101 Innovation Drive
San Jose, CA 95134
www.altera.com
Arria GX Device Handbook,
Volume 1
Software Version: 9.1
Document Version: 2.0
Document Date: © December 2009
Copyright © 2009 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other
words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other
countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending ap-
plications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing orders for products or services.
AGX5V1-2.0
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Contents
Chapter Revision Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii
Section I. Arria GX Device Data Sheet
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1
Chapter 1. Arria GX Device Family Overview
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4
Chapter 2. Arria GX Architecture
Transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
Transmitter Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Clock Multiplier Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Transmitter Phase Compensation FIFO Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
Byte Serializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
8B/10B Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
Transmit State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Serializer (Parallel-to-Serial Converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7
Transmitter Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Receiver Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Receiver Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10
Programmable Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
Receiver PLL and Clock Recovery Unit (CRU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12
Deserializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13
Word Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Channel Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
Rate Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
8B/10B Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Receiver State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
Byte Deserializer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Receiver Phase Compensation FIFO Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Loopback Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Serial Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20
Reverse Serial Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
Reverse Serial Pre-CDR Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
PCI Express (PIPE) Reverse Parallel Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
Reset and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
Calibration Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Transceiver Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
Transceiver Channel Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
PLD Clock Utilization by Transceiver Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
Logic Array Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28
LAB Interconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29
LAB Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30
iv Contents
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Adaptive Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31
ALM Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34
Normal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35
Extended LUT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Arithmetic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
Carry Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
Shared Arithmetic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
Shared Arithmetic Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Register Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
Clear and Preset Logic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-43
MultiTrack Interconnect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44
TriMatrix Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
M512 RAM Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
M4K RAM Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
M-RAM Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
Digital Signal Processing Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
DSP Block Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
PLLs and Clock Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
Global and Hierarchical Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
Global Clock Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
Regional Clock Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Dual-Regional Clock Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68
Combined Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
Clock Control Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
Enhanced and Fast PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
Enhanced PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
Fast PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-80
I/O Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-81
Double Data Rate I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
External RAM Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
Programmable Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
Open-Drain Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Bus Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
Programmable Pull-Up Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93
Advanced I/O Standard Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93
On-Chip Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-95
On-Chip Differential Termination (RD OCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-96
On-Chip Series Termination (RS OCT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
MultiVolt I/O Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
High-Speed Differential I/O with DPA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99
Dedicated Circuitry with DPA Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
Fast PLL and Channel Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
Chapter 3. Configuration and Testing
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
IEEE Std. 1149.1 JTAG Boundary-Scan Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
SignalTap II Embedded Logic Analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Contents v
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4
Configuration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5
Device Configuration Data Decompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Remote System Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6
Configuring Arria GX FPGAs with JRunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Programming Serial Configuration Devices with SRunner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Configuring Arria GX FPGAs with the MicroBlaster Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
PLL Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7
Automated Single Event Upset (SEU) Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Custom-Built Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Software Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9
Chapter 4. DC and Switching Characteristics
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
Transceiver Block Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14
I/O Standard Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15
Bus Hold Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
On-Chip Termination Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24
Pin Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25
I/O Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
Preliminary, Correlated, and Final Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
I/O Timing Measurement Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-27
Clock Network Skew Adders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
Default Capacitive Loading of Different I/O Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-31
Typical Design Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
User I/O Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
EP1AGX20 I/O Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-32
EP1AGX35 I/O Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41
EP1AGX50 I/O Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-50
EP1AGX60 I/O Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-59
EP1AGX90 I/O Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-68
Dedicated Clock Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78
EP1AGX20 Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-78
EP1AGX35 Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-79
EP1AGX50 Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-81
EP1AGX60 Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-82
EP1AGX90 Clock Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-83
Block Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-84
IOE Programmable Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-86
Maximum Input and Output Clock Toggle Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-87
Duty Cycle Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-95
DCD Measurement Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-96
High-Speed I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-100
PLL Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-103
External Memory Interface Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-105
JTAG Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-106
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-108
vi Contents
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Chapter 5. Reference and Ordering Information
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Device Pin-Outs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
Additional Information
About this Handbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Info-1
How to Contact Altera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Info-1
Typographic Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Info-1
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Chapter Revision Dates
The chapters in this book, Arria GX Device Handbook, Volume 1, were revised on the
following dates. Where chapters or groups of chapters are available separately, part
numbers are listed.
Chapter 1 Arria GX Device Family Overview
Revised: December 2009
Part Number: AGX51001-2.0
Chapter 2 Arria GX Architecture
Revised: December 2009
Part Number: AGX51002-2.0
Chapter 3 Configuration and Testing
Revised: December 2009
Part Number: AGX51003-2.0
Chapter 4 DC and Switching Characteristics
Revised: December 2009
Part Number: AGX51004-2.0
Chapter 5 Reference and Ordering Information
Revised: December 2009
Part Number: AGX51005-2.0
viii Chapter Revision Dates
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Section I. Arria GX Device Data Sheet
This section provides designers with the data sheet specifications for Arria® GX
devices. They contain feature definitions of the transceivers, internal architecture,
configuration, and JTAG boundary-scan testing information, DC operating
conditions, AC timing parameters, a reference to power consumption, and ordering
information for Arria GX devices.
This section includes the following chapters:
Chapter 1, Arria GX Device Family Overview
Chapter 2, Arria GX Architecture
Chapter 3, Configuration and Testing
Chapter 4, DC and Switching Characteristics
Chapter 5, Reference and Ordering Information
Revision History
Refer to each chapter for its own specific revision history. For information about when
each chapter was updated, refer to the Chapter Revision Dates section, which appears
in the full handbook.
I–2 Section I: Arria GX Device Data Sheet
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
1. Arria GX Device Family Overview
Introduction
The Arria®GX family of devices combines 3.125 Gbps serial transceivers with reliable
packaging technology and a proven logic array. Arria GX devices include 4 to 12
high-speed transceiver channels, each incorporating clock data recovery (CDR)
technology and embedded SERDES circuitry designed to support PCI-Express,
Gigabit Ethernet, SDI, SerialLite II, XAUI, and Serial RapidIO protocols, along with
the ability to develop proprietary, serial-based IP using its Basic mode. The
transceivers build upon the success of the Stratix®II GX family. The Arria GX FPGA
technology offers a 1.2-V logic array with the right level of performance and
dependability needed to support these mainstream protocols.
Features
The key features of Arria GX devices include:
Transceiver block features
High-speed serial transceiver channels with CDR support up to 3.125 Gbps.
Devices available with 4, 8, or 12 high-speed full-duplex serial transceiver
channels
Support for the following CDR-based bus standards—PCI Express, Gigabit
Ethernet, SDI, SerialLite II, XAUI, and Serial RapidIO, along with the ability to
develop proprietary, serial-based IP using its Basic mode
Individual transmitter and receiver channel power-down capability for
reduced power consumption during non-operation
1.2- and 1.5-V pseudo current mode logic (PCML) support on transmitter
output buffers
Receiver indicator for loss of signal (available only in PCI Express [PIPE]
mode)
Hot socketing feature for hot plug-in or hot swap and power sequencing
support without the use of external devices
Dedicated circuitry that is compliant with PIPE, XAUI, Gigabit Ethernet, Serial
Digital Interface (SDI), and Serial RapidIO
8B/10B encoder/decoder performs 8-bit to 10-bit encoding and 10-bit to 8-bit
decoding
Phase compensation FIFO buffer performs clock domain translation between
the transceiver block and the logic array
Channel aligner compliant with XAUI
AGX51001-2.0
1–2 Chapter 1: Arria GX Device Family Overview
Features
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Main device features:
TriMatrix memory consisting of three RAM block sizes to implement true
dual-port memory and first-in first-out (FIFO) buffers with performance up to
380 MHz
Up to 16 global clock networks with up to 32 regional clock networks per
device
High-speed DSP blocks provide dedicated implementation of multipliers,
multiply-accumulate functions, and finite impulse response (FIR) filters
Up to four enhanced phase-locked loops (PLLs) per device provide spread
spectrum, programmable bandwidth, clock switch-over, and advanced
multiplication and phase shifting
Support for numerous single-ended and differential I/O standards
High-speed source-synchronous differential I/O support on up to 47 channels
Support for source-synchronous bus standards, including SPI-4 Phase 2
(POS-PHY Level 4), SFI-4.1, XSBI, UTOPIA IV, NPSI, and CSIX-L1
Support for high-speed external memory including DDR and DDR2 SDRAM,
and SDR SDRAM
Support for multiple intellectual property megafunctions from Altera®
MegaCore® functions and Altera Megafunction Partners Program (AMPPSM)
Support for remote configuration updates
Table 1–1 lists Arria GX device features for FineLine BGA (FBGA) with flip chip
packages.
Table 11. Arria GX Device Features (Part 1 of 2)
Feature
EP1AGX20C EP1AGX35C/D EP1AGX50C/D EP1AGX60C/D/E EP1AGX90E
C CDCDCDE E
Package 484-pin,
780-pin
(Flip chip)
484-pin
(Flip chip)
780-pin
(Flip chip)
484-pin
(Flip chip)
780-pin,
1152-pin
(Flip chip)
484-pin
(Flip chip)
780-pin
(Flip chip)
1152-pin
(Flip chip)
1152-pin
(Flip chip)
ALMs 8,632 13,408 20,064 24,040 36,088
Equivalent
logic
elements
(LEs)
21,580 33,520 50,160 60,100 90,220
Transceiver
channels 4 4848481212
Transceiver
data rate
600 Mbps
to 3.125
Gbps
600 Mbps to 3.125
Gbps
600 Mbps to 3.125
Gbps
600 Mbps to 3.125 Gbps 600 Mbps
to 3.125
Gbps
Source-
synchronous
receive
channels
31 31 31 31 31, 42 31 31 42 47
Chapter 1: Arria GX Device Family Overview 1–3
Features
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Arria GX devices are available in space-saving FBGA packages (refer to Table 1–2). All
Arria GX devices support vertical migration within the same package. With vertical
migration support, designers can migrate to devices whose dedicated pins,
configuration pins, and power pins are the same for a given package across device
densities. For I/O pin migration across densities, the designer must cross-reference
the available I/O pins with the device pin-outs for all planned densities of a given
package type to identify which I/O pins are migratable.
Source-
synchronous
transmit
channels
29 29 29 29 29, 42 29 29 42 45
M512 RAM
blocks
(32 × 18 bits)
166 197 313 326 478
M4K RAM
blocks
(128 × 36
bits)
118 140 242 252 400
M-RAM
blocks
(4096 × 144
bits)
11 2 2 4
Total RAM
bits 1,229,184 1,348,416 2,475,072 2,528,640 4,477,824
Embedded
multipliers
(18 × 18)
40 56 104 128 176
DSP blocks 10 14 26 32 44
PLLs 4 4 4 4, 8 4 8 8
Maximum
user I/O pins 230, 341 230 341 229 350, 514 229 350 514 538
Table 11. Arria GX Device Features (Part 2 of 2)
Feature
EP1AGX20C EP1AGX35C/D EP1AGX50C/D EP1AGX60C/D/E EP1AGX90E
C CDCDCDE E
Table 12. Arria GX Package Options (Pin Counts and Transceiver Channels) (Part 1 of 2)
Device Transceiver
Channels
Source-Synchronous Channels Maximum User I/O Pin Count
Receive Transmit 484-Pin FBGA
(23 mm)
780-Pin FBGA
(29 mm)
1152-Pin
FBGA
(35 mm)
EP1AGX20C 4 31 29 230 341
EP1AGX35C 4 31 29 230
EP1AGX50C 4 31 29 229
EP1AGX60C 4 31 29 229
EP1AGX35D 8 31 29 341
EP1AGX50D 8 31, 42 29, 42 350 514
1–4 Chapter 1: Arria GX Device Family Overview
Document Revision History
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 1–3 lists the Arria GX device package sizes.
Document Revision History
Table 1–4 lists the revision history for this chapter.
EP1AGX60D 8 31 29 350
EP1AGX60E 12 42 42 514
EP1AGX90E 12 47 45 538
Table 12. Arria GX Package Options (Pin Counts and Transceiver Channels) (Part 2 of 2)
Device Transceiver
Channels
Source-Synchronous Channels Maximum User I/O Pin Count
Receive Transmit 484-Pin FBGA
(23 mm)
780-Pin FBGA
(29 mm)
1152-Pin
FBGA
(35 mm)
Table 13. Arria GX FBGA Package Sizes
Dimension 484 Pins 780 Pins 1152 Pins
Pitch (mm) 1.00 1.00 1.00
Area (mm2) 529 841 1225
Length × width
(mm × mm)
23 × 23 29 × 29 35 × 35
Table 14. Document Revision History
Date and Document Version Changes Made Summary of Changes
December 2009, v2.0 Document template update.
Minor text edits.
May 2008, v1.2 Included support for SDI,
SerialLite II, and XAUI.
June 2007, v1.1 Included GIGE information.
May 2007, v1.0 Initial Release
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
2. Arria GX Architecture
Transceivers
Arria® GX devices incorporate up to 12 high-speed serial transceiver channels that
build on the success of the Stratix®II GX device family. Arria GX transceivers are
structured into full-duplex (transmitter and receiver) four-channel groups called
transceiver blocks located on the right side of the device. You can configure the
transceiver blocks to support the following serial connectivity protocols
(functional modes):
PCI Express (PIPE)
Gigabit Ethernet (GIGE)
XAUI
Basic (600 Mbps to 3.125 Gbps)
SDI (HD, 3G)
Serial RapidIO (1.25 Gbps, 2.5 Gbps, 3.125 Gbps)
Transceivers within each block are independent and have their own set of dividers.
Therefore, each transceiver can operate at different frequencies. Each block can select
from two reference clocks to provide two clock domains that each transceiver can
select from.
Table 2–1 lists the number of transceiver channels for each member of the Arria GX
family.
Table 21. Arria GX Transceiver Channels
Device Number of Transceiver Channels
EP1AGX20C 4
EP1AGX35C 4
EP1AGX35D 8
EP1AGX50C 4
EP1AGX50D 8
EP1AGX60C 4
EP1AGX60D 8
EP1AGX60E 12
EP1AGX90E 12
AGX51002-2.0
2–2 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–1 shows a high-level diagram of the transceiver block architecture divided
into four channels.
Each transceiver block has:
Four transceiver channels with dedicated physical coding sublayer (PCS) and
physical media attachment (PMA) circuitry
One transmitter PLL that takes in a reference clock and generates high-speed serial
clock depending on the functional mode
Four receiver PLLs and clock recovery unit (CRU) to recover clock and data from
the received serial data stream
State machines and other logic to implement special features required to support
each protocol
Figure 2–2 shows functional blocks that make up a transceiver channel.
Figure 2–1. Transceiver Block
Channel 1
Channel 0
Channel 2
Supporting Blocks
(PLLs, State Machines,
Programming)
Channel 3
RX1
TX1
RX0
TX0
RX2
TX2
RX3
TX3
REFCLK_1
REFCLK_0
Transceiver Block
Arria GX
Logic Array
Figure 2–2. Arria GX Transceiver Channel Block Diagram
Notes to Figure 2–2:
(1) “n” represents the number of bits in each word that must be serialized by the transmitter portion of the PMA.
n = 8 or 10.
(2) “m” represents the number of bits in the word that passes between the FPGA logic and the PCS portion of the transceiver. m = 8, 10, 16, or 20.
Deserializer
Serializer
Word
Aligner
8B/10B
Decoder
XAUI
Lane
Deskew
Byte
Deserializer
8B/10B
Encoder
Phase
Compensation
FIFO Buffer
Reference
Clock
Reference
Clock
Byte
Serializer
Phase
Compensation
FIFO Buffer
Rate
Matcher
PCS Digital Section FPGA Fabric
PMA Analog Section
Receiver
PLL
Transmitter
PLL
Clock
Recovery
Unit
m
n
n
m
(1)
(2)
(2)
(1)
Chapter 2: Arria GX Architecture 2–3
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Each transceiver channel is full-duplex and consists of a transmitter channel and a
receiver channel.
The transmitter channel contains the following sub-blocks:
Transmitter phase compensation first-in first-out (FIFO) buffer
Byte serializer (optional)
8B/10B encoder (optional)
Serializer (parallel-to-serial converter)
Transmitter differential output buffer
The receiver channel contains the following:
Receiver differential input buffer
Receiver lock detector and run length checker
CRU
Deserializer
Pattern detector
Word aligner
Lane deskew
Rate matcher (optional)
8B/10B decoder (optional)
Byte deserializer (optional)
Receiver phase compensation FIFO buffer
You can configure the transceiver channels to the desired functional modes using the
ALT2GXB MegaCore instance in the Quartus® II MegaWizard Plug-in Manager for
the Arria GX device family. Depending on the selected functional mode, the
Quartus II software automatically configures the transceiver channels to employ a
subset of the sub-blocks listed above.
Transmitter Path
This section describes the data path through the Arria GX transmitter. The sub-blocks
are described in order from the PLD-transmitter parallel interface to the serial
transmitter buffer.
Clock Multiplier Unit
Each transceiver block has a clock multiplier unit (CMU) that takes in a reference
clock and synthesizes two clocks: a high-speed serial clock to serialize the data and a
low-speed parallel clock to clock the transmitter digital logic (PCS).
The CMU is further divided into three sub-blocks:
One transmitter PLL
One central clock divider block
Four local clock divider blocks (one per channel)
2–4 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–3 shows the block diagram of the clock multiplier unit.
The transmitter PLL multiplies the input reference clock to generate the high-speed
serial clock required to support the intended protocol. It implements a half-rate
voltage controlled oscillator (VCO) that generates a clock at half the frequency of the
serial data rate for which it is configured.
Figure 2–4 shows the block diagram of the transmitter PLL.
The reference clock input to the transmitter PLL can be derived from:
One of two available dedicated reference clock input pins (REFCLK0 or REFCLK1)
of the associated transceiver block
PLD global clock network (must be driven directly from an input clock pin and
cannot be driven by user logic or enhanced PLL)
Figure 2–3. Clock Multiplier Unit
TX Clock
G en Bloc k
TX Clock
G en Bloc k
CMU Block
Reference Clock
from REFCLKs,
Global Clock (1),
Inter-Transceiver
Lines
Transmitter Channels [3:2]
Transmitter
PLL
Transmitter Channels [1:0]
Local Clock
Divider Block
Central Clock
Divider
Block
Local Clock
Divider Block
Transmitter High-Speed Serial
and Low-Speed Parallel Clocks
Transmitter High-Speed Serial
and Low-Speed Parallel Clocks
Figure 2–4. Transmitter PLL
Notes to Figure 2–4:
(1) You only need to select the protocol and the available input reference clock frequency in the ALTGXB MegaWizard Plug-In Manager. Based on your
selections, the MegaWizard Plug-In Manager automatically selects the necessary /M and /L dividers (clock multiplication factors).
(2) The global clock line must be driven from an input pin only.
Phase
Frequency
Detector
Charge
Pump + Loop
Filter
up
Voltage
Controlled
Oscillator
/M
(1)
INCLK /L
(1)
Transm it t er PLL
Dedic ated
REFCLK0 /2
Dedic ated
REFCLK1 /2
Inter-Transceiver Lines[2:0]
G lobal Clock
(2)
High Speed
Serial Clock
To
Inter-Transceiver Lines
down
Chapter 2: Arria GX Architecture 2–5
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Inter-transceiver block lines driven by reference clock input pins of other
transceiver blocks
1Altera® recommends using the dedicated reference clock input pins (REFCLK0 or
REFCLK1) to provide reference clock for the transmitter PLL.
Table 2–2 lists the adjustable parameters in the transmitter PLL.
The transmitter PLL output feeds the central clock divider block and the local clock
divider blocks. These clock divider blocks divide the high-speed serial clock to
generate the low-speed parallel clock for the transceiver PCS logic and
PLD-transceiver interface clock.
Transmitter Phase Compensation FIFO Buffer
A transmitter phase compensation FIFO is located at each transmitter channel’s logic
array interface. It compensates for the phase difference between the transmitter PCS
clock and the local PLD clock. The transmitter phase compensation FIFO is used in all
supported functional modes. The transmitter phase compensation FIFO buffer is eight
words deep in PCI Express (PIPE) mode and four words deep in all other modes.
fFor more information about architecture and clocking, refer to the Arria GX Transceiver
Architecture chapter.
Byte Serializer
The byte serializer takes in two-byte wide data from the transmitter phase
compensation FIFO buffer and serializes it into a one-byte wide data at twice the
speed. The transmit data path after the byte serializer is 8 or 10 bits. This allows
clocking the PLD-transceiver interface at half the speed when compared with the
transmitter PCS logic. The byte serializer is bypassed in GIGE mode. After
serialization, the byte serializer transmits the least significant byte (LSByte) first and
the most significant byte (MSByte) last.
Table 22. Transmitter PLL Specifications
Parameter Specifications
Input reference frequency range 50 MHz to 622.08 MHz
Data rate support 600 Mbps to 3.125 Gbps
Bandwidth Low, medium, or high
2–6 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–5 shows byte serializer input and output. datain[15:0] is the input to the
byte serializer from the transmitter phase compensation FIFO; dataout[7:0] is the
output of the byte serializer.
8B/10B Encoder
The 8B/10B encoder block is used in all supported functional modes. The 8B/10B
encoder block takes in 8-bit data from the byte serializer or the transmitter phase
compensation FIFO buffer. It generates a 10-bit code group with proper running
disparity from the 8-bit character and a 1-bit control identifier (tx_ctrlenable).
When tx_ctrlenable is low, the 8-bit character is encoded as data code group
(Dx.y). When tx_ctrlenable is high, the 8-bit character is encoded as a control
code group (Kx.y). The 10-bit code group is fed to the serializer. The 8B/10B encoder
conforms to the IEEE 802.3 1998 edition standard.
fFor additional information regarding 8B/10B encoding rules, refer to the Specifications
and Additional Information chapter.
Figure 2–6 shows the 8B/10B conversion format.
During reset (tx_digitalreset), the running disparity and data registers are
cleared and the 8B/10B encoder continously outputs a K28.5 pattern from the
RD-column. After out of reset, the 8B/10B encoder starts with a negative disparity
(RD-) and transmits three K28.5 code groups for synchronizing before it starts
encoding the input data or control character.
Figure 2–5. Byte Serializer Operation (Note 1)
Note to Figure 2–5:
(1) datain may be 16 or 20 bits. dataout may be 8 or 10 bits.
xxxxxxxxxx xxxxxxxxxx
8'h01
{8'h00,8'h01}datain[15:0]
dataout[7:0] 8'h00 8'h03 8'h02
D1 D2 D3
D1LSByte D1MSByte D2LSByte D2MSByte
{8'h02,8'h03} xxxx
Figure 2–6. 8B/10B Encoder
9876543210
8B-10B Conversion
76543210
HGFED CB A
Ctrl
jhgfiedcba
MSB LSB
Chapter 2: Arria GX Architecture 2–7
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Transmit State Machine
The transmit state machine operates in either PCI Express (PIPE) mode, XAUI mode,
or GIGE mode, depending on the protocol used.
GIGE Mode
In GIGE mode, the transmit state machine converts all idle ordered sets (/K28.5/,
/Dx.y/) to either /I1/ or /I2/ ordered sets. The /I1/ set consists of a negative-ending
disparity /K28.5/ (denoted by /K28.5/-), followed by a neutral /D5.6/. The /I2/ set
consists of a positive-ending disparity /K28.5/ (denoted by /K28.5/+) and a
negative-ending disparity /D16.2/ (denoted by /D16.2/-). The transmit state
machines do not convert any of the ordered sets to match /C1/ or /C2/, which are
the configuration ordered sets. (/C1/ and /C2/ are defined by [/K28.5/, /D21.5/]
and [/K28.5/, /D2.2/], respectively). Both the /I1/ and /I2/ ordered sets guarantee a
negative-ending disparity after each ordered set.
XAUI Mode
The transmit state machine translates the XAUI XGMII code group to the XAUI PCS
code group. Table 2–3 lists the code conversion.
The XAUI PCS idle code groups, /K28.0/ (/R/) and /K28.5/ (/K/), are automatically
randomized based on a PRBS7 pattern with an ×7 + ×6 + 1 polynomial. The /K28.3/
(/A/) code group is automatically generated between 16 and 31 idle code groups. The
idle randomization on the /A/, /K/, and /R/ code groups is automatically done by
the transmit state machine.
Serializer (Parallel-to-Serial Converter)
The serializer block clocks in 8- or 10-bit encoded data from the 8B/10B encoder using
the low-speed parallel clock and clocks out serial data using the high-speed serial
clock from the central or local clock divider blocks. The serializer feeds the data LSB to
MSB to the transmitter output buffer.
Table 23. On-Chip Termination Support by I/O Banks
XGMII TXC XGMII TXD PCS Code-Group Description
0 00 through FF Dxx.y Normal data
1 07 K28.0 or K28.3 or K28.5 Idle in ||I||
1 07 K28.5 Idle in ||T||
1 9C K28.4 Sequence
1FB K27.7 Start
1FD K29.7 Terminate
1 FE K30.7 Error
1 Refer to IEEE 802.3 reserved code
groups
Refer to IEEE 802.3 reserved code
groups
Reserved code groups
1 Other value K30.7 Invalid XGMII character
2–8 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–7 shows the serializer block diagram.
Transmitter Buffer
The Arria GX transceiver buffers support the 1.2- and 1.5-V PCML I/O standard at
rates up to 3.125 Gbps. The common mode voltage (VCM) of the output driver may be
set to 600 or 700 mV.
fFor more information about the Arria GX transceiver buffers, refer to the Arria GX
Transceiver Architecture chapter.
The output buffer, as shown in Figure 2–8, is directly driven by the high-speed data
serializer and consists of a programmable output driver, a programmable
pre-emphasis circuit, and OCT circuitry.
Figure 2–7. Serializer
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
To Tr ans m it ter
Output Buf f er
CMU
Central/
Loc al Cl ock
Divider
Low-speed parall el clock
H i gh-speed serial clock
From 8B/10B
Encoder
Chapter 2: Arria GX Architecture 2–9
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Programmable Output Driver
The programmable output driver can be set to drive out differentially from 400 to
1200 mV. The differential output voltage (VOD) can be statically set by using the
ALTGXB megafunction.
You can configure the output driver with 100- OCT or external OCT.
Differential signaling conventions are shown in Figure 2–9. The differential amplitude
represents the value of the voltage between the true and complement signals.
Peak-to-peak differential voltage is defined as 2 (VHIGH – VLOW) = 2 single-ended
voltage swing. The common mode voltage is the average of VHIGH and VLOW
.
Figure 2–8. Output Buffer
Serializer
Programmable
Pre-Emphasis
Output Buffer
Output
Pins
Programmable
Output
Driver
Figure 2–9. Differential Signaling
Single-Ended Waveform
Differential Waveform
+VOD
+VOD
-VOD
2 * VOD
0-V Differential
+400
400
-
VOD (Differential)
= Vhigh Vlow
Vlow
Vhigh
Complement
Tr ue
2–10 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Programmable Pre-Emphasis
The programmable pre-emphasis module controls the output driver to boost high
frequency components and compensate for losses in the transmission medium, as
shown in Figure 2–10. Pre-emphasis is set statically using the ALTGXB megafunction.
Pre-emphasis percentage is defined as (VMAX/VMIN – 1) × 100, where VMAX
is the
differential emphasized voltage (peak-to-peak) and VMIN is the differential
steady-state voltage (peak-to-peak).
PCI Express (PIPE) Receiver Detect
The Arria GX transmitter buffer has a built-in receiver detection circuit for use in PCI
Express (PIPE) mode. This circuit provides the ability to detect if there is a receiver
downstream by sending out a pulse on the channel and monitoring the reflection.
This mode requires a tri-stated transmitter buffer (in electrical idle mode).
PCI Express (PIPE) Electric Idles (or Individual Transmitter Tri-State)
The Arria GX transmitter buffer supports PCI Express (PIPE) electrical idles. This
feature is only active in PCI Express (PIPE) mode. The tx_forceelecidle port puts
the transmitter buffer in electrical idle mode. This port is available in all PCI Express
(PIPE) power-down modes and has specific usage in each mode.
Receiver Path
This section describes the data path through the Arria GX receiver. The sub-blocks are
described in order from the receiver buffer to the PLD-receiver parallel interface.
Receiver Buffer
The Arria GX receiver input buffer supports the 1.2-V and 1.5-V PCML I/O standards
at rates up to 3.125 Gbps. The common mode voltage of the receiver input buffer is
programmable between 0.85 V and 1.2 V. You must select the 0.85 V common mode
voltage for AC- and DC-coupled PCML links and 1.2 V common mode voltage for
DC-coupled LVDS links.
Figure 2–10. Pre-Emphasis Signaling
VMAX
VMAX
VMIN
VMIN
Pre-Emphasis % = ( 1) × 100
Chapter 2: Arria GX Architecture 2–11
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
The receiver has 100- on-chip differential termination (RD OCT) for different
protocols, as shown in Figure 2–11. You can disable the receiver’s internal termination
if external terminations and biasing are provided. The receiver and transmitter
differential termination method can be set independently of each other.
If a design uses external termination, the receiver must be externally terminated and
biased to 0.85 V or 1.2 V. Figure 2–12 shows an example of an external termination and
biasing circuit.
Programmable Equalizer
The Arria GX receivers provide a programmable receiver equalization feature to
compensate for the effects of channel attenuation for high-speed signaling. PCB traces
carrying these high-speed signals have low-pass filter characteristics. Impedance
mismatch boundaries can also cause signal degradation. Equalization in the receiver
diminishes the lossy attenuation effects of the PCB at high frequencies.
Figure 2–11. Receiver Input Buffer
100-Ω
Termination
Input
Pins
Differential
Input
Buffer
Programmable
Equalizer
Figure 2–12. External Termination and Biasing Circuit
Transmission
Line
C1
R1/R2 = 1K
VDD ´ {R2/(R1 + R 2)} = 0.85/1.2 V
50-W
Termination
Resistance
R1
R2
VDD
Receiver External Termination
and Biasing
Arria GX Device
Receiver External Termination
and Biasing
RXIP
RXIN
Receiver
2–12 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The receiver equalization circuit is comprised of a programmable amplifier. Each
stage is a peaking equalizer with a different center frequency and programmable gain.
This allows varying amounts of gain to be applied, depending on the overall
frequency response of the channel loss. Channel loss is defined as the summation of
all losses through the PCB traces, vias, connectors, and cables present in the physical
link. The Quartus II software allows five equalization settings for Arria GX devices.
Receiver PLL and Clock Recovery Unit (CRU)
Each transceiver block has four receiver PLLs and CRU units, each of which is
dedicated to a receiver channel. The receiver PLL is fed by an input reference clock.
The receiver PLL, in conjunction with the CRU, generates two clocks: a high-speed
serial recovered clock that clocks the deserializer and a low-speed parallel recovered
clock that clocks the receiver's digital logic.
Figure 2–13 shows a block diagram of the receiver PLL and CRU circuits.
The reference clock input to the receiver PLL can be derived from:
One of the two available dedicated reference clock input pins (REFCLK0 or
REFCLK1) of the associated transceiver block
PLD global clock network (must be driven directly from an input clock pin and
cannot be driven by user logic or enhanced PLL)
Inter-transceiver block lines driven by reference clock input pins of other
transceiver blocks
All the parameters listed are programmable in the Quartus II software. The receiver
PLL has the following features:
Operates from 600 Mbps to 3.125 Gbps.
Uses a reference clock between 50 MHz and 622.08 MHz.
Programmable bandwidth settings: low, medium, and high.
Programmable rx_locktorefclk (forces the receiver PLL to lock to reference
clock) and rx_locktodata (forces the receiver PLL to lock to data).
Figure 2–13. Receiver PLL and Clock Recovery Unit
Notes to Figure 2–13:
(1) You only need to select the protocol and the available input reference clock frequency in the ALTGXB MegaWizard Plug-In Manager. Based on your
selections, the ALTGXB MegaWizard Plug-In Manager automatically selects the necessary /M and /L dividers.
(2) The global clock line must be driven from an input pin only.
PFD
CP+LF
up
dn VCO
/M
Clock Recovery Unit (CRU) Control High-speed serial recovered clk
Low-speed parallel recovered clk
dn
up /L
rx_pll_locked
rx_freqlocked
Dedicated
REFCLK0
/2
Dedicated
REFCLK1
/2
Inter-Transceiver Lines
[2:0]
Global Clock
(2)
rx_locktorefclk
rx_locktodata
rx_datain
rx_cruclk
Chapter 2: Arria GX Architecture 2–13
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
The voltage-controlled oscillator (VCO) operates at half rate.
Programmable frequency multiplication W of 1, 4, 5, 8, 10, 16, 20, and 25. Not all
settings are supported for any particular frequency.
Two lock indication signals are provided. They are found in PFD mode
(lock-to-reference clock), and PD (lock-to-data).
The CRU controls whether the receiver PLL locks to the input reference clock
(lock-to-reference mode) or the incoming serial data (lock-to data mode). You can set
the CRU to switch between lock-to-data and lock-to-reference modes automatically or
manually. In automatic lock mode, the phase detector and dedicated parts per million
(PPM) detector within each receiver channel control the switch between lock-to-data
and lock-to-reference modes based on some pre-set conditions. In manual lock mode,
you can control the switch manually using the rx_locktorefclk and
rx_locktodata signals.
fFor more information, refer to the “Clock Recovery Unit” section in the Arria GX
Transceiver Protocol Support and Additional Features chapter.
Table 2–4 lists the behavior of the CRU block with respect to the rx_locktorefclk
and rx_locktodata signals.
If the rx_locktorefclk and rx_locktodata ports are not used, the default
setting is automatic lock mode.
Deserializer
The deserializer block clocks in serial input data from the receiver buffer using the
high-speed serial recovered clock and deserializes into 8- or 10-bit parallel data using
the low-speed parallel recovered clock. The serial data is assumed to be received with
LSB first, followed by MSB. It feeds the deserialized 8- or 10-bit data to the word
aligner, as shown in Figure 2–14.
Table 24. CRU Manual Lock Signals
rx_locktorefclk rx_locktodata CRU Mode
1 0 Lock-to-reference clock
x 1 Lock-to-data
0 0 Automatic
2–14 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Word Aligner
The deserializer block creates 8- or 10-bit parallel data. The deserializer ignores
protocol symbol boundaries when converting this data. Therefore, the boundaries of
the transferred words are arbitrary. The word aligner aligns the incoming data based
on specific byte or word boundaries. The word alignment module is clocked by the
local receiver recovered clock during normal operation. All the data and programmed
patterns are defined as “big-endian” (most significant word followed by least
significant word). Most-significant-bit-first protocols should reverse the bit order of
word align patterns programmed.
This module detects word boundaries for 8B/10B-based protocols. This module is
also used to align to specific programmable patterns in PRBS7/23 test mode.
Pattern Detection
The programmable pattern detection logic can be programmed to align word
boundaries using a single 7- or 10-bit pattern. The pattern detector can either do an
exact match, or match the exact pattern and the complement of a given pattern. Once
the programmed pattern is found, the data stream is aligned to have the pattern on
the LSB portion of the data output bus.
XAUI, GIGE, PCI Express (PIPE), and Serial RapidIO standards have embedded state
machines for symbol boundary synchronization. These standards use K28.5 as their
10-bit programmed comma pattern. Each of these standards uses different algorithms
before signaling symbol boundary acquisition to the FPGA.
Pattern detection logic searches from the LSB to the MSB. If multiple patterns are
found within the search window, the pattern in the lower portion of the data stream
(corresponding to the pattern received earlier) is aligned and the rest of the matching
patterns are ignored.
Figure 2–14. Deserializer (Note 1)
Note to Figure 2–14:
(1) This is a 10-bit deserializer. The deserializer can also convert 8 bits of data.
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
To Word
Aligner
Clock
Recovery
Unit
Low-speed parallel recovered clock
High-speed serial recovered clock
Received Data
10
Chapter 2: Arria GX Architecture 2–15
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Once a pattern is detected and the data bus is aligned, the word boundary is locked.
The two detection status signals (rx_syncstatus and rx_patterndetect)
indicate that an alignment is complete.
Figure 2–15 is a block diagram of the word aligner.
Control and Status Signals
The rx_enapatternalign signal is the FPGA control signal that enables word
alignment in non-automatic modes. The rx_enapatternalign signal is not used in
automatic modes (PCI Express [PIPE], XAUI, GIGE, and Serial RapidIO).
In manual alignment mode, after the rx_enapatternalign signal is activated, the
rx_syncstatus signal goes high for one parallel clock cycle to indicate that the
alignment pattern has been detected and the word boundary has been locked. If
rx_enapatternalign is deactivated, the rx_syncstatus signal acts as a
re-synchronization signal to signify that the alignment pattern has been detected but
not locked on a different word boundary.
When using the synchronization state machine, the rx_syncstatus signal indicates
the link status. If the rx_syncstatus signal is high, link synchronization is
achieved. If the rx_syncstatus signal is low, link synchronization has not yet been
achieved, or there were enough code group errors to lose synchronization.
fFor more information about manual alignment modes, refer to the Arria GX Device
Handbook.
The rx_patterndetect signal pulses high during a new alignment and whenever
the alignment pattern occurs on the current word boundary.
Programmable Run Length Violation
The word aligner supports a programmable run length violation counter. Whenever
the number of the continuous0’ (or ‘1’) exceeds a user programmable value, the
rx_rlv signal goes high for a minimum pulse width of two recovered clock cycles.
The maximum run values supported are 128 UI for 8-bit serialization or 160 UI for
10-bit serialization.
Running Disparity Check
The running disparity error rx_disperr and running disparity value
rx_runningdisp are sent along with aligned data from the 8B/10B decoder to the
FPGA. You can ignore or act on the reported running disparity value and running
disparity error signals.
Figure 2–15. Word Aligner
Word
Aligner
datain dataout
bitslip
enapatternalign
syncstatus
patterndetect
clock
2–16 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Bit-Slip Mode
The word aligner can operate in either pattern detection mode or in bit-slip mode.
The bit-slip mode provides the option to manually shift the word boundary through
the FPGA. This feature is useful for:
Longer synchronization patterns than the pattern detector can accommodate
Scrambled data stream
Input stream consisting of over-sampled data
The word aligner outputs a word boundary as it is received from the analog receiver
after reset. You can examine the word and search its boundary in the FPGA. To do so,
assert the rx_bitslip signal. The rx_bitslip signal should be toggled and held
constant for at least two FPGA clock cycles.
For every rising edge of the rx_bitslip signal, the current word boundary is
slipped by one bit. Every time a bit is slipped, the bit received earliest is lost. If bit
slipping shifts a complete round of bus width, the word boundary is back to the
original boundary.
The rx_syncstatus signal is not available in bit-slipping mode.
Channel Aligner
The channel aligner is available only in XAUI mode and aligns the signals of all four
channels within a transceiver. The channel aligner follows the IEEE 802.3ae, clause 48
specification for channel bonding.
The channel aligner is a 16-word FIFO buffer with a state machine controlling the
channel bonding process. The state machine looks for an /A/ (/K28.3/) in each
channel and aligns all the /A/ code groups in the transceiver. When four columns of
/A/ (denoted by //A//) are detected, the rx_channelaligned signal goes high,
signifying that all the channels in the transceiver have been aligned. The reception of
four consecutive misaligned /A/ code groups restarts the channel alignment
sequence and sends the rx_channelaligned signal low.
Chapter 2: Arria GX Architecture 2–17
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–16 shows misaligned channels before the channel aligner and the aligned
channels after the channel aligner.
Rate Matcher
In asynchronous systems, the upstream transmitter and local receiver can be clocked
with independent reference clock sources. Frequency differences in the order of a few
hundred PPM can potentially corrupt the data at the receiver.
The rate matcher compensates for small clock frequency differences between the
upstream transmitter and the local receiver clocks by inserting or removing skip
characters from the inter packet gap (IPG) or idle streams. It inserts a skip character if
the local receiver is running a faster clock than the upstream transmitter. It deletes a
skip character if the local receiver is running a slower clock than the upstream
transmitter. The Quartus II software automatically configures the appropriate skip
character as specified in the IEEE 802.3 for GIGE mode and PCI-Express Base
Specification for PCI Express (PIPE) mode. The rate matcher is bypassed in Serial
RapidIO and must be implemented in the PLD logic array or external circuits
depending on your system design.
Table 2–5 lists the maximum frequency difference that the rate matcher can tolerate in
XAUI, PCI Express (PIPE), GIGE, and Basic functional modes.
Figure 2–16. Before and After the Channel Aligner
KRKKKRRRKKRA
Lane 3
KRKKKRRRKKRA
Lane 2
KRKKKRRRKKRA
Lane 1
KRKKKRRRKKRA
Lane 0
KRKKKRRRKKRA
Lane 3
KRKKKRRRKKRA
Lane 2
KRKKKRRRKKRA
Lane 1
KRKKKRRRKKRA
Lane 0
Before
After
Table 25. Rate Matcher PPM Tolerance
Function Mode PPM
XAUI ± 100
PCI Express (PIPE) ± 300
GIGE ± 100
Basic ± 300
2–18 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
XAUI Mode
In XAUI mode, the rate matcher adheres to clause 48 of the IEEE 802.3ae specification
for clock rate compensation. The rate matcher performs clock compensation on
columns of /R/ (/K28.0/), denoted by //R//. An //R// is added or deleted
automatically based on the number of words in the FIFO buffer.
PCI Express (PIPE) Mode Rate Matcher
In PCI Express (PIPE) mode, the rate matcher can compensate up to ± 300 PPM
(600 PPM total) frequency difference between the upstream transmitter and the
receiver. The rate matcher logic looks for skip ordered sets (SOS), which contains a
/K28.5/ comma followed by three /K28.0/ skip characters. The rate matcher logic
deletes or inserts /K28.0/ skip characters as necessary from/to the rate matcher FIFO.
The rate matcher in PCI Express (PIPE) mode has a FIFO buffer overflow and
underflow protection. In the event of a FIFO buffer overflow, the rate matcher deletes
any data after detecting the overflow condition to prevent FIFO pointer corruption
until the rate matcher is not full. In an underflow condition, the rate matcher inserts
9'h1FE (/K30.7/) until the FIFO buffer is not empty. These measures ensure that the
FIFO buffer can gracefully exit the overflow and underflow condition without
requiring a FIFO reset. The rate matcher FIFO overflow and underflow condition is
indicated on the pipestatus port.
You can bypass the rate matcher in PCI Express (PIPE) mode if you have a
synchronous system where the upstream transmitter and local receiver derive their
reference clocks from the same source.
GIGE Mode Rate Matcher
In GIGE mode, the rate matcher can compensate up to ± 100 PPM (200 PPM total)
frequency difference between the upstream transmitter and the receiver. The rate
matcher logic inserts or deletes /I2/ idle ordered sets to/from the rate matcher FIFO
during the inter-frame or inter-packet gap (IFG or IPG). /I2/ is selected as the rate
matching ordered set because it maintains the running disparity, unlike /I1/ that
alters the running disparity. Because the /I2/ ordered-set contains two 10-bit code
groups (/K28.5/, /D16.2/), 20 bits are inserted or deleted at a time for rate matching.
1The rate matcher logic has the capability to insert or delete /C1/ or /C2/
configuration ordered sets when ‘GIGE Enhanced’ mode is chosen as the sub-protocol
in the MegaWizard Plug-In Manager.
If the frequency PPM difference between the upstream transmitter and the local
receiver is high, or if the packet size is too large, the rate matcher FIFO buffer can face
an overflow or underflow situation.
Basic Mode
In basic mode, you can program the skip and control pattern for rate matching. There
is no restriction on the deletion of a skip character in a cluster. The rate matcher
deletes the skip characters as long as they are available. For insertion, the rate matcher
inserts skip characters such that the number of skip characters at the output of rate
matcher does not exceed five.
Chapter 2: Arria GX Architecture 2–19
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
8B/10B Decoder
The 8B/10B decoder is used in all supported functional modes. The 8B/10B decoder
takes in 10-bit data from the rate matcher and decodes it into 8-bit data + 1-bit control
identifier, thereby restoring the original transmitted data at the receiver. The 8B/10B
decoder indicates whether the received 10-bit character is a data or control code
through the rx_ctrldetect port. If the received 10-bit code group is a control
character (Kx.y), the rx_ctrldetect signal is driven high and if it is a data
character (Dx.y), the rx_ctrldetect signal is driven low.
Figure 2–17 shows a 10-bit code group decoded to an 8-bit data and a 1-bit control
indicator.
If the received 10-bit code is not a part of valid Dx.y or Kx.y code groups, the 8B/10B
decoder block asserts an error flag on the rx_errdetect port. If the received 10-bit
code is detected with incorrect running disparity, the 8B/10B decoder block asserts an
error flag on the rx_disperr and rx_errdetect ports. The error flag signals
(rx_errdetect and rx_disperr) have the same data path delay from the 8B/10B
decoder to the PLD-transceiver interface as the bad code group.
Receiver State Machine
The receiver state machine operates in Basic, GIGE, PCI Express (PIPE), and XAUI
modes. In GIGE mode, the receiver state machine replaces invalid code groups with
K30.7. In XAUI mode, the receiver state machine translates the XAUI PCS code group
to the XAUI XGMII code group.
Figure 2–17. 10-Bit to 8-Bit Conversion
9876543210
8B/10B Conversion
jhgfiedcba
MSB Received Last LSB Received First
76543210
HGFED CB A
ctrl Parallel Data
2–20 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Byte Deserializer
Byte deserializer takes in one-byte wide data from the 8B/10B decoder and
deserializes it into a two-byte wide data at half the speed. This allows clocking the
PLD-receiver interface at half the speed as compared to the receiver PCS logic. The
byte deserializer is bypassed in GIGE mode.
The byte ordering at the receiver output might be different than what was
transmitted. This is a non-deterministic swap, because it depends on PLL lock times
and link delay. If required, you must implement byte ordering logic in the PLD to
correct this situation.
fFor more information about byte serializer, refer to the Arria GX Transceiver
Architecture chapter.
Receiver Phase Compensation FIFO Buffer
A receiver phase compensation FIFO buffer is located at each receiver channels logic
array interface. It compensates for the phase difference between the receiver PCS
clock and the local PLD receiver clock. The receiver phase compensation FIFO is used
in all supported functional modes. The receiver phase compensation FIFO buffer is
eight words deep in PCI Express (PIPE) mode and four words deep in all other
modes.
fFor more information about architecture and clocking, refer to the Arria GX Transceiver
Architecture chapter.
Loopback Modes
Arria GX transceivers support the following loopback configurations for diagnostic
purposes:
Serial loopback
Reverse serial loopback
Reverse serial loopback (pre-CDR)
PCI Express (PIPE) reverse parallel loopback (available only in [PIPE] mode)
Serial Loopback
Figure 2–18 shows the transceiver data path in serial loopback.
Figure 2–18. Transceiver Data Path in Serial Loopback
Transmitter PCS Transmitter PMA
Receiver PCS Receiver PMA
PLD
Logic
Array
TX Phase
Compen-
sation
FIFO
Byte
Serializer 8B/10B
Encoder
Serializer
Serial Loopback
Clock
Recovery
Unit
De-
Serializer
Word
Aligner
Rate
Match
FIFO
8B/10B
Decoder
Byte
De-
Serializer
RX Phase
Compen-
sation
FIFO
Chapter 2: Arria GX Architecture 2–21
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
In GIGE and Serial RapidIO modes, you can dynamically put each transceiver
channel individually in serial loopback by controlling the rx_seriallpbken port. A
high on the rx_seriallpbken port puts the transceiver into serial loopback and a
low takes the transceiver out of serial loopback.
As seen in Figure 2–18, the serial data output from the transmitter serializer is looped
back to the receiver CRU in serial loopback. The transmitter data path from the PLD
interface to the serializer in serial loopback is the same as in non-loopback mode. The
receiver data path from the clock recovery unit to the PLD interface in serial loopback
is the same as in non-loopback mode. Because the entire transceiver data path is
available in serial loopback, this option is often used to diagnose the data path as a
probable cause of link errors.
1When serial loopback is enabled, the transmitter output buffer is still active and
drives the serial data out on the tx_dataout port.
Reverse Serial Loopback
Reverse serial loopback mode uses the analog portion of the transceiver. An external
source (pattern generator or transceiver) generates the source data. The high-speed
serial source data arrives at the high-speed differential receiver input buffer, passes
through the CRU unit and the retimed serial data is looped back, and is transmitted
though the high-speed differential transmitter output buffer.
Figure 2–19 shows the data path in reverse serial loopback mode.
Figure 2–19. Arria GX Block in Reverse Serial Loopback Mode
Transmitter Digital Logic
Receiver Digital Logic
Analog Receiver and
Transmitter Logic
FPGA
Logic
Array
BIST
Incremental
Generator
TX Phase
Compensation
FIFO
RX Phase
Compen-
sation
FIFO
Byte
Serializer
8B/10B
Encoder
Serializer
Reverse
Serial
Loopback
BIST
PRBS
Verify
Clock
Recovery
Unit
Word
Aligner
Deskew
FIFO
8B/10B
Decoder
Byte
De-
serializer
BIST
Incremental
Verify
Rate
Match
FIFO
De-
serializer
BIST
PRBS
Generator
20
2–22 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Reverse Serial Pre-CDR Loopback
Reverse serial pre-CDR loopback mode uses the analog portion of the transceiver. An
external source (pattern generator or transceiver) generates the source data. The
high-speed serial source data arrives at the high-speed differential receiver input
buffer, loops back before the CRU unit, and is transmitted though the high-speed
differential transmitter output buffer. It is for test or verification use only to verify the
signal being received after the gain and equalization improvements of the input
buffer. The signal at the output is not exactly what is received because the signal goes
through the output buffer and the VOD
is changed to the VOD setting level.
Pre-emphasis settings have no effect.
Figure 2–20 shows the Arria GX block in reverse serial pre-CDR loopback mode.
PCI Express (PIPE) Reverse Parallel Loopback
Figure 2–21 shows the data path for PCI Express (PIPE) reverse parallel loopback. The
reverse parallel loopback configuration is compliant with the PCI Express (PIPE)
specification and is available only on PCI Express (PIPE) mode.
Figure 2–20. Arria GX Block in Reverse Serial Pre-CDR Loopback Mode
Transmitter Digital Logic
Receiver Digital Logic
Analog Receiver and
Transmitter Logic
FPGA
Logic
Array
BIST
Incremental
Generator
TX Phase
Compensation
FIFO
RX Phase
Compen-
sation
FIFO
Byte
Serializer
8B/10B
Encoder
Serializer
Reverse
Serial
Pre-CDR
Loopback
BIST
PRBS
Verify
Clock
Recovery
Unit
Word
Aligner
Deskew
FIFO
8B/10B
Decoder
Byte
De-
serializer
BIST
Incremental
Verify
Rate
Match
FIFO
De-
serializer
BIST
PRBS
Generator
20
Figure 2–21. PCI Express (PIPE) Reverse Parallel Loopback
Chapter 2: Arria GX Architecture 2–23
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
You can dynamically put the PCI Express (PIPE) mode transceiver in reverse parallel
loopback by controlling the tx_detectrxloopback port instantiated in the
MegaWizard Plug-In Manager. A high on the tx_detectrxloopback port in P0
power state puts the transceiver in reverse parallel loopback. A high on the
tx_detectrxloopback port in any other power state does not put the transceiver
in reverse parallel loopback.
As seen in Figure 2–21, the serial data received on the rx_datain port in reverse
parallel loopback goes through the CRU, deserializer, word aligner, and the rate
matcher blocks. The parallel data at the output of the receiver rate matcher block is
looped back to the input of the transmitter serializer block. The serializer converts the
parallel data to serial data and feeds it to the transmitter output buffer that drives the
data out on the tx_dataout port. The data at the output of the rate matcher also
goes through the 8B/10B decoder, byte deserializer, and receiver phase compensation
FIFO before being fed to the PLD on the rx_dataout port.
Reset and Powerdown
Arria GX transceivers offer a power saving advantage with their ability to shut off
functions that are not needed.
The following three reset signals are available per transceiver channel and can be used
to individually reset the digital and analog portions within each channel:
tx_digitalreset
rx_analogreset
rx_digitalreset
The following two powerdown signals are available per transceiver block and can be
used to shut down an entire transceiver block that is not being used:
gxb_powerdown
gxb_enable
2–24 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 2–6 lists the reset signals available in Arria GX devices and the transceiver
circuitry affected by each signal.
Calibration Block
Arria GX devices use the calibration block to calibrate OCT for the PLLs, and their
associated output buffers, and the terminating resistors on the transceivers. The
calibration block counters the effects of process, voltage, and temperature (PVT). The
calibration block references a derived voltage across an external reference resistor to
calibrate the OCT resistors on Arria GX devices. You can power down the calibration
block. However, powering down the calibration block during operations can yield
transmit and receive data errors.
Transceiver Clocking
This section describes the clock distribution in an Arria GX transceiver channel and
the PLD clock resource utilization by the transceiver blocks.
Transceiver Channel Clock Distribution
Each transceiver block has one transmitter PLL and four receiver PLLs.
Table 26. Reset Signal Map to Arria GX Blocks
Reset Signal
Transmitter Phase Compensation FIFO Module/ Byte Serializer
Transmitter 8B/10B Encoder
Transmitter Serializer
Transmitter Analog Circuits
Transmitter PLL
Transmitter XAUI State Machine
BIST Generators
Receiver Deserializer
Receiver Word Aligner
Receiver Deskew FIFO Module
Receiver Rate Matcher
Receiver 8B/10B Decoder
Receiver Phase Comp FIFO Module/ Byte Deserializer
Receiver PLL / CRU
Receiver XAUI State Machine
BIST Verifiers
Receiver Analog Circuits
rx_digitalreset ——————vvvvvv
rx_analogreset ——————v—————v——v
tx_digitalreset vv——vv——————————
gxb_powerdown vvvvvvvvvvvvvvvv
gxb_enable vvvvvvvvvvvvvvvv
Chapter 2: Arria GX Architecture 2–25
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
The transmitter PLL multiplies the input reference clock to generate a high-speed
serial clock at a frequency that is half the data rate of the configured functional mode.
This high-speed serial clock (or its divide-by-two version if the functional mode uses
byte serializer) is fed to the CMU clock divider block. Depending on the configured
functional mode, the CMU clock divider block divides the high-speed serial clock to
generate the low-speed parallel clock that clocks the transceiver PCS logic in the
associated channel. The low-speed parallel clock is also forwarded to the PLD logic
array on the tx_clkout or coreclkout ports.
The receiver PLL in each channel is also fed by an input reference clock. The receiver
PLL along with the clock recovery unit generates a high-speed serial recovered clock
and a low-speed parallel recovered clock. The low-speed parallel recovered clock
feeds the receiver PCS logic until the rate matcher. The CMU low-speed parallel clock
clocks the rest of the logic from the rate matcher until the receiver phase
compensation FIFO. In modes that do not use a rate matcher, the receiver PCS logic is
clocked by the recovered clock until the receiver phase compensation FIFO.
The input reference clock to the transmitter and receiver PLLs can be derived from:
One of two available dedicated reference clock input pins (REFCLK0 or REFCLK1)
of the associated transceiver block
PLD clock network (must be driven directly from an input clock pin and cannot be
driven by user logic or enhanced PLL)
Inter-transceiver block lines driven by reference clock input pins of other
transceiver blocks
Figure 2–22 shows the input reference clock sources for the transmitter and receiver
PLL.
Figure 2–22. Input Reference Clock Sources
Transceiver Block 2
Transceiver Block 1
/2
/2
Global Clock
(1)
Transmitter
PLL
Transceiver Block 0
Four
Receiver
PLLs
Global Clock
(1)
Inter-Transceiver Lines [2:0]
Dedicated
REFCLK1
Dedicated
REFCLK0
Inter-Transceiver Lines [0]
Inter-Transceiver Lines [1]
Inter-Transceiver Lines [2]
2–26 Chapter 2: Arria GX Architecture
Transceivers
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
fFor more information about transceiver clocking in all supported functional modes,
refer to the Arria GX Transceiver Architecture chapter.
PLD Clock Utilization by Transceiver Blocks
Arria GX devices have up to 16 global clock (GCLK) lines and 16 regional clock
(RCLK) lines that are used to route the transceiver clocks. The following transceiver
clocks use the available global and regional clock resources:
pll_inclk (if driven from an FPGA input pin)
rx_cruclk (if driven from an FPGA input pin)
tx_clkout/coreclkout (CMU low-speed parallel clock forwarded to the PLD)
Recovered clock from each channel (rx_clkout) in non-rate matcher mode
Calibration clock (cal_blk_clk)
Fixed clock (fixedclk used for receiver detect circuitry in PCI Express [PIPE]
mode only)
Figure 2–23 and Figure 2–24 show the available GCLK and RCLK resources in Arria
GX devices.
Figure 2–23. Global Clock Resources in Arria GX Devices
GCLK[15..12]
GCLK[4..7]
GCLK[11..8]
GCLK[3..0]
Arria GX
Transceiver
Block
Arria GX
Transceiver
Block
12 6
11 5
CLK[7..4]
CLK[15..12]
CLK[3..0] 1
7
2
8
Chapter 2: Arria GX Architecture 2–27
Transceivers
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
For the RCLK or GCLK network to route into the transceiver, a local route input
output (LRIO) channel is required. Each LRIO clock region has up to eight clock paths
and each transceiver block has a maximum of eight clock paths for connecting with
LRIO clocks. These resources are limited and determine the number of clocks that can
be used between the PLD and transceiver blocks. Table 2–7 and Table 2–8 list the
number of LRIO resources available for Arria GX devices with different numbers of
transceiver blocks.
Figure 2–24. Regional Clock Resources in Arria GX Devices
RCLK
[3..0]
RCLK
[7..4]
RCLK
[23..20]
RCLK
[19..16]
RCLK
[11..8]
RCLK
[15..12]
RCLK
[31..28]
RCLK
[27..24]
Arria GX
Transceiver
Block
Arria GX
Transceiver
Block
12 6
11 5
CLK[7..4]
CLK[15..12]
CLK[3..0] 1
7
2
8
Table 27. Available Clocking Connections for Transceivers in EP1AGX35D, EP1AGX50D, and EP1AGX60D
Source
Clock Resource Transceiver
Global Clock Regional Clock Bank13
8 Clock I/O
Bank14
8 Clock I/O
Region0 8 LRIO clock vRCLK 20-27 v
Region1 8 LRIO clock vRCLK 12-19 v
Table 28. Available Clocking Connections for Transceivers in EP1AGX60E and EP1AGX90E
Source
Clock Resource Transceiver
Global Clock Regional Clock Bank13
8 Clock I/O
Bank14
8 Clock I/O
Bank15
8 Clock I/O
Region0 8 LRIO clock vRCLK 20-27 v——
Region1 8 LRIO clock vRCLK 20-27 vv
Region2 8 LRIO clock vRCLK 12-19 vv
Region3 8 LRIO clock vRCLK 12-19 v
2–28 Chapter 2: Arria GX Architecture
Logic Array Blocks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Logic Array Blocks
Each logic array block (LAB) consists of eight adaptive logic modules (ALMs), carry
chains, shared arithmetic chains, LAB control signals, local interconnects, and register
chain connection lines. The local interconnect transfers signals between ALMs in the
same LAB. Register chain connections transfer the output of an ALM register to the
adjacent ALM register in a LAB. The Quartus II Compiler places associated logic in a
LAB or adjacent LABs, allowing the use of local, shared arithmetic chain, and register
chain connections for performance and area efficiency. Table 2–9 lists Arria GX device
resources. Figure 2–25 shows the Arria GX LAB structure.
Table 29. Arria GX Device Resources
Device M512 RAM
Columns/Blocks
M4K RAM
Columns/Blocks M-RAM Blocks DSP Block
Columns/Blocks
EP1AGX20 166 118 1 10
EP1AGX35 197 140 1 14
EP1AGX50 313 242 2 26
EP1AGX60 326 252 2 32
EP1AGX90 478 400 4 44
Chapter 2: Arria GX Architecture 2–29
Logic Array Blocks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
LAB Interconnects
The LAB local interconnect can drive all eight ALMs in the same LAB. It is driven by
column and row interconnects and ALM outputs in the same LAB. Neighboring
LABs, M512 RAM blocks, M4K RAM blocks, M-RAM blocks, or digital signal
processing (DSP) blocks from the left and right can also drive the local interconnect of
a LAB through the direct link connection. The direct link connection feature
minimizes the use of row and column interconnects, providing higher performance
and flexibility. Each ALM can drive 24 ALMs through fast local and direct link
interconnects.
Figure 2–25. Arria GX LAB Structure
Direct link
interconnect from
adjacent block
Direct link
interconnect to
adjacent block
Row Interconnects of
Variable Speed & Length
Column Interconnects of
Variable Speed & Length
Local Interconnect is Driven
from Either Side by Columns & LABs,
& from Above by Rows
Local Interconnect LAB
Direct link
interconnect from
adjacent block
Direct link
interconnect to
adjacent block
ALMs
2–30 Chapter 2: Arria GX Architecture
Logic Array Blocks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–26 shows the direct link connection.
LAB Control Signals
Each LAB contains dedicated logic for driving control signals to its ALMs. The control
signals include three clocks, three clock enables, two asynchronous clears,
synchronous clear, asynchronous preset or load, and synchronous load control
signals, providing a maximum of 11 control signals at a time. Although synchronous
load and clear signals are generally used when implementing counters, they can also
be used with other functions.
Each LAB can use three clocks and three clock enable signals. However, there can only
be up to two unique clocks per LAB, as shown in the LAB control signal generation
circuit in Figure 2–27. Each LAB’s clock and clock enable signals are linked. For
example, any ALM in a particular LAB using the labclk1 signal also uses
labclkena1. If the LAB uses both the rising and falling edges of a clock, it also uses
two LAB-wide clock signals. De-asserting the clock enable signal turns off the
corresponding LAB-wide clock. Each LAB can use two asynchronous clear signals
and an asynchronous load/preset signal. The asynchronous load acts as a preset
when the asynchronous load data input is tied high. When the asynchronous
load/preset signal is used, the labclkena0 signal is no longer available.
The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide
control signals. The MultiTrack interconnects have inherently low skew. This low
skew allows the MultiTrack interconnects to distribute clock and control signals in
addition to data.
Figure 2–26. Direct Link Connection
LAB
ALMs
Direct link
interconnect
to right
Direct link interconnect from
right LAB, TriMatrix memory
block, DSP block, or IOE output
Direct link interconnect from
left LAB, TriMatrixTM memory
block, DSP block, or
input/output element (IOE)
Local
Interconnect
Direct link
interconnect
to left
Chapter 2: Arria GX Architecture 2–31
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–27 shows the LAB control signal generation circuit.
Adaptive Logic Modules
The basic building block of logic in the Arria GX architecture is the ALM. The ALM
provides advanced features with efficient logic utilization. Each ALM contains a
variety of look-up table (LUT)-based resources that can be divided between two
adaptive LUTs (ALUTs). With up to eight inputs to the two ALUTs, one ALM can
implement various combinations of two functions. This adaptability allows the ALM
to be completely backward-compatible with four-input LUT architectures. One ALM
can also implement any function of up to six inputs and certain seven-input functions.
In addition to the adaptive LUT-based resources, each ALM contains two
programmable registers, two dedicated full adders, a carry chain, a shared arithmetic
chain, and a register chain. Through these dedicated resources, the ALM can
efficiently implement various arithmetic functions and shift registers. Each ALM
drives all types of interconnects: local, row, column, carry chain, shared arithmetic
chain, register chain, and direct link interconnects. Figure 2–28 shows a high-level
block diagram of the Arria GX ALM while Figure 2–29 shows a detailed view of all
the connections in the ALM.
Figure 2–27. LAB-Wide Control Signals
Dedicated Row LAB Clocks
Local Interconnect
Local Interconnect
Local Interconnect
Local Interconnect
Local Interconnect
Local Interconnect
labclk2 syncload
labclkena0
or asyncload
or labpreset
labclk0
labclk1 labclr1
labclkena1 labclkena2 labclr0 synclr
6
6
6
There are two unique
clock signals per LAB.
2–32 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–28. High-Level Block Diagram of the Arria GX ALM
DQ To general or
local routing
reg0
To general or
local routing
datae0
dataf0
shared_arith_in
shared_arith_out
reg_chain_in
reg_chain_out
adder0
dataa
datab
datac
datad
Combinational
Logic
datae1
dataf1
DQ To general or
local routing
reg1
To general or
local routing
adder1
carry_in
carry_out
Chapter 2: Arria GX Architecture 2–33
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–29. Arria GX ALM Details
PRN/ALD
CLRN
D
A D ATA
ENA
Q
PRN/ALD
CLRN
D
A D ATA
ENA
Q
4-Input
LUT
3-Input
LUT
3-Input
LUT
4-Input
LUT
3-Input
LUT
3-Input
LUT
dataa
datac
datae0
dataf0
dataf1
datae1
datab
datad
V
CC
reg_chain_in sclr asyncload
syncload ena[2..0]
shared_arith_in
carry_in
carry_out clk[2..0]
Local
Interconnect
Row, column &
direct link routing
Row, column &
direct link routing
Local
Interconnect
Row, column &
direct link routing
Row, column &
direct link routing
reg_chain_out
shared_arith_out aclr[1..0]
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
2–34 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
One ALM contains two programmable registers. Each register has data, clock, clock
enable, synchronous and asynchronous clear, asynchronous load data, and
synchronous and asynchronous load/preset inputs.
Global signals, general-purpose I/O pins, or any internal logic can drive the register's
clock and clear control signals. Either general-purpose I/O pins or internal logic can
drive the clock enable, preset, asynchronous load, and asynchronous load data. The
asynchronous load data input comes from the datae or dataf input of the ALM,
which are the same inputs that can be used for register packing. For combinational
functions, the register is bypassed and the output of the LUT drives directly to the
outputs of the ALM.
Each ALM has two sets of outputs that drive the local, row, and column routing
resources. The LUT, adder, or register output can drive these output drivers
independently (refer to Figure 2–29). For each set of output drivers, two ALM outputs
can drive column, row, or direct link routing connections. One of these ALM outputs
can also drive local interconnect resources. This allows the LUT or adder to drive one
output while the register drives another output. This feature, called register packing,
improves device utilization because the device can use the register and combinational
logic for unrelated functions. Another special packing mode allows the register
output to feed back into the LUT of the same ALM so that the register is packed with
its own fan-out LUT. This feature provides another mechanism for improved fitting.
The ALM can also drive out registered and unregistered versions of the LUT or adder
output.
ALM Operating Modes
The Arria GX ALM can operate in one of the following modes:
Normal mode
Extended LUT mode
Arithmetic mode
Shared arithmetic mode
Each mode uses ALM resources differently. Each mode has 11 available inputs to the
ALM (refer to Figure 2–28)the eight data inputs from the LAB local interconnect;
carry-in from the previous ALM or LAB; the shared arithmetic chain connection from
the previous ALM or LAB; and the register chain connectionare directed to different
destinations to implement the desired logic function. LAB-wide signals provide clock,
asynchronous clear, asynchronous preset/load, synchronous clear, synchronous load,
and clock enable control for the register. These LAB-wide signals are available in all
ALM modes. For more information about LAB-wide control signals, refer to “LAB
Control Signals” on page 2–30.
The Quartus II software and supported third-party synthesis tools, in conjunction
with parameterized functions such as library of parameterized modules (LPM)
functions, automatically choose the appropriate mode for common functions such as
counters, adders, subtractors, and arithmetic functions. If required, you can also
create special-purpose functions that specify which ALM operating mode to use for
optimal performance.
Chapter 2: Arria GX Architecture 2–35
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Normal Mode
Normal mode is suitable for general logic applications and combinational functions.
In this mode, up to eight data inputs from the LAB local interconnect are inputs to the
combinational logic. Normal mode allows two functions to be implemented in one
Arria GX ALM, or an ALM to implement a single function of up to six inputs. The
ALM can support certain combinations of completely independent functions and
various combinations of functions which have common inputs. Figure 2–30 shows the
supported LUT combinations in normal mode.
Normal mode provides complete backward compatibility with four-input LUT
architectures. Two independent functions of four inputs or less can be implemented in
one Arria GX ALM. In addition, a five-input function and an independent three-input
function can be implemented without sharing inputs.
Figure 2–30. ALM in Normal Mode (Note 1)
Note to Figure 2–30:
(1) Combinations of functions with less inputs than those shown are also supported. For example, combinations of functions with the following
number of inputs are supported: 4 and 3, 3 and 3, 3 and 2, 5 and 2, and so on.
6-Input
LUT
dataf0
datae0
dataf0
datae0
dataa
datab
dataa
datab
datab
datac
datac
dataf0
datae0
dataa
datac
6-Input
LUT
datad
datad
datae1
combout0
combout1
combout0
combout1
combout0
combout1
dataf1
datae1
dataf1
datad
datae1
dataf1
4-Input
LUT
4-Input
LUT
4-Input
LUT
6-Input
LUT
dataf0
datae0
dataa
datab
datac
datad
combout0
5-Input
LUT
5-Input
LUT
dataf0
datae0
dataa
datab
datac
datad
combout0
combout1
datae1
dataf1
5-Input
LUT
dataf0
datae0
dataa
datab
datac
datad
combout0
combout1
datae1
dataf1
5-Input
LUT
3-Input
LUT
2–36 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
To pack two five-input functions into one ALM, the functions must have at least two
common inputs. The common inputs are dataa and datab. The combination of a
four-input function with a five-input function requires one common input
(either dataa or datab).
To implement two six-input functions in one ALM, four inputs must be shared and
the combinational function must be the same. For example, a 4 × 2 crossbar switch
(two 4-to-1 multiplexers with common inputs and unique select lines) can be
implemented in one ALM, as shown in Figure 2–31. The shared inputs are dataa,
datab, datac, and datad, while the unique select lines are datae0 and dataf0 for
function0, and datae1 and dataf1 for function1. This crossbar switch
consumes four LUTs in a four-input LUT-based architecture.
In a sparsely used device, functions that can be placed into one ALM can be
implemented in separate ALMs. The Quartus II Compiler spreads a design out to
achieve the best possible performance. As a device begins to fill up, the Quartus II
software automatically uses the full potential of the Arria GX ALM. The Quartus II
Compiler automatically searches for functions of common inputs or completely
independent functions to be placed into one ALM and to make efficient use of the
device resources. In addition, you can manually control resource usage by setting
location assignments. Any six-input function can be implemented utilizing inputs
dataa, datab, datac, datad, and either datae0 and dataf0 or datae1 and
dataf1. If datae0 and dataf0 are used, the output is driven to register0,
and/or register0 is bypassed and the data drives out to the interconnect using the
top set of output drivers (refer to Figure 2–32). If datae1 and dataf1 are used, the
output drives to register1 and/or bypasses register1 and drives to the
interconnect using the bottom set of output drivers. The Quartus II Compiler
automatically selects the inputs to the LUT. Asynchronous load data for the register
comes from the datae or dataf input of the ALM. ALMs in normal mode support
register packing.
Figure 2–31. 4 × 2 Crossbar Switch Example
Six-Input
LUT
(Function0)
dataf0
datae0
dataa
datab
datac
Six-Input
LUT
(Function1)
datad
datae1
combout0
combout1
dataf1
inputa
sel0[1..0]
sel1[1..0]
inputb
inputc
inputd
out0
out1
4 ´ 2 Crossbar Switch Implementation in 1 ALM
Chapter 2: Arria GX Architecture 2–37
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Extended LUT Mode
Extended LUT mode is used to implement a specific set of seven-input functions. The
set must be a 2-to-1 multiplexer fed by two arbitrary five-input functions sharing four
inputs. Figure 2–33 shows the template of supported seven-input functions utilizing
extended LUT mode. In this mode, if the seven-input function is unregistered, the
unused eighth input is available for register packing. Functions that fit into the
template shown in Figure 2–33 occur naturally in designs. These functions often
appear in designs as “if-else” statements in Verilog HDL or VHDL code.
Figure 2–32. Six-Input Function in Normal Mode Note (1), (2)
Notes to Figure 2–32:
(1) If datae1 and dataf1 are used as inputs to the six-input function, datae0 and dataf0 are available for register
packing.
(2) The dataf1 input is available for register packing only if the six-input function is un-registered.
6-Input
LUT
dataf0
datae0
dataa
datab
datac
datad
datae1
dataf1
DQ
DQ
To general or
local routing
To general or
local routing
To general or
local routing
reg0
reg1
These inputs are available for register packing.
(2)
Figure 2–33. Template for Supported Seven-Input Functions in Extended LUT Mode
Note to Figure 2–33:
(1) If the seven-input function is unregistered, the unused eighth input is available for register packing. The second register, reg1, is not available.
datae0
combout0
5-Input
LUT
5-Input
LUT
datac
dataa
datab
datad
dataf0
datae1
dataf1
DQ To general or
local routing
To general or
local routing
reg0
This input is available
for register packing.
(1)
2–38 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Arithmetic Mode
Arithmetic mode is ideal for implementing adders, counters, accumulators, wide
parity functions, and comparators. An ALM in arithmetic mode uses two sets of 2
four-input LUTs along with two dedicated full adders. The dedicated adders allow
the LUTs to be available to perform pre-adder logic; therefore, each adder can add the
output of two four-input functions. The four LUTs share the dataa and datab
inputs. As shown in Figure 2–34, the carry-in signal feeds to adder0, and the
carry-out from adder0 feeds to carry-in of adder1. The carry-out from adder1
drives to adder0 of the next ALM in the LAB. ALMs in arithmetic mode can drive
out registered and/or unregistered versions of the adder outputs.
While operating in arithmetic mode, the ALM can support simultaneous use of the
adder’s carry output along with combinational logic outputs. In this operation, adder
output is ignored. This usage of the adder with the combinational logic output
provides resource savings of up to 50% for functions that can use this ability. An
example of such functionality is a conditional operation, such as the one shown in
Figure 2–35. The equation for this example is:
To implement this function, the adder is used to subtract Y from ‘X.’ If ‘X’ is less than
Y,’ the carry_out signal is1.’ The carry_out signal is fed to an adder where it
drives out to the LAB local interconnect. It then feeds to the LAB-wide syncload
signal. When asserted, syncload selects the syncdata input. In this case, the data
‘Y’ drives the syncdata inputs to the registers. If ‘X’ is greater than or equal toY,’ the
syncload signal is deasserted and ‘X’ drives the data port of the registers.
Figure 2–34. ALM in Arithmetic Mode
dataf0
datae0
carry_in
carry_out
dataa
datab
datac
datad
datae1
dataf1
DQ
DQ
To general or
local routing
To general or
local routing
reg0
reg1
To general or
local routing
To general or
local routing
4-Input
LUT
4-Input
LUT
4-Input
LUT
4-Input
LUT
adder1
adder0
Equation 2–1.
R=(X<Y)?Y:X
Chapter 2: Arria GX Architecture 2–39
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Arithmetic mode also offers clock enable, counter enable, synchronous up/down
control, add/subtract control, synchronous clear, and synchronous load. The LAB
local interconnect data inputs generate the clock enable, counter enable, synchronous
up/down and add/subtract control signals. These control signals can be used for the
inputs that are shared between the four LUTs in the ALM. The synchronous clear and
synchronous load options are LAB-wide signals that affect all registers in the LAB.
The Quartus II software automatically places any registers that are not used by the
counter into other LABs.
Carry Chain
Carry chain provides a fast carry function between the dedicated adders in arithmetic
or shared arithmetic mode. Carry chains can begin in either the first ALM or the fifth
ALM in a LAB. The final carry-out signal is routed to an ALM, where it is fed to local,
row, or column interconnects.
The Quartus II Compiler automatically creates carry chain logic during compilation,
or you can create it manually during design entry. Parameterized functions such as
LPM functions automatically take advantage of carry chains for the appropriate
functions. The Quartus II Compiler creates carry chains longer than 16 (8 ALMs in
arithmetic or shared arithmetic mode) by linking LABs together automatically. For
enhanced fitting, a long carry chain runs vertically allowing fast horizontal
connections to TriMatrix memory and DSP blocks. A carry chain can continue as far as
a full column. To avoid routing congestion in one small area of the device when a high
fan-in arithmetic function is implemented, the LAB can support carry chains that only
use either the top half or bottom half of the LAB before connecting to the next LAB.
Figure 2–35. Conditional Operation Example
Y[1]
Y[0]
X[0] X[0]
carry_out
X[2] X[2]
X[1] X[1]
Y[2]
DQ To general or
local routing
reg0
Comb &
Adder
Logic
Comb &
Adder
Logic
Comb &
Adder
Logic
Comb &
Adder
Logic
DQ To general or
local routing
reg1
DQ To general or
local routing
To local routing &
then to LAB-wide
syncload
reg0
syncload
syncload
syncload
ALM 1
ALM 2
R[0]
R[1]
R[2]
Carry Chain
Adder output
is not used.
syncdata
2–40 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The other half of the ALMs in the LAB is available for implementing narrower fan-in
functions in normal mode. Carry chains that use the top four ALMs in the first LAB
carries into the top half of the ALMs in the next LAB within the column. Carry chains
that use the bottom four ALMs in the first LAB carries into the bottom half of the
ALMs in the next LAB within the column. Every other column of the LABs are
top-half bypassable, while the other LAB columns are bottom-half bypassable. For
more information about carry chain interconnect, refer to “MultiTrack Interconnect
on page 2–44.
Shared Arithmetic Mode
In shared arithmetic mode, the ALM can implement a three-input add. In this mode,
the ALM is configured with four 4-input LUTs. Each LUT either computes the sum of
three inputs or the carry of three inputs. The output of the carry computation is fed to
the next adder (either to adder1 in the same ALM or to adder0 of the next ALM in
the LAB) using a dedicated connection called the shared arithmetic chain. This shared
arithmetic chain can significantly improve the performance of an adder tree by
reducing the number of summation stages required to implement an adder tree.
Figure 2–36 shows the ALM in shared arithmetic mode.
Figure 2–36. ALM in Shared Arithmetic Mode
Note to Figure 2–36:
(1) Inputs dataf0 and dataf1 are available for register packing in shared arithmetic mode.
datae0
carry_in
shared_arith_in
shared_arith_out
carry_out
dataa
datab
datac
datad
datae1
DQ
DQ
To general or
local routing
To general or
local routing
reg0
reg1
To general or
local routing
To general or
local routing
4-Input
LUT
4-Input
LUT
4-Input
LUT
4-Input
LUT
Chapter 2: Arria GX Architecture 2–41
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Adder trees are used in many different applications. For example, the summation of
partial products in a logic-based multiplier can be implemented in a tree structure.
Another example is a correlator function that can use a large adder tree to sum filtered
data samples in a given time frame to recover or to de-spread data which was
transmitted utilizing spread spectrum technology. An example of a three-bit add
operation utilizing the shared arithmetic mode is shown in Figure 2–37. The partial
sum (S[2..0]) and the partial carry (C[2..0]) is obtained using LUTs, while the
result (R[2..0]) is computed using dedicated adders.
Shared Arithmetic Chain
In addition to dedicated carry chain routing, the shared arithmetic chain available in
shared arithmetic mode allows the ALM to implement a three-input add, which
significantly reduces the resources necessary to implement large adder trees or
correlator functions. Shared arithmetic chains can begin in either the first or fifth ALM
in a LAB. The Quartus II Compiler automatically links LABs to create shared
arithmetic chains longer than 16 (eight ALMs in arithmetic or shared arithmetic
mode). For enhanced fitting, a long shared arithmetic chain runs vertically allowing
fast horizontal connections to TriMatrix memory and DSP blocks. A shared arithmetic
chain can continue as far as a full column. Similar to carry chains, shared arithmetic
Figure 2–37. Example of a 3-Bit Add Utilizing Shared Arithmetic Mode
carry_in = '0'
shared_arith_in = '0'
Z0
Y0
X0
Binary Add
Decimal
Equivalents
+
Z1
X1
R0
C0
S0
S1
S2
C1
C2
'0'
R1
Y1
3-Input
LUT
3-Input
LUT
3-Input
LUT
3-Input
LUT
Z2
Y2
X2
R2
R3
3-Input
LUT
3-Input
LUT
3-Input
LUT
3-Input
LUT
ALM 1
3-Bit Add Example ALM Implementation
ALM 2
X2 X1 X0
Y2 Y1 Y0
Z2 Z1 Z0
S2 S1 S0
C2 C1 C0
R3 R2 R1 R0
+
+
1 1 0
1 0 1
0 1 0
0 0 1
1 1 0
1 1 0 1
+
+
6
5
2
1
2 x 6
13
+
2nd stage add is
implemented in adders.
1st stage add is
implemented in LUTs.
2–42 Chapter 2: Arria GX Architecture
Adaptive Logic Modules
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
chains are also top- or bottom-half bypassable. This capability allows the shared
arithmetic chain to cascade through half of the ALMs in a LAB while leaving the other
half available for narrower fan-in functionality. Every other LAB column is top-half
bypassable, while the other LAB columns are bottom-half bypassable. For more
information about shared arithmetic chain interconnect, refer to “MultiTrack
Interconnect” on page 2–44.
Register Chain
In addition to the general routing outputs, the ALMs in a LAB have register chain
outputs. Register chain routing allows registers in the same LAB to be cascaded
together. The register chain interconnect allows a LAB to use LUTs for a single
combinational function and the registers to be used for an unrelated shift register
implementation. These resources speed up connections between ALMs while saving
local interconnect resources (refer to Figure 2–38). The Quartus II Compiler
automatically takes advantage of these resources to improve utilization and
performance. For more information about register chain interconnect, refer to
“MultiTrack Interconnect” on page 2–44.
Chapter 2: Arria GX Architecture 2–43
Adaptive Logic Modules
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Clear and Preset Logic Control
LAB-wide signals control the logic for the registers clear and load/preset signals. The
ALM directly supports an asynchronous clear and preset function. The register preset
is achieved through the asynchronous load of a logic high. The direct asynchronous
preset does not require a NOT gate push-back technique. Arria GX devices support
simultaneous asynchronous load/preset and clear signals. An asynchronous clear
signal takes precedence if both signals are asserted simultaneously. Each LAB
supports up to two clears and one load/preset signal.
Figure 2–38. Register Chain within a LAB (Note 1)
Note to Figure 2–38:
(1) The combinational or adder logic can be used to implement an unrelated, unregistered function.
DQ To general or
local routing
reg0
To general or
local routing
reg_chain_in
adder0
DQ To general or
local routing
reg1
To general or
local routing
adder1
DQ To general or
local routing
reg0
To general or
local routing
reg_chain_out
adder0
DQ To general or
local routing
reg1
To general or
local routing
adder1
From Previous ALM
Within The LAB
To Next ALM
within the LAB
Combinational
Logic
Combinational
Logic
2–44 Chapter 2: Arria GX Architecture
MultiTrack Interconnect
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
In addition to the clear and load/preset ports, Arria GX devices provide a
device-wide reset pin (DEV_CLRn) that resets all registers in the device. An option set
before compilation in the Quartus II software controls this pin. This device-wide reset
overrides all other control signals.
MultiTrack Interconnect
In Arria GX architecture, the MultiTrack interconnect structure with DirectDrive
technology provides connections between ALMs, TriMatrix memory, DSP blocks, and
device I/O pins. The MultiTrack interconnect consists of continuous,
performance-optimized routing lines of different lengths and speeds used for inter-
and intra-design block connectivity. The Quartus II Compiler automatically places
critical design paths on faster interconnects to improve design performance.
DirectDrive technology is a deterministic routing technology that ensures identical
routing resource usage for any function regardless of placement in the device. The
MultiTrack interconnect and DirectDrive technology simplify the integration stage of
block-based designing by eliminating the re-optimization cycles that typically follow
design changes and additions.
The MultiTrack interconnect consists of row and column interconnects that span fixed
distances. A routing structure with fixed length resources for all devices allows
predictable and repeatable performance when migrating through different device
densities. Dedicated row interconnects route signals to and from LABs, DSP blocks,
and TriMatrix memory in the same row.
These row resources include:
Direct link interconnects between LABs and adjacent blocks
R4 interconnects traversing four blocks to the right or left
R24 row interconnects for high-speed access across the length of the device
The direct link interconnect allows a LAB, DSP block, or TriMatrix memory block to
drive into the local interconnect of its left and right neighbors and then back into
itself, providing fast communication between adjacent LABs and/or blocks without
using row interconnect resources.
The R4 interconnects span four LABs, three LABs and one M512 RAM block, two
LABs and one M4K RAM block, or two LABs and one DSP block to the right or left of
a source LAB. These resources are used for fast row connections in a four-LAB region.
Every LAB has its own set of R4 interconnects to drive either left or right. Figure 2–39
shows R4 interconnect connections from a LAB.
R4 interconnects can drive and be driven by DSP blocks and RAM blocks and row
IOEs. For LAB interfacing, a primary LAB or LAB neighbor can drive a given R4
interconnect. For R4 interconnects that drive to the right, the primary LAB and right
neighbor can drive onto the interconnect. For R4 interconnects that drive to the left,
the primary LAB and its left neighbor can drive onto the interconnect. R4
interconnects can drive other R4 interconnects to extend the range of LABs they can
drive. R4 interconnects can also drive C4 and C16 interconnects for connections from
one row to another. Additionally, R4 interconnects can drive R24 interconnects.
Chapter 2: Arria GX Architecture 2–45
MultiTrack Interconnect
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
R24 row interconnects span 24 LABs and provide the fastest resource for long row
connections between LABs, TriMatrix memory, DSP blocks, and row IOEs. The R24
row interconnects can cross M-RAM blocks. R24 row interconnects drive to other row
or column interconnects at every fourth LAB and do not drive directly to LAB local
interconnects. R24 row interconnects drive LAB local interconnects via R4 and C4
interconnects. R24 interconnects can drive R24, R4, C16, and C4 interconnects. The
column interconnect operates similarly to the row interconnect and vertically routes
signals to and from LABs, TriMatrix memory, DSP blocks, and IOEs. Each column of
LABs is served by a dedicated column interconnect.
These column resources include:
Shared arithmetic chain interconnects in a LAB
Carry chain interconnects in a LAB and from LAB to LAB
Register chain interconnects in a LAB
C4 interconnects traversing a distance of four blocks in up and down direction
C16 column interconnects for high-speed vertical routing through the device
Arria GX devices include an enhanced interconnect structure in LABs for routing
shared arithmetic chains and carry chains for efficient arithmetic functions. The
register chain connection allows the register output of one ALM to connect directly to
the register input of the next ALM in the LAB for fast shift registers. These
ALM-to-ALM connections bypass the local interconnect. The Quartus II Compiler
automatically takes advantage of these resources to improve utilization and
performance. Figure 2–40 shows shared arithmetic chain, carry chain, and register
chain interconnects.
Figure 2–39. R4 Interconnect Connections (Note 1), (2), (3)
Notes to Figure 2–39:
(1) C4 and C16 interconnects can drive R4 interconnects.
(2) This pattern is repeated for every LAB in the LAB row.
(3) The LABs in Figure 2–39 show the 16 possible logical outputs per LAB.
Primary
LAB (2)
R4 Interconnect
Driving Left
Adjacent LAB can
Drive onto Another
LAB's R4 Interconnect
C4 and C16
Column Interconnects (1)
R4 Interconnect
Driving Right
LAB
Neighbor
LAB
Neighbor
2–46 Chapter 2: Arria GX Architecture
MultiTrack Interconnect
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
C4 interconnects span four LABs, M512, or M4K blocks up or down from a source
LAB. Every LAB has its own set of C4 interconnects to drive either up or down.
Figure 2–41 shows the C4 interconnect connections from a LAB in a column. C4
interconnects can drive and be driven by all types of architecture blocks, including
DSP blocks, TriMatrix memory blocks, and column and row IOEs. For LAB
interconnection, a primary LAB or its LAB neighbor can drive a given C4
interconnect. C4 interconnects can drive each other to extend their range as well as
drive row interconnects for column-to-column connections.
Figure 2–40. Shared Arithmetic Chain, Carry Chain and Register Chain Interconnects
ALM 1
ALM 2
ALM 3
ALM 4
ALM 5
ALM 6
ALM 8
ALM 7
Carry Chain & Shared
Arithmetic Chain
Routing to Adjacent ALM
Local
Interconnect
Register Chain
Routing to Adjacent
ALM's Register Inpu
t
Local Interconnect
Routing Among ALMs
in the LAB
Chapter 2: Arria GX Architecture 2–47
MultiTrack Interconnect
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
C16 column interconnects span a length of 16 LABs and provide the fastest resource
for long column connections between LABs, TriMatrix memory blocks, DSP blocks,
and IOEs. C16 interconnects can cross M-RAM blocks and also drive to row and
column interconnects at every fourth LAB. C16 interconnects drive LAB local
interconnects via C4 and R4 interconnects and do not drive LAB local interconnects
directly. All embedded blocks communicate with the logic array similar to
LAB-to-LAB interfaces. Each block (that is, TriMatrix memory and DSP blocks)
connects to row and column interconnects and has local interconnect regions driven
by row and column interconnects. These blocks also have direct link interconnects for
fast connections to and from a neighboring LAB. All blocks are fed by the row LAB
clocks, labclk[5..0].
Figure 2–41. C4 Interconnect Connections (Note 1)
Note to Figure 2–41:
(1) Each C4 interconnect can drive either up or down four rows.
C4 Interconnect
Drives Local and R4
Interconnects
up to Four Rows
Adjacent LAB can
drive onto neighboring
LAB's C4 interconnect
C4 Interconnect
Driving Up
C4 Interconnect
Driving Down
LAB
Row
Interconnect
Local
Interconnect
2–48 Chapter 2: Arria GX Architecture
TriMatrix Memory
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 2–10 lists the routing scheme for Arria GX device.
TriMatrix Memory
TriMatrix memory consists of three types of RAM blocks: M512, M4K, and M-RAM.
Although these memory blocks are different, they can all implement various types of
memory with or without parity, including true dual-port, simple dual-port, and
single-port RAM, ROM, and FIFO buffers. Table 2–11 lists the size and features of the
different RAM blocks.
Table 2–10. Arria GX Device Routing Scheme
Source
Destination
Shared Arithmetic Chain
Carry Chain
Register Chain
Local Interconnect
Direct Link Interconnect
R4 Interconnect
R24 Interconnect
C4 Interconnect
C16 Interconnect
ALM
M512 RAM Block
M4K RAM Block
M-RAM Block
DSP Blocks
Column IOE
Row IOE
Shared arithmetic chain —————————v——————
Carry chain —————————v——————
Register chain —————————v——————
Local interconnect —————————vvvvvvv
Direct link interconnect v————————————
R4 interconnect vvvvv———————
R24 interconnect ————vvvv———————
C4 interconnect vvv————————
C16 interconnect ————vvvv———————
ALM vvvvvvv————————
M512 RAM block vvvv————————
M4K RAM block vvvv————————
M-RAM block ————vvvv————————
DSP blocks ————vvv————————
Column IOE ————v——vv———————
Row IOE ————vvvv————————
Table 2–11. TriMatrix Memory Features (Part 1 of 2)
Memory Feature M512 RAM Block
(32×18 Bits)
M4K RAM Block
(128×36 Bits)
M-RAM Block
(4K × 144 Bits)
Maximum performance 345 MHz 380 MHz 290 MHz
True dual-port memory vv
Simple dual-port memory vvv
Single-port memory vvv
Shift register vv
Chapter 2: Arria GX Architecture 2–49
TriMatrix Memory
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
TriMatrix memory provides three different memory sizes for efficient application
support. The Quartus II software automatically partitions the user-defined memory
into the embedded memory blocks using the most efficient size combinations. You can
also manually assign the memory to a specific block size or a mixture of block sizes.
M512 RAM Block
The M512 RAM block is a simple dual-port memory block and is useful for
implementing small FIFO buffers, DSP, and clock domain transfer applications. Each
block contains 576 RAM bits (including parity bits). M512 RAM blocks can be
configured in the following modes:
Simple dual-port RAM
Single-port RAM
FIFO
ROM
Shift register
ROM vv
FIFO buffer vvv
Pack mode vv
Byte enable vvv
Address clock enable vv
Parity bits vvv
Mixed clock mode vvv
Memory initialization file (.mif)vv
Simple dual-port memory mixed width support vvv
True dual-port memory mixed width support vv
Power-up conditions Outputs cleared Outputs cleared Outputs unknown
Register clears Output registers Output registers Output registers
Mixed-port read-during-write Unknown output/old
data
Unknown output/old
data
Unknown output
Configurations
512 × 1
256 × 2
128 × 4
64 × 8
64 × 9
32 × 16
32 × 18
4K × 1
2K × 2
1K × 4
512 × 8
512 × 9
256 × 16
256 × 18
128 × 32
128 × 36
64K × 8
64K × 9
32K × 16
32K × 18
16K × 32
16K × 36
8K × 64
8K × 72
4K × 128
4K × 144
Table 2–11. TriMatrix Memory Features (Part 2 of 2)
Memory Feature M512 RAM Block
(32×18 Bits)
M4K RAM Block
(128×36 Bits)
M-RAM Block
(4K × 144 Bits)
2–50 Chapter 2: Arria GX Architecture
TriMatrix Memory
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
When configured as RAM or ROM, you can use an initialization file to pre-load the
memory contents.
M512 RAM blocks can have different clocks on its inputs and outputs. The wren,
datain, and write address registers are all clocked together from one of the two
clocks feeding the block. The read address, rden, and output registers can be clocked
by either of the two clocks driving the block, allowing the RAM block to operate in
read and write or input and output clock modes. Only the output register can be
bypassed. The six labclk signals or local interconnect can drive the inclock,
outclock, wren, rden, and outclr signals. Because of the advanced interconnect
between the LAB and M512 RAM blocks, ALMs can also control the wren and rden
signals and the RAM clock, clock enable, and asynchronous clear signals. Figure 2–42
shows the M512 RAM block control signal generation logic.
The RAM blocks in Arria GX devices have local interconnects to allow ALMs and
interconnects to drive into RAM blocks. The M512 RAM block local interconnect is
driven by the R4, C4, and direct link interconnects from adjacent LABs. The M512
RAM blocks can communicate with LABs on either the left or right side through these
row interconnects or with LAB columns on the left or right side with the column
interconnects. The M512 RAM block has up to 16 direct link input connections from
the left adjacent LABs and another 16 from the right adjacent LAB. M512 RAM
outputs can also connect to left and right LABs through direct link interconnect. The
M512 RAM block has equal opportunity for access and performance to and from
LABs on either its left or right side. Figure 2–43 shows the M512 RAM block to logic
array interface.
Figure 2–42. M512 RAM Block Control Signals
inclocken
outclockinclock
outclocken
rden
wren
Dedicated
Row LAB
Clocks
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect outclr
6
Local
Interconnect
Local
Interconnect
Chapter 2: Arria GX Architecture 2–51
TriMatrix Memory
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
M4K RAM Blocks
The M4K RAM block includes support for true dual-port RAM. The M4K RAM block
is used to implement buffers for a wide variety of applications such as storing
processor code, implementing lookup schemes, and implementing larger memory
applications. Each block contains 4,608 RAM bits (including parity bits). M4K RAM
blocks can be configured in the following modes:
True dual-port RAM
Simple dual-port RAM
Single-port RAM
FIFO
ROM
Shift register
When configured as RAM or ROM, you can use an initialization file to pre-load the
memory contents.
M4K RAM blocks allow for different clocks on their inputs and outputs. Either of the
two clocks feeding the block can clock M4K RAM block registers (renwe, address,
byte enable, datain, and output registers). Only the output register can be
bypassed. The six labclk signals or local interconnects can drive the control signals
for the A and B ports of the M4K RAM block. ALMs can also control the clock_a,
clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and clocken_b
signals, as shown in Figure 2–44.
Figure 2–43. M512 RAM Block LAB Row Interface
dataout
M4K RAM
Block
datain
address
16
36
Direct link
interconnect
from adjacent LAB
Direct link
interconnect
to adjacent LAB
Direct link
interconnect
from adjacent LAB
Direct link
interconnect
to adjacent LAB
M4K RAM Block Local
Interconnect Region
C4 Interconnect R4 Interconnect
LAB Row Clocks
clocks
byte
enable
control
signals
6
2–52 Chapter 2: Arria GX Architecture
TriMatrix Memory
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The R4, C4, and direct link interconnects from adjacent LABs drive the M4K RAM
block local interconnect. The M4K RAM blocks can communicate with LABs on either
the left or right side through these row resources or with LAB columns on either the
right or left with the column resources. Up to 16 direct link input connections to the
M4K RAM block are possible from the left adjacent LABs and another 16 are possible
from the right adjacent LAB. M4K RAM block outputs can also connect to left and
right LABs through direct link interconnect. Figure 2–45 shows the M4K RAM block
to logic array interface.
Figure 2–44. M4K RAM Block Control Signals
clock_b
clocken_aclock_a
clocken_b aclr_b
aclr_a
Dedicated
Row LAB
Clocks
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
renwe_b
renwe_a
6
Chapter 2: Arria GX Architecture 2–53
TriMatrix Memory
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
M-RAM Block
The largest TriMatrix memory block, the M-RAM block, is useful for applications
where a large volume of data must be stored on-chip. Each block contains 589,824
RAM bits (including parity bits). The M-RAM block can be configured in the
following modes:
True dual-port RAM
Simple dual-port RAM
Single-port RAM
FIFO
You cannot use an initialization file to initialize the contents of a M-RAM block. All
M-RAM block contents power up to an undefined value. Only synchronous operation
is supported in the M-RAM block, so all inputs are registered. Output registers can be
bypassed.
Similar to all RAM blocks, M-RAM blocks can have different clocks on their inputs
and outputs. Either of the two clocks feeding the block can clock M-RAM block
registers (renwe, address, byte enable, datain, and output registers). You can
bypass the output register. The six labclk signals or local interconnect can drive the
control signals for the A and B ports of the M-RAM block. ALMs can also control the
clock_a, clock_b, renwe_a, renwe_b, clr_a, clr_b, clocken_a, and
clocken_b signals, as shown in Figure 2–46.
Figure 2–45. M4K RAM Block LAB Row Interface
dataout
M4K RAM
Block
datain
address
16
36
Direct link
interconnect
from adjacent LAB
Direct link
interconnect
to adjacent LAB
Direct link
interconnect
from adjacent LAB
Direct link
interconnect
to adjacent LAB
M4K RAM Block Local
Interconnect Region
C4 Interconnect R4 Interconnect
LAB Row Clocks
clocks
byte
enable
control
signals
6
2–54 Chapter 2: Arria GX Architecture
TriMatrix Memory
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The R4, R24, C4, and direct link interconnects from adjacent LABs on either the right
or left side drive the M-RAM block local interconnect. Up to 16 direct link input
connections to the M-RAM block are possible from the left adjacent LABs and another
16 are possible from the right adjacent LAB. M-RAM block outputs can also connect to
left and right LABs through direct link interconnect. Figure 2–47 shows an example
floorplan for the EP1AGX90 device and the location of the M-RAM interfaces.
Figure 2–48 and Figure 2–49 show the interface between the M-RAM block and the
logic array.
Figure 2–46. M-RAM Block Control Signals
clock_a
clock_b
clocken_a
clocken_b
aclr_a
aclr_b
Dedicated
Row LAB
Clocks
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
renwe_a
renwe_b
6
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Chapter 2: Arria GX Architecture 2–55
TriMatrix Memory
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–47. EP1AGX90 Device with M-RAM Interface Locations (Note 1)
Note to Figure 2–47:
(1) The device shown is an EP1AGX90 device. The number and position of M-RAM blocks vary in other devices.
DSP
Blocks
DSP
Blocks
M4K
Blocks
M512
Blocks
LABs
M-RAM
Block
M-RAM
Block
M-RAM
Block
M-RAM
Block
M-RAM blocks interface to
LABs on right and left sides for
easy access to horizontal I/O pins
2–56 Chapter 2: Arria GX Architecture
TriMatrix Memory
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–48. M-RAM Block LAB Row Interface (Note 1)
Note to Figure 2–48:
(1) Only R24 and C16 interconnects cross the M-RAM block boundaries.
M-RAM Block
Port BPort A
Row Unit Interface Allows LAB
Rows to Drive Port B Datain,
Dataout, Address and Control
Signals to and from M-RAM Block
Row Unit Interface Allows LAB
Rows to Drive Port A Datain,
Dataout, Address and Control
Signals to and from M-RAM Block
LABs in Row
M-RAM Boundary
LABs in Row
M-RAM Boundary
LAB Interface
Blocks
L0
L1
L2
L3
L4
L5
R0
R1
R2
R3
R4
R5
Chapter 2: Arria GX Architecture 2–57
TriMatrix Memory
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 2–12 lists the input and output data signal connections along with the address
and control signal input connections to the row unit interfaces (L0 to L5 and R0 to R5).
Figure 2–49. M-RAM Row Unit Interface to Interconnect
LAB
Row Interface Block
M-RAM Block
16
Up to 28
datain_a[ ]
addressa[ ]
addr_ena_a
renwe_a
byteenaA[ ]
clocken_a
clock_a
aclr_a
M-RAM Block to
LAB Row Interface
Block Interconnect Region
R4 and R24 InterconnectsC4 Interconnect
Direct Link
Interconnects
dataout_a[ ]
Up to 16
Table 2–12. M-RAM Row Interface Unit Signals (Part 1 of 2)
Unit Interface Block Input Signals Output Signals
L0 datain_a[14..0]
byteena_a[1..0]
dataout_a[11..0]
L1 datain_a[29..15]
byteena_a[3..2]
dataout_a[23..12]
L2
datain_a[35..30]
addressa[4..0]
addr_ena_a
clock_a
clocken_a
renwe_a
aclr_a
dataout_a[35..24]
L3 addressa[15..5]
datain_a[41..36]
dataout_a[47..36]
2–58 Chapter 2: Arria GX Architecture
Digital Signal Processing Block
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
fFor more information about TriMatrix memory, refer to the TriMatrix Embedded
Memory Blocks in Arria GX Devices chapter.
Digital Signal Processing Block
The most commonly used DSP functions are finite impulse response (FIR) filters,
complex FIR filters, infinite impulse response (IIR) filters, fast Fourier transform (FFT)
functions, direct cosine transform (DCT) functions, and correlators. All of these use
the multiplier as the fundamental building block. Additionally, some applications
need specialized operations such as multiply-add and multiply-accumulate
operations. Arria GX devices provide DSP blocks to meet the arithmetic requirements
of these functions.
Each Arria GX device has two to four columns of DSP blocks to efficiently implement
DSP functions faster than ALM-based implementations. Each DSP block can be
configured to support up to:
Eight 9 × 9-bit multipliers
Four 18 × 18-bit multipliers
One 36 × 36-bit multiplier
L4 datain_a[56..42]
byteena_a[5..4]
dataout_a[59..48]
L5 datain_a[71..57]
byteena_a[7..6]
dataout_a[71..60]
R0 datain_b[14..0]
byteena_b[1..0]
dataout_b[11..0]
R1 datain_b[29..15]
byteena_b[3..2]
dataout_b[23..12]
R2
datain_b[35..30]
addressb[4..0]
addr_ena_b
clock_b
clocken_b
renwe_b
aclr_b
dataout_b[35..24]
R3 addressb[15..5]
datain_b[41..36]
dataout_b[47..36]
R4 datain_b[56..42]
byteena_b[5..4]
dataout_b[59..48]
R5 datain_b[71..57]
byteena_b[7..6]
dataout_b[71..60]
Table 2–12. M-RAM Row Interface Unit Signals (Part 2 of 2)
Unit Interface Block Input Signals Output Signals
Chapter 2: Arria GX Architecture 2–59
Digital Signal Processing Block
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
As indicated, the Arria GX DSP block can support one 36 × 36-bit multiplier in a
single DSP block and is true for any combination of signed, unsigned, or mixed sign
multiplications.
Figure 2–50 shows one of the columns with surrounding LAB rows.
Table 2–13 lists the number of DSP blocks in each Arria GX device. DSP block
multipliers can optionally feed an adder/subtractor or accumulator in the block
depending on the configuration, which makes routing to ALMs easier, saves ALM
routing resources, and increases performance because all connections and blocks are
in the DSP block.
Figure 2–50. DSP Blocks Arranged in Columns
DSP Block
Column
4 LAB
Rows
DSP Block
2–60 Chapter 2: Arria GX Architecture
Digital Signal Processing Block
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Additionally, DSP block input registers can efficiently implement shift registers for
FIR filter applications. DSP blocks support Q1.15 format rounding and saturation.
Figure 2–51 shows a top-level diagram of the DSP block configured for 18 × 18-bit
multiplier mode.
Table 2–13. DSP Blocks in Arria GX Devices (Note 1)
Device DSP Blocks Total 9 × 9
Multipliers
Total 18 × 18
Multipliers
Total 36 × 36
Multipliers
EP1AGX20 10 80 40 10
EP1AGX35 14 112 56 14
EP1AGX50 26 208 104 26
EP1AGX60 32 256 128 32
EP1AGX90 44 352 176 44
Note to Tabl e 21 3:
(1) This list only shows functions that can fit into a single DSP block. Multiple DSP blocks can support larger
multiplication functions.
Chapter 2: Arria GX Architecture 2–61
Digital Signal Processing Block
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–51. DSP Block Diagram for 18 × 18-Bit Configuration
Adder/Adder/
Subtractor/Subtractor/
AccumulatorAccumulator
Adder/
Subtractor/
Accumulator
2
1
Summation
Optional Pipeline
Register Stage
Multiplier Stage
Output Selection
Multiplexer
Optional Output
Register Stage
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
CLRN
DQ
ENA
Optional Serial Shift Register
Inputs from Previous
DSP Block
Optional Stage Configurable
as Accumulator or Dynamic
Adder/Subtractor
Summation Stage
for Adding Four
Multipliers Together
Optional Input Register
Stage with Parallel Input or
Shift Register Configuration
Optional Serial
Shift Register
Outputs to
Next DSP Block
in the Column
to MultiTrack
Interconnect
2–62 Chapter 2: Arria GX Architecture
Digital Signal Processing Block
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Modes of Operation
The adder, subtractor, and accumulate functions of a DSP block have four modes of
operation:
Simple multiplier
Multiply-accumulator
Two-multipliers adder
Four-multipliers adder
Table 2–14 shows the different number of multipliers possible in each DSP block
mode according to size. These modes allow the DSP blocks to implement numerous
applications for DSP including FFTs, complex FIR, FIR, 2D FIR filters, equalizers, IIR,
correlators, matrix multiplication, and many other functions. DSP blocks also support
mixed modes and mixed multiplier sizes in the same block. For example, half of one
DSP block can implement one 18 × 18-bit multiplier in multiply-accumulator mode,
while the other half of the DSP block implements four 9 × 9-bit multipliers in simple
multiplier mode.
DSP Block Interface
The Arria GX device DSP block input registers can generate a shift register that can
cascade down in the same DSP block column. Dedicated connections between DSP
blocks provide fast connections between shift register inputs to cascade shift register
chains. You can cascade registers within multiple DSP blocks for 9 × 9- or 18 × 18-bit
FIR filters larger than four taps, with additional adder stages implemented in ALMs.
If the DSP block is configured as 36 × 36 bits, the adder, subtractor, or accumulator
stages are implemented in ALMs. Each DSP block can route the shift register chain
out of the block to cascade multiple columns of DSP blocks.
The DSP block is divided into four block units that interface with four LAB rows on
the left and right. Each block unit can be considered one complete 18 × 18-bit
multiplier with 36 inputs and 36 outputs. A local interconnect region is associated
with each DSP block. Like an LAB, this interconnect region can be fed with 16 direct
link interconnects from the LAB to the left or right of the DSP block in the same row.
R4 and C4 routing resources can access the DSP block’s local interconnect region.
The outputs also work similarly to LAB outputs. Eighteen outputs from the DSP block
can drive to the left LAB through direct link interconnects and 18 can drive to the
right LAB though direct link interconnects. All 36 outputs can drive to R4 and C4
routing interconnects. Outputs can drive right- or left-column routing.
Table 2–14. Multiplier Size and Configurations per DSP Block
DSP Block Mode 9 × 9 18 × 18 36 × 36
Multiplier Eight multipliers with eight
product outputs
Four multipliers with four
product outputs
One multiplier with one
product output
Multiply-accumulator Two 52-bit
multiply-accumulate blocks
Two-multipliers adder Four two-multiplier adder (two
9 × 9 complex multiply)
Two two-multiplier adder (one
18 × 18 complex multiply)
Four-multipliers adder Two four-multiplier adder One four-multiplier adder
Chapter 2: Arria GX Architecture 2–63
Digital Signal Processing Block
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–52 and Figure 2–53 show the DSP block interfaces to LAB rows.
Figure 2–52. DSP Block Interconnect Interface
A1[17..0]
B1[17..0]
A2[17..0]
B2[17..0]
A3[17..0]
B3[17..0]
A4[17..0]
B4[17..0]
OA[17..0]
OB[17..0]
OC[17..0]
OD[17..0]
OE[17..0]
OF[17..0]
OG[17..0]
OH[17..0]
DSP Block
R4, C4 & Direct
Link Interconnects
R4, C4 & Direct
Link Interconnect
s
2–64 Chapter 2: Arria GX Architecture
Digital Signal Processing Block
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
A bus of 44 control signals feeds the entire DSP block. These signals include clocks,
asynchronous clears, clock enables, signed and unsigned control signals, addition and
subtraction control signals, rounding and saturation control signals, and accumulator
synchronous loads. The clock signals are routed from LAB row clocks and are
generated from specific LAB rows at the DSP block interface. The LAB row source for
control signals, data inputs, and outputs is shown in Table 2–15.
fFor more information about DSP blocks, refer to the DSP Blocks in Arria GX Devices
chapter.
Figure 2–53. DSP Block Interface to Interconnect
LAB LAB
Row Interface
Block
DSP Block
Row Structure
16
OA[17..0]
OB[17..0]
A[17..0]
B[17..0]
DSP Block to
LAB Row Interface
Block Interconnect Region
36 Inputs per Row 36 Outputs per Row
R4 Interconnect
C4 Interconnect
Direct Link Interconnect
from Adjacent LAB
Direct Link Outputs
to Adjacent LABs
Direct Link Interconnect
from Adjacent LAB
36
36
36
36
Control
12
16
18
Chapter 2: Arria GX Architecture 2–65
Digital Signal Processing Block
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 2–15. DSP Block Signal Sources and Destinations
LAB Row at Interface Control Signals Generated Data Inputs Data Outputs
0
clock0
aclr0
ena0
mult01_saturate
addnsub1_round/
accum_round
addnsub1
signa
sourcea
sourceb
A1[17..0]
B1[17..0]
OA[17..0]
OB[17..0]
1
clock1
aclr1
ena1
accum_saturate
mult01_round
accum_sload
sourcea
sourceb
mode0
A2[17..0]
B2[17..0]
OC[17..0]
OD[17..0]
2
clock2
aclr2
ena2
mult23_saturate
addnsub3_round/
accum_round
addnsub3
sign_b
sourcea
sourceb
A3[17..0]
B3[17..0]
OE[17..0]
OF[17..0]
3
clock3
aclr3
ena3
accum_saturate
mult23_round
accum_sload
sourcea
sourceb
mode1
A4[17..0]
B4[17..0]
OG[17..0]
OH[17..0]
2–66 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
PLLs and Clock Networks
Arria GX devices provide a hierarchical clock structure and multiple PLLs with
advanced features. The large number of clocking resources in combination with the
clock synthesis precision provided by enhanced and fast PLLs provides a complete
clock management solution.
Global and Hierarchical Clocking
Arria GX devices provide 16 dedicated global clock networks and 32 regional clock
networks (eight per device quadrant). These clocks are organized into a hierarchical
clock structure that allows for up to 24 clocks per device region with low skew and
delay. This hierarchical clocking scheme provides up to 48 unique clock domains in
Arria GX devices.
There are 12 dedicated clock pins (CLK[15..12] and CLK[7..0]) to drive either the
global or regional clock networks. Four clock pins drive each side of the device except
the right side, as shown in Figure 2–54 and Figure 2–55. Internal logic and enhanced
and fast PLL outputs can also drive the global and regional clock networks. Each
global and regional clock has a clock control block, which controls the selection of the
clock source and dynamically enables or disables the clock to reduce power
consumption. Table 2–16 lists the global and regional clock features.
Global Clock Network
These clocks drive throughout the entire device, feeding all device quadrants. GCLK
networks can be used as clock sources for all resources in the device IOEs, ALMs, DSP
blocks, and all memory blocks. These resources can also be used for control signals,
such as clock enables and synchronous or asynchronous clears fed from the external
pin. The global clock networks can also be driven by internal logic for internally
generated global clocks and asynchronous clears, clock enables, or other control
signals with large fanout. Figure 2–54 shows the 12 dedicated CLK pins driving global
clock networks.
Table 2–16. Global and Regional Clock Features
Feature Global Clocks Regional Clocks
Number per device 16 32
Number available per
quadrant 16 8
Sources Clock pins, PLL outputs, core routings,
inter-transceiver clocks
Clock pins, PLL outputs, core routings,
inter-transceiver clocks
Dynamic clock source
selection v
Dynamic enable/disable vv
Chapter 2: Arria GX Architecture 2–67
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Regional Clock Network
There are eight RCLK networks (RCLK[7..0]) in each quadrant of the Arria GX
device that are driven by the dedicated CLK[15..12]and CLK[7..0] input pins, by
PLL outputs, or by internal logic. The regional clock networks provide the lowest
clock delay and skew for logic contained in a single quadrant. The CLK pins
symmetrically drive the RCLK networks in a particular quadrant, as shown in
Figure 2–55.
Figure 2–54. Global Clocking
Global Clock [15..0]
CLK[15..12]
CLK[3..0]
CLK[7..4]
Global Clock [15..0]
2–68 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Dual-Regional Clock Network
A single source (CLK pin or PLL output) can generate a dual-RCLK by driving two
RCLK network lines in adjacent quadrants (one from each quadrant), which allows
logic that spans multiple quadrants to use the same low skew clock. The routing of
this clock signal on an entire side has approximately the same speed but slightly
higher clock skew when compared with a clock signal that drives a single quadrant.
Internal logic-array routing can also drive a dual-regional clock. Clock pins and
enhanced PLL outputs on the top and bottom can drive horizontal dual-regional
clocks. Clock pins and fast PLL outputs on the left and right can drive vertical
dual-regional clocks, as shown in Figure 2–56. Corner PLLs cannot drive
dual-regional clocks.
Figure 2–55. Regional Clocks
RCLK
[3..0]
RCLK
[7..4]
RCLK
[23..20]
RCLK
[19..16]
RCLK
[11..8]
RCLK
[15..12]
RCLK
[31..28]
RCLK
[27..24]
Arria GX
Transceiver
Block
Arria GX
Transceiver
Block
12 6
11 5
CLK[7..4]
CLK[15..12]
CLK[3..0] 1
7
2
8
Chapter 2: Arria GX Architecture 2–69
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Combined Resources
Within each quadrant, there are 24 distinct dedicated clocking resources consisting of
16 global clock lines and eight regional clock lines. Multiplexers are used with these
clocks to form buses to drive LAB row clocks, column IOE clocks, or row IOE clocks.
Another multiplexer is used at the LAB level to select three of the six row clocks to
feed the ALM registers in the LAB (refer to Figure 2–57).
You can use the Quartus II software to control whether a clock input pin drives either
a GCLK, RCLK, or dual-RCLK network. The Quartus II software automatically selects
the clocking resources if not specified.
Figure 2–56. Dual-Regional Clocks
Clock Pins or PLL Clock Outputs
Can Drive Dual-Regional Network
CLK[15..12]
CLK[7..4]
CLK[3..0]
PLLsPLLs
Clock Pins or PLL Clock
Outputs Can Drive
Dual-Regional Network
CLK[15..12]
CLK[7..4]
CLK[3..0]
Figure 2–57. Hierarchical Clock Networks Per Quadrant
Clock [23..0]
Column I/O Cell
IO_CLK[7..0]
Lab Row Clock [5..0]
Row I/O Cell
IO_CLK[7..0]
Global Clock Network [15..0]
Regional Clock Network [7..0]
Clocks Available
to a Quadrant
or Half-Quadrant
2–70 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Clock Control Block
Each GCLK, RCLK, and PLL external clock output has its own clock control block.
The control block has two functions:
Clock source selection (dynamic selection for global clocks)
Clock power-down (dynamic clock enable or disable)
Figure 2–58 through Figure 2–60 show the clock control block for the global clock,
regional clock, and PLL external clock output, respectively.
Figure 2–58. Global Clock Control Blocks
Notes to Figure 2–58:
(1) These clock select signals can be dynamically controlled through internal logic when the device is operating in user mode.
(2) These clock select signals can only be set through a configuration file (SRAM Object File [.sof] or Programmer Object File [.pof]) and cannot be
dynamically controlled during user mode operation.
Figure 2–59. Regional Clock Control Blocks
Notes to Figure 2–59:
(1) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode
operation.
(2) Only the CLKn pins on the top and bottom of the device feed to regional clock select.
CLKp
Pins
PLL Counter
Outputs
Internal
Logic
CLKn
Pin
Enable/
Disable
GCLK
Internal
Logic
Static Clock Select
This multiplexer supports
User-Controllable
Dynamic Switching
CLKSELECT[1..0]
(1)
(2)
2
22
CLKp
Pin
PLL Counter
Outputs Internal
Logic
CLKn
Pin
Enable/
Disable
RCLK
Internal
Logic
Static Clock Select (1
)
2
(2)
Chapter 2: Arria GX Architecture 2–71
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
For the global clock control block, clock source selection can be controlled either
statically or dynamically. You have the option of statically selecting the clock source
by using the Quartus II software to set specific configuration bits in the configuration
file (.sof or .pof) or controlling the selection dynamically by using internal logic to
drive the multiplexer select inputs. When selecting statically, the clock source can be
set to any of the inputs to the select multiplexer. When selecting the clock source
dynamically, you can either select between two PLL outputs (such as the C0 or C1
outputs from one PLL), between two PLLs (such as the C0/C1 clock output of one
PLL or the C0/C1 c1ock output of the other PLL), between two clock pins (such as
CLK0 or CLK1), or between a combination of clock pins or PLL outputs.
For the regional and PLL_OUT clock control block, clock source selection can only be
controlled statically using configuration bits. Any of the inputs to the clock select
multiplexer can be set as the clock source.
Arria GX clock networks can be disabled (powered down) by both static and dynamic
approaches. When a clock net is powered down, all logic fed by the clock net is in an
off-state thereby reducing the overall power consumption of the device. GCLK and
RCLK networks can be powered down statically through a setting in the
configuration file (.sof or .pof). Clock networks that are not used are automatically
powered down through configuration bit settings in the configuration file generated
by the Quartus II software. The dynamic clock enable or disable feature allows the
internal logic to control power up/down synchronously on GCLK and RCLK nets and
PLL_OUT pins. This function is independent of the PLL and is applied directly on the
clock network or PLL_OUT pin, as shown in Figure 2–58 through Figure 2–60.
Figure 2–60. External PLL Output Clock Control Blocks
Notes to Figure 2–60:
(1) These clock select signals can only be set through a configuration file (.sof or .pof) and cannot be dynamically controlled during user mode
operation.
(2) The clock control block feeds to a multiplexer within the PLL_OUT pin’s IOE. The PLL_OUT pin is a dual-purpose pin. Therefore, this multiplexer
selects either an internal signal or the output of the clock control block.
PLL Counter
Outputs (c[5..0])
Enable/
Disable
PLL_OUT
Pin
Internal
Logic
Static Clock Select
IOE
(1)
Static Clock
Select (1)
6
Internal
Logic
(2)
2–72 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Enhanced and Fast PLLs
Arria GX devices provide robust clock management and synthesis using up to four
enhanced PLLs and four fast PLLs. These PLLs increase performance and provide
advanced clock interfacing and clock frequency synthesis. With features such as clock
switchover, spread spectrum clocking, reconfigurable bandwidth, phase control, and
reconfigurable phase shifting, the Arria GX devices enhanced PLLs provide you with
complete control of your clocks and system timing. The fast PLLs provide general
purpose clocking with multiplication and phase shifting as well as high-speed
outputs for high-speed differential I/O support. Enhanced and fast PLLs work
together with the Arria GX high-speed I/O and advanced clock architecture to
provide significant improvements in system performance and bandwidth.
The Quartus II software enables the PLLs and their features without requiring any
external devices. Table 2–17 lists the PLLs available for each Arria GX device and their
type.
Table 2–18 lists the enhanced PLL and fast PLL features in Arria GX devices.
Table 2–17. Arria GX Device PLL Availability (Note 1), (2)
Device
Fast PLLs Enhanced PLLs
123 (3) 4 (3) 789 (3) 10 (3) 561112
EP1AGX20 vv——————vv——
EP1AGX35 vv——————vv——
EP1AGX50 (4) vv——vv——vvvv
EP1AGX60 (5) vv——vv——vvvv
EP1AGX90 vv——vv——vvvv
Notes to Ta ble 217 :
(1) The global or regional clocks in a fast PLL's transceiver block can drive the fast PLL input. A pin or other PLL must drive the global or regional
source. The source cannot be driven by internally generated logic before driving the fast PLL.
(2) EP1AGX20C, EP1AGX35C/D, EP1AGX50C and EP1AGX60C/D devices only have two fast PLLs (PLLs 1 and 2), but the connectivity from these
two PLLs to the global and regional clock networks remains the same as shown in this table.
(3) PLLs 3, 4, 9, and 10 are not available in Arria GX devices.
(4) 4 or 8 PLLs are available depending on C or D device and the package option.
(5) 4or 8 PLLs are available depending on C, D, or E device option.
Table 2–18. Arria GX PLL Features (Part 1 of 2)
Feature Enhanced PLL Fast PLL
Clock multiplication and division m/(n × post-scale counter) (1) m/(n × post-scale counter) (2)
Phase shift Down to 125-ps increments (3), (4) Down to 125-ps increments (3), (4)
Clock switchover vv
(5)
PLL reconfiguration vv
Reconfigurable bandwidth vv
Spread spectrum clocking v
Programmable duty cycle vv
Number of internal clock outputs 6 4
Number of external clock outputs Three differential/six single-ended (6)
Chapter 2: Arria GX Architecture 2–73
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–61 shows a top-level diagram of the Arria GX device and PLL floorplan.
Figure 2–62 and Figure 2–63 shows global and regional clocking from the fast PLL
outputs and side clock pins. The connections to the global and regional clocks from
the fast PLL outputs, internal drivers, and CLK pins on the left side of the device are
shown in Table 2–19.
Number of feedback clock inputs One single-ended or differential (7), (8)
Notes to Ta ble 218 :
(1) For enhanced PLLs, m, n range from 1 to 256 and post-scale counters range from 1 to 512 with 50% duty cycle.
(2) For fast PLLs, m, and post-scale counters range from 1 to 32. The n counter ranges from 1 to 4.
(3) The smallest phase shift is determined by the voltage controlled oscillator (VCO) period divided by 8.
(4) For degree increments, Arria GX devices can shift all output frequencies in increments of at least 45. Smaller degree increments are possible
depending on the frequency and divide parameters.
(5) Arria GX fast PLLs only support manual clock switchover.
(6) Fast PLLs can drive to any I/O pin as an external clock. For high-speed differential I/O pins, the device uses a data channel to generate
txclkout.
(7) If the feedback input is used, you lose one (or two, if fBIN is differential) external clock output pin.
(8) Every Arria GX device has at least two enhanced PLLs with one single-ended or differential external feedback input per PLL.
Table 2–18. Arria GX PLL Features (Part 2 of 2)
Feature Enhanced PLL Fast PLL
Figure 2–61. PLL Locations
FPLL7CLK
FPLL8CLK
CLK[3..0]
7
1
2
8
511
612
CLK[7..4]
CLK[15..12]
PLLs
2–74 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–62. Global and Regional Clock Connections from Center Clock Pins and Fast PLL Outputs (Note 1)
Note to Figure 2–62:
(1) The global or regional clocks in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global
or regional source. The source cannot be driven by internally generated logic before driving the fast PLL.
C0
C1
C2
C3
Fast
PLL 1
RCLK0 RCLK2
RCLK1 RCLK3
GCLK0 GCLK2
GCLK1 GCLK3
RCLK4 RCLK6
RCLK5 RCLK7
C0
C1
C2
C3
Fast
PLL 2
Logic Array
Signal Inpu
t
To Clock
Network
CLK0
CLK1
CLK2
CLK3
Chapter 2: Arria GX Architecture 2–75
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–63. Global and Regional Clock Connections from Corner Clock Pins and Fast PLL Outputs (Note 1)
Note to Figure 2–63:
(1) The GCLK or RCLK in a fast PLL's quadrant can drive the fast PLL input. A dedicated clock input pin or other PLL must drive the global or regional
source. The source cannot be driven by internally generated logic before driving the fast PLL.
Table 2–19. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 1 of 2)
Left Side Global & Regional
Clock Network Connectivity
CLK0
CLK1
CLK2
CLK3
RCLK0
RCLK1
RCLK2
RCLK3
RCLK4
RCLK5
RCLK6
RCLK7
Clock Pins
CLK0p vv——v———v——
CLK1p vv———v——v——
CLK2p vv——v——v
CLK3p vv——v——v
Drivers from Internal Logic
GCLKDRV0 vv——————————
GCLKDRV1 vv——————————
GCLKDRV2 vv———————
GCLKDRV3 vv———————
RCLKDRV0 ————v———v——
RCLKDRV1 —————v——v——
RCLKDRV2 —————v——v
RCLKDRV3 ———————v——v
RCLKDRV4 ————v———v——
RCLKDRV5 —————v——v——
RCLKDRV6 —————v——v
C0
C1
C2
C3
Fast
PLL 7
RCLK0 RCLK2
RCLK1 RCLK3
GCLK0 GCLK2
GCLK1 GCLK3
RCLK4 RCLK6
RCLK5 RCLK7
C0
C1
C2
C3
Fast
PLL 8
2–76 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
RCLKDRV7 ———————v——v
PLL 1 Outputs
c0 vv——vvvv
c1 vv———vvvv
c2 vvvvvv
c3 vvvvvv
PLL 2 Outputs
c0 vv———vvvv
c1 vv——vvvv
c2 vvvvvv
c3 vvvvvv
PLL 7 Outputs
c0 vvvv————
c1 vvvv————
c2 vv———vv————
c3 vv——vv————
PLL 8 Outputs
c0 vv———vv
c1 vv———vv
c2 vv——————vv
c3 vv——————vv
Table 2–19. Global and Regional Clock Connections from Left Side Clock Pins and Fast PLL Outputs (Part 2 of 2)
Left Side Global & Regional
Clock Network Connectivity
CLK0
CLK1
CLK2
CLK3
RCLK0
RCLK1
RCLK2
RCLK3
RCLK4
RCLK5
RCLK6
RCLK7
Chapter 2: Arria GX Architecture 2–77
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–64 shows the global and regional clocking from enhanced PLL outputs and
top and bottom CLK pins.
The connections to the global and regional clocks from the top clock pins and
enhanced PLL outputs are shown in Table 2–20. The connections to the clocks from
the bottom clock pins are shown in Table 2–21.
Figure 2–64. Global and Regional Clock Connections from Top and Bottom Clock Pins and Enhanced PLL Outputs (Note 1)
Note to Figure 2–64:
(1) If the design uses the feedback input, you might lose one (or two if FBIN is differential) external clock output pin.
G15
G14
G13
G12
RCLK31
RCLK30
RCLK29
RCLK28
RCLK27
RCLK26
RCLK25
RCLK24
G7
G6
G5
G4
RCLK15
RCLK14
RCLK13
RCLK12
RCLK11
RCLK10
RCLK9
RCLK8
PLL 6
CLK7
CLK6
CLK5
CLK4
PLL 12
PLL 5
c0 c1 c2 c3 c4 c5 c0 c1 c2 c3 c4 c5
c0 c1 c2 c3 c4 c5 c0 c1 c2 c3 c4 c5
CLK14
CLK15
CLK13
CLK12
PLL 11
PLL11_FB
PLL5_OUT[2..0]p
PLL5_OUT[2..0]n
PLL11_OUT[2..0]p
PLL11_OUT[2..0]n
PLL12_OUT[2..0]p
PLL12_OUT[2..0]n PLL6_OUT[2..0]p
PLL6_OUT[2..0]n
PLL5_FB
PLL12_FB PLL6_FB
Global
Clocks
Regional
Clocks
Regional
Clocks
2–78 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 2–20. Global and Regional Clock Connections from Top Clock Pins and Enhanced PLL Outputs
Top Side Global and
Regional Clock Network
Connectivity
DLLCLK
CLK12
CLK13
CLK14
CLK15
RCLK24
RCLK25
RCLK26
RCLK27
RCLK28
RCLK29
RCLK30
RCLK31
Clock pins
CLK12p vvv——v———v———
CLK13p vvv———v——v——
CLK14p v——vv——v——v
CLK15p v——vv——v———v
CLK12n v———v———v———
CLK13n v———v——v——
CLK14n v——v——v
CLK15n v——v———v
Drivers from internal logic
GCLKDRV0 v———————————
GCLKDRV1 v——————————
GCLKDRV2 v—————————
GCLKDRV3 ————v———————
RCLKDRV0 —————v———v———
RCLKDRV1 ——————v——v——
RCLKDRV2 ——————v——v
RCLKDRV3 ————————v———v
RCLKDRV4 —————v———v———
RCLKDRV5 ——————v——v——
RCLKDRV6 ——————v——v
RCLKDRV7 ————————v———v
Enhanced PLL5 outputs
c0 vvv——v———v———
c1 vvv———v——v——
c2 v——vv——v——v
c3 v——vv——v———v
c4 v———vvvv
c5 v————vvvv
Enhanced PLL 11 outputs
c0 vv——v———v———
c1 vv———v——v——
c2 vv——v——v
c3 vv——v———v
c4 —————vvvv
c5 ——————vvvv
Chapter 2: Arria GX Architecture 2–79
PLLs and Clock Networks
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 2–21. Global and Regional Clock Connections from Bottom Clock Pins and Enhanced PLL Outputs
Bottom Side Global and
Regional Clock Network
Connectivity
DLLCLK
CLK4
CLK5
CLK6
CLK7
RCLK8
RCLK9
RCLK10
RCLK11
RCLK12
RCLK13
RCLK14
RCLK15
Clock pins
CLK4p vvv——v——v———
CLK5p vvv———v——v——
CLK6p v——vv——v———v
CLK7p v——vv———v———v
CLK4n v———v——v———
CLK5n v———v——v——
CLK6n v———v———v
CLK7n v———v———v
Drivers from internal logic
GCLKDRV0 v———————————
GCLKDRV1 v——————————
GCLKDRV2 v—————————
GCLKDRV3 ————v————————
RCLKDRV0 —————v——v———
RCLKDRV1 ——————v——v——
RCLKDRV2 ———————v———v
RCLKDRV3 ————————v———v
RCLKDRV4 —————v——v———
RCLKDRV5 ——————v——v——
RCLKDRV6 ———————v———v
RCLKDRV7 ————————v———v
Enhanced PLL 6 outputs
c0 vvv——v——v———
c1 vvv———v——v——
c2 v——vv——v—— v
c3 v——vv———v———v
c4 v———vvvv
c5 v————vvvv
Enhanced PLL 12 outputs
c0 vv——v——v———
c1 vv———v——v——
c2 vv——v———v
c3 vv———v———v
c4 —————vvvv
c5 ——————vvvv
2–80 Chapter 2: Arria GX Architecture
PLLs and Clock Networks
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Enhanced PLLs
Arria GX devices contain up to four enhanced PLLs with advanced clock
management features. These features include support for external clock feedback
mode, spread-spectrum clocking, and counter cascading. Figure 2–65 shows a
diagram of the enhanced PLL.
Fast PLLs
Arria GX devices contain up to four fast PLLs with high-speed serial interfacing
ability. Fast PLLs offer high-speed outputs to manage the high-speed differential I/O
interfaces. Figure 2–66 shows a diagram of the fast PLL.
Figure 2–65. Arria GX Enhanced PLL (Note 1)
Notes to Figure 2–65:
(1) Each clock source can come from any of the four clock pins that are physically located on the same side of the device as the PLL.
(2) If the feedback input is used, you will lose one (or two, if FBIN is differential) external clock output pin.
(3) Each enhanced PLL has three differential external clock outputs or six single-ended external clock outputs.
(4) The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock
control block provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally
generated global signal cannot drive the PLL.
/n Charge
Pump VCO /c2
/c3
/c4
/c0
8
4
6
4Global
Clocks
/c1
Lock Detect to I/O or general
routing
INCLK[3..0]
FBIN
Global or
Regional
Clock
PFD
/c5
From Adjacent PLL
/m
Spread
Spectrum
I/O Buffers (3)
(2)
Loop
Filter
& Filter
Post-Scale
Counters
Clock
Switchover
Circuitry Phase Frequency
Detector
V
CO
Phase Selection
Selectable at Each
PLL Output Port
VCO Phase Selection
Affecting All Outputs
Shaded Portions of the
PLL are Reconfigurable
Regional
Clocks
8
6
Chapter 2: Arria GX Architecture 2–81
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
fFor more information about enhanced and fast PLLs, refer to the PLLs in Arria GX
Devices chapter. For more information about high-speed differential I/O support,
refer to “High-Speed Differential I/O with DPA Support” on page 2–99.
I/O Structure
Arria GX IOEs provide many features, including:
Dedicated differential and single-ended I/O buffers
3.3-V, 64-bit, 66-MHz PCI compliance
3.3-V, 64-bit, 133-MHz PCI-X 1.0 compliance
JTAG boundary-scan test (BST) support
On-chip driver series termination
OCT for differential standards
Programmable pull-up during configuration
Output drive strength control
Tri-state buffers
Bus-hold circuitry
Programmable pull-up resistors
Programmable input and output delays
Open-drain outputs
DQ and DQS I/O pins
DDR registers
Figure 2–66. Arria GX Device Fast PLL
Notes to Figure 2–66:
(1) The global or regional clock input can be driven by an output from another PLL, a pin-driven dedicated global or regional clock, or through a clock
control block provided the clock control block is fed by an output from another PLL or a pin-driven dedicated global or regional clock. An internally
generated global signal cannot drive the PLL.
(2) In high-speed differential I/O support mode, this high-speed PLL clock feeds the serializer/deserializer (SERDES) circuitry. Arria GX devices only
support one rate of data transfer per fast PLL in high-speed differential I/O support mode.
(3) This signal is a differential I/O SERDES control signal.
(4) Arria GX fast PLLs only support manual clock switchover.
Charge
Pump VCO ÷c1
8
8
4
4
8
Clock
Input
PFD
÷c0
÷m
Loop
Filter
Phase
Frequency
Detector
VCO Phase Selection
Selectable at each PLL
Output Port
Post-Scale
Counters
Global clocks
diffioclk1
load_en1
load_en0
diffioclk0
Regional clocks
to DPA block
Global or
regional clock (1)
Global or
regional clock (1)
÷c2
÷k
÷c3
÷n
4
Clock
Switchover
Circuitry (4)
Shaded Portions of the
PLL are Reconfigurable
(2)
(2)
(3)
(3)
2–82 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The IOE in Arria GX devices contains a bidirectional I/O buffer, six registers, and a
latch for a complete embedded bidirectional single data rate or DDR transfer.
Figure 2–67 shows the Arria GX IOE structure. The IOE contains two input registers
(plus a latch), two output registers, and two output enable registers. The design can
use both input registers and the latch to capture DDR input and both output registers
to drive DDR outputs. Additionally, the design can use the output enable (OE)
register for fast clock-to-output enable timing. The negative edge-clocked OE register
is used for DDR SDRAM interfacing. The Quartus II software automatically
duplicates a single OE register that controls multiple output or bidirectional pins.
The IOEs are located in I/O blocks around the periphery of the Arria GX device.
There are up to four IOEs per row I/O block and four IOEs per column I/O block.
Row I/O blocks drive row, column, or direct link interconnects. Column I/O blocks
drive column interconnects.
Figure 2–67. Arria GX IOE Structure
DQ
Output Register
Output A
DQ
Output Register
Output B
Input A
Input B
DQ
OE Register
OE
DQ
OE Register
DQ
Input Register
DQ
Input Register
DQ
Input Latch
Logic Array
CLK
ENA
Chapter 2: Arria GX Architecture 2–83
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–68 shows how a row I/O block connects to the logic array.
Figure 2–68. Row I/O Block Connection to the Interconnect
Note to Figure 2–68:
(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and
io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables
io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four
synchronous clear and preset signals io_sclr/spreset[3..0].
32
R4 & R24
InterconnectsC4 Interconnect
I/O Block Local
Interconnect
32 Data & Control
Signals from
Logic Array (1)
io_dataina[3..0]
io_datainb[3..0]
io_clk[7:0]
Horizontal I/O
Block Contains
up to Four IOEs
Direct Link
Interconnect
to Adjacent LAB
Direct Link
Interconnect
to Adjacent LAB
LAB Local
Interconnect
LAB Horizontal
I/O Block
2–84 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–69 shows how a column I/O block connects to the logic array.
There are 32 control and data signals that feed each row or column I/O block. These
control and data signals are driven from the logic array. The row or column IOE
clocks, io_clk[7..0], provide a dedicated routing resource for low-skew,
high-speed clocks. I/O clocks are generated from global or regional clocks (refer to
“PLLs and Clock Networks” on page 2–66).
Figure 2–69. Column I/O Block Connection to the Interconnect
Note to Figure 2–69:
(1) The 32 data and control signals consist of eight data out lines: four lines each for DDR applications io_dataouta[3..0] and
io_dataoutb[3..0], four output enables io_oe[3..0], four input clock enables io_ce_in[3..0], four output clock enables
io_ce_out[3..0], four clocks io_clk[3..0], four asynchronous clear and preset signals io_aclr/apreset[3..0], and four
synchronous clear and preset signals io_sclr/spreset[3..0].
32 Data &
Control Signals
from Logic Array (1) Vertical I/O
Block Contains
up to Four IOE
s
I/O Block
Local Interconnect
IO_dataina[3..0]
IO_datainb[3..0]
R4 & R24
Interconnects
LAB Local
Interconnect
C4 & C16
Interconnects
32
LAB LAB LAB
io_clk[7..0]
Vertical I/O Block
Chapter 2: Arria GX Architecture 2–85
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–70 shows the signal paths through the I/O block.
Each IOE contains its own control signal selection for the following control signals:
oe, ce_in, ce_out, aclr/apreset, sclr/spreset, clk_in, and clk_out.
Figure 2–71 shows the control signal selection.
Figure 2–70. Signal Path Through the I/O Block
Row or Column
io_clk[7..0]
io_dataina
io_datainb
io_dataouta
io_dataoutb
io_oe
oe
ce_in
ce_out
io_ce_in
aclr/apreset
io_ce_out
sclr/spreset
io_sclr
io_aclr
clk_in
io_clk
clk_out
Control
Signal
Selection
IOE
To Logic
Array
From Logic
Array
To Other
IOEs
Figure 2–71. Control Signal Selection per IOE (Note 1)
Notes to Figure 2–71:
(1) Control signals ce_in, ce_out, aclr/apreset, sclr/spreset, and oe can be global signals even though their control selection
multiplexers are not directly fed by the ioe_clk[7..0] signals. The ioe_clk signals can drive the I/O local interconnect, which then drives
the control selection multiplexers.
clk_out
ce_inclk_in
ce_out
aclr/apreset
sclr/spreset
Dedicated I/O
Clock [7..0]
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
Local
Interconnect
oe
io_oe
io_aclr
Local
Interconnect
io_sclr
io_ce_out
io_ce_in
io_clk
2–86 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
In normal bidirectional operation, you can use the input register for input data
requiring fast setup times. The input register can have its own clock input and clock
enable separate from the OE and output registers. The output register can be used for
data requiring fast clock-to-output performance. You can use the OE register for fast
clock-to-output enable timing. The OE and output register share the same clock
source and the same clock enable source from the local interconnect in the associated
LAB, dedicated I/O clocks, and the column and row interconnects. Figure 2–72 shows
the IOE in bidirectional configuration.
The Arria GX device IOE includes programmable delays that can be activated to
ensure input IOE register-to-logic array register transfers, input pin-to-logic array
register transfers, or output IOE register-to-pin transfers.
Figure 2–72. Arria GX IOE in Bidirectional I/O Configuration (Note 1)
Notes to Figure 2–72:
(1) All input signals to the IOE can be inverted at the IOE.
(2) The optional PCI clamp is only available on column I/O pins.
CLRN/PRN
DQ
ENA
Chip-Wide Reset
OE Register
CLRN/PRN
DQ
ENA
Output Register
VCCIO
VCCIO PCI Clamp (2)
Programmable
Pull-Up
Resistor
Column, Row,
or Local
Interconnect
ioe_clk[7..0]
Bus-Hold
Circuit
OE Register
tCO Delay
CLRN/PRN
DQ
ENA
Input Register
Drive Strength Control
Open-Drain Output
On-Chip
Termination
sclr/spreset
oe
clkout
ce_out
aclr/apreset
clkin
ce_in
Input Pin to
Input Register Delay
Input Pin to
Logic Array Delay
Output
Pin Delay
Chapter 2: Arria GX Architecture 2–87
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
A path in which a pin directly drives a register can require the delay to ensure zero
hold time, whereas a path in which a pin drives a register through combinational logic
may not require the delay. Programmable delays exist for decreasing
input-pin-to-logic-array and IOE input register delays. The Quartus II Compiler can
program these delays to automatically minimize setup time while providing a zero
hold time. Programmable delays can increase the register-to-pin delays for output
and/or output enable registers. Programmable delays are no longer required to
ensure zero hold times for logic array register-to-IOE register transfers. The Quartus II
Compiler can create zero hold time for these transfers. Table 2–22 shows the
programmable delays for Arria GX devices.
IOE registers in Arria GX devices share the same source for clear or preset. You can
program preset or clear for each individual IOE. You can also program the registers to
power up high or low after configuration is complete. If programmed to power up
low, an asynchronous clear can control the registers. If programmed to power up
high, an asynchronous preset can control the registers. This feature prevents the
inadvertent activation of another device’s active-low input upon power-up. If one
register in an IOE uses a preset or clear signal, all registers in the IOE must use that
same signal if they require preset or clear. Additionally, a synchronous reset signal is
available for the IOE registers.
Double Data Rate I/O Pins
Arria GX devices have six registers in the IOE, which support DDR interfacing by
clocking data on both positive and negative clock edges. The IOEs in Arria GX devices
support DDR inputs, DDR outputs, and bidirectional DDR modes. When using the
IOE for DDR inputs, the two input registers clock double rate input data on
alternating edges. An input latch is also used in the IOE for DDR input acquisition.
The latch holds the data that is present during the clock high times, allowing both bits
of data to be synchronous with the same clock edge (either rising or falling).
Figure 2–73 shows an IOE configured for DDR input. Figure 2–74 shows the DDR
input timing diagram.
Table 2–22. Arria GX Devices Programmable Delay Chain
Programmable Delays Quartus II Logic Option
Input pin to logic array delay Input delay from pin to internal cells
Input pin to input register delay Input delay from pin to input register
Output pin delay Delay from output register to output pin
Output enable register tCO delay Delay to output enable pin
2–88 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 2–73. Arria GX IOE in DDR Input I/O Configuration (Note 1)
Notes to Figure 2–73:
(1) All input signals to the IOE can be inverted at the IOE.
(2) This signal connection is only allowed on dedicated DQ function pins.
(3) This signal is for dedicated DQS function pins only.
(4) The optional PCI clamp is only available on column I/O pins.
Figure 2–74. Input Timing Diagram in DDR Mode
CLRN/PRN
DQ
ENA
Chip-Wide Reset
Input Register
CLRN/PRN
DQ
ENA
Input Register
VCCIO
VCCIO
PCI Clamp (4)
Programmable
Pull-Up
Resistor
Column, Row,
or Local
Interconnect DQS Local
Bus (2)
To DQS Logic
Block (3)
ioe_clk[7..0]
Bus-Hold
Circuit
CLRN/PRN
DQ
ENA
Latch
Input Pin to
Input RegisterDelay
sclr/spreset
clkin
aclr/apreset
On-Chip
Termination
ce_in
Data at
input pin
CLK
A0B0 B1 A1
A1
B2 A2 A3
A2 A3
B1
A0
B0 B2 B3
B3 B4
Input To
Logic Array
Chapter 2: Arria GX Architecture 2–89
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
When using the IOE for DDR outputs, the two output registers are configured to clock
two data paths from ALMs on rising clock edges. These output registers are
multiplexed by the clock to drive the output pin at a ×2 rate. One output register
clocks the first bit out on the clock high time, while the other output register clocks the
second bit out on the clock low time. Figure 2–75 shows the IOE configured for DDR
output. Figure 2–76 shows the DDR output timing diagram.
Figure 2–75. Arria GX IOE in DDR Output I/O Configuration Notes (1), (2)
Notes to Figure 2–75:
(1) All input signals to the IOE can be inverted at the IOE.
(2) The tri-state buffer is active low. The DDIO megafunction represents the tri-state buffer as active-high with an inverter at the OE register data port.
(3) The optional PCI clamp is only available on column I/O pins.
CLRN/PRN
DQ
ENA
Chip-Wide Reset
OE Register
CLRN/PRN
DQ
ENA
OE Register
CLRN/PRN
DQ
ENA
Output Register
VCCIO
VCCIO
PCI Clamp (3)
Programmable
Pull-Up
Resistor
Column, Row,
or Local
Interconnect
ioe_clk[7..0]
Bus-Hold
Circuit
OE Register
tCO Delay
CLRN/PRN
DQ
ENA
Output Register
Drive Strength
Control
Open-Drain Output
Used for
DDR, DDR2
SDRAM
sclr/spreset
aclr/apreset
clkout
Output
Pin Delay
On-Chip
Termination
oe
ce_out
clk
2–90 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The Arria GX IOE operates in bidirectional DDR mode by combining the DDR input
and DDR output configurations. The negative-edge-clocked OE register holds the OE
signal inactive until the falling edge of the clock to meet DDR SDRAM timing
requirements.
External RAM Interfacing
In addition to the six I/O registers in each IOE, Arria GX devices also have dedicated
phase-shift circuitry for interfacing with external memory interfaces, including DDR,
DDR2 SDRAM, and SDR SDRAM. In every Arria GX device, the I/O banks at the top
(Banks 3 and 4) and bottom (Banks 7 and 8) of the device support DQ and DQS signals
with DQ bus modes of ×4, ×8/×9, ×16/×18, or ×32/×36. Table 2–23 shows the number
of DQ and DQS buses that are supported per device.
A compensated delay element on each DQS pin automatically aligns input DQS
synchronization signals with the data window of their corresponding DQ data
signals. The DQS signals drive a local DQS bus in the top and bottom I/O banks. This
DQS bus is an additional resource to the I/O clocks and is used to clock DQ input
registers with the DQS signal.
Figure 2–76. Output Timing Diagram in DDR Mode
From Internal
Registers
DDR output
CLK
B1 A1 B2 A2 B3 A3 B4 A4
A2A1 A3 A4
B1 B2 B3 B4
Table 2–23. DQS and DQ Bus Mode Support (Note 1)
Device Package Number of
×4 Groups
Number of
×8/×9 Groups
Number of
×16/×18 Groups
Number of
×32/×36 Groups
EP1AGX20 484-pin FineLine BGA 2 0 0 0
EP1AGX35 484-pin FineLine BGA 2 0 0 0
780-pin FineLine BGA 18 8 4 0
EP1AGX50/60
484-pin FineLine BGA 2 0 0 0
780-pin FineLine BGA 18 8 4 0
1,152-pin FineLine
BGA 36 18 8 4
EP1AGX90 1,152-pin FineLine
BGA 36 18 8 4
Note to Tabl e 22 3:
(1) Numbers are preliminary until devices are available.
Chapter 2: Arria GX Architecture 2–91
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
The Arria GX device has two phase-shifting reference circuits, one on the top and one
on the bottom of the device. The circuit on the top controls the compensated delay
elements for all DQS pins on the top. The circuit on the bottom controls the
compensated delay elements for all DQS pins on the bottom.
Each phase-shifting reference circuit is driven by a system reference clock, which must
have the same frequency as the DQS signal. Clock pins CLK[15..12]p feed phase
circuitry on the top of the device and clock pins CLK[7..4]p feed phase circuitry on
the bottom of the device. In addition, PLL clock outputs can also feed the
phase-shifting reference circuits. Figure 2–77 shows the phase-shift reference circuit
control of each DQS delay shift on the top of the device. This same circuit is
duplicated on the bottom of the device.
These dedicated circuits combined with enhanced PLL clocking and phase-shift
ability provide a complete hardware solution for interfacing to high-speed memory.
fFor more information about external memory interfaces, refer to the External Memory
Interfaces in Arria GX Devices chapter.
Programmable Drive Strength
The output buffer for each Arria GX device I/O pin has a programmable drive
strength control for certain I/O standards. The LVTTL, LVCMOS, SSTL, and HSTL
standards have several levels of drive strength that you can control. The default
setting used in the Quartus II software is the maximum current strength setting that is
used to achieve maximum I/O performance. For all I/O standards, the minimum
setting is the lowest drive strength that guarantees the IOH/IOL of the standard. Using
minimum settings provides signal slew rate control to reduce system noise and signal
overshoot.
Figure 2–77. DQS Phase-Shift Circuitry (Note 1), (2)
Notes to Figure 2–77:
(1) There are up to 18 pairs of DQS pins available on the top or bottom of the Arria GX device. There are up to 10 pairs on the right side and 8 pairs
on the left side of the DQS phase-shift circuitry.
(2) The “t” module represents the DQS logic block.
(3) Clock pins CLK[15..12]p feed phase-shift circuitry on the top of the device and clock pins CLK[7..4]p feed the phase circuitry on the
bottom of the device. You can also use a PLL clock output as a reference clock to phase shift circuitry.
(4) You can only use PLL 5 to feed the DQS phase-shift circuitry on the top of the device and PLL 6 to feed the DQS phase-shift circuitry on the bottom
of the device.
DQS
Pin
DQS
Pin
DQS
Pin
DQS
Pin
From PLL 5 (4)
CLK[15..12]p (3)
to IOE to IOE
to IOE to IOE
DtDtDtDt
DQS
Phase-Shift
Circuitry
2–92 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 2–24 shows the possible settings for I/O standards with drive strength control.
Open-Drain Output
Arria GX devices provide an optional open-drain (equivalent to an open collector)
output for each I/O pin. This open-drain output enables the device to provide
system-level control signals (for example, interrupt and write enable signals) that can
be asserted by any of several devices.
Bus Hold
Each Arria GX device I/O pin provides an optional bus-hold feature. Bus-hold
circuitry can hold the signal on an I/O pin at its last-driven state. Because the
bus-hold feature holds the last-driven state of the pin until the next input signal is
present, an external pull-up or pull-down resistor is not needed to hold a signal level
when the bus is tri-stated.
Bus-hold circuitry also pulls undriven pins away from the input threshold voltage
where noise can cause unintended high-frequency switching. You can select this
feature individually for each I/O pin. The bus-hold output drives no higher than
VCCIO to prevent overdriving signals. If the bus-hold feature is enabled, the
programmable pull-up option cannot be used. Disable the bus-hold feature when the
I/O pin has been configured for differential signals.
Bus-hold circuitry uses a resistor with a nominal resistance (RBH) of approximately
7k to pull the signal level to the last-driven state. This information is provided for
each VCCIO voltage level. Bus-hold circuitry is active only after configuration. When
going into user mode, the bus-hold circuit captures the value on the pin present at the
end of configuration.
Table 2–24. Programmable Drive Strength (Note 1)
I/O Standard
IOH / IOL Current Strength
Setting (mA) for Column
I/O Pins
IOH / IOL Current Strength
Setting (mA) for Row I/O
Pins
3.3-V LVTTL 24, 20, 16, 12, 8, 4 12, 8, 4
3.3-V LVCMOS 24, 20, 16, 12, 8, 4 8, 4
2.5-V LVTTL/LVCMOS 16, 12, 8, 4 12, 8, 4
1.8-V LVTTL/LVCMOS 12, 10, 8, 6, 4, 2 8, 6, 4, 2
1.5-V LVCMOS 8, 6, 4, 2 4, 2
SSTL-2 Class I 12, 8 12, 8
SSTL-2 Class II 24, 20, 16 16
SSTL-18 Class I 12, 10, 8, 6, 4 10, 8, 6, 4
SSTL-18 Class II 20, 18, 16, 8
HSTL-18 Class I 12, 10, 8, 6, 4 12, 10, 8, 6, 4
HSTL-18 Class II 20, 18, 16
HSTL-15 Class I 12, 10, 8, 6, 4 8, 6, 4
HSTL-15 Class II 20, 18, 16
Note to Tabl e 22 4:
(1) The Quartus II software default current setting is the maximum setting for each I/O standard.
Chapter 2: Arria GX Architecture 2–93
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
fFor the specific sustaining current driven through this resistor and overdrive current
used to identify the next-driven input level, refer to the DC & Switching Characteristics
chapter.
Programmable Pull-Up Resistor
Each Arria GX device I/O pin provides an optional programmable pull-up resistor
during user mode. If you enable this feature for an I/O pin, the pull-up resistor
(typically 25 k) holds the output to the VCCIO level of the output pin’s bank.
Advanced I/O Standard Support
Arria GX device IOEs support the following I/O standards:
3.3-V LVTTL/LVCMOS
2.5-V LVTTL/LVCMOS
1.8-V LVTTL/LVCMOS
1.5-V LVCMOS
3.3-V PCI
3.3-V PCI-X mode 1
LV DS
LVPECL (on input and output clocks only)
Differential 1.5-V HSTL class I and II
Differential 1.8-V HSTL class I and II
Differential SSTL-18 class I and II
Differential SSTL-2 class I and II
1.2-V HSTL class I and II
1.5-V HSTL class I and II
1.8-V HSTL class I and II
SSTL-2 class I and II
SSTL-18 class I and II
2–94 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 2–25 describes the I/O standards supported by Arria GX devices.
fFor more information about the I/O standards supported by Arria GX I/O banks,
refer to the Selectable I/O Standards in Arria GX Devices chapter.
Arria GX devices contain six I/O banks and four enhanced PLL external clock output
banks, as shown in Figure 2–78. The two I/O banks on the left of the device contain
circuitry to support source-synchronous, high-speed differential I/O for LVDS inputs
and outputs. These banks support all Arria GX I/O standards except PCI or PCI-X
I/O pins, and SSTL-18 class II and HSTL outputs. The top and bottom I/O banks
support all single-ended I/O standards. Additionally, enhanced PLL external clock
output banks allow clock output capabilities such as differential support for SSTL and
HSTL.
Table 2–25. Arria GX Devices Supported I/O Standards
I/O Standard Type
Input Reference
Voltage
(VREF) (V)
Output Supply
Voltage
(VCCIO) (V)
Board
Termination
Voltage (VTT) (V)
LVTTL Single-ended 3.3
LVCMOS Single-ended 3.3
2.5 V Single-ended 2.5
1.8 V Single-ended 1.8
1.5-V LVCMOS Single-ended 1.5
3.3-V PCI Single-ended 3.3
3.3-V PCI-X mode 1 Single-ended 3.3
LVDS Differential 2.5 (3)
LVPECL (1) Differential 3.3
HyperTransport technology Differential 2.5 (3)
Differential 1.5-V HSTL class I and II (2) Differential 0.75 1.5 0.75
Differential 1.8-V HSTL class I and II (2) Differential 0.90 1.8 0.90
Differential SSTL-18 class I and II (2) Differential 0.90 1.8 0.90
Differential SSTL-2 class I and II (2) Differential 1.25 2.5 1.25
1.2-V HSTL (4) Voltage-referenced 0.6 1.2 0.6
1.5-V HSTL class I and II Voltage-referenced 0.75 1.5 0.75
1.8-V HSTL class I and II Voltage-referenced 0.9 1.8 0.9
SSTL-18 class I and II Voltage-referenced 0.90 1.8 0.90
SSTL-2 class I and II Voltage-referenced 1.25 2.5 1.25
Notes to Ta ble 225 :
(1) This I/O standard is only available on input and output column clock pins.
(2) This I/O standard is only available on input clock pins and DQS pins in I/O banks 3, 4, 7, and 8, and output clock pins in I/O banks 9, 10, 11,
and 12.
(3) VCCIO is 3.3 V when using this I/O standard in input and output column clock pins (in I/O banks 3, 4, 7, 8, 9, 10, 11, and 12).
(4) 1.2-V HSTL is only supported in I/O banks 4, 7, and 8.
Chapter 2: Arria GX Architecture 2–95
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Each I/O bank has its own VCCIO pins. A single device can support
1.5-, 1.8-, 2.5-, and 3.3-V interfaces; each bank can support a different VCCIO level
independently. Each bank also has dedicated VREF pins to support the
voltage-referenced standards (such as SSTL-2).
Each I/O bank can support multiple standards with the same VCCIO for input and
output pins. Each bank can support one VREF voltage level. For example, when VCCIO is
3.3 V, a bank can support LVTTL, LVCMOS, and 3.3-V PCI for inputs and outputs.
On-Chip Termination
Arria GX devices provide differential (for the LVDS technology I/O standard) and
on-chip series termination to reduce reflections and maintain signal integrity. There is
no calibration support for these on-chip termination resistors. On-chip termination
simplifies board design by minimizing the number of external termination resistors
required. Termination can be placed inside the package, eliminating small stubs that
can still lead to reflections.
Figure 2–78. Arria GX I/O Banks (Note 1), (2)
Notes to Figure 2–78:
(1) Figure 2–78 is a top view of the silicon die that corresponds to a reverse view for flip chip packages. It is a graphical representation only.
(2) Depending on the size of the device, different device members have different numbers of VREF groups. For the exact locations, refer to the pin list
and the Quartus II software.
(3) Banks 9 through 12 are enhanced PLL external clock output banks.
(4) Horizontal I/O banks feature SERDES and DPA circuitry for high-speed differential I/O standards. For more information about differential I/O
standards, refer to the High-Speed Differential I/O Interfaces in Arria GX Devices chapter.
I/O Banks 3, 4, 9, and 11 support all single-ended
I/O standards for both input and output operations.
All differential I/O standards are supported for both
input and output operations at I/O banks 9 and 11.
I/O banks 7, 8, 10 and 12 support all single-ended I/O
standards for both input and output operations. All differential
I/O standards are supported for both input and output operations
at I/O banks 10 and 12.
I/O banks 1 & 2 support LVTTL, LVCMOS,
2.5 V, 1.8 V, 1.5 V, SSTL-2, SSTL-18 class I,
LVDS, pseudo-differential SSTL-2 and pseudo-differential
SSTL-18 class I standards for both input and output
operations. HSTL, SSTL-18 class II,
pseudo-differential HSTL and pseudo-differential
SSTL-18 class II standards are only supported for
input operations. (4)
DQS
×8
DQS
×8DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8
PLL11
VREF0B3 VREF1B3 VREF2B3 VREF3B3 VREF4B3 VREF0B4 VREF1B4 VREF2B4 VREF3B4 VREF4B4
VREF4B8VREF3B8VREF2B8VREF1B8VREF0B8VREF4B7 VREF3B7 VREF2B7 VREF1B7 VREF0B7
PLL12 DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8DQS ×8
Bank 11
VREF3B2 VREF4B2
VREF0B1 VREF2B1
VREF3B1
VREF4B1
PLL1
PLL2
Bank 1 Bank 2
Bank 3 Bank 4
Bank 12
Bank 8Bank 7
PLL7
PLL8PLL6
PLL5
Bank 9
Bank 10
VREF1B1
VREF0B2 VREF1B2 VREF2B2
DQS ×8DQS ×8
This I/O bank supports LVDS
and LVPECL standards
for input clock operations. Differential HSTL
and differential SSTL standards
are supported for both input
and output operations. (3)
This I/O bank supports LVDS
and LVPECL standards for input clock operation.
Differential HSTL and differential
SSTL standards are supported
for both input and output operations. (3)
This I/O bank supports LVDS
and LVPECL standards for input clock
operation. Differential HSTL and differential
SSTL standards are supported
for both input and output operations. (3)
This I/O bank supports LVDS
and LVPECL standards for input clock
operation. Differential HSTL and
differential SSTL standards are
supported for both input and output
operations. (3)
Transmitter: Bank 13
Receiver: Bank 13
REFCLK: Bank 13
Transmitter: Bank 14
Receiver: Bank 14
REFCLK: Bank 14
Transmitter: Bank 15
Receiver: Bank 15
REFCLK: Bank 15
2–96 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Arria GX devices provide two types of termination:
On-chip differential termination (RD OCT)
On-chip series termination (RS OCT)
Table 2–26 lists the Arria GX OCT support per I/O bank.
On-Chip Differential Termination (RD OCT)
Arria GX devices support internal differential termination with a nominal resistance
value of 100 for LVDS input receiver buffers. LVPECL input signals (supported on
clock pins only) require an external termination resistor. RD OCT is supported across
the full range of supported differential data rates as shown in the High-Speed I/O
Specifications section of the DC & Switching Characteristics chapter.
fFor more information about RD OCT, refer to the High-Speed Differential I/O Interfaces
with DPA in Arria GX Devices chapter.
fFor more information about tolerance specifications for RD OCT, refer to the DC &
Switching Characteristics chapter.
Table 2–26. On-Chip Termination Support by I/O Banks
On-Chip Termination Support I/O Standard Support Top and Bottom Banks
(3, 4, 7, 8) Left Bank (1, 2)
Series termination
3.3-V LVTTL vv
3.3-V LVCMOS vv
2.5-V LVTTL vv
2.5-V LVCMOS vv
1.8-V LVTTL vv
1.8-V LVCMOS vv
1.5-V LVTTL vv
1.5-V LVCMOS vv
SSTL-2 class I and II vv
SSTL-18 class I v v
SSTL-18 class II v
1.8-V HSTL class I vv
1.8-V HSTL class II v
1.5-V HSTL class I vv
1.2-V HSTL v
Differential termination (1)
LVDS v
HyperTransport
technology
v
Note to Tabl e 22 6:
(1) Clock pins CLK1 and CLK3, and pins FPLL[7..8]CLK do not support differential on-chip termination. Clock pins CLK0 and
CLK2, do support differential on-chip termination. Clock pins in the top and bottom banks (CLK[4..7, 12..15]) do not
support differential on-chip termination.
Chapter 2: Arria GX Architecture 2–97
I/O Structure
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
On-Chip Series Termination (RS OCT)
Arria GX devices support driver impedance matching to provide the I/O driver with
controlled output impedance that closely matches the impedance of the transmission
line. As a result, reflections can be significantly reduced. Arria GX devices support
RSOCT for single-ended I/O standards with typical RS values of 25 and 50 Once
matching impedance is selected, current drive strength is no longer selectable.
Table 2–26 shows the list of output standards that support RS OCT.
fFor more information about RS OCT supported by Arria GX devices, refer to the
Selectable I/O Standards in Arria GX Devices chapter.
fFor more information about tolerance specifications for OCT without calibration, refer
to the DC & Switching Characteristics chapter.
MultiVolt I/O Interface
The Arria GX architecture supports the MultiVolt I/O interface feature that allows
Arria GX devices in all packages to interface with systems of different supply
voltages. Arria GX VCCINT pins must always be connected to a 1.2-V power supply.
With a 1.2-V VCCINT level, input pins are 1.2-, 1.5-, 1.8-, 2.5-, and 3.3-V tolerant. The
VCCIO pins can be connected to either a 1.2-, 1.5-, 1.8-, 2.5-, or 3.3-V power supply,
depending on the output requirements. The output levels are compatible with
systems of the same voltage as the power supply (for example, when VCCIO pins are
connected to a 1.5-V power supply, the output levels are compatible with 1.5-V
systems). Arria GX VCCPD power pins must be connected to a 3.3-V power supply.
These power pins are used to supply the pre-driver power to the output buffers,
which increases the performance of the output pins. The VCCPD pins also power
configuration input pins and JTAG input pins.
Table 2–27 lists Arria GX MultiVolt I/O support.
Table 2–27. Arria GX MultiVolt I/O Support (Note 1)
VCCIO (V)
Input Signal (V) Output Signal (V)
1.2 1.5 1.8 2.5 3.3 1.2 1.5 1.8 2.5 3.3 5.0
1.2 (4) v (2) v (2) v (2) v (2) v (4) —————
1.5 (4) vvv (2) v (2) v (3) v————
1.8 (4) v vv (2) v (2) v (3) v (3) v———
2.5 (4) ——vvv (3) v (3) v (3) v——
3.3 (4) ——v vv (3) v (3) v (3) v (3) vv
Notes to Ta ble 227 :
(1) To drive inputs higher than VCCIO but less than 4.0 V, disable the PCI clamping diode and select the Allow LVTTL and LVCMOS input levels to
overdrive input buffer option in the Quartus II software.
(2) The pin current may be slightly higher than the default value. You must verify that the driving device’s VOL maximum and VOH minimum voltages do
not violate the applicable Arria GX VIL
maximum and VIH minimum voltage specifications.
(3) Although VCCIO specifies the voltage necessary for the Arria GX device to drive out, a receiving device powered at a different level can still interface
with the Arria GX device if it has inputs that tolerate the VCCIO
value.
(4) Arria GX devices support 1.2-V HSTL. They do not support 1.2-V LVTTL and 1.2-V LVCMOS.
2–98 Chapter 2: Arria GX Architecture
I/O Structure
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
The TDO and nCEO pins are powered by VCCIO of the bank that they reside. TDO is in
I/O bank 4 and nCEO is in I/O Bank 7. Ideally, the VCC supplies for the I/O buffers of
any two connected pins are at the same voltage level. This may not always be possible
depending on the VCCIO level of TDO and nCEO pins on master devices and the
configuration voltage level chosen by VCCSEL on slave devices. Master and slave
devices can be in any position in the chain. The master device indicates that it is
driving out TDO or nCEO to a slave device. For multi-device passive configuration
schemes, the nCEO pin of the master device drives the nCE pin of the slave device. The
VCCSEL pin on the slave device selects which input buffer is used for nCE. When
VCCSEL is logic high, it selects the 1.8-V/1.5-V buffer powered by VCCIO. When VCCSEL is
logic low, it selects the 3.3-V/2.5-V input buffer powered by VCCPD. The ideal case is to
have the VCCIO of the nCEO bank in a master device match the VCCSEL settings for the
nCE input buffer of the slave device it is connected to, but that may not be possible
depending on the application.
Table 2–28 contains board design recommendations to ensure that nCEO can
successfully drive nCE for all power supply combinations.
For JTAG chains, the TDO pin of the first device drives the TDI pin of the second
device in the chain. The VCCSEL input on JTAG input I/O cells (TCK, TMS, TDI, and
TRST) is internally hardwired to GND selecting the 3.3-V/2.5-V input buffer powered
by VCCPD. The ideal case is to have the VCCIO of the TDO bank from the first device to
match the VCCSEL settings for TDI on the second device, but that may not be possible
depending on the application. Table 2–29 contains board design recommendations to
ensure proper JTAG chain operation.
Table 2–28. Board Design Recommendations for nCEO and nCE Input Buffer Power
nCE Input Buffer Power
in I/O Bank 3
Arria GX nCEO VCCIO Voltage Level in I/O Bank 7
VCCIO = 3.3 V VCCIO = 2.5 V VCCIO = 1.8 V VCCIO = 1.5 V VCCIO = 1.2 V
VCCSEL high
(VCCIO Bank 3 = 1.5 V) v (1), (2) v (3), (4) v (5) vv
VCCSEL high
(VCCIO Bank 3 = 1.8 V) v (1), (2) v (3), (4) vvLevel shifter
required
VCCSEL low (nCE
powered by
VCCPD
= 3.3 V)
v v (4) v (6) Level shifter
required
Level shifter
required
Notes to Ta ble 228 :
(1) Input buffer is 3.3-V tolerant.
(2) The nCEO output buffer meets VOH (MIN) = 2.4 V.
(3) Input buffer is 2.5-V tolerant.
(4) The nCEO output buffer meets VOH (MIN) = 2.0 V.
(5) Input buffer is 1.8-V tolerant.
(6) An external 250- pull-up resistor is not required, but recommended if signal levels on the board are not optimal.
Chapter 2: Arria GX Architecture 2–99
High-Speed Differential I/O with DPA Support
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
High-Speed Differential I/O with DPA Support
Arria GX devices contain dedicated circuitry for supporting differential standards at
speeds up to 840 Mbps. LVDS differential I/O standards are supported in the Arria
GX device. In addition, the LVPECL I/O standard is supported on input and output
clock pins on the top and bottom I/O banks.
The high-speed differential I/O circuitry supports the following high-speed I/O
interconnect standards and applications:
SPI-4 Phase 2 (POS-PHY Level 4)
SFI-4
Parallel RapidIO standard
There are two dedicated high-speed PLLs (PLL1 and PLL2) in the EP1AGX20 and
EP1AGX35 devices and up to four dedicated high-speed PLLs (PLL1, PLL2, PLL7,
and PLL8) in the EP1AGX50, EP1AGX60, and EP1AGX90 devices to multiply
reference clocks and drive high-speed differential SERDES channels in I/O banks 1
and 2.
Table 2–30 through Table 2–34 list the number of channels that each fast PLL can clock
in each of the Arria GX devices. In Table 2–30 through Table 2–34 the first row for each
transmitter or receiver provides the maximum number of channels that each fast PLL
can drive in its adjacent I/O bank (I/O Bank 1 or I/O Bank 2). The second row shows
the maximum number of channels that each fast PLL can drive in both I/O banks
(I/O Bank 1 and I/O Bank 2). For example, in the 780-pin FineLine BGA EP1AGX20
Table 2–29. Supported TDO/TDI Voltage Combinations
Device
TDI Input
Buffer Power
Arria GX TDO VCCIO Voltage Level in I/O Bank 4
VCCIO = 3.3 V VCCIO = 2.5 V VCCIO = 1.8 V VCCIO = 1.5 V VCCIO = 1.2 V
Arria GX Always VCCPD
(3.3 V) v (1) v (2) v (3) Level shifter
required
Level shifter
required
Non-Arria GX
VCC = 3.3 V v (1) v (2) v (3) Level shifter
required
Level shifter
required
VCC = 2.5 V v (1), (4) v (2) v (3) Level shifter
required
Level shifter
required
VCC = 1.8 V v (1), (4) v (2), (5) vLevel shifter
required
Level shifter
required
VCC = 1.5 V v (1), (4) v (2), (5) v (6) vv
Notes to Ta ble 229 :
(1) The TDO output buffer meets VOH (MIN) = 2.4 V.
(2) The TDO output buffer meets VOH (MIN) = 2.0 V.
(3) An external 250- pull-up resistor is not required, but recommended if signal levels on the board are not optimal.
(4) Input buffer must be 3.3-V tolerant.
(5) Input buffer must be 2.5-V tolerant.
(6) Input buffer must be 1.8-V tolerant.
2–100 Chapter 2: Arria GX Architecture
High-Speed Differential I/O with DPA Support
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
device, PLL 1 can drive a maximum of 16 transmitter channels in I/O Bank 2 or a
maximum of 29 transmitter channels in I/O Banks 1 and 2. The Quartus II software
can also merge receiver and transmitter PLLs when a receiver is driving a transmitter.
In this case, one fast PLL can drive both the maximum numbers of receiver and
transmitter channels.
1For more information, refer to the “Differential Pin Placement Guidelines” section in
the High-Speed Differential I/O Interfaces with DPA in Arria GX Devices chapter.
Table 2–30. EP1AGX20 Device Differential Channels (Note 1)
Package Transmitter/Receiver Total Channels
Center Fast PLLs
PLL1 PLL2
484-pin FineLine BGA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
780-pin FineLine GBA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
Note to Tabl e 23 0:
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels.
Table 2–31. EP1AGX35 Device Differential Channels (Note 1)
Package Transmitter/Receiver Total Channels
Center Fast PLLs
PLL1 PLL2
484-pin FineLine BGA
Transmitter 291613
13 16
Receiver 31 17 14
14 17
780-pin FineLine BGA
Transmitter 291613
13 16
Receiver 31 17 14
14 17
Note to Tabl e 23 1:
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels.
Chapter 2: Arria GX Architecture 2–101
High-Speed Differential I/O with DPA Support
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 2–32. EP1AGX50 Device Differential Channels (Note 1)
Package Transmitter/
Receiver Total Channels
Center Fast PLLs Corner Fast PLLs
PLL1 PLL2 PLL7 PLL8
484-pin
FineLine BGA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
780-pin
FineLine BGA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
1,152-pin
FineLine BGA
Transmitter 42 21 21 21 21
21 21
Receiver 42 21 21 21 21
21 21
Note to Tabl e 23 2:
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels.
Table 2–33. EP1AGX60 Device Differential Channels (Note 1)
Package Transmitter/
Receiver Total Channels
Center Fast PLLs Corner Fast PLLs
PLL1 PLL2 PLL7 PLL8
484-pin
FineLine BGA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
780-pin
FineLine BGA
Transmitter 29 16 13
13 16
Receiver 31 17 14
14 17
1,152-pin
FineLine BGA
Transmitter 42 21 21 21 21
21 21
Receiver 42 21 21 21 21
21 21
Note to Tabl e 23 3:
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels.
2–102 Chapter 2: Arria GX Architecture
High-Speed Differential I/O with DPA Support
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Dedicated Circuitry with DPA Support
Arria GX devices support source-synchronous interfacing with LVDS signaling at up
to 840 Mbps. Arria GX devices can transmit or receive serial channels along with a
low-speed or high-speed clock.
The receiving device PLL multiplies the clock by an integer factor W = 1 through 32.
The SERDES factor J determines the parallel data width to deserialize from receivers
or to serialize for transmitters. The SERDES factor J can be set to 4, 5, 6, 7, 8, 9, or 10
and does not have to equal the PLL clock-multiplication W value. A design using the
dynamic phase aligner also supports all of these J factor values. For a J factor of 1, the
Arria GX device bypasses the SERDES block. For a J factor of 2, the Arria GX device
bypasses the SERDES block, and the DDR input and output registers are used in the
IOE. Figure 2–79 shows the block diagram of the Arria GX transmitter channel.
Each Arria GX receiver channel features a DPA block for phase detection and
selection, a SERDES, a synchronizer, and a data realigner circuit. You can bypass the
dynamic phase aligner without affecting the basic source-synchronous operation of
the channel. In addition, you can dynamically switch between using the DPA block or
bypassing the block via a control signal from the logic array.
Table 2–34. EP1AGX90 Device Differential Channels (Note 1)
Package Transmitter/Receiver Total Channels
Center Fast PLLs Corner Fast
PLLs
PLL1 PLL2 PLL7
1,152-pin FineLine
BGA
Transmitter 45 23 22 23
22 23
Receiver 47 23 24 23
24 23
Note to Tabl e 23 4:
(1) The total number of receiver channels includes the four non-dedicated clock channels that can be optionally used as data channels.
Figure 2–79. Arria GX Transmitter Channel
Fast
PLL
refclk
diffioclk
Dedicated
Transmitter
Interface
Local
Interconnect
10
+
Up to 840 Mbps
load_en
Regional or
global clock
Data from R4, R24, C4, or
direct link interconnect
10
Chapter 2: Arria GX Architecture 2–103
High-Speed Differential I/O with DPA Support
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 2–80 shows the block diagram of the Arria GX receiver channel.
An external pin or global or regional clock can drive the fast PLLs, which can output
up to three clocks: two multiplied high-speed clocks to drive the SERDES block
and/or external pin, and a low-speed clock to drive the logic array. In addition, eight
phase-shifted clocks from the VCO can feed to the DPA circuitry.
fFor more information about fast PLL, refer to the PLLs in Arria GX Devices chapter.
The eight phase-shifted clocks from the fast PLL feed to the DPA block. The DPA
block selects the closest phase to the center of the serial data eye to sample the
incoming data. This allows the source-synchronous circuitry to capture incoming data
correctly regardless of channel-to-channel or clock-to-channel skew. The DPA block
locks to a phase closest to the serial data phase. The phase-aligned DPA clock is used
to write the data into the synchronizer.
The synchronizer sits between the DPA block and the data realignment and SERDES
circuitry. Because every channel using the DPA block can have a different phase
selected to sample the data, the synchronizer is needed to synchronize the data to the
high-speed clock domain of the data realignment and the SERDES circuitry.
For high-speed source-synchronous interfaces such as POS-PHY 4 and the Parallel
RapidIO standard, the source synchronous clock rate is not a byte- or SERDES-rate
multiple of the data rate. Byte alignment is necessary for these protocols because the
source synchronous clock does not provide a byte or word boundary as the clock is
one half the data rate, not one eighth. The Arria GX device’s high-speed differential
I/O circuitry provides dedicated data realignment circuitry for user-controlled byte
boundary shifting. This simplifies designs while saving ALM resources. You can use
an ALM-based state machine to signal the shift of receiver byte boundaries until a
specified pattern is detected to indicate byte alignment.
Figure 2–80. GX Receiver Channel
+
Fast
PLL
refclk
load_en
diffioclk
Regional or
global clock
Data to R4, R24, C4, or
direct link interconnect
Up to 840 Mbps
10
Dedicated
Receiver
Interface
Eight Phase Clocks
data retimed_data
DPA_clk
DPA
Synchronizer
8
DQ
Data Realignment
Circuitry
2–104 Chapter 2: Arria GX Architecture
High-Speed Differential I/O with DPA Support
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Fast PLL and Channel Layout
The receiver and transmitter channels are interleaved as such that each I/O bank on
the left side of the device has one receiver channel and one transmitter channel per
LAB row. Figure 2–81 shows the fast PLL and channel layout in the EP1AGX20C,
EP1AGX35C/D, EP1AGX50C/D and EP1AGX60C/D devices. Figure 2–82 shows the
fast PLL and channel layout in EP1AGX60E and EP1AGX90E devices.
Figure 2–81. Fast PLL and Channel Layout in EP1AGX20C, EP1AGX35C/D, EP1AGX50C/D, EP1AGX60C/D Devices (Note 1)
Note to Figure 2–81:
(1) For the number of channels each device supports, refer to Table 2–30.
Figure 2–82. Fast PLL and Channel Layout in EP1AGX60E and EP1AGX90E Devices (Note 1)
Note to Figure 2–82:
(1) For the number of channels each device supports, refer to Table 2–30 through Table 2–34.
LVDS
Clock
DPA
Clock
Fast
PLL 1
Fast
PLL 2
LVDS
Clock
DPA
Clock
Quadrant
Quadrant
Quadrant
Quadrant
4
4
4
2
2
LVDS
Clock
DPA
Clock
Fast
PLL 1
Fast
PLL 2
LVDS
Clock
DPA
Clock
Fast
PLL 7
Quadrant
Quadrant
Quadrant
Quadrant
4
4
2
4
2
2
Fast
PLL 8
2
Chapter 2: Arria GX Architecture 2–105
Document Revision History
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Document Revision History
Table 2–35 shows the revision history for this chapter.
Table 2–35. Document Revision History
Date and Document Version Changes Made Summary of Changes
December 2009, v2.0 Document template update.
Minor text edits.
May 2008, v1.3 Added “Reverse Serial Pre-CDR Loopback
and “Calibration Block sub-sections to
Transmitter Path” section.
August 2007, v1.2 Added “Referenced Documents” section.
June 2007, v1.1 Added GIGE information.
May 2007 v1.0 Initial release.
2–106 Chapter 2: Arria GX Architecture
Document Revision History
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
3. Configuration and Testing
Introduction
All Arria® GX devices provide JTAG boundary-scan test (BST) circuitry that complies
with the IEEE Std. 1149.1. You can perform JTAG boundary-scan testing either before
or after, but not during configuration. Arria GX devices can also use the JTAG port for
configuration with the Quartus® II software or hardware using either jam files (.jam)
or jam byte-code files (.jbc).
This chapter contains the following sections:
“IEEE Std. 1149.1 JTAG Boundary-Scan Support
“SignalTap II Embedded Logic Analyzer” on page 3–3
“Configuration” on page 3–3
“Automated Single Event Upset (SEU) Detection” on page 3–8
IEEE Std. 1149.1 JTAG Boundary-Scan Support
Arria GX devices support I/O element (IOE) standard setting reconfiguration through
the JTAG BST chain. The JTAG chain can update the I/O standard for all input and
output pins any time before or during user-mode through the CONFIG_IO
instruction. You can use this capability for JTAG testing before configuration when
some of the Arria GX pins drive or receive from other devices on the board using
voltage-referenced standards. Because the Arria GX device may not be configured
before JTAG testing, the I/O pins may not be configured for appropriate electrical
standards for chip-to-chip communication. Programming these I/O standards via
JTAG allows you to fully test the I/O connections to other devices.
A device operating in JTAG mode uses four required pins, TDI, TDO, TMS, and TCK,
and one optional pin, TRST. The TCK pin has an internal weak pull-down resistor,
while the TDI, TMS, and TRST pins have weak internal pull-up resistors. The JTAG
input pins are powered by the 3.3-V VCCPD pins. The TDO output pin is powered by the
VCCIO power supply in I/O bank 4.
Arria GX devices also use the JTAG port to monitor the logic operation of the device
with the SignalTap® II embedded logic analyzer. Arria GX devices support the JTAG
instructions shown in Table 3–1.
1Arria GX, Cyclone®II, Cyclone, Stratix®, Stratix II, Stratix GX , and Stratix II GX
devices must be within the first 17 devices in a JTAG chain. All of these devices have
the same JTAG controller. If any of the Stratix, Arria GX, Cyclone, and Cyclone II
devices are in the 18th or further position, they will fail configuration. This does not
affect the functionality of the SignalTap®II embedded logic analyzer.
AGX51003-2.0
3–2 Chapter 3: Configuration and Testing
IEEE Std. 1149.1 JTAG Boundary-Scan Support
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 31. Arria GX JTAG Instructions
JTAG Instruction Instruction Code Description
SAMPLE/PRELOAD 00 0000 0101 Allows a snapshot of signals at the device pins to be captured
and examined during normal device operation and permits an
initial data pattern to be output at the device pins. Also used by
the SignalTap II embedded logic analyzer.
EXTEST (1) 00 0000 1111 Allows external circuitry and board-level interconnects to be
tested by forcing a test pattern at the output pins and capturing
test results at the input pins.
BYPASS 11 1111 1111 Places the 1-bit bypass register between the TDI and TDO pins,
which allows the BST data to pass synchronously through
selected devices to adjacent devices during normal device
operation.
USERCODE 00 0000 0111 Selects the 32-bit USERCODE register and places it between the
TDI and TDO pins, allowing the USERCODE to be serially shifted
out of TDO.
IDCODE 00 0000 0110 Selects the IDCODE register and places it between TDI and TDO,
allowing IDCODE to be serially shifted out of TDO.
HIGHZ (1) 00 0000 1011 Places the 1-bit bypass register between the TDI and TDO pins,
which allows the BST data to pass synchronously through
selected devices to adjacent devices during normal device
operation, while tri-stating all of the I/O pins.
CLAMP (1) 00 0000 1010 Places the 1-bit bypass register between the TDI and TDO pins,
which allows the BST data to pass synchronously through
selected devices to adjacent devices during normal device
operation while holding I/O pins to a state defined by the data in
the boundary-scan register.
ICR instructions Used when configuring an Arria GX device via the JTAG port with
a USB-BlasterTM, MasterBlasterTM, ByteBlasterMVTM,
EthernetBlasterTM, or ByteBlaster II download cable, or when
using a .jam or .jbc via an embedded processor or JRunnerTM.
PULSE_NCONFIG 00 0000 0001 Emulates pulsing the nCONFIG pin low to trigger
reconfiguration even though the physical pin is unaffected.
CONFIG_IO (2) 00 0000 1101 Allows configuration of I/O standards through the JTAG chain for
JTAG testing. Can be executed before, during, or after
configuration. Stops configuration if executed during
configuration. Once issued, the CONFIG_IO instruction holds
nSTATUS low to reset the configuration device. nSTATUS is
held low until the IOE configuration register is loaded and the
TAP controller state machine transitions to the UPDATE_DR
state.
Notes to Ta ble 31 :
(1) Bus hold and weak pull-up resistor features override the high-impedance state of HIGHZ, CLAMP, and EXTEST.
(2) For more information about using the CONFIG_IO instruction, refer to the MorphIO: An I/O Reconfiguration Solution for Altera Devices
White Paper.
Chapter 3: Configuration and Testing 3–3
SignalTap II Embedded Logic Analyzer
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
The Arria GX device instruction register length is 10 bits and the USERCODE register
length is 32 bits. Table 3–2 and Table 3–3 show the boundary-scan register length and
device IDCODE information for Arria GX devices.
SignalTap II Embedded Logic Analyzer
Arria GX devices feature the SignalTap II embedded logic analyzer, which monitors
design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry.
You can analyze internal logic at speed without bringing internal signals to the I/O
pins. This feature is particularly important for advanced packages, such as FineLine
BGA (FBGA) packages, because it can be difficult to add a connection to a pin during
the debugging process after a board is designed and manufactured.
Configuration
The logic, circuitry, and interconnects in the Arria GX architecture are configured with
CMOS SRAM elements. Altera® FPGAs are reconfigurable and every device is tested
with a high coverage production test program so you do not have to perform fault
testing and can instead focus on simulation and design verification.
Arria GX devices are configured at system power up with data stored in an Altera
configuration device or provided by an external controller (for example, a MAX® II
device or microprocessor). You can configure Arria GX devices using the fast passive
parallel (FPP), active serial (AS), passive serial (PS), passive parallel asynchronous
(PPA), and JTAG configuration schemes. Each Arria GX device has an optimized
interface that allows microprocessors to configure it serially or in parallel, and
synchronously or asynchronously. The interface also enables microprocessors to treat
Arria GX devices as memory and configure them by writing to a virtual memory
location, making reconfiguration easy.
Table 32. Arria GX Boundary-Scan Register Length
Device Boundary-Scan Register Length
EP1AGX20 1320
EP1AGX35 1320
EP1AGX50 1668
EP1AGX60 1668
EP1AGX90 2016
Table 33. 2-Bit Arria GX Device IDCODE
Device
IDCODE (32 Bits)
Version (4 Bits) Part Number (16 Bits) Manufacturer Identity
(11 Bits) LSB (1 Bit)
EP1AGX20 0000 0010 0001 0010 0001 000 0110 1110 1
EP1AGX35 0000 0010 0001 0010 0001 000 0110 1110 1
EP1AGX50 0000 0010 0001 0010 0010 000 0110 1110 1
EP1AGX60 0000 0010 0001 0010 0010 000 0110 1110 1
EP1AGX90 0000 0010 0001 0010 0011 000 0110 1110 1
3–4 Chapter 3: Configuration and Testing
Configuration
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
In addition to the number of configuration methods supported, Arria GX devices also
offer decompression and remote system upgrade features. The decompression feature
allows Arria GX FPGAs to receive a compressed configuration bitstream and
decompress this data in real-time, reducing storage requirements and configuration
time. The remote system upgrade feature allows real-time system upgrades from
remote locations of Arria GX designs. For more information, refer to “Configuration
Schemes” on page 3–5.
Operating Modes
The Arria GX architecture uses SRAM configuration elements that require
configuration data to be loaded each time the circuit powers up. The process of
physically loading the SRAM data into the device is called configuration. During
initialization, which occurs immediately after configuration, the device resets
registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are
tri-stated during power up, and before and during configuration. Together, the
configuration and initialization processes are called command mode. Normal device
operation is called user mode.
SRAM configuration elements allow you to reconfigure Arria GX devices in-circuit by
loading new configuration data into the device. With real-time reconfiguration, the
device is forced into command mode with a device pin. The configuration process
loads different configuration data, re-initializes the device, and resumes user-mode
operation. You can perform in-field upgrades by distributing new configuration files
either within the system or remotely.
PORSEL is a dedicated input pin used to select power-on reset (POR) delay times of
12 ms or 100 ms during power up. When the PORSEL pin is connected to ground, the
POR time is 100 ms. When the PORSEL pin is connected to VCC, the POR time is 12 ms.
The nIO_PULLUP pin is a dedicated input that chooses whether the internal pull-up
resistors on the user I/O pins and dual-purpose configuration I/O pins (nCSO, ASDO,
DATA[7..0], nWS, nRS, RDYnBSY, nCS, CS, RUnLU, PGM[2..0], CLKUSR,
INIT_DONE, DEV_OE, DEV_CLR) are on or off before and during configuration. A
logic high (1.5, 1.8, 2.5, 3.3 V) turns off the weak internal pull-up resistors, while a
logic low turns them on.
Arria GX devices also offer a new power supply, VCCPD
, which must be connected to
3.3 V in order to power the 3.3-V/2.5-V buffer available on the configuration input
pins and JTAG pins. VCCPD applies to all the JTAG input pins (TCK, TMS, TDI, and
TRST) and the following configuration pins: nCONFIG, DCLK (when used as an input),
nIO_PULLUP, DATA[7..0], RUnLU, nCE, nWS, nRS, CS, nCS, and CLKUSR. The VCCSEL
pin allows the VCCIO setting (of the banks where the configuration inputs reside) to be
independent of the voltage required by the configuration inputs. Therefore, when
selecting the VCCIO voltage, you do not have to take the VIL and VIH levels driven to
the configuration inputs into consideration. The configuration input pins, nCONFIG,
DCLK (when used as an input), nIO_PULLUP, RUnLU, nCE, nWS, nRS, CS, nCS, and
CLKUSR, have a dual buffer design: a 3.3-V/2.5-V input buffer and a 1.8-V/1.5-V
input buffer. The VCCSEL input pin selects which input buffer is used. The 3.3-V/2.5-V
input buffer is powered by VCCPD, while the 1.8-V/1.5-V input buffer is powered by
VCCIO.
Chapter 3: Configuration and Testing 3–5
Configuration
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
VCCSEL is sampled during power up. Therefore, the VCCSEL setting cannot change
on-the-fly or during a reconfiguration. The VCCSEL input buffer is powered by VCCINT
and must be hard-wired to VCCPD
or ground. A logic high VCCSEL connection selects the
1.8-V/1.5-V input buffer, and a logic low selects the 3.3-V/2.5-V input buffer. VCCSEL
should be set to comply with the logic levels driven out of the configuration device or
MAX II microprocessor.
If the design must support configuration input voltages of 3.3 V/2.5 V, set VCCSEL to a
logic low. You can set the VCCIO voltage of the I/O bank that contains the configuration
inputs to any supported voltage. If the design must support configuration input
voltages of 1.8 V/1.5 V, set VCCSEL to a logic high and the VCCIO of the bank that
contains the configuration inputs to 1.8 V/1.5 V.
fFor more information about multi-volt support, including information about using
TDO and nCEO in multi-volt systems, refer to the Arria GX Architecture chapter.
Configuration Schemes
You can load the configuration data for an Arria GX device with one of five
configuration schemes (refer to Table 3–4), chosen on the basis of the target
application. You can use a configuration device, intelligent controller, or the JTAG
port to configure an Arria GX device. A configuration device can automatically
configure an Arria GX device at system power up.
You can configure multiple Arria GX devices in any of the five configuration schemes
by connecting the configuration enable (nCE) and configuration enable output (nCEO)
pins on each device. Arria GX FPGAs offer the following:
Configuration data decompression to reduce configuration file storage
Remote system upgrades for remotely updating Arria GX designs
Table 3–4 lists which configuration features can be used in each configuration scheme.
fFor more information about configuration schemes in Arria GX devices, refer to the
Configuring Arria GX Devices chapter.
Table 34. Arria GX Configuration Features (Part 1 of 2)
Configuration Scheme Configuration Method Decompression Remote System Upgrade
FPP
MAX II device or microprocessor
and flash device v (1) v
Enhanced configuration device v (2) v
AS Serial configuration device vv (3)
PS
MAX II device or microprocessor
and flash device vv
Enhanced configuration device vv
Download cable (4) v
PPA MAX II device or microprocessor
and flash device
v
3–6 Chapter 3: Configuration and Testing
Configuration
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Device Configuration Data Decompression
Arria GX FPGAs support decompression of configuration data, which saves
configuration memory space and time. This feature allows you to store compressed
configuration data in configuration devices or other memory and transmit this
compressed bitstream to Arria GX FPGAs. During configuration, the Arria GX FPGA
decompresses the bitstream in real time and programs its SRAM cells. Arria GX
FPGAs support decompression in the FPP (when using a MAX II device or
microprocessor and flash memory), AS, and PS configuration schemes.
Decompression is not supported in the PPA configuration scheme nor in JTAG-based
configuration.
Remote System Upgrades
Shortened design cycles, evolving standards, and system deployments in remote
locations are difficult challenges faced by system designers. Arria GX devices can help
effectively deal with these challenges with their inherent re programmability and
dedicated circuitry to perform remote system updates. Remote system updates help
deliver feature enhancements and bug fixes without costly recalls, reduce time to
market, and extend product life.
Arria GX FPGAs feature dedicated remote system upgrade circuitry to facilitate
remote system updates. Soft logic (Nios® processor or user logic) implemented in the
Arria GX device can download a new configuration image from a remote location,
store it in configuration memory, and direct the dedicated remote system upgrade
circuitry to initiate a reconfiguration cycle. The dedicated circuitry performs error
detection during and after the configuration process, recovers from any error
condition by reverting back to a safe configuration image, and provides error status
information. This dedicated remote system upgrade circuitry avoids system
downtime and is the critical component for successful remote system upgrades.
Remote system configuration is supported in the following Arria GX configuration
schemes: FPP, AS, PS, and PPA. You can also implement remote system configuration
in conjunction with Arria GX features such as real-time decompression of
configuration data for efficient field upgrades.
fFor more information about remote configuration in Arria GX devices, refer to the
Remote System Upgrades with Arria GX Devices chapter.
JTAG
Download cable (4) ——
MAX II device or microprocessor
and flash device
——
Notes for Ta ble 3 4:
(1) In these modes, the host system must send a DCLK that is 4× the data rate.
(2) The enhanced configuration device decompression feature is available, while the Arria GX decompression feature is not available.
(3) Only remote update mode is supported when using the AS configuration scheme. Local update mode is not supported.
(4) The supported download cables include the Altera USB-Blaster universal serial bus (USB) port download cable, MasterBlaster serial/USB
communications cable, ByteBlaster II parallel port download cable, ByteBlasterMV parallel port download cable, and the EthernetBlaster
download cable.
Table 34. Arria GX Configuration Features (Part 2 of 2)
Configuration Scheme Configuration Method Decompression Remote System Upgrade
Chapter 3: Configuration and Testing 3–7
Configuration
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Configuring Arria GX FPGAs with JRunner
The JRunner software driver configures Altera FPGAs, including Arria GX FPGAs,
through the ByteBlasterII or ByteBlasterMV cables in JTAG mode. The
programming input file supported is in Raw Binary File (.rbf) format. JRunner also
requires a Chain Description File (.cdf) generated by the Quartus II software. JRunner
is targeted for embedded JTAG configuration. The source code is developed for the
Windows NT operating system (OS), but can be customized to run on other platforms.
fFor more information about the JRunner software driver, refer to the AN414: JRunner
Software Driver: An Embedded Solution for PLD JTAG Configuration and the source files
on the Altera website.
Programming Serial Configuration Devices with SRunner
You can program a serial configuration device in-system by an external
microprocessor using SRunnerTM. SRunner is a software driver developed for
embedded serial configuration device programming that can be easily customized to
fit into different embedded systems. SRunner software driver reads a raw
programming data file (.rpd) and writes to serial configuration devices. The serial
configuration device programming time using SRunner software driver is comparable
to the programming time when using the Quartus II software.
fFor more information about SRunner, refer to the AN418: SRunner: An Embedded
Solution for Serial Configuration Device Programming and the source code on the Altera
website.
fFor more information about programming serial configuration devices, refer to the
Serial Configuration Devices (EPCS1, EPCS4, EPCS64, and EPCS128) Data Sheet in the
Configuration Handbook.
Configuring Arria GX FPGAs with the MicroBlaster Driver
The MicroBlaster software driver supports a raw binary file (RBF) programming
input file and is ideal for embedded FPP or PS configuration. The source code is
developed for the Windows NT operating system, although it can be customized to
run on other operating systems.
fFor more information about the MicroBlaster software driver, refer to the Configuring
the MicroBlaster Fast Passive Parallel Software Driver White Paper or the AN423:
Configuring the MicroBlaster Passive Serial Software Driver.
PLL Reconfiguration
The phase-locked loops (PLLs) in the Arria GX device family support reconfiguration
of their multiply, divide, VCO-phase selection, and bandwidth selection settings
without reconfiguring the entire device. You can use either serial data from the logic
array or regular I/O pins to program the PLLs counter settings in a serial chain. This
option provides considerable flexibility for frequency synthesis, allowing real-time
variation of the PLL frequency and delay. The rest of the device is functional while
reconfiguring the PLL.
3–8 Chapter 3: Configuration and Testing
Automated Single Event Upset (SEU) Detection
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
fFor more information about Arria GX PLLs, refer to the PLLs in Arria GX Devices
chapter.
Automated Single Event Upset (SEU) Detection
Arria GX devices offer on-chip circuitry for automated checking of single event upset
(SEU) detection. Some applications that require the device to operate error free at high
elevations or in close proximity to Earth’s North or South Pole requires periodic
checks to ensure continued data integrity. The error detection cyclic redundancy
check (CRC) feature controlled by the Device and Pin Options dialog box in the
Quartus II software uses a 32-bit CRC circuit to ensure data reliability and is one of
the best options for mitigating SEU.
You can implement the error detection CRC feature with existing circuitry in Arria GX
devices, eliminating the need for external logic. Arria GX devices compute CRC
during configuration. The Arria GX device checks the computed-CRC against an
automatically computed CRC during normal operation. The CRC_ERROR pin reports
a soft error when configuration SRAM data is corrupted, triggering device
reconfiguration.
Custom-Built Circuitry
Dedicated circuitry is built into Arria GX devices to automatically perform error
detection. This circuitry constantly checks for errors in the configuration SRAM cells
while the device is in user mode. You can monitor one external pin for the error and
use it to trigger a reconfiguration cycle. You can select the desired time between
checks by adjusting a built-in clock divider.
Software Interface
Beginning with version 7.1 of the Quartus II software, you can turn on the automated
error detection CRC feature in the Device and Pin Options dialog box. This dialog
box allows you to enable the feature and set the internal frequency of the CRC
between 400 kHz to 50 MHz. This controls the rate that the CRC circuitry verifies the
internal configuration SRAM bits in the Arria GX FPGA.
fFor more information about CRC, refer to AN 357: Error Detection Using CRC in Altera
FPGAs.
Chapter 3: Configuration and Testing 3–9
Document Revision History
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Document Revision History
Table 3–5 lists the revision history for this chapter.
Table 35. Document Revision History
Date and Document Version Changes Made Summary of Changes
December 2009, v2.0 Document template update.
Minor text edits.
May 2009
v1.4
Removed “Temperature Sensing
Diode” section.
Updated Table 3–1 and Table 3–4.
May 2008
v1.3
Updated note in “Introduction
section.
Minor text edits.
August 2007
v1.2
Added the “Referenced Documents
section.
June 2007
v1.1
Deleted Signal Tap II information
from Table 3–1.
May 2007
v1.0
Initial Release
3–10 Chapter 3: Configuration and Testing
Document Revision History
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
4. DC and Switching Characteristics
Operating Conditions
Arria® GX devices are offered in both commercial and industrial grades. Both
commercial and industrial devices are offered in –6 speed grade only.
This chapter contains the following sections:
“Operating Conditions
“Power Consumption” on page 4–25
“I/O Timing Model” on page 4–26
“Typical Design Performance” on page 4–32
“Block Performance” on page 4–84
“IOE Programmable Delay” on page 4–86
“Maximum Input and Output Clock Toggle Rate” on page 4–87
“Duty Cycle Distortion” on page 4–95
“High-Speed I/O Specifications” on page 4–100
“PLL Timing Specifications” on page 4–103
“External Memory Interface Specifications” on page 4–105
“JTAG Timing Specifications” on page 4–106
Table 4–1 through Table 4–42 on page 4–25 provide information on absolute
maximum ratings, recommended operating conditions, DC electrical characteristics,
and other specifications for Arria GX devices.
Absolute Maximum Ratings
Table 4–1 contains the absolute maximum ratings for the Arria GX device family.
Table 41. Arria GX Device Absolute Maximum Ratings (Note 1), (2), (3) (Part 1 of 2)
Symbol Parameter Conditions Minimum Maximum Units
VCCINT Supply voltage With respect to ground 0.5 1.8 V
VCCIO Supply voltage With respect to ground 0.5 4.6 V
VCCPD Supply voltage With respect to ground 0.5 4.6 V
VIDC input voltage (4) —–0.54.6V
IOUT DC output current, per pin –25 40 mA
TSTG Storage temperature No bias –65 150 C
AGX51004-2.0
4–2 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Recommended Operating Conditions
Table 4–3 lists the recommended operating conditions for the Arria GX device family.
TJJunction temperature BGA packages under bias 55 125 C
Notes to Ta ble 41 :
(1) For more information about operating requirements for Altera® devices, refer to the Arria GX Device Family Data Sheet chapter.
(2) Conditions beyond those listed in Table 4–1 may cause permanent damage to a device. Additionally, device operation at the absolute maximum
ratings for extended periods of time may have adverse affects on the device.
(3) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.
(4) During transitions, the inputs may overshoot to the voltage shown in Table 4–2 based upon the input duty cycle. The DC case is equivalent to
100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
Table 41. Arria GX Device Absolute Maximum Ratings (Note 1), (2), (3) (Part 2 of 2)
Symbol Parameter Conditions Minimum Maximum Units
Table 42. Maximum Duty Cycles in Voltage Transitions (Note 1)
Symbol Parameter Condition Maximum Duty Cycles (%)
VI
Maximum duty cycles in
voltage transitions
VI = 4.0 V 100
VI= 4.1 V 90
VI = 4.2 V 50
VI = 4.3 V 30
VI = 4.4 V 17
VI = 4.5 V 10
Note to Tabl e 42 :
(1) During transition, the inputs may overshoot to the voltages shown based on the input duty cycle. The DC case is
equivalent to 100% duty cycle.
Table 43. Arria GX Device Recommended Operating Conditions (Part 1 of 2) (Note 1) (Part 1 of 2)
Symbol Parameter Conditions Minimum Maximum Units
VCCINT Supply voltage for internal
logic and input buffers
Rise time 100 ms (3) 1.15 1.25 V
VCCIO
Supply voltage for output
buffers, 3.3-V operation
Rise time 100 ms (3), (6) 3.135
(3.00)
3.465
(3.60)
V
Supply voltage for output
buffers, 2.5-V operation
Rise time 100 ms (3) 2.375 2.625 V
Supply voltage for output
buffers, 1.8-V operation
Rise time 100 ms (3) 1.71 1.89 V
Supply voltage for output
buffers, 1.5-V operation
Rise time 100 ms (3) 1.425 1.575 V
Supply voltage for output
buffers, 1.2-V operation
Rise time 100 ms (3) 1.15 1.25 V
VCCPD
Supply voltage for pre-drivers
as well as configuration and
JTAG I/O buffers.
100 s rise time 100 ms (4) 3.135 3.465 V
VI
Input voltage
(refer to Table 4 2)
(2), (5) –0.5 4.0 V
VOOutput voltage 0 VCCIO V
Chapter 4: DC and Switching Characteristics 4–3
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Transceiver Block Characteristics
Table 4–4 through Table 4–6 on page 4–4 contain transceiver block specifications.
TJOperating junction temperature For commercial use 0 85 C
For industrial use 40 100 C
Notes to Ta ble 43 :
(1) Supply voltage specifications apply to voltage readings taken at the device pins, not at the power supply.
(2) During transitions, the inputs may overshoot to the voltage shown in Table 4–2 based upon the input duty cycle. The DC case is equivalent to
100% duty cycle. During transitions, the inputs may undershoot to –2.0 V for input currents less than 100 mA and periods shorter than 20 ns.
(3) Maximum VCC rise time is 100 ms, and VCC must rise monotonically from ground to VCC.
(4) VCCPD must ramp-up from 0 V to 3.3 V within 100 s to 100 ms. If VCCPD is not ramped up within this specified time, the Arria GX device will
not configure successfully. If the system does not allow for a VCCPD ramp-up time of 100 ms or less, hold nCONFIG low until all power supplies
are reliable.
(5) All pins, including dedicated inputs, clock, I/O, and JTAG pins, can be driven before VCCINT, VCCPD, and VCCIO are powered.
(6) VCCIO maximum and minimum conditions for PCI and PCI-X are shown in parentheses.
Table 43. Arria GX Device Recommended Operating Conditions (Part 2 of 2) (Note 1) (Part 2 of 2)
Symbol Parameter Conditions Minimum Maximum Units
Table 44. Arria GX Transceiver Block Absolute Maximum Ratings (Note 1)
Symbol Parameter Conditions Minimum Maximum Units
VCCA Transceiver block supply voltage Commercial and industrial –0.5 4.6 V
VCCP Transceiver block supply voltage Commercial and industrial –0.5 1.8 V
VCCR Transceiver block supply voltage Commercial and industrial –0.5 1.8 V
VCCT_B Transceiver block supply voltage Commercial and industrial –0.5 1.8 V
VCCL_B Transceiver block supply voltage Commercial and industrial –0.5 1.8 V
VCCH_B Transceiver block supply voltage Commercial and industrial –0.5 2.4 V
Note to Tabl e 44 :
(1) The device can tolerate prolonged operation at this absolute maximum, as long as the maximum specification is not violated.
Table 45. Arria GX Transceiver Block Operating Conditions
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCA Transceiver block supply voltage Commercial and industrial 3.135 3.3 3.465 V
VCCP Transceiver block supply voltage Commercial and industrial 1.15 1.2 1.25 V
VCCR Transceiver block supply voltage Commercial and industrial 1.15 1.2 1.25 V
VCCT_B Transceiver block supply voltage Commercial and industrial 1.15 1.2 1.25 V
VCCL_B Transceiver block supply voltage Commercial and industrial 1.15 1.2 1.25 V
VCCH_B Transceiver block supply voltage Commercial and industrial 1.15 1.2 1.25 V
1.425 1.5 1.575 V
RREFB (1) Reference resistor Commercial and industrial 2K - 1% 2K 2K +1%
Note to Tabl e 45 :
(1) The DC signal on this pin must be as clean as possible. Ensure that no noise is coupled to this pin.
4–4 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 46. Arria GX Transceiver Block AC Specification (Part 1 of 3)
Symbol / Description Conditions
–6 Speed Grade Commercial and
Industrial Units
Min Typ Max
Reference clock
Input reference clock frequency 50 622.08 MHz
Absolute VMAX
for a REFCLK Pin 3.3 V
Absolute VMIN for a REFCLK Pin –0.3 V
Rise/Fall time 0.2 UI
Duty cycle 45 55 %
Peak to peak differential input voltage VID
(diff p-p)
200 2000 mV
Spread spectrum clocking (1) 0 to –0.5% 30 33 kHz
On-chip termination resistors 115 ± 20%
VICM (AC coupled) 1200 ± 5% mV
VICM (DC coupled) (2) PCI Express
(PIPE) mode
0.25 0.55 V
RREFB 2000 +/-1%
Transceiver Clocks
Calibration block clock frequency 10 125 MHz
Calibration block minimum power-down
pulse width —30ns
fixedclk clock frequency (3) 125 ±10% MHz
reconfig clock frequency SDI mode 2.5 50 MHz
Transceiver block minimum power-down
pulse width 100 ns
Receiver
Data rate 600 3125 Mbps
Absolute VMAX for a receiver pin (4) ——2.0V
Absolute VMIN for a receiver pin 0.4 V
Maximum peak-to-peak differential input
voltage VID (diff p-p)
Vicm = 0.85 V 3.3 V
Minimum peak-to-peak differential input
voltage VID (diff p-p)
DC Gain = 3 dB 160 mV
On-chip termination resistors 1015%
VICM (15)
Vicm = 0.85 V
setting
850 ± 10% 850 ± 10% 850 ± 10% mV
Vicm = 1.2 V
setting
1200 ±
10%
1200 ±
10%
1200 ±
10%
mV
Bandwidth at 3.125 Gbps
BW = Low 30
MHzBW = Med 40
BW = High 50
Chapter 4: DC and Switching Characteristics 4–5
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Bandwidth at 2.5 Gbps BW = Low 35
MHzBW = Med 50
BW = High 60
Return loss differential mode 50 MHz to 1.25
GHz
(PCI Express) –10 dB
100 MHz to 2.5
GHz (XAUI)
Return loss common mode 50 MHz to 1.25
GHz
(PCI Express) –6 dB
100 MHz to 2.5
GHz (XAUI)
Programmable PPM detector (5) ± 62.5, 100, 125, 200, 250, 300, 500,
1000
PPM
Run length (6) — 80UI
Programmable equalization 5 dB
Signal detect/loss threshold (7) 65 — 175 mV
CDR LTR TIme (8), (9) ——75 us
CDR Minimum T1b (9), (10) —15us
LTD lock time (9), (11) —01004000ns
Data lock time from rx_freqlocked (9),
(12) ——4us
Programmable DC gain 0, 3, 6 dB
Transmitter Buffer
Output Common Mode voltage (Vocm) 580 ± 10% mV
On-chip termination resistors 1010%
Return loss differential mode
50 MHz to 1.25
GHz (PCI Express) –10
dB
312 MHz to 625
MHz (XAUI)
625 MHz to
3.125GHz (XAUI) –10
Return loss common mode 50 MHz to 1.25
GHz (PCI Express) –6 dB
Rise time 35 65 ps
Fall time 35 65 ps
Intra differential pair skew VOD = 800 mV 15 ps
Intra-transceiver block skew 4) (13) 100 ps
Table 46. Arria GX Transceiver Block AC Specification (Part 2 of 3)
Symbol / Description Conditions
–6 Speed Grade Commercial and
Industrial Units
Min Typ Max
dB
decadeslope
-------------------------------------
4–6 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 4–1 shows the lock time parameters in manual mode. Figure 4–2 shows the
lock time parameters in automatic mode.
1LTD = Lock to data
LTR = Lock to reference clock
Transmitter PLL
VCO frequency range 500 1562.5 MHz
Bandwidth at 3.125 Gbps
BW = Low 3
MHzBW = Med 5
BW = High 9
Bandwidth at 2.5 Gbps
BW = Low 1
MHzBW = Med 2
BW = High 4
TX PLL lock time from gxb_powerdown
de-assertion (9), (14) 100 us
PCS
Interface speed per mode 25 156.25 MHz
Digital Reset Pulse Width Minimum is 2 parallel clock cycles
Notes to Ta ble 46 :
(1) Spread spectrum clocking is allowed only in PCI Express (PIPE) mode if the upstream transmitter and the receiver share the same clock source.
(2) The reference clock DC coupling option is only available in PCI Express (PIPE) mode for the HCSL I/O standard.
(3) The fixedclk is used in PIPE mode receiver detect circuitry.
(4) The device cannot tolerate prolonged operation at this absolute maximum.
(5) The rate matcher supports only up to ± 300 PPM for PIPE mode and ± 100 PPM for GIGE mode.
(6) This parameter is measured by embedding the run length data in a PRBS sequence.
(7) Signal detect threshold detector circuitry is available only in PCI Express (PIPE mode).
(8) Time taken for rx_pll_locked to go high from rx_analogreset deassertion. Refer to Figure 4–1.
(9) For lock times specific to the protocols, refer to protocol characterization documents.
(10) Time for which the CDR needs to stay in LTR mode after rx_pll_locked is asserted and before rx_locktodata is asserted in manual
mode. Refer to Figure 4–1.
(11) Time taken to recover valid data from GXB after the rx_locktodata signal is asserted in manual mode. Measurement results are based on
PRBS31, for native data rates only. Refer to Figure 4–1.
(12) Time taken to recover valid data from GXB after the rx_freqlocked signal goes high in automatic mode. Measurement results are based
on PRBS31, for native data rates only. Refer to Figure 4–2.
(13) This is applicable only to PCI Express (PIPE) ×4 and XAUI ×4 mode.
(14) Time taken to lock TX PLL from gxb_powerdown deassertion.
(15) The 1.2 V RX VICM settings is intended for DC-coupled LVDS links.
Table 46. Arria GX Transceiver Block AC Specification (Part 3 of 3)
Symbol / Description Conditions
–6 Speed Grade Commercial and
Industrial Units
Min Typ Max
Chapter 4: DC and Switching Characteristics 4–7
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 4–1. Lock Time Parameters for Manual Mode
Figure 4–2. Lock Time Parameters for Automatic Mode
LTR LTD
Invalid Data
Valid data
r x_locktodata
LTD lock time
CDR status
r x_dataout
rx_pll_locked
r x_analogreset
CDR LTR Time
CDR Minimum T1b
LTR LTD
Invalid data Valid data
rx_freqlocked
Data lock time from rx_freqlocked
r x_dataout
CDR status
4–8 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 4–3 and Figure 4–4 show differential receiver input and transmitter output
waveforms, respectively.
Table 4–7 lists the Arria GX transceiver block AC specification.
Figure 4–3. Receiver Input Waveform
Figure 4–4. Transmitter Output Waveform
Single-Ended Waveform
Differential Waveform VID (diff peak-peak) = 2 x VID (single-ended)
Positive Channel (p)
Negative Channel (n)
Ground
VID
VID
VID
p n = 0 V
VCM
Single-Ended Waveform
Differential Waveform VOD (diff peak-peak) = 2 x VOD (single-ended)
Positive Channel (p)
Negative Channel (n)
Ground
VOD
VOD
VOD
p n = 0 V
VCM
Table 47. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 1 of 4)
Description Condition
6 Speed Grade
Commercial &
Industrial
Units
XAUI Transmit Jitter Generation (4)
Total jitter at 3.125 Gbps
REFCLK = 156.25 MHz
Pattern = CJPAT
VOD = 1200 mV
No Pre-emphasis
0.3 UI
Chapter 4: DC and Switching Characteristics 4–9
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Deterministic jitter at 3.125 Gbps
REFCLK = 156.25 MHz
Pattern = CJPAT
VOD = 1200 mV
No Pre-emphasis
0.17 UI
XAUI Receiver Jitter Tolerance (4)
Total jitter
Pattern = CJPAT
No Equalization
DC Gain = 3 dB
> 0.65 UI
Deterministic jitter
Pattern = CJPAT
No Equalization
DC Gain = 3 dB
> 0.37 UI
Peak-to-peak jitter Jitter frequency = 22.1 KHz > 8.5 UI
Peak-to-peak jitter Jitter frequency = 1.875 MHz > 0.1 UI
Peak-to-peak jitter Jitter frequency = 20 MHz > 0.1 UI
PCI Express (PIPE) Transmitter Jitter Generation (5)
Total Transmitter Jitter Generation Compliance Pattern; VOD =800mV;
Pre-emphasis = 49% < 0.25 UI p-p
PCI Express (PIPE) Receiver Jitter Tolerance (5)
Total Receiver Jitter Tolerance Compliance Pattern;
DC Gain = 3 db > 0.6 UI p-p
Gigabit Ethernet (GIGE) Transmitter Jitter Generation (7)
Total Transmitter Jitter Generation (TJ) CRPAT: VOD = 800 mV;
Pre-emphasis = 0% < 0.279 UI p-p
Deterministic Transmitter Jitter
Generation (DJ)
CRPAT; VOD = 800 mV;
Pre-emphasis = 0% < 0.14 UI p-p
Gigabit Ethernet (GIGE) Receiver Jitter Tolerance
Total Ji tte r Tolerance CJPAT Compliance Pattern;
DC Gain = 0 dB > 0.66 UI p-p
Deterministic Jitter Tolerance CJPAT Compliance Pattern;
DC Gain = 0 dB > 0.4 UI p-p
Serial RapidIO (1.25 Gbps, 2.5 Gbps, and 3.125 Gbps) Transmitter Jitter Generation (6)
Total Transmitter Jitter Generation (TJ)
CJPAT Compliance Pattern;
VOD = 800 mV;
Pre-emphasis = 0%
< 0.35 UI p-p
Deterministic Transmitter Jitter
Generation (DJ)
CJPAT Compliance Pattern;
VOD = 800 mV;
Pre-emphasis = 0%
< 0.17 UI p-p
Table 47. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 2 of 4)
Description Condition
6 Speed Grade
Commercial &
Industrial
Units
4–10 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Serial RapidIO (1.25 Gbps, 2.5 Gbps, and 3.125 Gbps) Receiver Jitter Tolerance (6)
Total Ji tte r Tolerance CJPAT Compliance Pattern;
DC Gain = 0 dB > 0.65 UI p-p
Combined Deterministic and Random
Jitter Tolerance (JDR)
CJPAT Compliance Pattern;
DC Gain = 0 dB > 0.55 UI p-p
Deterministic Jitter Tolerance (JD)CJPAT Compliance Pattern;
DC Gain = 0 dB > 0.37 UI p-p
Sinusoidal Jitter Tolerance
Jitter Frequency = 22.1 KHz > 8.5 UI p-p
Jitter Frequency = 200 KHz > 1.0 UI p-p
Jitter Frequency = 1.875 MHz > 0.1 UI p-p
Jitter Frequency = 20 MHz > 0.1 UI p-p
SDI Transmitter Jitter Generation (8)
Alignment Jitter (peak-to-peak)
Data Rate = 1.485 Gbps (HD)
REFCLK = 74.25 MHz
Pattern = Color Bar
Vod = 800 mV
No Pre-emphasis
Low-Frequency Roll-Off = 100 KHz
0.2 UIv
Data Rate = 2.97 Gbps (3G)
REFCLK = 148.5 MHz
Pattern = Color Bar
Vod = 800 mV
No Pre-emphasis
Low-Frequency Roll-Off = 100 KHz
0.3 UI
Table 47. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 3 of 4)
Description Condition
6 Speed Grade
Commercial &
Industrial
Units
Chapter 4: DC and Switching Characteristics 4–11
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SDI Receiver Jitter Tolerance (8)
Sinusoidal Jitter Tolerance
(peak-to-peak)
Jitter Frequency = 15 KHz
Data Rate = 2.97 Gbps (3G)
REFCLK = 148.5 MHz
Pattern = Single Line
Scramble Color Bar
No Equalization
DC Gain = 0 dB
> 2 UI
Jitter Frequency = 100 KHz
Data Rate = 2.97 Gbps (3G)
REFCLK = 148.5 MHz
Pattern = Single Line Scramble Color Bar
No Equalization
DC Gain = 0 dB
> 0.3 UI
Jitter Frequency = 148.5 MHz
Data Rate = 2.97 Gbps (3G)
REFCLK = 148.5 MHz
Pattern = Single Line
Scramble Color Bar
No Equalization
DC Gain = 0 dB
> 0.3 UI
Sinusoidal Jitter Tolerance
(peak-to-peak)
Jitter Frequency = 20 KHz
Data Rate = 1.485 Gbps (HD)
REFCLK = 74.25 MHz
Pattern = 75% Color Bar
No Equalization
DC Gain = 0 dB
> 1 UI
Jitter Frequency = 100 KHz
Data Rate = 1.485 Gbps (HD)
REFCLK = 74.25 MHz
Pattern = 75% Color Bar
No Equalization
DC Gain = 0 dB
> 0.2 UI
Notes to Ta ble 47 :
(1) Dedicated REFCLK pins were used to drive the input reference clocks.
(2) Jitter numbers specified are valid for the stated conditions only.
(3) Refer to the protocol characterization documents for detailed information.
(4) The jitter numbers for XAUI are compliant to the IEEE802.3ae-2002 Specification.
(5) The jitter numbers for PCI Express are compliant to the PCIe Base Specification 2.0.
(6) The jitter numbers for Serial RapidIO are compliant to the RapidIO Specification 1.3.
(7) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.
(8) The HD-SDI and 3G-SDI jitter numbers are compliant to the SMPTE292M and SMPTE424M specifications.
Table 47. Arria GX Transceiver Block AC Specification (Note 1), (2), (3) (Part 4 of 4)
Description Condition
6 Speed Grade
Commercial &
Industrial
Units
4–12 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–8 and Table 4–9 list the transmitter and receiver PCS latency for each mode,
respectively.
Table 48. PCS Latency (Note 1)
Functional Mode Configuration
Transmitter PCS Latency
TX PIPE TX Phase
Comp FIFO
Byte
Serializer
TX State
Machine
8B/10B
Encoder Sum (2)
XAUI 2–3 1 0.5 0.5 4–5
PIPE
×1, ×4, ×8
8-bit channel width 1 3–4 1 1 6–7
×1, ×4, ×8
16-bit channel width 1 3–4 1 0.5 6–7
GIGE 2–3 1 1 4–5
Serial RapidIO 1.25 Gbps, 2.5 Gbps,
3.125 Gbps 2–3 1 0.5 4–5
SDI HD10-bit channel width 2–3 1 1 4–5
HD, 3G 20-bit channel width 2–3 1 0.5 4–5
BASIC Single
Width
8-bit/10-bit channel width 2–3 1 1 4–5
16-bit/20-bit channel width 2–3 1 0.5 4–5
Notes to Ta ble 48 :
(1) The latency numbers are with respect to the PLD-transceiver interface clock cycles.
(2) The total latency number is rounded off in the Sum column.
Table 49. PCS Latency (Part 1 of 2) (Part 1 of 2)
Functional Mode
Configuration
Receiver PCS Latency
Word Aligner
Deskew FIFO
Rate Matcher (3)
8B/10B Decoder
Receiver State Machine
Byte Deserializer
Byte Order
Receiver Phase Comp FIFO
Receiver PIPE
Sum (2)
XAUI 2–2.5 2–2.5 5.5–6.5 0.5 1 1 1 1–2 14–17
PIPE
×1, ×4
8-bit channel width 4–5 11–13 1 1 1 2–3 1 21–25
×1, ×4
16-bit channel width 2–2.5 5.5–6.5 0.5 1 1 2–3 1 13–16
GIGE 4–5 11–13 1 1 1 1–2 19–23
Serial
RapidIO
1.25 Gbps, 2.5 Gbps,
3.125 Gbps 2–2.5 0.5 1 1 1–2 6–7
SDI
HD 10-bit channel width 5 1 1 1 1–2 9–10
HD, 3G 20-bit channel
width 2.5 0.5 1 1 1–2 6–7
Chapter 4: DC and Switching Characteristics 4–13
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–10 through Table 4–13 show the typical VOD for data rates from 600 Mbps to
3.125 Gbps. The specification is for measurement at the package ball.
BASIC
Single
Width
8/10-bit channel width;
with Rate Matcher 4–5 11–13 1 1 1 1–2 1 19–23
8/10-bit channel width;
without Rate Matcher 4–5 1 1 1 1–2 8–10
16/20-bit channel width;
with Rate Matcher 2–2.5 5.5–6.5 0.5 1 1 1–2 11–14
16/20-bit channel width;
without Rate Matcher 2–2.5 0.5 1 1 1–2 6–7
Notes to Ta ble 49 :
(1) The latency numbers are with respect to the PLD-transceiver interface clock cycles.
(2) The total latency number is rounded off in the Sum column.
(3) The rate matcher latency shown is the steady state latency. Actual latency may vary depending on the skip ordered set gap allowed by the
protocol, actual PPM difference between the reference clocks, and so forth.
Table 49. PCS Latency (Part 2 of 2) (Part 2 of 2)
Functional Mode
Configuration
Receiver PCS Latency
Word Aligner
Deskew FIFO
Rate Matcher (3)
8B/10B Decoder
Receiver State Machine
Byte Deserializer
Byte Order
Receiver Phase Comp FIFO
Receiver PIPE
Sum (2)
Table 4–10. Typical VOD Setting, TX Term = 100
Vcc HTX = 1.5 V
VOD Setting (mV)
400 600 800 1000 1200
VOD Typical (mV) 430 625 830 1020 1200
Table 4–11. Typical VOD Setting, TX Term = 100 
Vcc HTX = 1.2 V
VOD Setting (mV)
320 480 640 800 960
VOD Typical (mV) 344 500 664 816 960
Table 4–12. Typical Pre-Emphasis (First Post-Tap), (Note 1)
Vcc HTX = 1.5 V First Post Tap Pre-Emphasis Level
VOD Setting (mV)12345
TX Term = 100
400 24% 62% 112% 184%
600 31% 56% 86% 122%
800 20% 35% 53% 73%
4–14 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
DC Electrical Characteristics
Table 4–14 lists the Arria GX device family DC electrical characteristics.
1000 23% 36% 49%
1200 17% 25% 35%
Note to Tabl e 41 2:
(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.
Table 4–13. Typical Pre-Emphasis (First Post-Tap), (Note 1)
Vcc
HTX = 1.2 V First Post Tap Pre-Emphasis Level
VOD Setting (mV) 1 2 3 4 5
TX Term = 100
320 24% 61% 114%
480 31% 55% 86% 121%
640 20% 35% 54% 72%
800 23% 36% 49%
960 18% 25% 35%
Note to Tabl e 41 3:
(1) Applicable to data rates from 600 Mbps to 3.125 Gbps. Specification is for measurement at the package ball.
Table 4–12. Typical Pre-Emphasis (First Post-Tap), (Note 1)
Vcc HTX = 1.5 V First Post Tap Pre-Emphasis Level
VOD Setting (mV)12345
Table 4–14. Arria GX Device DC Operating Conditions (Part 1 of 2) (Note 1)
Symbol Parameter Conditions Device Min Typ Max Units
IIInput pin leakage current VI = VCCIOmax to 0 V (2) All –10 10 A
IOZ
Tri-stated I/O pin leakage
current
VO = VCCIOmax to 0 V (2) All –10 10 A
ICCINT0
VCCINT supply current
(standby)
VI = ground, no load, no
toggling inputs
TJ = 25 °C
EP1AGX20/35 0.30 (3) A
EP1AGX50/60 0.50 (3) A
EP1AGX90 0.62 (3) A
ICCPD0
VCCPD supply current
(standby)
VI = ground, no load, no
toggling inputs
TJ = 25 °C,
VCCPD = 3.3V
EP1AGX20/35 2.7 (3) mA
EP1AGX50/60 3.6 (3) mA
EP1AGX90 4.3 (3) mA
ICCI00
VCCIO supply current
(standby)
VI = ground, no load, no
toggling inputs
TJ = 25 °C
EP1AGX20/35 4.0 (3) mA
EP1AGX50/60 4.0 (3) mA
EP1AGX90 4.0 (3) mA
Chapter 4: DC and Switching Characteristics 4–15
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
I/O Standard Specifications
Table 4–15 through Table 4–38 show the Arria GX device family I/O standard
specifications.
RCONF
(4)
Value of I/O pin pull-up
resistor before and during
configuration
Vi = 0, VCCIO = 3.3 V 10 25 50 k
Vi = 0, VCCIO = 2.5 V 15 35 70 k
Vi = 0, VCCIO = 1.8 V 30 50 100 k
Vi = 0, VCCIO = 1.5 V 40 75 150 k
Vi = 0, VCCIO = 1.2 V 50 90 170 k
Recommended value of
I/O pin external pull-down
resistor before and during
configuration
——12k
Notes to Ta ble 414 :
(1) Typical values are for TA = 25 °C, VCCINT = 1.2 V, and VCCIO = 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V.
(2) This value is specified for normal device operation. The value may vary during power-up. This applies for all VCCIO
settings (3.3, 2.5, 1.8, 1.5,
and 1.2 V).
(3) Maximum values depend on the actual TJ and design utilization. For maximum values, refer to the Excel-based PowerPlay Early Power Estimator
(available at PowerPlay Early Power Estimators (EPE) and Power Analyzer) or the Quartus®II PowerPlay Power Analyzer feature for maximum
values. For more information, refer to “Power Consumption” on page 4–25.
(4) Pin pull-up resistance values will be lower if an external source drives the pin higher than VCCIO.
Table 4–14. Arria GX Device DC Operating Conditions (Part 2 of 2) (Note 1)
Symbol Parameter Conditions Device Min Typ Max Units
Table 4–15. LVTTL Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO
(1) Output supply voltage 3.135 3.465 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage 0.3 0.8 V
VOH High-level output voltage IOH = –4 mA (2) 2.4 V
VOL Low-level output voltage IOL = 4 mA (2) —0.45V
Notes to Ta ble 415 :
(1) Arria GX devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B.
(2) This specification is supported across all the programmable drive strength settings available for this I/O standard.
Table 4–16. LVCMOS Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO
(1) Output supply voltage 3.135 3.465 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage –0.3 0.8 V
VOH High-level output voltage VCCIO = 3.0, IOH = –0.1 mA (2) VCCIO0.2 V
VOL Low-level output voltage VCCIO = 3.0, IOL = 0.1 mA (2) —0.2V
Notes to Ta ble 416 :
(1) Arria GX devices comply to the narrow range for the supply voltage as specified in the EIA/JEDEC Standard, JESD8-B.
(2) This specification is supported across all the programmable drive strength available for this I/O standard.
4–16 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 4–5 and Figure 4–6 show receiver input and transmitter output waveforms,
respectively, for all differential I/O standards (LVDS and LVPECL).
Table 4–17. 2.5-V I/O Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO
(1) Output supply voltage 2.375 2.625 V
VIH High-level input voltage 1.7 4.0 V
VIL Low-level input voltage –0.3 0.7 V
VOH High-level output voltage IOH = –1 mA (2) 2.0 V
VOL Low-level output voltage IOL = 1 mA (2) —0.4V
Notes to Ta ble 417 :
(1) The Arria GX device VCCIO voltage level support of 2.5 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.
(2) This specification is supported across all the programmable drive settings available for this I/O standard.
Table 4–18. 1.8-V I/O Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO
(1) Output supply voltage 1.71 1.89 V
VIH High-level input voltage 0.65 × VCC IO 2.25 V
VIL Low-level input voltage 0.3 0.35 × VCCIO V
VOH High-level output voltage IOH = –2 mA (2) VCCIO 0.45 V
VOL Low-level output voltage IOL = 2 mA (2) —0.45V
Notes to Ta ble 418 :
(1) The Arria GX device VCCIO voltage level support of 1.8 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.
(2) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in Arria GX Architecture
chapter.
Table 4–19. 1.5-V I/O Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO
(1) Output supply voltage 1.425 1.575 V
VIH High-level input voltage 0.65 VCCIO VCCIO + 0.3 V
VIL Low-level input voltage –0.3 0.35 VCCIO V
VOH High-level output voltage IOH = –2 mA (2) 0.75 VCCIO —V
VOL Low-level output voltage IOL = 2 mA (2) —0.25 V
CCIO V
Notes to Ta ble 419 :
(1) The Arria GX device VCCIO voltage level support of 1.5 to 5% is narrower than defined in the normal range of the EIA/JEDEC standard.
(2) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in the Arria GX
Architecture chapter.
Chapter 4: DC and Switching Characteristics 4–17
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 4–5. Receiver Input Waveforms for Differential I/O Standards
Figure 4–6. Transmitter Output Waveforms for Differential I/O Standards
Single-Ended Waveform
Differential Waveform
Positive Channel (p) = VIH
Negative Channel (n) = VIL
Ground
VID
VID
VID
p n = 0 V
VCM
VID (Peak-to-Peak)
Single-Ended Waveform
Differential Waveform
Positive Channel (p) = VOH
Negative Channel (n) = VOL
Ground
VOD
VOD
VOD
p n = 0 V
VCM
Table 4–20. 2.5-V LVDS I/O Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO I/O supply voltage for left and right I/O
banks (1, 2, 5, and 6) 2.375 2.5 2.625 V
VID Input differential voltage swing
(single-ended) 100 350 900 mV
VICM Input common mode voltage 200 1,250 1,800 mV
VOD Output differential voltage (single-ended) RL = 100 250 450 mV
VOCM Output common mode voltage RL = 100 1.125 1.375 V
RLReceiver differential input discrete
resistor (external to Arria GX devices) —90100110
4–18 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–21. 3.3-V LVDS I/O Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO
(1) I/O supply voltage for top and bottom
PLL banks (9, 10, 11, and 12)
3.135 3.3 3.465 V
VID Input differential voltage swing
(single-ended)
100 350 900 mV
VICM Input common mode voltage 200 1,250 1,800 mV
VOD Output differential voltage (single-ended) RL = 100 250 710 mV
VOCM Output common mode voltage RL = 100 840 1,570 mV
RLReceiver differential input discrete
resistor (external to Arria GX devices)
90 100 110
Note to Tabl e 42 1:
(1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by VCCINT
, not VCCIO. The PLL clock output/feedback
differential buffers are powered by VCC_PLL_OUT. For differential clock output/feedback operation, connect VCC_PLL_OUT to 3.3 V.
Table 4–22. 3.3-V PCML Specifications
Symbol Parameter Minimum Typical Maximum Units
VCCIO I/O supply voltage 3.135 3.3 3.465 V
VID Input differential voltage swing
(single-ended)
300 600 mV
VICM Input common mode voltage 1.5 3.465 V
VOD Output differential voltage (single-ended) 300 370 500 mV
VOD Change in VOD between high and low 50 mV
VOCM Output common mode voltage 2.5 2.85 3.3 V
VOCM Change in VOCM between high and low 50 mV
VTOutput termination voltage VCCIO —V
R1Output external pull-up resistors 45 50 55
R2Output external pull-up resistors 45 50 55
Table 4–23. LVPECL Specifications
Parameter Conditions Minimum Typical Maximum Units Parameter
VCCIO
(1) I/O supply voltage 3.135 3.3 3.465 V
VID
Input differential voltage swing
(single-ended) 300 600 1,000 mV
VICM Input common mode voltage 1.0 2.5 V
VOD
Output differential voltage
(single-ended) RL = 100 525 970 mV
VOCM Output common mode voltage RL = 100 1,650 2,250 mV
RLReceiver differential input resistor 90 100 110
Note to Tabl e 42 3:
(1) The top and bottom clock input differential buffers in I/O banks 3, 4, 7, and 8 are powered by VCCINT, not VCCIO. The PLL clock output/feedback
differential buffers are powered by VCC_PLL_OUT. For differential clock output/feedback operation, connect VCC_PLL_OUT to 3.3 V.
Chapter 4: DC and Switching Characteristics 4–19
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–24. 3.3-V PCI Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 3.0 3.3 3.6 V
VIH High-level input voltage 0.5 VCCIO —V
CCIO + 0.5 V
VIL Low-level input voltage –0.3 0.3 VCCIO V
VOH High-level output voltage IOUT = –500 A0.9 V
CCIO ——V
VOL Low-level output voltage IOUT = 1,500 A 0.1 VCCIO V
Table 4–25. PCI-X Mode 1 Specifications
Symbol Parameter Conditions Minimum Maximum Units
VCCIO Output supply voltage 3.0 3.6 V
VIH High-level input voltage 0.5 VCCIO VCCIO + 0.5 V
VIL Low-level input voltage –0.3 0.35 VCCIO V
VIPU Input pull-up voltage 0.7 VCCIO —V
VOH High-level output voltage IOUT = –500 A0.9 V
CCIO —V
VOL Low-level output voltage IOUT = 1,500 A 0.1 VCCIO V
Table 4–26. SSTL-18 Class I Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.71 1.8 1.89 V
VREF Reference voltage 0.855 0.9 0.945 V
VTT Termination voltage VREF0.04 VREF VREF + 0.04 V
VIH (DC) High-level DC input voltage VREF + 0.125 V
VIL (DC) Low-level DC input voltage VREF – 0.125 V
VIH (AC) High-level AC input voltage VREF + 0.25 V
VIL (AC) Low-level AC input voltage VREF 0.25 V
VOH High-level output voltage IOH = –6.7 mA (1) VTT + 0.475 V
VOL Low-level output voltage IOL = 6.7 mA (1) ——V
TT – 0.475 V
Note to Tabl e 42 6:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX
Architecture chapter.
Table 4–27. SSTL-18 Class II Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.71 1.8 1.89 V
VREF Reference voltage 0.855 0.9 0.945 V
VTT Termination voltage VREF 0.04 VREF VREF + 0.04 V
VIH (DC) High-level DC input voltage VREF + 0.125 V
VIL (DC) Low-level DC input voltage VREF 0.125 V
VIH (AC) High-level AC input voltage VREF + 0.25 V
VIL (AC) Low-level AC input voltage VREF – 0.25 V
4–20 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
VOH High-level output voltage IOH = –13.4 mA (1) VCCIO
0.28 V
VOL Low-level output voltage IOL = 13.4 mA (1) 0.28 V
Note to Tabl e 42 7:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX
Architecture chapter.
Table 4–28. SSTL-18 Class I & II Differential Specifications
Symbol Parameter Minimum Typical Maximum Units
VCCIO Output supply voltage 1.71 1.8 1.89 V
VSWING
(DC) DC differential input voltage 0.25 V
VX (AC) AC differential input cross point
voltage
(VCCIO/2) 0.175 (VCCIO/2) + 0.175 V
VSWING
(AC) AC differential input voltage 0.5 V
VISO Input clock signal offset voltage 0.5 VCCIO —V
VISO Input clock signal offset voltage
variation
— 200 mV
VOX (AC) AC differential cross point voltage (VCCIO/2) 0.125 (VCCIO/2) + 0.125 V
Table 4–29. SSTL-2 Class I Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 2.375 2.5 2.625 V
VTT Termination voltage VREF 0.04 VREF VREF + 0.04 V
VREF Reference voltage 1.188 1.25 1.313 V
VIH (DC) High-level DC input voltage VREF + 0.18 3.0 V
VIL (DC) Low-level DC input voltage –0.3 VREF 0.18 V
VIH (AC) High-level AC input voltage VREF + 0.35 V
VIL (AC) Low-level AC input voltage VREF 0.35 V
VOH High-level output voltage IOH = –8.1 mA
(1)
VTT + 0.57 V
VOL Low-level output voltage IOL = 8.1 mA (1) ——V
TT 0.57 V
Note to Tabl e 42 9:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture
chapter.
Table 4–30. SSTL-2 Class II Specifications (Part 1 of 2)
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 2.375 2.5 2.625 V
VTT Termination voltage VREF – 0.04 VREF VREF
+ 0.04 V
VREF Reference voltage 1.188 1.25 1.313 V
VIH (DC) High-level DC input
voltage
—V
REF + 0.18 VCCIO + 0.3 V
Table 4–27. SSTL-18 Class II Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
Chapter 4: DC and Switching Characteristics 4–21
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
VIL (DC) Low-level DC input
voltage
—–0.3V
REF – 0.18 V
VIH (AC) High-level AC input
voltage
—V
REF + 0.35 V
VIL (AC) Low-level AC input
voltage
——V
REF – 0.35 V
VOH High-level output voltage IOH = –16.4 mA (1) VTT + 0.76 V
VOL Low-level output voltage IOL = 16.4 mA (1) ——V
TT 0.76 V
Note to Tabl e 43 0:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture
chapter.
Table 4–31. SSTL-2 Class I & II Differential Specifications (Note 1)
Symbol Parameter Minimum Typical Maximum Units
VCCIO Output supply voltage 2.375 2.5 2.625 V
VSWING
(DC) DC differential input voltage 0.36 V
VX (AC) AC differential input cross point voltage (VCCIO
/2) – 0.2 (VCCIO/2) + 0.2 V
VSWING
(AC) AC differential input voltage 0.7 V
VISO Input clock signal offset voltage 0.5 VCCIO —V
VISO Input clock signal offset voltage
variation
— 200mV
VOX (AC) AC differential output cross point
voltage
(VCCIO
/2) – 0.2 (VCCIO/2) + 0.2 V
Note to Tabl e 43 1:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture
chapter.
Table 4–32. 1.2-V HSTL Specifications
Symbol Parameter Minimum Typical Maximum Units
VCCIO Output supply voltage 1.14 1.2 1.26 V
VREF Reference voltage 0.48 VCCIO 0.5 VCCIO 0.52 VCCIO V
VIH (DC) High-level DC input voltage VREF + 0.08 VCCIO + 0.15 V
VIL (DC) Low-level DC input voltage 0.15 VREF 0.08 V
VIH (AC) High-level AC input voltage VREF + 0.15 VCCIO + 0.24 V
VIL (AC) Low-level AC input voltage 0.24 VREF 0.15 V
VOH High-level output voltage VREF + 0.15 VCCIO + 0.15 V
VOL Low-level output voltage 0.15 VREF – 0.15 V
Table 4–30. SSTL-2 Class II Specifications (Part 2 of 2)
Symbol Parameter Conditions Minimum Typical Maximum Units
4–22 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–33. 1.5-V HSTL Class I Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.425 1.5 1.575 V
VREF Input reference voltage 0.713 0.75 0.788 V
VTT Termination voltage 0.713 0.75 0.788 V
VIH (DC) DC high-level input voltage VREF + 0.1 V
VIL (DC) DC low-level input voltage 0.3 VREF – 0.1 V
VIH (AC) AC high-level input voltage VREF + 0.2 V
VIL (AC) AC low-level input voltage VREF – 0.2 V
VOH High-level output voltage IOH = 8 mA (1) VCCIO – 0.4 V
VOL Low-level output voltage IOH = 8 mA (1) ——0.4V
Note to Tabl e 43 3:
(1) This specification is supported across all the programmable drive settings available for this I/O standard as shown in the Arria GX Architecture
chapter.
Table 4–34. 1.5-V HSTL Class II Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.425 1.50 1.575 V
VREF Input reference voltage 0.713 0.75 0.788 V
VTT Termination voltage 0.713 0.75 0.788 V
VIH (DC) DC high-level input voltage VREF + 0.1 V
VIL (DC) DC low-level input voltage –0.3 VREF – 0.1 V
VIH (AC) AC high-level input voltage VREF + 0.2 V
VIL (AC) AC low-level input voltage VREF – 0.2 V
VOH High-level output voltage IOH = 16 mA (1) VCCIO – 0.4 V
VOL Low-level output voltage IOH = –16 mA (1) ——0.4V
Note to Tabl e 43 4:
(1) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in the Arria GX Architecture
chapter.
Table 4–35. 1.5-V HSTL Class I & II Differential Specifications
Symbol Parameter Minimum Typical Maximum Units
VCCIO I/O supply voltage 1.425 1.5 1.575 V
VDIF (DC) DC input differential voltage 0.2 V
VCM
(DC) DC common mode input voltage 0.68 0.9 V
VDIF (AC) AC differential input voltage 0.4 V
VOX (AC) AC differential cross point
voltage
0.68 0.9 V
Chapter 4: DC and Switching Characteristics 4–23
Operating Conditions
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–36. 1.8-V HSTL Class I Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.71 1.80 1.89 V
VREF Input reference voltage 0.85 0.90 0.95 V
VTT Termination voltage 0.85 0.90 0.95 V
VIH (DC) DC high-level input voltage VREF + 0.1 V
VIL (DC) DC low-level input voltage 0.3 VREF0.1 V
VIH (AC) AC high-level input voltage VREF + 0.2 V
VIL (AC) AC low-level input voltage VREF0.2 V
VOH High-level output voltage IOH = 8 mA (1) VCCIO – 0.4 V
VOL Low-level output voltage IOH = –8 mA (1) ——0.4V
Note to Tabl e 43 6:
(1) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in the Arria GX Architecture
chapter.
Table 4–37. 1.8-V HSTL Class II Specifications
Symbol Parameter Conditions Minimum Typical Maximum Units
VCCIO Output supply voltage 1.71 1.80 1.89 V
VREF Input reference voltage 0.85 0.90 0.95 V
VTT Termination voltage 0.85 0.90 0.95 V
VIH (DC) DC high-level input voltage VREF + 0.1 V
VIL (DC) DC low-level input voltage 0.3 VREF – 0.1 V
VIH (AC) AC high-level input voltage VREF + 0.2 V
VIL (AC) AC low-level input voltage VREF – 0.2 V
VOH High-level output voltage IOH = 16 mA (1) VCCIO0.4 V
VOL Low-level output voltage IOH = –16 mA (1) ——0.4V
Note to Tabl e 43 7:
(1) This specification is supported across all the programmable drive settings available for this I/O standard, as shown in the Arria GX Architecture
chapter in volume 1 of the Arria GX Device Handbook.
Table 4–38. 1.8-V HSTL Class I & II Differential Specifications
Symbol Parameter Minimum Typical Maximum Units
VCCIO I/O supply voltage 1.71 1.80 1.89 V
VDIF (DC) DC input differential voltage 0.2 V
VCM
(DC) DC common mode input voltage 0.78 1.12 V
VDIF (AC) AC differential input voltage 0.4 V
VOX (AC) AC differential cross point voltage 0.68 0.9 V
4–24 Chapter 4: DC and Switching Characteristics
Operating Conditions
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Bus Hold Specifications
Table 4–39 shows the Arria GX device family bus hold specifications.
On-Chip Termination Specifications
Table 4–40 and Table 4–41 define the specification for internal termination resistance
tolerance when using series or differential on-chip termination.
Table 4–39. Bus Hold Parameters
Parameter Conditions
VCCIO Level
Units1.2 V1.5 V1.8 V2.5 V3.3 V
Min Max Min Max Min Max Min Max Min Max
Low
sustaining
current
VIN
> VIL
(maximum)
22.5 25 — 30 50 70 A
High
sustaining
current
VIN < VIH
(minimum)
–22.5 25 –30 50 70 A
Low overdrive
current
0 V
<VIN <V
CCIO
—120—160200—300—500A
High
overdrive
current
0 V <
VIN <V
CCIO
120 –160 200 300 –500 A
Bus-hold trip
point
0.45 0.95 0.5 1.0 0.68 1.07 0.7 1.7 0.8 2.0 V
Table 4–40. Series On-Chip Termination Specification for Top and Bottom I/O Banks
Symbol Description Conditions
Resistance Tolerance
Commercial
Max
Industrial
Max Units
25- RS 3.3/2.5 Internal series termination without
calibration (25- setting
VCCIO
= 3.3/2.5V ±30 ±30 %
50- RS 3.3/2.5 Internal series termination without
calibration (50- setting
VCCIO
= 3.3/2.5V ±30 ± 30 %
25- RS 1.8 Internal series termination without
calibration (25- setting
VCCIO = 1.8V ±30 ±30 %
50- RS 1.8 Internal series termination without
calibration (50- setting
VCCIO = 1.8V ±30 ±30 %
50- RS 1.5 Internal series termination without
calibration (50- setting
VCCIO = 1.5V ±36 ±36 %
50- RS 1.2 Internal series termination without
calibration (50- setting
VCCIO = 1.2V ±50 ±50 %
Chapter 4: DC and Switching Characteristics 4–25
Power Consumption
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Pin Capacitance
Table 4–42 shows the Arria GX device family pin capacitance.
Power Consumption
Altera offers two ways to calculate power for a design: the Excel-based PowerPlay
early power estimator power calculator and the Quartus II PowerPlay power analyzer
feature.
The interactive Excel-based PowerPlay Early Power Estimator is typically used prior
to designing the FPGA in order to get an estimate of device power. The Quartus II
PowerPlay Power Analyzer provides better quality estimates based on the specifics of
the design after place-and-route is complete. The power analyzer can apply a
combination of user-entered, simulation-derived and estimated signal activities
which, combined with detailed circuit models, can yield very accurate power
estimates.
In both cases, these calculations should only be used as an estimation of power, not as
a specification.
Table 4–41. Series On-Chip Termination Specification for Left I/O Banks
Symbol Description Conditions
Resistance Tolerance
Commercial
Max
Industrial
Max Units
25- RS 3.3/2.5 Internal series termination without
calibration (25- setting
VCCIO = 3.3/2.5V ±30 ±30 %
50- RS
3.3/2.5/1.8
Internal series termination without
calibration (50- setting
VCCIO
= 3.3/2.5/1.8V ±30 ±30 %
50- RS 1.5 Internal series termination without
calibration (50- setting
VCCIO
= 1.5V ±36 ±36 %
RDInternal differential termination for
LVDS (100- setting)
VCCIO
= 2.5V ±20 ±25 %
Table 4–42. Arria GX Device Capacitance (Note 1)
Symbol Parameter Typical Units
CIOTB Input capacitance on I/O pins in I/O banks 3, 4, 7, and 8. 5.0 pF
CIOL Input capacitance on I/O pins in I/O banks 1 and 2, including high-speed differential
receiver and transmitter pins.
6.1 pF
CCLKTB Input capacitance on top/bottom clock input pins: CLK[4..7] and CLK[12..15].6.0pF
CCLKL Input capacitance on left clock inputs: CLK0 and CLK2.6.1pF
CCLKL+ Input capacitance on left clock inputs: CLK1 and CLK3.3.3pF
COUTFB Input capacitance on dual-purpose clock output/feedback pins in PLL banks 11 and 12. 6.7 pF
Note to Tabl e 44 2:
(1) Capacitance is sample-tested only. Capacitance is measured using time-domain reflections (TDR). Measurement accuracy is within ±0.5 pF.
4–26 Chapter 4: DC and Switching Characteristics
I/O Timing Model
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
fFor more information about PowerPlay tools, refer to the PowerPlay Early Power
Estimator and PowerPlay Power Analyzer page and the PowerPlay Power Analysis chapter
in volume 3 of the Quartus II Handbook.
For typical ICC standby specifications, refer to Table 4–14 on page 4–14 .
I/O Timing Model
The DirectDrive technology and MultiTrack interconnect ensures predictable
performance, accurate simulation, and accurate timing analysis across all Arria GX
device densities and speed grades. This section describes and specifies the
performance of I/Os.
All specifications are representative of worst-case supply voltage and junction
temperature conditions.
1The timing numbers listed in the tables of this section are extracted from the
Quartus II software version 7.1.
Preliminary, Correlated, and Final Timing
Timing models can have either preliminary, correlated, or final status. The Quartus II
software issues an informational message during design compilation if the timing
models are preliminary. Table 4–43 lists the status of the Arria GX device timing
models.
Preliminary status means the timing model is subject to change. Initially, timing
numbers are created using simulation results, process data, and other known
parameters. These tests are used to make the preliminary numbers as close to the
actual timing parameters as possible.
Correlated numbers are based on actual device operation and testing. These
numbers reflect the actual performance of the device under worst-case voltage and
junction temperature conditions.
Final timing numbers are based on complete correlation to actual devices and
addressing any minor deviations from the correlated timing model. When the
timing models are final, all or most of the Arria GX family devices have been
completely characterized and no further changes to the timing model are
expected.
Table 4–43. Arria GX Device Timing Model Status
Device Preliminary Correlated Final
EP1AGX20 v
EP1AGX35 v
EP1AGX50 v
EP1AGX60 v
EP1AGX90 v
Chapter 4: DC and Switching Characteristics 4–27
I/O Timing Model
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
I/O Timing Measurement Methodology
Different I/O standards require different baseline loading techniques for reporting
timing delays. Altera characterizes timing delays with the required termination for
each I/O standard and with 0 pF (except for PCI and PCI-X which use 10 pF) loading
and the timing is specified up to the output pin of the FPGA device. The Quartus II
software calculates the I/O timing for each I/O standard with a default baseline
loading as specified by the I/O standards.
The following measurements are made during device characterization. Altera
measures clock-to-output delays (tCO) at worst-case process, minimum voltage, and
maximum temperature (PVT) for default loading conditions shown in Table 4–44.
Use the following equations to calculate clock pin to output pin timing for Arria GX
devices:
Simulation using IBIS models is required to determine the delays on the PCB traces in
addition to the output pin delay timing reported by the Quartus II software and the
timing model in the device handbook.
1. Simulate the output driver of choice into the generalized test setup, using values
from Table 4–44.
2. Record the time to VMEAS.
3. Simulate the output driver of choice into the actual PCB trace and load, using the
appropriate IBIS model or capacitance value to represent the load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. The increase or decrease in delay should be
added to or subtracted from the I/O Standard Output Adder delays to yield the
actual worst-case propagation delay (clock-to-output) of the PCB trace.
The Quartus II software reports the timing with the conditions shown in Table 4–44
using the above equation. Figure 4–7 shows the model of the circuit that is
represented by the output timing of the Quartus II software.
Equation 4–1.
tCO from clock pin to I/O pin = delay from clock pad to I/O output
register + IOE output register clock-to-output delay + delay
from output register to output pin + I/O output delay
txz/tzx from clock pin to I/O pin = delay from clock pad to I/O
output register + IOE output register clock-to-output delay +
delay from output register to output pin + I/O output delay +
output enable pin delay
4–28 Chapter 4: DC and Switching Characteristics
I/O Timing Model
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Figure 4–7. Output Delay Timing Reporting Setup Modeled by Quartus II
Notes to Figure 4–7:
(1) Output pin timing is reported at the output pin of the FPGA device. Additional delays for loading and board trace delay
need to be accounted for with IBIS model simulations.
(2) VCCPD is 3.085 V unless otherwise specified.
(3) VCCINT is 1.12 V unless otherwise specified.
Output
Buffer
VTT
VCCIO
RD
Outputn
Outputp
RT
CL
RS
VMEAS
Output
GND GND
Table 4–44. Output Timing Measurement Methodology for Output Pins (Note 1), (2), (3)
I/O Standard
Loading and Termination Measurement
Point
RS () R
D ()R
T ()VCCIO
(V) VTT (V) CL (pF) VMEAS (V)
LVTTL (4) 3.135 0 1.5675
LVCMOS (4) 3.135 0 1.5675
2.5 V (4) 2.375 0 1.1875
1.8 V (4) 1.710 0 0.855
1.5 V (4) 1.425 0 0.7125
PCI (5) ——2.970—10 1.485
PCI-X (5) ——2.970—10 1.485
SSTL-2 Class I 25 50 2.325 1.123 0 1.1625
SSTL-2 Class II 25 25 2.325 1.123 0 1.1625
SSTL-18 Class I 25 50 1.660 0.790 0 0.83
SSTL-18 Class II 25 25 1.660 0.790 0 0.83
1.8-V HSTL Class I 50 1.660 0.790 0 0.83
1.8-V HSTL Class II 25 1.660 0.790 0 0.83
1.5-V HSTL Class I 50 1.375 0.648 0 0.6875
1.5-V HSTL Class II 25 1.375 0.648 0 0.6875
1.2-V HSTL with OCT 1.140 0 0.570
Differential SSTL-2 Class I 25 50 2.325 1.123 0 1.1625
Differential SSTL-2 Class II 25 25 2.325 1.123 0 1.1625
Differential SSTL-18 Class I 50 50 1.660 0.790 0 0.83
Differential SSTL-18 Class II 25 25 1.660 0.790 0 0.83
1.5-V differential HSTL Class I 50 1.375 0.648 0 0.6875
1.5-V differential HSTL Class II 25 1.375 0.648 0 0.6875
1.8-V differential HSTL Class I 50 1.660 0.790 0 0.83
Chapter 4: DC and Switching Characteristics 4–29
I/O Timing Model
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Figure 4–8 and Figure 4–9 show the measurement setup for output disable and output
enable timing.
1.8-V differential HSTL Class II 25 1.660 0.790 0 0.83
LVDS — 100 2.325 0 1.1625
LVPECL 100 3.135 0 1.5675
Notes to Ta ble 444 :
(1) Input measurement point at internal node is 0.5 VCCINT.
(2) Output measuring point for VME AS at buffer output is 0.5 VCCIO.
(3) Input stimulus edge rate is 0 to VCC in 0.2 ns (internal signal) from the driver preceding the I/O buffer.
(4) Less than 50-mV ripple on VCCIO and VCCPD, VCC INT = 1.15 V with less than 30-mV ripple.
(5) VCCPD = 2.97 V, less than 50-mV ripple on VCCIO and VCC PD, VCCINT = 1.15 V.
Table 4–44. Output Timing Measurement Methodology for Output Pins (Note 1), (2), (3)
I/O Standard
Loading and Termination Measurement
Point
RS () R
D ()R
T ()VCCIO
(V) VTT (V) CL (pF) VMEAS (V)
Figure 4–8. Measurement Setup for txz (Note 1)
Note to Figure 4–8:
(1) VCCINT is 1.12 V for this measurement.
tXZ, Driving High to Tristate
tXZ, Driving Low to Tristate
100 Ω
Din
OE
Dout
VCCIO
OE
Enable Disable
Dout
Din
tlz
100 mv
½ VCCINT
“0”
100 Ω
Din
OE
DoutOE
Enable Disable
Dout
Din
thz
100 mv
½ VCCINT
“1”
GND
4–30 Chapter 4: DC and Switching Characteristics
I/O Timing Model
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–45 specifies the input timing measurement setup.
Figure 4–9. Measurement Setup for tzx
tZX, Tristate to Driving High
tZX, Tristate to Driving Low
1 MΩ
Din
OE
Dout
1 MΩ
Din
OE
DoutOE
Disable Enable
Dout
Din
tzh
½ VCCINT
“1”
½ VCCIO
OE
Disable Enable
Dout
Din
½ VCCINT
“0”
tzl ½ VCCIO
Table 4–45. Timing Measurement Methodology for Input Pins (Note 1), (2), (3), (4) (Part 1 of 2)
I/O Standard
Measurement Conditions Measurement Point
VCCIO (V) VREF (V) Edge Rate (ns) VMEAS (V)
LVTTL (5) 3.135 3.135 1.5675
LVCMOS (5) 3.135 3.135 1.5675
2.5 V (5) 2.375 2.375 1.1875
1.8 V (5) 1.710 1.710 0.855
1.5 V (5) 1.425 1.425 0.7125
PCI (6) 2.970 2.970 1.485
PCI-X (6) 2.970 2.970 1.485
SSTL-2 Class I 2.325 1.163 2.325 1.1625
SSTL-2 Class II 2.325 1.163 2.325 1.1625
SSTL-18 Class I 1.660 0.830 1.660 0.83
SSTL-18 Class II 1.660 0.830 1.660 0.83
1.8-V HSTL Class I 1.660 0.830 1.660 0.83
1.8-V HSTL Class II 1.660 0.830 1.660 0.83
1.5-V HSTL Class I 1.375 0.688 1.375 0.6875
1.5-V HSTL Class II 1.375 0.688 1.375 0.6875
1.2-V HSTL with OCT 1.140 0.570 1.140 0.570
Differential SSTL-2 Class I 2.325 1.163 2.325 1.1625
Differential SSTL-2 Class II 2.325 1.163 2.325 1.1625
Differential SSTL-18 Class I 1.660 0.830 1.660 0.83
Chapter 4: DC and Switching Characteristics 4–31
I/O Timing Model
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Clock Network Skew Adders
The Quartus II software models skew within dedicated clock networks such as global
and regional clocks. Therefore, the intra-clock network skew adder is not specified.
Table 4–46 specifies the intra clock skew between any two clock networks driving any
registers in the Arria GX device.
Default Capacitive Loading of Different I/O Standards
See Table 4–47 for default capacitive loading of different I/O standards.
Differential SSTL-18 Class II 1.660 0.830 1.660 0.83
1.5-V differential HSTL Class I 1.375 0.688 1.375 0.6875
1.5-V differential HSTL Class II 1.375 0.688 1.375 0.6875
1.8-V differential HSTL Class I 1.660 0.830 1.660 0.83
1.8-V differential HSTL Class II 1.660 0.830 1.660 0.83
LVDS 2.325 0.100 1.1625
LVPECL 3.135 0.100 1.5675
Notes to Ta ble 445 :
(1) Input buffer sees no load at buffer input.
(2) Input measuring point at buffer input is 0.5 VCCIO.
(3) Output measuring point is 0.5 VCC at internal node.
(4) Input edge rate is 1 V/ns.
(5) Less than 50-mV ripple on VCCIO and VCCPD, VCC INT = 1.15 V with less than 30-mV ripple.
(6) VCCPD = 2.97 V, less than 50-mV ripple on VCCIO and VCCPD, VCCINT = 1.15 V.
Table 4–45. Timing Measurement Methodology for Input Pins (Note 1), (2), (3), (4) (Part 2 of 2)
I/O Standard
Measurement Conditions Measurement Point
VCCIO (V) VREF (V) Edge Rate (ns) VMEAS (V)
Table 4–46. Clock Network Specifications
Name Description Min Typ Max Units
Clock skew adder
EP1AGX20/35 (1)
Inter-clock network, same side ± 50 ps
Inter-clock network, entire chip ± 100 ps
Clock skew adder
EP1AGX50/60 (1)
Inter-clock network, same side ± 50 ps
Inter-clock network, entire chip ± 100 ps
Clock skew adder
EP1AGX90 (1)
Inter-clock network, same side ± 55 ps
Inter-clock network, entire chip ± 110 ps
Note to Tabl e 44 6:
(1) This is in addition to intra-clock network skew, which is modeled in the Quartus II software.
Table 4–47. Default Loading of Different I/O Standards for Arria GX Devices (Part 1 of 2)
I/O Standard Capacitive Load Units
LVTTL 0 pF
LVCMOS 0 pF
2.5 V 0 pF
4–32 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Typical Design Performance
The following section describes the typical design performance for the Arria GX
device family.
User I/O Pin Timing
Table 4–48 through Table 4–77 show user I/O pin timing for Arria GX devices. I/O
buffer tSU, tH, and tCO are reported for the cases when I/O clock is driven by a
non-PLL global clock (GCLK) and a PLL driven global clock (GCLK-PLL). For tSU, tH,
and tCO using regional clock, add the value from the adder tables listed for each device
to the GCLK/GCLK-PLL values for the device.
EP1AGX20 I/O Timing Parameters
Table 4–48 through Table 4–51 show the maximum I/O timing parameters for
EP1AGX20 devices for I/O standards which support general purpose I/O pins.
Table 4–48 describes the row pin delay adders when using the regional clock in
Arria GX devices.
1.8 V 0 pF
1.5 V 0 pF
PCI 10 pF
PCI-X 10 pF
SSTL-2 Class I 0 pF
SSTL-2 Class II 0 pF
SSTL-18 Class I 0 pF
SSTL-18 Class II 0 pF
1.5-V HSTL Class I 0 pF
1.5-V HSTL Class II 0 pF
1.8-V HSTL Class I 0 pF
1.8-V HSTL Class II 0 pF
Differential SSTL-2 Class I 0 pF
Differential SSTL-2 Class II 0 pF
Differential SSTL-18 Class I 0 pF
Differential SSTL-18 Class II 0 pF
1.5-V differential HSTL Class I 0 pF
1.5-V differential HSTL Class II 0 pF
1.8-V differential HSTL Class I 0 pF
1.8-V differential HSTL Class II 0 pF
LVDS 0 pF
Table 4–47. Default Loading of Different I/O Standards for Arria GX Devices (Part 2 of 2)
I/O Standard Capacitive Load Units
Chapter 4: DC and Switching Characteristics 4–33
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–49 describes I/O timing specifications.
Table 4–48. EP1AGX20 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
RCLK input
adder
0.117 0.117 0.273 ns
RCLK PLL
input adder
0.011 0.011 0.019 ns
RCLK output
adder
0.117 0.117 –0.273 ns
RCLK PLL
output adder
0.011 0.011 –0.019 ns
Table 4–49. EP1AGX20 Column Pins Input Timing Parameters (Part 1 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.251 1.251 2.915 ns
tH1.146 –1.146 –2.638 ns
GCLK PLL tSU 2.693 2.693 6.021 ns
tH2.588 –2.588 –5.744 ns
3.3-V LVCMOS
GCLK tSU 1.251 1.251 2.915 ns
tH1.146 –1.146 –2.638 ns
GCLK PLL tSU 2.693 2.693 6.021 ns
tH2.588 –2.588 –5.744 ns
2.5 V
GCLK tSU 1.261 1.261 2.897 ns
tH1.156 –1.156 –2.620 ns
GCLK PLL tSU 2.703 2.703 6.003 ns
tH2.598 –2.598 –5.726 ns
1.8 V
GCLK tSU 1.327 1.327 3.107 ns
tH1.222 –1.222 –2.830 ns
GCLK PLL tSU 2.769 2.769 6.213 ns
tH2.664 –2.664 –5.936 ns
1.5 V
GCLK tSU 1.330 1.330 3.200 ns
tH1.225 –1.225 –2.923 ns
GCLK PLL tSU 2.772 2.772 6.306 ns
tH2.667 –2.667 –6.029 ns
SSTL-2 CLASS I
GCLK tSU 1.075 1.075 2.372 ns
tH0.970 –0.970 –2.095 ns
GCLK PLL tSU 2.517 2.517 5.480 ns
tH2.412 –2.412 –5.203 ns
4–34 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-2 CLASS II
GCLK tSU 1.075 1.075 2.372 ns
tH0.970 –0.970 –2.095 ns
GCLK PLL tSU 2.517 2.517 5.480 ns
tH2.412 –2.412 –5.203 ns
SSTL-18 CLASS I
GCLK tSU 1.113 1.113 2.479 ns
tH1.008 –1.008 –2.202 ns
GCLK PLL tSU 2.555 2.555 5.585 ns
tH2.450 –2.450 –5.308 ns
SSTL-18 CLASS II
GCLK tSU 1.114 1.114 2.479 ns
tH1.009 –1.009 –2.202 ns
GCLK PLL tSU 2.556 2.556 5.587 ns
tH2.451 –2.451 –5.310 ns
1.8-V HSTL CLASS I
GCLK tSU 1.113 1.113 2.479 ns
tH1.008 –1.008 –2.202 ns
GCLK PLL tSU 2.555 2.555 5.585 ns
tH2.450 –2.450 –5.308 ns
1.8-V HSTL CLASS II
GCLK tSU 1.114 1.114 2.479 ns
tH1.009 –1.009 –2.202 ns
GCLK PLL tSU 2.556 2.556 5.587 ns
tH2.451 –2.451 –5.310 ns
1.5-V HSTL CLASS I
GCLK tSU 1.131 1.131 2.607 ns
tH1.026 –1.026 –2.330 ns
GCLK PLL tSU 2.573 2.573 5.713 ns
tH2.468 –2.468 –5.436 ns
1.5-V HSTL CLASS II
GCLK tSU 1.132 1.132 2.607 ns
tH1.027 –1.027 –2.330 ns
GCLK PLL tSU 2.574 2.574 5.715 ns
tH2.469 –2.469 –5.438 ns
3.3-V PCI
GCLK tSU 1.256 1.256 2.903 ns
tH1.151 –1.151 –2.626 ns
GCLK PLL tSU 2.698 2.698 6.009 ns
tH2.593 –2.593 –5.732 ns
3.3-V PCI-X
GCLK tSU 1.256 1.256 2.903 ns
tH1.151 –1.151 –2.626 ns
GCLK PLL tSU 2.698 2.698 6.009 ns
tH2.593 –2.593 –5.732 ns
Table 4–49. EP1AGX20 Column Pins Input Timing Parameters (Part 2 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–35
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–50 describes I/O timing specifications.
LVDS
GCLK tSU 1.106 1.106 2.489 ns
tH1.001 –1.001 –2.212 ns
GCLK PLL tSU 2.530 2.530 5.564 ns
tH2.425 –2.425 –5.287 ns
Table 4–49. EP1AGX20 Column Pins Input Timing Parameters (Part 3 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
Table 4–50. EP1AGX20 Row Pins output Timing Parameters (Part 1 of 2)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.904 2.904 6.699 ns
GCLK PLL tCO 1.485 1.485 3.627 ns
3.3-V LVTTL 8 mA GCLK tCO 2.776 2.776 6.059 ns
GCLK PLL tCO 1.357 1.357 2.987 ns
3.3-V LVTTL 12 mA GCLK tCO 2.720 2.720 6.022 ns
GCLK PLL tCO 1.301 1.301 2.950 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.776 2.776 6.059 ns
GCLK PLL tCO 1.357 1.357 2.987 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.670 2.670 5.753 ns
GCLK PLL tCO 1.251 1.251 2.681 ns
2.5 V 4 mA GCLK tCO 2.759 2.759 6.033 ns
GCLK PLL tCO 1.340 1.340 2.961 ns
2.5 V 8 mA GCLK tCO 2.656 2.656 5.775 ns
GCLK PLL tCO 1.237 1.237 2.703 ns
2.5 V 12 mA GCLK tCO 2.637 2.637 5.661 ns
GCLK PLL tCO 1.218 1.218 2.589 ns
1.8 V 2 mA GCLK tCO 2.829 2.829 7.052 ns
GCLK PLL tCO 1.410 1.410 3.980 ns
1.8 V 4 mA GCLK tCO 2.818 2.818 6.273 ns
GCLK PLL tCO 1.399 1.399 3.201 ns
1.8 V 6 mA GCLK tCO 2.707 2.707 5.972 ns
GCLK PLL tCO 1.288 1.288 2.900 ns
1.8 V 8 mA GCLK tCO 2.676 2.676 5.858 ns
GCLK PLL tCO 1.257 1.257 2.786 ns
1.5 V 2 mA GCLK tCO 2.789 2.789 6.551 ns
GCLK PLL tCO 1.370 1.370 3.479 ns
1.5 V 4 mA GCLK tCO 2.682 2.682 5.950 ns
GCLK PLL tCO 1.263 1.263 2.878 ns
4–36 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-2
CLASS I
8 mA GCLK tCO 2.626 2.626 5.614 ns
GCLK PLL tCO 1.207 1.207 2.542 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.602 2.602 5.538 ns
GCLK PLL tCO 1.183 1.183 2.466 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.568 2.568 5.407 ns
GCLK PLL tCO 1.149 1.149 2.335 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.614 2.614 5.556 ns
GCLK PLL tCO 1.195 1.195 2.484 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.618 2.618 5.485 ns
GCLK PLL tCO 1.199 1.199 2.413 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.594 2.594 5.468 ns
GCLK PLL tCO 1.175 1.175 2.396 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.597 2.597 5.447 ns
GCLK PLL tCO 1.178 1.178 2.375 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.595 2.595 5.466 ns
GCLK PLL tCO 1.176 1.176 2.394 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.598 2.598 5.430 ns
GCLK PLL tCO 1.179 1.179 2.358 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.580 2.580 5.426 ns
GCLK PLL tCO 1.161 1.161 2.354 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.584 2.584 5.415 ns
GCLK PLL tCO 1.165 1.165 2.343 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.575 2.575 5.414 ns
GCLK PLL tCO 1.156 1.156 2.342 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.594 2.594 5.443 ns
GCLK PLL tCO 1.175 1.175 2.371 ns
1.5-V HSTL
CLASS I
6 mA GCLK tCO 2.597 2.597 5.429 ns
GCLK PLL tCO 1.178 1.178 2.357 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.582 2.582 5.421 ns
GCLK PLL tCO 1.163 1.163 2.349 ns
LVDS GCLK tCO 2.654 2.654 5.613 ns
GCLK PLL tCO 1.226 1.226 2.530 ns
Table 4–50. EP1AGX20 Row Pins output Timing Parameters (Part 2 of 2)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–37
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–51 describes I/O timing specifications.
Table 4–51. EP1AGX20 Column Pins Output Timing Parameters (Part 1 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.909 2.909 6.541 ns
GCLK PLL tCO 1.467 1.467 3.435 ns
3.3-V LVTTL 8 mA GCLK tCO 2.764 2.764 6.169 ns
GCLK PLL tCO 1.322 1.322 3.063 ns
3.3-V LVTTL 12 mA GCLK tCO 2.697 2.697 6.169 ns
GCLK PLL tCO 1.255 1.255 3.063 ns
3.3-V LVTTL 16 mA GCLK tCO 2.671 2.671 6.000 ns
GCLK PLL tCO 1.229 1.229 2.894 ns
3.3-V LVTTL 20 mA GCLK tCO 2.649 2.649 5.875 ns
GCLK PLL tCO 1.207 1.207 2.769 ns
3.3-V LVTTL 24 mA GCLK tCO 2.642 2.642 5.877 ns
GCLK PLL tCO 1.200 1.200 2.771 ns
3.3-V
LVCMOS 4mA GCLK tCO 2.764 2.764 6.169 ns
GCLK PLL tCO 1.322 1.322 3.063 ns
3.3-V
LVCMOS 8mA GCLK tCO 2.672 2.672 5.874 ns
GCLK PLL tCO 1.230 1.230 2.768 ns
3.3-V
LVCMOS 12 mA GCLK tCO 2.644 2.644 5.796 ns
GCLK PLL tCO 1.202 1.202 2.690 ns
3.3-V
LVCMOS 16 mA GCLK tCO 2.651 2.651 5.764 ns
GCLK PLL tCO 1.209 1.209 2.658 ns
3.3-V
LVCMOS 20 mA GCLK tCO 2.638 2.638 5.746 ns
GCLK PLL tCO 1.196 1.196 2.640 ns
3.3-V
LVCMOS 24 mA GCLK tCO 2.627 2.627 5.724 ns
GCLK PLL tCO 1.185 1.185 2.618 ns
2.5 V 4 mA GCLK tCO 2.726 2.726 6.201 ns
GCLK PLL tCO 1.284 1.284 3.095 ns
2.5 V 8 mA GCLK tCO 2.674 2.674 5.939 ns
GCLK PLL tCO 1.232 1.232 2.833 ns
2.5 V 12 mA GCLK tCO 2.653 2.653 5.822 ns
GCLK PLL tCO 1.211 1.211 2.716 ns
2.5 V 16 mA GCLK tCO 2.635 2.635 5.748 ns
GCLK PLL tCO 1.193 1.193 2.642 ns
1.8 V 2 mA GCLK tCO 2.766 2.766 7.193 ns
GCLK PLL tCO 1.324 1.324 4.087 ns
1.8 V 4 mA GCLK tCO 2.771 2.771 6.419 ns
GCLK PLL tCO 1.329 1.329 3.313 ns
4–38 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
1.8 V 6 mA GCLK tCO 2.695 2.695 6.155 ns
GCLK PLL tCO 1.253 1.253 3.049 ns
1.8 V 8 mA GCLK tCO 2.697 2.697 6.064 ns
GCLK PLL tCO 1.255 1.255 2.958 ns
1.8 V 10 mA GCLK tCO 2.651 2.651 5.987 ns
GCLK PLL tCO 1.209 1.209 2.881 ns
1.8 V 12 mA GCLK tCO 2.652 2.652 5.930 ns
GCLK PLL tCO 1.210 1.210 2.824 ns
1.5 V 2 mA GCLK tCO 2.746 2.746 6.723 ns
GCLK PLL tCO 1.304 1.304 3.617 ns
1.5 V 4 mA GCLK tCO 2.682 2.682 6.154 ns
GCLK PLL tCO 1.240 1.240 3.048 ns
1.5 V 6 mA GCLK tCO 2.685 2.685 6.036 ns
GCLK PLL tCO 1.243 1.243 2.930 ns
1.5 V 8 mA GCLK tCO 2.644 2.644 5.983 ns
GCLK PLL tCO 1.202 1.202 2.877 ns
SSTL-2
CLASS I 8mA GCLK tCO 2.629 2.629 5.762 ns
GCLK PLL tCO 1.184 1.184 2.650 ns
SSTL-2
CLASS I 12 mA GCLK tCO 2.612 2.612 5.712 ns
GCLK PLL tCO 1.167 1.167 2.600 ns
SSTL-2
CLASS II 16 mA GCLK tCO 2.590 2.590 5.639 ns
GCLK PLL tCO 1.145 1.145 2.527 ns
SSTL-2
CLASS II 20 mA GCLK tCO 2.591 2.591 5.626 ns
GCLK PLL tCO 1.146 1.146 2.514 ns
SSTL-2
CLASS II 24 mA GCLK tCO 2.587 2.587 5.624 ns
GCLK PLL tCO 1.142 1.142 2.512 ns
SSTL-18
CLASS I 4mA GCLK tCO 2.626 2.626 5.733 ns
GCLK PLL tCO 1.184 1.184 2.627 ns
SSTL-18
CLASS I 6mA GCLK tCO 2.630 2.630 5.694 ns
GCLK PLL tCO 1.185 1.185 2.582 ns
SSTL-18
CLASS I 8mA GCLK tCO 2.609 2.609 5.675 ns
GCLK PLL tCO 1.164 1.164 2.563 ns
SSTL-18
CLASS I 10 mA GCLK tCO 2.614 2.614 5.673 ns
GCLK PLL tCO 1.169 1.169 2.561 ns
SSTL-18
CLASS I 12 mA GCLK tCO 2.608 2.608 5.659 ns
GCLK PLL tCO 1.163 1.163 2.547 ns
SSTL-18
CLASS II 8mA GCLK tCO 2.597 2.597 5.625 ns
GCLK PLL tCO 1.152 1.152 2.513 ns
Table 4–51. EP1AGX20 Column Pins Output Timing Parameters (Part 2 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–39
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SSTL-18
CLASS II 16 mA GCLK tCO 2.609 2.609 5.603 ns
GCLK PLL tCO 1.164 1.164 2.491 ns
SSTL-18
CLASS II 18 mA GCLK tCO 2.605 2.605 5.611 ns
GCLK PLL tCO 1.160 1.160 2.499 ns
SSTL-18
CLASS II 20 mA GCLK tCO 2.605 2.605 5.609 ns
GCLK PLL tCO 1.160 1.160 2.497 ns
1.8-V HSTL
CLASS I 4mA GCLK tCO 2.629 2.629 5.664 ns
GCLK PLL tCO 1.187 1.187 2.558 ns
1.8-V HSTL
CLASS I 6mA GCLK tCO 2.634 2.634 5.649 ns
GCLK PLL tCO 1.189 1.189 2.537 ns
1.8-V HSTL
CLASS I 8mA GCLK tCO 2.612 2.612 5.638 ns
GCLK PLL tCO 1.167 1.167 2.526 ns
1.8-V HSTL
CLASS I 10 mA GCLK tCO 2.616 2.616 5.644 ns
GCLK PLL tCO 1.171 1.171 2.532 ns
1.8-V HSTL
CLASS I 12 mA GCLK tCO 2.608 2.608 5.637 ns
GCLK PLL tCO 1.163 1.163 2.525 ns
1.8-V HSTL
CLASS II 16 mA GCLK tCO 2.591 2.591 5.401 ns
GCLK PLL tCO 1.146 1.146 2.289 ns
1.8-V HSTL
CLASS II 18 mA GCLK tCO 2.593 2.593 5.412 ns
GCLK PLL tCO 1.148 1.148 2.300 ns
1.8-V HSTL
CLASS II 20 mA GCLK tCO 2.593 2.593 5.421 ns
GCLK PLL tCO 1.148 1.148 2.309 ns
1.5-V HSTL
CLASS I 4mA GCLK tCO 2.629 2.629 5.663 ns
GCLK PLL tCO 1.187 1.187 2.557 ns
1.5-V HSTL
CLASS I 6mA GCLK tCO 2.633 2.633 5.641 ns
GCLK PLL tCO 1.188 1.188 2.529 ns
1.5-V HSTL
CLASS I 8mA GCLK tCO 2.615 2.615 5.643 ns
GCLK PLL tCO 1.170 1.170 2.531 ns
1.5-V HSTL
CLASS I 10 mA GCLK tCO 2.615 2.615 5.645 ns
GCLK PLL tCO 1.170 1.170 2.533 ns
1.5-V HSTL
CLASS I 12 mA GCLK tCO 2.609 2.609 5.643 ns
GCLK PLL tCO 1.164 1.164 2.531 ns
1.5-V HSTL
CLASS II 16 mA GCLK tCO 2.596 2.596 5.455 ns
GCLK PLL tCO 1.151 1.151 2.343 ns
1.5-V HSTL
CLASS II 18 mA GCLK tCO 2.599 2.599 5.465 ns
GCLK PLL tCO 1.154 1.154 2.353 ns
1.5-V HSTL
CLASS II 20 mA GCLK tCO 2.601 2.601 5.478 ns
GCLK PLL tCO 1.156 1.156 2.366 ns
Table 4–51. EP1AGX20 Column Pins Output Timing Parameters (Part 3 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–40 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–52 through Table 4–53 list EP1AGX20 regional clock (RCLK) adder values that
should be added to GCLK values. These adder values are used to determine I/O
timing when the I/O pin is driven using the regional clock. This applies for all I/O
standards supported by Arria GX with general purpose I/O pins.
Table 4–52 describes row pin delay adders when using the regional clock in Arria GX
devices.
Table 4–53 lists column pin delay adders when using the regional clock in Arria GX
devices.
3.3-V PCI GCLK tCO 2.755 2.755 5.791 ns
GCLK PLL tCO 1.313 1.313 2.685 ns
3.3-V PCI-X GCLK tCO 2.755 2.755 5.791 ns
GCLK PLL tCO 1.313 1.313 2.685 ns
LVDS GCLK tCO 3.621 3.621 6.969 ns
GCLK PLL tCO 2.190 2.190 3.880 ns
Table 4–51. EP1AGX20 Column Pins Output Timing Parameters (Part 4 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–52. EP1AGX20 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.117 0.117 0.273 ns
RCLK PLL input adder 0.011 0.011 0.019 ns
RCLK output adder 0.117 –0.117 0.273 ns
RCLK PLL output adder –0.011 0.011 –0.019 ns
Table 4–53. EP1AGX20 Column Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.081 0.081 0.223 ns
RCLK PLL input
adder
–0.012 0.012 –0.008 ns
RCLK output
adder
–0.081 0.081 –0.224 ns
RCLK PLL output
adder
1.11 1.11 2.658 ns
Chapter 4: DC and Switching Characteristics 4–41
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
EP1AGX35 I/O Timing Parameters
Table 4–54 through Table 4–57 list the maximum I/O timing parameters for
EP1AGX35 devices for I/O standards which support general purpose I/O pins.
Table 4–54 lists I/O timing specifications.
Table 4–54. EP1AGX35 Row Pins Input Timing Parameters (Part 1 of 2)
I/O Standard Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.561 1.561 3.556 ns
tH–1.456 1.456 –3.279 ns
GCLK PLL tSU 2.980 2.980 6.628 ns
tH–2.875 2.875 –6.351 ns
3.3-V LVCMOS
GCLK tSU 1.561 1.561 3.556 ns
tH–1.456 1.456 –3.279 ns
GCLK PLL tSU 2.980 2.980 6.628 ns
tH–2.875 2.875 –6.351 ns
2.5 V
GCLK tSU 1.573 1.573 3.537 ns
tH–1.468 1.468 –3.260 ns
GCLK PLL tSU 2.992 2.992 6.609 ns
tH–2.887 2.887 –6.332 ns
1.8 V
GCLK tSU 1.639 1.639 3.744 ns
tH–1.534 1.534 –3.467 ns
GCLK PLL tSU 3.058 3.058 6.816 ns
tH–2.953 2.953 –6.539 ns
1.5 V
GCLK tSU 1.642 1.642 3.839 ns
tH–1.537 1.537 –3.562 ns
GCLK PLL tSU 3.061 3.061 6.911 ns
tH–2.956 2.956 –6.634 ns
SSTL-2 CLASS I
GCLK tSU 1.385 1.385 3.009 ns
tH–1.280 1.280 –2.732 ns
GCLK PLL tSU 2.804 2.804 6.081 ns
tH–2.699 2.699 –5.804 ns
SSTL-2 CLASS II
GCLK tSU 1.385 1.385 3.009 ns
tH–1.280 1.280 –2.732 ns
GCLK PLL tSU 2.804 2.804 6.081 ns
tH–2.699 2.699 –5.804 ns
SSTL-18 CLASS I
GCLK tSU 1.417 1.417 3.118 ns
tH–1.312 1.312 –2.841 ns
GCLK PLL tSU 2.836 2.836 6.190 ns
tH–2.731 2.731 –5.913 ns
4–42 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–55 lists I/O timing specifications.
SSTL-18 CLASS II
GCLK tSU 1.417 1.417 3.118 ns
tH–1.312 1.312 –2.841 ns
GCLK PLL tSU 2.836 2.836 6.190 ns
tH–2.731 2.731 –5.913 ns
1.8-V HSTL CLASS I
GCLK tSU 1.417 1.417 3.118 ns
tH–1.312 1.312 –2.841 ns
GCLK PLL tSU 2.836 2.836 6.190 ns
tH–2.731 2.731 –5.913 ns
1.8-V HSTL CLASS II
GCLK tSU 1.417 1.417 3.118 ns
tH–1.312 1.312 –2.841 ns
GCLK PLL tSU 2.836 2.836 6.190 ns
tH–2.731 2.731 –5.913 ns
1.5-V HSTL CLASS I
GCLK tSU 1.443 1.443 3.246 ns
tH–1.338 1.338 –2.969 ns
GCLK PLL tSU 2.862 2.862 6.318 ns
tH–2.757 2.757 –6.041 ns
1.5-V HSTL CLASS II
GCLK tSU 1.443 1.443 3.246 ns
tH–1.338 1.338 –2.969 ns
GCLK PLL tSU 2.862 2.862 6.318 ns
tH–2.757 2.757 –6.041 ns
LVDS
GCLK tSU 1.341 1.341 3.088 ns
tH–1.236 1.236 –2.811 ns
GCLK PLL tSU 2.769 2.769 6.171 ns
tH–2.664 2.664 –5.894 ns
Table 4–54. EP1AGX35 Row Pins Input Timing Parameters (Part 2 of 2)
I/O Standard Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Table 4–55. EP1AGX35 Column Pins Input Timing Parameters (Part 1 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.251 1.251 2.915 ns
tH1.146 1.146 2.638 ns
GCLK PLL tSU 2.693 2.693 6.021 ns
tH2.588 2.588 5.744 ns
3.3-V LVCMOS
GCLK tSU 1.251 1.251 2.915 ns
tH1.146 1.146 2.638 ns
GCLK PLL tSU 2.693 2.693 6.021 ns
tH2.588 2.588 5.744 ns
Chapter 4: DC and Switching Characteristics 4–43
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
2.5 V
GCLK tSU 1.261 1.261 2.897 ns
tH1.156 1.156 2.620 ns
GCLK PLL tSU 2.703 2.703 6.003 ns
tH2.598 2.598 5.726 ns
1.8 V
GCLK tSU 1.327 1.327 3.107 ns
tH1.222 1.222 2.830 ns
GCLK PLL tSU 2.769 2.769 6.213 ns
tH2.664 2.664 5.936 ns
1.5 V
GCLK tSU 1.330 1.330 3.200 ns
tH1.225 1.225 2.923 ns
GCLK PLL tSU 2.772 2.772 6.306 ns
tH2.667 2.667 6.029 ns
SSTL-2 CLASS I
GCLK tSU 1.075 1.075 2.372 ns
tH0.970 0.970 2.095 ns
GCLK PLL tSU 2.517 2.517 5.480 ns
tH2.412 2.412 5.203 ns
SSTL-2 CLASS II
GCLK tSU 1.075 1.075 2.372 ns
tH0.970 0.970 2.095 ns
GCLK PLL tSU 2.517 2.517 5.480 ns
tH2.412 2.412 5.203 ns
SSTL-18 CLASS I
GCLK tSU 1.113 1.113 2.479 ns
tH1.008 1.008 2.202 ns
GCLK PLL tSU 2.555 2.555 5.585 ns
tH2.450 2.450 5.308 ns
SSTL-18 CLASS II
GCLK tSU 1.114 1.114 2.479 ns
tH1.009 1.009 2.202 ns
GCLK PLL tSU 2.556 2.556 5.587 ns
tH2.451 2.451 5.310 ns
1.8-V HSTL CLASS I
GCLK tSU 1.113 1.113 2.479 ns
tH1.008 1.008 2.202 ns
GCLK PLL tSU 2.555 2.555 5.585 ns
tH2.450 2.450 5.308 ns
1.8-V HSTL CLASS II
GCLK tSU 1.114 1.114 2.479 ns
tH1.009 1.009 2.202 ns
GCLK PLL tSU 2.556 2.556 5.587 ns
tH2.451 2.451 5.310 ns
Table 4–55. EP1AGX35 Column Pins Input Timing Parameters (Part 2 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–44 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–56 lists I/O timing specifications.
1.5-V HSTL CLASS I
GCLK tSU 1.131 1.131 2.607 ns
tH1.026 1.026 2.330 ns
GCLK PLL tSU 2.573 2.573 5.713 ns
tH2.468 2.468 5.436 ns
1.5-V HSTL CLASS II
GCLK tSU 1.132 1.132 2.607 ns
tH1.027 1.027 2.330 ns
GCLK PLL tSU 2.574 2.574 5.715 ns
tH2.469 2.469 5.438 ns
3.3-V PCI
GCLK tSU 1.256 1.256 2.903 ns
tH1.151 1.151 2.626 ns
GCLK PLL tSU 2.698 2.698 6.009 ns
tH2.593 2.593 5.732 ns
3.3-V PCI-X
GCLK tSU 1.256 1.256 2.903 ns
tH1.151 1.151 2.626 ns
GCLK PLL tSU 2.698 2.698 6.009 ns
tH2.593 2.593 5.732 ns
LVDS
GCLK tSU 1.106 1.106 2.489 ns
tH1.001 1.001 2.212 ns
GCLK PLL tSU 2.530 2.530 5.564 ns
tH2.425 2.425 5.287 ns
Table 4–55. EP1AGX35 Column Pins Input Timing Parameters (Part 3 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–56. EP1AGX35 Row Pins Output Timing Parameters (Part 1 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.904 2.904 6.699 ns
GCLK PLL tCO 1.485 1.485 3.627 ns
3.3-V LVTTL 8 mA GCLK tCO 2.776 2.776 6.059 ns
GCLK PLL tCO 1.357 1.357 2.987 ns
3.3-V LVTTL 12 mA GCLK tCO 2.720 2.720 6.022 ns
GCLK PLL tCO 1.301 1.301 2.950 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.776 2.776 6.059 ns
GCLK PLL tCO 1.357 1.357 2.987 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.670 2.670 5.753 ns
GCLK PLL tCO 1.251 1.251 2.681 ns
2.5 V 4 mA GCLK tCO 2.759 2.759 6.033 ns
GCLK PLL tCO 1.340 1.340 2.961 ns
Chapter 4: DC and Switching Characteristics 4–45
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
2.5 V 8 mA GCLK tCO 2.656 2.656 5.775 ns
GCLK PLL tCO 1.237 1.237 2.703 ns
2.5 V 12 mA GCLK tCO 2.637 2.637 5.661 ns
GCLK PLL tCO 1.218 1.218 2.589 ns
1.8 V 2 mA GCLK tCO 2.829 2.829 7.052 ns
GCLK PLL tCO 1.410 1.410 3.980 ns
1.8 V 4 mA GCLK tCO 2.818 2.818 6.273 ns
GCLK PLL tCO 1.399 1.399 3.201 ns
1.8 V 6 mA GCLK tCO 2.707 2.707 5.972 ns
GCLK PLL tCO 1.288 1.288 2.900 ns
1.8 V 8 mA GCLK tCO 2.676 2.676 5.858 ns
GCLK PLL tCO 1.257 1.257 2.786 ns
1.5 V 2 mA GCLK tCO 2.789 2.789 6.551 ns
GCLK PLL tCO 1.370 1.370 3.479 ns
1.5 V 4 mA GCLK tCO 2.682 2.682 5.950 ns
GCLK PLL tCO 1.263 1.263 2.878 ns
SSTL-2
CLASS I 8mA GCLK tCO 2.626 2.626 5.614 ns
GCLK PLL tCO 1.207 1.207 2.542 ns
SSTL-2
CLASS I 12 mA GCLK tCO 2.602 2.602 5.538 ns
GCLK PLL tCO 1.183 1.183 2.466 ns
SSTL-2
CLASS II 16 mA GCLK tCO 2.568 2.568 5.407 ns
GCLK PLL tCO 1.149 1.149 2.335 ns
SSTL-18
CLASS I 4mA GCLK tCO 2.614 2.614 5.556 ns
GCLK PLL tCO 1.195 1.195 2.484 ns
SSTL-18
CLASS I 6mA GCLK tCO 2.618 2.618 5.485 ns
GCLK PLL tCO 1.199 1.199 2.413 ns
SSTL-18
CLASS I 8mA GCLK tCO 2.594 2.594 5.468 ns
GCLK PLL tCO 1.175 1.175 2.396 ns
SSTL-18
CLASS I 10 mA GCLK tCO 2.597 2.597 5.447 ns
GCLK PLL tCO 1.178 1.178 2.375 ns
1.8-V HSTL
CLASS I 4mA GCLK tCO 2.595 2.595 5.466 ns
GCLK PLL tCO 1.176 1.176 2.394 ns
1.8-V HSTL
CLASS I 6mA GCLK tCO 2.598 2.598 5.430 ns
GCLK PLL tCO 1.179 1.179 2.358 ns
1.8-V HSTL
CLASS I 8mA GCLK tCO 2.580 2.580 5.426 ns
GCLK PLL tCO 1.161 1.161 2.354 ns
1.8-V HSTL
CLASS I 10 mA GCLK tCO 2.584 2.584 5.415 ns
GCLK PLL tCO 1.165 1.165 2.343 ns
Table 4–56. EP1AGX35 Row Pins Output Timing Parameters (Part 2 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
4–46 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–57 lists I/O timing specifications.
1.8-V HSTL
CLASS I 12 mA GCLK tCO 2.575 2.575 5.414 ns
GCLK PLL tCO 1.156 1.156 2.342 ns
1.5-V HSTL
CLASS I 4mA GCLK tCO 2.594 2.594 5.443 ns
GCLK PLL tCO 1.175 1.175 2.371 ns
1.5-V HSTL
CLASS I 6mA GCLK tCO 2.597 2.597 5.429 ns
GCLK PLL tCO 1.178 1.178 2.357 ns
1.5-V HSTL
CLASS I 8mA GCLK tCO 2.582 2.582 5.421 ns
GCLK PLL tCO 1.163 1.163 2.349 ns
LVDS GCLK tCO 2.654 2.654 5.613 ns
GCLK PLL tCO 1.226 1.226 2.530 ns
Table 4–56. EP1AGX35 Row Pins Output Timing Parameters (Part 3 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Table 4–57. EP1AGX35 Column Pins Output Timing Parameters (Part 1 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.909 2.909 6.541 ns
GCLK PLL tCO 1.467 1.467 3.435 ns
3.3-V LVTTL 8 mA GCLK tCO 2.764 2.764 6.169 ns
GCLK PLL tCO 1.322 1.322 3.063 ns
3.3-V LVTTL 12 mA GCLK tCO 2.697 2.697 6.169 ns
GCLK PLL tCO 1.255 1.255 3.063 ns
3.3-V LVTTL 16 mA GCLK tCO 2.671 2.671 6.000 ns
GCLK PLL tCO 1.229 1.229 2.894 ns
3.3-V LVTTL 20 mA GCLK tCO 2.649 2.649 5.875 ns
GCLK PLL tCO 1.207 1.207 2.769 ns
3.3-V LVTTL 24 mA GCLK tCO 2.642 2.642 5.877 ns
GCLK PLL tCO 1.200 1.200 2.771 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.764 2.764 6.169 ns
GCLK PLL tCO 1.322 1.322 3.063 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.672 2.672 5.874 ns
GCLK PLL tCO 1.230 1.230 2.768 ns
3.3-V
LVCMOS
12 mA GCLK tCO 2.644 2.644 5.796 ns
GCLK PLL tCO 1.202 1.202 2.690 ns
3.3-V
LVCMOS
16 mA GCLK tCO 2.651 2.651 5.764 ns
GCLK PLL tCO 1.209 1.209 2.658 ns
3.3-V
LV CM O S
20 mA GCLK tCO 2.638 2.638 5.746 ns
GCLK PLL tCO 1.196 1.196 2.640 ns
Chapter 4: DC and Switching Characteristics 4–47
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
3.3-V
LVCMOS
24 mA GCLK tCO 2.627 2.627 5.724 ns
GCLK PLL tCO 1.185 1.185 2.618 ns
2.5 V 4 mA GCLK tCO 2.726 2.726 6.201 ns
GCLK PLL tCO 1.284 1.284 3.095 ns
2.5 V 8 mA GCLK tCO 2.674 2.674 5.939 ns
GCLK PLL tCO 1.232 1.232 2.833 ns
2.5 V 12 mA GCLK tCO 2.653 2.653 5.822 ns
GCLK PLL tCO 1.211 1.211 2.716 ns
2.5 V 16 mA GCLK tCO 2.635 2.635 5.748 ns
GCLK PLL tCO 1.193 1.193 2.642 ns
1.8 V 2 mA GCLK tCO 2.766 2.766 7.193 ns
GCLK PLL tCO 1.324 1.324 4.087 ns
1.8 V 4 mA GCLK tCO 2.771 2.771 6.419 ns
GCLK PLL tCO 1.329 1.329 3.313 ns
1.8 V 6 mA GCLK tCO 2.695 2.695 6.155 ns
GCLK PLL tCO 1.253 1.253 3.049 ns
1.8 V 8 mA GCLK tCO 2.697 2.697 6.064 ns
GCLK PLL tCO 1.255 1.255 2.958 ns
1.8 V 10 mA GCLK tCO 2.651 2.651 5.987 ns
GCLK PLL tCO 1.209 1.209 2.881 ns
1.8 V 12 mA GCLK tCO 2.652 2.652 5.930 ns
GCLK PLL tCO 1.210 1.210 2.824 ns
1.5 V 2 mA GCLK tCO 2.746 2.746 6.723 ns
GCLK PLL tCO 1.304 1.304 3.617 ns
1.5 V 4 mA GCLK tCO 2.682 2.682 6.154 ns
GCLK PLL tCO 1.240 1.240 3.048 ns
1.5 V 6 mA GCLK tCO 2.685 2.685 6.036 ns
GCLK PLL tCO 1.243 1.243 2.930 ns
1.5 V 8 mA GCLK tCO 2.644 2.644 5.983 ns
GCLK PLL tCO 1.202 1.202 2.877 ns
SSTL-2
CLASS I
8mA GCLK tCO 2.629 2.629 5.762 ns
GCLK PLL tCO 1.184 1.184 2.650 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.612 2.612 5.712 ns
GCLK PLL tCO 1.167 1.167 2.600 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.590 2.590 5.639 ns
GCLK PLL tCO 1.145 1.145 2.527 ns
SSTL-2
CLASS II
20 mA GCLK tCO 2.591 2.591 5.626 ns
GCLK PLL tCO 1.146 1.146 2.514 ns
Table 4–57. EP1AGX35 Column Pins Output Timing Parameters (Part 2 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–48 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-2
CLASS II
24 mA GCLK tCO 2.587 2.587 5.624 ns
GCLK PLL tCO 1.142 1.142 2.512 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.626 2.626 5.733 ns
GCLK PLL tCO 1.184 1.184 2.627 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.630 2.630 5.694 ns
GCLK PLL tCO 1.185 1.185 2.582 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.609 2.609 5.675 ns
GCLK PLL tCO 1.164 1.164 2.563 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.614 2.614 5.673 ns
GCLK PLL tCO 1.169 1.169 2.561 ns
SSTL-18
CLASS I
12 mA GCLK tCO 2.608 2.608 5.659 ns
GCLK PLL tCO 1.163 1.163 2.547 ns
SSTL-18
CLASS II
8mA GCLK tCO 2.597 2.597 5.625 ns
GCLK PLL tCO 1.152 1.152 2.513 ns
SSTL-18
CLASS II
16 mA GCLK tCO 2.609 2.609 5.603 ns
GCLK PLL tCO 1.164 1.164 2.491 ns
SSTL-18
CLASS II
18 mA GCLK tCO 2.605 2.605 5.611 ns
GCLK PLL tCO 1.160 1.160 2.499 ns
SSTL-18
CLASS II
20 mA GCLK tCO 2.605 2.605 5.609 ns
GCLK PLL tCO 1.160 1.160 2.497 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.629 2.629 5.664 ns
GCLK PLL tCO 1.187 1.187 2.558 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.634 2.634 5.649 ns
GCLK PLL tCO 1.189 1.189 2.537 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.612 2.612 5.638 ns
GCLK PLL tCO 1.167 1.167 2.526 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.616 2.616 5.644 ns
GCLK PLL tCO 1.171 1.171 2.532 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.608 2.608 5.637 ns
GCLK PLL tCO 1.163 1.163 2.525 ns
1.8-V HSTL
CLASS II
16 mA GCLK tCO 2.591 2.591 5.401 ns
GCLK PLL tCO 1.146 1.146 2.289 ns
1.8-V HSTL
CLASS II
18 mA GCLK tCO 2.593 2.593 5.412 ns
GCLK PLL tCO 1.148 1.148 2.300 ns
1.8-V HSTL
CLASS II
20 mA GCLK tCO 2.593 2.593 5.421 ns
GCLK PLL tCO 1.148 1.148 2.309 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.629 2.629 5.663 ns
GCLK PLL tCO 1.187 1.187 2.557 ns
Table 4–57. EP1AGX35 Column Pins Output Timing Parameters (Part 3 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–49
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–58 through Table 4–59 list EP1AGX35 regional clock (RCLK) adder values that
should be added to GCLK values. These adder values are used to determine I/O
timing when the I/O pin is driven using the regional clock. This applies for all I/O
standards supported by Arria GX with general purpose I/O pins.
Table 4–58 describes row pin delay adders when using the regional clock in Arria GX
devices.
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.633 2.633 5.641 ns
GCLK PLL tCO 1.188 1.188 2.529 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.615 2.615 5.643 ns
GCLK PLL tCO 1.170 1.170 2.531 ns
1.5-V HSTL
CLASS I
10 mA GCLK tCO 2.615 2.615 5.645 ns
GCLK PLL tCO 1.170 1.170 2.533 ns
1.5-V HSTL
CLASS I
12 mA GCLK tCO 2.609 2.609 5.643 ns
GCLK PLL tCO 1.164 1.164 2.531 ns
1.5-V HSTL
CLASS II
16 mA GCLK tCO 2.596 2.596 5.455 ns
GCLK PLL tCO 1.151 1.151 2.343 ns
1.5-V HSTL
CLASS II
18 mA GCLK tCO 2.599 2.599 5.465 ns
GCLK PLL tCO 1.154 1.154 2.353 ns
1.5-V HSTL
CLASS II
20 mA GCLK tCO 2.601 2.601 5.478 ns
GCLK PLL tCO 1.156 1.156 2.366 ns
3.3-V PCI GCLK tCO 2.755 2.755 5.791 ns
GCLK PLL tCO 1.313 1.313 2.685 ns
3.3-V PCI-X GCLK tCO 2.755 2.755 5.791 ns
GCLK PLL tCO 1.313 1.313 2.685 ns
LVDS GCLK tCO 3.621 3.621 6.969 ns
GCLK PLL tCO 2.190 2.190 3.880 ns
Table 4–57. EP1AGX35 Column Pins Output Timing Parameters (Part 4 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–58. EP1AGX35 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.126 0.126 0.281 ns
RCLK PLL input
adder
0.011 0.011 0.018 ns
RCLK output adder –0.126 0.126 –0.281 ns
RCLK PLL output
adder
0.011 –0.011 0.018 ns
4–50 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–59 lists column pin delay adders when using the regional clock in Arria GX
devices.
EP1AGX50 I/O Timing Parameters
Table 4–60 through Table 4–63 list the maximum I/O timing parameters for
EP1AGX50 devices for I/O standards which support general purpose I/O pins.
Table 4–60 lists I/O timing specifications.
Table 4–59. EP1AGX35 Column Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.099 0.099 0.254 ns
RCLK PLL input adder –0.012 –0.012 0.01 ns
RCLK output adder 0.086 0.086 –0.244 ns
RCLK PLL output adder 1.253 1.253 3.133 ns
Table 4–60. EP1AGX50 Row Pins Input Timing Parameters (Part 1 of 2)
I/O Standard Clock Parameter
Fast Model 6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.550 1.550 3.542 ns
tH–1.445 1.445 3.265 ns
GCLK PLL tSU 2.978 2.978 6.626 ns
tH–2.873 2.873 6.349 ns
3.3-V LVCMOS
GCLK tSU 1.550 1.550 3.542 ns
tH–1.445 1.445 3.265 ns
GCLK PLL tSU 2.978 2.978 6.626 ns
tH–2.873 2.873 6.349 ns
2.5 V
GCLK tSU 1.562 1.562 3.523 ns
tH–1.457 1.457 3.246 ns
GCLK PLL tSU 2.990 2.990 6.607 ns
tH–2.885 2.885 6.330 ns
1.8 V
GCLK tSU 1.628 1.628 3.730 ns
tH–1.523 1.523 3.453 ns
GCLK PLL tSU 3.056 3.056 6.814 ns
tH–2.951 2.951 6.537 ns
1.5 V
GCLK tSU 1.631 1.631 3.825 ns
tH–1.526 1.526 3.548 ns
GCLK PLL tSU 3.059 3.059 6.909 ns
tH–2.954 2.954 6.632 ns
Chapter 4: DC and Switching Characteristics 4–51
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SSTL-2 CLASS
I
GCLK tSU 1.375 1.375 2.997 ns
tH–1.270 1.270 2.720 ns
GCLK PLL tSU 2.802 2.802 6.079 ns
tH–2.697 2.697 5.802 ns
SSTL-2 CLASS
II
GCLK tSU 1.375 1.375 2.997 ns
tH–1.270 1.270 2.720 ns
GCLK PLL tSU 2.802 2.802 6.079 ns
tH–2.697 2.697 5.802 ns
SSTL-18
CLASS I
GCLK tSU 1.406 1.406 3.104 ns
tH–1.301 1.301 2.827 ns
GCLK PLL tSU 2.834 2.834 6.188 ns
tH–2.729 2.729 5.911 ns
SSTL-18
CLASS II
GCLK tSU 1.407 1.407 3.106 ns
tH–1.302 1.302 2.829 ns
GCLK PLL tSU 2.834 2.834 6.188 ns
tH–2.729 2.729 5.911 ns
1.8-V HSTL
CLASS I
GCLK tSU 1.406 1.406 3.104 ns
tH–1.301 1.301 2.827 ns
GCLK PLL tSU 2.834 2.834 6.188 ns
tH–2.729 2.729 5.911 ns
1.8-V HSTL
CLASS II
GCLK tSU 1.407 1.407 3.106 ns
tH–1.302 1.302 2.829 ns
GCLK PLL tSU 2.834 2.834 6.188 ns
tH–2.729 2.729 5.911 ns
1.5-V HSTL
CLASS I
GCLK tSU 1.432 1.432 3.232 ns
tH–1.327 1.327 2.955 ns
GCLK PLL tSU 2.860 2.860 6.316 ns
tH–2.755 2.755 6.039 ns
1.5-V HSTL
CLASS II
GCLK tSU 1.433 1.433 3.234 ns
tH–1.328 1.328 2.957 ns
GCLK PLL tSU 2.860 2.860 6.316 ns
tH–2.755 2.755 6.039 ns
LVDS
GCLK tSU 1.341 1.341 3.088 ns
tH–1.236 1.236 2.811 ns
GCLK PLL tSU 2.769 2.769 6.171 ns
tH–2.664 2.664 5.894 ns
Table 4–60. EP1AGX50 Row Pins Input Timing Parameters (Part 2 of 2)
I/O Standard Clock Parameter
Fast Model 6 Speed
Grade Units
Industrial Commercial
4–52 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–61 lists I/O timing specifications.
Table 4–61. EP1AGX50 Column Pins Input Timing Parameters (Part 1 of 2)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.242 1.242 2.902 ns
tH–1.137 –1.137 2.625 ns
GCLK PLL tSU 2.684 2.684 6.009 ns
tH–2.579 –2.579 5.732 ns
3.3-V
LVCMOS
GCLK tSU 1.242 1.242 2.902 ns
tH–1.137 –1.137 2.625 ns
GCLK PLL tSU 2.684 2.684 6.009 ns
tH–2.579 –2.579 5.732 ns
2.5 V
GCLK tSU 1.252 1.252 2.884 ns
tH–1.147 –1.147 2.607 ns
GCLK PLL tSU 2.694 2.694 5.991 ns
tH–2.589 –2.589 5.714 ns
1.8 V
GCLK tSU 1.318 1.318 3.094 ns
tH–1.213 –1.213 2.817 ns
GCLK PLL tSU 2.760 2.760 6.201 ns
tH–2.655 –2.655 5.924 ns
1.5 V
GCLK tSU 1.321 1.321 3.187 ns
tH–1.216 –1.216 2.910 ns
GCLK PLL tSU 2.763 2.763 6.294 ns
tH–2.658 –2.658 6.017 ns
SSTL-2
CLASS I
GCLK tSU 1.034 1.034 2.314 ns
tH–0.929 –0.929 2.037 ns
GCLK PLL tSU 2.500 2.500 5.457 ns
tH–2.395 –2.395 5.180 ns
SSTL-2
CLASS II
GCLK tSU 1.034 1.034 2.314 ns
tH–0.929 –0.929 2.037 ns
GCLK PLL tSU 2.500 2.500 5.457 ns
tH–2.395 –2.395 5.180 ns
SSTL-18
CLASS I
GCLK tSU 1.104 1.104 2.466 ns
tH–0.999 –0.999 2.189 ns
GCLK PLL tSU 2.546 2.546 5.573 ns
tH–2.441 –2.441 5.296 ns
SSTL-18
CLASS II
GCLK tSU 1.074 1.074 2.424 ns
tH–0.969 –0.969 2.147 ns
GCLK PLL tSU 2.539 2.539 5.564 ns
tH–2.434 –2.434 5.287 ns
Chapter 4: DC and Switching Characteristics 4–53
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–62 lists I/O timing specifications.
1.8-V HSTL
CLASS I
GCLK tSU 1.104 1.104 2.466 ns
tH–0.999 –0.999 2.189 ns
GCLK PLL tSU 2.546 2.546 5.573 ns
tH–2.441 –2.441 5.296 ns
1.8-V HSTL
CLASS II
GCLK tSU 1.074 1.074 2.424 ns
tH–0.969 –0.969 2.147 ns
GCLK PLL tSU 2.539 2.539 5.564 ns
tH–2.434 –2.434 5.287 ns
1.5-V HSTL
CLASS I
GCLK tSU 1.122 1.122 2.594 ns
tH–1.017 –1.017 2.317 ns
GCLK PLL tSU 2.564 2.564 5.701 ns
tH–2.459 –2.459 5.424 ns
1.5-V HSTL
CLASS II
GCLK tSU 1.094 1.094 2.557 ns
tH–0.989 –0.989 2.280 ns
GCLK PLL tSU 2.557 2.557 5.692 ns
tH–2.452 –2.452 5.415 ns
3.3-V PCI
GCLK tSU 1.247 1.247 2.890 ns
tH–1.142 –1.142 2.613 ns
GCLK PLL tSU 2.689 2.689 5.997 ns
tH–2.584 –2.584 5.720 ns
3.3-V PCI-X
GCLK tSU 1.247 1.247 2.890 ns
tH–1.142 –1.142 2.613 ns
GCLK PLL tSU 2.689 2.689 5.997 ns
tH–2.584 –2.584 5.720 ns
LVDS
GCLK tSU 1.106 1.106 2.489 ns
tH–1.001 –1.001 2.212 ns
GCLK PLL tSU 2.530 2.530 5.564 ns
tH–2.425 –2.425 5.287 ns
Table 4–61. EP1AGX50 Column Pins Input Timing Parameters (Part 2 of 2)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–62. EP1AGX50 Row Pins Output Timing Parameters (Part 1 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.915 2.915 6.713 ns
GCLK PLL tCO 1.487 1.487 3.629 ns
3.3-V LVTTL 8 mA GCLK tCO 2.787 2.787 6.073 ns
GCLK PLL tCO 1.359 1.359 2.989 ns
4–54 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
3.3-V LVTTL 12 mA GCLK tCO 2.731 2.731 6.036 ns
GCLK PLL tCO 1.303 1.303 2.952 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.787 2.787 6.073 ns
GCLK PLL tCO 1.359 1.359 2.989 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.681 2.681 5.767 ns
GCLK PLL tCO 1.253 1.253 2.683 ns
2.5 V 4 mA GCLK tCO 2.770 2.770 6.047 ns
GCLK PLL tCO 1.342 1.342 2.963 ns
2.5 V 8 mA GCLK tCO 2.667 2.667 5.789 ns
GCLK PLL tCO 1.239 1.239 2.705 ns
2.5 V 12 mA GCLK tCO 2.648 2.648 5.675 ns
GCLK PLL tCO 1.220 1.220 2.591 ns
1.8 V 2 mA GCLK tCO 2.840 2.840 7.066 ns
GCLK PLL tCO 1.412 1.412 3.982 ns
1.8 V 4 mA GCLK tCO 2.829 2.829 6.287 ns
GCLK PLL tCO 1.401 1.401 3.203 ns
1.8 V 6 mA GCLK tCO 2.718 2.718 5.986 ns
GCLK PLL tCO 1.290 1.290 2.902 ns
1.8 V 8 mA GCLK tCO 2.687 2.687 5.872 ns
GCLK PLL tCO 1.259 1.259 2.788 ns
1.5 V 2 mA GCLK tCO 2.800 2.800 6.565 ns
GCLK PLL tCO 1.372 1.372 3.481 ns
1.5 V 4 mA GCLK tCO 2.693 2.693 5.964 ns
GCLK PLL tCO 1.265 1.265 2.880 ns
SSTL-2
CLASS I
8mA GCLK tCO 2.636 2.636 5.626 ns
GCLK PLL tCO 1.209 1.209 2.544 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.612 2.612 5.550 ns
GCLK PLL tCO 1.185 1.185 2.468 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.578 2.578 5.419 ns
GCLK PLL tCO 1.151 1.151 2.337 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.625 2.625 5.570 ns
GCLK PLL tCO 1.197 1.197 2.486 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.628 2.628 5.497 ns
GCLK PLL tCO 1.201 1.201 2.415 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.604 2.604 5.480 ns
GCLK PLL tCO 1.177 1.177 2.398 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.607 2.607 5.459 ns
GCLK PLL tCO 1.180 1.180 2.377 ns
Table 4–62. EP1AGX50 Row Pins Output Timing Parameters (Part 2 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–55
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–63 lists I/O timing specifications.
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.606 2.606 5.480 ns
GCLK PLL tCO 1.178 1.178 2.396 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.608 2.608 5.442 ns
GCLK PLL tCO 1.181 1.181 2.360 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.590 2.590 5.438 ns
GCLK PLL tCO 1.163 1.163 2.356 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.594 2.594 5.427 ns
GCLK PLL tCO 1.167 1.167 2.345 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.585 2.585 5.426 ns
GCLK PLL tCO 1.158 1.158 2.344 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.605 2.605 5.457 ns
GCLK PLL tCO 1.177 1.177 2.373 ns
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.607 2.607 5.441 ns
GCLK PLL tCO 1.180 1.180 2.359 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.592 2.592 5.433 ns
GCLK PLL tCO 1.165 1.165 2.351 ns
LVDS GCLK tCO 2.654 2.654 5.613 ns
GCLK PLL tCO 1.226 1.226 2.530 ns
Table 4–62. EP1AGX50 Row Pins Output Timing Parameters (Part 3 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Table 4–63. EP1AGX50 Column Pins Output Timing Parameters (Part 1 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 2.948 2.948 6.608 ns
GCLK PLL tCO 1.476 1.476 3.447 ns
3.3-V LVTTL 8 mA GCLK tCO 2.797 2.797 6.203 ns
GCLK PLL tCO 1.331 1.331 3.075 ns
3.3-V LVTTL 12 mA GCLK tCO 2.722 2.722 6.204 ns
GCLK PLL tCO 1.264 1.264 3.075 ns
3.3-V LVTTL 16 mA GCLK tCO 2.694 2.694 6.024 ns
GCLK PLL tCO 1.238 1.238 2.906 ns
3.3-V LVTTL 20 mA GCLK tCO 2.670 2.670 5.896 ns
GCLK PLL tCO 1.216 1.216 2.781 ns
3.3-V LVTTL 24 mA GCLK tCO 2.660 2.660 5.895 ns
GCLK PLL tCO 1.209 1.209 2.783 ns
3.3-V
LVCMOS
4mA GCLK t
CO 2.797 2.797 6.203 ns
GCLK PLL tCO 1.331 1.331 3.075 ns
4–56 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
3.3-V
LVCMOS
8mA GCLK tCO 2.695 2.695 5.893 ns
GCLK PLL tCO 1.239 1.239 2.780 ns
3.3-V
LVCMOS
12 mA GCLK tCO 2.663 2.663 5.809 ns
GCLK PLL tCO 1.211 1.211 2.702 ns
3.3-V
LVCMOS
16 mA GCLK tCO 2.666 2.666 5.776 ns
GCLK PLL tCO 1.218 1.218 2.670 ns
3.3-V
LVCMOS
20 mA GCLK tCO 2.651 2.651 5.758 ns
GCLK PLL tCO 1.205 1.205 2.652 ns
3.3-V
LVCMOS
24 mA GCLK tCO 2.638 2.638 5.736 ns
GCLK PLL tCO 1.194 1.194 2.630 ns
2.5 V 4 mA GCLK tCO 2.754 2.754 6.240 ns
GCLK PLL tCO 1.293 1.293 3.107 ns
2.5 V 8 mA GCLK tCO 2.697 2.697 5.963 ns
GCLK PLL tCO 1.241 1.241 2.845 ns
2.5 V 12 mA GCLK tCO 2.672 2.672 5.837 ns
GCLK PLL tCO 1.220 1.220 2.728 ns
2.5 V 16 mA GCLK tCO 2.654 2.654 5.760 ns
GCLK PLL tCO 1.202 1.202 2.654 ns
1.8 V 2 mA GCLK tCO 2.804 2.804 7.295 ns
GCLK PLL tCO 1.333 1.333 4.099 ns
1.8 V 4 mA GCLK tCO 2.808 2.808 6.479 ns
GCLK PLL tCO 1.338 1.338 3.325 ns
1.8 V 6 mA GCLK tCO 2.717 2.717 6.195 ns
GCLK PLL tCO 1.262 1.262 3.061 ns
1.8 V 8 mA GCLK tCO 2.719 2.719 6.098 ns
GCLK PLL tCO 1.264 1.264 2.970 ns
1.8 V 10 mA GCLK tCO 2.671 2.671 6.012 ns
GCLK PLL tCO 1.218 1.218 2.893 ns
1.8 V 12 mA GCLK tCO 2.671 2.671 5.953 ns
GCLK PLL tCO 1.219 1.219 2.836 ns
1.5 V 2 mA GCLK tCO 2.779 2.779 6.815 ns
GCLK PLL tCO 1.313 1.313 3.629 ns
1.5 V 4 mA GCLK tCO 2.703 2.703 6.210 ns
GCLK PLL tCO 1.249 1.249 3.060 ns
1.5 V 6 mA GCLK tCO 2.705 2.705 6.118 ns
GCLK PLL tCO 1.252 1.252 2.942 ns
1.5 V 8mA GCLK tCO 2.660 2.660 6.014 ns
GCLK PLL tCO 1.211 1.211 2.889 ns
Table 4–63. EP1AGX50 Column Pins Output Timing Parameters (Part 2 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–57
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SSTL-2
CLASS I
8mA GCLK tCO 2.648 2.648 5.777 ns
GCLK PLL tCO 1.202 1.202 2.675 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.628 2.628 5.722 ns
GCLK PLL tCO 1.185 1.185 2.625 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.606 2.606 5.649 ns
GCLK PLL tCO 1.163 1.163 2.552 ns
SSTL-2
CLASS II
20 mA GCLK tCO 2.606 2.606 5.636 ns
GCLK PLL tCO 1.164 1.164 2.539 ns
SSTL-2
CLASS II
24 mA GCLK tCO 2.601 2.601 5.634 ns
GCLK PLL tCO 1.160 1.160 2.537 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.643 2.643 5.749 ns
GCLK PLL tCO 1.193 1.193 2.639 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.649 2.649 5.708 ns
GCLK PLL tCO 1.203 1.203 2.607 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.626 2.626 5.686 ns
GCLK PLL tCO 1.182 1.182 2.588 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.630 2.630 5.685 ns
GCLK PLL tCO 1.187 1.187 2.586 ns
SSTL-18
CLASS I
12 mA GCLK tCO 2.625 2.625 5.669 ns
GCLK PLL tCO 1.181 1.181 2.572 ns
SSTL-18
CLASS II
8mA GCLK tCO 2.614 2.614 5.635 ns
GCLK PLL tCO 1.170 1.170 2.538 ns
SSTL-18
CLASS II
16 mA GCLK tCO 2.623 2.623 5.613 ns
GCLK PLL tCO 1.182 1.182 2.516 ns
SSTL-18
CLASS II
18 mA GCLK tCO 2.616 2.616 5.621 ns
GCLK PLL tCO 1.178 1.178 2.524 ns
SSTL-18
CLASS II
20 mA GCLK tCO 2.616 2.616 5.619 ns
GCLK PLL tCO 1.178 1.178 2.522 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.637 2.637 5.676 ns
GCLK PLL tCO 1.196 1.196 2.570 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.645 2.645 5.659 ns
GCLK PLL tCO 1.207 1.207 2.562 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.623 2.623 5.648 ns
GCLK PLL tCO 1.185 1.185 2.551 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.627 2.627 5.654 ns
GCLK PLL tCO 1.189 1.189 2.557 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.619 2.619 5.647 ns
GCLK PLL tCO 1.181 1.181 2.550 ns
Table 4–63. EP1AGX50 Column Pins Output Timing Parameters (Part 3 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–58 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–64 through Table 4–65 list EP1AGX50 regional clock (RCLK) adder values that
should be added to the GCLK values. These adder values are used to determine I/O
timing when the I/O pin is driven using the regional clock. This applies for all I/O
standards supported by Arria GX with general purpose I/O pins.
1.8-V HSTL
CLASS II
16 mA GCLK tCO 2.602 2.602 5.574 ns
GCLK PLL tCO 1.164 1.164 2.314 ns
1.8-V HSTL
CLASS II
18 mA GCLK tCO 2.604 2.604 5.578 ns
GCLK PLL tCO 1.166 1.166 2.325 ns
1.8-V HSTL
CLASS II
20 mA GCLK tCO 2.604 2.604 5.577 ns
GCLK PLL tCO 1.166 1.166 2.334 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.637 2.637 5.675 ns
GCLK PLL tCO 1.196 1.196 2.569 ns
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.644 2.644 5.651 ns
GCLK PLL tCO 1.206 1.206 2.554 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.626 2.626 5.653 ns
GCLK PLL tCO 1.188 1.188 2.556 ns
1.5-V HSTL
CLASS I
10 mA GCLK tCO 2.626 2.626 5.655 ns
GCLK PLL tCO 1.188 1.188 2.558 ns
1.5-V HSTL
CLASS I
12 mA GCLK tCO 2.620 2.620 5.653 ns
GCLK PLL tCO 1.182 1.182 2.556 ns
1.5-V HSTL
CLASS II
16 mA GCLK tCO 2.607 2.607 5.573 ns
GCLK PLL tCO 1.169 1.169 2.368 ns
1.5-V HSTL
CLASS II
18 mA GCLK tCO 2.610 2.610 5.571 ns
GCLK PLL tCO 1.172 1.172 2.378 ns
1.5-V HSTL
CLASS II
20 mA GCLK tCO 2.612 2.612 5.581 ns
GCLK PLL tCO 1.174 1.174 2.391 ns
3.3-V PCI GCLK tCO 2.786 2.786 5.803 ns
GCLK PLL tCO 1.322 1.322 2.697 ns
3.3-V PCI-X GCLK tCO 2.786 2.786 5.803 ns
GCLK PLL tCO 1.322 1.322 2.697 ns
LVDS GCLK tCO 3.621 3.621 6.969 ns
GCLK PLL tCO 2.190 2.190 3.880 ns
Table 4–63. EP1AGX50 Column Pins Output Timing Parameters (Part 4 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–59
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–64 lists row pin delay adders when using the regional clock in Arria GX
devices.
Table 4–65 lists column pin delay adders when using the regional clock in Arria GX
devices.
EP1AGX60 I/O Timing Parameters
Table 4–66 through Table 4–69 list the maximum I/O timing parameters for
EP1AGX60 devices for I/O standards which support general purpose I/O pins.
Table 4–66 lists I/O timing specifications.
Table 4–64. EP1AGX50 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.151 0.151 0.329 ns
RCLK PLL input adder 0.011 0.011 0.016 ns
RCLK output adder 0.151 –0.151 0.329 ns
RCLK PLL output adder 0.011 –0.011 0.016 ns
Table 4–65. EP1AGX50 Column Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.146 0.146 0.334 ns
RCLK PLL input adder 1.713 –1.713 3.645 ns
RCLK output adder 0.146 –0.146 0.336 ns
RCLK PLL output adder 1.716 1.716 4.488 ns
Table 4–66. EP1AGX60 Row Pins Input Timing Parameters (Part 1 of 3)
I/O Standard Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.413 1.413 3.113 ns
tH–1.308 –1.308 –2.836 ns
GCLK PLL tSU 2.975 2.975 6.536 ns
tH–2.870 –2.870 –6.259 ns
3.3-V LVCMOS
GCLK tSU 1.413 1.413 3.113 ns
tH–1.308 –1.308 –2.836 ns
GCLK PLL tSU 2.975 2.975 6.536 ns
tH–2.870 –2.870 –6.259 ns
2.5 V
GCLK tSU 1.425 1.425 3.094 ns
tH–1.320 –1.320 –2.817 ns
GCLK PLL tSU 2.987 2.987 6.517 ns
tH–2.882 –2.882 –6.240 ns
4–60 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
1.8 V
GCLK tSU 1.477 1.477 3.275 ns
tH–1.372 –1.372 –2.998 ns
GCLK PLL tSU 3.049 3.049 6.718 ns
tH–2.944 –2.944 –6.441 ns
1.5 V
GCLK tSU 1.480 1.480 3.370 ns
tH–1.375 –1.375 –3.093 ns
GCLK PLL tSU 3.052 3.052 6.813 ns
tH–2.947 –2.947 –6.536 ns
SSTL-2 CLASS I
GCLK tSU 1.237 1.237 2.566 ns
tH–1.132 –1.132 –2.289 ns
GCLK PLL tSU 2.800 2.800 5.990 ns
tH–2.695 –2.695 –5.713 ns
SSTL-2 CLASS II
GCLK tSU 1.237 1.237 2.566 ns
tH–1.132 –1.132 –2.289 ns
GCLK PLL tSU 2.800 2.800 5.990 ns
tH–2.695 –2.695 –5.713 ns
SSTL-18 CLASS I
GCLK tSU 1.255 1.255 2.649 ns
tH–1.150 –1.150 –2.372 ns
GCLK PLL tSU 2.827 2.827 6.092 ns
tH–2.722 –2.722 –5.815 ns
SSTL-18 CLASS II
GCLK tSU 1.255 1.255 2.649 ns
tH–1.150 –1.150 –2.372 ns
GCLK PLL tSU 2.827 2.827 6.092 ns
tH–2.722 –2.722 –5.815 ns
1.8-V HSTL CLASS I
GCLK tSU 1.255 1.255 2.649 ns
tH–1.150 –1.150 –2.372 ns
GCLK PLL tSU 2.827 2.827 6.092 ns
tH–2.722 –2.722 –5.815 ns
1.8-V HSTL CLASS II
GCLK tSU 1.255 1.255 2.649 ns
tH–1.150 –1.150 –2.372 ns
GCLK PLL tSU 2.827 2.827 6.092 ns
tH–2.722 –2.722 –5.815 ns
1.5-V HSTL CLASS I
GCLK tSU 1.281 1.281 2.777 ns
tH–1.176 –1.176 –2.500 ns
GCLK PLL tSU 2.853 2.853 6.220 ns
tH–2.748 –2.748 –5.943 ns
Table 4–66. EP1AGX60 Row Pins Input Timing Parameters (Part 2 of 3)
I/O Standard Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–61
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–67 lists I/O timing specifications.
1.5-V HSTL CLASS II
GCLK tSU 1.281 1.281 2.777 ns
tH–1.176 –1.176 –2.500 ns
GCLK PLL tSU 2.853 2.853 6.220 ns
tH–2.748 –2.748 –5.943 ns
LVDS
GCLK tSU 1.208 1.208 2.664 ns
tH–1.103 –1.103 –2.387 ns
GCLK PLL tSU 2.767 2.767 6.083 ns
tH–2.662 –2.662 –5.806 ns
Table 4–66. EP1AGX60 Row Pins Input Timing Parameters (Part 3 of 3)
I/O Standard Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Table 4–67. EP1AGX60 Column Pins Input Timing Parameters (Part 1 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.124 1.124 2.493 ns
tH–1.019 –1.019 -2.216 ns
GCLK PLL tSU 2.694 2.694 5.928 ns
tH–2.589 –2.589 -5.651 ns
3.3-V LVCMOS
GCLK tSU 1.124 1.124 2.493 ns
tH–1.019 –1.019 -2.216 ns
GCLK PLL tSU 2.694 2.694 5.928 ns
tH–2.589 –2.589 -5.651 ns
2.5 V
GCLK tSU 1.134 1.134 2.475 ns
tH–1.029 –1.029 -2.198 ns
GCLK PLL tSU 2.704 2.704 5.910 ns
tH–2.599 –2.599 -5.633 ns
1.8 V
GCLK tSU 1.200 1.200 2.685 ns
tH–1.095 –1.095 -2.408 ns
GCLK PLL tSU 2.770 2.770 6.120 ns
tH–2.665 –2.665 -5.843 ns
1.5 V
GCLK tSU 1.203 1.203 2.778 ns
tH–1.098 –1.098 -2.501 ns
GCLK PLL tSU 2.773 2.773 6.213 ns
tH–2.668 –2.668 -5.936 ns
SSTL-2 CLASS I
GCLK tSU 0.948 0.948 1.951 ns
tH–0.843 –0.843 -1.674 ns
GCLK PLL tSU 2.519 2.519 5.388 ns
tH–2.414 –2.414 -5.111 ns
4–62 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-2 CLASS II
GCLK tSU 0.948 0.948 1.951 ns
tH0.843 0.843 1.674 ns
GCLK PLL tSU 2.519 2.519 5.388 ns
tH2.414 2.414 5.111 ns
SSTL-18 CLASS I
GCLK tSU 0.986 0.986 2.057 ns
tH0.881 0.881 1.780 ns
GCLK PLL tSU 2.556 2.556 5.492 ns
tH2.451 2.451 5.215 ns
SSTL-18 CLASS II
GCLK tSU 0.987 0.987 2.058 ns
tH0.882 0.882 1.781 ns
GCLK PLL tSU 2.558 2.558 5.495 ns
tH2.453 2.453 5.218 ns
1.8-V HSTL CLASS I
GCLK tSU 0.986 0.986 2.057 ns
tH0.881 0.881 1.780 ns
GCLK PLL tSU 2.556 2.556 5.492 ns
tH2.451 2.451 5.215 ns
1.8-V HSTL CLASS II
GCLK tSU 0.987 0.987 2.058 ns
tH0.882 0.882 1.781 ns
GCLK PLL tSU 2.558 2.558 5.495 ns
tH2.453 2.453 5.218 ns
1.5-V HSTL CLASS I
GCLK tSU 1.004 1.004 2.185 ns
tH0.899 0.899 1.908 ns
GCLK PLL tSU 2.574 2.574 5.620 ns
tH2.469 2.469 5.343 ns
1.5-V HSTL CLASS II
GCLK tSU 1.005 1.005 2.186 ns
tH0.900 0.900 1.909 ns
GCLK PLL tSU 2.576 2.576 5.623 ns
tH2.471 2.471 5.346 ns
3.3-V PCI
GCLK tSU 1.129 1.129 2.481 ns
tH1.024 1.024 2.204 ns
GCLK PLL tSU 2.699 2.699 5.916 ns
tH2.594 2.594 5.639 ns
3.3-V PCI-X
GCLK tSU 1.129 1.129 2.481 ns
tH1.024 1.024 2.204 ns
GCLK PLL tSU 2.699 2.699 5.916 ns
tH2.594 2.594 5.639 ns
Table 4–67. EP1AGX60 Column Pins Input Timing Parameters (Part 2 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–63
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–68 lists I/O timing specifications.
LVDS
GCLK tSU 0.980 0.980 2.062 ns
tH0.875 0.875 1.785 ns
GCLK PLL tSU 2.557 2.557 5.512 ns
tH2.452 2.452 5.235 ns
Table 4–67. EP1AGX60 Column Pins Input Timing Parameters (Part 3 of 3)
I/O Standard Clock Parameter
Fast Corner 6 Speed
Grade Units
Industrial Commercial
Table 4–68. EP1AGX60 Row Pins Output Timing Parameters (Part 1 of 2)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4mA GCLK tCO 3.052 3.052 7.142 ns
GCLK PLL tCO 1.490 1.490 3.719 ns
3.3-V LVTTL 8mA GCLK tCO 2.924 2.924 6.502 ns
GCLK PLL tCO 1.362 1.362 3.079 ns
3.3-V LVTTL 12 mA GCLK tCO 2.868 2.868 6.465 ns
GCLK PLL tCO 1.306 1.306 3.042 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.924 2.924 6.502 ns
GCLK PLL tCO 1.362 1.362 3.079 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.818 2.818 6.196 ns
GCLK PLL tCO 1.256 1.256 2.773 ns
2.5 V 4mA GCLK tCO 2.907 2.907 6.476 ns
GCLK PLL tCO 1.345 1.345 3.053 ns
2.5 V 8mA GCLK tCO 2.804 2.804 6.218 ns
GCLK PLL tCO 1.242 1.242 2.795 ns
2.5 V 12 mA GCLK tCO 2.785 2.785 6.104 ns
GCLK PLL tCO 1.223 1.223 2.681 ns
1.8 V 2 mA GCLK tCO 2.991 2.991 7.521 ns
GCLK PLL tCO 1.419 1.419 4.078 ns
1.8 V 4 mA GCLK tCO 2.980 2.980 6.742 ns
GCLK PLL tCO 1.408 1.408 3.299 ns
1.8 V 6 mA GCLK tCO 2.869 2.869 6.441 ns
GCLK PLL tCO 1.297 1.297 2.998 ns
1.8 V 8 mA GCLK tCO 2.838 2.838 6.327 ns
GCLK PLL tCO 1.266 1.266 2.884 ns
1.5 V 2mA GCLK tCO 2.951 2.951 7.020 ns
GCLK PLL tCO 1.379 1.379 3.577 ns
1.5 V 4mA GCLK tCO 2.844 2.844 6.419 ns
GCLK PLL tCO 1.272 1.272 2.976 ns
4–64 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-2
CLASS I
8mA GCLK tCO 2.774 2.774 6.057 ns
GCLK PLL tCO 1.211 1.211 2.633 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.750 2.750 5.981 ns
GCLK PLL tCO 1.187 1.187 2.557 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.716 2.716 5.850 ns
GCLK PLL tCO 1.153 1.153 2.426 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.776 2.776 6.025 ns
GCLK PLL tCO 1.204 1.204 2.582 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.780 2.780 5.954 ns
GCLK PLL tCO 1.208 1.208 2.511 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.756 2.756 5.937 ns
GCLK PLL tCO 1.184 1.184 2.494 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.759 2.759 5.916 ns
GCLK PLL tCO 1.187 1.187 2.473 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.757 2.757 5.935 ns
GCLK PLL tCO 1.185 1.185 2.492 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.760 2.760 5.899 ns
GCLK PLL tCO 1.188 1.188 2.456 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.742 2.742 5.895 ns
GCLK PLL tCO 1.170 1.170 2.452 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.746 2.746 5.884 ns
GCLK PLL tCO 1.174 1.174 2.441 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.737 2.737 5.883 ns
GCLK PLL tCO 1.165 1.165 2.440 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.756 2.756 5.912 ns
GCLK PLL tCO 1.184 1.184 2.469 ns
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.759 2.759 5.898 ns
GCLK PLL tCO 1.187 1.187 2.455 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.744 2.744 5.890 ns
GCLK PLL tCO 1.172 1.172 2.447 ns
LVDS GCLK tCO 2.787 2.787 6.037 ns
GCLK PLL tCO 1.228 1.228 2.618 ns
Table 4–68. EP1AGX60 Row Pins Output Timing Parameters (Part 2 of 2)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–65
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–69 lists I/O timing specifications.
Table 4–69. EP1AGX60 Column Pins Output Timing Parameters (Part 1 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4mA GCLK tCO 3.036 3.036 6.963 ns
GCLK PLL tCO 1.466 1.466 3.528 ns
3.3-V LVTTL 8mA GCLK tCO 2.891 2.891 6.591 ns
GCLK PLL tCO 1.321 1.321 3.156 ns
3.3-V LVTTL 12 mA GCLK tCO 2.824 2.824 6.591 ns
GCLK PLL tCO 1.254 1.254 3.156 ns
3.3-V LVTTL 16 mA GCLK tCO 2.798 2.798 6.422 ns
GCLK PLL tCO 1.228 1.228 2.987 ns
3.3-V LVTTL 20 mA GCLK tCO 2.776 2.776 6.297 ns
GCLK PLL tCO 1.206 1.206 2.862 ns
3.3-V LVTTL 24 mA GCLK tCO 2.769 2.769 6.299 ns
GCLK PLL tCO 1.199 1.199 2.864 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.891 2.891 6.591 ns
GCLK PLL tCO 1.321 1.321 3.156 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.799 2.799 6.296 ns
GCLK PLL tCO 1.229 1.229 2.861 ns
3.3-V
LVCMOS
12 mA GCLK tCO 2.771 2.771 6.218 ns
GCLK PLL tCO 1.201 1.201 2.783 ns
3.3-V
LVCMOS
16 mA GCLK tCO 2.778 2.778 6.186 ns
GCLK PLL tCO 1.208 1.208 2.751 ns
3.3-V
LVCMOS
20 mA GCLK tCO 2.765 2.765 6.168 ns
GCLK PLL tCO 1.195 1.195 2.733 ns
3.3-V
LVCMOS
24 mA GCLK tCO 2.754 2.754 6.146 ns
GCLK PLL tCO 1.184 1.184 2.711 ns
2.5 V 4 mA GCLK tCO 2.853 2.853 6.623 ns
GCLK PLL tCO 1.283 1.283 3.188 ns
2.5 V 8 mA GCLK tCO 2.801 2.801 6.361 ns
GCLK PLL tCO 1.231 1.231 2.926 ns
2.5 V 12 mA GCLK tCO 2.780 2.780 6.244 ns
GCLK PLL tCO 1.210 1.210 2.809 ns
2.5 V 16 mA GCLK tCO 2.762 2.762 6.170 ns
GCLK PLL tCO 1.192 1.192 2.735 ns
1.8 V 2 mA GCLK tCO 2.893 2.893 7.615 ns
GCLK PLL tCO 1.323 1.323 4.180 ns
1.8 V 4 mA GCLK tCO 2.898 2.898 6.841 ns
GCLK PLL tCO 1.328 1.328 3.406 ns
4–66 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
1.8 V 6mA GCLK tCO 2.822 2.822 6.577 ns
GCLK PLL tCO 1.252 1.252 3.142 ns
1.8 V 8mA GCLK tCO 2.824 2.824 6.486 ns
GCLK PLL tCO 1.254 1.254 3.051 ns
1.8 V 10 mA GCLK tCO 2.778 2.778 6.409 ns
GCLK PLL tCO 1.208 1.208 2.974 ns
1.8 V 12 mA GCLK tCO 2.779 2.779 6.352 ns
GCLK PLL tCO 1.209 1.209 2.917 ns
1.5 V 2 mA GCLK tCO 2.873 2.873 7.145 ns
GCLK PLL tCO 1.303 1.303 3.710 ns
1.5 V 4 mA GCLK tCO 2.809 2.809 6.576 ns
GCLK PLL tCO 1.239 1.239 3.141 ns
1.5 V 6 mA GCLK tCO 2.812 2.812 6.458 ns
GCLK PLL tCO 1.242 1.242 3.023 ns
1.5 V 8 mA GCLK tCO 2.771 2.771 6.405 ns
GCLK PLL tCO 1.201 1.201 2.970 ns
SSTL-2
CLASS I
8mA GCLK tCO 2.757 2.757 6.184 ns
GCLK PLL tCO 1.184 1.184 2.744 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.740 2.740 6.134 ns
GCLK PLL tCO 1.167 1.167 2.694 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.718 2.718 6.061 ns
GCLK PLL tCO 1.145 1.145 2.621 ns
SSTL-2
CLASS II
20 mA GCLK tCO 2.719 2.719 6.048 ns
GCLK PLL tCO 1.146 1.146 2.608 ns
SSTL-2
CLASS II
24 mA GCLK tCO 2.715 2.715 6.046 ns
GCLK PLL tCO 1.142 1.142 2.606 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.753 2.753 6.155 ns
GCLK PLL tCO 1.183 1.183 2.720 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.758 2.758 6.116 ns
GCLK PLL tCO 1.185 1.185 2.676 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.737 2.737 6.097 ns
GCLK PLL tCO 1.164 1.164 2.657 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.742 2.742 6.095 ns
GCLK PLL tCO 1.169 1.169 2.655 ns
SSTL-18
CLASS I
12 mA GCLK tCO 2.736 2.736 6.081 ns
GCLK PLL tCO 1.163 1.163 2.641 ns
SSTL-18
CLASS II
8mA GCLK tCO 2.725 2.725 6.047 ns
GCLK PLL tCO 1.152 1.152 2.607 ns
Table 4–69. EP1AGX60 Column Pins Output Timing Parameters (Part 2 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–67
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SSTL-18
CLASS II
16 mA GCLK tCO 2.737 2.737 6.025 ns
GCLK PLL tCO 1.164 1.164 2.585 ns
SSTL-18
CLASS II
18 mA GCLK tCO 2.733 2.733 6.033 ns
GCLK PLL tCO 1.160 1.160 2.593 ns
SSTL-18
CLASS II
20 mA GCLK tCO 2.733 2.733 6.031 ns
GCLK PLL tCO 1.160 1.160 2.591 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.756 2.756 6.086 ns
GCLK PLL tCO 1.186 1.186 2.651 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.762 2.762 6.071 ns
GCLK PLL tCO 1.189 1.189 2.631 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.740 2.740 6.060 ns
GCLK PLL tCO 1.167 1.167 2.620 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.744 2.744 6.066 ns
GCLK PLL tCO 1.171 1.171 2.626 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.736 2.736 6.059 ns
GCLK PLL tCO 1.163 1.163 2.619 ns
1.8-V HSTL
CLASS II
16 mA GCLK tCO 2.719 2.719 5.823 ns
GCLK PLL tCO 1.146 1.146 2.383 ns
1.8-V HSTL
CLASS II
18 mA GCLK tCO 2.721 2.721 5.834 ns
GCLK PLL tCO 1.148 1.148 2.394 ns
1.8-V HSTL
CLASS II
20 mA GCLK tCO 2.721 2.721 5.843 ns
GCLK PLL tCO 1.148 1.148 2.403 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.756 2.756 6.085 ns
GCLK PLL tCO 1.186 1.186 2.650 ns
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.761 2.761 6.063 ns
GCLK PLL tCO 1.188 1.188 2.623 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.743 2.743 6.065 ns
GCLK PLL tCO 1.170 1.170 2.625 ns
1.5-V HSTL
CLASS I
10 mA GCLK tCO 2.743 2.743 6.067 ns
GCLK PLL tCO 1.170 1.170 2.627 ns
1.5-V HSTL
CLASS I
12 mA GCLK tCO 2.737 2.737 6.065 ns
GCLK PLL tCO 1.164 1.164 2.625 ns
1.5-V HSTL
CLASS II
16 mA GCLK tCO 2.724 2.724 5.877 ns
GCLK PLL tCO 1.151 1.151 2.437 ns
1.5-V HSTL
CLASS II
18 mA GCLK tCO 2.727 2.727 5.887 ns
GCLK PLL tCO 1.154 1.154 2.447 ns
1.5-V HSTL
CLASS II
20 mA GCLK tCO 2.729 2.729 5.900 ns
GCLK PLL tCO 1.156 1.156 2.460 ns
Table 4–69. EP1AGX60 Column Pins Output Timing Parameters (Part 3 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–68 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–70 through Table 4–71 list EP1AGX60 regional clock (RCLK) adder values that
should be added to the GCLK values. These adder values are used to determine I/O
timing when the I/O pin is driven using the regional clock. This applies for all I/O
standards supported by Arria GX with general purpose I/O pins.
Table 4–70 describes row pin delay adders when using the regional clock in Arria GX
devices.
Table 4–71 lists column pin delay adders when using the regional clock in Arria GX
devices.
EP1AGX90 I/O Timing Parameters
Table 4–72 through Table 4–75 list the maximum I/O timing parameters for
EP1AGX90 devices for I/O standards which support general purpose I/O pins.
3.3-V PCI GCLK tCO 2.882 2.882 6.213 ns
GCLK PLL tCO 1.312 1.312 2.778 ns
3.3-V PCI-X GCLK tCO 2.882 2.882 6.213 ns
GCLK PLL tCO 1.312 1.312 2.778 ns
LVDS GCLK tCO 3.746 3.746 7.396 ns
GCLK PLL tCO 2.185 2.185 3.973 ns
Table 4–69. EP1AGX60 Column Pins Output Timing Parameters (Part 4 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–70. EP1AGX60 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.138 0.138 0.311 ns
RCLK PLL input adder 0.003 –0.003 0.006 ns
RCLK output adder 0.138 –0.138 0.311 ns
RCLK PLL output adder 0.003 0.003 0.006 ns
Table 4–71. EP1AGX60 Column Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.153 0.153 0.344 ns
RCLK PLL input adder –1.066 1.066 –2.338 ns
RCLK output adder –0.153 0.153 –0.343 ns
RCLK PLL output adder 1.721 1.721 4.486 ns
Chapter 4: DC and Switching Characteristics 4–69
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–72 lists I/O timing specifications.
Table 4–72. EP1AGX90 Row Pins Input Timing Parameters (Part 1 of 2)
I/O Standard Clock Parameter
Fast Model 6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.295 1.295 2.873 ns
tH1.190 1.190 –2.596 ns
GCLK PLL tSU 3.366 3.366 7.017 ns
tH3.261 3.261 –6.740 ns
3.3-V LVCMOS
GCLK tSU 1.295 1.295 2.873 ns
tH1.190 1.190 –2.596 ns
GCLK PLL tSU 3.366 3.366 7.017 ns
tH3.261 3.261 –6.740 ns
2.5 V
GCLK tSU 1.307 1.307 2.854 ns
tH1.202 1.202 –2.577 ns
GCLK PLL tSU 3.378 3.378 6.998 ns
tH3.273 3.273 –6.721 ns
1.8 V
GCLK tSU 1.381 1.381 3.073 ns
tH1.276 1.276 –2.796 ns
GCLK PLL tSU 3.434 3.434 7.191 ns
tH3.329 3.329 –6.914 ns
1.5 V
GCLK tSU 1.384 1.384 3.168 ns
tH1.279 1.279 –2.891 ns
GCLK PLL tSU 3.437 3.437 7.286 ns
tH3.332 3.332 –7.009 ns
SSTL-2 CLASS I
GCLK tSU 1.121 1.121 2.329 ns
tH1.016 1.016 –2.052 ns
GCLK PLL tSU 3.187 3.187 6.466 ns
tH3.082 3.082 –6.189 ns
SSTL-2 CLASS II
GCLK tSU 1.121 1.121 2.329 ns
tH1.016 1.016 –2.052 ns
GCLK PLL tSU 3.187 3.187 6.466 ns
tH3.082 3.082 –6.189 ns
SSTL-18 CLASS I
GCLK tSU 1.159 1.159 2.447 ns
tH1.054 1.054 –2.170 ns
GCLK PLL tSU 3.212 3.212 6.565 ns
tH3.107 3.107 –6.288 ns
SSTL-18 CLASS II
GCLK tSU 1.157 1.157 2.441 ns
tH1.052 1.052 –2.164 ns
GCLK PLL tSU 3.235 3.235 6.597 ns
tH3.130 3.130 –6.320 ns
4–70 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–73 lists I/O timing specifications.
\
1.8-V HSTL CLASS I
GCLK tSU 1.159 1.159 2.447 ns
tH1.054 1.054 –2.170 ns
GCLK PLL tSU 3.212 3.212 6.565 ns
tH3.107 3.107 –6.288 ns
1.8-V HSTL CLASS II
GCLK tSU 1.157 1.157 2.441 ns
tH1.052 1.052 –2.164 ns
GCLK PLL tSU 3.235 3.235 6.597 ns
tH3.130 3.130 –6.320 ns
1.5-V HSTL CLASS I
GCLK tSU 1.185 1.185 2.575 ns
tH1.080 1.080 –2.298 ns
GCLK PLL tSU 3.238 3.238 6.693 ns
tH3.133 3.133 –6.416 ns
1.5-V HSTL CLASS II
GCLK tSU 1.183 1.183 2.569 ns
tH1.078 1.078 –2.292 ns
GCLK PLL tSU 3.261 3.261 6.725 ns
tH3.156 3.156 –6.448 ns
LVDS
GCLK tSU 1.098 1.098 2.439 ns
tH0.993 0.993 –2.162 ns
GCLK PLL tSU 3.160 3.160 6.566 ns
tH3.055 3.055 –6.289 ns
Table 4–72. EP1AGX90 Row Pins Input Timing Parameters (Part 2 of 2)
I/O Standard Clock Parameter
Fast Model 6 Speed
Grade Units
Industrial Commercial
Table 4–73. EP1AGX90 Column Pins Input Timing Parameters (Part 1 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL
GCLK tSU 1.018 1.018 2.290 ns
tH0.913 0.913 2.013 ns
GCLK PLL tSU 3.082 3.082 6.425 ns
tH2.977 2.977 6.148 ns
3.3-V LVCMOS
GCLK tSU 1.018 1.018 2.290 ns
tH0.913 0.913 2.013 ns
GCLK PLL tSU 3.082 3.082 6.425 ns
tH2.977 2.977 6.148 ns
2.5 V
GCLK tSU 1.028 1.028 2.272 ns
tH0.923 0.923 1.995 ns
GCLK PLL tSU 3.092 3.092 6.407 ns
tH2.987 2.987 6.130 ns
Chapter 4: DC and Switching Characteristics 4–71
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
1.8 V
GCLK tSU 1.094 1.094 2.482 ns
tH0.989 0.989 2.205 ns
GCLK PLL tSU 3.158 3.158 6.617 ns
tH3.053 3.053 6.340 ns
1.5 V
GCLK tSU 1.097 1.097 2.575 ns
tH0.992 0.992 2.298 ns
GCLK PLL tSU 3.161 3.161 6.710 ns
tH3.056 3.056 6.433 ns
SSTL-2 CLASS I
GCLK tSU 0.844 0.844 1.751 ns
tH0.739 0.739 1.474 ns
GCLK PLL tSU 2.908 2.908 5.886 ns
tH2.803 2.803 5.609 ns
SSTL-2 CLASS II
GCLK tSU 0.844 0.844 1.751 ns
tH0.739 0.739 1.474 ns
GCLK PLL tSU 2.908 2.908 5.886 ns
tH2.803 2.803 5.609 ns
SSTL-18 CLASS I
GCLK tSU 0.880 0.880 1.854 ns
tH0.775 0.775 1.577 ns
GCLK PLL tSU 2.944 2.944 5.989 ns
tH2.839 2.839 5.712 ns
SSTL-18 CLASS II
GCLK tSU 0.883 0.883 1.858 ns
tH0.778 0.778 1.581 ns
GCLK PLL tSU 2.947 2.947 5.993 ns
tH2.842 2.842 5.716 ns
1.8-V HSTL CLASS I
GCLK tSU 0.880 0.880 1.854 ns
tH0.775 0.775 1.577 ns
GCLK PLL tSU 2.944 2.944 5.989 ns
tH2.839 2.839 5.712 ns
1.8-V HSTL CLASS II
GCLK tSU 0.883 0.883 1.858 ns
tH0.778 0.778 1.581 ns
GCLK PLL tSU 2.947 2.947 5.993 ns
tH2.842 2.842 5.716 ns
1.5-V HSTL CLASS I
GCLK tSU 0.898 0.898 1.982 ns
tH0.793 0.793 1.705 ns
GCLK PLL tSU 2.962 2.962 6.117 ns
tH2.857 2.857 5.840 ns
Table 4–73. EP1AGX90 Column Pins Input Timing Parameters (Part 2 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–72 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–74 lists I/O timing specifications.
1.5-V HSTL CLASS II
GCLK tSU 0.901 0.901 1.986 ns
tH0.796 0.796 1.709 ns
GCLK PLL tSU 2.965 2.965 6.121 ns
tH2.860 2.860 5.844 ns
3.3-V PCI
GCLK tSU 1.023 1.023 2.278 ns
tH0.918 0.918 2.001 ns
GCLK PLL tSU 3.087 3.087 6.413 ns
tH2.982 2.982 6.136 ns
3.3-V PCI-X
GCLK tSU 1.023 1.023 2.278 ns
tH0.918 0.918 2.001 ns
GCLK PLL tSU 3.087 3.087 6.413 ns
tH2.982 2.982 6.136 ns
LVDS
GCLK tSU 0.891 0.891 1.920 ns
tH0.786 0.786 1.643 ns
GCLK PLL tSU 2.963 2.963 6.066 ns
tH2.858 2.858 5.789 ns
Table 4–73. EP1AGX90 Column Pins Input Timing Parameters (Part 3 of 3)
I/O Standard Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–74. EP1AGX90 Row Pins Output Timing Parameters (Part 1 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 3.170 3.170 7.382 ns
GCLK PLL tCO 1.099 1.099 3.238 ns
3.3-V LVTTL 8 mA GCLK tCO 3.042 3.042 6.742 ns
GCLK PLL tCO 0.971 0.971 2.598 ns
3.3-V LVTTL 12 mA GCLK tCO 2.986 2.986 6.705 ns
GCLK PLL tCO 0.915 0.915 2.561 ns
3.3-V
LVCMOS
4mA GCLK tCO 3.042 3.042 6.742 ns
GCLK PLL tCO 0.971 0.971 2.598 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.936 2.936 6.436 ns
GCLK PLL tCO 0.865 0.865 2.292 ns
2.5 V 4 mA GCLK tCO 3.025 3.025 6.716 ns
GCLK PLL tCO 0.954 0.954 2.572 ns
2.5 V 8 mA GCLK tCO 2.922 2.922 6.458 ns
GCLK PLL tCO 0.851 0.851 2.314 ns
2.5 V 12 mA GCLK tCO 2.903 2.903 6.344 ns
GCLK PLL tCO 0.832 0.832 2.200 ns
Chapter 4: DC and Switching Characteristics 4–73
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
1.8 V 2 mA GCLK tCO 3.087 3.087 7.723 ns
GCLK PLL tCO 1.034 1.034 3.605 ns
1.8 V 4 mA GCLK tCO 3.076 3.076 6.944 ns
GCLK PLL tCO 1.023 1.023 2.826 ns
1.8 V 6 mA GCLK tCO 2.965 2.965 6.643 ns
GCLK PLL tCO 0.912 0.912 2.525 ns
1.8 V 8 mA GCLK tCO 2.934 2.934 6.529 ns
GCLK PLL tCO 0.881 0.881 2.411 ns
1.5 V 2 mA GCLK tCO 3.047 3.047 7.222 ns
GCLK PLL tCO 0.994 0.994 3.104 ns
1.5 V 4 mA GCLK tCO 2.940 2.940 6.621 ns
GCLK PLL tCO 0.887 0.887 2.503 ns
SSTL-2
CLASS I
8mA GCLK tCO 2.890 2.890 6.294 ns
GCLK PLL tCO 0.824 0.824 2.157 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.866 2.866 6.218 ns
GCLK PLL tCO 0.800 0.800 2.081 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.832 2.832 6.087 ns
GCLK PLL tCO 0.766 0.766 1.950 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.872 2.872 6.227 ns
GCLK PLL tCO 0.819 0.819 2.109 ns
SSTL-18
CLASS I
6mA GCLK tCO 2.878 2.878 6.162 ns
GCLK PLL tCO 0.800 0.800 2.006 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.854 2.854 6.145 ns
GCLK PLL tCO 0.776 0.776 1.989 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.857 2.857 6.124 ns
GCLK PLL tCO 0.779 0.779 1.968 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.853 2.853 6.137 ns
GCLK PLL tCO 0.800 0.800 2.019 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.858 2.858 6.107 ns
GCLK PLL tCO 0.780 0.780 1.951 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.840 2.840 6.103 ns
GCLK PLL tCO 0.762 0.762 1.947 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.844 2.844 6.092 ns
GCLK PLL tCO 0.766 0.766 1.936 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.835 2.835 6.091 ns
GCLK PLL tCO 0.757 0.757 1.935 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.852 2.852 6.114 ns
GCLK PLL tCO 0.799 0.799 1.996 ns
Table 4–74. EP1AGX90 Row Pins Output Timing Parameters (Part 2 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
4–74 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–75 lists I/O timing specifications.
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.857 2.857 6.106 ns
GCLK PLL tCO 0.779 0.779 1.950 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.842 2.842 6.098 ns
GCLK PLL tCO 0.764 0.764 1.942 ns
LVDS GCLK tCO 2.898 2.898 6.265 ns
GCLK PLL tCO 0.831 0.831 2.129 ns
Table 4–74. EP1AGX90 Row Pins Output Timing Parameters (Part 3 of 3)
I/O Standard Drive
Strength Clock Parameter
Fast Model –6 Speed
Grade Units
Industrial Commercial
Table 4–75. EP1AGX90 Column Pins Output Timing Parameters (Part 1 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
3.3-V LVTTL 4 mA GCLK tCO 3.141 3.141 7.164 ns
GCLK PLL tCO 1.077 1.077 3.029 ns
3.3-V LVTTL 8 mA GCLK tCO 2.996 2.996 6.792 ns
GCLK PLL tCO 0.932 0.932 2.657 ns
3.3-V LVTTL 12 mA GCLK tCO 2.929 2.929 6.792 ns
GCLK PLL tCO 0.865 0.865 2.657 ns
3.3-V LVTTL 16 mA GCLK tCO 2.903 2.903 6.623 ns
GCLK PLL tCO 0.839 0.839 2.488 ns
3.3-V LVTTL 20 mA GCLK tCO 2.881 2.881 6.498 ns
GCLK PLL tCO 0.817 0.817 2.363 ns
3.3-V LVTTL 24 mA GCLK tCO 2.874 2.874 6.500 ns
GCLK PLL tCO 0.810 0.810 2.365 ns
3.3-V
LVCMOS
4mA GCLK tCO 2.996 2.996 6.792 ns
GCLK PLL tCO 0.932 0.932 2.657 ns
3.3-V
LVCMOS
8mA GCLK tCO 2.904 2.904 6.497 ns
GCLK PLL tCO 0.840 0.840 2.362 ns
3.3-V
LVCMOS
12 mA GCLK tCO 2.876 2.876 6.419 ns
GCLK PLL tCO 0.812 0.812 2.284 ns
3.3-V
LVCMOS
16 mA GCLK tCO 2.883 2.883 6.387 ns
GCLK PLL tCO 0.819 0.819 2.252 ns
3.3-V
LVCMOS
20 mA GCLK tCO 2.870 2.870 6.369 ns
GCLK PLL tCO 0.806 0.806 2.234 ns
3.3-V
LVCMOS
24 mA GCLK tCO 2.859 2.859 6.347 ns
GCLK PLL tCO 0.795 0.795 2.212 ns
2.5 V 4 mA GCLK tCO 2.958 2.958 6.824 ns
GCLK PLL tCO 0.894 0.894 2.689 ns
Chapter 4: DC and Switching Characteristics 4–75
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
2.5 V 8 mA GCLK tCO 2.906 2.906 6.562 ns
GCLK PLL tCO 0.842 0.842 2.427 ns
2.5 V 12 mA GCLK tCO 2.885 2.885 6.445 ns
GCLK PLL tCO 0.821 0.821 2.310 ns
2.5 V 16 mA GCLK tCO 2.867 2.867 6.371 ns
GCLK PLL tCO 0.803 0.803 2.236 ns
1.8 V 2 mA GCLK tCO 2.998 2.998 7.816 ns
GCLK PLL tCO 0.934 0.934 3.681 ns
1.8 V 4 mA GCLK tCO 3.003 3.003 7.042 ns
GCLK PLL tCO 0.939 0.939 2.907 ns
1.8 V 6 mA GCLK tCO 2.927 2.927 6.778 ns
GCLK PLL tCO 0.863 0.863 2.643 ns
1.8 V 8 mA GCLK tCO 2.929 2.929 6.687 ns
GCLK PLL tCO 0.865 0.865 2.552 ns
1.8 V 10 mA GCLK tCO 2.883 2.883 6.610 ns
GCLK PLL tCO 0.819 0.819 2.475 ns
1.8 V 12 mA GCLK tCO 2.884 2.884 6.553 ns
GCLK PLL tCO 0.820 0.820 2.418 ns
1.5 V 2 mA GCLK tCO 2.978 2.978 7.346 ns
GCLK PLL tCO 0.914 0.914 3.211 ns
1.5 V 4 mA GCLK tCO 2.914 2.914 6.777 ns
GCLK PLL tCO 0.850 0.850 2.642 ns
1.5 V 6 mA GCLK tCO 2.917 2.917 6.659 ns
GCLK PLL tCO 0.853 0.853 2.524 ns
1.5 V 8 mA GCLK tCO 2.876 2.876 6.606 ns
GCLK PLL tCO 0.812 0.812 2.471 ns
SSTL-2
CLASS I
8mA GCLK tCO 2.859 2.859 6.381 ns
GCLK PLL tCO 0.797 0.797 2.250 ns
SSTL-2
CLASS I
12 mA GCLK tCO 2.842 2.842 6.331 ns
GCLK PLL tCO 0.780 0.780 2.200 ns
SSTL-2
CLASS II
16 mA GCLK tCO 2.820 2.820 6.258 ns
GCLK PLL tCO 0.758 0.758 2.127 ns
SSTL-2
CLASS II
20 mA GCLK tCO 2.821 2.821 6.245 ns
GCLK PLL tCO 0.759 0.759 2.114 ns
SSTL-2
CLASS II
24 mA GCLK tCO 2.817 2.817 6.243 ns
GCLK PLL tCO 0.755 0.755 2.112 ns
SSTL-18
CLASS I
4mA GCLK tCO 2.858 2.858 6.356 ns
GCLK PLL tCO 0.794 0.794 2.221 ns
Table 4–75. EP1AGX90 Column Pins Output Timing Parameters (Part 2 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
4–76 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
SSTL-18
CLASS I
6mA GCLK tCO 2.860 2.860 6.313 ns
GCLK PLL tCO 0.798 0.798 2.182 ns
SSTL-18
CLASS I
8mA GCLK tCO 2.839 2.839 6.294 ns
GCLK PLL tCO 0.777 0.777 2.163 ns
SSTL-18
CLASS I
10 mA GCLK tCO 2.844 2.844 6.292 ns
GCLK PLL tCO 0.782 0.782 2.161 ns
SSTL-18
CLASS I
12 mA GCLK tCO 2.838 2.838 6.278 ns
GCLK PLL tCO 0.776 0.776 2.147 ns
SSTL-18
CLASS II
8mA GCLK tCO 2.827 2.827 6.244 ns
GCLK PLL tCO 0.765 0.765 2.113 ns
SSTL-18
CLASS II
16 mA GCLK tCO 2.839 2.839 6.222 ns
GCLK PLL tCO 0.777 0.777 2.091 ns
SSTL-18
CLASS II
18 mA GCLK tCO 2.835 2.835 6.230 ns
GCLK PLL tCO 0.773 0.773 2.099 ns
SSTL-18
CLASS II
20 mA GCLK tCO 2.835 2.835 6.228 ns
GCLK PLL tCO 0.773 0.773 2.097 ns
1.8-V HSTL
CLASS I
4mA GCLK tCO 2.861 2.861 6.287 ns
GCLK PLL tCO 0.797 0.797 2.152 ns
1.8-V HSTL
CLASS I
6mA GCLK tCO 2.864 2.864 6.268 ns
GCLK PLL tCO 0.802 0.802 2.137 ns
1.8-V HSTL
CLASS I
8mA GCLK tCO 2.842 2.842 6.257 ns
GCLK PLL tCO 0.780 0.780 2.126 ns
1.8-V HSTL
CLASS I
10 mA GCLK tCO 2.846 2.846 6.263 ns
GCLK PLL tCO 0.784 0.784 2.132 ns
1.8-V HSTL
CLASS I
12 mA GCLK tCO 2.838 2.838 6.256 ns
GCLK PLL tCO 0.776 0.776 2.125 ns
1.8-V HSTL
CLASS II
16 mA GCLK tCO 2.821 2.821 6.020 ns
GCLK PLL tCO 0.759 0.759 1.889 ns
1.8-V HSTL
CLASS II
18 mA GCLK tCO 2.823 2.823 6.031 ns
GCLK PLL tCO 0.761 0.761 1.900 ns
1.8-V HSTL
CLASS II
20 mA GCLK tCO 2.823 2.823 6.040 ns
GCLK PLL tCO 0.761 0.761 1.909 ns
1.5-V HSTL
CLASS I
4mA GCLK tCO 2.861 2.861 6.286 ns
GCLK PLL tCO 0.797 0.797 2.151 ns
1.5-V HSTL
CLASS I
6mA GCLK tCO 2.863 2.863 6.260 ns
GCLK PLL tCO 0.801 0.801 2.129 ns
1.5-V HSTL
CLASS I
8mA GCLK tCO 2.845 2.845 6.262 ns
GCLK PLL tCO 0.783 0.783 2.131 ns
Table 4–75. EP1AGX90 Column Pins Output Timing Parameters (Part 3 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–77
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–76 through Table 4–77 list the EP1AGX90 regional clock (RCLK) adder values
that should be added to the GCLK values. These adder values are used to determine
I/O timing when the I/O pin is driven using the regional clock. This applies for all
I/O standards supported by Arria GX with general purpose I/O pins.
Table 4–76 lists row pin delay adders when using the regional clock in Arria GX
devices.
1.5-V HSTL
CLASS I
10 mA GCLK tCO 2.845 2.845 6.264 ns
GCLK PLL tCO 0.783 0.783 2.133 ns
1.5-V HSTL
CLASS I
12 mA GCLK tCO 2.839 2.839 6.262 ns
GCLK PLL tCO 0.777 0.777 2.131 ns
1.5-V HSTL
CLASS II
16 mA GCLK tCO 2.826 2.826 6.074 ns
GCLK PLL tCO 0.764 0.764 1.943 ns
1.5-V HSTL
CLASS II
18 mA GCLK tCO 2.829 2.829 6.084 ns
GCLK PLL tCO 0.767 0.767 1.953 ns
1.5-V HSTL
CLASS II
20 mA GCLK tCO 2.831 2.831 6.097 ns
GCLK PLL tCO 0.769 0.769 1.966 ns
3.3-V PCI GCLK tCO 2.987 2.987 6.414 ns
GCLK PLL tCO 0.923 0.923 2.279 ns
3.3-V PCI-X GCLK tCO 2.987 2.987 6.414 ns
GCLK PLL tCO 0.923 0.923 2.279 ns
LVDS GCLK tCO 3.835 3.835 7.541 ns
GCLK PLL tCO 1.769 1.769 3.404 ns
Table 4–75. EP1AGX90 Column Pins Output Timing Parameters (Part 4 of 4)
I/O Standard Drive
Strength Clock Parameter
Fast Corner –6 Speed
Grade Units
Industrial Commercial
Table 4–76. EP1AGX90 Row Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.175 0.175 0.418 ns
RCLK PLL input adder 0.007 0.007 0.015 ns
RCLK output adder 0.175 –0.175 0.418 ns
RCLK PLL output adder 0.007 –0.007 0.015 ns
4–78 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–77 lists column pin delay adders when using the regional clock in Arria GX
devices.
Dedicated Clock Pin Timing
Table 4–79 through Table 4–98 list clock pin timing for Arria GX devices when the
clock is driven by the global clock, regional clock, periphery clock, and a PLL.
Table 4–78 lists Arria GX clock timing parameters.
EP1AGX20 Clock Timing Parameters
Table 4–79 through Table 4–80 list the GCLK clock timing parameters for EP1AGX20
devices.
Table 4–79 lists clock timing specifications.
Table 4–77. EP1AGX90 Column Pin Delay Adders for Regional Clock
Parameter
Fast Corner
6 Speed Grade Units
Industrial Commercial
RCLK input adder 0.138 0.138 0.354 ns
RCLK PLL input adder 1.697 –1.697 3.607 ns
RCLK output adder 0.138 –0.138 0.353 ns
RCLK PLL output adder 1.966 1.966 5.188 ns
Table 4–78. Arria GX Clock Timing Parameters
Symbol Parameter
tCIN Delay from clock pad to I/O input register
tCOUT Delay from clock pad to I/O output register
tPLLCIN Delay from PLL inclk pad to I/O input register
tPLLCOUT Delay from PLL inclk pad to I/O output register
Table 4–79. EP1AGX20 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tcin 1.394 1.394 3.161 ns
tcout 1.399 1.399 3.155 ns
tpllcin 0.027 –0.027 0.091 ns
tpllcout 0.022 –0.022 0.085 ns
Chapter 4: DC and Switching Characteristics 4–79
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–80 lists clock timing specifications.
Table 4–81 through Table 4–82 list the RCLK clock timing parameters for EP1AGX20
devices.
Table 4–81 lists clock timing specifications.
Table 4–82 lists clock timing specifications.
EP1AGX35 Clock Timing Parameters
Table 4–83 through Table 4–84 list the GCLK clock timing parameters for EP1AGX35
devices.
Table 4–83 lists clock timing specifications.
Table 4–80. EP1AGX20 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.655 1.655 3.726 ns
tCOUT 1.655 1.655 3.726 ns
tPLLCIN 0.236 0.236 0.655 ns
tPLLCOUT 0.236 0.236 0.655 ns
Table 4–81. EP1AGX20 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.283 1.283 2.901 ns
tCOUT 1.288 1.288 2.895 ns
tPLLCIN 0.034 –0.034 0.077 ns
tPLLCOUT 0.029 –0.029 0.071 ns
Table 4–82. EP1AGX20 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.569 1.569 3.487 ns
tCOUT 1.569 1.569 3.487 ns
tPLLCIN 0.278 0.278 0.706 ns
tPLLCOUT 0.278 0.278 0.706 ns
Table 4–83. EP1AGX35 Row Pins Global Clock Timing Parameters (Part 1 of 2)
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.394 1.394 3.161 ns
tCOUT 1.399 1.399 3.155 ns
4–80 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–84 lists clock timing specifications.
Table 4–85 through Table 4–86 list the RCLK clock timing parameters for EP1AGX35
devices.
Table 4–85 lists clock timing specifications.
Table 4–86 lists clock timing specifications.
tPLLCIN 0.027 –0.027 0.091 ns
tPLLCOUT 0.022 –0.022 0.085 ns
Table 4–84. EP1AGX35 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.655 1.655 3.726 ns
tCOUT 1.655 1.655 3.726 ns
tPLLCIN 0.236 0.236 0.655 ns
tPLLCOUT 0.236 0.236 0.655 ns
Table 4–85. EP1AGX35 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.283 1.283 2.901 ns
tCOUT 1.288 1.288 2.895 ns
tPLLCIN 0.034 –0.034 0.077 ns
tPLLCOUT 0.029 –0.029 0.071 ns
Table 4–86. EP1AGX35 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.569 1.569 3.487 ns
tCOUT 1.569 1.569 3.487 ns
tPLLCIN 0.278 0.278 0.706 ns
tPLLCOUT 0.278 0.278 0.706 ns
Table 4–83. EP1AGX35 Row Pins Global Clock Timing Parameters (Part 2 of 2)
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
Chapter 4: DC and Switching Characteristics 4–81
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
EP1AGX50 Clock Timing Parameters
Table 4–87 through Table 4–88 list the GCLK clock timing parameters for EP1AGX50
devices.
Table 4–87 lists clock timing specifications.
Table 4–88 lists clock timing specifications.
Table 4–89 through Table 4–90 list the RCLK clock timing parameters for EP1AGX50
devices.
Table 4–89 lists clock timing specifications.
Table 4–87. EP1AGX50 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.529 1.529 3.587 ns
tCOUT 1.534 1.534 3.581 ns
tPLLCIN 0.024 –0.024 0.181 ns
tPLLCOUT 0.019 –0.019 0.175 ns
Table 4–88. EP1AGX50 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.793 1.793 4.165 ns
tCOUT 1.793 1.793 4.165 ns
tPLLCIN 0.238 0.238 0.758 ns
tPLLCOUT 0.238 0.238 0.758 ns
Table 4–89. EP1AGX50 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.396 1.396 3.287 ns
tCOUT 1.401 1.401 3.281 ns
tPLLCIN 0.017 –0.017 0.195 ns
tPLLCOUT 0.012 –0.012 0.189 ns
4–82 Chapter 4: DC and Switching Characteristics
Typical Design Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–90 lists clock timing specifications.
EP1AGX60 Clock Timing Parameters
Table 4–91 to Table 4–92 on page 4–82 list the GCLK clock timing parameters for
EP1AGX60 devices.
Table 4–91 lists clock timing specifications.
Table 4–92 lists clock timing specifications.
Table 4–90. EP1AGX50 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.653 1.653 3.841 ns
tCOUT 1.651 1.651 3.839 ns
tPLLCIN 0.245 0.245 0.755 ns
tPLLCOUT 0.245 0.245 0.755 ns
Table 4–91. EP1AGX60 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.531 1.531 3.593 ns
tCOUT 1.536 1.536 3.587 ns
tPLLCIN 0.023 –0.023 0.188 ns
tPLLCOUT 0.018 –0.018 0.182 ns
Table 4–92. EP1AGX60 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.792 1.792 4.165 ns
tCOUT 1.792 1.792 4.165 ns
tPLLCIN 0.238 0.238 0.758 ns
tPLLCOUT 0.238 0.238 0.758 ns
Chapter 4: DC and Switching Characteristics 4–83
Typical Design Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–93 through Table 4–94 list the RCLK clock timing parameters for EP1AGX60
devices.
Table 4–93 lists clock timing specifications.
Table 4–94 lists clock timing specifications.
EP1AGX90 Clock Timing Parameters
Table 4–95 through Table 4–96 list the GCLK clock timing parameters for EP1AGX90
devices.
Table 4–95 lists clock timing specifications.
Table 4–93. EP1AGX60 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.382 1.382 3.268 ns
tCOUT 1.387 1.387 3.262 ns
tPLLCIN 0.031 –0.031 0.174 ns
tPLLCOUT 0.026 –0.026 0.168 ns
Table 4–94. EP1AGX60 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.649 1.649 3.835 ns
tCOUT 1.651 1.651 3.839 ns
tPLLCIN 0.245 0.245 0.755 ns
tPLLCOUT 0.245 0.245 0.755 ns
Table 4–95. EP1AGX90 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.630 1.630 3.799 ns
tCOUT 1.635 1.635 3.793 ns
tPLLCIN –0.422 0.422 –0.310 ns
tPLLCOUT –0.417 0.417 –0.316 ns
4–84 Chapter 4: DC and Switching Characteristics
Block Performance
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–96 lists clock timing specifications.
Table 4–97 through Table 4–98 list the RCLK clock timing parameters for EP1AGX90
devices.
Table 4–97 lists clock timing specifications.
Table 4–98 lists clock timing specifications.
Block Performance
Table 4–99 shows the Arria GX performance for some common designs. All
performance values were obtained with the Quartus II software compilation of library
of parameterized modules (LPM) or MegaCore functions for finite impulse response
(FIR) and fast Fourier transform (FFT) designs.
Table 4–96. EP1AGX90 Row Pins Global Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.904 1.904 4.376 ns
tCOUT 1.904 1.904 4.376 ns
tPLLCIN 0.153 –0.153 0.254 ns
tPLLCOUT 0.153 –0.153 0.254 ns
Table 4–97. EP1AGX90 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.462 1.462 3.407 ns
tCOUT 1.467 1.467 3.401 ns
tPLLCIN –0.430 0.430 –0.322 ns
tPLLCOUT –0.425 0.425 –0.328 ns
Table 4–98. EP1AGX90 Row Pins Regional Clock Timing Parameters
Parameter
Fast Model
6 Speed Grade Units
Industrial Commercial
tCIN 1.760 1.760 4.011 ns
tCOUT 1.760 1.760 4.011 ns
tPLLCIN 0.118 –0.118 0.303 ns
tPLLCOUT 0.118 –0.118 0.303 ns
Chapter 4: DC and Switching Characteristics 4–85
Block Performance
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–99 lists performance notes.
Table 4–99. Arria GX Performance Notes
Applications
Resources Used Performance
ALUTs TriMatrix
Memory Blocks DSP Blocks 6 Speed Grade
LE
16-to-1
multiplexer
500168.41
32-to-1
multiplexer
11 0 0 334.11
16-bit counter 16 0 0 374.0
64-bit counter 64 0 0 168.41
TriMatrix Memory
M512 block
Simple dual-port
RAM 32 x 18 bit
010348.0
FIFO 32 x 18 bit 0 1 0 333.22
TriMatrix Memory
M4K block
Simple dual-port
RAM 128 x 36 bit
010344.71
True dual-port
RAM 128 x 18 bit
010348.0
TriMatrix Memory
MegaRAM block
Single port RAM
4K x 144 bit
020244.0
Simple dual-port
RAM 4K x 144 bit
010292.0
True dual-port
RAM 4K x 144 bit
020244.0
Single port RAM
8K x 72 bit
010247.0
Simple dual-port
RAM 8K x 72 bit
010292.0
Single port RAM
16K x 36 bit
010254.0
Simple dual-port
RAM 16K x 36 bit
010292.0
True dual-port
RAM 16K x 36 bit
010251.0
Single port RAM
32K x 18 bit
010317.36
Simple dual-port
RAM 32K x 18 bit
010292.0
True dual-port
RAM 32K x 18 bit
010251.0
Single port RAM
64K x 9 bit
010254.0
Simple dual-port
RAM 64K x 9 bit
010292.0
True dual-port
RAM 64K x 9 bit
010251.0
4–86 Chapter 4: DC and Switching Characteristics
IOE Programmable Delay
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
IOE Programmable Delay
For IOE programmable delay, refer to Table 4–100 through Table 4–101.
Table 4–100 lists IOE programmable delays.
DSP block
9 x 9-bit
multiplier
001335.35
18 x 18-bit
multiplier
002285.0
18 x 18-bit
multiplier
004335.35
36 x 36-bit
multiplier
008174.4
36 x 36-bit
multiplier
008285.0
18-bit 4-tap FIR
filter
008163.0
Larger Designs 8-bit 16-tap
parallel FIR filter
004163.0
Table 4–99. Arria GX Performance Notes
Applications
Resources Used Performance
ALUTs TriMatrix
Memory Blocks DSP Blocks 6 Speed Grade
Table 4–100. Arria GX IOE Programmable Delay on Row Pins
Parameter Paths Affected Available
Settings
Fast Model
6 Speed Grade
Units
Industrial Commercial
Min
Offset
Max
Offset
Min
Offset
Max
Offset
Min
Offset
Max
Offset
Input delay
from pin to
internal cells
Pad to I/O dataout
to core
8 0 1.782 0 1.782 0 4.124 ns
Input delay
from pin to
input register
Pad to I/O input
register
64 0 2.054 0 2.054 0 4.689 ns
Delay from
output
register to
output pin
I/O output register
to pad
2 0 0.332 0 0.332 0 0.717 ns
Output
enable pin
delay
txz/tzx 2 0 0.32 0 0.32 0 0.693 ns
Chapter 4: DC and Switching Characteristics 4–87
Maximum Input and Output Clock Toggle Rate
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–101 lists IOE programmable delays.
Maximum Input and Output Clock Toggle Rate
Maximum clock toggle rate is defined as the maximum frequency achievable for a
clock type signal at an I/O pin. The I/O pin can be a regular I/O pin or a dedicated
clock I/O pin.
The maximum clock toggle rate is different from the maximum data bit rate. If the
maximum clock toggle rate on a regular I/O pin is 300 MHz, the maximum data bit
rate for dual data rate (DDR) could be potentially as high as 600 Mbps on the same
I/O pin.
Table 4–105, Table 4–106, and Table 4–107 provide output toggle rates at the default
capacitive loading. Use the Quartus II software to obtain output toggle rates at loads
different from the default capacitive loading.
Table 4–102 shows the maximum input clock toggle rates for Arria GX device column
I/O pins.
Table 4–101. Arria GX IOE Programmable Delay on Column Pins
Parameter Paths Affected Available
Settings
Fast Model
6 Speed Grade
Units
Industrial Commercial
Min
Offset
Max
Offset
Min
Offset
Max
Offset
Min
Offset
Max
Offset
Input delay
from pin to
internal cells
Pad to I/O dataout to
core
8 0 1.781 0 1.781 0 4.132 ns
Input delay
from pin to
input register
Pad to I/O input register 64 0 2.053 0 2.053 0 4.697 ns
Delay from
output
register to
output pin
I/O output register to
pad
2 0 0.332 0 0.332 0 0.717 ns
Output
enable pin
delay
txz/tzx 2 0 0.32 0 0.32 0 0.693 ns
Table 4–102. Arria GX Maximum Input Toggle Rate for Column I/O Pins
I/O Standards 6 Speed Grade Units
3.3-V LVTTL 420 MHz
3.3-V LVCMOS 420 MHz
2.5 V 420 MHz
1.8 V 420 MHz
1.5 V 420 MHz
SSTL-2 CLASS I 467 MHz
SSTL-2 CLASS II 467 MHz
SSTL-18 CLASS I 467 MHz
4–88 Chapter 4: DC and Switching Characteristics
Maximum Input and Output Clock Toggle Rate
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–103 shows the maximum input clock toggle rates for Arria GX device row I/O
pins.
Table 4–104 shows the maximum input clock toggle rates for Arria GX device
dedicated clock pins.
SSTL-18 CLASS II 467 MHz
1.8-V HSTL CLASS I 467 MHz
1.8-V HSTL CLASS II 467 MHz
1.5-V HSTL CLASS I 467 MHz
1.5-V HSTL CLASS II 467 MHz
3.3-V PCI 420 MHz
3.3-V PCI-X 420 MHz
Table 4–103. Arria GX Maximum Input Toggle Rate for Row I/O Pins
I/O Standards 6 Speed Grade Units
3.3-V LVTTL 420 MHz
3.3-V LVCMOS 420 MHz
2.5 V 420 MHz
1.8 V 420 MHz
1.5 V 420 MHz
SSTL-2 CLASS I 467 MHz
SSTL-2 CLASS II 467 MHz
SSTL-18 CLASS I 467 MHz
SSTL-18 CLASS II 467 MHz
1.8-V HSTL CLASS I 467 MHz
1.8-V HSTL CLASS II 467 MHz
1.5-V HSTL CLASS I 467 MHz
1.5-V HSTL CLASS II 467 MHz
LVDS 392 MHz
Table 4–104. Arria GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 1 of 2)
I/O Standards 6 Speed Grade Units
3.3-V LVTTL 373 MHz
3.3-V LVCMOS 373 MHz
2.5 V 373 MHz
1.8 V 373 MHz
1.5 V 373 MHz
SSTL-2 CLASS I 467 MHz
SSTL-2 CLASS II 467 MHz
3.3-V PCI 373 MHz
Table 4–102. Arria GX Maximum Input Toggle Rate for Column I/O Pins
I/O Standards 6 Speed Grade Units
Chapter 4: DC and Switching Characteristics 4–89
Maximum Input and Output Clock Toggle Rate
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–105 shows the maximum output clock toggle rates for Arria GX device
column I/O pins.
3.3-V PCI-X 373 MHz
SSTL-18 CLASS I 467 MHz
SSTL-18 CLASS II 467 MHz
1.8-V HSTL CLASS I 467 MHz
1.8-V HSTL CLASS II 467 MHz
1.5-V HSTL CLASS I 467 MHz
1.5-V HSTL CLASS II 467 MHz
1.2-V HSTL 233 MHz
DIFFERENTAL SSTL-2 467 MHz
DIFFERENTIAL 2.5-V
SSTL CLASS II
467 MHz
DIFFERENTIAL 1.8-V
SSTL CLASS I
467 MHz
DIFFERENTIAL 1.8-V
SSTL CLASS II
467 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS I
467 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS II
467 MHz
DIFFERENTIAL 1.5-V
HSTL CLASS I
467 MHz
DIFFERENTIAL 1.5-V
HSTL CLASS II
467 MHz
DIFFERENTIAL 1.2-V
HSTL
233 MHz
LVDS 640 MHz
LVDS (1) 373 MHz
Note to Table 4–104:
(1) This set of numbers refers to the VIO dedicated input clock pins.
Table 4–105. Arria GX Maximum Output Toggle Rate for Column I/O Pins (Part 1 of 3)
I/O Standards Drive Strength –6 Speed Grade Units
3.3-V LVTTL
4mA 196 MHz
8mA 303 MHz
12 mA 393 MHz
16 mA 486 MHz
20 mA 570 MHz
24 mA 626 MHz
Table 4–104. Arria GX Maximum Input Clock Rate for Dedicated Clock Pins (Part 2 of 2)
I/O Standards 6 Speed Grade Units
4–90 Chapter 4: DC and Switching Characteristics
Maximum Input and Output Clock Toggle Rate
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
3.3-V LVCMOS
4mA 215 MHz
8mA 411 MHz
12 mA 626 MHz
16 mA 819 MHz
20 mA 874 MHz
24 mA 934 MHz
2.5 V
4mA 168 MHz
8mA 355 MHz
12 mA 514 MHz
16 mA 766 MHz
1.8 V
2mA 97 MHz
4mA 215 MHz
6mA 336 MHz
8mA 486 MHz
10 mA 706 MHz
12 mA 925 MHz
1.5 V
2mA 168 MHz
4mA 303 MHz
6mA 350 MHz
8mA 392 MHz
SSTL-2 CLASS I 8mA 280 MHz
12 mA 327 MHz
SSTL-2 CLASS II
16 mA 280 MHz
20 mA 327 MHz
24 mA 327 MHz
SSTL-18 CLASS I
4mA 140 MHz
6mA 186 MHz
8mA 280 MHz
10 mA 373 MHz
12 mA 373 MHz
SSTL-18 CLASS II
8mA 140 MHz
16 mA 327 MHz
18 mA 373 MHz
20 mA 420 MHz
1.8-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 561 MHz
12 mA 607 MHz
Table 4–105. Arria GX Maximum Output Toggle Rate for Column I/O Pins (Part 2 of 3)
I/O Standards Drive Strength –6 Speed Grade Units
Chapter 4: DC and Switching Characteristics 4–91
Maximum Input and Output Clock Toggle Rate
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–106 shows the maximum output clock toggle rates for Arria GX device row
I/O pins.
1.8-V HSTL CLASS II
16 mA 420 MHz
18 mA 467 MHz
20 mA 514 MHz
1.5-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 607 MHz
12 mA 654 MHz
1.5-V HSTL CLASS II
16 mA 514 MHz
18 mA 561 MHz
20 mA 561 MHz
3.3-V PCI 626 MHz
3.3-V PCI-X 626 MHz
Table 4–106. Arria GX Maximum Output Toggle Rate for Row I/O Pins
I/O Standards Drive Strength 6 Speed Grade Units
3.3-V LVTTL
4mA 196 MHz
8mA 303 MHz
12 mA 393 MHz
3.3-V LVCMOS 4mA 215 MHz
8mA 411 MHz
2.5 V
4mA 168 MHz
8mA 355 MHz
12 mA 514 MHz
1.8 V
2mA 97 MHz
4mA 215 MHz
6mA 336 MHz
8mA 486 MHz
1.5 V 2mA 168 MHz
4mA 303 MHz
SSTL-2 CLASS I 8mA 280 MHz
12 mA 327 MHz
SSTL-2 CLASS II 16 mA 280 MHz
SSTL-18 CLASS I
4mA 140 MHz
6mA 186 MHz
8mA 280 MHz
10 mA 373 MHz
Table 4–105. Arria GX Maximum Output Toggle Rate for Column I/O Pins (Part 3 of 3)
I/O Standards Drive Strength –6 Speed Grade Units
4–92 Chapter 4: DC and Switching Characteristics
Maximum Input and Output Clock Toggle Rate
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Table 4–107 lists maximum output clock rate for dedicated clock pins.
1.8-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 561 MHz
12 mA 607 MHz
1.5-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
LVDS 5 98 MHz
Table 4–107. Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 1 of 4)
I/O Standards Drive Strength 6 Speed Grade Units
3.3-V LVTTL
4mA 196 MHz
8mA 303 MHz
12 mA 393 MHz
16 mA 486 MHz
20 mA 570 MHz
24 mA 626 MHz
3.3-V LVCMOS
4mA 215 MHz
8mA 411 MHz
12 mA 626 MHz
16 mA 819 MHz
20 mA 874 MHz
24 mA 934 MHz
2.5 V
4mA 168 MHz
8mA 355 MHz
12 mA 514 MHz
16 mA 766 MHz
1.8 V
2mA 97 MHz
4mA 215 MHz
6mA 336 MHz
8mA 486 MHz
10 mA 706 MHz
12 mA 925 MHz
1.5 V
2mA 168 MHz
4mA 303 MHz
6mA 350 MHz
8mA 392 MHz
Table 4–106. Arria GX Maximum Output Toggle Rate for Row I/O Pins
I/O Standards Drive Strength 6 Speed Grade Units
Chapter 4: DC and Switching Characteristics 4–93
Maximum Input and Output Clock Toggle Rate
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
SSTL-2 CLASS I 8mA 280 MHz
12 mA 327 MHz
SSTL-2 CLASS II
16 mA 280 MHz
20 mA 327 MHz
24 mA 327 MHz
SSTL-18 CLASS I
4mA 140 MHz
6mA 186 MHz
8mA 280 MHz
10 mA 373 MHz
12 mA 373 MHz
SSTL-18 CLASS II
8mA 140 MHz
16 mA 327 MHz
18 mA 373 MHz
20 mA 420 MHz
1.8-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 561 MHz
12 mA 607 MHz
1.8-V HSTL CLASS II
16 mA 420 MHz
18 mA 467 MHz
20 mA 514 MHz
1.5-V HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10mA 607 MHz
12 mA 654 MHz
1.5-V HSTL CLASS II
16 mA 514 MHz
18 mA 561 MHz
20 mA 561 MHz
24 mA 278 MHz
DIFFERENTIAL SSTL-2 8mA 280 MHz
12 mA 327 MHz
DIFFERENTIAL 2.5-V
SSTL CLASS II
16 mA 280 MHz
20 mA 327 MHz
24 mA 327 MHz
Table 4–107. Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 2 of 4)
I/O Standards Drive Strength 6 Speed Grade Units
4–94 Chapter 4: DC and Switching Characteristics
Maximum Input and Output Clock Toggle Rate
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
DIFFERENTIAL 1.8-V
SSTL CLASS I
4mA 140 MHz
6mA 186 MHz
8mA 280 MHz
10 mA 373 MHz
12 mA 373 MHz
DIFFERENTIAL 1.8-V
SSTL CLASS II
8mA 140 MHz
16 mA 327 MHz
18 mA 373 MHz
20 mA 420 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 561 MHz
12 mA 607 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS II
16 mA 420 MHz
18 mA 467 MHz
20 mA 514 MHz
DIFFERENTIAL 1.5-V
HSTL CLASS I
4mA 280 MHz
6mA 420 MHz
8mA 561 MHz
10 mA 607 MHz
12 mA 654 MHz
DIFFERENTIAL 1.5-V
HSTL CLASS II
16 mA 514 MHz
18 mA 561 MHz
20 mA 561 MHz
24 mA 278 MHz
3.3-V PCI 626 MHz
3.3-V PCI-X 626 MHz
LVDS 280 MHz
HYPERTRANSPORT 116 MHz
LVPECL 280 MHz
3.3-V LVTTL SERIES_25_OHMS 327 MHz
SERIES_50_OHMS 327 MHz
3.3-V LVCMOS SERIES_25_OHMS 280 MHz
SERIES_50_OHMS 280 MHz
2.5 V SERIES_25_OHMS 280 MHz
SERIES_50_OHMS 280 MHz
1.8 V SERIES_25_OHMS 420 MHz
SERIES_50_OHMS 420 MHz
Table 4–107. Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 3 of 4)
I/O Standards Drive Strength 6 Speed Grade Units
Chapter 4: DC and Switching Characteristics 4–95
Duty Cycle Distortion
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Duty Cycle Distortion
Duty cycle distortion (DCD) describes how much the falling edge of a clock is off from
its ideal position. The ideal position is when both the clock high time (CLKH) and the
clock low time (CLKL) equal half of the clock period (T), as shown in Figure 4–10.
DCD is the deviation of the non-ideal falling edge from the ideal falling edge, such as
D1 for the falling edge A and D2 for the falling edge B (refer to Figure 4–10). The
maximum DCD for a clock is the larger value of D1 and D2.
1.5 V SERIES_50_OHMS 373 MHz
SSTL-2 CLASS I SERIES_50_OHMS 467 MHz
SSTL-2 CLASS II SERIES_25_OHMS 467 MHz
SSTL-18 CLASS I SERIES_50_OHMS 327 MHz
SSTL-18 CLASS II SERIES_25_OHMS 420 MHz
1.8-V HSTL CLASS I SERIES_50_OHMS 561 MHz
1.8-V HSTL CLASS II SERIES_25_OHMS 420 MHz
1.5-V HSTL CLASS I SERIES_50_OHMS 467 MHz
1.2-V HSTL SERIES_50_OHMS 233 MHz
DIFFERENTIAL SSTL-2 SERIES_50_OHMS 467 MHz
DIFFERENTIAL 2.5-V
SSTL CLASS II
SERIES_25_OHMS 467 MHz
DIFFERENTIAL 1.8-V
SSTL CLASS I
SERIES_50_OHMS 327 MHz
DIFFERENTIAL 1.8-V
SSTL CLASS II
SERIES_25_OHMS 420 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS I
SERIES_50_OHMS 561 MHz
DIFFERENTIAL 1.8-V
HSTL CLASS II
SERIES_25_OHMS 420 MHz
DIFFERENTIAL 1.5-V
HSTL CLASS I
SERIES_50_OHMS 467 MHz
DIFFERENTIAL 1.2-V
HSTL
SERIES_50_OHMS 233 MHz
Table 4–107. Arria GX Maximum Output Clock Rate for Dedicated Clock Pins (Part 4 of 4)
I/O Standards Drive Strength 6 Speed Grade Units
4–96 Chapter 4: DC and Switching Characteristics
Duty Cycle Distortion
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
DCD expressed in absolution derivation, for example, D1 or D2 in Figure 4–10, is
clock-period independent. DCD can also be expressed as a percentage, and the
percentage number is clock-period dependent. DCD as a percentage is defined as:
(T/2 – D1) / T (the low percentage boundary)
(T/2 + D2) / T (the high percentage boundary)
DCD Measurement Techniques
DCD is measured at an FPGA output pin driven by registers inside the corresponding
I/O element (IOE) block. When the output is a single data rate signal (non-DDIO),
only one edge of the register input clock (positive or negative) triggers output
transitions (Figure 4–11). Therefore, any DCD present on the input clock signal or
caused by the clock input buffer or different input I/O standard does not transfer to
the output signal.
However, when the output is a double data rate input/output (DDIO) signal, both
edges of the input clock signal (positive and negative) trigger output transitions
(Figure 4–12). Therefore, any distortion on the input clock and the input clock buffer
affect the output DCD.
Figure 4–10. Duty Cycle Distortion
CLKH = T/2 CLKL = T/2
D1 D2
Falling Edge A
Ideal Falling Edge
Clock Period (T)
Falling Edge B
Figure 4–11. DCD Measurement Technique for Non-DDIO (Single-Data Rate) Outputs
Chapter 4: DC and Switching Characteristics 4–97
Duty Cycle Distortion
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
When an FPGA PLL generates the internal clock, the PLL output clocks the IOE block.
As the PLL only monitors the positive edge of the reference clock input and internally
re-creates the output clock signal, any DCD present on the reference clock is filtered
out. Therefore, the DCD for a DDIO output with PLL in the clock path is better than
the DCD for a DDIO output without PLL in the clock path.
Table 4–108 through Table 4–113 show the maximum DCD in absolution derivation
for different I/O standards on Arria GX devices. Examples are also provided that
show how to calculate DCD as a percentage.
Here is an example for calculating the DCD as a percentage for a non-DDIO output on
a row I/O:
If the non-DDIO output I/O standard is SSTL-2 Class II, the maximum DCD is 125 ps
(see Table 4–109). If the clock frequency is 267 MHz, the clock period T is:
T = 1/ f = 1 / 267 MHz = 3.745 ns = 3,745 ps
Figure 4–12. DCD Measurement Technique for DDIO (Double-Data Rate) Outputs
Table 4–108. Maximum DCD for Non-DDIO Output on Row I/O Pins
Row I/O Output Standard
Maximum DCD (ps) for Non-DDIO Output
6 Speed Grade Units
3.3-V LVTTTL 275 ps
3.3-V LVCMOS 155 ps
2.5 V 135 ps
1.8 V 180 ps
1.5-V LVCMOS 195 ps
SSTL-2 Class I 145 ps
SSTL-2 Class II 125 ps
SSTL-18 Class I 85 ps
1.8-V HSTL Class I 100 ps
1.5-V HSTL Class I 115 ps
LVDS 80 ps
4–98 Chapter 4: DC and Switching Characteristics
Duty Cycle Distortion
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
To calculate the DCD as a percentage:
(T/2 – DCD) / T = (3,745 ps/2 – 125 ps) / 3,745 ps = 46.66% (for low boundary)
(T/2 + DCD) / T = (3,745 ps/2 + 125 ps) / 3,745 ps = 53.33% (for high boundary)
Therefore, the DCD percentage for the output clock at 267 MHz is from 46.66% to
53.33%.
Table 4–109. Maximum DCD for Non-DDIO Output on Column I/O Pins
Column I/O Output Standard I/O Standard
Maximum DCD (ps)
for Non-DDIO Output Units
6 Speed Grade
3.3-V LVTTL 220 ps
3.3-V LVCMOS 175 ps
2.5 V 155 ps
1.8 V 110 ps
1.5-V LVCMOS 215 ps
SSTL-2 Class I 135 ps
SSTL-2 Class II 130 ps
SSTL-18 Class I 115 ps
SSTL-18 Class II 100 ps
1.8-V HSTL Class I 110 ps
1.8-V HSTL Class II 110 ps
1.5-V HSTL Class I 115 ps
1.5-V HSTL Class II 80 ps
1.2-V HSTL-12 200 ps
LVPECL 80 ps
Table 4–110. Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path Note (1)
Maximum DCD (ps) for
Row DDIO Output I/O
Standard
Input I/O Standard (No PLL in the Clock Path)
UnitsTTL/CMOS SSTL-2 SSTL/HSTL LVDS
3.3/2.5V 1.8/1.5V 2.5V 1.8/1.5V 3.3V
3.3-V LVTTL 440 495 170 160 105 ps
3.3-V LVCMOS 390 450 120 110 75 ps
2.5 V 375 430 105 95 90 ps
1.8 V 325 385 90 100 135 ps
1.5-V LVCMOS 430 490 160 155 100 ps
SSTL-2 Class I 355 410 85 75 85 ps
SSTL-2 Class II 350 405 80 70 90 ps
SSTL-18 Class I 335 390 65 65 105 ps
1.8-V HSTL Class I 330 385 60 70 110 ps
1.5-V HSTL Class I 330 390 60 70 105 ps
Chapter 4: DC and Switching Characteristics 4–99
Duty Cycle Distortion
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
LVDS 180 180 180 180 180 ps
Note to Table 4–110:
(1) Table 4–110 assumes the input clock has zero DCD.
Table 4–111. Maximum DCD for DDIO Output on Column I/O Pins Without PLL in the Clock Path (Note 1)
Maximum DCD (ps) for
DDIO Column Output I/O
Standard
Input IO Standard (No PLL in the Clock Path)
UnitsTTL/CMOS SSTL-2 SSTL/HSTL
3.3/2.5V 1.8/1.5V 2.5V 1.8/1.5V
3.3-V LVTTL 440 495 170 160 ps
3.3-V LVCMOS 390 450 120 110 ps
2.5 V 375 430 105 95 ps
1.8 V 325 385 90 100 ps
1.5-V LVCMOS 430 490 160 155 ps
SSTL-2 Class I 355 410 85 75 ps
SSTL-2 Class II 350 405 80 70 ps
SSTL-18 Class I 335 390 65 65 ps
SSTL-18 Class II 320 375 70 80 ps
1.8-V HSTL Class I 330 385 60 70 ps
1.8-V HSTL Class II 330 385 60 70 ps
1.5-V HSTL Class I 330 390 60 70 ps
1.5-V HSTL Class II 330 360 90 100 ps
LVPECL 180 180 180 180 ps
Note to Table 4–111:
(1) Table 4–111 assumes the input clock has zero DCD.
Table 4–110. Maximum DCD for DDIO Output on Row I/O Pins Without PLL in the Clock Path Note (1)
Maximum DCD (ps) for
Row DDIO Output I/O
Standard
Input I/O Standard (No PLL in the Clock Path)
UnitsTTL/CMOS SSTL-2 SSTL/HSTL LVDS
3.3/2.5V 1.8/1.5V 2.5V 1.8/1.5V 3.3V
Table 4–112. Maximum DCD for DDIO Output on Row I/O Pins With PLL in the Clock Path
Maximum DCD (ps) for Row DDIO Output I/O Standard
Arria GX Devices (PLL Output
Feeding DDIO) Units
6 Speed Grade
3.3-V LVTTL 105 ps
3.3-V LVCMOS 75 ps
2.5V 90 ps
1.8V 100 ps
1.5-V LVCMOS 100 ps
SSTL-2 Class I 75 ps
SSTL-2 Class II 70 ps
4–100 Chapter 4: DC and Switching Characteristics
High-Speed I/O Specifications
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
High-Speed I/O Specifications
Table 4–114 lists high-speed timing specifications definitions.
SSTL-18 Class I 65 ps
1.8-V HSTL Class I 70 ps
1.5-V HSTL Class I 70 ps
LVDS 180 ps
Table 4–112. Maximum DCD for DDIO Output on Row I/O Pins With PLL in the Clock Path
Maximum DCD (ps) for Row DDIO Output I/O Standard
Arria GX Devices (PLL Output
Feeding DDIO) Units
6 Speed Grade
Table 4–113. Maximum DCD for DDIO Output on Column I/O Pins With PLL in the Clock Path
Maximum DCD (ps) for Column
DDIO Output I/O Standard
Arria GX Devices (PLL Output
Feeding DDIO) Units
–6 Speed Grade
3.3-V LVTTL 160 ps
3.3-V LVCMOS 110 ps
2.5V 95 ps
1.8V 100 ps
1.5-V LVCMOS 155 ps
SSTL-2 Class I 75 ps
SSTL-2 Class II 70 ps
SSTL-18 Class I 65 ps
SSTL-18 Class II 80 ps
1.8-V HSTL Class I 70 ps
1.8-V HSTL Class II 70 ps
1.5-V HSTL Class I 70 ps
1.5-V HSTL Class II 100 ps
1.2-V HSTL 155 ps
LVPECL 180 ps
Table 4–114. High-Speed Timing Specifications and Definitions (Part 1 of 2)
High-Speed Timing Specifications Definitions
tCHigh-speed receiver/transmitter input and output clock period.
fHSCLK High-speed receiver/transmitter input and output clock frequency.
J Deserialization factor (width of parallel data bus).
W PLL multiplication factor.
tRISE Low-to-high transmission time.
tFALL High-to-low transmission time.
Chapter 4: DC and Switching Characteristics 4–101
High-Speed I/O Specifications
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–115 shows the high-speed I/O timing specifications.
Timing unit interval (TUI) The timing budget allowed for skew, propagation delays, and data sampling window.
(TUI = 1/(Receiver Input Clock Frequency × Multiplication Factor) = tC/w).
fHSDR Maximum/minimum LVDS data transfer rate (fHSDR = 1/TUI), non-DPA.
fHSDRDPA Maximum/minimum LVDS data transfer rate (fHSDRDPA = 1/TUI), DPA.
Channel-to-channel skew (TCCS) The timing difference between the fastest and slowest output edges, including tCO
variation and clock skew. The clock is included in the TCCS measurement.
Sampling window (SW) The period of time during which the data must be valid in order to capture it
correctly. The setup and hold times determine the ideal strobe position within the
sampling window.
Input jitter Peak-to-peak input jitter on high-speed PLLs.
Output jitter Peak-to-peak output jitter on high-speed PLLs.
tDUTY Duty cycle on high-speed transmitter output clock.
tLOCK Lock time for high-speed transmitter and receiver PLLs.
Table 4–114. High-Speed Timing Specifications and Definitions (Part 2 of 2)
High-Speed Timing Specifications Definitions
Table 4–115. High-Speed I/O Specifications (Part 1 of 2)Note (1), (2)
Symbol Conditions
6 Speed Grade
Units
Min Typ Max
fHSCLK (clock frequency)
fHSCLK = fHSDR / W
W = 2 to 32 (LVDS, HyperTransport technology) (3) 16 420 MHz
W = 1 (SERDES bypass, LVDS only) 16 500 MHz
W = 1 (SERDES used, LVDS only) 150 640 MHz
fHSDR (data rate)
J = 4 to 10 (LVDS, HyperTransport technology) 150 840 Mbps
J = 2 (LVDS, HyperTransport technology) (4) 700 Mbps
J = 1 (LVDS only) (4) 500 Mbps
fHSDRDPA (DPA data rate) J = 4 to 10 (LVDS, HyperTransport technology) 150 840 Mbps
TCCS All differential I/O standards 200 ps
SW All differential I/O standards 440 ps
Output jitter 190 ps
Output tRISE All differential I/O standards 290 ps
Output tFALL All differential I/O standards 290 ps
tDUTY 45 50 55 %
DPA run length 6,400 UI
DPA jitter tolerance Data channel peak-to-peak jitter 0.44 UI
4–102 Chapter 4: DC and Switching Characteristics
High-Speed I/O Specifications
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
DPA lock time
Standard Training Pattern Transition
Density
——
Number of
repetitions
SPI-4 000000000011
11111111
10% 256
Parallel Rapid
I/O
00001111 25% 256
10010000 50% 256
Miscellaneous 10101010 100% 256
01010101 256
Notes to Table 4–115:
(1) When J = 4 to 10, the SERDES block is used.
(2) When J = 1 or 2, the SERDES block is bypassed.
(3) The input clock frequency and the W factor must satisfy the following fast PLL VCO specification: 150 input clock frequency × W 1,040.
(4) The minimum specification is dependent on the clock source (fast PLL, enhanced PLL, clock pin, and so on) and the clock routing resource
(global, regional, or local) used. The I/O differential buffer and input register do not have a minimum toggle rate.
Table 4–115. High-Speed I/O Specifications (Part 2 of 2)Note (1), (2)
Symbol Conditions
6 Speed Grade
Units
Min Typ Max
Chapter 4: DC and Switching Characteristics 4–103
PLL Timing Specifications
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
PLL Timing Specifications
Table 4–116 and Table 4–117 describe the Arria GX PLL specifications when operating
in both the commercial junction temperature range (0 to 85 C) and the industrial
junction temperature range (–40 to 100 C), except for the clock switchover and
phase-shift stepping features. These two features are only supported from the 0 to
100 C junction temperature range.
Table 4–116. Enhanced PLL Specifications (Part 1 of 2)
Name Description Min Typ Max Units
fIN Input clock frequency 2 500 MHz
fINPFD Input frequency to the PFD 2 420 MHz
fINDUTY Input clock duty cycle 40 60 %
fENDUTY External feedback input clock duty cycle 40 60 %
tINJITTER
Input or external feedback clock input jitter
tolerance in terms of period jitter.
Bandwidth 0.85 MHz
0.5 ns (peak-to-peak)
Input or external feedback clock input jitter
tolerance in terms of period jitter.
Bandwidth 0.85 MHz
1.0 ns (peak-to-peak)
tOUTJITTER Dedicated clock output period jitter 50 100 250 ps (p-p)
tFCOMP External feedback compensation time 10 ns
fOUT
Output frequency for internal global or regional
clock 1.5 (2) —550 MHz
fSCANCLK Scanclk frequency 100 MHz
tCONFIGEPLL
Time required to reconfigure scan chains for
EPLLs —174/f
SCANCLK —ns
fOUT_EXT PLL external clock output frequency 1.5 (2) (1) MHz
fOUTDUTY Duty cycle for external clock output 45 50 55 %
tLOCK
Time required for the PLL to lock from the time
it is enabled or the end of device configuration —0.031 ms
tDLOCK
Time required for the PLL to lock dynamically
after automatic clock switchover between two
identical clock frequencies
——1 ms
fSWITCHOVER
Frequency range where the clock switchover
performs properly 1.5 1 500 MHz
fCLBW PLL closed-loop bandwidth 0.13 1.2 16.9 MHz
fVCO PLL VCO operating range 300 840 MHz
fSS Spread-spectrum modulation frequency 100 500 kHz
% spread Percent down spread for a given clock
frequency 0.4 0.5 0.6 %
tPLL_PSERR Accuracy of PLL phase shift ±30 ps
tARESET Minimum pulse width on areset signal. 10 ns
tARESET_RECONFIG
Minimum pulse width on the areset signal
when using PLL reconfiguration. Reset the PLL
after scandone goes high.
500 ns
4–104 Chapter 4: DC and Switching Characteristics
PLL Timing Specifications
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
tRECONFIGWAIT
The time required for the wait after the
reconfiguration is done and the areset is
applied.
——2 us
Notes to Table 4–116:
(1) This is limited by the I/O fMAX.
(2) If the counter cascading feature of the PLL is used, there is no minimum output clock frequency.
Table 4–117. Fast PLL Specifications (Part 1 of 2)
Name Description Min Typ Max Units
fIN Input clock frequency 16.08 640 MHz
fINPFD
Input frequency to the
PFD 16.08 500 MHz
fINDUTY Input clock duty cycle 40 60 %
tINJITTER
Input clock jitter
tolerance in terms of
period jitter.
Bandwidth 2MHz
0.5 ns (p-p)
Input clock jitter
tolerance in terms of
period jitter.
Bandwidth 0.2 MHz
1.0 ns (p-p)
fVCO
Upper VCO frequency
range 300 840 MHz
Lower VCO frequency
range 150 420 MHz
fOUT
PLL output frequency
to GCLK or RCLK 4.6875 550 MHz
PLL output frequency
to LVDS or DPA clock 150 840 MHz
fOUT_EXT
PLL clock output
frequency to regular
I/O
4.6875 (1) MHz
tCONFIGPLL
Time required to
reconfigure scan
chains for fast PLLs
—75/f
SCANCLK —ns
fCLBW
PLL closed-loop
bandwidth 1.16 5 28 MHz
tLOCK
Time required for the
PLL to lock from the
time it is enabled or
the end of the device
configuration
—0.03 1 ms
tPLL_PSERR
Accuracy of PLL phase
shift ±30 ps
tARESET
Minimum pulse width
on areset signal. 10 ns
Table 4–116. Enhanced PLL Specifications (Part 2 of 2)
Name Description Min Typ Max Units
Chapter 4: DC and Switching Characteristics 4–105
External Memory Interface Specifications
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
External Memory Interface Specifications
Table 4–118 through Table 4–122 list Arria GX device specifications for the dedicated
circuitry used for interfacing with external memory devices.
tARESET_RECONFIG
Minimum pulse width
on the areset signal
when using PLL
reconfiguration. Reset
the PLL after
scandone goes high.
500 ns
Note to Table 4–117:
(1) This is limited by the I/O fMAX.
Table 4–117. Fast PLL Specifications (Part 2 of 2)
Name Description Min Typ Max Units
Table 4–118. DLL Frequency Range Specifications
Frequency Mode Frequency Range (MHz)
0100 to 175
1150 to 230
2200 to 310
Table 4–119. DQS Jitter Specifications for DLL-Delayed Clock (tDQS_JITTER) , (Note 1)
Number of DQS Delay Buffer Stages (2) Commercial (ps) Industrial (ps)
180110
2 110 130
3 130 180
4 160 210
Notes to Table 4–119:
(1) Peak-to-peak period jitter on the phase-shifted DQS clock. For example, jitter on two delay stages under
commercial conditions is 200 ps peak-to-peak or 100 ps.
(2) Delay stages used for requested DQS phase shift are reported in a project’s Compilation Report in the Quartus II
software.
Table 4–120. DQS Phase-Shift Error Specifications for DLL-Delayed Clock (tDQS_PSERR)
Number of DQS Delay Buffer Stages 6 Speed Grade (ps)
135
270
3105
4140
4–106 Chapter 4: DC and Switching Characteristics
JTAG Timing Specifications
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
JTAG Timing Specifications
Figure 4–13 shows the timing requirements for the JTAG signals
Table 4–121. DQS Bus Clock Skew Adder Specifications (tDQS_CLOCK_SKEW_ADDER)
Mode DQS Clock Skew Adder (ps)
4 DQ per DQS 40
9 DQ per DQS 70
18 DQ per DQS 75
36 DQ per DQS 95
Table 4–122. DQS Phase Offset Delay Per Stage (ps) Note (1), (2), (3)
Speed Grade
Positive Offset Negative Offset
MinMaxMinMax
6 10 16 8 12
Notes to Table 4–122:
(1) The delay settings are linear.
(2) The valid settings for phase offset are –32 to +31.
(3) The typical value equals the average of the minimum and maximum values.
Figure 4–13. Arria GX JTAG Waveforms.
TDO
TCK
tJPZX tJPCO
tJPH
tJPXZ
tJCP
tJPSU
t JCL
tJCH
TDI
TMS
Signal
to be
Captured
Signal
to be
Driven
tJSZX
tJSSU tJSH
tJSCO tJSXZ
Chapter 4: DC and Switching Characteristics 4–107
JTAG Timing Specifications
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Table 4–123 lists the JTAG timing parameters and values for Arria GX devices.
Table 4–123. Arria GX JTAG Timing Parameters and Values
Symbol Parameter Min Max Units
tJCP TCK clock period 30 ns
tJCH TCK clock high time 12 ns
tJCL TCK clock low time 12 ns
tJPSU JTAG port setup time 4 ns
tJPH JTAG port hold time 5 ns
tJPCO JTAG port clock to output 9 ns
tJPZX JTAG port high impedance to valid output 9 ns
tJPXZ JTAG port valid output to high impedance 9 ns
tJSSU Capture register setup time 4 ns
tJSH Capture register hold time 5 ns
tJSCO Update register clock to output 12 ns
tJSZX
Update register high impedance to valid
output —12ns
tJSXZ
Update register valid output to high
impedance —12ns
4–108 Chapter 4: DC and Switching Characteristics
Document Revision History
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Document Revision History
Table 4–124 lists the revision history for this chapter.
Table 4–124. Document Revision History
Date and Document Version Changes Made Summary of Changes
December 2009, v2.0 Updated Table 4–104, Table 4–105,
and Table 4–106.
Document template update.
Minor text edits.
April 2009
v1.4
Updated Table 4–6 and Table 4–7.
Updated “Maximum Input and Output
Clock Toggle Rate” section.
May 2008
v1.3
Updated:
Table 4–5
Table 4–7
Table 4–8
Table 4–9
Table 4–10
Table 4–11
Table 4–12
Table 4–13
Table 4–14
Table 4–15
Table 4–16
Table 4–17
Table 4–43
Table 4–116
Table 4–117
Updated:
Figure 4–4
Minor text edits.
August 2007 v1.2
Removed “Preliminary” from each page.
Removed “Preliminary” note from
Tables 4–44, 4–45, and 4–47.
Added “Referenced Documents” section.
June 2007
v1.1
Updated Table 4–99.
Added GIGE information.
May 2007
v1.0
Initial release.
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
5. Reference and Ordering Information
Software
Arria® GX devices are supported by the Altera® Quartus®II design software, which
provides a comprehensive environment for system-on-a-programmable-chip (SOPC)
design. The Quartus II software includes HDL and schematic design entry,
compilation and logic synthesis, full simulation and advanced timing analysis,
SignalTap® II logic analyzer, and device configuration.
fFor more information about the Quartus II software features, refer to the Quartus II
Development Software Handbook .
The Quartus II software supports the Windows XP/2000/NT, Sun Solaris 8/9, Linux
Red Hat v7.3, Linux Red Hat Enterprise 3, and HP-UX operating systems. It also
supports seamless integration with industry-leading EDA tools through the
NativeLink interface.
Device Pin-Outs
fArria GX device pin-outs are available on the Altera web site at www.altera.com.
Ordering Information
Figure 5–1 describes the ordering codes for Arria GX devices.
fFor more information on a specific package, refer to the Package Information for Arria
GX Devices chapter.
AGX51005-2.0
5–2 Chapter 5: Reference and Ordering Information
Document Revision History
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Document Revision History
Table 5–1 shows the revision history for this chapter.
Figure 5–1. Arria GX Device Packaging Ordering Information
Device Type
Number of
Transceiver
Channels
Package Type
6
484
780
1152
F: FineLine BGA (FBGA)
EP1AGX : Arria GX
20
35
50
60
90
C: Commercial temperature (TJ = 0˚ C to 85˚ C)
Industrial temperature (TJ = -40˚ C to 100˚ C)
Optional SuffixFamily Signature
Operating Temperature
Speed Grade
Pin Count
6EP1AGX 20 CC 484FN
Indicates specific device options or
shipment method.
N: Lead-free devices
I:
C: 4
D: 8
E: 12
Table 51. Document Revision History
Date and Document
Version Changes Made Summary of Changes
December 2009, v2.0 Document template update.
Minor text edits.
August 2007, v1.1 Added the Referenced Documents” section.
May 2007, v1.0 Initial Release.
© December 2009 Altera Corporation Arria GX Device Handbook, Volume 1
Additional Information
About this Handbook
This handbook provides comprehensive information about the Altera® Arria®GX
family of devices.
How to Contact Altera
For the most up-to-date information about Altera products, see the following table.
Typographic Conventions
The following table shows the typographic conventions that this document uses.
Contact (Note 1)
Contact
Method Address
Technical support Website www.altera.com/support
Technical training Website www.altera.com/training
Email custrain@altera.com
Product literature Email www.altera.com/literature
Non-technical support (General) Email nacomp@altera.com
(Software Licensing) Email authorization@altera.com
Note:
(1) You can also contact your local Altera sales office or sales representative.
Visual Cue Meaning
Bold Type with Initial Capital
Letters
Indicates command names and dialog box titles. For example, Save As dialog box.
bold type Indicates directory names, project names, disk drive names, file names, file name
extensions, dialog box options, software utility names, and other GUI labels. For
example, \qdesigns directory, d: drive, and chiptrip.gdf file.
Italic Type with Initial Capital Letters Indicates document titles. For example, AN 519: Stratix IV Design Guidelines.
Italic type Indicates variables. For example, n + 1.
Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Initial Capital Letters Indicates keyboard keys and menu names. For example, Delete key and the Options
menu.
Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.
Info–2 Additional Information
Arria GX Device Handbook, Volume 1 © December 2009 Altera Corporation
Courier type Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. Active-low signals are denoted by suffix n. For example,
resetn.
Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).
1., 2., 3., and
a., b., c., and so on.
Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.
Bullets indicate a list of items when the sequence of the items is not important.
1 The hand points to information that requires special attention.
cA caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.
wA warning calls attention to a condition or possible situation that can cause you
injury.
r The angled arrow instructs you to press Enter.
f The feet direct you to more information about a particular topic.
Visual Cue Meaning