V23990-P840-A48/A49/C48/C49-PM preliminary datasheet flowPIM0 3rd Gen 1200V/15A Features flow0 Housing 2 Clips housing in 12 and 17mm height Trench Fieldstop Technology IGBT4 Optional w/o BRC Target Applications Schematics Industrial Drives Embedded Generation Types V23990-P840-A48-PM 12mm height V23990-P840-A49-PM 17mm height V23990-P840-C48-PM 12mm height; w/o BRC V23990-P840-C49-PM 17mm height; w/o BRC Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Doide Repetitive peak reverse voltage VRRM Forward current per diode IFAV Surge forward current IFSM DC current Th=80C Tc=80C 28 A 220 A 240 A2s tp=10ms I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Tjmax 150 C VCE 1200 V Tj=Tjmax Th=80C Tc=80C 33 W Transistor Inverter Collector-emitter voltage DC collector current IC Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tjmax copyright Vincotech Tj150C VGE=15V 1 Th=80C Tc=80C 19 45 Th=80C Tc=80C 52 A A W 20 V 10 800 s V 175 C Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 1200 V Diode Inverter Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=Tjmax Th=80C Tc=80C 18 A Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Tjmax 175 C VCE 1200 V 30 Th=80C Tc=80C 38 A W Transistor BRC Collector-emitter voltage DC collector current IC Tj=Tjmax Th=80C Tc=80C 12 Repetitive peak collector current Icpuls tp limited by Tjmax Th=80C 24 Power dissipation per IGBT Ptot Tj=Tjmax Th=80C Tc=80C 40 Gate-emitter peak voltage VGE Short circuit ratings Maximum Junction Temperature A A W 20 V 10 800 s V Tjmax 175 C VRRM 1200 V tSC VCC Tj150C VGE=15V Diode BRC Peak Repetitive Reverse Voltage DC forward current IF Tj=Tjmax Th=80C Tc=80C 10 A Repetitive peak forward current IFRM tp limited by Tjmax Th=80C 15 Power dissipation per Diode Ptot Tj=Tjmax Th=80C Tc=80C 22 Maximum Junction Temperature Tjmax 150 C Storage temperature Tstg -40...+125 C Operation temperature Tjop -40...+150 C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm A W Thermal properties Insulation properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Characteristic Values Parameter Value Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) IC(A) or IF(A) T(C) or ID(A) Unit Min Typ Max 1 1,22 1,19 0,93 0,81 0,010 0,013 1,9 Input Rectifier Diode Forward voltage VF 30 Threshold voltage (for power loss calc. only) Vto 30 Slope resistance (for power loss calc. only) rt Reverse current Ir Thermal resistance chip to heatsink per chip 1600 RthJH Thermal grease thickness50um = 1 W/mK VGE(th) VCE=VGE Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=150C V V 0,1 mA K/W 2,16 Transistor Inverter Gate emitter threshold voltage Collector-emitter saturation voltage 0,0005 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 1200 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time Rise time Turn-off delay time Fall time tr tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Rgon=16 Ohm Rgoff=16 Ohm Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960V RthJH Thermal grease thickness50um = 1 W/mK Thermal resistance chip to heatsink per chip 5 5,8 6,5 1,94 2,26 200 f=1MHz 15 600 0 15 25 15 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 15 nA ns ns 19 ns 239 ns 106 mWs 1,25 mWs 1,24 Tj=25C mA 60 Tj=25C V V 0,01 none td(on) td(off) Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 1000 pF 100 pF 56 pF 93 nC 1,83 K/W Diode Inverter Diode forward voltage Reverse leakage current Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current VF Irm 1200 IRRM trr Qrr Rgon=16 Ohm 15 600 di(rec)max /dt Reverse recovered energy Erec Thermal resistance chip to heatsink per chip RthJH copyright Vincotech 10 Thermal grease thickness50um = 1 W/mK 15 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 1,35 1,90 1,91 2,7 16 433 2,75 109 1,16 2,52 3 2,35 V mA A ns uC A/ms mWs K/W Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE(V) or VGS(V) Vr(V) or VCE(V) or VDS(V) Value IC(A) or IF(A) T(C) or ID(A) Unit Min Typ Max 5 5,8 6,5 1,6 1,87 2,22 2,1 Transistor BRC Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) Collector-emitter cut-off Gate-emitter leakage current IGES Rgint Rise time Turn-off delay time Fall time 0,0003 8 ICES Integrated Gate resistor Turn-on delay time VCE=VGE 0 1200 20 0 tr tf 0,05 200 none td(on) td(off) Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Rgon=32Ohm Rgoff=32Ohm Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Vcc=960V Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness50um = 1 W/mK f=1MHz 15 600 0 8 25 15 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 8 mA nA ns ns 24 ns 228 ns 104 mWs 0,71 mWs 0,62 Tj=25C V 72 Tj=25C V 490 pF 50 pF 30 pF 50 nC 2,36 K/W Diode BRC Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir Reverse recovery time Reverse recovered charge Qrr Reverse recovery energy Thermal resistance chip to heatsink per chip 1200 IRRM trr Peak rate of fall of recovery current 7,5 Rgon=32Ohm 15 600 di(rec)max /dt Erec RthJH 8 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 0,8 1,67 1,61 2,2 250 A 10 ns 427 mC 1,64 A/ms 73 mWs 0,69 Thermal grease thickness50um = 1 W/mK V mA 3,15 K/W Thermistor Rated resistance Power dissipation given Epcos-Typ B-value copyright Vincotech R25 Tol. 13% Tj=25C 19,1 22 24,9 R100 Tol. 5% Tj=100C 1411 1486 1560 P B(25/100) Tol. 3% 4 Tj=25C 210 Tj=25C 4000 k mW K Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 50 IC (A) IC (A) 50 40 40 30 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) 5 0 At tp = Tj = 1 2 3 4 VCE (V) 5 At tp = Tj = s 250 25 C VGE from 7 V to 17 V in steps of 1 V 250 s 125 C VGE from 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics Ic = f(VGE) Output inverter FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 16 50 IF (A) IC (A) 25 oC 25 oC 125 oC 40 125 oC 12 30 8 20 4 10 0 0 0 At tp = VCE = 3 250 10 copyright Vincotech 6 9 VGE (V) 12 0 At tp = s V 5 1 250 2 3 VF (V) 4 s Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(Ic) 3 E (mWs) 3 E (mWs) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eon 2,5 2,5 Eoff Eon 2 2 1,5 1,5 Eoff Erec 1 1 0,5 0,5 Erec 0 0 0 5 10 15 20 25 IC (A) 0 30 With an inductive load at Tj = C 125 VCE = 600 V VGE = 15 V Rgon = 16 Rgoff = 16 15 30 45 60 RG() 75 With an inductive load at Tj = 125 C VCE = 600 V VGE = 15 V IC = 15 A Output inverter IGBT Figure 7 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 8 Typical switching times as a function of gate resistor t = f(RG) 1 t (s) t (s) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 5 10 15 20 25 IC (A) 0 30 With an inductive load at Tj = C 125 VCE = 600 V VGE = 15 V Rgon = 16 Rgoff = 16 copyright Vincotech 15 30 45 60 RG ( ) 75 With an inductive load at Tj = 125 C VCE = 600 V VGE = 15 V IC = 15 A 6 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Output Inverter Figure 9 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) Output inverter FRED diode Output inverter FRED diode Figure 10 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 0,6 IrrM (A) t rr(s) 50 0,5 40 0,4 30 0,3 20 0,2 10 0,1 0 0 0 At Tj = VR = IF = VGE = 15 30 60 RGon ( ) 75 0 15 At Tj = VR = IF = VGE = C V A V 125 600 15 15 Figure 11 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Output inverter FRED diode 30 125 600 15 15 45 60 RGon( ) 75 C V A V Output inverter FRED diode Figure 12 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 3,5 5000 direc / dt (A/s) Qrr (C) 45 3 4000 2,5 3000 2 1,5 2000 1 1000 dI0/dt 0,5 dIrec/dt 0 0 0 At Tj = VR = IF = VGE = 15 125 600 15 15 copyright Vincotech 30 45 60 RGon () 0 75 At Tj = VR = IF = VGE = C V A V 7 15 125 600 15 15 30 45 60 RGon () 75 C V A V Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Output Inverter Figure 13 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Figure 14 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-2 10-5 With D= RthJH = 10-4 tp / T 1,83 10-3 10-2 10-1 100 tp (s) 101 10-5 With D= RthJH = K/W 10-4 10-3 tp / T 2,52 K/W IGBT thermal model values FRED thermal model values R (C/W) 0,06 0,28 0,77 Tau (s) 5,6E+00 8,7E-01 1,7E-01 R (C/W) 0,05 0,26 1,04 Tau (s) 9,6E+00 8,2E-01 1,2E-01 0,42 0,19 0,10 3,4E-02 6,2E-03 5,5E-04 0,69 0,27 0,21 2,6E-02 3,4E-03 3,8E-04 copyright Vincotech 8 10-2 10-1 100 tp (s) 101 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Output Inverter Output inverter IGBT Figure 15 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 16 Collector current as a function of heatsink temperature IC = f(Th) 30 Ptot (W) IC (A) 100 25 80 20 60 15 40 10 20 5 0 0 0 At Tj = 50 100 150 Th (oC) 0 200 At Tj = C 175 175 15 VGE = Output inverter FRED Figure 17 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 100 150 Th (oC) 200 C V Output inverter FRED Figure 18 Forward current as a function of heatsink temperature IF = f(Th) 30 Ptot (W) IF (A) 75 25 60 20 45 15 30 10 15 5 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 Th (oC) 200 0 At Tj = C 9 50 175 100 150 Th (oC) 200 C Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Brake Brake IGBT Figure 1 Typical output characteristics IC = f(VCE) Brake IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 32 IC (A) 32 24 24 16 16 8 8 0 0 0 1 2 3 4 VCE (V) 0 5 1 2 3 4 VCE (V) 5 At tp = Tj = At tp = Tj = s 250 25 C VGE from 7 V to 17 V in steps of 1 V 250 s 125 C VGE from 7 V to 17 V in steps of 1 V Brake IGBT Figure 3 Typical transfer characteristics IC = f(VGE) Brake FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 30 IF (A) IC (A) 9 25 oC 125 oC 25 7,5 25 oC 125 oC 6 20 4,5 15 3 10 1,5 5 0 0 0 At tp = VCE = 2 250 10 copyright Vincotech 4 6 8 10 VGE (V) 12 0 At tp = s V 10 0,5 250 1 1,5 2 2,5 VF (V) 3 s Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Brake Brake IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) 1,5 E (mWs) E (mWs) 1,5 Eon 1,25 1,25 1 1 0,75 0,75 Eon Erec Eoff Erec 0,5 Brake IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) Eoff 0,5 0,25 0,25 0 0 0 4 8 12 IC (A) 0 16 With an inductive load at Tj = C 125 VCE = 600 V VGE = 15 V Rgon = 32 Rgoff = 32 30 60 90 120 RG ( ) 150 With an inductive load at Tj = 125 C VCE = 600 V VGE = 15 V IC = 8 A Brake IGBT Figure 7 Typical switching times as a function of collector current t = f(IC) Brake IGBT Figure 8 Typical switching times as a function of gate resistor t = f(RG) t (s) 1 t (s) 1 tdoff tdoff tdon tf tf 0,1 0,1 tdon tr tr 0,01 0,01 0,001 0,001 0 4 8 12 IC (A) 0 16 With an inductive load at Tj = C 125 VCE = 600 V VGE = 15 V Rgon = 32 Rgoff = 32 copyright Vincotech 30 60 90 120 RG ( ) 150 With an inductive load at Tj = 125 C VCE = 600 V VGE = 15 V IC = 8 A 11 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Brake Figure 9 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) Figure 10 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10-5 10-4 10-3 10-2 10-1 100 10-2 101 tp (s) With D= RthJH = tp / T 2,36 copyright Vincotech D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W 12 10-5 10-4 10-3 With D= RthJH = tp / T 3,15 K/W 10-2 10-1 100 tp (s) 101 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Brake Brake IGBT Figure 11 Power dissipation as a function of heatsink temperature Ptot = f(Th) Brake IGBT Figure 12 Collector current as a function of heatsink temperature IC = f(Th) 12 Ptot (W) IC (A) 75 10 60 8 45 6 30 4 15 2 0 0 0 50 At Tj = 100 150 Th (oC) 0 200 At Tj = VGE = C 175 50 Brake FRED Figure 13 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 200 C V Brake FRED Figure 14 Forward current as a function of heatsink temperature IF = f(Th) 12 IF (A) Ptot (W) 50 Th (oC) 10 40 8 30 6 20 4 10 2 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th (oC) 200 0 At Tj = C 13 50 150 100 150 Th (oC) 200 C Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJC (K/W) IF (A) 100 25C 80 100 125C 60 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 40 10-1 20 0 0 At tp = 0,5 1 1,5 VF (V) 10-2 2 10-5 With D= RthJH = s 250 10-4 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-3 tp / T 2,16 10-2 10-1 100 tp (s) 101 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 Ptot (W) IF (A) 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 150 copyright Vincotech 100 150 Th (oC) 0 200 At Tj = C 14 50 150 100 150 Th (oC) 200 C Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f (T) NTC-typical temperature characteristic R/ 25000 20000 15000 10000 5000 0 25 copyright Vincotech 50 75 100 T (C) 125 15 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Switching Definitions Output Inverter General conditions = 125 C Tj = 16 Rgon Rgoff = 19 Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 240 140 120 tdoff Uce Ic 200 100 Uge 90% Uce 90% 160 Ic 120 % 80 60 % Uce Uge tEoff 40 80 tdon Ic 1% 20 40 Ic10% 0 -20 Uce3% Uge10% Uge 0 tEon -40 -0,2 0 0,2 0,4 0,6 -40 0,8 2,8 time (us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A s s -15 15 600 15 0,24 0,57 2,9 Output inverter IGBT Figure 3 3,1 time(us) -15 15 600 15 0,06 0,25 3,2 3,4 V V V A s s Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 3,3 Turn-on Switching Waveforms & definition of tr 140 220 Ic 120 fitted Uce 180 Ic 100 Ic 90% 140 80 Uce Ic 60% % 60 % 100 Ic90% Ic 40% 40 tr 60 20 Ic10% -20 0,15 20 tf 0 Ic10% -20 0,2 VC (100%) = IC (100%) = tf = copyright Vincotech 0,25 600 15 0,106 0,3 0,35 time (us) 0,4 0,45 0,5 2,8 2,9 3 3,1 3,2 3,3 time(us) VC (100%) = IC (100%) = tr = V A s 16 600 15 0,019 V A s Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 220 Pon Eoff Poff 100 180 80 140 60 Eon % 100 % 40 60 20 Uge10% 20 0 Uge90% Uce3% Ic 1% tEoff tEon -20 -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 time (us) 9,00 1,24 0,57 0,4 0,6 2,8 0,8 2,9 3 Pon (100%) = Eon (100%) = tEon = kW mJ s Output inverter IGBT Figure 7 3,1 time(us) 9,00 1,25 0,25 3,2 3,4 kW mJ s Output inverter FRED Figure 8 Gate voltage vs Gate charge 3,3 Turn-off Switching Waveforms & definition of trr 120 20 15 Id 80 trr 10 Uge (V) 40 5 fitted Ud % 0 0 IRRM10% -40 -5 -80 -10 IRRM90% IRRM100% -15 -120 -20 0 20 40 60 80 100 120 2,8 3 3,2 Qg (nC) VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech -15 15 600 15 104,04 3,4 3,6 3,8 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 17 600 15 -16 0,43 V A A s Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Switching Definitions Output Inverter Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Id Erec Qrr 100 100 80 50 tQint tErec 60 % 0 % 40 -50 20 Prec -100 0 -150 -20 2,8 3 3,2 3,4 3,6 3,8 4 2,8 4,2 3 3,2 time(us) Id (100%) = Qrr (100%) = tQint = 1-2 0 -1 01-2 -1 0-2 -1 -5 -5 -5 1010 10 1010 10 15 2,75 0,90 -4 -4 -4 1010 copyright Vincotech -3 -3 1010 3,6 3,8 4 4,2 time(us) Prec (100%) = Erec (100%) = tErec = A C s -2 1010 10-2-2 3,4 10oo-1 10 10 125C 125C 25 25 C C-1-1 00 o125 oC 21010-3 -1 10010 10 125 C 25C 10 25C 10 25C 1-2 0 -1 1-2 0 -1 1-1 -5 0 -5 -5 -2 10 10 10 10 10-5 10 I10 1 11 1010 10 18 -4 -4 -4 -4 0 10 oo10 10 10 TT =130 =25 C VJ10 9,00 1,157 0,90 10V-1 I -3 -3 -3 -3 10 1010 kW mJ s -2 0-2-2 10 10 10 10 25 oC -1 -1-1 0000 2 111 10 10 10 10 10 10 125 o10 C1P (t 10 )10150W 100W 50W 1010 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet Package Outline and Pinout Outline Pinout copyright Vincotech 19 Revision: 2 V23990-P840-A48/A49/C48/C49-PM preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 20 Revision: 2