SS
SS
Synchronous EE
EE
Equipment TT
TT
Timing SS
SS
Source
for SONET or SDH Network Elements
ACS8510 Rev2.1 SETS
Description Description
Description Description
Description Features Features
Features Features
Features
Block Diagram Block Diagram
Block Diagram Block Diagram
Block Diagram
The ACS8510 is a highly integrated, single-chip
solution for the Synchronous Equipment Timing
Source (SETS) function in a SONET or SDH Net-
work Element. The device generates SONET or
SDH Equipment Clocks (SEC) and frame synchro-
nization clocks. The ACS8510 is fully compliant
with the required specifications and standards.
The device supports Free-run, Locked and
Holdover modes. It also supports all three types
of reference clock source: recovered line clock,
PDH network, and node synchronization. The
ACS8510 generates independent SEC and BITS
clocks, an 8 kHz Frame Synchronization clock
and a 2 kHz Multi-Frame Synchronization clock.
Two ACS8510 devices can be used together in a
Master/Slave configuration mode allowing sys-
tem protection against a single ACS8510 failure.
A microprocessor port is incorporated, providing
access to the configuration and status registers
for device setup and monitoring. The ACS8510
supports IEEE 1149.1 JTAG boundary scan.
Rev2.1 adds choice of edge alignment for 8kHz
input, as well as a low jitter n x E1/DS1 output
mode. Other minor changes are made, with all
described in Appendix A.
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp. www.semtech.com
•Suitable for Stratum 3E*, 3, 4E and 4 SONET
or SDH Equipment Clock (SEC) applications
•Meets AT&T, ITU-T, ETSI and Telcordia
specifications
•Accepts 14 individual input reference clocks
•Generates 11 output clocks
•Supports Free-run, Locked and Holdover
modes of operation
•Robust input clock source quality monitoring on
all inputs
•Automatic ‘hit-less’ source switchover on loss
of input
•Phase build out for output clock phase
continuity during input switchover and mode
transitions
•Microprocessor interface - Intel, Motorola,
Serial, Multiplexed, EPROM
•Programmable wander and jitter tracking
attenuation 0.1 Hz to 20 Hz
•Support for Master/Slave device configuration
alignment and hot/standby redundancy
•IEEE 1149.1 JTAG Boundary Scan
•Single +3.3 V operation, +5 V I/O compatible
•Operating temperature (ambient) -40°C to
+85°C
•Available in 100 pin LQFP package
* Meets Holdover requirements, lowest bandwidth 0.1 Hz.
Figure 1. Simple Block DiagramFigure 1. Simple Block Diagram
Figure 1. Simple Block DiagramFigure 1. Simple Block Diagram
Figure 1. Simple Block Diagram
DPLL/Freq. Synthesis
TOUT0
selector
TOUT4
selector
Chip Clock
Generator
Divider
PFD
DPLL/Freq. Synthesis
Divider
Monitors
Digital
Loop
Filter
APLL
Frequency
Dividers
Microprocessor
Port
2 x AMI
10 x TTL
2 x PECL/LVDS
Programmable;
64/8kHz
2kHz
4kHz
N x 8kHz
1.544/2.048MHz
6.48MHz
19.44MHz
25.92MHz
38.88MHz
51.84MHz
77.76MHz
155.52MHz
DTO
Digital
Loop
Filter
PFD
1 x AMI
6 x TTL
2 x PECL/LVDS
Programmable:
64/8kHz
1.544/2.048MHz
3.088/4.096MHz
6.176/8.182MHz
12.352/16.384MHz
6.48MHz
19.44MHz
25.92MHz
38.88MHz
51.84MHz
77.76MHz
155.52MHz
311.04MHz
2kHz MFrSync
8kHz FrSync
Input
Ports
14xSEC
MFrSync
Output
Ports
TCXO (*OCXO)
IEEE
1149.1
JTAG
TCK
TDI
TMS
TRST
TDO
Priority
Table
Register
Set
DTO
9xSEC
FrSync
MFrSync
www.semtech.com2
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
T T
T T
T
able of Contable of Cont
able of Contable of Cont
able of Contentsents
entsents
ents
List of SectionsList of Sections
List of SectionsList of Sections
List of Sections
Description ................................................................................................................................................................................................ 1
Block Diagram ........................................................................................................................................................................................... 1
Features ..................................................................................................................................................................................................... 1
Table of Contents ...................................................................................................................................................................................... 2
Pin Diagram ............................................................................................................................................................................................... 5
Pin Descriptions ........................................................................................................................................................................................ 6
Functional Description ............................................................................................................................................................................. 9
Local Oscillator Clock ................................................................................................................................................................................... 10
ITU and ETSI Specification ............................................................................................................................................................. 10
Telcordia GR-1244 CORE Specification ....................................................................................................................................... 10
Crystal Frequency Calibration ...................................................................................................................................................... 10
Input Interfaces ............................................................................................................................................................................................. 10
Over-Voltage Protection .............................................................................................................................................................................. 10
Input Reference Clock Ports ....................................................................................................................................................................... 11
Input Wander and Jitter Tolerance .............................................................................................................................................................. 9
Output Clock Ports ........................................................................................................................................................................................ 12
Low Speed Output Clock (DPLL2) ................................................................................................................................................. 12
High Speed Output Clock (DPLL1) ............................................................................................................................................... 12
Frame Sync and Multi-Frame Sync Clocks (Part of DPLL1) ................................................................................................... 13
Low Jitter Multiple E1/DS1 Outputs ........................................................................................................................................... 13
Output Wander and Jitter ............................................................................................................................................................................ 13
Phase Variation ............................................................................................................................................................................................. 18
Phase Build Out ............................................................................................................................................................................................. 21
Microprocessor Interface ............................................................................................................................................................................. 21
Motorola Mode ................................................................................................................................................................................ 21
Intel Mode ........................................................................................................................................................................................ 21
Multiplexed Mode ........................................................................................................................................................................... 21
Serial Mode ...................................................................................................................................................................................... 21
EPROM Mode ................................................................................................................................................................................... 21
Register Set ..................................................................................................................................................................................... 22
Configuration Registers ................................................................................................................................................................. 22
Status Registers .............................................................................................................................................................................. 22
Register Access ............................................................................................................................................................................... 22
Interrupt Enable and Clear ......................................................................................................................................................................... 22
Register Map .................................................................................................................................................................................................. 23
Register Map Description ........................................................................................................................................................................... 27
Selection of Input Reference Clock Source ............................................................................................................................................. 36
Forced Control Selection ............................................................................................................................................................... 37
Automatic Control Selection ........................................................................................................................................................ 37
Ultra Fast Switching ....................................................................................................................................................................... 37
External Protection Switching ..................................................................................................................................................... 38
Clock Quality Monitoring ............................................................................................................................................................................. 38
Activity Monitoring ....................................................................................................................................................................................... 39
Frequency Monitoring .................................................................................................................................................................................. 39
Modes of Operation ...................................................................................................................................................................................... 41
Free-run mode ................................................................................................................................................................................. 41
Pre-Locked mode ............................................................................................................................................................................ 41
Locked mode .................................................................................................................................................................................... 41
Lost_Phase mode ........................................................................................................................................................................... 41
Holdover mode ................................................................................................................................................................................ 42
Pre-Locked(2) mode ........................................................................................................................................................................ 42
Protection Facility ........................................................................................................................................................................................ 43
Alignment of Priority Tables in Master and Slave ACS8510 ................................................................................................. 44
Alignment of the Selection of Reference Sources for TOUT4 Generation in the Master and Slave ACS8510 ........... 45
Alignment of the Phases of the 8kHz and 2kHz Clocks in both Master and Slave ACS8510 ....................................... 45
JTAG .................................................................................................................................................................................................................. 45
PORB ................................................................................................................................................................................................................ 45
Electrical Specification .......................................................................................................................................................................... 48
www.semtech.com3
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
List of FiguresList of Figures
List of FiguresList of Figures
List of Figures
Figure 1. Simple Block Diagram ............................................................................................................................................................. 1
Figure 2. ACS8510 Pin Diagram ............................................................................................................................................................ 5
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1) ................................................................................................................... 15
Figure 4. Minimum Input Jitter Tolerance (DS1/E1) .......................................................................................................................... 16
Figure 5. Wander and Jitter Measured Transfer Characteristics ....................................................................................................... 18
Figure 6. Maximum Time Interval Error of TOUT0 output port ........................................................................................................... 20
Figure 7. Time Deviation of TOUT0 output port ................................................................................................................................... 20
Figure 8. Phase error accumulation of TOUT0 output port in Holdover mode .................................................................................. 20
Figure 9. Inactivity and Irregularity Monitoring ................................................................................................................................... 38
Figure 10. Master-Slave Schematic ..................................................................................................................................................... 46
Figure 11. Automatic Mode Control State Diagram ........................................................................................................................... 47
Figure 12. Recommended Line Termination for PECL Input/Output Ports ...................................................................................... 51
Figure 13. Recommended Line Termination for LVDS Input/Output Ports ...................................................................................... 53
Figure 14. Signal Structure of 64 kHz/8kHz Central Clock Interface ............................................................................................ 55
Figure 15. AMI Input and Output Signal Levels .................................................................................................................................. 55
Figure 16. Recommended Line Termination for AMI Output/Output Ports ..................................................................................... 56
Figure 17. JTAG Timing ............................................................................................................................................................................ 61
Figure 18. Input/Output Timing ............................................................................................................................................................ 62
Figure 19. Read Access Timing in MOTOROLA Mode ........................................................................................................................ 63
Figure 20. Write Access Timing in MOTOROLA Mode ....................................................................................................................... 64
Figure 21. Read Access Timing in INTEL Mode ................................................................................................................................... 65
Figure 22. Write Access Timing in INTEL Mode .................................................................................................................................. 66
Figure 23. Read Access Timing in MULTIPLEXED Mode .................................................................................................................... 67
Figure 24. Write Access Timing in MULTIPLEXED Mode ................................................................................................................... 68
Figure 25. Read Access Timing in SERIAL Mode ................................................................................................................................ 69
Figure 26. Write Access Timing in SERIAL Mode ............................................................................................................................... 70
Figure 27. Access Timing in EPROM Mode ......................................................................................................................................... 71
Figure 28. LQFP Package ...................................................................................................................................................................... 72
Figure 29. Typical 100 Pin LQFP Footprint ......................................................................................................................................... 73
Figure 30. Simplified Application Schematic ...................................................................................................................................... 74
DC Characteristics: AMI Input/Output Port ........................................................................................................................................... 54
Microprocessor Interface Timing .......................................................................................................................................................... 63
Motorola Mode .............................................................................................................................................................................................. 63
Intel Mode ....................................................................................................................................................................................................... 65
Multiplexed Mode ......................................................................................................................................................................................... 67
Serial Mode .................................................................................................................................................................................................... 69
EPROM Mode ................................................................................................................................................................................................. 71
Package Information .............................................................................................................................................................................. 72
Thermal Conditions ....................................................................................................................................................................................... 73
Application Information .......................................................................................................................................................................... 74
Revision History ...................................................................................................................................................................................... 75
Ordering Information .............................................................................................................................................................................. 76
Disclaimers ..................................................................................................................................................................................................... 76
www.semtech.com4
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
List of TList of T
List of TList of T
List of Tablesables
ablesables
ables
Table 1. Power Pins .................................................................................................................................................................................... 6
Table 2. No Connections ............................................................................................................................................................................ 6
Table 3. Other Pins ..................................................................................................................................................................................... 7
Table 4. Input Reference Source Selection and Priority Table .......................................................................................................... 12
Table 5. Input ReferenceSource Jitter Tolerance ................................................................................................................................. 14
Table 6. Amplitude and Frequency Values for Jitter Tolerance ............................................................................................................ 15
Table 7. Amplitude and Frequency Values for Jitter Tolerance ............................................................................................................ 16
Table 8. Output Reference Source Selection Table ............................................................................................................................. 17
Table 9. Multiple E1/DS1 Output in Relation to Normal Outputs ..................................................................................................... 17
Table 10. Microprocessor Interface Mode Selection ......................................................................................................................... 21
Table 11. Register Map .......................................................................................................................................................................... 23
Table 12. Register Map Description ..................................................................................................................................................... 27
Table 13. Master-Slave Relationship .................................................................................................................................................... 46
Table 14. Absolute Maximum Ratings .................................................................................................................................................. 48
Table 15. Operating Conditions ............................................................................................................................................................. 48
Table 16. DC Characteristics: TTL Input Port ....................................................................................................................................... 48
Table 17. DC Characteristics: TTL Input Port with Internal Pull-up .................................................................................................... 49
Table 18. DC Characteristics: TTL Input Port with Internal Pull-down ............................................................................................... 49
Table 18. DC Characteristics: TTL Output Port .................................................................................................................................... 49
Table 20. DC Characteristics: PECL Input/Output Port ...................................................................................................................... 50
Table 21. DC Characteristics: LVDS Input/Output Port...................................................................................................................... 52
Table 22. DC Characteristics: AMI Input/Output Port ........................................................................................................................ 54
Table 23. DC Characteristics: Ouput Jitter Generation (Test Definition G.813) ............................................................................. 57
Table 24. DC Characteristics: Ouput Jitter Generation (Test Definition G.812) ............................................................................. 57
Table 25. DC Characteristics: Ouput Jitter Generation (Test Definition ETS-300-462-3) .............................................................. 58
Table 26. DC Characteristics: Ouput Jitter Generation (Test Definition GR-253-CORE) ............................................................... 58
Table 27. DC Characteristics: Ouput Jitter Generation (Test Definition AT&T 62411) ................................................................... 59
Table 28. DC Characteristics: Ouput Jitter Generation (Test Definition G.742) .............................................................................. 59
Table 29. DC Characteristics: Ouput Jitter Generation (Test Definition TR-NWT-000499) ........................................................... 59
Table 30. DC Characteristics: Ouput Jitter Generation (Test Definition GR-1244-CORE) ............................................................. 60
Table 31. JTAG Timing (for use with Figure 17) ................................................................................................................................... 61
Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19) ................................................................................. 63
Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20) ................................................................................ 64
Table 34. Read Access Timing in INTEL Mode (for use with Figure 21) ............................................................................................ 65
Table 35. Write Access Timing in INTEL Mode (for use with Figure 22) ........................................................................................... 66
Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23) ............................................................................. 67
Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24) ............................................................................. 68
Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25) ......................................................................................... 70
Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26) ........................................................................................ 70
Table 40. Access Timing in EPROM Mode (for use with Figure 27) .................................................................................................. 71
Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28) ................................................................................... 73
www.semtech.com5
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
NC - Not Connected; leave to Float. IC - Internally Connected; leave to Float.
100 SONSDHB
99 MSTSLVB
98 IC
97 IC
96 IC
95 TO9
94 TO5
93 TO4
92 DGND
91 VDD
90 TO3
89 TO2
88 TO1
87 DGND
86 VDD
85 VDD
84 DGND
83 AD0
82 AD1
81 AD2
80 AD3
79 AD4
78 AD5
77 AD6
76 AD7
75 RDY
74 PORB
73 ALE
72 RDB
71 WRB
70 CSB
69 A0
68 A1
67 A2
66 A3
65 A4
64 A5
63 A6
62 DGND
61 VDD
60 UPSEL0
59 UPSEL1
58 UPSEL2
57 I14
56 I13
55 I12
54 I11
53 I10
52 I9
51 I8
ACS8510
SDH/SONET SETS
Rev 2.1
1
1 AGND
2 TRST
3IC
4NC
5 AGND
6 VA1+
7 TMS
8 INTREQ
9 TCK
10 REFCLK
11 DGND
12 VD+
13 VD+
14 DGND
15 DGND
16 VD+
17 NC
18 SRCSW
19 VA2+
20 AGND
21 TD O
22 IC
23 TDI
24 I1
25 I2
26 VAMI+
27 TO8NEG
28 TO8POS
29 GND_AMI
30 FrSync
31 MFrSync
32 GND_DIFF
33 VDD_DIFF
34 TO6POS
35 TO6NEG
36 TO7POS
37 TO7NEG
38 GND_DIFF
39 VDD_DIFF
40 I5POS
41 I5NEG
42 I6POS
43 I6NEG
44 VDD5
45 SYNC2K
46 I3
47 I4
48 I7
49 DGND
50 VDD
Pin Diagram Pin Diagram
Pin Diagram Pin Diagram
Pin Diagram
Figure 2. ACS8510 Pin DiagramFigure 2. ACS8510 Pin Diagram
Figure 2. ACS8510 Pin DiagramFigure 2. ACS8510 Pin Diagram
Figure 2. ACS8510 Pin Diagram
www.semtech.com6
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
71,4CN-- detcennoCtoNdetcennoCtoN detcennoCtoN detcennoCtoNdetcennoCtoNtaolFotevaeL:
,69,22,3
89,79 CI-- detcennoCyllanretnIdetcennoCyllanretnI detcennoCyllanretnI detcennoCyllanretnIdetcennoCyllanretnItaolFotevaeL:
Pin Descriptions Pin Descriptions
Pin Descriptions Pin Descriptions
Pin Descriptions
Table 1. Power PinsTable 1. Power Pins
Table 1. Power PinsTable 1. Power Pins
Table 1. Power Pins
Table 2. No ConnectionsTable 2. No Connections
Table 2. No ConnectionsTable 2. No Connections
Table 2. No Connections
Note: I = input, O = output, P = power, TTLU = TTL input with pull-up resistor, TTLD = TTL input with pull-down resistor
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
61,31,21+DVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS3.3+,noitcesgolananisetagotylppuslatigiD
%01-/+.stloV
62+IMAVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS%01-/+.stloV3.3+,tuptuoIMAotylppuslatigiD
93,33FFID_DDVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS.stloV3.3+,stroplaitnereffidrofylppuslatigiD
%01-/+
445DDVP-
5DDV5DDV 5DDV 5DDV5DDVtcennoC.sniptupniotecnarelotstloV5+rofylppuslatigiD:
rofDDVottcennoC.stloV5+otgnipmalcrof)%01-/+(stloV5+ot
sniptupni,gnipmalconrofgnitaolfevaeL.stloV3.3+otgnipmalc
.stloV5.5+otputnarelot
,58,16,05
19,68 DDVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS%01-/+.stloV3.3+,cigolotylppuslatigiD
6+1AVP- :egatlovylppuS:egatlovylppuS :egatlovylppuS :egatlovylppuS:egatlovylppuS.stloV3.3+,LLPgniypitlumkcolcotylppusgolanA
%01-/+
91+2AVP- egatlovylppuSegatlovylppuS egatlovylppuS egatlovylppuSegatlovylppuS%01-/+.stloV3.3+,LLPtuptuootylppusgolanA:
,51,41,11
,48,26,94
29,78
DNGDP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuScigolrofdnuorglatigiD:
92IMA_DNGP
-
dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuStuptuoIMArofdnuorglatigiD:
83,23FFID_DNGP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuSstroplaitnereffidrofdnuorglatigiD:
02,5,1DNGAP- dnuorGylppuSdnuorGylppuS dnuorGylppuS dnuorGylppuSdnuorGylppuSdnuorggolanA:
www.semtech.com7
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 3. Other PinsTable 3. Other Pins
Table 3. Other PinsTable 3. Other Pins
Table 3. Other Pins
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
2TSRTILTT
D
tupnIteseRlortnoCGATJtupnIteseRlortnoCGATJ tupnIteseRlortnoCGATJ tupnIteseRlortnoCGATJtupnIteseRlortnoCGATJyradnuoBGATJelbaneot1=TSRT:
cigolGATJ(noitarepoecivedlamronrof0=TSRT.edomnacS
.gnitaolfevaelroDNGottcennocdesutonfI.)tnerapsnart
7SMTILTT
U
tceleSedoMtseTGATJtceleSedoMtseTGATJ tceleSedoMtseTGATJ tceleSedoMtseTGATJtceleSedoMtseTGATJnodelpmaS.elbanenacSyradnuoB:
.gnitaolfevaelroDDVottcennocdesutonfI.KCTfoegdegnisir
8QERTNIO
LTT
SOMC tseuqeRtpurretnItseuqeRtpurretnI tseuqeRtpurretnI tseuqeRtpurretnItseuqeRtpurretnItuptuotpurretnIerawtfoshgihevitcA:
9KCTILTT
D
kcolCGATJkcolCGATJ kcolCGATJ kcolCGATJkcolCGATJottcennocdesutonfI.tupnikcolcnacSyradnuoB:
decalproticapacaeriuqeryamnipsihT.gnitaolfevaelroDNG
A.pukcipesionecuderot,DNGtseraenehtdnanipehtneewteb
notnednepedsieulavehttub,etauqedaebdluohsFp01foeulav
.tuoyalBCP
01KLCFERILTT kcolCecnerefeRkcolCecnerefeR kcolCecnerefeR kcolCecnerefeRkcolCecnerefeRlacoLdedaehnoitcesotrefer(zHM8.21:
)kcolCrotallicsO
81WSCRSILTT
D
gnihctiwSecruoSgnihctiwSecruoS gnihctiwSecruoS gnihctiwSecruoSgnihctiwSecruoSgnihctiwSecruoStsaFecroF:
12ODTO
LTT
SOMC
tuptuOGATJtuptuOGATJ tuptuOGATJ tuptuOGATJtuptuOGATJfoegdegnillafnodetadpU.tuptuoatadtsetlaireS:
.gnitaolfevaeldesutonfI.KCT
32IDTILTT
U
tupnIGATJtupnIGATJ tupnIGATJ tupnIGATJtupnIGATJ.KCTfoegdegnisirnodelpmaS.tupnIatadtsetlaireS:
.gnitaolfevaelroDDVottcennocdesutonfI
421IIIMA1ecnerefertupnI1ecnerefertupnI 1ecnerefertupnI 1ecnerefertupnI1ecnerefertupnIzHk8+zHk46kcolcetisopmoc:
522IIIMA2ecnerefertupnI2ecnerefertupnI 2ecnerefertupnI 2ecnerefertupnI2ecnerefertupnIzHk8+zHk46kcolcetisopmoc:
72GEN8OTOIMA 8ecnerefertuptuO8ecnerefertuptuO 8ecnerefertuptuO 8ecnerefertuptuO8ecnerefertuptuOevitagenzHk8+zHk46,kcolcetisopmoc:
eslup
82SOP8OTOIMA 8ecnerefertuptuO8ecnerefertuptuO 8ecnerefertuptuO 8ecnerefertuptuO8ecnerefertuptuOevitisopzHk8+zHk46,kcolcetisopmoc:
eslup
03cnySrFO
LTT
SOMC
01ecnerefertuptuO01ecnerefertuptuO 01ecnerefertuptuO 01ecnerefertuptuO01ecnerefertuptuOerauqs(tuptuokcolccnySemarFzHk8:
)evaw
13cnySrFMO
LTT
SOMC
11ecnerefertuptuO11ecnerefertuptuO 11ecnerefertuptuO 11ecnerefertuptuO11ecnerefertuptuOtuptuokcolccnySemarF-itluMzHk2:
)evawerauqs(
43
53
SOP6OT
GEN6OT OSDVL
LCEP
6ecnerefertuptuO6ecnerefertuptuO 6ecnerefertuptuO 6ecnerefertuptuO6ecnerefertuptuO445.1(1giDoslA.zHM88.83tluafed:
40.113,zHM25.551,zHM44.91,)x8,4,2dnazHM840.2/zHM
.SDVLepyttluafeD.zHM
63
73
SOP7OT
GEN7OT OLCEP
SDVL
7ecnerefertuptuO7ecnerefertuptuO 7ecnerefertuptuO 7ecnerefertuptuO7ecnerefertuptuO67.77,zHM48.15oslA.zHM44.91tluafed:
.LCEPepyttluafeD.zHM25.551,zHM
04
14
SOP5I
GEN5I ISDVL
LCEP 5ecnerefertupnI5ecnerefertupnI 5ecnerefertupnI 5ecnerefertupnI5ecnerefertupnISDVLepyttluafed,zHM44.91tluafed:
24
34
SOP6I
GEN6I ILCEP
SDVL 6ecnerefertupnI6ecnerefertupnI 6ecnerefertupnI 6ecnerefertupnI6ecnerefertupnILCEPepyttluafed,zHM44.91tluafed:
www.semtech.com8
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 3. Other Pins (continued)Table 3. Other Pins (continued)
Table 3. Other Pins (continued)Table 3. Other Pins (continued)
Table 3. Other Pins (continued)
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
54K2CNYSILTT
D
zHk2esinorhcnySzHk2esinorhcnyS zHk2esinorhcnyS zHk2esinorhcnySzHk2esinorhcnySfotuptuocnySemarF-itluMzHk2ottcennoC:
metsysycnadnuderni0158SCArentrap
643IILTT
D
3ecnerefertupnI3ecnerefertupnI 3ecnerefertupnI 3ecnerefertupnI3ecnerefertupnIzHk8tluafed,elbammargorp:
744IILTT
D
4ecnerefertupnI4ecnerefertupnI 4ecnerefertupnI 4ecnerefertupnI4ecnerefertupnIzHk8tluafed,elbammargorp:
847IILTT
D
7ecnerefertupnI7ecnerefertupnI 7ecnerefertupnI 7ecnerefertupnI7ecnerefertupnIzHM44.91tluafed,elbammargorp:
158IILTT
D
8ecnerefertupnI8ecnerefertupnI 8ecnerefertupnI 8ecnerefertupnI8ecnerefertupnIzHM44.91tluafed,elbammargorp:
259IILTT
D
9ecnerefertupnI9ecnerefertupnI 9ecnerefertupnI 9ecnerefertupnI9ecnerefertupnIzHM44.91tluafed,elbammargorp:
3501IILTT
D
01ecnerefertupnI01ecnerefertupnI 01ecnerefertupnI 01ecnerefertupnI01ecnerefertupnI.zHM44.91tluafed,elbammargorp:
4511IILTT
D
:11ecnerefertupnI:11ecnerefertupnI :11ecnerefertupnI :11ecnerefertupnI:11ecnerefertupnI,elbammargorp
,zHM840.2/445.1)edomretsam(tluafed
zHM84.6)edomevals(tluafed
5521IILTT
D
21ecnerefertupnI21ecnerefertupnI 21ecnerefertupnI 21ecnerefertupnI21ecnerefertupnI.zHM840.2/445.1tluafed,elbammargorp:
6531IILTT
D
31ecnerefertupnI31ecnerefertupnI 31ecnerefertupnI 31ecnerefertupnI31ecnerefertupnI.zHM840.2/445.1tluafed,elbammargorp:
7541IILTT
D
41ecnerefertupnI41ecnerefertupnI 41ecnerefertupnI 41ecnerefertupnI41ecnerefertupnI.zHM840.2/445.1tluafed,elbammargorp:
06-85)0:2(LESPUILTT
D
tcelesrossecorporciMtcelesrossecorporciM tcelesrossecorporciM tcelesrossecorporciMtcelesrossecorporciMralucitraparofecafretniehtserugifnoC:
.epytrossecorporcim
96-36)0:6(AILTT
D
sserddAecafretnIrossecorporciMsserddAecafretnIrossecorporciM sserddAecafretnIrossecorporciM sserddAecafretnIrossecorporciMsserddAecafretnIrossecorporciMehtrofsubsserddA:
.edomlaireSniIDSsi)0(A.sretsigerecafretnirossecorporcim
07BSCILTT
U
)woLevitcA(tceleSpihC)woLevitcA(tceleSpihC )woLevitcA(tceleSpihC )woLevitcA(tceleSpihC)woLevitcA(tceleSpihCehtybwoLdetressasinipsihT:
.ecafretnirossecorporcimehtelbaneotrossecorporcim
17BRWILTT
U
)woLevitcA(etirW)woLevitcA(etirW )woLevitcA(etirW )woLevitcA(etirW)woLevitcA(etirWehtybwoLdetressasinipsihT:
1=BRW,edomalorotoMnI.elcycetirwaetaitiniotrossecorporcim
.daeRrof
27BDRILTT
U
)woLevitcA(daeR)woLevitcA(daeR )woLevitcA(daeR )woLevitcA(daeR)woLevitcA(daeRehtybwoLdetressasinipsihT:
.elcycdaeraetaitiniotrossecorporcim
37ELAILTT
D
elbanEhctaLsserddAelbanEhctaLsserddA elbanEhctaLsserddA elbanEhctaLsserddAelbanEhctaLsserddAhctalsserddaehtsemocebnipsihT:
morfsnoitisnartnipsihtnehW.rossecorporcimehtmorfelbane
lanretniehtotnidehctalerastupnisubsserddaeht,hgiHotwoL
.edomlaireSniKLCS=ELA.sretsiger
47BROPILTT
U
teseRnOrewoPteseRnOrewoP teseRnOrewoP teseRnOrewoPteseRnOrewoPlanretnilla,woLdecrofsiBROPfI.teserretsaM:
.seulavtluafedotkcabtesererasetats
57YDRO
LTT
SOMC
egdelwonkcaataD/ydaeRegdelwonkcaataD/ydaeR egdelwonkcaataD/ydaeR egdelwonkcaataD/ydaeRegdelwonkcaataD/ydaeRetacidniothgiHdetressasinipsihT:
.noitarepoetirwrodaeradetelpmocsahecivedeht
38-67)0:7(DAOILTT
D
ataD/sserddAataD/sserddA ataD/sserddA ataD/sserddAataD/sserddAehtnognidnepedsubsserdda/ataddexelpitluM:
.edomlaireSniODSsi)0(DA.noitcelesedomrossecorporcim
www.semtech.com9
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
F F
F F
F
unctional Descriptionunctional Description
unctional Descriptionunctional Description
unctional Description
The ACS8510 is a highly integrated, single-chip
solution for the SETS function in a SONET/SDH
Network Element, for the generation of SEC
and frame synchronization pulses. In Free-run
mode, the ACS8510 generates a stable, low-
noise clock signal from an internal oscillator.
In Locked mode, the ACS8510 selects the most
appropriate input reference source and
generates a stable, low-noise clock signal locked
to the selected reference. In Holdover mode,
the ACS8510 generates a stable, low-noise
clock signal from the internal oscillator,
adjusted to match the last known good
frequency of the last selected reference source.
In all modes, the frequency accuracy, jitter and
drift performance of the clock meet the
requirements of ITU G.812, G.813, G.823, and
GR-1244-CORE.
The ACS8510 supports all three types of
reference clock source: recovered line clock
(TIN1), PDH network synchronization timing (TIN2)
and node synchronization (TIN3). The ACS8510
generates independent TOUT0 and TOUT4 clocks,
an 8 kHz Frame Synchronization clock and a
2 kHz Multi-Frame Synchronization clock.
The ACS8510 has a high tolerance to input
jitter and wander. The jitter/wander transfer is
programmable (0.1 Hz up to 20 Hz cut-off
points).
The ACS8510 supports protection. Two
ACS8510 devices can be configured to provide
protection against a single ACS8510 failure.
The protection maintains alignment of the two
ACS8510 devices (Master and Slave) and
ensures that both ACS8510 devices maintain
the same priority table, choose the same
Table 3. Other Pins (continued)Table 3. Other Pins (continued)
Table 3. Other Pins (continued)Table 3. Other Pins (continued)
Table 3. Other Pins (continued)
NIPNIP NIP NIPNIPLOBMYSLOBMYS LOBMYS LOBMYSLOBMYSOIOIOIOIOIEPYTEPYT EPYT EPYTEPYTNOITPIRCSED/EMANNOITPIRCSED/EMAN NOITPIRCSED/EMAN NOITPIRCSED/EMANNOITPIRCSED/EMAN
881OTO
LTT
SOMC
1ecnerefertuptuO1ecnerefertuptuO 1ecnerefertuptuO 1ecnerefertuptuO1ecnerefertuptuO445.1(1giDoslA.zHM84.6tluafed:
zHM29.52,zHM44.91,)x8,4,2dnazHM840.2/zHM
982OTO
LTT
SOMC
2ecnerefertuptuO2ecnerefertuptuO 2ecnerefertuptuO 2ecnerefertuptuO2ecnerefertuptuO445.1(2giDoslA.zHM88.83tluafed:
zHM48.15,zHM29.52,)x8,4,2dnazHM840.2/zHM
093OTO
LTT
SOMC 3ecnerefertuptuO3ecnerefertuptuO 3ecnerefertuptuO 3ecnerefertuptuO3ecnerefertuptuO.dexif-zHM44.91:
394OTO
LTT
SOMC 4ecnerefertuptuO4ecnerefertuptuO 4ecnerefertuptuO 4ecnerefertuptuO4ecnerefertuptuO.dexif-zHM88.83:
495OTO
LTT
SOMC 5ecnerefertuptuO5ecnerefertuptuO 5ecnerefertuptuO 5ecnerefertuptuO5ecnerefertuptuO.dexif-zHM67.77:
599OTO
LTT
SOMC 9ecnerefertuptuO9ecnerefertuptuO 9ecnerefertuptuO 9ecnerefertuptuO9ecnerefertuptuO)STIB4T(.zHM840.2/445.1:
99BVLSTSMILTT
U
BEVALSRETSAMBEVALSRETSAM BEVALSRETSAM BEVALSRETSAMBEVALSRETSAMpurewoplaitiniehtstes:tcelesevalsretsaM:
,retsigernoitcelesevalS/retsaMehtfo)BROParetfaetatsro(etats
ybpurewopretfadegnahcebnacetatsretsigerehT.1tib,43rdda
.erawtfos
001BHDSNOSILTT
D
BHDSTENOSBHDSTENOS BHDSTENOS BHDSTENOSBHDSTENOSlaitiniehtstes:tcelesycneuqerfHDSroTENOS:
HDS/TENOSehtfo)BROParetfaetatsro(etatspurewop
5stib,83rddadna2tib,h43rdda,sretsigernoitcelesycneuqerf
ybpurewopretfadegnahcebnacsetatsretsigerehT.6dna
.erawtfos
www.semtech.com10
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
reference input and generate the TOUT0 clock,
the 8 kHz Frame Synchronization clock and the
2 kHz Multi-Frame Synchronization clock with
the same phase. The ACS8510 includes a
microprocessor port, providing access to the
configuration and status registers for device
setup and monitoring.
Local Oscillator ClockLocal Oscillator Clock
Local Oscillator ClockLocal Oscillator Clock
Local Oscillator Clock
The Master system clock on the ACS8510
should be provided by an external clock oscillator
of frequency 12.80 MHz. The clock specification
is important for meeting the ITU/ETSI and
Telcordia performance requirements for
Holdover mode. ITU and ETSI specifications
permit a combined drift characteristic, at
constant temperature, of all non-temperature-
related parameters, of up to 10 ppb per day.
The same specifications allow a drift of 1 ppm
over a temperature range of 0 to +70 °C.
Telcordia specifications are somewhat tighter,
requiring a non-temperature-related drift of less
than 40 ppb per day and a drift of 280 ppb
over the temperature range 0 to +50 °C.
ITU and ETSI SpecificationITU and ETSI Specification
ITU and ETSI SpecificationITU and ETSI Specification
ITU and ETSI Specification
Tolerance: +/- 4.6 ppm over 20 year life time.
Drift*: +/- 0.05 ppm/15 seconds @ constant temp.
+/- 0.01 ppm/day @ constant temp.
+/- 1 ppm over temp. range 0 to +70 °C
*Frequency drift over supply range of +2.7V to +3.3V.
Telcordia GR-1244 CORE SpecificationTelcordia GR-1244 CORE Specification
Telcordia GR-1244 CORE SpecificationTelcordia GR-1244 CORE Specification
Telcordia GR-1244 CORE Specification
Tolerance: +/- 4.6 ppm over 20 year life time.
Drift*: +/- 0.05 ppm/15 seconds @ constant temp.
+/- 0.04 ppm/day @ constant temp.
+/- 0.28 ppm over temp. range 0 to +50 °C
*Frequency drift over supply range of +2.7V to +3.3V.
Please contact Semtech for information on
crystal oscillator suppliers.
Crystal Frequency CalibrationCrystal Frequency Calibration
Crystal Frequency CalibrationCrystal Frequency Calibration
Crystal Frequency Calibration
The absolute crystal frequency accuracy is less
important than the stability since any frequency
offset can be compensated by adjustment of
register values in the IC. This allows for
calibration and compensation of any crystal
frequency variation away from its nominal value.
+/- 50 ppm adjustment would be sufficient to
cope with most crystals, in fact the range is an
order of magnitude larger due to the use of
two 8 bit register locations. The setting of the
conf_nominal_frequency register allows for this
adjustment. An increase in the register value
increases the output frequencies by 0.02 ppm
for each LSB step. The default value (in decimal)
is 39321. The minimum being 0 and the
maximum 65535, gives a -700 ppm to
+500 ppm adjustment range of the output
frequencies.
For example, if the crystal was oscillating at
12.8 MHz + 5 ppm, then the calibration value
in the register to give a -5 ppm adjustment in
output frequencies to compensate for the
crystal inaccuracy, would be :
39321 - (5 / 0.02) = 39071 (decimal)
Input InterfacesInput Interfaces
Input InterfacesInput Interfaces
Input Interfaces
The ACS8510 supports up to fourteen input
reference clock sources from input types TIN1,
TIN2 and TIN3 using TTL, CMOS, PECL, LVDS and
AMI buffer I/O technologies. These interface
technologies support +3.3 V and +5 V
operation.
Over-Voltage ProtectionOver-Voltage Protection
Over-Voltage ProtectionOver-Voltage Protection
Over-Voltage Protection
The ACS8510 may require Over-Voltage
Protection on input reference clock ports
according to ITU Recommendation K.41.
Semtech protection devices are recommended
for this purpose (see separate Semtech data
book).
www.semtech.com11
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Input Reference Clock PortsInput Reference Clock Ports
Input Reference Clock PortsInput Reference Clock Ports
Input Reference Clock Ports
Table 4 gives details of the input reference
ports, showing the input technologies and the
range of frequencies supported on each port;
the default spot frequencies and default
priorities assigned to each port on power-up or
by reset are also shown. Note that SDH and
SONET networks use different default
frequencies; the network type is pin-selectable
(using the SONSDHB pin). Specific frequencies
and priorities are set by configuration.
Although each input port is shown as belonging
to one of the types, TIN1, TIN2 or TIN3, they are
fully interchangeable as long as the selected
speed is within the maximum operating speed
of the input port technology.
SDH and SONET networks use different default
frequencies; the network type is selectable
using the config_mode register 34 Hex, bit 2.
For SONET, config_mode register 34 Hex, bit 2
= 1, for SDH config_mode register 34 Hex, bit
2 = 0. On power-up or by reset, the default will
be set by the state of the SONSDHB pin (pin
100). Specific frequencies and priorities are set
by configuration.
TTL ports (compatible also with CMOS signals)
support clock speeds up to 100 MHz, with the
highest spot frequency being 77.76 MHz. The
actual spot frequencies supported are:
• 2 kHz
• 4 kHz
• 8 kHz (and N x 8 kHz)
• 1.544 MHz (SONET)/2.048 MHz (SDH)
• 6.48 MHz,
• 19.44 MHz,
• 25.92 MHz,
• 38.88 MHz,
• 51.84 MHz,
• 77.76 MHz.
The frequency selection is programmed via the
cnfg_ref_source_frequency register. The
internal DPLL will normally lock to the selected
input at the frequency of the input, eg. 19.44
MHz will lock the DPLL phase comparisons at
19.44 MHz. It is, however, possible to utilise
an internal pre-divider to the DPLL to divide the
input frequency before it is used for phase
comparisons in the DPLL. This pre-divider can
be used in one of 2 ways:
1. Any of the supported spot frequencies can be divided to
8 kHz by setting the ‘lock8K’ bit (bit 6) in the appropriate
cnfg_ref_source_frequency register location. For good jitter
tolerance for all frequencies and for operation at
19.44 MHz and above, use lock8K. It is possible to choose
which edge of the 8kHz input to lock to, by setting the
appropriate bit of the cnfg_control1 register.
2. Any multiple of 8 kHz between 1544 kHz to 100 MHz
can be supported by using the ‘DivN’ feature (bit 7 of the
cnfg_ref_source_frequency register). Any reference input
can be set to use DivN independently of the frequencies
and configurations of the other inputs.
Any reference input with the DivN bit set in the
cnfg_ref_source_frequency register will employ
the internal pre-divider prior to the DPLL locking.
The cnfg_freq_divn register contains the divider
ratio N where the reference input will get divided
by (N+1) where 0<N<214-1. The
cnfg_ref_source_frequency register must be set
to the closest supported spot frequency to the
input frequency, but must be lower than the
input frequency. When using the DivN feature
the post-divider frequency must be 8 kHz, which
is indicated by setting the ‘lock8k’ bit high (bit
6 in cnfg_ref_source_frequency register). Any
input set to DivN must have the frequency
monitors disabled (If the frequency monitors
are disabled, they are disabled for all inputs
regardless of the input configurations, in this
case only activity monitoring will take place).
Whilst any number of inputs can be set to use
the DivN feature, only one N can be
programmed, hence all inputs using the DivN
feature must require the same division to get
to 8 kHz.
www.semtech.com12
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 4. Input Reference Source Selection and Priority TableTable 4. Input Reference Source Selection and Priority Table
Table 4. Input Reference Source Selection and Priority TableTable 4. Input Reference Source Selection and Priority Table
Table 4. Input Reference Source Selection and Priority Table
troPtroP troP troPtroP
rebmuNrebmuN rebmuN rebmuNrebmuN
lennahClennahC lennahC lennahClennahC
rebmuNrebmuN rebmuN rebmuNrebmuN
troPtroP troP troPtroP
epyTepyT epyT epyTepyT
troPtupnItroPtupnI troPtupnI troPtupnItroPtupnI
ygolonhceTygolonhceT ygolonhceT ygolonhceTygolonhceT detroppuSseicneuqerFdetroppuSseicneuqerF detroppuSseicneuqerF detroppuSseicneuqerFdetroppuSseicneuqerF tluafeDtluafeD tluafeD tluafeDtluafeD
ytiroirPytiroirP ytiroirP ytiroirPytiroirP
1_I1000T
NI3
IMA
)zHk8+zHk46,kcolcetisopmoc(zHk8/46
zHk8/46:)TENOS(tluafeD
zHk8/46:)HDS(tluafeD
2
2_I0100T
NI3
IMA
)zHk8+zHk46,kcolcetisopmoc(zHk8/46
zHk8/46:)TENOS(tluafeD
zHk8/46:)HDS(tluafeD
3
3_I1100T
NI3
SOMC/LTT
zHM001otpU)1etoNees(
:)TENOS(tluafeDHk8z
:)HDS(tluafeDHk8z
4
4_I0010T
NI3
SOMC/LTT
zHM001otpU)1etoNees(
:)TENOS(tluafeDHk8z
:)HDS(tluafeDHk8z
5
5_I1010T
NI1
LCEP/SDVL
tluafedSDVL
zHM25.551otpU)2etoNees(
zHM44.91:)TENOS(tluafeD
zHM44.91:)HDS(tluafeD
6
6_I0110T
NI1
SDVL/LCEP
tluafedLCEP
zHM25.551otpU)2etoNees(
zHM44.91:)TENOS(tluafeD
zHM44.91:)HDS(tluafeD
7
7_I1110T
NI1
SOMC/LTT
zHM001otpU)1etoNees(
zHM44.91:)TENOS(tluafeD
zHM44.91:)HDS(tluafeD
8
8_I0001T
NI1
SOMC/LTT
zHM001otpU)1etoNees(
zHM44.91:)TENOS(tluafeD
zHM44.91:)HDS(tluafeD
9
9_I1001T
NI1
SOMC/LTT
zHM001otpU)1etoNees(
zHM44.91:)TENOS(tluafeD
zHM44.91:)HDS(tluafeD
01
01_I0101T
NI1
SOMC/LTT
zHM001otpU)1etoNees(
:)TENOS(tluafeDzHM44.91
zHM44.91:)HDS(tluafeD
11
11_I1101T
NI2
SOMC/LTT
)1etoNees(zHM001otpU
zHM445.1:)TENOS()retsaM(tluafeD
zHM840.2:)HDS()retsaM(tluafeD
)evalS(tluafeD6zHM84.
1/21
)3etoN(
21_I0011T
NI2
SOMC/LTT
zHM001otpU)1etoNees(
zHM445.1:)TENOS(tluafeD
zHM840.2:)HDS(tluafeD
31
31_I1011T
NI2
SOMC/LTT
zHM001otpU)1etoNees(
zHM445.1:)TENOS(tluafeD
zHM840.2:)HDS(tluafeD
41
41_I0111T
NI2
SOMC/LTT
zHM001otpU)1etoNees(
zHM445.1:)TENOS(tluafeD
zHM840.2:)HDS(tluafeD
51
www.semtech.com13
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Notes for Table 4.Notes for Table 4.
Notes for Table 4.Notes for Table 4.
Notes for Table 4.
Note 1: TTL ports (compatible also with CMOS signals) support clock speeds up to 100 MHz, with the highest spot
frequency being 77.76 MHz. The actual spot frequencies are: 2 kHz, 4 kHz, 8 kHz (and N x 8 kHz), 1.544 MHz
(SONET)/2.048 MHz (SDH), 6.48 MHz, 19.44 MHz, 25.92 MHz, 38.88 MHz, 51.84 MHz, 77.76 MHz. SONET or SDH
is selected using the SONSDHB pin. When the SONSDHB pin is High SONET is selected, when the SONSDHB pin is
Low SDH is selected.
Note 2: PECL and LVDS ports support the spot clock frequencies listed above plus 155.52 MHz and 311.04 MHz.
Note 3: Input port <I_11> is set at 12 on the Master SETS IC and 1 on the Slave SETS IC, as default on power up (or
PORB). The default setup of Master or Slave <I_11> priority is determined by the MSTSLVB pin.
PECL and LVDS ports support the spot clock
frequencies listed plus 155.52 MHz and
311.04 MHz. The choice of PECL or LVDS
compatibility is programmed via the
cnfg_differential_inputs register. Unused PECL/
LVDS differential inputs should be fixed with
one input high (VDD) and the other input low
(GND), or set in LVDS mode and left floating, in
which case one input is internally pulled high
and the other low.
An AMI port supports a composite clock,
consisting of a 64 kHz AMI clock with 8 kHz
boundaries marked by deliberate violations of
the AMI coding rules, as specified in ITU
recommendation G.703. Departures from the
nominal pattern are detected within the
ACS8510, and may cause reference-switching
if too frequent. See section DC Characteristics:
AMI Input/Output Port, for more details. If the
AMI port is unused, the pins (I1 and I2) should
be tied to GND and the VAMI+ supply pin (pin
26) disconnected.
Input Wander and Jitter ToleranceInput Wander and Jitter Tolerance
Input Wander and Jitter ToleranceInput Wander and Jitter Tolerance
Input Wander and Jitter Tolerance
The ACS8510 is compliant to the requirements
of all relevant standards, principally ITU
Recommendation G.825, ANSI DS1.101-1994
and ETS 300 462-5 (1997).
All reference clock inputs have a tight frequency
tolerance but a generous jitter tolerance. Pull-
in, hold-in and pull-out ranges are specified for
each input port in Table 5. Minimum jitter
DivN examplesDivN examples
DivN examplesDivN examples
DivN examples
To lock to 2.000 MHz.
(1) The cnfg_ref_source_frequency register is set to 11XX0001 (binary) to set the DivN, lock8k bits, and the
frequency to E1/DS1. (XX = ‘leaky bucket’ ID for this input).
(2) The cnfg_mode register (34Hex) bit 2 needs to be set to 1 to select SONET frequencies (DS1).
(3) The frequency monitors are disabled in cnfg_monitors register (48Hex) by writing 00 to bits 0 and 1.
(4) The DivN register is set to F9 Hex (249 decimal).
To lock to 10.000 MHz.
(1) The cnfg_ref_source_frequency register is set to 11XX0010 (binary) to set the DivN, lock8k bits, and the
frequency to 6.48 MHz. (XX = ‘leaky bucket’ ID for this input).
(2) The frequency monitors are disabled in cnfg_monitors register (48Hex) by writing 00 to bits 0 and 1.
(3) The DivN register is set to 4E1 Hex (1249 decimal).
www.semtech.com14
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
tolerance masks are specified in Figures 3 and
4, and Tables 6 and 7, respectively. The
ACS8510 will tolerate wander and jitter
components greater than those shown in Figure
3 and Figure 4, up to a limit determined by a
combination of the apparent long-term
frequency offset caused by wander and the
eye-closure caused by jitter (the input source
will be rejected if the offset pushes the
frequency outside the hold-in range for long
enough to be detected, whilst the signal will
also be rejected if the eye closes sufficiently to
affect the signal purity). The ‘8klocking’ mode
should be engaged for high jitter tolerance
according to these masks. All reference clock
ports are monitored for quality, including
frequency offset and general activity. Single
short-term interruptions in selected reference
clocks may not cause rearrangements, whilst
longer interruptions, or multiple, short-term
interruptions, will cause rearrangements, as will
frequency offsets which are sufficiently large
or sufficiently long to cause loss-of-lock in the
phase-locked loop. The failed reference source
will be removed from the priority table and
declared as unserviceable, until its perceived
quality has been restored to an acceptable
level.
The registers sts_curr_inc_offset (address 0C,
0D, 07) report the frequency of the DPLL with
respect to the external TCXO frequency. This is
a 19 bit signed number with one LSB
representing 0.0003 ppm (range of +/- 80
ppm). Reading this regularly can show how the
currently locked source is varying in value e.g.
due to wander on its input.
The ACS8510 performs automatic frequency
monitoring with an acceptable input frequency
offset range of +/- 16.6 ppm. The ACS8510
DPLL has a programmable frequency limit of
+/- 80 ppm. If the range is programmed to be
> 16.6 ppm, the frequency monitors should be
disabled so the input reference source is not
automatically rejected as out of frequency
range.
rettiJrettiJ rettiJ rettiJrettiJ
ecnareloTecnareloT ecnareloT ecnareloTecnareloT
rotinoMycneuqerFrotinoMycneuqerF rotinoMycneuqerF rotinoMycneuqerFrotinoMycneuqerF
egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF
egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA
)ni-lluP()ni-lluP( )ni-lluP( )ni-lluP()ni-lluP(
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF
ecnatpeccAecnatpeccA ecnatpeccA ecnatpeccAecnatpeccA
)ni-dloH(egnaR)ni-dloH(egnaR )ni-dloH(egnaR )ni-dloH(egnaR)ni-dloH(egnaR
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF
egnaRecnatpeccAegnaRecnatpeccA egnaRecnatpeccA egnaRecnatpeccAegnaRecnatpeccA
)tuo-lluP()tuo-lluP( )tuo-lluP( )tuo-lluP()tuo-lluP(
307.G
mpp6.61-/+
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
mpp6.4-/+
)1etoNees(
mpp2.9-/+
)2etoNees(
387.G
328.G
EROC-4421-RG
Table 5. Input Reference Source Jitter ToleranceTable 5. Input Reference Source Jitter Tolerance
Table 5. Input Reference Source Jitter ToleranceTable 5. Input Reference Source Jitter Tolerance
Table 5. Input Reference Source Jitter Tolerance
Notes for Table 5.Notes for Table 5.
Notes for Table 5.Notes for Table 5.
Notes for Table 5.
Note 1. The frequency acceptance and generation range will be +/-4.6 ppm around the required frequency when the
external crystal frequency accuracy is within a tolerance of +/- 4.6 ppm.
Note 2. The fundamental acceptance range and generation range is +/- 9.2 ppm with an exact external crystal
frequency of 12.8 MHz. This is the default DPLL range, the range is also programmable from 0 to 80 ppm in 0.08
ppm steps.
www.semtech.com15
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
f0 f1 f2 f3 f4 f5 f6
A3
A2
A1
A0
Jitter and wander frequency (log scale)
f8 f9
A4
f0 f1 f2 f3 f4 f5 f6
A3
A2
A1
A0
Jitter and wander frequency (log scale)
f8 f9
A4
(for inputs supporting G.783 compliant sources)
Table 6. Amplitude and Frequency Values for Jitter ToleranceTable 6. Amplitude and Frequency Values for Jitter Tolerance
Table 6. Amplitude and Frequency Values for Jitter ToleranceTable 6. Amplitude and Frequency Values for Jitter Tolerance
Table 6. Amplitude and Frequency Values for Jitter Tolerance
MTSMTS MTS MTSMTS
levellevel level levellevel
edutilpmakaepotkaePedutilpmakaepotkaeP edutilpmakaepotkaeP edutilpmakaepotkaePedutilpmakaepotkaeP
)lavretnItinu()lavretnItinu( )lavretnItinu( )lavretnItinu()lavretnItinu( )zH(ycneuqerF)zH(ycneuqerF )zH(ycneuqerF )zH(ycneuqerF)zH(ycneuqerF
0A0A0A0A0A1A1A1A1A1A2A2A2A2A2A3A3A3A3A3A4A4A4A4A4A0F0F0F0F0F1F1F1F1F1F2F2F2F2F2F3F3F3F3F3F4F4F4F4F4F5F5F5F5F5F6F6F6F6F6F7F7F7F7F7F8F8F8F8F8F9F9F9F9F9F
1-MTS0082113935.151.0u21u871m6.1m6.51521.03.91005k5.6k56m3.1
Output Clock PortsOutput Clock Ports
Output Clock PortsOutput Clock Ports
Output Clock Ports
The device supports a set of main output clocks,
TOUT0 and TOUT4, and a pair of secondary output
clocks, 'Frame-Sync' and 'Multi-Frame-Sync'. The
two main output clocks, TOUT0 and TOUT4, are
independent of each other and are individually
selectable. The two secondary output clocks,
'Frame-Sync' and 'Multi-Frame-Sync', are derived
from TOUT0. The frequencies of the output clocks
are selectable from a range of pre-defined spot
frequencies and a variety of output technologies
are supported, as defined in Table 8.
Low-speed Output Clock (TLow-speed Output Clock (T
Low-speed Output Clock (TLow-speed Output Clock (T
Low-speed Output Clock (TOUT4OUT4
OUT4OUT4
OUT4))
))
)
The TOUT4 clock is supplied on two output ports,
TO8 and TO9. The former port will provide an AMI
signal carrying a composite clock of 64 kHz
and 8 kHz, according to ITU Recommendation
G.703. The latter port will provide a TTL/CMOS
signal at either 1.544 MHz or 2.048 MHz,
depending on the setting of the SONSDHB pin.
High-speed Output Clock (Part of THigh-speed Output Clock (Part of T
High-speed Output Clock (Part of THigh-speed Output Clock (Part of T
High-speed Output Clock (Part of TOUT0OUT0
OUT0OUT0
OUT0))
))
)
The TOUT0 port has multiple outputs. Outputs TO1
and TO2 are TTL/CMOS output with a choice of
11 different frequencies up to 51.84 MHz.
Outputs TO3 to TO5 are all TTL/CMOS outputs
with fixed frequencies of 19.44 MHz,
38.88 MHz and 77.76 MHz respectively. Output
TO6 is differential and can support clocks up to
155.52 MHz. Output TO7 is also differential
and can support clocks up to 155.52 MHz.
Each output is individually configured to operate
at the frequencies shown in Table 8
(configuration must be consistent between
ACS8510 devices for protection-switching to be
effective - output clocks will be phase-aligned
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1) Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1) Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
Figure 3. Minimum Input Jitter Tolerance (OC-3/STM-1)
www.semtech.com16
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
between devices). Using the
cnfg_differential_outputs register, outputs TO6
and TO7 can be made to be LVDS or PECL
compatible.
Frame Sync and Multi-Frame Sync Clocks (Part ofFrame Sync and Multi-Frame Sync Clocks (Part of
Frame Sync and Multi-Frame Sync Clocks (Part ofFrame Sync and Multi-Frame Sync Clocks (Part of
Frame Sync and Multi-Frame Sync Clocks (Part of
TT
TT
TOUT0OUT0
OUT0OUT0
OUT0))
))
)
Frame Sync (8 kHz) and Multi-Frame Sync
(2 kHz) clocks are provided on outputs TO10
(FrSync) and TO11 (MFrSync). The FrSync and
MFrSync clocks have a 50:50 mark space ratio.
These are driven from the TOUT0 clock. They are
synchronized with their counterparts in a second
ACS8510 device (if used), using the technique
described later.
Low Jitter Multiple E1/DS1 OutputsLow Jitter Multiple E1/DS1 Outputs
Low Jitter Multiple E1/DS1 OutputsLow Jitter Multiple E1/DS1 Outputs
Low Jitter Multiple E1/DS1 Outputs
This feature added to Rev2.1 is activated using
the cnfg_control1 register. This sends a fre-
quency of twice the Dig2 rate (see reg addr 39h,
bits 7:6) to the APLL instead of the normal
77.76MHz. For this feature to be used, the Dig2
rate must only be set to 12352kHz/16384kHz
using the cnfg_T0_output_frequencies register.
The normal OC3 rate outputs are then replaced
with E1/DS1 multiple rates. The E1(SONET)/
DS1(SDH) selection is made in the same way as
for Dig2 using the cnfg_T0_output_enable reg-
ister. Table 9 shows the relationship between
primary output frequencies and the correspond-
ing output in E1/DS1 mode, and which output
they are available from.
epyTepyT epyT epyTepyT.cepS.cepS .cepS .cepS.cepS edutilpmAedutilpmA edutilpmA edutilpmAedutilpmA
)kp-kpIU()kp-kpIU( )kp-kpIU( )kp-kpIU()kp-kpIU(
ycneuqerFycneuqerF ycneuqerF ycneuqerFycneuqerF
)zH()zH( )zH( )zH()zH(
1A1A1A 1A1A2A2A2A 2A2A1F1F1F1F1F2F2F2F2F2F3F3F3F3F3F4F4F4F4F4F
1SD1SD 1SD 1SD1SDEROC-4421-RGEROC-4421-RG EROC-4421-RG EROC-4421-RGEROC-4421-RG51.001005k8k04
1E1E1E1E1E328.GUTI328.GUTI 328.GUTI 328.GUTI328.GUTI5.12.002k4.2k81k001
f1 f2 f3 f4
A2
A1
Peak-to-peak jitter and wander amplitude (log
scale)
Jitter and wander frequency (log scale)
f1 f2 f3 f4
A2
A1
Peak-to-peak jitter and wander amplitude (log
scale)
Jitter and wander frequency (log scale)
(for inputs supporting G.783 compliant sources)
Figure 4. Minimum Input Jitter Tolerance (DS1/E1) Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Figure 4. Minimum Input Jitter Tolerance (DS1/E1) Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Figure 4. Minimum Input Jitter Tolerance (DS1/E1)
Table 7. Amplitude and Frequency Values for Jitter ToleranceTable 7. Amplitude and Frequency Values for Jitter Tolerance
Table 7. Amplitude and Frequency Values for Jitter ToleranceTable 7. Amplitude and Frequency Values for Jitter Tolerance
Table 7. Amplitude and Frequency Values for Jitter Tolerance
www.semtech.com17
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Output Wander and JitterOutput Wander and Jitter
Output Wander and JitterOutput Wander and Jitter
Output Wander and Jitter
Wander and jitter present on the output clocks
are dependent on:
1. The magnitude of wander and jitter on the selected
input reference clock (in Locked mode)
2. The internal wander and jitter transfer characteristic
(in Locked mode)
3. The jitter on the local oscillator clock
4. The wander on the local oscillator clock (in Holdover
mode)
Wander and jitter are treated in different ways
to reflect their differing impacts on network
design. Jitter is always strongly attenuated,
whilst wander attenuation can be varied to suit
the application and operating state. Wander and
jitter attenuation is performed using a digital
phase locked loop (DPLL) with a programmable
bandwidth. This gives a transfer characteristic
of a low pass filter, with a programmable pole.
It is sometimes necessary to change the filter
dynamics to suit particular circumstances - one
example being when locking to a new source,
Note for Table 8.Note for Table 8.
Note for Table 8.Note for Table 8.
Note for Table 8.
Where 1.544 MHz/2.048 MHz is shown, 1.544 MHz is SONET, and 2.048 MHz is SDH. Pin SONSDHB controls the default
frequency output. Where the SONSDHB pin is High SONET is default, and when SONSDHB pin is Low SDH is default.
troPtroP troP troPtroP
emaNemaN emaN emaNemaN
troPtuptuOtroPtuptuO troPtuptuO troPtuptuOtroPtuptuO
ygolonhceTygolonhceT ygolonhceT ygolonhceTygolonhceT detroppuSseicneuqerFdetroppuSseicneuqerF detroppuSseicneuqerF detroppuSseicneuqerFdetroppuSseicneuqerF
T
10
SOMC/LTT ,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
zHM29.52,zHM44.91,zHM483.61/zHM253.21,)tluafed(zHM84.6
T
20
SOMC/LTT ,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
zHM48.15,)tluafed(zHM88.83,zHM29.52,zHM483.61/zHM253.21
T
30
SOMC/LTTdexif-zHM44.91
T
40
SOMC/LTTdexif-zHM88.83
T
50
SOMC/LTTdexif-zHM67.77
T
60
LSDVLCEP/
SDVL()tluafed
,zHM291.8/zHM671.6,zHM690.4/zHM880.3,zHM840.2/zHM445.1
,zHM25.551,)tluafed(zHM88.83,zHM44.91,zHM483.61/zHM253.21
zHM40.113
T
70
SDVL/LCEP
LCEP()tluafed zHM25.551,zHM67.77,zHM48.15,)tluafed(zHM44.91
T
80
IMA)zHk8+zHk46,kcolcetisopmoc(zHk8/46
T
90
SOMC/LTTzHM840.2/zHM445.1
T
010
SOMC/LTTRSM05:05ahtiw-zHk8,cnySrF
T
110
SOMC/LTTRSM05:05ahtiw-zHk2,cnySrFM
Table 8. Output Reference Source Selection TableTable 8. Output Reference Source Selection Table
Table 8. Output Reference Source Selection TableTable 8. Output Reference Source Selection Table
Table 8. Output Reference Source Selection Table
www.semtech.com18
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
the filter can be opened up to reduce locking
time and can then be gradually tightened again
to remove wander. Since wander represents a
relatively long-term deviation from the nominal
operating frequency, it affects the rate of supply
of data to the network element. Strong wander
attenuation limits the rate of consumption of
data to within a smaller range, so a larger buffer
store is required to prevent data loss. But, since
any buffer store potentially increases latency,
wander may often only need to be removed at
specific points within a network where buffer
stores are acceptable, such as at digital cross
connects. Otherwise, wander is sometimes not
required to be attenuated and can be passed
through transparently. The ACS8510 has
programmable wander transfer characteristics
in a range from 0.1 Hz to 20 Hz. The wander
and jitter transfer characteristic is shown in
Figure 5.
Wander on the local oscillator clock will not
have significant effect on the output clock whilst
in Locked mode, so long as the DPLL bandwidth
is set high enough so that the DPLL can
compensate quickly enough for any frequency
changes in the crystal. In Free-run or Holdover
mode wander on the crystal is more significant.
Variation in crystal temperature or supply
voltage both cause drifts in operating frequency,
as does ageing. These effects must be limited
by careful selection of a suitable component
for the local oscillator, as specified in the section
‘Local Oscillator Clock’.
Phase VariationPhase Variation
Phase VariationPhase Variation
Phase Variation
There will be a phase shift across the ACS8510
between the selected input reference source
and the output clock. This phase shift may vary
over time but will be constrained to lie within
specified limits. The phase shift is characterised
using two parameters, MTIE (Maximum Time
Interval Error), and TDEV (Time Deviation), which,
although being specified in all relevent
specifications, differ in acceptable limits in each
one. Typical measurements for the ACS8510
are shown in Figures 6 and 7, for Locked mode
operation. Figure 8 shows a typical
measurement of Phase Error accumulation in
Holdover mode operation.
The required performance for phase variation
during Holdover is specified in several ways
depending upon the particular circumstances
pertaining:
edoMedoM edoM edoMedoMotqerFotqerF otqerF otqerFotqerF
LLPALLPA LLPA LLPALLPA
LLPALLPA LLPA LLPALLPA
reilpitluMreilpitluM reilpitluM reilpitluMreilpitluM
LLPALLPA LLPA LLPALLPA
qerFqerF qerF qerFqerF
tlif_klctlif_klc tlif_klc tlif_klctlif_klc_klc_klc _klc _klc_klc
2/tlif2/tlif 2/tlif 2/tlif2/tlif
_klc_klc _klc _klc_klc
4/tlif4/tlif 4/tlif 4/tlif4/tlif
_klc_klc _klc _klc_klc
6/tlif6/tlif 6/tlif 6/tlif6/tlif
_klc_klc _klc _klc_klc
8/tlif8/tlif 8/tlif 8/tlif8/tlif
_klc_klc _klc _klc_klc
21/tlif21/tlif 21/tlif 21/tlif21/tlif
_klc_klc _klc _klc_klc
61/tlif61/tlif 61/tlif 61/tlif61/tlif
_klc_klc _klc _klc_klc
84/tlif84/tlif 84/tlif 84/tlif84/tlif
LLPDLLPD LLPD LLPDLLPD
qerFqerF qerF qerFqerF
tluafeD67.774 40.11340.11325.55167.7748.1588.8329.5244.9184.667.77
eulavn616161616188
8
8844
4
44
1Exn867.234 270.131270.131635.56867.23867.23 867.23 867.23867.2333548.12483.61483.61 483.61 483.61483.6176229.01291.8291.8 291.8 291.8291.8766037.267.77
1Txn407.424618.89618.89804.94407.42407.42 407.42 407.42407.4233964.61253.21253.21 253.21 253.21253.21766432.8671.6671.6 671.6 671.6671.6766850.267.77
tuptuOybelbaliavAseicneuqerF
10T
20T
30T
40T
50T
60T 60T 60T
70T 70T
Table 9. Multiple E1/DS1 Ouputs in relation to Standard OutputsTable 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
Table 9. Multiple E1/DS1 Ouputs in relation to Standard OutputsTable 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
Table 9. Multiple E1/DS1 Ouputs in relation to Standard Outputs
www.semtech.com19
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
1. ETSI 300 462-5, Section 9.1, requires that the short-
term phase error during switchover (i.e., Locked to Holdover
to Locked) be limited to an accumulation rate no greater
than 0.05 ppm during a 15 second interval.
2. ETSI 300 462-5, Section 9.2, requires that the long-
term phase error in the Holdover mode should not
exceed
{(a1+a2)S+0.5bS2+c}
where
a1 = 50 ns/s (allowance for initial frequency offset)
a2 = 2000 ns/s (allowance for temperature variation)
b = 1.16x10-4 ns/s2 (allowance for ageing)
c = 120 ns (allowance for entry into Holdover mode).
3. ANSI Tin1.101-1994, Section 8.2.2, requires that the
phase variation be limited so that no more than 255 slips
(of 125 µs each) occur during the first day of Holdover.
This requires a frequency accuracy better than:
((24x60x60)+(255x125µs))/(24x60x60) = 0.37 ppm
Temperature variation is not restricted, except to within
the normal bounds of 0 to 50 °C.
4. Telcordia GR.1244.CORE, Section 5.2., Table 4, shows
that an initial frequency offset of 50 ppb is permitted on
entering Holdover, whilst a drift over temperature of
280 ppb is allowed; an allowance of 40 ppb is permitted
for all other effects.
5. ITU G.822, Section 2.6, requires that the slip rate during
category(b) operation (interpreted as being applicable to
Holdover mode operation) be limited to less than 30 slips
(of 125 µs each) per hour
((((60 x 60)/30)+125µs)/(60x60)) = 1.042 ppm
5
0
-3
-5
-10
-15
-20
-25
-30
Gain (dB)
0.01 0.1 110 100 1000
Frequency (Hz)
0.1 Hz
0.3 Hz
0.5 Hz
1.0 Hz
2.0 Hz
4.0 Hz
8.0 Hz
17 Hz
Figure 5. Wander and Jitter Measured Transfer CharacteristicsFigure 5. Wander and Jitter Measured Transfer Characteristics
Figure 5. Wander and Jitter Measured Transfer CharacteristicsFigure 5. Wander and Jitter Measured Transfer Characteristics
Figure 5. Wander and Jitter Measured Transfer Characteristics
www.semtech.com20
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
10
1
0.1
0.01
Time
(ns)
0.01 0.1 110 100 1000 10000
Observation interval (s)
G.813 option 1 constant temperature wander limit
TDEV measurement on 155 MHz output, 19.44 MHz i/p (8kHz locking),
Vectron 6664 xtal
100
10
1
0.1
0.01
0.01 0.1 110 100 1000 10000
Observation interval (s)
Time
(ns)
G.813 option 1, constant temperature wander limit
MTIE measurement on 155 MHz output, 19.44 MHz i/p (8kHz locking),
Vectron 6664 xtal
10000000
1000000
100000
10000
1000
100 1000 10000 100000
Observation interval (s)
Phase Error (ns)
Permitted Phase Error Limit
Typical measurement, 25°C constant temperature
Figure 8. Phase error accumulation of TFigure 8. Phase error accumulation of T
Figure 8. Phase error accumulation of TFigure 8. Phase error accumulation of T
Figure 8. Phase error accumulation of TOUT0OUT0
OUT0OUT0
OUT0 output port in Holdover mode output port in Holdover mode
output port in Holdover mode output port in Holdover mode
output port in Holdover mode
Figure 6. Maximum Time Interval Error of TFigure 6. Maximum Time Interval Error of T
Figure 6. Maximum Time Interval Error of TFigure 6. Maximum Time Interval Error of T
Figure 6. Maximum Time Interval Error of TOUT0OUT0
OUT0OUT0
OUT0 output port output port
output port output port
output port
Figure 7. Time Deviation of TFigure 7. Time Deviation of T
Figure 7. Time Deviation of TFigure 7. Time Deviation of T
Figure 7. Time Deviation of TOUT0OUT0
OUT0OUT0
OUT0 output port output port
output port output port
output port
www.semtech.com21
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Phase Build OutPhase Build Out
Phase Build OutPhase Build Out
Phase Build Out
Phase Build Out (PBO) is the function to minimise
phase transients on the output SEC clock during
input reference switching. If the currently
selected input reference clock source is lost
(due to a short interruption, out of frequency
detection, or complete loss of reference), the
second, next highest priority reference source
will be selected. During this transition, the
Lost_Phase mode is entered.
The typical phase disturbance on clock
reference source switching will be less than
12 ns on the ACS8510. For clock reference
switching caused by the main input failing or
being disconnected, then the phase disturbance
on the output will still be less than the 120 ns
allowed for in the G.813 spec. The actual value
is dependent on the frequency being locked to.
ITU-T G.813 states that the max allowable short
term phase transient response, resulting from
a switch from one clock source to another,
with Holdover mode entered in between, should
be a maximum of 1 µs over a 15 second
interval. The maximum phase transient or jump
should be less than 120 ns at a rate of change
of less than 7.5 ppm and the Holdover
performance should be better than 0.05 ppm.
On the ACS8510, PBO can be enabled, disabled
or frozen using the µP interface. By default, it
is enabled. When PBO is enabled, it can also
be frozen, which will disable the PBO operation
on the next input reference switch, but will
remain with the current offset. If PBO is disabled
while the device is in the Locked mode, there
will be a phase jump on the output SEC clocks
as the DPLL locks back to 0 degree phase
error.
Microprocessor InterfaceMicroprocessor Interface
Microprocessor InterfaceMicroprocessor Interface
Microprocessor Interface
The ACS8510 incorporates a microprocessor
interface, which can be configured for the
following modes via the bus interface mode
control pins UPSEL(2:0) as defined in Table 10.
Table 10. Microprocessor InterfaceTable 10. Microprocessor Interface
Table 10. Microprocessor InterfaceTable 10. Microprocessor Interface
Table 10. Microprocessor Interface
Mode SelectionMode Selection
Mode SelectionMode Selection
Mode Selection
Motorola ModeMotorola Mode
Motorola ModeMotorola Mode
Motorola Mode
Parallel data + address: this mode is suitable
for use with Motorola's 68x0 type bus.
Intel ModeIntel Mode
Intel ModeIntel Mode
Intel Mode
Parallel data + address: this mode is suitable
for use with Intel's 80x86 type bus.
Multiplexed ModeMultiplexed Mode
Multiplexed ModeMultiplexed Mode
Multiplexed Mode
Data/address: this mode is suitable for use
with microprocessors which share bus signals
between address and data (e.g., Intel's 80x86
family).
Serial ModeSerial Mode
Serial ModeSerial Mode
Serial Mode
This mode is suitable for use with micro-
processor which use a serial interface.
EPROM ModeEPROM Mode
EPROM ModeEPROM Mode
EPROM Mode
This mode is suitable for simple standalone
applications where it is required to change the
default loading of the register values to suit
different applications.
This can be done by loading values from an
external ROM. The data is read from the ROM
automatically after power up when the
UPSEL(2:0) pins are set to ‘001’. Each register
value is stored sequentially, with ROM address
0 corresponding to register address 0 and so
on.
The value in the ‘chip_id’ location (address 00
& 01) is checked to see if it matches the ID
number of the ACS8510 V2 (value 213E). Upon
a successful number match, the remaining data
UPSEL(2:0)UPSEL(2:0)
UPSEL(2:0)UPSEL(2:0)
UPSEL(2:0) ModeMode
ModeMode
Mode DescriptionDescription
DescriptionDescription
Description
111 (7) OFF Interface disabled
110 (6) OFF Interface disabled
101 (5) SERIAL Serial uP bus interface
100 (4) MOTOROLA Motorola interface
011 (3) INTEL Intel compatible bus interface
010 (2) MULTIPLEXED Multiplexed bus interface
001 (1) EPROM EPROM read mode
000 (0) OFF Interface disabled
www.semtech.com22
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Interrupt Enable and ClearInterrupt Enable and Clear
Interrupt Enable and ClearInterrupt Enable and Clear
Interrupt Enable and Clear
Interrupt requests are flagged on pin INTREQ
(active High). Bits in the interrupt status register
are set (high) by the following conditions:
1. Any reference source becoming valid or going invalid
2. A change in the operating state (eg. Locked, Holdover
etc.)
3. A brief loss of the currently selected reference source
4. An AMI input error
All interrupt sources are maskable via the mask
register, each one being enabled by writing a
'1' to the appropriate bit. Any unmasked bit set
in the interrupt status register will cause the
interrupt request pin to be asserted (high). All
interrupts are cleared by writing a '1' to the
bit(s) to be cleared in the status register. When
all pending unmasked interrupts are cleared
the interrupt pin will go inactive (low).
The loss of the currently selected reference
source will eventually cause the input to be
considered invalid, triggering an interrupt. The
time taken to raise this interrupt is dependant
on the leaky bucket configuration of the activity
monitors. The fastest leaky bucket setting will
still take up to 128 ms to trigger the interrupt.
The interrupt caused by the brief loss of the
currently selected reference source is provided
to facilitate very fast source failure detection if
desired. It is triggered after missing just a
couple of cycles of the reference source. Some
applications require the facility to switch
downstream devices based on the status of
the reference sources. In order to provide extra
flexibility, it is possible to flag the ‘main
reference failed’ interrupt (addr 06, bit 6) on
the pin TDO. This is simply a copy of the status
bit in the interrupt register and is independent
of the mask register settings. The bit is reset
by writing to the interrupt status register in the
normal way. This feature can be enabled and
disabled by writing to bit 6 of register 48Hex.
from the ROM is used to set the internal register
values. Only 64 locations in the ROM are
required.
Register SetRegister Set
Register SetRegister Set
Register Set
All registers are 8-bits wide, organised with the
most-significant bit positioned in the left-most
bit, with bit significance decreasing towards the
right most bit. Some registers carry several
individual data fields of various sizes, from
single-bit values (e.g. flags) upwards. Several
data fields are spread across multiple registers;
their organisation is shown in the register map,
Table 11.
Configuration RegistersConfiguration Registers
Configuration RegistersConfiguration Registers
Configuration Registers
Each configuration register reverts to a default
value on power-up or following a reset. Most
default values are fixed, but some will be pin-
settable. All configuration registers can be read
out over the microprocessor port.
Status RegistersStatus Registers
Status RegistersStatus Registers
Status Registers
The Status Registers contain readable registers.
They may all be read from outside the chip but
are not writeable from outside the chip (except
for a clearing operation). All status registers
are read via shadow registers to avoid data
hits due to dynamic operation. Each individual
status register has a unique location.
Register AccessRegister Access
Register AccessRegister Access
Register Access
Most registers are of one of two types,
configuration registers or status registers, the
exceptions being the chip_ID and chip_revision
registers. Configuration registers may be written
to or read from at any time (the complete 8-bit
register must be written, even if only one bit is
being modified). All status registers may be read
at any time and, in some status registers (such
as the sts_interrupts register), any individual
data field may be cleared by writing a ‘1’ into
each bit of the field (writing a ‘0’ value into a
bit will not affect the value of the bit). A
description of each register is given in the
Register Map, and Register Map Description.
www.semtech.com23
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA.rddA .rddA .rddA.rddA
)xeH()xeH( )xeH( )xeH()xeH(
emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
00di_pihc
)ylnodaer(
)0:7(rebmuntrapeciveD
10 )8:51(rebmuntrapeciveD
20noisiver_pihc
)ylnodaer( )0:7(rebmunnoisiverpihC
301lortnoc_gfnc
)etirw/daer(
elpitluM
P/O1T/1E
golanA
cnysvid '0'otteS egdEk8
ytiraloP '0'otteS'0'otteS
402lortnoc_gfnc
)etirw/daer( timilgalfssolesahP'0'otteS'1'otteS'0'otteS
50stpurretni_sts
)etirw/daer(
dilav>8_I<
egnahc
dilav>7_I<
egnahc
dilav>6_I<
egnahc
dilav>5_I<
egnahc
dilav>4_I<
egnahc
dilav>3_I<
egnahc
dilav>2_I<
egnahc
dilav>1_I<
egnahc
60gnitarepO
edom
.ferniaM
deliaf
dilav>41_I<
egnahc
dilav>31_I<
egnahc
dilav>21_I<
egnahc
dilav>11_I<
egnahc
dilav>01_I<
egnahc
dilav>9_I<
egnahc
80stupni_4T_sts
)etirw/daer( deliaffer4T 2imA
noitaloiV
2imA
.S.O.L
1imA
noitaloiV
1imA
.S.O.L
90edom_gnitarepo_sts
)ylnodaer( )0:2(edomgnitarepO
A0elbat_ytiroirp_sts
)ylnodaer(
ecruosdilavytiroirptsehgiH ecruosecnereferdetcelesyltnerruC
B0 3
dr
ecruosdilavytiroirptsehgih2
dn
ecruosdilavytiroirptsehgih
C0tesffo_cni_rruc_sts
)ylnodaer(
)0:7(tesffotnemercnitnerruC
D0 )8:51(tesffotnemercnitnerruC
70 )61:81(tesffotnemercnitnerruC
E0dilav_secruos_sts
)ylnodaer(
>8_I<>7_I<>6_I<>5_I<>4_I<>3_I<>2_I<>1_I<
F0 >41_I<>31_I<>21_I<>11_I<>01_I<>9_I<
Register MapRegister Map
Register MapRegister Map
Register Map
Shaded areas in the map are ‘don’t care’ and writing either 0 or 1 will not affect any function of
the device.
Bits labelled ‘Set to 0’ or ‘Set to 1’ must be set as stated during initialisation of the device,
either following power up, or after a power on reset (POR). Failure to correctly set these bits may
result in the device operating in an unexpected way.
Some registers do not appear in this list. These are either not used, or have test functionality. Do
not write to any undefined registers as this may cause the device to operate in a test mode. If an
undefined register has been inadvertently addressed, the device should be reset to ensure the
undefined registers are at default values.
Table 11. Register MapTable 11. Register Map
Table 11. Register MapTable 11. Register Map
Table 11. Register Map
www.semtech.com24
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA.rddA .rddA .rddA.rddA
)xeH()xeH( )xeH( )xeH()xeH(
emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
01secruos_ecnerefer_sts
)etirw/daer(
>2_I<sutats>1_I<sutats
11 >4_I<sutats>3_I<sutats
21 >6_I<sutats>5_I<sutats
31 >8_I<sutats>7_I<sutats
41 >01_I<sutats>9_I<sutats
51 >21_I<sutats>11_I<sutats
61 >41_I<sutats>31_I<sutats
81ytiroirp_noitceles_fer_gfnc
)etirw/daer(
>2_I<ytiroirp_demmargorp >1_I<ytiroirp_demmargorp
91 >4_I<ytiroirp_demmargorp >3_I<ytiroirp_demmargorp
A1 >6_I<ytiroirp_demmargorp >5_I<ytiroirp_demmargorp
B1 >8_I<ytiroirp_demmargorp >7_I<ytiroirp_demmargorp
C1 >01_I<ytiroirp_demmargorp >9_I<ytiroirp_demmargorp
D1 >21_I<ytiroirp_demmargorp >11_I<ytiroirp_demmargorp
E1 >41_I<ytiroirp_demmargorp >31_I<ytiroirp_demmargorp
02ycneuqerf_ecruos_fer_gfnc
)etirw/daer(
nvidk8kcol)0:1(>1_I<di_tekcub)0:3(>1_I<ycneuqerf_ecruos_ecnerefer
12 nvidk8kcol)0:1(>2_I<di_tekcub)0:3(>2_I<ycneuqerf_ecruos_ecnerefer
22 nvidk8kcol)0:1(>3_I<di_tekcub)0:3(>3_I<ycneuqerf_ecruos_ecnerefer
32 nvidk8kcol)0:1(>4_I<di_tekcub)0:3(>4_I<ycneuqerf_ecruos_ecnerefer
42 nvidk8kcol)0:1(>5_I<di_tekcub)0:3(>5_I<ycneuqerf_ecruos_ecnerefer
52 nvidk8kcol)0:1(>6_I<di_tekcub)0:3(>6_I<ycneuqerf_ecruos_ecnerefer
62 nvidk8kcol)0:1(>7_I<di_tekcub)0:3(>7_I<ycneuqerf_ecruos_ecnerefer
72 nvidk8kcol)0:1(>8_I<di_tekcub)0:3(>8_I<ycneuqerf_ecruos_ecnerefer
82 nvidk8kcol)0:1(>9_I<di_tekcub)0:3(>9_I<ycneuqerf_ecruos_ecnerefer
92 nvidk8kcol)0:1(>01_I<di_tekcub)0:3(>01_I<ycneuqerf_ecruos_ecnerefer
A2 nvidk8kcol)0:1(>11_I<di_tekcub)0:3(>11_I<ycneuqerf_ecruos_ecnerefer
B2 nvidk8kcol)0:1(>21_I<di_tekcub)0:3(>21_I<ycneuqerf_ecruos_ecnerefer
C2 nvidk8kcol)0:1(>31_I<di_tekcub)0:3(>31_I<ycneuqerf_ecruos_ecnerefer
D2 nvidk8kcol)0:1(>41_I<di_tekcub)0:3(>41_I<ycneuqerf_ecruos_ecnerefer
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).
www.semtech.com25
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA.rddA .rddA .rddA.rddA
)xeH()xeH( )xeH( )xeH()xeH(
emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
03_secruos_etomer_sts_gfnc
dilav
)etirw/daer(
>1:8<slennahc,sutatsetomeR
13 >9:41<slennahc,sutatsetomeR
23edom_gnitarepo_gfnc
)etirw/daer( edomgnitarepodecroF
33noitceles_fer_gfnc
)etirw/daer( ecruos_ecnerefer_tceles_ecrof
43edom_gfnc
)etirw/daer( otuA
lanretxe
elbaneK2
esahP
mrala
tuoemit
elbane
egdekcolC
revodloH
tesffO
elbane
K2lanretxE
elbanecnyS
/TENOS
HDS
P/I
/retsaM
evalS
noisreveR
edom
534T_gfnc
)etirw/daer( hcleuqS tceleS
1T/0T
noitcelesecruostupni1TecroF
)01_Iot5_Istupnirofdilavylno(
63stupni_laitnereffid_gfnc
)etirw/daer(
>6_I<
LCEP
>5_I<
LCEP
73snip_lesPu_gfnc
)ylnodaer( epytrossecorp-orciM
83elbane_tuptuo_0T_gfnc
)etirw/daer( zHM40.113
60Tno
TENOS=1
HDS=0
2giDrof
TENOS=1
HDS=0
1giDrof
10T20T 30T
zHM44.91
40T
zHM88.83
50T
zHM67.77
93seicneuqerf_tuptuo_0T_gfnc
)etirw/daer( 2latigiD1latigiD20T10T
A3stuptuo_laitnereffid_gfnc
)etirw/daer(
ycneuqerF70T
noitceles
ycneuqerF60T
noitceles
SDVL70T
elbane
LCEP70T
elbane
SDVL60T
elbane
LCEP60T
elbane
B3htdiwdnab_gfnc
)etirw/daer(
w/botuA
hctiws
kcol/qcA
htdiwdnabnoitisiuqcA'0'otteShtdiwdnabdekcol/lamroN
C3ycneuqerf_lanimon_gfnc
)etirw/daer(
)0:7(ycneuqerflanimoN
D3 )8:51(ycneuqerflanimoN
E3tesffo_revodloh_gfnc
)etirw/daer(
)0:7(tesfforevodloH
F3 )8:51(tesfforevodloH
04otuA
revodloH
gnigarevA
)61:81(tesfforevodloH
14timil_qerf_gfnc
)etirw/daer(
)0:7(timiltesffoycneuqerFLLPD
24 tesffoycneuqerFLLPD
)8:9(timil
34ksam_tpurretni_gfnc
)etirw/daer(
dilav>8_I<
egnahc
dilav>7_I<
egnahc
dilav>6_I<
egnahc
dilav>5_I<
egnahc
dilav>4_I<
egnahc
dilav>3_I<
egnahc
dilav>2_I<
egnahc
dilav>1_I<
egnahc
44gnitarepO
edom
.ferniaM
deliaf
dilav>41_I<
egnahc
dilav>31_I<
egnahc
dilav>21_I<
egnahc
dilav>11_I<
egnahc
dilav>01_I<
egnahc
dilav>9_I<
egnahc
54 fer4T 2imA
noitaloiV
2imA
S.O.L
1imA
noitaloiV
1imA
S.O.L
64nvid_qerf_gfnc
)etirw/daer(
)0:7(oitarn-yb-tupni-ediviD
74 )8:31(oitarn-yb-tupni-ediviD
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).
www.semtech.com26
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA.rddA .rddA .rddA.rddA
)xeH()xeH( )xeH( )xeH()xeH(
emaNretemaraPemaNretemaraP emaNretemaraP emaNretemaraPemaNretemaraPtiBataDtiBataD tiBataD tiBataDtiBataD
)bsm(7)bsm(7 )bsm(7 )bsm(7)bsm(766
6
6655
5
5544
4
4433
3
3322
2
2211
1
11)bsl(0)bsl(0 )bsl(0 )bsl(0)bsl(0
84srotinom_gfnc
)etirw/daer( tsolfergalF
ODTno
tsaf-artlU
gnihctiws
lanretxE
ecruos
hctiws
elbane
esahpezeerF
tuodliub
esahP
tuodliub
elbane
srotinomycneuqerF
)0:1(noitarugifnoc
050dlohserht_reppu_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesmralaytivitcA:0noitarugifnoC
150dlohserht_rewol_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesermralaytivitcA:0noitarugifnoC
250ezis_tekcub_gfnc
)etirw/daer( )0:7(ezistekcubmralaytivitcA:0noitarugifnoC
350etar_yaced_gfnc
)etirw/daer( )0:1(etar_yaced:0gfC
451dlohserht_reppu_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesmralaytivitcA:1noitarugifnoC
551dlohserht_rewol_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesermralaytivitcA:1noitarugifnoC
651ezis_tekcub_gfnc
)etirw/daer( )0:7(ezistekcubmralaytivitcA:1noitarugifnoC
751etar_yaced_gfnc
)etirw/daer( )0:1(etar_yaced:1gfC
852dlohserht_reppu_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesmralaytivitcA:2noitarugifnoC
952dlohserht_rewol_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesermralaytivitcA:2noitarugifnoC
A52ezis_tekcub_gfnc
)etirw/daer( )0:7(ezistekcubmralaytivitcA:2noitarugifnoC
B52etar_yaced_gfnc
)etirw/daer( )0:1(etar_yaced:2gfC
C53dlohserht_reppu_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesmralaytivitcA:3noitarugifnoC
D53dlohserht_rewol_vitca_gfnc
)etirw/daer( )0:7(dlohserhttesermralaytivitcA:3noitarugifnoC
E53ezis_tekcub_gfnc
)etirw/daer( )0:7(ezistekcubmralaytivitcA:3noitarugifnoC
F53etar_yaced_gfnc
)etirw/daer( )0:1(etar_yaced:3gfC
F7lesPu_gfnc
)etirw/daer( epytrossecorp-orciM
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).Table 11. Register Map (continued).
Table 11. Register Map (continued).
www.semtech.com27
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Register Map DescriptionRegister Map Description
Register Map DescriptionRegister Map Description
Register Map Description
Table 12. Register Map DescriptionTable 12. Register Map Description
Table 12. Register Map DescriptionTable 12. Register Map Description
Table 12. Register Map Description
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
di_pihc )lamiced(0158=DIpihcehtsniatnocretsigersihT
00)0:7(stibDIpihC)0:7(stiB 01111100
10)8:51(stibDIpihC)0:7(stiB 10000100
20
noisiver_pihc rebmunnoisiverpihcehtsniatnocretsigerylnodaersihT
1=noisiversihT
0=)selpmasgnireenigne(noisivertsaL
10000000
30
1lortnoc_gfncdesunU)6:7(stiB
5tiB
.zhM67.77lamronehtfodaetsniLLPAehtotycneuqerf2giDx2sdeeF:LLPAotzHM42/231=
stibtes2giD:etoN.setar1T/1Eelpitlumhtiwdecalpererastuptuo1MTS/3COlamronehtsuhT
.edomsihtrof11ottesebtsum))6:7(stiBh93.geR(
LLPAotzHM67.770=
4tiB
noitcesLLPDehtnisredividehtotnoitcesLLPAtuptuoehtnisredividehtsezinorhcnyS1=
stupnineewtebtnemngilaesahpevahotredroniyrassecensisihT.ngilasesahpriehttahthcus
ebyamhgihtibsihtgnipeeK.)zHM67.77otzHM84.6(setardevired3COtaskcolctuptuodna
ycneuqerfnisegnahckciuqnehwnoitazinorhcnysfotuognittegsredividehtdiovaotyrassecen
.nuR-eerFotniecrofasahcusrucco
ehtedomsihtnitub,ycneuqerfnisegnahcpetsgniwollofesahpfotuotegyamsredividehT0=
ehT.doirepnoitazinorhcnysynanihtiwdeetneraugsisegdeycneuqerfhgihforebmuntcerroc
.)tluafed(kcolycneuqerflliwtuptuo
tluafedehterofeb,teseramorfsdnoces2noitazinorhcnysniniamersyawlalliwecivedehT
.seilppagnittes
'0'ottesro,degnahcnuevael-lortnoctseT3stiB
2tiB
.egdekcolctupnignisirehtotkcollliwmetsysehtedomgnikcolk8ninehW1=
.egdekcolctupnignillafehtotkcollliwmetsysehtedomgnikcolk8ninehW0=
'00'ottesro,degnahcnuevael-slortnoctseT)0:1(stiB
000000XX
40
2lortnoc_gfncdesunU)6:7(stiB
otsdnopserrochcihw)001(4ottestluafedyB.timilgalfssolesahpehtenifed)3:5(stiB
timilgalfehT.timilesahprewolgnidnopserrocasteseulavrewolA.°041yletamixorppa
esahpa,rettijtupnifotluserasatsolesahpsetacidniLLPDehthcihwtaeulavehtsenimreted
tupniehtnopmujycneuqerfaro,pmuj
'010'ottesro,degnahcnuevael-slortnoctseT)0:2(stiB
010001XX
stpurretni_sts ehtecnereferfossolrofeno,dilav_secruos_stsfotibhcaeroftibenosniatnocretsigersihT
.hgihevitcaerastibllA.edomgnitarepoehtrofrehtonadna,otdekcolsawecived
tnevelerehtfoetatsehtni'egnahc'anotesera)41tib(tibdeliaf_fer_niamehttpecxestibllA
ehtfI.tpurretninareggirtlliwtidilavniseogro,dilavsemocebecruosafi.e.i,tibsutats
.detarenegeblliwtpurretniehtetatssegnahc)9retsiger(edoMgnitarepO
ecnereferehtnoytivitcanigalfotdesusiretsigersutatstpurretniehtfo)deliaf_fer_niam(41tiB
ehtfo6tibfI.troppusnacsrotinomytivitcaehtnahtylkciuqeromotdekcolsiecivedehttaht
ehtotnonevirdsitibsihtfoetatsehtneht,tessi)ODTnossolfergalf(retsigersrotinom_gfnc
.ecivedehtfonipODT
deraelcebyamtibhcaE.retsigerksam_tpurretni_gfncehtnistibehtybelbaksamerastibllA
ebnacstibforebmunynA.tpurretniehtgnittesersuht,tibtahtot'1'agnitirwybyllaudividni
.tceffeonevahlliws'0'gnitirW.noitarepoetirwelgnisahtiwderaelc
50>1_I<ot>8_I<)0:7(stiB 00000000
60 >9_I<ot>41_I<,deliafferniam,edomgnitarepO)0:7(stiB 00000000
www.semtech.com28
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
80
stupni_4T_sts ecnosmralaehT.ecnerefer4TUOTehtdnastupniIMAehtfosgalfsutatsehtsdlohretsigersihT
,tibtahtot'1'agnitirwybyllaudividnideraelcebyamtibhcaE.teserlitnuetatsriehtdlohlliwtes
etarenegoslanacstibesehT.tceffeonevahlliws'0'gnitirW.tpurretniehtgnittesersuht
.stpurretni
.desunU)5:7(stiB
4tiB
Tdilavon-deliafecnerefer4T1=
1NI
kcoltonnacLLPD4T,)>5_I<:>01_I<(tupni
)tluafed(ecruosot
Tdilav-doogecnerefer4T0=
1NI
.elbaliavatupni
3tiB
detcetednoitaloiV2imA1=
)tluafed(raelc2imA0=
2tiB
langisfossoL2imA1=
)tluafed(raelc2imA0=
1tiB
detcetednoitaloiV1imA1=
)tluafed(raelc1imA0=
0tiB
langisfossoL1imA1=
)tluafed(raelc1imA0=
00001XXX
90
edom_gnitarepo_sts 11erugiF.enihcametatsniamehtfoetatsgnitarepotnerrucehtsdlohretsigerylno-daersihT
.setatslaudividniehthtiwhctamelbairav'etatsgnitarepo'ehtfoseulavehtwohswohs
.desunU)3:7(stiB
etatS)0:2(stiB
)tluafed(nuR-eerF100
revodloH010
dekcoL001
dekcol-erP011
2dekcol-erP101
tsolesahP111
100XXXXX
elbat_ytiroirp_sts.retsigerylno-daertib-61asisihT
ecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgihdrihT)21:51(stiB
dilavytiroirp-tsehgih-dnocesehtotytiroirptsehgih-txenehtsahdnadilavsihcihwecruos
.ecruos
tupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgihdnoceS)8:11(stiB
dilavytiroirp-tsehgihehtotytiroirptsehgih-txenehtsahdnadilavsihcihwecruosecnerefer
.ecruos
ecruosecnerefertupniehtforebmunlennahcehtsisiht:ecruosdilavytiroirptsehgiH)4:7(stiB
detcelesyltnerrucehtsaemasehtebtonyamti-ytiroirptsehgihehtsahdnadilavsihcihw
.)ytiroirpdemmargorpnisegnahcroyrotsiheruliafoteud(ecruosecnerefer
ecnerefertupniehtforebmunlennahcehtsisiht:ecruosecnereferdetcelesyltnerruC)0:3(stiB
.LLPDottupniyltnerrucsihcihwecruos
ehtfostnetnocehtotesnopsernienihcametatsehtybdetadpuerasretsigeresehttahtetoN
lennahc;slennahclaudividnifosutatsgniognoehtdnaretsigerytiroirp_noitceles_fer_gfnc
rofelbaliavasilennahcontahtsetacidni,sretsigeresehtfoynanigniraeppa,'0000'rebmun
.ytiroirptaht
A0 ))4:7(stibelbat_ytiroirp_sts(ecruosdilavytiroirptsehgiH)4:7(stiB
))0:3(stibelbat_ytiroirp_sts(ecruosecnereferdetcelesyltnerruC)0:3(stiB 00000000
B0 3)4:7(stiB
dr
))21:51(stibelbat_ytiroirp_sts(ecruosdilavytiroirptsehgih-
2)0:3(stiB
dn
))8:11(stibelbat_ytiroirp_sts(ecruosdilavytiroirptsehgih- 00000000
www.semtech.com29
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
tesffo_cni_rruc_sts fostibtnacifingis91ehtgnitneserpereulavregetni-dengisasniatnocretsigerylno-daersihT
dliubotyllacidoirepdaerebyamretsigerehT.LLPlatigidehtfotesffotnemercnitnerruceht
fiyrassecenebylnodluowsiht(sdoireprevodlohgnirudesuretalrofesabatadlacirotsihapu
rotallicsOlacoLnidebircsedairetircytilibatsehtteemtondidhcihwrotallicsolanretxena
.teserretfayletaidemmi00000000daerlliwretsigerehT.)desusinoitceskcolC
C0 )0:7(stibtesffo_cni_rruc_sts)0:7(stiB 00000000
D0 )8:51(stibtesffo_cni_rruc_sts)0:7(stiB 00000000
70 desunU)3:7(stiB
)61:81(stibtesffo_cni_rruc_sts)0:2(stiB 000XXXXX
dilav_secruos_sts .ecruosecnereferyreverofytidilavwohsottibasniatnocretsigersihT
ecruosdilaV1=
)tluafed(ecruosdilavnI0=
E0>1_I<ot>8_I<)0:7(stiB 00000000
F0 desunU)6:7(stiB
>9_I<ot>41_I<)0:5(stiB 000000XX
secruos_ecnerefer_sts ehT.secruosecnerefertupni41ehtfohcaefosutatsehtsdlohhcihwretsigeretyb-7asisihT
sutatsdiaoT.hgihevitcasitibhcaE.dleiftib-4aninwohssiecruosecnereferhcaefosutats
sutatsehT.retsigerdilav_secruos_stsehtnidedivorpsi3tibsutatshcaefoypoca,gnikcehc
)yllaudividnideraelcebyamtibhcaE(:swollofsadetropersi
)0tluafed())0:2(stibfonoitanibmocsi3tib()smralaon(dilavecruoS=3tibsutatS
)1tluafed(mraladnab-fo-tuo=2tibsutatS
)1tluafed(mralaytivitcaon=1tibsutatS
)0tluafed(mralakcolesahp=0tibsutatS
01 >2_I<ecruosecnerefertupnifosutatS)4:7(stiB
>1_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
11 >4_I<ecruosecnerefertupnifosutatS)4:7(stiB
>3_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
21 secruos_ecnerefer_sts
)deunitnoc(
>6_I<ecruosecnerefertupnifosutatS)4:7(stiB
>5_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
31 >8_I<ecruosecnerefertupnifosutatS)4:7(stiB
>7_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
41 >01_I<ecruosecnerefertupnifosutatS)4:7(stiB
>9_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
51 >21_I<ecruosecnerefertupnifosutatS)4:7(stiB
>11_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
61 >41_I<ecruosecnerefertupnifosutatS)4:7(stiB
>31_I<ecruosecnerefertupnifosutatS)0:3(stiB 01100110
ytiroirp_noitceles_fer_gfnc eraseulavytiroirpehT.secruosecnerefertupni41ehtfohcaefoytiroirpehtsdlohretsigersihT
'1'seulavehtylnO.seitiroirprehgihgnikatsrebmundeulav-rewolhtiw,rehtohcaeotevitalerlla
ebdluohsecruosecnereferhcaE.ecruosecnereferehtselbasid'0'-dilavera)ced('51'ot
dengissaeblliwrebmunytiroirpemasehtnevigsecruosowtrevewoh,rebmuneuqinuanevig
.sisabtuotsrifnitsrifano
ecnerefergnicrofnehwdesusisihtsa'1'eulavytiroirpehtevreserotdednemmocersitI
ehtesuotdnetnitonseodresuehtfI.retsigernoitceles_fer_gfncehtaivnoitceles
.devreserebtondeen'1'eulavytiroirpehtnehtretsigernoitceles_fer_gfnc
81
>2_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>1_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
01001100
91
>4_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>3_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
00101010
A1
>6_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>5_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
01101110
B1
>8_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>7_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
00011001
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com30
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
C1
ytiroirp_noitceles_fer_gfnc
)deunitnoc(
>01_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>9_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
01011101
D1
>21_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>11_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
10001011
)0=BVLSTSM(
00111011
)1=BVLSTSM(
E1
>41_I<ecruosecnerefertupnifoytiroirpdemmargorP)4:7(stiB
>31_I<ecruosecnerefertupnifoytiroirpdemmargorP)0:3(stiB
01111111
ycneuqerf_ecruos_fer_gfnc .secruosecnerefertupni41ehtfohcaeputesotdesusiretsigersihT
ecnadroccani,ycneuqerftupniehtnonekatrednunoitarepoehtsenifedetybhcaefo)6:7(stiB
:yekgniwollofehthtiw
.)tluafed(.LLPDehtotniyltceriddefsiycneuqerftupniehT00
ehtotnidefgnieberofeb,zHk8otnwoddedividyllanretnisiycneuqerftupniehT10
.)ecnarelotrettijhgihroF(.LLPD
.esutonod-noitarugifnocdetroppusnU01
ot)nvid_qerf_gfnc(74dna64sretsigerniderotstneiciffeocnoisividehtsesU11
ycneuqerfehT.LLPDehtotnidefgniebotroirpeulavsihtybtupniehtedivid
ehT.zHk8lauqedluohsycneuqerfnwoddedividehT.delbasidebtsumsrotinom
lautcaehtwolebtsujycneuqerftopstseraenehtottesebdluohs)0:3(ycneuqerf
zHM445.1neewtebseicneuqerftupnirofskrowerutaefNviDehT.ycneuqerftupni
.zHM001dna
.F5ot05sretsigernidenifedsa,desusi)3-0(puorgtekcubykaelhcihwenifed)4:5(stiB
.)00tluafed(
:gniwollofehthtiwecnadroccaniecruosecnereferehtfoycneuqerfehtsenifed)0:3(stiB
)>4_I<,>3_I<tluafed,>2_I<,>1_I<dexif(zHk80000
)2tib,43retsigerybdenifedsa()HDS(zHM840.2/)TENOS(zHM445.11000
)>41_I<,>31_I<,>21_I<tluafed(
)1=BVLSTSMnehw>11_I<tluafed(zHM84.60100
,>8_I<,>7_I<,>6_I<,>5_I<dna,0=BVLSTSMnehw>11_I<tluafed(zHM44.911100
)>01_I<,>9_I<
zHM29.520010
zHM88.831010
zHM48.150110
zHM67.771110
zHM25.5510001
zHk21001
zHk40101
02 ylnozHk8rof00000000tadexif->1_I<ecruosecnereferfoycneuqerF 00000000
12 ylnozHk8rof00000000tadexif->2_I<ecruosecnereferfoycneuqerF 00000000
22>3_I<ecruosecnereferfoycneuqerF 00000000
32>4_I<ecruosecnereferfoycneuqerF 00000000
42>5_I<ecruosecnereferfoycneuqerF 11000000
52>6_I<ecruosecnereferfoycneuqerF 11000000
62>7_I<ecruosecnereferfoycneuqerF 11000000
72>8_I<ecruosecnereferfoycneuqerF 11000000
82>9_I<ecruosecnereferfoycneuqerF 11000000
92>01_I<ecruosecnereferfoycneuqerF 11000000
A2>11_I<ecruosecnereferfoycneuqerF
01000000
)0=BVLSTSM(
11000000
)1=BVLSTSM(
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com31
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
B2
ycneuqerf_ecruos_fer_gfnc
)deunitnoc( >21_I<ecruosecnereferfoycneuqerF 10000000
C2 >31_I<ecruosecnereferfoycneuqerF 10000000
D2 >41_I<ecruosecnereferfoycneuqerF 10000000
_secruos_etomer_sts_gfnc
dilav
aniecivedrehtoehtotdeilppussecruosecnereferehtfosutatsehtsdlohretsigersihT
ehT.retsigerdilav_secruos_stss'ecivedrehtoehtfoypocasitI.noitarugifnocevals/retsam
.msinahcemnoitcetorpehtfotrapsiretsiger
03 >1_I<:>8_I<secruosecnerefeR)0:7(stiB 11111111
13 desunU)6:7(stiB
>9_I<:>41_I<secruosecnerefeR)0:5(stiB 111111XX
23
edom_gnitarepo_gfnc ehtybdetneserper,etatsgnitarepoderisedaotniecivedehtecrofotdesusiretsigersihT
etarepootenihcametatslortnocehtswolla)xeh(0eulaV.11erugiFninwohsseulavyranib
.yllacitamotua
desunU)3:7(stiB
)11erugiFrepsa(etatsgnitarepoderiseD)0:2(stiB
000XXXXX
33
noitceles_fer_gfnc ,ecruosecnerefertupniralucitrapatcelesotecivedehtecrofotdesusiretsigersihT
ottupnidetcelesehtsesiaryliraropmetretsigersihtotgnitirW.ytiroirpstifoevitcepserri
edomevitreverdna,'1'ytiroirphtiwdemmargorpydaerlasitupnirehtoondedivorP.'1'ytiroirp
.detceleseblliwecruossiht,nosi
desunU)4:7(stiB
dna,noitcelesecrofehtselbasid1111dna0000(ecruosecnereferderiseD)0:3(stiB
)1111sitluafed,secruosllafonoitcelescitamotuaswolla
1111XXXX
43
edom_gfnc :wolebdeliatedsa,sdleifnoitarugifnoclaudividnilarevessniatnocretsigersihT
7tiB
siecruosehtnehwylnodelbaneeblliwcnySzHk2lanretxE:elbanecnySzHk2otuA1=
)tluafed(delbasideblliwtiesiwrehtO.zHM84.6otdekcol
sa,retsigersihtfo3tibgnisunoitcnufsihtslortnocresuehT:elbasidcnySzHk2otuA0=
wolebdebircsed
6tiB
)tluafed(sdnoces001retfatuoemitlliwmralaesahpehT:elbanetuoemiTmralAesahP1=
ybteserebtsumdnatuoemittonlliwmralaesahpehT:elbasidtuoemiTmralAesahP0=
erawtfos
5tiB
lanretxeehtfoegdegnisirehtotecnereferlliwecivedehT:detcelesegdEkcolCgnisiR1=
langisrotallicsolatsyrczHM8.21
lanretxeehtfoegdegnillafehtotecnereferlliwecivedehT:detcelesegdEegdegnillaF0=
)tluafed(langisrotallicsolatsyrczHM8.21
4tiB
ehtniderotseulavtesfforevodloHehttpodalliwecivedehT:elbanetesfforevodloH1=
revodloHniycneuqerfehttesotredroni,retsigertesffo_revodloh_gfnc
ehtezeerflliwrevodloHdnaeulavehterongilliwecivedehT:elbasidtesfforevodloH0=
)tluafed(edomrevodloHgniretnenoLLPDehtfoycneuqerf
3tiB
detarenegyllanretnistifoesahpehtngilalliwecivedehT:elbanEcnySzHk2lanretxE1=
langisehtfotahthtiw)zHk2(langiscnySemarF-itluMdna)zHk8(langiscnySemarF
rehtonamorftuptuozHM84.6aotdekcolebdluohsecivedehT.nipK2cnySehtotdeilppus
.0158SCA
.nipk2cnySehterongilliwecivedehT:elbasiDcnySzHk2lanretxE0=
00010011
)0=BVLSTSM(
)0=BHDSNOS(
00110011
)0=BVLSTSM(
)1=BHDSNOS(
01000011
)1=BVLSTSM(
)0=BHDSNOS(
01100011
)1=BVLSTSM(
)1=BHDSNOS(
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com32
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
43
edom_gfnc
)deunitnoc(
:wolebdeliatedsa,sdleifnoitarugifnoclaudividnilarevessniatnocretsigersihT
2tiB
ehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edoMTENOS1=
zHk4451ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'eulav
eulavehtneviglennahctupniynafoycneuqerftupniehtstcepxeecivedehT:edoMHDS0=
.zHk8402ebotretsigerycneuqerf_ecruos_fer_gfncehtni'1000'
gnittessihT.BHDSNOSnipfognittesehtotdetluafedeblliweulavtibehtteserroputratstA
eulavtibsihtgnignahcybderetlaebyltneuqesbusnac
1tiB
fosnoisicedevitcaehtekamdnaedomretsamehttpodalliwecivedehT:edoMretsaM1=
,nipehtybdenimretedsieulavtluafedstitub,elbaetirwsitibsihT.cte,tcelesotecruoshcihw
BVLSTSM
.ecivedretsamehtwolloflliwdnaedomevalsehttpodalliwecivedehT:edoMevalS0=
gnittessihT.BVLSTSMnipfognittesehtotdetluafedeblliweulavtibehtteserroputratstA
eulavtibsihtgnignahcybderetlaebyltneuqesbusnac
0tiB
ninwohselbaliavaecruosytiroirptsehgihehtothctiwslliwecivedehT:edoMevitreveR1=
)4:7(stib,retsigerelbat_ytiroirp_stseht
)tluafed(ecruosdetcelesyltneserpehtniaterlliwecivedehT:edoMevitreveRnoN0=
00010011
)0=BVLSTSM(
)0=BHDSNOS(
00110011
)0=BVLSTSM(
)1=BHDSNOS(
01000011
)1=BVLSTSM(
)0=BHDSNOS(
01100011
)1=BVLSTSM(
)1=BHDSNOS(
53
4T_gfnc :noitcelesecruostupnidna)9OT/8OTnotuptuo(4T_LLPDslortnocsihT
desunU)6:7(stiB
5tiB
)dehcleuqs(ffodenrutsi4T_LLPD1=
)tluafed(nosi4T_LLPD0=
:9OT/8OTstuptuosdeefecruos)0Tro4T(LLPDhcihwstceleS4tiB
9OTdna8OTstuptuootdefsituptuo0T_LLPD1=
9OTdna8OTstuptuootdefsituptuo4T_LLPD0=
rofdleifsihtninwohsecruosehtothctiwslliwecivedehT.noitcelesecruostupnI)0:3(stiB
Tehtfonoitarenegeht
4TUO
Tevitcaytiroirptsehgihehttceleslliwti'0'fI.langis
1NI
.
000000XX
63
stupni_laitnereffid_gfnc :swollofsa,sdleifnoitarugifnoclaudividniowtsniatnocretsigersihT
desunU)2:7(stiB
1tiB
)tluafeD(elbitapmoc-LCEPsi>6_I<tupnI1=
elbitapmoc-SDVLsi>6_I<tupnI0=
0tiB
elbitapmoc-LCEPsi>5_I<tupnI1=
)tluafeD(elbitapmoc-SDVLsi>5_I<tupnI0=
01XXXXXX
73
snip_lesPu_gfnc rewoptadetcelesepytrossecorporcimehtgnitacidnieulavasnruterretsigerylnodaersihT
LESPUehtfI.)06-85snip(snipLESPUehtfonoitarugifnocehtybtessisihT.teserropu
sihttub,ecalpekatlliwtceffeongnitareposiecivedehtelihwdegnahcsinoitarugifnocnip
ehttadetnemelpmieblliwtahtnoitarugifnocehtgnitacidnios,egnahctahttcelferlliwretsiger
.teserropurewoptxen
.F7retsigerhguoht,lanoitarepoecivedehthtiwdegnahcebnacepytrossecorporcimehT
.desunU)3:7(stiB
epytrossecorporciM)0:2(tiB
)delbasidecafretni(FFO000
MORPE100
DEXELPITLUM010
LETNI110
ALOROTOM001
LAIRES101
)delbasidecafretni(FFO011
)delbasidecafretni(FFO111
=)3:7(stiB
XXXXX
=)0:2(stiB
LESPU
nip
noitarugifnoc
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com33
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
83
elbane_tuptuo_0T_gfnc :swollofsa,sdleifnoitarugifnoclaudividnilarevessniatnocretsigersihT
7tiB
*zHM40.113ottesycneuqerftuptuo60T1=
)tluafed()4:5(A3sserddAybtesycneuqerftuptuo60T0=
6tiB
2giDrofdetcelesedomTENOS1=
)tluafed(2giDrofdetcelesedomHDS0=
seicneuqerf_tuptuo_0T_gfncretsigerees-
5tiB
1giDrofdetcelesedomTENOS1=
)tluafed(1giDrofdetcelesedomHDS0=
seicneuqerf_tuptuo_0T_gfncretsigerees-
4tiB
)tluafed(delbane10TtroptuptuO1=
**delbasid10TtroptuptuO0=
seicneuqerf_tuptuo_0T_gfncretsigerees-
3tiB
)tluafed(delbane20TtroptuptuO1=
**delbasid20TtroptuptuO0=
seicneuqerf_tuptuo_0T_gfncretsigerees-
2tiB
)tluafed()*zHM44.91(delbane30TtroptuptuO1=
**delbasid30TtroptuptuO0=
1tiB
)tluafed()*zHM88.83(delbane40TtroptuptuO1=
**delbasid40TtroptuptuO0=
0tiB
)tluafed()*zHM67.77(delbane50TtroptuptuO1=
**delbasid50TtroptuptuO0=
:setoN
ehtfotibetairporppaehtfi1T/1EfoselpitlumotdegnahceraseicneuqerfstluafeD*
1lortnoc_gfnc .8elbaTees,sliatedroF.1ottessiretsiger
.)detats-irTtonsitropeht(eulavcigolcitatsasdlohtroptuptuoehttahtsnaem"delbasiD"**
11111000
93
seicneuqerf_tuptuo_0T_gfnc *.wolebdeliatedsa,troptuptuohcaerofsnoitcelesycneuqerfehtsdlohretsigersihT
1giD)4:5(stiB2giD)6:7(stiB
)tluafed(zHk8402/zHk445100)tluafed(zHk8402/zHk445100
zHk6904/zHk880310zHk6904/zHk880310
zHk2918/zHk671601zHk2918/zHk671601
zHk48361/zHk2532111zHk48361/zHk2532111
10T)0:1(stiB20T)2:3(stiB
)tluafed(zHM84.600zHM29.5200
zHM29.5210zHM48.1510
zHM44.9101)tluafed(zHM88.8301
1giD112giD11
ehtaivdetceleserayehT.HDS/TENOSrofnwohseraseulavycneuqerfeht2giD/1giDroF
.elbane_tuptuo_0T_gfncretsigernistibHDS/TENOS
:etoN
ehtfotibetairporppaehtfi1T/1EfoselpitlumotdegnahceraseicneuqerfevobaehT*
1lortnoc_gfnc .8elbaTees,sliatedroF.1ottessiretsiger
00010000
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com34
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
A3
stuptuo_laitnereffid_gfnc laitnereffidehtrofepytygolonhcet-tropehtdnasnoitcelesycneuqerfehtsdlohretsigersihT
.wolebdeliatedsa,70Tdna60T,stuptuo
60T)4:5(stiB70T)6:7(stiB
)tluafed(zHM88.8300zHM25.55100
zHM44.9110zHM48.1510
zHM25.55101zHM67.7701
1giD11)tluafed(zHM44.9111
60T)0:1(70T)2:3(stiB
delbasidtroP00delbasidtroP00
elbitapmoc-LCEP10)tluafed(elbitapmoc-LCEP10
)tluafed(elbitapmoc-SDVL01elbitapmoc-SDVL01
desunU11desunU11
01100011
B3
htdiwdnab_gfnc nehW.LLPlatigidehtfonoitarepoehtlortnocotdesunoitamrofnisniatnocretsigersihT
gnitteshtdiwdnabnoitisiuqcaehtesulliwLLPDeht,citamotuaottessinoitceleshtdiwdnab
,launamottesnehW.kcolninehwgnitteshtdiwdnabdekcol/lamronehtdna,kcolfotuonehw
.gnitteshtdiwdnabdekcol/lamronehtesuyawlalliwLLPDeht
7tiB
noitarepocitamotuA1=
)tluafed(noitarepolaunaM0=
htdiwdnabpooL)0:2(tiBhtdiwdnabnoitisiuqcA)4:6(stiB
zH1.0000zH1.0000
zH3.0100zH3.0100
zH5.0010zH5.0010
zH0.1110zH0.1110
zH0.2001zH0.2001
)tluafed(zH0.4101zH0.4101
zH0.8011zH0.8011
zH71111)tluafed(zH71111
desunU3tiB
101X1110
ycneuqerf_lanimon_gfnc latsyrcehtfotesfforofnoitasnepmocgniwollaregetnidengisnutib61asdlohretsigersihT
tluafeD.noitarbilaCycneuqerFlatsyrCnoitceseeS.zHM8.21lanimonehtmorfrotallicso
.tnemtsujdampp0nistluser
C3 )0:7(stibycneuqerf_lanimon_gfnc)0:7(stiB 10011001
D3 )8:51(stibycneuqerf_lanimon_gfnc)0:7(stiB 10011001
tesffo_revodloh_gfnc nachcihw,eulavtesfforevodlohehtgnitneserper,regetnidengistib91asdlohretsigersihT
tibdelbanetesfforevodlohehtaivdelbanenehwycneuqerfedomrevodlohehttesotdesueb
.retsigeredom_gfncehtni
E3 )0:7(stibtesffo_revodloh_gfnc)0:7(stiB 00000000
F3 )8:51(stibtesffo_revodloh_gfnc)0:7(stiB 00000000
04
7tiB
23morfnekatebotegarevaycneuqerfehtselbanesihT.elbanegnigarevArevodloHotuA1=
ebotdemrifnocneebsahycneuqerfehtretfa,sdnoces23yrevenekatelpmasenO.selpmas
otdekcolyltnerrucehtfoyrotsihetunim71asevigsihT.srotinomycneuqerfehtybdnab-ni
.)tluafed(.revodloHniesurofecruosecnerefer
.delbasidgnigarevArevodloHotuA0=
desunU)3:6(stiB
)61:81(stibtesffo_revodloh_gfnc)0:2(stiB
000XXXX1
timil_qerf_gfnc tI.LLPDehtfoegnarni-llupehtgnitneserperregetnidengisnutib01asdlohretsigersihT
ehtgnisu,noitacilppaehtnidetnemelpmilatsyrcfoycaruccaehtotgnidroccatesebdluohs
:alumrofgniwollof
ro74610.0+)5870.0xtimil_qerf_gfnc(=)mpp(-/+egnarycneuqerF
5870.0/)74610.0-)mpp(-/+egnarycneuqerF(=timil_qerf_gfnc
nehweulavtluafeD.mpp3.9±siwoldeitrodetcennocnutfelsiWSCRSnehweulavtluafeD
.mpp08±dnuorafoegnarllufehtsihgihsiWSCRS
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com35
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
14
timil_qerf_gfnc
)deunitnoc( )0:7(stibtimil_qerf_gfnc)0:7(stiB
10101110
)wolWSCRS(
11111111
)hgihWSCRS(
24
desunU)2:7(stiB
)8:9(stibtimil_qerf_gfnc)0:1(stiB
00XXXXXX
)wolWSCRS(
11XXXXXX
)hgihWSCRS(
ksam-tpurretni_gfnc sutatstpurretniehtrehtieniecruostpurretnietairporppaehtelbasidlliw'0'ottesfi,tibhcaE
.retsigerstupni_4T_stsehtroretsiger
34 )0:7(stibksam_tpurretni_gfnc)0:7(stiB 11111111
44 )8:51(stibksam_tpurretni_gfnc)0:7(stiB 11111111
54 desunU)5:7(stiB
)61:02(stibksam_tpurretni_gfnc)0:4(stiB 11111XXX
nvid_qerf_gfnc esahpehttegot>1_I<:>41_I<otdeilppatupniynarofrosividehtsadesusiregetnitib41sihT
esuaclliwsihT.1ottestibNviDehthtiwstupnirofevitcaylnO.derisedycneuqerfgnikcol
:otNmargorp.g.e,nosirapmocesahpotroirp)1+N(ybdedividebotycneuqerftupnieht
1-)zHk8/)qerftupni((
ehtotycneuqerftopstsesolcehttcelferottesebdluohsstibycneuqerf_ecruos_ecnereferehT
.ycneuqerftupniehtnahtrewolebtsumtub,ycneuqerftupni
64)0:7(stibnvid_qerf_gfnc)0:7(stiB 00000000
74 desunU)6:7(stiB
)8:31(stibnvid_qerf_gfnc)0:5(stiB 000000XX
84
srotinom_gfnc .tuodliubesahpfolortnocdnasrotinomfonoitarugifnoclabolgswollaretsigertib7sihT
desunU7tiB
6tiB
ODTnipfotuonevirdebottpurretnideliaf_fer_niamehtfoeulavselbanE1=
)tluafed(ODTnipfotuonevirdgniebmorftpurretnideliaf_fer_niamehtfoeulavselbasiD0=
5tiB
yltnerrucehtnomralaytivitcaninaesiarotLLPDehtswollA:gnihctiwstsafartluselbanE1=
gnihctiwStsaFartlUnonoitceseeS.selcycwefaylnognissimretfaecruosdetceles
)tluafed(noitarepolamroN0=
4tiB
wolWSCRSfi>4_I<ro,hgihWSCRSnipfi>3_I<otgnikcolsecroF1=
delbanelortnoccitamotuadna,derongiWSCRSniP0=
3tiB
tesffoesahptuptuoottupnitnerrucehthtiwpihsnoitaleresahptuptuoehtezeerflliW1=
)tluafed()edomtuodliubesahplamroN(tesffoesahptuptuoottupninisegnahcswollA0=
2tiB
)tluafed(tuodliubesahpselbanE1=
°0otkcolsyawlalliwLLPD0=
erasrehto,)tluafed(mpp51=10,ffo=00-srotinomycneuqerfgnirugifnocrofera)0:1(stiB
.esuerutufrofdevreser
1010000X
)wolWSCRS(
1010100X
)hgihWSCRS(
05 0dlohserht_reppu_vitca_gfnc desiarebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehttes)0:7(stiB 01100000
15 0dlohserht_rewol_vitca_gfnc deraelcebotmralaytivitcaehtsesuactahttekcubykaelehtnieulavehttes)0:7(stiB 00100000
25 0ezis_tekcub_gfnc tupnievitcaninanevighcaernactekcubykaelehttahteulavmumixamehttes)0:7(stiB 00010000
35
0etar_yaced_gfncdesunU)2:7(stiB
yreverof1+sitekcubehtfoetar-llifehT.tekcubykaelehtfoetarkaelehtlortnoc)0:1(stiB
elbammargorpsietaryacedehT.ytivitcanifolevelemosdecneirepxesahtahtlavretnism821
,01,10,00foseulavgnisuyb1:8,1:4,1:2,1:1ottesebnacoitarehT.etarllifehtfosoitarni
tekcubehT.erutannistekcubykaeleurttonerastekcubeseht,revewoH.ylevitcepser11
ehtebnacsetaryaceddnallifehttahtsnaemsihT.dellifgniebsitinehwgnikaelspots
saetaremasehttadesingocerebnactupnievitcanatahttceffetenehthtiw)1:1=00(emas
.enoevitcanina
10XXXXXX
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com36
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Selection of Input Reference ClockSelection of Input Reference Clock
Selection of Input Reference ClockSelection of Input Reference Clock
Selection of Input Reference Clock
SourceSource
SourceSource
Source
Under normal operation, the input reference
sources are selected automatically by an order
of priority. But, for special circumstances, such
as chip or board testing, the selection may be
forced by configuration.
Automatic operation selects a reference source
based on its pre-defined priority and its current
availability. A table is maintained which lists all
reference sources in the order of priority. This
is initially downloaded into the ACS8510 via
the microprocessor interface by the Network
Manager, and is subsequently modified by the
results of the ongoing quality monitoring. In this
way, when all the defined sources are active
and valid, the source with the highest
programmed priority is selected but, if this
source fails, the next-highest source is selected,
and so on.
Restoration of repaired reference sources is
handled carefully to avoid inadvertent
disturbance of the output clock. The ACS8510
has two modes of operation; Revertive and
Non-Revertive. In Revertive mode, if a re-
validated (or newly validated) source has a
higher priority than the reference source which
is currently selected, a switch over will take
place. Many applications prefer to minimise the
clock switching events and choose Non-
Revertive mode. In Non-Revertive mode , when
a re-validated (or newly validated) source has a
higher priority then the selected source will be
maintained. The re-validation of the reference
source will be flagged in the sts_sources_valid
register and, if not masked, will generate an
interrupt. Selection of the re-validated source
can only take place under software control -
the software should briefly enable Revertive
mode to affect a switch-over to the higher
priority source. If the selected source fails under
these conditions the device will indicate that it
is still locked to the failed reference. It will not
select the higher priority source until instructed
to do so by the software; by briefly setting the
Revertive mode bit. When there is a reference
available with higher priority than the selected
reference, there will be NO change of reference
source as long as the Non-Revertive mode
remains on AND the device will remain indicating
.rddA
)xeH(
emaNretemaraPnoitpircseDtluafeD
)nib(eulaV
451dlohserht_reppu_vitca_gfnc1tekcubroftub05retsigerrofsA 01100000
551dlohserht_rewol_vitca_gfnc1tekcubroftub15retsigerrofsA 00100000
651ezis_tekcub_gfnc1tekcubroftub25retsigerrofsA 00010000
751etar_yaced_gfnc1tekcubroftub35retsigerrofsA 10XXXXXX
852dlohserht_reppu_vitca_gfnc2tekcubroftub05retsigerrofsA 01100000
952dlohserht_rewol_vitca_gfnc2tekcubroftub15retsigerrofsA 00100000
A52ezis_tekcub_gfnc2tekcubroftub25retsigerrofsA 00010000
B52etar_yaced_gfnc2tekcubroftub35retsigerrofsA 10XXXXXX
C53dlohserht_reppu_vitca_gfnc3tekcubroftub05retsigerrofsA 01100000
D53dlohserht_rewol_vitca_gfnc3tekcubroftub15retsigerrofsA 00100000
E53ezis_tekcub_gfnc3tekcubroftub25retsigerrofsA 00010000
F53etar_yaced_gfnc3tekcubroftub35retsigerrofsA 10XXXXXX
F7
lesPu_gfncdesunU)3:7(stiB
lliwecafretniehT.ecafretnirossecorporcimehtfoedomehtegnahcotdesuebnac)0:2(stiB
73retsigeraivdaerebnacputesnipeht-)06-85snip(LESPUsnipehtsatesebyllaitini
.gnittessihtottluafedlliwecivedehtteserropurewoptA.)snip_lesPu_gfnc(
gnitroppus,putratsretfaedomrossecorporcimehtegnahcotdesuebnacretsigersihT
ehtputratstA.edomrehtonaaivgnitacinummocyltneuqesbusdnaMORPEmorfgnitoob
tsalehtsadna,sretsigerehtllarofsgnittesdemmargorp-erpehtdaolnwodlliwMORPE
sihttahtdednemmocersitI.retsigertsalsihthtiwecafretnifoegnahcehtnoitca,noitarepo
ecivedsihtfosnoisrevtneuqesbussa,snoitacilppaputratsMORPErofdesuylnosinoitcnuf
73retsigerninevigsaro9elbaTnidenifederastibehT.yawsihtninoitarepowollaylnoyam
.noitpircsedpamretsigerehtfo
=)3:7(stiB
XXXXX
=)0:2(stiB
tnednepedniP
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).Table 12. Register Map Description (continued).
Table 12. Register Map Description (continued).
www.semtech.com37
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
a locked state on the failed reference. This is
the case even if there are lower priority
references available or the currently selected
reference fails. When the ONLY valid reference
sources that are available have a lower priority
than the selected reference, a failure of the
selected reference will always trigger a switch-
over, regardless of whether Revertive or Non-
Revertive mode has been chosen.
Also, in a Master/Slave redundancy-protection
scheme, the Slave device(s) must follow the
Master device. The alignment of the Master
and Slave devices is part of the protection
mechanism. The availability of each source is
determined by a combination of local and
remote monitoring of each source. Each input
reference source supplied to each ACS8510
device is monitored locally and the results are
made available to other devices.
Forced Control SelectionForced Control Selection
Forced Control SelectionForced Control Selection
Forced Control Selection
A configuration register, cnfg_ref_selection,
controls both the choice of automatic or forced
selection and the selection itself (when forced
selection is required). The forced selection of
an input reference source occurs when the
cnfg_ref_selection variable contains a non-zero
value, the value then representing the input
port required to be selected. This is not the
normal mode of operation, and the
cnfg_ref_selection variable is defaulted to the
all-one value on reset, thereby adopting the
automatic selection of the reference source.
Automatic Control SelectionAutomatic Control Selection
Automatic Control SelectionAutomatic Control Selection
Automatic Control Selection
When an automatic selection is required, the
cnfg_ref_selection register must be set to all
zero or all one. The configuration registers,
cnfg_ref_selection_priority, held in the µP port
block, consists of seven, 8 bit registers
organised as one 4 bit register per input
reference port. Each register holds a 4-bit value
which represents the desired priority of that
particular port. Unused ports should be given
the value, '0000' or '1111', in the relevant
register to indicate they are not to be included
in the priority table. On power-up, or following a
reset, the whole of the configuration file will be
defaulted to the values defined by Table 4. The
selection priority values are all relative to each
other, with lower-valued numbers taking higher
priorities. Each reference source should be given
a unique number, the valid values are 1 to 15
(dec). A value of 0 disables the reference
source. However if two or more inputs are given
the same priority number those inputs will be
selected on a first in, first out basis. If the first
of two same priority number sources goes
invalid the second will be switched in. If the
first then becomes valid again, it becomes the
second source on the first in, first out basis,
and there will not be a switch. If a third source
with the same priority number as the other two
becomes valid, it joins the priority list on the
same first in, first out basis. There is no implied
priority based on the channel numbers.
The input port <I_11> is for the connection of
the synchronous clock of the TOUT0 output of
the Master device (or the active-Slave device),
to be used to align the TOUT0 output with the
Master (or active-Slave) device if this device is
acting in a subordinate-Slave or subordinate-
Master role.
Ultra Fast SwitchingUltra Fast Switching
Ultra Fast SwitchingUltra Fast Switching
Ultra Fast Switching
A reference source is normally disqualified after
the leaky bucket monitor thresholds have been
crossed. An option for a faster disqualification
has been implemented, whereby if register 48H,
bit 5 (Ultra Fast Switching), is set then a loss of
activity of just a few reference clock cycles will
set the ‘no activity alarm’ and cause a
reference switch. This can be chosen to cause
an interrupt to occur instead of or as well as
causing the reference switch. The sts_interrupts
register 05 Hex Bit 14 (main_ref_failed) of the
interrupt status register is used to flag inactivity
on the reference that the device is locked to
much faster than the activity monitors can
support. If bit 6 of the cnfg_monitors register
(flag ref loss on TDO) is set, then the state of
this bit is driven onto the TDO pin of the device.
www.semtech.com38
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
The flagging of the loss of the main reference
failure on TDO is simply allowing the status of
the sts_interrupt bit 14 to be reflected in the
state of the TDO output pin. The pin will,
therefore remain High until the interrupt is
cleared. This functionality is not enabled by
default so the usual JTAG functions can be
used. When JTAG is normally used straight out
of power-up, then this feature will have no
bearing on the functionality. The TDO flagging
feature will need to be disabled if JTAG is not
enabled on power-up and the feature has since
been enabled.
When the TDO output from the ACS8510 is
connected to the TDI pin of the next device in
the JTAG scan chain, the implementation should
be such that a logic change caused by the
action of the interrupt on the TDI input should
not effect the operation when JTAG is not
active.
External Protection SwitchingExternal Protection Switching
External Protection SwitchingExternal Protection Switching
External Protection Switching
Fast external switching between inputs <I_3>
and <I_4> can also be triggered directly from a
dedicated pin (SRCSW). This mode can be
activated either by holding this pin high during
reset, or by writing to bit 4 of register address
48Hex. Once external protection switching is
enabled, then the value of this pin directly
selects either <I_3> (SRCSW high) or <I_4>
(SRCSW low). If this mode is activated at reset
by pulling the SRCSW pin high, then it configures
the default frequency tolerance of <I_3> and
<I_4> to +/- 80 ppm (register address 41Hex
and 42Hex). Any of these registers can be
subsequently set by external software if
required.
When external protection switching is enabled,
the device will operate as a simple switch. All
clock monitoring is disabled and the DPLL will
simply be forced to try to lock on to the
indicated reference source.
Clock Quality MonitoringClock Quality Monitoring
Clock Quality MonitoringClock Quality Monitoring
Clock Quality Monitoring
Clock quality is monitored and used to modify
the priority tables of the local and remote
ACS8510 devices. The following parameters are
monitored:
1. Activity (toggling)
2. Frequency (This monitoring is only performed when
there is no irregular operation of the clock or loss of clock
condition)
In addition, input ports <I_1> and <I_2> carry
AMI-encoded composite clocks which are
reference
leaky bucket
source
response
alarm
bucket_size
upper_threshold
lower_threshold
(all programmable)programmable fall slopes
inactivities/irregularities
Figure 9. Inactivity and Irregularity MonitoringFigure 9. Inactivity and Irregularity Monitoring
Figure 9. Inactivity and Irregularity MonitoringFigure 9. Inactivity and Irregularity Monitoring
Figure 9. Inactivity and Irregularity Monitoring
www.semtech.com39
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
monitored by the AMI-decoder blocks. Loss of
signal is declared by the decoders when either
the signal amplitude falls below +0.3 V or there
is no activity for 1 ms.
Any reference source which suffers a loss-of-
signal, loss-of-activity, loss-of-regularity or clock-
out-of-band condition will be declared as
unavailable.
Clock quality monitoring is a continuous process
which is used to identify clock problems. There
is a difference in dynamics between the
selected clock and the other reference clocks.
Anomalies occurring on non-selected reference
sources affect only that source's suitability for
selection, whereas anomalies occurring on the
selected clock could have a detrimental impact
on the accuracy of the output clock.
Anomalies, whether affecting signal purity or
signal frequency, could induce jitter or frequency
offsets in the output clock, leading to
anomalous behaviour. Anomalies on the
selected clock, therefore, have to be detected
as they occur and the phase locked loop must
be temporarily isolated until the clock is once
again pure. The clock monitoring process cannot
be used for this because the high degree of
accuracy required dictates that the process be
slow. To achieve the immediacy required by the
phase locked loop requires an alternative
mechanism. The phase locked loop itself
contains appropriate circuitry, based around the
phase detector, and isolates itself from the
selected reference source as soon as a signal
impurity is detected. It can likewise respond to
frequency offsets outside the permitted range
since these result in saturation of the phase
detector. When the phase locked loop is isolated
from the reference source, it is essentially
operating in a Holdover state; this is preferable
to feeding the loop with a standby source, either
temporarily or permanently, since excessive
phase excursions on the output clock are
avoided.
Anomalies detected by the phase detector are
integrated in a leaky bucket accumulator.
The time taken to raise an inactivity alarm on a reference source that has previously been fully active (leaky
bucket empty) will be:
(cnfg_activ_upper_threshold N)
8
where N is the number of the relevent leaky bucket configuration. If an input is intermittently inactive then
this time can be longer. The default setting of cnfg_activ_upper_threshold is 6, therefore the default time is
0.75 s.
The time taken to cancel the activity alarm on a previously completely inactive reference source is calculated
as:
2 x ((cnfg_bucket_size N) - (cnfg_activ_lower_thrshold N))
8
where N is the number of the relevent leaky bucket configuration in each case. The default setting are shown
in the following:
2 x (8-4) = 1.0 s
8
secs
secs
(cnfg_decay_rate N)
Leaky bucket timing Leaky bucket timing
Leaky bucket timing Leaky bucket timing
Leaky bucket timing
1
www.semtech.com40
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Occasional anomalies do not cause the
accumulator to cross the alarm setting
threshold, so the selected reference source is
retained. Persistent anomalies cause the alarm
setting threshold to be crossed and result in
the selected reference source being rejected.
Activity MonitoringActivity Monitoring
Activity MonitoringActivity Monitoring
Activity Monitoring
The ACS8510 has a combined inactivity and
irregularity monitor. The ACS8510 uses a ‘leaky
bucket’ accumulator, which is a digital circuit
which mimics the operation of an analog
integrator, in which input pulses increase the
output amplitude but die away over time. Such
integrators are used when alarms have to be
triggered either by fairly regular defect events,
which occur sufficiently close together, or by
defect events which occur in bursts. Events
which are sufficiently spread out should not
trigger the alarm. By adjusting the alarm setting
threshold, the point at which the alarm is
triggered can be controlled. The point at which
the alarm is cleared depends upon the decay
rate and the alarm clearing threshold. On the
alarm setting side, if several events occur close
together, each event adds to the amplitude
and the alarm will be triggered quickly; if events
occur a little more spread out, but still
sufficiently close together to overcome the
decay, the alarm will be triggered eventually. If
events occur at a rate which is not sufficient to
overcome the decay, the alarm will not be
triggered. On the alarm clearing side, if no defect
events occur for a sufficient time, the amplitude
will decay gradually and the alarm will be cleared
when the amplitude falls below the alarm
clearing threshold. The ability to decay the
amplitude over time allows the importance of
defect events to be reduced as time passes
by. This means that, in the case of isolated
events, the alarm will not be set, whereas, once
the alarm becomes set, it will be held on until
normal operation has persisted for a suitable
time (but if the operation is still erratic, the
alarm will remain set). See Figure 9.
The ‘leaky bucket’ accumulators are
programmable for size, alarm set & reset
thresholds and decay rate. Each source is
monitored over a 128 ms period. If, within a
128 ms period, an irregularity occurs that is
not deemed to be due to allowable jitter/wander,
then the accumulator is incremented. The
accumulator will continue to increment up to
the point that it reaches the programmed
bucket size. The ‘fill rate’ of the leaky bucket
is, therefore, 8 units/second. The ‘leak rate’
of the leaky bucket is programmable to be in
multiples of the fill rate (x1, x0.5, x0.25 and
x0.125) to give a programmable leak rate from
8 units/sec down to 1 unit/sec. A conflict
between trying to ‘leak’ at the same time as a
‘fill’ is avoided by preventing a ‘leak’ when a
‘fill’ event occurs.
Disqualification of a non-selected reference
source is based on inactivity, or on an out of
band result from the frequency monitors. The
currently selected reference source can be
disqualified for phase, frequency, inactivity or if
the source is outside the DPLL lock range. If
the currently selected reference source is
disqualified, the next highest priority, active
reference source is selected.
Frequency MonitoringFrequency Monitoring
Frequency MonitoringFrequency Monitoring
Frequency Monitoring
The ACS8510 performs frequency monitoring
to identify reference sources which have drifted
outside the acceptable frequency range of
+/- 16.6 ppm (measured with respect to the
output clock). The sts_reference_sources out-
of-band alarm for a particular reference source
is raised when the reference source is outside
the acceptable frequency range. The ACS8510
DPLL has a programmable frequency limit of
+/- 80 ppm. If the range is programmed to be
> 16.6 ppm, the frequency monitors should be
disabled so the input reference source is not
automatically rejected as out of frequency
range.
www.semtech.com41
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Modes of OperationModes of Operation
Modes of OperationModes of Operation
Modes of Operation
The ACS8510 has three primary modes of
operation (Free-run, Locked and Holdover)
supported by three secondary, temporary
modes (Pre-Locked, Lost_Phase and Pre-
Locked2). These are shown in the State
Transition Diagram, Figure 11.
The ACS8510 can operate in Forced or
Automatic control. On reset, the ACS8510
reverts to Automatic Control, where transitions
between states are controlled completely
automatically. Forced Control can be invoked
by configuration, allowing transitions to be
performed under external control. This is not
the normal mode of operation, but is provided
for special occasions such as testing, or where
a high degree of hands-on control is required.
Free-run modeFree-run mode
Free-run modeFree-run mode
Free-run mode
The Free-run mode is typically used following a
power-on-reset or a device reset before
network synchronization has been achieved. In
the Free-run mode, the timing and
synchronization signals generated from the
ACS8510 are based on the Master clock
frequency provided from the external oscillator
and are not synchronized to an input reference
source. The frequency of the output clock is a
fixed multiple of the frequency of the external
oscillator, and the accuracy of the output clock
is equal to the accuracy of the Master clock.
The transition from Free-run to Pre-locked
occurs when the ACS8510 selects a reference
source.
Pre-Locked modePre-Locked mode
Pre-Locked modePre-Locked mode
Pre-Locked mode
The ACS8510 will enter the Locked state in a
maximum of 100 seconds, as defined by GR-
1244-CORE specification, if the selected
reference source is of good quality. If the
device cannot achieve lock within 100 seconds,
it reverts to Free-run mode and another
reference source is selected.
Locked modeLocked mode
Locked modeLocked mode
Locked mode
The Locked mode is used when an input
reference source has been selected and the
PLL has had time to lock. When the Locked
mode is achieved, the output signal is in phase
and locked to the selected input reference
source. The selected input reference source is
determined by the priority table. When the
ACS8510 is in Locked mode, the output
frequency and phase follows that of the
selected input reference source. Variations of
the external crystal frequency have a minimal
effect on the output frequency. Only the
minimum to maximum frequency range is
affected. Note that the term, 'in phase', is not
applied in the conventional sense when the
ACS8510 is used as a frequency translator (e.g.,
when the input frequency is 2.048 MHz and
the output frequency is 19.44 MHz) as the input
and output cycles will be constantly moving past
each other; however, this variation will itself be
cyclical over time unless the input and output
are not locked.
Lost_Phase modeLost_Phase mode
Lost_Phase modeLost_Phase mode
Lost_Phase mode
Lost-phase mode is entered when the current
phase error, as measured within the DPLL, is
larger than a preset limit (see register 04, bits
5:3), as a result of a frequency or phase
transient on the selected reference source.
This mode is similar in behavior to the Pre-locked
or Pre-locked(2) modes, although in this mode
the DPLL is attempting to regain lock to the same
reference rather than attempt lock to a new
reference.
If the DPLL cannot regain lock within 100 s, the
source is disqualified, and one of the following
transitions takes place:
1. Go to Pre-Locked(2);
- If a known-good standby source is available.
2. Go to Holdover;
- If no standby sources are available.
www.semtech.com42
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Holdover modeHoldover mode
Holdover modeHoldover mode
Holdover mode
The Holdover mode is used when the ACS8510
has been in Locked mode for long enough to
acquire stable frequency data, but the final
selected reference source has become
unavailable and a replacement has not yet been
qualified for selection.
In Holdover mode, the ACS8510 provides the
timing and synchronisation signals to maintain
the Network Element (NE), but they are not
phase locked to any input reference source.
The timing is based on a stored value of the
frequency ratio obtained during the last Locked
mode period.
To allow for further development of the way
the internal algorithm operates, and to allow
for customised switching behaviour, the switch
to and from Holdover state may be controlled
by external software.
The device must be set in either ‘manual’ mode
or ‘automatic’ mode:
1. Register cnfg_mode bit ‘holdover offset en’ set high
(manual mode).
The Holdover frequency is determined by the value in
register cnfg_holdover_offset. This is a 19 bit signed
number, with a LSB resolution of 0.0003 ppm, which gives
an adjustment range of ± 80 ppm. This value can be derived
from a reading of the register sts_curr_inc_offset (addr
0D, 0C and 07) which gives, in the same format, an
indication of the current output frequency deviation, which
would be read when the device is locked. If required, this
value could be read by an external microcontroller and
averaged over the time required. The averaged value could
then be fed to the cnfg_holdover_offset register ready for
setting of the averaged frequency value when the device
enters Holdover mode. The sts_curr_inc_offset value is
internally derived from the Digital Phase Locked Loop
(DPLL) integral path value, which already represents a well
averaged measure of the current frequency, depending on
the loop bandwidth selected.
2. Register cnfg_mode bit ‘holdover offset en’ set low
(automatic mode).
In automatic control, the device can be run in one of two
ways:
2.1 Register cnfg_holdover_offset register 40 bit 7 ‘auto
holdover averaging’ is set high. The value is averaged
internally over 32 samples at 32 seconds apart, giving the
average frequency over approximatley the last 20 minutes.
The proportional DPLL path is ignored so that recent signal
disturbances do not affect the Holdover frequency value.
If the device has been previously correctly locked, missing
pulses in the input clock stream fed to the SETS IC are
ignored, hence also avoiding any frequency disturbances
to the output frequency value when an input clock source
fails.
2.2 Register cnfg_holdover_offset register 40 bit 7 ‘auto
holdover averaging’ is set low. This simply freezes the DPLL
at the current frequency (as reported by the
sts_curr_inc_offset register). The proportional DPLL path
is ignored so that recent signal disturbances do not affect
the Holdover frequency value.
Automatic control with internal averaging (option
2.1) is the default condition.
If the TCXO frequency is varying due to
temperature fluctuations in the room, then the
instantaneous value can be different from the
average value, and then it may be possible to
exceed the 0.05 ppm limit (depending on how
extreme the temperature flucuations are). It is
advantageous to shield the TCXO to slow down
frequency changes due to drift and external
temperature fluctuations.
The frequency accuracy of Holdover mode has
to meet the ITU-T, ETSI and Telcordia
performance requirements. The performance
of the external oscillator clock is critical in this
mode, although only the frequency stability is
important - the stability of the output clock in
Holdover is directly related to the stability of
the external oscillator.
Pre-Locked(2) modePre-Locked(2) mode
Pre-Locked(2) modePre-Locked(2) mode
Pre-Locked(2) mode
This state is very similar to the Pre-Locked state.
It is entered from the Holdover state when a
reference source has been selected and applied
to the phase locked loop. It is also entered if
the device is operating in Revertive mode and
a higher-priority reference source is restored.
Upon applying a reference source to the phase
locked loop, the ACS8510 will enter the Locked
state in a maximum of 100 seconds, as defined
www.semtech.com43
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
by GR-1244-CORE specification, if the selected
reference source is of good quality.
If the device cannot achieve lock within 100
seconds, it reverts to Holdover mode and
another reference source is selected.
Protection FacilityProtection Facility
Protection FacilityProtection Facility
Protection Facility
The ACS8510 supports redundancy protection.
The primary functions of this include:
- Alignment of the priority tables of both Master
and Slave ACS8510 devices so as to align the
selection of reference sources of both Master
and Slave ACS8510 devices.
- Alignment of the phases of the 8 kHz and
2 kHz clocks in both Master and Slave
ACS8510 devices to within one cycle of the
77.76 MHz internal clock.
When two ACS8510 devices are to be used in
a redundancy-protection scheme within an NE,
one will be designated as the Master and the
other as the Slave. It is expected that an NE
will use the TOUT0 output for its internal
operations because the TOUT4 output is intended
to feed an SSU/BITS system. An SSU/BITS will
not be bothered by phase differences between
signals arriving from different sources because
it typically incorporates line build-out functions
to absorb phase differences on reference
inputs. This means that the phasing of the
composite clocks between two ACS8510
devices do not have to be mutually-aligned. The
same is not true, however, of the TOUT0 output
signals (T01 - T07, Frame clock and Multi-Frame
clock). It is usually important to align the phases
of all equivalent TOUT0 signals generated by
different sources so that switch-over from one
device to another does not affect the internal
operations of the NE. Both ACS8510 devices
will produce the same signals, which will be
routed around the NE to the various consumers
(clock sinks). With the possible exception of a
through-timing mode, the signals from the
Master device will be used by all consumers,
unless the Master device fails, when each
consumer will switch over to the signals
generated by the Slave device.
Switchover to a new TOUT0 clock should be as
hitless as possible. This requires the signals of
both ACS8510 devices to be phase aligned at
each consumer. Phase alignment requires
frequency alignment. To ensure that both
devices can generate output clocks locked to
the same source, both devices are supplied
with the same reference sources on the same
input ports and will have identical priority tables.
Failures of selected reference sources will result
in both ACS8510 devices making the same
updates to their priority tables as availability
information will be updated in both devices.
Although, in principle, the priority tables will be
the same if the same reference sources are
used on the same input port on each device, in
practice, this is only true if the reference
sources actually arrive at each device - failures
of a source seen only by one device and not by
the other, such as could be caused, for example,
by a backplane connector failure, would result
in the priority tables becoming misaligned. It is
thus necessary to force the priority tables to
be aligned under normal operating conditions
so that the devices can make the same
decisions - this can be achieved by loading the
availability seen by one device (via the
sts_reference_sources register) into the
cnfg_sts_remote_sources_valid register of the
other device. Another factor which could affect
hit-less switching is the frequency of the local
oscillator clock used by each ACS8510 device:
these clocks are not mutually aligned and,
whilst this has no impact on the frequency of
the output clocks during locked mode, it could
cause the output frequencies to diverge during
Holdover mode if no action were taken to avoid
it. In order to maintain alignment of the output
frequencies of each ACS8510 device even
www.semtech.com44
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
during Holdover, the Master device's 6.48 MHz
output is fed into the Slave device on its <I_11>
pin, whilst the Multi-Frame Sync (2 kHz) output
is fed to the Sync2k input of the Slave. In this
way, the Slave locks to the master's output
and remains locked whilst the Master moves
between operating states. Only when the
Master fails does the Slave use its own
reference inputs - should the Master have been
in the Holdover state, the Slave device will see
the same lack of reference sources and also
enter the Holdover state. This scheme also
provides a convenient way to phase-align all
TOUT0 output clocks in Master and Slave devices,
and also to detect the failure of the Master
device.
If a Master device fails, the Slave has to take
over responsibility for the generation of the
output clocks, including the 8 kHz and 2 kHz
Frame and Multi-Frame clocks. The Slave device
is also given responsibility for building the priority
table and performing the reference switching
operations. The Slave device, therefore, adopts
a more active role when the Master has failed.
The cnfg_mode register 34 (Hex) Bit 1 contains
the ‘Master/Slave’ control bit to determine the
designation of the device.
To restore redundancy protection, the Master
has to be repaired and replaced. When this
occurs, the new Master cannot immediately
adopt its normal role because it must not cause
phase hits on the output clocks. It has,
therefore, to adopt a subordinate role to the
active Slave device, at least until such time as
it has acquired alignment to the 8 kHz and
2 kHz frame and Multi-Frame clocks and the
priority table of the Slave device; then, when a
switch-back (restoration) is ordered, the Master
can take over responsibility. These activities, in
Master or Slave operation, are summarized in
Table 12 and described in detail in Application
Note AN-SETS-2.
Alignment of Priority Tables in Master and SlaveAlignment of Priority Tables in Master and Slave
Alignment of Priority Tables in Master and SlaveAlignment of Priority Tables in Master and Slave
Alignment of Priority Tables in Master and Slave
ACS8510ACS8510
ACS8510ACS8510
ACS8510
Correct protection will only be achieved by
connecting individual reference sources to the
same input ports on each device and priority
tables in each device must be aligned to each
other.
The Master device must take account of the
availability of each reference source seen by
another device and a Slave device must adopt
the same order of priority as the Master device
(except that the Slave's highest-priority input is
<I_11>). Both devices monitor the reference
sources and decide the availability of each
source; if the failure of a reference source is
seen by both devices, they will both update
their priority tables - however, if the reference
source failure is only seen by one device and
not by both, the priority tables could get out of
step: this could be catastrophic if it resulted in
two devices choosing different reference
sources since any slight differences in frequency
variation over time (e.g. wander) would mis-align
the phase of the 8 kHz Frame and 2 kHz Multi-
Frame clocks produced by the individual
devices, resulting in phase hits on switch-over.
It is therefore important that the same priority
table be built by each device, using the
reference source availability seen by each
device.
The monitoring of the reference sources
performed by a Master ACS8510 results in a
list of available sources being placed in a
sts_valid_sources register. This information is
used within the device as one of the masks
used to build the device's priority table. The
information is passed to the Slave device and
used to configure the cnfg_sts_remote_
sources_valid register so that it can use it as a
mask in building its own priority tables. The
information is passed between devices using
the microprocessor port.
www.semtech.com45
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Alignment of the Selection of Reference SourcesAlignment of the Selection of Reference Sources
Alignment of the Selection of Reference SourcesAlignment of the Selection of Reference Sources
Alignment of the Selection of Reference Sources
for Tfor T
for Tfor T
for TOUT4OUT4
OUT4OUT4
OUT4 Generation in the Master and Slave Generation in the Master and Slave
Generation in the Master and Slave Generation in the Master and Slave
Generation in the Master and Slave
ACS8510ACS8510
ACS8510ACS8510
ACS8510
As stated previously, there is no need to align
the phases of the TOUT4 outputs in Master and
Slave devices. There is a need, however, to
ensure that all devices select the same
reference source. But, since there is no
Holdover mode required for the generation of
the TOUT4 clock, and every reference source is
continuously monitored within each device, it is
permissible to rely on external intelligence to
command a switch-over to an alternative source
should the selected one fail. The time delay
involved in detecting the failure, indicating it to
the outside and selecting a new source, will
result only in the SSU/BITS entering its Holdover
mode for a short time.
Alignment of the Phases of the 8kHz and 2kHzAlignment of the Phases of the 8kHz and 2kHz
Alignment of the Phases of the 8kHz and 2kHzAlignment of the Phases of the 8kHz and 2kHz
Alignment of the Phases of the 8kHz and 2kHz
Clocks in both Master and Slave ACS8510Clocks in both Master and Slave ACS8510
Clocks in both Master and Slave ACS8510Clocks in both Master and Slave ACS8510
Clocks in both Master and Slave ACS8510
In addition to aligning the edges of the TOUT0
outputs of Master and Slave devices, it is
necessary to align the edges of the Frame and
Multi-Frame clocks. If this is not performed,
frame alignment may be lost in distant
equipment on switch-over to an alternative
device, resulting in anomalous network
operation of a very serious nature.
In accordance with the alignment mechanism
used with the main TOUT0 clock (described in the
opening paragraphs of this section), whereby
the 6.48 MHz output of the Master device is
supplied to the Slave device, the alignment of
both the 8 kHz and 2 kHz clocks is
accomplished (they are already synchronous to
the TOUT0 clocks) by feeding the 2 kHz clock of
the Master device into the Slave device. The
Multi-Frame Sync clock output of the Slave
device is also fed to the Sync2K input of the
Master device. Alignment of the Multi-Frame
Sync input occurs only when cnfg_mode
register, bit 3, address 34Hex External 2 kHz
Sync Enable is set to 1.
JTAGJTAG
JTAGJTAG
JTAG
The JTAG connections on the ACS8510 allow a
full boundary scan to be made. The JTAG
implementation is fully compliant to IEEE
1149.1, with the following minor exceptions,
and the user should refer to the standard for
further information.
1. The output boundary scan cells do not capture data
from the core, and so do not support EXTEST. However
this does not affect board testing.
2. In common with some other manufacturers, pin TRST
is internally pulled low to disable JTAG by default. The
standard is to pull high. The polarity of TRST is as the
standard: TRST high to enable JTAG boundary scan mode,
TRST low for normal operation.
3. The device does not support the optional tri-state
capability (HIGHZ). This will be supported on the next
revision of the device.
The JTAG timing diagram is shown in Figure 17.
PORBPORB
PORBPORB
PORB
The Power On Reset (PORB) pin resets the
device if forced Low for a power on reset to be
initiated. The reset is asynchronous, the
minimum Low pulse width is 5 ns. Reset is
needed to initialize all of the register values to
their defaults. Asserting Reset is required at
power on, and may be re-asserted at any time
to restore defaults. This is implemented most
simplistically by an external capacitor to GND
along with the internal pull-up resistor. The
ACS8510 is held in a reset state for 250 ms
after the PORB pin has been pulled High. In
normal operation PORB should be held High.
www.semtech.com46
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
otsecruos_feRotsecruos_feR otsecruos_feR otsecruos_feRotsecruos_feR
0158SCAretsaM0158SCAretsaM 0158SCAretsaM 0158SCAretsaM0158SCAretsaM
otsecruos_feRotsecruos_feR otsecruos_feR otsecruos_feRotsecruos_feR
0158SCAevalS0158SCAevalS 0158SCAevalS 0158SCAevalS0158SCAevalS
0158SCAretsaM0158SCAretsaM 0158SCAretsaM 0158SCAretsaM0158SCAretsaM
sutatssutats sutats sutatssutats
0158SCAevalS0158SCAevalS 0158SCAevalS 0158SCAevalS0158SCAevalS
sutatssutats sutats sutatssutats 0158SCAretsaM0158SCAretsaM 0158SCAretsaM 0158SCAretsaM0158SCAretsaM 0158SCAevalS0158SCAevalS 0158SCAevalS 0158SCAevalS0158SCAevalS
tuptuotuptuo tuptuo tuptuotuptuo stnemmoCstnemmoC stnemmoC stnemmoCstnemmoC
doogllAdoogllAdooGdooG)x_fer(dekcoLretsamotdekcoL1etoN
deliafemoSdeliafsrehtoemoSdooGdooG)y_fer(dekcoLretsamotdekcoL1etoN
dooGdooGdooGdeliaF)x_fer(dekcoLdaeD
dooGdooGdeliaFdooGdaeD)x_fer(dekcoL2etoN
dooGdooGdeliaFdeliaFdaeDdaeD
deliaFdeliaFdeliaFdooGrevodloHretsamotdekcoL3etoN
deliaFdeliaFdooGdeliaFrevodloHdaeD
deliaFdeliaFdeliaFdooGdaeDrevodloH
deliaFdeliaFdeliaFdeliaFdaeDdaeD
MASTER
MSTSLVB
I_1
I_2
I_3
I_11
I_14
SYNC2K
.
.
.
T
V
01
02
03
04
011
07
DD
T
T
T
T
T
r
MF Sync
.
.
.
T
I_11
SYNC2K
I_14
.
.
.
MF
T011
ync
S
r
.
.
.
07
MSTSLVB
I_3
I_2
I_1
TCXO
04
T
03
T
02
T
SLAVE
T01
TCXO
SEC1
SEC2
SEC3
SEC13
SEC14
SEC1
SEC2
SEC3
GND
6.48 MHz
6.48 MHz
SYNC2K_EN=1
34Bit3
.
.
..
.
.
.
.
.
.
.
.
Notes to Table 13Notes to Table 13
Notes to Table 13Notes to Table 13
Notes to Table 13
Note 1: Both ACS8510 must build a common priority table so that the Slave ACS8510 can select the same input reference
source as the Master ACS8510 if the Master fails (when the Master is OK, the Slave locks to the Master's output).
Note 2: Slave ACS8510 uses common priority table, built before Master ACS8510 failed - priority table can be modified as
status of the input reference sources changes
Note 3: Slave ACS8510 outputs must remain in phase with those of Master ACS8510
Figure 10. Master-Slave SchematicFigure 10. Master-Slave Schematic
Figure 10. Master-Slave SchematicFigure 10. Master-Slave Schematic
Figure 10. Master-Slave Schematic
Table 13. Master-Slave RelationshipTable 13. Master-Slave Relationship
Table 13. Master-Slave RelationshipTable 13. Master-Slave Relationship
Table 13. Master-Slave Relationship
www.semtech.com47
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
pre-locked
w ait for up to 100s
(state 110)
locked
keep ref
(state 100)
holdover
select ref
(state 010)
(2) all refs evaluated
&
at least one ref valid
(5) selected ref
phase l ocked
(3) no valid standby ref
&
(main ref invalid
or out of lock > 100s)
(14) al l r efs evaluated
&
at least one ref valid
pre-locked2
w ait for up to 100s
(state 101)
(10) selected source phase
locked
(6) no valid standby ref
&
main ref invalid
free-run
select ref
(state 001)
(1)Reset
Reference sources are flagged as 'valid' when
active, 'in-band' and have no phase alarm set.
All sources are continuously checked for
activity and frequency.
Only the main source is checked for phase.
A phase lock alarm is only raised on a
reference when that reference has lost phase
whilst being used as the main reference. The
micro-processor can reset the phase lock
alarm.
A source is considered to have phase locked
when it has been continuously in phase lock
for between 1 and 2 seconds
Lost phase
w ait for up to 100s
(state 111)
(7) phase lost
on m ain r ef
(8) phase
regained within
100s
(12) valid standby r ef
&
(main ref invalid
or out of lock > 100s)
(13) no valid standby ref
&
(main ref invalid
or out of lock > 100s)
(11) no valid standby ref
&
(main ref invalid
or out of lock > 100s)
(9) valid standby ref
&
[ main ref invalid or
(higher-priority ref valid
& in revertive mode) ]
(15) valid standby r ef
&
[ main ref invalid or
(higher-priority ref valid
& in revertive mode) or
out of lock >100s]
(4) valid standby ref
&
[ main ref invalid or
(higher-priority ref valid
& in revertive mode) or
out of lock >100s]
Figure 11. Automatic Mode Control State DiagramFigure 11. Automatic Mode Control State Diagram
Figure 11. Automatic Mode Control State DiagramFigure 11. Automatic Mode Control State Diagram
Figure 11. Automatic Mode Control State Diagram
www.semtech.com48
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Electrical Specification Electrical Specification
Electrical Specification Electrical Specification
Electrical Specification
Important NoteImportant Note
Important NoteImportant Note
Important Note: The ‘Absolute Maximum Ratings’ are stress ratings only, and functional operation
of the device at conditions other than those indicated in the ‘Operating Conditions’ sections of
this specification are not implied. Exposure to the absolute maximum ratings for an extended
period may reduce the reliability or useful lifetime of the product.
Table 14. Absolute Maximum RatingsTable 14. Absolute Maximum Ratings
Table 14. Absolute Maximum RatingsTable 14. Absolute Maximum Ratings
Table 14. Absolute Maximum Ratings
Table 15. Operating ConditionsTable 15. Operating Conditions
Table 15. Operating ConditionsTable 15. Operating Conditions
Table 15. Operating Conditions
PP
P
PPRETEMARARETEMARA RETEMARA RETEMARARETEMARA SS
S
SSLOBMYLOBMY LOBMY LOBMYLOBMY MM
M
MMNININININI MM
M
MMXAXAXAXAXA UU
U
UUSTINSTIN STIN STINSTIN
ppuSegatloVyl
V
DD
V,
D
V,+
A
,+1V
A
+2 V
DD
5.0-6.3V
egatloVtupnI
)snipylppus-non( niV- 5.5V
egatloVtuptuO
)snipylppus-non( tuoV- 5.5V
erutarepmeTgnitarepOtneibmA
egnaR T
A
04-+5C
erutarepmeTegarotST
rots
05-+05C
Table 16. DC Characteristics: TTL Input PortTable 16. DC Characteristics: TTL Input Port
Table 16. DC Characteristics: TTL Input PortTable 16. DC Characteristics: TTL Input Port
Table 16. DC Characteristics: TTL Input Port
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
tnerructupnII
ni
-- 01Aµ
Across all operating conditions, unless otherwise stated
PP
P
PPRETEMARARETEMARA RETEMARA RETEMARARETEMARA SS
S
SSLOBMYLOBMY LOBMY LOBMYLOBMY NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
)egatlovcd(ylppuSrewoP
VDD+2AV,+1AV,+DV,,+IMAV,
FFID_DDV
DDV0.33.36.3V
)egatlovcd(ylppuSrewoP
5DDV 5DDV0.30.5/3.35.5V
egnaRerutarepmettneibmAT
A
04--+5C
tnerrucylppuS
)tuptuozHM91eno-lacipyT(
DDI-011002Am
noitapissidrewoplatoTP
TOT
-063027Wm
www.semtech.com49
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 17. DC Characteristics: TTL Input Port with Internal Pull-upTable 17. DC Characteristics: TTL Input Port with Internal Pull-up
Table 17. DC Characteristics: TTL Input Port with Internal Pull-upTable 17. DC Characteristics: TTL Input Port with Internal Pull-up
Table 17. DC Characteristics: TTL Input Port with Internal Pull-up
Table 18. DC Characteristics: TTL Input Port with Internal Pull-downTable 18. DC Characteristics: TTL Input Port with Internal Pull-down
Table 18. DC Characteristics: TTL Input Port with Internal Pull-downTable 18. DC Characteristics: TTL Input Port with Internal Pull-down
Table 18. DC Characteristics: TTL Input Port with Internal Pull-down
Table 19. DC Characteristics: TTL Output PortTable 19. DC Characteristics: TTL Output Port
Table 19. DC Characteristics: TTL Output PortTable 19. DC Characteristics: TTL Output Port
Table 19. DC Characteristics: TTL Output Port
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
woLtuoV
Am4=loI loV0- 4.0V
hgiHtuoV
Am4=hoI hoV4.2- V
tnerrucevirDDI--4Am
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
rotsiserpu-lluPUP03-08k
tnerructupnII
ni
-- 021Aµ
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
V
ni
hgiHV
hi
0.2--V
V
ni
woLV
li
-- 8.0V
rotsisernwod-lluPDP03-08k
tnerructupnII
ni
-- 021Aµ
Across all operating conditions, unless otherwise stated
Across all operating conditions, unless otherwise stated
Across all operating conditions, unless otherwise stated
www.semtech.com50
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 20. DC Characteristics: PECL Input/Output PortTable 20. DC Characteristics: PECL Input/Output Port
Table 20. DC Characteristics: PECL Input/Output PortTable 20. DC Characteristics: PECL Input/Output Port
Table 20. DC Characteristics: PECL Input/Output Port
Notes to Table 20Notes to Table 20
Notes to Table 20Notes to Table 20
Notes to Table 20
Unused differential input ports should be left floating and set in LVDS mode, or the positive and negative inputs tied
to VDD and GND respectively.
Note 1. Assuming a differential input voltage of at least 100 mV.
Note 2. Unused differential input terminated to VDD-1.4 V.
Note 3. With 50 load on each pin to VDD-2 V. i.e. 82 to GND and 130 to VDD.
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
egatlovwoLtupnILCEP
stupnilaitnereffiD)1etoN(
V
LCEPLI
-DDV5.2- 5.0-DDVV
egatlovhgiHtupnILCEP
stupnilaitnereffiD)1etoN(
V
LCEPHI
-DDV4.2- 4.0-DDVV
egatlovlaitnereffiDtupnIV
LCEPDI
1.0-4.1V
egatlovwoLtupnILCEP
tupnidedneelgniS)2etoN(
V
S_LCEPLI
-DDV4.2- 5.1-DDVV
egatlovhgiHtupnILCEP
tupnidedneelgniS)2etoN(
V
S_LCEPHI
1-DDV3.- 5.0-DDVV
tnerruchgiHtupnI
egatlovlaitnereffidtupnI
V
DI
v4.1=
I
LCEPHI
01--01+Aµ
tnerrucwoLtupnI
egatlovlaitnereffidtupnI
V
DI
v4.1=
I
LCEPLI
01--01+Aµ
egatlovwoLtuptuOLCEP
)3etoN(
V
LCEPLO
-DDV01.2- 26.1-DDVV
egatlovhgiHtuptuOLCEP
)3etoN(
V
LCEPHO
52.1-DDV-88.0-DDVV
egatlovlaitnereffiDtuptuOLCEP
)1etoN(
V
LCEPDO
085-009Vm
Across all operating conditions, unless otherwise stated
www.semtech.com51
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
130R
I6POS
I6NEG
I5NEG
I5POS T06POS
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
ZO=50
ZO=50
82R
DD
V
82R
130R
ZO=50
ZO=50
130R
82R
82R
130R
DD
V
DD
82R
130R
V
82R
130R
130R
82R
82R
130R
DD
V
GND
GND GND
GND
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
19.44, 38.88, 155.52,
311.04 MHz & DIG1
19.44, 51.84, 77.76,
155.52 MHz
VDD = +3.3 V
Figure 12. Recommended Line Termination for PECL Input/Output PortsFigure 12. Recommended Line Termination for PECL Input/Output Ports
Figure 12. Recommended Line Termination for PECL Input/Output PortsFigure 12. Recommended Line Termination for PECL Input/Output Ports
Figure 12. Recommended Line Termination for PECL Input/Output Ports
www.semtech.com52
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Table 21. DC Characteristics: LVDS Input/Output PortTable 21. DC Characteristics: LVDS Input/Output Port
Table 21. DC Characteristics: LVDS Input/Output PortTable 21. DC Characteristics: LVDS Input/Output Port
Table 21. DC Characteristics: LVDS Input/Output Port
Note to Table 21Note to Table 21
Note to Table 21Note to Table 21
Note to Table 21
Note 1. With 100 load between the differential outputs.
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
LSDVegnaregatlovtupnI
Vm001=egatlovtupnilaitnereffiD
V
SDVLRV
0- 04.2V
dlohserhttupnilaitnereffiDSDVLV
HTID
001--001+mV
egatlovlaitnereffiDtupnISDVLV
SDVLDI
1.0-4.1V
ecnatsisernoitanimrettupnISDVL
ehtssorcayllanretxedecalpebtsuM
.0158SCAfosniptupni-/+SDVL
001ebdluohsrotsiseR %5htiw
ecnarelot
R
MRET
59001501
egatlovhgihtuptuOSDVL
)1etoN(
V
SDVLHO
-- 585.1V
egatlovwoltuptuOSDVL
)1etoN(
V
SDVLLO
588.0--V
egatlovtuptuolaitnereffiDSDVL
)1etoN(
V
SDVLDO
052-054Vm
LSDVfoedutingamniegnahC
rofegatlovtuptuolaitnereffid
setatsyratnemilpmoc
)1etoN(
V
SDVLSOD
-- 52Vm
LSDVegatlovtesffotuptuo
C°52=erutarepmeT
)1etoN(
V
SDVLSO
521.1-572.1V
Across all operating conditions, unless otherwise stated
www.semtech.com53
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
I6POS
I6NEG
I5NEG
I5POS T06POS
T06NEG
T07POS
T07NEG
ZO=50
ZO=50
ZO=50
ZO=50
ZO=50
ZO=50
100R
ZO=50
ZO=50
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
51.84, 77.76 or
155.52 MHz
51.84, 77.76 or
155.52 MHz
8kHz, 1.544/2.048,
6.48, 19.44, 38.88,
19.44, 38.88, 155.52,
311.04 MHz & DIG1
19.44, 51.84, 77.76,
155.52 MHz
100R
100R
100R
Figure 13. Recommended Line Termination for LVDS Input/Output PortsFigure 13. Recommended Line Termination for LVDS Input/Output Ports
Figure 13. Recommended Line Termination for LVDS Input/Output PortsFigure 13. Recommended Line Termination for LVDS Input/Output Ports
Figure 13. Recommended Line Termination for LVDS Input/Output Ports
www.semtech.com54
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
The Alternate Mark Inversion (AMI) signal is DC balanced and consists of positive and negative
pulses with a peak to peak voltage of 2.0 +/- 0.2 V.
The electrical specifications are taken from option a) of Table 2/G.703 - Digital 64 kbit/s
centralized clock interface, from ITU G.703.
The electrical characteristics of 64 kbits/s interface are as follows;
Nominal bit rate: 64 kbit/s. The tolerance is determined by the network clock stability.
There should be a symmetrical pair carrying the composite timing signal (64 kHz and 8 kHz). The
use of transformers is recommended.
Over-voltage protection requirement; refer to Recommendation K.41.
Code conversion rules;
The data signals are coded in AMI code with 100% duty cycle. The composite clock timing signals
convey the 64 kHz bit-timing information using AMI coding with a 50% to 70% duty ratio and the
8 kHz octet phase information by introducing violations in the code rule. The structure of the
signals and voltage levels are shown in Figures 14 and 15.
Table 22. DC Characteristics: AMI Input/Output PortTable 22. DC Characteristics: AMI Input/Output Port
Table 22. DC Characteristics: AMI Input/Output PortTable 22. DC Characteristics: AMI Input/Output Port
Table 22. DC Characteristics: AMI Input/Output Port
DC Characteristics: AMI Input/Output Port DC Characteristics: AMI Input/Output Port
DC Characteristics: AMI Input/Output Port DC Characteristics: AMI Input/Output Port
DC Characteristics: AMI Input/Output Port
Across all operating conditions, unless otherwise stated
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
htdiwesluPtupnIt
WP
65.18.740.41su
emitllaf/esiresluPtupnIt
F/R
--5su
IMAhgihegatlovtupnIV
IMAHI
5.2-V
DD
3.0+V
IMAegatlovtupnIelddimV
IMAMIV
5.156.18.1V
IMAegatlovtupnIwolV
IMALIV
0- 4.1V
evirdtnerructuptuOIMAI
TUOIMA
-- 02Am
egatlovhgihtuptuOIMA
Am02=tnerructuptuO
V
IMAHO
V
DD
61.0---V
IMAegatlovwoltuptuO
Am02=tnerructuptuO
V
IMALO
-- 61.0V
ecnedepmidaoltsetlanimoNR
TSET
-011-
retfaedutilpma"kraM"
remrofsnart V
KRAM
9.00.11.1V
retfaedutilpma"ecapS"
remrofsnart V
ECAPS
1.0-01.0V
www.semtech.com55
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
after suitable input/output transformer (also see Figure 6/G.703)
15.6us
7.8us
2V p-p 1V
+1.0V
IH
-1 .0 V
IL
0V
IM
1V
15.6us
7.8us
2V p-p 1V
+1.0V
IH
-1 .0 V
IL
0V
IM
1V
15.6us
7.8us
2V p-p 1V
+1.0V
IH
-1 .0 V
IL
0V
IM
1V
15.6us
7.8us
2V p-p 1V
+1.0V
IH
-1 .0 V
IL
0V
IM
1V
C1
C1
C2
TO8POS
TO8NEG
I_1
I_2
15.6us
7.8us
+VDD
0V
15.6us
7.8us
+VDD
0V
Signal structure of 64 kHz/
8 kHz central clock interface
after suitable transformer.
15.6us
7.8us
0V
+VDD
15.6us
7.8us
0V
+VDD
Figure 14. Signal Structure of 64 kHz/8kHz Central Clock InterfaceFigure 14. Signal Structure of 64 kHz/8kHz Central Clock Interface
Figure 14. Signal Structure of 64 kHz/8kHz Central Clock InterfaceFigure 14. Signal Structure of 64 kHz/8kHz Central Clock Interface
Figure 14. Signal Structure of 64 kHz/8kHz Central Clock Interface
Figure 15. AMI Input and Output Signal LevelsFigure 15. AMI Input and Output Signal Levels
Figure 15. AMI Input and Output Signal LevelsFigure 15. AMI Input and Output Signal Levels
Figure 15. AMI Input and Output Signal Levels
www.semtech.com56
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Figure 16. Recommended Line Termination for AMI Output/Output Ports Figure 16. Recommended Line Termination for AMI Output/Output Ports
Figure 16. Recommended Line Termination for AMI Output/Output Ports Figure 16. Recommended Line Termination for AMI Output/Output Ports
Figure 16. Recommended Line Termination for AMI Output/Output Ports
Notes
The AMI inputs <I_1> and <I_2> should be connected to the external AMI clock source by 470 nF coupling capacitor
C1.
The AMI differential output TO8POS/TO8NEG should be coupled to a line transformer with a turns ration of 3:1.
Components C2 = 470 pF and C3 = 2 nF. If a transformer with a turns ratio of 1:1 is used, a 3:1 ratio potential
divider Rload must be used to achieve the required 1 V pp voltage level for the positive and negative pulses.
C1
C1
C2 C3
R
TO8POS
TO8NEG
<I_1>
<I_2>
AMI input
GND
AMI output signal
to external devices
Turns
ratio
1:1
signal
AMI input
signal
load
www.semtech.com57
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Across all operating conditions, unless otherwise stated
Table 23. DC Characteristics: Output Jitter Generation (Test Definition G.813)Table 23. DC Characteristics: Output Jitter Generation (Test Definition G.813)
Table 23. DC Characteristics: Output Jitter Generation (Test Definition G.813)Table 23. DC Characteristics: Output Jitter Generation (Test Definition G.813)
Table 23. DC Characteristics: Output Jitter Generation (Test Definition G.813)
Table 24. DC Characteristics: Output Jitter Generation (Test Definition G.812)Table 24. DC Characteristics: Output Jitter Generation (Test Definition G.812)
Table 24. DC Characteristics: Output Jitter Generation (Test Definition G.812)Table 24. DC Characteristics: Output Jitter Generation (Test Definition G.812)
Table 24. DC Characteristics: Output Jitter Generation (Test Definition G.812)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
1noitpozHM25.551rof318.GzHM3.1otzH005IU
pp
5.0=)2etoN(850.0
1noitpozHM25.551rof318.GzHM3.1otzHk56IU
pp
1.0= )3etoN(840.0
)2etoN(840.0
2noitpozHM25.551rof318.GzHM3.1otzHk21IU
pp
1.0=
)4etoN(350.0
)5etoN(350.0
)6etoN(850.0
)7etoN(350.0
)2etoN(350.0
)3etoN(850.0
)8etoN(750.0
)9etoN(550.0
)01etoN(750.0
)11etoN(750.0
)21etoN(750.0
)31etoN(350.0
zHM840.2rof218.G&318.G
1noitpo zHk001otzH02IU
pp
50.0=)41etoN(640.0
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
zHM445.1rof218.GzHk04otzH01IU
pp
50.0=)41etoN(630.0
lacirtcelezHM25.551rof218.GzHM3.1otzH005IU
pp
5.0=)51etoN(850.0
lacirtcelezHM840.2rof218.GzHM3.1otzHk56 IU
pp
=
570.0 )51etoN(840.0
www.semtech.com58
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
zHM840.2rof3-264-003-STE
CES zHk001otzH02IU
pp
5.0=)41etoN(640.0
zHM840.2rof3-264-003-STE
CES
)zHk001otzH94cepsretliF(
zHk001otzH02IU
pp
2.0=)41etoN(640.0
zHM840.2rof3-264-003-STE
USS zHk001otzH02IU
pp
50.0=)41etoN(640.0
zHM25.551rof3-264-003-STEzHM3.1otzH005IU
pp
5.0=)51etoN(850.0
zHM25.551rof3-264-003-STEzHM3.1otzHk56IU
pp
1.0=)51etoN(840.0
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
48.15,f/itenEROC-352-RG
zHM zHk004otzH001IU
pp
5.1=)51etoN(220.0
48.15,f/itenEROC-352-RG
zHM
)zHk004otzHk02cepsretliF(
zHk004otzHk81IU
pp
51.0=)51etoN(910.0
25.551,f/itenEROC-352-RG
zHM zHM3.1otzH005IU
pp
5.1=)51etoN(850.0
25.551,f/itenEROC-352-RG
zHM zHM3.1otzHk56IU
pp
51.0=)51etoN(840.0
,f/itceleIItacEROC-352-RG
zHM25.551 zHk004otzHk21
IU
pp
1.0=)51etoN(750.0
IU
smr
10.0=)51etoN(600.0
,f/itceleIItacEROC-352-RG
zHM48.15 zHM3.1otzHk21
IU
pp
1.0=)51etoN(710.0
IU
smr
10.0=)51etoN(300.0
445.1,f/i1SDEROC-352-RG
zHM zHk04otzH01
IU
pp
1.0=)41etoN(630.0
IU
smr
10.0=)41etoN(5500.0
Table 25. DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)Table 25. DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)
Table 25. DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)Table 25. DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)
Table 25. DC Characteristics: Output Jitter Generation (Test Definition ETS-300-462-3)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 26. DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)Table 26. DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)
Table 26. DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)Table 26. DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)
Table 26. DC Characteristics: Output Jitter Generation (Test Definition GR-253-CORE)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
www.semtech.com59
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
zHM445.1rof11426T&TA
)zHk8otzH01cepsretliF( zHk04otzH01IU
smr
20.0=)41etoN(5500.0
zHM445.1rof11426T&TAzHk04otzH01 IU
smr
=
520.0 )41etoN(5500.0
zHM445.1rof11426T&TAzHk04otzH01 IU
smr
=
520.0 )41etoN(5500.0
zHM445.1rof11426T&TAdnabdaorBIU
smr
50.0=)41etoN(5500.0
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
rof428G&994000-TWN-RT
zHM445.1 zHk04otzH01IU
pp
0.5=)41etoN(630.0
rof428G&994000-TWN-RT
zHM445.1
)zHk04otzHk8cepsretliF(
zHk04otzH01IU
pp
1.0=)41etoN(630.0
Table 27. DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411)Table 27. DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411)
Table 27. DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411)Table 27. DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411)
Table 27. DC Characteristics: Output Jitter Generation (Test Definition AT&T 62411)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 28. DC Characteristics: Output Jitter Generation (Test Definition G.742)Table 28. DC Characteristics: Output Jitter Generation (Test Definition G.742)
Table 28. DC Characteristics: Output Jitter Generation (Test Definition G.742)Table 28. DC Characteristics: Output Jitter Generation (Test Definition G.742)
Table 28. DC Characteristics: Output Jitter Generation (Test Definition G.742)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 29. DC Characteristics: Output Jitter Generation (Test Definition TR-NWT-000499)Table 29. DC Characteristics: Output Jitter Generation (Test Definition TR-NWT-000499)
Table 29. DC Characteristics: Output Jitter Generation (Test Definition TR-NWT-000499)Table 29. DC Characteristics: Output Jitter Generation (Test Definition TR-NWT-000499)
Table 29. DC Characteristics: Output Jitter Generation (Test Definition TR-NWT-000499)
Across all operating conditions, unless otherwise stated
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
zHM840.2rof247.GzHk001otCDIU
pp
52.0=)41etoN(740.0
zHM840.2rof247.G
)zHk001otzHk81cepsretliF( zHk001otzH02IU
pp
50.0=)41etoN(640.0
zHM840.2rof247.GzHk001otzH02IU
pp
50.0=)41etoN(640.0
www.semtech.com60
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Notes for Tables 23 - 30Notes for Tables 23 - 30
Notes for Tables 23 - 30Notes for Tables 23 - 30
Notes for Tables 23 - 30
Note 1. Filter used is that defined by test definition unless otherwise stated
Note 2. 5 Hz bandwidth, 19.44 MHz direct lock
Note 3. 5 Hz bandwidth, 8 kHz lock
Note 4. 20 Hz bandwidth, 19.44 MHz direct lock
Note 5. 20 Hz bandwidth, 8 kHz lock
Note 6. 10 Hz bandwidth, 19.44 MHz direct lock
Note 7. 10 Hz bandwidth, 8 kHz lock
Note 8. 2.5 Hz bandwidth, 19.44 MHz direct lock
Note 9. 2.5 Hz bandwidth, 8 kHz lock
Note 10. 1.2 Hz bandwidth, 19.44 MHz direct lock
Note 11. 1.2 Hz bandwidth, 8 kHz lock
Note 12. 0.6 Hz bandwidth, 19.44 MHz direct lock
Note 13. 0.6 Hz bandwidth, 8 kHz lock
Note 14. 5 Hz bandwidth, 8 kHz lock, 2.048 MHz input
Note 15. 5 Hz bandwidth, 8 kHz lock, 19.44 MHz input
noitinifedtseTnoitinifedtseT noitinifedtseT noitinifedtseTnoitinifedtseTdesuretliFdesuretliF desuretliF desuretliFdesuretliFcepsIUcepsIU cepsIU cepsIUcepsIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU 0158SCAnotnemerusaemIU0158SCAnotnemerusaemIU
2veR2veR 2veR 2veR2veR
zHM445.1rofEROC-4421-RGzH01>IU
pp
50.0=)41etoN(630.0
Output jitter generation measured over 60 seconds interval, UI pp max measured using Vectron 6664 12.8 MHz
TCXO on ICT Flexacom + 10 MHz reference from Wavetek 905.
Table 30. DC Characteristics: Output Jitter Generation (Test Definition GR-1244-CORE)Table 30. DC Characteristics: Output Jitter Generation (Test Definition GR-1244-CORE)
Table 30. DC Characteristics: Output Jitter Generation (Test Definition GR-1244-CORE)Table 30. DC Characteristics: Output Jitter Generation (Test Definition GR-1244-CORE)
Table 30. DC Characteristics: Output Jitter Generation (Test Definition GR-1244-CORE)
Across all operating conditions, unless otherwise stated
www.semtech.com61
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
tSUR tHT
tDOD
tCYC
TCK
TMS
TDO
TDI
RETEMARAPRETEMARAP RETEMARAP RETEMARAPRETEMARAP LOBMYSLOBMYS LOBMYS LOBMYSLOBMYS NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM STINUSTINU STINU STINUSTINU
emitelcyCt
CYC
05--sn
egdegnisirKCTotIDT/SMT
emit t
RUS
3- -sn
dlohIDT/SMTotgnisirKCT
emit t
TH
32--sn
dilavODTotgnillafKCTt
DOD
--5sn
Table 31. JTAG Timing (for use with Figure 17)Table 31. JTAG Timing (for use with Figure 17)
Table 31. JTAG Timing (for use with Figure 17)Table 31. JTAG Timing (for use with Figure 17)
Table 31. JTAG Timing (for use with Figure 17)
Figure 17. JTAG TimingFigure 17. JTAG Timing
Figure 17. JTAG TimingFigure 17. JTAG Timing
Figure 17. JTAG Timing
www.semtech.com62
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
(Multiples have the
E1
< ± 0.5 ns
311.04 MHz
< ± 1 ns
+2.0 to +4.0 ns
+6.0 to +8.0 ns
+3.0 to +4.5 ns
+3.0 to +5.0 ns
+2.5 to +4.5 ns
+3.0 to +5.0 ns
155.52 MHz
77.76 MHz
51.84 MHz
38.88 MHz
19.44 MHz
25.92 MHz
6.48 MHz
for this output)
(Additional delay
same offset)
+3.5 to +5.5 ns
+3.5 to +5.5 ns
< ±1 ns
Alignment
Phase
T1
8 kHz
2 kHz
Output
same offset)
(Multiples have the
8 kHz input
8 kHz output
6.48 MHz input
6.48 MHz output
19.44 MHz input
19.44 MHz output
25.92 MHz input
25.92 MHz output
38.88 MHz input
38.88 MHz output
51.84 MHz input
51.84 MHz output
77.76 MHz input
77.76 MHz output
Input/Output Delay
± 1.5 ns
+6.5 to +8.5 ns
+5.5 to +7.5 ns
+6.5 to +8.5 ns
+4.0 to +6.0 ns
+6.0 to +8.0 ns
+5.5 to +7.5 ns
Typical
Typical
Figure 18. Input/Output TimingFigure 18. Input/Output Timing
Figure 18. Input/Output TimingFigure 18. Input/Output Timing
Figure 18. Input/Output Timing
www.semtech.com63
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Motorola ModeMotorola Mode
Motorola ModeMotorola Mode
Motorola Mode
In MOTOROLA mode, the device is configured to interface with a microprocessor using a 680x0 type bus. The
following figures show the timing diagrams of write and read accesses for this mode.
address
data
Z
Z Z
Z
XX
X X
td1
td2 tpw2 th3 td4
td3
tsu1 th1
tsu2 th2
tpw1
CSB
WRB
A
AD
RDY
(DTACK)
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 178 ns.
Microprocessor Interface Timing Microprocessor Interface Timing
Microprocessor Interface Timing Microprocessor Interface Timing
Microprocessor Interface Timing
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
BSCotdilavAputeS
egdegnillaf
0sn- -
t
2us
BSCotdilavBRWputeS
egdegnillaf
sn0--
t
1d
BSCyaleD
egdegnillaf
dilavDAot--sn771
t
2d
BSCyaleD
egdegnillaf
KCATDot
egdegnisir
-- sn31
t
3d
BSCyaleD
egdegnisir
Z-hgihDAot--sn0
t
4d
BSCyaleD
egdegnisir
Z-hgihYDRot--sn7
t
1wp
emitwolBSC sn584
)1(
--
t
2wp
emithgihYDR sn013- sn274
t
1h
BSCretfadilavAdloH
egdegnisir
sn0--
t
2h
BSCretfahgihBRWdloH
egdegnisir
sn0--
t
3h
YDRretfawolBSCdloH
egdegnillaf
sn0--
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn023--
Figure 19. Read Access Timing in MOTOROLA ModeFigure 19. Read Access Timing in MOTOROLA Mode
Figure 19. Read Access Timing in MOTOROLA ModeFigure 19. Read Access Timing in MOTOROLA Mode
Figure 19. Read Access Timing in MOTOROLA Mode
Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19)Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19)
Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19)Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19)
Table 32. Read Access Timing in MOTOROLA Mode (for use with Figure 19)
www.semtech.com64
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 178 ns.
address
data
Z
X X
Z
XX
X X
tsu3
td2 tpw2 th3 td4
th4
tsu1 th1
tsu2 th2
tpw1
CSB
WRB
A
AD
RDY
(DTACK)
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
BSCotdilavAputeS
egdegnillaf
0sn- -
t
2us
BSCotdilavBRWputeS
egdegnillaf
sn0--
t
3us
BSCerofebdilavDAputeS
egdegnisir
sn3--
t
2d
BSCyaleD
egdegnillaf
YDRot
egdegnisir
-- sn31
t
4d
BSCyaleD
egdegnisir
Z-hgihYDRot--sn7
t
1wp
emitwolBSC sn584
)1(
--
t
2wp
emithgihYDR sn013- sn274
t
1h
BSCretfadilavAdloH
egdegnisir
sn3--
t
2h
BSCretfawolBRWdloH
egdegnisir
sn0--
t
3h
YDRretfawolBSCdloH
egdegnillaf
sn0--
t
4h
BSCretfadilavDAdloH
egdegnisir
sn4
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn023--
Figure 20. Write Access Timing in MOTOROLA ModeFigure 20. Write Access Timing in MOTOROLA Mode
Figure 20. Write Access Timing in MOTOROLA ModeFigure 20. Write Access Timing in MOTOROLA Mode
Figure 20. Write Access Timing in MOTOROLA Mode
Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20)Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20)
Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20)Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20)
Table 33. Write Access Timing in MOTOROLA Mode (for use with Figure 20)
www.semtech.com65
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Intel ModeIntel Mode
Intel ModeIntel Mode
Intel Mode
In INTEL mode, the device is configured to interface with a microprocessor using a 80x86 type bus. The following
figures show the timing diagrams of write and read accesses for this mode.
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 180 ns.
address
data
Z
Z Z
Z
td1
td2 tpw2 th3
td3
td4
tsu1 th1
tsu2 th2
tpw1
CSB
WRB
A
AD
RDY
RDB
td5
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
BSCotdilavAputeS
egdegnillaf
0sn- -
t
2us
BSCputeS
egdegnillaf
BDRot
egdegnillaf
sn0--
t
1d
BDRyaleD
egdegnillaf
dilavDAot--sn771
t
2d
BSCyaleD
egdegnillaf
evitcaYDRot--sn31
t
3d
BDRyaleD
egdegnillaf
YDRot
egdegnillaf
-- sn41
t
4d
BDRyaleD
egdegnisir
Z-hgihDAot--sn01
t
5d
BSCyaleD
egdegnisir
Z-hgihYDRot sn9
t
1wp
emitwolBDR sn684
)1(
--
t
2wp
emitwolYDR sn013- sn274
t
1h
BDRretfadilavAdloH
egdegnisir
sn0--
t
2h
BDRretfawolBSCdloH
egdegnisir
sn0--
t
3h
YDRretfawolBDRdloH
egdegnisir
sn0--
t
p
BDR(sesseccaevitucesnocneewtebemiT
egdegnisir
BDRot
egdegnillaf
ro,
BDR
egdegnisir
BRWot
egdegnillaf
)sn023--
Figure 21. Read Access Timing in INTEL ModeFigure 21. Read Access Timing in INTEL Mode
Figure 21. Read Access Timing in INTEL ModeFigure 21. Read Access Timing in INTEL Mode
Figure 21. Read Access Timing in INTEL Mode
Table 34. Read Access Timing in INTEL Mode (for use with Figure 21)Table 34. Read Access Timing in INTEL Mode (for use with Figure 21)
Table 34. Read Access Timing in INTEL Mode (for use with Figure 21)Table 34. Read Access Timing in INTEL Mode (for use with Figure 21)
Table 34. Read Access Timing in INTEL Mode (for use with Figure 21)
www.semtech.com66
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 180 ns.
Note 2: Timing if th2 is greater than 170 ns, otherwise 5 ns after CSB rising edge.
address
data
Z Z
td2 tpw2 th3
td3
th4
tsu1 th1
tsu2 th2
tpw1
CSB
WRB
A
AD
RDY
RDB
td5
su3
t
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
BSCotdilavAputeS
egdegnillaf
0sn- -
t
2us
BSCputeS
egdegnillaf
BRWot
egdegnillaf
sn0--
t
3us
BRWotdilavDAputeS
egdegnisir
sn3--
t
2d
BSCyaleD
egdegnillaf
evitcaYDRot--sn31
t
3d
BRWyaleD
egdegnillaf
YDRot
egdegnillaf
-- sn41
t
5d
BSCyaleD
egdegnisir
Z-hgihYDRot sn9
t
1wp
emitwolBRW sn684
)1(
--
t
2wp
emitwolYDR sn013- sn274
t
1h
BRWretfadilavAdloH
egdegnisir
sn071
)2(
--
t
2h
BRWretfawolBSCdloH
egdegnisir
sn0--
t
3h
YDRretfawolBRWdloH
egdegnisir
sn0--
t
4h
BRWretfadilavDAdloH
egdegnisir
sn4
t
p
BRW(sesseccaevitucesnocneewtebemiT
egdegnisir
BRWot
egdegnillaf
ro,
BRW
egdegnisir
BDRot
egdegnillaf
)sn023--
Figure 22. Write Access Timing in INTEL ModeFigure 22. Write Access Timing in INTEL Mode
Figure 22. Write Access Timing in INTEL ModeFigure 22. Write Access Timing in INTEL Mode
Figure 22. Write Access Timing in INTEL Mode
Table 35. Write Access Timing in INTEL Mode (for use with Figure 22)Table 35. Write Access Timing in INTEL Mode (for use with Figure 22)
Table 35. Write Access Timing in INTEL Mode (for use with Figure 22)Table 35. Write Access Timing in INTEL Mode (for use with Figure 22)
Table 35. Write Access Timing in INTEL Mode (for use with Figure 22)
www.semtech.com67
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Multiplexed ModeMultiplexed Mode
Multiplexed ModeMultiplexed Mode
Multiplexed Mode
In MULTIPLEXED mode, the device is configured to interface with a microprocessor using a multiplexed address/
data bus. The following figures show the timing diagrams of write and read accesses for this mode.
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 180 ns.
address data
Z Z
td1
td2 tpw2 th3
td3
td4
th1
th2
tpw1
CSB
WRB
AD
RDY
RDB
td5
ALE
pw3
t
su1
t
X X
tp1
su2
t
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
ELAotdilavsserddaDAputeS
egdegnillaf
sn2--
t
2us
BSCputeS
egdegnillaf
BDRot
egdegnillaf
sn0--
t
1d
BDRyaleD
egdegnillaf
dilavatadDAot--sn771
t
2d
BSCyaleD
egdegnillaf
evitcaYDRot--sn31
t
3d
BDRyaleD
egdegnillaf
YDRot
egdegnillaf
-- sn51
t
4d
BDRyaleD
egdegnisir
Z-hgihatadDAot--sn9
t
5d
BSCyaleD
egdegnisir
Z-hgihYDRot--sn01
t
1wp
emitwolBDR sn784
)1(
--
t
2wp
emitwolYDR sn013- sn274
t
3wp
emithgihELA sn2
t
1h
ELAretfadilavsserddaDAdloH
egdegnillaf
sn3--
t
2h
BDRretfawolBSCdloH
egdegnisir
sn0--
t
3h
YDRretfawolBDRdloH
egdegnisir
sn0--
t
1p
ELAneewtebemiT
egdegnillaf
BDRdna
egdegnillaf
sn0--
t
2p
BDR(sesseccaevitucesnocneewtebemiT
egdegnisir
ELAot
egdegnisir
)sn023--
Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23)Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23)
Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23)Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23)
Table 36. Read Access Timing in MULTIPLEXED Mode (for use with Figure 23)
Figure 23. Read Access Timing in MULTIPLEXED ModeFigure 23. Read Access Timing in MULTIPLEXED Mode
Figure 23. Read Access Timing in MULTIPLEXED ModeFigure 23. Read Access Timing in MULTIPLEXED Mode
Figure 23. Read Access Timing in MULTIPLEXED Mode
www.semtech.com68
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Note 1: Timing with RDY. If RDY not used, tpw1 becomes 180 ns.
address data
Z Z
tsu3
td2 tpw2 th3
td3
th4
th1
th2
tpw1
CSB
WRB
AD
RDY
RDB
td5
ALE
pw3
t
su1
t
X X
tp1
su2
t
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
ELAotdilavsserddaDAputeS
egdegnillaf
sn2--
t
2us
BSCputeS
egdegnillaf
BRWot
egdegnillaf
sn0--
t
3us
BRWotdilavatadDAputeS
egdegnisir
sn3--
t
2d
BSCyaleD
egdegnillaf
evitcaYDRot--sn31
t
3d
BRWyaleD
egdegnillaf
YDRot
egdegnillaf
-- sn51
t
5d
BSCyaleD
egdegnisir
Z-hgihYDRot sn9
t
1wp
emitwolBRW sn784
)1(
--
t
2wp
emitwolYDR sn013- sn274
t
3wp
emithgihELA sn2--
t
1h
ELAretfadilavsserddaDAdloH
egdegnillaf
sn3--
t
2h
BRWretfawolBSCdloH
egdegnisir
sn0--
t
3h
YDRretfawolBRWdloH
egdegnisir
sn0--
t
4h
BRWretfadilavdlohatadDA
egdegnisir
sn4
t
1p
ELAneewtebemiT
egdegnillaf
BRWdna
egdegnillaf
sn0--
t
2p
BRW(sesseccaevitucesnocneewtebemiT
egdegnisir
ELAot
egdegnisir
)sn023--
Figure 24. Write Access Timing in MULTIPLEXED ModeFigure 24. Write Access Timing in MULTIPLEXED Mode
Figure 24. Write Access Timing in MULTIPLEXED ModeFigure 24. Write Access Timing in MULTIPLEXED Mode
Figure 24. Write Access Timing in MULTIPLEXED Mode
Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24)Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24)
Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24)Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24)
Table 37. Write Access Timing in MULTIPLEXED Mode (for use with Figure 24)
www.semtech.com69
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Serial ModeSerial Mode
Serial ModeSerial Mode
Serial Mode
In Serial mode, the device is configured to interface with a serial microprocessor bus.The combined minimum
High and Low times for SCLK define the maximum clock rate.
For Write access this is 2.77 MHz (360 ns). For Read access the maximum SCLK rate is slightly slower and is
affected by the setting of CLKE, being either 2.0 MHz (500 ns) or 1 MHz (1 us).
This mismatch in rates is caused by the sampling technique used to detect the end of the address field in Read
mode. It takes up to 3 cycles of an internal 6.40 MHz clock to start the Read process following receipt of the final
address bit. This is 468 ns. The Read data is then decoded and clocked out onto SDO directly using SCLK. With
CLKE=1, the falling edge of SCLK is used to clock out the SDO. With CLKE=0, the rising edge of SCLK is used to clock
out the SDO.
A minimum period of 500 ns (468 capture plus 32 decode) is required between the final address bit and clocking
it out onto SDO. This means that to guarantee the correct operation of the Serial interface, with CLKE=0, SCLK has
a maximum clock rate of 2 MHz. With CLKE=1, SCLK has a maximum clock rate of 1 MHz.
SCLK is not required to run between accesses (i.e., when CSB = 1). The following Figures show the timing
diagrams for Write and Read access for this mode.
Figure 25. Read Access Timing in Serial ModeFigure 25. Read Access Timing in Serial Mode
Figure 25. Read Access Timing in Serial ModeFigure 25. Read Access Timing in Serial Mode
Figure 25. Read Access Timing in Serial Mode
F8525D_013ReadAccSerial_01
SCLK
CSB
CLKE = 0; SDO data is clocked out on the rising edge of SCLK
CLKE = 1; SDO data is clocked out on the falling edge of SCLK
R/W
Output not driven, pulled low by internal resistor
SDI
SDO
t
su2
t
su1
t
h1
t
pw1
t
pw2
_
A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
t
h2
t
d2
t
d1
SCLK
CSB
R/W
Output not driven, pulled low by internal resistor
SDI
SDO
_
A0 A1 A2 A3 A4 A5 A6
D0 D1 D2 D3 D4 D5 D6 D7
t
h2
t
d2
t
d1
www.semtech.com70
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
KLCSotdilavIDSputeS
egdegnisir
0sn- -
t
2us
BSCputeS
egdegnillaf
KLCSot
egdegnisir
sn061--
t
1d
KLCSyaleD
egdegnisir
KLCS(
egdegnillaf
dilavODSot)1=EKLCrof--sn71
t
2d
BSCyaleD
egdegnisir
Z-hgihODSot--sn01
t
1wp
emitwolKLCS
0=EKLC
1=EKLC
sn052
sn005
--
t
2wp
emithgihKLCS
0=EKLC
1=EKLC
sn052
sn005
--
t
1h
KLCSretfadilavIDSdloH
egdegnisir
sn071--
t
2h
KLCSretfawolBSCdloH
egdegnisir
0=EKLCrof,
KLCSretfawolBSCdloH
egdegnillaf
1=EKLCrof, sn5--
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn061--
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
1us
KLCSotdilavIDSputeS
egdegnisir
0sn- -
t
2us
BSCputeS
egdegnillaf
KLCSot
egdegnisir
sn061--
t
1wp
emitwolKLCS sn081--
t
2wp
emithgihKLCS sn081--
t
1h
KLCSretfadilavIDSdloH
egdegnisir
sn071--
t
2h
KLCSretfawolBSCdloH
egdegnisir
sn5--
t
p
BSC(sesseccaevitucesnocneewtebemiT
egdegnisir
BSCot
egdegnillaf
)sn061--
Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25)Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25)
Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25)Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25)
Table 38. Read Access Timing in SERIAL Mode (for use with Figure 25)
Figure 26. Write Access Timing in SERIAL ModeFigure 26. Write Access Timing in SERIAL Mode
Figure 26. Write Access Timing in SERIAL ModeFigure 26. Write Access Timing in SERIAL Mode
Figure 26. Write Access Timing in SERIAL Mode
Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26)Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26)
Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26)Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26)
Table 39. Write Access Timing in SERIAL Mode (for use with Figure 26)
ALE=SCLK
CSB
R/W
Output not driven, pulled low by internal resistor
A(0)=SDI
AD(0)=SDO
t
su2
t
su1
t
h1
t
pw1
t
pw2
_
A0 A1 A2 A3 A4 A5 A6
t
h2
D0 D1 D2 D3 D4 D5 D6 D7
F8110D_014WriteAccSerial_02
www.semtech.com71
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
EPROM ModeEPROM Mode
EPROM ModeEPROM Mode
EPROM Mode
In EPROM mode, the ACS8510 takes control of the bus as Master, and reads the device set-up from an AMD
AM27C64 type EPROM at lowest speed (250ns), after device start-up (system reset). The EPROM access state
machine in the up interface sequences the accesses.
Further details can be found in the AMD AM27C64 data sheet.
address
data
Z Z
tacc
CSB (=OEB)
A
AD
lobmySlobmyS lobmyS lobmySlobmyS retemaraPretemaraP retemaraP retemaraPretemaraP NIMNIM NIM NIMNIM PYTPYT PYT PYTPYT XAMXAM XAM XAMXAM
t
cca
BSCyaleD
egdegnillaf
dilavDAotegnahcAro--sn029
Figure 27. Access Timing in EPROM ModeFigure 27. Access Timing in EPROM Mode
Figure 27. Access Timing in EPROM ModeFigure 27. Access Timing in EPROM Mode
Figure 27. Access Timing in EPROM Mode
Table 40. Access Timing in EPROM Mode (for use with Figure 27)Table 40. Access Timing in EPROM Mode (for use with Figure 27)
Table 40. Access Timing in EPROM Mode (for use with Figure 27)Table 40. Access Timing in EPROM Mode (for use with Figure 27)
Table 40. Access Timing in EPROM Mode (for use with Figure 27)
www.semtech.com72
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Package Information Package Information
Package Information Package Information
Package Information
E
D
AA2
A1 b
e
b1
b
c c1
L
L1
AN4
AN3
AN2
S
AN1
R2
Section A-A
Section B-B
AA
Seating plane
1
2
3
4
5
6
D1
E1
1
1
2
3
7
7
7
78
Notes
1
2
3
4
5
6
7
8
R1
B
B
The top package body may be smaller than the bottom package body by as much as 0.15 mm.
To be determined at seating plane.
Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side.
D1 and E1 are maximum plastic body size dimensions including mold mismatch.
Details of pin 1 identifier are optional but will be located within the zone indicated.
Exact shape of corners can vary.
A1 is defined as the distance from the seating plane to the lowest point of the package body.
These dimensions apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
Shows plating.
123
Figure 28. LQFP PackageFigure 28. LQFP Package
Figure 28. LQFP PackageFigure 28. LQFP Package
Figure 28. LQFP Package
www.semtech.com73
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Thermal ConditionsThermal Conditions
Thermal ConditionsThermal Conditions
Thermal Conditions
The device is rated for full temperature range when this package is used with a 4 layer or more
PCB. Copper coverage must exceed 50%. All pins must be soldered to the PCB. Maximum
operating temperature must be reduced when the device is used with a PCB with less than these
requirements.
PFQL001PFQL001 PFQL001 PFQL001PFQL001
egakcaPegakcaP egakcaP egakcaPegakcaP
snoisnemiDsnoisnemiD snoisnemiD snoisnemiDsnoisnemiD
mmnimmni mmni mmnimmni
E/DE/D E/D E/DE/D1E/1D1E/1D 1E/1D 1E/1D1E/1DAA
A
AA1A1A1A1A1A2A2A2A2A2Aee
e
ee1NA1NA 1NA 1NA1NA2NA2NA 2NA 2NA2NA3NA3NA 3NA 3NA3NA4NA4NA 4NA 4NA4NA1R1R1R1R1R2R2R2R2R2RLL
L
LL1L1L1L1L1LSS
S
SSbb
b
bb1b1b1b1b1bcc
c
cc1c1c1c1c1c
niM04.150.053.11080.080.054.002.071.071.090.090.0
moN00.6100.4105.101.004.105.221- °5.3-- 06.0 00.1
)fer( -22.002.0--
xaM06.151.054.331-°7- 02.057.0-72.032.002.061.0
Width 0.3 mm
Pitch 0.5 mm
14.6 mm
17.0 mm (1)
18.3 mm
1.85 mm
Notes
(1) Solderable to this limit.
Square package - dimensions apply in both X and Y directions.
Typical example. The user is reponsible for ensuring compatibility with PCB manufacturing process, etc.
Figure 29. Typical 100 Pin LQFP FootprintFigure 29. Typical 100 Pin LQFP Footprint
Figure 29. Typical 100 Pin LQFP FootprintFigure 29. Typical 100 Pin LQFP Footprint
Figure 29. Typical 100 Pin LQFP Footprint
Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28)Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28)
Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28)Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28)
Table 41. 100 Pin LQFP Package Dimension Data (for use with Figure 28)
www.semtech.com74
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Application Information Application Information
Application Information Application Information
Application Information
Figure 30. Simplified Application SchematicFigure 30. Simplified Application Schematic
Figure 30. Simplified Application SchematicFigure 30. Simplified Application Schematic
Figure 30. Simplified Application Schematic
www.semtech.com75
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Revision History Revision History
Revision History Revision History
Revision History
Table 42. Changes from Revision 1.06 to 2.00 September 2003Table 42. Changes from Revision 1.06 to 2.00 September 2003
Table 42. Changes from Revision 1.06 to 2.00 September 2003Table 42. Changes from Revision 1.06 to 2.00 September 2003
Table 42. Changes from Revision 1.06 to 2.00 September 2003
Item Section Page Description
1Non-Revertive
Mode 36-37 Updated description of Non-Revertive Mode Operation
www.semtech.com76
ACS8510 Rev2.1 SETS
ADVANCED COMMUNICATIONS FINAL
Revision 2.00/September 2003 Semtech Corp.
Ordering Information Ordering Information
Ordering Information Ordering Information
Ordering Information
ISO9001
CERTIFIED
REBMUNTRAPREBMUNTRAP REBMUNTRAP REBMUNTRAPREBMUNTRAP NOITPIRCSEDNOITPIRCSED NOITPIRCSED NOITPIRCSEDNOITPIRCSED
1.2veR0158SCA PFQLnip001,noitasinorhcnySHDS/TENOS
For additional information, contact the following:
Semtech Corporation Advanced Communications ProductsSemtech Corporation Advanced Communications Products
Semtech Corporation Advanced Communications ProductsSemtech Corporation Advanced Communications Products
Semtech Corporation Advanced Communications Products
E-Mail: sales@semtech.com acsupport@semtech.com
Internet: http://www.semtech.com
USA: Mailing Address: P.O. Box 6097, Camarillo, CA 93011-6097
Street Address: 200 Flynn Road, Camarillo, CA 93012-8790
Tel: +1 805 498 2111, Fax: +1 805 498 3804
FAR EAST: 11F, No. 46, Lane 11, Kuang Fu North Road, Taipei, Taiwan, R.O.C.
Tel: +886 2 2748 3380, Fax: +886 2 2748 3390
EUROPE: Units 2 & 3 Park Court, Premier Way, Abbey Park Industrial Estate,
Romsey, Hampshire, SO51 9DN, UK
Tel: +44 1794 527 600, Fax: +44 1794 527 601
DisclaimersDisclaimers
DisclaimersDisclaimers
Disclaimers
Life support - This product is not designed or intended for use in life suport equipment, devices or systems, or
other critical applications. This product is not authorized or warranted by Semtech Corporation for such use.
Right to change - Semtech Corporation reserves the right to make changes, without notice, to this product.
Customers are advised to obtain the latest version of the relevant information before placing orders.
Compliance to relevant standards - Operation of this device is subject to the user’s implementation, and design
practices. The user is responsible to ensure equipment using this device is compliant to any relevant standards.