V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
flowPIM0 3rd Gen 1200V/15A
2 Clips housing in 12 and 17mm height
Trench Fieldstop Technology IGBT4
Optional w/o BRC
Industrial Drives
Embedded Generation
V23990-P840-A48-PM 12mm height
V23990-P840-A49-PM 17mm height
● V23990-P840-C48-PM 12mm height; w/o BRC
● V23990-P840-C49-PM 17mm height; w/o BRC
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Input Rectifier Doide
Repetitive peak reverse voltage VRRM 1600 V
T
=80°C
28
Features flow0 Housing
Target Applications
Types
Maximum Ratings
Condition
Schematics
T
h
=80°C
28
Tc=80°C
Th=80°C 33
Tc=80°C
Maximum Junction Temperature Tjmax 150 °C
Transistor Inverter
VCE 1200 V
Th=80°C 19
Tc=80°C
Repetitive peak collector current ICpuls tp limited by Tjmax 45 A
Th=80°C 52
Tc=80°C
Gate-emitter peak voltage VGE ±20 V
tSC Tj150°C 10 µs
VCC VGE=15V 800 V
Maximum Junction Temperature Tjmax 175 °C
IC
DC collector current
Power dissipation per IGBT
Collector-emitter voltage
Short circuit ratings
W
I2t240I2t-value
A
IFAV
A2s
IFSM
DC current
tp=10ms
W
Forward current per diode
Surge forward current 220
Ptot
Power dissipation per Diode
A
Tj=Tjmax
A
Ptot Tj=Tjmax
Tj=Tjmax
copyright Vincotech 1 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maximum Ratings
Condition
Diode Inverter
T
h
=80°C 18
Tc=80°C
Repetitive peak forward current IFRM tp limited by Tjmax 30 A
Th=80°C 38
T
c
=80°C
Maximum Junction Temperature Tjmax 175 °C
Transistor BRC
Collector-emitter voltage VCE 1200 V
Th=80°C 12
Tc=80°C
Repetitive peak collector current Icpuls tp limited by Tjmax Th=80°C 24 A
Th=80°C 40
Tc=80°C
Gate-emitter peak voltage VGE ±20 V
tSC Tj150°C 10 µs
VCC VGE=15V 800 V
Maximum Junction Temperature Tjmax 175 °C
W
A
Power dissipation per IGBT
DC forward current
Peak Repetitive Reverse Voltage V
Short circuit ratings
DC collector current
Tj=Tjmax
IC
Ptot
Tj=Tjmax
Power dissipation per Diode Ptot W
VRRM 1200
IFTj=Tjmax A
Tj=Tjmax
Diode BRC
VRRM 1200 V
Th=80°C 10
Tc=80°C
Repetitive peak forward current IFRM tp limited by Tjmax Th=80°C 15 A
Th=80°C 22
T
c
=80°C
Maximum Junction Temperature Tjmax 150 °C
Thermal properties
Storage temperature Tstg -40…+125 °C
Operation temperature Tjop -40…+150 °C
Insulation properties
Insulation voltage Vis t=2s DC voltage 4000 V
Creepage distance min 12,7 mm
min 12,7 mm
W
A
Tj=Tjmax
Power dissipation per Diode Ptot Tj=Tjmax
Peak Repetitive Reverse Voltage
DC forward current IF
Clearance
copyright Vincotech 2 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Parameter Symbol Unit
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
IC(A) or IF(A)
or ID(A) T(°C) Min Typ Max
Tj=25°C 1 1,22 1,9
Tj=125°C 1,19
Tj=25°C 0,93
Tj=125°C 0,81
Tj=25°C 0,010
Tj=125°C 0,013
Tj=25°C 0,1
Tj=150°C
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK 2,16 K/W
Tj=25°C 5 5,8 6,5
Tj=125°C
Tj=25°C 1,94
Tj=125°C 2,26
Tj=25°C 0,01
Tj=125°C
Tj=25°C 200
Tj=125°C
Tj=25°C
Tj=125°C 60
Tj=25°C
Tj=125°C 19
Tj=25°C
Tj=125°C 239
Tj=25°C
Tj=125°C 106
Tj=25°C
Tj=125°C 1,25
Tj=25°C
Tj=125°C 1,24
±15
20
VCE=VGE
Rgoff=16 Ohm
Rgon=16 Ohm
mWs
nA
pF
ns
mWs
mA
V
0 1200
V
Collector-emitter cut-off current incl. Diode
Collector-emitter saturation voltage
Gate emitter threshold voltage
Transistor Inverter
Turn-off delay time
Turn-on delay time
Turn-on energy loss per pulse
Turn-off energy loss per pulse
Fall time
VGE(th)
VCE(sat)
ICES
ns
ns
ns
Cies
tr
td(on)
td(off)
Eoff
tf
Rise time
1000
Vto
rt
Input Rectifier Diode
ValueConditions
IGES 0
Characteristic Values
Forward voltage
Threshold voltage (for power loss calc. only)
Slope resistance (for power loss calc. only)
VFV
V
Ir
30
Reverse current mA
15
0,0005
15
30
1600
Integrated Gate resistor Rgint
Eon
600
Gate-emitter leakage current
Input capacitance
none
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK 1,83 K/W
Tj=25°C 1,35 1,90 2,35
Tj=125°C 1,91
Tj=25°C 2,7
Tj=125°C
Tj=25°C
Tj=125°C 16
Tj=25°C
Tj=125°C 433
Tj=25°C
Tj=125°C 2,75
di(rec)max Tj=25°C
/dt Tj=125°C 109
Tj=25°C
Tj=125°C 1,16
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK 2,52 K/W
25
1200
0
±15
f=1MHz 100 pF
pF
Reverse recovered energy Erec
Reverse recovery time
Peak reverse recovery current
Irm
Peak rate of fall of recovery current A/ms
Qrr
trr
Coss
VF
IRRM
nC
±15
mWs
uC600 15
Vcc=960V
V
A
ns
mA
10
15
Reverse recovered charge
Diode Inverter
Reverse leakage current
QGate
Crss
Output capacitance
Reverse transfer capacitance
Gate charge
Tj=25°C
Tj=25°C
Diode forward voltage
93
56
Rgon=16 Ohm
copyright Vincotech 3 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Parameter Symbol Unit
VGE(V) or
VGS(V)
Vr(V) or
VCE(V) or
VDS(V)
IC(A) or IF(A)
or ID(A) T(°C) Min Typ Max
ValueConditions
Characteristic Values
Tj=25°C 5 5,8 6,5
Tj=125°C
Tj=25°C 1,6 1,87 2,1
Tj=125°C 2,22
Tj=25°C 0,05
Tj=125°C
Tj=25°C 200
Tj=125°C none
Tj=25°C
Tj=125°C 72
Tj=25°C
Tj=125°C 24
Tj=25°C
Tj=125°C 228
Tj=25°C
Tj=125°C 104
Tj=25°C
Tj=125°C 0,71
Tj=25°C
Tj=125°C 0,62
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK 2,36 K/W
Tj=25°C 0,8 1,67 2,2
Tj=125°C
1,61
15
f=1MHz 0
Rgoff=32Ohm
Rgon=32Ohm
V
F
nC
±15 8Vcc=960V
mWs
mWs
7,5
pF
pF
pF
V
Reverse transfer capacitance
Gate charge
Coss
Crss
QGate
V
mA
nA
ns
Cies
Eon
Eoff
Rgint
td(on)
tr
td(off)
tf
Turn-on delay time
Integrated Gate resistor
Turn-off energy loss per pulse
Input capacitance
Output capacitance
Rise time
Turn-off delay time
Fall time
Turn-on energy loss per pulse
Gate emitter threshold voltage
Collector-emitter saturation voltage
VGE(th)
VCE(sat)
Collector-emitter cut-off
Gate-emitter leakage current
ICES
IGES
ns
ns
V
ns
600 8
25
Diode BRC
Transistor BRC
VCE=VGE 0,0003
0 1200
8
20 0
50
490
50
30
Tj=25°C
Tj=25°C
Tj=125°C
1,61
Tj=25°C 250
Tj=125°C
Tj=25°C
Tj=125°C 10
Tj=25°C
Tj=125°C 427
Tj=25°C
Tj=125°C 1,64
di(rec)max Tj=25°C
/dt Tj=125°C 73
Tj=25°C
Tj=125°C 0,69
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK 3,15 K/W
R25 Tol. ±13% Tj=25°C 19,1 22 24,9
R100 Tol. ±5% Tj=100°C 1411 1486 1560
Tj=25°C 210
Tj=25°C 4000
Reverse recovery time
Reverse recovered charge
Reverse recovery energy
V
F
Ir
trr
Qrr
Erec
Peak reverse recovery current
Reverse leakage current
7,5
1200
V
mA
A/ms
A
IRRM
Peak rate of fall of recovery current
B-value B(25/100) K
Power dissipation given Epcos-Typ P mW
Rated resistance k
Thermistor
ns
15 600 8
mWs
mC
Tol. ±3%
Rgon=32Ohm
copyright Vincotech 4 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Output inverter IGBT Figure 2 Output inverter IGBT
Typical output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 µstp = 250 µs
Tj = 25 °C Tj = 125 °C
VGE from 7 V to 17 V in steps of 1 V VGE from 7 V to 17 V in steps of 1 V
Figure 3 Output inverter IGBT Figure 4 Output inverter FRED
Typical transfer characteristics Typical diode forward current as
Ic = f(VGE) a function of forward voltage
IF = f(VF)
Output Inverter
Typical output characteristics
0
10
20
30
40
50
0 1 2 3 4 5
IC (A)
VCE (V)
16
50
0
10
20
30
40
50
0 1 2 3 4 5
IC (A)
VCE (V)
At At
tp = 250 µstp = 250 µs
VCE = 10 V
0
4
8
12
16
036912
IC(A)
VGE (V)
125 oC
25 oC
0
10
20
30
40
50
01234
IF(A)
VF(V)
25 oC
125 oC
copyright Vincotech 5 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(Ic) E = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =16 IC =15 A
Rgoff = 16
Figure 7 Output inverter IGBT Figure 8 Output inverter IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
Output Inverter
Eoff
Eon
Erec
0
0,5
1
1,5
2
2,5
3
0 5 10 15 20 25 30
E (mWs)
IC(A)
Eoff
Eon
Erec
0
0,5
1
1,5
2
2,5
3
0 15 30 45 60 75
E (mWs)
RG(
)
t = f(IC) t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =16 IC =15 A
Rgoff = 16
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 5 10 15 20 25 30
t (µs)
IC (A)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 15 30 45 60 75
t (µs)
RG(
)
copyright Vincotech 6 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Output inverter FRED diode Figure 10 Output inverter FRED diode
Typical reverse recovery time as a Typical reverse recovery current as a
function of IGBT turn on gate resistor function of IGBT turn on gate resistor
trr = f(Rgon) IRRM = f(Rgon)
At At
Tj = 125 °C Tj = 125 °C
VR =600 V VR =600 V
IF =15 A IF =15 A
VGE =±15 V VGE =±15 V
Figure 11 Output inverter FRED diode Figure 12 Output inverter FRED diode
Typical reverse recovery charge as a Typical rate of fall of forward
function of IGBT turn on gate resistor and reverse recovery current as a
Output Inverter
0
0,1
0,2
0,3
0,4
0,5
0,6
0 15 30 45 60 75
t rr(µs)
RGon (
)
0
10
20
30
40
50
0 15 30 45 60 75
IrrM(A)
RGon(
)
Qrr = f(Rgon)function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
At At
Tj = 125 °C Tj = 125 °C
VR =600 V VR =600 V
IF =15 A IF =15 A
VGE =±15 V VGE =±15 V
0
0,5
1
1,5
2
2,5
3
3,5
0 15 30 45 60 75
Qrr (µC)
RGon ()
dI0/dt
dIrec/dt
0
1000
2000
3000
4000
5000
0 15 30 45 60 75
direc / dt (A/µs)
RGon ()
copyright Vincotech 7 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 13 Figure 14
IGBT transient thermal impedance FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
With With
D = tp / T D = tp / T
RthJH =1,83 K/W RthJH =2,52 K/W
IGBT thermal model values FRED thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,06 5,6E+00 0,05 9,6E+00
0,28 8,7E-01 0,26 8,2E-01
0,77 1,7E-01 1,04 1,2E-01
Output Inverter
ZthJH (K/W)
tp (s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
ZthJH (K/W)
tp (s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0,42 3,4E-02 0,69 2,6E-02
0,19 6,2E-03 0,27 3,4E-03
0,10 5,5E-04 0,21 3,8E-04
copyright Vincotech 8 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 15 Output inverter IGBT Figure 16 Output inverter IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IC = f(Th)
At At
Tj = 175 °C Tj = 175 °C
VGE = 15 V
Figure 17 Output inverter FRED Figure 18 Output inverter FRED
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IF = f(Th)
Output Inverter
0
20
40
60
80
100
0 50 100 150 200
Ptot (W)
Th(oC)
0
5
10
15
20
25
30
0 50 100 150 200
IC (A)
Th(oC)
75 30
At At
Tj = 175 °C Tj = 175 °C
0
15
30
45
60
0 50 100 150 200
Ptot (W)
Th(oC)
0
5
10
15
20
25
0 50 100 150 200
IF (A)
Th(oC)
copyright Vincotech 9 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Brake IGBT Figure 2 Brake IGBT
Typical output characteristics Typical output characteristics
IC = f(VCE) IC = f(VCE)
At At
tp = 250 µstp = 250 µs
Tj = 25 °C Tj = 125 °C
VGE from 7 V to 17 V in steps of 1 V VGE from 7 V to 17 V in steps of 1 V
Figure 3 Brake IGBT Figure 4 Brake FRED
Typical transfer characteristics Typical diode forward current as
IC = f(VGE) a function of forward voltage
IF = f(VF)
Brake
0
8
16
24
32
0 1 2 3 4 5
IC(A)
VCE (V)
9
30
(A)
0
8
16
24
32
0 1 2 3 4 5
IC(A)
VCE (V)
At At
tp = 250 µstp = 250 µs
VCE = 10 V
0
1,5
3
4,5
6
7,5
9
0 2 4 6 8 10 12
IC(A)
VGE (V)
125 oC
25 oC
0
5
10
15
20
25
0 0,5 1 1,5 2 2,5 3
IF(A)
VF(V)
125 oC
25 oC
copyright Vincotech 10 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Brake IGBT Figure 6 Brake IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(IC) E = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =32 IC = 8 A
Rgoff = 32
Figure 7 Brake IGBT Figure 8 Brake IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
Brake
Eoff
Eon
Erec
0
0,25
0,5
0,75
1
1,25
1,5
0 4 8 12 16
E (mWs)
IC(A)
Eoff
Eon
Erec
0
0,25
0,5
0,75
1
1,25
1,5
0 30 60 90 120 150
E (mWs)
RG(
)
t = f(IC) t = f(RG)
With an inductive load at With an inductive load at
Tj = 125 °C Tj = 125 °C
VCE =600 V VCE =600 V
VGE =±15 V VGE =±15 V
Rgon =32 IC = 8 A
Rgoff = 32
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 4 8 12 16
t (µs)
IC (A)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 30 60 90 120 150
t (µs)
RG(
)
copyright Vincotech 11 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Figure 10
IGBT transient thermal impedance FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
With With
D = tp / T D = tp / T
RthJH =2,36 K/W RthJH =3,15 K/W
Brake
ZthJH (K/W)
tp (s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
ZthJH (K/W)
tp (s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
copyright Vincotech 12 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 11 Brake IGBT Figure 12 Brake IGBT
Power dissipation as a Collector current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IC = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
VGE =15 V
Figure 13 Brake FRED Figure 14 Brake FRED
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IF = f(Th)
Brake
0
15
30
45
60
75
0 50 100 150 200
Ptot (W)
Th(oC)
0
2
4
6
8
10
12
0 50 100 150 200
IC (A)
Th(oC)
At At
Tj = 150 ºC Tj = 150 ºC
0
10
20
30
40
50
0 50 100 150 200
Ptot (W)
Th(oC)
0
2
4
6
8
10
12
0 50 100 150 200
IF (A)
Th(oC)
copyright Vincotech 13 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Rectifier diode Figure 2 Rectifier diode
Typical diode forward current as Diode transient thermal impedance
a function of forward voltage as a function of pulse width
IF= f(VF) ZthJH = f(tp)
At With
tp = 250 µs D = tp / T
RthJH =2,16 K/W
Figure 3 Rectifier diode Figure 4 Rectifier diode
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th) IF = f(Th)
Input Rectifier Bridge
0
20
40
60
80
100
0 0,5 1 1,5 2
IF(A)
VF(V)
25°C
125°C
ZthJC (K/W)
tp (s)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
At At
Tj = 150 ºC Tj = 150 ºC
0
20
40
60
80
0 50 100 150 200
Ptot (W)
Th(oC)
0
10
20
30
40
50
0 50 100 150 200
IF (A)
Th(oC)
copyright Vincotech 14 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 1 Thermistor
Typical NTC characteristic
as a function of temperature
RT = f (T)
Thermistor
0
5000
10000
15000
20000
25000
25 50 75 100 125
R/
T (°C)
NTC-typical temperature characteristic
copyright Vincotech 15 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
T
j
125 °C
R
gon
16
Rgoff 19
Figure 1 Output inverter IGBT Figure 2 Output inverter IGBT
Turn-off Switching Waveforms & definition of tdoff, tEoff Turn-on Switching Waveforms & definition of tdon, tEon
(t
Eoff
= integrating time for E
off
) (t
Eon
= integrating time for E
on
)
VGE (0%) = -15 V VGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC (100%) = 600 V VC (100%) = 600 V
IC (100%) = 15 A IC (100%) = 15 A
tdoff = 0,24 µstdon = 0,06 µs
tEoff =0,57 µstEon =0,25 µs
Figure 3 Output inverter IGBT Figure 4 Output inverter IGBT
Switching Definitions Output Inverter
General conditions
=
=
=
Ic 1%
Uce 90%
Uge 90%
-40
-20
0
20
40
60
80
100
120
140
-0,2 0 0,2 0,4 0,6 0,8
%
time (us)
t
doff
tEoff
Uce
Ic
Uge
Ic10%
Uge10%
tdon
Uce3%
-40
0
40
80
120
160
200
240
2,8 2,9 3 3,1 3,2 3,3 3,4
%
time(us)
Ic
Uce
tEon
Uge
Turn-off Switching Waveforms & definition of t
f
Turn-on Switching Waveforms & definition of t
r
VC (100%) = 600 V VC (100%) = 600 V
IC (100%) = 15 A IC (100%) = 15 A
tf =0,106 µstr =0,019 µs
fitted
Ic10%
Ic 90%
Ic 60%
Ic 40%
-20
0
20
40
60
80
100
120
140
0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
%
time (us)
Uce
Ic
tfIc10%
Ic90%
-20
20
60
100
140
180
220
2,8 2,9 3 3,1 3,2 3,3
%
time(us)
tr
Uce
Ic
copyright Vincotech 16 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 5 Output inverter IGBT Figure 6 Output inverter IGBT
Turn-off Switching Waveforms & definition of t
Eoff
Turn-on Switching Waveforms & definition of t
Eon
Poff (100%) = 9,00 kW Pon (100%) = 9,00 kW
Eoff (100%) = 1,24 mJ Eon (100%) = 1,25 mJ
tEoff =0,57 µstEon =0,25 µs
Figure 7 Output inverter IGBT Figure 8 Output inverter FRED
Gate voltage vs Gate charge Turn-off Switching Waveforms & definition of t
rr
Switching Definitions Output Inverter
Ic 1%
Uge90%
-20
0
20
40
60
80
100
120
-0,2 0 0,2 0,4 0,6 0,8
%
time (us)
Poff Eoff
tEoff
Uce3%
Uge10%
-20
20
60
100
140
180
220
2,8 2,9 3 3,1 3,2 3,3 3,4
%
time(us)
Pon
Eon
tEon
20 120
VGEoff = -15 V Vd (100%) = 600 V
VGEon = 15 V Id (100%) = 15 A
VC (100%) = 600 V IRRM (100%) = -16 A
IC (100%) = 15 A trr = 0,43 µs
Qg = 104,04 nC
-15
-10
-5
0
5
10
15
-20 0 20 40 60 80 100 120
Uge (V)
Qg (nC)
IRRM10%
IRRM90%
IRRM100%
trr
-120
-80
-40
0
40
80
2,8 3 3,2 3,4 3,6 3,8
%
time(us)
Id
Ud fitted
copyright Vincotech 17 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Figure 9 Output inverter FRED Figure 10 Output inverter FRED
Turn-on Switching Waveforms & definition of t
Qrr
Turn-on Switching Waveforms & definition of t
Erec
(t
Qrr
= integrating time for Q
rr
) (t
Erec
= integrating time for E
rec
)
Id (100%) = 15 A Prec (100%) = 9,00 kW
Qrr (100%) = 2,75 µCErec (100%) = 1,157 mJ
tQint = 0,90 µstErec = 0,90 µs
Switching Definitions Output Inverter
125
o
C
25
o
C
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
25
°
C
125
°
C
125
o
C
25
o
C
125
o
C
25
o
C
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
25
°
C
125
°
C
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
125
o
C
25
o
C
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
25
°
C
125
°
C
10
1
10
0
10
-
1
10
-
2
10
-
4
10
-
3
10
-
2
10
-
1
10
0
10
1
10
-
5
10
1
10
2
10
0
10
-
1
10
-
2
10
2
10
-
1
T
VJ
=130
o
C
10
0
10
1
10
-
3
T
=25
o
C
V
I
I
100W
150W
50W
P
(t
)
10
0
tQint
-150
-100
-50
0
50
100
150
2,8 3 3,2 3,4 3,6 3,8 4 4,2
%
time(us)
Id Qrr
-20
0
20
40
60
80
100
120
2,8 3 3,2 3,4 3,6 3,8 4 4,2
%
time(us)
Prec
Erec
tErec
copyright Vincotech 18 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
Pinout
Package Outline and Pinout
Outline
Pinout
copyright Vincotech 19 Revision: 2
V23990-P840-A48/A49/C48/C49-PM
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Formative or In Design
First Production
Full Production
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design.
Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it
convey any license under its patent rights, nor the rights of others.
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Preliminary
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Final
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
Target
Product StatusDatasheet Status Definition
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
copyright Vincotech 20 Revision: 2