Voltage: 11 - 100 Volts
Power: 2.0 Watt
CZRB2011 Thru CZRB2100
Features
- For surf ace mounted applications in order to
optimize board space
- Low profile package
- Built-in strain relief
- Glass passivated junction
- Low inductance
- Excellent clamping capability
- Typical I less than 1uA above 11V
D
- High temperature soldering 260°C /10
seconds at terminals
- Plastic package has underwriters laboratory
flammability classification 94V-O
Mechanical data
- Case: JEDEC DO-214AA, Molded plastic
over passivated junction
- Terminals: Solder plated, solderable per MIL-
STD-750, method 2026
- Polarity: Color band denotes positive end
(cathode) except Bidirectional
- Standard Packaging: 12mm tape (EIA-481)
- Weight: 0.002 ounce, 0.064 gram
Surface Mount Zener Diode
www.comchip.com.tw
COMCHIP
COMCHIP
Maximum Ratings and Electrical Characterics
MDS0302004A Page 1
Rating Symbol Value Units
Peak Pulse Power Dissipation (Note A) 2 Watts
Derate above 75°C 24 mW/°C
Peak forward Surge Current 8.3ms single half sine-wave superimposed
on rated load (JEDEC Method) (Note B)
Operating Junction and Storage Temperature Range T
J
,T
STG
-55 to +150 °C
P
D
15 Amps
Ratings at 25°C ambient temperature unless otherwise specified.
I
FSM
SMB/DO-214AA
Dimensions in inches and (maillimeter)
0.008(0.20)
0.203(0.10)
0.083(2.11)
0.075(1.91)
0.096(2.44)
0.083(2.13)
0.050(1.27)
0.030(0.76)
0.155(3.94)
0.130(3.30)
0.185(4.70)
0.160(4.06)
0.012(0.31)
0.006(0.15)
0.220(5.59)
0.200(5.08)
www.comchip.com.tw
COMCHIP
COMCHIP
MDS0302004A Page 2
Surface Mount Zener Diode
Rating and Characteristic Curevs (CZRB2011 Thru CZRB2100)
I
ZK
V
R
(Volts) (mA) (Ohms) (Ohms) (mA) (uA) (Volts) (mA) Ir - mA
CZRB2011 11 45.5 4 700 0.25 1.0 8.4 166 1.82
CZRB2012 12 41.5 4.5 700 0.25 1.0 9.1 152 1.66
CZRB2013 13 38.5 5 700 0.25 0.5 9.9 138 1.54
CZRB2014 14 35.7 5.5 700 0.25 0.5 10.6 130 1.43
CZRB2015 15 33.4 7 700 0.25 0.5 11.4 122 1.33
CZRB2016 16 31.2 8 700 0.25 0.5 12.2 114 1.25
CZRB2017 17 29.4 9 750 0.25 0.5 13 107 1.18
CZRB2018 18 27.8 10 750 0.25 0.5 13.7 100 1.11
CZRB2019 19 26.3 11 750 0.25 0.5 14.4 95 1.05
CZRB2020 20 25 11 750 0.25 0.5 15.2 90 1.00
CZRB2022 22 22.8 12 750 0.25 0.5 16.7 82 0.91
CZRB2024 24 20.8 13 750 0.25 0.5 18.2 76 0.83
CZRB2027 27 18.5 18 750 0.25 0.5 20.6 68 0.74
CZRB2030 30 16.6 20 1000 0.25 0.5 22.5 60 0.67
CZRB2033 33 15.1 23 1000 0.25 0.5 25.1 55 0.61
CZRB2036 36 13.9 25 1000 0.25 0.5 27.4 50 0.56
CZRB2039 39 12.8 30 1000 0.25 0.5 29.7 47 0.51
CZRB2043 43 11.6 35 1500 0.25 0.5 32.7 43 0.45
CZRB2047 47 10.6 40 1500 0.25 0.5 35.6 39 0.42
CZRB2051 51 9.8 48 1500 0.25 0.5 38.8 36 0.39
CZRB2056 56 9 55 2000 0.25 0.5 42.6 32 0.36
CZRB2062 62 8.1 60 2000 0.25 0.5 47.1 29 0.32
CZRB2068 68 7.4 75 2000 0.25 0.5 51.7 27 0.29
CZRB2075 75 6.7 90 2000 0.25 0.5 56 24 0.27
CZRB2082 82 6.1 100 3000 0.25 0.5 62.2 22 0.24
CZRB2091 91 5.5 125 3000 0.25 0.5 69.2 20 0.22
CZRB2100 100 5 175 3000 0.25 0.5 76 18 0.20
NOTE:
ELECTRICAL CHARACTERISTICS
(T
A
=25°C unless otherwise noted) (V
F
=1.2Volts Max, I
F
=500mA for all types.)
Device
(Note 1.)
Nominal
Zener
Voltage V
Z
@ I
ZT
(Note 2.)
Test
current
I
ZT
Maximum Zener Impedance
(Note 3.) Leakage Current Surge
Current
@T
A
=25°C
(Note 4.)
Z
ZT
@ I
ZT
Z
ZK
@ I
ZK
I
R
Maximum
Zener
Current I
ZM
1. TOLERANCES - Suffix indicates 5% tol erance any other tolerance will be considered as a special devic e.
2. ZENER VOLTAGE (Vz) MEASUREMENT - guarantees the zener voltage when m easured at 40 ms ± 10ms
from the diode body, and an ambient temperat ure of 25 °C (+ 8 °C , -2 °C ).
3.ZENER IMPEDANCE (Zz) DERIVATION - The zener im pedance is derived from the 60 cycle ac voltage,
which results when an ac current having an rms falue equal to 10% of the dc zener current (I
ZT
or I
ZK
) is
superimposed on I
ZT
or I
ZK
.
4. SURGE CURRENT (Ir) NON-REPETITIVE - The rating li sted in the electrical characteris tics table is
maximum peak, non-repetitive, reverse surge c urrent of 1/2 square wave or equivalent sine wave pulse
of 1/120 second duration superimposed on the tes t current, I
ZT
, per JEDEC standards, however, actual
device capability is as described in Figure 3.
Rating and Characteristic Curves (CZRB2011 Thru CZRB2100)
www.comchip.com.tw
COMCHIP
MDS0302004A Page 3
Surface Mount Zener Diode
30
20
10
7
5
3
2
1
0.7
0.5
0.3
0.00 01 0.0002 0.00 05 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
D=0.5
0.2
0.1
0.05
0.02
0.01 D=0
NOTE BELOW 0.1 SECOND
,
THERMAL RESPONSE
CURVE IS APPLICABLE TO
A
NY LEAD LENGTH
(
L
)
SINGLE PULSE TJL = JL(t)PPK
REPETITIVE PULSES TJL =
J
L
(
t
D
)
PPK
Fig. 2-TYPICAL THERMAL RESPONSE L,
1K
500
300
200
100
50
30
20
10
.1 .2.3 5 1 2 3 5 10 20 50 100
RECTANGULAR NONREPETITIVE
WAVEFORM TJ = 25°C PRIOR TO
INITIAL PULSE
P.W. PULSE WIDTH
(
ms
)
0.1
0.05
0.03
0.02
0.01
0.005
0.003
0.002
0.001
0.0005
0.0003
0.0002
0.0001
1 2 5 10 20 50 100 200 500 1K
NOMINAL VZ
(
VOLTS
)
Fig. 3-MAXIMUM SURGE POWER Fig. 4-TYPICAL REVERSE LEAKAGE
8
6
4
2
0
-2
-4
3 4 6 8 10 12
RANGE
VZ
,
ZENER VOLTAGE
@
IZT
(
VOLTS
)
200
100
50
40
30
20
10
0 20406080100
RANGE
VZ
,
ZENER VOLTAGE
@
IZT
(
VOLTS
)
Fig. 5 - UNITS TO 12 VOLTS Fig. 6 - UNITS 10 TO 100 VOLTS
TRANSIENT THERMAL
RESISTANCE
JUNCTION-TO-LEAD(°C/W)
PPK, PEAK SURGE POWER(WATTS)
IR, REVERSE LEADAGE(uAdc)
@VR AS SPECIFIED IN ELEC.
CHAR. TABLE
TEMPERATURE
COEFFICIENT(mV/°C ) @ IZT
TEMPERATURE
COEFFICIENT(mV/°C) @ IZT
Rating and Characteristic Curves (CZRB2011 Thru CZRB2100)
www.comchip.com.tw
COMCHIP
MDS0302004A Page 4
Surface Mount Zener Diode
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0 1 2 3 4 5 6 7 8 9 10
VZ, ZENER VOLTAGE
(
VOLTS
)
100
50
30
20
10
5
3
2
1
0.5
0.3
0.2
0.1
0 10 20 30 40 50 60 70 80 90 100
VZ, ZENER VOLTAGE
(
VOLTS
)
80
70
60
50
40
30
20
10
0
0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1
PRIMARY PATH OF
CONDUCTION IS THROUGH
THE CATHODE LEAD
L, LEAD LENGTH TO HEAT SINK
(
INCH
)
Fig. 9 -TYPICAL THERMAL RESISTANCE
IZ, ZENER CURRENT (mA)
JUNCTION-LEAD THERMAL
RESISTANCE (°C/W)
APPLICATION NOTE:
Since the actual voltage available from a given zener
diode is temperature dependent, it is necessary to
determine junction temperature under any set of
operating conditions in order to calculate its value. The
following procedure is recommended:
Lead Temperature, TL, should be determined from:
TL = șLAPD + TA
șLA is the lead-to-ambient thermal resistance (°C/W)
and PD is the power dissipation. The value for șLA will
vary and depends on the device mounting method.
șLA is generally 30-40 °C/W for the various chips and
tie points in common use and for printed circuit board
wiring.
The temperature of the lead can also be measured using
a thermocouple placed on the lead as close as possible to
the tie point. The thermal mass connected to the tie point
is normally large enough so that it will not significantly
respond to heat surges generated in the diode as a result
of pulsed operation once steady-state conditions are
achieved. Using the measured value of TL, the junction
temperature may be determined by:
TJ = TL + ¨TJL
¨TJL is the increase in junction temperature above the
lead temperature and may be found from Figure 2 for a
train of power pulses or from Figure 10 for dc power.
¨TJL = șLAPD
For worst-case design, using expected limits of Iz, limits
of PD and the extremes of TJ (¨TJL ) may be estimated.
Changes in voltage, Vz, can then be found from:
¨V = șVZ ¨TJ
șVZ , the zener voltage temperature coefficient, is
found from Figures 5 and 6.
Under high power-pulse operation, the zener voltage
will vary with time and may also be affected significantly
be the zener resistance. For best regulation, keep current
excursions as low as possible.
Data of Figure 2 should not be used to compute surge
capability. Surge limitations are given in Figure 3. They
are lower than would be expected by considering only
junction temperature, as current crowding effects cause
temperatures to be extremely high in small spots resulting
in device degradation should the limits of Figure 3 be
exceeded.
www.comchip.com.tw
COMCHIP
MDS0302004A Page 5
Surface Mount Zener Diode