. The input range is between 0 and $100 \%$ of the value determined by the circularity test.
The default setting is 0 ; so that no compensation is performed for short traversing movements.
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE Friction compensation active

| 32581 | FRICT_ADAPT_TABLE_ACCEL |  |  | EXP, A09 | K3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{m} / \mathrm{s}^{2}, \mathrm{rev} / \mathrm{s}^{2}$ | Acceleration interpolation points of friction compensation characteristics |  |  | DOUBLE | NEW |  |
| - |  |  |  |  |  |  |
| - | 10 | $\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0,0.0,0.0 \\ & \hline \end{aligned}$ | 0 | 1000000.0 | 2/2 | 1 |

Description:
Up to ten different acceleration values can be input for which the friction compensation values are to be adapted. The acceleration values must be entered in strictly monotonously increasing order. The first acceleration value must always be zero. A final acceleration value equal to zero reduces the number of adaptation interpolation points.
The following friction compensation values are adapted as a function of the acceleration:

- Amplitude of the velocity injection pulse
- Active time of the velocity injection pulse
- Decay time of the velocity injection pulse
- Amplitude of the torque injection pulse

Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32582 \$MA_FRICT_ADAPT_V_STEP_PLUS
MD32583 \$MA_FRICT_ADAPT_V_STEP_MINUS
MD32584 \$MA_FRICT_ADAPT_V_CONST_PLUS
MD32585 \$MA_FRICT_ADAPT_V_CONST_MINUS
MD32586 \$MA_FRICT_ADAPT_V_DECAY_PLUS
MD32587 \$MA_FRICT_ADAPT_V_DECAY_MINUS
MD32588 \$MA_FRICT_ADAPT_T_STEP

| 32582 | FRICT_ADAPT_V_STEP_PLUS | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Weighting factor for the amplitude of the velocity injection pulse | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 10 | $0.0,0.0,0.0,0.0,0.0$, <br> $0.0,0.0,0.0,0.0,0.0$ | -1.0 | 1.0 | $2 / 2$ |  |

Description:
A factor between -1.0 and 1.0 can be entered for each acceleration value from MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL with which the amplitude of the velocity injection pulse of the friction compensation is weighted. The weighting factors are active on sign change of the velocity in the positive direction.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL
MD32571 \$MA_FRICT_VELO_STEP

| 32583 | FRICT_ADAPT_V_STEP_MINUS | EXP, A09 | K3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Weighting factor for the amplitude of the velocity injection pulse |  |  |  |  |  | DOUBLE | NEW CONF |
| - |  |  |  |  |  |  |  |  |
| - | 10 | $0.0,0.0,0.0,0.0,0.0$, <br> $0.0,0.0,0.0,0.0,0.0$ | -1.0 | 1.0 | $2 / 2$ |  |  |  |

## Description:

A factor between -1.0 and 1.0 can be entered for each acceleration value from MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL with which the amplitude of the velocity injection pulse of the friction compensation is weighted. The weighting factors are active on sign change of the velocity in the negative direction.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL
MD32571 \$MA_FRICT_VELO_STEP


| 32585 | FRICT_ADAPT_V_CONST_MINUS | EXP, A09 | K3 |  |  |  |  |  | | |
|---|---|---|---|---|---|---|---|---|---|---|
| - | Weighting factor for the active time of the velocity injection pulse |  |  |  |  |  | DOUBLE | NEW CONF |
| - | 10 | $\begin{array}{l}0.0,0.0,0.0,0.0,0.0, \\ 0.0,0.0,0.0,0.0,0.0\end{array}$ | 0 | 1.0 | $2 / 2$ |  |  |  |$]$| I |
| :--- |
| - |

Description:
A factor between 0.0 and 1.0 can be entered for each acceleration value from MD32581 \$MA_FRICT ADAPT TABLE_ACCEL with which the active time of the velocity injection pulse of $\bar{t}$ he friction compensation is weighted. The weighting factors are active on sign change of the velocity in the negative direction.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1

### 4.3 Axis-specific NC machine data

```
MD32490 $MA_FRICT_COMP_MODE = 3/4
MD32581 $MA_FRICT_ADAPT_TABLE_ACCEL
MD32573 $MA_ FRICT_V_ PULSE_CONST_TIME
```

| 32586 | FRICT_ADAPT_V_DECAY_PLUS | EXP, A09 | K3 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Weighting factor for the decay time of the velocity injection pulse | DOUBLE | NEW CONF |  |  |  |
| - |  |  |  |  |  |  |
| - | 10 | $0.0,0.0,0.0,0.0,0.0$, <br> $0.0,0.0,0.0,0.0,0.0$ | 0 | 1.0 | $2 / 2$ |  |

Description:
A factor between 0.0 and 1.0 can be entered for each acceleration value from MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL with which the decay time of the velocity injection pulse of the friction compensation is weighted. The weighting factors are active on sign change of the velocity in the positive direction.
Not relevant for:
MD32500 \$MA_FRICT_COMP_ENABLE = 0
MD32490 \$MA_FRICT_COMP_MODE = 1/2
Related to:
MD32500 \$MA_FRICT_COMP_ENABLE = 1
MD32490 \$MA_FRICT_COMP_MODE = 3/4
MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL
MD32574 \$MA_ FRICT_V_PULSE_DECAY_TIME


| 32588 | FRICT_ADAPT_T_STEP | EXP, A09 | K3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| - | Weighting factor for the amplitude of the torque injection pulse |  |  |  |  |  | DOUBLE | NEW CONF |
| - | 10 | $0.0,0.0,0.0,0.0,0.0$, <br> $0.0,0.0,0.0,0.0,0.0$ | -1.0 | 1.0 | $2 / 2$ |  |  |  |

## Description:

[^12]```
Related to:
MD32500 $MA_FRICT_COMP_ENABLE = 1
MD32490 $MA_FRICT_COMP_MODE = 3/4
MD32581 $MA_FRICT_ADAPT_TABLE_ACCEL
MD32576 $MA_ FRICT_TORQUE_STEP
```

32610	VELO_FFW_WEIGHT		A07, A09	G1, TE1, K3, S3, A3, G2, S1, V1	
-	Feedforward control factor f. velocity/speed feedforward control		DOUBLE	NEW CONF	
-					
-	6 $1.0,1.0,1.0,1.0,1.0$, 1.0	0.0	$1.0 \mathrm{E}+301$	2/2	M

Weighting factor for feedforward control. Is normally $=1.0$ on digital drives, since these keep the setpoint speed exactly .
On analog drives, this factor can be used to compensate the gain error of the drive actuator, so that the actual speed becomes exactly equal to the setpoint speed (this reduces the following error with feedforward control).
On both drive types, the effect of the feedforward control can be continuously reduced with a factor of <1.0, if the machine moves too abruptly and other measures (e.g. jerk limitation) are not to be used. This also reduces possibly existing overshoots; however, the error increases on curved contours, e.g. on a circle. With 0.0, you have a pure position controller without feedforward control.
Contour monitoring takes into account factors < 1.0 .
In individual cases, it can, however, become necessary to increase MD CONTOUR_TOL.

32620	FFW_MODE		A07, A09	G1,	
-	Feedforward control mode		BYTE	Res	
-					
-	3	0	4	1/1	M

Description:

FFW_MODE defines the feedforward control mode to be applied on an axis-specific basis:
$0=$ No feedforward control
1 = Speed feedforward control with PT1 balancing
2 = Torque feedforward control (only for SINAMICS) with PT1 balancing
3 = Speed feedforward control with Tt balancing
4 = Torque feedforward control (only for SINAMICS) with Tt balancing
The high-level language instructions FFWON and FFWOF are used to activate and deactivate feedforward control for specific channels on all axes.

To prevent feedforward control from being affected by these instructions on individual axes, you can define that it is always activated or always deactivated in machine data FFW_ACTIVATION_MODE (see also FFW_ACTIVATION_MODE).
If a feedforward control mode is selected (speed or torque feedforward control), MD32630 \$MA_FFW_ACTIVATION_MODE can be used to program in addition whether feedforward control can be activated or deactivated by the part program.
Note for SINAMICS drives with torque feedforward control selected:
Alarm 26016 refers to the current machine data if
the telegram used (see MD13060 \$MN_DRIVE_TELEGRAM_TYPE) does not support the torque feedforward control function. Remedy: Use telegram 136.
Related to:
MD32630 \$MA_FFW_ACTIVATION_MODE
MD32610 \$MA_VELO_FFW_WEIGHT
MD32650 \$MA_AX_INERTIA

4.3 Axis-specific NC machine data

Description:

MD32630 \$FFW_ACTIVATION_MODE can be used to define whether the feedforward control for this axis/spindle can be switched on and off by the part program.
$0=$ The feedforward control cannot be switched on or off by the high-level language elements FFWON and FFWOF respectively.
For the axis/spindle, the state specified by MD32620 \$MA_FFW_MODE is therefore always effective.
$1=\quad$ The feedforward control can be switched on and off by the part program with FFWON and FFWOF respectively.
The instruction FFWON/FFWOF becomes active immediately
$2=$ The feedforward control can be switched on and off by the part program with FFWON and FFWOF respectively.
The instruction FFWON/FFWOF does not become active until the next axis standstill
The default setting is specified by the channel-specific MD20150
\$MC_GCODE_RESET_VALUES. This setting is valid even before the first NC block is executed.
Notes:
The last valid state continues to be active even after Reset (and therefore also with JOG) .

As the feedforward control of all axes of the channel is switched on and off by FFWON and FFWOF respectively, MD32630 \$MA_FFW_ACTIVATION_MODE should be set identically for axes interpolating with one naother.
Switching feedforward control on or off while the axis/spindle is traversing may cause compensation operations in the control loop. Interpolating axes are therefore stopped by the part program if such switching operations occur (internal stop Stop G09 is triggered).
Related to:
MD32620 \$MA_FFW_MODE
MD20150 \$MC_GCODE_RESET_VALUES

32640	STIFFNESS_CONTROL_ENABLE			A01, A07	TE3	
-	Dynamic stiffness control			BOOLEAN	NEW	
CTEQ						
828d-me42	1	FALSE	0	-	1/1	M
828d-te42	1	FALSE	0	-	1/1	M
828d-gce42	1	FALSE	0	-	1/1	M

$828 \mathrm{~d}-\mathrm{gse} 42$	1	FALSE	0	-	$1 / 1$	M
828d-me62	1	FALSE	0	-	$1 / 1$	M
828d-te62	1	FALSE	0	-	$1 / 1$	M
828d-gce62	1	FALSE	0	-	$1 / 1$	M
828d-gse62	1	FALSE	0	-	$1 / 1$	M
828d-te82	1	FALSE	0	-	$1 / 1$	M
828d-me82	1	FALSE	0	-	$1 / 1$	M
828d-gce82	1	TRUE	0	-	$1 / 1$	M
828d-gse82	1	TRUE	0	-	$1 / 1$	M

Description:
Activate dynamic stiffness control, if bit is set.
Higher servo gain factors are possible if stiffness control is active (MD32200 \$MA_POSCTRL_GAIN).
Notes:
The availability of this function is determined by the drive used (the drive has to support the DSC function).
Note on PROFIdrive drives:
Alarm 26017 refers to this machine data if:
a. The PROFIdrive telegram used (see MD13060 \$MN_DRIVE_TELEGRAM_TYPE) does not support the DSC function or does not contain an encoder $\overline{1}$ (such as Tel. 118), to which the DSC scaling for PZD XERR refers. Remedy: Use a sufficiently powerful telegram which also includes encoder 1 (e.g. Tel. 106, 116).
b. Specifically for SINAMICS drives, if inversion of the encoder signal is parameterized in MD32110 \$MA_ENC_FEEDBACK_POL=-1 with active DSC. Remedy: Remove inversion of the encoder signal from MD32110 \$MA_ENC_FEEDBACK_POL, and enter it in SINAMICS parameter P410 instead.

Description:
Configuration of the dynamic stiffness control (DSC):
$0: \quad$ DSC in drive works with indirect measuring system, i.e. motor measuring system (default scenario).
1: DSC in drive works with direct measuring system.
Notes:
The availability of this function is determined by the drive used (the drive must support the DSC function).
With SINAMICS (P1193 not equal to 0), the value of this machine data must be set to 0 .

4.3 Axis-specific NC machine data

32644	STIFFNESS_DELAY_TIME			A01, A07	-	
s	Dynamic stiffness control: Delay			DOUBLE	PowerOn	
CTEQ						
828d-me42	1	-0.0015	-0.02	0.02	7/2	M
828d-te42	1	-0.0015	-0.02	0.02	7/2	M
828d-gce42	1	-0.0015	-0.02	0.02	7/2	M
828d-gse42	1	-0.0015	-0.02	0.02	7/2	M
828d-me62	1	-0.0015	-0.02	0.02	7/2	M
828d-te62	1	-0.0015	-0.02	0.02	7/2	M
828d-gce62	1	-0.0015	-0.02	0.02	7/2	M
828d-gse62	1	-0.0015	-0.02	0.02	7/2	M
828d-te82	1	0.0	-0.02	0.02	7/2	M
828d-me82	1	-0.0015	-0.02	0.02	$7 / 2$	M
828d-gce82	1	-0.0015	-0.02	0.02	0/0	S
828d-gse82	1	-0.0015	-0.02	0.02	0/0	S

Description: Configuration of compensation dead time of the dynamic stiffness control (DSC) with optimized PROFIBUS/PROFINET cycle, unit: seconds

32650	AX_INERTIA	EXP, A07, A09	G1, K3, S3, G2					
kgm 2	Inertia for torque feedforward control						DOUBLE	NEW CONF
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: Only with SINAMICS:

Inertia of axis. Used for torque feedforward control.
With torque feedforward control, an additional current setpoint proportional to the torque is directly injected at the input of the current controller. This value is formed using the acceleration and the moment of inertia. The equivalent time constant of the current control loop must be defined for this purpose and entered in MD32800 \$MA_EQUIV_CURRCTRL_TIME.
The total moment of inertia of the axis (drive + load) must also be entered in MD32650 \$MA_AX_INERTIA (total moment of inertia referred to motor shaft according to data supplied by machine manufacturer).
When MD32650 \$MA_AX_INERTIA and MD32800 \$MA_EQUIV_CURRCTRL_TIME are set correctly, the following error is almost zero even during acceleration (check this by looking at the "following error" in the service display).

The torque feedforward control is deactivated if MD32650 \$MA_AX_INERTIA is set to 0. However, because the calculations are performed anyway, torque feedforward control must always be deactivated with MD32620 \$MA_FFW_MODE = 0 or 1 or 3 (recommended). Because of the direct current setpoint injection, torque feedforward control is only possible on digital drives.
MD irrelevant for:
MD32620 \$MA_FFW_MODE = 0 or 1 or 3
Related to:
MD32620 \$MA_FFW_MODE
MD32630 \$MA_FFW_ACTIVATION_MODE
MD32800 \$MA_EQUIV_CURRCTRL_TIME

32652	AX_MASS	EXP, A07, A09	-					
kg	Axis mass for torque feedforward control						DOUBLE	NEW CONF
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:

SINAMICS only:
Mass of axis for torque feedforward control.
The MD is used on linear drives (MD13080 \$MN_DRIVE_TYPE_DP=3) instead of MD32650 \$MA_AX_INERTIA.

32700	ENC_COMP_ENABLE	A09	K3			
-	Encoder/spindle error compensation.	BOOLEAN	NEW CONF			
-						
-	2	FALSE, FALSE	0	-	$2 / 2$	

Description: 1: LEC (leadscrew error compensation) is activated for the measuring system. This enables leadscrew and measuring system errors to be compensated.
The function is not enabled internally until the relevant measuring system has been referenced (NC/PLC interface signal DB390x DBX0.4 / .5 (Referenced/synchronized 1 or 2) = 1).
write protect function (compensation values) active.
0 : LEC is not active for the axis/measuring system.
Related to:
MD38000 \$MA_MM_ENC_COMP_MAX_POINTS number of interpolation points with LEC
NC/PLC interface signal DB390x DBX0.4 (Referenced/synchronized 1)
NC/PLC interface signal DB390x DBX0.5 (Referenced/synchronized 2)

Description:

1: Sag compensation is enabled for this axis.
Inter-axis machine geometry errors (e.g. sag and angularity errors) can be compensated with sag compensation.
The function is not activated until the following conditions have been fulfilled:

- The "Interpolatory compensation" option is set
- The associated compensation tables have been loaded into the NC user memory and enabled (SD41300 \$SN_CEC_TABLE_ENABLE[t] = 1)
- The relevant position measuring system is referenced (NC/PLC interface signal DB390x DBX0.4 / . $5=1$ (Referenced/synchronized 1 or 2)):

4.3 Axis-specific NC machine data

```
0: Sag compensation is not enabled for the compensation axis.
Related to:
MD18342 $MN_MM_CEC_MAX_POINTS[t]
Number of interpolation points for sag compensation
SD41300 $SN_CEC_TABLE_ENABLE[t]
Enable evaluation of sag compensation table t
SD41310 $SN_CEC_TABLE_WEIGHT[t]
Weighting factor of the sag compensation table t
NC/PLC interface signal DB390x DBX0.4 / .5
(referenced/synchronized 1 or 2)
```


Description: Compensation data exist in:
0: inch system
1: metric system


```
Description:
    In sag compensation, the absolute value of the total compensation value (sum of
    compensation values of all active compensation relations) is monitored axially with
    machine data value CEC_MAX_SUM.
    If the determined total compensation value is larger than the maximum value, alarm
    2 0 1 2 4 ~ i s ~ t r i g g e r e d . ~ P r o g r a m ~ p r o c e s s i n g ~ i s ~ n o t ~ i n t e r r u p t e d . ~ T h e ~ c o m p e n s a t i o n ~ v a l u e
    output as the additional setpoint is limited to the maximum value.
    MD irrelevant to:
    - MSEC
    - Backlash compensation
    - Temperature compensation
Related to:
MD32710 $MA_CEC_ENABLE
Enable sag compensation
SD41300 $SN_CEC_TABLE_ENABLE[t]
Enable evaluation of sag compensation table t
NC/PLC interface signal DB390x DBX0.4 / . 5
(referenced/synchronized 1 or 2)
```


Description:

In sag compensation, modification of the total compensation value (sum of the compensation values of all active compensation relations) is limited axially. The maximum change value is defined in this machine data as a percentage of MD32000 \$MA_MAX_AX_VELO (maximum axis velocity).
If the change in the total compensation value is greater than the maximum value, alarm 20125 is output. Program processing is however continued. The path not covered because of the limitation is made up as soon as the compensation value is no longer subject to limitation.
MD irrelevant to:

- MSEC
- Backlash compensation
- Temperature compensation

Related to:
MD32710 \$MA_CEC_ENABLE
Enable sag compensation
MD32000 \$MA_MAX_AX_VELO
Maximum axis velocity
SD41300 \$SN_CEC_TABLE_ENABLE[t]

Enable evaluation of sag compensation table t
NC/PLC interface signal DB390x DBX0.4 / . 5
(referenced/synchronized 1 or 2)

32750	TEMP_COMP_TYPE		A09	K3,	
-	Temperature compensation type		UBYTE	Pow	
CTEQ					
-	0	0	0x7	2/2	M

Description:
The type of temperature compensation applicable to the machine axis is activated in MD32750 \$MA_TEMP_COMP_TYPE.

A distinction is made between the following types:
Bit $0=0$:
Position-independent temperature compensation not active
Bit $0=1$:
Position-independent temperature compensation active
Bit $1=0$:
Position-dependent temperature compensation not active
Bit $1=1$:
Position-dependent temperature compensation active
Bit $2=0$:
Temperature compensation not active in tool direction
Bit 2 = 1 :
Temperature compensation active in tool direction
Related to:
SD43900 \$SA_TEMP_COMP_ABS_VALUE
Position-dependent temperature compensation value
SD43920 \$SA_TEMP_COMP_REF_POSITION
Reference point for position-dependent temperature compensation
SD43910 \$SA_TEMP_COMP_SLOPE
Gradient for position-dependent temperature compensation
MD32760 \$MA_COMP_ADD_VELO_FACTOR
Excessive velocity due to compensation

32760	COMP_ADD_VELO_FACTOR	EXP, A09, A04	K3			
-	Excessive velocity due to compensation	DOUBLE	NEW CONF			
CTEQ						
-	-	0.01	0.	0.10	$2 / 2$	

Description: The maximum distance that can be traversed because of temperature compensation in one IPO cycle can be limited by the axial MD32760 \$MA_COMP_ADD_VELO_FACTOR.
If the resulting temperature compensation value is above this maximum, it is traversed over several IPO cycles. There is no alarm.

The maximum compensation value per IPO cycle is specified as a factor referring to the maximum axis velocity (MD32000 \$MA_MAX_AX_VELO).

The maximum gradient of the temperature compensation tanbmax is also limited with this machine data.
Example of calculation of the maximum gradient tanb(max):

1. Calculation of the interpolator cycle time (see Description of Functions Velocities, Setpoint/Actual Value Systems, Cycle Times (G2))
Interpolator cycle time $=$ Basic system clock rate * factor for interpolation cycle
```
Interpolator cycle time = MD10050 $MN_SYSCLOCK_CYCLE_TIME ^ MD10070
$MN_IPO_SYSCLOCK_TIME_RATIO
Example:
MD10050 $MN_SYSCLOCK_CYCLE_TIME = 0.004 [s]
MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO = 3
-> Interpolator cycle time = 0.004 * 3 = 0.012 [s]
2. Calculation of the maximum velocity increase resulting from a change made to the
temperature compensation parameter DvTmax
DvTmax = MD32000 $MA_MAX_AX_VELO * MD32760 $MA_COMP_ADD_VELO_FACTOR
Example: MD32000 $MA_MAX_AX_VELO = 10 000 [mm/min]
            MD32760 $MA_COMP_ADD_VELO_FACTOR = 0.01
    -> DvTmax = 10 000 * 0.01 = 100 [mm/min]
3. Calculation of the traverse distances per interpolator cycle
                                    0.012
    S1 (at vmax) = 10 000 x --------- = 2.0 [mm]
                                    60
                                    0.012
    ST (at DvTmax) = 100 x --------- = 0.02 [mm]
        6 0
4. Calculation of tanbmax
```


With larger values of SD43910 \$SA_TEMP_COMP_SLOPE, the maximum gradient (here 0.57 degrees) for the position-dependent temperature compensation value is used internally. There is no alarm.
Note:
Any additional excessive velocity resulting from temperature compensation must be taken into account when defining the limit value for velocity monitoring (MD36200 \$MA_AX_VELO_LIMIT) .

MD irrelevant for:
MD32750 \$MA_TEMP_COMP_TYPE = 0, sag compensation, LEC, backlash compensation
Related to:
MD32750 \$MA_TEMP_COMP_TYPE
SD43900 \$SA_TEMP_COMP_ABS_VALUE
SD43910 \$SA_TEMP_COMP_SLOPE
MD32000 \$MA_MAX_AX_VELO
MD36200 \$MA_AX_VELO_LIMIT
MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO
MD10050 \$MN_SYSCLOCK_CYCLE_TIME

32800	EQUIV_CURRCTRL_TIME			EXP, A07, A09	G1,	A3, G2, S1, V1
s	Equiv. time const. current control loop for feedforward control			DOUBLE	NEW CONF	
-						
828d-me42	6	$\begin{aligned} & 0.0005,0.0005, \\ & 0.0005,0.0005, \\ & 0.0005,0.0005 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M
828d-te42	6	0.0005, 0.0005, $0.0005,0.0005$, $0.0005,0.0005$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M

4.3 Axis-specific NC machine data

828d-gce42	6	0.0005, 0.0005, 0.0005, 0.0005, $0.0005,0.0005$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse42	6	0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-me62	6	$\begin{aligned} & 0.0005,0.0005, \\ & 0.0005,0.0005, \\ & 0.0005,0.0005 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-te62	6	0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M
828d-gce62	6	0.0005, 0.0005, 0.0005, 0.0005, $0.0005,0.0005$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse62	6	$\begin{aligned} & \hline 0.0005,0.0005, \\ & 0.0005,0.0005, \\ & 0.0005,0.0005 \\ & \hline \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M
828d-te82	6	0.0005, 0.0005, $0.0005,0.0005$, $0.0005,0.0005$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-me82	6	$\begin{aligned} & 0.0005,0.0005, \\ & 0.0005,0.0005, \\ & 0.0005,0.0005 \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M
828d-gce82	6	0.0015, 0.0015, 0.0015, 0.0015, $0.0015,0.0015$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse82	6	0.0015, 0.0015, 0.0015, 0.0015, $0.0015,0.0015$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	M

Description:

The time constant is used for parameterizing the torque feedforward control and for calculating the dynamic following error model (contour monitoring).

In order to set the torque feedforward control correctly, the equivalent time constant of the current control loop must be determined exactly by measuring the step response of the current control loop.

Closed-loop control free of following errors can be set by inputting negative values when MD32620 \$MA FFW MODE=4 (but positioning overshoots may then occur).

Delay values taken into account automatically by the software internally are thus compensated again until the actually active minimum symmetrizing time "0" is reached.
Any other negative input values have no further effect.
Negative values input when MD32620 \$MA_FFW_MODE=2 are automatically converted internally to the input value "0", which means that they are not active in this case.

Related to:
MD32620 \$MA_FFW_MODE
Type of feedfoward control
MD32650 \$MA_AX_INERTIA
Moment of inertia for torque feedforward control
or MD32652 \$MA_AX_MASS
Axis mass for torque feedforward control
MD36400 \$MA_CONTOUR_TOL
Tolerance band contour monitoring

32890	DESVAL_DELAY_ENABLE		A07	-	
-	Axial setpoint phase filter		BOOLEAN	NEW CONF	
CTEQ					
-	FALSE	-	-	7/2	M

Description:
With the axial setpoint phase filter (deadtime/delay), the phase response can be changed independent of the amplitude response (on the other hand, the conventional jerk filter - refer to MD32402 \$MA_AX_JERK_MODE -influences the amplitude and phase response simultaneously).
1: Setpoint phase filter (delay) is active.
0: Setpoint phase filter (delay) is inactive.
Corresponds with:
MD32895 \$MA_DESVAL_DELAY_TIME (time constant for the axial setpoint phase filter)

32895	DESVAL_DELAY_TIME		A07	-	
s	Time constant for the axial setpoint phase filter		DOUBLE	NEW	
-					
-	0.0	0.0	1.0E+301	7/2	M

Description:
The time constant for the phase filter (deadtime/delay) should be entered into the MD.
This means that the actual setpoint phase response can be set independently of the amplitude response

Time constants in the range from 0 up to 64 position controller clock cycles can be set, the phase filter for e.g. 2 ms position controller clock cycle, can delay setpoints by 0 to 128 ms .

4.3 Axis-specific NC machine data

```
Values entered outside these limits are implicitly limited to the specified limits
(without alarm).
Note: delays in the setpoint circuit, as a result of the system, slow down or have a
negative impact on the response, e.g. for thread tapping, safety retraction motion or
exact stop/block change; this means that the smallest time constants possible should
be set in the MD.
The MD is only effective, if MD32890 $MA_DESVAL_DELAY_ENABLE = 1.
Corresponds with:
MD32890 $MA_DESVAL_DELAY_ENABLE (axial setpoint phase filter)
```

32900	DYN_MATCH_ENABLE	A07	G21, S3, G2			
-	Dynamic response adaptation	BOOLEAN	NEW CONF			
CTEQ						
-	-	FALSE	0	-	$2 / 2$	

Description:

With dynamic response adaptation, axes with different servo gain factors can be set to the same following error with MD32910 \$MA_DYN_MATCH_TIME.
1: Dynamic response adaptation active.
0: Dynamic response adaptation inactive.
Related to:
MD32910 \$MA_DYN_MATCH_TIME[n]
(time constant of dyamic response adaptation)

Description:

The time constant of the dynamic response adaptation of an axis has to be entered in this MD.
Axes interpolating with each other but having different dynamic responses can be adapted to the "slowest" control loop by means of this value.

The difference of the equivalent time constant of the "slowest" control loop to the individual axis has to be entered here as the time constant of the dynamic response adaptation.
The MD is only active if MD32900 \$MA_DYN_MATCH_ENABLE = 1 .
Related to:
MD32900 \$MA_DYN_MATCH_ENABLE (dynamic response adaptation)

828 d -gce82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$1 / 1$	M
828 d -gse82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$1 / 1$	M

Description:

In the case of PROFIdrive drives (provided that they transport the following drive actual values in the PROFIdrive message frame, e.g. MD13060 \$MN_DRIVE_TELEGRAM_TYPE = 116):

With the main run variables \$AA_LOAD, \$AA_POWER, \$AA_TORQUE, and \$AA_CURR, the following drive actual values cān be measūred:

- Drive utilization
- Drive active power
- Drive torque setpoint value
- Current actual value of the axis or spindle

To compensate any peaks, the measured values can be smoothed with a PT1 filter. The filter time constant is defined with MD32920 \$MA_AC_FILTER_TIME (filter smoothing time constant for adaptive control).
When measuring the drive torque setpoint value or the actual current value, the filter is active in addition to the filters available in the drive. The two filters are connected in series, if both signifcantly and slightly smoothed values are required in the system. The filter is switched off when a smoothing time of 0 seconds is entered.

32925	LOAD_SMOOTH_FILTER_TIME			A10	-	
s	Filter time constant for smoothed drive utilization			DOUBLE	Immediately	
-						
828d-me42	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-te42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-me82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-gce82	-	0.0	0.0	$1.0 \mathrm{E}+301$	0/0	S
828d-gse82	-	0.0	0.0	$1.0 \mathrm{E}+301$	0/0	S

Description:

For PROFIdrive drives (assuming that these can communicate the drive utilization in the PROFIdrive telegram, e.g. MD13060 \$MN_DRIVE_TELEGRAM_TYPE = 116):
In order to equalize peaks, the measured data values can be smoothed using a PT1 filter.

32926	POWER_SMOOTH_FILTER_TIME			A10	-	
s	Filter time constant for smoothed active drive power			DOUBLE	Immediately	
-						
828d-me42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me62	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-te62	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-gce62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te82	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M

4.3 Axis-specific NC machine data

$828 \mathrm{~d}-\mathrm{me} 82$	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{gce} 82$	-	0.0	0.0	$1.0 \mathrm{E}+301$	$0 / 0$	S
828 d -gse82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$0 / 0$	S

Description: For PROFIdrive drives (assuming that these can communicate the active drive power in the PROFIdrive telegram, e.g. MD13060 \$MN_DRIVE_TELEGRAM_TYPE = 116):
In order to equalize peaks, the measured values can be smoothed using a PT1 filter.

Description:
Activation of low-pass filter at position controller output.
Activation of the low-pass filter is only enabled when the dynamic stiffness control
is inactive MD32640=0.

Description:

Time constant of low-pass filter at position controller output
Related to:
MD32640 \$MA_STIFFNESS_CONTROL_ENABLE (dynamic stiffness control)

Description:
Factor to additionally dampen the speed control loop
Purpose:
Damping an oscillating axis by additionally entering a differential position, which is derived from the difference of the two measuring systems.
Prerequisite: the axis must have two measuring systems, one encoder must be directly connected, the other indirectly.
Explanation of the scaling:
An input value of " 100% " means the following: An additional torque corresponding to SINAMICS-p2003 is input, if

- for linear motors, there is a position difference of 1 mm
- for rotary axes, there is a position difference of 360 degrees on the load side
- for linear axes (rot. drive), there is a position difference corresponding to MD31030 \$MA_LEADSCREW_PITCH (e.g. standard 10 mm).

32960	POSCTRL_DUAL_FEEDBACK_TIME		EXP, A07	G2	
s	Time constant for dual-position feedback		DOUBLE	NEW	
-					
-	0.0	0.0	$1.0 \mathrm{E}+301$	7/2	M

Position control with position information from two measuring systems (only active if time constant is set >0).
The direct measuring system (DM) becomes active with the delay time that can be set in this MD by means of PT1 filtering, at the same time the indirect measuring system (IM) becomes increasingly ineffective, so that, in total, exactly one measuring system acts at the position controller input at all times
Conditions:

- The axis must have two coupled measuring systems, of which one must be connected directly and the other indirectly to an encoder.
- The measuring systems must be calibrated, MD34102 \$MA_REFP_SYNC_ENCS = 1

4.3 Axis-specific NC machine data

1: differential FIPO
2: cubic FIPO
3: cubic FIPO, optimized for operation with feedforward control
Calculation time required and contour quality increase with increasing type of FIPO.

- The default setting is the cubic FIPO.
- If no feedforward control is used in the position control loop, the use of the differential FIPO reduces the calculation time while slightly increasing the contour error.
- If the position control cycle and the interpolation cycle are identical, fine interpolation does not take place, i.e. the different types of fine interpolator do not have different effects.

33050	LUBRICATION_DIST						A03, A10	A2, Z1
mm, degrees	Traversing path for lubrication from PLC						DOUBLE	NEW CONF
-								
-	-	$1.0 e 8$	0.0	$1.0 \mathrm{E}+301$	$3 / 3$			

Description:
 After the traversing path defined in the MD has been covered, the state of the axial

 interface signal "Lubrication pulse" is inverted, this can activate an automatic lubrication device.The traversing path is summated after Power on.
The "Lubrication pulse" can be used with axes and spindles.
Application example(s):
The machine bed lubrication can be carried out as a function of the relevant traversed path.
Note:
When 0 is entered, the NC/PLC interface signal DB390x DBX1002.0 (Lubrication pulse) is set in every cycle.
Related to:
NC/PLC interface signal DB390x DBX1002.0 (Lubrication pulse)

Description:

Configuration of axis maintenance data recording:
Bit 0 :
Recording the entire traversing path, entire traversing time and number of axis
traversing procedures
Bit 1:

Recording the entire traversing path, entire traversing time and number of traversing procedures at high axis speed
Bit 2:
Recording the total sum of axis jerks, the time in which the axis is traversed with jerk, and the number of traversing procedures with jerk.

33100	COMPRESS_POS_TOL			A10	F2,	
mm , degrees	Maximum deviation during compression			DOUBLE	NEW CONF	
CTEQ						
828d-me42	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	1
828d-te42	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	1
828d-gce42	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	1
828d-gse42	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	I
828d-me62	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	1
828d-te62	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	1
828d-gce62	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	I
828d-gse62	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	1
828d-te82	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	I
828d-me82	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	I
828d-gce82	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	0/0	1
828d-gse82	-	0.1	1.e-9	$1.0 \mathrm{E}+301$	3/3	1

Description:
The value specifies the maximum permissible path deviation for each axis with compression.
The higher the value, the more short blocks can be compressed into a long block.
Not relevant for:
Active programmable contour/orientation tolerance (CTOL, OTOL, ATOL)

[^13]
4.3 Axis-specific NC machine data

34000	REFP_CAM_IS_ACTIVE		A03, A11	G1,	
-	Axis with reference point cam		BOOLEAN	Res	
-					
-	TRUE	0	-	2/2	M

Description: 1: There is at least one reference point cam for this axis
0: This axis does not have a reference point cam (e.g. rotary axis)
The referencing cycle starts immediately with phase 2 (see documentation)
Machine axes that have only one zero mark over the whole travel range or rotary axes that have only one zero mark per revolution do not require an additional reference cam that selects the zero mark (select MD34000 \$MA_REFP_CAM_IS_ACTIVE = 0).
The machine axis marked this way accelerates to the velocity specified in MD34040 \$MA_REFP_VELO_SEARCH_MARKER (reference point shutdown velocity) when the plus/minus traversing key is pressed, and synchronizes with the next zero mark.

34010	REFP_CAM_DIR_IS_MINUS	A03, A11	G1, R1			
-	Approach reference point in minus direction	BOOLEAN	Reset			
-						
-	-	FALSE	0	-	$2 / 2$	

Description:
0: MD34010 \$MA_REFP_CAM_DIR_IS_MINUS Reference point approach in plus direction 1: MD34010 \$MA_REFP_CAM_DIR_IS_MINUS Reference point approach in minus direction For incremental measuring systems:
If the machine axis is positioned in front of the reference cam, it accelerates, depending on the plus/minus traversing key pressed, to the velocity specified in MD34020 \$MA_REFP_VELO_SEARCH_CAM (reference point approach velocity) in the direction specified in MD3 $\overline{4} 010$ \$MA_REFP_CAM_DIR_IS_MINUS. If the wrong traversing key is pressed, reference point ${ }^{-}$apprōach ${ }^{-}$is $\left.\bar{n}\right)^{-}$started.
If the machine axis is positioned on the reference cam, it accelerates to the velocity specified in MD34020 \$MA_REFP_VELO_SEARCH_CAM and travels in the direction opposite to that specified in MD34010 \$MA_REFP_CAM_DIR_IS_MINUS.
For linear measuring systems with distance-coded reference marks:
If the machine axis has a reference cam (linear measuring systems with distance-coded reference marks do not necessarily require a reference cam) and the machine axis is positioned on the reference cam, it accelerates, irrespectively of the plus/minus traversing key pressed, to the velocity specified in MD34040 \$MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity) in the direction opposite to that specified in MD34010 \$MA_REFP_CAM_DIR_IS_MINUS.

34020	REFP_VELO_SEARCH_CAM		A03, A11, A04	G1, R1	
mm/min, rev/min	Reference point approach velocity		DOUBLE	Reset	
-					
828d-me42	$\begin{aligned} & \text { 5000., 5000., 5000., } \\ & 720 ., 720 . \end{aligned}$	(0./ 0.)	$\begin{array}{\|l\|} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$	2/2	M
828d-te42	$\begin{aligned} & \text { 5000., } 5000 ., 720 ., \\ & 720 ., 720 . \end{aligned}$	(0./ 0.)	$\begin{array}{\|l} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$	2/2	M
828d-gce42	$\begin{aligned} & \text { 5000., } 5000 ., 720 ., \\ & 720 ., 720 . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse42	$\begin{aligned} & \text { 5000., } 5000 ., 5000 ., \\ & 720 ., 5000 . \end{aligned}$	(0./ 0.)	$\begin{array}{\|l\|} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$	2/2	M
828d-me62	- $5000 ., 5000 ., 5000 .$, $720 ., 720 ., 720 ., 720 .$, 720.	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M

828d-te62	-	$\begin{aligned} & \text { 5000., 5000., 720., } \\ & 720 ., 720 ., 5000 ., 720 ., \\ & 720 . \end{aligned}$	(0./ 0.$)$	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce62	-	$\begin{array}{\|l} \hline(5000.0 / 10.0), \\ (5000.0 / 10.0), \\ (5000.0 / 10.0), \\ \text { (5000.0/10.0), }(500 \ldots \\ \hline \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse62	-	$\begin{aligned} & \hline(5000.0 / 10.0), \\ & (5000.0 / 10.0), \\ & (5000.0 / 10.0), \\ & (5000.0 / 10.0),(500 \ldots \\ & \hline \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-te82	-	5000., 5000., 720., 720., 720., 5000., 5000., 720....	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-me82	-	$\begin{aligned} & \text { 5000., 5000., } 5000 ., \\ & 720 ., 720 ., 720 ., 720 ., \\ & 720 . . . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce82	-	$\begin{aligned} & \text { 5000., 5000., 720., } \\ & 720 ., 720 ., 5000 ., 720 ., \\ & 720 . \\ & \hline \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse82	-	$\begin{aligned} & \text { 5000., 5000., 5000., } \\ & 720 ., 5000 ., 720 ., 720 ., \\ & 720 . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M

Description: The reference point approach velocity is the velocity at which the machine axis (phase 1). This value should be set at a magnitude large enough for the axis to be stopped to 0 before it reaches a hardware limit switch.
MD irrelevant for:
Linear measuring systems with distance-coded reference marks

34030	REFP_MAX_CAM_DIST	A03, A11	G1, R1					
mm, degrees	Maximum distance to reference cam						DOUBLE	Reset
-	-	10000.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$			
-	-	M						

Description: If the machine axis travels a maximum distance defined in MD34030
\$MA_REFP_MAX_CAM_DIST from the starting position in the direction of the reference
cam, without reaching the reference cam (NC/PLC interface signal DB380x DBX1000.7
(Reference point approach delay) is reset), the axis stops and alarm 20000 "Reference cam not reached" is output.
Irrelevant to:
Linear measuring systems with distance-coded reference marks

4.3 Axis-specific NC machine data

828d-gce42	2	$\begin{aligned} & 300.00,300.00, \\ & 300.00,300.00, \\ & 720.00,720.00, \\ & 720.00,720.00, \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-gse42	2	$\begin{array}{\|l\|} \hline 300.00,300.00, \\ 300.00,300.00, \\ 300.00,300.00, \\ 720.00,720.00, \ldots \\ \hline \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-me62	2	$\begin{array}{\|l\|} \hline 300.00,300.00, \\ 300.00,300.00, \\ 300.00,300.00, \\ 720.00,720.00, \ldots \\ \hline \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-te62	2	$\begin{aligned} & 300.00,300.00, \\ & 300.00,300.00, \\ & 720.00,720.00, \\ & 720.00,720.00, \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce62	2	(300.0/300.0)/ (1.0/ 1.0), (300.0/ 300.0)/ (1.0/ 1.0), (300.0/ ..	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-gse62	2	(300.0/300.0)/ (1.0/ 1.0), (300.0/ 300.0)/ (1.0/ 1.0), (300.0/ ..	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te82	2	$\begin{aligned} & 300.00,300.00, \\ & 300.00,300.00, \\ & 720.00,720.00, \\ & 720.00,720.00, \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-me82	2	$\begin{array}{\|l} \hline 300.00,300.00, \\ 300.00,300.00, \\ 300.00,300.00, \\ 720.00,720.00, \ldots \\ \hline \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-gce82	2	$\begin{aligned} & 300.00,300.00, \\ & 300.00,300.00, \\ & 720.00,720.00, \\ & 720.00,720.00, \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse82	2	$\begin{array}{\|l} \hline 300.00,300.00, \\ 300.00,300.00, \\ 300.00,300.00, \\ 720.00,720.00, \ldots \\ \hline \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M

Description:

1) For incremental measuring systems:

This is the velocity at which the axis travels during the time between initial detection of the reference cam and synchronization with the first zero mark (phase 2). Traversing direction: Opposite to the direction specified for the cam search (MD34010 \$MA_REFP_CAM_DIR_IS_MINUS)
If MD34050 \$MA_REFP_SEARCH_MARKER_REVERSE (direction reversal on reference cam) is enabled, then if the axis is synchronized with a rising reference cam signal edge on the cam, the axis traverses at the velocity defined in MD34020 \$MA_REFP_VELO_SEARCH_CAM.
2) Indirect measuring system with BERO on the load-side (preferred for spindles): At this velocity, a search is made for the zero mark associated with the BERO (zero mark selection per VDI signal). The zero mark is accepted if the actual velocity lies within the tolerance range defined in MD35150 \$MA_SPIND_DES_VELO_TOL as a deviation from the velocity specified in MD34040 \$MA_REFP_VELO_SEARCH_MARKER[n].
3) For linear measuring systems with distance-coded reference marks:

The axis crosses the two reference marks at this velocity. The maximum velocity must be low enough to ensure that the time required to travel the smallest possible reference mark distance [(x (minimum)] on the linear measuring system is longer than one position controller cycle.

```
The formula
            Basic dist. Meas.length
[x(minimum)] [mm] = ----------- * Grad.cycle - ----------------
2
Basic dist.
with Basic distance [multiple of graduation cycle] Graduation cycle [mm]
Measuring length [mm] yields: \(\mathrm{x}(\mathrm{minimum}) \quad[\mathrm{mm}]\)
```



```
Position controller cycle [ms]
This limiting value consideration also applies to the other measuring systems. Traversing direction:
```

- as defined in MD34010 \$MA_REFP_CAM_DIR_IS_MINUS;
- if the axis is already positioned on the cam, the axis is traversed in the opposite direction

34050	REFP_SEARCH_MARKER_REVERSE	A03, A11	G1, R1			
-	Direction reversal to reference cam	BOOLEAN	Reset			
-						
-	2	FALSE, FALSE	0	-	$2 / 2$	

Description:
This MD can be used to set the direction of search for the zero mark:
MD34050 \$MA_REFP_SEARCH_MARKER_REVERSE = 0
Synchronization with falling reference cam signal edge
The machine axis accelerates to the velocity specified in MD34040
\$MA_REFP_VELO_SEARCH_MARKER (reference point shutdown velocity) in the opposite direction to that specified in MD34010 \$MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus direction).
If the axis leaves the reference cam (NC/PLC interface signal DB380x DBX1000.7 (Reference point approach delay) is reset) the control is synchronized with the first zero mark.
MD34050 \$MA_REFP_SEARCH_MARKER_REVERSE = 1
Synchronization with rising reference cam signal edge
The machine axis accelerates to the velocity defined in MD34020
\$MA_REFP_VELO_SEARCH_CAM (reference point creep velocity) in the opposite direction to that specified in the MD34010 \$MA_REFP_CAM_DIR_IS_MINUS. If the axis leaves the reference cam (NC/PLC interface signal DB3 $\overline{8} 0 \mathrm{x} \overline{\mathrm{D}} \mathrm{BX} \overline{1} 000.7$ (Reference point approach delay) is reset), the machine axis decelerates to a halt and accelerates in the opposite direction towards the reference cam at the velocity specified in MD34040: \$MA_REFP_VELO_SEARCH_MARKER. When the reference cam is reached (NC/PLC interface signal DB380x DBX1000.7 (Reference point approach delay) is enabled) the control is synchronized with the first zero mark.
MD irrelevant to:
Linear measuring systems with distance-coded reference marks

4.3 Axis-specific NC machine data

828d-gce42	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 720.0,720.0,720.0, \\ & 720.0,720.0,720.0 \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse42	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 20.0,20.0,720.0, \\ & 720.0,20.0,20.0 \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD DBLMAX)	2/2	M
828d-me62	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 20.0,20.0,720.0, \\ & 720.0,20.0,20.0,20 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te62	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 720.0,720.0,720.0, \\ & 720.0,20.0,20.0, \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce62	2	$\begin{aligned} & (20.0 / 20.0) /(720.0 / \\ & 720.0),(20.0 / 20.0) / \\ & (720.0 / 720.0),(20.0 / \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse62	2	$\begin{aligned} & (20.0 / 20.0) /(720.0 / \\ & 720.0),(20.0 / 20.0) / \\ & (720.0 / 720.0),(20.0 / \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te82	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 720.0,720.0,720.0, \\ & 720.0,720.0,720.0 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-me82	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 720.0,720.0,720.0, \\ & 720.0,720.0,720.0 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	$2 / 2$	M
828d-gce82	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 720.0,720.0,720.0, \\ & 720.0,720.0,720.0 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse82	2	$\begin{aligned} & 20.0,20.0,20.0,20.0, \\ & 20.0,20.0,720.0, \\ & 720.0,20.0,20.0,72 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD DBLMAX) MD_DBLMAX)	2/2	M

Description:

For incremental measuring systems:
If, after leaving the reference cam (NC/PLC interface signal DB380x DBX1000.7
(Reference point approach delay) is reset), the machine axis travels a distance defined in MD34060: \$MA_REFP_MAX_MARKER_DIST without detecting the zero mark, the axis stops and alarm 20002 "Zero mark missing" is output.
For linear measuring systems with distance-coded reference marks:
If the machine axis travels a distance defined in MD34060 \$MA_REFP_MAX_MARKER_DIST from the starting position without crossing two zero marks, the axis stops and alarm 20004 "Reference mark missing" is output.

828d-te62	-	$\begin{aligned} & \text { 10000., 10000., 720., } \\ & \text { 720., 720., 10000., } \\ & 720 ., 720 . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce62	-	$\begin{aligned} & (10000.0 / 20.0), \\ & (10000.0 / 20.0), \\ & (10000.0 / 20.0), \\ & (10000.0 / 20 \ldots \ldots \\ & \hline \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse62	-	$\begin{aligned} & \hline(10000.0 / 20.0), \\ & (10000.0 / 20.0), \\ & (10000.0 / 20.0), \\ & (10000.0 / 20 \ldots \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te82	-	$\begin{aligned} & \text { 10000., 10000., } 720 ., \\ & \text { 720., 720., 10000., } \\ & 10000 ., 720 \end{aligned}$	(0./ 0.)	(MD_DBLMAXI MD_DBLMAX)	2/2	M
828d-me82	-	$\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., 720., 720., } \\ & 720 ., 720 ., 720 \ldots . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce82	-	$\begin{aligned} & \text { 10000., 10000., 720., } \\ & 720 ., 720 ., 10000 ., \\ & 720 ., 720 . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse82	-	$\begin{aligned} & \text { 10000., 10000., } \\ & \text { 10000., } 720 ., 10000 ., \\ & 720 ., 720 ., 720 . \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M

Description:
For incremental measuring systems:
The axis travels at this velocity between the time of synchronization with the first zero mark and arrival at the reference point.
For linear measuring systems with distance-coded reference marks:
The axis travels at this velocity between the time of synchronization (crossing two zero marks) and arrival at the target point.

34080	REFP_MOVE_DIST	A03, A11	G1, R1, S1, S3, G2			
mm, degrees	Reference point distance	DOUBLE	NEW CONF			
-						
-	2	$-2.0,-2.0$	$-1 e 15$	$1 e 15$	$2 / 2$	

Description: 1. Standard measuring system (incremental with equidistant zero marks)
Reference point positioning movement: 3rd phase of the reference point approach:
The axis traverses from the position at which the zero mark is detected with the velocity REFP_AX_VELO_POS along the path REFP_MOVE_DIST + REFP_MOVE_DIST_CORR (relative to the marker).
REFP_SET_POS is set as the current axis position at the target point.
2. Irrelevant for distance-coded measuring system.

Override switch and selection jog/continuous mode (MD JOG_INC_MODE_IS_CONT) are active.

34090	REFP_MOVE_DIST_CORR			$\begin{aligned} & \text { A03, A02, A08, } \\ & \text { A11 } \end{aligned}$	G1,	G2
mm , degrees	Reference point offset/absolute offset			DOUBLE	NE	
-, -						
-	2	0.0, 0.0	-1e12	1 e 12	2/2	I
Description:		encod n of th pecifi DIST_C t. MD3	mark , the 0 \$MA raver P SET	positioned a E_DIST + MD3 distance, t ransferred i	$\begin{aligned} & y \mathrm{fr} \\ & 90 \\ & \mathrm{axi} \\ & 0 \text { th } \end{aligned}$	ro che va

Machine data

During traversing by MD34080 \$MA_REFP_MOVE_DIST + MD34090 \$MA_REFP_MOVE_DIST_CORR, the override switch and MD11300 \$MN_JOG_INC_MODE_LEVELTRIGGRD (jog/continuous mode) are active.

- Distance-coded measuring system:

MD34090 \$MA_REFP_MOVE_DIST_CORR acts as an absolute offset. It describes the offset between the machine zēro and the first reference mark of the measuring system.

- Absolute encoder:

MD34090 \$MA_REFP_MOVE_DIST_CORR acts as an absolute offset.
It describes the offset between the machine zero and the zero point of the absolute measuring system.
Note:
In conjunction with absolute encoders, this MD is modified by the control during calibration processes and modulo offset.
With rotary absolute encoders (on linear and rotary axes), the modification frequency also depends on the setting of MD34220 \$MA_ENC_ABS_TURNS_MODULO.
Manual input or modification of this MD via the part program should therefore be followed by a Power ON Reset to activate the new value and prevent it from being lost. The following applies to an NCU-LINK:
If a link axis uses an absolute encoder, every modification of MD34090 \$MA_REFP_MOVE_DIST_CORR on the home NCU (servo physically available) is updated only locälly \bar{a} nd not beyond the limits of the NCU. The modification is therefore not visible to the link axis. Writing MD34090 \$MA_REFP_MOVE_DIST_CORR through the link axis is rejected with alarm 17070.

34092	REFP_CAM_SHIFT	A03, A11	G1, R1					
mm, degrees	Electronic cam offset for incremental measuring systems						DOUBLE	Reset
-								
-	2	$0.0,0.0$	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: Electronic cam offset for incremental measuring systems with equidistant zero marks. When the reference cam signal occurs, the zero mark search does not start immediately but is delayed until after the distance from REFP_CAM_SHIFT.
This ensures the reproducibility of the zero mark search through a defined selection of a zero mark, even with temperature-dependent expansion of the reference cam.
Because the reference cam offset is calculated by the control in the interpolation cycle, the actual cam offset is at least REFP_CAM_SHIFT and at most REFP_CAM_SHIFT+ (MD34040 \$MA_REFP_VELO_SEARCH_MARKER*interpolation cycle)
The reference cam offset is effective in the search direction of the zero mark. The reference cam offset is only active if existing cam MD34000 \$MA_REFP_CAM_IS_ACTIVE=1.

34093	REFP_CAM_MARKER_DIST	A03, A11	R1			
mm, degrees	Reference cam/reference mark distance	DOUBLE	PowerOn			
-						
-	2	$0.0,0.0$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$	

Description: The value displayed corresponds to the distance between exiting the reference cam and the occurrence of the reference mark. If the values are too small, there is a risk of not being able to determine the reference point due to temperature reasons or varying operating times of the cam signal. The distance travelled may serve as a clue for setting the electronic reference cam offset.
This machine data is a display data and can therefore not be changed.

34100	REFP_SET_POS	A03, A11	G1, S3, G2, R1, S1					
mm, degrees	Reference point for incremental system						DOUBLE	Reset
-	4	$0 ., 0 ., 0 ., 0$.	-45000000	45000000	$2 / 2$			
-	4							

Description:

- Incremental encoder with zero mark(s): The position value which is set as the current axis position after detection of the zero mark and traversal of the distance REFP_MOVE_DIST + REFP_MOVE_DIST_CORR (relative to zero mark). REFP_SET_POS of the reference point number, which is set at the instant that the edge of the reference cam signal rises (NC/PLC interface signal DB380x DBX2.4-.7 (Reference point value 1 to 4)), is set as the axis position.
- Distance-coded measuring system:

Target position which is approached when MD34330 \$MA_REFP_STOP_AT_ABS_MARKER is set to 0 (FALSE) and two zero marks have been crossed.

- Absolute encoder:

MD34100 \$MA_REFP_SET_POS corresponds to the correct actual value at the calibration position.

The reaction on the machine depends on the status of MD34210 \$MA_ENC_REFP_STATE: When MD34210 \$MA_ENC_REFP_STATE = 1, the value of MD34100 \$MA_REFP_SET_POS is transferred as the absolute value.
When MD34210 \$MA_ENC_REFP_STATE = 2 and MD34330 \$MA_REFP_STOP_AT_ABS_MARKER = 0 (FALSE), the axis approaches the target position stored in MD34100 \$MA_REFP_SET_POS. The value of MD34100 \$MA_REFP_SET_POS that has been set via NC/PLC interface signal DB380x DBX2.4-.7 (Reference point value 1 to 4) is used.
Related to:
NC/PLC interface signal DB380x DBX2.4-.7 (Reference point value 1 to 4)

34102	REFP_SYNC_ENCS	A03, A02	R1, Z1			
-	Calibration of measuring systems	BYTE	Reset			
-						
-	-	0	0	1	$2 / 2$	

Description: Calibrating the measuring system to the reference measuring system can be activated for all measuring systems of this axis with this machine data.
The calibration procedure is made during reference point approach or when calibrated absolute encoders selected for the closed-loop control are switched on.
Values:
0: No measuring system calibration, measuring systems must be referenced individually
1: Calibration of all measuring systems of the axis to the position of the reference measuring system
In combination with MD30242 \$MA_ENC_IS_INDEPENDENT = 2, the passive encoder is calibrated to the active encoder but NOT referenced.

34104	REFP_PERMITTED_IN_FOLLOWUP	A03, A02	R1		
-	Enable referencing in follow-up mode	BOOLEAN	Reset		
-					
-	-	FALSE	0	-	$1 / 1$

34110	REFP_CYCLE_NR	A03	G1, TE3, D1, R1, Z1			
-	Sequence of axes in channel-specific referencing	DWORD	Reset			
-						
-	-	$1,2,3,4,5,6,7,8 \ldots$	-1	31		

Description:

MD34110 \$MA_REFP_CYCLE_NR = 0 -----> axis-specific referencing
Axis-specific referencing is started separately for each machine axis with the NC/PLC interface signal DB380x DBX4.7 / 4.6 (Plus/minus travel keys).
Up to 8 axes (840D) can be referenced simultaneously.
The following alternatives are provided for referencing the machine axes in a specific sequence:

- The operator has to observe the correct sequence on startup.
- The PLC checks the sequence on startup or defines the sequence itself.
- The channel-specific referencing function is used.

MD34110 \$MA_REFP_CYCLE_NR = 1 -----> channel-specific referencing
Channel-specific referencing is started with the NC/PLC interface signal DB3200 DBX1. 0 (Activate referencing). The control acknowledges a successful start with the NC/PLC interface signal DB3300 DBX1.0 (Referencing active). Each machine axis assigned to the channel can be referenced with channel-specific referencing (this is achieved internally on the control by simulating the plus/minus traversing keys). The axisspecific MD34110 \$MA_REFP_CYCLE_NR can be used to define the sequence in which the machine axes are referenced:
-1 means:
The machine axis is not started by channel-specific referencing, and NC start is possible without referencing this axis.
0 means:
The machine axis is not started by channel-specific referencing, and NC start is not possible without referencing this axis.
1 means:
The machine axis is started by channel-specific referencing.
2 means:
The machine axis is started by channel-specific referencing if all machine axes identified by a 1 in MD34110 \$MA_REFP_CYCLE_NR are referenced.
3 means:
The machine axis is started by channel-specific referencing if all machine axes identified by a 2 in MD34110 \$MA_REFP_CYCLE_NR are referenced.
4 to 8 :
As above for further machine axes.
Setting the channel-specific MD20700 \$MC_REF_NC_START_LOCK (NC start disable without reference point) to zero has the effect of entering -1 for all the axes of a channel. MD irrelevant to:

Axis-specific referencing
Related to:
NC/PLC interface signal DB3200 DBX1.0 (Activate referencing)
NC/PLC interface signal DB3300 DBX1.0 (Referencing active)

- MD34200 \$MA_ENC_REFP_MODE = 0

If an absolute encoder is available: MD34100 \$MA_REFP_SET_POS is taken over Other encoders: Reference point approach not possible (SW $\overline{2} .2$ and higher)

- MD34200 \$MA_ENC_REFP_MODE = 1

Referencing of incremental, rotary or linear measuring systems:
Zero pulse on the encoder track
Referencing of absolute, rotary measuring systems:
Replacement zero pulse based on the absolute information

- MD34200 \$MA_ENC_REFP_MODE = 3

Referencing on $\bar{l} i n e a \bar{r}$ measuring systems with distance-coded reference marks: Linear measuring system with distance-coded reference marks (as specified by Heidenhain)

- MD34200 \$MA_ENC_REFP_MODE = 4 :

Reserved (BERO with $\overline{2}$-edge evaluation)

- MD34200 \$MA_ENC_REFP_MODE = 8:

Referencing for linear measuring systems with distance-coded reference marks: Linear measuring system with distance-coded reference marks over 4 zero marks (increased safety).

34210	ENC_REFP_STATE	A07, A03, A02	R1			
-	Adjustment status of absolute encoder	BYTE	Immediately			
-						
-	2	0,0	0	3	$2 / 2$	

Description:

- Absolute encoder:

This machine data contains the absolute encoder status
0: Encoder is not calibrated
1: Encoder calibration enabled (but not yet calibrated)
2: Encoder is calibrated
Default setting for recommissioning: Encoder is not calibrated.
3: No significance, has the same effect as "0"

- Incremental encoder:

This machine data contains the "Referenced status", which can be saved beyond Power On:
0: Default setting: No automatic referencing
1: Automatic referencing enabled, but encoder not yet referenced
2: Encoder is referenced and at exact stop, automatic referencing becomes active at the next encoder activation
3: The last axis position buffered before switch off is restored, no automatic referencing
Default setting for recommissioning: No automatic referencing

34220	ENC_ABS_TURNS_MODULO						A03, A02	R1
-	Modulo range for rotary absolute encoder							
-	2	4096,4096	1	DWORD	PowerOn			
-	2	100000	$2 / 2$	M				

Description: Number of encoder revolutions a rotary absolute encoder is able to resolve (see also the maximum multiturn information of the absolute encoder, see encoder data sheet or PROFIdrive parameter P979).
The absolute position of a rotary axis is reduced to this resolvable range when an absolute encoder is switched on:
In other words, a MODULO transformation takes place if the actual position sensed is larger than the position permitted by MD ENC_ABS_TURNS_MODULO.
0 degrees $<=$ position $<=n * 360$ degrees (with $n=$ ENC_ABS_TURNS_MODULO)
Note:

4.3 Axis-specific NC machine data

With SW 2.2, the position is reduced to this range when the control/encoder is switched on. With SW 3.6 and higher, half of this value represents the maximum permissible travel distance with the control swiched off/the encoder inactive.
Special cases:
For PROFIdrive, any integer value is permissible.
The MD is relevant only for rotary encoders (on linear and rotary axes).
Corresponds to:
PROFIdrive parameter P979

34230	ENC_SERIAL_NUMBER	A02	R1				
-	Encoder serial number	DWORD	PowerOn				
-							
-	2	0,0	-	-	$2 / 2$		

Description:

The encoder serial number (EnDat encoders) can be read out here.
It is updated at PowerOn or when parking is deselected.
"0" is supplied for encoders which do not have a serial number available.
Manipulating this MD normally causes automatic absolute encoder maladjustment (MD34200 \$MA_ENC_REFP_MODE returns to "0").

34300	ENC_REFP_MARKER_DIST	A03, A02	R1			
mm, degrees	Basic distance of reference marks of distance-coded encoders.	DOUBLE	PowerOn			
-						
-	2	$10.0,10.0$	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	

Description:

In addition to the incremental encoder track, a further encoder track is available with distance-coded measuring systems for determining the absolute encoder position. This encoder track has reference marks at defined, different distances. The basic distance between the fixed reference marks (which are the reference marks that are always the same distance from one another) can be taken from the data sheet, and directly transferred into machine data MD34300 \$MA_ENC_REFP_MARKER_DIST.
With the basic distance between the fixed reference marks (MD34300
\$MA_ENC_REFP_MARKER_DIST), the distance between two reference marks (MD34310
\$MA_ENC_MARKER_INC), and the number of encoder pulses (MD31020 \$MA_ENC_RESOL) on
angūlar measuring systems or the graduation cycle (MD31010 \$MA_ENC_GRID_POINT_DIST) on linear measuring systems, the absolute encoder position can be determined once two successive reference marks have been crossed.
MD34300 \$MA_ENC_REFP_MARKER_DIST is also used for a plausibility check of reference mark distances.
Examples of application:
For example: Heidenhain LS186 C
MD $31010=0.02 \mathrm{~mm}$ (graduation cycle)
MD $34300=20.00 \mathrm{~mm}$ (basic distance between the reference marks)
MD $34310=0.02 \mathrm{~mm}$ (distance between two reference marks corresponds to one graduation cycle).

MD irrelevant for:
Incremental measuring systems
Special cases:
On linear measuring systems with distance-coded reference marks supplied by Heidenhain, the interval between two reference marks is always equal to one graduation cycle.

Description:

- In the case of a distance-coded measuring system:

When setting a reference point, the actual position (determined by the distance-coded reference marks) on the linear measuring system is assigned to an exact machine axis position (referred to the machine zero point). The absolute offset between the machine zero point and the position of the lst reference mark on the linear measuring system must therefore be entered in MD34090 \$MA REFP MOVE DIST CORR (reference point/absolute offset). In addition, MD34320 \$MA_ENC_INVERS must be used to set whether the linear measuring system is connected in the same or the opposite direction to the machine system.
MD irrelevant to:
Incremental encoders without distance-coded reference marks.

34330	REFP_STOP_AT_ABS_MARKER	A03	G1, R1			
-	Distance-coded linear measuring system without target point	BOOLEAN	Reset			
-						
-	2	TRUE, TRUE	0	-		

Description:

- Distance-coded measuring system:

REFP_STOP_AT_ABS_MARKER = 0 :
At the end of the reference cycle, the position entered in MD34100 \$MA_REFP_SET_POS is approached (normal case for phase 2).
REFP_STOP_AT_ABS_MARKER = 1:
The axis is braked after detection of the second reference mark (shortening of phase 2)

- Absolute encoder:

MD34330 \$MA_REFP_STOP_AT_ABS_MARKER defines the response of an axis with a valid calibration identifier ($\overline{\mathrm{M}} \mathrm{D} 34 \overline{2} 10$ \$MA_ENC_REFP_STATE $=2$) with G74 or when a traversing key is actuated in JOG-REF:
REFP_STOP_AT_ABS_MARKER = 0 :
Axis traverses to the position entered in MD34100 \$MA_REFP_SET_POS
REFP_STOP_AT_ABS_MARKER = 1:
Axis does not traverse.
MD irrelevant for:
Incremental encoders with zero mark (standard encoders)
Related to:
MD34100 \$MA_REFP_SET_POS
(reference point distance/target point for distance-coded system)

Description: Parameter setting for part program command WAITENC:

0 : Axis is not taken into account when waiting for synchronized / referenced or restored position with part program command WAITENC.

1: A delay is applied in part program command WAITENC until a synchronized / referenced or restored position is available for this axis.

34990	ENC_ACTVAL_SMOOTH_TIME		A02	V1	
s	Smoothing time constant for actual values.		DOUBLE	Rese	
-					
-	$2 \quad 0.0,0.0$	0.0	0.5	3/3	1

Description:
Using low-resolution encoders, a more continuous motion of coupled path or axis motions can be achieved with smoothed actual values. The bigger the time constant, the better the smoothing of actual values and the larger the overtravel.
Smoothed actual values are used for:

- Thread-cutting (G33, G34, G35)
- Revolutional feedrate (G95, G96, G97, FPRAON)
- Display of actual position and velocity, or speed respectively.

Description:

Spindle definition. The spindle is defined when the spindle number has been entered in this MD.

Example:
If the corresponding axis is to be spindle 1 , value " 1 " must be entered in this MD.
The spindle functions are possible only for modulo rotary axes. For this purpose
MD30300 \$MA_IS_ROT_AX and MD30310 \$MA_ROT_IS_MODULO must be set.
The axis functionality is maintained; transition to axis operation can be performed with M70.

The gear stage-specific spindle data are set in parameter blocks 1 to 5; parameter block 0 is used for axis operation (MD35590 \$MA_PARAMSET_CHANGE_ENABLE).
The lowest spindle number is 1 , the highest number depends on the number of axes in the channel.
If other spindle numbers are to be assigned, the function "spindle converter" must be used.
With multi-channel systems, the same numbers can be assigned in all channels, except for those spindles active in several channels (replacement axes/spindles MD 30550: \$MA_AXCONF_ASSIGN_MASTER_CHAN).

35010	GEAR_STEP_CHANGE_ENABLE		A06, A11	P3	
-	Parameterize gear stage change		UDWORD	Res	
CTEQ					
-	0x00	0	0x2B	2/2	M

Description: Meaning of bit places:

Bit $0=0$ and bit $1=0$:
There is an invariable gear ratio between motor and load. The MD of the first gear stage is active. Gear stage change is not possible with M40 to M45.
Bit $0=1$:
Gear stage change at undefined change position. The gear can have up to 5 gear stages, which can be selected with M40, M41 to M45. To support the gear stage change, the motor can carry out oscillating motions, which must be enabled by the PLC program. Bit $1=1$:

Same meaning as bit $0=1$, although the gear stage change is carried out in a configured spindle position (SW 5.3 and higher). The change position is configured in MD35012 \$MA_GEAR_STEP_CHANGE_POSITION. The position is approached in the current gear stage before the gear stage change. If this bit is set, bit 0 is not taken into account! Bit 2: Reserved
Bit 3 = 1:
The gear stage change dialog between NCK and PLC is simulated. The setpoint gear stage is output to the PLC. A checkback signal from the PLC is not awaited. The acknowledgment is generated internally in the NCK.
Bit 4: Reserved
Bit 5 = 1 :
The second gear stage data set is used for tapping with G331/G332. The bit must be set for the master spindle used for tapping. Bit 0 or bit 1 must be set.
Related to:
MD35090 \$MA_NUM_GEAR_STEPS (number of gear stages 1st data set, see bit 5)
MD35092 \$MA_NUM_GEAR_STEPS2 (number of gear stages 2nd data set, see bit 5)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for autom. gear stage change)
MD35112 \$MA_GEAR_STEP_MAX_VELO2 (max. speed for autom. gear stage change 2nd data set, see bit 5)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for autom. gear stage change)
MD35122 \$MA_GEAR_STEP_MIN_VELO2 (min. speed for autom. gear stage change 2nd data set, see bit 5)

4.3 Axis-specific NC machine data

35014	GEAR_STEP_USED_IN_AXISMODE	A01, A06, A11	-						
-	Gear stage for axis mode with M70						DWORD	NEW CONF	
CTEQ									
-	-	0	0	5	$2 / 2$				

Description:

With this MD, a gear stage can be defined which can be loaded into the axis mode during the transition with M70. The parameter set zero used in axis mode is to be optimized on this gear stage.
Significance of the values:
0: There is no implicit gear stage change with M70.
The current gear stage is retained.
1 ... 5:
There is a change into gear stage (1...5) during the execution of M70.
During the transition into axis mode without M70, there is monitoring for this gear stage and alarm 22022 is issued if necessary. The condition for a gear stage change is the general release of the function in MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE.
Secondary conditions:
When changing from axis mode into spindle mode, the configured gear stage continues to remain active. There is no automatic return to the last active gear stage in spindle mode.

35020	SPIND_DEFAULT_MODE							A06, A10	S1
-	Initial spindle setting	BYTE	Reset						
CTEQ									
-	-	0	0	3	$2 / 2$				

Description:

SPIND_DEFAULT_MODE activates the set operating mode of the spindle at the time specified in MD35030 \$MA_SPIND_DEFAULT_ACT_MASK. The appropriate spindle operating modes can be set with the following values:
0 Speed mode, position control deselected
1 Speed mode, position control activated
2 Positioning mode, no check for synchronized/referenced position on NC start
3 Axis mode, MD34110 \$MA_REFP_CYCLE_NR can be used to configure / deactivate forced referencing on $N C$ start
Corresponds with:
MD35030 \$MA_SPIND_DEFAULT_ACT_MASK (activate spindle initial setting)
MD20700 \$MC_REFP_NC_START_LOCK (NC start disable without reference point)

35030	SPIND_DEFAULT_ACT_MASK			A06, A10	S1	
-	Time at which initial spindle setting is effective			UBYTE	Reset	
CTEQ						
828d-me42	-	0x00	0	0x03	7/2	M
828d-te42	-	0x00	0	0x03	7/2	M
828d-gce42	-	0x00	0	0x03	7/2	M
828d-gse42	-	0x00	0	0x03	7/2	M
828d-me62	-	0x00	0	0x03	7/2	M
828d-te62	-	0x00	0	0x03	7/2	M
828d-gce62	-	0x00	0	0x03	7/2	M
828d-gse62	-	0x00	0	0x03	7/2	M
828d-te82	-	0x00	0	0x03	7/2	M
828d-me82	-	0x00	0	0x03	7/2	M

828 d -gce82	-	0×2	0	0×03	$1 / 1$	M
828 d -gse82	-	0×2	0	0×03	$1 / 1$	M

Description:

SPIND_DEFAULT_ACT_MASK specifies the time at which the operating mode defined in MD350 $\overline{2} 0$ \$MA_SPIND_DEFAULT_MODE becomes effective. The initial spindle setting can be assigned the following values at the following points in time:
0 POWER ON
1 POWER ON and NC program start
2 POWER ON and RESET (M2/M30)
Special cases:
If MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET = 1, the following supplementary conditions are applicable:

- SPIND_DEFAULT_ACT_MASK should be set to 0
- If this is not possible, the spindle must be at a standstill prior to activation. Related to:
MD35020 \$MA_SPIND_DEFAULT_MODE (initial spindle setting)
MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET (spindle active after reset)

35032	SPIND_FUNC_RESET_MODE			A06, A10	-	
-	Reset response of individual spindle functions			UDWORD	PowerOn	
CTEQ						
828d-me42	-	0x00	0	0x01	$7 / 2$	M
828d-te42	-	0x00	0	0x01	$7 / 2$	M
828d-gce42	-	0x00	0	0x01	$7 / 2$	M
828d-gse42	-	0x00	0	0x01	$7 / 2$	M
828d-me62	-	0x00	0	0x01	$7 / 2$	M
828d-te62	-	0x00	0	0x01	$7 / 2$	M
828d-gce62	-	0x00	0	0x01	$7 / 2$	M
828d-gse62	-	0x00	0	0x01	$7 / 2$	M
828d-te82	-	0x00	0	0x01	$7 / 2$	M
828d-me82	-	0x00	0	0x01	$7 / 2$	M
828d-gce82	-	0x00	0	0x01	0/0	S
828d-gse82	-	0x00	0	0x01	0/0	S

Description: This data allows the "GWPS in every operating mode" function to be selected/deselected.
SPIND_FUNC_RESET_MODE, bit $0=0$: "GWPS in every operating mode" is deselected
SPIND_FUNC_RESET_MODE, bit $0=1$: "GWPS in every operating mode" is selected

35035	SPIND_FUNCTION_MASK			A06, A10	K1,	
-	Spindle functions			UDWORD	Reset	
CTEQ						
828d-me42	-	0x510	0	0x7FFFFFFF	1/1	M
828d-te42	-	0x510	0	0x7FFFFFFF	1/1	M
828d-gce42	-	0x510	0	0x7FFFFFFF	1/1	M
828d-gse42	-	0x510	0	0x7FFFFFFF	1/1	M
828d-me62	-	0x510	0	0x7FFFFFFF	1/1	M
828d-te62	-	0x510	0	0x7FFFFFFF	1/1	M
828d-gce62	-	0x510	0	0x7FFFFFFF	1/1	M
828d-gse62	-	0x510	0	0x7FFFFFFF	1/1	M
828d-te82	-	0x510	0	0x7FFFFFFF	1/1	M
828d-me82	-	0x510	0	0x7FFFFFFF	1/1	M

4.3 Axis-specific NC machine data

828 d -gce82	-	0×400020	0	$0 x 7 F F F F F F F$	$1 / 1$	M
828 d -gse82	-	0×400020	0	$0 x 7 F F F F F F F$	$1 / 1$	M

Description:
This MD allows spindle-specific functions to be set.
The MD is bit-coded, the following bits are assigned:
Bit 0 = 1: Gear stage changes are suppressed with activated DryRun function for block programming (M40, M41 to M45), programming via FC18, and synchronized actions.

Bit 1 = 1 : Gear stage changes are suppressed with activated program test function for block programming (M40, M41 to M45), programming via FC18, and synchronized actions.
Bit 2 = 1: Gear stage change for programmed gear stage will finally be carried out after deselection of DryRun or program test functions with REPOS.
Bit 3: reserved
Bit $4=1$
The programmed speed is transferred to SD 43200 \$SA_SPIND_S (incl. speed default settings via FC18 and synchronized actions).
S programmings that are not speed programmings are not written to the SD. These include, for example, S value with constant cutting speed (G96, G961), S value with revolution-related dwell time (G4).
Bit 5 = 1:
The content of SD 43200 \$SA_SPIND_S is applied as the speed setpoint for JOG. If the content is zero, then other JOG speed default settings become active (see SD 41200 JOG SPIND SET VELO).

Bit 6: reserved
Bit 7: reserved
Bit $8=1$:
The programmed cutting speed is transferred to SD 43202 \$SA_SPIND_CONSTCUT_S (incl. default settings via FC18). S programmings, that are not cutting speed programmings, are not written to the SD. These include, for example, S value outside of constant cutting speed (G96, G961, G962), S value with revolution-related dwell time (G4), S value in synchronized actions.

Bit 9: reserved
Bit $10=0$:
SD 43206 \$SA SPIND SPEED TYPE is not changed by part program or channel settings, = 1 :

For the master spindle, the value of the 15th G group (type of feedrate) is transferred to SD 43206 \$SA_SPIND_SPEED_TYPE. For all other spindles, the corresponding SD remains unchanged.

Bit 11: reserved
Bit 12 = 1 :
Spindle override is active with zero mark search for M19, SPOS, and SPOSA

$$
=0:
$$

Previous response (default)
The following bits 16-20 can be used to set spindle-specific M functions which are output to the VDI interface
if the corresponding M functionality has been generated implicitly for the program sequence.

Bit 16: reserved
Bit 17: reserved
Bit 18: reserved
Bit 19:"Output implicit M19 to PLC"
$=0:$ If MD20850 \$MC_SPOS_TO_VDI = 0 too, no auxiliary function M19 is generated for SPOS and SPOSA. As a result, the acknowledgment time for the auxiliary function is also eliminated. This can cause problems in the case of short blocks.
= 1: The implicit auxiliary function M19 is generated with the programming of SPOS and SPOSA and output to the PLC. The address is expanded in accordance with the spindle number.
Bit 20:"Output implicit M70 to PLC"
= 0: No generation of implicit auxiliary function M70. Note: A programmed auxiliary function M70 is always output to the PLC.
= 1: Auxiliary function M70 is generated implicitly and output to the PLC on transition to axis mode. The address is expanded in accordance with the spindle number. Bit 21: reserved
Bit $22=0:$ As of NCK version 78.00.00: The NC/PLC interface signal DB380x DBX2001.6 (invert M3/M4) is applied to the function for interpolatory tapping G331/G332.
Bit $22=1:$ Response is compatible with $S W$ releases prior to NCK version 78.00.00: The NC/PLC interface signal DB380x DBX2001.6 (invert M3/M4) is not applied to the function for interpolatory tapping G331/G332.
Bit 23: "Calculation of the acceleration reduction with velocity control DRIVE"
= 0: The currently active spindle speed limit is used as the maximum speed to calculate the acceleration reduction (compatibility mode).
= 1: Only machine data MD35100 \$MA_SPIND_VELO_LIMIT, MD35130
\$MA_GEAR_STEP_MAX_VELO_LIMIT and, with position control, MD35135
\$MA_GEAR_STEP_PC_MAX_VELO_LIMIT are used for the maximum speed to calculate the acceleration reduction."

MD corresponds with:
MD20850 \$MC_SPOS_TO_VDI
MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET
MD35020 \$MA_SPIND_DEFAULT_MODE
SD43200 \$SA_SPIND_S

35040	SPIND_ACTIVE_AFTER_RESET			A06, A10	S1,	
-	Own spindle RESET			BYTE	PowerOn	
CTEQ						
828d-me42	-	0	0	2	$7 / 2$	M
828d-te42	-	0	0	2	7/2	M
828d-gce42	-	0	0	2	$7 / 2$	M
828d-gse42	-	0	0	2	$7 / 2$	M
828d-me62	-	0	0	2	$7 / 2$	M
828d-te62	-	0	0	2	$7 / 2$	M
828d-gce62	-	0	0	2	$7 / 2$	M
828d-gse62	-	0	0	2	$7 / 2$	M
828d-te82	-	0	0	2	$7 / 2$	M
828d-me82	-	0	0	2	$7 / 2$	M
828d-gce82	-	2	0	2	1/1	M
828d-gse82	-	2	0	2	1/1	M

Description:

MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET defines the response of the spindle after channel reset NC/PLC interface signal DB3000 DBX0.7 (Reset) and program end (M2, M30).
This MD is only active in the spindle mode open-loop control mode. In positioning mode or oscillation mode, the spindle is always stopped.

MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET = 0:

- Spindle stops (with M2/M30 and channel and mode group reset).
- Program is canceled.
- For spindle mode, the programmed ACC and VELOLIM are reset to 100\% if MD22400 \$MC_S_VALUES_ACTIVE_AFTER_RESET and the axis-specific MD32320 \$MA_DYN_LIMIT_RESET_MASK $\overline{\text { do }}$ _ not specify anything else.
MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET= 1:
- Spindle does not stop.
- Program is canceled.
- For spindle mode, the programmed ACC and VELOLIM are retained.

MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET= 2 :

- Spindle does not stop at the M function configured via MD10714 \$MN_M_NO_FCT_EOP (e.g. M32).
- However, the spindle stops at channel or mode group reset.
- For spindle mode, the programmed ACC and VELOLIM are retained.

The NC/PLC interface signal DB380x DBX2.2 (Delete distance-to-go/Spindle reset) is always effective, independent of MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET.

Not relevant to:

- Spindle modes other than open-loop control mode.

Related to:
NC/PLC interface signal DB3000 DBX0.7 (Reset)
NC/PLC interface signal DB380x DBX2.2 (Delete distance-to-go/Spindle reset)

Description:

Number of set gear stages.
The first gear stage is always available.
Corresponding MDs:
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stages available/functions)
MD35012 \$MA_GEAR_STEP_CHANGE_POSITION (gear stage change position)
MD35014 \$MA_GEAR_STEP_USED_IN_AXISMODE (gear stage for axis mode with M70)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for gear stage change)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for gear stage change)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (max. speed of gear stage)
MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of gear stage)
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL (acceleration in speed control mode)
MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)
MD35310 \$MA_SPIND_POSIT_DELAY_TIME (positioning delay time)
MD35550 \$MA_DRILL_VELO_LIMIT (maximum speeds for tapping)
MD35092 \$MA_NUM_GEAR_STEPS2 (number of gear stages 2nd gear stage data set)

35092	NUM_GEAR_STEPS2	A06, A10	S1				
-	Number of gear stages of 2nd gear stage data set	DWORD	Reset				
-							
-	-	5	1	5	$2 / 2$		

Description:

Number of set gear stages of the second gear stage data set for the function 'Tapping with G331/G332'.

Activation (only makes sense for master spindle on tapping): MD 35010
\$MA_GEAR_STEP_CHANGE_ENABLE, bit 5 .

The number of gear stages must not be the same in the first and second gear stage data sets.

Corresponding MD:
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stages available/functions)
MD35112 \$MA_GEAR_STEP_MAX_VELO2 (2nd gear stage data set: max. speed for gear stage change)

MD35122 \$MA_GEAR_STEP_MIN_VELO2 (2nd gear stage data set: min. speed for gear stage change)

MD35212 \$MA_GEAR_STEP_POSCTRL_ACCEL2 (2nd gear stage data set: acceleration in position control mode)

Description:
MD35100 \$MA_SPIND_VELO_LIMIT defines the maximum spindle speed that the spindle (the spindle chuck with the workpiece or the tool) must not exceed. The NCK limits an excessive spindle setpoint speed to this value. If the maximum spindle actual speed is exceeded, even allowing for the spindle speed tolerance (MD35150
\$MA_SPIND_DES_VELO_TOL), there is a fault with the drive and the NC/PLC interface signal DB390x DBX2001.0 (speed limit exceeded) is set. Alarm 22100 "Maximum speed reached" is also output and all axes and spindles on the channel are decelerated (provided the encoder is still functioning correctly). The spindle has to be brought to a standstill before modifying the MD.
Corresponds with:
MD35150 \$MA_SPIND_DES_VELO_TOL (spindle speed tolerance)
SD43235 \$SD_SPIND_USER_VELO_LIMIT (speed limitation set by user)
NC/PLC interface signal DB390x DBX2001.0 (speed limit exceeded)
Alarm 22100 "Maximum speed reached"

- Programming a spindle speed which exceeds the highest numbered gear stage MD35110 \$MA_GEAR_STEP_MAX_VELO [MD35090] triggers a switch to the highest gear stage (MD $\overline{3} 5090$).

Related to:
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for automatic gear stage selection M40)
MD35090 \$MA_NUM_GEAR_STEPS (number of gear stages)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change is possible)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of gear stage with speed control

```
MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of gear stage with position
control
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of gear stage)
```

35112	GEAR_STEP_MAX_VELO2			A06, A11, A04	S1	
$\mathrm{rev} / \mathrm{min}$	2nd data set: Maximum speed for gear stage change			DOUBLE	NEW	
CTEQ						
-	6	$\begin{array}{\|l\|} \hline 500 ., 500 ., 1000 ., \\ 2000 ., 4000 ., 8000 . \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M

Description:

The 2nd gear stage data block for tapping with G331/G332 is activated with MD 35010: \$MA_GEAR_STEP_CHANGE_ENABLE bit 5 for the master spindle.

Related to:
MD35122 \$MA_GEAR_STEP_MIN_VELO2 (minimum speed for 2nd data block gear stage selection)
MD35092 \$MA_NUM_GEAR_STEPS2 (number of gear stages 2nd gear stage data block)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change, 2nd data block is possible) MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of gear stage with speed control) MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of gear stage with position control)

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of gear stage)

35120	GEAR_STEP_MIN_VELO			A06, A11, A04	S1	
rev/min	Minimum speed for gear stage change			DOUBLE	NEW	
CTEQ						
-	6	$\begin{aligned} & \text { 50., } 50 ., 400 ., 800 ., \\ & 1500 ., 3000 . \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M

Description:

See MD35110 \$MA_GEAR_STEP_MAX_VELO for more information.
Note:

- Programming a spindle speed which undershoots the lowest speed of the first gear stage MD35120 \$MA_GEAR_STEP_MIN_VELO[1] triggers a switch to the first gear stage. Not relevant for:
- Programming of speed 0 (S0) if MD35120 \$MA_GEAR_STEP MIN_VELO[1] > 0

Related to:
MD35110 \$MA_GEAR_STEP_MAX_VELO (maximum speed for automatic gear stage selection M40)
MD35090 \$MA_NUM_GEAR_STEPS (number of gear stages)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change is possible)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of the gear stage with speed control)

MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of the gear stage with position control)

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of the gear stage)

35122	GEAR_STEP_MIN_VELO2	A06, A11, A04	S1					
rev/min	2nd data set: Minimum speed for gear stage change	DOUBLE	NEW CONF					
CTEQ								
-	6	$\begin{array}{l}50 ., 50 ., 400 ., 800 ., \\ 1500 ., 3000 .\end{array}$	0.0	$1.0 \mathrm{E}+301$	$2 / 2$		$]$ M	
:---								

The minimum speed (lower switching threshold) of the gear stage for automatic gear stage change M40 G331 S.. is set in GEAR_STEP_MIN_VELO2 for interpolatory tapping G331, G332. The speed ranges of the gear stages must be defined so that there are no gaps between them or they can overlap.
The 2 nd gear stage data block for tapping with G331/G332 is activated with MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE bit 5 for the master spindle.
Related to:
MD35112 \$MA_GEAR_STEP_MAX_VELO2 (maximum speed for 2nd data block gear stage change)
MD35092 \$MA_NUM_GEAR_STEPS2 (number of gear stages 2nd gear stage data block)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change, 2nd data block is possible) MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of gear stage with speed control) MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of gear stage with position control)

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of gear stage)

35130	GEAR_STEP_MAX_VELO_LIMIT			A06, A11, A04	A2,	
rev/min	Maximum speed of gear stage			DOUBLE	NEV	
CTEQ						
-	6	$\begin{aligned} & \text { 500., } 500 ., 1000 ., \\ & 2000 ., 4000 ., 8000 . \end{aligned}$	1.0e-6	$1.0 \mathrm{E}+301$	2/2	M

Description:
The maximum speed of the current gear stage for speed control mode (position control not active) is configured in MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT. The speed setpoints generated taking the override into account are limited to this speed.
Note:

- The configured speed cannot exceed the value from MD35100 \$MA_SPIND_VELO_LIMIT.
- If position control is active for the spindle, the speed is limited to the maximum speed of MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT.
- The NC/PLC interface signal "Setpoint speed limited" is set to indicate that the speed is being limited.
- The maximum speed entered here has no effect on the automatic gear stage selection M40 S..
- The upper switching threshold for the automatic gear stage selection M40 is configured in MD35110 \$MA_GEAR_STEP_MAX_VELO.
Related to:
MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of the gear stage with position control)
MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (minimum speed of the gear stage)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage selection is possible)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for automatic gear stage selection M40)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for automatic gear stage selection M40)

35135	GEAR_STEP_PC_MAX_VELO_LIMIT	A06, A11, A04	S1				
rev/min	Maximum speed of the gear stage with position control					DOUBLE	NEW CONF
CTEQ							
-	6	$0 ., 0 ., 0 ., 0 ., 0 ., 0$.	0	$1.0 \mathrm{E}+301$			

Description: The maximum speed of the current gear stage is configured in MD35135
\$MA_GEAR_STEP_PC_MAX_VELO_LIMIT with position control active. The speed setpoints generated taking the override into account are limited to this speed.
If a value of 0 is set (default), 90% of the value from MD35130
\$MA_GEAR_STEP_MAX_VELO_LIMIT will become the maximum speed with position control active.

Note:

- The configured speed cannot exceed the value from MD35100 \$MA_SPIND_VELO_LIMIT.
- The NC/PLC interface signal "Setpoint speed limited" is set to indicate that the speed is being limited.
- The maximum speed entered here has no effect on the automatic gear stage selection M40 S..
- The upper switching threshold for the automatic gear stage selection M40 is configured in MD35110 \$MA_GEAR_STEP_MAX_VELO.
Related to:
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of the gear stage with spee control)

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (minimum speed of the gear stage)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage selection is possible)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for automatic gear stage selection M40)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for automatic gear stage selection M40)

35140	GEAR_STEP_MIN_VELO_LIMIT	A06, A11, A04	S1, V1			
rev/min	Minimum speed of gear stage	DOUBLE	NEW CONF			
CTEQ						
-	6	$5 ., 5 ., 10 ., 20 ., 40 ., 80$.	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	

Description: The minimum speed of the current gear stage is configured in MD35140
\$MA_GEAR_STEP_MIN_VELO_LIMIT. The minimum speed is applied only if the spindle is in speed control mode. The speed setpoints generated taking the override into account do not undershoot the minimum speed.
Note:

- If an S value lower than the minimum speed is programmed, the setpoint speed is increased to the minimum speed.
- The NC/PLC interface signal "Setpoint speed increased" is set to indicate that the speed has been increased.
- The minimum speed entered here has no effect on the automatic gear stage selection M40 S..
- The lower switching threshold for the automatic gear stage selectionM40 is configured in MD35120 \$MA_GEAR_STEP_MIN_VELO.
Not relevant for:
- Spindle oscillation mode(gear stage change)
- Positioning and axis spindle modes
- Signals which cause the spindle to stop

Related to:
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of gear stage with speed control)
MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum speed of gear stage with position control)
MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change is possible)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for automatic gear stage selection M40)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for automatic gear stage selection M40)

35150	SPIND_DES_VELO_TOL		$\begin{aligned} & \text { A03, A05, A06, } \\ & \text { A10, A04 } \end{aligned}$	R1, S1, Z1	
-	Spindle speed tolerance		DOUBLE	Reset	
-					
-	0.1	0.0	1.0	2/2	M

Description: In spindle control mode, the set speed (programmed speed x spindle offset, allowing for limits) is compared with the actual speed.

- If the actual speed deviates from the set speed by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the NC/PLC interface signal is DB390x DBX2001.5 (Spindle in setpoint range) is set to zero.
- If the actual speed deviates from the set speed by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the path feed is disabled (positioning axes continue traversing).
- If the actual speed exceeds the maximum spindle speed (MD35100 \$MA_SPIND_VELO_LIMIT) by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the NC/PLC interface signal is DB390x DBX2001.0 (Speed limit exceeded) is enabled and alarm 22050 "Maximum speed reached" is output. All axes and spindles on the channel are decelerated.

MD irrelevant to:

- Spindle oscillation mode
- Spindle positioning mode

Example:
MD 35150 \$MA_SPIND_DES_VELO_TOL = 0.1
The actual spindle speed must not deviate from the set speed by more than $+/-10 \%$. Related to:
MD35500 \$MA_SPIND_ON_SPEED_AT_IPO_START
(feed enable for spindle in setpoint range)
MD35100 \$MA_SPIND_VELO_LIMIT
(maximum spindle speed)
NC/PLC interface signal DB390x DBX2001.5 (Spindle in setpoint range)
NC/PLC interface signal DB390x DBX2001.0 (Speed limit exceeded)
Alarm 22050 "Maximum speed reached"

35160	SPIND_EXTERN_VELO_LIMIT						A06, A04	A3, S1, V1, Z1
rev/min	Spindle speed limitation from PLC						DOUBLE	NEW CONF
CTEQ								
-	-	1000.0	$1.0 \mathrm{e}-6$	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: A limiting value for the maximum spindle speed is entered in MD35160
\$MA_SPIND_EXTERN_VELO_LIMIT, which is taken into account exactly when the NC/PLC interface signal DB380x DBX3.6 (Velocity/speed limitation) is set.
The control limits a spindle speed which is too high to this value.

4.3 Axis-specific NC machine data

$828 \mathrm{~d}-\mathrm{gse} 62$	6	$30.0,30.0,25.0,20.0$, $15.0,10.0$	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$1 / 1$	M
$828 \mathrm{~d}-\mathrm{te} 82$	6	$30.0,30.0,25.0,20.0$, $15.0,10.0$	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$1 / 1$	M
$828 \mathrm{~d}-\mathrm{me} 82$	6	$30.0,30.0,25.0,20.0$, $15.0,10.0$	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$1 / 1$	M
$828 \mathrm{~d}-$ gce82	6	100,100	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$1 / 1$	M
828 d -gse82	6	100,100	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$1 / 1$	M

Description: If the spindle is in speed control mode, the acceleration is entered in MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL.
The spindle is in speed control mode with the function SPCOF.
Special cases:
The acceleration in speed control mode (MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL) can be set so that the electric current limit is reached.
Related to:
MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)
MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT (speed limit for reduced acceleration)

35210	GEAR_STEP_POSCTRL_ACCEL	A06, A11, A04	S1			
rev/s ${ }^{2}$	Acceleration in position control mode	DOUBLE	NEW CONF			
CTEQ						
-	6	$30.0,30.0,25.0,20.0$, $15.0,10.0$	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$2 / 2$	

Description:
The acceleration in position control mode must be set so that the electric current limit is not reached.
Related to:
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL
MD35212 \$MA_GEAR_STEP_POSCTRL_ACCEL2

35212	GEAR_STEP_POSCTRL_ACCEL2			A06, A11, A04	S1	
$\mathrm{rev} / \mathrm{s}^{2}$	2nd data set: Acceleration in position control mode			DOUBLE	NE	
CTEQ						
-	6	$\begin{aligned} & 30.0,30.0,25.0,20.0, \\ & 15.0,10.0 \end{aligned}$	1.0e-3	$1.0 \mathrm{E}+301$	2/2	M

Description:

Second gear stage data set for maximum acceleration capability of the gear stages in position control mode.
The acceleration in position control mode must be set so that the electric current limit is not reached.
The 2nd data set for tapping with G331/G332 is activated by MD35010
\$MA_GEAR_STEP_CHANGE_ENABLE, bit 5 for the master spindle.
Related to:
MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL
MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT

35220	ACCEL_REDUCTION_SPEED_POINT	A06, A04	S1, S3, B2					
-	Speed for reduced acceleration						DOUBLE	Reset
-								
-	-	1.0	0.0	1.0	$2 / 2$			

Description:

This machine data defines the threshold speed/velocity for spindles/positioning/path axes from which the acceleration reduction is to start. The reference is the defined maximum speed/velocity. The starting point is a percentage of the maximum values. The maximum speed for spindles is determined as the lowest value from machine data MD35100 \$MA_SPIND_VELO_LIMIT, MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT and, with position control, MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT.
Example: MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT $=0.7$, the maximum speed is 3000 rpm. Acceleration reduction starts at $v _o n=2100 \mathrm{rpm}$, i.e. the maximum acceleration capacity is utilized in the speed range $0 . .2099 .99$ rpm. Reduced acceleration is used from 2100 rpm to the maximum speed.

Related to:
MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)
MD35100 \$MA_SPIND_VELO_LIMIT (maximum spindle speed)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum gear stage speed)
MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (maximum gear stage speed with position control)

MD35230 \$MA_ACCEL_REDUCTION_FACTOR (reduced acceleration)

35230	ACCEL_REDUCTION_FACTOR		A06, A04	S1,	
-	Reduced acceleration		DOUBLE	Rese	
CTEQ					
-	0.0	0.0	0.95	2/2	M

Description:
The machine data contains the factor by which the acceleration of the spindle/ positioning/path axes is reduced with reference to the maximum speed/velocity. The acceleration is reduced by this factor between the threshold speed/velocity defined in MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT and the maximum speed/velocity.
Example:
$a=10 \mathrm{rev} / \mathrm{s}^{2}$, v_on = 2100 rpm , MD35230 \$MA_ACCEL_REDUCTION_FACTOR = 0.3.
Acceleration and deceleration take place within the speed range 0...2099.99 rpm with an acceleration of $10 \mathrm{rev} / \mathrm{s}^{2}$. From a speed of 2100 rpm up to the maximum speed, the acceleration is reduced from $10 \mathrm{rev} / \mathrm{s}^{2}$ to $7 \mathrm{rev} / \mathrm{s}^{2}$.
MD irrelevant to:
Errors that lead to rapid stop.
Related to:
MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL
(acceleration in speed control mode)
MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL
(acceleration in position control mode)
MD35242 \$MA_ACCEL_REDUCTION_SPEED_POINT
(speed for reduced acceleration)

35240	ACCEL_TYPE_DRIVE		A04	B1,	
-	Acceleration curve DRIVE for axes ON/OFF		BOOLEAN	Res	
CTEQ					
-	FALSE	0	-	1/1	M
Description:	Basic setting of the acceleration response of the axis (positioning, oscillation, JOG, path motions):				
	FALSE: No acceleration reduction				
	TRUE: Acceleration reduction active				
	MD is active only when MD32420 \$MA_JOG_AND_POS_JERK_ENABLE = FALSE.				

The settings in MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT and MD35230
\$MA_ACCEL_REDUCTION_FACTOR are always active for spindles (in spindle mode).
Remark:
This MD also influences the path motion with SOFT, BRISK, TRAFO

35242	ACCEL_REDUCTION_TYPE		A04	B1, B2	
-	Type of acceleration reduction		BYTE	Reset	
CTEQ					
-	1	0	2	2/2	M

Description:

Shape of acceleration reduction characteristic with DRIVE velocity control
0: Constant
1: Hyperbolic
2: Linear
The end point of the acceleration curve for spindles depending on MD35035 \$MA_SPIND_FUNCTION_MASK Bit23 is selected either from the maximum speed determined from MD35100 \$MA_SPIND_VELO_LIMIT, MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT and MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT or the relevant currently active speed limit.

35300	SPIND_POSCTRL_VELO	A06, A04	P3 pl, P3 sl, R1, S1					
rev/min	Position control activation speed	DOUBLE	NEW CONF					
CTEQ								
-	6	$\begin{array}{l}500.0,500.0,500.0, \\ 500.0,500.0,500.0\end{array}$	0.0	$1.0 \mathrm{E}+301$	$2 / 2$		$]$ M	
:---								

When positioning a spindle that is not in position control mode from a high speed, the position control is not activated until the spindle has reached or falls below the velocity defined in MD35300 \$MA_SPIND_POSCTRL_VELO.
The speed can be changed with FA[Sn] from the part program. Please refer to the documentation:
/FB1/ Function Manual, Basic Functions; Spindles (S1), section "Spindle mode 'positioning operation" for a description of the spindle behavior under various supplementary conditions (positioning from rotation, positioning from standstill). Note:
The active speed from MD35300 \$MA_SPIND_POSCTRL_VELO cannot exceed the max. speed set in MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT. If MD35135
\$MA_GEAR_STEP_解C_MAX_VELO_LIMIT $=0$, the value is limited to 90% of MD35130
\$MA_GEAR_STEP_MAX_VELO_LIMIT.
Related to:
MD35350 \$MA_SPIND_POSITIONING_DIR (direction of rotation during positioning from
standstill, if no synchronization is available)
MD35100 \$MA_SPIND_VELO_LIMIT (chuck speed)

Description:

Positioning delay time.
After reaching the positioning end (exact stop fine), there is a waiting time equal to the time set in this MD. The position matching the currently set gear stage is selected. The delay time is activated for:

- Gear stage change at defined spindle position. After reaching the position configured in MD35012 \$MA_GEAR_STEP_CHANGE_POSITION, there is a waiting period equal to the time specifiē here. Af ter expiry of this time, the position control is switched off for an active direct measuring system, and the NC/PLC interface signals DB390x DBX2000.3 (Change gear) and DB390x DBX2000.0 - . 2 (Setpoint gear stage A-C) are output.
- Block search upon the output of an accumulated positioning block (SPOS, SPOSA, M19).

35350	SPIND_POSITIONING_DIR				
-	Direction of rotation when positioning	A06	S1		
CTEQ					
-	-	3	3	4	Reset

Description:

When SPOS or SPOSA is programmed, the spindle is switched to position control mode and accelerates with the acceleration defined in MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode) if the spindle is not synchronized. The direction of rotation is defined by MD35350 \$MA_SPIND_POSITIONING_DIR (direction of rotation for positioning from standstill).
MD35350 \$MA_SPIND_POSITIONING_DIR = 3 ---> Clockwise direction of rotation MD35350 \$MA_SPIND_POSITIONING_DIR = 4 ---> Counterclockwise direction of rotation Related to: MD35300 \$MA_SPIND_POSCTRL_VELO (position control activation speed)

35400	SPIND_OSCILL_DES_VELO						A06, A04	P3 pl, P3 sl, S1
rev/min	Oscillation speed	DOUBLE	NEW CONF					
CTEQ								
-	-	500.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:

During oscillation, the NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed) is used to select a motor speed for the spindle motor. This motor speed is defined in MD35400 \$MA_SPIND_OSCILL_DES_VELO. The motor speed defined in this MD is independent of the current gear stage. In the AUTOMATIC and MDI displays, the oscillation speed is displayed in the "Spindle setpoint" window until the gear is changed.
MD irrelevant to:
All spindle modes except oscillation mode
Special cases:
The acceleration during oscillation (MD35410 \$MA_SPIND_OSCILL_ACCEL) is valid for the oscillation speed defined in this MD.
Related to:
MD35410 \$MA_SPIND_OSCILL_ACCEL (acceleration during oscillation)
NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC)

35410	SPIND_OSCILL_ACCEL						A06, A04	S1, Z1
rev/s ${ }^{2}$	Acceleration during oscillation						DOUBLE	NEW CONF
CTEQ								
-	-	16.0	$1.0 \mathrm{e}-7$	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: The acceleration specified here is only effective for the output of the oscillation speed (MD35400 \$MA_SPIND_OSCILL_DES_VELO) to the spindle motor. The oscillation speed is selected using the NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed).
MD irrelevant to:
All spindle modes except oscillation mode
Related to:
MD35400 \$MA_SPIND_OSCILL_DES_VELO (oscillation speed)

NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC)

35430	SPIND_OSCILL_START_DIR		A06	S1	
-	Start direction during oscillation		BYTE	Reset	
CTEQ					
-	0	0	4	2/2	M

Description:
With the NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed), the spindle motor accelerates to the speed specified in MD35400: \$MA_SPIND_OSCILL_DES_VELO.
The start direction is defined by MD35430 \$MA_SPIND_OSCILL_START_DIR if the NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC) is not enabled.
MD35430 \$MA_SPIND_OSCILL_START_DIR = 0 ---> Start direction same as the last direction of rotation

MD35430 \$MA_SPIND_OSCILL_START_DIR = 1 ---> Start direction counter to the last
direction of rotation
MD35430 \$MA_SPIND_OSCILL_START_DIR = 2 ---> Start direction counter to the last
direction of rotation
MD35430 \$MA_SPIND_OSCILL_START_DIR = 3 ---> Start direction is M3
MD35430 \$MA_SPIND_OSCILL_START_DIR = 4 ---> Start direction is M4
MD irrelevant to:
All spindle modes except oscillation mode
Related to:
MD35400 \$MA_SPIND_OSCILL_DES_VELO (oscillation speed)
NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC)

35440	SPIND_OSCILL_TIME_CW							A06	S1, Z1
s	Oscillation time for M3 direction	DOUBLE	NEW CONF						
CTEQ									
-	-	1.0	0.0	$1.0 \mathrm{E}+301$					

Description:
The oscillation time defined here is active in the M3 direction.
MD irrelevant to:

- All spindle modes except oscillation mode
- Oscillation via PLC (NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC) enabled)

Related to:
MD35450 \$MA_SPIND_OSCILL_TIME_CCW (oscillation time for M4 direction)
MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator cycle)
NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC)

35450	SPIND_OSCILL_TIME_CCW						A06	S1, Z1
s	Oscillation time for M4 direction	DOUBLE	NEW CONF					
CTEQ								
-	-	0.5	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:

The oscillation time defined here is active in the M4 direction.
MD irrelevant to:

- All spindle modes except oscillation mode
- Oscillation via PLC (NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC) enabled)

Related to:
MD35440 \$MA_SPIND_OSCILL_TIME_CW (oscillation time for M3 direction)
MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator cycle)
NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
NC/PLC interface signal DB380x DBX2002.4 (Oscillation via PLC)

35500	SPIND_ON_SPEED_AT_IPO_START			A03, A06, A10	S1, Z1	
-	Feedrate enable for spindle in the set range			BYTE	Reset	
CTEQ						
828d-me42	1	1	0	2	7/2	M
828d-te42	1	1	0	2	7/2	M
828d-gce42	1	1	0	2	7/2	M
828d-gse42	1	1	0	2	7/2	M
828d-me62	1	1	0	2	7/2	M
828d-te62	1	1	0	2	7/2	M
828d-gce62	1	1	0	2	7/2	M
828d-gse62	1	1	0	2	7/2	M
828d-te82	1	1	0	2	7/2	M
828d-me82	1	1	0	2	7/2	M
828d-gce82	2	2	0	2	1/1	M
828d-gse82	2	2	0	2	1/1	M

Description:
For SW 4.2 and higher:
Byte $=0$:
The path interpolation is not affected
Byte = 1:
The path interpolation is not enabled (positioning axes continue traversing) until the spindle has reached the specified speed. The tolerance range can be set in MD 35150: \$MA_SPIND_DES_VELO_TOL. If a measuring system is active, the actual speed is monitored, otherwise the set speed. Path axes traversing in continuous-path mode (G64) are not stopped.
Byte $=2$:
In addition to 1 , traversing path axes are also stopped before machining begins, e.g. continuous-path mode (G64) and the change from rapid traverse (G0) to a machining block (G1, G2,..). The path is stopped at the last GO block, and does not start traversing until the spindle is within the set speed range. If the spindle speed is reprogrammed between two machining blocks, and the spindle speed is not yet in the setpoint range during transition from the first to the second machining block, the traversing path axes are also braked.
Restriction:
If the spindle is re-programmed by the PLC (FC18) or a synchronized action "shortly" before the end of the last $G 0$ block, the path decelerates on the basis of the dynamic limitations. Since the spindle programming is asynchronous, a traverse can be made into the machining block if necessary. If the spindle has reached the setpoint speed range, machining starts from this position.
Byte = 3:
No longer available for SW 5.3 and higher.
Related to:
MD35150 \$MA_SPIND_DES_VELO_TOL (Spindle speed tolerance)
NC/PLC interface signal DB390x DBX2001.5 (Spindle in setpoint range)

4.3 Axis-specific NC machine data

Description: When a spindle is stopped (M5), the path feed is disabled (positioning axes continue traversing) if MD35510 \$MA_SPIND_STOPPED_AT_IPO_START is enabled and the spindle is in control mode.
When the spindle has come to a standstill (NC/PLC interface signal DB390x DBX1.4 (Axis/ spindle stationary) enabled), the path feed is enabled.
Related to:
MD35500 \$MA_SPIND_ON_SPEED_AT_IPO_START (feed enable for spindle in setpoint range)

828d-te82	6	10000., 10000., 10000., 10000., 10000., 10000.	0.1	$1.0 \mathrm{E}+301$	1/1	M
828d-me82	6	10000., 10000., 10000., 10000., 10000., 10000.	0.1	$1.0 \mathrm{E}+301$	1/1	M
828d-gce82	6	$\begin{aligned} & \text { 2000., 2000., } 2000 . \text {, } \\ & 2000 ., 2000 ., 2000 . \end{aligned}$	0.1	1.0E+301	1/1	M
828d-gse82	6	$\begin{aligned} & \hline 2000 ., 2000 ., 2000 ., \\ & 2000 ., 2000 ., 2000 . \end{aligned}$	0.1	$1.0 \mathrm{E}+301$	1/1	M

Description:
Limit speed values for tapping without compensating chuck with G331/G332.
The maximum speed of the linear motor characteristic range (constant acceleration capacity) must be specified depending on the gear stage.

35590	PARAMSET_CHANGE_ENABLE	EXP, A05	TE3, A2, S1, Z1			
-	Parameter set can be changed	BYTE	PowerOn			
CTEQ						
-	-	0	0	2	$1 / 1$	

Description:
0: Parameter set changes cannot be controlled.
For axes and spindles in axis mode: The first parameter set is always active. In the case of spindles the parameter set is set as appropriate for the gear stage (1st gear stage uses 2nd parameter set). Exceptions: See below.
1: The parameter set applied in the servo is defined via the VDI interface or SCPARA. Parameter sets 1 to 6 can be selected. Sets are selected using the NC/PLC interface signal DB380x DBX9.0-.2 (selection of parameter set servo A, B, C) in the binary-coded value range 0 to 5. Binary values 6 and 7 select parameter set no. 6 . Exceptions: See below.
For 0 and 1:
With G33, G34, G35, G331, G332, the parameter set number for the axes involved is ativated in accordance with the master spindle gear stage, increased by one (corresponds with parameter set numbers 2 to 6).
For spindles, parameter sets 2 to 6 are always active, depending on the set gear stage plus one.
2: The parameter set is only ever defined via the VDI interface or SCPARA. Parameter sets 1 to 6 can be selected. Sets are selected using the NC/PLC interface signal DB380x DBX9.0-. 2 (selection of parameter set servo A, B, C) in the binary-coded value range 0 to 5. Binary values 6 and 7 select parameter set no. 6 .
Secondary conditions:
Changeover response is determined by whether the KV factor differs between the active parameter set and the new parameter set.
Changing a parameter set where the load gearbox factors differ between the active parameter set and the new parameter set will reset the referenced signal, provided that the axis has an indirect measuring system.
The parameter set contains the following axial machine data:
MD36200 \$MA_AX_VELO_LIMIT
MD32200 \$MA_POSCTRL_GAIN
MD32800 \$MA_EQUIV_CURRCTRL_TIME
MD32810 \$MA_EQUIV_SPEEDCTRL_TIME
MD32910 \$MA_DYN_MATCH_TIME
MD31050 \$MA_DRIVE_AX_RATIO_DENOM
MD31060 \$MA_DRIVE_AX_RATIO_NUMERA
Corresponds with:
NC/PLC interface signals DB380x DBX9.0 - . 2 (selection of parameter set servo A, B, C) and DB390x DBX9.0 - . 2 (selected parameter set servo A, B, C)

References:
/FB/, H2, "Output of Auxiliary Functions to PLC"

36000	STOP_LIMIT_COARSE			A05	TE1, A3, B1, G2, S1, Z1	
mm, degrees	Exact stop coarse			DOUBLE	NEW CONF	
-						
828d-me42	-	$\begin{aligned} & \text { 0.04, 0.04, 0.04, 0.4, } \\ & 0.04 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	M
828d-te42	-	$\begin{aligned} & 0.04,0.04,0.4,0.4 \\ & 0.04 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce42	-	0.04, 0.04, 0.4, 0.4, 0.4	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse42	-	$\begin{aligned} & 0.04,0.04,0.04,0.4, \\ & 0.04 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-me62	-	$\begin{aligned} & 0.04,0.04,0.04,0.4 \\ & 0.04,0.04,0.04,0.04 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-te62	-	$\begin{array}{\|l} \hline 0.04,0.04,0.4,0.4 \\ 0.04,0.04,0.04,0.04 \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce62	-	$\begin{aligned} & 0.04,0.04,0.04,0.04 \\ & 0.04,0.04,0.04,0.04 \ldots \\ & \hline \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse62	-	$\begin{array}{\|l\|} \hline 0.04,0.04,0.04,0.04 \\ 0.04,0.04, ~ 0.04, ~ 0.04 . \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-te82	-	$\begin{aligned} & 0.04,0.04,0.4,0.4 \\ & 0.4,0.04,0.04,0.4 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-me82	-	$\begin{aligned} & \hline 0.04,0.04,0.04,0.4 \\ & 0.04,0.04,0.04,0.04 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce82	-	$\begin{array}{\|l} 0.04,0.04,0.4,0.4, \\ 0.4, ~ 0.04, ~ 0.4, ~ 0.4 \\ \hline \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse82	-	$\begin{aligned} & \text { 0.04, 0.04, 0.04, 0.4, } \\ & 0.04,0.4,0.4,0.4 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M

Description:

Threshold for exact stop coarse
An NC block is considered as terminated if the actual position of the path axes is away from the setpoint position by the value entered for the exact stop limit. If the actual position of a path axis is not within this limit, the NC block is considered as not terminated, and further part program execution is not possible. The magnitude of the value entered influences the transition to the next block. The larger the value, the earlier the block change is initiated.
If the specified exact stop limit is not reached, then

- the block is considered as not terminated,
- further traversing of the axis is not possible,
- alarm 25080 Positioning monitoring is output after expiry of the time specified in MD36020 \$MA_POSITIONING_TIME (monitoring time for exact stop fine),
- the direction of movement +/- is indicated for the axis in the positioning display. The exact stop window is also evaluated for spindles in position control mode (SPCON instruction).
Special cases:
MD36000 \$MA_STOP_LIMIT_COARSE must not be set smaller than MD36010 \$MA_STOP_LIMIT_FINE (exact stop fine). To achieve the identical block change behavior as with the "exact stop fine" criterion, the exact stop coarse window may be identical to the exact stop fine window. MD36000 \$MA_STOP_LIMIT_COARSE must not be set equal to or greater than MD36030 \$MA STANDSTILL POS TOL (standstill tolerance).

Related to:
MD36020 \$MA_POSITIONING_TIME (delay time, exact stop fine)

36010	STOP_LIMIT_FINE			A05	TE1, A3, B1, D1, G2, S1, Z1	
mm, degrees	Exact stop fine			DOUBLE	NEW CONF	
-						
828d-me42	-	$\begin{aligned} & 0.01,0.01,0.01,0.1 \\ & 0.01 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-te42	-	$\begin{aligned} & \text { 0.01, 0.01, 0.1, 0.1, } \\ & 0.01 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce42	-	0.01, 0.01, 0.1, 0.1, 0.1	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse42	-	$\begin{aligned} & 0.01,0.01,0.01,0.1 \\ & 0.01 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-me62	-	$\begin{array}{\|l\|} \hline 0.01,0.01,0.01,0.1 \\ 0.01,0.01,0.01,0.01 \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-te62	-	$\begin{array}{\|l\|} \hline 0.01,0.01,0.1,0.1, \\ 0.01,0.01,0.01,0.01 \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce62	-	$\begin{aligned} & 0.01,0.01,0.01,0.01 \\ & 0.01,0.01,0.01,0.01 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse62	-	$\begin{array}{\|l\|} \hline 0.01,0.01,0.01,0.01 \\ 0.01,0.01,0.01,0.01 \ldots \\ \hline \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-te82	-	$\begin{array}{\|l\|} \hline 0.01,0.01,0.1,0.1 \\ 0.1,0.01,0.01,0.1 \ldots \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-me82	-	$\begin{array}{\|l} 0.01,0.01,0.01,0.1 \\ 0.01,0.01,0.01,0.01 \ldots \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce82	-	$\begin{array}{\|l} \hline 0.01,0.01,0.1,0.1, \\ 0.1,0.01,0.1,0.1 \\ \hline \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse82	-	$\begin{array}{\|l\|} \hline 0.01,0.01,0.01,0.1, \\ 0.01,0.1,0.1,0.1 \end{array}$	0.0	$1.0 \mathrm{E}+301$	2/2	M

Description: Threshold for exact stop fine
See also MD36000 \$MA_STOP_LIMIT_COARSE (exact stop coarse)
Special cases:
MD36010 \$MA_STOP_LIMIT_FINE must not be set greater than MD36000 \$MA_STOP_LIMIT_COARSE (exact stop coarse).

MD36010 \$MA_STOP_LIMIT_FINE must not be set greater than or equal to MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance).

Related to:
MD 36020: \$MA_POSITIONING_TIME (delay time, exact stop fine)

Description:

With this factor,
MD36000 \$MA_STOP_LIMIT_COARSE,
MD36010 \$MA_STOP_LIMIT_FINE,
MD36030 \$MA_STANDSTILL_POS_TOL
can be re-assessed as a function of the parameter set. The relationship between these three values always remains the same.

Application examples:
Adapting the positioning behavior if the mass relationships change significantly with a gear change, or if it is desired to save on machine positioning time at the cost of accuracy in various operating conditions.

Related to:
MD36000 \$MA_STOP_LIMIT_COARSE,
MD36010 \$MA_STOP_LIMIT_FINE,
MD36030 \$MA_STANDSTILL_POS_TOL

36020	POSITIONING_TIME	A05	TE1, A3, B1, G2					
s	Delay time exact stop fine						DOUBLE	NEW CONF
-								
-	-	1.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:

The following error must have reached the limit value for exact stop fine by the expiry of the time entered in this MD for traveling into the position (position setpoint has reached the destination).
The current following error is therefore continuously monitored for the time limit MD36010 \$MA_STOP_LIMIT_FINE. If this time is exceeded, alarm 25080 "Positioning monitoring" is output, and the axis stopped. The time entered in this MD should be long enough to ensure that the monitoring function is not triggered under normal operating conditions, taking into account any settling times.
Related to:
MD 36010: \$MA_STOP_LIMIT_FINE (exact stop fine)

36030	STANDSTILL_POS_TOL			A05	G1, A3, D1, G2	
mm, degrees	Standstill tolerance			DOUBLE	NEW CONF	
-						
828d-me42	-	0.2, 0.2, 0.2, 1.0, 0.2	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te42	-	0.2, 0.2, 1.0, 1.0, 0.2	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce42	-	0.2, 0.2, 1.0, 1.0, 1.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse42	-	0.2, 0.2, 0.2, 1.0, 0.2	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me62	-	$\begin{aligned} & \begin{array}{l} 0.2,0.2,0.2,1.0,0.2, \\ 0.2,0.2,0.2 \end{array} \\ & \hline \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te62	-	$\begin{aligned} & 0.2,0.2,1.0,1.0,0.2, \\ & 0.2,0.2,0.2 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce62	-	$\begin{array}{\|l} \begin{array}{l} 0.2,0.2,0.2,0.2,0.2, \\ 0.2,0.2,0.2 \ldots . \end{array} \\ \hline \end{array}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse62	-	$\begin{aligned} & \begin{array}{l} 0.2,0.2,0.2,0.2,0.2, \\ 0.2,0.2,0.2 . . \end{array} \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te82	-	$\begin{array}{\|l\|} \hline 0.2,0.2,1.0,1.0,1.0, \\ 0.2,0.2,1.0 \ldots \\ \hline \end{array}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me82	-	$\begin{aligned} & 0.2,0.2,0.2,1.0,0.2, \\ & 0.2,0.2,0.2 \ldots \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce82	-	$\begin{aligned} & 0.2,0.2,1.0,1.0,1.0, \\ & 0.2,1.0,1.0 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse82	-	$\begin{aligned} & 0.2,0.2,0.2,1.0,0.2, \\ & 1.0,1.0,1.0 \end{aligned}$	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description:

This MD serves as a tolerance band for the following monitoring functions:

- After termination of a traversing block (position partial setpoint=0 at the end of the movement), whether the following error has reached the limit value for MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance) is monitored after the programmable MD36040 \$MA_STANDSTILL_DELAY_TIME (delay time, standstill monitoring).
- After termination of a positioning action (exact stop fine reached), positioning monitoring is replaced by standstill monitoring. The axis is monitored for moving from its position by more than defined in MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance).

```
If the setpoint position is over- or undershot by the standstill tolerance, alarm
25040 "Standstill monitoring" is output and the axis stopped.
Special cases:
The standstill tolerance must be greater than the "exact stop limit coarse".
Related to:
MD36040 $MA_STANDSTILL_DELAY_TIME (delay time, standstill monitoring)
```

36040	STANDSTILL_DELAY_TIME						A05	TE1, A3, F1, G2
s	Delay time for standstill monitoring	DOUBLE	NEW CONF					
-								
-	-0.4	0.0	$1.0 \mathrm{E}+301$	$2 / 2$				

36042	FOC_STANDSTILL_DELAY_TIME	A05	F1				
s	Delay time for standstill monitoring w/ active torque or force limitation.	DOUBLE	NEW CONF				
-							
-	-	0.4	0.0	$1.0 \mathrm{E}+301$	$2 / 2$		

Description:

Only for PROFIdrive telegrams including a torque/force limiting value:
Waiting time between the end of a movement and activation of standstill monitoring with active torque/force limitation.
If the configurable end of block criterion occurs within this time, then standstill monitoring is activated.

36050	CLAMP_POS_TOL						A05	A3, D1, Z1	
mm, degrees	Clamping tolerance							DOUBLE	NEW CONF
-									
-	-	0.5	0.0	$1.0 \mathrm{E}+301$	$2 / 2$				

Description:

With NC/PLC interface signal DB380x DBX2.3 (Blocking action active), blocking monitoring is activated. If the monitored axis is forced away from the setpoint position (exact stop limit) by more than the blocking tolerance, alarm 26000 "Blocking monitoring" is output and the axis stopped.
Threshold value for clamping tolerance (half width of window).
Special cases:
The clamping tolerance must be greater than the "exact stop limit coarse".
Related to:
NC/PLC interface signal DB380x DBX2.3 (Blocking action active)

36051	CLAMP_POS_TOL_TIME						A05	A3, D1, Z1
s	Alarm delay time for clamping monitoring							
-	-	DOUBLE	NEW CONF					
-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	M			

Description:
The MD defines the length of time for which the clamping tolerance can be exceeded before alarm 26000 "Clamping monitoring" is output.

If the clamping tolerance is exceeded before the expiry of this time, the user is first informed via the NC/PLC interface signal DB3900, ... DBX5006.3 (Clamping tolerance exceeded) (without alarm)

If the clamping tolerance is undershot before the expiry of this time, the clamping monitoring is reset with the NC/PLC interface signal DB3900, ... DBX5006.3 (Clamping tolerance exceeded) (without alarm)
See MD36050 \$MA_CLAMP_POS_TOL (clamping tolerance).

Related to:
NC/PLC interface signal DB380x DBX2.3 (Clamping process active)
NC/PLC interface signal DB3900, ... DBX5006.3 (Clamping tolerance exceeded)

36052	STOP_ON_CLAMPING						A10	A3
-	Special functions with clamped axis	UBYTE	NEW CONF					
CTEQ								
-	-	0	0	0×07				

Description:

This MD defines how a blocked axis is taken into account.
Bit $0=0$:
If a blocked axis is to be traversed again in continuous-path mode, it must be ensured via the part program that the path axes are stopped and that there is time for releasing the blockage.
Bit $0=1$:
If a blocked axis is to be traversed again in continuous-path mode, the LookAhead function stops the path motion if required until the position controller is allowed to traverse the blocked axis again, i.e. until the controller enable is set again.
Bit 1 is relevant only if bit 0 is set:
Bit $1=0$:
If a blocked axis is to be traversed again in continuous-path mode, the LookAhead function does not release the blockage.
Bit $1=1$:
If a blocked axis is to be traversed again in continuous-path mode, a traversing command for the blocked axis is given in the preceding GO blocks so that the PLC releases the axis blockage again.
Bit $2=0$:
If an axis is to be blocked in continuous-path mode, it must be ensured in the part program that the path axes are stopped to make sure that there is time for setting the blockage.
Bit 2 =1:
If an axis is to be blocked in continuous-path mode, the LookAhead function stops the path motion prior to or in the next non-G0 block, if the axis has not yet been blocked by that time, i.e. the PLC has not yet set the feedrate override to zero.

36100	POS_LIMIT_MINUS			A03, A05, A11		Z1
mm , degrees	1st software limit switch minus			DOUBLE	NE	
CTEQ						
-	-	$\begin{aligned} & -1.0 \mathrm{e} 8,-1.0 \mathrm{e} 8,-1.0 \mathrm{e} 8, \\ & -1.0 \mathrm{e} 8,-1.0 \mathrm{e} 8,-1.0 \mathrm{e} 8, \\ & -1.0 \mathrm{e} 8,-1.0 \mathrm{e} 8 \ldots . \end{aligned}$	```-MD_DBLMAX, - MD_DBLMAX, - MD_DBLMAX, - MD_DBLMAX, - MD_DBLMAX, - MD_...```	$\begin{aligned} & 1.0 \mathrm{E}+301,1.0 \mathrm{E} \\ & +301,1.0 \mathrm{E}+301, \\ & 1.0 \mathrm{E}+301,1.0 \mathrm{E} \\ & +301,1.0 \mathrm{E}+301, \\ & 1.0 \mathrm{E} . . . \end{aligned}$	2/2	M
Description:	Same meaning limitation The MD becom DB380x DBX10 MD irrelevan if axis is Related to: NC/PLC inter	as 1st software li in the negative s active after ref 0.2 (2nd software t referenced. ace signal DB380x	it switch plus rection. rence point ap imit switch mi BX1000.2 (2nd	however the proach if the nus) is not se software limit	NC/ t. SW	ng ac

Description:
A software limit switch can be activated in addition to the hardware limit switch. The absolute position in the machine axis system of the positive range limit of each axis is entered.

The MD is active after reference point approach if NC/PLC interface signal DB380x DBX1000.3 (2nd software limit switch plus) has not been set.

MD irrelevant:
if axis is not referenced.
Related to:
NC/PLC interface signal DB380x DBX1000.3 (2nd software limit switch plus)

36120	POS_LIMIT_MINUS2						A03, A05	TE1, A3, Z1
mm, degrees	2nd software limit switch minus	DOUBLE	NEW CONF					
CTEQ								
-	-	$-1.0 e 8$	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:

Same meaning as 2nd software limit switch plus, but the traversing range limitation is in the negative direction.

The PLC can select whether software limit switch 1 or 2 is to be active by means of the interface signal.

For example:
DB380x DBX1000.2 $=0$ (1st software limit switch minus) active for 1 st axis
DB380x DBX1000.2 = 1 (2nd software limit switch minus) active for 1 st axis
MD irrelevant:
if axis is not referenced.
Related to:
NC/PLC interface signal DB380x DBX1000.2 (2nd software limit switch minus)

36130	POS_LIMIT_PLUS2		A03, A05	TE1, A3, Z1	
mm , degrees	2nd software limit switch plus		DOUBLE	NEW CONF	
CTEQ					
-	1.0e8	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M

Description:

This machine data can define a 2nd software limit switch position in the positive direction in the machine axis system. The PLC can select which of the two software limit switches 1 or 2 is to be active by means of an interface signal.

For example:
DB380x DBX1000.3 = 0 (1st software limit switch plus) active for 1st axis
DB380x DBX1000.3 = 1 (2nd software limit switch plus) active for lst axis
MD irrelevant:
if axis is not referenced.
Related to:
NC/PLC interface signal DB380x DBX1000.3 (2nd software limit switch plus)

36200	AX_VELO_LIMIT			A05, A11, A04	TE3, A3, G2, S1, V1	
mm/min, rev/min	Threshold value for velocity monitoring			DOUBLE	NEW CONF	
CTEQ						
828d-me42	6	$\begin{array}{\|l} \hline \text { 11500., 11500., } \\ \text { 11500., 11500., } \\ \text { 11500., 11500., } \\ \text { 11500., 11500., } \end{array}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te42	6	11500., 11500., 11500., 11500., 11500., 11500., 11500., 11500., ...	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce42	6	$\begin{aligned} & \hline 11500 ., 11500 ., \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse42	6	11500., 11500., 11500., 11500., 11500., 11500., 11500., 11500., ...	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-me62	6	$\begin{aligned} & \hline 11500 ., 11500 ., \\ & 11500 ., 11500 ., \\ & 11500 ., 11500 ., \\ & 11500 ., 11500 ., \text {... } \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-te62	6	11500., 11500., 11500., 11500., 11500., 11500., 11500., 11500., ...	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce62	6	-	(0./ 0.)	$\begin{array}{\|l} \hline \text { (MD_DBLMAX/ } \\ \text { MD_DBLMAX) } \\ \hline \end{array}$	2/2	M
828d-gse62	6	-	(0./ 0.)	(MD_DBLMAXI MD_DBLMAX)	2/2	M
828d-te82	6	$\begin{aligned} & \hline 11500 ., 11500 ., \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., } 11500 ., \end{aligned}$	(0./ 0.)	(MD_DBLMAXI MD_DBLMAX)	2/2	M
828d-me82	6	$\begin{aligned} & \hline 11500 ., 11500 ., \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., ... } \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gce82	6	$\begin{aligned} & \hline 11500 ., 11500 ., \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., ... } \end{aligned}$	(0./ 0.)	(MD_DBLMAX/ MD_DBLMAX)	2/2	M
828d-gse82	6	$\begin{aligned} & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., } \\ & \text { 11500., 11500., ... } \end{aligned}$	(0./ 0.)	(MD_DBLMAXI MD_DBLMAX)	2/2	M

Description: The threshold value for actual velocity monitoring is entered in this machine data. If the axis has at least one active encoder and if this encoder is below its limit frequency, alarm 25030 "Actual velocity alarm limit" is triggered when the threshold value is exceeded, and the axis is stopped.
Settings:

- For axes, a value should be selected that is $10-15$ \% higher than that in MD32000 \$MA_MAX_AX_VELO (maximum axis velocity).

4.3 Axis-specific NC machine data

When temperature compensation is active MD32750 \$MA_TEMP_COMP_TYPE, the maximum axis velocity is increased by an additional factor, which is obtained from MD32760 \$MA_COMP_ADD_VELO_FACTOR (velocity increase as a result of compensation). Therefore, the following should apply for the threshold value of the velocity monitoring: MD36200 \$MA_AX_VELO_LIMIT[n] > MD32000 \$MA_MAX_AX_VELO * (1,1 . . 1,15 + MD32760 \$MA_COMP_ADD_VELO_FACTOR)

- For spindles, a value should be selected for each gear stage that is 10-15 \% above MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT[n] (maximum speed of the gear stage).
The index of the machine data has the following coding: [control parameter set no.]: 0-5

Description:
This MD defines the maximum speed setpoint in percent. 100% is the maximum speed setpoint, this corresponds to 10 V for an analog interface or the maximum speed for PROFIdrive drives (manufacturer-specific adjustable parameter in the drive, e.g. p1082 and, if applicable, p2000 for SINAMICS.
The maximum speed setpoint depends on whether there are any setpoint limitations in the speed and current controller.
An alarm is output and the axis is stopped when the limit is exceeded.
The limit is to be selected so that the maximum velocity (rapid traverse) can be reached, and an appropriate additional control margin is available.
Note: If a value corresponding to the upper limit (200\%) is entered, this value is automatically corrected by the system to $199,9999 \%$. This correction is made for technical reasons.

36220	CTRLOUT_LIMIT_TIME						EXP, A05	A3
s	Delay time for speed setpoint monitoring	DOUBLE	NEW CONF					
-								
-	1	0.0	0.0	1.0 E+301				

Description: This MD defines how long the speed setpoint may be within the limit CTRLOUT_LIMIT[n] (max. speed setpoint) until the monitoring function is triggered.
Monitoring (and with it also this machine data) is always active.
Reaching the limit renders the position control loop non-linear, which results in contour errors provided that the speed setpoint limited axis is participating in contour generation. That is why this MD has default value 0, i.e. the monitoring function responds as soon as the speed setpoint reaches the limit.

36300	ENC_FREQ_LIMIT							EXP, A02, A05, A06	A3, D1, R1, Z1
-	Encoder limit frequency	DOUBLE	PowerOn						
-									
-	2	$3.0 e 5,3.0 e 5$	0.0	$1.0 \mathrm{E}+301$					

Description:

This MD is used to enter the encoder frequency, which,
in general, is a manufacturer specification (type plate, documentation).
For PROFIdrive:
No automatic, software-internal limitation for encoders on the PROFIdrive drive; here, the limit values of the measuring circuit module depend on the drive hardware used, i.e. known only by the drive. Therefore, it is the user who is responsible for taking into account the limit frequency of the measuring circuit module.

36310	ENC_ZERO_MONITORING		EXP, A02, A05	A3, R1	
-	Zero mark monitoring		DWORD	NEW CONF	
-					
-	$2 \quad 0,0$	0	-	2/2	M

Description:
This MD is used to activate zero mark monitoring.
For PROFIdrive drives (the corresponding diagnostics system variables are not currently supplied for incremental measuring systems):
For PROFIdrive, the permissible deviation must be set in the drive, *not* in the NC. Zero mark monitoring reported by the drive is mapped to the NCK according to the following rule:

0: no zero mark monitoring
100: no zero mark monitoring together with suppression of all encoder monitoring operations, i.e. not only alarm 25020 but also alarms 25000 , 25010 etc. are suppressed.
>0 but less than 100: direct triggering of power ON alarm 25000 (or 25001).
>100: attenuated error message: reset alarm 25010 (25011) is output instead of power ON alarm 25000 (25001).
For absolute measuring systems (MD30240 \$MA_ENC_TYPE=4):
Permissible deviation in $1 / 2$ coarse increments between the absolute and the incremental encoder track (one $1 / 2$ coarse increment is sufficient).

36312	ENC_ABS_ZEROMON_WARNING							EXP, A02, A05	A3
-	Zero mark monitoring warning level	DWORD	NEW CONF						
-									
828 d-me42	2	10,10	0	-					

4.3 Axis-specific NC machine data

828d-te42	2	10, 10	0	-	7/2	M
828d-gce42	2	10, 10	0	-	7/2	M
828d-gse42	2	10, 10	0	-	7/2	M
828d-me62	2	10, 10	0	-	7/2	M
828d-te62	2	10, 10	0	-	7/2	M
828d-gce62	2	10, 10	0	-	7/2	M
828d-gse62	2	10, 10	0	-	7/2	M
828d-te82	2	10, 10	0	-	7/2	M
828d-me82	2	10, 10	0	-	7/2	M
828d-gce82	2	10, 10	0	-	0/0	S
828d-gse82	2	10, 10	0	-	0/0	S

Description: Only for absolute measuring systems (MD30240 \$MA_ENC_TYPE=4):
This MD activates zero mark diagnostics.
0: no zero mark diagnostics
>0 : permissible deviation in $1 / 2$ coarse increments between the absolute and the incremental encoder track (one $1 / 2$ coarse increment is sufficient).

36314	ENC_ABS_ZEROMON_INITIAL			EXP, A02, A05	A3	
-	Warning level for absolute encoder power ON			DWORD	NEW CONF	
-						
828d-me42	2	1000, 1000	0	-	7/2	M
828d-te42	2	1000, 1000	0	-	7/2	M
828d-gce42	2	1000, 1000	0	-	7/2	M
828d-gse42	2	1000, 1000	0	-	7/2	M
828d-me62	2	1000, 1000	0	-	7/2	M
828d-te62	2	1000, 1000	0	-	7/2	M
828d-gce62	2	1000, 1000	0	-	7/2	M
828d-gse62	2	1000, 1000	0	-	7/2	M
828d-te82	2	1000, 1000	0	-	7/2	M
828d-me82	2	1000, 1000	0	-	7/2	M
828d-gce82	2	1000, 1000	0	-	0/0	S
828d-gse82	2	1000, 1000	0	-	0/0	S

Description: Only for absolute measuring systems (MD30240 \$MA_ENC_TYPE=4):
Parameterization in $1 / 2$ coarse increments
At absolute encoder power ON (deselect parking and similar) this MD parameterizes the previously permissible position offset (comparison of the new absolute position with the information last saved in SRAM). When the warning level is exceeded, system variable \$VA_ENC_ZERO_MON_ERR_CNT is incremented in coarse increments by the value 10000 .

$828 \mathrm{~d}-\mathrm{me} 62$	-	$1.0,1.0,1.0,20.0,1.0$, $1.0,1.0,1.0$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{te} 62$	-	$1.0,1.0,20.0,20.0$, $1.0,1.0,1.0,1.0$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828 d -gce62	-	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{gse} 62$	-	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{te} 82$	-	$1.0,1.0,20.0,20.0$, $20.0,1.0,1.0,20.0$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{me} 82$	-	$1.0,1.0,1.0,20.0,1.0$, $1.0,1.0,1.0 \ldots$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-$ gce82	-	$1.0,1.0,20.0,20.0$, $20.0,1.0,20.0,20.0$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
$828 \mathrm{~d}-$ gse82	-	$1.0,1.0,1.0,20.0,1.0$, $20.0,20.0,20.0$	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M

Description:
Tolerance band for axial contour monitoring (dynamic following error monitoring).
The permissible deviation between the real and the modelled following error is entered in this MD.
The input of the tolerance band is intended to avoid spurious tripping of the dynamic following error monitoring caused by minor speed fluctuations, which occur during normal closed-loop control operations (e.g. during first cut).
Following error modelling and thus the input of this MD depend on the position control gain MD32200 \$MA_POSCTRL_GAIN
and, in the case of precontrol or simulation, on the accuracy of the controlled system model MD32810 \$MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant for precontrol of speed control loop), as well as on the accelerations and velocities used.

36500	ENC_CHANGE_TOL	A02, A05	G1, K6, K3, A3, D1, G2, Z1						
mm, degrees	Tolerance at actual position value change.							DOUBLE	NEW CONF
-									
-	-	0.1	0.0	$1.0 \mathrm{E}+301$					

Description:

The permissible deviation between the actual values of the two measuring systems is entered in this MD.
This difference must not be exceeded when switching over the measuring system used for closed-loop control, in order to avoid compensating processes that are too strong. Otherwise, the error message 25100 "Axis \%1 Switchover of measuring system not possible" is generated and the switchover does not take place.
This MD is relevant only if MD30200 \$MA_NUM_ENCS = 2 .
MD36500 also limits, in the form of a ramp, the rate of change of the backlash compensation values in MD32450 \$MA_BACKLASH. The limitation depends on the setting of the position controller cycle. The lower the value in MD36500, the longer the duration of the backlash compensation during the change of direction.
This MD is relevant only if MD30200 \$MA_NUM_ENCS =1 or 2 .

36510	ENC_DIFF_TOL	A02, A05	A3, G2					
mm, degrees	Tolerance of measuring system synchronization						DOUBLE	NEW CONF
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: Permissible deviation between the actual values of the two measuring systems. This difference must not be exceeded during the cyclic comparison of the two measuring systems used, as otherwise error message 25105 (measuring systems deviate) would be generated.
The corresponding monitoring function is not active

Machine data

- with MD input value=0,
- if less than 2 measuring systems are active/available in the axis
- or if the axis has not been referenced (at least act. closed-loop control meas. system).
With modulo axes, it is always the absolute value of the shortest/direct position difference that is monitored.

36520	DES_VELO_LIMIT	A02, A05	-					
$\%$	Threshold for setpoint velocity monitoring						DOUBLE	NEW CONF
-								
-	-	125.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description:
Maximum permissible setpoint velocity as a percentage of the maximum axis velocity/ spindle speed.
With MD36520 \$MA DES VELO LIMIT, the position setpoint is monitored for abrupt changes. If the permissible limit value is exceeded, alarm 1016 error code 550010 is output.

With axes, this machine data refers to MD32000 \$MA_MAX_AX_VELO.
With spindles, this MD refers to the lower of the speeds set in
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT of the current gear stage and MD35100 \$MA_SPIND_VELO_LIMIT.

36600	BRAKE_MODE_CHOICE	EXP, A05	A3, Z1			
-	Deceleration response on hardware limit switch	BYTE	PowerOn			
CTEQ						
-	-	0	0	1	$2 / 2$	

Description: If a rising edge of the axis-specific hardware limit switch is detected while the axis is traversing, the axis is braked immediately.

The type of braking is determined by this machine data:
Value = 0:
Controlled braking along the acceleration ramp defined by MD32300 \$MA_MAX_AX_ACCEL (axis acceleration).
Value = 1:
Rapid braking (selection of setpoint $=0$) with reduction of following error.
Related to:
NC/PLC interface signal DB380x DBX1000.1 und . 0 (Hardware limit switch plus or minus)

36610	AX_EMERGENCY_STOP_TIME	A05	TE3, K3, A2, A3, N2, Z1				
s	Maximum time for braking ramp in case of error.					DOUBLE	NEW CONF
-							
-	-	0.05	0.0	1.0 e 15			

Description:

This MD defines the braking ramp time that an axis or spindle requires to brake from maximum velocity/speed to a standstill in the event of errors (e.g. EMERGENCY STOP). At the same lead/brake acceleration, standstill is reached correspondingly earlier from lower velocities/speeds.
Mechanically robust axes are normally stopped abruptly with speed setpoint 0 ; values in the lower ms range are appropriate in these cases (default setting).
However, high moving masses or limited mechanical conditions (e.g. gear load capacity) often have to be taken into account for spindles. This means that the MD has to be changed to set a longer braking ramp.
Notice:

- With interpolating axes or axis/spindle couplings, it cannot be ensured that the contour or coupling will be maintained during the braking phase.
- If the time set for the braking ramp for error states is too long, the controller enable will be removed although the axis/spindle is still moving. Depending on the drive type used and the activation of the pulse enable, either an immediate stop with speed setpoint 0 will be initiated or the axis/spindle will coast down without power. The time selected in MD36610 \$MA_AX_EMERGENCY_STOP_TIME should therefore be shorter than the time in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME (cutout delay, controller enable) so that the configured braking ramp can be fully active throughout the entire braking operation.
- The braking ramp may be ineffective or not maintained if the active drive follows its own braking ramp logic (e.g. SINAMICS).

Related to:
MD36620 \$MA_SERVO_DISABLE_DELAY_TIME (cutout delay controller enable)
MD36210 \$MA_CTRLOUT_LIMIT (maximum speed setpoint)

36620	SERVO_DISABLE_DELAY_TIME		A05	TE3	N2, Z1
s	Cutout delay servo enable		DOUBLE	NEW CONF	
-					
-	0.1	0.0	1.0e15	2/2	M

Description:

Maximum time delay for removal of "controller enable" after faults. The speed enable (controller enable) of the drive is removed internally within the controller after the set delay time, at the latest.
The delay time entered becomes active as a result of the following events:

- Errors that lead to immediate stopping of the axes
- Removal of the interface signal DB380x DBX2.1 (Controller enable) from the PLC

As soon as the actual speed reaches the standstill range (MD36060
\$MA_STANDSTILL_VELO_TOL), the "controller enable" for the drive is removed. The time set should be long enough to enable the axis / spindle to brake down to a standstill from maximum traversing velocity or maximum speed. If the axis / spindle is stationary, the "controller enable" for the drive is removed immediately (i.e. the time defined in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME is terminated prematurely). Application example(s):
Speed control of the drive should be retained long enough to enable the axis / spindle to brake down to standstill from maximum traversing velocity or maximum speed.
Notice:
If the cutout delay controller enable is set too short, controller enable will be removed although the axis/spindle is still moving. This axis/spindle then coasts down without power (which may be appropriate for grinding wheels, for example); otherwise the time set in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME should be longer than the duration of the braking ramp for error states (MD36610 \$MA_AX_EMERGENCY_STOP_TIME). Related to:
NC/PLC interface signal DB380x DBX2.1 (Controller enable)
MD36610 \$MA_AX_EMERGENCY_STOP_TIME
For SINAMICS drives: Drive parameter P1082 (maximum speed / velocity)

36700	DRIFT_ENABLE			EXP, A07, A09	G2	
-	Automatic drift compensation			BOOLEAN	NEW CONF	
-						
-	-	FALSE	0	-	1/1	M
Description:	Only for sp Automatic 1: Autom	ial ana	ac	not active wi MD36700 \$MA for position	PR	dri

4.3 Axis-specific NC machine data

With automatic drift compensation, while the axis is at a standstill, the control continually calculates the additional drift value still required to ensure that the following error reaches the value 0 (compensation criterion). The total drift value is, therefore, formed from the drift basic value (MD36720 \$MA_DRIFT_VALUE) and the drift additional value.

0: Automatic drift compensation not active.
The drift value is formed only from the drift basic value (MD36720 \$MA_DRIFT_VALUE). Not relevant for:

Non-position-controlled spindles
Related to:
MD36710 \$MA_DRIFT_LIMIT drift limit value for automatic drift compensation
MD36720 \$MA_DRIFT_VALUE drift basic value

Description:

Only for special analog and hydraulic drives (not active with PROFIdrive drives):
The magnitude of the drift additional value calculated during automatic drift compensation can be limited with MD36710 \$MA_DRIFT_LIMIT.
If the drift additional value exceeds the limit value entered in MD36710
\$MA_DRIFT_LIMIT, alarm 25070 "Drift value too large" is output and the drift
additional value is limited to this value.
Not relevant for:
MD36700 \$MA_DRIFT_ENABLE $=0$

36720	DRIFT_VALUE	EXP, A07, A09	-				
$\%$	Basic drift value	DOUBLE	NEW CONF				
-							
-	1	0.0	$-1 e 15$	$1 e 15$	$1 / 1$		

Description: Only for special analog and hydraulic drives (not active with PROFIdrive drives): The value entered in MD36720 \$MA_DRIFT_VALUE is always added as an offset to the manipulated variable. Whereas automatic drift compensation is active only for positioncontrolled axes, this machine data is always active.
Special case: the following applies to PROFIdrive drives:
This MD can also be used for "simple" drives that have drift problems due to driveinternal implementation as analog drives. To avoid erroneous settings, this static drift compensation only becomes active with PROFIdrive if MD32250 \$MA_RATED_OUTVAL != 0 (i.e. the MD has no effect in the case of automatic interface adjustment between the NC and the drive).

Note:
Drift compensation must not be active if the DSC function (MD32640
\$MA_STIFFNESS_CONTROL_ENABLE=1) is being used, otherwise unexpected speed oscillations will occū when DSC is enabled/disabled.

Standardization: The input value is related to the corresponding interface standardization in
MD32250 \$MA_RATED_OUTVAL,
MD32260 \$MA_RATED_VELO, and
MD36210 \$MA_CTRLOUT_LIMIT.

36730	DRIVE_SIGNAL_TRACKING	A10	B3			
-	Acquisition of additional drive actual values	BYTE	PowerOn			
-						
-	-	1	0	1	$1 / 1$	

Description:
MD36730 \$MA_DRIVE_SIGNAL_TRACKING = 1 activates the acquisition of the following drive actual values (if they are made available by the drive):

- \$AA_LOAD Drive load
- \$AA_POWER Drive active power
- \$AA_TORQUE Drive torque setpoint
- \$AA_CURR Smoothed current setpoint (q-axis current) of drive

MD36730 \$MA_DRIVE_SIGNAL_TRACKING $=2$ activates the acquisition of the following drive actual values:
With PROFIdrive, it must be ensured that the stated values are also transmitted in the drive actual message frame (provide sufficient message frame length on the bus, assign the values to the message frame content in the drive, e.g. use message frame 116).

- \$VA_DP_ACT_TEL shows actual value message frame words

Note: Values 3 and 4 are reserved
Note: The value range of MD36730 \$MA_DRIVE_SIGNAL_TRACKING can be restricted because of reduced functions of control systems

36933	SAFE_DES_VELO_LIMIT	A05, A04	FBSI				
$\%$	SG setpoint speed limit	DOUBLE	Reset				
-							
-	4	$0.0,0.0,0.0,0.0$	0	100			
(

Description:
Weighting factors for determining the setpoint velocity limit.
The active weighting factor is selected via the axis-specific NC/PLC interface DB380x DBX5010.0 - . 1 .
Parameterization:
To set this MD optimally, it may be necessary to make a number of changes to take the dynamic performance of the drives into account.
Effect of SI monitoring with NCK involvement:

- When 0% is entered, the setpoint velocity limit is inactive.
- When 100% is entered, the setpoint is limited to the active SG stage.
- The active actual velocity limit is weighted with the selected factor, and specified to the interpolator as the setpoint limit.
- If SBH is selected, setpoint 0 is specified.
- This data is not included in the cross-check with the drive.
- This data is not included in the axis-specific checksum MD36998 \$MA_SAFE_ACT_CHECKSUM[], as it involves a 1-channel function.
Effect of drive-autonomous SI monitoring:
- The precondition is that the connection has been activated in the NCK via SIC (MD37950 \$MA_SAFE_INFO_ENABLE, bit 0).
- When 0% is entered, the NCK influence on the setpoint limit is inactive. The setpoint limit corresponds to the value read from the drive via SIC.
- When values > 0\% are entered, the NCK influence on the setpoint velocity limit is active. It affects the setpoint limit read from the drive via SIC.
- The value read from the drive via SIC is weighted with the selected factor, and specified to the interpolator as the setpoint limit.
- The parameterizable setpoint limit in the drive (p9533) is active independently of the NCK limit.
Special cases:
- If the PLC user program does not contain any settings for selecting the weighting factor, the MD value from MD36933 \$MA_SAFE_DES_VELO_LIMIT[0] applies.

Description:

This MD is only active with Safety Integrated axes and spindles.
It influences the channel-wide IPO response distribution of Safety Integrated:
$0=$ Default: All other axes/spindles in the channel are informed of the IPO stop response of this axis.
$1=$ For internal stops, the axes and machining spindles interpolating with the axis in question are also influenced via the triggered safety alarms.

Other axes/spindles in the channel, however, continue without disturbance. In the case of external stops (without an alarm) all other axes/spindles are not influenced by the safety axis/spindle stop. This allows, for example, the safe cancelation of the pulses of a spindle (using external stop A) so that the spindle can be turned manually but still move the axes safely with monitoring.
If the other axes/spindles stop together with the safety axis/spindle in certain machining situations, the user must implement this at his own responsibility using the PLC or synchronous action operations.

36968	SAFE_BRAKETEST_CONTROL						A05	-
-	Advanced settings for the brake test						UDWORD	PowerOn
CTEQ								
-	-	-	0	0×4	M			

Description:

Advanced settings for the NC-controlled and SINAMICS brake test.
Bit 2: Selection of the positioning behavior at the end of the SINAMICS brake test
= 0: Positioning at the current axis position
= 1: Positioning at the last programmed axis position

37000	FIXED_STOP_MODE							A10	-
-	Travel to fixed stop mode						UBYTE	PowerOn	
CTEQ									
-	-	-	0×0	0×1	$2 / 2$				

Description: Activation of subfunctions of "Travel to fixed stop".
Bit 0: Reserved
Bit 1: Enable the Safe brake test (NC-controlled)
= 0: Safe brake test not available
$=1$: Safe brake test can be executed under the control of the PLC
Note: The user must ensure that Travel to fixed stop and Safe brake test are not assigned simultaneously.

37002	FIXED_STOP_CONTROL	A10	F1		
-					
-	Sequence control for travel to fixed stop	UBYTE	PowerOn		
-	-	0×0	0×0	0×3	$2 / 2$

Description:

Sequence control for travel to fixed stop.
Bit 0: behavior on pulse disable at fixed stop
$=0$: travel to fixed stop is canceled
= 1: travel to fixed stop is interrupted, i.e. the drive is without power.
As soon as the pulse disable is canceled again, the drive continues with the limited torque.
Control of the torque injection see bit 1 .
Bit 1: behavior after pulse disable at the fixed stop
$=0$: the torque is applied in steps.
$=1$: the torque is applied in ramps (see MD37012 \$MA_FIXED_STOP_TORQUE_RAMP_TIME)

37010	FIXED_STOP_TORQUE_DEF		A10		
\%	Default fixed stop clamping torque		DOUBLE	PowerOn	
CTEQ					
-	5.0	0.0	100.0	2/2	M
Description: The clamping torque is set in this machine data as a of the maximum motor torque (in the case of FDD this corresponds to the of the max. current setpoint). The clamping torque becomes active as soon as the fixed stop is reached or the NC/PLC interface signal DB380x DBX1.1 (Acknowledge fixed stop reached) has been set. The entered value is a default and is active only as long as - no clamping torque has been programmed with command FXST[x] - the clamping torque set in SD 43510: FIXED_STOP_TORQUE was not changed after fixed stop had been reached.	The clamping torque is set in this machine data as a of the maximum motor torque (in the case of FDD this corresponds to the \% of the max. current setpoint). The clamping torque becomes active as soon as the fixed stop is reached or the NC/PLC interface signal DB380x DBX1.1 (Acknowledge fixed stop reached) has been set. The entered value is a default and is active only as long as - no clamping torque has been programmed with command FXST[x] - the clamping torque set in SD 43510: FIXED_STOP_TORQUE was not changed after fixed stop had been reached.				

4.3 Axis-specific NC machine data

In the case of "Travel to fixed stop" with an analog drive (611-A) and fixed clamping torque, the torque limit set in the drive should be the same as the limit entered in MD37070 \$MA_FIXED_STOP_ANA_TORQUE.
Related to:
MD37070 \$MA_FIXED_STOP_ANA_TORQUE
SD 43510: FIXED_STOP_TORQUE

37012	FIXED_STOP_TORQUE_RAMP_TIME	A10	-					
s	Time period until reaching the changed torque limit						DOUBLE	NEW CONF
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			

Description: Period in seconds until the changed torque limit is reached.
The value 0.0 deactivates the ramp function.

37014	FIXED_STOP_TORQUE_FACTOR	A10	TE3			
-	Adaption factor torque limit	DOUBLE	NEW CONF			
-						
-	-	1.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	

Description:

Interface factor torque limit.
With this factor, the torque limit of linked slave axes (MD 37250) can be weighted additionally.
Even with different motors, the torque limits can be kept equal in all linked axes.

37020	FIXED_STOP_WINDOW_DEF			A05, A10	-	
mm, degrees	Default fixed-stop monitoring window			DOUBLE	Pow	
CTEQ						
-	-	1.0	0.0	1.0e15	$2 / 2$	M

Description:

This machine data is used to enter the default for the standstill monitoring window at fixed stop.

Fixed stop monitoring becomes active as soon as the fixed stop is reached, i.e. NC/PLC interface signal DB390x DBX2.5 (Fixed stop reached) is set.
If the position at which the fixed stop is detected is left by more than the tolerance specified in MD37020 \$MA_FIXED_STOP_WINDOW_DEF alarm 20093 "Fixed stop monitoring has responded" is output and the " $\overline{\text { FXS" }} \overline{\text { function }}$ is deselected.
The value entered is a default setting and is active only as long as

- no fixed stop monitoring window is programmed with command FXSW[x],
- the fixed stop monitoring window is not changed via SD 43520: FIXED_STOP_WINDOW (after reaching of fixed stop).
Related to:
SD43520 \$SA_FIXED_STOP_WINDOW (fixed stop monitoring window)

Description:

Threshold value for fixed stop detection.
The contour deviation is checked for this threshold as a criterion for reaching the fixed stop. Waiting until the set torque limit is reached is a further condition for digital drives.
This machine data is only active if MD37040 \$MA_FIXED_STOP_BY_SENSOR = 0.

The NC/PLC interface signal DB390x DBX2.5 (Fixed stop reached) is set if the axial contour deviation exceeds the threshold value set in MD37030 \$MA_FIXED_STOP_THRESHOLD. MD irrelevant to:

MD37040 \$MA_FIXED_STOP_BY_SENSOR = 1
Related to:
NC/PLC interface signal DB390x DBX2.5 (Fixed stop reached)

Errors occurring during travel to fixed stop can be read out from the status variable \$AA_FXS irrespective of the setting of the alarm screen.
Standard: 1 = Alarms 20091, 20094 and 25042 are triggered

37052	FIXED_STOP_ALARM_REACTION		A05, A10	-	
-	Reaction with fixed stop alarms		UBYTE	PowerOn	
-					
-	- 0	0	-	1/1	M
Description:	Behavior of VDI signal Bit value $=0$: "Mode gro Bit value = 1: "Mode gro Bit0: Alarm 20090 Travel Bit1: Alarm 20091 Fixed Bit2: Alarm 20092 Travel Bit3: Alarm 20093 Stands Bit4: Alarm 20094 Travel All other bits without m Standard: $0=$ All alarms	"	ase of f ted (dri ve sible ctive ed stop d s	top -ene igge	

37060	FIXED_STOP_ACKN_MASK	A10	-					
-	Waiting for PLC acknowledgments during travel to fixed stop						UBYTE	PowerOn
CTEQ								
-	-	0×0	0×0	0×3	$2 / 2$			

Description:
This machine data defines whether or not the NC waits for acknowledgment messages from the PLC when the "Travel to fixed stop" function is active.
Bit $0=0$
Once the NC has transmitted the interface signal DB390x DBX2.4 (Activate travel to fixed stop) to the PLC, it starts the programmed traversing.
Bit $0=1$
After the NC has transmitted the interface signal DB390x DBX2.4 (Activate travel to fixed stop) to the PLC, it waits for the PLC to acknowledge with the interface signal DB380x DBX3.1 (Enable travel to fixed stop) and then starts the programmed traversing.
Bit $0=1$ should be set for analog drives so that the motion is not started before the PLC has limited the torque in the drive.
Bit $1=0$
Once the NC has transmitted the interface signal DB390x DBX2.5 (Fixed stop reached) to the PLC, the program advances to the next block.
Bit $1=1$
After the NC has transmitted the interface signal DB390x DBX2.5 (Fixed stop reached) to the PLC, it waits for the PLC to acknowledge with the interface signal DB380x DBX1. 1 (Acknowledge fixed stop reached), outputs the programmed torque and then advances to the next block.
Bit 1 should be set for analog drives so that the PLC can switch the drive to torquecontrolled operation if a programmable clamping torque has to be specified.
With digital drives (PROFIdrive), the "Travel to fixed stop" function can be executed without any acknowledgments, thus allowing program run times to be reduced.
Related to:
NC/PLC interface signal DB390x DBX2.4 (Activate travel to fixed stop)
NC/PLC interface signal DB380x DBX3.1 (Enable travel to fixed stop)
NC/PLC interface signal DB390x DBX2.5 (Fixed stop reached)
NC/PLC interface signal DB380x DBX1.1 (Acknowledge fixed stop reached)

37070	FIXED_STOP_ANA_TORQUE			A10	-	
\%	Torque limit when approaching the fixed stop for analog drives			DOUBLE	PowerOn	
CTEQ						
828d-me42	-	5.0	0.0	100.0	7/2	M
828d-te42	-	5.0	0.0	100.0	7/2	M
828d-gce42	-	5.0	0.0	100.0	7/2	M
828d-gse42	-	5.0	0.0	100.0	7/2	M
828d-me62	-	5.0	0.0	100.0	7/2	M
828d-te62	-	5.0	0.0	100.0	7/2	M
828d-gce62	-	5.0	0.0	100.0	7/2	M
828d-gse62	-	5.0	0.0	100.0	7/2	M
828d-te82	-	5.0	0.0	100.0	7/2	M
828d-me82	-	5.0	0.0	100.0	7/2	M
828d-gce82	-	5.0	0.0	100.0	0/0	S
828d-gse82	-	5.0	0.0	100.0	0/0	S

Description:	Only for analog drives (not relevant for PROFIdrive digital drives):
	This machine data defines an internal NC torque limit for analog drives. It is
	specified as percentage of the maximum drive torque (corresponds to of max. current
	setpoint with FDD).
	This torque limit is active in the NC from the start of the motion (acceleration
	torque) until the instant the fixed stop is reached.
	The torque limit must have the same effect as the torque limit set in the drive.
	This torque limit is required to ensure that:
	- There are no step changes in torque during switchover from speed-controlled to
	current-controlled or torque-controlled operation

37080	FOC_ACTIVATION_MODE						A10	-
-	Initial setting of modal torque/force limitation						UBYTE	PowerOn
-								
-	-	0×0	0×0	0×3	$2 / 2$			

Description:

The initial setting of the modal torque/force limitation is set with this MD after reset and PowerOn:
Bit 0: Response after PowerON
$=0$: FOCOF
$=1$: FOCON (modal)
Bit 1: Response after reset
$=0:$ FOCOF
$=1$: FOCON (modal)
Default setting: FOCOF after reset and PowerOn

37090	COLLISION_EXT_AXIS_MASK	EXP	-			
-						
-	Settings of the external collision avoidance	UDWORD	PowerOn			
$828 d-m e 42$	-	0×1	0×0	0×3	$7 / 2$	M
$828 d-t e 42$	-	0×1	0×0	0×3	$7 / 2$	M
$828 d-$ gce42	-	0×1	0×3	$7 / 2$	M	
$828 d-$-gse42	-	0×1	0×3	$7 / 2$	M	

4.3 Axis-specific NC machine data

$828 \mathrm{~d}-\mathrm{me} 62$	-	0×1	0×0	0×3	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{te} 62$	-	0×1	0×0	0×3	$7 / 2$	M
828 d -gce62	-	0×1	0×0	0×3	$7 / 2$	M
$828 \mathrm{~d}-$ gse62	-	0×1	0×0	0×3	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{te} 82$	-	0×1	0×0	0×3	$7 / 2$	M
$828 \mathrm{~d}-\mathrm{me} 82$	-	0×1	0×0	$7 / 2$	M	
$828 \mathrm{~d}-$ gce82	-	0×3	$0 / 0$	S		
828 -gse82	-	0×0	0×3	S		

Description:

Settings of the external collision avoidance:
Bit 0: Braking response
$=0$: Braking signals are ignored
= 1 : Braking signals are effective
Bit 1: reserved

Description: General: decimal representation, with a b
a
0: Leading axis
1: Synchronized axis
b
0: No gantry axis
1: Axis in gantry grouping 1
2: Axis in gantry grouping 2
3: Axis in gantry grouping 3

A max. of 8 gantry groupings is possible.
Examples:
11: Axis is a synchronized axis in a gantry grouping 1
2: Axis is a leading axis in gantry a grouping 2
12: Axis is a synchronized axis in a gantry grouping 2
3: Axis is a leading axis in a gantry grouping 3
13: Axis is a synchronized axis in a gantry grouping 3
Special cases:

Alarm 10650 "Incorrect gantry machine data" and 10651 "Gantry unit not defined" in the case of an incorrect gantry axis definition.
Related to:
MD37110 \$MA_GANTRY_POS_TOL_WARNING (gantry warning limit)
MD37120 \$MA_GANTRY_POS_TOL_ERROR (gantry trip limit)
MD37130 \$MA_GANTRY_POS_TOL_REF (gantry trip limit during referencing)

37110	GANTRY_POS_TOL_WARNING						A05, A10	G1, Z3
mm, degrees	Gantry warning limit						DOUBLE	Reset
-								
-	-	0.0	-1 e 15	1 e 15	$2 / 2$			

With gantry axes, the difference between the actual position values of the leading and synchronized axes is constantly monitored.
MD37110 \$MA_GANTRY_POS_TOL_WARNING is used to define a limit value for the actual position value difference; when the limit is exceeded, warning 10652 "Warning limit exceeded" is output. However, the gantry axes are not stopped internally in the control. The warning threshold must therefore be selected so that the machine can withstand the actual position value deviation between the gantry axes without sustaining mechanical damage.
Furthermore, the NC/PLC interface signal DB390x DBX5005.3 (Gantry warning limit exceeded) to the PLC is set to "1". The PLC user program can thus initiate the necessary measures (e.g. program interruption at block end) when the warning limit is exceeded.
As soon as the actual current position value difference has dropped below the warning limit again, the message is canceled and the interface signal "Gantry warning limit exceeded" is reset.

Effect of the gantry warning limit on the gantry synchronization process:
The actual position value difference between the leading and synchronized axes is determined during gantry synchronization. If the deviation is less than the gantry warning limit, the synchronizing motion of the gantry axes is automatically started internally in the control.

Otherwise the synchronizing motion has to be initiated via the PLC interface (interface signal DB380x DBX5005.4 (Start gantry synchronization process))
Value $=0$
The setting MD37110 \$MA_GANTRY_POS_TOL_WARNING = 0 is the monitoring for violation of the warning limit deactivated.
The gantry synchronization is not initiated internally in the control.
Special cases:
Alarm 10652 "Warning limit exceeded" in response to violation of the gantry warning limit.

Related to:
MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition
MD37120 \$MA_GANTRY_POS_TOL_ERROR Gantry trip limit
MD37130 \$MA_GANTRY_POS_TOL_REF
Gantry trip limit during referencing
NC/PLC interface signal DB390x DBX5005.3 (Gantry warning limit exceeded)
NC/PLC interface signal DB380x DBX5005.4 (Start gantry synchronization process)

Description:

With gantry axes, the difference between the actual position values of the leading and synchronized axes is continuously monitored. MD37120 \$MA_GANTRY_POS_TOL_ERROR defines the maximum permissible deviation in actual position value between the synchronized axis and the leading axis in the gantry axis grouping. Violation of this limit value is monitored only if the gantry axis grouping is already synchronized (NC/PLC interface signal DB390x DBX5005.5 (Gantry grouping is synchronized) = 1); otherwise the value set in MD37130 \$MA_GANTRY_POS_TOL_REF is used.
When this limit value is exceeded, alarm 10653 "Error limit exceeded" is output. The gantry axes are immediately stopped internally in the control to prevent any damage to the machine.
In addition, the NC/PLC interface signal DB390x DBX5005.2 (Gantry trip limit exceeded) to the PLC is set to "1".

Special cases:
Alarm 10653 "Error limit exceeded" in response to violation of the gantry trip limit.
Related to:
MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition
MD37110 \$MA_GANTRY_POS_TOL_WARNING Gantry warning limit
MD37130 \$MA_GANTRY_POS_TOL_REF
Gantry trip limit during referencing
NC/PLC interface signal DB390x DBX5005.5 (Gantry grouping is synchronized)
NC/PLC interface signal DB390x DBX5005.2 (Gantry trip limit exceeded)

37130	GANTRY_POS_TOL_REF	A05, A10	G1, Z3					
mm, degrees	Gantry trip limit during referencing						DOUBLE	PowerOn
-								
-	-	0.0	$-1 e 15$	$1 e 15$				
$2 / 2$	M							

Description:

With gantry axes, the difference between the actual position values of the leading and synchronized axes is continuously monitored. MD37130 \$MA_GANTRY_POS_TOL_REF defines the maximum permissible difference between the actual position values of the synchronized axis and the leading axis that is monitored if the gantry axis grouping has not yet been synchronized (NC/PLC interface signal DB390x DBX5005.5 (Gantry grouping is synchronized) = 0).
Alarm 10653 "Error limit exceeded" is output if the limit value is exceeded. The gantry axes are immediately stopped internally in the control to prevent any damage to the machine.
In addition, the NC/PLC interface signal DB390x DBX5005.2 (Gantry trip limit exceeded) to the PLC is set to "1".

Special cases:
Alarm 10653 "Error limit exceeded" in response to violation of the gantry trip limit. Related to:

MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition
MD37110 \$MA_GANTRY_POS_TOL_WARNING Gantry warning limit
MD37120 \$MA_GANTRY_POS_TOL_ERROR Gantry trip limit
NC/PLC interface signal DB390x DBX5005.5 (Gantry grouping is synchronized)
NC/PLC interface signal DB390x DBX5005.2 (Gantry trip limit exceeded)

Description: Actual value difference between master axis and slave axis in the case of alarm 10653 . Leads to alarm 10657 after Power ON.

37150	GANTRY_FUNCTION_MASK	A10	-			
-	Gantry functions	UDWORD	Reset			
-						
-	-	0×00	0	0×7	$2 / 2$	

Description:
Special gantry functions are set with this MD.
The MD is bit-coded, the following bits are assigned:
Bit $0==0$:
Extended monitoring of the actual value difference is inactive.
An offset between master and slave axes occurring in tracking or BREAK_UP is not taken into account in the monitoring of the actual value difference.
Alarm 10657 is not output if alarm 10563 occurs before Power OFF.
Bit $0=1$:
Extended monitoring of the actual value difference is active.
An offset between master and slave axes occurring in tracking or BREAK_UP is taken into account in the monitoring of the actual value difference.
Prerequisite: The gantry grouping must be rereferenced or resynchronized after control startup.
Alarm 10657 is output if alarm 10563 occurs before Power OFF.
Bit $1=0$:
Zero mark search direction of the slave axis analogous to MD 34010
Bit $1=1$:
Zero mark search direction of the slave axis same as for master axis
Bit $2=0$:
Alarm 10655 "Synchronization in progress" is output
Bit $2=1$

4.3 Axis-specific NC machine data

Alarm 10655 "Synchronization in progress" is not output

37200	COUPLE_POS_TOL_COARSE	A05, A10	M3, S3, 2.4, 6.2					
mm, degrees	Threshold value for 'Synchronism coarse'						DOUBLE	NEW CONF
-								
-	-	1.0	0.0	1.0 e 15				

Description: In synchronous mode, the positional difference between the leading and following axis(axes)/spindle(s) is monitored (only DV and AV mode or cmdpos and actpos in the case of CP programming).
The NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse) is set if the current positional difference is within the tolerance band specified by the threshold value.
Furthermore, this threshold value can be used to define the criterion for block change on activation of synchronous mode or on modification of the speed ratio parameters when the coupling is active in cases where "synchronism coarse" is selected as the block change response condition (see channel-specific MD21320
\$MC_COUPLE_BLOCK_CHANGE_CTRL_1 or language instruction COUPDEF, WAITC, CPBC).
Entering a value of "0" always sets the NC/PLC interface signal DB390x DBX5002.1
"synchronism coarse" to "1" in DV/AV mode or with cmd/actpos.
Corresponds with:
Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1
(block change response in synchronous mode)
NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse)

37202	COUPLE_POS_TOL_COARSE_2	A05, A10	-					
mm, degrees	Second threshold value for 'synchronism monitoring coarse'						DOUBLE	NEW CONF
-								
-	-	0.0	0.0	1.0 e 15	$2 / 2$			

Description: Generic coupling - second synchronism monitoring of the synchronism difference on the actual value side in the case of positional couplings - coarse threshold value.
Entering a value of "0" deactivates monitoring.
Entering a value other than "0" starts synchronism monitoring (2) once 'synchronism coarse' has been reached:
The NC/PLC interface signal DB390x DBX5007.5 (synchronism 2 coarse) indicates whether the synchronism difference on the actual value side violates the threshold value.
If the threshold value is violated, this is indicated by show alarm 22026, which can be canceled.

Corresponds with:
MD37200 \$MA_COUPLE_POS_TOL_COARSE
NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse)

37210	COUPLE_POS_TOL_FINE						A05, A10	M3, S3, 2.4
mm, degrees	Threshold value for 'Synchronism fine'						DOUBLE	NEW CONF
-								
-	-	0.5	0.0	1.0 e 15	$2 / 2$			

Description:
In synchronous mode, the positional difference between the leading and following axis(axes)/spindle(s) is monitored (only DV and AV mode or cmdpos and actpos in the case of CP programming).
The NC/PLC interface signal DB390x DBX5002.0 (synchronism fine) is set if the current positional difference is within the tolerance band specified by the threshold value.

Furthermore, this threshold value can be used to define the criterion for block change on selection of synchronous mode or on modification of the speed ratio parameters when the coupling is active in cases where "synchronism fine" is selected as the block change response condition (see channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1 or language instruction COUPDEF, WAITC, CPBC). Entering a value of "0" always sets the NC/PLC interface signal DB390x DBX5002.0 (synchronism fine) to "1" in DV/AV mode or with cmd/actpos.

Corresponds with:
Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1
(block change response in synchronous mode)
NC/PLC interface signal DB390x DBX5002.0 (synchronism fine)

Description:
Generic coupling - second synchronism monitoring of the synchronism difference on the actual value side in the case of positional couplings - fine threshold value.

Entering a value of "0" deactivates monitoring.
Entering a value other than "0" starts synchronism monitoring (2) once 'synchronism fine' has been reached:

The NC/PLC interface signal DB390x DBX5007.4 (synchronism 2 fine) indicates whether the synchronism difference on the actual value side violates the threshold value.
If the threshold value is violated, this is indicated by show alarm 22025, which can be canceled.

Corresponds with:
MD37210 \$MA_COUPLE_POS_TOL_FINE
NC/PLC interface signal DB390x DBX5002.0 (synchronism fine)

Description:
In synchronous mode, the velocity difference between the leading and following axis(axes)/spindle(s) is monitored (only VV mode or cmdvel in the case of CP programming).
The NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse) is set if the current velocity difference is within the tolerance band specified by the threshold value.

4.3 Axis-specific NC machine data

Furthermore, this threshold value can be used to define the criterion for block change on activation of synchronous mode or on modification of the speed ratio parameters when the coupling is active in cases where "synchronism coarse" is selected as the block change response condition (see channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1 or language instruction COUPDEF, WAITC, CPBC). Entering a value of "0" always sets the NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse) to "1" in VV mode or with cmdvel.
Corresponds with:
Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1
(block change response in synchronous mode)
NC/PLC interface signal DB390x DBX5002.1 (synchronism coarse)

37230	COUPLE_VELO_TOL_FINE		A05, A10	S3	
mm/min, rev/min	Velocity tolerance 'fine'		DOUBLE	NEW CONF	
-					
828d-me42	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te42	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce42	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse42	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me62	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te62	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce62	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse62	30.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-te82	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-me82	30.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce82	30.0	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gse82	30.0	0.0	$1.0 \mathrm{E}+301$	2/2	M

Description: In synchronous mode, the velocity difference between the leading and following axis(axes)/spindle(s) is monitored (only VV mode or cmdvel in the case of CP programming).
The NC/PLC interface signal DB390x DBX5002.0 (synchronism fine) is set if the current velocity difference is within the tolerance band specified by the threshold value.
Furthermore, this threshold value can be used to define the criterion for block change on activation of synchronous mode or on modification of the speed ratio parameters when the coupling is active in cases where "synchronism fine" is selected as the block change response condition (see channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1 or language instruction COUPDEF, WAITC, CPBC).
Entering a value of "0" always sets the NC/PLC interface signal DB390x DBX5002.0 (synchronism fine) to "1" in VV mode or with cmdvel.
Corresponds with:
Channel-specific MD21320 \$MC_COUPLE_BLOCK_CHANGE_CTRL_1
(block change response in synchronous mode)
NC/PLC interface signal DB390x DBX5002.0 (synchronism fine)

Description: A master/slave speed setpoint linkage is configured by indicating the machine axis number of the master axis belonging to this slave.

Related to:
MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR

37252	MS_ASSIGN_MASTER_TORQUE_CTR	A10	TE3		
-	Master axis number for torque control				
-	DWORD				
-	-	PowerOn			

Description: Torque distribution between master and slave axes is configured by stating the machine axis number of the master axis belonging to the slave.

Homogenous torque distribution is achieved by using the torque compensatory controller.
In order to do this, the controller has to know the torque actual values of the drives involved (with PROFIdrive, the message frame used must include and transfer these values, e.g. use message frame 116)
With default setting $=0$, the same master axis is used for torque control as for speed setpoint coupling MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD.
Related to:
MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD
MD37254 \$MA_MS_TORQUE_CTRL_MODE
MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN
MD37258 \$MA_MS_TORQUE_CTRL_I_TIME
MD37268 \$MA_MS_TORQUE_WEIGHT_SLAVE

4.3 Axis-specific NC machine data

37253	MS_FUNCTION_MASK	A10	TE3				
-	Master/slave settings					UDWORD	NEW CONF
-							
-	-	0×0	0	$0 \times 7 F F F F F F F$			

Description:

Parameterizing a master/slave coupling
Bit $0=0$:
The scaling of MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN, MD37260 \$MA_MS_MAX_CTRL_VELO is smaller than described in the documentation by the factor 1s/IPO cycle.
Bit $0=1$:
The scaling of MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN, MD37260 \$MA_MS_MAX_CTRL_VELO
corresponds to the documentation.
Bit $1=0$:
With MASLDEF, the master axis for torque compensation control is the programmed
axis
Bit $1=1$:
With MASLDEF, the master axis for torque compensation control is the axis configured in MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR.

37254	MS_TORQUE_CTRL_MODE	A10	TE3					
-	Torque compensatory controller interconnection						DWORD	Immediately
-								
-	-	0	0	3				

Description:
The output of the torque compensatory controller is connected to
0: Master and slave axis
1: Slave axis
2: Master axis
3: No axis
when the torque control is active.
Related to:
MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR
MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD
MD37254 \$MA_MS_TORQUE_CTRL_MODE

37255	MS_TORQUE_CTRL_ACTIVATION				A10			
-	Torque compensatory controller activation						BYTE	NEW CONF
-								
-	-	0	0	1	$2 / 2$			

Description:
The torque compensatory controller can be switched ON and OFF by means of MD37254 \$MA_MS_TORQUE_CTRL_MODE or via the NC/PLC interface signal DB380x DBX5000.4 (torque compensatory controller on).
In order to do this, the controller has to know the torque actual values of the drives involved (with PROFIdrive, the message frame used must include and transfer these values, e.g. use message frame 116).

In the case of the PLC, MD37254 \$MA_MS_TORQUE_CTRL_MODE is only used for configuring the interconnection of the torque compensatory controller.
0: Switch ON/OFF via MD37254 \$MA_MS_TORQUE_CTRL_MODE
1: Switch ON/OFF via the NC/PLC interface signal DB380x DBX5000.4 (torque
compensatory controller on)

37260	MS_MAX_CTRL_VELO		A10	TE3	
\%	Torque compensatory controller limit		DOUBLE	NEV	
-					
-	100.0	0.0	100.0	2/2	M

Torque compensatory controller limitation
The speed setpoint value calculated by the torque compensatory controller is limited.
The limit that can be entered as a percentage refers to MD32000 \$MA_MAX_AX_VELO of the slave axis.

Related to:
MD37254 \$MA_MS_TORQUE_CTRL_MODE
MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN
MD37258 \$MA_MS_TORQUE_CTRL_I_TIME
MD32000 \$MA_MAX_AX_VELO

4.3 Axis-specific NC machine data

1: Permanent coupling
This machine data activates the permanent coupling.
PLC interface signals and language commands do not have any effect.
Related to:
MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR
MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD

37263	MS_SPIND_COUPLING_MODE	A10	TE3			
-						
-	Link response of a spindle	BYTE	NEW CONF			
-	-	0	0	1		

Description:

Link behavior of a speed-controlled spindle:
0: Link is closed/released in standstill only.
1: Link is closed/released already during motion.
The configuration is valid both for activation/deactivation via NC/PLC interface
signal DB380x DBX5000.7 (activate MS) and for MASLON, MASLOF, MASLOFs, MASLDEL

Description:

```
A constant tension torque between the master and the slave axis can be entered as a
percentage of the normalization torque of the slave axis.
The value entered here is derived from the SINAMICS parameter P2003
Use of a tension torque requires an active torque compensatory controller (compare
MD37255 $MA_MS_TORQUE_CTRL_ACTIVATION).
Related to:
MD37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR
MD37266 $MA_MS_TENSION_TORQ_FILTER_TIME
MD37255 $MA_MS_TORQUE_CTRL_ACTIVATION
```

37266	MS_TENSION_TORQ_FILTER_TIME	A10	TE3			
s	Filter time constant tension torque	DOUBLE	NEW CONF			
-						
-	-	0.0	0.0	100.0	$2 / 2$	

Description: The tension torque between the master and slave axes can be activated via a PT1 filter. Any change of MD37264 \$MA_MS_TENSION_TORQUE is then travelled out with the time constant of the filter.

As default, the filter is inactive; any torque change becomes active unfiltered.
Related to:
MD37264 \$MA_MS_TENSION_TORQUE

37268	MS_TORQUE_WEIGHT_SLAVE	A10	TE3					
$\%$	Torque weighting of slave axis						DOUBLE	NEW CONF
-								
-	-	50.0	1.0	100.0	$2 / 2$			

Description:

The torque share that the slave axis contributes to the total torque can be configured via the weighting. This enables different torque shares to be implemented between the master and slave axes.
In the case of motors with the same rated torque, a 50% to 50% torque sharing is suggested.

```
The torque share of the master axis results implicitly from 100% - MD37268
$MA_MS_TORQUE_WEIGHT_SLAVE.
Related to:
MD37252 $MA_MS_ASSIGN_MASTER_TORQUE_CTR
MD37266 $MA_MS_TENSION_TORQ_FILTER_TIME
```

37270	MS_VELO_TOL_COARSE						A10	TE3, Z3
$\%$	Master/slave speed tolerance coarse						DOUBLE	NEW CONF
-	-	5.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$			
-	-	M						

Tolerance window, coarse, for the differential speed between the master and the slave.
If the speed difference is within the tolerance window, the NC/PLC interface signal DB390x DBX5000.4 (Master-Slave compensatory controller active) is set.
The tolerance value is entered as a percentage of MD32000 \$MA_MAX_AX_VELO.

37272	MS_VELO_TOL_FINE						A10	TE3, Z3
$\%$	Master/slave speed tolerance fine							
-								
-	-	1.0	DOUBLE	NEW CONF				

Description:

Tolerance window, fine, for the differential speed between the master and the slave.
If the speed difference is within the tolerance window, the NC/PLC interface signal DB390x DBX5000.3 (Master/Slave coarse) is set.

The tolerance value is entered as a percentage of MD32000 \$MA_MAX_AX_VELO.

Description: Inverting the traversing direction of a slave axis in the linked status.
0: Equidirectional to the master axis
1: Inverse to the master axis

37300	NOCO_ENABLE	EXP, A01, A09	-			
-	Activation of the nodding compensation values	UDWORD	NEW CONF			
-						
-	-	0×07	0×00	0×07	$2 / 2$	

Description:
Activation of the injection values of the nodding compensation
Bit $0=0$:
MD37318 \$MA_NOCO_COMPLIANCE_1 not active
Bit 0 = 1:
MD37318 \$MA_NOCO_COMPLIANCE_1 active
Bit $1=0$:
MD37328 \$MA_NOCO_COMPLIANCE_2 not active
Bit 1 = 1:
MD37328 \$MA_NOCO_COMPLIANCE_2 active
Bit 2 = 0:
MD37338 \$MA_NOCO_COMPLIANCE_3 not active
Bit 2 = 1:
MD37338 \$MA_NOCO_COMPLIANCE_3 active

4.3 Axis-specific NC machine data

```
Related to:
MD37318 $MA_NOCO_COMPLIANCE_1
MD37328 $MA_NOCO_COMPLIANCE_2
MD37338 $MA_NOCO_COMPLIANCE_3
```


Description: The time constant is used to smooth the injected values of the nodding compensation. The smoothing is not effective if the time constant is less than 0.1 of the position controller cycles.
Related to:
MD37310 \$MA_NOCO_INPUT_AX_1
MD37320 \$MA_NOCO_INPUT_AX_2
MD37330 \$MA_NOCO_INPUT_AX_3
MD37318 \$MA_NOCO_COMPLIANCE_1
MD37328 \$MA_NOCO_COMPLIANCE_2
MD37338 \$MA_NOCO_COMPLIANCE_3

37310	NOCO_INPUT_AX_1	EXP, A01, A09	-						
-	Machine axis that causes a nodding motion						DWORD	NEW CONF	
-									
-	-	0	0	31					

Description: Number of the machine axis that causes a nodding motion in this axis in order to activate the nodding compensation. The nodding compensation acts in combination with MD37318 \$MA_NOCO_COMPLIANCE_1.
Related to:
MD37302 \$MA_NOCO_FILTER_TIME
MD37312 \$MA_NOCO_ADAPT_AX_1
MD37318 \$MA_NOCO_COMPLIANCE_1

37312	NOCO_ADAPT_AX_1	EXP, A01, A09	-					
-	Machine axis whose position affects the nodding motion						DWORD	NEW CONF
-								
-	-	0	0	31				

Description: Number of the machine axis whose position affects the nodding motion in this axis.
The position-dependent adaptation of the nodding compensation takes place in
combination with MD 37316 \$MA_NOCO_ADAPT_POS_1 and MD37318 \$MA_NOCO_COMPLIANCE_1.
A position-dependent adaptation is only active if a machine axis number is
parameterized and there is a value greater than 1 in MD37314 \$MA_NOCO_ADAPT_NUM_1.
Related to:
MD37310 \$MA_NOCO_INPUT_AX_1
MD37314 \$MA_NOCO_ADAPT_NUM_1
MD37316 \$MA_NOCO_ADAPT_POS_1
MD37318 \$MA_NOCO_COMPLIANCE_1

37314	NOCO_ADAPT_NUM_1	EXP, A01, A09	-						
-	Number of positions of the adaptation curve of the nodding compensation	DWORD	NEW CONF						
-									
-	-	1	1	3	$2 / 2$			$⿻$	M
:---									

Description: Number of the axis positions used for the position-dependent adaptation of the nodding compensation.
A position-dependent adaptation is only active if the number of positions is greater than 1 and a machine axis number is parameterized in MD37312 \$MA_NOCO_ADAPT_AX_1.
Related to:
MD37310 \$MA_NOCO_INPUT_AX_1
MD37312 \$MA_NOCO_ADAPT_AX_1
MD37316 \$MA_NOCO_ADAPT_POS_1
MD37318 \$MA_NOCO_COMPLIANCE_1

37316	NOCO_ADAPT_POS_1	EXP, A01, A09	-			
mm						
-	Positions of the adaptation curve of the nodding compensation	DOUBLE	NEW CONF			
-	3	$0.0,0.0,0.0$	-	-	$2 / 2$	

Description:

Positions of the machine axis from MD37312 \$MA_NOCO_ADAPT_AX_1 at which the compliance factors in MD37318 \$MA_NOCO_COMPLIANCE_1 are active.
A position-dependent adaptation is only active if the number of positions in MD37314 \$MA_NOCO_ADAPT_NUM_1 is greater than 1 and a machine axis number is parameterized in MD3 $\overline{7} 312$ \$ $\mathrm{MA} _\mathrm{NO} \overline{\mathrm{C}} \mathrm{O}$ _A $\overline{\mathrm{D} A P T _A X _1 . ~}$
Related to:
MD37310 \$MA_NOCO_INPUT_AX_1
MD37312 \$MA_NOCO_ADAPT_AX_1
MD37314 \$MA_NOCO_ADAPT_NUM_1
MD37318 \$MA_NOCO_COMPLIANCE_1

37318	NOCO_COMPLIANCE_1	EXP, A01, A09	-								
-	Compliance factor for nodding compensation -						3	$0.0,0.0,0.0$	-0.000999	DOUBLE	NEW CONF

Description:
Factor for compensating the nodding motion caused by MD37310 \$MA_NOCO_INPUT_AX_1.
Compliance factor $=$ compliance in the position (m)/ acceleration (m/s2)
If no position-dependent adaptation is active, only the value in MD37318
\$MA_NOCO_COMPLIANCE_1[0] is active.
With active position-dependent adaptation, as many values from MD37318
\$MA_NOCO_COMPLIANCE_1 are active as are parameterized in MD37314 \$MA_NOCO_ADAPT_NUM_1.
Related to:
MD37300 \$MA_NOCO_ENABLE
MD37302 \$MA_NOCO_FILTER_TIME
MD37310 \$MA_NOCO_INPUT_AX_1
MD37312 \$MA_NOCO_ADAPT_AX_1
MD37314 \$MA_NOCO_ADAPT_NUM_1
MD37316 \$MA_NOCO_ADAPT_POS_1

4.3 Axis-specific NC machine data

37320	NOCO_INPUT_AX_2	EXP, A01, A09	-					
-	Machine axis that causes a nodding motion						DWORD	NEW CONF
-								
-	-	0	0	31				

Description: Number of the machine axis that causes a nodding motion in this axis in order to activate the nodding compensation. The nodding compensation acts in combination with
MD37328 \$MA_NOCO_COMPLIANCE_2.
Related to:
MD37302 \$MA_NOCO_FILTER_TIME
MD37322 \$MA_NOCO_ADAPT_AX_2
MD37328 \$MA_NOCO_COMPLIANCE_2

37322	NOCO_ADAPT_AX_2	EXP, A01, A09	-						
-	Machine axis whose position affects the nodding motion						DWORD	NEW CONF	
-	$2 / 2$						M		
-	-	0	0	31	2				

Description:

Number of the machine axis whose position affects the nodding motion in this axis. The position-dependent adaptation of the nodding compensation takes place in combination with MD 37326 \$MA_NOCO_ADAPT_POS_2 and MD37328 \$MA_NOCO_COMPLIANCE_2.
A position-dependent adaptation is only active if a machine axis number is parameterized and there is a value greater than 1 in MD37324 \$MA_NOCO_ADAPT_NUM_2. Related to:
MD37320 \$MA_NOCO_INPUT_AX_2
MD37324 \$MA_NOCO_ADAPT_NUM_2
MD37326 \$MA_NOCO_ADAPT_POS_2
MD37328 \$MA_NOCO_COMPLIANCE_2

37324	NOCO_ADAPT_NUM_2		EXP, A01, A09	-	
-	Number of positions of the adaptation curve of the nodding compensation		DWORD	NEW CONF	
-					
-	1	1 1	3	2/2	M

Description:
Number of the axis positions used for the position-dependent adaptation of the nodding compensation.
A position-dependent adaptation is only active if the number of positions is greater than 1 and a machine axis number is parameterized in MD37322 \$MA_NOCO_ADAPT_AX_2.
Related to:
MD37320 \$MA_NOCO_INPUT_AX_2
MD37322 \$MA_NOCO_ADAPT_AX_2
MD37326 \$MA_NOCO_ADAPT_POS_2
MD37328 \$MA_NOCO_COMPLIANCE_2

37326	NOCO_ADAPT_POS_2		EXP, A01, A09	-	
mm	Positions of the adaptation curve of the nodding compensation		DOUBLE	NEW CONF	
-					
-	$3 \quad 0.0,0.0,0.0$	-	-	2/2	M

Description: Positions of the machine axis from MD37322 \$MA_NOCO_ADAPT_AX_2 at which the compliance factors in MD37328 \$MA_NOCO_COMPLIANCE_2 are active.

A position-dependent adaptation is only active if the number of positions in MD37324 \$MA_NOCO_ADAPT_NUM_2 is greater than 1 and a machine axis number is parameterized in MD3 $\overline{7} 322$ § MA _NOC̄ C _A $\overline{\mathrm{D} A P T _A X _2 . ~}$

Related to:
MD37320 \$MA_NOCO_INPUT_AX_2
MD37322 \$MA_NOCO_ADAPT_AX_2
MD37324 \$MA_NOCO_ADAPT_NUM_2
MD37328 \$MA_NOCO_COMPLIANCE_2

37330	NOCO_INPUT_AX_3	EXP, A01, A09	-					
-	Machine axis that causes a nodding motion						DWORD	NEW CONF
-								
-	-	0	0	31	$2 / 2$			

Description: Number of the machine axis that causes a nodding motion in this axis in order to activate the nodding compensation. The nodding compensation acts in combination with MD37338 \$MA_NOCO_COMPLIANCE_3.
Related to:
MD37302 \$MA_NOCO_FILTER_TIME
MD37332 \$MA_NOCO_ADAPT_AX_3
MD37338 \$MA_NOCO_COMPLIANCE_3


```
MD37336 $MA_NOCO_ADAPT_POS_3
MD37338 $MA_NOCO_COMPLIANCE_3
```

37334	NOCO_ADAPT_NUM_3	EXP, A01, A09	-			
-	Number of positions of the adaptation curve of the nodding compensation	DWORD	NEW CONF			
-						
-	-	1	1	3		

Description:
Number of the axis positions used for the position-dependent adaptation of the nodding compensation.
A position-dependent adaptation is only active if the number of positions is greater than 1 and a machine axis number is parameterized in MD37332 \$MA_NOCO_ADAPT_AX_3.

Related to:
MD37330 \$MA_NOCO_INPUT_AX_3
MD37332 \$MA_NOCO_ADAPT_AX_3
MD37336 \$MA_NOCO_ADAPT_POS_3
MD37338 \$MA_NOCO_COMPLIANCE_3

Description:
Positions of the machine axis from MD37332 \$MA_NOCO_ADAPT_AX_3 at which the compliance factors in MD37338 \$MA_NOCO_COMPLIANCE_3 are active.
A position-dependent adaptation is only active if the number of positions in MD37334 \$MA NOCO ADAPT NUM 3 is greater than 1 and a machine axis number is parameterized in MD37332 \$MA_NOC̄_ADAPT_AX_3.
Related to:
MD37330 \$MA NOCO INPUT AX 3
MD37332 \$MA_NOCO_ADAPT_AX_3
MD37334 \$MA_NOCO_ADAPT_NUM_3
MD37338 \$MA_NOCO_COMPLIANCE_3

37338	NOCO_COMPLIANCE_3	EXP, A01, A09	-					
-	Compliance factor of the nodding compensation						DOUBLE	NEW CONF
-								
-	3	$0.0,0.0,0.0$	-0.000999	+0.000999				

Description: Factor for compensating the nodding motion caused by MD37330 \$MA_NOCO_INPUT_AX_3.
Compliance factor = compliance in the position (m)/ acceleration (m/s2)
If no position-dependent adaptation is active, only the value in MD37338
\$MA_NOCO_COMPLIANCE_3[0] is active.
With active position-dependent adaptation, as many values from MD37338
\$MA_NOCO_COMPLIANCE_3 are active as are parameterized in MD37334 \$MA_NOCO_ADAPT_NUM_3.
Related to:
MD37300 \$MA_NOCO_ENABLE
MD37302 \$MA_NOCO_FILTER_TIME
MD37330 \$MA_NOCO_INPUT_AX_3
MD37332 \$MA_NOCO_ADAPT_AX_3
MD37334 \$MA_NOCO_ADAPT_NUM_3
MD37336 \$MA_NOCO_ADAPT_POS_3

37400	EPS_TLIFT_TANG_STEP			A10	T3	
mm, degrees	Tangent angle for corner recognition			DOUBLE	Res	
CTEQ						
828d-me42	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te42	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse42	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-me62	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce62	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse62	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-te82	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M
828d-me82	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/2	M
828d-gce82	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M
828d-gse82	-	5.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	2/2	M

Description:

If TLIFT has been programmed and the axis is tracked tangentially, a step of the position setpoint larger than MD37400 \$MA_EPS_TLIFT_TANG_STEP causes an intermediate block to be inserted. The intermediate block traverses the axis to the position corresponding to the start tangent in the next block.
MD irrelevant if: TLIFT not activated
Related to:
TLIFT instruction

Description: Default offset (angle), which the tracked axis forms with the tangent. The angle acts
in addition to the angle programmed in the TANGON block.
MD irrelevant if tangential tracking not active.
Related to:
TANGON instruction

37500	ESR_REACTION			EXP, A01, A10	M3,	
-	Axial mode of "Extended Stop and Retract"			BYTE	NEW	
CTEQ						
-	0	0	0	22	7/2	M

4.3 Axis-specific NC machine data

Description: | Selection of the response to be triggered via system variable "\$AN_ESR_TRIGGER". |
| :--- |
| $0=$ No response Reaktion (or only external response through synchronized action |
| programming of rapid digital outputs). |
| $21=N C$-controlled retraction axis |
| $22=N C$ controlled stopping axis |

37510	AX_ESR_DELAY_TIME1	EXP, A01, A10	P2			
s	Delay time ESR single axis	DOUBLE	NEW CONF			
CTEQ						
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	

Description: If, for example, an alarm occurs, the deceleration time can be delayed by means of this MD, e.g. to allow in case of gear hobbing the retraction from the tooth gap first.

37511	AX_ESR_DELAY_TIME2	EXP, A01, A10	P2			
s	ESR time for interpolatory deceleration of single axis	DOUBLE	NEW CONF			
CTEQ						
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	

Description: The time for interpolatory braking specified here in MD37511 \$MA_AX_ESR_DELAY_TIME2 still remains after expiry of the time MD37510 \$MA_AX_ESR_DELAY_TIME1.
Rapid braking with subsequent tracking is initiated after expiry of the time MD37511 \$MA_AX_ESR_DELAY_TIME2.

Description:
Threshold value for VDI signals
If, with active EG axis link, the maximum velocities stored in MD 32000:
\$MA_MAX_AX_VELO have been reached for the current velocity of the axis by the
percentage set here, a warning (signal) for velocity is output.
Related to:
MD32000 \$MA_MAX_AX_VELO

37560	EG_ACC_TOL							A05, A10	M3, Z3
$\%$	Threshold value for 'Axis accelerating'							DOUBLE	NEW CONF
-									
828 d-me42	-	25.0	0.0	$1.0 \mathrm{E}+301$	$0 / 0$	S			
828 d-te42	-	0.0	$1.0 \mathrm{E}+301$	$2 / 2$	M				
828d-gce42	-	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M				

828d-gse42	-	25.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-me62	-	25.0	0.0	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	25.0	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-gce62	-	25.0	0.0	$1.0 \mathrm{E}+301$	$7 / 2$	M
828d-gse62	-	25.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-te82	-	25.0	0.0	$1.0 \mathrm{E}+301$	2/2	M
828d-me82	-	25.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gce82	-	25.0	0.0	$1.0 \mathrm{E}+301$	7/2	M
828d-gse82	-	25.0	0.0	$1.0 \mathrm{E}+301$	7/2	M

Description:

Threshold value for VDI signal "Axis accelerates"
If, with active EU axis link, the maximum accelerations stored in MD 32300:
\$MA_MAX_AX_ACCEL have been reached for the current acceleration of the axis by the percentage set here, a warning (signal) for acceleration is output.
Korrespondiert mit:
MD32300 \$MA_MAX_AX_ACCEL

37620	PROFIBUS_TORQUE_RED_RESOL		EXP, A01	-	
\%	Resolution PROFIdrive torque reduction		DOUBLE	NEW	
-					
-	1.0	0.005	10.0	2/2	M

Description:
For PROFIdrive only:
Resolution of torque reduction on the PROFIdrive (LSB significance)
The MD is only relevant for controls with PROFIdrive drives. For these controls, it defines the resolution of the cyclic interface data "Torque reduction value" (only exists for MD13060 \$MN_DRIVE_TELEGRAM_TYPE = 101 ff. or 201 ff.), which is required for the "Travel to fixed stop" functionality.
The 1\% default value corresponds to the original significance. The torque limit is transferred on the PROFIdrive with increments of 1%; the value 100 in the corresponding PROFIdrive message frame data cell corresponds to full torque reduction (i.e. without force).

By changing this MD to 0.005%, for example, the value can be entered in increments of 0.005%, i.e. the increments for the torque limit value become finer by a factor of 200 .
For limitation to the rated torque, the value 0 is transmitted in this case; complete torque reduction (i.e. without force) characterizes the transmittable value 10000 .
To avoid misadaptation, the setting value of the MD must be selected to match the interpretation configured on the drive side or the firmly defined interpretation of the torque reduction value. If the setting of the control on the drive (manufacturerspecific drive parameter) is known (i.e. with SIEMENS drives), the software automatically sets the MD; in other words, in this case the MD is merely used for display purposes.

37800	OEM_AXIS_INFO			A01, A11	-	
-	OEM version information			STRING	PowerOn	
-						
-	2	,	-	-	2/2	M

Description:

A version information freely available to the user
(is indicated in the version screen)

37950	SAFE_INFO_ENABLE		A01, A05	FBS	
-	SIC/SCC and PROFIsafe enable		UDWORD	PowerOn	
-					
-	-	0	0x0001	7/2	M

4.3 Axis-specific NC machine data

Description: MD to enable the evaluation of the SIC/SCC telegram between the control and drive, and to enable the transfer of the PROFIsafe telegram between the F-PLC and the drive Bit 0: Enables the evaluation of the Safety Info Channel / Safety Control Channel (SIC/ SCC)

For axes with NC Safety functionality, only the drive-integrated brake test is supported via SIC/SCC
Bit 1: Enables PROFIsafe communication between the F-PLC and drive

37954	SAFE_INFO_MODULE_NR			A01	FBS	
-	SIC/SCC module number			BYTE	PowerOn	
-						
828d-me42	-	2, 3, 4, 1, 5	1	31	$2 / 2$	M
828d-te42	-	2, 3, 1, 5, 4	1	31	$2 / 2$	M
828d-gce42	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M
828d-gse42	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M
828d-me62	-	2, 3, 4, 1, 5	1	31	2/2	M
828d-te62	-	2, 3, 1, 5, 4, 6	1	31	2/2	M
828d-gce62	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M
828d-gse62	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	2/2	M
828d-te82	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	2/2	M
828d-me82	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M
828d-gce82	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M
828d-gse82	-	1, 2, 3, 4, 5, 6, 7, 8...	1	31	$2 / 2$	M

Description:
Number to select a logical basis address from MD13374 \$MN_SAFE_INFO_DRIVE_LOGIC_ADDR.

38000	MM_ENC_COMP_MAX_POINTS			A01, A09, A02	K3	
-	Number of intermediate points for interpol. compensation (SRAM)			DWORD	PowerOn	
-						
828d-me42	2	200, 200	0	5000	7/2	M
828d-te42	2	200, 200	0	5000	7/2	M
828d-gce42	2	200, 200	0	5000	7/2	M
828d-gse42	2	200, 200	0	5000	7/2	M
828d-me62	2	200, 200	0	5000	7/2	M
828d-te62	2	200, 200	0	5000	7/2	M
828d-gce62	2	200, 200	0	5000	7/2	M
828d-gse62	2	200, 200	0	5000	7/2	M
828d-te82	2	200, 200	0	5000	7/2	M
828d-me82	2	200, 200	0	5000	7/2	M
828d-gce82	2	200, 200	0	5000	ReadOnly	S
828d-gse82	2	200, 200	0	5000	ReadOnly	S

When selecting the number of interpolation points and/or the distances between them, it is important to take into account the size of the resulting compensation table and the space required in the buffered NC user memory (SRAM). 8 bytes are required for each compensation value (interpolation point).
The index [n] has the following coding: [encoder no.]: 0 or 1
Special cases: Notice:
After any change in MD38000 \$MA_MM_ENC_COMP_MAX_POINTS, the buffered NC user memory is automatically re-allocated on system power-on.
All data in the buffered NC user memory are then lost (e.g. part programs, tool offsets etc.). Alarm 6020 "Machine data changed - memory reallocated" is output.

If reallocation of the $N C$ user memory fails because the total memory capacity available is insufficient, alarm 6000 "Memory allocation made with standard machine data" is output.
In this case, the $N C$ user memory division is allocated using the default values of the standard machine data.

References:
/FB/, S7, "Memory Configuration"
/DA/, "Diagnostics Guide"
Related to:
MD32700 \$MA_ENC_COMP_ENABLE[n] LEC active
References:
/FB/, S7, "Memory Configuration"

38010	MM_QEC_MAX_POINTS			A01, A09	K3	
-	Number of values for quadrant error compens. with neural network			DWORD	PowerOn	
-						
828d-me42	1	0	0	1040	7/2	M
828d-te42	1	0	0	1040	7/2	M
828d-gce42	1	0	0	1040	7/2	M
828d-gse42	1	0	0	1040	7/2	M
828d-me62	1	0	0	1040	7/2	M
828d-te62	1	0	0	1040	7/2	M
828d-gce62	1	0	0	1040	7/2	M
828d-gse62	1	0	0	1040	7/2	M
828d-te82	1	0	0	1040	7/2	M
828d-me82	1	0	0	1040	7/2	M
828d-gce82	1	20	0	1040	ReadOnly	S
828d-gse82	1	20	0	1040	ReadOnly	S

Description:
In quadrant error compensation with neural networks (QEC), the number of compensation values required has to be entered for each axis that is to be compensated.

The required number can be calculated as follows using the defined parameters: MD38010 \$MA_MM_QEC_MAX_POINTS _ (\$AA_QEC_COARSE_STEPS + 1) ^ \$AA_QEC_FINE_STEPS \$AA_QEC_COARSE_STEPS Coarse quantization of the characteristic (system variable) \$AA_QEC_FINE_STEPS Fine quantization of the characteristic (system variable)
For "direction-dependent" compensation, the number must be greater than or equal to double the value of this product.
When selecting coarse or fine quantization, the resulting size of the compensation table and its memory requirement in the buffered user memory must be taken into account. 4 bytes are required for each compensation value. If the value 0 is entered, no memory is reserved for the table; i.e. the table does not exist and the function cannot therefore be activated.

Special cases: Caution!

If MD38010 \$MA_MM_QEC_MAX_POINTS is altered, the buffered NC user memory is automatically re-allocated on system power-on. This deletes all the user data in the buffered user memory (e.g. drive and HMI machine data, code, tool offsets, part programs etc.).
Note:
For better handling, a large number should be chosen initially, because the exact number of interpolation points that are required is not known when the compensation is started for the first time. This number can be reduced to the required size as soon as the characteristics have been recorded and saved. After performing another power-on, the saved characteristics can be reloaded.
References:
/FB/, S7, "Memory Configuration"

NC setting data

41010	JOG_VAR_INCR_SIZE						-	H1
-								
-	Size of the variable increment for JOG	DOUBLE	Immediately					
-	-	0.	- MD_DBLMAX	$1.0 \mathrm{E}+301$				
$7 / 7$	U							

Description:
This setting data defines the number of increments when variable increment (INCvar) is selected. This increment size is traversed by the axis in JOG mode each time the traverse key is pressed or the handwheel is turned one detent position and variable increment is selected (PLC interface signal "Active machine function: INC variable" for machine or geometry axes is set to 1). The defined increment size also applies to DRF.

Note:
Please note that the increment size is active for incremental jogging and handwheel jogging. So, if a large increment value is entered and the handwheel is turned, the axis might cover a large distance (depends on setting in MD31090 \$MA_JOG_INCR_WEIGHT).
SD irrelevant to
JOG continuous
Related to
NC/PLC interface signal DB3300 DBX1001.5,1005.5,1009.5 (Geometry axis 1-3 active machine function: INC variable) or NC/PLC interface signal DB390x DBX5.5 (Active machine function: INC variable)

MD31090 \$MA_JOG_INCR_WEIGHT (weighting of an increment for INC/handwheel)

Description:

1: Jog mode for JOG continuous
In jog mode (default setting) the axis traverses as long as the traverse key is held down and an axis limitation has not been reached. When the key is released the axis is decelerated to zero speed and the movement is considered complete.
0: Continuous operation for JOG continuous
In continuous operation the traverse movement is started with the first rising edge of the traverse key and continues to move even after the key is released. The axis can be stopped again by pressing the traverse key again (second rising edge).

SD irrelevant for
Incremental jogging (JOG INC)
Reference point approach (JOG REF)

Description:

Bit $0=0$:
The behavior depends on the following:

- in the case of an axis/spindle:
on the axial SD43300 \$SA ASSIGN FEED PER REV SOURCE
- in the case of a geometry axis with an active frame with rotation:
on the channel-specific SD42600 \$SC_JOG_FEED_PER_REV_SOURCE
- in the case of an orientation axis:
on the channel-specific SD42600 \$SC_JOG_FEED_PER_REV_SOURCE
Bit $0=1$:
A JOG motion with revolutional feedrate shall be traversed depending on the master spindle.

The following must be considered:

- If a spindle is the master spindle itself, it will be traversed without revolutional feedrate.
- If the master spindle is in stop position and if SD43300
\$SA_ASSIGN_FEED_PER_REV_SOURCE (with an axis/spindle) or SD42600
\$SC_JOG_FEED_PER_REV_SOURCE (with a geometry axis with an active frame with rotation, or with an orientation axis) $=-3$, traversing will be carried out without revolutional feedrate.

Bit $1=0$:
The axis/spindle, geometry axis or orientation axis will be traversed with revolutional feedrate even during rapid traverse (see bit 0 for selection).

Bit 1 = 1 :
The axis/spindle, geometry axis or orientation axis is always traversed without revolutional feedback during rapid traverse.
Bit $2=0$:
The axis/spindle, geometry axis or orientation axis is traversed with revolutional feedrate during JOG handwheel travel, too (see bit 0 for selection).
Bit 2 = 1 :
The axis/spindle, geometry axis or orientation axis is always traversed without revolutional feedrate during JOG handwheel travel.
Bit $3=0$:

The axis/spindle is traversed with revolutional feedrate during DRF handwheel travel, too (see bit 0 for selection).
Bit $3=1$:
The axis/spindle is always traversed without revolutional feedrate during DRF handwheel travel.

41110	JOG_SET_VELO						-	H1
$\mathrm{mm} / \mathrm{min}$	Axis velocity in JOG						DOUBLE	Immediately
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
Value not equal to 0 :
The velocity value entered applies to linear axes traversed in JOG mode if linear feedrate (G94) is active for the relevant axis (SD41100 \$SN_JOG_REV_IS_ACTIVE = 0). The axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)
- handwheel traversing.

The value entered is valid for all linear axes and must not exceed the maximum permissible axis velocity (MD32000 \$MA_MAX_AX_VELO).
In the case of DRF, the velocity defined by SD41110 \$SN_JOG_SET_VELO is reduced by MD32090 \$MA_HANDWH_VELO_OVERLAY_FACTOR.
Value = 0 :
If 0 has been entered in the setting data, the active linear feedrate in JOG mode is MD32020 \$MA_JOG_VELO "Jog axis velocity". Each axis can be given its own JoG velocity with this MD (axial MD).
SD irrelevant for

- Linear axes if SD41100 \$SN_JOG_REV_IS_ACTIVE = 1
- Rotary axes (SD41130 \$SN_JOG_ROT_AX_SET_VELO is active here)

Application example(s)
The operator can thus define a JOG velocity for a specific application. Related to
SD41100 \$SN_JOG_REV_IS_ACTIVE (revolutional feedrate with JOG active)
Axial MD32020 \$MA_JOG_VELO (JOG axis velocity)
Axial MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)
Axial MD32090 \$MA_HANDWH_VELO_OVERLAY_FACTOR (ratio of JOG velocity to handwheel velocity (DRF))
SD41130 \$SN_JOG_ROT_AX_SET_VELO (JOG speed with rotary axes)

$828 \mathrm{~d}-\mathrm{me} 82$	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	U
828 d -gce82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	U
828 d -gse82	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description:

Value not equal to 0 :
The velocity value entered applies to axes traversed in JOG mode if revolutional
feedrate (G95) is active for the relevant axis (SD41100 \$SN_JOG_REV_IS_ACTIVE = 1).
The axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)
- handwheel traversing. The value entered is valid for all axes and must not exceed the maximum permissible axis velocity (MD32000 \$MA_MAX_AX_VELO).

Value = 0:
If 0 has been entered in the setting data, the active revolutional feedrate in JOG mode is MD32050 \$MA_JOG_REV_VELO "revolutional feedrate with JOG".
Each axis can be given its own revolutional feedrate with this MD (axial MD).
SD irrelevant for

- For axes if SD41100 \$SN_JOG_REV_IS_ACTIVE = 0

Application example(s)
The operator can define a JOG velocity for a particular application.
Related to
Axial SD41100 \$SN_JOG_REV_IS_ACTIVE (revolutional feedrate for JOG active)
Axial MD32050 \$MA_JOG_REV_VELO (revolutional feedrate with JOG)
Axial MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)

41130	JOG_ROT_AX_SET_VELO		-	H1	
rev/min	Axis velocity for rotary axes in JOG mode		DOUBLE	Imm	
-					
-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U

Description:
Value not equal to 0 :
The velocity entered applies to rotary axes in JOG mode (to continuous jogging, incremental jogging, jogging with handwheel). The value entered is common to all rotary axes, and must not exceed the maximum permissible axis velocity (MD32000 \$MA_MAX_AX_VELO).
With DRF, the velocity set with SD41130 \$SN_JOG_ROT_AX_SET_VELO must be reduced by MD32090 \$MA_HANDWH_VELO_OVERLAY_FACTOR.
Value equal to 0:
If the value 0 is entered in the setting data, the velocity applied to rotary axes in JOG mode is the axial MD32020 \$MA_JOG_VELO (jog axis velocity). In this way, it is possible to define a separate JOG velocity for each axis.
Application example(s)
The operator can define a JOG velocity for a particular application.
Related to
MD32020 \$MA_JOG_VELO (JOG axis velocity)
MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)
MD32090 \$MA_HANDWH_VELO_OVERLAY_FACTOR (ratio JOG velocity to handwheel velocity (DRF)

41200	JOG_SPIND_SET_VELO	-	H1					
rev/min	Speed for spindle JOG mode						DOUBLE	Immediately
-								
-	-	0.0	0.0	$1.0 E+301$				
$7 / 7$	U							

Description:
Value not equal to 0 :

The speed entered applies to spindles in JOG mode if they are traversed manually by the "Plus and minus traversing keys" or the handwheel. The speed is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)
- handwheel traversing. The value entered is valid for all spindles, and must not exceed the maximum permissible speed (MD32000 \$MA_MAX_AX_VELO).
Value = 0 :
If 0 has been entered in the setting data, MD32020 \$MA_JOG_VELO (JOG axis velocity) acts as the JOG velocity. Each axis can thus be given its own JOG velocity with this MD (axial MD).

The maximum speeds of the active gear stage (MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT) are taken into account when traversing the spindle with JOG.
SD irrelevant for
Application example(s). The operator can thus define a JOG speed for the spindles for a specific application.
Related to
Axial MD32020 \$MA_JOG_VELO (JOG axis velocity)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speeds of the gear stages)

41310	CEC_TABLE_WEIGHT			-	K3	
-	Weighting factor compensation table			DOUBLE	Imm	
-						
828d-me42	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-te42	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gce42	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-me62	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

828d-te62	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & \text { 1.0, 1.0, 1.0... } \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gce62	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse62	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & \text { 1.0, 1.0, 1.0... } \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-te82	12	$\begin{array}{\|l\|} \hline 1.0,1.0,1.0,1.0,1.0, \\ 1.0,1.0,1.0 \ldots \\ \hline \end{array}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me82	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & \text { 1.0, 1.0, 1.0... } \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gce82	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	1/1	M
828d-gse82	12	$\begin{aligned} & \text { 1.0, 1.0, 1.0, 1.0, 1.0, } \\ & 1.0,1.0,1.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	1/1	M

Description:
The compensation value stored in the table [t] is multiplied by the weighting factor. When selecting the weighting factor it should be ensured that the total compensation value in the compensation axis does not exceed the maximal value of
(MD18342 \$MN_CEC_MAX_SUM). With [t] = index of the compensation table (see MD18342 \$MN_MM_CEC_MAX_POINTS)
If, for example, the weight of the tools used on the machine or the workpieces to be machined are too different and this affects the error curve by changing the amplitude, this can be corrected by changing the weighting factor. In the case of sag compensation, the weighting factor in the table can be changed for specific tools or workpieces from the PLC user program or the NC program by overwriting the setting data. However, different compensation tables are to be used if the course of the error curve is substantially changed by the different weights.
Related to
SD41300 \$SN_CEC_TABLE_ENABLE[t] Evaluation of the sag compensation table t is enabled MD18342 \$MN_CEC_MAX_SUM Maximum compensation value for sag compensation

41320	CEC_0	-	K3					
-	Compensation value 1						DOUBLE	Immediately
-								
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: The value of this SD is added to the compensation value \$AN_CEC[t,0]. Related to
\$AN_CEC[t,0] compensation value

41321	CEC_1	-	K3					
-	Compensation value 2						DOUBLE	Immediately
-								
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

[^14]

Description: The value of the SD is used to calculate \$SN_CEC.
Is deleted after calculating \$SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_1[t] compensation values

41331	CEC_BAS_1	-	K3			
-	Distance to measuring point 2 in the basic axis	DOUBLE	Immediately			
-						
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description: The value of the SD is used to calculate \$SN_CEC.
Is deleted after calculating \$SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_1[t] compensation values

41335	CEC_BAS_STORE_0						-	K3
-	Stored distance to measuring point 1 in the basic axis	DOUBLE	Immediately					
-								
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$				

Description: Saves the value of \$SN_CEC_BAS after calculating \$SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_0[t] compensation values

41336	CEC_BAS_STORE_1	-	K3			
-						
-	Stored distance to measuring point 2 in the basic axis	DOUBLE	Immediately			
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 .$.	- MD_DBLMAX	$1.0 \mathrm{E}+301$		

Description: Saves the value of \$SN_CEC_BAS after calculating \$SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_1[t] compensation values

Description:

The value of the SD is used to calculate \$SN_CEC.
Is deleted after calculating \$SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_1[t] compensation values

41341	CEC_COMP_1			-	K3	
-	Cylinder error 2 in the compensation axis			DOUBLE	Immediately	
-						
-	12	$\begin{aligned} & 0.0,0.0,0.0,0.0,0.0, \\ & 0.0,0.0,0.0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
Description:		he $S D$ is used to er calculating \$ \$SN_CEC_1[t] con	alculate \$SN CEC. ensation val	C.		

41351	CEC_COMP_STORE_1	-	K3			
-						
-	Stored cylinder error 2 in the compensation axis	DOUBLE	Immediately			
-	12	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0 \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
Saves the value of $\$ S N _C E C _C O M P$ after calculating $\$$ SN_CEC.
Related to
\$SN_CEC_0[t], \$SN_CEC_1[t] compensation values

41355	CEC_CALC			-	K3	
-	The 0/1 edge starts the calculation of \$SN_CEC_O[t] and \$SN_CEC_1[t].			BOOLEAN	Immediately	
-						
-	12	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	7/7	U
Description:		lculation of \$ [t], \$SN_CEC_B [t], \$SN_CEC_	C. t] dis $1[t]$ cyl	to measur error in	point in basic axis compensation axis	$\begin{aligned} & \text { axis } \\ & \text { xis } \end{aligned}$

41356	CEC_CALC_ADD			-	K3	
-	Absolute or additive calculation of \$SN_CEC_O[t] and \$SN_CEC_1[t]			BOOLEAN	Immediately	
-						
-	12	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	7/7	U

FALSE: Absolute, the calculated values of \$SN_CEC_0[t] and \$SN_CEC_1[t] are included as absolute values.

TRUE: Additive, the calculated values of $\$$ SN_CEC_0[t] and \$SN_CEC_1[t] are added to the existing values.

Related to
\$SN_CEC_BAS_0[t], \$SN_CEC_BAS_1[t] distance to measuring point in the basic axis
\$SN_CEC_COMP_0[t], \$SN_CEC_COMP_1[t] cylinder error in the compensation axis

41610	CORR_TRAFO_LIN_MAX	EXP	-				
mm	Maximum permissible offset value for offset vectors with CORRTRAFO	DOUBLE	Immediately				
-							
-	-	1.0	0.0	$1.0 \mathrm{E}+301$			

Description:
With the CORRTRAFO function for machine measurement, offset vectors can be modified in the kinematic model of a machine.

This setting data limits the maximum permissible change in each component of such a vector to the specified maximum value.

41611	CORR_TRAFO_DIR_MAX	EXP	-				
degrees	$\begin{array}{l}\text { Maximum permissible angle deviation for direction vectors with } \\ \text { CORRTRAFO }\end{array}$	DOUBLE	Immediately				
-							
-	-	1.0	0.0	90.0	$7 / 2$		

Description: With the CORRTRAFO function for machine measurement, the direction vectors of rotary axes can be modified in the kinematic model of a machine.

This setting data limits the maximum permissible angle change of such a vector to the specified maximum value.

Description:

The CORRTC function for tool carrier measurement can be used to modify offset vectors in the kinematic model of a tool carrier.

This setting data limits the maximum permissible change in each component of such a vector to the specified maximum value.

42000	THREAD_START_ANGLE	-	K1			
degrees	Starting angle for thread	DOUBLE	Immediately			
-						
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . .$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
In the case of multiple thread cutting, the offset of the individual threads can be programmed with the aid of this setting data.
This $S D$ can be changed by the part program with the command $S F$.
Note:
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Description:
The SD is active for thread cutting with G33 (G34, G35).
It has three elements that define the behavior of the thread axis during runup (1st element), during deceleration/smoothing "G33(G34, G35) to G00/G01" (2nd element) and during smoothing between 2 thread blocks (3rd element).
The first two values have the same properties for thread run-in and thread run-out: <0 :
The thread axis is started/decelerated with configured acceleration. Jerk is according to the current programming of BRISK/SOFT. Behavior is compatible with MD 20650 __THREAD_START_IS_HARD = FALSE used until now.
0 :
Starting/deceleration of the feed axis during thread cutting is stepped. Behavior is compatible with MD 20650 __THREAD_START_IS_HARD = TRUE used until now.
>0 :
The maximum thread starting or deceleration path is specified. The specified distance can lead to acceleration overload of the axis. The SD is written from the block when DITR (displacement thread ramp) is programmed. An overlong path has no effect.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be set so that the value written by the part program is transferred to the active file system on reset (this means the value is retained after reset.)
The 3rd value permits smoothing at a corner between 2 thread blocks in order to soften the transition. It is not rounded by smoothing if the dynamics of the machine permit a hard transition, for example on account of MD32310 \$MA_MAX_ACCEL_OVL_FACTOR:
-1:
The transition is made as geometrically soft as possible.
$0:$
The corner is left with hard retraction, the axes follow the specification of the control loops.
>0 :
Reserved for an expansion of the function.
The 3rd value defines the geometric tolerance that may be used at a corner between 2 thread blocks in order to soften the transition:
< or = 0:
The corner is left with hard retraction, the axes follow the specification of the control loops. > 0 :

The transition is made as geometrically soft as possible by using this tolerance.

42100	DRY_RUN_FEED	-	V1			
$\mathrm{mm} / \mathrm{min}$	Dry run feedrate	DOUBLE	Immediately			
-						
-	-	$5000 ., 5000 ., 5000 .$, $5000 ., 5000 ., 5000 .$, $5000 ., 5000 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
The feedrate for the active dry run is entered in this setting data. The setting data can be altered on the operator panel in the "Parameters" operating area.

The entered dry run feedrate is always interpreted as a linear feed (G94). If the dry run feedrate is activated via the PLC interface, the dry run feedrate is used as the path feed after a reset instead of the programmed feed. The programmed velocity is used for traversing if it is greater than the velocity stored here.
Application example(s)
Program testing
Related to
NC/PLC interface signal DB3200 DBX0.6 (Activate dry run feedrate)
NC/PLC interface signal DB1700 DBX0. 6 (Dry run feedrate selected)

42101	DRY_RUN_FEED_MODE	-	V1			
-	Mode for dry run velocity	BYTE	Immediately			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	12		
$7 / 7$	U					

Description:
This SD can be used to set the method of operation of the dry run velocity set by SD42100 \$SC_DRY_RUN_FEED.
The following values are possible:
0 :
The maximum of SD42100 \$SC_DRY_RUN_FEED and the programmed velocity become active. This is the standard setting and corresponds to the behavior up to SW 5 .
1:
The minimum of SD42100 \$SC_DRY_RUN_FEED and the programmed velocity become active. 2:
SD42100 \$SC_DRY_RUN_FEED becomes active directly, irrespective of the programmed velocity.
The values 3...9 are reserved for extensions.
10:
As configuration 0 , except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.
11:
As configuration 1, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.

12:
As configuration 2, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.

42110	DEFAULT_FEED	-	V1, FBFA		
$\mathrm{mm} / \mathrm{min}$	Path feed default value	DOUBLE	Immediately		
-					
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . . .$.	0.0	$1.0 E+301$	$7 / 7$

Description: Default value for path feedrate, This setting data is evaluated when the part program starts taking into account the feedrate type active at this time (see MD20150 \$MC_GCODE_RESET_VALUES and MD20154 \$MC_EXTERN_GCODE_RESET_VALUES).

42120	APPROACH_FEED	-	-			
$\mathrm{mm} / \mathrm{min}$	Path feedrate in approach blocks	DOUBLE	Immediately			
-						
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description: Default value for path feedrate in approach blocks (after repos., block search, SERUPRO etc).

The contents of this settting data are only used when it is non-zero. It is evaluated like an F word programmed for G94.

42121	AX_ADJUST_FEED							-	-
$\mathrm{mm} / \mathrm{min}$	Path feed in adjustment movements						DOUBLE	Immediately	
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	-	-	$7 / 7$				

Description:

Default value for the path feed in adjustment movements of tangential axes on
activation of a tangential axis coupling during or after block search.
The content of this setting data is only used if it is not equal to zero and bit7 = 0 of MD \$MN_SEARCH_RUN_MODE is set.
It is evaluated as an F-word programmed in G94.

Description: Additional channel-specific rapid traverse override in \%. The value is calculated as a function of the OPI variable enablOvrRapidFactor on the path and during jogging of geometry axes . The value multiplies the other overrides relevant to rapid traverse (rapid traverse override of the machine control panel, override default through synchronized actions \$AC_OVR).

SERUPRO_SYNC_MASK activates this intermal WAIT marker, and defines for which other channels this channel is to wait.

Example for channel 3: SD42125 \$SC_SERUPRO_SYNC_MASK= 0×55
A new block is now inserted in the Serupro approach between the reapproach block and the target block, the function of which corresponds to the following programming: WAITM (101, 1,3,5,7), i.e. a WAIT marker synchronizes the channels 1, 3, 5 and 7. The WAIT markers used internally cannot be explicitly programmed by the user. NOTICE:

Similarly to the part program, the user can make the error of not setting the marker in a channel, so that the other channels naturally wait for ever!
Note:
The bit mask can contain a channel that does not exist (channel gaps) without a deadlock occurring.

Example for channel 3: SD42125 \$SC_SERUPRO_SYNC_MASK= 0x55 and channel 5 do not exist, so WAITM(101, 1,3,7) is set.
Note: The block content corresponds to $\operatorname{WAITM}(101,1,3,5,7) "$, the user does not see this block content, he sees REPOSA!
Note:
SERUPRO_SYNC_MASK is evaluated as soon as the part program command REPOSA is interpreted.
SERUPRO_SYNC_MASK can still be changed if SERUPRO is in the state "search target found".

If REPOSA has already been executed, a change to SERUPRO_SYNC_MASK can only become active if a new REPOS is set. This occurs, for example, by:

- Starting a new ASUB.
- STOP-JOG-AUTO-START
- STOP - select a new REPOS mode RMI/RMN/RME/RMB - START

Note:
If one uses the prog. event for search and if the NCK is at alarm 10208 then a change of SERUPRO_SYNC_MASK is not active unless one sets a new REPOS.
SERUPRO_SYNC_MASK == 0 A block is NOT inserted.
Note:
If the bit for the current channel is not set in SD42125 \$SC_SERUPRO_SYNC_MASK then a block is NOT inserted.

Example:
If SD42125 \$SC_SERUPRO_SYNC_MASK= 0xE is programmed in channel 1, then a block is NOT inserted.

This assignment is reserved for a future function!

42140	DEFAULT_SCALE_FACTOR_P	-	FBFA			
-	Default scaling factor for address P	DWORD	Immediately			
-						
-	-	$1,1,1,1,1,1,1,1 \ldots$	-	-		

Description:

The value in this machine data is active if no scaling factor P has been programmed in the block.

Related to:
WEIGHTING_FACTOR_FOR_SCALE

Description: The value in this machine data is active if no factor for rotation R is programmed in the block.

Description: Fixed feedrate values for programming with F1 - F9. If the machine data
\$MC_FEEDRATE_F1_F9_ON = TRUE is set with the programming of F1 - F9, the feedrate
values are read from SD42160 \$SC_EXTERN_FIXED_FEEDRATE_F1_F9[0] - SD42160 \$SC_EXTERN_FIXED_FEEDRATE_F1_F9[部, and ${ }^{\prime}$ activāted as the machining feedrate.
The rapid traverse feedrate must be entered in SD42160
\$SC_EXTERN_FIXED_FEEDRATE_F1_F9[0].

42162	EXTERN_DOUBLE_TURRET_DIST	-	FBFA			
-	Double turret head tool distance	DOUBLE	Immediately			
-						
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:

Distance between both tools of a double turret head.
The distance is activated using G68 as additive zero point offset if MD10812 \$MN_EXTERN_DOUBLE_TURRET_ON is set to TRUE.

Description:

Value = TRUE:
A preprocessing stop is made with every block if SBL2 (single block with stop after every block) is active. This suppresses the premachining of part program blocks. This variant of the SBL2 is not true-to-contour.
This means that a different contour characteristic might be generated as a result of the preprocessing stop than without single block or with SBL1.
Application: Debug mode for testing part programs.

$828 \mathrm{~d}-\mathrm{te} 82$	2	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0, \ldots$	-1.0 e 8	1.0 e 8	$7 / 7$	U
$828 \mathrm{~d}-\mathrm{me} 82$	2	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0, \ldots$	-1.0 e 8	1.0 e 8	$7 / 7$	U
$828 \mathrm{~d}-\mathrm{gce} 82$	2	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0, \ldots$	-1.0 e 8	1.0 e 8	$2 / 2$	M
$828 \mathrm{~d}-\mathrm{gse} 82$	2	$1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0,1.0,1.0$, $1.0,1.0,1.0, \ldots$	-1.0 e 8	1.0 e 8	$2 / 2$	M

Description:
This setting data defines the speed ratio for the fixed coupling configuration defined with the channel-specific MD21300 \$MC_COUPLE_AXIS_1[n].
The linear correlation between the leading and following spindles is determined by the speed ratio. The speed ratio is defined by the specification of the numerator and the denominator.
Speed ratio = numerator / denominator = SD42300 \$SC_COUPLE_RATIO[0] / SD42300 \$SC_COUPLE_RATIO[1]
The speed ratio parameters can be altered in the NC part program with the language instruction COUPDEF provided that this is not locked by the channel-specific MD21340 \$MC_COUPLE_IS_WRITE_PROT_1.
However, the parameterized values of SD42300 \$SC_COUPLE_RATIO_1 are not changed. The calculation of the speed ratio is initiated with Power On.

42440	FRAME_OFFSET_INCR_PROG			-	K1,	
-	Work offsets in frames			BOOLEAN	Immediately	
-						
828d-me42	-	FALSE	0	-	3/3	U
828d-te42	-	FALSE, FALSE	0	-	3/3	U
828d-gce42	-	FALSE, FALSE	0	-	3/3	U
828d-gse42	-	FALSE, FALSE	0	-	3/3	U
828d-me62	-	FALSE	0	-	3/3	U
828d-te62	-	FALSE, FALSE	0	-	3/3	U
828d-gce62	-	FALSE, FALSE	0	-	3/3	U
828d-gse62	-	FALSE, FALSE	0	-	3/3	U
828d-te82	-	FALSE, FALSE	0	-	3/3	U
828d-me82	-	FALSE, FALSE	0	-	3/3	U
828d-gce82	-	FALSE, FALSE	0	-	3/3	U
828d-gse82	-	FALSE, FALSE	0	-	3/3	U

Description: 0: When incremental programming is used on an axis, only the programmed position delta is traversed after a frame change. Work offsets in FRAMES are only traversed when an absolute position is specified.
1: When incremental programming is used on an axis, changes to work offsets are traversed after a frame change (standard response up to software version 3).
Related to
SD42442 \$SC_TOOL_OFFSET_INCR_PROG

42442	TOOL_OFFSET_INCR_PROG		-	W1,	
-	Tool length compensations		BOOLEAN	Imm	
-					
828d-me42	FALSE	0	-	3/3	U

828d-te42	-	FALSE, FALSE	0	-	3/3	U
828d-gce42	-	FALSE, FALSE	0	-	3/3	U
828d-gse42	-	FALSE, FALSE	0	-	3/3	U
828d-me62	-	FALSE	0	-	3/3	U
828d-te62	-	FALSE, FALSE	0	-	3/3	U
828d-gce62	-	FALSE, FALSE	0	-	3/3	U
828d-gse62	-	FALSE, FALSE	0	-	3/3	U
828d-te82	-	FALSE, FALSE	0	-	3/3	U
828d-me82	-	FALSE, FALSE	0	-	3/3	U
828d-gce82	-	FALSE, FALSE	0	-	3/3	U
828d-gse82	-	FALSE, FALSE	0	-	3/3	U

Description: 0: When incremental programming is used on an axis, only the programmed position delta is traversed after a frame change. Tool length offsets in FRAMES are only traversed when an absolute position is specified.
1: When incremental programming is used on an axis, changes to tool length offsets are traversed after a tool change (standard response up to SW version 3).
Related to
SD42440 \$SC_FRAME_OFFSET_INCR_PROG

42444	TARGET_BLOCK_INCR_PROG	-	BA			
-	Set down mode after search run with calculation	BOOLEAN	Immediately			
-						
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	M	

Description: If the first programming of an axis after "Search run with calculation to end of block" is incremental, the incremental value is added as a function of SD42444
\$SC_TARGET_BLOCK_INCR_PROG to the value accumulated up to the search target :
SD = TRUE: Incremental value is added to accumulated position
$S D=F A L S E:$ Incremental value is added to current actual value
The setting data is evaluated on $N C$ start for output of the action blocks.

42450	CONTPREC	-	B1, K6			
mm	Contour accuracy	DOUBLE	Immediately			
-						
-	-	$0.1,0.1,0.1,0.1,0.1$, $0.1,0.1,0.1 .$.	0.000001	999999.	$7 / 7$	

Description:
Contour accuracy. This setting data can be used to define the accuracy to be maintained for the path of the geometry axes on curved contours. The lower the value and the lower the servogain factor of the geometry axes, the greater the reduction of path feed on curved contours.
Related to
MD20470 \$MC_CPREC_WITH_FFW
SD42460 \$SC_MINFEED

42460	MINFEED	-	B1, K6			
mm/min	Minimum path feedrate for CPRECON	DOUBLE	Immediately			
-						
-	-	$1 ., 1 ., 1 ., 1 ., 1 ., ~ 1 ., ~ 1 ., ~$ $1 . . .$.	$1 . \mathrm{e}-6$	$1 . e 9$	$7 / 7$	

```
Description: Minimum path feedrate with the "Contour accuracy" function active. The feedrate is not
limited to below this value unless a lower F value has been programmed or the axis
dynamics do not permit it.
Related to ....
MD20470 $MC_CPREC_WITH_FFW
SD42450 $SC_CONTPREC
```

42465	SMOOTH_CONTUR_TOL			-	B1	
mm	Maximum contour tolerance on smoothing			DOUBLE	Imm	
-						
-	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	7/7	U
Description:	This setting Related to: MD20480 \$MC_S SD42466 \$SC_	data defines the ma MOOTHING_MODE, MOOTH_ORI_TOL	ximum to	for sme	g th	

Description:

The setting data defines the limit angle from which the compressor COMPCAD interprets a block transition as a corner. Practical values lie between 10 and 40 degrees. Values from 0 to 89 degrees inclusive are permitted.
The angle only serves as an approximate measure for corner detection. The compressor can also classify flatter block transitions as corners and eliminate larger angles as outliers on account of plausibility considerations.

Description:
The setting data defines a typical tool radius. It is only evaluated in compressor COMPCAD. The lower the value, the greater the precision, but the slower the program execution.

Description:
The setting data specifies a typical tool radius. It is evaluated for the COMPSURF compressor only. A smaller value results in greater precision but also slower program execution.

[^15]Related to:
MD28072 \$MC_MM_MAXNUM_SURF_GROUPS

42475	COMPRESS_CONTUR_TOL			-	F2, P	
mm	Maximum contour deviation with compressor			DOUBLE	Imm	
-						
828d-me42	$0.05,0.05,0.05,0.05$, $0.05,0.05,0.05,0.05 \ldots$		0.000001	999999.	7/7	U
828d-te42	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	0/0	S
828d-gce42	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-gse42	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-me62	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-te62	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \\ & \hline \end{aligned}$	0.000001	999999.	0/0	S
828d-gce62	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \\ & \hline \end{aligned}$	0.000001	999999.	7/7	U
828d-gse62	-	$\begin{aligned} & \hline 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \\ & \hline \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-te82	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	0/0	S
828d-me82	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \\ & \hline \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-gce82	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \\ & \hline \end{aligned}$	0.000001	999999.	$7 / 7$	U
828d-gse82	-	$\begin{aligned} & 0.05,0.05,0.05,0.05 \\ & 0.05,0.05,0.05,0.05 \ldots \end{aligned}$	0.000001	999999.	7/7	U

Description: This setting data defines the maximum contour tolerance in the compressor.

$828 \mathrm{~d}-\mathrm{me} 82$	-	$0.05,0.05,0.05,0.05$, $0.05,0.05,0.05,0.05 \ldots$	0.000001	90.	$7 / 7$	U
828 d -gce82	-	$0.05,0.05,0.05,0.05$, $0.05,0.05,0.05,0.05 \ldots$	0.000001	90.	$7 / 7$	U
$828 \mathrm{~d}-\mathrm{gse} 82$	-	$0.05,0.05,0.05,0.05$, $0.05,0.05,0.05,0.05 \ldots$.	0.000001	90.	$7 / 7$	U

Description:
This setting data defines the maximum tolerance in the compressor for turning the tool orientation. This data defines the maximum permissible angular displacement of the tool rotation.
This data is only active if an orientation transformation is active.
Turning the tool orientation is only possible with 6-axis machines.

42478	SURF_PERF_ADJUST	EXP, C09	-		
mm	Adaptation of the CPU time utilization with COMPSURF.	DOUBLE	Immediately		
-	-	$0.005,0.005,0.005$, $0.005,0.005,0.005$, $0.005,0.005 \ldots$	0.0001	0.1	$1 / 1$
-					

Description: Represents a compromise between computational utilization and accuracy. The higher the value, the lower the computational utilization, the lower the value the higher the accuracy.
A sharper surface can be achieved, especially by COMPSURF with "Smoothing off" (MIN_SURF_RADIUS = 0).

42480	STOP_CUTCOM_STOPRE	-	W1		
-	Alarm response with tool radius compensation and preproc. stop	BOOLEAN	Immediately		
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U
-	-				

Description: If this setting data is TRUE, block execution is stopped by preprocessing stop and active tool radius compensation, and does not resume until after a user acknowledgment (START).
If it is FALSE, machining is not interrupted at such a program point.

Description:

FALSE:

If there is a preprocessing stop (either programmed or generated internally by the control) before the deselection block (G40) when tool radius compensation is active, then firstly the starting point of the deselection block is approached from the last end point before the preprocessing stop. The deselection block itself is then executed, i.e. the deselection block is usually replaced by two traversing blocks. Tool radius compensation is no longer active in these blocks. The behavior is thus identical with that before the introduction of this setting data.
TRUE:

If there is a preprocessing stop (either programmed or generated internally by the control) before the deselection block (G40) when tool radius compensation is active, the end point of the deselection point is traversed in a straight line from the last end point before the preprocessing stop.

42494	CUTCOM_ACT_DEACT_CTRL	-	W1			
-						
-	Approach \& retraction behavior with 2-1/2D tool radius compens.	DWORD	Immediately			
-	-	$2222,2222,2222$, $2222,2222,2222$, $2222,2222 \ldots$	-	-	U	

This setting data controls the approach and retraction behavior with tool radius compensation if the activation or deactivation block does not contain any traversing information. It is only evaluated with 2-1/2D TRC
(CUT2D or CUT2DF).
The decimal coding is as follows:
N N N N
| | | ___ Approach behavior for tools with tool point direction
| | (turning tools)
| | |__ Approach behavior for tools without tool point direction
| | (milling tools)
| |__ Retract behavior for tools with tool point direction
|
\qquad (turning tools)

Retract behavior for tools without tool point direction (milling tools)

If the position in question contains a 1, approach or retraction is always performed, even if G41/G42 or G40 stands alone in a block.

For example:
N100 x10 y0
N110 G41
N120 x20
If a tool radius of 10 mm is assumed in the above example, position x10y10 is approached in block N110.

If the position in question contains the value 2 , the approach or retraction movement is only performed if at least one geometry axis is programmed in the activation/ deactivation block. To obtain the same results as the above example with this setting, the program must be altered as follows:
N100 x10 y0
N110 G41 x10
N120 x20
If axis information $x 10$ is missing in block N110, activation of TRC is delayed by one block, i.e. the activation block would now be N120.
If the position in question contains a 3, retraction is not performed in a deactivation block (G40) if only the geometry axis perpendicular to the compensation plane is programmed. In this case, the motion perpendicular to the compensation plane is performed first. This is followed by the retraction motion in the compensation plane. In this case, the block after G40 must contain motion information in the compensation plane. The approach motions for values 2 and 3 are identical.
If the position in question contains a value other than 1,2 or 3 , i.e. in particular the value 0, an approach or retraction movement is not performed in a block that does not contain any traversing information.

About the term "Tools with tool point direction":

These are tools with tool numbers between 400 and 599 (turning and grinding tools), whose tool point direction has a value between 1 and 8. Turning and grinding tools with tool point direction 0 or 9 or other undefined values are treated like milling tools. Note:
If the value of this setting data is changed within a program, we recommend programming a preprocessing stop (stopre) before the description to avoid the new value being used in program sections before that point. The opposite case is not serious, i.e. if the setting data is written, subsequent $N C$ blocks will definitely access the new value.

42496	CUTCOM_CLSD_CONT						-	-
-								
-	Tool radius compensation behavior with closed contour	BOOLEAN	Immediately					
-	-	TRUE, TRUE	0	-				

Description: FALSE:
CASE A: If two intersections arise on correction of the inner side with an (almost) closed contour consisting of two successive circle blocks or a circle and a linear block, by default the intersection is chosen that is located on the first partial contour nearer to the beginning of the block.
A contour is considered (almost) closed if the distance between the starting point of the first block and the end point of the second block is less than 10% of the active compensation radius, but not greater than 1000 path increments (corresponds to 1 mm with 3 decimal places).
CASE B: If on correction of the inner side and a block transition between a straight line and a circle with an angle of aperture of more than approx. 315 degrees, the offset curve of the straight line intersects the offset curve of the circle at two points, by default the point of intersection is chosen that is located on the first partial contour nearer to the beginning of the block.

In this situation, the two curves involved are almost completely excluded. TRUE: With two successive curves (as described above), whose offset curves intersect twice, the intersection is chosen that lies nearer to the end of the first curve. Whereby a slight contour violation at the beginning of the block of the first curve and at the end of the block of the second curve is accepted in order to be able to completely process both curves.
But only if the absolute value of the contour violation caused by this is less than the effective contour tolerance. For the effective contour tolerance, see the description "Contour/orientation tolerance" in FB1. The currently effective tolerance can be read with \$AC_CTOL. If a tolerance of zero is programmed in this way, a permanently assigned tolerance of 0.002 mm applies.
The tolerance value is applied that is valid for activation of the tool radius correction with G41 or G42.

42502	IS_SD_MAX_PATH_ACCEL	-	B2			
-						
-	Evaluate SD42500 \$SC_SD_MAX_PATH_ACCEL	BOOLEAN	Immediately			
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$	

Description:

```
SD42500 $SC_SD_MAX_PATH_ACCEL is included in the limit calculations if SD42502
$SC_IS_SD_MAX_PATH_ACCEL=TRUE
Related to ...
SD42500 $SC_SD_MAX_PATH_ACCEL
```


Description: As well as MD20600 \$MC_MAX_PATH_JERK, the maximum path-related jerk can also limit the jerk.
Related to ...
MD20600 \$MC_MAX_PATH_JERK
SD42512 \$SC_IS_SD_MAX_PATH_JERK

42512	IS_SD_MAX_PATH_JERK	-	B2			
-						
-	Evaluate SD42510 \$SC_SD_MAX_PATH_JERK	BOOLEAN	Immediately			
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$	

Description:	SD42510 \$SC_SD_MAX_PATH_JERK is included in the limit calculations if SD42512
	\$SC_IS_SD_MAX_PATH_JERK=TRUE
	Related to ...
	SD42510 \$SC_SD_MAX_PATH_JERK (SD for additional limitation of (tangential) path jerk)

42520	CORNER_SLOWDOWN_START	-	-					
mm	Start of feed reduction at G62.						DOUBLE	Immediately
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: Traverse path distance from which the feed is reduced before the corner with G62.

42522	CORNER_SLOWDOWN_END	-	-					
mm	End of feed reduction at G62.						DOUBLE	Immediately
-								
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: Traverse path distance up to which the feed remains reduced after a corner with G62.

42524	CORNER_SLOWDOWN_OVR	-	-		
$\%$	Feed override reduction at G62	DOUBLE	Immediately		
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$
-					

Description: Override used to multiply the feed at the corner with G62.

42526	CORNER_SLOWDOWN_CRIT	-	-			
degrees	Corner detection at G62	DOUBLE	Immediately			
-						
-	-	$0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 .$, $0 . \ldots$.	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	

Description:
 Angle from which a corner is taken into account when reducing the feed with G62.

For example SD42526 \$SC_CORNER_SLOWDOWN_CRIT $=90$ means that all corners of 90 degrees or a more acute angle are traversed slower with G62.

42528	CUTCOM_DECEL_LIMIT			-	-	
-	Feed lowering on circles with tool radius compensation			DOUBLE	Immediately	
-						
828d-me42	-	0.1, 0.1	0.	1.	3/3	U
828d-te42	-	0.1, 0.1	0.	1.	3/3	U
828d-gce42	-	0.1, 0.1	0.	1.	3/3	U
828d-gse42	-	0.1, 0.1	0.	1.	3/3	U
828d-me62	-	0.1, 0.1	0.	1.	3/3	U
828d-te62	-	0.1, 0.1	0.	1.	3/3	U
828d-gce62	-	0.1, 0.1	0.	1.	3/3	U
828d-gse62	-	0.1, 0.1	0.	1.	3/3	U
828d-te82	-	0.1, 0.1	0.	1.	3/3	U
828d-me82	-	$\begin{aligned} & 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., 0 ., \\ & 0 \end{aligned}$	0.	1.	3/3	U
828d-gce82	-	0.1, 0.1	0.	1.	3/3	U
828d-gse82	-	0.1, 0.1	0.	1.	3/3	U

Description:

The setting data limits feed lowering of the tool center point on concave circle segments with tool radius compensation active and CFC or CFIN selected.
With CFC, the feed is defined at the contour. On concave circular arcs, feed lowering of the tool center point is created by the ratio of the contour curvature to the tool center point path curvature. The setting data is limiting this effect, reducing backing off and overheating of the tool.
For contours with varying curvatures, a mid-range curvature is used.
0: Provides the previous behavior: If the ratio between contour radius and tool center point path radius is less than or equal to 0.01 the feed is applied to the tool center point path. Less pronounced feed reductions are executed.
>0 : Feed lowering is limited to the programmed factor. At 0.01 , this means that the feed of the tool center point path is possibly only 1 percent of the programmed feed value.
1: On concave contours, the tool center point feed equals the programmed feed (the behavior then corresponds to CFTCP).

Description:

The revolutional feedrate in JOG mode for geometry axes on which a frame with rotation acts.
$0=\quad$ No revolutional feedrate is active.
>0= Machine axis index of the rotary axis/spindle from which the revolutional feedrate is derived.
-1= The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active.
$-2=\quad$ The revolutional feedrate is derived from the axis with machine axis index $==$ 0 .
-3= The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active. No revolutional feedrate is active if the master spindle is at a standstill.
Related to
SD43300: \$SA_ASSIGN_FEED_PER_REV_SOURCE (revolutional feedrate for position axes/ spindles)

42690	JOG_CIRCLE_CENTRE			-	-	
mm	Center of the circle			DOUBLE	Immediately	
-						
-	3	$\begin{aligned} & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0,0,0,0,0,0, \\ & 0,0,0,0 \ldots \end{aligned}$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description:
This setting data is used to define the circle center point in the workpiece coordinate system during JOG of circles.
Only the relevant center point coordinates of the geometry axes in the active plane are evaluated, not the coordinate of the geometry axis vertical to the plane. This setting data is written via the user interface.

By default the coordinate of an axis with diameter programming is in the diameter. This can be changed with MD20360 \$MC_TOOL_PARAMETER_DEF_MASK Bit $13=1$ by indicating a radius.

42691	JOG_CIRCLE_RADIUS			-	-	
mm	Circle radius			DOUBLE	Imm	
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description:

With this setting data, the circle radius in the machine, the maximum circle during inner machining or the minimum circle during outer machining are defined when jogging circles. This setting data is written via the user interface.

42692	JOG_CIRCLE_MODE						-	-
-								
-	JOG of circles mode	DWORD	Immediately					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	$0 x f$	$7 / 7$			

Description: This setting data sets the following during JOG of circles:
Bit $0=0$:
Travel to + creates traversing on a circular path in counterclockwise direction; travel to - creates traversing in clockwise direction.
Bit $0=1$:
Travel to + creates traversing on a circular path in clockwise direction; travel to creates traversing in counterclockwise direction.
Bit $1=0$:
The tool radius is not taken into account in checking the limitation produced by the specified circle or by the circle segment limited by the start and end angles.
Bit $1=1$:
The tool radius is taken into account in checking the limitation produced by the specified circle or by the circle segment limited by the start and end angles.
Bit $2=0$:
Internal machining is performed. The circle radius in SD42691 \$SC_JOG_CIRCLE_RADIUS is the maximum possible radius.
Bit $2=1$:
External machining is performed. The circle radius in SD42691 \$SC_JOG_CIRCLE_RADIUS is the minimum possible radius.
Bit $3=0$:
Given a full circle, the radius is enlarged starting from the circle center point in the direction of the ordinate (2nd geometry axis) of the plane.
Bit 3 = 1 :
Given a full circle, the radius is enlarged starting from the circle center point in the direction of the abscissa (1st geometry axis) of the plane.
This setting data should be written via the user interface.

Description:

This setting data defines the start angle during JOG of circles.
The start angle refers to the abscissa of the current plane. Traversing is only possible within the range
between the start and the end angle. SD42692 \$SC_JOG_CIRCLE_MODE bit 0 defines the direction from the start to the end angle. If start and end angle equal zero, no limitation is active.
This setting data is written via the user interface.

42694	JOG_CIRCLE_END_ANGLE						-	-
degrees								
-	Circle end angle	DOUBLE	Immediately					
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	360	$7 / 7$			

Description: This setting data defines the end angle during JOG of circles.

The end angle refers to the abscissa of the current plane. Traversing is only possible within the range
between the start and the end angle. SD42692 \$SC_JOG_CIRCLE_MODE bit 0 defines the direction from the start to the end angle. If start and end angle equal zero, no limitation is active.
This setting data is written via the user interface.

42700	EXT_PROG_PATH						-	K1
-	Program path for external subroutine call EXTCALL	STRING	Immediately					
-								
-	-	-	-	-	U			

Description: The total path results from the string chaining of SD42700 \$SC_EXT_PROG_PATH + the programmed subprogram identifier.

42750	ABSBLOCK_ENABLE	-	K1		
-	Enable base block display	BOOLEAN	Immediately		
-	-	TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...	0	-	U/7
-	-				

Description: Value 0: Disable basic blocks with absolute values (basic block display)
Value 1: Enable basic blocks with absolute values (basic block display)

42800	SPIND_ASSIGN_TAB	-	S1			
-	Spindle number converter.	BYTE	Immediately			
-						
-	21	$0,1,2,3,4,5,6,7,8$, $9,10,11,12,13,14$, $15,16,17,0 . .$.	0	20	U	

Description:
The spindle converter converts the programmed (= logical) spindle number to the physical (= internal, configured) spindle number.
The index of the setting data (SD) corresponds to the programmed spindle number or the programmed address extension.
The SD contains the physical spindle which actually exists.
Special cases, errors,
Notes:

- The zero index (SPIND_ASSIGN_TAB[0]) is only used to display the master spindle (= logical spindle number) selected in the channel, and it must not be overwritten.
- Changes to the spindle converter take effect immediately. Therefore it is not advisable to change the spindle converter for spindles used in a part program from the HMI or PLC while a part program is running.
- After "delete SRAM", the numbers of the logical and physical spindles are identical.

$\left(\$ T C _D P 3[. . ., \ldots]\right.$ to $\left.\$ T C _D P 5[\ldots, \ldots]\right)$ and the components of the base dimensions (\$TC_DP21[..., ...] to \$TC_DP23[..., ...]) whose associated axes
are mirrored, are also mirrored, i.e. their sign is inverted. The wear values
are not mirrored. If the wear values are to be mirrored too,
SD42910 \$SC_MIRROR_TOOL_WEAR must be set.
FALSE:
The sign for tool length components is unaffected by whether a frame with mirror image machining is active.

42920	WEAR_SIGN_CUTPOS	-	W1			
-	Sign of tool wear depending on tool point direction	BOOLEAN	Immediately			
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	-	$7 / 7$	
-						

Description:
TRUE:
In the case of tools with a relevant tool point direction (turning and grinding tools), the sign for wear of the tool length components depends on the tool point direction.
The sign is inverted in the following cases (marked with an X):
Tool point direction Length 1 Length 2
1
2 X
3 X X
4 X
5
6
7 X
8 X
9
The sign for wear value of length 3 is not influenced by this setting data.
The SD42930 \$SC_WEAR_SIGN acts in addition to this setting data.
FALSE:
The sign for wear of the tool length components is unaffected by the tool point direction.

42930	WEAR_SIGN	-	W1				
-	Sign of wear						
-	-	FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE...	0	BOOLEAN	Immediately		
-							

Description:

TRUE:

The sign for wear of the tool length components and the tool radius are inverted, i.e. if a positive value in entered, the total dimension is decreased.
FALSE:
The sign for wear of the tool length components and the tool radius is not inverted.

42935	WEAR_TRANSFORM	-	W1, W4			
-						
-	Transformations for tool components	UDWORD	Immediately			
-	-	$0,0,0,0,0,0,0,0 \ldots$	0×0	0×03		
$7 / 7$	U					

Description:

This setting data is bit-coded.
It determines which of the three wear components
wear
(\$TC_DP12 - \$TC_DP14),
additive offsets fine (\$TC_SCPx3 - \$TC_SCPx5),
and additive offsets coarse (\$TC_ECPx3 - \$TC_ECPx5)
are subject to adapter transformation and transformation by an orientable tool holder, if one of the two G codes TOWMCS or TOWWCS from G code group 56 is active. If initialsetting G code TOWSTD is active, this setting data will not become active.
Then, the following assignment is valid:
Bit $0=$ TRUE: Do not apply transformations to \$TC_DP12 - \$TC_DP14.
Bit $1=$ TRUE: Do not apply transformations to \$TC_SCPx3 - \$TC_SCPx5.
Bit 2 = TRUE: Do not apply transformations to \$TC_ECPx3 - \$TC_ECPx5.
The bits not mentioned here are (currently) not assigned.

42940	TOOL_LENGTH_CONST			-	W1	
-	Change of tool length components with change of active plane			DWORD	Immediately	
-						
828d-me42	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te42	-	18, 18	-	-	2/2	M
828d-gce42	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gse42	-	0, 0, 0, 0, 0, 0, 0, $0 \ldots$	-	-	2/2	M
828d-me62	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te62	-	18, 18	-	-	2/2	M
828d-gce62	-	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-gse62	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te82	-	18, 18	-	-	2/2	M
828d-me82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gce82	-	0, 0, 0, 0, 0, 0, 0, $0 \ldots$	-	-	2/2	M
828d-gse82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M

Description:

If this setting data is not equal to 0 , the assignment of tool length components (length, wear, base dimensions) to geometry axes is not changed when the machining plane (G17 - G19) is changed.
The assignment of tool length components to geometry axes can be derived from the value of the setting data according to the following tables.
The assignment of the tool orientation components is not affected by this setting data. Setting data SD42945 \$SC_TOOL_ORI_CONST_M and SD42947 \$SC_TOOL_ORI_CONST_T may have to be set accordingly.
A distinction is made between turning and grinding tools (tool types 400 to 599) and other tools (typically milling tools) in the assignment.
Representation of this information in tables assumes that geometry axes 1 to 3 are called X, Y and Z. For assignment of an offset to an axis, not the axis identifier but the axis sequence is relevant.
Assignment for turning tools and grinding tools (tool types 400 to 599):
Content Length 1 Length 2 Length 3

17	Y	X	Z
$18 *$	X	Z	Y
19	Z	Y	X
-17	X	Y	Z
-18	Z	X	Y
-19	Y	Z	X

* Any value which is not 0 and is not one of the six values listed, is treated as value 18.

For values that are the same but with a different sign, assignment of length 3 is always the same, lengths 1 and 2 are reversed. Assignment for all tools which are neither turning nor grinding tools (tool types < 400 or > 599):
Content Length 1 Length 2 Length 3

$17 *$	Z	Y	X
18	Y	X	Z
19	X	Z	Y
-17	Z	X	Y
-18	Y	Z	X
-19	X	Y	Z

* Any value which is not 0 and is not one of the six values listed, is treated as value 17.
For values that are the same but with a different sign, assignment of length 1 is always the same, lengths 2 and 3 are reversed.

If the 100 s digit of the settings data is 1 , the sign of the second length component is inverted.
If the setting data SD42950 \$SC_TOOL_LENGTH_TYPE has the value 3, this setting data is only active with milling tools. Together with setting data SD42942
\$SC_TOOL_LENGTH_CONST_T, the length assignments can then be set separately for turning and milling tools.

$828 \mathrm{~d}-\mathrm{te62}$	-	18,18	-	-	$2 / 2$	M
$828 \mathrm{~d}-\mathrm{gce} 62$	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$2 / 2$	M
$828 \mathrm{~d}-\mathrm{gse62}$	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$2 / 2$	M
828 d -te82	-	18,18	-	-	$2 / 2$	M
$828 \mathrm{~d}-\mathrm{me82}$	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$2 / 2$	M
828 d -gce82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$2 / 2$	M
$828 \mathrm{~d}-$ gse82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	$2 / 2$	M

Description:

This setting data is only evaluated if SD42950 \$SC_TOOL_LENGTH_TYPE has the value 3. Under this condition, it has the following meaning:

If this setting data is not equal to zero, the assignment of the tool length components (length, wear and base dimensions) of turning and grinding tools (tool types 400 to 599) to geometry axes is not changed when the machining plane (G17-G19) is changed. The assignment of tool orientation components is not affected by this setting data. Setting data SD42957 \$SC_TOOL_ORI_CONST_T may have to be set correspondingly.
The assignment of tool orientation components to the geometry results from the value of the setting data according to the following table.

The representation of this information in tables assumes that geometry axes 1 to 3 are called X, Y and Z. For assignment of an offset to an axis, not the axis identifier but the axis sequence is relevant.
Content Length 1 Length 2 Length 3

17	Y	X	Z
$18 *$	X	Z	Y
19	Z	Y	X
-17	X	Y	Z
-18	Z	X	Y
-19	Y	Z	X

* Any value which is not 0 and is not one of the six values listed, is evaluated as value 18.
For values that are the same but with a different sign, assignment of length 3 is always the same, lengths 1 and 2 are reversed.

If the 100 s digit of the settings data is 1 , the sign of the second length component is inverted.

42950	TOOL_LENGTH_TYPE			-	W1	
-	Assignment of tool length compensation independent of tool type			DWORD	Immediately	
-						
828d-me42	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te42	-	2, 2	-	-	2/2	M
828d-gce42	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gse42	-	0, 0, 0, 0, 0, 0, 0, $0 \ldots$	-	-	2/2	M
828d-me62	-	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-te62	-	2, 2	-	-	2/2	M
828d-gce62	-	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-gse62	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te82	-	2, 2	-	-	2/2	M
828d-me82	-	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-gce82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gse82	-	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M

[^16]Value
0: Standard assignment. A distinction is made between turning and grinding tools (tool types 400 to 599) and other tools (milling tools).
1: The tool length components are assigned irrespective of the actual tool type, always as for milling tools.
2. The tool length components are assigned irrespective of the actual tool type, always as for turning and grinding tools.
3. The tool length components are assigned separately, on the one hand for turning and grinding tools (tool types 400 to 599) and, on the other hand, for all other tools (milling tools). The assignment of tool components is specified as follows: Milling tools:

The assignment of tool length components is specified by SD42940
\$SC_TOOL_LENGTH_CONST.
Turning and grinding tools:
The assignment of tool length components is specified by SD42942 \$SC_TOOL_LENGTH_CONST_T.
The setting data also affects the wear values assigned to the length components. If SD42940 \$SC_TOOL_LENGTH_CONST is set, the tables defined there access the table for milling and turning tools defined by SD42950 \$SC_TOOL_LENGTH_TYPE irrespective of the actual tool type if the value of the latter is 1 or 2 .

Description:

If this setting data is not equal to zero, a clockwise, orthogonal tool coordinate system is defined for milling tools (all tool types except 400 to 599), which remains unchanged when the machining plane is changed (G17-G19. It has no relevance for turning and grinding tools.
The orientation coordinate system is determined by the orientation vector and a normal orientation vector extending perpendicularly to it. It is completed by a third vector, the binormal vector, which derives from the cross product of the normal orientation vector and the orientation vector.
The basic orientation is determined by the units and tens digits of the setting data. Apart from the value 0, only the values 17,18 and 19 are permissible. All other values are treated as if their value were 17.

	Orientation	Normal orient-	Binormal
Content	vector	ation vector	vector
$17 *$	$(0,0,1)$	$(0,1,0)$	$(1,0,0)$

18
$(0,1,0)$
$(1,0,0)$
$(0,0,1)$
19
$(1,0,0)$
$(0,0,1)$
(0, 1, 0)

* Each value not equal to 0 that is not one of the listed values is evaluated as if it were the value 17.
If n is the content of the 100 s digit of the setting data, the coordinate system is rotated around the orientation vector by the angle $n * 90$ degrees. n may have the values 0 to 3. Larger values are evaluated as if they were 0 .
If the sign of the setting data is negative, the coordinate system is rotated around the axis by 180 degrees, which is defined by the original position of the normal orientation vector (that is, before any rotation due to n being unequal to 0). Example:

If the content of the setting data is -18 , then:
Orientation vector ($0,-1,0)$
Normal orientation vector (1, 0, 0)
Binormal vector (0, 0, -1)
Handling of tools with an explicitly programmed tool orientation by means of cutting edge data (\$TC_DPV..):

This setting data is normally ignored for tools for which the orientation is defined in this way. This means that the programmed orientation vectors are assigned to the geometry axes in response to the active machining plane (G17 - G19).
If the setting data is also active for such tools, the 1000 s digit must be equal to 1. However, the 100 s digit and the sign are not evaluated. This means that the setting data only defines how the orientation components are assigned to the geometry axis directions. No additional rotations are performed.

42956	TOOL_ORI_CONST_T		-	W1	
-	Change in the tool orientation component for turning tools on plane change		DWORD	Immediately	
-					
828d-me42	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te42	18, 18	-	-	2/2	M
828d-gce42	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-gse42	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-me62	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te62	18, 18	-	-	2/2	M
828d-gce62	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gse62	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-te82	18, 18	-	-	2/2	M
828d-me82	0, 0, 0, 0, 0, 0, 0, 0...	-	-	2/2	M
828d-gce82	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M
828d-gse82	$0,0,0,0,0,0,0,0 \ldots$	-	-	2/2	M

Description:

If this setting data is not equal to zero, the assignment of the tool orientation components of turning and grinding tools (tool types 400 to 599) to the geometry axes is not changed if the machining plane changes (G17-G19. It has no relevance for tools other than turning and grinding tools.
The orientation coordinate system is determined by the orientation vector and a normal orientation vector lying at right-angles to it. It is completed by a third vector, the binormal vector, which is given by the cross product of the normal orientation vector and the orientation vector.
The basic orientation is determined by the units and tens digits of the setting data. Apart from the value 0, only the values 17,18 and 19 are permissible. All other values are treated as if their value were 18.

Orientation Normal orient- Binormal

Content
vector
ation
vector
$(0,1,0)$
$(1,0,0)$
$(0,0,1)$
vector
17
(0, 0, 1)
$(1,0,0)$
18*
19
$(0,1,0)$
$(0,0,1)$

* Each value not equal to 0 , which is not one of the listed values is evaluated as if it were the value 18.
If n is the content of the 100 s digit of the setting data, the coordinate system is rotated around the orientation vector by the angle $n * 90$ degrees. n may have the values 0 to 3. Larger values are evaluated as if they were 0 .
If the sign of the setting data is negative, the coordinate system is rotated around the axis by 180 degrees, which is defined by the original position of the normal orientation vector (that is before any rotation on account of n being unequal to 0). Example:
If the content of the setting data is -18 , then:
Orientation vector (0, -1, 0)
Normal orientation vector $(1,0,0)$
Binormal vector (0, 0, -1)
Handling of tools with an explicitly programmed tool orientation by using cutting edge data (\$TC_DPV..):
This setting data is normally ignored for tools for which the orientation is defined in this way. This means that the programmed orientation vectors are assigned to the geometry axes according to the active machining plane (G17 - G19).
If the setting data is also active for such tools, then the 1000 s digit must be equal to 1. However, the 100 s digit and the sign are not evaluated. This means that the setting data only defines how the orientation components are assigned to the geometry axis directions. No additional rotations are executed.

42970	TOFF_LIMIT				
mm	Upper limit of correction value via \$AA_TOFF	-	F2		
-					
-	3	$10.0,10.0,10.0,10.0$, $10.0,10.0,10.0,10.0$, $10.0,10.0,10.0 \ldots$	0.0	DOUBLE	Immediately

Description:

Upper limit of the offset value which can be defined by means of synchronized actions via the \$AA_TOFF system variable.
This limit value influences the absolutely effective amount of offset through \$AA_TOFF.
Whether the offset value is within the limit range can be checked via the \$AA_TOFF_LIMIT system variable.

42972	TOFF_LIMIT_MINUS						-	F2
mm	Lower limit of the offset value \$AA_TOFF	DOUBLE	Immediately					
-								
-	3	$0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0, \ldots$	- MD_DBLMAX	0.0	$7 / 7$			

Description:

Lower limit of the offset value which can be specified through synchronous actions via the system variable \$AA_TOFF.
This limit value acts on the active correction through \$AA_TOFF in the minus direction. This limit value is only effective if $\$ \mathrm{MC}$ _TOFF_MODE Bit6 $=1$ is set. Whether the offset value is within the limit range can be checked via the \$AA_TOFF_LIMIT system variable.

Description:

TRUE:
On activating an orientable tool holder, the fine offset values are considered.
FALSE:
On activating an orientable tool holder, the fine offset are not considered.

Description:

TRUE:
With active tool radius compensation, narrow slots are detected and traversed.
FALSE:
With active tool radius compensation, narrow slots are ignored

$828 \mathrm{~d}-\mathrm{me82}$	-	$1000,1000,1000$, $1000,1000,1000$, $1000,1000 \ldots$	-	-	$2 / 2$	M
828 d -gce82	-	2000,2000	-	-	$2 / 2$	M
828d-gse82	-	2000,2000	-	-	$2 / 2$	M

Description:

This setting data defines the direction of the geometry axes on the machining plane (XY in the case of G17) in the case of the frame definition by means of (TOROTY, TOROTX) or for PAROT.
When a frame is calculated, the tool direction (Z in the case of G17) is uniquely defined so that the tool direction and vertical axis (Z in the case of G17) of the frame are parallel and lie perpendicular on the machining plane.
Rotation around the tool axis is free at first. This free rotation can be defined using this setting data so that the newly defined frame deviates as little as possible from a previously active frame.

In all cases in which the setting data is not zero, an active frame remains unchanged if the tool direction (Z in the case of G17) of the old and the new frame are the same. SD42980 \$SC_TOFRAME_MODE>= 2000:
In the case of TOROT (or TOROTY and TOROTX), the rotations and translations of the frame chain are used to calculate a frame in the tool reference system frame (\$P_TOOLFRAME) berechnet.
Machine data 21110 \$MC_X_AXIS_IN_OLD_X_Z_PLANE is not evaluated.
The explantory notes below refer to the G17 plane with the XY axes in the machining plane and the tool axis being Z.
SD42980 \$SC_TOFRAME_MODE = 2000:
Rotation around the Z axis is selected so that the angle between the new X axis and the old $X-Z$ plane has the same absolute value as the angle between the new Y axis and the old Y-Z plane. This setting corresponds to the mean value of both settings which would result for values 2001 and 2002 of this setting data.
It is also applied if the value of the units digit is greater than 2 .
SD42980 \$SC_TOFRAME_MODE = 2001:
The new X direction is selected so that it lies in the $X-Z$ plane of the old coordinate system. The angular difference between the old and new Y axes is minimal with this setting.
SD42980 \$SC_TOFRAME_MODE = 2002:
The new Y direction is selected so that it lies in the Y-Z plane of the old coordinate system. The angular difference between the old and new X axes is minimal with this setting.
None of the other settings of $\operatorname{SD} 42980$ \$SC_TOFRAME_MODE (0,1,2,...1000,1001..) should be used for recommissioning.
For compatibility reasons, the following settings remain valid:
0 : The orientation of the coordinate system is determined by the value of machine data 21110 \$MC_X_AXIS_IN_OLD_X_Z_PLANE.
1: The new X direction is selected so that it lies in the $X-Z$ plane of the old coordinate system. The angular difference between the old and new Y axes is minimal with this setting.
2: The new Y direction is selected so that it lies in the $Y-Z$ plane of the old coordinate system. The angular difference between the old and new X axes is minimal with this setting.
3: The average of the two settings resulting from 1 and 2 is selected.

Addition of 100: In the case of a plane change from G17 to G18 or G19, a tool matrix is generated, in which the new axis directions are parallel to the old directions. The axes are swapped cyclically accordingly (standard transformation on plane changes). If the hundreds digit equals zero, a matrix is supplied in the cases of G18 and G19 which is derived from the unit matrix by simply rotating through 90 degrees around the X axis (G18) or through 90 degrees around the Y axis (G19). Thus in each case one axis is antiparallel to an initial axis. This setting is required to remain compatible with old software versions.

Addition of 1000: The tool-frame is linked to any active basic frames and settable frames. The response is thus compatible with earlier software versions (before 5.3). If the thousands digit is not set, the tool frame is calculated so that any active basic frames and settable frames are taken into account.

42984	CUTDIRMOD	C08	-			
-	Modification of \$P_AD[2] or \$P_AD[11]	STRING	Immediately			
-						
-	-	-	-	-		

Description:
States whether the tool point direction and cutting direction are to be modified on reading the corresponding system variables \$P_AD[2] and \$P_AD[11].
Modification is made by rotating the vector of the tool point direction or cutting direction by a specific angle in the active machining plane (G17-G19). The resulting output value is always the tool point direction or cutting direction created by the rotation or to which the rotated value is closest. the angle of rotation can be defined by one of the following six options:
1: The string is empty. The stated data are output unchanged.
2: The contents of the string is "P_TOTFRAME". The resulting rotation is determined from the total frame.

3: The contents of the string is a valid frame name (e.g. \$P_NCBFRAME[3]). The resulting rotation is then calculated from this frame.

4: The contents of the string has the form "Frame1 : Frame2". The resulting rotation is determined from the part frame chain that is created by chaining all frames from Frame1 to Frame2 (in each case inclusive). Frame1 and Frame2 are valid frame names such as \$P_PFRAME or \$P_CHBFRAME[5]"
5: The contents of the frame is the valid name of a rotary axis (machine axis). The resulting rotation is determined from the programmed end position of this rotary axis. Additionally, an offset can be stated (in degrees, e.g. "A+90).

6: The rotation is programmed explicitly (in degrees).
Optionally, the first character of the string can be written as sign (+ or -). A plus sign will not have any effect on the angle calculation, but a minus sign will invert the sign of the calculated angle.

42990	MAX_BLOCKS_IN_IPOBUFFER						-	K1
-	Maximum number of blocks in IPO buffer						DWORD	Immediately
-	-	$-1,-1,-1,-1,-1,-1,-1$, $-1 \ldots$.	-	-	$2 / 2$			

Description:
This setting data can be used to limit the maximum number of blocks in the interpolation buffer to the maximum number specified in MD28060 \$MC_MM_IPO_BUFFER_SIZE.

A negative value means that no limitation of the number of blocks is active in the interpolation buffer, and the number of blocks is determined solely by MD28060 \$MC_MM_IPO_BUFFER_SIZE (default setting).

42995	CONE_ANGLE	-	-			
-	Taper angle	DOUBLE	Immediately			
-						
-	-	-	-90	90	$7 / 7$	

Description: This setting data writes the taper angle for taper turning. This setting data is written via the operator interface.

42996	JOG_GEOAX_MODE_MASK	-	-			
-	JOG of geometry axis mode	DWORD	Immediately			
-						
-	-	$0,0,0,0,0,0,0,0 \ldots$	0	0×7		

Description:
This setting data sets the following during JOG of geometry axes:
Bit $0=1$:
A traversing request for the 1st geometry axis is inverted, i.e. a traversing request to + triggers a traversing motion to - .
Bit $1=1$:
A traversing request for the 2nd geometry axis is inverted, i.e. a traversing request to + triggers a traversing motion to -.
Bit $2=1$:
A traversing request for the 3rd geometry axis is inverted, i.e. a traversing request to + triggers a traversing motion to -.

42998	CUTMOD_PLANE_TOL	-	-			
degrees	Deviation tool tip/machining plane	DOUBLE	Immediately			
-						
-	-	$5.0,5.0,5.0,5.0,5.0$, $5.0,5.0,5.0 \ldots$	0.0	89.0	$2 / 2$	

Description: This setting data specifies by how many degrees the tip of a tool can be rotated as a maximum from the machining plane when calling the CUTMOD or CUTMODK function, i.e. the maximum deviation of the angle gamma from one of the two standard positions 0 or 180 degrees.
If the value of this setting data is 0 , the absolute value of the specified angle is a maximum of 89 degrees.

Description: If no axial scaling factor I, J, or K is programmed in the G51 block, SD43120
\$SA_DEFAULT_SCALE_FACTOR_AXIS is active. The scaling factor is only active if MD22914 \$MC_AXES_SCALE_ENABLE is set.
Related to:
MD22914 \$MC_AXES_SCALE_ENABLE,
MD22910 \$MC_WEIGHTING_FACTOR_FOR_SCALE

43200	SPIND_S		-	S1	
$\mathrm{rev} / \mathrm{min}$	Speed for spindle start by VDI		DOUBLE	Immediately	
-					
828d-me42	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-te42	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$	U

828d-gce42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-me62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-te62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-gce62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-gse62	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-te82	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-me82	-	0.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-gce82	-	10.0	0.0	$1.0 \mathrm{E}+301$	7/7	U
828d-gse82	-	10.0	0.0	$1.0 \mathrm{E}+301$	7/7	U

Description: Spindle speed at spindle start by NC/PLC interface signals DB380x DBX5006.1 (Spindle start clockwise rotation) and DB380x DBX5006.2 (Spindle start counterclockwise rotation).

Example: SD43200 \$SA_SPIND_S[S1] = 600
Spindle 1 is started at a speed of 600 rpm upon detection of the positive edge of one of the above-mentioned VDI starting signals.

Speed programming values are entered in the SD by setting bit $4=1$ in MD35035 \$MA_SPIND_FUNCTION_MASK.

The SD becomes active in JOG mode as a default speed by setting bit 5=1 in MD35035 \$MA_SPIND_FUNCTION_MASK (exception: the value is zero).
Related to:
MD35035 \$MA_SPIND_FUNCTION_MASK
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43202	SPIND_CONSTCUT_S						-	S1
$\mathrm{m} / \mathrm{min}$	Const cut speed for spindle start by VDI	DOUBLE	Immediately					
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: Definition of the constant cutting speed for the master spindle.
The setting data is evaluated at spindle start by the NC/PLC interface signals DB380x DBX5006.1 (Spindle start clockwise rotation) and DB380x DBX5006.2 (Spindle start counterclockwise rotation)
Cutting speed programming values are entered in the $S D$ by setting bit $8=1$ in MD35035 \$MA_SPIND_FUNCTION_MASK.
Related to:
MD35035 \$MA_SPIND_FUNCTION_MASK
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43206	SPIND_SPEED_TYPE						A06	-
-								
-	Spindle speed type for spindle start through VDI	DWORD	Immediately					
-	-	94	93	973	$7 / 7$			

Description: Definition of the spindle speed type for the master spindle.
The range of values and the functionality correspond to the 15 th G group "feed type". Permissible values are the G values: 93, 94, 95, 96, 961, 97, 971 and 973.

The stated values make a functional distinction between the following variants:
==> 93, 94, 95, 97 and 971: The spindle is started at the speed in SD 43200
\$SA_SPIND_S.
==> 96 and 961: The speed of the spindle is derived from the cutting speed of SD 43202 \$SA_SPIND_CONSTCUT_S and the radius of the transverse axis.
==> 973: G973 behaves like G97, but the spindle speed limitation is not active The default value is 94 (corresponds to G94)
The default value becomes active if the $S D$ is written with impermissible values.

43210	SPIND_MIN_VELO_G25						-	S1
rev/min								
-	Programmed spindle speed limitation G25	DOUBLE	Immediately					
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
A minimum spindle speed limit below which the spindle must not fall is entered in SPIND_MIN_VELO_G25. The NCK limits the set spindle speed to this value if it is too low.
The spindle speed may only fall below the minimum as a result of:

- Spindle offset 0%
- M5
- SO
- NC/PLC interface signal DB380x DBX4.3 (Spindle stop)
- NC/PLC interface signal DB380x DBX2.1 (Servo enable)
- NC/PLC interface signal DB3300 DBX3.7 (Channel status: Reset)
- NC/PLC interface signal DB380x DBX2.2 (Delete distance-to-go/Spindle reset)
- NC/PLC interface signal DB380x DBX2002.5 (Oscillation speed)
- Cancel S value

SD irrelevant to
other spindle modes used in open-loop control mode (SPOS, M19, SPOSA)
Related to:
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43220	SPIND_MAX_VELO_G26						-	S1
rev/min	Programmable upper spindle speed limitation G26	DOUBLE	Immediately					
-								
-	-	1000.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: A maximum spindle speed is entered in SD43220 \$SA_SPIND_MAX_VELO_G26, which the spindle must not exceed. The NCK limits an excessive spindle speed setpoint to this value.
SD irrelevant for
all spindle modes except open-loop control mode.
Special cases, errors,
The value in SD43210 \$SA_SPIND_MIN_VELO_G26 can be altered by means of:

- G26 S.... in the part program
- Operator commands via HMI

The value in SD43210 \$SA_SPIND_MIN_VELO_G26 is retained after a reset or Power Off. Related to
SD43210 \$SA_SPIND_MIN_VELO_G25 (programmed spindle speed limit G25)
SD43230 \$SA_SPIND_MAX_VELO_LIMS (programmed spindle speed limit G96/961)
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43230	SPIND_MAX_VELO_LIMS							-	S1, Z1
rev/min	Spindle speed limitation with G96						DOUBLE	Immediately	
-									
-	-	100.0	0.0	$1.0 E+301$					

Description: Limits the spindle speed with G96, G961, G97 to the stated maximum value [degrees/ second]. This setting data can be written from the block with LIMS.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be set so that the value written by the part program is transferred into the active file system on reset (that is the value is retained after reset).

Related to
SD43210 \$SA_SPIND_MIN_VELO_G25 (programmed spindle speed limit G25)
SD43230 \$SA_SPIND_MAX_VELO_LIMS (programmed spindle speed limit with G96/961)
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43235	SPIND_USER_VELO_LIMIT						A06	S1, Z1
rev/min	Maximum spindle speed						DOUBLE	Immediately
-								
-	-	$1.0 \mathrm{e}+8$	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description: The user can enter a maximum spindle speed.
The NCK limits an excessive spindle setpoint speed to this value. The $S D$ is effective immediately.
Corresponds with:
MD35100 \$MA_SPIND_VELO_LIMIT (maximum spindle speed)
MD35110 \$MA_GEAR_STEP_MAX_VELO (maxmum speed for gear stage change)

43240	M19_SPOS	, A12	S1					
degrees	Spindle position for spindle positioning with M19.						DOUBLE	Immediately
-								
-	-	0.0	-10000000.0	10000000.0				

Description:
Spindle position in [DEGREES] for spindle positioning with M19. The position approach mode is defined in SD43250 \$SA_M19_SPOSMODE. Default positions must lie in the range $0<=$ pos < MD30330 \$MA_MODULO_RANGE. Path defaults (SD43250 \$SA_M19_SPOSMODE = 2) can be positive or negative and are only limited by the input format.

43250	M19_SPOSMODE	, A12	S1					
-	Spindle position approach mode for spindle positioning with M19.						DWORD	Immediately
-								
-	-	0	0	5				

Description: Spindle position approach mode for spindle positioning with M19.
In which signify:
0: DC (default) approach position on the shortest path.
1: AC approach position normally.
2: IC approach incrementally (as path), sign gives the traversing direction
3: DC approach position on the shortest path.
4: ACP approach position from the positive direction.
5: ACN approach position from the negative direction.

43300	ASSIGN_FEED_PER_REV_SOURCE	-	V1, P2, S1			
-	Revolutional feedrate for positioning axes/spindles	DWORD	Immediately			
CTEQ						
-	-	0	-3	31		

Description: $0=$ No revolutional feedrate is active.
$>0=$ Machine axis index of the rotary axis/spindle, from which the revolutional feedrate is derived.
$-1=\quad$ The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active
$-2=$ The revolutional feedrate is derived from the axis with machine axis index $==$ 0 or the axis with an index in MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB == 0 .
$-3=\quad$ The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active. No revolutional feedrate is active if the master spindle is at a standstill.
Related to
SD42600 \$SC_JOG_FEED_PER_REV_SOURCE (revolutional feedrate for geometry axes on which a frame with rōtatiōn acts ín JOG mode.)

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43320	JOG_POSITION							-	-
mm, degrees	JOG position	DOUBLE	Immediately						
-									
-	-	0.0	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$				

Description: Position to be approached in JOG. Depending on MD10735 \$MN_JOG_MODE_MASK bit 4 axial frames and, with an axis configured as geometry axis, the tool length offset are considered.

43340	EXTERN_REF_POSITION_G30_1						, A12	FBFA
-	Reference point position for G30.1	DOUBLE	Immediately					
-								
-	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
Reference point position for G30.1.
This setting data will be evaluated in CYCLE328.

43350	AA_OFF_LIMIT						-	S5, FBSY
mm, degrees	Upper limit of offset value \$AA_OFF with clearance control						DOUBLE	PowerOn
CTEQ								
-	-	100000000.0	0.0	$1 e 15$	$7 / 7$			

Description:

The upper limit of the offset value, which can be defined by means of synchronized actions via the variable \$AA_OFF.
This limit value acts on the absolutely effective amount of offset by means of \$AA_OFF.
It is used for clearance control in laser machining:
The offset value is limited so that the laser head cannot get caught in the plate recesses.
Whether the offset value lies within the limit range can be queried via system variable \$AA_OFF_LIMIT.

43400	WORKAREA_PLUS_ENABLE	-	A3					
-	Working area limitation active in positive direction						BOOLEAN	Immediately
CTEQ								
-	-	FALSE	0	-	U			

Description: 1: The working area limitation of the axis concerned is active in the positive direction.
0 : The working area limitation of the axis concerned is switched off in the positive direction.

The setting data is parameterized via the operator panel in the operating area "Parameters" by activating/deactivating the working area limitation.

SD irrelevant for
G code: WALIMOF

43410	WORKAREA_MINUS_ENABLE		-	A3	
-	Working area limitation active in the negative direction		BOOLEAN	Immediately	
CTEQ					
-	FALSE	0	-	7/7	U

Description: 1: The working area limitation of the axis concerned is active in the negative direction

0: The working area limitation of the axis concerned is switched off in the negative direction.

The setting data is parameterized via the operator panel in the operating area
"Parameters" by activating/deactivating the working area limitation.
SD irrelevant for
G code: WALIMOF

43420	WORKAREA_LIMIT_PLUS	-	A3					
mm, degrees	Working area limitation plus						DOUBLE	Immediately
-								
-	-	$1.0 \mathrm{e}+8$	- MD_DBLMAX	$1.0 \mathrm{E}+301$				

Description:
The working area defined in the basic coordinate system in the positive direction of the axis concerned can be limited with axial working area limitation.
The setting data can be changed on the operator panel in the operating area "Parameters".
The positive working area limitation can be changed in the program with G26.
SD irrelevant for
G code: WALIMOF
Related to
SD43400 \$SA_WORKAREA_PLUS_ENABLE
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43430	WORKAREA_LIMIT_MINUS	-	A3					
mm, degrees	Working area limitation minus						DOUBLE	Immediately
-								
-	-	$-1.0 \mathrm{e}+8$	- MD_DBLMAX	$1.0 \mathrm{E}+301$				

Description: The working area defined in the basic coordinate system in the negative direction of the axis concerned can be limited with axial working area limitation.

The setting data can be changed on the operator panel in the operating area "Parameters".

The negative working area limitation can be changed in the program with G 25 .
SD irrelevant for
G code: WALIMOF
Related to
SD43410 \$SA_WORKAREA_MINUS_ENABLE
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43500	FIXED_STOP_SWITCH	-	F1			
-						
-	Selection of travel to fixed stop	BYTE	Immediately			
-	-	0	0	1	$7 / 7$	

Description:
The "Travel to fixed stop" function can be selected and deselected with this setting data.
SD=0 Deselect "Travel to fixed stop"
SD=1 Select "Travel to fixed stop"
The setting data can only be overwritten by the part program with the command FXS [x]=1/0 when software version $2 . x$ is installed.
The status of the setting data is indicated on the operator panel in the "Parameters" area.

43510	FIXED_STOP_TORQUE	-	F1			
$\%$						
-	Fixed stop clamping torque	DOUBLE	Immediately			
-	-	5.0	0.0	800.0	$7 / 7$	

Description:

The clamping torque is entered in this setting data as a of the maximum motor torque (corresponds to \% of max. current value with FDD).
The setting data is active only if the fixed stop has been reached.
The fixed stop is considered reached when,

- with MD: MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit 1 = 0 (no acknowledgment required), the interface signal DB390 \bar{x} DBX2 .5 ($\overline{\text { Fixed }}$ stop reached) is set by the NC
- with MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit $1=1$ (acknowledgment required), the interface signal DB390x DBX2.5 (Fixed stop reached) is set by the NC and acknowledged by interface signal DB380x DBX1.1 (Acknowledge fixed stop reached)
The status of the setting data is indicated on the operator panel in the "Parameters" area.
The FXST[x] command effects a block-synchronous change to this setting data. It can also be changed by the user or via the PLC. Otherwise the value is transferred from MD37010 \$MA_FIXED_STOP_TORQUE_DEF to the setting data when "Travel to fixed stop" is active.

Related to
MD37010 \$MA_FIXED_STOP_TORQUE_DEF (default setting for clamping torque)

43520	FIXED_STOP_WINDOW						-	F1
mm, degrees	Fixed stop monitoring window						DOUBLE	Immediately
-								
-	-	1.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
The fixed stop monitoring window is entered in this setting data.
The setting data is active only if the fixed stop has been reached.
The fixed stop is considered reached when,

- with MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit $1=0$ (no acknowledgment required) interface signal DB390x DBX2.5 (Fixed stop reached) is set by the NC
- with MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit $1=1$ (acknowledgment required) interface signal DB390 \bar{x} DBX $\overline{2} .5$ (Fixed stop reached) is set by the NC and acknowledged by interface signal DB380x DBX1.1 (Acknowledge fixed stop reached)
If the position at which the fixed stop was detected leaves the tolerance band by more than the amount specified in SD43520 \$SA_FIXED_STOP_WINDOW, then alarm 20093 "Fixed stop monitoring has responded" is output and the "FXS" function is deselected.
The status of the setting data is indicated on the operator panel in the "Parameters" area.
The FXSW[x] command effects a block-synchronous change to this setting data. It can also be changed by the user or via the PLC.
The value is otherwise transferred from MD37020 \$MA_FIXED_STOP_WINDOW_DEF to the setting data when "Travel to fixed stop" is active.
Related to
MD37020 \$MA_FIXED_STOP_WINDOW_DEF (default setting for fixed stop monitoring window)

43600	IPOBRAKE_BLOCK_EXCHANGE						A06, A10	K1
$\%$	Block change criterion 'braking ramp'	DOUBLE	Immediately					
-								
-	-	0.0	0	100.0				
$7 / 7$	U							

Description: Specifies the application time at single axis interpolation for the block change criterion braking ramp: At 100\%, the block change criterion is fulfilled at the time of application of the braking ramp. At 0%, the block change criterion is identical with IPOENDA.

Note:
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be set so that the value written by the part program is Ēransferēed into the active file system on reset (i.e. the value is retained even after reset).

43610	ADISPOSA_VALUE	A06, A10	P2					
mm, degrees	Tolerance window 'braking ramp'						DOUBLE	Immediately
-								
-	-	0.0	0.0	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:

In case of single-axis interpolation, this value defines the size of the tolerance window which the axis must have reached in order to enable a block change in case of the block-change criterion 'braking ramp with tolerance window valid' and when reaching the corresponding \% value of the braking ramp (SD43600 \$SA_IPOBRAKE_BLOCK_EXCHANGE).
Note:
By means of the MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB, the user can specify that the value written by the part program is transferred into the active file system in case of a reset (i.e. the value is retained even after the reset).

43700	OSCILL_REVERSE_POS1		-	P5	
mm, degrees	Oscillation reversal point 1		DOUBLE	Immediately	
-					
828d-me42	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te42	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-me62	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S

43710	OSCILL_REVERSE_POS2			-	P5	
mm, degrees	Oscillation reversal point 2			DOUBLE	Imm	
-						
828d-me42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	717	U
828d-me62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-te82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gce82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description: Position of the oscillating axis at reversal point 2.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)
Application example(s)
NC language: OSP2[Axis]=Position
Related to
SD43700 \$SA_OSCILL_REVERSE_POS1
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

828d-te42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-me62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-te82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-me82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gce82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description:
Hold time of the oscillating axis at reversal point 1.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)
Application example(s)
NC language: OST1[Axis]=Position
Related to
SD43730 \$SA_OSCILL_DWELL_TIME2
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43730	OSCILL_DWELL_TIME2			-	P5	
s	Hold time at oscillation reversal point 2			DOUBLE	Immediately	
-						
828d-me42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	717	U
828d-gse62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-te82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me82	-	0.0	-MD_DBLMAX	1.0E+301	$7 / 7$	U
828d-gce82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	717	U
828d-gse82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U

Description: Hold time of the oscillating axis at reversal point 2.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)
Application example(s)
NC language: OST2[Axis]=Position
Related to
SD43720 \$SA_OSCILL_DWELL_TIME1
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43750	OSCILL_NUM_SPARK_CYCLES			-	P5	
-	Number of spark-out strokes			DWORD	Immediately	
-						
828d-me42	-	0	0	-	0/0	S
828d-te42	-	0	0	-	0/0	S
828d-gce42	-	0	0	-	$7 / 7$	U
828d-gse42	-	0	0	-	$7 / 7$	U
828d-me62	-	0	0	-	0/0	S
828d-te62	-	0	0	-	0/0	S
828d-gce62	-	0	0	-	717	U
828d-gse62	-	0	0	-	717	U
828d-te82	-	0	0	-	$7 / 7$	U
828d-me82	-	0	0	-	$7 / 7$	U
828d-gce82	-	0	0	-	$7 / 7$	U
828d-gse82	-	0	0	-	$7 / 7$	U

[^17]Related to
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43760	OSCILL_END_POS			-	P5	
mm, degrees	End position of the reciprocating axis			DOUBLE	Immediately	
-						
828d-me42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse42	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-te62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	0/0	S
828d-gce62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-gse62	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U
828d-te82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-me82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gce82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$	U
828d-gse82	-	0.0	-MD_DBLMAX	$1.0 \mathrm{E}+301$	7/7	U

Description: Position the oscillating axis travels to after ending the sparking-out strokes. Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)
Application example(s)
NC language: OSE[Axis]=Position
Related to
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

Description:

Bit mask:
Bit no. | Meaning in OSCILL_CTRL_MASK

```
0(LSB)-1 | 0: Stop at the next reversal point if the
    | oscillating movement is switched off
    |
    | 1: Stop at reversal point 1 if the
    | oscillating movement is switched off
    | 2: Stop at reversal point 2 if the
    | oscillating movement is switched off
    3: Do not approach a reversal point when the oscillating movement is
switched off
    | if no sparking-out strokes are programmed
| 1: Approach end position after sparking out
| 1: If the oscillating movement is canceled by delete distance-to-go,
    | then the sparking-out strokes are to be executed afterwards
    | and the end position approached if necessary
------------------------------------------------------------------------------------------
| 1: If the oscillating movement is canceled by delete distance-to-go,
    | then the corresponding reversal point
    | is approached on switch off
| 1: Changed feedrate does not become active until the next reversal point
| 1: Path override is active if the feed rate is 0,
    | otherwise speed override is active
| | 1: In the case of rotary axes DC (shortest path)
------------------------------------------------------------------------------------------
| 1: Execute sparking-out stroke as single stroke not as double stroke
---------------------------------------------------------------------------------------
| 1: On starting, first approach the starting position, see
    | SD43790 $SA_OSCILL_START_POS
Application example(s)
NC language: OSCTRL[Axis]=(setting options, reset options)
Related to ....
        MD10709 $MN_PROG_SD_POWERON_INIT_TAB
        MD10710 $MN_PROG_SD_RESET_SAVE_TAB
```

43780	OSCILL_IS_ACTIVE		-	P5	
-	Activate oscillation movement		BOOLEAN	Immediately	
-					
828d-me42	FALSE	0	-	0/0	S
828d-te42	FALSE	0	-	0/0	S
828d-gce42	FALSE	0	-	$7 / 7$	U
828d-gse42	FALSE	0	-	717	U
828d-me62	FALSE	0	-	0/0	S
828d-te62	FALSE	0	-	0/0	S
828d-gce62	FALSE	0	-	$7 / 7$	U

828d-gse62	-	FALSE	0	-	$7 / 7$	U
$828 d-t e 82$	-	FALSE	0	-	$7 / 7$	U
828d-me82	-	FALSE	0	-	$7 / 7$	U
828d-gce82	-	FALSE	0	-	$7 / 7$	U
828d-gse82	-	FALSE	0	-	$7 / 7$	U

Description:
Switching the oscillating movement on and off
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)
Application example(s)
NC language: $\quad O S[A x i s]=1, ~ O S[A x i s]=0$
Related to
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

Description: Position approached by the oscillating axis at the start of oscillation if this is set in SD43770 \$SA_OSCILL_CTRL_MASK.
Note:
MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

43900	TEMP_COMP_ABS_VALUE	-	K3			
-						
-	Position-independent temperature compensation value	DOUBLE	Immediately			
-	-	0.0	- MD_DBLMAX	$1.0 \mathrm{E}+301$		

Description:
The position-independent temperature compensation value is defined by SD43900
\$SA_TEMP_COMP_ABS_VALUE.

The machine axis traverses this additional compensation value as soon as the positionindependent temperature compensation has been activated (MD32750 \$MA_TEMP_COMP_TYPE =
1 oder 3).
SD irrelevant for
MD32750 \$MA_TEMP_COMP_TYPE = 0 or 2

Related to
MD32750 \$MA_TEMP_COMP_TYPE Temperature compensation type
MD32760 \$MA_COMP_ADD_VELO_FACTOR Velocity overshoot caused by compensation

43910	TEMP_COMP_SLOPE						-	K3
-	Lead angle for position-dependent temperature compensation	DOUBLE	Immediately					
-								
-	-	0.0	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:
In the case of position-dependent temperature compensation, the error curve characteristic of the temperature-dependent actual-value deviation can often be approximated by a straight line. This straight line is defined by a reference point P_O and a slope tan- β.
SD43910 \$SA_TEMP_COMP_SLOPE defines the slope tan-ß. This slope can be changed by the PLC user program ${ }^{-}$as a^{-}function of the current temperature.
The axis traverses additionally the compensation value calculated for the relevant actual position as soon as the position-dependent temperature compensation becomes active (MD32750 \$MA_TEMP_COMP_TYPE = = 2 or 3).
MD32760 \$MA_COMP_ADD_VELO_FACTOR limits the maximum angle of slope tan-ß_max of the error curve. This maximum angle of slope cannot be exceeded.
SD irrelevant for
MD32750 \$MA_TEMP_COMP_TYPE $=0$ or 1
Special cases, errors,
When SD43910 \$SA_TEMP_COMP_SLOPE is greater than tan- $\beta_{\text {_max, }}$ the slope tan- $\beta_{\text {_ }}$ max is used to calculate the position-dependent temperature compensation value internally. No alarm is output.
Related to
MD32750 \$MA_TEMP_COMP_TYPE
SD43920 \$SA_TEMP_COMP_REF_POSITION
Temperature compensation type
temperature compēnsation
MD32760 \$MA_COMP_ADD_VELO_FACTOR Velocity overshoot caused by compensation

43920	TEMP_COMP_REF_POSITION						-	K3
-	Ref. position of position-dependent temperature compensation	DOUBLE	Immediately					
-								
-	-	0.0	- MD_DBLMAX	$1.0 \mathrm{E}+301$	$7 / 7$			

Description:

In the case of position-dependent temperature compensation, the error curve characteristic of the temperature-dependent actual-value deviation can often be approximated by a straight line. This straight line is defined by a reference point P_O and a slope tan- β.
SD43920 \$SA_TEMP_COMP_REF_POSITION defines the position of the reference point P_0. This reference position can be changed by the PLC user program as a function of the current temperature.
The axis traverses additionally the compensation value calculated for the relevant actual position as soon as the position-dependent temperature compensation becomes active (MD32750 \$MA_TEMP_COMP_TYPE = 2 or 3).
SD irrelevant for
MD32750 \$MA_TEMP_COMP_TYPE = 0 or 1
Related to
MD32750 \$MA_TEMP_COMP_TYPE Temperature compensation type
SD43910 \$SA_TEMP_COMP_SLOPE Angle of slope for position-dependent temperature compensation

Machine and setting data cycles

Description: Display resolution in mm

51001	DISP_RES_MM_FEED_PER_REV	-	-			
-						
-	Display resolution in mm feedrate/rev	BYTE	Immediately			
-	-	3	0	6	$7 / 3$	

Description: Display resolution in mm feedrate/rev

Description: Display resolution in mm feedrate/min

51003	DISP_RES_MM_FEED_PER_TOOTH		-	-	
-	Display resolution in mm feedrate/tooth		BYTE	Imm	
-					
-	3	0	6	7/3	M

Description: Display resolution in mm feedrate/tooth

51004	DISP_RES_MM_CONST_CUT_RATE	-	-			
-						
-	Display resolution constant cutting speed m/min	BYTE	Immediately			
-	-	3	0	6	$7 / 3$	

Description: Display resolution constant cutting speed $\mathrm{m} / \mathrm{min}$

51010	DISP_RES_INCH	-	-			
-	Display resolution in inch	BYTE	PowerOn			
-						
-	-	4	0	6	$7 / 3$	

Description: Display resolution in inch

51011	DISP_RES_INCH_FEED_P_REV	-	-			
-						
-	Display resolution in inch feedrate/rev	BYTE	Immediately			
-	-	4	0	6	$7 / 3$	

[^18]| 51012 | DISP_RES_INCH_FEED_P_TIME | - | - | | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| - | Display resolution in inch feedrate/min | BYTE | Immediately | | | |
| - | | | | | | |
| - | - | 4 | 0 | 6 | | |

Description: Display resolution in inch feedrate/min

51013	DISP_RES_INCH_FEED_P_TOOTH	-	-			
-	Display resolution in inch feedrate/tooth	BYTE	Immediately			
-						
-	-	4	0	6		

Description: Display resolution in inch feedrate/tooth

51014	DISP_RES_INCH_CUT_RATE	-	-			
-	Display resolution constant cutting speed ft/min	BYTE	Immediately			
-						
-	-	4	0	6	$7 / 3$	

Description: Display resolution constant cutting speed ft/min

51018	DISP_RES_SCALE	-	-			
-	Display resolution scaling	BYTE	Immediately			
-						
-	-	3	0	6	$7 / 3$	

Description: Display resolution scaling

51019	DISP_RES_ROT_WO	-	-			
-	Display resolution of rotation in work offsets	BYTE	Immediately			
-						
-	-	0	0	6	$7 / 3$	

Description:

Display resolution of rotation in work offsets
If the value of the data is 0, MD51020 \$MNS_DISP_RES_ANGLE is used.

51020	DISP_RES_ANGLE	-	-			
-	Display resolution of angle	BYTE	Immediately			
-						
-	-	3	0	6		

Description: Display resolution of angle

51021	DISP_RES_SPINDLE	-	-			
-	Display resolution of spindles	BYTE	Immediately			
-						
-	-	0	0	6	$7 / 3$	

Description: Decimal places in speed entry field

51022	DISP_RES_ROT_AX_FEED	-	-			
-	Display resolution of rotary axis feedrate	BYTE	Immediately			
-						
-	-	0	0	6		

Description: Display resolution of rotary axis feedrate

51025	FRAMES_ACT_IMMEDIATELY			-	-	
-	Activate active offset immediately			BYTE	Pow	
-						
-	1		0	1	4/3	M

51026	AXES_SHOW_GEO_FIRST	-	-								
-	Actual value display with leading geometry axes						BYTE	PowerOn			
-	-	1	0	1	$4 / 3$				$]$ M \quad		
:---	:---										
-	-										

Description: When the machine data value is 1 , the geometry axes of the channel are displayed first.

51027	ONLY_MKS_DIST_TO_GO						-	-
-	Distance-to-go display in the Work window	BYTE	PowerOn					
-								
-	-	0	0	1	$4 / 3$			

51028	BLOCK_SEARCH_MODE_MASK						-	-
-								
-	Bit mask for available block search modes	BYTE	PowerOn					
-	-	51	-	-				

Description:

Bit mask for available search modes
Bit 0: Block search with calculation without approach
Bit 1: Block search with calculation with approach
Bit 3: Skip EXTCALL programs
Bit 4: Block search without calculation

Machine data

Bit 5: Block search with test run

Description: The machine data defines how many skip levels are made available for operation.

51030	SPIND_MAX_POWER	-	-					
$\%$	Maximum value of spindle power rating display						DWORD	PowerOn
-	-	100	0	255				
-	-	$4 / 3$	M					

Description: Maximum value of the permissible spindle power as a percentage; the display bar in the machine image "spindle diagnosis" is shown green in the range between 0 and the value set in SPIND_MAX_POWER.
In the case of a SINAMICS drive, the drive parameter r0033 "Torque utilization smoothed" is shown in the load bar.

51031	SPIND_POWER_RANGE	-	-			
$\%$	Display range of spindle power rating display	DWORD	PowerOn			
-						
-	-	100	0	255	$4 / 3$	

Description: Scale end value for spindle power rating in percent; value must be equal to or greater than SPIND_MAX_POWER.
The display bar in the machine image is shown in red in the range between the values of SPIND_MAX_POWER and SPIND_POWER_RANGE.

Description:

Teach mode to be activated
Bit 0: default teach-in
Taught-in block is transferred to the program using the Accept softkey.
Bit 1: transfer of teach block can be blocked by the PLC.
SINUMERIK 840D sl:
DB19. DBX13.0 $=0$ block is transferred.
DB19.DBX13.0 $=1$ block is not transferred.
SINUMERIK 828D:
DB1700. DBX1000.0 $=0$ block is transferred.
DB1700. DBX1000.0 = 1 block is not transferred.
Bit 2: block selection only explicitly
Bits 16-31 are reserved for the OEM.

51035	WRITE_FRAMES_FINE_LIMIT	-	-					
-	Input limit for all WO fine						DOUBLE	PowerOn
-								
-	-	0.999	-	-	$4 / 3$			

Description:

Input limit for all work offsets fine

51037	ENABLE_COORDINATE_ACS	-	-			
-	Enable settable coordinate system	BYTE	PowerOn			
-						
-	-	0	0	1	$7 / 3$	

Description: Activate settable coordinate system
$0=$ WCS coordinate system is displayed
$1=$ SZS coordinate system is displayed
(SZS is WCS reduced by the offset components defined in MD24030)

51038	SET_ACT_VALUE	-	-			
-						
-	Set actual value selection	BYTE	PowerOn			
-	-	1	0	1	$7 / 3$	

Description:

Set actual value selection
$0=$ Set actual value is not offered.
$1=i f$ a user frame (settable work offset e.g. G54) is active, it will be used. In G500 Set actual values is not offered (system frame is no longer used).

Description: Options for machine - program influence:
Bit 0: program test function available

51040	SWITCH_TO_MACHINE_MASK						-	-
-	$\begin{array}{l}\text { Automatic operating area switchover to machine }\end{array}$						BYTE	PowerOn
-	-	0	-	-	$7 / 3$			

Description:
Automatic area switchover dependent upon machine
Bit 0: No automatic switch to Machine operating area when the program is selected in the Program Manager.
Bit 1: No automatic switch to Machine operating area when the operating mode is changed over via the machine control panel (MCP).
Bit 2: No automatic switch to Machine operating area when the program is selected in
the Programs operating area.
Bit 3: No automatic start of block search when the program is selected / executed in the Programs operating area.

51041	ENABLE_PROGLIST_USER	-	-					
-	Activation of PLC program list, USER area						BYTE	Immediately
-	-	0	0	1	$7 / 3$			

Description: Activates the PLC program list of the USER area. The programs entered there can be selected by the PLC for processing.

51042	ENABLE_PROGLIST_INDIVIDUAL	-	-			
-	Activation of PLC program list, INDIVIDUAL area	BYTE	Immediately			
-						
-	-	0	0	1	$7 / 3$	

Description: Activates the PLC program list of the INDIVIDUAL area. The programs entered here can be selected by the PLC for processing.

51043	ENABLE_PROGLIST_MANUFACT	-	-			
-	Activation of PLC program list, MANUFACTURER area	BYTE	Immediately			
-						
-	-	0	0	1	$7 / 3$	

Description: Activates the PLC program list of the MANUFACTURER area. The programs entered here can be selected by the PLC for processing.

51044	ACCESS_SHOW_SBL2	-	-			
-	Display protection level SBL2	BYTE	PowerOn			
-						
-	-	7	0	7	$4 / 3$	

Description: Display protection level SBL2

51045	ACCESS_TEACH_IN	-	-			
-	Protection level TEACH IN	BYTE	PowerOn			
-						
-	-	4	0	7	$4 / 3$	

Description: Protection level TEACH IN

51046	ACCESS_CLEAR_RPA	-	-			
-	Protection level delete R variables	BYTE	PowerOn			
-						
-	-	4	0	7		

Description:
Protection level delete R variables

51047	ACCESS_READ_GUD_LUD	-	-			
-	Read user variable protection level	BYTE	PowerOn			
-						
-	-	7	0	7		

Description:

Read user variable protection level

51048	ACCESS_WRITE_GUD_LUD	-	-					
-	Write protection level of user variables						BYTE	PowerOn
-								
-	-	7	0	7	M			
Description:	Write protection level of user variables							

51049	ACCESS_WRITE_PRG_COND	-	-				
-	Write program control protection level	BYTE	PowerOn				
-							
-	-	7	0	7	$4 / 3$		

Description: Write program control protection level

51050	ACCESS_WRITE_PROGRAM	-	-					
-	Write part program protection level						BYTE	PowerOn
-	-	4	0	7	$4 / 3$			

Description: Write part program protection level

51051	ACCESS_WRITE_RPA	-	-			
-	Protection level write R variables	BYTE	PowerOn			
-						
-	-	7	0	7	$4 / 3$	

Description: Protection level write R variables

51052	ACCESS_WRITE_SEA						-	-
-	Protection level write setting data	BYTE	PowerOn					
-								
-	-	7	0	7	M			

51053	ACCESS_WRITE_BASEFRAME	-	-				
-	Write basic work offset protection level					BYTE	PowerOn
-							
-	-	7	0	7			

51054	ACCESS_WRITE_CYCFRAME	-	-		
-	Write cycle frame protection level	BYTE	PowerOn		
-					
-	7	0	7	$4 / 3$	M
Description:	$-\quad$ Write cycle frame protection level				

51055	ACCESS_WRITE_EXTFRAME	-	-				
-	Write external WO protection level	BYTE	PowerOn				
-							
-	-	7	0	7	$4 / 3$		

[^19]| 51056 | ACCESS_WRITE_PARTFRAME | - | - | | | | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Write table reference protection level | | | | | | BYTE | PowerOn |
| - | | | | | | | | |
| - | - | 7 | 0 | 7 | | | | |

Description: Write table reference protection level

51057	ACCESS_WRITE_SETFRAME	-	-					
-	Write basic reference protection level						BYTE	PowerOn
-								
-	-	7	0	7	$4 / 3$			

Description: Write basic reference protection level

51058	ACCESS_WRITE_TOOLFRAME	-	-					
-	Write basic tool reference protection level						BYTE	PowerOn
-								
-	-	7	0	7	$4 / 3$			

Description: Write basic tool reference protection level

51059	ACCESS_WRITE_TRAFRAME	-	-					
-	Write transformation frame protec. level						BYTE	PowerOn
-								
-	-	7	0	7				

Description: Write transformation frame protec. level

51060	ACCESS_WRITE_USERFRAME	-	-				
-	Write settable work offset protection level	BYTE	PowerOn				
-							
-	-	4	0	7	$4 / 3$		

Description: Write settable work offset (G54 ... G599) protection level

51061	ACCESS_WRITE_WPFRAME	-	-				
-	Write workpiece reference protection level	BYTE	PowerOn				
-							
-	-	7	0	7	$4 / 3$		

Description: Write workpiece reference protection level

51062	ACCESS_WRITE_FINE	-	-					
-	Write protection level for fine offset of all work offsets						BYTE	PowerOn
-								
-	-	6	0	7	$4 / 3$			

Description: Write protection level for fine offset of all work offsets

51063	ACCESS_SET_ACT_VALUE	-	-			
-	Set actual value protection level	BYTE	PowerOn			
-						
-	-	4	0	7	$4 / 3$	

[^20]

51065	NUM_DISPLAYED_CHANNELS			-	-	
-	Number of channels displayed simultaneously			BYTE	Pow	
-						
-	1		1	4	4/3	M

Description: Setting of the number of channels to be displayed simultaneously in the machine operating area and in the multi-channel editor.

51066	ORDER_DISPLAYED_CHANNELS			-	-	
-	Channel numbers of the channels displayed			STRING	Pow	
-						
-	1;	1;	-	-	4/3	M

Contains the numbers of the channels to be displayed under machine in the multichannel view, in the desired order and separated by commas, semicolons or spaces.

51067 ENABLE_HANDWHEEL_WINDOW - - - Show handwheel window BYTE PowerOn - - 1 0 1 $4 / 2$
-
Description:

51068	SPIND_DRIVELOAD_FROM_PLC1	-	-		
-	Machine axis index of spindle 1 utilization display from PLC	BYTE	PowerOn		
-					
-	-	0	0	31	$4 / 2$

51070	ACCESS_CAL_TOOL_PROBE						-	-
-	Protection level for calibration of the tool probe (ShopTurn)	BYTE	PowerOn					
-								
-	-	4	0	7				

51071	ACCESS_ACTIVATE_CTRL_E	-	-		
-	Protection level of Ctrl-Energy	BYTE	PowerOn		
-					
-	-	1	0	7	

51072	ACCESS_EDIT_CTRL_E	-	-			
-	Protection level of Ctrl-Energy for changing profiles	BYTE	PowerOn			
-						
-	-	2	0	7		

Description: Protection level of Ctrl-Energy: Definition of energy-saving profiles

Description: This machine data defines the protection level from which the machine/machine collision monitoring can be activated or deactivated under jog.

51161	ACCESS_WRITE_CA_MACH_AUTO	-	-					
-	Write protection level, collision monitoring machine automatic						BYTE	PowerOn
-								
-	-	3	0	7				

Description: $\begin{aligned} & \text { This machine data defines the protection level from which the machine/machine } \\ & \text { collision monitoring can be activated or deactivated under automatic. }\end{aligned}$

51162	ACCESS_WRITE_CA_TOOL	-	-			
-	Write protection level collision monitoring tool	BYTE	PowerOn			
-						
-	-	1	0	7	$7 / 4$	

Description:
 This machine data defines the protection level from which the collision monitoring for

 tools can be activated or deactivated.| 51198 | ACCESS_READ_TM_ALL_PARAM | - | - | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| - | Protection level tool management details - read all parameters | BYTE | PowerOn | | | |
| - | | | | | | |
| - | - | 1 | 0 | 7 | $7 / 4$ | |

Description: Protection level tool management details - read all parameters

Description: Protection level of tool management for writing grinding data

51200	ACCESS_WRITE_TM_GEO	-	-					
-	Write tool offset geometry data protection level						BYTE	PowerOn
-	-	5	0	7	$7 / 4$			
-	-	M						

Description: Write tool offset geometry data protection level

51201	ACCESS_WRITE_TM_WEAR						-	-
-	Write tool offset wear data protection level						BYTE	PowerOn
-								
-	-	6	0	7	M			

Description: Write tool offset wear data protection level

51202	ACCESS_WRITE_TM_WEAR_DELTA	-	-				
-	Protection level for tool offset restricted writing of wear data	BYTE	PowerOn				
-							
-	-	7	0	7	$7 / 4$		

Description: Protection level for restricted writing of tool wear values
S. MD51213: TM_WRITE_WEAR_DELTA_LIMIT

51203	ACCESS_WRITE_TM_SC	-	-					
-	Write tool offset sum offset protection level						BYTE	PowerOn
-	-	7	0	7	$7 / 4$			
-	-	M						

Description: Write tool offset sum offset protection level

51204	ACCESS_WRITE_TM_EC			-	-	
-	Write tool offset use offsets protection level			BYTE	Pow	
-						
-	- 7	7	0	7	$7 / 4$	M

51205	ACCESS_WRITE_TM_SUPVIS		-	-	
-	Write tool offset monitoring data protection level		BYTE	PowerOn	
-					
-	7	7 0	7	7/4	M
Description:	One authorization applies to all limit values: quantity, service life, wear and the monitoring type.				

51206	ACCESS_WRITE_TM_ASSDNO	-	-					
-	Write tool offset unique D number protection level						BYTE	PowerOn
-								
-	-	7	0	7				

Description: Write tool offset unique D number protection level

51207	ACCESS_WRITE_TM_WGROUP	-	-					
-	Write tool offset wear groups protection level						BYTE	PowerOn
-								
-	-	7	0	7	$7 / 4$			

Description: Write tool offset wear groups (magazine location / magazine) protection level

51208	ACCESS_WRITE_TM_ADAPT	-	-				
-	Write tool offset adapter data protection level	BYTE	PowerOn				
-							
-	-	7	0	7	$7 / 4$		

Description: Write tool offset tool adapter geometry data protection level

51209	ACCESS_WRITE_TM_NAME	-	-				
-	Write tool offset tool name protection level					BYTE	PowerOn
-							
-	-	4	0	7			

51210	ACCESS_WRITE_TM_TYPE	-	-				
-	Write tool offset tool type protection level	BYTE	PowerOn				
-							
-	-	4	0	7	$7 / 4$		

Description: Write tool offset tool type protection level

51211	ACCESS_READ_TM	-	-			
-	Read tool offset data protection level	BYTE	PowerOn			
-						
-	-7	0	7	$7 / 4$		

51212	TM_WRITE_WEAR_ABS_LIMIT	-	-		
mm	Maximum tool wear value				
-					
-	-	0.999	0	10	POUBLE

Description:

Using TM_WRITE_WEAR_ABS_LIMIT, the max. possible value of a tool wear is limited absolutely, independently of the current protection level (keyswitch position), i.e. also independently of ACCESS_WRITE_TM_WEAR. Absolute and incremental wear limitation can be combined, i.e. the wear can be changed incrementally up to the absolute limit.
See MD51213.
The value 0 disables the limitation of the wear input.

51213	TM_WRITE_WEAR_DELTA_LIMIT						-	-
mm	Maximum difference value restricted tool wear input					DOUBLE	PowerOn	
-	-	0	0	10				

Description: When entering tool offsets, the value of the change from the previous value to the new value cannot exceed the value set here.
With TM_WRITE_WEAR_DELTA_LIMIT, the change to a tool wear can be limited
incrementally, if the current protection level is the same as or higher than the one set in ACCESS_WRITE_TM_WEAR_DELTA. With the current protection level being the same or higher than ACCESS_WRITE_TM_WEAR, an incremental limitation is no longer performed. Absolute and
incremental wear limitation can be combined, i.e. the wear can be changed up to the absolute limit. See MD51212
The value 0 disables limitation of the wear input.

51214	TM_WRITE_LIMIT_MASK		-	-	
-	Validity of the restricted tool wear input		BYTE	PowerOn	
-					
-	7	0	7	$7 / 4$	M
Description:	Validity of the restricted tool wear input				
	Bit 0: use for cutting edge data, wear				
	Bit 1: use for SC data, sum offsets				
	Bit 2: use for EC data, use offsets				
	Bit $0+1+2$: use for all data, wear, SC, EC				

51215	ACCESS_WRITE_TM_ALL_PARAM	-	-			
-	Protection level TM details - write all parameters	BYTE	PowerOn			
-	-	1	0	7	$7 / 4$	
-	-					

Description: Protection level TM details - write all parameters

51216	ACCESS_TM_TOOL_CREATE	-	-			
-	Protection level TM create tool	BYTE	PowerOn			
-						
-	-	4	0	7	$7 / 4$	

Description: Protection level TM create tool

51217	ACCESS_TM_TOOL_DELETE						-	-
-	Protection level TM delete tool	BYTE	PowerOn					
-	-	4	0	7	$7 / 4$			
-	-							

Description: Protection level TM delete tool

51218	ACCESS_TM_TOOL_LOAD	-	-			
-						
-	Protection level TM load tool	BYTE	PowerOn			
-	-	4	0	7	$7 / 4$	

Description: Protection level TM load tool

51219	ACCESS_TM_TOOL_UNLOAD	-	-			
-	Protection level TM unload tool	BYTE	PowerOn			
-						
-	-	4	0	7		

Description: Protection level TM unload tool

51220	ACCESS_TM_TOOL_MOVE	-	-			
-	Protection level TM relocate tool	BYTE	PowerOn			
-						
-	-	4	0	7		

Description: Protection level TM relocate tool

51221	ACCESS_TM_TOOL_REACTIVATE	-	-				
-	Protection level TM reactivate tool	BYTE	PowerOn				
-							
-	-	4	0	7	$7 / 4$		

Description: Protection level TM reactivate tool

51222	ACCESS_TM_TOOL_MEASURE	-	-			
-	Protection level TM measure tool	BYTE	PowerOn			
-						
-	-	4	0	7		

51223	ACCESS_TM_TOOLEDGE_CREATE	-	-			
-	Protection level TM create tool cutting edge	BYTE	PowerOn			
-						
-	-	4	0	7	$7 / 4$	

Description: Protection level TM create tool cutting edge

51224	ACCESS_TM_TOOLEDGE_DELETE	-	-			
-						
-	Protection level TM delete tool cutting edge	BYTE	PowerOn			
-	-	4	0	7	$7 / 4$	

Description: Protection level TM delete tool cutting edge

51225	ACCESS_TM_MAGAZINE_POS	-	-				
-	Protection level TM position magazine	BYTE	PowerOn				
-							
-	-	4	0	7	$7 / 4$		

Description: Protection level TM position magazine

Description: Function mask for simulation

```
Bit 0: No automatic start when simulation is selected
Bit 1: Deactivate simulation
Bit 4: Ignore frame components in X and Y (compatibility)
Bit 5: Turning tool can be rotated in the tool spindle
Bit 6: Enable handwheel as simulation override (values from DB19.DBW400)
Bit 7: Interpret handwheel values from DB19.DBW400 as absolute values
Bit 10: Hide zero point symbol
```


Description:
Function mask for all technologies
Bit $0: G$ code programming without multi-channel data
If bit $0=1$, no multi-channel data will be offered for job lists which only contain G code programs.

Bit 1: Enable print function of Editor
Bit 2: With external program selection (e.g. via PLC), set start disable (program check).

51230	ENABLE_LADDER_DB_ADDRESSES		-	-	
-	DB address activation in the PLC ladder viewer		BOOLEAN	Immediately	
-					
-	- 1	1 0	1	7/2	M

Description: \quad DB address activation in the PLC ladder viewer

51231	ENABLE_LADDER_EDITOR		-	-	
-	Activation of PLC ladder add-on tool for INT100/101		BOOLEAN	Imm	
-					
-	1	1 0	1	7/2	M

Description: Activation of PLC ladder add-on tool for INT100/101

51232	ENABLE_LADDER_EDITOR_ADV						-	-
-	Activation of PLC ladder editor for the complete PLC project						BOOLEAN	Immediately
-	-	1	0	1	M			
-	-							

Description: Activation of PLC ladder editor for the complete PLC project

51233	ENABLE_GSM_MODEM	-	-			
-	GSM modem activation for Easy Message	BOOLEAN	PowerOn			
-						
-	-	0	1	$7 / 2$	1	

Description: GSM modem activation for Easy Message

51235	ACCESS_RESET_SERV_PLANNER	-	-			
-						
-	Protection level for acknowledgment of maintenance tasks	BYTE	Immediately			
-	-	0	7	$7 / 2$	M	

Description:
Protection level for acknowledgment of maintenance tasks

51300	MAXNUM_WAITM_USER	-	-					
-	Number of wait marks available to the end user						BYTE	PowerOn
-								
-	-	100	0	100				

Description: Number of wait marks available to the end user

51601	MEA_CAL_EDGE_NUM	-	-			
-	Number of geometry data fields of gauging block, workpiece probe	BYTE	Immediately			
-						
-	-	0	3	$7 / 2$		

Description: The gauging block is exclusively used to calibrate the workpiece probe of the Turning technology!

51618	MEA_CM_ROT_AX_POS_TOL	-	-				
degrees	Tolerance of rotary axis positions - measuring with orientable toolholder	DOUBLE	Immediately				
-							
-	-	0.5	-1	1	$7 / 3$		

Description:

Parameter for measuring with orientable tool carrier
Entries in parameter $\$ M N _M E A _C M _R O T _A X _P O S _T O L$ are effective only if
\$MNS_MEA_FUNCTION_MASK bit2 or bit1 $\overline{6}$ is set by MD51740.
The real angle position of the rotary axes can deviate from the programmed one (exact stop fine window).
This deviation depends on the position control features of the axis. The maximum deviation expected on the concrete axis
must be entered in this parameter. When the tolerance is exceeded, alarm 61442 "Toolholder not in parallel with the geometry axes" is displayed.

51740	MEA_FUNCTION_MASK	-	-				
-	Function mask for measuring cycles, workpiece and tool measuring	DWORD	Immediately				
-							
-	-	67	-	-			

Description:
Function mask for measuring cycles
Bit 0: Workpiece measurement, calibration status monitoring
0: Calibration monitoring not active
1: Calibration monitoring active
Between calibration and measurement, the following states are monitored:

- Working plane (G17, 18, 19)
- Probe type (3D probe, type 710, mono probe, type 712, L probe, type

713, star probe, type 714)

- Length reference of the probe (center of the probe ball, probe ball
circumference)
- The following alarms 61341, 61419, 61420 can be output.

Note: - these monitoring functions are always active when "measuring in JOG".

- See also SD54740 \$SNS_MEA_FUNCTION_MASK, bit 4.

Bit 1: Workpiece measurement, milling technology, length reference of the workpiece probe

0: Tool length in the infeed axis, relative to the center of the probe
ball (TCP)
1: Tool length in the infeed axis, relative to the circumference of the
probe ball
Bit 2: Workpiece measurement, taking into account the orientation of tool carriers (kinematic type "T", swivel head) for the tool offset

0 : The tool components are corrected according to the orientation of the tool carrier
when measuring. This is valid for the orientations $0^{\circ}, 90^{\circ}, 180^{\circ}$, and
270°.
1: The tool components are corrected according to the orientation of the
tool carrier
in the initial setting.
Bit 4: Workpiece measurement, milling technology, probe is permanently mounted on the machine

0: When measuring, the workpiece probe is located in a tool spindle.
1: The workpiece probe is permanently mounted on the machine.
Not all measurement variants are available. If an inadmissible measurement variant is selected,
alarm 61373 is output.
Bit 5: Workpiece measurement, correction in WO coarse if no fine offset is set up
0 : Only the measurement difference is entered in the coarse offset of the wo (compatibility).

1: The absolute offset corrected by the measurement different is entered
in the coarse offset of the wo.
Bit 6: Effect of the feedrate override in measuring blocks (MEAS) of measuring cycles
0 : Measuring blocks (MEAS) are traversed in the measuring cycles with
the current feedrate override (compatibility).

```
1: Measuring blocks (MEAS) are traversed in the measuring cycles with 100\% feedrate override if the feedrate override is set \(>0\). Bit 15: Workpiece measurement, traverse measuring block with path behavior G60, exact stop at the end of the block
0 : The measuring block is traversed in continuous-path mode G64.
1: The measuring block is traversed with path behavior G60, exact stop at the end of the block.
Bit 16: Tool measurement, turning technology, taking into account the orientation of the tool carrier (kinematic type "T", swivel head)
0 : The tool component is corrected according to the orientation of the tool carrier when measuring.
1: The tool component is corrected according to the orientation of the tool carrier in the initial setting.
```

51742	MEA_ACCESS_EXEC	-	-			
-	Meas. cycles: Limitation of protection levels when writing system variables	DWORD	Immediately			
-						
-	10	$1,1,1,1,1,1,1,1 \ldots$	1	7	$7 / 1$	

Description: Limitation of the protection levels when writing system variables during the execution of measuring cycles.
MD51742 limits one range of the current protection level between the setting of the protection level
in MD11160 \$NM_ACCESS_EXEC_CST and the setting in MD51742 when executing the measuring cycles.
The field elements [0] to [9] are used as follows:
[0] Measure all kinematics
[1] to [9] reserved
For the meaning of the numerical values (protection level) see MD11160

Description: This parameter defines the measuring path in front of and behind the measuring setpoint.
It is only used by old ShopMill measuring cycles (powerline).

51751	J_MEA_M_DIST_MANUELL	-	-						
mm	Measuring path, for "Measure in JOG"							DOUBLE	Immediately
-									
-	-	10	-10000	10000	$7 / 5$				

Description: $\begin{aligned} & \text { This parameter defines the measuring path in front of and behind the measuring } \\ & \text { setpoint. }\end{aligned}$ setpoint.

Description: This parameter defines the measuring path in front of and behind the measuring setpoint.

Description: Feedrate in the working plane w. active collision detection

51758	J_MEA_COLL_MONIT_POS_FEED	-	-		
$\mathrm{mm} / \mathrm{min}$	Infeed rate with active collision detection, for "Measure in JOG"	DOUBLE	Immediately		
-					
-	-	1000	0	100000	$7 / 5$

51780	J_MEA_T_PROBE_DIAM_RAD						-	-
mm								
-	Diameter of the tool probe for radius measurement	DOUBLE	Immediately					
-	6	$0,0,0,0,0,0$	0	10000	$7 / 5$			

Description: Effective grinding wheel diameter of the tool probe for radius measurement on milling

51781	MEA_T_PROBE_THICKNESS	-	-						
mm	Tool probe thickness						DOUBLE	Immediately	
-									
-	6	$0,0,0,0,0,0$	0	10000					
$7 / 5$	I								

Description: Tool probe thickness for automatic approach of turning tools to the probes at milling/ turning machines

51784	J_MEA_T_PROBE_APPR_AX_DIR							-	-
-	Approach direction in the plane on the tool probe, for "Measure in JOG"	DWORD	Immediately						
-									
-	6	$-1,-1,-1,-1,-1,-1$	-2	2	$7 / 5$				

Description: Approach direction in the plane on the tool probe, for "Measure in JOG"
$=-2$ negative direction 2 nd measuring axis
$=-1$ negative direction 1 st measuring axis
$=0$ or 1 positive direction 1st measuring axis
$=2$ psoitive direction 2nd measuring axis

Description: Measuring path for tool probe calibration and tool measuring with stationary spindle,
in front of and behind the expected switching position.

51840	GRIND_FUNCTION_MASK						-	-
-	Function mask for grinding cycles	DWORD	Immediately					
-								
-	-	0	-	-				

Description: Function mask for grinding cycles
Bit 0: Reference point for recording dresser/grinding wheel is a work offset
0 : Deselect work offset as reference point
1: Select work offset as reference point
Bit 1: Reserved

52000	DISP_COORDINATE_SYSTEM	-	-			
-	Coordinate system position	BYTE	PowerOn			
-						
-	-	0	0	47	$7 / 3$	

Description:

With this MD, you adapt the operator panel's coordinate system to the machine's coordinate system. Depending on the selected position, all help screens, the sequence graphic, the simulation, and the input fields with the circular direction specified will change automatically in the user interface.
The machine data is evaluated in the cycles.
Also note MD52210 \$MCS_FUNCTION_MASK_DISP, bit 1.

52001	DISP_COORDINATE_SYSTEM_2	-	-		
-	Coordinate system for turning on milling machines	BYTE	PowerOn		
-					
-	-	0	0	47	

52005	DISP_PLANE_MILL	-	-			
-						
-	Plane selection Milling	BYTE	Immediately			
-	-	0	0	19	$7 / 3$	

```
Description: Plane selection Milling
0: plane selection on the operator panel
17: always G17
18: always G18
19: always G19
```

52006	DISP_PLANE_TURN						-	-
-	Plane selection Turning						BYTE	Immediately
-								
-	-	18	0	19	ReadOnly			

Description:

Plane selection Turning
0: plane selection on the operator panel
17: always G17
18: always G18
19: always G19

52010	DISP_NUM_AXIS_BIG_FONT	-	-								
-	Number of actual values with large font						BYTE	PowerOn			
-	-	3	0	31	$7 / 3$				$]$ M \quad		
:---	:---										
-	-										

Description: Number of actual values with large font

Description:	Adapt the number of actual values with large font if the number of geometry axes changes, e.g. due to transformations like TRANSMIT or TRACYL. $0=$ Only MD52010 "DISP_NUM_AXIS_BIG_FONT" is valid. The number is assigned as a fixed value. $1=$ Only the geometry axes are displayed in large font. MD 52010 "DISP_NUM_AXIS_BIG_FONT" is ignored. 2 = The number of geometry axes plus the content of MD 52010 "DISP_NUM_AXIS_BIG_FONT" are displayed in large font.

Description: This MD specifies whether the axis identifiers of the orientation axes are Euler angle names or channel geometry axis names.
Possible values are:
$=0$ Orientation axis name from the channel block geometry axis name with the index 3 to 5
$=1$ Orientation axis name is the name of the Euler angle from the general machine data

52032	STAT_DISPLAY_BASE						-	-
-	Number basis for display of articulated joint STAT	BYTE	PowerOn					
-								
-	-	0	0	16	$4 / 3$			

Description:

Numerical basis for displaying the articulated joint STAT
If the value of the data is greater than 0, MD51032 \$MNS_STAT_DISPLAY_BASE is ignored for this channel.
00: MD51032 is active
02: Representation as binary value
10: Representation as decimal value
16: Representation as hexadecimal value
The machine data activates not only the STAT display channel-specifically on the main screen, but also the display during "TEACH IN".

52033	TU_DISPLAY_BASE	-	-			
-	Number basis for display of rotary axis position TU	BYTE	PowerOn			
-						
-	-	0	0	16	$4 / 3$	

Description:

Numerical basis for displaying the rotary axis position TU
If the value of the data is greater than 0, MD51033 \$MNS_TU_DISPLAY_BASE is ignored for this channel.
00: MD51033 is active
02: Representation as binary value
10: Representation as decimal value
16: Representation as hexadecimal value
The machine data activates not only the TU display channel-specifically on the main screen, but also the display during "TEACH IN".

52200	TECHNOLOGY			-	-	
-	Technology			BYTE	PowerOn	
-						
-	-	0	0	4	7/1	M
Description:	Technolog 0 : no spe 1: turnin 2: millin 3: cylind 4: surface Also note	cor	Y_			

52201	TECHNOLOGY_EXTENSION						-	-
-								
-	Extended technology	BYTE	PowerOn					
-	-	0	0	4	M			

Description: Advanced technology
0 : no specific configuration
1: turning
2: milling
Also note MD52200 \$MCS TECHNOLOGY.
Example:
Turning machine with milling technology
MD 52200 \$MCS_TECHNOLOGY = 1
MD 52201 \$MCS_TECHNOLOGY_EXTENSION = 2

52210	FUNCTION_MASK_DISP	-	-			
-	Function mask for display	DWORD	PowerOn			
-						
-	-	3	-	-	$7 / 3$	

Description: Function mask for display

Bit 0: Dimension system for programs always in the basic system
Bit 1: Face view when turning in the school coordinate system
Bit 2: Hide softkey "T,S,M" in the jog area

Bit 3: Generate automatic end-of-program in MDI (using the "Delete blocks" softkey)
Bit 4: Display follow-on tool in the T, F, S window
Bit 5: Hide "Act. values Machine" softkey
Bit 6: Hide tool radius/diameter in the T,F,S window
Bit 7: Hide tool lengths in the T,F,S window
Bit 8: Hide tool icon in the T, F,S window
Bit 9: Display "Simple input" selection
Bit 10: Do not offer channel in the job lists
Bit 11: For Work activate the display of the logical spindles
Bit 12: Hide mould making view for G code
Bit 13: Hide channel axes which are currently located in another channel
0: Display channel axes which are currently located in another channel in grey
1: Hide channel axes which are currently located in another channel
Bit 14: Display overlay of the DRF under the machine
Bit 15: Display overlay of the tool (\$AA_TOFF) under the machine

Description:
Function mask for displaying overview of work offsets
Bit 0: Show Machine position
Bit 1: Reserved
Bit 2: Display DRF offset
Bit 3: Display \$AA_OFF position offset
Bit 4: Display \$P_PARTFRAME
Bit 5: Display \$P_SETFRAME
Bit 6: Display \$P_EXTSFRAME
Bit 7: Display \$P_ISO1FRAME
Bit 8: Display \$P_ISO2FRAME
Bit 9: Display \$P_ISO3FRAME
Bit 10: Display \$P_ACTBFRAME
Bit 11: Display \$P_IFRAME
Bit 12: Display \$P_TOOLFRAME
Bit 13: Display \$P_WPFRAME
Bit 14: Display \$P_TRAFRAME
Bit 15: Display \$P_PFRAME
Bit 16: Display \$P_ISO4FRAME
Bit 17: Display \$P_CYCFRAME
Bit 18: Display sum of work offsets
Bit 19: Display offset of active tool
Bit 20: Display Work position
Bit 21: Display BCS position
Bit 22: Display \$P_GFRAME
Bit 23: Display TOFF
Bit 24: Display overlay \$AA_TOFF

0 : The WO selection/deselection softkey is not available in the work offset table of the settable WOs.

1: The WO selection/deselection softkey is available in the work offset table of the settable WOs.
Bit 10: Enable swivel plane/align tool with kinematic transformation
0: Swivel plane/align tool with kinematic transformation not enabled
1: Swivel plane/align tool with kinematic transformation enabled
Bit 11: Disable position check for drilling and milling tools (ShopTurn)
$0:$ Cutting edge position check is active for drilling and milling tools
1: No cutting edge position check for drilling and milling tools
The cutting edge position check can be disabled for drilling and milling tools if this is necessary on account of the machine design.
Bit 12: Reserved
Bit 13: Approach tool change point Y in the MCS (ShopTurn)
0 : The tool change point in the Work is only approached to 0 in the Y direction if MD52241 \$MCS_TOOL_CHANGE_POS_Y $=0$.
1: Tool change point in the MCS is always approached in the Y direction (see MD52241 \$MCS_TOOL_CHANGE_POS_Y).
Bit 14: With approach logic only check tool position with cutting edge (ShopTurn)
0: The approach logic always checks the tool position.
1: The approach logic only checks the tool position if a cutting edge is active.
Bit 15: Do not set \$MC_TOOL_CARRIER_RESET_VALUE after block search
0 : The current tool carrier is written in the machine data
\$MC_TOOL_CARRIER_RESET_VALUE in the block search cycle PROG_EVENT.SPF
1: The current tool carrier is not written in the machine data
\$MC_TOOL_CARRIER_RESET_VALUE in the block search cycle PROG_EVENT.SPF
Bit 16: Do not automatically execute swivel plane after block search
0 : The section for standard cycles: swivel plane is executed in the block search cycle PROG_EVENT.SPF
1: The section for standard cycles: swivel plane is not executed in the block search cycle PROG_EVENT.SPF
Bit 17: Do not automatically execute align turning tool after block search
0 : The section for align turning tool is executed in the block search cycle PROG_EVENT.SPF
1: The section for align turning tool is not executed in the block search cycle PROG_EVENT.SPF

52214	FUNCTION_MASK_MILL	-	-			
-	Function mask for milling	DWORD	Immediately			
-						
-	-	0	-	-	$7 / 3$	

Description:

Function mask for milling
Bit 0: Enable cylinder surface transformation (ShopMill)
0 : Softkey not enabled for cylinder surface transformation
1: Cylinder surface transformation enabled
Bit 1: Offer fixed table for blank clamping (on milling machines)
0: Fixed table not offered for blank clamping
1: Offer fixed table for blank clamping
(This bit must only be set if a milling machine has a rotary axis and a fixed table for blank clamping.)
Bit 2: Special handling of side mill/saw for polyhedron

0: No special handling of side mill/saw for polyhedron
1: Special handling of side mill/saw for polyhedron
With this tool type, the first infeed is selected so that the upper edge of the tool exactly touches reference point $Z 0$.
At the end of machining, it is completely drawn out laterally from the blank spigot. This can create an internal polyhedron on a shaft.
Bit 3: Enable inside/rear machining (ShopTurn)
0: Inside/rear machining not enabled
1: Enable inside/rear machining in ShopTurn screenforms (applies in ShopTurn screenforms which define the machining planes)
Bit 4: Enable spindle clamping (C axis) (ShopTurn)
0: The parameter "Clamp/release spindle" is not shown in drilling or milling screenforms. ShopTurn clamps the spindle automatically if this is advantageous for machining.

1: The parameter "Clamp/release spindle" is shown in drilling and milling screenforms. The operator decides on the machining for which the spindle is clamped.
If you have implemented the function "Clamp/release spindle" by using the machine manufacturer cycle CUST_TECHCYC.SPF, you can activate the parameter "Clamp/release spindle"
in drilling and milling screenforms with this machine data.
Bit 5: Enable spindle control of tool spindle via user interface
0: Enable spindle control via the NC/PLC interface
1: Enable spindle control via user interface
Bit 6: Enable spindle control of turning spindle via user interface
0 : Enable spindle control via the NC/PLC interface
1: Enable spindle control via user interface
Bit 7: Offer fixed table for blank clamping (on drilling machines)
0 : Fixed table not offered for blank clamping
1: Offer fixed table for blank clamping
(This bit must only be set if a drilling machine has a rotary axis and a fixed table for blank clamping.)

52216	FUNCTION_MASK_DRILL	-	-				
-	Function mask for drilling	DWORD	Immediately				
-							
-	-	0	-	-	$7 / 3$		

Description: Function mask for drilling
Bit 0: CYCLE84 Show input fields, Technology
0: Hide input fields
1: Show input fields
Bit 1: CYCLE840 Show input fields, Technology
0: Hide input fields
1: Show input fields
Bit 2: Thread tapping also without encoder (ShopMill/ShopTurn)
0: Thread tapping only possible with encoder
1: Thread tapping also possible without encoder
The setting depends on whether the machine has an encoder for the tool spindle.
Bit 3: Constant cutting speed in relation to the diameter of the centering
(ShopMill/ShopTurn)
0: Constant cutting speed in relation to the diameter of the tool
1: Constant cutting speed in relation to the diameter of the centering

the thread first cut is not calculated with the synchronization point.
Bit 13: Stock removal along the contour with CYCLE95 (828D programGUIDE without Advanced Technology)
0 : The screenform for CYCLE952 is opened with the softkey contour turning/stock removal.
1: The screenform for CYCLE95 is opened with the softkey contour turning/stock removal.
Secondary conditions:

- 828D
- programGUIDE
- Without Advanced Technology option

52229	ENABLE_QUICK_M_CODES							-	-
-	Enable fast M functions	BYTE	Immediately						
-									
-	-	0	-	-					

Description:

Enable fast M functions
Bit 0: Coolant OFF
Bit 1: Coolant 1 ON
Bit 2: Coolant 2 ON
Bit 3: Coolant 1 and 2 ON

52230	M_CODE_ALL_COOLANTS_OFF	-	-			
-	M code for all coolants OFF	DWORD	Immediately			
-						
-	-	9	0	32767		

Description:

M code for all coolants OFF

52231	M_CODE_COOLANT_1_ON	-	-			
-	M code for coolant 1 ON	DWORD	Immediately			
-						
-	-	8	0	32767		

Description: M code for coolant 1 ON

52232	M_CODE_COOLANT_2_ON	-	-			
-	M code for coolant 2 ON	DWORD	Immediately			
-						
-	-	7	0	32767	$7 / 3$	

Description: M code for coolant 2 ON

52233	M_CODE_COOLANT_1_AND_2_ON	-	-			
-	M code for both coolants ON	DWORD	Immediately			
-						
-	-	-1	-1	32767		

[^21]| 52240 | NAME_TOOL_CHANGE_PROG | | - | - | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| - | Tool change program for G code steps | | STRING | Immediately | |
| - | | | | | |
| - | - - | - | - | 7/3 | M |
| Description: | Tool change program for G When inserting a tool usin into the program.
 If the MD contains a text, the T command.
 For example, the tool chan manufacturer specific tool | | softkey,
 y insert
 be enter | | ran
 bl
 - |

Description:
Tool change position Y in Machine (ShopTurn)
In ShopTurn, the tool change point in X and Z can be specified in the Machine or Work. When the tool change point is approached, the Y axis is simultaneously traversed to the value in the Machine specified in this MD.

52242	TURN_TOOL_FIXING		-	-	
-	Tool adapter for turning tools		BYTE	PowerOn	
-					
-	0	0	2	7/3	M
Description:	$\begin{aligned} & \text { Tool adapter for tu } \\ & 0=\text { turning tool in } \\ & 1=\text { turning tool fi } \\ & 2=\text { turning tool in } \end{aligned}$	nd	at the		

Description: Parking position of the Y axis with counterspindle in the Machine

52250	M_CODE_CHUCK_OPEN						-	-
-	M code for Open chuck with non-rotating spindle						STRING	Immediately
-								
-	2	-	-	$7 / 3$	M			

Description: \quad| M code for Open chuck with non-rotating spindle. |
| :--- |
| Example: "M34" or "M1 $=34 "$ |
| Elements: |
| $[0]:$ Main spindle |
| $[1]:$ Counterspindle |,$\quad l$

52252	M_CODE_CHUCK_CLOSE	-	-				
-	M code for Close chuck	STRING	Immediately				
-							
-	2	-	-	-	M		

Description: M code for Close chuck

Example: "M34" or "M1=34"
Elements:
[0]: Main spindle
[1]: Counterspindle

52253	M_CODE_TAILSTOCK_FORWARD			-	-	
-	M code for quill forward			STRING	Immediately	
-						
-	2	-	-	-	7/3	M

Description: M code for quill forward.
E.g.: "M55" or "M1=55"

Elements:
[0]: Quill opposite main spindle
[1]: Quill opposite counterspindle

52254	M_CODE_TAILSTOCK_BACKWARD			-	-	
-	M code for quill backward			STRING	Immediately	
-						
-	2	-	-	-	7/3	M

Description: $\quad \mathrm{M}$ code for quill backward.
E.g.: "M54" or "M1=54"

Elements:
[0]: Quill opposite main spindle
[1]: Quill opposite counterspindle

52260	MACHINE_JOG_INTERRUPT_PRIO			-	-	
-	Priority for start ASUB under machine JOG			BYTE	Imm	
-						
-	1	1	1	8	7/3	S

Description: Priority for start ASUB under machine JOG

52270	TM_FUNCTION_MASK		-	-	
-	Function mask for tool management		DWORD	PowerOn	
-					
-	0	-	-	7/3	M

Description:
Function mask for tool management
Bit 0: Create tool on magazine location not allowed. Tools can only be created outside the magazine.

Bit 1: Load/unload disabled if machine is not in reset. Tools can only be loaded/ unloaded if the appropriate channel is in reset state.

Bit 2: Load/unload disabled on emergency stop. Tools can only be loaded/unloaded if emergency stop is not active.
Bit 3: Load/unload or relocate tool to/from buffer is disabled. Tools cannot be loaded/ unloaded or relocated in the buffer (spindle/gripper).
Bit 4: Loading is executed directly into the spindle. Tools are loaded exclusively directly into the spindle.
Bit 5: Use grinding configuration file for creating the tool lists. Only grinding tools are offered.

Bit 6: Relocating a tool to/from the buffer (spindle/gripper) is permitted despite a block (see bit3).

Bit 7: Create tool using the tool number. Specify the tool's T number when creating the tool.

Bit 8: Hide Relocate tool. The function 'Relocate tool' is hidden on the user interface.
Bit 9: Hide Position magazine. The function 'Position magazine' is hidden on the user interface.

Bit 10: Reactivate tool using Position magazine. Prior to reactivation, the tool is positioned on the loading position.
Bit 11: Reactivate tool in all monitoring modes. When reactivating a tool, all monitoring modes enabled in the NC are
reactivated for this tool, even the monitoring modes, which have not been set for the relevant tool, but are available in the background only.
Bit 12: Hide Reactivate tool. The function 'Reactivate tool' is hidden on the user interface.

52271	TM_MAG_PLACE_DISTANCE		-	-	
mm	Distance betw. indiv. magazine locations		DOUBLE	PowerOn	
-					
-	70	0	10000	7/3	M

Description:
Distance between individual magazine locations.
Is used for graphical display of magazine and tools in tool management.

52272	TM_TOOL_LOAD_DEFAULT_MAG	-	-			
-	Default magazine for tool loading	BYTE	PowerOn			
-						
-	-	0	0	30	$7 / 3$	

Description: Default magazine for tool loading 0 = no default magazine

Description: Default magazine for tool relocation
0 = no default magazine

52274	TM_TOOL_LOAD_STATION						-	-
-	Number of load station	BYTE	PowerOn					
-								
-	-	0	0	16				

Description: Number of the loading station

0 = All configured stations are taken into account

52281	TOOL_MCODE_FUNC_ON	-	-			
-	M code for tool-specific function ON	DWORD	Immediately			
-						
-	4	$-1,-1,-1,-1$	-1	32767		

$\begin{array}{ll}\text { Description: } & M \text { code for tool-specific function } O N \\ & \text { Value }-1 \text { means that the } M \text { function is not output. If both } M \text { commands of a function }\end{array}$ equal -1, the corresponding field will not be displayed in the user interface

52282	TOOL_MCODE_FUNC_OFF	-	-			
-	M code for tool-specific function OFF	DWORD	Immediately			
-						
-	4	$-1,-1,-1,-1$	-1	32767		

Description: M code for tool-specific function OFF
Value - 1 means that the M function is not output. If both M commands of a function equal -1, the corresponding field will not be displayed in the user interface

52290	SIM_DISPLAY_CONFIG Location of status display of the channel in the simulation (OP019 only)							-	BYTE	Immediately
-										
-	-	0x0F	-	-	M					
-										

Description: Location of status display of the channel in the simulation
Only one of the 4 corners can be selected:
Bit 0 = Top left corner
Bit 1 = Top right corner
Bit 2 = Bottom left corner
Bit 3 = Bottom right corner
This MD is active only on the OPO19.

52740	MEA_FUNCTION_MASK	-	-			
-	$\begin{array}{l}\text { Function mask for measuring cycles, workpiece and tool } \\ \text { measuring }\end{array}$	DWORD	Immediately			
-						
-	-	65536	-	-	$7 / 3$	

Description:

Function mask for measuring cycles
Bit 0: Workpiece measurement, probe input
0 : Workpiece probe connected to probe input 1
1: Workpiece probe connected to probe input 2
Bit 1: Workpiece measurement, turning technology, use of a third geometry axis (Y axis) in turning technology by the turning measurement cycles.

0 : No use or support of the Y axis.
1: Default values for the turning measuring cycles refer to the Y axis.
This means that the Y axis can be used as a measuring or bypassing axis by the turning measuring cycles.

The tool length or work offset is always corrected in the components of the second geometry axis (X axis) during measurement in the Y axis.

Note: The default values for the Y axis are related to the diameter.
Bit 2: Correction angle is calculated with/without orientation transformation
0 : Correction angle (_MEA_CORR_ANGLE[1]) is calculated only with an active orientation transformation (TCARR, CYCLE800 or TRAORI)

1: Correction angle (_MEA_CORR_ANGLE[1]) is calculated even without an active orientation transformation and SD42940 \$SC_TOOL_LENGTH_CONST 1000s digit = 1 (calculation of tool
orientation) is set
Bit 16: Tool measurement, probe input
0: Tool probe connected to probe input 1
1: Tool probe connected to probe input 2
Bit 17: Tool measurement turning, recoding of the cutting edge positions
$0:$ No recoding
1: Internal recoding, cutting edge positions mirrored on the X axis
Tool turret rotated through 180°, Z axis not mirrored

52750	J_MEA_FIXPOINT			-	-	
mm	Z value for measuring fixed point			DOUBLE		
-						
-	-	0	-	-	7/3	1

52751	J_MEA_MAGN_GLAS_POS			-	-	
mm	Zoom-in position for tool measurement			DOUBLE	Imm	
-						
-	2	0	-	-	7/3	M

Description:

Zoom-in position for tool measurement
[0] = Position in the 1st axis
[1] = Position in the 2nd axis

\left.| 52780 | J_MEA_T_PROBE_APPR_MODE | | | | | | - | - |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Approach mode tool measurement in JOG | BYTE | Immediately | | | | | |
| - | | | | | | | | |
| - | - | 0 | 0 | 2 | | | | |$\right]$| M |
| :--- |

Description:

Approach mode tool measurement in JOG
$=0$: technology-dependent approach to the tool probe
Turning technology: manual approach
Milling technology : automatic approach
=1: technology independent approach to the tool probe
Manual approach to the tool probe
=2: technology-independent approach to the tool probe
Automatic approach to the tool probe

52800	ISO_M_ENABLE_POLAR_COORD	-	-			
-	Polar coordinates	BYTE	Immediately			
-						
-	-	0	0	1	M	

Description: Polar coordinates

0: OFF
1: ON

52802	ISO_ENABLE_INTERRUPTS							-	-
-	Interrupt process							BYTE	Immediately
-	-	0	0	1	$7 / 3$				
-	-								

Description:

Interrupt process
0: OFF
1: ON

Description: Maching skipped during tapping G74/G84 at DRYRUN
0: OFF
1: ON

52806	ISO_SCALING_SYSTEM						-	-
-	Basic system	BYTE	Immediately					
-								
-	-	0	0	2	$7 / 7$			

Description:
 Basic system:

[^22]| 52808 | ISO_SIMULTAN_AXES_START | - | - | |
| :--- | :--- | :--- | :--- | :--- |
| - | Simultaneous approach to the boring position on all programmed
 axes | BYTE | Immediately | |
| - | - | 0 | 0 | 1 |
| - | - | 0 | M | |
| Description: | Simultaneous approach to the boring position on all programmed axes
 $0:$ OFF
 $1:$ ON | | | |

52810	ISO_T_DEEPHOLE_DRILL_MODE		-	-	
-	Deep hole drilling with chipbreaking/stock removal		BYTE	Immediately	
-					
-	- 0	0 0	1	7/3	M
Description:		of deep hole drill rilling with chipbrea rilling with stock r			

52818	ISO_M_FUNCTION_MASK	-	-			
-	Function mask for ISO milling mode	DWORD	Immediately			
-						
-	-	0	-	-	$7 / 3$	

Description:

Function mask for ISO milling mode

52819	ISO_T_FUNCTION_MASK	-	-			
-						
-	Function mask for ISO turning mode	DWORD	Immediately			
-	-	0	-	-	$7 / 3$	

Description: Function mask for ISO turning mode

52840	GRIND_FUNCTION_MASK	-	-			
-	Function mask for grinding	DWORD	Immediately			
-						
-	-	0	-	-	$7 / 3$	

Description:

Function mask for grinding
Bit 7: Retraction while profiling with G1
0: Retraction while profiling with rapid traverse (GO)
1: Retraction while profiling with feedrate (G1)

52842	GRIND_DIAMETER_LENGTH	-	-			
-	Number of diameter length	BYTE	PowerOn			
-						
-	-	1	1	2	$7 / 3$	

Description: Grinding technology: Number of the tool length for the grinding wheel diameter:
1: Length 1 is grinding wheel diameter
2: Length 2 is grinding wheel diameter

52843	GRIND_WIDTH_LENGTH	-	-			
-	Number of grinding wheel width	BYTE	PowerOn			
-						
-	-	2	1	2		

Description:	Grinding technology: Number of the tool length for the grinding wheel width:
	$1:$ Length 1 is grinding wheel width

2: Length 2 is grinding wheel width

53030	AXIS_MAX_POWER	-	-			
$\%$	Maximum value of axis power rating display					
-						
-	-	0	DWORD	PowerOn		

Description: \quad| Maximum value of permissible axis power rating in percent. |
| :--- |
| |
| The display bar is shown green in the range between 0 and the value of AXIS_MAX_POWER. |

53031	AXIS_POWER_RANGE	-	-			
$\%$	Display range of axis power rating display	DWORD	PowerOn			
-						
-	-	100	0	255		
$4 / 3$	M					

Description: Scale end value for the axis power display as a percentage. The value must be greater than or equal to AXIS_MAX_POWER.
The bar display is shown red in the area between the values of AXIS_MAX_POWER and AXIS_POWER_RANGE.

53220	AXIS_MCS_POSITION			-	-	
mm	Position of axis in the Machine			DOUBLE	Immediately	
-						
-	3	0	-	-	7/3	M

Description:

Position of axis in the Machine:
The 3 field elements specify the position in X, Y, Z.
For linear axes, the value corresponds to the zero point of the axis in the Machine. For rotary axes, the position of the rotary axis is defined in the Machine.

53230	SIM_START_POSITION						-	-
mm, degrees	Axis position at start of simulation						DOUBLE	Immediately
-	-	0	-	-				

Description:

Axis position at start of simulation
Simulation is only possible if a value not equal to 0 has been set for at least one geometry axs.

53240	SPINDLE_PARAMETER						-	-
mm	Spindle chuck data						DOUBLE	Immediately
-								
-	3	0	-	-	$7 / 7$			

Description: Spindle chuck data:

[0]: Chuck dimension
[1]: Stop dimension
[2]: Jaw dimension

53241	SPINDLE_CHUCK_TYPE		-	-	
-	Spindle jaw type		BYTE	Immediately	
-					
-	0	-	-	7/7	U

Description: Spindle jaw type:
0 = Clamping from outside
1 = Clamping from inside

53242	TAILSTOCK_PARAMETER						-	-
mm	Tailstock data						DOUBLE	Immediately
-								
-	2	0	-	-	$7 / 7$			

Description: Tailstock data:

[0]: Tailstock diameter
[1]: Tailstock length

53250	CLAMPING_TOLERANCE						-	-
mm, degrees	Permissible tolerance when an axis jams						DOUBLE	Immediately
-								
-	-	0.1	10	M				

Description:
Permissible tolerance when an axis jams.
When jamming, an axis can be pushed somewhat out of its position.
With this machine date you define up to which tolerance level the axis does not have to be repositioned.

54215	TM_FUNCTION_MASK_SET		-	-	
-	Function mask for tool management		DWORD	Pow	
-					
-	0	-	-	7/4	M

Description:

Function mask for tool management
Bit 0: Diameter display for rotating tools. It is not the radius value but the diameter that is displayed for rotating tools.
Bit 1: Default direction of rotation for all turning tools is M4. Direction of rotation M4 is assigned by default when turning tools are created.
Bit 2: Create tool without suggesting name.
Bit 3: Input disable for tool name and tool type in the case of loaded tools. Once tools have been loaded, the tool name and the tool type can no longer be changed.
Bit 4: Input disable for loaded tools if the channel is not in reset.
Bit 5: Accrue tool wear entries additively. Tool wear data entries are added to the existing wear value.
Bit 6: Entry of tool ID in numerical format. The tool ID may only be entered using numbers.
Bit 7: Hide tool monitoring parameters. The tool monitoring parameters are hidden on the user interface.
Bit 8: Diameter display for transverse axis geometry. The geometry value for the transverse axis is displayed as a diameter value.
Bit 9: Diameter display for transverse axis wear. The wear value for the transverse axis is displayed as a diameter value.

Bit 10: Enable loading/relocation of tool in buffer locations. The magazine number can be entered in the load dialog box. The magazine number 9998 is then used to access the buffer location.
Bit 11: Creation of new tools in gripper locations is disabled.
Bit 12: Measuring tools are not unloaded when the "Unload all" function is executed.
Bit 13: The wear value is not deleted on entry of a tool geometry value.
Bit 14: Load or relocate tool. The search for an empty location is made without assignment with the last used magazine.
0: The search for an empty location always starts with the last used magazine. 1: The search for an empty location follows the set search strategy.

54480	AST_MMC_HANDLER_NAME						-	-
-	Assignment of an HMI Operate instance for AST commands	STRING	Immediately					
-								
-	-	-	-	-	$1 / 1$			

Description: Name of the assigned HMI Operate (master)
One Operate must be defined as the master.

54481	AST_MMC_DEFAULT_IS_PCU	-	-			
-	Selection of HMI Operate internally (NCU) / externally (PCU) for AST	BOOLEAN	Immediately			
-						
-	-	0	0	1	$1 / 1$	

Description: Selection of HMI Operate internally (NCU) / externally (PCU) for AST
Selection of the Operate type

54600	MEA_WP_BALL_DIAM	-	-			
mm	Effective diameter of the probe sphere for the workpiece probe	DOUBLE	Immediately			
-						
-	40	$0,0,0,0,0,0,0,0 \ldots$	0	10000		
$7 / 7$	U					

Description: Effective sphere diameter of the probe sphere for the workpiece probe. The value of this parameter is created by the operation "Calibrate workpiece probe"!

54601	MEA_WP_TRIG_MINUS_DIR_AX1	-	-				
mm	Trigger point of the 1st measuring axis in negative direction	DOUBLE	Immediately				
-							
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000	$7 / 7$		

Description: Trigger point of the 1st measuring axis (abscissa) in negative traversing direction (X at G17) of the workpiece probe.
The term "negative traversing direction" refers to the currently active workpiece zero point reference!
The value of this parameter is created by the operation "Calibrate workpiece probe"!

54602	MEA_WP_TRIG_PLUS_DIR_AX1	-	-				
mm	Trigger point of the 1st measuring axis in positive direction	DOUBLE	Immediately				
-							
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000	$7 / 7$		

Description: Trigger point of the 1st measuring axis (abscissa) in positive traversing direction (X at G17) of the workpiece probe.
The term "positive traversing direction" refers to the currently active workpiece zero point reference!

The value of this parameter is created by the operation "Calibrate workpiece probe"!

54605	MEA_WP_TRIG_MINUS_DIR_AX3						-	-
mm								
-	Trigger point of the 3rd measuring axis in negative direction	DOUBLE	Immediately					
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000	$7 / 7$			

Description: Trigger point of the 3rd measuring axis (applicate) in negative traversing direction
(Z at G17) of the workpiece probe.
The term "negative traversing direction" refers to the currently active workpiece zero point reference!

The value of this parameter is created by the operation "Calibrate workpiece probe"!

54606	MEA_WP_TRIG_PLUS_DIR_AX3	-	-			
mm						
-	Trigger point of the 3rd measuring axis in positive direction	DOUBLE	Immediately			
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000		
$7 / 7$	U					

Description: Trigger point of the 3rd measuring axis (applicate) in positive traversing direction (Z at G17) of the workpiece probe.
The term "positive traversing direction" refers to the currently active workpiece zero point reference!
The value of this parameter is created by the operation "Calibrate workpiece probe"!

54607	MEA_WP_POS_DEV_AX1	-	-			
mm	Position deviation of the probe sphere in the 1st measuring axis	DOUBLE	Immediately			
-						
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000	$7 / 7$	

Description: The position deviation in the lst measuring axis represents a geometrical offset of the center point of the probe sphere
related to the electrical center point of the probe in this axis!
The value of this parameter is created by the operation "Calibrate workpiece probe"!

54608	MEA_WP_POS_DEV_AX2	-	-			
mm	Position deviation of the probe sphere in the 2nd measuring axis	DOUBLE	Immediately			
-						
-	40	$0,0,0,0,0,0,0,0 \ldots$	-100000	100000		
$7 / 7$	U					

Description: The position deviation in the 2 nd measuring axis represents a geometrical offset of the center point of the probe sphere
related to the electrical center point of the probe in this axis!
The value of this parameter is created by the operation "Calibrate workpiece probe"!

54609	MEA_WP_STATUS_RT			-	-	
-	Calibration status axis positions			DOUBLE	Immediately	
-						
-	40	$0,0,0,0,0,0,0,0 \ldots$	-	-	7/7	U

Description: Calibration status of the axis positions reserved for internal use!
The value of this parameter is created by the operation "Calibrate workpiece probe"!

54610	MEA_WP_STATUS_GEN	-	-				
-							
-	Calibration status in general	DOUBLE	Immediately				
-	40	$0,0,0,0,0,0,0,0 \ldots$	-	-	$7 / 7$		

Description: Calibration status in general reserved for internal use! The value of this parameter is created by the operation "Calibrate workpiece probe"!

54611	MEA_WP_FEED	-	-			
$\mathrm{mm} / \mathrm{min}$	Measuring feed for calibration	DOUBLE	Immediately			
-						
-	40	$0,0,0,0,0,0,0,0 \ldots$	0	100000	$7 / 7$	

Description:

Measure workpiece measuring feed for calibration
This measuring feed is used for all subsequent workpiece measuring programs in conjunction with the probe field.

54615	MEA_CAL_EDGE_BASE_AX1	-	-					
mm	Calibration groove base of the 1st measuring axis						DOUBLE	Immediately
-								
-	3	$0,0,0$	-100000	100000				

$\begin{array}{ll}\text { Description: } & \text { Calibration groove base of the lst measuring axis (abscissa, } Z \text { at G18) } \\ \text { This parameter is a geometrical component of the calibration groove and must be }\end{array}$ supplied by the user!

54617	MEA_CAL_EDGE_PLUS_DIR_AX1	-	-			
mm	Calibration groove edge in positive direction of the 1st measuring axis	DOUBLE	Immediately			
-						
-	3	$0,0,0$	-100000	100000		

Description: Calibration groove edge in positive direction of the lst measuring axis (abscissa, Z at G18)
This parameter is a geometrical component of the calibration groove and must be supplied by the user!

54619	MEA_CAL_EDGE_BASE_AX2			-	-	
mm	Calibration groove base of the 2nd measuring axis			DOUBLE	Imm	
-						
-	3	0, 0, 0	-100000	100000	7/7	U

Description: Calibration groove base of the 2nd measuring axis (ordinate, X at G18) supplied by the user!

54620	MEA_CAL_EDGE_UPPER_AX2	-	-					
mm	Calibration groove upper edge of the 2nd measuring axis						DOUBLE	Immediately
-								
-	3	$0,0,0$	-100000	100000	$7 / 7$			

Description:
Calibration groove upper edge of the 2 nd measuring axis (ordinate, X at $G 18$)
This parameter is a geometrical component of the calibration groove and must be supplied by the user!

54621	MEA_CAL_EDGE_PLUS_DIR_AX2	-	-	
mm	Calibration groove edge in positive direction of the 2nd measuring axis	DOUBLE	Immediately	
-	3	-100000	100000	U
-	Calibration groove edge in positive direction of the 2nd measuring axis (ordinate, X at G18) This parameter is a geometrical component of the calibration groove and must be Supplied by the user!			

54622	MEA_CAL_EDGE_MINUS_DIR_AX2							-	-
mm	Calibration groove edge in negative direction of the 2nd measuring axis	DOUBLE	Immediately						
-	3	$0,0,0$	-100000	100000	$7 / 7$				
-									

Description: Calibration groove edge in negative direction of the 2 nd measuring axis (ordinate, X at G18)
This parameter is a geometrical component of the calibration groove and must be supplied by the user!

54625	MEA_TP_TRIG_MINUS_DIR_AX1	-	-			
mm						
-	Trigger point of the 1st measuring axis in negative direction	DOUBLE	Immediately			
-	6	$0,0,0,0,0,0$	-100000	100000		

Description: | | Trigger point of the lst measuring axis in negative direction (abscissa, X at $G 17, Z$ |
| :--- | :--- |
| | The trigger point refers to the machine coordinate system (Machine). |
| | Prior to calibration the approximate trigger point must be entered in the machine |
| | coordinate system! |
| | The exact value of this parameter is created by the operation "Calibrate workpiece |
| probe"! | |

54626	MEA_TP_TRIG_PLUS_DIR_AX1	-	-			
mm						
-	Trigger point of the 1st measuring axis in positive direction	DOUBLE	Immediately			
-	6	$0,0,0,0,0,0$	-100000	100000		
$7 / 7$	U					

Description: Trigger point of the lst measuring axis in positive direction (abscissa, X at G17, Z at G18)
The trigger point refers to the machine coordinate system (Machine).
Prior to calibration the approximate trigger point must be entered in the machine coordinate system!
The exact value of this parameter is created by the operation "Calibrate workpiece probe"!

54627	MEA_TP_TRIG_MINUS_DIR_AX2	-	-					
mm	Trigger point of the 2nd measuring axis in negative direction						DOUBLE	Immediately
-								
-	6	$0,0,0,0,0,0$	-100000	100000				

Description: Trigger point of the 2nd measuring axis in negative direction (ordinate, Y at $G 17$, X at G18)

The trigger point refers to the machine coordinate system (Machine).
Prior to calibration the approximate trigger point must be entered in the machine coordinate system!
The exact value of this parameter is created by the operation "Calibrate workpiece probe"!

54628	MEA_TP_TRIG_PLUS_DIR_AX2	-	-			
mm	Trigger point of the 2nd measuring axis in positive direction	DOUBLE	Immediately			
-						
-	6	$0,0,0,0,0,0$	-100000	100000		

Description: Trigger point of the 2nd measuring axis in positive direction (ordinate, Y at $G 17$, X at G18)
The trigger point refers to the machine coordinate system (Machine).
Prior to calibration the approximate trigger point must be entered in the machine coordinate system!
The exact value of this parameter is created by the operation "Calibrate workpiece probe"!

54629	MEA_TP_TRIG_MINUS_DIR_AX3	-	-		
mm	Trigger point of the 3rd measuring axis in negative direction	DOUBLE	Immediately		
-	6	-100000	100000	$7 / 7$	U
-	6	$0,0,0,0,0,0$			

Description: Trigger point of the 3rd measuring axis in negative direction (applicate, Z at $G 17$, Y at G18)
The trigger point refers to the machine coordinate system (Machine).

Prior to calibration the approximate trigger point must be entered in the machine coordinate system!
The exact value of this parameter is created by the operation "Calibrate workpiece probe"!

54631	MEA_TP_EDGE_DISK_SIZE							-	-
mm	Tool probe edge length/wheel diameter						DOUBLE	Immediately	
-	6	$0,0,0,0,0,0$	0	1000	$7 / 7$				
-	6		U						

Description: Effective edge length or grinding wheel diameter of the tool probe.
This data is important for the "Milling" technology when measuring the length of milling tools.

54633	MEA_TP_TYPE	-	-			
-						
-	Tool probe type cube / wheel / probe head	DOUBLE	Immediately			
-	6	$0,0,0,0,0,0$	0	999	$7 / 7$	

Description: Tool probe type

```
    0: Compatibility (measuring cycles: cube, turning surface shows probe head, milling
surface shows wheel)
101: Wheel in XY, working plane G17
201: Wheel in ZX, working plane G18
301: Wheel in YZ, working plane G19
2: Probe head
3: Cube
```

54634	MEA_TP_CAL_MEASURE_DEPTH	-	-				
mm	Distance between the upper tool probe edge and the lower milling tool edge	DOUBLE	Immediately				
-							
-	6	$2,2,2,2,2,2$	-1000	1000	$7 / 7$		

Description: Distance between the upper tool probe edge and the lower milling tool edge.
For tool probe calibration this distance defines the calibration depth and
for milling tool measuring the measuring depth!
This parameter does not apply to turning tool measuring!

Description: Calibration status general, reserved for internal use
The value of this parameter is assigned when the "Calibrate tool probe" procedure is executed.

54636	MEA_TP_FEED	-	-			
mm/min	Measuring feed for tool probe calibration in the Machine	DOUBLE	Immediately			
-						
-	6	$0,0,0,0,0,0$	0	100000		
$7 / 7$	U					

Description: Measuring feed for tool probe calibration in Machine
This measuring feed is used for all subsequent tool measuring programs in conjunction with the probe field.

54640	MEA_TPW_TRIG_MINUS_DIR_AX1	-	-					
mm	Trigger point of the 1st measuring axis in negative direction						DOUBLE	Immediately
-								
-	6	$0,0,0,0,0,0$	-100000	100000				
$7 / 7$	U							

Description: Trigger point of the lst measuring axis in negative direction (abscissa, X at G17, Z at G18)

The trigger point refers to the workpiece coordinate system (Work).
Prior to calibration the approximate trigger point must be entered in the workpiece coordinate system!
The exact value of this parameter is created by the operation "Calibrate tool probe"!

54641	MEA_TPW_TRIG_PLUS_DIR_AX1	-	-			
mm						
-	Trigger point of the 1st measuring axis in positive direction	DOUBLE	Immediately			
-	6	$0,0,0,0,0,0$	-100000	100000		

```
Description: Trigger point of the 1st measuring axis in positive direction (abscissa, X at G17, Z
at G18)
The trigger point refers to the workpiece coordinate system (Work).
Prior to calibration the approximate trigger point must be entered in the workpiece
coordinate system!
The exact value of this parameter is created by the operation "Calibrate tool probe"!
```

54642	MEA_TPW_TRIG_MINUS_DIR_AX2	-	-		
mm	Trigger point of the 2nd measuring axis in negative direction	DOUBLE	Immediately		
-	6	$0,0,0,0,0,0$	-100000	100000	$7 / 7$
-	6				

Description: Trigger point of the 2nd measuring axis in negative direction (ordinate, Y at $G 17$, X at G18)

The trigger point refers to the workpiece coordinate system (Work).
Prior to calibration the approximate trigger point must be entered in the workpiece coordinate system!
The exact value of this parameter is created by the operation "Calibrate tool probe"!

54643	MEA_TPW_TRIG_PLUS_DIR_AX2						-	-
mm	Trigger point of the 2nd measuring axis in positive direction						DOUBLE	Immediately
-	6	$0,0,0,0,0,0$	-100000	100000	$7 / 7$			
-								

Description: Trigger point of the 2nd measuring axis in positive direction (ordinate, Y at $G 17$, X at G18)

The trigger point refers to the workpiece coordinate system (Work).
Prior to calibration the approximate trigger point must be entered in the workpiece coordinate system!
The exact value of this parameter is created by the operation "Calibrate tool probe"!

54644	MEA_TPW_TRIG_MINUS_DIR_AX3	-	-			
mm						
-	Trigger point of the 3rd measuring axis in negative direction	DOUBLE	Immediately			
-	6	$0,0,0,0,0,0$	-100000	100000	$7 / 7$	

Description: Trigger point of the 3rd measuring axis in negative direction (applicate, Z at Gl7, Y at G18)
The trigger point refers to the workpiece coordinate system (Work).
Prior to calibration the approximate trigger point must be entered in the workpiece coordinate system!
The exact value of this parameter is created by the operation "Calibrate tool probe"!

54646	MEA_TPW_EDGE_DISK_SIZE	-	-					
mm	Tool probe edge length/wheel diameter						DOUBLE	Immediately
-								
-	6	$0,0,0,0,0,0$	0	1000				
$7 / 7$	U							

Description: Effective edge length or grinding wheel diameter of the tool probe.
Milling tools are normally measured with wheel-shaped probes while turning tools
are measured with square probes.

54647	MEA_TPW_AX_DIR_AUTO_CAL	-	-				
-							
-	Automatic tool probe calibration, enable axes/directions	DWORD	Immediately				
-	6	$133,133,133,133$, 133,133	-	-	$7 / 7$		

Description:
Enabling axes and traversing directions for "Automatic calibration" in the workpiece coordinate system (Work) of milling tool probes.
The default setting refers in X and Y to the plus and minus direction respectively, in Z only to the minus direction.
The parameter is divided into six components, the functions of which are assigned to calibration data records 1 to 6.
Meaning of the parameter components
Decimal position:
Units \quad 1st geometry axis (X)
Tens: 2nd geometry axis (Y)
Hundreds: 3rd geometry axis (Z)
Value:
=0: axis not enabled
=1: only minus direction possible
=2: only plus direction possible
=3: both directions possible

54648	MEA_TPW_TYPE	-	-			
-	Tool probe type cube $/$ wheel / probe head	DOUBLE	Immediately			
-						
-	6	$0,0,0,0,0,0$	-	-		

Description: Tool probe type
0: Compatibility (measuring cycles: cube, turning interface shows probe head, milling interface shows disc)
101: Disk in XY, working plane G17
201: Disk in ZX, working plane G18
301: Disk in YZ, working plane G19
2: Probe head
3: Cube

54649	MEA_TPW_CAL_MEASURE_DEPTH	-	-			
mm	Distance between the upper tool probe edge and the lower milling tool edge	DOUBLE	Immediately			
-						
-	6	$2,2,2,2,2,2$	0	999	$7 / 7$	

Description: Distance between the upper tool probe edge and the lower milling tool edge.

```
For tool probe calibration this distance defines the calibration depth and
for milling tool measuring the measuring depth!
This parameter does not apply to turning tool measuring!
```

54650	MEA_TPW_STATUS_GEN						-	-
-	Calibration status in general						DOUBLE	Immediately
-								
-	6	$0,0,0,0,0,0$	-	-	U			

Description:
Calibration status general, reserved for internal use The value of this parameter is assigned when the "Calibrate tool probe" procedure is executed.

54651	MEA_TPW_FEED						-	-
$\mathrm{mm} / \mathrm{min}$	Measuring feed for tool probe calibration in the Work							
-	DOUBLE	Immediately						
-	6	$0,0,0,0,0,0$	0	100000	$7 / 7$			

Description: Measuring feed for tool probe calibration in Work
This measuring feed is used for all subsequent tool measuring programs in conjunction with the probe field.

54652	MEA_INPUT_TOOL_PROBE_SUB	-	-			
-						
-	Tool probe available/active on the counterspindle	BYTE	Immediately			
-	6	$0,0,0,0,0,0$	0	11	$7 / 2$	

Description:
CNC measurement input for tool probe with reference to the counterspindle \$SNS_MEA_INPUT_TOOL_PROBE_SUB [[n]
=0: Toolsetter no. $=\mathrm{n}+1$, with reference to the main spindle, CNC measurement input corresponds to the value of \$MCS_MEA_FUNCTION_MASK, bit16 (Input values 1 to 9 have the same functional effect as input 0!)
=10: Toolsetter no. $=\mathrm{n}+1$, with reference to the counterspindle, units digit $=0$ corresponds to CNC measurement input 1
=11: Toolsetter no. $=\mathrm{n}+1$, with reference to the counterspindle, units digit $=1$ corresponds to CNC measurement input 2

54670	MEA_CM_MAX_PERI_SPEED						-	-
$\mathrm{m} / \mathrm{min}$	Max. permissible peripheral speed of the tool to be measured						DOUBLE	Immediately
-	2	100,100	0	10000	$7 / 7$			
-	2	U						

Description:
Max. permissible peripheral speed of the tool to be measured when the spindle rotates. Monitoring parameter for tool measuring with rotating spindle

54671	MEA_CM_MAX_REVOLUTIONS	-	-					
rev/min	Maximum tool speed for tool measuring						DOUBLE	Immediately
-								
-	2	1000,1000	0	100000	$7 / 7$			

Description: Max. permissible tool speed for tool measuring with rotating spindle.
The speed is automatically reduced when this value is exceeded.
Monitoring parameter for tool measuring with rotating spindle

54672	MEA_CM_MAX_FEEDRATE	-	-				
$\mathrm{mm} / \mathrm{min}$	Maximum feed for contact of the tool with the probe					DOUBLE	Immediately
-							
-	2	20,20	0	100000			

Description: Max. permissible feed for contact of the tool to be measured with the probe when the spindle rotates.
Monitoring parameter for tool measuring with rotating spindle

54673	MEA_CM_MIN_FEEDRATE	-	-					
$\mathrm{mm} / \mathrm{min}$	Minimum feed for 1st contact of the tool with the probe						DOUBLE	Immediately
-	2	1,1	0	100000	$7 / 7$			
-	2		U					

Description: Min. feed for first contact of the tool to be measured with the probe when the spindle rotates.
Too small feeds for large tool radii are thus avoided!
Monitoring parameter for tool measuring with rotating spindle

54674	MEA_CM_SPIND_ROT_DIR	-	-				
-	Direction of spindle rotation for tool measuring	DOUBLE	Immediately				
-							
-	2	4,4	3	4	$7 / 7$		

Description: Direction of spindle rotation for tool measuring with rotating spindle (default: $4=$ M4)
Notice: if the spindle is already rotating when the measuring cycle is called, the direction of rotation is maintained
independently of \$SNS_MEA_CM_SPIND_ROT_DIR!
Monitoring parameter for tool measuring with rotating spindle

54675	MEA_CM_FEEDFACTOR_1	-	-			
-	Feedrate factor 1, for tool measuring	DOUBLE	Immediately			
-						
-	2	10,10	-	-		

Description: Feedrate factor 1 , for tool measuring with rotating spindle
$=0$: single probing with the feedrate calculated by the cycle (but at least with the value of \$SNS_MEA_CM_MIN_FEEDRATE)
>=1: first probing with calculated feedrate (but at least with the value of \$SNS_MEA_CM_MIN_FEEDRATE).
Monitoring parameter for tool measuring with rotating spindle

54676	MEA_CM_FEEDFACTOR_2	-	-			
-	Feedrate factor 2, for tool measuring	DOUBLE	Immediately			
-						
-	2	0,0	-	-	$7 / 7$	

Description: Feedrate factor 2, for tool measuring with rotating spindle
$=0$: second probing with the feedrate calculated by the cycle (only effective with MEA_CM_FEEDFACTOR_1 > 0)
>=1: second probing with calculated feedrate, feedrate factor 2
Third probing with calculated feedrate (tool speed is influenced by SD54749
\$SNS_MEA_FUNCTION_MASK_TOOL, Bit 12)
Notice: - Feedrate factor 2 should be smaller than feedrate factor 1!
not performed!
Monitoring parameter for tool measuring with rotating spindle

54689	MEA_T_PROBE_MANUFACTURER	-	-			
-	Tool probe type (manufacturer)	BYTE	Immediately			
-						
-	-	0	0	2	$7 / 5$	

Description:

Tool probe type (manufacturer)
These indications are required for tool measuring with rotating spindle.
=0: no indication
=1: TT130 (Heidenhain)
=2: TS27R (Renishaw)

Description: $\quad \begin{aligned} & \text { Measurement result offset for tool measuring with rotating spindle. } \\ & =0 \text { : no offset } \\ & \\ & =1: \text { cycle-internal offset (only effective with SD54690 } \\ & \\ & \$ \text { SNS_MEA_T_PROBE_MANUFACTURER<>0) } \\ & \end{aligned}$

54692	MEA_T_CIRCULAR_ARC_DIST	-	-				
mm	Distance between meas. pts with meas. function "Check teeth individually"	DOUBLE	Immediately				
-							
-	-	0.25	5	$7 / 7$			

Description: The data value is used for measuring the tool radius with the function "Check teeth individually".
The distance (measured at the circumference of the tool) between the points at which measurements are made to find the "highest point on the longest tooth" must be entered. If the data value is ZERO, then the search for the "highest point on the longest tooth" is not made with a stationary spindle,
instead the value is measured by sampling while the spindle is rotating.

54693	MEA_T_MAX_STEPS							-	-
-	Max. number of contacts for measuring function "Check teeth individually"	BYTE	Immediately						
-									
-	-	10	0	15	U				

Description: | Maximum number of contacts for finding the "highest point on the longest tooth" when |
| :--- |
| measuring the tool radius. |
| If the data value is ZERO, then the search for the "highest point on the longest tooth" |
| is not made with a stationary spindle, |
| instead the value is measured by sampling while the spindle is rotating. | ll

54695	MEA_RESULT_OFFSET_TAB_RAD1	-	-					
mm	Offset table (measure tool radius with rotating spindle)						DOUBLE	Immediately
-								
-	5	$0,0,0,0,0$	-	-				

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_RAD1[0] ... this element always has value ZERO
\$SNS_MEA_RESULT_OFFSET_TAB_RAD1[1] ... 1st tool radius
\$SNS_MEA_RESULT_OFFSET_TAB_RAD1[2] ... 2nd tool radius
\$SNS_MEA_RESULT_OFFSET_TAB_RAD1[3] ... 3rd tool radius
\$SNS_MEA_RESULT_OFFSET_TAB_RAD1[4] ... 4th tool radius

54696	MEA_RESULT_OFFSET_TAB_RAD2						-	-
mm	Offset table 1st peripheral speed (radius)	DOUBLE	Immediately					
-								
-	5	$0,0,0,0,0$	-	-	$7 / 5$			

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_RAD2[0] ... 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD2[1] ... offset value for radius regarding 1st
radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD2[2] ... offset value for radius regarding 2nd
radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD2[3] ... offset value for radius regarding 3rd
radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD2[4] ... offset value for radius regarding 4th
radius and 1st peripheral speed

54697	MEA_RESULT_OFFSET_TAB_RAD3						-	-
mm	Offset table 2nd peripheral speed (radius)						DOUBLE	Immediately
-	5	$0,0,0,0,0$	-	-	$7 / 5$			
-	5							

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_RAD3[0] ... 2nd peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD3[1] ... offset value for radius regarding 1st
radius and 2 nd peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD3[2] ... offset value for radius regarding 2nd
radius and $2 n d$ peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD3[3] ... offset value for radius regarding 3rd
radius and 2nd peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_RAD3[4] ... offset value for radius regarding 4th
radius and 2nd peripheral speed

54706	MEA_RESULT_OFFSET_TAB_LEN2			-	-	
mm	Offset table 1st peripheral speed (length)			DOUBLE	Imm	
-						
-	5	0, 0, 0, 0, 0	-	-	7/5	U

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_LEN2[0] ... 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN2[1] ... offset value for radius regarding 1st
radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN2[2] ... offset value for radius regarding 2nd
radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN2[3] ... offset value for radius regarding 3rd radius and 1st peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN2[4] ... offset value for radius regarding 4th radius and 1st peripheral speed

54707	MEA_RESULT_OFFSET_TAB_LEN3	-	-					
mm	Offset table 2nd peripheral speed (length)						DOUBLE	Immediately
-								
-	5	$0,0,0,0,0$	-	-	U			

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_LEN3[0] ... 2nd peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN3[1] ... offset value for radius regarding 1st
radius and 2 nd peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN3[2] ... offset value for radius regarding 2nd radius and 2nd peripheral speed \$SNS_MEA_RESULT_OFFSET_TAB_LEN3[3] ... offset value for radius regarding 3rd radius and 2nd peripheral speed \$SNS_MEA_RESULT_OFFSET_TAB_LEN3[4] ... offset value for radius regarding 4th radius and 2nd peripheral speed

54708	MEA_RESULT_OFFSET_TAB_LEN4						-	-
mm	Offset table 3rd peripheral speed (length)	DOUBLE	Immediately					
-								
-	5	$0,0,0,0,0$	-	-	U			

Description: Parameter for user-defined measurement result offset for tool measuring with rotating spindle

```
$SNS_MEA_RESULT_OFFSET_TAB_LEN4[0]
$SNS_MEA_RESULT_OFFSET_TAB_LEN4 [1]
radius and 3rd peripheral speed
$SNS_MEA_RESULT_OFFSET_TAB_LEN4 [2]
radius and 3rd peripheral speed
$SNS_MEA_RESULT_OFFSET_TAB_LEN4 [3]
radius and 3rd peripheral speed
$SNS_MEA_RESULT_OFFSET_TAB_LEN4 [4]
radius and 3rd peripheral speed radius and \(3 r d\) peripheral speed
```

... 3rd peripheral speed
... offset value for radius regarding 1st
... offset value for radius regarding 2 nd
... offset value for radius regarding 3 rd
... offset value for radius regarding 4 th

54709	MEA_RESULT_OFFSET_TAB_LEN5						-	-
mm								
-	Offset table 4th peripheral speed (length)	DOUBLE	Immediately					
-	5	$0,0,0,0,0$	-	-	$7 / 5$			

Description:
Parameter for user-defined measurement result offset for tool measuring with rotating spindle
\$SNS_MEA_RESULT_OFFSET_TAB_LEN5[0] ... 4th peripheral speed
\$SNS_MEA_RESULT_OFFSET_TAB_LEN5[1] ... offset value for radius regarding 1st radius and 4 th peripheral speed \$SNS_MEA_RESULT_OFFSET_TAB_LEN5[2] ... offset value for radius regarding 2nd radius and 4 th peripheral speed \$SNS_MEA_RESULT_OFFSET_TAB_LEN5[3] ... offset value for radius regarding 3rd radius and 4 th peripheral speed \$SNS_MEA_RESULT_OFFSET_TAB_LEN5[4] . . . offset value for radius regarding 4th radius and 4th peripheral speed

54740	MEA_FUNCTION_MASK	-	-				
-	Function mask for measuring cycles, workpiece and tool measuring	DWORD	Immediately				
-							
-	-	-	-	$7 / 5$	U		

Description:

Function mask for measuring cycles
Bit 0: Repeat measurement, workpiece measurement with offset in a tool,
after tolerance exceeded for dimension difference (TDIF) or confidence range
(TSA)
0 : When one of the tolerances is exceeded, the measurement is not repeated and an appropriate alarm
is displayed (alarm 61303 or 61306).
1: When one of the tolerances is exceeded, a measurement is repeated up to four times.

When, for all repeat measurements, one of the tolerances is exceeded, then an appropriate alarm is displayed (alarm 61303 or 61306).

Bit 1: Repeat measurement, workpiece measurement with offset in a tool, program stop at M0,

After every repeat measurement with tolerance of dimension difference (TDIF) or confidence range (TSA) exceeded and alarm output

Bit 1 only effective in conjunction with bit $0=1$.
$0:$ If one of the tolerances is exceeded, the measurement is not repeated and an appropriate alarm
is displayed (alarm 61303 or 61306).
1: If one of the tolerances is exceeded, the measurement is repeated up
to four times.
In the case of a tolerance being repeatedly exceeded, using an appropriate alarm output and M0, the measurement is interrupted (alarm 62303 or 62306).

With "NC-START", the alarm can be acknowledged, and the next repeat measurement started.
Bit 2: Workpiece measurement with offset in a tool, programmed stop at M0 after tolerance exceeded
from lower limit workpiece (TLL) or upper limit workpiece (TUL) and alarm
output
0: If one of the tolerances is exceeded, an appropriate reset alarm is displayed
(alarm 61304 or 61305). A tool correction (offset) is not executed.
1: If one of the tolerances is exceeded, then using an appropriate alarm output
and M0, the sequence is canceled (alarm 62304 or 62305).
Using "NC-START" these alarms can be acknowledged, and the sequence restarted. The correction (offset) in the tool is executed. Bit 3: Accept the calibrated radius of the workpiece probe in the tool data

0 : Do not accept the calibrated radius of the workpiece probe in the tool data.

1: Accept the calibrated radius of the workpiece probe in the tool data. Bit 4: For mixed technologies, turning-milling or milling-turning, the plane between calibrating and
measuring can be different.
0 : When measuring workpieces, it is not permissible to have different planes for calibration and measurement.

If the planes differ, alarm 61341 is output during the cycle runtime.
1: When measuring workpieces, different planes for calibration and measurement are permissible.

For example: Calibration in G17 and measurement under turning in G18.
Bit 16: Repeat measurement, tool measurement, after tolerances of the dimension difference are exceeded (TDIF)
or confidence range (TSA) exceeded
0: If one of the tolerances is exceeded, the measurement is not repeated, and an appropriate alarm is displayed (alarm 61303 or 61306).

1: When one of the tolerances is exceeded, the measurement is repeated up to four times.
If, for all repeat measurements, one of the tolerances is exceeded, then an appropriate alarm is displayed (alarm 61303 or 61306).

Bit 17: Repeat measurement, tool measurement, programmed stop at M0 after tolerance exceeded, dimension difference (TDIF) or confidence range (TSA) and alarm output

0 : If one of the tolerances is exceeded, the measurement is not repeated, and an appropriate alarm is displayed (alarm 61303 or 61306).

1: If one of the tolerances is exceeded, the measurement is repeated up
to four times.
In the case that the tolerance is exceeded again, using an appropriate alarm output and M0 measurement is canceled (alarm 62303 or 62306).

Using "NC-START", the alarm can be acknowledged, and the next repeat measurement started.
Bit 19: Tool measurement, milling technology, reducing the spindle speed at the last probing

0: The last probing is realized without reducing the spindle speed.
1: At the last probing, the spindle speed is automatically reduced.

54750	MEA_ALARM_MASK			-	
-	Expert mode for cycle alarms		DWORD	Immediately	
-					
-	0	-	-	7/5	U
Description:	Bit 2: With special transformations (e.g. robot transformations) it may be useful to deactivate the traversing distance reduction of the measurement block related to the software limit positions, and the corresponding alarms. Bit 3-15 Reserved for workpiece measurement Bit 16-31 Reserved for tool measurement				

Machine data

Bit24 Select Calibrate with/without positional deviation
Bit25 Enable Select Work offset when measuring the angularity of the spindle
Bit26 Select Do not enable tool offset
Bit27 Do not enable: Select tolerance of linear vectors with measurement of complete kinematics
Bit28 Enable Select adapt tool length
If WO compensation bit $6 . .10$ is not selected, then list "Measure only"..
If WO compensation bit 6.10 is selected, then always also list compensation in active WO in the input screen
For averaging, display the following parameters: _K _TMV, _EVNUM

1) Input measuring feed applies to automatic and JOG

54762	MEA_FUNCTION_MASK_TOOL	-	-				
-	Setting for input screen, measuring cycles in Automatic, tool measuring	DWORD	Immediately				
-							
-	-	0	-	-	$7 / 5$		

Description:

Setting for input screen, Measuring cycles in Automatic, Tool measurement
54762 MEA_FUNCTION_MASK_TOOL
Bit3 Enable selection of tool probe calibration data field
Bit4 Select Calibrate input measuring feed (VMS) 1)
Bit5 Select Input feed and spindle speeds for contacting
Bit7 Select Measure in Machine and Work
Bit8 Select Measure absolute and incremental
Bit9 Select Tool offset geometry and wear
Bit10 Select measuring function "Check teeth individually"
Bit11 Select Spindle reversal when calibrating on the plane
Bit12 Select Number of measurements (_NMSP)
Bit13 Select Empirical values (_EVNUM)
Bit14 Select offset correction with selection of direction

1) Measuring feed input applies to Automatic and Jog

54764	MEA_FUNCTION_MASK_TURN	-	-				
-	Setting for input screen, Measuring cycles in Automatic, Workpiece turning	DWORD	Immediately				
-							
-	-	0	-	-	$7 / 5$		

Description: 54764 MEA_FUNCTION_MASK_TURN
Setting for input screen, Measuring cycles Turning in Automatic
Bit0 Measure inside/outside diameter with reversal
Bit1 Measure inside/outside diameter "travel under turning center"?

54780	J_MEA_FUNCTION_MASK_PIECE			-	-	
-	Settings for input screen Workpiece measurement in JOG			DWORD	Immediately	
-						
-	-	131584	-	-	7/5	U
Description:	Settings for input screen Workpiece measuring in JOG					
	Bit2 Activate compensation for electronic workpiece probe					
	Bit3 Select probe calibration data fie			nable		
	Bit5 Select wo as basis for measuring					

```
Bit6 Select WO compensation in basic frame, enable
Bit7 Select WO compensation in channel basic frame, enable
Bit8 Select WO compensation in global basic frame, enable
Bit9 Select WO compensation in settable frame, enable
Bit16 Select Workpiece measurement with spindle reversal
Bit17 Select Align workpiece probe in switching direction
Bit28 Select adapt tool length, enable
```


55200	MAX_INP_FEED_PER_REV			-	-	
mm/rev	Upper limit feedrate/rev			DOUBLE	Imm	
-						
-	-	1	0	15	7/4	M

55201	MAX_INP_FEED_PER_TIME		-	-	
mm/min	Upper limit feedrate/min		DOUBLE	Immediately	
-					
-	10000	-	-	$7 / 4$	M

Description: Feedrate input upper limit for $\mathrm{mm} / \mathrm{min}$

55202	MAX_INP_FEED_PER_TOOTH						-	-
mm								
-	Upper limit feedrate/tooth	DOUBLE	Immediately					
-	-	1	0	5	$7 / 4$			

Description:

Feedrate input upper limit for mm/tooth

55212	FUNCTION_MASK_TECH_SET	-	-	
-	Function mask Cross-technology	BYTE	Immediately	
-				
-	6	-	$7 / 4$	M
Description:	Function mask for all Bit 0: Tool preselecti Bit 1: Calculate thread Bit 2: Refer to Table Bit 3: Delete programs 0: Generated 1: Generated p cycle	depth cycles (con iatel		YCLE952) the cal

55214	FUNCTION_MASK_MILL_SET		-	-	
-	Function mask Milling		DWORD	Immediately	
-					
-	5	-	-	7/4	M

Description: Function mask for milling
Bit 0: Default setting - milling cycles with synchronous operation
Bit 2: Depth calculation in milling cycles without parameter SC

Description: Function mask for drilling
Bit 0: Tapping CYCLE84: Reverse direction of spindle rotation during cycle
Bit 1: Boring CYCLE86: Take into consideration rotation of the tool plane when positioning the spindle
Bit 2: Boring CYCLE86: When positioning the spindle, take into account swiveled table kinematics (toolholder)

Bit 3: Tapping CYCLE84: Monitoring machine data 31050 and 31060 of the spindle Bit 4: Tapping CYCLE840: Monitoring machine data 31050 and 31060 of the spindle Bit 6: Boring CYCLE86: Adapt spindle position to the orientation of the tool Tool orientation can be realized using TOOLCARR or TRAORI before the cycle is called.

If bit6=1, bits 1 and 2 are no longer effective.
Bit 7: Boring CYCLE86: Adapt the direction of the retraction path in the plane to active mirroring
0: Retraction in the plane is realized as programmed
1: When mirroring is active, when retracting in the plane, the direction is adapted in the cycle to the active mirroring.

55218	FUNCTION_MASK_TURN_SET	-	-				
-	Function mask Turning	DWORD	Immediately				
-							
-	-	1	-	-	$7 / 4$		

Description:

Function mask for turning
Bit 0 : New thread table for thread cutting
Bit 1: Reserved (CYCLE93)
Bit 2: Reserved (CYCLE93)
Bit 3: Chamfer in CYCLE930 as chamfer length (CHF)
Bit 4: Retraction from inside machining (CYCLE951)
0: Compatibility as before
If the necessity for rounding the corner is detected in the cycle, the tool is retracted from the inside machining, otherwise it is not.

1: It is generally retracted from the inside machining in the cutting axis.
Bit 5: Disable new smoothing behavior in thread cutting cycles
0 : The new smoothing behavior is active in the threading cycles between thread
blocks (G33, G34, G35 ...).
This improves the dynamic response adaptation in thread blocks that serve
for run-in, run-out or as a transition element of the thread
by using a larger proportion of the block length for the dynamic response adaptation.

The prerequisite for this function is the setting data setting SD 42010 \$SC_THREAD_RAMP_DISP[2]=-1.

1: The new smoothing behavior is not active between thread blocks (compatibility).

55220	FUNCTION_MASK_MILL_TOL_SET						-	-
-								
-	Function mask for high-speed settings CYCLE832	DWORD	Immediately					
-	-	0	-	-	$7 / 5$			

Description:
Function mask for high-speed settings CYCLE832
Bit 0: Display input fields, technology
=0: Hide input fields, technology
=1: Display input fields technology
Bit 1: Enter orientation tolerance (OTOL) as factor of tolerance (CTOL) or directly enter
Bit 1 is only relevant for machines with orientation transformation that has been setup
=0: Orientation tolerance (OTOL) is calculated as factor of the entered tolerance
=1: Directly enter orientation tolerance (OTOL) into the input screen
The factor to calculate the orientation tolerance is saved in the following setting data
\$SCS_MILL_TOL_FACTOR_ROUGH for the machining type, roughing G group 59 DYNROUGH \$SCS_MILL_TOL_FACTOR_SEMIFIN for the machining type, semi-finishing G group 59 DYNSEMIFIN
\$SCS_MILL_TOL_FACTOR_FINISH for the machining type, finishing G group 59 DYNFINISH
Bit 2: A mould-making function can be selected in the High Speed Settings mask
=0: The best available mould-making function is used automatically

- Top Surface option not active -> Advanced Surface
- Top Surface option active -> Top Surface
=1: The mould-making function (Advanced Surface or Top Surface) can be selected in the mask (only if the Top Surface option is active)
Bit 3: High Speed Settings mask without Advanced Surface option
$=0$: The High Speed Settings mask is only offered with the Advanced Surface option
=1: The High Speed Settings mask is also offered without the Advanced Surface option
Bit 4: Display smoothing selection
=0: Do not display smoothing selection (corresponds to smoothing = yes)
=1: Display smoothing selection

55221	FUNCTION_MASK_SWIVEL_SET			-	-	
-	Function mask for swivel CYCLE800			DWORD	Imm	
-						
-	-	256	-	-	7/3	M

Description:
Function mask for swivel CYCLE800
The settings of the function mask (bits 0 to 4) for swivel act on all swivel data records

Bit 0: Show "No swivel" input field
=0: Hide "No swivel" input field
=1: Show "No swivel" input field
Bit 1: Retract "fixed point 1/2" instead of "Z", "Z XY"
=0: Selection text retract "Z" or retract "Z XY"
=1: Selection text retract "fixed point 1" or retract "fixed point 2"
Bit 2: Permit selection of "deselection" of the swivel data record
=0: Do not permit selection of "deselection" of the swivel data record (hide)
=1: Permit selection of "deselection" of the swivel data record
Bit 3: Show active swivel plane under swivel in JOG
=0: Hide active swivel plane under swivel in JOG
=1: Show active swivel plane under swivel in JOG
Bit 4: Evaluate input values for swiveling in the pole position of the machine kinematics
=0: Evaluation of the input values with swiveling in pole position
=1: No evaluation of the input values with swiveling in pole position (compatibility) Starting from the initial position of the machine kinematics, the input values when swiveling are evaluated so that continuous swiveling around the pole axis is possible Pole axis is the rotary axis of the swivel data record that rotates around the tool axis

Example: rotary axis C rotates around Z for G17./
Additional settings of the pole axis:
Angular range (traversing range) of >360 degrees in the swivel data record Bit 5 Align tool (turning technology) using frame calculation (TCOFRY) or absolute (TCOABS)

The tool orientation of the orientable tool carrier is calculated
either using a frame calculation (TCOFRY for G18) or in absolute terms with TCOABS For B axis kinematics of a turning machine, the tool spindle in the initial setting of the kinematics
can be set up parallel to either Z or to X. See also "Swivel data" under Commissioning. For new systems being commissioned, it is recommended you set bit 5=1:
=0: Align tool using frame calculation (TCOFRY for G18, compatibility)
=1: Align tool absolutely (TCOABS)
Bit 6: Do not offer "direct" swivel mode under swivel in JOG
=0: "Direct" swivel mode is offered under swivel in JOG
=1: "Direct" swivel mode is not offered under swivel in JOG
Bit 7: Swivel plane: Direction selection in initial setting of the kinematics
Behavior with swivel plane in initial setting of the kinematics if the NCK calculates two solutions:
=0 With selected direction + or -, both calculated solutions of the rotary axes are approached. (Compatibility)
=1 With selected direction + or -, only one of the calculated solutions of the rotary axes is approached.
Compatibility for PowerLine up to SW 7.x and for SolutionLine up to SW 1.x
Bit 8: Work offset of the rotary axes of the swivel data record traversed as an offset
$=0$ Work offset of the rotary axes of the swivel data record is only taken into account
in the WCS (compatibility)
$=1$ Work offset of the rotary axes of the swivel data record traversed as an offset
Setting is in conjunction with MD21186 \$MC_TOCARR_ROT_OFFSET_FROM_FR
Bit 9: Swivel data set TC permanently assigned to the tool
$=0$ Display number of the swivel data record TC
$=1$ Do not display number of the swivel data record TC
Assignment of the swivel data record to the tool is performed in SGUD _TC_GNO
if technology cylindrical grinding is set in MD52200 \$MCS_TECHNOLOGY = 3
Example:
TC GNO can be written by the machine manufacturer in the tool change program L6

Bit 10: Swivel plane: Show input field "positioning direction"
=0: The input field "positioning direction" is hidden.
=1: The input field "positioning direction" is displayed with swivel tables and swivel head / table combinations.
Bit 11: Positioning of both solutions of an AB kinematics
=0 Compatibility. Positioning of only one solution with specific swivel angles
$=1$ Positioning of both solutions calculated by the NCK
Bit11 should be set =1 with kinematics, on which - in the basic position - none of the two rotary axes rotates around
the tool axes (AB kinematics with tool axes in Z direction)
Bit 12: Swivel plane, tool alignment: reset behavior taking the rotary axis positions into account
$=0$ Compatibility. Reset state refers to the end positions of the rotary axes in the swivel data record
$=1$ Reset state refers to the current positions of the rotary axes in the swivel data record
If bit12=0, a linear axis identifier is written in the parameters \$TC_CARR21/22.
The tool carrier is thus initialized with the end positions of the rotary axes (\$TC_CARR13/14) on reset (TCOABS).
If Bit12=1, the names of the rotary axes of the swivel data record are written in the parameters \$TC_CARR21/22.
The tool carrier is thus initialized with the actual values of the rotary axes on reset (TCOABS).
Bit 13: Activation of the extended evaluation of the rotations with axis-by-axis swiveling in the pole position.
$=0$ No evaluation of the rotations with swiveling in the pole position (compatibility) The settings of bits 4,7 and 11 apply
$=1$ Extended evaluation of the rotations with swiveling in the pole position
With kinematics with 2 rotary axes, one of the rotary axes can be the pole axis. A rotary axis is then in the pole position, if it rotates around the tool axis. In contrast to bit4, the input values are still evaluated if bit13 is set if the 1 st rotary axis is not in the initial position.
Example: Table kinematics with 1st rotary axis A (rotates around X) and 2 nd rotary axis B (rotates around Y) G17

After axis-by-axis swiveling around Y and then around $X=90^{\circ}$, the 2 nd rotary axis is in pole position.
Setting for swivel data record: Rotary axis reference must be set to the rotary axis that is not the pole axis (in the example: rotary axis 1).
When the bit is set, the input rotations are evaluated so that continuous swiveling around the pole axis/tool axis is possible. The following applies: the "+" solution of CYCLE800 has no additional rotation, whereas the "-" solution has an additional 180° rotation in the Actframe in the tool axis.
If bit13 is set, the settings of bits 4,7 and 11 have no effect.

55230	CIRCLE_RAPID_FEED							-	-
$\mathrm{mm} / \mathrm{min}$	Positional feed on circular paths	DOUBLE	Immediately						
-									
-	-	10000	100	100000	$7 / 4$				

Description: Rapid traverse feedrate in $\mathrm{mm} / \mathrm{min}$ for positioning on circle path

55232	SUB_SPINDLE_REL_POS							-	-
mm	Retract position Z for counterspindle	DOUBLE	Immediately						
-									
-	-	0	-	-					

Description: \quad z retraction position for the counterspindle

55260	MAJOG_SAFETY_CLEARANCE	-	-					
mm	Safety clearance for machine JOG						DOUBLE	Immediately
-	-	1	0.1	100				

Description: Safety clearance for machine JOG

55261	MAJOG_RELEASE_PLANE	-	-			
mm	Retraction plane for machine JOG	DOUBLE	Immediately			
-						
-	-	100	-	-		

Description: Retraction plane for machine JOG

55300	EASY_SAFETY_CLEARANCE	-	-						
mm	Simple input: Safety clearance						DOUBLE	Immediately	
-									
-	-	1	-	-	$7 / 4$				

Description:

Simple input: safety clearance
The input field for the safety clearance is not available in the simple input screens.
Instead, the value of this setting date is always used.

55301	EASY_DWELL_TIME	-	-					
s	Simple input: dwell time						DOUBLE	Immediately
-								
-	-	0.6	-100	100				

Description:

Simple input: dwell time in seconds
The input fields for dwell times are not available in the simple input screens.
Instead, the value of this setting data is always used.

55305	EASY_DRILL_DEEP_FD1	-	-			
$\%$	Simple input: percentage 1st feedrate deep-hole drilling	DOUBLE	Immediately			
-						
-	-	90	0	100	$7 / 7$	

Description:

Simple input: percentage 1st feedrate deep-hole drilling
The input field for this percentage is not available in the simple input screens.
Instead, the value of this setting data is always used.

55306	EASY_DRILL_DEEP_DF	-	-				
$\%$							
-	Simple input: percentage infeed deep-hole drilling	DOUBLE	Immediately				
-	-	90	0	100			
$7 / 7$	U						

Description:	Simple input: percentage infeed deep-hole drilling
	The input field for this percentage is not available in the simple input screens.

Instead, the value of this setting data is always used.

55307	EASY_DRILL_DEEP_V1	-	-					
mm	Simple input: min. depth infeed deep-hole drilling						DOUBLE	Immediately
-	-	1.2	-	-	$7 / 4$			
-	-	M						

Description:
Simple input: min. depth infeed deep-hole drilling
The input field for the minimum depth infeed is not available in the simple input screens.
Instead, the value of this setting data is always used.

55308	EASY_DRILL_DEEP_V2	-	-					
mm	Simple input: absolute retraction value deep-hole drilling						DOUBLE	Immediately
-								
-	-	-	-	$7 / 4$	M			

Description: Simple input: absolute retraction value deep-hole drilling
The input field for the absolute retraction value is not available in the simple input screens.
Instead, the value of this setting data is always used

55309	EASY_THREAD_RETURN_DIST			-	-	
mm	Simple input: return distance thread tapping			DOUBLE	Imm	
-						
-	2	2	-	-	$7 / 4$	M

Description: Simple input: return distance thread tapping
The input field for the return distance is not available in the simple input screens. Instead, the value of this setting data is always used.

55400	MILL_ENGRAVE_POINT_RAD							-	-
mm	Engraving cycle CYCLE60: Circ. path radius for generating the char. "point"	DOUBLE	Immediately						
-									
-	-	0	0	10	$7 / 7$				

Description: Input value equals zero: The character "point" is realised by a simple linear insertion movement of the tool
(Default setting for conventional engraving tools, compatibility).
Input value greater than zero: The character "point" is executed as a circle with the radius value from this setting data
(Setting for certain special tools).

Machine data

Bit 3: Display alarm 61426: Kinematics measurement with CYCLE9960/996. Hide 1 = Alarm 61426

55420	MILL_SWIVEL_RESET_RETRACT						-	-
-	Initial setting swivel: retract						BYTE	Immediately
-								
-	-	0	0	5	M			

Description:

> Initial setting swivel: retract With this setting data, the stat plane" when activating the "Init $\begin{aligned} & 0=\text { no change } \\ & 1=\text { no } \\ & 2=\text { Z } \\ & 3=\text { Z XY } \\ & 4=\text { Tool direction max. } \\ & 5=\text { Tool direction inc. }\end{aligned}$

With this setting data, the status adopted by the toggler "Retract" in the mask "Swivel plane" when activating the "Initial setting" softkey can be set:

55421	MILL_SWIVEL_RESET_TRACK	-	-					
-	Initial setting swivel: tool correction						BYTE	Immediately
-								
-	-	0	0	2				

Description:

Initial setting swivel: Tool correction
With this setting data, the status adopted by the toggler "Tool correction" in the mask
"Swivel plane" after activating the softkey "Initial setting" can be set:
$0=$ no change
$1=$ do not correct
2 = correct

55422	MILL_SWIVEL_RESET_MODE		-	-	
-	Initial setting swivel: swivel mode		BYTE	Immediately	
-					
-	0	0	1	7/5	M

Description:

Initial setting for swivel: Swivel mode
With this setting data, the state of the "Swivel mode" toggler in the "Swivel plane" mask can be set with the "Initial setting" softkey:

0 = axis by axis
1 = direct

55441	MILL_TOL_FACTOR_ROUGH	-	-			
-	Rotary axes tolerance factor for roughing CYCLE832 of G group 59	DOUBLE	Immediately			
-						
-	-	10	0	1000	U	

Description:
Rotary axes tolerance factor for roughing CYCLE832 of G group 59

55442	MILL_TOL_FACTOR_SEMIFIN	-	-			
-	Rotary axes tolerance factor for prefinishing CYCLE832 of G group 59	DOUBLE	Immediately			
-						
-	-	10	0	1000	$7 / 5$	

Description: Rotary axes tolerance factor for prefinishing CYCLE832 of G group 59

55443	MILL_TOL_FACTOR_FINISH			-	-	
-	Rotary axes tolerance factor for finishing CYCLE832 of G group 59			DOUBLE	Imm	
-						
-	-	10	0	1000	7/5	U

55446	MILL_TOL_VALUE_ROUGH	-	-			
mm						
-	Tolerance value for roughing CYCLE832 (High Speed Settings)	DOUBLE	Immediately			
-	-	0.1	0	10	$7 / 5$	

Description: Tolerance value for roughing CYCLE832

55447	MILL_TOL_VALUE_SEMIFIN							-	-
mm	Tolerance value for smooth-finishing CYCLE832 (High Speed Settings)	DOUBLE	Immediately						
-	-	0.05	0	10	$7 / 5$				
-	-	U							

Description: Tolerance value for prefinishing CYCLE832

55448	MILL_TOL_VALUE_FINISH						-	-
mm	Tolerance value for finishing CYCLE832 (High Speed Settings)							
-	DOUBLE	Immediately						
-	-	0.01	0	10	$7 / 5$			

Description: Tolerance value for finishing CYCLE832

55460	MILL_CONT_INITIAL_RAD_FIN	-	-					
mm	Contour pocket milling: approach circle radius finishing						DOUBLE	Immediately
-								
-	-	0	0	100				

Description: This data affects the radius of the approach circle during contour pocket finishing.
0 : the radius is selected to maintain a safety clearance to the finishing allowance in
the starting point.
>0 : the radius is selected to maintain the value of this setting data to the finishing allowance in the starting point.

55481	DRILL_TAPPING_SET_GG12	-	-			
-						
-	Setting tapping G group 12: block change behavior at exact stop	DOUBLE	Immediately			
-	2	0	0	3	$7 / 4$	

Description: Settings for tapping G group 12 cycle CYCLE84 and CYCLE840:
G group 12: block change behavior at exact stop (G60)

55482	DRILL_TAPPING_SET_GG21	-	-		
-					
-	Setting tapping G group 21: acceleration profile	DOUBLE	Immediately		
-	2	0	0	3	

Description: Settings for tapping G group 21 cycle CYCLE84

Machine data

G group 21: acceleration profile (SOFT, BRISK, ...)

55483	DRILL_TAPPING_SET_GG24	-	-					
-	Setting tapping G group 24: precontrol						DOUBLE	Immediately
-								
-	2	0	0	2				

Description: Settings for tapping G group 24 cycle CYCLE84 and CYCLE840:
G group 24: precontrol (FFWON, FFWOF)

55484	DRILL_TAPPING_SET_MC	-	-		
-	Setting tapping: spindle operation at MCALL	DOUBLE	Immediately		
-	2	0	0	1	$7 / 4$
-	2				

Description: Setting for tapping cycle CYCLE84 spindle operation at MCALL
$0=$ reactivate spindle operation at MCALL
$1=$ maintain position-controlled spindle operation at MCALL

55489	DRILL_MID_MAX_ECCENT	-	-					
mm	Max. center offset f. center boring						DOUBLE	Immediately
-								
-	-	0.5	0	10				

Description: Maximum center offset for center boring

Description: Preboring depth for drill and thread milling

55500	TURN_FIN_FEED_PERCENT			-	-	
\%	Roughing feedrate for complete machining in \%			BYTE	Imm	
-						
-	-	100	1	100	7/4	M

Description: When selecting Complete machining (roughing and finishing), the percentage of the entered feedrate F as specified in this setting data is used for finishing.

55505	TURN_ROUGH_O_RELEASE_DIST						-	-
mm	Return distance stock removal for external machining	DOUBLE	Immediately					
-								
-	-	1	-1	100				

Description: Using this setting data, you enter the clearance, by which the tool is retracted from the contour when removing stock from an outer corner. This is not applicable for removing stock from a contour
1: The safety clearance is used as clearance.

55506	TURN_ROUGH_I_RELEASE_DIST	-	-			
mm	Return distance stock removal for internal machining	DOUBLE	Immediately			
-						
-	-	0.5	-1	100		

```
Description: Using this setting data, you enter the clearance, by which the tool is retracted from
the contour when removing stock from an inner corner. This is not applicable for
removing stock from a contour.
-1: The safety clearance is used as clearance.
```


Description: If a tool clearance time occurs in a cycle, e.g. deep hole drilling, grooving, the value of this setting data is used

- negative value in spindle revolutions
- positive value in seconds

55540	TURN_PART_OFF_CTRL_DIST						-	-
mm	Path for cut-off check						DOUBLE	Immediately
-								
-	-	0.1	0	10	M			

Description: Path for cut-off check

55541	TURN_PART_OFF_CTRL_FEED						-	-
$\mathrm{mm} / \mathrm{min}$	Feedrate for cut-off check						DOUBLE	Immediately
-								
-	-	0	-	-	M			

55542	TURN_PART_OFF_CTRL_FORCE						-	-
$\%$	Force for cut-off check in $\%$	DOUBLE	Immediately					
-								
-	-	10	1	100	$7 / 4$			

Description: Force in percent for cut-off check

55543	TURN_PART_OFF_RETRACTION	-	-			
mm	Retraction path prior to cut-off with counterspindle	DOUBLE	Immediately			
-						
-	-	0	0	1	$7 / 4$	

Description: Retraction path prior to cut-off with counterspindle

55550	TURN_FIXED_STOP_DIST	-	-						
mm	Counterspindle: path for travel to fixed stop - $\quad-\quad 10$						0.001	1000	Immediately

Description: In this setting data you specify the distance to the programmed target position, after which the counterspindle travels with a special feedrate during travel to fixed stop (see 55551 \$SCS_TURN_FIXED_STOP_FEED).

55551	TURN_FIXED_STOP_FEED						-	-
$\mathrm{mm} / \mathrm{min}$	Counterspindle: feedrate for travel to fixed stop						DOUBLE	Immediately
-	-	0	-	-	$7 / 4$			
-	-	M						

Description: In this setting data you specify the feedrate with which the counterspindle travels to after which the tool travels in this feedrate.

55552	TURN_FIXED_STOP_FORCE	-	-					
$\%$	Counterspindle: force for travel to fixed stop in $\%$						DOUBLE	Immediately
-								
-	-	10	1	100	$7 / 4$			

Description: In this setting data you specify at which percentage of the driving force the counterspindle is to stop during travel to fixed stop.

55553	TURN_FIXED_STOP_RETRACTION	-	-				
mm	Counterspindle: retraction path prior to chucking after fixed stop	DOUBLE	Immediately				
-							
-	-	0	0	1	$7 / 4$		

Description: Retraction path prior to chucking after travel to fixed stop

55580	TURN_CONT_RELEASE_ANGLE	-	-				
degrees	Contour turning: retraction angle	DOUBLE	Immediately				
-							
-	-	45	0	90	$7 / 4$		

Description: This setting data defines the angle by which the tool is retracted from the contour during contour turning roughing.

55581	TURN_CONT_RELEASE_DIST							-	-
mm	Contour turning: retraction value	DOUBLE	Immediately						
-	-	1	0.01	10	$7 / 4$				
-	-	M							

Description: This setting data defines the value by which the tool is retracted in both axes during contour turning roughing.

55582	TURN_CONT_TRACE_ANGLE						-	-
degrees	Contour turning: minimum angle for rounding along contour						DOUBLE	Immediately
-	-	5	0	90				
-								

Description: $\begin{array}{ll}\text { This setting data specifies the angle between the cutting edge and the contour, at } \\ \text { which the contour is rounded in order to remove residual material. }\end{array}$

55583	TURN_CONT_VARIABLE_DEPTH	-	-			
$\%$	Contour turning: percentage for variable cutting depth	BYTE	Immediately			
-						
-	-	20	0	50		

Description: Percentage for variable cutting depth during contour turning

55584	TURN_CONT_BLANK_OFFSET							-	-
mm	Contour turning: blank allowance						DOUBLE	Immediately	
-	-	1	0	100	$7 / 4$				
-	-	M							

Description: This setting data specifies the distance to the blank, after which contour turning is switched from G0 to G1 in order to adjust any possible blank allowances.

55585	TURN_CONT_INTERRUPT_TIME						-	-
s	Contour turning: feed interrupt time (neg. values = revolutions)						DOUBLE	Immediately
-	-	-	-	$7 / 4$	M			
-	-1	-						

Description:

Feed interrupt time during contour turning, contour grooving and plunge turning

- negative value in spindle revolutions
- positive value in seconds

This setting data is effective only if setting data 55586 is \$SCS_TURN_CONT_INTER_RETRACTION $=0$.

55586	TURN_CONT_INTER_RETRACTION	-	-					
mm	Contour turning: retraction path after feed interrupt						DOUBLE	Immediately
-	-	1	0	10	$7 / 4$			
-	-	M						

Description: Retraction path feed interrupt during contour turning, contour grooving and plunge turning:
>0: retraction path after feed interrupt (setting data 55585
\$SCS_TURN_CONT_INTERRUPT_TIME is ineffective!)
=0: no retraction path

55587	TURN_CONT_MIN_REST_MAT_AX1						-	-
$\%$	Contour turning:minimum difference dimension residual machining axis 1 -$\quad-\quad$ DOUBLE	Immediately						
-	50	0	1000	$7 / 4$				

Description: This MD defines the limit value for stock removal of residual material in the direction of the 1st axis.
Example:
If this MD is set to 50% and if the finishing allowance is 0.5 mm , the residual material which is thinner than 0.25 mm is not removed in a separate machining step, but during finishing.

55588	TURN_CONT_MIN_REST_MAT_AX2						-	-
$\%$	Contour turning: minimum difference dimension residual machining axis 2	DOUBLE	Immediately					
-								
-	-	50	0	1000	$7 / 4$			

Description: This MD defines the limit value for stock removal of residual material in the direction of the 2 nd axis.
Example:
If this MD is set to 50% and if the finishing allowance is 0.5 mm , the residual material which is thinner than 0.25 mm is not removed in a separate machining step, but during finishing.

55595	TURN_CONT_TOOL_BEND_RETR						-	-
mm	Contour plunge turning: retraction path due to tool bending						DOUBLE	Immediately
-								
-	-	0.1	1	M				

Description: Retraction due to tool bending during plunge turning

55596	TURN_CONT_TURN_RETRACTION	-	-					
mm	Contour plunge turning: retraction depth prior to turning						DOUBLE	Immediately
-	-	0.1	0	1				

Description: Retraction depth prior to plunge turning

55613	MEA_RESULT_DISPLAY	-	-				
-							
-	Selection of measurement result display	BYTE	Immediately				
-	-	0	0	10	$7 / 7$		

Description:

Measurement results screen display
=0: No measurement results screen
=1: The measurement results screen is visible for a fixed time of 8 seconds
=3: When the measurement results screen is visible, the cycle is stopped by an internal MO;
on NC start the measuring cycle is resumed and the measurement results screen is deselected.
=4: The measurement results screen only appears in the case of cycle alarms 61303, 61304, 61305, 61306.

55614	MEA_RESULT_MRD	-	-				
-	Program control of the display of the measurement result image MRD	BYTE	Immediately				
-							
-	-	1	0	1	U		

Description: Setting of the program control of the display of the measurement result image MRD
$0=$ Hide measurement result image
$1=$ Show measurement result image

55618	MEA_SIM_ENABLE	-	-			
-						
-	Setting measuring cycles under a simulated environment	BYTE	Immediately			
-	-	1	0	9		

Description:

Setting measuring cycles under a simulated environment
=0: The measuring cycles are terminated without function.
=1: The measuring cycles are executed.

- Simulation in HMI Operate:

The traversing motion is visualized.
No measurement results and measurement result display are available.

- SinuTrain:

Measurement results and measurement result display are available.
The traversing motion is visualized using simultaneous recording.
-For systems, that only operate with simulated axes
(e.g. virtual machine, test rack) :

Measurement results and measurement results display are available.
The traversing motion is visualized with simultaneous recording.
In this case, the following settings must be observed:
MD10360 \$MN_FASTIO_DIG_NUM_OUTPUTS >=1
MD13230 \$MN_MEAS_PROBE_SOURCE = 1 to 4

```
= 2 to 8: reserved
= 9 internal
```


55622	MEA_EMPIRIC_VALUE_NUM	-	-			
-						
-	Number of empirical values	DWORD	Immediately			
-	-	20	0	20	$7 / 5$	

Description:

Number of empirical values

Description: In its default setting the empirical value memory consists of 20 memory elements.
Using parameter \$SCS_MEA_EMPIRIC_VALUE_NUM the number of memory elements can be defined! Currently, however, these 20 memory elements cannot be changed!
In the empirical value memory, empirical values can be stored which are cleared with the currently calculated
difference between the setpoint and the actual value.
Using parameter _EVNUM the empirical value element to be cleared is addressed!

55624	MEA_AVERAGE_VALUE_NUM						-	-
-								
-	Number of mean values	DWORD	Immediately					
-	-	20	0	20	$7 / 5$			

Description: Number of mean values

55625	MEA_AVERAGE_VALUE							-	-
-	Mean value memory						DOUBLE	Immediately	
-									
-	20	0	-100000	100000	$7 / 7$				

Description:

In its default setting the mean value memory consists of 20 memory elements.
Using parameter \$SCS_MEA_AVERAGE_VALUE_NUM the number of memory elements
can be defined! Currently, however, these 20 memory elements cannot be changed!
In the mean value memory, the mean values calculated in connection with functionality
"Automatic tool offset with mean value creation" are stored.
Using parameter _EVNUM the mean value element to be used is addressed!

55628	MEA_TP_FEED_MEASURE	-	-			
$\mathrm{mm} / \mathrm{min}$	Feed for calibrating a tool probe	DOUBLE	Immediately			
-						
-	-	300	0	100000		
$1 / 7$	U					

MEA_TP_FEED_MEASURE
Feed for calibrating a tool probe with stationary spindle in AUTO and JOG

55630	MEA_FEED_MEASURE	-	-			
$\mathrm{mm} / \mathrm{min}$	Feed for calibrating a workpiece probe	DOUBLE	Immediately			
-						
-	-	300	0	100000		

Description: MEA_FEED_MEASURE
Feed for calibrating a workpiece probe in Automatic and JOG

55631	MEA_FEED_MEASURE_DEG	-	-				
rev/min	Measurement feedrate of workpiece probe during positioning of a rotary axis	DOUBLE	Immediately				
-							
-	-	1	0	100000	$7 / 7$		

Description: Measurement feedrate of workpiece probe during positioning of a rotary axis

55632	MEA_FEED_RAPID_IN_PERCENT	-	-			
$\%$	Rapid traverse velocity in per cent, for intermediate positioning	DOUBLE	Immediately			
-						
-	-	50	0	100	$7 / 7$	

Description:

Traverse velocities for positioning in the measuring cycle between the measuring positions,
with rapid traverse velocity in per cent, with collision detection not active
Note:
If necessary, adapt the value of the rapid traverse velocity in per cent to the probe type used and to the
machine characteristics! This means that the maximum deflection of the actual probe
type must be considered!!
Explanations:
In the measuring cycles any intermediate positions are calculated prior to the actual set of measurements. These positions can be approached

- with collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=1 or
- without collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=0).

Depending on this setting different velocities are used for the approach:

- with collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=1): With SD55634 \$SCS_MEA_FEED_PLAN_VALUE the traversing feed is performed in the plane and with SD55636 \$SCS_MEA_FEED_FEEDAX_VALUE during traversing in the feed axis (applicate).
If the probe switches when these intermediate positions are approached, the movement is stopped and the alarm "Probe collision" is output.
- without collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=0): The intermediate positions are approached with the maximum axis velocity (rapid traverse) in per cent as specified in SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT. With SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT=0 and SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT=100 the maximum axis velocity is effective.

55634	MEA_FEED_PLANE_VALUE						-	-
$\mathrm{mm} / \mathrm{min}$	Traverse velocity for intermediate positioning in the plane					DOUBLE	Immediately	
-								
-	-	1000	0	100000				

Description:	MEA_FEED_MEASURE
	Traversing velocity for the intermediate positioning in the plane in Automatic and JOG

Description: Traversing speed for intermediate positioning in the measuring cycle in the infeed axis, with or without collision detection
Note:
If necessary, adapt the value of the speed in the infeed axis to the probe type used and to the
machine characteristics! This means that the maximum deflection of the actual probe type must be considered!!
Explanations:
In the measuring cycles any intermediate positions are calculated prior to the actual set of measurements. These positions can be approached

- with collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=1) or
- without collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=0).

Depending on this setting different speeds are used for the approach:

- with collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=1): With SSD55636 \$SCS_MEA_FEED_FEEDAX_VALUE the traversing feed is performed in the infeed axis (applicate).
If the probe switches when these intermediate positions are approached, the movement is stopped and the alarm "Probe collision" is output.
- without collision detection (SD55740 \$SCS_MEA_FUNCTION_MASK Bit0/Bit16=0): The intermediate positions are approached with the maximum axis velocity (rapid traverse) in per cent as specified in SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT. With SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT=0 and SD55 $\overline{6} 32$ \$SCS_MEA_FEED_RAPID_IN_PERCENT=100 the maximum axis velocity is effective.

55637	MEA_FEED_POS_DEG							-	-
rev/min	Feedrate when positioning a rotary axis between individual measurements	DOUBLE	Immediately						
-									
-	-	10	0	100000	U				

Description: Feedrate when positioning a rotary axis between individual measurements

Machine data

The use of "Rapid measuring feed" depends of SD55740 \$SCS_MEA_FUNCTION_MASK Bit4!

55640	MEA_FEED_CIRCLE	-	-				
$\mathrm{mm} / \mathrm{min}$	Circular feed for measuring circle segment and measuring ball / 3 balls	DOUBLE	Immediately				
-							
-	-	1000	0	100000	$7 / 7$		

Description:

MEA_FEED_CIRCLE
Circular feed for measuring circle segment and measuring ball / 3 balls

55642	MEA_EDGE_SAVE_ANG	-	-			
degrees	Additional safe angle for measuring corner	DOUBLE	Immediately			
-						
-	-	0	0	10	$7 / 7$	

Description: Set \$SCS_MEA_EDGE_SAVE_ANG=10 for compatibility programs.
The set angle is added to the measured angle as a safety angle.

55645	MEA_KIN_MODE							-	-
-	Free component of the linear vector	BYTE	Immediately						
-									
-	2	0	0	20	$7 / 4$				

Description:
 Free component of the linear vector

Units digit
0 = calculate all components of the linear vector
1 = take over free component for X from \$SCS_MEA_KIN_VALUE
2 = take over free component for Y from \$SCS_MEA_KIN_VALUE
3 = take over free component for Z from \$SCS_MEA_KIN_VALUE
4 = retain free component for X from active transformation
5 = retain free component for Y from active transformation
6 = retain free component for Z from active transformation
Tens digit
$0 x=$ vector chain closed, only with tool carrier (55645[0] for the head chain,
55645[1] for the table chain)
$1 x=$ vector chain open, only with tool carrier (55645[0] for the head chain, 55645[1] for the table chain)

55646	MEA_KIN_VALUE	-	-					
mm	Measure kinematics completely: value of the linear vector						DOUBLE	Immediately
-								
-	2	-	-	$7 / 4$				

Description: Perform complete kinematics measurement: Value of the linear vector

```
SD55646[0] Value for rotary axis 1
SD55646[1] Value for rotary axis 2
See SD55645
```

55647	MEA_KIN_MIN_ANG_TRIANGLE						-	-
degrees	Minimum interior angle of the measurement triangle						DOUBLE	Immediately
-	-	10	2	60	$7 / 4$			
-	-	U						

Description:
Perform complete kinematics measurement
Valid for 3 measuring points only. Minimum interior angle of the measuring triangle.
Value range 2 to 60 degrees

55649	MEA_KIN_BALL_VEC	-	-				
-	Perform komplete kinematics measurement: Vector of the ball mounting	DOUBLE	Immediately				
-							
-	3	0	-	-	$7 / 4$		

Description: Perform komplete kinematics measurement: Vector of the ball mounting

55700	MEA_SIMULTAN_LIMIT						-	-
mm	Simultaneous measuring, overrun travel						DOUBLE	Immediately
-	-	1	0.5	5	$7 / 5$			
-	-	U						

Description: Maximum permissible difference between switching points of the 1st and 2nd probes with simultaneous measuring (MD51740 bit14)

55730	MEA_PROTOCOL_USER_EXT	-	-		
-	File extension for application protocol	STRING	Immediately		
-					
-	-	TXT	-	-	U

0 : No collision monitoring
1: For positioning operations executed by the measuring cycles between the measurement points,
motion is interrupted, as soon as the probe supplies a switching signal.
An alarm message is output (Alarm 61302).
Bit 1: Workpiece measurement with 3D-probe, coupling of the spindle alignment with the coordinate rotation around the
infeed axis of the active plane (Z axis for G17)
In JOG mode, the coupling is always activated.
0: no coupling between the spindle alignment and coordinate rotation The trigger data are automatically corrected.

1: For 3 D and star probes (tool type 710, 714) the spindle is aligned depending
on the coordinate rotation around the infeed axis of the active plane.
The positioning direction of the spindle is defined by SD55740 \$SCS_MEA_FUNCTION_MASK bit2.

Caution
The coupling or the correction calculation is cancelled via the measuring cycle without issuing an alarm message if one of the following conditions applies:

- No TRAORI orientation transformation and no tool holder that can be oriented, TCARR (CYCLE800) is active and, in addition to the rotation around Z, additional rotations are active that are not
identical between measurement and calibration.
- The working spindle is not position-controlled (SPOS not possible).
- The spindle position between calibration and measurement is not identical.

Bit 2: Workpiece measurement, for coupling of the spindle position, reverse the positioning direction,

Function refers to SD55740 \$SCS_MEA_FUNCTION_MASK, bit1 = 1
0 : Spindle positioning is based on the standard.
1: Spindle positioning is realized in the opposite direction (adapted angular values).

Example:
Angle of the coordinate rotation in the plane 90°
if bit2 $=0$ then spindle is positioned to 270°
if bit2 $=1$ then spindle is positioned to 90°
Bit 3: Workpiece measurement, number of repeated measurements if the probe does not switch

In the JOG mode, the measurement is not repeated.
0 : Measurements are repeated up to 4 times, then a measuring cycle alarm (alarm 61301) is output.

1: Measurement is not repeated if the probe does not switch, a measuring cycle alarm
is output (alarm 61301).
Bit 4: Workpiece measurement, lst probing for each measurement with fast measuring feedrate

0 : When measuring, the measurement velocity saved in the calibration data is effective.

1: "Fast measuring feed rate (SD 55638 \$SCS_MEA_FEED_FAST_MEASURE)
is used. After the first probing, the probe retracts through 2 mm .
After this, the measurement is realized with the measurement velocity saved in the calibration data.

The "Fast measurement feedrate" function is not executed if the measurement distance < 1mm!

Bit 5: Workpiece measurement, fast retraction after measuring
0 : The retraction after measurement is realized with the same velocity
as for
intermediate positioning (SD 55634 \$SCS_MEA_FEED_PLANE_VALUE).
Is only active when collision monitoring is active (SD55740
\$SCS_MEA_FUNCTION_MASK, bit0 = 1).
1: The retraction after measurement is realized with the percentage rapid traverse velocity defined in SD 55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT

Is only active when collision monitoring is active (SD 55740
\$SCS_MEA_FUNCTION_MASK, bit0 = 1).
Bit 6: Workpiece measurement, probe activation-deactivation while the spindle is being positioned

0 : Workpiece probe is not deactivated before positioning the spindle.
1: Spindle positioning is realized centrally in the manufacturer's cycle CUST_MEACYC.

The machine manufacturer has the option of activating and reactivating the probe before and after spindle positioning.
Bit 7: Kinematic measurement, scaling based on the input values of the rotary axis vectors

0: Scaling based on the calculated rotary axis vectors (V1xyz, V2xyz)
1: Scaling based on the rotary axis vectors saved in the swivel data set (V1xyz, V2xyz)

The swivel data set is displayed under start-up, "Swivel cycle data".
Bit 8: Kinematic measurement: measuring with active swivel (TCARR) or active TRAORI
0 : Measurement without active swivel (TCARR) or without active TRAORI
In the cycle, when measuring, the corresponding orientation transformation is deactivated, and reactivated after the measurement has been made.

1: Measurement with active swivel (TCARR) or with active TRAORI
For measurement, the corresponding orientation transformation remains
active.
If no orientation transformation is active, then alarm 61167 is output.
Bit 9: Measure kinematics, user-specific scaling of rotary axis vectors V1xyz and V2xyz
0 : Scaling of rotary axis vectors V1xyz und V2xyz as unit vector
1: User-specific scaling of rotary axis vectors V1xyz and V2xyz
With user-specific scaling, one vector component is always 1 or -1 .
The other two vector components are correspondingly converted by a factor.
Bit 10: Complete kinematic measurement with reference
0: Measuring without reference (compatibility)
1: Measuring with reference with swivel heads
The reference comprises the "Measure reference head" functions and "Adjust head to reference head". See CYCLE9960
Bit 11: Measure kinematics, number of measuring points for measuring the calibration ball

0: 10 Measuring points for measuring on circular path (compatibility)
1: 8 Measuring points for measuring on circular path
10 measuring points are always approached for paraxial measurement
Bit 15: Workpiece measurement, calibration radius with starting point at the centre of the ring, JOG mode

0 : The starting point for calibration, radius need not be precisely located at the centre of the calibration ring.

1: The starting point for calibration, radius must be precisely located at the centre of the calibration ring.
Bit 16: Collision monitoring using tool probe for intermediate positioning.
In JOG mode, collision monitoring is always activated.
0: No collision monitoring
1: For positioning operations which are executed by measuring cycles between the measurement
points, motion is interrupted as soon as the probe supplies a switching signal.

An alarm message is output (alarm 61302).
Bit 17: Workpiece measurement, number of repeated measurements if the probe does not switch.

In JOG mode, a measurement is not repeated.
0 : Measurements are repeated a maximum of 4 times, then a measuring cycle alarm (alarm 61301) is output.

1: The measurement is not repeated if the probe does not switch, a
measuring cycle alarm
is output (alarm 61301).
Bit 19: Tool measurement: retraction velocity from the measuring point
0 : The retraction from the measuring point is realized with the same
velocity as for
intermediate positioning (SD55634 \$SCS_MEA_FEED_PLANE_VALUE).
1: The retraction velocity is realized with the percentage rapid traverse velocity specified in SD55632 \$SCS_MEA_FEED_RAPID_IN_PERCENT and is only effective when collision monitoring is active (SD55740 \$SCS_MEA_FUNCTION_MASK, bit16 = 1).
Bit 28: Selection of new or continuous protocol for standard protocol measurement in JOG

0: New protocol (default)
1: Continuous, that means it is always appended to an existing protocol
Bit 29: File format selection for standard protocol measurement in JOG 0: Text format (default)
1: Table format

55774	J_MEA_PROTOCOL_FILE	-	-			
-	Name and path of protocol file for measurement in JOG	STRING	Immediately			
-						
-	-	l/NC:/WKS.DIR/ TEMP.WPD/ J_MEAPROT.TXT	-	-	U	

Description: Name and path of protocol file for measurement in JOG

55800	ISO_M_DRILLING_AXIS_IS_Z			-	-	
-	Drilling axis depends on the plane / always Z			BYTE	Imm	
-						
-	0	0	0	1	7/6	U

Description:

Selection of the drilling axis
0 : drilling axis is vertical to the active plane
1: drilling axis is always "Z", independently of the active plane

55802	ISO_M_DRILLING_TYPE		-	-		
-	Tapping type	BYTE	Immediately			
-						
-	-	0	0	3	$7 / 6$	

Description:

Tapping type
0: tapping without compensating chuck
1: tapping with compensating chuck
2: deep hole tapping with chip breakage
3: deep hole tapping with stock removal

55806	ISO_M_RETRACTION_DIR				-	-	
-	Retraction direction at G76/87				BYTE	Immediately	
-							
-	-	0		0	4	$7 / 6$	U
Description:		direction G18(-Z) G18(+Z) G18(-Z) G18(+X) G18(-X)	n for p G19 (-Y) G19 (+Y) G19 (-Y) G19 (+Z) G19 (-Z)	on	d reve	ters	$6 /$

\left.| 55807 | ISO_M_TAPPING_SET_MC | | | | | | - | - |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| - | Setting tapping G84: Spindle mode/position control | | | | | DOUBLE | Immediately | |
| - | - | 0 | 0 | 1 | | | | |$\right]$| M |
:---

Description:

Setting when rigid tapping (G84)
$0=$ with G84, reactivate spindle mode
1= with G84, remain in position-controlled spindle mode

55808	ISO_T_RETRACTION_FACTOR							-	-
$\%$									
-	Factor for retraction speed	DWORD	Immediately						
-	-	100	0	200	$7 / 6$				

Description:
Factor (1-200\%) for retraction speed at tapping G84/G88

55818	ISO_M_FUNCTION_MASK	-	-			
-	Function mask for ISO milling mode	DWORD	Immediately			
-						
-	-	0	-	-		

Description: Function mask for ISO milling mode

55819	ISO_T_FUNCTION_MASK	-	-			
-	Function mask for ISO turning mode	DWORD	Immediately			
-						
-	-	0	-	-		
$7 / 4$	M					

Description:

Function mask for ISO turning mode
 Bit 0: Execution of residual corner cut

0: Complete residual corner cut is executed (compatibility)
1: Without complete residual corner cut
Bit 1: Stock removal roughing (G71/G72) without tool nose radius compensation
$0:$ Roughing with active tool nose radius compensation (with G41/G42,
compatibility)
1: Roughing without tool nose radius compensation (with G40)

55820	FRICT_OPT_RADIUS						-	-
mm	Circle radius for optimizing friction compensation						DOUBLE	Immediately
-								
-	-	5	0	5000	$7 / 4$			

Description: MEA_FEED_CIRCLE
Circle radius for optimizing friction compensation

55821	FRICT_OPT_RADIUS_ROT	-	-					
degrees	Circle radius for optimizing friction compensation						DOUBLE	Immediately
-								
-	-	5	0	5000				
M								

Description:

MEA_FEED_CIRCLE
Circle radius for optimizing friction compensation

Description:

Setting data contains feedrate values for optimizing friction compensation.

55823	FRICT_OPT_FEED_ROT	-	-					
rev/min	Feedrates for optimizing friction compensation for rotary axes	DOUBLE	Immediately					
-								
-	9	$\begin{array}{l}0.2,0.4,1.0,1.5,2.0,3.0, \\ 3.9,5.0,5.9\end{array}$	0	100	$7 / 4$		$]$	M
:---								

Description: Setting data contains the feedrate values for optimizing friction compensation for rotary axes.

55824	FRICT_OPT_STEP	-	-		
-	Step number for optimizing friction compensation				
-	-	DWORD	Immediately		
-	-	0	1000	$7 / 4$	M

55826	FRICT_OPT_ACT_STEP	-	-		
-	Current step number for optimizing friction compensation				
-					
-	-	DWORD	Immediately		
-	0	0	1000	$7 / 4$	M
Description:					

55844	GRIND_MEA_KIN_TOL						-	-
mm	Kinematik measurement: Tolerance of kinematic vectors						DOUBLE	Immediately
-	-	1	0	10	$7 / 4$			
-	-	U						

Description: Measure kinematics: Tolerance of kinematic vectors
When the kinematics are measured (CYCLE496), it is checked whether the measured vectors lie within the tolerance value of setting data \$SCS_GRIND_MEA_KIN_TOL.

55880	GRIND_CONT_RELEASE_ANGLE	-	-	
degrees	Grinding - profiling: retraction angle	DOUBLE	Immediately	
-	-	45	0	90
-	-	$7 / 4$	M	
Description:				

55881	GRIND_CONT_RELEASE_DIST						-	-
mm	Grinding - profiling: retraction value						DOUBLE	Immediately
-	-	1	0	10	$7 / 4$			
-	-	M						

Description: This setting data defines the value by which the tool is retracted in both axes during profiling.

55884	GRIND_CONT_BLANK_OFFSET				
mm	Grinding - profiling: blank allowance	-	-		
-					
-	-	1	DOUBLE	Immediately	

SINAMICS parameters

The description of the SINAMICS parameters can be found in the following documentation:

- SINUMERIK 828D, SINAMICS S120 List Manual, Parameter Description /828D_LH3/

Appendix A

A. 1 List of abbreviations

Abbreviation	Derivation of the abbreviation	Meaning
ADI4	Analog Drive Interface for 4 Axis	
AC	Adaptive Control	
ALM	Active Line Module	Infeed module for drives
AP	User program	
AS	Automation system	
ASCII	American Standard Code for Information Interchange	American coding standard for the exchange of information
ASIC	Application Specific Integrated Circuit	User switching circuit
ASUP	Asynchronous subprogram	
AUTO		Operating mode "Automatic"
AUXFU	Auxiliary Function	Auxiliary functions
STL	Statement list	
BA	Operating mode	
Mode group	Mode group	
BERO	Proximity limit switch with feedback oscillator	
BI	Binector Input	
HHU	Handheld unit	
BICO	Binector Connector	Interconnection technology for the drive
BIN	Binary Files	Binary files
BIOS	Basic Input Output System	
BCS	Basic coordinate system	
BO	Binector Output	
OPI	Operator Panel Interface	
CAD	Computer-Auded Design	
CAM	Computer-Aided Manufacturing	
CC	Compile Cycle	Compile cycles
Cl	Connector Input	
CF-Card	Compact Flash-Card	
CNC	Computerized Numerical Control	Computerized numerical control
CO	Connector Output	
COM Board	Communication Board	
CP	Communication Processor	
CPU	Central Processing Unit	Central processing unit
CR	Carriage Return	
CRC	Cyclic Redundancy Check	Checksum test
CRT	Cathode Ray Tube	Picture tube

A. 1 List of abbreviations

Abbreviation	Derivation of the abbreviation	Meaning
CSB	Central Service Board	PLC module
CTS	Clear To Send	Signals that data is ready to be sent for serial data interfaces
CUTCOM	Cutter Radius Compensation	Tool radius compensation
DB	Data block	Data block in the PLC
DBB	Data-block byte	Data block-byte in the PLC
DBW	Data-block word	Data-block word in the PLC
DBX	Data-block bit	Data-block bit in the PLC
DDE	Dynamic Data Exchange	Dynamic data exchange
DDS	Drive Data Set	Drive data set
DIN	Deutsche Industrie Norm (German Industry Standard)	
DIR	Directory	Directory
DLL	Dynamic Link Library	
DO	Drive Object	Drive object
DPM	Dual Port Memory	
DRAM	Dynamic Random Access Memory	Dynamic memory block
DRF	Differential Resolver Function	Differential resolver function (handwheel)
DRIVE-CLiQ	Drive Component Link with IQ	
DRY	Dry Run	DRY run feedrate
DSB	Decoding Single Block	Decoding single block
DSC	Dynamic Servo Control / Dynamic Stiffness Control	
DSR	Data Send Ready	Signals the availability of serial data interfaces
DW	Data word	
DWORD	Double word (currently 32 bits)	
1	Input	
I/O	Input/Output	
ENC	Encoder	Actual value encoder
EPROM	Erasable Programmable Read Only Memory	Erasable, electronically programmable read-only memory
ePS Network Services		Services for Internet-based remote machine maintenance
EQN		Type designation for an absolute encoder with 2048 sine signals per revolution
ESR	Extended stop and retract	
ETC	ETC key	Expansion of the softkey bar in the same menu
FB	Function block	
FBS	Flat screen	
FC	Function Call	Function block in the PLC
FDD	Feed Disable	Feed disable
FdStop	Feed Stop	Feed stop
FEPROM	Flash-EPROM	Read and write memory
FIFO	First In - First Out	Method of storing and retrieving data in a memory

Abbreviation	Derivation of the abbreviation	Meaning
FIPO	Fine interpolator	
FM	Function Module	
FM-NC	Function Module Numerical Control	Numerical control
FPU	Floating Point Unit	Floating-point unit
FRA	Frame block	
FRAME	Data set	Coordinate conversion with the components work offset, rotation, scaling, mirroring
CRC	Cutter radius compensation	
FST	Feed Stop	Feed stop
CSF	Control system flowchart (PLC programming method)	
FW	Firmware	
GC	Global Control	PROFIBUS: Broadcast telegram
GD	Global data	
GEO	Geometry, e.g. geometry axis	
GP	Basic program	
GS	Gear stage	
GUD	Global User Data	Global user data
HD	Hard Disk	Hard disk
HEX	Abbreviation for hexadecimal number	
AuxF	Auxiliary function	
HMI	Human Machine Interface	SINUMERIK user interface
MSD	Main spindle drive	
HT	Handheld Terminal	Handheld unit
HW	Hardware	
COMM	Commissioning	
IF	Drive module pulse enable	
IK (GD)	Implicit communication (global data)	
IKA	Interpolative Compensation	Interpolatory compensation
IM	Interface Modul	Interface module
INC	Increment	Increment
INI	Initializing Data	Initializing data
IGBT	Insulated Gate Bipolar Transistor	
IPO	Interpolator	
ISO	International Organization for Standardization	International Organization for Standardization
JOG	"Jogging" operating mode	
KD	Coordinate rotation	
KDV	Crosswise data comparison	Crosswise data comparison between the NC and PLC
K_{V}	Servo-gain factor	Gain factor of control loop
LAD	Ladder diagram	PLC programming method
LCD	Liquid Crystal Display	Liquid crystal display
LED	Light Emitting Diode	Light emitting diode
LF	Line Feed	

A. 1 List of abbreviations

Abbreviation	Derivation of the abbreviation	Meaning
LMS		Position measuring system
LSB	Least Significant Bit	Least significant bit
LUD	Local User Data	User data
MAC	Media Access Control	
MAIN	Main program	Main program (OB1, PLC)
MB	Megabyte	
MCI	Motion Control Interface	
MCIS	Motion Control Information System	
MCP	Machine Control Panel	Machine control panel
MD	Machine data	
MDI	"Manual Data Automatic" operating mode	Manual input
MCS	Machine coordinate system	
MPF	Main Program File	Main program (NC part program)
MPI	Multi Point Interface	Multi-point interface
NC	Numerical Control	Numerical control
NCK	Numerical Control Kernel	Numerical control kernel
NCSD	NC Start Disable	NC start disable
NCU	Numerical Control Unit	NC hardware unit
IF	Interfaces	Interface signal
WO	Zero offset	
NX	Numerical Extension	Axis expansion module
OB	Organization block in the PLC	
OEM	Original Equipment Manufacturer	
OP	Operation Panel	Operator panel
OPI	Operation Panel Interface	Interface for connection to the operator panel
OSI	Open Systems Interconnection	Standard for computer communications
OPT	Options	Options
PIQ	Process Image Output	
PII	Process Image Input	
P bus	Peripheral bus	
PC	Personal Computer	
PCMCIA	Personal Computer Memory Card International Association	Standard for plug-in memory cards
PCU	Programmable Control Unit	
Pl	Programm Instanz	
PG	Programming device	
PLC	Programmable Logic Control	Programmable Logic Controller
PN	PROFINET	
PO	POWER ON	
POU	Program organization unit	Unit in the PLC user program
PPU	Panel Processing Unit	Panel-based control
PTP	Point to Point	Point-to-point
PZD	Process data for drives	

Abbreviation	Derivation of the abbreviation	Meaning
QEC	Quadrant Error Compensation	Quadrant error compensation
QEC	Quadrant error compensation	
RAM	Random Access Memory	Program memory that can be read and written to
REF POINT		Function "Reference point approach" in JOG mode
REPOS		Function "Repositioning" in JOG mode
RID	Read In Disable	Read-in disable
RPA	R-Parameter Active	Memory area on the NC for R parameter numbers
RPY	Roll Pitch Yaw	Rotation type of a coordinate system
RTC	Real Time Clock	Real-time clock
RTS	Request To Send	RTS, control signal of serial data interfaces
SBL	Single Block	Single block
SBR	Subroutine	Subroutine (PLC)
SBT	Safe Brake Test	Safe Brake Test
SCC	Safety Control Channel	
SD	Setting-Datum	
SDB	System data block	
SDI	Safe Direction	Safe Motion Direction
SBT	Safe Brake Test	Safe Brake Control
SEA	Setting Data Active	Identifier (file type) for setting data
SERUPRO	Search-Run by Program Test	Search run by program test
SFC	System Function Call	
SGE	Safety-related input	
SGA	Safety-related output	
SH	Safe Stop	
SIC	Safety Info Channel	
SK	Softkey	
SKP	Skip	Skip block
SLM	Smart Line Module	
SLP	Safe Limited Position	Safely-Limited Position
SLS	Safely Limited Speed	Safely-Limited Speed
SM	Stepper Motor	
SOS	Safe Operating Stop	Safe Operating Stop
SS1	Safe Stop 1	Safe Stop 1 (time-monitored, ramp-monitored)
SS2	Safe Stop 2	Safe Stop 2
SPF	Subprogram file	Subprogram (NC)
SPL	Safe Programmable Logic	
PLC	Programmable Logic Controller	
SRAM	Static Random Access Memory	Static memory block
TNRC	Tool nose radius compensation	
LEC	Leadscrew error compensation	
SSI	Serial synchronous interface	Serial synchronous interface
STO	Safe Torque Off	Safe Torque Off
STW	Control word	

A. 1 List of abbreviations

Abbreviation	Derivation of the abbreviation	Meaning
GWPS	Grinding wheel peripheral speed	
SW	Software	
SYF	System Files	System files
SYNACT	SYNACT Synchronized Action	Synchronized action
TB	Terminal Board (SINAMICS)	
TEA	Testing Data Aktive	Identifier for machine data
TCP	Tool Center Point	Tool tip
TCU	Thin Client Unit	
TEA	Testing Data Active	Identifier for machine data
TM	Terminal Module (SINAMICS)	
TO	Tool Offset	Tool offset
TOA	Tool Offset Active	Identifier (file type) for tool offsets
TRANSMIT	Transform Milling into Turning	Coordinate conversion on turning machines for milling operations
TTL	Transistor-Transistor-Logik	Interface type
UFR	User Frame	Zero offset
SR	Subroutine	
USB	Universal Serial Bus	
UPS	Uninterruptible Power Supply	
VDI		Internal communication interface between NC and PLC
FDD	Feed drive	
VPM	Voltage Protection Module	
VSM	Voltage Sensing Module	
WAB		Function "Smooth Approach and Retraction"
WCS	Workpiece coordinate system	
T	Tool coordinate system:	
TLC	Tool length compensation	
WPD	Work Piece Directory	Workpiece directory
T	Tool	
TM	Tool management	
TC	Tool change	
ZWS		Buffer location
ZOA	Zero Offset Active	Identifier (file type) for zero offset data
ZSW	Status word (of drive)	

A. 2 Documentation overview

A. 2 Documentation overview

Index

A
AA_OFF_LIMIT
43350, 627
AA_OFF_MODE
36750, 553
ABS_INC_RATIO
30260, 428
ABS_INC_RATIO_EDS
31730, 447
ABSBLOCK_ENABLE
42750, 612
ABSBLOCK_FUNCTION_MASK
27100, 402
AC_FILTER_TIME
32920, 500
ACCEL_ORI
21170, 311
ACCEL_REDUCTION_FACTOR
35230, 531
ACCEL_REDUCTION_SPEED_POINT
35220, 530
ACCEL_REDUCTION_TYPE
35242, 532
ACCEL_TYPE_DRIVE
35240, 531
ACCESS_ACTIVATE_CTRL_E
51071, 647
ACCESS_CAL_TOOL_PROBE
51070, 647
ACCESS_CLEAR_RPA
51046, 644
ACCESS_EDIT_CTRL_E
51072, 648
ACCESS_EXEC_CMA
11161, 102
ACCESS_EXEC_CST
11160, 101
ACCESS_EXEC_CUS
11162, 102
ACCESS_READ_GUD_LUD
51047, 644
ACCESS_READ_TM
51211, 650
ACCESS_READ_TM_ALL_PARAM
51198, 648
ACCESS_RESET_SERV_PLANNER
51235, 653

ACCESS_SET_ACT_VALUE 51063, 646
ACCESS_SET_SOFTKEY_ACCESS 51073, 648
ACCESS_SHOW_SBL2 51044, 644
ACCESS_TEACH_IN 51045, 644
ACCESS_TM_MAGAZINE_POS 51225, 652
ACCESS_TM_TOOL_CREATE 51216, 651
ACCESS_TM_TOOL_DELETE 51217, 651
ACCESS_TM_TOOL_LOAD 51218, 651
ACCESS_TM_TOOL_MEASURE 51222, 652
ACCESS_TM_TOOL_MOVE 51220, 652
ACCESS_TM_TOOL_REACTIVATE 51221, 652
ACCESS_TM_TOOL_UNLOAD 51219, 652
ACCESS_TM_TOOLEDGE_CREATE 51223, 652
ACCESS_TM_TOOLEDGE_DELETE 51224, 652
ACCESS_WRITE_BASEFRAME 51053, 645
ACCESS_WRITE_CA_MACH_AUTO 51161, 648
ACCESS_WRITE_CA_MACH_JOG 51160, 648
ACCESS_WRITE_CA_TOOL 51162, 648
ACCESS_WRITE_CMA 11166, 103
ACCESS_WRITE_CST 11165, 102
ACCESS_WRITE_CUS 11167, 103
ACCESS_WRITE_CYCFRAME 51054, 645
ACCESS_WRITE_EXTFRAME 51055, 645
ACCESS_WRITE_FINE 51062, 646

ACCESS_WRITE_GUD_LUD 51048, 645
ACCESS_WRITE_MACCESS 11171, 104
ACCESS_WRITE_PARTFRAME 51056, 646
ACCESS_WRITE_PRG_COND 51049, 645
ACCESS_WRITE_PROGLIST 51064, 647
ACCESS_WRITE_PROGRAM 51050, 645
ACCESS_WRITE_RPA 51051, 645
ACCESS_WRITE_SACCESS 11170, 103
ACCESS_WRITE_SEA 51052, 645
ACCESS_WRITE_SETFRAME 51057, 646

ACCESS_WRITE_TM_ADAPT 51208, 650

ACCESS_WRITE_TM_ALL_PARAM 51215, 651
ACCESS_WRITE_TM_ASSDNO 51206, 650
ACCESS_WRITE_TM_EC 51204, 649
ACCESS_WRITE_TM_GEO 51200, 649
ACCESS_WRITE_TM_GRIND 51199, 649
ACCESS_WRITE_TM_NAME 51209, 650
ACCESS_WRITE_TM_SC 51203, 649
ACCESS_WRITE_TM_SUPVIS 51205, 649
ACCESS_WRITE_TM_TYPE 51210, 650
ACCESS_WRITE_TM_WEAR 51201, 649
ACCESS_WRITE_TM_WEAR_DELTA 51202, 649
ACCESS_WRITE_TM_WGROUP 51207, 650
ACCESS_WRITE_TOOLFRAME 51058, 646
ACCESS_WRITE_TRAFRAME 51059, 646
ACCESS_WRITE_UACCESS 11172, 104

ACCESS_WRITE_USERFRAME 51060, 646
ACCESS_WRITE_WPC_COUNTER 51074, 648
ACCESS_WRITE_WPFRAME 51061, 646
ACT_POS_ABS 30250, 428
ACT VALUE SPIND MODE 51023, 641
ACTNUM_SURF_GROUPS 42473, 603
ADAPT_PATH_DYNAMIC 20465, 279
ADD_MOVE_ACCEL_RESERVE 20610, 288
ADISPOSA_VALUE 43610, 630
ADJUST_NUM_AXIS_BIG_FONT 52011, 659
ALARM_CLR_NCSTART_W_CANCEL 11414, 117
ALARM_REACTION_CHAN_NOREADY 11412, 117
ALARM_ROTATION_CYCLE 9056, 23
ALLOW_G0_IN_G96 20750, 294
ANIMATION_TIME_DELAY 9104, 24
APPROACH_FEED 42120, 594
ASSIGN_CHAN_TO_MODE_GROUP 10010, 28
ASSIGN_FEED_PER_REV_SOURCE 43300, 627
AST_MMC_DEFAULT_IS_PCU
54481, 678
AST_MMC_HANDLER_NAME 54480, 678
ASUP_EDIT_PROTECTION_LEVEL 11612, 126
ASUP_EDITABLE 11610, 125
ASUP_START_MASK 11602, 124
ASUP_START_PRIO_LEVEL 11604, 125
AUTO_GET_TYPE 30552, 439
AUTO_IPTR_LOCK 22680, 338

AUTOMATIC_MEM_RECONFIG_FILE 17951, 171
AUXFU_ASSIGN_EXTENSION 22020, 323
AUXFU_ASSIGN_GROUP 22000, 322
AUXFU_ASSIGN_SIM_TIME 22037, 324
AUXFU_ASSIGN_SPEC 22035, 324
AUXFU_ASSIGN_TYPE 22010, 323
AUXFU_ASSIGN_VALUE 22030, 324
AUXFU_ASSOC_MO_VALUE 22254, 329
AUXFU_ASSOC_M1_VALUE 22256, 329
AUXFU_D_SYNC_TYPE 22250, 328
AUXFU_DL_SYNC_TYPE 22252, 328
AUXFU_F_SYNC_TYPE 22240, 328
AUXFU_GROUP_SPEC 11110, 100
AUXFU_H_SYNC_TYPE 22230, 327
AUXFU_H_TYPE_INT 22110, 326
AUXFU_M_SYNC_TYPE 22200, 326
AUXFU_MAXNUM_GROUP_ASSIGN 11100, 100
AUXFU_PREDEF_EXTENSION 22060, 325
AUXFU_PREDEF_GROUP 22040, 324
AUXFU_PREDEF_SIM_TIME 22090, 326
AUXFU_PREDEF_SPEC 22080, 325
AUXFU_PREDEF_TYPE 22050, 325
AUXFU_PREDEF_VALUE 22070, 325
AUXFU_QUICK_BLOCKCHANGE 22100, 326
AUXFU_S_SYNC_TYPE 22210, 327
AUXFU_T_SYNC_TYPE 22220, 327

AX_ADJUST_FEED 42121, 595
AX_EMERGENCY_STOP_TIME 36610, 550
AX_ESR_DELAY_TIME1 37510, 578
AX_ESR_DELAY_TIME2 37511, 578
AX_INERTIA 32650, 492
AX_JERK_DAMP 32414, 468
AX_JERK_ENABLE 32400, 466
AX_JERK_FREQ 32412, 468
AX_JERK_MODE 32402, 467
AX_JERK_TIME 32410, 468
AX_JERK_VELO 32437, 472
AX_JERK_VEL1 32438, 473
AX_MASS 32652, 493
AX_MOTION_DIR 32100, 459
AX_VELO_LIMIT 36200, 545
AXCHANGE_MASK 10722, 87
AXCONF_ASSIGN_MASTER_CHAN 30550, 439
AXCONF_CHANAX_DEFAULT_NAME 20082, 234
AXCONF_CHANAX_NAME_TAB 20080, 233
AXCONF_GEOAX_ASSIGN_TAB 20050, 231
AXCONF_GEOAX_NAME_TAB 20060, 231
AXCONF_LOGIC_MACHAX_TAB 10002, 28
AXCONF_MACHAX_NAME_TAB 10000, 27
AXCONF_MACHAX_USED 20070, 232
AXCT_AXCONF_ASSIGN_TAB1 12701, 135
AXCT_AXCONF_ASSIGN_TAB10 12710, 141

AXCT_AXCONF_ASSIGN_TAB11 12711, 141
AXCT_AXCONF_ASSIGN_TAB12 12712, 142
AXCT_AXCONF_ASSIGN_TAB13 12713, 143
AXCT_AXCONF_ASSIGN_TAB14 12714, 143
AXCT_AXCONF_ASSIGN_TAB15 12715, 144
AXCT_AXCONF_ASSIGN_TAB16 12716, 144
AXCT_AXCONF_ASSIGN_TAB2 12702, 136
AXCT_AXCONF_ASSIGN_TAB3 12703, 137
AXCT_AXCONF_ASSIGN_TAB4 12704, 137
AXCT_AXCONF_ASSIGN_TAB5 12705, 138
AXCT_AXCONF_ASSIGN_TAB6 12706, 138
AXCT_AXCONF_ASSIGN_TAB7 12707, 139
AXCT_AXCONF_ASSIGN_TAB8 12708, 140
AXCT_AXCONF_ASSIGN_TAB9 12709, 140
AXCT_FUNCTION_MASK 12760, 145
AXCT_NAME_TAB 12750, 145
AXES_SCALE_ENABLE 22914, 342
AXES_SHOW_GEO_FIRST 51026, 641
AXIS_FUNCTION_MASK 19310, 222
AXIS_LANG_SUB_MASK 30465, 437
AXIS_MAX_POWER 53030, 676
AXIS_MCS_POSITION 53220, 676
AXIS_POWER_RANGE 53031, 676
AXIS_USAGE 52206, 661
AXIS_USAGE_ATTRIB 52207, 662
AXIS_VAR_SERVER_SENSITIVE 11398, 114

B

BACKLASH 32450, 475
BACKLASH_ACT_COMP
32455, 476
BACKLASH_DYN
32456, 476
BACKLASH_DYN_MAX_VELO
32457, 476
BACKLASH_FACTOR 32452, 475
BACKLASH_MODE 32454, 476
BAG_MASK 11600, 123
BASE_FUNCTION_MASK 30460, 436
BERO_DELAY_TIME_MINUS 31123, 445
BERO_DELAY_TIME_PLUS 31122, 445
BLOCK_SEARCH_MODE_MASK 51028, 641
BLOCK_SEARCH_MODE_MASK_JS 51024, 641
BRAKE_MODE_CHOICE 36600, 550

C

CART_JOG_SYSTEM 21106, 304
CC_ASSIGN_FASTOUT_MASK 10420, 57
CC_HW_DEBUG_MASK 10430, 57
CC_TDA_PARAM_UNIT
10290, 46
CC_TOA_PARAM_UNIT
10292, 47
CC_VDI_IN_DATA
10400, 57
CC_VDI_OUT_DATA
10410, 57
CC_VERSION_INFO
18042, 173
CCS_TDA_PARAM_UNIT 10291, 46

CCS_TOA_PARAM_UNIT 10293, 47
CEC_0 41320, 589
CEC_1 41321, 589
CEC_BAS_0 41330, 590
CEC_BAS_1 41331, 590
CEC_BAS_STORE_0 41335, 590
CEC_BAS_STORE_1 41336, 590
CEC_CALC 41355, 591
CEC_CALC_ADD 41356, 591
CEC_COMP_0 41340, 590
CEC_COMP_1 41341, 591
CEC_COMP_STORE_0 41350, 591
CEC_COMP_STORE_1 41351, 591
CEC_ENABLE 32710, 493
CEC_MAX_SUM 32720, 494
CEC_MAX_VELO 32730, 495
CEC_SCALING_SYSTEM_METRIC 32711, 494
CEC_TABLE_ENABLE 41300, 587
CEC_TABLE_WEIGHT 41310, 588
CENTRAL_LUBRICATION 12300, 134
CHAN_NAME 20000, 231
CHANGE_LANGUAGE_MODE 9100, 24
CHBFRAME_POWERON_MASK 24004, 343
CHBFRAME_RESET_MASK 24002, 343
CHFRND_MAXNUM_DUMMY_BLOCKS 20200, 264
CHFRND_MODE_MASK 20201, 264

CHSFRAME_POWERON_MASK 24008, 344
CHSFRAME_RESET_CLEAR_MASK 24007, 344
CHSFRAME_RESET_MASK 24006, 344
CIRCLE_ERROR_CONST 21000, 296
CIRCLE_ERROR_FACTOR 21010, 296
CIRCLE_RAPID_FEED 55230, 701
CLAMP_POS_TOL 36050, 541
CLAMP_POS_TOL_TIME 36051, 541
CLAMPING_TOLERANCE 53250, 677
COLLECT_TOOL_CHANGE 20128, 253
COLLISION_EXT_AXIS_MASK 37090, 559
COLLISION_EXT_CFG_MASK 16906, 164
COLLISION_EXT_FUNCTION_MASK 16900, 163
COLLISION_EXT_NUM_PACKETS 16905, 164
COLLISION_EXT_PREVIEW_STEP 16902, 164
COLLISION_EXT_PREVIEW_TIME 16901, 164
COLLISION_EXT_STOP_TIME 16904, 164
COLLISION_EXT_TIMEOUT 16903, 164
COLLISION_MASK 19830, 230
COLLISION_PREP_CALC_TIME 10621, 73
COLLISION_SAFETY_DIST 10622, 73
COLLISION_TOLERANCE 10619, 72
COM_IPO_TIME_RATIO 10072, 31
COMP_ADD_VELO_FACTOR 32760, 496
COMP_MASK 19300, 221
COMPAR_ASSIGN_ANA_INPUT_1 10530, 66

COMPAR_ASSIGN_ANA_INPUT_2 10531, 66
COMPAR_TYPE_1 10540, 67
COMPAR_TYPE_2 10541, 67
COMPRESS_BLOCK_PATH_LIMIT 20170, 259
COMPRESS_CONTUR_TOL 42475, 604
COMPRESS_ORI_ROT_TOL 42477, 604
COMPRESS_POS_TOL 33100, 505
COMPRESS_SMOOTH_FACTOR 20485, 284
COMPRESS_SMOOTH_FACTOR_2 20487, 284
COMPRESS_SPLINE_DEGREE 20486, 284
COMPRESS_VELO_TOL 20172, 259
COMPRESSOR_MODE 20482, 283
CONE_ANGLE 42995, 623
CONST_VELO_MIN_TIME 20500, 285
CONTOUR_ASSIGN_FASTOUT 21070, 298
CONTOUR_SAMPLING_FACTOR 10682, 76
CONTOUR_TOL 36400, 548
CONTOUR_TUNNEL_REACTION 21060, 298
CONTOUR_TUNNEL_TOL 21050, 298
CONTOURHANDWH_IMP_PER_LATCH 11322, 110
CONTPREC 42450, 600
CONTROL_UNIT_LOGIC_ADDRESS 13120, 149
CONVERT_SCALING_SYSTEM 10260, 44
COREFILE_NAME 18930, 217
CORNER_SLOWDOWN_CRIT 42526, 609
CORNER_SLOWDOWN_END 42522, 608

CORNER_SLOWDOWN_OVR 42524, 609
CORNER_SLOWDOWN_START 42520, 608
CORR_TOCARR_LIN_MAX 41612, 592
CORR_TRAFO_DIR_MAX 41611, 592
CORR_TRAFO_LIN_MAX 41610, 592
CORR_VELO 32070, 454
COUP_SYNC_DELAY_TIME 37240, 566
COUPLE_AXIS_1 21300, 316
COUPLE_BLOCK_CHANGE_CTRL_1 21320, 318
COUPLE_IS_WRITE_PROT_1 21340, 319
COUPLE_POS_TOL_COARSE 37200, 564
COUPLE_POS_TOL_COARSE_2 37202, 564
COUPLE_POS_TOL_FINE 37210, 564
COUPLE_POS_TOL_FINE_2 37212, 565
COUPLE_RATIO_1 42300, 598
COUPLE_RESET_MODE_1 21330, 318
COUPLE_VELO_TOL_COARSE 37220, 565
COUPLE_VELO_TOL_FINE 37230, 566
COUPLING_MODE_1 21310, 317
CPREC_WITH_FFW 20470, 279
CRIT_SPLINE_ANGLE 42470, 602
CTAB_DEFAULT_MEMORY_TYPE 20905, 295
CTAB_ENABLE_NO_LEADMOTION 20900, 295
CTRLOUT_LIMIT 36210, 546
CTRLOUT_LIMIT_TIME 36220, 546
CTRLOUT_MODULE_NR 30110, 424

CTRLOUT_NR
30120, 424
CTRLOUT_SEGMENT_NR 30100, 424
CTRLOUT_TYPE 30130, 424
CUBIC_SPLINE_BLOCKS 20160, 259
CURV_EFFECT_ON_PATH_ACCEL 20602, 287
CURV_EFFECT_ON_PATH_JERK 20603, 288
CUTCOM_ACT_DEACT_CTRL 42494, 606
CUTCOM_CLSD_CONT 42496, 607
CUTCOM_CORNER_LIMIT 20210, 265
CUTCOM_CURVE_INSERT_LIMIT 20230, 266
CUTCOM_CUSP_LIMIT 20212, 265
CUTCOM_DECEL_LIMIT 42528, 609
CUTCOM_G40_STOPRE 42490, 605
CUTCOM_INTERS_POLY_ENABLE 20256, 267
CUTCOM_MAX_DISC 20220, 265
CUTCOM_MAXNUM_CHECK_BLOCKS 20240, 266
CUTCOM_MAXNUM_DUMMY_BLOCKS 20250, 266
CUTCOM_MAXNUM_SUPPR_BLOCKS 20252, 267
CUTCOM_PARALLEL_ORI_LIMIT 21080, 299
CUTCOM_PLANE_ORI_LIMIT 21082, 299
CUTCOM_PLANE_PATH_LIMIT 21084, 299
CUTDIRMOD
42984, 622
CUTMOD_ERR 20125, 252
CUTMOD_INIT 20127, 253
CUTMOD_PLANE_TOL 42998, 623
CUTTING_EDGE_DEFAULT 20270, 268

CUTTING_EDGE_RESET_VALUE 20130, 253
CYCLES_ONLY_IN_CYCDIR 11626, 127

D

D_NO_FCT_CYCLE_NAME 11717, 128
DEFAULT_FEED 42110, 594
DEFAULT_ROT_FACTOR_R 42150, 597
DEFAULT_SCALE_FACTOR_AXIS 43120, 623
DEFAULT_SCALE_FACTOR_P 42140, 596
DEPTH_OF_LOGFILE_OPT 17600, 169
DEPTH_OF_LOGFILE_OPT_PF 17610, 170
DES_VELO_LIMIT 36520, 550
DESVAL_DELAY_ENABLE 32890, 499
DESVAL_DELAY_TIME 32895, 499
DIAMETER_AX_DEF 20100, 237
DIR_VECTOR_NAME_TAB 10640, 74
DISABLE_PLC_START 22622, 338
DISP_COORDINATE_SYSTEM 52000, 658
DISP_COORDINATE_SYSTEM_2 52001, 659
DISP_NUM_AXIS_BIG_FONT 52010, 659
DISP_PLANE_MILL 52005, 659
DISP_PLANE_TURN 52006, 659
DISP_RES_ANGLE 51020, 640
DISP_RES_INCH 51010, 639
DISP_RES_INCH_CUT_RATE 51014, 640
DISP_RES_INCH_FEED_P_REV 51011, 639

DISP_RES_INCH_FEED_P_TIME 51012, 640
DISP_RES_INCH_FEED_P_TOOTH 51013, 640
DISP_RES_MM 51000, 639
DISP_RES_MM_CONST_CUT_RATE 51004, 639
DISP RES MM FEED PER REV 51001, 639
DISP_RES_MM_FEED_PER_TIME 51002, 639
DISP_RES_MM_FEED_PER_TOOTH 51003, 639
DISP_RES_ROT_AX_FEED 51022, 640
DISP_RES_ROT_WO 51019, 640
DISP_RES_SCALE 51018, 640
DISP_RES_SPINDLE 51021, 640
DISPLAY_AXIS 20098, 236
DISPLAY_FUNCTION_MASK 10284, 45
DISPLAY_IS_MODULO 30320, 432
DISPLAY_MODE_POSITION 10136, 39
DISPLAY_SWITCH_OFF_INTERVAL 9006, 23
DPIO_LOGIC_ADDRESS_IN 10500, 64
DPIO_LOGIC_ADDRESS_OUT 10510, 64
DPIO_RANGE_ATTRIBUTE_IN 10502, 64
DPIO_RANGE_ATTRIBUTE_OUT 10512, 65
DPIO_RANGE_LENGTH_IN 10501, 64
DPIO_RANGE_LENGTH_OUT 10511, 65
DRIFT_ENABLE 36700, 551
DRIFT_LIMIT 36710, 552
DRIFT_VALUE 36720, 552
DRILL_MID_MAX_ECCENT 55489, 706

DRILL_SPOT_DIST 55490, 706
DRILL_TAPPING_SET_GG12 55481, 705
DRILL_TAPPING_SET_GG21 55482, 705
DRILL_TAPPING_SET_GG24 55483, 706
DRILL_TAPPING_SET_MC 55484, 706
DRILL_VELO_LIMIT 35550, 536
DRIVE_AX_RATIO_DENOM 31050, 443
DRIVE_AX_RATIO_NUMERA 31060, 443
DRIVE_AX_RATIO2_DENOM 31064, 443
DRIVE_AX_RATIO2_NUMERA 31066, 443
DRIVE_CNT 19742, 230
DRIVE_DIAGNOSIS 13100, 147
DRIVE_ENC_RATIO_DENOM 31070, 443
DRIVE_ENC_RATIO_NUMERA 31080, 444
DRIVE_EXTENSION_MASK 19750, 230
DRIVE_FUNCTION_MASK 13070, 146
DRIVE_LOGIC_ADDRESS 13050, 145
DRIVE_SIGNAL_TRACKING 36730, 553
DRIVE_TELEGRAM_TYPE 13060, 146
DRIVE_TYPE_DP 13080, 147
DRV_DIAG_DO_AND_COMP_NAMES 9107, 25
DRY_RUN_FEED 42100, 593
DRY_RUN_FEED_MODE 42101, 594
DRYRUN_MASK 10704, 79
DYN_LIMIT_RESET_MASK 32320, 466
DYN_MATCH_ENABLE 32900, 500

DYN_MATCH_TIME
32910, 500
DYN_ORI_OFF_ANGLE
21144, 309
DYN_ORI_OFF_ON 21140, 308
DYN_ORI_OFF_VEL 21142, 308

E

EASY_DRILL_DEEP_DF 55306, 702
EASY_DRILL_DEEP_FD1 55305, 702
EASY_DRILL_DEEP_V1 55307, 703
EASY_DRILL_DEEP_V2 55308, 703
EASY_DWELL_TIME 55301, 702
EASY_SAFETY_CLEARANCE 55300, 702
EASY_THREAD_RETURN_DIST 55309, 703
EASY_XML_DIAGNOSE 9113, 25
EES_MAX_MOUNT_TIME 10128, 38
EES_MODE_INFO 18045, 173
EES_MOUNT_FILE 10127, 37
EES_NC_NAME 10125, 37
EG_ACC_TOL 37560, 578
EG_VEL_WARNING 37550, 578
ELEC_TRANSFER 19700, 226
ELEC_TRANSFER_CP 19701, 226
ENABLE_ALARM_MASK 11411, 116
ENABLE_CHAN_AX_GAP 11640, 127
ENABLE_CHANNEL_MSG_FILTER 9057, 24
ENABLE_COORDINATE_ACS 51037, 643

ENABLE_COORDINATE_REL 51036, 643
ENABLE_GSM_MODEM 51233, 653
ENABLE_HANDWHEEL_WINDOW 51067, 647
ENABLE_LADDER_DB_ADDRESSES 51230, 653
ENABLE_LADDER_EDITOR 51231, 653
ENABLE_LADDER_EDITOR_ADV 51232, 653
ENABLE_PROGLIST_INDIVIDUAL 51042, 644
ENABLE_PROGLIST_MANUFACT 51043, 644
ENABLE_PROGLIST_USER 51041, 644
ENABLE_QUICK_M_CODES 52229, 668
ENABLE_START_MODE_MASK_PRT 22621, 337
ENC_ABS_BUFFERING 30270, 429
ENC_ABS_TURNS_MODULO 34220, 515
ENC_ABS_ZEROMON_INITIAL 36314, 548
ENC_ABS_ZEROMON_WARNING 36312, 547
ENC_ACTVAL_SMOOTH_TIME 34990, 518
ENC_CHANGE_TOL 36500, 549
ENC_COMP_ENABLE 32700, 493
ENC_DIFF_TOL 36510, 549
ENC_EDS_ACTIVE 31700, 446
ENC_FEEDBACK_POL 32110, 460
ENC_FREQ_LIMIT 36300, 546
ENC_FREQ_LIMIT_LOW 36302, 547
ENC_GRID_POINT_DIST 31010, 440
ENC_HANDWHEEL_INPUT_NR 11344, 111
ENC_HANDWHEEL_MODULE_NR 11342, 111

ENC_INPUT_NR
30230, 426
ENC_INVERS
34320, 517
ENC_IS_DIRECT
31040, 441
ENC_IS_DIRECT2
31044, 442
ENC_IS_INDEPENDENT 30242, 427
ENC_IS_LINEAR 31000, 440
ENC_MARKER_INC 34310, 516
ENC_MEAS_TYPE 30244, 427
ENC_MODULE_NR 30220, 425
ENC_PASSIVE_PARKING 31046, 442
ENC_PULSE_MULT 31025, 441
ENC_PULSE_MULT_EDS 31720, 447
ENC_REFP_MARKER_DIST 34300, 516
ENC_REFP_MODE 34200, 514
ENC_REFP_STATE 34210, 515
ENC_RESOL 31020, 441
ENC_RESOL_EDS 31710, 446
ENC_SERIAL_NUMBER 34230, 516
ENC_TYPE 30240, 426
ENC_ZERO_MONITORING 36310, 547
EPS_TLIFT_TANG_STEP 37400, 577
EQUIV_CPREC_TIME 32415, 469
EQUIV_CURRCTRL_TIME 32800, 497
EQUIV_SPEEDCTRL_TIME 32810, 499
ESR_DELAY_TIME1 21380, 319
ESR_DELAY_TIME2 21381, 320

ESR_REACTION 37500, 577
EULER_ANGLE_NAME_TAB 10620, 72
EXACT_POS_MODE 20550, 285
EXACT_POS_MODE_G0_TO_G1 20552, 286
EXT_PROG_PATH 42700, 612
EXTENSIONS_OF_BIN_FILES 17000, 164
EXTERN_CHAN_SYNC_M_NO_MAX 10802, 90
EXTERN_CHAN_SYNC_M_NO_MIN 10800, 89
EXTERN_DIGITS_OFFSET_NO 10889, 96
EXTERN_DIGITS_TOOL_NO 10888, 95
EXTERN_DOUBLE_TURRET_DIST 42162, 598
EXTERN_DOUBLE_TURRET_ON 10812, 91
EXTERN_FIXED_FEEDRATE_F1_F9 42160, 597
EXTERN_FIXED_FEEDRATE_F1_ON 22920, 342
EXTERN_FLOATINGPOINT_PROG 10884, 95
EXTERN_FUNCTION_MASK 20734, 292
EXTERN_G_NO_MAC_CYCLE 10816, 93
EXTERN_G_NO_MAC_CYCLE_NAME 10817, 93
EXTERN_GCODE_GROUPS_TO_PLC 22512, 332
EXTERN_GCODE_RESET_MODE 20156, 258
EXTERN_GCODE_RESET_VALUES 20154, 257
EXTERN_INCREMENT_SYSTEM 10886, 95
EXTERN_INTERRUPT_BITS_M96 10808, 91
EXTERN_INTERRUPT_NUM_ASUP 10818, 93
EXTERN_INTERRUPT_NUM_RETRAC 10820, 93
EXTERN_M_NO_DISABLE_INT 10806, 90

EXTERN_M_NO_MAC_CYCLE 10814, 92
EXTERN_M_NO_MAC_CYCLE_NAME 10815, 92
EXTERN_M_NO_SET_INT 10804, 90
EXTERN_MEAS_G31_P_SIGNAL 10810, 91
EXTERN_PARALLEL_GEOAX 22930, 342
EXTERN_PRINT_DEVICE 10830, 93
EXTERN_PRINT_MODE 10831, 94
EXTERN_REF_POSITION_G30_1 43340, 627
EXTERN_RIGID_TAPPING_M_NR 20095, 235
EXTERN_TOOLPROG_MODE 10890, 96

F

F_VALUES_ACTIVE_AFTER_RESET 22410, 330
FASTIO_ANA_INPUT_WEIGHT 10320, 48
FASTIO_ANA_NUM_INPUTS 10300, 47
FASTIO_ANA_NUM_OUTPUTS 10310, 48
FASTIO_ANA_OUTPUT_WEIGHT 10330, 49
FASTIO_DIG_NUM_INPUTS 10350, 49
FASTIO_DIG_NUM_OUTPUTS 10360, 49
FASTIO_DIG_SHORT_CIRCUIT 10361, 50
FFW_ACTIVATION_MODE 32630, 490
FFW_MODE 32620, 489
FGROUP_DEFAULT_AXES 22420, 330
FGROUP_PATH_MODE 22430, 331
FGROUP_PATH_RATIO 22440, 331
FIFOCTRL_ADAPTION 20463, 278

FILE_ONLY_WITH_EXTENSION 11625, 126
FIPO_TYPE 33000, 503
FIX_POINT_POS 30600, 440
FIXED_STOP_ACKN_MASK 37060, 558
FIXED_STOP_ALARM_MASK 37050, 557
FIXED_STOP_ALARM_REACTION 37052, 558
FIXED_STOP_ANA_TORQUE 37070, 559
FIXED_STOP_BY_SENSOR 37040, 557
FIXED_STOP_CONTROL 37002, 555
FIXED_STOP_MODE 37000, 555
FIXED_STOP_SWITCH 43500, 629
FIXED_STOP_THRESHOLD 37030, 556
FIXED_STOP_TORQUE 43510, 629
FIXED_STOP_TORQUE_DEF 37010, 555
FIXED_STOP_TORQUE_FACTOR 37014, 556
FIXED_STOP_TORQUE_RAMP_TIME 37012, 556
FIXED_STOP_WINDOW 43520, 629
FIXED_STOP_WINDOW_DEF 37020, 556
FOC_ACTIVATION_MODE 37080, 559
FOC_STANDSTILL_DELAY_TIME 36042, 541
FRAME_ACS_SET 24030, 345
FRAME_ADAPT_MODE 24040, 345
FRAME_ADD_COMPONENTS 24000, 343
FRAME_ANGLE_INPUT_MODE 10600, 68
FRAME_GEOAX_CHANGE_MODE 10602, 68
FRAME_OFFSET_INCR_PROG 42440, 599

FRAME_OR_CORRPOS_NOTALLOWED 32074, 454
FRAME_SAA_MODE 24050, 346
FRAME_SAVE_MASK 10617, 71
FRAME_SUPPRESS_MODE 24020, 345
FRAMES_ACT_IMMEDIATELY 51025, 641
FRICT_ADAPT_T_STEP 32588, 488
FRICT_ADAPT_TABLE_ACCEL 32581, 486
FRICT_ADAPT_V_CONST_MINUS 32585, 487
FRICT_ADAPT_V_CONST_PLUS 32584, 487
FRICT_ADAPT_V_DECAY_MINUS 32587, 488
FRICT_ADAPT_V_DECAY_PLUS 32586, 488
FRICT_ADAPT_V_STEP_MINUS 32583, 487
FRICT_ADAPT_V_STEP_PLUS 32582, 486
FRICT_COMP_ACCEL1 32550, 480
FRICT_COMP_ACCEL2 32560, 481
FRICT_COMP_ACCEL3 32570, 481
FRICT_COMP_ADAPT_ENABLE 32510, 478
FRICT_COMP_CONST_MAX 32520, 478
FRICT_COMP_CONST_MIN 32530, 479
FRICT_COMP_ENABLE 32500, 477
FRICT_COMP_INC_FACTOR 32580, 485
FRICT_COMP_MODE 32490, 477
FRICT_COMP_TIME 32540, 480
FRICT_OPT_ACT_STEP 55826, 721
FRICT_OPT_DIR_MINUS 55828, 721
FRICT_OPT_FEED 55822, 720

FRICT_OPT_FEED_ROT 55823, 720
FRICT_OPT_RADIUS 55820, 720
FRICT_OPT_RADIUS_ROT 55821, 720
FRICT_OPT_STEP 55824, 721
FRICT_PRETRIGGER_TIME 32579, 485
FRICT_T_PULSE_DELAY_TIME 32577, 484
FRICT_T_PULSE_SMOOTH_TIME 32578, 484
FRICT_TORQUE_STEP 32576, 484
FRICT_V_PULSE_CONST_TIME 32573, 483
FRICT_V_PULSE_DECAY_TIME 32574, 483
FRICT_V_PULSE_DELAY_TIME 32572, 482
FRICT_V_PULSE_SMOOTH_TIME 32575, 483
FRICT_VELO_STEP 32571, 482
FUNCTION_MASK_DISP 52210, 662
FUNCTION_MASK_DISP_ZOA 52211, 663
FUNCTION_MASK_DRILL 52216, 666
FUNCTION_MASK_DRILL_SET 55216, 698
FUNCTION_MASK_MILL 52214, 665
FUNCTION_MASK_MILL_SET 55214, 698
FUNCTION_MASK_MILL_TOL_SET 55220, 699
FUNCTION_MASK_SIM 51226, 652
FUNCTION_MASK_SWIVEL_SET 55221, 699
FUNCTION_MASK_TECH 51228, 653 52212, 664
FUNCTION_MASK_TECH_SET 55212, 697
FUNCTION_MASK_TURN 52218, 667

FUNCTION_MASK_TURN_SET 55218, 698

G

GO_LINEAR_MODE 20730, 292
GO_TOLERANCE_FACTOR 20560, 286
G00_ACCEL_FACTOR 32434, 472
G00_JERK_FACTOR 32435, 472
G53_TOOLCORR 10760, 89
GANTRY_ACT_POS_TOL_ERROR 37135, 562
GANTRY_AXIS_TYPE 37100, 560
GANTRY_BREAK_UP 37140, 563
GANTRY_FUNCTION_MASK 37150, 563
GANTRY_POS_TOL_ERROR 37120, 561
GANTRY_POS_TOL_REF 37130, 562
GANTRY_POS_TOL_WARNING 37110, 561
GCODE_GROUPS_TO_PLC 22510, 331
GCODE_GROUPS_TO_PLC_MODE 22515, 332
GCODE_RESET_MODE 20152, 257
GCODE_RESET_VALUES 20150, 255
GEAR_CHANGE_WAIT_TIME 10192, 40
GEAR_STEP_CHANGE_ENABLE 35010, 519
GEAR_STEP_CHANGE_POSITION 35012, 519
GEAR_STEP_MAX_VELO 35110, 525
GEAR_STEP_MAX_VELO_LIMIT 35130, 527
GEAR_STEP_MAX_VELO2 35112, 526
GEAR_STEP_MIN_VELO 35120, 526

GEAR_STEP_MIN_VELO_LIMIT 35140, 528
GEAR_STEP_MIN_VELO2 35122, 526
GEAR_STEP_PC_MAX_VELO_LIMIT 35135, 527
GEAR_STEP_POSCTRL_ACCEL 35210, 530
GEAR_STEP_POSCTRL_ACCEL2 35212, 530
GEAR_STEP_SPEEDCTRL_ACCEL 35200, 529
GEAR_STEP_USED_IN_AXISMODE 35014, 520
GEOAX_CHANGE_M_CODE 22532, 333
GEOAX_CHANGE_RESET 20118, 250
GRIND_CONT_BLANK_OFFSET 55884, 721
GRIND_CONT_RELEASE_ANGLE 55880, 721
GRIND_CONT_RELEASE_DIST 55881, 721
GRIND_DIAMETER_LENGTH 52842, 675
GRIND_FUNCTION_MASK 51840, 658 52840, 675
GRIND_MEA_KIN_TOL 55844, 721
GRIND_WIDTH_LENGTH 52843, 676
GUD_AREA_SAVE_TAB 11140, 101

H

HANDLING 19710, 227
HANDWH_CHAN_STOP_COND 20624, 290
HANDWH_GEOAX_MAX_INCR_SIZE 20620, 289
HANDWH_GEOAX_MAX_INCR_VSIZE 20622, 289
HANDWH_IMP_PER_LATCH 11320, 110
HANDWH_MAX_INCR_SIZE 32080, 457
HANDWH_MAX_INCR_VELO_SIZE 32082, 457

HANDWH_ORIAX_MAX_INCR_SIZE 20621, 289
HANDWH_ORIAX_MAX_INCR_VSIZE 20623, 289
HANDWH_REVERSE 11310, 110
HANDWH_STOP_COND 32084, 458
HANDWH_TRUE_DISTANCE 11346, 111
HANDWH_VDI_REPRESENTATION 11324, 110
HANDWH_VELO_OVERLAY_FACTOR 32090, 459
HANDWHEEL_FILTER_TIME 11354, 113
HANDWHEEL_INPUT 11352, 113
HANDWHEEL_LOGIC_ADDRESS 11353, 113
HANDWHEEL_MODULE 11351, 113
HANDWHEEL_SEGMENT 11350, 112
HIRTH_IS_ACTIVE 30505, 439
HMI_FUNCTION_MASK 19730, 227
HMI_MASK 19732, 230
HMI_MONITOR 9032, 23
HMI_SKIN 9112, 25
HMI_WIDE_SCREEN 9105, 24
HW_ASSIGN_ANA_FASTIN 10362, 51
HW_ASSIGN_ANA_FASTOUT 10364, 51
HW_ASSIGN_DIG_FASTIN 10366, 52
HW_ASSIGN_DIG_FASTOUT 10368, 53
HW_SERIAL_NUMBER 18030, 171

I
IGN_PROG_STATE_ASUP 20191, 261

IGNORE_INHIBIT_ASUP 20116, 249
IGNORE_NONCSTART_ASUP 20194, 263
IGNORE_OVL_FACTOR_FOR_ADIS 20490, 285
IGNORE_REFP_LOCK_ASUP 20115, 248
IGNORE_SINGLEBLOCK_ASUP 20117, 249
IGNORE_SINGLEBLOCK_MASK 10702, 77
INDEX_AX_ASSIGN_POS_TAB 30500, 437
INDEX_AX_DENOMINATOR 30502, 438
INDEX_AX_LENGTH_POS_TAB_1 10900, 97
INDEX_AX_LENGTH_POS_TAB_2 10920, 98
INDEX_AX_MODE 10940, 99
INDEX_AX_NUMERATOR 30501, 438
INDEX_AX_OFFSET 30503, 438
INDEX_AX_POS_TAB_1 10910, 97
INDEX_AX_POS_TAB_2 10930, 99
INFO_CROSSCHECK_CYCLE_TIME 10092, 33
INFO_FREE_MEM_DPR 18070, 174
INFO_FREE_MEM_DYNAMIC 18050, 173
INFO_FREE_MEM_STATIC 18060, 174
INFO_PROFISAFE_CYCLE_TIME 10099, 36
INFO_SAFE_SRDP_CYCLE_TIME 13322, 157
INFO_SAFETY_CYCLE_TIME 10091, 33
INI_FILE_MODE 11220, 106
INIT_MD 11200, 104
INT_INCR_PER_DEG 10210, 41
INT_INCR_PER_MM 10200, 41

INTER_VECTOR_NAME_TAB 10644, 74
INTERMEDIATE_POINT_NAME_TAB 10660, 75
INVOLUTE_AUTO_ANGLE_LIMIT 21016, 297
INVOLUTE_RADIUS_DELTA 21015, 297
IPO_CYCLE_TIME 10071, 31
IPO_FUNCTION_MASK 19330, 224
IPO_MAX_LOAD 11510, 123
IPO_PARAM_NAME_TAB 10650, 75
IPO_PARAM_THREAD_NAME_TAB 10651, 75
IPO_SYSCLOCK_TIME_RATIO 10070, 31
IPOBRAKE_BLOCK_EXCHANGE 43600, 630
IS_AUTOMATIC_MEM_RECONFIG 17950, 171
IS_CONCURRENT_POS_AX 30450, 433
IS_CONTINOUS_DATA_SAVE_ON 18233, 197
IS_ROT_AX 30300, 430
IS_SD_MAX_PATH_ACCEL 42502, 608
IS_SD_MAX_PATH_JERK 42512, 608
IS_UNIPOLAR_OUTPUT 30134, 425
IS_VIRTUAL_AX 30132, 425
ISO_ENABLE_DRYRUN 52804, 674
ISO_ENABLE_INTERRUPTS 52802, 674
ISO_M_DRILLING_AXIS_IS_Z 55800, 718
ISO_M_DRILLING_TYPE
55802, 719
ISO_M_ENABLE_POLAR_COORD
52800, 674
ISO_M_FUNCTION_MASK
52818, 675
55818, 720

ISO_M_RETRACTION_DIR 55806, 719
ISO_M_RETRACTION_FACTOR 55804, 719
ISO_M_TAPPING_SET_MC 55807, 719
ISO_SCALING_SYSTEM 52806, 674
ISO_SIMULTAN_AXES_START 52808, 675
ISO_T_DEEPHOLE_DRILL_MODE 52810, 675
ISO_T_DWELL_TIME_UNIT 55810, 719
ISO_T_FUNCTION_MASK 52819, 675 55819, 720
ISO_T_RETRACTION_FACTOR 55808, 719

J
J_MEA_CAL_HEIGHT_FEEDAX 51772, 657
J_MEA_CAL_RING_DIAM 51770, 657
J_MEA_COLL_MONIT_FEED 51757, 657
J_MEA_COLL_MONIT_POS_FEED 51758, 657
J_MEA_FIXPOINT 52750, 673
J_MEA_FUNCTION_MASK_PIECE 54780, 696
J_MEA_FUNCTION_MASK_TOOL 54782, 697
J_MEA_M_DIST 51750, 656
J_MEA_M_DIST_MANUELL 51751, 656
J_MEA_M_DIST_TOOL_LENGTH 51752, 656
J_MEA_M_DIST_TOOL_RADIUS 51753, 657
J_MEA_MAGN_GLAS_POS 52751, 673
J_MEA_PROTOCOL_FILE 55774, 718
J_MEA_T_PROBE_APPR_AX_DIR 51784, 658
J_MEA_T_PROBE_APPR_MODE 52780, 674

J_MEA_T_PROBE_DIAM_RAD 51780, 657
J_MEA_T_PROBE_MEASURE_DIST 51786, 658
JOG_ACCEL_GEO 21166, 310
JOG_AND_POS_JERK_ENABLE 32420, 469
JOG_AND_POS_MAX_JERK 32430, 469
JOG_CIRCLE_CENTRE 42690, 610
JOG_CIRCLE_END_ANGLE 42694, 611
JOG_CIRCLE_MODE 42692, 611
JOG_CIRCLE_RADIUS 42691, 610
JOG_CIRCLE_START_ANGLE 42693, 611
JOG_CONT_MODE_LEVELTRIGGRD 41050, 583
JOG_FEED_PER_REV_SOURCE 42600, 610
JOG_GEOAX_MODE_MASK 42996, 623
JOG_INC_MODE_LEVELTRIGGRD 11300, 109
JOG_INCR_SIZE_TAB 11330, 111
JOG_INCR_WEIGHT 31090, 444
JOG_INCR_WEIGHT_TRAFO 31092, 444
JOG_JERK_GEO 21168, 310
JOG_JERK_ORI 21158, 309
JOG_JERK_ORI_ENABLE 21159, 309
JOG_MODE_MASK 10735, 88
JOG_POSITION 43320, 627
JOG_REV_IS_ACTIVE 41100, 584
JOG_REV_SET_VELO 41120, 585
JOG_REV_VELO 32050, 452
JOG_REV_VELO_RAPID 32040, 451

JOG_ROT_AX_SET_VELO 41130, 586
JOG_SET_VELO 41110, 585
JOG_SPIND_SET_VELO
41200, 586
JOG_VAR_INCR_SIZE
41010, 583
JOG_VELO 32020, 450
JOG_VELO_GEO 21165, 310
JOG_VELO_ORI 21155, 309
JOG_VELO_RAPID 32010, 449
JOG_VELO_RAPID_GEO 21160, 310
JOG_VELO_RAPID_ORI 21150, 309

K

KEYBOARD_STATE 9009, 23

L
LANG_SUB_NAME
15700, 163
LANG_SUB_PATH
15702, 163
LEADSCREW_PITCH 31030, 441
LEN_AC_FIFO
28264, 416
LEN_PROTOCOL_FILE 11420, 119
LIFTFAST_DIST 21200, 314
LIFTFAST_MODE_MASK 21203, 314
LIFTFAST_STOP_COND
21204, 314
LIFTFAST_WITH_MIRROR 21202, 314
LIMIT_CHECK_MODE 20280, 269
LINK_BAUDRATE_SWITCH 12540, 135

```
LINK_DYNMSG_ALARM_MASK
    11416,119
LINK_RETRY_CTR
        12550,135
LINK TERMINATION
        12520,135
LOAD_SMOOTH_FILTER_TIME
        32925,501
LOOKAH FFORM
        20443,277
LOOKAH_FREQUENCY
        32440,475
LOOKAH_FUNCTION_MASK
        20455, 277
LOOKAH_NUM_CHECKED_BLOCKS
        29000,422
LOOKAH_NUM_OVR_POINTS
        20430,276
LOOKAH_OVR_POINTS
        20440,277
LOOKAH_RELIEVE_BLOCK_CYCLE
        20450, 277
LOOKAH_SMOOTH_FACTOR
        20460,278
LOOKAH_SMOOTH_WITH_FEED
        20462,278
LOOKAH_USE_VELO_NEXT_BLOCK
        20400,276
LUBRICATION_DIST
    33050,504
LUD_EXTENDED_SCOPE
        11120,101
```


M

```
M_CODE_ALL_COOLANTS_OFF 52230, 668
M_CODE_CHUCK_CLOSE 52252, 670
M_CODE_CHUCK_OPEN 52250, 669
M_CODE_CHUCK_OPEN_ROT 52251, 670
M_CODE_COOLANT_1_AND_2_ON 52233, 668
M_CODE_COOLANT_1_ON 52231, 668
M_CODE_COOLANT_2_ON 52232, 668
M_CODE_TAILSTOCK_BACKWARD 52254, 670
```

M_CODE_TAILSTOCK_FORWARD 52253, 670
M_NO_FCT_CYCLE 10715, 84
M_NO_FCT_CYCLE_NAME 10716, 84
M_NO_FCT_CYCLE_PAR 10718, 85
M_NO_FCT_EOP 10714, 83
M_NO_FCT_STOPRE 10713, 83
M19_SPOS 43240, 626
M19_SPOSMODE 43250, 626
MACH_MODEL_MODE 11285, 108
MACHINE_JOG_INTERRUPT_PRIO 52260, 671
MAINTENANCE_DATA 33060, 504
MAJOG_RELEASE_PLANE 55261, 702
MAJOG_SAFETY_CLEARANCE 55260, 702
MAPPED_FRAME 32075, 456
MAPPED_FRAME_MASK 10616, 70
MAX_ACCEL_OVL_FACTOR 32310, 465
MAX_AX_ACCEL 32300, 464
MAX_AX_JERK 32431, 470
MAX_AX_JERK_FACTOR 32439, 474
MAX_AX_VELO 32000, 448
MAX_BLOCKS_IN_IPOBUFFER 42990, 622
MAX_INP_FEED_PER_REV 55200, 697
MAX_INP_FEED_PER_TIME 55201, 697
MAX_INP_FEED_PER_TOOTH 55202, 697
MAX_JERK_STOP 32429, 469
MAX_LEAD_ANGLE 21090, 299

MAX_PATH_JERK 20600, 287
MAX_SKP_LEVEL 51029, 642
MAX_TILT_ANGLE 21092, 300
MAX_TOOLS_PER_MULTITOOL 17504, 165
MAXNUM_REPLACEMENT_TOOLS 17500, 165
MAXNUM_SYNC_DIAG_VAR 28241, 413
MAXNUM_USER_DATA_FLOAT 14508, 162
MAXNUM_USER_DATA_HEX 14506, 162
MAXNUM_USER_DATA_INT 14504, 162
MAXNUM_WAITM_USER 51300, 654
MD_FILE_STYLE 11230, 106
MD_MODE_MASK 11202, 105
MD_TEXT_SWITCH 9900, 26
MEA_ACCESS_EXEC 51742, 656
MEA_ALARM_MASK 54750, 695
MEA_AVERAGE_VALUE 55625, 711
MEA_AVERAGE_VALUE_NUM 55624, 711
MEA_CAL_EDGE_BASE_AX1 54615, 680
MEA_CAL_EDGE_BASE_AX2 54619, 681
MEA_CAL_EDGE_MINUS_DIR_AX1 54618, 681
MEA_CAL_EDGE_MINUS_DIR_AX2 54622, 681
MEA_CAL_EDGE_NUM 51601, 654
MEA_CAL_EDGE_PLUS_DIR_AX1 54617, 680
MEA_CAL_EDGE_PLUS_DIR_AX2 54621, 681
MEA_CAL_EDGE_UPPER_AX2 54620, 681
MEA_CAL_TP_NUM 51602, 654

MEA_CAL_TPW_NUM 51603, 654
MEA_CAL_WP_NUM 51600, 654
MEA_CM_FEEDFACTOR_1 54675, 688
MEA_CM_FEEDFACTOR_2 54676, 688
MEA_CM_MAX_FEEDRATE 54672, 688
MEA_CM_MAX_PERI_SPEED 54670, 687
MEA_CM_MAX_REVOLUTIONS 54671, 687
MEA_CM_MEASURING_ACCURACY 54677, 689
MEA_CM_MIN_FEEDRATE 54673, 688
MEA_CM_ROT_AX_POS_TOL 51618, 654
MEA_CM_SPIND_ROT_DIR 54674, 688
MEA_EDGE_SAVE_ANG 55642, 714
MEA_EMPIRIC_VALUE 55623, 711
MEA_EMPIRIC_VALUE_NUM 55622, 711
MEA_FEED_CIRCLE 55640, 714
MEA_FEED_FAST_MEASURE 55638, 713
MEA_FEED_FEEDAX_VALUE 55636, 713
MEA_FEED_MEASURE 55630, 712
MEA_FEED_MEASURE_DEG 55631, 712
MEA_FEED_PLANE_VALUE 55634, 713
MEA_FEED_POS_DEG 55637, 713
MEA_FEED_RAPID_IN_PERCENT 55632, 712
MEA_FUNCTION_MASK
51740, 655
52740, 673
54740, 693
55740, 715
MEA_FUNCTION_MASK_PIECE
54760, 695

MEA_FUNCTION_MASK_TOOL 54762, 696
MEA_FUNCTION_MASK_TURN 54764, 696
MEA_INPUT_TOOL_PROBE_SUB 54652, 687
MEA_KIN_BALL_VEC 55649, 715
MEA_KIN_DM_TOL 55644, 714
MEA_KIN_MIN_ANG_POS 55648, 715
MEA_KIN_MIN_ANG_TRIANGLE 55647, 715
MEA_KIN_MODE 55645, 714
MEA_KIN_VALUE 55646, 714
MEA_PROTOCOL_USER_EXT 55730, 715
MEA_RESULT_DISPLAY 55613, 710
MEA_RESULT_MRD 55614, 710
MEA_RESULT_OFFSET_TAB_LEN1 54705, 692
MEA_RESULT_OFFSET_TAB_LEN2 54706, 692
MEA_RESULT_OFFSET_TAB_LEN3 54707, 692
MEA_RESULT_OFFSET_TAB_LEN4 54708, 692
MEA_RESULT_OFFSET_TAB_LEN5 54709, 693
MEA_RESULT_OFFSET_TAB_LEN6 54710, 693
MEA_RESULT_OFFSET_TAB_RAD1 54695, 690
MEA_RESULT_OFFSET_TAB_RAD2 54696, 690
MEA_RESULT_OFFSET_TAB_RAD3 54697, 690
MEA_RESULT_OFFSET_TAB_RAD4 54698, 691
MEA_RESULT_OFFSET_TAB_RAD5 54699, 691
MEA_RESULT_OFFSET_TAB_RAD6 54700, 691
MEA_SIM_ENABLE 55618, 710
MEA_SIM_MEASURE_DIFF 55619, 711

MEA_SIMULTAN_LIMIT 55700, 715
MEA_T_CIRCULAR_ARC_DIST 54692, 689
MEA_T_MAX_STEPS 54693, 689
MEA_T_PROBE_MANUFACTURER 54689, 689
MEA_T_PROBE_OFFSET 54691, 689
MEA_T_PROBE_THICKNESS 51781, 658
MEA_TP_AX_DIR_AUTO_CAL 54632, 683
MEA_TP_CAL_MEASURE_DEPTH 54634, 684
MEA_TP_EDGE_DISK_SIZE 54631, 683
MEA_TP_FEED 54636, 684
MEA_TP_FEED_MEASURE 55628, 712
MEA_TP_STATUS_GEN 54635, 684
MEA_TP_TRIG_MINUS_DIR_AX1 54625, 681
MEA_TP_TRIG_MINUS_DIR_AX2 54627, 682
MEA_TP_TRIG_MINUS_DIR_AX3 54629, 682
MEA_TP_TRIG_PLUS_DIR_AX1 54626, 682
MEA_TP_TRIG_PLUS_DIR_AX2 54628, 682
MEA_TP_TRIG_PLUS_DIR_AX3 54630, 683
MEA_TP_TYPE 54633, 683
MEA_TPW_AX_DIR_AUTO_CAL 54647, 686
MEA_TPW_CAL_MEASURE_DEPTH 54649, 686
MEA_TPW_EDGE_DISK_SIZE 54646, 686
MEA_TPW_FEED 54651, 687
MEA_TPW_STATUS_GEN 54650, 687
MEA_TPW_TRIG_MINUS_DIR_AX1 54640, 684
MEA_TPW_TRIG_MINUS_DIR_AX2 54642, 685

MEA_TPW_TRIG_MINUS_DIR_AX3 54644, 685
MEA_TPW_TRIG_PLUS_DIR_AX1 54641, 684
MEA_TPW_TRIG_PLUS_DIR_AX2 54643, 685
MEA_TPW_TRIG_PLUS_DIR_AX3 54645, 685
MEA_TPW_TYPE 54648, 686
MEA_WP_BALL_DIAM 54600, 678
MEA_WP_FEED 54611, 680
MEA_WP_POS_DEV_AX1 54607, 679
MEA_WP_POS_DEV_AX2 54608, 680
MEA_WP_STATUS_GEN 54610, 680
MEA_WP_STATUS_RT 54609, 680
MEA_WP_TRIG_MINUS_DIR_AX1 54601, 678
MEA_WP_TRIG_MINUS_DIR_AX2 54603, 679
MEA_WP_TRIG_MINUS_DIR_AX3 54605, 679
MEA_WP_TRIG_PLUS_DIR_AX1 54602, 678
MEA_WP_TRIG_PLUS_DIR_AX2 54604, 679
MEA_WP_TRIG_PLUS_DIR_AX3 54606, 679
MEAS_CENTRAL_SOURCE 13211, 151
MEAS_PROBE_DELAY_TIME 13220, 151
MEAS_PROBE_LOW_ACTIVE 13200, 150
MEAS_PROBE_OFFSET 13231, 152
MEAS_PROBE_SOURCE 13230, 152
MEAS_TYPE 13210, 150
MILL_CONT_INITIAL_RAD_FIN 55460, 705
MILL_ENGRAVE_POINT_RAD 55400, 703
MILL_SWIVEL_ALARM_MASK 55410, 703

MILL_SWIVEL_RESET_MODE 55422, 704
MILL_SWIVEL_RESET_RETRACT 55420, 704
MILL_SWIVEL_RESET_TRACK 55421, 704
MILL_TOL_FACTOR_FINISH
55443, 705
MILL_TOL_FACTOR_ROUGH
55441, 704
MILL_TOL_FACTOR_SEMIFIN 55442, 704
MILL_TOL_VALUE_FINISH 55448, 705
MILL_TOL_VALUE_ROUGH 55446, 705
MILL_TOL_VALUE_SEMIFIN 55447, 705
MIN_CURV_RADIUS 42471, 602
MIN_SURF_RADIUS 42472, 603
MINFEED 42460, 600
MIRROR_REF_AX 10610, 69
MIRROR_TOGGLE 10612, 70
MIRROR_TOOL_LENGTH 42900, 612
MIRROR_TOOL_WEAR 42910, 613
MISC_FUNCTION_MASK 30455, 434
MM_ABSBLOCK 28400, 418
MM_ABSBLOCK_BUFFER_CONF 28402, 419
MM_ACTFILESYS_LOG_FILE_MEM 18232, 197
MM_ARCLENGTH_SEGMENTS 28540, 421
MM_BUFFERED_AC_MARKER 28257, 415
MM_BUFFERED_AC_PARAM 28255, 414
MM_CC_STATION_CHAN_MASK 18788, 212
MM_CEC_MAX_POINTS 18342, 199
MM_COM_COMPRESS_METHOD 18390, 204

MM_CYC_DATA_MEM_SIZE 18237, 198
MM_EES_FILE_MEM_SIZE 18357, 201
MM_ENABLE_TOOL_ORIENT 18114, 187
MM_ENC_COMP_MAX_POINTS 38000, 580
MM_EXT_PROG_BUFFER_SIZE 18360, 201
MM_EXT_PROG_NUM 18362, 201
MM_EXTERN_CNC_SYSTEM 10880, 94
MM_EXTERN_GCODE_SYSTEM 10881, 94
MM_EXTERN_LANGUAGE 18800, 214
MM_EXTERN_MAXNUM_OEM_GCODES 10850, 94
MM_FEED_PROFILE_SEGMENTS 28535, 420
MM_FRAME_FINE_TRANS 18600, 206
MM_GUD_VALUES_MEM 18150, 189
MM_INCOA_MEM_SIZE 18235, 198
MM_IPO_BUFFER_SIZE 28060, 408
MM_KIND_OF_SUMCORR 18112, 186
MM_LINK_NUM_OF_MODULES 18782, 212
MM_LINK_TOA_UNIT 28085, 410
MM_LOOKAH_FFORM_UNITS 28533, 420
MM_LUD_VALUES_MEM 28040, 408
MM_M_FILE_MEM_SIZE 18353, 200
MM_MAINTENANCE_MON 18860, 214
MM_MAX_AXISPOLY_PER_BLOCK 28520, 419
MM_MAX_CUTTING_EDGE_NO 18105, 184
MM_MAX_CUTTING_EDGE_PERTOOL 18106, 185
MM_MAX_HIERARCHY_ENTRIES 18079, 177

MM_MAX_NUM_OF_HIERARCHIES 18078, 176
MM_MAX_SUMCORR_PER_CUTTEDGE 18110, 185
MM_MAX_TRACE_DATAPOINTS 28180, 412
MM_MAX_TRACE_LINK_POINTS 18790, 212
MM_MAXNUM_3D_COLL_PAIRS 18898, 216
MM_MAXNUM_3D_COLLISION 18896, 216
MM_MAXNUM_3D_FACETS 18895, 216
MM_MAXNUM_3D_FACETS_INTERN 18894, 215
MM_MAXNUM_3D_INTERFACE_IN 18897, 216
MM_MAXNUM_3D_PROT_AREA_ELEM 18892, 215
MM_MAXNUM_3D_PROT_AREAS 18890, 215
MM_MAXNUM_3D_T_PROT_ELEM 18893, 215
MM_MAXNUM_3D_WPFX_PROT_ELEM 18891, 215
MM_MAXNUM_ALARM_ACTIONS 18730, 211
MM_MAXNUM_KIN_CHAIN_ELEM 18880, 214
MM_MAXNUM_KIN_SWITCHES 18882, 215
MM_MAXNUM_SURF_GROUPS 28072, 409
MM_MEMORY_CONFIG_MASK 18234, 198
MM_NCU_LINK_MASK 18780, 211
MM_NUM_AC_MARKER 28256, 415
MM_NUM_AC_PARAM 28254, 414
MM_NUM_AC_SYSTEM_MARKER 28276, 417
MM_NUM_AC_SYSTEM_PARAM 28274, 416
MM_NUM_AC_TIMER 28258, 415
MM_NUM_AN_TIMER 18710, 210
MM_NUM_BASE_FRAMES 28081, 409

MM_NUM_BLOCKS_IN_PREP 28070, 408
MM_NUM_CC_BLOCK_ELEMENTS 28090, 411
MM_NUM_CC_BLOCK_USER_MEM 28100, 411
MM_NUM_CC_HEAP_MEM 28105, 411
MM_NUM_CC_MAGAZINE_PARAM 18090, 179
MM_NUM_CC_MAGLOC_PARAM 18092, 180
MM_NUM_CC_MON_PARAM 18098, 182
MM_NUM_CC_MTLOC_PARAM 18194, 191
MM_NUM_CC_MULTITOOL_PARAM 18192, 191
MM_NUM_CC_TDA_PARAM 18094, 181
MM_NUM_CC_TOA_PARAM 18096, 181
MM_NUM_CCS_MAGAZINE_PARAM 18200, 192
MM_NUM_CCS_MAGLOC_PARAM 18202, 193
MM_NUM_CCS_MON_PARAM 18208, 195
MM_NUM_CCS_TDA_PARAM 18204, 193
MM_NUM_CCS_TOA_PARAM 18206, 194
MM_NUM_CP_MODUL_LEAD 18452, 206
MM_NUM_CP_MODULES 18450, 206
MM_NUM_CURVE_POLYNOMS 18404, 205
MM_NUM_CURVE_POLYNOMS_DRAM 18410, 206
MM_NUM_CURVE_SEG_LIN 18403, 205
MM_NUM_CURVE_SEG_LIN_DRAM 18409, 206
MM_NUM_CURVE_SEGMENTS 18402, 205
MM_NUM_CURVE_SEGMENTS_DRAM 18408, 205
MM_NUM_CURVE_TABS 18400, 204
MM_NUM_CURVE_TABS_DRAM 18406, 205

MM_NUM_CUTTING_EDGES_IN_TOA 18100, 183
MM_NUM_DIR_IN_FILESYSTEM 18310, 199
MM_NUM_DIST_REL_PER_MAGLOC 18077, 176
MM_NUM_DRS_GRINDING_PATHS 18113, 186
MM_NUM_FCTDEF_ELEMENTS 28252, 414
MM_NUM_FEATURE_BLOCKS 28620, 422
MM_NUM_FILES_IN_FILESYSTEM 18320, 199
MM_NUM_FILES_PER_DIR 18280, 198
MM_NUM_G_FRAMES 28079, 409
MM_NUM_GLOBAL_BASE_FRAMES 18602, 207
MM_NUM_GLOBAL_G_FRAMES 18603, 207
MM_NUM_GLOBAL_USER_FRAMES 18601, 207
MM_NUM_GUD_MODULES 18118, 187
MM_NUM_GUD_NAMES_CHAN 18130, 188
MM_NUM_GUD_NAMES_NCK 18120, 188
MM_NUM_KIN_TRAFOS 18866, 214
MM_NUM_LINKVAR_ELEMENTS 28160, 412
MM_NUM_LOCS_WITH_DISTANCE 18076, 175
MM_NUM_LUD_NAMES_TOTAL 28020, 407
MM_NUM_MAGAZINE 18084, 178
MM_NUM_MAGAZINE_LOCATION 18086, 178
MM_NUM_MAX_FUNC_NAMES 18170, 190
MM_NUM_MAX_FUNC_PARAM 18180, 190
MM_NUM_MMC_UNITS 10134, 39
MM_NUM_MULTITOOL 18083, 178
MM_NUM_MULTITOOL_LOCATIONS 18085, 178

MM_NUM_PROTECT_AREA_ACTIVE 28210, 412
MM_NUM_PROTECT_AREA_CHAN 28200, 412
MM_NUM_PROTECT_AREA_CONTOUR 28212, 413
MM_NUM_PROTECT_AREA_NCK 18190, 190
MM_NUM_R_PARAM
28050, 408
MM_NUM_R_PARAM_NCK 18156, 189
MM_NUM_REORG_LUD_MODULES 28010, 407
MM_NUM_SAFE_SYNC_ELEMENTS 28251, 414
MM_NUM_SUBDIR_PER_DIR 18270, 198
MM_NUM_SUMCORR 18108, 185
MM_NUM_SURF_LEVELS 28071, 409
MM_NUM_SYNACT_GUD_AXIS 18663, 209
MM_NUM_SYNACT_GUD_BOOL 18662, 208
MM_NUM_SYNACT_GUD_CHAR 18664, 209
MM_NUM_SYNACT_GUD_INT 18661, 208
MM_NUM_SYNACT_GUD_REAL 18660, 207
MM_NUM_SYNACT_GUD_STRING 18665, 210
MM_NUM_SYNC_DIAG_ELEMENTS 28240, 413
MM_NUM_SYNC_ELEMENTS 28250, 413
MM_NUM_SYNC_STRINGS 28253, 414
MM_NUM_SYSTEM_FILES_IN_FS 18321, 199
MM_NUM_TOOL 18082, 178
MM_NUM_TOOL_ADAPTER 18104, 184
MM_NUM_TOOL_CARRIER 18088, 179
MM_NUM_TOOL_ENV 18116, 187
MM_NUM_TOOLHOLDERS 18075, 175

MM_NUM_USER_FRAMES 28080, 409
MM_NUM_USER_MACROS 18160, 189
MM_NUM_VDIVAR_ELEMENTS 28150, 411
MM_NUM_WORKAREA_CS_GROUPS 28600, 422
MM_ORIPATH_CONFIG 28580, 421
MM_ORISON_BLOCKS 28590, 421
MM_PATH_VELO_SEGMENTS 28530, 419
MM_PREPDYN_BLOCKS 28610, 422
MM_PROTOC_FILE_BUFFER_SIZE 18374, 203
MM_PROTOC_NUM_ETP_OEM_TYP 28301, 418
MM_PROTOC_NUM_ETP_STD_TYP 28302, 418
MM_PROTOC_NUM_ETPD_OEM_LIST 18372, 202
MM_PROTOC_NUM_ETPD_STD_LIST 18371, 202
MM_PROTOC_NUM_FILES 18370, 202
MM_PROTOC_NUM_SERVO_DATA 18373, 203
MM_PROTOC_SESS_ENAB_USER 18375, 204
MM_PROTOC_USER_ACTIVE 28300, 417
MM_QEC_MAX_POINTS 38010, 581
MM_REORG_LOG_FILE_MEM 28000, 407
MM_S_FILE_MEM_SIZE 18354, 200
MM_SEARCH_RUN_RESTORE_MODE 28560, 421
MM_SERVO_FIFO_SIZE 18720, 210
MM_SHAPED_TOOLS_ENABLE 28290, 417
MM_SIZEOF_LINKVAR_DATA 18700, 210
MM_SMOOTH_SURFACE_NORMALS 28291, 417
MM_SYSTEM_DATAFRAME_MASK 28083, 410

MM_SYSTEM_FRAME_MASK 28082, 410
MM_T_FILE_MEM_SIZE 18355, 201
MM_TOOL_DATA_CHG_BUFF_SIZE 28450, 419
MM_TOOL_MANAGEMENT_MASK 18080, 177
MM_TOOL_MANAGEMENT_TRACE_SZ 18074, 174
MM_TRACE_DATA_FUNCTION 22714, 340
MM_TRACE_LINK_DATA_FUNCTION 18792, 213
MM_TRACE_VDI_SIGNAL 18794, 213
MM_TYPE_CC_MAGAZINE_PARAM 18091, 179
MM_TYPE_CC_MAGLOC_PARAM 18093, 180
MM_TYPE_CC_MON_PARAM 18099, 182
MM_TYPE_CC_MTLOC_PARAM 18195, 191
MM_TYPE_CC_MULTITOOL_PARAM 18193, 191
MM_TYPE_CC_TDA_PARAM 18095, 181
MM_TYPE_CC_TOA_PARAM 18097, 182
MM_TYPE_CCS_MAGAZINE_PARAM 18201, 192
MM_TYPE_CCS_MAGLOC_PARAM 18203, 193
MM_TYPE_CCS_MON_PARAM 18209, 195
MM_TYPE_CCS_TDA_PARAM 18205, 194
MM_TYPE_CCS_TOA_PARAM 18207, 194
MM_TYPE_OF_CUTTING_EDGE 18102, 183
MM_U_FILE_MEM_SIZE 18352, 200
MM_USER_MEM_BUFFERED 18230, 196
MM_USER_MEM_DYNAMIC 18210, 195
MMC_CMD_TIMEOUT 10132, 38
MODE_AC_FIFO 28266, 416

MODESWITCH_MASK
20114, 248
MODULO_RANGE 30330, 433
MODULO_RANGE_START 30340, 433
MS_ASSIGN_MASTER_SPEED_CMD 37250, 567
MS_ASSIGN_MASTER_TORQUE_CTR 37252, 567
MS_COUPLING_ALWAYS_ACTIVE 37262, 569
MS_FUNCTION_MASK
37253, 568
MS_MAX_CTRL_VELO 37260, 569
MS_MOTION_DIR_REVERSE 37274, 571
MS_SPIND_COUPLING_MODE 37263, 570
MS_TENSION_TORQ_FILTER_TIME 37266, 570
MS_TENSION_TORQUE 37264, 570
MS_TORQUE_CTRL_ACTIVATION 37255, 568
MS_TORQUE_CTRL_I_TIME 37258, 569
MS_TORQUE_CTRL_MODE 37254, 568
MS_TORQUE_CTRL_P_GAIN 37256, 569
MS_TORQUE_WEIGHT_SLAVE 37268, 570
MS_VELO_TOL_COARSE 37270, 571
MS_VELO_TOL_FINE 37272, 571
MULTFEED_ASSIGN_FASTIN 21220, 315
MULTFEED_STORE_MASK 21230, 315
MULTITOOLLOC_DEFAULT 20274, 269

N

NAME_TOOL_CHANGE_PROG 52240, 669
NC_SYS_CODE_CONF_NAME_TAB 10724, 87

NC_USER_CODE_CONF_NAME_TAB 10712, 83
NC_USER_EXTERN_GCODES_TAB 10882, 94
NCBFRAME_POWERON_MASK 10615, 70
NCBFRAME_RESET_MASK 10613, 70
NCK_EG_FUNCTION_MASK 11756, 129
NCK_LEAD_FUNCTION_MASK 11750, 128
NCK_PCOS_TIME_RATIO 10185, 40
NCK_TRAIL_FUNCTION_MASK 11752, 128
NCU_LINK_CONNECTIONS 18781, 212
NCU_LINKNO 12510, 134
NIBBLE_PRE_START_TIME 26018, 402
NIBBLE_PUNCH_CODE 26008, 400
NIBBLE_PUNCH_INMASK 26006, 399
NIBBLE_PUNCH_OUTMASK 26004, 399
NIBBLE_SIGNAL_CHECK 26020, 402
NOCO_ADAPT_AX_1 37312, 572
NOCO_ADAPT_AX_2 37322, 574
NOCO_ADAPT_AX_3 37332, 575
NOCO_ADAPT_NUM_1 37314, 573
NOCO_ADAPT_NUM_2 37324, 574
NOCO_ADAPT_NUM_3 37334, 576
NOCO_ADAPT_POS_1 37316, 573
NOCO_ADAPT_POS_2 37326, 574
NOCO_ADAPT_POS_3 37336, 576
NOCO_COMPLIANCE_1 37318, 573
NOCO_COMPLIANCE_2 37328, 575

NOCO_COMPLIANCE_3 37338, 576
NOCO_ENABLE 37300, 571
NOCO_FILTER_TIME 37302, 572
NOCO_INPUT_AX_1 37310, 572
NOCO_INPUT_AX_2 37320, 574
NOCO_INPUT_AX_3 37330, 575
NORMAL_VECTOR_NAME_TAB 10630, 73
NUM_AC_FIFO 28260, 415
NUM_ADD_AXES_IN_SYSTEM 19102, 219
NUM_AXES_IN_SYSTEM 19100, 218
NUM_CHANNELS 19200, 220
NUM_DISPLAYED_CHANNELS 51065, 647
NUM_DRIVEBASED_SAFE_AXES 19121, 219
NUM_ENCS 30200, 425
NUM_FIX_POINT_POS 30610, 440
NUM_GEAR_STEPS 35090, 524
NUM_GEAR_STEPS2 35092, 524
NUM_IPO_AXES 19110, 219
NUM_LEAD_LINK_AXES 19142, 220
NUM_MODE_GROUPS 19220, 220
NUM_SAFE_AXES 19120, 219
NUM_SPL_IO 19122, 220
NUTATION_ANGLE_NAME 10648, 75

0

OEM_AXIS_INFO 37800, 579

OEM_CHAN_INFO 27400, 403
OEM_GLOBAL_INFO 17400, 165
OFF_ORI_MODE 21096, 301
ONLINE_CUTCOM_ENABLE 20254, 267
ONLY_MKS_DIST_TO_GO 51027, 641
OPERATING_MODE_DEFAULT 10720, 86
OPERATING_MODE_EXTENDED 10721, 87
ORDER_DISPLAYED_CHANNELS 51066, 647
ORI_ANGLE_WITH_G_CODE 21103, 304
ORI_DEF_WITH_G_CODE 21102, 303
ORI_DISP_IS_MODULO 21132, 307
ORI_DISP_MODULO_RANGE 21134, 308
ORI_DISP_MODULO_RANGE_START 21136, 308
ORI_IPO_WITH_G_CODE 21104, 304
ORI_TRAFO_ONLINE_CHECK_LIM 21198, 313
ORI_TRAFO_ONLINE_CHECK_LIMR 21199, 313
ORIAX_TURN_TAB_1 21120, 307
ORIAX_TURN_TAB_2 21130, 307
ORIAXES_EULER_ANGLE_NAME 52020, 660
ORIENTATION_IS_EULER 21100, 303
ORIENTATION_NAME_TAB 10646, 74
ORIPATH_LIFT_FACTOR_NAME 10626, 73
ORIPATH_LIFT_VECTOR_TAB 10624, 73
ORIPATH_MODE 21094, 300
ORISMOOTHING_MODE 20481, 283
ORISON_MODE 20478, 280

ORISON_STEP_LENGTH 20476, 279
OSCILL_CTRL_MASK 43770, 634
OSCILL_DWELL_TIME1 43720, 631
OSCILL_DWELL_TIME2 43730, 632
OSCILL_END_POS 43760, 634
OSCILL_IS_ACTIVE 43780, 635
OSCILL_MODE_MASK 11460, 121
OSCILL_NUM_SPARK_CYCLES 43750, 633
OSCILL_REVERSE_POS1 43700, 630
OSCILL_REVERSE_POS2 43710, 631
OSCILL_START_POS 43790, 636
OSCILL_VELO 43740, 633
OVR_AX_IS_GRAY_CODE 12000, 129
OVR_FACTOR_AX_SPEED 12010, 129
OVR_FACTOR_FEEDRATE 12030, 130
OVR_FACTOR_LIMIT_BIN 12100, 132
OVR_FACTOR_RAPID_TRA 12050, 130
OVR_FACTOR_SPIND_SPEED 12070, 131
OVR_FEED_IS_GRAY_CODE 12020, 129
OVR_FUNCTION_MASK 12090, 132
OVR_RAPID_FACTOR 42122, 595
OVR_RAPID_IS_GRAY_CODE 12040, 130
OVR_REFERENCE_IS_MIN_FEED 12082, 132
OVR_REFERENCE_IS_PROG_FEED 12080, 131
OVR_SPIND_IS_GRAY_CODE 12060, 131

P

PARAMSET_CHANGE_ENABLE 35590, 537
PART_COUNTER 27880, 404
PART_COUNTER_MCODE 27882, 406
PATH_MODE_MASK 20464, 278
PATH_TRANS_JERK_LIM 32432, 471
PATH_TRANS_POS_TOL 33120, 505
PERMANENT_FEED 12202, 133
PERMANENT_ROT_AX_FEED 12204, 133
PERMANENT_SPINDLE_FEED 12205, 134
PFRAME_RESET_MODE 24010, 345
PLASTIC 19709, 227
PLC_C_USER_MEM_SIZE 19280, 221
PLC_CYCLE_TIME_AVERAGE 10110, 36
PLC_CYCLIC_TIMEOUT 10100, 36
PLC_OB1_TRACE_DEPTH 11480, 121
PLC_OB35_TRACE_DEPTH 11481, 122
PLC_OB40_TRACE_DEPTH 11482, 122
PLC_RUNNINGUP_TIMEOUT 10120, 37
PLC_USER_MEM_SIZE 19270, 221
PLCINTERN_LOGIC_ADDRESS_IN 10520, 65
PLCINTERN_LOGIC_ADDRESS_OUT 10525, 65
PLCIO_IN_UPDATE_TIME 10398, 56
PLCIO_LOGIC_ADDRESS_IN 10395, 55
PLCIO_LOGIC_ADDRESS_OUT 10397, 56

PLCIO_NUM_BYTES_IN 10394, 55
PLCIO_NUM_BYTES_OUT 10396, 56
PLCIO_TYPE_REPRESENTATION 10399, 57
PO_WITHOUT_POLY
10674, 76
POLE_ORI_MODE 21108, 304
POS_AX_VELO 32060, 453
POS_DYN_MODE 18960, 217
POS_LIMIT_MINUS 36100, 543
POS_LIMIT_MINUS2 36120, 544
POS_LIMIT_PLUS 36110, 544
POS_LIMIT_PLUS2 36130, 544
POS_TAB_SCALING_SYSTEM 10270, 44
POSCTRL_CONFIG 32230, 463
POSCTRL_CYCLE_DELAY 10062, 30
POSCTRL_CYCLE_DESVAL_DELAY 10064, 30
POSCTRL_CYCLE_DIAGNOSIS 10063, 30
POSCTRL_CYCLE_TIME 10061, 30
POSCTRL_DAMPING 32950, 503
POSCTRL_DUAL_FEEDBACK_TIME 32960, 503
POSCTRL_GAIN 32200, 460
POSCTRL_INTEGR_ENABLE 32220, 462
POSCTRL_INTEGR_TIME 32210, 462
POSCTRL_OUT_FILTER_ENABLE 32930, 502
POSCTRL_OUT_FILTER_TIME 32940, 502
POSITIONING_TIME 36020, 540
POWER_SMOOTH_FILTER_TIME 32926, 501

PREP_COM_TASK_CYCLE_RATIO 10160, 40
PREPDYN_SMOOTHING_FACTOR 20605, 288
PREPDYN_SMOOTHING_ON 20606, 288
PREPROCESSING_LEVEL 10700, 76
PREVENT_SYNACT_LOCK 11500, 123
PREVENT_SYNACT_LOCK_CHAN 21240, 316
PROCESSTIMER_MODE 27860, 403
PROFIBUS_ALARM_ACCESS 13140, 149
PROFIBUS_SHUTDOWN_TYPE 11250, 107
PROFIBUS_TORQUE_RED_RESOL 37620, 579
PROFIBUS_TRACE_ADDRESS 13110, 147
PROFIBUS_TRACE_FILE_SIZE 13112, 148
PROFIBUS_TRACE_START 13113, 148
PROFIBUS_TRACE_START_EVENT 13114, 148
PROFIBUS_TRACE_TYPE 13111, 148
PROFISAFE_IN_ADDRESS 10386, 53
PROFISAFE_IN_ASSIGN 10388, 54
PROFISAFE_IN_ENABLE_MASK 13302, 153
PROFISAFE_IN_FILTER 13300, 152
PROFISAFE_IN_NAME 13308, 155
PROFISAFE_IN_SUBS 13305, 154
PROFISAFE_IN_SUBS_ENAB_MASK 13304, 154
PROFISAFE_IPO_RESERVE 13307, 155
PROFISAFE_IPO_TIME_RATIO 10098, 36
PROFISAFE_MASTER_ADDRESS 10385, 53
PROFISAFE_OUT_ADDRESS 10387, 54

PROFISAFE_OUT_ASSIGN 10389, 54
PROFISAFE_OUT_ENABLE_MASK 13303, 154
PROFISAFE_OUT_FILTER 13301, 153
PROFISAFE_OUT_NAME 13309, 155
PROG_COORDINATE_SYS_CHAN 52004, 659
PROG_EVENT_IGN_INHIBIT 20107, 239
PROG_EVENT_IGN_PROG_STATE 20192, 262
PROG_EVENT_IGN_REFP_LOCK 20105, 238
PROG_EVENT_IGN_SINGLEBLOCK 20106, 238
PROG_EVENT_IGN_STOP 20193, 262
PROG_EVENT_MASK 20108, 239
PROG_EVENT_MASK_PROPERTIES 20109, 240
PROG_EVENT_NAME 11620, 126
PROG_EVENT_PATH 11622, 126
PROG_FUNCTION_MASK 10280, 45
PROG_MASK 19340, 225
PROG_NET_TIMER_MODE 27850, 403
PROG_SD_POWERON_INIT_TAB 10709, 81
PROG_SD_RESET_SAVE_TAB 10710, 82
PROG_TEST_MASK 10707, 80
PROGRAM_CONTROL_MODE_MASK 51039, 643
PROT_AREA_TOOL_MASK 18899, 216
PROTAREA_GEOAX_CHANGE_MODE 10618, 71
PROTOC_IPOCYCLE_CONTROL 11297, 108
PROTOC_PREPTIME_CONTROL 11298, 109
PROTOCOL_FILE_MODE 11422, 119

PUNCH_PARTITION_TYPE 26016, 401
PUNCH_PATH_SPLITTING 26014, 401
PUNCHNIB_ACTIVATION 26012, 400
PUNCHNIB_ASSIGN_FASTIN 26000, 398
PUNCHNIB_ASSIGN_FASTOUT 26002, 399
PUNCHNIB_AXIS_MASK 26010, 400

R

RATED_OUTVAL 32250, 463
RATED_VELO 32260, 464
REBOOT_DELAY_TIME 10088, 32
REFP_CAM_DIR_IS_MINUS 34010, 506
REFP_CAM_IS_ACTIVE 34000, 506
REFP_CAM_MARKER_DIST 34093, 512
REFP_CAM_SHIFT 34092, 512
REFP_CYCLE_NR 34110, 514
REFP_MAX_CAM_DIST 34030, 507
REFP_MAX_MARKER_DIST 34060, 509
REFP_MOVE_DIST 34080, 511
REFP_MOVE_DIST_CORR 34090, 511
REFP_NC_START_LOCK 20700, 291
REFP_PERMITTED_IN_FOLLOWUP 34104, 513
REFP_SEARCH_MARKER_REVERSE 34050, 509
REFP_SET_POS 34100, 513
REFP_STOP_AT_ABS_MARKER 34330, 517
REFP_SYNC_ENCS 34102, 513

REFP_VELO_POS 34070, 510
REFP_VELO_SEARCH_CAM 34020, 506
REFP_VELO_SEARCH_MARKER 34040, 507
REPOS_MODE_MASK 11470, 121
RESET_MODE_MASK 20110, 240
REV_2_BORDER_TOOL_LENGTH 52248, 669
ROOT_KIN_ELEM_NAME 16800, 163
ROT_AX_SWL_CHECK_MODE 21180, 311
ROT_IS_MODULO 30310, 431
ROT_VECTOR_NAME_TAB 10642, 74
RUN_OVERRIDE_0
12200, 133

s

S_VALUES_ACTIVE_AFTER_RESET 22400, 330
SAFE_ALARM_SUPPRESS_LEVEL 10094, 33
SAFE_BRAKETEST_CONTROL 36968, 555
SAFE_DES_VELO_LIMIT 36933, 554
SAFE_DIAGNOSIS_MASK 10096, 35
SAFE_DRIVE_LOGIC_ADDRESS 10393, 55
SAFE_FUNCTION_MASK 19510, 225
SAFE_GLOB_ACT_CHECKSUM 13318, 156
SAFE_GLOB_CFG_CHANGE_DATE 13316, 156
SAFE_GLOB_DES_CHECKSUM 13319, 156
SAFE_INFO_DRIVE_LOGIC_ADDR 13374, 161
SAFE_INFO_ENABLE 37950, 579
SAFE_INFO_MODULE_NR 37954, 580

SAFE_INFO_TELEGRAM_TYPE 13376, 162
SAFE_IPO_STOP_GROUP 36964, 554
SAFE_MODE 13370, 161
SAFE_MODE_MASK 10095, 34
SAFE_PLC_LOGIC 19500, 225
SAFE_PS_DRIVE_LOGIC_ADDR 13372, 161
SAFE_PULSE_DIS_TIME_BUSFAIL 10089, 32
SAFE_RDP_ASSIGN 13346, 160
SAFE_RDP_CONNECTION_NR 13343, 159
SAFE_RDP_ENABLE_MASK 13340, 159
SAFE_RDP_ERR_REAC 13348, 161
SAFE_RDP_FILTER 13347, 160
SAFE_RDP_ID 13341, 159
SAFE_RDP_LADDR 13344, 160
SAFE_RDP_NAME 13342, 159
SAFE_RDP_SUBS 13349, 161
SAFE_RDP_TIMEOUT 13345, 160
SAFE_SDP_ASSIGN 13336, 158
SAFE_SDP_CONNECTION_NR 13333, 157
SAFE_SDP_ENABLE_MASK 13330, 157
SAFE_SDP_ERR_REAC 13338, 159
SAFE_SDP_FILTER 13337, 158
SAFE_SDP_ID 13331, 157
SAFE_SDP_LADDR 13334, 158
SAFE_SDP_NAME 13332, 157
SAFE_SDP_TIMEOUT 13335, 158

SAFE_SPL_START_TIMEOUT 13310, 155
SAFE_SPL_STOP_MODE 10097, 35
SAFE_SPL_USER_DATA 13312, 155
SAFE_SRDP_IPO_TIME_RATIO 13320, 156
SAFETY_SYSCLOCK_TIME_RATIO 10090, 32
SAVE_CREDENTIALS 9115, 26
SCALING_FACTOR_G70_G71 31200, 446
SCALING_FACTORS_USER_DEF 10230, 42
SCALING_SYSTEM_IS_METRIC 10240, 43
SCALING_USER_DEF_MASK 10220, 41
SD_MAX_PATH_ACCEL 42500, 607
SD_MAX_PATH_JERK
42510, 608
SEARCH_RUN_MODE 11450, 119
SERUPRO_MASK
10708, 80
SERUPRO_SPEED_FACTOR 22601, 337
SERUPRO_SPEED_MODE 22600, 336
SERUPRO_SYNC_MASK 42125, 595
SERVE_EXTCALL_PROGRAMS 9106, 24
SERVO_DISABLE_DELAY_TIME 36620, 551
SET_ACT_VALUE 51038, 643
SETINT_ASSIGN_FASTIN 21210, 315
SHAPED_TOOL_CHECKSUM 20372, 275
SHAPED_TOOL_TYPE_NO 20370, 274
SHOW_TOOLTIP 9102, 24
SIDESCREEN 9114, 25
SIEM_TRACEFILES_CONFIG 11294, 108

SIM_DISPLAY_CONFIG 52290, 672
SIM_START_POSITION 53230, 676
SIMU_AX_VDI_OUTPUT 30350, 433
SINAMICS_ALARM_MASK 13150, 149
SINAMICS_FUNCTION_MASK 19308, 222
SINAMICS_MAX_SLAVE_ADDRESS 13160, 150
SINGLEBLOCK2_STOPRE 42200, 598
SINUMERIK_INTEGRATE 9108, 25
SLASH_MASK 10706, 80
SLOT_FORM_RECOGN 42977, 620
SMOOTH_CONTUR_TOL 42465, 601
SMOOTH_ORI_TOL 42466, 601
SMOOTHING_MODE 20480, 281
SOFT_ACCEL_FACTOR 32433, 472
SPF_END_TO_VDI 20800, 294
SPIND_ACTIVE_AFTER_RESET 35040, 523
SPIND_ASSIGN_TAB 42800, 612
SPIND_ASSIGN_TAB_ENABLE 20092, 235
SPIND_ASSIGN_TO_MACHAX 35000, 518
SPIND_CONSTCUT_S 43202, 624
SPIND_DEF_MASTER_SPIND 20090, 234
SPIND_DEFAULT_ACT_MASK 35030, 520
SPIND_DEFAULT_MODE 35020, 520
SPIND_DES_VELO_TOL 35150, 528
SPIND_DRIVELOAD_FROM_PLC1 51068, 647
SPIND_EXTERN_VELO_LIMIT 35160, 529

SPIND_FUNC_RESET_MODE 35032, 521
SPIND_FUNCTION_MASK 35035, 521
SPIND_MAX_POWER 51030, 642
SPIND_MAX_VELO_G26 43220, 625
SPIND_MAX_VELO_LIMS 43230, 626
SPIND_MIN_VELO_G25 43210, 625
SPIND_ON_SPEED_AT_IPO_START 35500, 535
SPIND_OSCILL_ACCEL 35410, 533
SPIND_OSCILL_DES_VELO 35400, 533
SPIND_OSCILL_START_DIR 35430, 534
SPIND_OSCILL_TIME_CCW 35450, 534
SPIND_OSCILL_TIME_CW 35440, 534
SPIND_POSCTRL_VELO 35300, 532
SPIND_POSIT_DELAY_TIME 35310, 532
SPIND_POSITIONING_DIR 35350, 533
SPIND_POWER_RANGE 51031, 642
SPIND_RIGID_TAPPING_M_NR 20094, 235
SPIND_S 43200, 623
SPIND_SPEED_TYPE 43206, 624
SPIND_STOPPED_AT_IPO_START 35510, 536
SPIND_USER_VELO_LIMIT 43235, 626
SPIND_VELO_LIMIT 35100, 525
SPINDLE_CHUCK_TYPE 53241, 677
SPINDLE_PARAMETER 53240, 676
SPLINE_FEED_PRECISION 20262, 267
SPLINE_MODE 20488, 285

SPOS_TO_VDI
20850, 295
SPRINT_FORMAT_P_CODE 10750, 89
SPRINT_FORMAT_P_DECIMAL 10751, 89
STANDSTILL_DELAY_TIME 36040, 541
STANDSTILL_POS_TOL 36030, 540
STANDSTILL_VELO_TOL 36060, 542
START_AC_FIFO 28262, 416
START_LOCK_TIMEOUT 10133, 38
START_MODE_MASK 20112, 245
START_MODE_MASK_PRT 22620, 337
STAT_DISPLAY_BASE 52032, 660
STAT_NAME 10670, 76
STIFFNESS_CONTROL_CONFIG 32642, 491
STIFFNESS_CONTROL_ENABLE 32640, 490
STIFFNESS_DELAY_TIME 32644, 492
STOP_CUTCOM_STOPRE 42480, 605
STOP_LIMIT_COARSE 36000, 538
STOP_LIMIT_FACTOR 36012, 539
STOP_LIMIT_FINE 36010, 539
STOP_MODE_MASK 11550, 123
STOP_ON_CLAMPING 36052, 542
STROKE_CHECK_INSIDE 22900, 341
SUB_SPINDLE_PARK_POS_Y 52244, 669
SUB_SPINDLE_REL_POS 55232, 702
SUMCORR_DEFAULT 20272, 268
SUMCORR_RESET_VALUE 20132, 254

SUPPRESS_ALARM_MASK 11410, 114
SUPPRESS_ALARM_MASK_2 11415, 117
SUPPRESS_SCREEN_REFRESH 10131, 38
SURF_BLOCK_PATH_LIMIT 20171, 259
SURF_PERF_ADJUST 42478, 605
SURF_VELO_TOL 20173, 260
SW_CAM_ASSIGN_FASTOUT_1 10470, 59
SW_CAM_ASSIGN_FASTOUT_2 10471, 60
SW_CAM_ASSIGN_FASTOUT_3 10472, 61
SW_CAM_ASSIGN_FASTOUT_4 10473, 61
SW_CAM_ASSIGN_TAB 10450, 58
SW_CAM_COMP_NCK_JITTER 10490, 63
SW_CAM_MINUS_LEAD_TIME 10460, 59
SW_CAM_MODE 10485, 63
SW_CAM_PLUS_LEAD_TIME 10461, 59
SW_CAM_TIMER_FASTOUT_MASK 10480, 62
SW_OPTIONS
9990, 26
SWITCH_TO_MACHINE_MASK 51040, 643
SYSCLOCK_CYCLE_TIME 10050, 29
SYSTEM_FUNCTION_MASK 19334, 224
SYSTEM_INFO 19010, 217

T

T_M_ADDRESS_EXT_IS_SPINO 20096, 236
T_NO_FCT_CYCLE_MODE 10719, 86
T_NO_FCT_CYCLE_NAME 10717, 85

TAILSTOCK_PARAMETER 53242, 677
TANG_OFFSET 37402, 577
TARGET_BLOCK_INCR_PROG 42444, 600
TASK_SLEEP_TIME 10156, 39
TASK_TIME_AVERAGE_CONFIG 10285, 46
TCA_CYCLE_NAME 15710, 163
TEACH_MODE 51034, 642
TECHNO_EXTENSION_MASK 19610, 226
TECHNO_FUNCTION_MASK 19320, 222
TECHNO_FUNCTION_MASK_1 19321, 223
TECHNOLOGY 52200, 661
TECHNOLOGY_EXTENSION 52201, 661
TEMP_COMP_ABS_VALUE 43900, 636
TEMP_COMP_REF_POSITION 43920, 637
TEMP_COMP_SLOPE 43910, 637
TEMP_COMP_TYPE 32750, 496
THREAD_RAMP_DISP 42010, 593
THREAD_START_ANGLE 42000, 592
TIME_LIMIT_NETTO_EES_TASK 27930, 406
TIME_LIMIT_NETTO_INT_TASK 27920, 406
TM_FUNCTION_MASK 52270, 671
TM_FUNCTION_MASK_SET 54215, 677
TM_MAG_PLACE_DISTANCE 52271, 671
TM_TOOL_LOAD_DEFAULT_MAG 52272, 671
TM_TOOL_LOAD_STATION 52274, 672
TM_TOOL_MOVE_DEFAULT_MAG 52273, 672

TM_WRITE_LIMIT_MASK 51214, 651
TM_WRITE_WEAR_ABS_LIMIT 51212, 650
TM_WRITE_WEAR_DELTA_LIMIT
51213, 651
TOCARR_BASE_FRAME_NUMBER 20184, 261
TOCARR_CHANGE_M_CODE 22530, 332
TOCARR_FINE_CORRECTION 42974, 620
TOCARR_FINE_LIM_LIN 20188, 261
TOCARR_FINE_LIM_ROT 20190, 261
TOCARR_ROT_ANGLE_INCR 20180, 260
TOCARR_ROT_ANGLE_OFFSET 20182, 260
TOCARR_ROT_OFFSET_FROM_FR 21186, 312
TOCARR_ROTAX_MODE 20196, 263
TOFF_ACCEL
21196, 313
TOFF_LIMIT
42970, 619
TOFF_LIMIT_MINUS
42972, 620
TOFF_MODE 21190, 312
TOFF_VELO 21194, 313
TOFRAME_MODE 42980, 620
TOOL_CARRIER_RESET_VALUE 20126, 253
TOOL_CHANGE_ERROR_MODE 22562, 334
TOOL_CHANGE_M_CODE 22560, 333
TOOL_CHANGE_MODE 22550, 333
TOOL_CHANGE_POS_Y 52241, 669
TOOL_CHANGE_TIME 10190, 40
TOOL_CORR_MODE_G43G44 20380, 275
TOOL_CORR_MOVE_MODE 20382, 275

TOOL_CORR_MULTIPLE_AXES 20384, 276
TOOL_DATA_CHANGE_COUNTER 17530, 168
TOOL_DEFAULT_DATA_MASK 17520, 167
TOOL_GRIND_AUTO_TMON 20350, 272
TOOL_LENGTH_CONST 42940, 614
TOOL_LENGTH_CONST_T 42942, 615
TOOL_LENGTH_TYPE 42950, 616
TOOL_MANAGEMENT_MASK 20310, 269
TOOL_MANAGEMENT_TOOLHOLDER 20124, 251
TOOL_MCODE_FUNC_OFF 52282, 672
TOOL_MCODE_FUNC_ON 52281, 672
TOOL_OFFSET_INCR_PROG 42442, 599
TOOL_ORI_CONST_M 42954, 617
TOOL_ORI_CONST_T 42956, 618
TOOL_PARAMETER_DEF_MASK 20360, 272
TOOL_PRESEL_RESET_VALUE 20121, 250
TOOL_RESET_NAME 20122, 251
TOOL_RESET_VALUE 20120, 250
TOOL_RESETMON_MASK 17515, 166
TOOL_TEMP_COMP 42960, 619
TOOL_TEMP_COMP_LIMIT 20392, 276
TOOL_TEMP_COMP_ON 20390, 276
TOOL_TIME_MONITOR_MASK 20320, 272
TOOL_UNLOAD_MASK 17510, 165
TOOLTIP_TIME_DELAY 9103, 24
TOOLTYPES_ALLOWED 17540, 168

TRAANG_ANGLE_1 24700, 370
TRAANG_ANGLE_2 24750, 371
TRAANG_BASE_TOOL_1
24710, 370
TRAANG_BASE_TOOL_2
24760, 371
TRAANG_PARALLEL_ACCEL_RES_1 24721, 371
TRAANG_PARALLEL_ACCEL_RES_2 24771, 372
TRAANG_PARALLEL_VELO_RES_1 24720, 371
TRAANG_PARALLEL_VELO_RES_2 24770, 372
TRACE_PATHNAME 18391, 204
TRACE_SAVE_OLD_FILE 18392, 204
TRACE_SCOPE_MASK 22708, 339
TRACE_STARTTRACE_EVENT 22700, 338
TRACE_STARTTRACE_STEP 22702, 338
TRACE_STOPTRACE_EVENT 22704, 339
TRACE_STOPTRACE_STEP 22706, 339
TRACE_VARIABLE_INDEX 22712, 340
TRACE_VARIABLE_NAME 22710, 339
TRACE_VDI_AX 31600, 446
TRACLG_CONTACT_LOWER_LIMIT 21520, 322
TRACLG_CONTACT_UPPER_LIMIT 21518, 321
TRACLG_CTRLSPI_NR 21524, 322
TRACLG_CTRLSPI_VERT_OFFSET 21502, 320
TRACLG_GO_IS_SPECIAL 21526, 322
TRACLG_GRINDSPI_HOR_OFFSET 21501, 320
TRACLG_GRINDSPI_NR 21522, 322
TRACLG_GRINDSPI_VERT_OFFSET 21500, 320

TRACLG_HOR_DIR_SUPPORTAX_1 21510, 321
TRACLG_HOR_DIR_SUPPORTAX_2 21514, 321
TRACLG_SUPPORT_HOR_OFFSET 21506, 320
TRACLG_SUPPORT_LEAD_ANGLE 21516, 321
TRACLG_SUPPORT_VERT_OFFSET 21504, 320
TRACLG_VERT_DIR_SUPPORTAX_1 21508, 321
TRACLG_VERT_DIR_SUPPORTAX_2 21512, 321
TRACON_CHAIN_1 24995, 378
TRACON_CHAIN_2 24996, 379
TRACON_CHAIN_3 24997, 379
TRACON_CHAIN_4 24998, 380
TRACON_CHAIN_5 25495, 397
TRACON_CHAIN_6 25496, 398
TRACON_CHAIN_7 25497, 398
TRACON_CHAIN_8 25498, 398
TRACYL_BASE_TOOL_1 24820, 373
TRACYL_BASE_TOOL_2 24870, 375
TRACYL_BASE_TOOL_COMP_1 24806, 373
TRACYL_BASE_TOOL_COMP_2 24856, 374
TRACYL_DEFAULT_MODE_1 24808, 373
TRACYL_DEFAULT_MODE_2 24858, 374
TRACYL_ROT_AX_FRAME_1 24805, 372
TRACYL_ROT_AX_FRAME_2 24855, 374
TRACYL_ROT_AX_OFFSET_1 24800, 372
TRACYL_ROT_AX_OFFSET_2 24850, 374
TRACYL_ROT_SIGN_IS_PLUS_1 24810, 373

TRACYL_ROT_SIGN_IS_PLUS_2 24860, 375
TRAFO_AXES_IN_1 24110, 347
TRAFO_AXES_IN_10 24482, 356
TRAFO_AXES_IN_11 25102, 380
TRAFO_AXES_IN_12 25112, 381
TRAFO_AXES_IN_13 25122, 382
TRAFO_AXES_IN_14 25132, 382
TRAFO_AXES_IN_15 25142, 383
TRAFO_AXES_IN_16 25152, 384
TRAFO_AXES_IN_17 25162, 385
TRAFO_AXES_IN_18 25172, 386
TRAFO_AXES_IN_19 25182, 386
TRAFO_AXES_IN_2 24210, 349
TRAFO_AXES_IN_20 25192, 387
TRAFO_AXES_IN_3 24310, 350
TRAFO_AXES_IN_4 24410, 351
TRAFO_AXES_IN_5 24432, 351
TRAFO_AXES_IN_6 24442, 352
TRAFO_AXES_IN_7 24452, 353
TRAFO_AXES_IN_8 24462, 354
TRAFO_AXES_IN_9 24472, 355
TRAFO_CHANGE_M_CODE 22534, 333
TRAFO_GEOAX_ASSIGN_TAB_1 24120, 348
TRAFO_GEOAX_ASSIGN_TAB_10 24484, 356
TRAFO_GEOAX_ASSIGN_TAB_11 25104, 380
TRAFO_GEOAX_ASSIGN_TAB_12 25114, 381

TRAFO_GEOAX_ASSIGN_TAB_13 25124, 382
TRAFO_GEOAX_ASSIGN_TAB_14 25134, 383
TRAFO_GEOAX_ASSIGN_TAB_15 25144, 383
TRAFO_GEOAX_ASSIGN_TAB_16 25154, 384
TRAFO_GEOAX_ASSIGN_TAB_17 25164, 385
TRAFO_GEOAX_ASSIGN_TAB_18 25174, 386
TRAFO_GEOAX_ASSIGN_TAB_19 25184, 387
TRAFO_GEOAX_ASSIGN_TAB_2 24220, 349
TRAFO_GEOAX_ASSIGN_TAB_20 25194, 387
TRAFO_GEOAX_ASSIGN_TAB_3 24320, 350
TRAFO_GEOAX_ASSIGN_TAB_4 24420, 351
TRAFO_GEOAX_ASSIGN_TAB_5 24434, 352
TRAFO_GEOAX_ASSIGN_TAB_6 24444, 353
TRAFO_GEOAX_ASSIGN_TAB_7 24454, 353
TRAFO_GEOAX_ASSIGN_TAB_8 24464, 354
TRAFO_GEOAX_ASSIGN_TAB_9 24474, 355
TRAFO_INCLUDES_TOOL_1 24130, 348
TRAFO_INCLUDES_TOOL_10 24486, 356
TRAFO_INCLUDES_TOOL_11 25106, 380
TRAFO_INCLUDES_TOOL_12 25116, 381
TRAFO_INCLUDES_TOOL_13 25126, 382
TRAFO_INCLUDES_TOOL_14 25136, 383
TRAFO_INCLUDES_TOOL_15 25146, 384
TRAFO_INCLUDES_TOOL_16 25156, 384
TRAFO_INCLUDES_TOOL_17 25166, 385
TRAFO_INCLUDES_TOOL_18 25176, 386

TRAFO_INCLUDES_TOOL_19 25186, 387
TRAFO_INCLUDES_TOOL_2 24230, 349
TRAFO_INCLUDES_TOOL_20 25196, 388
TRAFO_INCLUDES_TOOL_3 24330, 350
TRAFO_INCLUDES_TOOL_4 24426, 351
TRAFO_INCLUDES_TOOL_5 24436, 352
TRAFO_INCLUDES_TOOL_6 24446, 353
TRAFO_INCLUDES_TOOL_7 24456, 354
TRAFO_INCLUDES_TOOL_8 24466, 355
TRAFO_INCLUDES_TOOL_9 24476, 355
TRAFO_MODE_MASK 20144, 254
TRAFO_RESET_NAME 20142, 254
TRAFO_RESET_VALUE 20140, 254
TRAFO_TYPE_1 24100, 346
TRAFO_TYPE_10 24480, 356
TRAFO_TYPE_11 25100, 380
TRAFO_TYPE_12 25110, 381
TRAFO_TYPE_13 25120, 381
TRAFO_TYPE_14 25130, 382
TRAFO_TYPE_15 25140, 383
TRAFO_TYPE_16 25150, 384
TRAFO_TYPE_17 25160, 385
TRAFO_TYPE_18 25170, 385
TRAFO_TYPE_19 25180, 386
TRAFO_TYPE_2 24200, 348
TRAFO_TYPE_20 25190, 387

TRAFO_TYPE_3 24300, 349
TRAFO_TYPE_4 24400, 350
TRAFO_TYPE_5 24430, 351
TRAFO_TYPE_6 24440, 352
TRAFO_TYPE_7 24450, 353
TRAFO_TYPE_8 24460, 354
TRAFO_TYPE_9 24470, 355
TRAFO_TYPE_MASK 19410, 225
TRAFO5_AXIS1_1 24570, 361
TRAFO5_AXIS1_2 24670, 368
TRAFO5_AXIS1_3 25270, 390
TRAFO5_AXIS1_4 25370, 395
TRAFO5_AXIS2_1 24572, 361
TRAFO5_AXIS2_2 24672, 368
TRAFO5_AXIS2_3 25272, 391
TRAFO5_AXIS2_4 25372, 395
TRAFO5_AXIS3_1 24573, 361
TRAFO5_AXIS3_2 24673, 368
TRAFO5_AXIS3_3 25273, 391
TRAFO5_AXIS3_4 25373, 396
TRAFO5_BASE_ORIENT_1 24574, 362
TRAFO5_BASE_ORIENT_2 24674, 369
TRAFO5_BASE_ORIENT_3 25274, 391
TRAFO5_BASE_ORIENT_4 25374, 396
TRAFO5_BASE_TOOL_1 24550, 359
TRAFO5_BASE_TOOL_2 24650, 366

TRAFO5_BASE_TOOL_3 25250, 389
TRAFO5_BASE_TOOL_4 25350, 394
TRAFO5_JOINT_OFFSET_1 24560, 360
TRAFO5_JOINT_OFFSET_2 24660, 367
TRAFO5_JOINT_OFFSET_3 25260, 389
TRAFO5_JOINT_OFFSET_4 25360, 394
TRAFO5_JOINT_OFFSET_PART_1 24558, 359
TRAFO5_JOINT_OFFSET_PART_2 24658, 367
TRAFO5_JOINT_OFFSET_PART_3 25258, 389
TRAFO5_JOINT_OFFSET_PART_4 25358, 394
TRAFO5_NON_POLE_LIMIT_1 24530, 357
TRAFO5_NON_POLE_LIMIT_2 24630, 365
TRAFO5_NON_POLE_LIMIT_3 25230, 388
TRAFO5_NON_POLE_LIMIT_4 25330, 393
TRAFO5_NUTATOR_AX_ANGLE_1 24564, 360
TRAFO5_NUTATOR_AX_ANGLE_2 24664, 368
TRAFO5_NUTATOR_AX_ANGLE_3 25264, 390
TRAFO5_NUTATOR_AX_ANGLE_4 25364, 395
TRAFO5_NUTATOR_VIRT_ORIAX_1 24566, 361
TRAFO5_NUTATOR_VIRT_ORIAX_2 24666, 368
TRAFO5_NUTATOR_VIRT_ORIAX_3 25266, 390
TRAFO5_NUTATOR_VIRT_ORIAX_4 25366, 395
TRAFO5_ORIAX_ASSIGN_TAB_1 24585, 363
TRAFO5_ORIAX_ASSIGN_TAB_2 24685, 369
TRAFO5_ORIAX_ASSIGN_TAB_3 25285, 392
TRAFO5_ORIAX_ASSIGN_TAB_4 25385, 397

TRAFO5_PART_OFFSET_1 24500, 356
TRAFO5_PART_OFFSET_2 24600, 364
TRAFO5_PART_OFFSET_3 25200, 388
TRAFO5_PART_OFFSET_4 25300, 393
TRAFO5_POLE_LIMIT_1 24540, 358
TRAFO5_POLE_LIMIT_2 24640, 365
TRAFO5_POLE_LIMIT_3 25240, 389
TRAFO5_POLE_LIMIT_4 25340, 393
TRAFO5_POLE_TOL_1 24542, 358
TRAFO5_POLE_TOL_2 24642, 366
TRAFO5_POLE_TOL_3 25242, 389
TRAFO5_POLE_TOL_4 25342, 394
TRAFO5_ROT_AX_OFFSET_1 24510, 357
TRAFO5_ROT_AX_OFFSET_2 24610, 364
TRAFO5_ROT_AX_OFFSET_3 25210, 388
TRAFO5_ROT_AX_OFFSET_4 25310, 393
TRAFO5_ROT_OFFSET_FROM_FR_1 24590, 363
TRAFO5_ROT_OFFSET_FROM_FR_2 24690, 369
TRAFO5_ROT_OFFSET_FROM_FR_3 25290, 392
TRAFO5_ROT_OFFSET_FROM_FR_4 25390, 397
TRAFO5_ROT_SIGN_IS_PLUS_1 24520, 357
TRAFO5_ROT_SIGN_IS_PLUS_2 24620, 364
TRAFO5_ROT_SIGN_IS_PLUS_3 25220, 388
TRAFO5_ROT_SIGN_IS_PLUS_4 25320, 393
TRAFO5_TCARR_NO_1 24582, 362
TRAFO5_TCARR_NO_2 24682, 369

TRAFO5_TCARR_NO_3
25282, 392
TRAFO5_TCARR_NO_4 25382, 396
TRAFO5_TOOL_ROT_AX_OFFSET_1 24562, 360
TRAFO5_TOOL_ROT_AX_OFFSET_2 24662, 367
TRAFO5_TOOL_ROT_AX_OFFSET_3 25262, 390
TRAFO5_TOOL_ROT_AX_OFFSET_4 25362, 395
TRAFO5_TOOL_VECTOR_1 24580, 362
TRAFO5_TOOL_VECTOR_2 24680, 369
TRAFO5_TOOL_VECTOR_3 25280, 391
TRAFO5_TOOL_VECTOR_4 25380, 396
TRAFO6_BASE_ORIENT_NORMAL_1 24576, 362
TRAFO6_BASE_ORIENT_NORMAL_2 24676, 369
TRAFO6_BASE_ORIENT_NORMAL_3 25276, 391
TRAFO6_BASE_ORIENT_NORMAL_4 25376, 396
TRAFO6_JOINT_OFFSET_2_3_1 24561, 360
TRAFO6_JOINT_OFFSET_2_3_2 24661, 367
TRAFO6_JOINT_OFFSET_2_3_3 25261, 390
TRAFO6_JOINT_OFFSET_2_3_4 25361, 394
TRAFO7_EXT_AXIS1_1 24595, 363
TRAFO7_EXT_AXIS1_2 24695, 370
TRAFO7_EXT_AXIS1_3 25295, 392
TRAFO7_EXT_AXIS1_4 25395, 397
TRAFO7_EXT_ROT_AX_OFFSET_1 24594, 363
TRAFO7_EXT_ROT_AX_OFFSET_2 24694, 370
TRAFO7_EXT_ROT_AX_OFFSET_3 25294, 392
TRAFO7_EXT_ROT_AX_OFFSET_4 25394, 397

TRANSMIT_BASE_TOOL_1
24920, 376
TRANSMIT_BASE_TOOL_2 24970, 378
TRANSMIT_BASE_TOOL_COMP_1 24906, 375
TRANSMIT_BASE_TOOL_COMP_2 24956, 377
TRANSMIT_POLE_SIDE_FIX_1 24911, 376
TRANSMIT_POLE_SIDE_FIX_2 24961, 377
TRANSMIT_ROT_AX_FRAME_1 24905, 375
TRANSMIT_ROT_AX_FRAME_2 24955, 377
TRANSMIT_ROT_AX_OFFSET_1 24900, 375
TRANSMIT_ROT_AX_OFFSET_2 24950, 377
TRANSMIT_ROT_SIGN_IS_PLUS_1 24910, 376
TRANSMIT_ROT_SIGN_IS_PLUS_2 24960, 377
TU_DISPLAY_BASE 52033, 660
TU_NAME 10672, 76
TURN_CONT_BLANK_OFFSET 55584, 708
TURN_CONT_INTER_RETRACTION 55586, 709
TURN_CONT_INTERRUPT_TIME 55585, 709
TURN_CONT_MIN_REST_MAT_AX1 55587, 709
TURN_CONT_MIN_REST_MAT_AX2 55588, 709
TURN_CONT_RELEASE_ANGLE 55580, 708
TURN_CONT_RELEASE_DIST 55581, 708
TURN_CONT_TOOL_BEND_RETR 55595, 709
TURN_CONT_TRACE_ANGLE 55582, 708
TURN_CONT_TURN_RETRACTION 55596, 710
TURN_CONT_VARIABLE_DEPTH 55583, 708
TURN_FIN_FEED_PERCENT 55500, 706

TURN_FIXED_STOP_DIST 55550, 707
TURN_FIXED_STOP_FEED 55551, 707
TURN_FIXED_STOP_FORCE 55552, 708
TURN_FIXED_STOP_RETRACTION 55553, 708
TURN_GROOVE_DWELL_TIME 55510, 707
TURN_PART_OFF_CTRL_DIST 55540, 707
TURN_PART_OFF_CTRL_FEED 55541, 707
TURN_PART_OFF_CTRL_FORCE 55542, 707
TURN_PART_OFF_RETRACTION 55543, 707
TURN_ROUGH_I_RELEASE_DIST 55506, 706
TURN_ROUGH_O_RELEASE_DIST 55505, 706
TURN_TOOL_FIXING 52242, 669

U

UPLOAD_CHANGES_ONLY 11212, 106
UPLOAD_MD_CHANGES_ONLY 11210, 105
USEKT_RESET_VALUE 20123, 251
USER_DATA_FLOAT 14514, 162
USER_DATA_HEX 14512, 162
USER_DATA_INT 14510, 162
USER_FRAME_POWERON_MASK 24080, 346
USER_MEM_BUFFERED 19250, 221
USER_MEM_DYNAMIC 19240, 220

V

VDI_FUNCTION_MASK
17900, 171

VELO_FFW_WEIGHT 32610, 489
VERSION_INFO 18040, 172

W

WAB_CLEARANCE_TOLERANCE 20204, 265
WAB_MAXNUM_DUMMY_BLOCKS 20202, 264
WAIT_ENC_VALID 34800, 517
WALIM_GEOAX_CHANGE_MODE 10604, 69
WEAR_SIGN 42930, 614
WEAR_SIGN_CUTPOS 42920, 613
WEAR_TRANSFORM 42935, 614
WEIGHTING_FACTOR_FOR_SCALE 22910, 341
WORKAREA_CHECK_TYPE 30800, 440
WORKAREA_LIMIT_MINUS 43430, 628
WORKAREA_LIMIT_PLUS 43420, 628
WORKAREA_MINUS_ENABLE 43410, 628
WORKAREA_PLUS_ENABLE 43400, 628
WORKAREA_WITH_TOOL_RADIUS 21020, 297
WPD_INI_MODE 11280, 107
WRITE_FRAMES_FINE_LIMIT 51035, 642

X

X_AXIS_IN_OLD_X_Z_PLANE 21110, 306

Z

ZERO_CHAIN_ELEM_NAME 20147, 255

[^0]: Description:
 File name with path name under which the list of mounted drives is stored.

[^1]: Description:
 Bit mask for channel-specific data management frames, the axial frames of which can be mapped onto other axial frames.
 The mapping takes place via MD32075 \$MA_MAPPED_FRAME[AXn] = "AXm".

[^2]: Description:
 Normal vector programming from software version 3.2

[^3]: Description: Path of output device for ISOPRINT

[^4]: Description:
 For PROFIBUS/PROFINET only:
 Logical I/O address that is to be recorded.

[^5]: Description:
 The machine data determines the size of the setpoint value buffer between interpolator

[^6]: Description:
 Maximum number of facets permitted for all internally created protection zones.
 Only applies if MAXNUM_3D_PROT_AREAS is greater than zero and bit 0 in
 PROT_AREA_TOOL_MASK is set.
 Typical values would then be 1000 for milling machines with a modeled tool, and 5000
 for lathes with various tool types in a turret.

[^7]: Description:
 For SW-internal function optimization.

[^8]: Description:
 Look Ahead special functions:
 Bit $0=1$:
 The Safety Integrated setpoint limitation is already taken into account in Look Ahead.
 Bit $1=1$:
 The Safety Integrated setpoint limitation is taken into account in detail in the block.

[^9]: Description:
 When, for example, an alarm occurs, this MD can be used to delay deceleration in order,

[^10]: Description:
 This machine data designates an offset of the workpiece carrier for the first (MD24500 \$MC_TRAFO5_PART_OFFSET_1) or second (MD24600 \$MC_TRAFO5_PART_OFFSET_2) 5-axis transformation of a channel, and has a specific meaning for the different machine types:
 Machine type 1 (two-axis swivel head for tool):
 Vector from machine reference point to zero point of workpiece table. This will
 generally be a zero vector if both coincide.
 Machine type 2 (two-axis rotary table for workpiece):
 Vector from the second rotary joint of workpiece rotary table to zero point of table. Machine type 3 (single-axis rotary table for workpiece and single-axis swivel head for tool):
 Vector from rotary joint of workpiece table to zero point of table.

[^11]: Description:
 The type of speed setpoint output is entered into this MD:

[^12]: A factor between -1.0 and 1.0 can be entered for each acceleration value from MD32581 \$MA_FRICT_ADAPT_TABLE_ACCEL with which the amplitude of the torque injection pulse of the friction compensation is weighted.

 Not relevant for:
 MD32500 \$MA_FRICT_COMP_ENABLE = 0
 MD32490 \$MA_FRICT_COMP_MODE = 1/2

[^13]: Description:
 The value specifies the maximum permitted path deviation for smoothing with G645. This is only relevant to tangential block transitions that are not accelerationcontinuous.
 For smoothing of corner with G645 tolerance MD33100 \$MA_COMPRESS_POS_TOL becomes active like with G642.

[^14]: Description:
 The value of this $S D$ is added to the compensation value \$AN_CEC[t,1].
 Related to
 \$AN_CEC[t,1] compensation value

[^15]: Description:
 The setting data dimensions the COMPSURF function in respect of axis groups for following machining. Values greater than \$MC_MM_MAXNUM_SURF_GROUPS are limited without an alarm.

[^16]: Description:
 This setting data defines the assignment of the tool length components to the geometry axes irrespective of the tool type. It can assume any value between 0 and 3. Any other value is interpreted as 0.

[^17]: Description:
 Number of sparking-out strokes performed after ending the oscillating movement
 Application example(s)
 NC language: OSNSC[Axis]=Stroke number
 Note:
 MD $10710 \$ M N _P R O G _S D _R E S E T _S A V E _T A B$ can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

[^18]: Description:
 Display resolution in inch feedrate/rev

[^19]: Description:
 Write external work offset protection level

[^20]: Description: Set actual value protection level

[^21]: Description:
 M code for coolant $1+2$ ON

[^22]: 0 : not defined
 1: METRIC
 2: INCH

