Si53152 P C I - E X P R E S S G EN 1, G E N 2 , G EN 3, A N D G E N 4 FANOUT BUFFER Features PCI-Express Gen 1, Gen 2, Gen 3, and Gen 4 common clock compliant Supports Serial ATA (SATA) at 100 MHz 100-210 MHz operation Low power, push pull, differential output buffers Internal termination for maximum integration Dedicated output enable pin for each clock Two PCI-Express buffered clock outputs Supports LVDS outputs I2C support with readback capabilities Extended temperature: -40 to 85 C 3.3 V Power supply 24-pin QFN package Ordering Information: See page 17 Applications Wireless access point Routers 24 22 21 20 19 VDD 1 18 OE_DIFF1* NC 2 17 VDD VDD 3 VSS 4 OE_DIFF0* 5 VDD 6 16 DIFF1 25 GND 15 DIFF1 14 DIFF0 8 9 10 11 12 NC NC NC VDD 13 DIFF0 7 NC The Si53152 is a spread spectrum tolerant PCIe clock buffer that can source two PCIe clocks simultaneously. The device has two hardware output enable inputs for enabling the respective differential outputs on the fly. The device also features output enable control through I2C communication. I2C programmability is also available to dynamically control skew, edge rate and amplitude on the true, compliment, or both differential signals on the clock outputs. This control feature enables optimal signal integrity as well as optimal EMI signature on the clock outputs. Measuring PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter Tool. Download it for free at www.silabs.com/pcie-learningcenter. 23 SCLK Description SDATA Pin Assignments DIFFIN VDD DIFFIN Network attached storage Multi-function Printer VSS NC *Note: Internal 100 kohm pull-up. Patents pending Functional Block Diagram DIFF0 DIFFIN DIFFIN DIFF1 SCLK SDATA OE [1:0] Rev. 1.2 4/16 Control & Memory Control RAM Copyright (c) 2016 by Silicon Laboratories Si53152 Si53152 2 Rev. 1.2 Si53152 TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.1. OE Pin Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.2. OE Assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2.3. OE Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 4.1. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2. Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 5. Pin Descriptions: 24-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Rev. 1.2 3 Si53152 1. Electrical Specifications Table 1. DC Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit 3.3 V Operating Voltage VDD core 3.3 5% 3.135 3.3 3.465 V 3.3 V Input High Voltage VIH Control input pins 2.0 -- VDD + 0.3 V 3.3 V Input Low Voltage VIL Control input pins VSS - 0.3 -- 0.8 V Input High Voltage VIHI2C SDATA, SCLK 2.2 -- -- V Input Low Voltage VILI2C SDATA, SCLK -- -- 1.0 V Input High Leakage Current IIH Except internal pull-down resistors, 0 < VIN < VDD -- -- 5 A Input Low Leakage Current IIL Except internal pull-up resistors, 0 < VIN < VDD -5 -- -- A 3.3 V Output High Voltage (Single-Ended Outputs) VOH IOH = -1 mA 2.4 -- -- V 3.3 V Output Low Voltage (Single-Ended Outputs) VOL IOL = 1 mA -- -- 0.4 V High-impedance Output Current IOZ -10 -- 10 A Input Pin Capacitance CIN 1.5 -- 5 pF COUT -- -- 6 pF LIN -- -- 7 nH -- -- 20 mA Output Pin Capacitance Pin Inductance Dynamic Supply Current 4 IDD_3.3V All outputs enabled. Differential clock with 5" traces and 2 pF load at 100 MHz. Rev. 1.2 Si53152 Table 2. AC Electrical Specifications Parameter Symbol Test Condition Min Typ Max Unit 100 -- 210 MHz 0.6 -- 4 V/ns DIFFIN at 0.7 V Input Frequency Range Rising and Falling Slew Rates for Each Clock Output Signal in a Given Differential Pair fin TR / TF Single ended measurement: VOL = 0.175 to VOH = 0.525 V (Averaged) Differential Input High Voltage VIH 150 -- -- mV Differential Input Low Voltage VIL -- -- -150 mV Crossing Point Voltage at 0.7 V Swing VOX Single-ended measurement 250 -- 550 mV Vcross Variation over all edges VOX Single-ended measurement -- -- 140 mV Differential Ringback Voltage VRB -100 -- 100 mV Time before ringback allowed TSTABLE 500 -- -- ps -- 1.15 V -0.3 -- -- V Absolute Maximum Input Voltage VMAX Absolute Minimum Input Voltage VMIN Duty Cycle for Each Clock Output Signal in a Given Differential Pair TDC Measured at crossing point VOX 45 -- 55 % Rise/Fall Matching TRFM Determined as a fraction of 2 x (TR - TF)/(TR + TF) -- -- 20 % Duty Cycle TDC Measured at 0 V differential 45 -- 55 % Clock Skew TSKEW Measured at 0 V differential -- -- 50 ps Additive Peak Jitter Pk-Pk 0 -- 10 ps Additive PCIe Gen 2 Phase Jitter RMSGEN2 10 kHz < F < 1.5 MHz 0 -- 0.5 ps 1.5 MHz< F < Nyquist Rate 0 -- 0.5 ps Additive PCIe Gen 3 Phase Jitter RMSGEN3 Includes PLL BW 2-4 MHz (CDR = 10 MHz) 0 -- 0.10 ps PCIe Gen 4 -- -- 0.10 ps DIFF at 0.7 V Additive PCIe Gen 4 Phase Jitter RMSGEN4 Additive Cycle to Cycle Jitter TCCJ Measured at 0 V differential -- -- 50 ps Long Term Accuracy LACC Measured at 0 V differential -- -- 100 ppm Notes: 1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5. 2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter. Rev. 1.2 5 Si53152 Table 2. AC Electrical Specifications (Continued) Parameter Rising/Falling Slew Rate Crossing Point Voltage at 0.7 V Swing Symbol Test Condition Min Typ Max Unit TR / TF Measured differentially from 150 mV 2.5 -- 8 V/ns 300 -- 550 mV -- -- 5 ms 10.0 -- -- ns VOX Enable/Disable and Set-Up Clock Stabilization from Power-up TSTABLE Stopclock Set-up Time TSS Measured from the point when both VDD and clock input are valid Notes: 1. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5. 2. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter. Table 3. Absolute Maximum Conditions Parameter Symbol Test Condition Min Typ Max Unit VDD_3.3V Functional -- -- 4.6 V Input Voltage VIN Relative to VSS -0.5 -- 4.6 VDC Temperature, Storage TS Non-functional -65 -- 150 C Temperature, Operating Ambient TA Functional -40 -- 85 C Temperature, Junction TJ Functional -- -- 150 C Dissipation, Junction to Case OJC JEDEC (JESD 51) -- -- 35 C/W Dissipation, Junction to Ambient OJA JEDEC (JESD 51) -- -- 37 C/W ESDHBM JEDEC (JESD 22-A114) 2000 -- -- V UL-94 UL (Class) Main Supply Voltage ESD Protection (Human Body Model) Flammability Rating V-0 Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is not required. 6 Rev. 1.2 Si53152 2. Functional Description 2.1. OE Pin Definition The OE pins are active high inputs used to enable and disable the output clocks. To enable the output clock, the OE pin needs to be logic high and the I2C output enable bit needs to be logic high. There are two methods to disable the output clocks: the OE is pulled to a logic low, or the I2C enable bit is set to a logic low. The OE pins are required to be driven at all times even though they have an internal 100 k resistor. 2.2. OE Assertion The OE signals are active high inputs used for synchronous stopping and starting the DIFF output clocks respectively while the rest of the clock generator continues to function. The assertion of the OE signal by making it logic high causes stopped respective DIFF outputs to resume normal operation. No short or stretched clock pulses are produced when the clock resumes. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles. 2.3. OE Deassertion When the OE pin is deasserted by making it logic low, the corresponding DIFF output is stopped, and the final output state is driven low. Rev. 1.2 7 Si53152 3. Test and Measurement Setup This diagram shows the test load configuration for differential clock signals. M e a s u re m e n t P o in t L1 O U T+ 5 0 2 pF L1 = 5" M e a s u re m e n t P o in t L1 O U T- 5 0 2 pF Figure 1. 0.7 V Differential Load Configuration Figure 2. Differential Output Signals (for AC Parameters Measurement) 8 Rev. 1.2 Si53152 VMIN = -0.30V VMIN = -0.30V Figure 3. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement) Rev. 1.2 9 Si53152 4. Control Registers 4.1. I2C Interface To enhance the flexibility and function of the clock buffer, an I2C interface is provided. Through the I2C Interface, various device functions are available, such as individual clock output enable. The registers associated with the I2C Interface initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at system initialization, if any are required. Power management functions can only be programed in program mode and not in normal operation modes. 4.2. Data Protocol The I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The block write and block read protocol is outlined in Table 4 while Table 5 outlines byte write and byte read protocol. The slave receiver address is 11010110 (D6h). Table 4. Block Read and Block Write Protocol Block Write Protocol Bit 1 8:2 Description Bit 1 Start 8:2 Slave address--7 bits Description Start Slave address--7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 Command Code--8 bits 18:11 Command Code--8 bits 19 Acknowledge from slave 19 Acknowledge from slave Byte Count--8 bits 20 Repeat start 27:20 28 36:29 37 45:38 10 Block Read Protocol Acknowledge from slave 27:21 Slave address--7 bits Data byte 1--8 bits 28 Read = 1 Acknowledge from slave 29 Acknowledge from slave Data byte 2--8 bits 46 Acknowledge from slave .... Data Byte /Slave Acknowledges .... Data Byte N--8 bits .... Acknowledge from slave .... Stop 37:30 38 46:39 47 55:48 Rev. 1.2 Byte Count from slave--8 bits Acknowledge Data byte 1 from slave--8 bits Acknowledge Data byte 2 from slave--8 bits 56 Acknowledge .... Data bytes from slave/Acknowledge .... Data Byte N from slave-8 bits .... NOT Acknowledge .... Stop Si53152 Table 5. Byte Read and Byte Write Protocol Byte Write Protocol Bit 1 8:2 Byte Read Protocol Description Bit Start 1 Slave address-7 bits 8:2 Description Start Slave address-7 bits 9 Write 9 Write 10 Acknowledge from slave 10 Acknowledge from slave 18:11 19 27:20 Command Code-8 bits 18:11 Command Code-8 bits Acknowledge from slave 19 Acknowledge from slave Data byte-8 bits 20 Repeated start 28 Acknowledge from slave 29 Stop 27:21 28 Read 29 Acknowledge from slave 37:30 Rev. 1.2 Slave address-7 bits Data from slave-8 bits 38 NOT Acknowledge 39 Stop 11 Si53152 Control Register 0. Byte 0 Bit D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W Name Type Reset settings = 00000000 Bit Name Function 7:0 Reserved Control Register 1. Byte 1 Bit D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W R/W R/W Name Type Reset settings = 00000000 12 Bit Name 7:0 Reserved Function Rev. 1.2 Si53152 Control Register 2. Byte 2 Bit D7 D6 Name DIFF0_OE DIFF1_OE Type R/W R/W D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W R/W R/W D2 D1 D0 Reset settings = 11000000 Bit Name Function 7 DIFF0_OE Output Enable for DIFF0. 0: Output disabled. 1: Output enabled. 6 DIFF1_OE Output Enable for DIFF1 0: Output disabled. 1: Output enabled. 5:0 Reserved Control Register 3. Byte 3 Bit D7 D6 Name Type D5 D4 D3 Rev Code[3:0] R/W R/W R/W Vendor ID[3:0] R/W R/W R/W R/W R/W D3 D2 D1 D0 R/W R/W R/W R/W Reset settings = 00001000 Bit Name Function 7:4 Rev Code[3:0] Program Revision Code. 3:0 Vendor ID[3:0] Vendor Identification Code. Control Register 4. Byte 4 Bit D7 D6 D5 D4 Name Type BC[7:0] R/W R/W R/W R/W Reset settings = 00000110 Bit Name 7:0 BC[7:0] Function Byte Count Register. Rev. 1.2 13 Si53152 Control Register 5. Byte 5 Bit D7 D6 D5 D4 D3 D2 D1 D0 R/W R/W R/W R/W Name DIFF_Amp_Sel DIFF_Amp_Cntl[2] DIFF_Amp_Cntl[1] DIFF_Amp_Cntl[0] Type R/W R/W R/W R/W Reset settings = 11011000 Bit Name 7 DIFF_Amp_Sel Function Amplitude Control for DIFF Differential Outputs. 0: Differential outputs with Default amplitude. 1: Differential outputs amplitude is set by Byte 5[6:4]. 14 6 DIFF_Amp_Cntl[2] 5 DIFF_Amp_Cntl[1] 4 DIFF_Amp_Cntl[0] 3:0 Reserved DIFF Differential Outputs Amplitude Adjustment. 000: 300 mV 001: 400 mV 010: 500 mV 100: 700 mV 101: 800 mV 110: 900 mV Rev. 1.2 011: 600 mV 111: 1000 mV Si53152 DIFFIN VDD 23 22 21 20 SCLK DIFFIN 24 SDATA VSS 5. Pin Descriptions: 24-Pin QFN 19 VDD 1 18 OE_DIFF1* NC 2 17 VDD VDD 3 VSS 4 OE_DIFF0* 5 VDD 6 16 DIFF1 25 GND 15 DIFF1 14 DIFF0 7 8 9 10 11 12 NC NC NC NC NC VDD 13 DIFF0 *Note: Internal 100 kohm pull-up. Figure 4. 24-Pin QFN Table 6. Si53152 24-Pin QFN Descriptions Pin # Name Type Description 1 VDD 2 NC 3 VDD PWR 3.3 V power supply. 4 VSS GND Ground. 5 OE_DIFF0 I,PU Active high input pin enables DIFF0 (internal 100 k pull-up). Refer to Table 1 on page 4 for OE specifications. 6 VDD 7 NC NC No connect. 8 NC NC No connect. 9 NC NC No connect. 10 NC NC No connect. 11 NC NC No connect. 12 VDD 13 DIFF0 O, DIF 0.7 V, 100 MHz differential clock. 14 DIFF0 O, DIF 0.7 V, 100 MHz differential clock. 15 DIFF1 O, DIF 0.7 V, 100 MHz differential clock. PWR 3.3 V power supply. NC No connect. PWR 3.3 V power supply. PWR 3.3 V power supply. Rev. 1.2 15 Si53152 Table 6. Si53152 24-Pin QFN Descriptions (Continued) Pin # Name 16 DIFF1 17 VDD 18 OE_DIFF1 I,PU 19 SCLK I 20 SDATA I/O 21 VDD 22 DIFFIN I 0.7 V Differential True Input, typically 100 MHz. Input frequency range 100 to 210 MHz. 23 DIFFIN O 0.7 V Differential Complement Input, typically 100 MHz. Input frequency range 100 to 210 MHz. 24 VSS GND Ground. 25 GND GND Ground for bottom pad of the IC. 16 Type Description O, DIF 0.7 V, 100 MHz differential clock. PWR 3.3 V power supply. Active high input pin enables DIFF1 (internal 100 k pull-up). Refer to Table 1 on page 4 for OE specifications. SMBus compatible SCLOCK. SMBus compatible SDATA. PWR 3.3 V power supply. Rev. 1.2 Si53152 6. Ordering Guide Part Number Package Type Temperature Si53152-A01AGM 24-pin QFN Extended, -40 to 85 C Si53152-A01AGMR 24-pin QFN--Tape and Reel Extended, -40 to 85 C Lead-free Rev. 1.2 17 Si53152 7. Package Outline Figure 5 illustrates the package details for the Si53152. Table 7 lists the values for the dimensions shown in the illustration. Figure 5. 24-Pin Quad Flat No Lead (QFN) Package Table 7. Package Diagram Dimensions Symbol Millimeters Min Nom Max A 0.70 0.75 0.80 A1 0.00 0.025 0.05 b 0.20 0.25 0.30 D D2 4.00 BSC 2.60 2.70 e 0.50 BSC E 4.00 BSC 2.80 E2 2.60 2.70 2.80 L 0.30 0.40 0.50 aaa 0.10 bbb 0.10 ccc 0.08 ddd 0.07 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994. 3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8 4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components 18 Rev. 1.2 Si53152 8. PCB Land Pattern Figure 6. Si53152 24-Pin TDFN Land Pattern Table 8. Si53152 24-Pin Land Pattern Dimensions Dimension mm C1 4.0 C2 4.0 E 0.50 BSC X1 0.30 X2 2.70 Y1 0.80 Rev. 1.2 19 Si53152 Table 8. Si53152 24-Pin Land Pattern Dimensions (Continued) Y2 2.70 Notes: General 1. All dimensions shown are in millimeters (mm). 2. This Land Pattern Design is based on the IPC-7351 guidelines. 3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm. Solder Mask Design 4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m minimum, all the way around the pad. Stencil Design 5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release. 6. The stencil thickness should be 0.125 mm (5 mils). 7. The ratio of stencil aperture to land pad size should be 1:1 for all pads. Card Assembly 8. A No-Clean, Type-3 solder paste is recommended. 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components. 20 Rev. 1.2 Si53152 DOCUMENT CHANGE LIST Revision 0.1 to Revision 1.0 Updated Features and Description. Updated Table 2. Updated Table 3. Updated Section 4.1. Revision 1.0 to Revision 1.1 Updated Features on page 1. Updated Description on page 1. Updated specs in Table 2, "AC Electrical Specifications," on page 5. Revision 1.1 to Revision 1.2 Added condition for Clock Stabilization from Powerup, TSTABLE, in Table 2. Rev. 1.2 21 ClockBuilder Pro One-click access to Timing tools, documentation, software, source code libraries & more. Available for Windows and iOS (CBGo only). www.silabs.com/CBPro Timing Portfolio www.silabs.com/timing SW/HW www.silabs.com/CBPro Quality www.silabs.com/quality Support and Community community.silabs.com Disclaimer Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Trademark Information Silicon Laboratories Inc.(R) , Silicon Laboratories(R), Silicon Labs(R), SiLabs(R) and the Silicon Labs logo(R), Bluegiga(R), Bluegiga Logo(R), Clockbuilder(R), CMEMS(R), DSPLL(R), EFM(R), EFM32(R), EFR, Ember(R), Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember(R), EZLink(R), EZRadio(R), EZRadioPRO(R), Gecko(R), ISOmodem(R), Precision32(R), ProSLIC(R), Simplicity Studio(R), SiPHY(R), Telegesis, the Telegesis Logo(R), USBXpress(R) and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders. Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA http://www.silabs.com