5SDA 10D2303 5SDA 10D2303 Old part no. DA 807-970-23 Avalanche Diode Properties low on-state voltage avalanche reverse characteristics high operational reliability suitable for parallel operation Key Parameters = 2 300 V RRM = 1 140 I FAVm = 13 500 I FSM = 0.830 V TO = 0.300 rT V A A V m Types VRRM 5SDA 10D2303 Conditions: 2 300 V Tj = -40 / 160 C, half sine waveform, f = 50 Hz Mechanical Data Fm Mounting force m Weight DS Surface creepage di tance Da Air strike distance 11 1 kN 0.23 kg 30 mm 20.5 mm Fig. 1 Case ABB s.r.o. Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic tel.: +420 261 306 250, http://www.abb.com/semiconductors TS - D/002/97c Sep-11 1 of 4 5SDA 10D2303 Maximum Ratings VRRM Maximum Limits Unit 2 300 V 1 140 A 1 790 A 50 mA Repetitive peak reverse voltage Tj = -40 / 160 C IFAVm Average forward current Tc = 85 C IFRMS RMS forward current Tc = 85 C IRRM Repetitive reverse current VR = VRRM IFSM I2t PRSM Non repetitive peak surge current tp = 8.3 ms 14 400 A VR = 0 V, half sine pulse tp = 10 ms 13 500 A Limiting load integral tp = 8.3 ms 860 000 A2s VR = 0 V, half sine pulse tp = 10 ms 911 000 A2s 50 kW Maximum avalanche power dissipation rectangular pulse 20 s Tjmin -Tjmax Operating temperature range -40 / 160 C TSTG Storage temperature range -40 / 160 C Value Unit Unless otherwise specified Tj = 160 C Characteristics min typ max VT0 Threshold voltage 0.830 V rT Forward slope resistance 0.300 m 1.350 V IF = 1000 / 3000 A VFM Maximum forward voltage 1.200 IFM = 1 800 A, Tj = 25 C Qrr Recovered charge 640 C Value Unit double side cooling 40 K/kW anode side cooling 65 VR = 100 V, IFM = 1 000 A, diF/dt = -5 A/s Unless otherwise specified Tj = 160 C Thermal Parameters Rthjc Rthch Thermal resistance junction to case Thermal resistance case to heatsink cathode side cooling 104 double side cooling 10 single side cooling 20 K/kW ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - D/002/97c Sep-11 2 of 4 5SDA 10D2303 Transient Thermal Impedance Analytical function for transient thermal impedance i 1 2 3 4 Ri( K/kW ) 20.95 10.57 7.15 1.33 i ( s ) 0.396 0.072 0.009 0.0044 4 Z thjc Ri (1 exp(t / i )) 45 Transient thermal impedance junction to case Zthjc ( K/kW ) i 1 Conditions: Fm = 11 1 kN, Double side cooled 40 35 30 25 20 15 10 5 0 0,001 0,01 0,1 1 10 Square wave pulse duration t d ( s ) IF ( A ) Fig. 2 Transient thermal impedance junction to case 7000 T j = 25 C 160 C 6000 5000 4000 3000 2000 1000 0 0 1 2 Fig. 3 Maximum forward voltage drop characteristics 3 VF (V) Fig. 4 Surge forward current vs. pulse length, half sine wave, single pulse, VR = 0 V, Tj = Tjmax ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - D/002/97c Sep-11 3 of 4 2000 y = 60 120 180 1800 2000 PT ( W ) PT ( W ) 5SDA 10D2303 y = 30 60 90 120 180 1800 1600 1600 DC 1400 270 DC 1400 1200 1200 1000 1000 800 800 600 600 400 400 200 200 0 0 0 200 400 600 800 1000 1200 0 I FAV ( A ) Fig. 5 Forward power loss vs. average forward current, sine waveform, f = 50 Hz, T = 1/f 160 150 1000 1200 I FAV ( A ) 150 130 130 120 120 110 110 DC 270 100 90 90 80 80 70 800 160 140 DC 600 170 140 100 400 Fig. 6 Forward power loss vs. average forward current, square waveform, f = 50 Hz, T = 1/f TC ( C ) TC ( C ) 170 200 180 70 y = 60 60 0 200 400 600 800 120 180 1000 1200 I FAV ( A ) Fig. 7 Max. case temperature vs. aver. forward current, sine waveform, f = 50 Hz, T = 1/f y = 30 60 0 200 400 60 600 800 90 120 1000 1200 I FAV ( A ) Fig. 8 Max.case temperature vs. aver. forward current, square waveform, f = 50 Hz, T = 1/f Notes: ABB s.r.o., Novodvorska 1768/138a, 142 21 Praha 4, Czech Republic ABB s.r.o. reserves the right to change the data contained herein at any time without notice TS - D/002/97c Sep-11 4 of 4