www.irf.com 1
11/14/07
DirectFET Power MOSFET
DirectFET ISOMETRIC
MZ
PD - 97262A
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Description
The IRF6641PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging
to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving
previous best thermal resistance by 80%.
The IRF6641PbF is optimized for primary side sockets in forward and push-pull isolated DC-DC topologies, for wide range 36V-
75V input voltage range systems. The reduced total losses in the device coupled with the high level of thermal performance
enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal
for high performance isolated DC-DC converters.
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.77mH, RG = 25, IAS = 11A.
Notes:
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
IRF6641TRPbF
l RoHS Compliant
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for High Performance Isolated Converter
Primary Switch Socket
l Optimized for Synchronous Rectification
lLow Conduction Losses
l High Cdv/dt Immunity
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount Techniques
4 6 8 10 12 14 16
VGS, Gate -to -Source Voltage (V)
0
20
40
60
80
100
120
140
160
180
200
RDS(on), Drain-to -Source On Resistance (m)
ID = 5.5A
TJ = 25°C
TJ = 125°C
0 5 10 15 20 25 30 35 40
Q G, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
VGS, Gate-to-Source Voltage (V)
VDS = 160V
VDS = 100V
VDS = 40V
ID= 5.5A
SH SJ SP MZ MN
VDSS VGS RDS(on)
200V max ±20V max 51m@ 10V
Qg tot Qgd Vgs(th)
34nC 9.5nC 4.0V
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V
e
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V
e
A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
f
IDM Pulsed Drain Current
g
EAS Single Pulse Avalanche Energy
h
mJ
IAR Avalanche Current
g
A
46
Max.
3.7
26
37
±20
200
4.6
11
IRF6641TRPbF
2www.irf.com
S
D
G
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Pulse width 400µs; duty cycle 2%.
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 200 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.23 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 51 59.9 m
VGS(th) Gate Threshold Voltage 3.0 4.0 4.9 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -11 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 13 ––– ––– S
QgTotal Gate Charge ––– 34 48
Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.7 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 1.9 ––– nC
Qgd Gate-to-Drain Charge ––– 9.5 14
Qgodr Gate Charge Overdrive ––– 14 ––– See Fig. 15
Qsw Switch Charge (Qgs2 + Qgd)––– 11 –––
Qoss Output Charge ––– 12 ––– nC
RGGate Resistance ––– 1.0 –––
td(on) Turn-On Delay Time ––– 16 –––
trRise Time ––– 11 –––
td(off) Turn-Off Delay Time ––– 31 ––– ns
tfFall Time ––– 6.5 –––
Ciss Input Capacitance ––– 2290 –––
Coss Output Capacitance ––– 240 ––– pF
Crss Reverse Transfer Capacitance ––– 46 –––
Coss Output Capacitance ––– 1780 –––
Coss Output Capacitance ––– 100 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 26
(Body Diode) A
ISM Pulsed Source Current ––– ––– 37
(Body Diode)
g
VSD Diode Forward Voltage ––– ––– 1.3 V
trr Reverse Recovery Time ––– 85 130 ns
Qrr Reverse Recovery Charge ––– 320 480 nC
ID = 5.5A
VDS = 160V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS = 10V
VDS = 10V, ID = 5.5A
VDS = 100V
TJ = 25°C, IF = 5.5A, VDD = 100V
di/dt = 100A/µs
c
TJ = 25°C, IS = 5.5A, VGS = 0V
i
showing the
integral reverse
p-n junction diode.
VDS = VGS, ID = 150µA
VDS = 200V, VGS = 0V
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 5.5A
i
VDS = 16V, VGS = 0V
VDD = 100V, VGS = 10V
i
VGS = 0V
ƒ = 1.0MHz
ID = 5.5A
MOSFET symbol
RG = 6.2
VDS = 25V
Conditions
VGS = 0V, VDS = 160V, f=1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
IRF6641TRPbF
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple incontact with top (Drain) of part.
Used double sided cooling, mounting pad with large heatsink.
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
Absolute Maximum Ratin
g
s
Parameter Units
PD @TA = 25°C Power Dissipation
e
W
PD @TA = 70°C Power Dissipation
e
PD @TC = 25°C Power Dissipation
f
TP Peak Soldering Temperature °C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJA Junction-to-Ambient
el
––– 45
RθJA Junction-to-Ambient
jl
12.5 ––
RθJA Junction-to-Ambient
kl
20 ––– °C/W
RθJC Junction-to-Case
fl
––– 1.4
RθJ-PCB Junction-to-PCB Mounted 1.0 –––
2.8
1.8
270
-40 to + 150
Max.
89
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100 1000
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
0.6784 0.001268
17.299 0.033387
17.566 0.508924
9.4701 11.19309
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τA
τA
τ4
τ4
R4
R4
IRF6641TRPbF
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs. Drain Current
0.1 110
VDS, Drain-to-Source Voltage (V)
1
10
100
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
BOTTOM 7.0V
60µs PULSE WIDTH
Tj = 25°C
7.0V
0.1 110
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
7.0V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 15V
10V
8.0V
BOTTOM 7.0V
2 4 6 8 10 12 14 16
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 10V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
Typical RDS(on) (Normalized)
ID = 5.5A
VGS = 10V
110 100 1000
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
Coss = Cds + Cgd
Coss
Crss
Ciss
010 20 30 40 50 60
ID, Drain Current (A)
50
60
70
80
90
100
Typical RDS(on) (m)
TJ = 25°C
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
IRF6641TRPbF
www.irf.com 5
Fig 13. Typical Threshold Voltage vs.
Junction Temperature
Fig 12. Maximum Drain Current vs. Ambient Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.0 0.2 0.4 0.6 0.8 1.0 1.2
VSD, Source-to-Drain Voltage (V)
0
1
10
100
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
0 1 10 100 1000
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100µsec
1msec
10msec
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
2.0
3.0
4.0
5.0
6.0
Typical VGS(th), Gate threshold Voltage (V)
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
EAS , Single Pulse Avalanche Energy (mJ)
IDTOP
3.7A
5.7A
BOTTOM 11A
25 50 75 100 125 150
TA , Ambient Temperature (°C)
0
1
2
3
4
5
ID, Drain Current (A)
IRF6641TRPbF
6www.irf.com
VGS
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 15b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 15a. Unclamped Inductive Test Circuit
Fig 16b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
Fig 16a. Switching Time Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
IRF6641TRPbF
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
DirectFET Substrate and PCB Layout, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
IRF6641TRPbF
8www.irf.com
DirectFET Part Marking
DirectFET Outline Dimension, MZ Outline
(Medium Size Can, Z-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
IMPERIAL
MAX
0.246
0.189
0.152
0.014
0.027
0.027
0.037
0.025
0.011
0.044
0.100
0.0235
0.0008
0.003
MIN
6.25
4.80
3.85
0.35
0.68
0.68
0.93
0.63
0.28
1.13
2.53
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
0.97
0.67
0.32
1.26
2.66
0.676
0.080
0.17
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
DIMENSIONS
METRIC
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.038
0.026
0.013
0.050
0.105
0.0274
0.0031
0.007
IRF6641TRPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/2007
DirectFET Tape & Reel Dimension (Showing component orientation).
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
CODE
A
B
C
D
E
F
G
H
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
DIMENSIONS
METRIC IMPERIAL
LOADED TAPE FEED DIRECTION
STANDARD OPTION (QTY 4800)
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
IMPERIAL
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6641TRPBF). For 1000 parts on 7"
reel, order IRF6641TR1PBF