81 GHz to 86 GHz, E-Band I/Q Upconverter HMC8119 Data Sheet FEATURES GENERAL DESCRIPTION Conversion loss: 10 dB typical Sideband rejection: 22 dBc typical Input power for 1 dB compression (P1dB): 16 dBm typical Input third-order intercept (IP3): 24 dBm typical Input second-order intercept (IP2): -5 dBm typical 6x local oscillator (LO) leakage at RFOUT: -23 dBm typical RF return loss: 12 dB typical LO return loss: 20 dB typical Die size: 3.601 mm x 1.609 mm x 0.05 mm The HMC8119 is an integrated E-band gallium arsenide (GaAs) pseudomorphic (pHEMT) monolithic microwave integrated circuit (MMIC), in-phase/quadrature (I/Q) upconverter chip that operates from 81 GHz to 86 GHz. The HMC8119 provides a small signal conversion loss of 10 dB with 22 dBc of sideband rejection across the frequency band. The device uses an image rejection mixer that is driven by a 6x LO multiplier. Differential I and Q mixer inputs are provided. The inputs can be driven with differential I and Q baseband waveforms for direct conversion applications. Alternatively, the inputs can be driven using an external 90 hybrid and two external 180 hybrids for singlesideband applications. All data includes the effect of a 1 mil gold wire wedge bond on the intermediate frequency (IF) ports. APPLICATIONS E-band communication systems High capacity wireless backhaul Test and measurement FUNCTIONAL BLOCK DIAGRAM 3 12 13 14 15 16 17 18 19 20 21 LOIN 11 VGX2 10 VGX3 9 VDMULT 8 VDAMP1 IFIN 7 VGAMP 6 IFIP VDAMP2 4 VGMIX 5 6x 24 23 1 IFQN HMC8119 IFQP 22 13098-001 RFOUT 2 Figure 1. Rev. A Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 (c)2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com HMC8119 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Lower Sideband (LSB) Selected, IF = 1000 MHz ................... 16 Applications ....................................................................................... 1 Lower Sideband (LSB) Selected, IF = 2000 MHz ................... 18 General Description ......................................................................... 1 Spurious Performance, USB...................................................... 20 Functional Block Diagram .............................................................. 1 Spurious Performance, LSB ...................................................... 21 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 22 Specifications..................................................................................... 3 Applications Information .............................................................. 23 Absolute Maximum Ratings ............................................................ 4 Biasing Sequence ........................................................................ 23 Thermal Resistance ...................................................................... 4 Single Sideband Upconversion ................................................. 23 ESD Caution .................................................................................. 4 Assembly Diagram ......................................................................... 25 Pin Configuration and Function Descriptions ............................. 5 Interface Schematics..................................................................... 6 Mounting and Bonding Techniques for Millimeterwave GaAs MMICs ............................................................................................. 26 Typical Performance Characteristics ............................................. 7 Handling Precautions ................................................................ 26 Upper Sideband (USB) Selected, IF = 500 MHz ...................... 7 Mounting ..................................................................................... 26 Return Loss Performance ............................................................ 9 Wire Bonding .............................................................................. 26 Upper Sideband (USB) Selected, IF = 1000 MHz .................. 10 Outline Dimensions ....................................................................... 27 Upper Sideband (USB) Selected, IF = 2000 MHz .................. 12 Ordering Guide .......................................................................... 27 Lower Sideband (LSB) Selected, IF = 500 MHz ..................... 14 REVISION HISTORY 2/16--Revision A: Initial Version Rev. A | Page 2 of 27 Data Sheet HMC8119 SPECIFICATIONS TA = 25C, IF = 500 MHz, VGMIX = -1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm, upper sideband selected (USB). Measurements performed as an upconverter with external 90 and 180 hybrids at the IF ports, unless otherwise noted. Table 1. Parameter OPERATING CONDITIONS RF Frequency Range LO Frequency Range IF Frequency Range LO Drive Range PERFORMANCE Conversion Loss Sideband Rejection Input Power for 1 dB Compression (P1dB) Input Third-Order Intercept (IP3) Input Second-Order Intercept (IP2) 6x LO Leakage at RFOUT RF Return Loss LO Return Loss IF Return Loss POWER SUPPLY Supply Current IDAMP 1 IDMULT 2 1 2 Test Conditions/Comments Min Typ 81 11.83 0 2 10 22 16 24 -5 -23 12 20 25 Under LO drive 175 80 Max Unit 86 14.33 10 8 GHz GHz GHz dBm 13 dB dBc dBm dBm dBm dBm dB dB dB -19 mA mA Adjust VGAMP from -2 V to 0 V to achieve the total quiescent current, IDAMP = IDAMP1 + IDAMP2 = 175 mA. Adjust VGX2 and VGX3 from -2 V to 0 V to achieve the quiescent current, IDMULT = 1 mA to 2 mA. Refer to the Applications Information section for more information. Rev. A | Page 3 of 27 HMC8119 Data Sheet ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 2. Parameter Drain Bias Voltage VDAMP1, VDAMP2 VDMULT Gate Bias Voltage VGAMP VGX2, VGX3 VGMIX LO Input Power Maximum Junction Temperature (to Maintain 1 Million Hours Mean Time to Failure (MTTF)) Storage Temperature Range Operating Temperature Range Rating Table 3. Thermal Resistance Package Type 24-Pad Bare Die [CHIP] 4.5 V 3V 1 -3 V to 0 V -3 V to 0 V -3 V to 0 V 10 dBm 175C JC1 73.7 Unit C/W Based on ABLEBOND(R) 84-1LMIT as die attach epoxy with thermal conductivity of 3.6 W/mK. ESD CAUTION -65C to +150C -55C to +85C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. A | Page 4 of 27 Data Sheet HMC8119 16 17 18 19 20 21 GND GND VDMULT 15 GND 14 LOIN 13 GND 12 VGX2 11 GND 10 VGX3 9 GND 8 VDAMP1 IFIN 7 GND 3 6 VGAMP IFIP GND 4 VDAMP2 5 GND VGMIX PIN CONFIGURATION AND FUNCTION DESCRIPTIONS HMC8119 RFOUT GND 24 23 22 2 IFQN 1 IFQP 13098-002 GND TOP VIEW (Not to Scale) Figure 2. Pad Configuration Table 4. Pad Function Descriptions Pad No. 1, 2 Mnemonic IFQP, IFQN 3, 4 IFIN, IFIP 5, 7, 9, 11, 13, 15, 17, 19, 21, 22, 24 6 8, 12 GND 10 14 16, 18 20 23 Die Bottom VGMIX VDAMP2, VDAMP1 VGAMP VDMULT VGX3, VGX2 LOIN RFOUT GND Description Positive and Negative IF Q Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 3). Negative and Positive IF I Inputs. These pads are dc-coupled. When operation to dc is not required, block these pads externally using a series capacitor with a value chosen to pass the necessary frequency range. For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and die failure may result (see Figure 3). Ground Connect (See Figure 4). Gate Voltage for the FET Mixer (See Figure 5). Power Supply Voltage for the First and the Second Stage LO Amplifier (See Figure 5). Gate Voltage for the First and the Second Stage LO Amplifier (See Figure 5). Power Supply Voltage for the Multiplier (See Figure 5). Gate Voltage for the Multiplier (See Figure 5). Local Oscillator Input. This pad is dc-coupled and matched to 50 (see Figure 6). RF Output. This pad is ac-coupled and matched to 50 (see Figure 7). Ground. The die bottom must be connected to RF/dc ground (see Figure 4). Rev. A | Page 5 of 27 HMC8119 Data Sheet INTERFACE SCHEMATICS IFIN, IFIP, IFQN, IFQP Figure 3. IFIP, IFIN, IFQN, IFQP Interface 13098-004 GND Figure 6. LOIN Interface RFOUT Figure 4. GND Interface Figure 7. RFOUT Interface VDAMP1 , VDAMP2 , VDMULT 13098-005 100 VGMIX, VGAMP, VGX2, VGX3 13098-007 200 13098-006 13098-003 LOIN Figure 5. VGMIX, VDAMP1, VDAMP2, VDMULT, VGAMP, VGX2, VGX3 Interface Rev. A | Page 6 of 27 Data Sheet HMC8119 TYPICAL PERFORMANCE CHARACTERISTICS UPPER SIDEBAND (USB) SELECTED, IF = 500 MHz 0 0 -4 -6 -8 -10 -12 -14 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -8 -10 -12 -16 81.0 0 0 -5 SIDEBAND REJECTION (dBc) TA = +25C TA = +85C TA = -55C -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 Figure 9. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 500 MHz, USB 28 26 26 24 24 22 22 IP3 (dBm) 28 TA = +25C TA = +85C TA = -55C 16 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-010 12 83.0 84.0 84.5 85.0 LO LO LO LO LO LO LO 16 12 82.5 83.5 18 14 82.0 83.0 85.5 86.0 20 14 81.5 82.5 Figure 12. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 500 MHz, USB 30 18 82.0 RF FREQUENCY (GHz) 30 20 81.5 13098-012 82.5 Figure 10. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, USB 10 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 13. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, USB Rev. A | Page 7 of 27 13098-013 82.0 13098-009 81.5 RF FREQUENCY (GHz) 10 81.0 82.5 -45 -45 -50 81.0 82.0 Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 500 MHz, USB -5 -10 81.5 RF FREQUENCY (GHz) Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 500 MHz, USB SIDEBAND REJECTION (dBc) -6 13098-011 81.5 RF FREQUENCY (GHz) IP3 (dBm) -4 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -14 13098-008 -16 81.0 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C CONVERSION GAIN (dB) CONVERSION GAIN (dB) -2 Data Sheet 0 0 -2 -2 -4 -4 -6 -6 IP2 (dBm) -8 -10 -12 -14 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -16 81.0 13098-014 81.5 RF FREQUENCY (GHz) 0 0 -5 TA = +25C TA = +85C TA = -55C 83.0 83.5 84.0 84.5 LEAKAGE (dBm) -20 -25 -30 -30 -40 -40 -45 -45 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -50 81.0 18 16 14 12 10 8 3 4 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-016 TA = +25C TA = +85C TA = -55C 82.0 82.0 82.5 83.0 83.5 84.0 84.5 RF FREQUENCY (GHz) 20 81.5 81.5 85.0 85.5 86.0 Figure 18. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, USB Figure 15. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO= 2 dBm, IF = 500 MHz, USB 2 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -25 -35 82.0 85.5 86.0 -20 -35 81.5 85.0 LO LO LO LO LO LO LO -15 13098-015 LEAKAGE (dBm) 82.5 -10 -15 P1dB (dBm) 82.0 Figure 17. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, USB -5 -10 81.5 RF FREQUENCY (GHz) Figure 14. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, USB 0 81.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 13098-017 -14 -50 81.0 LO LO LO LO LO LO LO -10 TA = +25C TA = +85C TA = -55C -12 -16 81.0 -8 13098-018 IP2 (dBm) HMC8119 Figure 16. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 500 MHz, USB Rev. A | Page 8 of 27 Data Sheet HMC8119 RETURN LOSS PERFORMANCE 0 0 IFIP IFIN IFQN IFQP -5 -10 RETURN LOSS (dB) -10 -15 -20 -25 -30 -15 -20 -25 -30 -35 -35 -40 0 2 4 6 8 10 12 14 16 IF FREQUENCY (GHz) -45 11.0 13098-019 -40 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 LO FREQUENCY (GHz) Figure 19. IF Return Loss vs. IF Frequency, LO = 2 dBm at 12 GHz Figure 22. LO Return Loss vs. LO Frequency at Various LO Powers 0 0 LO LO LO LO LO -5 -5 RETURN LOSS (dB) -10 RETURN LOSS (dB) = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 13098-022 RETURN LOSS (dB) LO LO LO LO LO LO LO -5 -15 -20 -25 -30 = 0dBm = 2dBm = 4dBm = 6dBm = 8dBm -10 -15 -20 -35 12.0 12.5 13.0 13.5 14.0 14.5 15.0 LO FREQUENCY (GHz) Figure 20. LO Return Loss vs. LO Frequency at Various Temperatures, LO = 2 dBm TA = +25C TA = +85C TA = -55C RETURN LOSS (dB) -10 -15 -20 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-021 -25 -30 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 23. RF Return Loss vs. RF Frequency at Various LO Powers, RFIN = -10 dBm 0 -5 -30 81.0 Figure 21. RF Return Loss vs. RF Frequency at Various Temperatures, RFIN = -10 dBm, LO = 2 dBm at 12 GHz Rev. A | Page 9 of 27 13098-023 11.5 13098-020 -45 11.0 -25 TA = +25C TA = +85C TA = -55C -40 HMC8119 Data Sheet UPPER SIDEBAND (USB) SELECTED, IF = 1000 MHz 0 0 -4 -6 -8 -10 -12 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -8 -10 -12 -16 81.0 0 0 -5 SIDEBAND REJECTION (dBc) -10 -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 -45 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 Figure 25. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 1000 MHz, USB 28 26 26 24 24 22 22 IP3 (dBm) 28 TA = +25C TA = +85C TA = -55C 16 LO LO LO LO LO LO LO 18 16 12 12 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-027 14 82.0 83.0 83.5 84.0 84.5 85.0 85.5 86.0 20 14 81.5 82.5 Figure 28. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 1000 MHz, USB 30 18 82.0 RF FREQUENCY (GHz) 30 20 81.5 10 81.0 81.5 82.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 29. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, USB Figure 26. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB Rev. A | Page 10 of 27 13098-030 82.0 13098-026 81.5 RF FREQUENCY (GHz) 10 81.0 82.5 13098-029 -45 -50 81.0 82.0 Figure 27. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 1000 MHz, USB -5 TA = +25C TA = +85C TA = -55C 81.5 RF FREQUENCY (GHz) Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 1000 MHz, USB SIDEBAND REJECTION (dBc) -6 13098-028 82.0 13098-025 81.5 RF FREQUENCY (GHz) IP3 (dBm) -4 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -14 -14 -16 81.0 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C CONVERSION GAIN (dB) CONVERSION GAIN (dB) -2 HMC8119 -2 -2 -4 -4 -6 -6 -8 TA = +25C TA = +85C TA = -55C -10 -12 -12 -14 -14 -16 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -16 81.0 0 0 -5 TA = +25C TA = +85C TA = -55C LEAKAGE (dBm) -25 -30 -40 -45 -45 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 31. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB 18 16 12 10 TA = +25C TA = +85C TA = -55C 4 2 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-033 P1dB (dBm) 14 6 84.5 85.0 85.5 86.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -50 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 34. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, USB 20 8 84.0 -30 -35 82.5 83.5 -25 -40 82.0 83.0 -20 -35 13098-032 LEAKAGE (dBm) -15 -20 0 81.0 LO LO LO LO LO LO LO -10 -15 81.5 82.5 Figure 33. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, USB -5 -50 81.0 82.0 RF FREQUENCY (GHz) Figure 30. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB -10 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm Figure 32. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 1000 MHz, USB Rev. A | Page 11 of 27 13098-035 -10 LO LO LO LO LO LO LO -8 13098-034 0 IP2 (dBm) 0 13098-031 IP2 (dBm) Data Sheet HMC8119 Data Sheet UPPER SIDEBAND (USB) SELECTED, IF = 2000 MHz 0 -2 CONVERSION GAIN (dB) -4 -6 -8 -10 -12 -14 -12 -14 -18 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -20 81.0 0 0 -5 SIDEBAND REJECTION (dBc) -10 -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 -45 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 13098-037 81.5 RF FREQUENCY (GHz) Figure 36. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 2000 MHz, USB 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 39. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 2000 MHz, USB 34 34 TA = +25C TA = +85C TA = -55C 30 32 30 28 26 26 IP3 (dBm) 28 24 22 24 20 18 18 16 16 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-038 20 81.5 LO LO LO LO LO LO LO 22 14 81.0 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 40. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 2000 MHz, USB Figure 37. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB Rev. A | Page 12 of 27 13098-041 32 14 81.0 82.5 13098-040 -45 -50 81.0 82.0 Figure 38. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 2000 MHz, USB -5 TA = +25C TA = +85C TA = -55C 81.5 RF FREQUENCY (GHz) Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 2000 MHz, USB SIDEBAND REJECTION (dBc) -8 -18 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -10 -16 -20 81.0 IP3 (dBm) -6 -16 13098-036 CONVERSION GAIN (dB) -4 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C 13098-039 0 Data Sheet HMC8119 0 0 -2 -2 TA = +25C TA = +85C TA = -55C -4 -4 -8 -10 -10 -12 -12 -14 -14 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -16 81.0 0 0 -5 TA = +25C TA = +85C TA = -55C LEAKAGE (dBm) -25 -30 -40 -45 -45 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 42. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB 18 16 12 10 TA = +25C TA = +85C TA = -55C 4 2 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-044 P1dB (dBm) 14 6 84.5 85.0 85.5 86.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -50 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 45. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, USB 20 8 84.0 -30 -35 82.5 83.5 -25 -40 82.0 83.0 -20 -35 13098-043 LEAKAGE (dBm) -15 -20 0 81.0 LO LO LO LO LO LO LO -10 -15 81.5 82.5 Figure 44. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 2000 MHz, USB -5 -50 81.0 82.0 RF FREQUENCY (GHz) Figure 41. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB -10 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm Figure 43. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 2000 MHz, USB Rev. A | Page 13 of 27 13098-046 -16 81.0 LO LO LO LO LO LO LO -8 13098-045 IP2 (dBm) -6 13098-042 IP2 (dBm) -6 HMC8119 Data Sheet LOWER SIDEBAND (LSB) SELECTED, IF = 500 MHz 0 0 -4 -6 -8 -10 -12 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -8 -10 -12 -16 81.0 0 0 -5 SIDEBAND REJECTION (dBc) -10 -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 -45 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 13098-048 81.5 RF FREQUENCY (GHz) Figure 47. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 500 MHz, LSB 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 50. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 500 MHz, LSB 34 TA = +25C TA = +85C TA = -55C 32 30 30 28 26 26 IP3 (dBm) 28 24 22 22 18 18 16 16 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-049 20 82.0 Figure 48. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, LSB = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 24 20 81.5 LO LO LO LO LO LO LO 32 14 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 51. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, LSB Rev. A | Page 14 of 27 13098-052 34 14 81.0 82.5 13098-051 -45 -50 81.0 82.0 Figure 49. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 500 MHz, LSB -5 TA = +25C TA = +85C TA = -55C 81.5 RF FREQUENCY (GHz) Figure 46. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 500 MHz, LSB SIDEBAND REJECTION (dBc) -6 13098-050 82.0 13098-047 81.5 RF FREQUENCY (GHz) IP3 (dBm) -4 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -14 -14 -16 81.0 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C CONVERSION GAIN (dB) CONVERSION GAIN (dB) -2 HMC8119 -2 -2 -4 -4 -6 -6 -8 TA = +25C TA = +85C TA = -55C -10 -12 -12 -14 -14 -16 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -16 81.0 0 0 -5 TA = +25C TA = +85C TA = -55C LEAKAGE (dBm) -20 -25 -30 83.5 84.0 84.5 LO LO LO LO LO LO LO -40 -45 -45 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 Figure 53. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, IF = 500 MHz, LSB TA = +25C TA = +85C TA = -55C 16 14 12 10 8 6 4 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-100 2 81.5 -50 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 56. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, LSB 20 18 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -30 -35 82.0 85.5 86.0 -25 -40 81.5 85.0 -20 -35 13098-054 LEAKAGE (dBm) 83.0 -15 RF FREQUENCY (GHz) P1dB (dBm) 82.5 -10 -15 0 81.0 82.0 Figure 55. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 500 MHz, LSB -5 -50 81.0 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm RF FREQUENCY (GHz) Figure 52. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, LSB -10 LO LO LO LO LO LO LO Figure 54. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 500 MHz, LSB Rev. A | Page 15 of 27 13098-057 -10 -8 13098-056 0 IP2 (dBm) 0 13098-053 IP2 (dBm) Data Sheet HMC8119 Data Sheet LOWER SIDEBAND (LSB) SELECTED, IF = 1000 MHz 0 0 -4 -6 -8 -10 -12 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -8 -10 -12 -16 81.0 0 0 -5 SIDEBAND REJECTION (dBc) -10 -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 -45 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 13098-059 81.5 RF FREQUENCY (GHz) Figure 58. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 1000 MHz, LSB 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 61. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 1000 MHz, LSB 34 34 TA = +25C TA = +85C TA = -55C 30 32 30 28 26 26 IP3 (dBm) 28 24 22 24 22 20 18 18 16 16 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-060 20 Figure 59. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB 14 81.0 LO LO LO LO LO LO LO 81.5 82.0 82.5 83.0 83.5 84.0 84.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 62. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, LSB Rev. A | Page 16 of 27 13098-063 32 14 81.0 82.5 13098-062 -45 -50 81.0 82.0 Figure 60. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 1000 MHz, LSB -5 TA = +25C TA = +85C TA = -55C 81.5 RF FREQUENCY (GHz) Figure 57. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 1000 MHz, LSB SIDEBAND REJECTION (dBc) -6 13098-061 82.0 13098-058 81.5 RF FREQUENCY (GHz) IP3 (dBm) -4 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -14 -14 -16 81.0 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C CONVERSION GAIN (dB) CONVERSION GAIN (dB) -2 HMC8119 -2 -2 -4 -4 -6 -6 -8 TA = +25C TA = +85C TA = -55C -10 -12 -12 -14 -14 -16 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -16 81.0 0 0 -5 TA = +25C TA = +85C TA = -55C LEAKAGE (dBm) -25 -30 -40 -45 -45 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 64. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB 18 16 12 10 TA = +25C TA = +85C TA = -55C 4 2 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-066 P1dB (dBm) 14 6 84.5 85.0 85.5 86.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -50 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 67. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, LSB 20 8 84.0 -30 -35 82.5 83.5 -25 -40 82.0 83.0 -20 -35 13098-065 LEAKAGE (dBm) -15 -20 0 81.0 LO LO LO LO LO LO LO -10 -15 81.5 82.5 Figure 66. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 1000 MHz, LSB -5 -50 81.0 82.0 RF FREQUENCY (GHz) Figure 63. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB -10 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm Figure 65. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 1000 MHz, LSB Rev. A | Page 17 of 27 13098-068 -10 LO LO LO LO LO LO LO -8 13098-067 0 IP2 (dBm) 0 13098-064 IP2 (dBm) Data Sheet HMC8119 Data Sheet LOWER SIDEBAND (LSB) SELECTED, IF = 2000 MHz 0 0 -4 -6 -8 -10 -12 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -8 -10 -12 -16 81.0 0 0 -5 SIDEBAND REJECTION (dBc) -10 -15 -20 -25 -30 -35 -40 83.0 83.5 84.0 84.5 85.0 85.5 86.0 LO LO LO LO LO LO LO -10 -15 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -20 -25 -30 -35 -40 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 -50 81.0 Figure 69. Sideband Rejection vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 2000 MHz, LSB 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-073 82.0 13098-070 81.5 RF FREQUENCY (GHz) Figure 72. Sideband Rejection vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 2000 MHz, LSB 34 34 TA = +25C TA = +85C TA = -55C 30 32 30 28 26 26 IP3 (dBm) 28 24 22 24 20 18 18 16 16 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-071 20 81.5 Figure 70. Input IP3 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, LSB LO LO LO LO LO LO LO 22 14 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 73. Input IP3 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 2000 MHz, LSB Rev. A | Page 18 of 27 13098-074 32 14 81.0 82.5 -45 -45 -50 81.0 82.0 Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers, IFIN = -8 dBm, IF = 2000 MHz, LSB -5 TA = +25C TA = +85C TA = -55C 81.5 RF FREQUENCY (GHz) Figure 68. Conversion Gain vs. RF Frequency at Various Temperatures, IFIN = -8 dBm, LO = 2 dBm, IF = 2000 MHz, LSB SIDEBAND REJECTION (dBc) -6 13098-072 82.0 13098-069 81.5 RF FREQUENCY (GHz) IP3 (dBm) -4 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -14 -14 -16 81.0 LO LO LO LO LO LO LO -2 TA = +25C TA = +85C TA = -55C CONVERSION GAIN (dB) CONVERSION GAIN (dB) -2 Data Sheet HMC8119 0 0 -2 -2 TA = +25C TA = +85C TA = -55C -4 -4 -6 -10 -10 -12 -12 -14 -14 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) -16 81.0 0 0 -5 TA = +25C TA = +85C TA = -55C LEAKAGE (dBm) -25 -30 -40 -45 -45 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 75. 6x LO Leakage at RFOUT vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, IF = 2000 MHz, LSB 18 16 14 12 10 TA = +25C TA = +85C TA = -55C 6 4 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) 13098-077 2 81.5 84.0 84.5 85.0 85.5 86.0 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm -50 81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0 RF FREQUENCY (GHz) Figure 78. 6x LO Leakage at RFOUT vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 2000 MHz, LSB 20 8 83.5 -30 -35 82.5 83.0 -25 -40 82.0 82.5 -20 -35 13098-076 LEAKAGE (dBm) -15 -20 0 81.0 LO LO LO LO LO LO LO -10 -15 81.5 82.0 Figure 77. Input IP2 vs. RF Frequency at Various LO Powers, IFIN = 5 dBm, IF = 2000 MHz, LSB -5 -50 81.0 81.5 = -4dBm = -2dBm = 0dBm = +2dBm = +4dBm = +6dBm = +8dBm RF FREQUENCY (GHz) Figure 74. Input IP2 vs. RF Frequency at Various Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, LSB -10 LO LO LO LO LO LO LO Figure 76. Input P1dB vs. RF Frequency at Various Temperatures, LO = 2 dBm, IF = 2000 MHz, LSB Rev. A | Page 19 of 27 13098-079 -16 81.0 P1dB (dBm) -8 13098-078 IP2 (dBm) -8 13098-075 IP2 (dBm) -6 HMC8119 Data Sheet SPURIOUS PERFORMANCE, USB M x N Spurious Output, RF = 85 GHz TA = 25C, VGMIX = -1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm. IF = 500 MHz at IFIN = 5 dBm, LO = 14.083 GHz at LOIN = 2 dBm. Mixer spurious products are measured in dBc from the RF output power level. Spur values are (M x IF) + (N x LO). N/A means not applicable. M x N Spurious Outputs, RF = 82 GHz IF = 500 MHz at IFIN = 5 dBm, LO = 13.583 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 22.1 0.00 37.7 54.5 59.5 58.6 IF = 1000 MHz at IFIN = 5 dBm, LO = 13.5 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 22.8 0.00 31.6 32.5 32.1 31.6 M x IF 0 1 2 3 4 5 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 15.8 0.00 38.3 60.5 59.7 60.8 IF = 1000 MHz at IFIN = 5 dBm, LO = 14 GHz at LOIN = 2 dBm. M x IF IF = 2000 MHz at IFIN = 5 dBm, LO = 13.333 GHz at LOIN = 2 dBm. 0 N/A N/A N/A N/A N/A N/A M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 15.7 0.00 32.5 31.7 29.7 30.2 IF = 2000 MHz at IFIN = 5 dBm, LO = 13.833 GHz at LOIN = 2 dBm. M x IF 6 29.7 0.00 31.5 30.5 29.5 28.9 Rev. A | Page 20 of 27 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 17.2 0.00 30.4 29.7 30 28.6 Data Sheet HMC8119 SPURIOUS PERFORMANCE, LSB M x N Spurious Outputs, RF = 85 GHz TA = 25C, VGMIX = -1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm. IF = 500 MHz at IFIN = 5 dBm, LO = 14.25 GHz at LOIN = 2 dBm. Mixer spurious products are measured in dBc from the RF output power level. Spur values are (M x IF) - (N x LO). N/A means not applicable. M x N Spurious Outputs, RF = 82 GHz IF = 500 MHz at IFIN = 5 dBm, LO = 13.75 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A 63.4 N/A N/A N/A N/A 1 64.4 N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 54.2 N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A M x IF 6 19.4 0.00 38.4 59 61.3 61.4 IF = 1000 MHz at IFIN = 5 dBm, LO = 13.833 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 17.2 0.00 42.2 60.1 62 58.7 IF = 2000 MHz at IFIN = 5 dBm, LO = 14 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 0 1 2 3 4 5 0 N/A 63.45 N/A N/A N/A N/A 1 56.9 N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 57.3 N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 19.5 0.00 38.8 61.4 61.8 59.2 IF = 1000 MHz at IFIN = 5 dBm, LO = 14.333 GHz at LOIN = 2 dBm. M x IF 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 17.1 0.00 42.5 59.6 58.9 59.9 IF = 2000 MHz at IFIN = 5 dBm, LO = 14.5 GHz at LOIN = 2 dBm. M x IF 6 17.2 0.00 49.3 55.9 65.2 64.4 Rev. A | Page 21 of 27 0 1 2 3 4 5 0 N/A N/A N/A N/A N/A N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A N/A N/A N/A N/A N x LO 3 N/A N/A N/A N/A N/A N/A 4 N/A N/A N/A N/A N/A N/A 5 N/A N/A N/A N/A N/A N/A 6 18.7 0.00 49.7 60.2 60.6 63.2 HMC8119 Data Sheet THEORY OF OPERATION The HMC8119 is a GaAs I/Q upconverter with an integrated LO buffer and 6x multiplier. See Figure 79 for a functional block diagram of the circuit architecture. The 6x multiplier allows the use of a lower frequency range LO input signal, typically between 11.83 GHz and 14.33 GHz. The 6x multiplier is implemented using a cascade of 3x and 2x multipliers. LO buffer amplifiers are included on chip to allow a typical LO drive level VDAMP2 IFIP of only 2 dBm for full performance. The LO path feeds a quadrature splitter followed by on-chip baluns that drive the I and Q mixer cores. The mixer cores comprise singly balanced passive mixers. The RF outputs of the I and Q mixers are then summed through an on-chip Wilkinson power combiner and reactively matched to provide a single-ended 50 output signal at the RFOUT pad. VGAMP VDAMP1 VDMULT VGX3 VGX2 LOIN IFIN X2 X3 VGMIX RFOUT IFQN 13098-080 NOTES 1. AC COUPLING, MATCHING ELEMENTS, AND GND BOND PADS NOT ILLUSTRATED . IFQP Figure 79. Upconverter Circuit Architecture Rev. A | Page 22 of 27 Data Sheet HMC8119 APPLICATIONS INFORMATION BIASING SEQUENCE SINGLE SIDEBAND UPCONVERSION The HMC8119 uses several amplifier and multiplier stages in the LO signal path. The active stages all use depletion mode pseudomorphic high electron mobility transistors (pHEMTs). To ensure transistor damage does not occur, use the following power-up bias sequence: A typical single-sideband upconversion circuit is shown in Figure 80. For single-sideband upconversions, an external 90 hybrid splits the IF signal into quadrature terms. Then 180 hybrids or baluns transfer differential signals to the I and Q input pairs. Use an optional bias tee network to allow the application of small dc offsets on the IFIP, IFIN, IFQP, and IFQN input pads. By applying dc offsets to the I/Q mixer cores, the 6x LO to RF leakage can be somewhat improved. However, it is important to current limit the applied dc bias to avoid sourcing or sinking more than 3 mA of bias current. Depending on the bias sources used, it may be prudent to add series resistance to ensure the applied bias current does not exceed 3 mA. For applications not requiring enhanced LO suppression, omit the bias tee and then dc couple the I/Q inputs to the 180 hybrids. 1. 2. 3. 4. 5. Apply a -2 V bias to VGAMP, VGX2, and VGX3. Apply a -1 V bias to VGMIX. Apply 4 V to VDAMP1 and VDAMP2, and apply 1.5 V to VDMULT. Adjust VGAMP between -2 V and 0 V to achieve a total amplifier drain current (IDAMP1 + IDAMP2) of 175 mA. Apply a LO input signal and adjust VGX2 and VGX3 between -2 V and 0 V to achieve 80 mA of drain current on VDMULT. To power down the HMC8119, follow the reverse procedure. For additional guidance on general bias sequencing, see the MMIC Amplifier Biasing Procedure application note. VDAMP1 , VDAMP2 + VGMIX + 120pF 0.01F 4.7F 0.01F 120pF 120pF 0.01F 4.7F 0.01F 120pF 120pF 0.01F OPTIONAL + + 4.7F 4.7F 4.7F VGAMP VDMULT VGX3, VGX2 LOIN IP BIAS 3 12 13 14 15 16 17 18 19 20 21 LOIN 11 VGX2 10 VGX3 9 VDMULT 8 VDAMP1 IFIN 7 VGAMP 6 IFIP VDAMP2 4 VGMIX 5 180 HYBRID + IN BIAS X6 IFIN QN BIAS RFOUT 2 180 HYBRID QP BIAS 24 23 1 IFQN HMC8119 IFQP 22 13098-081 90 HYBRID RF OUTPUT Figure 80. Single-Sideband Upconversion Configuration with Optional DC Bias Tee Network for Enhanced LO Suppression Rev. A | Page 23 of 27 HMC8119 Data Sheet Zero IF Direct Conversion outputs. Most DACs are designed to operate with a commonmode voltage that is above ground. The HMC8119 I/Q inputs are ground referenced and dc coupling to a differential signal source with a common-mode output voltage other than 0 V may cause degraded RF performance and possible device damage from electrical overstress. A zero IF direct conversion application circuit is shown in Figure 81. An optional bias tee network is included for applications requiring additional LO suppression correction. When omitting the bias tee configuration, it is still important to ac couple the IFIP, IFIN, IFQP, and IFQN pads to the DAC VDAMP1 , VDAMP2 + VGMIX + 120pF 0.01F 4.7F 0.01F 120pF 120pF 0.01F 4.7F 0.01F 120pF 120pF 0.01F OPTIONAL + + + 4.7F 4.7F 4.7F VGAMP VDMULT VGX3, VGX2 LOIN IP BIAS 12 13 14 15 16 17 18 19 20 21 LOIN 11 VGX2 10 VGX3 9 VDMULT 8 VDAMP1 IFIN 7 VGAMP I DAC 3 6 IFIP VDAMP2 4 VGMIX 5 IN BIAS X6 QN BIAS 2 RFOUT QP BIAS 24 23 1 HMC8119 IFQP 22 13098-082 Q DAC IFQN RF OUTPUT Figure 81. Zero IF Direct Conversion Application Circuit with Optional Bias Tee Network for Enhanced LO Suppression Rev. A | Page 24 of 27 Data Sheet HMC8119 ASSEMBLY DIAGRAM VGMIX VDAMP1 , VDAMP2 VGAMP VDMULT VGX2, VGX3 4.7F 4.7F 4.7F 4.7F 4.7F 0.01F 16 17 18 19 20 21 GND GND VDMULT 15 GND 14 LOIN 13 GND 12 VGX2 11 GND 10 VGX3 9 GND 8 VDAMP1 IFIN 7 GND 3 6 VGAMP IFIP GND 4 120pF VDAMP2 5 GND 1mil GOLD WIRE (WEDGE BOND) VGMIX 1mil GOLD WIRE (WEDGE BOND) 3mil NOMINAL GAP RFOUT GND 24 23 22 2 IFQN 1 IFQP 3mil GOLD RIBBON (WEDGE BOND) 13098-084 50 TRANSMISSION LINE GND HMC8119 Figure 82. Assembly Diagram Rev. A | Page 25 of 27 HMC8119 Data Sheet MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS Attach the die directly to the ground plane eutectically or with conductive epoxy. To bring RF to and from the chip, use 50 microstrip transmission lines on 0.127 mm (5 mil) thick alumina thin film substrates (see Figure 83). General Handling Handle the chip on the edges only using a vacuum collet or with a sharp pair of bent tweezers. Because the surface of the chip has fragile air bridges, never touch the surface of the chip with a vacuum collet, tweezers, or fingers. MOUNTING 0.05mm (0.002") THICK GaAs MMIC The chip is back metallized and can be die mounted with gold/tin (AuSn) eutectic preforms or with electrically conductive epoxy. The mounting surface must be clean and flat. RIBBON BOND 0.076mm (0.003") Eutectic Die Attach It is best to use an 80%/20% gold/tin preform with a work surface temperature of 255C and a tool temperature of 265C. When hot 90%/10% nitrogen/hydrogen gas is applied, maintain tool tip temperature at 290C. Do not expose the chip to a temperature greater than 320C for more than 20 sec. No more than 3 sec of scrubbing is required for attachment. 0.127mm (0.005") THICK ALUMINA THIN FILM SUBSTRATE 13098-085 RF GROUND PLANE Figure 83. Routing RF Signals To minimize bond wire length, place microstrip substrates as close to the die as possible. Typical die to substrate spacing is 0.076 mm to 0.152 mm (3 mil to 6 mil). HANDLING PRECAUTIONS To avoid permanent damage, adhere to the following storage, cleanliness, static sensitivity, transients, and general handling precautions. Storage All bare die ship in either waffle or gel-based ESD protective containers, sealed in an ESD protective bag. After opening the sealed ESD protective bag, all die must be stored in a dry nitrogen environment. Cleanliness Handle the chips in a clean environment. Never use liquid cleaning systems to clean the chip. Static Sensitivity Follow ESD precautions to protect against ESD strikes. Epoxy Die Attach ABLEBOND 84-1LMIT is recommended for die attachment. Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip after placing it into position. Cure the epoxy per the schedule provided by the manufacturer. WIRE BONDING RF bonds made with 0.003 in. x 0.0005 in. gold ribbon are recommended for the RF port, and wedge bonds with 0.025 mm (1 mil) diameter gold wire are recommended for the IF and LO ports. These bonds must be thermosonically bonded with a force of 40 g to 60 g. DC bonds of 0.001 in. (0.025 mm) diameter, thermosonically bonded, are recommended. Create ball bonds with a force of 40 g to 50 g and wedge bonds with a force of 18 g to 22 g. Create all bonds with a nominal stage temperature of 150C. Apply a minimum amount of ultrasonic energy to achieve reliable bonds. Keep all bonds as short as possible, less than 12 mil (0.31 mm). Transients Suppress instrument and bias supply transients while bias is applied. To minimize inductive pickup, use shielded signal and bias cables. Rev. A | Page 26 of 27 Data Sheet HMC8119 OUTLINE DIMENSIONS 3.601 0.320 0.510 0.472 0.05 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.058 5 6 4 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 0.168 0.307 3 0.648 1.609 2 0.307 0.085 0.120 0.085 1 0.238 22 SIDE VIEW TOP VIEW 0.125 0.125 (CIRCUIT SIDE) 0.130 03-31-2015-A 24 23 0.120 Figure 84. 24-Pad Bare Die [CHIP] (C-24-3) Dimensions shown in millimeters ORDERING GUIDE Model1 HMC8119 HMC8119-SX 1 2 Temperature Range -55C to +85C -55C to +85C Package Description 24-Pad Bare Die [CHIP] 24-Pad Bare Die [CHIP] The HMC8119-SX is two pairs of the die in a gel pack for the sample orders. This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options. (c)2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D13098-0-2/16(A) Rev. A | Page 27 of 27 Package Option2 C-24-3 C-24-3