V23990-P544-A
final datasheet
flow PIM
®
0, 600
V
Version 05/03
Maximum values Datasheet values
Parameter Condition Symbol max. Unit
Input Rectifier Bridge
Gleichrichte
r
Repetitive peak reverse voltage VRRM 1600 V
Periodische Rückw. Spitzensperrspannung
Forward current per diode DC current Th=80°C; IFA
V
30 A
Dauergrenzstrom Tc=80°C 40-limited by wires
Surge forward current tp=10ms Tj=25°C IFSM 200 A
Stoßstrom Grenzwert
I
2
t-value tp=10ms Tj=25°C I
2
t200
A
2
s
Grenzlastintegral
Power dissipation per Diode Tj=150°C Th=80°C Ptot 36 W
Verlustleistung pro Diode Tc=80°C 54
Transistor Inverter
Transistor Wechselrichter
Collector-emitter break down voltage VCE 600 V
Kollektor-Emitter-Sperrspannung
DC collector current Tj=150°C Th=80°C, IC15 A
Kollektor-Dauergleichstrom Tc=80°C 20-limited by wires
Repetitive peak collector current tp=1ms Th=80°C Icpuls 30 A
Periodischer Kollektorspitzenstrom
Power dissipation per IGBT Tj=150°C Th=80°C Ptot 41 W
Verlustleistung pro IGBT Tc=80°C 62
Gate-emitter peak voltage VGE ±20 V
Gate-Emitter-Spitzenspannung
SC withstand time Tj150°C VGE=15V tSC 10 us
Kurzschlußverhalten VCE=VCEBR
Diode Inverte
r
Diode Wechselrichter
DC forward current Tj=150°C Th=80°C, IF18 A
Dauergleichstrom Tc=80°C 20-limited by wires
Repetitive peak forward current tp=1ms Th=80°C IFRM 37 A
Periodischer Spitzenstrom
Power dissipation per Diode Tj=150°C Th=80°C Ptot 29 W
Verlustleistung pro Diode Tc=80°C 44
Transistor BRC
Transistor Wechselrichter
Collector-emitter break down voltage VCE 600 V
Kollektor-Emitter-Sperrspannung
DC collector current Tj=150°C Th=80°C IC9A
Kollektor-Dauergleichstrom Tj=150°C 12
Repetitive peak collector current tp=1ms Th=80°C Icpuls 17 A
Periodischer Kollektorspitzenstrom
Power dissipation per IGBT Tj=150°C Th=80°C Ptot 27 W
Verlustleistung pro IGBT 41
Gate-emitter peak voltage VGE ±20 V
Gate-Emitter-Spitzenspannung
SC withstand time Tj150°C VGE=15V tSC 10 us
Kurzschlußverhalten VCE=600/1200 V
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycoelectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600
V
Version 05/03
Maximum values Datasheet values
Parameter Condition Symbol max. Unit
Diode BRC
Diode BRC
DC forward current Tj=150°C Th=80°C IF13 A
Dauergleichstrom Tj=150°C 17
Repetitive peak forward current tp=1ms Th=80°C IFRM 26 A
Periodischer Spitzenstrom
Power dissipation per Diode Tj=150°C Th=80°C Ptot 23 W
Verlustleistung pro Diode 35
Thermal properties
Thermische Eigenschaften
max. Chip temperature T
j
max 150 °C
max. Chiptemperatur
Storage temperature Tst
-40…+125 °C
Lagertemperatur
Operation temperature To
p
-40…+125 °C
Betriebstemperatu
r
Insulation properties
Modulisolation
Insulation voltage t=1min Vis 4000 Vdc
Isolationsspannung
Creepage distance min 12,7 mm
Kriechstrecke
Clearance min 12,7 mm
Luftstrecke
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycoelectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V Version 05/03
Characteristic values
Description Symbol Conditions Datasheet values Unit
T(C°) Other conditions VGE(V)
VR(V)
VCE(V)
IC(A)
IF(A)
(Rgon-Rgoff) VGS(V) VDS(V) Id(A) Min Typ Max
Input Rectifier Bridge
Gleichrichter
Forward voltage VFTj=25°C 30 1,22 1,45 V
Durchlaßpannung Tj=125°C 1,21
Threshold voltage (for power loss calc. only) Vto Tj=25°C 30 0,92 V
Schleusenspannung Tj=125°C 0,81
Slope resistance (for power loss calc. only) rtTj=25°C 0,01 Ohm
Ersatzwiderstand Tj=125°C 30 0,013
Reverse current IrTj=25°C 1200 0,02 mA
Sperrstrom Tj=150°C 4
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um 1,95 K/W
Wärmewiderstand Chip-Kühlkörper pro Chip
Warmeleitpaste
Dicke50um
λ = 0,61 W/mK 1,287
Transistor Inverter, inductive load
Transistor Wechselrichter
Gate emitter threshold voltage VGE(th) Tj=25°C VCE=VGE 0,0004 3 4 5 V
Gate-Schwellenspannung Tj=125°C
Collector-emitter saturation voltage VCE(sat) Tj=25°C 15 15 2,16 2,8 V
Kollektor-Emitter Sättigungsspannung Tj=125°C 2,57
Collector-emitter cut-off ICES Tj=25°C 0 600 0,1 mA
Kollektor-Emitter Reststrom Tj=125°C 2
Gate-emitter leakage current IGES Tj=25°C 25 0 200 nA
Gate-Emitter Reststrom Tj=125°C
Integrated Gate resistor Rgint - Ohm
Integrirter Gate Widerstand
Turn-on delay time td(on) Tj=25°C Rgon=40Ohm 15 300 15 ns
Einschaltverzögerungszeit Tj=125°C Rgoff=20Ohm 18
Rise time trTj=25°C Rgon=40Ohm 15 300 15 ns
Anstiegszeit Tj=125°C Rgoff=20Ohm 19
Turn-off delay time td(off) Tj=25°C Rgon=40Ohm 15 300 15 ns
Abschaltverzögerungszeit Tj=125°C Rgoff=20Ohm 242
Fall time tfTj=25°C Rgon=40Ohm 15 300 15 ns
Fallzeit Tj=125°C Rgoff=20Ohm 32
Turn-on energy loss per pulse Eon Tj=25°C Rgon=40Ohm 15 300 15 mWs
Einschaltverlustenergie pro Puls Tj=125°C Rgoff=20Ohm 0,324
Turn-off energy loss per pulse Eoff Tj=25°C Rgon=40Ohm 15 300 15 mWs
Abschaltverlustenergie pro Puls Tj=125°C Rgoff=20Ohm 0,368
Input capacitance Cies Tj=25°C f=1MHz 0 25 0,8 0,96 nF
Eingangskapazität Tj=125°C
Output capacitance Coss Tj=25°C f=1MHz 0 25 0,084 0,101 nF
Ausgangskapazität Tj=125°C
Reverse transfer capacitance Crss Tj=25°C f=1MHz 0 25 0,052 0,062 nF
Rückwirkungskapazität Tj=125°C
Gate charge QGate Tj=25°C 15 480 15 76 99 nC
Gate Ladung Tj=125°C
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip RthJH
Thermal grease
thickness50um 1,7 K/W
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Warmeleitpaste
Dicke50um
λ = 0,61 W/mK 1,122
Diode Inverter
Diode Wechselrichter
Diode forward voltage VFTj=25°C 15 1,96 2,3 V
Durchlaßspannung Tj=125°C 1,55
Peak reverse recovery current IRRM Tj=25°C Rgon=40Ohm 15 300 15 A
Rückstromspitze Tj=125°C 19
Reverse recovery time trr Tj=25°C Rgon=40Ohm 15 300 15 ns
Sperreverzögerungszeit Tj=125°C 58
Reverse recovered charge Qrr Tj=25°C Rgon=40Ohm 15 300 15 uC
Sperrverzögerungsladung Tj=125°C 0,65
Reverse recovered energy Erec Tj=25°C Rgon=40Ohm 15 300 15 mWs
Sperrverzögerungsenergie Tj=125°C 0,078
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip RthJH
Thermal grease
thickness50um 2,43 K/W
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Warmeleitpaste
Dicke50um
λ = 0,61 W/mK 1,6038
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycoelectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V Version 05/03
Characteristic values
Description Symbol Conditions Datasheet values Unit
T(C°) Other conditions VGE(V)
VR(V)
VCE(V)
IC(A)
IF(A)
(Rgon-Rgoff) VGS(V) VDS(V) Id(A) Min Typ Max
Transistor BRC
Transistor BRC
Gate emitter threshold voltage VGE(th) Tj=25°C VCE=VGE 0,0002 3 4 5 V
Gate-Schwellenspannung Tj=125°C
Collector-emitter saturation voltage VCE(sat) Tj=25°C 15 7 2,24 2,6 V
Kollektor-Emitter Sättigungsspannung Tj=125°C 2,65
Collector-emitter cut-off ICES Tj=25°C 0 600 0,03 mA
Kollektor-Emitter Reststrom Tj=125°C 0,7
Gate-emitter leakage current IGES Tj=25°C 25 0 200 nA
Gate-Emitter Reststrom Tj=125°C
Turn-on delay time td(on) Tj=25°C Rgon=80Ohm 15 300 7 ns
Einschaltverzögerungszeit Tj=125°C Rgof=40Ohm 15
Rise time trTj=25°C Rgon=80Ohm 15 300 7 ns
Anstiegszeit Tj=125°C Rgof=40Ohm 17
Turn-off delay time td(off) Tj=25°C Rgon=80Ohm 15 300 7 ns
Abschaltverzögerungszeit Tj=125°C Rgof=40Ohm 195
Fall time tfTj=25°C Rgon=80Ohm 15 300 7 ns
Fallzeit Tj=125°C Rgof=40Ohm 28
Turn-on energy loss per pulse Eon Tj=25°C Rgon=80Ohm 15 300 7 uWs
Einschaltverlustenergie pro Puls Tj=125°C Rgof=40Ohm 0,151
Turn-off energy loss per pulse Eof
f
Tj=25°C Rgon=80Ohm 15 300 7 uWs
Abschaltverlustenergie pro Puls Tj=125°C Rgof=40Ohm 0,148
SC withstand time tSC us
Kurzschlußverhalten
Input capacitance Ciss Tj=25°C f=1MHz 0 25 0,35 0,42 nF
Eingangskapazität Tj=125°C
Output capacitance Coss Tj=25°C f=1MHz 0 25 0,038 0,046 nF
Ausgangskapazität Tj=125°C
Reverse transfer capacitance Cies Tj=25°C f=1MHz 0 25 0,023 0,028 nF
Rückwirkungskapazität Tj=125°C
Gate charge Qgate Tj=25°C 15 480 6 32 42 nC
Gate Ladung Tj=125°C
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip RthJH
Thermal grease
thickness50um 2,97 K/W
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Warmeleitpaste
Dicke50um
λ = 0,61 W/mK 1,9602
Diode BRC
Diode BRC
Diode forward voltage VFTj=25°C 7 1,49 2,15 V
Durchlaßspannung Tj=125°C 1,38
Reverse current IrTj=25°C Rgon=80Ohm 15 300 7 250 uA
Sperrstrom Tj=125°C
Reverse recovery time tr
r
Tj=25°C Rgon=80Ohm 15 300 7 ns
Sperreverzögerungszeit Tj=125°C 202
Reverse recovered charge Qr
r
Tj=25°C Rgon=80Ohm 15 300 7 uC
Sperrverzögerungsladung Tj=125°C 0,67
Reverse recovery energy Erec Tj=25°C Rgon=80Ohm 15 300 7 uWs
Sperrverzögerungsenergie Tj=125°C 0,14
Thermal resistance chip to heatsink per chip
Wärmewiderstand Chip-Kühlkörper pro Chip RthJH
Thermal grease
thickness50um 3,66 K/W
Thermal resistance chip to case per chip
Wärmewiderstand Chip-Gehause pro Chip
Warmeleitpaste
Dicke50um
λ = 0,61 W/mK
NTC-Thermistor
NTC-Widerstand
Rated resistance R25 Tj=25°C Tol. ±5% 20,9 22 23,1 kOhm
Nennwiderstand
Deviation of R100 DR/R Tc=100°C R100=1503Ohm 2,9 %/K
Abweichung von R100
Power dissipation given Epcos-Typ P Tj=25°C 210 mW
Verlustleistung Epcos-Typ angeben
B-value B(25/100) Tj=25°C Tol. ±3% 3980 K
B-Wert
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycoelectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Output inverter
Fi
g
ure 1. T
yp
ical out
p
ut characteristics Fi
g
ure 2. T
yp
ical out
p
ut characteristics
Output inverter IGB
T
Output inverter IGB
T
Ic= f(VCE) Ic= f(VCE)
parameter: tp = 250
µ
sTj = 25 °C parameter: tp = 250 µsTj = 125 °C
VGE parameter: from: 6 V to 16 V VGE parameter: from: 6 V to 16 V
in 1 V steps in 1 V steps
Fi
g
ure 3. T
yp
ical transfer characteristics Fi
g
ure 4. T
yp
ical diode forward current as
Output inverter IGB
T
a function of forward volta
g
e
Ic= f(
V
GE) Output inverter FRED
I
F=f(VF)
parameter: tp = 250 µsV
CE = 11 V parameter: tp = 250 µs
0
5
10
15
20
25
30
35
40
012345
VCE (V)
IC (A)
0
5
10
15
20
25
30
35
40
036912
VGE (V)
IC (A)
125 oC
25 oC
0
10
20
30
40
50
60
0 0,5 1 1,5 2 2,5 3 3,5VF (V)
IF (A)
25 oC
125 oC
0
5
10
15
20
25
30
35
40
012345
VCE (V)
IC (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Output inverter
Figure 5. Typical switching energy losses Figure 6. Typical switching energy losses
as a function of collector current as a function of gate resistor
Output inverter IGBT Output inverter IGBT
E = f (Ic) E = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =300 V VCE =300 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 Ic = 15 A
Figure 7. Typical switching times as a Figure 8. Typical switching times as a
function of collector current function of gate resistor
Output inverter IGBT Output inverter IGBT
t = f (Ic) t = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =300 V VCE =300 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 Ic = 15 A
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 5 10 15 20 25 30
IC (A)
t ( µs)
Eoff Eon
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 5 10 15 20 25 30
IC (A)
E (mWs)
Eoff Eon
Erec
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0 30 60 90 120 150 180
RG(
)
E (mWs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
10
0 30 60 90 120 150 180
RG (
)
t ( µs)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Output inverter
Figure 9. Typical reverse recovery time as a Figure 10. Typical reverse recovery current as a
function of IGBT turn on gate resistor function of IGBT turn on gate resistor
Output inverter FRED diode Output inverter FRED diode
trr = f (Rgon) IRRM = f (Rgon)
Tj = 125 °C Tj = 125 °C
VR =300 V VR =300 V
IF=15 A IF=15 A
Figure 11. Typical reverse recovery charge as a Figure 12. Typical rate of fall of forward
function of IGBT turn on gate resistor and reverse recovery current as a
Output inverter FRED diode function of IGBT turn on gate resistor
Qrr = f (Rgon) Output inverter FRED diode
dI0/dt,dIrec/dt= f (Rgon)
Tj = 125 °C Tj = 125 °C
VR =300 V VR =300 V
IF=15 A IF=15 A
0
0,02
0,04
0,06
0,08
0,1
0 25 50 75 100 125 150 175
RGon (
)
t rr(µs)
0
5
10
15
20
25
30
0 30 60 90 120 150 180
RGon (
)
IrrM (A)
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1
0 25 50 75 100 125 150 175
RGon ( )
Qrr ( µC)
dI0/dt
dIrec/dt
0
200
400
600
800
1000
1200
1400
1600
1800
0 30 60 90 120 150 180
RGon ( )
direc / dt (A/ µs)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Output inverter
Figure 13. IGBT transient thermal impedance Figure 14. FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
Parameter: D = tp / T RthJH
=
1,70 K/W Parameter: D = tp / T RthJH
=
2,43 K/W
IGBT thermal model values FRED thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,06 6,9E+00 0,05 1,4E+01
0,23 6,3E-01 0,22 7,9E-01
0,82 1,2E-01 0,98 1,1E-01
0,38 2,2E-02 0,69 3,3E-02
0,13 2,8E-03 0,35 3,6E-03
tp (s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
tp (s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Output inverter
Fi
g
ure 15. Power dissipation as a Fi
g
ure 16. Collector current as a
function of heatsink temperature function of heatsink temperature
Output inverter IGBT Output inverter IGBT
Ptot = f (Th) Ic = f (Th)
p
arameter: Tj = 150°C
p
arameter: Tj = 150°C
VGE=15 V
Fi
g
ure 17. Power dissipation as a Fi
g
ure 18. Forward current as a
function of heatsink temperature function of heatsink temperature
Output inverter FRED Output inverter FRED
Ptot = f (Th) IF = f (Th)
p
arameter: Tj = 150°C
p
arameter: Tj = 150°C
0
10
20
30
40
50
60
70
80
90
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
0 50 100 150 200
Th (oC)
IC (A)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
0 50 100 150 200
Th (oC)
IF (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Brake
Fi
g
ure 19. T
yp
ical out
p
ut characteristics Fi
g
ure 20. T
yp
ical out
p
ut characteristics
B
rake IGB
T
B
rake IGB
T
Ic= f(VCE) Ic= f(VCE)
parameter: tp = 250 µsTj = 25 °C parameter: tp = 250
µ
sTj = 125 °C
VGE parameter: from: 6 V to 16 V VGE parameter: from: 6 V to 16 V
in 1 V steps in 1 V steps
Figure 21. Typical transfer characteristics Figure 22. Typical diode forward current as
Brake IGBT a function of forward voltage
Ic= f(VGE) Brake FRED IF=f(VF)
parameter: tp = 250 µsV
CE = 10 V parameter: tp = 250 µs
0
4
8
12
16
20
012345
VCE (V)
IC (A)
0
5
10
15
20
25
024681012
VGE (V)
IC (A)
125 oC
25
o
C
0
5
10
15
20
25
0 0,5 1 1,5 2 2,5 3
VF (V)
IF (A)
125 25 oC
0
4
8
12
16
20
012345
VCE (V)
IC (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Brake
Figure 23. Typical switching energy losses Figure 24. Typical switching energy losses
as a function of collector current as a function of gate resistor
Brake IGBT Brake IGBT
E = f (Ic) E = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =300 V VCE =300 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 Ic = 7 A
Figure 25. Typical switching times as a Figure 26. Typical switching times as a
function of collector current function of gate resistor
Brake IGBT Brake IGBT
t = f (Ic) t = f (RG)
inductive load, Tj = 125 °C inductive load, Tj = 125 °C
VCE =300 V VCE =300 V
VGE=15 V VGE=15 V
RGon = 2*RGoff =40 Ic = 7 A
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
02468101214
IC (A)
t ( µs)
Eoff
Eon
Erec
0
0,05
0,1
0,15
0,2
0,25
0,3
02468101214
IC (A)
E (mWs)
Eoff Eon
Erec
0
0,05
0,1
0,15
0,2
0,25
0,3
0 50 100 150 200 250 300 350
RG (
)
E (mWs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 50 100 150 200 250 300 350
RG (
)
t ( µs)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Brake
Figure 27. IGBT transient thermal impedance Figure 28. FRED transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp) ZthJH = f(tp)
Parameter: D = tp / T RthJH
=
2,97 K/W Parameter: D = tp / T RthJH
=
3,66 K/W
Figure 29. Power dissipation as a Figure 30. Collector current as a
function of heatsink temperature function of heatsink temperature
Brake IGBT Brake IGBT
Ptot = f (Th) Ic = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
VGE=15 V
tp (s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5 tp (s)
ZthJH (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
0
10
20
30
40
50
60
70
0 50 100 150 200
Th (oC)
Ptot (W)
0
3
6
9
12
15
0 50 100 150 200
Th (oC)
IC (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Brake
Figure 31. Power dissipation as a Figure 32. Forward current as a
function of heatsink temperature function of heatsink temperature
Brake FRED Brake FRED
Ptot = f (Th) IF = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
0
5
10
15
20
25
30
35
40
45
50
55
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
0 50 100 150 200
Th (oC)
IF (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Input rectifier bridge
Figure 33. Typical diode forward current as Figure 34. Diode transient thermal impedance
a function of forward voltage as a function of pulse width
Rectifier diode IF=f(VF)ZthJH = f(tp)
parameter: tp = 250 µs Parameter: D = tp / T RthJH
=
1,95 K/W
Figure 35. Power dissipation as a Figure 36. Forward current as a
function of heatsink temperature function of heatsink temperature
Rectifier diode Rectifier diode
Ptot = f (Th) IF = f (Th)
parameter: Tj = 150°C parameter: Tj = 150°C
0
5
10
15
20
25
30
0 0,5 1 1,5
VF (V)
IF (A)
25°C
125°C
tp (s)
ZthJC (K/W)
D
= 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
10-5
0
10
20
30
40
50
60
70
80
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
30
35
40
45
50
0 50 100 150 200
Th (oC)
IF (A)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final datasheet
flow PIM
®
0, 600V version 05/03
Thermistor
Figure 37. Typical NTC characteristic
as a function of temperature
RT = f (T)
NTC-typical temperature characteristic
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
25 35 45 55 65 75 85 95 105 115 125
T (°C)
RT
(
k
Ω)
copyright by Tyco Electronics Rupert-Mayer-Str. 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final data
flow PIM® 0, 600V version 0603
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff
=
20 ohms
Figure 1. Typical avarage static loss Figure 2. Typical avarage static loss
as a function of output current as a function of output current
IGBT Ploss=f(Iout) FRED Ploss=f(Iout)
Conditions: Tj=125°C Conditions: Tj=125°C
Modulation index * cosfi Modulation index * cosfi
parameter Mi*cosfi from -1,00 to 1,00 parameter Mi*cosfi from -1,00 to 1,00
in 0,20 steps in 0,20 steps
Figure 3. Typical avarage switching loss Figure 4. Typical avarage switching loss
as a function of output current as a function of output current
IGBT Ploss=f(Iout) FRED Ploss=f(Iout)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 320 V DC link= 320 V
Switching freq. fsw from 2 kHz t
o
16 kHz Switching freq. fsw from 2 kHz t
o
16 kHz
parameter in * 2 steps parameter in * 2 steps
Mi*cosfi=-1
Mi*cosfi=1
0
2
4
6
8
10
12
14
16
18
20
22
24
0 2 4 6 8 10 12 14 16 18 20
Iout (A)
Ploss (W)
Mi*cosfi=-1
Mi*cosfi=1
0
2
4
6
8
10
12
14
0 2 4 6 8 10 12 14 16 18 20
Iout (A)
Ploss (W)
fsw=2kHz
fsw=16kHz
0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
0 5 10 15 20
Iout (A)
Ploss (W)
fsw=2kHz
fsw=16kHz
0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0 5 10 15 20
Iout (A)
Ploss (W)
copyright by Tyco Electronics Rupert-Mayer-Straße 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final data
flow PIM® 0, 600V version 0603
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff
=
20 ohms
Figure 5. Typical available 50Hz output current Figure 6. Typical available 50Hz output current
as a function of Mi*cosfi as a function of switching frequency
Phase Iout=f(Mi*cosfi) Phase Iout=f(fsw)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 320 V DC link= 320 V
fsw= 16 kHz Mi*cosfi= 0,8
Heatsink temp. Th from 60 °C to 100 °C Heatsink temp. Th from 60 °C to 100 °C
parameter in 5 °C steps parameter in 5 °C steps
Figure 7. Typical available 50Hz output current Figure 8. Typical available 0Hz output current
as a function of Mi*cosfi and fsw as a function of switching frequency
Phase Iout=f(fsw,Mi*cosfi) Phase Ioutpeak=f(fsw)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 320 V DC link= 320 V
Th= 80 °C Heatsink temp. Th from 60 °C to 100 °C
parameter in 5 °C steps
Th=60°C
Th=100°C
0
2
4
6
8
10
12
14
16
18
20
22
-1,0 -0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8 1,0
Mi*cosfi
Iout (A)
Th=60°C
Th=100°C
0
2
4
6
8
10
12
14
16
18
20
22
1 10 100
f
sw (kHz)
Iout (A)
Th=60°C
Th=100°C
0
5
10
15
20
1 10 100
f
sw (kHz)
Iout (Apeak)
1248163264
-1,00
-0,80
-0,60
-0,40
-0,20
0,00
0,20
0,40
0,60
0,80
1,00
Iout (A)
18-20
16-18
14-16
12-14
10-12
Mi*cosfi
fsw
copyright by Tyco Electronics Rupert-Mayer-Straße 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final data
flow PIM® 0, 600V version 0603
Output inverter application
General conditions: 3 phase SPWM, Vgeon= 15 V Vgeoff=0V Rgon= 40 ohms Rgoff
=
20 ohms
Figure 9. Typical available electric Figure 10. Typical efficiency
peak output power as a as a function of output power
function of heatsink temperature
Inverter Pout=f(Th) Inverter efficiency=f(Pout)
Conditions: Tj=125C Conditions: Tj=125C
DC link= 320 V DC link= 320 V
Modulation index Mi= 1 Modulation index Mi= 1
cosfi= 0,80 cosfi= 0,80
Switching freq. fsw from 2 kHz t
o
16 kHz Switching freq. fsw from 2 kHz t
o
16 kHz
parameter in * 2 steps parameter in * 2 steps
Figure 11. Typical available overload factor
as a function of motor power
and switching frequency
Inverter Ppeak/Pnom=f(Pnom,fsw)
Conditions: Tj=125C
DC link= 320 V
Modulation index Mi= 1
cosfi= 0,8
Switching freq. fsw from 1 kHz t
o
16 kHz
parameter in * 2 steps
Heatsink temperature= 80 °C
Motor efficiency= 0,85
2kHz
16kHz
0,0
1,0
2,0
3,0
4,0
5,0
6,0
60 65 70 75 80 85 90 95 100
Th (oC)
Pout (kW)
2kHz
16kHz
95,0
95,5
96,0
96,5
97,0
97,5
98,0
98,5
99,0
99,5
100,0
0,0 1,0 2,0 3,0 4,0 5,0
Pout (kW)
efficiency (%)
Switching frequency (kHz)
100
150
200
250
300
350
400
Motor nominal power (HP/kW)
Overload (%)
1753 565 377 282 188 113 0
2753 565 377 282 188 113 0
4747 560 373 280 187 112 0
8714 536 357 268 179 0 0
16 654 490 327 245 163 0 0
0,75 /
0,55
1,00 /
0,74
1,50 /
1,10
2,00 /
1,47
3,00 /
2,21
5,00 /
3,68
7,50 /
5,52
copyright by Tyco Electronics Rupert-Mayer-Straße 44, D81359 München power.switches@tycolectronics.com
V23990-P544-A
final data
flow PIM® 0, 600V version 0603
copyright by Tyco Electronics Rupert-Mayer-Straße 44, D81359 München power.switches@tycolectronics.com