MGA-43128
High Linearity (700-800) MHz Wireless Data Power Ampli er
Data Sheet
Description
Avago Technologies MGA-43128 is a high-linearity
power ampli er for use in the (700-800) MHz band.
High linear output power at 5V is achieved using Avago
Technologies proprietary 0.25 m GaAs Enhancement-
mode pHEMT process. It is housed in a miniature 5.0 x 5.0
x 0.85 mm3 28-lead QFN package. It includes a shutdown
and single-bit gain switch function. A detector is also
included on-chip. The compact footprint coupled with
high gain and high e ciency makes the MGA-43128 an
ideal choice for UMTS 3GPP LTE driver and  nal stage
ampli er applications.
Component Image
5.0 x 5.0 x 0.85 mm3 28-lead QFN Package (Top View)
Notes:
Package marking provides orientation and identi cation
“43128” = Device Part Number
“YYWW” = Year and Work Week
“XXXX = Assembly Lot Number
Features
 High gain: 33.4 dB
 High Power linear output: 29.1 dBm at 5 V supply (2.5%
EVM, LTE 3GPP.TS 36.104, 10 MHz bandwidth OFDMA)
 Built-in detector and shutdown switches
 Switchable gain: 18 dB attenuation using one single
CMOS compatible switch pin
 3GPP spectral mask compliant at 29 dBm output power
 GaAs E-pHEMT Technology [1]
 Low cost small package size: 5.0 x 5.0 x 0.85 mm3
 MSL-2a, lead-free and halogen free
 Useable at 3.3 V supply for lower supply voltage
applications (27 dBm at 2.5% EVM, LTE 3GPP.TS 36.101,
10MHz bandwidth SC-FDMA)
Speci cations
750 MHz; Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Iqtotal
= 370 mA (typ), LTE 3GPP.TS 36.104, 10 MHz bandwidth
OFDMA
 33.4 dB Gain
 29.1 dBm Linear Pout (2.5% EVM)
 36 dBm OP1dB
 22% PAE @ Linear Pout
 3.3 V Vdet @ Linear Pout
 18 dB Switchable Gain Attenuation (Low Gain Mode)
 40 A Shutdown Current (Vc = Vbias = 0 V)
Applications
 High linearity ampli er for (700-800) MHz LTE AP, CPE,
and Picocell
 Base Station Driver Ampli er
Note:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with
conventional depletion mode devices.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 50 V
ESD Human Body Model = 500 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
43128
YYWW
XXXX
NC
NC
NC
NC
Vbyp
NC
RFin
NC
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
NC
Vdd2/RFout
Vdd2/RFout
M1
NC
NC
NC
NC
Vdd1
NC
NC
Vc1
Vbias
NC
Vdet
Vc2
NC
Gnd
Functional Block Diagram
Vdet
Bias
RFin
MMIC
Vc1Vbyp Vc2
Vdd2/RFout
Bias
M1 Vdd1
Match
2
MGA-43128 Absolute Maximum Rating [1] TA = 25° C
Symbol Parameter Units Absolute Maximum
Vdd, Vbias Supply Voltages, Bias Supply Voltage V 6.0
Vc Control Voltage V (Vdd)
Pin,max CW RF Input Power dBm 20
Pdiss Total Power Dissipation [3] W 7.0
TjJunction Temperature °C 150
TSTG Storage Temperature °C -65 to 150
Thermal Resistance
Thermal Resistance [2]
jc = 13.5°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Thermal resistance measured using Infra-
Red Measurement Technique.
3. Board temperature (Tc) is 25° C. For Tc
>55.5° C, derate the device power at 74.1 mW
per °C rise in board temperature adjacent to
package bottom.
Electrical Speci cations
TA = 25° C, Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Vbyp = 0 V, Iqtotal = 370 mA, RF performance at 750 MHz, LTE 3GPP.
TS 36.104, 10 MHz bandwidth OFDMA operation unless otherwise stated.
Symbol Parameter and Test Condition Units Min. Typ. Max.
Vdd Supply Voltage 5.0
Iqtotal Quiescent Supply Current (normal high gain mode) mA 370
Quiescent Supply Current (low gain mode, Vbyp = 5.0 V) mA 370
Gain Gain dB 31.5 33.4
OP1dB Output Power at 1 dB Gain Compression dBm 36
Pout_linear Linear Output power with 3GPP LTE v8.6.0 (March 2009),
10 MHz bandwidth OFDMA @ 2.5% EVM
dBm 27.6 29.1
Itotal_linear Total current draw at Pout_linear level mA 780 1000
S11 Input Return Loss, 50 source dB -20
S22 Output Return Loss, 50 load dB -7
S12 Reverse Isolation dB 50
2 Fc Second harmonic attenuation @ Pin = -20 dBm dBc 60
Atten Gain attenuation in low gain mode (Vbyp = 5.0 V) dB 14.5 18 21.5
Vdet Detector output DC voltage @ 29 dBm linear Pout V 3.3
DetR Detector RF dynamic range dB 17
S Stability under load VSWR of 6:1 (all phase angle),
spurious output
dBc -60
3
Product Consistency Distribution Charts [1]
Figure 1. Pout_linear; LSL = 27.6 dBm, Nominal = 29.1 dBm
Figure 3. Itotal_linear; Nominal = 780 mA, USL = 1000 mA Figure 4. Atten; LSL = 14.5 dB, Nominal = 18 dB, USL = 21.5 dB; Vbyp = 5 V
Figure 2. Gain; LSL = 31.5 dB, Nominal = 33.4 dB
Note:
1. Distribution data sample size is 3500 samples taken from 3 di erent wafer lots. TA = 25° C, Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Vbyp = 0 V,
RF performance at 750 MHz unless otherwise stated. Future wafers allocated to this product may have nominal values anywhere between the
upper and lower limits.
27 28 29 30 31 31 32 33 34 35 36
14 15 16 17 18 19 20 21 22
600 700 800 900 1000
LSL LSL
USLLSL
USL
4
MGA-43128 Typical Performance
TA = 25° C, Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Vbyp = 0 V, Iqtotal = 370 mA, RF performance at 750 MHz, LTE 3GPP.
TS 36.104, 10 MHz bandwidth OFDMA operation unless otherwise stated.
Fi gure 5. Small-signal performance in high gain mode, Vbyp = 0 V Figure 6. Small-signal performance in low gain mode, Vbyp = 5.0 V
Figure 7. Over-temperature EVM vs Output Power at 728 MHz Figure 8. Over-temperature Idd_total vs Output Power at 728 MHz
Figure 9. Over-temperature Vdet vs Output Power at 728 MHz Figure 10. Over-temperature CW Gain vs Output Power at 728 MHz
Fi gure 5. Small-signal performance in high gain mode, Vbyp = 0 V Figure 6. Small-signal performance in low gain mode, Vbyp = 5.0 V
Figure 7. Over-temperature EVM vs Output Power at 728 MHz Figure 8. Over-temperature Idd_total vs Output Power at 728 MHz
Figure 9. Over-temperature Vdet vs Output Power at 728 MHz Figure 10. Over-temperature CW Gain vs Output Power at 728 MHz
S21
S22
S11 25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
0
-30
-20
-10
10
20
30
40
600 650 700 750 800 850 900 950 1000
Frequency (MHz)
S21, S11, S22 (dB)
0
5
-30
-25
-20
-15
-10
-5
10
15
20
600 650 700 750 800 850 900 950 1000
Frequency (MHz)
S21, S11, S22 (dB)
S21
S22
S11
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
29
30
31
32
33
34
35
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Pout (dBm)
Gain (dB)
5
Figure 11. Over-temperature EVM vs Output Power at 750 MHz Figure 12. Over-temperature Idd_total vs Output Power at 750 MHz
Figure 13. Over-temperature Vdet vs Output Power at 750 MHz Figure 14. Over-temperature CW Gain vs Output Power at 750 MHz
Figure 15. Over-temperature EVM vs Output Power at 756 MHz Figure 16. Over-temperature Idd_total vs Output Power at 756 MHz
25° C
-40° C
85° C
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
29
30
31
32
33
34
35
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Pout (dBm)
Gain (dB)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
6
Figure 17. Over-temperature Vdet vs Output Power at 756 MHz Figure 18. Over-temperature CW Gain vs Output Power at 756 MHz
25° C
-40° C
85° C
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
29
30
31
32
33
34
35
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Pout (dBm)
Gain (dB)
7
Figure 23. 3GPP E-UTRA bands < 1 GHz Category B Spectrum Emission Mask
at Pout 29 dBm at 756 MHz
Figure 24. 3GPP E-UTRA bands 12,13 Additional Spectrum Emission Mask at
Pout 29 dBm at 756 MHz
Figure 19. 3GPP E-UTRA bands < 1 GHz Category B Spectrum Emission Mask
at Pout 29 dBm at 728 MHz
Figure 20. 3GPP E-UTRA bands 12,13 Additional Spectrum Emission Mask at
Pout 29 dBm at 728 MHz
Figure 21. 3GPP E-UTRA bands < 1 GHz Category B Spectrum Emission Mask
at Pout 29 dBm at 750 MHz
Figure 22. 3GPP E-UTRA bands 12,13 Additional Spectrum Emission Mask at
Pout 29d Bm at 750 MHz
8
MGA-43128 Typical Performance
TA = 25° C, Vdd = Vbias = 3.3 V, Vc1 = 2.8 V, Vc2 = 2.3 V, Vbyp = 0 V, Iqtotal = 260 mA, RF performance at 750 MHz, LTE 3GPP.
TS 36.101, 10 MHz bandwidth SC-FDMA operation unless otherwise stated.
Figure 25. Small-signal performance in high gain mode, Vbyp = 0 V Figure 26. Small-signal performance in low gain mode, Vbyp = 3.3 V
Figure 27. Over-temperature EVM vs Output Power at 698 MHz Figure 28. Over-temperature Idd_total vs Output Power at 698 MHz
Figure 29. Over-temperature Vdet vs Output Power at 698 MHz Figure 30. Over-temperature CW Gain vs Output Power at 698 MHz
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
25
26
27
28
29
30
31
32
33
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
-30
-20
-10
0
10
20
30
40
600 650 700 750 800 850 900 950 1000
Frequency (MHz)
S21, S11, S22 (dB)
S21
S22
S11
25° C
-40° C
85° C
-30
-20
-10
0
10
20
30
600 650 700 750 800 850 900 950 1000
Frequency (MHz)
S21, S11, S22 (dB)
S21
S22
S11
25° C
-40° C
85° C
9
Figure 31. Over-temperature EVM vs Output Power at 706 MHz Figure 32. Over-temperature Idd_total vs Output Power at 706 MHz
Figure 33. Over-temperature Vdet vs Output Power at 706 MHz Figure 34. Over-temperature CW Gain vs Output Power at 706 MHz
Figure 35. Over-temperature EVM vs Output Power at 716 MHz Figure 36. Over-temperature Idd_total vs Output Power at 716 MHz
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
25
26
27
28
29
30
31
32
33
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
10
Figure 37. Over-temperature Vdet vs Output Power at 716 MHz Figure 38. Over-temperature CW Gain vs Output Power at 716 MHz
Figure 39. Over-temperature EVM vs Output Power at 777 MHz Figure 40. Over-temperature Idd_total vs Output Power at 777 MHz
Figure 41. Over-temperature Vdet vs Output Power at 777 MHz Figure 42. Over-temperature CW Gain vs Output Power at 777 MHz
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
25
26
27
28
29
30
31
32
33
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
27
28
29
30
31
32
33
34
35
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
25° C
-40° C
85° C
25° C
-40° C
85° C
11
Figure 43. Over-temperature EVM vs Output Power at 782 MHz Figure 44. Over-temperature Idd_total vs Output Power at 782 MHz
Figure 45. Over-temperature Vdet vs Output Power at 782 MHz Figure 46. Over-temperature CW Gain vs Output Power at 782 MHz
Figure 47. Over-temperature EVM vs Output Power at 787 MHz Figure 48. Over-temperature Idd_total vs Output Power at 787 MHz
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
27
28
29
30
31
32
33
34
35
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
25° C
-40° C
85° C
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Itotal (A)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
EVM (%)
12
Figure 49. Over-temperature Vdet vs Output Power at 787 MHz Figure 50. Over-temperature CW Gain vs Output Power at 787 MHz
25° C
-40° C
85° C
25° C
-40° C
85° C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Vdet (V)
27
28
29
30
31
32
33
34
35
8 1012141618202224262830323436
Pout (dBm)
Gain (dB)
13
S-Parameter [1] (Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Vbyp = 0 V, T = 25° C, unmatched)
Freq
(GHz)
S11
(dB) S11 (Ang)
S21
(dB) S21 (Ang)
S12
(dB) S12 (Ang)
S22
(dB) S22 (Ang)
0.1 -8.14 -35.30 -47.42 -5.87 -48.92 -159.35 -1.46 178.41
0.2 -7.31 -68.56 -21.87 -8.50 -57.70 159.14 -1.06 -178.87
0.3 -6.48 -101.78 -3.17 -38.71 -62.88 92.49 -0.95 -178.86
0.4 -6.23 -135.74 13.29 -90.66 -61.50 -97.85 -0.92 -178.64
0.5 -7.87 -164.40 22.16 145.80 -57.88 -134.74 -0.84 -177.81
0.6 -9.90 169.63 21.00 146.66 -64.82 35.29 -0.64 -177.41
0.7 -16.37 176.11 27.51 47.33 -73.33 173.44 -0.40 -177.66
0.8 -15.41 -167.69 23.81 -12.00 -57.62 76.49 -0.23 -179.17
0.9 -14.69 -165.45 20.13 -47.59 -55.52 115.43 -0.17 179.41
1.0 -14.47 -163.62 16.68 -73.16 -59.22 151.66 -0.20 178.20
1.1 -14.13 -163.59 12.81 -93.36 -58.34 148.52 -0.25 177.17
1.2 -13.29 -165.43 6.30 -108.21 -56.59 103.00 -0.30 176.30
1.3 -12.72 -167.44 0.22 8.83 -60.14 97.90 -0.38 175.36
1.4 -11.92 -163.10 15.79 -10.94 -54.96 75.33 -0.54 175.12
1.5 -9.13 -167.99 19.49 -73.15 -58.94 78.81 -0.51 175.98
1.6 -8.25 179.58 17.26 -110.82 -56.48 95.50 -0.39 175.21
1.7 -7.85 171.31 15.02 -130.45 -54.63 85.66 -0.37 174.38
1.8 -7.44 164.79 13.28 -143.72 -53.43 82.54 -0.39 173.65
1.9 -7.08 158.53 11.87 -154.39 -52.98 83.05 -0.39 172.90
2.0 -6.72 152.63 10.67 -163.70 -52.29 68.13 -0.40 172.11
2.1 -6.41 147.12 9.62 -171.91 -53.43 71.77 -0.43 171.39
2.2 -6.10 141.88 8.73 -179.59 -53.67 68.02 -0.44 170.56
2.3 -5.81 136.60 7.91 172.46 -54.00 47.31 -0.48 169.79
2.4 -5.53 131.41 7.07 165.18 -53.82 65.89 -0.50 168.98
2.5 -5.29 126.26 6.31 158.22 -50.94 62.14 -0.54 168.15
2.6 -5.07 121.15 5.56 151.91 -52.94 47.01 -0.56 167.33
2.7 -4.86 116.41 4.91 145.58 -48.67 55.89 -0.59 166.44
2.8 -4.66 111.48 4.31 139.45 -54.58 30.83 -0.61 165.42
2.9 -4.46 106.95 3.74 133.41 -51.97 60.93 -0.64 164.35
3.0 -4.29 102.32 3.21 127.41 -51.76 67.83 -0.68 163.37
4.0 -2.85 63.15 0.67 58.70 -47.20 29.01 -2.05 148.16
5.0 -2.66 37.90 -12.25 61.62 -57.05 5.98 -0.22 151.26
6.0 -2.18 25.64 -12.37 10.32 -53.33 -7.48 -0.31 142.65
7.0 -2.43 13.04 -14.10 -23.35 -51.61 0.87 -0.42 136.62
8.0 -3.11 -5.76 -13.87 -62.74 -54.07 -28.02 -0.72 127.31
9.0 -3.46 -30.56 -12.75 -115.55 -48.58 -66.78 -1.71 108.78
10.0 -3.07 -46.00 -14.51 113.24 -47.29 -115.44 -6.23 -163.51
11.0 -2.37 -48.16 -34.00 118.81 -59.20 -178.76 -0.39 129.62
12.0 -2.08 -42.93 -30.43 146.98 -56.82 -92.88 -0.37 109.25
13.0 -2.16 -44.72 -32.94 119.69 -55.06 -90.14 -0.37 95.58
14.0 -2.37 -64.86 -33.75 82.63 -51.20 -122.91 -0.46 88.61
15.0 -1.95 -97.74 -35.00 51.90 -48.40 -142.84 -0.76 79.95
16.0 -1.27 -118.51 -38.27 25.62 -47.03 153.45 -0.99 66.53
17.0 -0.89 -120.81 -38.52 -9.94 -47.28 98.28 -1.24 46.63
18.0 -1.12 -120.66 -37.86 1.87 -39.61 43.37 -1.35 22.60
19.0 -5.11 -116.49 -25.04 -75.18 -25.00 -83.39 -2.96 -2.34
20.0 -2.01 -160.45 -33.31 -169.08 -39.70 166.98 -2.89 3.06
Note:
1. S-parameter is measured with deembedded reference plane at DUT RFin and RFout pins.
14
S-Parameter [1] (Vdd = Vbias = 5.0 V, Vc1 = 2.8 V, Vc2 = 2.4 V, Vbyp = 5 V, T = 25° C, unmatched)
Freq
(GHz)
S11
(dB) S11 (Ang)
S21
(dB) S21 (Ang)
S12
(dB) S12 (Ang)
S22
(dB) S22 (Ang)
0.1 -11.94 -8.51 -49.44 -39.74 -46.82 -30.34 -1.47 178.53
0.2 -12.35 -10.89 -37.99 -48.26 -60.54 -46.49 -1.06 -179.02
0.3 -12.74 -12.94 -21.71 -76.41 -54.89 -93.53 -0.95 -178.99
0.4 -13.11 -15.88 -7.11 -117.76 -61.47 22.46 -0.91 -178.85
0.5 -13.04 -18.39 1.50 130.99 -58.14 118.66 -0.86 -178.16
0.6 -13.01 -21.76 0.66 140.87 -68.59 32.18 -0.68 -177.78
0.7 -12.96 -25.86 8.77 41.10 -59.23 -85.20 -0.34 -177.11
0.8 -13.03 -30.11 5.00 -22.83 -57.64 -11.42 -0.12 -179.71
0.9 -13.22 -33.69 1.12 -60.52 -58.18 -26.30 -0.14 178.56
1.0 -12.98 -35.55 -2.63 -87.89 -61.48 155.13 -0.21 177.44
1.1 -12.81 -36.88 -6.88 -109.63 -56.94 81.57 -0.27 176.56
1.2 -13.00 -41.20 -13.82 -125.89 -60.36 21.70 -0.32 175.84
1.3 -13.34 -44.60 -20.25 -7.88 -61.07 -47.01 -0.37 174.94
1.4 -13.47 -48.70 -5.07 -31.29 -63.26 66.70 -0.53 174.32
1.5 -13.78 -53.01 -2.56 -95.16 -58.12 83.32 -0.57 175.09
1.6 -14.09 -56.27 -5.61 -129.67 -61.56 85.29 -0.46 174.67
1.7 -14.43 -60.47 -8.43 -146.48 -58.06 69.87 -0.43 173.91
1.8 -14.80 -64.85 -10.75 -157.23 -56.29 72.32 -0.43 173.20
1.9 -15.20 -69.11 -12.70 -165.08 -54.07 83.09 -0.42 172.45
2.0 -15.58 -72.87 -14.45 -171.21 -54.82 59.94 -0.44 171.64
2.1 -16.05 -77.36 -16.04 -176.03 -58.27 -12.33 -0.46 170.85
2.2 -16.39 -82.04 -17.44 -179.38 -58.14 85.19 -0.45 169.94
2.3 -16.87 -87.57 -18.59 177.72 -55.54 82.02 -0.49 169.12
2.4 -17.60 -92.35 -19.76 174.76 -52.01 60.55 -0.52 168.19
2.5 -18.03 -97.93 -20.89 172.55 -55.89 78.49 -0.54 167.42
2.6 -18.66 -104.26 -21.90 172.64 -57.11 52.76 -0.55 166.47
2.7 -19.33 -111.07 -22.61 171.67 -60.99 88.76 -0.57 165.51
2.8 -20.10 -118.74 -23.19 171.49 -56.86 97.22 -0.59 164.50
2.9 -20.79 -127.09 -23.74 171.01 -51.97 50.77 -0.64 163.39
3.0 -21.60 -136.55 -23.91 171.42 -52.61 61.08 -0.66 162.30
4.0 -16.34 110.44 -21.81 135.34 -49.16 40.50 -2.01 146.68
5.0 -8.79 76.28 -30.55 139.37 -54.37 37.68 -0.21 149.36
6.0 -5.35 58.70 -28.50 88.40 -54.30 9.34 -0.30 140.53
7.0 -3.73 44.52 -28.57 55.97 -50.77 -3.75 -0.43 133.88
8.0 -3.12 25.09 -27.26 20.45 -48.29 -20.92 -0.71 124.43
9.0 -2.49 -5.31 -24.75 -29.37 -48.65 -51.40 -1.73 105.44
10.0 -1.57 -31.23 -25.49 -154.19 -49.37 -144.33 -6.23 -167.65
11.0 -0.95 -41.37 -44.37 -153.26 -65.45 -164.94 -0.38 126.17
12.0 -0.71 -41.57 -37.93 -106.47 -55.36 -68.46 -0.38 105.04
13.0 -0.86 -45.72 -38.33 -122.24 -55.73 -69.82 -0.38 91.24
14.0 -1.22 -67.34 -36.30 -157.35 -49.66 -114.15 -0.49 82.28
15.0 -1.17 -100.69 -34.91 166.11 -46.90 -148.27 -0.73 73.98
16.0 -0.75 -121.46 -35.16 120.62 -46.79 169.61 -1.02 61.39
17.0 -0.59 -124.51 -35.92 74.33 -47.10 96.83 -1.23 40.92
18.0 -1.02 -124.91 -32.86 26.56 -38.05 44.39 -1.38 16.87
19.0 -4.80 -118.77 -26.49 -94.70 -24.57 -91.02 -3.02 -10.14
20.0 -1.78 -163.50 -39.35 -127.38 -42.71 161.68 -2.86 -4.30
Note:
1. S-parameter is measured with deembedded reference plane at DUT RFin and RFout pins.
15
S-Parameter [1] (Vdd = Vbias = 3.3 V, Vc1 = 2.8 V, Vc2 = 2.3 V, Vbyp = 0 V, T = 25° C, unmatched)
Freq
(GHz)
S11
(dB) S11 (Ang)
S21
(dB) S21 (Ang)
S12
(dB) S12 (Ang)
S22
(dB) S22 (Ang)
0.1 -8.10 -35.22 -49.86 10.41 -51.11 61.42 -1.62 178.92
0.2 -7.31 -71.21 -17.88 -23.89 -56.56 149.66 -1.11 -177.87
0.3 -6.78 -109.64 -10.40 -110.63 -60.56 -104.69 -0.97 -177.55
0.4 -7.63 -151.19 1.22 -105.42 -64.66 67.21 -0.86 -176.91
0.5 -11.35 172.34 11.72 -151.11 -67.75 -25.09 -0.66 -176.08
0.6 -19.50 143.94 19.33 155.29 -62.07 130.09 -0.44 -176.21
0.7 -25.10 -74.38 23.36 94.52 -61.18 119.08 -0.25 -177.64
0.8 -14.47 -97.42 24.58 37.28 -59.15 -146.47 -0.26 -178.64
0.9 -11.56 -118.80 23.66 -11.00 -55.81 142.75 -0.23 -179.25
1.0 -10.52 -132.64 21.84 -48.10 -60.95 127.12 -0.18 179.91
1.1 -9.99 -141.31 20.03 -77.22 -59.10 123.90 -0.20 178.74
1.2 -9.30 -148.70 18.56 -103.23 -55.05 91.34 -0.31 177.68
1.3 -8.29 -156.47 17.59 -134.98 -59.13 75.75 -0.54 177.52
1.4 -7.61 -172.69 13.86 164.83 -60.46 28.97 -0.42 -179.29
1.5 -8.90 -179.34 -7.93 168.08 -60.25 139.43 0.00 177.98
1.6 -8.73 -179.96 -0.25 -124.11 -61.17 105.03 0.00 175.40
1.7 -8.01 178.25 -3.88 -105.38 -60.79 -15.56 -0.01 173.62
1.8 -6.52 166.88 8.44 -94.65 -54.41 102.86 -0.05 172.61
1.9 -7.02 159.51 6.45 -135.30 -55.63 101.46 -0.06 171.26
2.0 -6.68 152.38 7.26 -147.75 -54.53 83.73 -0.08 170.15
2.1 -6.43 147.14 6.07 -161.29 -50.50 92.59 -0.10 168.92
2.2 -6.16 141.61 5.15 -171.32 -65.26 75.70 -0.13 167.76
2.3 -5.82 136.31 4.33 179.36 -56.38 66.63 -0.14 166.47
2.4 -5.49 130.72 3.42 171.17 -58.04 50.34 -0.18 165.39
2.5 -5.14 125.51 2.64 163.71 -53.04 41.86 -0.19 164.28
2.6 -4.85 120.60 1.85 156.44 -54.07 76.60 -0.21 163.17
2.7 -4.53 115.85 1.09 149.48 -51.83 29.01 -0.19 162.13
2.8 -4.23 111.16 0.31 142.77 -50.32 49.31 -0.22 161.04
2.9 -3.96 106.92 -0.49 136.09 -55.49 20.49 -0.22 160.14
3.0 -3.66 102.78 -1.28 129.68 -51.50 36.03 -0.22 159.20
4.0 -3.32 72.10 -5.09 98.48 -52.66 21.72 -0.29 152.94
5.0 -2.38 48.11 -8.71 49.09 -50.87 13.93 -0.43 147.02
6.0 -2.35 14.04 -12.90 8.60 -52.41 -16.78 -0.29 145.06
7.0 -2.20 -5.81 -14.80 -30.00 -61.31 -8.69 -0.40 137.51
8.0 -2.51 -5.36 -16.01 -64.48 -54.15 -25.53 -0.49 125.29
9.0 -3.10 -3.46 -17.02 -101.85 -53.55 -25.19 -0.84 111.54
10.0 -3.36 -13.89 -18.41 -146.10 -52.82 -33.16 -1.27 100.70
11.0 -2.84 -34.58 -18.40 120.80 -43.41 -138.21 -8.78 168.54
12.0 -2.34 -52.71 -36.50 116.27 -58.92 -28.25 -0.41 116.94
13.0 -1.95 -58.77 -34.01 114.77 -56.13 -90.22 -0.42 98.03
14.0 -1.91 -60.09 -34.79 85.44 -52.85 -109.75 -0.49 83.45
15.0 -2.00 -72.30 -36.21 64.04 -47.41 -140.10 -0.68 71.15
16.0 -1.58 -92.88 -37.26 39.87 -45.73 159.61 -0.91 57.61
17.0 -1.17 -103.62 -38.07 1.30 -49.75 89.61 -1.00 43.27
18.0 -1.54 -111.59 -37.82 -10.03 -43.50 30.12 -1.22 27.85
19.0 -2.07 -122.05 -37.17 -46.22 -44.61 -36.27 -1.43 7.62
20.0 -1.89 -150.97 -37.71 -79.99 -46.79 -16.71 -1.76 -14.92
Note:
1. S-parameter is measured with deembedded reference plane at DUT RFin and RFout pins.
16
S-Parameter [1] (Vdd = Vbias = 3.3 V, Vc1 = 2.8 V, Vc2 = 2.3 V, Vbyp = 3.3 V, T = 25° C, unmatched)
Freq
(GHz)
S11
(dB) S11 (Ang)
S21
(dB) S21 (Ang)
S12
(dB) S12 (Ang)
S22
(dB) S22 (Ang)
0.1 -11.92 -6.46 -48.55 109.17 -54.25 53.49 -1.62 178.99
0.2 -12.39 -9.93 -33.65 -61.73 -55.57 140.56 -1.11 -177.83
0.3 -12.70 -11.65 -29.38 -145.07 -63.61 -73.29 -0.97 -177.48
0.4 -12.88 -14.50 -19.24 -123.81 -64.16 106.19 -0.85 -176.88
0.5 -12.82 -18.10 -8.02 -155.28 -61.93 179.01 -0.67 -176.15
0.6 -12.73 -21.02 1.36 155.44 -61.51 73.37 -0.48 -176.12
0.7 -12.59 -24.79 7.00 86.54 -60.27 74.41 -0.25 -177.05
0.8 -12.49 -29.28 7.75 15.52 -68.26 95.86 -0.15 -178.43
0.9 -12.65 -33.77 5.34 -36.90 -63.17 83.17 -0.16 -179.71
1.0 -12.59 -37.67 2.52 -73.44 -62.05 154.42 -0.20 179.29
1.1 -12.53 -42.10 0.01 -101.94 -57.98 30.33 -0.28 178.40
1.2 -12.71 -44.46 -2.09 -127.62 -63.04 169.78 -0.40 177.75
1.3 -12.85 -47.12 -3.84 -159.13 -61.24 44.82 -0.60 178.02
1.4 -13.01 -49.50 -8.51 144.69 -61.65 105.13 -0.38 -179.09
1.5 -13.15 -51.47 -30.57 151.02 -66.71 -127.89 0.00 178.02
1.6 -13.30 -54.44 -23.03 -141.05 -58.24 147.73 -0.01 175.46
1.7 -13.56 -56.71 -27.29 -120.74 -60.88 40.45 0.00 173.70
1.8 -13.87 -59.16 -16.15 -108.68 -56.87 29.32 -0.08 172.61
1.9 -14.20 -61.42 -18.93 -141.58 -57.25 99.98 -0.09 171.33
2.0 -14.61 -63.74 -18.08 -151.82 -60.59 74.54 -0.10 170.34
2.1 -15.13 -66.62 -19.69 -161.50 -55.17 134.56 -0.12 169.12
2.2 -15.65 -69.01 -21.04 -166.95 -60.74 27.34 -0.14 168.01
2.3 -16.31 -71.39 -22.04 -171.37 -59.26 71.07 -0.15 166.73
2.4 -17.16 -74.88 -23.34 -175.26 -54.76 63.63 -0.19 165.73
2.5 -18.11 -78.85 -24.28 -177.10 -56.27 83.31 -0.18 164.46
2.6 -19.28 -83.33 -24.97 -179.16 -54.42 121.59 -0.21 163.45
2.7 -20.47 -89.02 -25.87 -179.99 -57.21 105.17 -0.20 162.42
2.8 -22.05 -97.07 -26.41 179.07 -56.51 125.30 -0.22 161.28
2.9 -23.72 -109.43 -26.84 177.02 -55.13 70.86 -0.22 160.42
3.0 -25.06 -125.78 -27.28 175.94 -53.89 77.12 -0.21 159.49
4.0 -14.39 118.54 -28.14 175.83 -54.61 17.00 -0.29 153.21
5.0 -8.55 86.21 -27.12 130.33 -49.19 41.82 -0.42 147.31
6.0 -6.36 51.08 -28.82 89.39 -53.58 7.20 -0.29 145.41
7.0 -4.12 27.47 -28.73 51.54 -50.12 -3.00 -0.40 137.89
8.0 -2.71 24.22 -29.17 19.43 -51.47 -15.05 -0.50 125.81
9.0 -2.04 21.52 -29.17 -13.12 -48.10 -20.78 -0.84 112.13
10.0 -1.65 3.43 -29.59 -50.40 -47.51 -34.48 -1.26 101.34
11.0 -1.28 -24.96 -27.95 -138.22 -43.70 -119.57 -8.84 169.49
12.0 -0.94 -48.04 -45.36 -129.93 -66.05 -56.32 -0.40 117.68
13.0 -0.76 -57.21 -40.10 -130.14 -56.32 -124.01 -0.41 98.85
14.0 -0.85 -60.04 -37.42 -153.83 -50.73 -114.23 -0.49 84.34
15.0 -1.08 -72.84 -36.35 176.73 -47.97 -140.11 -0.68 72.11
16.0 -0.98 -92.97 -34.97 135.19 -43.88 173.82 -0.91 58.62
17.0 -0.84 -104.26 -36.08 85.82 -48.23 109.86 -1.00 44.15
18.0 -1.45 -111.75 -35.77 26.98 -42.81 32.34 -1.20 28.90
19.0 -1.88 -121.89 -37.46 -7.29 -44.81 -20.78 -1.45 9.00
20.0 -1.66 -151.08 -40.00 -8.99 -48.49 -9.16 -1.75 -13.86
Note:
1. S-parameter is measured with deembedded reference plane at DUT RFin and RFout pins.
17
Demonstration Board Top View (5 V BOM with OFDMA Modulation)
Figure 51. Demonstration Board Application Circuit for MGA-43128 Top View (5 V OFDMA BOM)
Bill of Materials
Component Label Value Part Number (Vendor)
C1, C5, C6, C8, C9, C10, C11, C12, C13 82 pF GRM1555C1H820JZ01 (Murata)
C4, C7 8.2 pF GJM1555C1H8R2DB01 (Murata)
C3 6.8 pF GJM1555C1H6R8DB01 (Murata)
C2 5.6 pF GJM1555C1H5R6DB01 (Murata)
C14 0.1 FGRM155R61A104KA01 (Murata)
C15 4.7 FGRM21BR60J475KA11 (Murata)
C16 1 nF GRM155R71H102KA01 (Murata)
L1 2.4 nH 0402HP-2N4XJL (Coilcraft)
L2 1.9 nH 0402CS-1N9XJL (Coilcraft)
L3 1.0 nH 0402HP-1N0XJL (Coilcraft)
L4 5.6 nH 0805HQ-5N6XJL (Coilcraft)
Vdd1
+5 V
Vdd2
+5 V
MGA-43128
Vbyp
0 V (normal gain)
+5 V (low gain)
Vc2
+2.4 V
Vc1
+2.8 V
Vbias
+5 V
Vdet
(Output)
VDD1_B1
VDD2_B1
VBYP
VC1
VC2
VBIAS
VDD1
VDD_S
VDD2
VDD2_S
VDET
R1
INPUT OUTPUT
Avago Technologies
700-800 MHz PA R04350
DK 3.48
H 10 mil
W 0.508 mm
G 0.50 mm
C14
C18
C9
C15
C6
C4
C5
C3
C2
C8
C7
L4
L1
L2
C1
L3
R2
R3
C17
C13
C12
C16
C11C10
18
Demonstration Board Top View (3.3 V BOM with SC-FDMA Modulation)
Figure 52. Demonstration Board Application Circuit for MGA-43128 Top View (3.3 V SC-FDMA BOM)
Bill of Materials
Component Label Value Part Number (Vendor)
C1, C5, C8, C9, C10, C11, C12, C13 82 pF GRM1555C1H820JZ01 (Murata)
C2 7.5pF GJM1555C1H7R5DB01 (Murata)
C3 6.2 pF GJM1555C1H6R2DB01 (Murata)
C4 8.2 pF GJM1555C1H8R2DB01 (Murata)
C7 5.6 pF GJM1555C1H5R6DB01 (Murata)
C14 0.1 FGRM155R61A104KA01 (Murata)
C15 4.7 FGRM21BR60J475KA11 (Murata)
C16 1 nF GRM155R71H102KA01 (Murata)
C17 12 pF GJM1555C1H120JB01 (Murata)
C18 220 pF GRM1555C1H221JA01 (Murata)
L1 6.8 nH 0402HP-6N8XJL (Coilcraft)
L2 1.9 nH 0402CS-1N9XJL (Coilcraft)
L4 5.6 nH 0805HQ-5N6XJL (Coilcraft)
R2 0 Ohm RK73Z1ETTP (KOA)
Vdd1
+3.3 V
Vdd2
+3.3 V
VDD1
VDD_S
VDD2
VDD2_S
Vbyp
0 V (normal gain)
+3.3 V (low gain)
Vc2
+2.3 V
Vc1
+2.8 V
Vbias
+3.3 V
Vdet
(Output)
VDD1_B1
VDD2_B1
VBYP
VC1
VC2
VBIAS
VDET
R1
INPUT OUTPUT
Avago Technologies
700-800 MHz PA R04350
DK 3.48
H 10 mil
W 0.508 mm
G 0.50 mm
C14
C18
C9
C15
C6
C4
C5
C3
C2
C8
C7
L4
L1
L2
C1
L3
R2
R3
C17
C13
C12
C16
C11
C10
MGA-43128
19
Application Schematic (5 V Bias with OFDMA Modulation)
Figure 53. Application Schematic in Demonstration Board (5 V OFDMA BOM)
Notes:
1. In normal gain mode operation, Vbyp = 0 V. Vc1, Vc2 are bias pins that are used to set the bias conditions to the 2 internal gain stages of the PA.
2. Typical quiescent current distribution with Vdd1 = Vdd2 = 5 V, Vbyp = 0 V, Vc1 = 2.8 V, Vc2 = 2.4 V is:
a. Idd1 = 45 mA
b. Idd2 = 325 mA
c. I_bias = 13 mA
3. Low-gain mode is enabled by setting Vbyp pin to 5 V. This reduces gain of the ampli er by 18 dB.
4. Modulated signal measurements are made with Agilent N9020A MXA Signal Analyzer and Agilent ESG4438C signal generator with N7624B option
using the following test conditions:
Signal format: LTE 3GPP.TS 36.104, OFDMA
Modulation bandwidth: 10 MHz
Residual distortion of signal generator: (0.6-0.8)%. This distortion is included in the overall EVM data in the datasheet.
5. Typical operating voltages and currents:
d. Normal gain mode: Vdd1 = Vdd2 = Vbias = 5 V. Vbyp = 0 V. Iq(total) = 370 mA.
e. Bypass mode: Vdd2 = Vdd2 = Vbias = 5 V. Vbyp = 5 V. Iq(total) = 370 mA.
6. Vdd1/2 are shown as separate supplies with individual bypass capacitors. This yields the most stable con guration. If a common power supply line
is used, proper broadband bypass decoupling is recommended to reduce common mode feedback through the supply line.
NC
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
NC
NC
NC
NC
RFin
NC
NC
Vbyp
M1
NC
Vdd1
NC
NC
NC
NC
NC
Vc1
Vc2
NC
Vbias
NC
Vdet
1
2
3
4
5
6
7
21
20
19
18
17
16
15
8
9
10
11
12
13
14
28
27
26
25
24
23
22
82 pF
RFIn
Vc2
82 pF
Vbias VdetVc1Vbyp
1 nF
82 pF 82 pF 82 pF82 pF
1.9 nH
5.6 pF 82 pF
RFout
6.8 pF
8.2 pF
8.2 pF
5.6 nH
2.4 nH
0.1 PF
82 pF
4.7 PF
82 pF
Vdd2Vdd1
1.0 nH
MGA-43128
20
Application Schematic (3.3 V Bias with SC-FDMA Modulation)
Figure 54. Application Schematic in Demonstration Board (3.3 V SC-FDMA BOM)
Notes:
1. In normal gain mode operation, Vbyp = 0 V. Vc1, Vc2 are bias pins that are used to set the bias conditions to the 2 internal gain stages of the PA.
2. Typical quiescent current distribution with Vdd1 = Vdd2 = 3.3 V, Vbyp = 0 V, Vc1 = 2.8 V, Vc2 = 2.3 V is:
a. Idd1 = 32 mA
b. Idd2 = 218 mA
c. I_bias = 12 mA
3. Low-gain mode is enabled by setting Vbyp pin to 3.3 V. This reduces gain of the ampli er by 16.5 dB.
4. Modulated signal measurements are made with Agilent N9020A MXA Signal Analyzer and Agilent ESG4438C signal generator with N7624B option
using the following test conditions:
Signal format: LTE 3GPP.TS 36.101, SC-FDMA
Modulation bandwidth: 10 MHz
Residual distortion of signal generator: (0.6-0.8)%. This distortion is included in the overall EVM data in the datasheet.
5. Typical operating voltages and currents:
d. Normal gain mode: Vdd1 = Vdd2 = Vbias = 3.3 V. Vbyp = 0 V. Iq(total) = 260 mA.
e. Bypass mode: Vdd2 = Vdd2 = Vbias = 3.3 V. Vbyp = 3.3 V. Iq(total) = 260 mA.
6. Vdd1/2 are shown as separate supplies with individual bypass capacitors. This yields the most stable con guration. If a common power supply line
is used, proper broadband bypass decoupling is recommended to reduce common mode feedback through the supply line.
NC
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
Vdd2/RFout
NC
NC
NC
NC
RFin
NC
NC
Vbyp
M1
NC
Vdd1
NC
NC
NC
NC
NC
Vc1
Vc2
NC
Vbias
NC
Vdet
1
2
3
4
5
6
7
21
20
19
18
17
16
15
8
9
10
11
12
13
14
28
27
26
25
24
23
22
82 pF
RFIn
Vc2
82 pF
Vbias VdetVc1Vbyp
1 nF
82 pF 82 pF 82 pF82 pF
1.9 nH
7.5 pF 82 pF
RFout
6.2 pF
8.2 pF
5.6 pF
12 pF
5.6 nH
6.8 nH
0.1 PF
220 pF
4.7 PF
82 pF
Vdd2Vdd1
0 ohm
MGA-43128
21
PCB Land Patterns and Stencil Design
0.250
0.250
0.518
3.2500.360
3.250
STENCIL OUTLINE
COMBINED PCB LAND PATTERN AND STENCIL OUTLINE
0.250
0.250
0.300
3.600
0.400
Ø 0.400
C'fer 0.300 x 45°
3.600
PCB LAND PATTERN (TOP VIEW)
0.250
0.250
0.300
3.600
0.400
3.600
Solder Mask Solder Mask Opening
SOLDER MASK OUTLINE
(All dimensions in mm)
22
QFN 5.0 x 5.0 x 0.85 mm3 28-Lead Package Dimensions
Part Number Ordering Information
Part Number Qty Container
MGA-43128-BLKG 100 Antistatic Bag
MGA-43128-TR1G 1000 7” Reel
5.00 ±0.05
5.00 ±0.05
Pin 1
TOP VIEW
43128
YYWW
XXXX
0.000 –0.05
0.203 Ref.
0.85 ±0.05
SIDE VIEW
Pin 1 Identication
Chamfer 0.40 X 45°
0.40 ±0.05
3.00
Ref.
0.50 Bsc
3.60 ±0.05
Exp.DAP
3.60 ±0.05
Exp.DAP
BOTTOM VIEW
0.25 ±0.05
Notes:
1. All dimensions are in milimeters
2. Dimensions are inclusive of plating
3. Dimensions are exclusive of mold  ash and metal burr.
23
Device Orientation
Tape Dimensions
USER FEED DIRECTION
TOP VIEW END VIEW
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
43128
YYWW
XXXX
43128
YYWW
XXXX
43128
YYWW
XXXX
Dimension List
Annote Milimeter Annote Milimeter
A0 5.40±0.10 P0 4.00±0.10
B0 5.40±0.10 P2 2.00±0.10
D0 1.50+0.10
0 P10 40.00±0.20
D1 1.60±0.10 E 1.75±0.10
K0 1.90±0.10 F 5.50±0.10
K1 1.50±0.10 T 0.30±0.03
P1 8.00±0.10 W 12.00±0.30
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-3246EN - February 29, 2012
Reel Dimensions (7 inch reel)
Ø178.0±1.0
Ø55.0±0.5
SEE DETAIL "X"
65°
45°
60°
EMBOSSED RIBS
RAISED: 0.25mm, WIDTH: 1.25mm 14.4*
MAX.
Ø51.2±0.3
Slot hole ‘a’
RECYCLE LOGO FRONT VIEW
-0.0
+1.5*
8.4
FRONT BACK
FRONT BACK
Ø178.0±1.0
7.9 - 10.9*
Slot hole ‘b’
BACK VIEW
R5.2
R10.65