Rugged Power MOSFETs IRF630R, IRF6313R, IRF632R, IRF633R Avalanche Energy Rated N-Channel Power MOSFETs 8.0A and 9.0A, 150V-200V lps(on) = 0.40 and 0.69 Features: BB Single pulse avalanche energy rated @ SOA is power-dissipation limited B Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance File Number 1990 N-CHANNEL ENHANCEMENT MODE D 9208-42656 TERMINAL DIAGRAM TERMINAL DESIGNATION The IRF630R, IRF631R, IRF632R and IRF633R are ad- SOURCE vanced power MOSFETs designed, tested, and guaranteed to withstand a specified level of energy in the breakdown DRAIN RAIN avalanche mode of operation. These are n-channel en- range) "| 7 LT - hancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- TOP VIEW GATE fs for high-power bipolar switching transistors requiritg 92c8-39528 igh speed and low gate-drive power. se types can be operated directly from integrated circuits. %P JEDEC TO-220AB _ The IRF-types are supplied in the JEDEC TO-220AB plastic package. Absolute Maximum Ratings . Parameter IRF630R IRF631R IRF632R IRF633R Units Vos Drain - Source Voltage @ 200 150 200 150 Vv Voca Drain - Gate Voltage (Res = 20 KQ) @ 200 150 200 150 v In @ Tc = 25C Continuous Drain Current 9.0 9.0 8.0 8.0 A lo @ Tc = 100C Continuous Drain Current 6.0 6.0 5.0 5.0 A fom Pulsed Drain Current @ 36 36 32 32 A Ves Gate - Source Voltage +20 : Vv Po @ Tc = 25C Max. Power Dissipation 75 (See Fig. 14) Ww Linear Derating Factor 0.6 (See Fig. 14) w/c Eu Single Pulse Avalanche Energy Rating @ 150 mj Te Storage Fomporature Range 755 to 150 C Lead Temperature 300 (0.063 in, (1.6mm) from case for 10s) C 6-112Electrical Characteristics @ Tc = 25C (Unless Otherwise Specified) Rugged Power MOSFETs IRF630R, IRF631R, IRF632R, IRF6E33R P. t Type Min. Typ. Max. | Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF630R _ IRF632R | 200 =_ - v Ves = OV IRF631R = IRFe33R | 159 _ - v Ip = 250uA Vestn Gate Threshold Voltage ALL 2.0 =- 4.0 Vv Vos = Vas, lp = 250p A lass Gate-Source Leakage Forward ALL = = 500 nA__| Ves = 20V loss Gate-Source Leakage Reverse ALL =_ =_ -500 nA Ves = -20V loss Zero Gate Voltage Drain Current - = 250 HA Vos = Max. Rating, Ves = OV ALL _ [| 1000 | uA | Vos = Max. Rating x 0.8, Vos = OV, Te = 125C nom On-State Drain Current @ IRF630R | 99 _ _ A IRF631R Vos > lotion X Roston max, Vas = 10V IRF632R | 39 _ _ A IRF633R | ' Rosien Static Drain-Source On-State IRF630R} 0.25 0.1 Q Resistance @ ee Ves = 10V, lo = 5.0A IRFe33R | 0.4 06 Q Qt Forward Transconductance @ ALL 3.0 4.8 = S(&)_ | Vos > lotion X Rostonmax, lo = 5.0A Cine Input Capacitance ALL = 600 = PF | og = OV, Vos = 25V, f= 1.0 MHz Coss Output Capacitance ALL _ 250 = pF See Fig. 10 Cros Reverse Transfer Capacitance ALL = 80 = pF tao _ Turn-On Delay Time ALL = = 30 ns Voo = 90V, lo = 5.0A, Zo = 150 t Rise Time ALL = = 50 ns See Fig. 17 tatom Turn-Off Delay Time ALL _ = 50 ns MOSFET switching times are essentially tr Fall Time ALL _ _ 40 ns independent of operating temperature.) Qy Total Gate Charge ALL _ 19 30 nc Ves = 10V, Ip = 12A, Vos = 0.8 Max. Rating. (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is - essentially independent of operatin Qgs Gate Source Charge ALL 10 nc femperature.) Pp Pp 9 Qga Gate-Drain (Miller) Charge ALL - 9.0 _ nc Lo Internal Drain Inductance _ 3.5 = nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL 45 nH | Measured from the inductances. D drain lead, 6mm (0.25 in.) from package to Lo center of die. Ls Internal Source Inductance ALL 7.5 nH Measured from the 6 of source lead, 6mm us (0.25 in.) from 5 package to source exes azees bonding pad. Thermal Resistance RwJC Junction-to-Case ALL - _ 1.67 | C/W RuCS_ Case-to-Sink ALL - 1.0 C/W_| Mounting surface flat, smooth, and greased. RauJA Junction-to-Ambient ALL _ = 80 C/W | Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF630R | _ 90 A Modified MOSFET symbol (Body Diode) IRF631R . showing the integral IRF632R 8.0 A reverse P-N junction rectifier. S IRF633R | ~ : : Ism Pulse Source Current IRF630R; _ 36 fq 6O- (Body Diode) @ IRF631R : IRF632R sacreazese inFesaR| | | 9 | A Vsp Diode Forward Voltage @ (RF630R} __ _ \ = = = IRF631R 2.0 V Te = 25C, Is = 9.0A, Ves = OV IRF632R 4 = = = IRF633R - ad 1.8 V Te = 25C, Is = 8.0A, Ves = OV tr Reverse Recovery Time ALL = 450 = ns Ty = 150C, le = 9.0A, dle/dt = 100A/ys Qer Reverse Recovered Charge ALL = 3.0 = pe Ts = 180C, tr = 9.0A, die/dt = 100A/ys ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Ls + Lo. @ Ts = 25C to 150C. Pulse Test: Pulse width < 300us, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). @ Von = 20V, starting T, = 25C, L =3.37MH, Ros = 502, Ipeak = 9A. See figures 15, 16. 6-113Rugged Power MOSFETs IRF630R, IRF631R, IRF632R, IRF633R 80us PULSE Vas > tnton} * Aston) max. fa 00 us PULSE TEST yee Ty 2500 Ty = 55C ip, BRAIN CURRENT (AMPERES) Ig, QRAIN CURRENT (AMPERES) 20 ot a 1 2 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) 100 > Fig. 1 Typical Output Characteristics Ip. DRAIN CURRENT (AMPERES) Te = 25C Ty = 180C MAX, I Rinse = 1.67 C/W. PULSE 1p. ORAtN CURRENT (AMPERES) a 1 2 a 4 5 ti) Vos. DRAIN.TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics n s on e e 2 8 2 & SINGLE PULSE THERMAL IMPEDANCE) THERMAL (MPEDANCE (PER UNIT) 0.02 Znsclt/ Rinse. NORMALIZED EFFECTIVE TRANSIENT i 2 5 2 5 we 2 5 ty, SQUARE WAVE PULSE DURATION (SECONDS) w-4 10-3 10-1 3 2 4 5 6 7 Vgs, GATE-TO-SOURCE VOLTAGE (VOLTS! Fig. 2 ~ Typical Transfer Characteristics AMEA IS LIMITED bY a | 4 3R 44 IRFE3OR, 0 50 6100 200 $00 Vos. DRAIN TO-SOURCE VOLTAGE (VOLTS) Fig. 4 ~ Maximum Safe Operating Area ft} bo17 1. DUTY FACTOR, D = zt 2. PER UNIT BASE Ainje = 1.67 DEG. CW. 3. Tym - Te * Pom Zitucltl. 5 10 2 Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 6-114Rugged Power MOSFETs IRF630R, IRF631R, IRF632R, IRF633R 102 10 SFT = 180C Sts. TRANSCONOUCTANCE (SIEMENS) lor. REVERSE ORAIN CURRENT (AMPERES) Vos > 'oton) * Rosion) max = 0 tae Ty= 25C to a 2 6 4 19 0 1 2 3 4 Ip, DRAIN CURRENT (AMPERES) Vgp. SOURCE.T0.DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typicat Source-Drain Diode Forward Voltage 125 22 16 +05 nS (NORMALIZED) 0.95 08s 06 BVngs, DRAIN TO-SOURCE BREAKDOWN VOLTAGE INORMALIZED} Roston). ORAIN-TO-SOURCE ON RESISTANCE a7 02 -40 0 40 80 120 160 -40 0 40 30 120 Ty, JUNCTION TEMPE RATURE (C} Ty, JUNCTION TEMPERATURE {OC} Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature =0 121 MHz, Cigg = Ugg * Cyd, Cos Css * Ugg Com * ue * OE on Ct UG Cds + Cod Vps - 40V ! Vos > 100V | Vos = 160V, IRF630R, 632A C, CAPACITANCE {pF} Vas. GATE TO SOURCE VOLTAGE (VOLTS) ip 2A FOR TEST CIACUIT SEE FIGURE 18 Q 10 20 w 0 50 a 8 16 24 R 40 Vos, ORAIN-TO-SQURCE VOLTAGE iVOLTS) Gy. TOTAL GATE CHARGE {nC} Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 6-115Rugged Power MOSFETs IRF630R, IRF631R, IRF632R, IRF633R 6-116 _ 08 19 a 3 3 2 Yigg = 10 $ = a G 06 3 g = z z So = ww = 6 (RF632A, 633R = E : 2 z 3 oe = a 3 3 a z4 = La Veg 20 2 5 | GS & 5 02 2 zB = 2 Rpsian) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION INITIAL Ty= 25C (HEATING EFFECT OF 2.0 ys PULSE 1S MINIMAL.) r L L r 0 0 10 20 30 40 25 50 aT 100 125 150 1p, DRAIN CURRENT (AMPERES) Tr. CASE TEMPERATURE (9C) Fig. 12 Typical On-Resistance Vs. Drain Current Fig. 13 Maximum Drain Current Vs. Case Temperature 80 Po, POWER DISSIPATION {WATTS} 0 60 Ys 50 VARY tp TO OBTAIN put REQUIRED PEAK IL 40 ~po Veg t tov i Fe] 30 20 9203-42659 Fig. 15 Unclamped Energy Test Circuit 0 20 40 60 80 100 120 140 Tc. CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve Voo = 90V 4n PRF = 1 kHz . tottus Vo TO SCOPE porto i t ! L s2cs- 42660 9203-42724 Fig. 16 Unclamped Energy Wavetorms Fig. 17 Switching Time Test Circuit q os {ISOLATED SUPPLY} CURRENT REGULATOR SAME TYPE CURRENT = CURRENT SHUNT SHUNT Fig. 18 Gate Charge Test Circuit