81 GHz to 86 GHz,
E-Band I/Q Upconverter
Data Sheet HMC8119
Rev. A Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
FEATURES
Conversion loss: 10 dB typical
Sideband rejection: 22 dBc typical
Input power for 1 dB compression (P1dB): 16 dBm typical
Input third-order intercept (IP3): 24 dBm typical
Input second-order intercept (IP2): −5 dBm typical
6× local oscillator (LO) leakage at RFOUT: −23 dBm typical
RF return loss: 12 dB typical
LO return loss: 20 dB typical
Die size: 3.601 mm × 1.609 mm × 0.05 mm
APPLICATIONS
E-band communication systems
High capacity wireless backhaul
Test and measurement
GENERAL DESCRIPTION
The HMC8119 is an integrated E-band gallium arsenide (GaAs)
pseudomorphic (pHEMT) monolithic microwave integrated
circuit (MMIC), in-phase/quadrature (I/Q) upconverter chip
that operates from 81 GHz to 86 GHz. The HMC8119 provides
a small signal conversion loss of 10 dB with 22 dBc of sideband
rejection across the frequency band. The device uses an image
rejection mixer that is driven by a 6× LO multiplier. Differential
I and Q mixer inputs are provided. The inputs can be driven
with differential I and Q baseband waveforms for direct conver-
sion applications. Alternatively, the inputs can be driven using
an external 90° hybrid and two external 180° hybrids for single-
sideband applications. All data includes the effect of a 1 mil
gold wire wedge bond on the intermediate frequency (IF) ports.
FUNCTIONAL BLOCK DIAGRAM
IFIP
V
GMIX
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
RFOUT
5
4
3
2
1
222324
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
HMC8119
13098-001
Figure 1.
HMC8119 Data Sheet
Rev. A | Page 2 of 27
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Absolute Maximum Ratings ............................................................ 4
Thermal Resistance ...................................................................... 4
ESD Caution .................................................................................. 4
Pin Configuration and Function Descriptions ............................. 5
Interface Schematics..................................................................... 6
Typical Performance Characteristics ............................................. 7
Upper Sideband (USB) Selected, IF = 500 MHz ...................... 7
Return Loss Performance ............................................................ 9
Upper Sideband (USB) Selected, IF = 1000 MHz .................. 10
Upper Sideband (USB) Selected, IF = 2000 MHz .................. 12
Lower Sideband (LSB) Selected, IF = 500 MHz ..................... 14
Lower Sideband (LSB) Selected, IF = 1000 MHz ................... 16
Lower Sideband (LSB) Selected, IF = 2000 MHz ................... 18
Spurious Performance, USB...................................................... 20
Spurious Performance, LSB ...................................................... 21
Theory of Operation ...................................................................... 22
Applications Information .............................................................. 23
Biasing Sequence ........................................................................ 23
Single Sideband Upconversion ................................................. 23
Assembly Diagram ......................................................................... 25
Mounting and Bonding Techniques for Millimeterwave GaAs
MMICs ............................................................................................. 26
Handling Precautions ................................................................ 26
Mounting ..................................................................................... 26
Wire Bonding .............................................................................. 26
Outline Dimensions ....................................................................... 27
Ordering Guide .......................................................................... 27
REVISION HISTORY
2/16Revision A: Initial Version
Data Sheet HMC8119
Rev. A | Page 3 of 27
SPECIFICATIONS
TA = 25°C, IF = 500 MHz, VGMIX = −1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm, upper sideband selected (USB). Measurements
performed as an upconverter with external 90° and 180° hybrids at the IF ports, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
OPERATING CONDITIONS
RF Frequency Range 81 86 GHz
LO Frequency Range 11.83 14.33 GHz
IF Frequency Range 0 10 GHz
LO Drive Range 2 8 dBm
PERFORMANCE
Conversion Loss 10 13 dB
Sideband Rejection 22 dBc
Input Power for 1 dB Compression (P1dB) 16 dBm
Input Third-Order Intercept (IP3) 24 dBm
Input Second-Order Intercept (IP2) −5 dBm
6× LO Leakage at RFOUT −23 19 dBm
RF Return Loss 12 dB
LO Return Loss 20 dB
IF Return Loss 25 dB
POWER SUPPLY
Supply Current
IDAMP1 175 mA
IDMULT 2 Under LO drive 80 mA
1 Adjust VGAMP from −2 V to 0 V to achieve the total quiescent current, IDAMP = IDAMP1 + IDAMP2 = 175 mA.
2 Adjust VGX2 and VGX3 from −2 V to 0 V to achieve the quiescent current, IDMULT = 1 mA to 2 mA. Refer to the Applications Information section for more information.
HMC8119 Data Sheet
Rev. A | Page 4 of 27
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter Rating
Drain Bias Voltage
V
DAMP1
, V
DAMP2
4.5 V
VDMULT 3 V
Gate Bias Voltage
VGAMP −3 V to 0 V
VGX2, VGX3 −3 V to 0 V
VGMIX −3 V to 0 V
LO Input Power 10 dBm
Maximum Junction Temperature
(to Maintain 1 Million Hours Mean
Time to Failure (MTTF))
175°C
Storage Temperature Range −65°C to +150°C
Operating Temperature Range −55°C to +85°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
Table 3. Thermal Resistance
Package Type θJC1 Unit
24-Pad Bare Die [CHIP] 73.7 °C/W
1 Based on ABLEBOND® 84-1LMIT as die attach epoxy with thermal
conductivity of 3.6 W/mK.
ESD CAUTION
Data Sheet HMC8119
Rev. A | Page 5 of 27
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
IFIP
GND
VGMIX
VDAMP2
GND
GND
GND
GND
GND
GND
GND
GND
VGAMP
VDAMP1
VDMULT
VGX3
VGX2
LOIN
IFIN
IFQN
IFQP
RFOUT
GND
GND
54
3
2
1
222324
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
HMC8119
TOP VIEW
(No t t o Scal e)
13098-002
Figure 2. Pad Configuration
Table 4. Pad Function Descriptions
Pad No.
Mnemonic
Description
1, 2 IFQP, IFQN Positive and Negative IF Q Inputs. These pads are dc-coupled. When operation to dc is not required, block
these pads externally using a series capacitor with a value chosen to pass the necessary frequency range.
For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and
die failure may result (see Figure 3).
3, 4 IFIN, IFIP Negative and Positive IF I Inputs. These pads are dc-coupled. When operation to dc is not required, block
these pads externally using a series capacitor with a value chosen to pass the necessary frequency range.
For operation to dc, these pads must not source or sink more than 3 mA of current or die malfunction and
die failure may result (see Figure 3).
5, 7, 9, 11, 13,
15, 17, 19, 21,
22, 24
GND Ground Connect (See Figure 4).
6 VGMIX Gate Voltage for the FET Mixer (See Figure 5).
8, 12 VDAMP2,
VDAMP1
Power Supply Voltage for the First and the Second Stage LO Amplifier (See Figure 5).
10 VGAMP Gate Voltage for the First and the Second Stage LO Amplifier (See Figure 5).
14 VDMULT Power Supply Voltage for the Multiplier (See Figure 5).
16, 18 VGX3, VGX2 Gate Voltage for the Multiplier (See Figure 5).
20 LOIN Local Oscillator Input. This pad is dc-coupled and matched to 50 Ω (see Figure 6).
23 RFOUT RF Output. This pad is ac-coupled and matched to 50 Ω (see Figure 7).
Die Bottom GND Ground. The die bottom must be connected to RF/dc ground (see Figure 4).
HMC8119 Data Sheet
Rev. A | Page 6 of 27
INTERFACE SCHEMATICS
IFIN, IFIP,
IFQN, IFQP
200
13098-003
Figure 3. IFIP, IFIN, IFQN, IFQP Interface
GND
13098-004
Figure 4. GND Interface
V
DAMP1
,
DAMP2
,
V
DMULT
V
GMIX
, V
GAMP
,
V
GX2
, V
GX3
100
13098-005
Figure 5. VGMIX, VDAMP1, VDAMP2, VDMULT, VGAMP, VGX2, VGX3 Interface
LOIN
13098-006
Figure 6. LOIN Interface
RFOUT
13098-007
Figure 7. RFOUT Interface
Data Sheet HMC8119
Rev. A | Page 7 of 27
TYPICAL PERFORMANCE CHARACTERISTICS
UPPER SIDEBAND (USB) SELECTED, IF = 500 MHz
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
TA = +25°C
TA = +85°C
TA = –55° C
13098-008
Figure 8. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 500 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
TA = +25°C
TA = +85°C
TA = –55° C
13098-009
Figure 9. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 500 MHz, USB
30
10
12
14
16
18
20
22
26
28
24
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
TA = +25°C
TA = +85°C
TA = –55° C
13098-010
Figure 10. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, USB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-011
Figure 11. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 500 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-012
Figure 12. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 500 MHz, USB
30
10
12
14
16
18
20
22
24
26
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-013
Figure 13. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 500 MHz, USB
HMC8119 Data Sheet
Rev. A | Page 8 of 27
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-014
Figure 14. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-015
Figure 15. LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, LO= 2 dBm, IF = 500 MHz, USB
20
0
2
4
3
8
10
12
14
16
18
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-016
Figure 16. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, USB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-017
Figure 17. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 500 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-018
Figure 18. LO Leakage at RFOUT vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 500 MHz, USB
Data Sheet HMC8119
Rev. A | Page 9 of 27
RETURN LOSS PERFORMANCE
0
–5
–10
–15
–20
–25
–30
–35
–40 0246810 12 14 16
RET URN LOS S ( dB)
IF FRE QUENCY ( GHz)
IFIP
IFIN
IFQN
IFQP
13098-019
Figure 19. IF Return Loss vs. IF Frequency, LO = 2 dBm at 12 GHz
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
RET URN LOS S ( dB)
LO FRE QUENCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-020
Figure 20. LO Return Loss vs. LO Frequency at Various Temperatures,
LO = 2 dBm
0
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RET URN LOS S ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-021
Figure 21. RF Return Loss vs. RF Frequency at Various Temperatures,
RFIN = −10 dBm, LO = 2 dBm at 12 GHz
0
–45
–40
–35
–30
–25
–20
–15
–10
–5
RET URN LOS S ( dB)
LO FRE QUENCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0
13098-022
Figure 22. LO Return Loss vs. LO Frequency at Various LO Powers
0
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
RET URN LOS S ( dB)
RF FREQ UE NCY ( GHz)
LO = 0dBm
LO = 2dBm
LO = 4dBm
LO = 6dBm
LO = 8dBm
13098-023
Figure 23. RF Return Loss vs. RF Frequency at Various LO Powers,
RFIN = −10 dBm
HMC8119 Data Sheet
Rev. A | Page 10 of 27
UPPER SIDEBAND (USB) SELECTED, IF = 1000 MHz
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-025
Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 1000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-026
Figure 25. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 1000 MHz, USB
30
10
12
14
16
18
20
22
26
28
24
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-027
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-028
Figure 27. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 1000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-029
Figure 28. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 1000 MHz, USB
30
10
12
14
16
18
20
22
24
26
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-030
Figure 29. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 1000 MHz, USB
Data Sheet HMC8119
Rev. A | Page 11 of 27
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-031
Figure 30. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-032
Figure 31. 6× LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, USB
20
0
2
4
6
8
10
12
16
18
14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-033
Figure 32. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, USB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-034
Figure 33. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 1000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-035
Figure 34. 6× LO Leakage at RFOUT vs. RF Frequency at Various
LO Powers, IFIN = 5 dBm, IF = 1000 MHz, USB
HMC8119 Data Sheet
Rev. A | Page 12 of 27
UPPER SIDEBAND (USB) SELECTED, IF = 2000 MHz
0
–20
–18
–16
–14
–12
–10
–8
–4
–2
–6
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-036
Figure 35. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 2000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-037
Figure 36. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 2000 MHz, USB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-038
Figure 37. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB
0
–20
–18
–16
–14
–12
–10
–8
–4
–2
–6
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-039
Figure 38. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 2000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-040
Figure 39. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 2000 MHz, USB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-041
Figure 40. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 2000 MHz, USB
Data Sheet HMC8119
Rev. A | Page 13 of 27
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
0
–16
–14
–12
–10
–8
–6
–4
–2
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-042
Figure 41. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-043
Figure 42. 6× LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, USB
20
0
2
4
6
8
10
12
16
18
14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-044
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, USB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-045
Figure 44. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 2000 MHz, USB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-046
Figure 45. 6× LO Leakage at RFOUT vs. RF Frequency at Various LO
Powers, IFIN = 5 dBm, IF = 1000 MHz, USB
HMC8119 Data Sheet
Rev. A | Page 14 of 27
LOWER SIDEBAND (LSB) SELECTED, IF = 500 MHz
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-047
Figure 46. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 500 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-048
Figure 47. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 500 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-049
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-050
Figure 49. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 500 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-051
Figure 50. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 500 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-052
Figure 51. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 500 MHz, LSB
Data Sheet HMC8119
Rev. A | Page 15 of 27
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-053
Figure 52. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 500 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-054
Figure 53. 6× LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, IF = 500 MHz, LSB
20
0
2
4
6
8
10
12
14
16
18
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
13098-100
TA = +25°C
TA = +85°C
TA = –55° C
Figure 54. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 500 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-056
Figure 55. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 500 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-057
Figure 56. 6× LO Leakage at RFOUT vs. RF Frequency at Various LO
Powers, IFIN = 5 dBm, IF = 500 MHz, LSB
HMC8119 Data Sheet
Rev. A | Page 16 of 27
LOWER SIDEBAND (LSB) SELECTED, IF = 1000 MHz
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-058
Figure 57. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 1000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-059
Figure 58. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 1000 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-060
Figure 59. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-061
Figure 60. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 1000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-062
Figure 61. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 1000 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-063
Figure 62. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 1000 MHz, LSB
Data Sheet HMC8119
Rev. A | Page 17 of 27
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-064
Figure 63. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-065
Figure 64. LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, LO = 2 dBm, IF = 1000 MHz, LSB
20
0
2
4
6
8
10
12
16
18
14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-066
Figure 65. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 1000 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-067
Figure 66. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 1000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E ( dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-068
Figure 67. 6× LO Leakage at RFOUT vs. RF Frequency at Various
LO Powers, IFIN = 5 dBm, IF = 1000 MHz, LSB
HMC8119 Data Sheet
Rev. A | Page 18 of 27
LOWER SIDEBAND (LSB) SELECTED, IF = 2000 MHz
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN ( dB)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-069
Figure 68. Conversion Gain vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 2000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-070
Figure 69. Sideband Rejection vs. RF Frequency at Various Temperatures,
IFIN = 8 dBm, LO = 2 dBm, IF = 2000 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-071
Figure 70. Input IP3 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
CONVE RS IO N GAIN (dB)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-072
Figure 71. Conversion Gain vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 2000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–15
–10
–5
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
SIDE BAND RE JE CTI ON (dBc)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-073
Figure 72. Sideband Rejection vs. RF Frequency at Various LO Powers,
IFIN = 8 dBm, IF = 2000 MHz, LSB
34
14
16
18
20
22
24
26
30
32
28
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP3 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-074
Figure 73. Input IP3 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 2000 MHz, LSB
Data Sheet HMC8119
Rev. A | Page 19 of 27
0
–16
–14
–12
–10
–8
–6
–4
–2
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-075
Figure 74. Input IP2 vs. RF Frequency at Various Temperatures,
IFIN = 5 dBm, LO = 2 dBm, IF = 2000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E (dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-076
Figure 75. LO Leakage at RFOUT vs. RF Frequency at Various
Temperatures, IFIN = 5 dBm, IF = 2000 MHz, LSB
20
0
2
4
6
8
10
12
16
18
14
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
P1d B ( dBm)
RF FREQ UE NCY ( GHz)
T
A
= +25°C
T
A
= +85°C
T
A
= –55° C
13098-077
Figure 76. Input P1dB vs. RF Frequency at Various Temperatures,
LO = 2 dBm, IF = 2000 MHz, LSB
0
–16
–14
–12
–10
–8
–6
–2
–4
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
IP2 (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-078
Figure 77. Input IP2 vs. RF Frequency at Various LO Powers,
IFIN = 5 dBm, IF = 2000 MHz, LSB
0
–50
–45
–40
–35
–30
–25
–20
–10
–5
–15
81.0 81.5 82.0 82.5 83.0 83.5 84.0 84.5 85.0 85.5 86.0
LE AKAG E (dBm)
RF FREQ UE NCY ( GHz)
LO = –4d Bm
LO = –2d Bm
LO = 0dBm
LO = +2dBm
LO = +4dBm
LO = +6dBm
LO = +8dBm
13098-079
Figure 78. 6× LO Leakage at RFOUT vs. RF Frequency at Various
LO Powers, IFIN = 5 dBm, IF = 2000 MHz, LSB
HMC8119 Data Sheet
Rev. A | Page 20 of 27
SPURIOUS PERFORMANCE, USB
TA = 25°C, VGMIX = 1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm.
Mixer spurious products are measured in dBc from the RF
output power level. Spur values are (M × IF) + (N × LO). N/A
means not applicable.
M × N Spurious Outputs, RF = 82 GHz
IF = 500 MHz at IFIN = 5 dBm, LO = 13.583 GHz at LOIN =
2 dBm.
N × LO
0
1
2
3
4
5
6
M × IF
0 N/A N/A N/A N/A N/A N/A 22.1
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 37.7
3 N/A N/A N/A N/A N/A N/A 54.5
4 N/A N/A N/A N/A N/A N/A 59.5
5 N/A N/A N/A N/A N/A N/A 58.6
IF = 1000 MHz at IFIN = 5 dBm, LO = 13.5 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 22.8
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 31.6
3 N/A N/A N/A N/A N/A N/A 32.5
4 N/A N/A N/A N/A N/A N/A 32.1
5 N/A N/A N/A N/A N/A N/A 31.6
IF = 2000 MHz at IFIN = 5 dBm, LO = 13.333 GHz at LOIN =
2 dBm.
N × LO
0
1
2
3
4
5
6
M × IF
0 N/A N/A N/A N/A N/A N/A 29.7
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 31.5
3 N/A N/A N/A N/A N/A N/A 30.5
4 N/A N/A N/A N/A N/A N/A 29.5
5 N/A N/A N/A N/A N/A N/A 28.9
M × N Spurious Output, RF = 85 GHz
IF = 500 MHz at IFIN = 5 dBm, LO = 14.083 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 15.8
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 38.3
3 N/A N/A N/A N/A N/A N/A 60.5
4
N/A
N/A
N/A
N/A
N/A
N/A
59.7
5 N/A N/A N/A N/A N/A N/A 60.8
IF = 1000 MHz at IFIN = 5 dBm, LO = 14 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 15.7
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 32.5
3 N/A N/A N/A N/A N/A N/A 31.7
4 N/A N/A N/A N/A N/A N/A 29.7
5 N/A N/A N/A N/A N/A N/A 30.2
IF = 2000 MHz at IFIN = 5 dBm, LO = 13.833 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 17.2
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 30.4
3 N/A N/A N/A N/A N/A N/A 29.7
4
N/A
N/A
N/A
N/A
N/A
N/A
30
5 N/A N/A N/A N/A N/A N/A 28.6
Data Sheet HMC8119
Rev. A | Page 21 of 27
SPURIOUS PERFORMANCE, LSB
TA = 25°C, VGMIX = 1 V, VDAMPx = 4 V, VDMULT = 1.5 V, LO = 2 dBm.
Mixer spurious products are measured in dBc from the RF
output power level. Spur values are (M × IF) (N × LO). N/A
means not applicable.
M × N Spurious Outputs, RF = 82 GHz
IF = 500 MHz at IFIN = 5 dBm, LO = 13.75 GHz at LOIN =
2 dBm.
N × LO
0
1
2
3
4
5
6
M × IF
0 N/A 64.4 N/A 54.2 N/A N/A 19.4
1 63.4 N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 38.4
3 N/A N/A N/A N/A N/A N/A 59
4 N/A N/A N/A N/A N/A N/A 61.3
5 N/A N/A N/A N/A N/A N/A 61.4
IF = 1000 MHz at IFIN = 5 dBm, LO = 13.833 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 17.2
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 42.2
3 N/A N/A N/A N/A N/A N/A 60.1
4 N/A N/A N/A N/A N/A N/A 62
5 N/A N/A N/A N/A N/A N/A 58.7
IF = 2000 MHz at IFIN = 5 dBm, LO = 14 GHz at LOIN =
2 dBm.
N × LO
0
1
2
3
4
5
6
M × IF
0 N/A N/A N/A N/A N/A N/A 17.2
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 49.3
3 N/A N/A N/A N/A N/A N/A 55.9
4 N/A N/A N/A N/A N/A N/A 65.2
5 N/A N/A N/A N/A N/A N/A 64.4
M × N Spurious Outputs, RF = 85 GHz
IF = 500 MHz at IFIN = 5 dBm, LO = 14.25 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A 56.9 N/A 57.3 N/A N/A 19.5
1 63.45 N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 38.8
3 N/A N/A N/A N/A N/A N/A 61.4
4
N/A
N/A
N/A
N/A
N/A
N/A
61.8
5 N/A N/A N/A N/A N/A N/A 59.2
IF = 1000 MHz at IFIN = 5 dBm, LO = 14.333 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 17.1
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 42.5
3 N/A N/A N/A N/A N/A N/A 59.6
4 N/A N/A N/A N/A N/A N/A 58.9
5 N/A N/A N/A N/A N/A N/A 59.9
IF = 2000 MHz at IFIN = 5 dBm, LO = 14.5 GHz at LOIN =
2 dBm.
N × LO
0 1 2 3 4 5 6
M × IF
0 N/A N/A N/A N/A N/A N/A 18.7
1 N/A N/A N/A N/A N/A N/A 0.00
2 N/A N/A N/A N/A N/A N/A 49.7
3 N/A N/A N/A N/A N/A N/A 60.2
4
N/A
N/A
N/A
N/A
N/A
N/A
60.6
5 N/A N/A N/A N/A N/A N/A 63.2
HMC8119 Data Sheet
Rev. A | Page 22 of 27
THEORY OF OPERATION
The HMC8119 is a GaAs I/Q upconverter with an integrated
LO buffer and 6× multiplier. See Figure 79 for a functional
block diagram of the circuit architecture. The 6× multiplier
allows the use of a lower frequency range LO input signal,
typically between 11.83 GHz and 14.33 GHz. The 6× multiplier
is implemented using a cascade of 3× and 2× multipliers. LO buffer
amplifiers are included on chip to allow a typical LO drive level
of only 2 dBm for full performance. The LO path feeds a
quadrature splitter followed by on-chip baluns that drive the
I and Q mixer cores. The mixer cores comprise singly balanced
passive mixers. The RF outputs of the I and Q mixers are then
summed through an on-chip Wilkinson power combiner and
reactively matched to provide a single-ended 50 Ω output signal
at the RFOUT pad.
13098-080
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
IFIP IFIN
IFQPIFQN
LOIN
NOTES
1. AC COUPLING, MATCHING ELEMENTS,
AND GND BOND PADS NOT ILLUSTRATED .
VGMIX
RFOUT
X3X2
V
GX2
V
GX3
Figure 79. Upconverter Circuit Architecture
Data Sheet HMC8119
Rev. A | Page 23 of 27
APPLICATIONS INFORMATION
BIASING SEQUENCE
The HMC8119 uses several amplifier and multiplier stages in
the LO signal path. The active stages all use depletion mode
pseudomorphic high electron mobility transistors (pHEMTs).
To ensure transistor damage does not occur, use the following
power-up bias sequence:
1. Apply a −2 V bias to VGAMP, VGX2, and VGX3.
2. Apply a −1 V bias to VGMIX.
3. Apply 4 V to VDAMP1 and VDAMP2, and apply 1.5 V to VDMULT.
4. Adjust VGAMP between −2 V and 0 V to achieve a total
amplifier drain current (IDAMP1 + IDAMP2) of 175 mA.
5. Apply a LO input signal and adjust VGX2 and VGX3 between
−2 V and 0 V to achieve 80 mA of drain current on VDMULT.
To powe r down the HMC8119, follow the reverse procedure.
For additional guidance on general bias sequencing, see the
MMIC Amplifier Biasing Procedure application note.
SINGLE SIDEBAND UPCONVERSION
A typical single-sideband upconversion circuit is shown in
Figure 80. For single-sideband upconversions, an external 90°
hybrid splits the IF signal into quadrature terms. Then 180°
hybrids or baluns transfer differential signals to the I and Q
input pairs. Use an optional bias tee network to allow the
application of small dc offsets on the IFIP, IFIN, IFQP, and
IFQN input pads. By applying dc offsets to the I/Q mixer cores,
the 6× LO to RF leakage can be somewhat improved. However,
it is important to current limit the applied dc bias to avoid sourcing
or sinking more than ±3 mA of bias current. Depending on the
bias sources used, it may be prudent to add series resistance to
ensure the applied bias current does not exceed ±3 mA. For
applications not requiring enhanced LO suppression, omit the
bias tee and then dc couple the I/Q inputs to the 180° hybrids.
X6
HMC8119
V
GAMP
120pF 0.01µF 4.7µF
VDMULT
120pF 0.01µF 4.7µF
VGX3, VGX2
120pF 0.01µF 4.7µF
VDAMP1, VDAMP2
4.7µF 0.01µF 120pF
VGMIX
4.7µF 0.01µF 120pF
LOIN
180°
HYBRID
180°
HYBRID
IFIP
VGMIX
VDAMP2
VGAMP
VDAMP1
VDMULT
VGX3
VGX2
LOIN
IFIN
IFQN
IFQP
RFOUT
5
4
3
222324
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1
2
90°
HYBRID
IFIN
IP BIAS
IN BIAS
QN BIAS
QP BIAS
RF OUTPUT
OPTIONAL
+
+
+
+
+
13098-081
Figure 80. Single-Sideband Upconversion Configuration with Optional DC Bias Tee Network for Enhanced LO Suppression
HMC8119 Data Sheet
Rev. A | Page 24 of 27
Zero IF Direct Conversion
A zero IF direct conversion application circuit is shown in
Figure 81. An optional bias tee network is included for
applications requiring additional LO suppression correction.
When omitting the bias tee configuration, it is still important to
ac couple the IFIP, IFIN, IFQP, and IFQN pads to the DAC
outputs. Most DACs are designed to operate with a common-
mode voltage that is above ground. The HMC8119 I/Q inputs
are ground referenced and dc coupling to a differential signal
source with a common-mode output voltage other than 0 V
may cause degraded RF performance and possible device
damage from electrical overstress.
X6
HMC8119
V
GAMP
120pF 0.01µF 4.7µF
V
DMULT
120pF 0.01µF 4.7µF
V
GX3,
V
GX2
120pF 0.01µF 4.7µF
V
DAMP1
, V
DAMP2
4.7µF 0.01µF 120pF
V
GMIX
4.7µF 0.01µF 120pF
LOIN
IFIP
V
GMIX
V
DAMP2
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
RFOUT
5
4
3
222324
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1
2
IP BIAS
IN BIAS
QN BIAS
QP BIAS
RF OUTPUT
OPTIONAL
I DAC
Q DAC
+
+
++
+
13098-082
Figure 81. Zero IF Direct Conversion Application Circuit with Optional Bias Tee Network for Enhanced LO Suppression
Data Sheet HMC8119
Rev. A | Page 25 of 27
ASSEMBLY DIAGRAM
IFIP
GND
V
GMIX
V
DAMP2
GND
GND
GND
GND
GND
GND
GND
GND
V
GAMP
V
DAMP1
V
DMULT
V
GX3
V
GX2
LOIN
IFIN
IFQN
IFQP
RFOUT
GND
GND
5
4
3
2
1
222324
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
HMC8119
V
GMIX
V
DAMP1
,
V
DAMP2
V
GAMP
V
DMULT
V
GX2
, V
GX3
4.7µF 4.7µF 4.7µF 4.7µF 4.7µF
0.01µF
120pF
1mil
GOLD WIRE
(WEDGE BOND)
1mil
GOLD WIRE
(WEDGE BOND)
3mil
GOLD RIBBON
(WEDGE BOND)
50
TRANSMISSION
LINE
3mil
NOMINAL GAP
13098-084
Figure 82. Assembly Diagram
HMC8119 Data Sheet
Rev. A | Page 26 of 27
MOUNTING AND BONDING TECHNIQUES FOR MILLIMETERWAVE GaAs MMICS
Attach the die directly to the ground plane eutectically or with
conductive epoxy.
To bring RF to and from the chip, use 50 Ω microstrip trans-
mission lines on 0.127 mm (5 mil) thick alumina thin film
substrates (see Figure 83).
13098-085
RF GROUND PLANE
0.05mm (0.002") THICK GaAs MMIC
RIBBON BOND
0.127mm (0.005") THICK ALUMINA
THIN FILM SUBSTRATE
0.076mm
(0.003")
Figure 83. Routing RF Signals
To minimize bond wire length, place microstrip substrates as
close to the die as possible. Typical die to substrate spacing is
0.076 mm to 0.152 mm (3 mil to 6 mil).
HANDLING PRECAUTIONS
To avoid permanent damage, adhere to the following storage,
cleanliness, static sensitivity, transients, and general handling
precautions.
Storage
All bare die ship in either waffle or gel-based ESD protective
containers, sealed in an ESD protective bag. After opening the
sealed ESD protective bag, all die must be stored in a dry
nitrogen environment.
Cleanliness
Handle the chips in a clean environment. Never use liquid
cleaning systems to clean the chip.
Static Sensitivity
Follow ESD precautions to protect against ESD strikes.
Transients
Suppress instrument and bias supply transients while bias is
applied. To minimize inductive pickup, use shielded signal and
bias cables.
General Handling
Handle the chip on the edges only using a vacuum collet or with
a sharp pair of bent tweezers. Because the surface of the chip
has fragile air bridges, never touch the surface of the chip with a
vacuum collet, tweezers, or fingers.
MOUNTING
The chip is back metallized and can be die mounted with gold/tin
(AuSn) eutectic preforms or with electrically conductive epoxy.
The mounting surface must be clean and flat.
Eutectic Die Attach
It is best to use an 80%/20% gold/tin preform with a work surface
temperature of 255°C and a tool temperature of 265°C. When
hot 90%/10% nitrogen/hydrogen gas is applied, maintain tool tip
temperature at 290°C. Do not expose the chip to a temperature
greater than 320°C for more than 20 sec. No more than 3 sec of
scrubbing is required for attachment.
Epoxy Die Attach
ABLEBOND 84-1LMIT is recommended for die attachment.
Apply a minimum amount of epoxy to the mounting surface so
that a thin epoxy fillet is observed around the perimeter of the
chip after placing it into position. Cure the epoxy per the schedule
provided by the manufacturer.
WIRE BONDING
RF bonds made with 0.003 in. × 0.0005 in. gold ribbon are recom-
mended for the RF port, and wedge bonds with 0.025 mm (1 mil)
diameter gold wire are recommended for the IF and LO ports.
These bonds must be thermosonically bonded with a force of
40 g to 60 g. DC bonds of 0.001 in. (0.025 mm) diameter,
thermosonically bonded, are recommended. Create ball bonds
with a force of 40 g to 50 g and wedge bonds with a force of 18 g
to 22 g. Create all bonds with a nominal stage temperature of
150°C. Apply a minimum amount of ultrasonic energy to achieve
reliable bonds. Keep all bonds as short as possible, less than
12 mil (0.31 mm).
Data Sheet HMC8119
Rev. A | Page 27 of 27
OUTLINE DIMENSIONS
1.609
3.601
0
3-31-2015-A
TOP VIEW
(CIRCUIT SIDE)
SIDE VIEW
2
3
4
5678910 11 12 13 14 15 16 17 18 19 20 21
1
22
23
24
0.320
0.130
0.510 0.472 0.15
0.085
0.085
0.15 0.15 0.15 0.15 0.15 0.15
0.15 0.15 0.15 0.15 0.15 0.15 0.15
0.168
0
.058
0.307
0.307
0.238
0.120
0.120
0.125
0.125
0.05
0.648
Figure 84. 24-Pad Bare Die [CHIP]
(C-24-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model1 Temperature Range Package Description Package Option2
HMC8119 −55°C to +85°C 24-Pad Bare Die [CHIP] C-24-3
HMC8119-SX −55°C to +85°C 24-Pad Bare Die [CHIP] C-24-3
1 The HMC8119-SX is two pairs of the die in a gel pack for the sample orders.
2 This is a waffle pack option; contact Analog Devices, Inc., for additional packaging options.
©2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13098-0-2/16(A)