SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 D D D D D D Output Swing Includes Both Supply Rails Low Noise . . . 19 nV/Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Very Low Power . . . 34 A Per Channel Typ Common-Mode Input Voltage Range Includes Negative Rail D Low Input Offset Voltage D D D 850 V Max at TA = 25C Wide Supply Voltage Range 2.7 V to 8 V Macromodel Included Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description 3 VDD = 3 V VOH - High-Level Output Voltage - V The TLV2252 and TLV2254 are dual and quadruple low-voltage operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV225x family consumes only 34 A of supply current per channel. This micropower operation makes them good choices for battery-powered applications. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. The TLV225x has a noise level of 19 nV/Hz at 1kHz, four times lower than competitive micropower solutions. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 2.5 TA = - 40C 2 TA = 25C 1.5 TA = 85C 1 AA AA TA = 125C 0.5 The TLV225x, exhibiting high input impedance and low noise, are excellent for small-signal 0 conditioning for high-impedance sources, such as 600 800 0 200 400 piezoelectric transducers. Because of the micro| IOH | - High-Level Output Current - A power dissipation levels combined with 3-V Figure 1 operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is available and has a maximum input offset voltage of 850 V. The TLV2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright 1997-2006, Texas Instruments Incorporated !"#$ %" & '## % & "! (')* %" %+ #" ' %& " !"#$ %" &( ! %" & (# %, %#$& "! & &%#'$ %& &% # - ## %.+ #" ' %" (#" && / "& "% && #*. *' %&% / "! ** ( # $%#&+ (#" ' %& "$(* % %" 010 ** ( # $%#& # %&% ' *&& "%,#-& "% + ** "%,# (#" ' %& (#" ' %" (#" && / "& "% && #*. *' %&% / "! ** ( # $%#&+ POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 1 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW) CERAMIC FLATPACK (U) -40C to 125C 850 V 1500 V TLV2252AID TLV2252ID -- -- -- -- TLV2252AIP TLV2252IP TLV2252AIPWLE -- -- -- -40C to 125C 850 V 1500 V TLV2252AQD TLV2252QD -- -- -- -- -- -- -- -- -- -- -55C to 125C 850 V 1500 V -- -- TLV2252AMFK TLV2252MFK TLV2252AMJG TLV2252MJG -- -- -- -- TLV2252AMU TLV2252MU The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2252CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25C. TLV2254 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) TSSOP (PW) CERAMIC FLATPACK (W) -40C to 125C 850 V 1500 V TLV2254AID TLV2254ID -- -- -- -- TLV2254AIN TLV2254IN TLV2254AIPWLE -- -- -- -40C to 125C 850 V 1500 V TLV2254AQD TLV2254QD -- -- -- -- -- -- -- -- -- -- -55C to 125C 850 V 1500 V -- -- TLV2254AMFK TLV2254MFK TLV2254AMJ TLV2254MJ -- -- -- -- TLV2254AMW TLV2254MW The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2254CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25C. 2 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252I, TLV2252AI TLV2252Q, TLV2252AQ D, P, OR PW PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 VDD + 2OUT 2IN - 2IN + TLV2252M, TLV2252AM . . . JG PACKAGE (TOP VIEW) 1OUT 1IN - 1IN + VDD - /GND 1 8 2 7 3 6 4 5 VDD + 2OUT 2IN - 2IN + TLV2252M, TLV2252AM . . . U PACKAGE (TOP VIEW) NC 1OUT 1IN - 1IN + VCC - /GND 1 NC VCC + 2OUT 2IN - 2IN + 10 2 9 3 8 4 7 5 6 5 17 6 16 7 15 14 8 9 10 11 12 13 3 12 4 11 5 10 6 9 7 8 7 4OUT 4IN - 4IN + VDD - / GND 3IN + 3IN - 3OUT 4OUT 4IN - 4IN + VDD - / GND 3IN + 3IN - 3OUT 14 8 TLV2254M, TLV2254AM . . . FK PACKAGE (TOP VIEW) NC 2OUT NC 2IN - NC 1IN+ NC VDD+ NC 2IN+ 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 2IN - 2OUT 3 2 1 20 19 18 13 1 1OUT 1IN - 1IN + VDD+ 2IN + 2IN - 2OUT NC 1OUT NC VDD+ NC 4 14 2 TLV2254I, TLV2254AI . . . PW PACKAGE (TOP VIEW) NC VDD- /GND NC 2IN+ NC NC 1IN - NC 1IN + NC 1 1IN - 1OUT NC 4OUT 4IN - TLV2252M, TLV2252AM . . . FK PACKAGE (TOP VIEW) 1OUT 1IN - 1IN + VDD + 2IN + 2IN - 2OUT POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 4IN+ NC VDD -/ GND NC 3IN+ NC 3OUT 3IN - 1OUT 1IN - 1IN + VDD - /GND TLV2254I, TLV2254AI, TLV2254Q, TLV2254AQ . . . D OR N PACKAGE TLV2254M, TLV2254AM . . . J OR W PACKAGE (TOP VIEW) 3 4 IN - IN + Q1 Q5 R4 Q2 R3 Q3 Q4 equivalent schematic (each amplifier) POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 Q10 R6 Q9 3 Capacitors 6 18 56 76 TLV2254 Includes both amplifiers and all ESD, bias, and trim circuitry 9 30 Resistors Diodes 38 TLV2252 Transistors R1 Q13 C1 Q12 VDD -/ GND Q11 R5 ACTUAL DEVICE COMPONENT COUNT Q8 COMPONENT Q7 Q6 VDD + R2 Q15 Q14 D1 Q17 Q16 OUT Template Release Date: 7-11-94 2 2 222 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 absolute maximum ratings over operating free-air temperature range (unless otherwise noted) Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD - -0.3 V to VDD+ Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Total current out of VDD - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Duration of short-circuit current (at or below) 25C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: I Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to 125C Q Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40C to 125C M Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55C to 125C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65C to 150C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260C J, JG, U, and W packages . . . . . . . 300C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to VDD - . 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below VDD - - 0.3 V. 3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA 25C 25 C POWER RATING DERATING FACTOR ABOVE TA = 25C 85C TA = 85 C POWER RATING 125C TA = 125 C POWER RATING D-8 725 mW 5.8 mW/C 377 mW 145 mW D-14 950 mW 7.6 mW/C 494 mW 190 mW FK 1375 mW 11.0 mW/C 715 mW 275 mW J 1375 mW 11.0 mW/C 715 mW 275 mW JG 1050 mW 8.4 mW/C 546 mW 210 mW N 1150 mW 9.2 mW/C 598 mW 230 mW P 1000 mW 8.0 mW/C 520 mW 200 mW PW-8 525 mW 4.2 mW/C 273 mW 105 mW PW-14 700 mW 5.6 mW/C 364 mW 140 mW U 700 mW 5.5 mW/C 370 mW 150 mW W 700 mW 5.5 mW/C 370 mW 150 mW recommended operating conditions TLV225xI MIN Supply voltage, VDD Input voltage range, VI Common-mode input voltage, VIC 2.7 VDD - VDD - TLV225xQ MAX 8 VDD + - 1.3 VDD + - 1.3 Operating free-air temperature, TA -40 125 NOTE 1: All voltage values, except differential voltages, are with respect to VDD - . POST OFFICE BOX 655303 MIN 2.7 VDD - VDD - -40 * DALLAS, TEXAS 75265 TLV225xM MAX 8 VDD + - 1.3 VDD + - 1.3 125 MIN 2.7 VDD - VDD - -55 MAX 8 UNIT V VDD + - 1.3 VDD + - 1.3 V 125 C V 5 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA TEST CONDITIONS TLV2252I MIN 25C MAX 200 1500 Full range VIC = 0, RS = 50 0.003 0.003 V/mo 25C 0.5 RS = 50 , |VIO | 5 mV Full range IOH = - 20 A VOH High-level output voltage VOL AVD Large-signal differential voltage amplification 0.5 1000 1 1 25C 2.98 IOH = - 75 A Full range 2.8 2.8 IOH = - 150 A 25C 2.8 IOL = 500 A Full range VIC = 1.5 V, IOL = 1 Full range VIC = 1.5 V, VO = 1 V to 2 V A RL = 100 k RL = 1 M V 10 80 25C 80 100 100 150 25C 150 200 100 Full range 10 250 mV 200 300 25C V 2.8 10 Full range VIC = 1.5 V, -0.3 to 2.2 2.98 2.9 IOL = 50 A pA 1000 0 to 2 0 to 1.7 2.9 25C 60 150 1000 -0.3 to 2.2 pA 1000 60 150 0 to 2 0 to 1.7 60 150 25C VIC = 1.5 V, Low-level output voltage 60 150 -40C to 85C 25C 25 C VICR V 25C Full range Common-mode input voltage range 850 1000 UNIT V/C 25C Input bias current 200 MAX 0.5 Full range IIB TYP 0.5 -40C to 85C Input offset current MIN 1750 25C 25 C to 85C VDD = 1.5 V, VO = 0, TLV2252AI TYP 300 100 250 10 V/mV 25C 800 800 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, P package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 220 220 CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 25C 65 Full range 60 75 65 60 77 dB Full range is - 40C to 125C. Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA kSVR Supply voltage rejection ratio (VDD /VIO) VDD = 2.7 V to 8 V, VIC = VDD /2, No load IDD Supply current VO = 1.5 V, Full range No load TLV2252I MIN TYP 25C 80 95 Full range 80 TLV2252AI MAX MIN TYP 80 100 MAX UNIT dB 80 25C 68 125 68 125 150 150 A Full range is - 40C to 125C. TLV2252I operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current TEST CONDITIONS TLV2252I TA MIN TYP 0.1 TLV2252AI MAX MIN TYP 0.07 0.1 MAX UNIT VO = 1.1 V to 1.9 V, RL = 100 kk, CL = 100 pF 25 C 25C 0.07 Full range 0.05 f = 10 Hz 25C 35 35 f = 1 kHz 25C 19 19 f = 0.1 Hz to 1 Hz 25C 0.6 0.6 f = 0.1 Hz to 10 Hz 25C 1.1 1.1 25C 0.6 0.6 25C 0.187 0.187 MHz 25C 60 60 kHz 25C 63 63 25C 15 15 Gain-bandwidth product f = 1 kHz, CL = 100 pF RL = 50 k, BOM Maximum output-swing bandwidth VO(PP) = 1 V, RL = 50 k, AV = 1, CL = 100 pF m Phase margin at unity gain RL = 50 k, CL = 100 pF Gain margin Full range is - 40C to 125C. Referenced to 1.5 V POST OFFICE BOX 655303 V/s * DALLAS, TEXAS 75265 0.05 nV/Hz V V fA /Hz dB 7 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS 25C VIO Input offset voltage VIO Temperature coefficient of input offset voltage 25C 25 C to 85C Input offset voltage longterm drift (see Note 4) IIO Input offset current TLV2252I MIN VICR VIC = 0, RS = 50 Input bias current Common-mode input voltage range |VIO | 5 mV, High-level output voltage IOH = - 75 A AVD Low-level output voltage Large-signal differential voltage amplification IOL = 50 A VIC = 2.5 V, IOL = 500 A VIC = 2.5 V, IOL = 1 VIC = 2.5 V, VO = 1 V to 4 V 0.003 0.003 V/mo 25C 0.5 RL = 1 M 60 0.5 60 -40C to 85C 150 150 Full range 1000 1000 1 60 1 150 150 Full range 1000 1000 25C 0 to 4 Full range 0 to 3.5 -0.3 to 4.2 0 to 4 25C 4.9 Full range 4.8 25C 4.8 -0.3 to 4.2 4.98 4.94 4.9 4.94 4.88 4.8 0.01 4.88 0.01 0.06 25C 0.09 0.06 0.15 0.09 0.15 0.2 Full range 100 Full range 10 350 0.15 0.15 0.3 0.2 0.3 25C V 4.8 Full range pA V 0 to 3.5 4.98 pA 60 -40C to 85C 25C RL = 100 k V 25C Full range A 850 1000 UNIT V/C 25C VIC = 2.5 V, 200 MAX 0.5 25C IOH = - 150 A VOL 1500 TYP 0.5 RS = 50 IOH = - 20 A VOH 200 MIN 1750 25C IIB MAX Full range VDD = 2.5 V, VO = 0, TLV2252AI TYP V 0.3 0.3 100 350 10 V/mV 25C 1700 1700 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, P package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 200 200 CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 VO = 2.5 V, 25C 70 Full range 70 83 70 70 83 dB Full range is - 40C to 125C. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA kSVR Supply voltage rejection ratio (VDD /VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load IDD Supply current VO = 2.5 V, No load TLV2252I MIN TYP 25C 80 95 Full range 80 TLV2252AI MAX MIN TYP 80 95 MAX dB 80 25C 70 Full range 125 UNIT 70 125 150 150 A Full range is - 40C to 125C. TLV2252I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS VO = 1.5 V to 3.5 V, CL = 100 pF RL = 100 k, TLV2252I TA MIN TYP 25C 0.07 0.12 Full range 0.05 TLV2252AI MAX MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain V/s Equivalent input noise voltage f = 10 Hz 25C 36 36 Vn f = 1 kHz 25C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25C 1.1 1.1 In Equivalent input noise current 25C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 k AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF RL = 50 k, 25C 0.2 0.2 MHz BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 k, AV = 1, CL = 100 pF 25C 30 30 kHz m Phase margin at unity gain RL = 50 k, CL = 100 pF 25C 63 63 25C 15 15 0.05 nV/Hz V V fA /Hz 25C AV = 10 Gain margin Full range is - 40C to 125C. Referenced to 2.5 V POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 dB 9 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA TEST CONDITIONS TLV2254I MIN 25C MAX 200 1500 Full range VIC = 0, RS = 50 VICR 0.003 0.003 V/mo 25C 0.5 VOH High-level output voltage VOL AVD Large-signal differential voltage amplification 0.5 150 150 1000 1 1 1000 Full range -0.3 to 2.2 0 to 2 0 to 1.7 25C 2.98 IOH = - 75 A 2.9 Full range 2.8 2.8 IOH = - 150 A 25C 2.8 Full range VIC = 1.5 V, IOL = 500 A Full range VIC = 1.5 V, IOL = 1 Full range VIC = 1.5 V, VO = 1 V to 2 V RL = 100 k 80 80 100 150 150 200 100 Full range 10 225 mV 200 300 25C RL = 1 M V 10 100 25C V 2.8 10 25C pA 2.98 2.9 25C -0.3 to 2.2 0 to 1.7 25C A 60 1000 0 to 2 pA 1000 60 Full range |VIO | 5 mV IOL = 50 A 60 150 25C VIC = 1.5 V, Low-level output voltage 60 150 IOH = - 20 A V 25C -40C to 85C Input bias current RS = 50 , 850 1000 UNIT V/C 25C Common-mode input voltage range 200 MAX 0.5 Full range IIB TYP 0.5 -40C to 85C Input offset current MIN 1750 25C 25 C to 85C VDD = 1.5 V, VO = 0, TLV2254AI TYP 300 100 225 10 V/mV 25C 800 800 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, N package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 220 220 CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, RS = 50 VO = 1.5 V, 25C 65 Full range 60 75 65 60 77 dB Full range is - 40C to 125C. Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TA TEST CONDITIONS TLV2254I MIN TYP 95 Supply voltage rejection ratio (VDD /VIO) VDD = 2.7 V to 8 V, VIC = VDD /2, No load 25C 80 kSVR Full range 80 IDD Supply current (four amplifiers) VO = 1.5 V, Full range No load TLV2254AI MAX MIN TYP 80 100 MAX UNIT dB 80 25C 135 250 135 300 250 300 A Full range is - 40C to 125C. TLV2254I operating characteristics at specified free-air temperature, VDD = 3 V SR TLV2254I PARAMETER TEST CONDITIONS TA MIN TYP VO = 0.7 V to 1.7 V, k , RL = 100 k CL = 100 pF 25 C 25C 0.07 0.1 Slew rate at unity gain Full range 0.05 Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current TLV2254AI MAX MIN TYP 0.07 0.1 MAX UNIT V/ s V/s 0.05 f = 10 Hz 25C 35 35 f = 1 kHz 25C 19 19 f = 0.1 Hz to 1 Hz 25C 0.6 0.6 f = 0.1 Hz to 10 Hz 25C 1.1 1.1 25C 0.6 0.6 nV/Hz V V fA /Hz Gain-bandwidth product f = 1 kHz, RL = 50 k , CL = 100 pF 25C 0.187 0.187 MHz BOM Maximum output-swing bandwidth VO(PP) = 1 V, AV = 1, RL = 50 k, CL = 100 pF 25C 60 60 kHz m Phase margin at unity gain 25C 63 63 25C 15 15 Gain margin RL = 50 k, CL = 100 pF dB Full range is - 40C to 85C. Referenced to 1.5 V POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 11 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS MIN 25C VIO Input offset voltage VIO Temperature coefficient of input offset voltage 25 C 25C to 85C Input offset voltage long-term drift (see Note 4) IIO TLV2254I TYP MAX 200 1500 Full range VDD = 2.5 V, VO = 0, VIC = 0, RS = 50 Common-mode input voltage range 0.003 0.003 V/mo 25C 0.5 25C RS = 50 Full range IOH = - 20 A VOH High-level output voltage IOH = - 150 A IOL = 50 A VIC = 2.5 V, VOL AVD Low-level output voltage Large-signal differential voltage amplification VIC = 2.5 V, IOL = 500 A VIC = 2.5 V, IOL = 1 VIC = 2.5 V, VO = 1 V to 4 V A RL = 100 k RL = 1 M 60 0.5 150 1 4.9 Full range 4.8 25C 4.8 25C -0.3 to 4.2 4.98 4.94 4.9 4.94 4.88 Full range 4.8 4.88 0.01 0.06 0.09 Full range 0.06 0.15 0.09 0.15 25C 0.2 Full range 100 Full range 10 350 0.15 0.15 0.3 0.2 0.3 25C V 4.8 0.01 25C V 0 to 3.5 4.98 25C pA 1000 0 to 4 0 to 3.5 60 150 1000 -0.3 to 4.2 pA 1000 60 150 0 to 4 60 150 1000 1 25C IOH = - 75 A V 25C -40C to 85C |VIO | 5 mV, 850 1000 UNIT V/C Full range VICR 200 MAX 0.5 25C Input bias current TYP 0.5 Full range IIB MIN 1750 -40C to 85C Input offset current TLV2254AI V 0.3 0.3 100 350 10 V/mV 25C 1700 1700 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, N package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 200 200 CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 VO = 2.5 V, 25C 70 Full range 70 83 70 70 83 dB Full range is - 40C to 125C. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TA TEST CONDITIONS kSVR Supply voltage rejection ratio (VDD /VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load IDD Supply current (four amplifiers) VO = 2.5 V, TLV2254I MIN TYP 25C 80 95 Full range 80 MAX MIN TYP 80 95 MAX UNIT dB 80 25C No load TLV2254AI 140 Full range 250 140 300 250 300 A A Full range is - 40C to 125C. TLV2254I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 100 k , TLV2254I TA MIN TYP 25C 0.07 0.12 Full range 0.05 TLV2254AI MAX MIN TYP 0.07 0.12 MAX UNIT SR Slew rate at unity gain VO = 1.4 V to 2.6 V, CL = 100 pF Equivalent input noise voltage f = 10 Hz 25C 36 36 Vn f = 1 kHz 25C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25C 1.1 1.1 In Equivalent input noise current 25C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 k AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF RL = 50 k , 25C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 k , AV = 1, CL = 100 pF 25C 30 30 kHz m Phase margin at unity gain RL = 50 k , CL = 100 pF 25C 63 63 25C 15 15 V/s 0.05 nV/Hz V V fA /Hz 25C AV = 10 Gain margin Full range is - 40C to 125C. Referenced to 2.5 V POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 dB 13 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS TLV2252Q, TLV2252M MIN VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current 25C Common-mode input voltage range VIC = 0, RS = 50 Low-level output voltage VIC = 1.5 V, VIC = 1.5 V, AVD Large-signal differential voltage amplification VIC = 1.5 V, VO = 1 V to 2 V IOL = 500 A IOL = 1 A RL = 100 k RL = 1 M V 0.003 0.003 V/mo 25C 0.5 60 0.5 1000 1 0 to 2 0 to 1.7 60 -0.3 to 2.2 1 0 to 2 0 to 1.7 2.98 2.9 Full range 2.8 2.8 25C 2.8 2.8 10 100 Full range -0.3 to 2.2 200 Full range 100 Full range 10 V 10 150 100 250 150 165 300 200 300 25C pA V 165 25C pA 2.98 2.9 25C 60 1000 25C 25C 60 1000 1000 25C IOL = 50 A 850 1000 25C |VIO | 5 mV IOH = - 75 A 200 UNIT MAX V/C 25C RS = 50 , TYP 0.5 125C IOH = - 150 A VIC = 1.5 V, VOL 1500 125C IOH = - 20 A VOH 200 MIN 0.5 Full range High-level output voltage MAX 1750 25C 25 C to 85C 25C 25 C VICR TYP Full range VDD = 1.5 V, VO = 0, TLV2252AQ, TLV2252AM mV 300 300 100 250 10 V/mV 25C 800 800 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, P package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 220 220 CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, RS = 50 VO = 1.5 V, kSVR Supply voltage rejection VDD /V / VIO) ratio ((V VDD = 2.7 V to 8 V, VIC = VDD /2, No load IDD Supply current VO = 1.5 V, No load 25C 65 Full range 60 25C 80 Full range 80 25C Full range 75 65 77 dB 60 95 80 100 dB 80 68 125 150 68 125 150 A Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 14 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TA TEST CONDITIONS VO = 0.8 V to 1.4 V, CL = 100 pF RL = 100 k, TLV2252Q, TLV2252M MIN TYP 25C 0.07 0.1 Full range 0.05 TLV2252AQ, TLV2252AM MAX MIN TYP 0.07 0.1 UNIT MAX SR Slew rate at unity gain Equivalent input noise voltage f = 10 Hz 25C 35 35 Vn f = 1 kHz 25C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25C 0.6 0.6 VN(PP) f = 0.1 Hz to 10 Hz 25C 1.1 1.1 In Equivalent input noise current 25C 0.6 0.6 25C 0.187 0.187 MHz 25C 60 60 kHz 25C 63 63 Gain margin 25C Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 1.5 V 15 15 Gain-bandwidth product f = 1 kHz, CL = 100 pF RL = 50 k, BOM Maximum output-swing bandwidth VO(PP) = 1 V, RL = 50 k, AV = 1, CL = 100 pF m Phase margin at unity gain RL = 50 k, CL = 100 pF POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 V/s 0.05 nV/Hz V V fA /Hz dB 15 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS TLV2252Q, TLV2252M MIN VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25C VOL High-level output voltage Low-level output voltage Large-signal differential voltage amplification 200 1500 VIC = 0, RS = 50 VIC = 2.5 V, IOL = 500 A VIC = 2.5 V, VO = 1 V to 4 V IOL = 1 A RL = 100 k RL = 1 M V 0.003 0.003 V/mo 25C 0.5 60 0.5 1000 1 25C 0 to 4 60 Full range 0 to 3.5 -0.3 to 4.2 1 4.9 Full range 4.8 25C 4.8 0 to 4 -0.3 to 4.2 4.9 4.94 4.88 25C 0.09 4.8 4.88 0.01 0.15 0.09 0.15 0.2 Full range 100 Full range 10 350 0.15 0.15 0.3 0.2 0.3 25C V 4.8 Full range pA 4.98 4.94 0.01 pA V 0 to 3.5 25C 25C 60 1000 4.98 25C 60 1000 1000 25C IOL = 50 A 850 1000 25C RS = 50 IOH = - 150 A VIC = 2.5 V, 200 UNIT MAX V/C 125C IOH = - 75 A TYP 0.5 25C |VIO | 5 mV, MIN 0.5 125C VIC = 2.5 V, AVD MAX 1750 25C 25 C to 85C IOH = - 20 A VOH TYP Full range VDD = 2.5 V, VO = 0, TLV2252AQ, TLV2252AM V 0.3 0.3 100 350 10 V/mV 25C 1700 1700 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, P package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 200 200 CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 25C 70 Full range 70 kSVR Supply voltage rejection ratio (VDD /VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25C 80 Full range 80 83 70 83 70 95 80 80 95 dB dB Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 16 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TA TEST CONDITIONS TLV2252Q, TLV2252M MIN IDD Supply current VO = 2.5 V, No load 25C TLV2252AQ, TLV2252AM TYP MAX 70 125 Full range MIN UNIT TYP MAX 70 125 150 150 A Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain TA TEST CONDITIONS TLV2252Q, TLV2252M MIN TYP 0.12 VO = 1.25 V to 2.75 V, RL = 100 kk, CL = 100 pF 25 C 25C 0.07 Full range 0.05 MAX TLV2252AQ, TLV2252AM MIN TYP 0.07 0.12 UNIT MAX V/s 0.05 f = 10 Hz 25C 36 36 f = 1 kHz 25C 19 19 f = 0.1 Hz to 1 Hz 25C 0.7 0.7 f = 0.1 Hz to 10 Hz 25C 1.1 1.1 25C 0.6 0.6 0.2% 0.2% 1% 1% 25C 0.2 0.2 MHz 25C 30 30 kHz 25C 63 63 Gain margin 25C Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 2.5 V 15 15 Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 k AV = 1 THD + N Gain-bandwidth product f = 50 kHz, CL = 100 pF RL = 50 k, BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 k, AV = 1, CL = 100 pF m Phase margin at unity gain RL = 50 k, CL = 100 pF nV/Hz V V fA /Hz 25C AV = 10 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 dB 17 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS TLV2254Q, TLV2254M MIN VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25C VOL High-level output voltage Low-level output voltage Large-signal differential voltage amplification 200 1500 VIC = 0, RS = 50 0.003 V/mo 25C 0.5 1 25C 25 C 0 to 2 Full range 0 to 1.7 1 0 to 2 -0.3 to 2.2 2.98 Full range 2.8 2.8 25C 2.8 VIC = 1.5 V, IOL = 500 A 25C 100 Full range V 2.8 10 150 100 165 200 Full range Full range 10 225 150 165 300 200 300 100 pA 2.98 2.9 10 pA V 0 to 1.7 2.9 25C 60 1000 25C 25C 60 1000 60 -0.3 to 2.2 25C RL = 1 M 0.5 1000 IOL = 50 A RL = 100 k 60 1000 IOH = - 150 A VIC = 1.5 V, VIC = 1.5 V, VO = 1 V to 2 V V 0.003 25C A 850 1000 25C |VIO | 5 mV IOL = 1 200 UNIT MAX V/C 125C IOH = - 75 A TYP 0.5 25C RS = 50 , MIN 0.5 125C VIC = 1.5 V, AVD MAX 1750 25C 25 C to 125C IOH = - 20 A VOH TYP Full range VDD = 1.5 V, VO = 0, TLV2254AQ, TLV2254AM mV 300 300 100 225 10 V/mV 25C 800 800 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, N package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 220 220 CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, RS = 50 VO = 1.5 V, kSVR Supply voltage rejection ratio (VDD /VIO) VDD = 2.7 V to 8 V, VIC = VDD /2, No load 25C 65 Full range 60 25C 80 Full range 80 75 65 77 60 95 80 dB 100 dB 80 Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 18 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TLV2254Q, TLV2254M TA TEST CONDITIONS MIN IDD Supply current (four amplifiers) VO = 1.5 V, 25C No load TLV2254AQ, TLV2254AM TYP MAX 135 250 Full range MIN UNIT TYP MAX 135 250 300 300 A Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise voltage In Equivalent input noise current TA TEST CONDITIONS VO = 0.5 V to 1.7 V, RL = 100 k, CL = 100 pF TLV2254Q, TLV2254M MIN TYP 25C 0.07 0.1 Full range 0.05 TLV2254AQ, TLV2254AM MAX MIN TYP 0.07 0.1 UNIT MAX V/s 0.05 f = 10 Hz 25C 35 35 f = 1 kHz 25C 19 19 f = 0.1 Hz to 1 Hz 25C 0.6 0.6 f = 0.1 Hz to 10 Hz 25C 1.1 1.1 25C 0.6 0.6 nV/Hz V V fA /Hz Gain-bandwidth product f = 1 kHz, RL = 50 k , CL = 100 pF 25C 0.187 0.187 MHz BOM Maximum output-swing bandwidth VO(PP) = 1 V, AV = 1, RL = 50 k, CL = 100 pF 25C 60 60 kHz m Phase margin at unity gain 25C 63 63 15 15 RL = 50 k, CL = 100 pF Gain margin 25C Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 1.5 V POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 dB 19 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA TEST CONDITIONS TLV2254Q, TLV2254M MIN VIO Input offset voltage VIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25C High-level output voltage Low-level output voltage Large-signal differential voltage amplification 1500 VIC = 0, RS = 50 IOL = 500 A VIC = 2.5 V, IOL = 1 VIC = 2.5 V, VO = 1 V to 4 V A RL = 100 k RL = 1 M 850 1000 V 25C 0.003 0.003 V/mo 25C 0.5 60 0.5 1000 1 25C 25 C 0 to 4 60 Full range 0 to 3.5 -0.3 to 4.2 1 4.9 Full range 4.8 25C 4.8 0 to 4 -0.3 to 4.2 4.9 4.94 4.88 0.09 Full range 4.8 4.88 0.01 0.15 0.09 0.15 0.2 Full range 100 Full range 10 350 0.15 0.15 0.3 0.2 0.3 25C V 4.8 25C pA 4.98 4.94 0.01 pA V 0 to 3.5 25C 25C 60 1000 4.98 25C 60 1000 1000 25C IOL = 50 A 200 UNIT MAX V/C RS = 50 IOH = - 75 A TYP 0.5 25C |VIO | 5 mV, MIN 0.5 125C VIC = 2.5 V, AVD 200 125C IOH = - 150 A VIC = 2.5 V, VOL MAX 1750 25C 25 C to 125C IOH = - 20 A VOH TYP Full range VDD = 2.5 V, VO = 0, TLV2254AQ, TLV2254AM V 0.3 0.3 100 350 10 V/mV 25C 1700 1700 ri(d) Differential input resistance 25C 1012 1012 ri(c) Common-mode input resistance 25C 1012 1012 ci(c) Common-mode input capacitance f = 10 kHz, N package 25C 8 8 pF zo Closed-loop output impedance f = 25 kHz, AV = 10 25C 200 200 CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 VO = 2.5 V, 25C 70 Full range 70 83 70 70 83 dB Supply voltage 25C 80 95 80 95 VDD = 4.4 V to 8 V, rejection ratio dB VIC = VDD /2, No load Full range 80 80 (VDD /VIO) Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150C extrapolated to TA = 25C using the Arrhenius equation and assuming an activation energy of 0.96 eV. kSVR 20 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TLV2254Q, TLV2254M TA MIN Supply current (four amplifiers) IDD 25C VO = 2.5 V, No load TLV2254AQ, TLV2254AM TYP MAX 140 250 Full range MIN UNIT TYP MAX 140 250 300 300 A A Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 100 k , TA TLV2254Q, TLV2254M MIN TYP 25C 0.07 0.12 Full range 0.05 TLV2254AQ, TLV2254AM MAX MIN TYP 0.07 0.12 UNIT MAX Slew rate at unity gain VO = 0.5 V to 3.5 V, CL = 100 pF Equivalent input noise voltage f = 10 Hz 25C 36 36 Vn f = 1 kHz 25C 19 19 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25C 1.1 1.1 In Equivalent input noise current 25C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 k AV = 1 0.2% 0.2% THD + N 1% 1% Gain-bandwidth product f = 50 kHz, CL = 100 pF RL = 50 k , 25C 0.2 0.2 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 k , AV = 1, CL = 100 pF 25C 30 30 kHz m Phase margin at unity gain RL = 50 k , CL = 100 pF 25C 63 63 Gain margin 25C Full range is - 40C to 125C for Q level part, - 55C to 125C for M level part. Referenced to 2.5 V 15 15 SR V/s 0.05 nV/Hz V V fA /Hz 25C AV = 10 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 dB 21 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode voltage 2-5 6, 7 VIO IIB /IIO Input offset voltage temperature coefficient Distribution 8 - 11 Input bias and input offset currents vs Free-air temperature 12 VI Input voltage vs Supply voltage vs Free-air temperature 13 14 VOH VOL High-level output voltage vs High-level output current 15, 18 Low-level output voltage vs Low-level output current 16, 17, 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 21 22 VID AVD Differential input voltage vs Output voltage 23, 24 Differential voltage amplification vs Load resistance 25 AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature 32 33 kSVR Supply-voltage rejection ratio vs Frequency vs Free-air temperature 34, 35 36 IDD Supply current vs Supply voltage 37, 38 SR Slew rate vs Load capacitance vs Free-air temperature VO VO Inverting large-signal pulse response 41, 42 Voltage-follower large-signal pulse response 43, 44 VO VO Inverting small-signal pulse response 45, 46 Vn Equivalent input noise voltage vs Frequency Input noise voltage Over a 10-second period 51 Integrated noise voltage vs Frequency 52 Total harmonic distortion plus noise vs Frequency 53 Gain-bandwidth product vs Supply voltage vs Free-air temperature 54 55 Phase margin vs Frequency vs Load capacitance 26, 27 56 Gain margin vs Load capacitance 57 Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59 THD + N m B1 22 Voltage-follower small-signal pulse response POST OFFICE BOX 655303 39 40 47, 48 * DALLAS, TEXAS 75265 49, 50 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2252 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2252 INPUT OFFSET VOLTAGE 20 20 1020 Amplifiers From 1 Wafer Lot VDD = 2.5 V TA = 25C Precentage of Amplifiers - % Precentage of Amplifiers - % 1020 Amplifiers From 1 Wafer Lot VDD = 1.5 V TA = 25C 15 10 5 0 -1.6 -0.8 0 0.8 VIO - Input Offset Voltage - mV 15 10 5 0 -1.6 1.6 Figure 2 DISTRIBUTION OF TLV2254 INPUT OFFSET VOLTAGE 35 35 682 Amplifiers From 1 Wafer Lot VDD = 1.5 V 30 TA = 25C 682 Amplifiers From 1 Wafer Lot VDD = 2.5 V 30 TA = 25C Percentage of Amplifiers - % Percentage of Amplifiers - % 1.6 Figure 3 DISTRIBUTION OF TLV2254 INPUT OFFSET VOLTAGE 25 20 15 10 5 0 -1.6 -0.8 0 0.8 VIO - Input Offset Voltage - mV 25 20 15 10 5 -0.8 0 0.8 VIO - Input Offset Voltage - mV 1.6 0 -1.6 Figure 4 -0.8 0 0.8 VIO - Input Offset Voltage - mV 1.6 Figure 5 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 23 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 1 VDD = 3 V RS = 50 TA = 25C 0.8 VIO - Input Offset Voltage - mV 0.6 VIO - Input Offset Voltage - mV VDD = 5 V RS = 50 TA = 25C 0.8 0.4 0.2 0 -0.2 0.6 0.4 0.2 0 -0.2 AA AA -0.4 AA AA -0.6 -0.4 -0.6 -0.8 -0.8 -1 -1 0 1 -1 -1 3 2 0 Figure 6 4 15 10 5 -1 0 1 VIO - Temperature Coefficient - V / C 2 62 Amplifiers From 1 Wafer Lot VDD = 2.5 V P Package 20 T = 25C to 85C A 15 10 5 0 -2 -1 0 1 VIO - Temperature Coefficient - V / C Figure 8 Figure 9 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 24 5 25 62 Amplifiers From 1 Wafer Lot VDD = 1.5 V P Package TA = 25C to 85C Percentage of Amplifiers - % Percentage of Amplifiers - % 3 DISTRIBUTION OF TLV2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 0 -2 2 Figure 7 DISTRIBUTION OF TLV2252 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 20 1 VIC - Common-Mode Input Voltage - V VIC - Common-Mode Input Voltage - V POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 2 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 25 62 Amplifiers From 1 Wafer Lot VDD = 1.5 V P Package TA = 25C to 85C 20 62 Amplifiers From 1 Wafer Lot VDD = 2.5 V P Package 20 TA = 25C to 85C Percentage of Amplifiers - % Percentage of Amplifiers - % 25 DISTRIBUTION OF TLV2254 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 15 10 5 15 10 5 0 -2 -1 0 1 0 2 -2 -1 0 1 VIO - Temperature Coefficient of Input Offset Voltage - V / C VIO - Temperature Coefficient of Input Offset Voltage - V / C Figure 11 INPUT VOLTAGE vs SUPPLY VOLTAGE INPUT BIAS AND INPUT OFFSET CURRENTS vs FREE-AIR TEMPERATURE 35 30 2.5 VDD = 2.5 V VIC = 0 VO = 0 RS = 50 1.5 25 20 10 IIB 1 0.5 0 AA AA 15 | VIO | 5 mV -0.5 -1 -1.5 IIO 5 0 25 RS = 50 TA = 25C 2 VI - Input Voltage - V IIIB IB and IIIO IO - Input Bias and Input Offset Currents - pA Figure 10 2 -2 -2.5 105 45 65 85 TA - Free-Air Temperature - C 125 1 1.5 2 2.5 3 3.5 | VDD | - Supply Voltage - V 4 Figure 13 Figure 12 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 25 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS INPUT VOLTAGE vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 5 3 VDD = 5 V VDD = 3 V AA VOH - High-Level Output Voltage - V VI - Input Voltage - V 4 3 | VIO | 5 mV 2 1 0 -1 -55 -35 -15 5 25 45 65 85 105 TA - Free-Air Temperature - C 125 AA AA AA 2.5 TA = - 40C 2 TA = 25C 1.5 TA = 85C 1 TA = 125C 0.5 0 0 200 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 1.4 1.2 VOL - Low-Level Output Voltage - V VDD = 3 V TA = 25C 1 VIC = 0 0.8 VIC = 0.75 V 0.6 VIC = 1.5 V 0.4 AA AA AA 0.2 0 0 1 2 3 4 5 IOL - Low-Level Output Current - mA VDD = 3 V VIC = 1.5 V 1.2 TA = 125C 1 TA = 85C 0.8 TA = 25C 0.6 0.4 TA = - 40C 0.2 0 0 1 2 3 4 IOL - Low-Level Output Current - mA Figure 16 Figure 17 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 26 800 Figure 15 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT VOL - Low-Level Output Voltage - V 600 | IOH | - High-Level Output Current - A Figure 14 AA AA 400 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 5 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 1.4 VDD = 5 V VIC = 2.5 V AA AA 1.2 4 VOL - Low-Level Output Voltage - V VOH - High-Level Output Voltage - V VDD = 5 V TA = - 40C 3 TA = 25C 2 TA = 85C AA AA 1 TA = 125C 0 0 200 400 600 TA = 125C 1 TA = 85C 0.8 TA = 25C 0.6 0.4 TA = - 40C 0.2 0 800 0 | IOH | - High-Level Output Current - A 1 2 Figure 18 5 6 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 10 5 RI = 50 k TA = 25C VDD = 5 V I OS - Short-Circuit Output Current - mA VO(PP) - Maximum Peak-to-Peak Output Voltage - V 4 Figure 19 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY AA AA AA 3 IOL - Low-Level Output Current - mA 4 3 VDD = 3 V 2 1 0 10 2 9 8 6 5 10 5 VO = VDD/2 TA = 25C VIC = VDD/2 4 3 2 1 VID = 100 mV 0 -1 10 3 10 4 f - Frequency - Hz VID = - 100 mV 7 2 3 Figure 20 6 4 5 VDD - Supply Voltage - V 7 8 Figure 21 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 27 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 1000 VO = 2.5 V VDD = 5 V 10 9 8 VID = - 100 mV 7 6 5 4 3 2 1 600 400 200 0 -200 -400 -600 -800 VID = 100 mV 0 -1 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - C VDD = 3 V RI = 50 k VIC = 1.5 V TA = 25C 800 V ID - Differential Input Voltage - V I OS - Short-Circuit Output Current - mA 11 -1000 125 0 0.5 1 1.5 2 VO - Output Voltage - V Figure 22 DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE V ID - Differential Input Voltage - V AVD - Differential Voltage Amplification - V/mV 1000 VDD = 5 V VIC = 2.5 V RL = 50 k TA = 25C 600 400 200 0 -200 -400 -600 -800 -1000 0 1 3 2 4 VO - Output Voltage - V 5 10 4 VO(PP) = 2 V TA = 25C 10 3 VDD = 5 V 10 2 VDD = 3 V 101 AA AA 1 1 101 10 2 RL - Load Resistance - k Figure 24 Figure 25 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 28 3 Figure 23 DIFFERENTIAL INPUT VOLTAGE vs OUTPUT VOLTAGE 800 2.5 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 10 3 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY AVD A VD - Large-Signal Differential Voltage Amplification - dB 60 AA AA AA 180 VDD = 5 V RL = 50 k CL= 100 pF TA = 25C 135 40 90 Phase Margin 20 45 Gain 0 0 -20 om m - Phase Margin 80 -45 -40 10 3 10 4 10 5 10 6 f - Frequency - Hz -90 10 7 Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY AVD A VD - Large-Signal Differential Voltage Amplification - dB 60 AA AA AA 180 VDD = 3 V RL= 50 k CL= 100 pF TA = 25C 135 40 Phase Margin 20 45 Gain 0 0 -20 -40 10 3 90 om m - Phase Margin 80 -45 10 4 10 5 10 6 f - Frequency - Hz -90 10 7 Figure 27 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 29 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 10 4 VDD = 3 V VIC = 1.5 V VO = 0.5 V to 2.5 V AVD - Large-Signal Differential Voltage Amplification - V/mV AVD - Large-Signal Differential Voltage Amplification - V/mV 10 4 RL = 1 M 10 3 RL = 50 k 10 2 101 -75 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - C VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V RL = 1 M 10 3 RL = 50 k 10 2 101 -75 125 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - C Figure 28 Figure 29 OUTPUT IMPEDANCE vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 1000 VDD = 5 V TA = 25C z o - Output Impedance - z o - Output Impedance - VDD = 3 V TA = 25C 100 125 AV = 100 10 AV = 10 1 100 AV = 100 10 AV = 10 1 AV = 1 AV = 1 0.1 10 2 10 3 10 4 f- Frequency - Hz 10 5 10 6 0.1 10 2 Figure 30 10 3 10 4 f- Frequency - Hz 10 5 Figure 31 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 30 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 10 6 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO vs FREQUENCY 94 VDD = 5 V VIC = 2.5 V CMMR - Common-Mode Rejection Ratio - dB CMRR - Common-Mode Rejection Ratio - dB 100 TA = 25C 80 VDD = 3 V VIC = 1.5 V 60 40 20 0 10 1 10 2 10 4 10 3 f - Frequency - Hz 10 5 92 90 VDD = 5 V 88 VDD = 3 V 86 84 82 80 0 25 50 75 100 - 75 - 50 - 25 TA - Free-Air Temperature - C 10 6 Figure 33 Figure 32 SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 VDD = 3 V TA = 25C k SVR - Supply-Voltage Rejection Ratio - dB k SVR - Supply-Voltage Rejection Ratio - dB 100 80 60 kSVR + 40 kSVR - 20 AA AA AA 0 -20 10 1 125 10 2 10 3 10 4 f - Frequency - Hz 10 5 10 6 AA AA AA VDD = 5 V TA = 25C kSVR + 80 60 kSVR - 40 20 0 -20 101 10 2 10 3 10 4 10 5 10 6 f - Frequency - Hz Figure 34 Figure 35 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 31 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS TLV2252 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE A A 120 VDD = 2.7 V to 8 V VIC = VO = VDD / 2 VO = 0 No Load 100 I DD - Supply Current - A k SVR - Supply-Voltage Rejection Ratio - dB 110 105 100 60 AA AA 95 90 -75 -50 TA = - 40C 80 TA = 85C TA = 25C 40 20 0 -25 0 25 50 75 100 TA - Free-Air Temperature - C 125 0 1 2 3 4 5 6 VDD - Supply Voltage - V Figure 36 SLEW RATE vs LOAD CAPACITANCE 0.2 240 VO = 0 No Load 0.18 VDD = 5 V AV = - 1 TA = 25C 0.16 SR - Slew Rate - V/ s I DD - Supply Current - A 200 TA = - 40C 160 120 TA = 85C TA = 25C 80 0.14 SR - 0.12 0.1 SR + 0.08 0.06 0.04 40 0.02 0 0 1 2 3 4 5 6 | VDD | - Supply Voltage - V 7 8 0 101 Figure 38 10 2 10 3 CL - Load Capacitance - pF Figure 39 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 32 8 Figure 37 TLV2254 SUPPLY CURRENT vs SUPPLY VOLTAGE AA AA AA 7 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 10 4 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS SLEW RATE vs FREE-AIR TEMPERATURE INVERTING LARGE-SIGNAL PULSE RESPONSE 0.2 0.16 VDD = 3 V RL = 50 k CL = 100 pF AV = -1 TA = 25C 2.5 SR - VO - Output Voltage - V SR - Slew Rate - V/ s 3 VDD = 5 V RL = 50 k CL = 100 pF AV = 1 0.12 SR + 0.08 0.04 2 1.5 1 0.5 0 -75 0 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - C 125 0 10 20 Figure 40 40 50 60 70 t - Time - s 80 90 100 Figure 41 INVERTING LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 3 VDD = 5 V RL = 50 k CL = 100 pF 4 A = -1 V TA = 25C VDD = 3 V RL = 50 k CL = 100 pF AV = 1 TA = 25C 2.5 VO - Output Voltage - V VO - Output Voltage - V 30 3 2 1 2 1.5 1 0.5 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 t - Time - s 20 30 40 50 60 70 80 90 100 t - Time - s Figure 42 Figure 43 Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 33 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 0.95 5 VDD = 5 V RL = 50 k CL = 100 pF AV = 1 TA = 25C 0.9 VO - Output Voltage - V VO - Output Voltage - V 4 VDD = 3 V RL = 50 k CL = 100 pF AV = - 1 TA = 25C 3 2 0.85 0.8 0.75 0.7 1 0.65 0.6 0 0 10 20 30 40 50 60 t - Time - s 70 80 0 90 100 10 30 40 50 t - Time - s Figure 44 Figure 45 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE INVERTING SMALL-SIGNAL PULSE RESPONSE 0.95 2.65 VDD = 5 V RL = 50 k CL = 100 pF AV = - 1 TA = 25C VDD = 3 V RL = 50 k CL = 100 pF AV = 1 TA = 25C 0.9 VO VO - Output Voltage - V 2.6 VO VO - Output Voltage - V 20 2.55 2.5 0.85 0.8 0.75 0.7 2.45 0.65 0.6 2.4 0 10 20 30 t - Time - s 40 50 0 Figure 46 10 20 30 t - Time - s 40 Figure 47 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 34 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 50 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 60 2.65 VO VO - Output Voltage - V 2.6 V n - Equivalent Input Noise Voltage - nV/ Hz VDD = 5 V RL = 50 k CL = 100 pF AV = 1 TA = 25C 2.55 2.5 2.45 2.4 0 10 20 30 t - Time - s 40 50 VDD = 3 V RS = 20 TA = 25C 40 30 20 10 0 10 1 50 10 2 10 3 f - Frequency - Hz Figure 48 Figure 49 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD 1000 VDD = 5 V RS = 20 TA = 25C VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25C 750 500 Noise Voltage - nV V n - Equivalent Input Noise Voltage - nV/ Hz 60 50 10 4 40 30 20 250 0 -250 -500 10 -750 0 101 10 2 10 3 f - Frequency - Hz 10 4 -1000 0 2 4 6 8 10 t - Time - s Figure 51 Figure 50 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 35 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS INTEGRATED NOISE VOLTAGE vs FREQUENCY THD + N - Total Harmonic Distortion Plus Noise - % TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY Integrated Noise Voltage - V 100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25C 10 1 0.1 101 1 10 2 10 3 f - Frequency - Hz 10 4 10 5 1 AV = 100 0.1 AV = 10 0.01 AV = 1 VDD = 5 V RL = 50 k TA = 25C 0.001 101 10 2 10 3 Figure 52 GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 300 VDD = 5 V f = 10 kHz RL = 50 kHz CL = 100 pF Gain-Bandwidth Product - kHz 220 210 200 190 260 220 180 140 180 100 -75 170 0 1 4 6 2 3 5 VDD - Supply Voltage - V 7 8 -50 -25 0 25 50 75 100 TA - Free-Air Temperature - C Figure 55 Figure 54 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 36 10 5 Figure 53 GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE Gain-Bandwidth Product - kHz 10 4 f - Frequency - Hz POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 125 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE 75 GAIN MARGIN vs LOAD CAPACITANCE 20 Rnull = 200 TA = 25C Rnull = 500 Rnull = 500 60 Gain Margin - dB om m - Phase Margin 15 45 Rnull = 100 Rnull = 50 30 Rnull = 10 50 k VI 0 101 Rnull = 100 10 Rnull = 50 Rnull = 10 50 k 15 Rnull = 200 5 VDD + Rnull - + Rnull = 0 Rnull = 0 CL TA = 25C VDD - 10 2 10 3 CL - Load Capacitance - pF 0 101 10 4 10 4 10 2 10 3 CL - Load Capacitance - pF Figure 56 Figure 57 OVERESTIMATION OF PHASE MARGIN vs LOAD CAPACITANCE UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 25 TA = 25C 200 TA = 25C Rnull = 500 Overestimation of Phase Margin B1 - Unity-Gain Bandwidth - kHz 175 AA AA 10 5 150 125 100 75 50 20 15 Rnull = 100 10 Rnull = 200 Rnull = 50 Rnull = 10 5 25 0 101 0 101 10 2 10 3 10 4 CL - Load Capacitance - pF 10 5 10 2 10 3 10 4 CL - Load Capacitance - pF See application information 10 5 Figure 59 Figure 58 For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 37 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 APPLICATION INFORMATION driving large capacitive loads The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of 10 , 50 , 100 , 200 , and 500 . The addition of this series resistor has two effects: the first adds a zero to the transfer function and the second reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. m1 + tan -1 2 x x UGBW x R null xC (1) L Where : m1 + improvement in phase margin UGBW + unity-gain bandwidth frequency R null + output series resistance C L + load capacitance The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58. Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, providing additional phase shift and reducing the overall improvement in phase margin. Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads. 50 k VDD + VI 50 k Rnull - + CL VDD - / GND Figure 60. Series-Resistance Circuit 38 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 SLOS185D - FEBRUARY 1997 - REVISED AUGUST 2006 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using the TLV2252 typical electrical and operating characteristics at TA = 25C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers," IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 - 53 HLIM - + C2 6 - - - + VLN + GCM GA VLIM 8 - RD2 54 4 91 + VLP 7 60 + - + DLP 90 RO2 VB IN - VCC - - + ISS RP 2 1 DLN EGND + - RO1 DE 5 + VE OUT .SUBCKT TLV225x 1 2 3 4 5 C1 11 12 6.369E-12 C2 6 7 25.00E-12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 -60E6 60E6 60E6 -60E6 GA 6 0 11 12 26.86E-6 GCM 0 6 10 99 2.686E-9 ISS 3 10 DC 3.1E-6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 -.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC -0.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E-18) .MODEL JX PJF (IS=500.0E-15 BETA=139E-6 + VTO=-.05) .ENDS Figure 61. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 39 PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp Samples (Requires Login) 5962-9550401Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9550401QHA ACTIVE CFP U 10 1 TBD Call TI Call TI 5962-9550401QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI 5962-9550403Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9550403QHA ACTIVE CFP U 10 1 TBD Call TI Call TI 5962-9550403QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI 5962-9566601Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9566601QHA ACTIVE CFP U 10 1 TBD Call TI Call TI 5962-9566601QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI 5962-9566602Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9566602QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI 5962-9566602QDA ACTIVE CFP W 14 1 TBD Call TI Call TI 5962-9566603Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9566603QHA ACTIVE CFP U 10 1 TBD Call TI Call TI 5962-9566603QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI 5962-9566604Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI 5962-9566604QCA ACTIVE CDIP J 14 1 TBD Call TI Call TI 5962-9566604QDA ACTIVE CFP W 14 1 TBD Call TI Call TI TLV2252AID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AIDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AIDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AIP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2252AIPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2252AIPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) Addendum-Page 1 (3) CU NIPDAU Level-1-260C-UNLIM PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty 150 Eco Plan (2) Green (RoHS & no Sb/Br) Lead/ Ball Finish MSL Peak Temp ACTIVE TSSOP PW 8 TLV2252AIPWLE OBSOLETE TSSOP PW 8 TLV2252AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AMFKB ACTIVE LCCC FK 20 1 TBD TLV2252AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type TLV2252AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type TLV2252AQD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AQDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AQDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252CP ACTIVE PDIP P 8 TLV2252ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2252IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TBD CU NIPDAU Level-1-260C-UNLIM Call TI Call TI POST-PLATE N / A for Pkg Type Call TI Call TI TLV2252IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2252IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2252MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type TLV2252MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type TLV2252MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type TLV2252QD ACTIVE SOIC D 8 TBD Call TI Addendum-Page 2 Samples (Requires Login) TLV2252AIPWG4 TBD (3) Call TI PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 17-Aug-2012 Status (1) Package Type Package Drawing Pins Package Qty 75 Eco Plan (2) Green (RoHS & no Sb/Br) Lead/ Ball Finish MSL Peak Temp ACTIVE SOIC D 8 CU NIPDAU Level-1-260C-UNLIM TLV2252QDR ACTIVE SOIC D 8 TLV2252QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Call TI Call TI TLV2254AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2254AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2254AIPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIPWLE OBSOLETE TSSOP PW 14 TLV2254AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AMFKB ACTIVE LCCC FK 20 1 TBD TLV2254AMJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLV2254AMWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type TLV2254AQD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AQDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254AQDR ACTIVE SOIC D 14 TLV2254AQDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) TBD TBD Addendum-Page 3 Call TI Call TI POST-PLATE N / A for Pkg Type Call TI Samples (Requires Login) TLV2252QDG4 TBD (3) Call TI CU NIPDAU Level-1-260C-UNLIM PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2254INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLV2254MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type TLV2254MJB ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type TLV2254MWB ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type TLV2254QD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254QDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254QDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2254QDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262AMFKB ACTIVE LCCC FK 20 1 TBD TLV2262AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type TLV2262AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type TLV2262MFKB ACTIVE LCCC FK 20 1 TBD TLV2262MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type TLV2262MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type POST-PLATE N / A for Pkg Type POST-PLATE N / A for Pkg Type The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 4 Samples (Requires Login) TLV2254ID (1) (3) PACKAGE OPTION ADDENDUM www.ti.com 17-Aug-2012 (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF TLV2252, TLV2252A, TLV2252AM, TLV2252M, TLV2254, TLV2254A, TLV2254AM, TLV2254M, TLV2262AM, TLV2262M : * Catalog: TLV2252A, TLV2252, TLV2254A, TLV2254, TLV2262A, TLV2262 * Automotive: TLV2252-Q1, TLV2252A-Q1, TLV2252A-Q1, TLV2252-Q1, TLV2254-Q1, TLV2254A-Q1, TLV2254A-Q1, TLV2254-Q1, TLV2262A-Q1, TLV2262-Q1 * Enhanced Product: TLV2252-EP, TLV2252A-EP, TLV2252A-EP, TLV2252-EP, TLV2254-EP, TLV2254A-EP, TLV2254A-EP, TLV2254-EP * Military: TLV2252M, TLV2252AM, TLV2254M, TLV2254AM NOTE: Qualified Version Definitions: * Catalog - TI's standard catalog product * Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects * Enhanced Product - Supports Defense, Aerospace and Medical Applications * Military - QML certified for Military and Defense Applications Addendum-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TLV2252AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2252AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1 TLV2252IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1 TLV2254AIDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2254AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 TLV2254IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 TLV2254QDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 17-Aug-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) TLV2252AIDR SOIC D 8 2500 340.5 338.1 20.6 TLV2252AIPWR TSSOP PW 8 2000 367.0 367.0 35.0 TLV2252IDR SOIC D 8 2500 340.5 338.1 20.6 TLV2254AIDR SOIC D 14 2500 367.0 367.0 38.0 TLV2254AIPWR TSSOP PW 14 2000 367.0 367.0 35.0 TLV2254IDR SOIC D 14 2500 367.0 367.0 38.0 TLV2254QDR SOIC D 14 2500 367.0 367.0 38.0 Pack Materials-Page 2 MECHANICAL DATA MCER001A - JANUARY 1995 - REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0-15 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated